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This article offers a comprehensive survey of results obtained for solitons and complex nonlinear

wave patterns supported by nonlinear lattices (NLs), which represent a spatially periodic modu-

lation of the local strength and sign of the nonlinearity, and their combinations with linear lattices.

A majority of the results obtained, thus far, in this field and reviewed in this article

are theoretical. Nevertheless, relevant experimental settings are also surveyed, with emphasis on

perspectives for implementation of the theoretical predictions in the experiment. Physical

systems discussed in the review belong to the realms of nonlinear optics (including artificial

optical media, such as photonic crystals, and plasmonics) and Bose-Einstein condensation. The

solitons are considered in one, two, and three dimensions. Basic properties of the solitons presented

in the review are their existence, stability, and mobility. Although the field is still far from

completion, general conclusions can be drawn. In particular, a novel fundamental property of

one-dimensional solitons, which does not occur in the absence of NLs, is a finite threshold value

of the soliton norm, necessary for their existence. In multidimensional settings, the stability of

solitons supported by the spatial modulation of the nonlinearity is a truly challenging problem, for

theoretical and experimental studies alike. In both the one-dimensional and two-dimensional cases,

the mechanism that creates solitons in NLs in principle is different from its counterpart in linear

lattices, as the solitons are created directly, rather than bifurcating from Bloch modes of linear

lattices.
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I. INTRODUCTION

A. The subject of the review

The term soliton, i.e., a stable solitary wave propagating in
a nonlinear medium, was coined by Zabusky and Kruskal

about 50 years go. They were not the first to notice the

remarkable properties of solitary waves, whose first known

description in the scientific literature, in the form of ‘‘a large
solitary elevation, a rounded, smooth, and well-defined heap

of water,’’ goes back to the historical observation made in a

canal near Edinburgh by John Scott Russell in the 1830s. In

the course of the nearly five decades that have elapsed since
the publication of the paper by Zabusky and Kruskal (1965),

the theoretical and experimental studies of solitary waves

have seen an astonishing proliferation and penetration into

many branches of science, from applied mathematics and

physics to chemistry and biology. Several celebrated equa-
tions, in both their canonical and extended forms, emerge as

universal models of solitons. These include Korteweg-

de Vries and modified Korteweg-de Vries, nonlinear

Schrödinger (with two opposite signs of the nonlinearity),
sine-Gordon, Landau-Lifshitz, Kadomtsev-Petviashvili (of

type I and type II), and several other classical equations.

The specific features of the evolution and interactions of

solitons in these models are intimately related to the integra-
bility of the above-mentioned equations. Diverse factors that

in practice often break the integrability should be considered,

which naturally leads to the perturbation theory for solitons in

a nearly integrable system (Kivshar and Malomed, 1989).
A significant contribution to the experimental and theo-

retical studies of solitons was the identification of various

forms of robust solitary waves in nonlinear optics. Here we

concentrate on bright solitons, which emerge as solitary

pulses and/or beams. Optical solitons may be naturally sub-

divided into three broad categories—temporal, spatial, and

spatiotemporal. They may exist in the form of one-

dimensional (1D) or multidimensional objects. One-

dimensional temporal solitons in optical fibers with a cubic

(Kerr) nonlinearity were predicted by Hasegawa and Tappert

(1973) and observed experimentally by Mollenauer et al.

(1980), while stable self-trapping of light in the spatial

domain was first observed in planar waveguides by Maneuf

et al. (1988) [see also Maneuf and Reynaud (1988)]. Spatial

two-dimensional (2D) solitary waves were first observed in

photorefractive crystals, which feature a saturable nonlinear-

ity (Duree et al., 1993), and in optical media with a quadratic

nonlinearity (Torruellas et al., 1995). Effectively two-

dimensional spatiotemporal self-trapping of light into quasi-

soliton objects was observed by Liu et al. (1999) in quadratic

nonlinear media.
Stable fully three-dimensional (3D) solitons or light bullets

(LBs) in quadratic media were predicted almost three decades

ago (Kanashov and Rubenchik, 1981). However, to date,

experimental generation of such long-lived 3D solitons re-

mains elusive. In a landmark observation, the signature of 3D

soliton formation was achieved recently by Minardi et al.

(2010) in an artificial optical material with cubic nonlinearity.

Another species of robust solitary waves in optics occurs in

the form of gap solitons (GSs), which are supported by the

interplay of an appropriate lattice structure (also known as a

grating), embedded into an optical medium, and nonlinearity.

The observation of the first optical GSs in fiber Bragg grat-

ings was reported by Eggleton et al. (1996).
A milestone achievement of modern physics, the creation

of Bose-Einstein condensates (BECs) in ultracold vapors of

alkali metals (Anderson et al., 1995; Bradley et al., 1995;

Davis et al., 1995), was shortly followed by the creation of

dark solitons of matter waves in BECs with repulsion between

atoms (Burger et al., 1999) and, eventually, by the creation of

bright 1D matter-wave solitons in BECs with attractive inter-

atomic interactions (Khaykovich et al., 2002; Strecker et al.,

2002). This was followed by the generation of one-

dimensional GSs in condensates with repulsive interactions

between atoms loaded into a periodic potential induced by an

optical lattice (OL), i.e., the pattern created by the interference

of counterpropagating coherent laser beams illuminating the

condensate (Eiermann et al., 2004).
Today, experimental and theoretical studies of solitons

remain an active field of research in several branches of

science. A large part of this work is concentrated in the

two above-mentioned fields, namely, nonlinear optics (light

waves) and BECs (matter waves). There is a large gap be-

tween the theoretical and experimental studies in this area,

with the theory going ahead. Experimental challenges are

most often associated with the unavailability of material or

metamaterial (artificially created) settings with suitable intrin-

sic or extrinsic properties—especially, in multidimensional
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geometries, where solitons supported by the common cubic

nonlinearity are prone to severe instabilities. Methods for the

stabilization of multidimensional solitons have been elabo-

rated in detail theoretically, as reviewed several years ago

by Malomed et al. (2005). Techniques that allow the stabi-

lization of various species of multidimensional solitons rely

on the use of settings of two types: periodic potentials, similar

to those induced by the above-mentioned OLs in BEC (in-

cluding multidimensional OLs), and ‘‘management,’’ i.e., the

application of external fields periodically varying in time, or

the passage of solitons through periodically nonuniform me-

dia. Management methods (as well as their combination with

lattices) were reviewed by Malomed (2006). Studies of one-

dimensional and multidimensional solitons in periodic poten-

tials have grown into an active and large research area since

seminal work of Christodoulides and Joseph (1998), who

inaugurated the field of optical solitons in discrete periodic

systems, and since the first experimental observation of opti-

cal discrete solitons in fabricated waveguide arrays was per-

formed by Eisenberg et al. (1998). In the course of the last

decade, hundreds of original theoretical and experimental

papers and several reviews have been published on the topic

of discrete and continuous lattice solitons. Many results ob-

tained in this field have been recently summarized by Lederer

et al. (2008), and by Y. V. Kartashov et al. (2009a).
While nonlinearity is of course necessary for the existence

of solitons, the usual periodic potentials represent linear

ingredients of the corresponding physical systems. A new

direction in the studies of solitons aims to predict their

existence, stability, and dynamics in nonlinear lattices

(NLs). The NLs represent spatially periodic patterns of

modulation of the local strength of the nonlinearity, and in

many cases they may act in combination with the usual linear

lattices. In BEC, one-dimensional and multidimensional

NLs may be induced by the application of spatially periodic

external fields that induce a corresponding modulation pat-

tern of the local nonlinearity through the Feshbach-resonance

(FR) mechanism, i.e., field-induced changes of the scattering

length characterizing binary collisions between atoms, which

induce the nonlinearity in the BEC. In optical media, NLs

may be built as material structures, represented by spatially

periodic modulations of the local Kerr coefficient, or coef-

ficients characterizing other types of the optical nonlinearity.

In terms of the approach that treats solitons as quasiparticles,

linear lattices give rise to the corresponding effective spatially

periodic potentials. The action of the NLs may also be

described in terms of an effective potential, which, however,

is intrinsically nonlinear. Such effective nonlinear potentials

are often called pseudopotentials in condensed-matter phys-

ics (Harrison, 1966).
Intensive studies of the dynamics of solitons in NLs started

only recently. However, in the course of the past five years

many theoretical results have been reported. It should be

stressed that studies of the dynamics in NLs give rise to

new problems, which, in many cases, are challenging in

comparison with formally similar problems considered a

few years earlier (and, in some cases, realized experimen-

tally) in linear lattices. In particular, a salient feature of this

topic is that it is difficult (although possible) to find the

conditions for the stabilization of 2D solitons by means of

NL pseudopotentials (Sivan et al., 2006; Sakaguchi and

Malomed, 2006a; Y. V. Kartashov et al., 2009a; Hung
et al., 2010).

Thus far the progress in the study of the soliton formation

in NLs has been made primarily in theoretical studies. In
experiments, a setting that may be described to a certain

extent as a combination of linear and nonlinear lattices, and

in which solitons have been created and studied in detail, is
represented by photoinduced lattices in photorefractive crys-

tals (Efremidis et al., 2003; Neshev et al., 2003; Fleischer,
Carmon et al., 2003, Fleischer, Segev et al., 2003, 2004;

Martin et al., 2004; Neshev et al., 2004; Chen et al., 2004,

2005; Cohen et al., 2005; Alfassi et al., 2007; Wang, Chen
et al., 2007; Wang, Bezryadina et al., 2007). A promising

medium for the formation of combinations of linear and

nonlinear lattices is provided by photonic-crystal fibers
(PCFs). The use of NLs in a BEC, especially in 2D and 3D

configurations, may also become an important tool in experi-
mental studies of solitons. In that connection, it is necessary

to stress that, thus far, no examples of self-supporting multi-

dimensional matter-wave solitons have been reported—
primarily because of difficulties with the stabilization of

such solitons in non-1D settings. The works by Sakaguchi

and Malomed (2006a), Sivan et al. (2006), Y. V. Kartashov
et al. (2009a), and Hung et al. (2010) actually predicted that

the use of effective NLs induced in a BEC may provide a
novel mechanism for the stabilization of multidimensional

matter-wave solitons.

B. Objectives and structure of the review

One objective of this review is to summarize theoretical

and, when possible, experimental results obtained in the
field of NLs for fundamental solitons and more complex

nonlinear-wave patterns, such as vortices and periodic waves.

The ultimate purpose of that part of the review is to formulate
generic features of the solitons and nonlinear patterns in these

settings, highlighting novelties revealed by the analysis, in

comparison to previously studied nonlinear media. We
present findings for solitons in one and two dimensions;

some results are also reported for 3D models. The existence,
stability, and mobility of the solitons are considered in con-

tinuous, discrete, and semidiscrete media. Together with NLs,

the review includes the dynamics of solitons in combined
nonlinear and linear lattices and some related settings, such as

the spontaneous symmetry breaking in nonlinear pseudopo-
tentials of the double-well type.

In the description of the particular physical problems

comprised in this review and the results produced by their

theoretical analysis, we include both the summary of results
and a description of the core part of the technical analysis, in

those cases when the techniques (analytical and/or numerical)
may be useful for considering similar problems.

The bulk of the theoretical results, including the most

fundamental issues, are presented in Secs. IV and V, which

deal with 1D and 2D settings, respectively. In each of these
sections, we start the presentation with summaries of core

results and core techniques, which deal with the most funda-
mental systems included in the realm of NL models. Then,

we add more special and/or straightforward results which
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are also physically relevant in their respective contexts.
More specific topics are considered separately in Secs. VI,
VII, and VIII.

Another part of the review, presented in Sec. III, contains
a description of potentially relevant experimental settings,
since another major objective of this article is to motivate
experimental implementation of basic predictions revealed by
the theoretical analysis. Those experimental results on the
topic of solitons in NLs that have already been published are
represented in specific sections and subsections in the review
that deal with the respective physical settings (an example is
the experimental creation of solitons in a PCF infiltrated with
an index-matching liquid; see Sec. VB 2). In the concluding
Sec. IX we try to single out those new theoretical predictions
whose implementation in experiment seems most plausible,
in the short run. We also indicate the predicted effects which
are more challenging to experiments. In the same section,
perspectives for the further development of theoretical analy-
sis in this field are also briefly discussed. Some particular
theoretical problems that still need to be tackled are also
discussed in sections of the review dealing with topics in
which these new problems emerge.

II. BASIC MODELS

The consideration of physical settings that give rise to NLs
and wave patterns linked to them—in optics, nanophotonics,
and BECs—makes it possible to identify a few fundamental
models. These models are actually universal, as they are
relevant to all these physical systems, in 1D and 2D geome-
tries alike (in some cases, they may also be extended to 3D).
In most cases, the models amount to extended versions of
the celebrated and ubiquitous nonlinear Schrödinger equation
(NLSE), with various additional terms, explicit spatial and/or
temporal dependencies of the nonlinear coefficients, and in
different dimensions. This fact is essentially responsible for
the possibility of identification of a few key models that play
a universal role in this field. Multicomponent settings are
described, accordingly, by coupled systems of NLSEs.

These basic models are introduced in the present section.
Experimental realizations of the models are considered in
Sec. III. In subsequent parts of the review, we will demon-
strate that the main types of NL-supported wave patterns can
be found, and their dynamics can be analyzed within the
framework of these basic models. We will also demonstrate
what particular features of the models are crucially important
for the stability of solitons and other patterns supported by
them (in particular, concerning the challenging issue of the
stability of 2D solitons, the crucial factor for the stability of
the solitons is the sharpness of the NL).

A. Optics

1. Models with permanent material lattices

Two basic types of physical systems which constitute the
subject of the review are transversally inhomogeneous non-
linear optical media and Bose-Einstein condensates in which
an effective inhomogeneity is induced by external fields.
The fundamental equation that governs the transmission of
electromagnetic waves in dispersive nonlinear media is the

NLSE, which is derived from the full wave equation (which,
in turn, can be obtained from the underlying system of the
Maxwell’s equations, combined with material equations that
account for the nonlinearity and inhomogeneity of the me-
dium). The derivation is based on the assumption that the
wave can be factorized into a rapidly varying monochromatic
carrier and a slowly varying envelope amplitude, which is a
function of time and coordinates with the characteristic scales
much larger than, respectively, the temporal period and
wavelength of the carrier wave. The derivation of the NLSE
in this context, including the nonlinear contribution from the
Kerr effect and material group-velocity dispersion (GVD),
was first developed by Hasegawa and Tappert (1973). The
main result of their analysis was the prediction of temporal
solitons in nonlinear optical fibers featuring the anomalous
GVD. A consistent derivation of the NLSE for the propaga-
tion of optical waves in both optical and spatial, as well as
spatiotemporal, domains can be found in several books [see,
e.g., Agrawal (1995) and Kivshar and Agrawal (2003)].

For the present review, the most relevant variety of the
NLSE in optics is the one in the spatial domain, which
assumes that the electromagnetic wave is strictly monochro-
matic in terms of the frequency, but allows the wave’s
amplitude qðx; y; zÞ to be a slowly varying function of the
propagation distance z and the transverse coordinates x, y in
the general case of the propagation in the bulk medium. In
physical units, the corresponding (2þ 1)-dimensional non-
linear Schrödinger equation takes the following form:

i
@q

@z
þ �0

4�

�
@2q

@x2
þ @2q

@y2

�
þ 2�

n0�0

½�nðx; y; zÞ

þ n2ðx; y; zÞjqj2�q ¼ 0; (1)

where �0 is the carrier wavelength, n0 is the background
value of the refractive index, and �nðx; y; zÞ is a local pertur-
bation of the refractive index, which accounts for the optical
inhomogeneity of the medium [in other words, �nðx; y; zÞ
represents the linear grating (or lattice) written in the medium
to control the linear transmission of the optical beams in it].
Further, n2ðx; y; zÞ in Eq. (1) is the Kerr coefficient, the spatial
dependence of which eventually implies the existence of
the nonlinear lattice in the inhomogeneous optical medium,
which is the central theme of this review.

In the case of the long-scale periodic modulation of the
linear and nonlinear refractive indices along the propagation
distance (‘‘long-scale’’ implies a modulation period much
larger than �0), the gratings may be used to control the
transmission of beams by means of management mechanisms
[a survey of that topic was given by Malomed (2006)]. In
particular, the transmission of the cylindrical beam in a
medium built as a periodic concatenation of transversely
uniform self-focusing and self-defocusing layers, with n2ðzÞ
periodically jumping between positive and negative values,
is described, in a scaled form, by the following version
of Eq. (1):

i
@q

@z
þ 1

2

�
@2q

@x2
þ @2q

@y2

�
þ n2ðzÞjqj2q ¼ 0: (2)

A commonly known fact is that Eq. (2) with n2 � 1 gives
rise to axially symmetric Townes solitons, in the form of
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qðx; y; zÞ ¼ wðrÞ expðibzÞ, with r � ðx2 þ y2Þ1=2, arbitrary
b > 0, and real function wðrÞ. The total power (i.e., norm)
of the Townes solitons does not depend on b, being NTownes ¼
2�

R1
0 w2ðrÞrdr � 5:85 [a simple variational approximation,

developed by Desaix et al. (1991), yields NTownes ¼ 2�].
While the entire family of the Townes solitons is unstable due
to the possibility of collapse in the two-dimensional NLSE
with the focusing cubic nonlinearity (Berge, 1998), it can be
shown that the application of the nonlinearity-management
mode, represented by the piecewise-constant n2ðzÞ in Eq. (2),
which periodically changes the sign, produces stable periodi-
cally pulsating fundamental axisymmetric solitons for posi-
tive average values of n2 (Towers and Malomed, 2002). A
similar layered setting was implemented in the experiment
by Centurion et al. (2006a) and by Centurion et al. (2006b).
They demonstrated a partial stabilization of solitary beams in
a set of ten layers of silica alternating with empty gaps. Note
that nonlinearity management is a particular application of
the soliton formation concept in tandemmaterial settings, i.e.,
layered media engineered in order to provide overall proper-
ties suitable for the formation of stable multidimensional
solitons (Torner et al., 2001).

The main subject of this review is the formation of solitons
by means of transverse NLs. This means that we aim to
consider models based on Eq. (1) with linear and nonlinear
refractive indices periodically modulated in the transverse
plane, while the medium remains uniform along the propa-
gation direction. The accordingly modified normalized ver-
sion of Eq. (1) is

i
@q

@z
þ 1

2

�
@2q

@x2
þ @2q

@y2

�
þ ½�nðx; yÞ þ n2ðx; yÞjqj2�q ¼ 0;

(3)

where the functions �nðx; yÞ and n2ðx; yÞ are periodic in both
coordinates x and y (or, in a special case, only in one of them
and independent of the other; quasiperiodic and quasirandom
generalizations of such structures are interesting, too). The
linear term in Eq. (3) proportional to �nðx; yÞ represents the
linear potential, while the nonlinear term may be regarded
as an additional effective potential, in the form of n2ðx; yÞjqj2,
which depends on the solution itself. As mentioned, this type
of the nonlinear potential function is often called a pseudo-
potential (Harrison, 1966).

A straightforward realization of the model based on Eq. (3)
is possible in photonic-crystal fibers, where both �nðx; yÞ and
n2ðx; yÞ are determined by the transverse structure of the PCF.
This actually implies that �nðx; yÞ and n2ðx; yÞ are piecewise-
constant functions, with jumps at interfaces between the bulk
medium (silica) and the material filling the lattice of voids
running parallel to the axis of the fiber [the filling substance
may be air, a fluid, or another kind of glass, in the case of an
all-solid PCF, as shown by Luan et al. (2004)].

Equation (1), derived for light propagation in the bulk
spatial domain, has an effectively 2D form, with propagation
coordinate z playing the role of the evolutionary variable.
The reduction of the equation to a 1D model, which describes
the transmission of beams in planar nonlinear waveguides, is
straightforward, leading to the evolution equation for the
light-beam amplitude with a single transverse coordinate:

i
@q

@z
þ 1

2

@2q

@x2
þ ½�nðxÞ þ n2ðxÞjqj2�q ¼ 0: (4)

Like the 2D model, its 1D counterpart is relevant to the
description of layered planar optical waveguides, where
�nðxÞ and n2ðxÞ can be piecewise-constant functions.
Periodic 1D modulation functions of this type are usually
referred to as Kronig-Penney (KP) lattices. One-dimensional
models based on the interplay of various types of linear and
nonlinear KP lattices were studied in detail by Kominis
(2006), Kominis and Hizanidis (2006, 2008), Kominis
et al. (2007), and Mayteevarunyoo and Malomed (2008).
Two-dimensional versions of the KP lattice, i.e., models
featuring the 2D checkerboard structure, were also elaborated
by Maes et al. (2005), Driben et al. (2007), and Driben and
Malomed (2008).

2. Models with photoinduced lattices

The previous discussion dealt with models of optical media
in which linear and nonlinear lattices are created as perma-
nent material structures. On the other hand, virtual optical
lattices can be induced in photorefractive crystals as interfer-
ence patterns, by illuminating the crystal with pairs of coher-
ent laser beams in the ordinary polarization, for which the
medium is nearly linear. Then, through the effect of the cross-
phase modulation, the interference pattern induces an effec-
tive grating for the probe beam, launched in the extraordinary
polarization, for which the photorefractive medium features
a saturable nonlinearity. The full 2D equation for the ampli-
tude of the probe beam in this setting is (see Efremidis et al.,
2002, 2003)

i
@q

@z
þ 1

2

�
@2q

@x2
þ @2q

@y2

�
� E0q

1þ jqj2 þ Rðx; yÞ ¼ 0; (5)

where the function Rðx; yÞ describes the intensity distribution
in the lattice-creating ordinarily polarized beams, and
E0 is the dc electric field which induces the saturable non-
linearity, with E0 > 0 and E0 < 0 corresponding to the
focusing and defocusing nonlinearities, respectively. For ex-
ample, one has Rðx; yÞ ¼ I0cos

2ðx=LÞcos2ðy=LÞ in the impor-
tant case of the photoinduced lattice produced by the
interference of four plane waves with intensity I0 and effec-
tive wavelength L.

In the limit case of the weak probe beam, the saturable
nonlinearity in Eq. (5) may be expanded, which gives rise to
the NLSE with the cubic nonlinearity and specific forms of
the functions describing linear and nonlinear lattices in the
corresponding model:

i
@q

@z
þ 1

2

�
@2q

@x2
þ @2q

@y2

�
� E0q

1þRðx; yÞ þ
E0jqj2q

½1þRðx; yÞ�2 ¼ 0:

(6)

A peculiarity of the nonlinearity-modulation coefficient in
Eq. (6) is that it cannot change its sign. Both Eqs. (5) and (6)
have their obvious 1D counterparts, which also apply to
the description of various experimentally relevant settings,
see Fleischer et al. (2005), Lederer et al. (2008), and Y. V.
Kartashov et al. (2009a). It is relevant to mention that basic
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elements of the model of photorefractive media outlined
above were first introduced by Vinetskii et al. (1974).

B. Bose-Einstein condensates

The fundamental model which provides an accurate de-
scription of the BEC in rarefied degenerate gases of bosonic
atoms is the Gross-Pitaevskii equation (GPE) for the single-
particle wave function � (‘‘degenerate’’ means that the
de Broglie wavelength of atoms in the rarefied gas is com-
parable to the mean interatomic distance; see a detailed
discussion by Pitaevskii and Stringari, 2003). The 3D form
of this equation is

iℏ
@�

@t
¼ � ℏ2

2m

�
@2�

@x2
þ @2�

@y2
þ @2�

@z2

�
þ Uðx; y; zÞ�

þ 4�ℏ2N

m
asðx; y; zÞj�j2� ¼ 0; (7)

wherem is the atomic mass,Uðx; y; zÞ is the external potential
acting on individual atoms (it may depend on time too), N is
the total number of atoms in the condensate, and as is the
scattering length which determines collisions between the
atoms, as > 0 and as < 0 corresponding to the repulsive
and attractive interactions, respectively. The wave function
is subject to the normalization condition,

RRR j�ðx;y; zÞj2
dxdydz¼ 1.

The action of the linear lattice is accounted for by the
choice of a spatially periodic potential Uðx; y; zÞ. Usually,
the periodic potential is created as an optical lattice (OL),
which is induced by the interference of coherent laser beams
illuminating the condensate, as proposed by Jaksch et al.
(1998) and demonstrated by Greiner et al. (2002). More
recently, it was demonstrated by Ghanbari et al. (2006) and
Abdelrahman et al. (2009) that 2D and 1D periodic potentials
may also be induced by magnetic lattices, created by a plate
made of a permanent magnet with a lattice of holes drilled in
it, or more sophisticated variants of this setting.

The NL should be induced by the introduction of a proper
spatial inhomogeneity of the scattering length; therefore, this
coefficient is written as a function of coordinates in Eq. (7).
The spatial (and, if relevant, temporal) dependence of as may
be induced by means of the Feshbach-resonance management
technique. The direct control of the scattering length in BEC
by the external magnetic field through the Feshbach reso-
nance (this effect implies the formation of a quasibound state
of two atoms in the course of the collision between them) was
first demonstrated experimentally by Inouye et al. (1998).
The spatial pattern of the FR management, which gives rise
to the NL, may be induced by an appropriately structured
magnetic field. Potentially, these magnetic lattices may also
be used to induce an effective periodic NL in both 2D and 1D
settings.

In addition to that, the FR can be controlled by optical
fields with a properly tuned frequency, as predicted by
Fedichev et al. (1996), and demonstrated in the experiment
by Theis et al. (2004), and also by electrostatic fields,
according to the prediction by Marinescu and You (1998).
Therefore, NLs can also be induced by means of properly
patterned optical or dc electric fields.

Usually, the linear OL potentials and nonlinearity-
modulation functions in BEC models, being produced as
interference patterns, have a smooth sinusoidal profile. A
number of particular physically relevant examples of such
profiles are considered in Secs. IV, V, and VI.

Actually, all examples of NLs studied so far in BEC
models pertain to 1D and 2D geometries. In particular, the
nearly 1D setting corresponds to the potential Uðx; y; zÞ ¼
VðxÞ þ ðm=2Þ�2ðy2 þ z2Þ in GPE (7), where the strong trans-
verse confinement is achieved due to the large trapping
frequency �. Then, the reduction of the 3D Eq. (7) to the
1D limit is performed by means of the factorized ansatz,

�ðx;y;z;tÞ¼ 1

�1=2�
exp

�
�iℏ�t

2
�y2þz2

2�2

�
qðx;tÞ; (8)

where the transverse part is actually the ground state’s wave
function of the isotropic harmonic-oscillator potential acting
in the plane ðy; zÞ, and qðx; tÞ is an effective 1D wave func-
tion, which is subject to the normalization

Rþ1
�1 jqj2dx ¼ 1.

The substitution of the ansatz (8) into Eq. (7), and introduc-
tion of scaled variables, namely, the coordinates measured in
units of the harmonic-oscillator length, a? ¼ ðℏ=m�Þ1=2,
and the time measured in units of 1=�, make it possible to
eliminate the transverse width � in favor of the 1D density
�4 ¼ 1þ RðxÞjqj2, where RðxÞ � 2asðxÞN=a?. This leads to
the derivation of the 1D equation with the nonpolynomial
nonlinearity [Salasnich et al. (2002); see also an alternative
form of the nonpolynomial nonlinearity, derived by Muñoz
Mateo and Delgado (2008), which is relevant in the case of
repulsive interactions between atoms, as > 0]:

i
@q

@t
¼ � 1

2

@2q

@x2
þ VðxÞqþ 1þ ð3=2ÞRðxÞjqj2

½1þ RðxÞjqj2�1=2 q ¼ 0:

(9)

Here it is considered that the scattering length may be a
function of the longitudinal coordinate x which is necessary
to introduce the NL, eventually. A noteworthy peculiarity
of Eq. (9) is that, unlike the usual one-dimensional NLSE
with the cubic nonlinearity, this equation admits the onset of
wave collapse in the 1D setting, in the case of the attractive
nonlinearity (R < 0), thus keeping this important property of
the full 3D version of the GPE. The dynamics of 1D solitons
under the combined action of the OL potential and non-
polynomial nonlinearity was studied in detail by Salasnich,
Cetoli, Malomed, and Toigo (2007).

In the limit of low density, jRqj2 � 1, the nonpolynomial
nonlinearity in Eq. (9) may be expanded, thus casting this
equation into the form of the usual one-dimensional NLSE
with the cubic inhomogeneous nonlinearity,

i
@q

@t
¼ � 1

2

@2q

@x2
þ VðxÞqþ RðxÞjqj2q ¼ 0 (10)

which is equivalent to Eq. (4). The general form of the GPE
reduced to two dimensions, in the case of strong confinement
in the transverse direction, is nonpolynomial too [see
Salasnich and Malomed (2009), and references therein], but
in the low-density limit it is similar to Eq. (3).

It is also possible to derive an effective 1D equation
starting with the transverse wave function which corresponds
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not to the ground state of the 2D harmonic oscillator, but
rather to its higher-order state with integer vorticity, S � 1
(Salasnich, Malomed, and Toigo, 2007). In this case, an
additional factor must be added to the factorization of the
3D wave function in Eq. (8), viz., ½ðy2 þ z2Þ=�2�jSj=2 �
expðiS�Þ, where � is the azimuthal coordinate in the (y; z)
plane. Eventually, one arrives at the 1D equation in the
same form as Eq. (9), but with R replaced by RS �
ð2SÞ!½22SðSþ 1ÞðS!Þ2��1R, and with an additional factor
ðSþ 1Þ added in front of the nonpolynomial term.

Finally, it is relevant to mention that the reduction of the
underlying three-dimensional GPE to 1D makes it possible
to induce effective lattices without using additional external
fields, but rather making the trapping frequency a function of
coordinate x, � ¼ �ðxÞ [as proposed by De Nicola et al.
(2006), and analyzed in detail by Salasnich et al. (2007)]. In
particular, in the low-density limit, the modulation of the
trapping frequency induces an effective linear potential and
a nonlinearity-modulation function [i.e., �nðxÞ and n2ðxÞ, in
terms of Eq. (4)] which are both proportional to �ðxÞ.

C. Discrete systems

The models with NLs of the KP type include, as a limiting
case, the nonlinearity-modulation function in the form of a
periodic array (comb) of Dirac’s delta functions. The respec-
tive model, which was introduced by Sukhorukov and
Kivshar (2002a, 2002b), has the form of Eq. (4) with
�nðxÞ ¼ 0 and n2ðxÞ ¼ n20

Pþ1
m¼�1 �ðx� LmÞ, where n20

and L are the strength and period of the respective NL, and
�ðxÞ is the delta function. Similar two-component semidis-
crete systems were introduced by Panoiu et al. (2008). A
prototype of such models is the NLSE with the attractive
(self-focusing) nonlinearity concentrated at a single point,
i.e., Eq. (4) with �nðxÞ ¼ 0 and n2ðxÞ ¼ n20�ðxÞ. The latter
model was proposed by Malomed and Azbel (1993) for
the description of tunneling of interacting particles through
a junction.

In the limiting case of strong localization of light in narrow
guiding channels, the models of the KP type may be reduced
to discrete nonlinear Schrödinger equations (DNLSEs), in
various forms, the simplest among which is

i
dqn
dz

þ 1

2
ðqnþ1 þ qn�1 � 2qnÞ þ jqnj2qn ¼ 0: (11)

It should be stressed that solitons in discrete systems gov-
erned by Eq. (11) were for the first time introduced by
Christodoulides and Joseph (1988). In particular, stationary
solutions in the above-mentioned model with the nonlinearity
represented by the comb of delta functions can be mapped
into solitons of the DNLSE (Sukhorukov and Kivshar, 2002a,
2002b). Also widely used is the 2D version of Eq. (11), i.e.,

i
dqm;n

dz
þ 1

2
ðqmþ1;n þ qm�1;n þ qm;nþ1 þ qm;n�1 � 4qm;nÞ

þ jqm;nj2qm;n ¼ 0: (12)

DNLSEs and discrete solitons of diverse types generated
by them (in particular, discrete vortices) in 1D, 2D, and 3D
settings have grown into a large area of theoretical and

experimental studies. Many results obtained in this area
have recently been summarized by Kevrekidis (2009).

An important physical application of Eq. (12) is its use as
an accurate model for the light propagation in 2D arrays of
parallel fiberlike waveguides fabricated in bulk samples of
silica by means of the technique based on femtosecond pulses
which write permanent guiding cores in silica (Szameit et al.,
2006). Note that, unlike their continuous counterparts (3) and
(4), the DNLSEs with opposite signs in front of the nonlinear
terms may be transformed into each other by means of the
staggering transformation, qn ! ð�1Þnqn.

A discrete model for an array of parallel waveguides
embedded into a Kerr medium was developed by Öster
et al. (2003) and by Öster and Johansson (2005) in the
form of a one-dimensional DNLSE including not only on-
site cubic terms, but also complex combinations of their
intersite counterparts (i.e., nonlinear terms providing for
couplings between adjacent sites of the discrete lattice; see
the corresponding discussion in Sec. IVG). The intersite
nonlinearities give rise to various effects, such as an enhanced
mobility of discrete solitons and the existence of stable
twisted modes. Earlier, a similar model was proposed as
a phenomenological one by Claude et al. (1993). More
recently, DNLSEs with general combinations of nonlinear
intersite terms were considered by Smerzi and Trombettoni
(2003) (in that work, a quantum counterpart of the system,
in the form of an extended Bose-Hubbard model, was also
considered), and by Abdullaev, Bludov et al. (2008), as a
model which originates, in the framework of the tight-binding
approximation, from the description of BEC trapped in a
combination of linear and nonlinear lattices. Belmonte-
Beitia and Pelinovsky (2009) showed that, by starting from
Eq. (4) and assuming a specific symmetry of the periodic
linear potential and nonlinearity profile [i.e., �nð�xÞ ¼
�nðxÞ and n2ð�xÞ ¼ �n2ðxÞ, where �n and n2 have a
common period], one can derive a one-dimensional DNLSE
with the quintic on-site attractive nonlinearity and without
intersite coupling cubic terms [the reduction of the original
GPE to an equation with an effective quintic nonlinearity
under similar conditions was demonstrated by Sakaguchi and
Malomed (2005a)]. On the other hand, if n2ðxÞ is not anti-
symmetric, one still arrives at the simple DNLSE with the
cubic on-site nonlinearity. Note that solutions of the DNLSE
with the cubic-quintic on-site nonlinearity were investigated
by Carretero-González et al. (2006) and by Chong et al.
(2009) in the 1D and 2D settings, respectively.

