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The basic aspects of electrons in graphene (two-dimensional graphite) exposed to a strong

perpendicular magnetic field are reviewed. One of its most salient features is the relativistic

quantum Hall effect, the observation of which has been the experimental breakthrough in

identifying pseudorelativistic massless charge carriers as the low-energy excitations in gra-

phene. The effect may be understood in terms of Landau quantization for massless Dirac

fermions, which is also the theoretical basis for the understanding of more involved phenomena

due to electronic interactions. The role of electron-electron interactions both in the weak-

coupling limit, where the electron-hole excitations are determined by collective modes, and in

the strong-coupling regime of partially filled relativistic Landau levels are presented. In the

latter limit, exotic ferromagnetic phases and incompressible quantum liquids are expected to be

at the origin of recently observed (fractional) quantum Hall states. Furthermore, the electron-

phonon coupling in a strong magnetic field is discussed. Although the present review has a

dominant theoretical character, a close connection with available experimental observation is

intended.
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I. INTRODUCTION TO GRAPHENE

The experimental and theoretical study of graphene, two-
dimensional (2D) graphite, has become a major issue of
modern condensed-matter research. A milestone was the
experimental evidence of an unusual quantum Hall effect
reported in September 2005 by two different groups, the
Manchester group led by Andre Geim and a Columbia-
Princeton collaboration led by Philip Kim and Horst
Stormer (Zhang et al., 2005; Novoselov et al., 2005a).

The reasons for this enormous scientific interest are mani-
fold, but one may highlight some major motivations. First,
one may underline the possible technological potential of
graphene. Indeed, one of the first publications on graphene
in 2004 by the Geim group reported an electric-field effect in
graphene, i.e., the possibility of controlling the carrier density
in the graphene sheet by simple application of a gate voltage
(Novoselov et al., 2004). This effect is a fundamental
element for the design of electronic devices. In a contempo-
rary publication, Berger et al. reported on the fabrication and
the electrical contacting of monolayer graphene samples on
epitaxially grown SiC crystals (Berger et al., 2004).Today’s
silicon-based electronics reach their limits in miniaturization,
which is on the order of 50 nm for an electric channel,
whereas it has been shown that a narrow graphene strip
with a width of only a few nanometers may be used as a
transistor (Ponomarenko et al., 2008), i.e., as the basic
electronics component.

Apart from these promising technological applications,
two major motivations for fundamental research may be
emphasized. Graphene is the first truly 2D crystal ever ob-
served in nature and possesses remarkable mechanical prop-
erties. Furthermore, electrons in graphene show relativistic
behavior, and the system is therefore an ideal candidate for
the test of quantum field-theoretical models that have been
developed in high-energy physics. Most prominently, elec-
trons in graphene may be viewed as massless charged fermi-
ons existing in 2D space, particles one usually does not
encounter in our three-dimensional world. Indeed, all mass-
less elementary particles, such as photons or neutrinos, hap-
pen to be electrically neutral.1 Graphene is therefore an
exciting bridge between condensed-matter and high-energy
physics, and the research on its electronic properties unites
scientists with various thematic backgrounds.

Several reviews show the enormous research achievements
in graphene. In a first step, those by Geim and Novoselov
(2007) and by de Heer et al. (2007) aimed at a rather global
experimental review of exfoliated and epitaxial graphene,
respectively. Furthermore, the review by Castro Neto et al.
(2009) was concerned with general theoretical issues of
electrons in graphene. More recent reviews, apart from the
review by Abergel et al. (2010), concentrate on the subfields
of graphene research, which have themselves grown to a
considerable size and that require reviews of their own. As
an example, one may cite the review by Peres (2010), which
is concerned with transport properties of graphene, or that by

Kotov et al. (2010) on interaction effects. The present

theoretical review deals with electronic properties of gra-

phene in a strong magnetic field, and its scope is limited to

monolayer graphene. The vast amount of knowledge on

bilayer graphene certainly merits a review on its own.

A. The carbon atom and its hybridizations

In order to understand the crystallographic structure of

graphene and carbon-based materials in general, it is useful

to review the basic chemical bonding properties of carbon

atoms. The carbon atom possesses six electrons, which, in

the atomic ground state, are in the configuration 1s22s22p2,

i.e., two electrons fill the inner shell 1s, which is close to the

nucleus and is irrelevant for chemical reactions, and four

electrons occupy the outer shell of 2s and 2p orbitals.

Because the 2p orbitals (2px, 2py, and 2pz) are roughly

4 eV higher in energy than the 2s orbital, it is energetically

favorable to put two electrons in the 2s orbital and only two of
them in the 2p orbitals (Fig. 1). It turns out, however, that in the

presence of other atoms, such as, e.g., H, O, or other C atoms, it

is favorable to excite one electron from the 2s to the third 2p
orbital, in order to form covalent bonds with the other atoms.

In the excited state, we therefore have four equivalent

quantum-mechanical states j2si, j2pxi, j2pyi, and j2pzi. A
quantum-mechanical superposition of the state j2si with n
j2pji states is called spn hybridization. The sp1 hybridiza-

tion, for example, plays an important role in the context of

organic chemistry (such as the formation of acetylene) and

the sp3 hybridization gives rise to the formation of diamond,

a particular 3D form of carbon. Here, however, we are

interested in the planar sp2 hybridization, which is the basic

ingredient for the graphitic allotropes.
As shown in Fig. 2, the three sp2-hybridized orbitals are

oriented in the x–y plane and have mutual 120� angles. The

remaining unhybridized 2pz orbital is perpendicular to the

plane.
A prominent chemical example of this hybridization is the

benzene molecule, the chemical structure of which was ana-

lyzed by August Kekulé in 1865 (Kekulé, 1865; 1866). The

molecule consists of a hexagon with carbon atoms at the
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FIG. 1. Electronic configurations for carbon in the ground state

(left panel) and in the excited state (right panel).

1The neutrino example is only partially correct. The observed

oscillation between different neutrino flavors (�� $ ��) actually

requires a small nonzero mass (Fukuda et al., 1998).
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corners linked by � bonds [Fig. 2(b)]. Each carbon atom has,

furthermore, a covalent bond with one of the hydrogen atoms

which stick out from the hexagon in a starlike manner. In

addition to the six � bonds, the remaining 2pz orbitals form

three � bonds, and the resulting double bonds alternate with

single � bonds around the hexagon. Because a double bond is

stronger than a single� bond, onemay expect that the hexagon

is not perfect. Indeed, a double bond (C ¼ C) yields a carbon-
carbon distance of 0.135 nm,whereas it is 0.147 nm for a single

� bond (C–C). However, the measured carbon-carbon dis-

tance in benzene is 0.142 nm for all bonds, which is roughly the

average length of a single and a double bond. This equivalence

of all bonds in benzene was explained by Linus Pauling

in 1931 within a quantum-mechanical treatment of the ben-

zene ring (Pauling, 1960). The ground state is a quantum-

mechanical superposition of the two possible configurations

for the double bonds, as shown schematically in Fig. 2(c).
These chemical considerations indicate the approach to

carbon-based condensed-matter physics: Any graphitic com-

pound has a sheet of graphene as its basic constituent. The

graphene sheet may be viewed simply as a tiling of benzene

hexagons, where the hydrogen atoms are replaced by carbon

atoms to form a neighboring carbon hexagon [Fig. 2(d)].

However, graphene has remained the basic constituent of

graphitic systems for a long time only on the theoretical level.

From an experimental point of view, graphene is the youngest

known allotrope and has been accessible to electronic-

transport measurements only since 2004.
For a detailed discussion of the different fabrication tech-

niques for graphene, the most popular of which are the

exfoliation technique (Novoselov et al., 2005b) and thermal

graphitization of epitaxially grown SiC crystals (Berger

et al., 2004), we refer the reader to existing experimental

reviews (Geim and Novoselov, 2007; de Heer et al., 2007).

Note that, more recently, graphene has been fabricated on a

large scale by chemical vapor deposition (Reina et al., 2009),

which seems a promising technique not only for fundamental
research but also for technological applications.

B. Crystal structure of graphene

As mentioned in the preceding section, the carbon atoms in
graphene condense in a honeycomb lattice due to their sp2

hybridization. The honeycomb lattice is not a Bravais lattice
because two neighboring sites are inequivalent from a crys-
tallographic point of view.2 Figure 3(a) illustrates that a site
on the A sublattice has nearest neighbors (NNs) in the direc-
tions north-east, north-west, and south, whereas a site on the
B sublattice has NNs in the directions north, south-west, and
south-east. Both A and B sublattices, however, are triangular
Bravais lattices, and one may view the honeycomb lattice as a
triangular Bravais lattice with a two-atom basis (A and B).
The distance between NN carbon atoms is a ¼ 0:142 nm,
which is the average of the lenghts of the single (C–C) and
double (C ¼ C) covalent � bonds, as in the case of benzene.

The three vectors that connect a site on the A sublattice
with a NN on the B sublattice are given by

�1 ¼ a

2

� ffiffiffi
3

p
ex þ ey

�
;

�2 ¼ a

2

�
� ffiffiffi

3
p

ex þ ey
�
;

�3 ¼ �aey;

(1)

and the triangular Bravais lattice is spanned by the basis
vectors

a1 ¼
ffiffiffi
3

p
aex and a2 ¼

ffiffiffi
3

p
a

2

�
ex þ

ffiffiffi
3

p
ey
�
: (2)

The modulus of the basis vectors yields the lattice spacing

~a ¼ ffiffiffi
3

p
a ¼ 0:24 nm, and the area of the unit cell is

)b()a(

(c) (d)

120
o

H

H

H

C

C

C

H H

H

C

C

C

FIG. 2. (a) Schematic view of the sp2 hybridization. The orbitals

form angles of 120�. (b) Benzene molecule (C6H6). The six carbon

atoms are situated at the corners of a hexagon and form covalent

bonds with the H atoms. (c) Quantum-mechanical ground state of

the benzene ring: a superposition of two configurations that differ by

the positions of the � bonds. (d) Graphene viewed as a tiling of

benzene hexagons, where the H atoms are replaced by C atoms of

neighboring hexagons and the � electrons are delocalized over the

whole structure.
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FIG. 3. (a) Honeycomb lattice. The vectors �1, �2, and �3 connect

NN carbon atoms, separated by a distance a ¼ 0:142 nm. The

vectors a1 and a2 are basis vectors of the triangular Bravais lattice.

(b) Reciprocal lattice of the triangular lattice. Its primitive lattice

vectors are a�1 and a�2. The shaded region represents the first Brillouin
zone (BZ), with its center� and the two inequivalent cornersK (black

squares) and K0 (white squares). The thick part of the border of the

first BZ represents those points that are counted in its definition so

that no points are doubly counted. The first BZ, defined in a strict

manner, is thus the shaded region plus the thick part of the border. For

completeness, we have also shown the three inequivalent crystallo-

graphic points M, M0, and M00 (white triangles).

2This needs to be clearly distinguished from the chemical point of

view, according to which they may be equivalent, as in the case of

graphene where both types of site consist of carbon atoms.
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AUC ¼ ffiffiffi
3

p
~a2=2 ¼ 0:051 nm2. The density of carbon atoms

is, therefore, nC ¼ 2=AUC ¼ 39 nm�2 ¼ 3:9� 1015 cm�2.
Because there is one � electron per carbon atom that is not
involved in a covalent � bond, there are as many valence
electrons as carbon atoms, and their density is thus n� ¼
nC ¼ 3:9� 1015 cm�2. As discussed below, this density is
not equal to the carrier density in graphene, which one
measures in electric-transport measurements.

The reciprocal lattice, which is defined with respect to the
triangular Bravais lattice, is depicted in Fig. 3(b). It is
spanned by the vectors

a�1 ¼
2�ffiffiffi
3

p
a

�
ex �

eyffiffiffi
3

p
�

and a�2 ¼
4�

3a
ey: (3)

Physically, all sites of the reciprocal lattice represent equiva-
lent wave vectors. The first Brillouin zone [BZ, shaded region
and thick part of the border of the hexagon in Fig. 3(b)] is
defined as the set of inequivalent points in reciprocal space,
i.e., of points that may not be connected to one another by a
reciprocal lattice vector. The long-wavelength excitations are
situated in the vicinity of the � point, in the center of the first
BZ. Furthermore, one distinguishes the six corners of the first
BZ, which consist of the inequivalent points K and K0
represented by the vectors

�K ¼ � 4�

3
ffiffiffi
3

p
a
ex: (4)

The four remaining corners [shown in gray in Fig. 3(b)] may be
connected to one of these points via a translation by a recip-
rocal lattice vector. These crystallographic points play an
essential role in the electronic properties of graphene because
their low-energy excitations are centered around the two points
K andK0, as discussed in the following section.We emphasize,
because of some confusion in the literature on this point, that
the inequivalence of the two BZ corners K and K0 has nothing
to do with the presence of two sublattices A and B in the
honeycomb lattice. The form of the BZ is an intrinsic property
of the Bravais lattice, independent of the possible presence of
more than one atom in the unit cell. For completeness, we have
also shown, in Fig. 3(b), the three crystallographically inequi-
valent M points in the middle of the BZ edges.

