
Colloquium: Nonlinear collective interactions in quantum plasmas with

degenerate electron fluids

P.K. Shukla* and B. Eliasson

RUB International Chair, Fakultät für Physik und Astronomie, Ruhr-Universität Bochum,
D-44780 Bochum, Germany

(Received 27 September 2010; published 7 September 2011)

The current understanding of some important nonlinear collective processes in quantum plasmas

with degenerate electrons is presented. After reviewing the basic properties of quantum plasmas,

model equations (e.g., the quantum hydrodynamic and effective nonlinear Schrödinger-Poisson

equations) are presented that describe collective nonlinear phenomena at nanoscales. The effects of

the electron degeneracy arise due to Heisenberg’s uncertainty principle and Pauli’s exclusion

principle for overlapping electron wave functions that result in tunneling of electrons and the

electron degeneracy pressure. Since electrons are Fermions (spin-1=2 quantum particles), there also

appears an electron spin current and a spin force acting on electrons due to the Bohr magnetization.

The quantum effects produce new aspects of electrostatic (ES) and electromagnetic (EM) waves in a

quantum plasma that are summarized in here. Furthermore, nonlinear features of ES ion waves and

electron plasma oscillations are discussed, as well as the trapping of intense EM waves in quantum

electron-density cavities. Specifically, simulation studies of the coupled nonlinear Schrödinger and

Poisson equations reveal the formation and dynamics of localized ES structures at nanoscales in a

quantum plasma. The effect of an external magnetic field on the plasma wave spectra and develop

quantum magnetohydrodynamic equations are also discussed. The results are useful for under-

standing numerous collective phenomena in quantum plasmas, such as those in compact astro-

physical objects (e.g., the cores of white dwarf stars and giant planets), as well as in plasma-assisted

nanotechnology (e.g., quantum diodes, quantum free-electron lasers, nanophotonics and nano-

plasmonics, metallic nanostructures, thin metal films, semiconductor quantum wells, and quantum

dots, etc.), and in the next generation of intense laser-solid density plasma interaction experiments

relevant for fast ignition in inertial confinement fusion schemes.
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I. INTRODUCTION

Dense plasmas composed of ions, degenerate electrons,
positrons, and/or holes (in the context of semiconductors) are

referred to as quantum plasmas. In the latter, the degeneracy of
the lighter plasma species (electrons, positrons, holes) appears

at very high densities and relatively low temperatures, where

the mean interparticle distance is smaller than (or of the same
order as) the de Broglie thermal wavelength. The ions are

typically nondegenerate due to their relatively large mass in
comparison with the electron mass. In quantum physics,

Heisenberg’s uncertainty principle (Dirac, 1981; Holland,

1993; Landau and Lifshitz, 1998a; Bransden and Joachain,
2000) dictates that conjugate variables, such as the position

and momentum of a particle, cannot be precisely determined
simultaneously; the product of the uncertainties of the position

and momentum is equal to or larger than ℏ=2, where ℏ
(¼ 1:0544� 10�27 erg sec ) is Planck’s constant divided by
2�. The position of an electron subjected to the influence of an
atomic nucleus is very well defined (the force to which it is
subjected is large). However, owing to Heisenberg’s uncer-

tainty principle, the electron momentum is ill defined. An

electron has a continuous motion around the position it occu-
pies. This motion exerts pressure on the surrounding medium,

exactly as the thermal agitationof the particles of a gas exerts its
pressure. This pressure is called the electron degeneracy pres-

sure. This pressure, since it is nonthermal in origin, is, of course,*profshukla@yahoo.de
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independent of the electron temperature; the pressure of degen-

erate electrons increases with increasing electron number

density. It is, however, only at very high densities that the

degeneracy pressure becomes comparable to or larger than

the thermal gas pressure. One then says that the plasma matter

is in an exotic state, comprising degenerate electrons and

positrons or holes.
Plasmas with degenerate electrons and positrons with num-

ber densities comparable with solids and temperatures of sev-

eral electron volts fall under the category of dense matter

(Ichimaru, 1982; Fortov, 2009) that appears in the core of giant

planets (Horn, 1991; Chabrier et al., 2006; Chabrier, 2009) and

the crusts of old stars (Guillot, 1999). Dense compressed

plasmas are currently of wide interest due to their applications

to astrophysical and cosmological environments (Lai, 2001;

Opher et al., 2001; Benvenuto andDe Vito, 2005; Harding and

Lai, 2006), aswell as to inertial fusion science involving intense

laser-solid density plasma interaction experiments (Lindl,

1995; Hu and Keitel, 1999; Andreev, 2000; Mendonça, 2001;

Son and Fisch, 2005; Marklund and Shukla, 2006; Salamin

et al., 2006; Glenzer et al., 2007; Malkin et al., 2007; Kritcher

et al., 2008; Glenzer and Redmer, 2009; Lee et al., 2009;

Neumayer et al., 2010; Froula et al., 2011) for inertial

confinement fusion (Azechi et al., 2006) based on the high-

energy density plasma physics (Drake, 2009; 2010; Norreys

et al., 2009). Plasmalike collective behavior is well studied

experimentally and theoretically in solid-state physics (Kittel,

1996), in which metals and semiconductors support both trans-

verse optical modes and longitudinal electrostatic modes, such

as plasmons and phonons on electron and ion time scales, and,

in addition, various lattice modes. Plasmons and phonons are

usually probed by measuring the energy of electrons which

have been passed through thin foils, or by laser scattering

techniques. For example, the dispersion relation of collective

electron plasma waves has been measured for several metal

specimen by using an electronvelocity analyzer ofMöllenstedt

type (Watanabe, 1956). Collective dispersive behavior of plas-

mons, including shifts in the plasmon frequency due to quan-

tum effects, in solid-density plasmas have been observed by

Glenzer et al. (2007) and Neumayer et al. (2010) using

spectrally resolved x-ray scattering techniques (Kritcher

et al., 2008; Lee et al., 2009). In these experiments, powerful

x-ray sources are employed for accessing narrow bandwidth

spectral lines via collective Thomson scattering of light off

electron-density fluctuations. These experimental techniques

also allow accurate measurements of the electron velocity

distribution function, temperature, and ionization state in the

densematter regime.Gregori andGericke (2009) also proposed

future experiments to measure low-frequency oscillations in

plasmas when keV free-electron lasers will become available.

Froula et al. (2011) summarized the measurement techniques

using scattering of electromagnetic (EM) waves in plasmas,

and recent experimental results from x-ray scattering experi-

ments in dense plasmas reveal that quantummechanical effects

are indeed important (Glenzer et al., 2007; Glenzer and

Redmer, 2009).
Furthermore, due to recent experimental progress in femto-

second pump-probe spectroscopy, the field of quantum plas-

mas is also gaining significant attention (Crouseilles et al.,

2008) in connection with the collective dynamics of an

ensemble of degenerate electrons in metallic nanostructures

and thin metal films. The physics of quantum plasmas is also

relevant in the context of quantum diodes (Ang et al., 2003;

Ang and Zhang, 2007; Shukla and Eliasson, 2008), nano-

photonics and nanowires (Barnes et al., 2003; Chang et al.,

2006; Shpatakovskaya, 2006), nanoplasmonics (Ozbay, 2006;

Atwater, 2007; Maier, 2007; Marklund et al., 2008;

Stockman, 2011), high-gain quantum free-electron lasers

(Serbeto et al., 2008; 2009), microplasma systems (Becker

et al., 2006), and small semiconductor devices (Markowich

et al., 1990; Haug and Koch, 2004; Haug and Jauho, 2007;

Manfredi and Hervieux, 2007), such as quantum wells and

piezomagnetic quantum dots (Adolfath et al., 2008). The

latter can be used as nanoscale magnetic switches.
Collective interactions between an ensemble of degenerate

electrons and positrons or holes give rise to novel waves and

structures in quantum plasmas. Studies of linear waves in a

nonrelativistic unmagnetized quantum plasma with degener-

ate electrons began with the pioneering theoretical works of

Klimontovich and Silin (1952a, 1952b), Bohm (1953), Bohm

and Pines (1953), Klimontovich and Silin (1961), and Pines

(1961), who studied the dispersion properties of high-

frequency electron plasma oscillations (EPOs). The frequen-

cies of the latter with an arbitrary electron degeneracy have

been found by Maafa (1993). In the theoretical description of

the EPOs, Klimontovich and Silin and Bohm and Pines used

the Wigner distribution function (Wigner, 1932) and the

density matrix approach to demonstrate that in a quantum

plasma with a Fermi-Dirac equilibrium distribution function

for degenerate electrons, the frequency of the EPOs is sig-

nificantly different from the Bohm-Gross frequency in a

classical electron-ion plasma with nondegenerate electrons

obeying the Maxwell-Boltzmann distribution function. The

dispersion to the EPOs appears through the electron Fermi

pressure and electron tunneling effects (Wilhelm, 1971;

Gardner and Ringhofer, 1996; Manfredi and Haas, 2001;

Manfredi, 2005; Jüngel et al., 2006; Shukla, 2006; Shukla

and Eliasson, 2006; Misra, 2009; Shukla and Eliasson, 2010).

The quantum Bohm potential, responsible for electron tunnel-

ing, appeared first in the quantum fluid description of a single

electron by Madelung (1927) and Bohm (1953). For systems

of degenerate electrons, different forms of the potential have

been derived by using moments of the Wigner equation

(Iafrate et al., 1981; Ancona and Iafrate, 1989) and by using

a variational approach (Feynman and Kleinert, 1986; Kleinert,

1986). They have been used in quantum hydrodynamic (QHD)

equations (Wilhelm, 1971) for modeling nanodevices (Ferry

and Zhou, 1993; Gardner and Ringhofer, 1996). More re-

cently, Lagrangian approaches have been used to device

efficient computational algorithms for quantum systems

(Lopreore and Wyatt, 1999; Mayor et al., 1999). These and

other methods for computational QHD using quantum trajec-

tories have been summarized by Wyatt (2005).
The quantum effects are important for the dielectric and

dispersive properties of a quantum plasma. The longitudinal

and transverse dielectric constants of an isotropic quantum

plasma were worked out by Lindhard (1954), Silin and

Rukhadze (1961), and Kuzelev and Rukhadze (1999).

Contributions of the electron spin and exchange interactions

to the EM wave dispersion relations in an unmagnetized
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quantum plasma have been presented by Burt and Wahlquist

(1962) by using a quantum kinetic theory. The quantum

mechanical phase space distribution of Wigner (1932) has

been further generalized by Brittin and Chappell (1962) for

a system of charged particles including the quantized EM field
and Green’s functions involving correlations of distribution

functions and vector potentials. Kinetic models for spin-

polarized plasmas have been developed by Cowley et al.

(1986), Zhang and Balescu (1988), and Balescu and Zhang

(2009). More recently, electron spin-1=2 effects in a quantum

magnetoplasma have also been considered by Brodin et al.

(2008a) and Zamanian et al. (2010). The gauge problem in

quantum kinetics has been treated by Stratonovich (1956) and
Serimaa et al. (1986), which is important whenever the fields

are not electrostatic. In a quantum magnetoplasma, one finds

that the external magnetic field significantly affects the dy-

namics of degenerate electrons, and that the thermodynamics

and kinetics (Steinberg, 2000) in a quantum magnetoplasma

are significantly different from those in an unmagnetized

quantum plasma. Oberman and Ron (1963) derived the ex-

pression for the dielectric function for longitudinal waves in a
nonrelativistic magnetized quantum plasma and discussed

applications of their work to heavily doped semiconductors.

Kelly (1964) studied the dispersive properties of a magnetized

quantum plasma by using theWigner distribution function and

the Maxwell equations. Finally, we mention that useful foun-

dations for the theory of quantum plasmas are presented by de

Groot and Suttorp (1972), while quantum kinetic models

including the effects of spin are reviewed by Lee (1995).
During the last decade, there has been a surge in investigat-

ing new aspects of collective interactions in dense quantum

plasmas by means of nonrelativistic quantum hydrodynamic

(Gardner and Ringhofer, 1996; Manfredi and Haas, 2001;

Manfredi, 2005; Jüngel et al., 2006; Shukla and Eliasson,

2010) and quantum kinetic (Bonitz, 1998; Kremp et al., 1999;

Tsintsadze and Tsintsadze, 2009) equations. Models for non-
ideal effects in a strongly coupled dense plasma have been

presented by Carruthers and Zachariasen (1983), Kremp et al.

