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Recently invented and demonstrated optical lattice clocks hold great promise for improving the

precision of modern time keeping. These clocks aim at the 10�18 fractional accuracy, which

translates into a clock that would neither lose nor gain a fraction of a second over an estimated age

of the Universe. In these clocks, millions of atoms are trapped and interrogated simultaneously,

dramatically improving clock stability. Here the principles of operation of these clocks are discussed

and, in particular, a novel concept of magic trapping of atoms in optical lattices. Recently proposed

microwave lattice clocks are also highlights and several applications that employ the optical lattice

clocks as a platform for precision measurements and quantum information processing.
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I. INTRODUCTION

Precision time pieces are marvels of human ingenuity. The
earliest surviving clocks, sundials and water clocks, are
traced to ancient Egypt (Usher, 1929). The first mechanical
clocks were built around the 14th Century. The 20th Century,
with the advent of quantum mechanics, saw the invention of
atomic clocks. Each qualitative shift in clockwork technology
was accompanied by a dramatic improvement in time keeping
accuracy. For example, the water clocks had an error exceed-
ing 15 min a day (Usher, 1929), while inexpensive quartz
crystal clocks may drift a millisecond or so in several days.

The best atomic clock to date (Chou et al., 2010) may be off
by only a fraction of a picosecond a day. Here we review a
novel and rapidly developing class of atomic clocks, optical

lattice clocks, which hold a promise of improving the accu-
racy of modern time keeping by an order of magnitude. This
translates into an astonishingly accurate clock that would
neither lose nor gain a fraction of a second over an estimated
age of the Universe. In other words, if someone built such a

clock at the big bang and if such a time piece survived the
14� 109 years, then the clock would be off by no more than a
mere second. Moreover, compared to other competing atomic
clocks, the optical lattice clocks promise to reach this accu-
racy within seconds of integration time.

Over the past half-century, the precision time keeping has
been carried out with atomic clocks. In particular, since 1967,

the SI unit of time, the second, is defined as a duration of a
certain number of periods of radiation corresponding to the
transition between two hyperfine levels of the ground state
of the 133Cs atom (Taylor, 2001). Atomic clocks are essential
elements of the Global Positioning System and are important

for synchronizing signals in digital networks. Fundamental
research ranges from testing the effects of special and general
relativity (Turyshev, 2009) to probing time variation of fun-
damental constants (Rosenband et al., 2008).

Atomic clocks operate by locking the frequency of an
external (e.g., microwave or laser) source in resonance with
an internal atomic transition. Counting the number of oscil-
lations at the source tells time. In practice, realizing this

scheme requires that the natural frequency of the atomic
transition �0 is impervious to external perturbations. Also,
there is a certain width of the resonance �� which limits the
uncertainty with which �0 may be found. The width of
the resonance is determined, for example, by the inverse of

the observation time or ultimately by the natural radiative
lifetime of the transition. The relevant parameter character-
izing the atomic oscillator is the quality factor (Q factor)
Q ¼ �0=��. Finding the frequency �0 precisely requires
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multiple measurements on a quantum system. The relevant
indicator of the clock performance is the fractional instability
characterized by the Allan deviation (Allan, 1966). For an
atomic clock operated at the quantum projection noise limit
(Itano et al., 1993), the Allan deviation is given by

�y � 1

Q

1ffiffiffiffiffiffiffiffiffiffi
Nat�

p ; (1)

where Nat is the number of atoms interrogated per unit time
and � is the total measurement time. The stability tells how
fast the average of multiple measurements over time ap-
proaches the central value. Good clocks are required to
have both excellent accuracy and stability. Therefore, besides
being insensitive to external perturbations, having larger Q
factors, longer measurement times, and larger atomic samples
is beneficial.

All other factors being equal, working with higher fre-
quencies improves the fractional accuracy and the stability of
the clock. This leads to a broad division of modern atomic
clocks into microwave and optical clocks. For example, the
133Cs standard operates at 9:2� 109 Hz, while the optical Sr
lattice clock runs at 4:3� 1014 Hz. The two frequencies
differ by 4–5 orders of magnitude. While the unit of time is
presently defined in terms of the microwave Cs standard, the
optical clocks have already outperformed the Cs clocks
(Ludlow et al., 2008; Chou et al., 2010).

Historically, the higher frequency of optical clocks posed a
difficulty, as electronic cycle counters were not able to cope
with optical frequencies. This difficulty was resolved with
the invention of optical frequency combs, which act as
‘‘optical gears’’ and link the optical clocks to electronic
counters (Udem et al., 1999; Jones et al., 2000).
Considering this remarkable progress, it is anticipated that
eventually the second will be redefined based on the output of
optical clocks.

Moving to higher frequencies is advantageous since a
number of systematic corrections do not scale with frequency
at all, so there is an immediate improvement in the fractional
accuracy. The Doppler shift ��D ¼ �ðv=cÞ�0, however, is
proportional to the clock frequency; apparently, one needs to
reduce atomic velocities v (c is the speed of light), or
ultimately, trap the atoms. Reducing the velocities addition-
ally increases interrogation time thereby improving the
Fourier-limited spectral resolution.

At present we may distinguish between two types of
competing optical clocks working with trapped species: ion
clocks and optical lattice clocks. In ion clocks an ion is cooled
down to the zero-point energy of the trapping potential. The
disadvantage of these clocks is that only a single ion (or only
a few ions) can be used, since trapping multiple ions simul-
taneously introduces large perturbations of the clock fre-
quency (due to the Coulomb ion-ion interactions, ions are
pushed out of the trap center where the electric field is zero.)
By contrast, the optical lattice clocks (the subject of this
Colloquium) employ neutral atoms; the atoms are trapped
in specially engineered standing-wave laser fields termed
optical lattices. Since the interactions between neutral atoms
are fairly short ranged, millions of atoms can be trapped
and interrogated simultaneously. This greatly improves the

stability of the clock. Qualitatively, lattice clockwork is

equivalent to millions of ion clocks working in parallel.
Trapping atoms with lasers, however, brings a seemingly

insurmountable challenge: Optical fields strongly perturb

atomic energy levels via the dynamic (or ac) Stark effect—

clock frequencies are shifted away from their unperturbed

values. For example, a typical differential Stark shift induced

by trapping a 10-�K-cold Sr atom exceeds 100 kHz; this

translates into a fractional clock accuracy of 10�9 or so,

which is many orders of magnitude worse than that of the

existing clocks. In addition, the Stark shift is proportional to

the local intensity of the trapping lasers; the shift is nonuni-

form across the atomic ensemble, and it is also sensitive to

laser intensity fluctuations. So trapping seems to be both

advantageous and detrimental for precision optical time keep-

ing. This dilemma was resolved using so-called ‘‘magic’’

traps (Katori et al., 1999; McKeever et al., 2003; Ye

et al., 2008). At the magic trapping conditions, two levels

of interest are shifted by exactly same amount by the trapping

fields; therefore, the differential effect of trapping fields

simply vanishes for the clock transition.
The optical lattice clocks using the 1S0 � 3P0 transition in

alkaline-earth atoms were proposed in 2001 by Katori (2002).

Figure 1 shows the concept of the clock. This idea was

followed by rapid progress in developing the lattice clocks.

A detailed theoretical proposal (Katori et al., 2003) for the Sr

clock appeared in 2003, the magic wavelength determined

experimentally (Takamoto and Katori, 2003), and finally the

Sr clock was demonstrated just a couple of years later in three

FIG. 1 (color online). Illustration of the essential elements of

optical lattice clocks. (a) A spatial interference of laser beams

creates an egg-carton-like optical potential that traps clock atoms.

The atoms are confined to regions much smaller than the laser

wavelength �L. (b) Atoms are probed on the 1S0-
3P0 clock tran-

sition. The wavelength �L is tuned to its magic value so that the

clock 1S0 and 3P0 states are equally energy shifted by the lattice

potential, leaving the transition frequency unperturbed.
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different laboratories in Tokyo, Boulder, and Paris (Takamoto
et al., 2005, 2006; Le Targat et al., 2006; Ludlow et al.,
2006). Recognizing this success, as early as 2006, the Sr
optical lattice clock was adopted by the International
Committee for Weights and Measures as one of the secondary
representations of the second. This formalized the Sr clock as
a promising candidate for the future redefinition of the
second.

The contender status of the lattice clocks was further
solidified in 2008 when the international frequency compari-
son carried out in Boulder (Campbell et al., 2008), Paris
(Baillard et al., 2007), and Tokyo (Hong, et al., 2009) agreed
with a fractional uncertainty of 6� 10�16 that was only
limited by the uncertainty of the Cs primary frequency stan-
dard. Similar efforts were undertaken for Yb and Hg lattice
clocks. A theoretical analysis of Yb clock performance was
carried out in 2004 (Porsev et al., 2004); the Yb clock was
demonstrated in 2006 (Barber et al., 2006), and the clock
frequency was measured with the accuracy near that of the Cs
standard in 2009 (Kohno et al., 2009; Lemke et al., 2009).
The Hg clock was proposed in 2008 (Hachisu et al., 2008).
The projected fractional accuracy of Hg clocks is at the level
of 10�18, and efforts on building the Hg clock are underway
in several laboratories around the world (Petersen et al.,
2008).

The fruitful ideas of the optical-frequency-domain lattice
clocks were extended to microwave frequencies (‘‘microma-
gic’’ clocks). The original proposal (Beloy et al., 2009) deals
with microwave transition in Al and Ga atoms. For metro-
logically important Cs and Rb atoms, finding magic trapping
conditions has proven to be a challenge: an additional control
of laser polarizations, magnetic fields, and trapping geometry
is required (Flambaum et al., 2008; Derevianko, 2010a,
2010b; Lundblad et al., 2010). At the same time, there are
compelling benefits to exploring micromagic clocks. In com-
parison with the state of the art microwave clocks, the
fountain clocks (Wynands and Weyers, 2005), one of the
benefits is a much smaller (micrometer-scale) size of volume
occupied by clock atoms. Also at present, the stability of the
primary Cs frequency standard is limited (Santarelli et al.,
1999) by the quantum projection noise limit (Itano et al.,
1993), described by Eq. (1). The stability can be substantially
improved by using highly entangled ensembles of clock
atoms (Leibfried et al., 2004); optical-lattice-based micro-
magic clocks are excellent candidates for realizing such
ideas.

This Colloquium is organized as follows. In Sec. II, we
review the interaction of atoms with off-resonant laser light,
and describe the determination of magic wavelengths and
spectroscopy in optical lattices. In Sec. III, we discuss opera-
tion of optical lattice clocks and their error budget. In Sec. IV,
we discuss a recently proposed class of atomic microwave
clocks (micromagic clocks). Finally, in Sec. V, we highlight
several proposals for using lattice clocks in precision mea-
surements and quantum information processing.

