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Advances in the fabrication and characterization of nanoscale systems now allow for a better

understanding of one of the most basic issues in science and technology: the flow of heat at the

microscopic level. In this Colloquium recent advances are surveyed and an understanding of

physical mechanisms of energy transport in nanostructures is presented, focusing mainly on

molecular junctions and atomic wires. Basic issues are examined such as thermal conductivity,

thermoelectricity, local temperature and heating, and the relation between heat current density

and temperature gradient—known as Fourier’s law. Both theoretical and experimental progress

are critically reported in each of these issues and future research opportunities in the field are

discussed.
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I. INTRODUCTION

Understanding how heat is carried, distributed, stored, and

converted in various systems has occupied the minds of many

scholars for centuries. Recently, the problem has garnered

even more attention and has grown considerably in impor-

tance. This is not due only to purely academic reasons: Its

practical impact on society has been recognized as one of

the most critical programs for the development of the neces-

sary resources to sustain the future welfare of mankind

(USDOE, 2009).
In conjunction with these motivations, research seems to

suggest that nanoscale systems (such as carbon-based nano-

structures, organic molecules, etc.) may be good candidates

for such technological advances. For instance, the flow of

heat in nanoscale systems may be harnessed via thermo-

electric effects (Majumdar, 2004; Bell, 2008; Rodgers,

2008) to generate heat-voltage converters, which (if their

efficiency can be improved) may have real impact on global

energy consumption. Other interesting applications, such as

nanoscale local refrigerators (Shakouri, 2006), thermal tran-

sistors (Giazotto et al., 2006; Li et al., 2006; Franceschi and

Mingo, 2007; Lo et al., 2008; Saira et al., 2007), thermal

rectifiers (Terraneo et al., 2002; Li et al., 2004a, 2004b;

Segal and Nitzan, 2005; Wu and Li, 2007; Yang et al., 2009),

nanoscale radiation detectors (Giazotto et al., 2006), and

even thermal memory and logic gates (Wang and Li, 2007,

2008) add to the importance and interest of this research field.
In spite of the recent advances, this research program still

presents quite a few challenges related to the intrinsic non-

equilibrium nature of the problem. In the presence of a heat

current, quite generally, both electrons and ions may be very

far from their equilibrium state. In addition, they are in

interaction with each other and, at the same time, in dynami-

cal interaction with one or more environments.
To complicate matters, heat flow is in many ways (as

we will discuss in detail in the following sections) fundamen-

tally different from charge flow. Therefore, many of the

theoretical tools which are used to describe charge transport

cannot be straightforwardly and uncritically extended to

the study of heat transport. From an experimental perspective,

*Current address: School of Physics and Astronomy, Tel-Aviv
University, Tel Aviv 69978, Israel.
dubij76@gmail.com

†diventra@physics.ucsd.edu

REVIEW OF MODERN PHYSICS, VOLUME 83, JANUARY–MARCH 2011

0034-6861=2011=83(1)=131(25) 131 � 2011 American Physical Society

http://dx.doi.org/10.1103/RevModPhys.83.131


studying energy flow at the nanoscale is in several ways

more challenging than studying charge transport, one reason

being that no simple device analogous to an ‘‘ammeter’’ is on

hand to measure energy currents. Furthermore, the scale of

achievable thermal conductivities is generally much smaller

than that of electrical conductivities (Majumdar, 2004).

Consequently, one has to necessarily introduce models by

which the thermal conductance can be deduced from

measurable quantities such as charge current, voltage, and

temperature. In addition, measurement schemes with macro-

scopic probes are necessarily used so that the channeling of

heat across only the junction is difficult to achieve.
In this Colloquium we will discuss all these issues at the

microscopic level. The basic systems we will consider consist

of a nanoscale junction, namely, two leads connected by a

nanoscale element, with possibly a third lead controlling

some state variable of the system, e.g., its local temperature.

Typical examples are point contacts or quantum dots placed

between a two-dimensional electron gas (van Houten et al.,

1992a; Staring et al., 1993; Molenkamp et al., 1994; Godijn

et al., 1999; Scheibner et al., 2007), a molecule trapped

between a substrate and a scanning tunneling microscope

(STM) tip (Reddy et al., 2007; Baheti et al., 2008), metallic

wires (Ludoph and Ruitenbeek, 1999), carbon nanotubes

(Kim et al., 2001; Yu et al., 2005), or silicon nanowires

(Boukai et al., 2007; Hochbaum et al., 2007) between two

metal contacts, etc. Figure 1 shows a schematic representa-

tion of the different systems we consider. The leads are held

at different temperatures, which allow for the flow of energy

(and possibly charge) through the junction. Here, we point

out that, due to space limitations, we will not be able to

discuss the entire class of systems collectively known as

‘‘nanomaterials’’—composite layers of various materials fab-
ricated on nanometer scales, which show unique electronic

properties, often engineered by adding scattering mechanisms

(for instance, boundary scattering) that may be beneficial for

energy applications (Majumdar, 2004; Volz, 2009). The in-
terested reader may refer to Chen (2005) for systems other

than those presented here.
To make the Colloquium easier to follow, we have divided

it into three main (yet closely related) subtopics. The first one
is the transport of heat through the system by phonons (lattice

vibrations) and electrons, which (in linear response) is mainly

characterized by the thermal conductivity �. This issue has

already been reviewed elsewhere (Galperin et al., 2007a;
Wang, et al., 2008), emphasizing the effects of vibrations and

focusing primarily on the method of nonequilibrium Green’s

functions. To make the present Colloquium complete, and in

order to highlight the various theoretical methods and the
open questions that still pertain to this subject, we give it

some space here too. In particular, we will discuss the differ-

ent processes that contribute to � and their importance in

nanoscale junctions.
The second subject is that of the local temperature and

heating inside the nanoscale system. This issue is particularly

subtle, precisely because we are dealing with a nonequilib-

rium process where a temperature difference is set at the two
sides of the nanojunction. We will address several experimen-

tal and theoretical issues and fundamental open questions,

such as how does one define a local temperature at the nano-

scale in a nonequilibrium situation?What determines the local
temperature and the temperature profile along the system?

As a corollary to the above studies we are finally led to

analyze a nearly two-century old and important physical

law, which so far has eluded a satisfactory theoretical under-

standing, namely, Fourier’s law (FL). This law, as originally
formulated, states that in the presence of a temperature

difference between the two leads (i) a temperature gradient

develops, (ii) the energy current density is proportional to it,

and (iii) the constant of proportionality is independent of
system size. While FL was empirically postulated for bulk

systems almost two centuries ago (Fourier, 1822) and has

been derived phenomenologically for phonons more than

80 years ago (Peierls, 1929), no simple proof of its validity
(or invalidity) has ever been derived from first principles, nor

do we have a well-defined set of conditions to determine

its validity for a given system (Bonetto et al., 2000). As we

will emphasize later, the issue has everything to do with the
difficulty in defining the basic quantities that enter its for-

mulation—namely, the local temperature and heat current—

from a microscopic, quantum mechanical point of view.
The final issue is that of the interrelation between the

heat flow and the electron transport through the junction,

which can be collected under the general name of

‘‘thermoelectricity.’’ The central quantity here is the thermo-

power (or Seebeck coefficient) S, which describes the voltage
drop generated by a temperature difference. A sample of

important open questions for this topic are what are the

different mechanisms contributing to thermoelectricity? Are

they properly taken into account in the present theories? What
are the state-of-the-art experiments, and are their results

interpreted satisfactorily?

(b)   Suspended nanotube

~103 nm

~1-10 nm

~<1 nm

(c)   Molecular junction

(a)   Point contact

~102 -103 nm

~10-102 nm

FIG. 1 (color online). Schematic representation of the different

systems we consider in this Colloquium, ranging from metallic

point contacts to molecular junctions.
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All of these issues and open questions will accompany
us for the full length of this Colloquium. We will stress their
importance for both their fundamental character as well as
their impact in possible technological applications. We will
finally point out possible future research directions that could
explore them in more depth.

The Colloquium is organized as follows. In Sec. II we
discuss heat flow in nanoscale systems due to phonons,
electrons, and their mutual interaction, and describe the
different processes which contribute to it. We review both
theoretical tools and state-of-the-art experiments for measur-
ing heat flow in nanostructures. We devote Sec. III to local
temperature effects and proceed to discussing Fourier’s law.
In Sec. IV we discuss thermoelectric effects in nanoscale
junctions. We give a detailed account of present theoretical
tools and discuss recent experiments, with emphasis on open
issues in the field. Finally, we conclude in Sec. V with some
prospects for the future of the field.

II. HEAT CURRENT AND THERMAL CONDUCTIVITY

We start by reviewing the topic of heat current and thermal
conductivity of nanoscale junctions. We will not present full
derivations of the methods and results. Rather, we will outline
only the main theoretical tools. The interested reader may
find extensive accounts in recent reviews (Galperin et al.,
2007b; Dhar, 2008; Wang et al., 2008) or books (Akkermans
and Montambaux, 2007; Di Ventra, 2008), where these meth-
ods are discussed in detail. In addition, we will review recent
experimental advances in measurements of the thermal con-
ductivity in nanoscale systems, with an emphasis on the
measurement process itself and open questions.

A. Definitions

When a nanoscale junction is placed in contact with leads
held at different temperatures, energy flows through it. The
original qualitative description for this phenomenon in bulk
materials is attributed to Fourier (1822), and amounts to
Fourier’s law which states that a temperature gradient rT
induces a thermal current density linearly proportional to it,
namely,

jth ¼ ��rT; (1)

where jth is the heat current density (which may contain both
phonon and electron contributions, see below), and � is the
thermal conductivity (such an equation is usually valid only
in the linear regime).

In Secs. III.B and III.D we will expand more on the
significance of the term ‘‘temperature’’ for a system out of
equilibrium and its different definitions. Here we anticipate
that whenever we do not discuss its meaning explicitly we
call temperature that which is measured by a local thermal
probe weakly coupled to the system and whose temperature
has been adjusted so that the system dynamics is minimally
perturbed (Di Ventra, 2008). This defines what we will later
call a temperature floating probe (Dubi and Di Ventra, 2009c,
2009d). Note that we do not define it in terms of a probe
adjusted so that the thermal current between the system
and probe is zero, precisely because we do not have means

to directly measure the thermal current (although these two
definitions may give the same quantitative results). In addi-
tion, one needs to keep in mind that while this is an opera-
tional definition of temperature out of equilibrium, its actual
experimental determination is far from trivial at the present.

The validity of Eq. (1) in nanoscale junctions is discussed
in detail in Sec. III.D. Here we are mainly interested in the
theoretical understanding and measurement of jth and �,
assuming that Fourier’s law is indeed valid. A relation be-
tween the formalism described below [Landauer’s formula
(6)] and Fourier’s law can be determined, which requires
calculation of thermal conductances at larger and larger
length scales. Such derivation, discussed elsewhere (Dhar,
2008), implies going beyond the realm of nanoscale junctions
and will thus not be discussed in detail here.

It is also convenient to introduce the thermal conductance,
which is the ratio between the total heat current Jth and
temperature difference �T ¼ TR � TL,

�th ¼ � lim
�T!0

Jth
�T

: (2)

If the sample is uniform with a constant cross section A and
length L, the thermal conductance is related to thermal con-
ductivity � via �th ¼ ðA=LÞ�. If the sample is not uniform,
then the relation between thermal conductance and conduc-
tivity depends on the microscopic details of the system. In
addition, in analogy with electric circuit theory, it is conve-
nient to define the thermal resistance, being the reciprocal of
the thermal conductance �th ¼ ��1

th .

Energy can be carried through a nanoscale junction (or
through a solid) either by lattice vibrations (phonons) or by
electrons, or both.1 In insulating bulk materials the electronic
contribution is negligible, while it is sizable in bulk metals.
This simple distinction is less obvious in nanoscale junctions,
where, due to the large current densities they can carry,2 the
two contributions may be equally important and need to be
discussed on equal footing. For bulk insulating materials,
the theory of phonon thermal conductivity based on the
Boltzmann equation was derived by Peierls (1955)) [see
also the detailed review by Carruthers (1961)]. The main
idea is that � is governed by phonon scattering, especially
the so-called umklapp scattering (processes that do not con-
serve crystal momentum), whereby phonons scatter between
states which are separated (in reciprocal space) by a recip-
rocal lattice vector.3 Considering a phonon mean-free path l
(mainly due to scattering by impurities), simple arguments

1At low temperatures, energy can also be carried by the electro-

magnetic environment (photons), an effect which was studied in

mesoscopic systems (Schmidt et al., 2004), but was not system-

atically addressed in nanoscale junctions.
2For instance, in an atomic quantum point contact of a nominal

cross section of 0:1 nm2 to a typical current of 1 �A corresponds a

current density of about 109 A=cm2. This is several orders of

magnitude larger than in mesoscopic or bulk systems.
3For a homogeneous bulk system in which the umklapp processes

are suppressed and only ‘‘normal’’ processes occur (namely, pro-

cesses that conserve crystal momentum), energy can flow undis-

turbed, giving rise to a diverging �, and such a system cannot reach

local or global equilibrium.
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lead to the following relation at high temperatures (in three
dimensions) (Ashcroft and Mermin, 1976):

� � 1
3lvcv; (3)

where v is the velocity of sound and cv is the phonon heat
capacity at constant volume (in the above equation optical
and acoustic phonons are considered on equal footing,
although only the latter ones participate in heat transport).
In a bulk metal a similar relation can be derived (Ashcroft and
Mermin, 1976), where now l stands for the electronic mean-
free path, cv is the electronic heat capacity at constant
volume, and v is the electron drift velocity. Here a comment
is in order. In the case of electrons the heat (or thermal)
current contains also a contribution from the variation of the
number of particles. In fact, consider the thermodynamic
relation (at constant volume) �Q ¼ dE ��dn, where Q
and E are the heat and energy per unit volume, respectively,
n is the particle number density, and� the chemical potential.
From this relation, dividing by the infinitesimal time interval
dt, we obtain (e is the electron charge)

Jth ¼ JE ��

e
Je; (4)

namely, for electrons the heat current has both a contribution
from the energy current JE and from the charge current Je
(there is no such term for phonons, since their number is not
conserved). In this Colloquium, we will use the terms ‘‘en-
ergy current’’ and ‘‘heat (thermal) current’’ interchangeably,
but with the understanding that, in the case of electrons, one
must generally include a contribution from the variation of
the number of particles [see also the discussion after Eq. (6)].

