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Rotating-drum flows span a variety of research areas, ranging from physics of granular matter

through hydrodynamics of suspensions to pure liquid coating flows. Recent years have seen an

intensified scientific activity associated with this unique geometrical configuration, which has

contributed to our understanding of related subjects such as avalanches in granules and

segregation in suspensions. The existing literature related to rotating-drum flows is reviewed,

highlighting similarities and differences between the various flow realizations. Scaling laws

expressing the importance of different mechanisms underlying the observed phenomena have

been focused on. An emphasis is placed on pattern formation phenomena. Rotating-drum flows

exhibit stationary patterns as well as traveling and oscillating patterns; they exhibit reversible

transitions as well as hysteresis. Apart from the predominant cylindrical configuration, this review

covers recent work done with tumblers having other geometries, such as the sphere and the Hele-

Shaw cell.
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I. INTRODUCTION

There are a few examples of experimental configurations
that have been instrumental in the investigation of a wide
range of physical phenomena. The rotating horizontal drum is
one such example. From phenomena observed in pure liquids,
such as solitary waves (Melo and Douady, 1993), through
segregation in dilute suspensions (Boote and Thomas, 1999),
to avalanches in granular matter (Jaeger, Liu, and Nagel,
1989), this simple geometric configuration has served as a
unique experimental tool which contributed to our under-
standing of various physical systems. In addition to the
importance of the rotating horizontal drum from a basic
science perspective, it has a valuable contribution in indus-
trial applications. The rotating drum is used in different
processes, such as mixing in the pharmaceutical industry
and wood debarking in the papermaking industry.

The goal of this article is to review the existing literature
on flows associated with the rotating horizontal drum
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configuration. We consider partially and completely filled
systems. We discuss flows with homogeneous liquids and

flows with particle-laden liquids carrying varying amounts of
small solid particles, including the limiting case of purely

granular flow. We highlight particular characteristics, as well
as similarities and differences between flows associated with
different parameter regimes. Emphasis is placed on pattern

formation phenomena. The types of patterns considered here
are those that are established either when the fluid itself

adopts certain characteristic flow states or those patterns
that form in particle-laden flow as a result of, or in connec-

tion with, particle segregation.
The vast majority of results summarized in this article

originally appeared in the literature during the last two
decades. While a few recent reviews focused on the particular

case of granular flows within a rotating horizontal drum [see,
e.g., Ottino and Khakhar (2000) and Meier, Lueptow, and
Ottino (2007)], we are not aware of the existence of previous

works that summarize, compare, and interrelate studies on the
different realizations of rotating-drum flows.

The remainder of the article is arranged as follows.

Section II describes a typical experimental setup, sets the
nomenclature used in the article, and gives a general dimen-
sional analysis. Section III deals with phenomena related to

pure liquids. Sections IV and V describe particle-laden flows
in partially and completely filled drums, respectively.

Section VI is devoted to dense granular flows, and Sec. VII
presents results on noncircular cylindrical tumblers.
Section VIII closes with a few concluding remarks.

II. GENERAL ASPECTS

A. Experimental configuration

A typical experimental setup used in the investigation of

rotating-drum flows is shown in Fig. 1. A transparent
circular cylinder of length L and inner radius R is fitted

horizontally into ball bearings which are mounted onto a
rigid stand. The cylinder is driven at a constant rotation rate
� by a dc (or stepper) motor. The cylinder may contain a

liquid, a mixture of granular materials, or a suspension.
Images of the tube are recorded via a CCD camera posi-

tioned either on the axis of rotation, facing a transparent
side wall, or at right angles to the tube axis. These images
are then analyzed in order to explore segregation dynamics

(radial or axial) and, in the case of a partially filled cylinder,
surface profiles.

In certain cases it is insightful to probe the flow and/or
concentration fields in the interior of the bulk. For dilute

suspensions the flow field can be studied by adding tracer
particles and illuminating the desired region with a thin light

sheet. The CCD camera is positioned perpendicular to the
plane of the light sheet and records the streaks produced by

the tracer particles as they move through the illuminated
region (Matson, Ackerson, and Tong, 2003). In the investi-
gation of granular flows, it is important to complement the

dynamics observed on the surface of the mixture with infor-
mation on the concentration field of the different constituents

in the bulk. This can be achieved by the use of magnetic-
resonance imaging (MRI) measurements, providing at least

one of the components contains hydrogen (Hill, Caprihan,
and Kakalios, 1997a).

B. Dimensional analysis

The large variety of complex systems that exhibit pattern
formation in the configuration of a rotating horizontal drum
corresponds to the large number of parameters involved. If
one considers a rather general case, in which the rotating-
drum content consists of both fluid and two different kinds of
spherical particles, then apart from the three parameters
associated with the rotating cylinder (i.e., L, R, and �) one
has the fluid density �f, viscosity �, surface tension �, and

volume Vf, and the disperse phase densities �1, �2, dimen-

sions d1, d2, and volumes Vp1
, Vp2

.1 Thus, together with the

gravitational acceleration g, the system is defined by as many
as 14 dimensional parameters.

Insight into the different dynamics observed for a given
system can be gained by considering the dimensionless
numbers associated with the dimensional parameters that
define the system. In the case described above there
are three fundamental units involved (length, time, and
mass) and therefore, according to Buckingham’s theorem
(Buckingham, 1914), one can derive 14� 3 ¼ 11 indepen-
dent dimensionless numbers. As a particular example (incor-
porated in the previous general scenario), which involves less
parameters, consider the case where the drum is partially
filled with an aqueous suspension of monodisperse non-
neutrally buoyant spheres. In this scenario there are 11
dimensional parameters, which give rise to 8 dimensionless
numbers (Guyez and Thomas, 2009). Yet another concrete
example is the partially filling mixture of (dry) granular
materials (e.g., glass beads and sand particles) (Zik et al.,

FIG. 1 (color online). An experimental system used in the inves-

tigation of rotating-drum flows. Here A is an aluminum stand, P is a

Teflon piston that allows the effective length L to be varied, R is a

rubber plug sealing the tube end, through which the fluid and/or

granular material are inserted, and M is the motor. C is the charged-

coupled-device (CCD) camera used to record the flow. From Seiden,

Ungarish, and Lipson, 2005.

1The different volumes obey Vf þ Vp1
þ Vp2

� �R2L.
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1994). Here one has 10 dimensional parameters that yield 7
dimensionless parameters.2 The set of independent dimen-
sionless numbers associated with a given system is not
unique. It is nevertheless more physically insightful to utilize
numbers that result from comparison of different character-
istic quantities, such as forces, densities, and length scales
(Thoroddsen and Mahadevan, 1997).

While the different phenomena related to the rotating-
drum configuration have different physical origins, there are
intrinsic similarities which stem from the mutual experimen-
tal setup. From a dimensional analysis perspective, these
similarities are related to two dimensionless numbers, shared
by all realizations of rotating-drum flows: the Froude number
Fr ¼ �2R=g and the geometrical aspect ratio L=R. The rich
variety observed for different systems results from the rest of
the dimensionless set, which completely describes the sys-
tem. Thus, one has dimensionless numbers related to the
volume fraction of the constituents, their densities, as well
as numbers conveying dynamical aspects such as the
Reynolds number.

Indeed, one can consider the dimensionless parameter
space in which the different realizations occupy different
regions. Table I presents a set of dimensionless parameters
associated with the general case described above. Note that
the dimensionless parameters are arranged in groups (cylin-
der, fluid, and particles) in a compact way which allows a
straightforward implementation to the various systems corre-
sponding to the rotating-drum geometry. Note also that the
parameters associated with density ratios were chosen in
order to construct a generic set.3

To date, different investigations have focused on particu-
lar systems (e.g., granular mixtures) and have accordingly
used specific dimensionless sets which correspond to the
systems under study. Moreover, even with respect to the
same system, different dimensionless numbers were used
[cf. Alonso, Satoh, and Miyanami, 1991 and Jain, Ottino,
and Lueptow, 2005a]. This fact might naturally lead to some
confusion, especially for the nonspecialist. In this review we
present the different scalings as they were introduced in the
original works and, when appropriate, elaborate on their
relationship to the comprehensive scaling approach pre-
sented previously.

The different systems related to the rotating-drum con-
figurations can be most naturally distinguished by the vol-
ume fractions of their constituents (i.e., fluid and disperse
phases). Accordingly, the following three sections, reviewing
results on the predominant circular cylinder geometry, are
arranged with respect to the different rotating-drum flows
corresponding to different regimes associated with V�

f , V
�
p1
,

and V�
p2
.

III. PURE LIQUID PHENOMENA: RIMMING FLOW

Rimming flow is the flow established by a fluid inside a
partially filled cylinder when the cylinder rotates about a
horizontal axis of rotation. While the cylinder is stationary
the liquid rests in a quiescent pool inside the cylinder as
illustrated in Fig. 2(a). When the cylinder rotates with low to
moderate rotational velocities its rising side drags out a thin
film of liquid from the pool as indicated in Fig. 2(b). This thin
film then coats the inner cylinder surface above the liquid
pool. The cylinder rotation, mediated by viscosity and the
restorative action of gravity, establishes a recirculating region
of liquid as shown in Fig. 2(b). Facing the receding side of the
cylinder the recirculating liquid region is bounded by a front.
When the cylinder rotates sufficiently fast, such that restor-
ative effects of gravity are weak, the entire pool of liquid
redistributes itself to form an almost uniform layer of liquid
coating the entire inner surface of the cylinder; this is known
as the rimming state. The mean thickness of this liquid
layer is h ¼ Vf=ð2�RLÞ. A Reynolds number for rimming

flow is commonly defined as Reh ¼ �Rh=�, where � is the

TABLE I. List of dimensionless parameters associated with the
case of two kinds of spherical particles suspended in a liquid. The
set is constructed in a compact way which enables implementation
to less general realizations, namely, pure liquid, monodisperse
suspension, and (dry) binary granular mixture. The dimensionless
set can also be easily generalized to incorporate a larger number of
granular species and/or liquids, as well as additional details regard-
ing the constituents such as ellipticity for oblate particles, surface
roughness of particles [important in dense granular flows ( Lai, Jia,
and Cham, 1997)], and non-Newtonian characteristics (e.g., the
Weissenberg number).

Group Symbol Definition

Cylinder
�1 L=R

�2, Fr
�1 g=�2R

Fluid
�3, V

�
f Vf=�R

2L
�4, Re

�1 �=�f�R2

�5, We�1 �=�f�
2R3

Particle 1
�6 d1=R

�7, V
�
p1

Vp1
=�R2L

�8 ð�1 � �fÞ=ð�f þ �1Þ
Particle 2

�9 d2=R
�10, V

�
p2

Vp2
=�R2L

�11 �2=ð�f þ �1Þ

FIG. 2. Schematic of the cylinder cross section and the coordinate

system. (a) The pool of liquid at the bottom of the stationary

cylinder; (b) formation of a front on the receding side of the cylinder

accompanied by a recirculating region of liquid during low and

moderate rotation rates. Adapted from Thoroddsen and Mahadevan,

1997.

2For dense granular flows a more comprehensive analysis should

also include friction properties [see, e.g., Lai, Jia, and Cham

(1997)].
3Using a particular density instead (e.g., �f) would lead to a set

which would not be applicable to all scenarios.
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kinematic viscosity [see, e.g., Thoroddsen and Mahadevan
(1997)].4

It appears that the terminology ‘‘rimming flow’’ for this
type of flow was first introduced by Deiber and Cerro (1976)
and Ruschak and Scriven (1976). Rimming flow is one
example of a class of flows referred to as coating flows. In
general, a coating flow is a fluid flow that results in a thin film
of liquid forming on a surface. For general overviews regard-
ing the literature on coating flows see, for instance, Kistler
and Schweizer (1997) and Weinstein and Ruschak (2004).

A. Early studies of rimming flow of homogeneous liquids

The earliest experiments using the rimming-flow configu-
ration were those conducted by Malkin (1937a, 1937b). He
studied the flow in the context of investigating the behavior of
condensate in paper machine dryers under operating condi-
tions. Malkin used a partially water-filled large-scale drum
with radius R ¼ 0:762 m and length L ¼ 6:604 m. He pre-
sented photographs (Malkin, 1937a) of the flow and described
that at a certain drum speed, referred to as the balancing
speed, the water began to cascade right across the dryer. He
elaborated that it then suddenly formed a complete film and
that the film was maintained for any further increase of
speed.5

Modern research on rimming flow originates with the
experimental study of White (1956) who was, similar to
Malkin (1937a, 1937b), interested in the flow due to its
technical relevance to the pulp and paper industries. White
(1956) commented that the general behavior of condensate in
a cylindrical dryer is fairly well known but that little quanti-
tative data had been published. White (1956) conducted
experiments with water-filled metal drums with radii of the
order of 0:3 � R � 0:6 m. While the length of the drums is
not explicitly stated by White (1956), the photographs con-
tained in the paper indicate that the typical ratio of length to
radius was around L=R � 1–2. White (1956) identified three
main flow states and referred to these as the pond, the
cascading condition, and the rimming condition. He con-
ducted experiments for different filling levels of the cylinders
and investigated under what experimental conditions the
three flow states were adopted. White and Higgins (1958)
followed up this study by performing additional experiments
to investigate the effects of the fluid properties.

Yih (1960) elaborated further that the phenomenon of
instability of a rotating liquid film with a free surface is of
importance to the paper industry since it occurs on the table
rolls underneath a wire screen carrying the pulp in a
Fourdrinier machine. These devices are the basis for most
modern papermaking; they accomplish all the steps required
to transform a source of wood pulp into a final paper product.
Moreover, in the process of coating, rotating cylinders are
often used to carry the coating material in the form of liquid
films.

While the cylinder is stationary, as in Fig. 2(a), or when it
rotates very slowly, the contact or front line marking the edge

of the free surface of the liquid pool inside the cylinder is a

straight line [cf. Fig. 6(a)]. However, when the rotation rate is

slightly increased an instability can develop. This instability

reveals itself through the regular wavy deformations of the

contact line shown in Fig. 6(b).
Motivated by the practical relevance of rimming flow, Yih

(1960) performed the first theoretical stability analysis for

this initial wavy liquid-film instability that exists before the

contact line breaks up [cf. Fig. 6(c)] at higher rotational

velocities and before it subsequently disappears entirely at

the highest rotation rates when the rimming condition is

adopted. Yih (1960) found satisfactory agreement between

the analytical results of his stability analysis and concurrent

experiments for low Reynolds numbers. He concluded that

the critical wave number of the stability analysis displayed a

substantially stronger dependence on the surface tension than

on the viscosity, the primary effect of viscosity being to

reduce the rate of amplification. Viscosity effects on the

critical wave number are overshadowed by those of surface

tension, particularly when the Reynolds number is large.
Phillips (1960) approached the flow from a more funda-

mental point of view. His particular interest focused on the

wave motion on the free surface of the liquid for the case

when it is rapidly rotating and in the rimming state with

almost rigid-body motion and cylindrical interior free surface

of radius cR with 0< c< 1. Phillips concluded that if the

flow is to be stable, the condition Fr> 3=c has to be satisfied.
Phillips (1960) experimentally confirmed this stability crite-

rion under varying conditions of water depth and rotational

velocity of the cylinder and then proceeded to investigate

modes of oscillation of the free surface. Interestingly, the

article by Phillips (1960) does not contain a single reference

to any other publication.
The first theoretical studies investigating steady rimming

flow with the goal of determining the shape of the liquid film

covering the inner surface of the rotating cylinder were

conducted by Deiber and Cerro (1976), Ruschak and

Scriven (1976), Gans (1977), and Orr and Scriven (1978).
Gans (1977) commented that the theoretical work available

at the time was inadequate for understanding the time-

dependent processes that had been documented. He remarked

that the experiments and observations available (Phillips,

1960, Karweit and Corrsin, 1975, Greenspan, 1976) indicated

that steady-state phenomena were often submerged in a

welter of time-dependent phenomena. The theoretical analy-

sis of Gans (1977) accounted for viscous effects, nonlinear

effects, and effects of the finite container length. He obtained

solutions displaying steady-state circulations within the liq-

uid film coating the inner cylinder wall and Stewartson layers

at its inner and outer boundaries.
Ruschak and Scriven (1976) considered the two-

dimensional limiting case when the motion of the liquid is

a small perturbation from a rigid-body motion, and they

considered both large and small Reynolds-number limits of

their solution. Deiber and Cerro (1976) solved the corre-

sponding boundary-layer equations numerically using a

streamline coordinate system, and Orr and Scriven (1978)

presented exemplary two-dimensional finite-element numeri-

cal solutions of the full Navier-Stokes equations with free-

boundary conditions accounting for gravity and surface

4Note that Reh ¼ ReV�
f=2.

5Currently Malkin’s articles are available at the British Library,

London.
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tension. Their study represents one of the first numerical
calculations of a Newtonian free-surface flow. Deiber and

Cerro (1976) speculated on the existence of discontinuous
solutions when their numerical scheme failed to converge.

Some of these discontinuous solutions were subsequently
clearly identified for the first time by Johnson (1988). Lin
(1986) described a least-squares method with finite elements

to simulate viscous rimming flow with surface tension. He
discussed the advantages of his method, with regards to

locating the free boundary of the liquid film, in comparison
to the techniques previously used by Orr and Scriven (1978).
While all previous theoretical studies considered two-

dimensional flows, Preziosi and Joseph (1988) first addressed
the issue of three dimensionality associated with the large

axial variations of the interface shape observed in experi-
ments along the axis of the cylinder.

B. Pattern formation in rimming flow of homogeneous liquids

The dynamic regime of rimming flow, between the limiting

cases of very slow and very fast cylinder rotation or, equiv-
alently, low and high Reynolds numbers, is characterized by
the development of a sequence of different characteristic flow

patterns. From the perspective of pattern formation rimming
flow was first studied by Balmer (1970) who documented the

regular cell patterns shown in Fig. 3. Balmer (1970) suggested
the Greek word ‘‘hygrocysts’’ (fluid cell) as a general de-
scriptive label for the cellular configurations that appear in all

fluid phenomena of this type. He presented results only of a
short preliminary investigation of the hygrocysts using two

different motor oils (SAE-30, SAE-40-50, i.e., kinematic
viscosities of � ¼ 350–950 cS at 20� C) and three different
tubes for his experiments. He commented that hygrocysts

have been observed in spherical, triangular, annular, and
square rotating containers and that the critical rotational

speed for the onset of hygrocyst formation was lower in
rectangular tubes than in circular tubes. Balmer (1970) con-
cluded that, within the accuracy of the correlation of his data

points, surface tension did not appear to have been an im-
portant factor in his experiments. Note that this conflicts with

the theoretical result of Yih (1960) for the initial onset of the
liquid-film instability discussed in Sec. III.A. Yih’s theoreti-
cal results showed that the critical wavelength depended

substantially stronger on the surface tension than on viscosity.
Nevertheless, Balmer (1970) pointed out that in small tubes,

when the surface-to-volume ratio becomes high, the Weber
number (We ¼ ��1

5 ) will undoubtedly become important.

Karweit and Corrsin (1975) published a short qualitative
research note describing the cellular patterns (hygrocysts)

developing in rimming flow and two other possible patterns
referred to as periodic bores and ‘‘fingers.’’ Karweit and

Corrsin (1975) did not provide values for the kinematic
viscosities of the liquids used, but their photographs suggest
low viscosities with maximum values of at most a

few hundred cS.
It appears that Karweit and Corrsin (1975) were not aware

of the earlier publication of Balmer (1970), since their article
does not contain a reference to his article. Subsequently,

Balmer and Wang (1976) presented a more thorough
experimental study of the hygrocyst phenomenon. They

summarized nearly 500 sets of data, obtained from 13 fluid
systems, and analyzed these using a number of different
empirical dimensionless correlation models. Also note that
Kovac and Balmer (1980) experimentally addressed the
complementary problem of external hygrocyst formation in
a brief study. While Balmer (1970), Karweit and Corrsin
(1975), and Balmer and Wang (1976) all focused on the
hygrocyst cell structures, Karweit and Corrsin (1975) did, in
fact, point out that a whole continuum of periodic events are
passed through before the complete cell structure is
achieved; see also the comment by Karweit at the end of
Balmer and Wang (1976).

Benjamin and Pathak (1987) provided the first theoretical
approach in an attempt to explain the cell patterns described by
Balmer (1970). They pointed out that the full hydrodynamic
problem was too complicated to be amenable to quantitative
theoretical treatment, except by numerical analysis which was
not available at the time. Benjamin and Pathak (1987) devel-
oped a general, abstract qualitative dynamical-systems theory
investigating a model system that is, similar to rimming flow,
controlled by dissipative effects and free from inertial effects.
Themodel system represents a finite-dimensional analog of the
complete problem and is determined by n general coordinates
resulting in n ordinary differential equations. Benjamin and
Pathak (1987) emphasized that their analysis did not give any
quantitative information. However, they concluded that the
stable steady-state solutions of their model succeed in provid-
ing a reasonably clear qualitative picture by capturing all the
essentials of the behavior found in their concurrent experimen-
tal study of rimming flow.

