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A broad review of fundamental electronic properties of two-dimensional graphene with the

emphasis on density and temperature-dependent carrier transport in doped or gated graphene

structures is provided. A salient feature of this review is a critical comparison between carrier

transport in graphene and in two-dimensional semiconductor systems (e.g., heterostructures,

quantum wells, inversion layers) so that the unique features of graphene electronic properties

arising from its gapless, massless, chiral Dirac spectrum are highlighted. Experiment and theory, as

well as quantum and semiclassical transport, are discussed in a synergistic manner in order to

provide a unified and comprehensive perspective. Although the emphasis of the review is on those

aspects of graphene transport where reasonable consensus exists in the literature, open questions are

discussed as well. Various physical mechanisms controlling transport are described in depth

including long-range charged impurity scattering, screening, short-range defect scattering, phonon

scattering, many-body effects, Klein tunneling, minimum conductivity at the Dirac point, electron-

hole puddle formation, p-n junctions, localization, percolation, quantum-classical crossover,

midgap states, quantum Hall effects, and other phenomena.
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I. INTRODUCTION

A. Scope

The experimental discovery of two-dimensional (2D)
gated graphene in 2004 by Novoselov et al. (2004) is a
seminal event in electronic materials science, ushering in a
tremendous outburst of scientific activity in the study of
electronic properties of graphene, which continued unabated
up until the end of 2009 (with the appearance of more than
5000 articles on graphene during the 2005–2009 five-year
period). The subject has now reached a level so vast that no
single article can cover the whole topic in any reasonable
manner, and most general reviews are likely to become
obsolete in a short time due to rapid advances in the graphene
literature.

The scope of the current review is transport in gated
graphene with the emphasis on fundamental physics and
conceptual issues. Device applications and related topics
are not discussed (Avouris et al., 2007), nor are graphene’s
mechanical properties (Bunch et al., 2007; Lee, Wei et al.,
2008). The important subject of graphene materials science,
which deserves its own separate review, is not discussed at all.
Details of the band structure properties and related phe-
nomena are also not covered in any depth, except in the
context of understanding transport phenomena. What is cov-
ered in reasonable depth is the basic physics of carrier
transport in graphene, critically compared with the corre-
sponding well-studied 2D semiconductor transport proper-

ties, with the emphasis on scattering mechanisms and

conceptual issues of fundamental importance. In the context
of 2D transport, it is conceptually useful to compare and

contrast graphene with the much older and well established
subject of carrier transport in 2D semiconductor structures

[e.g., Si inversion layers in metal-oxide-semiconductor-field-

effect transistors (MOSFETs), 2D GaAs heterostructures, and
quantum wells]. Transport in 2D semiconductor systems has

a number of similarities and key dissimilarities with gra-
phene. One purpose of this review is to emphasize the key

conceptual differences between 2D graphene and 2D semi-

conductors in order to bring out the new fundamental aspects
of graphene transport, which make it a truly novel electronic

material that is qualitatively different from the large class of
existing and well established 2D semiconductor materials.

Since graphene is a dynamically (and exponentially)

evolving subject, with new important results appearing al-
most every week, the current review concentrates on only

those features of graphene carrier transport where some
qualitative understanding, if not a universal consensus, has

been achieved in the community. As such, some active topics,

where the subject is in flux, have been left out. Given the
constraint of the size of this review, depth and comprehension

have been emphasized over breadth; given the large graphene
literature, no single review can attempt to provide a broad

coverage of the subject at this stage. There have already been

several reviews of graphene physics in the recent literature.
We have made every effort to minimize overlap between our

article and these recent reviews. The closest in spirit to our
review is the one by Castro Neto et al. (2009) which was

written 2.5 years ago (i.e. more than 3000 graphene publica-

tions have appeared in the literature since that review was
written). Our review should be considered complimentary to

Castro Neto et al. (2009), and we have tried avoiding too
much repetition of the materials they already covered, con-

centrating instead on the new results arising in the literature

following the older review. Although some repetition is
necessary in order to make our review self-contained, we

refer the interested reader to Castro Neto et al. (2009) for
details on the history of graphene, its band structure consid-

erations, and the early (2005–2007) experimental and theo-
retical results. Our material emphasizes the more mature

phase (2007–2009) of 2D graphene physics.
For further background and review of graphene physics

beyond the scope of our review, we mention in addition to the

Rev. Mod. Phys. article by Castro Neto et al. (2009), the

accessible reviews by Geim and his collaborators (Geim and
Novoselov, 2007; Geim, 2009), the recent brief review by

Mucciolo and Lewenkopf (2010), as well as two edited
volumes of Solid State Communications (Das Sarma, Geim

et al., 2007; Fal’ko et al., 2009), where the active graphene

researchers have contributed individual perspectives.

B. Background

Graphene (or more precisely, monolayer graphene—in this
review, we refer to monolayer graphene simply as ‘‘gra-

phene’’) is a single 2D sheet of carbon atoms in a honeycomb

lattice. As such, 2D graphene rolled up in the plane is a
carbon nanotube, and multilayer graphene with weak
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interlayer tunneling is graphite. Given that graphene is simply

a single 2D layer of carbon atoms peeled off a graphite

sample, early interest in the theory of graphene band structure

was all worked out a long time ago. In this review we only

consider graphene monolayers (MLG) and bilayers (BLG),

which are both of great interest.

1. Monolayer graphene

Graphene monolayers have been rightfully described as the

‘‘ultimate flatland’’ (Geim and MacDonald, 2007), i.e., the

most perfect 2D electronic material possible in nature, since

the system is exactly one atomic monolayer thick, and carrier

dynamics is necessarily confined in this strict 2D layer. The

electron hopping in the 2D graphene honeycomb lattice is

quite special since there are two equivalent lattice sites [A and

B in Fig. 1(a)] which give rise to the ‘‘chirality’’ in the

graphene carrier dynamics.
The honeycomb structure can be thought of as a triangular

lattice with a basis of two atoms per unit cell, with 2D

lattice vectors A0 ¼ ða=2Þð3; ffiffiffi
3

p Þ and B0 ¼ ða=2Þð3;� ffiffiffi
3

p Þ
(a � 0:142 nm is the carbon-carbon distance). K ¼
ð2�=ð3aÞ; 2�=ð3 ffiffiffi

3
p

aÞÞ and K0 ¼ ð2�=ð3aÞ;�2�=ð3 ffiffiffi
3

p
aÞÞ

are the inequivalent corners of the Brillouin zone and are

called Dirac points. These Dirac points are of great impor-

tance in the electronic transport of graphene, and they play a

role similar to the role of � points in direct band-gap semi-

conductors such as GaAs. Essentially, all of the physics

discussed in this review is the physics of graphene carriers

(electrons and/or holes) close to the Dirac points (i.e., within

a 2D wave vector q ¼ jqj � 2�=a of the Dirac points) just

as all the 2D semiconductor physics we discuss will occur

around the � point.
The electronic band dispersion of 2D monolayer graphene

was calculated by Wallace (1947) and others (McClure, 1957;

Slonczewski and Weiss, 1958) a long time ago, within the

tight-binding prescription, keeping up to the second-nearest

neighbor hopping term in the calculation. The following

approximate analytic formula is obtained for the conduction
(upper, þ, ��) band and valence (lower, �, �) band:

E�ðqÞ � 3t0 � ℏvFjqj �
�
9t0a2

4
� 3ta2

8
sinð3�qÞ

�
jqj2;
(1.1)

with vF ¼ 3ta=2, �q ¼ arctan�1½qx=qy�, and where t, t0 are,
respectively, the nearest-neighbor (i.e. intersublattice A� B)
and next-nearest-neighbor (i.e. intrasublattice A� A or B�
B) hopping amplitudes, and tð� 2:5 eVÞ � t0ð� 0:1 eVÞ.

The almost universally used graphene band dispersion at
long wavelength puts t0 ¼ 0, where the band structure for
small q relative to the Dirac point is given by

E�ðqÞ ¼ �ℏvFqþOðq=kÞ2: (1.2)

Further details on the band structure of 2D graphene mono-
layers can be found in the literature (Wallace, 1947; McClure,
1957; Slonczewski and Weiss, 1958; McClure, 1964; Reich
et al., 2002; Castro Neto et al., 2009) and will not be
discussed here. Instead, we provide below a thorough dis-
cussion of the implications of Eq. (1.2) for graphene carrier
transport. Since much of the fundamental interest is in under-
standing graphene transport in the relatively low carrier
density regime, complications arising from the large
qð� KÞ aspects of graphene band structure can be neglected.

The most important aspect of graphene’s energy dispersion
(and the one attracting the most attention) is its linear energy-
momentum relationship with the conduction and valence
bands intersecting at q ¼ 0, with no energy gap. Graphene
is thus a zero band-gap semiconductor with a linear, rather
than quadratic, long-wavelength energy dispersion for both
electrons (holes) in the conduction (valence) bands. The
existence of two Dirac points at K and K0, where the Dirac
cones for electrons and holes touch [Fig. 2(b)] each other in
momentum space, gives rise to a valley degeneracy gv ¼ 2
for graphene. The presence of any intervalley scattering
between K and K0 points lifts this valley degeneracy, but
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FIG. 1 (color online). (a) Graphene honeycomb lattice showing in different colors the two triangular sublattices. Also shown is the graphene

Brillouin zone in momentum space. Adapted from Castro Neto et al., 2009. (b) Carbon nanotube as a rolled up graphene layer. Adapted from

Lee, Sharma et al., 2008. (c) Lattice structure of graphite, graphene multilayer. Adapted from Castro Neto et al., 2006. (d) Lattice structure

of bilayer graphene. �0 and �1 are, respectively, the intralayer and interlayer hopping parameters t, t? used in the text. The interlayer hopping

parameters �3 and �4 are much smaller than �1 � t? and are normally neglected. Adapted from Mucha-Kruczynski et al., 2010. (e) Typical

configuration for gated graphene.
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such effects require the presence of strong lattice scale scat-

tering. Intervalley scattering seems to be weak and when they

can be ignored, the presence of a second valley can be taken

into account simply via the degenercy factor gv ¼ 2.
Throughout this introduction, we neglect intervalley scatter-

ing processes.
The graphene carrier dispersion E�ðqÞ ¼ ℏvFq explicitly

depends on the constant vF, sometimes called the graphene

(Fermi) velocity. In the literature different symbols (vF, v0,

�=ℏ) are used to denote this velocity. The tight-binding

prescription provides a formula for vF in terms of the nearest

neighbor hopping t and the lattice constant a2 ¼
ffiffiffi
3

p
a: ℏvF ¼

3ta=2. The best estimates of t � 2:5 eV and a ¼ 0:14 nm
give vF � 108 cm=s for the empty graphene band, i.e., in the

absence of any carriers. The presence of carriers may lead to a

many-body renormalization of the graphene velocity, which

is, however, small for MLG but could, in principle, be sub-

stantial for BLG.
The linear long-wavelength Dirac dispersion, with a Fermi

velocity that is roughly 1=300 of the velocity of light, is the

most distinguishing feature of graphene in addition to its

strict 2D nature. It is therefore natural to ask about the precise

applicability of the linear energy dispersion, since it is ob-

viously a long-wavelength continuum property of graphene

carriers valid only for q � K � ð0:1 nmÞ�1.
There are several ways to estimate the cutoff wave vector

(or momentum) kc above which the linear continuum Dirac

dispersion approximation breaks down for graphene. The

easiest is perhaps to estimate the carrier energy Ec ¼

ℏvFkc and to demand that Ec < 0:4tð1:0 eVÞ, so that one
can ignore the lattice effects (which lead to deviations from
pure Dirac-like dispersion). This leads to a cutoff wave vector
given by kc � 0:25 nm�1.

The mapping of graphene electronic structure onto the
massless Dirac theory is deeper than the linear graphene
carrier energy dispersion. The existence of two equivalent,
but independent, sublattices A and B (corresponding to the
two atoms per unit cell) leads to the existence of a novel
chirality in graphene dynamics where the two linear branches
of graphene energy dispersion (intersecting at Dirac points)
become independent of each other, indicating the existence of
a pseudospin quantum number analogous to electron spin (but
completely independent of real spin). Thus, graphene carriers
have a pseudospin index in addition to the spin and orbital
index. The existence of the chiral pseudospin quantum num-
ber is a natural byproduct of the basic lattice structure of
graphene comprising two independent sublattices. The long-
wavelength, low energy effective 2D continuum Schrödinger
equation for spinless graphene carriers near the Dirac point
therefore becomes

� iℏvF� 	 r�ðrÞ ¼ E�ðrÞ; (1.3)

where � ¼ ð�x; �yÞ is the usual vector of Pauli matrices

(in 2D now), and �ðrÞ is a 2D spinor wave function.
Equation (1.3) corresponds to the effective low energy
Dirac Hamiltonian:

+σ
−σ

k

E

(a) (b)

(c) (d)

FIG. 2 (color online). (a) Graphene band structure. Adpated from Wilson, 2006. (b) Enlargment of the band structure close to the K and K0

points showing the Dirac cones. Adpated from Wilson, 2006. (c) Model energy dispersion E ¼ ℏvFjkj. (d) Density of states of graphene

close to the Dirac point. The inset shows the density of states over the full electron bandwidth. Adapted from Castro Neto et al., 2009.
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H ¼ ℏvF
0 qx � iqy

qx þ iqy 0

� �
¼ ℏvF� 	 q: (1.4)

We note that Eq. (1.3) is simply the equation for massless
chiral Dirac fermions in 2D (except that the spinor here refers
to the graphene pseudospin rather than real spin), although
it is arrived at starting purely from the tight-binding
Schrödinger equation for carbon in a honeycomb lattice
with two atoms per unit cell. This mapping of the low energy,
long-wavelength electronic structure of graphene onto the
massless chiral Dirac equation was discussed by Semenoff
(1984) more than 25 years ago. It is a curious historical fact
that although the actual experimental discovery of gated
graphene (and the beginning of the frenzy of activities lead-
ing to this review) happened only in 2004, some of the key
theoretical insights go back a long way in time and are as
valid today for real graphene as they were for theoretical
graphene when they were introduced (Wallace, 1947;
McClure, 1957; Semenoff, 1984; Haldane, 1988; Gonzalez
et al., 1994; Ludwig et al., 1994).

The momentum space pseudospinor eigenfunctions for
Eq. (1.3) can be written as

�ðq; KÞ ¼ 1ffiffiffi
2

p e�i�q=2

�ei�q=2

 !
;

�ðq; K0Þ ¼ 1ffiffiffi
2

p ei�q=2

�e�i�q=2

 !
;

where the � signs correspond to the conduction (valence)
bands with E�ðqÞ ¼ �ℏvFq. It is easy to show using the
Dirac equation analogy that the conduction (valence) bands
come with positive (negative) chirality, which is conserved,
within the constraints of the validity of Eq. (1.3). We note that
the presence of real spin, ignored so far, would add an extra
spinor structure to graphene’s wave function (this real spin
part of the graphene wave function is similar to that of
ordinary 2D semiconductors). The origin of the massless
Dirac description of graphene lies in the intrinsic coupling
of its orbital motion to the pseudospin degree of freedom due
to the presence of A and B sublattices in the underlying
quantum-mechanical description.

2. Bilayer graphene

The case of bilayer graphene is interesting in its own right,
since with two graphene monolayers that are weakly coupled

by interlayer carbon hopping, it is intermediate between
graphene monolayers and bulk graphite.

The tight-binding description can be adapted to study the
bilayer electronic structure assuming specific stacking of
the two layers with respect to each other (which controls
the interlayer hopping terms). Considering the so-called A-B
stacking of the two layers [which is the three-dimensional
(3D) graphitic stacking], the low energy, long-wavelength
electronic structure of bilayer graphene is described by the
following energy dispersion relation (Brandt et al., 1988;
Dresselhaus and Dresselhaus, 2002; McCann, 2006; McCann
and Fal’ko, 2006):

E�ðqÞ ¼ ½V2 þ ℏ2v2
Fq

2 þ t2?=2� ð4V2ℏ2v2
Fq

2

þ t2?ℏ
2v2

Fq
2 þ t4?=4Þ1=2�1=2; (1.5)

where t? is the effective interlayer hopping energy (and
t, vF are the intralayer hopping energy and graphene
Fermi velocity for the monolayer case) (see Fig. 3). We
note that t?ð� 0:4 eVÞ< tð� 2:5 eVÞ, and we have ne-
glected several additional interlayer hopping terms since
they are much smaller than t?. The quantity V with dimen-
sions of energy appearing in Eq. (1.5) for bilayer dispersion
corresponds to the possibility of a real shift (e.g. by an applied
external electric field perpendicular to the layers, ẑ direction)
in the electrochemical potential between the two layers,
which would translate into an effective band-gap opening
near the Dirac point (Castro et al., 2007; Ohta et al.,
2006; Oostinga et al., 2008; Zhang, Tang et al., 2009).

Expanding Eq. (1.5) to leading order in momentum, and
assuming V � t, we get

E�ðqÞ ¼ �½V � 2ℏ2v2
FVq

2=t2? þ ℏ4v4
Fq

4=ð2t2?VÞ�:
(1.6)

We conclude the following (i) For V � 0, bilayer graphene

has a minimum band gap of � ¼ 2V � 4V3=t2? at q ¼ffiffiffi
2

p
V=ℏvF; and (ii) for V ¼ 0, bilayer graphene is a gapless

semiconductor with a parabolic dispersion relation E�ðqÞ �
ℏ2v2

Fq
2=t? ¼ ℏ2q2=ð2mÞ, where m ¼ t?=ð2v2

FÞ for small q.
The parabolic dispersion (for V ¼ 0) applies only for small
values of q satisfying ℏvFq � t?; whereas, in the opposite
limit ℏvFq � t?, we get a linear band dispersion E�ðqÞ �
�ℏvFq, just as in the monolayer case. We note that using the
best estimated values for vF and t?, the bilayer effective mass

FIG. 3 (color online). (a) Energy band of bilayer graphene for V ¼ 0. (b) Enlargment of the energy band close to the neutrality point K for

different values of V. Adapted from Min et al., 2007.
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is m � ð0:03–0:05Þme, which corresponds to a very small
effective mass.

To better understand the quadratic to linear crossover in the
effective BLG band dispersion, it is convenient to rewrite the
BLG band dispersion (for V ¼ 0) in the following hyperbolic
form:

EBLG ¼ 
mv2
F �mv2

F½1þ ðk=k0Þ2�1=2; (1.7)

where k0 ¼ t?=ð2ℏvFÞ is a characteristic wave vector. In this
form it is easy to see that EBLG ! k2ðkÞ for k ! 0ð1Þ for the
effective BLG band dispersion with k � k0 (k � k0) being
the parabolic (linear) band dispersion regimes, k0 �
0:3 nm�1 for m � 0:03me. Using the best available estimates
from band structure calculations, we conclude that for carrier
densities smaller (larger) than 5� 1012 cm�2, the BLG sys-
tem should have parabolic (linear) dispersion at the Fermi
level.

What about chirality for bilayer graphene? Although the
bilayer energy dispersion is non-Dirac–like and parabolic, the
system is still chiral due to the A=B sublattice symmetry
giving rise to the conserved pseudospin quantum index. The
detailed chiral 4-component wave function for the bilayer
case, including both layer and sublattice degrees of freedom,
can be found in the literature (McCann, 2006; McCann and
Fal’ko, 2006; Nilsson et al., 2006a, 2006b, 2008).

The possible existence of an external bias-induced band
gap and the parabolic dispersion at long wavelength distin-
guish bilayer graphene from monolayer graphene, with both
possessing chiral carrier dynamics. We note that bilayer
graphene should be considered a single 2D system, quite
distinct from ‘‘double-layer’’ graphene (Hwang and Das
Sarma, 2009a), which is a composite system consisting of
two parallel single layers of graphene, separated by a distance
in the ẑ direction. The 2D energy dispersion in double-layer
graphene is massless Dirac-like (as in the monolayer case),
and the interlayer separation is arbitrary; whereas, bilayer
graphene has the quadratic band dispersion with a fixed
interlayer separation of 0.3 nm similar to graphite.

3. 2D Semiconductor structures

Since one goal of this review is to understand graphene
electronic properties in the context of extensively studied (for
more than 40 years) 2D semiconductor systems (e.g., Si
inversion layers in MOSFETs, GaAs-AlGaAs heterostruc-
tures, quantum wells, etc.), we summarize in this section

the basic electronic structure of 2D semiconductor systems
which are of relevance in the context of graphene physics,

without giving much details, which can be found in the

literature (Ando et al., 1982; Bastard, 1991; Davies, 1998).
There are, broadly speaking, four qualitative differences

between 2D graphene and 2D semiconductor systems (see

Fig. 4). (We note that there are significant quantitative and

some qualitative differences between different 2D semicon-

ductor systems themselves). These differences are suffi-
ciently important in order to be emphasized right at the

outset.
(i) First, 2D semiconductor systems typically have very

large (> 1 eV) band gaps so that 2D electrons and 2D holes

must be studied using completely different electron-doped or

hole-doped structures. By contrast, graphene (except biased

graphene bilayers that have small band gaps) is a gapless

semiconductor with the nature of the carrier system changing

at the Dirac point from electrons to holes (or vice versa) in a
single structure. A direct corollary of this gapless (or small

gap) nature of graphene is of course the ‘‘always metallic’’

nature of 2D graphene, where the chemical potential (Fermi

level) is always in the conduction or the valence band. By

contrast, the 2D semiconductor becomes insulating below a

threshold voltage, as the Fermi level enters the band gap.
(ii) Graphene systems are chiral, while 2D semiconductors

are nonchiral. Chirality of graphene leads to some important
consequences for transport behavior, as we discuss later in

this review. (For example, 2kF backscattering is suppressed in

MLG at low temperature.)
(iii) Monolayer graphene dispersion is linear, while 2D

semiconductors have quadratic energy dispersion. This leads

to substantial quantitative differences in the transport prop-

erties of the two systems.
(iv) Finally, the carrier confinement in 2D graphene is

ideally two dimensional, since the graphene layer is precisely

one atomic monolayer thick. For 2D semiconductor struc-

tures, the quantum dynamics is two dimensional by virtue of

confinement induced by an external electric field, and as such,

2D semiconductors are quasi-2D systems, and always have an

average width or thickness hzi ( � 5 to 50 nm) in the third

direction with hzi & �F, where �F is the 2D Fermi wave-

length (or equivalently the carrier de Broglie wavelength).

The condition hzi< �F defines a 2D electron system.
The carrier dispersion of 2D semiconductors is given by

EðqÞ ¼ E0 þ ℏ2q2=ð2m�Þ, where E0 is the quantum confine-

ment energy of the lowest quantum confined 2D state, and

EC
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E V

E V

EC

EC
conduction channel

Metal

O
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de

Si

E F

Vgate

EF

lowest subband

ionized donors
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Al Ga   As
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x 1−x

E V

(a) (b)

FIG. 4 (color online). (a) Diagram showing the bands at the interfaces of a metal-oxide-silicon structure. (b) Band diagram showing the

bending of the bands at the interface of the semiconductors and the two-dimensional subband.
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q ¼ ðqx; qyÞ is the 2D wave vector. If more than one quantum

2D level is occupied by carriers (usually called ‘‘subbands’’)
the system is no longer, strictly speaking, two-dimensional,
and therefore a 2D semiconductor is no longer two-
dimensional at high enough carrier density when higher
subbands get populated.

The effective mass m� is known from band structure
calculations, and within the effective mass approximation
m� ¼ 0:07me (electrons in GaAs), m� ¼ 0:19me (electrons
in Si 100 inversion layers), m� ¼ 0:38me (holes in GaAs),
and m� ¼ 0:92me (electrons in Si 111 inversion layers). In
some situations, e.g., Si 111, the 2D effective mass entering
the dispersion relation may have anisotropy in the x-y plane
and a suitably averaged m� ¼ ffiffiffiffiffiffiffiffiffiffiffiffi

mxmy
p

is usually used.

The 2D semiconductor wave function is nonchiral, and is
derived from the effective mass approximation to be

�ðr; zÞ � eiq	r�ðzÞ; (1.8)

where q and r are the 2D wave vector and position, and �ðzÞ
is the quantum confinement wave function in the ẑ direction
for the lowest subband. The confinement wave function
defines the width or thickness of the 2D semiconductor state
with hzi ¼ jh�jz2j�ij1=2. The detailed form for �ðzÞ usually
requires a quantum-mechanical self-consistent local density
approximation calculation using the confinement potential,
and we refer the interested reader to the extensive existing
literature for the details on the confined quasi-2D subband
structure calculations (Ando et al., 1982; Stern and Das
Sarma, 1984; Bastard, 1991; Davies, 1998).

Finally, we note that 2D semiconductors may also in some
situations carry an additional valley quantum number similar
to graphene. But the valley degeneracy in semiconductor
structures, e.g., Si-MOSFET 2D electron systems, have noth-
ing whatsoever to do with a pseudospin chiral index. For Si
inversion layers, the valley degeneracy (gv ¼ 2, 4, and 6,
respectively, for Si 100, 110, and 111 surfaces) arises from
the bulk indirect band structure of Si which has 6 equivalent
ellipsoidal conduction band minima along the 100, 110, and
111 directions about 85% to the Brillouin zone edge. The
valley degeneracy in Si MOSFETs, which is invariably
slightly lifted ( � 0:1 meV), is a well established experimen-
tal fact.

C. Elementary electronic properties

We describe, summarize, and critically contrast the
elementary electronic properties of graphene and 2D
semiconductor-based electron gas systems based on their
long-wavelength effective 2D energy dispersion discussed
in the earlier sections (see Table II). Except where the context
is obvious, we abbreviate the following from now on: MLG,
BLG, and semiconductor-based 2D electron gas systems
(2DEG). The valley degeneracy factors are typically gv ¼ 2
for graphene and Si 100 based 2DEGs, whereas gv ¼ 1ð6Þ for
2DEGs in GaAs (Si 111). The spin degeneracy is always
gs ¼ 2, except at high magnetic fields. The Fermi wave
vector for all 2D systems is given simply by filling up the
noninteracting momentum eigenstates up to q ¼ kF:

n ¼ gsgv
Z
jqjkF

dq

ð2�Þ2 ! kF ¼
ffiffiffiffiffiffiffiffiffiffi
4�n

gsgv

s
; (1.9)

where n is the 2D carrier density in the system. Unless
otherwise stated, we will mostly consider electron systems
(or the conduction band side of MLG and BLG). Typical
experimental values of n � 109 to 5� 1012 cm�2 are achiev-
able in graphene and Si-MOSFETs; whereas, in GaAs-based
2DEG systems n � 109 to 5� 1011 cm�2.

1. Interaction parameter rs

The interaction parameter—also known as the Wigner-
Seitz radius, the coupling constant, or the effective fine-
structure constant—is denoted here by rs, which in this
context is the ratio of the average interelectron Coulomb
interaction energy to the Fermi energy. Noting that the aver-
age Coulomb energy is simply hVi ¼ e2=�hri, where hri ¼
ð�nÞ�1=2 is the average interparticle separation in a 2D
system with n particles per unit area, and � is the background
dielectric constant, we obtain rs � n0 for MLG and rs �
n�1=2 for BLG and 2DEG.

A note of caution about the nomenclature is in order here,
particularly since we have kept the degeneracy factors gsgv in
the definition of the interaction parameter. Putting gsgv ¼ 4,
the usual case for MLG, BLG, and Si 100 2DEG, and
gsgv ¼ 2 for GaAs 2DEG, we get rs ¼ e2=ð�ℏvFÞ (MLG),
rs ¼ 2me2=ð�ℏ2

ffiffiffiffiffiffiffi
�n

p Þ (BLG and Si 100 2DEG), and rs ¼
me2=ð�ℏ2

ffiffiffiffiffiffiffi
�n

p Þ (GaAs 2DEG). The traditional definition of
the Wigner-Seitz radius for a metallic Fermi liquid is the
dimensionless ratio of the average interparticle separation to
the effective Bohr radius aB ¼ �ℏ2=ðme2Þ. This gives for the
Wigner-Seitz radius rWS

s ¼ me2=ð�ℏ2
ffiffiffiffiffiffiffi
�n

p Þ (2DEG and
BLG), which differs from the definition of the interaction
parameter rs by the degeneracy factor gsgv=2. We emphasize
that the Wigner-Seitz radius from the above definition is
meaningless for MLG, because the low energy linear disper-
sion implies a zero effective mass (or more correctly the
concept of an effective mass for MLG does not apply). For
MLG, therefore, an alternative definition widely used in the
literature defines an effective fine-structure constant (	) as
the coupling constant 	 ¼ e2=ð�ℏvFÞ, which differs from the
definition of rs by the factor

ffiffiffiffiffiffiffiffiffiffi
gsgv

p
=2. Putting

ffiffiffiffiffiffiffiffiffiffi
gsgv

p ¼ 2 for

MLG gives the interaction parameter rs equal to the effective
fine-structure constant 	, just as setting gsgv ¼ 2 for GaAs
2DEG gave the interaction parameter equal to the Wigner-
Seitz radius. Whether the definition of the interaction pa-
rameter should or should not contain the degeneracy factor is
a matter of taste and has been discussed in the literature in the
context of 2D semiconductor systems (Das Sarma et al.,
2009).

A truly significant aspect of the monolayer graphene in-
teraction parameter, which follows directly from its equiva-
lence with the fine-structure constant definition, is that it is a
carrier density independent constant, unlike the rs parameter
for the 2DEG (or BLG), which increases with decreasing
carrier density as n�1=2. In particular, the interaction parame-
ter for MLG is bounded, i.e., 0  rs & 2:2, since 1  �  1,
and as discussed earlier, vF � 108 cm=s is set by the carbon
hopping parameters and lattice spacing. This is in sharp
contrast to 2DEG systems where rs � 13 (for electrons in
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GaAs with n � 109 cm�2) and rs � 50 (for holes in GaAs
with n � 2� 109 cm�2) have been reported (Das Sarma
et al., 2005; Huang et al., 2006; Manfra et al., 2007).

Monolayer graphene is thus, by comparison, always a
fairly weakly interacting system, while bilayer graphene
could become a strongly interacting system at low carrier
density. We point out, however, that the real low-density
regime in graphene (both MLG and BLG) is dominated
entirely by disorder in currently available samples, and there-
fore a homogeneous carrier density of n & 1010 cm�2

(109 cm�2) is unlikely to be accessible for gated (suspended)
samples in the near future. Using the BLG effective mass
m ¼ 0:03me, we get the interaction parameter for BLG: rs �
68:5=ð� ffiffiffi

~n
p Þ, where ~n ¼ n=1010 cm�2. For comparison, the

rs parameters for GaAs 2DEG (� ¼ 13,m� ¼ 0:67me) and Si
100 on SiO2 (� ¼ 7:7, m� ¼ 0:19me, gv ¼ 2) are rs �
4=

ffiffiffi
~n

p
, and rs � 13=

ffiffiffi
~n

p
, respectively.

For the case when the substrate is SiO2, � ¼ ð�SiO2
þ

1Þ=2 � 2:5 for MLG and BLG, we have rs � 0:8 and rs �
27:4=ð ffiffiffi

~n
p Þ, respectively. In vacuum, � ¼ 1 and rs � 2:2 for

MLG and rs � 68:5=ð ffiffiffi
~n

p Þ for BLG.

2. Thomas-Fermi screening wave vector qTF

Screening properties of an electron gas depend on the
density of states D0 at the Fermi level. The simple Thomas-
Fermi theory leads to the long-wavelength Thomas-Fermi
screening wave vector

qTF ¼ 2�e2

�
D0: (1.10)

The density independence of long-wavelength screening in
BLG and 2DEG is the well-known consequence of the den-
sity of states being a constant (independent of energy);
whereas, the property that qTF � kF � n1=2 in MLG is a
direct consequence of the MLG density of states being linear
in energy.

A key dimensionless quantity determining the charged
impurity scattering limited transport in electronic materials
is qs ¼ qTF=kF which controls the dimensionless strength of
quantum screening. From Table I, we have qs � n0 for MLG
and qs � n�1=2 for BLG and 2DEG. Using the usual sub-
stitutions gsgv ¼ 4ð2Þ for Si 100 (GaAs) based 2DEG sys-
tem, and taking the standard values of m and � for
graphene-SiO2, GaAs-AlGaAs, and Si-SiO2 structures, we
get (for ~n ¼ n=1010 cm�2)

MLG: qs � 3:2; BLG: qs � 54:8=
ffiffiffi
~n

p
; (1.11a)

n-GaAs: qs � 8=
ffiffiffi
~n

p
; p-GaAs: qs � 43=

ffiffiffi
~n

p
: (1.11b)

We point out two important features of the simple screen-
ing considerations described above: (i) In MLG, qs being a
constant implies that the screened Coulomb interaction has
exactly the same behavior as the unscreened bare Coulomb
interaction. The bare 2D Coulomb interaction in a back-
ground with dielectric constant � is given by vðqÞ ¼
2�e2=ð�qÞ and the corresponding long-wavelength screened
interaction is given by uðqÞ ¼ 2�e2=�ðqþ qTFÞ. Putting q ¼
kF in the above equation, we get uðqÞ � ðkF þ qTFÞ�1 �
k�1
F ð1þ qTF=kFÞ�1 � k�1

F for MLG. Thus, in MLG, the func-

tional dependence of the screened Coulomb scattering on the
carrier density is exactly the same as unscreened Coulomb
scattering, a most peculiar phenomenon arising from the
Dirac linear dispersion. (ii) In BLG (but not MLG, see above)
and in 2DEG, the effective screening becomes stronger as the
carrier density decreases since qs ¼ qTF=kF � n�1=2 ! 1ð0Þ
as n ! 0ð1Þ. This counterintuitive behavior of 2D screening,
which is true for BLG systems also, means that in 2D systems
effects of Coulomb scattering on transport properties in-
creases with increasing carrier density, and at very high
density, the system behaves as an unscreened system. This
is in sharp contrast to 3D metals where the screening effect
increases monotonically with increasing electron density.