(2005), and Redmer and Röpke (2010). The Wigner-Poisson

model (Hillery et al., 1984) has been used to derive a set of
QHD equations (Manfredi and Haas, 2001; Manfredi, 2005)

for electrostatic (ES) waves in a quantum plasma. The relation

between the QHD and kinetic models have been investigated

by Haas et al. (2010). The quantum nature (Manfredi and
Haas, 2001; Shukla and Eliasson, 2010) is manifested in the

nonrelativistic electron momentum equation through the

quantum statistical pressure, which requires knowledge of

the Wigner electron distribution function for a quantum mix-

ture of electron wave functions, each characterized by an

occupation probability. The quantum part of the electron

pressure is also represented as a nonlinear quantum force

(Wilhelm, 1971; Gardner and Ringhofer, 1996; Manfredi
and Haas, 2001) �r�B, where �B¼�ðℏ2=2me

ffiffiffiffiffi
ne

p Þr2 ffiffiffiffiffi
ne

p
is the Bohm potential, andme and ne are the electron mass and
electron number density, respectively. Defining the effective

wave function c¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
neðr;tÞ

p
exp½iSeðr;tÞ=ℏ�, whererSeðr;tÞ¼

meueðr;tÞ and ueðr; tÞ is the electron fluid velocity, the

nonrelativistic electron momentum equation can be cast into

an effective nonlinear Schrödinger (NLS) equation (Manfredi

and Haas, 2001; Manfredi, 2005; Shukla, 2006; Shukla and

Eliasson, 2006, 2010), in which there appears a coupling
between the electron wave function and the ES potential
associated with the EPOs. The ES potential, in turn, is deter-
mined from Poisson’s equation. Thus, one has the coupled
NLS and Poisson equations, governing the dynamics of non-
linearly interacting EPOs is a quantum plasma. Both non-
relativistic QHD and NLS-Poisson equations exclude strong
interactions among the quantum particles and electron-
exchange interactions (Hohenberg and Kohn, 1964; Kohn
and Sham, 1965) between an electron and the background
plasma particles (e.g., degenerate electrons and nondegenerate
ions). However, it has turned out that the QHD and NLS-
Poisson equations have been quite useful for studying linear
and nonlinear plasma waves, as well as stability of quantum
plasmas (Manfredi and Haas, 2001; Haas et al., 2003; Haas,
2005; Manfredi, 2005; Shukla, 2006; Shukla and Eliasson,
2006; Haas, 2007; Shukla and Eliasson, 2010) at nanoscales
involving the quantum force (Wilhelm, 1971; Gardner and
Ringhofer, 1996) and the quantum statistical pressure law for
an unmagnetized quantum plasma with degenerate electrons.
New effects also appear when one accounts for the potential
energy of the electron spin 1=2 in a magnetic field (Takabayasi,
1955; Brodin and Marklund, 2007a, 2007b, 2007c; Marklund
and Brodin, 2007; Misra, 2007, 2009; Shukla, 2007, 2009;
Brodin et al., 2008b, 2010; Misra and Samanta, 2010). In fact,
the QHDmodel for degenerate electrons in both nonrelativistic
(Manfredi and Haas, 2001; Manfredi, 2005; Shukla, 2006;
Shukla and Eliasson, 2006, 2010) and relativistic (Masood
et al., 2010) quantum plasma regimes seems to provide an
adequate description for probing some quantum collective
interactions in compressed plasmas (Glenzer et al., 2007;
Glenzer and Redmer, 2009; Lee et al., 2009; Neumayer
et al., 2010; Froula et al., 2011) due to the availability of
ultrafast x-ray Thompson scattering spectroscopic techniques.

In this Colloquium, we present the recent development of
numerous nonlinear collective processes in a quantum plasma
with degenerate electrons. We first describe the salient prop-
erties of quantum plasmas in which degenerate electrons
follow the Fermi-Dirac distribution. We then present the
relevant equations for describing linear and nonlinear wave
phenomena in quantum plasmas. After reviewing the linear
properties of ES and EM waves, we proceed by presenting
numerical results of the governing nonlinear equations, which
reveal localization of ES and EM waves at nanoscales.
Specifically, we discuss the formation and dynamics of nano-
structures (e.g., 1D quantum electron-density cavities and 2D
quantum vortices), as well as discuss the properties of 3D
quantum electron fluid turbulence at nanoscales. Also pre-
sented are nonlinear interactions between intense EM waves
and ESOs, which reveal stimulated scattering of EM waves
off quantum plasma oscillations and trapping of light into a
quantum electron-density cavity. The effects of an external
magnetic field on linear and nonlinear wave phenomena in a
quantum magnetoplasma are examined. Finally, we highlight
possible applications, as well as future perspectives and out-
look of nonlinear quantum plasma physics.

II. BASIC PROPERTIES OF QUANTUM PLASMAS

We first summarize some of the basic properties of quan-
tum plasmas that are quite distinct from classical plasmas.
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While classical plasmas are composed of nondegenerate
plasma particles with low number densities and relatively
high electron and ion temperatures, quantum plasmas have
degenerate electrons and/or positrons with extremely high
number densities and relatively low temperatures. The ions
can usually be treated as nondegenerate plasma particles.
Figure 1 shows the plasma parameter regimes (the electron
temperature versus the electron number density) under which
quantum plasmas occur in different physical environments.

Quantum mechanical effects start playing a significant role
when the Wigner-Seitz radius (average interparticle distance)
a ¼ ð3=4�nÞ1=3 is comparable to or smaller than the thermal
de Broglie wavelength �B ¼ ℏ=mVT , where m is the mass of
the quantum particles (e.g., degenerate electrons, degenerate
positrons, degenerate holes), VT ¼ ðkBT=mÞ1=2 is the thermal
speed of the quantum particles, T is the temperature, m is the
mass, and kB is the Boltzmann constant, i.e., when

n�3
B � 1; (1)

or, equivalently, when the temperature T is comparable to or
lower than the Fermi temperature TF ¼ EF=kB, where the
Fermi energy is

EF ¼ ℏ2

2m
ð3�2Þ2=3n2=3: (2)

The relevant degeneracy parameter for the quantum plasma is

TF

T
¼ 1

2
ð3�2Þ2=3ðn�3

BÞ2=3 � 1: (3)

For typical metallic densities of free electrons, n�5�
1022 cm�3, we have TF � 6� 104 K, which should be com-
pared with the usual temperature T.

When the plasma particle temperature approaches TF, one
can show, by using a density matrix formalism (Bransden and

Joachain, 2000), that the equilibrium distribution function
changes from the Maxwell-Boltzmann / expð�E=kBTÞ to
the Fermi-Dirac (FD) distribution function

F FD ¼ 2

�
m

2�ℏ

�
3
�
1þ exp

�
E��

kBT

���1
; (4)

where in the nonrelativistic limit the energy is E¼ðm=2Þv2¼
ðm=2Þðv2

xþv2
yþv2

zÞ. The chemical potential is denoted by�.

The parameter �=kBT is large and negative in the nonde-
generate limit, and is large and positive in the completely
degenerate limit. The equilibrium electron number density
associated with the FD distribution function is

n0¼
Z
F FDd

3v¼�1

4

�
2mkBT

�ℏ2

�
3=2

Li3=2½�expð��Þ�; (5)

where Li3=2 is the polylogarithm function and �� ¼ �=kBT.

The completely degenerate limit corresponds to � ! kBTF

and TF � T. The relation between TF=T and �� is (Melrose

2008) �Li3=2½� expð��Þ� ¼ ð4=3 ffiffiffiffi
�

p ÞðTF=TÞ3=2.
It is useful to define the quantum coupling parameters for

electron-electron and ion-ion interactions. The electron-
electron Coulomb coupling parameter is defined as the ratio
of the electrostatic interaction energy Eint ¼ e2=ae between
electrons and the electron Fermi energy EFe ¼ kBTFe, where e
is the magnitude of the electron charge and ae ¼ ð3=4�neÞ1=3
is the mean interelectron distance. We have

�e ¼ Eint

EFe

� 0:3

�
1

ne�
3
Fe

�
2=3 � 0:3

�ℏ!pe

kBTFe

�
2
; (6)

where�Fe¼VFe=!pe,VFe¼ð2EFe=meÞ1=2¼ðℏ=meÞð3�2neÞ1=3
is the electron Fermi speed, and !pe ¼ ð4�ne2=meÞ1=2 the

electron plasma frequency. Furthermore, the ion-ion Coulomb
coupling parameter is �i ¼ Z2

i e
2=aikBTi, where Zi is the ion

charge state, ai ¼ ð3=4�niÞ1=3 is the mean inter-ion distance,
and Ti is the ion temperature.

Since �e for metallic plasmas could be larger than unity, it
is of interest to enquire the role of interparticle collisions on
collective processes in a quantum plasma. It turns that the
Pauli blocking reduces the collision rate for most practical
purposes (Manfredi, 2005; Son and Fisch, 2005). Because of
Pauli blocking, only electrons with a shell of thickness kBT
about the Fermi surface suffer collisions. For these electrons,
the electron-electron collision frequency is proportional to
kBT=ℏ. The average collision frequency among all electrons
turns out to be (Manfredi, 2005)

�ee ¼ kBT
2

ℏTFe

: (7)

Typically, �ee � !pe when T < TFe, which is relevant for

metallic electrons. On the other hand, the typical time scale
for electron-ion (lattice) collisions is �ei ’ 10 fs, which is 1
order of magnitude greater than the electron plasma period.
Accordingly, a collisionless quantum plasma regime is rele-
vant for phenomena appearing on the time scale of the order
of a femtosecond in a metallic plasma.

In compact astrophysical objects such as white dwarf stars,

themeandistancen�1=3
e between electrons becomecomparable

to the Compton length �C¼ℏ=mec, and accordingly the speed
of an electron on the Fermi surface becomes comparable to

FIG. 1. The plasma diagram in the logT- logne plane, separating

the classical and quantum regimes. From National Research Council

1995.
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the speed of light c invacuum, so that one has to take relativistic
effects into account. Relativistic degenerate electrons are found
in the core of massive white dwarf stars (Shapiro and
Teukolsky, 1983; Koester and Chanmugam, 1990), aptly
named due to their very low luminosities yet high surface
emissivities, which are compact bodies with radii 	 10�2R

and masses typically 	 M
. Consequently, the average elec-
tron number densities are quite high (�1030 cm�3). Since
electrons are fermions, only one electron can occupy a given
quantum state (position, spin). In a simplified picture, each
electron will on average occupy a volume 1=ne. Then, by
Heisenberg’s uncertainty principle (Bransden and Joachain,
2000) �x�p & ℏ=2, the mean momentum of electrons can

be estimated to be px � ℏn1=3e . If electrons are nonrelativistic,

the velocity of the electron is�px=me ¼ ℏn1=3e =me; however,
if electrons are relativistic, their velocitywill be close to c. Now
the electron pressure, as it is for a simple gas, is the momentum
transfer per unit area, or Pe ¼ ðmomentumÞ � ðvelocityÞ �
ðnumber densityÞ. For nonrelativistic electrons, we have

(Gursky, 1976) Pe¼ℏn1=3e ðℏn1=3e =meÞne¼ℏ2n5=3e =me. On the
other hand, when electrons are relativistic, the relativistic

electron pressure is Per ¼ ℏn1=3e cne ¼ ℏcn4=3e . In the past,
Chandrasekhar (1931a, 1931b, 1935, and 1939) and others
presented a rigorous derivation of the electron pressure PC

for arbitrary relativistic electron degeneracy pressure in dense
matter. It reads

PC ¼ �

3h3
m4

ec
5fð�cÞ; (8)

where fð�cÞ¼�cð2�2
c�3Þð1þ�2

cÞ1=2þ3sinh�1ð�cÞ, �c ¼
pc=mec, and pc ¼ ð3h3ne=8�Þ1=3 is the momentum of
an electron on the Fermi surface. In the nonrelativistic limit
�c � 1, we have (Chandrasekhar, 1935, 1939)

Pn ¼ �2=3

5me

ℏ2n5=3e ; (9)

while in the ultrarelativistic limit �c � 1, the degenerate
electron pressure reads (Chandrasekhar, 1931a)

Pu ¼ ð3�2Þ1=3
4

ℏcn4=3e � 3

4
ℏcn4=3e : (10)

Thus, the intuitively obtained formulas of Gursky (1976) for
nonrelativistic and ultrarelativistic pressures for degenerate
electrons are in agreement with those deduced from the pres-
sure formula (8) for an arbitrary relativistic electrondegeneracy
pressure.