Johnson (1988) computationally studied steady-state rim-
ming flow inside a horizontal rotating cylinder. Four possible
steady-state liquid-film configurations identified by Johnson
(1988) are shown in Fig. 4. Two of the cases correspond to a
continuous coating where films cover the entire inner surface
of the cylinder [Figs. 4(c) and 4(d)]. The other two cases
involve partial films covering a limited portion of the cylinder
surface [Figs. 4(a) and 4(b)]. Of the two continuous films, one
is the expected rimming-mode configuration involving a coat-
ing that gradually changes in thickness as one moves around
the cylinder, the film being thicker on the ascending portion
of the cylinder and thinner on the descending portion. The
second continuous-film configuration has regions on the ris-
ing side of the cylinder displaying a rapid change in film
depth. Johnson (1988) discussed that the latter case also has
the potential to have recirculating zones where a portion of
the fluid is trapped in either one or two eddies at fixed
locations on the rising side of the cylinder.

FIG. 3. Hygrocysts in a rotating circular tube. SAE-30 motor oil

occupies 70% of the tube volume. Rotational speed is about

4 rev s�1. From Balmer, 1970.
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Motivated by Johnson (1988), Benjamin, Pritchard, and
Tavener (1993) conducted an unpublished theoretical and
experimental study investigating steady and unsteady rim-
ming flow of a highly viscous liquid. Based on lubrication-
type approximations they rederived equations, previously

also noted by Moffatt (1977), for the thickness of the film
coating the inner cylinder wall under steady-flow conditions.
Benjamin, Pritchard, and Tavener (1993) noted that several of
the theoretically possible steady states of film flow [see, e.g.,
Fig. 4(d)] identified by Johnson (1988) had no practical
relevance. Moreover, they commented that Johnson (1988)
neither examined the stability of the flow nor did he report
any experimental confirmation of the possible behavior pre-

dicted. Benjamin, Pritchard, and Tavener (1993) demon-
strated that the leading-order lubrication model is neutrally
stable and stated that the rederived simple solutions needed
new interpretations to account for their concurrent experi-
mental observations. Benjamin, Pritchard, and Tavener
(1993) proceeded to explore second-order effects including
that of surface tension and examined the stability of steady
flows for both two-dimensional and three-dimensional

disturbances. Benjamin, Pritchard, and Tavener (1993) de-
scribed numerical solutions of various lubrication approxi-
mations and compared these with one another. In particular,
they also showed how the discontinuous shock solutions to
the basic lubrication model, first identified by Johnson
(1988), are smoothed by second-order approximations in-
cluding surface tension and gravity. Discontinuous solutions
were subsequently studied in more detail by Wilson and
Williams (1997) and O’Brien and Gath (1998).

The seminal study of Benjamin, Pritchard, and Tavener
(1993), originally motivated by Johnson (1988), led to a

series of publications that further considered the effects of
higher-order corrections such as inertia, surface tension, and
the hydrostatic pressure gradient on the stability of the thin
film of viscous fluid on the inside of a horizontally rotating
cylinder. A summary of these studies is contained in Hosoi

and Mahadevan (1999) and Ashmore, Hosoi, and Stone

(2003). More recent theoretical and computational studies

and studies mainly involved with resolving issues regarding

the existence, uniqueness, and stability of the solutions for the

various types of models employed are O’Brien (2002a,

2002b), Wilson, Hunt, and Duffy (2002), Acrivos and Jin

(2004), Villegas-Dı́az, Power, and Riley (2003, 2005),

Shrager et al. (2005), Bae and Kim (2007), and Tougher,

Wilson, and Duffy (2009) as well as Benilov and coworkers

(Benilov, 2004, 2006; Benilov and O’Brien, 2005; Benilov,

O’Brien, and Sazonov, 2003; Benilov, Kopteva, and O’Brien,

2005; Benilov, Lacey, and O’Brien, 2005 Benilov, Benilov,

and Kopteva, 2008, Benilov, Benilov, and O’Brien, 2008).
The experiments described by Benjamin, Pritchard, and

Tavener (1993) were conducted using highly viscous silicone

oil with a nominal kinematic viscosity of � ¼ 10 000 cS.
Benjamin, Pritchard, and Tavener (1993) observed a multi-

plicity of steady and time-dependent dynamic flow modes of

the contact line between the liquid pool inside the cylinder

and the inner cylinder wall breaking the left-right symmetry

about the vertical plane midway between the ends of the

cylinder. Benjamin, Pritchard, and Tavener (1993) found

that most of their unsteady flows observed were periodic,

with periods many times that of the rotation also exhibiting

period doubling and even chaotic behavior in narrow speed

ranges. Similar experiments with a viscous fluid (golden

syrup) were previously described by Aitta et al. (1988)

who reported the observation of cell formation while Aitta

(1991) described cell formation and observations of solitary

waves on the air-liquid interface of a viscous silicone oil

(� ¼ 12 700 cS). However, the whole spectrum of patterns

that rimming flow can display for liquids with lower viscos-

ities, hinted at by Karweit and Corrsin (1975), was not

investigated further until the experiments of Melo (1993),

Melo and Douady (1993), Thoroddsen and Mahadevan

(1997), and Vallette, Edwards, and Gollub (1994, 1997).
Melo (1993) was interested in rimming flow from the

viewpoint of pattern formation in nonlinear dissipative sys-

tems driven far from equilibrium by an external force. In such

systems the simplest spatial pattern is a localized structure

consisting of two spatially homogeneous states that can

coexist in an interval range of an associated control parame-

ter. The central questions of the field concern the mechanism

responsible for the stabilization of localized structures and

the selection of their size. Melo (1993) interpreted the rim-

ming mode of Fig. 4(c) and the front state of Fig. 2(b) as the

two homogeneous states involved. At low rotation rates

the system adopts the state when a front is established near

the pool. At high rotation rates the front disappears and the

coverage of the inner cylinder surface is uniform. However, at

intermediate rotation rates these two states can coexist along

the horizontal axis of the system. This coexistence state is

illustrated in Figs. 5(a)–5(c), where two lateral regions of

completely uniform azimuthal coverage surround a central

region of nonuniform coverage. The domains of stability of

coexisting states were characterized by the angular velocity

of the cylinder and its filling level as two control parameters.

Melo (1993) extended the lubrication approximation of

Moffatt (1977), originally developed to describe the behavior

of a viscous film on the outer surface of a rotating cylinder,

FIG. 4. Sketch of four possible steady-state, continuous, and

partial film configurations. Adapted from Johnson, 1988.
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for his rimming flow to study the dynamics of disturbances of

the viscous layer. By investigating the profile and the dynam-

ics of disturbances of the viscous film, Melo (1993) found that

the independent states are well described by the lubrication

approximation but that it failed to explain the coexistence of

the two states.
Melo (1993) moreover considered how the shape of the

contact line between the pool of liquid inside the horizontal

cylinder and the inner cylinder surface changes as the rota-

tional velocity of the cylinder was slowly increased from rest.

As discussed in Sec. III.A this instability was first analyzed

theoretically by Yih (1960). Figure 6(a) shows the contact

line at rotation rate of approximately 1 revolution per second,

when it is still a straight line, as is the case when the cylinder

is at rest. At the slightly higher rotational speed in Fig. 6(b)

the initially straight front has developed its characteristic

wavy instability. As the rotational velocity of the cylinder is

increased the wave amplitudes on the wavy front increase.

At some critical rotation rate the waves break up and de-

velop into a quasiperiodic pattern of bumps (localized

u-shaped structures) that is illustrated in Fig. 6(c). It appears

that the u-shaped structures had not been documented in the

literature prior to the study of Melo (1993). Similarly there
does not appear to exist a visualization of the wavy instability
of Fig. 6(b) prior to the investigation by Melo (1993), despite

Yih (1960) having considered it theoretically.
The wavy-front state and u-shaped structures of Melo

(1993) in Figs. 6(b) and 6(c) are typical for a fluid with
values of the kinematic viscosity around � ¼ 500 cS at rota-

tion rates of � ¼ 7 rad s�1. We observed equivalent state-
transition scenarios, and photographs similar to those shown

here in Fig. 6 are contained in Boote and Thomas (1999).
In this context it appears timely to briefly comment on the

apparent doubling of the wavelength between the wavy-front
state in Fig. 6(b) and the state displaying the localized

u-shaped structures in Fig. 6(c). We found that in our appa-
ratus a strict wavelength doubling is usually difficult to

observe and it is, in this sense, not a reproducible effect.
Our own observations have shown that the increase of the
pattern wavelength results from the disappearance of troughs

on the wavy contact line during their transition toward
developing into u-shaped structures. However, this process

FIG. 5. Photographs showing localized structures that can be

adopted by the contact line of surface of the pool of liquid inside

the rotating cylinder and the inner cylinder wall; the filling level is

18.2%. (a) � ¼ 12:1 rad s�1, (b) � ¼ 13:06 rad s�1, and

(c) � ¼ 14:45 rad s�1. From Melo, 1993.

FIG. 6. Photographs showing patterns that can be adopted by the

contact line of surface of the pool of liquid inside the rotating

cylinder and the inner cylinder wall; the filling level is 13.6%. (a) A

stable front at � ¼ 6:9 rad s�1, (b) a stationary wavy front at � ¼
7:3 rad s�1, and (c) quasiperiodic pattern of bumps (u-shaped

structures) at � ¼ 8:0 rad s�1. From Melo, 1993.
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appears to be sensitive to the overall flow field and, as such,

a rather random process; see Figs. 2(a), 2(b) of Boote and

Thomas (1999). The photo in Boote and Thomas displays a

transition equivalent to that shown here in Figs. 6(b) and 6(c)

but with an imperfect wavelength doubling.
For the experiments of Melo (1993) in Figs. 6(a)–6(c) one

determines Reynolds numbers of 2.35, 2.49, and 2.55, respec-

tively. Thoroddsen and Mahadevan (1997) conducted experi-

ments with liquids of substantially lower viscosity and

documented flow structures similar to, but more complex

than, the wavy fronts of Melo (1993). Figures 7(a) and 8,

from Thoroddsen and Mahadevan (1997), show patterns for a

liquid with dynamic viscosities of � ¼ 49 and � ¼ 25 cP.
The two photographs illustrate the fact that the comparatively

simple wavy front of Melo (1993) that was shown in Fig. 6(b)

has changed into a more complex three-dimensional flow

pattern. One can estimate the values of the Reynolds number

associated with the two experiments of Thoroddsen and

Mahadevan (1997) in Figs. 7(a) and 8 for comparison with

the results of Melo (1993). In both experiments of

Thoroddsen and Mahadevan (1997) the liquid used was a

glycerin-water mixture. The comparison requires values for

the densities �f of the glycerin-water mixtures but these are

not given in Thoroddsen and Mahadevan (1997). We con-

tacted Thoroddsen who has supplied us with density values of

�f ¼ 1:20 and �f ¼ 1:18 g cm�3 for the experiments of

Figs. 7(a) and 8, respectively. With these densities the asso-

ciated kinematic viscosities for the two experiments are

� ¼ 41 and � ¼ 21 cS. Thoroddsen and Mahadevan (1997)

do not explicitly state the radius of the cylinder for the

experiments of Figs. 7(a) and 8, but they commented that

the cylinder primarily used had a diameter of R ¼ 62:5 mm
and that their discussion always referred to this cylinder

unless otherwise stated [Note that the cylinder radius of

R ¼ 62:5 mm for Fig. 7(a) was also reconfirmed to us by

Thoroddsen]. Using this information one can infer that the

Reynolds numbers for the experiments in Figs. 7(a) and 8 are

Reh ¼ 58 and 111, respectively. Both these values are over

1 order of magnitude larger than those for the experiments of

Melo (1993) in Figs. 5 and 6. This implies, as one would

expect, that it is the decreasing, stabilizing, effects of vis-

cosity that have led to the more complex flow structures in

Fig. 7(a).
Thoroddsen and Mahadevan (1997) referred to the modi-

fied flow structures in Figs. 7(a) and 8 as ‘‘shark teeth’’ and

‘‘fishlike’’ patterns, respectively. As part of a short study

investigating the entrainment of small air bubbles into liquid

shark-teeth fronts, Thoroddsen and Tan (2004) subsequently

published the first photograph revealing the local flow struc-

ture in the troughs between two successive shark teeth in

Fig. 7(a). Their photo displaying this local flow structure is

reproduced in Fig. 7(b). The flow is visualized by the small

bubbles that have been entrained across the liquid front from

the ambient air and then act as tracers. The photo shows that

the region within the trough is dominated by vortices con-

necting to the free surface, with one vortex being located on

each side of the center line of the trough.
Recently Chen et al. (2007) conducted an experimental

study focusing on the dynamics of the shark-teeth pattern of

Thoroddsen and Mahadevan (1997), and on the transition to

the rimming state, when the volume fraction of an aqueous
low viscosity (1–3 cS) Newtonian solution inside the rotating
cylinder is reduced to low values in the range of V�

f ¼
0:0025–0:05 of the total cylinder volume. Chen et al.
(2007) reported the surprising result that there exists a certain
critical volume fraction V�

c , for each solution, where the
rotational velocity required to achieve uniform rimming
flow adopts a minimum. Thus, for volume fractions above
and below this critical value it required higher rotational
velocities of the cylinder to reach the rimming state. For
volume fractions above V�

c the observed structures were
mainly shark-teeth and turbulent structures. For volume frac-
tions below V�

c they reported the observation of structures
referred to as fingers. Moreover, they documented the ring
pattern shown in Fig. 9 and indicated that the pattern results
from the surface shape of the liquid film on the inner cylinder

FIG. 7 (color online). (a) Shark teeth along the entire cylinder.

The fluid has a dynamic viscosity of � ¼ 49 cP, the rotational

velocity is � ¼ 20:1 rad s�1, and the volume fraction is V�
f ¼ 0:06.

From Thoroddsen and Mahadevan, 1997. (b) Bubble tracks visual-

izing the flow structure in the trough between two successive shark

teeth. The view is from above and the white arrows indicate the

direction of the cylinder rotation. The scale bar in the bottom left

corner is 10 mm long. Adapted from Thoroddsen and Tan, 2004.
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wall. Chen et al. (2007) discussed that the rings initially
became narrower when the rotational velocity was increased
and the size of the liquid pool reduced [cf. Figs. 9(a) and 9(b)].
Upon further increase of the rotational velocity the liquid pool
disappearedwhile the rings expanded and coalescedwith other
rings until the rimming-flow condition was established
[cf. Fig. 9(c)]. Note that this description implies that the
wavelength of the pattern is independent of, or at least not
sensitive to, the rotational velocity, as is also suggested by
reference to Figs. 9(a)–9(c). Based on our own experience,
gained from observations of transition between flow states at
higher liquid volume fractions, as described by Boote and
Thomas (1999) [see also Melo (1993) and Fig. 6], it appears
that the dynamics outlined by Chen et al. (2007) represent a
new dynamical scenario.

Melo (1993) considered how the critical values of the
rotational velocity � for the state transitions between the
different flow states are affected by the cross-section area A of
the cylinder occupied by the fluid. Melo defined a new non-
dimensional parameter

� ¼ ��R

gh2
; (1)

where h is the mean thickness of the viscous layer coating the
inner cylinder wall. The parameter � characterizes the com-
petition between viscous stress and gravity. Using the expres-
sion for h from above and definitions from Table I the
parameter becomes � ¼ 4 Fr Re�1V��2

f ¼ 4��1
2 ��2

3 �4.

Melo (1993) then wrote the parameter as a function of the
area A yielding � ¼ ð2�Þ2�R3�=gA2. This expression re-
veals that � is constant along a straight line in the plane
ð�; A2Þ. Consequently, in a phase diagram displaying the
critical state-transition values of � as a function of A2,
each state transition is associated with a constant value
of �.

Thoroddsen and Mahadevan (1997) conducted rimming-
flow experiments for a wide range of fluid volumes and
viscosities. Their discussion of the patterns that rimming
flow can display represents the most comprehensive descrip-
tion to date. Their associated phase diagrams illustrate in

what regimes of the parameter space the different patterns
are observed to occur. Similar to Chen et al. (2007), the
studies of Melo and Douady (1993), Vallette, Edwards, and
Gollub (1994), and Vallette, Jacobs, and Gollub (1997) fo-
cused on the dynamics of the fluid fronts in rimming flows
established for low volume fractions in the range of 0.01–0.04
but, rather than aqueous low viscosity solutions [i.e., 1–3 cS
used by Chen et al. (2007)], they used oils with higher
viscosities in the range of 10–20 cS. Figure 10, reproduced
from Vallette, Jacobs, and Gollub (1997), displays three
examples of highly symmetric stationary and time-dependent
patterns of the liquid front observed in these experiments.

Melo and Douady (1993) documented the first observation
of a continuous transition from solitary waves on the liquid
front to static spatially periodic patterns. They reported that
between these two extreme situations, a regime of colliding
solitary waves exhibiting chaos with spatiotemporal intermit-
tency can be observed. Melo and Douady (1993) noted their
observations suggested that the static periodic pattern can be
described as being the result of a dense packing of propagat-
ing solitary waves, and its destabilization to spatiotemporal
intermittency as the attempt of some solitary waves to propa-
gate. They concluded by emphasizing they were confident
that the general idea of considering some periodic patterns,
not as a whole but constituted of a packing of localized
structures, could help to understand some of their particular
dynamics.

Vallette, Edwards, and Gollub (1994) and Vallette, Jacobs,
and Gollub (1997) investigated the transition of the steady,
primary wavy-front state to chaotic time dependence through
secondary transitions at different volume fractions. For one
particular highly symmetric transition to spatially subhar-
monic oscillations they discussed model equations that
well represented the flow. The subsequent transition of the
oscillatory state to spatiotemporal chaos was explored quali-
tatively through the use of spectral analysis and complex
demodulation to extract slowly varying amplitudes and
phases. Their analysis revealed that many features of the

FIG. 9 (color online). A surface-shape ring pattern for a glycerol-

water solution with dynamic viscosity � ¼ 13:2 cP at a volume

fraction of 1.5% and (a) � ¼ 3:14 rad s�1. Rings with large pools.

(b) � ¼ 6:91 rad s�1. Rings are becoming narrower and pools are

shrinking. (c) � ¼ 27:0 rad s�1. Rings are expanding. From Chen

et al., 2007.

FIG. 8 (color online). Fishlike patterns along the entire cylinder.

The fluid has a dynamic viscosity of � ¼ 25 cP, the rotation rate is

� ¼ 24:5 rad s�1, and the volume fraction is V�
f ¼ 0:049. From

Thoroddsen and Mahadevan, 1997.
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chaotic state are at least qualitatively described by the model
employed.

Contrary to the dynamical-system approaches of Melo and
Douady (1993), Vallette, Edwards, and Gollub (1994), and
Vallette, Jacobs, and Gollub (1997), the axial instability of the
free-surface front in rimming flow was readdressed numeri-
cally by Hosoi and Mahadevan (1999) on the basis of the
Navier-Stokes equations. They derived and solved a simpli-
fied model equation for the evolution of the free surface that
includes effects of gravity, capillarity, inertia, and viscosity.
This equation was solved numerically to determine the base
state with no axial variation, and a numerical linear stability
analysis was carried out to examine the onset of unstable
axial modes. Hosoi and Mahadevan (1999) found that inertia
plays an important role in the onset of instability and that the
wavelength is related to surface tension through a power-law
proportionality. Their numerical simulations showed that the
simplified evolution equation can capture the steady shark-
teeth patterns described by Johnson (1990) and Thoroddsen
and Mahadevan (1997).

The early research summarized in this section was origi-
nally motivated primarily by the relevance of rimming flow to
the pulp and paper industry. While rimming flow remains to
be of interest in this industrial context [see, e.g., Wilhelmsson
et al. (1995)], many of the newer studies were probably
curiosity driven, inspired by the numerous complex phe-
nomena displayed by the conceptually simple rimming-flow
geometry. However, rimming flow is also of interest in other
technological contexts as encountered, for instance, in the
aeronautical industry. Here the flow bears relevance to issues
associated with heat transfer from the relatively hot modern
aero-engine bearing chambers containing bearing lubrication
oil. Heat transfer issues in rimming flow were investigated by,
for instance, Chew (1996), Peng et al. (1997), and Baker
et al. (2001).

In conclusion it is noted that recently two studies appeared
that addressed a new fundamental issue of rimming flow that

has, as we are aware of, not been studied by any others in the
past. Ivanova, Kozlov, and Polezhaev (2005) and Kozlov and
Polezhaev (2008) described experimental investigations of
the stability of a rimming-flow system subject to transverse
translational vibration relative to the axis of rotation. Ivanova,
Kozlov, and Polezhaev (2005) studied the average flow of a
centrifuged fluid layer in a transversely vibrating system
where gravity induces fluid oscillations. They reported the
observation of azimuthal waves propagating in a direction
opposite to the direction of rotation of the cylinder and with a
velocity comparable to the rotation velocity of the cylinder.
Ivanova, Kozlov, and Polezhaev (2005) discussed that sub-
stantial intensification of these waves, and hence intensifica-
tion of the average flows, was observed in resonance regimes.
They elaborated that the excitation of standing inertial waves
leads to the development of intense three-dimensional flows
characterized by the appearance of the circular or helical
vortical structures shown in Fig. 11. Kozlov and Polezhaev
(2008) discussed that the structure of the vortices, and the
threshold of their appearance, did not depend on the direction
of the induced mean flow and reported that the onset of the
pattern formation was determined by the intensity of oscil-
latory liquid flow in the Stokes boundary layer on the inner
cylinder wall.

