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Montpellier, France

Giulio Biroli
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A theoretical perspective is provided on the glass transition in molecular liquids at thermal

equilibrium, on the spatially heterogeneous and aging dynamics of disordered materials, and on

the rheology of soft glassy materials. We start with a broad introduction to the field and emphasize

its connections with other subjects and its relevance. The important role played by computer

simulations in studying and understanding the dynamics of systems close to the glass transition at

the molecular level is given. The recent progress on the subject of the spatially heterogeneous

dynamics that characterizes structural relaxation in materials with slow dynamics is reviewed. The

main theoretical approaches are presented describing the glass transition in supercooled liquids,

focusing on theories that have a microscopic, statistical mechanics basis. We describe both

successes and failures and critically assess the current status of each of these approaches. The

physics of aging dynamics in disordered materials and the rheology of soft glassy materials are then

discussed, and recent theoretical progress is described. For each section, an extensive overview is

given of the most recent advances, but we also describe in some detail the important open problems

that will occupy a central place in this field in the coming years.
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I. INCIPIT

Glasses belong to a well-known state of matter (Tabor,

1991): glasses are easily designed with desired mechanical or
optical properties on an industrial scale, and they are widely

present in our daily life. Yet, a deep microscopic understand-
ing of the glassy state of matter remains a challenge for

condensed matter physicists (Angell, 1995; Debenedetti and
Stillinger, 2001).

Glasses share similarities with crystalline solids since they

are both mechanically rigid, but also with liquids because
they both have similar disordered structures at the molecular
level. It is mainly this mixed character that makes them

fascinating even to nonscientists (Zanotto, 1998). Given
that glasses are neither normal liquids nor standard solids,

they are quite often not described in any detail by standard
textbooks. For instance, glasses are not described in textbooks

on condensed matter (Chaikin and Lubensky, 2000), or solid
state physics (Ashcroft and Mermin, 1976); they made it into

only the latest edition of the reference textbook on liquids
(Hansen and McDonald, 2006), while statistical mechanics

textbooks usually culminate with a presentation of our current
understanding of phase transitions in pure materials using

renormalization group concepts (Chandler, 1987; Sethna,
2006), leaving out disordered systems.

As described in detail in this review, modern statistical
mechanics approaches to the glass transition involve good

knowledge of advanced liquid state theory, field theory, the
renormalization group, solution of lattice models, percola-

tion, replica calculations, and concepts developed for far-
from-equilibrium, driven systems (Young, 1998; Barrat

et al., 2003; Binder and Kob, 2005). These developments
are all posterior to the mid-1970s important breakthroughs on

phase transitions: the canonical spin glass Hamiltonian was
introduced in 1975 (Edwards and Anderson, 1975) to be

solved in infinite dimension only several years later (Parisi,
1980; Mézard et al., 1988). Mode-coupling theory was

developed in the mid-1980s (Götze, 1999), just before kinetic
lattice glass models were introduced (Fredrickson and

Andersen, 1984). The aging and rheology of disordered
systems such as spin glasses or soft materials emerged as

broad research fields during the 1990s. In this paper we
review the fruits that have grown out of these important seeds.

Given that none of these advances has allowed the derivation
of a complete, well-accepted theory of amorphous media, we

present a large number of different approaches. We discuss
both successes and failures, explain similarities and differ-
ences between them, and present the current status of each

approach. Thus, the article takes at times a somewhat sub-
jective tone.

A glass can be obtained by cooling the temperature of a

liquid below its glass temperature Tg. The quench must be

fast enough that the more standard first-order phase transition
toward the crystalline phase is avoided. The glass ‘‘transi-

tion’’ is not a thermodynamic transition at all, since Tg is only

empirically defined as the temperature below which the
material has become too viscous to flow on a ‘‘reasonable’’

time scale (and it is hard to define the word reasonable in any
reasonable manner). Therefore, Tg does not play a fundamen-

tal role, as a phase transition temperature would. It is simply

the temperature below which the material looks solid. When
quenched in the glass phase below Tg, liquids slowly evolve

toward an equilibrium state they cannot reach on experimen-

tal time scales. Physical properties are then found to evolve
slowly with time in far-from-equilibrium states, a process
known as ‘‘aging’’ (Struik, 1978).

The subject of the glass transition has quite broad impli-

cations. A material is said to be ‘‘glassy’’ when its typical
relaxation time scale becomes of the order of, and often much
larger than, the typical duration of an experiment or a nu-

merical simulation. With this generic definition, a large num-
ber of systems can be considered as glassy materials (Young,
1998). One can be interested in the physics of liquids (win-

dow glasses are then the archetype), in ‘‘hard’’ condensed
matter (for instance, type-II superconductors in the presence
of disorder, such as high-Tc superconducting materials), in

charge density waves or spin glasses, in ‘‘soft’’ condensed
matter with numerous complex fluids such as colloidal as-

semblies, emulsions, foams, but also granular materials, pro-
teins, etc. Glass physics thus covers a remarkably broad range
of time scales and length scales, as illustrated in Fig. 1. All

these materials exhibit, in some part of their phase diagrams,
some sort of glassy dynamics characterized by a rich phe-
nomenology with effects such as aging, hysteresis, creep,

memory, effective temperatures, rejuvenation, dynamic het-
erogeneity, nonlinear response, etc.

These long enumerations explain why this research field
has received increasing attention from physicists in the last

two decades. Glassy topics now go much beyond the physics
of simple liquids (glass transition physics) and models and

FIG. 1 (color online). Glassy phases occur at low temperature or

large density in many different systems spanning a broad range of

length scales, such as atomic [top left, atomic force spectroscopy

image of an alloy of linear size 4.3 nm (Sugimoto et al., 2007)],

colloidal (top right) systems, foams (bottom left, a beer foam with

bubbles of submillimeter size), and granular materials (bottom right,

a fertilizer made of millimeter size grains).
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concepts developed for one system often find applications
elsewhere in physics, from algorithmics to biophysics
(Mézard et al., 2007). Motivations to study glassy materials
are numerous. Glassy materials are everywhere around us and
therefore obviously attract interest beyond academic re-
search. At the same time, the glass conundrum provides
theoretical physicists with deep fundamental questions since
standard statistical mechanics tools are sometimes not suffi-
cient to properly account for the glass state. Additionally,
simulation in the computer of the dynamics of microscopi-
cally realistic material on time scales that are experimentally
relevant is not an easy task, even with modern computers.
Finally, the field is constantly stimulated by new, and some-
times quite beautiful, experimental developments to produce
new types of disordered materials, or to obtain more micro-
scopic information on the structure and dynamics of glassy
systems.

The outline of the article is as follows. Section II provides a
broad introduction to glassy materials. The issue of dynamic
heterogeneity is tackled in Sec. III, while the main theoretical
perspectives, characterized by a microscopic, statistical me-
chanics basis, are summarized in Sec. IV. Aging and non-
equilibrium phenomena occupy Sec. V. Finally, we present a
set of general and concluding remarks in Sec. VI.

II. A BROAD INTRODUCTION ABOUT GLASSES

A. Some phenomenology

1. The basic phenomenon

A vast majority of liquids (molecular liquids, polymeric
liquids, etc.) form a glass if cooled fast enough to avoid the
crystallization transition (Angell, 1995). Typical values of
cooling rate in laboratory experiments are 0:1–100 K=min .
The metastable phase reached in this way is called the
‘‘supercooled phase.’’ In this regime the typical time scales
increase in a dramatic way, and they end up being many
orders of magnitudes larger than microscopic time scales at
Tg, the glass transition temperature.

For example, around the melting temperature Tm, the
typical time scale �� on which density fluctuations relax,

is of the order of
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ma2=kBT

p
, which corresponds to a few

picoseconds (m is the molecular mass, T is the temperature,
kB is the Boltzmann constant, which will often be set to unity
in the later theoretical sections, and a is a typical distance
between molecules). At Tg the typical time scale has become

of the order of 100 s, i.e., 14 orders of magnitude larger. This
increase is even more remarkable because the corresponding
temperature decrease is, as a rule of thumb, about 1

3Tm, not a

large value if one considers kBTm as the typical energy scale.
The increasing of �� is accompanied by a concomitant
increase of the shear viscosity �. This can be understood
by a simple Maxwell model in which � and �� are related by
� ¼ G1��, where G1 is the instantaneous (elastic) shear
modulus which does not vary considerably in the supercooled
regime. In fact, viscosities at the glass transition temperature
are of the order of 1012 Pa s. In order to grasp how viscous
this is, recall that the typical viscosity of water at ambient
temperature is of the order of 10�2 Pa s. How long would one
have to wait to drink a glass of water with a viscosity 1014

times larger, or how long would it take for cathedral glasses to
flow (Zanotto, 1998)?

As a matter of fact, the temperature at which the liquid does
not flow anymore and becomes an amorphous solid, called a
‘‘glass,’’, is protocol dependent. It depends on the cooling rate
and on the patience of the people carrying out the experiment:
solidity is a time-scale-dependent notion (Sausset et al., 2010).
Pragmatically, Tg is defined as the temperature at which the

shear viscosity is equal to 1013 Poise (also 1012 Pa s).

2. Kinetic fragility

The increase of the relaxation time scale of supercooled
liquids is remarkable not only because of the large number of
decades involved but also because of its temperature depen-
dence. This is vividly demonstrated by plotting the logarithm
of the viscosity (or the relaxation time) as a function of Tg=T,

as in Fig. 2. This is called the Angell plot (Angell, 1995) and
is helpful in classifying supercooled liquids. A liquid is called
strong or fragile depending on its position in the Angell plot.
Straight lines correspond to ‘‘strong’’ glass formers and to an
Arrhenius behavior,

�� ¼ �0 exp

�
E

kBT

�
: (1)

In this case, one can extract from the plot an effective
activation energy E, suggesting quite a simple mechanism
for relaxation by locally ‘‘breaking,’’ for instance, a chemical
bond. The typical relaxation time is then dominated by the
energy barrier to activate this process and, hence, has an
Arrhenius behavior. Window glasses generically fall in this
category. The terminology strong and ‘‘fragile’’ is not related
to the mechanical properties of the glass but was introduced
in relation to the evolution of the short-range order close to
Tg. Strong liquids, such as SiO2, typically have a locally

FIG. 2 (color online). Arrhenius plot of the relaxation time of

several glass-forming liquids approaching the glass temperature Tg.

For ‘‘strong’’ glasses, �� increases in an Arrhenius manner as

temperature is decreased, log�� � E=ðkBTÞ, where E is an activation

energy and the plot is a straight line. For ‘‘fragile’’ liquids, the plot is

bent and the effective activation energy increases whenT is decreased

toward Tg. Time scales accessible to numerical simulations are

indicated. BKS, numerical model of silica; LJ, numerical model of

a binary Lennard-Jones mixture; GLY, glycerol; OTP, ortho-ter-

phenyl; SAL, salol; PC, propylene carbonate; DEC, decaline.
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tetrahedric structure which persists both below and above the
glass transition, in contrast to fragile liquids. Nowadays, the
notion of fragility appears in connection with the temperature
evolution of transport properties.

If one tries to define an effective activation energy for
fragile glass formers using the slope of the curve in Fig. 2,
then one finds that this energy scale increases when the
temperature decreases, a ‘‘super-Arrhenius’’ behavior. This
increase of energy barriers immediately suggests that the
glass formation is a collective phenomenon for fragile super-
cooled liquids. Support for this interpretation is provided by
the fact that a good fit of the relaxation time or the viscosity is
given by the Vogel-Fulcher-Tamman law (VFT):

�� ¼ �0 exp

�
DT0

ðT � T0Þ
�
; (2)

which suggests a divergence of the relaxation time, and
therefore perhaps a phase transition of some kind, at a finite
temperature T0. A smaller D in the VFT law corresponds to a
more fragile glass. Note that there are other comparably good
fits of these curves, such as the Bässler law (Bässler, 1987),

�� ¼ �0 exp

�
K

�
T�
T

�
2
�
; (3)

that only lead to a divergence at zero temperature. Another fit
proposed and tested recently consists of replacing 1=T by
1=T � 1=Ton in the Bässler law. This form, where Ton repre-
sents some onset temperature for slow dynamics, is motivated
in part by dynamical facilitation models (Elmatad et al.,
2009); see Sec. IV.C.2. Actually, although the relaxation time
increases by 14 orders of magnitude, the increase of its
logarithm, and therefore of the effective activation energy is
modest, and experimental data do not allow one to unambig-
uously determine the true underlying functional law without
any reasonable doubt (Hecksher et al., 2008). Several com-
parisons between fits aimed at determining the best one can
be found in the literature; see, e.g., the recent work of
Elmatad et al. (2010). Although these works are certainly
useful, one should not forget that since the increase of the
effective activation energy is modest, preasymptotic effects to
the ‘‘true’’ limiting behavior can play an important role.
Hence, comparisons of simple fits with a small number of
parameters could be misleading. For this and other reasons,
physical interpretations in terms of a finite-temperature phase
transition must always be taken with a grain of salt. It is
recommended to use the same grain of salt to deal with fits
supposedly demonstrating the absence of finite-temperature
singularities (Hecksher et al., 2008; Elmatad et al., 2009).

3. Thermodynamic aspects

There are additional experimental facts that shed some light
and might reinforce the interpretation of data in terms of a
finite-temperature singularity. Among them is an empirical
connection found between kinetic and thermodynamic behav-
iors. Consider the part of the entropy of the liquids, Sexc,
which is in excess compared to the entropy of the correspond-
ing crystal. Once this quantity, normalized by its value at the
melting temperature, is plotted as a function of T, a remark-
able connection with the dynamics, in particular, the VFT law,
emerges [see Martinez and Angell (2001) for a compilation of

experimental data and Debenedetti and Stillinger (2001) for a
discussion]. As for the relaxation time, one cannot follow this
curve below Tg in thermal equilibrium. However, extrapolat-

ing the curve below Tg apparently indicates that the excess

entropy vanishes linearly at some finite temperature, called
TK, which is close to zero for strong glasses and, generically,
close to T0, the temperature at which a VFT fit diverges. This
coincidence is quite remarkable: For materials with glass
transition temperatures that vary from 50 to 1000 K the ratio
TK=T0 remains close to 1. Some examples are provided in
Table I; see Richert and Angell (1998) for a more extensive
list. For the majority of liquids the ratio is close to 1 up to a
few percent. Note, however, that there are some liquids for
which TK and T0 differ by as much as 20%, and so a perfect
correlation between the two temperatures is not established
experimentally (Tanaka, 2003).

The chosen subscript for TK stands for Kauzmann (1948)
who recognized TK as an important temperature for the
physics of glasses. Kauzmann further suggested that some
change of behavior (phase transition, crystal nucleation, etc.)
must take place above TK, because below TK the entropy of
the liquid, a disordered state of matter, becomes less than the
entropy of the crystal, an ordered state of matter. This situ-
ation, which seemed perhaps paradoxical at that time, is, in
fact, not a serious problem. There is no general principle that
would constrain the entropy of the liquid to be larger than that
of the crystal. As a matter of fact, the crystallization transition
for hard spheres takes place precisely because the crystal
becomes the state with the largest entropy at sufficiently high
density (Alder and Wainwright, 1962).

On the other hand, the importance of TK stands, partially
because it is experimentally close to T0. Additionally, the
quantity Sexc, which vanishes at TK, is thought to be a proxy
for the so-called configurational entropy Sc, which quantifies
the number of metastable states (actually, its logarithm, see
below). A popular physical picture due to Goldstein (1969) is
that close to Tg the system explores a part of the energy

landscape (or configuration space) which is full of minima
separated by barriers that increase when temperature de-
creases. The dynamic evolution in the energy landscape
would then consist of a rather short equilibration inside the
minima followed by ‘‘jumps’’ between different minima that
are well separated in time. At Tg the barriers have become so

large that the system remains trapped in one minimum,
identified as one of the possible microscopic amorphous
configurations of a glass. Following this interpretation, one
can split the entropy into two parts. The first contribution is
due to the fast relaxation inside one minimum, and the

TABLE I. Values of glass transition temperature, VFT singularity,
and Kauzmann temperatures for five supercooled liquids (Richert
and Angell, 1998). OTP, o-terphenyl; 2-MTH, 2-methyltetra-
hydrofuran; N-PROP, n-propanol; 3-BP, 3-bromopentane. 12PD,
1–2 prop-diol.

Substance OTP 2-MTH N-PROP 3-BP 12PD

Tg 246.0 91.0 97.0 108.0 172.0
T0 202.4 69.6 70.2 82.9 114.0
TK 204.2 69.3 72.2 82.5 127.0
TK=T0 1.009 0.996 1.028 0.995 1.11
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second one, counting the number of metastable states,
Sc ¼ logNmetastable, is called the ‘‘configurational’’ entropy.
Assuming that the contribution to the entropy due to the
‘‘vibrations’’ around an amorphous glass configuration is
not much different from the entropy of the crystal, one finds
that Sexc � Sc. Within this approximation TK corresponds to
the temperature at which the configurational entropy van-
ishes. Since the configurational contribution to the specific
heat is given by TdSexc=dT, a linear vanishing of Sexc near TK

(suggested by both experimental observations and theoretical
arguments, see Sec. IV) would lead to a discontinuity (a
downward jump) of the specific heat and thus to a thermody-
namic phase transition. Note, however, that the above as-
sumptions should not be taken for granted; see, for instance,
the recent discussions by Angell and Borick (2002), Dyre
(2006), and Wyart (2010). Furthermore, locating the transi-
tion temperature requires an extrapolation that is not well
controlled, as is also required for the relaxation time.

4. Static and dynamic correlation functions

At this point the reader might have reached, despite our
numerous warnings, the conclusion that the glass transition
may not be such a difficult problem: There are experimental
indications of a diverging time scale and a concomitant
singularity in the thermodynamics. It simply remains to find
static correlation functions displaying a diverging correlation
length related to the emergence of ‘‘amorphous order,’’ which
would indeed classify the glass transition as a standard
second-order phase transition. Remarkably, this remains an
open and debated question despite several decades of research.
Simple static correlation functions are quite featureless in the
supercooled regime, notwithstanding the dramatic changes in
the dynamics. A simple static quantity is the structure factor
defined by

SðqÞ ¼
�
1

N
�q��q

�
; (4)

where the Fourier component of the density reads

�q ¼ XN
j¼1

eiq�rj ; (5)

with N the number of particles, V the volume, and rj the

position of particle j. The structure factor measures the spatial
correlations of particle positions, but it does not show any
diverging peak, in contrast to what happens, for example, at
the liquid-gas critical point where there is a divergence at
small q. A snapshot of a supercooled liquid configuration, in
fact, just looks like a glass configuration, despite their widely
different dynamic properties. More complicated static corre-
lation functions have been studied (Debenedetti, 1996), espe-
cially in numerical work, but until now there are no strong
indications of a diverging static length scale, although this
issue is constantly debated (Menon and Nagel, 1995; Nelson,
2002; Fernandez et al., 2006; Cavagna, 2009; Tanaka et al.,
2010). Recent results suggest that it is possible to identify
some growing static length scales. We come back to this point
in Sec. VI and in other sections.

The difficulty in finding a signature of the glass transition
disappears if one focuses on dynamic correlations or response
functions. For instance, a dynamic observable studied in light

and neutron scattering experiments is the intermediate scat-
tering function,

Fðq; tÞ ¼
�
1

N
�qðtÞ��qð0Þ

�
: (6)

Different Fðq; tÞ measured by neutron scattering in super-
cooled glycerol (Wuttke et al., 1996) are shown for different
temperatures in Fig. 3. These curves suggest a first, rather fast
(and hence not accessible in this experiment), relaxation to a
plateau followed by a second, much slower, relaxation. The
plateau is due to the fraction of density fluctuations that are
frozen on intermediate time scales, but eventually relax dur-
ing the second relaxation. The latter is called ‘‘� relaxation’’
and corresponds to the structural relaxation of the liquid. This
plateau is akin to the Edwards-Anderson order parameter qEA
defined for spin glasses which measure the fraction of frozen
spin fluctuations (Mézard et al., 1988; Binder and Kob,
2005). Note that qEA continuously increases from zero below
the spin glass transition. Instead, for structural glasses, a finite
plateau already appears above any putative transition.
Figures 4, 6, and 13 contain illustrations of the different
time regimes observed in time correlators.

The intermediate scattering function can be probed only on
a relatively small regime of temperatures. In order to track the
dynamic slowing down from microscopic to macroscopic
time scales, other correlators have been studied. A popular
one is obtained from the dielectric susceptibility, which is
related by the fluctuation-dissipation theorem to the time
correlation of polarization fluctuations. It is generally admit-
ted that different dynamic probes reveal similar temperature
dependencies for the relaxation time (Jakobsen et al., 2005).
The temperature evolution of the imaginary part of the di-
electric susceptibility, �00ð!Þ, is shown in Fig. 4 for the glass-
former benzophenone, where a wide temperature window is
covered (Pardo et al., 2007). At high temperature, a good
representation of the data is given by a Debye law �ð!Þ ¼
�ð1Þ þ ��=ð1þ i!��Þ, which corresponds to an exponen-
tial relaxation in the time domain. When temperature is

FIG. 3. Temperature evolution of the intermediate scattering func-

tion normalized by its value at time equal to 0 for supercooled

glycerol (Wuttke et al., 1996). Temperatures decrease from 413 to

270 K from left to right. The solid lines are fit with a stretched

exponential with exponent � ¼ 0:7. The dotted line represents

another fit with � ¼ 0:82.
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decreased, however, the relaxation spectra become broad and
strongly non-Debye, which is the frequency analog of the
stretching of the relaxation observed in the time domain.
Indeed, one particularly well-known feature of the spectra
is that they are well fitted, in the time domain, for times
corresponding to the � relaxation with a stretched exponen-
tial exp½�ðt=��Þ��. In the Fourier domain, forms such
as the Havriliak-Negami law are used, �ð!Þ ¼ �ð1Þþ
��=½1þ ði!��Þ���, which generalizes the Debye law. The
exponents �, �, and � depend, in general, on temperature and
on the particular dynamic probe chosen, but they capture the
fact that relaxation is increasingly nonexponential when T
decreases toward Tg. A connection was empirically estab-

lished between fragility and degree of nonexponentiality,
more fragile liquids being characterized by broader relaxation
spectra (Debenedetti and Stillinger, 2001), although the cor-
relation is, again, not very solid (Heuer, 2008). Figure 4 also
makes it clear that the relaxation spectra are actually quite
complex and characterized by one or several secondary pro-
cesses that have been quite extensively studied experimen-
tally (Johari and Goldstein, 1970; Dixon et al., 1990;
Blochowicz et al., 2006).

To sum up, there are many remarkable phenomena that take
place when a supercooled liquid approaches the glass transi-
tion. Striking ones have been presented, but many others have
been left out for lack of space (Angell, 1995; Debenedetti,
1996; Debenedetti and Stillinger, 2001; Binder and Kob,
2005). We discussed physical behaviors, relationships, or
empirical correlations observed in a broad class of materials.
These are quite remarkable and suggest that there is some
interesting physics to be studied in the problem of the glass
transition, which we see as a collective (critical?) phenome-
non which is relatively independent of microscopic details.

B. Other glasses in science

We now introduce some other systems whose phenomeno-
logical behavior is close or, at least, related, to that of glass-
forming liquids, showing that glassiness is truly ubiquitous. It
appears not only in many different physical situations but also
in more abstract contexts, such as computer science.

1. The jamming transition of colloids and grains

Colloidal suspensions consist of big particles suspended in
a solvent (Larson, 1999). The typical radii of the particles are
in the range R ¼ 1–500 nm. The solvent, which is at equi-
librium at temperature T, acts as a source of noise on the
particles whose short-time dynamics is better described as
being Brownian rather than Newtonian. The microscopic time
scale for this diffusion is given by � ¼ R2=D, where D is the
short-time self-diffusion coefficient. Typical values are of the
order of �� 1 ms, and thus are much larger than the ones for
molecular liquids (in the picosecond regime). The interaction
potential between particles depends on the systems, and this
large tunability makes colloids attractive objects for technical
applications.

A particularly relevant case, on which we will focus in the
following, is the purely hard-sphere potential, which is zero
when particles do not overlap and infinite otherwise. In this
case the temperature becomes irrelevant, apart from a trivial
rescaling of the microscopic time scale. Colloidal hard-sphere
systems have been intensively studied (Larson, 1999) in
experiments, simulations, and theory, with varying density
� or volume fraction 	 ¼ 4

3
R
3�. Hard spheres display a

fluid phase from 	 ¼ 0 to intermediate volume fractions, a
freezing-crystallization transition at	 ’ 0:494, and a melting
transition at	 ’ 0:545. Above this latter value the system can
be compressed until the close packing point 	 ’ 0:74, which
corresponds to the fcc crystal. Interestingly for our purposes,
a small amount of polydispersity (particles with slightly
different sizes) efficiently prevents crystallization. In this
case, the system can be more easily ‘‘supercompressed’’
above the freezing transition without nucleating the crystal,
at least on experimental time scales. In this regime the
relaxation time scale increases rapidly with 	 (Pusey and
van Megen, 1986). At a packing fraction 	g ’ 0:57–0:59 it

becomes so large compared to typical experimental time
scales that the system does not relax anymore: It is
‘‘jammed.’’ This jamming transition is obviously reminiscent
of the glass transition of molecular systems. In particular, the
location 	g of the colloidal glass transition is as ill defined as

the glass temperature Tg.

Actually, the phenomena that take place increasing the
volume fraction are analogous to the ones seen in molecular
supercooled liquid (Pusey and van Megen, 1986): The vis-
cosity increases rapidly and can be fitted (Cheng et al., 2002)
by a VFT law in density as in Eq. (2). Dynamical correlation
functions display a broad spectrum of time scales and develop
a plateau (Pusey and van Megen, 1987); no static growing
correlation length has been found, etc. Also the phenomenon
of dynamic heterogeneity addressed in Sec. III seems similar
in colloids and atomic systems (Kegel and van Blaaderen,
2000; Weeks et al., 2000). However, it is important to
underline a major difference: Because the microscopic time
scale for colloids is so large, experiments can only track at
best the first 5–6 decades of slowing down (Brambilla et al.,
2009). A major consequence is that the comparison between
the glass and colloidal transitions must be performed by
focusing in both cases on the first five decades of the slowing
down, which corresponds to relatively high temperatures in
molecular liquids. Understanding how much and to what
extent the glassiness of colloidal suspensions is related to

FIG. 4 (color online). Temperature evolution of the dielectric

susceptibility of the glass-former benzophenone measured over

more than 10 decades of relaxation times (Pardo et al., 2007).

Dynamics slows down dramatically as temperature is decreased and

relaxation spectra become broad at low temperature and reveal the

existence of additional ‘‘secondary’’ relaxation processes.
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the one of molecular liquids remains an active domain of
research.

The glassiness of driven granular media has recently been
thoroughly analyzed. Grains are macroscopic objects and, as
a consequence, do not have any thermal motion. A granular
material is therefore frozen in a given configuration if no
energy is injected into the system (Jaeger et al., 1996).
However, it can be forced into a steady state by an external
drive, such as shearing or tapping. The dynamics in this
steady state shows remarkable similarities (and differences)
with simple fluids. The physics of granular materials is a
broad subject (Jaeger et al., 1996). In the following we
address only briefly what happens to a polydisperse granular
fluid at high packing fractions. As for colloids, the time scales
for relaxation or diffusion increase rapidly when density is
increased, without any noticeable change in structural prop-
erties. Again, it is now established (D’Anna and Gremaud,
2001; Marty and Dauchot, 2005; Chaudhuri et al., 2007;
Keys et al., 2007; Candelier et al., 2010) that many phe-
nomenological properties of the granular glass transition also
occur in granular assemblies. As for colloids, going beyond
the mere analogy and understanding how much these differ-
ent physical systems are related is an active domain of
research (Liu and Nagel, 2001).

This very question has been asked in a visual manner by
Liu and Nagel (1998) who rephrased it in a single picture,
now known as a ‘‘jamming phase diagram.’’ By building a
common phase diagram for glasses, colloids, and grains, they
asked whether the glass and jamming transitions of molecular
liquids, colloids, and granular media are different facets of
the same jammed phase. In this unifying phase diagram, a
jammed phase (or jammed phases) can be reached either by
lowering the temperature, as in molecular liquids, or increas-
ing the packing fraction or decreasing the external drive in
colloids and granular media.

2. More glasses in physics and beyond

There are many other physical contexts in which glassi-
ness plays an important role (Young, 1998). One of the most
famous examples is the field of spin glasses. Experimentally,
spin glasses are composed of magnetic impurities interacting
by quenched random couplings. At low temperatures, their
dynamics become extremely slow and they freeze in an
amorphous spin configuration dubbed a ‘‘spin glass’’ by
P.W. Anderson. Experiments on spin glasses, in particular,
aging studies, have played an important role in the context of
amorphous materials. There are many other physical systems,
often characterized by quenched disorder, that show glassy
behavior, such as Coulomb glasses, Bose glasses, frustrated
magnets, etc. In many cases, however, one finds quite differ-
ent physics from structural glasses: The similarity between
these systems is therefore only superficial from the phenome-
nological point of view, but the theoretical techniques and
ideas developed, in particular, in the field of spin glasses are
highly relevant in theoretical studies of the glass transition.

Finally, and quite remarkably, glassiness emerges even in
other branches of science (Mézard et al., 2007). In particular,
it was discovered recently that concepts and techniques de-
veloped for glassy systems turn out to apply and be useful
tools in the field of neural networks and computer science.

Problems such as combinatorial optimization display phe-
nomena completely analogous to phase transitions, actually,
to glassy phase transitions. A posteriori, this is quite natural,
because a typical optimization problem consists of finding a
solution in the presence of a large number of constraints. This
can be defined, for instance, as a set of N Boolean variables
that satisfies M constraints. For N and M large at fixed � ¼
M=N, this problem resembles that of finding a ground state in
statistical mechanics with quenched disorder. Indeed one can
define an energy function (a Hamiltonian) as the number of
unsatisfied constraints, that has to be minimized, as in a
T ¼ 0 statistical mechanics problem. The connection with
glassy systems lies in the fact that in both cases the energy
landscape is extremely complicated, full of minima and sad-
dles. The fraction of constraints per degree of freedom� plays
a role similar to the density in a hard-sphere system. A
detailed presentation of the relationship between optimization
problems and glassy systems is clearly out of the scope of this
review. We simply illustrate it, pointing out that a central
problem in optimization, random k satisfiability, has been
shown to undergo a glass transition when � increases that is
reminiscent of the one of structural glasses and can be treated
analytically using similar tools (Krzakala et al., 2007).

C. Computer simulations of molecular glass formers

Studying the glass transition of molecular liquids at a
microscopic level is in principle straightforward since one
has to answer a simple question: How do particles move in
a liquid close to Tg? It is, of course, a daunting task to attempt

answering this question experimentally, because one should
then resolve the dynamics of single molecules to be able to
follow the trajectories of objects that are a few angstroms large
on time scales of tens or hundreds of seconds, which sounds
like eternity when compared to typical molecular dynamics
usually lying in the picosecond regime. In recent years, such
direct experimental investigations have been attempted using
time- and space-resolved techniques such as atomic force
microscopy (Vidal Russell and Israeloff, 2000) or single
molecule spectroscopy (Adhikari et al., 2007; Mackowiak
et al., 2009), but this remains a difficult task.

In numerical simulations, by contrast, the trajectory of
each particle in the system can, by construction, be followed
at all times. This allows one to easily quantify single-particle
dynamics, as proved in Fig. 5, where the averaged mean-
squared displacement �ðtÞ measured in a simple Lennard-
Jones glass former is shown. The mean-squared displacement
is defined by

�ðtÞ ¼
�
1

N

XN
i¼1

jriðtÞ � rið0Þj2
�
; (7)

where riðtÞ represents the position of particle i at time t in a
system composed of N particles; the angular brackets indicate
an ensemble average over initial conditions weighted with the
Boltzmann distribution. The main observation from the data
shown in Fig. 5 is that single-particle displacements consid-
erably slow down when T is decreased. This can be quantified
by measuring the self-diffusion constant Ds, formally defined
as Ds ¼ limt!1�ðtÞ=ð6tÞ. The data in Fig. 5 show that Ds

decreases by orders of magnitude when temperature
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decreases, and thus mirrors the behavior of the (inverse of the)

viscosity shown in Fig. 2 for real systems. Therefore, to

explain the phenomenon of the glass transition, one must

equivalently explain why molecular motions become so

slow at low temperatures.
Additionally, a rich dynamics is observed in Fig. 5, with a

plateau regime at intermediate time scales, corresponding to

an extended time window during which particles vibrate

around their initial positions, as in a crystalline solid. The

difference with a crystal is, of course, that this transient

localization does not correspond to a well-defined position

in an ordered structure, and it is only transient so that all

particles eventually escape and, concomitantly, the structure

relaxes at long times. Describing the molecular motions re-

sponsible for this broad spectrum of relaxation time scales is a

challenge.
In recent years, computer experiments played an increas-

ingly important role in glass transition studies (Andersen,

2005). It could almost be said that particle trajectories in

numerical work have been studied under so many different

angles that probably little remains to be learned from such

studies in the regime that is currently accessible using present

day computers. Unfortunately, this does not imply complete

knowledge of the physics of supercooled liquids. As shown in

Fig. 5, it is presently possible to follow the dynamics of a

simple glass-forming liquid over more than eight decades of

time, and over a temperature window in which average re-

laxation time scales increase by more than five decades. This

might sound impressive, but a quick look at Fig. 2 shows,

however, that at the lowest temperatures studied in the com-

puter, the relaxation time scales are still orders of magnitude

faster than in experiments performed close to the glass tran-

sition temperature. Simulations can be directly compared to

experiments performed in this high-temperature regime, but

this also implies that simulations focus on a relaxation regime

that is about eight to ten decades of times faster than in

experiments performed close to Tg. Whether numerical works

are useful in understanding the glass transition itself at all is

therefore an open, widely debated question. We believe that it

is now possible to numerically access temperatures which are
low enough that many features associated with the glass
transition physics can be observed: strong decoupling phe-
nomena (see Sec. III), clear deviations from fits to the mode-
coupling theory (which are experimentally known to hold only
at high temperatures, see Sec. IV.B.2), and crossovers toward
truly activated dynamics.

Classical computer simulations of supercooled liquids
usually proceed by solving a cleverly discretized version of
Hamilton’s equations for the particles’ positions and mo-
menta and a given potential interaction between particles
(Allen and Tildesley, 1987):

@ri
@t

¼ @H

@pi

;
@pi

@t
¼ � @H

@ri
; (8)

where

Hðfpi; rigÞ ¼
XN
i¼1

p2
i

2mi

þ VðfrigÞ (9)

is the system’s Hamiltonian composed of a kinetic part and an
interaction term VðfrigÞ. We have written Eqs. (8) and (9) in
terms of the center of mass trajectories, as is appropriate for
atoms although, of course, numerical simulations can deal
with molecular degrees of freedom as well (Allen and
Tildesley, 1987). Since the equations of motion are energy
conserving, they describe the dynamics of atomistic systems
in the microcanonical ensemble. Constant temperature or
constant pressure schemes have been developed, allowing
simulations to be performed in any desired statistical en-
semble (Allen and Tildesley, 1987). Similarly, nonequilibrium
simulation techniques exist that allow, for instance, computer
studies of the aging dynamics or the nonlinear rheology of
supercooled fluids (Evans and Morris, 2008); see also Sec. V.