II. OPTICAL LATTICES AND MAGIC WAVELENGTH

In this section, we provide the introductory background
required for understanding the basic physics of optical lattice

clocks: optical lattices, magic wavelengths, and the Lamb-
Dicke spectroscopy.

A. Light shifts and polarizabilities

The key idea for realizing the lattice clock is the concept of
magic trapping. Generally, magic optical trapping potentials
for a specific clock transition may be defined as specially
tailored trapping fields in which differential shift of the clock
transition vanishes exactly. Note that the individual levels
may be perturbed by the trapping fields very strongly.
Nevertheless, at the magic conditions both clock levels are
shifted identically.

The effect of optical (laser) trapping fields on a given level
is quantified using the ac Stark shift and dynamic polariz-
ability. The static Stark shift is a familiar concept in quantum
mechanics; it refers to a shift of energy levels in the presence
of externally applied static electric fields. For states of defi-
nite parity, the leading contribution arises in the second order
of perturbation theory, and it is quadratic in the E field. The
coefficient of proportionality is called the static dipole polar-
izability. When the electric field oscillates, as in lasers, the
Stark shift of energy levels remains time independent. This is
similar to the Lamb shift, where time-dependent vacuum
fluctuations lead to a static shift. The interested reader is
referred to Manakov et al. (1986) for details. The theoretical
analysis is similar to the static E-field case; in particular, the
static polarizability is replaced by the dynamic polarizability.

An order-by-order expansion of the ac Stark (light) shift of
the energy of level a reads

�EStark
a ¼ ��að!LÞ

�
EL

2

�
2 � �0

að!LÞ
�
EL

2

�
4 þOðE6

LÞ;
(2)

where EL and !L are the (real-valued) amplitude and the
frequency of the laser field. The frequency-dependent quan-
tities �að!LÞ and �0

að!LÞ are the dynamic polarizability and
hyperpolarizability, respectively. The resulting differential
Stark shift of the clock frequency is

h��Stark ¼ ���ð!LÞ
�
EL

2

�
2 � ��0ð!LÞ

�
EL

2

�
4

þOðE6
LÞ; (3)

where differential polarizabilities of the two (the lower jgi
and the upper jei) clock levels are defined as ��ð!LÞ ¼
�eð!LÞ � �gð!LÞ. Note that the hyperpolarizability correc-

tion, being of higher order in the electromagnetic coupling, is
relatively small (we return to this discussion later as the
relevant correction has an effect on clock’s accuracy).
Therefore, the magic laser wavelength �m (or frequency
!m ¼ 2�c=�m) is determined by computing dynamic polar-
izabilities for the two clock levels as a function of !L.
Intersections of the two curves determines the values of !m.

The polarizability depends on atomic electric-dipole D
matrix elements and energies E and also on the (generally
complex-valued) polarization vector "̂ of the laser
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�að!Þ ¼ X
b

jhajD � "̂jbij2
Eb � Ea �!

þX
b

jhajD � "̂jbij2
Eb � Ea þ!

: (4)

The sums are over a complete atomic eigenset.
We may decompose the polarizability for a state jnFMFi

of the total angular momentum F and its projection MF

(n encompasses all remaining quantum numbers) into the
following contributions:

�nFMF
ð!Þ¼�S

Fð!Þþðk̂ � B̂ÞAMF

2F
�V
Fð!Þ

þ1

2
ð3j"̂ � B̂j2�1Þ3M

2
F�FðFþ1Þ
Fð2F�1Þ �T

Fð!Þ:
(5)

Here the superscripts S, V, and T distinguish the scalar,

vector, and tensor parts of the polarizability. k̂ and B̂ are
the unit vectors along the lattice wave vector and quantizing B
field, respectively.A is the degree of circular polarization of
the light: A ¼ �1 for �� light. For a linearly polarized
laser, A ¼ 0 and the vector contribution drops out. "̂ is
complex for nonzero degree of circular polarization. Here
we follow the notation of Manakov et al. (1986).

Arriving at the tensorial decomposition (5) of the
polarizability (4) requires techniques of quantum theory of
angular momentum (Varshalovich et al., 1988).
Qualitatively, the decomposition could be understood from
the following arguments. Equation (4) contains four vectors:
two polarizations "̂ and two dipole moments D in a particular
(rotationally invariant) combination of Cartesian components
of these vectors:

P
ij"iDiR"�jDj ¼

P
ijð"i"�j ÞðDiRDjÞ �P

ijP ijDij, where R ¼ P
bjbihbjðEb � Ea �!Þ�1 is the

resolvent operator. We now focus on the combinationsDij ¼
DiRDj. These form components of a rank-2 Cartesian polar-

izability tensor Dij. In general, it may be decomposed into

three irreducible parts: a scalar Dð0Þ ¼ ð1=3ÞðD �RDÞ, a
vectorDð1Þ ¼ ð1=2ÞD�RD, and a symmetric traceless ten-

sorDð2Þ
ij ¼ ð1=2ÞðDij þDjiÞ � �ijDð0Þ. Similar decomposi-

tion may be carried out for the polarization tensor
P ij ¼ "i"

�
j . Combining irreducible components of the polar-

izability and polarization tensors, we arrive at the three
(scalar, vector, and tensor) contributions to Eq. (5). It is worth
mentioning that although seemingly cumbersome, the use of
the irreducible tensor decomposition is also instrumental in
another topic of current interest: relating the ac Stark shift to
continuous measurement in quantum optics (Kupriyanov
et al., 2005; Geremia et al., 2006; Deutsch and Jessen, 2010).

Further, evaluation of matrix elements of irreducible polar-
izability tensors DðLÞ in atomic basis jnFMFi is aided by the
Wigner-Eckart theorem, which states that a matrix element
may be factorized into two parts, dependent and independent
on magnetic quantum numbers MF of atomic states. The
former gives rise to MF-dependent prefactors in vector and
tensor contributions to Eq. (5), and the latter is encapsulated
in MF-independent (or ‘‘reduced’’) polarizabilities �S

Fð!Þ,
�V
Fð!Þ, and �T

Fð!Þ. The MF-dependent prefactors from the

Wigner-Eckar theorem fix angular selection rules for matrix
elements [these are suppressed in Eq. (5)]: the total angular
momentum F is to be greater than or equal to L=2 for the
nonvanishing diagonal matrix element of tensorDðLÞ. Finally,

specifyingMF fixes the direction of quantization axis, and the
angular factors in Eq. (5) arise when evaluating irreducible
polarization tensors in this fixed reference frame.

B. Theoretical determination of magic wavelengths

Certainly, the values of magic wavelength depend on
specific atoms. The clockwork in optical lattice clocks takes
advantage of the electronic structure of atoms with two
valence electrons outside a closed-shell core. Such systems
include group II and IIb atoms, such as magnesium, calcium,
and strontium, or more complex divalent atoms, such as
ytterbium and mercury atoms. A typical level structure of
such atoms is shown in Fig. 2. The clock transition is between

1S0 (ns2)

3PJ (nsnp) 

2

1
0

1P1 (nsnp) 

3D1 (ns n-1d) 

3D2 (ns n-1d) 

3D3 (ns n-1d) 

FIG. 2 (color online). A diagram of the low-lying energy levels

for Mg (n ¼ 3), Ca (n ¼ 4), Sr (n ¼ 5), and Yb (n ¼ 6). The

relative position of the levels above the 3PJ fine-structure manifold

depends on the atom. This diagram reflects energy levels of Yb

(core-excited states are not shown). The clock transition is between

the ground and the lowest-energy 3P0 state.

FIG. 3 (color online). Dynamic polarizabilities � of the two clock

levels in Yb as a function of laser frequency !. The solid curve is

the polarizability of the 6s21S0 lower clock state, and the dashed

line is �ð!Þ of the 6s6p3P0 upper clock state. The unit a.u. stands

for atomic units. Conversion factors are �=h½Hz=ðV=mÞ2� ¼
2:48832� 10�8�½a:u� for polarizability and !=ð2�Þ½Hz� ¼
4:1341� 1016!½a:u:� for frequency. Magic frequencies of the laser

field are marked by small circles on the plot.
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the ground ns21S0 state and the J ¼ 0 component of the

lowest-energy triplet state fine-structure manifold, nsnp3PJ.

The scalar character of the J ¼ 0 clock states makes the clock
transition insensitive to magnetic fields and vector light shift
perturbations (see below).

Evaluation of polarizabilities involves summing over
electric-dipole-allowed transitions: for example, in Fig. 2,
the sum for the ground state includes the 3P1,

1P1 and

higher-energy J ¼ 1 odd-parity states (not shown). The upper
clock level has the parity opposite to that of the ground state
and the intermediate states will include J ¼ 1 even-parity
state, such as the 3D1 state in Fig. 2. In Fig. 3, we present

results of such calculations (Dzuba and Derevianko, 2010) for
the Yb atom. The two polarizabilities of the clock states spike
at resonances. The resonant transitions are marked on the
plot. At the lower-end frequency range, !< 0:08 a:u:, the
polarizability of the 3P0 state goes through two resonances,

while �1S
0
remains relatively flat. This dissimilar behavior of

the two polarizabilities almost inevitably results in crossings
of the two curves: values of laser wavelengths at these cross-
ings are magic.

There are several magic wavelengths predicted from cross-
ings of polarizabilities in Fig. 3; the first five �m are tabulated
by Dzuba and Derevianko (2010). The experimentally real-
ized Yb clock operates at the first and longest wavelength
�m � 759 nm. This wavelength was theoretically predicted
by Porsev et al. (2004) and subsequently measured by Barber
et al. (2006) and Barber et al. (2008).

Finally, in Table I we compile magic wavelengths
for divalent atoms of current interest (Mg, Ca, Sr, Zn, Cd,
and Hg).

C. Optical lattices and Lamb-Dicke spectroscopy

Before discussing experimental determination of magic
wavelengths, we introduce several basic ideas of trapping
and spectroscopy in optical lattices. Consider two counter-
propagating laser beams of linear polarization and of the
same wavelength �L and intensity IL ¼ c=ð8�ÞE2

L. The re-

sulting standing wave has the intensity nodes separated by
�L=2. This oscillatory intensity pattern translates into spa-
tially modulated Stark shift of the energy levels via Eq. (2) or,
equivalently, to the optical potential experienced by the atom

Uðr; zÞ ¼ U0 expf�2½r=wðzÞ�2gcos2ð2�z=�LÞ: (6)

Here the z axis lies along the laser beam, r is the radial
coordinate in the transverse direction, and wðzÞ is the beam
waist. This geometry is conventionally referred to as the one-
dimensional (1D) lattice. The potential depth U0 is expressed
as

U0 ¼ � 8�

c
�ð!LÞIL: (7)

We see that the polarizability �ð!LÞ governs the Stark clock
shift and also the atomic trapping potential (of course, both
the Stark shift and the optical potential describe the very same
energy shift). Note that since at the magic wavelength the
polarizabilities of the two clock states are equal, both states
experience identical trapping potentials.