C. Rimming flow of non-Newtonian liquids

While the existing literature dealing with rimming flow
of Newtonian fluids is quite substantial, the literature for

FIG. 11. Vortical structures in a rotating cylinder with radius

2.5 cm. (a) Circular, � ¼ 1:0 cS and (b) helical, � ¼ 4:2 cS. The

light stripes correspond to the zones of visualizer concentration. The

distance between the pairs of small white marks at the bottom of

each photo is 10 cm. From Kozlov and Polezhaev, 2008.

FIG. 10. Highly symmetric stationary and time-dependent pat-

terns on the falling front inside the rotating cylinder (a),

(b) Cellular, time-independent pattern; (c) spatially subharmonic

oscillatory state; and (d) spatiotemporally chaotic state. From

Vallette, Jacobs, and Gollub, 1997.
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rimming flow of non-Newtonian fluids is comparatively

sparse. It appears that rimming flow of a non-Newtonian fluid

was first considered by Sanders, Joseph, and Beavers (1981),

Johnson (1988), and Rajagopalan et al. (1992). Sanders,

Joseph, and Beavers (1981) discussed that for the non-

Newtonian case, general constitutive equations were known

only in the sense of perturbations. Global numerical results

were possible only under some more-or-less arbitrary as-

sumption that the constitutive equation of the fluid is de-

scribed by some particular model.
Sanders, Joseph, and Beavers (1981) developed a pertur-

bation solution for the case of rimming flow of a viscoelastic

liquid. One of their main goals was to show how their solution

leads to a simple, practical method for the measurement of

the complex viscosity of the liquid by measuring the thick-

ness of the liquid film coating the inner cylinder wall. The

complex viscosity obtained from the free-surface shape and

the theory was compared with the corresponding results

obtained from measurements using an oscillating cone-and-

plate rheometer. Sanders, Joseph, and Beavers (1981) used

two different viscoelastic polymer solutions, STP and

TLA 227, for their experiments. STP is a solution of poly-

isobutylene in petroleum oil while TLA 227 is a solution of

methacrylate copolymer in oil.
Sanders, Joseph, and Beavers (1981) concluded with some

brief general qualitative observations on the stability of the

flow showing the formation of liquid cells for the case when

the cylinder is rotating slowly. They discussed that the effects

observed in their experiments did not seem to be greatly

influenced by the non-Newtonian characteristics of the

liquids used in comparison to the behavior of viscous

Newtonian liquids.
Rajagopalan et al. (1992) investigated the influence of

viscoelasticity on the existence of steady solutions in two-

dimensional rimming flow. They stated that previously nu-

merical simulation of viscoelastic, free-surface flows had

received limited attention because of the difficulties associ-

ated with developing convergent calculations for much sim-

pler viscoelastic flows. Rajagopalan et al. (1992) elaborated

that initial attempts at the numerical simulation of visco-

elastic flows all suffered from the so-called ‘‘high Deborah

number problem’’ (Brown et al., 1986; Keunings, 1989).

Brown et al. (1986) stated that the major obstacle in the

numerical analysis of complex viscoelastic flows arises from

the amount of elasticity in the constitutive model for the

fluid stresses being significant. They discussed that the

symptoms of the numerical failure seemed to be the same

irrespective of the numerical method, flow geometry, and

constitutive equation. Brown et al. (1986) elaborated that

the iteration scheme for computing steady flows diverges

beyond a critical value of the elasticity of the fluid, as

measured by the Deborah number. The possible causes for

the loss of convergence were attributed to either excessive

approximation error or the mathematical loss of existence of

the steady solution beyond the limiting value of the Deborah

number. A summary discussing how the breakthrough in the

formulation of appropriate numerical methods for viscoelas-

tic flows was subsequently prompted by a mixture of theory

and numerical models is provided by Rajagopalan et al.

(1992).

Rajagopalan et al. (1992) investigated rimming flow by

conducting viscoelastic flow calculations based on a elastic-

viscous split stress formulation for differential constitutive

models. They used a single-mode Giesekus differential

constitutive equation (Giesekus, 1982) to study steady, two-

dimensional rimming flow and interface shapes of Newtonian

and viscoelastic liquid films by means of a finite-element

analysis. Rajagopalan et al. (1992) elaborated that the

Giesekus model describes the polymeric part of the deviatoric

stress along with an additional Newtonian contribution to the

stress tensor that accounts for the presence of a solvent.

With reference to Bird, Armstrong, and Hassager (1987),

they stated that the Giesekus model is one of the simplest

differential constitutive equations that qualitatively describes

the rheological behavior of polymer solutions. Rajagopalan

et al. (1992) concluded that the Giesekus constitutive

equation leads to the existence of steady solutions at lower

rotation rates and they presented contour plots for velocities

and stresses within the liquid film coating the inner cylinder

wall.
Johnson (1988), Fomin et al. (2001, 2002), Fomin,

Hashida, and Watterson (2003), and Fomin (2006) numeri-

cally investigated rimming flow of generalized Newtonian

fluids. These are fluids for which the shear stress is a function

of the shear rate at the particular time but not dependent upon

the history of deformation. Hence, the Deborah number that

characterizes memory effects of the liquid is sufficiently

small such that these effects are negligible (Fomin,

Hashida, and Watterson, 2003).
While Johnson (1988) was mainly involved with

Newtonian fluids the derivation of his model equations de-

scribed the stresses by means of an unconventional formula-

tion, in terms of two material parameters, in such a way that

an extension to power-law fluids became straightforward.

Johnson (1988) discussed continuous films and partial films

(cf. Fig. 4) for the rimming flow of power-law fluids.

However, as discussed, Benjamin, Pritchard, and Tavener

(1993) noted that several of the theoretically possible steady

states of film flow [see, e.g., Fig. 4(d)] identified by Johnson

(1988) had no practical relevance.
Fomin et al. (2001) determined the runoff condition for

rimming flow of a power-law fluid and found continuous

solutions for the regime of thin liquid layers by applying

lubrication theory. For the supercritical case, outside this

regime, they found that discontinuous solutions are possible.

Here a hydraulic jump (shock) may occur and they calculated

its location and height. Fomin et al. (2002) summarized

numerical results for power-law liquids and liquids described

by the Carreau-Yasuda model and the Ellis model. Carreau-

Yasuda liquids display a transition from Newtonian behavior

at low shear rates to power-law behavior at high shear rates.

This behavior is typical for most polymeric liquids and

Fomin, Hashida, and Watterson (2003) stated that the

Carreau-Yasuda model is the most appropriate model for

viscous flows with free surfaces. For liquids complying

with the Ellis model the shear rate is a function of the shear

stress, incorporating shear thinning effects and simulating

Newtonian features for the low shear rates. The properties

of the Carreau-Yasuda model and the Ellis model mean that

liquids of these types exhibit Newtonian behavior near the
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free surface and power-law behavior near the wall of the
rotating cylinder (Fomin, Hashida, and Watterson, 2003).

Similar to Johnson (1988), Fomin, Kilpatrick, and Hubbard
(2010) studied steady-state rimming flow for a power-law
fluid at low Reynolds numbers. They considered the thickness
of a power-law liquid along the cylinder wall for the case of
high Weissenberg number when non-Newtonian effects
dominate and the flow can be modeled by the power-law
constitutive equation. They discussed that under these con-
ditions their mathematical model reduces to a simple set of
algebraic equations regarding the thickness of the liquid film.
Their qualitative analysis revealed the existence of two pos-
sible solutions. Different regimes of the rimming flow were
defined and analyzed analytically. For the particular case,
when the flow index in a power-law constitutive equation is
equal to 1

2 , the problem reduced to a fourth order algebraic

equation which was solved analytically.

IV. DILUTE SUSPENSION: PARTIALLY FILLED DRUM

A. Rimming flow of particle-laden liquids

As discussed in Sec. III.B, Melo (1993) demonstrated that
the state-transition boundaries of rimming flow in phase
space are characterized by associated constant values of a
nondimensional parameter �, characterizing the competition
between viscous stress and gravity. This result motivated
Boote and Thomas (1999) to begin investigating rimming
flow of particle-laden liquids. Initially, their main goal was to
experimentally investigate how the particular values of �, for
the different state-transition boundaries, are affected when
the liquid inside the horizontal cylinder contains successively
increasing amounts of small solid particles. The underlying
rationale for the study of Boote and Thomas (1999) was that
small numbers of particles added to the liquid should not
measurably affect the values of�, but larger amounts must be
expected to have some influence since the liquid properties
will change substantially as it turns into a slurry. Boote and
Thomas (1999) used small glass spheres with a density higher
than that of the liquid for their study. Their experimental
results showed that, for each particular state transition, the
value of� decreases with the amount of particles added. With
regard to the physical interpretation of � this implied that
gravitational effects become increasingly more prominent.
Boote and Thomas (1999) further observed that granular
additives can lead to the stabilization of certain flow states
and to an increased parameter range over which states can be
observed. In particular, it was found that the effects on the
investigated transition boundaries appear to be due to an
increased bulk density associated with increasing granule
concentrations of the solid-liquid flow.

B. Pattern formation and segregation in rimming flow of

particle-laden liquids

The most surprising result of the study of Boote and
Thomas (1999) was the discovery that the particles in the
particle-laden rimming flow display a tendency to segregate.
While the particles were initially uniformly distributed
throughout the liquid they were observed to redistribute

themselves into a characteristic pattern of successive, equally

spaced circumferential particle-rich regions separated by re-

gions of liquid devoid of particles. A typical photograph

illustrating this pattern is shown in Fig. 12. The banding

pattern is established within minutes for high particle con-

centrations but it can take several hours for distinct bands to

become visible for low particle concentrations.
At the same time that Boote and Thomas (1999) conducted

their experiments on particle-laden rimming flow,

Tirumkudulu, Tripathi, and Acrivos (1999) coincidentally

conducted an independent study using a liquid carrying

neutrally buoyant particles in a partially filled horizontal

Taylor-Couette system. In these experiments with neutrally

buoyant particles they observed a banding pattern similar to

that reported by Boote and Thomas (1999) for rimming flow

and particles denser than the carrier fluid. Subsequently

Tirumkudulu, Mileo, and Acrivos (2000) reported results

showing that segregation bands also form in rimming flows

when the liquid carries neutrally buoyant particles, rather

than particles denser than the ambient fluid.
Thomas et al. (2001) conducted experiments using parti-

cles with a density substantially lower than that of the carrier

liquid. Here they discovered that the primary granular bands

seen in Fig. 12 can develop a compound structure whereby

each one of these bands splits up into a set of three narrower,

secondary rings as illustrated in Fig. 13.
Figure 13 reveals that each granular triplet-band structure

is centered around a cusp of the wavy contact line between

the liquid in the pool inside the cylinder and the inner cylinder

wall. Boote and Thomas (1999), and also Thomas et al.

(2001), expressed that the waviness of the contact line in the

homogeneous system [cf. Fig. 6(b)] and in the particle-laden

system probably results from different physical mechanisms.

In the particle-laden system the wavelength of the contact line

deformation is always equal to the wavelength of the banding

pattern and it increases systematically and continuously with

the rotation rate of the cylinder. In the homogeneous system,

however, where a continuous wavy contact line exists only in

a relatively narrow parameter regime, the disturbance wave-

length does not depend on the rotation rate of the cylinder.

FIG. 12 (color online). The primary banding pattern. The granules

that were initially uniformly distributed throughout the liquid have

segregated and have established a sequence of alternating circum-

ferential regions containing high and low particle concentrations.

Adapted from Guyez and Thomas, 2008.
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Tirumkudulu, Mileo, and Acrivos (2000) referred to the re-
mark of Boote and Thomas (1999) addressing the issue of the

origin of the waviness of the contact line. Thomas et al.

(2001) elaborated that Tirumkudulu, Mileo, and Acrivos
(2000) concluded that their latest experimental results sup-

ported the view that the waviness of the contact line in
homogeneous and in particle-laden systems is of a different

origin.
Thomas et al. (2001) commented that they did not know

whether the triplet structure of Fig. 13 is the only possible

stable fine structure or whether it was possible that each

primary band might split up into a compound structure dis-
playing more than three rings. In the meantime we obtained

experimental evidence that this is indeed possible. The pre-
viously unpublished photograph in Fig. 14 reveals clear

evidence of each primary band having split into a whole

sequence of narrower bands.
Thomas et al. (2001) also conducted experiments with

particles of different sizes, and their data revealed that

the wavelength of the banding pattern is independent of the
particle size. The independence of the wavelength on the

particle properties is illustrated here in the, previously un-

published, photograph in Fig. 15. For the particular experi-
ment shown in the figure the silicone carrier liquid, viscosity

� ¼ 500 cS, contained two substantially different types of
particles. One particle class consisted of a sample of glass

spheres with diameters 250 � dG � 425 �m and density

�p ¼ 2:5 g cm�3, while the other particle class was a sample

of cylindrical nylon rods with dimensions 1� 5 mm2 and
density �p ¼ 1:4 g cm�3. Figure 15 clearly reveals that each

band contains glass spheres and nylon rods. This suggests that
the banding wavelength is not only independent of the parti-

cle size, as already discussed by Thomas et al. (2001), but it
is also independent of the particle density and the particle

shape.
The discovery that the wavelength of the granular segre-

gation bands in rimming flow does not depend on the particle

properties has substantial implications with regards to the

underlying physical mechanisms responsible for the forma-
tion of the granule bands. The result implies that the primary
cause of the banding pattern must be associated with the flow
dynamics of the liquid phase, possibly in combination with
particle-liquid interactions. However, it cannot be a conse-
quence of purely granular dynamics, i.e., its primary origin
cannot reflect particle-particle interactions. For purely granu-
lar flows, i.e., when no liquid phase is present, it is known that
particles display size segregation. If a horizontal rotating
cylinder is filled with a mixture of granules comprising two
different size classes then these segregate into an axial band
pattern (see Sec. VI.B.2) that shares superficial similarities
with that for the particle-laden flow in Fig. 15. However, for
purely granular flow each two successive bands alternatingly
contain larger or smaller particles only, whereas in particle-
laden rimming flow one finds particles from different size, or
shape, classes in each band.

In an experimental study similar to those of Boote and
Thomas (1999) and Thomas et al. (2001), Joseph et al.
(2003) described results for experiments of particle-laden
rimming flow for a broad range of experimental conditions.

FIG. 13 (color online). The secondary banding pattern on two

adjacent primary bands. Each of the primary granular bands of

Fig. 12 has developed a compound structure consisting of three

narrower secondary rings. From Thomas et al., 2001.

FIG. 14 (color online). Photograph showing evidence that the

primary bands of Fig. 12 are split up into compound structures

consisting of more than the three narrower bands shown in Fig. 13.

From Thomas, 2011a.

FIG. 15 (color online). The primary banding pattern in an experi-

ment where the liquid contained glass spheres together with nylon

rods. Each band contains spheres and rods implying that the pattern

wavelength is independent of particle density and shape. From

Thomas, 2011b.
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They investigated liquids with high and low viscosities,

particles lighter and (hydrophobic) heavier than liquids, for

small and large particles, and for low and high particle

concentrations. Their results confirmed that clustering and

band formation occurs under a broad range of conditions and

concluded that it is a robustly unstable phenomenon. They

identified three different regimes of clustering. The first

regime is associated with the case of thin films and slowly

rotating cylinders. Joseph et al. (2003) concluded that here it

is capillarity that causes particles to cluster either into islands

or into the typical bands displaying the high particle concen-

trations. The second flow regime is encountered at moderate

rotation rates and higher filling levels. Here the experiments

of Joseph et al. (2003) displayed cellular structures of air

bubbles separated by disks of liquid. The bubbles were not

centered and took different shapes depending on the relevant

parameters (cf. Fig. 16). In this dynamic regime Joseph et al.

(2003) attributed the band formation to secondary motions

induced by the off- center gas bubbles.
The third regime of segregation is associated with bidis-

perse suspensions for which it was found that two layers of

heavier-than-liquid particles stratify when there is no rotation

but segregate into alternate bands of particles when there is

rotation.
Note that the result of Joseph et al. (2003) that bidisperse

suspensions lead to alternating bands of particles is at odds

with the observations of Thomas et al. (2001). In their

experiments particles of different density and shape displayed

the same pattern wavelength and remained mixed within each

band as illustrated in Fig. 15. The discrepancy between the

results of Thomas et al. (2001) and Joseph et al. (2003) is

probably due to the substantially different rotation rates of the

cylinder in both studies. The rotation rate in the experiments

of Thomas et al. (2001) was typically slow and of the order

of a few revolutions per minute only. However, in the

experiments of Joseph et al. (2003) where alternate bands

were observed the rotation rate was 306 rpm (see their

Fig. 24). While centrifugal forces were negligible for the
experiments of Thomas et al. (2001) they were substantially
more prominent for the experiments of Joseph et al. (2003).
It appears highly likely that it is the centrifugal forces that are
responsible for the bidisperse suspensions with particles of
different densities to display the alternate banding observed
by Joseph et al. (2003). If this interpretation is indeed correct
then this prompts the intriguing question with regards to what
happens when the experimental conditions are in the inter-
mediate regime between those of Thomas et al. (2001) and
Joseph et al. (2003). Is it possible that there exists a transi-
tional regime where banding disappears entirely? Finally it is
noted that none of the experiments conducted by Joseph et al.
(2003) displayed the fine structure of the banding phenome-
non reported by Thomas et al. (2001).

C. Models for the granule-band formation in rimming flow of

particle-laden liquids

Tirumkudulu, Tripathi, and Acrivos (1999) concluded their
study on the flow of liquid carrying a neutrally buoyant part in
the partially filled Taylor-Couette system by indicating that
they were of the opinion that the banding phenomenon
represented a further example of a mechanism known as
shear-induced diffusion (Leighton and Acrivos, 1987a, ;
1987b). According to this mechanism particles migrate
from regions of high shear to regions of low shear and
from regions of high particle concentrations to regions of
low particle concentrations. However, in their follow-up
study (Tirumkudulu, Mileo, and Acrivos, 2000) with neu-
trally buoyant particles in rimming flow, their conclusions
were that they believed that the observed particle segregation
is initiated by some as yet unknown mechanism. They
speculated on the mechanism being associated with fluctu-
ations in the local particle concentration modifying the
local effective viscosity and, thereby, the local value of a
parameter

FIG. 16. Comparison of bubble formation in (a), (c), (e), and (g) soybean oil and (b), (d), (f), and (h) Triton mixture (2950 cP).

(a), (b) � ¼ 200 rpm; (c), (d) 300 rpm; (e), (f) 600 rpm; and (g), (h) 900 rpm. From Joseph et al., 2003.
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� ¼ V�
f

�
gR

��

�
1=2

(2)

which follows from standard lubrication analysis (Moffatt,
1977; Johnson, 1988; O’Brien and Gath, 1998;
Tirumkudulu and Acrivos, 2001). The parameter � of
Tirumkudulu, Mileo, and Acrivos (2000) relates the fluid
volume fraction V�

f and the ratio of gravitational forces to

viscous forces and can be expressed as � ¼ V�
fFr

�1=2

Re1=2 ¼ �3�
1=2
2 ��1=2

4 using the definitions of Table I.

Note also that � and the parameter � used by Melo
(1993) are related through � ¼ 4��2.

The first attempt to provide a mathematical description for
the formation of the granule bands was, however, due to
Govindarajan, Nott, and Ramaswamy (2001). Their theoreti-
cal approach was, in fact, based on the concept of shear-
induced diffusion, combined with a concentration dependent
viscosity and the existence of a free surface. Govindarajan,
Nott, and Ramaswamy (2001) claimed that their results pro-
vided an explanation of the experiments of Tirumkudulu,
Tripathi, and Acrivos (1999) and Tirumkudulu, Mileo, and
Acrivos (2000), but their mathematical derivation received
substantial criticism in a subsequent comment by Acrivos
(2002).

The suggestion of Tirumkudulu, Mileo, and Acrivos
(2000) that granule-band formation for neutrally buoyant
particles in rimming flow may arise from fluctuations of the
local effective viscosity was formulated theoretically and
analyzed in detail by Jin and Acrivos (2004a, 2004b). In their
analysis Jin and Acrivos (2004a) initially considered rimming
flow of a particle-free liquid that did, however, have an
axially varying viscosity. Evidently it is not straightforward
to develop a real physical system that would satisfy these
conditions. However, Acrivos (2005) commented that the
idea for their theoretical approach was motivated by experi-
ments conducted by one of his students who cooled the
selected circumferential location of the cylinder in order to
change the viscosity of the liquid inside the cylinder in these
regions. Jin and Acrivos (2004a) showed that, at steady state,
the fluid within the pool of liquid in the cylinder moved, on
average, toward regions of low viscosity, whereas the liquid
integrated across the circumferential region moved, on aver-
age, toward regions of high viscosity. The total axial volu-
metric flow rate is the same in the pool and in the
circumferential region.