It is relevant to mention that models with nonlinear inter-
site coupling terms of the general type may be considered
as variations of the Salerno model, which, in turn, was
originally introduced in the 1D case as a combination of
the integrable Ablowitz-Ladik equation and nonintegrable
Eq. (11) (Salerno, 1992):

i
dqn
dt

þ ðqnþ1 þ qn�1Þð1þ �jqnj2Þ þ 2jqnj2qn; (13)

where the coefficient � accounts for the Ablowitz-Ladik
coupling between adjacent sites. Here the evolutionary vari-
able is denoted as t rather than z [cf. Eq. (11)], as Eq. (13) is
more relevant to the description of BECs. In fact, Eq. (13) is
the crudest model for dipolar condensates trapped in a strong
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lattice potential, which features the interplay of the contact
interactions, accounted for by the on-site cubic term, and
the long-range interaction between atomic dipoles aligned
by an external magnetic field which may be approximated by
the nonlinear intersite couplings (Li et al., 2005; Gomez-
Gardeñes et al., 2006a, 2006b) [see also Dutta et al. (2011)].

Discrete solitons of Eq. (13) were studied in detail, for both
cases of the like ð� > 0Þ and competing ð� < 0Þ contact and
long-range interactions [see Cai et al. (1996), and Gomez-
Gardeñes et al. (2006a)]. In the latter case, the competition
gives rise to new stable soliton species, such as cuspons
(superexponentially localized modes). Discrete solitons (in-
cluding solitary vortices) were also studied in the 2D version
of the Salerno model, with like nonlinearities, by Christiansen
et al. (1996), and in the case of competing nonlinearities, by
Gomez-Gardeñes et al. (2006b).

As for the model with the nonpolynomial nonlinearity
based on Eq. (9), its discrete version was introduced and
studied in detail by Maluckov et al. (2008) and Gligorić,
Maluckov, Salasnich et al. (2009). Discrete models with the
quadratic nonlinearity, which describe the second-harmonic
generation in arrays of waveguides, were also introduced by
Peschel et al. (1998) and Darmanyan et al. (1998) (see
Sec. VII).

D. Photonic nanostructures

The optical models considered here are based on the para-
xial approximation, which assumes that the characteristic
transverse size of the beams is much larger than the wave-
length of light. In this approximation, the evolution of the
light fields obeys equations of the NLSE type, such as Eq. (3),
with the weak (paraxial) diffraction accurately represented
by the transverse Laplacian. A different situation arises in the
case of the transmission of light through structures with
characteristic transverse sizes on the subwavelength scale, a
typical example of which is an array of nanowires, wherein
the diameter of the guiding cores and separation between
them are �100 nm or even smaller. In this case, the NLSE
models are irrelevant, and one should use the full system of
Maxwell’s equations. An example is provided by equations
derived by Gorbach and Skryabin (2009) for the transverse-
magnetic (TM) and transverse-electric (TE) modes in a
planar-waveguide counterpart of the array of nonlinear nano-
wires. In these two cases, the equations for nonzero compo-
nents of the complex electric and magnetic fields E and H
and displacement D are, respectively,

@2Ex=@z
2 � @2Ez=@x@z ¼ �k2Dx;

@2Ex=@x@z� @2Ez=@x
2 ¼ þk2Dz;

@Hy=@z ¼ ikc"0Dy;

(14)

and

@2Ey=@z
2 ¼ �k2Dy; ðk=c"0ÞHx ¼ þi@Ey=@z;

ðk=c"0ÞHz ¼ �i@Ey=@z; (15)

where z and x are the propagation and transverse coordinates,
�, c, and "0 are the wavelength, speed of light, and dielectric
permittivity of vacuum, respectively, and k ¼ 2�=�. Both

systems (14) and (15) for the TM and TE waves are supple-
mented by the nonlinear relation between the displacement
and electric field:

D ¼ "ðxÞEþ ð1=2Þ�3ðxÞ½ðEE	ÞEþ ð1=2ÞðEEÞE	�;
(16)

where the transverse layered structure is described by the
modulation of the permittivity "ðxÞ, and it is assumed that
�3ðxÞ ¼ ð4=3Þcn2"0"ðxÞ is proportional to "ðxÞ.

Recently, another model for the description of plasmonic
solitons in an array of metallic nanowires was developed by
Ye et al. (2010). Unlike the approach outlined above, they
aimed to reduce the effective model to a discrete form. In the
general case, an extended form of the DNLSE was derived,
which, in addition to the usual linear intersite couplings—the
same as in Eq. (11)—also included couplings through z
derivatives of the discrete field. However, it was demonstrated
that the extra coupling terms are negligible under physically
relevant conditions, thus reducing the model to the usual form
of the DNLSE.

Another model for subwavelength solitons trapped in a
planar layered nanostructure was developed by Liu et al.
(2007) in the form of an array of alternating metallic and
dielectric strips, which represents a metamaterial. Unlike the
model based on Eqs. (14)–(16), this system takes into account
the loss in the metallic components; therefore, the respective
transmission distance of nonlinear beams is finite (actually,
it is short).

The models for the transmission of light in nanowire arrays
outlined above were formulated in the spatial domain. Models
describing the temporal and spatiotemporal transmission in
the arrays were also developed; see El-Ganainy et al. (2006)
and Benton et al. (2008).

III. MATERIALS, EXPERIMENTAL SETTINGS, AND

FINDINGS

The availability and development of suitable materials and
fabrication techniques for the generation of nonlinear or
mixed linear-nonlinear lattices is a key ingredient for the
advancement of the field. In this section we describe basic
settings and materials where NLs may be created, sometimes
in parallel with the modulation of the linear refractive index.
We assume that further progress in the experimental studies
of solitons and related wave patterns supported by NLs is
possible, first, in those experimental settings which are out-
lined in this section. As mentioned above, thus far only a few
experimental results have been reported on this topic; there-
fore, the discussion of the relevant experimental systems is an
essential part of the review, the intention being to highlight
the possibilities for progress of the work in this direction.

We discuss photonic crystals and PCFs, in particular, in
which modern fabrication technologies allow the creation
of arbitrary periodic (or aperiodic) structures, and infiltration
of crystal holes with suitable fluids offering additional op-
tions for the design of NL structures. For reviews on photonic
crystals and PCFs; see Yablonovitch (1994, 2001), Russell
(2003), and Dudley et al. (2006). We also discuss the
following techniques and settings which offer a real potential
for the advancement of experiments on NLs: (i) writing
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waveguide arrays in transparent materials by means of fs laser

pulses, which cause irreversible damage of the material,
accompanied by the simultaneous increase of the local re-

fractive index and decrease of the nonlinearity coefficient,
resulting in the appearance of out-of-phase linear and non-

linear lattices; (ii) optical induction, i.e., fabrication of latti-

ces in photorefractive materials, where the modulation of the
nonlinearity is achieved by the application of an inhomoge-

neous background illumination, or by the indiffusion of
different dopants into the sample (recent reviews on proper-

ties of solitons in linear lattices imprinted into such media

were given by Lederer et al., 2008, and Y. V. Kartashov et al.
(2009a); and (iii) liquid crystals, where the application of a

spatially inhomogeneous external voltage notably modifies
both the linear refractive index and nonlinearity coefficient.

Finally, we also address BECs, where the FR can be used for
the spatial modulation of the sign of the interatomic inter-

actions and the creation of NLs for matter-wave excitations

[reviews on matter-wave solitons in linear lattices were given
by Brazhnyi and Konotop (2004) and Morsch and Oberthaler

(2006); applications of the FR to BEC were recently reviewed
by Chin et al. (2009)].

A. Photonic crystals and photonic-crystal fibers

The concept of the photonic crystal, designed as a bulk
waveguiding structure with a periodic transverse modulation

of the local value of the refractive index, that should give rise
to the photonic band gap structure, emulating that for elec-

trons in ionic crystals, was put forward in Yablonovitch

(1987); see also reviews by Yablonovitch (1994, 2001).
Photonic crystals, featuring full photonic band gaps, were

elaborated theoretically by Yablonovitch et al. (1991) and
have been built in 2D (Krauss et al., 1996; Johnson et al.,

1999) and 3D geometries (Noda et al., 2000); see also a

detailed account of the topic given by Joannopoulos et al.
(2008). Photonic crystals with the quadratic intrinsic nonline-

arity were also analyzed (Centini et al., 1999).
Photonic-crystal fibers, which are made of a transparent

material with a lattice of voids running parallel to the axis of

the fiber, offer a direct realization of combined linear and
nonlinear lattices in the cross-section plane, as values of both

the refractive index and Kerr coefficient jump between the
material and the voids filled with air (or with different sub-

stances, such as liquid crystals). PCFs were created in silica

(Knight et al., 1996), followed by the demonstration of the
single-mode character of the band-gap-guided light trans-

mission in such structures (Birks et al., 1997); see also
Russell (2003) and Cerqueira (2010). Later, the creation of

all-solid PCFs, with the voids filled by another material,

rather than air, was reported by Luan et al. (2004).
Concerning the creation of solitons in PCFs, these media

not only make it possible to engineer desired dispersion
properties, but also open a way to enhance the effective

nonlinearity, through confining the beam to a silica wire

with a small cross section (Soljacic and Joannopoulos, 2004).
One important nonlinear-optical effect observed in PCFs

was the generation of the supercontinuum (see Ranka et al.,

2000, and Dudley et al., 2006, and Skryabin and Gorbach,
2010). This effect is interpreted as a result of the fission of

higher-order temporal solitons carried by the PCF (Herrmann

et al., 2002). In addition, remarkable possibilities offered by
the PCFs for the direct creation and control of fundamental

solitons have been demonstrated; in particular, by Ouzounov
et al. (2003) and Reeves et al. (2003). As for spatial solitons

in photonic crystals and PCFs addressed in this review, they
have not yet been reported in experimental works, to the best

of our knowledge.

B. Waveguiding arrays in bulk media

Direct material processing by femtosecond laser pulses is

among the most flexible and elaborate techniques for the
creation of permanent periodic guiding structures in bulk

materials. When intense ultrashort laser pulses are focused
inside transparent materials, the nonlinear absorption in the

focal volume causes optical breakdown and formation of
microplasma bubbles, which, eventually, lead to permanent

structural and refractive-index modifications (Davis et al.,

1996; Itoh et al., 2006). By moving the focus of the laser
beam through the sample, one can write waveguides along

arbitrary paths, thus creating both one- and two-dimensional
lattices. One of the most suitable materials for the direct laser

writing of waveguide lattices is fused silica. In such materials,
low-loss 100 mm long waveguides with a spacing down to

14 �m and transverse dimensions of 3 �m� 12 �m were
created (Szameit et al., 2005; Blömer et al., 2006). The

emerging local change of the refractive index in the medium

is a function of the writing speed, increasing exponentially
with decrease of the speed (the maximum change of the

refractive index achieved by means of this technique was
�1:3� 10�3). It is important that the material damage pro-

duced by the femtosecond pulses results in the simultaneous
increase of the linear refractive index and decrease of the

nonlinearity coefficient. For writing velocity �500 �m=s,
the effective nonlinearity coefficient inside the waveguide

may drop down to n2 � 0:7� 10�20 m2=W (to be compared

with n2 � 2:7� 10�20 m2=W in unprocessed silica).
Moreover, the nonlinearity strength changes with the writing

velocity faster than does the linear refractive index. This
suggests the possibility of creating mixed lattices with out-

of-phase modulations of the linear refractive index and non-
linearity, adjusting the nonlinear properties of the material

per the designed pattern. The discrete nonlinear localization
of light in 1D femtosecond-written waveguide arrays was

reported by Szameit et al. (2005), and the formation of 2D

solitons in square-shaped waveguide arrays was observed by
Szameit et al. (2006), at typical peak powers �1 MW for

100 fs pulses at wavelength 800 nm. The laser-written wave-
guide arrays in fused silica have been used for the observation

of a number of interesting phenomena, including optical
surface waves (Szameit et al., 2007), polychromatic dynamic

localization in curved lattices (Szameit et al., 2009a), and the
inhibition of light tunneling in longitudinally modulated

arrays (Szameit et al., 2009b), to mention a few.
Photorefractive crystals such as LiNbO3, BaTiO3, KNbO3,

or strontium barium niobate (SBN) offer fascinating possi-

bilities for optical information processing, holographic
volume storage, phase conjugation, and interferometric hol-

ography. The photorefractive effect in these types of crystal
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results from a light-induced redistribution of charges released

by impurities or intrinsic centers. Electrons or holes are
optically excited and trapped at different sites, resulting in

the buildup of internal space-charge field. This field, in turn,
causes modifications in the refractive index of the material

via the electro-optic effect (Buse, 1997a, 1997b). Such
materials allow the fabrication of high-quality permanent

waveguiding arrays, in particular, by dint of the titanium
indiffusion (Schmidt and Kaminov, 1974) or proton exchange

(Jackel et al., 1983). Thus, lattices fabricated in copper-
doped LiNbO3 crystals combine high saturable defocusing

nonlinearity (arising from the photovoltaic effect) with the
adjustable lattice strength. Typical linear lattices imprinted

in LiNbO3 crystals consist of 4-�m-wide titanium-doped
stripes separated by the same distance. Each channel with

refractive-index modulation depth�3� 10�3 forms a single-
mode waveguide for light at � ¼ 514:5 nm, while the inter-

channel coupling constant is �1 mm�1. Experimental
observation of bulk and surface gap solitons in such arrays

at �W power levels was reported by Chen et al. (2005),

Rosberg et al. (2006), and Smirnov et al. (2006). In addition,
the conductivity of such materials, their response time, and

the maximal light-induced nonlinear contribution to the re-
fractive index may be dramatically enhanced by doping with

appropriate elements (for instance, LiNbO3 is usually doped
with Cu or Fe, while for SBN one can use Ce, Rh, or Pr as

dopant). Since the diffusion time and depth (hence also the
concentration of dopants inside the photorefractive material

for a given annealing time) strongly differ for different
dopants, or even for different thicknesses of the dopant stripes

etched on top of the crystal (Hukriede et al., 2003), one can
potentially use inhomogeneous surface doping of photore-

fractive crystals to produce permanent lattices which provide
for strong modulation not only of the refractive index, but

also of the local nonlinearity.

C. Optical induction in photorefractive media

Externally biased photorefractive media allow reversible

optical induction of reconfigurable lattices. This method has
proven to be an extremely powerful tool for the creation of

various linear refractive-index landscapes. The idea of the OL
induction was put forward by Efremidis et al. (2002). This

method is especially attractive since the resulting landscapes
can be adjusted to a required form by varying parameters of

the lattice-creating waves, and easily erased, in contrast to the
permanent technologically fabricated guiding structures de-

scribed above. One- or two-dimensional photoinduced latti-
ces have to remain uniform along the propagation distance

(typically, up to several centimeters). In the pioneering ex-
periments, the periodic refractive-index profile was induced

by the interference of two ordinarily polarized plane waves in
a biased strontium barium niobate crystal (Fleischer, Carmon

et al., 2003; Fleischer, Segev et al., 2003). The refractive
index of the material was modified through the linear electro-

optic effect. In SBN crystals, orthogonally polarized waves

feature dramatically different electro-optic coefficients (r33 ’
1340 pm=V, r13 ’ 67 pm=V), so that ordinarily polarized

interfering plane waves propagate almost linearly and create
the stable 1D periodic lattice, while the extraordinarily po-

larized probe beam experiences strong nonlinear self-action,

described by the nonlinear change of the refractive index
�n��r33E0Idark=½Idark þ IlattðxÞ þ I�, where E0 is the ex-

ternal electric dc field (bias), Idark characterizes the dark-
irradiance level that can be modified with the aid of an

additional background illumination, Ilatt is the intensity of
the lattice-creating beam, I is the intensity of the probe beam,

and x is the transverse coordinate along which the lattice is
induced. The intersection angle between plane waves deter-

mines the lattice periodicity, while the experimentally achiev-

able refractive-index modulation depth in such lattices is
�10�3. Notice that the sign of the nonlinearity (focusing or

defocusing) can be altered by reversing the sign of the bias
electric field. The OL may also be made partially incoherent

and created by means of the amplitude modulation, rather
than by coherent interference of multiple plane waves (Chen

et al., 2004). Such lattices are exceptionally stable and persist
even in the weakly nonlinear regime, due to the suppression

of the modulation instability by the lack of coherence. The

use of optically induced lattices has led to the observation of
many different types of solitons (see Neshev et al., 2003,

2004; Fleischer et al., 2004; Martin et al., 2004; Chen et al.,
2004; Cohen et al., 2005; Fischer et al., 2006; Wang,

Bezryadina et al., 2007).
The technique of the OL induction with some modifica-

tions can be potentially applied to the creation of nonlinear

and mixed lattices. In particular, instead of launching the
ordinarily polarized lattice-creating beam into the photore-

fractive material, one can employ a spatially modulated
background illumination. The resulting nonlinear change of

the refractive index for the probe beam amounts to �n�
�r33E0IdarkðxÞ=½IdarkðxÞ þ I�, i.e., the nonlinearity coefficient
becomes spatially modulated, as seen from �n�
�r33E0½1� I=IdarkðxÞ�, obtained in the limiting case of I �
Idark. Alternatively, the application of a spatially inhomoge-

neous external electric field to a relatively thin photorefrac-
tive crystal in the absence of any additional lattice-creating

pattern translates into a strong modulation of the linear
refractive index and nonlinearity coefficient, according to

�n��r33E0ðxÞIdark=ðIdark þ IÞ, which for I � Idark takes

the form of �n��r33E0ðxÞð1� I=IdarkÞ. The above results
suggest that photorefractive materials may indeed be used

not only for the induction of flexible linear refractive-index
landscapes, but also for the creation of reconfigurable NLs.

D. Liquid crystals

Nematic liquid crystals have emerged as suitable materials

for experimentation with optical solitons in spatially inhomo-
geneous environments due to their strong reorientational

nonlinearity, which may exceed the nonlinearity of standard

materials (such as semiconductors) by several orders of
magnitude. Liquid crystals are characterized by a significant

degree of molecular order and birefringence under proper
anchoring. An incident extraordinarily polarized optical

beam, whose electric field is not orthogonal to the director
(main axis) of the crystal, can interact with induced dipoles in

molecules and cause molecular reorientation, which is stron-
gest in the region of the highest intensity, but may extend well

beyond the spatial region illuminated by the laser beam. For
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this reason, the nonlinearity of nematic liquid crystals is

nonlocal, with the nonlocality degree depending, among
other factors, on the thickness of the liquid-crystal cell. The

light-induced director reorientation results in a variation of
the refractive index of the material, so that, with the choice of

appropriate light intensities, spatial solitons (nematicons)
may be excited. A typical nematicon forms at power levels

�2 mW for � ¼ 1:064 �m in a 75-�m-thick planar-aligned
E7 liquid-crystal cell, with an externally applied low-

frequency biasing voltage V � 1:2 V (Conti et al., 2004;
Peccianti et al., 2004). Since the reorientation of liquid-

crystal molecules can be driven by a low-frequency electric
field through a voltage applied across the thickness of the cell,

linear, nonlinear, and nonlocal properties of this medium can
be flexibly adjusted. In particular, Peccianti et al. (2005)

demonstrated, by studying the 1D modulational instability in
liquid crystals, that the nonlocality can be tuned, versus the

optical nonlinearity, by the external voltage (the nonlocality
and nonlinearity simultaneously decrease with increase of the

externally applied voltage, but the nonlocality becomes neg-

ligible faster than the nonlinearity). If the cover slide of the
planar cell filled with a pre-anchored liquid crystal incorpo-

rates two separate electrodes with distinct applied voltages
(with respect to the common ground-plane electrode at the

bottom slide), a graded-index interface may be created, char-
acterized by distinct nonlinear and linear refractive indices at

different sides of the interface. In such a geometry, the lower
biasing voltage corresponds to a lower extraordinary refrac-

tive index, along with a higher nonlinearity coefficient n2; for
instance, in the setting reported by Peccianti et al. (2007), n2
changes approximately 10 times between regions with the
applied voltage of 0 and 1.5 V. Such linear-nonlinear graded-

index interfaces in liquid crystals were recently used for the
demonstration of tunable refraction and reflection of spatial

solitons (Peccianti et al., 2006). Furthermore, Beeckman
et al. (2009) recently utilized nonuniform biasing of liquid

crystals in the longitudinal direction, resulting in a gradual
increase of the nonlinearity, to counterbalance the broadening

of the soliton caused by intrinsic losses. This suggests that
transverse lattices with simultaneous modulation of the non-

linearity and linear refractive index can be created in properly

biased liquid crystals. Such periodic voltage-controlled latti-
ces were indeed produced by Fratalocchi et al. (2004). In

these lattices, a set of periodically spaced electrodes (with
typical spacing�6 �m) allows the bias to be applied across a

�5-�m-thick crystal cell, thereby periodically modulating
the refractive index and nonlinearity through the molecular

reorientation. This experimental setup enabled the observa-
tion of discrete optical solitons at rather low power levels.

E. Thermal nonlinearity

Thermal nonlinearity is featured by various materials pos-

sessing sufficiently large thermo-optic coefficients. Light
propagation in such media is affected by the geometry of

the sample and by the temperature distribution at its bounda-

ries. A light beam propagating in thermal media experiences
slight absorption, thus acting as a heat source. Heat diffusion

creates a nonuniform temperature distribution that causes a
local refractive-index variation proportional to the tempera-

ture change at each point. In materials with positive thermo-

optic coefficients, the heat diffusion results in a local increase
of the refractive index in heated regions, which may lead to

the formation of localized states, while in materials with
negative thermo-optic coefficients the refractive index de-

creases in heated regions, typically resulting in expulsion of
light toward boundaries of the sample (Rotschild et al., 2005,

2006a, 2006b; Alfassi et al., 2007; Kartashov et al., 2007). A
typical nonlinear contribution to the refractive index in such

thermal nonlinear media as lead glass amounts to�5� 10�5

for laser beams of width �50 �m, carrying total power
�1 W. While it may be difficult to generate a periodic

thermal nonlinearity in a single material, this nonlinearity
may be realized in composite materials, such as PCFs with

holes infiltrated with suitable index-matching slightly absorb-
ing liquids. To this end, one can fill the holes of the PCFs with

suitable liquids, using capillary forces or hydrostatic pressure.
This integrated technique opens the way to combine the

guiding properties of the PCF, resulting from its internal

structure, and the nonlinearity which is determined by prop-
erties of the liquid filling the holes [see, e.g., Eggleton et al.

(2001), Larsen et al. (2003), and Fuerbach et al. (2005)]. In
particular, Rosberg et al. (2007) and Rasmussen et al. (2009)

utilized high-index weakly absorbing oil, featuring defocus-
ing thermal nonlinearity, for the infiltration of holes in a

hexagonal PCF, which made it possible to create a material
with a periodic modulation of the linear refractive index

(the refractive index of the oil is slightly higher than that of

silica) and thermal nonlinearity. This setting was used to
demonstrate highly tunable beam diffraction, nonlinear self-

action, power limiting, and the formation of 2D nonlocal GSs.
Carefully selecting index-matching liquids and the material

of the PCF, one may fabricate NLs by means of this
technique.

F. Bose-Einstein condensates

One of the fundamental results of quantum theory was the
prediction of the Bose-Einstein statistics in a gas of boson

particles at zero temperature. Such a state of matter in the
form of the Bose-Einstein condensate remained a theoretical

concept for 70 years after it had been predicted. A break-
through, which has turned out to be, arguably, the greatest

achievement in the field of fundamental physics in the course
of the past 15 years, was the creation of a BEC in ultracold

gases of alkali metals, which was reported in 1995 by

Anderson et al. (1995). (in a gas of atoms of 87Rb),
Bradley et al. (1995) (in 7Li), and Davis et al. (1995) (in
23Na). In these celebrated experiments, the gas composed of
several thousands of atoms was chilled, by means of a

combination of the laser-cooling and evaporation techniques,
to temperatures on the order of fractions of nanokelvins.

One of the milestones in the subsequent experimental work

on BECs was the creation of effectively one-dimensional
bright (i.e., localized) matter-wave solitons in a condensate

of 7Li atoms trapped in ‘‘cigar-shaped’’ configurations
(Khaykovich et al. (2002); Strecker et al., 2002, 2003). In

particular, multisoliton trains have been created in the former
work, in addition to single-soliton modes. Later, similar

solitons were also created in a postcollapse state of the

Yaroslav V. Kartashov, Boris A. Malomed, and Lluis Torner: Solitons in nonlinear lattices 257

Rev. Mod. Phys., Vol. 83, No. 1, January–March 2011



85Rb condensate by Cornish et al. (2006) (the collapse was

caused by the switch of the interaction from repulsive to

attractive by means of the FR).
A fundamental theoretical model of the matter-wave

dynamics in BECs, including the description of solitons, is

provided, with a good accuracy, by the Gross-Pitaevskii

equation, which is based on the mean-field approximation;

see Pitaevskii and Stringari (2003), and a more recent review

of nonlinear aspects of matter-wave dynamics and solitons

by Carretero-González et al. (2008). Various aspects of the

matter-wave dynamics, both theoretical and experimental,

have been reviewed by Kevrekidis et al. (2008).
A versatile tool which makes it possible to control the

collective behavior of the BEC, including matter-wave

solitons, is provided by OLs, i.e., a spatially periodic atomic

potential induced by the interference pattern which is, in turn,

created by mutually coherent laser beams illuminating the

gas from different directions. If the carrier frequency of the

lattice-forming laser beams is red- or blue-detuned with

respect to the dipole transition between atomic levels, the

atoms are, respectively, attracted to or repelled from local

maxima of the light intensity. A great deal of interest was

drawn to the use of OLs in the context of BECs after the

prediction, by Jaksch et al. (1998), and experimental real-

ization, by Greiner et al. (2002), of the quantum phase

transition between the Bose superfluid and the ‘‘Mott insula-

tor,’’ i.e., the state in which atoms are pinned in the OL due to

repulsive interactions between them. Some other notable

results which were produced by means of OLs include the

prediction (Choi and Niu, 1999) and observation (Morsch

et al., 2001) of Bloch oscillations of the atomic density (under

the action of a constant external force in combination with an

OL), the theoretical analysis (Wu and Niu, 2001) and experi-

mental realization (Burger et al., 2001) of the transition of

the superfluid motion of the condensate to a dissipative flow

when its velocity exceeds the sound velocity, and the creation

of the Tonks-Giradeau gas (which is composed of strongly

repelling bosonic atoms, whose behavior emulates fermions)

by Paredes et al. (2004). Concerning the topics of the present

review, especially interesting experimental achievements are

GSs created in the gas of 87Rb atoms with repulsive inter-

actions between them, loaded into a ramped OL (Eiermann

et al., 2004), and the so-called gap waves, created by the

same group (Anker et al., 2005), which may be considered

as truncated segments of nonlinear Bloch waves (Wang, Yang

et al., 2009). The BEC dynamics in OL potentials has been

reviewed, concerning both the mean-field matter-wave

dynamics (Brazhnyi and Konotop, 2004; Morsch and

Oberthaler, 2006) and properties of strongly correlated ultra-

cold atoms (Jaksch and Zoller, 2005; Lewenstein et al., 2007;

Bloch et al., 2008).
We also mention a recent paper by Henderson et al.

(2009), who reported a newly developed experimental tech-

nique, allowing one to ‘‘paint’’ virtually any desirable 1D or

2D potential landscape by means of a focused laser beam,

which quickly moves along contours of the landscape. The

potential is actually induced by the temporal self-averaging of

the trace left by the rapidly moving laser focus.
Among other experimental achievements reported in the

vast area of BECs, a notable result is the creation of a BEC

in a gas of 52Cr atoms (Griesmaier et al., 2005). Chromium
atoms possess a magnetic moment, and therefore the dynam-
ics of this condensate is strongly affected by long-range
dipole-dipole interactions. The consideration of the interplay
of such interactions with the OL potential has led to the
prediction of quantum phases in this condensate (Goral
et al., 2002), and of several species of solitons (Gligorić
et al., 2008; Gligorić, Maluckov, Hadzievski, and Malomed,
2009; Gligorić et al., 2010a, 2010b; Cuevas et al., 2009). A
recent comprehensive review of dipolar BECs was presented
by Lahaye et al. (2009).

In summary, there are a variety of experimentally available
settings suitable for the exploration of solitons in media with
mixed linear and nonlinear lattices. In what follows, we
discuss theoretically predicted properties of such states.

IV. ONE-DIMENSIONAL SOLITONS

In this section we first address the topic where fundamental
results for solitons supported by purely nonlinear and mixed
linear-nonlinear were accumulated. Naturally, the theoretical
analysis is easiest in the 1D case, and this was the first case
for which systematic studies of NL-supported solitons com-
menced. The topic has been investigated thoroughly (unlike
the essentially more difficult 2D setting, see the next section),
the available theoretical knowledge of which makes it pos-
sible to formulate general conclusions concerning the exis-
tence, stability, and dynamics of the solitons created on top of
NLs or mixed linear-nonlinear lattices. In particular, it has
been concluded that 1D solitons of this type exist in purely
nonlinear lattices only when their norm exceeds a certain
threshold value (this is the case at least when the mean
nonlinearity coefficient is zero or sufficiently small in com-
parison with the amplitude of nonlinearity modulation),
which is a drastic difference from the ordinary 1D solitons,
existing in the uniform medium with attraction, or gap sol-
itons supported by a linear-lattice potential embedded into a
medium with the uniform repulsive nonlinearity. On the
contrary to the situation known for linear lattices, the NLs
create the solitons ‘‘from nothing,’’ rather than helping them
bifurcate from Bloch modes of linear lattices. Other funda-
mental properties of the solitons specific to the NL systems or
mixed linear-nonlinear lattices are a possibility of the multi-
stability, and enhanced mobility, in comparison with usual
solitons trapped in linear-lattice potentials. We also stress that
the consideration of mixed linear-nonlinear lattices offers a
novel setting for the study of effects of commensurability and
incommensurability (between the linear and nonlinear latti-
ces) on nonlinear modes that will be addressed in this section.

Other basic problems include continuous and discrete
solitons in NLs and mixed lattices of various shapes, namely,
harmonic, random, and KP lattices. We address properties
of both scalar and vectorial (two-component) states, outline
analytical and numerical methods used for the construction of
solitons in NLs, and methods for the analysis of their stability.
We also discuss the evolution of solitons in NLs, emphasizing
their mobility in the lattice media, controllable switching of
solitons in NLs, oscillations of solitons in nonlinear or mixed
potentials (including Bloch oscillations of GSs), their inter-
actions with nonlinear defects and traps, symmetry breaking
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of the nonlinear localized modes in dual-core settings, deloc-
alization transitions due to the spatially inhomogeneous non-
linearity, and some other topics relevant to the solitons in
one-dimensional NL systems. Periodic waves in NLs and the
generation of soliton trains by nonlinear potentials (‘‘soliton
lasers’’) are also considered. The latter topic offers a potential
for diverse applications which may benefit from the avail-
ability of coherent streams of intense matter-wave pulses, the
inhomogeneous nonlinearity being a key element necessary
for the design of such ‘‘lasers.’’ The dissipative dynamics in
lattices with nonlinear gain and losses is also considered,
which is necessary for the analysis of physically realistic
settings, if one is interested in the long-time nonlinear dy-
namics. The models considered include basic types of non-
linearities available in the underlying physical settings,
including cubic, polynomial, and thermal (nonlocal) nonlin-
ear interactions.

Some of the phenomena discussed below may occur or
find their analogs in usual linear lattices. For recent detailed
reviews on solitons in linear lattices, see Lederer et al.
(2008), and Y. V. Kartashov et al. (2009a). A rigorous
mathematical treatment of solitons in 1D linear-lattice poten-
tials was recently reviewed by Ilan and Weinstein (2010).

A. Solitons in nonlinear lattices

1. The basic model and fundamental properties of solitons

We start the presentation of the results for 1D solitons in
purely nonlinear harmonic lattices from the analysis reported
by Sakaguchi and Malomed (2005a), which revealed basic
properties of the solitons of this type, later found in a number
of related models (as described below). The paradigmatic
dynamical models describing 1D solitons in NLs is provided
by the following form of the NLSE or GPE, written in terms
of the mean-field approximation for the BEC:

i
@q

@t
¼ � 1

2

@2q

@x2
þ RðxÞjqj2q: (17)

Here the cubic nonlinear term is periodically modulated in
the coordinate RðxÞ ¼ r0 � cosð2xÞ, where r0 is the constant
part of the nonlinearity coefficient. The model describes a
situation when the atomic scattering length in the BEC is
spatially modulated, via the FR mechanism, by the periodi-
cally patterned magnetic or optical field (the latter one can be
created by means of the usual OL induced by the interference
of two laser beams). The results summarized below were
chiefly obtained for the most fundamental case, r0 ¼ 0, i.e.,
zero average value of the nonlinearity. As discussed, Eq. (17)
may also be interpreted as the NLSE governing the trans-
mission of optical signals in a periodically inhomogeneous
planar waveguide, in which case t is the propagation distance.