In his Nobel Prize winning papers on the structure of
compact stars, Chandrasekhar (1931a and 1931b) balanced
the gradient of the ultrarelativistic electron degeneracy pres-
sure Pu=R and the gravitational force G ¼ ðGM=R2Þnemn,
whereG is the gravitational constant,M andR are themass and
radius of a star, respectively, mn is the mass of the nuclei
(nemn ¼ M=R3), to deduce the critical mass of a star Mc ¼
ðℏc=GÞ3=2m�2

n � 1:4M
, where M
 is the solar mass. The
interior of white dwarf stars usually consists of fully ionized
helium, carbon, and oxygen, which approximately consist of
equal amounts of protons and neutrons. Hence, the effective
mass of the nuclei can be taken to be the proton mass plus the
neutronmass. SinceMc is independent of density, it means that
this mass is obtained independent of radius. This is the limiting

mass; more massive stars cannot be supported by electron
degeneracy pressure no matter how small they are. This was
the discovery of Chandrasekhar; that the pressure dependence
on density changed in going from nonrelativistic to relativistic
conditions and, as a consequence, there arose a finite limit to
the mass of a star with ultrarelativistic degenerate electrons.

III. MODEL EQUATIONS FOR QUANTUM PLASMAS

In quantum systems, the Dirac and Maxwell equations are
often used to study the dynamics of a relativistic quantum
particle or fermion (electrons and positrons) in the presence
of intense electromagnetic fields. Quantum particles have
spin. For example, an electron spin s ¼ 1=2 is an intrinsic
property of electrons, which have an intrinsic angular mo-
mentum characterized by quantum number 1=2, and a mag-
netic moment for individual electrons. In fact, the relativistic
Dirac equation provides a description of quantum particles
(with spin) under the action of the electromagnetic fields. The
spin of electrons (and positrons), which have the spin 1=2, has
been introduced through Dirac’s Hamiltonian (Dirac, 1981)

H ¼ c�s �
�
pe þ e

c
A

�
� e�þ �mec

2; (11)

where pe ¼ �iℏr is the momentum operator, and �s and �
are the Dirac matrices. The three Cartesian components �j

(j ¼ 1, 2, 3) of �s are usually constructed with help of the
Pauli spin matrices 	x, 	y, and 	z (Bransden and Joachain,

2000). The corresponding wave functions c are four-
component spinors. The magnetic field is B ¼ r�A, where
A and � are the vector and scalar potentials, which are
determined from the Maxwell equations.

In the nonrelativistic limit, the Pauli equation (Berestetskii
et al., 1999) in the presence of the electromagnetic fields
describes the dynamics of a single quantum particle. It reads
(Tsintsadze and Tsintsadze, 2009)

iℏ
@c �

@t
¼ H�c �; (12)

where

H� ¼ � ℏ2

2m�

r2 � iq�ℏ
2m�c

ðA � r þ r �AÞ þ q2�A
2

2m�c
2

þ q����� �B (13)

is the Hamiltonian, and c �ðr; t;�Þ is the wave function of the
single quantum particle species � with the spin s ¼ ð1=2Þ�
(j�j ¼ 1), and q� ¼ �eðþeÞ for electrons (positrons). The
last term in Eq. (13) is the potential energy of the magnetic
dipole in the external magnetic field, the magnetic moment of
which is �� ¼ ðq�ℏ=2m�cÞ� � �B�, where �B ¼
q�ℏ=2mec is the Bohr-Pauli magneton and � is the spin
operator of a single quantum particle (Landau and Lifshitz,
1998a).

By using the Madelung representation (Madelung, 1927)
for the complex wave function c �, viz.

c �ðr; t; 	Þ ¼ ��ðr; t; 	Þ expðiS�=ℏÞ; (14)

where ��ðr; t; 	Þ and S�ðr; t; 	Þ are real, in the Pauli equa-
tion (12), we obtain the quantum Madelung fluid equations
(Tsintsadze and Tsintsadze, 2009)
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@n�
@t

þr � ðn�p�=m�Þ ¼ 0 (15)

and

dp�

dt
¼ q�

�
Eþ u� � B

c

�
þ FQ þ Fs; (16)

where

FQ ¼ ℏ2

2m�

r
�r2 ffiffiffiffiffiffi

n�
p
ffiffiffiffiffiffi
n�

p
�

(17)

and

Fs ¼ �Brð	 � BÞ: (18)

Here, n� ¼ j��j2 is the probability density of finding a single
quantum particle with a spin s at some point in space, p� ¼
rS� � q�A=c is the momentum operator of a quantum parti-
cle, d=dt ¼ ð@=@tÞ þ u� � r, u� is the velocity of a quantum
particle, and E ¼ �r�� c�1@A=@t and B ¼ r�A.

The spin force Fs in a quantum magnetoplasma can also be
written as (Brodin and Marklund, 2007a; 2007b; 2007c;
Brodin et al., 2008b; Marklund and Brodin, 2007)

Fs ¼ �B tanh

�
�BB

kBT�

�
rB; (19)

where B ¼ jBj and tanhð�Þ ¼ B1=2ð�Þ, with the Brillouin

function with argument 1=2 describing particles of spin
1=2. The Langevin parameter tanhð�Þ accounts for the macro-
scopic magnetization of electrons due to the electron thermal
agitation and electron-electron collisions.

A. The Schrödinger and Wigner-Poisson equations

The quantum N-body problem is governed by the
Schrödinger equation for the N-particle wave function
c ðq1; q2; . . . ; qNÞ, where qj ¼ ðrj; sjÞ is the coordinate

(space, spin) of the particle j, each particle associated with
energy Ej. A drastic simplification occurs if one neglects the

correlation between the particles at every order in �Q and

describes the full wave function as the product of the single-
particle wave functions. For identical quantum particles, the
N-particle wave function is given by the Slater determinant
(Bransden and Joachain, 2000)

c ðq1;q2;...;qNÞ¼ 1ffiffiffiffiffiffi
N!

p

�����������������������

c 1ðq1;tÞ c 2ðq1Þ ��� c Nðq1Þ
c 1ðq2;tÞ c 2ðq2Þ ��� c Nðq2Þ

..

. ..
. . .

. ..
.

c 1ðqNÞ c 2ðqNÞ ��� c NðqNÞ

�����������������������
;

(20)

which is antisymmetric with respect to an interchange of any
two particle coordinates. This property is required by the
Pauli exclusion principle under the second quantization
procedure for a system of N identical nonrelativistic
quantum particles. Accordingly, c vanishes if two rows
are identical, i.e., two identical quantum particles cannot

occupy the same state. As an example (N ¼ 2): c ðq1; q2Þ ¼
ð1= ffiffiffi

2
p Þ½c 1ðq1Þc 2ðq2Þ � c 1ðq2Þc 2ðq1Þ� so that c ðq2; q1Þ ¼

�c ðq1; q2Þ and c ðq1; q1Þ ¼ 0. In the zero temperature limit,

all energy states up to the Fermi energy level are occupied,
while no energy states above the Fermi level are occupied.

To capture collective effects in quantum plasmas, Haas
et al. (2000) and Anderson et al. (2002) used the time-
dependent Hartree model where electrons are described by
a statistical mixture of N pure states, where each wave
function c j, j ¼ 1; . . . ; N, obeys the Schrödinger equation

(Anderson et al., 2002)

iℏ
@c j

@t
þ ℏ2

2me

r2c j þ e�c j ¼ 0; (21)

which is coupled with Poisson’s equation

r2� ¼ 4�e

�XN
j¼1

jc jj2 � Zini

�
; (22)

where ni is the ion number density (to be obtained from the
hydrodynamic equations for nondegenerate ions, to be dis-
cussed later), and � is the electrostatic potential arising from
the charge distribution of N electrons. Equations (21) and (22)
have been used to study streaming instabilities (Anderson
et al., 2002) and other kinetic effects in a quantum system
composed of an ensemble of electrons. Within the Hartree-
Fock model, Eq. (21) can be further generalized by including
the electron-exchange term resulting from the Pauli exclusion
principle. The effect of exchange is for electrons of like spin to
avoid each other. Each electron of a given spin is consequently
surrounded by an ‘‘exchange hole,’’ a small volume around the
electron which like-spin electrons avoid. For the study of
magnetic ordering in quantum dots doped with magnetic im-
purities, Eqs. (21) and (22)must also be enlarged by including a
3D quantum dots confining potential and a Vosko-Wilk-Nusair
spin dependent exchange-correlation potential (Dharma-
wardana and Perrot, 1995). Hence, the self-consistent model
will go far beyond the Kohn-Sham description (Kohn and
Sham, 1965) for treating the dynamics of correlated electrons
in electron clusters, accounting for electron-exchange and
electron-correlation effects. In the presence of time-dependent
potentials, the properties and dynamics of many-electron sys-
tems can be investigated by using a time-dependent functional
theory (Runge and Gross, 1984).

However, in a nonrelativistic quantum plasma with an
ensemble of degenerate electrons, it is more appropriate to
use the quantum statistical theory involving the Wigner
distribution function (Wigner, 1932)

fwðr;vÞ¼
�
me

2�ℏ

�
3Z

expðimev�R=ℏÞc ðrþR=2Þ
�c ðr�R=2Þd3R; (23)

where the asterisk denotes the complex conjugate. Equation
(23) has also been used by Moyal (1949) for studying the
dynamics of electrons in a quantum system.

For electrostatic interactions in a quantum plasma, the
Wigner-Poisson equations, to a leading order (in the limit
of weak quantum coupling parameter �e), can be written as

@fw
@t

þv�rfw¼� iem3
e

ð2�Þ3ℏ4

ZZ
eimeðv-v0Þ�R=ℏ

�
�

�
xþR

2
;t

�

��

�
x�R

2
;t

��
fwðx;v0;tÞd3Rd3v0 (24)

and
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r2� ¼ 4�e

�Z
fwd

3v-Zini

�
: (25)

B. The QHD equations

The nonrelativistic QHD equations (Wilhelm, 1971) have
been developed in condensed matter physics (Gardner and
Ringhofer, 1996) and in plasma physics (Manfredi and Haas,
2001; Manfredi, 2005). The nonrelativistic QHD equations
are composed of the electron continuity equation

@ne
@t

þr � ðneueÞ ¼ 0; (26)

the electron momentum equation (Wilhelm, 1971)

me

�
@ue

@t
þ ue � rue

�
¼ er�� 1

ne
rPe þ FQ; (27)

and Poisson’s equation

r2� ¼ 4�eðne � ZiniÞ: (28)

In a quantum plasma with nonrelativistic degenerate elec-
trons, the quantum statistical pressure in the zero electron
temperature limit can be modeled as (Manfredi and Haas
2001; Crouseilles et al. 2008)

Pe ¼ meV
2
Fen0
3

�
ne
n0

�ðDþ2Þ=D
; (29)

where D is the number of space dimension of the system and
VFe ¼ ðℏ=meÞð3�2neÞ1=3 is the electron Fermi speed.

C. The NLS-Poisson equations

For investigating nonlinear properties of dense quantum
plasmas, it is appropriate to work with a NLS equation.
Hence, by introducing the wave function

c ðr; tÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
neðr; tÞ

q
exp

�
i
Seðr; tÞ

ℏ

�
; (30)

where Se is defined according tomeue ¼ rSe and ne ¼ jc j2,
it can be shown that Eq. (27) can be cast into a NLS equation
(Manfredi and Haas, 2001; Manfredi, 2005)

iℏ
@c

@t
þ ℏ2

2me

r2c þe�c �meV
2
Fe

2n20
jc j4=Dc ¼0; (31)

where the electrostatic field � is determined from Poisson’s
equation

r2� ¼ 4�eðjc 2j � ZiniÞ: (32)

We note that the third and fourth terms on the left-hand side
of Eq. (31) represent the nonlinearities associated with the
nonlinear coupling between the electrostatic potential and the
electron wave function and the nonlinear quantum statistical
pressure, respectively.

IV. LINEAR WAVES IN QUANTUM PLASMAS

A. Electron plasma oscillations

Linearization of the NLS-Poisson equations (31) and (32)
around the equilibrium state and combining the resultant equa-
tions, we obtain the frequency ! of the EPOs (Klimontovich
and Silin, 1952a; 1952b; Bohm, 1953; Bohm and Pines, 1953)

! ¼
�
!2

pe þ 3

5
k2V2

Fe þ
ℏ2k4

4m2
e

�
1=2

; (33)

where k is the wave number and !pe¼ð4�n0e2=meÞ1=2 is the
electron plasma frequency. Here the ions are assumed to be
stationary.