Jin and Acrivos (2004b) then continued their theoretical
analysis by considering rimming flows of suspensions con-
taining neutrally buoyant particles. They assumed that the
suspension had already segregated radially in the sense that
the particle concentration in the circumferential flow region is
everywhere uniform and greater than the (uniform) particle
concentration in the pool. Jin and Acrivos (2004b) viewed the
radially segregated suspension as a continuum. They per-
formed a linear analysis to examine the stability of the
suspension to axial perturbations in the particle concentra-
tion. The underlying idea is that axial perturbations in the
particle concentration give rise to axial perturbations of the
effective viscosity of the suspension. With reference to
the analysis in the companion paper (Jin and Acrivos,
2004a) for the homogeneous liquid with axially varying

viscosity it was then established that there is a net particle

flow rate toward the high viscosity region which, thereby,

further enhances the initial particle concentration and the

corresponding effective viscosity perturbations. In conclu-

sion, the linear stability analysis performed by Jin and

Acrivos (2004b) for dilute suspensions revealed that such a

particle distribution is unstable to axial perturbations with the

surface tension being responsible for the selection of the

wavelength of the most rapidly amplified disturbance. This

consequently explains the formation of the bands and Jin and

Acrivos (2004b) did indeed find that calculated and measured

spacings between the bands were in good agreement.
Jin and Acrivos (2004b) emphasized that they believed that

their analysis appeared to leave little doubt regarding the

mechanism responsible for the band formation along the

axis of the cylinder for the case of a liquid carrying neutrally

buoyant particles. However, Jin and Acrivos (2004a) also

stressed that their explanation pertains specifically to the

conditions of the experiments described by Tirumkudulu,

Tripathi, and Acrivos (1999), Tirumkudulu (2001), and Jin

(2004). Jin and Acrivos (2004b) further highlighted that their

analysis did not address the issue of why, to begin with, the

neutrally buoyant particles leave the pool of liquid and,

thereby, trigger the radial segregation which then, subse-

quently, induces the segregation along the cylinder axis.
Timberlake and Morris (2002), who conducted experi-

ments with a horizontal Taylor-Couette system filled with a

liquid carrying neutrally buoyant particles, suggested a

mechanistic alternative basis for the earliest stages, or onset,

of axial segregation to concentrated bands. According to their

model the band generation is initiated by differential rates of

drainage of particles and fluid by gravity-driven flows from

fluctuations in the surface elevation of the film on the inner

cylinder wall. The central idea upon which their proposed

mechanism rests is that in gravity-driven flow in a thin film of

suspension the fluid and the particle phase film-averaged

velocities will differ. Timberlake and Morris (2002) attributed

the differential drainage to two primary factors. First, the

layer of material directly adjacent to the free surface is liquid

if the particles are wetted and has the largest gravity-driven

velocity. Second, the motion of a particle within a thin film

will be hindered by the presence of the solid (and to a lesser

degree the free) surface. Both factors will result in fluid

flowing ahead of the particles. To illustrate the mechanism

that initiates the band formation they considered sinusoidal

fluctuations of the free surface of their Taylor-Couette flow

along the horizontal axis for a liquid with an initially uniform

particle volume fraction. They argued that the more rapid

fluid drainage resulted in a slight increase of the local particle

volume fraction at the crests of the surface. This, conse-

quently, constituted a self-propagating mechanism in the

sense that an increased particle volume fraction leads to an

increase in the local effective viscosity, which in turn will

cause the free surface to remain elevated at these positions on

subsequent cylinder rotations. Timberlake and Morris (2002)

pointed out that their arguments were consistent with the

results of Tirumkudulu, Mileo, and Acrivos (2000), where

the particle size relative to the film thickness in the drainage

flow down the cylinder wall was noted to be a controlling

factor in the degree of segregation. Timberlake and Morris
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(2002) remarked that the two factors they identified as being

responsible for the differential drainage would have relatively
less influence at film depths which are many times the particle

size.
In conclusion, to date, the model of Jin and Acrivos

(2004a, 2004b) represents the most elaborate and successful

theoretical attempt to explain the banding phenomenon for

rimming flow of a liquid carrying neutrally buoyant particles.
The suggested physical mechanism for the band formation is

plausible and the model yields good agreement between the
calculated and measured spacings between the bands.

However, as emphasized by Jin and Acrivos (2004b), their

model pertains specifically to the conditions of their earlier
experiments. Furthermore, a shortcoming of the model is

that it does not provide an explanation of why the neutrally

buoyant particles leave the pool of liquid on the bottom of
the cylinder to begin with.

D. Spatiotemporal dynamics of the segregation bands

Guyez and Thomas (2008) reported results from long-term

observations revealing that the granular segregation bands

forming in particle-laden rimming flow can display an ex-
tremely rich spatiotemporal behavior that emerges as the

banding patterns drift slowly along the axis of rotation.
They commented that spatiotemporal variability, as such,

was not surprising since previous authors also noticed this

in related systems (Timberlake and Morris, 2002, 2003;
Seiden, Ungarish, and Lipson, 2005). Nevertheless, none of

these observed dynamics with the level of complexity and

symmetry reported by Guyez and Thomas (2008, 2009).
Guyez and Thomas also emphasized that, surprisingly, the

spatiotemporal variability can, in fact, disappear entirely
under certain experimental conditions.

In order to monitor the long-term spatiotemporal behavior

Guyez and Thomas (2008) observed experiments, lasting up

to about four weeks, by taking head-on photographs of the
system at regular intervals, �t. For each digital photograph,

they scanned and then extracted a horizontal pixel line at a
fixed level across the image. Each pixel line was processed

such that the location of the granular bands was represented in

black whereas the regions free of granules were represented
in white. The successive pixel-scan lines for the entire photo

sequence of each experiment were then composed into a
single image. This yields a space-time diagram revealing

the drift of the banding pattern illustrating the overall system

dynamics. An example of a typical space-time diagram is
shown in Fig. 17.

The abscissa displays the position L along the axis of

rotation such that L ¼ 0 corresponds to the left-hand side
of the cylinder while L ¼ 27 cm corresponds to the right-

hand side. The left-hand ordinate displays the number of

cylinder revolutions t=T, where t is time and T represents
the time required for one cylinder revolution. The right-hand

ordinate additionally displays time in units of days. Figure 17

illustrates how the bands drifted slowly from positions along
the axis of rotation toward the left and right end walls of the

cylinder. However, the drift direction of the bands is not
directed outward, i.e., toward the end walls, for all experi-

mental conditions. Under certain experimental conditions the

bands can also drift from the end walls toward the center of
the cylinder as illustrated in Fig. 18. Guyez and Thomas
(2008, 2009) observed several other drift modes and identi-
fied eight nondimensional parameters required to characterize
the system. The experiments of Guyez and Thomas (2009)
were designed to assess the system response to two of these
parameters and it was found that they are crucial parameters
with regards to the initiation of the band drift. Based on the
physical relevance of the two parameters it was concluded
that the initiation of the band drift was strongly affected
by a competition between capillary forces and gravitational
forces. A third nondimensional parameter was identified as
being of relevance to controlling the band-drift speed in the
parameter regime where band drift exists. It is still entirely
unknown which physical mechanisms are responsible for the
initiation of the band drift and which processes select the drift
mode. However, Guyez and Thomas (2009) discussed the fact
that their results indicated that the flow dynamics near the end
walls and, consequently, the aspect ratio of the cylinder, play

FIG. 17. Spatiotemporal diagram illustrating band drift for an

experiment in which the granular segregation bands drifted toward

the left and right end walls of the cylinder. From Guyez and

Thomas, 2008.

FIG. 18. Spatiotemporal diagram illustrating band drift for an

experiment in which the granular segregation bands drifted toward

the center of the cylinder. From Guyez and Thomas, 2008.
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key roles in establishing and sustaining the band drift. The

near-wall flow dynamics are affected by the fluid properties
and these may, therefore, also affect the selection of the drift

mode.

E. Rimming Flow: Summary and conclusions

The existing literature on pattern formation phenomena in

homogeneous and particle-laden rimming flow was reviewed
in the last two sections. Regarding the case of homogeneous

liquids, this review has shown that the onset of the wavy

instability of the contact line between the puddle of liquid
inside the cylinder and the inner cylinder wall can be treated

theoretically by a linear stability analysis. Similarly it was
found that the shape of the film coating the inner cylinder

surface, while in the rimming state, is amenable to a computa-

tional analysis. However, the higher-order patterns that de-
velop out of the wavy-front state in parameter regimes when

the wave amplitudes break up cannot yet be treated analyti-

cally or computationally.
The literature on particle-laden rimming flow revealed that

adding the particulate phase triggers many new flow phe-

nomena that do not exist for the corresponding flow of
homogeneous liquids. The primary new phenomenon is the

axial granular-banding pattern that develops when the parti-
cles segregate and accumulate to form a series of circum-

ferential azimuthal regions of high particle concentrations.

For the particular case of neutrally buoyant particles it is
possible to understand the axial banding phenomenon on the

basis of a theoretical model based on viscosity variations

induced by the increased effective liquid viscosity in regions
of high particle concentrations. However, this model assumes

that the particles have already segregated radially. Hence, it
does not explain why the particles, which are initially uni-

formly distributed throughout the liquid in the pool, segregate

in the radial direction toward the inner cylinder surface. It is
presently unknown how far the model for segregation band-

ing of neutrally buoyant particles is also relevant for flow

where the particles are denser or less dense than the carrier
liquid. Furthermore, the model cannot capture the fine struc-

ture of the banding phenomenon where each primary band
develops a compound structure consisting of a set of narrower

rings. This either indicates that segregation banding for neu-

trally buoyant and non-neutrally buoyant particles is due to
different physical mechanisms or it indicates that the existing

model for neutrally buoyant particles may not be complete.
A further aspect associated with the banding phenomenon

that is not yet understood theoretically is the slow drift of the

granule bands along the axis of rotation. It is entirely un-

known what physical mechanisms initiate and sustain the
band drift and which mechanisms select the drift mode.

The literature reviewed here deals with flows of dilute

suspensions in partially filled horizontally rotating cylinders.
We conclude with a brief comment regarding the correspond-

ing case when the cylinder contains a dense suspension. As

far as we are aware there exists only one such study (Duong,
Hosoi, and Shinbrot, 2004). For their experiments Duong

et al. used a dense suspension of fine glass beads in water.
They reported the spontaneous emergence of a doubly peri-

odic train of sedimented knolls that formed along the cylinder

axis on the inside cylinder wall and at its rising side. The
solidified knolls were described as rising out of, and coexist-
ing alongside, a sea of freely flowing liquid. Duong, Hosoi,
and Shinbrot (2004) briefly discussed a model to calculate the
height of the dense suspension on the rising side of the inner
cylinder wall in cross-sectional simulations for different par-
ticle fractions. However, Duong, Hosoi, and Shinbrot (2004)
did not provide any information regarding, for instance, the
wavelength of the knoll patterns as a function of the particle
volume fraction or how the wavelength compares to the
wavelength for segregation bands in dilute suspensions.

V. DILUTE SUSPENSION: COMPLETELY FILLED DRUM

One of the main differences between the previously dis-
cussed scenario related to a partially filled cylinder and the
fluid-filled case is the absence of a free surface. Both for
partially filling suspensions and for partially filling granular
mixtures (see Sec. VI), the segregation mechanisms are
strongly related to free-surface dynamics (Zik et al., 1994;
Jin and Acrivos, 2004a). It is therefore intriguing that appar-
ently similar patterns emerge for a fluid-filled rotating hori-
zontal cylinder (see Fig. 19). Moreover, as we see shortly,
even within the category of fluid-filled rotating-drum flows
there are more than one segregation mechanisms, which are
applicable at different regimes of particle volume fraction
(V�

p) and fluid viscosity (�).

A. Experimental observations

When non-neutrally buoyant particles are suspended at low
volume fraction (V�

p � 0:01) in a rotating horizontal cylinder

three main scenarios are possible, depending on the rotation
rate � (Seiden, Ungarish, and Lipson, 2007; Matson,
Ackerson, and Tong, 2008). For rotation rates below a low
critical value �L the buoyancy force dominates and the
particles accumulate adjacent to the rising wall of the rotating
cylinder. For intermediate values �L <�<�H axial seg-
regation takes place and periodically spaced bands of high
particle concentration form with a wavelength �. The tran-
sition from a homogeneous (or axially independent) distribu-
tion to a well-developed band configuration typically occurs
on a time scale Oð��1Þ. For large rotation rates�>�H, the
centrifugal force dominates and the particles form a uniform
thin layer adjacent to the surface of the cylinder. Both the
wavelength of the observed patterns and their dynamics (i.e.,
steady, traveling, or oscillating bands) depend on the fluid

FIG. 19. Axial segregation of3mmpolystyreneballs suspended in a

water-filled drum. The inner tube diameter is D ¼ 4:5 cm, the tube

length is L ¼ 18:5 cm, and the rotation rate is� ¼ 6:25 rad=s. Note

that in this caseL ¼ 5�=2. A symmetric configuration with the bands

shifted �=2 to the left is equally probable. From Seiden, 2011.
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viscosity (Breu, Kreulle, and Rehberg, 2004). We therefore
distinguish between the low viscosity limit (�< 10 cP)
and intermediate values of viscosity (10<�< 100 cP).
Segregation and pattern formation in dilute suspensions of
non-neutrally buoyant particles at higher viscosities are yet to
be explored.

1. The low viscosity limit

Over the last decade, several experimental and theoretical
studies focused on pattern formation in the dilute, low vis-
cosity suspension limit. The pioneering observation of axial
banding in this case was made by Lipson (2001) with ammo-
nium chloride crystals suspended in a supersaturated solution.
In his work, Lipson reported that the phenomenon also
occurred for positively buoyant particles [i.e., air bubbles;
see also Lipson and Seiden (2002)]. This was followed by
more elaborate studies made by Breu, Kreulle, and Rehberg
(2003) and Seiden, Lipson, and Franklin (2004). In these
investigations the fluid medium was either water (� ffi
1 cP) or a low viscosity aqueous glycerol solution (i.e.,
�< 10 cP), and the particles used ranged from d �
100 �m to � 1 mm. These mostly experimental investiga-
tions not only explored in detail the steady band configura-
tion, but also revealed novel time-dependent dynamics, such
as oscillating bands (see Sec. V.A.2).

Seiden, Lipson, and Franklin (2004) investigated the de-
pendency of the phenomenon on the tube length L and on
particle characteristics (i.e., size, shape, and specific gravity).
The dependency of the phenomenon on tube length revealed a
sawtoothlike relationship between � and L, resembling a
resonant wave phenomenon, such as a laser resonator. In
the latter case the boundary conditions determine the exact
value of the wavelength, in accordance with an amplification
mechanism centered at a particular frequency (Yariv, 1969).
Figure 20 shows the dependency of � on L for the different
particles used. The graph of Fig. 20, in which the abscissa and
ordinate were scaled by the tube radius, shows no significant
dependency on the characteristics of the particles [in the
ranges explored by Seiden, Lipson, and Franklin (2004)].
The oblique dashed lines in Fig. 20, which capture the
varying sawtooth slope of the experimental data, represent
the following relationship between the observed wavelength
and tube length:

� ¼ 2L

n
; n ¼ 2; 3; 4; . . . : (3)

The mean value of the observed wavelength is �� ffi 3:6R.
Also note the tendency at large tube lengths toward an upper
limit wavelength � � 4R.

In accordance with the fact that the compendium of data
presented in the scaled graph of Fig. 20 collapses onto the
same oblique lines, Seiden et al. concluded that the phenome-
non scales with the tube radius only. Additional reports,
however, indicate that the wavelength depends not only on
the tube radius, but also on the particle size. Breu, Kreulle,
and Rehberg (2003), who conducted similar experiments with
small spherical glass particles (d ¼ 290 �m), found in addi-
tion to � ¼ 3:6R a shorter, albeit less dominant, wavelength
with approximately half the periodicity as a result of splitting
of the ring-shaped bands.

Another important result emerged from the investigation of

the dependency of the phenomenon on tube length, which has

to do with the position of the band pattern with respect to the

vertical walls (i.e., at z ¼ 0, L). It was found that the bands

would form either adjacent to or half a wavelength from the

wall. Thus for every tube length there are two possible band

configurations (Seiden, Lipson, and Franklin, 2004). An ex-

ample of a situation where two symmetric and energetically

degenerate band configuration occurs is shown in Fig. 19.

This double degeneracy is at the origin of a related phenome-

non of band oscillations found in the low viscosity limit

(Seiden, Lipson, and Franklin, 2004), which will be described

in detail in Sec. V.A.2.
An important aspect of pattern forming systems is the

transition between qualitatively different states of the system,

often depicted through a bifurcation diagram. In the present

system there are two main transitions. The first is between the

sediment state and the stable band state, and the second is

between the band state and the centrifugal state. These tran-

sitions occur in the vicinity of�L and�H , respectively. Breu,

Kreulle, and Rehberg (2003) experimentally investigated

these transitions by varying the control parameter (i.e., rota-

tion frequency) and analyzing the root mean square of the

transmitted light, emitted from a source placed behind the

rotating drum. The results of their investigation are shown in

Fig. 21. The hysteretic character of these transitions is evident

from the graph and indicates a subcritical bifurcation. The

values of�L and �H are approximately 18.8 and 23:2 rad=s,
respectively.

The effect of viscosity in the range 1<�< 10 cP on the

steady banding phenomenon was explored by Seiden,

Ungarish, and Lipson (2005). The characteristic sawtoothlike

dependency observed for � ¼ 1 cP (see Fig. 20) carried over

to higher values of viscosity. The main consequence of the

increase in viscosity was an increase in the mean observed

wavelength, from �� ¼ 3:6R to 4R. This effect is in agreement

with an investigation carried out by Breu, Kreulle, and

FIG. 20. Dependence of the wavelength on the tube length. By

scaling the tube length and observed wavelength by the tube radius

the data of different experiments (i.e., different particle character-

istics and tube diameters) collapse onto straight lines given by

Eq. (3). Solid symbols represent oscillating bands (see

Sec. V.A.2). Adapted from Seiden, Lipson, and Franklin, 2004.
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Rehberg (2003) on the effects of viscosity (in the same low

viscosity range) on traveling axial bands. However, while in

Seiden, Lipson, and Franklin (2004) the effect is moderate

(approximately 10% increase), in Breu et al. the reported

increase is much more substantial (up to 3 times the wave-

length observed for pure water).

2. Traveling and oscillating band patterns

As with many other pattern forming systems [e.g.,

Rayleigh-Bénard convection (Bodenschatz, Pesch, and

Ahlers, 2000)], the suspension-filled rotating drum exhibits

both steady and dynamical states. Breu, Kreulle, and Rehberg

(2004) reported the occurrence of traveling waves for a range

of rotation rates between the sediment state and the stable

band state. The speed and wavelength of these long-lived,

bidirectional waves were found to be almost independent of

the rotation frequency. In addition, they note that these waves

are nonhysteretic. By altering the viscosity of the interstitial
liquid, Breu et al. were also able to show that an increase in

viscosity causes a decrease in the propagation speed and an

increase in wavelength.
Breu, Kreulle, and Rehberg (2004) and Seiden, Lipson,

and Franklin (2004) reported an intriguing phenomenon

of oscillating band patterns of characteristic time scales

Oð10��1Þ–Oð100��1Þ. Breu, Kreulle, and Rehberg (2004)

observed the phenomenon at the transition between the steady

band state and the centrifugal limit state. The ring-shaped

regions rich in suspended particles were found to periodically

expand and shrink along the axis. The frequency of oscilla-

tions depended on the rotation rate, with the oscillation

frequency increasing as the rotation rate decreased. Seiden,

Lipson, and Franklin (2004) reported the oscillation phe-

nomenon for a variety of particles (full symbols in Fig. 20)
suspended in water. Here the oscillations consisted in the

complete breaking up of each ringlike band and the subse-

quent merging of adjacent bands. In this way, the band

structure oscillated between the two possible configurations

determined by the boundary conditions, as discussed in

Sec. V.A.1. The phenomenon was found to occur mainly

for wavelengths in the range 3:6R–4:0R (solid symbols in

Fig. 20). A dynamical presentation of oscillating axial bands

can be found in the supplementary material of Seiden,

Ungarish, and Lipson (2005). We note that neither the trav-
eling waves nor the oscillating bands have, to date, been

rigorously explained.

3. The intermediate viscosity range

The intermediate viscosity range (10<�< 100 cP) has

many similar features to the low viscosity range described

previously. One example is the similar flow patterns observed

in the embedding fluid when steady band patterns occur
(Seiden, Ungarish, and Lipson, 2005; Matson et al., 2005).

There are, however, fundamental differences between the two

regimes. Maybe the most evident difference is the observed

wavelength, which for the intermediate range is � ffi 2:4R
(compared to � ffi 3:6R for the low viscosity limit). These

two regimes also differ in the range of the associated dimen-

sionless numbers. Although the viscosity is typically only an

order of magnitude larger in the present case, other parame-
ters such as the rotation frequency corresponding to the

occurrence of stable bands are affected as a result of the

different values of viscosity. This yields substantial differ-

ences in the governing dimensionless parameters. For ex-

ample, the Reynolds number based on the particle
dimension,6 which takes values Red ffi 10 for an aqueous

suspension of 100 �m glass beads filling a tube with R ¼
1 cm, here is typically Red � 0:1 for the same particles and

tube. This difference in dimensionless numbers has in turn a
profound effect on the theoretical approaches one utilizes in

order to understand the segregation mechanisms (see

Sec. V.B).
Matson et al. (2003, 2005, 2008) carried out detailed

experimental investigations into the various states observed

as both the rotation rate � and the fluid viscosity � were

varied. They used 100 �m glass beads suspended at low

volume fraction (V�
p ¼ 0:023) in aqueous glycerol solutions,

completely filling a tube with R ¼ 0:95 cm and L ¼
22:75 cm. Matson et al. reported as many as ten different

states, ranging from the granular bed state (GB in Fig. 22)
found at low rotation rates to the centrifugal limit state (CL in

Fig. 22), which characterizes the high rotation rates. The left

column in Fig. 22 shows a side view of the ten states observed

in the intermediate viscosity range. The photographs were
taken with a backlit illumination. The dark areas represent

high particle densities. The center and right columns in

Fig. 22 show a complementary view of the flow field in the

r-	 plane, pertaining to the main states shown in the left
column. These photos were taken in an especially designed

shorter cell (L ¼ 2:25 cm) having a transparent window, with

the illuminating light sheet directed through the r-	 and the

CCD camera positioned at right angles. Figure 23 depicts a

selected region in the �-T (T being the rotation period) phase
diagrams.