First, it is relevant to summarize results obtained by means
of analytical approximations. The variational approximation
(VA) for sufficiently narrow stationary solutions, qðx; tÞ ¼
wðxÞ expð�i�tÞ, can be derived from the Lagrangian
corresponding to Eq. (1), L ¼ R1

�1½2�w2 � ðdw=dxÞ2 �
RðxÞw4�dx, using the ansatz w ¼ A expð�x2=2W2Þ. Then,
variational equations @L=@N ¼ @L=@W ¼ 0 (here N ¼
�1=2A2W is the norm representing the number of particles
or power, in the cases of matter-wave or optical solitons,

respectively) predict the existence of the minimal norm
(threshold) necessary for the existence of stationary funda-
mental solitons in this model. As mentioned, this result
demonstrates a drastic difference of the NL-supported sol-
itons from their counterparts in the uniform 1D media, where
solitons may exist with an arbitrarily small value of the norm.
The VA equations also demonstrate that the soliton may exist
only in the case when the local nonlinearity at the point of the
maximum of jwðxÞj (the center of the soliton) is attractive.

For broad solitons, a different analytical approximation
may be developed. It uses the averaging method, with the
solution approximated as qðx; tÞ ¼ q0ðx; tÞ þ q1ðx; tÞ cosð2xÞ,
where q0ðx; tÞ and q1ðx; tÞ are slowly varying functions of x in
comparison with cosð2xÞ. The substitution of the latter ansatz
into Eq. (17) and the application of the averaging method
allows one to eliminate q1 in favor of q0, viz., q1 ¼
ð1=2Þjq0j2q0, and derive an effective equation for q0 which
turns out to be the NLSE with the quintic focusing nonline-
arity (while the cubic term does not appear, as a result of the
averaging),

i
@q0
@t

¼ � 1

2

@2q0
@x2

� 3

4
jq0j4q0: (18)

Equation (18) admits analytical solutions, q0 ¼ ½2j�j1=2
sechð2j�j1=2xÞ�1=2 expð�i�tÞ.

For a zero average value of the nonlinearity coefficient,
r0 ¼ 0, the norm of the fundamental-soliton solutions of
Eq. (17), obtained in a numerical form, is a nonmonotonous
function of the soliton’s amplitude A and chemical potential
� (see Fig. 1). The Vakhitov-Kolokolov (VK) stability crite-
rion, which is relevant in the case when solitons are supported
by an attractive nonlinearity, in the space of any dimension
(Vakhitov and Kolokolov, 1973; Berge, 1998), predicts that
the branches of narrow solitons in Fig. 1(a) to the right and
left of point N ¼ Nmin are stable and unstable, respectively.
Undulations in the shape of the soliton, which are due to the
action of the periodic NL, are pronounced only at intermedi-
ate values of the amplitude. High-amplitude solitons gradu-
ally shrink to a single site of the NL in the region of the
strongest attractive interaction, while low-amplitude solitons,
covering many periods of the lattice, are unable to induce a
sufficiently strong nonlinear pseudopotential. Sakaguchi and

FIG. 1. (a) The norm of the stationary soliton solution of Eq. (17)

vs its amplitude at r0 ¼ 0, in the fundamental model of the 1D

nonlinear lattice. Circles connected by the continuous line are

values found from the direct numerical solution, while the dashed

curve shows the prediction of the variational approximation. (b) The

chemical potential vs the number of atoms for numerically found

solitons. From Sakaguchi and Malomed, 2005a.

Yaroslav V. Kartashov, Boris A. Malomed, and Lluis Torner: Solitons in nonlinear lattices 259

Rev. Mod. Phys., Vol. 83, No. 1, January–March 2011



Malomed (2005a) showed that unstable solitons with
moderate amplitudes spontaneously rearrange themselves
into persistent breathers. Broad solitons with small ampli-
tudes are, strictly speaking, unstable, but in practical terms
they represent nearly stable modes, as their decay is ex-
tremely slow.

The broad solitons supported by Eq. (17) can move across
the NL, and they feature quasielastic collisions with no
visible losses. Narrow solitons, which are strongly pinned
by the NL, can form stable complexes composed of several
out-of-phase fundamental modes. Inclusion of a weak con-
stant attractive nonlinearity into Eq. (17), accounted for by
small�r0 > 0, stabilizes small-amplitude solitons. This find-
ing may be explained by the consideration of the respective
average NLSE, which turns out to have the cubic-quintic
nonlinearity, cf. Eq. (18) with the quintic nonlinearity
(Sakaguchi and Malomed, 2005a).

2. Generalized models: Lattices with higher-order nonlinearities

A natural extension of the model with cubic Kerr nonline-
arity is presented by the one with a general power-function
nonlinearity, �½1þ RðaxÞ�jqjp�1q, where the function R
describes a particular lattice profile and a denotes the ratio
of the soliton’s width to the characteristic scale of the lattice.
The existence and stability of solitons in this model were
considered by Fibich et al. (2006). They addressed three
representative situations, namely, p < 5 (the subcritical
case), p ¼ 5 (the critical case corresponding to the quintic
NLSE), and p > 5 (the supercritical case). This classification
is based on the fact that the quintic nonlinearity plays a
critical role for the onset of collapse in the one-dimensional
NLSE with the attractive self-interaction (Berge, 1998).
Accordingly, in the subcritical case solitons are stable in
the NLSE with constant coefficients, while in the critical
and supercritical cases they are unstable, developing the
collapse after a finite evolution time. It is therefore interesting
to elucidate the impact of the NL on the stability of soliton
solutions in the supercritical and critical cases. Fibich et al.
(2006) showed that, for wide modes with a 
 1, the profile
of stationary solitons in the NL system wðxÞ coincides, at the
leading order in 1=a, with the shape of the soliton in the
homogeneous medium where the nonlinear coefficient is
the mean value of 1þ RðaxÞ over one lattice period; correc-
tions to the profile induced by the lattice arise only at order
a�2. The NL always reduces the norm of wide solitons. For
narrow solitons with a � 1, the profile is determined by local
properties of the NL, i.e., the value of the nonlinear coeffi-
cient in a vicinity of the soliton’s peak. Similar to what
happens in the case of wide beams, even when variations in
the NL are not small, the lattice leads to Oða2Þ changes in the
soliton’s profile for p � 5, and only Oða4Þ changes in the
critical case of p ¼ 5. Two stability conditions for stationary
solutions of the form q ¼ wðxÞ expði�zÞ supported by the
NLs were formulated: (i) The spectral condition, which
requires that the operator Lþ ¼ �@2=@x2 þ�þ p½1þ
RðaxÞ�wp, obtained upon the linearization of the correspond-
ing nonlinear evolution equation, must have no more than one
negative eigenvalue; and (ii) the slope condition, similar to
the VK criterion, which requires @N=@� > 0. The violation
of the spectral condition results in a drift instability, i.e., a

spontaneous shift of the soliton against the underlying NL,
that can be initiated only by asymmetric perturbations. In
contrast, the violation of the slope condition (the VK crite-
rion) typically results in the blowup (collapse) or spreading
(decay). These conditions predict that, in the subcritical case,
with p < 5, solitons centered at local maxima of RðaxÞ are
(quite naturally) stable; whereas, existing solitons on local
minima of RðaxÞ are (naturally too) unstable with respect to
asymmetric perturbations shifting their centers, although such
modes cannot be destabilized by symmetric perturbations.
In the critical case of p ¼ 5, the NL can stabilize only very
narrow solitons centered at a local maximum of RðaxÞ,
provided that the lattice itself satisfies a certain local condi-
tion (Fibich et al., 2006). Even in this case, the stability
region is so narrow that sufficiently strong perturbations can
destabilize the soliton, and it was concluded that this very
weak stability is a ‘‘mathematical,’’ rather than ‘‘physical,’’
property.

With regard to the general issue of the stability of solitons
in settings with a spatially modulated nonlinearity in the case
of the critical nonlinearity, it has an interesting ramification
in the 2D case, where the cubic nonlinearity plays the critical
role. In that case, all solitons existing in the uniform space are
unstable, being tantamount to the above-mentioned Townes
solitons (Berge, 1998), and a challenging problem is the
search for modes of the spatial modulation of the attractive
cubic nonlinearity that may give rise to stable 2D solitons. A
solution to this fundamental problem, which is considered in
some detail in the next section, has been found, but under
rather stringent conditions imposed on the form of the non-
linearity modulation (Sakaguchi and Malomed, 2006a;
Kartashov et al., 2009a; Hung et al., 2010).

3. Exact solutions in specially designed models

Proceeding to more technical aspects of the theoretical
studies of 1D solitons in NL settings, a noteworthy fact is
that explicit solutions of the NLSE with spatially inhomoge-
neous nonlinearity can be constructed using the Lie-group
theory and canonical transformations, as shown by Belmonte-
Beitia et al. (2007). Their method utilized the fact that the
equation�@2w=@x2 þ VðxÞwþ RðxÞw3 ��w ¼ 0, describ-
ing profiles w of solitons with chemical potential (or propa-
gation constant) � in materials with the modulation of the
nonlinearity and linear refractive index, can be reduced
(under certain conditions), by dint of a canonical transforma-
tion, W ¼ b�1=2ðxÞw, X � R

x
0 b

�1ðsÞds, to the well-known

equation

� d2W

dX2
þ r0W

3 ¼ EW; (19)

where E ¼ ½�� VðxÞ�b2ðxÞ � ð1=4Þ½b0ðxÞ�2 þ ð1=2ÞbðxÞ
b00ðxÞ is a constant, while arguments provided by the Lie-
group theory may be used to establish a relation between
bðxÞ and the functions VðxÞ, RðxÞ describing the linear and
nonlinear lattices which admit the Lie symmetry:

RðxÞ¼ r0=b
3ðxÞ;

b000ðxÞ�2bðxÞV0ðxÞþ4b0ðxÞ��4b0ðxÞVðxÞ¼0:
(20)
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In particular, in the absence of the linear potential ½VðxÞ ¼ 0�
for �> 0, the solution of these equations can be written as

bðxÞ ¼ C1 sinð!xÞ þ C2 cosð!xÞ þ C3, while for �< 0 one

gets bðxÞ ¼ C1 expð!xÞ þ C2 expð�!xÞ þ C3, where ! ¼
2j�j1=2. This may give periodic nonlinearity coefficients,

such as RðxÞ ¼ r0½1þ � cosð!xÞ��3, or localized nonlinear-

ity coefficients, such as RðxÞ ¼ r0=cosh
3ð!xÞ. The latter case

may be especially interesting since, under appropriate

conditions, it allows mapping of the well-known periodic

solutions of Eq. (19), WðXÞ ¼ Csnð�X; kÞ=dnð�X; kÞ, with
specifically selected values of modulus k of elliptic functions

sn and dn, into higher-order spatially localized solitons of the

original NLSE with inhomogeneous nonlinearity coefficient,

RðxÞ ¼ r0=cosh
3ðxÞ (see Fig. 2 for examples of profiles of

such localized solitons obtained at different values of k). The
Lie-group theory was also used by Belmonte-Beitia, Perez-

Garcia, and Brazhnyi (2009) to construct explicit solitary-

wave solutions of coupled nonlinear Schrödinger equations

with spatially inhomogeneous nonlinearities.
In Sec. IVB 3 another version of the NLSE, including

nonlinear and linear lattices, will be described, which also

admits classes of exact solutions for specially chosen modu-

lation functions, but those exact solutions do not reduce to a

deformation of solutions of the NLSE with constant coeffi-

cients (Tsang et al., 2011). Also note that models based on

GPEs with specially devised modulations of the nonlinearity

coefficient and linear potentials exist, for which exact solu-

tions can be found by means of direct substitutions (Belmonte-

Beitia et al., 2009; Yan and Konotop, 2009; Yan, 2010).

Recently, similar approaches, which allow one to transform

one-dimensional NLSEs with variable coefficients in front of

the nonlinear terms into a system with constant coefficients,

were elaborated by Cardoso et al. (2010), Cardoso, Avelar,

and Bazeia (2010), and Rajendran et al. (2010).
A different approach that makes it possible to devise

models of the mixed NL-OL type with vast families of exact

soliton and nonlinear Bloch-wave solutions was recently

elaborated by Zhang, et al. (2010). Introducing specially

designed localized profiles of the spatial modulation of the

attractive nonlinearity, an infinite number of exact soliton

solutions was produced in terms of the Mathieu and elliptic

functions, with the respective chemical potential belonging

to the semi-infinite band gap of the OL-induced spectrum.

Starting from exact wave forms for solitons, which, naturally,

are not generic solutions, generic families of soliton solutions

were constructed in a numerical form. The soliton stability
was investigated through computation of eigenvalues for
small perturbations, and also via direct simulations. The
same work demonstrated a virtually exact (in the numerical
sense) composition relation, which allows one to build non-
linear Bloch waves as chains of solitons.

4. Solitons in nonlinear lattices of the Kronig-Penney type

One-dimensional bright and dark matter-wave solitons
in BEC models with periodic piecewise-constant NLs
(i.e., those of the Kronig-Penney type) were analyzed by
Rodrigues et al. (2008). For optical solitons supported by a
combination of linear and nonlinear lattices of the KP type, a
detailed analysis of soliton modes was reported by Kominis
(2006), Kominis and Hizanidis (2006, 2008), and Kominis
et al. (2007). The findings, although they are somewhat
cumbersome, are interesting as they furnish quasianalytical
results for the fundamentally important case of the KP
modulation.

The KP lattice corresponds to the following modulation
format of the nonlinearity coefficient: RðxÞ ¼ r0 þ ðr1 �
r0Þ

P
n¼þ1
n¼�1f�½x� ðnLþ L1Þ� � �½x� ðnþ 1ÞL�g, where �

is the Heaviside step function, L is the periodicity of the
lattice, r0 is the average value of RðxÞ, and r1 determines
the depth of the nonlinearity modulation. Using the fact
that in such a nonlinearity landscape one can explicitly
construct solutions for each of the regions where the nonline-
arity coefficient is constant, an analytical approach was

developed, which consists of matching functions wmðxÞ ¼
Amr

�1=2
m sech½Amðx� xmÞ�, centered at xm, with amplitudes

Am borrowed from the solutions of the respective homoge-
neous NLSEs with different nonlinearity coefficients rm.
Matching was performed by requiring w and its derivative
dw=dx to be continuous across the boundaries. These con-
ditions result in a system of equations:

Amffiffiffiffiffiffi
rm

p sech½AmðXm�xmÞ�¼ Amþ1ffiffiffiffiffiffiffiffiffiffi
rmþ1

p sech½Amþ1ðXm�xmþ1Þ�;

Amþ1ðXm�xmþ1Þ¼arctanh

�
Am

Amþ1

tanh½AmðXm�xmÞ�
�
;

(21)

where Xm is the coordinate of the interface between regionsm
and mþ 1. Equation (21) allows one to obtain iteratively all
values xm and Am. This method does not produce exact
solutions, but it gives rise to accurate approximations when
the width of soliton is smaller than or comparable to the
period of the NL. As in the case of harmonic lattices, the
solitons were found to be stable and unstable, respectively,
when they reside in the region with the strongest and weakest
attractive interactions (the development of the instability in
the latter states leads, as one may expect, to the shift into the
region with stronger interactions).

Dark-soliton solutions, featuring nonvanishing asymptotic
values at x ! �1, were also obtained for the case of repul-
sive interactions, with RðxÞ> 0 at all x. Such dark solitons
feature an intensity dip at the center, conjugate to the �-phase
jump and a strongly modulated (due to the inhomogeneous
nonlinearity) intensity distribution. Irrespective of being cen-
tered at minima or maxima of RðxÞ, the dark solitons develop

FIG. 2 (color online). (Color online) Spatially localized solitons

of the NLSE with inhomogeneous nonlinearity coefficient RðxÞ ¼
r0=cosh

3ðxÞ, obtained by mapping of periodic solutions of Eq. (19),

WðXÞ ¼ Cð�X; kÞ=ð�X; kÞ, with specifically selected values of

modulus k, in the model devised to produce exact soliton solutions.

From Belmonte-Beitia et al., 2007.
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an instability (in the latter case the instability develops much
faster) and start to move across the NL, which is accompanied
by strong radiative losses.

5. Solitons in spatiotemporal nonlinear potentials

The possibility of using the FR to control the nonlinearity
in the BEC opens the way to create not only static, but also
dynamical, NLs that are modulated in both space and time.
Under specially chosen conditions, exact solutions can be
constructed in this complex setting, too. In particular,
Belmonte-Beitia et al. (2008) implemented similarity trans-
formations to construct explicit solutions to the NLSE with
the linear potential and nonlinearity depending on the time
and spatial coordinate. The method is based on the trans-
formation of the equation with (x; t)-dependent coefficients,
iqt ¼ �qxx þ Vðx; tÞqþ Rðx; tÞjqj2q, into the standard
stationary NLSE, �W ¼ �WXX � jWj2W, with constant
coefficients.

This approach is similar to methodology originally devel-
oped by Serkin and Hasegawa (2000, 2002), which allows
one to generate, in a systematic way, an infinite number of
novel bright and dark soliton solutions in the temporal-NLSE
model with the GVD coefficient, nonlinearity, and gain or
absorption depending on the propagation distance. This was
done by searching for a transformation of the original NLSE
into its version with constant coefficients. Naturally, in the
framework of this method the functions describing the local
GVD, nonlinearity, and gain (or loss) cannot be chosen
independently and are connected by certain relations that
are imposed by the form of the transformation of the field
amplitude that was used in order to reduce the initial NLSE
into its counterpart with constant coefficients. The method
was also successfully generalized for the case of nonautono-
mous NLSEs with external linear and parabolic potentials by
Serkin et al. (2007).

To perform the necessary transformation of the original
NLSE and GPE, Belmonte-Beitia et al. (2008) introduced
a new function qðx; tÞ ¼ 	ðx; tÞ exp½i
ðx; tÞ�W½Xð�ðtÞxÞ�,
where X is an arbitrary function of �ðtÞx, and �ðtÞ character-
izes the temporal evolution of the width of solutions. The
direct substitution of this ansatz into the original NLSE leads
to the target equation, �W ¼ �WXX � jWj2W, provided that
the functions 	, 
, X, �, and Vðx; tÞ, Rðx; tÞ are connected by
the following relations:

Vðx; tÞ ¼ ð	xx=	Þ �
t �
2
x ��ð�=	Þ4;

Rðx; tÞ ¼ �4=	6; 	ðx; tÞ ¼ ½�=X0ð�xÞ�;

ðx; tÞ ¼ �ð�t=4�Þx2 þ �;

(22)

where �ðtÞ is an arbitrary function of time. One can see that
selection of arbitrary functions �ðtÞ, �ðtÞ, and Xð�xÞ fully
determines 	,
 and also V, R, while the shape of the function
WðXÞ can be obtained from the NLSE with constant coeffi-
cients. In this way, one can generate, e.g., solitons in the time-
dependent harmonic trapping potential, for a Gaussian profile
of the nonlinearity modulation. Using system (22), solutions
have been produced for breathers, i.e., solitons exhibiting
quasiperiodic oscillations of the amplitude and width, and
solitons with a nontrivial motion of the center of mass.

Recently, nonautonomous matter-wave solitons near the
Feshbach resonance in the 1D model of the BEC confined
by the harmonic potential with a varying trapping frequency
were considered by Serkin et al. (2010). They addressed
physically important examples when the amplitude of the
applied magnetic field, that determines the nonlinearity
strength, varies in time either linearly or periodically, and
derived relations between the trapping frequency and result-
ing nonlinearity coefficient that are required for the integra-
bility of the NLSE in its final form. Thus, it was found that,
for the integrability of the NLSE with the periodically vary-
ing scattering length, the reversal of the sign of coefficient in
front of trapping potential is necessary (in other words, the
shape of the harmonic potential periodically switches be-
tween confining and expulsive configurations). The validity
of the 1D description of the BEC by means of the latter model
was tested, considering the case when, under the combined
action of the time-dependent nonlinearity and confining po-
tential, the compression of the atom cloud from the initial
cigar-shaped shape into a quasispherical 3D configuration
was achieved, leading to the collapse of the soliton.

A similar approach utilizing the transformation of the
NLSE with inhomogeneous coefficients was elaborated by
Tang and Shukla (2007) for the stationary 1D equation with
the cubic-quintic nonlinearity, �wþ d2w=dx2 þ RðxÞw3 þ
GðxÞw5 � VðxÞw ¼ 0. They found particular forms of the
periodic modulation of the coefficients in front of the cubic
and quintic terms that allow one to transform this equation
into its counterpart with R ¼ const and G ¼ const [exact
soliton solutions for the latter equation are well known since
the work by Pushkarov et al. (1979)]. In particular, the
equation with RðxÞ ¼ R0½c1 þ c2 cosðqxÞ��3 and GðxÞ ¼
G0½c1 þ c2 cosðqxÞ��4 may be mapped into the constant-
coefficient form for R0 < 0, G0 > 0 i.e., in the case of the
cubic self-repulsion and quintic self-attraction (in that case,
the solitons are actually unstable). A similar analysis, i.e., the
transformation into the equation with constant coefficients,
which admits exact soliton solutions, was recently reported
by Belmonte-Beitia and Calvo (2009) for the 1D equation
with the purely quintic nonlinearity and linear potential that
may be both x and t dependent. Avelar et al. (2010) and Sun
et al. (2011) used this approach in order to find breathing
solutions of one- and three-dimensional Gross-Pitaevskii
equations. Other relevant localized solutions of NLSE with
spatiotemporally modulated nonlinearity were also found by
Tian et al. (2011).

6. Nonlocal nonlinear lattices

Another interesting variation of the topic of NLs in 1D
systems is provided by the consideration of periodic NLs
imprinted into nonlocal nonlinear media. In this case, it was
found that the NLs may support solitons with unusual prop-
erties. Kartashov et al. (2008a) studied the soliton propaga-
tion in layered thermal media made of alternating focusing
and defocusing layers. The evolution of the light beam in
such an environment is described by coupled equations for
field amplitude q and normalized temperature variation T:

i
@q

@z
¼ � 1

2

@2q

@x2
� �ðxÞqT; @2T

@x2
¼ �jqj2; (23)
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where the function �ðxÞ ¼ �asgn½cosð�x=dÞ� describes the
periodic profile of the nonlinearity. When boundaries of the
sample are maintained at equal fixed temperatures, system
(23) can be solved with boundary conditions q, Tjx¼�L=2 ¼
0, since the temperature distribution depends on the sample’s
width L. In this setting, the laser beam heats the material, and
the released heat diffuses across the entire sample, resulting
in local modifications of the refractive index via the thermo-
optic effect. Since thermo-optic coefficients are different in
different layers, a strong NL is induced whose shape is
described by the coefficient �ðxÞ. Such lattices support a
variety of nonlinear excitations, including fundamental,
even, dipole and tripole solitons residing at the center of
the sample; see Figs. 3(a)–3(d). Note that, while counterparts
of dipole and tripole solitons are known in strongly nonlocal
uniform materials, even states, which represent in-phase
combinations of bright spots, do not exist in uniform nonlocal
media.

The beams propagating in nonuniform thermal media
induce spatially modulated lattices that depend on the beam’s
width and peak intensity. Such NLs immobilize solitons and
may suppress their transverse drifts. Because of this effect,
multipoles and fundamental solitons may form not only in
central domains, but also in any focusing domain of the
layered medium, even if it is located close to the boundary
of the sample [see Fig. 3(e)]. This is in contrast to the uniform
focusing thermal medium, where boundaries, if maintained at
equal fixed temperatures, repel light that tends to concentrate
in the center of the sample. The nonlinear contribution to the
refractive index in this setting is oscillatory [see Fig. 3(f)],
with the width of the refractive-index distribution by far
exceeding the width of the soliton, and decaying almost
linearly towards the boundaries. All solitons, including multi-
poles, residing at the center of the periodic sample do not
feature any threshold power necessary for their existence,
but shifted solitons exist only above a power threshold.
Interestingly, multipoles in NLs in the thermal media can
be stable irrespective of the number of local spots building the
soliton, in contrast to the uniform thermal medium, where
solitons built of more than four spots are always unstable.

7. Dynamical effects: Mobility of solitons and splitting of bound

states in nonlinear lattices

As said above, the mobility of broad solitons in one-
dimensional NLs was studied by Sakaguchi and Malomed
(2005a). Additional results concerning the mobility were
reported by Zhou et al. (2008), who considered the dynamics
of tilted solitons in lattices represented by a shallow harmonic
modulation of the nonlinearity coefficient. They demon-
strated that there exists a certain critical value of the tilt,
above which the soliton leaves the original lattice channel and
starts travelling across the NL [a similar phenomenon for
solitons in linear lattices was analyzed by Kartashov et al.
(2004)]. The critical tilt grows with an increase of the initial
soliton’s amplitude and the depth of the nonlinearity modu-
lation in the lattice. As in the case of the linear lattices,
moving solitons in NLs suffer losses through the emission
of radiation waves. Because of this effect, the soliton can be
eventually trapped in one of the channels of the NL. The
number of the channel where the trapping happens increases
with the increase of the original tilt and decreases with the
soliton’s amplitude.

A dynamical effect of another type, which was also
studied, is the splitting of N-soliton bound states in weak
NLs. In physical systems modeled by completely integrable
evolution equations, including the NLSE with constant co-
efficients, such multisoliton states are made of sets of several
individual solitons, with different amplitudes, which form a
nonlinear superposition whose binding energy is exactly zero.
The amplitudes of the solitons hidden inside the superposition
are given by the corresponding Zakharov-Shabat eigenvalues.
Such bound states, corresponding to inputs in the form of
NsechðxÞ, oscillate indefinitely in the NLSE with constant
coefficients, as long as perturbations are absent. However,
because the bound state made of the set of fundamental
solitons has no binding energy, small perturbations, such as
those induced by a weak NL, can split the bound state into its
fundamental-soliton constituents, as demonstrated by Zhou

FIG. 3 (color online). (Color online) Profiles of (a) fundamental,

(b) even, (c) dipole-mode, and (d) triple-mode solitons residing at

the center of layered thermal sample and described by Eq. (23).

(e) Profiles of fundamental solitons shifted from the center of the

sample. (f) The distribution of the thermally induced perturbation of

the refractive index �T for a fundamental soliton with � ¼ 0:9

residing at the center of the sample, and for a shifted fundamental

soliton with � ¼ 6:5. In shaded regions �> 0, while in white

regions �< 0. From Kartashov et al., 2008a.
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et al. (2008). A similar splitting effect may be produced by a
very weak time-periodic modulation of the nonlinearity co-
efficient, which established a link of the dynamical effects of
this type to the models of the management (Sakaguchi and
Malomed, 2004a; Yanay et al., 2009).

Imposing transverse displacements on solitons in materials
with the inhomogeneous nonlinearity may generate
interesting dynamics. Niarchou et al. (2007) studied soliton
oscillations excited when the nonlinearity is parabolically
modulated along the coordinate, RðxÞ ¼ �1þ "x2, while
the soliton is initially displaced from the center of the para-
bolic nonlinear trap. It has been shown that the excitation of
persistent oscillations of solitons in such a nonlinear trap
are associated with the existence of a discrete eigenvalue,
�, and associated eigenmode, which is actually the transla-
tional mode of the soliton, in the corresponding linearization
problem for perturbed NLSE, where the perturbation is given
by "x2jqj2q. The adiabatic perturbation theory for solitons
yields � ¼ ½ð4=3Þ"��1=2 (here � is the chemical potential)
for the frequency of the oscillations of the soliton’s center x0,
that are governed by equation d2x0=dz

2 ¼ ��2x0 (in fact,
this frequency coincides with the eigenvalue of the transla-
tional mode, in this case).

B. Solitons in mixed linear-nonlinear lattices

After considering 1D solitons in models based on the NLs
in their pure form, the next natural step is to study the solitons
in the systems incorporating mixed lattices with linear and
nonlinear components. The theoretical interest in this general
setting is explained by the fact that, as discussed, the funda-
mental properties of the 1D solitons are conspicuously differ-
ent in the purely nonlinear lattices and in the free space, or in
the presence of the linear-lattice potentials; therefore, it is
natural to address the issue of the competition between the
lattices of the linear and nonlinear types. On the other hand,
in many cases the physical settings realizing the NLs, such as
those provided by photonic crystals and PCFs in optics, give
rise to structures that may be naturally classified as mixed
linear-nonlinear lattices (this is the intrinsic structure of the
PCFs, as explained in Sec. III A). This circumstance provides
another strong incentive for the detailed analysis of the mixed
lattices.

1. Basic models of the mixed lattices

Solitons in periodic mixed linear-nonlinear lattices were
first studied by Bludov and Konotop (2006). Their starting
point was the mean-field description of a boson-fermion
mixture with a dominating fermionic component, loaded
into a one-dimensional OL. However, the fermions were
assumed to be in the spin-polarized state, hence the Pauli
principle prevents their direct interaction. It was demon-
strated that, under appropriate conditions, this system may
be reduced to the NLSE with a periodic linear lattice and
periodically modulated nonlinearity. The main features of
these systems stem from the fact that the fermionic compo-
nent is effectively linear, and, at the same time, it modifies
linear and nonlinear properties of the effective medium for
bosons. When the Fermi energy is of the order of the ampli-
tude of the lattice potential, it becomes strongly dependent

on the spatial coordinate. If, in such a situation, the boson-

fermion interaction is not negligible compared to the boson-

boson interactions, then, in the mean-field approximation, the

fermionic component significantly affects not only the linear

potential, but also periodically modifies the effective two-

body interactions among bosons [a somewhat similar situ-

ation was recently studied by Adhikari et al. (2010), who

analyzed the spontaneous symmetry breaking of a Bose-

Fermi mixture in a symmetric double-well potential; it was

concluded that, under appropriate conditions, the fermionic

component (a spin-balanced one, in that case) also modified

the effective boson-boson interactions, and thus affected the

character of spontaneous symmetry breaking]. By taking into

account that the fermionic distribution itself is determined by

the trap potential, the existence of intrinsic localized modes

was predicted in the boson-fermion mixture. It was found

that solitons in the semi-infinite gap of the spectrum of the

linear lattice exist as long as the nonlinearity is attractive,

RðxÞ< 0, at least in certain narrow regions. However, the

behavior of the solitons in a vicinity of the gap’s edge may be

dramatically different, depending on whether the average

nonlinearity coefficient, � ¼ R
�
0 RðxÞ
4ðxÞdx (here 
 stands

for the profile of the Bloch wave with the symmetry corre-

sponding to the selected edge of the gap, and it is assumed

that nonlinear and linear lattices are � periodic), is negative

or positive. For example, when �< 0, the norm of the soliton

in the mixed lattice monotonically decreases towards the

edge of the gap, and the soliton dramatically broadens, as

also occurs with solitons in usual linear lattices. However, for

� > 0, the norm acquires a minimum in a vicinity of the gap’s

edge, and then starts to grow, as the chemical potential

approaches the edge of the gap, thus resulting in the existence

of a nonzero minimal number of bosons necessary for the

creation of the localized mode. A similar effect was encoun-

tered for solitons in the first finite band gap, when the

negative value of the average nonlinearity coefficient near

the respective gap’s edge leads to the existence of a minimal

number of bosons necessary for the creation of the gap

soliton. Among interesting effects reported in this model is

an unusual zigzag dependence of the bosonic norm on the

chemical potential in the first finite band gap, which is a result

of successive bifurcations of the soliton branches (see Fig. 4).

It was shown that the motion along this dependence is

accompanied by the redistribution of the atomic density

among minima of the linear potential, and that only solitons

residing on the lowest loop of this dependence are stable [see

profiles corresponding to points A and B in Fig. 4(a)].
Properties of GSs in linear-nonlinear OLs were also ana-

lyzed by Abdullaev, Abdumalikov, and Galimzyanov (2007).

They derived a coupled-mode system for a shallow lattice

that allows one to obtain the profile of GSs in the mixed

linear-nonlinear lattice explicitly. The coupled-mode equa-

tions were derived starting from the NLSE of the form

iqt þ qxx þ ½r0 þ r1 cosð2xÞ�jqj2q� " cosð2xÞq ¼ 0, where

r0 > 0 ðr0 < 0Þ corresponds to the attractive (repulsive) con-

densate, and r1 > 0 ðr1 < 0Þ corresponds to the out-of-phase

(in-phase) linear and nonlinear lattices. In the course of the

derivation, the field was represented as a sum of backward-

and forward-propagating waves, Aðx; tÞ expðix� itÞ and

Bðx; tÞ expð�ix� itÞ. Then, in the case of the shallow linear
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lattice, " � 1, one can derive a system of coupled-mode
equations that describe the interaction between the forward-
and backward-propagating waves. Remarkably, the resulting
system admits an exact analytical solution, qðx; tÞ ¼
2U1=2ðxÞ cos½x� �ðxÞ=2� exp½�ið�þ 1Þt�, for the profile of
the GS in the mixed linear-nonlinear lattice, where

U ¼ � 2�� " cos�

3r0 þ 2r1 cos�
; cos� ¼ 1� �2tanh2ð�xÞ

1þ �2tanh2ð�xÞ ;
(24)

while � ¼ ½ð"� 2�Þ=ð"þ 2�Þ�1=2, � ¼ ð"2 � 4�2Þ1=2=4,
and � is the chemical potential. The width of this soliton is
thus defined by � and is inversely proportional to the ampli-
tude of the linear lattice, while the soliton’s amplitude is
inversely proportional to the strength of the NL. Such GSs
can exist and may be stable even when the constant part of the
nonlinearity is absent, r0 ¼ 0.

A two-component 1D model for the binary BEC trapped in
a combined linear-nonlinear lattice, with a common spatial
period of both sublattices, was recently introduced by Golam

Ali et al. (2010). The consideration of solitons in the model

was actually reported for symmetric solitons only (with equal

numbers of atoms in the two components), and their stability

was analyzed within the framework of the simplest version of

the VK criterion.
As well as in the case of purely nonlinear lattice, solitons in

the mixed model with the modulation functions of the KP

type is a natural object for the consideration, both because of

its relevance to the description of experimentally available

systems in optics and due to the possibility to construct

relevant solutions in a semiexplicit form. Pursuing this line

of the analysis, Kominis (2006) constructed analytical soliton

solutions in the periodic nonlinear KP system, built as a

periodic concatenation of linear and nonlinear layers.