Finally, in the context of graphene, it is useful to give a
direct comparison between screening in MLG versus screen-
ing in BLG: qBLGTF =qMLG

TF � 16=
ffiffiffi
~n

p
, showing that as carrier

density decreases, BLG screening becomes much stronger
than MLG screening.

3. Plasmons

Plasmons are self-sustaining normal mode oscillations of a
carrier system, arising from the long-range nature of the
interparticle Coulomb interaction. The plasmon modes are
defined by the zeros of the corresponding frequency and wave
vector dependent dynamical dielectric function. The long-
wavelength plasma oscillations are essentially fixed by the
particle number (or current) conservation, and can be ob-
tained from elementary considerations. We write down the
long-wavelength plasmon dispersion !p:

MLG: !pðq ! 0Þ ¼
�
e2vFq

�ℏ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ngsgv

p �
1=2

; (1.12a)

BLG and 2DEG: !pðq ! 0Þ ¼
�
2�ne2

�m
q

�
1=2

:

(1.12b)

A rather intriguing aspect of MLG plasmon dispersion is that
it is nonclassical [i.e., ℏ appears explicitly in Eq. (1.12), even
in the long-wavelength limit]. This explicit quantum nature of
long-wavelength MLG plasmon is a direct manifestation of

TABLE I. Elementary electronic quantities. Here EF, DðEÞ, rs, and qTF represent the Fermi energy,
the density of states, the interaction parameter, and the Thomas-Fermi wave vector, respectively.
D0 ¼ DðEFÞ is the density of states at the Fermi energy and qs ¼ qTF=kF.

EF DðEÞ D0 ¼ DðEFÞ rs qTF qs

MLG ℏvF

ffiffiffiffiffiffiffiffi
4�n
gsgv

q
gsgvE

2�ðℏvF Þ2
ffiffiffiffiffiffiffiffiffiffi
gsgvn

pffiffiffi
�

p
ℏvF

e2

�ℏvF

ffiffiffiffiffiffiffiffi
gsgv

p
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4�gsgvn

p
e2

�ℏvF

gsgve
2

�ℏvF

BLG and 2DEG 2�ℏ2n
mgsgv

gsgvm
2�ℏ2

gsgvm
2�ℏ2

me2

2�ℏ2
gsgvffiffiffiffiffi
�n

p gsgvme2

�ℏ2
ðgsgvÞ3=2me2

�ℏ2
ffiffiffiffiffiffiffi
4�n

p
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its linear Dirac-like energy-momentum dispersion, which has
no classical analogy (Das Sarma and Hwang, 2009).

4. Magnetic field effects

Although magnetic field-induced phenomena in graphene
and 2D semiconductors [e.g., quantum Hall (QH) effect and
fractional quantum Hall effect] are briefly covered in Sec. V,
we mention at this point a few elementary electronic proper-
ties in the presence of an external magnetic field perpendicu-

lar to the 2D plane leading to the Landau orbital quantization
of the system.

a. Landau level energetics

The application of a strong perpendicular external
magnetic field (B) leads to a complete quantization of the
orbital carrier dynamics of all 2D systems leading to the
following quantized energy levels En, the so-called Landau
levels:

MLG: En ¼ sgnðnÞvF

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2eℏBjnj

p
; with n ¼ 0;�1;�2; . . . ; (1.13a)

BLG: En ¼ sgnðnÞffiffiffi
2

p ½ð2jnj þ 1Þð2eBv2
FℏÞ þ 4m2v4

F �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2mv2

FÞ4 þ 2ð2jnj þ 1Þð2eBv2
FℏÞð2mv2

FÞ2 þ ð2eBv2
FℏÞ2

q
�;

with n ¼ 0;�1;�2; . . . ; (1.13b)

2DEG: En ¼ ðnþ 1=2Þ
�
eBℏ
mc

�
; with n ¼ 0; 1; 2; . . . (1.13c)

The hallmark of the Dirac nature of graphene is the exis-
tence of a true zero-energy [n ¼ 0 in Eq. (1.13a)] Landau
level, which is equally shared by electrons and holes. The
experimental verification of this zero-energy Landu level
in graphene is definitive evidence for the long-wavelength
Dirac nature of the system (Miller et al., 2009; Novoselov,
Geim et al., 2005; Zhang et al., 2005).

b. Cyclotron resonance

External radiation induced transitions between Landau
levels give rise to the cyclotron resonance in a Landau
quantized system, which has been extensively studied in 2D
semiconductor (Ando et al., 1982) and graphene systems
(Jiang et al., 2007; Henriksen et al., 2008, 2010). The
cyclotron resonance frequency in MLG and 2DEG is given by

MLG: !c ¼ vF

ffiffiffiffiffiffiffiffiffiffiffiffi
2eℏB

p ð ffiffiffiffiffiffiffiffiffiffiffiffi
nþ 1

p � ffiffiffi
n

p Þ; (1.14a)

2DEG: !c ¼ eB

mc
: (1.14b)

For BLG, the cyclotron frequency should smoothly interpo-
late from the formula for MLG for very large n, so that En in
Eq. (1.13) is much larger than 2mv2

F, to that of the 2DEG for

small n so that En � 2mv2
F (where m � 0:033 is the ap-

proximate B ¼ 0 effective mass of the bilayer parabolic-band
dispersion). Experimental BLG cyclotron resonance studies
(Henriksen et al., 2010) indicate the crossover from the
quadratic band dispersion (i.e., 2DEG-like) for smaller q to
the linear band dispersion (i.e., MLG-like) at larger q seems
to happen at lower values of q than that implied by simple
band theory considerations.

A particularly interesting and important feature of cyclo-
tron resonance in graphene is that it is affected by electron-
electron interaction effects unlike the usual parabolic 2DEG,
where the existence of Kohn’s theorem prevents the long-
wavelength cyclotron frequency from being renormalized by
electron-electron interactions (Kohn, 1961; Ando et al.,
1982). For further discussion of this important topic, we refer

the interested reader to the recent literature on the subject
(Henriksen et al., 2010; Shizuya, 2010.

c. Zeeman splitting:

In graphene, the spin splitting can be large since the Landé
g factor in graphene is the same (g ¼ 2) as in vacuum. The
Zeeman splitting in an external magnetic field is given by (
B

is the Bohr magneton) Ez ¼ g
BB ¼ 0:12B½T� meV, for
g ¼ 2 (MLG, BLG, Si 2DEG) and Ez ¼ �0:03B½T� meV
for g ¼ �0:44 (GaAs 2DEG). We note that the relative
value of Ez=EF is rather small in graphene, Ez=EF �
0:01ðB½T�= ffiffiffi

~n
p Þ ! 0:01 for B ¼ 10 T and n ¼ 1012 cm�2.

Thus, the spin splitting is only 1% even at high fields. Of
course, the polarization effect is stronger at low carrier
densities, since EF is smaller.

D. Intrinsic and extrinsic graphene

It is important to distinguish between intrinsic and extrin-
sic graphene because gapless graphene (either MLG or BLG)
has a charge neutrality point (CNP), i.e., the Dirac point,
where its character changes from being electronlike to being
holelike. Such a distinction is not meaningful for a 2DEG (or
BLG with a large gap) since the intrinsic system is simply an
undoped system with no carriers (and as such is uninteresting
from the electronic transport properties perspective).

In monolayer and bilayer graphene, the ability to gate (or
dope) the system by putting carriers into the conduction or
valence band by tuning an external gate voltage enables one
to pass through the CNP where the chemical potential (EF)
resides precisely at the Dirac point. This system, with no free
carriers at T ¼ 0, and EF precisely at the Dirac point is called
intrinsic graphene with a completely filled (empty) valence
(conduction) band. Any infinitesimal doping (or, for that
matter, any finite temperature) makes the system ‘‘extrinsic’’
with electrons (holes) present in the conduction (valence)
band (Müller et al., 2009). Although the intrinsic system is
a set of measure zero (since EF has to be precisely at the
Dirac point), the routine experimental ability to tune the
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system from being electronlike to to being holelike by chang-
ing the external gate voltage, manifestly establishes that one
must be going through the intrinsic system at the CNP. If
there is an insulating regime in between, as there would be for
a gapped system, then intrinsic graphene is not being
accessed.

Although it is not often emphasized, the achievement of
Novoselov et al. (2004) in producing 2D graphene in the
laboratory is not just fabricating (Novoselov, Jiang et al.,
2005) and identifying (Ferrari et al., 2006; Ferrari, 2007)
stable monolayers of graphene flakes on substrates, but also
establishing its transport properties by gating the graphene
device using an external gate, which allows one to simply
tune an external gate voltage and thereby continuously con-
trolling the 2D graphene carrier density as well as their nature
(electron or hole). If all that could be done in the laboratory
was to produce 2D graphene flakes, with no hope of doping or
gating them with carriers, then the subject of graphene would
be many orders of magnitude smaller and less interesting.
What led to the exponential growth in graphene literature is
the discovery of gatable and density tunable 2D graphene in
2004.

Taking into account the quantum capacitance in graphene,
the doping induced by the external gate voltage Vg is given by

the following relation (Fang et al., 2007; Fernandez-Rossier
et al., 2007):

n ¼ CVg

e
þ nQ

�
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ CVg

enQ

s �
; (1.15)

where C is the gate capacitance, e the absolute value of the
electron charge, and nQ � ð�=2ÞðCℏvF=e

2Þ2. The second

term on the right-hand side (r.h.s.) of (1.15) is analogous to
the term due to the so-called quantum capacitance in regular
2DEG. Note that in graphene, due to the linear dispersion,
contrary to parabolic 2D electron liquids, the quantum ca-
pacitance depends on Vg. For a background dielectric con-

stant � � 4 and gate voltages larger than few millivolts, the
second term on the r.h.s. of (1.15) can be neglected for
thicknesses of the dielectric larger than few angstroms. In
current experiments on exfoliated graphene on SiO2 the oxide

is 300 nm thick, and therefore quantum-capacitance effects
are completely negligible. In this case, a simple capacitance
model connects the 2D carrier density (n) with the applied
external gate voltage Vg, n � CVg, where C � 7:2�
1010 cm�2=V for graphene on SiO2 with roughly 300 nm
thickness. This approximate value of the constant C seems to
be pretty accurate, and the following scaling should provide n
for different dielectrics:

n½1010 cm�2� ¼ 7:2� t ½nm�
300

�

3:9
Vg½V�; (1.16)

where t is the thickness of the dielectric (i.e., the distance
from the gate to the graphene layer) and � is the dielectric
constant of the insulating substrate.

It is best, therefore, to think of 2D graphene on SiO2 [see
Fig. 1(e)] as a metal-oxide-graphene-field-effect-transistor
similar to the well-known Si-MOSFET structure, with Si
replaced by graphene where the carriers reside. In fact, this
analogy between graphene and Si 100 inversion layer is
operationally quite effective: Both have the degeneracy factor
gsgv ¼ 4 and both typically have SiO2 as the gate oxide
layer. The qualitative and crucial difference is, of course,
that graphene carriers are chiral, massless, with linear disper-
sion and with no band gap, so that the gate allows one to go
directly from being n-type to a p-type carrier system through
the charge neutral Dirac point. Thus, a graphene metal-oxide-
graphene-field-effect-transistor is not a transistor at all (at
least for MLG), since the system never becomes insulating at
any gate voltage (Avouris et al., 2007).

We will distinguish between extrinsic (i.e., doped) gra-
phene with free carriers and intrinsic (i.e., undoped) graphene
with the chemical potential precisely at the Dirac point. All
experimental systems (since they are always at T � 0) are
necessarily extrinsic, but intrinsic graphene is of theoretical
importance since it is a critical point. In particular, intrinsic
graphene is a non-Fermi liquid in the presence of electron-
electron interactions (Das Sarma, Hwang, and Tse, 2007),
while extrinsic graphene is a Fermi liquid. Since the non-
Fermi-liquid fixed point for intrinsic graphene is unstable to
the presence of any finite carrier density, the non-Fermi-
liquid nature of this fixed point is unlikely to have any

TABLE II. Electronic quantities for monolayer graphene. Note that the graphene Fermi velocity
(vF ¼ 108 cm=s) and the degeneracy factor g ¼ gsgv ¼ 4, i.e., the usual spin degeneracy (gs ¼ 2)
and a valley degeneracy (gv ¼ 2), are used in this table. Here ~n ¼ n=ð1010 cm�2Þ, and B, q, and �
are measured in T, cm�1, and e2=h ¼ 38:74 
S (or h=e2 ¼ 25:8 k�), respectively.

Quantity Scale values

Fermi wave vector (kF)
1:77� 105

ffiffiffi
~n

p ½cm�1�
Thomas-Fermi wave vector (qTF) 1:55� 106

ffiffiffi
~n

p
=� ½cm�1�

Interaction parameter (rs) 2:19=�
DOS at EF [D0 � DðEFÞ] 1:71� 109

ffiffiffi
~n

p ½meV�1 cm�2�
Fermi energy (EF) 11:65

ffiffiffi
~n

p ½meV�
Zeeman splitting (Ez) 0:12B ½meV�
Cyclotron frequency (!c) 5:51� 1013

ffiffiffiffi
B

p ½s�1�
Landau level energy (En) sgnðlÞ36:29 ffiffiffiffiffiffiffiffi

Bjljp ½meV�, l ¼ 0;�1;�2; . . .

Plasma frequency (!pðqÞ) 5:80� 10�2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~n

p
q=�

q
½meV�

Mobility (
) 2:42� 104�=~n ½cm2=V s�
Scattering time (�) 2:83� 10�14�=

ffiffiffi
~n

p ½s�
Level broadening (�) 11:63

ffiffiffi
~n

p
=� ½meV�
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experimental implication. But it is important to keep this non-
Fermi-liquid nature of intrinsic graphene in mind when dis-
cussing graphene’s electronic properties. We also mention
(see Sec. IV) that disorder, particularly long-ranged disorder
induced by random charged impurities present in the environ-
ment, is a relevant strong perturbation affecting the critical
Dirac point, since the system breaks up into spatially random
electron-hole puddles, thus masking its zero-density intrinsic
nature.

E. Other topics

There are several topics that are of active current research
which we could not cover in this review. Some remain
controversial, and others are still poorly understood. Yet these
subjects are important, in terms of both fundamental physics
and for the application of graphene for useful devices. Here
we sketch the status of these subjects. For example, several
novel methods of fabricating graphene recently emerged,
including chemical vapor deposition on nickel (Kim, Zhao
et al., 2009) and copper (Li et al., 2009), as well as directly
unzipping carbon nanotubes (Kosynkin et al., 2009; Sinitskii
et al., 2009) and other chemical methods (Jiao et al., 2009).
As of early 2010, all of these other fabrication processes are
just in their infancy. The notable exception is ‘‘epitaxial
graphene’’ manufactured by heating SiC wafers, causing
the Si atoms to desorb, resulting in several graphene layers
at the surface (Berger et al., 2004; Berger et al., 2006;
Emtsev et al., 2009; de Heer et al., 2010; First et al., 2010)
that are believed to be very weakly coupled and of very good
quality (Rutter et al., 2007; Hass et al., 2008; Orlita et al.,
2008; Miller et al., 2009). We note that graphene can be used
as a component of more complicated structures by exploiting
its spin (Hill et al., 2006; Cho et al., 2007; Tombros et al.,
2007; Han et al., 2009; Huertas-Hernando et al., 2006, 2009;
Józsa et al., 2009) or valley (Rycerz et al., 2007b) degen-
eracy or by patterning gates with a periodic superpotential
(Park, et al., 2008; Brey and Fertig, 2009a). Graphene can
also be made to superconduct through the proximity effect by
coupling it to superconducting leads (Beenakker, 2006, 2008;
Heersche et al., 2007; Du, Skachko, and Andrei, et al., 2008)
or other novel proposals (Feigel’man et al., 2008; Lutchyn
et al., 2008). This review could not cover these topics in any
reasonable depth.

1. Optical conductivity

It was pointed out as early as 1994 by Ludwig et al. (1994)
that if one examined the conductivity of Dirac fermions in
linear response theory, keeping a finite frequency, i.e., �ð!Þ
while taking the limit of zero temperature (T ! 0) and
vanishing disorder (� ! 0), then one obtained a universal
and frequency independent optical conductivity (i.e., electri-
cal conductivity at finite frequency):

�ð!Þ ¼ gsgv
�e2

8h
: (1.17a)

Ludwig et al. (1994) also noted that this result did not
commute with the dc conductivity in which one first took
the limit ! ! 0 and then � ! 0, in which case one obtained

�min ¼ gsgv
e2

�h
: (1.17b)

These T ¼ 0 results apply to intrinsic graphene, where EF is
precisely at the Dirac point. The crossover between these
two theoretical intrinsic limits remains an open problem
(Katsnelson, 2006; Ostrovsky et al., 2006).

The optical conductivity [Eq. (1.17a)] has been measured
experimentally both by infrared spectroscopy (Li et al.,
2008) and by measuring the absorption of suspended gra-
phene sheets (Nair et al., 2008). In the IR measurements,
�ð!Þ is close to the predicted universal value for a range of
frequencies 4000<!< 6500 cm�1. While in the absorption
experiment, the attenuation of visible light through multilayer
graphene scales as �	 per layer. They claimed that this was
an accurate measurement of the fine-structure constant 	 and
is a direct consequence of having �ð!Þ as a universal and
frequency independent constant. In some sense, it is quite
remarkable that disorder and electron-electron interactions do
not significantly alter the value of the optical conductivity.
This has attracted considerable theoretical interest (Gusynin
and Sharapov, 2006; Mishchenko, 2007; Herbut et al., 2008;
Katsnelson, 2008; Kuzmenko et al., 2008; Peres et al., 2008;
Peres and Stauber, 2008; Stauber, Peres, and Geim, et al.,
2008; Min and MacDonald, 2009; Mishchenko, 2009; Sheehy
and Schmalian, 2009), where it has been argued that it is a
fortuitous cancellation of higher order terms that explains the
insensitivity of �ð!Þ to interaction effects. We refer the
interested reader to these works for a detailed discussion of
how interaction effects and disorder change �ð!Þ from the
universal value, although a consensus is yet to emerge on
whether these effects could be observed experimentally or
how accurate �ð!Þ is for a measure of the fine-structure
constant (Mak et al., 2008; Gusynin et al., 2009).

2. Graphene nanoribbons

It was realized in the very first graphene transport experi-
ments that the finite minimum conductivity [Eq. (1.17)]
would be an obstacle for making a useful transistor since
there is no ‘‘off’’ state. One way to circumvent this problem is
to have a quasi-one-dimensional (1D) geometry that confines
the graphene electrons in a strip of (large) length L and a
finite (small) width W. The confinement gap typically scales
as 1=W (Wakabayashi et al., 1999); however, this depends on
the imposed boundary conditions. This is quite similar to
carbon nanotubes (since a nanotube is just a nanoribbon with
periodic boundary conditions). The nomenclature in graphene
is slightly different from carbon nanotubes, where a zigzag-
edge nanoribbon is similar to an armchair nanotube in that it
is always metallic within the tight-binding approximation.
Similarly, an armchair nanoribbon is similar to a zigzag
nanotube in that it can be either metallic or semiconducting
depending on the width. Early theoretical calculations (Son,
et al., 2006a, 2006b; Yang et al., 2007) used a density
functional theory to calculate the band gap of armchair
graphene nanoribbons and found that just as in carbon nano-
tubes, the energy gaps come in three families that are all
semiconducting (unlike the tight-binding calculation, which
gives one of the families as metallic). Brey and Fertig (2006)
showed that simply quantizing the Dirac Hamiltonian (the
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low energy effective theory) gave quantitatively similar re-
sults for the energy gaps as the tight-binding calculation,
while Son, et al. (2006a) showed that the density functional
results could be obtained from the tight-binding model with
some added edge disorder. By considering arbitrary boundary
conditions, Akhmerov and Beenakker (2008) demonstrated
that the behavior of the zigzag edge is the most generic for
graphene nanoribbons. These theoretical works gave a simple
way to understand the gap in graphene nanoribbons.

The first experiments on graphene nanoribbons (Han et al.,
2007), however, presented quite unexpected results. As
shown in Fig. 5 the transport gap for narrow ribbons is
much larger than that predicted by theory (with the gap
diverging at widths of � 15 nm), while wider ribbons have
a much smaller gap than expected. Surprisingly, the gap
showed no dependence on the orientation (i.e., zigzag or
armchair direction) as required by the theory. These discrep-
ancies have prompted several studies (Areshkin et al., 2007;
Chen et al., 2007; Sols et al., 2007; Abanin and Levitov,
2008; Adam, Cho et al., 2008; Basu et al., 2008; Biel, Blase
et al., 2009; Biel, Triozon et al., 2009; Dietl et al., 2009;
Martin and Blanter, 2009; Stampfer et al., 2009; Todd et al.,
2009). In particular, Sols et al. (2007) argued that fabrication
of the nanoribbons gave rise to very rough edges breaking the
nanoribbon into a series of quantum dots. Coulomb blockade
of charge transfer between the dots (Ponomarenko et al.,
2008) explains the larger gaps for smaller ribbon widths. In a
similar spirit, Martin and Blanter (2009) showed that edge
disorder qualitatively changed the picture from that of the
disorder-free picture presented earlier, giving a localization
length comparable to the sample width. For larger ribbons,
Adam, Cho et al. (2008) argued that charged impurities in the
vicinity of the graphene would give rise to inhomogeneous
puddles so that the transport would be governed by percola-
tion [as shown in Fig. 5, the points are experimental data, and
the solid lines, for both electrons and holes, show fits to ��
ðV � VcÞ�, where � is close to 4=3, the theoretically expected
value for percolation in 2D systems]. The large gap for small

ribbon widths would then be explained by a dimensional

crossover as the ribbon width became comparable to the
puddle size. A numerical study including the effect of quan-

tum localization and edge disorder was done by Mucciolo
et al. (2009) who found that a few atomic layers of edge

roughness were sufficient to induce transport gaps to appear,
which are approximately inversely proportional to the nano-

ribbon width. Two recent and detailed experiments
(Gallagher et al., 2010; Han et al., 2010) seem to suggest

that a combination of these pictures might be at play (e.g.,
transport through quantum dots that are created by the

charged impurity potential), although as of now, a complete
theoretical understanding remains elusive. The phenomenon

that the measured transport gap is much smaller than the
theoretical band gap seems to be a generic feature in gra-

phene, occurring not only in nanoribbons but also in biased
bilayer graphene where the gap measured in transport experi-

ments appears to be substantially smaller than the theoreti-
cally calculated, band gap (Oostinga et al., 2008) or even the

measured optical gap (Mak et al., 2009; Zhang, Tang et al.,
2009).

3. Suspended graphene

Since the substrate affects both the morphology of gra-

phene (Ishigami et al., 2007; Meyer et al., 2007; Stolyarova
et al., 2007) and provides a source of impurities, it became

clear that one needed to find a way to have electrically
contacted graphene without the presence of the underlying

substrate. The making of ‘‘suspended graphene’’ or
‘‘substrate-free’’ graphene was an important experimental

milestone (Bolotin, Sikes, Jiang et al., 2008; Bolotin,
Sikes, Hone et al., 2008; Du et al., 2008) where after

exfoliating graphene and making electrical contact, one

then etches away the substrate underneath the graphene so
that the graphene is suspended over a trench that is approxi-

mately 100 nm deep. As a historical note, we mention that
suspended graphene without electrical contacts was made

FIG. 5 (color online). (a) Graphene nanoribbon energy gaps as a function of width. Adapted from Han et al., 2007. Four devices (P1–P4)

were orientated parallel to each other with varying width, while two devices (D1–D2) were oriented along different crystallographic

directions with uniform width. The dashed line is a fit to a phenomenological model with Eg ¼ A=ðW �W�Þ where A and W� are fit

parameters. The inset shows that contrary to predictions, the energy gaps have no dependence on crystallographic direction. The dashed lines

are the same fits as in the main panel. (b) Evidence for a percolation metal-insulator transition in graphene nanoribbons. Adapted from Adam,

Cho et al., 2008. Main panel shows graphene ribbon conductance as a function of gate voltage. Solid lines are a fit to percolation theory,

where electrons and holes have different percolation thresholds (seen as separate critical gate voltages Vc). The inset shows the same data in a

linear scale, where even by eye the transition from high-density Boltzmann behavior to the low-density percolation transport is visible.
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earlier by Meyer et al. (2007). Quite surprisingly, the sus-
pended samples as prepared did not show much difference
from unsuspended graphene, until after current annealing
(Moser et al., 2007; Barreiro et al., 2009). This suggested
that most of impurities limiting the transport properties of
graphene were stuck to the graphene sheet and not buried in
the substrate. After removing these impurities by driving a
large current through the sheet, the suspended graphene
samples showed both ballistic and diffusive carrier transport
properties. Away from the charge neutrality point, suspended
graphene showed near-ballistic transport over hundreds of
nm, which prompted much theoretical interest (Adam and
Das Sarma, 2008b; Fogler, Guinea, and Katsnelson, 2008;
Stauber, Peres, and Neto, et al., 2008; Müller et al., 2009).
One problem with suspended graphene is that only a small
gate voltage (Vg � 5 V) could be applied before the graphene

buckles due to the electrostatic attraction between the charges
in the gate and on the graphene sheet, and binds to the bottom
of the trench that was etched out of the substrate. This is in
contrast to graphene on a substrate that can support as
much as Vg � 100 V and a corresponding carrier density of

� 1013 cm�2. To avoid the warping, it was proposed that one
should use a top gate with the opposite polarity, but currently,
this has yet to be demonstrated experimentally. Despite the
limited variation in carrier density, suspended graphene has
achieved a carrier mobility of more than 200 000 cm2=V s
(Bolotin, Sikes, Jiang et al., 2008; Bolotin, Sikes, Hone
et al., 2008; Du et al., 2008). Recently suspended graphene
bilayers were demonstrated experimentally (Feldman et al.,
2009).

4. Many-body effects in graphene

The topic of many-body effects in graphene is itself a large
subject, and one that we could not cover in this transport
review. As discussed earlier, for intrinsic graphene the many-
body ground state is not even a Fermi liquid (Das Sarma,
Hwang, and Tse, 2007), an indication of the strong role
played by interaction effects. Experimentally, one can ob-
serve the signature of many-body effects in the compressi-
bility (Martin et al., 2007) and using angle resolved
photoemission spectroscopy (ARPES) (Bostwick et al.,
2007; Zhou et al., 2007). Away from the Dirac point, where
graphene behaves as a normal Fermi liquid, the calculation of
the electron-electron and electron-phonon contribution to the
quasiparticle self-energy was studied by several groups
(Barlas et al., 2007, Calandra and Mauri, 2007, E. H.
Hwang et al., 2007a, 2007b; Park et al., 2007, 2009;
Polini et al., 2007; Tse and Das Sarma, 2007; Hwang and
Das Sarma, 2008c; Polini, Asgari et al., 2008; Carbotte
et al., 2010), and shows reasonable agreement with experi-
ments (Bostwick et al., 2007; Brar et al., 2010). For both
bilayer graphene (Min, Borghi et al., 2008) and double-layer
graphene (Min, Bistritzer et al., 2008), an instability towards
an excitonic condensate has been proposed. In general, mono-
layer graphene is a weakly interacting system since the
coupling constant (rs  2) is never large (Muller et al.,
2009). In principle, bilayer graphene could have arbitrarily
large coupling at low carrier density where disorder effects
are also important. We refer the interested reader to these
works for details on this subject.

5. Topological insulators

There is a deep connection between graphene and topo-
logical insulators (Kane and Mele, 2005a; Sinitsyn et al.,
2006). Graphene has a Dirac cone where the ‘‘spin’’ degree of
freedom is actually related to the sublattices in real space;
whereas, it is the real electron spin that provides the Dirac
structure in the topological insulators (Hasan and Kane,
2010) on the surface of BiSb and BiTe (Hsieh et al., 2008;
Chen et al., 2009). Graphene is a weak topological insulator
because it has two Dirac cones (by contrast, a strong topo-
logical insulator is characterized by a single Dirac cone on
each surface), but in practice the two cones in graphene are
mostly decoupled and it behaves like two copies of a single
Dirac cone. Therefore, many of the results presented in this
review, although intended for graphene, should also be rele-
vant for the single Dirac cone on the surface of a topological
insulator. In particular, we expect the interface transport
properties of topological insulators to be similar to the phys-
ics described in this review as long as the bulk is a true gapped
insulator.

F. 2D nature of graphene

As the concluding section of the Introduction, we ask the
following: what precisely is meant when an electronic system
is categorized as 2D, and how can one ensure that a specific
sample or system is 2D from the perspective of electronic
transport phenomena?

The question is not simply academic, since 2D does not
necessarily mean a thin film (unless the film is literally one
atomic monolayer thick as in graphene, and even then, one
must consider the possibility of the electronic wave function
extending somewhat into the third direction). Also, the defi-
nition of what constitutes a 2D may depend on the physical
properties or phenomena that one is considering. For ex-
ample, for the purpose of quantum localization phenomena,
the system dimensionality is determined by the width of the
system being smaller than the phase coherence length L� (or

the Thouless length). Since L� could be very large at low

temperature, metal films and wires can, respectively, be
considered 2D and 1D for localization studies at ultralow
temperature. For our purpose, however, dimensionality is
defined by the 3D electronic wave function as ‘‘free’’
plane-wave–like (i.e., carrying a conserved 2D wave vector)
in a 2D plane, while it is a quantized bound state in the third
dimension. This ensures that the system is quantum mechani-
cally 2D.

Considering a thin film of infinite (i.e., very large) dimen-
sion in the x-y plane and a finite thicknessw in the z direction,
where w could be the typical confinement width of a potential
well creating the film, the system is considered 2D if
�F ¼ 2�=kF > w. For graphene, we have �F �
ð350= ffiffiffi

~n
p Þ nm, where ~n ¼ n=ð1010 cm�2Þ, and since w �

0:1 to 0.2 nm (the monolayer atomic thickness), the condition
�F � w is always satisfied, even for unphysically large
n ¼ 1014 cm�2.

Conversely, it is essentially impossible to create 2D elec-
tronic systems from thin metal films since the very high
electron density of metals provides �F � 0:1 nm, so that
even for a thickness of w � 1 nm (the thinnest metal film
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that one can make), �F < w, making them effectively 3D. By
virtue of the much lower carrier densities in semiconductors,

the condition �F > w can be easily satisfied for w ¼ 5 to
50 nm for n ¼ 109 to 1012 cm�2, making it possible for 2D

semiconductor systems to be readily available since confine-
ment potentials with a width of� 10 nm can be implemented
by external gate voltage or band structure engineering.

We now address the question of the experimental verifica-

tion of the 2D nature of a particular system or sample. The
classic technique is to show that the orbital electronic dy-

namics is sensitive only to a magnetic field perpendicular to
the 2D plane (i.e., Bz) (Practically, there could be complica-

tions if the spin properties of the system affect the relevant
dynamics, since the Zeeman splitting is proportional to the
total magnetic field). Therefore, if either the magnetoresis-

tance oscillations (Shubnikov–de Hass effect) or the cyclo-
tron resonance properties depend only on Bz, then the 2D

nature is established.
Both of these are true in graphene. The most definitive

evidence for 2D nature, however, is the observation of the
quantum Hall effect, which is a quintessentially 2D phenome-

non. Any system manifesting an unambiguous quantized Hall
plateau is 2D in nature, and therefore the observation of the

quantum Hall effect in graphene in 2005 by Novoselov, Geim
et al. (2005) and Zhang et al. (2005) absolutely clinched its
2D nature. In fact, the quantum Hall effect in graphene

persists to room temperature (Novoselov et al., 2007),
indicating that graphene remains a strict 2D electronic mate-

rial even at room temperature.
Finally, we remark on the strict 2D nature of graphene

from a structural viewpoint. The existence of finite 2D flakes
of graphene with crystalline order at finite temperature does

not in any way violate the Hohenberg-Mermin-Wagner-
Coleman theorem which rules out the breaking of a continu-
ous symmetry in two dimensions. This is because the theorem

only asserts a slow power law decay of the crystalline (i.e.,
positional order) correlation with distance, and hence, very

large flat 2D crystalline flakes of graphene (or for that matter
of any material) are manifestly allowed by this theorem. In
fact, a 2D Wigner crystal, i.e., a 2D hexagonal classical

crystal of electrons in a very low-density limit, was experi-
mentally observed more than 30 years ago (Grimes and

Adams, 1979) on the surface of liquid 4He (where the elec-
trons were bound by their image force). A simple back of the

envelope calculation shows that the size of the graphene flake
has to be unphysically large for this theorem to have any
effect on its crystalline nature (Thompson-Flagg et al.,

2009). There is nothing mysterious or remarkable about
having finite 2D crystals with quasi-long-range positional

order at finite temperatures, which is what we have in 2D
graphene flakes.

II. QUANTUM TRANSPORT

A. Introduction

The phrase ‘‘quantum transport’’ usually refers to the
charge current induced in an electron gas in response to a

vanishing external electric field in the regime where quantum
interference effects are important (Rammer, 1988;

Akkermans and Montambaux, 2007). This is relevant at low

temperatures where the electrons are coherent and interfer-

ence effects are not washed out by dephasing. Theoretically,

this corresponds to the systematic application of diagram-

matic perturbation theory or field-theoretic techniques to

study how quantum interference changes the conductivity.

For diffusive transport in two dimensions (including gra-

phene), to lowest order in this perturbation theory, interfer-

ence can be neglected, and one recovers the Einstein relation

�0 ¼ e2DðEFÞD, where DðEFÞ is the density of states at EF,

and D ¼ v2
F�=2 is the diffusion constant. This corresponds

to the classical motion of electrons in a diffusive random walk

scattering independently off the different impurities.
Since the impurity potential is typically calculated using

the quantum-mechanical Born approximation, this leading

order contribution to the electrical conductivity is known as

the semiclassical transport theory and is the main subject of

Sec. III.A. Higher orders in perturbation theory give quantum

corrections to this semiclassical result, i.e., � ¼ �0 þ �,
where � � �. In some cases these corrections can be

divergent, a result that simultaneously implies a formal break-

down of the perturbation theory itself, while suggesting a

phase transition to a nonperturbatively accessible ground

state.
For example, it is widely accepted that quantum interfer-

ence between forward and backward electron trajectories is

the microscopic mechanism responsible for the Anderson

metal-insulator transition (Abrahams et al., 1979). For this

reason, the leading quantum correction to the conductivity is

called ‘‘weak localization’’ and is interpreted as the precursor

to Anderson localization.
Weak localization is measured experimentally by using a

magnetic field to break the symmetry between the forward

and backward trajectories causing a change in the resistance.