If quantitative agreement with experimental data on an
existing specific material is sought, the interaction must be
carefully chosen in order to reproduce reality, for instance, by
combining classical to ab initio simulations. From the more
fundamental perspective adopted here, one rather seeks the
simplest model that is still able to qualitatively reproduce the
phenomenology of real glass formers, while being consider-
ably simpler to study. The implicit, but quite strong, hypothe-
sis is that molecular details are not needed to explain the
behavior of supercooled liquids, so that the glass transition is
indeed a topic for statistical mechanics, with little influence
from chemical details. A considerable amount of work has
therefore been dedicated to studying models where point
particles interact via a simple pair potential such as
Lennard-Jones interactions:

VðfrigÞ ¼
XN
i¼1

XN
j¼i

�

��
�

rij

�
12 �

�
�

rij

�
6
�
; (10)

where rij ¼ jri � rjj, and � and � represent an energy scale

and the particle diameter, respectively. Other popular models
are soft spheres, where only the steep short-range repulsion in
Eq. (10) is considered, or even hard spheres where the repul-
sion is made infinitely steep. If the system is too simple, such
as the one defined in (10), the glass transition cannot be
studied because crystallization takes place when temperature
is lowered. Some frustration must be introduced to devise

FIG. 5 (color online). Mean-squared displacements of individual

particles in a simple model of a glass-forming liquid composed of

Lennard-Jones particles observed on a wide time window. When

temperature decreases (from left to right), the particle displacements

become increasingly slow with several distinct time regimes corre-

sponding, in this order, to ballistic, localized, and diffusive regimes.
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numerical models with good glass-forming abilities. A com-
mon solution, inspired by experimental studies of metallic
glasses, is to use mixtures of different atoms, as in the popular
model devised by Kob and Andersen (1994, 1995a, 1995b)
which uses a nonadditive binary mixture of Lennard-Jones
particles.

More realistic materials are also studied focusing, for
instance, on the physics of network forming materials (such
as silica, SiO2, the main component of window glasses),
multicomponent ones, anisotropic particles, or molecules
with internal degrees of freedom. Connections to experimen-
tal work can be made by computing quantities that are
experimentally accessible such as the intermediate scattering
function, Eq. (6), static structure factors, SðqÞ, Eq. (4), or
thermodynamic quantities such as specific heat or configura-
tional entropy, which are directly obtained from particle
trajectories and can be measured in experiments as well. As
an example we show in Fig. 6 the intermediate scattering
function Fðq; tÞ obtained from a molecular dynamics simu-
lation of a classical model for SiO2 as a function of time for
different temperatures (Horbach and Kob, 2001). The numeri-
cal data compare favorably with the experimental results
obtained from neutron scattering shown in Fig. 3. Note that
they actually access the dynamics over a broader range of
time scales and temperatures.

An important role is played by simulations, also because a
large variety of dynamic and static quantities can be simulta-
neously measured in a single model system. As we shall
discuss later, there exist scores of different theoretical ap-
proaches to describe the physics of glass formers, and they
sometimes have their own set of predictions that can be readily
tested by numerical work. For instance, quite a large number
of numerical papers have been dedicated to testing in detail
the predictions formulated by the mode-coupling theory of the
glass transition, as reviewed recently by Götze (1999, 2008).
Here computer simulations are particularly well suited as the
theory specifically addresses the relatively high-temperature
window that is studied in computer simulations.

While Newtonian dynamics is mainly used in numerical
work on supercooled liquids, a most appropriate choice for
atomistic materials, it can be interesting to consider alternative
dynamics that are not deterministic or that do not conserve the

energy. In colloidal glasses and physical gels, for instance,
particles undergo Brownian motion arising from collisions
with molecules in the solvent, and a stochastic dynamics is
more appropriate. Theoretical considerations might also sug-
gest the study of different sorts of dynamics for a given
interaction between particles, for instance, to assess the role
of conservation laws and structural information. Of course, if a
given dynamics satisfies detailed balance with respect to the
Boltzmann distribution, all structural quantities remain un-
changed, but the resulting dynamical behavior might be differ-
ent. More generally one can ask the question: How universal is
the glass transition phenomenon? Does it depend upon the
specific microscopic dynamics?

Several papers studied in detail the influence of the dy-
namics on the resulting dynamical behavior in glass formers
using different types of microscopic dynamics. Gleim et al.
(1998) studied ‘‘stochastic dynamics’’ which generalizes
Newton’s equations to include nondeterministic forces:

mi

d2ri
dt2

¼ � @VðfrigÞ
@ri

� �
@ri
@t

þ �i: (11)

Specifically, a friction term proportional to the velocity with a
damping constant � is added to the right-hand side, as well as
a Gaussian distributed white noise �i, whose correlations are
related to the damping via the fluctuation-dissipation theorem
h�iðtÞ�jðt0Þi ¼ 6kBT�ijðt� t0Þ, so that the equilibrium

distribution at temperature T is indeed recovered. When �
gets large the dynamics becomes similar to a purely Brownian
dynamics, as recently studied, for instance, bySzamel and
Flenner (2004):

�
@ri
@t

¼ � @VðfrigÞ
@ri

þ �i: (12)

In that case, particles are described by their positions only,
and, therefore, momenta play no role. A similar type of
description, although numerically more efficient (Berthier,
2007a; Berthier and Kob, 2007), is obtained using a standard
Monte Carlo approach where the change in potential energy
between two configurations is used to accept or reject a trial
move. In both cases of Brownian and Monte Carlo dynamics,
particles have diffusive (rather than ballistic) behavior at
short times where differences between the different types of
dynamics can therefore be expected.

Quite surprisingly, however, the equivalence between these
three types of stochastic dynamics and the originally studied
Newtonian dynamicswas quantitatively established at the level
of the averaged dynamical correlators for all three types of
dynamics mentioned above, except at short times where ob-
vious differences are indeed expected. This equivalence can
probably be traced back to the existence of fast and slow
degrees of freedom. It is reasonable to think that the former
act as an effective thermal bath for the latter, thus making the
three types of dynamics equivalent on long time scales.
However, this interpretation has to be taken with a grain of
salt since important differences were found when fluctuations
of dynamical correlators were considered (Berthier et al.,
2007a), even in the long-time regime corresponding to the
structural relaxation.

Another crucial advantage of molecular simulations
is illustrated in Fig. 7. Figure 7 shows a spatial map of

FIG. 6 (color online). Intermediate scattering function at wave

vector q ¼ 1:7 �A�1 for the Si atoms from T ¼ 6100 to T ¼
2750 K, obtained from molecular dynamics simulations of silica.

From Horbach and Kob, 2001.
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single-particle displacements recorded during the simulation
of a binary Lennard-Jones mixture in two dimensions. This
type of measurement, out of reach of most experimental
techniques that study the liquid state, reveals that dynamics
might be different from one particle to another (transiently).
More importantly, Fig. 7 also unambiguously reveals the
existence of spatial correlations between these dynamic
fluctuations. The presence of nontrivial spatiotemporal fluc-
tuations in supercooled liquids is called ‘‘dynamic heteroge-
neity’’ (Ediger, 2000; Berthier et al., 2011). The phenomenon
has become a substantial component of the field of the glass
transition, and computer simulations have naturally played an
important role since they reveal the heterogeneous nature of
the relaxation much more directly than experiments. We
discuss the phenomenon of dynamic heterogeneity in more
detail in the next section.

III. DYNAMIC HETEROGENEITY

A. Existence of spatiotemporal dynamic fluctuations

A new facet of the relaxational behavior of supercooled
liquids has emerged in the last decade thanks to a consider-
able experimental and theoretical effort. It is called dynamic
heterogeneity and now plays a central role in modern de-
scriptions of glassy liquids (Ediger, 2000). As anticipated in
the discussion of Fig. 7 in the previous section, the phenome-
non of dynamic heterogeneity is related to the spatiotemporal
fluctuations of the dynamics. Initial motivations stemmed
from the search for an explanation of the nonexponentiality
of relaxation processes in supercooled liquids, related to the
existence of a broad relaxation spectrum. Two natural, but
fundamentally different, explanations can be put forward.

(1) The relaxation is locally exponential, but the typical

relaxation time scale varies spatially. Hence, global correla-

tion or response functions become nonexponential upon spa-

tial averaging over this spatial distribution of relaxation

times. (2) The relaxation is complicated and inherently non-

exponential, even locally. Experimental and theoretical works

(Ediger, 2000) suggest that both mechanisms are likely at

play, but definitely conclude that relaxation is spatially het-

erogeneous, with regions that are faster and slower than the

average. Since supercooled liquids are ergodic systems, a

slow region will eventually become fast, and vice versa. A

physical characterization of dynamic heterogeneity entails

the determination of the typical lifetime of the heterogene-

ities, as well as their typical length scale.
A clearer and more direct confirmation of the heteroge-

neous character of the dynamics also stems from simulation

studies. For example, whereas the simulated average mean-

squared displacements are smooth functions of time (see

Fig. 5), time signals for individual particles clearly exhibit

specific features that are not observed unless dynamics is

resolved in both space and time. These features are displayed

in Fig. 8. What do we see? We mainly observe that particle

trajectories are not smooth but rather composed of a succes-

sion of long periods of time where particles simply vibrate

around well-defined locations, separated by rapid jumps.

Vibrations were previously inferred from the plateau ob-

served at intermediate times in the mean-squared displace-

ments of Fig. 5, but the existence of jumps that are clearly

statistically widely distributed in time cannot be guessed from

averaged quantities only. The fluctuations in Fig. 8 suggest,

and direct measurements confirm, the importance played by

fluctuations around the averaged dynamical behavior.
A simple type of such fluctuations has been studied in

much detail. When looking at Fig. 8, it is indeed natural to

ask, for any given time, what is the distribution of particle

displacements? This is quantified by the self-part of the

van Hove function defined as
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FIG. 7 (color online). Spatial map of single-particle displacements

in the simulation of a binary mixture of Lennard-Jones mixture in

two dimensions. Arrows show the displacement of each particle in a

trajectory of length comparable to the structural relaxation time.

The map reveals the existence of particles with different mobilities

during relaxation, but also the existence of spatial correlations

between these dynamic fluctuations.

FIG. 8 (color online). Time-resolved squared displacements of

individual particles in a simple model of a glass-forming liquid

composed of Lennard-Jones particles near the fitted mode-coupling

critical temperature. The average is shown as a smooth full line.

Trajectories are composed of long periods of time during which

particles vibrate around well-defined positions, separated by rapid

jumps that are widely distributed in time, underlying the importance

of dynamic fluctuations.
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Gsðr; tÞ ¼
�
1

N

XN
i¼1

ðr� ½riðtÞ � rið0Þ�Þ
�
: (13)

For an isotropic Gaussian diffusive process, one gets
Gsðr; tÞ ¼ exp½�jrj2=ð4DstÞ�=ð4
DstÞ3=2. Simulations re-
veal instead strong deviations from Gaussian behavior on
the time scales relevant for structural relaxation (Kob et al.,
1997). In particular, they reveal tails in the distributions that
are ‘‘fat,’’ in the sense that they are much wider than expected
from the Gaussian approximation. These tails are, in fact, well
described by an exponential, rather than Gaussian, decay in a
wide time window comprising the structural relaxation, such
thatGsðr; tÞ � exp½�jrj=�ðtÞ� (Chaudhuri et al., 2007). Thus,
they reflect the existence of a population of particles that
distinctively moves farther than the rest and appears therefore
to be much more mobile. The exponential form of the tail
originates from the intermittent nature of the particle trajecto-
ries exposed in Fig. 8, made of a succession of jumps sepa-
rated by vibrations (Chaudhuri et al., 2007). Actually, such a
tail would be present in simple jump models for diffusion
(Hansen and McDonald, 2006). This observation implies that
relaxation in a viscous liquid differs qualitatively from that of
a normal liquid where diffusion is close to Gaussian, and that a
nontrivial statistics of single-particle displacements exists.

A long series of questions immediately follows this seem-
ingly simple observation. Answering them has been the main
occupation of many workers in this field over the last decade.
What are the particles corresponding to the tails effectively
doing? Why are they faster than the rest? Are they located
randomly in space or do they cluster? What is the geometry,
time, and temperature evolution of the clusters? Are these
spatial fluctuations correlated to geometric or thermodynamic
properties of the liquids? Do similar correlations occur in all
glassy materials? Can one predict these fluctuations theoreti-
cally? Can one understand glassy phenomenology using
fluctuation-based arguments? How can these fluctuations be
detected experimentally?

Another influential phenomenon that was early related on to
the existence of dynamic heterogeneity is the decoupling of
self-diffusion (Ds) and viscosity (�). In the high-temperature
liquid self-diffusion and viscosity are related by the Stokes-
Einstein relation (Hansen and McDonald, 2006), Ds�=T ¼
const. For a large particlemoving in a fluid the constant is equal
to 1=ð6
RÞ, where R is the particle radius. Physically, the
Stokes-Einstein relation means that two different measures of
the relaxation times R2=Ds and �R3=T lead to the same time
scale up to a constant factor. In supercooled liquids this phe-
nomenological law breaks down, as shown in Fig. 9 for ortho-
terphenyl (Mapes et al., 2006). It is commonly found thatD�1

s

does not increase as fast as �=T so that, at Tg, the product

Ds�=T has increased by 2–3 orders of magnitude as compared
to its Stokes-Einstein value. This phenomenon, although less
spectacular than the overall change of viscosity, is a significant
indication that different ways to measure relaxation times lead
to different answers and, thus, is a strong hint of the existence
of broad ‘‘distributions’’ of relaxation time scales.

Indeed, a natural explanation of this effect is that different
observables probe differently the underlying distribution
of relaxation times (Ediger, 2000). For example, the self-
diffusion coefficient of tracer particles is dominated by the

more mobile particles, whereas the viscosity or other
measures of structural relaxation probe the time scale needed
for every particle to move. An unrealistic but instructive
example is a model where there is a small, nonpercolative
subset of particles that are blocked forever, coexisting with a
majority of mobile particles. In this case, the structure never
relaxes but the self-diffusion coefficient is nonzero because of
the mobile particles. Of course, in reality all particles move,
eventually, but this shows how different observables are likely
to probe different moments of the distribution of time scales,
as explicitly shown within several theoretical frameworks
(Stillinger and Hodgdon, 1994; Tarjus and Kivelson, 1995;
Jung et al., 2004).

The phenomena described above clearly show that the
dynamics is spatially heterogeneous. However, they are in
principle not able to probe whether this is related to purely
local fluctuations or if there are instead increasingly spatially
correlated fluctuations. This is, however, a fundamental issue
from both the experimental and theoretical points of view.
How large are the regions that are faster or slower than the
average? How does their size depend on temperature? Are
these regions compact or fractal? These important questions
were first addressed in pioneering works using four-
dimensional NMR (Tracht et al., 1998; Reinsberg et al.,
2001), or by directly probing fluctuations at the nanoscopic
scale using microscopy techniques. In particular, Vidal
Russell and Israeloff (2000), using atomic force microscopy
techniques, measured the polarization fluctuations in a vol-
ume of size of a few tens of nanometers in a supercooled
polymeric liquid (PVAc) close to Tg. In this spatially resolved

measurement, the hope is to probe a small enough number of
dynamically correlated regions and detect their dynamics.
Indeed, the signals shown by Vidal Russell and Israeloff
(2000) reveal that the dynamics is intermittent in time: It
switches between moments with intense activity and mo-
ments with no dynamics at all, suggesting that extended
regions of space indeed transiently behave as fast and slow
regions. A much smoother signal would have been measured

FIG. 9. Decoupling between viscosity (full line) and self-diffusion

coefficient (symbols) in supercooled ortho-terphenyl (Mapes et al.,

2006). The dashed line shows a fit with a ‘‘fractional’’ Stokes-

Einstein relation Ds � ðT=�Þ� with � � 0:82 instead of the

‘‘normal’’ value � ¼ 1 which holds only at high temperatures.
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if such dynamically correlated ‘‘domains’’ were not present.
Spatially resolved studies such as NMR experiments or
atomic force microscopy are quite difficult to perform.
They give undisputed information about the typical lifetime
of the dynamic heterogeneity, but their determination of a
dynamic correlation length scale is rather indirect and per-
formed on a small number of liquids in a small temperature
window. Nevertheless, the outcome is that a nontrivial dy-
namic correlation length emerges at the glass transition,
where it reaches a value of the order of about �10 molecule
diameters (Ediger, 2000).

B. Multipoint correlation functions

Recently, substantial progress in characterizing spatiotem-
poral dynamical fluctuations was performed. In particular, it
is now understood that dynamical fluctuations can be mea-
sured and characterized through the use of high-order corre-
lation and response functions. These multipoint functions can
be seen as generalizations of the spin glass susceptibility
measuring the extent of amorphous long-range order in spin
glasses. We now introduce these dynamical functions and
summarize the main results obtained from their study.

1. Why four-point correlators? The spin glass case

No simple static correlation has yet been found to reveal
any notable feature upon approaching the glass transition (see
Sec. VI for recent theoretical progress). As a consequence, it
is quite natural to investigate whether a growing length scale
associated with the slowing down of the system is hidden in
some dynamic correlation function.

Spin glass theory faced a similar conundrum, whose solu-
tion we briefly recall because it has been instrumental in the
developments for glass-forming liquids. We know that some
hidden long-range order develops at the spin glass transition
(Binder and Young, 1986). However, also for spin glasses,
conventional two-point functions are useless. Even if spins sx
and sxþy have nonzero static correlations hsxsxþyi in the spin

glass phase, the average over space, ½� � ��x ¼ V�1
R
dx � � � ,

for a given distance jyj vanishes because the pairwise corre-
lations randomly change sign whenever x changes. The in-
sight of Edwards and Anderson (1975) is that one should first
square hsxsxþyi before averaging over space. In this case, the

resulting four-spin correlation function indeed develops long-
range tails in the spin glass phase. This correlation, in fact,
decays so slowly that its volume integral, related to the non-
linear magnetic susceptibility of the material, diverges in the
whole spin glass phase (Binder and Young, 1986).

Edwards and Anderson’s idea can, in fact, be understood
from a dynamical point of view, which is important for
understanding both the physics of the spin glass just above
the transition and its generalization to structural glasses.
Consider, in the language of spins, the following four-point
correlation function:

G4ðy; tÞ ¼ ½hsxðt ¼ 0Þsxþyðt ¼ 0ÞsxðtÞsxþyðtÞi�x: (14)

Suppose that spins sx and sxþy develop static correlations

hsxsxþyi within the glass phase. In this case, G4ðy; t ! 1Þ
will clearly converge to the spin glass correlation
½hsxsxþyi2�x. More generally, G4ðy; tÞ for finite t is able to

detect transient tendencies to spin glass order, for example,
slightly above the spin glass transition temperature Tc. Close
to the spin glass transition, both the persistence time and the
dynamic length diverge in a critical way:

G4ðy; tÞ � y2�d��Ĝ

�
y

�
;
t

�

�
; (15)

where �� ðT � TcÞ�� and �� ðT � TcÞ�z�. As mentioned
above, the static nonlinear susceptibility diverges asR
dyG4ðy; t ! 1Þ � �2��. More generally, one can define a

time-dependent dynamic susceptibility as

�4ðtÞ �
Z

dyG4ðy; tÞ; (16)

which defines, provided G4ð0; tÞ is a number of order 1, a
correlation volume, i.e., the typical number of spins correlated
in dynamic events taking place over the time scale t. As we
shall discuss, �4ðtÞ can also be interpreted as a quantitative
measure of the dynamic fluctuations. Note, however, that the
precise relation between �4 and � depends on the value of the
exponent �, which is physically controlled by the detailed
spatial structure of dynamically correlated regions encoded in
G4:

�4ðt ¼ �Þ / �2��: (17)

Therefore, spin glasses offer a precise example of a system
which gets slower and slower upon approaching Tc but
without any detectable long-range order appearing in two-
point correlation functions. Only more complicated four-
point functions are sensitive to the genuine amorphous
long-range order that sets in at Tc and give nontrivial infor-
mation even above Tc. In the case of spin glasses it is well
established that the transition is related to the emergence of a
low-temperature spin glass phase.

In the case of the glass transition of viscous liquids the
situation is much less clear. First, unlike spin glasses where
the disorder is quenched, glass formers tend to freeze in an
amorphous state where disorder is instead self-induced.
Second, there might be no true phase transition toward a
low-temperature amorphous phase. It is nevertheless still
reasonable to expect that the dramatic increase of the relaxa-
tion time is due to a transient amorphous order that sets in and
whose range grows approaching the glass transition. Growing
time scales should be somehow related to growing length
scales (Montanari and Semerjian, 2006b). A good candidate
to unveil the existence of this phenomenon is the function
G4ðy; tÞ introduced previously, since nothing in the above
arguments was specific to systems with quenched disorder.
The only difference is that although transient order is detected
inG4ðy; tÞ or its volume integral �4ðtÞ for times of the order of
the relaxation time, in the long-time limit these two functions
may not, and indeed do not in the case of supercooled liquids,
show long-range amorphous order. This is rooted back in the
different natures of the glass and spin glass transitions.

2. Four-point functions in supercooled liquids

In the case of liquids, we consider a certain space-
dependent observable oðx; tÞ, such as, for example, the local
excess density �ðx; tÞ ¼ �ðx; tÞ � �0, where �0 is the
average density of the liquid, or the local dipole moment,
the excess energy, etc. We will assume in the following that
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the average of oðx; tÞ is equal to 0, and the variance of oðx; tÞ
is normalized to unity. The dynamic two-point correlation is
defined as

Coðr; tÞ ¼ ½oðx; t ¼ 0Þoðxþ r; tÞ�x; (18)

where the normalization ensures that Coðr ¼ 0; t ¼ 0Þ ¼ 1.
The Fourier transform of Coðr; tÞ defines a generalized dy-
namic structure factor Soðk; tÞ (Hansen and McDonald,
2006). All experimental and numerical results known to
date suggest that as the glass transition is approached, no
spatial anomaly of any kind appears in Coðr; tÞ [or in
Soðk; tÞ], although, of course, there could still be some signal
which is perhaps too small to be measurable. The only
remarkable feature is that the slowing down of the two-point
correlation functions often obeys, to a good approximation,
‘‘time-temperature superposition’’ in the �-relaxation regime
t� ��, i.e.,

Coðr; tÞ � qoðrÞf
�

t

��ðTÞ
�
; (19)

where qo is often called the nonergodicity (or Edwards-
Anderson) parameter, and the scaling function fðxÞ depends
only weakly on temperature. This property will be used to
simplify the following discussions, but it is not a needed
ingredient.

The spatial correlations of the relaxation process can be
probed studying the distribution (over dynamical histories) of
the correlation Coðr; tÞ, in particular, its covariance. Quite
generally, one expects that since Coðr; tÞ is defined as an
average over some large volume V, its variance �2

C is of

order �2��=V, where � is the length scale over which Coðr; tÞ
is significantly correlated. More precisely we define

G4ðy; tÞ ¼ ½oðx; 0Þoðxþ r; tÞoðxþ y; 0Þoðxþ y þ r; tÞ�x
� ½oðx; t ¼ 0Þoðxþ r; tÞ�2x; (20)

and its space integral,

�2
C ¼ 1

V

Z
dyG4ðy; tÞ; (21)

which is nothing but the variance of the spontaneous fluctua-
tions of Coðr; tÞ averaged over a volume V. This variance can
thus be expressed as an integral over space of a four-point
correlation function, which measures the spatial correlation
of the temporal correlation. This integral over space is also
the Fourier transform of G4ðy; tÞ with respect to y at the wave
vector q equal to 0. We want to insist at this stage that r and y
in the above equations play different roles: The former enters
the definition of the correlator we are interested in, Eq. (18),
whereas the latter is associated with the scale over which the
dynamics is potentially correlated. Correspondingly, great
care should be devoted to distinguish the wave vector k,
conjugate to r, and q conjugate to y.

Specializing to the case r ¼ 0 (local dynamics), one finally
obtains

�4ðtÞ � N�2
C: (22)

The analogy with spin glasses developed above suggests that
this quantity reveals the emergence of transient amorphous

long-range order. Although, as we discuss, the situation is

more complicated than was originally surmised; this analogy

was indeed the main motivation for the first numerical inves-

tigation of �4ðtÞ in a supercooled liquid (Dasgupta et al.,

1991). It was later realized that �4ðtÞ is, in fact, the natural

diverging susceptibility in the context of p-spin descriptions

of supercooled liquids, where a true dynamical phase tran-

sition occurs at a certain critical temperature (Kirkpatrick and

Thirumalai, 1988; Franz and Parisi, 2000). However, since in

real systems no true phase transition can be observed, one

expects �4ðtÞ to grow until t � �� and decay back to zero

thereafter. Until ��, there cannot be strong differences be-

tween a system with quenched disorder and a system where

disorder is dynamically self-induced.
Measuring the ‘‘local’’ relaxation suggests following the

displacement of single particles over distances typically cor-

responding to the interparticle distance. Therefore, �4ðtÞ can
be accessed either by measuring the fluctuations of the

Fourier transform of Coðr; tÞ evaluated at a wave vector k0,
of the order of the first peak in the structure factor (Berthier,

2004), or by performing a spatial average
R
drCoðr; tÞwðrÞ,

where wðrÞ is an overlap function equal to one for lengths of

the order of 2
=k0 and zero otherwise (Lacevic et al., 2003)

or a Gaussian function with a suitable width (Dauchot et al.,

2005). The dependence of dynamical correlations on the

coarse-graining length has been thoroughly studied, in both

simulations (Chandler et al., 2006) and experiments

(Dauchot et al., 2005; Duri and Cipelletti, 2006; Abate and

Durian, 2007), showing that the dynamics becomes homoge-

neous when the coarse graining is made too small (where

dynamics is dominated by trivial thermal vibrations), or too

large (because dynamics results in this limit from a succes-

sion of several uncorrelated rearrangements).
For supercooled liquids, the function �4ðtÞ has been mea-

sured by molecular dynamics, Brownian, and Monte Carlo

simulations in different liquids (Bennemann et al., 1999;

Franz et al., 1999; Parisi, 1999; Glotzer, 2000; Lacevic et al.,

2003; Berthier, 2004; Vogel and Glotzer, 2004; Berthier,

2007a; Parsaeian and Castillo, 2008; El Masri et al., 2010).

Moreover, its behavior has been theoretically investigated

using various perspectives, as described in Sec. IV.
As suggested by its definition in Eq. (22), the four-point

dynamic susceptibility is measured in practice through the

repeated measurement of a chosen local time-correlation

function, �4ðtÞ being nothing but the variance of the statistical
fluctuations between different measurements.

A typical example of such a measurement is shown in

Fig. 10, taken from Monte Carlo simulations of a simple

Lennard-Jones supercooled liquid. A similar qualitative be-

havior is found in nearly all cases, as detailed by Toninelli

et al. (2005). At a given temperature, �4ðtÞ is an increasing

function of time at short times reflecting the fact that dynamic

heterogeneities slowly build up with time. It then has a peak

on a time scale that tracks the structural relaxation time scale

��, and finally it decreases back to zero when t ! 1. When

temperature is decreased the observed time evolution be-

comes slower, mimicking the overall slowing down of the

dynamics also seen in averaged two-time correlators; see

Fig. 10. The decrease at long times constitutes the above

mentioned major difference with spin glasses. In a spin glass,
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�4ðtÞ would be a monotonically increasing function of time

whose long-time limit coincides with the static spin glass

susceptibility.
The most important information extracted from the tem-

perature evolution of �4ðtÞ is that, at least in the range

available to numerical simulations, the value of the peak at

�� increases typically from a high-temperature value of order

1, and increases by at most 2 orders of magnitude down to the

lowest temperature at which the system can be equilibrated,

suggesting that dynamics becomes spatially increasingly cor-

related when T decreases.
As shown in Fig. 10, the time and temperature behavior of

�4ðtÞ is rich. The growth of �4ðtÞ toward its peak value is

composed of several time regimes, closely reflecting the broad

spectrum of relaxation processes characterizing time-

correlation functions; see Fig. 10. The short-time dynamics

corresponding to the approach and departure from the plateau

in time-correlation functions is also reflected in the time de-

pendence of �4ðtÞ, which grows with distinct temporal power

laws in the early and late � regimes. Additionally, the tem-

perature evolution of �4ðtÞ, and, in particular, the peak height,
can be quantitatively studied. This peak value �?

4 measures the

volume onwhich the dynamical processes relevant to structural
relaxation at t � �� are correlated. It is found to increase
when the temperature decreases and the dynamics slows
down. In the temperature regime above the mode-coupling
temperature, the growth is well described by an algebraic
relation between the peak amplitude �?

4 and the relaxation

time ��, as shown in Fig. 10. The different exponents intro-
duced in Fig. 10 are discussed by Toninelli et al. (2005).

More direct evidences of a growing dynamical correlation
length can be obtained by directly measuring G4ðy; tÞ. It has
been checked that the increase of the peak of �4ðtÞ corre-
sponds, as expected, to a growing dynamic length scale �
(Yamamoto and Onuki, 1998a; Bennemann et al., 1999;
Donati et al., 1999; Doliwa and Heuer, 2000; Lacevic
et al., 2002, 2003; Whitelam et al., 2004; Berthier et al.,
2007a). However, these measurements are much harder than
the ones of �4, because large systems need to be simulated to
determine � unambiguously (Stein and Andersen, 2008;
Karmakara et al., 2009; Flenner and Szamel, 2010). Note
that if the dynamically correlated regions were compact, the
peak of �4 would be proportional to �3 in three dimensions,
directly relating �4 measurements to that of the relevant
length scale of dynamic heterogeneity.

The study of the growth laws of �4ðtÞ, �, and the evolution
of G4ðy; tÞ contains useful information to unveil the complex-
ity of the relaxation processes and to contrast theoretical
approaches (Toninelli et al., 2005). In fact, many theories
of the glass transition assume or predict, in one way or
another, that the dynamics slows down because there are
increasingly larger regions over which particles have to relax
in a correlated or cooperative way; see Sec. IV.

Furthermore, the growth of � suggests that the glass tran-
sition is indeed a collective phenomenon characterized by
growing time scales and length scales, reminiscent of critical
phenomena. A clear and conclusive understanding of the
relationship between the length scale obtained from G4ðy; tÞ
and the relaxation time scale is still the focus of an intense
research activity.

3. Three-point correlation and response functions

Although readily accessible in numerical simulations,
�4ðtÞ is in general small and difficult to measure directly in
experiments, except when the range of the dynamic correla-
tion is macroscopic, as in granular materials (Dauchot et al.,
2005; Marty and Dauchot, 2005; Keys et al., 2007) or in soft
glassy materials (Weeks et al., 2007), where it can reach in
some cases the micrometer and even millimeter range (Mayer
et al., 2004; Duri and Cipelletti, 2006; Maccarrone et al.,
2010). To access �4ðtÞ in molecular liquids, one should
perform time-resolved dynamic measurements probing small
volumes, with a linear size of the order of a few nanometers.
Although doable, such experiments remain to be performed
with the needed accuracy.

It was recently realized that simpler alternative procedures
exist (Berthier et al., 2005). The central idea underpinning
these results is that induced dynamic fluctuations are in
general more easily accessible than spontaneous ones, and
both types of fluctuations can be related to one another by
fluctuation-dissipation theorems. The physical motivation is
that while four-point correlations offer a direct probe of the

FIG. 10 (color online). Time dependence of the self-intermediate

scattering function (top panel), and its spontaneous fluctuations

(bottom panel), for different temperatures decreasing from left to

right in a Lennard-Jones supercooled liquid in Monte Carlo simula-

tions. The lowest temperature is highlighted with symbols. For each

temperature,�4ðtÞ has a maximum near the relaxation time ��, which

shifts to larger times and has a larger value when T is decreased,

revealing the increasing length scale of dynamic heterogeneity in

supercooled liquids approaching the glass transition. Moreover, the

time dependence of �4ðtÞ is characterized by several distinct time

regimes, corresponding tomicroscopic, early, and late� regimes, and

structural relaxation, as indicated by the vertical lines.
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dynamic heterogeneities, other multipoint correlation func-
tions give useful and direct information about the micro-
scopic mechanisms leading to these heterogeneities. For
example, one might expect that the slow part of a local
enthalpy (or energy, density,etc.) fluctuation per unit volume
h at position x and time t ¼ 0 triggers or eases the dynamics
in its surroundings, leading to a systematic correlation be-
tween hðx; t ¼ 0Þ and oðxþ y; t ¼ 0Þoðxþ y þ r; ��Þ.
This physical intuition suggests the definition of a family of
three-point correlation functions that relate thermodynamic
or structural fluctuations to dynamical ones. Interestingly, and
crucially, some of these three-point correlations are both
experimentally accessible and give bounds or approximations
to the four-point dynamic correlations, as we now detail.

In the same way that the space integral of the four-point
correlation function is the variance of the two-point correla-
tion, the space integral of the above three-point correlation is
the covariance of the dynamic correlation with enthalpy
fluctuations:

�CH¼ 1

VN

Z
dxdx0oðx0 þr;tÞoðx0;0Þhðx;0Þ

� 1

N

Z
dy½oðxþyþr;tÞoðxþy;0Þhðx;0Þ�x: (23)

Note that for the enthalpy we use the notation Hðt ¼ 0Þ ¼
ð1=NÞR dxhðx; t ¼ 0Þ, so that h is an enthalpy per unit

volume. Hence, using the fact that the enthalpy fluctuations
per particle are of order

ffiffiffiffiffiffi
cP

p
kBT (where cP is the specific heat

in kB units), the quantity N�CH=
ffiffiffiffiffiffi
cP

p
kBT defines the number

of particles over which enthalpy and dynamics are correlated.
Of course, analogous identities can be derived for the covari-
ance with, say, energy or density fluctuations.

Although interesting in itself, the covariance �CH is just as
hard (or even harder) to measure experimentally as �4.
However, �CH can be related, using linear response theory,
to a response function which is much easier to access in
experiments. We now prove this by considering a system in
the grand-canonical NPT ensemble. The probability of a
given configuration C is given by the Boltzmann weight
expð��H½C�Þ=Z, where � ¼ 1=kBT and Z is the grand-
partition function. Suppose one studies a static observable
O with the following properties: (i) O depends only on the
current microscopic configuration C of the system and (ii) O
can be written as a sum of local contributions:

O ¼ 1

V

Z
dyoðyÞ: (24)

In this case, a well-known static fluctuation-dissipation theo-
rem holds (Hansen and McDonald, 2006):

@hOi
@�

¼ �
Z

dyhoðyÞhð0Þi � �N�OH; (25)

where we decomposed the enthalpy in a sum of local con-
tributions as well (Hansen and McDonald, 2006).