Stationary soliton profiles in the system of this type are

described by the following stationary equation: d2w=dx2 þ
½VðxÞ ���wþ Rðx; w2Þw ¼ 0, where fVðxÞ; Rðx; w2Þg ¼
f"n;N ðw2Þg in nonlinear layers with a general nonlinearity

law, N ðw2Þ, and fVðxÞ; Rðx; w2Þg ¼ f"l; 0g in the linear

layers. This equation was solved by analyzing ðw; dw=dxÞ
diagrams in the respective phase space. The full solution was

obtained by matching partial solutions found inside the linear

and nonlinear layers, under the condition of the continuity of

w and dw=dx, for the case when the propagation constant is

such that in the linear layers the equation admits sinusoidal

solutions, while the nonlinear equation, by itself, gives rise to

the usual solitons. It was shown that for � corresponding to

the case when linear layers of width L contain an integer

number of half-periods of the sinusoidal solution, i.e.,

�n ¼ "l � ðn�=LÞ2, n ¼ 1; 2; . . . , the continuity conditions

are met at all boundaries, and any solution to the NLSE

starting from a point of the homoclinic orbit inside the non-

linear part at some x returns to the homoclinic orbit after

passing the linear part. Then, it follows the homoclinic orbit

again. Thus, although periodically interrupted by passing the

linear segments, the solution asymptotically approaches the

origin at x ! �1. This is shown in Fig. 5, where the phase-

space representations of the homoclinic orbit and linear

system are superimposed. The branches of the constructed

solutions coincide with parts of the soliton profile and parts of

the periodic orbits generated by the linear equation. The

information about the full shapes of the solutions can be

obtained from the phase-space portrait: For odd n, the solu-

tions lie in both parts of the homoclinic orbit and thus change

their sign between the nonlinear layers, while modes with a

constant sign of w, lying only on one branch of the homo-

clinic orbit, are obtained for even n. Using this method, not

only localized but also periodic solutions can be constructed.

The shapes of the solutions are given bywðxÞ ¼ ð�1Þnkvðx�
kL;�nÞ in nonlinear layers, and wðxÞ ¼ ak sin½ð"l �
�nÞ1=2xþ
k� in linear ones, where vðxÞ is the soliton solu-

tion of the corresponding nonlinear equation with constant

coefficients corresponding to propagation constant �n, while

ak, 
k are directly obtained from the continuity conditions.

Typical examples of the solitons for the self-focusing cubic

nonlinear layers with "n < "l, where v ¼ �ð�� "nÞ1=2
sech½ð�� "nÞ1=2x�, existing for discrete values of the

propagation constant, "n < �n < "l, are shown in Figs. 5(c)

and 5(d). The modes corresponding to n ¼ 2 and, 3, obtained
by dint of this method, may be stable upon the propagation.

FIG. 4 (color online). (Color online) The number of bosons

(norm) vs energy (chemical potential) E in the first gap EðþÞ
1 < E <

Eð�Þ
2 in the dynamical model of the 87Rb� 40K (boson-fermion)

mixture. (a) and (b) correspond to different signs of average

nonlinearity coefficient � near the EðþÞ
1 edge of the gap. (c), (d),

and (e) show explicit shapes of the modes corresponding to different

points on the solution branches, while (f) shows the dynamics of

mode G (in the insets the initial and final shapes are shown by solid

lines). From Bludov and Konotop, 2006.

Yaroslav V. Kartashov, Boris A. Malomed, and Lluis Torner: Solitons in nonlinear lattices 265

Rev. Mod. Phys., Vol. 83, No. 1, January–March 2011



An extended discussion of this method of the construction of

analytical solutions in nonlinear systems with piecewise-

constant parameters has been given by Kominis and

Bountis (2010).
A similar approach was utilized by Kominis and Hizanidis

(2006) to construct spatially extended dark solitons (i.e.,

localized excitations on a finite periodic background) in the

KP model with defocusing layers. In this case, the solutions

inside the layers with the cubic nonlinearity are v ¼ �½ð"n �
�Þ=2�1=2 tanhð½ð"n ��Þ=2�1=2xÞ, with �< "n. The differ-

ence between the previous situation and this case is that the

system is supposed to have a heteroclinic orbit (on the con-

trary to its homoclinic counterpart corresponding to the bright

soliton), and the solution returns to this heteroclinic orbit,

after passing a linear layer, and asymptotically approaches

saddle points as x ! �1. It is worth mentioning that, in

contrast to the case of the self-focusing nonlinearity, this

method predicts the existence of an infinite set of solutions

for the defocusing nonlinearity, corresponding to values of

the propagation constant �n < "n, "l, that can be found even

for "n ¼ "l. Some of the dark solitons obtained by means of

this method were shown to be stable.
In a similar vein, Rapti et al. (2007) studied the competi-

tion of shallow linear and nonlinear lattices and its effect on

the stability and dynamics of bright solitons. Both lattices

were considered in a perturbative framework, and the tech-

nique of the Hamiltonian perturbation theory was utilized to

obtain information about the existence of solutions and con-

ditions for their linear stability. A particularly interesting

result found in that context is a tunable cancellation of

the pinning potential induced by the weak linear and non-

linear lattices, which gives rise to an increased mobility

of the solitons. Starting from the respective NLSE,

iqt ¼ �ð1=2Þqxx � ½1þ "RðxÞ�jqj2qþ "VðxÞq with linear,

VðxÞ ¼ B cosðk2xþ
Þ, and nonlinear, RðxÞ ¼ A cosðk1xÞ,
harmonic lattices and " � 1, the dynamics of the

excitation was considered in the form of qðt ¼ 0Þ ¼
�1=2sech½�1=2ðx� Þ�, with a center at the point x ¼ ,
that would be an exact stable soliton solution for " ¼ 0. If
" � 0, the translational invariance of the equation is broken,
which may naturally lead to the drift mode of the destabiliza-
tion of localized states. It was shown that the evolution of the
soliton’s center obeys d2=dt2 ¼ �ð1=NÞ@Veff=@, where N
is the norm of the soliton, and the effective potential can be
easily evaluated from the perturbing part of system’s
Hamiltonian as Veff ¼ "

R1
�1½VðxÞjqj2 � ð1=2ÞRðxÞjqj4�dx.

After the substitution of the presumed sech-soliton shape,
this yields

Veff ¼ �ð"�=12ÞAk1ðk21 þ 4�Þ cosðk1Þ
sinhð�k1=2�1=2Þ

þ "�Bk2
cosðk2þ
Þ

sinhð�k2=2�1=2Þ : (25)

Equation (25) provides a basis for understanding the dynam-
ics of the soliton for different values of the parameters of the
linear and nonlinear lattices. Using this approach and also
calculating eigenvalues of the associated linearized problem,
it was demonstrated inter alia that a gradual increase of the
NL amplitude A can stabilize otherwise unstable solitons
residing at maxima of the linear potential (which corresponds
to minima of the refractive index in optics). A similar effect
can be achieved by increasing the wave number k1 of the NL.
The variation of A and k1 is accompanied by corresponding
deformations of the effective potential (25), so that a
minimum develops around the position of the input soliton
at certain parameter values, resulting in the stabilization of
the soliton. For k1 ¼ k2 and 
 ¼ 0, Eq. (25) predicts the
mutual cancellation of the effective potentials induced by the
linear and nonlinear lattices at Acr ¼ 12B=ðk21 þ 4�Þ, thereby
restoring a regime of the effective translational invariance.
In this regime, tilted solitons propagate without trapping,
keeping their initial velocities and undergoing only small-
amplitude modulations under the action of the effective
potential, which is very weak in this case.

The stability and drift of soliton modes in the presence of
competing linear and nonlinear harmonic lattices with an
arbitrary amplitude of the modulation of the refractive index
and nonlinearity (but still in the regime of the continual
medium) were studied by Kartashov et al. (2008b). They
considered the competition between out-of-phase linear and
nonlinear lattices, with the beam’s dynamics obeying (in the
optical notation) iqz ¼ �ð1=2Þqxx � ½1� �RðxÞ�jqj2q�
pRðxÞq. Such lattices, with different depths of nonlinearity
modulation �, support a variety of solutions including odd,
even, dipole, and triple-mode solitons. The power of the
simplest odd soliton increases monotonically with an increase
of the peak amplitude, while the intensity maximum remains
in the same channel only if the nonlinearity modulation is not
too deep; otherwise, the spatially nonuniform self-focusing
dominates over the linear refraction, resulting in the deflec-
tion of light towards regions where the nonlinearity is
stronger. Eventually, this results in the development of two
peaks located around minima of RðxÞ, while the soliton’s
norm becomes a nonmonotonic function of the propagation
constant. In contrast, even (symmetric) solitons, which have

FIG. 5 (color online). (Color online) The phase-space construc-

tion of asymptotic (solitary) solutions for odd n (a) and even n (b),

in the model with the nonlinear lattice of the Kronig-Penney type.

Black dots depict the transition at the boundary between linear and a

nonlinear layers. Examples of solitons corresponding to n ¼ 2 (c)

and 3 (d). Shaded areas indicate nonlinear layers. From Kominis,

2006.
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two intensity maxima at low amplitudes, may fuse into a

single peak located between the maxima of R. Therefore,
the nonlinearity modulation gives rise to unusual power-

controlled shape transformations of the lattice solitons.

Multipole-mode solitons may cease to exist in this setting if

the nonlinearity modulation depth exceeds a certain critical

value, which is again in contrast to properties of multipoles in

the linear lattice. While the VK stability criterion is satisfied

for fundamental odd solitons, they may become unstable due

to the nonlinearity modulation above a critical power. This is

accompanied by a violation of the spectral stability criterion

(Fibich et al., 2006). The resulting drift instability causes a

rapid displacement of the soliton into regions where R attains

a local minimum. The stability domain for odd solitons

vanishes completely for sufficiently large �, while the entire
family of even solitons may become stable at the same point.

The soliton mobility in this setting is intimately related to

their stability. To set a soliton in motion across the lattice, one

has to kick it by the application of the phase tilt, i.e., multi-

plying the soliton by expði�xÞ. While in the usual linear

lattices, the critical tilt, at which the soliton starts to move,

grows rapidly and monotonically with the power. In NLs the

critical tilt turns out to be a nonmonotonic function of the

propagation constant; see Fig. 6(a). It completely vanishes

not only in the linear limit, but also exactly at the point where

the odd solitons become unstable. Very small tilts may result

in an almost radiationless motion of odd solitons across the

lattice in the region of their drift instability. Even for tilts

slightly exceeding the critical value, the solitons move across

the lattice almost without losses and do not experience trap-

ping, even in the stability region [Fig. 6(c)]. The situation is
similar for even solitons that become mobile at the edge of
their stability domain [see Fig. 6(b) for the corresponding
critical tilt]. Note that similar enhancement of the mobility
due to the stability inversion is possible in discrete systems, as
discussed by Öster et al. (2003) (see Sec. IV F), and by
Susanto et al. (2007).

The power-dependent location of stationary solitons and
their stability in linear-nonlinear lattices was analyzed by
Kominis and Hizanidis (2008). While it is known that in
the simplest 1D linear lattices with the harmonic spatial
modulation of the refractive index the soliton’s position and
stability do not depend on its power, it was shown that in
more complex structures, where the refractive index, nonline-
arity, or both of them are modulated with multiple wave
numbers, the position and stability of the soliton become
functions of the power [see also Sakaguchi and Malomed
(2010)]. Melnikov’s theory was used to study the respective
power-dependent bifurcations and to determine specific posi-
tions, with respect to the spatial structure, where solitons can
be located. This theory allows a simple analytical treatment
of a large variety of the refractive-index and nonlinearity
landscapes, even shifted ones or with incommensurate spa-
tially periodic modulations. The corresponding NLSE was
taken as iqz þ qxx þ 2jqj2qþ "½VðxÞqþ RðxÞjqj2q� ¼ 0,
which gives rise to soliton solutions q ¼ wðxÞ expði�zÞ.
The resulting equation for stationary profiles wðxÞ corre-
sponds to a one-degree-of-freedom dynamical system with
the Hamiltonian H ¼ ð1=2Þðp2 ��q2 þ q4 þ "½VðxÞq2 þ
RðxÞq4�Þ, written in terms of the variables ðq; pÞ ¼
ðw; dw=dxÞ. The last term in the Hamiltonian, representing
linear and nonlinear lattices, was treated as a first-order
perturbation. The case of �> 0 was considered, for which
a homoclinic (bright) soliton solution exists in the unper-
turbed translationally invariant system. This solution is
formed by the merger of the stable and unstable manifolds
of the hyperbolic saddle point located at the origin in the
phase space. This highly degenerate structure is expected to
break under perturbations and may perhaps yield transverse
homoclinic orbits or no orbits at all. Thus, the solution to the
unperturbed NLSE, fq0;p0g¼ f��1=2sech½�1=2ðx�x0Þ�;�
�sech½�1=2ðx�x0Þ� tanh½�1=2ðx�x0Þ�Þg, describes an infi-
nite number of solutions homoclinic to the origin, ðq; pÞ ¼
ð0; 0Þ, which correspond to different x0. The Melnikov’s
theory predicts that, in the presence of perturbations, only a
discrete set of such solutions may persist, corresponding to
values of x0 given by zeros of the corresponding Melnikov
function,Mðx0Þ ¼ �"

Rþ1
�1 p0ðxÞ½VðxÞq0ðxÞ þ RðxÞq30ðxÞ�dx.

For the generic form of the modulation of the linear refractive
index, V ¼ P

mam cosðkmxþ
mÞ, and nonlinearity, R¼P
mbmcosðrmxþ’mÞ, one thus obtains

Mðx0Þ ¼ "��1=2

2

X
m

amk
2
m

sinhð�km=2�1=2Þ sinðkmx0 þ
mÞ

þ "��1=2

24

X
m

bmr
2
mðr2m þ 4�Þ

sinhð�rm=2�1=2Þ sinðrmx0 þ’mÞ:

(26)

Note that the structure of the Melnikov function (26) closely
resembles the effective potential (25). By using Eq. (26), one

FIG. 6 (color online). (Color online) The critical angle vs propa-

gation constant � for (a) odd and (b) even solitons in lattices with

out-of-phase modulation of linear refractive index and nonlinearity.

(c) The propagation dynamics of odd solitons with � ¼ 9:8,
launched into the lattice at two different angles. Distributions of

the absolute value of the field corresponding to different input

angles are superimposed. In all cases, � ¼ 0:4. From Kartashov

et al., 2008b.
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can determine not only stationary positions of solitons that

correspond to zeros of (26), apparently depending on �
(hence, on the soliton power), but also make conclusions

about the stability of the solitons, which depends on the

sign of derivative @M=@x0.
The KP system may also be used as a natural model for 1D

photonic crystals, built as a periodic lattice of waveguiding

nonlinear channels of width D, separated by empty channels

of width L�D. Mayteevarunyoo and Malomed (2008) ana-

lyzed spatial solitons in the model of this type with defocus-

ing nonlinearity in the waveguiding channels. In that setting,

several interesting effects were predicted due to the competi-

tion between the linear trapping potential and the defocusing

nonlinear pseudopotential. The impact of the ratio D=L,
which determines the band-gap structure of the lattice’s

spectrum, on the properties of solitons emerging in different

finite band gaps was studied. It was found that for D=L ! 1
properties of solitons in this version of the KP model ap-

proach those of usual GSs, but for D=L� 1=2 they are quite

different. For a fixed peak value of the refractive index, the

solitons cease to exist when D=L becomes smaller than a

certain critical value. In addition to the fundamental single-

peak solitons, families of spatially symmetric (even) modes

with two, three, or four peaks were obtained. For such states,

the norm is a decreasing function of propagation constant �,

and all the modes get strongly stretched near gap edges.

It was found that, while for D=L� 0:75 such solitons are

stable, for the intermediate case, D=L� 0:50, there exists an
intrinsic stability border in the middle of the second band

gap. The transition from stable to unstable solutions goes

through a specific flat-top shape; see Fig. 7. Deeper into

the instability region, where the self-defocusing nonlinear

pseudopotential becomes stronger than the trapping linear

potential, higher-order solitons develop inverted shapes:

Peaks emerge above the flat-top background, placing them-

selves in empty spaces between the guiding channels. In the

model with narrow channels, D=L� 0:25, fundamental and

higher-order solitons exist only in the first finite band gap,

where they are stable, despite the fact that they also feature

inverted shapes with peaks in linear layers.
The materials with transversally inhomogeneous nonline-

arity and linear refractive-index landscapes can support not

only localized soliton solutions, but also periodic or modu-

lated amplitude waves (Porter et al., 2007). Such nonlinear

waves are also physically interesting objects. For the land-

scapes where nonlinearity RðxÞ does not change its sign, the

introduction of the wave amplitude as 	 ¼ R1=2q transforms

the original NLSE with inhomogeneous nonlinearity RðxÞ
and linear potential VðxÞ into i	z ¼ �ð1=2Þ	xx þ j	j2	þ
VðxÞ	þ VeffðxÞ	, where the inhomogeneity of the nonline-

arity is mapped into the effective potential VeffðxÞ ¼
ð�00=2�Þ � ð�02=�2Þ þ ð�0=�Þ@=@x, with � ¼ R1=2. For

RðxÞ ¼ r0 þ r1sin
2ðkxÞ and r1 � r0, this can be approxi-

mated by a superlattice potential plus a first-derivative op-

erator term. Approximate harmonic analytical solutions to

this equation were found in the small-amplitude limit. Further

investigations showed that such solutions are weakly un-

stable, although the on-site periodic waves, whose maxima

coincide with maxima of the NL, are more robust than their

off-site counterparts.

In addition to models with periodically modulated non-
linearity and a local refractive index, several settings were
considered with parabolic linear potentials and unusual non-
linearity profiles. These results constitute a relevant addition
to the studies of solitons in the mixed linear-nonlinear latti-
ces. In particular, Theocharis et al. (2005) investigated the
dynamics of dark and bright matter-wave solitons for the
nonlinearity coefficient linearly varying in the transverse
direction, viz. RðxÞ ¼ 1þ �x. In this case, the spatially
dependent nonlinearity leads to a quasigravitational poten-
tial, as well as to a renormalization of coefficient �2 of the
parabolic potential VðxÞ ¼ �2x2=2, a feature that allows one
to control the motion of fundamental and higher-order sol-
itons. By treating the linear and nonlinear potentials as
perturbations and considering the motion of the input funda-
mental soliton, qðz ¼ 0Þ ¼ �1=2sech½�1=2ðx� x0Þ� expðikxÞ,
with width ��1 much smaller than the characteristic spatial
scale of the trapping potential, ��1=2, and the scale of the
nonlinearity variation, ��1, the following equation was de-
rived for the motion of the soliton’s center:

d2x0
dz2

¼ � @Vðx0Þ
@x0

þ �

6R2ðx0Þ
@R2ðx0Þ
@x0

: (27)

FIG. 7 (color online). (Color online) (a) A stable three-peak

soliton in the second band gap at � ¼ 0:4, in the model of the

1D photonic-crystal waveguide of the Kronig-Penney type. (b) A

weakly unstable nearly flat-top soliton in the second band gap

corresponding to � ¼ 0. (c) An unstable counterpart of the three-

peak soliton with the inverted shape, corresponding to � ¼ �0:22.
In all cases, the nonlinearity is defocusing and D=L ¼ 0:5. Left
panels show the soliton shape, while right panels show the spectral

plane of stability eigenvalues for the respective solitons, � ¼ �r þ
i�i (the soliton is stable if �i ¼ 0). From Mayteevarunyoo and

Malomed, 2008.
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This equation describes the motion of a unit-mass particle in

the presence of the respective potential, Veff ¼ ð1=2Þð�2 �
��Þx20 � �x0 with � ¼ ��=3ð1þ �x0Þ2. The potential

includes an effective gravitational term that induces an ac-
celeration of the soliton toward larger values of x0, a modi-

fication in the frequency of free oscillations of the soliton, and

also shows that the effective potential may vanish or become
expulsive for �� � �2, as shown in Fig. 8. Thus, depending

on the nonlinearity gradient �, the soliton may undergo either
periodic oscillations or accelerate indefinitely. It was demon-

strated that a bound soliton state may split into its constituents

(which will perform oscillations inside the trap, interacting
with each other) due to the inhomogeneous nonlinearity, and

particular solitons with the highest amplitudes may be re-
leased from the trap. Oscillations of dark solitons in traps

with the inhomogeneous nonlinearity were addressed, too.
A related analysis was reported by Zezyulin et al. (2007),

who investigated the stability of higher-order nonlinear

modes of BECs loaded into parabolic trapping potentials

and showed that a local variation of the nonlinearity strength
allows one to create multistable configurations. Stationary

solutions, in the usual form of q ¼ wðxÞ expð�i�zÞ, were
considered for the corresponding GPE, iqt ¼ �qxx þ x2qþ
Rjqj2q. In the case of the uniform nonlinearity, several

branches of the solutions were found. Each branch displays
a one-to-one correspondence between the chemical potential

and the norm, bifurcating from states of the linear harmonic

oscillator. The solutions corresponding to the first two
branches (fundamental solitons and dipoles) are linearly

stable, while higher-order solutions are linearly unstable for
both attractive and repulsive nonlinearities (in particular,

third-order solutions with the repulsive nonlinearity are sta-

bilized above a critical value of the norm). This picture

drastically changes for the steplike nonlinearity, with

R ¼ Rþ for x > 0 and R ¼ R� for x < 0. In this case, the

branches of solutions that were monotonic for constant R
exhibit a snakelike behavior with a number of turning points

which increases with the number of the branch n, i.e., the
number of poles (constituents) in the soliton (Fig. 9). The

increase of the norm is accompanied by a gradual localization

inside the attractive part of the space (at x < 0). The stability
of the solutions on each branch depends on the parameter

range, as indicated by bolder regions (stable solitons) against

lighter ones (unstable solitons) in Fig. 9. Regions of the

stability and instability in this setting may alternate several

times along each branch of the solutions, and there exist

regions of multistability (the simultaneous existence of sev-

eral stable solitons with equal values of �, belonging to a

common branch), a phenomenon that is not present in the

case of the spatially uniform nonlinearity. The evolution of

bright solitons in parabolic trapping potentials and Gaussian

nonlinearity landscapes, as well as the evolution of dark

solitons in periodic nonlinearity landscapes, were also studied

numerically by Hao et al. (2008).
Perez-Garcia and Pardo (2009) investigated properties of

fundamental solitons in the NLSE with spatially inhomoge-

neous interactions, trapped in strong box-shaped and para-

bolic potentials. They showed that, when the nonlinearity is

repulsive and vanishes (or its coefficient takes smaller values)

in a certain spatial region, the localization of the atomic

density, n ¼ w2, occurs in the regions where the nonlinearity

vanishes. This localization becomes more and more pro-

nounced with an increase of the soliton’s norm. The chemical

potential has a cutoff value in such systems (the norm

diverges at the cutoff point); hence, it takes values in a finite

interval. When the norm of the soliton becomes sufficiently

FIG. 8. Top panels: Effective potential Vðx0Þ as a function of the

soliton’s central coordinate x0 with the trap’s strength � ¼ 0:05, for
a fundamental bright soliton of the unit amplitude, initially placed at

the trap’s center ½x0ð0Þ ¼ 0�, in the model of the collisionally

inhomogeneous BEC. Different values of the gradient modify the

character of the potential: in (a) it is purely attractive, while in (b) it

is either purely gravitational ð� ¼ ffiffiffi
3

p
�Þ or expulsive ð� ¼ 2�Þ.

Bottom panels: The motion of the center of the bright soliton inside

(c) an attractive effective potential, and (d) gravitational or expul-

sive potentials. From Theocharis et al., 2005.

FIG. 9. (a) Three lowest branches of soliton solutions with

R� ¼ �1, in the model of the nonlinearity management for BEC.

Shown is the number of particles N vs chemical potential �. The

bolder regions of curves �n correspond to stable solutions, while the

lighter ones correspond to unstable ones. Regions of the multi-

stability are shaded. The explicit shapes of stable modes close to the

linear limit are shown in the insets. (b) The same as in (a) but for

Rþ ¼ 5, R� ¼ �1. From Zezyulin et al., 2007.

Yaroslav V. Kartashov, Boris A. Malomed, and Lluis Torner: Solitons in nonlinear lattices 269

Rev. Mod. Phys., Vol. 83, No. 1, January–March 2011



large, the density grows only in regions with vanishingly
weak interactions, while in regions with nonzero interactions
the density remains virtually unchanged. By tuning the con-
trol (magnetic or optical) fields, in terms of BECs, this
phenomenon can be used to design regions with large particle
densities in various geometries.

A related idea of the creation of BEC configurations with
unusual spatial density distributions, when the nonlinearity is
tuned from attractive (at the periphery of the BEC cloud) to
repulsive (in the center of the cloud) by a far-off-resonant
optical field in an external parabolic linear potential was
proposed by Dong et al. (2006). It was found that this setting
is characterized by the existence of a certain maximal sol-
iton’s norm, above which one cannot find localized soliton
solutions.

2. Effects of commensurability between linear and nonlinear

lattices

An interesting aspect of the soliton dynamics in the 1D
model combining the linear and nonlinear lattices is a possi-
bility to study effects induced by the commensurability and
incommensurability between the two lattices. This problem
was recently studied by Sakaguchi and Malomed (2010). The
analysis was based on the following variety of the GPE:

i
@q

@t
¼�1

2

@2q

@x2
�½"cosð2�xÞ�gcosð�qxÞjqj2�q; (28)

where g ¼ �1 or g ¼ þ1, the period of the linear lattice
is scaled to be Llin ¼ 1, and the commensurability index
q determines the period of its nonlinear counterpart,
Lnonlin ¼ 2=q. Three basic cases were considered, viz., the
direct commensurability between the lattices, Llin ¼ Lnonlin,
i.e., q ¼ 2, subharmonic commensurability, corresponding
to Llin ¼ Lnonlin=2, i.e., q ¼ 1, and q ¼ 51=2 � 1, which rep-
resents the case of incommensurability.

Fixing " > 0 and placing the center of the solitons at x ¼ 0,
a family of solitons (termed ordinary ones), that resemble
usual odd (on-site-centered) lattice solitons, was found for
g ¼ þ1, while for g ¼ �1 one obtains a GS family. The
general shape of the families of both the ordinary solitons
and GSs in the case of the direct commensurability, q ¼ 2, are
similar to their counterparts in the usual models with the
uniform nonlinearity: There is no existence threshold, and
whole families are stable [the case of commensurate linear
and nonlinear lattices with a nonzero average value of the
nonlinearity coefficient, corresponding to the repulsion, was
considered by Bludov, Brazhnyi, and Konotop (2007), who
concluded that a finite existence threshold in terms of the norm
may exist in that case].

Properties of both the ordinary and GS families are, how-
ever, completely different in the cases of the subharmonic
commensurability, q ¼ 1, and incommensurability, q ¼
51=2 � 1. Namely, in both cases there is a finite threshold
norm necessary for the existence of the solitons, similar to the
case of the purely nonlinear lattice (Sakaguchi and Malomed,
2005a), which was considered in Sec. IVA1, and only parts
of the soliton families are stable, viz., those with d�=dN < 0
and d�=dN > 0, concerning the ordinary solitons and GSs,
respectively. The former stability condition is equivalent to
the usual VK criterion, while the latter one, termed the anti-

VK criterion by Sakaguchi and Malomed (2010), is specific
to GSs and may be justified with the help of the averaging
approximation. The corresponding dependencies �ðNÞ are
shown in Figs. 10(a) and 10(c). Note that the �ðNÞ curves
for the GS families in Fig. 10(c) feature turning points, except
for the case of the direct commensurability ðq ¼ 2Þ. The
presence of the turning points makes it possible to actually
test the validity of the anti-VK criterion. Stability borders for
ordinary and gap solitons are shown in Figs. 10(b) and 10(d),
respectively. All ordinary solitons are stable above the border
shown in Fig. 10(b), while in the case of GSs there is a
single stable GS above the upper and beneath lower lines in
Fig. 10(d), and three solitons—two stable and one unstable—
in the bistability region between the two lines.

For the analytical consideration of the broad GSs whose
chemical potential � is close to the edge of the first finite
band gap, one can adopt the ansatz qðx; tÞ ¼ �ðx; tÞ cosð�xÞ,
where the second multiplier emulates the respective Bloch
function, and �ðx; tÞ is a slowly varying function, for which
an effective equation can be derived by means of the averag-
ing method:

i
@�

@t
¼ � 1

2meff

@2�

@x2
þ geffj�j2�: (29)

Here the effective mass is meff ¼ �"=ð2�2 � "Þ, and geff ¼
hcos4ð�xÞ cosð�qxÞi is the spatially averaged nonlinearity
coefficient, which is different from zero in the following

FIG. 10. (a), (c) Chemical potential � vs norm N at different

values of the commensurability factor, q, for ordinary and gap

solitons, respectively, in the BEC model including mutually com-

mensurate or incommensurate linear and nonlinear lattices. (b), (d)

The stability boundary for ordinary and gap solitons, defined as per

the VK criterion by the condition d�=dN ¼ 0. Note that the

threshold value of the norm necessary for the existence of the

solitons, of both the ordinary and gap types, vanishes at two points,

q ¼ 0 and 2, which correspond, respectively, to the models with the

constant nonlinearity coefficient, and with the direct commensura-

bility between the linear and nonlinear lattices. From Sakaguchi and

Malomed, 2010.
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cases: geffðq ¼ 0Þ ¼ 3=4, geffðq ¼ 2Þ ¼ 1=2, and geffðq ¼
4Þ ¼ 1=8. The present description of the GSs makes sense
if, as usual, the approximation yields meff < 0, as the GSs are
supported by the interplay of the repulsive nonlinearity,
geff > 0, and the negative effective mass [see Brazhnyi and
Konotop (2004) and Morsch and Oberthaler (2006)].
Equation (29) predicts a width-amplitude relation W � 1=A,
for broad gap solitons at q ¼ 2, i.e., in the case of the direct
commensurability.

In the case of the subharmonic commensurability, q ¼ 1,
where the previous approach yields geff ¼ 0, one may use an
approximation with two slowly varying amplitudes, qðx; tÞ ¼
½�1ðx; tÞ cosð�xÞ þ�4ðxÞcos4ð�xÞ� expð�i�tÞ. After the
elimination of the amplitude �4ðxÞ in favor of �1ðxÞ, this
approximation leads to the stationary equation with an effec-
tive quintic nonlinearity, while the cubic term does not
appear:

��1¼� 1

2meff

d2�1

dx2
� 15meff

8ð�2�2meff�Þj�1j4�1: (30)

Equation (3) admits exact soliton solutions �1ðxÞ ¼
A=cosh1=2ðkxÞ, with A2 ¼ ð4�2 þ k2Þ1=2k=ð201=2meffÞ and
� ¼ �k2=8meff , where the inverse width k is an arbitrary
parameter of the soliton family. These solutions are charac-
terized by scaling W � 1=A2.

Sakaguchi and Malomed (2010) showed that the analytical
approach based on the averaging method may also be applied
to the ordinary broad solitons. In addition, direct simulations
demonstrate that broad solitons of both types are mobile,
as the application of a kick to them, i.e., multiplication by
expðiPxÞ with arbitrary momentum P, can readily set them in
stable motion. On the other hand, collisions between such
moving solitons are essentially inelastic, giving rise to a
generation of additional solitons.

3. Models admitting exact solutions

A possibility of designing special models including non-
linear and linear lattices which admit exact solutions for
trapped states is a subject of much interest, as exact solutions
provide specific insight into properties of models of the
present type. As said above, an approach to this problem
was elaborated by Belmonte-Beitia et al. (2007), who con-
structed models that, together with appropriate solutions,
could be transformed into the NLSE with constant coeffi-
cients. Another class of models which support particular
solutions for exact periodic and solitary modes, and which
cannot be reduced to the usual NLSE, was recently intro-
duced by Tsang et al. (2011). The corresponding GPE was
taken as

i
@�

@t
þ 1

2

@2�

@x2
þ RðxÞj�j2�� VðxÞ� ¼ 0: (31)

Its exact solutions have been obtained on the basis of the
Jacobi’s elliptic functions of three types, viz., cn, dn, and sn.
In the absence of the linear potential ðV ¼ 0Þ, the cn-type
waves were constructed in the form of

�ðx; tÞ ¼ A0cnðx; kÞ
½1þ bcn2ðx; kÞ�1=2 expð�i�tÞ;

A2
0 ¼ g0½�bð2þ 3bÞ þ ð1þ bÞð1þ 3bÞk2�;
� ¼ ½1þ 3b� ð2þ 3bÞk2�=2:

(32)

These exact solutions are supported by the following form of
the nonlinearity-modulation function:

RðxÞ ¼ g0 þ g1cn
2ðx; kÞ

1þ bcn2ðx; kÞ ;

g1 ¼ g0b

2

bð1þ 3bÞ þ ð1þ bÞð1� 3bÞk2
bð2þ 3bÞ � ð1þ bÞð1þ 3bÞk2 :

(33)

Here the modulus of the elliptic cosine k and constant b,
which take values, respectively, 0< k  1 and b >�1, are
two free parameters of the solution family. An additional sign
parameter g0 ¼ �1 corresponds to the nonlinearity which is,
on average, attractive or repulsive. The above cn-type waves
may be stable at g0 ¼ �1, �1< b<�1=2. An example of
such a stable wave is shown in Fig. 11(a). Note that, in
the entire stability area of these waves, the nonlinearity-
modulation function RðxÞ in Eq. (31) is a sign-changing
one. Exact periodic solutions to NLSE (31) with R ¼ const
were found earlier by Carr et al. (2000) and Bronski et al.
(2001).