In this case the zero-field conductivity �ðB ¼ 0Þ ¼ �0 þ �
includes the quantum corrections while �ðB > B�Þ ¼ �0 has

only the semiclassical contribution. (B� is approximately the

magnetic field necessary to thread the area of the sample with

one flux quantum.)
The second hallmark of quantum transport is mesoscopic

conductance fluctuations. If one performed the low-

temperature magnetotransport measurement discussed above,

one would notice fluctuations in the magnetoresistance that

would look like random noise. However, unlike noise, these

traces are reproducible and are called magneto-fingerprints.

These magneto-fingerprints depend on the positions of the

random impurities as seen by the electrons. Annealing the

sample relocates the impurities and changes the fingerprint.

The remarkable feature of these conductance fluctuations is

that their magnitude is universal (depending only on the

global symmetry of the system), and notwithstanding the

caveats discussed below, they are completely independent

of any microscopic parameters such as material properties

or type of disorder.
While the general theory for weak localization and univer-

sal conductance fluctuations is now well established (Lee and

Ramakrishnan, 1985), in Sec. II.C.3 we discuss its application

to graphene.
The discussion so far has concerned diffusive transport;

in what follows, we also consider the ballistic properties of
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noninteracting electrons in graphene. Early studies on the
quantum-mechanical properties of the Dirac Hamiltonian
revealed a peculiar feature—Dirac carriers could not be
confined by electrostatic potentials (Klein, 1929).

An electron facing such a barrier would transmute into a
hole and propagate through the barrier. In Sec. II.B we study
Klein tunneling of Dirac carriers and discuss how this formal-
ism can be used to obtain graphene’s ballistic universal
minimum conductivity. There is no analog of this type of
quantum-limited transport regime in two-dimensional semi-
conductors. The ‘‘metallic nature’’ of graphene gives rise to
several interesting and unique properties that we explore in
this section, including the absence of Anderson localization
for Dirac electrons and a metal-insulator transition induced
by atomically sharp disorder (such as dislocations). We note
that many of the results in this section can be also obtained
using field-theoretic methods (Fradkin, 1986; Ludwig et al.,
1994; Altland, 2006; Ostrovsky et al., 2006; Ryu, Mudry,
Obuse, and Furusaki, 2007; Fritz et al., 2008; Schuessler
et al., 2009).

B. Ballistic transport

1. Klein tunneling

In classical mechanics, a potential barrier, whose height is
greater than the energy of a particle, will confine that particle.
In quantum mechanics, the notion of quantum tunneling
describes the process whereby the wave function of a non-
relativistic particle can leak out into the classically forbidden
region. However, the transmission through such a potential
barrier decreases exponentially with the height and width of
the barrier. For Dirac particles, the transmission probability
depends only weakly on the barrier height, approaching unity
with increasing barrier height (Katsnelson et al., 2006). One
can understand this effect by realizing that the Dirac
Hamiltonian allows for both positive energy states (called
electrons) and negative energy states (called holes). While a
positive potential barrier is repulsive for electrons, it is
attractive for holes (and vice versa). For any potential barrier,
one needs to match the electron states outside the barrier with
the hole states inside the barrier. Since the larger the barrier
is, the greater the mode matching between electron and hole
states is, the transmission is also greater. For an infinite
barrier, the transmission becomes perfect. This is called
Klein tunneling (Klein, 1929).

By solving the transmission and reflection coefficients for
both the graphene p-n junction (Cheianov and Fal’ko, 2006b;
Low and Appenzeller, 2009) and the p-n-p junction
(Katsnelson et al., 2006), it was found that for graphene
the transmission at an angle normal to the barrier was always
perfect (although there could be some reflection at other
angles). This can be understood in terms of pseudospin
conservation. At normal incidence, the incoming electron
state and the reflected electron state are of opposite chirality,
resulting in vanishing probability for reflection.

At finite angles of incidence, the transmission depends on
the sharpness of the barrier. In the limit of a perfectly sharp
step, the transmission probability is determined only by
pseudospin conservation and is given by Tstepð�Þ ¼ cos2�.

For a smooth variation in the electrostatic potential that

defines the p-n junction (characterized by a length scale �),
the transmission probability was shown by Cheianov and
Fal’ko (2006b) to be T�ð�Þ ¼ exp½��ðkF�Þsin2�Þ�. This

implies that for both sharp and smooth potential barriers, a
wave packet of Dirac fermions will collimate in a direction
perpendicular to the p-n junction. One can estimate the
conductance of a single p-n junction (of width W) to be

Gp-n ¼ 4e2

h
ðkFWÞ

Z d�

2�
T�ð�Þ !kF��1 2e2

�h

ffiffiffiffiffiffi
kF
�

s
W: (2.1)

Although the conductance of smooth p-n junctions are
smaller by a factor of

ffiffiffiffiffiffiffiffiffi
kF�

p
compared to sharp ones, this

result suggests that the presence of p-n junctions would make
a small contribution to the overall resistivity of a graphene
sample (see also Sec. IV.D), i.e., graphene p-n junctions are
essentially transparent.

The experimental realization of p-n junctions came shortly
after the theoretical predictions (Huard et al., 2007; Lemme
et al., 2007; Özyilmaz et al., 2007; Williams et al., 2007). At
zero magnetic field, the effect of creating a p-n junction was
to modestly change the device resistance. More dramatic was
the change at high magnetic field in the quantum Hall regime
(see Sec. V).

More detailed calculations of the zero-field conductance of
the p-n junction were performed by taking into account the
effect of nonlinear electronic screening. This tends to make
the p-n junction sharper, and for rs � 1, increases the con-

ductance by a factor r1=6s (Zhang and Fogler, 2008), and
thereby further reduces the overall contribution of p-n junc-
tions to the total resistance. The effect of disorder was
examined by Fogler, Novikov et al. (2008) who studied
how the p-n junction resistance changed from its ballistic
value in the absence of disorder to the diffusive limit with
strong disorder. More recently, Rossi, Bardarson, Brouwer,
and Das Sarma (2010) used a microscopic model of charged
impurities to calculate the screened disorder potential and
solved for the conductance of such a disordered n-p-n junc-
tion numerically.

The broad oscillations visible in Fig. 6 arise from resonant
tunneling of the few modes with the smallest transverse
momentum. These results demonstrate that the signatures of
the Klein tunneling are observable for impurity densities as
high as 1012 cm�2 and would not be washed away by disorder
as long as the impurity limited mean free path is greater than
length of the middle region of the opposite polarity. This
implies that at zero magnetic field, the effects of Klein
tunneling are best seen with a very narrow top gate. Indeed,
recent experiments have succeeded in using an ‘‘air bridge’’
(Gorbachev et al., 2008; Liu et al., 2008) or very narrow top
gates (Stander et al., 2009; Young and Kim, 2009). The
observed oscillations in the conductivity about the semiclas-
sical value are in good agreement with the theory of Rossi,
Bardarson, Brouwer, and Das Sarma (2010).

There is a strong similarity between the physics of phase-
coherent ballistic trajectories of electrons and that of light
waves which is often exploited (Ji et al., 2003; Cheianov,
Fal’ko, and Altshuler, 2007; Shytov et al., 2008). In particu-
lar, Liang et al. (2001) demonstrated that one could construct
a Fabry-Pérot resonator of electrons in a carbon nanotube.
This relies on the interference between electron paths in the
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different valleys K and K0. The same physics has been
observed in ‘‘ballistic’’ graphene, where the device geometry
is constructed such that the source and drain electrodes are
closer than the typical electronic mean free path (Miao et al.,
2007; Cho and Fuhrer, 2009).

2. Universal quantum-limited conductivity

An important development in the understanding of gra-
phene transport is the use of the formalism of Klein tunneling
to address the question of graphene’s minimum conductivity
(Katsnelson, 2006; Tworzydło et al., 2006). This of course
considers noninteracting electrons at zero temperature and in
the limit of no disorder. As shown in the inset of Fig. 6(b), the
insight is to consider the source-graphene-drain configuration
as the n-p-n or n-n-n junction, i.e., the leads are heavily
electron doped, while the graphene sheet in the middle could
be electron doped, hole doped, or pinned at the Dirac point
with zero doping. Since there is no disorder, the electronic
mean free path is much longer than the distance between the
source and drain (‘ � L). We have this situation in mind
when we talk about graphene’s ‘‘ballistic conductivity.’’

For a non-Dirac metal, at finite carrier density, the absence
of scattering would imply that the semiclassical electrical
conductivity is infinite, since there is nothing to impede the
electron motion. However, the conductance would then van-
ish as the carrier density is tuned to zero. This metal-insulator
transition will be discussed in more detail later in the context
of two-dimensional semiconductors.

The situation is quite different for graphene. From studying
the Klein tunneling problem, we already know that both the
n-p-n junction and the n-n-n junction have finite transmis-
sion coefficients. An interesting question follows: What is the
tunneling at the precise point where the junction changes
from a n-p-n junction to the n-n-n junction? The conductiv-
ity at this transition point would then be the quantum-limited
(ballistic) conductivity of graphene at the Dirac point.

The solution is obtained by finding the transmission prob-
abilities and obtaining the corresponding ballistic conductiv-
ity. This is analogous to the quantum mechanics exercise of
computing the transmission through a potential barrier, but
now instead for relativistic electrons. Using the noninteract-
ing Dirac equation

½ℏvF� 	 kþ eVðxÞ��ðrÞ ¼ "�ðrÞ; (2.2)

with the boundary conditions corresponding to Vðx < 0Þ ¼
Vðx > LÞ ¼ V1 to represent the heavily doped leads and
VðxÞ ¼ Vg for 0< x < L. For the case of V1 ! 1 and at

the Dirac point (Vg ¼ " ¼ 0), the transmission probability

(i.e., the square of the transmission amplitude) is given by
purely evanescent modes (Tworzydło et al., 2006):

Tn ¼
�������� 1

coshðqnLÞ
��������2

: (2.3)

This is in contrast to the nonrelativistic electrons (i.e., with
the usual parabolic dispersion), where for fixed qn the analo-
gous calculation gives vanishing transmission probability
Tn � 1=V1. The remaining subtle point is determining the
transverse wave vector qn. While it is clear that qn � nW�1

for large n, the choice of the boundary condition changes the
precise relation, e.g., qn ¼ n�=W for metallic armchair
edges and qn ¼ ðn� 1=3Þ�=W for semiconducting armchair
edges. Following Tworzydło et al. (2006), we use twisted
boundary conditions �ðy ¼ 0Þ ¼ �x�ðy ¼ 0Þ and �ðy ¼
WÞ ¼ ��x�ðy ¼ WÞ, which give qn ¼ ðnþ 1=2Þ�=W.
This boundary condition is equivalent to having massless
Dirac fermions inside the strip of width W, but infinitely
massive Dirac fermions outside of the strip, thereby confining
the electrons (Ryu, Mudry, Furusaki, and Ludwig, 2007).
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FIG. 6 (color online). (a) Disorder averaged resistance as a function of top gate voltage for a fixed back gate density nbg ¼ 5� 1011 cm�2

and several values of the impurity density (from bottom to top nimp ¼ 0, 1, 2.5, 5, 10, and 15� 1011 cm�2). Results were obtained using 103

disorder realizations for a square samples of size W ¼ L ¼ 160 nm in the presence of a top gate placed in the middle of the sample 10 nm

above the graphene layer, 30 nm long, and of widthW. The charge impurities were assumed at a distance d ¼ 1 nm and the uniform dielectric

constant � was taken equal to 2.5. Adapted from Rossi, Bardarson, Brouwer, and Das Sarma, 2010. (b) Solid line is Eq. (2.4) for armchair

boundary conditions showing the aspect ratio dependence of the Dirac point ballistic conductivity (Tworzydło et al., 2006). For W � L, the
theory approaches the universal value 4e2=�h. Circles show experimental data taken from Miao et al. (2007), and squares show the data

from Danneau et al. (2008). Inset: Illustration of the configuration used to calculate graphene’s universal minimum conductivity. For Vg > 0,

one has a p-p-p junction, while for Vg < 0, one has a p-n-p junction. This illustrates the ballistic universal conductivity that occurs at the

transition between the p-p-p and p-n-p junctions when Vg ¼ 0.
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The Landauer conductivity is then given by

� ¼ L

W

gsgve
2

h

X1
n¼0

Tn

¼ 4e2

h

X1
n¼0

L

Wcosh2½�ðnþ 1=2ÞL=W� !W�L 4e2

�h
:

(2.4)

Since at the Dirac point (zero energy) there is no energy scale
in the problem, the conductivity (if finite) can only depend on
the aspect ratio L=W. The remarkable fact is that forW � L,
the sum in Eq. (2.4) converges to a finite and universal
value—giving for ballistic minimum conductivity �min ¼
4e2=�h. This result also agrees with that obtained using
linear response theory in the limit of vanishing disorder,
suggesting that the quantum-mechanical transport through
evanescent modes between source and drain (or equivalently
the transport across two p-n junctions with heavily doped
leads) is at the heart of the physics behind the universal
minimum conductivity in graphene.

Miao et al. (2007) and Danneau et al. (2008) probed this
ballistic limit experimentally using the two-probe geometry.
Their results, shown in Fig. 6(b), are in good agreement with
the theoretical predictions. Although it is not clear what role
contact resistance (Blanter and Martin, 2007; Giovannetti
et al., 2008; Huard et al., 2008; Lee, Balasubramanian
et al., 2008; Blake et al., 2009; Cayssol et al., 2009;
Golizadeh-Mojarad and Datta, 2009) played in these two-
probe measurements.

3. Shot noise

Shot noise is a type of fluctuation in electrical current
caused by the discreteness of charge carriers and from the
randomness in their arrival times at the detector or drain
electrode. It probes any temporal correlation of the electrons
carrying the current, quite distinct from thermal noise (or
Johnson-Nyquist noise) which probes their fluctuation in
energy. Shot noise is quantified by the dimensionless Fano
factor F , defined as the ratio between noise power spectrum
and the average conductance. Scattering theory gives
(Büttiker, 1990)

F ¼
P
n
Tnð1� TnÞP

n
Tn

: (2.5)

Some well-known limits include F ¼ 1 for ‘‘Poisson noise’’
when Tn � 1 (e.g., in a tunnel junction), and F ¼ 1=3 for
disordered metals (Beenakker and Büttiker, 1992). For gra-
phene at the Dirac point, we can use Eq. (2.3) to getF ! 1=3
for W � L (Tworzydło et al., 2006). One should emphasize
that obtaining the same numerical value for the Fano factor
F ¼ 1=3 for ballistic quantum transport in graphene as that
of diffusive transport in disordered metals could be nothing
more than a coincidence (Dragomirova et al., 2009).
Cheianov and Fal’ko (2006b) found that the shot noise of a

single p-n junction was F ¼ 1� ffiffiffiffiffiffiffiffi
1=2

p
, which is numeri-

cally quite close to 1=3.
Since several different mechanisms all give F � 1=3, this

makes shot noise a complicated probe of the underlying

physical mechanism. Recent numerical studies by San-Jose
et al. (2007), Lewenkopf et al. (2008), and Sonin (2008,
2009) treated the role of disorder to examine the crossover
from the F ¼ 1=3 in ballistic graphene to the diffusive
regime (see Sec. IV.B). Within the crossover, or away from
the Dirac point, the Fano factor is no longer universal and
shows disorder dependent deviations. The experimental situ-
ation is less clear. Danneau et al. (2008) measured the Fano
factor decrease fromF � 1=3 with increasing carrier density
to claim agreement with the ballistic theory. While DiCarlo
et al. (2008) found that F was mostly insensitive to carrier
type and density, temperature, aspect ratio, and the presence
of a p-n junction, suggesting diffusive transport in the dirty
limit.

Since shot noise is, in principle, an independent probe of
the nature of the carrier dynamics, it could be used as a
separate test of the quantum-limited transport regime.
However, in practice, the coincidence in the numerical value
of the Fano factor with that of diffusive transport regime
makes this prospect far more challenging.

C. Quantum interference effects

1. Weak antilocalization

Over the past 50 years, there has been much progress
towards understanding the physics of Anderson localization
[for a recent review, see Evers and Mirlin (2008)]. Single
particle Hamiltonians are classified according to their global
symmetry. Since the Dirac Hamiltonian (for a single valley)
H ¼ ℏvF� 	 k is invariant under the transformation H ¼
�yH ��y [analogous to spin-rotation symmetry (SRS) in

pseudospin space] it is in the AII class (also called the
symplectic Wigner-Dyson class). The more familiar physical
realization of the symplectic class is the usual disordered
electron gas with strong spin-orbit coupling:

H 	� ¼ ℏ2k2

2m
	� þV 	�;

V 	k;�k0 ¼ Vk�k0 � iVso
k�k0 ðk̂0 � k̂Þ 	 �	�;

(2.6)

where 	 and � are (real) spin indices, �	� a vector of Pauli

matrices. Note that this Hamiltonian is also invariant under
SRS, H ¼ �yH ��y. We have

hVqVq0 i¼ðq�q0Þ
2���

; hVso
q Vso

q0 i¼ðq�q0Þ
2���so

: (2.7)

It was shown by Hikami et al. (1980) that when the classical
conductivity is large (�0 � e2=h), the quantum correction to
the conductivity is positive

� ¼ e2

�h
lnðL=‘Þ: (2.8)

Equivalently, one can define a one-parameter scaling func-
tion (Abrahams et al., 1979)

�ð�Þ ¼ d ln�

d lnL
; (2.9)

where for the symplectic class it follows from Eq. (2.8) that
�ð�Þ ¼ 1=ð��Þ for large �. To have �> 0 means that the
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conductivity increases as one goes to larger system sizes or
adds more disorder. This is quite different from the usual case
of an Anderson transition where a negative � function means
that for those same changes, the system becomes more
insulating.

Since perturbation theory only gives the result for �ð� �
e2=hÞ, the real question becomes what happens to the �
function at small �. If the � function crosses zero and
becomes negative as � ! 0, then the system exhibits the
usual Anderson metal-insulator transition. Numerical studies
of the Hamiltonian [Eq. (2.6)] show that for the spin-orbit
system, the � function vanishes at �� � 1:4 and below this
value, the quantum correction to the classical conductivity is
negative resulting in an insulator at zero temperature. �� is an
unstable fixed point for the symplectic symmetry class.

As we have seen in Sec. II.B.2, however, graphene has a
minimum ballistic conductivity �min ¼ 4e2=�h and does not
become insulating in the limit of vanishing disorder. This
makes graphene different from the spin-orbit Hamiltonian
discussed above, and the question of what happens with
increasing disorder becomes interesting.

Bardarson et al. (2007) studied the Dirac Hamiltonian
[Eq. (2.2)] with the addition of a Gaussian correlated disorder
term UðrÞ, where

hUðrÞUðr0Þi ¼ K0

ðℏvFÞ2
2��2

exp

��jr� r0j2
2�2

�
: (2.10)

One should think of K0 as parametrizing the strength of the
disorder and � as its correlation length. If the theory of one-
parameter scaling holds for graphene, then it should be
possible to rescale the length L� ¼ f0ðK0ÞL, where f0 is a
scaling function inversely proportional to the effective elec-
tronic mean free path. Their numerical results are shown
in Fig. 7 and demonstrate that (i) graphene does exhibit

one-parameter scaling (i.e., there exists a � function) and
(ii) the � function is always positive unlike the spin-orbit
case. Therefore, Dirac fermions evade Anderson localization
and are always metallic. Similar conclusions were obtained
by Nomura et al. (2007), San-Jose et al. (2007), Titov
(2007), and Tworzydło et al. (2008).

The inset of Fig. 7 shows an explicit computation of the �
function comparing Dirac fermions with the spin-orbit model.
The difference between these two classes of the AII symme-
try class has been attributed to a topological term (i.e., two
possible choices for the action of the field theory describing
these Hamiltonians). Since it allows for only two possibil-
ities, it has been called a Z2 topological symmetry (Kane and
Mele, 2005b; Evers and Mirlin, 2008). The topological term
has no effect at � � e2=h but is responsible for the differ-
ences at � � e2=h and determines the presence or absence of
a metal-insulator transition. Nomura et al. (2007) presented
an illustrative visualization of the differences between Dirac
fermions and the spin-orbit symplectic class shown in Fig. 8.
By imposing a twist boundary condition in the wave functions
such that �ðx ¼ 0Þ ¼ exp½i���ðx ¼ LÞ and �ðy ¼ 0Þ ¼
�ðy ¼ WÞ, one can examine the single particle spectrum as
a function of the twist angle �. For � ¼ 0 and � ¼ �, the
phase difference is real and eigenvalues come in Krammer’s
degenerate pairs. For other values of �, this degeneracy is
lifted. As seen in the figure, for massless Dirac fermions all
energy states are connected by a continuous variation in the
boundary conditions. This precludes creating a localized
state, which would require the energy variation with bound-
ary condition (also called Thouless energy) be smaller than
the level spacing. Since this is a topological effect, Nomura
et al. (2007) argued that this line of reasoning should be
robust to disorder.

The situation for the spin-orbit case is very different. The
same Krammer’s pairs that are degenerate at� ¼ 0 reconnect
at� ¼ �. In this case, there is nothing to prevent localization
if the disorder would push the Krammer’s pairs past the
mobility edge. Similar considerations regarding the Z2 sym-
metry also hold for topological insulators where the metallic
surface state should remain robust against localization in the
presence of disorder.

FIG. 7 (color online). Demonstration of one-parameter scaling at

the Dirac point. From Bardarson et al., 2007. Main panel shows the

conductivity as a function of L�=�, where L� ¼ fðK0ÞL is the

scaled length and � is the correlation length of the disorder

potential. Note that � ¼ d ln�=d lnL> 0 for any disorder strength.

The inset shows explicit comparison of the � function for the Dirac

fermion model and for the symplectic (AII) symmetry class. From

Nomura et al., 2007.
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FIG. 8 (color online). Picture proposed by Nomura et al. (2007)

to understand the difference in topological structure between the

massless Dirac model and the random spin-orbit symmetry class.
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2. Crossover from the symplectic universality class

It is already apparent in the preceding discussion that
each Dirac cone is described by the Dirac Hamiltonian
H ¼ � 	 p. The effective SRS H ¼ �yH ��y is preserved

in each cone, and for most purposes graphene can be viewed
as two degenerate copies of the AII symplectic symmetry
class. However, as Suzuura and Ando (2002a) first pointed
out, a material defect such as a missing atom would couple
the two Dirac cones (and since each cone is located in a
different ‘‘valley,’’ this type of interaction is called intervalley
scattering). One can appreciate intuitively why such scatter-
ing is expected to be small. The two valleys at points K and
K0 in the Brillouin zone are separated by a large momentum
vector that is inversely proportional to the spacing between
two neighboring carbon atoms. This means that the potential
responsible for such intervalley coupling would have to vary
appreciably on the scale of 0.12 nm in order to couple the K
and K0 points.

We note that while such defects and the corresponding
coupling between the valleys are commonly observed in
scanning tunneling microscopy (STM) studies on epitaxial
graphene (Rutter et al., 2007), they are virtually absent in all
similar studies in exfoliated graphene (Ishigami et al., 2007;
Stolyarova et al., 2007; Zhang et al., 2008). In the presence
of such atomically sharp disorder, Suzuura and Ando (2002a)
proposed a model for the two-valley Hamiltonian that cap-
tures the effects of intervalley scattering. The particular form
of the scattering potential is not important, and in Sec. II.C.3
we will discuss a generalized Hamiltonian that includes all
nonmagnetic (static) impurities consistent with the honey-
comb symmetry and is characterized by five independent
parameters (Aleiner and Efetov, 2006; McCann et al.,
2006). Here the purpose is simply to emphasize the qualita-
tive difference between two types of disorder: long-range
(i.e., diagonal) disorder ULR that preserves the effective
SRS and a short-range potential USR that breaks this
symmetry.

We note that with the intervalley term USR, the
Hamiltonian belongs to the Wigner-Dyson orthogonal sym-
metry class, while as discussed in Sec. II.C.1 including only
the diagonal disorder ULR, one is in the Wigner-Dyson
symplectic class.

A peculiar feature of this crossover is that it is governed by
the concentration of short-range impurities thus questioning
the notion that the universality class is determined only by the
global symmetries of the Hamiltonian and not by microscopic
details. However, a similar crossover was observed by Miller
et al. (2003) where the strength of the spin-orbit interaction
was tuned by carrier density, moving from weak localization
at low density and a weak spin-orbit interaction, to weak
antilocalization at high density and a strong spin-orbit
interaction.

From symmetry considerations, one should expect that
without atomically sharp defects, graphene would exhibit
weak antilocalization (where � > 0) and no Anderson lo-
calization (see Sec. II.C.1). However, with intervalley scat-
tering, graphene should have weak localization (� < 0) and
be insulating at zero temperature. These conclusions were
verified by Suzuura and Ando (2002a) from a microscopic
Hamiltonian by calculating the Cooperon (see Fig. 9) and

obtaining the corrections to the conductivity from the bare
Hikami box (see Sec. II.C.3 for a more complete discussion).

For the case of no intervalley scattering U ¼ ULR, the
resulting Cooperon is

CLR
k	k�

ðQÞ ¼ niu
2

A
e
iðc k	�c k�

Þ 1

ðvF�QÞ2 ; (2.11)

with area A ¼ LW, Q ¼ k	 þ k�, and e
iðc k	�c k�

Þ � �1,

giving �LR ¼ ð2e2=�2ℏÞ lnðL�=‘Þ. As expected for the

symplectic class, without intervalley scattering, the quantum
correction to the conductivity is positive.

With intervalley scattering, U ¼ USR calculating the
same diagrams gives

CSR
k	k�

ðQÞ ¼ niu
2

A
j	j�e

iðc k	�c k�
Þ 1

ðvF�QÞ2 ; (2.12)

with current j	 ¼ �j� and �SR ¼ �e2=ð2�2ℏÞ lnðL�=‘Þ.
This negative � is consistent with the orthogonal symmetry
class. The explicit microscopic calculation demonstrates the
crossover from weak antilocalization to weak localization
induced by atomically sharp microscopic defects providing
intervalley coupling.

This crossover was recently observed experimentally
(Tikhonenko et al., 2009). They noted empirically that for
their samples the scattering associated with short-range de-
fects is stronger at high carrier density. In fact, this is what
one expects from the microscopic theory discussed in Sec. III.
Because of the unique screening properties of graphene, long-
range scatterers dominate transport at low carrier density
while short-range scatterers dominate at high density.
Assuming that these short-range defects are also the dominant
source of intervalley scattering, one would expect to have
weak localization at high carrier density (due to the large
intervalley scattering), and weak antilocalization at low car-
rier density where transport is dominated by ‘‘atomically
smooth’’ defects such as charged impurities in the substrate.
This is precisely what was seen experimentally. Figure 10
shows a comparison of the magnetoconductance at three
different carrier densities. At the lowest carrier density, the
data show the weak antilocalization characteristic of the
symplectic symmetry class, while at high density, one finds
weak localization signaling a crossover to the orthogonal
universality class.

A second crossover away from the symplectic universality
class was examined by Morpurgo and Guinea (2006). As
discussed, a magnetic field breaks time reversal symmetry
and destroys the leading quantum corrections to the conduc-
tivity �ðB> B�Þ ¼ 0. This can also be understood as a
crossover from the symplectic (or orthogonal) universality
class to the unitary class. The unitary class is defined by the
absence of time reversal symmetry and hence vanishing
contribution from the Cooperon.1

1The sign of the quantum correction in relation to the global

symmetry of the Hamiltonian can also be obtained from the random

matrix theory (Beenakker, 1997) �=�0 ¼ ð1� 2=�Þ=4, where

� ¼ 1, 2, 4 for the orthogonal, unitary, and symplectic Wigner-

Dyson symmetry classes.
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Similar to short-range impurities inducing a crossover
from symplectic to orthogonal classes, Morpurgo and
Guinea (2006) asked if there were other kinds of disorder
that could act as pseudomagnetic fields and induce a cross-
over to the unitary symmetry class leading to the experimen-
tal signature of a suppression of weak antilocalization. This
was in part motivated by the first experiments on graphene
quantum transport showing that the weak localization correc-
tion was an order of magnitude smaller than expected
(Morozov et al., 2006). They argued that topological lattice
defects (Ebbesen and Takada, 1995) (e.g., pentagons and
heptagons) and nonplanarity of graphene (commonly referred
to as ‘‘ripples’’) would generate terms in the Hamiltonian that
looked like a vector potential and correspond to a pseudo-
magnetic field.

In addition, experiments both on suspended graphene
(Meyer et al., 2007) and on a substrate showed that graphene
is not perfectly coplanar. It is noteworthy, however, that
experiments on a SiO2 substrate showed that these ripples
were correlated with the height fluctuations of the substrate
and varied by less than 1 nm (Ishigami et al., 2007), while
graphene on mica was even smoother with variations
of less than 0.03 nm (Lui et al., 2009). On the other hand,
one could deliberately induce lattice defects (Chen, Cullen
et al., 2009) or create controlled ripples by straining graphene
before cooling and exploiting graphene’s negative thermal
expansion coefficient (Balandin et al., 2008; Bao et al.,
2009).

Just as a real magnetic field, these terms would break the
time reversal symmetry (TRS) in a single valley (while
preserving the TRS of the combined system). If �i � ��,

then the two valleys are decoupled, these defects would cause
a crossover to the unitary symmetry class, and the resulting
Cooperon (Fig. 9) would vanish. For example, considering
the case of lattice defects, the disorder Hamiltonian would be
given by UG ¼ ð1=4Þ½�x � �z�r½@yuxðrÞ � @xuyðrÞ�, where
uðrÞ is the lattice strain vector induced by the defect. One
notes that this term in the Hamiltonian has the form of an
effective magnetic field þB in the K valley and �B in the K0
valley (Morpurgo and Guinea, 2006). In the absence of
intervalley coupling, this would suppress weak antilocaliza-
tion when the effective magnetic field jBj is larger than the
field B� discussed in Sec. II.A.

3. Magnetoresistance and mesoscopic conductance fluctuations

As discussed, at low energies and in the absence of dis-
order, graphene is described by two decoupled Dirac cones
located at points K and K0 in the Brillouin zone. Within each
cone, one has a pseudospin space corresponding to wave
function amplitudes on the A and B sublattice of the honey-
comb lattice. The two-valley Hamiltonian is then the outer
product of two SU(2) spin spaces KK0 � AB. The most
generic Hamiltonian in this space of 4� 4 Hermitian matri-
ces can be parametrized by the generators of the group U(4)
(Aleiner and Efetov, 2006; Altland, 2006; McCann et al.,
2006):

H ¼ ℏvF�pþ 14u0ðrÞ þ
X

s;l¼x;y;z

�s�luslðrÞ; (2.13)

where � ¼ ð�x;�y;�zÞ ¼ ð�z � �x; �z � �y;12 � �zÞ is

the algebra of the sublattice SU(2) space (recall that the outer
product is in the space KK0 � AB, and the � operator is
diagonal in the KK0 space). Similarly, � ¼ ð�x � �z; �y �
�z; �z � 12Þ forms the algebra of the valley-spin space (being
diagonal in the AB space).

The Hamiltonian of Eq. (2.13) can be understood in simple
terms. The first term is just two decoupled Dirac cones and is
equivalent to the disorder-free case discussed earlier, but
written here in a slightly modified basis. The second term is
identical to ULR and as discussed, it represents any long-
range diagonal disorder. The last term parametrized by the
nine scattering potentials uslðrÞ represents all possible types
of disorder allowed by the symmetry of the honeycomb
lattice. For example, a vacancy would contribute to all terms
(including u0) except uxz and uyz; while bond disorder would

contribute to all terms except uzz (Aleiner and Efetov, 2006).
The ‘‘diagonal’’ term u0ðrÞ is the dominant scattering

mechanism for current graphene experiments and originates
from long-ranged Coulomb impurities, which is discussed in
more detail in Sec. III. Because of the peculiar screening
properties of graphene, such long-range disorder cannot be
treated using the Gaussian white noise approximation. To
circumvent this problem (for both the long-range u0 and
short-range usl terms), we simply note that for each kind of
disorder, there would be a corresponding scattering time
{�0; �slg that could, in principle, have very different depen-
dence on carrier density.

For the special case of Gaussian white noise, i.e., where
huslðrÞus0l0 ðr0Þi ¼ u2sls;s0l;l0ðr� r0Þ, we have ℏ��1

sl ¼
�DðEFÞu2sl. Moreover, one could assume that after disorder

averaging, the system is isotropic in the x-y plane. Denoting
fx; yg �? , the total scattering time is given by

��1 ¼ ��1
0 þ ��1

zz þ 2��1
?z þ 2��1

z? þ 4��1
??: (2.14)

These five scattering times could be viewed as independent
microscopic parameters entering the theory (Aleiner and
Efetov, 2006), or one could further classify scattering times
as being either ‘‘intervalley’’ ��1

i ¼ 4��1
?? þ 2��1

z? or ‘‘intra-

valley’’ ��1
z ¼ 4��1

?z þ 2��1
zz . A small contribution from

trigonal warping (a distortion to the Dirac cone at the energy
scale of the inverse lattice spacing) could be modeled by the
perturbative term Hw � �xð�pÞ�z�xð�pÞ�x, which acts as

FIG. 9. Diagrammatic representation for (a) diffuson,

(b) Cooperon, and dressed Hikami boxes [(c) and (d)]. Adapted

from Kharitonov and Efetov, 2008.
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an additional source of intravalley scattering (McCann et al.,
2006).