One can identify two distinct dispersion effects from
Eq. (33): One long wavelength regime with VFe � ℏk=2me,
and the other short wavelength regime with VFe 	 ℏk=2me.
These two regimes are separated by the critical wave number

kcrit ¼ 2�

�crit

� �ℏ
meVFe

� n�1=3
e : (34)

It should be mentioned here that the quantum dispersion
effects associated with the EPOs have recently been observed
in a compressed plasma (Glenzer et al., 2007; Neumayer
et al., 2010; Froula et al., 2011). In compressed plasma
experiments, powerful x-ray sources are employed for access-
ing narrow bandwidth electron plasma wave spectral lines via
collective Thomson scattering in which powerful light scat-
ters off electron-density fluctuations. We note that the disper-
sion relation for EPOs in the finite electron temperature limit
is given by (Thiele et al., 2008)

!2 ¼ !2
pe þ 3k2V2

Teð1þ 0:088ne�
3
eÞ þ ℏ2k4

4m2
e

; (35)

where VTe¼ðkBTe=meÞ1=2 is the electron thermal speed and

�e¼
ffiffiffiffiffiffiffi
2�

p
ℏ=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mekBTe

p
is the thermal (de Broglie) wavelength.

Asmentioned in the Introduction, in thepastmanyderived the
dielectric constant for the high-frequency (in comparison with
the ion plasma frequency) ES waves (Klimontovich and Silin,
1952a; 1952b;Bohm, 1953;BohmandPines, 1953; Lifshitz and
Pitaevskii, 1981) and the refractive index for EM waves (Burt
and Wahlquist, 1962) by using a quantum kinetic theory based
on the Wigner and Poisson-Maxwell equations in a quantum
plasma. In the following, we briefly discuss the well-known
results for the ES (Klimontovich and Silin, 1952a; 1952b;
Bohm, 1953; Bohm and Pines, 1953) and EM (Burt and
Wahlquist, 1962) waves in an unmagnetized quantum plasma.

The dielectric constant for ES waves in a plasma with
completely degenerate electrons reads (Lifshitz and
Pitaevskii, 1981)

Deð!;kÞ ¼ 1þ 3!2
pe

2k2V2
Fe

½1� gð!þÞ þ gð!�Þ�; (36)

where !� ¼ !� ℏk2=2me, and

gð!�Þ ¼ með!2� � k2V2
FeÞ

2ℏkVFe

log

�
!� þ kVFe

!� � kVFe

�
: (37)

Assuming that the phase velocity (!=k) of the ES wave is
much larger than VFe, we obtain by setting Deð!;kÞ ¼ 0 the
frequency of the EPOs, given by (36). On the other hand, in
the semiclassical limit, viz. ℏjkj � pFe ¼ ℏð3�2neÞ1=3, we
have (Lifshitz and Pitaevskii, 1981) from Eq. (36)

Deð!;kÞ¼1þ 3!2
pe

k2V2
Fe

�
1� !

2kVFe

log

��������
!þkVFe

!�kVFe

��������
�
; (38)

which in the short wavelength limit, viz. kVFe � !pe, yields

the so-called electron thermal quasimode (Klimontovich and
Silin, 1952a; 1952b; 1961)
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! ¼ kVFe½1þ 2 expð�2k2�2
s � 2Þ�; (39)

where �s ¼ �Fe=
ffiffiffi
3

p
is the Thomas-Fermi screening length.

Furthermore, when! ¼ 0, Eq. (38) as a function of k has a
Kohn singularity at ℏk ¼ 2pFe, which is the diameter of the
Fermi sphere. Here we have

Deð0;kÞ ¼ 1þ e2

2�ℏEF

½1� � logð1=j�jÞ�; (40)

where � ¼ ðℏk� 2pFeÞ=2pFe and j�j � 1. In a quantum
plasma, with Dð0;kÞ given by Eq. (38), the potential distri-
bution ’ðrÞ around a stationary test charge qt is

’ðrÞ ¼ 4�qt
ð2�Þ3

Z expðik � rÞd3k
k2Deð0;kÞ

; (41)

which gives (Else et al., 2010)

’ðrÞ � qt
12�2

Fe

4

ð2þ 3
2Þ2
cosð2kFrÞ

r3
; (42)

where 
 ¼ ℏ!pe=4kBTFe and kF ¼ pFe=ℏ. We note that

Eq. (42), which is proportional to r�3 cosð2kFrÞ, considerably
differs from the Debye-Hückel shielding potential that is
proportional to r�1 expð�r=�DeÞ in a classical plasma with
the Maxwell-Boltzmann electron distribution function. Here
�De is the electron Debye radius. We further note that the
shielding of a moving test charge in an unmagnetized quan-
tum plasma has been investigated by Else et al. (2010) both
analytically and numerically.

B. Ion plasma oscillations (IPOs)

We now focus our attention on the effect of the dynamics
of nonrelativistic and nondegenerate ions in an unmagnetized
quantum plasma. The dynamics of strongly coupled ions is
governed by the ion hydrodynamic equations composed of
Poisson’s equation (28), and the continuity and momentum
equations. The latter are

@ni
@t

þr � ðniuiÞ ¼ 0 (43)

and �
1þ �m

@

@t

���
@

@t
þ ui � r

�
ui þ Zie

mi

r�þ �ikBTi

mini
rni

�

� 


�i

r2ui �
ð�þ 


3Þ
�i

rðr � uiÞ ¼ 0; (44)

where ni is the ion number density, ui is the ion fluid velocity,
mi is the ion mass, �i ¼ nimi is the ion mass density, �i is the
adiabatic index for the ion fluid, �m is the viscoelastic relaxa-
tion time for ions, 
 and � are the bulk ion viscosities. The
viscoelastic equation (44) for strongly systems has been
successfully used (Ichimaru and Tanaka, 1986; Kaw and
Sen, 1998) for investigating collective processes in classical
plasmas with nondegenerate plasma particles.

The ions are coupled with degenerate electrons by the
space charge electric fieldE ¼ �r�. For low-phase velocity
(in comparison with the electron Fermi speed) ES waves, we
can neglect the inertia of the electrons to obtain

ner�� 9

5

ℏ2

me

rn5=3e þ ℏ2ne
2me

r
�r2neffiffiffiffiffi

ne
p

�
¼ 0; (45)

for a quantum plasma with weakly relativistic degenerate
electrons, while for a quantum plasma with ultrarelativistic
degenerate electrons, we have

ner�� 3=4ℏcrn4=3e ¼ 0: (46)

Because of the ion inertia, one has new dielectric constants
for the low-frequency (in comparison with the electron plasma
frequency) ES waves (Pines, 1983; Pines and Nozieres, 1989;
Eliasson and Shukla, 2008a; Shukla and Eliasson, 2008;
Mushtaq and Melrose, 2009). In a quantum plasma with non-
relativistic degenerate electrons with !2 � k2V2

Fe þ ℏ2k4=
4m2

e, we can linearize Eqs. (28) and (43)–(45), Fourier trans-
form them, and combine the resultant equations to obtain

Dið!;kÞ ¼ 1þ 3!2
pe

k2V2
Fe þ ℏ2k4=4m2

e

�!2
pi

�2
i

; (47)

where !pi ¼ ð4�n0Z2
i e

2=miÞ1=2 is the ion plasma frequency,

and �2
i ¼ !2 � �ik

2V2
Ti þ i!k2
=ð1� i!�mÞ, with VTi ¼

ðkBTi=miÞ1=2 and 
 ¼ ð�þ 4
=3Þ=min0. On the other hand,
in a quantum plasma with ultrarelativistic degenerate elec-
trons, we have from Eqs. (28), (43), (44), and (46)

Dið!;kÞ ¼ 1þ !2
pe

k2C2
ℏ

�!2
pi

�2
; (48)

where C2
ℏ ¼ c2�Cn

1=3
0 , and �C ¼ ℏ=mec is the Compton

length. By setting Dið!;kÞ ¼ 0, we obtain the frequencies
of the IPOs. For the case with nonrelativistic degenerate
electrons, we have

!2 ¼ �ik
2VTi þ k2


�m
þ !2

pik
2�2

Tℏ

1þ k2�2
Tℏ

; (49)

while for the case with ultrarelativistic degenerate electrons
the result is

!2 ¼ �ik
2V2

Ti þ
k2

�m

þ !2
pik

2�2
ℏ

1þ k2�2
ℏ

; (50)

where we have assumed !�m � 1 and denoted �Tℏ ¼ ð�2
s þ

ℏ2k2=4m2
e!

2
peÞ1=2, and �ℏ ¼ Cℏ=!pe. The domain of validity

of the hydrodynamic description for the ions in the context of
ion oscillations in a weakly relativistic dense plasma has also
been recently discussed (Mithen et al., 2011).

Melrose and Mushtaq (2009) and Mushtaq and Melrose
(2009) presented Landau damping rates for both electron and
ion plasma waves in an unmagnetized dense quantum plasma.
The imaginary parts of the dielectric constants can be used to
calculate the structural form factor (Ichimaru, 1982) in quan-
tum a plasma with degenerate electrons.

Shukla and Eliasson (2008) used the dielectric constant
(47) without the quantum statistical pressure term (viz. the
V2
Fe term) to investigate the screening and wake potentials

around a test charge in an electron-ion quantum plasma. They
found a new screening potential

�se ¼ qt
r
expð�kqrÞ cosðkqrÞ; (51)

and the wake potential

�w ¼ � qt
jz� u0tj cos

�
!pi

u0
ðz� u0tÞ

�
; (52)
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where kq ¼
ffiffiffi
2

p
=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ℏ=me!pe

q
is the quantum wave number,

and r ¼ ½x2 þ y2 þ ðz� u0tÞ2�1=2 is the distance from the
test charge moving with the speed u0 along the z axis in a
Cartesian coordinate system. The wake potential (52) behind
a test charge arises due to collective interactions between
a test charge and the ion oscillation with the frequency
!k � !pik?=ðk2? þ k2qÞ1=2, with kz � kq, k?¼ðk2xþk2yÞ1=2.
We note that the Shukla-Eliasson exponential cosine-
screened Coulomb potential �se has a minimum of �se �
�0:02qtkq at r � 3k�1

q , similar to the Lennard-Jones poten-

tial for atoms. The Shukla-Eliasson screening potential �se,
which is independent of the test charge speed u0, is different
from the Yukawa screening potential ðqt=rÞ expð�r=�sÞ that
is valid in the limit VFe � ℏk=2me. Recently, several
(Ghoshal and Ho, 2009a; 2009b; Xia et al., 2010) used the
Shukla-Eliasson potential to study doubly excited resonance
states of helium and hydrogen atoms embedded in a quantum
plasma (Ghoshal and Ho, 2009a; 2009b), and lattice waves in
2D hexagonal quantum plasma crystals (Xia et al., 2010).

Furthermore, by using Di from Eq. (48), one can deduce
potential distributions around a moving test charge in a
quantum plasma with ultrarelativistic electrons. We have

�ðr;zÞ¼qt
r
exp

�
� r

�C

�
þ qt
jz�u0tj cos

�
z�u0t

Lc

�
; (53)

where �C ¼ Cℏ=!pe and Lc ¼ �cðM2 � 1Þ1=2 > 0, with

M ¼ u0=Cℏ.

C. High-frequency EM waves

Finally, we turn our attention to the high-frequency (HF)
EM waves in an unmagnetized quantum plasma. Noting that
HF-EM waves in the latter do not give rise to any density
perturbations, we have the EM wave frequency

! ¼ ðk2c2 þ!2
peÞ1=2: (54)

However, consideration of the electron spin current and
electron-exchange potential contributions in a quantum
plasma gives rise to additional contributions to the refractive
index N. We have (Burt and Wahlquist, 1962)

k2c2

!2
¼ N � 1�!2

pe

!2
�!2

peℏ2k2

m2
e!

4

�
1

5
K2

F þ 1

4
k2
�
; (55)

which includes the electron spin correction, and is valid at zero
temperature. Here ℏKF ¼ ð2meEFeÞ1=2 is the momentum of
degenerate electrons at the Fermi surface, the ð1=5ÞK2

F term is

related to the leading quantum term from the ordinary trans-
verse current, and the k2=4 term arises from the electron spin
interactions. On the other hand, the EM wave dispersion rela-
tion, which accounts for the electron-exchange potential and
discards the spin correction, reads (Burt and Wahlquist, 1962)

k2c2

!2
¼ N � 1�!2

pe

!2
�!2

peℏ2k2K2
F

5m2
e!

4
þ 3!2

pek
2

40!4K2
F

: (56)

V. QUANTUM DARK SOLITONS AND VORTICES

We now discuss nonlinear properties and dynamics of 1D
quantum dark solitons (characterized by the local electron-

density depletion associated with a positive potential) and 2D
azimuthally symmetric electron vortices in an unmagnetized
quantum plasma (Shukla and Eliasson, 2006) with immobile
ions. The assumption of stationary ions is justified because
we are looking for the nonlinear phenomena on a time scale
much shorter than the ion plasma period.