Two other families of solutions to Eq. (31), based on
elliptic functions dn and sn, were also constructed. Unlike
the cn-type solutions, they may be stable only when the
periodic modulation of the nonlinearity coefficient RðxÞ is
combined with the action of a specially chosen linear poten-
tial VðxÞ, i.e., in the case of the mixed linear-nonlinear lattice.
In particular, the dn-type solution can be written as

�ðx; tÞ ¼ A0dnðrx; kÞ
½1þ bdn2ðrx; kÞ�1=2 expð�i�tÞ;

A2
0 ¼

3br2ð1þ bÞ½bk2 � ð1þ bÞ�
2ðg1 � g0bÞ ;

� ¼ r2½ð1þ 3bÞk2 � ð2þ 3bÞ�=2;
(34)

with the corresponding modulated nonlinearity coefficient
and linear potential given by

FIG. 11. (a) An example of the stable evolution of a perturbed cn-

type wave near the edge of its stability area at g0 ¼ �1, b ¼ �0:7,
k ¼ 0:95, in the model of the nonlinear lattice admitting exact

periodic solutions in terms of the elliptic functions. (b) An example

of the stable evolution of a perturbed dn-type wave with g0 ¼ þ1,
g1 ¼ �2, b ¼ r ¼ 1, and k ¼ 0:9. From Tsang et al., 2011.
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RðxÞ ¼ g0 þ g1dn
2ðrx; kÞ

1þ bdn2ðrx; kÞ ;

VðxÞ ¼ V0dn
2ðrx; kÞ

1þ bdn2ðrx; kÞ ;

V0 ¼ r2

2
þ br2

2
½ð3bþ 1Þk2 � ð3bþ 2Þ�

� 3g1ðbþ 1Þ
2ðg0b� g1Þ ½bk

2 � ð1þ bÞ�:

(35)

Unlike the solutions obtained for V ¼ 0, which include two
free continuous parameters, the family based on Eqs. (34) and
(35) depends on four independent parameters, viz., g1, r, b, k,
while g0 ¼ �1 is the additional sign coefficient, as before.
Unlike the family of the cn-type waves, which is stable only
with g0 ¼ �1, the dn-type waves are stable at g0 ¼ þ1,
when the average nonlinearity is attractive (exact solutions
of the third type, based on the functions sn, may be stable
only for g0 ¼ �1, like their cn counterparts, but solely if
an appropriate linear potential is added). A typical example
of the stable evolution of the dn-type wave is shown in
Fig. 11(b). A noteworthy feature of this solution is that
maxima of the density j�ðxÞj2 coincide with maxima of
VðxÞ and with minima of RðxÞ (i.e., linear and nonlinear
potentials are competing ones, in this case). These periodic
solutions reduce to solitons in the limit of k ! 1.

4. Lattices with a local nonlinear defect

A simple physical system where the periodic modulation
of the linear refractive index is combined with a spatially
inhomogeneous nonlinearity is represented by a periodic KP
lattice with a single nonlinear defect, which represents a thin-
layer nonlinear waveguide. Solitons supported by such latti-
ces were analyzed by Sukhorukov and Kivshar (2001). In
that work, the linear lattice VðxÞ was approximated by a
piecewise-constant function, while the defect was accounted
for by a specific term �ðxÞð�þ �jqj2Þq, where �ðxÞ is the
delta function, while positive or negative� corresponds to the
self-focusing or defocusing. Different situations were ana-
lyzed, corresponding to possible combinations of the signs of
coefficients � and � (the latter defines the defect in the linear
limit). In particular, for positive defects with �> 0, localized
modes exist already in the linear regime. The modes originat-
ing in both semi-infinite and first finite band gaps, bifurcating
from the corresponding linear states, are stable in the quasi-
linear regime but destabilize as their amplitudes increase. In
the case of the focusing nonlinearity and negative defect, with
�< 0,�> 0, all modes with symmetries identical to those of
modes that were stable in linear regime for �, �> 0 become
unstable, but a new stable (antiwaveguiding) mode appears in
the first finite gap. In the case of the defocusing nonlinearity
and negative defect with �, �< 0, only modes of this latter
type may exist and may be stable in the first finite gap.
Finally, positive defects with the defocusing nonlinearity
(�> 0, �< 0) support localized waves bifurcating from
linear modes in both semi-infinite and first finite gaps, and
also antiwaveguiding modes that exist above a certain thresh-
old power, which is necessary to change the overall response
of the defect from focusing to defocusing. Modes of all three
types can be stable in a part of their existence domain.

C. Two-component (vectorial) models

The generalization of the concept of solitons in NLs to
multicompoment settings is of much interest, since the inter-
action between several optical fields (or atomic species in a
BEC) may result in the stabilization of otherwise unstable
states and the appearance of more complicated soliton fam-
ilies with components featuring different symmetries. The
properties of localized states of two-component BECs con-
fined in a nonlinear periodic lattice were investigated by
Abdullaev, Gammal, Salerno, and Tomio (2008). They
studied the symmetry of localized states with respect to the
underlying NL and concluded that such lattices can support
bright solitons with the same symmetry in both components,
as well as bright solitons of mixed symmetries, in the form of
combinations of odd and even states, and also dark-bright
solitons and bright modes placed on top of a periodic back-
ground. The evolution of the BEC under the action of the NL
was described by a coupled system of equations for wave
functions q1;2:

i
@q1
@t

¼ � @2q1
@x2

þ ½�1ðxÞjq1j2 þ �12ðxÞjq2j2�q1;

i
@q2
@t

¼ � @2q2
@x2

þ ½�2ðxÞjq2j2 þ �12ðxÞjq1j2�q2;
(36)

where the interspecies interaction strength, �12ðxÞ ¼
g0 þ g1 cosð2xÞ, and the intraspecies nonlinearity strengths,
�nðxÞ ¼ �n0 þ �n cosð2xÞ, n ¼ 1, 2, are periodic functions
of the transverse coordinate. Such lattices may support two-
component (vectorial) solitons with equal or different norms
in the two components. In the simplest soliton solutions,
maxima of atomic densities are symmetric around the mini-
mum of the corresponding pseudopotential induced by the NL.
Such odd-odd modes (here we use the same classification of
stateswhich is commonly utilized for solitons in linear lattices,
see, e.g., Kartashov et al., 2009a) with equal norms of the
components, also have equal chemical potentials �1 ¼ �2,
while for different norms the component with smaller norm
and amplitude has a lower chemical potential. Such modes are
exceptionally robust in sufficiently strong NLs. Besides odd-
odd modes, states were found that are even (i.e., symmetric
around themaximum of the nonlinear pseudopotential) in only
one or in both components. Modes of this type, including odd-
even and even-even solitons, turn out to be unstable. It was also
found that it is possible to couple a localized mode in one
component to an extended mode in the other, so that the
extended state will act as a periodic potential for the localized
mode. This is possible, in particular, in a binary mixture with
the average repulsive interaction in the first component, i.e.,
�10 > j�1j> 0, and average attractive interaction in the sec-
ond component, i.e., �20 <�j�2j< 0. The resulting dark-
bright soliton can be stable, as well as a bright-bright soliton
existing for the same parameters, but with one bright compo-
nent existing on top of the background (such a mode is some-
times also called an antidark soliton).

If the strength of the NL accounting for the interspecies
interactions is varied in time, the odd-odd vectorial solitons
may undergo a delocalizing transition, despite the fact that
the strengths of the intraspecies nonlinearities are kept con-
stant. In this case, upon an adiabatic decrease of g1 to lower
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values and its subsequent return to the original level, the

mode instead of following adiabatically the modifications

of the NL suffers a complete decay. The latter effect is related

to the existence of an unstable localized solution which is

extended over many sites of the NL, and exhibits shrinkage

(decay) for slightly overcritical (undercritical) values of the

norm. For a recent comprehensive survey of results on deloc-

alization transitions in linear and nonlinear lattices, see Cruz

et al. (2009).
The spatially periodic modulation of the nonlinearity en-

ables the existence of complex multihump vectorial states

with different symmetries of the two components, as dis-

cussed by Y. V. Kartashov et al. (2009b). In particular, the

vector solitons composed of dipole and fundamental, or

dipole and even components, exist and may be stable. This

suggests that families of scalar solitons that are unstable

in NLs may be stabilized in the vectorial form, due to the

coupling to a stable second component. In that connection,

the impact of cross-modulation coefficient C on the existence

and stability of complex vector soliton solutions was

considered within the framework of the model based on

coupled equations i@q1;2=@z¼�ð1=2Þ@2q1;2=@�2þ�ð�Þq1;2
ðjq1;2j2þCjq2;1j2Þ, which describe the two-component field

in the NL. The simplest vectorial solitons may appear, for

instance, as a result of the coupling of odd and dipole

components (i.e., featuring two out-of-phase humps), or of

even and dipole ones. The power sharing between the com-

ponents strongly depends on the propagation constants �1

and �2. In particular, at C ¼ 1, with an increase of �1 in

the even-dipole soliton shown in Fig. 12(a), the dipole

component becomes stronger, while its even counterpart is

vanishing, and at�1 ¼ �
upp
1 one observes a transformation of

the vectorial mode into a scalar dipole soliton. In contrast, the

even component becomes more pronounced with a decrease

of�1, and one observes the transformation into an even scalar

soliton at �1 ¼ �low
1 ; see Fig. 12(b). The power sharing

between the components strongly depends on the cross-

modulation coefficient C. Namely, the situation described

takes place at C  1:02, while for C> 1:02 the picture is

just the opposite, with the q1 component vanishing with the

increase of �1. Even though the even component is unstable

in the scalar case, the cross-modulation coupling to a stable

dipole component may result in the complete stabilization of

the vectorial complex. At C ¼ 1, one gets such stabilization

for values of �1 close to �
upp
1 , where the dipole component

is sufficiently strong [see Fig. 12(c), where the stability

domain for such solitons is shown in the (�1; �2) plane,

and Fig. 12(d) where the stability domain is shown in the

ðC;�1Þ plane]. Although at C ¼ 1 even-dipole solitons are

stable only in a rather narrow part of their existence domain,

their odd-dipole counterparts are stable almost in the entire

existence domain. The stabilization due to the cross-

modulation coupling between the two components under

the action of the NLs is expected to also occur for more

complex multihump types of vector solitons.
Explicit solitary-wave solutions of coupled NLSEs with

spatially inhomogeneous nonlinearities were constructed by

Belmonte-Beitia, Perez-Garcia, and Brazhnyi (2009), using

the Lie-group theory. Another approach, which allows one to

transform a system of coupled one-dimensional NLSEs with

variable coefficients in front of the nonlinear terms into a
system with constant coefficients, was proposed by Cardoso
et al. (2010). Finally, it is worth mentioning that Cheng
(2009) studied the interaction of two coupled binary
(two-component) matter-wave bright solitons in the presence
of a spatially varying nonlinearity and derived the corre-
sponding effective potential characterizing the interaction.

D. Symmetry breaking in dual-core nonlinear potentials

Double-well potentials support a wide variety of localized
modes, which include, in addition to the obvious symmetric
and antisymmetric states, asymmetric ones. It is commonly
known from standard quantum mechanics that, without non-
linearity, the full set of eigenstates supported by double-well
potentials splits into alternating symmetric and antisymmetric
subsets. The addition of the nonlinearity changes the situation
through the symmetry-breaking bifurcation (SBB). In the
presence of the focusing nonlinearity, the SBB gives rise, at
some critical value of the nonlinearity strength, to an asym-
metric state which bifurcates from the symmetric one. In the
simplest case, the SBB may be described by the two-mode
approximation, which replaces the underlying partial differ-
ential equation for the wave’s amplitude by a system of two
linearly coupled ordinary differential equations for ampli-
tudes of the waves trapped in the two deep wells, the linear
coupling representing the linear mixing between them due to
the tunneling across the potential barrier which separates the
wells. Likely, SBB was first studied in this approximation in
the context of the general self-trapping problem by Eilbeck

FIG. 12 (color online). (Color online) The profile of an even-

dipole vector soliton at �1 ¼ 2:67, �2 ¼ 3, C ¼ 1, in the model of

the two-component system with the nonlinear lattice. (b) Energy

sharing between components of the even-dipole vector solitons vs

�1 at �2 ¼ 3, C ¼ 1. Domains of stability (white) and instability

(shaded) in the (�1; �2) plane at C ¼ 1 (c), and in the (C;�1) plane

at �2 ¼ 3 (d). From Y. V. Kartashov et al., 2009b.
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et al. (1985), and then by Snyder et al. (1991) in the frame-
work of the model of dual-core nonlinear optical fibers
(optical couplers); it is also worth mentioning an early
work by Davies (1979), which introduced the problem of
the SBB in equations of the NLSE type in an abstract context.

For the BEC loaded into a double-well potential, the two-
mode approximation was developed by Milburn et al. (1997),
both in the mean-field approximation and within the frame-
work of the fully quantum description. Independently, the
mean-field analysis of the double-mode system for the BEC
was reported by Smerzi et al. (1997) [see also the paper by
Raghavan et al. (1999)]. It is worth stressing that, in the case
of the repulsive nonlinearity, which is most relevant to the
BEC, symmetric eigenmodes are not subject to the bifurca-
tion, but another bifurcation generates asymmetric states
from antisymmetric ones (which do not bifurcate in the
case of the self-attraction).

Symmetry-breaking effects were also studied, by
Mayteevarunyoo et al. (2008), in the 1D model based on

the nonlinear pseudopotential of the double-well type. This
situation corresponds to a system with two sharp symmetric
maxima of the nonlinearity coefficient, RðxÞ ¼ �fexp½�ðxþ
1Þ2=a2� þ exp½�ðx� 1Þ2=a2�g=a�1=2 (here a is the width of
each well), which may be realized in the BEC by means of
accordingly applied spatially nonuniform FR management,
or in optics in a planar linear waveguide with two narrow
nonlinear channels embedded into it. In the limit of a ! 0,
one gets RðxÞ ¼ �½�ðxþ 1Þ þ �ðx� 1Þ� [note that a model
based on the NLSE with the self-focusing nonlinearity con-
centrated in the form of a single delta function was introduced
earlier by Malomed and Azbel (1993)]. In the framework of
the model with the two delta functions, one can obtain sta-
tionary analytical solutions, which are continuous every-
where and feature a jump of the first derivative at the
locations of the embedded nonlinear channels, per conditions
@q=@xjx¼�1þ0 � @q=@xjx¼�1�0 ¼ �2ðqjx¼�1Þ3. Such solu-
tions, with chemical potential�, can be written in the follow-
ing form:

qðx; tÞ ¼ e�i�t

8><
>:
B1e

ffiffiffiffiffiffiffi
2j�j

p
ðxþ1Þ; at x <�1;

A0e
�

ffiffiffiffiffiffiffi
2j�j

p
ðx�1Þ þ B0e

ffiffiffiffiffiffiffi
2j�j

p
ðxþ1Þ; at � 1< x<þ1;

A1e
�

ffiffiffiffiffiffiffi
2j�j

p
ðx�1Þ; at x >þ1:

(37)

Using the continuity conditions, one obtains B0 ¼ ðe2
ffiffiffiffiffiffiffi
2j�j

p
A1 � B1Þ=ðe4

ffiffiffiffiffiffiffi
2j�j

p
� 1Þ. Furthermore, three types of

exact solutions can be found: symmetric, antisymmetric, and asymmetric ones. These are given, respectively, by

A1 ¼ B1 ¼ ð2j�jÞ1=4ð1þ e�2
ffiffiffiffiffiffiffi
2j�j

p
Þ�1=2, A1 ¼ �B1 ¼ ð2j�jÞ1=4ð1� e�2

ffiffiffiffiffiffiffi
2j�j

p
Þ�1=2,

ðA1; B1Þ ¼ j�j1=4½ð1þ 2e�2
ffiffiffiffiffiffiffi
2j�j

p
Þ1=2 � ð1� 2e�2

ffiffiffiffiffiffiffi
2j�j

p
Þ1=2�

23=4ð1� e�4
ffiffiffiffiffiffiffi
2j�j

p
Þ1=2

: (38)

The SBB occurs on the branch of the symmetric solutions,
with an increase of amplitude A1 (i.e., with an increase of
��) at the critical point, A1 ¼ 3�1=2ðln2Þ1=2, which cor-
responds to � ¼ �ðln2Þ2=8.

Numerically, the SBB has been analyzed in this model for
finite values of width a of the two wells in the RðxÞ structure
[see also Qian et al. (2008)]. A set of typical bifurcation
diagrams, which show the effective asymmetry of the pinned
pattern, � ¼ N�1ðR1

0 jqj2dx� R
0�1 jqj2dxÞ, versus total

norm N, are shown in Fig. 13. At a ¼ 0, a peculiar feature
of the bifurcation is its entirely subcritical character: The
branches representing the pair of the asymmetric solutions go
backward as unstable ones and never turn forward, which
indicates their full instability. Another peculiarity of this limit
case is that the symmetric branch (which is destabilized by
the bifurcation) ends at a finite value of the norm, Nmax �
2:08. Antisymmetric solutions that never bifurcate are com-
pletely unstable at a ¼ 0. The character of the bifurcation
quickly changes with the increase of a: The backward-going
branches turn forward at some point, which makes them
stable, and, at a > 0:2, the bifurcation becomes supercritical,
giving rise to a pair of forward-going stable branches. At
sufficiently large values of a, both asymmetric and antisym-
metric solutions can be stable.

The results known for the SBB in two-component systems
with linear double-well potentials (Wang et al., 2008) sug-

gest that a challenging extension of the model with the

double-well nonlinear potential would be to consider its
two-component extension. Moreover, the analysis of the
SBB in the model with the two-dimensional linear potential,
represented by a symmetric set of four potential wells (Wang,

Theocharis et al., 2009) suggests that it may be interesting to
analyze the symmetry breaking in the model with a 2D
symmetric pseudopotential, represented by two or four mu-

tually symmetric wells.
Concerning other settings which give rise to the symmetry

breaking, this effect was studied by Wang, Kevrekidis et al.
(2009) in a model combining a linear double-well potential
with a spatially inhomogeneous (steplike) nonlinearity

landscape. The settings were studied where the nonlinearity
was of the same or of different signs in two wells of the
potential. The analysis was based on the continuation of the
symmetric ground state and antisymmetric first excited state

of the noninteracting (linear) limit into their nonlinear coun-
terparts, and it was shown that, even for the weakly inhomo-
geneous nonlinearity, the asymmetry (which is induced by the

spatial dependence of the nonlinearity) causes a modification
of the usual bifurcation picture characteristic to the double-
well potential, and a change in the nature of the symmetry-

breaking bifurcation, from a pitchfork to the saddle-node
type. Vector solitons in double-well nonlinear potentials
were addressed by Tang et al. (2010).
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E. Solitons in layered nanostructures

The shape and stability of subwavelength spatial solitons

of both TM and TE types, trapped in the periodic nano-

structure described by Eqs. (14)–(16), were studied in detail

by Gorbach and Skryabin (2009). To this end, solutions for all

fields were looked for as localized functions of x times

expðiqkzÞ, with the corresponding relative propagation con-

stant q. First, the band-gap structure of the linearized version

of the equations was calculated, for the set of alternating

strips made of silicon and silica. Then, the full nonlinear

equations for the functions of x were solved numerically, and

their stability was studied through numerical solutions of the

respective eigenvalue problem, generated by the linearization

of the full system of equations for small perturbations. Both

the band-gap structure and the nonlinear solutions for the

spatial solitons critically depend on the fact whether the width

of the silica strips s is larger or smaller than the special value

s0 at which the so-called Brewster condition holds, implying

zero reflection of the TM-polarized waves from the intrinsic

interface.
Typical examples of the fundamental TM and TE solitons

(with the subwavelength transverse size) found at s > s0 are
shown in Figs. 14(a) and 14(b). The solitons are classified as

on-site and off-site ones, according to the location of their

centers relative to the strips with the higher value of the

refractive index. The entire families of these solitons are

shown in Figs. 14(c) and 14(d) by means of dependences of

the total power of the solitons on the nonlinear shift of their

propagation constants. In the case of s < s0, the shape of the
on-site and off-site solitons of both the TM and TE types is

more complex, but the general character of the stability

remains the same as in the case shown in Fig. 14., i.e., the

on-site solitons are stable, while their off-site counterparts are
unstable. In fact, this stability pattern is typical for solitons in
discrete and quasidiscrete systems [see Kevrekidis et al.
(2001) and Kevrekidis (2009)]. Note that the coupled-mode
approach for the description of light propagation in an array
of nonlinear plasmonic waveguides was recently developed
by Marini et al. (2010).

F. Interactions of solitons with defects

Among interesting aspects of soliton evolution in 1D
models with inhomogeneous nonlinearity landscapes are in-
teractions of solitons with a local inhomogeneity of the
strength of the nonlinearity. A model of this type was intro-
duced by Abdullaev et al. (2004), in the following form of
the accordingly modified GPE:

i
@c

@t
¼ � @2c

@z2
þ �z2c � ½1þ "fðzÞ�jc j2c ; (39)

where the negative sign in front of the nonlinear term implies
that the nonlinearity is attractive, fðzÞ accounts for the local
perturbation of the nonlinearity, and � is the strength of the
external parabolic trapping potential, if any. The VA, based
on the substitution of the ansatz c ðz; tÞ ¼ AðtÞsech½ðz�
�Þ=aðtÞ� expfi½
ðtÞ þ wðz� �Þ þ bðz� �Þ2�g into the
Lagrangian associated with Eq. (39), yields the system of
evolutional equations for the soliton’s amplitude a and central
coordinate �:

d2a

dt2
¼ �4�aþ 16

�2a3
� 4n0

�2a2
þ 3"n0

�2a2

�
@F

@�
� 2

F

a

�
;

d2�

dt2
¼ �4�� þ "n0

4a2
@F

@�
; (40)

FIG. 14 (color online). (Color online) (a), (b) Intensity profiles for

typical examples of spatial subwavelength solitons of the TE and

TM types in the model of the array of nanowires. Shaded and white

areas correspond, severally, to the strips made of silicon and silica.

(a) and (b) show solitons of the on-site and off-site types. (c), (d)

The total power vs the nonlinear shift of the propagation constant of

the subwavelength solitons, whose examples, corresponding to

points A and B, are shown in (a), (b). (c) and (d) show families

of the TE and TM solitons, respectively. Curves correspond to the

on-site (off-site) solitons, while solid (dashed) curves designate

stable (unstable) soliton families. From Gorbach and Skryabin,

2009.

FIG. 13. A set of bifurcation diagrams describing the symmetry

breaking of pinned modes in the one-dimensional double-well

pseudopotential at different values of the wells’ width a (a ¼ 0
corresponds to the limit form of the model with the delta functions).

From Mayteevarunyoo et al., 2008.
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where n0 ¼
Rþ1�1 jc ðzÞj2dz is the norm of the 1D wave

function, and the effective pseudopotential characterizing
the interaction of the soliton with the local inhomogeneity
of the nonlinearity is Fða; �Þ ¼ Rþ1

�1 fðzÞsech4½ðz� �Þ=a�dz.
The analysis was performed for a strongly localized inhomo-
geneity, fðzÞ � �ðzÞ, and predictions of the VA were con-
firmed by direct simulations of Eq. (39). The results
demonstrate three different outcomes of the collision between
a freely moving soliton, with initial velocity V0, and the
attractive nonlinear inhomogeneity: passage, capture, and
rebound. The latter outcome is noteworthy, as the impinging
soliton may bounce back from the local defect despite the
attractive sign of the interaction between them [earlier, a
similar counterintuitive result was given by Kivshar et al.
(1991), who considered the collision of a kink with an
attractive defect in the sine-Gordon equation]. In particular,
the rebound was observed in direct simulations of Eq. (39)
with "fðzÞ ¼ 0:4�ðzÞ in the interval 0:42< V0 < 1:2 of the
velocities of the incident soliton, whose norm was fixed
to be n0 ¼ 4. Qualitatively, the rebound might be explained
by a resonance between the oscillatory motion of the two
degrees of freedom of the soliton obeying Eq. (40). Indeed,
the eigenfrequencies of small oscillations predicted by
these equations are !2

a ¼ ð4n0=�2Þ½2n0=ð8� 3"n0Þ�3 and
!2

� ¼ "n0½2n0=ð8� 3"n0Þ�4, which show that the resonance

is indeed possible. Static solitons trapped by the attractive
defects fðzÞ ¼ �ðzÞ were obtained in an analytical
form, c ðz; tÞ ¼ 21=2asechðajzj þ �Þ expðia2tÞ, where � ¼
ð1=2Þsgnð"Þ ln½2j"jaþ ð4"2a2 þ 1Þ1=2� [such states are sta-
ble only for " > 0, i.e., for the attractive nonlinear defect in
Eq. (39)]. It is interesting to compare this exact solution with
its counterpart found, in a numerical form, from the corre-
sponding full three-dimensional GPE (with the delta function
replaced by a proper numerical approximation); see Fig. 15.

A related comment concerning the 1D model based on
Eq. (39) is that its limit form, without the harmonic trap

(� ¼ 0) and with the entire nonlinearity concentrated in the

form of the single delta function, amounts to the model

originally introduced by Malomed and Azbel (1993),

ic t ¼ �c xx � "�ðzÞ�jc j2c . This simplest model with

" > 0 supports a family of exact pinned ‘‘solitons,’’ c ðx; tÞ ¼
ð2�="Þ1=2 expði�2t� �jxjÞ, where the inverse width � is an

intrinsic positive parameter of the solutions. This family is

degenerate in the same sense as are 2D Townes solitons in the

NLSE with the uniform nonlinearity (Berge, 1998), i.e., their

norm N � Rþ1�1 jc ðxÞj2dx ¼ 2=" is the same for the entire

family. A simple analysis demonstrates that this family is

entirely unstable, which also resembles the well-known prop-

erty of Townes solitons. Nevertheless, the solitons pinned by

the attractive nonlinear delta-functional potential may be

readily stabilized by adding the usual linear periodic potential

(i.e., OL) to the model. Moreover, in the case of " < 0, i.e.,
with the repulsive delta-functional nonlinearity, the model

including the OL potential readily supports stable solitons of

the gap type, pinned to the repulsive center (Dror and

Malomed, 2011).
Another interesting resonant effect was reported by

Primatarowa et al. (2005), who performed systematic simu-

lations of a model based on an equation equivalent to Eq. (39)

with �> 0, but with fðzÞ representing a long attractive

rectangular box, rather than a delta function. This pseudo-

potential can readily trap an incident soliton, provided that its

velocity falls below a certain threshold. Then, depending on

the length of the box L, a nearly periodic alternation of

trapping and transmission intervals is observed, with an in-

crease of L, at fixed values of the initial soliton’s velocity and
depth of the box. The alternation was explained by a reso-

nance between intrinsic oscillations of the soliton, which was

perturbed while passing the step between the free space and

the box, and the time of flight of the soliton through the

box: If the flight time is a multiple of the intrinsic vibration

period of the initially perturbed soliton, its collision with

the second edge of the box may help the soliton to retrieve

the energy initially lost to excite the intrinsic vibrations. The

energy recovery will allow the soliton to pass the step and

thus transmit through the pseudopotential box. On the

other hand, in the absence of the resonance, the soliton

irreversibly loses a part of its initial kinetic energy, and thus

it is not able to escape from the box. A similar analysis was

also performed, in the same work, for a model combining

the linear and nonlinear potentials in the form of rectangular

boxes.
The analysis of the transmission of the incident soliton

through a defect represented by a combination of a local

linear potential and localized inhomogeneity of the nonline-

arity coefficient was also reported by Theocharis et al.

(2006). They used an effective quasiparticle equation of

motion for the soliton, similar to the second equation in

system (40), in combination with systematic simulations of

the underlying one-dimensional GPE, i.e., Eq. (39) (with

� ¼ 0). One conclusion reported in that work was that the

addition of the pseudopotential, induced by the inhomogene-

ity of the nonlinearity coefficient, may enhance the trans-

mission of the incident soliton through a local linear potential

barrier. Related to this finding is a nonmonotonic dependence

of the respective transmission coefficient T on the width of

FIG. 15. The dashdotted curves show examples of stable exact

solutions obtained for trapped solitons within the framework of the

model of the nonlinear defect, based on one-dimensional equation

(39) with fðzÞ ¼ �ðzÞ. The solid curves show counterparts of these

states, generated by the numerical solution of the underlying 3D

Gross-Pitaevskii equation, for the same values of parameters " and

n0. From Abdullaev et al., 2004.
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the barrier, with T attaining a maximum at a particular value
of the width.

Settings of this types were further analyzed by Garnier
and Abdullaev (2006), who considered the transmission of an
incident soliton through a local defect combining a Gaussian
linear potential barrier and a similar Gaussian-shaped local
variation of the nonlinearity coefficient. In addition to direct
simulations, the analysis made use of the perturbation theory
for solitons. In particular, the radiation loss due to the emis-
sion of quasilinear waves by the soliton traversing the local
inhomogeneity was calculated, using the perturbative method
based on the inverse scattering transform [a comprehensive
review of the method was given by Kivshar and Malomed
(1989)]. In fact, an essential role of the radiation losses was
observed in the simulations reported. Garnier and Abdullaev
(2006) were able to explain how the radiative effects may
essentially alter predictions of the simple adiabatic perturba-
tion theory [the one based on Eqs. (40)]. Similar to the work
by Theocharis et al. (2006), another inference was that the
addition of the nonlinear pseudopotential may facilitate the
transmission of the impinging soliton through the local bar-
rier induced by the linear potential.

The analysis of the emission of radiation was also reported
by Abdullaev and Garnier (2005) for a soliton moving
through a regular (periodic) or random NL. Predictions of
the analytical perturbation theory for this situation were
compared to direct simulations of the one-dimensional GPE
with the periodic or random spatial modulation of the non-
linearity coefficient.

G. Discrete models

As discussed in Sec. II C, discrete systems naturally
emerge in the tight-binding approximation as limit forms of
many models which incorporate strong linear and nonlinear
lattices [see Christodoulides and Joseph (1988)]. However, in
most cases the resulting discrete systems seem as standard
DNLSEs [see, e.g., Eqs. (11) and (12)], which have been
studied thoroughly in other contexts [an extensive account of
the topic has been given by Kevrekidis (2009)]. By them-
selves, such discrete systems do not directly belong to the
class of models categorized as those including NLs.

An example of a more complex variety of the one-
dimensional DNLSE, which may be derived from the con-
sideration of media with embedded linear and nonlinear
lattices, was proposed and investigated by Abdullaev,
Bludov et al. (2008):

i
dcn
dt

¼ !0cn þ!1ðcnþ1 þ cn�1Þ þW0jcnj2cn
þW1ðjcn�1j2cn�1 þ �c	n�1c

2
n þ 2�jcnj2cn�1

þ 2jcnj2cnþ1 þ c	nþ1c
2
n þ �jcnþ1j2cnþ1Þ

þW2ð2jcn�1j2cn þ 2jcnþ1j2cn þ c	nc2n�1

þ c	nc2nþ1Þ; (41)

where !0 and !1 are characteristics of the linear spectrum,
while the nonlinear coefficients W0, W1, and W2 are deter-
mined by certain overlap integrals, and � is the parity of the
nonlinearity-modulating function in the underlying continu-

ous equation [in fact, this equation can be obtained from (4),
with � ¼ �1 corresponding to n2ð�xÞ ¼ �n2ðxÞ, while it is
assumed that �nðxÞ is always an even function, i.e.,
�nð�xÞ ¼ �nðxÞ]. It was also concluded that W0 ¼ W2 ¼ 0
for � ¼ �1.

The model (41) and the origin of intersite terms in this
model were also discussed by Belmonte-Beitia and
Pelinovsky (2009) [see also Claude et al. (1993)]. A set of
characteristic examples of discrete modes, both localized
(bright solitons) and delocalized ones (‘‘kinks’’ and ‘‘antidark
solitons’’), supported by Eq. (41) in the form of cn ¼
fn expð�i!tÞ, is shown in Fig. 16. These examples of bright
and kink solutions are stable, while the antidark solitons are
completely unstable. All modes shown in Fig. 16 are of the
on-site-centered type. Their intersite-centered counterparts
were also found, but they all turn out to be unstable. In
addition to the three types of discrete modes shown in
Fig. 16, an additional type of solutions reported by
Abdullaev, Bludov et al. (2008), which may also be stable,
represents kinks with wavy tails.

Another discrete system that originates from continuous
models with NL potentials is built of two semi-infinite dis-
crete lattices with attractive and repulsive on-site cubic terms
(Machacek et al., 2006). The corresponding version of the
one-dimensional DNLSE is

i
dun
dt

¼ �Cðunþ1 þ un�1 � 2unÞ � dnjunj2un; (42)

where dn ¼ d� ¼ �0:9 for n < 0, and dn ¼ dþ ¼ 1:1 for
n > 0, while d0 ¼ ðdþ þ d�Þ=2. Various families of asym-
metric discrete solitons supported by Eq. (42) around the
interface ðn ¼ 0Þ were found. These families naturally form

FIG. 16. Typical examples of stationary discrete solutions corre-

sponding to W2 ¼ 0, in the model of the discrete linear-nonlinear

lattice based on Eq. (41): (a) bright solitons, (b) kinks (dark

solitons), and (c) states sitting on top of a finite background

(‘‘antidark solitons’’). Modes (a) and (b) may be stable, while those

of type (c) are always unstable. From Abdullaev, Bludov et al.,

2008.
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pairs of stable and unstable ones, which mutually annihilate,
at some critical point with the increase of coupling constant C
(if the intrinsic frequency of the solitons is kept constant).
Examples of stationary modes belonging to two different
families of the solutions are shown in Fig. 17.

A model which may be considered as an example of
discrete NL was introduced by Hizanidis et al. (2008), in
the form of a 1D system with alternating linear and nonlinear
sites [a similar system, with two sites only, but uniformly
extended in an additional direction, was introduced by
Zafrany et al. (2005)]. The model is based on the following
system of coupled equations:

i
dc 2m

dz
þ 1

2
ðc 2m�1 þ c 2mþ1 � 2c 2mÞ þ "evenc 2m

þ �jc 2mj2c 2m ¼ 0;

i
dc 2m�1

dz
þ 1

2
ðc 2m�2 þ c 2m � 2c 2m�1Þ

þ "oddc 2m�1 ¼ 0; (43)

where� ¼ �1 determines the sign of the nonlinear term. The
analysis performed by Hizanidis et al. (2008) was chiefly
focused on the spectrum of the linearized version of Eq. (43)
and on the study of the modulational instability of
continuous-wave states in the framework of the full system.
In particular, the spectrum includes [similar to other diatomic
discrete systems, see Kevrekidis (2009)] two semi-infinite
gaps and a finite band gap between them. Examples of
solitons in all the three gaps were also found. The fundamen-
tal solitons appear to be stable in all cases, while their
antisymmetric bound states (dipoles) are stable only in the
finite band gap; see the example in Fig. 18. Note the staggered
structure of the solitons shown in this figure (alternating signs
of the discrete field at adjacent sites).