The transport properties of the Hamiltonian [Eq. (2.13)] are
obtained by calculating the two particle propagator. In gen-
eral, both the classical contribution (diffusons) and quantum
corrections (Cooperons) will be 4� 4 matrices defined in
terms of the retarded (R) and advanced (A) Green’s functions
GR;A as (see also Fig. 9)

Dð!; r; r0Þ ¼ hGRð�þ!; r; r0Þ � GAð�; r0; rÞi;
Cð!; r; r0Þ ¼ hGRð�þ!; r; r0Þ � GAð�; r; r0Þi: (2.15)

As discussed in Sec. III.A, the scattering rate is dominated by
the diagonal disorder � � �0. Since both this term and the
Dirac part of Eq. (2.13) is invariant under the valley SU(2),
one can classify the diffussons and Cooperons as ‘‘singlets’’
and ‘‘triplets’’ in the AB-sublattice SU(2) space. Moreover,
one finds that for both the diffussons and Cooperons, only the
valley singlets are gapless, and one can completely ignore the
valley triplets whose energy gap scales as ��1

0 . Considering

only the sublattice singlet (j ¼ 0) and triplet (j ¼ x; y; z), one
finds (McCann et al., 2006; Fal’ko et al., 2007; Kechedzhi
et al., 2008; Kharitonov and Efetov, 2008)�

�i!� 1

2
v2
F�0

�
r� 2eA

c

�
2 þ�j

�
Djðr;r0Þ ¼ ðr� r0Þ;�

�i!� 1

2
v2
F�0

�
rþ 2eA

c

�
2 þ�j þ ��1

�

�
Cjðr;r0Þ

¼ ðr� r0Þ; (2.16)

with �0 ¼ 0 (singlet), �x ¼ �y ¼ ��1
i þ ��1

z , and �z ¼ 2��1
i

(triplet). This equation captures all the differences in the
quantum corrections to the conductivity between graphene
and usual 2DEGs.

The magnetoresistance and conductance fluctuation prop-
erties in graphene follow from this result. The quantum
correction to the conductivity is �� NC

t � NC
s , where NC

t

is the number of gapless triplet Cooperon modes and NC
s is

the number of gapless singlet Cooperon modes. In this con-
text, gapped modes do not have a divergent quantum correc-
tion and can be neglected. Similarly, the conductance
fluctuations are given by h½G�2i ¼ NCDh½G�2i2DEG,
where NCD counts the total number of gapless Cooperons
and diffusons modes, and h½G�2i2DEG is the conductance
variance for a conventional 2D electron gas. For a
quasi-1D geometry, h½G�2i2DEG ¼ 1

15 ð2e2=hÞ2 (Lee and

Ramakrishnan, 1985).
We can immediately identify several interesting regimes

that are shown schematically in Fig. 10:
(i) Strong intervalley scattering. Even with strong short-

range disorder (i.e., �i � �� and �z � ��), both the

singlet Cooperon C0 and the singlet diffusonD0 remain
gapless since �0 ¼ 0. Contributions from all triplet
Cooperons and difussons vanish. In this situation, the
quantum corrections to the conductivity in graphene are
very similar to the regular 2DEG. The Hamiltonian is in
the orthogonal symmetry class discussed earlier and
one has weak localization (� < 0). Similarly, for
conductance fluctuations (typically measured at large
magnetic fields), one would have the same result as the
nonrelativistic electron gas.

(ii) Weak short-range disorder. For �i � �� and �z � ��,

all sublattice Cooperons and diffusons remain gapless
at zero magnetic field. One then has � > 0 or weak
antilocalization (symplectic symmetry). This regime
was observed in experiments on epitaxial graphene
(Wu et al., 2007). The diffuson contribution to the
conductance fluctuations is enhanced by a factor of 4
compared with conventional metals.

(iii) Suppressed localization regime. In the case that there
is strong short-range scattering �z � ��, but in weak

intervalley scattering �i � ��. The Cooperons Cx and
Cy will be gapped, but Cz will remain and cancel the
effect of the singlet C0. In this case one would have the
suppressed weak localization that was presumably
seen in the first graphene quantum transport experi-
ments (Morozov et al., 2006).

Although the discussion above captures the main physics,
for completeness we reproduce the results of calculating
the dressed Hikami boxes in Fig. 9 (Aleiner and Efetov,
2006; McCann et al., 2006; Kechedzhi et al., 2008;
Kharitonov and Efetov, 2008) and using known results (Lee
and Ramakrishnan, 1985). The quantum correction to the
conductance is

g ¼ 2e2D

�ℏ

Z d2q

ð2�Þ2 ðC
x þ Cy þ Cz � C0Þ; (2.17)

and for the magnetoresistance

FIG. 10 (color online). Left panel: Schematic of different magne-

toresistance regimes. (i) For strong intervalley scattering (i.e. �i �
�� and �z � ��), Eq. (2.18) gives weak localization or ��
�ðBÞ � �ð0Þ< 0. This is similar to quantum transport in the usual

2DEG. (ii) For weak intervalley scattering (i.e., �i � �� and �z �
��), one has weak antilocalization, characteristic of the symplectic

symmetry class. (iii) For �i � ��, but �z � ��, Eq. (2.18) gives a

regime of suppressed weak localization. Right panel: Experimental

realization of these three regimes. Graphene magnetoconductance is

shown for carrier density (from bottom to top) n ¼ 2:2� 1010,
1:1� 1012, and 2:3� 1012 cm�2, at T ¼ 14 K. The lowest carrier

density (bottom curve) has a small contribution from short-range

disorder and shows weak antilocalization [i.e., the zero-field con-

ductivity is larger than at finite field. �ðB ¼ 0Þ ¼ �0 þ � and

�ðB> B�Þ ¼ �0, with �> 0. B� is the phase-breaking field]. In

contrast, the highest density data (top curve) has a larger contribu-

tion of intervalley scattering and shows weak localization, i.e.,

� < 0. From Tikhonenko et al., 2009.
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�ðBÞ � �ð0Þ ¼ � e2�2

�ℏ

�
F

�
B

B�

�
� F

�
B

B� þ 2Bi

�

� 2F

�
B

B� þ 2Bz

��
; (2.18)

where B�;i;z ¼ ðℏc=4DeÞ��1
�;i;z and FðxÞ ¼ lnxþ c ð1=2þ

1=xÞ, with c the digamma function. The function FðxÞ is
the same as for 2DEGs (Lee and Ramakrishnan, 1985);
however, the presence of three terms in Eq. (2.18) is unique
to graphene. The universal conductance fluctuations are

h½G�2i ¼ X
C;D

3

�
gsgve

2

2�ℏ

�
2X3
i¼0

X1
nx¼1

X1
ny¼0

1

�4L4
x

�
�i

�2D
þ n2x

L2
x

þ n2y

L2
y

��2 ¼ NCDh½G�2i2DEG; (2.19)

with only diffusions contributing for B > B� � B�.
In this section we assumed Gaussian white noise correla-

tions to calculate the Green’s functions. Since we know that
this approximation fails for the semiclassical contribution
arising from Coulomb disorder, why can we use it success-
fully for the quantum transport? It turns out that the quasiu-
niversal nature of weak localization and conductance
fluctuations means that the exact nature of the disorder
potential will not change the result. Several numerical calcu-
lations using long-range Coulomb potential have checked this
assumption (Yan and Ting, 2008). Many of the symmetry
arguments discussed here apply to confined geometries such
as quantum dots (Wurm et al., 2009). Finally, the diagram-
matic perturbation theory discussed here applies only away
from the Dirac point. As discussed in Sec. II.C.1, numerically
calculated weak (anti)localization corrections remain as ex-
pected even at the Dirac point. However, Rycerz et al.
(2007a) found enhanced conductance fluctuations at the
Dirac point, a possible consequence of being in the ballistic
to diffusive crossover regime.

As for the experimental situation, in addition to the obser-
vation of suppressed localization (Morozov et al., 2006) and
antilocalization (Wu et al., 2007), Horsell et al. (2009) made
a systematic study of several samples fitting the data to
Eq. (2.18) to extract ��, �i, and �z. Their data showed a

mixture of localization, antilocalization, and saturation be-
havior. An interesting feature is that the intervalley scattering
length Li ¼ ðD�iÞ1=2 is strongly correlated to the sample
width (i.e., Li � W=2) implying that the edges are the domi-
nant source of intervalley scattering. This feature has been
corroborated by Raman studies that show a strong D peak at
the edges, but not in the bulk (Graf et al., 2007; Chen, Cullen
et al., 2009). The most important finding of Horsell et al.
(2009) is that the contribution from short-range scattering
(�z) is much larger than one would expect (indeed, compa-
rable to �0). They showed that any predicted microscopic
mechanisms such as ripples or trigonal warping that might
contribute to �z (but not �i) were all negligible and could not
explain such a large ��1

z . It remains an open question why
��1
z � ��1

i in the experiments.

4. Ultraviolet logarithmic corrections

The semiclassical Boltzmann transport theory treats the
impurities within the first Born approximation. In a diagram-

matic perturbation theory, this is the leading order term in an
expansion of ni ! 0. Typically for other conventional metals

and semiconductors, one makes a better approximation by
trying to include more diagrams that capture multiple scatter-

ing off the same impurity. For example, in the self-consistent
Born approximation (SCBA) one replaces the bare Green’s

functions with dressed ones to obtain a self-consistent equa-
tion for the self-energy (Bruus and Flensberg, 2004).

In practice, for graphene, one often finds that attempts to
go beyond the semiclassical Boltzmann transport theory

described in Sec. III.A fare far worse than the simple theory.
The theoretical underpinnings for the failure of SCBA was

pointed out by Aleiner and Efetov (2006), who argued that
the SCBA (a standard technique for weakly disordered

metals and superconductors) is not justified for the Dirac
Hamiltonian. They demonstrated this by calculating terms

to fourth order in perturbation theory, showing that SCBA
neglects most terms of equal order. This could have severe
consequences. For example, considering only diagonal dis-

order, the SCBA breaks time reversal symmetry. To further
illustrate their point, Aleiner and Efetov (2006) argued that

for the full disorder Hamiltonian [Eq. (2.13)], considering
three impurity scattering, there are 54 terms to that order, and

only 6 are captured by the SCBA.
These terms provide a new divergence in the diagrammatic

perturbation series, which is distinct from the weak localiza-
tion discussed in Sec. II.C.3. Unlike weak localization that for

2D systems diverges as the size (�� ln½L=‘�), this addi-
tional divergence occurs at all length scales, and was called

‘‘ultraviolet logarithmic corrections.’’ The consequences of
this divergence include the logarithmic renormalization of the

bare disorder parameters which was studied by Foster and
Aleiner (2008) using the renormalization group. For the

experimentally relevant case of strong diagonal disorder,
the renormalization does not change the physics. However,
when all disorder couplings (i.e., intervalley and intravalley)

are comparable, e.g., relevant for graphene after ion irradia-
tion, the system could flow to various strong coupling fixed

points depending on the symmetry of the disorder potential.
In addition to these considerations, interaction effects

could also affect quantum transport (e.g., the Altshuler-
Aronov phenomena), particularly in the presence of disorder.

Although such interaction effects are probably relatively
small in monolayer graphene, they may not be negligible.

Interaction effects may certainly be important in determining
graphene transport properties near the charge neutral Dirac

point (Fritz et al., 2008; Kashuba, 2008; Müller et al., 2008;
Bistritzer and MacDonald, 2009).

III. TRANSPORT AT HIGH CARRIER DENSITY

A. Boltzmann transport theory

In this section we review graphene transport for large

carrier densities (n � ni, ni is the impurity density), where
the system is homogeneous. We discuss in detail the
microscopic transport properties at high carrier density using

the semiclassical Boltzmann transport theory.
It was predicted that the graphene conductivity limited by

short-ranged scatterers (i.e., -range disorder) is independent
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of the carrier density, because of the linear-in-energy density
of states (Shon and Ando, 1998). However, the experiments
(Fig. 11) showed that the conductivity increases linearly in
the carrier density concentration. To explain this linear-in-
density dependence of experimental conductivity, the long-
range Coulomb disorder was introduced (Ando, 2006;
Cheianov and Fal’ko, 2006a; Nomura and MacDonald,
2006; Hwang et al., 2007a; Nomura and MacDonald,
2007; Trushin and Schliemann, 2008; Katsnelson et al.,
2009). The long-range Coulomb disorder also successfully
explains several recent transport experiments. Tan, Zhang,
Bolotin et al. (2007) found the correlation of the sample
mobility with the shift of the Dirac point and minimum
conductivity plateau width, showing qualitative and semi-
quantitative agreement with the calculations with long-range
Coulomb disorder [Fig. 11(b)]. Chen, Jang, Adam et al.
(2008) investigated the effect of Coulomb scatterers on gra-

phene conductivity by intentionally adding potassium ions to
graphene in ultrahigh vacuum, qualitatively observing the
prediction of the transport theory limited by Coulomb disor-
der [Fig. 11(c)]. Jang et al. (2008) tuned graphene’s fine-
structure constant by depositing ice on the top of graphene
and observed enhanced mobility, which is predicted in the
Boltzmann theory with Coulomb disorder [Fig. 11(d) and
Chen, Xia, and Tao (2009), Chen, Xia et al. (2009), , and
Kim, Nah et al. (2009)]. The role of remote impurity
scattering was further confirmed in the observation of drastic
improvement of mobility by reducing carrier scattering in
suspended graphene through current annealing (Bolotin,
Sikes, Hone et al., 2008; Du et al., 2008). Recent measure-
ment of the ratio of transport scattering time to the quantum
scattering time by Hong, Zou, and Zhu (2009) also strongly
supports the long-range Coulomb disorder as the main scat-
tering mechanism in graphene (Fig. 12).

FIG. 11 (color online). (a) The measured conductivity � of graphene as a function of gate voltage Vg (or carrier density). The conductivity

increases linearly with the density. Adapted from Castro Neto et al., 2009. (b) � as a function of Vg for five different samples For clarity,

curves are vertically displaced. The inset shows the detailed view of the density-dependent conductivity near the Dirac point for the data in

the main panel. Adapted from Tan, Zhang, Bolotin et al., 2007. (c) � vs Vg for the pristine sample and three different doping concentrations.

Adapted from Chen, Jang, Adam et al., 2008. (d) � as a function Vg for pristine graphene (circles) and after deposition of 6 monolayers of ice

(triangles). Inset: Optical microscope image of the device. Adapted from Jang et al., 2008.
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The conductivity � (or mobility 
 ¼ �=ne) is calculated
in the presence of randomly distributed Coulomb impurity
charges with the electron-impurity interaction being screened
by the 2D electron gas in the random phase approximation
(RPA). Even though the screened Coulomb scattering is the
most important scattering mechanism, there are additional
scattering mechanisms (e.g., neutral point defects) unrelated
to the charged impurity scattering. The Boltzmann formalism
can treat both effects, where zero-range scatterers are treated
with an effective point defect density of nd. Phonon scattering
effects, important at higher temperatures, are treated in the
next section. We also discuss other scattering mechanisms
which could contribute to graphene transport.

We start by assuming the system to be a homogeneous 2D
carrier system of electrons (or holes) with a carrier density n
induced by the external gate voltage Vg. When the external

electric field is weak and the displacement of the distribution
function from thermal equilibrium is small, we may write
the distribution function to the lowest order in the applied
electric field (E) fk ¼ fð�kÞ þ fk, where �k is the carrier
energy, fð�kÞ is the equilibrium Fermi distribution function,
and fk is proportional to the field. When the relaxation
time approximation is valid, we have fk ¼
�½�ð�kÞ=ℏ�eE 	 vk½@fð�kÞ=@�k�, where vk ¼ d�k=dk is
the velocity of carrier and �ð�kÞ is the relaxation time or
the transport scattering time, and is given by

1

�ð�kÞ ¼
2�

ℏ

X
a

Z
dznðaÞi ðzÞ

Z d2k0

ð2�Þ2 jhVk;k0 ðzÞij2

� ½1� cos�kk0 �ð�k � �k0 Þ; (3.1)

where �kk0 is the scattering angle between the scattering in

and out wave vectors k and k0, nðaÞi ðzÞ is the concentration of

the ath kind of impurity, and z represents the coordinate of
normal direction to the 2D plane. In Eq. (3.1) hVk;k0 ðzÞi is the
matrix element of the scattering potential associated with
impurity disorder in the system environment. Within
Boltzmann transport theory by averaging over energy, we
obtain the conductivity

� ¼ e2

2

Z
d�Dð�Þv2k�ð�Þ

�
� @f

@�

�
; (3.2)

and the corresponding temperature-dependent resistivity
is given by �ðTÞ ¼ 1=�ðTÞ. Note that fð�kÞ ¼
f1þ exp½ð�k �
Þ�=kBTg�1, where the finite temperature
chemical potential 
ðTÞ is determined self-consistently to
conserve the total number of electrons. At T ¼ 0, fð�Þ is a
step function at the Fermi energy EF � 
ðT ¼ 0Þ, and we
then recover the usual conductivity formula

� ¼ e2v2
F

2
DðEFÞ�ðEFÞ; (3.3)

where vF is the carrier velocity at the Fermi energy.

B. Impurity scattering

The matrix element of the scattering potential is deter-
mined by the configuration of the 2D systems and the spatial
distribution of the impurities. In general, impurities are lo-
cated in the environment of the 2D systems. For simplicity,
we consider the impurities are distributed completely at
random in the plane parallel to the 2D systems located at
z ¼ d. The location d is a single parameter modeling the
impurity configuration. Then the matrix element of the scat-
tering potential of randomly distributed screened impurity
charge centers is given by

Z
dznðaÞi ðzÞjhVk;k0 ðzÞij2 ¼ ni

��������viðqÞ
"ðqÞ

��������2

FðqÞ; (3.4)

where q ¼ jk� k0j, � � �kk0 , ni is the number of impurities
per unit area, FðqÞ is the form factor associated with the
carrier wave function of the 2D system, and viðqÞ ¼
2�e2=ð�qÞe�qd is the Fourier transform of the 2D Coulomb
potential in an effective background lattice dielectric constant
�. The form factor FðqÞ in Eq. (3.4) comes from the overlap
of the wave function. In 2D semiconductor systems it is
related to the quasi-2D nature of systems, i.e., finite width
of the 2D systems. The real functional form depends on the
details of the quantum structures (i.e., heterostructures,
square well, etc.). FðqÞ becomes unity in the two-dimensional
limit (i.e.,  layer). However, in graphene the form factor is
related to the chirality, not to the quantum structure since
graphene is strictly a 2D layer. In Eq. (3.4), "ðqÞ � "ðq; TÞ is
the 2D finite temperature static RPA dielectric (screening)
function and is given by

"ðq; TÞ ¼ 1þ vcðqÞ�ðq; TÞ; (3.5)

where �ðq; TÞ is the irreducible finite temperature polariz-
ability function and vcðqÞ is the Coulomb interaction. For
short-ranged disorder, we have

Z
dznðaÞi ðzÞjhVk;k0 ðzÞij2 ¼ ndV

2
0FðqÞ; (3.6)

where nd is the 2D impurity density and V0 is a constant
short-range (i.e., a  function in real space) potential strength.

One can also consider the effect on carrier transport by
scattering from cluster of correlated charged impurities
(Katsnelson et al., 2009), as originally done for 2D

FIG. 12 (color online). The ratio of transport scattering time (�t)
to quantum scattering time (�q) as a function of density for different

samples. Dashed (solid) lines indicate the theoretical calculations

(Hwang and Das Sarma, 2008e) with Coulomb disorder (-range

disorder). Adapted from Hong, Zou, and Zhu, 2009.
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semiconductors by Kawamura and Das Sarma (Kawamura
and Das Sarma, 1996; Das Sarma and Kodiyalam, 1998).
Without detailed knowledge of the clustering correlations,
however, this is little more than arbitrary data fitting.

Because the screening effect is known to be of vital im-
portance for charged impurities (Ando, 2006; Hwang et al.,
2007a), we first provide the static polarizability function. It is
known that the screening has to be considered to explain the
density and temperature dependence of the conductivity of 2D
semiconductor systems (Das Sarma and Hwang, 1999, 2005),
and the screening property in graphene exhibits significantly
different behavior (Hwang and Das Sarma, 2007) from that in
conventional 2D metals. Also, significant temperature depen-
dence of the scattering time � may arise from the screening
function in Eq. (3.5). Thus, before we discuss the details of
conductivity, we first review screening in graphene and in 2D
semiconductor systems.

1. Screening and polarizability

a. Graphene

The polarizability is given by the bare bubble diagram
(Ando, 2006; Wunsch et al., 2006; Hwang and Das Sarma,
2007)

�ðq; TÞ ¼ � g

A

X
kss0

fsk � fs0k0

"sk � "s0k0
Fss0 ðk;k0Þ; (3.7)

where s ¼ �1 indicate the conduction (þ 1) and valence
(� 1) bands, respectively, k0 ¼ kþ q, "sk ¼ sℏvFjkj,
Fss0 ðk;k0Þ ¼ ð1þ cos�Þ=2, and fsk ¼ ½expf�ð"sk �
Þg þ
1��1 with � ¼ 1=kBT.

After performing the summation over ss0, it is useful to
rewrite the polarizability as the sum of intraband and inter-
band polarizaibility �ðq; TÞ ¼ �þðq; TÞ þ��ðq; TÞ. At
T ¼ 0, the intraband (�þ) and interband (��) polarizability
becomes (Ando, 2006; Hwang and Das Sarma, 2007)

~�þðqÞ¼
8><
>:
1� �q

8kF
; q2kF

1�1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�4k2F

q2

r
� q

4kF
sin�1 2kF

q ; q>2kF
; (3.8a)

~��ðqÞ¼ �q

8kF
; (3.8b)

where ~�� ¼ ��=D0, and D0 � gEF=2�ℏ2v2
F is the density

of states (DOS) at the Fermi level. Intraband �þ (interband
��) polarizability decreases (increases) linearly as q in-
creases, and these two effects exactly cancel out up to q ¼
2kF, which gives rise to the total static polarizability being
constant for q < 2kF as in the 2DEG (Stern, 1967), i.e.,
�ðqÞ ¼ �þðqÞ þ��ðqÞ ¼ DðEFÞ for q  2kF. In Fig. 13
we show the calculated graphene static polarizability as a
function of wave vector. In the large momentum transfer
regime, q > 2kF, the static screening increases linearly
with q due to the interband transition. In a normal 2D system
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FIG. 13 (color online). Polarizability �ðq; TÞ in units of the density of states at the Fermi level D0. �ðq; TÞ of monolayer graphene (a) as a

function of wave vector for different temperatures and (b) as a function of temperature for different wave vectors. (c), (d) BLG polarizability.

(e), (f) The 2DEG polarizability.
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the static polarizability falls off rapidly for q > 2kF with a
cusp at q ¼ 2kF (Stern, 1967). The linear increase of the
static polarizability with q gives rise to an enhancement
of the effective dielectric constant ��ðq ! 1Þ ¼
�ð1þ gsgv�rs=8Þ in graphene. Note that in a normal 2D
system �� ! � as q ! 1. Thus, the effective interaction in
2D graphene decreases at short wavelengths due to interband
polarization effects. This large wave vector screening behav-
ior is typical of an insulator. Thus, 2D graphene screening
is a combination of ‘‘metallic’’ screening (due to �þ) and
‘‘insulating’’ screening (due to ��), leading overall to rather
strange screening property, all of which can be traced back to
the zero-gap chiral relativistic nature of graphene.

It is interesting to note that the nonanalytic behavior of
graphene polarizability at q ¼ 2kF occurs in the second

derivative, d2�ðqÞ=dq2 / 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 � 4k2F

q
, i.e., the total polar-

izability, as well as its first derivative, are continuous at q ¼
2kF. This leads to an oscillatory decay of the screened
potential in the real space (Friedel oscillation) which scales
as �ðrÞ � cosð2kFrÞ=r3 (Cheianov and Fal’ko, 2006a;
Wunsch et al., 2006). This is in contrast to the behavior of
a 2DEG, where Friedel oscillations scale as �ðrÞ �
cosð2kFrÞ=r2. The polarizability also determines the
Ruderman-Kittel-Kasuya-Yosida (RKKY) interaction be-
tween two magnetic impurities as well as the induced spin
density due to a magnetic impurity, while both quantities are
proportional to the Fourier transform of �ðqÞ. Similar to the
screened potential, the induced spin density decreases as r�3

for large distances. Again, this contrasts with the r�2 behav-
ior found in a 2DEG. For the particular case of intrinsic
graphene, the Fourier transform of interband polarizability
[��ðqÞ] diverges [even though �ðrÞ formally scales as r�3,
its magnitude does not converge], which means that intrinsic
graphene is susceptible to ferromagnetic ordering in the
presence of magnetic impurities due to the divergent
RKKY coupling (Brey et al., 2007).

Since the explicit temperature dependence of screening
gives rise to significant temperature dependence of the con-
ductivity, we consider the properties of the polarizability at
finite temperatures. The asymptotic form of polarizability is
given by

~�ðq; T � TFÞ � T

TF

ln4þ q2

24k2F

TF

T
; (3.9a)

~�ðq; T � TFÞ � 
ðTÞ
EF

¼ 1� �2

6

�
T

TF

�
2
; (3.9b)

where TF ¼ EF=kB is the Fermi temperature. In addition, the
finite temperature Thomas-Fermi wave vector in the q ! 0
long-wavelength limit is given by (Ando, 2006; Hwang and
Das Sarma, 2009b)

qsðT � TFÞ � 8 lnð2ÞrskF
�
T

TF

�
; (3.10a)

qsðT � TFÞ � 4rskF

�
1� �2

6

�
T

TF

�
2
�
: (3.10b)

The screening wave vector increases linearly with tempera-
ture at high temperatures (T � TF) but becomes a constant
with a small quadratic correction at low temperatures

(T � TF). In Fig. 13 we show the finite temperature polar-
izability �ðq; TÞ.

b. Bilayer graphene

For bilayer graphene, we have the polarizability of
Eq. (3.7) with "sk ¼ sk2=2m and Fss0 ðk;k0Þ ¼ ð1þ
ss0 cos2�Þ=2 due to the chirality of bilayer graphene. At T ¼
0, the polarizability of bilayer graphene (Hwang and Das
Sarma, 2008d) is given by

�ðqÞ ¼ D0½fðqÞ � gðqÞ�ðq� 2kFÞ�; (3.11)

where D0 ¼ gsgvm=2�ℏ2 is the BLG density of states at the
Fermi level and

fðqÞ ¼
�
1þ ~q2

2

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4

~q2

s
þ log

~q� ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~q2 � 4

p
~qþ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

~q2 � 42
p ; (3.12a)

gðqÞ ¼ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4þ ~q4

q
� log

�
1þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ ~q4=4
p

2

�
; (3.12b)

where ~q ¼ q=kF.
In Fig. 13 the wave vector dependent BLG polarizability is

shown. For MLG, intraband and interband effects in polar-
izability exactly cancel out up to q ¼ 2kF, which gives rise to
the total static polarizability being constant for q < 2kF.
However, for BLG the cancellation of two polarizability
functions is not exact because of the enhanced backscattering,
so the total polarizability increases as q approaches 2kF,
which means screening increases as q increases. Thus BLG,
in spite of having the same parabolic carrier energy disper-
sion of 2DEG systems, does not have a constant Thomas-
Fermi screening up to q ¼ 2kF (Hwang and Das Sarma,
2008d; Borghi et al., 2009), which exists in MLG and
2DEG. In the large momentum transfer regime, q > 2kF,
the BLG polarizability approaches a constant value, i.e.,
�ðqÞ ! N0 log4, because the interband transition dominates
over the intraband contribution in the large wave vector
limit. For q > 2kF, the static polarizability falls off rapidly
(� 1=q2) for 2DEG (Stern, 1967) and for MLG it increases
linearly with q (see Sec. III.B.1).

The long-wavelength (q ! 0) Thomas-Fermi screening
can be expressed as qTF ¼ gsgvme2=�ℏ2, which is the
same form as a regular 2D system and independent of
electron concentration. The screening at q ¼ 2kF is given

by qsð2kFÞ ¼ qTF½
ffiffiffi
5

p � logfð1þ ffiffiffi
5

p Þ=2g�. Screening at
q ¼ 2kF is about 75% larger than normal 2D Thomas-
Fermi (TF) screening, which indicates that in bilayer gra-
phene the scattering by the screened Coulomb potential is
much reduced due to the enhanced screening.

A qualitative difference between MLG and BLG polar-
izability functions is at q ¼ 2kF. Because of the suppression
of 2kF backward scattering in MLG, the total polarizability as
well as its first derivative are continuous. In BLG, however,
large-angle scattering is enhanced due to chirality [i.e., the
overlap factor Fss0 in Eq. (3.7)], which gives rise to the
singular behavior of polarizability at q ¼ 2kF. Even though
the BLG polarizability is continuous at q ¼ 2kF, it has a
sharp cusp and its derivative is discontinuous at 2kF. As q !
2kF, d�ðqÞ=dq / 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 � 4k2F

q
. This behavior is exactly the

same as that of the regular 2DEG, which also has a cusp at
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q ¼ 2kF. The strong cusp in BLG �ðqÞ at q ¼ 2kF leads to
Friedel oscillations in contrast to the MLG behavior. The
leading oscillation term in the screened potential at large
distances can be calculated as

�ðrÞ � � e

�

4qTFk
2
F

ð2kF þ CqTFÞ2
sinð2kFrÞ
ð2kFrÞ2

; (3.13)

where C ¼ ffiffiffi
5

p � log½ð1þ ffiffiffi
5

p Þ=2�, which is similar to the
2DEG except for the additional constant C (C ¼ 1 for
2DEG), but different from MLG where Friedel oscillations
scale as �ðrÞ � cosð2kFrÞ=r3 (Cheianov and Fal’ko, 2006a;
Wunsch et al., 2006).

The enhanced singular behavior of the BLG screening
function at q ¼ 2kF has other interesting consequences re-
lated to Kohn anomaly (Kohn, 1959) and RKKY interaction.
For intrinsic BLG, the Fourier transform of �ðqÞ simply
becomes a  function, which indicates that the localized
magnetic moments are not correlated by the long-range
interaction and there is no net magnetic moment. For extrinsic
BLG, the oscillatory term in RKKY interaction is restored
due to the singularity of polarizability at q ¼ 2kF, and the
oscillating behavior dominates at large kFr. At large dis-
tances 2kFr � 1, the dominant oscillating term in �ðrÞ is
given by �ðrÞ / sinð2kFrÞ=ðkFrÞ2. This is the same RKKY
interaction as in a regular 2DEG.

In Fig. 13 the wave vector dependent BLG polarizability is
shown for different temperatures. Note that at q ¼ 0,
�ð0; TÞ ¼ NF for all temperatures. For small q, �ðq; TÞ
increases as q4. The asymptotic form of polarizability be-
comes

~�ðq; T � TFÞ � 1þ q2

6k2F

TF

T
; (3.14a)

~�ðq; T � TFÞ � 1þ 1

16

q4

k4F
þ �2

16

�
T

TF

�
2 q4

k4F
: (3.14b)

More interestingly, the polarizability at q ¼ 0 is temperature
independent, i.e., the finite temperature Thomas-Fermi wave
vector is constant for all temperatures,

qsðTÞ ¼ qTF: (3.15)

In BLG polarizability at q ¼ 0 two temperature effects from
the intraband and the interband transition exactly cancel out,
which gives rise to the total static polarizability at q ¼ 0
being constant for all temperatures.

c. 2D semiconductor systems

The polarizability of ordinary 2D system was first calcu-
lated by Stern, and all details can be found in the literature
(Stern, 1967; Ando et al., 1982). Here we provide the 2D
polarizability for comparison with graphene. The 2D polar-
izability can be calculated with �sk ¼ ℏ2k2=2m and Fss0 ¼
ss0=2 because of the nonchiral property of the ordinary 2D
systems. �ðqÞ at T ¼ 0 becomes (Stern, 1967)

�ðqÞ ¼ D0½1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ð2kF=qÞ2

q
�ðq� 2kFÞ�; (3.16)

where D0 ¼ gsgvm=2�ℏ2 is the 2D density of states at the
Fermi level. Since the polarizability is a constant for q < 2kF,

both the long wavelength TF screening and 2kF screening are
same, which is given by qs ¼ qTF ¼ gsgvme2=�ℏ2.

The asymptotic form for the regular 2D polarizability are
given by

~�ðq ¼ 0; T � TFÞ � 1� e�TF=T; (3.17a)

~�ðq; T � TFÞ � TF

T

�
1� q2

6k2F

TF

T

�
: (3.17b)

For q ¼ 0, in the T � TF limit, we get the usual Debye
screening for the regular 2D electron gas system

qsðT � TFÞ � qTF
TF

T
: (3.18)

A comparison of Eq. (3.18) with Eqs. (3.10) and (3.15) shows
that the high-temperature Debye screening behaviors are
different in all three systems just as the low-temperature
screening behaviors, i.e., the high-temperature screening
wave vector qs in semiconductor 2D systems decreases lin-
early with temperature while qs in MLG increases linearly
with temperature and qs in BLG is independent of
temperature.

In Fig. 13 we show the corresponding parabolic 2D polar-
izability normalized by the density of states at Fermi level,
D0 ¼ gm=ℏ22�. Note that the temperature dependence of 2D
polarizability at q ¼ 2kF is much stronger than that of gra-
phene polarizability. Since in normal 2D systems the 2kF
scattering event is most important for the electrical resistivity,
the temperature dependence of polarizability at q ¼ 2kF
completely dominates at low temperatures (T � TF). It is
known that the strong temperature dependence of the polar-
izability function at q ¼ 2kF leads to the anomalously strong
temperature-dependent resistivity in ordinary 2D systems
(Stern, 1980; Das Sarma and Hwang, 1999).

In the next section the temperature-dependent conductiv-
ities are provided due to the scattering by screened Coulomb
impurities using the temperature-dependent screening prop-
erties of this section.