The flow in the r-	 plane associated with the first three

states found at low rotation rates (GB, F1, F2 in Fig. 22) is a

rather complex one, resulting from the fact that a relatively
large bulk of particles forms a granular bed adjacent to the

FIG. 21. Bifurcation diagram depicting the frequency dependence

of the root-mean-square intensity amplitude. The hysteretic nature

of the two transitions is evident. Note that for decreasing rotation

rate, there is an intensity jump at 3.25 Hz which corresponds to

particles accumulating at either the right or left part of the tube.

From Breu, Kreulle, and Rehberg, 2003.

6Note that Red ¼ Re�6.
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wall of the rotating cylinder. The fourth state, the low-rotation

rate transition (LT in Fig. 22), marks the onset of large-scale

segregation and the formation of axial bands. While the flow

field observed for LT is unsteady, the subsequent steady band

state (SB in Fig. 22) is characterized by time-independent,

well-defined axial bands. The observed wavelength of SB is

� ffi 2:4R. The flow pattern in the r-	 plane associated with

SB is an off-centered circular motion (see Fig. 22). In the y-z
plane, one observes a characteristic convectionlike pattern,

which is also typical of the flow field found in the low

viscosity limit (see Fig. 26).

For higher rotation rates centrifugal effects are manifested

in a growing layer of particles attached to the cylinder inner

surface. It is worth noting that the two states found after SB

[i.e., the local-structure dropout (LD) and the homogeneous

region (HR)] are characterized by no axial patterns, while in

the next two states [i.e., the high-rotation-rate transition (HT)

and the discontinuous banding (DB)] pattern formation pro-

cesses again cause axial migration and banding. Here, how-

ever, the periodic length is considerably larger than the one

observed for SB.
Matson, Ackerson, and Tong (2008) expanded the above

investigation in order to study the effects of varying the

particle size, concentration, and cylinder radius. Their experi-

ments show that varying the particle dimension has an effect

mainly on the transition between states, not on the character

and number of observed states. The effect of particle concen-

tration was investigated in the range 0:01< V�
p < 0:03. The

results suggest that the dominant effect of increasing the

particle concentration is an increase of the gravitational

driving force, rather than an increase of the effective viscosity

of the suspension. When varying the cylinder radius all states

observed by Matson et al. (2005) were recovered except for

the HR state.
The large range of dimensional parameters explored by

Matson, Ackerson, and Tong (2008) enabled them to inves-

tigate the scaling laws governing the transitions between the

different states. With respect to the transitions in the low-

rotation rate regime (states GB, F1, F2, and LT), they found

the following power-law dependencies between the Reynolds

FIG. 22. Different states observed in the intermediate viscosity range as both rotation rate and viscosity are varied. Left column: side view

(darker regions have higher particle concentration). Center and right columns: complementing, on-axis view depicting flow field (lighter

regions have higher particle concentration). From Matson et al., 2005.

FIG. 23. Phase diagram in �-T plane depicting selected states

shown in Fig. 22. The cluster of points on the right represents the

homogeneous region (HR) state. From Matson et al., 2005.
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number (or ��1
4 ), the size aspect ratio (�6), and the ratio

between buoyancy and centrifugal forces (�2):

�4 ¼
8<
:

35
8

��
�f

�2�
3
6; GB-F1 transition;


 ��
�f

�2�6; F1-F2; F2-LT transitions;
(4)

where 
 ¼ 2:75� 10�3 for the F1-F2 transition and 
 ¼
0:65� 10�2 for the F2-LT transition. Note that the ratio
��=�f is different than the corresponding dimensionless

parameter of the general set presented in Table I. The latter
has �f þ �p in the denominator in order to allow for a

generic set which is applicable to other rotating-drum flows.
In this respect, it should be noted that Matson et al. did not
explore the �p dependence.

The intermediate and high-rotation-rate transitions were
fitted by the following general relationship:

�4 ¼ 1:69� 10�2

�
��

�f

�2

�
3=2

V�3=4
p : (5)

While the above scaling laws were derived empirically,
Matson, Ackerson, and Tong (2008) were able to explain
the scaling of the centrifugal limit DB-CL transition by
viewing it as a Rayleigh-Taylor instability.

B. Theoretical approaches

The fact that the system under study consists not only of a
fluid, which is governed by the nonlinear Navier-Stokes
equations, but also a large number of suspended particles
makes a theoretical analysis extremely difficult. Indeed,
without making simplifying assumptions one faces a formi-
dable task. Two different approaches aimed at unraveling the
physical origin of segregation and formation of axial bands
were made by Lee and Ladd (2002, 2005, 2007) and by
Seiden et al. (2004, 2005, 2007). These two approaches
differ both in the range of dimensionless parameters they
attempt to explore and in the conceptual view regarding the
role of the suspended particle in causing segregation to occur
in a system that would otherwise be in a state of solid body
rotation.

1. Stokes flow approximation

Lee and Ladd (2002), 2005, 2007) addressed the experi-
mental observations made by Matson, Ackerson, and Tong
(2003) on intermediate viscosity suspensions [� ¼ Oð10 cPÞ]
consisting of 100 �m glass spheres. Their approach is based
on the smallness of the Reynolds number Red ¼ �fd�R=�,

which, in the experiments of Matson et al., was Red � 0:01.
Thus the creeping flow in the vicinity of a single suspended
particle is governed by the Stokes and continuity equations,

�r2u ¼ rp; r � u ¼ 0: (6)

In this low Reynolds number regime, the motion of the
particle in the rotating drum is characterized by two terminal
velocities associated with the gravitational and centrifugal
forces:

vg ¼ mb

3��d
g; vc ¼ mb�

2r

3��d
r̂; (7)

where mb ¼ �d3��=6 and r is the distance of the particle
from the cylinder axis. Superimposing these velocities onto
the underlying rigid rotation yields the velocity of the particle
at a given point within the drum. Figure 24 depicts different
possible trajectories, depending on the dimensionless pa-
rameters P1 ¼ �2 ¼ g=�2R and P2 ¼ vg=�R.

According to Lee and Ladd (2005, 2007), axial segregation
and banding is caused by an attractive, hydrodynamic inter-
action between the suspended particles. Specifically, axial
perturbations in the concentration field lead to faster settling
where particles are closer together, which draws more parti-
cles toward the high concentration regions. By numerically
integrating the equations of motion of N ¼ Oð104Þ (V�

p �
0:01) spherical particles in a flow field which consists of a
superposition of the flow in the vicinity of an isolated particle
and the long range contribution of the rest of the suspended
particles, they were able to show that axial banding occurred
with a wavelength approximately equal to the cylinder di-
ameter (see Fig. 25). We recall that the observed wavelength
reported by Matson, Ackerson, and Tong (2003) was � ¼
2:4R. The rotation rate interval pertaining to the occurrence
of banding was 0:9vg=l <�< 1:4vg=l, where l is the mean

interparticle separation.
Lee and Ladd also identified a dimensionless parameter

Q ¼ ��=N� (where �� is the total time-averaged angular
momentum of the disperse phase), which distinguishes be-
tween a transversally (i.e., in the r-	 plane) segregated phase
at low rotation rates, and the transversally disperse phase in
which the particles go through well-defined closed trajecto-
ries. Banding was observed at the transition between those
two phases. It is also important to note that the wavelength of

FIG. 24. Different possible trajectories of a single particle in a

rotating drum under Stokes flow. (a) Coordinate system used.

(b) Loci of points pertaining to vanishing radial (C1) and tangential

(C2) components of velocity. (c) Closed trajectory bound by cylin-

der wall reached after spiraling motion from initial point. (d) When

P2 > 1 the viscous drag is not sufficient to suspend the particle and

the particle reaches a stagnation point on the wall (A). From Lee and

Ladd, 2002.
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the band pattern was found to be sensitive to the length of the
tube. Thus, for L ¼ 6:2R they observed three stable bands
while for L ¼ 7:0R the system alternated between three and
four bands. This relationship between wavelength and tube
length is also a characteristic of banding at the low viscosity
range (see Sec. V.A.1).

2. Boundary-layer approximation

Seiden et al. (2004, 2005) considered the observations
made with suspensions consisting of millimeter-sized parti-
cles (e.g., 3 mm polystyrene beads) suspended in water. This
scenario yields much larger values of Red [Red ¼ Oð100Þ],
and thus the Stokes approximation is no longer valid. Their
approach, in turn, is based on the smallness of the Ekman
number E ¼ �=�f�R2 ¼ Re�1. This dimensionless num-

ber, which is the reciprocal of the Reynolds number based
on the cylinder radius and corresponding velocity, is an
indicator of the effects of the boundary layers (Greenspan,
1969). For small values of E one can use a singular perturba-
tion analysis in order to expand the fields ðu; pÞ in powers of
E
 (
< 1). In particular, when L ¼ OðRÞ the dominant
boundaries are the Ekman boundaries adjacent to the vertical
walls at z ¼ 0, L and the expansion is in powers of E1=2

(Greenspan, 1969). In the experiments of Seiden, Lipson, and
Franklin (2004) E � 10�3, and thus they used a boundary-
layer approach to analyze the flow causing the particles to
segregate.

In contrast to the approach of Lee and Ladd (2002), Seiden
et al. (2004, 2005) did not focus on the hydrodynamic
interaction between the particles, which for the corresponding
values of Red is to date unknown.7 Instead, they investigated
the collective effect of the dispersed phase on the continuous
phase through looking first at the flow of a single particle in
an otherwise unperturbed rigidly rotating flow. While for low

Red the flow of a single particle is well understood (Roberts,
Kornfeld, and Fowlis, 1991), for large values of Red the flow
in the vicinity of an accelerating particle is complex and only
approximate solutions are available (Lawrence and Mei,
1995). Seiden, Ungarish, and Lipson (2007) employed the
first approximation for the drag acting on an accelerating
particle, namely, the (empirical) drag exerted on an identical
particle moving through an infinite fluid with a terminal
velocity equal to the instantaneous velocity of the accelerat-
ing particle. This approximation leads to an off-centered,
almost circular trajectory adjacent to the cylinder wall
(Seiden, Ungarish, and Lipson, 2007). The corresponding
effective frequency of the suspended particle ! was found
to be close to that of the cylinder (i.e., ! ffi �). In light of the
fact that one considers dilute suspensions, they further as-
sumed that the effect of hydrodynamic interactions between
the suspended particles does not alter in a significant way the
overall single-particle dynamics picture and concluded that
the collective effect of the suspended particles can be viewed
as a persistently perturbing driving force acting on the fluid,
with a frequency equal to the effective frequency !.

In order to explore the fluid response to the gravity-induced
perturbation of the suspended particles Seiden et al. (2004,
2005) made two simplifying assumptions regarding the gov-
erning Navier-Stokes equations, which in a frame rotating at
� ¼ �ẑ read in nondimensional form

@u�

@t�
þ Roðu� � rÞu� þ 2ẑ� � u� ¼ �r~p� þ Er2u�;

r � u� ¼ 0: (8)

In the above equation, the Rossby number Ro ¼ U=�R (U
being a characteristic velocity in the rotating frame) is the
ratio between the inertial term and the Coriolis term, and ~p� is
the reduced pressure, incorporating the dynamical pressure
and the centrifugal and gravity effects.

The first approximation was to neglect the viscous term
due to the smallness of the Ekman number in the experiments.
The second simplifying assumption was that Ro 	 1. This
approximation can be justified only in the initial stages of
axial segregation.

Under these two assumptions Eq. (8) reduced to the invis-
cid, linear form:

@u�

@t�
þ 2ẑ� � u� ¼ �r~p�; r � u� ¼ 0: (9)

The solutions of Eq. (9) are termed inertial waves
(Greenspan, 1969). Inertial waves occur in a variety of natural
systems related to bounded rotating fluids, ranging from the
Earth’s interior (Aldridge and Lumb, 1987) and atmosphere
[i.e., Rossby waves (Rossby, 1939)] to accretion disks
(Dubrulle and Valdettarol, 1992).

Out of an infinite set of inertial modes associated with !�
Seiden et al. were led to consider a particular family of
modes, which when viewed from the laboratory frame of
reference appear stationary and thus could cause segregation
and a steady pattern to occur. This family of modes is
characterized by the dependency expð	� þ!�t�Þ. The spe-
cific modes that would be excited by the gravity-induced
motion of the suspended particles can in general be identified
by projection of the driving field seen by the fluid onto the

FIG. 25. Axial segregation due to low Reynolds-number hydro-

dynamic interactions. Upper panel: top view of rotating drum

showing axial banding. Lighter particles are moving to the right

and darker particles to the left. Bottom panel: front view of drum

depicting secondary axial flow. From Lee and Ladd, 2007.

7We note that hydrodynamic interactions between two and three

particles in the rotating horizontal drum configuration were recently

studied experimentally for Red ¼ Oð1Þ by Mullin et al. (2005).
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family of inertial modes (Greenspan, 1969). This projection
singles out a dominant mode, which was studied in detail by
Seiden et al. (2005, 2007). In particular, for an effective
frequency !� ¼ 1, which corresponds to the gravity-induced
relative motion of the suspended particles, the wavelength of
this mode is �theory ¼ 3:97R. This theoretical value is in good

agreement with the experimental observation.
Seiden, Ungarish, and Lipson (2005) conducted an experi-

ment which further confirmed their theoretical approach. In
the experiment two different kinds of particles were used:
tracer particles and larger, millimeter-sized, inertial particles.
While the large particles segregated and formed axial bands
in the regular fashion, the smaller particles traced the flow
and were used to visualize the flow field. A thin light sheet
was directed from above along the x ¼ 0 plane. A CCD
camera was placed in the y ¼ 0 plane, facing the transparent
tube. In this way the tracer particles were illuminated and
streaks of their trajectories recorded.

Figure 26 shows the results of this experiment [Fig. 26(a)]
together with the theoretical field predicted by the theory
[Fig. 26(b)]. The streaks of the tracer particles depict a flow
field consisting of four convectivelike cells, which is in good
agreement with the predictions of the theoretical flow field.
Moreover, from the dynamics recorded via the CCD camera
one could also establish that the predicted orientation of the
velocity field in the bands was as predicted (upward between
bands and downward within the bands).

VI. DENSE GRANULAR FLOWS

The rotating drum is particularly associated with the study
of dense granular flows. The lack of constitutive equations for
granular matter coupled with the vast industrial applications
make granular dynamics a vibrant and expanding area of
research (Jaeger, Nagel, and Behringer, 1996; Duran, 1999;
Ottino and Khakhar, 2000; Ristow, 2000). The rotating-drum
configuration, partially filled with a mixture of granules, has
the advantage of being a self-contained apparatus, where
grains are continuously being fed to the top part of the pile
and allowing for a wide range of dynamics by varying the
rotation rate (Henein, Brimacombe, and Watkinson, 1983).

Previous reviews on granular flows in rotating drums
include the works of Ottino and Khakhar (2000), Ristow
(2000), and Meier, Lueptow, and Ottino (2007). Ristow
addressed the rotating-drum configuration in the broader
context of pattern formation in granular matter, while
Ottino and Meier et al. focused on mixing and segregation
in rotating tumblers of different shapes. In this work we
restrict ourselves to noncohesive granules and to drums rotat-
ing at constant frequencies.

A. Single component case

1. Avalanches: A paradigm of self-organized criticality?

Probably the most characteristic phenomenon associated
with granular material is avalanches, the intermediate state
between the solidlike and fluidlike regimes experienced by
dense granules. The last few decades have seen an intensified
interest in granular avalanches, following the introduction of
the concept of self-organized criticality (SOC). This concept
was coined by Bak, Tang, and Wiessenfeld (1987) in an
attempt to account for critical behavior (i.e., intermittent
intense events) exhibited by large-scale nonequilibrium sys-
tems, such as plate tectonics (Gutenberg and Richter, 1956)
and turbulence (Frisch, 1995). According to Bak, Tang, and
Wiessenfeld (1987), spatially extended dynamical systems
self-organize into a set of barely stable states consisting of
all length and time scales. These systems are therefore char-
acterized by a power-law spectrum both in time [e.g., the so-
called 1=f noise (Press, 1978)] and in space.

In their seminal paper, Bak, Tang, and Wiessenfeld (1987)
chose avalanches in sand piles as a paradigm of nonequilib-
rium critical systems. Here a slow input of new grains
gradually increases the slope until, when a critical value 	c
is reached, an avalanche occurs which resets the slope to the
static angle of repose 	s < 	c. By using a simple numerical
sandpile model Bak, Tang, and Wiessenfeld (1987) showed
that both the size distribution and the associated duration of
avalanches were governed by a power-law dependency.

In an attempt to experimentally explore the statistics of
avalanches in granular material Jaeger, Liu, and Nagel
(1989), and independently Evesque and Rajchenbach
(1988), carried out experiments in a slowly rotating horizon-
tal drum, partially filled with monodisperse granular material.
The avalanches were detected either by a parallel-plate ca-
pacitor, through which the grains flowed when an avalanche
occurred (Jaeger, Liu, and Nagel, 1989), or by a sensitive
microphone (Evesque and Rajchenbach, 1988).

In contrast to the predictions and numerical results of Bak,
Tang, and Wiessenfeld (1987), these investigators failed to
observe a scale free, power-law spectrum. Figure 27 shows
the results obtained by Jaeger, Liu, and Nagel (1989) with
spherical glass beads of average diameter �d ¼ 0:54 mm
placed in an open cylinder of radius R ¼ 5 cm and length
L ¼ 8 cm, rotating about its axis at � ¼ 3:78� 10�4 rad=s.
The dashed line in Fig. 27 is the predicted f�1 power-law
dependence.

In order to clarify the apparent contradiction between the
numerical studies and the experimental results further experi-
mental investigations were performed in various geometries.
Bretz et al. (1992) used a rotating-drum configuration,

FIG. 26. Comparison between the theoretical prediction of the

boundary-layer approach and experimental visualization of the flow

field. (a) Experimental flow field manifested by streaks of small

tracer particles using a thin light sheet projected from above.

(b) Theoretical prediction of flow field in the same plane. From

Seiden, Ungarish, and Lipson, 2005.
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similar to the one used by Jaeger, Liu, and Nagel (1989), with

the exception that the base was pretextured with a glued layer

of grains. The focus of their work was on the spectrum of

small avalanches occurring between successive large ava-

lanches. These small scale events were at least in part ignored

in previous works due to the measuring techniques used,

which were aimed at detecting global effects. By scaling

the duration of the small avalanche by the time interval

between successive large avalanches Bretz et al. (1992)

were able to show that these sliding events obey a power-

law distribution, with an exponent of �2:134. Held et al.

(1990) studied the statistics of avalanches in a 2D conical-

shaped sandpile. They found that, depending on the size of

the sandpile (i.e., the diameter D of the circular base upon

which the pile was constructed), the avalanches can exhibit

either power-law statistics (D< 2:5 cm) or relaxation oscil-

lations (D> 2:5 cm). Rosendahl et al. (1993, 1994) used a

similar setup to the one used by Held et al. (1990). They

found that small avalanches obey power-law statistics with an

exponent of �2:2, independent of the size of the pile. This

result is in close agreement with the findings of Bretz et al.

(1992) for the rotating-drum configuration. Large avalanches,

on the other hand, were found to be overly frequent and

quasiperiodic. They also demonstrated (Rosendahl, Vekić,

and Rutledge, 1994) that the small avalanches can be used

to predict the occurrence of large avalanches. Frette et al.

(1996) investigated avalanches in piles of rice confined be-

tween two vertical walls. By using different types of rice, they

found that the probability density associated with avalanches

of different energy dissipations depends on the shape of the

grains (power law for anisotropic grains and stretched ex-

ponential for almost isotropic grains).
Thus, while SOC has been reportedly validated as a

sound theoretical approach to a variety of nonequilibrium

dynamical systems having extended spatial degrees of free-
dom, such as neural networks (Levina, Herrmann, and Geisel,
2007) and granular high-Tc superconductors (Gerashchenko,
2009), its applicability to avalanches in granular matter is still
controversial. Recently, a more comprehensive theoretical
framework for driven systems with many degrees of freedom
based on the renormalization group has been proposed
(Sethna, Dahmen, and Myers, 2001). In particular, this ap-
proach extends the power-law predictions to universal scaling
functions.

2. Continuous flow

As the rotation rate of the rotating drum increases individ-
ual avalanches can no longer be distinguished and one enters
the continuous flow regime. Here, the partially filled cylinder
consists of a rigidly rotating bottom part and a thin, flowing
top layer (see Fig. 28). The free surface of the flowing layer
is at first flat (the so-called ‘‘rolling’’ mode) (Henein,
Brimacombe, and Watkinson, 1983), but as � further in-
creases it acquires an S shape (Rajchenbach, 1990) (the
’’cascading’’ mode).