A prototypical model with the Kerr nonlinearity, which
does not reduce to the usual discrete one, was introduced by
Panoiu et al. (2008). It describes a waveguide built in the
form of a slab substrate, with an array of guiding ribs either
mounted on top of it or buried into the slab. Selecting
parameters of this system, it is possible to get a setting in
which the slab and array support the transmission of the
waves with different polarizations: one TE and one TM.
The model of such a system may be called a semidiscrete

one, as it is based on coupled continuous and discrete
NLSEs:

i
d
n

dz
þ
n�1þ
nþ1þj
nj2
nþ�
nj�ð�¼nÞj2¼0;

i
@�

@z
þ1

2

@2�

@�2
þ��þj�j2�þ��

X
n

j
nj2�ð��nÞ

¼0; (44)

where �ð�� nÞ is the delta function, � is the transverse
coordinate, scaled so that the spacing of the discrete array
is 1, � is the mismatch between the continuous and discrete
subsystems, and � is the coefficient accounting for the XPM
(cross-phase-modulation) nonlinear coupling between the

FIG. 18 (color online). (Color online) Examples of stable stag-

gered discrete solitons in the lattice with interlaced focusing non-

linear and linear sites. These solitons were found in the finite band

gap. (a), (b) The evolution of a stable soliton and antisymmetric

bound state of two solitons, with random initial perturbations added

to them. (c), (d) Profiles of the respective stationary solutions. From

Hizanidis et al., 2008.

FIG. 17. Stationary fundamental (a), (b) and dipole (c), (d) modes

supported by the interface between discrete lattices with the attrac-

tive and repulsive on-site cubic nonlinearity. Modes shown in (a),

(b) correspond to C ¼ 0:1, while modes shown in (c), (d) corre-

spond to C ¼ 0:135. From Machacek et al., 2006.

FIG. 19 (color online). (Color online) Shapes of typical odd, even,

and twisted two-component solitons in the semidiscrete model

based on Eqs. (44). The values of the XPM coupling constant are

indicated in (a), (b), and (c). Equal propagation constants are taken

here for the discrete and continuous components, �1 ¼ �2 � �.
From Panoiu et al., 2008.
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subsystems. The signs in front of the SPM (self-phase-
modulation) coefficients in Eqs. (44) imply that the nonlinear
material is self-focusing; hence, it is natural to set � > 0.
Equations (44) conserve the total power P ¼ P

nj
nj2 þR1
�1 j�j2d�. Stationary solutions may be found, in the gen-

eral case, with two independent propagation constants, viz.,

n ¼ un expði�1zÞ and � ¼ Vð�Þ expði�2zÞ. As shown in
Fig. 19, three types of the simplest solitons are generated
by Eqs. (44), namely, odd (on-site-centered), even (intersite-
centered), and twisted (antisymmetric). The calculation of the
spectrum of instability growth rates for small perturbations
around the semidiscrete solitons demonstrates that the odd
solitons are entirely stable, while the even and twisted ones
are always unstable, even though the VK criterion does not
predict the instability of the even-soliton family (the actual
instability growth rate for this family is complex, which
cannot be detected by the VK condition).

H. Dynamical regimes

1. Matter-wave-laser models

Unlike the field of nonlinear optics, the studies of BECs
have not yet led to many technological applications, as they
have been more focused on fundamental aspects.
Nevertheless, matter-wave setups have a potential for use in
various technologies. In particular, the possibility of employ-
ing condensates as a reservoir for the generation of coherent
atomic beams (i.e., as a basis for matter-wave lasers) has
drawn considerable attention. A straightforward idea, elabo-
rated by Carr and Brand (2004), was to suddenly flip the sign
of the scattering length in a cigar-shaped (quasi-1D) reservoir
from attractive to repulsive, by means of the FR effect, and
thus initiate the release of pulses from it. Another design of
the soliton laser, proposed by Chen and Malomed (2005,
2006), was based on two parallel quasi-1D traps, coupled
by tunneling of atoms across a barrier separating them, with
one used as the reservoir, and the other as the lasing cavity.

Experimental prototypes of matter-wave lasers operating
in the regime of releasing continuous atomic beams were
reported by Guerin et al. (2006) and Robins et al. (2008).
The latter work used a setting with the reservoir separated
from the lasing element, somewhat similar to the proposal by
Chen and Malomed (2005, 2006).

Another scheme of matter-wave lasers capable to generate
chains of solitons was developed by Rodas-Verde et al.
(2005) and Carpentier et al. (2006, 2008). It was based on
the assumption that a usual axial trap for the BECs, imple-
mented by dint of an appropriate linear potential, is combined
with an adjacent region where the scattering length is made
negative [the influence of three-body collisions on this
scheme was recently studied by Carpentier et al. (2010)].
The respective model is based on the following version of the
one-dimensional GPE:

i
@q

@t
¼ � 1

2

@2q

@x2
þ VðxÞqþ RðxÞjqj2q; (45)

where V ¼ 0 for jxj> L, V ¼ V0 < 0 for jxj< L, and
R ¼ 0 for x < L, R ¼ R0 < 0 for x > L. An equilibrium
position for a soliton was predicted in this model, using
the VA based on the ordinary Gaussian ansatz,

qðx; tÞ ¼ A exp½�ðx� x0Þ2=2w2�. This allows one to derive
the equation of motion for the soliton’s center, d2x0=dt

2 ¼
�d�=dx0, where the effective potential is given by

� ¼ V0�
1=2

2

�
1� exp½�x20=ðL2 þ w2Þ�

ð1þ w2=L2Þ1=2
�

þ R0N

ð2�Þ1=2w erfc

�
21=2ðL� x0Þ

w

�
; (46)

with N being the soliton’s norm. The second term represents
the pseudopotential induced by the nonlinearity modulation.
The equilibrium position of the soliton is defined as a root of
equation d�=dx0 ¼ 0. Using this equation, a critical value of
R0 was predicted, such that at R0 <�jRcrj the equilibrium
position does not exist; hence, the soliton cannot remain
trapped in the laser cavity and will be released. In agreement
with this analytical prediction, the generation of clusters of
solitary pulses was observed in direct simulations of Eq. (45).
The number of the released solitons is determined by the total
norm of the condensate initially stored in the cavity, see
Fig. 20. The analysis of this model and its modifications
with smoothed modulation functions demonstrated that sharp
edges in the function RðxÞ help to improve characteristics of
the soliton-generation regime. It is worth mentioning, in this
connection that the sharpness of the nonlinearity-modulation
function is a crucial factor determining the stability of 2D
solitons pinned by the modulated self-focusing nonlinearity;
see Sec. V.

2. Oscillations of driven solitons in nonlinear lattices

Gap solitons (GSs), which exist due to the interplay of the
linear lattice and repulsive nonlinearity, feature unusual dy-
namical properties because of their affinity to the correspond-
ing Bloch waves. In particular, they inherit the negative mass
of the Bloch excitations, which gives rise to stable oscilla-
tions of the GSs in inverted (antitrapping) potentials, in the
1D and 2D settings alike [Sakaguchi and Malomed (2004b,
2004c)].

It is also well known that the application of an external
potential with a constant slope to linear wave packets

FIG. 20 (color online). (Color online) The release of soliton trains

in the model of the matter-wave laser. (a)–(f) pertain to the

following values of the negative scattering length in Eq. (45): R0 ¼
0:9Rcr, R0 ¼ 2:0Rcr, R0 ¼ 3:3Rcr, R0 ¼ 4:8Rcr, R0 ¼ 6:5Rcr, and

R0 ¼ 8:7Rcr. Recall that the equilibrium position for the soliton

exists at jR0j< jRcrj. From Rodas-Verde et al., 2005.
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in periodic lattice potentials induces Bloch oscillations of the
packets. It was demonstrated by Salerno et al. (2008) that, in
the model which incorporates an NL in addition to the linear
lattice, GSs may perform stable Bloch oscillations under the
action of a constant driving force (i.e., an extra potential with
the constant slope).

In the quasilinear approximation, the motion of the central
coordinate () of a wave packet driven by the constant force
F added to the periodic linear-lattice potential obeys the
following equations: d=dt ¼ VðqÞ � dE=dq, dq=dt ¼ F,
where V is the velocity, q is the quasimomentum, and EðqÞ
is the respective dispersion law (energy-momentum relation)
within a given band. Because EðqÞ and hence VðqÞ are
periodic functions of q, the linear growth of q with time,
qðtÞ ¼ Ft, implies periodic motion of the wave packet.
Applying this argument to the GS, one should take into
account that GSs exist only close to those edges of the bands
where the effective negative mass coexists with the repulsive
nonlinearity. In the usual model, with the constant nonline-
arity coefficient, the latter condition cannot hold everywhere,
because the effective mass always has opposite signs at
opposite edges of a given band. Therefore, the GS performing
the Bloch oscillations is subject to a slow destruction, as it
spends some time in the environment where it cannot exist as
a stationary state. Salerno et al. (2008) proposed that adding
an appropriate sign-changing NL to the model would syn-
chronize the changes of the sign of nonlinearity with the sign
flips of the effective mass, thus providing the fulfillment of
the GS existence condition everywhere.

The corresponding model was based on the following
version of the GPE [cf. Eq. (10)]:

i
@c

@t
¼ � @2c

@x2
� ½Fxþ V cosð2xÞ�c

þ ½gþ G cosð2xÞ�jc j2c : (47)

As shown in Fig. 21(a), the analysis has produced a region in
the plane of parameters ðV;GÞ where the above-mentioned
condition necessary for the persistence of the GS performing
Bloch oscillations, viz., the keeping opposite signs of the

effective mass and effective nonlinearity, is met due to the
inclusion of the NL into Eq. (47). Direct simulations [see
Figs. 21(b) and 21(c)] demonstrate the robustness of the
Bloch oscillations of the GS inside the predicted stability
area and the decay of the oscillating GS outside of it.

Stable periodic oscillations of GSs between two different
bands (Rabi oscillations) were demonstrated by means of
systematic simulations by Bludov et al. (2009), within the
framework of a model similar to that described by Eq. (47),
but with a linear periodic potential whose strength is periodi-
cally modulated in time: FðtÞ ¼ F0 cosð!tÞ. These oscilla-
tions are somewhat similar to those reported by Gubeskys
et al. (2005) in the 2D and 1D models with the spatially
uniform nonlinearity, whose strength was subjected to the
management, i.e., periodic modulation in time. A stability
region for alternate solitons was identified in the latter work,
i.e., solitons with a periodically varying chemical potential,
that regularly switches between the semi-infinite gap and the
first or even second finite band gap. This means that the
localized modes periodically change their character, between
ordinary solitons in the semi-infinite gap and GSs in the finite
gap. Linear superpositions of nonlinear matter waves in
dynamical optical lattices were suggested by Bludov et al.
(2011).

V. TWO-DIMENSIONAL SOLITONS

The study of solitons in two-dimensional NLs was a
natural extension of the original work done in 1D. Quite a
few theoretical papers have addressed this topic. The results
of the studies of the 2D setting, summarized in this section,
demonstrate a drastic difference from the 1D case. That is, it
is very difficult to stabilize 2D solitons by means of NL
configurations, or speaking more generally by means of the
general spatial modulation of the nonlinearity in 2D settings.

As mentioned in the Introduction, the new problem posed
by the 2D geometry is the instability of solitons supported by
the cubic nonlinearity in the 2D free space (Townes solitons)
against the collapse (Berge, 1998). On the other hand, pre-
viously published results had demonstrated that, using linear
lattice potentials, one can easily stabilize solitons against the
collapse [see Baizakov et al. (2003), Yang and Musslimani
(2003), Lederer et al. (2008), and Kartashov et al. (2009a)].
Moreover, linear lattices make it possible to stabilize local-
ized vortices characterized by the respective topological
charge S (i.e., the winding number of the underlying phase
pattern). It is also possible to stabilize supervortices, in the
form of ring-shaped chains of compact (‘‘crater-shaped’’)
vortices, each carrying topological charge s ¼ þ1, with in-
dependent global vorticity, S ¼ �1, imprinted onto the chain
(Sakaguchi and Malomed, 2005b). Finally, it is worth noting
that, as shown by Baizakov et al. (2004), a reduced quasi-1D
linear-lattice potential, which depends on one coordinate
only, is sufficient for the full stabilization of 2D solitons.

In contrast to the plethora of the stabilization predictions
provided by the 2D and quasi-1D linear lattices, theoretical
studies demonstrated that smooth NL potentials, taken in a
similar form in the 2D setting, cannot stabilize anything in a
practical sense. It was demonstrated, in particular, by Sivan
et al. (2006) that the 2D model with the sinusoidal quasi-1D

FIG. 21 (color online). (Color online) (a) The domain (dashed

area) in the plane of the strength of the linear lattice V and

amplitude of the nonlinearity modulation, G, where the condition

for the stability of the Bloch oscillations of the gap soliton in the

framework of Eq. (47) is satisfied. In this case, the constant part of

the nonlinearity coefficient is g ¼ �0:777. Also shown are ex-

amples of stable (c) and unstable (d) Bloch oscillations of the gap

solitons under the action of the constant driving force. Parameters in

(b) and (c) correspond, respectively, to points B and A in (a). From

Salerno et al., 2008.
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modulation of the local nonlinearity coefficient may support
stable 2D solitons, but in such a small region that they
categorized this result as mathematical, rather than physical.
Nevertheless, other results summarized in this section dem-
onstrate that the stabilization of 2D solitons by nonlinearity-
modulation patterns is practically possible, but under the
condition that the modulation pattern features sharp edges,
rather than being sinusoidal, or featuring another smooth
shape. This condition is a novel generic property of the
2D geometry revealed by the analysis of many settings.

In this section, we summarize the results obtained for 2D
continuous and discrete solitons in nonlinear and mixed
linear-nonlinear lattices, emphasizing the most challenging
issue of the stability of such solitons. We start from the
consideration of the core problems for the 2D solitons sup-
ported by purely nonlinear periodic lattices or by localized
modulations of the nonlinearity, including quasi-1D nonline-
arity landscapes, and power-dependent shape transformations
of vortex solitons in mixed linear-nonlinear lattices. We stress
that, as well as in the 1D situation, the solitons supported by
NLs do not bifurcate from linear Bloch models, but emerge
under the action of the modulated nonlinearity ‘‘from noth-
ing.’’ Then, we proceed to the description of a variety of
phenomena predicted in the models of photonic crystals and
PCFs. These models amount to concomitant modulations of
the refractive index and nonlinearity, which is why they are
amenable to a more straightforward analysis, which readily
produced stable solitons and vortices, as well as multisoliton
complexes. Among the respective results are the following:
the prediction of the self-trapping of stable bright solitons, the
formation of solitons on defects in PCFs, the existence of GSs
and soliton trains in finite periodic and quasiperiodic photonic
crystals, including the practically important setting based on
liquid-infiltrated PCFs featuring thermal nonlinearities, the
formation of vortex, nodal, and vector solitons, as well as
soliton clusters, in such media, a limitation on values of the
vorticity of localized states in photonic crystals with certain
discrete rotational symmetries, and the possibility to build
nonlinear dual-core photonic-crystal couplers. Finally, we
describe the stability and mobility of solitons in 2D discrete
models of waveguide arrays with a nonlinearity modulation.

A. Solitons in nonlinear and mixed lattices

1. Circular nonlinearity-modulation profiles

As said above, the stabilization of 2D solitons in materials
with the self-focusing cubic nonlinearity against the collapse
solely via the spatial modulation of the nonlinearity coeffi-
cient is a challenging problem, a solution to which requires a
careful adjustment of the modulation landscape. For example,
it is difficult (if not impossible) to achieve the stabilization
using smooth sinusoidal or Bessel-like profiles of the modu-
lation function. Sakaguchi and Malomed (2006a) proposed a
setting where stable axisymmetric solitons can be created by
a spatially localized modulation of the nonlinearity coeffi-
cient, when it is different from zero in a circle or annulus. The
corresponding form of the two-dimensional GPE is i@q=@t ¼
�ð1=2Þ�q� RðrÞjqj2q, where � is the 2D Laplacian acting
on coordinates x and y, and, in the general case of the
annulus, RðrÞ ¼ 1 for 	0 < r < 	1, and RðrÞ ¼ 0 for

r < 	0 and r > 	1, r � ðx2 þ y2Þ1=2 being the radial coordi-

nate. This choice of the modulation profile clearly demon-

strates its sharpness, which is crucial for the stability of

localized modes supported by this profile.
Typical examples of axisymmetric stationary soliton solu-

tions in this model, q ¼ wðrÞ expð�i�tÞ, are shown in

Fig. 22(a). The radial functions wðrÞ were found in a numeri-

cal form. A quasianalytical solution is available in the limit

case of 	1 � 	0 ! 0, when the modulation function amounts

to RðrÞ ¼ R0�ðr� 	0Þ, and the solution itself may be ex-

pressed through the modified Bessel and Hankel functions I0
and K0 at r < 	0 and r > 	0, respectively; however, in this

limiting case all solutions are unstable (see below). While for

	0 ¼ 0 (i.e., for the circle with no inner hole), the soliton has
a bell-like shape, for 	0 � 0, it develops a shallow deep at

r ¼ 0, and the local field attaints a maximum at r ¼ 	0.

Families of soliton solutions are characterized by the depen-

dences �ðNÞ which are shown in Fig. 22(b). These depen-

dencies imply that the VK criterion dN=d� < 0 is satisfied

for the corresponding soliton branches. However, in the

present context this criterion can only suggest the stability

against perturbations that do not break the axial symmetry of

the solutions. A linear stability analysis that takes into ac-

count azimuthal perturbations predicts that solitons in this

model may be also destabilized by perturbations with

azimuthal index m ¼ 1. The stability diagram is shown in

Fig. 22(c), where the upper curve denotes a lower border for

the azimuthal instability with m ¼ 1, while the lower curve

denotes the existence and stability border for the solitons,

which is identified as a set of turning points of the �ðNÞ
curves. Solitons are stable between those two curves. A

notable feature of this diagram is that the stability domain

FIG. 22. (a) Examples of stable 2D soliton solutions supported by

the circular modulation of the local nonlinearity, with 	0 ¼ 0,
� ¼ �0:0399 (solid line) and 	0 ¼ 0:5, � ¼ �0:0648 (dashed

line). (b) The chemical potential vs the norm for soliton families

found at 	0 ¼ 0, 0.2, and 0.5. (c) The stability diagram for the

soliton solutions. In the regions between the two borders, the

solitons are stable simultaneously according to the VK criterion

(i.e., against radial perturbations) and against azimuthal modula-

tions. From Sakaguchi and Malomed, 2006a.
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shrinks to zero at 	max
0 � 0:95 for 	1 ¼ 2, which means that,

in this case, there exists a critical ratio, 	0=	1 � 0:47, of the
inner and outer radii above which the nonlinear annular ring
cannot support stable solitons. Axisymmetric vortex solitons
with various topological charges can also be found in this
model, but they all turn out to be azimuthally unstable.

2. Quasi-one-dimensional nonlinearity-modulation profiles

The possibility of the stabilization of 2D solitons by a
quasi-1D periodic NL was first considered by Sivan et al.
(2006). They addressed the stationary localized solutions
to equation iqz þ qxx þ qyy þ ½1þ RðaxÞ�jqj2q ¼ 0, where

RðÞ is a smooth periodic modulation function, with a the
ratio of the beam’s width to the lattice period. It was found
that in this geometry the structure of the soliton and its
stability properties strongly depend on whether it is wider,
of the same width, or narrower than the lattice period. Soliton
solutions were found to be stable if and only if the norm-
versus-propagation-constant curve describing the soliton
family satisfies the slope (VK) condition against the onset
of the collapse, and, simultaneously, the spectral condition
guarantees the absence of the drift instability. In particular,
the soliton may be unstable in the presence of the NL, even if
it satisfies the VK criterion [an example of that was given
by Kartashov et al. (2008b)]. The size of the stability region
depends on the magnitude of the slope of the Nð�Þ curve.
Sivan et al. (2006) concluded that solitons in quasi-one-
dimensional NLs may be stable ‘‘mathematically,’’ in the
sense that a tiny stability region exists for them, but the
region is so narrow that rather weak finite-amplitude (rather
than infinitesimal) perturbations can easily destroy such for-
mally stable solitons. In particular, the solitons centered
at minima of RðaxÞ violate the spectral stability condition,
resulting in a drift instability, as the solitons naturally tend to
‘‘roll down’’ from the respective maximum of the effective
pseudopotential. Furthermore, wide solitons (with a 
 1) as
well as those whose width is comparable to the lattice period
½a ¼ Oð1Þ� are unstable (against the collapse) when they are
centered at a maximum of the NL modulation function RðaxÞ,
since for them the VK criterion is not satisfied. Note the
difference from the 1D case, where solitons centered at local
lattice maxima may easily be stable, as the collapse instability
is absent in the 1D model (Fibich et al., 2006). In fact, the
quasi-one-dimensional NL can only stabilize narrow solitons,
with a � 1, centered at a maximum of RðaxÞ. These narrow
solitons are affected by the local variation of the nonlinearity
coefficient, but not by the global periodic NL structure. The
lattice that may give rise to a stability region for the 2D
solitons has to be specially designed to satisfy a certain local
shape criterion, and even in this case the resulting stability
domain remains very narrow. A rigorous proof of these facts,
together with a quantitative analysis of the soliton’s stability
for the particular shapes of the linear and nonlinear lattices,
was given by Sivan et al. (2008).

The conclusion about the instability of solitons with a ¼
Oð1Þ residing on lattice maxima, which is definitely valid for
the smooth sinusoidal modulation of the nonlinearity coeffi-
cient, does not necessarily hold in lattices with sharp steplike
variations of the nonlinearity. The crucial role of the sharp-
ness was demonstrated by Sakaguchi and Malomed (2007),

who found stable 2D optical solitons in a model of a quasi-1D
layer defined by the sharp transverse modulations of the GVD
and nonlinearity coefficients. In the case of the concomitant
localization of the GVD and nonlinearity in the stripe, this
model describes the propagation of spatiotemporal solitons
(2D ‘‘light bullets’’), while the model with only the nonline-
arity coefficient subjected to the transverse modulation may
be realized in terms of BECs. The evolution of nonlinear
excitations in such a system obeys the following NLSE:
iqz þ ð1=2Þ½qxx þ �ðxÞqtt� þ RðxÞjqj2q ¼ 0, where �ðxÞ ¼
RðxÞ ¼ 1 for jxj< 1 and �ðxÞ ¼ �0  1, RðxÞ ¼ r0  1
for jxj> 1. It was found that the GVD modulation alone
cannot stabilize solitons in this setting. To secure the stability,
it must be combined with the nonlinearity modulation. In this
notation (with the width of the modulation stripe fixed to 2),
the stabilization of 2D solitons is possible for �0 ¼ 0 and
r0  0:6, i.e., there is a certain minimal nonlinearity-
modulation depth necessary for the stabilization. It is worth
noting that 2D solitons may be stable in the channel induced
solely by the nonlinearity modulation, when �0 ¼ 1 and r0 ¼
0, although in this case the range of energies that the stable
spatiotemporal solitons may carry is narrower than in the case
of the concomitant modulations of the nonlinearity and GVD.
The latter result suggests that a periodic system of such
purely nonlinear layers (i.e., a quasi-one-dimensional NL of
the KP type) may also stabilize 2D light bullets. Combining
the transverse modulation of the GVD and nonlinearity with
the ordinary guiding structure in this model [i.e., an increased
refractive index inside the modulation layer, described by
additional term VðxÞq in the NLSE] allows one to strongly
expand the stability region of solitons in terms of the energy
they carry. Finally, for �0 ¼ 0 and r0 ¼ 1 (the modulation of
the GVD combined with the uniform nonlinearity), the stabi-
lization is possible only when the depth of the additional
linear potential VðxÞ exceeds a minimal value v0 � 0:2.

The impact of the quasi-1D modulation sharpness of the
local nonlinearity for the stability of the respective 2D sol-
itons was recently demonstrated by Hung et al. (2010), in the
framework of the model with the nonlinearity-modulation
landscape in the form of a single stripe, or a symmetric set
of two parallel stripes. Using the VA and numerical methods,
it was demonstrated that all solitons supported by the stripe
with a smooth (Gaussian) transverse profile are unstable. On
the contrary, the stripe with the sharp rectangular profile gives
rise to a conspicuous stability region for the 2D solitons. A set
of parallel symmetric rectangular stripes may support stable
2D solitons of three types, namely, symmetric and asymmet-
ric single-peak solitons, and also symmetric double-peak
solitons. The uniformity of the 2D space along the stripes
in the latter model suggests considering collisions between
stable 2D solitons that may freely move in this direction. The
results of direct simulations demonstrate that collisions may
easily lead to the merger of the solitons with the subsequent
collapse. In some cases, the colliding solitons suffer mutual
destruction. Examples of quasielastic collisions were also
found by Hung et al. (2010).

3. Stability of solitons in two-dimensional nonlinear lattices

Stable 2D solitons in purely nonlinear 2D periodic lattices
were constructed by Y. V. Kartashov et al. (2009a). The
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lattice that is capable of supporting stable 2D modes can be

composed of self-focusing circular regions, arranged into a

square array, which is embedded into a linear medium with

the same refractive index. Lattices of this type with the cubic

(Kerr) nonlinearity support stable fundamental solitons, while

the stability of multipoles and vortices is only possible if the

nonlinearity is made saturable. The evolution of the light

beam in such a medium is described by equation iqz ¼
�ð1=2Þ�qþ Rðx; yÞð1þ Sjqj2Þ�1jqj2q, written in the ‘‘opti-

cal’’ notation, where the local nonlinearity coefficient is R ¼
�1 inside each nonlinear circle, and R ¼ 0 between them,

while S � 0 accounts for the possible saturation of the self-

focusing nonlinearity. Stationary solutions to this equation

are looked for as qðx; y; zÞ ¼ ei�zwðx; yÞ, where � is the real

propagation constant.
Properties of fundamental solitons in such an array are

shown in Fig. 23. In contrast to the uniform media with the

cubic nonlinearity, where one has the well-known critical

value of the norm (total power), NT � 5:85 for the unstable

Townes solitons (Berge, 1998) [the dashed line in Figs. 23(a)

and 23(b)], the total power of the solitons supported by the

NL at S ¼ 0 is a nonmonotonic function of propagation

constant �. It rapidly grows for � ! 0, as the corresponding
soliton expands across the lattice. Note, however, that in

contrast to solitons in linear lattices, which bifurcate from

the amplitude-modulated Bloch waves (Shi and Yang, 2007),

low-power solitons in NLs remain, quite naturally, almost

unmodulated as they spread out. On the contrary, the increase

of � results in the confinement of the soliton to a single circle

in the NL, which is accompanied by a change of the sign of

slope dN=d�. Thus, solitons in the NL exist above a mini-

mum (threshold) value of the power Nm, similar to the

fundamental property of 1D solitons in one-dimensional

NLs; see Sec. IVA1. The threshold value decreases with

increasing spacing ws between the circles, approaching its

minimum at ws ¼ 1, which corresponds to the soliton sup-

ported by a single circle; see Fig. 23(b). The nonmonotonic

dependence Nð�Þ suggests that such NLs may stabilize the

fundamental solitons, as per the VK criterion. A direct linear

stability analysis confirms this conjecture [Fig. 23(c) shows

that the perturbation growth rate vanishes exactly at the point

where dN=d� becomes positive]. Inclusion of the saturation

of the nonlinearity ðS > 0Þ results in a substantial expansion

of the stability domain, as the collapse is absent even in the

uniform medium with S > 0. At S > 0, there also exists an

upper cutoff for �, where the soliton power diverges; see

Fig. 23(d). Note that 2D solitons may be also made stable in a

specific nonlinear lattice composed of alternating cubic and

saturable domains provided that their centers reside on do-

mains with the cubic nonlinearity (Borovkova et al., 2010).
Besides the fundamental solitons, NLs support multipole

and vortex states. They also feature threshold values of the

total power necessary for their existence (naturally, the mini-

mum power for the vortices exceeds that for dipoles, which,

in turn, is higher than for the fundamental solitons). While the

multipoles and vortices are completely unstable in the NLs

with the cubic nonlinearity, they may be stabilized by the

saturation. As the localization enhances with an increase of

�, both dipoles and vortices stabilize above a critical value

of �, in the case of the saturable nonlinearity. At equal values

of ws, the width of the stability domain for the dipoles is

substantially larger than for the vortices. Other types of

higher-order soliton states, such as on-site vortices and quad-

rupoles, may also be stable in the saturable NL.
In a related works, Hang et al. (2009) and Hang and

Konotop (2010) considered the propagation of a weakly

nonlinear probe light beam in a resonant three-level atomic

medium, where an optical lattice is induced by a standing-

wave pump field, and conditions for the electromagnetically-

induced transparency are met. In this setting, one can achieve

an effective quasi-1D modulation of the nonlinearity experi-

enced by the 2D probe beam, and implement various dynami-

cal regimes, by means of simple manipulations of parameters

of the induced lattice, by varying one- and two-photon detun-

ings, or by changing the geometry of the incident probe beam.
Recently, Wang et al. (2010) reported exact analytical

solutions describing 2D matter-wave solitons trapped in the

parabolic potential combined with the specially devised

Gaussian nonlinearity-modulation landscape. The solutions

were obtained using essentially the same transformations

which were considered in Sec. IVA 3. Interestingly, such

potentials can support an arbitrary number of nonlinear waves

corresponding to discrete energy levels, which can be classi-

fied by dint of two quantum numbers, following the analogy

with modes of the linear parabolic potential. A somewhat

similar approach was independently pursued by Wu et al.

(2010), who constructed exact solutions to the GPE for

solitary vortices, and approximate ones for fundamental sol-

itons, in 2D models of BEC with a spatially modulated

nonlinearity of either sign (attractive or repulsive) and the

FIG. 23. (a) The norm (total power) of 2D solitons vs propagation

constant � in the model of the 2D nonlinear lattice, built as an array

of self-focusing circles, for several values of ws in the medium with

the cubic nonlinearity. (b) The minimum norm vs the lattice spacing

ws. The horizontal dashed lines in (a) and (b) correspond to the

critical norm, NT ¼ 5:85. (c) The real part of the perturbation

growth rate vs � at ws ¼ 3. (d) The norm vs � in the saturable

medium. From Y. V. Kartashov et al., 2009a.
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parabolic trapping potential. The number of vortex-soliton
modes found in the model is again determined by the discrete
energy spectrum of the related linear Schrödinger equation.
The vortex-soliton families found in the system with the
attractive and repulsive nonlinearity turn out to be mutually
complementary. Stable localized vortices with topological
charges S � 2 and those corresponding to higher-order radial
states were found, respectively, in the case of the attraction
and repulsion.

Power-dependent shaping of vortex solitons in OLs featur-
ing the modulation of both the linear refractive index and
nonlinearity was addressed by Kartashov et al. (2008c). The
following model with an out-of-phase modulation of the
refractive index and nonlinearity was considered:

i
@q

@z
¼ � 1

2

�
@2q

@x2
þ @2q

@y2

�
� ½1� �Rðx; yÞ�jqj2q

� pRðx; yÞq; (48)

where the function Rðx; yÞ ¼ sin2ð�xÞsin2ð�yÞ describes the
shape of the lattice, while the parameter � determines the
depth of the nonlinearity modulation. The nonlinear coeffi-
cient 1� �R in this model attains its minima at points where
the linear refractive index features maxima.

Vortex solitons in such lattices feature four bright spots
whose positions coincide with local maxima of the linear
lattice at moderate power levels, when effects of the nonlinear
and linear refraction are comparable. If the modulation depth
of the local nonlinearity is small enough (� & 0:5 at p ¼ 8),
the bright spots always stay in a vicinity of maxima of the
linear lattice, but at � * 0:5 the competition between the
linear and nonlinear refraction may result in a remarkable
shape transformation, due to the concentration of the density
in regions where the nonlinearity is stronger. Such shape
transformations are usually accompanied by a change of the
slope of the Nð�Þ dependence and decrease of the soliton’s
power with �. Thus, the nonlinearity modulation imposes a
restriction on the maximal power of the vortex solitons. At
� * 0:9, with an increase of � the bright spots in the vortex
patterns tend to fuse into modulated ringlike structures, i.e.,
high-power vortices tend to shrink rather than to expand, as it
happens for smaller � [see Eq. (48)]. The modulation of the
nonlinearity profoundly affects the stability of the vortex
solitons: In the NLs, they are stable only within a certain
interval of the propagation constant, �low  �  �upp

(hence, also in a limited interval of the total power), in
contrast to vortices in linear lattices where they enjoy the
strong stabilization. Since �low increases with �, while �upp

decreases, the stability domain shrinks to zero at � * 0:79.
Thus, the off-site vortex solitons may be stable in the NL only
when the nonlinearity-modulation depth does not exceed the
critical value.

Lastly, it is relevant to mention that a mathematically
rigorous approach to the analysis of the soliton stability in
2D models including mixed linear and nonlinear lattices was
recently elaborated by Lin et al. (2010). They started the
analysis with the case of the NL only, and then investigated
the stabilization of the solitons by the addition of linear-
lattice potentials.

B. Solitons in models of photonic-crystal fibers

1. Theoretical considerations

To make use of the high potential of PCFs for applications,
it is important to realize dynamical tunability of their prop-
erties, including the band gap spectrum. Such tunability can
be achieved in nonlinear PCFs featuring periodic modulations
of the nonlinearity, i.e., the light beams coupled into the PCF
induce a local modification of the refractive index that de-
pends on its beam’s intensity profile.