It is now natural to ask whether these arguments can be
extended to the regime in which strong material inhomoge-
neities are the norm, as in nanoscale systems. Before we
embark on this quest, however, it is worth asking why � is
such an important quantity in the first place, especially since
measuring the thermal conductivity at the nanoscale is all but
trivial. The answer is that � contains information regarding
two main processes relevant to the future applicability of
nanoscale systems. The first is the rate at which energy is
dissipated in and removed from the junction. This has an
effect on the heating of the system, which may affect its
structural stability. The second is that � is an important (and
limiting) factor in the efficiency of nanoscale systems as
heat-voltage converters (as will be discussed more at length
in Sec. IV). Therefore, according to the desired use, an ideal
nanosystem should have opposite thermal properties: For
current-carrying wires one wishes for a high thermal con-
ductance that would allow heat to pass through the wire and
prevent overheating, and for thermoelectric conversion one
requires a thermal conductance as small as possible. These
requirements make the understanding, predictability, and
control of � highly desirable.

B. Experiment

In this section we focus on the experimental measurements
of the thermal conductivity in nanoscale systems. As already
pointed out, a major difficulty in measuring � (other than the
usual ones related to any measurements at the nanoscale)

stems from the simple fact that there is no direct way to
measure a heat current. Indeed, the only directly measurable
quantities are electrical currents, voltages, and temperatures
(the latter are also typically measured via resistance measure-
ments), and from these one deduces �. The main limitation
is that the value of � as extracted from the experiment may
then depend on the model used to describe the whole experi-
mental setup or device, which may generate some ambiguity.
Here we will describe some recent experiments, discuss the
methods employed in deducing �, and review some of the
main results.

A conceptually simple way to measure the thermal con-
ductance of a suspended nanojunction is the following.
Consider the schematic system of Fig. 2. The heater coil is
heated by passing a current through it. By measuring the
current and the voltage through the heater coil, the power
transferred through it is given by the well-known relation
P ¼ IV. This power increases the temperature of the coil
to Th. At the same time, the temperature of the sensor coil Ts

is evaluated (by measuring its resistance, which is precali-
brated to correspond to a given temperature). If the wire is
suspended, then the entire heat current should be equal to the
power supplied by the heater coil, _Q ¼ P, which is related, in
linear response, to the temperature difference by

_Q ¼ ��thðTh � TsÞ; (5)

from which the thermal conductance �th can be evaluated,
under the assumption that all the power supplied by the
electric circuit flows through the junction without loss, and
the thermal conductivity � can then be extracted from a
microscopic model that relates thermal conductivity to ther-
mal conductance (see Sec. II.C). If, as indeed is the case in
many experiments, some of the power is lost due to heat
diffusion away from the contacts (e.g., into the substrate),

heater coil sensor coilsuspended nano-wire
(a)

(b)

FIG. 2 (color online). (a) A schematic representation for a simple

setup to measure the thermal conductance. (b) An actual device to

measure the thermal conductance of boron nitrade nanotubes. From

Chang et al., 2006.
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then the Joule heating is the sum of the heat flowing away

through the contacts and that flowing through the wire.
This method seems very simple and was indeed

employed to measure the quantum of thermal conductance

(Schwab et al., 2000). However, it needs to be acknowledged

that it has obvious limitations. For one, dissipative effects

at surfaces or local thermal gradients in the heating and

cooling parts of the coils4 may reduce the heat flow in the

suspended wire. In addition, recent theoretical studies indi-

cate that the contact thermal resistance between nanowires

and substrate plays an important role in determining the

overall thermal resistance (Zhong and Lukes, 2006;

Chalopin et al., 2008).
More difficult is the determination of the thermal conduc-

tivity � from a model that includes all the effects of device

geometry and dissipation through the contacts and substrates.

Such models vary for different devices and geometries (Shi

et al., 2003; Chang et al., 2006, 2008), but share the common

feature that thermal conductances are treated on the same

footing as classical (charge) conductances, with the same

Kirchhoff-like laws for the addition of resistances in series

(�th ¼ P
i�th;i, with �th;i the thermal resistance of a single

element of the circuit) and parallel (��1
th ¼ P

i�
�1
th;i). Thus, the

measured thermal conductivity may depend on the circuit

model used, which makes it hard to compare between differ-

ent experiments. This means that when performing a mea-

surement, one is in fact measuring the thermal conductance

of the system of interest embedded in that specific device.

Nevertheless, this method was used to study the thermal

conductivity of many nanoscale structures, mainly carbon

nanotubes (Kim et al., 2001; Shi et al., 2003; Brown

et al., 2005; Chiu et al., 2005; Fujii et al., 2005; Yu

et al., 2005; Chang et al., 2006, 2008), but also nanotubes

of other materials (Li et al., 2003; Chang et al., 2008; Chen

et al., 2008). Some experimental features are universal, such

as ballistic thermal conductance (Brown et al., 2005; Chiu

et al., 2005), a value of � which is orders of magnitude larger

than the bulk value for carbon nanotubes (� 3000 W=K at

room temperature), an increase of thermal conductance with

nanowire diameter, or a peak of the thermal conductance at

�320 K (Kim et al., 2001; Fujii et al., 2005), attributed to

the onset of umklapp phonon scattering processes. However,

other features, such as the detailed power-law dependence of

� on temperature, vary between experiments, indicating that

this is not a universal feature, and depend on the details of the

experimental setup.
Other experimental approaches to measure � have been

introduced in the literature. For instance, Pop et al. (2006)

used high currents to induce heating in a single-walled carbon

nanotube, with a model to relate the current-voltage (I-V)
characteristics to the high-temperature thermal conductance.

In another example, the so-called 3! method (Cahill, 1990;

Lu et al., 2001), was used to study nanotubes (Choi et al.,

2005, 2006; Bourgeois et al., 2007). In this method, an ac

current is applied to the sample which also acts as a heater.

From a simple derivation one finds that the third harmonic of

the voltage drop across the sample is related to the thermal
conductivity of the sample (at small frequencies of the
current). Using this method, they found a deviation of the

thermal conductance from a cubic dependence on tempera-
ture for Si nanowires, indicating a dimensional crossover

at low temperatures. Both these methods rely on current-
induced self-heating of the sample (rather than direct heating

by an external source). In a third example, laser-induced
heating and Raman spectroscopy [already used in various

nanoscale systems such as graphene ribbons (Calizo et al.,
2007; Balandin et al., 2008)] were used to determine the

local temperatures (Deshpande et al., 2009; Hsu et al., 2009)
and extract the thermal conductance of carbon nanotube

bundles. The main disadvantage of this method is that to
obtain the thermal conductance one needs to assume a value

for the optical absorbtion of the sample, which is usually
unknown.

C. Theoretical methods

We now provide a brief description of the theoretical

methods most commonly employed to describe energy flow,
with an eye on their strengths and limitations.

1. Single-particle scattering approach

Many theoretical calculations of thermal conductance are
based on an approach pioneered by Landauer (1957, 1970)

in the context of charge transport in mesoscopic and nano-
scopic systems (Datta, 1997; Imry, 1997; Di Ventra, 2008).
The same ideas have been generalized to phonon transport

through a nanoscale junction (Angelescu et al., 1998; Rego
and Kirczenow, 1998; Blencowe, 1999; Rego, 2001; Segal

et al., 2003; Blencowe, 2004; Dhar and Roy, 2006).
The basic tenet of this approach is that one assumes the

leads are noninteracting [otherwise no closed form for the

current can be obtained (Di Ventra, 2008)], so that a conve-
nient basis, such as plane waves, can be chosen to develop

state vectors for both types of particles, either phonons or
electrons. As a further conceptual simplification, the leads are

thought to be adiabatically ‘‘connected’’ to reservoirs whose
only role is to define the occupation of the scattering states

according to a local equilibrium Bose-Einstein (BE) distri-
bution for phonons or a Fermi-Dirac (FD) distribution for

electrons. Once this occupation is set, the particles are free to
propagate in the leads before scattering at the lead-system

interface. Charge and/or energy current is then determined by
an electrochemical potential difference and/or a temperature
difference between the reservoirs.

Most of the calculations also assume that the particles in

the sample are either truly noninteracting or interacting at a
mean-field level (which is the same from a formal point of

view). In this case the current is simply proportional to the
probability for the particles to cross the sample from one

electrode to the other. For instance, in the case of phonon
transport, phonon states at a given energy ℏ! scatter off the

junction and may be either transmitted through it or reflected
back. The probability to be transmitted through the junction

is characterized by the transmission coefficient T ð!Þ. The
expression for the heat current is then simply

4Recall that one can destroy and create phonons at the surfaces of

a material.
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Jth ¼
Z 1

0

d!

2�
ℏ!T ð!ÞðgL � gRÞ; (6)

where gLðRÞ ¼ 1=½expðℏ!=kBTLðRÞÞ � 1� are the distribution

functions of phonons in the left (right) lead. From Jth one
can then evaluate the thermal conductance according to
Eq. (2).

Within this approach the electronic contribution to the heat
current is calculated similarly, where in Eq. (6) one makes
two changes, namely, (i) the BE distribution functions are
replaced by FD distributions, and (ii) the energy in each
reservoir is measured from the respective electrochemical
potential �L and �R for the left and right reservoirs, respec-
tively, i.e., ℏ! ! ℏ!��L;R [see Eq. (4)]. In a linear

response this leads to the substitution ℏ! ! ℏ!�
ð�L þ�RÞ=2 in the energy term that multiplies T ð!Þ
in Eq. (6).

To actually evaluate �th, one has to compute the trans-
mission coefficient T ð!Þ. To this aim several methods have
been employed, such as the use of continuum models
(Angelescu et al., 1998), the boundary condition method
(Wang and Wang, 2006), the mode-matching method (Ando,
1991; Ting et al., 1992; Khomyakov and Brocks, 2004), and
scattering or transfer matrices (Tong et al., 1999; Di Ventra
and Lang, 2002). All of these methods are fundamentally
equivalent, and, in fact, have their origin in the single-particle
elastic scattering theory of conduction [see, e.g., Di Ventra
(2008)], whereby one can write the transmission coefficient
as a sum of all the partial probabilities of transmission Tifð!Þ
from one of the momentum states of the incoming (i) particle
(whether electron or phonon) at energy ℏ! to one of the
momentum states of the outgoing (f) particle at the same
energy, namely (Büttiker et al., 1985)

T ð!Þ ¼ X
i

X
f

Tifð!Þ ¼ Trf��yg; (7)

where � is a submatrix of the scattering matrix with dimen-
sions NR � NL, with NR and NL the number of channels in
the right and left leads, respectively, at energy ℏ!. This result
can be cast in another equivalent form in terms of single-
particle Green’s functions via (Meir and Wingreen, 1992)

T ð!Þ ¼ TrfGr�LG
a�Rg; (8)

where GrðaÞ is the retarded (advanced) single-particle Green’s
function corresponding to the interaction of a ‘‘central’’ part
of the junction with the electrodes, and �LðRÞ describes the

‘‘rate’’ at which particles scatter between the leads and the
central part of the junction. It has been rederived for thermal
transport by many (Ozpineci and Ciraci, 2001; Mingo and
Yang, 2003; Segal et al., 2003; Mingo, 2006; Wang et al.,
2006; Yamamoto and Watanabe, 2006; Galperin et al.,
2007a; Wang et al., 2007; Dhar, 2008).

Arguably the most universal result obtained from the
Landauer formula (6) is that of thermal conductance quanti-
zation. Similar to the quantization of electrical conductance
in ideally one-dimensional (1D) electronic systems (van
Wees et al., 1988), at low temperatures the thermal conduc-
tance (per phonon mode) was predicted to acquire a quantized
value

�0 ¼ �2k2BT

3h
; (9)

where h is Planck’s constant (Pendry, 1983; Maynard and
Akkermans, 1985; Greiner et al., 1997; Rego and Kirczenow,
1998). This result is readily derived from Eq. (6) in linear
response by setting the number of modes to unity and letting
the transmission coefficient to be 1, i.e., T ð!Þ ¼ 1.

The fact that this conductance is material independent
relies on the fact that, as in the electronic case, in 1D the
phonon density of states is exactly proportional to the inverse
of the group velocity. Remarkably, thermal conductance
quantization does not depend on the statistics of the carriers
(Rego, 2001). Indeed, �0 was experimentally measured
for phonons (Schwab et al., 2000), electrons (Chiatti
et al., 2006; Nicholls and Chiatti, 2008), and even photons
(Meschke et al., 2006).