From Fig. 3, we see that the polarizability may accept both
positive and negative values. For �> 0, U0 < 0 and atoms
are attracted to maxima of local intensity: trapped atoms form
layers of pancakelike clouds separated by �L=2 in the axial
direction (see Fig. 4). By contrast, for the negative values of
polarizabilities, the atoms are pushed to the minima of inten-
sity: they simply escape the 1D lattice along the radial
direction. In this case the confinement can be provided by
three-dimensional (3D) optical lattices, where three overlap-
ping 1D lattices are oriented along three spatially orthogonal
directions.

The potential (6) is periodic in the axial direction.
Although the solutions of the corresponding Schrödinger
equation for atomic motion can be found in terms of the
Wannier and Bloch functions familiar from solid-state phys-
ics, a qualitative consideration will suffice for our goals [see
Lemonde (2009) for details]. Near the bottom of the wells, the
potential is harmonic, with the spacing between the levels
given by

TABLE I. Magic wavelengths for the 1S0-
3P0 clock transition in

divalent atoms. Values of magic wavelengths �m for Sr and Yb are
experimental (Takamoto and Katori, 2003; Barber et al., 2006), and
the values for other atoms are theoretical results (Derevianko et al.,
2009).

Atom �clock (Hz) �m (nm)

Mg 6:55� 1014 466
Ca 4:54� 1014 739
Sr 4:29� 1014 813
Yb 5:18� 1014 759
Zn 9:69� 1014 416
Cd 9:03� 1014 419
Hg 1:13� 1015 362

FIG. 4 (color online). (a) A one-dimensional optical clock is

realized by a standing wave of light tuned to the magic wavelength.

Multiply trapped spin-polarized fermions in a single pancake po-

tential may be protected from collisions by the Pauli blocking.

(b) Electric and magnetic field amplitudes in a standing wave.
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!ho ¼ 2�

�L

�
2jU0j
M

�
1=2

; (8)

where M is the atomic mass. Note that an atom initially
trapped in one of the sites may tunnel out to the neighboring
wells. As we move up the vibrational energy ladder, the
tunneling rate (Bloch bandwidth) increases. As we interrog-
ate the clock transition of the trapped atoms with a laser of
frequency!p, the absorbed photon imparts a momentum kick

p ¼ ℏ!p=c to the atom. As long as the recoil energy Er ¼
p2=ð2MÞ is much smaller than the spacing ℏ!ho between the
harmonic levels, the atoms remain in the same motional state.
Thus, the absorbed frequency is equal to the internal atomic
frequency within the width of the trapped level (we imply
trapping in a magic lattice to remove differential Stark shifts).
This is the Lamb-Dicke regime (Dicke, 1953), which guar-
antees that the quantized atomic motion in a trap does not
alter the clock frequency.

Classically, a trapped atom oscillates in the optical poten-
tial with a frequency !ho. As the atom moves, the electric
field of the probe laser experienced by the atom becomes
phase modulated: Ep ¼ E0

p cosðkp � x sin!hot�!ptÞ with x

as the amplitude of atomic oscillation. When the modulation
index m ¼ kp � x 	 1, the atom observes an electric field

Ep � E0
pfcos!ptþ ðm=2Þ½cosð!p ��Þt� cosð!p þ�Þt�g;

i.e., the field is composed of a central carrier at !p frequency

and two weak sidebands. Clearly, the Doppler shift becomes
discretized and is removed in the spectroscopic measurement.
The photon recoil shift is absorbed by the macroscopic
objects (lattice) as in the Mössbauer effect.

D. Experimental determination of magic wavelength

Figure 5 shows an experimental setup (Takamoto and
Katori, 2003) used for clock spectroscopy and determination
of magic wavelength. In this experiment, 87Sr atoms were
laser cooled and trapped on the 1S0-

3P1 transition with a

dynamic magneto-optical trapping technique (Mukaiyama
et al., 2003). Roughly 104 atoms with a temperature of about
2 �K were loaded into a 20-�K-deep 1D optical lattice that
was formed by the standing wave of a lattice laser. The atoms
were trapped in the Lamb-Dicke regime along the axial

direction. The magic wavelength was first determined to be
813.5(9) nm by investigating the narrowing of the clock
spectra as a result of the cancellation of the light shift [see
Fig. 6(a)]. At this magic wavelength, the observed clock
spectrum is shown in Fig. 6(b). The spectrum consists of a
central narrow carrier of 700 Hz linewidth (see inset) and two
sidebands at � �64 kHz. Presently, the magic wavelength
for 87Sr is measured with a 7-digit accuracy (Campbell et al.,
2008). It is worth noting that knowing �m with a mere 7-digit
accuracy affects the clock frequency �0 only at the 16th
significant digit (Katori et al., 2003). The magic wavelength
for 171Yb was determined with a similar accuracy (Lemke
et al., 2009).

FIG. 5 (color online). Schematic of the experimental setup for Sr

spectroscopy used in an early experiment. Ultracold 87Sr atoms are

loaded into a 1D optical lattice produced by the standing wave of a

Ti-sapphire laser tuned to the magic wavelength. The atoms interact

with the clock laser propagating along this axis, and the Lamb-

Dicke condition is satisfied. AOM stands for the acousto-optic

modulator. From Takamoto and Katori (2003).
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FIG. 6 (color online). (a) The 87Sr magic wavelength determined

by investigating the spectral line broadening of the clock transition,

as shown in the inset. This broadening revealed the vibrational

frequency differences in two states of the clock transition, which is

plotted as a function of lattice laser wavelength to determine the

degenerate wavelength to be �L ¼ 813:5� 0:9 nm. (b) The first

spectrum of the clock transition in the magic lattice. The spectrum

consists of the heating and cooling sidebands at� �64 kHz and the

recoilless spectrum (the carrier component) with a linewidth of

700 Hz (full width half maximum) as shown in the inset.
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E. Higher-order corrections to the Stark shift and blue-detuned

lattices

Our discussion of the magic wavelength trapping focused

on the cancellation of the leading, second-order, light shifts in

Eq. (3). In general, however, the fourth and higher-order

differential ac Stark shifts cannot be canceled out at the magic

wavelength. Their effect on the clock accuracy is of a serious

concern. The fractional shifts of the clock frequency due to

hyperpolarizability are predicted to be in the range of

10�17–10�19 for Sr-, Yb-, and Hg-based optical lattice clocks

operating at their magic wavelengths (Katori et al., 2003;

Porsev et al., 2004; Hachisu et al., 2008). The effects of

hyperpolarizability have been experimentally investigated in

Sr (Brusch et al., 2006) and Yb (Barber et al., 2008)

confirming the fractional correction to be less than 10�17.

While at the present level of uncertainty such corrections are

affordable, these become important when targeting the 10�18

uncertainty level.
The detrimental effects of hyperpolarizability can be sup-

pressed by employing so-called ‘‘blue-detuned’’ lattices.

Near an atomic resonance, the polarizability, Eq. (4), is

dominated by a single contribution. As seen from Fig. 3,

below (on the red side of) the resonance, the polarizability is

positive and above (on the blue side of) the resonance,

�ð!Þ< 0. So far, we focused on the red-detuned magic

lattices. As discussed in Sec. II.C, these trap atoms near the

intensity maxima, i.e., at the antinodes of the standing wave.

However, when �gð!mÞ ¼ �eð!mÞ< 0, the atoms are con-

fined at the intensity minima of the electric field. Then, for a

strong confinement, the intensity averaged over the atomic

center-of-mass motion becomes a small fraction of the maxi-

mum laser lattice intensity, thereby suppressing the contribu-

tions of hyper- and higher-order polarizabilities to the clock

shift, Eq. (3).
Determination of the blue-detuned magic wavelength for

Sr is shown in Fig. 7. The desired magic wavelength is located

on the blue side of the 5s21S0 � 5s5p1P1 461 nm transition.

A very far-off-resonance condition is generally difficult to

satisfy because the magic wavelength can only be found close

to the transition originating from the 5s5p3P0 state, as shown

in Fig. 7(a). One such wavelength is found at �L � 390 nm
on the blue side of the 5s5p3P0 � 5s6d3D1 transition at

394 nm. For this magic wavelength, the laser intensity of
IL ¼ 10 kW=cm2 yields a trap depth of about 200 kHz, as

shown in Fig. 7(b). The effective light intensity that atoms
experience is about one-tenth of the maximum intensity, as

the atoms are trapped near the node of the standing wave.
With a trap depth of 10 �K, the fourth-order light shift [the

second term in Eq. (3)] is estimated to be 0.1 mHz, corre-
sponding to a fractional uncertainty of 2� 10�19. The blue

magic wavelength for 87Srwas measured to be 389.889(9) nm

(Takamoto et al., 2009) by investigating the light shift in a
1D optical lattice operated at the (red-detuned) magic wave-

length of �m ¼ 813:4 nm.

F. Multipolar interactions of atoms with lattice field and

atomic-motion-insensitive wavelength

Our preceding discussion of the Stark shift included only
the dominant electric-dipole (E1) interaction with the laser

field. A multipolar expansion of the laser field about the

atomic nucleus results in a series of electric and magnetic
multipoles (J is the tensor rank of the relevant 2J-pole
operator). The expressions for multipolar polarizabilities are
similar to Eq. (4) but with E1 operators replaced by multi-

polar operators. Although higher-order multipoles are sup-
pressed compared to the E1 contribution, they do affect

atomic trapping and magic wavelengths. Now we take into
account higher multipoles. Consider, for example, the line-

arly polarized (jjez) standing wave electric field

E ¼ ezE0 sinky cos!t with a wave number k and a frequency
!, as shown in Fig. 4(b). Following the Maxwell equation

r� E ¼ �c�1ð@B=@tÞ with c the speed of light, the corre-

sponding magnetic field is given by B ¼ �exE0 cosky sin!t.
This indicates that the electric and magnetic field amplitudes

are one quarter of the wavelength �=4 ¼ �c=ð2!Þ out of
phase in space. Consequently, the magnetic dipole (M1)
interaction is maximum at the nodes of the electric field.
Furthermore, as the electric quadrupole (E2) interaction is

proportional to the gradient of the electric field, the E2
interaction is also maximum at the node of the electric field.