C. Electronic band structure of graphene

As discussed in the preceding section, three electrons per
carbon atom in graphene are involved in the formation of
strong covalent � bonds and one electron per atom yields the
� bonds. The � electrons happen to be those responsible for
the electronic properties at low energies, whereas the �
electrons form energy bands far away from the Fermi energy
(Saito et al., 1998). This section is thus devoted to a brief
discussion of the energy bands of� electrons within the tight-
binding approximation, originally calculated for the honey-
comb lattice by Wallace (1947).

1. Tight-binding model for electrons on the honeycomb lattice

In the case of two atoms per unit cell, we may write down a
trial wave function

c kðrÞ ¼ akc
ðAÞ
k ðrÞ þ bkc

ðBÞ
k ðrÞ; (5)

where ak and bk are complex functions of the quasimomen-

tum k. Both c ðAÞ
k ðrÞ and c ðBÞ

k ðrÞ are Bloch functions with

c ðjÞ
k ðrÞ ¼ X

Rl

eik�Rl�ðjÞðrþ �j �RlÞ; (6)

where j ¼ A or B labels the atoms on the two sublattices A
and B, and �j is the vector that connects the sites of the

underlying Bravais lattice with the site of the j atom within
the unit cell. The �ðjÞðrþ �j �RlÞ are atomic orbital wave

functions for electrons that are in the vicinity of the j atom
situated at the positionRl � �j at the (Bravais) lattice siteRl.

Typically, one chooses the sites of one of the sublattices, e.g.,
the A sublattice, to coincide with the sites of the Bravais
lattice. Note that there is some arbitrariness in the choice of
the phase in Eq. (6): instead of choosing expðik �RlÞ, one
could also have chosen exp½ik � ðRl � �jÞ� for the atomic

wave functions. The choice, however, does not affect the
physical properties of the system, because it simply leads to
a redefinition of the weights ak and bk which acquire a
different relative phase (Bena and Montambaux, 2009).

With the help of these wave functions, we may now search
for the solutions of the Schrödinger equation Hc k ¼ �kc k.
Multiplication of the Schrödinger equation by c �

k from the

left yields c �
kHc k ¼ �kc

�
kc k, which may be rewritten in

matrix form with the help of Eq. (5)

ða�k; b�kÞH k

ak

bk

 !
¼ �kða�k; b�kÞSk

ak

bk

 !
: (7)

Here the Hamiltonian matrix is defined as

H k � c ðAÞ�
k Hc ðAÞ

k c ðAÞ�
k Hc ðBÞ

k

c ðBÞ�
k Hc ðAÞ

k c ðBÞ�
k Hc ðBÞ

k

0
@

1
A ¼ H y

k; (8)

and the overlap matrix

Sk � c ðAÞ�
k c ðAÞ

k c ðAÞ�
k c ðBÞ

k

c ðBÞ�
k c ðAÞ

k c ðBÞ�
k c ðBÞ

k

0
@

1
A ¼ Sy

k (9)

accounts for the nonorthogonality of the trial wave functions.
The eigenvalues �k of the Schrödinger equation yield the
electronic bands, and they may be obtained from the secular
equation

det½H k � ��kSk� ¼ 0; (10)

which must be satisfied for a nonzero solution of the wave
functions, i.e., for ak � 0 and bk � 0. The label � denotes
the energy bands, and it is clear that there are as many energy
bands as solutions of the secular equation (10), i.e., two bands
for the case of two atoms per unit cell.

a. Formal solution

Before turning to the specific case of graphene and its
energy bands, we formally solve the secular equation for
an arbitrary lattice with several atoms per unit cell. The
Hamiltonian matrix (8) may be written, with the help of
Eq. (6), as

H ij
k ¼ Nð�ðjÞsijk þ tijk Þ; (11)

where (�ij � �j � �i)
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sijk � X
Rl

eik�Rl

Z
d2r�ðiÞ�ðrÞ�ðjÞðrþ �ij �RlÞ ¼ Sij

k

N
;

(12)

and we have defined the hopping matrix

tijk � X
Rl

eik�Rl

Z
d2r�ðiÞ�ðrÞ�V�ðjÞðrþ �ij �RlÞ:

(13)

Here N is the number of unit cells, and we have separated
the Hamiltonian H into an atomic orbital part Ha ¼
�ðℏ2=2mÞ�þ Vðr�Rl þ �jÞ, which satisfies the eigen-

value equation Ha�ðjÞðrþ �j �RlÞ ¼ �ðjÞ�ðjÞ

ðrþ �j �RlÞ, and a ‘‘perturbative’’ part �V, which takes

into account the potential term that arises from all other atoms
different from that in the atomic orbital Hamiltonian.
Equation (11) was obtained from the fact that the atomic
wave functions �ðiÞðrÞ are eigenstates of the atomic
Hamiltonian Ha with the atomic energy �ðiÞ for an orbital of
type i. This atomic energy plays the role of an on-site energy.

The secular equation now reads det½tijk � ð��k � �ðjÞÞsijk � ¼ 0.
Note that, if the atoms on the different sublattices are all of the
same electronic configuration, one has �ðiÞ ¼ �0 for all i, and
one may omit this on-site energy, which yields only a constant
and physically irrelevant shift of the energy bands.

b. Solution for graphene with nearest-neighbor and

next-nearest-neighour hopping

After these formal considerations, we now study the par-
ticular case of the tight-binding model on the honeycomb
lattice, which yields the � energy bands of graphene. Because
all atomic orbitals are pz orbitals of carbon atoms, we may
omit the on-site energy �0, as discussed in the next section.
We choose the Bravais lattice vectors to be those of the A
sublattice, i.e., �A ¼ 0, and the equivalent site on the B
sublattice is obtained by the displacement �B ¼ �AB ¼ �3

(see Fig. 4). The NN hopping amplitude is given by

t �
Z

d2r�A�ðrÞ�V�Bðrþ �3Þ; (14)

and we also take into account next-nearest-neighbor (NNN)
hopping, which connects neighboring sites on the same sub-
lattice,

tNNN �
Z

d2r�A�ðrÞ�V�Aðrþ a1Þ: (15)

Note that any other vector, �j or a2, could be chosen in

the calculation of the hopping amplitudes. Because of the
normalization of the atomic wave functions, we haveR
d2r�ðjÞ�ðrÞ�ðjÞðrÞ ¼ 1, and we consider furthermore the

overlap correction between orbitals on NN sites,

s �
Z

d2r�A�ðrÞ�Bðrþ �3Þ: (16)

We neglect overlap corrections between all other orbitals
which are not NN, as well as hopping amplitudes for dis-
tances larger than NNN.

If we now consider an arbitrary site A on the A sublattice
(Fig. 4), we can see that the off-diagonal terms of the hopping
matrix (13) consist of three terms corresponding to the NN
B1, B2, and B3, all of which have the same hopping amplitude
t. However, only the site B3 is described by the same lattice
vector (shifted by �3) as the site A and thus yields a zero
phase to the hopping matrix. The sites B1 and B2 correspond
to lattice vectors shifted by a2 and a3 � a2 � a1, respec-
tively. Therefore, they contribute a phase factor expðik � a2Þ
and expðik � a3Þ, respectively. The off-diagonal elements of
the hopping matrix may then be written as3 tABk ¼ t	�

k ¼
ðtBAk Þ�, as well as those of the overlap matrix sABk ¼ s	�

k ¼
ðsBAk Þ�, (sAAk ¼ sBBk ¼ 1, due to the above-mentioned normal-

ization of the atomic wave functions), where we have defined
the sum of the NN phase factors,

	k � 1þ eik�a2 þ eik�a3 : (17)

The NNN hopping amplitudes yield the diagonal elements of
the hopping matrix,

tAAk ¼ tBBk ¼ 2tNNN
X3
i¼1

cosðk � aiÞ ¼ tNNNðj	kj2 � 3Þ;

(18)

and one obtains thus the secular equation

det
tAAk � �k ðt� s�kÞ	�

k

ðt� s�kÞ	k tAAk � �k

" #
¼ 0 (19)

with the two solutions (� ¼ �)

��k ¼ tAAk þ �tj	kj
1þ �sj	kj : (20)

Equation (20) may be expanded under the reasonable as-
sumptions s 	 1 and tNNN 	 t, which we further justify at
the end of this section,

��k ’ tAAk þ �tj	kj � stj	kj2 ¼ t0NNNj	kj2 þ �tj	kj

¼ t0NNN
�
3þ 2

X3
i¼1

cosðk � aiÞ
�

þ �t

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3þ 2

X3
i¼1

cosðk � aiÞ
vuut ; (21)

a

a

a

A

B B

B

12

3

2

1

3

δ3

FIG. 4. Tight-binding model for the honeycomb lattice.

3The hopping matrix element tABk corresponds to a hopping from

the B to the A sublattice.
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where we have defined the effective NNN hopping amplitude
t0NNN � tNNN � st and omitted the unimportant constant

�3tNNN in the second step. Therefore, the overlap corrections
simply yield a renormalization of the NNN hopping ampli-
tudes. The hopping amplitudes may be determined by fitting
the energy dispersion (21) obtained within the tight-binding
approximation to those calculated numerically in more so-
phisticated band-structure calculations (Partoens and Peeters,
2006) or to spectroscopic measurements (Mucha-Kruczyński
et al., 2008). These yield a value of t ’ �3 eV for the NN
hopping amplitude and t0NNN ’ 0:1t, which justifies the

above-mentioned expansion for t0NNN=t 	 1. Note that this

fitting procedure does not allow for a distinction between the
‘‘true’’ NNN hopping amplitude tNNN and the contribution
from the overlap correction �st. We therefore omit this
distinction in the following discussion and drop the prime
on the effective NNN hopping amplitude, but one should keep
in mind that it is an effective parameter with a contribution
from NN overlap corrections.

c. Energy dispersion of � electrons in graphene

The energy dispersion (21) is plotted in Fig. 5 for tNNN=t ¼
0:1. It consists of two bands, labeled by the index � ¼ �,
each of which contains the same number of states. Because
each carbon atom contributes one � electron and each elec-
tron may occupy either a spin-up or a spin-down state, the
lower band with � ¼ � (the � or valence band) is completely
filled and that with � ¼ þ (the �� or conduction band)
completely empty. The Fermi level is, therefore, situated at
the points, called Dirac points, where the � band touches the
�� band. Note that only if tNNN ¼ 0 is the energy dispersion
(21) electron-hole symmetric, i.e., ��k ¼ ����

k . This means

that NNN hopping and NN overlap corrections break the
electron-hole symmetry. The Dirac points are situated at the
points kD where the energy dispersion (21) is zero,

��
kD ¼ 0: (22)

Equation (22) is satisfied when 	kD ¼ 0, i.e., when

Re	kD ¼ 1þ cos

� ffiffiffi
3

p
a

2
ðkDx þ ffiffiffi

3
p

kDy Þ
�

þ cos

� ffiffiffi
3

p
a

2
ð�kDx þ ffiffiffi

3
p

kDy Þ
�
¼ 0 (23)

and, equally,

Im	kD ¼ sin

� ffiffiffi
3

p
a

2
ðkDx þ ffiffiffi

3
p

kDy Þ
�

þ sin

� ffiffiffi
3

p
a

2
ð�kDx þ ffiffiffi

3
p

kDy Þ
�
¼ 0: (24)

Equation (24) may be satisfied by the choice kDy ¼ 0, and

Eq. (23) is thus satisfied when

1þ 2 cos

� ffiffiffi
3

p
a

2
kDx

�
¼ 0 ) kDx ¼ � 4�

3
ffiffiffi
3

p
a
: (25)

Comparison with Eq. (4) shows that there are thus two
inequivalent Dirac points D and D0, which are situated at
the points K and K0, respectively,

kD ¼ �K ¼ � 4�

3
ffiffiffi
3

p
a
ex: (26)

Although they are situated at the same position in the first
BZ, it is useful to make a clear conceptual distinction
between the Dirac points D and D0, which are defined as
the contact points between the two bands � and ��, and
the crystallographic points K and K0, which are defined
as the corners of the first BZ. There are indeed situations
where the Dirac points move away from the points K and
K0, as we discuss in Sec. I.D.