We use the normalized NLS-Poisson equations (Shukla,
2006; Shukla and Eliasson, 2006)

i
@�

@t
þAr2�þ ’�� j�j4=D� ¼ 0 (57)

and

r2’ ¼ j�j2 � 1; (58)

where the time and space variables are in units of ℏ=kBTFe

and the electron Fermi-Thomas screening length �TF, respec-
tively. Furthermore, we have denoted � ¼ c =

ffiffiffiffiffi
n0

p
, ’ ¼

e�=kBTFe, and A ¼ 2�n1=30 e2=kBTFe. The system (57) and

(58) is supplemented by

@E’

@t
¼ iAð�r� ��r�Þ; (59)

where E’ ¼ �r’. Equations (57)–(59) have the following

conserved integrals (Shukla and Eliasson, 2006; Shaikh and
Shukla, 2007): the number of electrons

N ¼
Z

j�jd3x; (60)

the electron momentum

P ¼ �i
Z

�r�d3x; (61)

the electron angular momentum

L ¼ �i
Z

�r�r�d3x; (62)

and the total energy

E¼
Z �

�A�r2�þjr’j2
2

þ D

ð2þDÞj�jð2þ4=DÞ
�
d3x:

(63)

A. Quantum electron cavity

For quasistationary, 1D nonlinear structures moving with a
constant speed v0, one can find solitary wave solutions of
Eqs. (57) and (58) by introducing the ansatz � ¼ Wð�Þ�
expðiKsx� i�stÞ, where W is a complex-valued function of
the argument � ¼ x� v0t, and Ks and �s are a constant
wave number and frequency shift, respectively. By the choice
Ks ¼ v0=2A, the coupled system of equations (57) and (58)
can then be written as

d2W

d�2
þ �W þ ’W

A
� jWj4W

A
¼ 0 (64)

and

d2’

d�2
¼ jWj2 � 1; (65)

where � ¼ ð�s=AÞ � v2
0=4A

2 is an eigenvalue of the sys-

tem. From the boundary conditions jWj ¼ 1 and ’ ¼ 0 at
j�j ¼ 1, we determine � ¼ 1=A and �s ¼ 1þ v2

0=4A.
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The system of Eqs. (64) and (65) admits a first integral in the
form

Hh ¼ A
��������
dW

d�

��������
2� 1

2

�
d’

d�

�
2 þ jWj2 � jWj6

3

þ ’jWj2 � ’� 2

3
¼ 0; (66)

where the boundary conditions jWj ¼ 1 and ’ ¼ 0 at
j�j ¼ 1 have been employed.

Figure 2 shows profiles of jWj2 and ’ obtained numeri-
cally from Eqs. (64) and (65) for a few values ofA, whereW
was set to �1 on the left boundary and to þ1 on the right
boundary, i.e., the phase shift is 180� between the two
boundaries. The solutions are in the form of dark solitons,
with a localized depletion of the electron density Ne ¼ jWj2,
associated with a localized positive potential. Larger values
of the quantum coupling parameter A give rise to larger
amplitude and wider dark solitons. The solitons localized
‘‘shoulders’’ on both sides of the density depletion.

A numerical solution of the time-dependent system of
Eqs. (57) and (58) is shown in Fig. 3, with initial conditions
close (but not equal) to the ones in Fig. 2. Two very clear and
long-lived dark solitons are visible, associated with a positive
potential of ’ � 3, in agreement with the quasistationary
solution of Fig. 2 for A ¼ 5. In addition, there are oscilla-
tions and wave turbulence in the time-dependent solution
shown in Fig. 3. Hence, the dark solitons seem to be robust
structures that can withstand perturbations and turbulence
during a considerable time.

B. Quantum electron vortices

For two-dimensional (D ¼ 2) EPOs in quantum plasmas,
one can look for quantum vortex structures of the form

� ¼ c ðrÞ expðis� i�vtÞ, where r and  are the polar
coordinates defined via x ¼ r cosðÞ and y ¼ r sinðÞ, �v is
a constant frequency shift, and s ¼ 0;�1;�2; . . . for differ-
ent excited states (charge states). With this ansatz, Eqs. (57)
and (58) can be written as

�
�vþA

�
d2

dr2
þ1

r

d

dr
�s2

r2

�
þ’�jc j2

�
c ¼0 (67)

and

�
d2

dr2
þ 1

r

d

dr

�
’ ¼ jc j2 � 1; (68)

respectively, where the boundary conditions c ¼ 1 and ’ ¼
dc =dr ¼ 0 at r ¼ 1 determine the constant frequency
�v ¼ 1. Different signs of the charge state s describe differ-
ent rotation directions of the quantum vortex. For s � 0, one
must have c ¼ 0 at r ¼ 0, and from symmetry considera-
tions one has d’=dr ¼ 0 at r ¼ 0. Figure 4 shows numerical
solutions of Eqs. (67) and (68) for different values of s and for
A ¼ 5. Here a quantum vortex is characterized by a complete
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FIG. 2. The electron density jWj2 (upper panel) and ES potential

’ (lower panel) associated with a dark soliton supported by the

system of Eqs. (64) and (65), for A ¼ 5 (solid lines), A ¼ 1

(dashed lines), and A ¼ 0:2 (dash-dotted line). From Shukla and

Eliasson 2006.

FIG. 3 (color online). The time development of the electron

density j�j2 (left-hand panel) and ES potential ’ (right-hand

panel), obtained from a simulation of the system of Eqs. (57) and

(58). The initial condition is � ¼ 0:18þ tanh½20 sinðx=10Þ��
expðiKsxÞ, with Ks ¼ v0=2A, A ¼ 5, and v0 ¼ 5. From Shukla

and Eliasson 2006.
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FIG. 4. The electron density j�j2 (upper panel) and ES potential

’ (lower panel) associated with 2D electron vortices supported by

the system (67) and (68), for the charge states s ¼ 1 (solid lines),

s ¼ 2 (dashed lines), and s ¼ 3 (dash-dotted lines), with A ¼ 5 in

all cases. From Shukla and Eliasson 2006.
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depletion of the electron density at the core of the vortex, and
is associated with a positive ES potential.

A time-dependent solution of Eqs. (57) and (58) in two-
space dimensions for singly charged (s ¼ �1) electron vorti-
ces is shown in Fig. 5, where, in the initial condition, four
vortexlike structures were placed at some distance from each
other. The initial conditions were such that the vortices are
organized in two vortex pairs, with s1 ¼ þ1, s2 ¼ �1,
s3 ¼ �1, and s4 ¼ þ1, seen in the upper panels of Fig. 5.
The vortices in the pairs have opposite polarity on the electron
fluid rotation, as seen in the upper right panel of Fig. 5.
Interestingly, the ‘‘partners’’ in the vortex pairs attract each
other and propagate togetherwith a constant velocity, and in the
collision and interaction of the vortex pairs (see the second and
third pairs of panels in Fig. 5), the vortices keep their identities
and change partners, resulting into two new vortex pairs which
propagate obliquely to the original propagation direction. On
the other hand, as shown in Fig. 6, vortices that are multiply
charged (jsjj> 1) are unstable. Here the system of Eqs. (57)

and (58) was again solved numerically with the same initial
condition as the one in Fig. 5, but with doubly charged vortices
s1 ¼ þ2, s2 ¼ �2, s3 ¼ �2, and s4 ¼ þ2. The second rowof
panels in Fig. 6 reveals that the vortex pairs keep their identities
for some time, while a quasi-1D density cavity is formed
between the two vortex pairs. At a later stage, the four vortices
dissolve into complicated nonlinear structures and wave turbu-
lence. Hence, the nonlinear dynamics is very different between
singly and multiply charged solitons, where only singly
charged vortices are long lived and keep their identities.

VI. QUANTUM ELECTRON FLUID TURBULENCE

The statistical properties of quantum electron fluid turbu-
lence and its associated electron transport properties at nano-
scales in a quantum plasma have been investigated in both 2D
and 3D by using the coupled NLS and Poisson equations
(Shaikh and Shukla, 2007; 2008). It has been found that
nonlinear couplings between the EPOs of different scale sizes

FIG. 5 (color online). The electron density j�j2 (left panel) and

an arrow plot of the electron current ið�r� ��r�Þ (right

panel) associated with singly charged (jsj ¼ 1) 2D electron vortices,

obtained from a simulation of the time-dependent system of

Eqs. (57) and (58), at times t ¼ 0, t ¼ 3:3, t ¼ 6:6, and t ¼ 9:9
(upper to lower panels), with A ¼ 5. The singly charged vortices

form pairs and keep their identities. From Shukla and Eliasson 2006.

FIG. 6 (color online). The electron density j�j2 (left panel) and

an arrow plot of the electron current ið�r� ��r�Þ (right

panel) associated with double charged (jsj ¼ 2) 2D electron vorti-

ces, obtained from a simulation of the time-dependent system of

Eqs. (57) and (58), at times t ¼ 0, t ¼ 3:3, t ¼ 6:6, and t ¼ 9:9
(upper to lower panels), with A ¼ 5. The doubly charged vortices

dissolve into nonlinear structures and wave turbulence. From Shukla

and Eliasson 2006.
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give rise to small-scale electron-density structures, while the
ES potential cascades towards large scales. The total energy
associated with the quantum electron plasma wave turbulence
processes a nonuniversal spectrum that depends on the quan-
tum electron coupling parameter.

To investigate 3D quantum electron plasma wave turbu-
lence, we use the NLS-Poisson equations (Manfredi and
Haas, 2001; Shukla, 2006; Shukla and Eliasson, 2006;
Shaikh and Shukla, 2008)

i
ffiffiffiffiffiffiffi
2H

p @�

@t
þHr2�þ ’�� j�j4=3� ¼ 0 (69)

and

r2’ ¼ j�j2 � 1; (70)

were used, which govern the dynamics of nonlinearly inter-
acting EPOs of different wavelengths. In Eqs. (69) and (70),
the wave function is normalized by

ffiffiffiffiffi
n0

p
, the ES potential by

kBTFe=e, the time t by the electron plasma period !�1
pe , and

the space r by the electron Fermi-Thomas screening length

�Fe ¼ VFe=!pe. Here
ffiffiffiffiffi
H

p ¼ ℏ!pe=
ffiffiffi
2

p
kBTFe was introduced.

The nonlinear wave-wave coupling studies have been
performed to investigate the multiscale evolution of a decay-
ing 3D electron plasma wave turbulence, which is described
by Eqs. (69) and (70). All fluctuations are initialized isotropi-
cally (no mean fields are assumed) with random phases and
amplitudes in Fourier space, and are evolved in time by the
integration of Eqs. (69) and (70) numerically. The initial
isotropic turbulent spectrum was initially chosen close to
k�2, with random phases in all three directions. The choice
of such (or even a flatter than k�2) spectrum treats the
turbulent fluctuations on an equal footing and avoids any
influence on the dynamical evolution that may be due to the
initial spectral nonsymmetry.

The properties of 3D electron plasma wave turbulence,
composed of nonlinearly interacting EPOs, were studied for
two specific physical systems, corresponding to dense plasmas
in the next generation of laser-based plasma compression
(LBPC) schemes (Malkin et al., 2007), and in superdense
astrophysical objects (Lai, 2001; Chabrier et al., 2002; 2006;
2009; Harding and Lai, 2006) (e.g., white dwarfs). It is ex-
pected that, in LBPC schemes, the electron number density
may reach 1027 cm�3 and beyond. Hence, we have !pe¼
1:76�1018 s�1, TFe¼1:7�10�9 erg, ℏ!pe¼1:7�10�9 erg,

and H ¼ 1, and the electron Fermi-Thomas screening length
�Fe ¼ 0:1 �A. On the other hand, in the core of white dwarf
stars, we typically have n0 � 1030 cm�3, yielding !pe ¼
5:64� 1019 s�1, TFe ¼ 1:7� 10�7 erg (0.1 MeV), ℏ!pe ¼
5:64� 10�8 erg,H � 0:3, and�Fe ¼ 0:025 �A. Thenumerical
solutions of Eqs. (69) and (70) for H ¼ 0:4 and 0.01 (corre-
sponding to n0 ¼ 1027 cm�3 and 1030 cm�3, respectively) are
shown in Fig. 7, which shows the electron number density and
ES potential distributions in the ðx; y; zÞ cube.