The possibility of the self-trapping and formation of the
localized modes near the band’s edge in a 2D nonlinear
photonic crystal with a reduced symmetry was demonstrated
by Mingaleev and Kivshar (2001). They employed the tech-
nique based on the Green’s function to explain the physical
mechanism of the mode stabilization, associated with the
effective nonlinear dispersion and long-range interactions
in the photonic crystal. They studied 2D photonic crystals
represented by a square lattice built of two types of cylindri-
cal rods: those of a larger radius, made from a linear material,
were placed in the corners, while nonlinear rods of a smaller
radius were set at the center of each cell. The evolution
of the z-polarized slowly evolving light field in this
setting is governed by equation ½�þ "!2=c2�qðx; tÞ ¼
�ð2i"!=c2Þ@q=@t, where "ðx; yÞ is the dielectric constant,
and � is the transverse Laplacian. In the linear limit, when
"ðx; yÞ is not intensity dependent, the frequency spectrum of
such a crystal has a characteristic band-gap structure, so that
solitons may form in the gaps, in the presence of the non-
linearity. Since in real photonic crystals the modulation of
"ðx; yÞ is comparable with its average value, making the
standard NLSE description inappropriate, the nonlinear rods
were considered as defects with a dielectric constant
"2ðx; y; EÞ ¼ ð"20 þ �ð3ÞjEj2Þ�ðx; yÞ, where "20 is the linear
dielectric constant, and �ðx; yÞ is a function describing the
distribution of rods. The Green’s function of the linear crystal
Gðx; y;!Þ was employed to transform the initial evolution
equation into its discrete version that takes into account
effective long-range interactions:

i�
@Enm

@t
� Enm þX

kl

Jn�k;m�lð!Þð"20 þ �ð3ÞjEklj2ÞEkl

¼ 0; (49)

where amplitudes Enm pertain to the rods, while parameters �
and Jnm are determined by the Green’s function Gðx; y; !Þ of
the real crystal, which can be computed numerically by
means of the finite-difference time-domain method for the
particular geometry and dimensions of the rods. Typical GS
solutions to the latter equation are characterized by multiple
field oscillations and the concentration of light mainly in the
nonlinear rods. Such solitons can be stable even in the low-
amplitude regime (which is potentially accessible in the
experiment), when they are very broad. The stability of
such broad modes was attributed to nonlinear long-range
interactions described by the coefficients Jnm that slowly
decrease with n, m, and also strongly depend on radii of the
rods and respective dielectric constants.

The existence of GSs and GS trains was also confirmed
numerically in finite-sized 2D nonlinear photonic crystals by
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using the multiple-scattering approach with an iterative
scheme that allowed one to solve the nonlinear Helmholtz
equation describing the transmission of light in such crystals
(Xie et al., 2003). They considered photonic crystals mod-
eled by a square matrix of nonlinear cylinders with an
enhanced refractive index. Assuming the cylindrical symme-
try of the light field in each nonlinear cylinder allowed an
iterative calculation of the total dielectric constant, "ðx; yÞ ¼
"0 þ �jEðx; yÞj2, in the framework of the Helmholtz equation
(here �< 0, i.e., the nonlinearity is defocusing), using the
multiple-scattering method. This, in turn, enables one to
determine the transmission coefficient as a function of the
input light field’s amplitude for a fixed frequency inside the
gap, near the lower band edge. The transmission coefficient
features several maxima at different frequencies, that indicate
the formation of different GS modes, ranging from a single-
soliton to soliton trains. A similar procedure was used to
obtain symmetric and asymmetric GSs in quasiperiodic crys-
tals [GS solutions in the model with the constant self-
repulsion coefficient and quasiperiodic linear-lattice potential
were reported by Sakaguchi and Malomed (2006b)]. The size
of the localized modes depends on the frequency at which the
transmission coefficient was calculated: As this frequency
moves deeper into the gap, the spatial size of structures
decreases.

2. Experimental realization: Solitons in a liquid-infiltrated

photonic-crystal fiber

Gap solitons were experimentally created in PCFs with
holes filled with high-index nonlinear liquids featuring a
thermal nonlinearity (Rosberg et al., 2007, Rasmussen
et al., 2009). In these experiments, strongly tunable
diffraction of beams was first demonstrated in a triangular
array created by infiltrating holes of a standard PCF, fabri-
cated from fused silica, with the castor oil that allows one to
reduce the refractive-index contrast with the host silica
(Rosberg et al., 2007). The sample was placed into a
temperature-controlled oven which allows precise thermo-
optic tuning of the temperature-dependent refractive index
of the infiltrated oil (the corresponding thermo-optic coeffi-
cient is � � �3� 10�4 K�1). The refractive-index differ-
ence between the fused silica cladding and holes filled with
oil was decreased to below 2� 10�3 by heating the PCF
above 70 �C. In this regime, individual waveguides feature
the single-mode transmission, and the coupling between
neighboring sites due to the overlap between evanescent
modal fields significantly increases, resulting in a dramatic
enhancement of the discrete diffraction with the increase of
the sample’s temperature. Because of the large negative
thermo-optic coefficient inherent to most liquids, the heating
produced by partial absorption of the propagating beam itself
causes a further decrease of the refractive index in the holes
of the photonic crystal and nonlinear self-defocusing of the
beam. The latter can be used to build a tunable all-optical
power limiter. By properly balancing the linear-refractive
index contrast and the strength of the defocusing nonlinearity
in such crystals, Rasmussen et al. (2009) achieved the
formation of 2D nonlocal GSs. Mathematically, the propaga-
tion of the laser radiation in such media is described by the
corresponding NLSE, iqz þ �q ¼ �½Vðx; yÞ � Rðx; yÞT�2q,

coupled to equation �T ¼ �jqj2 describing the steady-state
temperature distribution, where V is the refractive-index field,
and R ¼ 1 in the holes and zero otherwise. The correspond-
ing sample consists of high-index cylinders placed in order to
form a hexagonal pattern inside a circle of radius R0, sur-
rounded by a large homogeneous silica circle of radius R1

outside the last ring of the holes [Fig. 24(a)]. By analyzing
eigenmodes of this finite structure, it was found that the
spectrum of eigenvalues is divided into bands of closely
spaced values that may be separated by a gap for a proper
set of parameters, akin to gaps in the spectrum of truly
periodic systems. The presence of the gap allows the forma-
tion of GSs bifurcating from the bottom of the first band,
existing due to the defocusing thermal nonlinearity, which
reduces the refractive index in the holes, but almost does not
affect the refractive index of the host medium. The represen-
tative intensity distribution in such a soliton with a staggered
phase structure is shown in Fig. 24(b). It is worth noting that
such states may have propagation constants penetrating into
the bands of the spectrum, which is a consequence of the
finite extent of the system under consideration. GSs were
observed by heating a sample to 76 �C, which reduces the
refractive-index difference between the holes and cladding to
an appropriate value, followed by coupling the beam into the
central hole. A transition was observed from the linear dif-
fraction at low input powers [Fig. 24(c)] to the formation of
solitons at high powers [Fig. 24(d)]. Measurements of the
light power trapped in the input hole as a fraction of the total
input power suggest that the strongest localization of light
occurs at intermediate powers, while delocalization takes
place at low and high powers, in agreement with known
properties of stationary GSs.

FIG. 24 (color online). (Color online) (a) The geometry of the

liquid-infiltrated PCF. (b) The intensity distribution in a numerically

calculated gap soliton for power P ¼ 4� 10�5 W and s ¼ 10.

(c), (d) Experimentally observed output diffraction pattern and

soliton localization in the PCF at low (3 mW) and high

(100 mW) input powers, respectively. From Rasmussen et al., 2009.
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3. The symmetry analysis

Properties of bright solitons in PCFs with defects were
theoretically analyzed by Ferrando et al. (2003). Guidance in
such crystals in the linear regime is provided by the transverse
localization of light at a defect (in fact, this is the core region,
where one hole is missing), due to a complex mechanism of
the interference of light in the periodic air-hole array that
form the photonic crystal cladding. This mechanism is similar
to that occurring in electron crystals in the presence of donor
or acceptor impurities. In crystals of this type, the guided
mode’s power is chiefly confined to the silica core, and the
nonlinear localized solutions also form in this region, rather
than on ‘‘sites’’ of the photonic crystal (i.e., air holes), where
the nonlinearity is negligible. The modeling of the light
transmission in such crystals should be based on the
Helmholtz equation, due to the large refractive-index con-
trast: �qþ k20½n20ðx; yÞ þ n22ðx; yÞjqj2�q ¼ �@2q=@z2. Here

k0 is the wave number in vacuum, n0 ¼ 1 in the air holes,
and n0 ¼ nsilica in the cladding, whereas n2 is different from
zero only in silica. Solutions to this equation can be found by
dint of the modal-expansion method, adjusted so as to include
the inhomogeneous nonlinear term [for details, see Ferrando
et al. (2003)]. The solution pertaining to the highest
eigenvalue of �2 corresponds to the fundamental mode of
the effective fiber existing due to the combined effect
of the linear and nonlinearity-induced guidance. Typical
fundamental-soliton profiles corresponding to different val-
ues of the normalized power � ¼ Pn22=A0 (here P is the total

power carried by the soliton, and A0 is the effective core area)
are shown in Fig. 25(a). With an increase of �, the solitons
that bifurcate from linearly guided modes of the PCF shrink
dramatically and transform into a narrow bright spot residing
at the center of the crystal’s core. Such solutions cease to feel
the periodic structure of the photonic crystal and thus are
almost tantamount to the Townes solitons in the uniform
medium, which are unstable in the presence of perturbations.
At the same time, broad solitons, as well as solitons with
intermediate values of the width, whose shapes are notably

modulated by the air-hole structure, are expected to be com-

pletely stable and can be excited by Gaussian input beams.

This indicates that the photonic-crystal structure not only

helps to generate solitons by reducing the power necessary

for their excitation, but also facilitates their stabilization.

Note that, besides the fundamental solitons, PCFs can support

nodal (or dipole) solitons characterized by nodal lines deter-

mined by the discrete symmetry of the underlying crystal.

Ferrando et al. (2005a) used the group-theory approach to

analyze the role played by nonlinearities in the realization of

the discrete symmetry, and showed that the nonlinearity may

cause breaking of the discrete symmetry, which is associated

with the generation of a new type of solitons with a lower

symmetry than that of the underlying setting. They consid-

ered the following nonlinear eigenvalue problem, that can be

obtained from the Helmholtz equation ðL0 þLnlÞq ¼ �2q.
Here L0 is a linear operator (which includes the Laplacian

and describes the refractive-index profile in the PCF) acting

on the transverse coordinates. The operator is invariant under

the action of the discrete point-symmetry group G, while Lnl

is a nonlinear operator that locally depends on jqj. The group-
symmetry arguments predict that if the system described by

this equation is invariant under some discrete-symmetry

group G, then any of its solutions belongs either to one of

representations of group G or to one of its subgroups G0. This
means, in particular, that if for some function q the nonlinear

operator Lnl will be invariant under group G0, which is a

subgroup of group G associated with the invariance of L0,

then the total operator L0 þLnl is also invariant under

subgroup G0, and the function q featuring such a symmetry

may be a solution to the full equation, ðL0 þLnlÞq ¼ �2q.
This explains why nonlinear solutions with the lower

symmetry (defined by G0) may exist in the system that in

the linear case possesses the higher symmetry (defined by G);

a simpler manifestation of this general principle is repre-

sented by the spontaneous symmetry breaking in the

double-well potential or pseudopotential (see Sec. IVD);

while all eigenstates in the linear double-well system are

either symmetric or antisymmetric, the nonlinearity gives

rise to asymmetric modes.
A particular example of such solutions was found in a

triangular PCF with symmetry group C6v, composed by dis-

crete �=3 rotations, plus the specular reflections with respect

to x, y axes. Fundamental solitons supported by the PCF of

this type are the simplest examples of solutions featuring the

full C6v symmetry. However, in accord with the group-theory

predictions, one can also construct for such PCFs nonlinear

solutions belonging to subgroup C2v (composed by � rota-

tions plus the specular reflections with respect to x, y axes) of
group C6v. The solutions, shown in Fig. 25(b), correspond to

the nodal, or dipole, solitons. Two types of the solitons were

found, with different orientations of the nodal lines and

different eigenvalues �. However, the analysis revealed that

such solutions are subject to oscillatory instabilities.
The existence of vortex solitons in PCFs with defects

was analyzed by Ferrando et al. (2004), and by Ferrando,

Zacarés, and Garcia-March, (2005). Vortex solitons with

topological charges m ¼ 1, 2 were obtained by Ferrando

et al. (2004), for a triangular PCF with a defect. They

represent another example of solutions with the C6v symmetry

FIG. 25 (color online). (Color online) (a) Intensity distributions

for fundamental solitons created in the liquid-infiltrated PCF. The

panels correspond to (from left to right) � ! 0, � ¼ 0:0010,
0.0015, and 0.0017, in the PCF with pitch (the spacing between

parallel voids) � ¼ 23 �m, radius a ¼ 4 �m, and � ¼ 1:55 �m.

(b) Nodal solitons with different orientation of nodal lines in the

PCF with � ¼ 23 �m, a ¼ 8 �m, and � ¼ 1:06 �m, obtained for

� ¼ 0:006. The first two panels show distributions of the absolute

value of the field, while the last two panels show the corresponding

phase patterns. From Ferrando et al. 2003, 2005a.
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(the PCF is characterized by the same symmetry), in addition

to the fundamental solitons. Similarly to the fundamental

solitons, vortices that are notably modulated by the air-hole

structure of the PCF at low powers gradually shrink to the

center of the defect with the increase of the power, and

acquire almost axially symmetric shapes. There is no finite

threshold power stipulating the generation of vortex solitons

in this setting, i.e., they bifurcate from the corresponding

linear defect modes carrying the vorticity. In this case, the

group theory predicts the following angular dependence of

the phase of the vortex soliton: argðqÞ � m�þ bmðrÞ sinð6�Þ,
for crystals with the C6v symmetry, i.e., compared to vortices

in uniform media, an additional sinusoidal modulation of the

phase appears, that reflects the symmetry of the guiding

structure. As in the case of the nodal solitons, vortices in

PCFs with defects are unstable and tend to decay into two

filaments featuring complex dynamics at the center of the

crystal. However, the group theory also allows one to make an

important prediction, that, unlike in the uniform medium,

symmetric vortices of an arbitrarily high order cannot be

generated in the 2D system featuring a discrete-point sym-

metry, i.e., the symmetry imposes the restriction on the

largest possible charge of symmetric vortex solitons

(Ferrando, Zacarés, and Garcia-March, 2005). For example,

the allowed lowest-order eigenfunctions of the operator L ¼
L0 þLnl possessing the C6v symmetry are shown in Fig. 26.

They include the fundamental soliton, vortices with charges

�1 and �2, but, instead of vortices with charges �3, only a

multipole state can be found. This is a manifestation of the

vorticity-cutoff theorem, which asserts that, if the system is

invariant under the Cn or Cnv point-symmetry group, then

the charge m of the vortex solutions in such a system has an

upper bound (cutoff), given by m< n=2 for even n, and
m< ðn� 1Þ=2 for odd n. Note that a similar conclusion

was obtained for solitons in optically induced lattices with

Cnv symmetries, where the propagation of light can be de-

scribed by the standard NLSE (Kartashov et al., 2005). The

group theory was used by Garcia-March et al. (2009a) to

develop a concept of the angular pseudomomentum that

allows a simple classification of possible solutions in the

discrete-symmetry media, and which is conserved upon the

evolution of the optical field in such media. This concept

allows one to predict a transformation of the charge of vortex

solitons at the boundary between two materials with different

symmetries (Ferrando et al., 2005b). The impact of the

discrete symmetry of the underlying guiding structure with

the inhomogeneous nonlinearity on the properties of more

complicated vortex solitons with multiple off-axis phase

singularities was analyzed by Garcia-March et al. (2009b).
Higher-order nonlinear modes with nontrivial topology in

the form of vortex solitons and soliton clusters, and their

bifurcations in PCFs with defects were investigated numeri-

cally by Salgueiro and Kivshar (2009). They found a variety

of soliton clusters, with symmetries that may be different

from the lattice symmetry, and discussed their stability.

Structures with a regular triangular lattice and a central defect

were considered, where the light propagation is described by

equation iqz þ�qþ ½na þ Vðx; yÞð�þ jqj2Þ�q ¼ 0 (i.e., the

paraxial description was employed), with Vðx; yÞ ¼ 0 in

the holes and Vðx; yÞ ¼ 1 in the nonlinear substrate, and

� ¼ ns � na characterizing the difference of the refractive

index between the substrate and material of the holes. In

addition to the simplest vortex and dipole solitons discussed

above, this system supports azimuthally modulated multipole

solitons presenting a central dislocation combined with a

vortex structure. For example, such solitons can possess three

or four well-resolved maxima in the azimuthal direction, and

are characterized by different orientations with respect to the

underlying C6v-symmetric guiding structure. Such states re-

quire a threshold (minimal) power for their existence, and

they bifurcate from different points of the Nð�Þ diagram for

usual vortex solitons, so that states featuring a larger number

of azimuthal intensity oscillations require higher powers for

their existence. Similar to previously found excited states in

PCFs, such solitons are prone to instabilities.
Salgueiro and Kivshar (2009) also constructed vortices and

soliton clusters in dual-core PCF couplers that are represented

by two missing holes, i.e., two defects, in the underlying

periodic triangular structure. Various nonlinear combinations

of different modes were found, including double-vortex struc-

tures [Fig. 27(a)], combinations of vortices and fundamental

modes [Fig. 27(b)], as well as combinations of clusterlike

modes [Figs. 27(c) and 27(d)]. Dual-core PCF couplers may

function as conventional directional couplers, despite their

FIG. 26. The lowest-order eigenfunctions of nonlinear operator L
generated by the soliton solution in the fundamental representation

of C6v, in the model of the PCF with the corresponding symmetry of

the intrinsic structure. The symmetry of the full operator is C6v, i.e.,
½L; C6v� ¼ 0. Modes in the two middle rows correspond to vortices

with charges �1 and �2. From Ferrando, Zacarés, and Garcia-

March, 2005.
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complex refractive-index and nonlinearity structure
(Salgueiro and Kivshar, 2005). Such twin-core PCFs support
stationary symmetric, antisymmetric, and asymmetric non-
linear modes. While at low powers only symmetric and
antisymmetric modes can exist, at a certain threshold power
the asymmetric mode bifurcates from the symmetric one,
while the symmetric mode becomes unstable above this
point. Similar to other nonlinear couplers, the switching in
such a coupler manifests itself as a periodic energy exchange
between the cores at low powers, when only one core is
excited at the input, while the exchange is completely ar-
rested at sufficiently large powers, when the system can
support asymmetric modes. Nonlinear vortex modes in such
twin-core PCFs were studied by Salgueiro and Santos (2009).

PCFs may support two-component localized nonlinear
waves (vectorial solitons) consisting of two mutually trapped
components confined due to the specific linear refractive-
index distribution in the PCF and the self-focusing
nonlinearity of its material (Salgueiro et al., 2005). It was
demonstrated that such mutually trapped states, bifurcating
from the corresponding scalar states, may be stable. To
describe the propagation of the vectorial states, the following
coupled equations were used:

i
@q1;2
@z

þ
�
@2q1;2
@x2

þ @2q1;2
@y2

�
þ naq1;2

þ Vðx; yÞð�þ jq1;2j2 þ Cjq2;1j2Þq1;2 ¼ 0; (50)

where the meaning of parameters �, na, and Vðx; yÞ is the
same as indicated above. The existence domain for
the vectorial solitons is symmetric with respect to values of
the propagation constants �1;2, as is evident from the sym-

metry of Eq. (50); see Fig. 28. The domain is bounded by two
lines at which the vectorial solitons bifurcate from their scalar
counterparts. When C < 1 one observes that close to the
lower bifurcation curve the second component decreases,
while near the upper bifurcation curve the first component
gradually vanishes. When C> 1, one is dealing with the
opposite situation, just as in the case of 1D vectorial solitons

in NLs (see Sec. IVC). The presence of the periodic lattice of
holes in the PCF suggests that the vectorial solitons may be
stable in this system. It was shown that, by applying the
generalized matrix stability criterion, it is possible to deter-
mine a border between the stable and unstable regions, which
is defined as a set of points that fulfill the marginal stability
condition, detJ ¼ 0, where elements of the Jacobian are
Jij ¼ @Pi=@�j and with �i, Pi ði ¼ 1; 2Þ being the propaga-

tion constants and powers of the respective soliton compo-
nents (this condition is a vectorial generalization of the VK
criterion pertaining to the scalar setting). The corresponding
stability border, as well as the stability and instability regions,
are shown in Fig. 28, in the (�1; �2) plane. The structure of
the stability domain strongly depends on the cross-
modulation coefficient C, which is a characteristic feature
of multicomponent systems.

C. Discrete models

A 2D nonlinear Schrödinger lattice with nonlinear intersite
couplings, which models a square array of evanescently
coupled linear optical waveguides, embedded in a nonlinear
Kerr material, was studied by Öster and Johansson (2009).
The corresponding DNLSE that describes such a system, with
the out-of-phase modulation of the linear refractive index and
nonlinearity, and taking into account only nearest-neighbor
couplings, is

i
dqnm
dz

¼ Q1qnm þQ2�qnm þ 2Q3qnmjqnmj2

þ 2Q4ð2qnm�jqnmj2 þ q	nm�q2nmÞ
þ 2Q5½2jqnmj2�qnm þ q2nm�q

	
nm

þ �ðqnmjqnmj2Þ�; (51)

where qnm is the complex amplitude of the electric field in the
waveguide with number n, m, coupling parameters Q1

through Q5 are determined by overlap integrals of modes
localized at adjacent sites, and the operator � is defined as
�qnm ¼ qn�1m þ qnþ1m þ qnm�1 þ qnmþ1. An important
difference between this equation and the standard DNLSE
which describes the transmission of light in waveguide arrays
with the uniform nonlinearity [see Eq. (12)] is the presence of
terms with coefficients Q4 and Q5, which account for the

FIG. 28 (color online). (Color online) The existence domain for

the vector solitons in the PCF model, shown in the plane of

(�1; �2), for two values of coupling constant C. From Salgueiro

et al., 2005.

FIG. 27 (color online). (Color online) Examples of different types

of vortexlike solitons in the dual-core PCF: (a) a double-vortex

state, (b) a combined state of vortex and fundamental solitons, (c) a

double-triple vortex state, and (d) a combined state of a triple vortex

and fundamental soliton. From Salgueiro and Kivshar, 2009.

288 Yaroslav V. Kartashov, Boris A. Malomed, and Lluis Torner: Solitons in nonlinear lattices

Rev. Mod. Phys., Vol. 83, No. 1, January–March 2011



out-of-phase modulation of the nonlinearity and linear

refractive index. These nonlinear coupling terms may be of
the same order as the usual on-site nonlinearity coefficient

Q3. A number of discrete-soliton solutions to Eq. (51) were
obtained, ranging from the simplest odd soliton to even ones

(solitons centered between two lattice sites, with equal am-
plitudes at both sites) and dipole modes (solutions with the

sign alternating between adjacent sites). Solutions of the
above-mentioned types may be stable for properly selected

values of Q4 and Q5, which is surprising, as even solitons of
the usual DNLSE with the cubic on-site nonlinearity are

always unstable. Moreover, combined stability regions for
even and dipole states cover the instability region of odd

solitons. The stability boundaries for different solutions do
not coincide exactly, in contrast to the 1D lattice with non-

linear couplings, where odd solitons become unstable almost
precisely at the same locus where even solitons become

stable, resulting in a stability exchange between the two
species. Instead, in the presently considered model one ob-

serves simultaneous stability of at least two different species

of 2D solitons in sufficiently wide parameter regions. Thus, it
was concluded that, although the stability boundaries for odd

and even solitons are located far apart in the parameter plane,
one may still define the stability exchange between them,

which is connected to the existence of an intermediate asym-
metric unstable solution between the stability boundaries of

the odd and even solitons. The asymmetric solutions emerge
through a pitchfork bifurcation. Moreover, comparing values

of the Hamiltonian for the solutions with equal values of
the total power (norm) reveals the equality of the

Hamiltonians of the odd and even solitons along some
boundaries in the parameter space. This difference in values

of the Hamiltonian characterizes the height of the respective
Peierls-Nabarro barrier, i.e., the potential barrier that has to

be overcome (for instance, by imposing a kick in the form of a
phase tilt on the soliton) to achieve the mobility. Therefore,

one may expect enhancement of the soliton mobility in the
region of the stability inversion. Nevertheless, direct simula-

tions show that, in the 2D model, the mobility of the solitons
remains very poor. This fact was attributed to the fact that

stability boundaries for the odd and even solitons are located

too far apart in the parameter plane, in the case of the 2D
lattice (in contrast to its 1D counterpart), which hampers the

transition between such states (which is a basic step in
the motion across the lattice). An interesting finding is that

the nonlinear coupling terms may exactly cancel their linear
counterparts, thus leading to the existence of exact compac-

ton solutions, whose amplitude strictly vanishes outside a
certain domain.

D. Solitons in a dissipative nonlinear lattice

As said above, a versatile technique allowing for the

creation of NLs in BECs is based on inducing the FR with
the spatially modulated strength. On the other hand, it is

known that the FR gives rise not only to a change of the

scattering length as but also to a nonlinear loss, which is
accounted for by an imaginary part of as [see, e.g., Fedichev
et al. (1996)]. Thus, the NL induced by means of the FR
technique may also include a dissipative component. This

possibility was analyzed by Abdullaev et al. (2007) in the
framework of an accordingly extended two-dimensional
GPE with an anisotropic NL,

i
@q

@t
¼ �

�
@2q

@x2
þ @2q

@y2

�
� f�0 þ ð�1 þ i�2Þ½1þ �

þ cosðkxÞ þ � cosðkyÞ�gjqj2q; (52)

where the coefficient �2 > 0 accounts for the dissipative
component of the NL. Related to this, we mention that a
model of a dissipative OL acting on BEC was recently
introduced (in the 1D form) by Bludov and Konotop (2010).

Applying a generalized version of the VA to the model
based on Eq. (52) in order to include effects of the dissipative
term [see, e.g., papers by Chávez Cerda et al. (1998) and
Skarka and Aleksic (2006)], and using direct simulations, it
was demonstrated in the case of the attractive nonlinearity
that the nonlinear loss prevents the collapse of the conden-
sate, replacing it by several cycles of quasicollapse and
expansion, which is followed by an eventual decay [in this
respect, we note that, as shown by Leblond et al. (2009),
the cubic loss term prevents the collapse even in the case of
the supercritical focusing nonlinearity, which may be ac-
counted for by the self-attractive quintic term in the 2D
equation]. Abdullaev et al. (2007) also analyzed a possibility
to compensate the nonlinear loss by a linear ‘‘feeding’’ term
i�, with �> 0, added to the right-hand side of Eq. (52). Note
that dissipative periodic waves, localized solitons, and
breathers in complex nonlinear potentials were studied by
Abdullaev et al. (2010). Solitons pinned by hot spots in
dissipative systems with inhomogeneous nonlinearities were
addressed by Tsang et al. (2010).

VI. SURFACE SOLITONS IN NONLINEAR LATTICES

In this section we address surface solitons that may form at
the edge of nonlinear or mixed linear-nonlinear periodic
lattices. Surface solitons constitute an important class of
localized modes in lattice media (Lederer et al., 2008);
therefore, it is relevant to study the surface solitons and their
stability in NLs. In this section, we first describe surface
solitons states in the KP model that allows one to obtain
analytical expressions for soliton shapes, by properly tailor-
ing known analytical solutions at different sides of the inter-
face. We outline specific features of the dynamics of 1D
solitons at the interface between the purely nonlinear lattice
and uniform medium, the formation of surface solitons at the
edge of layered thermal media, and differences in properties
of such states and conventional nonlocal surface solitons in
uniform thermal media.

In this section, we also address asymmetric matter-wave
vortices and multipole solitons forming in external parabolic
potentials in the presence of sharp boundaries between re-
gions of different strengths of interatomic interactions, as
well as power-dependent shape transformations and interac-
tions with interfaces of truncated lattices in systems featuring
out-of-phase modulations of the linear refractive index and
nonlinearity. The concept of the nonlinear surface-wave for-
mation at the interface of periodic OLs with the uniform
nonlinearity was introduced by Makris et al. (2005), in the
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framework of a discrete model. Suntsov et al. (2006) con-

firmed experimentally that the formation of surface waves at

the edge of 1D waveguiding arrays is possible for moderate

power levels. Formation of gap surface solitons at the edge of
defocusing lattices is also possible, as was shown theoreti-

cally (Kartashov et al., 2006) and confirmed experimentally

in defocusing LiNbO3 waveguiding arrays (Rosberg et al.,

2006; Smirnov et al., 2006). It is worth mentioning that

experimental observations of 2D surface waves at the edge of

usual OLs were also reported (Wang, Bezryadina et al.,
2007); Szameit et al., 2007).

A. One-dimensional models

1. The Kronig-Penney model

Kominis et al. (2007) used the phase-space method for the

construction of analytical soliton solutions at the interface of

the NL of the KP type and a linear or nonlinear homogeneous

medium, as well as at the interface between two dissimilar

NLs. This method allowed them to find soliton solutions with

both zero and nonzero semi-infinite backgrounds.
The evolution of light beams in the respective structure is

described by equation iqz þ qxx þ VðxÞqþ RðxÞjqj2q ¼ 0,
where VðxÞ and RðxÞ change in a steplike manner between

segments, forming the KP lattice. The phase space corre-

sponding to NL segments (for the case of �> "1, where � is

the propagation constant, and "1 is for the value of V in

nonlinear segments) is shown in Fig. 29(a), indicating the

existence of a homoclinic solution. The phase space corre-
sponding to the linear part is shown in Figs. 29(b) and 29(c),

for �< "2;3 and �> "2;3, respectively, (here "2;3 are the

values of V in the linear segments of the lattice and in the

uniform medium, respectively). As before, for �n ¼ "2 �
ðn�=LÞ2, n ¼ 1; 2; . . . , which corresponds to an integer num-

ber of half-periods of the solution in the linear part of width

L, the continuity conditions for the field and its derivative are

met at all boundaries inside the periodic medium. This fact

makes it possible to construct analytical solutions, by using
known sech-type expressions for solitons in the uniform
medium and sinusoidal functions in the linear one. In terms
of the corresponding phase space, this corresponds to the
motion along the homoclinic orbit, periodically interrupted
due to the passage through the linear segments. For the case
of the interface with a nonlinear medium which has the same
characteristics as nonlinear segments in the lattice, the point
representing the soliton in the phase space keeps moving
along the same homoclinic orbit in the uniform medium,
approaching the origin as x ! �1, which corresponds to
fully localized surface solitons; see Fig. 29(d). For the inter-
face with the linear medium, two situations are possible:
When �< "3, the solution meets one of elliptical curves in
the phase space and evolves periodically at x ! �1, which
corresponds to solitons having a zero asymptotic value at
x ! þ1, and a periodic pedestal at x ! �1 [see Fig. 29(e)],
while, for�> "3, there exists a solution for which the part of
the homoclinic orbit intersects one of straight lines from
Fig. 29(c), tending to the origin and giving rise to a fully
localized soliton, decaying also in the linear medium [see
Fig. 29(f)]. Some of the modes constructed in this way may
be stable, while others undergo reshaping and transformation
into stable modes with different symmetries.

2. The interface between the uniform medium and a nonlinear

lattice

Abdullaev et al. (2009) studied the dynamical trapping
and propagation of matter-wave solitons through an interface
between a uniform medium and a purely nonlinear lattice
in the framework of the NLSE, iqz þ qxx þ RðxÞjqj2q ¼ 0,
with RðxÞ ¼ 1þ �ðxÞ½r0 þ r1 sinð2xÞ�, where �ðxÞ is the
Heaviside step function. Collisions of solitons, arriving with
a certain initial velocity from the uniform medium, with the
nonlinear interface located at x ¼ 0 were also considered.
Taking into account the fact that the interface in this case is,
in fact, self-induced (i.e., solitons with higher peak ampli-
tudes feel stronger perturbations when they hit the interface),

it was shown that the interaction of an incident soliton, q ¼ffiffiffi
2

p
Asech½ðx� Þ=�� exp½i�ðx� Þ2 þ ikðx� Þ�, with the

nonlinear interface may be described by @2=@z2 ¼
�@V=@ and @2�=@z2 ¼ �@V�=@�, where the respective

effective potentials are

Vð�; Þ ¼ � N

4�
ðr0F0 þ r1F2Þ;

V�ð�; Þ ¼ 8

�2�2
� N

�2�
½4þ 3ðr0F0 þ r1F2Þ�:

(53)

Here N is the soliton’s norm, F0 � ð2=3Þ þ tanhð=�Þ �
ð1=3Þtanh3ð=�Þ, and F2 �

R1
�=� sechðyÞ sinð2�yþ 2Þdy.

The resulting potential V oscillates in the region occupied by

the NL. Since the interface is nonlinear, the amplitude of this
effective potential decreases with a decrease of the soliton’s
norm, reflecting the fact that low-amplitude solitons would be
less disturbed upon passing the interface than their high-
amplitude counterparts. The position and width of a station-
ary soliton located near the surface can be determined
from @V=@ ¼ @V�=@� ¼ 0, which yield an accurate pre-

diction compared with direct simulations. The conditions of

FIG. 29 (color online). (Color online) (a)–(c) The phase space for

each part of the structure (in the one-dimensional model based on

the Kronig-Penney lattice with the intrinsic surface). (a) The non-

linear part for �> "1, (b) the linear part for �< "i (i ¼ 2 or 3),

and (c) the linear part for �> "i (i ¼ 2 or 3). (d)–(f) The phase-

space representation of the soliton solutions for n even. (d) The

nonlinear homogeneous part, (e) the linear homogeneous part at

�< "3, and (f) the linear homogeneous part at �> "3. The dotted
line denotes the solution in the lattice part, and the solid line denotes

the solution in the uniform part. From Kominis et al., 2007.
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reflection or transmission of the soliton at the interface are
determined by the potential barrier’s height V. If the initial

kinetic energy of the effective particle associated with the
soliton is larger than the height of the potential barrier, the
soliton passes the interface and starts to travel across the NL
(where it can be eventually trapped due to radiation losses),
while for low kinetic energies it is reflected (at least for
r0 ¼ 0, i.e., when there is no step in the constant part of the
nonlinearity). Since the height of the effective potential
barrier depends on the nonlinearity-modulation depth and
input norm, one can switch between regimes of the soliton
transmission and reflection by tuning input conditions or the
NL strength. For broad solitons, the reflection is only possible
for r1 < 0, i.e., it may be crucial whether the lattice has a
maximum or minimum at the interface.