Another application of the Landauer formula (6) has been
in the study of geometrical and temperature effects on ther-
mal transport. To give a few examples, this approach has been
used to understand the role of defects on the thermal con-
ductance of a nanowire (Chen et al., 2005a), the effects of
different geometries such as stubs, T junctions, and concav-
ities (Tang et al., 2006; Peng et al., 2007; Xie et al., 2008),
periodic modulations (Tang et al., 2007), and surface rough-
ness (Kambili et al., 1999; Santamore and Cross, 2001). As a
general rule, disorder and temperature are found to have
competing roles: Disorder tends to reduce the thermal con-
ductance (by decreasing the transmission coefficients of the
different transport modes), and a temperature increase usually
results in a larger thermal conductance, due to an increased
number of modes which participate in the thermal transport.

The interplay between the two processes can result in
interesting phenomena. For instance, Santamore and Cross
(2001) showed that disorder in the form of surface roughness
may generate a nonmonotonicity in �th with increasing
temperature, with a slight decrease (below the quantum of
thermal conductance) followed by a rise of �th with increas-
ing temperature, similar to the experimental results of
Schwab et al. (2000). Their results (shown in Fig. 3) are

FIG. 3. Thermal conductance of a quasi-1D wire with surface

roughness, exhibiting inhomogeneous thermal conductance. Points

correspond to experimental data of Schwab et al. (2000), and the

solid line is the theoretical curve. From Santamore and Cross, 2001.
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explained as follows: At very low temperatures, there is only
one mode which contributes to the thermal conductance. As

temperature increases, scattering of that mode off the surface

roughness increases, generating a decrease in the thermal
conductance. As the temperature is raised even higher, higher

modes start to participate in the thermal transport, giving

rise to an increase in the thermal conductance.
This ties with the use of the scattering approach to thermal

conduction in real materials, which comes about from using

realistic phonon spectra (e.g., as obtained from experiment

or first-principle approaches) in combination with ground-

state density-functional theory (DFT) calculations to obtain
the scattering coefficient T ð!Þ. To give several examples,

Tanaka et al. combined geometrical structure (i.e., realistic

shape of the wire) with real material parameters to study the
onset of the thermal conductance quantization in GaAs and

silicon nitride wires (Tanaka et al., 2005). The thermal

conductance of nanowires made of, e.g., Si, Ge, and GaAs

was studied by several (Mingo and Yang, 2003; Mingo et al.,
2003; Tanaka et al., 2005; Wang and Wang, 2007). Much

attention has been given to carbon-based structures, such as

carbon nanotubes, graphene, and graphite (Yamamoto et al.,
2004; Mingo and Broido, 2005a, 2005b; Zhang and Li, 2005;

Yamamoto and Watanabe, 2006; Lü and Wang, 2008;

Zimmermann et al., 2008,; Lan et al., 2009). Another

example is the recent study of isotope and disorder effects
(Murphy and Moore, 2007), specifically in carbon and

boron-nitride nanotubes (Savić et al., 2008a, 2008b;

Stewart et al., 2009).
Some universal conclusions arise from these calculations.

For instance, a dimensional crossover from three- to one-

dimensional transport (manifested by, e.g., a change in the

temperature dependence of the thermal conductance) occurs
in many systems as the diameter of the nanotube decreases,

and the length scales are determined by the wavelengths of

the typical phonon modes (Wang and Wang, 2007). Also,

disorder in various forms (local defects, surface roughness,
etc.) has a dramatic effect on the thermal conductance, as it

influences the scattering of the different modes (Roy and

Dhar, 2008). Because of the translational invariance of the
lattice, long wavelength (or zero-frequency) modes are al-

ways conducting, while short wavelength modes are scattered

by disorder. Since the short wavelength modes participate in

the thermal transport only at high temperatures, it is found
that the low-temperature thermal conductance is less affected

by disorder and defects. Finally, the thermal conductance of

molecular junctions has also been widely studied (Segal
et al., 2003; Mingo, 2006; Galperin et al., 2007a). It is found

to be strongly dependent on a multitude of factors, among

which are the phonon spectrum of the molecules, the degree

of localization of the molecular modes, the molecule-lead
coupling, nonharmonicity (i.e., phonon interactions), etc.

It is important to stress again that Eqs. (6)–(8), and indeed

the whole Landauer approach, are based on some strong

assumptions, which may break down in nanoscale junctions
and under certain experimental conditions. The first assump-

tion is that the system is ‘‘closed,’’ in the sense that it does

not dynamically interact with its environment. The latter
only provides the boundary conditions and the relevant pa-

rameters (such as the temperatures, chemical potentials, etc.).

The second assumption is that the leads are ideal, i.e., are
unaffected by the proximity to the junction (either in their
structure or in the distribution of particles) and support well-
defined single-particle states. In addition, it is assumed that
‘‘dissipation’’ takes place at the (infinitely far) edges of the
leads and that the temperature (and chemical potential for
electrons) is uniform in them. Most critically, the approach
does not provide information on the dynamics of the system.
Therefore, transient, memory, and nonlinear dynamical phe-
nomena are beyond its reach. A further issue arises when one
uses ground-state DFT in combination with the Landauer
approach: One is effectively using a ground-state theory for
a nonequilibrium problem. This issue cannot be solved by
knowledge of the exact ground-state exchange-correlation
functional, and as such, the use of ground-state DFT in this
context can only be viewed as a mean-field approximation.
This has been explicitly demonstrated by Vignale and Di
Ventra (2009), where for the case of electrical conductance

it was shown that the exact resistivity tensor �
$

can be
written as

�
$ ¼ �

$
s þ �

$
xc; (10)

where �
$
s is the resistivity tensor of a noninteracting system in

the presence of a static potential Vs that reproduces the exact

ground-state density, and �
$
xc is a dynamical contribution

related to dynamical exchange-correlation effects, and which
does not vanish even in the zero-frequency (dc) limit. A
possible way out would be to use a fully dynamical approach
[e.g., the microcanonical picture of transport as suggested
by Di Ventra and Todorov (2004)] combined with time-
dependent DFT (Runge and Gross, 1984). This approach
[recently implemented to study charge transport (Cheng
et al., 2006)] would provide, in principle, the exact thermal
total current, if the exact dynamical exchange-correlation
potential is known. However, we are not aware of any calcu-
lation of thermal current along these lines.

2. The role of interactions

Up to this point the system Hamiltonian has been assumed
to describe single particles with interactions included at most
at the mean-field level. As mentioned above, many-body
correlations can be accounted for within a time-dependent
DFT approach, namely, within an effective single-particle
picture. Alternatively, the effect of interactions beyond
mean field could be explicitly included via the so-called
nonequilibrium Green’s functions formalism (NEGF) [see,
e.g., Mingo, Chapter 3 in Volz (2009)]. In this approach
one solves equations of motion for appropriate single-particle
Green’s functions that can be conveniently defined on the
Keldysh contour (Kadanoff and Baym, 1962; Keldysh,
1964). In its exact formulation, the NEGF has however
limited practical utility, since, if one assumes particles
interacting—beyond mean field—in the whole system (leads
plus nanostructure), no closed equation of motion for the
single-particle Green’s functions can be obtained (Di
Ventra, 2008). Instead, it is common to assume (as in the
Landauer approach) that the leads contain noninteracting
particles and interactions are confined within a central region
containing the nanostructure. This is a strong assumption and
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may not always correspond to the physical problem at hand
and/or its experimental realization.

If one makes the assumption of noninteracting particles in
the leads, and assumes that a steady state has been reached
in the long-time limit (not an obvious statement either), the
equation of motion for the different single-particle Green’s
functions can be closed and the NEGF provides a compact
expression for the total current similar to that derived for
electron transport (Meir and Wingreen, 1992), given by

J ¼ 1

4�

Z 1

0
ℏ!d!½ðGr � GaÞð�<

R ��<
L Þ

þ þiG<ð�R � �LÞ�; (11)

where Gr;a;< are the retarded, advanced, and ‘‘lesser’’ single-
particle Green’s functions, respectively; �<

� are the lesser
self-energies of the � ¼ L; R leads, and �� ¼ ið�r

� � �a
�Þ,

namely, the difference between ‘‘retarded’’ and ‘‘advanced’’
self-energies (the explicit ! dependence of all these quanti-
ties has been omitted). The first term on the right-hand side of
Eq. (11) may be interpreted as describing the current from the
bias-induced difference in the coupling to the leads, while the
second is related to the nonequilibrium distribution function
in the interacting region. The single-particle Green’s func-
tions can represent either phonons or electrons and should be
calculated in the presence of interactions. In the mean-field
approximation, Eq. (11) reduces to Eq. (6) (or its equivalent
form for fermions). Many-body perturbation expansions to
compute these Green’s functions have been performed for
simple model Hamiltonians (Galperin et al., 2007a; Lü and
Wang, 2007), but it is no easy task to introduce interactions
(beyond mean field) in realistic systems.

The NEGF could also be used to study the effects of
electron-phonon interactions. In that case as well, however,
quite strong approximations need to be made in order to have
an analytically tractable theory. For instance, if one assumes
electrons interacting with each other at a mean-field level, but
interacting in a central region with noninteracting phonons,
the heat current can be approximated as a sum of contribu-
tions from both electrons and phonons, J ¼ Jel þ Jph, where

each component is calculated with the help of Eq. (11). The
key ingredient here is that, due to the electron-phonon inter-
action, the self-energy of phonons includes an electronic
contribution and vice versa. These contributions can be cal-
culated in a perturbative way. However, this is clearly an
idealization, since it neglects correlated electron-ion motion,
which, in principle, does not even allow the total thermal
current J to be separated into two distinct contributions from
the two particle species. Along the same lines of reasoning,
the effects of phonon-phonon interaction have been studied
(Liu and Yi, 2006; Mingo, 2006; Xu et al., 2008). According
to these results both electron-phonon and phonon-phonon
interactions decrease the thermal conductivity. However, we
need to stress again that due to the large current densities
nanoscale systems carry—and hence the large number of
scattering events per unit time and unit volume—it is not a
simple task to include all the relevant physical scattering
mechanisms in the present nonequilibrium case. An example
of this is the possibility of phonon modes in the junction
which are weakly coupled to the bulk modes of the
electrodes. In this case, these ‘‘localized’’ modes may be

energetically ‘‘pumped’’ by scattering with electrons or other
phonons before energy could efficiently be dissipated away.
This physical situation is beyond second-order perturbation
theory and more work in this direction is thus highly
desirable.

3. Molecular dynamics

Another method to evaluate the thermal conductivity
which is gaining increasing popularity is that of molecular
dynamics (MD). Basically, molecular dynamics comes down
to solving the classical equations of motion of the system
numerically. The origin of the method in the present context
can be traced back to the seminal work of Fermi, Pasta, and
Ulam (1955), where the energy transfer in nonharmonic
lattices has been studied numerically. Since then it has been
widely used to study heat transport in classical 1D systems
(Lepri et al., 2003; Dhar, 2008). It has also been generalized
to study quantum effects by providing appropriate boundary
conditions (Wang et al., 2008). These approximations, how-
ever, should be thought of as quasiclassical, since the micro-
scopic dynamics of the system is described by classical
Newtonian equations of motion, and the quantum nature is
only introduced via indirect conditions (such as the noise in a
Langevin term). An advantage of molecular dynamics is the
ability to model realistic systems and geometries in a rather
straightforward way. The forces between atoms are evaluated
from realistic parameters, so that different geometries, impu-
rities, structures, etc., are easily taken into account.

In order to calculate the heat transport directly from MD,
one needs to account for a finite temperature in the system.
This is usually done in a linear response by adding to the
Newtonian equations of motion a Langevin fluctuating
term which satisfies the fluctuation-dissipation relation, i.e.,
the two-time correlation function of the current is propor-
tional to the temperature [see, e.g., Van Kampen (2001)].
Alternatively, a Nosé-Hoover thermostat is introduced in
which a fictitious coordinate is added to the real coordinate
to maintain a finite temperature (Nosé, 1984; Hoover, 1985).

Once a finite temperature is set, there are two main meth-
ods to calculate the thermal conductivity. The first (some-
times called equilibrium MD) is via the linear-response
Green-Kubo formula (Luttinger, 1964; Lepri et al., 2003;
Dhar, 2008)

� ¼ 1

3VkBT
2

Z 1

0
hJthðtÞJthð0Þidt; (12)

where V is the volume, kB is the Boltzmann constant, T is the
system temperature, JthðtÞ ¼

R
drjthðr; tÞ is the integral of

the heat current density jthðr; tÞ over the entire system, and
the brackets denote equilibrium ensemble averaging in the
absence of a thermal gradient. However, the Green-Kubo
equation has two main weaknesses. The first is that it is
derived in the thermodynamic limit and therefore its use in
finite systems is not well justified (Kundu et al., 2009).
Second, one needs to assume that a small temperature gra-
dient (the external perturbation) ensues in the system, which
may not be the case in every experiment. However, its relative
simplicity makes it a good starting point in many cases.