While optical lattice clocks operated at the blue-detuned

magic wavelength do minimize the E1 interactions of atoms
with the lattice laser field, such lattices are not necessarily

free of multipolar light shift perturbations.
The energy shift of atoms in the optical lattices is obtained

in the second-order perturbation theory in the E1,M1, and E2
interactions. These vary as VE1sin

2ky, VM1cos
2ky, and

VE2cos
2ky. As a result, it is no longer possible to perfectly

match the total light shift in two clock states. For example, at
the magic wavelength for the E1 interaction as discussed

previously, differential light shifts due to M1 and E2 inter-
actions exist, which introduce an atomic-motion-dependent

light shift because of their spatial mismatch with the E1
interaction (Taichenachev et al., 2008).

Although the contributions of the M1 and E2 interactions

are 6–7 orders of magnitude smaller than that of the E1
interaction in optical lattice clocks (Katori et al., 2003;

Porsev et al., 2004), they have a non-negligible contribution

FIG. 7 (color online). (a) Energy levels for alkaline-earth atoms

relevant to blue-detuned magic wavelengths for the 1S0 � 3P0 clock

transition. By applying the lattice laser detuned slightly above the

nearby resonant state, nsnp1P1 and nsðnþ 1Þd3D1, atoms can be

trapped near the nodes of the standing wave. (b) The light shifts for

the 1S0 (dashed) and 3P0 (solid) states of Sr as a function of the

lattice laser wavelength for a laser intensity of I ¼ 10 kW=cm2.

Intersections of the curves indicate blue magic wavelengths, which

include �b � 360 and 390 nm.
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in pursuing the 1� 10�18 level uncertainty; therefore, a more
precise definition of the magic wavelength, including multi-
polar interactions, is necessary. Assuming that the differential
polarizabilities of the E1, M1, and E2 interactions in the
clock transition are ��E1ð�LÞ, ��M1ð�LÞ, and ��E2ð�LÞ,
and the corresponding spatial distributions are qE1ðrÞ,
qM1ðrÞ, and qE2ðrÞ, the transition frequency of atoms in the
optical lattices can be given by

�ð�LÞ ¼ �0 � 1

2h
½��E1ð�LÞqE1ðrÞ þ��M1ð�LÞqM1ðrÞ

þ��E2ð�LÞqE2ðrÞ�E2
0; (9)

which corresponds to Eq. (3), but with the fourth- and higher-
order terms omitted.

Atomic-motion-dependent light shift caused by multipolar
interactions can be eliminated by choosing particular 3D
optical lattice geometries that make the M1 and/or E2 inter-
actions in phase or out of phase with respect to the spatial
dependence of E1 interaction (Katori et al., 2009). For
example, in the case of a 1D lattice with the E1 spatial
dependence qE1ðrÞ ¼ sin2kyð¼ 1� cos2kyÞ, the correspond-
ing M1 and E2 interactions may be expressed as qM1ðrÞ ¼
qE2ðrÞ ¼ cos2ky ¼ �q� qE1ðrÞ with �q ¼ 1. Therefore, by
taking ��EM � ��E1 � ��M1 � ��E2 and ��0 �
��M1 þ ��E2, Eq. (9) can be rewritten as

�ð�LÞ ¼ �0 � 1

2h
��EMð�LÞqE1ðrÞE2

0

� 1

2h
��0ð�LÞ�qE2

0; (10)

where the second term on the right-hand side varies in phase
with the E1 interaction. Equation (10) suggests that the
precise definition of the magic wavelength is an ‘‘atomic-
motion insensitive’’ wavelength. The last term provides a
spatially constant offset typically at the 10 mHz level and is
solely dependent on the total laser intensity / �qE2 used to
form the lattice. This offset frequency can be accurately
determined by measuring the atomic vibrational frequencies
in the lattice.

III. OPTICAL LATTICE CLOCKS

Armed with the understanding of ‘‘magic-wavelength’’
trapping and spectroscopy in the Lamb-Dicke regime, in
this section we focus on operation of optical lattice clocks
and their error budget.

The first magic-lattice spectroscopy was demonstrated on
the 1S0 � 3P1ðM ¼ 0Þ transition of 88Sr (Ido and Katori,

2003). Figure 8(a) shows the laser-induced fluorescence of
atoms trapped in the magic lattice, indicating a slight
saturation-broadened ( � 11 kHz) spectrum for its natural
linewidth of 7.6 kHz. When the lattice potential was turned
off [data set (b) in Fig. 8], the Doppler width corresponding to
the atomic temperature of 6 �K and the photon recoil shift of
5 kHz appear. In the lattice the recoil was absorbed by the
lattice potential and there were no Doppler shifts. Despite
being appealing as a new type of a neutral-atom clock, the
serious drawback of this system was its sensitivity to the light
polarization of the lattice laser. Indeed, the scalar, vector, and
tensor contributions to Eq. (5) are expectation values of

irreducible tensor operators of ranks 0, 1, and 2, respectively.
Because of the angular selection rules, the ground J ¼ 0 state
has only the scalar polarizability, while the excited J ¼ 1
state acquires additional vector and tensor contributions. The
vector polarizability couples to a residual circular polariza-

tion of the lattice, and this substantially increases the clock’s
uncertainty (Ido and Katori, 2003). The solution was to move
to the 1S0-

3P0 clock transition, where both states are of a

purely scalar nature (Katori, 2002).
The lifetime of the 3P0 state determines the natural width

of the clock transition between the ground and the 3P0 state.

For all bosonic isotopes of divalent atoms, the nuclear spin I
vanishes and these isotopes lack hyperfine structure. For
bosonic isotopes, the 3P0 state may decay only via very

weak multiphoton transitions. However, for the fermionic
isotopes, I � 0, a new radiative decay channel becomes
available due to the hyperfine interaction (HFI). The HFI
admixes J ¼ 1 atomic states opening a fast electric-dipole
decay route. The resulting HFI-induced decays determine the

lifetimes of the 3P0 states and set the natural width of the

clock transition. The HFI-induced rates for fermionic iso-
topes were computed by Porsev and Derevianko (2004): a
typical value of the radiative width is about 10 mHz. In
bosonic isotopes, lacking the HFI, the transition rate is
strongly suppressed as the radiative decay requires two pho-

tons. In this case, the clock transition may be observed by
applying a static magnetic field (Taichenachev et al., 2006).
The B field admixes the J ¼ 1 state of the fine-structure
manifold to the 3P0 level, opening the electric-dipole decay

channel. In this technique, the magnitude of the clock tran-
sition moment may be experimentally adjusted.

In designing atomic clocks with many atoms, the control
and prevention of atomic interactions is of concern. The

collisional frequency shift of atomic clocks operated with
ultracold atoms is due to the mean field energy shift �Em:f: ¼
4�ℏ2angð2Þð0Þ=M of the relevant electronic state, with the
s-wave scattering length a, atomic number density n, and

FIG. 8. Laser-induced fluorescence of atoms (a) confined in a 1D

optical lattice and (b) in free fall. The dashed line shows a Gaussian

fit to the data points (b). The confinement suppressed the Doppler

width of 83 kHz and gave a narrow Lorentzian linewidth of 11 kHz,

which was limited by the saturation broadening. A slight blue shift

of the center frequency in (b) is caused by the photon recoil shift.
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atomic mass M. Here gð2Þð0Þ is the two-particle correlation

function at a zero distance; it is zero for identical fermions

and 1 
 gð2Þð0Þ 
 2 for distinguishable or bosonic atoms.

Hence, the collisional shifts are suppressed for ultracold

fermions, while they are intrinsically unavoidable in bosons.

The quantum statistical nature of atoms is determined by their

total spin; that is, bosons have integer spins and fermions

have half-integer spins. In particular, for atoms with an even

number of electrons in a J ¼ 0 state suitable for optical lattice
clocks, their nuclear spins I may be zero for bosons and

I � 1=2 for fermions. Consequently, the total angular mo-

mentum F ¼ J þ I of the clock states can be zero for bosonic
atoms, but not for fermions, where their coupling to the light

polarization of the lattice field is problematic.
Consider two representative lattice geometries for realizing

optical lattice clocks. A one-dimensional [see Fig. 4(a)] or

two-dimensional lattice composed of a single electric field

vector realizes spatially uniform light polarization. In con-

trast, a 3D lattice requires at least two electric field vectors;

therefore, the synthesized field exhibits a polarization gra-

dient that varies in space depending on the intensity profile of

the lattice lasers. We discuss that these characteristics of light

polarization lead to two optimal lattice clock configurations

when combined with the quantum statistical properties of

atoms.
Since the first demonstration, optical lattice clocks were

mostly realized with 1D optical lattices employing fermionic

(Takamoto and Katori, 2003; Brusch et al., 2006; Ludlow

et al., 2006) or bosonic (Barber et al., 2006; Baillard et al.,

2007) isotopes. Collision shifts may exist in the 1D scheme

with bosonic (Lisdat et al., 2009) or unpolarized fermionic

(Campbell et al., 2009) atoms because of the relatively high

atomic number densities of up to 1011 cm�3 at a single lattice

site, which would surely dominate the uncertainty budget in

the future. Application of spin-polarized fermions (Gibble,

2009; Takamoto and Katori, 2009) may minimize the

collisional frequency shift due to their quantum statistical

properties. Figure 4(a) shows the schematic diagram for the

‘‘spin-polarized’’ 1D optical lattice clock (Takamoto et al.,

2006), where the upward arrows correspond to spin-polarized

fermionic atoms. An advantage of the 1D optical lattice is

that the light field polarization is spatially uniform, which

allows canceling out the vector light shift by alternately

interrogating the transition frequencies f�, corresponding

to two outer Zeeman components 1S0ðF ¼ 9=2;�mF ¼
9=2Þ � 3P0ðF ¼ 9=2;�mF ¼ 9=2Þ of the clock transition

(see Fig. 9) (Takamoto et al., 2006), to obtain the transition

frequency f0 ¼ ðfþ þ f�Þ=2. This vector light shift cancel-
lation technique also cancels out the Zeeman shift, thereby

realizing virtual spin-zero atoms.
To suppress atomic collisions, the application of 3D optical

lattices with less than a single atom in each lattice site, as

shown in Fig. 1(a), is a straightforward solution. However, as

mentioned, light polarization inhomogeneity inevitable in 3D

optical lattices makes a vector light shift for atoms with its

angular momentum F � 0 problematic, as the vector light

shift cancellation technique is no longer applicable. From this

viewpoint, the 3D lattice will be suitable for bosonic atoms

with scalar states (J ¼ 0). Technically, it is more challenging

to realize stable 3D optical lattices, regarding their position as

well as local polarization, than 1D ones. One of the simple

solutions is to apply ‘‘folded optical lattices’’