Figure 7 reveals that the electron-density distribution has a
tendency to generate smaller length-scale structures, while the
ES potential cascades towards larger scales. The coexistence
of the small and larger scale structures in turbulence is a
ubiquitous feature of various 3D turbulence systems. For
example, in 3D hydrodynamic turbulence, the incompressible
fluid admits two invariants, namely, the energy and the mean

squared vorticity. The two invariants, under the action of an

external forcing, cascade simultaneously in turbulence,
thereby leading to a dual cascade phenomena. In these pro-

cesses, the energy cascades towards longer length scales,
while the fluid vorticity transfers spectral power towards

shorter length scales. Usually, a dual cascade is observed in

a driven turbulence simulation, in which certain modes are
excited externally through random turbulent forces in spectral

space. The randomly excited Fourier modes transfer the spec-
tral energy by conserving the constants of motion in k space.

On the other hand, in freely decaying turbulence, the energy

contained in the large-scale eddies is transferred to the smaller
scales, leading to a statistically stationary inertial regime

associated with the forward cascades of one of the invariants.
Decaying turbulence often leads to the formation of coherent

structures as turbulence relaxes, thus making the nonlinear
interactions rather inefficient when they are saturated. The

power spectrum exhibits an interesting feature in the 3D

electron plasma system discussed here, unlike the 3D hydro-
dynamic turbulence (Kolmogorov, 1941a; 1941b; Lesieur,

1990; Frisch, 1995). Figure 8 shows the energy Ek per vector
wave number. For isotropic 3D turbulence, it is related to the

energy Ek per scalar wave number as Ek ¼ 4�k2Ek [see, e.g.,

Knight and Sirovich (1990)]. For H ¼ 0:4, the spectrum per
vector wave number is close to Ek � k�11=3 and hence yields

the standard Kolmogorov power spectrum (Kolmogorov,
1941a; 1941b) Ek � k�5=3. However, the spectrum is not

universal but changes for different values of H. For 2D

quantum electron fluid turbulence (Shaikh and Shukla,
2007) the spectral slope was more close to the Iroshnikov-

Kraichnan power law (Iroshnikov, 1963; Kraichnan, 1965)
Ek � k�3=2. The origin of the differences in the observed

spectral indices resides with the nonlinear character of the

underlying plasma models, as nonlinear interactions in the 2D
and 3D systems are governed typically by different nonlinear

FIG. 7 (color online). Small-scale fluctuations in the electron

density resulting from steady turbulence simulations, for H ¼ 0:4
(a, b) and H ¼ 0:01 (c, d). Forward cascades are responsible for the

generation of small-scale fluctuations seen in (a) and (c). Large-

scale structures are present in the ES potential, seen in (b) and (d),

essentially resulting from an inverse cascade. From Shaikh and

Shukla 2008.
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forces. The latter modify the spectral evolution of turbulent

cascades to a significant degree. Physically, the flatness (or

deviation from the k�5=3 law) results from the short wave-

length part of the EPOs spectrum, which is controlled by the

quantum electron tunneling effect associated with the Bohm

potential. The peak in the energy spectrum can be attributed to

the higher turbulent power residing in the EPO potential,

which eventually leads to the generation of larger scale struc-

tures, as the total energy encompasses both the electrostatic

potential and electron-density components. In the dual cas-

cade process, there is a delicate competition between the EPO

dispersions caused by the statistical pressure law (giving the

k2V2
Fe term, which dominates at longer scales) and the quan-

tum Bohm force (giving the ℏ2k4=4m2
e term, which dominates

at shorter scales).
The electron diffusion in the presence of small and large-

scale turbulent EPOs can be estimated in the following

manner. An effective electron diffusion coefficient caused

by the momentum transfer can be calculated from Deff ¼R1
0 hPðr; tÞ � Pðr; tþ t0Þidt0, where P is electron momentum

and the angular bracket denotes spatial averages and the

ensemble averages are normalized to unit mass. The effective

electron diffusion coefficient Deff essentially relates the dif-

fusion processes associated with random translational mo-

tions of the electrons in nonlinear plasmonic fields. To

measure the turbulent electron transport that is associated

with the turbulent structures, Deff is computed. It is observed

that the effective electron diffusion is lower when the field

perturbations are Gaussian. On the other hand, the electron

diffusion increases rapidly with the eventual formation of

large-scale structures, as shown in Fig. 9. The electron diffu-

sion due to large-scale potential distributions in a quantum

plasma dominates substantially, as shown by the solid curve

in Fig. 9. Furthermore, in the steady state, nonlinearly

coupled EPOs form stationary structures, and Deff eventually

saturates. Thus, remarkably an enhanced electron diffusion

results primarily due to the emergence of large-scale potential

structures.

VII. NONLINEARLY COUPLED EM AND ES WAVES

We now turn our attention to nonlinear interactions be-
tween large-amplitude EM and ES waves in a quantum
plasma. Shukla and Stenflo (2006) considered nonlinear cou-
plings between large-amplitude EM waves and finite ampli-
tude electron and ion plasma waves, and presented nonlinear
dispersion relations that exhibit stimulated Raman scattering
(SRS), stimulated Brillouin scattering (SBS), and modula-
tional instabilities. The work of Shukla and Stenflo (2006) has
been further generalized by including thermal corrections to
the ES waves (Stenflo and Shukla, 2009) and relativistic
electron mass variations (Shukla and Eliasson, 2007) caused
by EM waves in an unmagnetized quantum plasma.

A. Stimulated scattering instabilities

First, we present the governing equations for the HF-EM
waves and the EM wave driven modified EPOs and IPOs. We
have (Stenflo and Shukla, 2009)�

@2

@t2
� c2r2 þ!2

pe

�
Aþ!2

pe

n1
n0

A � 0 (71)

for the HF-EM wave,�
@2

@t2
þ!2

pe � 3

5
V2
Fer2 þ ℏ2

4m2
e

r4

�
n1
n0

¼ e2

2m2
ec

2
rjAj2

(72)

for the HF-EM wave pressure driven EPOs, and�
@2

@t2
�C2

TFr2þ ℏ2

4memi

r4

�
n1
n0

¼ e2

2memic
2
rjAj2 (73)

for the EM wave pressure driven modified IPOs without the
ion thermal, ion viscoelastic relaxation, and ion viscosity

FIG. 8 (color online). Energy Ek per vector wave number of 3D

EPOs in the forward cascade regime. A Kolmogorov-like spectrum

Ek � k�11=3 is observed for H ¼ 0:4. The spectral index changes as

a function of H. From Shaikh and Shukla 2008.
FIG. 9 (color online). Time evolution of the effective electron

diffusion coefficient associated with the large-scale ES potential

and the small-scale electron density, for H ¼ 0:4, H ¼ 0:1, and
H ¼ 0:01. Smaller values of H correspond to a small effective

diffusion coefficient, which characterizes the presence of small-

scale turbulent eddies that suppress the electron transport. From

Shaikh and Shukla 2008.
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effects. Here CTF ¼ ðkBTFe=miÞ1=2 and n1ð� n0Þ is a small
perturbation in the electron number density.

Following the standard procedure of the parametric insta-
bilities (Yu et al., 1974; Shukla et al., 1981; Sharma and
Shukla, 1983;Murtaza andShukla, 1984; Shukla, 2006; Shukla
and Eliasson, 2006), we can Fourier analyze (71)–(73) and
combine the resultant equations to obtain the nonlinear disper-
sion relations

!2 ��2
R ¼ � e2!2

pek
2jA0j2

2m2
ec

2

�
1

Dþ
þ 1

D�

�
(74)

and

!2 ��2
B ¼ e2!2

pek
2jA0j2

2memic
2

�
1

Dþ
þ 1

D�

�
; (75)

for the driven EPOs and IPOs, respectively, which admit SRS,
SBS, and modulational instabilities of the HF-EM pump
(with the amplitude A0) in a quantum plasma. Here D� ¼
�2!0ð!� k � VgÞ � k2c2, where Vg ¼ kc2=2!0 is the

group velocity of the HF-EM pump wave with the frequency
!0 ¼ ðk20c2 þ!2

peÞ1=2, and

�2
R ¼ !2

pe þ 3

5
k2V2

Fe þ
ℏ2k4

4m2
e

(76)

and

�2
B ¼ k2C2

TF þ
ℏ2k4

4memi

: (77)

The growth rates of SRS and SBS instabilities (Shukla and
Stenflo, 2006) are, respectively,

�R ¼ !peeKjA0j
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2!0�R

p
mec

; (78)

and

�B ¼ !peeKjA0j
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2!0�Bmemi

p
c
: (79)

The present results of SRS and SBS instabilities will help to
identify the electrostatic spectral lines that are enhanced by the
large-amplitude HF-EM pump wave in a quantum plasma.

B. Nonlinearly coupled intense EM and EPOs

We now consider nonlinear interactions between an arbi-
trary large-amplitude circularly polarized electromagnetic
(CPEM) wave and nonlinear EPOs that are driven by the
relativistic ponderomotive force Shukla and Yu (1984) and
Shukla et al. (1986) of the CPEM waves. Such an interaction
gives rise to an envelope of the CPEM vector potential A? ¼
A?ðx̂þ iŷÞ expð�i!0tþ ik0zÞ, which obeys the NLS equa-
tion (Shukla and Eliasson, 2007)

2i�

�
@

@t
þUg

@

@z

�
A?þ@2A?

@z2
�
�jc j2

�
�1

�
A?¼0; (80)

where � ¼ !0=!pe, and the normalized (by
ffiffiffiffiffi
n0

p
) electron

wave function c and the normalized (by m0c
2=e) scalar

potential are governed by, respectively,

iHe

@c

@t
þH2

e

2

@2c

@z2
þ ð�� �þ 1Þc ¼ 0 (81)

and

@2�

@z2
¼ jc j2 � 1; (82)

where m0 is the rest mass of the electrons, Ug ¼ k0c=2!0 is

the group velocity, He ¼ ℏ!pe=m0c
2 is the ration between

the plasmonic energy density to the rest electron energy, and
� ¼ ð1þ jA?j2Þ1=2 is the relativistic gamma factor due to the
electron quiver velocity in the CPEM wave fields. The time
and space variables are in units of the inverse electron plasma
frequency (!�1

pe ) and the electron skin depth �e ¼ c=!pe.

The electron density and A? are in units of n0 and m0c
2=e

(Shukla and Eliasson, 2007). The nonlinear coupling between
intense CPEM waves and EPOs comes about due to the
nonlinear current density, which is represented by the term
jc j2A?=� in Eq. (80). In Eq. (81), 1� � is the relativistic
ponderomotive potential (Shukla and Yu, 1984; Shukla et al.,
1986). The latter arises from the averaging (over the CPEM
wave period 2�=!0) of the relativistic advection and the
nonlinear Lorentz force involving the electron quiver velocity
and the CPEM wave electric and magnetic fields.

A relativistically strong EMwave in a classical electron-ion
plasma is subject to SRS and modulational instabilities
(McKinstrie and Bingham, 1992). One can expect that these
instabilities will be modified at the quantum scale by the
dispersion effects caused by the tunneling of electrons through
the quantum Bohm potential. The growth rate of the relativ-
istic parametric instabilities in a dense quantum plasma in the
presence of a relativistically strong CPEM pump wave can be
obtained in a standard manner (Shukla et al., 1986) by letting
�ðz; tÞ ¼ �1ðz; tÞ, A?ðz; tÞ ¼ ½A0 þ A1ðz; tÞ� expð�i�0tÞ,
and c ðz; tÞ ¼ ½1þ c 1ðz; tÞ� expð�i�0tÞ, where A0 is the
large-amplitude CPEM pump and A1 is the small-amplitude
perturbation of the CPEM wave amplitude due to the non-
linear coupling between the CPEM waves and EPOs, i.e.,
jA1j � jA0j, and c 1 (� 1) is the small-amplitude perturba-
tion in the electron wave function. �0 and �0 are constant
frequency shifts, determined from Eqs. (80) and (81) to be
�0¼ð1=�0�1Þ=ð2�Þ, and �0 ¼ ð1� �0Þ=He, where �0 ¼
ð1þ jA0j2Þ1=2. The first-order perturbations in the electromag-
netic vector potential and the electron wave function are
expanded into their respective sidebands as A1ðz; tÞ ¼
Aþ expðiKz� i�tÞ þ A� expð�iKzþ i�tÞ and c 1ðz; tÞ ¼
cþ expðiKz� i�tÞ þ c� expð�iKzþ i�tÞ, while the

potential is expanded as �ðz; tÞ ¼ �̂ expðiKz� i�tÞ þ
�̂ expð�iKzþ i�tÞ, where � and K are the normalized
frequency and the normalized wave number of the EPOs,
respectively. Inserting the above mentioned Fourier ansatz
into Eqs. (80)–(82), linearizing the resultant system of equa-
tions, and sorting into equations for different Fourier modes,
one obtains the nonlinear dispersion relation (Shukla and
Eliasson, 2007)

1þ
�
1
~Dþ

þ 1
~D�

��
1þ K2

DL

� jA0j2
2�3

0

¼ 0; (83)

where ~D� ¼ �2�ð�� KUgÞ � K2 and DL ¼ 1� �2 þ
H2

eK
4=4. One notes that DL ¼ 0 yields the linear disper-

sion relation �2 ¼ 1þH2
eK

4=4 for the EPOs in a dense
quantum plasma (Pines, 1961). For He ! 0, we recover from
Eq. (83) the nonlinear dispersion relation for relativistically
large-amplitude EM waves in a classical electron plasma
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(McKinstrie and Bingham, 1992). The dispersion relation (83)
governs stimulated Raman backward and forward scattering
instabilities, as well as the modulational instability. In the
long-wavelength limit Ug � 1, � � 1 one can use the ansatz

� ¼ i�, where the normalized (by !pe) growth rate � � 1,

and obtain from Eq. (83) the growth rate �¼ð1=2ÞjKjfðjA0j2=
�3
0Þ½1þK2=ð1þH2

eK
4=4Þ��K2g1=2 of the modulational insta-

bility. For jKj< 1 and He < 1, the linear growth rate is only
weakly depending on the quantum parameter He.