Note that the band Hamiltonian (8) respects time-reversal
symmetry, H k ¼ H �

�k, which implies ��k ¼ �k for the

dispersion relation. Therefore, if kD is a solution of �k ¼ 0,
so is �kD, and Dirac points thus necessarily occur in
pairs. In graphene, there is one pair of Dirac points, and
the zero-energy states are therefore doubly degenerate.
One speaks of a twofold valley degeneracy, which survives
when we consider low-energy electronic excitations that
are restricted to the vicinity of the Dirac points, as dis-
cussed in Sec. I.C.2.

d. Effective tight-binding Hamiltonian

Before considering the low-energy excitations and the
continuum limit, it is useful to define an effective tight-
binding Hamiltonian,

H k � tNNNj	kj21þ t
0 	�

k

	k 0

 !
: (27)

Here 1 represents the 2� 2 one-matrix

1 ¼ 1 0

0 1

 !
: (28)

This Hamiltonian effectively omits the problem of nonortho-
gonality of the wave functions by a simple renormalization of
the NNN hopping amplitude, as mentioned above. It is there-
fore simpler to treat than the original one (8), the eigenvalue

FIG. 5 (color online). Energy dispersion as a function of the wave-

vector components kx and ky, obtained within the tight-binding

approximation, for tNNN=t ¼ 0:1. The valence (�) band is distin-

guished from the conduction (��) band. The Fermi level is situated

at the points where the � band touches the �� band. The energy is

measured in units of t and the wave vector in units of 1=a.
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equation of which involves the overlap matrix Sk, while it
yields the same dispersion relation (21). The eigenstates of
the effective Hamiltonian (27) are the spinors

��
k ¼ a�k

b�k

 !
; (29)

the components of which are the probability amplitudes of the
Bloch wave function (5) on the two different sublattices
A and B. They may be determined by considering the eigen-
value equation H kðtNNN ¼ 0Þ��

k ¼ �tj	kj��
k, which does

not take into account the NNN hopping correction. Indeed,
these eigenstates are also those of the Hamiltonian with
tNNN � 0 because the NNN term is proportional to the one-
matrix 1. The solution of the eigenvalue equation yields

a�k ¼ �
	�
k

j	kj b
�
k ¼ �e�i’kb�k (30)

and thus the eigenstates

��
k ¼ 1ffiffiffi

2
p 1

�ei’k

 !
; (31)

where ’k ¼ arctanðIm	k=Re	kÞ.
As one might have expected, the spinor represents an equal

probability to find an electron in the state ��
k on the A as on

the B sublattice, because both sublattices are built from
carbon atoms with the same on-site energy �ðiÞ.

2. Continuum limit

In order to describe the low-energy excitations, i.e., elec-
tronic excitations with an energy that is much smaller than the
bandwidth 
jtj, one may restrict the excitations to quantum
states in the vicinity of the Dirac points and expand the
energy dispersion around �K. The wave vector is thus
decomposed as k ¼ �Kþ q, where jqj 	 jKj 
 1=a. The
small parameter that governs the expansion of the energy
dispersion is therefore jqja 	 1.

It is evident from the form of the energy dispersion (21)
and the effective Hamiltonian that the basic entity to be
expanded is the sum of the phase factors 	k. As mentioned,
there is some arbitrariness in the definition of 	k, as a
consequence of the arbitrary choice of the relative phase
between the two sublattice components: indeed, a change
	k ! 	k expðifkÞ in Eq. (17) for a real and nonsingular
function fk does not affect the dispersion relation (21), which
depends only on the modulus of the phase-factor sum. For the
series expansion, it turns out to be more convenient not to use
Eq. (17), but one with fk ¼ k � �3, which renders the ex-
pression more symmetric (Bena and Montambaux, 2009),

eik��3	k ¼ eik��1 þ eik��2 þ eik��3 : (32)

In the series expansion, furthermore, we need to distin-
guish the sum at the K point from that at the K0 point,

	�
q � eik��3	k¼�Kþq ¼ X3

j¼1

e�iK��jeiq��j

’ e�i2�=3

�
1þ iq � �1 � 1

2
ðq � �1Þ2

�

þ e�i2�=3

�
1þ iq � �2 � 1

2
ðq � �2Þ2

�

þ
�
1þ iq � �3 � 1

2
ðq � �3Þ2

�
¼ 	�ð0Þ

q þ 	�ð1Þ
q þ 	�ð2Þ

q : (33)

By definition of the Dirac points and their positions at the BZ

corners K and K0, we have 	�ð0Þ
q ¼ 	�K ¼ 0. We limit the

expansion to second order in jqja.

a. First order in jqja
The first-order term is given by

	�ð1Þ
q ¼ i

a

2

h� ffiffiffi
3

p
qx þ qy

�
e�i2�=3 �

� ffiffiffi
3

p
qx � qy

�
e�i2�=3

i
� iqya ¼ � 3a

2
ðqx � iqyÞ; (34)

which is obtained using sinð�2�=3Þ ¼ � ffiffiffi
3

p
=2 and

cosð�2�=3Þ ¼ �1=2. This yields the effective low-energy
Hamiltonian

H eff;

q ¼ 
ℏvFðqx�x þ 
qy�

yÞ; (35)

where we have defined the Fermi velocity4

vF � � 3ta

2ℏ
¼ 3jtja

2ℏ
(36)

and used the Pauli matrices

�x ¼ 0 1

1 0

 !
and �y ¼ 0 �i

i 0

 !
: (37)

Furthermore, we have introduced the valley pseudospin

 ¼ �, where 
 ¼ þ denotes the K point at þK and

 ¼ � the K0 point at�K modulo a reciprocal lattice vector.
The low-energy Hamiltonian (35) does not take into account
NNN hopping corrections, which are proportional to j	kj2
and thus occur only in the second-order expansion of the
energy dispersion [at OðjqjaÞ2]. The energy dispersion (21)
therefore reads

��q;
¼� ¼ �ℏvFjqj; (38)

independent of the valley pseudospin 
. We have already
alluded to this twofold valley degeneracy in Sec. I.C.1, in the
framework of the discussion of the zero-energy states at the
BZ corners. From Eq. (38), it is apparent that the continuum
limit jqja 	 1 coincides with the limit j�j 	 jtj, as de-
scribed above, because j�qj ¼ 3tajqj=2 	 jtj then.

4The minus sign in the definition is added to render the Fermi

velocity positive, because the hopping parameter t ’ �3 eV hap-

pens to be negative, as mentioned in the last section.
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It is convenient to exchange the spinor components at the
K0 point (for 
 ¼ �),

�k;
¼þ ¼ c A
k;þ

c B
k;þ

 !
; �k;
¼� ¼ c B

k;�
c A

k;�

 !
; (39)

i.e., to invert the role of the two sublattices. In this case, the
effective low-energy Hamiltonian may be represented as

H eff;

q ¼ 
ℏvFðqx�x þ qy�

yÞ ¼ ℏvF�
z � q � �; (40)

i.e., as two copies of the 2D Dirac Hamiltonian HD ¼ vFp �
� (with the momentum p ¼ ℏq), where in the last line we
have introduced the four-spinor representation

�q ¼

c A
q;þ

c B
q;þ

c B
q;�

c A
q;�

0
BBBBBB@

1
CCCCCCA (41)

via the 4� 4 matrices

�z � � ¼ � 0

0 ��

 !
; (42)

and � � ð�x; �yÞ. In this four-spinor representation, the first
two components represent the lattice components at the K
point and the last two components those at the K0 point. We
emphasize that one must clearly distinguish two types of
pseudospin: (a) The sublattice pseudospin is represented by
the Pauli matrices �j, where ‘‘spin up’’ corresponds to the
component on one sublattice and ‘‘spin down’’ to that on the
other one. A rotation within the SU(2) sublattice pseudospin
space yields the band indices � ¼ �, and the band index is
thus intimately related to the sublattice pseudospin. (b) The
valley pseudospin, which is described by a second set of Pauli
matrices �j, the z component of which appears in the
Hamiltonian (40), is due to the twofold valley degeneracy
and is only indirectly related to the presence of two
sublattices.

The eigenstates of the Hamiltonian (40) are the four-
spinors

�
¼þ
q;� ¼ 1ffiffiffi

2
p

1

�ei’q

0

0

0
BBBBB@

1
CCCCCA; �
¼�

q;� ¼ 1ffiffiffi
2

p

0

0

1

��ei’q

0
BBBBB@

1
CCCCCA;

(43)

where

’q ¼ arctan

�
qy
qx

�
: (44)

b. Chirality

In high-energy physics, one defines the helicity of a parti-
cle as the projection of its spin onto the direction of propa-
gation (Weinberg, 1995),

�q ¼ q � �
jqj ; (45)

which is a Hermitian and unitary operator with the eigenval-
ues � ¼ �, �qj� ¼ �i ¼ �j� ¼ �i. Note that � de-

scribes, in this case, the true physical spin of the particle.
In the absence of a mass term, the helicity operator commutes
with the Dirac Hamiltonian, and the helicity is therefore a
good quantum number, e.g., in the description of neutrinos,
which have approximately zero mass. One finds in nature that
all neutrinos are ‘‘left handed’’ (� ¼ �), i.e., their spin is
antiparallel to their momentum, whereas all antineutrinos are
‘‘right handed’’ (� ¼ þ).

For massive Dirac particles, the helicity operator (45) no
longer commutes with the Hamiltonian. One may, however,
decompose a quantum state j�i describing a massive Dirac
particle into its chiral components, with the help of the
projectors

j�Li ¼
1� �q

2
j�i and j�Ri ¼

1þ �q

2
j�i: (46)

In the case of massless Dirac particles, with a well-defined
helicity j�i ¼ j� ¼ �i, one simply finds

j�þ
L i ¼

1� �q

2
jþi ¼ 0;

j�þ
R i ¼

1þ �q

2
jþi ¼ jþi

(47)

and

j��
L i ¼

1� �q

2
j�i ¼ j�i;

j��
R i ¼

1þ �q

2
j�i ¼ 0;

(48)

such that one may then identify the helicity and chirality.
Because we are concerned with massless particles in the
context of graphene, we make this identification in the re-
mainder of this review and use the term chirality.

For the case of graphene, one may use the same definition
(45), but the Pauli matrices define now the sublattice pseu-
dospin instead of the true spin. The operator �q clearly

commutes with the massless 2D Dirac Hamiltonian (40),
and one may even express the latter as

H eff;

q ¼ 
ℏvFjqj�q; (49)

which takes into account the twofold valley degeneracy, in
terms of the valley pseudospin 
 ¼ �. The band index �,
which describes the valence and conduction bands, is there-
fore entirely determined by the chirality and the valley pseu-
dospin, and one finds

� ¼ 
�; (50)

which is depicted in Fig. 6.
We note that the chirality is a preserved quantum number

in elastic scattering processes induced by impurity potentials
Vimp ¼ VðrÞ1 that vary smoothly on the lattice scale. In this

case, intervalley scattering is suppressed and the chirality thus
conserved, as a consequence of Eq. (50). This effect gives rise
to the absence of backscattering in graphene (Shon and Ando,
1998) and is at the origin of Klein tunneling, according to
which a massless Dirac particle is fully transmitted, under
normal incidence, through a high electrostatic barrier without
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being reflected (Katsnelson et al., 2006). This rather counter-
intuitive result was first considered as a paradox and led to the
formulation of a charged vacuum in the potential barrier
(Klein, 1929), which may be identified in the framework of
band theory with a Fermi level in the valence band.

c. Higher orders in jqja
Although most of the fundamental properties of graphene

are captured within the effective model obtained at first order
in the expansion of the energy dispersion, it is useful to take
into account second-order terms. These corrections include
NNN hopping corrections and off-diagonal second-order
contributions from the expansion of 	k. The latter yield the
so-called trigonal warping, which consists of an anisotropy in
the energy dispersion around the Dirac points.

The diagonal second-order term, which stems from the
NNN hopping, is readily obtained from Eq. (34),

H 

NNN ¼ tNNNj	


qj21 ’ tNNNj	
ð1Þ
q j21 ¼ 9a2

4
tNNNjqj21;

(51)

independent of the valley index 
.

The off-diagonal second-order terms are t	
ð2Þ
q ¼

�ℏvFaðqx � i
qyÞ2=4. Note that there is a natural energy

hierarchy between the diagonal and off-diagonal second-
order terms when compared to the leading linear term;
whereas the off-diagonal terms are of OðjqjaÞ as compared
to the energy scale ℏvFjqj, the diagonal term is of
OððtNNN=tÞjqjaÞ and thus roughly an order of magnitude
smaller. We therefore take into account the off-diagonal

third-order term t	
ð3Þ
q ¼ �
ℏvFa

2ðqx þ i
qyÞjqj2=8, which
also needs to be considered when calculating the high-energy
corrections of the energy levels in a magnetic field (see
Sec. II.B). Up to third order, the off-diagonal terms therefore
read

t	

q ¼ 
ℏvF

�
ðqx þ i
qyÞ � 


a

4
ðqx � i
qyÞ2

� a2

8
jqj2ðqx þ i
qyÞ

�
; (52)

where one may omit the valley-dependent sign before the y
components of the wave vector by sweeping the sublattice
components in the spinors when changing the valley.

In order to appreciate the influence of the second-order off-
diagonal term on the energy bands, we need to calculate the

modulus of 	

q,

j	

qj ’ 3a

2
jqj
�
1� 


jqja
4

cosð3’qÞ
�
; (53)

where we used the parametrization qx ¼ jqj cos’q and

qy ¼ jqj sin’q, and restricted the expansion to second order.