Interestingly, in the case of deterministic Hamiltonian
dynamics, the value of any local observable oðx; tÞ can be
seen as a highly complicated function of the initial configu-
ration at time t ¼ 0. Therefore, a two-time correlation func-
tion, now averaged over both space and initial conditions, can
be rewritten as a thermodynamical average:

Coðr; t;TÞ ¼ 1

Zð�ÞV
Z

dxoðxþ r; tÞoðx; t ¼ 0Þ

� exp

�
��

Z
dxhðx; t ¼ 0Þ

�
: (26)

Hence, the derivative of the correlation with respect to tem-
perature (at fixed pressure) directly leads, in the case of
purely conservative Hamiltonian dynamics, to the covariance
between initial energy fluctuations and the dynamical corre-
lation, in direct analogy with Eq. (25). Defining

GTðy; tÞ ¼ hoðy þ r; tÞoðy; 0Þhð0; 0Þi; (27)

one finds

�Tðr; tÞ � @Coðr; t;TÞ
@T

��������P
¼ 1

kBT
2

Z
dyGTðy; tÞ: (28)

Hence, the sensitivity of a two-time dynamical function to
temperature �T is directly related to a three-point spatial
correlation function. The result in Eq. (28) is extremely
general and applies to many different situations. However,
it does not apply when the dynamics is not Newtonian, as, for
instance, for Brownian particles or in Monte Carlo numerical
simulations (Doliwa and Heuer, 2000; Berthier and Kob,
2007). The reason is that in these cases, not only the initial
probability but also the transition probability from the initial
to the final configuration itself explicitly depends on tem-
perature. In Brownian dynamics, for example, the noise
in the Langevin equation depends on temperature. Hence,
@Coðr; t;TÞ=@T receives extra contributions from the whole
trajectory that depend on the explicit choice of dynamics.

The equality (28), although in a sense a trivial result
obtained from linear response theory, has a deep physical
consequence, which is the growth of a dynamical length upon
cooling in glassy systems, as we show. Define ��ðTÞ such that
Coð0; t ¼ ��;TÞ ¼ e�1 (say). Differentiating this definition
with respect to T gives

0 ¼ @��
@T

@Coð0; t ¼ ��;TÞ
@t

þ @Coð0; t ¼ ��;TÞ
@T

: (29)

Since Coð0; t;TÞ decays from 1 to zero over a time scale ��,
one finds that generically, using Eq. (28),

Z
dy

hoðy;t¼��Þoðy;0Þhð0;0Þi
�0

ffiffiffiffiffiffi
cP

p
kBT

� T

�0
ffiffiffiffiffiffi
cP

p @ ln��
@T

: (30)

Now, since h is of order �0
ffiffiffiffiffiffi
cP

p
kBT and ho2i is normalized

to unity, the quantity �0 � GTð0; ��Þ=�0
ffiffiffiffiffiffi
cP

p
kBT is not ex-

pected to appreciably exceed unity. The above integral can be
written as �0vT , which defines a volume vT over which
enthalpy fluctuations and dynamics are appreciably corre-
lated. Note that the interpretation of vT as a true correlation
volume requires that �0 be of the order of 1, and its increase is
only significant if �0 is essentially temperature independent.
If this is not the case, then the integral defined in Eq. (30)
could grow due to a growing �0 and not a growing length,
which would obviate the notion that vT is a correlation
volume.

Assuming �0 	 1, a divergence of the right-hand side of
the equality (28) necessarily requires the growth of vT . More
precisely, as soon as �� increases faster than an inverse power
of temperature, the slowing down of a Hamiltonian system
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must necessarily be accompanied by the growth of a dynamic
correlation length, which is therefore a general, powerful
consequence of the use of linear response theory. This result
is thus directly relevant to supercooled liquids, where ��
typically increases in an activated manner, with, possibly, a
finite-temperature dynamic singularity. From a theoretical
perspective, it also implies that any theory predicting a dy-
namic singularity necessarily contains a prediction for diverg-
ing dynamic length scales accompanying the glass transition.1

The study of these three-point correlation and response
functions is therefore a useful path to characterize dynamical
heterogeneity and dynamical correlations. Quantitative re-
sults can be obtained experimentally studying �T . This has
been done in connection with an inequality on �4 that we
shall describe in the following section. Another interesting
development that will be discussed later on consists of focus-
ing on response functions, such as �T , but where the perturb-
ing field is spatially dependent, e.g., with an oscillatory shape
(Biroli et al., 2006). This allows one to directly probe the size
and the shape of the dynamically correlated regions.

Before concluding, we stress that we have considered the
response of time correlations to a temperature change, but
other perturbing fields may also be relevant, such as density,
pressure, concentration of species in the case of mixtures, etc.
For example, for hard-sphere colloids, temperature plays little
role, whereas small changes of density can lead to enormous
changes in relaxation times (Pusey and van Megen, 1986).
The derivation of this section can be straightforwardly ex-
tended to these cases (Berthier et al., 2007a).

4. Inequalities on �4 and experimental measurements

In previous sections, we argued that understanding of �4ðtÞ
is fundamental in order to understand dynamic heterogene-
ities in supercooled liquids, but we then proceeded to describe
a series of alternative multipoint susceptibilities, in particular,
�TðtÞ, which contain alternative information on heterogene-
ities. We now close the loop and show that both types of
susceptibilities are, in fact, not independent from one another,
but closely related.

This can be done using the general formalism developed
long ago by Lebowitz et al. (1967), which gives expressions
for the strength of fluctuations of physical observables mea-
sured in distinct statistical ensembles. Applied to the sponta-
neous fluctuations of global two-time correlation functions,
and considering transformation from NPH (where enthalpy is
fixed and temperature fluctuates) to NPT (where temperature
is fixed but enthalpy fluctuates), one obtains

�NPT
4 ðtÞ ¼ �NPH

4 ðtÞ þ T2

cP

�
@Coð0; t;TÞ

@T

��������P

�
2
; (31)

where �NPH
4 ðtÞ is the variance of the correlation function in

the NPH ensemble where enthalpy does not fluctuate, a
manifestly non-negative quantity. This allows us to obtain
the following inequality:

�4ðtÞ 
 T2�2
TðtÞ

cP
¼ T2

cP

�
@Coð0; t;TÞ

@T

��������P

�
2
: (32)

Note that there is a simpler way to obtain the above
inequality. In the previous section, �TðtÞ was shown to be
related to the covariance of enthalpy and dynamic fluctua-
tions, �CH. Since �4 is related to the covariance of dynamic
fluctuations �CC, one can easily check that Eq. (32) is just a
rewriting of the Cauchy-Schwarz bound: �2

CH 	 �2
C�

2
H,

where �2
H is the variance of the enthalpy fluctuations, equal

to cPðkBTÞ2=N in the NPT ensemble.
The inequality (32) is interesting because the right-hand

side is an experimentally measurable quantity which there-
fore provides a direct lower bound on �4. Thus, if T

2�2
TðtÞ=cP

increases substantially above 1, �4 has to increase as least as
much if not more. In particular, as soon as �T increases faster
than T�1 at low temperatures, �4 will eventually exceed
unity; since �4 is the space integral of a quantity bounded
from above, this again means that the length scale over which
the four-point correlation G4ðy; tÞ extends has to grow as the
system gets slower and slower. Again, more quantitative
statements require information on the amplitude and shape
of G4ðy; tÞ, which has to be provided from theoretical or
numerical calculations.

Equation (31) makes precise the intuition that dynamic
fluctuations are partly induced by the fluctuations of quantities
that physically affect the dynamic behavior (Ediger, 1998;
Donth, 2001), in that case the enthalpy. The inequality (32)
provides a correct estimate of �4 if there are no ‘‘hidden’’
variables which also contribute to the dynamic fluctuations.
However, it is quite difficult to determine whether such addi-
tional contributions exist. Theoretical investigations in the
context of approximate models for the glass transition de-
scribed in Sec. IV, and detailed numerical calculations where
all terms in Eq. (31) can be separately evaluated, greatly
clarified this issue. The main conclusion is that the experi-
mentally accessible response functions which quantify the
sensitivity of average correlation functions to an infinitesimal
change in control parameters can be used in Eq. (32) not only
to yield lower bounds to �4ðtÞ, but, in fact, to provide useful
quantitative approximations to four-point functions. Although
the relative precision on �4ðtÞ provided by the bound at a
given temperature is modest, the rate of growth is accurately
reproduced.

The results discussed above have opened the way to ex-
perimental characterization of the growth of �4 in molecular
glass formers close to Tg. In order to make use of the inequal-

ity (32) one must be able to detect time-correlation functions
at constant temperature C0ðt;TÞ with sufficient precision that
dynamics at nearby temperatures T and T þ �T can be
resolved, when�T is small enough that linear response holds:

@C0ðt;TÞ
@T

� C0ðt;TÞ � C0ðt;T þ �TÞ
�T

: (33)

A simpler alternative, critically discussed by Dalle-Ferrier
et al. (2007), is to fit C0ðt;TÞ with an empirical form

1An intriguing case, which is not fully understood, is the example

of systems with an Arrhenius behavior at low temperature. The

general considerations laid out in the text suggest that these systems

are characterized by a dynamical correlation length diverging at

zero temperature, which contrasts with the idea that relaxation in

Arrhenius systems is a simple, locally activated process. However,

the present results hold only for energy-conserving systems for

which thermal activation may be more collective than usually

surmised (Tarzia et al.).
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containing a few numbers of parameters, and then take the

temperature derivative of these parameters to indirectly esti-

mate �TðtÞ. Combining these different methods, the lower

bound (32) to �4 has been computed for many molecular

glass-forming liquids. It is easy to convince oneself that the

lower bound has also the correct time dependence, with a peak

developing for times of the order of the relaxation time scale.

The value of this peak is therefore a lower bound to the peak of

�4 and, hence, to the number of dynamically correlated mole-

cules, denoted Ncorr;4. Figure 11 shows the evolution of Ncorr;4

for many different glass formers in the entire supercooled

regime (Dalle-Ferrier et al., 2007) as a function of the relaxa-

tion time scale ��. Note that, actually, Ncorr;4 is expected to be

equal to the number of dynamically correlated molecules up to

a proportionality constant which is not known from experi-

ments, probably explainingwhy the high-temperature values of

Ncorr;4 are smaller than 1. Figure 11 also indicates that Ncorr;4

grows faster when �� is not large, close to the onset of slow

dynamics, and a power-law relationship Ncorr;4���� (see

Fig. 10) is a good description in this regime (��=�0<104).
The growth of Ncorr;4 becomes much slower closer to Tg. A

change of six decades in time corresponds to amere increase of

a factor of about 4 ofNcorr;4, suggesting logarithmic rather than

power-law growth of dynamic correlations. This is in agree-

ment with several theories of the glass transition which are

based on activated dynamic scaling; see Sec. IV.
Note that all the results above can be generalized to cases

where the order parameter inducing the glass transition is the

density. This happens for colloids and granular media

(Berthier et al., 2005; Lechenault et al., 2008a; Brambilla

et al., 2009). One can obtain a new inequality where density

fluctuations play the same role of enthalpy fluctuations and

that provide a lower bound to �4 in terms of the derivative of
the correlation function with respect to the density. These

different inequalities yielding experimentally accessible ways

to quantify the strength of dynamic heterogeneity certainly
have the appeal of simplicity and are by now routinely used in

many different systems (Stevenson and Wolynes, 2006;
Capaccioli et al., 2008; Dalle-Ferrier et al., 2008; Chen

et al., 2009; Gainaru et al., 2010; Koppensteiner et al., 2010;

Maggi et al., 2010; Roland et al., 2010).

C. Current status of dynamic heterogeneity studies

The present section on dynamic heterogeneity is a brief
summary of a collective research effort of large amplitude

that lasted about 20 years and which already forms the core of

several recent reviews (Sillescu, 1999; Ediger, 2000; Richert,
2002), and a book (Berthier et al., 2011). Progress to

characterize, visualize, and quantify dynamic heterogeneity

as well as an exploration of its detailed physical consequen-
ces has been truly dramatic in recent years. The impact of this

research is such that tools developed to study dynamic het-
erogeneity in liquids are now routinely used in scores of

different systems, and dynamic heterogeneity is a concept

that is commonly employed in a broad range of situations,
much beyond the physics of the glass transition (Berthier

et al., 2011).
Despite this progress, several key questions are still unan-

swered. Our discussion has focused on the issue of the

characterization of the spatial fluctuations involved in the

phenomenon of dynamic heterogeneity. This is justified be-
cause direct measurements of growing dynamic length scales

have provided the long-sought evidence in favor of the collec-
tive nature of the glass transition itself. This fact being now

established, it remains to understand more precisely and quan-

tify the connection between these growing length scales and the
increasing viscosity of liquids approaching the glass transition,

which appears as a topic for research in the coming years.
We have described in some detail the physical content of

multipoint dynamic susceptibility such as �4ðtÞ. These func-

tions played a major role in the above story, but we now

understand that they contain also a number of embarrassing
features. For instance, we mentioned how �4ðtÞ retains a

dependence on the statistical ensemble where it is measured,
as in Eq. (31), and that it also depends on the microscopic

equations of motion for the system (Newtonian versus

Brownian). These subtle issuesmake the analysis of four-point
susceptibilities somewhat ambiguous, especially when esti-

mates for length scales are sought. We shall describe, for

instance, in Sec. IV.B.3, that alternative dynamic functions
now exist that should be easier to analyze, but these have not all

been measured in simulations or experiments yet. Thus, more
detailed studies of a larger family of dynamic susceptibilities

are certainly most wanted in the future. A promising avenue of

research consists of studying nonlinear responses (Bouchaud
and Biroli, 2005). The first pioneering experimental measure-

ment of nonlinear dielectric susceptibility for glass formers

appeared recently (Crauste-Thibierge et al., 2010).
Additionally, direct experimental measurements of dy-

namic length scales are still not available for molecular glass

FIG. 11 (color online). Dynamic scaling relation between the

number of dynamically correlated particles Ncorr;4 and relaxation

time scale �� for a number of glass formers, determined using

Eq. (32). For all materials, a similar trend is found, with a rapid

initial increase of Ncorr;4 near the onset of slow dynamics, followed

by a slower, presumably logarithmic behavior, closer to the labo-

ratory glass temperature. Adapted from Dalle-Ferrier et al., 2007.
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formers and are scarce even for colloidal materials. Thus, it
would be useful to develop new experimental tools to resolve
the dynamics of molecular glass formers on small length
scales and longer time scales to obtain this much needed

information. It is not yet clear whether molecular dynamics
simulations of model systems covered a broad enough range
of time scales and are thus relevant in understanding the
physics of real glass formers near the experimental glass
transition temperature. We also believe that further work
should be devoted to a better characterization of the geometry

(and not only a typical length scale) of the dynamically
heterogeneous regions, since contradicting results are avail-
able in the literature (Donati et al., 1998; Appignanesi et al.,
2006).

IV. SOME MODELS AND THEORETICAL APPROACHES

A. A few key questions

We now present some theoretical approaches to the glass
transition. It is impossible to cover all of them in this review,
simply because there are too many of them. This is perhaps
the clearest indication that the glass transition remains an

open theoretical problem.
We have chosen to present in some detail those approaches

that, we believe, contain keystone ideas and at the same time
have a solid statistical mechanics basis. Loosely speaking,
they have a Hamiltonian, they can be simulated numerically,
or studied analytically with tools from statistical mechanics.
Of course, the choice of Hamiltonian is crucial and contains
important assumptions about the nature of the glass

transition. All the approaches we present have given rise to
unexpected results. One finds more in them than what was
supposed at the beginning, and this leads to new, testable
predictions. Furthermore, with models that are precise
enough, one can test (and hopefully falsify) these approaches
by working out all their predictions in great detail and
comparing the outcome to experimental data. Such detailed

analysis is often not possible with ‘‘physical pictures,’’ or
simpler phenomenological modeling of the problem. Our
drastic choice of theories leaves behind many other ap-
proaches that, although interesting, could not be covered
without increasing the length of this review beyond
reasonable limits. Recent reviews are available on these and

we refer the interested reader to Debenedetti (1996), Donth
(2001), Sciortino (2005), Dyre (2006), and Chen et al.
(2010).

Before going into models and theories, we formulate a few
important questions that theoreticians seek to address and that
will guide our presentation of theories:

(1) Why do the relaxation time and the viscosity increase
when Tg is approached? Why is this dramatic growth

different from an Arrhenius law?
(2) Can one understand and describe quantitatively the

broad relaxation spectra characterizing the dynamical
behavior of supercooled liquids, in particular, nonex-
ponential relaxations, and their evolution with
fragility?

(3) Is there a deep relation between kinetics and thermo-
dynamics (such as T0 ’ TK) and why?

(4) Can one understand and describe quantitatively the
spatiotemporal fluctuations of the dynamics? How
and why are these fluctuations related to the dynamic
slowing down?

(5) Is the glass transition a collective phenomenon? If yes,
of which kind? What is the correct ‘‘order parameter’’
and the nature of the associated transition?

(6) Is the experimental glass transition at Tg the manifes-

tation of a finite- or zero-temperature phase transition,
sometimes called the ‘‘ideal glass transition’’? Or is
there instead an avoided, hidden, or inaccessible
transition?

(7) Is there a geometric, real space explanation for the
dynamic slowing down that takes into account molecu-
lar degrees of freedom?

(8) Are there simplified (e.g., lattice) glass models which
essentially capture the physics of the glass transition of
molecular liquids?

Before embarking on detailed theoretical explanations,
it is important to stress that the glass transition appears as a
kind of ‘‘intermediate coupling’’ problem, since, for instance,
typical correlation length scales are found to be at most
a few tens of particles long close to Tg. As a consequence,

recognizing and validating the correct theory is extremely
difficult since key signatures could be buried (and probably
are) under preasymptotic, microscopic details. Because of
these incorrect theories may appear reasonable. To obtain
quantitative, testable predictions, one must therefore be able
to work out also these preasymptotic effects. This is a par-
ticularly difficult task, especially in cases where the asymp-
totic theory itself has not satisfactorily been worked out yet.
Therefore, at this time, theories are mainly judged by their
overall predictive power and theoretical consistency.

B. Mean-field free-energy landscapes and random first-order

transition theory

1. Mean-field glass theory and complex free-energy landscapes

In the last two decades, three independent lines of research,
the Adam-Gibbs theory (Adam and Gibbs, 1965), the mode-
coupling theory (Götze, 2008), and the spin glass theory
(Mézard et al., 1988), have been merged in a common frame-
work to produce a theoretical ensemble that now goes under
the name of random first-order transition theory (RFOT), a
terminology introduced by Kirkpatrick, Thirumalai, and
Wolynes (Kirkpatrick and Thirumalai, 1987; Kirkpatrick and
Wolynes, 1987) who played, among many other researchers, a
key role in its development. Here we did not follow the
rambling developments as they took place, but summarized
the RFOT theory in a more modern and unified way. Note that
our use of the name RFOT is much broader than the more
common, but much narrower meaning often implied in the
literature. Reviews dedicated to different aspects of the
RFOT theory have appeared recently (Lubchenko and
Wolynes, 2007; Götze, 2008; Biroli and Bouchaud, 2009;
Cavagna, 2009; Mézard and Parisi, 2010).

As discussed previously, two hallmarks of the dynamics of
glass formers are that (i) close to Tg a liquid remains stuck for

a long time in amorphous configurations and (ii) the number
of these configurations is exponentially large in the system
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size. RFOT theory starts as a mean-field approach to these
phenomena. As such it has to be able to capture the right kind
of symmetry breaking and deal with an exponential number
of states.

Broadly speaking, mean-field theory is based on the study
of the free-energy landscape as a function of the order pa-
rameter. For example, for ferromagnets, in the Curie-Weiss
approach, one computes the free energy as a function of the
global magnetization by a mean-field approximation. This
yields direct access to the nature and properties of the ferro-
magnetic phase transition and a simple description of the low-
temperature phase since the two minima of the free energy
correspond to the two ferromagnetic states. However, comput-
ing the free energy as a function of the global energy or
density is not enough for the glass transition, because one
must deal with the existence of many different amorphous
configurations. As a consequence one is forced to compute the
free energy F as a function of the entire density field (instead
of a single variable as in the ferromagnetic transition) F being
defined through the Legendre transform.

Consider for simplicity an interacting particle lattice model
(the generalization to continuum systems is straightforward).
A given configuration is determined by the number of parti-
cles ni on each site i. In order to define F, one first introduces
the thermodynamic ‘‘potential’’

Wðf�igÞ ¼ � 1

�
log

X
fnig

exp

�
��HðfnigÞ þ

X
i

��ini

�
;

where HðfnigÞ is the Hamiltonian. The free energy function
Fðf�igÞ is defined as

Fðf�igÞ ¼ Wðf��
i gÞ þ

X
i

��
i �i; (34)

where the ��
i ’s satisfy the equations @W=@�i þ �i ¼ 0 and,

hence, are functions of f�ig, which specifies an averaged
density profile. Note that this construction can be generalized
to spin systems replacing the positive integer ni by �1
variables si. In this context F is called the ‘‘TAP’’ free energy
since its introduction by Thouless, Anderson, and Palmer in
the context of mean-field spin glasses (Thouless et al., 1977).
The generalization to a continuum system can be performed
by replacing the discrete variable ni by a continuum density
field �ðxÞ. In this case F is called the ‘‘density functional’’
(Oxtoby, 1990).

The free energy landscape is the hypersurface generated by
scanning F over all possible values of f�ig. Its critical points,
in particular, the minima, play a crucial role. In fact, by
deriving Eq. (34) with respect to �i one finds

@F

@�i

¼ ��
i : (35)

Thus, when there are no external fields (or local chemical
potentials) the solutions of these equations are all the sta-
tionary points of the free energy landscape.2

What are the main features of F for a system approaching
the glass transition? Unfortunately, this question cannot be
answered exactly for a realistic three-dimensional system.
One has to either make use of approximations (as in the
Curie-Weiss description of ferromagnets) or focus on
simplified geometries, such as mean-field Bethe lattices,
which, hopefully, provide a good approximation to finite-
dimensional ones.

Quite a large number of such studies have led to similar
results and thus to a consistent mean-field picture. The free
energy landscape becomes ‘‘rugged’’ at low temperature and
characterized by many minima and saddle points. Actually,
the number of minima is exponentially large in the system
size, which suggests the definition of an entropy, called
‘‘configurational entropy’’ or ‘‘complexity’’:

sc ¼ 1

N
logN ðfÞ; (36)

where N ðfÞ is the number of free-energy minima with a
given free-energy density f (per unit of free-energy density).
The density profile corresponding to one given minimum is
amorphous and lacks any type of periodic long-range order,
and different mimima are different. This is a welcome theo-
retical result, as real glasses can be found in a large number of
different amorphous configurations, which can be interpreted
as mean-field free-energy minima.

Assuming that all minima are mutually accessible, one can
compute the thermodynamic properties, i.e., the partition
function by summing over all states with their Boltzmann
weights:

Z ¼ e��W ¼ X
�

e��f�N; (37)

where the sum runs over the minima. Formally, one can
introduce a free-energy-dependent complexity scðf; TÞ that
counts the number of free-energy minima with free-energy
density f at temperature T. The partition function of the
system then reads

ZðTÞ ¼
Z

df exp

�
�Nf

T
þ Nscðf; TÞ

�
: (38)

For large N, one can as usual perform a saddle-point estimate
of this integral that fixes the dominant value of f, denoted
f�ðTÞ:

@scðf; TÞ
@f

��������f¼f�ðTÞ
¼ 1

T
: (39)

The temperature-dependent complexity is therefore
scðTÞ � scðf�ðTÞ; TÞ. The total free energy of the system is
fpðTÞ ¼ f� � TscðTÞ. A typical shape of the configurational

entropy as a function of f and a graphic solution of Eq. (38)
are plotted in Fig. 12. The analysis of the configurational
entropy, or complexity scðTÞ, reveals that scðTÞ decreases
when temperature decreases, as long as T is above a critical
temperature TK, below which scðTÞ vanishes. There exists
also a second, higher temperature TMCT > TK, above which
scðTÞ drops discontinuously to zero again. We use the symbol
TMCT (as in mode-coupling theory) on purpose, and justify
our choice below. Although the complexity vanishes in
both regimes, the situations below TK and above TMCT are

2For particle systems there is always a global chemical potential

� fixing the number of particles. In this case, one includes the

global term �
P

ini in the definition of F so that all ��
i are zero.
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different. At these two temperatures the part of the free-

energy landscape relevant for the thermodynamics changes

drastically in two different ways. Above TMCT, there is just

one minimum dominating the equilibrium measure corre-

sponding to the homogeneous density profile of the high-

temperature liquid. At TMCT the homogeneous liquid state

becomes fragmented in an exponential number of states, or

minima. At TK the number of minima becomes subexponen-

tial in the system size, such that scðT < TKÞ ¼ 0.
Surprisingly the total free energy fpðTÞ is not singular at

TMCT. This is one of the most unexpected results consistently

emerging from analytical solutions. This suggests that at

TMCT the liquid state fractures into an exponential number

of amorphous states, but that this transition has no thermo-

dynamical counterpart and is therefore a purely dynamical

phenomenon. At TK instead, a thermodynamic phase transi-

tion takes place since the contribution to the entropy coming

from the configurational entropy disappears, typically line-

arly, scðTÞ � ðT � TKÞ. Therefore, the specific heat is found

to make a sharp downward jump at TK, thus providing an

exact realization of the ‘‘entropy vanishing’’ mechanism

conjectured by Kauzmann (1948). This is a second welcome

result: The thermodynamic signature of this mean-field tran-

sition mirrors the basic experimental finding that the specific

heat is nearly discontinuous at the experimental glass tem-

perature Tg.

This rich physical behavior can be derived from a number

of perspectives. A first concrete example is given by ‘‘lattice

glass models’’ (Biroli and Mézard, 2001) solved by the Bethe

approximation or on Bethe lattices (Pica Ciamarra et al.,

2003; Rivoire et al., 2004; Hansen-Goos and Weigt, 2005).

Lattice glass models contain hard particles sitting on the sites

of a lattice. The Hamiltonian is infinite if there is more than

one particle on a site and, more crucially, if the number of

occupied neighbors of an occupied site is larger than a fixed

parameter m. The Hamiltonian is zero otherwise. Tuning the

parameter m, changing the type of lattice, in particular, its

connectivity, can yield different models. Lattice glasses are

simple statistical mechanical models mimicking the physics
of hard-sphere systems. Numerical simulations on cubic
lattices have shown that they seem to behave as bona fide
glass formers (Pica Ciamarra et al., 2003; Darst et al., 2010).

Alternatively, a density functional theory analysis of the
free-energy landscape yields similar results (Singh et al.,
1985; Dasgupta and Valls, 2000). This is a more realistic
microscopic starting point, but it inevitably contains some
approximations, in particular, related to the specific form of
the free-energy functional (Singh et al., 1985; Dasgupta
et al., 1991). The adopted form is the Ramakrishnan-
Youssouf density functional and most studies focused on
hard-sphere systems. In the first of these investigations
(Singh et al., 1985), a particular amorphous profile, whose
only free parameter was the cage radius over which particles
are free to vibrate, was plugged in the density functional.
Minimization with respect to the cage radius revealed that
amorphous structures become stable, in a variational sense, at
high enough density. More recent investigations performed a
full minimization and reached qualitatively similar, but much
more detailed conclusions (Dasgupta et al., 1991; Chaudhuri,
Karmakar, and Dasgupta, 2008).

Finally, other popular models are the ones introduced in the
spin glass literature. Probably the most studied example of
such spin glasses is the p-spin model, defined by the
Hamiltonian (Gross and Mézard, 1984)

H ¼ � X
i1;...;ip

Ji1;...;ipSi1 � � � Sip ; (40)

where the Si’s are Ising or spherical spins, p > 2, and Ji1;...;ip
are quenched random couplings with zero mean and variance
p!=ð2Np�1Þ.

These models are certainly not realistic in terms of model-
ing microscopic degrees of freedom in a fluid, but they are
representative of the class of systems with a random first-
order transition. They have the advantage that a variety of
computations can be performed without any approximation,
and both their dynamic and static properties can be inves-
tigated analytically in full detail, again yielding results as
described above. Their dynamics can be studied in full detail,
including various nonequilibrium conditions as described in
Sec. V. Another result concerns the interpretation of the
nature of the low-temperature phase in terms of replica
symmetry breaking, so that connections with the field of
disordered systems can be made (Mézard et al., 1988;
Parisi, 2003). Technically, the thermodynamics of the
p spin can be solved, for p > 2, using a one-step replica
symmetry breaking ansatz; see Castellani and Cavagna
(2005) for a review. This means that the probability distribu-
tion function of the overlap between states, the Parisi function
PðqÞ, has two peaks below TK, one at qðTÞ> 0 which quan-
tifies the self-overlap within the states, and another one at
q ¼ 0, implying that different states are totally uncorrelated
(Mézard et al., 1988).

We now discuss the dynamical behavior which results from
the above analysis of the free-energy landscape. Below TMCT,
the system is in a metastable state from which it cannot
escape, because free-energy barriers diverge with system
size (Barrat et al., 1996). This divergence is a direct con-
sequence of the mean-field nature of the present set of

FIG. 12 (color online). Typical shape of the configurational en-

tropy sc as a function of free-energy density f in the range TK <
T < TMCT for random first-order landscapes. A graphic solution of

Eq. (39) is obtained by finding the value of f at which the slope of

the curve is �. Note that sc is also a function of temperature, so this

curve, in fact, changes with T.
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approximations. Therefore, the relaxation time diverges,
within the mean field, at TMCT. The stability of these states
can be analyzed by computing the free-energy Hessian in the
minima. One finds that states become more fragile when T !
T�
MCT, are marginally stable at T ¼ TMCT, and unstable for

T > TMCT. As a consequence, one expects that the dynamics
slows down approaching TMCT from above as the free-energy
landscape becomes more and more ‘‘flat’’ (Kurchan and
Laloux, 1996).

Indeed the dynamics of many of these models can be
analyzed exactly (Cugliandolo, 2003). In particular, mean-
field p-spin models have been analyzed in great detail and
provide a paradigm for mean-field glassy dynamics. The
equations of motion considered in the literature are
Langevin equations,

@siðtÞ
@t

¼ ��ðtÞsiðtÞ � @H

@siðtÞ þ �iðtÞ; (41)

where �iðtÞ is a Gaussian thermal noise of zero mean and
variance 2T given by the fluctuation-dissipation theorem.

We focus on the spherical version of the model, and on the
time autocorrelation function CðtÞ ¼ ð1=NÞPihsiðtÞsið0Þi.
Note that �ðtÞ is the Lagrange multiplier enforcing the con-
straint Cð0Þ ¼ 1. The equation of motion for CðtÞ at thermal
equilibrium reads

dCðtÞ
dt

¼�TCðtÞ� p

2T

Z t

0
dt0Cp�1ðt� t0ÞdCðt

0Þ
dt0

: (42)

We meet this equation again in the next section about mode-
coupling theory. We shall then postpone a detailed study and
just anticipate some results that will be derived later. At high
temperature, the correlation function decays quickly to 0.
Decreasing the temperature, the relaxation time scale in-
creases and a two-step relaxation emerges; see Fig. 13 where
we have plotted the numerical solution of the previous equa-
tion. At TMCT the time scale �� corresponding to the slow
relaxation diverges algebraically,

�� � 1

ðT � TMCTÞ� ; (43)

where � is a critical exponent. The value of the plateau q ¼
limt!1CðtÞ, called the Edwards-Anderson parameter in the
spin glass literature, satisfies a simple equation that can be
obtained taking the infinite-time limit of Eq. (42):

q

1� q
¼ p

2T2
qp�1: (44)

A graphical solution of this equation is presented in Fig. 14,
where we plot

VðqÞ=T ¼
Z q

0
dq0

�
q0

1� q0
� p

2T2
q0p�1

�
:

The minima of V are the solutions of Eq. (44). Clearly the
minimum at q ¼ 0 is always present. Another solution qEA
appears at TMCT ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

pðp� 2Þp�2ðp� 1Þ1�p=2
p

and it can be
interpreted as the long-time limit of the correlation function
inside one typical state. Since the states have an infinite
lifetime (in mean-field theory) the system remains trapped
forever into the one it started from. It is important that qEA is
discontinuous at transition, which leads to the two-step be-
havior shown in Fig. 13. By contrast in spin glasses, qEA is
continuously growing from 0 at the transition.

Note from Fig. 14 that at Tþ
MCT the Edwards-Anderson

parameter is zero and, concomitantly, VðqÞ has a vanishing
second derivative at qEA. It is possible to show (Franz and
Parisi, 1998), that this is indeed related to the fact that the
free-energy Hessian of the states below TMCT develops zero
modes at TMCT. This behavior resembles the one of a spinodal
transition. In fact, this analogy has been fruitfully explored,
for instance, to describe real space features of dynamic
heterogeneity near TMCT (Kirkpatrick et al., 1989;
Stevenson et al., 2006; Cavagna, 2009; Zdeborova and F.
Krzakala, 2011).

We now recap the overall picture arising from a mean-field
analysis of the properties of the free-energy landscape of
glasses. At high temperature the dynamics is fast and the
system is in the liquid state. Approaching TMCT the dynamics
slows down because of the appearance of incipient stable
states. By decreasing the temperature to TMCT, it takes a
longer time to find an unstable direction, and thus to relax.
Below TMCT there is an exponential (in the system size)
number of states. The partition function and the thermody-

FIG. 13 (color online). Correlation CðtÞ as a function of time for

the p-spin model with p ¼ 3 for several temperatures approaching

TMCT, obtained from numerical solution of Eq. (42). The curves

show the appearance of a two-step decay characterized by several

scaling laws discussed in the text.

FIG. 14 (color online). Evolution of VðqÞ=T ¼ �ð1=2T2Þqp �
logð1� qÞ � q as a function of q for different temperatures across

the dynamical transition. The solution with q > 0 appears discon-

tinuously at TMCT.
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namics are obtained by summing over all of them their
corresponding Boltzmann weight. This procedure is justified
by the fact that, in a real finite-dimensional system, the
barriers between states should actually become finite. In the
regime below TMCT, there is competition between single state
free energies that would favor the lowest free-energy states,
and configurational entropy that would favor the highest ones
that are more numerous. Lowering the temperature disfavors
the entropy term and at TK the system undergoes a phase
transition where the sum in Eq. (37) is again dominated by
only a few terms corresponding to states with free-energy
density fK given by scðfK; TÞ ¼ 0. This transition corre-
sponds to a bona fide ‘‘entropy crisis’’ mechanism.