2. Conductivity

a. Single layer graphene

The eigenstates of single layer graphene are given by the

plane wave c skðrÞ ¼ ð1= ffiffiffiffi
A

p Þ expðik 	 rÞFsk, where A is the
area of the system, s ¼ �1 indicate the conduction (þ 1) and

valence (� 1) bands, respectively, and Fy
sk ¼ ð1= ffiffiffi

2
p Þðei�k ; sÞ

with �k ¼ tanðky=kxÞ the polar angle of the momentum k.

The corresponding energy of graphene for 2D wave vector k
is given by �sk ¼ sℏvFjkj, and the DOS is given by Dð�Þ ¼
gj�j=ð2�ℏ2v2

FÞ, where g ¼ gsgv is the total degeneracy

(gs ¼ 2, gv ¼ 2 being the spin and valley degeneracies,
respectively). The corresponding form factor FðqÞ in the
matrix elements of Eqs. (3.4) and (3.6) arising from the
sublattice symmetry (overlap of wave function) (Ando,
2006; Auslender and Katsnelson, 2007) becomes FðqÞ ¼
ð1þ cos�Þ=2, where q ¼ jk� k0j, � � �kk0 . The matrix
element of the scattering potential of randomly distributed
screened impurity charge centers in graphene is given by

jhVsk;sk0 ij2 ¼
��������viðqÞ
"ðqÞ

��������21þ cos�

2
; (3.19)
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and the matrix element of the short-ranged disorder is

jhVsk;sk0 ij2 ¼ V2
0 ð1þ cos�Þ=2; (3.20)

where V0 is the strength of the short-ranged disorder potential
measured in eVm2. The factor 1� cos� in Eq. (3.1) weights
the amount of backward scattering of the electron by the
impurity. In normal parabolic 2D systems (Ando et al., 1982)
the factor 1� cos� favors large-angle scattering events.
However, in graphene the large-angle scattering is suppressed
due to the wave function overlap factor 1þ cos�, which
arises from the sublattice symmetry peculiar to graphene.
The energy dependent scattering time in graphene thus gets
weighted by an angular contribution factor of ð1� cos�Þ�
ð1þ cos�Þ, which suppresses both small-angle and large-
angle scattering contributions in the scattering rate.

Assuming random distribution of charged centers with
density ni, the scattering time � at T ¼ 0 is given by
(Adam et al., 2007; Hwang and Das Sarma, 2008e)

1

�
¼ r2s

�0

�
�

2
� 4

d

drs
½r2sgð2rsÞ�

�
; (3.21)

where ��1
0 ¼ 2

ffiffiffiffi
�

p
nivF=

ffiffiffi
n

p
, and gðxÞ ¼ �1þ �

2 xþ ð1�
x2ÞfðxÞ with

fðxÞ ¼
8<
:

1ffiffiffiffiffiffiffiffi
1�x2

p cosh�1 1
x for x < 1

1ffiffiffiffiffiffiffiffi
x2�1

p cos�1 1
x for x > 1

: (3.22)

Since rs is independent of the carrier density, the scattering
time is simply given by � / ffiffiffi

n
p

. With Eq. (3.3), we find the
density dependence of graphene conductivity �ðnÞ / n be-
cause DðEFÞ /

ffiffiffi
n

p
. For graphene on SiO2 substrate, the

interaction parameter rs � 0:8, then the conductivity is given
by �ðnÞ � ð20e2=hÞn=ni (Adam et al., 2007). On the other
hand, the corresponding energy dependent scattering time of
short-ranged disorder is

1

�
¼ ndV

2
0

ℏ
EF

4ðℏvFÞ2
: (3.23)

Thus, the density dependence of scattering time due to the
short-range disorder scattering is given by �ðnÞ / n�1=2. With
Eq. (3.3), we find the conductivity to be independent of
density for short-range scattering, i.e., �ðnÞ / n0, in contrast
to charged impurity scattering which produces a conductivity
linear in n.

In Fig. 14(a) the calculated graphene conductivity limited
by screened charged impurities is shown along with the
experimental data (Tan, Zhang, Bolotin et al., 2007; Chen,
Jang, Adam et al., 2008). In order to get quantitative agree-
ment with experiment, the screening effect must be included.
The effect of remote scatterers which are located at a distance
d from the interface is also shown. The main effect of remote
impurity scattering is that the conductivity deviates from the
linear behavior with density and increases with both the
distance d and n=ni (Hwang et al., 2007a).

For very high-mobility samples, a sublinear conductivity,
instead of the linear behavior with density, is found in experi-
ments (Tan, Zhang, Bolotin et al., 2007; Chen, Jang, Adam
et al., 2008). Such high quality samples presumably have a
small charge impurity concentration ni, and it is therefore
likely that short-range disorder plays a more dominant role.
Figure 14(b) shows the graphene conductivity calculated
including both charge impurity and short-range disorder for
different values of nd=ni. For small nd=ni, the conductivity is
linear in density, which is seen in most experiments, and for
large nd=ni the total conductivity shows the sublinear behav-
ior. This high-density flattening of the graphene conductivity
is a nonuniversal crossover behavior arising from the com-
petition between two kinds of scatterers. In general, this
crossover occurs when two scattering potentials are equiva-
lent, that is, niV

2
i � ndV

2
0 . In the inset of Fig. 14(b) the

mobility in the presence of both charged impurities and
short-ranged impurities is shown as a function of �. As the
scattering limited by the short-ranged impurity dominates
over that by the long-ranged impurity (e.g., ndV

2
0 � niV

2
i ),

the mobility is no longer linearly dependent on the charged
impurity and approaches its limiting value


 ¼ e

4ℏ
ðℏvFÞ2

n

1

ndV
2
0

: (3.24)

The limiting mobility depends only on neutral impurity
concentration nd and carrier density, i.e., long-range
Coulomb scattering is irrelevant in this high-density limit.

The temperature-dependent conductivity of graphene aris-
ing from screening and the energy averaging defined in
Eq. (3.2) is given at low temperatures (T � TF) �ðTÞ=�0 �
1� C1ðT=TFÞ2, where �0 ¼ e2v2

FDðEFÞ�0=2 and C1 is a

positive constant depending only on rs (Hwang and Das
Sarma, 2009b). The conductivity decreases quadratically
as the temperature increases and shows typical metallic
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FIG. 14 (color online). (a) Calculated graphene conductivity as a

function of carrier density (ni is an impurity density) limited by

Coulomb scattering with experimental data. Solid lines (from

bottom to top) show the minimum conductivity of 4e2=h, theory

for d ¼ 0 and 0.2 nm. The inset shows the results in a linear scale

assuming that the impurity shifts by d ¼ 0:2 nm for positive voltage

bias. Adapted from Hwang et al., 2007a. (b) Graphene conductivity

calculated using a combination of short- and long-range disorder. In

the calculation, nd=ni ¼ 0, 0.01, and 0.02 (top to bottom) are used.

In inset the graphene mobility as a function of dielectric constant

(�) of substrate is shown for different carrier densities n ¼ 0:1, 1,

and 5� 1012 cm�2 (from top to bottom) in the presence of both

long-ranged charged impurity (ni ¼ 2� 1011 cm�2) and short-

ranged neutral impurity (nd ¼ 0:4� 1010 cm�2). V0 ¼ 10 eVnm2

is used in the calculation.
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temperature dependence. On the other hand, at high tempera-
tures (T=TF � 1), it becomes �ðTÞ=�0 � C2ðT=TFÞ2, where
C2 is a positive constant. The temperature-dependent con-
ductivity increases as the temperature increases in the high-
temperature regime, which is characteristic of an insulating
system. �sðTÞ of graphene due to the short-range disorder
(with scattering strength V0) is given by �sðTÞ ¼
�s0=ð1þ e��
Þ, where �s0 ¼ e2v2

FDðEFÞ�s=2 with �s ¼
ðnd=4ℏÞEFV

2
0=ðℏvFÞ2. In the low-temperature limit the tem-

perature dependence of conductivity is exponentially sup-
pressed, but the high-temperature limit of the conductivity
approaches �s0=2 as T ! 1, i.e., the resistivity at high
temperatures increases up to a factor of 2 compared with
the low-temperature limit resistivity.

Recently, the temperature dependence of resistivity of
graphene has been investigated experimentally (Tan, Zhang,
Stormer, and Kim, 2007; Bolotin, Sikes, Hone et al., 2008;
Chen, Jang, Xiao et al., 2008; Zhu et al., 2009). In Fig. 15(a)
the graphene mobility is shown as a function of temperature.
An effective metallic behavior at high density is observed as
explained with screened Coulomb impurities. However, it is
not obvious whether the temperature-dependent correction is
quadratic because phonon scattering also gives rise to a
temperature dependence (see Sec. III.C).

b. Bilayer graphene

The eigenstates of bilayer graphene can be written as

c sk ¼ eikrðe�2i�k ; sÞ= ffiffiffi
2

p
, and the corresponding energy is

given by �sk ¼ sℏ2k2=2m, where �k ¼ tan�1ðky=kxÞ and s ¼
�1 denote the band index. The corresponding form factor
FðqÞ of Eqs. (3.4) and (3.6) in the matrix elements arising
from the sublattice symmetry of bilayer graphene becomes
FðqÞ ¼ ð1þ cos2�Þ=2, where q ¼ jk� k0j, � � �kk0 . Then
the matrix element of the scattering potential of randomly
distributed screened impurity charge centers in graphene is
given by (Koshino and Ando, 2006; Nilsson et al., 2006b;
Katsnelson, 2007; Adam and Das Sarma, 2008a; Nilsson
et al., 2008)

jhVsk;sk0 ij2 ¼ jviðqÞ="ðqÞj2ð1þ cos2�Þ=2: (3.25)

The matrix element of the short-ranged disorder is given by
jhVsk;sk0 ij2 ¼ V2

0 ð1þ cos2�Þ=2, and the corresponding en-

ergy dependent scattering time becomes ��1ð�kÞ ¼
ndV

2
0m=ℏ3. The density-dependent conductivity for screened

Coulomb disorder is given by �ðnÞ � n2 in the weak screen-
ing limit (q0 ¼ qTF=2kF � 1) or for the unscreened
Coulomb disorder, and in the strong screening limit (q0 �
1) �ðnÞ � n. In general for screened Coulomb disorder
�ðnÞ � n	 (Das Sarma et al., 2010), where 	 is density
dependent and varies slowly changing from 1 at low density
to 2 at high density. Increasing temperature, in general,
suppresses screening, leading to a slight enhancement of
the exponent 	. For short-range disorder �ðnÞ � n.

Figure 16 shows the experiment of BLG conductivity. In
Fig. 17(a) the density-dependent conductivities both for
screened Coulomb disorder and for short-range disorder are
shown. For screened Coulomb disorder, the conductivity
shows superlinear behavior, which indicates that pure
Coulomb disorder, which dominates mostly in MLG trans-
port, cannot explain the density-dependent conductivity as
seen experimentally (see Fig. 16) (Morozov et al., 2008;
Xiao et al., 2010). The density dependence of the conduc-
tivity with both types of disorder present is approximately
linear over a wide density range, which indicates that BLG
carrier transport is controlled by two distinct and independent
physical scattering mechanisms, i.e., screened Coulomb dis-
order due to random charged impurities in the environment
and a short-range disorder. The weaker scattering rate of
screened Coulomb disorder for BLG than for MLG is induced
by the stronger BLG screening than MLG screening, render-
ing the effect of Coulomb scattering relatively less important
in BLG (compared with MLG).

The temperature-dependent conductivity due to screened
Coulomb disorder (Adam and Stiles, 2010; Das Sarma et al.,
2010; Hwang and Das Sarma, 2010; Lv and Wan, 2010) is
given by �ðTÞ=�0 � 1� C0ðT=TFÞ at low temperatures,
where C0 ¼ 4 log2=ðCþ 1=q0Þ with q0 ¼ qTF=2kF, and
�ðTÞ � �1ðT=TFÞ2 at high temperatures. When the dimen-
sionless temperature is very small (T=TF � 1), a linear-in-T
metallic T dependence arises from the temperature

FIG. 16 (color online). The measured conductivity of bilayer

graphene as a function of gate voltage Vg (or carrier density).

The measured conductivity increases linearly with the density.

Adapted from Morozov et al., 2008.

FIG. 15 (color online). Hall mobility as a function of temperature

for different hole densities in (a) monolayer graphene, (b) bilayer

graphene, and (c) trilayer graphene. The symbols are the measured

data and the lines are fits. Adapted from Zhu et al., 2009.
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dependence of the screened charge impurity scattering, i.e.,
the thermal suppression of the 2kF peak associated with
backscattering (see Fig. 13). For the short-ranged scattering,
the temperature dependence only comes from the energy
averaging and the conductivity becomes �ðTÞ ¼ �ð0Þ½1þ
t lnð1þ e�1=tÞ�, where t ¼ T=TF. At low temperatures the
conductivity is exponentially suppressed, but at high tem-
peratures it increases linearly.

Figure 17(b) shows the finite temperature BLG conductiv-
ity as a function of n. The temperature dependence is very
weak at higher densities as observed in recent experiments
(Morozov et al., 2008). At low densities, where T=TF is not
too small, there is a strong insulating-type T dependence
arising from the thermal excitation of carriers (which is
exponentially suppressed at higher densities) and energy
averaging, as observed experimentally (Morozov et al.,
2008). Note that for BLG TF ¼ 4:23~n K, where ~n ¼
n=ð1010 cm�2Þ. In the bottom inset the conductivity due to
screened Coulomb disorder is shown as a function of tem-
perature for different densities. At low temperatures
(T=TF � 1) the conductivity decreases linearly with tem-
perature, but �ðTÞ increases quadratically in high-
temperature limit. By contrast, for the short-range disorder
� always increases with T, as shown in the upper inset of
Fig. 17(b). Thus for bilayer graphene, the metallic behavior
due to screening effects is expected at very low temperatures
for low-mobility samples, in which the screened Coulomb
disorder dominates. In Fig. 15(b) the temperature dependence
of mobility for bilayer graphene is shown. As we expect, the
metallic behavior shows up at very low temperatures
(T < 100 K).

We conclude this section by emphasizing the similarity and
the difference between BLG and MLG transport at high
densities from the perspective of Boltzmann transport theory
considerations. In the MLG the linear density-dependent
conductivity arises entirely from Coulomb disorder.
However, in the BLG the existence of short-range disorder
scattering must be included to explain the linearity because
the Coulomb disorder gives rise to a higher power density
dependence in conductivity. The importance of short-range
scattering in BLG compared with MLG is understandable

based on BLG screening being much stronger than MLG
screening leading to the relative importance of short-range
scattering in BLG.

c. Semiconductor systems

Transport properties of 2D semiconductor-based parabolic
2D systems (e.g., Si-MOSFETs, GaAs heterostructures, and
quantum wells, SiGe-based 2D structures) have been studied
extensively over the last 40 years (Ando et al., 1982;
Abrahams et al., 2001; Kravchenko and Sarachik, 2004).
More recently, 2D transport properties have attracted atten-
tion because of the experimental observation of an apparent
metallic behavior in the high-mobility low-density electron
inversion layer in Si-MOSFET structures (Kravchenko et al.,
1994). However, in this review we do not make any attempt at
reviewing the whole 2D metal-insulator transition (MIT)
literature. Early comprehensive reviews of 2D MIT can be
found in the literature (Abrahams et al., 2001; Kravchenko
and Sarachik, 2004). More recent perspectives can be found
in Das Sarma and Hwang (2005) and Spivak et al. (2010).
Our goal in this review is to provide a direct comparison of
the transport properties of 2D semiconductor systems with
those of MLG and BLG, emphasizing similarities and
differences.

It is well known that the long-range charged impurity
scattering and the short-range surface-roughness scattering
dominate, respectively, in the low and high carrier density
regimes of transport in 2D semiconductor systems. In Fig. 18
the experimental mobility of Si-MOSFETs is shown as a
function of density. As density increases, the measured mo-
bility first increases at low densities, and after reaching the
maximum mobility it decreases at high densities. This behav-
ior is typical for all 2D semiconductor systems, even though
the mobility of GaAs systems decreases very slowly at
high densities. This mobility behavior in density can be
explained with mainly two scattering mechanisms as shown
in Fig. 18(b). In the low-temperature region phonons do not
play much of a role in resistive scattering. At low carrier
densities long-range Coulomb scattering by unintentional
random charged impurities invariably present in the environ-
ment of 2D semiconductor systems dominates the 2D mobil-
ity (Ando et al., 1982). However, at high densities as more
carriers are pushed to the interface the surface-roughness
scattering becomes more significant. Thus transport in 2D
semiconductor systems is limited by the same mechanisms as
in graphene even though at high densities the unknown
short-range disorder in graphene is replaced by the surface-
roughness scattering in 2D semiconductor systems. The cru-
cial difference between 2D transport and graphene transport
is the existence of the insulating behavior of 2D semiconduc-
tor systems at very low densities which arises from the
gapped nature of 2D semiconductors. However, the high-
density 2D semiconductor transport is not qualitatively differ-
ent from graphene transport since charged impurity scattering
dominates carrier transport in both cases.

The experimentally measured conductivity and mobility
for three different systems as a function of density are shown
in Figs. 18 and 19. At high densities, the conductivity depends
on the density as � / n	 with 1<	< 2, where 	ðnÞ
depends weakly on the density for a given system but varies
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FIG. 17 (color online). (a) Density dependence of bilayer gra-

phene conductivity with two scattering sources: screened long-range

Coulomb disorder and short-ranged neutral disorder. (b) Density

dependence of BLG conductivity for different temperatures: T ¼ 0,
50, 100, 150, 200, and 300 K (from bottom to top). Top inset shows

� as a function of T in presence of short-range disorder. Bottom

inset shows � as a function of T in presence of screened Coulomb

disorder for different densities n ¼ ½5; 10; 30� � 1011 cm�2 (from

bottom to top). Adapted from Das Sarma et al., 2010.
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strongly from one system (e.g. Si-MOSFET) to another (e.g.,
GaAs). At high densities, before surface-roughness scattering
sets in the conductivity is consistent with screened charged
impurity scattering for all three systems. As n decreases, �ðnÞ
starts decreasing faster with decreasing density and the ex-
perimental conductivity exponent 	 becomes strongly den-
sity dependent with its value increasing substantially, and the
conductivity vanishes as the density further decreases. To
explain this behavior, a density-inhomogeneity-driven perco-
lation transition was proposed (Das Sarma et al., 2005), i.e.,
the density-dependent conductivity vanishes as �ðnÞ / ðn�
npÞp with the exponent p ¼ 1:2 being consistent with a

percolation transition. At the lowest density, linear screening
in a homogeneous electron gas fails qualitatively in explain-
ing the �ðnÞ behavior; whereas, it gives quantitatively accu-
rate results at high densities. As found from direct numerical
simulations (Efros, 1988; Nixon and Davies, 1990; Shi and
Xie, 2002), homogeneous linear screening of charged impu-
rities breaks down at low carrier densities with the 2D system
developing strong inhomogeneities leading to a percolation
transition at n < np. Nonlinear screening dominates transport

in this inhomogeneous low carrier density regime. For n <

np, the system is an insulator containing isolated puddles of

electrons with no metallic conducting path spanning through
the whole system. By contrast, graphene, being gapless, goes
from being an electron metal to a hole metal, i.e., the con-
ductivity is always finite for all densities, as the chemical
potential passes through the puddle region.

Except for being an insulator at very low densities, the
transport behavior of 2D semiconductor systems is not quali-
tatively different from graphene transport because both
systems are governed by the charged impurities. To under-

FIG. 19. (a), (b) Experimentally measured (symbols) and calculated (lines) conductivity of two different n-GaAs samples. The high density

conductivity limited by the charged impurities fit well to the experimental data. Adapted from Das Sarma et al., 2005. (c) Mobility of p-GaAs
2D system vs density at fixed temperature T ¼ 47 mK. (d) The corresponding conductivity vs density (solid squares) along with the fit

generated assuming a percolation transition. The dashed line in (c) indicates the 
� p0:7 behavior. Adapted from Manfra et al., 2007.

FIG. 18 (color online). (a) Experimental mobility 
 as a function

of density for two Si-MOSFET samples at a temperature T ¼
0:25 K. (b) Calculated mobility with two different scatterings,

i.e., charge impurities and surface-roughness scatterings.

(c) Measured conductivity �ðnÞ for Si-MOSFET as a function of

electron density n for two different samples. The solid lines are fits

to the data of the form �ðnÞ / Aðn� npÞp. The upper and lower

insets show the exponent p and critical density np, respectively, as a

function of temperature. Solid lines are a guides for the eyes.

Adapted from Tracy et al., 2009.
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stand the � (or �) behavior at high density, we start with the
Drude-Boltzmann semiclassical formula, Eq. (3.2), for 2D
transport limited by screened charged impurity scattering
(Das Sarma and Hwang, 1999). However, due to the finite
extent in the z direction of the real 2D semiconductor system,
the Coulomb potential has a form factor depending on the
details of the 2D structure. For comparison with graphene, we
consider the simplest case of 2D limit, i.e.,  layer. For 
layer 2D systems with parabolic band, the scattering times at
T ¼ 0 for charged impurity centers with impurity density ni
located at the 2D systems are calculated by

1

�
¼ 1

�0

�
�� 2

d

dq0
½q20fðq0Þ�

�
; (3.26)

where ��1
0 ¼ 2�ℏðni=mÞð2=gsgvÞ2q20, q0 ¼ qTF=2kF (qTF is

a 2D Thomas-Fermi wave vector), and fðxÞ is given in
Eq. (3.22). Then, the density dependence of conductivity
can be expressed as �ðnÞ / n	 with 1<	< 2. In the strong
screening limit (q0 � 1) the scattering time becomes

��1 / q20 / n�1, then the conductivity behaves as �ðnÞ /
n2. In the weak screening limit ��1 / q00 / n0 and �ðnÞ /
n. These conductivity behaviors are common for 2D systems

with parabolic bands and are qualitatively similar to graphene

where � / n behavior is observed. However, due to the

complicated impurity configuration (spatial distribution of

impurity centers) and finite width effects of real 2D semicon-

ductor systems the exponent 	 varies with systems. In gen-

eral, modulation doped GaAs systems have larger 	 than

Si-MOSFETs due to the configuration of impurity centers.
An interesting transport property of 2D semiconductor

systems is the observation of the extremely strong anomalous

metallic (i.e., d�=dT > 0) temperature dependence of the

resistivity �ðTÞ in the density range just above a critical

carrier density nc where d�=dT changes its sign at low

temperatures (see Fig. 20), which is not seen in graphene.

Note that the experimentally measured �ðTÞ of graphene

shows very weak metallic behavior at high density due to

the weak temperature dependence of screening function. It

FIG. 20 (color online). (a) Experimental resistivity � of Si-MOSFET as a function of temperature at 2D electron densities (from

top to bottom) n ¼ ½1:07; 1:10; 1:13; 1:20; 1:26; 1:32; 1:38; 1:44; 1:50; 1:56; 1:62; and 1:68� � 1011 cm2. Inset (b) shows � for n ¼
½1:56; 1:62; and 1:68� � 1011 cm2. (c) Theoretically calculated temperature and density-dependent resistivity for sample A for densities

n ¼ ½1:26; 1:32; 1:38; 1:44; 1:50; 1:56; 1:62; and 1:68� � 1011 cm2 (from top to bottom). Adapted from Tracy et al., 2009. (e) Experimental

�ðTÞ for n-GaAs (where nc ¼ 2:3� 109 cm�2). The density ranges from 0:16� 1010 to 1:06� 1010 cm�2. Adapted from Lilly et al., 2003.

(f) Temperature dependence of the resistivity for p-GaAs systems for densities ranging from 9:0� 109 to 2:9� 109 cm�2. Adapted from

Manfra et al., 2007.
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has been suggested (Das Sarma and Hwang, 1999) that the
anomalously strong metallic temperature dependence discov-
ered in 2D semiconductor systems arises from the physical
mechanism of temperature, density, and wave vector
dependent screening of charged impurity scattering in 2D
semiconductor structures, leading to a strongly temperature-
dependent effective quenched disorder controlling �ðT; nÞ at
low temperatures and densities. Interaction effects also lead
to a linear-T conductivity in 2D semiconductors (Zala et al.,
2001).

With temperature-dependent screening function "ðq; TÞ in
Eq. (3.5), the asymptotic low- (Das Sarma and Hwang, 2003)
and high- (Das Sarma and Hwang, 2004) temperature behav-
iors of 2D conductivity are given by

�ðt � 1Þ � �2D
0 ½1� C1ðT=TFÞ�; (3.27a)

�ðt � 1Þ � �2D
1 ½T=TF þ ð3 ffiffiffiffi

�
p

q0=4Þ
ffiffiffiffiffiffiffiffiffiffiffiffi
TF=T

q
�; (3.27b)

where t ¼ T=TF, �
2D
0 � �ðT ¼ 0Þ, C1 ¼ 2q0=ð1þ q0Þ, and

�2D
1 ¼ ðe2=hÞðn=niÞ�q20. Here an ideal 2D electron gas with

zero thickness is considered in order to compare with the 2D
graphene sheet which also has a zero thickness. It is important
to include the temperature-dependent polarizability of Fig. 13
in the calculation in order to get strong temperature-
dependent resistivity. Since the most dominant scattering
occurs at q ¼ 2kF and the temperature dependence of screen-
ing function at 2kF is strong, the calculated 2D resistivity
shows the strong anomalous linear T metallic behavior, which
is observed in many different semiconductor systems [e.g. Si-
MOSFET Kravchenko et al. (1994)]: p-GaAs (Noh et al.,
2003; Manfra et al., 2007), n-GaAs (Lilly et al., 2003), SiGe
(Senz et al., 2002), and AlAs (Papadakis and Shayegan,
1998). In addition, for the observation of a large temperature-
induced change in resistivity, it is required to have a com-
paratively large change in the value of the dimensionless
temperature t ¼ T=TF, and the strong screening condition,
qTF � 2kF, which explains why the Si MOS 2D electron
system exhibits substantially stronger metallic behavior than
the GaAs 2D electron system, as is experimentally observed,
since ðqTF=2kFÞSi � 10ðqTF=2kFÞGaAs at similar density.

Before concluding this basic transport theory section of
this review, we point out the key qualitative similarities and
differences in the transport theory of all systems (i.e., gra-
phene, bilayer graphene, and 2D semiconductor-based para-
bolic 2D systems). First, the graphene conductivity is
qualitatively similar to that of 2D semiconductor systems in
the sense that the conductivity at high density of both systems
follows the power law in terms of density, �ðnÞ � n	. The
formal Boltzmann theory for the scattering times is the same
in all systems except for the different angular factor arising
from chiral properties of graphene. This angular part does not
play a role in the density dependence of conductivity, but
significantly affects the temperature dependence of conduc-
tivity. The explicit differences in the density of states Dð"Þ
and the dielectric function �ðq; TÞ also lead to different
temperature-dependent conductivities in these systems. The
most important qualitative difference between graphene and
semiconductor 2D systems occurs at low carrier densities, in
which semiconductor 2D systems become insulators, but
graphene conductivity is finite for all densities.

C. Phonon scattering in graphene

In this section we review the phonon scattering limited

carrier transport in graphene. Lattice vibrations are inevitable

sources of scattering and can dominate transport near room

temperature. They constitute an intrinsic scattering source,

i.e., they limit the mobility at finite temperatures when all

extrinsic scattering sources are removed. In general, three

different types of phonon scattering are considered: intra-

valley acoustic and optical phonon scattering which induce

the electronic transitions within a single valley, and interval-

ley phonon scattering that induces electronic transitions be-

tween different valleys.
The intravalley acoustic phonon scattering is induced by

low energy phonons and is considered an elastic process. The

temperature-dependent phonon-limited resistivity (Stauber

et al., 2007; Hwang and Das Sarma, 2008a) was found to

be linear (i.e., �ph / T) for T > TBG, where TBG is the Bloch-

Grüneisen (BG) temperature (Kawamura and Das Sarma,

1992), and �phðTÞ � T4 for T < TBG. The acoustic phonon

scattering gives a quantitatively small contribution in gra-

phene even at room temperature due to the high Fermi

temperature of graphene in contrast to 2D semiconductors

where room-temperature transport is dominated by phonon

scattering (Kawamura and Das Sarma, 1990, 1992). The

intravalley optical phonon scattering is induced by optical

phonons of low momentum (q � 0) and very high energy

(!OP � 200 meV in graphene) and is negligible. The inter-

valley scattering can be induced by the emission and absorp-

tion of high momentum, high energy acoustic, or optical

phonons. In graphene intervalley scattering may be important

at high temperatures because of relatively low phonon energy

( � 70 meV, the out-of-plane acoustic phonon mode at the K
point) (Maultzsch et al., 2004; Mounet and Marzari, 2005).

Even though the effects of intervalley phonon scattering can

explain a crossover (Figs. 21 and 22) observed in experiments

in the 150 to 250 K range, more work is needed to validate

the model of combined acoustic phonon and out-of-plane

acoustic phonon scattering contributing to the temperature-

dependent graphene resistivity.
The remote interface polar optical phonons in the substrate

(i.e., SiO2) have recently been considered (Chen, Jang, Xiao

et al., 2008; Fratini and Guinea, 2008). Even though these

modes are known to be not important in Si-MOSFETs (Hess

and Vogl, 1979; Moore and Ferry, 1980), their role in gra-

phene transport seems to be important (Chen, Jang, Xiao

et al., 2008; DaSilva et al., 2010). Another possibility

considered by Morozov et al. (2006) is that the thermal

fluctuations (ripplons) of the mechanical ripples invariably

present in graphene samples contribute to the graphene re-

sistivity. In addition, Mariani and von Oppen (2008) inves-

tigated the role of the flexural (out-of-plane) phonons of free

standing graphene membranes which arise from the rotation

and reflection symmetries. Flexural phonons make a contri-

bution to the resistivity at low temperatures with an anoma-

lous temperature dependence / T5=2 lnT.
Before we discuss the theory of electron phonon scattering

we mention the current experimental situation for the mea-

surement in graphene of the phonon scattering contribution to

the resistivity. Since the experimentally measured resistivity
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in the current graphene samples is completely dominated
by extrinsic scattering (impurity scattering described in
Sec. III.B), even at room temperatures the experimental
extraction of the pure phonon contribution to graphene re-
sistivity is not unique. In particular, the impurity contribution
to resistivity also has a temperature dependence arising from
Fermi statistics and screening which, although weak, cannot
be neglected in extracting the phonon contribution (particu-

larly since the total phonon contribution itself is much smaller
than the total extrinsic contribution). In addition, the experi-
mental phonon contribution is obtained assuming
Matthiessen’s rule, i.e., �tot ¼ �ph þ �i, where �tot is the

total resistivity contributed by impurities and defects (�i)
and phonons (�ph), which is not valid at room temperature

(Hwang and Das Sarma, 2008a). Thus, two different groups
(Chen, Jang, Xiao et al., 2008; Morozov et al., 2008)
(Figs. 21 and 22) have obtained totally different behavior of
phonon contribution to resistivity. Morozov et al. (2008)
found that the temperature dependence is a rather high power
(T5) at room temperatures, and the phonon contribution is
independent of carrier density. Chen, Jang, Xiao et al. (2008)
showed that the extracted phonon contribution is strongly
density dependent and is fitted with both linear T from
acoustic phonons and Bose-Einstein distribution. Therefore,
the phonon contribution, as determined by a simple subtrac-
tion, could have large errors due to the dominance of extrinsic
scattering.

In this section we describe transport only due to the
longitudinal acoustic phonons since either the coupling to
other graphene lattice modes is too weak or the energy scales
of these (optical) phonon modes are far too high for them to
provide an effective scattering channel in the temperature
range (5 to 500 K) of our interest. Since graphene is a non-
polar material, the most important scattering arises from the
deformation potential due to quasistatic deformation of the
lattice. Within the Boltzmann transport theory (Kawamura
and Das Sarma, 1990; Kawamura and Das Sarma, 1992), the
relaxation time due to deformation potential coupled acoustic
phonon mode is given by

1

�ð"Þ ¼
X
k0
ð1� cos�kk0 ÞWkk0

1� fð"0Þ
1� fð"Þ ; (3.28)

where �kk0 is the scattering angle between k and k0, " ¼
ℏvFjkj, and Wkk0 is the transition probability from the state
with momentum k to the state with momentum k0 and is
given by

Wkk0 ¼ 2�

ℏ

X
q

jCðqÞj2�ð"; "0Þ; (3.29)

where CðqÞ is the matrix element for scattering by acoustic
phonons, and �ð"; "0Þ is given by

�ð"; "0Þ ¼ Nqð"� "0 þ!qÞ
þ ðNq þ 1Þð"� "0 �!qÞ; (3.30)

where !q ¼ ℏvphq is the acoustic phonon energy with vph

the phonon velocity and Nq the phonon occupation number

Nq ¼ 1=½expð�!qÞ � 1�. The first (second) term is Eq. (3.30)

corresponds to the absorption (emission) of an acoustic pho-
non of wave vector q ¼ k� k0. The matrix element CðqÞ is
independent of the phonon occupation numbers. The matrix
element jCðqÞj2 for the deformation potential is given by

jCðqÞj2 ¼ D2ℏq
2A�mvph

�
1�

�
q

2k

�
2
�
; (3.31)

FIG. 22 (color online). Temperature-dependent resistivity for four

different MLG samples (symbols). The solid curve is the best fit by

using a combination of T and T5 functions. The inset shows T
dependence of maximum resistivity at the neutrality point for MLG

and BLG (circles and squares, respectively). Adapted from Morozov

et al., 2008.

FIG. 21 (color online). Temperature-dependent resistivity of gra-

phene on SiO2. Resistivity of two graphene samples as a function of

temperature for different gate voltages. Dashed lines are fits to the

linear T dependence with Eq. (3.32). Adapted from Chen, Jang,

Xiao et al., 2008.
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whereD is the deformation-potential coupling constant, �m is
the graphene mass density, and A is the area of the sample.