An alternative method (also known as nonequilibrium
MD), still based on molecular dynamics, is the one in which
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the system is held in contact between two heat baths of
different temperatures. Once the dynamics reaches a steady
state, the temperature profile and the local heat currents can be
calculated, from which the thermal conductivity is extracted.
Here lies one of the disadvantages of the model, since the
definition of the local heat current requires defining a local
energy operator, which is not always a unique quantity (Lepri
et al., 2003; Wu and Segal, 2009). Likewise, a local tempera-
ture needs to be defined and evaluated, a somewhat tricky
issue to which we will return to in Sec. III. At high tempera-
tures (where the distribution function is practically classical
and quantum effects are negligible, say at temperatures higher
than the typical vibrational mode temperature) one may define
the local temperature as the kinetic energy of the atoms (via
the equipartition function), but this assumption breaks down
at low temperatures, and one needs to use a definition of
temperature which rests on the equilibrium distribution of
phonons (Wang et al., 2008). This yields a quasiclassical
treatment (which is somewhat better than a fully classical
treatment at low temperatures), but leans on the assumption
that the phonon distribution resembles its equilibrium form,
which may not be the case in this nonequilibrium problem. On
the other hand, the obvious advantage of this method is that it
does not rely on any thermodynamic-limit assumptions and is
thus applicable for any system size, which is important for the
study of realistic nanoscale systems. For instance, Yang et al.
(2010) recently used the method to study Fourier’s law and
thermal conductance of realistic Si nanowires and showed that
Fourier’s law breaks down in these systems (see Sec. III.D).
Studies along similar lines have recently been performed to
investigate the thermal conductance of carbon nanotubes
(Berber et al., 2000; Padgett and Brenner, 2004; Hu et al.,
2008), Si wires (Ponomareva et al., 2007; Henry and Chen,
2008b; Yang et al., 2008), diamond nanorods (Padgett et al.,
2006), and polyethylene chains (Henry and Chen, 2008a), to
name only a few recent studies.

An additional method, related to MD, is that of lattice
dynamics models. In this method the phonon dispersion
relations are obtained by calculating the direct change in
energy due to atom displacements, using force fields obtained
from DFT calculations (Feldman et al., 2000; Ren et al.,
2006; Turney et al., 2009).

The abundance of literature makes it hard to describe
universal features of the thermal conductance, which seems
to strongly depend on the details of the model and/or material.
Specifically, �th is very sensitive to the phonon spectra and
to phonon localization (Zhernov and Chulkin, 2000; Dhar
and Lebowitz, 2008), which are in turn sensitive to material,
geometry and disorder, surface roughness, and more. The
rationale behind these studies is that by uncovering the
detailed influence of these parameters on �th, theory may
provide guidance to experiments and even suggest new
materials with optimized thermal properties.

III. LOCAL TEMPERATURE AND HEATING

A. General remarks

When a current passes through a classical resistor, the
latter heats up. This phenomenon is known as ‘‘Joule

heating.’’ It is a consequence of the inelastic relaxation
of electrons in the resistor which transfer energy to the

surrounding lattice (Ashcroft and Mermin, 1976). In a nano-

scale system, such as a molecular junction or an atomic
wire, electrons can analogously scatter inelastically off the

phonons (i.e., the vibrational modes of the structure).

However, since electrons typically spend very little time

in the junction region, one might naively think that their
inelastic scattering rate is negligible with consequent little

heating of the junction itself. This conclusion, which is, for

instance, at the heart of the Landauer scattering approach
where all dissipation is assumed to occur only in the ‘‘reser-

voirs,’’ does not take into account the fact that due to the

small cross section of nanoscale systems, the current density

at the junction can be very large (typically much larger
than in mesoscopic and macroscopic systems, see footnote 2).

This implies that the power per atom in the junction can be

very large, possibly leading to large local heating (Todorov,
1998; Chen et al., 2003, 2005b). The rate at which this

power is then dissipated back to the electrodes determines

the effective local (and out of equilibrium) temperature

of the junction.
In addition, current-carrying electrons can transfer

energy, via inelastic electron-electron interactions, to other

electrons in the Fermi gas (D’Agosta et al., 2006). This

effect is generally small in macroscopic systems. However,
similar to the increased rate of electron-phonon scattering

in nanoscale junctions due to the large current densities,

the inelastic scattering rate of electron-electron interactions
may increase in nanoscale systems leading to a local

heating of the electron liquid (D’Agosta et al., 2006).

This effective higher temperature of the electrons may

influence the local ionic heating due to electron-phonon
interactions and thus can be indirectly measured by measur-

ing the local temperature of the ions or the broadening of

inelastic conductance features (D’Agosta and Di Ventra,
2008a).

An obvious reason why local temperatures and heating are

such important phenomena lies in the fact that substantial

heating of a nanoscale system leads to the system instability
and eventually to the breaking of atomic bonds (Teramae

et al., 2008; Tsutsui et al., 2008b; Ward et al., 2008). A

different and even more fundamental interest in these phe-

nomena arises in the context of Fourier’s law, Eq. (1), that we
will discuss in Sec. III.D. Of course, at the nanoscale, it seems

inappropriate to discuss the scaling of the thermal conduc-

tance with length, since this is an asymptotic (in terms of
system size) property (Lepri et al., 2003). Thus, one is left

with the simple question: Under which physical conditions

does a uniform temperature gradient develop in a nanoscale

system held in contact between two heat baths of different
temperatures?

In this section we discuss all these issues. We review the

various mechanisms which give rise to heating in current-

carrying junctions, using simple arguments and models, fol-
lowed by some basic results obtained from more elaborate

models. We then turn to a discussion of the onset of a

temperature gradient, analyzing a molecular wire junction
in terms of the theory of open quantum systems, discussed

in some detail in Sec. IV.C.2.
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B. Heating in current-carrying nanostructures: Theory

1. Various definitions of out-of-equilibrium temperature

In order to discuss local heating, the first question one
should ask is how is a local temperature defined and calcu-
lated? Since temperature is a thermodynamic quantity, some
caution is needed (Hartmann et al., 2004a, 2004b; Hartmann
and Mahler, 2005). Apart from the definition of temperature
that we have given in Sec. II.A, and which we will also use in
Sec. III.D, we report here on several other notions of local
temperature (not necessarily leading to the same quantitative
results) and their microscopic origin, which were used to
study local ionic heating in atomic junctions, each with its
own pros and cons.

Kinetic definition.—An intuitive definition of local tem-
perature is to relate it to the local kinetic energy of the ions,
i.e., hð1=2Þmv2i � 3kBT=2. However, this definition, mainly
used in molecular dynamics simulations (see Sec. II.C.3), has
several drawbacks: (i) It relies on the equipartition theorem
which is strictly proven in the thermodynamic limit only for
systems whose energy is quadratic in the particle momenta
(as for noninteracting systems) and does not encompass any
quantum effects. (ii) One needs to define an average kinetic
energy over some length scale, while the quantum nature of
particles may preclude such a definition.

Local phonon mode.—Consider a phonon mode somehow
coupled to the system and vary its temperature in such a way
that no heat flows between that mode and the system. This
idea is somewhat similar to the idea of connecting an external
bath to a system and imposing the restriction that no heat
current flows between the system and bath, which was sug-
gested by the study of the onset of Fourier’s law in one-
dimensional systems, both classical and quantum (Bonetto
et al., 2004; Dhar and Roy, 2006; Dhar, 2008; Roy, 2008).
This idea was recently used to study the local temperature
of a model molecular junction using the NEGF formalism
(Galperin et al., 2007a, 2007b). The main result is the
existence of two voltage thresholds. The first is at the voltage
that corresponds to the vibrational energy of the phonon,
eV � ℏ!0, at which local heating starts to occur and the
temperature increases abruptly. The local temperature then
remains roughly constant, until it rises again when the bias is
so large as to encompass the molecular conduction window
[i.e., both the highest occupied molecular orbital (HOMO)
and the lowest unoccupied molecular orbital (LUMO) states].
The disadvantage of this method is that the temperature of the
mode depends on the microscopic details, i.e., the phonon
excitation energy ℏ!0 and/or the electron-phonon coupling.

Distribution function definition.—A slightly different
model of local temperature is to connect a phonon mode to
the nanoscale system, but instead of determining its tempera-
ture self-consistently, its distribution function is compared
to an equilibrium distribution function with a given tempera-
ture, which is tuned to give the best comparison. Clearly, the
disadvantage of this method is that the nonequilibrium dis-
tribution function may be very different from the equilibrium
one (Pekola et al., 2004; Koch et al., 2006). The last two
methods were compared and were found to give similar local
temperatures at large bias (compared to the typical vibra-
tional modes, implying strong nonequilibrium and population

of higher modes), but deviated from each other substantially
at low biases. In fact, the second method turned out to give
erroneous results in the zero-bias limit, when one expects
the temperature to be the same as that of the leads. This is
precisely because an equilibrium form for the phonon mode
was assumed, although even with no current the distribution
function of the mode may have contributions arising from
the coupling to the electronic (and other phononic) degrees of
freedom in the junction (Galperin et al., 2007a).

Definition from dissipated power.—A microscopic theory
which relies on first principles was suggested by Chen et al.
(2003, 2005b). The method is as follows. As a starting point,
the electronic scattering states are calculated using ground-
state DFT. The electron-phonon coupling for the different
modes is also calculated using first-principles approaches.
Using perturbation theory one can then calculate the power
dissipated into the junction from current-carrying states. This
power is then compared to the rate at which heat escapes the
junction, typically assumed as �thT

4, with �th the thermal
coefficient that can be estimated from a microscopic model
and T the effective temperature of the junction (Chen et al.,
2003, 2005b). A result of these calculations is shown in
Fig. 4, where the local temperature as a function of bias
was calculated for a benzene-dithiol (BDT) junction and a
gold-atom point contact. The results indicate that, for a given
bias, the BDT junction heats up less than the gold-atom
junction, due to better thermal coupling with the electrodes
and larger resistance to electrical currents [see Eq. (13)]. This
result is also confirmed by experiments on similar systems
(Huang et al., 2006; Tsutsui et al., 2007; Teramae et al.,
2008). While not visible from Fig. 4, theoretical results of the
threshold voltage for heating [see Eq. (13)] are also in good
agreement with experiments (Chen et al., 2003, 2005b). The
same method was used to study local heating in alkane chains
of different lengths (Chen et al., 2005b). It was predicted
that, at fixed voltage, heating decreases with increasing chain
length, which is due to increased resistance to electron flow,
a result also confirmed experimentally (Huang et al., 2007).
More recently, the same approach was used to study the effect

FIG. 4 (color online). Local temperature as a function of bias,

calculated from a scattering theory approach, for a benzene-dithiol

molecular junction (dashed line) and a gold-atom point contact

(solid line). From Chen et al., 2003.
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of different isotope substitutions on the heating in hydrogen

molecular junctions (Chen, 2008). It was found that local

heating is very sensitive to isotope effects since the electron-

phonon coupling constant is inversely proportional to the

ionic mass.
The method described above has the advantage that it can

treat realistic systems. However, its main drawback is that

it relies on the assumptions of the Landauer approach [see

Sec. IV.C.1] and its practical implementation employs

ground-state DFT, which, as discussed at length in this

Colloquium, does not properly take into account all dynami-

cal effects.

2. Ionic heating

After discussing various definitions of local temperature,

we are now in a position to discuss local heating. As de-

scribed previously, we consider here a junction, composed

of leads (which are assumed to be held at local equilibrium),

and a nanoscale system which has both electronic and vibra-

tional degrees of freedom. Even in the presence of a current,

we can assume that in the leads, far away from the nano-

junction, electrons and phonons reach the same temperature

T0.
5 In the junction, however, the electrons and phonons may

have different temperatures, Te and Tph, respectively. These

temperatures depend on bias, strength of electron-phonon and

electron-electron interactions, the coupling of phonons with

the bulk phonons in the leads, as well as the transmission

properties of the electrons.
We start by discussing the temperature of the ions in the

junction, or the phenomenon of local ionic heating (see

Fig. 5). We start from some simple considerations, assuming

first that no inelastic electron-electron scattering occurs

(Todorov, 1998; Di Ventra, 2008). The power of the entire

circuit (nanojunction plus power source) is given by V2=R,
where V is the source bias and R is the junction resistance

(assuming zero impedance of the external circuit). Only a

small fraction � of this power, i.e., �V2=R, is dissipated

into the ionic degrees of freedom in the junction due to the

electron-phonon coupling. The value of � needs to be deter-

mined from a microscopic theory (Todorov, 1998). Since

the spectrum of modes of the junction is typically discrete,

one expects a minimal bias (we call Vc) necessary to excite

the lowest-energy phonon mode of the structure, and

hence �ðV < VcÞ ¼ 0.6 Therefore we write P ¼ �ðV �
VcÞ�V2=R, where � is the step function. Now, if the power

P were not dissipated away from the junction, the latter

would heat up substantially and eventually break down.

Therefore, there must be a heat current IQ which dissipates

this power into the electrodes. Since the leads are much

bigger than the junction and are three dimensional in nature,
one can assume that this energy is carried away at a bulk
rate IQ ¼ �thT

4
eff (Ashcroft and Mermin, 1976), with Teff an

average effective temperature of the junction ions and �th the
lattice thermal conductance. At steady state the condition
P ¼ IQ then yields for the effective temperature

Teff ¼ �ðV � VcÞ
�

�

�thR

�
1=4 ffiffiffiffi

V
p

: (13)

Here we have considered the bulk electrode temperature
T0 ¼ 0. If both electrodes are at finite temperature, then there
is also a heat current ��thT

4
0 flowing into the junction, and

hence the balance equation P ¼ IoutQ � IinQ gives Teff ¼ ðT4
0 þ

T4
VÞ1=4, where TV ¼ �ðV � VcÞð�=�thRÞ1=4

ffiffiffiffi
V

p
is the contri-

bution to the temperature from the finite voltage bias.
In the above considerations we have assumed that heat can

be dissipated away from the junction rather easily. The results
may change depending on the heat-transport properties of the
leads and the coupling between the leads and the junction. For
instance, if the leads are strongly disordered, heat is carried
away with a different exponent of the temperature difference
(Yudson and Kravtsov, 2003). If the nanojunction has poor
thermal coupling to the leads, or in the presence of localized
phonon modes (Lepri et al., 2003), namely, modes that have
a very weak coupling with the bulk modes, then the local
ionic temperature can reach very large values, even at rela-
tively small biases. The reason is simple: In the above cases,
due to the bias V, the current-carrying electrons are away
from their ground state, and they are thus ‘‘seen’’ by the local
modes of the nanostructure at an effective finite temperature.
Thus, this situation provides the possibility for inelastic
electron-ion scattering in an energy window �eV, with con-
sequent ion temperatures of the same order of magnitude
(Todorov, 1998; Yang et al., 2005; Di Ventra, 2008). We note
that similar results were recently obtained from microscopic
considerations (Mozyrsky et al., 2006). That being the case, a
voltage bias of 0.1 V would generate an effective temperature
of �1000 K. This seems to have been observed in atomic
quantum point contacts at the breaking point (Ward et al.,

electric current

P=α V2/R

power
dissipated in
the junction

IQ IQ

power dissipated back
to the leads

electric current

e-ph interactions

FIG. 5 (color online). A schematic representation of the mecha-

nism of ionic heating in nanoscale junctions. The electric current

dissipates a fraction �V2=R of its power in the junction, depending

on the strength of the electron-phonon interaction. This power is

then dissipated to the phonons in the electrodes in the form of a heat

current. The balance between the power flowing into the junction

and the heat current IQ flowing out of the junction determines the

ionic temperature of the junction.