The quantum dispersion effects on nonlinearly coupled
CPEM and EPOs can be studied by considering a steady-
state structure moving with a constant speed Ug. Inserting the

ansatz A? ¼ Wð�Þ expð�i�etÞ, c ¼ Pð�Þ expðikex� i!etÞ,
and � ¼ �ð�Þ into Eqs. (80)–(82), where � ¼ z� Ugt, ke ¼
Ug=He, and !e ¼ U2

g=2He, and where Wð�Þ and Pð�Þ are
real, one obtains from Eqs. (80)–(82) the coupled system of
equations (Shukla and Eliasson, 2007)

@2W

@�2
þ

�
�� P2

�
þ 1

�
W ¼ 0; (84)

H2
e

2

@2P

@�2
þ ð�� �þ 1ÞP ¼ 0; (85)

where � ¼ ð1þW2Þ1=2 and
@2�

@�2
¼ P2 � 1; (86)

with the boundary conditions W ¼ � ¼ 0 and P2 ¼ 1 at
j�j ¼ 1. In Eq. (84), � ¼ 2��e represents a nonlinear fre-
quency shift of the CPEM wave. In the limit He ! 0, one has
from Eq. (85)� ¼ �� 1, where P � 0, and one recovers the
classical (nonquantum) case of the relativistic solitary waves
in a cold plasma (Marburger and Tooper, 1975).

The system of equations (84)–(86) admits a Hamiltonian

QH ¼ 1

2

�
@W

@�

�
2 þH2

e

2

�
@P

@�

�
2 � 1

2

�
@�

@�

�
2 þ 1

2
ð�þ 1ÞW2

þ P2 � �P2 þ�P2 �� ¼ 0; (87)

where the boundary conditions @=@� ¼ 0, W ¼ � ¼ 0, and
jPj ¼ 1 at j�j ¼ 1 have been used.

Numerical solutions of the quasistationary system (84)–(86)
are shown in Figs. 10 and 11, while time-dependent solutions
of Eqs. (80)–(82) are displayed in Figs. 12 and 13. Here
parameters were used that are representative of the next
generation of LBPC schemes (Azechi et al., 2006; Malkin
et al., 2007). The formula (Shukla et al., 1986) eA?=mc2 ¼
6� 10�10�s

ffiffiffi
I

p
will determine the normalized vector poten-

tial, provided that the CPEM wavelength �s (in microns) and
the CPEM wave intensity I (in W=cm2) are known. It is
expected that in LBPC schemes, the electron number density
n0 may reach 1027 cm�3 and beyond, and the peak values of
eA?=mc2 may be in the range of 1–2 (e.g., for focused EM
pulses with �s � 0:15 nm and I � 5� 1027 W=cm2). For
!pe ¼ 1:76� 1018 s�1, one has ℏ!pe ¼ 1:76� 10�9 erg

and He ¼ 0:002, since mc2 ¼ 8:1� 10�7 erg. The electron
skin depth is �e � 1:7 �A. On the other hand, a higher value of
He ¼ 0:007 is achieved for!pe ¼ 5:64� 1018 s�1. Thus, the

numerical solutions below, based on these two values of He,

have focused on scenarios that are relevant for the next gen-

eration intense laser-solid density plasma interaction experi-

ments (Malkin et al., 2007).
Figures 10 and 11 exhibit numerical solutions of

Eqs. (84)–(86) for He ¼ 0:002 and 0.007. The nonlinear

boundary value problem was solved with the boundary con-

ditionsW ¼ � ¼ 0 and P ¼ 1 at the boundaries at � ¼ �10.
The solitary envelope pulse is composed of a single maxi-

mum of the localized vector potentialW and a local depletion
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of the electron density P2, and a localized positive potential�
at the center of the solitary pulse. The latter has a continuous
spectrum in �, where larger values of negative � are asso-

ciated with larger-amplitude solitary EM pulses. At the center

of the solitary EM pulse, the electron density is partially
depleted, as in Fig. 10(a), and for larger amplitudes of the

EM waves one has a stronger depletion of the electron
density, as shown in panels Figs. 10(a) and 10(b). For cases

where the electron density goes to almost zero in the classical

case (Marburger and Tooper, 1975), one important quantum
effect is that the electrons can tunnel through the depleted

density region. This is seen in Fig. 11, where the electron

density remains nonzero for He ¼ 0:007 in Fig. 11(a), while
the density shrinks to zero for He ¼ 0:002 in Fig. 11(b).

Figures 12 and 13 show numerical simulation results of
Eqs. (80)–(82) for the long-wavelength limit characterized by
!0 � 1 and Vg � 0. As initial conditions, we used an EM

pump with a constant amplitude A? ¼ A0 ¼ 1 and a uniform
plasma density c ¼ 1, together with a small-amplitude noise
(random numbers) of order 10�2 added to A? to give a
seeding any instability. The numerical results are shown in
Figs. 12 and 13 for He ¼ 0:002 and 0.007, respectively. In
both cases, we see an initial linear growth phase and a wave
collapse at t � 70, in which almost all of the CPEM wave
energy is contracted into a few well separated large ampli-
tude, localized CPEM envelopes, associated with an almost
complete depletion of the electron density at the center of the
CPEM wave packet, and a large-amplitude positive electro-
static potential. One can see that there are more complex
dynamics of localized CPEM wave packets for He ¼ 0:007,
shown in Fig. 13, in comparison with He ¼ 0:002, shown in
Fig. 12, where the wave packets are almost stationary when
they are fully developed.

VIII. MAGNETIZED QUANTUM PLASMAS

Magnetized quantum plasmas occur in white dwarf stars
and on the surface of magnetized stars (e.g., magnetars) where
degenerate electrons could be ultrarelativistic, but the ions are
in a nondegenerate state. How strong magnetic fields in dense
stars come about is still unresolved, although there are evi-
dence of the strong magnetization of dense plasmas in astro-
physical environments. In dense magnetized plasmas, one has
to account for the Lorentz force and the Landau quantization
effect (Landau and Lifshitz, 1998a), and develop the appro-
priate quantum Hall-magnetohydrodynamics (Q-HMHD)
equations starting from the Wigner-Maxwell equations. We
stress, however, that theQ-HMHDequations discussed here do
not capture the particular physics of the quantized Hall resist-
ance Rk ¼ ℏ=�e2 (Klitzing et al., 1980). In semiconductors
with 2D electrons, the latter is associated with the quantized
electron density nq ¼ �eB0=ℏc at high magnetic fields and

low temperature, where � is an integer, appearing in the
electron current (� enqud) flowing through a conductor.

Here ud ¼ ðc=B2
0ÞE� B0 is the cross field electron drift

associated with the space charge electric field E that results
from the motion of electrons by the Lorentz force. The Ohm’s
law, in turn, determines the von Klitzing resistance, which is
independent of the magnetic field.

A. Landau quantization

In a strong magnetic field ẑB0, where ẑ is the unit vector
along the z axis in a Cartesian coordinate system, and B0 is
the strength of the external magnetic field, the electron
motion in a plane perpendicular to the magnetic field direc-
tion is quantized (Landau and Lifshitz, 1998b). The electron
energy level is determined by the nonrelativistic limit by
(Landau and Lifshitz, 1998b; Tsintsadze, 2010)

El;	
e ¼ p2

z

2me

þ ð2lþ 1þ 	Þ�BB0; (88)

where pz is the electron momentum in the z direction, l is the
orbital angular number (l ¼ 0, 1, 2), and 	 ¼ �1 represents
the spin orientation. For 	 ¼ �1, we have from Eq. (88)

FIG. 13 (color online). The dynamics of the CPEM vector poten-

tial A? and the electron number density jc j2 (upper panels) and the

electrostatic potential � (lower panel) for He ¼ 0:007. From Shukla

and Eliasson 2007.

FIG. 12 (color online). The dynamics of the CPEM vector poten-

tial A? and the electron number density jc j2 (upper panels) and of

the electrostatic potential � (lower panel) for He ¼ 0:002. From
Shukla and Eliasson 2007.
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El
e ¼ p2

z

2me

þ lℏ!ce; (89)

where !ce ¼ eB0=mec is the electron gyrofrequency.
Accordingly, the Fermi-Dirac electron distribution is
Tsintsadze (2010)

FDðpz; lÞ / 1

1þ exp½ðEz þ lℏ!ce ��eÞ=kBTe� ; (90)

where Ez ¼ ðme=2Þv2
z is the parallel (to ẑ) kinetic energy of

degenerate electrons.
Assuming that jl!ce ��ej � kBTe, one can approximate

the Fermi-Dirac distribution function by the Heaviside step
function Hð�e � El

eÞ, which is equal to 1 for �e ¼ EFe ¼
kBTFe ¼ ðp2

F=2meÞ1=2 > El
e and 0 for EFe < El

e, where pF ¼
meVTF. The equilibrium electron number density is
(Tsintsadze, 2010)

ne ¼ p3
F

2�2ℏ3

�
�B þ 2

3
ð1� �BÞ3=2

�
; (91)

where �B ¼ ℏ!ce=kBTFe. The current carried by degenerate
electrons in a magnetized quantum plasma is �eneud, which
yields the plasma resistivity Rs ¼ enec=B0.

B. ESOs and EM waves

In a magnetized quantum plasma, there are finite density
perturbations associated with high-frequency electrostatic
electron-Bernstein (EB) waves and elliptically polarized EM
waves (EP-EMwaves) that propagate across themagnetic field
direction ẑ. Furthermore, the CPEMwave propagating along ẑ
are not associated with any density perturbation.

The dispersion relation for the EB waves in a Fermi-Dirac
distributed plasma is in the ultracold limit (Eliasson and
Shukla, 2008b)

1þ3!2
pe

!2
ce

Z �

0
d

sinð�ÞsinðÞsinð�eÞ��ecosð�eÞ
�3
e

¼0;

(92)

where � ¼ !=!ce, �e ¼ ð2k2?�2
FeÞ cosð=2Þ, and �Fe ¼

VFe=!pe is the gyroradius of degenerate electrons.

Solutions of Eq. (92) are plotted in Fig. 14 for the case
!UH ¼ 4!ce, where !UH ¼ ð!2

pe þ!2
ceÞ1=2 is the upper-

hybrid (UH) resonance frequency. In the long-wavelength
limit (viz. k2?�Fe � 1), Eq. (92) yields

!2 ¼ !2
UH þ 3

5

!2
pek

2
?V

2
Fe

!2 � 4!2
ce

; (93)

where k? is the perpendicular (to ẑ) component of the
propagation wave vector. For ! � !H , Eq. (93) reveals that
the propagating UH waves have positive (negative) group

dispersion in plasmas with !pe >
ffiffiffi
3

p
!ce ð!pe <

ffiffiffi
3

p
!ceÞ.