The scattering of electrons by acoustic phonons may be
considered quasielastic since ℏ!q � EF, where EF is the

Fermi energy. There are two transport regimes, which apply
to the temperature regimes T � TBG and T � TBG, depend-
ing on whether the phonon system is degenerate (Bloch-
Grüneisen) or nondegenerate [equipartition (EP)]. The
characteristic temperature TBG is defined as kBTBG ¼
2ℏkFvph, which is given, in graphene, by TBG ¼
2vphkF=kB � 54

ffiffiffi
n

p
K with density measured in units of

n ¼ 1012 cm�2. The relaxation time in the EP regime is
calculated to be (Stauber et al., 2007; Vasko and Ryzhii,
2007; Hwang and Das Sarma, 2008a)

1

�ð"Þ ¼
1

ℏ3

"

4v2
F

D2

�mv
2
ph

kBT: (3.32)

Thus, in the nondegenerate EP regime (ℏ!q � kBT) the

scattering rate [1=�ð"Þ] depends linearly on the temperature.
At low temperatures (TBG � T � EF=kB) the calculated
conductivity is independent of electron density. Therefore,
the electronic mobility in graphene is inversely proportional
to the carrier density, i.e., 
 / 1=n. The linear temperature
dependence of the scattering time has been reported for
nanotubes (Kane et al., 1998) and graphites (Pietronero
et al., 1980; Woods and Mahan, 2000; Suzuura and Ando,
2002b).

In the BG regime the scattering rate is strongly reduced by
the thermal occupation factors because the phonon popula-
tion decreases exponentially, and the phonon emission is
prohibited by the sharp Fermi distribution. Then, in the
low-temperature limit T � TBG the scattering time becomes
(Hwang and Das Sarma, 2008a)

1

h�i �
1

�

1

EF

1

kF

D2

2�mvph

4!�ð4Þ
ðℏvphÞ4

ðkBTÞ4: (3.33)

Thus, the temperature-dependent resistivity in BG regime
becomes � / T4. Even though the resistivity in the EP regime
is density independent, Eq. (3.33) indicates that the calculated
resistivity in BG regime is inversely proportional to the
density, i.e., �BG / n�3=2 since � / ½DðEFÞh�i��1. More ex-
perimental and theoretical work would be needed for a
precise quantitative understanding of phonon scattering effect
on graphene resistivity.

D. Intrinsic mobility

Based on the results of previous sections, one can extract
the possible (hypothetical) intrinsic mobility of 2D systems
when all extrinsic impurities are removed. In Fig. 23 the
acoustic phonon-limited mobility is shown for 2D n-GaAs
system. For lower temperatures, 
ðTÞ increases by a large
factor (
 / T�7 for deformation-potential scattering and
 /
T�5 for piezoelectric scattering) since one is in the Bloch-
Grüneisen regime where phonon occupancy is suppressed
exponentially (Kawamura and Das Sarma, 1990; Kawamura
and Das Sarma, 1992). Thus the intrinsic mobility of semi-
conductor systems is extremely high at low temperatures
(T < TBG). For currently available semiconductor samples,

the mobility below TBG is completely limited by extrinsic
impurity scattering in 2D systems. Above the BG regime (or
T > 4 K), the mobility is dominated by phonons. In this limit
the mobility limited by phonon scattering is much lower than
that for charged impurity scattering. Therefore, it will be
impossible to raise 2D mobility (for T > 4 K) by removing
the extrinsic impurities since acoustic phonon scattering sets
the intrinsic limit at these higher temperatures (for T >
100 K, optical phonons become dominant) (Pfeiffer et al.,
1989).

In Fig. 24, the acoustic phonon-limited graphene mobility

 � ðen�Þ�1 is shown as functions of temperature and car-
rier density, which is given by 
 * 1010=D2~nT cm2=Vs
where D is measured in eV, the temperature T in K, and ~n
carrier density measured in units of 1012 cm�2. Thus, the
acoustic phonon scattering limited graphene mobility is in-
versely proportion to T and n for T > TBG. Also with the
generally accepted values in the literature for the graphene
sound velocity and deformation coupling (Chen, Jang, Xiao
et al., 2008) (i.e., vph ¼ 2� 106 cm=s and deformation po-

tential D ¼ 19 eV), 
 could reach values as high as
105 cm2=V s for lower carrier densities (n & 1012 cm�2) at
T ¼ 300 K (Hwang and Das Sarma, 2008a; Shishir and
Ferry, 2009). For larger (smaller) values of D, 
 would be
smaller (larger) by a factor of D2. It may be important to
emphasize here that we know of no other system where the
intrinsic room-temperature carrier mobility could reach a
value as high as 105 cm2=V s, which is also consistent with

FIG. 23 (color online). (a) Acoustic phonon-limited mobility of

n-GaAs 2D system as a function of density for two different

temperatures. (b) Calculated n-GaAs mobility as a function of

temperature for different impurity densities. At low temperatures

(T < 1 K) the mobility is completely limited by impurity scattering.

Adapted from Hwang and Das Sarma, 2008b.

FIG. 24 (color online). Calculated graphene mobility limited by

the acoustic phonon with the deformation-potential coupling con-

stant D ¼ 19 eV (a) as a function of temperature and (b) as a

function of density. Adapted from Hwang and Das Sarma, 2008a.
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the experimental conclusion by Chen, Jang, Xiao et al.
(2008), Morozov et al. (2008), and Hong et al. (2009).
This would, however, require the elimination of all extrinsic
scattering, and first steps in this direction have been taken in
fabricating suspended graphene samples (Bolotin, Sikes,
Jiang et al., 2008; Du et al., 2008). Finally, we point out
the crucial difference between graphene and 2D GaAs in
phonon-limited mobility. In the 2D GaAS system the acoustic
phonon scattering is important below T ¼ 100 K and polar
optical phonon scattering becomes exponentially more im-
portant for T * 100 K; whereas, in graphene a resistivity
linear in T is observed up to very high temperatures
(� 1000 K) since the relevant optical phonons have very
high energy ( � 2000 K) and are simply irrelevant for carrier
transport.

E. Other scattering mechanisms

1. Midgap states

The Boltzmann transport theory developed in Sec. III.A is
considered the limit of weak scattering. One can ask about the
opposite limit of very strong scattering. The unitarity of the
wave functions implies that a potential scatterer can only
cause a phase shift in the outgoing wave. Standard treatment
of s-wave elastic scattering gives the scattering time

ℏ
�k

¼ 8nd
�DðEkÞ sin

2ðkÞ; (3.34)

where the conductivity is then given by the Einstein relation
� ¼ ð2e2=hÞvFkF�kF .

To model the disorder potential induced by a vacancy,
Hentschel and Guinea (2007) assumed a circularly symmetric
potential with Vð0< r < R0Þ ¼ 1, VðR0 < r < RÞ ¼ const,
and VðR > rÞ ¼ 0. This corresponds to a circular void of
radius R0, and appropriate boundary conditions are chosen to
allow for zero-energy states (also called midgap states). By
matching the wave functions of incoming and outgoing
waves, the scattering phase shift can be calculated as
(Hentschel and Guinea, 2007; Guinea, 2008)

k ¼ � arctan

�
J0ðkR0Þ
Y0ðkR0Þ

�
!k!0 � �

2

1

lnðkR0Þ ; (3.35)

where J0ðxÞ [Y0ðxÞ] is the zeroth order Bessel function of the
first (second) kind. Expanding for small carrier density, one
then finds for the conductivity (Stauber et al., 2007)

� ¼ 2e2

�h

n

nd
ln2ðkFR0Þ; (3.36)

which other than the logarithmic factor, mimics the behavior
of charged impurities, and is linear in carrier density.

In recent experimental work, Chen, Cullen et al. (2009)
irradiated graphene with He and Ne ions to deliberately create
large vacancies in the graphene sheet. They further demon-
strated that these vacancies induced by ion irradiation gave
rise to a strongD peak in the Raman spectra, inferring that the
absence of such a D peak in the pristine graphene signalled
the lack of such defects (Fig. 25). Moreover, they demon-
strated that while transport in pristine graphene is dominated
by charged impurities, after ion irradiation the electron scat-
tering off these vacancies appears consistent with the theory
including midgap states [Eq. (3.36)]. In this review, we con-
sider only the case where the disorder changes graphene’s
transport properties without modifying its fundamental
chemical structure (Hwang et al., 2007b; Schedin et al.,
2007). The subject of transport in graphane (Sofo et al.,
2007; Elias et al., 2009) and other chemical derivatives of
graphene is beyond the scope of this work; see, e.g., Robinson
et al.(2008), Bostwick et al. (2009), Cheianov et al. (2009),
Geim (2009), and Wehling et al. (2009a, 2009b).

2. Effect of strain and corrugations

While graphene is often assumed to be an atomically
perfect 2D sheet, in reality, graphene behaves more like a
membrane. When placed on a substrate, graphene will con-
form to the surface-roughness developing ripples. Even with-
out a substrate, experiments reveal significant deformations
(Meyer et al., 2007), although the theoretical picture is
still contentious (Fasolino et al., 2007; Pereira et al.,

FIG. 25 (color online). Left panel: Raman spectra (wavelength 633 nm) for (a) pristine graphene and (b) graphene irradiated by 500 eV

Neþ ions that are known to cause vacancies in the graphene lattice. Right panel: Increasing the number of vacancies by ion irradiation caused

a transition from the pristine graphene (where Coulomb scattering dominates) to the lower curves where scattering from vacancies dominate.

Also shown is a fit to Eq. (3.36) from Stauber et al., 2007 that describes scattering off vacancies that have midgap states. From Chen, Cullen

et al., 2009.
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2009; Thompson-Flagg et al., 2009). It is nonetheless an
important theoretical question to address the nature of elec-
tronic scattering off such ripples. Ripples, by their very
nature, are correlated long-range fluctuations across the entire
sample (i.e. most experiments measuring ripples calculate a
height-height correlation function). Yet, for electronic trans-
port, one would like to isolate a ‘‘single ripple’’ and calculate
its scattering cross section (assuming that the rest of the
sample is flat), and then treat the problem of electrons
scattering off ripples as that of random uncorrelated impuri-
ties with the cross section of a single ripple. This was the
approach followed by Guinea (2008), Katsnelson and Geim
(2008), and Prada et al. (2010).

With this qualitative picture in mind, one could estimate
the transport time due to ripples as

ℏ
�
� 2�DðEFÞhVqV�qi; (3.37)

where Vq is the scattering potential caused by the strain fields

of a single ripple.
Introducing a height field hðrÞ (that measures displace-

ments normal to the graphene sheet), one finds (Katsnelson
and Geim, 2008)

hVqV�qi �
�
ℏvF

a

�
2 X
q1;q2

hhq�q1
hqh�qþq2

h�q2
i

� ½ðq� q1Þ 	 q1�½ðq� q2Þ 	 q2�; (3.38)

where a is the lattice spacing. Following Ishigami et al.
(2007), ripple correlations can be parametrized as h½hðrÞ �
hð0Þ�2i ¼ r2H, where the exponent H provides information
about the origin of the ripples. An exponent 2H ¼ 1 indicates
that height fluctuation domains have short-range correlations,
implying that graphene conforms to the morphology of the
underlying substrate, while 2H ¼ 2 suggests a thermally
excitable membrane only loosely bound by Van der Waals
forces to the substrate. Ishigami et al. (2007) found experi-
mentally that 2H � 1:11� 0:013, implying that graphene
mostly conforms to the substrate, but with some intrinsic
stiffness. Katsnelson and Geim (2008) showed that this has
consequences for transport properties, where for 2H ¼ 1,
�� 1=ln2ðkFaÞ; for 2H > 1, �ðnÞ � n2H�1. For the special
case of 2H ¼ 2 (flexural ripples), this scattering mimics the
long-range Coulomb scattering discussed in Sec. III.A. For
the experimentally relevant case of 2H * 1, electron scatter-
ing off ripples would mimic short-range disorder also dis-
cussed in Sec. III.A. Thus, ripple scattering in graphene for
2H � 1 mimic surface-roughness scattering in Si-MOSFET
(Ando et al., 1982). We emphasize that these conclusions are
at best qualitative, since the approximation of treating the
ripples as uncorrelated single impurities is quite drastic. A
complete theory for scattering off ripples in graphene is an
interesting, and at present and open problem. Ripple scatter-
ing effects on graphene transport have a formal similarity to
the well-studied problem of interface roughness scattering
effects on carrier transport in Si-SiO2 2D electron systems
(Ando et al., 1982; Adam, Hwang, and Das Sarma, 2008;
Tracy et al., 2009).

IV. TRANSPORT AT LOW CARRIER DENSITY

A. Graphene minimum conductivity problem

1. Intrinsic conductivity at the Dirac point

One of the most discussed issues in the context of funda-
mental graphene physics has been the so-called minimum (or
minimal) conductivity problem (or puzzle) for intrinsic gra-
phene. In the end, the graphene minimum conductivity prob-
lem turns out to be an ill-posed problem, which can only be
solved if the real physical system underlying intrinsic (i.e.,
undoped) graphene is taken into account. An acceptable and
reasonably quantitatively successful theoretical solution of
the minimum conductivity problem has only emerged in the
last couple of years, where the theory has to explicitly
incorporate carrier transport in the highly inhomogeneous
electron-hole landscape of extrinsic graphene, where density
fluctuations completely dominate transport properties for
actual graphene samples.

The graphene minimum conductivity problem is the di-
chotomy between the theoretical prediction of a universal
Dirac point conductivity �D of undoped intrinsic graphene
and the actual experimental sample-dependent nonuniversal
minimum of conductivity observed in gated graphene devices
at the charge neutrality point with the typical observed mini-
mum conductivity being much larger than the universal
prediction.

Unfortunately, �D is ill-defined, and depending on the
theoretical methods and approximation schemes, many dif-
ferent universal results have been predicted (Fradkin, 1986;
Ludwig et al., 1994; Aleiner and Efetov, 2006; Altland,
2006; Peres et al., 2006; Tworzydło et al., 2006;
Bardarson et al., 2007; Fritz et al., 2008; Kashuba, 2008):

�D ¼ 4e2

�h
;

�e2

2h
; 0; 1;

and other values. The conductivity �ðT;!; �F;�;�; L
�1Þ is

in general a function of many variables: temperature (T),
frequency (!), Fermi energy or chemical potential (�F),
impurity scattering strength or broadening (�), intervalley
scattering strength (�), and system size (L). The Dirac point
conductivity of clean graphene �Dð0; 0; 0; 0; 0; 0Þ is obtained
in the limit of all the independent variables being zero, and
the result depends explicitly on how and in which order these
limits are taken. For example, ! ! 0 and T ! 0 limit is not
necessarily interchangeable with the T ! 0 and ! ! 0 limit.
In addition, the limit of vanishing impurity scattering (� ! 0)
and whether � ¼ 0 or � � 0 may also matter. In the ballistic
limit (� ¼ 0), the mesoscopic physics of the system size
being finite (1=L � 0) or infinite (1=L ¼ 0) seems to matter.
The intervalley scattering being finite (� � 0) or precisely
zero (� � 0) seems to matter a great deal because the scaling
theory of localization predicts radically different results for
�D, �D ¼ 0 for � � 0, �D ¼ 1 for � ¼ 0, in the presence
of any finite disorder (� � 0).

A great deal of the early discussion on the graphene
minimum of conductivity problem has been misguided by
the existing theoretical work which considered the strict
T ¼ 0 limit and then taking the ! ! 0 limit. Many theories
claim �D ¼ 4e2=ð�hÞ in this limit, but the typical
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experimentally measured value is much larger (and sample
dependent), leading to the so-called problem of the missing
pi. The limit lim!!0�ð!; T ¼ 0Þ is, in fact, experimentally
irrelevant since for experimental temperatures (even 10 mK),
kBT � ℏ!, and thus the appropriate limiting procedure for
dc conductivity is limT!0�ð! ¼ 0; TÞ. There is an intuitive
way of studying this limit theoretically, which, however, can
only treat the ballistic (and therefore, the completely unreal-
istic disorder-free) limit. We first put ! ¼ 0 and assume

 ¼ 0, i.e., intrinsic graphene. It is then easy to show that
at T � 0, there will be a finite carrier density ne ¼ nh / T2

thermally excited from the graphene valence band to the
conduction band. The algebraic T2 dependence of thermal
carrier density, rather than the exponentially suppressed ther-
mal occupancy in semiconductors, of course follows from the
nonexistence of a band gap in graphene. Using the Drude
formula for dc conductivity, we write �D ¼ ne2�=m /
T2�ðTÞ=mðTÞ, where � and m are, respectively, the relaxation
time and the effective mass. Although the graphene effective
mass is zero due to its linear dispersion, an effective definition
of effective mass follows from writing � ¼ ℏvFk ¼
ðℏ2k2FÞ=ð2mÞ, which leads to m / ffiffiffi

n
p / T (which vanishes

as T ! 0) by using k / ffiffiffi
n

p
. This then leads to �D � T�ðTÞ.

In the ballistic limit, the only scattering mechanism is the
electron-hole scattering, where the thermally excited elec-
trons and holes scatter from each other due to mutual
Coulomb interaction. This inelastic electron-hole scattering
rate 1=� is given by the imaginary part of the self-energy
which, to the leading order, is given by 1=�� T, leading to
�D � Tð1=TÞ � const in the ballistic limit. There are loga-
rithmic subleading terms which indicate that �DðT ! 0Þ
grows logarithmically at low temperature in the ballistic
limit. The conductivity in this picture, where interaction
effects are crucial, is nonuniversal even in the ballistic limit,
depending logarithmically on temperature and becoming
infinite at T ¼ 0. The presence of any finite impurity disorder
modifies the whole picture completely. More details along
this idea can be found in the literature (Foster and Aleiner,
2008, 2009; Fritz et al., 2008; Kashuba, 2008; Müller et al.,
2008).

2. Localization

A fundamental mystery in graphene transport is the ab-
sence of any strong localization-induced insulating phase at
low carrier density around the Dirac point, where kFl � 1
since kF � 0 at the charge neutrality point and the transport
mean free path l is finite (and small). This is a manifest
violation of the Ioffe-Reggel criterion which predicts strong
localization for kFl & 1. By contrast, 2D semiconductor
systems always go insulating in the low-density regime. It
is conceivable, but does not seem likely, that graphene may
go insulating due to strong localization at lower temperatures.
Until that happens, the absence of any signature of strong
localization in graphene is a fundamental mystery deserving
serious experimental attention. Two noteworthy aspects stand
out in this context. First, no evidence of strong localization is
observed in experiments that deliberately break the A-B
sublattice symmetry (Chen, Cullen et al., 2009). Thus, the
absence of localization in graphene cannot be attributed to
the chiral valley symmetry of the Dirac fermions. Second, the

opening of an intrinsic spectral gap in the graphene band
structure by using graphene nanoribbons (Han et al., 2007;
Adam, Cho et al., 2008) or biased BLG (Oostinga et al.,
2008; Zhang, Tang et al., 2009) immediately introduces an
insulating phase around the charge neutrality point. These
two features indicate that the insulating behavior in graphene
and 2D semiconductors is connected more with the existence
of a spectral gap than with the quantum localization
phenomena.

3. Zero-density limit

It is instructive to think about the intrinsic conductivity as
the zero-density limit of the extrinsic conductivity for gated
graphene. Starting with the Boltzmann theory high-density
result of Sec. III, we see that

�D � �ðn ! 0Þ ¼
�
0 Coulomb scattering;
Ci zero-range scattering;

(4.1)

where the nonuniversal constant Ci is proportional to the
strength of the short-range scattering in the system. We
note that the vanishing of the Boltzmann conductivity in the
intrinsic zero-density limit for Coulomb scattering is true for
both unscreened and screened Coulomb impurities. The non-
vanishing of graphene Boltzmann conductivity for zero-range
 function scattering potential in the zero carrier density
intrinsic limit follows directly from the gapless linear disper-
sion of graphene carriers. We emphasize, however, that �D is
nonuniversal for zero-range scattering.

For further insight into the zero-density Boltzmann limit
T ¼ 0 for �, consider Eq. (3.3). In general, ��1ðEÞ �DðEÞ
since the availability of unoccupied states for scattering
should be proportional to the density of states. This immedi-
ately shows that the intrinsic limit EFðn ! 0Þ ! 0 is ex-
tremely delicate for graphene because DðE ! 0Þ ! 0, and
the product D� becomes ill defined at the Dirac point.

We emphasize in this context, as discussed in Sec. I, that as
a function of carrier density (or gate voltage), graphene
conductivity (at high carrier density) is qualitatively identical
to that of semiconductor-based 2DEG. This point needs
emphasis because it seems not to be appreciated much in
the general graphene literature. In particular, �ðnÞ � n	 for
both graphene and 2DEG with 	 ¼ 1 for graphene at inter-
mediate density and 	 � 0:3 to 1.5 in 2DEG depending on
the semiconductor system. At a very high density, 	 � 0 (or
even negative) for both graphene and 2DEG. The precise
nature of density dependence (i.e., value of the exponent 	)
depends strongly on the nature of scattering potential and
screening, and varies in different materials with graphene
(	 � 1) falling somewhere in the middle between Si-
MOSFETs (	 � 0:3) and modulation doped 2D n-GaAs
(	 � 1:5). Thus, from the perspective of high-density low-
temperature transport properties, graphene is simply a rather
low-mobility (comparable to Si-MOSFET, but much lower
mobility than 2D GaAs) 2D semiconductor system.

4. Electron and hole puddles

The low-density physics in both graphene and 2D semi-
conductors is dominated by strong density inhomogeneity
(‘‘puddle’’) arising from the failure of screening. This
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inhomogeneity is mostly due to the random distribution of
unintentional quenched charged impurity centers in the envi-
ronment. (In graphene, ripples associated with either intrinsic
structural wrinkles or the substrate interface roughness may
also make contribution to the inhomogeneity.) At low density,
the inhomogeneous puddles control transport phenomena in
graphene as well as in 2D semiconductors. Inhomogeneous
puddles would also form in doped 3D semiconductors at low
carrier densities (Shklovskii and Efros, 1984).

In Sec. IV.C we discuss the details of electron-hole-puddle
formation in graphene around the charge neutrality point and
describe its implications for graphene transport properties.
Here we emphasize the qualitative difference between gra-
phene and 2D semiconductors with respect to the formation
of inhomogeneous puddles. In 2D semiconductors, depending
on whether the system is electron doped or hole doped, there
are only just electron or just hole puddles. At low density,
n � 0, therefore most of the macroscopic sample has little
finite carrier density except for the puddle regime. From the
transport perspective, the system becomes the landscape of
mountains and lakes for a boat negotiating a hilly lake. When
percolation becomes impossible, the system becomes an
insulator. In graphene, however, there is no gap at the Dirac
point, and therefore, the electron (hole) lakes are hole (elec-
tron) mountains, and one can always have transport even at
zero carrier density. This picture breaks down when a spectral
gap is introduced, and gapped graphene should manifest an
insulating behavior around the charge neutrality point as it
indeed does experimentally.

5. Self-consistent theory

The physical puddle picture discussed above enables one
to develop a simple theory for graphene transport at low
densities using a self-consistent approximation where the
graphene puddle density is calculated by considering the
potential and density fluctuations induced by the charged
impurities themselves. Such a theory was developed by
Adam et al. (2007). The basic idea is to realize that at low
carrier density jnj< jnij the self-consistent screening adjust-
ment between the impurities and the carriers could physically
lead to an approximate pinning of the carrier density at n ¼
n� � ni. A calculation within the RPA approximation yields
(Adam et al., 2007)

n�

nimp

¼ 2r2sC
RPA
0 ðrs; a ¼ 4d

ffiffiffiffiffiffiffiffiffi
�n�

p
Þ; (4.2)

CRPA
0 ðrs; aÞ ¼ �1þ 4E1ðaÞ

ð2þ �rsÞ2
þ 2e�ars

1þ 2rs

þ ð1þ 2rsaÞe2rsaðE1½2rsa�
� E1½að1þ 2rsÞ�Þ;

where E1ðzÞ ¼
R1
z t�1e�tdt is the exponential integral func-

tion. This density pinning then leads to an approximately
constant minimum graphene conductivity which can be ob-
tained from the high-density Boltzmann theory by putting in a
carrier density of n�. This simple intuitive self-consistent
theory is found to be in surprisingly good agreement with
all experimental observations (Adam et al., 2007; Chen,

Jang, Adam et al., 2008). In the next section we describe a
more elaborate density functional theory and an effective
medium approximation to calculate the puddle electronic
structure and the resultant transport properties (Rossi and
Das Sarma, 2008; Rossi et al., 2009).

B. Quantum to classical crossover

The starting point for the quantum transport properties at
the Dirac point discussed in Sec. II.C.1 is the ballistic uni-
versal minimum conductivity �min ¼ 4e2=ð�hÞ for clean
graphene. The addition of disorder, i.e., including potential
fluctuations [given by Eq. (2.10)] that are smooth on the scale
of the lattice spacing increases the conductivity through weak
antilocalization. This picture is in contrast to the semiclassi-
cal picture discussed above where the transport properties are
calculated at high density using the Boltzmann transport
theory and the self-consistent theory is used to handle the
inhomogeneities of the carrier density around the Dirac point.
This theory predicts that the conductivity decreases with
increasing disorder strength. Given their vastly different start-
ing points, it is perhaps not surprising that the two approaches
disagree.

A direct comparison between the two approaches has not
been possible mainly because the published predictions of the
Boltzmann approach include screening of the Coulomb dis-
order potential; whereas, the fully quantum-mechanical cal-
culations are for a noninteracting model using Gaussian
disorder. Notwithstanding the fact that screening and
Coulomb scattering play crucial roles in transport of real
electrons through real graphene, the important question of
the comparison between quantum and Boltzmann theories,
even for Gaussian disorder, was addressed only recently by
Adam, Brouwer, and Das Sarma (2009), where they consid-
ered noninteracting Dirac electrons at zero temperature with
potential fluctuations of the form shown in Eq. (2.10). They
numerically solved the full quantum problem for a sample of
finite size L � � [where � is the correlation length of the
disorder potential in Eq. (2.10)], for a range of disorder
strengths parametrized by K0.

2

Typical results for the quantum transport are shown in
Fig. 26. For L & �, the transport is ballistic and the conduc-
tivity given by the universal value �min ¼ 4e2=ð�hÞ. For
L � �, one is in the diffusive transport regime. For the
diffusive regime, Adam, Brouwer, Das Sarma (2009) dem-
onstrated that away from the Dirac point, both the Boltzmann
theory and the full quantum theory agree to leading order
with

2Quantum effects are a small correction to the conductivity only if

the carrier density n is increased at fixed sample size L. This is the
experimentally relevant limit. If the limit L ! 1 is taken at fixed n,
quantum effects dominate [see Eq. (2.8)], where the semiclassical

theory does not capture the logarithmic scaling of conductivity with

system size. Here, we are not considering the conceptually simple

question of how quantum transport becomes classical as the phase

coherence length decreases, but the more interesting question of

how this quantum-Boltzmann crossover depends on the carrier

density and disorder strength.
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�ðnÞ ¼ 2
ffiffiffiffi
�

p
e2

K0h
½ð2�n�2Þ3=2 þOðn�2Þ1=2�: (4.3)

While this agreement is perhaps not surprising, it validates
the assumptions of both theories and demonstrates that they
are compatible at high carrier density. More interesting are
the results at the Dirac point. Generalizing the self-consistent
Boltzmann theory to the case of a Gaussian correlated dis-
order potential [Eq. (2.10)], one finds

�SC
min ¼

2e2

�h

�
exp

��K0

2�

�
I1

�
K0

2�

���1
; (4.4)

where I1 is the modified Bessel function. Shown in the left
panel of Fig. 27 is a comparison of the numerical fully
quantum Dirac point conductivity where the weak antilocal-
ization correction has been subtracted �0 ¼ limL!1½�ðLÞ �
��1 lnðL=�Þ� with the semiclassical result [Eq. (4.4)].

The right panel shows the conductivity slightly away from
the Dirac point (i.e., at the edge of the minimum conductivity
plateau). The numerical calculations at the edge of the plateau
are in good quantitative agreement with the self-consistent
Boltzmann theory. At the Dirac point, however, the quantum
conductivity �ðK0Þ is found to increase with K0 for the entire

parameter range considered, which differs from the
Boltzmann theory at small K0. At large K0, the numerical
data follow the trend of the self-consistent theory which

predicts �� 2e2K1=2
0 =ð�hÞ for K0 � 10. This implies that

even at the Dirac point, for large enough disorder, the trans-
port is semiclassical and described by the self-consistent
Boltzmann transport theory.

For smaller K0, Fig. 27 shows that upon reducing K0 below
unity, the conductivity first decreases sharply consistent with
a renormalization of the mean free path due to the ultraviolet
logarithmic divergences discussed in Sec. II.C.4. Upon re-
ducing K0 further, the Dirac point conductivity saturates at
the ballistic value �min ¼ 4e2=�h (discussed in Sec. II.B.2).

In a closely related work, Lewenkopf et al. (2008) nu-
merically simulated a tight-binding model to obtain the con-
ductivity and shot noise of graphene at the Dirac point using a
recursive Green’s function method. This method was then
generalized to calculate the metal-insulator transition in gra-
phene nanoribbons where, as discussed in Sec. II C 2, edge
disorder can cause the Anderson localization of electrons
(Mucciolo et al., 2009).

The important conclusion of this section is that it provides
the criteria for when one needs a full quantum-mechanical
solution and when the semiclassical treatment is sufficient.
For either sufficiently weak disorder or when the source and
drain electrodes are closer than the scattering mean free path,
then the quantum nature of the carriers dominates the trans-
port. On the other hand, for sufficiently large disorder, or
away from the Dirac point, the electronic transport properties
of graphene are semiclassical and the Boltzmann theory
correctly captures the most of graphene’s transport properties.

C. Ground state in the presence of long-range disorder

In the presence of long-range disorder that does not mix the
degenerate valleys, the physics of the graphene fermionic
excitations is described by the following Hamiltonian:

H ¼
Z

d2r�y
r	½�iℏvF�	� 	 rr �
1��r�

þ e2

2�

Z
d2rd2r0�y

r	�r	Vðjr�r0jÞ�y
r0��r0�

þ e2

2�

Z
d2rVDðrÞ�y

r	�r	; (4.5)

where vF is the bare Fermi velocity, �y
r	, �r	 are the

creation annihilation spinor operators for a fermionic excita-
tion at position r and pseudospin 	, � is the 2D vector
formed by the 2� 2 Pauli matrices �x and �y acting in

pseudospin space, 
 is the chemical potential, 1 is the
2� 2 identity matrix, � is the effective static dielectric
constant equal to the average of the dielectric constants of
the materials surrounding the graphene layer, Vðjr�r0jÞ ¼
1=jjr�r0j is the Coulomb interaction, and VDðrÞ is the bare
disorder potential. The Hamiltonian (4.5) is valid as long as
the energy of the fermionic excitations is much lower than the
graphene bandwidth� 3 eV. Using (4.5), if we know VD, we
can characterize the ground-state carrier density probability
close to the Dirac point. In this section we focus on the case
when VD is a disorder potential whose spatial autocorrelation
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FIG. 27 (color online). Semiclassical conductivity �0 ¼
limL!1½�ðLÞ � ��1 lnðL=�Þ� vs disorder strength at the Dirac

point (left) and at carrier density �n ¼ K0=ð��Þ2, corresponding
to the edge of the minimum conductivity plateau of Adam et al.

(2007) (right). Data points are from the numerical calculation for

L ¼ 50� and the (solid) dashed curves represent the (self-

consistent) Boltzmann theory. Adapted from Adam, Brouwer, and

Das Sarma, 2009.
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FIG. 26 (color online). Resistance R ¼ 1=G (left) and conductiv-

ity (right) obtained using � ¼ ½WdR=dL��1 as a function of sample

length L. The three curves shown are for W=� ¼ 200, K0 ¼ 2, and
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(right) panel]. Dashed lines in the right panel show d�=d lnL ¼
4e2=�h. The inset in the left panel shows the crossover to diffusive

transport (L � �).
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decays algebraically, such as the disorder induced by ripples
or charge impurities.

1. Screening of a single charge impurity

The problem of screening at the Dirac point of a single
impurity with charge Ze placed in (or close to) the graphene
layer illustrates some of the unique features of the screening
properties of massless Dirac fermions. In addition the prob-
lem provides a condensed matter realization of the QED
phenomenon of ‘‘vacuum polarization’’ induced by an exter-
nal charge (Darwin, 1928; Gordon, 1928; Pomeranchuk and
Smorodinsky, 1945; Case, 1950; Zeldovich and Popov, 1972).
In the context of graphene the problem was first studied by
DiVincenzo and Mele (1984) and recently more in detail by
several others (Biswas et al., 2007; Fistul and Efetov, 2007;
Fogler et al., 2007; Novikov, 2007b; Pereira et al., 2007;
Shytov et al., 2007a, 2007b; Terekhov et al., 2008). The
parameter � � Ze2=ð�ℏvfÞ ¼ Zrs quantifies the strength of

the coupling between the Coulomb impurity and the massless
Dirac fermions in the graphene layer. Neglecting e-e inter-
actions for j�j< 1=2 the Coulomb impurity induces a
screening charge that is localized on length scales of the
order of the size of the impurity itself (or its distance d
from the graphene layer). Even in the limit j�j< 1=2 the
inclusion of the e-e interactions induces a long-range tail in
the screening charge with sign equal to the sign of the charge
impurity (Biswas et al., 2007). For j�j> 1=2, the Coulomb
charge is supercritical, the induced potential is singular
(Landau and Lifshitz, 1977), and the solution of the problem
depends on the regularization of the wave function at the site
of the impurity, r ! 0. By setting the wave function to be
zero at r ¼ a, the induced electron density in addition to a
localized ½ðrÞ� term, acquires a long-range tail �1=r2 (with
sign opposite to the sign of the charge impurity) (Novikov,
2007a; Pereira et al., 2007; Shytov et al., 2007b) and
marked resonances appear in the spectral density (Fistul
and Efetov, 2007; Shytov et al., 2007a) that should also
induce clear signatures in the transport coefficients. Up until
now, neither the oscillations in the local density of states nor
the predicted signatures in the conductivity (Shytov et al.,
2007a) have been observed experimentally. It is likely that in
the experiments so far the supercritical regime j�j> 1=2 has
not been reached because of the low Z of the bare charge
impurities and renormalization effects. Fogler et al. (2007)
pointed out, however, that the predicted effects for j�j> 1=2
are intrinsic to the massless Dirac fermion model that how-
ever is inadequate when the small scale cutoff min½d; a� is
smaller than ars

ffiffiffiffi
Z

p
.