(Rauschenbeutel et al., 1998), where the 3D optical lattice

consists of a single standing wave of light. In this configura-

tion, the local polarization of lattice sites remains unchanged,

as the two orthogonal electric field vectors oscillate in phase

at the local lattice site. The three-dimensional optical lattice

clock has been demonstrated with bosonic 88Sr atoms

(Akatsuka et al., 2008; Akatsuka et al., 2010).
Performance of optical clocks can be evaluated by compar-

ing two optical clocks with similar performances (Ludlow

et al., 2008; Chou et al., 2010), as the state of the art optical

clocks well surpass the primary frequency standard, Cs

clocks, in accuracy as well as stability. Systematic uncertain-

ties of optical lattice clocks were investigated by operating a

spin-polarized 1D optical lattice clock with fermionic 87Sr
atoms and a 3D optical lattice clock with bosonic 88Sr atoms

(Akatsuka et al., 2008). Figure 10 shows the experimental

setup. The clock frequencies of these two atoms differ by the

isotope shift of about 62 MHz. Optical lattice clocks with 87Sr
and 88Sr atoms were alternately prepared and interrogated by

clock lasers detuned by the isotope shift. The clock lasers

were then servo-locked to the respective transition frequen-

cies of f87 and f88, and the frequency difference f88 � f87
was recorded as a time series. The Allan deviation evaluated

by the beat note of these two ‘‘independent’’ clocks reached

5� 10�16 for an averaging time of 2000 s. After a careful

elimination of systematic uncertainties, in particular, for the
88Sr optical lattice clock that was strongly perturbed by

mixing magnetic field, the isotope shift on the clock transi-

tions was determined with 7 significant digit accuracy

(Akatsuka et al., 2008).
Currently, when the 1D and 3D clocks are compared, the

stability of the optical lattice clock is typically 10�14=
ffiffiffi
�

p
(here � is expressed in seconds). The stability is severely

FIG. 9 (color online). Energy levels for 88Sr and 87Sr atoms. Spin-

polarized ultracold 87Sr atoms were prepared by optical pumping on

the 1S0ðF ¼ 9=2Þ � 3P1ðF ¼ 9=2Þ transition at � ¼ 689 nm with

circularly polarized light. The first-order Zeeman shift and the

vector light shift on the clock transition at � ¼ 698 nm were

eliminated by averaging the transition frequencies f�.
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limited by the Dick effect which arises due to the short

interrogation time Ti ¼ 60 ms compared to the long cycle

time Tcyc ¼ 1 s (for a single clock operation) to 6 s (for

comparing two clocks sequentially), most of which was spent

on cooling and capturing atoms. This situation is equivalent

to measuring a laser frequency with a counter having a gate

time Ti every Tcycð>TiÞ. Frequency fluctuations higher than

the Nyquist frequency fN ¼ 1=ð2TcycÞ disturb the measure-

ment by aliasing, as the frequency noise at around the cycle

frequency 1=Tcyc and its harmonics higher than the Nyquist

frequency fN are down-converted into lower frequencies

f 	 1=Tcyc. This aliasing noise, mixed in with the error

signal in a feedback loop, causes a long-term white frequency

noise in the stabilized laser (Santarelli et al., 1998). The

time-consuming lattice reloading process may be avoided if

minimally destructive or quantum nondemolition schemes

(Lodewyck et al., 2009) are applied to the state detection

of the clock transition, as the schemes prevent atoms from

being heated out of the lattice trap and allow the reuse of

trapped atoms, as in the case of single-ion based clocks.

These improvements will allow us to explore the fractional

uncertainties of 10�17 in a reasonable averaging time of a

few 100 s.
At a few 10�17 fractional uncertainties, shifts due to black-

body radiation (BBR) (Porsev and Derevianko, 2006) will

dominate the uncertainty budget of Sr-based lattice clocks.

As the BBR shift rapidly decreases as T4 for a surrounding

temperature T, a cryogenic environment, even at the liquid

nitrogen temperature of T ¼ 77 K, will reduce the BBR

shifts to 10 mHz (Katori et al., 2003). Therefore, the

corresponding uncertainty will have an effect only at the

10�18 level or below. Such a cryogenic environment may

be readily applicable to optical lattice clocks, as a cryogenic

region, a few cubic millimeters in volume, is sufficient for

their operation. For transferring atoms into the small cryo-

genic volume, a moving magic optical lattice (Kishimoto

et al., 2006) may be employed. Such an experiment is now

in progress in Tokyo.

Most of the discussed uncertainties such as the collisional
shifts, the BBR shifts, and hyperpolarizability effects depend
on atomic parameters; therefore, they can be improved by a
proper choice of specific atom. The optical lattice clock
scheme is generally applicable to atoms of group II and IIb
(Ovsiannikov et al., 2006) such as Ca (Degenhardt et al.,
2004), Yb (Porsev et al., 2004), Zn, Cd (Ye and Wang, 2008),
and Hg (Hachisu et al., 2008) that have hyperfine-mixed
J ¼ 0 ! J ¼ 0 transition between long-lived states.
Alternatively, a multiphoton excitation of the clock transition
(Hong et al., 2005; Santra et al., 2005), the mixing of the 3P0

state with the 3P1 state using a magnetic field (Taichenachev

et al., 2006), or an elliptically polarized light (Ovsiannikov
et al., 2007) may allow the use of even isotopes that exhibit
purely scalar nature of the J ¼ 0 state. The optical lattice
clock with the best performance needs to be experimentally
explored among possible candidates because of difficulties in
predicting some of the uncertainties associated with higher-
order light field perturbations, such as resonant contributions
to the fourth-order light shifts and multiphoton ionization
processes.

IV. MICROMAGIC CLOCKS

The optical lattice clocks described in the previous section
operate at optical frequencies, requiring frequency combs to
convert the optical frequencies to the microwave domain
suitable for counting time. Meanwhile, for the past four
decades, the second has been defined in terms of the micro-
wave transition in 133Cs atom. Cs clocks serve as primary
frequency standards worldwide, and there is a substantial
investment in the infrastructure supporting these clocks.
The most accurate Cs clocks are fridge-sized fountain clocks
[see, e.g., Wynands and Weyers (2005)]. The length of a
meter-long active chamber is determined by requiring that
the clock interrogation time (i.e., the time it takes the atoms to
fly up and down the chamber in the gravitational field) does
not limit the spectroscopic resolution. By contrast, develop-
ing microwave lattice clocks may be beneficial as the active
chamber of the clock will be reduced to a few micrometers
across. This million-fold reduction in size is anticipated to
lead to a better control over detrimental black-body radiation
and stray magnetic fields. In addition, the hyperfine manifolds
are used to store quantum information in a large fraction of
quantum computing proposals with ultracold alkali atoms.
Finding magic conditions would enable decoherence-free
trapping for these important realizations of qubits.

As discussed in the Introduction, at present, the stability of
the primary Cs frequency standard is limited by the quantum
projection noise limit (Itano et al., 1993), described by
Eq. (1) (Santarelli et al., 1999). The stability can be sub-
stantially improved by using techniques from quantum infor-
mation processing. It may be shown [see, e.g., Leibfried et al.
(2004)] that the stability of highly entangled ensemble of Nat

atoms scales as 1=Nat versus the quantum projection noise
scaling (1) of 1=

ffiffiffiffiffiffiffi
Nat

p
. For a sample of a million atoms, the

measurement time would be reduced by a factor of a thou-
sand. Over the past decade, Cs and Rb atoms were studied as
candidates for quantum computing in optical traps [see
Saffman et al. (2010), and references therein)], and the

FIG. 10 (color online). Two optical lattice clocks with different

isotopes and lattice configurations were operated to investigate their

beat note.
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developed quantum logic is applicable to entangling micro-
magic clocks. The lattice clocks may harness the power of
entanglement for improving the stability of microwave
clocks.

The idea of microwave lattice clocks was discussed by
Zhou et al. (2005) for 133Cs. However, they misidentified
magic trapping conditions; a more sophisticated theoretical
analysis and an experimental study (Rosenbusch et al., 2009)
rendered conclusions of that paper invalid. Based on the
detailed understanding of atomic ac polarizabilities, Beloy
et al. (2009) found that the magic trapping conditions, how-
ever, can be attained for aluminum or gallium atoms. They
coined a term, micromagic clock, to emphasize both the
micrometer size of the trap and the microwave frequency of
such a clock. Further work on Cs revealed that the magic
conditions may be ultimately attained by introducing addi-
tional magic magnetic fields and magic angles between mag-
netic fields and the axis of a 1D optical lattice (Flambaum
et al., 2008; Derevianko, 2010a, 2010b; Lundblad et al.,
2010). Below we review these developments.

The microwave clockwork involves two atomic levels of
the same hyperfine manifold attached to an electronic state
nJ. Hyperfine splittings primarily arise due to an interaction
of atomic electrons with the nuclear magnetic moment. We
consider atoms trapped in a 1D optical lattice formed by
either linearly or circularly polarized lasers. The quantizing
magnetic field B in general may be directed at some angle to
the lattice. The clock states are commonly labeled as
jnðIJÞFMFi, where I is the nuclear spin, J is the electronic
angular momentum, and F is the total angular momentum,
F ¼ Jþ I, with MF being its projection on the quantization
axis. For simplicity, below we focus on the J ¼ 1=2 elec-
tronic states. Then for the I � 0 isotopes, there are two
hyperfine structure states F0 ¼ I þ 1=2 and F ¼ I � 1=2.
We use the short-hand notation jFi and jF0i for the lower
and upper clock states. In particular, for the 133Cs atom
(I ¼ 7=2) the clock transition is between the F ¼ 4 and
F ¼ 3 hyperfine components of the 6s1=2 electronic ground

state.
We want to find a magic wavelength for a hyperfine

transition by requiring that �0
Fð!mÞ � �Fð!mÞ ¼ 0. At this

point, one may evaluate the dynamic polarizabilities and
deduce the magic wavelength. However, such calculations
require additional care. Indeed, we are considering the Stark
shift of hyperfine levels attached to the same electronic state.
To leading order, the shift is determined by the properties of
the underlying electronic state. However, because the elec-
tronic state for both hyperfine levels is the same, the scalar
Stark shift of both levels is the same. An apparent difference
between the two clock levels is caused by the hyperfine
interaction, and the rigorous analysis involves so-called
HFI-mediated polarizabilities (Rosenbusch et al., 2009).