5The extent to which this statement is correct depends on the

current density in the leads. If this current density can be assumed to

be zero, then the leads are at an ideal global thermal equilibrium,

with electrons and ions sharing the same temperature. Otherwise

some difference (albeit extremely small) may arise between the lead

temperature of the ions and electrons.
6In molecules, this bias may be very close to zero, due to the

longitudinal ‘‘acoustic’’ mode of the whole molecule vibrating

against the bulk electrodes.
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2008). Thus, good thermal coupling to the electrodes is
essential for maintaining junction stability.

3. Electron heating

Up to now we have discussed the heating of the phonons in
the junction due to their interaction with the current-carrying
electrons. But what about the temperature of the electrons
themselves? To be precise, we refer here to the temperature
Te of the Fermi sea of electrons of the nanojunction and those
in its proximity. This temperature is affected by both inelastic
electron-electron interactions and electron-phonon coupling
(D’Agosta et al., 2006). Clearly, the local electron tempera-
ture influences the local ionic temperature of the junction.
However, accounting for both electron-electron and electron-
phonon interactions is a challenging task. While attempts
have been made to account for both in calculating charge
transport (Galperin et al., 2007b) and recently even heat
currents (Liu et al., 2009a), we are unaware of any calcu-
lation of the local temperature where these interactions are
considered on equal footing.

In a recent work, D’Agosta et al. (2006) predicted the bias
dependence of the local electron temperature in quasiballistic
nanoscale junctions and its effect on ionic heating, treating
the electron liquid as a viscous fluid. The general argument,
which was accompanied by a microscopic theory based
on the quantum hydrodynamic equations for the interacting
electron liquid (D’Agosta and Di Ventra, 2006), is as follows.
Assuming no electron-phonon interaction is present, to first
approximation, the thermal electronic conductance of the
electron liquid can be taken to be proportional to the tem-
perature, �th ¼ 	Te. Therefore, the heat current, given by
IQ ¼ �thT, is quadratic in temperature, IQ ¼ 	T2

e . As in the

case of local ionic heating, at steady state this thermal current
has to balance the power dissipated in the junction, which is a
small fraction of the total power of the circuit, P ¼ �V2=R.
One thus obtains

Te ¼ 	e�eV; (14)

where 	e�e is to be determined from a microscopic calcu-
lation. Assuming the coefficient 	e�e is weakly dependent
on bias, this simple argument shows that the local electron
temperature grows linearly with bias. This result clearly
hinges on the assumption that electronic heat is dissipated
away from the junction at a bulk rate, which may not hold for
all systems and under all experimental conditions.

From a microscopic hydrodynamic theory D’Agosta et al.
(2006) also calculated the local temperature profile TeðxÞ
along the junction. From the maximal value of Te, an estimate
of 	e�e was supplied for various junctions. For instance,
for a 3D gold quantum point contact (QPC) with effective
cross section of 7 �A2, they evaluated 	e�eðQPCÞ ¼ 65 K=V.
For a two-dimensional electron gas (2DEG), assuming a cross
section of 20 nm they found 	e�eð2DEGÞ ¼ 1:2� 102 K=V,
suggesting that heating from inelastic electron-electron inter-
actions is generally smaller than the corresponding heating
due to an electron-ion interaction.

4. Ionic cooling

A direct measurement of local electron temperatures, how-
ever, seems a difficult task, and in fact we are not aware of

such a direct method. On the other hand, local ionic tempera-
tures are relatively easier to obtain (see Sec. III.C). It is then
relevant to ask what is the effect of the local electronic
temperature on the ionic heating. Since part of the total power
dissipated in the junction goes into heating electrons via
electron-electron interactions, that power is no longer avail-
able to induce ionic heating. Since the initial energy is always
that of the current-carrying electrons, the ionic temperature
must be smaller if electron heating takes place. The power of
this electron-phonon scattering process can be assumed to
have a form Pe�ph ¼ �ðTn

ph � Tn
e Þ, with � a system-specific

constant and n > 0 (Schmidt et al., 2004). This ionic energy
is then dissipated away from the junction. If we assume again
a bulk dissipation law IQ ¼ �thT

4
eff , for electronic tempera-

tures much smaller than the ionic ones, the steady-state
condition Pe�ph ¼ IQ is satisfied by �� �th and n ¼ 4.

By taking into account a background temperature T0 we
then get (D’Agosta et al., 2006)

Teff ¼ ðT4
0 þ 	4

e�phV
2 � 	4

e�eV
4Þ1=4; (15)

which is valid for V < ð	e�ph=	e�eÞ2. The meaning of

Eq. (15) is that at sufficiently large biases, the effective
phonon temperature is reduced, i.e., the phonons ‘‘cool
down.’’ As we will discuss in Sec. III.C, this result has
recently been confirmed experimentally (see Figs. 7 and 8).
It is important to point out, however, that the exact power-law
dependence in Eq. (15) and the value of the various coef-
ficients may depend strongly on the details of the nanostruc-
ture and its contact with the leads.

Another interesting idea to obtain reduced ionic heating is
to use a nanostructure with an appreciable Peltier coefficient.
In this situation passing current through the junction would
result in the cooling of one side of the junction, which may
induce cooling of the molecule. The idea of local cooling of a
junction has received renewed attention in recent years in the
context of mesoscopic systems (Giazotto et al., 2006; Saira,
et al., 2007) and molecular junctions (McEniry et al., 2002;
Galperin et al., 2009b; Pistolesi, 2009; Zippilli et al., 2009).
While the details vary, the main concept is the same: The
system is tuned in such a way that hot electrons (i.e., those
with large kinetic energy) find it easier to tunnel through the
junction, thus depleting the lead upstream in voltage from hot
electrons, and thus cooling it. The cooling of the molecule is
achieved either by its proximity to a cooler lead or, in more
subtle cases, by the fact that electrons ‘‘borrow’’ energy from
the localized phonon modes to assist transport, thus cooling
them in the process (Galperin et al., 2009b).

C. Heating in current-carrying nanostructures: Experiment

Despite the difficulty in directly measuring local tempera-
tures of nanoscale systems, we have witnessed much progress
in this direction over the past years. The first concepts of local
temperature measurements are reviewed by Cahill et al.
(2003). Especially noteworthy are experiments where a ther-
mocouple (serving as a thermostat) is mounted on top of an
STM tip, thus creating a ‘‘scanning thermal microscope’’
(SThM). This device was then used to study the local tem-
perature of a carbon nanotube placed on a substrate (see
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Fig. 6). This work discusses several possible shortcomings
and limitations of SThM studies: the dependence of the
measured temperature on topography of the sample and
surface chemistry, the fact that the tip itself might perturb
the sample (e.g., via near-field radiation, or by effectively
cooling it), only surfaces can be measured, some of the heat is
delivered through the air between the sample and tip, etc.
These issues render this method difficult for quantitative
analysis, although some progress has been achieved (Grover
et al., 2006; Kim et al., 2008). We are unaware of any
theoretical work (other than the one presented here) which
has been directly related to SThM measurements.

In mesoscopic systems (e.g., quantum dots etched in 2D
electron systems) which are of typical sizes of microns,
tremendous advance in local thermometry has been achieved,
as summarized by Giazotto et al. (2006). In these systems,
thermometry is achieved by analyzing some temperature-
dependent function (current, conductance, etc.) from which,
by using known properties of the electronic surroundings,
the temperature can be extracted. To give a specific recent
example, by analyzing the derivatives of the current as a
function of temperature and voltage, Hoffmann et al.
(2009) were able to measure the temperature gradient across
a current-carrying quantum dot of 15 nm length, with the
conclusion that the heat flow is mediated by phonons in the
quantum dot.

Other options for measuring the local temperature are
available. One method is to study the force at which a
molecular junction breaks as a function of current. The idea
behind this method is that the higher the temperature of the
structure, the less external force is needed to break it (Huang
et al., 2007; Tsutsui et al., 2008a, 2008b). From this force
one can then extract an effective temperature. For example,
Schulze et al. (2008) studied the breakdown of a molecular
junction composed of a C60 molecule and directly showed
that better cooling of the junction is achieved when the
coupling between the molecule and the leads is improved.

Using the above method, in a recent series of experiments,
Huang et al. (2006, 2007) studied the local temperature

of single-molecule (alkanethiols) junctions as a function of

voltage bias. Their results shown in Fig. 7 (points) indicate

that with increasing voltage, the local temperature first in-

creases, saturates, and then slightly decreases. This is in

agreement with the prediction of Eq. (15) (solid lines),

and suggests that electron-electron interactions indeed

occur in these junctions. The same experiment also confirms

that longer alkanethiol molecules heat up less due to in-

creased electronic resistance, at fixed voltage (Chen et al.,

2005b).
An alternative method to study the local temperature has

been suggested recently. It makes use of Raman spectroscopy

and it was first applied to the study of a suspended nanotube

(Bushmaker et al., 2007; Deshpande et al., 2009). In these

measurements, the local temperature was deduced from the

shifts in the local Raman Gþ and G� bands of the nanotubes.

They compared two nanotubes of lengths 2 and 5 �m, and

found that the longer nanotube was less heated, an effect

which was attributed to the thermalization of hot phonons at

the center of the nanotube.
Along the same lines, the local temperature of a molecular

junction has been investigated via Raman spectroscopy (Ioffe

et al., 2008). The idea is that the ratio between the Stokes and

anti-Stokes intensities is directly related to their nonequilib-

rium populations in the presence of electronic current. The

method has been discussed theoretically in detail (Ioffe et al.,

2008; Galperin et al., 2009a). In Fig. 8 the effective tem-

perature is plotted as a function of voltage bias, for different

Raman modes. From the figure one can see that although

the temperature is slightly different between different modes

(due to the different electron-phonon coupling strengths and

symmetries), the overall voltage dependence shows roughly

similar features. Note also the apparent decrease in the local

temperature, which is in line with the results of Huang et al.

(2007). This study, along with the one described before,

indicates that local Raman spectroscopy may serve as a

valuable tool for the study of local temperatures at the

nanoscale.
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FIG. 6 (color online). Scanning thermal microscopy (SThM) of a

10 nm diameter multiwall carbon nanotube. (a) Full thermal image.

(b) A cut along the nanotube. (c) A cut across the nanotube. From

Cahill et al., 2003.

FIG. 7 (color online). Effective temperature of a molecular junc-

tion, for three different types of molecules n-alkanedithiol, with n ¼
6 (squares), n ¼ 8 (circles), and n ¼ 10 (triangles). The solid lines

are theoretical estimates from Eq. (15). From Huang et al., 2007.
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D. Fourier’s law at the nanoscale

We end this section with a somewhat different issue, that
of the onset of Fourier’s law, Eq. (1), in nanostructures. As
previously noted, in the context of nanoscale junctions there
is not much point in discussing the scaling of the thermal
conductivity �, which pertains to an asymptotic relation,
strictly valid in the limit of large system lengths. Therefore,
here we limit our discussion to the simple question of what is
the temperature profile along the junction.

In the context of Fourier’s law, this question has been
widely studied for both classical (Lepri et al., 2003) and
quantum systems (Michel et al., 2006). The main focus has
been on either spin chains (i.e., Ising-like models) (Michel
et al., 2006; Wu and Segal, 2008) or harmonic oscillator
chains. The local temperatures are usually evaluated by
calculating the averages of some local energy operators
(Michel et al., 2003; Saito, 2003; Michel et al., 2006;
Mejia-Monasterio and Wichterich, 2007), or by using self-
consistent thermal baths (Dhar and Roy, 2006; Dhar, 2008;
Roy, 2008; Jacquet, 2009). In the first case, one assumes that
the local energy is related to the temperature via a local
Boltzmann relation (Dubi and Di Ventra, 2009b), or directly
proportional to the temperature via a local equipartition law
(Michel et al., 2003). The disadvantage of this method is
twofold: (i) There is some arbitrariness in choosing the local
energy operator, since one can represent the same
Hamiltonian in different ways (Wu and Segal, 2009), and
(ii) this method assumes from the outset that the system is in a
local thermodynamic equilibrium, which may not always be
the case.