The transition between discrete avalanches and continuous
flow was investigated experimentally by Rajchenbach
(1990), who reported the hysteretic nature of the transition.
Depending on whether one increases or decreases the rota-
tion rate, different values of � are associated with the
transition. Rajchenbach also reported a square-root depen-
dency of the dynamic angle of repose 	d on the rotation rate.
Further experimental (Dury et al., 1998; Yamane et al.,
1998) and numerical (Ristow, 1994) studies, however, found
a linear relationship between the rotation rate and the dy-
namic angle of repose.

Nakagawa et al. (1993) utilized MRI as a nonintrusive
method for studying the flow in the opaque granular medium.
They used mustard seeds due to their strong MRI signal. The
MRI measurements produced results on the concentration

FIG. 27. Statistics of avalanches in a rotating drum. (a) Schematic

of different rotating tumblers used in the investigation of ava-

lanches. (b) Time trace of avalanche events detected by a plate

capacitor through which the grains fall. (c) Corresponding power

spectrum of the sequence in (a). The dashed line represents a 1=f
spectrum. From Jaeger, Liu, and Nagel, 1989.

FIG. 28. Continuous flow regime observed for 4 mm steel balls

rotated in a cylinder of radius 8 cm. The region bounded by the

dashed line is the flowing layer. The rest of the balls experience

solid body rotation. The corresponding Froude number is Fr ¼
0:002. Adapted from Orpe and Khakhar, 2001.
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and velocity fields, as well as on the shape of the flowing
layer. The concentration profile across the flowing layer
revealed a lower density in the vicinity of the free surface,
in accordance with the expected dilatation associated with
granular flow (Reynolds, 1885). In the rigidly rotating part,
the MRI revealed slight concentration gradients which were
attributed to dynamic packing (Nakagawa et al., 1993).

Figure 29 (right) shows the streamwise velocity component
across the granular medium. The velocity profile consists of
three regions. The first two, between f and f0 and between f0
and r0, correspond to the flowing layer. In the former, the
shear rate is almost constant while in the latter the shear rate
decreases until, at r0, the velocity vanishes. The third region,
between r0 and r, corresponds to the rigidly rotating bed and
is characterized by a small shear rate. Further experimental
and numerical investigations of the velocity field in the
flowing layer showed that the streamwise component across
the layer can be written as (Yamane et al., 1998; Sanfratello
and Fukushima, 2008)

uðrÞ ¼ U

�
1� r

h

�
2 ��r; 0 � r � h; (10)

where h is the thickness of the layer. Both MRI measurements
(Nakagawa et al., 1993) and numerical simulations (Ristow,
1996) showed that the streamwise velocity component and
the surface flux along the layer are nonsymmetric with re-
spect to the center. The peak of the flux moved downstream
from the upper half as the rotation rate increased. Deviations
from Eq. (10) for low volume fractions and high rotation rates
were reported experimentally by Parker et al. (1997) and
numerically by Third, Scott, and Scott (2010). These devia-
tions, which were observed for spherical particles, originate
due to slip at the cylinder wall and are attributed to the rolling
motion of the particles in contact with the wall.

End-wall effects on the dynamic angle of repose and on the
streamwise velocity component within the flowing layer were
the subject of a number of works. Boateng and Barr (1997)
studied end-wall effects using polyethylene pellets. They
reported an increase of about 10% in the dynamic angle
of repose close to the end walls. The streamwise velocity

component was reported to be about 20% higher near the
walls, relative to the undisturbed region away from the walls.
Dury et al. (1998) used both experiments and computer
simulations and found that the angle is larger closer to the
end caps by up to 5� (about 12%) relative to the center of the
drum. Furthermore, by fitting the profile of the dynamic angle
of repose along the rotation axis they were able to show that
the characteristic length � , corresponding to the wall effect,
scales with the tube radius and particle dimension in the
following way:

� ¼
�
1R if d � dc;


1Rþ 
2ðd� dcÞ if d > dc;
(11)

where 
1 ¼ 0:28, 
2 ¼ 3:13, and dc � 0:14R. They found
no dependency of � on the particle density and gravitational
constant. Maneval et al. (2005) used MRI measurements to
investigate the end-wall effects on the dynamic angle of
repose and the velocity profile for two- and three-dimensional
drums. They found that the 2D angle of repose and the free-
surface velocity are larger than the corresponding ones ob-
served away from the walls in the 3D case. The velocity (at
every depth within the flowing layer) close to the walls in the
3D case was found to be smaller than that in the center plane.
This last observation seems in contradiction to the findings of
Boateng and Barr (1997). Maneval et al. (2005) also noted
that while in the 2D case mass flux was conserved, in the 3D
case mass flux was not conserved in the axial slices examined
due to axial flow.

Theoretical studies of the flowing layer used different
simplifying assumptions, but were all based on continuum
models of the cascading grains. Zik et al. (1994) treated the
flowing layer as a thin, viscous fluid layer of uniform height.
The flow within the layer was assumed tangential to the free
surface and the density constant. By balancing the stresses
on the layer, Zik et al. (1994) were able to reproduce the
characteristic S shape of the surface. Khakhar et al. (1997a),
who sought to investigate not only the flow in the cascading
layer, but also the mixing of grains, used a more elaborate
approach. They included mass flux from and into the layer,
and an explicit expression for the viscosity of the fluid, based
on the pioneering work of Bagnold (1954) on nondilute
sheared suspensions. They considered three cases, corre-
sponding to plug flow (constant velocity across the layer),
Bagnold’s profile (Bagnold, 1954), and simple shear. The
latter two realistic flow profiles produced averaged velocity
and layer thickness along the flowing layer that are in good
agreement with the experimental observations for glass
spheres. A similar comparison for the case of sugar crystals
has, however, revealed qualitative differences, which can be
attributed to the nonsphericity of the grains. It should be
noted that adopting Bagnold’s linear relationship between
viscosity and shear rate prompts comparison between phe-
nomena observed in granular flows and those observed for
non-Newtonian power-law liquids. While some numerical
and theoretical works focused on the latter (mainly, though,
on the high Froude number centrifugal limit), experimental
investigations are lacking and thus a meaningful comparison
is difficult.

Khakhar et al. (1997a) studied monodisperse granular
mixing by following the advection of individual particles in

FIG. 29. Velocity profile in rolling regime obtained by MRI

measurements. Left: Schematic of granular flow indicating the

line segment (AB), along which the velocity was measured.

Right: Streamwise velocity profile along the segment AB. The

flowing layer is marked F. From Nakagawa et al., 1993.
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the theoretical flow field. The process of mixing was shown to
depend on the average velocity in the flowing layer, the
distance between the rotation axis and the granular bed, and
the diffusivity of the particles perpendicular to the flow
direction. The predictions of the theoretical framework
were in agreement with experiments. It is important to note
that optimal mixing in the continuum flow regime corre-
sponds to bed depth h=R � 0:6, which is somewhat larger
than the value (h=R ffi 0:5) obtained by Metcalfe et al.
(1995) and Peratt and Yorke (1996) for avalanche-induced
mixing.

Elperin and Vikhansky (1998) used a boundary-layer ap-
proach in order to describe the dynamics in the flowing layer.
Their model consists of two adjustable parameters, which
depend on the friction in the layer. Gray (2001) derived a
theoretical framework based on the avalanche model of
Savage and Hutter (1989). He showed that the predicted
particle trajectories form closed curves, which pass through
both the rigidly rotating bulk and the flowing layer, in agree-
ment with experimental observations. He also performed
experiments with monodisperse grains at different volume
fractions. The grains were colored in order to visualize mix-
ing. The experimental results are in general agreement with
the theoretical predictions, although diffusive mixing, which
was not taken into account in the theory, clearly distinguishes
the experimental observations.

A number of investigations of scaling laws governing the
dynamics and shape of the flowing layer were carried out.
Orpe and Khakhar (2001) experimentally studied the depen-
dency of the shape, layer thickness, and dynamic angle of
repose on the aspect ratio �6 ¼ d=R and Froude number
Fr ¼ �2R=g. They used drums of different sizes, a wide
range of rotation rates, and various particles (i.e., steel balls,
glass balls, and sand particles) having different dimensions.
The shape of the flowing layer and the scaled layer thickness
were shown to scale well with �6 and the Froude number.
The dynamic angle of repose, however, was found to depend
also on the material of the grains. They also investigated the
scaling of the shear rate and showed that the value at the
midpoint of the flowing layer scales as

_� �
�
g sinð	d � 	sÞ

d cosð	sÞ
�
1=2

: (12)

Jain, Ottino, and Lueptow (2004) investigated scaling laws
related to the flowing layer under both dry and wet (i.e.,
slurry) conditions. The scaling laws for the flowing layer
thickness, streamwise velocity, and shear rate were found to
be independent of the interstitial fluid. The former two scal-
ing laws are [the latter given by Eq. (12)]

h

R
� ðFr�6Þ1=4

�
sinð	d � 	sÞ

cosð	sÞ
��1=4

;

usurface
�R

� ðFr�6Þ�1=4

�
sinð	d � 	sÞ

cosð	sÞ
�
1=4

:

(13)

The above relationship for the surface velocity is consistent
with that found by Alexander, Shinbrot, and Muzzio (2002)
for relatively high rotation rates. They investigated the de-
pendency of surface velocity on the Froude number and �6,

but not on the angles 	d and 	s. For low-rotation rates
they reported the following dependency: usurface=�R �
ðFr�6Þ�1=6. Midi (2004) analyzed and compared a compen-
dium of experimental data on dense granular flows taken in
different geometries, including the rotating-drum configura-

tion. They obtained a similar shear rate dependency ( _� �
0:5

ffiffiffiffiffiffiffiffiffi
g=d

p
), and flowing layer thickness: h=R / ðFr�6Þ1=4.

Sepúlvida, Krstulovic, and Rica (2005) experimentally
investigated scaling laws associated with the low volume
fraction limit (V�

p 	 1). The angular extent of the granular

front and its depth were examined for a range of microscale
particles, drum diameters, and rotation rates. The angular
extent of the front was shown to scale with the volume
fraction, the Froude number, and the ratio of the tube length
and tube radius L=R. In addition, a universal function de-
pending on these three nondimensional parameters was sug-
gested for the front profile (comprised of both angular extent
and depth). Recently, Chou and Lee (2008) investigated
scaling by a single nondimensional parameter, which com-
bines the Froude number, d=R, and V�

p. The applicability of

the scaling was experimentally examined with respect to the
dynamic angle of repose, the flowing layer thickness, the free-
surface velocity, and the flowing layer shear rate. The experi-
mental data were shown to collapse when plotted against the
nondimensional number, albeit with some scatter.

Kellay, Amarouchene, and Boudet (2007) carried out a
detailed experimental investigation of the longitudinal veloc-
ity fluctuations on the surface of the flowing layer. Laser
Doppler velocimetry was used to accurately measure the 2D
velocity field. The results revealed scale invariance in the
energy density spectrum with a �5=3 power law, similar to
the Kolmogorov scaling in 3D turbulence (Kolmogorov,
1941). In addition, the moments of the velocity difference
showed a power-law scaling with the exponents saturating at
2
3 , implying strong intermittency. The origin of scale invari-

ance in the velocity fluctuations of the surface flow is yet to be
understood.

We close this section with an intriguing example of pattern
formation similarity between low volume fraction granular
flow and low volume fraction pure liquid rimming flow. Fried,
Shen, and Thoroddsen (1998) reported the observation of a
variety of wave patterns formed in a thin layer of sand inside
the rotating cylinder (V�

p � 0:01). In particular, they observed

the spanwise spatially periodic wave pattern shown in
Fig. 30(a) which is reminiscent of the banding pattern dis-
played in Fig. 9 for a homogeneous liquid and the segrega-
tion bands in Fig. 12 developing in a particle-laden liquid.
Fried, Shen, and Thoroddsen (1998) were probably also the
first to draw attention to the similarity between some pat-
terns in rimming flows of pure liquids and the flow of a
purely granular material inside a horizontal rotating drum. In
this context they do, in particular, comment on the remark-
able similarity between the stationary granular and frontal
wave patterns shown in Fig. 30(b); nevertheless they point
out that the patterns do differ in wavelength. The two photos
in Figs. 30(b) and 30(c) are not the same scale. The wave-
length of the pattern in (c) is approximately twice that of the
pattern in (b). The similarities between patterns in fluid flow
and granular flow were also highlighted by Krasnapol’skaya
et al. (2001) who identified, and directly compared, eight
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classes of such similar patterns in fluids and granular
mixtures.

B. Binary and multicomponent mixtures

1. Radial segregation and streak patterns

A counterintuitive feature of granular mixtures is their
tendency to segregate. Differences in particle properties
such as size (Drahun and Bridgwater, 1983; Rosato et al.,
1987; Cantelaube and Bideau, 1995), density (Ristow, 1994;
Khakhar, McCarthy, and Ottino, 1997b), and friction (Lai,
Jia, and Cham, 1997; Plantrad, Saadaoui, and Pouligny,
2006) will in general induce segregation, rather than mixing,
when a bulk of different particles is subject to vertical shaking
(Rosato et al., 1987), horizontal shearing (Schoklitsch,
1933), or is being poured onto a heap (Drahun and
Bridgwater, 1983; Prigozhin, 1993). Early studies of granular
segregation were motivated primarily by the importance of
mixing in industrial applications (Williams, 1976). The
rotating-drum configuration, which is a paradigm of indus-
trial tumbling mixers, has been instrumental in shedding light
on the physical origin of this intriguing phenomenon.

When a homogeneous binary granular mixture is placed in
a quasi-2D rotating drum [d1, d2 ¼ OðLÞ] radial segregation
is typically observed within a few revolutions (Ristow, 1994;
Cantelaube and Bideau, 1995). As mentioned in the previous
section, in the rolling regime the granular phase consists of a

thin flowing layer and a rigidly rotating bed. The segregation
therefore occurs primarily in the flowing layer. The most
efficient mechanism, at work when the mixture consists of

particles of different sizes, is percolation (Williams, 1976).
Voids created in the flowing layer are filled with small

particles, while the larger granules concentrate at the free
surface. This eventually leads to the formation of a core of
small particles surrounded by the large particles [Fig. 31(a)].

Another segregation mechanism, relevant when the compo-
nents are of different densities, is buoyancy. Here heavier

particles in the flowing layer sink to lower levels while lighter
ones move upward. This process, in a similar manner to that

of size induced percolation, leads to a central core of heavy
particles engulfed by the lighter grains. Radial segregation
induced by friction has also been reported (Lai, Jia, and

Cham, 1997).
Size induced radial segregation was investigated in-

dependently of other segregation mechanisms by several

authors. Clément, Rajchenbach, and Duran (1995) experi-
mentally investigated size segregation in a half-full drum,
in the discrete avalanche regime. Segregation was examined

by introducing tracer particles of different size into the
granular bulk. By tracking the tracer particles they were

able to show a clear attraction of small tracer particles to
the center of the drum and an opposite tendency of large
tracer particles. Cantelaube and Bideau (1995) studied the

segregation of millimeter-sized disks in a half-full drum. By
recording and analyzing the region occupied by the small

disks they were able to show that radial segregation occurs
within one revolution. Thomas (2000) investigated size seg-

regation in binary mixtures of glass beads with large aspect
ratios. Reverse segregation (i.e., large particles segregating at
the center) was reported for dL=dS > 5 and low composition

of large beads, implying that mass effects, rather than perco-
lation, are dominant in this range of parameters. A similar

phenomenon was also reported by the author in chute flow
and in a flow over a conical heap.

Under certain conditions, the classical semicircular radial
core consisting of small particles is observed to develop

radial streaks [Fig. 31(b)]. Khakhar, Orpe, and Ottino
(2001) investigated the formation of streaks in a bidisperse

FIG. 30. (a) Stationary periodic wave patterns inside a horizontal

cylinder filled with a layer of sand occupying 1.5% of the cylinder

volume and rotating with a rotational velocity of � ¼ 13:8 rad s�1

(b) Close-up on the frontal wavy pattern of sand. (c) Frontal pattern

observed for a pure liquid, for comparison. From Fried, Shen, and

Thoroddsen, 1998.

FIG. 31. Different forms of radial segregation in bidisperse granu-

lar mixtures (rotation sense is clockwise). (a) Classical radial core

observed in a mixture of glass beads (d1 ¼ 0:2 mm, d2 ¼ 1 mm).

Adapted from Jain et al., 2001. (b) Radial streaks observed in a

mixture of glass beads (d1 ¼ 1 mm, d2 ¼ 3 mm). From Khakhar,

Orpe, and Hajra, 2003.
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mixture of glass balls. Streaks were found to form predomi-

nantly for V�
p � 0:5. In addition, for values of size ratio close

to unity (i.e., small differences in size) streak formation was

inhibited and only partial streaks were observed. An increase

in rotation rate was also observed to suppress streak forma-

tion. Recently, Meier et al. (2008) reported radial streak

coarsening in both circular and square drums. In the former

case,8 they used both size and size-and-density varying binary

mixtures. The volume fraction in both cases was V�
f ¼ 0:52.

The pattern acquired seven streaks within ten revolutions.

The streaks then coarsened to a steady pattern with three

streaks after 80 revolutions at a rotation rate of 1 rmp, or one

streak after 300 revolutions at 2 rpm. They also reported an

orientation periodicity of the streak pattern, whereby the

orientation of the pattern coincided with that of the rotating

drum after five revolutions. Zuriguel, Peixinho, and Mullin

(2009) investigated streak merging in a bidisperse mixture of

glass beads and in a binary mixture containing glass particles

and sugar crystals. By using angular spatiotemporal diagrams

they were able to show that streak merging occurs through the

displacement of streaks containing small particles in the

counterrotation direction and the deposition of surplus mate-

rial in the stable streaks. They also reported that the number

of streaks in the final stable state is a monotonically decreas-

ing function of the rotation rate. It is important to note that

radial streaks were not observed due solely to density differ-

ence (i.e., buoyancy).
Several studies used a bidisperse granules mixture of glass

beads immersed in water (i.e., slurry condition) in investigat-

ing streak formation (Hill et al., 2004, 2005; Zuriguel et al.,

2006). The presence of an interstitial liquid eliminates cohe-

sion effects and results in a more smooth, petal-like pattern.

Hill et al. (2004, 2005) investigated the dependency of the

waviness index p2=A (here p is the perimeter of the pattern

and A is the area of the pattern), characterizing the petal

patterns, on the filling level of the granules. They showed that

it peaks at a value which corresponds to a volume fraction

slightly larger than 1
2 . Zuriguel et al. (2006) experimentally

investigated the dependence of the petal pattern on the rela-

tive volume fraction, tube diameter, and rotation rate for a

half-full drum. Their investigation showed that the dependen-

cy of the time period defined through the angular period of the

petals T�	
¼ �	=� (here �	 is the angular distance between

consecutive petals) on the rotation rate has two regimes. For

small rotation rates there is a power-law dependency, while

for large rotation rates the period saturates to a constant value.

Moreover, the former regime does not depend on tube diame-

ter and relative composition while the latter depends on both.

The dependency of the saturation period on tube diameter

and relative composition was shown to condense into a

linear dependency on the radius of the preceding semicir-

cular radial core.
Baumann, Janosi, and Wolf (1994) investigated size seg-

regation of a binary mixture of disks in an almost half-full

drum (V�
p � 0:47) using a simple numerical model. Their

model neglected both inertia and elasticity and utilized a

no-slip boundary condition at the drum wall. By studying

the trajectories of the small and large particles they observed

segregation for particle size ratio in the range 0:5 � d1=d2 �
0:9. Dury and Ristow (1997) used a molecular dynamics

(MD) numerical approach in studying radial segregation of

spherical particles half filling a 2D drum. In particular, they

investigated the dependency of the phenomenon on the rota-

tion rate and showed that the quality of segregation decreases

with increasing � and the characteristic segregation time

increases.
Theoretical investigations of size induced radial segrega-

tion were based on free-surface segregation models

(Prigozhin and Kalman, 1998; Makse, 1999; Khakhar,

Orpe, and Ottino, 2001; Gray and Thornton, 2005).

Prigozhin and Kalman (1998) used a model developed by

Prigozhin (1993), whereby a mass transport equation is com-

bined with a phenomenological segregation operator in solv-

ing the evolution of the constituent distribution from a

prescribed initial condition. The segregation operator was

based on the experimental findings of Drahun and

Bridgwater (1983), who studied free-surface segregation in

a binary mixture poured onto a heap. Prigozhin and Kalman

(1998) tested their theoretical predictions using a quasi-2D

drum partially filled with a bidisperse mixture of spherical

beads made of zirconium oxide and found good agreement.
Khakhar, Orpe, and Ottino (2001) used a more elaborate

continuum model, which accounted also for the phenomenon

of streak formation. The model consists of mass, momentum,

and species balance equations and assumes the difference in

size is large enough to allow an almost instantaneous segre-

gation within the flowing layer. Thus, the flowing layer is

divided into two parts, with the smaller particles occupying

the lower part and the larger ones the upper part. In each layer

the velocity profile is assumed to be linear. In addition, the

interface between the rigidly rotating bed and the flowing

layer is allowed to move, depending on the local composition.

This interfacial freedom was found to be crucial to the for-

mation of streaks due to the different angle of repose of the two

constituents. Gray and Thornton (2005) used a binary mixture

theory approach in order to model size induced segregation.

Their theory allowed for the examination of spatiotemporal

evolution of the concentration fields. In particular, they re-

ported the formation of three concentration shocks, separating

small particles, large particles, and a homogeneous mixture.