Qualitatively, the importance of a consistent treatment of
the HFI-mediated polarizabilities may be understood by con-
sidering the expression for the scalar polarizability,

�S
nFð!Þ ¼ 1

3

X
i

X
p¼x;y;z

hnFMFjDpjiihijDpjnFMFi
EnFMF

� Ei þ!

þ � � � ;

where the omitted term differs by ! ! �!, and Dp is a

component of the dipole operator. All the involved states are
the hyperfine states. While this requires that the energies
include hyperfine splittings, it also means that the wave
functions incorporate HFI to all orders of perturbation theory.
Including the experimentally known hyperfine splittings in
the summations is straightforward and some practitioners
[see, e.g., Zhou et al. (2005)] may stop at that, completely
neglecting the HFI corrections to the wave functions. This is
hardly justified as both contributions are of the same order.
Lengthy third-order (two dipole couplings to the laser field
and one HFI) expressions for these polarizabilities were
found by Rosenbusch et al. (2009). In the following, we
keep the symbol � for the traditional second-order polar-
izabilities and use 	 for the HFI-mediated polarizabilities.

The clock transitions in divalent atoms are between non-
magnetic states; this removes sensitivity to magnetic fields.
For J � 0 atoms such as Cs, however, there is an additional
piece of the puzzle: the clock states are sensitive to both
optical and magnetic fields. One needs to eliminate the
sensitivity of transition frequency � to both perturbations
simultaneously. Below we consider two possibilities to re-
move the sensitivity to the Zeeman effect: (i) work with
M0

F ¼ MF ¼ 0 magnetic substates in very weak B fields,

thereby eliminating the Zeeman shift and (ii) operate on
MF ! �MF transitions; such transitions have magic values
of B fields, where the Zeeman sensitivity is removed.

A. MF ¼ 0 ! MF0 ¼ 0 clock transitions

For theMF ¼ 0 hyperfine sublevels and linear polarization
of the lattice laser, the vector contribution to polarizability (5)
vanishes. We find that the differential polarizability may be
parametrized as

��ð!LÞ ¼ AðF0; FÞ	S
Fð!LÞ þ BðF0; FÞ	T

Fð!LÞ; (11)

where prefactors A and B depend on the F numbers of the
clock states and on the orientation of the quantizing B field.
Equation (11) arises due to the fact that the respective scalar
and tensor parts of the dynamic polarizability vary propor-
tionally for the two clock states. Clearly, the scalar and tensor
contributions to the differential shift must cancel each other at
the magic wavelength.

We start with discussing the results for the metrologically
important 133Cs atom. Calculations and experiment
(Rosenbusch et al., 2009) find that there is no magic wave-
length for the Cs clock. A partial solution to this problem was
found (Lundblad et al., 2010) [see Derevianko (2010b) for
theory]: one needs to apply a relatively large (a few Gauss)
bias magnetic field of a specific value making trapping magic
for a given trapping laser wavelength. As a result, however,
the transitions becomes Zeeman sensitive through the second-
order effects; numerical estimates show that, unfortunately,
the residual B-field sensitivity would preclude designing a
competitive clock.

Qualitatively, for Cs, the tensor contribution to the clock
shift is much smaller than the scalar contribution and this
leads to unfavorable conditions for reaching the cancellation
of the scalar and tensor shifts in Eq. (11). To cancel the light
shift, we need to find atoms where the scalar and tensor shifts
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are comparable. This happens for atoms having the valence
electrons in the p1=2 state. For nonzero nuclear spin, the p1=2

state has two hyperfine components that may serve as the
clock states. The advantage of the p1=2 state comes from the

fact it is part of a fine-structure manifold: there is a nearby
p3=2 state separated by a relatively small energy interval

determined by the relativistic corrections to the atomic struc-
ture. This small interval amplifies the tensor part of the
polarizability and does not affect the scalar contribution to
Eq. (11).

Based on these qualitative considerations, Beloy et al.
(2009) found magic wavelengths for Al and Ga atoms. These
are group III atoms with the p1=2 ground state. For example,

in 27Al the clock transition is between the hyperfine structure
levels F ¼ 3 and F ¼ 2 in the ground 3p1=2 state. The clock

frequency is about 1.5 GHz, placing it in the microwave
region. Furthermore, cooling Al has already been demon-
strated (McGowan et al., 1995). The cancellations between
scalar and tensor contributions to the clock shift in Eq. (11) is
shown in Fig. 11. There are two magic wavelengths for the

geometry B k k̂. Beloy et al. (2009) carried out estimates for
various factors affecting such a clock similar to discussion of
Sec. III. They concluded that the proposed microwave lattice
(micromagic) clock may compete with the state of the art
fountain clocks.

B. MF ! �MF clock transitions

To reiterate, for weak B fields, there are no magic con-
ditions on the MF ¼ 0 ! MF0 ¼ 0 clock transitions in 133Cs.

As we move to magnetic substates, we require that at
the magic B field d�=dBðBmÞ ¼ 0. Such conditions
occur, for example, for a two-photon jF0 ¼ 2;M0

F ¼ þ1i !
jF ¼ 1;MF ¼ �1i transition in 87Rb at the field of about
3 Gauss. The relevant Breit-Rabi diagram is shown in Fig. 12.
The two clock levels are highlighted: the existence of the
magic B field may be inferred visually. The existence of the
Stark-Zeeman ‘‘doubly-magic’’ conditions was found by
Derevianko (2010a), and the discussion below is based on
that paper.

For theMF ! �MF0 transitions, the electronic g factors of
the two states are the same (see Fig. 12). Then the bulk of the
Zeeman shift of the transition frequency goes away, and the
linear Zeeman effect is determined only by the nuclear g
factor gI ¼ ð1=I�nucÞ=�N , where �N is the nuclear magne-
ton. This residual linear shift is comparable to the second-
order (in electronic magnetic moment) Zeeman correction,
quadratic in the B field. By evaluating the derivative of the
total (linear and quadratic) shift with respect to magnetic
field, we find that the Zeeman shift goes through a minimum
at the following magic value of the B field:

Bm � gI�NMF0

2jhF;MF0 j�e
zjF0; MF0 ij2 h�0: (12)

Here �e is the electron magnetic moment operator. Values of
Bm for Rb and Cs isotopes are tabulated in Table II. These
fields are relatively weak and can be well stabilized using
existing technologies (Lacroute et al., 2010).

Fixing the magnetic field at its magic value accomplishes
the Zeeman insensitivity of the clock transitions. Now, we
want to additionally remove the Stark sensitivity to intensity
of trapping laser fields. We consider the following setup
shown in Fig. 12. An atom is illuminated by a circularly
polarized laser light. At the same time, a bias magnetic field is
applied at an angle 
 to the direction of laser propagation. The
B field is fixed at its magic value. This is a basic building
block for optical trapping.

FIG. 11 (color online). Differential polarizability for Al �Magic

clock in the B k k̂ geometry as a function of the lattice laser

frequency. Dotted line: contribution from the scalar term; dashed

line: contribution from the tensor term; solid line: total polariz-

ability. Total clock shift vanishes at two magic values of the laser

frequency.

θ

B

fr
eq

ue
nc
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F´=2

F=1
laser propagation

Bm

FIG. 12 (color online). Left panel: Zeeman effect (Breit-Rabi

diagram) for the hyperfine manifold in the ground state of I ¼
3=2 isotopes of alkali atoms. Two clock levels jF0 ¼ 2;M0

F ¼ þ1i
and jF ¼ 1;MF ¼ �1i are shown. Clock transition at the magic B
field is indicated by a vertical doubly headed arrow. Right panel:

Geometry of laser-atom interaction; degree of circular polarization,

angle 
, and laser wavelength may be varied.
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The differential polarizability in this case reads

��ð!Þ¼ ð	S
F0 �	S

FÞþAcos
MF0

�
��

1

2F0	
V
F0 þ 1

2F
	V

F

�
þgI

�N

�B

�V
nS1=2

�
: (13)

The last contribution arises due to an interference between
Stark and Zeeman interactions. Qualitatively, the vector con-
tribution to the Stark shift has the same rotational properties
as the Zeeman coupling (both are vector operators). These
operators, in particular, couple the two hyperfine manifolds.
Consider the shift of the jF0; MFi level. The Zeeman operator
couples it to the jF;MFi intermediate state, and then the
vector Stark shift operator brings it back to the jF0;MFi level,
thereby resulting in the energy shift. This cross term is of the
same order of magnitude as the other two terms in Eq. (13)
and has to be included in the consideration.

Since the magic condition corresponds to��ð!mÞ ¼ 0, we
may recast Eq. (13) into

MF0A cos
 ¼ � 	S
F0 � 	S

F

ð	V
F0=2F0 þ 	V

F=2FÞ þ gIð�N=�BÞ�V
nS1=2

:

(14)

The right-hand side of this equation depends on the laser
frequency, while the left-hand side does not. Moreover,
jA cos
j 
 1, therefore the magic conditions would exist
only if for a given ! the right-hand side is within the range
�jM0

Fj and jM0
Fj.

From Fig. 13, we see that the doubly magic trapping of
133Cs atoms is indeed possible for two transitions: j4; 2i !
j3;�2i and j4; 3i ! j3;�3i. The only complication is that
driving the former transition requires 4 photons, while the
latter transition requires 6 photons. This may be potentially
accomplished with either multistep radio frequency or micro-
wave or stimulated Raman drives (Alexandrov and Pazgalev,
1997; Harber et al., 2002). Similar analysis for 87Rb jF0 ¼
2; 1i ! jF ¼ 1;�1i transition shows that the MF0A cos

curve nearly touches its limiting value at �m � 806 nm.
Here the right-hand side of Eq. (14) reaches values of �
�1:05, i.e., it is just 5% off the limiting value of �1. While
not quite achieving the doubly-magic status, this 806 nm
wavelength gets us to nearly magic conditions. Recently,
this prediction was verified experimentally (Chicireanu
et al., 2010).

V. BEYOND TIME KEEPING

In this concluding section, we present several examples of
how the accuracy and stability of the lattice clocks may be
used for precision measurements and quantum information
processing.

Usually, the environmental effects (e.g., stray fields) de-
grade the performance of the clocks. One may turn this
around and, by measuring shifts of the clock frequency,
characterize an interaction with the environment. The most
fundamental experiments of this kind search for a potential
variation of fundamental constants (Fortier et al., 2007; Blatt
et al., 2008), where the ‘‘environmental agent’’ is the fabric of
the Universe itself, affecting the rate of ticking of atomic
clocks. In other experiments one may probe ultracold colli-
sion physics (Ludlow et al., 2008; Campbell et al., 2009) or
map out atom-wall interactions and search for non-
Newtonian gravity (Wolf et al., 2007; Derevianko et al.,
2009; Sorrentino et al., 2009) by monitoring the clock
frequency.