2. Mode-coupling theory

The dynamical transition appearing upon approaching
TMCT in RFOT landscapes is mathematically analogous to
the one predicted to occur in supercooled liquids by the
mode-coupling theory (MCT) of the glass transition, although
the latter has a priori no direct interpretation in terms of a
free-energy landscape. This theory was introduced separately
by Leutheusser (1984) and Bengtzelius, Götze, Sjölander, and
coworkers (Bengtzelius et al., 1984). It was used to describe
and predict the average dynamics, in particular, the dynami-
cal structure factor and the self-diffusion, for moderately
supercooled liquids and colloids. Recently, it was generalized
to describe dynamical correlations and some aspects of
dynamic heterogeneity, as described in Sec. IV.B.3. In
Sec. IV.B.4, we discuss successes and limitations of MCT.

Originally, MCT was developed using the projection op-
erator formalism (Bengtzelius et al., 1984; Leutheusser,
1984). An introduction to this method can be found in the
book by Zwanzig (2001). The starting point of the method is
the derivation of the following equation for the dynamical
structure factor Fðk; tÞ of a single-component atomic liquid:

d2Fðk;tÞ
dt2

þk2kBT

mSðkÞFðk;tÞþ
Z t

0
d�Mðk;�Þ d

dt
Fðk;t��Þ¼0:

(45)

Generalizations to mixtures and nonatomic liquid are also
available. This is an exact equation whose inputs are the static
structure factor SðkÞ ¼ Fðk; 0Þ and the memory kernel
Mðk; �Þ for a given particle mass m and temperature T. In a
second, crucial step MCT suggests a self-consistent approxi-
mation for the memory kernel Mðk; �Þ. It is possible to show
that the memory kernel corresponds to the variance of the
random force acting on the density field; see the review by
Reichman and Charbonneau (2005). Thus, Mðk; �Þ captures
the effect of all degrees of freedom other than the density field
on the density field itself. The physical idea motivating MCT
is to focus on the slow part of the random force. Technically,
the path is in principle straightforward: One should identify
the dominant slow modes, project the random force onto
them, and derive the dynamical equations for their correlation
functions. Of course, in practice this remains difficult because
the number of slow modes is infinite.

Within MCT, only the bilinear density products contribute
to the slow part of M. After projection, the memory kernel
is expressed in terms of a four-point function. In a final

approximation, this function is factorized as the product of
two-point density functions Fðk; tÞ. This leads to the MCT
self-consistent equations:

0 ¼ d2Fðk; tÞ
dt2

þ �ðkÞ dFðk; tÞ
dt

þ k2kBT

mSðkÞFðk; tÞ

þ
Z t

0
d�MMCTðk; t� �Þ @Fðk; �Þ

@�
; (46)

MMCTðk;tÞ¼ �kBT

16
3m

Z
dk0j ~Vk�k0;k0 j2Fðk0;tÞFðjk0�kj;tÞ;

~Vk�k0 ;k0 �fðk̂�k0Þcðk0Þþk̂�ðk�k0Þcðjk�k0jÞg;
(47)

where we have rewritten the result using the direct correlation
function cðkÞ � ½1� 1=SðkÞ�=�. The effective friction term
represents the effect of the fast degrees of freedom.

This final expression clearly shows that MCT is a particular
closure of the equations on dynamical correlation functions. It
is similar in spirit to several other closure schemes used in
physics, such as Kraichnan’s ‘‘direct interaction approxima-
tion’’ for turbulence, or various large-N field-theoretical meth-
ods (Bouchaud et al., 1996). Indeed, field-theoretical
derivations of MCT have long been sought, but this is, in
fact, still an active area. The first pioneering works were
published shortly after the original MCT derivation (Das
et al., 1985; Das, 1990). They started from stochastic equations
for the slow degrees of freedom of a liquid, the so-called
nonlinear fluctuating hydrodynamics, and rederived the MCT
equations as a self-consistent, one-loop approximation.
Motivations for the field-theoretical approach are that it pro-
vides a complementary way to derive MCT which is, in prin-
ciple, more suitable to nonequilibrium generalizations, and
perhaps to systematic improvement. Unfortunately this ap-
proach is plagued by difficulties related to the preservation of
time-reversal symmetry in self-consistent loop expansions
(Miyazaki and Reichman, 2005; Andreanov et al., 2006).
Recent work aimed at getting fully consistent field-theoretical
derivations of MCT equations (Kim and Kawasaki, 2008;
Nishino and Hayakawa, 2008), but this is technically more
involved than could be anticipated.

Within MCT, dynamical correlation functions are obtained
by numerical integration, once the static structure factor of
the liquid is known. This kind of analysis was performed on a
large number of different glassy liquids such as Lennard-
Jones (Bengtzelius, 1986; Nauroth and Kob, 1997) hard
spheres systems (Barrat et al., 1989; Barrat and Latz,
1990; Foffi et al., 2003), or silica melts (Sciortino and
Kob, 2001), and it revealed a common behavior. It was found
that small changes in SðkÞ lead, at high density or low
temperature, to a great variation in Fðk; tÞ that resembles
the one shown in Fig. 13 for the correlation function of the
p-spin model. The MCT equations display a dynamical glass
transition to a phase where the average density of the liquid
remains frozen in an amorphous profile.

The similarity with the p-spin model is not casual, and
there is indeed a deep connection between the two. A first,
somewhat technical, way to unveil it consists of simplifying
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the wave-vector dependence of the equations assuming
that the integral over k is dominated by values close to k0,
where the structure factor has a strong peak. This so-called
‘‘schematic’’ approximation (Bengtzelius et al., 1984;
Leutheusser, 1984; Götze, 1999) yields a simplified equation
of motion for Fðk0; tÞ that reads

�ðk0Þ dFðk0; tÞ
dt

¼ � k20kBT

mSðk0ÞFðk0; tÞ �
k0A

2

8
2�

�
Z t

0
dt0F2ðk0; t� t0Þ dFðk0; t

0Þ
dt0

; (48)

where A is the area under the peak of SðkÞ at k0. A simple
change of variables maps this equation to that of the 3-spin
model, Eq. (42). This relation with fully connected models
suggests that MCT should be interpreted as a mean-field
approximation. Note that this does not imply that MCT
becomes exact in the limit of large spatial dimensionality,
as shown by recent calculations (Ikeda and Miyazaki, 2010;
Schmid and Schilling, 2010).

The solution of MCT equations displays a rich phenome-
nology as seen in Fig. 13. There are three time regimes: A fast
relaxation toward a plateau, whose value depends on k, a slow
relaxation close to the plateau, called � regime, and finally
the structural relaxation on the time scale of the � regime; see
Kob (2003) and Das (2004) for more details. In the following
we shall denote � as the relative distance from the transition.
For molecular liquids the control parameter is the tempera-
ture and, hence, � ¼ ðT � TcÞ=Tc; for colloids the control
parameter is the density and so � ¼ ð	c �	Þ=	c.

Keeping track of the wave-vector dependence, the detailed
properties of the dynamics in the three regimes are as follows:

(1) Fast relaxation—Some degrees of freedom relax
on time scales of the order of �0, even close to the
transition. This regime is identified taking the limit
� ! 0 and keeping t finite. In this case Fðk; tÞ ap-
proaches a plateau at long times whose value is denoted
fkSðkÞ. The nonergodic parameter fk is the fraction of
density fluctuations that becomes frozen at the transi-
tion. At large times the behavior of Fðk; tÞ is

Fðk; tÞ � fk þ hðkÞ
ta

; t � �0: (49)

The exponent a satisfies the equation

�2ð1� aÞ
�ð1� 2aÞ ¼ �; (50)

where � is a number that can be computed using the
structure factor only. Its expression is complicated;
see Götze (1985). The previous equation implies 0 	
a < 1=2.

(2) � regime—In this sector, the time scale diverges as
�����1=2a and the dynamical structure factor scales as

Fðk; tÞ � fk þ
ffiffiffi
�

p
hðkÞgðt=��Þ; (51)

where gðxÞ / x�a for x  1 and gðxÞ / xb for x � 1.
Note that the previous expression implies that all the k
dependence factorizes and is contained in hðkÞ only, the
so-called ‘‘factorization property.’’ The exponent b sat-
isfies the equation

�2ð1þ bÞ
�ð1þ 2bÞ ¼ �; (52)

which implies that 0 	 b 	 1.
(3) � regime—In this sector the time scale diverges as

�� � ���, where � ¼ 1=2aþ 1=2b. The factorization
property does not hold anymore except for small t=��
because the solution has to match the one found in the
� regime.

We refer the reader again to Fig. 13 for a visual illustration of
the different time regimes predicted by MCT for dynamic
structure factors in supercooled liquids.

Mode-coupling theory provides predictions also for other
correlators such as the self-intermediate scattering function
from which the mean-squared displacements and thus the
self-diffusion coefficient can be obtained. The previous prop-
erties remain essentially unaltered and all correlators display
quite similar scalings.

All these predictions have been tested in great detail in
numerical simulations and in experiments both on molecular
liquids and in colloids. It has also been shown that adding
corrections to MCT does not spoil the main predictions and
the universality of MCT has been established (Andreanov
et al., 2009). Different reviews (Götze, 1999; Kob, 2003; Das,
2004) have already appeared on these tests. When fitting data
using MCT, a central difficulty arises from the fact that the
actual transition is not present, as expected from its mean-
field nature. The absence of a genuine mode-coupling singu-
larity is undisputed for molecular liquids in both simulations
and experiments (Götze, 2008). Recent numerical and ex-
perimental works suggest that the same situation holds in
hard-sphere systems (Santen and Krauth, 2000; Brambilla
et al., 2009; Flenner and Szamel, 2010). This is illustrated
in Fig. 15, where the predicted MCT algebraic divergence of
the structural relaxation time for a Lennard-Jones liquid and a
hard-sphere fluid are superimposed on numerical data. While

FIG. 15 (color online). Fit of the evolution of the equilibrium

structural relaxation time of a Lennard-Jones liquid (temperature is

varied) and a hard-sphere fluid (density is varied) with the predicted

MCT algebraic divergence �� � ���, where � is the reduced

distance to the transition. The plateau at low � shows that ��
remains finite at � ¼ 0, and the data directly indicate that the

transition can actually be crossed at thermal equilibrium and is

thus avoided.

Ludovic Berthier and Giulio Biroli: Theoretical perspective on the glass . . . 609

Rev. Mod. Phys., Vol. 83, No. 2, April–June 2011



the fit is accurate over a window of two to three decades, it

clearly fails to capture the low temperature or large density

regimes of these systems. Clearly, therefore, mean-field

concepts cannot directly be applied to understand the glass

transition, and a more refined analysis is needed.
In conclusion, MCT predicts a transition, where the system

has a dynamical arrest, particles stop to diffuse, and the

density becomes frozen around an amorphous profile.

Additionally, MCT yields nontrivial predictions for the be-

havior of dynamical correlators that serve as a guideline in

the study of moderately supercooled liquids.

3. Dynamical correlations within mode-coupling theory

We introduced MCT as a dynamical theory for two-time

correlation functions. However, the recent surge of interest in

high-order correlation functions as a probe of dynamic cor-

relations and dynamic heterogeneity suggests that it could be

interesting to develop an MCT approach also for multipoint

correlation functions.
The MCT transition was originally described as a local

phenomenon, the self-consistent blocking of the particles in

their ‘‘cages’’ (Götze, 1999). On general grounds, a diverging

relaxation time is expected to arise from processes involving

an infinite number of particles (leaving aside the case of

quenched obstacles), as discussed in Sec. III.B and estab-

lished by rigorous results (Montanari and Semerjian, 2006b).

Actually, even the cage mechanism requires some kind of

collective behavior: In order to be blocked by one’s neigh-

bors, the neighbors themselves must be blocked by their

neighbors and so on until a certain scale that, intuitively,

should set the relaxation time scale of the system. So one

expects that even within MCT, cages should, in fact, be

described as spatially correlated objects (Biroli et al.,

2006). It has indeed been shown that all susceptibilities and

correlations defined in Sec. III.B, such as �4 and �T , diverge

at the MCT dynamic singularity.
Historically, the ‘‘local-cage’’ point of view was chal-

lenged in the context of mean-field disordered systems by

Franz and Parisi (2000) [see Kirkpatrick and Thirumalai

(1988) and Kirkpatrick et al. (1989) for early results], since

these models are analogous to schematic MCT equations.

Franz and Parisi argued that a dynamical susceptibility simi-

lar to �4ðtÞ diverges at the dynamical mode-coupling tran-

sition. The first full MCT analysis was developed by Biroli

and Bouchaud (2004), using a field-theoretical approach. This

clearly showed the existence of a diverging length scale

within MCT. Later, a different susceptibility �q0
ðq1; tÞ was

introduced (Biroli et al., 2006) that quantifies the response of

the dynamical structure factor to a static oscillatory external

perturbation with wave vector q0. For a perturbation localized

at the origin UðxÞ ¼ U0ðxÞ, one finds Fðq1; y; tÞ ¼
U0

R
dq0e

iq0�y�q0
ðq1; tÞ. This susceptibility is akin (although

not exactly related) to a three-point density correlation func-

tion in the absence of the perturbation. Although quite differ-

ent from the four-point functions considered previously in the

literature, �q0
ðq1; tÞ is expected to reveal the existence of a

dynamical correlation length of the homogeneous liquid as

well. Physically, �q0
ðq1; tÞ indeed measures the influence of a

density fluctuation at a given point in space on the dynamics

elsewhere. Additionally its scaling form is not affected by
complications due to conservation laws, as is the case for
four-point correlators; see Sec. III.C. Recent work on Kac
glassy models also found a similar diverging length at the
MCT transition (Franz and Montanari, 2007) using replica
techniques.

We now summarize the critical properties found for
�q0

ðq1; tÞ by Biroli et al. (2006). As for the dynamical

structure factor there is a different critical behavior in the �
and � regimes, although there is a unique diverging correla-
tion length scale � / ��1=4.

(1) In the � regime, one has

�q0
ðq1;tÞ¼ 1ffiffiffi

�
p þ�q20

Sðq1Þhðq1Þg�
�
q20ffiffiffi
�

p ;
t

��

�
;

(53)

where g� is a scaling function, and � is a positive

constantthat are both obtained quantitatively (Biroli
et al., 2006). In particular, g� behaves as a �ta for

small t=��, and as �tb for large t=��.

(2) In the � regime the critical behavior of �q0
ðq1; tÞ is

�q0
ðq1; tÞ ¼ �ð�q20=

ffiffiffi
�

p Þffiffiffi
�

p ð ffiffiffi
�

p þ �q20Þ
g�;q1

�
t

��

�
; (54)

with � a certain regular function with �ð0Þ � 0 and
�ðv � 1Þ � 1=v such that �q0

behaves as q�4
0 for

large q0, independently of �. Also, g�;q1 ðu  1Þ ¼
Sðq1Þhðq1Þub, to match the � regime, and g�ðu �
1; q1Þ ! 0.

The behavior of four-point quantities, such asG4 and �4, is
more complicated because of ensemble dependencies and the
influence of conservation laws; see Berthier et al. (2007a) for
a detailed discussion. It was found thatG4 and �4 should have
a similar critical behavior, but not too close to the MCT
transition, crossing over to a distinct behavior in its vicinity,
due to conservation laws. Therefore, for decisive tests of
MCT predictions regarding multipoint functions, the quantity
�q0

ðq1; tÞ should be preferred, but no such study has been

reported yet.
The study of critical properties of dynamical correlations

for glassy liquids and, hence, the comparison with MCT
predictions is still in its infancy (Toninelli et al., 2005;
Szamel and Flenner, 2006; Berthier et al., 2007a, 2007b;
Stein and Andersen, 2008; Flenner and Szamel, 2010). At the
time of this writing many questions remain open and deserve
further studies. The determination of the dynamic correlation
length is subtle, and because of the complication brought
about by the existence of conserved quantities, G4 could be
difficult to analyze. Certainly a numerical study of �q0

ðq1; tÞ
would be important. Furthermore, the role of finite size effects
(Berthier, 2003b; Karmakara et al., 2009), the dependence of
the results on the observable used to probe dynamical corre-
lations, the universality of the results, the possible anisotropic
character of dynamic heterogeneity (Flenner and Szamel,
2007) are all open questions needing further investigation.

4. Current status of MCT

The first and most important drawback of mean-field
dynamics and MCT is that the MCT transition it describes
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is not observed in real materials. Additionally, a comparison

between Eqs. (2) and (43) makes it clear that MCT cannot be

used to describe viscosity data close to the experimental glass

transition Tg, since it does not even predict thermally acti-

vated behavior. Worse, MCT predicts a transition at which the

system freezes completely: not only a fraction of the density

fluctuations get frozen but also self-diffusion gets arrested

(Fuchs et al., 1998). This is a theoretical artifact as it can be

rigorously proven (Osada, 1998) that the self-diffusion coef-

ficient cannot go continuously to zero at thermal equilibrium

and finite temperature and pressure (this excludes the case of

hard particles at close packing).
With all of these major failures, then, why should one

continue to study and talk about MCT? We provide several

reasons below.
It is now recognized that the MCT transition must be

interpreted as an approximate theory of a crossover taking

place in the dynamics. Actually, there are many other physi-

cal examples, such as the Kondo model (Hewson, 1997) or

spinodal points (Debenedetti, 1996), where crossovers be-

come transitions in approximate self-consistent theory. The

fact that the transition is sharp in the theoretical treatment

allowed the derivation of a variety of scaling laws which are

as many predictions that can be tested in real materials, or,

more prosaically, a simple formula that can be used to ‘‘fit the

data.’’ Part of the success of MCT has been its ability to

propose such clear-cut predictions (and fits) and graphical

representations along which data could be analyzed.
Indeed, one finds in the literature scores of papers where an

MCT analysis of data is performed. Since the transition is (at

best) only ‘‘avoided,’’ its ‘‘crossover’’ nature offers quite a lot

of flexibility for fitting, and judging the quality of the fits is

often a difficult (and subjective) exercise, while ‘‘negative’’

results can always be attributed to ‘‘preasymptotic’’ corrections

rather than deficiencies of the theory itself. This has led tomany

controversies in the literature which persist to this day.
A major achievement of MCT is the possibility to apply the

same formalism to different materials and theoretical models,

basically starting from the microscopic interactions between

atoms and molecules. This is again a reason for the success of

MCT: Each time a new model with a different kind of

interactions or chemical composition is defined, MCT can

be used to analyze its behavior and possibly predict new

qualitative trends for the time dependence of correlation

functions and their evolution, even in cases where several

control parameters are relevant (e.g., mixtures, attractive

versus repulsive interactions, complex fluids, etc.). Striking

and successful results and predictions, later confirmed by

simulations and experiments, have been obtained in several

cases: For example, for the dynamical phase diagram of

attractive colloids, for the behavior of the nonergodic pa-

rameter as a function of the wave vector for glassy liquids, for

the treatment of molecules or particles with nonspherical

shapes, see the reviews by Kob (2003), Das (2004), and

Götze (2008). Thus, MCT is always a useful starting point

when a new system with unknown behavior arises.
Although the MCT predictions are limited to a modest time

window of 2–3 decades corresponding to the onset of glassy

dynamics in molecular liquids, this time window is actually

the most experimentally relevant in colloidal materials

(Cipelletti and Ramos, 2005), since typical microscopic
time scales for colloidal particles are in the millisecond range
(instead of the nanosecond range for atoms). Thus, MCT
performs much better in soft matter systems, to the point
that actually observing deviations from MCT predictions in
an experiment can represent a challenge. Even for the ca-
nonical and well-studied system of colloidal hard spheres, it
was only recently suggested experimentally that the MCT
transition is avoided in the same manner as in molecular
liquids (Brambilla et al., 2009). Thus we believe MCT will
continue to be a useful tool, given the current rapid develop-
ment in the synthesis of new colloidal particles.

On the theoretical side, it is now clear that MCT has the
status of a mean-field theory (Andreanov et al., 2009). As
such, one expects major changes once fluctuations are taken
into account. As we pointed out already some kinds of
fluctuations wipe out the sharp MCT transition and make it
a crossover. Moreover, exactly as for critical phenomena, one
expects critical fluctuations to change the value of the MCT
exponents below an upper critical dimension that was deter-
mined to be equal to 8 (Biroli and Bouchaud, 2007; Franz
et al., 2010). The role of fluctuations on the MCT transition is
a current topic of research.

As a conclusion, MCT has clear and well-understood
limitations, and it will never be possible to test its predictions
in a sharp way because it is not related to a true phase
transition but, likely, just to a crossover. Still, its overall
efficiency and flexibility and its ability to deliver actual
predictions make it useful. For this reason it continues to be
developed, applied, and generalized to study many different
physical systems and situations, including aging systems and
nonlinear rheology of glassy materials; see Sec. V.

5. Quantitative computations using replica

In Sec. IV.B.1, we presented the theoretical picture emerg-
ing from solving mean-field models (or geometries) of the
glass transition, and we found the resulting scenario rich and
encouraging: It generically supports the existence of a con-
figurational entropy vanishing transition associated, at a
higher temperature, with a dynamical transition, à la MCT,
which corresponds to the appearance of incipient metastable
states.

Still, to make a connection with experimental results at
least two main issues need to be addressed. First, one has to
transform this set of mean-field ideas into a working tool able
to produce quantitative calculations for the case of super-
cooled liquids. Second, dynamics within a rugged landscape
must be revisited in order to explain the crossover nature of
the MCT transition, and the existence of a regime where
dynamics is thermally activated and the viscosity increases
in a super-Arrhenius manner which is incompatible with the
algebraic divergence predicted by mode-coupling theory. In
this section and the next, we briefly review these two lines of
research.

First, we focus on the approaches that have been devised to
obtain quantitative microscopic predictions. In fact, MCT can
be seen already as such a tool, but it is limited to the regime
above TMCT. Below this temperature it cannot be applied
anymore. At the time of this writing, a quantitative micro-
scopic theory of the dynamics valid below TMCT is still
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lacking; see Bhattacharya et al. (2005) for a possible attempt.
An alternative strategy is to leave dynamics for a while and
turn to thermodynamics. The idea is to compute approxi-
mately the configurational entropy, the Kauzmann tempera-
ture, and the plateau value of dynamical correlation functions
in the glass phase (Monasson, 1995; Franz et al., 1998;
Mézard and Parisi, 1999; Parisi and Zamponi, 2005;
Mézard and Parisi, 2010).

All the approaches developed to compute static properties
of systems characterized with a rugged landscape make use of
replica in one way or another (Parisi, 2003). Physically, the
reason is that one aims at describing (or at least counting)
metastable states which all have amorphous density profiles.
This is similar to the spin glass case where the amorphous
order is not revealed by looking at magnetization profiles, as
discussed in Sec. III.B.1. Inspired once more by the physics
of disordered systems, the idea is again to let the system itself
indicate what these states are and use distinct copies of the
system to ‘‘recognize’’ the metastable states. In the absence
of quenched disorder, however, it is not enough to replicate
the system; one is also forced to physically ‘‘couple’’ the
different copies of the system using an appropriate field.

It is useful to first implement this idea for two copies
(Monasson, 1995), 1 and 2, of the system, characterized by
density profiles �1ðxÞ and �2ðxÞ. Using notations from
Sec. IV.B.1, we write the free-energy density of a single
copy of the system as

f ¼ � T

V
log

Z
D�1e

��H½�1�; (55)

whereH½�1� is the microscopic Hamiltonian. We now use the
second copy of the system to scan the locally stable configu-
rations of the first one. To do so, we introduce a quadratic
coupling of strength g > 0 between the two copies and
compute the new free energy

f2½�1�¼�T

V
log

�Z
D�2e

��H½�2��g
R
ddx½�1��2�2

�
: (56)

The free energy f2½�1� will be small when �1 is a configu-
ration which corresponds to a metastable state. Therefore,
sampling all configurations of �1 weighted with
expð��f2½�1�Þ is a procedure to scan all metastable states,
so that

fmeta ¼ lim
g!0

1

Z

Z
D�1f2½�1�e��f2½�1� (57)

is the average free energy of all metastable states; here Z ¼R
D�1 expð��f2½�1�Þ is a normalization. When it exists, the

difference between the total free-energy density of the system
f and the free-energy density of the minima fmeta is related to
the number of metastable state available to the system; see
also Eq. (38). As a consequence, this free-energy cost is in
fact equal to �Tsc. The lesson to be learned from this
example is that the introduction of identical copies of the
system allows one to directly compute properties of the free-
energy landscape (Monasson, 1995; Franz and Parisi, 1998).
It is important to remember, however, that the limit g ! 0 in
Eq. (57) has a strong mean-field flavor, since genuine meta-
stable states exist only in this limit; see Parisi (2003) for a
more precise discussion.

Several quantitative approaches have been developed and
are based, in one way or another, on procedures similar to the
one outlined above; see Monasson (1995), Franz et al.
(1998), Mézard and Parisi (1999), and Parisi and Zamponi
(2005). In the scheme of Monasson (1995), one introduced m
copies of the system constrained to be in the same free-energy
minimum. Technically, this corresponds to take m copies of
the density configuration �1. This generalizes the partition
function in Eq. (38) to

Zm¼ lim
g!0

1

Z

Z
D�1e

��mf2½�1�

¼
Z
dfexp

�
�Nfm

T
�Nscðf;TÞ

�
;

associated to the replicated free energy c ðm; tÞ ¼ �T logZm.
Note that m enters only the first term, as all systems are
identical and are characterized by the same metastable states.
Repeating the saddle-point calculation yields

f ¼ @c ðm; TÞ
@m

; sc ¼ m2

T

@ðc ðm; TÞ=mÞ
@m

; (58)

which shows that the configurational entropy sc can be
accessed by computing the thermodynamic properties of a
system of m coupled replicas, provided, as is usual within
replica calculations, that the number of copies of the system is
analytically continued to noninteger values, as implicitly
assumed in Eq. (58).

An achievement (Mézard and Parisi, 1999) is that not only
the properties of the liquid state above TK can be computed
analytically from Eq. (58), but also the ones of the ‘‘ideal’’
glass below TK. Recall from Fig. 12 that the Kauzmann
temperature is defined by TK ¼ ð@sc=@fÞ�1 for the value of
f corresponding to sc ¼ 0. For the replicated system, one gets

TðmÞ
K ¼ mð@sc=@fÞ�1 and the location of the transition de-

pends on m. For values of m< 1, one typically finds that

TðmÞ
K < TK. This means that the properties of the replicated

liquid with m � 1 are deeply connected to the ones of the
nonreplicated glass with m ¼ 1. Indeed, assuming that the
transition has a nature similar to the one found in mean-field
models, one can use the fact that the free energy is continuous
at TK and glass states below TK have scðT < TKÞ ¼ 0 to
obtain the free energy of the (nonreplicated) glass as

fglassðTÞ ¼ c ðm�ðTÞ; TÞ=m�ðTÞ; (59)

where m�ðT < TKÞ< 1 is self-consistently defined by

Tðm�Þ
K ¼ T and c ðm; TÞ is the energy of the replicated liquid

defined above.
To summarize, starting from the hypothesis in which the

free-energy landscape of supercooled liquids resembles the
picture gained from mean-field models and geometries, one
introduces replicas as a useful mathematical tool to probe the
thermodynamics of systems both above and below TK. One
ends up with an additional variational parameter m�ðTÞ to
describe the low-temperature phase, which is formally strictly
equivalent to the additional parameterm entering the one-step
replica symmetry scheme needed to solve mean-field models
(Monasson, 1995). Note that in this approach, the nature of
the broken symmetry is a starting hypothesis rather than a
natural outcome of the calculations.
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In practice, of course, some approximations must be made
to compute the free energy of the replicated liquid at low
temperature, which make heavy use of liquid state theory and
which might well depend on the studied system. The main
outcomes are the calculation of the location of the Kauzmann
transition, the thermodynamic properties of the liquid (in
particular, the configurational entropy), and the glass (ground
state energy, specific heat, and structure). These microscopic
computations have been developed for a variety of glass-
forming liquids, such as monoatomic or mixtures of
Lennard-Jones particles (Coluzzi et al., 2000), soft spheres
(Coluzzi et al., 1999; Mézard and Parisi, 1999), hard spheres
(Franz et al., 1998; Parisi and Zamponi, 2005), sticky hard
spheres (Velenich et al., 2006), and silica (Coluzzi and
Verrocchio, 2002). Perhaps the most impressive achievement
is the detailed description of the large volume fraction be-
havior of hard spheres (Parisi and Zamponi, 2005, 2010): The
glass transition was located, the equation of state and struc-
ture of the glass obtained up to the ‘‘glass close packing’’
density, which can be seen as a firm definition of the notion of
random close packing (Bernal and Mason, 1960), whose
location can then be predicted accurately in any spatial
dimension (Parisi and Zamponi, 2006) or for binary mixtures
(Biazzo et al., 2009), with excellent agreement with experi-
mental results and simulations.

Although this quantitative side of RFOT theory is a most
desirable feature, assessing quantitatively the quality of the
results is not easy as experiments and simulations typically
fail to approach the Kauzmann transition. Even then, cases
are known where a transition is predicted in a regime where
none is expected (Coluzzi and Verrocchio, 2002; Thalmann,
2002), suggesting that the quality of the approximations used
to obtain quantitative results plays an important role (Ikeda
and Miyazaki, 2010). Thus, when accurate results are sought,
the problem might well become technically quite involved
(Parisi and Zamponi, 2010).

6. Scaling arguments beyond mean-field theory and point-to-set

length scale

The quantitative calculations described in the previous
section remain mean field in nature, because they compute
the properties of the supercooled liquid state as if it were
formed by a collection of states with infinite lifetime, as is the
case in mean-field models. This is clearly incorrect: Two
thermodynamically stable states cannot coexist and have
different intensive free energy at finite temperature, otherwise
the system would nucleate from the one with highest free
energy to the one with lowest, showing that the highest is, in
fact, not a stable state. Furthermore, an exponential number
(in the system size) of stable states seems impossible: For
large sizes there would not be enough boundary conditions to
select one state from the other (Newman and Stein, 2002;
Fisher, 2003).

Additionally these calculations cannot address the connec-
tion to dynamical properties, a crucial missing ingredient for
a theory of the glass transition. Presently, there only exist
phenomenological arguments (Kirkpatrick et al., 1989; Xia
and Wolynes, 2000; Bouchaud and Biroli, 2004), backed by
microscopic computations (Dzero et al., 2005; Franz, 2005;
Franz, 2006; Franz and Montanari, 2007) that yield a possible

scenario for the dynamics, dubbed ‘‘mosaic state’’ by
Kirkpatrick et al. (1989). Since this aspect of RFOT theory
was reviewed recently (Lubchenko andWolynes, 2007; Biroli
and Bouchaud, 2009), we shall be brief. Schematically, the
mosaic picture states that, in the regime TK < T < TMCT, the
liquid is composed of domains of linear size �. Physically,
the length scale � represents the length scale above which it
does not make sense to talk about metastable states anymore.

The way to measure, or even to precisely define, the
mosaic length scale � was not clear from the way it was
initially introduced. Recently, the so-called ‘‘point-to-set’’
correlation length scale was defined both in the context of
RFOT theory as a practical measure of the mosaic length
scale (Bouchaud and Biroli, 2004), and in more general
settings (Mézard and Montanari, 2006; Montanari and
Semerjian, 2006b). The point-to-set length is a measure of
the spatial extent over which the effect of equilibrium amor-
phous boundary conditions propagate.

To understand the origin of this length scale, we consider
the following ‘‘experiment’’ where, starting from an equilib-
rium configuration of the system, we freeze the positions of
all particles outside a cavity of radius R. We then let the
system evolve in the presence of this constraint, which acts as
a pinning field. The point-to-set length scale is defined as the
minimal cavity radius such that the pinning field has no
influence at the center of the cavity. As such, it is a measure
of the many-body correlations between a point (the center of
the cavity) and a set of points (the pinned boundary). It is also
important to emphasize the similarity between this cavity
procedure and the coupling between copies applied in
Eq. (56). While the latter was homogeneous, the former is
spatially inhomogeneous, and quantifies how far in space the
coupling between states can propagate (Kurchan and Levine,
2009).

The constraint on the boundary of the cavity, in fact, acts as
a ‘‘template’’ for the particles inside the cavity, whose effect
can be evaluated as follows. By selecting a different state and
deforming it only close to the boundary to satisfy the con-
straint, one would get a free-energy cost of the order of �R�

with � 	 2. However, doing so, one would also gain entropy
as the system could explore a multiplicity of different states,
giving rise to a free-energy contribution �TscR

3. Entropy
obviously gains on large length scales R � 1, while interface
cost dominates at small R. Therefore, the crossover in the
competition between these two terms takes place for a length
scale R ¼ � obtained by equating the two terms,

� ¼
�

�

TscðTÞ
�
1=ð3��Þ

: (60)

In a real liquid, where there is no cavity, one can conjecture
that there is a self-generated dynamical boundary condition
acting on each patch of length scale �.

The dynamical counterpart to this argument is as follows.
Dynamically, the configurational entropy on scales smaller
than � is too small to stir the configurations efficiently and
loses against the dynamically generated pinning field due to
the environment. By contrast, ergodicity is restored at larger
length scale. Hence, the relaxation time of the system is the
relaxation time �ð�Þ of a finite size region of the system. It is
only after this long, but plausible series of arguments that
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barriers encountered during relaxation finally become finite
and involve a finite number of particles, unlike in the original
mean-field treatment of the landscape where barriers diverge
with system size.

Now, assuming thermal activation over energy barriers
which are supposed to grow with size as �c , with c 
 �,
one predicts finally, using Eq. (60), that (Bouchaud and
Biroli, 2004)

log

�
��
�0

�
¼ c

�

kBT

�
�

TscðTÞ
�
c =ð3��Þ

; (61)

where c is a constant. This argument is rather generic and
therefore not very predictive. Recent microscopic computa-
tions (Dzero et al., 2005; Franz, 2005, 2006; Montanari and
Semerjian, 2006a; Franz and Montanari, 2007) attempted the
computation of the exponents � and c , directly addressing
analytically the problem of the cavity described above.
Equations for the overlap profile between the initial template
configuration and configurations thermalized in the presence
of the pinning boundaries were obtained. These calculations
confirmed the existence of a nontrivial crossover length scale
above which the overlap inside the cavity vanishes, indicating
that order does not propagate on length scales much larger
than �.

The results are unfortunately not yet conclusive. Although
part of the computations can be justified and controlled by
using, for instance, Kac models (Franz, 2005, 2006), other
parts involve uncontrolled replica symmetry breaking
schemes. The calculations provided the estimate � ¼ 2.
Note that some other phenomenological arguments suggest
the value of � ¼ 3=2 (Kirkpatrick et al., 1989). There are no
detailed computations available for c , only the suggestion
that c ¼ � (Kirkpatrick et al., 1989).