Finally, the energy dispersion (21) expanded to second order
in jqja reads

��q;
 ¼ 9a2

4
tNNNjqj2 þ �ℏvFjqj

�
1� 


jqja
4

cosð3’qÞ
�
:

(54)

As mentioned in Sec. I.C.1, it is apparent from Eq. (54) that
the NNN correction breaks the electron-hole symmetry
���
q;
 ¼ ���q;
. This is, however, a rather small correction,

of order jqjatNNN=t, to the first-order effective Hamiltonian
(40). The second-order expansion of the phase-factor sum 	q

yields a more relevant correction, the third term in Eq. (54),
that is of order jqja  jqjatNNN=t, to the linear theory. It
depends explicitly on the valley pseudospin 
 and renders the
energy dispersion anisotropic in q around the K and K0
points. The tripling of the period, due to the term cosð3’qÞ,
is a consequence of the symmetry of the underlying lattice
and is precisely the origin of trigonal warping, as mentioned.

The trigonal warping of the dispersion relation is visual-
ized in Fig. 7, where we have plotted the contours of constant
(positive) energy in Fourier space. The closed energy con-
tours around the K and K0 points at low energy are separated
from the high-energy contours around the � point by the
dashed lines in Fig. 7(a) at energy jtþ tNNNj, the crossing
points of which correspond to the M points. As mentioned,
the dispersion relation has saddle points at these points at the

0
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FIG. 6. Relation between band index �, valley pseudospin 
, and

chirality � in graphene.

-3 -2 -1 1 2 3

-3

-2

-1

1

2

3

-0.4 -0.2 0.2 0.4

-0.4

-0.2

0.2

0.4

(a) (b)

K’K’ K

q

k

k

x

y

y

xq

1eV

1.5eV

2eV

Γ

FIG. 7. Contours of constant-(positive-) energy in reciprocal

space. (a) Contours obtained from the full dispersion relation

(21). The dashed line corresponds to the energy tþ tNNN, which
separates closed orbits around the K and K0 points (black lines, with
energy � < tþ tNNN) from those around the � point (gray lines,

with energy � > tþ tNNN). (b) Comparison of the contours at

energy � ¼ 1, 1.5, and 2 eV around the K0 point. The black lines

correspond to the energies calculated from the full dispersion

relation (21) and the gray ones to those calculated to second order

within the continuum limit (54).
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border of the first BZ, which yield van Hove singularities in
the density of states. In Fig. 7(b), we compare constant-
energy contours of the full dispersion relation to those
obtained from Eq. (54) calculated within a second-order
expansion. The contours are indistinguishable for an energy
of � ¼ jtj=3 ’ 1 eV, and the continuum limit yields rather
accurate results up to energies as large as 2 eV. Note that, in
today’s exfoliated graphene samples on SiO2 substrates, one
may probe, by field-effect doping of the graphene sheet,
energies which are on the order of 100 meV. Above these
energies the capacitor breaks down, and Fig. 7(a) indicates
that the continuum limit (54) yields extremely accurate re-
sults at these energies.

We finally mention that, when higher-order terms in jqja
are taken into account, the chirality operator (45) no longer
commutes with the Hamiltonian. Chirality is therefore a good
quantum number only in the vicinity of the Dirac points.

D. Deformed graphene

In the preceding section, we considered a perfect honey-
comb lattice, which is invariant under a 2�=3 rotation. As a
consequence, all hopping parameters along the NN bonds �j

were equal. An interesting situation arises when the graphene
sheet is deformed, such that rotational symmetry is broken. In
order to illustrate the consequences, we apply a uniaxial
strain in the y direction,5 a ! a0 ¼ aþ �a, in which case
one obtains a quinoid-type deformation (Fig. 8). The hopping
t0 along �3 is then different from that t along �1 and �2

(Hasegawa et al., 2006; Zhu, et al., 2007; Dietl et al., 2008;
Goerbig et al., 2008; Wunsch et al., 2008; Farjam and Rafii-
Tabar, 2009),

t ! t0 ¼ tþ @t

@a
�a: (55)

Furthermore, four of six NNN hopping integrals are also
affected by the strain (see Fig. 8),

tNNN ! t0NNN ¼ tNNN þ @tNNN
@a

�a: (56)

If one considers a moderate deformation � � �a=a 	 1,
the effect on the hopping amplitudes may be estimated with
the help of Harrison’s law (Harrison, 1981), according to
which t ¼ Cℏ2=ma2, where C is a numerical prefactor of
order 1. One therefore finds a value

@t

@a
¼ � 2t

a

�4:3 eV= �A and t0 ¼ tð1� 2�Þ (57)

which coincides well with the value @t=@a ’ 5 eV= �A, that
may be found in the literature (Dillon et al., 1977; Saito
et al., 1998). The estimation of the modified NNN hopping
integral t0NNN is slightly more involved. One may use a law

tNNNðb; aÞ � tðaÞ exp½�ðb� aÞ=dðaÞ� familiar in the context
of the extended Hückel model (Salem, 1966), where b is the
NNN distance and d � a=3:5 � 0:4 �A is a characteristic

distance related to the overlap of atomic orbitals. In unde-

formed graphene, one has b ¼ a
ffiffiffi
3

p
, whereas in quinoid-type

graphene b0 ¼ bð1þ "=2Þ, which gives

t0NNN ¼ tNNNð1� 2"þ b"=2dÞ: (58)

The electronic properties of quinoid-type graphene may
then be described in terms of an effective Hamiltonian of the
type (27)

H k ¼ tNNNhk1þ t
0 ~	�

k

~	k 0

� �
; (59)

with (Goerbig et al., 2008)

hk ¼ 2 cos
ffiffiffi
3

p
kxaþ 2

t0NNN
tNNN

�
cos

� ffiffiffi
3

p
kxa

2
þ kya

�
3

2
þ �

��

þ cos

�
�

ffiffiffi
3

p
kxa

2
þ kya

�
3

2
þ �

��	
; (60)

and the off-diagonal elements

~	k ¼ 2eikyað3=2þ�Þ cos
� ffiffiffi

3
p
2

kxa

�
þ ð1� 2�Þ: (61)

The resulting energy dispersion

��k ¼ tNNNhk þ �tj~	kj (62)

is plotted in Fig. 9 for an unphysically large deformation,
� ¼ 0:4, for illustration reasons. Note that the reversible
deformations are limited by a value of �
 0:1–0:2 beyond
which the graphene sheet cracks (Lee et al., 2008). One
notices, in Fig. 9, two effects of the deformation: (i) the Dirac
points no longer coincide with the corners of the first BZ, the
form of which is naturally also modified by the deformation;
and (ii) the cones in the vicinity of the Dirac points are tilted,
i.e., the NNN hopping term (60) already breaks the electron-
hole symmetry at linear order in jqja. These two points are
discussed in more detail in the following sections.
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FIG. 8. Quinoid-type deformation of the honeycomb lattice; the

bonds parallel to the deformation axis (double arrow) are modified.

The shaded region indicates the unit cell of the oblique lattice,

spanned by the lattice vectors a1 and a2. Dashed and dash-dotted

lines indicate next-nearest neighbors, with characteristic hopping

integrals tNNN and t0NNN, respectively, which are different due to the

lattice deformation.

5In our simplified model, we consider only one bond length to be

changed by the strain. The more general case has been considered

by Pereira et al. (2009). However, the main effects are fully visible

in the simplified model.
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1. Dirac point motion

In order to evaluate quantitatively the position of the Dirac
points, which are defined as the contact points between the
valence (� ¼ �) and conduction (� ¼ þ) bands, one needs
to solve the equation ~	kD ¼ 0, in analogy with the case of
undeformed graphene discussed in Sec. I.C.1. One then finds

kDy ¼ 0 and kDx a ¼ 

2ffiffiffi
3

p arccos

�
� t0

2t

�
; (63)

where the valley index 
 ¼ � denotes again the two inequi-
valent Dirac points D and D0, respectively. As mentioned, the
Dirac points D and D0 coincide, for undistorted graphene,
with the crystallographic points K and K0, respectively, at the
corners of the first BZ. The distortion makes both pairs of
points move in the same direction due to the negative value of
@t=@a. However, unless the parameters are fine-tuned, this
motion is different, and the two pairs of points no longer
coincide.

One further notes that Eq. (63) has (two) solutions only for
t0 � 2t. Indeed, the two Dirac points merge at the character-
istic point M00 at the border of the first BZ (see Fig. 3). The
point t0 ¼ 2t is special insofar as it characterizes a topological
phase transition between a semimetallic phase (for t0 < 2t)
with a pair of Dirac cones and a band insulator (for t0 > 2t)
(Dietl et al., 2008; Wunsch et al., 2008; Esaki et al., 2009;
Pereira et al., 2009; Montambaux et al., 2009a; 2009b). In
the vicinity of the transition, one may expand the Hamiltonian
(59) around the merging point M00 (Montambaux et al.,
2009a; 2009b), and one finds6

HM
q ¼ 0 �þ ℏ2q2x

2m� � iℏcqy

�þ ℏ2q2x
2m� þ iℏcqy 0

0
@

1
A (64)

in terms of the mass m� ¼ 2ℏ2=3ta2 and the velocity c ¼
3ta=ℏ (Montambaux et al., 2009b). The gap parameter � ¼
t0 � 2t changes its sign at the transition: it is negative in the
semimetallic and positive in the insulating phase, where it
describes a true gap (Fig. 10).

The Hamiltonian (64) has a particular form in the vicinity
of the merging points: it is linear in the qy direction, as one

would expect for Dirac points, but it is quadratic in the qx
direction (Dietl et al., 2008). This is a general feature of
merging points, which may only occur at the � point or else at
half a reciprocal lattice vector G=2, i.e., in the center of a BZ
border line (such as the M points) (Montambaux et al.,
2009a). Indeed, one may show that, in the case of a time-
reversal-symmetric Hamiltonian, the Fermi velocity in the x
direction then vanishes so that one must take into account the
quadratic order in qx in the energy band. Note that such
hybrid semi-Dirac points, with a linear-parabolic dispersion
relation, are inaccessible in graphene because unphysically
large strains would be required (Lee et al., 2008; Pereira
et al., 2009). However, such points may exist in other physi-
cal systems such as cold atoms in optical lattices (Zhao and
Paramekanti, 2006; Zhu, et al., 2007; Hou, et al., 2009;
Wunsch et al., 2008; Lee et al., 2009), the quasi-2D organic
material � ðBEDT-TTFÞ2I3 [where BEDT-TTF is bis
(ethylenedithio) tetrathiofulvane] (Katayama et al., 2006;
Kobayashi et al., 2007), or VO2=TiO2 heterostructures
(Banerjee et al., 2009).

2. Tilted Dirac cones

Another aspect of quinoid-type deformed graphene, and a
consequence of the fact that the Dirac points no longer
coincide with the BZ corners K and K0 of high crystallo-
graphic symmetry, is the tilt of the Dirac cones. This may be
appreciated when the Hamiltonian (59) is expanded to linear

FIG. 9 (color online). Band dispersion of the quinoid-type

deformed honeycomb lattice, for a lattice distortion of �a=a ¼
�0:4, with t ¼ 3 eV, tNNN=t ¼ 0:1, @t=@a ¼ �5 eV= �A, and

@tNNN=@a ¼ �0:7 eV= �A. The inset shows a close up on one of

the Dirac points D0.

FIG. 10 (color online). Topological semimetal-insulator transition

in the model (64) driven by the gap parameter �. (a) Two well-

separated Dirac cones for � 	 0, as for graphene. (b) The Dirac

points move towards a single point when the modulus of the

(negative) gap parameter is lowered. (c) The two Dirac points

merge into a single point at the transition (� ¼ 0). The band

dispersion remains linear in the qy direction while it becomes

parabolic in the qx direction. (d) Beyond the transition (�> 0),

the (parabolic) bands are separated by a band gap � (insulating

phase). From Montambaux et al. 2009a.

6We do not consider the diagonal part of the Hamiltonian, here,

i.e., we choose tNNN ¼ 0, because it does not affect the position of

the Dirac points.
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order around the Dirac points 
kD, instead of around the
point M00 as in the last section. In contrast to the undeformed
case (51), the diagonal components hk now yield a linear
contribution (Goerbig et al., 2008) tNNNh
kDþq1 ’ 
ℏw0 �
q1, in terms of the tilt velocity

w0x ¼ 2
ffiffiffi
3

p
ℏ

ðtNNNa sin2�þ t0NNNa sin�Þ
and w0y ¼ 0; (65)

where � � arccosð�t0=2tÞ. The linear model is therefore
described by the Hamiltonian7

H 

q ¼ 
ℏðw0 � q1þ wxqx�

x þ wyqy�
yÞ; (66)

with the renormalized anisotropic velocities

wx ¼
ffiffiffi
3

p
ta

ℏ
sin� and wy ¼ 3

2

t0a
ℏ

�
1þ 2

3
�

�
:

Diagonalization of the Hamiltonian (66) yields the disper-
sion relation

�
�ðqÞ ¼ ℏw0 � qþ �ℏ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w2

xq
2
x þ w2

yq
2
y

q
; (67)

and one notes that the first term (ℏw0 � q) indeed breaks the

symmetry �
�ðqÞ ¼ �
�ð�qÞ in each valley, i.e., it tilts the

Dirac cones in the direction opposite to w0, as well as
the electron-hole symmetry ��ðqÞ ¼ ����ðqÞ at the same
wave vector.8 The linearity in q of the generalized Weyl

Hamiltonian (66) satisfies only the symmetry H 

q¼

�H 
�q inside each valley.