Furthermore, the refractive index Nx for the EP-EM waves
propagating along the x axis (which is orthogonal to ẑ) is
(Shukla, 2007)

Nx¼k2xc
2

!2
¼1�!2

pe

!2
� !2

pe!
2
ce½1þ
ð�Þk2x�2

b�
!2½!2�!2

UHþk2xV
2
Feð1þk2x�

2
qÞ�

;

(94)

where kx is the x component of the propagation wave vector,

�2
q ¼ ℏ2=4meV

2
Fe, �b ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ℏ=2me!ce

p
, 
ð�Þ ¼ 2 tanhð�Þ, and

� ¼ �BB0=kBTFe. Several comments are in order. First, we
note that the electron spin-1=2 effect enhances the electron
gyrofrequency by a factor of ð1þ 
k2x�

2
bÞ1=2 in the numerator

of the third term on the right-hand side of Eq. (94). Second, the
quantum Bohm force produces a dispersion term ℏk4=4m2

e in
the denominator of the third term in Eq. (94). Third, in the limit
of vanishing ℏ, Eq. (95) correctly reproduces the EP-EMwave
dispersion relation. Furthermore, Eq. (94) reveals that the
cutoff frequencies (at kx ¼ 0) in dense magnetoplasmas are

! ¼ !� ¼ 1
2½ð4!2

pe þ!2
ceÞ1=2 �!ce�; (95)

which are the same as the cutoffs of the X(upper sign) and
Z(lower sign) mode waves in a classical plasma (Chen, 2006).
Short-wavelength electromagnetic propagation in magnetized
quantum plasmas, including quantum electrodynamic effects,
has also been considered by Lundin et al. (2007).

The vector representation of spinning quantum particles in
the quantum theory was first introduced by Takabayasi (1955)
who developed the QHD involving the evolution of the
quantum particle spin. The idea of Takabayasi has been
further elaborated by Brodin et al. (2010) in the context of
the spin contribution to the ponderomotive force of the
magnetic field-aligned CPEM waves in a quantum magneto-
plasma. In fact, by using the nonrelativistic electron momen-
tum equation (Brodin et al., 2010)

me

�
@

@t
þue �r

�
ue¼�e

�
Eþ1

c
ue�B

�
�g

ℏ
�BrðB�sÞ;

(96)

and the spin evolution equation�
@

@t
þ ue � r

�
s ¼ g�B

ℏ
ðB� sÞ; (97)

together with Ampère’s law and suitable Maxwell’s
equation [incorporating the electron magnetization current,
JM ¼ �ð4�=cÞðg�B=ℏÞr � ðne � sÞ, due to the electron
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FIG. 14 (color online). Dispersion curves for EB waves in a

Fermi-Dirac distributed plasma, showing several EB modes and

the UH branch. From Eliasson and Shukla 2008b.
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1=2-spin effect], where s is the spin angular momentum, with
its absolute value jsj ¼ s0 ¼ ℏ=2. The quantity g ¼
2:002 319 2 is the electron Gaunt factor (sometimes called
the g factor or spectroscopic splitting factor). The value g ¼
2 is predicted from Dirac’s relativistic theory of the electron,
while the correction to this value comes from the quantum
electrodynamics (Kittel, 1996; Bransden and Joachain, 2000).

Brodin et al. (2010) derived the spin-ponderomotive force
ẑFs for the CPEM wave, where

Fs¼�g2�2
B

m2
eℏ2

s0
ð!�!gÞ

�
@

@z
� k

ð!�!gÞ
@

@t

�
jBwj2: (98)

Here !g ¼ g�BB0=ℏ the spin-precession frequency and Bw

is the CPEM wave magnetic field. The spin-ponderomotive
force comes from the averaging of the third term in (99) over
the CPEM wave period 2�=!. The CPEM wave frequency!
is determined from the dispersion relation

�
1� !�

!�!g

�
N2

z ¼ 1� !2
pe

!ð!�!ceÞ ; (99)

where Nz ¼ kzc=!, kz is the component of the wave vector k
along the z axis, !� ¼ g2s0=4me�

2
e, �e ¼ c=!pe, and

the þð�Þ represents the left-hand (right-hand) circular polar-
ization. The !� term in Eq. (99) is associated with the

electron spin evolution. It changes the dispersion properties
of the magnetic field-aligned EM electron-cyclotron waves
in a quantum magnetoplasma. Furthermore, the spin-
ponderomotive force induces a strong spin polarization of a
quantum magnetoplasma.

It should be noted that there is also a standard nonsta-
tionary ponderomotive force (ẑFe) (Karpman and Washimi,
1977) of the CPEM waves arising from the averaging of the
nonlinear Lorentz force term �ðe=mecÞẑ � ðue � BwÞ over
the CPEM wave period 2�=!, where

Fe ¼ � e2

2m2
e!ð!�!ceÞ

�
@

@z
� kz!ce

!ð!�!ceÞ
@

@t

�
jEwj2;
(100)

and Ew ¼ ð!=kzcÞBw is the CPEM wave electric field.

C. Q-HMHD equations

To a first approximation, the dynamics of low-phase speed
(in comparison with the speed of light in vacuum) electro-
magnetic waves in dense magnetoplasmas is modeled by the
Q-HMHD equations. The latter include the inertialess elec-
tron momentum equation

0 ¼ �ene

�
Eþ 1

c
ue �B

�
�rPC; (101)

where the quantum Bohm and quantum spin forces are
supposed to be unimportant on the characteristic scale length
of present interest. The degenerate electrons are coupled with
the nondegenerate ions through the EM forces. The ion
dynamics is governed by the ion continuity equation (43)
and the momentum equation

mini
dui

dt
¼ nie

�
Eþ 1

c
ui � B

�
; (102)

where d=dt¼ð@=@tÞþui �r. For simplicity, we have assumed
here that �m@=@t � 1 and @ui=@t�ð
=�iÞr�ruiþ
��1
i ð�þ
=3Þrðr�uiÞ. The EM fields are given by Faraday’s

law

@B

@t
¼ �cr� E; (103)

and Maxwell’s equation

r� B ¼ 4�e

c
ðniui � neuiÞ þ 1

c

@E

@t
: (104)

By using Eq. (101), we can eliminate the electric field E
from Eq. (102), obtaining for a quasineutral (ne ¼ ni ¼ n)
quantum magnetoplasma

min
dui

dt
¼ �rPC � 1

8�
rB2 þ ðB � rÞB

4�
; (105)

where we have used Eq. (104) without the displacement
current (the last term on the right-hand side) for the low-phase
speed (in comparison with c) EM wave phenomena. By using
the electric field from Eq. (102), we can write Eq. (103) as

@B

@t
¼ r� ðui � BÞ �mic

e

dui

dt
: (106)

Equations (43), (105), and (106) are the desired Q-HMHD
equations for studying the linear and nonlinear dispersive EM
waves, as well as new aspects of 3D quantum fluid turbulence
in a quantum magnetoplasma with degenerate electrons hav-
ing Chandrasekhar’s pressure law. However, when the
Landau quantization effect in a very strong magnetic field
is accounted for, one can replace PC by the appropriate
pressure law (Eliezer et al., 2005)

PL¼4eB0ð2meÞ1=2E3=2
F

3ð2�Þ2ℏ2c

�
1þ2

Xlm
l¼1

�
1�lℏ!ce

kBTFe

�
3=2

�
; (107)

where the value of lm is fixed by the largest integer that
satisfies kBTFe � lℏ!ce 	 0.

IX. SUMMARY AND OUTLOOK

In this Colloquiumpaper, we described the essential physics
of quantum plasmas with degenerate electron fluids. We re-
viewed the properties of quantum plasmas and quantum mod-
els that describe the salient features of linear and nonlinear ES
and EM waves. Specifically, the focus of the present
Colloquium article has been on developing the model non-
linear equations that depict new features of nonlinear waves
and quantum electron fluid turbulence at nanoscales.
Numerical simulations of the NLS-Poisson equations reveal
quasistationary, localized structures in the form of one-
dimensional electron-density holes (dark solitons) and 2D
quantum electron vortices. These localized quantum struc-
tures, which are associated with a local depletion of the
electron density and a positive electrostatic potential, arise
due to a balance between the nonlinear and dispersion effects
involved in the dynamics of nonlinearly interacting EPOs.
In 2D, there exist a class of quantum electron vortices of
different excited states (charge states). Furthermore, numeri-
cal simulations also depict that the time-dependent NLS-
Poisson equations exhibit stability of a dark soliton in
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one-space dimension. In 2D, the dark solitons of the first

excited state are stable and the preferred nonlinear state is in

the form of quantum vortex pairs of different polarities. The

one-dimensional dark soliton and singly charged 2D quantum

vortices are thus long-lived nonlinear structures at nanoscales.

Also presented are theoretical and computer simulation studies

of nonlinearly coupled intense EM waves and EPOs in an

unmagnetized quantum plasma. We reported new classes of

stimulated scattering instabilities of EMwaves and trapping of

intense EM waves in a quantum electron-density hole.
It should be noted that inclusion of nondegenerate ion

dynamics gives rise to new features to linear and nonlinear

IPOs (Haas et al., 2003; Eliasson and Shukla, 2008a).

Furthermore, nonlinear equations governing the coupling be-

tween the dispersive Langmuir and ion-acoustic waves, which

are known as the quantum Zakharov equations (Garcia et al.,

2005; Misra et al., 2008; Haas and Shukla, 2009; Simpson

et al., 2009), admit periodic, quasiperiodic, chaotic, and hyper-

chaotic states (Misra et al., 2008), in addition to arresting the

Langmuir wave collapse (Haas and Shukla, 2009; Simpson

et al., 2009) due to quantum dispersion effects. There may also

emerge new aspects of nonlinear EPOs and IPOs when the

particle trapping (Jovanovic and Fedele, 2007) in the strong

wave potential is included. Here one has to obtain nonlinear

solutions of nonstationary Wigner-Poisson equations, which

might reveal a modified (by the electrostatic wave potential)

Fermi-Dirac electron distribution function. Furthermore, there

is a scope for studying the collective nonlinear response of

correlated Coulomb electron systems at finite temperatures by

means of kinetic theory concepts (Domps et al., 1997) to

incorporate collisions and Green’s function methods originally

developed by Baym and Kadanoff (1961). We note that the

Baym-Kadanoff approach has been used byKwong and Bonitz

(2000) to investigate the dielectric properties (viz. inverse

dielectric function and dynamic structure factor) of linear

EPOs in a correlated electron gas. Furthermore, the ion-ion

dynamic structure factor, which contains a wealth of informa-

tion about ions including structure and low-frequency collec-

tive modes in a dense quantum plasma, has been studied by

Murillo (2010).
The field of the nonlinear quantum plasma physics is

vibrant, and its potential applications rest on our complete

understanding of numerous collective processes in compact

astrophysical objects, as well as in the next generation of

intense laser-solid density plasma experiments and in the

plasma-assisted nanotechnology (e.g., quantum free-electron

laser devices, quantum diodes, metallic nanostructures, nano-

wires, nanotubes, etc.). However, nonlinear quantum models

presented in this Colloquium paper have to be further im-

proved and generalized by including the effects of the

electron-exchange interactions, strong electron-electron cor-

relations, equilibrium inhomogeneities of the magnetic field,

and the plasma density, as well as fully relativistic and

Landau quantization effects in a nonuniform quantum mag-

netoplasma. We also have to understand the features of

quantum oscillations of electrons and possible formation of

bound states of electrons in the presence of an external

magnetic field. For this purpose, we have to calculate the

interaction potential among highly correlated electrons and

use molecular dynamic simulations to demonstrate attraction

among electrons due to collective wave-quantum particle
interactions that give rise to Cooper’s pairing of degenerate
electrons. Cooper’s pairing of electrons could possibly pro-
vide a scenario of superconducting behavior of a quantum
plasma. Furthermore, 2D system composed of electron clus-
ters at finite temperature exhibits Wigner Coulomb crystal-
lization (Egger et al., 1999; Filinov et al., 2001). The latter
has been investigated by means of Monte Carlo simulations
based on a quantum Hamiltonian with parabolic confining
and Coulomb interaction potentials. In a nonuniform quan-
tum magnetoplasma, we have ES drift waves (Shokri and
Rukhadze, 1999; Ali et al., 2007; and Saleem et al., 2008),
which can drastically affect the cross field electron transport.
For applications to plasma-assisted nanotechnology devices
(e.g., nonlinear electrostatic and electromagnetic surface
waves in metallic nanostructure-devices, photonic band gap,
and x-ray optical systems, quantum x-ray free-electron laser
systems), one must also study nonlinear collective processes
by including both the electron spin 1=2 and quantum electron
tunneling effects on an equal footing. Finally, the localization
of coupled ES and EM waves due to nonlinear quantum
effects in a nonuniform quantum magnetoplasma with an
arbitrary electron pressure degeneracy should provide clues
to the origin of very intense x-rays (Coe et al., 1978) and
gamma rays (Hurley et al., 2005) from both astrophysical
and laboratory plasmas.
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