Note that using the value � ¼ 3=2 with � ¼ c simplifies
Eq. (61) into a form that is well known experimentally and
relates log�� directly to 1=Sc, which is the celebrated Adam-
Gibbs relation (Adam and Gibbs, 1965) between relaxation
time and configurational entropy. As discussed in Sec. II.A,
such a relation is in rather good quantitative agreement with
many experimental results (Angell, 1997; Hodge, 1997;
Johari, 2000). RFOT theory, therefore, reformulates and
generalizes the mechanism suggested by the Adam-Gibbs
relation (Xia and Wolynes, 2000). Furthermore, using the
fact that the configurational entropy vanishes linearly at TK,
Eq. (61) becomes similar to the VFT divergence of Eq. (2),
with the identification between two important temperatures,

T0 ¼ TK; (62)

which embodies the deep connection between thermodynam-
ics and dynamics characterizing RFOT theory. The above
equality between two temperatures that are commonly used
in the description of experimental data constitutes a central
achievement of RFOT theory, since it accounts for the em-
pirical relation found between the kinetics and the thermo-
dynamics of supercooled liquids. It should be kept in mind,
however, that experiments have not established its validity
beyond any doubts, as discussed in detail in Sec. II.A.

Wolynes and co-workers obtained several other results
using phenomenological arguments based on RFOT. Two
remarkable ones are the relation between fragility and

specific heat jump at the glass transition and stretching
exponent � of time-dependent correlation functions, and
the speeding up of the dynamics close to a free surface
[recently observed by Ashtekar et al. (2010)]. These predic-
tions and several others are discussed in detail by Lubchenko
and Wolynes (2007).

7. Current status of RFOT theory

We described RFOT theory as a ‘‘patchwork’’ (not to say
mosaic) of apparently distinct theoretical approaches to the
glass problem: Adam-Gibbs theory, mode-coupling theory,
mean-field spin glass theory and replica approaches, and the
mosaic state scaling picture. As such, RFOT theory is clearly
an impressive theoretical piece of work, which gives a con-
sistent overall scenario for the glass transition and nonequi-
librium phenomena related to the glassy state, based on
peculiar features of the free-energy landscape as well as tools
to perform microscopic calculations.

Coming from high temperatures, dynamics primarily slows
down because there appear incipient metastable states, in a
restricted temperature window described in full microscopic
detail by mode-coupling theory. Further decreasing the tem-
perature, the dynamics becomes dominated by the thermally
activated barrier to be crossed from one metastable state to
another, in a way consistent with the deep relation between
dynamical correlation length and time scale discussed in
Sec. III. In this regime, the thermodynamic behavior can
also be described at the thermodynamic level using replica
calculations which predict the existence of a finite-
temperature thermodynamic transition toward a genuine ideal
glass state. A description of the dynamics near the transition
exists, but contains several steps that heavily rely on empiri-
cal scaling concepts.

There are several weaknesses in this construction. First,
although we attempted here to give a unified view, the theory
is still pretty much made of distinct pieces that do not
necessarily smoothly fit together. For instance, the details of
the crossover between MCT and activated regimes are not
well understood. In early works, attempts were made to
include ‘‘hopping effects’’ in mode-coupling theory, deriving
expressions for the memory kernels which transform the
sharp MCT transition into a crossover (Das and Mazenko,
1986; Götze and Sjögren, 1987). However, the status of these
‘‘extended’’ MCT is debated (Andreanov et al., 2006; Cates
and Ramaswamy, 2006). Moreover, there are also strong
indications that thermal activation is, in fact, already at play
in the temperature regime usually described by MCT
(Berthier and Garrahan, 2003b; Denny et al., 2003; Doliwa
and Heuer, 2003; Heuer, 2008). Finally, recent works at-
tempted to include nonperturbative processes in the MCT
description (Bhattacharya et al., 2005; Mayer et al., 2006),
but no treatment generically applicable to liquids is yet
available.

Second, when applied to three-dimensional liquids, RFOT
theory relies on several, sometimes distinct, types of approx-
imations. For finite-dimensional systems, a complete and
solid version of RFOT theory remains to be worked out.
This is especially true for the mosaic part of RFOT theory
which yields dynamic predictions, namely, a Vogel-Fulcher
divergence of the relaxation time. This implies that opponents
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can criticize RFOT theory because it contains too many

uncontrolled assumptions, while supporters can always hide

a weak point as resulting from some approximation rather

than from the approach itself. We do not see how this issue

can be resolved, as data themselves do not allow clear-cut

conclusions. Although the ultimate consequences of the the-

ory are sometimes in good agreement with experiments, as

Eq. (62), one should not conclude too fast that RFOT theory is

correct. In this context, a pertinent line of investigation,

allowed by numerical simulations, is to more directly test

the microscopic mechanisms underpinning the derivation of

the mosaic picture (Jack and Garrahan, 2005; Cavagna et al.,

2007). In particular, recent works have shown that the static

point-to-set correlation length scale described in Eq. (60)

does increase upon supercooling (Biroli et al., 2008).

Furthermore, first measurements of the exponent � and c
of the mosaic theory have been obtained with the somewhat

surprising results � ’ 2> c ’ 1 (Cammarota et al., 2009,

2009). Presently, direct tests of the mosaic picture are quite

involved (even conceptually), and hence are rare and not yet

conclusive. This line of research appears, nevertheless, prom-

ising to establish, disprove, or further develop the mosaic

picture; see Cavagna (2009) for more details.
The fact that these approximations become exact in several

mean-field settings (fully connected models, Bethe lattices)

suggests that RFOT theory might have a status similar to the

Curie-Weiss theory for the ferromagnetic systems which

contain correct elements of the real theory. Current research

can thus be seen as an attempt to understand and describe

better non-mean-field effects. Going beyond mean-field the-

ory is not only technically but also conceptually difficult. For

instance, Stillinger claimed that the configurational entropy

vanishes only at zero temperature, thus suggesting that no

entropy crisis can take place (Stillinger, 1988). This was

related to his identification of metastable states with energy

minima, which is now recognized to be an incorrect approxi-

mation, even in mean-field models (Biroli and Monasson,

2000), where the well-defined metastable states are, in gen-

eral, made of a large number of energy minima, in the spirit of

the ‘‘metabasins,’’ sometimes described in numerical works

as a large assembly of inherent structures (Heuer, 2008). The

same criticism applies to recent work that similarly claimed

having demonstrated the absence of a glass transition in

bidimensional binary mixtures (Donev et al., 2007).

However, a correct definition of metastable states beyond

mean-field theory is still lacking; see Biroli and Kurchan

(2001) for a discussion and a first attempt. Thus, going

beyond mean-field theory is clearly a difficult, but quite

exciting and important task, from which new results can be

expected in the future.
A further source of concern for RFOT theory is the fact that

quite often the mean-field models from which it largely

originates seem to behave quite differently when studied in

finite dimensions (Alvarez et al., 1996; Brangian et al.,

2002; Moore and Drossel, 2002; Moore, 2006; Moore and

Yeo, 2006). In fact, there does not yet exist a theoretical

model in finite dimension, for which the RFOT theory sce-

nario can be shown to apply; see Sarlat et al. (2009),

Castellana et al. (2010), and Liers et al. (2010) for recent

efforts. From a theoretical perspective, such a discovery

would be a highly decisive step, even if the model were
abstract and not obviously connected to experimental
systems.

Thus, there is hope that in the next few years, joint
theoretical and experimental efforts will drive RFOT theory
into a corner, where its status can be made precise. At the
time of writing, one can state that RFOT theory is still
imperfect, but the broadness of its scope and predictions,
the number of distinct approaches that systematically give
back at least some piece of it, and the generality of the
concepts it uses makes one believe that it contains at least
some useful seeds to construct a ‘‘final’’ theory of the glass
transition, if such a thing exists.

C. Kinetically constrained models and dynamic facilitation

1. The physical picture

Another approach to the glass transition problem is based
on the concept of dynamical facilitation; see (Chandler and
Garrahan (2010) for a review. In short, ‘‘facilitation’’ captures
the physical idea that since viscous liquids are almost solid,
mobility is so sparse at any given time that any local relaxa-
tion event is likely to trigger, or ‘‘facilitate’’ the relaxation of
nearby molecules after a time which is short compared to the
macroscopic relaxation time but large compared to the micro-
scopic one, so that mobility can propagate throughout the
sample. Thus, the focus is less on molecules than on their
mobility (Fredrickson and Andersen, 1984).

There is no doubt that at least some degree of facilitation is
present in nearly jammed materials, but the theoretical ap-
proach described in this section goes well beyond this simple
observation and posits that the entire dynamics of the system
is mainly due to facilitation effects. This means that typically
a mobile region of the sample can become unjammed and
thus mobile only if it is adjacent to a region which is already
unjammed (Garrahan and Chandler, 2003). This is equivalent
to postulating that, except for rare events, mobility in a
viscous liquid cannot spontaneously arise in an immobile
region in space, nor can it spontaneously decay. This is
obviously a strong assumption.

This constraint is conjectured to become effective roughly
below TMCT and to dominate the dynamical evolution close to
Tg (Garrahan and Chandler, 2003). This is far from a trivial

assumption since it implicitly uses the fact that there exists a
temperature below which the material is nearly jammed, so
that a description in terms of sparse mobility is valid. Thus,
this approach cannot self-consistently capture the micro-
scopic origin of the dynamical slowing down in supercooled
liquids. Instead, it can possibly become an effective and
useful description of structural relaxation occurring near the
glass transition (Palmer et al., 1984).

At present, it is still unclear whether this main assumption
of mobility conservation is correct, only approximate, or
whether it plays the central role suggested by the facilitation
approach. An important point is the fact that a large number
of theoretical models have been defined based solely on
the idea of kinetic constraints. They are called ‘‘kinetically
constrained models’’ (KCMs), and they all display a phe-
nomenology which is strikingly consistent to the one de-
scribed in Sec. II.A for molecular glass formers (Ritort and
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Sollich, 2003). In the last decade or so, several KCMs have
been defined and studied in detail. In turn, this large body of
theoretical work produced new results and predictions and
has thus also triggered more research on competing theories.

2. Kinetically constrained models

Over the last 25 years, KCMs have been central to the
development of the facilitation approach to the glass
transition.

The first example we present is the Kob-Andersen model
(Kob and Andersen, 1993). Interestingly, this model is quite
similar to the lattice glass models described in Sec. IV.B. The
model is again an attempt to capture the physics of a hard-
sphere system and the fact that dynamics becomes slow at
high density because the environment of each particle is
crowded. The Kob-Andersen model is a lattice gas, with
occupation number ni on each site i of a regular lattice.
There is no interaction apart from the hard-core constraint,
and the Hamiltonian is thus trivial:

H½fnig� ¼ 0; ni ¼ 0; 1: (63)

Geometric frustration is introduced at the level of the kinetic
rules that are defined as constrained local moves. Namely, a
particle can jump to a nearest neighbor site only if (i) that site
is empty, to satisfy the hard-core constraint; (ii) the sites
occupied before and after the move have fewer than m
neighbors, with m being an adjustable parameter. Kob and
Andersen studied the case m ¼ 4 for a cubic lattice in d ¼ 3
(m ¼ 6 corresponds to the unconstrained lattice gas), and the
model displays glassy dynamics at large density (Kob and
Andersen, 1993). Such kinetically constrained lattice gases
have been studied in various spatial dimensions, for different
values of m, for different constraints, or even different lattice
geometries (Ritort and Sollich, 2003). They can be thought of
as models capturing the idea of a cage effect in a strict sense,
since a particle with a dense neighbor shell cannot diffuse.
Dynamic facilitation is thus a direct consequence of steric
effects in this model (Chaudhuri et al., 2008).

The crucial difference with lattice glass models is that here
all configurations are allowed by the Hamiltonian, but their
kinetics depends on geometry, while in lattice glass models
kinetic rules ignore the geometry but not all configurations
are allowed (Biroli and Mézard, 2001). This is actually a
major difference: KCMs assume that geometrical constraints
act at the level of kinetic rules with no thermodynamic
counterpart and no reference to the interactions which are
responsible for them.

In this lattice gas picture, the connection with glass formers
is not obvious because density, rather than temperature, con-
trols the dynamics. Thermal models with similar features can,
in fact, be defined by focusing on holes rather than particles.
This points toward a model with a small concentration of
mobile regions, which move by creation and annihilation.
This is actually reminiscent of Glarum ‘‘defects’’ theory
where the relaxation proceeds via simple diffusion of a low
concentration of independent defects (Glarum, 1960). Using
the conjugated ideas of kinetic constraints, facilitation, and
rare defects, Fredrickson and Andersen (1984) defined and
studied a family of kinetic Ising models for the glass tran-
sition. This last article is a seminal paper that opened a whole

new research avenue, making possible the study of phe-
nomena associated with the glass transition via simple kinetic
models. The Fredrickson-Andersen models consist of an
assembly of noninteracting defects or spins,

H½fnig� ¼ J
XN
i¼1

ni; ni ¼ 0; 1; (64)

where J is an energy scale for creation of mobility, and
ni ¼ 1 represent the mobility state at site i, whose averaged
concentration becomes exponentially small at low tempera-
ture hnii � expð�J=TÞ. As for the Kob-Andersen lattice gas,
the nontrivial ingredient lies in the chosen rates for the
transition between states. The kinetic rules stipulate that a
transition at site i can happen with a usual Glauber rate, but
only if site i is surrounded by at least k defects (k ¼ 0
corresponds to the unconstrained limit).

As for kinetically constrained lattice gases, these models
have been studied in different spatial dimensions, on different
lattices, and using a number of distinct definitions of the
kinetic rules, yielding a large number of possible glassy
behaviors (Ritort and Sollich, 2003; Léonard et al., 2007).
The similarity between those spin-facilitated models and the
kinetically constrained lattice gases is striking. Altogether,
they now form a large family of models generically called
KCMs.

These models can be divided into several classes.
‘‘Noncooperative’’ models, such as the Fredrickson-
Andersen model for k ¼ 1 (the least constrained model) dis-
play Arrhenius dynamic slowing down and are thus reminis-
cent of strong glass formers. They are well described by
simple diffusion of point mobility defects. ‘‘Cooperative’’
models display a super-Arrhenius dependence of the struc-
tural relaxation time. This is the case for the Fredrickson-
Andersen model with a stronger kinetic constraint, k > 1.
Another example is the ‘‘East’’ model where the kinetic
constraint with k ¼ 1 has a directional character: Only ex-
cited sites to the left in each space dimension can facilitate the
dynamics (Jäckle and Eisinger, 1991; Berthier and Garrahan,
2005), which can be rationalized on the basis that displace-
ments in liquids have a vectorial character that could extend
to facilitation (Garrahan and Chandler, 2003). For an over-
whelming majority of KCMs, relaxation times diverge only in
the limit of zero temperature, as even one single defect can
diffuse and relax the entire system (at least in the simplest
models), and the defect concentration vanishes only at T ¼ 0.
However, KCMs can also be defined with kinetic rules and
geometries for which the existence of a finite-temperature
glass transition can be established (Toninelli et al., 2006).

We remark that the facilitation approach, and, in particular,
KCMs, encode in a new and more microscopic way the older,
but well-known, concept of free volume. Free-volume models
are among the most widely used models to analyze experi-
mental data, especially in polymeric systems. They have been
reviewed before (Cohen and Grest, 1982; Debenedetti, 1996).
Here, the main idea is that dynamic slowing down occurs
because the ‘‘free volume to move’’ available to each particle
vf vanishes at some temperature T0 as vf � �ðT � T0Þ, a
relation which connects volume to temperature. Statistical
arguments then relate relaxation time scales to free volume
assuming that movement is possible if locally there is
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‘‘enough’’ free volume available, more than a typical value
v0. A VFT divergence is then predicted:

��
�0

� exp

�
�
v0

vf

�
� exp

�
�v0=�

½T � T0��
�
; (65)

where � is a numerical factor and � ¼ 1. Predictions such as
Eq. (65) are used to justify the wide use of free-volume
approaches, despite the many (justified) criticisms that have
been raised. The physics at work is obviously strongly remi-
niscent of the above description of the Kob-Andersen kineti-
cally constrained lattice gas. In fact, the analogy is even
semiquantitative in some cases, since cooperative KCMs
with a finite-temperature glass transition have been shown
rigorously to be characterized by divergence of the relaxation
time as in Eq. (65), albeit with a value of � different from 1
(Toninelli and Biroli, 2008).

As with free-volume approaches, it is not exactly clear
what is meant by ‘‘mobility defects’’ within KCMs in terms
of the original interacting system they seek to describe, nor
how kinetic constraint can truly emerge from the uncon-
strained dynamics of a many-body system. Good news on
this front is that at least a proof of principle that kinetic rules
can emerge has been obtained (Garrahan, 2002). Several
examples are available but here we mention only the simple
case of the bidimensional plaquette model defined by a
Hamiltonian of a p-spin type, but in two dimensions on a
square lattice of linear size L,

H ¼ �J
XL�1

i¼1

XL�1

j¼1

Si;jSiþ1;jSi;jþ1Siþ1;jþ1; (66)

where Si;j ¼ �1 is an Ising variable lying at node ði; jÞ of the
lattice. Contrary to KCMs, the Hamiltonian in Eq. (66)
contains genuine interactions, which are no less (or no
more) physical than p-spin models discussed in Sec. IV.B
to which it actually strongly resembles. Interestingly the
dynamics of this system is (trivially) mapped onto that of a
KCM by analyzing its behavior in terms of plaquette varia-
bles pi;j � Si;jSiþ1;jSi;jþ1Siþ1;jþ1 such that the Hamiltonian

becomes a noninteracting one H ¼ �J
P

i;jpi;j as in Eq. (64).

More interestingly, the analogy also applies to the dynamics
(Garrahan, 2002). The fundamental moves are spin flips, but
when a single spin is flipped the states of the four plaquettes
surrounding that spin change. Considering the different types
of moves, one quickly realizes that excited plaquettes pi;j ¼
þ1 act as sources of mobility, since the energetic barriers to
spin flips are smaller in those regions. This observation allows
one to identify the excited plaquettes as defects, by analogy
with KCMs. Similarly to KCMs, also, spatially heteroge-
neous dynamics, diverging length scales accompanying di-
verging time scales and scaling behavior sufficiently close to
T ¼ 0 (see below) can be established by further analysis
(Jack et al., 2005), providing a simple, but concrete example,
of how an interacting many-body system might effectively
behave as a model with kinetic constraints. These types of
plaquette models, and other similar spin models, were origi-
nally introduced (Sethna et al., 1991; Lipowski et al., 2000)
to show how ultraslow glassy dynamics can emerge because
of growing free-energy barriers.

3. Diffusing defects, excitation lines, and space-time bubbles

Research on the facilitation approach to glassy dynamics
has mainly consisted of the analysis of the physical behavior
of KCMs. Motivation for this work largely stems from the
observation that KCMs behave, at the phenomenological
level, much as real glass formers, as noted long ago for
both thermal models (Fredrickson and Andersen, 1984,
1985; Fredrickson, 1986; Fredrickson and Brawer, 1986)
and constrained lattice gases (Kob and Andersen, 1993;
Jäckle and Krönig, 1994; Kurchan et al., 1997). Actually,
theoretical research on dynamical heterogeneity was partly
sparked by the numerical observations that KCMs display
strong spatial fluctuations of the local relaxation rate (Butler
and Harrowell, 1991a, 1991b; Harrowell, 1993). Therefore,
KCMs provide a simplified context to understand glassy
phenomena in detail or at least to study one of their possible
explanations.

In the following we shall not review all the different
models and their physical behavior, as this was done thor-
oughly by Ritort and Sollich (2003). Neither shall we review
in detail the dynamic facilitation approach as a theory of the
glass transition, as this is the object of another recent review
(Chandler and Garrahan, 2010). Instead, we present a simple
physical picture, common to all KCMs, which is helpful in
grasping the main physical behavior of KCMs and, therefore,
the main predictions and limitations of the facilitation
approach.

A common feature of all KCMs is that their relaxation can
be accurately described in terms of the motion of sparse
defects. In the simplest cases such as the noncooperative
Fredrickson-Andersen model, these defects diffuse, but they
might also undergo subdiffusive motion in some cases, such
as in the directional East model. In cooperative models, such
as the Kob-Andersen lattice gas or the Fredrickson-Andersen
model with k > 1, defects do not coincide with mobile sites,
but can be formed by extended clusters moving in a coop-
erative manner.

Since local relaxation at a given site occurs when it is
visited by one such defect, explaining structural relaxation is
equivalent to explaining the defect dynamics. To make the
discussion more concrete, we explain how this defect descrip-
tion emerges for the simple case of the noncooperative
Fredrickson-Andersen model with k ¼ 1. In that case, a
spin ni can flip only if it has at least one spin nj ¼ 1 among

its nearest neighbors. At low temperature, defects diffuse in
an activated manner. Typically an isolated defect facilitates
the excitation of one of the neighboring sites with rate
expð�J=TÞ, and moves there with probability 1=2.
Schematically, one gets

0100 ! 0110 ! 0010 ! � � � : (67)

Overall, defects perform random walks with a diffusion
coefficient D� expð�J=TÞ. Defects can also annihilate
when they meet and be created from an existing defect. A
representation of this diffusion, branching, and annihilation
process is shown in Fig. 16 for the one-dimensional case. In
particular, the central feature of the facilitation approach,
namely, that a defect cannot be created out of a completely
immobile region, is obvious from this figure, in particular, at
low temperature where defects are sparse.
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An approximate but good description of KCMs consists of
focusing on sparse, possibly extended, defects of density �d,
which diffuse anomalously with an exponent z and a gener-
alized diffusion coefficient D which is temperature (or den-
sity) dependent (Toninelli et al., 2005). The relaxation time
of the system can then be easily obtained by computing the
time over which a finite fraction of the system, say 1=2, has
been visited by at least one defect. The number of distinct
sites visited by a given defect after a time t is by definition
equal to ðDtÞdF=z, where dF is the fractal dimension of the
walk (or the space dimensionality d when dF > d). For a
random walk in d ¼ 3, one has dF ¼ z ¼ 2, and therefore the
number of sites visited per defect is simply equal to Dt.
The relaxation time �� is then given by the equation
�dðD��ÞdF=z ’ 1=2. Both the defect density �d and the dif-
fusion coefficient vanish when decreasing the temperature
with expressions that are model dependent. The relaxation
times thus generically scale as

�� / 1

D
�z=dF
d : (68)

In the case of the noncooperative Fredrickson-Andersen
model discussed before (k ¼ 1), one gets �� / e2J=T for
d > 1 and �� / e3J=T in d ¼ 1, i.e., an Arrhenius dependence

in all dimensions, similar to the one describing the viscosity

of strong glass formers.
As expected, stronger temperature dependencies are ob-

tained when kinetic constraints become more and more

severe. For the directional East model, for instance, the energy

barrier to relax a domain of the form 10 � � � 01 containing ‘
unexcited sites increases with ‘ since the leftmost defect must,

in principle, facilitate all sites to its right. The minimal energy

barrier needed for this process to occur scales as Eð‘Þ � logð‘Þ
and corresponds to a ‘‘hierarchical’’ path (Sollich and Evans,

1999). Since the typical distance between defects at equilib-

rium is ‘eq � expðJ=TÞ, one finds that log�� � Eð‘eqÞ=T �
1=T2, which is reminiscent of the Bässler law in Eq. (3). Even

more fragile behavior is obtained for cooperative Fredrickson-

Andersen models and Kob-Andersen lattice gases. For in-

stance, for the well-studied Fredrickson-Andersen model in

d ¼ 2 with k ¼ 2 which is the original model studied by

Fredrickson and Andersen (1984), the relaxation time in-

creases as �� � exp½expðc=TÞ�, with c a numerical constant

(Ritort and Sollich, 2003; Toninelli et al., 2004). It is interest-

ing to note that both dependencies found for the East and k ¼
d ¼ 2 Fredrickson-Andersen fragile models seem to describe

the viscosity data obtained in real molecular liquids quite well

(Hecksher et al., 2008; Elmatad et al., 2009). Actually, it has

been argued that in order to apply the East model results to real

liquids, one should use a scaling ‘eq � expðJ=T � J=TonÞ.
This leads to a modified version of the Bässler law, which

has been discussed and tested by Elmatad et al. (2009), 2010).
The space-time representation of the defect diffusion dy-

namics in Fig. 16 can be understood as an alternative, illus-

trative way to represent the dynamical behavior of the system

(Garrahan and Chandler, 2002; Chandler and Garrahan,

2010). To the extent that dynamics is facilitated, mobility

cannot disappear except if it is close to another mobile region.

Furthermore, the defect dynamics implies that mobile regions

organize along ‘‘excitation lines,’’ when represented in a

space-time phase diagram. Hence, in a system with facilitated

dynamics space-time is structured with strings of excitations

that are directed in time, can coalesce or branch but never die,

nor appear spontaneously. In between these lines lie large

inactive regions, also called ‘‘bubbles.’’ The larger the spatial

extension of the bubbles, the longer it takes an excitation line

to relax the corresponding domain, and the slower is the

structural relaxation. Thus, all dynamical properties can, in

fact, be understood characterizing the space-time structure of

bubbles and excitations lines. This is fully equivalent to the

defect dynamics laid out above.
To summarize, KCMs can be thought of as defect models,

where defects can be nontrivial, extended objects possibly

with nontrivial subdiffusive or cooperative dynamics. When

temperature decreases both the density of defects becomes

small and their dynamics slows down dramatically, implying

that the overall relaxation slows down in an activated, possi-

bly super-Arrhenius manner. Additionally, space-time repre-

sentations, as shown in Fig. 16, suggest the appearance when

temperature decreases of large immobility domains with

broadly distributed spatial and temporal extensions. When

temperature decreases, these fluctuations are amplified and

the corresponding time scales and length scales increase

rapidly and diverge (for most KCMs) in the limit of zero

x

t

T

FIG. 16. Space-time representation of the dynamics of mobility

defects in the noncooperative Fredrickson-Andersen model with

k ¼ 1 in d ¼ 1. Dynamic facilitation, imposed by the kinetic

constraints, implies the existence of excitation lines which can

branch and coalesce. The physics changes from a homogeneous

description at high temperatures to a strongly spatially and tempo-

rally heterogeneous dynamics at low temperatures when mobility is

sparse. From Berthier and Garrahan, 2003b.

618 Ludovic Berthier and Giulio Biroli: Theoretical perspective on the glass . . .

Rev. Mod. Phys., Vol. 83, No. 2, April–June 2011



temperature (or unit density for lattice gases), which can thus
be considered as a dynamic critical point (Whitelam et al.,
2004), as we now discuss.

4. Main predictions and results

Within the facilitation approach and, hence, KCMs, ther-
modynamic properties are trivial, and the interesting physics
is in the dynamics. As a consequence, nontrivial predictions
and results concern the dynamical behavior, and, more pre-
cisely, dynamic heterogeneity, as was realized soon after their
introduction (Harrowell, 1993; Franz et al., 2002; Garrahan
and Chandler, 2002). Remarkably, virtually all the aspects
related to dynamic heterogeneity mentioned in Sec. III can be
investigated and qualitatively or quantitatively rationalized in
the language of KCMs.

Detailed numerical and analytical studies have indeed
shown that in these systems, nonexponential relaxation pat-
terns stem from a spatial, heterogeneous distribution of time
scales, directly connected to a distribution of dynamic length
scales (Garrahan and Chandler, 2002; Ritort and Sollich,
2003; Toninelli et al., 2004; Whitelam et al., 2005; Pan
et al., 2005; Jack et al., 2006).

A decoupling phenomenon between the structural relaxa-
tion time and the self-diffusion coefficient naturally appears
in KCMs and can be shown to be a direct, quantifiable,
consequence of the dynamic heterogeneity (Jung et al.,
2004). In fact, two distinct time scales emerge in the facili-
tation and KCMs description which both characterize the
dynamics. One is the persistence time tp, which corresponds

to the typical time a tracer particle has to wait to start moving,
given an arbitrary start time for observation. The second time
scale is the exchange time tx, which is the typical time
between elementary moves. The average values of tp and

a2=htxi are, respectively, estimates of the relaxation time ��
and the self-diffusion coefficient D, with a the typical size of
particle jumps. As a consequence one finds D�� ’ htpi=htxi.
In some KCMs, this ratio increases substantially when de-
creasing the temperature; thus these models exhibit a sub-
stantial decoupling phenomenon.

This is due to the fact that bubbles in space-time typically
persist for the time scale of structural relaxation, while
particles diffuse faster by ‘‘surfing’’ on the excitation lines
that surround these bubbles. Another way to understand the
decoupling is to express htpi and htxi as distinct moments of

the distribution of waiting time between jumps performed by
a tracer particle, which do not coincide when the distribution
broadens with decreasing temperatures (Tarjus and Kivelson,
1995; Hedges et al., 2007; Heuer, 2008).

The above description of self-diffusion in fluctuating mo-
bility fields such as shown in Fig. 16 has several nontrivial
consequences such as, for instance, a strongly non-Fickian
relation between time scales and length scales at distances
smaller than a crossover length scale which grows when
temperature decreases and decoupling increases (Berthier
et al., 2005), as observed in numerical simulations of super-
cooled liquids (Berthier, 2004).

Another useful aspect of KCMs is that multipoint suscep-
tibilities and multipoint spatial correlation functions such as
the ones defined in Eqs. (22) and (20) can be studied in
greater detail than in molecular systems, to the point that

scaling relations between time scales, length scales, and
dynamic susceptibilities can be established (Franz et al.,
2002; Whitelam et al., 2004; Pan et al., 2005; Toninelli
et al., 2005; Chandler et al., 2006; Berthier et al., 2007b).

The type of scaling behavior with the temperature or the
density depends on the details of the model at hand, in
particular, whether it has or does not have a transition.
However, a unified qualitative description is still possible in
terms of the defect motion description given in the previous
section (Toninelli et al., 2005). On small time scales com-
pared to ��, all sites visited by the same defect are dynami-
cally correlated. As a consequence, the dynamical correlation
length �4ðtÞ increases as �4ðtÞ � ðDtÞ1=z and the correspond-
ing four-point susceptibility �4ðtÞ ’ �dðDtÞ2dF=z, which is the
square of the volume of the regions visited by the same defect
times the defect density. When t is comparable to the relaxa-
tion time ��, one finds �4ð��Þ ’ 1=�d which, as expected,
increases when decreasing the temperature and increasing the
density. On longer time scales, �4ð� ��Þ decreases with t,
because a site can now be visited by more than one defect,
and dynamical correlations are progressively erased. As a
direct example of this behavior, we show in Fig. 17 the time
and temperature evolution of �4ðtÞ for the noncooperative
(k ¼ 1) Fredrickson-Andersen model in three dimensions
(Whitelam et al., 2005), where the above scaling relations
hold (Toninelli et al., 2005).

In summary, relaxation time scales and dynamic length
scales are found to diverge with well-defined critical laws
(Whitelam et al., 2004; Jack et al., 2006), which, however,
are model dependent. The discovery of such ‘‘dynamic criti-
cality’’ has proven useful, since it actually triggered several
works aimed at computing similar laws within competing
theories. It also implies the possibility that some universal
behavior might truly emerge in the physics of supercooled
liquids, precisely of the type observed numerically in Fig. 10,
and experimentally in Fig. 11.

As suggested by the space-time representations shown
in Fig. 16, dynamical heterogeneity studies are mostly

FIG. 17 (color online). Time evolution of �4ðtÞ for different

temperatures for the noncooperative (k ¼ 1) Fredrickson-

Andersen model in three dimensions. Temperature decreases from

left to right. The peak height increases at low T as �4ð��Þ � 1=�d �
expðJ=TÞ, while the relaxation time scales as �� � expð2J=TÞ, such
that �4ð��Þ � �1=2� , as shown with a dotted line, while the approach

to the peak is diffusive �4ðtÞ � t2 (dashed line).
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concerned with distributions of dynamical quantities, most
often through their variance; recall the definition of �4 in
Eq. (22). However, there is useful information also in the
overall shape of the distributions. It seems reasonable that
regions where the correlation function is large possess rather
stable structure at the molecular level, while regions where it
is small correspond to relatively unstable local structure. To
identify such trajectories over an observation time tobs, it is
useful to define a measure of dynamical activity, for example
(Hedges et al., 2009),

KðN; tobsÞ ¼
XN
i¼1

Xtobs=�t
j¼1

jriðtjÞ � riðtj � �tÞj2; (69)

where riðtÞ is the position of particle i at time t and the
tj ¼ j�t are equally spaced times. For large N and tobs, the

distribution of K becomes sharply peaked about its average
hKi. In general, for large N and tobs, one expects the distri-
bution of K to have the form

PðKÞ ’ exp½�NtobsfðK=NtobsÞ�; (70)

where the function fðkÞ resembles a free-energy density.
In some KCMs (Merolle et al., 2005), the distribution

PðKÞ has a characteristic shape, skewed toward small activity,
with an apparently exponential tail. Further, on estimating
fðkÞ from this plot, there is a range of K over which fðkÞ is
nonconvex [that is, f00ðKÞ< 0]. Within such a framework,
nonconvexity of fðKÞ has a direct interpretation as a ‘‘dy-
namical phase transition’’ in the system (Garrahan et al.,
2009). The existence of these phase transitions has been
proven in simple models (Garrahan et al., 2009), and nu-
merical results for Lennard-Jones model liquids are also
consistent with the existence of such a transition (Hedges
et al., 2009), which also exists in mean-field models where
RFOT theory of Sec. IV.B applies (Jack and Garrahan, 2010).
This leads to the hypothesis in which the nature of the
dynamically heterogeneous fluid state could be generically
interpreted in terms of coexistence between an active liquid
and inactive ideal glass states, which seems to suggest in-
triguing connections to the mean-field picture based on the
existence of numerous metastable states.

5. Current status of the facilitation approach

We conveyed the idea that despite the large number of
distinct KCMs capturing the idea of dynamic facilitation,
these models are characterized by a common physics, based
on the propagation of some rare defects. Quantitatively, how-
ever, different models behave quite differently. The variety of
physical outcomes obtained from the variety of models and
kinetic rules has proven useful, as it has widened the spectrum
of all the possible behaviors that real material could display.
Thus, in the recent effort aimed at devising tools to quantify
and understand dynamic heterogeneity in glass formers, as
described in Sec. III, KCMs have played a leading role.

As far as building a unique theory for the glass transition is
concerned, this variety is also a source of worry since it is
difficult to obtain a unified description: Many models do not
have a glass transition at finite temperature, but some do.
Some models seem to describe strong glass formers, while
others are better for fragile materials. Quantitative results

about the behavior of high-order correlation functions or

decoupling phenomena quite strongly depend on the chosen

model; the value of an upper critical dimension qualifying the

strength of fluctuations is also different from one model to

another. At the moment, it is not clear whether or not one of

these models should be preferred to the others, since there

exists no systematic coarse-graining procedure to represent a

molecular model with continuous degrees of freedom in terms

of a lattice model with no interactions and kinetic constraints

(Vogel and Glotzer, 2004; Downton and Kennett, 2007). Thus,

the choice of a ‘‘reference’’ model to fit real data is an

ambiguous issue, which deserves more work.
It is interesting that the theoretical status of the dynamic

facilitation approach is almost opposite to that of the RFOT

theory, since there are several well-defined finite-dimensional

theoretical models capturing the idea of dynamic facilitation

which can be thoroughly understood, but none of them can be

derived from (even approximate) microscopic calculations.