2. Density functional theory

Assuming that the ground state does not have long-range
order (Peres et al., 2005; Dahal et al., 2006; Min, Borghi
et al., 2008), a practical and accurate approach to calculate
the ground state of many-body problems is the density func-
tional theory (DFT) (Hohenberg and Kohn, 1964; Kohn and
Sham, 1965; Kohn, 1999; Giuliani and Vignale, 2005). In this
approach the interaction term in the Hamiltonian is replaced
by an effective Kohn-Sham (KS) potential VKS that is a

functional of the ground-state density nðrÞ ¼ P
��

y
r��r�:

H ¼
Z

d2r�y
r	½�iℏvF�	� 	 rr �
1��r�

þ
Z

d2r�y
r	VKS½nðrÞ��r	: (4.6)

The Kohn-Sham potential is given by the sum of the external
potential, the Hartree part of the interaction VH and an
exchange-correlation potential Vxc that can only be known
approximately. In its original form Vxc is calculated within
the local density approximation (LDA) (Kohn and Sham,
1965), i.e., Vxc is calculated for a uniform liquid of electrons.
The DFT-LDA approach can be justified and applied to the
study of interacting massless Dirac fermions (Polini, Tomadin
et al., 2008). For graphene, the LDA exchange-correlation
potential within the RPA approximation is given with very
good accuracy by the following expression (González et al.,
1999; Katsnelson, 2006; Barlas et al., 2007; Hwang et al.,
2007a; Mishchenko, 2007; Vafek, 2007; Polini, Tomadin
et al., 2008):

VxcðnÞ ¼ þ rs
4

ffiffiffiffiffiffiffiffiffiffi
�jnj

p
sgnðnÞ ln 4kcffiffiffiffiffiffiffiffiffi

4�n
p

� gr2s�ðgrsÞ
4

ffiffiffiffiffiffiffiffiffiffi
�jnj

p
sgnðnÞ ln 4kcffiffiffiffiffiffiffiffiffi

4�n
p ; (4.7)

where g is the spin and valley degeneracy factor (g ¼ 4), and
kc is an ultraviolet wave-vector cutoff, fixed by the range of
energies over which the pure Dirac model is valid. Without
loss of generality, we can use kc ¼ 1=a, where a is the
graphene lattice constant, corresponding to an energy cutoff

Ec � 3 eV. Equation (4.7) is valid for kF ¼ ffiffiffiffiffiffiffiffiffiffi
�jnjp � kc. In

Eq. (4.7) � is a constant that depends on rs given by (Polini,
Tomadin et al., 2008)

�ðgrsÞ ¼ 1

2

Z þ1

0

dx

ð1þ x2Þ2ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ x2

p
þ �grs=8Þ

: (4.8)

The terms on the r.h.s. of (4.7) are the exchange and corre-
lation potential, respectively. Note that the exchange and
correlation potentials have opposite signs. In Fig. 28 the
exchange and correlation potentials and their sum Vxc are
plotted as a function of n for rs ¼ 0:5. We see that in
graphene the correlation potential is smaller than the ex-
change potential but, contrary to the case of regular
parabolic-band 2DEGs, is not negligible. However, from
Eq. (4.7) we have that exchange and correlation scale with
n in the same way. As a consequence in graphene, the
correlation potential can effectively be taken into account
by simply rescaling the coefficient of the exchange potential.
In Fig. 28 the dotted line shows Vxc for a regular parabolic-
band 2DEG with effective mass 0:067me in a background
with � ¼ 4. The important qualitative difference is that Vxc in
graphene has the opposite sign than in regular 2DEGs: due to
interlayer processes in graphene the exchange-correlation
potential penalizes density inhomogeneities contrary to
what happens in parabolic-band electron liquids.

Using the DFT-LDA approach, Polini, Tomadin et al.
(2008) calculated the graphene ground-state carrier density
for single disorder realizations of charge impurities and small
samples (up to 10� 10 nm). The size of the samples is
limited by the high computational cost of the approach. For
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single disorder realizations, the results of Polini, Tomadin
et al. (2008) showed that, as predicted (Hwang et al., 2007a),
at the Dirac point the carrier density breaks up in electron-
hole puddles and that the exchange-correlation potential
suppresses the amplitude of the disorder-induced density
fluctuations. Given its computational cost, the DFT-LDA
approach does not allow the calculation of disordered aver-
aged quantities.

3. Thomas-Fermi-Dirac theory

An approach similar in spirit to the LDA-DFT is the
Thomas-Fermi theory (Fermi, 1927; Thomas, 1927; Spruch,
1991; Giuliani and Vignale, 2005). Like DFT, the TF theory
is a density functional theory: in the Thomas-Fermi theory the
kinetic term is also approximated via a functional of the local
density nðrÞ. By Thomas-Fermi-Dirac (TFD) theory, we refer
to a modification of the TF theory in which the kinetic
functional has the form appropriate for Dirac electrons and
in which exchange-correlation terms are included via the
exchange-correlation potential proper for Dirac electron
liquids as described above for the DFT-LDA theory. The
TF theory relies on the fact that if the carrier density varies
slowly in space compared to the Fermi wavelength, then the
kinetic energy of a small volume with density nðrÞ is equal,
with good approximation, to the kinetic energy of the same
volume of a homogeneous electron liquid with density n ¼
nðrÞ. The condition for the validity of the TFD theory is given
by the following inequality (Giuliani and Vignale, 2005; Brey
and Fertig, 2009b):

jrrnðrÞj
nðrÞ � kFðrÞ: (4.9)

Whenever inequality (4.9) is satisfied, the TFD theory is a
computationally efficient alternative to the DFT-LDA ap-
proach to calculate the ground-state properties of graphene
in presence of disorder. The energy functional E½n� in the
TFD theory is given by

E½n�¼ℏvF

�
2

ffiffiffiffi
�

p
3

Z
d2rsgnðnÞjnj3=2

þrs
2

Z
d2r

Z
d2r0

nðrÞnðr0Þ
jr�r0j þ

Z
d2rVxc½nðrÞ�nðrÞ

þrs
Z
d2rVDðrÞnðrÞ� 


ℏvF

Z
d2rnðrÞ

�
; (4.10)

where the first term is the kinetic energy, the second is the
Hartree part of the Coulomb interaction, the third is the term
due to exchange and correlation, and the fourth is the term
due to disorder. The expression for the exchange-correlation
potential is given in Eq. (4.7). The carrier ground-state dis-
tribution is then calculated by minimizing E½n� with respect
to n. Using (4.10), the condition E=n ¼ 0 requires

sgnðnÞ
ffiffiffiffiffiffiffiffiffiffi
j�nj

p
þ rs

2

Z
d2r

nðr0Þ
jr� r0j þ Vxc½nðrÞ�

þ rsVDðrÞ � 


ℏvF

¼ 0: (4.11)

Equation (4.11) well exemplifies the nonlinear nature of
screening in graphene close to the Dirac point: because in
graphene, due to the linear dispersion, the kinetic energy per
carrier, the first term in (4.11), scales with

ffiffiffi
n

p
when hni ¼ 0

the relation between the density fluctuations n and the
external disorder potential is not linear even when exchange
and correlation terms are neglected.

We now consider the case when the disorder potential is
due to random Coulomb impurities. In general the charge
impurities will be a 3D distribution CðrÞ, however we can
assume to a very good approximation CðrÞ to be effectively
2D. The reason is that for normal substrates such as SiO2, the
charge traps migrate to the surface of the oxide; moreover,
any additional impurity charge introduced during the gra-
phene fabrication will be located either on the graphene top
surface or trapped between the graphene layer and the sub-
strate. We then assume CðrÞ to be an effective 2D random
distribution located at the average distance d from the gra-
phene layer. An important advantage of this approach is that it
limits the number of unknown parameters that enter the
theory to two: charge impurity density nimp and d. With

this assumption, we have

VDðrÞ ¼
Z

dr0
Cðr0Þ

½jr� r0j�2 þ d2�1=2 : (4.12)

The correlation properties of the distribution CðrÞ of the
charge impurities are a matter of long-standing debate in
the semiconductor community. Because the impurities are
charged, one would expect the positions of the impurities to
have some correlation; on the other hand, the impurities are
quenched (not annealed), they are either imbedded in the
substrate or between the substrate and the graphene layer or
in the graphene itself. This fact makes it very difficult to know
the precise correlation of the charge impurity positions, but it
also ensures that to good approximation the impurity posi-
tions can be assumed to be uncorrelated:

hCðrÞi¼0; hCðr1ÞCðr2Þi¼nimpðr2�r1Þ; (4.13)

where the angular brackets denote averaging over disorder
realizations. A nonzero value of hCðrÞi can be taken into

FIG. 28 (color online). Exchange, solid line, and RPA correlation

potentials, dashed line, as functions of the density n for rs ¼ 0:5.

The dash-dotted line shows the full exchange-correlation potential

Vxc. The dotted line is the quantum Monte Carlo exchange-

correlation potential of a standard parabolic-band 2D electron gas

(Attaccalite et al., 2002) with effective mass 0:067me placed in

background with dielectric constant 4. Adapted from Polini,

Tomadin et al., 2008.
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account simply by a shift of the chemical potential 
. It is

easy to generalize the theory to correlated impurities (e.g.,

impurity clusters) if the correlation function is known.
The parameters nimp and d that enter the theory are reliably

fixed by the transport results (see Sec. III.A) at high doping.

Transport results at high density indicate that d is of the

order of 1 nm; whereas, nimp varies depending on the sample

quality but in general is in the range nimp ¼ 1010–1012 cm�2,

where the lowest limit applies to suspended graphene. The

distance d is the physical cutoff for the length scale of

the carrier density inhomogeneities. Therefore, to solve

Eq. (4.11) numerically, one can use a spatial discretization

with unit step of the order of d. For the TFD results presented

below, it was assumed d ¼ 1 nm and therefore a spatial step

�x ¼ �y ¼ 1 nm was used.
Figure 29 shows the TFD results for the carrier density

distribution at the Dirac point in the presence of charge

impurity disorder for a single disorder realization with nimp ¼
1012 cm�2 and � ¼ 2:5 corresponding to graphene on SiO2

with the top surface in vacuum (or air). It is immediately clear

that as predicted (Hwang et al., 2007a), close to the Dirac

point the disorder induced by the charge impurities breaks up

the carrier distribution in electron (n > 0) and hole (n < 0)
puddles. The electron-hole puddles are separated by disorder-

induced p-n junctions (PNJ). Apart from the PNJ, the carrier

density is locally always different from zero even though the

average density hni is set equal to zero. For this reason, in the
presence of disorder it is more correct to refer to the value of

the gate voltage for which hni ¼ 0 as the charge neutrality

point (CNP) rather than Dirac point: the presence of long-

range disorder prevents the probing of the physical properties

of the Dirac point, i.e., of intrinsic graphene with exactly half

filling, zero density, everywhere. The important qualitative

results that can be observed even for a single disorder by

comparing the results of Figs. 29(b) and 29(c) is that the

exchange-correlation term suppresses the amplitude of the
density fluctuations. This fact is clearly visible in Fig. 29(d)
from which we can see that in the presence of exchange
correlation the density distribution is much narrower and
more peaked around zero. This result, also observed in the
DFT-LDA results (Polini, Tomadin et al., 2008), is a con-
sequence of the the fact that as discussed in Sec. IV.C.2
the exchange-correlation potential in graphene, contrary to
parabolic-band Fermi liquids, penalizes density
inhomogeneities.

In the presence of disorder, in order to make quantitative
predictions verifiable experimentally it is necessary to calcu-
late disordered averaged quantities. Using TFD, both the
disorder average hXi of a given quantity X and its spatial
correlation function

X2ðrÞ � h½XðrÞ � hXi�½Xð0Þ � hXi�i (4.14)

can be efficiently calculated. For conditions typical in experi-
ments, 500 disorder realizations are sufficient. From X2ðrÞ,
one can extract the following quantities:

Xrms �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h½Xð0Þ�2i

q
; �X � FWHM of h½XðrÞ�2i;

(4.15)

respectively the root mean square and the typical spatial
correlation of the fluctuations of X. Using the TFD theory,
both the spatial correlation function of the screened potential
Vsc and carrier density are found to decay at long distance as
1=r3. This is a consequence of the weak screening properties
of graphene and was pointed out by Adam et al. (2007) and
Galitski et al. (2007). From the spatial correlation functions,
nrms and � � �n are extracted. Figures 30(a) and 30(b) show
the calculated nrms and � at the Dirac point as a function of
nimp. The disorder averaged results show the effect of the

exchange-correlation potential in suppressing the amplitude
of the density inhomogeneities nrms, and in slightly increasing
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Das Sarma et al.: Electronic transport in two-dimensional graphene 449

Rev. Mod. Phys., Vol. 83, No. 2, April–June 2011



their correlation length. The effect of the exchange-
correlation potential increases as nimp decreases. At the

Dirac point, the quantity � can be interpreted as the effective
nonlinear screening length. Figure 30 shows that � depends
weakly on nimp. The reason is that � only characterizes the

spatial correlation of the regions in which the density is
relatively high. If a puddle is defined as a continuous region
with same sign charges, then at the CNP the puddles have
always a size of the same order of the system size. Inside the
puddles there are small areas with high density and size � of
the order of tens of nanometers for typical experimental
conditions, much smaller than the system size L.

This picture is confirmed in Fig. 30(c) in which the dis-
order averaged area fraction A0 over which jnðrÞ � hnij<
nrms=10 is plotted as a function of nimp. As nimp decreases A0

increases reaching more than 1=3 at the lowest impurity
densities. The fraction of area over which jnðrÞ � hnij is
less than 1=5 of nrms surpasses 50% for nimp & 1010 cm�2.

Figure 30(b) shows the average excess charge Q � nrms��
2

at the Dirac point as a function of nimp. Note that as defined

Q, especially at low nimp, grossly underestimates the num-

ber of charges both in the electron puddles and in the small
regions of size �. This is because in the regions of size � the
density is much higher than nrms whereas the electron-hole
puddles have a typical size much larger than �. Using the
estimate jrnðrÞj=n ¼ 1=� for the small regions and the local
value of n inside the regions and, for the electron-hole
puddles the estimates

n � nrms; jrnðrÞj � nrms

L
; (4.16)

we find that the inequality (4.9) is satisfied guaranteeing the
validity of the TFD theory even at the Dirac point.

As we move away from the Dirac point more of the area is
covered by electron (hole) puddles. However, the density
fluctuations remain large even for relatively large values of
Vg. This is evident from Fig. 31 where the probability distri-

bution PðnÞ of the density for different values of hni is shown
in Fig. 31(a) and the ratio nrms=hni as a function of hni is
shown in Fig. 31(b). The probability distribution PðnÞ is non-
Gaussian (Adam et al., 2007; Galitski et al., 2007; Adam,
Hwang et al., 2009). For density hni & nimp, PðnÞ does not
exhibit a single peak around hni but rather a bimodal structure

with a strong and narrow peak arond zero. The double peak
structure for finite Vg provides direct evidence for the exist-

ance of puddles over a finite voltage range.
nrms=hni decreases with hni, a trend that is expected and

that has been observed indirectly in experiments by measur-
ing the inhomogenous broadening of the quasiparticle spec-
tral function (Hong et al., 2009).

In the limit rs � 1 it is possible to obtain analytical results
using the TFD approach (Fogler, 2009). The first step is to
separate the inhomogeneities of the carrier density and
screened potential in slow, 	n, 	Vsc, and fast components, n,
Vsc:

nðrÞ ¼ 	nðrÞ þ nðrÞ; VscðrÞ ¼ 	VscðrÞ þ VscðrÞ;
(4.17)

where 	n and 	Vsc contain only Fourier harmonics with k <�
where 1=� is the spatial scale below which the spatial
variation of n, and Vsc are irrelevant for the physical proper-
ties measured. For imaging experiments, 1=� is the spatial
resolution of the scanning tip and for transport experiments
1=� is of the order of the mean free path. Let limp �
1=2rs

ffiffiffiffiffiffiffiffiffi
nimp

p
and R is the nonlinear screening length. It is

assumed that limp & 1=� � R. With these assumptions and

neglecting exchange-correlation terms, from the TFD func-
tional in the limit � � kF and small nonlinear screening
terms compared to the kinetic energy term it follows (Fogler,
2009)

	nð 	VscÞ ’ �
	Vscj 	Vscj
�ðℏvÞ2 �

sgnð 	VscÞ
2‘2

ln
j 	Vscj
ℏv�

;

j 	Vscj � ℏv�;

(4.18)

with 	Vsc given, in momentum space, by

	VscðkÞ ¼ VDðkÞ þ 2�rsℏvF

k
nðkÞ; (4.19)

where we have assumed for simplicity d ¼ 0. Equation (4.19)
can be approximated by the following asymptotic expres-
sions:

	VscðkÞ ¼
�
VDðkÞ; kR � 1;
VDðkÞ kR

1þkR ; kR � 1:
(4.20)

Equations (4.18) and (4.19) define a nonlinear problem that
must be solved self-consistently and that in general can only
be solved numerically. However, in the limit rs � 1 an
approximate solution with logarithmic accuracy can be
found. Let K0 be the solution of

K0 ¼ ln½1=ð4rsK0Þ�: (4.21)

K0 is the expansion parameter. To order OðK�1
0 Þ, 	Vsc can be

treated as a Gaussian random potential whose correlator
V2

scðrÞ can be calculated using Eq. (4.20) to find (Adam
et al., 2007; Galitski et al., 2007; Fogler, 2009)

KðrÞ �  	V2
scðrÞ

¼ �

2

�
ℏv
‘imp

�
2 �

8>>><
>>>:
ln

�
R
r

�
; limp � r � R;

2

�
R
r

�
3
; R � r;

(4.22)

-4 -2 0 2 4 6 8 10

n  (10
12

 cm
-2

)

0

4

8

12

16

20

co
un

ts

<n>=0
<n>=1.46 10

12
 (cm

-2
)

<n>=1.90 10
12

 (cm
-2

)

<n>=3.45 10
12

 (cm
-2

)

<n>=4.44 10
12

 (cm
-2

)

0
10

12
10

13

<n>  (cm
-2

)

0

0.5

1

1.5

2

2.5

n rm
s/<

n>

(b)(a)

FIG. 31 (color online). (a) Density distribution averaged over

disorder for different values of the applied gate voltage assuming

� ¼ 2:5, d ¼ 1 nm and nimp ¼ 1012 cm�2. (b) nrms=hni as a func-

tion of hni for d ¼ 1 nm and different values of nimp: circles,

nimp ¼ 1:5� 1012 cm�2; squares, nimp ¼ 1012 cm�2; triangles,

nimp ¼ 5� 1011 cm�2. In (b) the solid (dashed) lines show the

results with (without) exchange and correlation terms. Adapted

from Rossi and Das Sarma, 2008.
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with R ¼ 1=ð4rsK0Þ. Using Eqs. (4.22) and (4.18) we can find
the correlation function for the carrier density (Fogler, 2009):

 	n2ðrÞ ¼ K2
0

2�l4

�
3
KðrÞ
KðlÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�

�
KðrÞ
KðlÞ

�
2

s

þ
�
1þ 2

�
KðrÞ
KðlÞ

�
2
�
arcsin

KðrÞ
KðlÞ

�
: (4.23)

The correlation functions given by Eqs. (4.22) and (4.23) are
valid in the limit rs � 1 but are in qualitative agreement also
with the numerical results obtained for rs � 1 (Rossi and
Das Sarma, 2008).

The location of the disorder-induced PNJ is identified by
the isolines nðrÞ ¼ 0, or equivalently VscðrÞ ¼ 0. The CNP
corresponds to the ‘‘percolation’’ threshold in which exactly
half of the sample is covered by electron puddles and half by
hole puddles (note that conventionally the percolation thresh-
old is defined as the condition in which half of the sample has
nonzero charge density and half is insulating and so the term
percolation in the context of the graphene CNP has a slight
different meaning and does not imply that the transport is
percolative). At the percolation threshold, all but one PNJ are
closed loops. Over length scales d such that 1=� � d � R,
Vsc is logarithmically rough [Eq. (4.22)] and so the PNJ loops
of diameter d have fractal dimension Dh ¼ 3=2 (Kondev
et al., 2000). At larger d the spatial correlation of Vsc decays
rapidly [Eq. (4.22)] so that for d larger than R, Dh crosses
over to the standard uncorrelated percolation exponent of 7=4
(Isichenko, 1992).

4. Effect of ripples on carrier density distribution

When placed on a substrate, graphene has been shown
(Ishigami et al., 2007; Geringer et al., 2009) to follow
with good approximation the surface profile of the substrate,
and therefore, it has been shown to have a finite roughness.
For graphene on SiO2, the standard deviation of the graphene
height h has been measured to be h � 0:19 nm with a
roughness exponent 2H � 1. More recent experiments
(Geringer et al., 2009) have found larger roughness. Even
when suspended, graphene is never completely flat, and it has
been shown theoretically to possess intrinsic ripples (Fasolino
et al., 2007). A local variation of the height profile hðrÞ
can induce a local change of the carrier density through
different mechanisms. de Juan et al. (2007) considered the
change in carrier density due to a local variation of the Fermi
velocity due to the rippling and found that assuming hðrÞ ¼
A expð�jrj2=b2Þ, a variation of 1% and 10% in the carrier
density was induced for ratios A=b of order 0.1 and 0.3,
respectively. Brey and Palacios (2008) observed that local
Fermi velocity changes induced by the curvature associated
with the ripples induce charge inhomogeneities in doped
graphene but cannot explain the existence of electron-hole
puddles in undoped graphene for which the particle-hole
symmetry is preserved, and then considered the effect on
the local carrier density of a local variation of the exchange
energy associated with the local change of the density of
carbon atoms due to the presence of ripples. They found that a
modulation of the out-of-plane position of the carbon atoms
of the order of 1–2 nm over a distance of 10–20 nm induces a
modulation in the charge density of the order of 1011 cm2.

Kim and Castro Neto (2008) considered the effect due to the
rehybridization of the � and � orbital between nearest
neighbor sites. For the local shift EF of the Fermi level,
Kim and Castro Neto (2008) found

EF ¼ �	
3a2

4
ðr2hÞ2; (4.24)

where 	 is a constant estimated to be approximately equal to
9.23 eV. Recently, Gibertini et al. (2010) used the DFT-LDA
to study the effect of ripples on the spatial carrier density
fluctuations. Transport theories in the presence of topological
disorder were considered by Cortijo and Vomediano (2007),
Herbut et al. (2008), and Cortijo and Vozmediano (2009).

5. Imaging experiments at the Dirac point

The first imaging experiments using STM were done on
epitaxial graphene (Brar et al., 2007; Rutter et al., 2007).
These experiments were able to image the atomic structure of
graphene and reveal the presence of in-plane short-range
defects. So far, one limitation of experiments on epitaxial
graphene has been the inability to modify the graphene
intrinsic doping that is relatively high ( * 1012 cm�2) in
most of the samples. This fact has prevented these experi-
ments to directly image the electronic structure of graphene
close to the Dirac point. The first scanning probe experiment
on exfoliated graphene on SiO2 (Ishigami et al., 2007)
revealed the atomic structure of graphene and the nanoscale
morphology. The first experiment that was able to directly
image the electronic structure of exfoliated graphene close to
the Dirac point was performed by Martin et al. (2007) using
scanning single-electron transistor (SET), Fig. 32. The
breakup of the density landscape in electron-hole puddles
as predicted by Adam et al. (2007) and Hwang et al.
(2007a), and shown by the DFT-LDA (Polini, Tomadin
et al., 2008), and TFD theory (Rossi and Das Sarma, 2008)
is clearly visible.

The result shown in Fig. 32(a), however, does not provide a
good quantitative characterization of the carrier density dis-
tribution due to the limited spatial resolution of the imaging
technique: the diameter of the SET is 100 nm and the distance
between the SET and the sample is 50 nm, so the spatial
resolution is approximately 150 nm. By analyzing the width
in density of the incompressible bands in the quantum Hall
regime, Martin et al. (2007) were able to extract the ampli-
tude of the density fluctuations in their sample. By fitting the
broadened incompressible bands with a Gaussian, Martin et
al. extracted the value of the amplitude of the density fluctu-
ations, identical for all incompressible bands (Ilani et al.,
2004) and found it to be equal to 2:3� 1011 cm�2. Taking
this value to be equal to nrms using the TFD a corresponding
value of nimp ¼ 2:4� 1011 cm�2 is found consistent with

typical values for the mobility at high density. By calculating
the ratio between the density fluctuations amplitude extracted
from the broadening of the incompressible bands in the
quantum Hall regime and the amplitude extracted from
the probability distribution of the density extracted from the
imaging results, Martin et al. (2007) obtained the upper
bound of 30 nm for the characteristic length of the density
fluctuations, consistent with the TFD results (Rossi and
Das Sarma, 2008).
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An indirect confirmation of the existence of electron-hole
puddles in exfoliated graphene close to the CNP came from
the measurement of the magnetic field-dependent longitudi-
nal and Hall components of the resistivity �xxðHÞ and �xyðHÞ
(Cho and Fuhrer, 2008). Close to the Dirac point, the mea-
surements showed that �xxðHÞ is strongly enhanced and
�xyðHÞ is suppressed, indicating nearly equal electron and

hole contributions to the transport current. In addition, the
experimental data were found inconsistent with uniformly
distributed electron and hole concentrations (two-fluid
model) but in excellent agreement with the presence of
inhomogeneously distributed electron and hole regions of
equal mobility.

The first STM experiments on exfoliated graphene were
performed by Zhang, Brar et al. (2009). The STM experi-
ments provided the most direct quantitative characterization
of the carrier density distribution of exfoliated graphene.
Figure 32(c) shows the topography of a 60� 60 nm2 area
of exfoliated graphene, while Fig. 32(d) shows the dI=dV
map of the same area. The dI=dV value is directly propor-
tional to the local density of states. We can see that there is no
correlation between topography and dI=dV map. This shows
that in current exfoliated graphene samples the rippling of
graphene, either intrinsic or due to the roughness of the
substrate surface, are not the dominant cause of the charge
density inhomogeneities. The dI=dV maps clearly reveal the
presence of high-density regions with characteristic length of
� 20 nm as predicted by the TFD results.

Recently, more experiments have been performed to di-
rectly image the electronic structure of both exfoliated single
layer graphene (Deshpande, Bao, Miao et al., 2009) and

bilayer graphene (Deshpande, Bao, Zhao et al., 2009). In
particular, Deshpande, Bao, Miao et al. (2009), starting from
the topographic data, calculated the carrier density fluctua-
tions due to the local curvature of the graphene layer using
Eq. (4.24) and compared them to the fluctuations of the
dI=dV map. The comparison shows that there is no corre-
spondence between the density fluctuations induced by the
curvature and the ones measured directly. This leads to the
conclusion that even though the curvature contributes to a
variation in the electrochemical potential, it is not the main
factor responsible for the features in the dI=dV map.

The results for BLG of Fig. 32(b) show that close to the
CNP the density inhomogeneities are very strong also in BLG
and are in semiquantitative agreement with theoretical pre-
dictions based on the TF theory (Das Sarma et al., 2010).

Using an SET, Martin et al. (2009) imaged the local
density of states also in the quantum Hall regime. The dis-
order carrier density landscape has also been indirectly ob-
served in imaging experiments of coherent transport
(Berezovsky et al., 2010; Berezovsky and Westervelt, 2010).

D. Transport in the presence of electron-hole puddles

The previous section showed, both theoretically and ex-
perimentally, that close to the Dirac point, in the presence of
long-range disorder, the carrier density landscape breaks up
in electron-hole puddles. In this situation the transport prob-
lem becomes the problem of calculating transport properties
of a system with strong density inhomogeneities. The first
step is to calculate the conductance of the puddles, Gp, and

PNJ, GPNJ.
We have Gp ¼ ��, where � is a form factor of order 1 and

� is the puddle conductivity. Away from the Dirac point (see
Sec. III.A) the RPA-Boltzmann transport theory for graphene
in the presence of random charge impurities is accurate.
From the RPA-Boltzmann theory, we have � ¼
ejhnij
ðhni; nimp; rs; d; TÞ. For the purposes of this section,

it is convenient to explicitly write the dependence of � on
nimp by introducing the function

Fðrs; d; TÞ �
hnimp


2e
¼ 2�nimp�

kF
vF

(4.25)

so that we can write

� ¼ 2e2

h

jhnij
nimp

Fðrs; d; TÞ: (4.26)

Expressions for Fðrs; d; TÞ at T ¼ 0 (or its inverse) were
originally given by Adam et al. (2007) [see Eq. (3.21)].

We can define a local spatially varying puddle conductivity
�ðrÞ if �ðrÞ varies on length scales that are larger than the
mean free path l, i.e.,��������r�ðrÞ

�ðrÞ
���������1� l: (4.27)

By substituting hni with nðrÞ, we then use Eq. (4.26) to define
and calculate the local conductivity:

�ðrÞ ¼ 2e2

h

nðrÞ
nimp

Fðrs; d; TÞ: (4.28)

FIG. 32 (color online). (a) Carrier density profile map at the CNP

measured with an SET. The contour marks the zero-density contour.

Adapted from Martin et al., 2007. (b) Spatial map, on a

80 nm� 80 nm region, of the energy shift of the CNP in BLG

from STM dI=dV map. Adapted from Deshpande et al., 2009b.

(c) 60 nm� 60 nm constant current STM topography, and

(d) simultaneous dI=dV map, at the CNP for MLG, ðVbias ¼
�0:225 V; I ¼ 20 pAÞ. Adapted from Zhang, Tang et al., 2009.
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Considering that l ¼ h�=ð2e2kFÞ and using Eq. (4.28), then
the inequality (4.27) takes the following form:��������rnðrÞ

nðrÞ
���������1� Fðrs; d; TÞffiffiffiffi

�
p

ffiffiffi
n

p
nimp

: (4.29)

As shown in the previous sections, at the CNP most of the
graphene area is occupied by large electron-hole puddles with
size of the order of the sample size L and density of the order
of nrms � nimp. For graphene on SiO2, we have rs ¼ 0:8 for

which is F ¼ 10. Using these facts, we find that the inequality
(4.29) is satisfied when

L � Fðrs; d; TÞffiffiffiffi
�

p 1ffiffiffiffiffiffiffiffiffi
nimp

p ; (4.30)

i.e., when the sample is much larger than the typical in-plane
distance between charge impurities. Considering that
in experiments on bulk graphene L > 1 
m and
nimp½1010–1012� cm�2, we see that the inequality (4.30) is

satisfied. In this discussion we have neglected the presence of
the small regions of high density and size �. For these regions
the inequality (4.30) is not satisfied. However, these regions,
because of their high carrier density, steep carrier density
gradients at the boundaries, and small size � < l, are practi-
cally transparent to the current carrying quasiparticles and
therefore, given that they occupy a small area fraction and are
isolated (i.e., do not form a path spanning the whole sample),
give a negligible contribution to the graphene resistivity. This
fact and the validity of inequality (4.30) for the large puddles
ensure that the local conductivity �ðrÞ as given by Eq. (4.28)
is well defined. In the limit rs � 1 one can use the analytical
results for the density distribution to reach the same conclu-
sion (Fogler, 2009).

To calculate the conductance across the PNJ, quantum
effects must be taken into account. In particular, as discussed
in Sec. II.B for Dirac fermions, we have the phenomenon of
Klein tunneling (Klein, 1929; Dombey and Calogeracos,
1999), i.e., the property of perfect transmission through a
steep potential barrier perpendicular to the direction of mo-
tion. The PNJ conductance GPNJ can be estimated using the
results of Cheianov and Fal’ko (2006a) and Zhang et al.
(2008). The first step is to estimate the steepness of the
electrostatic barrier at the PNJ, i.e., the ratio between the
length scaleD over which the screened potential varies across
the PNJ and the Fermi wavelength of the carriers at the side of
the PNJ. From the TFD theory, we have that at the sides of the
PNJ n � nrms so that kF ¼ ffiffiffiffiffiffiffiffiffiffiffiffi

�nrms
p

, and that D � 1=kF so

that kFD � 1. In this limit, the conductance per unit length of
a PNJ gPNJ is given by (Cheianov and Fal’ko, 2006b; Zhang
et al., 2008)

gPNJ ¼ e2

h
kF: (4.31)

so that the total conductance across the boundaries of the
electron-hole puddles is GPNJ ¼ pgPNJ with p the perimeter
of the typical puddle (Fogler, 2009; Rossi et al., 2009).
Because the puddles have size comparable to the sample
size, p � L, for typical experimental conditions (L *
1 
m and nimp½1010–1012� cm�2) using Eqs. (4.28) and

(4.31), we find

GPNJ ¼ e2

h

ffiffiffiffiffiffiffiffiffiffiffiffi
�nrms

p
p � Gp ¼ �Fðrs; d; TÞ 2e

2

h

jnrmsj
nimp

;

(4.32)

i.e., GPNJ � Gp. In the limit rs � 1 the inequality (4.32) is

valid for any value of nimp (Fogler, 2009). The inequality

(4.32) shows that, in exfoliated graphene samples, transport
close to the Dirac point is not percolative: the dominant
contribution to the electric resistance is due to scattering
events inside the puddles and not to the resistance of the
puddle boundaries (Fogler, 2009; Rossi et al., 2009). This
conclusion is consistent with the results of Adam, Brouwer,
and Das Sarma (2009) in which the graphene conductivity in
the presence of Gaussian disorder obtained using a full
quantum-mechanical calculation was found to be in agree-
ment with the semiclassical Boltzmann theory even at zero
doping provided the disorder is strong enough. Given (i) the
random position of the electron-hole puddles, (ii) the fact that
because of the inequality (4.30) the local conductivity is well
defined, and (iii) the fact that GPNJ � Gp, the effective

medium theory (EMT) (Bruggeman, 1935; Landauer, 1952;
Hori and Yonezawa, 1975) can be used to calculate the
electrical conductivity of graphene. The problem of the mini-
mum conductivity at the CNP can be expressed as the prob-
lem of correctly averaging the individual puddle conductivity.
Using Eq. (4.28), given a carrier density distribution, the
conductivity landscape can be calculated.