Furthermore, one notes that the chiral symmetry is
preserved even in the presence of the tilt term if one

redefines the chirality operator (45) as �q ¼ ðwxqx�
x þ

wyqy�
yÞ=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w2

xq
2
x þ w2

yq
2
y

q
, which naturally commutes with

the Hamiltonian (66). The eigenstates of the chirality operator
are still given by

c � ¼ 1ffiffiffi
2

p 1
�e�i’q

� �
(68)

with tan’k � wyqy=wxqx, and one notes that these states are

also the natural eigenstates of the Hamiltonian (66).
One finally notes that not all values of the tilt parameter w0

are physical. In order to be able to associate � ¼ þ with a
positive and � ¼ � to a negative-energy state, one must
fulfill the condition

~w0 < 1 (69)

in terms of the tilt parameter

~w0 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
w0x

wx

�
2 þ

�
w0y

wy

�
2

s
: (70)

In the particular case of the deformation on the y axis, which
is discussed here and in which case w0y ¼ 0 [see Eq. (65)],

the general form of the tilt parameter reduces to ~w0 ¼
w0x=wx. Unless this condition is fulfilled, the isoenergetic
lines are no longer ellipses but hyperbolas. In quinoid-type
deformed graphene, the tilt parameter may be evaluated as
(Goerbig et al., 2008)

~w0 ¼ 2

�
tNNN
t

sin2�

sin�
þ t0NNN

t

�
’ 2

t2
ðtt0NNN � t0tNNNÞ

’ 0:6�; (71)

where we have used Eqs. (57) and (58). Even at moderate
deformations (� < 0:1), the tilt of the Dirac cones is on the
order of 5%, and one may therefore hope to observe the
effect, e.g., in angle-resolved photoemission spectroscopy
measurements (Damascelli, 2004) which have been success-
fully applied to epitaxial graphene (Bostwick et al., 2007)
and graphitic samples (Zhou et al., 2006). Note that the Dirac
cones are naturally tilted in � ðBEDT-TTFÞ2I3 (Katayama
et al., 2006; Kobayashi et al., 2007), where the Dirac points
occur at positions of low crystallographic symmetry within
the first BZ.

II. DIRAC EQUATION IN A MAGNETIC FIELD AND THE

RELATIVISTIC QUANTUM HALL EFFECT

As mentioned in the Introduction, a key experiment in
graphene research was the discovery of a particular quantum
Hall effect (Zhang et al., 2005; Novoselov et al., 2005a),
which unveiled the relativistic nature of low-energy electrons
in graphene. For a deeper understanding of this effect and as a
basis for the subsequent parts of the paper, we discuss here
relativistic massless 2D fermions in a strong quantizing
magnetic field (Sec. II.A). The limits of the Dirac equation
in the treatment of the high-field properties of graphene are
discussed in Sec. II.B. We terminate this section with a
discussion of the relativistic Landau level spectrum in the
presence of an in-plane electric field (Sec. II.C) and that of
deformed graphene (Sec. II.D).

A. Massless 2D fermions in a strong magnetic field

In order to describe free electrons in a magnetic field, one
needs to replace the canonical momentum p by the gauge-
invariant kinetic momentum (Jackson, 1999)

p ! � ¼ pþ eAðrÞ; (72)

where AðrÞ is the vector potential that generates the magnetic
field B ¼ r�AðrÞ. The kinetic momentum is proportional
to the electron velocity v, which must naturally be gauge
invariant because it is a physical quantity.

In the case of electrons on a lattice, the substitution (72),
which is then called the Peierls substitution, remains correct
as long as the lattice spacing ~a is much smaller than the
magnetic length

7This model may be viewed as the minimal form of the gener-

alized Weyl Hamiltonian (with �0 � 1)

HW ¼ X
�¼0;...;3

ℏv� � q��;

which is the most general 2� 2 matrix Hamiltonian that yields a

linear dispersion relation.
8In the absence of the tilt term ℏw0 � q1, this is a consequence of

the symmetry �zH�z ¼ �H , which is satisfied both by the

effective Hamiltonian (27) for tNNN ¼ 0 and by the linearized

version (40) in each valley for undeformed graphene.
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lB ¼
ffiffiffiffiffiffi
ℏ
eB

s
; (73)

which is the fundamental length scale in the presence

of a magnetic field. Because ~a ¼ 0:24 nm and lB ’
ð26 nmÞ= ffiffiffiffiffiffiffiffiffiffi

BðTÞp
, this condition is fulfilled in graphene for

magnetic fields that may be achieved in today’s high-field
laboratories (
 45 T in the continuous and 
80 T in the
pulsed regime).

With the help of the Peierls substitution (72), one may thus
immediately write down the Hamiltonian for charged parti-
cles in a magnetic field if one knows the Hamiltonian in the
absence of the field,

H ðpÞ ! Hð�Þ ¼ H ðpþ eAÞ ¼ HBðp; rÞ: (74)

Note that because of the spatial dependence of the vector
potential, the resulting Hamiltonian is no longer translation
invariant, and the (canonical) momentum p ¼ ℏq is no longer
a conserved quantity. For the Dirac Hamiltonian (40), derived
in the preceding section to lowest order in jqja, the Peierls
substitution yields

H 

B ¼ 
ℏvFðqx�x þ qy�

yÞ
! H eff;


B ¼ 
vFð�x�
x þ�y�

yÞ: (75)

We further note that, because electrons possess not only a
charge but also a spin, each energy level resulting from the
diagonalization of the Hamiltonian (75) is split into two spin
branches separated by the Zeeman effect �Z ¼ g�BB, where
g is the g factor of the host material [g
 2 for graphene
(Zhang et al., 2006)] and �B ¼ eℏ=2m0 is the Bohr mag-
neton, in terms of the bare-electron massm0. In the remainder
of this section, we concentrate on the orbital degrees of
freedom, which yields the characteristic level structure of
electrons in a magnetic field, and therefore neglect the spin
degree of freedom, i.e., we consider spinless fermions.
Effects related to the internal degrees of freedom are dis-
cussed in Sec. V in the framework of the quantum Hall
ferromagnet.

1. Quantum-mechanical treatment

One may easily treat the Hamiltonian (75) quantum me-
chanically with the help of the standard canonical quantiza-
tion (Cohen-Tannoudji et al., 1973), according to which the
components of the position r ¼ ðx; yÞ and the associated
canonical momentum p ¼ ðpx; pyÞ satisfy the commutation

relations ½x; px� ¼ ½y; py� ¼ iℏ and ½x; y� ¼ ½px; py� ¼
½x; py� ¼ ½y; px� ¼ 0. As a consequence of these relations,

the components of the kinetic momentum no longer com-
mute, and, with the help of the commutator relation (Cohen-
Tannoudji et al., 1973)

½O1; fðO2Þ� ¼ df

dO2

½O1;O2� (76)

between two arbitrary operators, the commutator of which is
an operator that commutes itself with both O1 and O2, one
finds

½�x;�y� ¼ �ieℏ
�
@Ay

@x
� @Ax

@y

�
¼ �i

ℏ2

l2B
(77)

in terms of the magnetic length (73).
For the quantum-mechanical solution of the Hamiltonian

(75), it is convenient to use the pair of conjugate operators�x

and�y to introduce ladder operators in the same manner as in

the quantum-mechanical treatment of the one-dimensional
harmonic oscillator. These ladder operators play the role of
a complex gauge-invariant momentum (or velocity), and they
read

â ¼ lBffiffiffi
2

p
ℏ
ð�x � i�yÞ and ây ¼ lBffiffiffi

2
p

ℏ
ð�x þ i�yÞ;

(78)

where we have chosen the appropriate normalization so as to
obtain the usual commutation relation

½â; ây� ¼ 1: (79)

It turns out to be helpful for practical calculations to invert the
expression for the ladder operators (78),

�x ¼ ℏffiffiffi
2

p
lB
ðây þ âÞ and �y ¼ ℏ

i
ffiffiffi
2

p
lB

ðây � âÞ:
(80)

2. Relativistic Landau levels

In terms of the ladder operators (78), the Hamiltonian (75)
becomes

H

B ¼ 


ffiffiffi
2

p ℏvF

lB

0 â

ây 0

 !
: (81)

One remarks the occurrence of a characteristic frequency

!0 ¼ ffiffiffi
2

p
vF=lB, which plays the role of the cyclotron fre-

quency in the relativistic case. Note, however, that this fre-
quency cannot be written in the form eB=mb because the band
mass is strictly zero in graphene, so that the frequency would
diverge.9

The eigenvalues and eigenstates of the Hamiltonian (81)
are readily obtained by solving the eigenvalue equation

H

Bc n ¼ �nc n in terms of the two-spinors,

c n ¼ un
vn

� �
: (82)

We thus need to solve the system of equations


ℏ!0âvn ¼ �nun and 
ℏ!0âyun ¼ �nvn; (83)

which yields

âyâvn ¼
�
�n
ℏ!0

�
2
vn (84)

for the second spinor component. One may therefore identify,
up to a numerical factor, the second spinor component vn

with the eigenstate jni of the usual number operator âyâ, with
âyâjni ¼ njni in terms of the integer n � 0. Furthermore,

9Sometimes, a density-dependent cyclotron mass mC is formally

introduced via !0 � eB=mC.
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one observes that the square of the energy is proportional to
this quantum number, �2n ¼ ðℏ!0Þ2n. This equation has two
solutions, a positive and a negative one, and one needs to
introduce another quantum number � ¼ �, which labels the
states of positive and negative energy, respectively. This
quantum number plays the same role as the band index
(� ¼ þ for the conduction and � ¼ � for the valence
band) in the zero-B-field case discussed in the preceding
section. One thus obtains the spectrum (McClure, 1956)

��;n ¼ �
ℏvF

lB

ffiffiffiffiffiffi
2n

p
(85)

of relativistic Landau levels (LLs) that disperse as �
ffiffiffiffiffiffiffi
Bn

p
as a

function of the magnetic field [see Fig. 11(a)]. Note that, as in
the B ¼ 0 case, the level spectrum is twofold valley
degenerate.

Once we know the second spinor component, the first
component is obtained from Eq. (83), which reads un /
âvn 
 âjni 
 jn� 1i because of the usual equations

âyjni ¼ ffiffiffiffiffiffiffiffiffiffiffiffi
nþ 1

p jnþ 1i and âjni ¼ ffiffiffi
n

p jn� 1i
(86)

for the ladder operators, where the last equation is valid for
n > 0. One then needs to distinguish the zero-energy LL
(n ¼ 0) from all other levels. Indeed, for n ¼ 0, the first
component is zero because

âjn ¼ 0i ¼ 0: (87)

In this case, one obtains the spinor

c n¼0 ¼ 0
jn ¼ 0i

� �
: (88)

In all other cases (n � 0), one has positive- and negative-
energy solutions, which differ from each other by a relative
sign in one of the components. A convenient representation
of the associated spinors is given by

c 

�;n�0 ¼

1ffiffiffi
2

p jn� 1i

�jni

� �
: (89)

The particular form of the n ¼ 0 spinor (88) associated
with zero-energy states merits a more detailed comment. One
notes that only the second spinor component is nonzero.
Remember that this component corresponds to the B sublat-
tice in the K valley (
 ¼ þ) and to the A sublattice in the K0
valley (
 ¼ �); the valley pseudospin therefore coincides
with the sublattice pseudospin, and the two sublattices are
decoupled at zero energy. Note that this is also the case in the
absence of a magnetic field, where Eq. (50) between the
chirality, the band index, and the valley pseudospin is valid
only at nonzero values of the wave vector, i.e., not exactly at
zero energy. Indeed, the chirality can no longer be defined as
the projection of the sublattice pseudospin on the direction of
propagation q=jqj, which is singular at q ¼ 0. At zero en-
ergy, it is therefore useful to identify the chirality with the
valley pseudospin. Note, however, that, in the absence of a
magnetic field, this particularity concerns only a nonexten-
sive number of states (only two) because of the vanishing
density of states at zero energy, whereas the zero-energy LL
n ¼ 0 is macroscopically degenerate, as discussed in the
following section.

a. LL degeneracy

A particular feature of both relativistic and nonrelativistic
LLs is their large degeneracy, which equals the number of
flux quanta NB ¼ A� B=ðh=eÞ threading the 2D surfaceA
occupied by the electron gas. From the classical point of view,
this degeneracy is related to the existence of a constant of
motion, namely, the position of the guiding center, i.e., the
center of the classical cyclotron motion. Indeed, due to trans-
lational invariance in a uniform magnetic field, the energy of
an electron does not depend on the position of this guiding
center. Translated to quantum mechanics, this means that the
operator corresponding to this guiding center R ¼ ðX; YÞ
commutes with the Hamiltonian H ðpþ eAÞ.