By contrast, RFOT theory is supported by several micro-

scopic approaches, but theory is not confirmed within the

framework of finite-dimensional models. This comparison

raises the following question: Is it possible to obtain more

microscopic theoretical insights from the dynamic facilitation

approach beyond qualitative or scaling considerations? This

absence of a microscopic derivation or at least of some

empirical procedure to back these ideas makes the approach

prone to criticism.
The idea that all thermodynamic aspects are unimportant

implies that the facilitation approach has little to say about the

thermodynamic behavior of glass formers close to Tg. A

possible coincidence between VFT and Kauzmann tempera-

tures T0 and TK is not expected (except if they are both zero),

nor can the dynamics be deeply connected to thermodynam-

ics, as in Adam-Gibbs relations. Some view this as a major

flaw (Biroli et al., 2005), while within the KCM approach,

one is forced to disregard the significance of thermodynamics

(Chandler and Garrahan, 2005, 2010). This is certainly the

point where KCMs and RFOT theory differ most evidently.

Even though the dynamics of KCMs shares similarities with

systems characterized with a complex energy landscape

(Berthier and Garrahan, 2003a; Whitelam and Garrahan,

2004) and KCMs even show a MCT-like transition on Bethe

lattices (Toninelli et al., 2004; Sellitto et al., 2005), their

thermodynamical behaviors are widely different from RFOT

theory, as was recently highlighted by Jack and Garrahan

(2005). It will be interesting to follow how the facilitation

approach will handle the recent surge of interest in the defi-

nition and measurements of static point-to-set correlations,

which are nonexistent in KCMs in the defect formulation.
A second central assumption made in KCMs is that mo-

bility can neither be spontaneously created nor destroyed

unless adjacent regions are mobile, or, at least, that events

violating this constraint are rare and become rarer when

approaching the glass transition (Garrahan and Chandler,

2003; Elmatad et al., 2010). Without these assumptions,

KCMs become trivial models where death and birth rates

for mobility ultimately control the dynamics, and the features

described in previous sections become irrelevant. The fact

that some degree of facilitation is present in the dynamics is

reasonable and partially proven by numerical simulations
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(Vogel and Glotzer, 2004; Downton and Kennett, 2007;

Candelier et al., 2010; Chandler and Garrahan, 2010).

However, the facilitation assumption goes much farther and

states that almost nothing else is possible and that rare events,

violating the kinetic constraints, become rarer approaching

Tg, so that the mobility is effectively nearly conserved. There

are at present no data supporting this assumption. A recent

experimental analysis of a granular system close to its glass

transition actually suggests the opposite behavior, i.e., that

mobility becomes less conserved and facilitation plays a

decreasing role when the transition is approached

(Candelier et al., 2009). Certainly, this is an important issue

to be addressed in the future in order to validate or disprove

this theoretical approach to the glass transition. It would be

interesting, in particular, to repeat the analysis of Candelier

et al. (2009) in a model of supercooled liquid.

D. Geometric frustration, avoided criticality, and Coulomb

frustrated theories

1. Physical picture and simple models

In all of the above models, ‘‘real space’’ was present in the

sense that special attention was paid to different length scales

characterizing the physics of the models that were discussed.

However, apart from the ‘‘packing models’’ with hard-core

interactions, no or little attention was paid to the geometric

structure of local arrangements in molecular liquids close

to a glass transition. This is generally justified using concepts

such as ‘‘universality’’ or ‘‘simplicity,’’ meaning that one

studies complex phenomena using simple models, a typical

statistical mechanics perspective. However, important ques-

tions remain: What is the liquid structure within mosaic

states? What distinguishes the local structure of different

states? What is the geometric origin of the defects invoked

in KCMs? Are they similar to defects (disclinations, disloca-

tions, vacancies, etc.) found in crystalline materials?
There exists a line of research which attempts to provide

answers to these questions (Tarjus et al., 2005). It makes

heavy use of the concept of geometric frustration. Broadly

speaking, frustration refers to the impossibility of simulta-

neously minimizing all the interaction terms in the energy

function of the system (Toulouse, 1977). Frustration might

arise from quenched disorder (as in the spin glass models

described above), but liquids have no quenched randomness.

In that case, frustration has a purely geometric origin. It is

attributed to a competition between a short-range tendency to

spatially extend a locally preferred order and global con-

straints that prevent the periodic tiling of space with this local

structure.
This can be illustrated by considering once more the

packing problem of spheres in three dimensions (Sadoc and

Mosseri, 1999). In that case, the locally preferred cluster of

spheres is an icosahedron. However, the fivefold rotational

symmetry characteristic of icosahedral order is not compat-

ible with translational symmetry, and formation of a periodic

icosahedral crystal is impossible (Frank, 1952). By contrast,

disks on a two-dimensional plane are arranged locally as a

regular hexagon, with one atom at the center and six neigh-

bors at the vertices. If periodically repeated, this structure can

then form a triangular lattice that can fill space with no
influence of geometric frustration.

The geometric frustration that affects spheres in three-
dimensional Euclidean space can be relieved in curved space
(Nelson, 2002). This corresponds, for instance, to studying
particles on a sphere, or on the hyperbolic plane (a surface of
constant negative curvature). Indeed by changing the metrics
and topology of the underlying space it may become possible
for the local order to extend over larger length scales. One can
fruitfully exploit this idea in two ways. The first possibility is
to start from a curved space carefully chosen such that
geometric frustration is entirely absent for the considered
system. The structure of the system minimizing the energy
can then be determined and serves as a useful reference state.
Changing the space curvature to go back to the physical
Euclidean space then generates topological defects that dis-
turb the initially perfect order. Detailed analysis along those
lines showed, in particular, that a sphere packing possesses, in
Euclidian space, topological defects (mainly disclination
lines), as the result of forcing the ideal icosahedral ordering
into a flat space. Thus, the relevant topological defects in that
case are one-dimensional objects forming a disordered net-
work, presumably having a complex dynamics. Nelson and
co-workers developed a solid theoretical framework based on
this picture to suggest that the slowing down of supercooled
liquids is due to the slow wandering of these topological
defects (Nelson, 2002), but their treatment remains so com-
plex that few quantitative, explicit results have been obtained,
in particular, concerning the dynamical behavior of the frus-
trated systems (Nelson, 1983).

The picture of sphere packing disrupted by geometric
frustration is appealing and provides handles to attack the
problem of glass formation from an atomistic perspective.
Furthermore, the idea of uniform frustration can be incorpo-
rated into simple models allowing for a more abstract ap-
proach in terms of simple statistical mechanics ideas and
scaling type of approaches (Tarjus et al., 2005). To build
such models, one must be able to identify, and then capture
the physics of geometric frustration. Using the concept of an
ideal long-range ordering in a system of size L in a curved
space, which is then strained back in the three-dimensional
Euclidian space, Kivelson et al. (1995) suggested that the
corresponding free energy should scale as

FðL; TÞ ¼ �ðTÞL2 �	ðTÞL3 þ sðTÞL5: (71)

In this equation, the first two terms express the tendency of
growing local preferred order and they represent, respec-
tively, the energy cost of having an interface between two
phases and a bulk free-energy gain inside the domain. It is
assumed that without the last term long-range order sets in at
T ¼ T�. Geometric frustration is encoded in the third term
which represents the strain free energy resulting from the
frustration. This last term is responsible for the fact that the
transition is avoided. The remarkable feature of Eq. (71) is
the superextensive scaling of the energy cost due to frustra-
tion which opposes the growth of local order; in dimension d
it would scale as L2þd. As a consequence, when L is large, the
last term becomes dominant and thus prevents the extension
of order to the entire space. Thus, the system is broken up in a
patchwork of locally ordered domains separated by domains
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made of topological defects, hence the name of frustration-
limited domains (FLD). Furthermore, minimizing the free
energy per unit volume F=L3, one finds that the characteristic
linear size L� of the patches scales as ð�=sÞ1=3. Since �
increases below T�, one finds that the characteristic size of
the patchwork increases below T� too.

Turning to the dynamics, Kivelson et al. further argued that
dynamics of the system involves restructuring of these do-
mains in a thermally activated manner, using arguments
similar to the ones used within the mosaic picture of RFOT
theory. The typical energy barrier is given by a high-
temperature constant plus a second term �ðL�Þ2, increasing
below T�, which means that the assumption c ¼ 2 is made
from the beginning; see Eq. (61). Using more refined but still
heuristic arguments, Kivelson et al. argued that L� grows as
ð1� T=T�Þ�=K1=2, where K is an adimensional parameter
measuring the strength of frustration, and � is the exponent
governing the growth of the correlation length of the unfrus-
trated transition (K ¼ 0). The corresponding prediction for
the energy barrier is

�ðT < T�Þ ¼ �> þ AT�

K

�
1� T

T�

�
4�
; (72)

where�> is the high-temperature value of the barrier and A is
a positive constant. Furthermore, it has also been argued that
barrier fluctuations lead to typical glassy features such as a
broad distribution of relaxation times or spatially heteroge-
neous dynamics, which can thus be discussed in a phenome-
nological manner (Tarjus and Kivelson, 1995). We refer the
reader to Viot et al. (2000) for more details on these aspects.
An important prediction obtained from scaling considerations
is the variation of the glass fragility with frustration: In this
approach, larger frustration means smaller domain sizes, and
therefore less collective relaxation, yielding smaller fragility.

A complementary route consists of the analysis of rela-
tively simple, finite-dimensional statistical models that sup-
posedly retain the basic physical elements of Eq. (71). We
consider first an interacting spin model, where the magneti-
zation is meant to represent the ‘‘preferred local order,’’
nearest neighbor ferromagnetic interactions the tendency to
local ordering, and longer-ranged antiferromagnetic interac-
tions the opposite effect of the frustration. The following
Hamiltonian possesses, in three dimensions, these minimal
ingredients:

H ¼ �X
hi;ji

Si � Sj þQ
X
i�j

Si � Sj

jxi � xjj ; (73)

where the spin Si occupies the site i at position xi. It can be
shown that the long-range Coulombic interaction plays a role
analogous to the superextensive free energy in Eq. (71). Of
course, such Coulomb frustrated spin models can be for Ising
or multicomponent spins, for hard or soft spins, or general-
ized to different spatial dimensions (Tarjus et al., 2005). For
theoretical studies it is convenient to study field-theoretical
versions of the Hamiltonian (73):

H ¼ 1

2

Z
ddx

�
r0	ðxÞ2 þ ½r	ðxÞ�2 þ u

2
	ðxÞ4

�

þ Q

8


Z
ddx

Z
ddx0

	ðxÞ	ðx0Þ
jx� x0j ; (74)

where the ferromagnetic and Coulombic terms are easily
recognized, and the magnetization 	ðxÞ is now a field.

It is interesting to note that the competition of interactions
acting at different length scales, in fact, describes a larger
body of problems, including the physics of diblock copoly-
mers, magnetic multilayer compounds, Rayleigh-Bénard con-
vection, doped Mott insulators, etc. A well-studied, related
field theory is given by

H¼
Z
ddx

�
1

2
	ðxÞ½r0þk�2

0 ðr2þk20Þ2�	ðxÞþu

4
	ðxÞ4

�
:

(75)

Although this field theory was mainly considered from the
point of view of diblock copolymers (Leibler, 1980) and
Rayleigh-Bénard convection (Swift and Hohenberg, 1977),
it was explicitly considered in the context of the glass prob-
lem by Geissler and Reichman (2003), Schmalian et al.
(2003), and Geissler and Reichman (2004). Dimensional
analysis shows that, in that case, the strength of frustration
is related to k0 through k0 �Q1=4.

This family of statistical models yields a rich physical
behavior, with a complex phase diagram and dynamical
behavior. In the absence of frustration Q ¼ 0, they generally
undergo a second-order phase transition from a paramagnetic
to a ferromagnetic phase, which should be viewed, in this
context, as the analog of the ordering transition occurring in
the curved space relieving the geometric frustration of the
sphere packing. That transition occurs at some finite tem-
perature TcðQ ¼ 0Þ ¼ T�. The presence of frustration Q> 0
generally has dramatic effects whose details depend, how-
ever, on the studied model (Chayes et al., 1996; Nussinov
et al., 1999). The transition can be entirely suppressed
TcðQ> 0Þ ¼ 0 or severely depressed as soon as Q> 0 yield-
ing a genuine discontinuity when Q ! 0. By decreasing T at
small but finite Q, the system gets close to, but narrowly
avoids the critical point at T�. This situation occurs, for
instance, in the OðN ! 1Þ and spherical versions of the
model. In the more canonical Ising case, the situation is
different since the second-order transition occurring for
Q ¼ 0 becomes first order at finite Q, but there is no dis-
continuity of the transition temperature as Q ! 0
(Brazovskii, 1975). At finite Q, the ordered phase is a spa-
tially modulated phase (stripes in d ¼ 2, lamellae in d ¼ 3,
etc.). Interestingly, the limit of stability of the paramagnetic
phase (the spinodal) is lowered down to T ¼ 0, and it is
thus (in principle) possible to supercool the first-order
transition and study the disordered phase down to low
temperatures.

In all cases, therefore, there exists a temperature regime
below the avoided critical point T < T�, where the system is
disordered and the dynamics is potentially affected by the
presence of the frustration. Detailed Monte Carlo studies
show that, for a given frustration strength Q, the dynamics
slows down considerably when T decreases below T�
(Grousson et al., 2001, 2002; Tarjus et al., 2005).
Grousson et al. quantified dynamics using spin-spin autocor-
relation functions CðtÞ ¼ hSiðtÞ � Sið0Þi in a variety of models
(Ising, 5-state spins, and XY models) in three dimensions.
They showed that the time decay of CðtÞ gets nonexponential
at low T and extracts a relaxation time scale that shows
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activated, super-Arrhenius behavior. Remarkably, they also

found that the fragility decreases when frustration increases,

in agreement with the scaling approach of Kivelson et al.

(1995), and simulations of Lennard-Jones models on the

hyperbolic plane (Sausset et al., 2008), suggesting that

Coulomb frustrated spin models do indeed capture an

essential part of the physical behavior of molecular glass

formers.
This view was contradicted in more recent work (Geissler

and Reichman, 2004), where numerical simulations of the

Langevin dynamics of the field theory of Eq. (75) were

reported. The numerical analysis yields results for spin auto-

correlation functions CðtÞ in agreement with those of

Grousson et al.. However, Geissler and Reichman also

measured the time decay of fluctuations of the Fourier

components of the field CkðtÞ ¼ h	ðk; tÞ	ð�k; 0Þi and

found exponential decay for all Fourier modes CkðtÞ �
exp½�t=�ðkÞ�. Therefore, they interpreted the stretched ex-

ponential relaxation reported by Grousson et al. as being the

result of a trivial superposition effect CðtÞ / R
ddkCkðtÞ.

Even more striking was their finding that the relaxation times

�ðkÞ were accurately predicted by a simple dynamical Hartree

approximation mirroring the classic static treatment of the

field theory (75) in Brazovskii (1975). This finding implies

that the dynamical slowing down detected numerically results

from the strong temperature dependence of static correlations

which will eventually yield the system to undergo a first-order

transition toward a modulated phase. This scenario bears little

resemblance with the physics of supercooled liquids, where

dynamics is not obviously driven by simple static correla-

tions, as we emphasized several times in this paper.

2. Current status of the frustration-limited domains theory

We believe that the generic idea of geometric frustration is

an appealing one, because it directly addresses the physics in

terms of the real space at the molecular level. Moreover, it

seems to yield quite naturally the idea that the system organ-

izes itself, at low temperature and finite frustration level into

some mosaic of domains corresponding to some local order

whose size increases, but does not diverge, when T decreases.

Tarjus, Kivelson, and co-workers clearly demonstrate that

such an organization of supercooled liquids into mesoscopic

domains allows one to understand most of the fundamental

phenomena occurring in glass formers (Tarjus et al., 2005).

Our use of the word mosaic, as in RFOT theory, is not

accidental. It was demonstrated in several works

(Schmalian and Wolynes, 2000; Westfahl, Jr. et al., 2001;

Nussinov, 2004) that, when treated as systems with one step

of replica symmetry breaking as discussed in Sec. IV.B.6,

Coulomb frustrated systems such as in Eq. (74) undergo a

Kauzmann transition similar to the one found in mean-field

spin glasses. This is remarkable and suggests that the two

theories may not be so different as they appear at first sight.

The presence of structured domains also connects to ideas,

such as cooperativity, dynamic heterogeneity, and spatial

fluctuations, that directly explain, at least qualitatively, non-

exponential relaxation, decoupling phenomena, or super-

Arrhenius increase of the viscosity. The variation of fragility

with the strength of the geometric frustration is perhaps the

most striking and original prediction stemming from this

approach.
As for the RFOT mosaic picture, direct confirmations of

this scenario from molecular simulations are difficult to

obtain. Two independent routes have been followed recently.

On the one hand, there have been studies focusing on the role

of locally preferred structures. The identification of the lo-

cally preferred structure is, in general, quite difficult (Mossa

and Tarjus, 2006), except when it can be linked to formation

of local icosahedral order. Coslovich and Pastore (2007)

found by numerical simulations of several models of glass-

forming liquids that the increase of icosahedral order upon

supercooling is more rapid and more pronounced for liquids

characterized by a higher fragility. This success of the theory

is tempered by recent simulations (Tanaka et al., 2010) that

suggest instead using different model systems, including

three-dimensional polydisperse hard spheres, that the increas-

ing local order is the hexagonal bond orientational order

(characteristic of the crystal state) and not the icosahedral

one. In yet another recent paper (Pedersen et al., 2010), local

order is again linked with slow structural relaxation but the

interplay between local order and frustrated crystallization

appears much more complicated than originally surmised in

the frustration-limited domain approach. Thus, we are still

far from understanding whether the basic content of this

approach is wrong, correct, or too simplistic to describe

supercooled liquids, and more work is needed to resolve

this issue.
The other route that has been followed consisted of ana-

lyzing a situation similar to the one FLD advocates to happen

for glass formers, such as a two-dimensional monoatomic

Lennard-Jones system on the hyperbolic plane (Sausset and

Tarjus, 2007, 2008; Sausset et al., 2008). The hyperbolic

plane is a two-dimensional surface of constant negative

curvature, and its relevance was suggested earlier by Nelson

and co-workers (Rubistein and Nelson, 1983), but these

numerical studies are technically not straightforward

(Sausset and Tarjus, 2007). In the hyperbolic plane, the

hexagonal crystal order is frustrated. In this setting the

crystal order representsmutatis mutandis the locally preferred

glass order that is conjectured to be frustrated for three-

dimensional glass formers. This provides a concrete example

of a particle model characterized by an avoided phase tran-

sition. Furthermore, by changing the curvature of the space

one can test the predictions on the fragility dependence on

frustration, which is related to the curvature of the plane.

Sausset et al. confirmed numerically that by curving space,

they can prevent crystal ordering, as expected, and that the

low-temperature dynamical behavior of the liquid they obtain

is sluggish and has a behavior similar to glass formers: Time-

correlation functions decay in a two-step manner with a final

decay which is not exponential, the dynamics is spatially

heterogeneous, and decoupling occurs (Sausset and Tarjus,

2008). Interestingly, they also found that the fragility of the

glass formers they obtained decreases when frustration

grows (Sausset et al., 2008). The physical explanation is

that increasing the frustration also increases the density of

topological defects, so that the putative collective behavior

responsible for super-Arrhenius relaxation at small frustration

becomes shorter ranged when frustration increases.
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In conclusion, this approach to the glass transition is
based on an appealing real space description. As others, it
is compatible with several experimental results, and it has
passed nontrivial benchmark tests. A possible criticism,
which we also formulated in the case of the facilitation
approach, is that no quantitative or microscopic results be-
yond scaling have been obtained, and it is not even clear how
they could actually be derived. In fact, approximate analytical
approaches to FLD, that could have provided quantitative
predictions, have found back results consistent with RFOT
theory. In order to further test the FLD approach, it would be
interesting to have more detailed, quantitative, testable pre-
dictions regarding the behavior of thermodynamic (e.g.,
specific heat) and dynamic (e.g., four-point dynamic suscep-
tibility) observables from this perspective; see Sausset and
Tarjus (2010) for recent work in this direction.

V. OFF-EQUILIBRIUM DYNAMICS: AGING AND

RHEOLOGY

A. Why aging? Phenomenology and simple models

We have dedicated most of the above discussion to physics
taking place when approaching the glass transition at thermal
equilibrium. We discussed a rich phenomenology and serious
challenges for both our numerical and analytical capabilities to
account for these phenomena. Most people, however, focus on
the properties of glasses, i.e., on temperatures below the glass
transition, so deep in the glass phase that the material seems to
be frozen forever in an arrested amorphous state, endowed with
enough mechanical stability for a glass to retain, say, the liquid
it contains. One could think that in this state of matter the
dynamical evolution is arrested. Is it true? The answer is clearly
‘‘no.’’ There is still life (and physics) below the glass transition.
We recall that for molecular glasses, Tg is defined as the

temperature below which equilibrium relaxation is too slow
to occur within a given experimental time scale. Much below
Tg, therefore, the equilibrium relaxation time scale is so astro-

nomically large that thermal equilibrium is out of reach. One
enters, therefore, the realm of off-equilibrium dynamics. A full
physical understanding of the nonequilibrium glassy state re-
mains a central challenge (Young, 1998; Barrat et al., 2003).

An immediate consequence of studying materials in a time
window smaller than equilibrium relaxation time scales is
that the system can, in principle, remember its complete
history, a most unwanted experimental situation since all
details of the experimental protocol may then matter. The
simplest protocol to study aging phenomena in the glass
phase is quite brutal (Struik, 1978): Take a system equili-
brated above the glass transition and suddenly quench it to a
low temperature. The system then slowly attempts to reach
thermal equilibrium, even though it has no hope to ever get
there. Aging means that the system never forgets the time tw
spent in the low-temperature phase, its ‘‘age,’’ and that any
measurement started at time tw might have an outcome that
explicitly depends on the value of tw, unlike the situation at
thermal equilibrium.

This implies, in particular, that any physical property of the
glass becomes an age-dependent quantity in an aging protocol
and more generally dependent on how the glass was prepared.

One can easily imagine using this property to tune mechani-
cal or optical characteristics of a material by simply changing
the way it is prepared, such as how fast it is cooled to the
glassy state. A striking experimental realization of this idea
was recently provided for organic glasses prepared in two
different ways (Swallen et al., 2007). Ediger and collabo-
rators compared the properties of glasses prepared in a ca-
nonical way (slow cooling of bulk samples) to the ones of
samples grown using slow vapor deposition at about 50 K
below the glass transition. They found that the latter samples
are much more ‘‘stable,’’ in the sense that they behave as
canonically prepared samples with a large effective aging
time (40 years for some samples).

Coming back to the simplest situation of a sudden quench
to low temperature, it is found that one-time physical observ-
ables such as density or energy evolve slowly with the age of
the sample. In polymer glasses, for instance, the volume of
the sample slowly decreases with tw (Struik, 1978). Power
laws with small exponents vðtwÞ � v1 þ ðt0=twÞ� or even
logarithmic relaxations vðtwÞ � v0 � v1 logðtw=t0Þ are fre-
quently reported. In some cases, the time evolution of these
observables is so slow that aging behavior is not obviously
revealed by their study and the system might superficially
appear to have reached equilibrium.

In order to show that the system never equilibrates, two-
time quantities, such as density-density or dipole-dipole cor-
relation functions, are much more useful. A typical example
is presented in Fig. 18 where the self-part of the intermediate
function in Eq. (6) is shown for a Lennard-Jones molecular
liquid at low temperature. Immediately after the quench, the
system exhibits a relatively fast relaxation: Particles still
move substantially. However, when the age of the system
increases, dynamics slows down and relaxation becomes
much slower. The relaxation then separates into two well-
defined ‘‘time sectors.’’ For short-time differences t� tw 
tw, which corresponds to short-time dynamics of the amor-
phous structure, correlation functions at different tw super-
pose. However, for large time differences t� tw � tw,

FIG. 18 (color online). Aging dynamics in a Monte Carlo study of

a Lennard-Jones glass-forming liquid at low temperature. The

system is quenched at time tw ¼ 0 to a low temperature which is

then kept constant. Two-time self-intermediate scattering functions

are then measured for 20 logarithmically spaced waiting times tw
from tw ¼ 0 to tw ¼ 105 (from left to right). The relaxation

becomes slower when tw increases: The system ‘‘ages.’’
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different curves relax at different rates, implying that struc-
tural relaxation becomes slower when the system gets older.
Eventually, when tw becomes large, the relaxation becomes
too slow to be followed in the considered time window and
the system seems frozen on that particular time scale. For
practical purposes, it has now become a glass.

A striking feature conveyed by these data is that an aging
system not only remains out of equilibrium forever, but its
typical decorrelation or relaxation time3 is, in fact, directly set
by its own age tw, which also separates short-time, equili-
brated dynamics from long-time, aging relaxation. Therefore,
although the system itself has no intrinsic characteristic time
scales for relaxation, it remains able to relax during an aging
experiment in a finite time which is set by the experimental
protocol. More quantitatively, it is found in the simplest cases
that two-time correlators Cðt; twÞ, or equivalently response
functions, can be decomposed in the following way:

Cðt; twÞ � Ceqðt� twÞ þ Cagingðt=twÞ; (76)

in which case the relaxation time ��ðtwÞ is directly propor-
tional to tw. This ‘‘time-aging time’’ superposition principle is
reminiscent of the more standard ‘‘time-temperature’’ super-
position principle often found at thermal equilibrium. It is
found in many (but not all) polymeric liquids that �� grows
sublinearly with tw,

��ðtwÞ � t
�
w; (77)

where� is the so-called aging exponent (Struik, 1978), which
usually takes value in the range � 2 ½12 ; 1� (� is equal to 0.8

in Fig. 18). The simple description (76) has been challenged
by dielectric experiments of the aging of molecular liquids
(Leheny and Nagel, 1998; Lunkenheimer et al., 2005;
Richert, 2010). These studies revealed that the aging part of
the correlation function cannot be rescaled just by changing
the relaxation time, i.e., the time-aging superposition is not
always satisfied. One has to stress, however, that in experi-
ments one can access only the behavior at frequency much
higher than the inverse of the decorrelation time. This is due
to the fact that the quench can be only performed at finite
speed, of the order of 1 K=min , in order to avoid temperature
gradients in the sample. As a consequence, when the final
temperature is reached, the decorrelation time has already
grown so much that it is out of the experimental window.
Thus, it is not really known whether the violation of the
time-aging time superposition principle affects only the
high frequency tails of the dielectric susceptibility or whether
Eq. (76) is incorrect even for t of the order of the decorrela-
tion time for many glassy liquids.

Since the complete history of a sample in the glass phase
matters, there is no reason to restrain experimental protocols to
the simple aging experiment mentioned above. Indeed, exper-
imentalists investigated scores of more elaborated protocols
that revealed an incredibly rich, and sometimes quite unex-
pected, physics (Young, 1998), an old tradition in the field of
polymer glasses (Kovacs, 1963; Struik, 1978). In particular,

striking ‘‘memory’’ and ‘‘rejuvenation’’ effects are observed
during temperature cycling experiments (Réfrégier et al.,
1987) (one can also imagine applying an electric field or a
mechanical constraint, be they constant in time or sinusoidal,
etc.). These two effects were first observed in spin glasses, but
the protocol was then repeated in many different materials,
from polymers (Bellon et al., 2000; Fukao and Sakamoto,
2005; Montes et al., 2006) and organic liquids (Leheny and
Nagel, 1998; Yardimci and Leheny, 2003) to disordered ferro-
electrics (Doussineau et al., 1999).

In addition to being elegant and intriguing, such protocols
are relevant because they probe more deeply the dynamics of
aging materials, allowing one to ask more precise questions
beyond the simplistic observation that this material displays
aging. Moreover, the observation of similar effects in many
different glassy materials implies that these effects are proba-
bly quite generic to systems with slow dynamics. Interesting
also are the subtle differences possibly observed from one
material to another. A large body of experimental, numerical,
and theoretical papers have been devoted to this type of
experiments; see Berthier et al. (2003) for an extensive
review on this topic.

A popular interpretation of the aging phenomenon was
obtained by considering trap models (Bouchaud, 1992;
Monthus and Bouchaud, 1996). In this picture, reminiscent
of the Goldstein view of the glass transition mentioned
above (Goldstein, 1969), the system is described as a single
particle evolving in a complex energy landscape with a broad
distribution of trap depths. Thus, this is a paradigmatic mean-
field approach. In particular, it is not easy to be specific about
what the ‘‘traps’’ of the ‘‘rugged landscape’’ represent in
physical terms, although much effort was recently dedicated
to establish connections between landscape and real space
pictures (Berthier and Garrahan, 2003a; Bertin, 2005; Heuer,
2008).

The simplest version of the trap model makes no reference
to a spatial organization of the traps and, therefore, does not
take into account possible interactions between traps
(Monthus and Bouchaud, 1996). The dynamics of the model
is written in terms of an evolution equation for PðE; tÞ, the
probability that the system is in a trap of depth E at time t, and
it is assumed that dynamics is thermally activated:

@PðE; tÞ
@t

¼ ��0e
��EPðE; tÞ þ �ðtÞ�ðEÞ; (78)

where �ðtÞ ¼ �0

R
dEe��EPðE; tÞ is the average hopping rate

at time t, with �0 being an attempt frequency. The complexity
of the glassy material is now hidden into the probability
distribution of the trap depth �ðEÞ. In Bouchaud’s trap model,
an exponential distribution of trap depth is assumed,

�ðEÞ ¼ 1

kBT0

exp

�
� E

kBT0

�
; (79)

but the Gaussian trap model was also often considered in the
context of the equilibrium dynamics of supercooled liquids
(Bässler, 1987; Dyre, 1995; Monthus and Bouchaud, 1996;
Heuer, 2008). In the perspective of aging studies, the expo-
nential trap distribution is more relevant because it induces a
broader distribution of trapping times �,

3This is sometimes called the relaxation time. It does not mean

that the system relaxes to equilibrium after this time but just that its

structure changes substantially, i.e., decorrelates, over this time

scale.
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’ð�Þ � �0

ð�0�Þ1þT=T0
: (80)

Remarkably, the first moment of this distribution diverges
at low temperatures T < T0 so that the system undergoes a
true glass transition with a relaxation time scale which di-
verges at T0. In contrast, the Gaussian distribution does
not lead to ergodicity breaking (i.e., aging is interrupted at
long times) and it is thus mostly used in equilibrium studies,
where it seems to account well for properties of the potential
energy landscape accessed in computer simulations (Heuer,
2008).

When the system is suddenly quenched below T0, aging
behavior arises because the system visits traps that are in-
creasingly deep when tw increases, corresponding to more
and more stable states. Therefore, it takes more and more
time for the system to escape, and the dynamics slows down
with time, in a manner reminiscent of Fig. 18. More quanti-
tatively, one can compute two-time correlation functions,
such as the persistence function Cðt; twÞ ¼

R
dEPðE; twÞ�

exp½�ð�0e
��EtÞ�, which represents the probability the sys-

tem has not changed trap between times tw and tþ tw:

Cðt;twÞ¼sinð
xÞ



Z 1

t=ðtþtwÞ
ð1�xÞT=T0�1x�T=T0dx¼Cðt=twÞ;

(81)

which represents, therefore, an explicit example where the
aging exponent defined in Eq. (77) can be computed exactly,
� ¼ 1, and correlation functions are scaling functions of the
rescaled time t=tw, as in Eq. (76).

In Eq. (81), the correlation function is computed as an
ensemble average. Important physical insights are also pro-
vided by trap models beyond averages at the level of the
fluctuations, since the existence of waiting time distributions
with long tails indeed implies that time series are typically
highly intermittent, and that run-to-run fluctuations are also
large, suggesting that it is interesting to consider also statistical
distributions of the fluctuations. For instance, one can easily
imagine that van Hove functions in aging systems described by
trap models are far from Gaussian (Barkai and Cheng, 2003),
and that nonergodic effects can be quite strong in systems
described by Eq. (80); see He et al. (2008) for an example and
Margolin and Barkai (2006) for a more formal approach.

B. Mean-field aging and effective temperatures

Theoretical studies of mean-field glassy models have pro-
vided important insights into the aging dynamics of both
structural and spin glasses (Cugliandolo and Kurchan, 1993,
1994). We already encountered these models in Sec. IV.B.1.
They provided a simple setting to study glassy models with a
rugged free-energy landscape. As a consequence it is natural
to analyze their aging dynamics and use the corresponding
results as a mean-field guide line for real systems.

In Sec. IV.B.1, we described several alternative theoretical
paths leading to essentially similar results for the equilibrium
properties of glasses, which could all be described as ‘‘mean
field.’’ Because aging studies now directly deal with states
that are nonstationary, protocol dependent, and far from

equilibrium, not all of the mean-field equilibrium approaches
are easily extended to low-temperature aging studies. We
expect, for instance, that mode-coupling theory should be
able to treat such time-dependent phenomena, but this seems
to be technically quite involved (Latz, 2000), and a compete
extension of MCT to the aging regime remains an open
problem. For completeness, we mention a recent work, where
the phenomenological RFOT mosaic scaling arguments were
used to also describe nonequilibrium relaxation below the
glass transition (Lubchenko and Wolynes, 2004). This frame-
work makes contact with the older theoretical approach of
Nayaranaswamy, Moynihan, and Tool (Tool, 1946;
Narayanaswamy, 1971; Moynihan et al., 1976), but it also
predicts important deviations from their findings.

Even by focusing on fully connected disordered models,
often described as ‘‘simple’’ models, we note that it took
several years to derive a proper asymptotic solution of the
long-time dynamics for a series of mean-field spin glasses
(Cugliandolo, 2003). These results then triggered an enor-
mous activity (Crisanti and Ritort, 2003) encompassing theo-
retical, numerical, and also experimental work trying to
further understand these results, and to check in more realistic
systems whether they have some reasonable range of appli-
cability beyond mean field. This large activity, by itself,
easily demonstrates the broad interest of these results.

Mathematically, understanding the aging dynamics of
mean-field glass models means solving a closed set of dy-
namical equations. For concreteness, consider the following
spin glass Hamiltonian (Nieuwenhuizen, 1995):

H ¼ � X1
p¼2

X
j1<���<jp

Jj1���jpsi1 � � � sip ; (82)

where siði ¼ 1; . . . ; NÞ are spin variables interacting through
coupling constants which are random Gaussian variables of
zero mean and variance p!J2p=ð2Np�1Þ. This model is a

straightforward generalization of the p-spin model of
Eq. (40). We consider soft spin variables, which are real
variables satisfying the spherical constraint

P
is

2
i ¼ N.