These three shock lines meet at a triple point.
Hill et al. (2004, 2005) explained the formation of radial

streaks by a wave-breakingmechanism, which is based on the

slope of the interface between the large and small particles in

the flowing layer. The upper portion consisting of larger

particles [dark region in Figs. 32(a) and 32(b)] is, in general,

advected faster than the lower part. Therefore, if a positive

slope exists, the interface tends to smooth out, while in the

case of a negative slope the upper layer overtakes the initially

leading lower part. Thus, a gulf of large particles emerges [cf.

dark region in Fig. 31(b)], separating regions rich in small

particles, which form the radial streaks. Hill et al. also

accounted for the volume fraction dependence of radial

streaks by investigating the oscillating compositions of the

flowing layer entering and exiting fluxes. According to their

explanation, the amplitude-to-wavelength ratio characteriz-

ing the streak pattern, defined through these fluxes, is subject8See Sec. VII.A for details regarding the square tumbler.
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to low pass filtering, with a cutoff frequency which strongly
depends on the volume fraction.

Buoyancy induced radial segregation in a quasi-2D drum
was investigated by Ristow (1994) and by Khakhar,
McCarthy, and Ottino (1997b). Ristow used molecular dy-
namics simulations to investigate the time evolution of seg-
regation in a binary mixture with V�

p � 0:4. By tracking the

trajectories of the heavy particles, which constituted 2% of
the grains, he was able to study the rate of segregation and its
dependence on the density ratio �H=�L. The initial segrega-
tion rate was shown to increase as logð�H=�LÞ. Khakhar,
McCarthy, and Ottino (1997b) carried out a comprehensive
study which included experimental, numerical, and theoreti-
cal investigations. In their experiments, different volume
fractions and composition ratios of monodisperse steel and
glass balls (�steel=�glass � 3:8) were used in order to deter-

mine their effect on the equilibrium distribution within the
mixture. The results showed an increase of the core size with
increasing fraction of steel balls, and an independence of
the composition profiles on the overall volume fraction.
The theoretical model proposed by Khakhar, McCarthy, and
Ottino (1997b) is based on a previous analysis of the flowing
layer in the single component case (Khakhar et al., 1997a;
see Sec. VI.A.2), a species balance equation, and a phenome-
nological expression for the flowing layer segregation veloc-
ity. The model has one free parameter which was determined
by the experimental results. With this parameter fixed the
theoretical and experimental results were shown to be in
quantitative agreement. Khakhar, McCarthy, and Ottino
(1997b) utilized the Monte Carlo method and a molecular
dynamics simulation in order to further validate their theo-
retical approach.

Of particular interest and practical importance is the com-
bined effect of size and density induced segregation. Alonso,
Satoh, and Miyanami (1991) used a simplified theoretical

analysis of the flowing layer segregation, taking into account
both buoyancy and percolation mechanisms, and proposed a
dimensionless parameter which can be used as an indicator of
the extent of segregation in a given binary mixture. They
tested the prediction of the theoretical approach by plotting
the degree of mixing against the segregation parameter for
different experiments with binary mixtures in which both size
and density were varied. The experimental results confirmed
the validity of the proposed parameter as a robust index of the
quality of mixing. Metcalfe and Shattuck (1996) used MRI to
probe radial segregation in binary mixtures that contained
mustard seeds and either glass or sugar balls. The granular
volume fraction was V�

p ¼ 0:75. They observed different

segregation regimes and, in particular, noted the case in
which buoyancy and percolation effects cancel each other
resulting in optimal mixing. Jain, Ottino, and Lueptow
(2005a) experimentally investigated the competing effects
of buoyancy and percolation on radial segregation using steel
and glass balls of different sizes. The evolution of segregation
was studied through the use of two dimensionless indices: the
segregation index, defined as ðA1A2Þ1=2=A, where A1, A2 are
the areas occupied by the different balls and A ¼ A1 þ A2,
and the shape index p2=A, where p is the perimeter of the
segregated pattern (Hill et al., 1999). From their results,
summarized in the diagram of Fig. 33, Jain, Ottino, and
Lueptow (2005a) concluded that the regions of segregation
and mixing can be distinguished by the size and mass ratios of
the particles. Specifically, mixing dominates when

dH=dL > ðmH=mLÞ1=4 (14)

and vice versa.
Friction is yet another mechanism that can induce segre-

gation in granular mixtures. Lai, Jia, and Cham (1997) used a
numerical approach, based on the sandpile model proposed
by Bak, Tang, and Wiessenfeld (1987), in order to investigate

FIG. 32. Wave-breaking model of radial streak formation. Left column (a)–(c): An initial positive slope of the interface between the large

(black) and small (white) particles is smoothed out due to the faster advection of large particles. Right column (b)–(d): An initial negative

slope of the interface evolves into a gulf of large particles, due to the faster large particles, separating regions rich in small particles. The gulf

of large particles [cf. dark region in Fig. 31(b)] eventually outlines the perimeter of the radial streaks. From Hill et al., 2005.

G. Seiden and P. J. Thomas: Complexity, segregation, and pattern . . . 1351

Rev. Mod. Phys., Vol. 83, No. 4, October–December 2011



friction induced radial segregation in binary mixtures par-
tially filling a 2D rotating drum. In their model, a difference
in friction properties (i.e., surface roughness) between the
two constituents was modeled through different angles of
repose. The simulations showed that segregation occurred
for rotation rates smaller than a critical value, with the rough
particles occupying the core and the smooth particles the
periphery. However, an experimental study carried out by
Pohlman et al. (2006) on the effect of surface roughness
on the angle of repose and on segregation in a rotating drum
was not able to observe radial (or axial) segregation. This is
despite the fact that surface roughness did cause an increase
in repose angles by as much as 25�.

2. Axial segregation and band patterns

In three-dimensional drums, where an axial transport of
particles is possible, another form of segregation is observed
in granular mixtures, namely, axial segregation. An initially
homogeneous mixture will typically segregate into interleav-
ing axial regions, where the concentration of one component
is noticeably higher than that of the other components (see
Fig. 34), on a time scale Oð100 ��1Þ. The segregation
pattern, often referred to as the band pattern, is accompanied
by surface undulations (Das Gupta, Khakhar, and Bhatia,
1991) and is observed to slowly evolve, with the number of
bands decreasing due to coarsening (Frette and Stavans,
1997; Fiedor and Ottino, 2003).

The phenomenon of axial segregation was first reported by
Oyama (1939),9 who used bidisperse mixtures of limestone
particles. The size ratio in Oyama’s experiments was
d1=d2 ¼ 6:14. Oyama reported that the observed axial stripes
got sharper for longer mixing times and that segregation was
enhanced by decreasing the volume fraction ratio V�

p1
=V�

p2
.

Donald and Roseman (1962) experimentally investigated the
effect of size and density on radial and axial segregation using

mixtures of sand and Ballotini beads. They reported that axial
segregation took place in mixtures, where the smaller (heav-
ier) particles had a larger static angle of repose than the larger
(lighter) particles. Segregation occurred initially in the vicin-
ity of the end walls and gradually propagated inward. They
concluded that axial segregation and banding result, on the
one hand, from end-wall induced velocity gradients which
cause small (or heavy) particles to migrate toward faster
flowing bands, and on the other hand, from the static angle
of repose, which causes the larger (or lighter) beads to flow
under gravity in the opposite direction. Recently, Das Gupta,
Khakhar, and Bhatia (1991) studied size induced axial seg-
regation using different sieve cuts of sand. They observed that
the number of bands increased with the relative concentration
of the small particles. They concluded that axial segregation
is driven by differences in the dynamic angle of repose of the
two components, and that radial segregation is a prerequisite
for its occurrence. They also pointed out the role of axial
dispersion in counteracting the tendency to segregate. Zik
et al. (1994) experimentally investigated axial banding in
binary mixtures of sand and glass beads and of glass beads
of different sizes. In the former case axial segregation started
throughout the cylinder [rather than adjacent to the end walls
(Donald and Roseman, 1962; Hill and Kakalios, 1994)],
while in the latter no segregation was observed.

The important role of the dynamic angle of repose in axial
segregation and banding was further validated by many
others. Hill and Kakalios (1994, 1995), for example, studied
the phenomenon with bidisperse mixtures of glass beads in a

FIG. 33. Dependence of segregation regimes on the aspect ratio ds=dg for a binary mixture of glass (white) and steel (dark) beads. S and D

represent mixtures consisting of grains of different sizes and densities, respectively. From Jain, Ottino, and Lueptow, 2005a.

FIG. 34. Axial segregation in a bidisperse sand mixture. The

smaller grains (dark) have a larger angle of repose than the larger

grains (white). From Caps et al., 2003.

9The article is in Japanese. See Weidenbaum (1958) for a detailed

account in English of Oyama’s work.
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half-full drum. By changing the rotation rate, they were able

to show that axial segregation is reversible (i.e., segregation is

induced from an initially mixed state by increasing the

rotation rate and then upon decreasing the rotation rate the

mixed state is restored) in mixtures for which the dynamic

angle of repose of the mixed state equals that of the segre-

gated phases at a small but finite rotation rate. Reversibility

was not observed for mixtures where this condition was not

met, e.g., a mixture of glass beads and sand.
While the free surface of the rotating granular media can

easily be observed, probing the opaque subsurface composi-

tion is difficult, although equally as important. In particular,

such measurements complement the free-surface picture.

Hill, Caprihan, and Kakalios (1997a, 1997b) investigated

the interplay between radial and axial segregation through

the use of MRI. They showed that axial segregation is a

manifestation of the underlying segregated radial core, which

periodically expands and retracts along the cylinder axis,

penetrating the free surface at those regions where it is

widest. Moreover, when axial segregation is suppressed by

lowering the rotation rate the radial core still persists.

Santomaso and Petenó (2006) used a solidification technique

in order to study the composition of a binary mixture. After a

period of rotation, molten wax was poured into the partially

filled (V�
p ¼ 0:3) tube. When the wax solidified slices were

cut and the composition examined. As a result of their inves-

tigation they concluded that an axial surface flow, generated

by differences in the dynamic angle of repose, is counter-

balanced by a subsurface flow in the opposite direction.

Depending on whether the particles differ in density, this

convective flow can result in a well-mixed sate when the

densities are the same, or in radial and axial segregation for

mixtures of different densities.
Numerical investigations of axial segregation were the

focus of several works. Yanagita (1999) used a cellular

automaton model to investigate both radial and axial segre-

gation. By varying the rotation rate and the model’s friction

properties, the author was able to reproduce transverse dy-

namics such as the S shape of the free surface and radial

segregation, as well as axial segregation and band pattern

coarsening. Shoichi (1998), Rapaport (2002, 2007a),

Taberlet, Losert, and Richard (2004), and Taberlet and

Richard (2006) used a MD approach in order to investigate

axial segregation and banding. An intrinsic feature of this

method is the important role of friction in particle-particle

and particle-wall collisions. Shoichi (1998) considered binary

mixtures with N ¼ 1000 particles, in which the two compo-

nents were distinguishable either by size or by friction prop-

erties, or both. The simulations were able to reproduce axial

segregation and banding providing that both size and friction

properties were different. He also noted that the forces acting

on the particles by the end walls stabilize the band structure.

Rapaport (2002, 2007a) carried out a more comprehensive

MD-based numerical study, in which the parameter range

explored included different rotation rates, particle amounts,

friction coefficients, volume fractions, cylinder geometry, and

densities. He reported that axial segregation was preceded by

radial segregation and was observed even when the particles

were distinguished only by friction properties. He also noted

that the presence of end walls is not necessary for axial

segregation to occur. Taberlet, Losert, and Richard (2004)

noted that a difference in friction properties was not neces-

sary to observe axial segregation. This was later confirmed by

experimental observations made by Pohlman et al. (2006).

Friction did, however, trigger oscillations in the position or

width of the bands. They therefore suggested that similar

oscillations found experimentally (Newey et al., 2004) could

originate in friction.
Taberlet and Richard (2006) focused on axial diffusion of

the small granules from an initially segregated condition. In

contrast to previous experimental findings by Khan and

Morris (2005), who reported a subdiffusive process with

t1=3, they observed normal (Fickian) axial diffusion. Further

validation of their numerical results was reported recently by

Fischer et al. (2009) who used MRI measurements to inves-

tigate axial transport in bidisperse mixtures immersed in

water. Fischer et al., who pointed out that the reliability of

the optical technique used by Khan et al. in order to observe

the hidden core of small grains is questionable, observed

normal diffusion. They also reported that the axial transport

of large particles, which takes place on the free surface,

showed subdiffusive dynamics, in agreement with earlier

findings of Khan and Morris (2005). In this respect, it should

also be noted that molecular dynamics simulations carried out

recently by Third, Scott, and Scott (2010) on monodisperse

granules found normal axial dispersion. Hardin et al. (2002)

used MRI to measure axial dispersion of moist bran in a

20 cm diameter drum and found a diffusion coefficient of

0:51 cm2=s.
Scaling laws governing the phenomenon of axial segrega-

tion include the works of Alexander, Muzzio, and Shinbrot

(2004), Charles, Khan, and Morris (2005), and Bielenberg,

Gladysz, and Graham (2007). The effects of particle size and

tube diameter were investigated by Alexander, Muzzio, and

Shinbrot (2004) and Bielenberg, Gladysz, and Graham

(2007). Alexander et al. carried out experiments with equal

volume binary mixtures of spherical glass beads in a half-

full drum. Their results, shown in Fig. 35, showed that the

size ratio D= �d ( �d being the mean particle diameter) clearly

distinguished between three regions: reversible banding,

FIG. 35. Different regimes of axial segregation in the �d-D plane.

The lines 
 ¼ D= �d ¼ 40 and 
 ¼ D= �d ¼ 55 distinguish between

reversible banding (white), nonreversible banding (light gray), and

no banding (dark gray). Symbols represent experimental observa-

tions (circles always band, squares band reversibly depending on

rotation speed, and triangles never band). From Alexander, Muzzio,

and Shinbrot, 2004.
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nonreversible banding, and no banding. Bielenberg et al.

used equal volume mixtures of acrylic beads with a volume

fraction V�
p ¼ 0:3. The Froude number was set to Fr ¼

�2R=g ¼ 2:6� 10�3 in their experiments. The results of

their study were summarized in a phase diagram spanned by

the particle size ratio dL=dS and the tube-to-particle size

ratio D= �d (see Fig. 36). Bielenberg et al. proposed an

effective Péclet number, which conveys the ratio between

the tendency to segregate (or demix) to the tendency to

diffuse (or mix), as an indicator of segregation behavior.

The dependence of the band pattern wavelength on tube

diameter was investigated by Charles, Khan, and Morris

(2005) in a mixture of glass beads of different sizes. The

particle size aspect ratio, rotation rate, volume fraction, and

relative concentration were all kept constant. The wave-

length was observed to scale linearly with the tube diameter.
Under certain conditions, the transient period preceding

the occurrence of a saturated band pattern is characterized by

wave phenomena. Choo, Molteno, and Morris (1997) re-

ported the observation of traveling waves both from premixed

initial conditions and from presegregated conditions, in bi-

disperse granular mixture. These waves, which were observed

when the relative concentration of large grains exceeded one-

half, exhibited linear dynamics (i.e., they interpenetrated to

form standing waves). The propagation speed of the waves

was shown to decrease with wavelength. Khan, Tokaruk, and

Morris (2004) studied the interplay between the surface

shape, surface concentration, and the thickness of the segre-

gated radial core and observed that these three fields are

interdependent and in phase with each other throughout the

transient motion.
The saturated band pattern is in general not stable but

dynamically evolves on a long time scale. Nakagawa

(1994), who carried out experiments with a bidisperse mix-

ture of sand grains, was the first to note that the number of

bands decreases with time. He concluded that the final seg-

regation state is comprised of three bands. Frette and Stavans

(1997) investigated the long time evolution of band patterns

in a binary mixture of sand and glass beads. They investigated

both premixed and presegregated initial conditions. In the

former case they observed a tendency of the band pattern to

coarsen, while in the latter they found that the completely

segregated state is not a stable one; glass bands nucleated

within the initially homogeneous sand band (but not the other

way around). This asymmetric tendency between the two

components was found to occur also when the grains were

initially premixed. It led them to conclude that there exists a

transport mechanism, apart from axial diffusion, mediated by

avalanches occurring within the sand bands. These ava-

lanches tend to propagate axially and thus facilitate the

transport of glass beads. Fiedor and Ottino (2003) studied

the evolution of band patterns with bidisperse mixtures of

glass beads (dL=dS ¼ 4) in a half-full drum. Band coarsening

was observed to follow a logarithmic law N ¼ �k lnðtÞ, with
k ¼ 1:74.

Theoretical studies of axial segregation and banding were

based on continuum models. Zik et al. (1994) and Levine

(1999) employed a continuum approach, based on mass and

momentum conservation, in order to describe the flow in the

free surface of a bidisperse mixture. Axial transport and

segregation occurred as a result of surface gradients induced

by differences in the dynamic angles of repose of the two

components. Levitan (1998) used a similar approach to that of

Zik et al. (1994) but has in addition taken into consideration a

noise term conveying the contribution of random collisions.

Levitan showed that with the added term the phenomenon of

coarsening could be recovered, in agreement with experi-

ments (Frette and Stavans, 1997; Fiedor and Ottino, 2003).

Aranson and Tsimring (1999) and Aranson, Tsimring, and

Vinokur (1999) used a continuum approach based on aver-

aged mass transport equations and on the assumption that

segregation takes place only in the vicinity of the dilated

flowing free surface. The governing equations were reduced

to two coupled partial differential equations for the relative

concentration and dynamic angle of repose. Their analysis

not only reproduced axial segregation and banding but also

the preceding traveling waves and the subsequent coarsening

of the band pattern. It should be noted, however, that while

the above fields were predicted to be out of phase by the

theory, experiments by Khan, Tokaruk, and Morris (2004)

showed them to be in phase.
Axial banding of bidisperse granular mixtures was also

investigated under wet conditions (Jain et al., 2001; Fiedor

and Ottino, 2003; Arndt et al., 2005; Finger et al., 2006;

Finger and Stannarius, 2007; Juarez, Ottino, and Lueptow,

2008; Juarez, Lueptow, and Ottino, 2010). Jain et al. (2001)

experimentally investigated the effects of interstitial liquid on

axial segregation using two different liquids: water and a

solution of sodium iodine (NaI). The volume fraction in their

experiments was V�
p ¼ 0:5 and the relative granular compo-

sition was 1:1. The main difference with respect to dry

conditions was that axial segregation took place much faster

under wet conditions. Fiedor and Ottino (2003) investigated

axial segregation and coarsening both for circular cylinders

and for square cross-section cylinders. They observed that

banding occurred for higher rotation rates in comparison to

dry mixtures. They also reported that the process of coarsen-

ing obeys a logarithmic law, in a similar manner to that found

for dry conditions. Arndt et al. (2005) and Finger et al.

FIG. 36. Segregated and unsegregated states in the D= �d-dL=dS
plane. Full symbols represent the segregated state and open symbols

represent the unsegregated (mixed) state. Lines represent different

values of Péclet number (see text). Adapted from Bielenberg,

Gladysz, and Graham, 2007.
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(2006) investigated the long-term segregation behavior with

water as the interstitial liquid. Arndt et al. (2005) reported

that, depending on the volume fraction, the core of small

particles either remains stable as bands form or completely

disappears from within the large granular bands. Finger et al.

(2006) showed that a logarithmic decay law of the number of

bands is only an approximation and that there is an accelera-

tion of the coarsening process after a large number of rota-

tions [Oð103Þ].
Buoyancy and viscosity effects due to the presence of an

interstitial liquid were examined by Finger and Stannarius

(2007). Density variations of up to 20% were shown to have

no influence on the formation and evolution of bands.

Changes in viscosity, on the other hand, had both qualitative

and quantitative effects. The range of rotation rate for which

bands are observed was found to shift by the same order of

magnitude as the change in viscosity. In addition, the viscos-

ity of the liquid tends to stabilize the band structure for long

times. Viscosity had little effect, however, on the scaled rate

(i.e., in units of �) of pattern formation and coarsening.

Viscosity effects of the interstitial liquid were also investi-

gated by Fiedor, Umbanhowar, and Ottino (2007), who noted

that the area of mixed granules increased linearly with vis-

cosity and that the maximal number of bands reached a peak

for � ffi 3 cP.
Recently, Juarez, Lueptow, and Ottino (2010) investigated

the dependence of axial banding on relative concentration and

rotation rate for binary mixtures immersed in water. They

constructed a detailed phase space which revealed two seg-

regation regimes, analogous to spinoidal decomposition and

nucleation observed in binary chemical systems. The former

regime occurred for low-rotation rates (10–50 rpm) and

relative composition VpS
=ðVpS

þ VpLÞ � 0:4–0:8. The latter

regime is observed for low or high small-particle concentra-

tions. Juarez, Lueptow, and Ottino (2010) also studied the

scaling law related to the distribution of band thickness fðsÞ.
They found that the scaling law associated with the spinoidal

decomposition regime is s2fðsÞ ¼ g½s=SðtÞ
, where g is the

scaling solution and SðtÞ is the mean thickness at time t.
An intriguing form of axial segregation was recently re-

ported by Inagaki and Yohsikawa (2010) in an almost com-

pletely filled drum (V�
p ¼ 0:96). Although the effect of

surface flow was minimized through the high volume frac-

tion, segregation into axial bands, as well as traveling waves,

was observed. The granules used were garnet sand grains

(d ¼ 1 mm) and silica sand grains (d ¼ 0:15 mm). The

bands first formed in the middle of the drum and then traveled

toward the ends. The interior concentration field was care-

fully examined and revealed three main regions (see Fig. 37).