In order to understand how the LL degeneracy is related
to the guiding-center operator, we formally decompose the
position operator

r ¼ Rþ � (90)

into its guiding center R and the cyclotron variable � ¼
ð�x; �yÞ, as depicted in Fig. 11(b). Whereas the guiding

center is a constant of motion, as mentioned, the cyclotron
variable describes the dynamics of the electron in a magnetic
field and is, classically, the time-dependent component of the
position. Indeed, the cyclotron variable is perpendicular to
the electron’s velocity and thus related to the kinetic mo-
mentum � by

�x ¼
�y

eB
and �y ¼ ��x

eB
; (91)

which, as a consequence of the commutation relations (77),
satisfy

½�x; �y� ¼
½�x;�y�
ðeBÞ2 ¼ �il2B; (92)

whereas they commute naturally with the guiding-center
components X and Y. Equation (92) thus induces the com-
mutation relation

1 2 3 4 5

-4

-2

2

4

η

B

r

Rn=00
B

en
er

gy

magnetic field

+,n=4
+,n=3
+,n=2

+,n=1

−,n=1

−,n=2
−,n=3
−,n=4

(a) (b)

FIG. 11. (a) Relativistic Landau levels as a function of the mag-

netic field. (b) Semiclassical picture of cyclotron motion described

by the cyclotron coordinate �, where the charged particle turns

around the guiding center R. The gray region depicts the uncer-

tainty on the guiding center, as indicated by Eq. (98).
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½X; Y� ¼ �½�x; �y� ¼ il2B; (93)

in order to satisfy ½x; y� ¼ 0.
These commutation relations indicate that the components

of the guiding-center operator form a pair of conjugate
variables, and one may introduce, in the same manner as
for the kinetic momentum operator �, the ladder operators

b̂ ¼ 1ffiffiffi
2

p
lB

ðX þ iYÞ and b̂y ¼ 1ffiffiffi
2

p
lB

ðX � iYÞ; (94)

which again satisfy the usual commutation relations

½b̂; b̂y� ¼ 1 and which naturally commute with the
Hamiltonian. One may then introduce a number operator

b̂yb̂ associated with these ladder operators, the eigenstates
of which satisfy the eigenvalue equation

b̂yb̂jmi ¼ mjmi: (95)

One thus obtains a second quantum number, an integer
m � 0, which is necessary to describe the full quantum states
in addition to the LL quantum number n, and the completed
quantum states (88) and (89) then read

c 

n¼0;m ¼ c 


n¼0 � jmi ¼ 0
jn ¼ 0; mi

� �
(96)

and

c 

�n;m ¼ c 


�n � jmi ¼ 1ffiffiffi
2

p jn� 1; mi

�jn;mi

 !
; (97)

respectively.
One may furthermore use the commutation relation (93)

for counting the number of states, i.e., the degeneracy, in each
LL. Indeed, this relation indicates that one may not measure
both components of the guiding center simultaneously, which
is therefore smeared out over a surface

�X�Y ¼ 2�l2B; (98)

as depicted in Fig. 11(b). The result (98) for the surface
occupied by a quantum state may be calculated rather simply
if one chooses a particular gauge, such as the Landau or the
symmetric gauge for the vector potential, but its general
derivation is rather involved (Imry, 1997). This minimal
surface plays the same role as the surface (action) h in phase
space and therefore allows us to count the number of possible
quantum states of a given (macroscopic) surface A,

NB ¼ A
�X�Y

¼ A
2�l2B

¼ nBA; (99)

where we have introduced the flux density

nB ¼ 1

2�l2B
¼ B

h=e
; (100)

which is nothing other than the magnetic field measured in
units of the flux quantum h=e, as mentioned. The ratio
between the electronic density nel and this flux density then
defines the filling factor

� ¼ nel
nB

¼ hnel
eB

; (101)

which characterizes the filling of the different LLs.

b. The relativistic quantum Hall effect

The integer quantum Hall effect (IQHE) in 2D electron
systems (Klitzing et al., 1980) is a manifestation of the LL
quantization and the macroscopic degeneracy (100) of each
level, as well as of semiclassical electron localization due to
the sample impurities.10 In a nutshell, this energy quantiza-
tion yields a quantization of the Hall resistance

RH ¼ h

e2N
; (102)

where N ¼ ½�� is the integer part of the filling factor (101),
while the longitudinal resistance vanishes.11 The resistance
quantization reflects the presence of an incompressible quan-
tum liquid with gapped single-particle and density excita-
tions. In the case of the IQHE, at integer filling factors, the
gap is simply given by the energy difference between adja-
cent LLs, which must be overcome by an electron that one
adds to the system. Note that if one takes into account the
electron spin and a vanishing Zeeman effect, the condition for
the occurrence of the IQHE is satisfied when both spin
branches of the last LL n are completely filled, and one
thus obtains the Hall-resistance quantization at the filling
factors

�IQHE ¼ 2n; (103)

i.e., for even integers. Odd integers may principally be ob-
served at higher magnetic fields when the Zeeman effect
becomes prominent, and the energy gap is then no longer
given by the inter-LL spacing but by the Zeeman gap. This
picture is naturally simplistic and needs to be modified if one
takes into account electronic interactions; their consequences,
such as the fractional quantum Hall effect or ferromagnetic
states are discussed, in the context of graphene, in Sec. V.

The phenomenology of the relativistic quantum Hall effect
(RQHE) in graphene is quite similar to that of the IQHE.
Note, however, that one is confronted not only with the
twofold spin degeneracy of electrons in graphene (in the
absence of a strong Zeeman effect), but also with the twofold
valley degeneracy due to the presence of the K and K0 points
in the first BZ, which govern the low-energy electronic
properties. The filling factor therefore changes by steps
of 4 between adjacent plateaus in the Hall resistance.
Furthermore, the filling factor (101) is defined in terms of
the carrier density, which vanishes at the Dirac point. This
particle-hole symmetric situation naturally corresponds to a
half-filled zero-energy LL n ¼ 0, whereas all levels with
� ¼ � are completely filled and all � ¼ þ levels are un-
occupied. In the absence of a Zeeman effect and electronic
interactions, there is thus no quantum Hall effect at � ¼ 0,
and the condition of a completely filled (or empty) n ¼ 0 LL
is found for � ¼ 2 (� ¼ �2). As a consequence, the signature

10Strictly speaking, the IQHE requires only the breaking of trans-

lation invariance, which in a diffusive sample is due to impurities. In

a ballistic sample, translation invariance is broken via the sample

edges (Büttiker, 1992).
11A simultaneous measurement of the Hall and the longitudinal

resistance requires a particular geometry with at least four electric

contacts [for a recent review on the quantum Hall effect, see

Goerbig (2009)].
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of the RQHE is a Hall-resistance quantization at the filling
factors (Gusynin and Sharapov, 2005; 2006; Peres et al.,
2006)

�RQHE ¼ 2ð2nþ 1Þ; (104)

which needs to be contrasted with the series (103) of the
IQHE in nonrelativistic 2D electron systems. The series (104)
was indeed observed in 2005 within the quantum Hall mea-
surements (Zhang et al., 2005; Novoselov et al., 2005a), thus
revealing the relativistic character of electrons in exfoliated
graphene. More recently, the RQHE has also been observed in
epitaxial graphene with moderate mobilities (Jobst et al.,
2009; Shen et al., 2009; Wu et al., 2009).

c. Experimental observation of relativistic Landau levels

The
ffiffiffiffiffiffiffi
Bn

p
dispersion of relativistic LLs has been observed

experimentally in transmission spectroscopy, where one
shines monochromatic light on the sample and measures
the intensity of the transmitted light. Such experiments
have been performed on both epitaxial (Sadowski et al.,
2006) and exfoliated graphene (Jiang et al., 2007a).

When the monochromatic light is in resonance with a
dipole-allowed transition from the (partially) filled LL
ð�; nÞ to the (partially) unoccupied LL ð�0; n� 1Þ, it is ab-
sorbed due to an electronic excitation between the two levels.
Note that, in a nonrelativistic 2D electron gas, the only
allowed dipolar transition is that from the last occupied LL
n to the first unoccupied one nþ 1. The transition energy is
ℏ!C, independent of n, and one therefore observes a single
absorption line (cyclotron resonance) that is robust to
electron-electron interactions, as a consequence of Kohn’s
theorem (Kohn, 1961).

In graphene, however, there are many more allowed tran-
sitions due to the presence of two electronic bands, the
conduction and valence bands, and the transitions have the
energies

�n;� ¼ ℏvF

lB
½ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ðnþ 1Þp � 

ffiffiffiffiffiffi
2n

p �; (105)

where � ¼ þ denotes an intraband and � ¼ � an interband
transition (Sadowski et al., 2006; Abergel and Fal’ko, 2007;
Iyengar et al., 2007). One obtains families of resonances, the
energy of which disperses as �n;� / ffiffiffiffi

B
p

, as observed in the

experiments [see Fig. 12, where we show the results from
Plochocka et al. (2008)]. Note that the dashed lines in Fig. 12
are fits with a single fitting parameter (the Fermi velocity vF),
which match well all experimental points for different values
of n in the low-energy regime.

Moreover, the relativistic LLs were later directly observed
in scanning-tunneling spectroscopy in graphene on a graphite
substrate12 (Li et al., 2009a) as well as on epitaxial graphene
(Song et al., 2010).

B. Limits of the Dirac equation in the description of graphene

Landau levels

Transmission spectroscopy is an ideal tool for the study of
the high-energy part of the LL spectrum when considering the
transitions ð� ¼ �; nÞ ! ð� ¼ þ; n� 1Þ for n  1. As dis-
cussed in Sec. I.C.2, one expects deviations [of Oðjqj2a2Þ]
from the linear dispersion in this limit. These deviations
renormalize the energy of the LLs and thus the transition
energies.

In order to quantify the effect (Plochocka et al., 2008), we
use the Peierls substitution (72) and Eqs. (80) in the terms
(51) and (52) corresponding to the higher-order diagonal and
off-diagonal band terms, respectively. This yields the
Hamiltonian

H

B ¼ h0 h�


h
 h0
� �

; (106)

where the diagonal elements read

h0 ¼ ℏ!0 3tNNNaffiffiffi
2

p
tlB

âyâ; (107)

and the off-diagonal ones are

h
 ¼ 
ℏ!0
�
ây � 


aw1

2
ffiffiffi
2

p
lB

â2 � a2w2
2

4l2B
ây2â

�
: (108)

Naturally, to lowest order in a=lB, one obtains the
Hamiltonian (81). The dimensionless parameters w1 and w2

are artificially added to the expressions and play the role of
fitting parameters in the comparison with experimental mea-
surements, as discussed below. They measure the deviation
from the tight-binding-model expectation, w1 ¼ w2 ¼ 1.
Note that, since we are interested in the n  1 limit, we do

FIG. 12 (color online). Transmission spectroscopy on epitaxial

multilayer graphene. The inset shows a representative transmission

spectrum. The the positions of the absorption lines as a function of

the square root of the magnetic field. The dashed lines correspond to

transitions calculated at linear order, in agreement with the Dirac

equation; one notes downward deviations in the high-energy limit.

From Plochocka et al., 2008.

12With the help of the same technique, relativistic LLs had been

identified before, even in graphite (Li and Andrei, 2007).
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not care about corrections related to the ordering of the ladder
operators, so that we identify ay2a2 ’ a2ay2 ’ ðayaÞ2 in the
following parts.

In the calculation of the LL spectrum, one may proceed in
the same manner as in Sec. II.A.2; the eigenvalue equation
(84) for the second spinor component now becomes

h
h
y

vn ’ ð�n � h0Þ2vn; (109)

which is asymptotically correct in the large-n limit, where we
may neglect the commutator ½h
; h0� on the right-hand side of
the equation.13 The combination Ĥ
 � h
h

y

 is now inter-

preted as some fake Hamiltonian, which needs to be diago-
nalized in order to obtain the modified LLs. Note that n
remains a good quantum number if one considers h0 on the
right-hand side of the eigenvalue equation. The left-hand side
contains a term

Ĥ0 ’ ðℏ!0Þ2
�
âyâ� 4w2

2 � w2
1

8

�
a

lB

�
2ðâyâÞ2

�
(110)

which contains powers of âyâ and thus respects the quantum
number n, but in addition it contains the trigonal-warping
(TW) term

ĤTW ¼ �

w1ðℏ!0Þ2a
2

ffiffiffi
2

p
lB

ðây3 þ â3Þ; (111)

which does not commute with âyâ and which needs to be
treated separately. If we neglect this trigonal-warping term
for a moment, the LL energies are obtained from the qua-
dratic equation

ðℏ!0Þ2
�
n� 4w2

2 � w2
1

8

a2

l2B
n2
�
’
�
�n � ℏ!0 3tNNNaffiffiffi

2
p

tlB
n

�
2
:

(112)

In order to account for the trigonal-warping term in the
eigenvalue equation (109), we may use a perturbative treat-
ment, which is justified because of the small parameter a=lB.
There is no contribution at first order since hnjâðyÞ3jni ¼ 0
due to the orthogonality of the eigenstates hnjn0i ¼ �n;n0 . At

second order, one obtains

�n ¼ �ðℏ!0Þ2
8

�
a

lB

�
2
3n½1þOð1=nÞ�; (113)

which needs to be added to the right-hand side in Eq. (112).
Interestingly, trigonal warping thus yields the same correction
to the energies of the relativistic LLs as the third-order term in
the expansion of the band dispersion, although trigonal warp-
ing occurs at second order in the absence of a magnetic field,
as discussed in Sec. I.C.2. This effect is due to the anisotropy
of the band correction; in the presence of a magnetic field, the
cosð3’qÞ term in Eq. (54) is averaged over the angle ’q, and

therefore only contributes at second order in the perturbation
theory described above. This eventually yields a correction of
order ða=lBÞ2 to the LL energy, as does the third-order term in
the correction of the band dispersion.