In the second approach, the system is attached to local heat
baths. The heat current between the junction (or quantum
wire) and the local baths is calculated, and the temperatures
of the heat baths are determined in such a way that the heat

current between the wire and the baths vanishes. This method
was recently described in detail and applied to a quantum

chain of noninteracting harmonic oscillators (Roy, 2008) and

a chain of quantum dots (Jacquet, 2009). For instance, Roy
(2008) calculated, using quantum Langevin equations, the

local temperature as a function of position for different chain

lengths and for different coupling between the wire and the
local baths. The conclusion of this work is that the coupling

between the wire and the baths determines a length scale

(mean-free path), and the heat transport crosses over from a
diffusive regime (uniform temperature gradient) to a ballistic

regime (uniform temperature, vanishing gradient) depending

on the system length being longer or shorter than the mean-
free-path, respectively. Since the dynamics of the system is

calculated in the presence of the local baths, this shows that

the properties calculated (i.e., local temperature) pertain to
the combined system of quantum chain and thermal baths,

and thus naturally depend on, e.g., the coupling strength

between them.
Recently, a method was suggested to calculate the local

temperature of electrons in a nanoscale junction (Dubi and Di

Ventra, 2009c, 2009d). Its starting point is the stochastic

Schrödinger equation [see Eq. (26)], which for noninteracting
electrons reduces to a quantum master equation (Pershin

et al., 2008). In this approach the finite electronic system is
coupled to two local heat baths at the edges of the system,
similar to the study presented above for a chain of harmonic

oscillators. In order to evaluate the local temperature, the

definition introduced in Sec. II.A has been used. Namely, a
third environment is coupled locally to the system at the

position where the temperature needs to be evaluated. The

properties of the system are then evaluated twice, once with
the additional environment (the so-called ‘‘tip,’’ as it mimics,

e.g., the operation of a thermostat mounted on an STM tip)

and once without the probe. The temperature of the probe is
then varied (floated), such that a minimal change in some

local (or global) properties of the system, such as its local

electron density, occurs. A scan of the local temperature of

the whole system can then be obtained with this method. The
advantage of this approach is that it can, in principle, be

implemented experimentally, and it provides the local tem-

perature of the electrons without further scattering from
other sources. In addition, it can be shown analytically that

the above definition reduces to the standard thermodynamic

temperature in limiting cases, for instance, in local equilib-
rium [see also Di Ventra and Dubi (2009)] or for two-level

systems.
For the case of a wire coupled to two electrodes at different

temperatures, it was found that the local temperature of the

wire may exhibit quantum oscillations for intermediate lead-

wire couplings (Dubi and Di Ventra, 2009d). Similar oscil-

lations were later observed for a driven quantum wire (Caso
et al., 2010) and reflect the quantum coherent nature of the

system. When the lead-wire coupling is large enough a

uniform temperature ensues. In this limiting (ballistic) case,
one also finds that the nonequilibrium distribution function

of the system is an average of the distribution functions

of the left and right baths. The fact that the temperature is
uniform in the wire demonstrates the known result that for a

clean system, Fourier’s law is invalid.

FIG. 8 (color online). Effective temperature of a molecular junc-

tion measured using Raman scattering. The different points corre-

spond to different modes, and while the temperature is slightly

different, the overall voltage dependence shows roughly similar

features. Note also the apparent decrease in the local temperature

with bias, which is in line with the results of Huang et al. (2007).

From Ioffe et al., 2008.
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In order to reconstruct Fourier’s law (with an associated
temperature gradient), diagonal disorder was introduced in
the wire (which localizes the electronic wave functions), and
the local temperature was averaged over disorder realizations
(Dubi and Di Ventra, 2009c). It was found that for large
enough disorder, a local uniform temperature gradient ensues,
giving rise to Fourier’s law. This result was interpreted in
terms of an effective thermal length which controls the scale
of the temperature gradient (Dubi and Di Ventra, 2009b). By
adding the effect of dephasing, the model was also able to
explain the results by Roy (2008) described above. We finally
conclude that for the above model the onset of Fourier’s
law coincides with the onset of chaos (Dubi and Di Ventra,
2009c). This has also been found in other model systems
(Michel et al., 2006; Gaul and Büttner, 2007), but not in all
cases (Lepri et al., 1997; Li et al., 2002). Thus, this result
appears not to be universal.

IV. THERMOPOWER

A. Introduction and basic definitions

In this section we discuss the concept of thermopower in
nanoscale junctions. As prototypical examples that show all
main features of the problem we will be focusing mainly on
experiments in molecular junctions (Reddy et al., 2007) and
briefly mention experiments in mesoscopic systems and
nanowires. The thermopower phenomenon corresponds to
the case in which a temperature difference at two sides of a
given junction induces a voltage drop across it. From a
technological point of view, this effect is of great importance,
since it may be used to recover part of the heat wasted in
physical processes and generate electrical power with no
moving mechanical parts. It is also of basic scientific interest,
since, by combining energy and charge flow, it may encode
information about the system dynamics which is unavailable
in charge transport experiments (Segal, 2005).

The configuration we have in mind is again a junction
composed of two leads separated by a nanoscale element—a
quantum dot, a molecule, nanotube, etc. Consider such a
junction, where the two leads are held at different tempera-
tures, TL and TR. The corresponding temperature difference
�T ¼ TR � TL gives rise to both a heat current (discussed in
Sec. II) and a charge current. If the circuit is closed, after a
transient time charges accumulate on one side of the junction
and deplete on the other, so that a zero charge current is
achieved and a voltage drop across the junction is formed. If
the circuit is open (namely it is connected to an electron
source), and a voltage difference �V is applied between the
two leads with appropriate sign, a bias-induced electric
current can cancel out the thermally induced current. Note,
however, that given a temperature difference the two proce-
dures may not yield the same voltage difference. In fact, the
voltage difference may also depend on the location along
the system where it is probed.

The thermopower S is defined as (minus) the amount of
voltage �V at the state of vanishing current,

S ¼ ��V

�T

��������I¼0
; (16)

in the limit of �T ! 0.

This definition can also be understood from the current
expressed in linear response. This is defined as

I ¼ G�V þ LT�T; (17)

where G is the electrical conductance and LT is a response
coefficient related to the energy flow. From this expression
one readily sees that S ¼ LT=G. Therefore, in order to de-
termine S, one has to determine the conductance G and the
thermal response LT .

Before we proceed to discuss different theoretical and
experimental aspects of the thermopower, it is important to
ask the following question: Is knowledge of the thermopower
S sufficient to design devices that operate as efficient heat-
voltage converters? In fact, in a real device, it is not at all
clear that the system is, under the given experimental con-
ditions, in the linear-response regime. Nor it is obvious that
the best conversion should be achieved in that regime (Dubi
and Di Ventra, 2009d; Esposito et al., 2009).

To this end, it is useful to define the unitless ‘‘figure of
merit,’’

ZT ¼ GS2

�th=T
; (18)

where T is the temperature of the system (Mahan and Sofo,
1996). The quantity ZT describes the efficiency of a real
device or material as a thermoelectric converter. While an
exact relation between ZT and thermodynamic efficiency is
available (Müller, 2008), this choice can be intuitively under-
stood: S measures how large a voltage drop can develop for a
given temperature gradient, G measures how easy charges
can cross the junction to generate that voltage drop, and �th

measures how hard it is to maintain a temperature gradient.
It is commonly stated that for applications one must

achieve ZT � 1 [in fact ZT > 4 would already be a great
advance (Majumdar, 2004)]. However, such a situation is
hard to obtain: In most cases the electrical conductivity �
and thermal conductivity � are related via the Wiedemann-
Franz law (Ashcroft and Mermin, 1976), which states that

�

�
¼

�
�2k2B
3e2

�
T; (19)

with the quantity in parenthesis commonly referred to as the
‘‘Lorenz number.’’ This means that it is difficult to increase
� and S without also increasing �, and vice versa. However,
deviations from the Wiedemann-Franz law have been ob-
served (Appleyard et al., 2000) and discussed theoretically
in various systems, including Luttinger liquids (Kane and
Fisher, 1996; Li and Orignac, 2002; Rejec et al., 2002;
Kubala et al., 2008; Murphy et al., 2008; Garg et al.,
2009). These deviations are attributed to interactions, where
the simple single-particle theory fails (see Sec. IV.C on
theoretical methods), and are exactly what is required in
order to increase the efficiency of thermoelectric devices.

B. Experiments on thermopower at the nanoscale

Measurements of thermopower are conceptually easier
than those of thermal conductance: One applies a temperature
gradient across the junction and measures the ensuing voltage
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in a closed circuit when the transient current vanishes. Or, in
an open circuit, one supplies a voltage to compensate for the

thermally induced current. The slope of the resulting voltage-

temperature gradient curve gives the thermopower. However,
in an actual experiment, particular care needs to be taken to

extract this quantity. The reason is because the voltage probe

that is connected to the system in order to measure the
thermopower is necessarily invasive, since the applied ther-

mal gradient would induce, locally at the voltage probe

contact, an extra voltage difference. This extra effect needs
to be subtracted to get the actual thermopower of the nano-

junction. In addition, the ensuing voltage (including its sign)

is very sensitive to the junction geometry and thus may
fluctuate considerably in an actual experiment, providing

nontrivial distributions of the voltage as a function of thermal

gradient, from which a single voltage value may not always
be easy to extract.

Before reviewing some recent experiments on nanoscale

junctions, it is of interest to briefly survey some of the older

experiments on mesoscopic systems as well. We point out
that while most of these experimental results may be under-

stood in terms of a linear-response scattering theory (see

Sec. IV.C), some recent results, such as the appearance of
additional peaks in the distribution of induced voltages versus

temperature gradient (Scheibner et al., 2005), are yet to be

completely accounted for. The discovery of pronounced
mesoscopic effects such as Coulomb blockade and conduc-

tance quantization prompted the study of thermopower in

quantum point contacts (Molenkamp et al., 1990; van
Houten et al., 1992b; Molenkamp et al., 1994) and quantum

dots (Staring et al., 1993; Godijn et al., 1999; Scheibner

et al., 2005). These devices are defined by depositing gates on
top of a two-dimensional electron gas formed in a semicon-

ductor interface (typically GaAs/AlGaAs). Heating of one

side of the device is achieved by passing current through it
with consequent Joule heating and temperature rise. Most of

the results of these experiments are well understood within

the simple, single-particle picture of thermopower (van

Houten et al., 1992b), which will be described below.
Another, more recent batch of thermopower experiments

are those conducted on nanowires, namely, wires with nano-

scale diameter, but extending in the longitudinal direction as
long as a few microns. Various experiments were performed

on wires of different materials (Boukai et al., 2006, 2007;

Hochbaum et al., 2007; Seol et al., 2007; Duarte et al.,
2009; Lee et al., 2009), as well as carbon nanotubes (Small

et al., 2003; Sumanasekera et al., 2002; Kong et al., 2005).

These experiments suggest that in these systems it is possible
to either increase S (by designing the system to have an

increased electronic density of states) or reduce the thermal

conductance independently by, e.g., designing a system

which is smaller than the phonon mean-free path but still
larger than the corresponding mean-free path of the electrons

or holes, thus increasing the figure of merit. Specifically, in Si

nanowires these are obtained by the combined effect of the
change in phonon spectra and enhanced scattering off the

boundary, both having little effect on the electronic part [see

Rurali (2010)]. Along similar lines, boundary effects seem to
highly reduce the thermal conductance but leave the charge

conductance roughly unchanged (Majumdar, 2004).

A set of experiments which is of interest from both an

academic and a technological point of view are those per-

formed on junctions of nanometer length, such as metallic

contacts (Ludoph and Ruitenbeek, 1999) or molecular junc-

tions (Reddy et al., 2007; Baheti et al., 2008; Malen et al.,

2009a, 2009b; Tan et al., 2010). The latter ones are of interest

since, as we will discuss in Sec. IV.C, theoretical arguments

suggest that molecular junctions may exhibit large thermo-

power. In these latter experiments, a gold STM tip is placed

on top of a gold substrate which is covered with various

molecules. As the STM tip touches (and is attached to) a

molecule, a thermal gradient is applied and the thermopower

is measured by applying a voltage so that no current passes

through the junction (see upper panel of Fig. 9). This

procedure is repeated many times and a histogram of the

voltage required to achieve vanishing current is obtained [for

different temperature gradients, �T ¼ 10, 20, and 30 K,

Figs. 9(a)–9(c)]. They then plotted the voltage with maximum

probability (i.e., the position of the peak in the voltage histo-

grams) as a function of �T, and by fitting the resulting curve

with a linear fit the thermopower is obtained [Fig. 9(d)].

These experiments were performed with various kinds of

FIG. 9 (color online). Upper panel: Schematic representation

of thermopower experiments on molecular junctions. (a)–

(c) Distribution of thermovoltages obtained at different temperature

gradients. Note the widening of the distributions and their nontrivial

structure. (d) The most-probable thermovoltage obtained from

(a)–(c) as a function of the temperature gradient. The derivative

of the linear fit of this curve yields the thermopower S. (e) S of

various molecules, in terms of the molecule’s length. Adapted from

Reddy et al., 2007.
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molecules, and interesting phenomena such as a length de-
pendence of the thermopower [Fig. 9(e)] or strong depen-

dence on the molecular end groups were observed. The

experiments indicated that indeed molecular junctions have
favorable thermoelectric properties, suggesting that devices

incorporating molecular junctions or arrays (for instance,

metallic plates separated by a molecular layer) may be

good candidates for thermoelectric applications.
We, however, point out some features of the experiments

which at present do not have a satisfactory theoretical expla-

nation. For instance, as shown in Fig. 9(c), the voltage histo-

grams have a well-defined structure, with a not-so-negligible
secondary peak near �V ¼ 0. Note also that the distributions

cross the �V ¼ 0 line into negative values, not shown in

the figure. An additional feature of the histograms is their
apparent widening with increasing temperature gradient.