The outer region was found to be completely segregated

while the inner core was well mixed. The intermediate region

consisted of pure silica grains. They conjectured that a steady,

large-scale convective flow causes the bands in the outer

region to travel toward the end walls, where the granules

mix and flow inward through the inner region. They also

suggested a 1D model based on the Cahn-Hilliard equation,

which captures the traveling bands dynamics.
Hitherto we considered axial segregation in binary mix-

tures. Investigations of axial segregation and banding in

mixtures consisting of multiple components are few. Das

Gupta, Khakhar, and Bhatia (1991) reported experiments on
ternary mixtures consisting of different sieve cuts of sand.
Radial segregation was first observed, with the large compo-
nent occupying the free surface. The middle-size component
then segregated and a binary axial band pattern was observed.
The small component then axially segregated within the
bands of the middle-size component. Newey et al. (2004)
explored axial segregation for up to six components of glass
beads differing in size. The results for the ternary mixture,
shown in Fig. 38, were similar to those reported by Das

FIG. 37 (color online). Axial segregation in an almost filled drum.

(a) Top panel: Side view of axial bands consisting of garnet sand

(dark) and silica sand (light). Bottom panel: Interior part of mixture

showing three different regions. (b) Sketch of the three radial

domains. (c) Schematic of large-scale advection. Adapted from

Inagaki and Yohsikawa, 2010.

FIG. 38 (color online). Axial segregation in ternary mixture of

glass beads (0.6 mm, 1 mm, and 2 mm). The left shows the time

sequence of ‘‘band within band’’ formation. The right depicts an on-

axis view of radial segregation after 1 min. From Newey et al.,

2004.
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Gupta, Khakhar, and Bhatia (1991). For mixtures of four
components, both radial and axial segregation were observed.
However, the banding pattern was not as distinct as for binary
and ternary mixtures and the order of the occurrence of bands
was not as clear. Five and six component mixtures did show
radial segregation, but axial segregation was not observed.
Rapaport (2007b) carried out molecular dynamics simula-
tions of ternary mixtures. This work is an extension of a
previous investigation of the binary mixture case (Rapaport,
2007a). The results show close agreement with experiments
in regard to order of bands (medium particles located between
the large and small particles). Radial ordering, however, was
not observed in the manner reported in the experiments.

VII. OTHER GEOMETRIES

While the majority of studies on rotating-drum flows
focused on the circular cylinder geometry, several works,
particularly in the last decade, explored similar phenomenon
in tumblers having other geometries. Noncircular cylindrical
tumblers are important both from an application perspective,
as they are used in various industries, and from a theoretical
perspective, to further validate theoretical approaches derived
primarily for the simpler cylindrical configuration.

A. 2D tumblers

Noncircular 2D tumblers were used mainly in investigating
mixing and segregation of granular materials (Hill et al.,
1999; Khakhar et al., 1999; Gilchrist and Ottino, 2003; Jain,
Ottino, and Lueptow, 2005b; Cisar, Umbanhowar, and Ottino,
2006; Meier et al., 2006, 2008; Cisar, Lueptow, and Ottino,
2007; Prasad and Khakhar, 2008; Rietz and Stannarius, 2008;
Chen et al., 2009; Naji and Stannarius, 2009; Christov,
Ottino, and Lueptow, 2010; Prasad and Khakhar, 2010).
Unlike circular drums, where under the rolling regime the
flow is steady and segregation results in the occurrence of a
radial core, noncircular geometries cause the flow to be
periodic, with the free-surface length and height oscillating
in time (Hill et al., 1999; Khakhar et al., 1999; Jain, Ottino,
and Lueptow, 2005b; Cisar, Umbanhowar, and Ottino, 2006).
As a result, particle trajectories can be chaotic (Hill et al.,
1999) due to streamline crossing and, in the limiting case
where the flowing layer is vanishingly small, streamline
jumping (Christov, Ottino, and Lueptow, 2010). These sys-
tems therefore provide an intriguing example of a dynamical
system where order and chaos compete.

Mixing of single component granules in noncircular 2D
tumblers was investigated by Khakhar et al. (1999), Cisar,
Lueptow, and Ottino (2007), Prasad and Khakhar (2008,
2010), and Christov, Ottino, and Lueptow (2010). Khakhar
et al. (1999) extended the theoretical model derived for the
circular configuration (Khakhar et al., 1997a) and compared
the predictions to experimental studies carried out with
spherical glass beads partially filling elliptic and square
tumblers. The main difference in the analysis with respect
to the circular geometry lies in the periodic time dependence
of the length and depth of the flowing layer, which results in
chaotic advection. Both the experimental results and numeri-
cal simulations based on the extended continuum model

showed that chaotic advection enhances mixing, in compari-

son with circular containers.
Cisar, Lueptow, and Ottino (2007) used two discrete mod-

els in order to investigate avalanche-induced mixing in non-
circular tumblers. The first model is based on the cellular

automata sandpile model developed by Bak, Tang, and
Wiessenfeld (1987). The second is based on the wedge model

developed by Metcalfe et al. (1995), which successfully
reproduced experimental results in the circular configuration.

Both models showed that the mixing occurs faster for low
volume fractions and in geometries having sharper corners

(e.g., triangular versus hexagonal tumblers). Prasad and
Khakhar (2008) expanded the treatment of Khakhar et al.

(1999) using perturbation analysis. The small parameter used
in their work was the aspect ratio of flowing layer depth to

length. They have considered tumblers having 90� and 180�
rotation symmetries. Their analysis showed that the flowing

layer thickness is symmetric for all cases and scales with the
orientation dependent length of the layer. These predictions

were in reasonable agreement with their complementary
experiments. Recently, Prasad and Khakhar (2010) investi-

gated mixing in tumblers having square and star shapes, as
well as circular drums with two and four wedges. Their

results further validated the fact that mixing is enhanced in
geometries having sharp corners. In addition, it was observed

that the mixing process is nearly the same for particles of
different sizes.

Hill et al. (1999) studied segregation in square and
elliptical tumblers containing mixtures of spherical particles.

Both size induced and density induced segregation were
explored. Figure 39 shows the experimental results observed

for the different geometries, together with a comparison with
the theoretical predictions based on a continuum model

(Khakhar et al., 1997a) and with the corresponding
Poincaré sections. The theoretical treatment is an extension

of the derivation made for the circular drum, the main
difference being the time dependence of the free-surface

length. The Poincaré sections represent a set of trajectories
corresponding to different initial conditions, calculated using

the single component continuum equations (Khakhar et al.,
1997a). The agreement between segregation patterns ob-

tained from the theoretical analysis and the experimental
observations is evident from Fig. 39. In addition, there is

good agreement between the nonmixing islands (Hill et al.,
1999) surrounding periodic elliptic points10 and the location

of segregated lobes observed in the experiment (labeled E in
Fig. 39).

Hill et al. (1999) also examined the effect of volume
fraction on the segregation patterns in the square geometry.

Both experimental results and Poincaré section analysis re-
vealed a strong dependency on volume fraction, especially

close to the half-full level. Jain, Ottino, and Lueptow (2005b)
expanded the investigation of Jain, Ottino, and Lueptow

(2005a) on the combined effect of percolation and buoyancy
in binary mixtures partially filling a circular drum to a square

drum. Experiments were carried out in an equal volume

10These islands are known as the Kolmogorov-Arnold-Moser

(Kolmogorov, 1954; Arnold, 1963; Moser, 1962) regions in the

Poincaré section.
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binary mixture of glass and steel beads. While the patterns

observed differed significantly from those observed in the
circular configuration the interplay between the mechanisms

of segregation and mixing was found to be similar. In particu-

lar, the study reinforced the empirical relationship between

size and mass ratios found for circular drums [Eq. (14)]. Cisar,

Umbanhowar, and Ottino (2006) expanded the work of Hill
et al. (1999) to various regular polygonal geometries.

Experiments were carried out with bidisperse spherical glass

beads while simulations, based on the model developed by

Khakhar et al. (1997a), were done on binary mixtures of

spherical particle differing in density. Their work further
verified the strong correlation between the observed segrega-

tion patterns and the computed Poincaré sections. Meier et al.

(2006) complemented the information from the Poincaré

sections with analysis of periodic points. Of particular interest

are hyperbolic periodic points, which are related to stretching

and compression of the flow and therefore correspond to

chaotic regions. It was shown that segregation patterns corre-

spond to the orientation of eigenvectors of hyperbolic points.
Recently, Meier et al. (2008) reported radial streak coars-

ening in circular and square tumblers. In the latter case, they

used an equal volume bidisperse mixture of glass beads

(d1=d2 ¼ 3). The number of streaks was observed to reduced

from five after seven revolutions to two after 2300 revolu-

tions. In addition, as in the case of circular drums (see

Sec. VI.B.1), they observed the occurrence of orientation

periodicity of the streak pattern (relative to the orientation

FIG. 39 (color online). Segregation in different 2D tumblers. Both experimental (E) and theoretical [Poincaré sections (P) and computa-

tional results based on continuum model (C)] results are shown for circular (first row), elliptic (second row), and square (third to fifth rows)

tumblers. The distinguishing parameter [i.e., density (D system) or size (S system)] is noted on the left. The D system consists of 2 mm glass

and steel spheres while the S system consists of a ternary mixture of glass beads (0.8 mm, 1.2 mm, and 2 mm). The volume fraction is noted at

the top. From Hill et al., 1999.

G. Seiden and P. J. Thomas: Complexity, segregation, and pattern . . . 1357

Rev. Mod. Phys., Vol. 83, No. 4, October–December 2011



of the tumbler). For a square tumbler rotating at 2 rpm, the
orientation periodicity was approximately four revolutions.

A different 2D geometry which was the focus of recent
studies on dense granular flows is the Hele-Shaw cell. Awazu
(2000) numerically investigated segregation behavior of
highly packed bidisperse mixtures placed in a thin 2D rect-
angular box rotating about its axis. The molecular dynamics

simulations showed that, although the cell was almost com-
pletely full (V�

p ¼ 0:84), both radial and axial segregation

occurred. Depending on the Froude number, the small parti-
cles were found either close to the walls (Fr> 1) or in a stripe
close to the axis of rotation (Fr< 1). Furthermore, a large-

scale convection was observed after the radial segregation
was formed. Motivated by the work of Awazu, Rietz and
Stannarius (2008) carried out an experimental investigation
of segregation and pattern formation in a similar configura-
tion. The equal volume, bidisperse mixture consisted of
spherical glass beads. As the volume fraction was varied,
two different flow regimes were found. The first, at V�

p <

V�
c ¼ 0:6, was characterized by interleaving band patterns,

similar in appearance to the ones observed in bidisperse
mixtures rotating in a cylindrical drum. The second regime,
found at V�

p > V�
c , was characterized by 2D convection cells

along the rotation axis (see Fig. 40). Here a core of larger
particles is engulfed by a ring of smaller particles.

B. 3D tumblers

Three-dimensional tumblers can be divided into two
groups. The first consists of containers having a uniform
cross section. This group includes, for example, the circular
and the square cross-section cylinders. The second group
consists of tumblers with an axially varying cross section.
Notable examples are the sphere and the bicone. In these
containers the presence of a ‘‘preferred’’ plane (i.e., the
midplane) orthogonal to the axis of rotation will be mani-
fested in the dynamics of the contained bulk, be it granular
mixtures or suspensions.11

Hill et al. (1999) and Fiedor and Ottino (2003) investi-
gated segregation patterns of binary granular mixtures in a
square cross-section cylinder. Hill et al. (1999) used a tube of
aspect ratio L=a ¼ 6 and a volume fraction V�

p ¼ 0:5.

Surprisingly, while in the corresponding 2D scenario radial
segregation was observed only for a short period (less than
one revolution), in the 3D drum steady radial and axial
segregation patterns were observed (see Fig. 41). Fiedor
and Ottino (2003) investigated the long-time behavior of
axial band patterns in circular and square cross-section
drums, under both dry and wet conditions. They found a
similar logarithmic rate of coarsening for all cases
(cf. Sec. VI.B.2). The square cross-section geometry was
also used by Seiden (2006) for investigating axial segregation
of suspended particles in a fluid-filled drum. In a manner
similar to the circular case, axial segregation was observed
with the same characteristic sawtooth dependency of the
wavelength on the drum length (see Sec. V.A.1). The scaled
mean wavelength was ��=a ¼ 2:2.

Segregation of bidisperse granular mixtures in a spherical
tumbler was investigated by Gilchrist and Ottino (2003),
Chen et al. (2009), and Naji and Stannarius (2009).
Gilchrist and Ottino (2003) investigated segregation in a
bidisperse mixture of spherical glass beads contained in a
spherical tumbler, which was both rotating and rocking.
Rocking was applied in the form of periodic oscillations
about an axis orthogonal to the rotation axis. The volume
fraction was V�

p ¼ 0:5 and the composition ratio was

VS=VL ¼ 1=3. Both dry and wet (i.e., slurry) conditions
were examined. In the former case, for a wide range of
rotation rates and rocking amplitudes, they observed a robust
band structure consisting of a central band of small particles
surrounded on both sides by bands rich in large particles
[large-small-large (LSL) configuration]. For high rocking
amplitudes the segregated central band bifurcates into spots.
When the granules were immersed in water, similar segre-
gation behavior was observed, with the notable exception
that an inversion of axial bands [small-large-small (SLS)
structure] was observed under slurry conditions.

Naji and Stannarius (2009) investigated size segregation in
a mixture of spherical glass beads under slurry conditions,
which allowed for MRI measurements of the 3D segregation

FIG. 40. Convection patterns in rotating Hele-Shaw cell.

Evolution of pattern after (a) 2000, (b) 4000, (c) 6000, and

(d) 12 000 revolutions. Dark areas have higher concentration of

small particles and vice versa. (e) Enlarged central region of (d)

with flow field represented by arrows. Adapted from Rietz and

Stannarius, 2008.

11A particle adjacent to the wall will experience a normal force

with an axial component causing it to migrate toward the midplane.
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structure. They studied the effect of volume fraction on the

three-band structure observed by Gilchrist and Ottino and

found a reversal from an SLS configuration at low volume

fraction to an LSL structure at high volume fraction (see

Fig. 42). The use of MRI revealed a segregated core of small

particles which extends to the poles of the sphere. Naji and

Stannarius identified three mechanisms which govern the

segregation behavior: friction at side walls, sliding on a free

surface, and ‘‘Brazil nut’’ sieving. Chen et al. (2009) carried

out a similar experimental study, but under dry conditions.

They also observed the inversion of the axial band structure

and noted the dependency of the transition fill level on the

rotation rate and particle size. In order to investigate the
origin of the segregation pattern, they utilized molecular
dynamics simulations. These simulations revealed that at
low volume fraction small particles drift laterally further
toward the poles, as they flow down the free surface, than
large particles. Thus the small particles occupy the outer
bands and an SLS structure is formed. For high volume
fractions, the paths of small and large particles down the
inclined free surface almost coincide, though as segregation
starts the large particles tend to drift further toward the poles.
This slow relative drift results in the LSL band structure.
Meier, Lueptow, and Ottino (2007) extended the dynamical-
systems approach used for 2D tumblers [see, e.g., Meier et al.
(2006)] to the sphere. Poincaré sections were calculated and
periodic points found and analyzed. The results of continuum
model simulations were shown to be in good agreement with
the experimental findings [cf. Gilchrist and Ottino (2003)].

VIII. CONCLUDING REMARKS

The rotating horizontal drum is a unique experimental
configuration which has served as a fertile tool in the inves-
tigation of various phenomena ranging from rimming flows in
pure liquids, through segregation in dilute suspensions, to
avalanches in granular matter. In the present work we at-
tempted to review the existing literature on the different
physical systems related to the rotating-drum configuration.
In particular, we set out to compare and interrelate studies on
the different realizations of rotating-drum flows.

The large variety of phenomena associated with the
rotating-drum configuration includes stable, periodic, and
chaotic dynamics. It includes processes having characteristic
time scales ranging from Oð10�4 ��1Þ to Oð104 ��1Þ. The
patterns observed in the different realizations of rotating-
drum flows can be one, two, or three dimensional; they can
be reversible or they can exhibit hysteresis.

In this review we put an emphasis on scaling laws govern-
ing the rich variety of dynamics observed for different real-
izations of rotating-drum flows. In particular, in Sec. II.B, we
outlined a comprehensive dimensional analysis that treats the
various realizations as different regions in a generic non-
dimensional parameter space. The use of such a comprehen-
sive scaling approach sets a framework that might help to
shed light on the relationships between the different systems.
In addition, it naturally allows for experimental observations
and theoretical investigations of vastly different systems,
such as granular mixtures and dilute suspensions, to be
treated with respect to a conventional system of dimension-
less numbers, a fact that will help form a clear and consistent
picture of the contemporary state of our understanding re-
garding complexity, segregation, and pattern formation in this
rich experimental arrangement.

To date, the dimensionless numbers which were explored
the most are the Froude and Reynolds numbers. This is in
large part due to their dependency on the rotation rate, which
can easily be varied in experiment. A relatively large number
of studies focused on scaling laws which combined a few
dimensionless numbers [see e.g., Alonso, Satoh, and
Miyanami (1991) and Jain, Ottino, and Lueptow (2004)].
While these studies revealed important dependencies or

FIG. 41. Axial segregation of a binary granular mixture in a

square cross-section drum. Right: Side view. Left: On-axis view.

From Hill et al., 1999.

FIG. 42. Segregation of bidisperse granular mixture in spherical

drum. At low volume fractions the SLS pattern is observed (dark

regions have higher concentration of small beads), while at high

volume fractions the LSL configuration is favored. At the transition

(V�
p � 0:4) different states can be observed (here a two-band

configuration is shown). From Naji and Stannarius, 2009.
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even manifolds in parameter space separating different

states, there is concern that the reported laws might lack

accuracy due to the multiple parameter intervals they at-

tempt to cover.
It is interesting to compare the time scales characteristic of

the different rotating-drum flows. Granular flows exhibit the

shortest reported time scales [i.e., Oð10�4 ��1] associated

with critical behavior [i.e., duration of an avalanche; see, e.g.,

Jaeger, Liu, and Nagel (1989)]. For pure liquid rimming

flows the reported time scales, which represent transient

dynamics such as the formation of shark-teeth undulations

from an unperturbed front, are Oð10 ��1Þ to Oð100 ��1)

(Thoroddsen and Mahadevan, 1997). Similar intermediate

time scales can be found for transient dynamics of particle-

laden and dense granular flows [e.g., axial banding from an

initially mixed state; see, e.g., Zik et al. (1994)]. Particle-

laden and dense granular flows also exhibit longer time

scales, associated with drift or coarsening of axial band

patterns [see, e.g., Frette and Stavans (1997) and Guyez

and Thomas (2008)], which can reach Oð104 ��1Þ.
Similar long time scales were not reported, to the best of

our knowledge, for pure liquid rimming flows.
Apart from a few exceptions, theoretical analyses of

rotating-drum flows relied on continuum models based on

conservation laws, simplified governing equations derived

from a constituent (or microscopic) equation (i.e., Navier-

Stokes equation), or on phenomenological models. This can

be attributed to the high complexity of the systems in ques-

tion. While in most cases these simplified models succeeded

in reproducing the general features of the phenomena ob-

served experimentally, there were aspects that these models

failed to explain. For example, various models have been

successful in reproducing axial segregation in binary granular

mixtures [see, e.g., Levitan (1998)]. However, the related

phenomenon of traveling waves in granular mixtures has to

date not been adequately explained. Segregation and axial

banding of suspended particles in a fluid-filled rotating drum

is yet another example. Here simplifying assumptions with

respect to the governing Navier-Stokes equation were em-

ployed (Seiden, Ungarish, and Lipson, 2005; Lee and Ladd,

2007), which successfully reproduced the banding phenome-

non. However, the related phenomenon of oscillating bands

(Seiden, Lipson, and Franklin, 2004; Breu, Kreulle, and

Rehberg, 2004), which is intrinsically nonlinear, was not

accounted for by these approaches.
In this respect, it is important to note the increasing role of

numerical simulations, especially during the last decade.

While early works were restricted due to limited computer

capacities, recent years have seen valuable contributions [see,

e.g., Richard and Taberlet (2008)], including predictions

which have been confirmed experimentally [i.e., Taberlet,

Losert, and Richard (2004); see Sec. VI.B.2]. It is therefore

anticipated that numerical simulations will in the coming

years play a significant role in shedding light on important

outstanding questions. In addition, numerical simulations

could also serve as a valuable complementary tool to experi-

ments in exploring the vast dimensionless parameter space.
In addition to unexplained phenomena, such as those

described above, there are flow regimes (or, equivalently,

regions in parameter space) that have attracted little or no

attention at all. Examples include nondilute suspension flows
and flows associated with drums containing more than one
liquid. The use of a generic parameter space helps clarify
what regions are yet to be explored. The former of the
previous examples corresponds to V�

p � V�
f , while the latter

implies V�
f2

� 0. A further example is rimming flows of non-

Newtonian liquids, such as polymer solutions. While rim-
ming flows associated with these intriguing liquids were the
focus of theoretical and numerical studies, experimental
works on such liquids are few. The dimensionless parameter
most associated with the latter is the Weissenberg number,
which is the product of the polymer relaxation time and the
characteristic shear rate and can readily be included in the
generic set presented in Table I.
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