In the EMT an effective medium with homogeneous trans-
port properties equivalent to the bulk transport properties of
the inhomogeneous medium is introduced. Starting from the
local relation between current J and electric potential V,

JðrÞ ¼ ��ðrÞrVðrÞ; (4.33)

the effective medium conductivity �EMT is defined through

hJðrÞi ¼ ��EMThrVðrÞi; (4.34)

where the angle bracket denotes spatial and disorder aver-
ages. Equations (4.33) and (4.34) along with the condition
that in the effective medium the electric field�rV is uniform
are sufficient to calculate �EMT. The derivation of the relation
between �EMT and �ðrÞ using Eqs. (4.33) and (4.34) requires
the solution of the electrostatic problem in which a homoge-
neous region of conductivity �ðrÞ is embedded in an infinite
medium of conductivity �EMT. When the shape of the homo-
geneous regions, puddles, in the real medium is random the
shape of the homogeneous regions used to derive the expres-
sion of �EMT is unimportant, and they can be assumed to be
spheres having the same volume as each puddle (Bruggeman,
1935; Landauer, 1952). For a 2D system, the solution of the
electrostatic problem gives (Bruggeman, 1935; Landauer,
1952)

Z
d2r

�ðrÞ � �EMT

�ðrÞ þ �EMT

¼ 0: (4.35)

Equation (4.35) can also be viewed as an approximate re-
summation of the infinite diagrammatic series for the macro-
scopic � using the self-consistent single-site approximation
(Hori and Yonezawa, 1975). Disorder averaging Eq. (4.35),
we find
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	Z
d2r

�ðrÞ��EMT

�ðrÞþ�EMT

¼0



,
Z
d�

���EMT

�þ�EMT

Pð�Þ¼0;

(4.36)

where Pð�Þ is the probability for the local value of �. Using
the relation between the local value � and the local value of
the carrier density n, Eqs. (4.28) and (4.36) can be rewritten in
the following form:

Z
dn

�ðnÞ � �EMT

�ðnÞ þ �EMT

P½n� ¼ 0; (4.37)

where P½n� is the density probability distribution that can be
calculated using the TFD theory, Fig. 31. Using the TFD
results and Eq. (4.37), the conductivity at the Dirac point and
its vicinity can be calculated.

Figure 33(a) shows �ðVgÞ as obtained using the TFDþ
EMT theory (Rossi et al., 2009). The theory correctly
predicts a finite value of � very close to the one measured
experimentally. At high gate voltages, the theory predicts the
linear scaling of � as a function of Vg. The theory correctly

describes the crossover of � from its minimum at Vg ¼ 0 to

its linear behavior at high gate voltages. Figure 33(a) also
shows the importance of the exchange-correlation term at low
gate voltages. The dependence of �min on nimp is shown in

Fig. 33(c). �min increases as nimp decreases; the dependence

of �min on nimp is weaker if exchange-correlation terms are

taken into account. Figure 33(d) shows the dependence of
�min on the inverse mobility 1=
 / nimp as measured by

Chen, Jang, Adam et al. (2008). In this experiment the
amount of charge impurities is controlled by potassium
doping.

Figure 33(b) shows the results for �min as a function of rs.
The solid (dashed) line shows the calculated values of �min

including (neglecting) exchange. �min has a nonmonotonic

behavior due to the fact that rs affects both the carrier density
spatial distribution by controlling the strength of the disorder

potential, screening, and exchange, and the scattering time �.
The dependence of �min on rs has been measured in two
recent experiments (Jang et al., 2008; Ponomarenko et al.,

2009). In these experiments the fine-structure constant of

graphene rs is modified by placing the graphene on substrates
with different � and/or by using materials with � � 1 as top

dielectric layers. Jang et al. (2008) placed graphene on SiO2

and reduced rs from 0.8 (no top dielectric layer) to 0.56 by

placing ice in vacuum as a top dielectric layer. The resulting

change of �min is shown in Fig. 33(b) by the two solid
squares. As predicted by the theory, when Vxc is included,

for this range of values of rs, �min is unaffected by the
variation of rs. Overall the results presented by Jang et al.

(2008) are consistent with charge impurity being the main

source of scattering in graphene. Ponomarenko et al. (2009)
varied rs by placing graphene on substrates with different

dielectric constants and by using glycerol, ethanol, and water
as a top dielectric layer. Ponomarenko et al. (2009) found

very minor differences in the transport properties of graphene

with different dielectric layers, thus concluding that charge
impurities are not the dominant source of scattering.

Currently, the reasons for the discrepancy among the results
of Jang et al. (2008) and Ponomarenko et al. (2009) are not

well understood. The experiments are quite different. It must

be noted that changing the substrate and the top dielectric
layer, in addition to modifying rs, is likely to modify the

amount of disorder seen by the carriers in the graphene layer.
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FIG. 33 (color online). Solid (dashed) lines show the EMT-TFD results with (without) exchange. (a) � as function of Vg for three different

values of nimp. The dots at Vg ¼ 0 are the results presented by Adam et al. (2007) for the same values of nimp. (b) �min as a function of rs for

d ¼ 1 and nimp ¼ 1011 cm�2. Solid squares show the experimental results of Jang et al. (2008). (c) �min as a function of nimp, rs ¼ 0:8 and

d ¼ 1 nm. For comparison the results obtained by Adam et al. (2007) are also shown by the dot-dashed line. (d) �min as a function of the

inverse mobility as measured by Chen, Jang, Adam et al., 2008. rs for d ¼ 1 and nimp ¼ 1011 cm�2. (a)–(c) Adapted from Rossi et al., 2009.

(d) Adapted from Chen, Jang, Adam et al., 2008.
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By not modifying the substrate and by placing ice in and
ultrahigh vacuum, Jang et al. (2008) minimized the change of
disorder induced by modifying the top dielectric layer.

The approach presented above based on TFD and EMT
theories can be used to calculate other transport properties of
MLG and BLG close to the Dirac point. Hwang et al. (2009)
used the same approach to calculate the thermopower of
MLG with results in good agreement with experiments
(Checkelsky et al., 2009; Wei et al., 2009; Zuev et al.,
2009). Das Sarma et al. (2010) used the TFDþ EMT
approach to calculate the electrical conductivity in BLG.
Tiwari and Stroud (2009) used the EMT based on a simple
two-fluid model to calculate the magnetoresistance at low
magnetic fields of MLG close to the CNP.

It is interesting to consider the case whenGp � GPNJ. This

limit is relevant, for example, when a gap in the graphene
spectrum is opened. Cheianov et al. (2007) theoretically
studied the limit Gp � GPNJ by considering a random resis-

tor network (RRN) model on a square lattice in which only
nearest neighbors and next-nearest neighbor are connected
directly. Mathematically, the model is expressed by the fol-
lowing equations for the conductance between the sites (i, j)
and (i0, j0) with ji� i0j  1, jj� j0j  1:

Gðiþ1;jþ1Þ
ði;jÞ ¼ g½1þ ð�1Þiþj�i;j�=2; (4.38)

Gðiþ1;jÞ
ði;jþ1Þ ¼ g½1� ð�1Þiþj�i;j�=2; (4.39)

Gðiþ1;jÞ
ði;jÞ ¼ Gði;jþ1Þ

ði;jÞ ¼ �g; � � 1; (4.40)

where �i;j is a random variable,

�i;j ¼ �1; h�i;ji ¼ p; h�i;j�k;li ¼ ikjl;

(4.41)

and p is proportional to the doping hni. For � ¼ 0, p ¼ 0 we
have percolation. Finite p and � are relevant perturbations for
the percolation leading to a finite correlation length �ðp; �Þ.
On scales much larger than �, the RRN is not critical, and
consists of independent regions of size � so that � is well
defined with scaling (Cheianov et al., 2007) �ðp; �Þ ¼
½a=�ðp; �Þ�xg with �ðp; �Þ � a���=Fðp=p�Þ, p� ¼ �
=�

and � ¼ 4=3, 
 ¼ 1=ðhþ xÞ where h ¼ 7=4 and x � 0:97
are, respectively, the fractal dimension of the boundaries
between the electron-hole puddles and the conductance ex-
ponent hGðLÞi ¼ ða=LÞxg at the percolation threshold
(Isichenko, 1992; Cheianov et al., 2007). Figure 34 shows
the results obtained solving numerically the RRN defined by
Eq. (4.40). The numerical results are well fitted using for
Fðp=p�Þ the function FðzÞ ¼ ð1þ z2Þð�=2Þ. Estimating
g� ðe2=ℏÞakF and �g� ðe2=ℏÞðakFÞ1=2 (Cheianov and
Fal’ko, 2006b), Cheianov et al. (2007) estimated that

�min � e2

ℏ
ða2nÞ0:41: (4.42)

From the TFD results, one gets n� nimp and so Eq. (4.42)

predicts that �min should increase with nimp, a trend that is not

observed in experiments. The reason for the discrepancy is

due to the fact that for current experiments the relevant

regime is expected to be the one for which GPNJ � Gp.

The minimum conductivity was also calculated for bilayer

graphene (Adam and Das Sarma, 2008a; Das Sarma et al.,

2010). Other works calculated �m using different models and

approximations for regimes less relevant for current experi-

ments (Katsnelson, 2006; Cserti, 2007; Cserti et al., 2007;

Trushin and Schliemann, 2007; Adam and Das Sarma,

2008a; ; Groth et al., 2008; Trushin et al., 2010).
Although the semiclassical approach presented in this

section is justified for most of the current experimental con-

ditions for exfoliated graphene, its precise range of validity

and level of accuracy close to the Dirac point can only be

determined by a full quantum transport calculation that takes

into account the presence of charge impurities. This is still an

active area of research and work is in progress to obtain the

transport properties of graphene using a full quantum trans-

port treatment (Rossi, Bardarson, Fuhrer, and Das Sarma,

2010).

V. QUANTUM HALL EFFECTS

A. Monolayer graphene

1. Integer quantum Hall effect

The unique properties of the quantum Hall effect in gra-

phene are among the most striking consequences of the Dirac

nature of the massless low energy fermionic excitations in

graphene. In the presence of a perpendicular magnetic field B
electrons (holes) confined in two dimensions are constrained

to move in close cyclotron orbits that in quantum mechanics

are quantized. The quantization of the cyclotron orbits is

reflected in the quantization of the energy levels: at finite B
the B ¼ 0 dispersion is replaced by a discrete set of energy

levels, the Landau levels (LL). For any LL, there are N� ¼
BA=�0 degenerate orbital states, where A is the area of the

sample and �0 is the magnetic quantum flux. Quantum Hall

effects (MacDonald, 1990; Prange and Girvin, 1990; Das

Sarma and Pinczuk, 1996) appear when N is comparable to

the total number of quasiparticles present in the system. In the

quantum Hall regime the Hall conductivity �xy exhibits well

developed plateaus as a function of carrier density (or corre-

spondingly magnetic field) at which it takes quantized values.

FIG. 34. Collapse of the conductivity data obtained for RRNs with

various �1=2< p< 1=2 and values of the parameter � onto a

single curve. Points: numerical results; line: best fit obtained using

the equations in the text. Adapted from Cheianov et al., 2007.
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At the same time, for the range of densities for which �xy

is quantized, the longitudinal conductivity �xx is zero
(Laughlin, 1981; Halperin, 1982). For standard parabolic
2DEG (such as the ones created in GaAs and Si quantum
wells), the LL have energies energy ℏ!cðnþ 1=2Þ, where
n ¼ 0; 1; 2; . . . and !c ¼ eB=mc, m being the effective mass,
is the cyclotron frequency. Because the low energy fermions
in graphene are massless, it is immediately obvious that for
graphene we cannot apply the results valid for standard 2DEG
(!c would appear to be infinite). In order to find the energy
levels En for the LL the 2D Dirac equation must be solved in
the presence of a magnetic field (Jackiw, 1984; Haldane,
1988; Gusynin and Sharapov, 2005; Peres et al., 2006).
The result is given by Eq. (1.13a). Differently from parabolic
2DEG, in graphene we have a LL at zero energy. In addition,
we have the unconventional Hall quantization rule for �xy

(Zheng and Ando, 2002; Gusynin and Sharapov, 2005; Peres
et al., 2006):

�xy ¼ g

�
nþ 1

2

�
e2

h
(5.1)

compared to the one valid for regular 2DEGs

�xy ¼ gn
e2

h
(5.2)

shown in Fig. 35, where g is the spin and valley degeneracy.
Because in graphene the band dispersion has two inequivalent
valleys, g ¼ 4 (for GaAs quantum wells we only have
the spin degeneracy so that g ¼ 2). The additional 1=2 in

Eq. (5.1) is the hallmark of the chiral nature of the quasipar-

ticles in graphene. The factor 1=2 in Eq. (5.1) can be under-

stood as the term induced by the additional Berry phase that

the electrons, due to their chiral nature, acquire when com-

pleting a close orbit (Mikitik and Sharlai, 1999; Luk’yanchuk

and Kopelevich, 2004). Another way to understand its pres-

ence is by considering the analogy to the relativistic Dirac

equation (Geim and MacDonald, 2007; Yang, 2007). From

this equation, two main predictions ensue: (i) the electrons

have spin 1=2 and (ii) the magnetic g factor is exactly equal to

2 for the spin in the nonrelativistic limit. As a consequence

the Zeeman splitting is exactly equal to the orbital splitting.

In graphene the pseudospin plays the role of the spin and

instead of Zeeman splitting, we have ‘‘pseudospin splitting’’

but the same holds true: the pseudospin splitting is exactly

equal to the orbital splitting. As a consequence the nth LL can

be thought as composed of the degenerate pseudospin-up

states of LL n and the pseudospin-down states of LL n� 1.
For zero mass Dirac fermions, the first LL in the conduction

band and the highest LL in the valence band merge contrib-

uting equally to the joint level at E ¼ 0, resulting in the half-

odd-integer quantum Hall effect described by Eq. (5.1). For

the E ¼ 0 LL, because half of the degenerate states are

already filled by holelike (electronlike) particles, we only

need ð1=2ÞN� electronlike (holelike) particles to fill the level.

The quantization rule for �xy has been observed experi-

mentally (Novoselov, Geim et al., 2005; Zhang et al., 2005)

as shown in Fig. 35(d). The experimental observation of

Eq. (5.1) shows clearly the chiral nature of the massless

quasiparticles in graphene.
There is another important experimental consequence of

the Dirac nature of the fermions in graphene. Because in

graphene En scales as
ffiffiffiffiffiffiffi
nB

p
[Eq. (1.13a)] rather than linearly

as in regular 2DEG [Eq. (1.13c)], at low energies (n) the

energy spacing �n � Enþ1 � En between LL can be rather

large. Because the observation of the quantization of �xy

relies on the condition �n � kBT (T being the temperature),

it follows that in graphene the quantization of the LL should

be observable at temperatures higher than in regular parabolic

2DEG. This fact has been confirmed by the observation in

graphene of the QH effect at room temperature (Novoselov

et al., 2007). Graphene is the only known material whose

quantum Hall effect has been observed at ambient tempera-

ture (albeit at high magnetic fields).
By applying a top gate, p-n junctions (PNJ) can be created

in graphene. In the presence of strong perpendicular fields

graphene PNJ exhibit unusual fractional plateaus for the

conductance that have been studied experimentally by

Özyilmaz et al. (2007) and Williams et al. (2007) and

theoretically by Abanin and Levitov (2007). Numerical stud-

ies in the presence of disorder have been performed by Long

et al. (2008), Li and Shen (2008), and Low (2009).

2. Broken-symmetry states

The sequence of plateaus for �xy given by Eq. (5.1)

describes the QH effect due to fully occupied Landau levels

including the spin and valley degeneracy. In graphene for the

fully occupied LL we have the filling factors � � gN=N� ¼
4ðnþ 1=2Þ ¼ �2;�6;�10; . . . . In this section we study the

−4 −2 0 2 4

n  (10   cm     )12 −2

(a) (b)

(c) (d)

FIG. 35 (color online). Illustration of the integer QHE found in

2D semiconductor systems, (a), incorporated from MacDonald

(1990) and Prange and Girvin (1990). (b) Illustration for SLG.

(c) Illustration from BLG. The sequences of Landau levels as a

function of carrier concentrations n are shown as dark and light

peaks for electrons and holes, respectively. Adapted from

Novoselov et al., 2006. (d) �xy and �xx of MLG as a function of

carrier density measured experimentally at T ¼ 4 K and B ¼ 14 T.

Adapted from Novoselov, Geim et al., 2005.
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situation in which the spin or valley, or both, degeneracies are
lifted. In this situation QH effects are observable at inter-
mediate filling factors � ¼ 0, �1 for the lowest LL and � ¼
�3,�4,�5 for n ¼ �1 LL. The difficulty in observing these
intermediate QH effects is the lower value of the energy gap
between successive split LL. If the gap between successive
Landau levels is comparable or smaller than the disorder
strength, the disorder mixes adjacent LL preventing the for-
mation of well defined QH plateaus for the Hall conductivity.
For the most part of this section, we neglect the Zeeman
coupling that turns out to be the lowest energy scale in most
of the experimentally relevant conditions.

Koshino and Ando (2007) showed that randomness in the
bond couplings and on-site potential can lift the valley degen-
eracy and cause the appearance of intermediate Landau
Levels. Fuchs and Lederer (2007) considered the electron-
phonon coupling as the possible mechanism for the lifting of
the degeneracy. However, in most of the theories the spin and
valley degeneracy is lifted due to interaction effects (Alicea
and Fisher, 2006; Goerbig et al., 2006; Gusynin et al., 2006;
Nomura and MacDonald, 2006; Yang et al., 2006; Abanin
et al., 2007b; Ezawa, 2007, 2008; Herbut, 2007), in particular,
electron-electron interactions. When electron-electron inter-
actions are taken into account, the quasiparticles filling a LL
can polarize in order to minimize the exchange energy (max-
imize it in absolute value). In this case, given the SU(4)
invariance of the Hamiltonian, the states

j�0i ¼
Y

1iM

Y
k

cyk;�j0i; (5.3)

where i is the index of the internal states that runs from 1 to
M ¼ �� 4ðn� 1=2Þ  4, and j0i is the vacuum, are exact
eigenstates of the Hamiltonian. For a broad class of repulsive
interactions, j�0i is expected to be the exact ground state
(Yang et al., 2006, 2007). The state described by j�0i is a
‘‘ferromagnet,’’ sometimes called a QH ferromagnet, in

which either the real spin or the pseudospin associated with
the valley degree of freedom is polarized. The problem of
broken-symmetry states in the QH regime of graphene is
analogous to the problem of ‘‘quantum Hall ferromagnetism’’
studied in regular 2DEG in which, however, normally only
the SU(2) symmetry associated with the spin can be sponta-
neously broken [notice however that for silicon quantum
wells the valley degeneracy is also present so that in this
case the Hamiltonian is SUðNÞ (N > 2) symmetric]. Because
in the QH regime the kinetic energy is completely quenched,
the formation of polarized states depends on the relative
strength of interaction and disorder. For graphene, Nomura
and MacDonald (2006), using the Hartree-Fock approxima-
tion, derived a ‘‘Stoner criterion’’ for the existence of polar-
ized states, i.e., QH ferromagnetism, for a given strength of
the disorder. Chakraborty and Pietilainen (2007) numerically
verified that QH ferromagnetic states with large gaps are
realized in graphene. Sheng et al. (2007), using exact
diagonalization, studied the interplay of long-range
Coulomb interaction and lattice effects in determining the
robustness of the � ¼ �1 and �3 states with respect to
disorder. Nomura et al. (2008) studied the effect of strong
long-range disorder. Wang et al. (2008) performed numerical
studies that show that various charge density wave phases can
be realized in the partially filled � ¼ �3 LL.

Experimentally, the existence of broken-symmetry states
has been verified by Zhang et al. (2006) [Fig. 36(a)], which
showed the existence of the intermediate Landau levels with
� ¼ 0, �1 for the n ¼ 0 LL and the intermediate level � ¼
�4 for the n ¼ 1 LL that is therefore only partially resolved.
Given that the magnetic field by itself does not lift the valley
degeneracy, interaction effects are likely the cause for the full
resolution of the n ¼ 0 LL. On the other hand, a careful
analysis of the data as a function of the tilting angle of the
magnetic field suggests that the partial resolution of the n ¼ 1
LL is due to Zeeman splitting (Zhang et al., 2006).

FIG. 36 (color online). (a) �xy as a function of gate voltage at different magnetic fields: 9 T (circle), 25 T (square), 30 T (diamond), 37 T

(up triangle), 42 T (down triangle), and 45 T (star). All data sets are taken at T ¼ 1:4 K, except for the B ¼ 9 T curve, which is taken at

T ¼ 30 mK. Left upper inset: Rxx and Rxy for the same device measured at B ¼ 25 T. Right inset: Detailed �xy data near the Dirac point for

B ¼ 9 T (circle), 11.5 T (pentagon), and 17.5 T (hexagon) at T ¼ 30 mK. Adapted from Zhang et al., 2006. (b) Longitudinal resistance Rxx

as a function of gate voltage V0
g ¼ Vg � V0 at 0.3 K and several values of the magnetic field: 8, 11, and 14 T. The inset shows a graphene

crystal with Au leads deposited. The bar indicates 5 
m. At V0
g ¼ 0, the peak in Rxx grows to 190 k� at 14 T. Adapted from Checkelsky

et al., 2008.
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3. The � ¼ 0 state

In the previous section we have seen that in strong mag-
netic fields the lowest LL can be completely resolved and the
spin and valley degeneracies may be lifted. In particular,
an approximate plateau for �xy appear for � ¼ 0. This state

has been experimentally studied by Jiang et al. (2007),
Checkelsky et al. (2008, 2009), and Giesbers et al.
(2009); see Fig. 36(b). The state is unique in that the plateau
of �xy corresponds to a maximum of the longitudinal resis-

tivity �xx in contrast to what happens for � � 0 where a
plateau of �xy corresponds to zero longitudinal resistivity. In

addition, the � ¼ 0 edge states are not supposed to carry any
charge current, but only spin currents (Abanin et al., 2006;
Abanin et al., 2007a; Abanin, Novoselov et al., 2007). As
pointed out by Das Sarma and Yang (2009), however, the
situation is not surprising if we recall the relations between
the resistivity tensor and the conductivity tensor:

�xx ¼ �xx

�2
xx þ �2

xy

; �xy ¼
�xy

�2
xx þ �2

xy

; (5.4)

and the fact that the quantization of �xy is associated with the

vanishing of �xx. This can be seen from Laughlin’s gauge
argument (Laughlin, 1981; Halperin, 1982). Using Eq. (5.4),
a possible resolution of the � ¼ 0 anomaly is obvious: for any
finite �xy, the vanishing of �xx corresponds to the vanishing

of �xx; however, for �xy ¼ 0, we have �xx ¼ 1=�xx so that

�xx ! 0 implies �xx ! 1. This is very similar to the Hall
insulator phase in ordinary 2D parabolic-band electron gases.
This simple argument shows that the fact that �xx seem to
diverge for T ! 0 for the � ¼ 0 state is not surprising.
However, this argument may not be enough to explain the
details of the dependence of �xxð� ¼ 0Þ on temperature and
magnetic field. In particular, Checkelsky et al. (2009)
found evidence for a field-induced transition to a strongly
insulating state at a finite value of B. These observations
suggest that the � ¼ 0 ground state might differ from the
SU(4) eigenstates (5.3) and theoretical calculations proposed
that it could be a spin-density wave or charge-density wave
(Herbut, 2007; Jung and MacDonald, 2009). It has also been
argued that the divergence of �xxð� ¼ 0Þ might be the sig-
nature of Kekule instability (Nomura et al., 2009; Hou,
et al., 2010).

Giesbers et al. (2009) interpreted their experimental data
using a simple model involving the opening of a field-
dependent spin gap. Zhang, Camacho et al. (2009) observed
a cusp in the longitudinal resistance �xx for � � 1=2 and
interpreted this as the signature of a transition from a Hall
insulating state for � > 1=2 to a collective insulator, such as a
Wigner crystal (Zhang and Joglekar, 2007), for � < 1=2. No
consensus has been reached so far, and more work is needed
to understand the � ¼ 0 state in graphene.

4. Fractional quantum Hall effect

In addition to QH ferromagnetism, the electron-electron
interaction is responsible for the fractional quantum Hall
effect (FQHE). For the FQHE, the energy gaps are even
smaller than for the QH ferromagnetic states. For graphene,
the FQHE gaps have been calculated by Apalkov and

Chakraborty (2006) and Toke et al. (2006). For the � ¼
1=3, the gap has been estimated to be of the order of

0:05e2=�lB, where lB � ðℏc=eBÞ1=2 is the magnetic length.

Because of the small gap size, the experimental observation

of FQHE requires high quality samples. For graphene, very

low amount of disorder can be achieved in suspended samples

and in these suspended samples two groups (Bolotin et al.,

2009; Du et al., 2009) recently observed signatures of the

� ¼ 1=3 fractional quantum Hall state in two-terminal mea-

surements; see Fig. 37. A great deal of work remains to be

done in graphene FQHE.

B. Bilayer graphene

1. Integer quantum Hall effect

In bilayer graphene the low energy fermionic excitations

are massive, i.e., with good approximation the bands are

parabolic. This fact would suggest that the bilayer QH effect

in graphene might be similar to the one observed in regular

parabolic 2DEG. There are, however, two important differ-

ences: the band structure of bilayer graphene is gapless and

the fermions in BLG, as in MLG, are also chiral but with a

Berry phase equal to 2� instead of � (McCann and Fal’ko,

2006). As a consequence, as shown in Eq. (1.13c), the energy

levels have a different sequence from both regular 2DEGs and

MLG. In particular, BLG also has a LL at zero energy,

however, because the Berry phase associated with the chiral

nature of the quasiparticles in BLG is 2�, the step between

the plateaus of �xy across the CNP is twice as large as in

MLG [as shown schematically in Fig. 35(c)]. One way to

understand the step across the CNP is to consider that in BLG

the n ¼ 0 and 1 orbital LL are degenerate.
The spin and valley degeneracy factor g in BLG is equal to

4 as in MLG. In BLG the valley degree of freedom can also be

regarded as a layer degree of freedom considering that with-

out loss of generality we can use a pseudospin representation

in which the K valley states are localized in the top layer and

the K0 states in the bottom layer. The QH effect has been

measured experimentally. Figure 38(a) shows the original

data obtained by Novoselov et al. (2006). In agreement

with the theory the data show a double size step, compared

to MLG, for �xy across the CNP.

FIG. 37 (color online). Graphene fractional quantum Hall data,

from (a) Du et al., 2009 and (b) Bolotin et al., 2009, observed on

two probe suspended graphene samples.
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2. Broken-symmetry states

As discussed, the En ¼ 0 LL in BLG has an 8-fold
degeneracy due to spin degeneracy, valley (layer) degener-
acy, and n ¼ 0, n ¼ 1 orbital LL degeneracy. The En � 0
LL have only a 4-fold degeneracy due to spin and valley
degeneracy. As discussed for MLG, it is natural to expect
that the degeneracy of the full LL will be lifted by external
perturbations and/or interactions. Similar considerations to
the ones made in Sec. V.A.2 for MLG apply here: the
splitting can be due to the Zeeman effect (Giesbers et al.,
2009), strain-induced lifting of valley degeneracy (Abanin
et al., 2007b), or Coulomb interactions. Ezawa (2007) and
Barlas et al. (2008) considered the splitting of the En ¼ 0
LL in BLG due to electron-electron interactions and calcu-
lated the corresponding charge gaps and filling sequence. As
in MLG, the charge gaps of the splitted LLs will be smaller
than the charge gap ℏ!c for the fully occupied LLs and so
the observation of QH plateaus due to the resolution of the
LL requires higher quality samples. This has recently been
achieved in suspended BLG samples (Feldman et al., 2009;
Zhao et al., 2010) in which the full resolution of the
eightfold degeneracy of the zero-energy LL has been ob-
served, Fig. 38(c). By analyzing the dependence of the
maximum resistance at the CNP on B and T, Feldman
et al. (2009) concluded that the observed splitting of the
En ¼ 0 LL cannot be attributed to the Zeeman effect.
Moreover, the order in magnetic fields in which the
broken-symmetry states appear is consistent with the theo-
retical predictions of Barlas et al. (2008). These facts
suggest that in BLG the resolution of the octet zero-energy
LL is due to electron-electron interactions.

VI. CONCLUSION AND SUMMARY

In roughly five years, research in graphene physics has

made spectacular advances starting from the fabrication of
gated variable-density 2D graphene monolayers to the obser-
vations of fractional quantum Hall effect and Klein tunneling.
The massless chiral Dirac spectrum leads to novel integer
quantum Hall effect in graphene with the existence of a n ¼ 0
quantized Landau level shared equally between electrons and
holes. The nonexistence of a gap in the graphene carrier
dispersion leads to a direct transition between electronlike
metallic transport to holelike metallic transport as the gate
voltage is tuned through the charge neutral Dirac point. By
contrast, 2D semiconductors invariably become insulating at
low enough carrier densities. In MLG nanoribbons and in
BLG structures in the presence of an electric field, graphene
carrier transport manifests a transport gap because there is an
intrinsic spectral gap induced by the confinement and the bias

field, respectively. The precise relationship between the trans-
port and the spectral gap is, however, not well understood at
this stage and is a subject of much current activity. Since
backscattering processes are suppressed, graphene exhibits
weak antilocalization behavior in contrast to the weak local-
ization behavior of ordinary 2D systems. The presence of any
short-range scattering, however, introduces intervalley cou-
pling, which leads to the eventual restoration of weak local-
ization. Since short-range scattering, arising from lattice
point defects, is weak in graphene, the weak antilocalization
behavior is expected to cross over to weak localization be-
havior only at very low temperatures although a direct ex-
perimental observation of such a localization crossover is still
lacking and may be difficult.

The observed sequence of graphene integer quantized Hall
conductance follows the expected formula �xy ¼ ð4e2=hÞ�
ðnþ 1=2Þ, indicating the Berry phase contribution and the
n ¼ 0 Landau level shared between electrons and holes.
For example, the complete lifting of spin and valley splitting
leads to the observation of the following quantized
Hall conductance sequence � ¼ 0;�1;�2; . . . with �xy ¼
�e2=h; whereas, in the presence of spin and valley degener-
acy (i.e., with the factor of 4 in the front) one gets the
sequence � ¼ �2;�6; . . . The precise nature of the � ¼ 0
IQHE, which seems to manifest a highly resistive (�xx ! 1)
state in some experiments but not in others, is still an open
question as is the issue of the physical mechanism or the
quantum phase transition associated with the possible sponta-
neous symmetry breaking that leads to the lifting of the
degeneracy. We do mention, however, that similar, but not
identical, physics arises in the context of ordinary IQHE in
2D semiconductor structures. For example, the 4-fold spin
and valley degeneracy, partially lifted by the applied mag-

netic field, occurs in 2D Si-(100) based QHE, as already
apparent in the original discovery of IQHE by von Klitzing
et al. (1980). The issue of spin and valley degeneracy lifting
in the QHE phenomena is thus generic to both graphene and
2D semiconductor systems, although the origin of valley
degeneracy is qualitatively different (Eng et al., 2007;
McFarland et al., 2009) in the two cases. The other similarity
between graphene and 2DEG QHE is that both systems tend
to manifest strongly insulating phases at very high magnetic

FIG. 38 (color online). (a) Measured Hall conductivity �xy in

BLG as a function of carrier density for B ¼ 12 and B ¼ 20 T at

T ¼ 4 K. (b) Measured longitudinal resistivity in BLG at T ¼ 4 K
and B ¼ 12 T. The inset shows the calculated BLG bands close to

the CNP. Adapted from Novoselov et al., 2006. (c) Two-terminal

conductance, G, as a function of carrier density at T ¼ 100 mK for

different values of the magnetic field in suspended BLG. Adapted

from Feldman et al., 2009.

Das Sarma et al.: Electronic transport in two-dimensional graphene 459

Rev. Mod. Phys., Vol. 83, No. 2, April–June 2011



field when � � 1. In semiconductor-based high-mobility

2DEG, typically such a strongly insulating phase occurs

(Jiang et al., 1990; Jiang et al., 1991) for � < 1=5� 1=7;
whereas, in graphene the effect manifest near the charge

neutral Dirac point around � � 0. Whether the same physics

controls either insulating phenomena or not is an open

question.
Recent experimental observations of � ¼ 1=3 FQHE in

graphene have created a great deal of excitement. These

preliminary experiments involve two-probe measurements

on suspended graphene samples where no distinction between

�xx and �xy can really be made. Further advances in the field

would necessitate the observation of quantized plateaus in �xy

with �xx � 0. Since FQHE involves electron-electron inter-

action effects, with the noninteracting part of the Hamiltonian

playing a rather minor role, we should not perhaps expect any

dramatic difference between 2DEG and graphene FQHE

since both systems manifest the standard 1=r Coulomb re-

pulsion between electrons. Two possible quantitative effects

distinguishing FQHE in graphene and 2DEG, which should

be studied theoretically and numerically, are the different

Coulomb pseudopotentials and Landau level coupling in the

two systems. Since the stability of various FQH states de-

pends crucially on the minute details of Coulomb pseudo-

pontentials and inter-LL coupling, it is conceivable that

graphene may manifest novel FQHE not feasible in 2D

semiconductors.
We also note that many properties reviewed here should

also apply to topological insulators (Hasan and Kane, 2010),

which have only single Dirac cones on their surfaces.

Although we now have a reasonable theoretical understand-

ing of the broad aspects of transport in monolayer graphene,

much work remains to be done in bilayer and nanoribbons

graphene systems.
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