One finally obtains, in the large-n limit where these cor-
rections become relevant, the energies of the relativistic LLs
(Plochocka et al., 2008)

��n ¼ ℏ
vF

lB

3tNNN
t

a

lB
n

þ �ℏ
vF

lB

ffiffiffiffiffiffi
2n

p �
1� 3w2

8

�
a

lB

�
2
n½1þOð1=nÞ�

	
;

(114)

independent of the valley index 
, where Oð1=nÞ stands for
corrections of order 1=n. Note that the fitting parameters w1

and w2 cannot be determined independently from a fit to the
spectroscopic measurement, but only the combination w2 �
ðw2

1 þ 2w2
2Þ=3. Equation (114) generalizes a calculation for

the relativistic LLs when only NNN hopping is taken into
account (Peres et al., 2006).

In Fig. 12, we show experimental results obtained from
high-field transmission spectroscopy on multilayer epitaxial
graphene (Plochocka et al., 2008). Qualitatively, one sees a
downward renormalization of the transition energies

�n ¼ ��¼þ;n � ��¼�;n (115)

in the interband regime for large values of n, in agreement
with Eq. (114). Note that because transmission spectroscopy
is sensitive to energy-level differences, the NNN correction in
Eq. (114) yields only a correction on the order of ðtNNN=tÞ�
ða=lBÞ=n & 1%=n at B
 25 T, as compared to the energy
scale tða=lBÞn of the transition, whereas the other term yields
a correction on the order of ða=lBÞ2 � n
 0:5%� n. The
latter corrections thus become more relevant in the large-n
limit than the NNN correction. Indeed, the experiment
(Plochocka et al., 2008) was not capable of probing the
electron-hole symmetry breaking associated with the NNN
term, whereas a quantitative study of the high-energy tran-
sitions revealed a good semiquantitative agreement with the
calculated LL spectrum (114). However, it has been shown
that the simple-minded tight-binding approach (with w ¼ 1)
underestimates the higher-order band corrections and that the
best fit to Eq. (114) is obtained for a value of w ¼ 2:8. The
origin of this discrepancy is yet unexplained, and it may be
interesting to perform high-field transmission spectroscopy
measurement also on single-layer exfoliated graphene in
order to understand whether the stronger downward renor-
malization of the LLs is due to interlayer couplings in the
epitaxial multilayer sample.

C. Landau level spectrum in the presence of an in-plane electric

field

A consequence of the relativistic character of electrons in
graphene and the Lorentz invariance of the Dirac equation is
their behavior in crossed magnetic and electric fields, where
the magnetic field remains perpendicular to the graphene
sheet and the electric field is applied in the plane.
Remember that in a nonrelativistic 2D electron systems, the
electric field E ¼ Eey (in the y direction) simply lifts the LL

degeneracy and adds a term ℏðE=BÞk to the LL energies,
where k is the wave vector in the x direction. At a fixed wave
vector k, the LL spacing is unaffected by the in-plane field.

13The commutator would yield relative corrections that are on the

order of 1=n and a=lB as compared to the energy scale ðtNNN=tÞ�
ða=lBÞn that dominates h0.
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The situation is different for relativistic electrons in gra-
phene, as a consequence of the Lorentz invariance of the
Dirac equation. One may choose a reference frame in which
the electric field vanishes as long as the drift velocity vD ¼
E=B is smaller than the Fermi velocity, which plays the role
of an upper bound for the physically significant velocities in
the same manner as the speed of light in relativity (magnetic
regime).14 In addition to the lifted LL degeneracy, the LL
spacing is reduced (Lukose et al., 2007; Peres and Castro,
2007), as may be seen from a Lorentz boost into the reference
frame which moves at the drift velocity and in which the
electric field vanishes. In this reference frame, the magnetic
field is reduced by the factorffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� ðE=vFBÞ2
q

; (116)

such that the LLs (85), which scale as
ffiffiffiffiffi
B0p ¼ ffiffiffiffi

B
p ½1�

ðE=vFBÞ2�1=4 with the magnetic field, read

�0�;n ¼ �
ℏvF

lB
½1� ðE=vFBÞ2�1=4

ffiffiffiffiffiffi
2n

p
; (117)

where the primes indicate the physical quantities in the
moving frame of reference. When the energy is measured
in the original (laboratory) frame of reference, the above
energy spectrum also needs to be transformed into this frame
of reference, which amounts to being multiplied by another
factor (116), such that the spectrum of relativistic LLs in the
presence of an in-plane electric field becomes (Lukose et al.,
2007)

��;n;k ¼ �
ℏvF

lB
½1� ðE=vFBÞ2�3=4

ffiffiffiffiffiffi
2n

p þ ℏ
E

B
k: (118)

The quantum-mechanical derivation of this result is discussed
in Sec. II.D.1 in the context of the generalized Weyl
Hamiltonian in a magnetic field.

D. Landau levels in deformed graphene

As discussed in Sec. I.D, a uniaxial strain deforms the
graphene sheet and modifies the electronic structure. The
induced anisotropy of the Fermi velocity wx � wy is essen-

tially washed out by the magnetic field, which yields an
effective averaging over the Fermi surface, vF ! v0

F ¼ffiffiffiffiffiffiffiffiffiffiffiffi
wxwy

p
. More spectacular are the two following consequen-

ces of the deformation: (a) the tilt of the Dirac cones ac-
counted for in the generalized Weyl Hamiltonian (66) and
(b) the topological phase transition due to the Dirac point
motion. The implications for the LL spectrum are reviewed in
the following sections.

1. The generalized Weyl Hamiltonian in a magnetic field

With the help of the Peierls substitution (72) and the
expression of the kinetic momentum in terms of ladder
operators (80), the generalized Weyl Hamiltonian (66) may
be cast into the form

H

B ¼ 


ℏ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2wxwy

p
lB

~w0

2 ðâei’þH:c:Þ â

ây ~w0

2 ðâei’þH:c:Þ

0
@

1
A;

(119)

where

~w0e
i’ � w0x

wx

þ i
w0y

wy

; (120)

in terms of the effective tilt parameter (70) and the angle ’
between the x axis and the direction of the effective tilt
(w0x=wx, w0y=wy), renormalized by the Fermi velocities wx

and wy in the x and y directions, respectively.

The Hamiltonian (119) may be solved quantum mechani-
cally in a straightforward, but lengthy manner (Peres and
Castro, 2007; Morinari et al., 2009). Instead, one may obtain
the result in a simpler semiclassical treatment (Goerbig et al.,
2008), with the help of the Onsager relation (Onsager, 1952;
Lifshitz and Kosevich, 1956) according to which the surface
Sð�Þ enclosed by a trajectory of constant energy � in recip-
rocal space is quantized as

Sð�Þl2B ¼ ð2�Þ2
Z �

0
d�0�ð�0Þ ¼ 2�ðnþ 	Þ; (121)

where n is an integer denoting the energy level, which
coincides with the Landau level in the full quantum treatment.
The additional contribution 	 is related to a Berry phase
acquired by an electron during its cyclotron orbit. Usually,
one has 	 ¼ 1=2 except if there is an extra Berry phase of �,
which in our case yields 	 ¼ 0, as for graphene with no tilt
(Mikitik and Sharlai, 1999). If one considers a density of
states that scales as �ð�Þ / �, the energy levels scale as

�n 
 ½Bðnþ 	Þ�1=ð1þÞ (122)

in the large-n limit.
Because the density of states vanishes linearly at the Dirac

point, as in the case of no tilt, i.e.,  ¼ 1, the scaling argu-
ment (122) yields the energy levels

��;n ’ �
ffiffiffi
2

p ℏv�
F

lB

ffiffiffi
n

p
; (123)

as for unconstrained graphene, apart from a renormalization
of the Fermi velocity. The latter is readily obtained from the
calculation of the total number of states below the energy �
within the positive-energy cone,

Nþð�Þ ¼ 1

ð2�Þ2ℏ2wxwy

Z
�þð~qÞ��

d~qxd~qy

¼ 1

2�ℏ2v�2
F

�2

2
; (124)

where ~qx=y � wx=yqx=y, and the renormalized Fermi velocity

is

v�2
F ¼ ½wxwyð1� ~w2

0Þ3=2�; (125)

in terms of the effective tilt parameter (70). This yields the
result

��;n ¼ �
ℏ ffiffiffiffiffiffiffiffiffiffiffiffi

wxwy
p
lB

ð1� ~w2
0Þ3=4

ffiffiffiffiffiffi
2n

p
(126)

14In the opposite case, vD > vF, one may choose a reference

system in which the magnetic field vanishes (electric regime)

(Jackson, 1999).
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for the LL spectrum in the presence of a tilt, which coincides
with the one obtained from the full quantum treatment (Peres
and Castro, 2007; Morinari et al., 2009). One notes that the
LL spacing becomes zero for ~w0 ¼ 1, which corresponds to
the condition (69) of maximal tilt for the Dirac cones, as
discussed in Sec. I.D; indeed for values of ~w0 larger than 1,
the isoenergetic lines are no longer closed elliptic orbits but
open hyperbolas, for which the energy is not quantized.

2. Tilted Dirac cones in crossed magnetic and electric field

One notes that the form (126) of LLs for tilted Dirac cones
is the same as that of the LL spectrum (118) if one interprets
the drift velocity vD ¼ E=vFB as an effective electric-field-
induced tilt. The magnetic regime E=B < vF corresponds
then to the regime of closed orbits ( ~w0 < 1), and the open
hyperbolic orbits may be identified with the electric regime
E=B > vF. Mathematically, the generalized Weyl
Hamiltonian with an in-plane electric field may still be cast
into the form (119)

H

B ! H


E=B ¼ H
0
B þ ℏ

E

B
k1; (127)

where H
0
B is the same as that of Eq. (119) if one replaces the

tilt parameter ~w0 expði’Þ by (Goerbig et al., 2009)

~w
ðEÞei’
ðEÞ � w
x

wx

þ i
w
y

wy

: (128)

Here the renormalized tilt velocity is given by

w
 ¼ ðw
x; w
yÞ � w0 � 

E� B

B2
; (129)

and the angle ’
 is the angle between this velocity and the x

axis.
The resulting energy spectrum is given by

�
�;n;kðEÞ ¼ �
ℏ ffiffiffiffiffiffiffiffiffiffiffiffi

wxwy
p
lB

½1� ~w
ðEÞ2�3=4
ffiffiffiffiffiffi
2n

p þ ℏ
E

B
k:

(130)

Naturally, one obtains the result (118) for undeformed gra-
phene in an in-plane electric field, for wx ¼ wy ¼ vF and

w0 ¼ 0, as well as the LL spectrum (126) for the generalized
Weyl Hamiltonian with tilted Dirac cones for zero in-plane
field (E ¼ 0). However, the most interesting situation arises
when both the tilt and an in-plane field are present, in which
case one observes a lifting of the valley degeneracy that is
maximal when the electric field is applied perpendicular to
the tilt velocity, E ? w0 (Goerbig et al., 2009).

Note that in order to obtain an effect on the order of 
1%,
extremely large electric fields would be required (on the order
of 106 V=m) for a 10% deformation of the lattice (Goerbig
et al., 2009). It seems therefore that it would be difficult to
observe the effect in graphene, e.g., in high-field transmission
spectroscopy or transport measurements, whereas the effect
may be more visible in � ðBEDT-TTFÞ2I3, where the Dirac
cones are naturally tilted (Katayama et al., 2006; Kobayashi
et al., 2007) and lower electric fields would be required for a
comparable effect due to a roughly ten times smaller effective
Fermi velocity.

III. ELECTRONIC INTERACTIONS IN GRAPHENE:

INTEGER QUANTUM HALL REGIME

In the preceding sections, we discussed the electronic
properties of graphene within a one-particle model, i.e., we
neglected the Coulomb interaction between electrons. In
many materials, the one-particle picture yields the correct
qualitative description of the electronic properties and is
modified only quantitatively if one includes the electron-
electron interactions within perturbation theory (Mahan,
1993; Giuliani and Vignale, 2005). Note, however, that there
exists a class of materials (strongly correlated electron sys-
tems) the electronic properties of which may not be described
correctly, not even on the qualitative level, within a one-
particle picture.