In addition, atomic clock states may serve as a perfect
quantum memory (qubit). Good clock states make also good
qubit states, as they are well isolated from detrimental envi-
ronmental decoherences. There are several recent proposals
(Hayes et al., 2007; Daley et al., 2008; Gorshkov et al.,
2009) that use optical lattice clocks as a platform for quantum
computation and simulation. It is worth noting that the initial
developments in quantum information processing with atoms
dealt with qubit states stored in the hyperfine structure of
alkali atoms. Ideas on magic trapping conditions for micro-
magic clocks are starting to make an impact (Dudin et al.,

FIG. 13 (color online). Magic conditions for 133Cs. A dependence

of the product MF0A cos
 on trapping laser frequency (in atomic

units) is plotted. The shaded regions are bound by �jMF0 j and

þjMF0 j lines. Magic trapping for a jF0 ¼ 4;M0
Fi ! jF ¼ 3;�M0

Fi
clock transition is only possible when the computed curve lies inside

the corresponding shaded region.

TABLE II. Values of magic B fields and ranges of magic wavelengths for metrologically important
133Cs and 87Rb.

Transition Bm (Gauss) �m (nm)

87Rb, I ¼ 3=2, �0 ¼ 6:83 GHz
j2; 1i ! j1;�1i 3.25 806 a

133Cs, I ¼ 7=2, �0 ¼ 9:19 GHz
j4; 1i ! j3;�1i 1.41
j4; 2i ! j3;�2i 3.51 906–1067; 560–677
j4; 3i ! j3;�3i 9.04 898–1591; 863–880; 512–796

aNearly doubly magic.
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2010) in quantum information processing, as experimentalists
start improving coherence times using magic trapping
techniques.

A. Time and space variation of fundamental constants

Some cosmological models and unification theories imply
that the fundamental physical constants (such as the fine-
structure constant � ¼ e2=ℏc � 1=137) may vary with time
(Uzan, 2003). The values of the constants may also depend on
local hypothetical couplings to ambient gravitational or other
fields. These propositions may be probed with atomic clocks.
Indeed, atomic clocks can monitor frequencies of atomic
transitions with unprecedented accuracy. The frequencies of
two distinct atomic transitions (e.g., microwave and optical)
depend differently on fundamental constants. By comparing
outputs of two clocks as a function of time or position in
space, one may deduce limits on space-time variation of
fundamental constants. Spatial dependence, in particular,
could be tested as the Earth’s elliptic orbit takes the clocks
through a varying solar gravitational potential or in satellite-
based mission. Although still nascent, the optical lattice
clocks have already made an important contribution to con-
straining space-time variations. Blatt et al. (2008) analyzed a
three-year record of the 1S0-

3P0 clock transition frequency in

neutral 87Sr taken by three independent laboratories in
Boulder, Paris, and Tokyo. They combined periodic varia-
tions in the clock frequency with 199Hgþ and H-maser data
and obtained the strongest limits to date on gravitational-
coupling coefficients for the fine-structure constant, electron-
proton mass ratio, and light quark mass. In addition, in
combination with the previous atomic-clock data, they in-
creased confidence in the zero drift result for the modern
epoch.

Optical clocks are particularly sensitive to variation of the
fine-structure constant. Thus far, the most stringent test was
carried out by comparing Alþ and Hgþ clocks over two years
with a fractional uncertainty of 5� 10�17 to verify the con-
stancy of j _�=�j at the level of ð�1:6� 2:3Þ � 10�17=yr
(Rosenband et al., 2008). Assuming ��=� ¼ 10�16 per
year, at which level astrophysical determinations have given
controversial results (Uzan, 2003), the fractional change in
the clock frequency (Angstmann et al., 2004) ��=�0 can be
6:2� 10�18, 3:1� 10�17, and 8:1� 10�17 for Sr-, Yb-,
and Hg-based optical lattice clocks, respectively. Heavier
atoms such as Yb and Hg are more sensitive to � as the
underlying relativistic corrections scale as the nuclear charge
squared. One may envision taking a Sr lattice clock as an
anchor and detecting the fractional frequency change of the
Hg lattice clock at the ��=�0 ¼ 10�17 level, which can be
accurately measured with an optical frequency comb
technique.

B. Atom-wall interaction

An ideal setup for measuring atom-wall interactions with
lattice clocks is shown in Fig. 14. A conducting surface of
interest acts as a mirror for the laser beam normally incident
on the surface. The resulting interference of the beams forms
an optical lattice. The laser operates at a magic wavelength

�m. One could work with a 1D optical lattice for which the

atoms are attracted to the laser intensity maxima. The first

pancake-shaped atomic cloud would form at a distance �m=4
from the mirror. The subsequent adjacent clouds are sepa-

rated by a distance �m=2. By monitoring the clock shift at

individual trapping sites, one measures a distance dependence

of the atom-wall interaction.
As the separation z between an atom and a wall increases,

the atom-wall interaction evolves through several distinct

regimes: (i) chemical-bond region that extends a few nm

from the surface, (ii) van der Waals region (V / z�3),

(iii) retardation (Casimir-Polder) region (V / z�4), and

(iv) Lifshitz (thermal bath fluctuations) zone (V / z�3).

Because of the interaction with the wall, the clock levels

would shift. The computed fractional clock shift for Sr clock

(Derevianko et al., 2009) is shown in Fig. 14. The spatially

separated zones of the three regimes of the long-range inter-

action are shown. We immediately see that the atom-wall

interaction is a large effect, corresponding to 10�10 fractional

clock shifts at the first well. This is roughly a million times

larger than the demonstrated accuracy of the Sr clock

(Ludlow et al., 2008). Moreover, lattice clocks can be used

to detect all three qualitatively distinct mechanisms of the

atom-wall interaction. In this regard, the lattice clocks offer a

unique opportunity to map out both van der Waals !
Casimir-Polder and Casimir ! Polder-Lifshitz transition re-

gions. This distinguishes the lattice clock proposal from

previous experiments: the former transition was probed by

Sukenik et al. (1993), while the latter was detected by

Obrecht et al. (2007). None of the experiments so far has

been able to map out both transitions simultaneously.

C. Entangling the lattice clock

A number of proposals have noted the virtues of using

alkaline-earth-like atoms in lattices for quantum information

and quantum computing (Derevianko and Cannon, 2004;
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FIG. 14 (color online). Fractional clock shifts for Sr as a function

of separation from a gold surface at T ¼ 300 K. Individual points

represent shifts in individual trapping sites of the optical lattice.

First well is placed at �m=4 � 200 nm and subsequent points are

separated by �m=2 � 400 nm. Inset: Idealized setup for measuring

atom-wall interactions with optical lattice clocks.
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Hayes et al., 2007; Daley et al., 2008; Gorshkov et al., 2009;

Shibata et al., 2009). Below we highlight using quantum

information concepts such as entanglement for improving the

atomic clock. Quantum entanglement is a crucial resource in

quantum computing and has the potential to improve preci-

sion measurements (Childs et al., 2000; Nielsen and Chuang,

2000). Weinstein et al. (2010) proposed a scheme for en-

tangling an optical lattice clock, with the specific goal of

demonstrating the power of entanglement for measuring time.
Measuring time with atoms relies on the fact that the

quantum-mechanical probability of making a transition be-

tween two clock levels depends on the detuning �� of the

probe field � from the atomic transition frequency �0. By

measuring the probability as a function of �, one can infer if

the two frequencies are equal and thereby ‘‘lock’’ a local

oscillator to the atomic transition. The precision of measuring

�� is limited by the quantum projection noise (Itano et al.,

1993). For a measurement of Nat unentangled atoms, the

resulting signal-to-noise ratio of �� scales as
ffiffiffiffiffiffiffi
Nat

p
: the

standard quantum limit. The use of entanglement holds

the promise of improving clock precision to the Heisenberg

limit, with signal-to-noise ratio scaling as Nat.
In the scheme of Weinstein et al. (2010) the divalent clock

atoms are held in a lattice at a magic wavelength that does not

perturb the clock frequency—to maintain clock accuracy—

while an open-shell J ¼ 1=2 ‘‘head’’ atom is coherently

transported between lattice sites via the lattice polarization.

This polarization-dependent ‘‘Archimedes’ screw’’ transport

at a magic wavelength takes advantage of the vanishing

vector polarizability of the scalar, J ¼ 0, clock states of

bosonic isotopes of divalent atoms (see Fig. 15). The on-

site interactions between the clock atoms and the head atom

are used to engineer entanglement and for clock readout.

Estimates show that roughly a 1000 clock atoms can be

entangled with this scheme.
Note that many of the usual requirements for producing

highly entangled states between atoms (such as single-site

addressability, single-site readout, and unity site occupation)

are absent in this scheme. The proposed scheme occupies an

interesting ‘‘middle ground’’ of experimental schemes for

clock entanglement. It holds promise for use with larger

numbers of atoms than has been demonstrated to date with

ion traps (Leibfried et al., 2004). And while it cannot

entangle as many large-number samples as are used in spin-

squeezing experiments (Kuzmich et al., 1998; Meiser et al.,

2008; Schleier-Smith et al., 2009), it may be able to produce

greater levels of entanglement.
To conclude, over a time span of just a few years since their

inception, optical lattice clocks became one of the most

accurate time keeping devices ever built. Presently, their

accuracy and stability surpass the primary frequency stan-

dard: optical lattice clocks are contenders for a future rede-

finition of the second. While most of the experimental work

so far focused on Sr and Yb atoms, we think that Hg is a

promising candidate for a highly accurate optical lattice

clock. The projected fractional accuracy of the Hg clock is

3� 10�19 (Hachisu et al., 2008). This is a few orders of

magnitude better than the accuracy of the present clocks. We

have highlighted several applications, e.g., tracking time-

space variations of fundamental constants, which may benefit

from such accuracies. Still an open question remains what

applications, both fundamental and practical, may take ad-

vantage of the superb precision and stability of optical lattice

clocks.
The fruitful ideas of optical lattice clocks may be extended

to the microwave domain. The work on the micromagic

lattice clocks so far has been of a conceptual nature and the

experimental feasibility of such clocks is yet to be studied.