Because of the mean-field nature of the Hamiltonian (82), a
closed set of dynamical equations involving two-time corre-
lation and response functions can be derived (Cugliandolo,
2003). Defining

Cðt; twÞ ¼ 1

N

XN
i¼1

hsiðtÞsiðtwÞi;

Rðt; twÞ ¼ 1

N

XN
i¼1

@hsiðtÞi
@hiðtwÞ

��������hi¼0
;

(83)

where hi is a magnetic field that couples to spin si, and

gðxÞ ¼ 1

2

X1
p¼2

J2px
p; (84)

one gets the time evolution of the two-time dynamic functions
following a quench from a completely disordered state at
tw ¼ 0:
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@Cðt; twÞ
@t

¼��ðtÞCðt; twÞ þ 2TRðt; twÞ

þ
Z tw

0
dt0DðCðt; t0ÞÞRðtw; t0Þ

þ
Z t

0
dt0�ðt; t00ÞCðt00; twÞ;

@Rðt; twÞ
@t

¼��ðtÞRðt; twÞ þðt� twÞ

þ
Z t

tw

dt0�ðt; t0ÞRðt0; twÞ;

�ðtÞ ¼ Tþ
Z t

0
dt0½DðCðt; t0ÞÞRðt; t0Þ þ�ðt; t0ÞCðt; t0Þ�;

(85)

where the kernels are defined as

Dðt; twÞ ¼ g0½Cðt; twÞ�;
�ðt; twÞ ¼ g00½Cðt; twÞ�Rðt; twÞ:

(86)

The unique feature that makes the dynamics of mean-field
spin glass models soluble is that the dynamical equations (85)
are closed and only involve two-point functions. This great
simplification stems from the fully connected nature of the
Hamiltonian (82), and allows one to formulate an exact
asymptotic solution for the dynamics of mean-field models
(Cugliandolo and Kurchan, 1993).

A comparison with Eq. (42) immediately reveals why the
aging regime is much harder to treat analytically, since one
has to face two difficulties. First, two-time correlation func-
tions now depend on both their arguments Cðt; twÞ �
Cðt� twÞ. Second, the equations of motion (85) in the aging
regime not only involve time correlations, but also time-
dependent response functions. At thermal equilibrium re-
sponse and correlations are not independent, since the
fluctuation-dissipation theorem (FDT) relates both quantities,

Rðt; twÞ ¼ 1

T

@Cðt; twÞ
@tw

: (87)

Indeed, imposing both FDT and time translational invariance
in Eqs. (85) yields the much simpler Eq. (49) for the p-spin
model.

The solution to Eqs. (85) has been reviewed in great detail
before (Cugliandolo, 2003), so we only briefly describe the
most striking physical outcomes. As mentioned in
Sec. IV.B.1, in these mean-field models, thermal equilibrium
is never reached when the quench is performed below a
critical temperature Tc, below which the relaxation time is
infinite. It can be shown that aging proceeds forever by
downhill motion in an increasingly flat free-energy landscape
(Kurchan and Laloux, 1996), with subtle differences between
spin glass and structural glass models. In both cases, however,
time translational invariance is broken, and two-time corre-
lation and response functions explicitly depend on both their
time arguments. When gðxÞ contains a single term with
p > 2, as, for instance, in the spherical p-spin model, it can
be shown that two-time correlation functions take the form
(Cugliandolo, 2003; Andreanov and Lefèvre, 2006)

Cðt; twÞ � Ceqðt� twÞ þ C
�
hðtÞ
hðtwÞ

�
;

hðtÞ ¼ expðt1��ðTÞÞ;
(88)

where �ðTÞ is an exponent that cannot be computed analyti-
cally. Numerical solutions show that 0<�ðTÞ< 1 and
�ðT ! 0Þ ! 1. The scaling form (88) is appealing since it
is similar to the empirical form in Eq. (76) and provides an
explicit example, where the use of the aging exponent �
defined in Eq. (77) and introduced by Struik (1978) is analyti-
cally justified. From a broader perspective, it is interesting to
note that the exact dynamic solution of the equations of
motion for time correlators (Kim and Latz, 2001) displays a
behavior in strikingly good agreement with the numerical
results reported for structural glasses, e.g., in Fig. 18.

Note that a more complex time dependence for Cðt; t0Þ can
be obtained for some mean-field glassy systems. These gen-
erally display a phenomenology reminiscent of spin glasses
and not structural glasses (the transition is continuous, the
spin glass susceptibility diverges, etc.). This is, for example,
the case of the ‘‘p ¼ 2þ 4 model’’ for which gðxÞ takes a
more complex form. In these cases the scaling form with a
single function hðtÞ in Eq. (88) does not hold anymore, but
has to be generalized to include a continuous hierarchy of
such functions. Physically, this implies that the relaxation of
correlation functions in the aging regime is associated with an
infinite number of aging time scales, which all diverge with
the age of the system.

The temporal behavior of time-correlation functions al-
ready shows that mean-field spin glass models display a rich
aging phenomenology. In aging systems, however, there is no
reason to expect the FDT in Eq. (87) to hold and both
correlation and response functions carry, at least in principle,
distinct physical information. Again, the asymptotic solution
obtained for mean-field models quantitatively establishes that
the FDT does not apply in the aging regime. The solution also
shows that a generalized form of the FDT holds at large
waiting times (Cugliandolo and Kurchan, 1993). This gener-
alized form of the FDT reads

Rðt; twÞ ¼ Xðt; twÞ
T

@Cðt; twÞ
@tw

; (89)

which defines Xðt; twÞ, the so-called fluctuation-dissipation
ratio (FDR). At equilibrium, correlation and response func-
tions are time translational invariant and equilibrium FDT
imposes that Xðt; twÞ ¼ 1 at all times. A parametric
fluctuation-dissipation (FD) plot of the step response or
susceptibility,

�ðt; twÞ ¼ T
Z t

tw

dt0Rðt; t0Þ; (90)

against

�Cðt; twÞ ¼ Cðt; tÞ � Cðt; twÞ; (91)

is then a straight line with unit slope. These simplifications do
not necessarily occur in a nonequilibrium system. But the
definition of an FDR through Eq. (89) becomes significant for
mean-field aging systems (Cugliandolo and Kurchan, 1993,
1994). In mean-field spin glass models the dependence of the
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FDR on both time arguments is only through the correlation
function,

Xðt; twÞ � xðCðt; twÞÞ; (92)

valid at large wait times, tw ! 1.
For mean-field structural glass models (such as the p-spin

model with p > 2), time-correlation functions display a two-
step relaxation process as in Eq. (88). Correspondingly, the
simplification (92) is even more spectacular since the FDR is
shown to be characterized by only two numbers instead of a
function, namely, X � 1 at short-time differences (large val-
ues of the correlator) corresponding to a quasiequilibrium
regime, with a crossover to a nontrivial number X � X1 for
large times (small values of the correlator). This implies that
parametric FD plots are simply made of two straight lines
with slope 1 and X1, instead of the single straight line of
slope 1 obtained at equilibrium. Formally, the infinite-time
FDR X1 is defined as

X1 ¼ lim
t!1 lim

tw!1Xðt; twÞ: (93)

These theoretical predictions were tested with success in
numerical simulations (Barrat and Kob, 1999; Di Leonardo
et al., 2000). In Fig. 19 we present more recent numerical data
obtained in an aging silica glass (Berthier, 2007b), presented
in the form of a parametric response-correlation plot. The
measured correlation functions are the self-part of the inter-
mediate scattering functions defined in Eq. (6), while the
conjugated response functions quantify the response of par-
ticle displacements to a spatially modulated field conjugated
to the density. Plots for silicon and oxygen atoms at different
ages of the system are presented. They seem to smoothly
converge toward a two-straight-line plot, as obtained in
mean-field models for structural glasses (note, however, that
this could be a preasymptotic, finite ‘‘tw’’ effect). Note also
that the value of Teff is much larger than other relevant
temperature scales, in particular, than TMCT, while both
quantities nearly coincide in mean-field models.

The behavior of spin glass mean-field models, such as the
p ¼ 2þ 4 model, is again more involved. It is found that
each time scale of the continuous hierarchy corresponds to a
given value of the FDR. This means that the FDR has become
a continuous function X � xðCÞ in the aging regime, instead
of the single number found for the p-spin model. For the
spherical p ¼ 2þ 4 model, for instance, one finds

xðCÞ ¼ T

2

g000ðCÞ
½g00ðCÞ�3=2 ; (94)

for C values corresponding to the aging regime; gðxÞ was
defined in Eq. (84). Thus, the parametric FD plot is now made
of a straight line of slope 1 for a large value of the correlation
function (quasiequilibrium regime), followed by a continuous
curve with slope <1 for smaller values of the correlation that
differs from the FDT even in the infinite-time limit, tw ! 1.

Since any kind of behavior is, in principle, allowed in
nonequilibrium situations, getting such a simple, equilibrium-
like structure for the FD relations is a remarkable result. This
immediately led to the idea that aging systems might be
characterized by an effective thermodynamic behavior and
the idea of ‘‘effective equilibration’’ at different time scales
(Cugliandolo et al., 1997). In particular, generalized FD
relations in Eq. (89) suggest the definition of an effective
temperature, as

Teff ¼ T

Xðt; twÞ ; (95)

such that mean-field structural glasses are characterized by a
unique effective temperature Teff ¼ T=X1 in their aging re-
gime. It can be interpreted as the temperature at which slow
modes are quasiequilibrated (Cugliandolo et al., 1997; Franz
and Virasoro, 2000). One finds, in general, that 0< X1 < 1,
such that Teff > T, as if the system had kept some memory of
its high-temperature initial state. It was then proposed that
FDRs, or equivalently effective temperatures, can be measured
by focusing on any type of physical observables (Cugliandolo
et al., 1997). The FDR is then defined in terms of the two-time
connected correlation function for generic physical observ-
ables AðtÞ and BðtÞ,

CABðt; twÞ ¼ hAðtÞBðtwÞi � hAðtÞihBðtwÞi; (96)

with t 
 tw, and the corresponding two-time (impulse) re-
sponse function

RABðt; twÞ ¼ hAðtÞi
hBðtwÞ

��������hB¼0
: (97)

Here h denotes the thermodynamically conjugate field to the
observable A so that the perturbation to the Hamiltonian is
H ¼ �hB � B. A practical measurement of the FDT is then
performed by building a parametric FD plot of the integrated
response function,

�AB ¼ T
Z t

tw

dt0RABðt; t0Þ; (98)

versus the correlation function ½CABðt; tÞ � CABðt; twÞ�.
The name ‘‘temperature’’ for the quantity defined in

Eq. (95) is not simply the result of a dimensional analysis
but has a deeper, physically appealing meaning that is re-
vealed by asking the following questions: How does one

FIG. 19 (color online). Parametric correlation-response plots mea-

sured in the aging regime of a numerical model for a silica glass

SiO2 (Berthier, 2007b). The plots for both species smoothly con-

verge toward a two-straight line plot of slope 1 at short times (large

C values), and of slope X1 � 0:51 at large times (small values of

C), yielding an effective temperature of about Teff ¼ T=X1 �
4900 K. Note that Teff > TMCT � 3330> Tg � 1450 K.
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measure temperatures in a many-body system whose relaxa-
tion involves well-separated time scales? What is a ther-
mometer (and a temperature) in a far-from-equilibrium
aging material? Answers are provided by Cugliandolo
et al. (1997) and Kurchan (2005) both for mean-field models
and for additional toy models with multiple relaxation time
scales. The idea is to couple an additional degree of freedom,
such as a harmonic oscillator xðtÞ, which plays the role of the
thermometer operating at frequency !, to an observable of
interest AðtÞ via a linear coupling ��xðtÞAðtÞ. Simple calcu-
lations show then that the thermometer reads the following
temperature:

1

2
kBT

2
meas � 1

2
!2hx2i ¼ !C0

AAð!; twÞ
2R00

AAð!; twÞ ; (99)

where C0
AAð!; twÞ is the real part of the Fourier transform of

Eq. (96), and R00
AAð!; twÞ is the imaginary part of the Fourier

transform of Eq. (97), with h ¼ �x. Equation (99) indicates
that the bath temperature is measured, Tmeas ¼ T, if fre-
quency is high and the FDT is satisfied, while Tmeas ¼ Teff >
T if frequency is slow enough to be tuned to that of the slow
relaxation in the aging material. More generally, relaxation in
mean-field glassy systems may occur in several, well-
separated time sectors (Cugliandolo and Kurchan, 1994). It
is then easy to imagine that each sector could be associated
with its own effective temperature (Kurchan, 2005).

The direct link between the FDR in Eq. (89) and the
effective temperature measured in Eq. (99) was numerically
confirmed in computer simulations of glassy molecular
liquids. Berthier and Barrat (2002a) used a tracer particle
was used as a thermometer, its frequency being tuned by
modifying its mass. It was verified that its kinetic energy
was controlled by the temperature of the heat bath for light
(high frequency) tracers, while it was related to the effective
temperature of the slow degrees of freedom for heavy (low
frequency) tracers. In the same spirit, a two-level system with
adjustable frequency was studied by Ilg and Barrat (2007), and
the activation rate changed from being proportional to
expð�E=TÞ to expð�E=TeffÞ when decreasing the frequency.
These two examples show that Teff truly deserves the name of
a temperature in a fundamental sense. We note that these
modern concepts are related to, but make much more precise,
older ideas of quasiequilibrium and fictive temperatures in
aging glasses (Tool, 1946; Narayanaswamy, 1971; Moynihan
et al., 1976). Attempts were even made to develop a thermo-
dynamic of the glass state, heavily relying on the idea of
effective temperatures. This has become the subject of a
book by Leuzzi and Nieuwenhuizen (2007).

The final piece of information extracted from the behavior
of mean-field spin glass models is the existence of a connec-
tion between a nonequilibrium dynamic quantity, namely, the
asymptotic FDR xðCÞ defined in Eq. (92), and the thermody-
namic behavior of the system in the low-temperature phase. It
turns out that the thermodynamics of mean-field models for
structural glasses is characterized by one-step replica sym-
metry breaking, while a full-step solution is needed to solve
the thermodynamics of models for spin glasses (Parisi, 2003).
Remarkably, the structure of the spin glass order parameter,
the Parisi function PeqðqÞ describing the probability distribu-

tion of overlaps between equilibrium states, is directly related

to the structure of the function xðCÞ. For the p ¼ 2þ 4
model, for instance, static calculations yield an explicit
expression for Peq (Nieuwenhuizen, 1995). Comparing with

Eq. (94), it turns out that the following equality holds:

xðCÞ ¼
Z C

0
dqPeqðqÞ: (100)

The situation for mean-field structural glasses is more com-
plicated, since Eq. (100) does not hold, but the integrated
Parisi function [the right-hand side in (100)] has the same
structure as the FDR (the left-hand side) (Cugliandolo and
Kurchan, 1993). Therefore, the full-step or one-step replica
symmetry breaking schemes needed to solve the static prob-
lem in these models have a direct dynamical counterpart, the
FDR being a function or a number, respectively, in the aging
regime. It was further argued that Eq. (100) might hold for
finite-dimensional glassy systems as well (Franz et al.,
1998), raising the exciting possibility that the Parisi function
might become experimentally accessible through aging ex-
periments, which triggered a large research activity (Crisanti
and Ritort, 2003). However, it is not easy to determine the
conditions under which Eq. (100) might hold (Parisi, 2003).
Moreover, aging studies are often performed far from any
asymptotic regime, and little is known about how Eq. (100) is
modified when the tw ! 1 limit cannot be taken (Barrat and
Berthier, 2001; Castillo et al., 2002), making the thermody-
namic interpretation of the outcome of aging measurements
delicate.

Taken together, these results make the mean-field descrip-
tion of aging appealing, and they nicely complement the
mode-coupling and RFOT description of the equilibrium
glass transition described above. Moreover, they have set
the agenda for a large body of numerical and experimental
work, as reviewed by Crisanti and Ritort (2003). It should be
clear, however, that these results are strictly valid in the
mean-field limit in the sense discussed in Sec. IV.B.1.
Nonequilibrium aging dynamics in mean-field spin glasses
turns out to describe the slow descent of the system in an
energy landscape which becomes more and more flat as the
age increases (Kurchan and Laloux, 1996), with no access to
the deeper metastable states that are supposed to play an
important role in glasses near the experimental glass transi-
tion. This view is thus in striking contrast with the purely
activated description given, for instance, by trap models.
Additionally, it is important to understand the role of spatial
fluctuations which are not naturally included in the mean-
field description; see Castillo et al. (2002) and Chamon et al.
(2004) for recent work in this direction. Thus, it is important
to further test the mean-field concepts to understand how they
apply to the three-dimensional world.

C. Beyond the mean field: Experiments, critical points, and

kinetically constrained models

Despite success as shown in Fig. 19, the broader applica-
bility of the mean-field scenario of aging dynamics remains
unclear. While some experiments and simulations indeed
seem to support the existence of well-behaved effective
temperatures (Grigera and Israeloff, 1999; Abou and Gallet,
2004; Wang et al., 2006; Oukris and Israeloff, 2010), other
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studies also reveal the limits of the mean-field scenario.

Experiments have, for instance, reported anomalously large

FDT violations associated with intermittent dynamics (Bellon

et al., 2001; Bellon and Ciliberto, 2002; Buisson, Bellon, and

Ciliberto, 2003, Buisson, Ciliberto, and Garcimartin, 2003;

Greinert et al., 2006), while theoretical studies of model

systems also found nonmonotonic or even negative response

functions (Nicodemi, 1999; Viot et al., 2003; Depken and

Stinchcombe, 2005; Krzakala, 2005), and ill-defined or

observable-dependent FDRs (Fielding and Sollich, 2002).

Some experiments even reported an the absence of violations

to the fluctuation-dissipation theorem (Jabbari-Farouji et al.,

2008; Jop et al., 2009). In principle, these discrepancies with

mean-field predictions are to be expected, since there are

many systems of physical interest in which the dynamics

are not of mean-field type, in particular, displaying activated

processes. However, it is not possible to draw any consistent

picture from the experiments at this stage. As a consequence

it is not quite clear yet how and to what extent mean-field

results are violated in real systems.
It is thus an important task to understand from the theo-

retical point of view when the mean-field concept of an

FDR-related effective temperature remains viable. However,

studying theoretically the interplay between relevant dynamic

length scales and thermally activated dynamics in the non-

equilibrium regime of disordered materials is clearly a chal-

lenging task. As a consequence, much work has been devoted

to analyze simple effective models. Much attention has been

focused on spin models.
A first class of systems that we discuss are coarsening

systems. Although not directly related to the glass problem,

they provide a simple, yet nontrivial, theoretical framework

to study situations where both aging and spatial heterogeneity

are present, and where time-correlation and response func-

tions display interesting scaling behavior. The paradigmatic

situation is that of an Ising ferromagnetic model (with a

transition at Tc) suddenly quenched in the ferromagnetic

phase at time tw ¼ 0. For tw > 0 domains of positive and

negative magnetizations appear and slowly coarsen with time.

The appearance of domains that grow with time proves the

presence of both aging and heterogeneity in this situation.
The case where the quench is performed down to T < Tc is

well understood. The only relevant length scale is the growing

domain size ‘ðtwÞ, and the physical behavior can be under-

stood by scaling theory (Bray, 1994). Correlation functions

display aging, and scale invariance implies that Cðt; twÞ�
fð‘ðtÞ=‘ðtwÞÞ. Response functions can be decomposed into

two contributions (Barrat, 1998; Berthier et al., 1999): One

part stems from the bulk of the domains and behaves as the

equilibrium response, and a second one from the domain

walls and becomes vanishingly small in the long-time limit

where ‘ðtwÞ ! 1 and the density of domain walls vanishes.

This implies that for coarsening systems in d 
 2, one has

X1 ¼ 0, or equivalently an infinite effective temperature,

Teff ¼ 1. The case d ¼ 1 is special because Tc ¼ 0 and

the response function remains dominated by the domain

walls, which yields the nontrivial value X1 ¼ 1=2
(Godrèche and Luck, 2000a; Lippiello and Zannetti, 2000).

Another special case has retained attention. When the

quench is performed at T ¼ Tc, there is no more distinction

between walls and domains and the above argument yielding
X1 ¼ 0 does not hold. Instead one studies the growth with

time of critical fluctuations, with �ðtwÞ � t1=zcw the correlation
length at time tw, where zc is the dynamic critical exponent.
Both correlation and response functions become nontrivial at
the critical point (Godrèche and Luck, 2000b). It proves
useful in that case to consider the dynamics of the Fourier
components of the magnetization fluctuations,

Cqðt; twÞ ¼ hmqðtÞm�qðtwÞi; (101)

and the conjugated response

Rqðt; twÞ ¼
hmqðtÞi
h�qðtwÞ

��������h�q¼0
; (102)

where hqðtÞ is the Fourier component of the magnetic field at

time t. From Eq. (89) a wave-vector dependent FDR follows,
Xqðt; twÞ, which has interesting properties that can be com-

puted by a number of means, including dynamical renormal-
ization techniques; see Calabrese and Gambassi (2005) for a
review. One of the main outcomes of these studies is that the
effective temperature for quenches at the critical point might
in some cases depend on the observable (Calabrese and
Gambassi, 2004) and on the initial condition (Calabrese
et al., 2006), thus weakening the interpretation of Xq in terms

of effective temperature.
In dimension d ¼ 1, it is possible to compute Xqðt; twÞ

exactly in the aging regime at T ¼ Tc ¼ 0. An interesting
scaling form is found, and numerical simulations performed
for d > 1 confirm its validity (Mayer et al., 2003):

Xqðt; twÞ � X½q�ðtwÞ�; (103)

where the scaling function XðxÞ is Xðx ! 1Þ ! 1 at small
length scale q� � 1, andXðx ! 0Þ ! X1 ¼ 1=2 (in d ¼ 1)
at large distance q�  1; recall that zc ¼ 2 in that case.

In contrast to mean-field systems where geometry played
no role, here the presence of a growing correlation length
scale plays a crucial role in the off-equilibrium regime since
�ðtwÞ allows one to discriminate between fluctuations that
satisfy the FDTat small length scale Xq � 1 and those at large

length scale which are still far from equilibrium, 0< Xq �
X1 < 1. These studies suggested therefore that generalized
fluctuation-dissipation relations, in fact, have a strong length
scale dependence, a result which is not predicted using mean-
field approaches.

Another interesting result is that the FDT violation for
global observables (i.e., those at q ¼ 0) takes a particularly
simple form, since the introduction of a single number is
sufficient, the FDR at zero wave vector, Xq¼0ðt; twÞ � X1 ¼
1=2 (in d ¼ 1). This universal quantity takes nontrivial values
in higher dimension (Godrèche and Luck, 2000b), e.g., X1 �
0:34 is measured in d ¼ 2 (Mayer et al., 2003). This shows
that the study of global rather than local quantities makes the
measurement of X1 much easier. Finally, having a nontrivial
value of X1 for global observables suggests that the possi-
bility to define an effective temperature remains valid, but it
has become a more complicated object, related to global
fluctuations on large length scale. The first experimental
determination of the value of X1 near a critical point was
reported only recently in a system of liquid crystals, where
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the director is the relevant fluctuating observable (Joubaud
et al., 2009). An intriguing value X1 ’ 0:31 was reported,
which has received, to our knowledge, no theoretical justifi-
cation (Calabrese and Gambassi, 2005).

Kinetically constrained spin models represent a second
class of non-mean-field systems whose off equilibrium has
been thoroughly studied recently (Léonard et al., 2007). This
is quite a natural thing to do since these systems have local,
finite ranged interactions, and they combine the interesting
features of being defined in terms of (effective) microscopic
degrees of freedom, having local dynamical rules, and dis-
playing thermally activated and heterogeneous dynamics.

The case of the Fredrickson-Andersen model, described in
Sec. IV, was studied in great detail (Léonard et al., 2007), and
we summarize the main results. Here, the relevant dynamic
variables are the Fourier components of the mobility field,
which also correspond in that case to the fluctuations of the
energy density. Surprisingly, the structure of the generalized
fluctuation-dissipation relation remains once more simple. In
particular, in dimension d > 2, one finds a scaling form
similar to Eq. (105), Xqðt; twÞ ¼ X½q�ðtwÞ�, with a well-

defined limit at large distances Xq¼0ðt; twÞ � X1. The close

analogy with critical Ising models stems from the fact that
mobility defects in KCMs diffuse in a way similar to domain
walls in coarsening Ising models. It is, in fact, by exploiting
this analogy that analytic results are obtained in the aging
regime of the Fredrickson-Andersen model (Mayer and
Sollich, 2007).

There is, however, a major qualitative difference between
the two families of model. The surprise lies in the sign of the
asymptotic FDR, since calculations show that (Mayer et al.,
2006)

X1 ¼ �3; d > 2: (104)

In dimension d ¼ 1, one finds Xq¼0ðt; twÞ ¼ fðt=twÞ with

Xq¼0ðt ! 1; twÞ ¼ 3


16� 6

� �3:307:

Numerical simulations in various spatial dimensions nicely
confirm these calculations. In Fig. 20, we show such a
comparison between simulations (symbols) and theory (lines)
in the case of the d ¼ 3 Fredrickson-Andersen model (Mayer
et al., 2006). Fourier components of the mobility field yield
parametric FD plots that follow scaling with the variable
q�ðtwÞ, as a direct result of the presence of a growing length
scale for dynamic heterogeneity, with a simple diffusive
behavior in that case, �ðtwÞ � ffiffiffiffiffi

tw
p

. Again, generalized

fluctuation-dissipation relations explicitly depend on the spa-
tial length scale considered, unlike in mean-field studies. In
Fig. 20, the limit q ¼ 0 corresponding to global observables
is also interesting since the plot is a pure straight line, as in
equilibrium. Unlike equilibrium, however, the slope is not 1
but �3. A negative slope in this plot means a negative FDR,
and therefore suggests a negative effective temperature,
Teff ¼ �3T, a nonintuitive result at first sight.

Negative response functions, in fact, directly follow from
the thermally activated nature of the dynamics of these
models (Mayer et al., 2006). First, one should note that the
global observable shown in Fig. 20 corresponds to fluctua-
tions of the energy eðtwÞ whose conjugated field is tempera-

ture. In the aging regime the system slowly drifts toward
equilibrium. Microscopic moves result from thermally acti-
vated processes, corresponding to the local crossing of energy
barriers. An infinitesimal change in temperature, T ! T þ
T with T > 0, accelerates these barrier crossings and
makes the relaxation dynamics faster. The energy response
to a positive temperature pulse is therefore negative, e < 0,
which directly yields e=T < 0, and explains the negative
sign of the FDR. This line of reasoning does not apply to
mean-field glasses, where thermal activation plays no role. To
our knowledge, negative effective temperatures in realistic
aging materials have not yet been observed.

Finally, another scenario holds for local observables in
some KCMs when kinetic constraints are stronger, such as
the East model (Léonard et al., 2007) or a bidimensional
triangular plaquette model (Jack et al., 2006). Here relaxation
is governed by a hierarchy of energy barriers that endow the
systems with specific dynamic properties. In the aging regime
following a quench, in particular, the hierarchy yields an
energy relaxation that arises in discrete steps which take place
on different time scales, reminiscent of the time sectors
encountered in mean-field spin glasses (but not in mean-field
structural glass models). Surprisingly, it was found that to
each of these discrete relaxations one can associate a well-
defined (positive) value of the fluctuation-dissipation ratio,
again reminiscent of the dynamics of mean-field spin glass
models. Therefore, even in models that are far from the mean-
field limit, the physical picture of a slow relaxation taking
place on multiple time scales with each time scale character-
ized by an effective temperature seems to have some validity.

In conclusion, we described multiple non-mean-field situ-
ations where collective behavior (critical point in standard
ferromagnets, dynamic criticality emerging in kinetically
constrained models) produces nontrivial aging dynamics
characterized by the emergence of universal fluctuation-
dissipation properties. These results are instructive for

FIG. 20 (color online). Parametric response-correlation plots for

the Fourier components of the mobility field in the d ¼ 3

Fredrickson-Andersen model. Symbols are from simulations, lines

from analytic calculations, and wave vectors decrease from top to

bottom. The FDT is close to being satisfied at large q corresponding

to local equilibrium. At larger distance deviations from the FDT are

seen, with an asymptotic FDR which becomes negative. Finally, for

energy fluctuations at q ¼ 0 (bottom curve), the plot becomes a

pure straight line of (negative) slope �3, as a result of thermally

activated dynamics.
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understanding how and to what extent mean-field results can
change in finite-dimensional systems. However, it is not clear

whether aging in structural glasses can be understood in terms
of domain coarsening (domains between what?), nor that
kinetically constrained models are faithful effective models

of glasses. As a consequence, for theoretical models it is
difficult to reach a consistent picture of effective temperature
and aging valid for finite-dimensional structural glasses.

However, these results suggest that, most certainly, nonequi-
librium effective temperatures have a validity much beyond
the realm of mean-field disordered spin models where they

were first discovered (Kurchan, 2005).

D. Driven dynamics of glassy materials

We introduced aging phenomena with the argument that in
a glass phase, the time scale to equilibrate becomes so long
that the system always remembers its complete history. This

is true in general, but one might wonder whether it is possible
to invent a protocol where the material history can be erased,
and the system rejuvenated (McKenna and Kovacs, 1984).

This concept has been known for decades in the field of
polymer glasses, where complex thermomechanical histories
are often considered, for obvious practical reasons.

Let us consider an aging protocol, where a supercooled

liquid is quenched to a low temperature at time tw ¼ 0, but is
simultaneously forced by an external mechanical constraint.
Experimentally, one often finds that a stationary state can be

reached, which explicitly depends on the strength of the
forcing: A system which is forced more strongly relaxes
faster than a material which is less perturbed, a phenomenon

called ‘‘shear thinning.’’ The material has, therefore, entered
a driven steady state, where memory of its age is no longer
present and dynamics has become stationary: Aging is
stopped (Kurchan, 2001).

Many studies of these driven glassy states have been

performed in recent years. Note that the drive is, in general,
mechanical and, hence, these are relevant for the rheology of
supercooled liquids and glasses, and the T  Tg limit corre-

sponds to studies of the plasticity of amorphous solids, which

is a broad field in itself; see Falk and Langer (1998), Maloney
and Lemaı̂tre (2006), Tanguy et al. (2006), Schall et al.
(2007), and Bocquet et al. (2009) for a few modern perspec-
tives in this direction. In the colloidal world, such studies are

also relevant for the newly defined field of the rheology of
soft glassy materials. These materials are (somewhat tauto-
logically) defined as those for which the nonlinear rheological

behavior is believed to result precisely from the competition
between intrinsically slow relaxation processes of glassy
origin and an external forcing (Sollich et al., 1997). It is

believed that the rheology of dense colloidal suspensions,
foams, emulsions, pastes, or even biophysical systems are
ruled by such a competition, quite a broad field of application

indeed (Cates, 2003).
From the point of view of statistical mechanics modeling,

the rheology of soft glassy materials can be naturally studied
from the same angles as the equilibrium glass transition and

aging phenomena. As such, trap models (Sollich et al., 1997;
Sollich, 1998; Fielding et al., 2000), mean-field spin glasses
(Cugliandolo et al., 1997; Berthier et al., 2000), and the

related mode-coupling theory approaches (Fuchs and Cates,
2002; Miyazaki and Reichman, 2002; Miyazaki et al., 2004;
Fuchs and Cates, 2005; Miyazaki et al., 2006; Brader et al.,
2007; Fuchs and Cates, 2009) have been explicitly extended
to include an external mechanical forcing. In all these cases,
one generically finds that a driven steady state can be reached
and aging is indeed expected to stop at a level that depends on
the strength of the forcing. A most interesting aspect is that
the broad relaxation spectra predicted to occur in glassy
materials close to a glass transition directly translate into
‘‘anomalous’’ laws for both the linear rheological behavior
[seen experimentally in the broad spectrum of elastic G0ð!Þ
and loss G00ð!Þ moduli],4 and the nonlinear rheological be-
havior (such as a strong dependence of the steady state
viscosity � upon an imposed shear rate _�), while aging and
rheology compete deep in the glass phase to produce inter-
esting phenomena such as slow creep behavior. However, all
these different theoretical approaches have their strengths and
weaknesses, as we now briefly describe.

The trap model described in Sec. V.Awas extended into the
‘‘soft glassy rheology’’ (SGR) model (Sollich et al., 1997;
Sollich, 1998). Its simplicity makes it a nice tool to inves-
tigate complex thermomechanical histories, where aging and
mechanical forcing compete (Fielding et al., 2000), leading
to several interesting predicted behaviors. Thus, the model
is often used by experimentalists to rationalize nontrivial
rheological behaviors commonly encountered in complex
materials; see, e.g., Rouyer et al. (2008).

The SGR model is a direct extension of the trap model,
where each trap is characterized not only by its depth E, but
additionally by a ‘‘strain’’ variable ‘. The evolution equation
now involves PðE; ‘; tÞ, which generalizes PðE; tÞ to include
the statistical fluctuations of the strain variable. Using nota-
tions similar to the ones used in Eq. (78), the dynamics of the
SGR model is defined as

@PðE; ‘; tÞ
@t

¼ � _�
@PðE; ‘; tÞ

@‘

� �0e
��½E�ð1=2Þk‘2�PðE; ‘; tÞ

þ �ðtÞ�ðEÞð‘Þ; (105)

where

�ðtÞ ¼ �0

Z
d‘

Z
dEe��½E�ð1=2Þk‘2�PðE; ‘; tÞ:

The first term represents the effect of the global shear rate _� in
the absence of hopping between traps, namely, affine defor-
mation of the traps. The second term describes the probability
to leave the trap occupied at time t and takes into account in a
linear manner the fact that shearing promotes hopping be-
tween traps by lowering the barrier heights, thereby defining
an elastic constant k. Note that activated dynamics with an
‘‘effective temperature factor’’ Teff ¼ 1=� is assumed, even
though its meaning in the context of a driven colloidal system
or emulsion is not clear (Cates, 2003). The last term now
includes the new factor ð‘Þ, implying that after a hop, the
newly found trap is unstrained. Of course, for such a

4Gð!Þ relates the stress to an imposed sinusoidal strain oscillating

at frequency !; see Barnes et al. (1989).
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mean-field description (a single particle hopping between
traps), strain, shear rates, or shear stress are just names and
are not intended to carry physical information about a real
three-dimensional flow. As in the original trap model, an
exponential form is adopted for the distribution of trap depths
�ðEÞ (Sollich et al., 1997). The global shear stress is defined
by

�ðtÞ ¼ kh‘iP ¼ k
Z

d‘
Z

dEPðE; ‘; tÞ‘; (106)

so that knowledge of PðE; ‘; tÞ from solving Eq. (105) allows
one to predict any needed rheological quantity (Sollich, 1998).
The success of the SGR model stems partly from the fact that
depending on the value of the effective temperature, a broad
variety of nontrivial, but experimentally realistic, rheological
behavior can be predicted for both linear and nonlinear re-
sponses. The model can, therefore, easily be used to fit a set of
experimental data by adjusting a few quantities, such as Teff or
�0; see Fabry et al. (2001) for a biophysical example.
Moreover, it is simple enough that extremely complex ther-
momechanical histories can be easily implemented and com-
pared to experiments; see Viasnoff and Lequeux (2002) for an
illustration. The weaknesses of the approach are the same as
for the original trap model, as far as the interpretation of the
traps in real space is concerned. Moreover, the lack of a spatial
representation of the physics implies that the different traps are
only coupled via the effective noise temperature, and the
model cannot describe shear and kinetic heterogeneities. It
would be interesting to develop spatial variations of the origi-
nal SGR trap model to include mechanically realistic inter-
actions between traps (Hébraud and Lequeux, 1998), as is also
done in theoretical modeling of the elastoplastic response of
amorphous solids (Picard et al., 2005; Bocquet et al., 2009).