Another effect in the system of the same type was recently
reported by He et al. (2010), viz., a spontaneous drift of a
soliton along the surface, provided that the soliton’s norm
exceeds a certain critical value. They also studied the re-
bound, penetration, and trapping of a tilted soliton colliding
with the surface.

Interesting results were also obtained by Dong and Li
(2010), who studied a nonlinear interface of a different
type, between two photonic lattices embedded into saturable
media with different values of the saturation parameter.
Surface optical solitons of dipole, quadrupole, and vortex
types were found in this system. The multipole and vortex
solitons are stable when their total powers exceed the corre-
sponding threshold values.

3. The surface of a thermal layered medium

The existence and properties of multipole surface solitons
localized at a thermally insulating interface between layered
thermal media and a linear dielectric were analyzed by Y. V.
Kartashov et al. (2009b). The propagation of light in such a
material is described by the NLSE for the amplitude q of the
optical field, coupled to the equation for the temperature
perturbation T:

i
@q

@z
¼ � 1

2

@2q

@x2
� �ðxÞTq;

@2T

@x2
¼ �jqj2 for � L  x  0;

i
@q

@z
¼ � 1

2

@2q

@x2
for x <�L and x > 0:

(54)

Here L is the width of the thermal medium, �ðxÞ accounts
for variations of the thermo-optic coefficient (from positive
to negative values) between different layers, while
boundary conditions for temperature are Tjx¼�L ¼ 0 and
@T=@xjx¼0 ¼ 0, i.e., the boundary at x ¼ 0 is assumed to
be thermally insulating, while the boundary at x ¼ �L is
thermally stabilized. The surface solitons in this model may
form in the vicinity of the thermally insulating interface even
in the uniform focusing thermal medium, when � is constant.
Such solitons may be built of several constituents (poles).
Because of the specific character of the thermal nonlinearity,
the perturbation of the refractive index is nonzero everywhere
in the thermal medium, decreasing almost linearly toward its
left border. At the edge of the uniform thermal medium, only

multipoles with a number of poles n  2 may be stable (this
resembles the constraint n  4 on the number of poles in
stable multipoles in the ordinary bulk nonlocal materials). In
the case of the layered thermal medium composed of alter-
nating focusing and defocusing layers, a light beam entering
the medium self-induces a NL, which becomes more pro-
nounced with an increase of the peak amplitude of the beam.
It is strongly asymmetric because of the boundary conditions;
see Fig. 30(d). In that case, the soliton’s peak may be local-
ized in any focusing layer. Fundamental surface solitons
residing in the first layer exhibit pronounced oscillations in
their left wings [Fig. 30(a)]. Multipoles with n > 1, centered
at intermediate and high powers in the second, third, etc.,
focusing layers carry the number of poles equal to the number
of the layer where the most pronounced peak is located; see
Figs. 30(b) and 30(c). When the power decreases, the left
outermost pole shifts into the bulk of the thermal medium,
gradually jumping between adjacent focusing layers. In con-
trast, when the power increases, light tends to concentrate
almost within a single layer of number n. Periodic modula-
tions of the thermo-optic coefficient dramatically affect the
stability of the surface solitons. In such periodic media, there
is no restriction on the number of poles in stable solitons (the
multipoles with n up to 10, at least, can be stable).

4. Gap solitons at the surface

Many families of 1D surface gap solitons at a nonlinearity
interface (i.e., the interface created by a jump of the nonline-
arity coefficient in a system where the perfectly periodic
linear lattice is imprinted) were constructed by Dohnal and

FIG. 30 (color online). (Color online) Profiles of (a) fundamental,

(b) dipole-mode, and (c) tripole solitons with different values of �,

in the model of the thermal layered medium with a surface.

(d) Distributions of the refractive index for fundamental solitons

with � ¼ 5 and � ¼ 1. In all cases, the sign of the nonlinearity

alternates between different layers of the thermal medium. In gray

regions, �> 0 holds. From Y. V. Kartashov et al., 2009b.
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Pelinovsky (2008) and by Blank and Dohnal (2009). The

linear stability of such surface gap solitons was studied
with the aid of the Evan’s-function method. The results

show the existence of both unstable and stable surface GSs.
In this system even some solitons centered in the domain with

the weaker focusing nonlinearity may be stable.

B. Two-dimensional models

The basic properties of strongly asymmetric 2D matter-

wave solitons that form at the interface produced by regions
with different interatomic interaction strengths in pancake-

shaped BECs were studied by Ye et al. (2006). They con-
sidered several types of solitons featuring topologically com-

plex structures, including vortex and dipole solitons placed
into an external parabolic potential, where the nonlinearity

strength changes in one direction in a steplike fashion, so that
in one-half of the space the repulsive interatomic interactions

are weaker than in other half, or the nonlinearity even

switches from repulsion to attraction. The confinement of
the condensate in this case is achieved due to the external

parabolic potential, while the presence of the nonlinearity
interface causes severe distortions of vortex and multipole

solitons bifurcating from the corresponding eigenmodes of
the parabolic potential. While in the absence of the nonlinear

interface vortex-soliton profiles are axially symmetric, and
the vortex core is located at the center of the parabolic

potential, in the case of the inhomogeneous nonlinearity the

core of the vortex shifts into the region of weaker repulsive
interactions, and the soliton’s amplitude in this region sub-

stantially increases, which results in a strong asymmetry of
the vortex’s shape. The asymmetry becomes more pro-

nounced with an increase of the soliton’s norm. Note that a
similar effect of the soliton’s ejection into the region with

weaker interactions was reported by Perez-Garcia and Pardo
(2009) and by Zezyulin et al. (2007). For fixed chemical

potential � and radial-confinement frequency �, the asym-

metric vortex solitons can exist only when the strength of
interatomic interactions exceeds a certain critical value.

Despite the strong shape asymmetry, such vortex solitons
are also stable in the strongly nonlinear regime, when the

norm exceeds a certain critical value. Dipole solitons were
found in this setting as well. They feature asymmetric shapes

and curved nodal lines due to the presence of the nonlinearity
interface. Such solitons are stable in the region adjacent to the

cutoff, while the maximal norm of the stable dipole increases

with the increase of the nonlinearity step at the interface, i.e.,
the interface acts as a stabilizer for such solitons.

Two-dimensional solitons were also investigated at the
edge of a truncated lattice with out-of-phase modulations

of the nonlinearity and refractive index (Kartashov et al.,

2008). In such a setting, which is governed by equation
iqz ¼ �ð1=2Þ�q� ½1� �Rðx; yÞ�jqj2q� pRðx; yÞq, where

Rðx; yÞ describes the profile of the truncated periodic struc-
ture, surface solitons may form around one of the edge

waveguides. At low amplitudes, they are broad and expand

into the lattice region, but with an increase of the norm the
light localizes in the surface channel. Nevertheless, in con-

trast to the medium with the uniform nonlinearity, the further
growth of the amplitude results in a faster increase of the

nonlinear contribution to the refractive index in the space

between maxima of the linear lattice. Since nonlinear effects

dominate when the soliton’s amplitude is high, the large-

amplitude soliton shifts into the region between the first
and second waveguide rows. This effect induced solely by

the surface stems from the modulation of the nonlinearity

only in the half-space, giving rise to a preferable direction of

the soliton’s shift. The competition between the linear refrac-

tion and self-action results in a nontrivial Nð�Þ dependence,
which predicts the existence of minimal Nmin and maximal

Nmax soliton norms [Fig. 31(a)]. The corresponding

Hamiltonian-versus-norm dependence exhibits two cuspidal

points, which is typical for solitons in 2D lattices with the
nonlinearity modulation [Fig. 31(b)]. Stability domains of the

surface solitons are shown in the planes of (�;N) and (p;N)

in Figs. 31(c) and 31(d), respectively. One can see that the

stability domain may completely vanish when the depth of

the nonlinearity modulation � exceeds a certain critical
value, or when the depth of the linear lattice p becomes too

small. Interesting dynamics may be observed when the sur-

face soliton is excited by a Gaussian beam. If the input power

is too low, the beam diffracts and almost all light penetrates

into the bulk of the lattice. At intermediate values of N, one
achieves an effective excitation of a surface soliton, when

almost all the input power remains trapped in a vicinity of the

launch channel. If the power is too high, the input beam drifts

into the space between the first and second lattice rows, where

it collapses. This suggests a possibility of engineering an all-
optical limiter incorporating the interface of the lattice

with the spatially modulated nonlinearity. Notice that very

FIG. 31 (color online). (Color online) (a) The norm of the surface

soliton residing at the interface of lattice with out-of-phase modu-

lation of refractive index and nonlinearity vs the propagation

constant; (b) the Hamiltonian vs the norm at p ¼ 3, � ¼ 0:6.
Darker and lighter curves show stable and unstable soliton families,

respectively. Stability domains for surface solitons: (c) in the plane

of (�;N) at p ¼ 3; (d) in the plane of (p;N) at � ¼ 0:7. From

Kartashov et al., 2008.
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recently, a rigorous proof of existence of fundamental surface
gap solitons at n-dimensional nonlinear interfaces with peri-
odic variations of nonlinearity and refractive indexes at both
sides of the interface was given by Dohnal, Plum, and Reichel
(2010) using variational methods.

VII. SOLITONS IN LATTICES WITH QUADRATIC

NONLINEARITIES

The theoretical results outlined so far were obtained in NL
models with the cubic or saturable nonlinearity. Theoretical
predictions were also made for the existence and stability of
optical spatial solitons in models of 1D photonic crystals with
the quadratic, alias �ð2Þ (i.e., second-harmonic-generating),
nonlinearity [reviews of solitons in uniform �ð2Þ media were
presented by Etrich et al. (2000) and Buryak et al. (2002)].

A. Discrete models

The simplest model of the 1D photonic crystal with the �ð2Þ
nonlinearity was introduced by Sukhorukov et al. (2000), in
the form of an array of infinitely narrow quadratically non-
linear stripes embedded into a host linear medium where the
light propagation is described by the following coupled-mode
equations:

i
@u

@z
þ @2u

@x2
þ V1ðxÞuþX

n

�ðx� hnÞð�1uþ u	vÞ ¼ 0;

i
@v

@z
þ 1

2

@2v

@x2
þ V2ðxÞvþX

n

�ðx� hnÞð�2vþ u2Þ ¼ 0:

(55)

Here uðx; zÞ and vðx; zÞ are amplitudes of the fundamental-
frequency (FF) wave and its second harmonic (SH), V1;2ðxÞ
account for the linear-lattice potential that may exist in the
medium, �ðxÞ is the delta function, h is the spacing of the
grating formed by the narrow stripes of the �ð2Þ nonlinearity,
while the corresponding �ð2Þ coefficient is scaled to be 1, and
the coefficients �1, �2 account for the possibility that the
comb of the delta functions generates an additional linear
potential. Similar to the model with the array of infinitely
narrow Kerr-nonlinear stripes embedded into the linear host
medium (Sukhorukov and Kivshar, 2002a, 2002b), Eqs. (55)
can be explicitly integrated in the linear segments, which
makes the remaining equations for stationary modes equiva-
lent to those for a discrete �ð2Þ system. After rescaling, the
latter equations take the following form:

�1Un þ Unþ1 þ Un�1 þ �1U
	
nVn ¼ 0;

�2Vn þ Vnþ1 þ Vn�1 þ �2U
2
n ¼ 0;

(56)

with the propagation constants for the FF and SH, k and 2k,
hidden in coefficients �1;2. It is worth mentioning that the full

(nonstationary) model of the discrete �ð2Þ lattice was intro-
duced by Peschel et al. (1998), and by Darmanyan et al.
(1998), who also found basic types of discrete solitons in that
model. In particular, the discrete �ð2Þ solitons, as well as their
counterparts in the DNLSE with the cubic nonlinearity, may
be classified into staggered and unstaggered ones, in the
cases when, respectively, the discrete field features alternat-

ing signs at adjacent sites of the lattice, or keeps the same
sign. For the two-component discrete model based on
Eqs. (56), a situation is also possible when the FF discrete
field is staggered, while its SH counterpart is not. Figure 32
shows generic examples of basic types of fundamental on-site
discrete solitons generated by Eqs. (56). This figure also
includes predictions for the shapes of the solitons produced
by the VA based on the simplest ansatz relevant to the
description of discrete solitons (Malomed and Weinstein,
1996), viz., fUn; Vng ¼ fAa�jnj; Bb�jnjg, where A, B and a,
b are real constants (coefficients a and/or b corresponding to
the staggered components are negative). In the model assum-
ing a single infinitely narrow �ð2Þ layer embedded into the
linear medium, soliton solutions can be found in an exact
form, as shown by Sukhorukov et al. (1999).

Another form of a (semi-)discrete system with the �ð2Þ
nonlinearity was proposed by Panoiu et al. (2006). They
considered a complex waveguide built in the form of a slab
substrate, with an array of guiding ribs mounted on top of it,
both parts being made of a �ð2Þ material [cf. a similar system

FIG. 32. Typical examples of stable on-site-centered (odd) dis-

crete solitons generated by Eqs. (56), in the model of the lattice with

the �ð2Þ nonlinearity. Triangles and squares show numerical profiles

of the fundamental and second harmonics, respectively. The dashed

and continuous curves represent the respective profiles as predicted

by the variational approximation. (a) Solitons with staggered fun-

damental and unstaggered second-harmonic components, (b) both

components staggered, and (c) both unstaggered. From Sukhorukov

et al., 2000.
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with the Kerr nonlinearity described by Eqs. (44)]. Selecting
the guiding characteristics of this setting, one may design the
system in which the slab and array support, respectively,
the transmission of the SH and FF waves only (system A),
or vice versa (system B). The corresponding models are based
on the following systems of coupled-mode equations:

i
d
n

dz
þ 	ð
n�1 þ
nþ1Þ þ
	

n�ð� ¼ nÞ ¼ 0;

i
@�

@z
þ 1

2

@2�

@�2
þ ��þ 1

2

X
n


2
n�ð�� nÞ ¼ 0;

(57)

for system A, and

i
@�

@z
þ 1

2

@2�

@�2
þ�	X

n

c n�ð�� nÞ ¼ 0;

i
dc n

dz
þ 	ðc n�1 þ c nþ1Þ þ �c n þ 1

2
�2ð� ¼ nÞ ¼ 0;

(58)

for system B, where the small and capital letters 
n=�ð�Þ
and c n=�ð�Þ stand, respectively, for the discrete and con-
tinuous amplitudes of the FF and SH components, � is the
transverse coordinate, 	 is the effective coefficient of the
coupling between discrete waveguides in the array via eva-
nescent fields, and � determines the phase mismatch between
the FF and SH waves. Systems (57) and (58) conserve the
respective norms PA ¼ P

nj
nj2 þ
R1
�1 j�ð�Þj2d� and

PB ¼ R1
�1 j�ð�Þj2d�þP

njc nj2.
Stationary semidiscrete solutions to Eqs. (57) and (58)

were found in the form of f
n; c n;�;�g ¼
fun; vn; Uð�Þ; Vð�Þg expðikzÞ. Typical examples of the

on-site- and intersite-centered (odd and even) solitons found
in systems of both A and B types are shown in Fig. 33.
Numerical results demonstrate that in the A-type system the
families of both odd and even semidiscrete solitons have no
existence threshold in terms of the total power, and both
families are completely stable, as predicted by the VK crite-
rion and verified in direct simulations. On the other hand, in
the B-type system there are power thresholds necessary for
the existence of solitons of both types, while branches of the
odd and even solitons are stable at values of k exceeding those
corresponding to the threshold points (also in full agreement
with the prediction of the VK criterion). The stability of the
intersite-centered semidiscrete solitons in these two (semi)
discrete systems is a significant finding, as their counterparts
in the fully discrete �ð2Þ system are unstable.

B. The continuous model

A model of a �ð2Þ photonic crystal in a fully continuous
form was recently given by Pasquazi and Assanto (2009). The
propagation of light in such a crystal is described by the
following system of coupled-mode equations for the FF and
SH components:

i
@u

@z
¼ 1

2

@2u

@x2
� uþ 2 cosð�xÞu	v;

i
@v

@z
¼ 1

4

@2v

@x2
� �vþ 2 cosð�xÞu2;

(59)

where � determines the FF-SH phase mismatch, and 2�=�
is the period of the spatially periodic modulation of the
nonlinearity coefficient (�ð2Þ grating), with the zero mean
value. In stationary soliton solutions generated by this model
the SH component is more sensitive to the presence of the
nonlinear grating than its FF counterpart; see Fig. 34. The
stability of the full family of the soliton solutions was inves-
tigated via the computations of the corresponding eigenvalues
for small perturbations. The result was that the solitons tend
to become stable with an increase of � and decrease of � in

FIG. 33 (color online). The top and bottom panels display typical

examples of stable semidiscrete �ð2Þ solitons generated by Eqs. (57)

and (58), respectively, whereas, the left and right panels show the

odd and even species of the solitons. Vertical lines designate the

location of the discrete waveguides in the system. These examples

pertain to zero mismatch (e.g., From Panoiu et al., 2006).

FIG. 34. A soliton generated by Eqs. (59) in the case of the large

wave number of the nonlinear grating, � ¼ 20, and large mismatch,

� ¼ 10, in the model of the photonic crystal with the �ð2Þ nonline-
arity. The grating is represented by the gray pattern in the back-

ground. The profile of the SH component follows the form of the

nonlinear grating, while the FF component features a sech-type

profile, with only small distortions induced by the grating, as

additionally shown in the inset, where the grating is indicated by

the dashed sinusoid. From Pasquazi and Assanto, 2009.
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Eqs. (59). Notice that spatial solitons emerging due to twin-
beam second-harmonic generation in hexagonal lattices of
purely nonlinear origin (i.e. those created by modulation of
only susceptibility) created by poling lithium niobate planar
waveguides were recently observed experimentally by Gallo
et al. (2008). It was demonstrated that such solitons can be
steered by acting on power, direction, and wavelength of the
fundamental frequency input.

VIII. THREE-DIMENSIONAL SOLITONS

In this section we address 3D optical solitons (light
bullets), in settings with two spatial and one temporal dimen-
sions in purely nonlinear or mixed linear-nonlinear lattices.
LBs are spatiotemporal solitons that form when a suitable
nonlinearity may be in balance with both spatial diffraction
and temporal GVD [see Silberberg (1990) and Malomed
et al. (2005)]. Stable 3D matter-wave solitons were also
predicted in BECs in the presence of attractive and repulsive
interactions in suitable linear trapping potentials (Baizakov
et al., 2003; Yang and Musslimani, 2003; Mihalache et al.,
2005).

In principle, LBs may be supported by a variety of non-
linear mechanisms, but their experimental realization usually
faces two cardinal challenges, namely, the identification of a
type of the nonlinearity which is capable to support stable
LBs, and realization of a physical setting where the appro-
priate nonlinearity, diffraction, and dispersion are all present
with suitable strengths, without producing conspicuous
losses. Different approaches were suggested to resolve these
problems. Below we briefly discuss theoretical predictions for
the formation of stable LBs in systems with inhomogeneous
nonlinearities. In particular, we consider the ‘‘bullets’’ pre-
dicted to exist in radial tandem structures consisting of alter-
nating rings made of highly dispersive but weakly nonlinear,
and strongly nonlinear but weakly dispersive materials, and
bullets forming in mixed Bessel OLs with out-of-phase mod-
ulations of the refractive index and nonlinearity.

The formation of LBs in radial tandem structures was
studied by Torner and Kartashov (2009). Such radial tandems
represent engineered structures composed of different mate-
rials featuring either strong saturable nonlinearity or strong
GVD, but not necessarily both present at a given wavelength.
Thus, each material is used at its best to obtain high average
values of the dispersion and nonlinearity in this composite
structure, which is designed to guide the transmission of
relatively broad modes covering several rings of the tandem.
The evolution of wave packets in the structure obeys the
following NLSE:

i
@q

@z
¼ � 1

2

�
@2q

@x2
þ @2q

@y2

�
þ �ðx; yÞ

2

@2q

@t2
þ �ðx; yÞ

� qjqj2
1þ Sjqj2 ; (60)

where it is assumed that a radially symmetric structure is
composed of periodically alternating rings of width d exhib-
iting anomalous dispersion and zero nonlinearity, with
� ¼ �2, � ¼ 0, and weakly dispersive, but highly nonlinear
domains, with � ¼ �0:1, � ¼ �1. Two types of geometries

were considered—those with the central domain exhibiting

the nonlinearity, or vice versa. Linear propagation patterns in

such structures indicate that, for large domain widths d, the
local diffraction resembles that in uniform media (depending

on whether the central domain is strongly or weakly disper-

sive, the wave packet expands more in time or in space).

However, when the domain’s width is sufficiently small, the

beam experiences the action of the average dispersion of the

structure, and the expansion becomes comparable in space

and time. The addition of the nonlinearity, which may com-

pensate the diffraction and GVD, results in the formation of

LBs. Since solutions approach those in uniform media with

the average dispersion and nonlinearity in the limit of d ! 0,
the saturation of the nonlinearity is necessary to avoid the

collapse that occurs in the Kerr media. For suitable parame-

ters, bullets may cover several rings, featuring pronounced

shape modulations. They expand substantially at low and

high amplitudes, the latter being a consequence of the non-

linearity saturation. The total energy of the LB is a non-

monotonic function of the propagation constant �; see

Fig. 35(a), so that in the NL defined by the radial tandems

LBs always exist above a threshold value of the energy, that

diminishes with the increase of the domain’s width d [see

Fig. 35(b)]. One can see from this plot how the difference

between the corresponding Nð�Þ curves diminishes as the

domain’s width d becomes smaller, which confirms the

FIG. 35. The norm vs the propagation constant for (a) different

values of S at d ¼ 0:4 and (b) different values of d at S ¼ 0:5,
in the model of the radial tandem structure supporting ‘‘light

bullets.’’ In (b), values of the domain’s width are d ¼ 0:8, 0.6,
0.4, 0.2, and 0.1, from the lower to upper curve. (c) The perturbation

growth rate vs �, for the azimuthal perturbation index k ¼ 0

and S ¼ 0:5. In (a)–(c), the central domain is linear. (d) The

growth rate vs � at k ¼ 1, d ¼ 1:2, S ¼ 0:5 in the structure with

linear (1) and nonlinear (2) central domains. From Torner and

Kartashov, 2009.
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expectation that the transmission of light in the structure with
sufficiently small domains mimics the transmission in uni-
form media with the respective average parameters. The
stability analysis shows that LBs in the tandems with the
linear central core have much wider stability domains than in
the tandems with the nonlinear core; cf. Figs. 35(c) and 35(d).
In the latter case, the bullets may be prone to the azimuthal
modulational instability since they develop ringlike spatial
intensity distributions, although this instability may be sup-
pressed by a further decrease of the radial width of the
domain.

Light bullets in Bessel OLs with an out-of-phase modu-
lations of the linear refractive index and nonlinearity were
studied by Ye et al. (2009). The evolution of such states is
described by the NLSE in the form of iqz ¼ �ð1=2Þðqxx þ
qyy � �qttÞ � ð1� �RÞjqj2q� pRq, which represents an

extension of model (14) to the 3D setting with an axially
symmetric mixed lattice, where RðrÞ ¼ J0½ð2blinÞ1=2r� and
r � ðx2 þ y2Þ1=2. Low-amplitude solitons in such a lattice
behave similarly to their counterparts in the linear lattice,
i.e., they strongly expand in both space and time. The increase
of the soliton’s amplitude leads to the concentration of light
near the central guiding core. In this regime, effects of the
linear and nonlinear lattices are comparable; hence, the sol-
iton’s maximum is located at r ¼ 0. Further growth of the
soliton’s amplitude results in a transformation of the spatial
shape of the LBs due to the inhomogeneous nonlinearity
landscape: The solitons in this regime develop ringlike spatial
profiles, an effect which is most pronounced around the peak
of the pulse, while the temporal distribution does not change
qualitatively, remaining bell shaped. This shape transforma-
tion is the cause of the nonmonotonic dependencies featured
by the respective Nð�Þ curves (N first grows with �, but then
diminishes at � ! 1), and leads to the loss of the stability at
high values of the amplitude and for large nonlinearity-
modulation depths, when azimuthal perturbations become
even more destructive than radial ones, leading to the desta-
bilization of solitons on the branch with dN=d� < 0. It was
found that the width of the stability domain for the LBs, in
terms of�, first expands with the increase of the nonlinearity-
modulation depth �, but then starts decreasing. In contrast,
the largest possible energy of stable bullets is a monotonously
increasing function of �. Increasing the depth of the linear
lattice typically causes an expansion of the stability domain in
terms of �, and a reduction of the largest possible energy of
stable LBs.

IX. CONCLUDING REMARKS

The aim of this review is to provide a coherent survey of
the remarkable progress that has been made in theoretical
studies of solitons and other nonlinear-wave patterns sup-
ported by effective periodic potentials induced by nonlinear
lattices, as well as by combinations of linear and nonlinear
lattices. Most of these results have been reported for one-
dimensional geometries, but a considerable number of results
are also available in two-dimensional settings, and some—
even in three dimensions. The analysis of the accumulated
results makes it possible to draw general conclusions con-
cerning the core properties of solitons in these systems.

In the 1D case, a property which makes solitons drastically

different from their well-studied counterparts in uniform

media, and in media equipped with linear-lattice potentials,

is the existence of the finite threshold value of the soliton

norm (total power), below which the solitons do not exist. In

2D, a challenging issue is the identification of stability con-

ditions for the solitons in purely nonlinear lattices. It has been

found that a crucial condition affecting the stability of

2D solitons is the sharpness of the nonlinearity-modulation

functions supporting the solitons. Another generic property of

the solitons in the settings that involve competing linear

and nonlinear lattices is their enhanced mobility and

power-dependent location of soliton peaks, as well as the

strong dependence of the intrinsic structure of the solitons on

the peak power. Generic scenarios for the creation of

such solitons are also completely different from what was

known for their counterparts created in linear lattices. In

particular, the solitons supported by the periodically modu-

lated nonlinearity do not emerge by bifurcating from Bloch

bands.
In spite of the great progress made in the theoretical

studies, there remain many problems awaiting further

development and analysis. Many such problems are

suggested by the possibilities of extending results that have

been established in 1D settings into 2D geometries.

These include, in particular, the spontaneous symmetry

breaking in symmetric double- or four-well nonlinear poten-

tials in 2D, the search for stable soliton complexes and

vortices in 2D nonlinear lattices, the study of the soliton

mobility and collisions in such media, the effects of the

commensurability and incommensurability in mixed linear-

nonlinear lattices (also in 2D), the soliton formation in ran-

dom and quasiperiodic nonlinear landscapes, the stabilization

of 2D multicomponent (vectorial) soliton states, etc. Some

relevant problems are also awaiting the analysis in the 1D

setting; for instance, the spontaneous symmetry breaking

of a two-component mixture in the nonlinear double-well

potential.
Although many suggestions about potential physical real-

izations of the theoretical findings for the solitons in non-

linear lattices have been put forward in optics, nanophotonics,

and matter waves in BECs, most predictions are still awaiting

experimental implementation. Thus far, experimental obser-

vations that are relevant to nonlinear lattices have been

reported only in photorefractive crystals with photoinduced

lattices, and in photonic-crystal fibers filled with an index-

matching liquid. No specific experimental studies of non-

linear lattices have been reported in the realm of BECs, nor

in nanophotonics systems, such as nanowire arrays. It is

expected that the theoretical predictions that may be most

plausible for experimental realization are those involving 1D

settings. These include the creation of solitons and their

bound states above the predicted existence threshold,

the demonstration of their mobility and collisions, the real-

ization of the predicted spontaneous symmetry breaking in

nonlinear double-well potentials, etc. An essentially more

challenging problem for experimental implementation is the

creation of 2D solitons that may be supported by nonlinear

lattices. Ultimately, an entire field awaits experimental

exploration.
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LIST OF SYMBOLS AND ABBREVIATIONS

1D one-dimensional or one dimension
2D two-dimensional or two dimensions
3D three-dimensional or three dimensions
BEC Bose-Einstein condensate or condensation
DNLSE discrete nonlinear Schrödinger equation
FF fundamental frequency
FR Feshbach resonance
fs femtosecond
GPE Gross-Pitaevskii equation
GS gap soliton
GVD group-velocity dispersion
KP Kronig-Penney (the piecewise constant periodic

modulation profile)
LB light bullet (spatiotemporal optical soliton)
NL nonlinear lattice
NLSE nonlinear Schrödinger equation
OL optical lattice
PCF photonic-crystal fiber
SBB symmetry-breaking bifurcation
SBN Strontium-Barium Niobate (a photorefractive

crystal)
SH second harmonic
TE tranverse-electric (polarization modes of

electromagnetic waves)
TM transverse-magnetic (polarization modes of

electromagnetic waves)
VA variational approximation
VK Vakhitov-Kolokolov (the stability criterion)
XPM cross-phase modulation
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Vekslerchik, 2009, ‘‘Localized and periodic exact solutions

to the nonlinear Schrödinger equation with spatially modulated

Yaroslav V. Kartashov, Boris A. Malomed, and Lluis Torner: Solitons in nonlinear lattices 297

Rev. Mod. Phys., Vol. 83, No. 1, January–March 2011

http://dx.doi.org/10.1364/OE.17.024358
http://dx.doi.org/10.1016/j.physleta.2007.02.067
http://dx.doi.org/10.1103/PhysRevA.76.043611
http://dx.doi.org/10.1103/PhysRevE.77.016604
http://dx.doi.org/10.1103/PhysRevE.79.056220
http://dx.doi.org/10.1103/PhysRevA.77.023615
http://dx.doi.org/10.1088/0953-4075/37/3/009
http://dx.doi.org/10.1103/PhysRevA.72.061605
http://dx.doi.org/10.1103/PhysRevA.72.061605
http://dx.doi.org/10.1103/PhysRevE.82.056606
http://dx.doi.org/10.1103/PhysRevE.82.056606
http://dx.doi.org/10.1103/PhysRevA.81.053630
http://dx.doi.org/10.1103/PhysRevLett.98.213901
http://dx.doi.org/10.1103/PhysRevLett.98.213901
http://dx.doi.org/10.1126/science.269.5221.198
http://dx.doi.org/10.1103/PhysRevLett.94.020403
http://dx.doi.org/10.1103/PhysRevLett.94.020403
http://dx.doi.org/10.1103/PhysRevE.82.057601
http://dx.doi.org/10.1209/epl/i2003-00579-4
http://dx.doi.org/10.1209/epl/i2003-00579-4
http://dx.doi.org/10.1103/PhysRevA.70.053613
http://dx.doi.org/10.1364/OL.34.001900
http://dx.doi.org/10.1364/OL.34.001900
http://dx.doi.org/10.1016/j.physleta.2008.11.056


parameters: Linear and nonlinear lattices,’’ Chaos Solitons

Fractals 41, 1158.

Belmonte-Beitia, J., and D. Pelinovsky, 2009, ‘‘Bifurcation of Gap

Solitons in Periodic Potentials With a Sign-Varying Nonlinearity

Coefficient,’’ arXiv:0906.2501v1.

Belmonte-Beitia, J., V.M. Perez-Garcia, and V. Brazhnyi, 2009,

‘‘Solitary Waves in Coupled Nonlinear Schrödinger Equations

with Spatially Inhomogeneous Nonlinearities,’’

arXiv:1001.2425.v1.

Belmonte-Beitia, J., V.M. Perez-Garcia, and V. Vekslerchik, 2007,

‘‘Lie symmetries and solitons in nonlinear systems with spatially

inhomogeneous nonlinearities,’’ Phys. Rev. Lett. 98, 064102.

Belmonte-Beitia, J., V.M. Perez-Garcia, V. Vekslerchik, and V.V.

Konotop, 2008, ‘‘Localized nonlinear waves in systems with time-

and space-modulated nonlinearities,’’ Phys. Rev. Lett. 100,

164102.

Benton, C. J., A. V. Gorbach, and D.V. Skryabin, 2008,

‘‘Spatiotemporal quasisolitons and resonant radiation in

arrays of silicon-on-insulator photonic wires,’’ Phys. Rev. A 78,

033818.

Berge, L., 1998, ‘‘Wave collapse in physics: Principles and appli-

cations to light and plasma waves,’’ Phys. Rep. 303, 259.

Birks, T. A., J. C. Knight, and P. S. Russell, 1997, ‘‘Endlessly single-

mode photonic-crystal fiber,’’ Opt. Lett. 22, 961.

Blank, E., and T. Dohnal, 2009, ‘‘Families of surface gap solitons

and their stability via the numerical Evans function method,’’

arXiv:0910.4585v2.

Bloch, I., J. Dalibard, and W. Zwerger, 2008, ‘‘Many-body physics

with ultracold gases,’’ Rev. Mod. Phys. 80, 885.
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F. Lederer, 2006, ‘‘Two-dimensional soliton in cubic fs laser

written waveguide arrays in fused silica,’’ Opt. Express 14, 6055.

Szameit, A., I. L. Garanovich, M. Heinrich, A. A. Sukhorukov, F.

Dreisow, T. Pertsch, S. Nolte, A. Tünnermann, and Y. S. Kivshar,
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