These fluctuation effects have been recently studied experi-

mentally (Malen et al., 2009a) and are attributed to variations

in contact geometry and orbital hybridization, as well as
intermolecular interactions, in accord with theoretical studies

(Dubi and Di Ventra, 2009d).
Analysis of the above results has been done based on

the single-particle (noninteracting) Landauer approach to
thermopower. As discussed in Sec. IV.C, in the linear-

response single-particle theory of thermopower, S can be

simply related to the electronic properties of the junction,
and specifically in molecular junctions, to the position of the

electrochemical potentials of the leads with respect to the gap

between the HOMO and the LUMO states. Since the position

of the HOMO-LUMO gap affects charge transport in mo-
lecular junctions (Nitzan and Ratner, 2003), measurements of

S were suggested as a way to probe the energy position of

these levels (Paulsson and Datta, 2003; Baheti et al., 2008).
In the experiments (Reddy et al., 2007; Baheti et al., 2008),

a comparison of the thermopower and conductance with

numerical simulations using ground-state DFT within the

Landauer approach was performed. From this comparison it
was then concluded that the position of the HOMO-LUMO

gap can be thus determined. This analysis, however, raises

several questions. The applicability of a linear-response
single-particle theory was questioned (Reddy et al., 2007),

following the fact that the temperature differences can be tens

of degrees kelvin. In fact, one could ask if this is the smallest

energy scale in the experiment. Specifically, is this energy
smaller than, say, the coupling energy between the molecule

and the substrate? The answer to this question is unclear,

especially in light of the large error bars shown in Fig. 9(d). In
addition, the nontrivial structure of the fluctuations in the

voltage histogram implies that nonequilibrium effects may

come into play, which are not taken into account in the linear-

response theory. Finally, electron-electron and electron-
phonon interactions may play a crucial role in this problem.

Despite these open questions, the experiments described

above are impressive and important for the field and there are

many interesting future directions to which they could be
taken. For example, it would be interesting to study the

change in the width of the distributions and their structures

as the overall temperature is reduced. This would determine,
e.g., if these distributions are due to static or dynamic effects.

Another interesting direction would be to study, for several

molecular structures, not just the most-probable voltage,
but the real (statistical) average of the distributions, and infer
from this whether the resulting thermopower displays the
same features as reported above (e.g., length dependence,
etc.), and whether this quantity matches calculations based
on single-particle theories.

C. Theoretical methods

In this section we describe the present theoretical methods
available to describe the phenomenon of thermopower. The
most common one is based on the Landauer approach with its
implementation within ground-state DFT. As we will discuss,
this approach has several advantages, being rather computa-
tionally straightforward and having a rather simple physical
interpretation. However, we argue that in many cases of
actual experimental interest, it may be inadequate, since it
is based on the usual assumptions of scattering theory of
noninteracting electrons. In addition, as emphasized also in
Sec. II.C.1, the use of ground-state DFT is questionable in an
intrinsically nonequilibrium problem as the one discussed
here. We then introduce an approach based on the theory of
open quantum systems, which is ideally suited for the present
problem and can, in principle, account for interactions (be-
yond mean-field). The latter point has its most practical
implementation in an extension of time-dependent DFT to
open quantum systems (Di Ventra and D’Agosta, 2007;
D’Agosta and Di Ventra, 2008b).

1. Single-particle theory of thermopower

The starting point for calculating the thermopower within a
single-particle picture is the Landauer expression for the
electrical current (Butcher, 1990),

I ¼ e

�ℏ

Z 1

�1
d
T ð
Þ½fLð
Þ � fRð
Þ�; (20)

whereT ð
Þ is the transmission coefficient at energy 
 and fL;R
are the Fermi distributions of the left and right leads. In the
limit of small bias and temperature gradient (i.e., j�Tj � T
and je�Vj � �, where T is the background temperature and
� is the equilibrium chemical potential), the distribution
functions are given by (Butcher, 1990) (i ¼ L; R)

fð
;�i; TiÞ ’ fð
;�; TÞ � df

d

ð���iÞ

	 df

d

ð
��Þ ðTi � TÞ

T
; (21)

where nowfð
Þ is the equilibriumdistribution and theþ and�
signs correspond to which electrochemical potential is higher
or lower in energy with respect to the equilibrium chemical
potential. Inserting this into Eq. (20) and equating the current
to zero, one obtains

SðTÞ ¼ 1

eT

R1
�1 d
T ð
Þð
��Þ½�f0ð
Þ�R1

�1 d
T ð
Þ½�f0ð
Þ� : (22)

Already from this result several features may be seen. First,
since at T ¼ 0 we have�f0ð
Þ ¼ �ð
��Þ, the numerator of
S vanishes and SðT ¼ 0Þ ¼ 0. Second, even at finite tempera-
tures f0ð
Þ is symmetric around�, and therefore S ¼ 0 unless
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T ð
Þ is not symmetric around �. This is similar to the condi-
tion in bulk materials that requires the particle-hole symmetry
be broken to have a finite thermopower (Ashcroft andMermin,
1976).

One can further simplify SðTÞ by taking the low-
temperature limit and by assuming that there are no electronic
resonances close to the equilibrium chemical potential. Using
the Sommerfeld expansion to first order around �ðT ¼ 0Þ ¼

F (Ashcroft and Mermin, 1976), one has

Z 1

�1
T ð
Þð
��Þf0ð
Þ � �2

6
k2BT

2 d
2½T ð
Þð
��Þ�

d
2

��������
F

¼ �2

3
k2BT

2T 0ð
Þ (23)

(where the second derivative comes from integration by parts)
and one arrives at the expression for the thermopower,

S ¼ �2

3

kB
e
kBT

d ln½T ð
Þ�
d


��������
F

; (24)

which is similar to Mott’s semiclassical formula for bulk
metals (Ashcroft and Mermin, 1976; Lunde and Flensberg,
2005). We stress again that this approximation is only valid at
low temperatures and away from transmission resonances, so
that the variation in T ð
Þ is small.

The advantages of using the Landauer formalism are evi-
dent: It provides both a simple interpretation of the thermo-
power in terms of single-particle properties such as the
transmission coefficient T ð
Þ and a rather straightforward
computational procedure. In fact, one needs only to deter-
mine the transmission coefficientT ð
Þ, which can be done as
discussed in Sec. II.C.1. These reasons have made this ap-
proach extremely popular and widely used. An early use of
Eq. (24) is in the study of thermopower in quantum point
contacts (Molenkamp et al., 1990; van Houten et al., 1992b;
Molenkamp et al., 1994) and quantum dots (Staring et al.,
1993). In these mesoscopic systems, a gate voltage is used to
tune either the width of the quantum point contacts or the
energy levels in the quantum dots, giving rise to quantized
conductance and Coulomb blockade. It turns out that in the
cases above, the Landauer approach yields reasonably good
agreement between theory and experiment (Molenkamp
et al., 1990), and knowledge of T ð
Þ reasonably describes
both the conductance and the thermopower. This would
naively suggest that, for these types of systems, the above
single-particle picture accounts for most of the thermopower.
However, more recent investigations, which include effects
of interactions, show that in both types of systems interac-
tions may induce deviations from the Wiedmann-Franz
law, thus reducing the agreement with experiments (Turek
and Matveev, 2002; Turek et al., 2005; Lunde et al., 2006;
Zhang, 2007; Kubala et al., 2008), suggesting that the
agreement in the single-particle case may be the result of
the cancellation of errors.

In fact, despite its simplicity, the above approach suffers
several shortcomings of particular relevance in nanoscale
systems. The most prominent is the fact that it is formulated
for noninteracting electrons. This means that any inclusion of
interaction effects directly into T ð
Þ can only be done at the
mean-field level (Vignale and Di Ventra, 2009). To correct

this, one should abandon the Landauer formula for the cur-
rent, and, alternatively, use expressions for the currents ob-
tained by using, e.g., the NEGF (Meir andWingreen, 1992) or
rate equations (Koch et al., 2004). To our knowledge, in its
fully interacting form NEGF was never employed to study
the effects of electron interactions on the thermopower of
molecular junctions.

Another limitation of the Landauer approach is the erro-
neous result it supplies in the zero-coupling limit. To dem-
onstrate this, consider the simplest model for a nanoscale
junction: a single resonant level symmetrically coupled to
leads with spinless electrons (adding spin simply introduces
a factor of 2). The transmission is given by a Breit-Wigner
formula, T ð
Þ ¼ �2=½�2 þ ð
� 
FÞ2�, where � is the
lead-induced level broadening. Substituting into the expres-
sion for S [Eq. (24)] and taking the limit of � ! 0 gives a
finite value, S ¼ �ð2�2=3Þðk2B=eÞ½T=ð
� 
FÞ�. However, if
one would consider a real device, it is clear that by detaching
the leads would result in no temperature-induced voltage
drop. The reason for this discrepancy is simple: In the
linear-response calculation one assumes that the temperature
difference is the smallest energy scale, yet in the limit
� ! 0, � becomes comparable to such a scale, and the
approximation breaks down. One should thus be careful
both in using perturbation theory in the coupling between
the leads and, say, a molecule in the junction and in compar-
ing such calculations to experiments (see Sec. IV.C.2).

Much of the recent theoretical work on thermopower has
been devoted to molecular junctions. Before we review some
recent results, it is important to understand the origin of the
specific interest in such systems, which may be understood
from analyzing the Landauer formula (24). In a molecular
junction, the Fermi energy of the leads is placed somewhere
between the HOMO and LUMO states (i.e., in the HOMO-
LUMO gap) (Nitzan and Ratner, 2003). The question is
where exactly? The answer to this question cannot be an-
swered by studying the conductance (or transmission) alone,
which can be demonstrated through a simple example
(Paulsson and Datta, 2003). Consider such a molecular junc-
tion, with HOMO and LUMO energies 
HOMO and 
LUMO,
respectively. The transmission function can be modeled
by a double Lorenzian, corresponding to tunneling via each
of these levels independently, and assumes the following
form:

T ð
Þ ¼ �L�R

~�2 þ ð
F � 
HOMOÞ2
þ �L�R

~�2 þ ð
F � 
LUMOÞ2
;

(25)

where �L;R is the level broadening due to the left (right) lead

and ~� ¼ ð�L þ �RÞ=2. (For simplicity, we assume it to be the
same for the two levels.) The resulting thermopower [in units
of ð�2=3Þðk2B=eÞT], along with the transmission coefficient,

is plotted in Fig. 10 [taking ~�=ð
LUMO � 
HOMOÞ ¼ 0:1]. As
seen, according to this simple model, for a given value of
transmission between 
LUMO and 
HOMO, there are two values
of the Fermi energy which provide a solution to Eq. (25), and
hence conductance alone does not suffice to determine the
position of the Fermi energy. From the same model, however,
one would infer that the sign of the thermopower is
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determined by the position of the Fermi energy from the

center of the HOMO-LUMO gap, similar to the fact that

the sign of the thermopower in bulk materials is determined

by whether the conductance is dominated by electrons or

holes (Ashcroft and Mermin, 1976), and therefore the sign of

thermopower distinguishes between the two Fermi energies

which solve Eq. (25).
This idea, along with the prospect of using molecular

junctions as efficient thermoelectric devices, has generated

much theoretical interest. To give a few examples, Segal

(2005) showed that by measuring the thermopower one can

distinguish between different electron transport mechanisms.

Thermal and vibrational effects were studied in detail (Koch

et al., 2004) using rate equations, and it was shown that at low

temperatures the signature of the vibrational modes on the

thermopower can be measured. Murphy and Moore (2007)

used rate equations to study the optimization of the figure of

merit of a molecular junction, similar to the optimization of

the figure of merit in bulk thermoelectrics (Mahan and Sofo,

1996).
Much recent attention has been devoted to studying the

thermopower of molecular junctions using ground-state DFT

to calculate T ð
Þ combined with the Landauer formula (22)

[or its even more simplified version Eq. (24)] (Paulsson and

Datta, 2003; Zheng et al., 2004; Wang et al., 2005; Müller,

2008; Pauly et al., 2008; Finch et al., 2009; Ke et al., 2009;

Liu and Chen, 2009; Liu et al., 2009b). In some cases, an

impressive agreement has also been reported between the

theoretical results and experiments (Ke et al., 2009).
However, caution has to be applied in making such claims.

In fact, if the system is away from linear response—and many

experiments so far likely correspond to such a case—given a

temperature difference, setting I ¼ 0 in Eq. (20) does not

necessarily provide a unique solution for the potential differ-

ence. In other words, there may be more than one potential

difference �V that gives rise to the same �T (and hence

several values of thermopower for the same temperature

difference), when I ¼ 0, as permitted by the nonlinearity of

Eq. (20). In addition, as emphasized previously, even if the

single-particle equations (22) and (24) were good starting

points to describe the problem at hand, ground-state DFT is

fundamentally flawed in the present context (even if one

knew the exact ground-state functional) due to the fundamen-
tal nonequilibrium nature of the problem (Di Ventra and
Todorov, 2004; Bushong et al., 2005; Di Ventra, 2008;
Vignale and Di Ventra, 2009). In this respect, even the
interpretation of ground-state Kohn-Sham orbitals is ques-
tionable, since the latter ones are auxiliary quantities whose
only role is to provide the correct density of the correspond-
ing many-body system in its ground state.

To these limitations we must also add a few more physical
issues. When a thermal gradient is applied to a junction, the
transient dynamics is fundamental in establishing the voltage
difference that enters the definition of thermopower. Since
the dynamical formation of local resistivity dipoles creates
strong local fields at the junction (especially at the nano-
scale), these fields influence the electron motion in a non-
trivial way and thus influence the long-time behavior of the
carrier dynamics, even in the dc limit. This is particularly
important away from the linear response (Di Ventra, 2008),
which may be the experimental case.