Yet, it is anticipated that a variety of applications could

benefit from the magic (and nearly magic) conditions. For

example, we anticipate that lifetimes of quantum memory

(Zhao et al., 2009) may be improved. Another interesting

opportunity is to co-trap divalent and alkali-metal or group III

atoms in the same lattice. For microwave transitions, there is

usually a range of magic trapping conditions, and magic

wavelengths for divalent atoms may fall within this range.

Then one could design a dual-species microwave-optical

clock sharing the same lattice (Morrison et al., 2010).
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FIG. 15 (color online). Schematic of the entanglement process.

The transport lattice is created by a superposition of two displaced

circularly polarized standing wave lattices: �þ and �� lattices.

(a) A single head atom (light circle) and several clock atoms (dark

circles) are trapped in the minima of a 1D optical lattice, with one or

fewer atoms per site. Because of an intensity differential of the

underlying lattices, the clock atoms couple strongly to the �þ lattice

(solid line). The head atom is placed in a superposition of atomic

states: one which couples strongly to the �þ lattice and one which

couples strongly to the �� lattice (dashed line). (b) As the dis-

placement between the two circularly polarized lattices increases,

the �� state is spatially separated and is transported along the

lattice. (c) This portion of the head atom is then brought into contact

with a clock atom to entangle the two atoms. (d) The head atom is

transported further to obtain entanglement with the remaining clock

atoms in a similar manner.
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Mandache, Y. Le Coq, A. Clairon, and S. Bize, 2008, Phys. Rev.

Lett. 101, 183004.

346 Andrei Derevianko and Hidetoshi Katori: COLLOQUIUM: Physics of Optical Lattice Clocks

Rev. Mod. Phys., Vol. 83, No. 2, April–June 2011

http://dx.doi.org/10.1038/nphys1108
http://dx.doi.org/10.1103/PhysRevA.81.023402
http://dx.doi.org/10.1103/PhysRevA.81.023402
http://dx.doi.org/10.1088/0031-8949/1997/T70/008
http://dx.doi.org/10.1109/PROC.1966.4634
http://dx.doi.org/10.1103/PhysRevA.70.014102
http://dx.doi.org/10.1103/PhysRevA.70.014102
http://dx.doi.org/10.1140/epjd/e2007-00330-3
http://dx.doi.org/10.1364/OL.32.001812
http://dx.doi.org/10.1103/PhysRevLett.96.083002
http://dx.doi.org/10.1103/PhysRevLett.100.103002
http://dx.doi.org/10.1103/PhysRevLett.102.120801
http://dx.doi.org/10.1103/PhysRevLett.100.140801
http://dx.doi.org/10.1103/PhysRevLett.96.103003
http://dx.doi.org/10.1126/science.1169724
http://dx.doi.org/10.1088/0026-1394/45/5/008
http://arXiv.org/abs/1010.1520
http://dx.doi.org/10.1080/09500340008244034
http://dx.doi.org/10.1103/PhysRevLett.104.070802
http://dx.doi.org/10.1103/PhysRevLett.101.170504
http://dx.doi.org/10.1103/PhysRevLett.101.170504
http://dx.doi.org/10.1103/PhysRevA.70.023414
http://dx.doi.org/10.1103/PhysRevLett.105.033002
http://dx.doi.org/10.1103/PhysRevA.81.051606
http://dx.doi.org/10.1103/PhysRevA.70.062319
http://dx.doi.org/10.1103/PhysRevLett.103.133201
http://dx.doi.org/10.1103/PhysRevLett.103.133201
http://dx.doi.org/10.1016/j.optcom.2009.10.059
http://dx.doi.org/10.1103/PhysRev.89.472
http://dx.doi.org/10.1103/PhysRevA.81.041805
http://dx.doi.org/10.1088/0953-4075/43/7/074011
http://dx.doi.org/10.1103/PhysRevLett.101.220801
http://dx.doi.org/10.1103/PhysRevLett.101.220801
http://dx.doi.org/10.1103/PhysRevLett.98.070801
http://dx.doi.org/10.1103/PhysRevA.73.042112
http://dx.doi.org/10.1103/PhysRevA.73.042112
http://dx.doi.org/10.1103/PhysRevLett.103.113202
http://dx.doi.org/10.1103/PhysRevLett.102.110503
http://dx.doi.org/10.1103/PhysRevLett.100.053001
http://dx.doi.org/10.1103/PhysRevA.66.053616
http://dx.doi.org/10.1103/PhysRevLett.98.070501
http://dx.doi.org/10.1103/PhysRevLett.98.070501
http://dx.doi.org/10.1103/PhysRevLett.94.050801
http://dx.doi.org/10.1103/PhysRevLett.94.050801
http://dx.doi.org/10.1364/OL.34.000692
http://dx.doi.org/10.1103/PhysRevLett.91.053001
http://dx.doi.org/10.1103/PhysRevA.47.3554
http://dx.doi.org/10.1126/science.288.5466.635
http://dx.doi.org/10.1103/PhysRevLett.103.153004
http://dx.doi.org/10.1143/JPSJ.68.2479
http://dx.doi.org/10.1143/JPSJ.68.2479
http://dx.doi.org/10.1103/PhysRevLett.91.173005
http://dx.doi.org/10.1103/PhysRevLett.96.123001
http://dx.doi.org/10.1143/APEX.2.072501
http://dx.doi.org/10.1103/PhysRevA.71.032348
http://dx.doi.org/10.1209/epl/i1998-00277-9
http://dx.doi.org/10.1209/epl/i1998-00277-9
http://dx.doi.org/10.1109/TUFFc.2010.1385
http://dx.doi.org/10.1109/TUFFc.2010.1385
http://dx.doi.org/10.1126/science.1097576
http://dx.doi.org/10.1126/science.1097576
http://dx.doi.org/10.1103/PhysRevLett.103.063001
http://dx.doi.org/10.1140/epjst/e2009-01043-5
http://dx.doi.org/10.1103/PhysRevLett.97.130801
http://dx.doi.org/10.1103/PhysRevLett.97.130801
http://dx.doi.org/10.1103/PhysRevLett.103.090801
http://dx.doi.org/10.1103/PhysRevA.79.061401
http://dx.doi.org/10.1103/PhysRevA.79.061401
http://dx.doi.org/10.1103/PhysRevLett.96.033003
http://dx.doi.org/10.1126/science.1153341
http://dx.doi.org/10.1103/PhysRevA.81.031611
http://dx.doi.org/10.1103/PhysRevA.81.031611
http://dx.doi.org/10.1016/S0370-1573(86)80001-1
http://dx.doi.org/10.1016/S0370-1573(86)80001-1
http://dx.doi.org/10.1364/OL.20.002535
http://dx.doi.org/10.1364/OL.20.002535
http://dx.doi.org/10.1103/PhysRevLett.90.133602
http://dx.doi.org/10.1103/PhysRevLett.90.133602
http://dx.doi.org/10.1088/1367-2630/10/7/073014
http://dx.doi.org/10.1103/PhysRevA.83.013604
http://dx.doi.org/10.1103/PhysRevA.83.013604
http://dx.doi.org/10.1103/PhysRevLett.90.113002
http://dx.doi.org/10.1103/PhysRevLett.98.063201
http://dx.doi.org/10.1070/QE2006v036n01ABEH013098
http://dx.doi.org/10.1103/PhysRevA.75.020501
http://dx.doi.org/10.1103/PhysRevLett.101.183004
http://dx.doi.org/10.1103/PhysRevLett.101.183004


Porsev, S. G., and A. Derevianko, 2004, Phys. Rev. A 69, 042506.

Porsev, S. G., and A. Derevianko, 2006, Phys. Rev. A 74, 020502.

Porsev, S. G., A. Derevianko, and E.N. Fortson, 2004, Phys. Rev. A

69, 021403(R).

Rauschenbeutel, A., H. Schadwinkel, V. Gomer, and D. Meschede,

1998, Opt. Commun. 148, 45.

Rosenband, T., et al., 2008, Science 319, 1808.

Rosenbusch, P., S. Ghezali, V. A. Dzuba, V. V. Flambaum, K. Beloy,

and A. Derevianko, 2009, Phys. Rev. A 79, 013404.

Saffman, M., T. G. Walker, and K. Mølmer, 2010, Rev. Mod. Phys.

82, 2313.

Santarelli, G., C. Audoin, A. Makdissi, P. Laurent, G. J. Dick, and

A. Clairon, 1998, IEEE Trans. Ultrason. Ferroelectr. Freq. Control

45, 887.

Santarelli, G., P. Laurent, P. Lemonde, A. Clairon, A.G. Mann, S.

Chang, A.N. Luiten, and C. Salomon, 1999, Phys. Rev. Lett. 82,

4619.

Santra, R., E. Arimondo, T. Ido, C. H. Greene, and J. Ye, 2005,

Phys. Rev. Lett. 94, 173002.

Schleier-Smith, M.H., I. Leroux, and V. Vuletic, 2009,

arXiv:0810.2582v2.

Shibata, K., S. Kato, A. Yamaguchi, S. Uetake, and Y. Takahashi,

2009, Appl. Phys. B 97, 753.

Sorrentino, F., A. Alberti, G. Ferrari, V.V. Ivanov, N. Poli, M.

Schioppo, and G.M. Tino, 2009, Phys. Rev. A 79, 013409.

Sukenik, C. I., M.G. Boshier, D. Cho, V. Sandoghdar, and E.A.

Hinds, 1993, Phys. Rev. Lett. 70, 560.

Taichenachev, A.V., V. I. Yudin, C.W. Oates, C.W. Hoyt,

Z.W. Barber, and L. Hollberg, 2006, Phys. Rev. Lett. 96,

083001.

Taichenachev, A. V., V. I. Yudin, V. D. Ovsiannikov, V. G.

Pal’chikov, and C.W. Oates, 2008, Phys. Rev. Lett. 101, 193601.

Takamoto, M., F. L. Hong, R. Higashi, Y. Fujii, M. Imae, and H.

Katori, 2006, J. Phys. Soc. Jpn. 75, 104302.

Takamoto, M., F. L. Hong, R. Higashi, and H. Katori, 2005, Nature

(London) 435, 321.

Takamoto, M., and H. Katori, 2003, Phys. Rev. Lett. 91, 223001.

Takamoto, M., and H. Katori, 2009, J. Phys. Soc. Jpn. 78,

013301.

Takamoto, M., H. Katori, S. I. Marmo, V.D. Ovsiannikov, and V.G.

Pal’chikov, 2009, Phys. Rev. Lett. 102, 063002.

Taylor, B. N., 2001, The International System of Units (SI) (U.S.

Government Printing Office, Gaithersburg, Maryland).

Th. Udem, J. Reichert, R. Holzwarth, and T.W. Hänsch, 1999, Phys.
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