Mean-field glass models can also be modified to include
the physical effect of an external mechanical forcing
in the dynamics (Horner, 1996; Cugliandolo et al., 1997;
Thalmann, 1998; Berthier et al., 2000). Since these models
contain fully connected Hamiltonians defined with no refer-
ence to geometry, the modeling of an external flow is neces-
sarily crude. In the case of a sheared glassy material, it is
argued that the main effect of the imposed shear flow in the
equations of motion is to inject energy into the system
(Kurchan, 2001). Taking again the example of the p-spin
model in Eq. (40), one now considers the driven dynamics

@siðtÞ
@t

¼ ��ðtÞsiðtÞ � @H

@siðtÞ þ fdrivei ðtÞ þ �iðtÞ; (107)

where fdrivei ðtÞ stands for an external driving force. A natural

choice in this context is to consider a driving force which has
a functional form similar to the p-spin interaction but in-
volves coupling constants which contain an asymmetric
part, so that the resulting force cannot be derived from an
energy function. The specific choice made by Berthier et al.
(2000) is

fdrivei ðtÞ¼�ðtÞ X
j1<���<jk�1j1;...;jk�1�i

~Jj1���jk�1

i sj1 ���sjk�1
;

(108)

with coupling constants that are random Gaussian variables of
variance k!=ð2Nk�1Þ, which are symmetrical about permuta-

tions of (j1; . . . ; jk�1), but are uncorrelated about permuta-
tions of i with any element of (j1; . . . ; jk�1). With this
particular choice of asymmetrical couplings and a constant
amplitude of the driving force �ðtÞ ¼ �, a numerical solution
of the two-time dynamical equations of the form similar to
Eq. (85) shows that the dynamics becomes stationary for any
�> 0 (Cugliandolo et al., 1997) and any temperature T > 0
(even for T < Tc). Therefore, in the stationary state following
a quench at time tw ¼ �1 in the presence of a constant
driving force, the dynamical equations become

dCðtÞ
dt

¼ ��CðtÞ þ
Z t

0
dt0�ðt� t0ÞCðt0Þ

þ
Z 1

0
dt0½�ðtþ t0ÞCðt0Þ þDðtþ t0ÞRðt0Þ�;

dRðtÞ
dt

¼ ��RðtÞ þ
Z t

0
dt0�ðt� t0ÞRðt0Þ;

� ¼ T þ
Z 1

0
dt0½Dðt0ÞRðt0Þ þ �ðt0ÞCðt0Þ�; (109)

with kernels given by

DðtÞ ¼ p

2
CðtÞp�1 þ �2 k

2
CðtÞk�1; (110)

�ðtÞ ¼ pðp� 1Þ
2

CðtÞp�2RðtÞ: (111)

Mathematically, the asymmetry in the coupling constants
of the driving force shows up in the expressions of the kernels,
since only DðtÞ contains the driving term proportional to �,
with no counterpart in the expression for�ðtÞ. It can be shown
formally (Kurchan and Markov, 2003) that detailed balance
imposes specific symmetries of the kernels D and �, which is
indeed explicitly broken in Eqs. (109) by the term propor-
tional to �. As in the aging regime, Eq. (85), these equations
involve both correlation and response functions, and are thus
more difficult to solve than the equilibrium, high-temperature
dynamics in Eq. (49). However, the solution proceeds much as
in the aging regime (Berthier et al., 2000).

The connection to rheological quantities was done using
energetic considerations. Using a Green-Kubo type of argu-
ments, the viscosity � was related to the relaxation time scale
obtained from the time decay of CðtÞ from Eq. (109), so that
�ðT;�Þ � ��. The power dissipated by the driving force is
then shown to be / �2=�� � �2=�, while it is / � _� ¼ �2=�
for a sheared fluid. Thus, one identifies � as the shear stress
for the present system, and steady state constitutive rheolog-
ical relations can readily be studied. As for the SGR model,
the results showed that the interplay between the glass
transition physics and external forcing induced strong
shear-thinning behavior which depends quantitatively on
the temperature, with experimentally relevant scaling laws
for the viscosity across the ð�; TÞ plane (Berthier et al.,
2000). For T 	 Tc, for instance, a shear-thinning behavior
is predicted at low shear rates,

�� _���ðTÞ; (112)

where �ðTÞ is a temperature-dependent exponent, with
�ðTcÞ � �c ¼ 2=3 and � ! 1 as T ! 0. This behavior is
typical of a ‘‘power-law fluid’’ in the rheological literature
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(Larson, 1999). The nontrivial shear-thinning exponent
�c ¼ �2=3 at Tc reveals a complex interplay between ther-
mal processes and mechanical forcing, while in the low-T
limit the ‘‘natural’’ exponent � ¼ �1 is recovered, as ex-
pected on dimensional grounds. Above Tc, the following
scaling form is obtained:

�ð _�; TÞ ’ �0ðTÞ½1þ _�= _�0���c ; (113)

where �0ðTÞ is the equilibrium value of the viscosity and _�0

is a constant. This form of scaling is well known and com-
monly found in the rheology literature (Larson, 1999), and
these predictions compare rather well with computer simula-
tions (Yamamoto and Onuki, 1998b; Barrat and Berthier,
2000; Berthier and Barrat, 2002b), and experiments
(Crassous et al., 2006; Besseling et al., 2007).

As compared to the SGR model, the equations of motion
(109) are mathematically more involved, even in the steady
state, so that it is technically more difficult to solve for the
response of the system to more complicated histories,
although this is a technical rather than a fundamental limita-
tion. A more fundamental difference, as already discussed in
equilibrium and aging situations, is the absence, at the mean-
field level, of thermally activated processes which would
allow the system to visit the numerous deep metastable states
that contribute to its configurational entropy between the
mode-coupling and Kauzmann transitions.

Just as these activated processes explain whymode-coupling
dynamic singularities are avoided in finite-dimensional sys-
tems, activated processes could, in principle, affect the rheo-
logical behavior of glassy materials. As discussed, including
these processes in the context of mean-field glass theory is a
challenging task. A phenomenological description in the
framework of RFOT theory was recently proposed
(Lubchenko, 2009), extending, in particular, the validity
of Eq. (113) to lower temperatures. Note that distinct predic-
tions were recently obtained by Biroli and Bouchaud (2009).
Staying at the mean-field level, however, it can be argued
(Berthier, 2003a) that thermal activation should allow the
system to visit metastable states with lower free energy. In
such a state, it can be shown that the system must be forced
above a finite level of stress in order to flow. In rheological
terms, this means that the presence of metastable states leads to
materials with a static finite yield stress (although dynamically
there is no finite yield stress). Recent calculations in the replica
framework exposed in Sec. IV.B.6 have confirmed the exis-
tence of a finite shearmodulus originating from the existence of
metastable states (Yoshino and Mézard, 2010). In a realistic
description, yet to be developed, one should describe within a
single framework the effect of shear and thermal activation
within a complex energy landscape.

Another difference with the SGR approach concerns the
study of effective temperatures, which again mirrors the
mean-field results obtained in aging situations (see
Sec. V.B). Indeed, many of the results obtained in aging
systems about deviations from fluctuation-dissipation rela-
tions can be shown to apply to the driven case as well. In
particular, a fluctuation-dissipation ratio can still be defined
from Eq. (94) leading to the notion of effective temperatures
for driven systems. The solution of Eqs. (109) yields the time
dependence of both correlation and response functions, from

which a parametric FD plot can be built. As for aging
materials, it was predicted that these FD plots conserve an
equilibrium shape, being piecewise linear, with each relaxa-
tion time scale being associated with its own value of the
fluctuation-dissipation ratio and being interpreted in terms of
an ‘‘effective equilibrium’’ for slow degrees of freedom. An
interesting feature is that effective temperatures are predicted
to occur even above the glass transition, provided the driving
force is large enough that nonlinear rheological effects are
observed. Thus, a deep connection between anomalous re-
sponse functions and deviations from thermal equilibrium is
established (Berthier et al., 2000).

These predictions were confirmed in a number of numeri-
cal studies of sheared supercooled liquids (Barrat and
Berthier, 2000; Berthier and Barrat, 2002a, 2002b; Ono
et al., 2002; Ilg and Barrat, 2007), and the main physical
result, the existence of an effective temperature describing the
relaxation of sheared glassy systems, now forms the basis of
several recent phenomenological descriptions of the plastic
deformation of amorphous solids (Haxton and Liu, 2007;
Langer and Manning, 2007; Shi et al., 2007; Bouchbinder,
2008). We are unaware of any experimental attempt to quan-
tify violations of the fluctuation-dissipation theorem under
stationary conditions created by a shear flow, although this
should, in principle, be much easier than in nonstationary,
aging situations where several experiments have already been
performed.

We mentioned in Sec. V.B that mode-coupling theory had
not been fully extended to deal with nonequilibrium aging
situations. By contrast, in recent years, a large research
activity was dedicated to the derivation of mode-coupling
approximations to deal with the rheology of glassy liquids
and colloidal suspensions. A first derivation is obtained start-
ing from generalized fluctuating hydrodynamic equations, as
in field-theoretic derivations of the equilibrium MCT (Das
et al., 1985). Among the several approximations involved, the
standard mode-coupling decomposition of four-point static
correlations as a product of two-point functions is performed,
yielding closed dynamical equations for the time evolution of
the intermediate scattering function under shear. For the case
of a stationary simple shear flow with an imposed strain in the
x direction �ðtÞ, one gets the following dynamical equations
(Miyazaki and Reichman, 2002):

dFðq; tÞ
dt

¼ �Dqð�tÞ2
S½qð�tÞ�Fðq; tÞ

�
Z t

0
dt0Mðqð�tÞ; t� t0Þ dFðq; t

0Þ
dt0

;

Mðq; tÞ ¼ �D

2

q

qðtÞ
Z

dq0Vðq;q0ÞVðqðtÞ;q0ðtÞÞFðqðtÞ
� q0ðtÞ; tÞFðq0ðtÞ; tÞ; (114)

where qðtÞ ¼ ðqx; qy þ �ðtÞqx; qzÞ is a time-dependent wave

vector, the vertex function has the standard mode-coupling
expression as in Eq. (47), and Fðq; tÞ ¼ h�qð�tÞðtÞ��qð0Þi is
the intermediate scattering function modified to take into
account the global advection by the shear flow. Formally,
these equations are similar to the ones derived at equilibrium;
see Eqs. (46) and (47). This implies that the physics captured
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by this approximation stems from the advection, and thus the

distortion, of density fluctuations along the x direction

by the shear flow. Because of the mode-coupling mechanism

in Eq. (114), relaxation of density fluctuations in the

x direction triggers the relaxation of all the modes. In a

parallel effort (Fuchs and Cates, 2002, 2005), similar MCT

dynamic equations for glasses under shear flow were derived

employing the technique of projection operators also used at

thermal equilibrium to derive mode-coupling equations. Here

also, a similar decoupling of four-point correlations into

products of two-point quantities is performed, and in its latest

version (Fuchs and Cates, 2009) the final dynamical equa-

tions are similar to the above expressions, Eqs. (114); see

Fuchs and Cates (2009) for a detailed discussion of the

technical differences between the two approaches.
The rheological behavior in steady shear flow above the

mode-coupling transition resembles the description in

Eq. (113), although the simple shear-thinning exponent

� ¼ �1 is found. In the glass (Fuchs and Cates, 2002), the

system develops a finite yield stress, which jumps discontin-

uously from zero when the mode-coupling transition is

crossed. Below Tc, the rheological behavior resembles that

of a Bingham fluid (Larson, 1999). We note that although

fully connected glass models and schematic mode-coupling

models are fully equivalent at thermal equilibrium, both

approaches seem to predict different behaviours out of equi-

librium. It is not yet clear whether these differences are

due to the set of approximations involved in the derivation

of Eqs. (114), or to the peculiar form of the nonequilibrium

drive (108) chosen for mean-field glass models, which may be

unrealistic. Both approaches suffer from the same fundamen-

tal limitation that emerging critical or universal properties

near the mode-coupling transition will be drastically modified

in realistic numerical simulations or real experiments, as the

mode-coupling singularity is not present in real materials,

even in colloidal hard-sphere systems where the theory was

often applied (Crassous et al., 2006). This implies that all the

problems and ambiguities due to the crossover nature of the

dynamic transition encountered by MCT at thermal equilib-

rium (see Sec. IV.B.4) will again be present under shear, and

the theory should fare with experimental data no better or no

worse than at equilibrium.
Although initially developed to study stationary shear

flows �ðtÞ ¼ _�t, MCT-based rheological equations have

now been derived for arbitrary flows and shear histories

(Brader et al., 2007, 2008, 2009). The resulting equations

are more complicated than Eqs. (114), involving, in particu-

lar, three-time memory functions in the general case. The

case of oscillatory simple shear flows was also studied

(Miyazaki et al., 2006). The possibility to study time-

dependent shear flows makes the MCT approach quite ap-

pealing, as it can thus compete with the flexibility offered by

the SGR model described above, with the advantage that one

is dealing with a microscopically realistic description of the

liquid. However, it is possible to study the interplay of shear

flow and aging in the SGR model (Fielding et al., 2000),

which is not yet feasible within MCT approaches.
As concrete applications of the theoretical framework, step

strain protocols (Brader et al., 2007) or sinusoidal shear flows

of arbitrary amplitudes were studied (Miyazaki et al., 2006).

In Fig. 21, we show the behavior obtained for the storage and

loss moduli of a dense suspension of hard spheres close to the

colloidal glass transition as a function of frequency (as in

linear viscoelasticity) and strain amplitude (as in nonlinear

steady shear flows). These results illustrate both the broad

viscoelastic spectra emerging in fluids near the glass transi-

tion, and the strongly nonlinear competition between intrinsic

slow dynamics and the external perturbation imposed by the

shear flow which accelerates the dynamics.
The issue of a nonequilibrium extension to the fluctuation-

dissipation theorem in shear flows was also discussed within

MCT. A formal derivation of the Einstein relation between

self-diffusion and mobility under shear flow is presented by

Szamel (2004), while FDT violations are acknowledged

(Miyazaki and Reichman, 2002), but do not play a role during

the derivation of Eqs. (114) to arrive at dynamical equations

involving correlation functions only, as opposed to coupled

equations for response and correlations in Eqs. (109).

Recently, an approximate expression for time-dependent sus-

ceptibilities was obtained (Krüger and Fuchs, 2010) and

compared to the correlation obtained from the solution of

Eqs. (114). In standard equilibrium MCT, the response func-

tion is obtained a posteriori using the FDT. Complementary

approaches, such as field theory, are plagued by difficulties

related to maintaining FDT in a self-consistent manner. As a

consequence, the status of the approximation by Krüger and

Fuchs (2010) is not entirely clear at this stage. Moreover, an

important difference is found with mean-field results since a

nearly constant value of the FDR, X ¼ 1=2, is predicted

(Krüger and Fuchs, 2010) in contrast to mean-field models

where the FDR is generically dependent of the state point,

with X� T at low temperatures (Cugliandolo, 2003), as also

found in numerical work (Di Leonardo et al., 2000; Zamponi

et al., 2005; Berthier, 2007b). This suggests that still more

work is needed to clarify the status (derivation and physical

behavior) of nonequilibrium effective temperatures in glassy

systems under shear.

E. Current status of nonequilibrium studies

Aging studies have a long history in the field of the glass

transition (Struik, 1978), since glasses are all by definition
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FIG. 21 (color online). Frequency and strain dependence of (a) the

storage modulus and (b) the loss modulus for a hard-sphere sus-

pension near the mode-coupling glass transition. The broad visco-

elastic spectra emerging in fluids near the glass transition is affected

in a nonlinear manner by a large external shear flow which accel-

erates the dynamics. From Miyazaki et al., 2006.
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nonequilibrium aging materials. It is only since the 1990s,

however, that a large body of work was performed to

describe nonequilibrium glasses at a more fundamental

level, using tools and concepts from statistical mechanics,

as briefly reviewed. Despite much conceptual progress, it is

not clear whether these theoretical advances have led to a

better description of the physical properties of, say, polymer

glasses under complex thermomechanical histories, and thus

have had concrete experimental consequences (Angell et al.,

2000). It certainly remains true that a large number of experi-

ments have been devised to analyze two-time response

and correlations functions in a number of materials, in

order to test theoretical predictions, although it appears that

less studies of aging materials were performed in recent

years.
We suggested that recent theoretical and experimental

work to characterize and understand memory and rejuvena-

tion effects in spin glasses could be fruitfully revisited in the

field of structural glasses; see the experimental chapters in

Young (1998). In particular, a clear link between memory

effects and typical length scales over which the slow dynam-

ics takes place was established in the context of spin glasses

(Bouchaud et al., 2001; Berthier and Bouchaud, 2002;

Jönsson et al., 2004). We discussed in previous sections

that dynamic length scales also depend sensitively on tem-

perature in structural glasses, as illustrated, for instance, in

Fig. 11. Presently, it is not known how these ideas apply to

aging of structural glasses and whether they yield memory

effects similar to the ones observed in spin glasses. In the

same vein, little work was performed to understand how the

mosaic picture of RFOT theory (Lubchenko and Wolynes,

2004; Biroli and Bouchaud, 2009) or the frustration-limited

domains discussed in Sec. IV.D would respond to complex

thermal histories, nor has mode-coupling theory been fully

developed to handle nonstationary dynamics far from equi-

librium except in the context of mean-field glassy systems

(Cugliandolo and Kurchan, 1999).
More work should also certainly be performed to charac-

terize dynamic heterogeneities in nonequilibrium systems.

Indeed, when experiments were devised to detect, for in-

stance, two-time correlation functions in aging materials, it

became immediately clear that slow dynamics in these far-

from-thermal-equilibrium conditions was also characterized

by intriguingly large dynamic fluctuations (Cipelletti and

Ramos, 2005) showing up in the form of intermittent time

signals (Bellon et al., 2001; Buisson et al., 2003; Duri and

Cipelletti, 2006; Mamane et al., 2009), large spatial corre-

lations (Duri et al., 2009), peculiar forms of relaxation

functions (Cipelletti et al., 2000; Bellour et al., 2003;

Bandyopadhyay et al., 2004), or superdiffusive processes

(Guo et al., 2009; Mazoyer et al., 2009). Although well

documented experimentally and displaying some form of

universality, these nontrivial dynamics received too little

attention from the theoretical community; see, however,

Bouchaud and Pitard (2001). It is, in particular, intriguing

that these effects are apparently not observed in computer

simulations where dynamic heterogeneity seems to proceed

roughly as under equilibrium conditions (Parisi, 1999;

Castillo and Parsaeian, 2007; Parsaeian and Castillo, 2008;

El Masri et al., 2010). In this context, an interesting develop-

ment is the extension of some of the concepts derived from
mean-field spin glass models, in particular, the notion of time
reparametrization invariance of the dynamical equations of
motion, to finite-dimensional aging materials (Castillo et al.,
2002; Chamon et al., 2004). In particular, this approach
naturally explains the appearance of nontrivial mesoscopic
dynamic fluctuations in aging materials and provides specific
new tools to analyze a number of physical quantities, such as
distributions of time-correlation functions (Chamon and
Cugliandolo, 2007).

In contrast with aging studies, the rheology of soft glassy
materials has been increasingly actively studied over the last
decade, and has developed as a research field on its own that
will certainly continue to expand in the coming years. Thus,
we close this prospective section with just a few selected
issues on the rheology of glasses that are currently the object
of intense research. First, since all the above-mentioned
theoretical modeling of glassy rheology is somehow mean
field in nature, it is not clear how spatial heterogeneities or
correlations can be described theoretically. Yet, experiments
(Coussot et al., 2002; Varnik et al., 2003; Bécu et al., 2006;
Shi and Falk, 2006; Zink et al., 2006; Ianni et al., 2008) and
simulations (Varnik et al., 2003; Zink et al., 2006; Shi and
Falk, 2006) clearly reveal, for instance, that soft glassy
materials commonly display the phenomenon of shear band-
ing. Namely, when submitted to a macroscopic shear force,
the system spontaneously ‘‘phase separates’’ between a flow-
ing state supporting the shear and an immobile state with no
flow. This observation means that at least two dynamical
states exist for a given level of external forcing, so that the
flow curve �ð _�Þ is multivalued, but there is presently no
agreement on the microscopic origins of this observation
(Berthier, 2003a; Varnik et al., 2003; Manning et al.,
2007; Fielding et al., 2009; Besseling et al., 2010). A second
relevant question related to spatial aspects is the subject of
dynamic heterogeneity. We have underlined in Sec. III the
importance of spatial fluctuations of the dynamic at thermal
equilibrium and have described in Sec. IV how different
theories describe these fluctuations. Much less is known
under shear, although numerical simulations revealed the
existence of large scale heterogeneities under flow
(Furukawa et al., 2009) that are, in fact, strongly reminiscent
of the plastic flow of low-temperature glasses (Falk and
Langer, 1998; Tanguy et al., 2006; Lemaitre and Caroli,
2009). Further studies of these issues could also shed some
light on the flow of soft glassy materials under confinement, a
situation of interest due to the rapid development of micro-
fluidic techniques and applications (Goyon et al., 2008; Isa
et al., 2009).

VI. SOME GENERAL AND CONCLUDING REMARKS

We conclude this review with a few remarks on some key
topics that are often debated in the literature and on which we
present our point of view.

A. Growing length scale(s)

For a long time, the research on the glass transition has
been focused on time scales more than length scales. The
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reason is simple: The former are clearly increasing rapidly
approaching Tg, whereas the latter remained elusive for a

long time. Recently, this state of affairs has changed. First, the
whole topic of dynamical heterogeneity made it clear that a

complete theory of the glass transition has to be able to
explain growing dynamical length scales. Furthermore, there
are general theoretical and not just phenomenological reasons
to believe that growing length scales play an important role.

In fact, a system with a finite number, say N, of degrees of
freedom is expected to have a relaxation time no larger than
expðKNÞ, where K is independent of N and possibly depen-

dent on temperature, but in a nonsingular way except at
T ¼ 0. A system, whose largest correlation length is �, can
be viewed as a collection of independent subsystems of linear
size �. The relaxation time � is therefore equal to the one of a

given subsystem and therefore cannot be larger than
expðK�dÞ. This implies that large relaxation times should
be related to large numbers of spatially correlated degrees
of freedom. This intuition was made rigorous by Montanari

and Semerjian (2006a), where it was shown that indeed the
point-to-set length defined in Sec. IV.B.6 has to grow at least
as fast as cðlog��Þ1=d, where d is the spatial dimension and c
is a proportionality constant. Since c actually depends on
temperature (as K in the previous expression), this inequality
makes a growing length a necessity only if the relaxation time
scale diverges at a finite temperature. If not, one should

evaluate the constant and check whether the inequality indeed
implies a length scale that indeed becomes ‘‘large’’ at low
temperature. In any case, all these results, and many others,
have been so influential in stressing the importance of possi-

bly growing length scales that by now many, possibly too
many, length scales have been defined and studied in the
literature (Berthier et al., 2011). The more pressing open
questions in this field concern the relation between the well-

studied dynamical length scales (e.g., �4), and the more
recently devised static point-to-set length scales. Are these
two types of spatial correlations related? Do structural corre-

lations drive dynamical ones? What is their precise relation
with the overall increase of the viscosity? Is there a unique
way of defining static correlation length scales, and are point-
to-set correlations equivalent to alternative, more geometric

ways of defining static length scales (Tarjus et al., 2005;
Coslovich and Pastore, 2007; Kurchan and Levine, 2009;
Tanaka et al., 2010)? We believe that the intensive study
of dynamical length scales in the past decade will be con-

tinued by a similar intensive search of static correlations in
future work to disentangle all these issues.

B. Glass and jamming transitions

In Sec. II.B.1 we introduced the idea that many different
materials undergo a fluid to amorphous solid transition remi-

niscent of the glass transition of molecular liquids, and indeed
we included experimental or numerical results on colloids or
granular materials without further discussion in the rest of the

article. It is time to discuss more critically the assumption that
all these materials ‘‘jam’’ in a similar way.

From a practical point of view, one should distinguish two
distinct ‘‘solidity’’ transitions that can both be observed in the
system of hard spheres, which we mentioned several times in

this review. At thermal equilibrium at temperature kBT,
5 hard

spheres undergo in three dimensions a glass transition in the
regime ’g � 0:57–0:59. Above this transition, the system

appears as a solid, at least on experimental time scales.
However, this system is compressible (it is a hard-sphere
glass), its pressure is finite, and its equation of state Z �
Pð’Þ=�kBT ¼ Zð’Þ is a smooth function of ’ across ’g. At

present, there is no indication that the physics of this first
fluid-to-solid transition in the hard-sphere system at finite
temperature, is any different from the glass transition ob-
served, say, in a Lennard-Jones liquid. This means that all the
concepts and theories reviewed in this paper are actually
relevant to this situation. For instance, experimental evidence
suggests that hard spheres undergo a change from MCT-like
behavior to an activated regime when increasing ’
(Brambilla et al., 2009), they display a similar spatially
heterogeneous dynamics (Weeks et al., 2000), and display
in analytical calculations a mode-coupling (Barrat, et al.,
1989) and Kauzmann transitions (Parisi and Zamponi, 2010)
completely analogous to model liquids. Interestingly, the
same phenomenology is found in dense granular materials
driven, for instance, by cyclic shear (Marty and Dauchot,
2005) or air flow (Keys et al., 2007). In these cases, a
nonequilibrium steady state is reached thanks to the mechani-
cal driving, which plays a role similar to Brownian forces in
colloids. When increasing the density or decreasing the
strength of the driving, these systems appear to display a
‘‘granular glass transition’’ with properties which are again
similar to the ones observed for supercooled liquids, even at
the most microscopic level (Candelier et al., 2010).

A second, distinct solidity transition occurs in hard spheres
out of equilibrium. As discussed, it is not possible to com-
press hard spheres above a certain density and keep the
system in equilibrium. This does not mean the system cannot
be compressed anymore; it can, but in a nonequilibrium and
protocol-dependent manner. This second solidity transition
takes place when the system cannot be compressed anymore.
This is mainly a geometrical problem and thermal energy
plays no role in this transition. For a three-dimensional
system, this occurs near random close packing ’rcp ¼
0:63–0:65 (Bernal and Mason, 1960). At this density, the
compressibility vanishes, the reduced pressure Zð’Þ diverges,
and the number of contacts per particle is exactly equal to the
minimal number required for the system to behave mechani-
cally as a solid (Alexander, 1998). This second transition is
thus directly relevant to understand the static properties of
granular materials. It is interesting also for systems made of
large (athermal) particles such as foams and emulsions:
Because the particles are soft, these systems can be com-
pressed above ’rcp (Liu and Nagel, 2001). In these soft

systems, the (osmotic) pressure in the solid phase is now
proportional to the particle surface tension, and thus solidity
is driven by the elasticity of the particles rather than tem-
perature. From a dynamical point of view, much less is known
about this second transition. Connections with the glass

5For hard spheres, the temperature simply sets the microscopic

time scale. As long as the system is in equilibrium, the thermody-

namic and dynamical properties at different temperatures are iden-

tical up to a trivial rescaling.
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problem are still rather speculative but they are the focus of
an intense research activity, triggered by the seminal contri-
bution of Liu and Nagel (1998). For instance, dynamic
heterogeneity at T ¼ 0 near random close packing has been
studied only recently (Lechenault et al., 2008b; Sessoms
et al., 2009; Heussinger et al., 2010), and important differ-
ences with the dynamics of viscous liquids were noted.
Therefore, although glass and jamming transitions might be
observed in the same system (say, hard spheres), they likely
correspond to two distinct ways for the system to become a
solid.

C. Metastability and the role of the crystal

We only briefly discussed the role of the crystalline state.
As with many (but not all) researchers, we have assumed that
the crystal does not play an important role for the glass
transition phenomenon, apart from the fact that crystal nu-
cleation has to be avoided by supercooling. (For all known
glass formers, the melting temperature is larger than the
experimental glass transition.) This may be questionable for
several reasons. The first objection is that equilibrium ther-
modynamic theories of the glass transition are problematic
because the true thermodynamic phase is indeed the crystal.
This is not a real concern: Supercooled liquids are in a long-
living metastable state. As long as the nucleation time is
much larger than the structural relaxation time ��, they can
be considered as bona fide equilibrium states, at least using
Feynman’s definition: ‘‘When all fast things have happened
and all slow things have not, then the system is in equilib-
rium’’ (Feynman, 1972). A more serious concern is that the
relaxation time of the supercooled liquid cannot really di-
verge at a finite temperature if the thermodynamically stable
state is a crystal, because the nucleation time is necessarily
finite at finite temperature if we assume a finite Gibbs free-
energy difference between the crystal and the supercooled
liquid.6 Thus, �� will inevitably hit the (finite) nucleation
time before diverging. Below this temperature the super-
cooled liquid is no more a metastable state because it nucle-
ates the crystal before actually being able to relax its
structure. This, however, is also not necessarily a serious
problem. First, not all theories are based on a divergence at
finite temperature. Second, several theories explain the slow-
ing down of the dynamics by the proximity to a phase
transition but none of them needs the transition to actually
take place to be proven correct. Thus, although important
conceptually, the existence of the crystal does not imply that
theories with no singularity should be preferred to describe
the physically relevant temperature regime where nucleation
is unimportant. A final, more physical, reason to take into
account the crystal in explaining the glass transition would be
that the slow dynamics in the supercooled state is due to the
existence of some local order reminiscent of the crystal
structure, as in frustration-limited domain approaches

(Tarjus et al., 2005), and reemphasized in several recent
numerical papers (Coslovich and Pastore, 2007; Pedersen
et al., 2010; Tanaka et al., 2010).

D. The ideal glass transition

This is certainly a recurrent, probably utopian, but never-
theless fascinating, topic for discussion. Several theories
explain the slowing down of the dynamics by the proximity
to a phase transition. None of them requires that the transition
actually take place. This holds either because the transition is
avoided by construction as in the frustration-limited domain
theory, or because it is not accessible experimentally as in
dynamical facilitation theory or random first-order transition
theory. What happens at lower temperatures, where no real
system can be equilibrated, is, after all, just a matter of
curiosity. It is interesting, however, just for a short while, to
dwell on what an ideal glass transition could possibly be. It
should correspond to a true divergence of the relaxation time
and the viscosity at a finite temperature Tideal. Because of the
proof by Montanari and Semerjian (2006b) for lattice models,
we now strongly suspect that static correlations, actually
point-to-set correlations, would generally diverge at the tran-
sition.7 Thus, the transition corresponded to the development
of some long-range order (likely amorphous order), since
suitable boundary conditions fixed the density field in an
amorphous configuration in the entire (infinite) sample.

It is also important to discuss what properties an ideal
glass transition would not display. Actually, it is sometimes
assumed that at an ideal glass transition, as discussed in the
context of theories in Sec. IV, the dynamics would be com-
pletely arrested. This is not necessary and, actually, impos-
sible if Tideal > 0. For example, a probe particle will
still be able to move at Tideal and below. The situation would
be similar to the crystalline state, where particles diffuse,
although slowly, leaving the crystalline order intact. What
would diverge at Tideal is only the time to destroy the
amorphous correlation in the density field. For example, at
the ideal glass transition advocated in RFOT theory, the
density field orders in one of the possible amorphous low-
temperature configurations, so that the time to relax the
structure becomes infinite, whereas, instead, the self-
diffusion coefficient stays finite. Also, it is sometimes be-
lieved that the ideal glass transition is related to a fragmenta-
tion of the configuration space for finite-size systems, i.e., that
below a certain temperature or above a certain density it is no
more possible to go from any typical equilibrium configura-
tion to another one. This is clearly not true, as it can be seen
easily for soft particle models, and actually even for hard
spheres. This can be harder to prove for some effective
models (Eckmann and Procaccia, 2008). In any case, this is
not what the ideal glass transition would be: Such dynamical
arrests can take place only in effective theories whose domain
of applicability must break down at some point (maybe not
accessible in experiments).

6This is due to the fact that the maximum barrier to form the

critical nucleus and also for its subsequent growth is necessarily

finite; thus nuclei will form and expand even though these processes

can be extremely slow. In practice, crystal nucleation can be much

slower than what is expected; see Cavagna (2009).

7If the relaxation time scale diverges only at zero temperature but

faster than Arrhenius, then the ideal glass transition would take

place at T ¼ 0. Again, on the basis of the bound of Montanari and

Semerjian, we expect a diverging length in this case too.

638 Ludovic Berthier and Giulio Biroli: Theoretical perspective on the glass . . .

Rev. Mod. Phys., Vol. 83, No. 2, April–June 2011



Thus, the theoretical possibility of a finite-temperature
ideal glass transition toward a genuine glass state exists and
will no doubt continue to obsess many physicists in coming
years.

E. Concluding remarks

The problem of the glass transition, already exciting in
itself, has ramifications well beyond the physics of super-
cooled liquids. Glassy systems figure among the even larger
class of ‘‘complex systems.’’ These are formed by a set of
interacting degrees of freedom that show an emergent behav-
ior: As a whole they exhibit properties not obvious from the
properties of the individual parts. As a consequence the study
of glass formers as statistical mechanics models characterized
by frustrated interactions is a fertile ground to develop new
concepts and techniques that will likely be applied to other
physical, and more generally, scientific situations. The glass
transition in supercooled liquids can, in fact, be considered as
one of the simplest situations where frustration, geometry,
ergodicity, and disorder compete to produce a glassy state.
Hence, the concepts reviewed in this article should be directly
applicable to scores of more complex systems, such as, for
instance, physical gels, liquids in confined geometries, diffu-
sion in crowded biological environments, dense granular
media, self-assembly, or microfluidic flows of dense emul-
sions and colloidal suspensions. Thus, we certainly expect
more progress to emerge in the future along these interdisci-
plinary routes.
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Bécu L., S. Manneville, and A. Colin, 2006, Phys. Rev. Lett. 96,

138302.

Bellon, L., and S. Ciliberto, 2002, Physica (Amsterdam) D 168–

169, 325.

Bellon, L., S. Ciliberto, and C. Laroche, 2000, Europhys. Lett. 51,

551.

Bellon, L., S. Ciliberto, and C. Laroche, 2001, Europhys. Lett. 53,

511.

Bellour, M., A. Knaebel, J. L. Harden, and J. P. Munch, 2003, Phys.

Rev. E 67, 031405.

Bengtzelius, U., 1986, Phys. Rev. A 34, 5059.

Bengtzelius, U., W. Götze, and A. Sjöilander, 1984, J. Phys. C 17,
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