It is the self-consistent formation of these fields that makes
the thermopower very sensitive (both in magnitude and in
sign) to atomic details and thus to the contact geometry
between the nanostructure and bulk electrodes, as demon-
strated also experimentally (Ludoph and Ruitenbeek, 1999).
This precludes an easy interpretation in terms of ‘‘electron’’
or ‘‘hole’’ excitations as in bulk metals, and thus an easy
relation with single-particle states (such as the HOMO and
LUMO) as the Landauer equation (22) would imply. All this
points to the fact that, since the system is in dynamical
interaction with two different baths, one needs to go beyond
the approximations underlying Eq. (22) and consider an open
quantum system approach.

2. An open quantum system approach

We have precisely explored the problem of thermopower
within the theory of open quantum systems (Dubi and Di
Ventra, 2009d). In analogy with the idea that electrical cur-
rents may be studied using finite systems (Di Ventra and
Todorov, 2004; Bushong et al., 2005), one can study a finite
system in contact with two heat baths held at different
temperatures (i.e., finite leads connected by a nanoscale
constriction, either a molecule, wire, etc.). If the system has
a finite thermoelectric response then charges would flow
between the leads until the ensuing electric potential ‘‘balan-
ces’’ the thermal gradient, and a charge imbalance is created
between the two leads (which is related to the thermovoltage
via the Poisson equation). Note that in this approach the
system is allowed to find its own charge distribution via the
transient dynamics (unlike a static approach where a static
distribution is imposed a priori via boundary conditions),
and even when the charge current is zero an energy current
is still present, as in the actual experiments. Then, by calcu-
lating the thermally induced charge imbalance one obtains
information on the thermoelectric response of the junction
via the usual definitions. This approach is also not limited to
linear response thus providing information on the thermovolt-
age even when the temperature gradient is not the smallest
energy scale.

An implementation of such an open system approach can
also be formulated within time-dependent DFT, thus allowing
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FIG. 10 (color online). Transmission (solid line) and normalized

thermopower (dashed line) as a function of the position of the Fermi

energy with respect to the HOMO-LUMO gap, based on the

Landauer formula, Eq. (24), with approximation Eq. (25).
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one to include, in principle, all possible dynamical many-
body effects in the thermopower (recall, in fact, that given the
baths that set the temperature differences, the ensuing electro-
static voltage is a well-defined functional of the density).
Indeed, Di Ventra and D’Agosta recently proved that if the
bath-electron interactions are treated within a memoryless
approximation (the thermal baths being Ohmic) (Van
Kampen, 2001), then there is a one-to-one correspondence
between the exact ensemble-averaged current density and the
external vector potential, therefore extending the theorem
(and Kohn-Sham scheme) of time-dependent current-DFT
(TDCDFT) to open quantum systems (Di Ventra and
D’Agosta, 2007; D’Agosta and Di Ventra, 2008b). The
framework for this theory (named stochastic TDCDFT) is
the stochastic Schrödinger equation, which describes a
Hamiltonian quantum system in the presence of a bath (the
extension to several baths is trivial) (Breuer and Petruccione,
2002) (ℏ ¼ 1),

_�ðtÞ ¼ �iH�ðtÞ � 1
2V̂

yV̂�ðtÞ þ lðtÞV̂�ðtÞ: (26)

Here �ðtÞ is the many-body state vector, H is the
Hamiltonian of the system (describing both the molecule
and the leads and the coupling between them), V̂ are the
so-called bath operators (which could in principle be position
and/or time dependent) (Van Kampen, 2001), which describe
transitions between the different many-body states induced
by the bath(s), and lðtÞ is a stochastic field which is taken to
have zero mean and a �-function autocorrelation, hlðtÞi ¼ 0,
hlðtÞlðt0Þi ¼ �ðt� t0Þ.

As a first demonstration, we used the method to study the
thermopower of a simple model system of spinless noninter-
acting electrons, for which the calculations can be equiva-
lently carried out with the density matrix rather than the state
vector, by averaging over the stochastic realizations (Pershin
et al., 2008). In that model two planar leads, each in contact
with a thermal bath at a given temperature, are connected via
a nanoscale wire (see upper panel of Fig. 11). The bath-
electron interactions are described by the operators

V̂L;R
kk0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
	L;R
kk0 f

L;Rð
kÞ
q

jkihk0j; (27)

where jki are the single-particle states of the Hamiltonian,
fL;R is the Fermi function containing information on the left
(right) bath temperature, and 	L;R

kk0 , which are the (inelastic)

transition rates between states k and k0, depend on the bath
location (i.e., left or right) (Dubi and Di Ventra, 2009d).
The corresponding equations of motion are then solved to
obtain the wave function and hence the electron density,
potential, and also the heat currents (see also Sec. III) at
steady state.

Several interesting features are revealed by this model. For
instance, the thermovoltage obtained shows nonlinear char-
acteristics, which imply that the linear regime may not be the
best regime to operate a thermoelectric device (Dubi and Di
Ventra, 2009d). Another interesting feature is the strong
dependence of the charge imbalance in the leads (and hence
the thermopower) on the coupling between the wire (or
molecule) and the leads. This confirms the experimental
findings in metallic quantum point contacts (Ludoph and

Ruitenbeek, 1999). In Fig. 11(a) (Dubi and Di Ventra,
2009d) the charge imbalance between the leads is plotted as
a function of the ratio between the coupling between the wire
and the left and right leads. From the figure it is obvious that
the charge imbalance strongly fluctuates and can even change
sign as a function of the wire-lead coupling. To demonstrate
the importance of these fluctuations and to tie in with the
experimental results presented in Sec. IV.B, we have per-
formed a calculation for the same system as discussed by
Dubi and Di Ventra (2009d), where the coupling constants
were drawn from a normal distribution around typical values
of g ¼ 0:1t, where g is the lead-wire coupling and t is the
tight-binding hopping parameter, which describes the band-
width of the leads. Other numerical parameters are the filling
fraction of electrons, n ¼ 1=3, and the temperatures of the
left and right heat baths, TL ¼ 0:1 and TR ¼ 1 (in units of t).
A histogram of the resulting charge imbalance is plotted in
Fig. 11(b), for three values of the width of the normal
distribution, �g ¼ 0:001, 0.01, and 0.1 (in units of the hop-
ping parameter). While more work needs to be done to
explain the experimental data presented in Fig. 9(c), these
theoretical results clearly bear some resemblance to experi-
ments by showing a double structure in the charge imbalance
as a function of the coupling asymmetry.
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FIG. 11 (color online). Upper panel: Schematic representation

of the model molecular junction composed of two quasi-two-

dimensional leads connected with a molecular wire. The leads are

coupled to external heat baths, each at its own temperature.

(a) Electron charge imbalance as a function of the ratio between

the couplings gRðLÞ between the wire and the right (left) lead. A

strong dependence can be observed and even a change of sign.

(b) Distribution of charge imbalance, when the couplings between

the wire and the leads are drawn from a Gaussian distribution, with

an average g ¼ 0:1 and width �g ¼ 0:001, 0.01, and 0.1 in units of

the hopping parameter (see text). From Dubi and Di Ventra, 2009d.
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Using stochastic TDCDFTone can extend the above model
system to interacting systems, as well as to a multicomponent
formulation (Appel and Di Ventra, 2009), whereby the
Hamiltonian now contains the correlated motion of electrons
and (possibly quantum) ions, with both components interact-
ing with an external environment. Such studies would shed
new light on the role of interactions and ion dynamics on
thermopower and enable a study of local heating effects in
nanoscale systems (see also Sec. III). No results are, however,
available yet for these cases.

V. SUMMARY AND FUTURE PROSPECTS

In this review we have discussed energy transport in
nanoscale systems, such as molecular junctions, suspended
nanotubes, quantum point contacts, etc. Our aim was to put
the three major issues of thermal transport, namely, thermal
conductance, local temperature and heating, and thermoelec-
tricity under a unified theme. We have critically examined
both theoretical and experimental aspects of these topics.
We have presented many theoretical methods based on the
single-particle scattering approach, nonequilibrium Green’s
functions formalism, molecular dynamics, etc. From the
experimental side we have reviewed state-of-the-art experi-
ments and stressed the difficulty and open questions in ana-
lyzing such experiments.

A. Future prospects

We conclude this review by presenting three novel ideas
related to energy transport in nanoscale systems. These ideas,
which deviate somewhat from the usual path of thermoelec-
tricity and heat transport, reflect in our opinion the richness
and usefulness of studying energy flow in nanoscale systems,
and we hope will stimulate both the experimental and theo-
retical communities.

Thermospintronics.—Thermospintronics (sometimes called
spin caloritronics) refers to the manipulation of electron spins
with thermal effects. Generating spin currents, that is the flow
of electron spins, plays an eminent role in the field of spin-
tronics, which is the spin analog of electronics [see, e.g., Ẑutić
et al. (2004)]. However, manipulating spins in order to gen-
erate spin currents is quite difficult, and it is equally hard to
generate a spin current without generating an accompanying
charge current. In recent experiments (Uchida et al., 2008,
2009) a spin analog to the Seebeck effect was used to generate
a spin voltage, induced by a temperature difference along a
ferromagnetic slab. Although this effect is rather small (com-
pared to its charge counterpart, but larger than expected in
view of spin-flip scattering) and inherently induces an electric
voltage as well, it has been suggested that these shortcomings
may be overcome by applying a temperature gradient to a
molecular junction placed between ferromagnetic leads (Dubi
and Di Ventra, 2009e), a setup which was recently studied
further (Lü et al., 2010; Wang et al., 2010; Ying and Jin,
2010). In another work, a variety of thermoelectric effects in
magnetic junctions was studied (Hatami et al., 2007, 2009;
Heikkilä et al., 2010), with unusual features such as thermal
spin-transfer torque, spin-polarized cooling, and spin-heat
coupling effects.

Enhanced thermopower in DNA.—DNA, the basic building
block of our genetic code, also shows a large potential in
nanotechnology applications (Dekker and Ratner, 2001; Di
Ventra et al., 2004; Zwolak and Di Ventra, 2008). In a recent
study it was shown (Maciá, 2005, 2007), using a model
Hamiltonian for different DNA-like chains, that under certain
conditions the Seebeck coefficient and figure of merit of a
lead-DNA-lead junction can be quite high and can rise to
hundreds of �V=K, to be compared with a few �V=K of
other single-molecule junctions studied so far. These high
values of the thermopower seem to stem from transport
resonance effects, which can be tuned rather easily in DNA.
This, with the fact that there is a lot of know-how regarding
DNA manipulation and preparation, makes DNA-based sys-
tems interesting candidates for future thermoelectric and
cooling devices at the nanoscale.

Thermoelectricity in superconducting wires.—Raising
the critical temperature Tc of superconducting materials is
clearly a technologically important goal. However, most
superconducting materials have a Tc well below room tem-
perature, even in the well-known high-Tc materials (with
Tc � 80 K for wires and Tc � 200 K for bulk). Recently,
we suggested (Dubi and Di Ventra, 2009a) studying a super-
conducting wire held at two different temperatures at its
edges. Using the method introduced in Sec. IV.C.2 combined
with a self-consistent mean-field theory, it was shown that
for an (ideally) clean superconducting wire, if one of the
sides (the cold side) is held at low enough temperatures,
the temperature of the hot side can be much larger than the
equilibrium Tc, with the wire still in its superconducting state.
Although this study neglects some effects (such as phase
fluctuations), the basic idea is simple: In order to have a
superconducting wire, instead of cooling down the entire
apparatus, one can locally cool the wire by attaching to
it a local refrigerator, e.g., one made from a Peltier cooling
device (Shakouri, 2006). This may pave the road for hybrid
superconducting circuits which operate at relatively high
temperatures.

B. Final thoughts

These last few examples—and what we have discussed in
this Colloquium—show that the quest to understand energy
transport in nanostructures is far from over. In fact, it seems to
us that we have barely scratched the surface of this problem
and more discoveries await us. Regarding thermal conduc-
tance, finding systems that show either very good (for
nanoelectronic applications) or very poor (for thermoelectric
applications) thermal conductance is needed. As for thermo-
electricity, there is a need to advance our theoretical tools
quite substantially. For instance, theories that account for the
statistical nature of the experiments should be developed that
include also electron-electron and electron-phonon interac-
tions on equal footing. In addition, since the problem is
intrinsically out of equilibrium (even at steady state), these
theories need to include dynamical effects. As for local heat-
ing and local temperatures, the handful of experiments that
have appeared recently are certainly a good start, but more
are needed in order to truly determine the processes leading
to heating (and cooling) in nanoscale junctions. Similarly,
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more experiments that could directly determine the validity (or
invalidity) of Fourier’s law are highly desirable.

Because of the rapid developments in science and technol-
ogy it is difficult to predict where the field will go from here.
However, there is no doubt that novel and ingenious ideas
will be put forth that will help us profit from energy flow,
storage, and conversion. Embarking on such a quest could not
be more timely.
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Lü, J. T., and J.-S. Wang, 2008, Phys. Rev. B 78, 235436.

Lu, L., W. Yi, and D. L. Zhang, 2001, Rev. Sci. Instrum. 72, 2996.

Ludoph, B., and J.M. v. Ruitenbeek, 1999, Phys. Rev. B 59, 12290.

Lunde, A.M., and K. Flensberg, 2005, J. Phys. Condens. Matter 17,

3879.

Lunde, A.M., K. Flensberg, and L. I. Glazman, 2006, Phys. Rev.

Lett. 97, 256802.

Luttinger, J.M., 1964, Phys. Rev. 135, A1505.
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