In order to quantify the role of the electronic interactions,
i.e., the correlations, in graphene one needs to compare the
characteristic Coulomb energy Eint ¼ e2="‘ at the average
interelectronic distance ‘ (" is the dielectric constant describ-
ing the environment in which the 2D electron gas is em-
bedded) to the kinetic one EkinðkFÞ at the same length scale,
given in terms of the Fermi wave vector kF, ‘
 k�1

F ,

rs ¼ Eint

Ekin

: (131)

If this dimensionless interaction parameter becomes very
large, rs  1, the electrons are strongly correlated. In non-
relativistic 2D metals with a parabolic band dispersion,
Ekin 
 ℏ2k2F=mb, the dimensionless parameter reads

rs ¼ mbe
2

ℏ2"
‘
 1

a�0kF
; (132)

in terms of the effective Bohr radius a�0 ¼ a0"m0=mb, where

a0 ¼ 0:5 �A is the Bohr radius in vacuum and mb=m0 is the
ratio between the band and the bare-electron mass. The
relevance of electronic correlations therefore increases in
the dilute limit when ‘  a�0. Note that the parameter rs,
which is also called the Wigner-Seitz radius, plays the role of
a length measured in units of the effective Bohr radius a�0.

The same argument applied to graphene yields a com-
pletely different result. Whereas the scaling of the Coulomb
energy remains the same, the kinetic energy scaling is
changed due to the linearity of the band dispersion. As a
consequence, the dimensionless interaction parameter in gra-
phene reads

G ¼ Eint

Ekin

¼ e2

ℏ"vF

’ 2:2

"
; (133)

independent of the carrier density.15 The correlations are
therefore in an intermediate regime, but may be decreased
if the graphene sheet is embedded in an environment with a
large dielectric constant. Note that Eq. (133) is the same as
that of the fine-structure constant  ¼ e2=ℏ"c ¼ 1=137 in
quantum electrodynamics (Weinberg, 1995) if one replaces

15In contrast to the situation in an electron system with a parabolic

band dispersion, this parameter can no longer be interpreted as a

dimensionless radius, and we therefore use the notation G rather

than rs.
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the Fermi velocity by the velocity of light, which is roughly
300 times larger. One therefore alternatively calls G the
graphene fine structure constant.

Another important aspect of interacting electrons is the
range of the interaction potential. Whereas the underlying
Coulomb potential e2="r is a long-range interaction, short-
range interaction models such as the Hubbard model are
often, and successfully, used in the description of correlated
metals. The use of such a short-range interaction may be
justified by the screening properties of interacting electrons,
which are correctly captured in a Thomas-Fermi approach
(Mahan, 1993; Giuliani and Vignale, 2005) according to
which the Coulomb interaction potential is screened above
a characteristic screening length �TF 
 1=kTF.

16 In 2D, the
Thomas-Fermi wave vector

kTF ’ rskF (134)

is given in terms of the dimensionless interaction parameter
(131) and the Fermi wave vector kF.

17

One notes that, for metals with a parabolic dispersion
relation, the Thomas-Fermi wave vector is simply given in
terms of the inverse effective Bohr radius, kTF 
 1=a�0, inde-
pendent of the electronic density. Unless the band mass is
very small as compared to the bare-electron mass or the
dielectric constant of the host material very large, the
Coulomb interaction is therefore screened on the atomic
scale. A description of such systems in the framework of
short-range interaction models, such as the Hubbard model,
then becomes better justified than in systems with a small
band mass or a prominent dielectric constant (as in 2D
electron systems in GaAs heterostructures). Typical examples
where a short-range interaction model yields valuable physi-
cal insight are heavy-fermion compounds [for a review, see
Coleman (2003)].

The situation is again drastically different in graphene
where the Thomas-Fermi wave vector (134) becomes

kGTF ’ GkF ’ 2:2

"
kF 
 ffiffiffiffiffiffi

nel
p

; (135)

i.e., it vanishes at the Dirac points where the carrier density
goes to zero, and the screening length then diverges.18 Note
that even for doped graphene, where one may typically
induce carrier densities on the order of 1012 cm�2, the screen-
ing length is �TF * 10 nm, i.e., much larger than the lattice
scale.

One thus comes to the conclusion that the relevant elec-
tronic interactions in graphene are long-range Coulomb in-
teractions that may not be captured, in contrast to other
materials with a parabolic band dispersion, within models
such as the Hubbard model (Herbut, 2006; 2007a). We there-
fore investigate, in this section, the fate of the long-range

Coulomb interaction in a strong magnetic field. In Sec. III.A,
we decompose the Coulomb interaction Hamiltonian in the
two-spinor basis of the low-energy electronic wave functions
in graphene and comment on its symmetry with respect to the
valley pseudospin. The role of these interactions in the
particle-hole excitation spectrum is studied in Sec. III.B,
where we discuss the resulting collective excitations in the
IQHE regime, which allows for a perturbative treatment. The
strong-correlation regime of partially filled LLs (the regime
of the fractional quantum Hall effect) is presented separately
in Sec. V.

A. Decomposition of the Coulomb interaction in the two-spinor

basis

Generally, the Coulomb interaction for 2D electrons may
be accounted for by the Hamiltonian

Hint ¼ 1

2

X
q

vðqÞ�ð�qÞ�ðqÞ; (136)

in terms of the Fourier components �ðqÞ ¼ R
d2r expð�iq �

rÞc yðrÞc ðrÞ of the electronic density c yðrÞc ðrÞ and
the 2D Fourier-transformed 1=r Coulomb potential, vðqÞ ¼
2�e2="jqj. If one takes into account the electronic spin
� ¼" , # , the Coulomb interaction respects the associated
SU(2) symmetry, and the Fourier components are then simply
the sums of the densities ��ðqÞ in both spin orientations,
�ðqÞ ¼ �"ðqÞ þ �#ðqÞ. For notational convenience, we ne-

glect the spin index in the following discussion, keeping in
mind that the spin SU(2) symmetry is respected. The density
operators may be decomposed in the basis of the spinor wave
functions (96) and (97) for relativistic electrons in graphene,

�ðqÞ ¼ X
�n;m;


�0n0 ;m0 ;
0

c y
�n;m;
e

�iq�rc �0n0 ;m0;
0c
y
�n;m;
c�0n0 ;m0;
0 ;

(137)

where cðyÞ�n;m;
 are fermion operators in second quantization

that annihilate (create) an electron in the quantum states

c �n;m;
¼þ ¼ 1�njn� 1; mi
�2�njn;mi

 !
eiK�r and

c �n;m;
¼� ¼ ��2�njn;mi
1�njn� 1; mi

 !
e�iK�r: (138)

In order to avoid confusion in the case of intervalley coupling,
we use now a representation in which the first spinor compo-
nent represents the amplitude on the A sublattice and the
second on the B sublattice for both valleys. In contrast to
Eqs. (96) and (97), the state (138) is valid for both n ¼ 0 and

n � 0 by use of the shorthand notation 1�n �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� �n;0Þ=2

q
and 2�n �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ �n;0Þ=2

q
. Furthermore, we explicitly take into

account the rapidly oscillating part expði
K � rÞ due to the
two different valleys, whereas Eqs. (96) and (97) are con-
cerned only with the slowly varying envelope function.
Explicitly, the Fourier components of the density operator
(137) then read

16Note that the Thomas-Fermi approach is restricted to static

screening effects, whereas dynamic screening requires a more

complex treatment, e.g., in the framework of the random-phase

approximation.
17In three space dimensions, the relation reads k2TF ’ rsk

2
F.

18Because of this divergence of the screening length, one princi-

pally needs to describe screening beyond the level of linear-

response theory (Katsnelson, 2006).
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�ðqÞ ¼ X
�n;�0n0

;
0

F 
;
0
�n;�0n0 ðqÞ ��
;
0

�n;�0n0 ðqÞ; (139)

in terms of the reduced density operators

��
;
0
�n;�0n0 ðqÞ ¼

X
m;m0

hmje�i½qþð
�
0ÞK��Rjm0icy�n;m;
c�0n0 ;m0;
0 ;

(140)

which may also be interpreted as magnetoexciton operators
associated with a particular inter-LL transition (see
Sec. IV.A), and the form factors

F �n;�0n0 ðqÞ � F 
;

�n;�0n0 ðqÞ

¼ 1�n1�n0 hn� 1je�iq��jn0 � 1i
þ ��02�n2�n0 hnje�iq��jn0i (141)

for intravalley and

Fþ;�
�n;�0n0 ðqÞ ¼ �1�n02

�
nhnje�iðqþ2KÞ��jn0 � 1i

� �01�n2�n0 hn� 1je�iðqþ2KÞ��jn0i
¼ ½F�;þ

�0n0;�nð�qÞ�� (142)

for intervalley processes. Here we used the decomposition
r ¼ Rþ � of the position operator into its guiding center
and cyclotron coordinate (see Sec. II.A.1) and the fact that
f1ð�Þf2ðRÞjn;mi ¼ f1ð�Þjni � f2ðRÞjmi, for two arbitrary
functions f1 and f2. The full expressions for the matrix
elements in Eqs. (140)–(142) may be found in the Appendix.

In terms of the reduced density operators (140), the inter-
action Hamiltonian (136) reads

Hint ¼ 1

2

X
q

X
�1n1 ;...;�4n4


1 ;...;
4

v
1;...;
4
�1n1;...;�4n4

ðqÞ ��
1;
3
�1n1;�3n3

ð�qÞ

� ��

2;
4
�2n2;�4n4

ðqÞ; (143)

where the interaction vertex is defined as

v
1;...;
4
�1n1;...;�4n4

ðqÞ ¼ 2�e2

"jqj F

1;
3

�1n1;�3n3
ð�qÞF 
2;
4

�2n2;�4n4
ðqÞ:

(144)

1. SU(2) valley symmetry

One notes that, in contrast to the SU(2) symmetry associ-
ated with the physical spin, the Hamiltonian (143) does not
respect a similar valley-pseudospin symmetry due to possible
intervalley couplings. An SU(2) valley-pseudospin symmetry
would be respected for cases 
1 ¼ 
3 and 
2 ¼ 
4, i.e., if the
interaction vertex (144)

v
1;...;
4
�1n1;...;�4n4

ðqÞ / �
1;
3�
2;
4 : (145)

One may show, however, that the SU(2) valley-pseudospin
symmetry is approximately respected when considering the
different classes of interaction vertices depicted in Fig. 13.

� Consider the diagram in Fig. 13(a), which represents a

vertex of the type v
;
;
0 ;�
0
�1n1;...;�4n4

ðqÞ or v
;�
;
0;
0
�1n1;...;�4n4

ðqÞ. In
this case, the particle on the left remains in the same
valley, whereas that on the right changes its valley. Such

a process would require a momentum transfer of �K,
i.e., of the wave vector connecting the two valleys, and
therefore does not respect momentum conservation, in
the absence of a magnetic field. Naturally, momentum is
not a good quantum number here because of the mag-
netic field, but momentum conservation manifests itself
by an exponential suppression of such processes. In
order to appreciate this point, we need to consider the
Gaussian in the form factors (141) and (142),

F 
;
0
�n;�0n0 ðqÞ / e�jqþð
�
0ÞKj2l2B=4; (146)

as discussed in the Appendix [see Eq. (A2)]. One there-
fore sees that the interaction vertex contains a Gaussian
term

v
;
;
0;�
0
�1n1;...;�4n4

ðqÞ/e�ðq2þjq�Kj2Þl2B=4
e�ðjq0j2þjKj2=4Þl2B=2


e�jKj2l2B=8
e�#l2B=a
2
; (147)

where # represents an unimportant numerical factor and
where we have shifted the momentum q0 ¼ q�K=2 in
the second step. The processes associated with the
diagram in Fig. 13(a) are thus exponentially suppressed
in l2B=a

2 ’ 104=BðTÞ and may safely be neglected in the

range of physically accessible magnetic fields.
� The same fate is reserved for the diagram in Fig. 13(b),

which represents a process of umklapp type. In this case,
the vertex reads

v
;
;�
;�

�1n1...�4n4

ðqÞ / e�ðjqþKj2þjq�Kj2Þl2B=4 
 e�jKj2l2B=2


 e�#l2B=a
2
; (148)

which is again exponentially small in l2B=a
2.

� The situation is different for backscattering-type dia-
grams [Fig. 13(c)], in which case the interaction
vertex is

v
;�
;�
;

�1n1;...;�4n4

ðqÞ / e�ðjq�Kj2þjq�Kj2Þl2B=4: (149)

1
2

43

1

1

2

2

1
2

43

1
2

43

1
2

43

1

1

2

(a)

(c) (d)

(b)

2

ξ− ,  νξ ,  ν

ν  , ξ ν  , ξ

ν  , −ξ ν  , ξ

ν  , ξ ν  , −ξ

ξ ,  νξ ,  ν

ν  , ξν  , ξ

ν  , −ξ ν  , −ξ

ν  , ξ ν  , ξ

FIG. 13. Diagrammatic representation of the interaction vertex

[we use the shorthand notation �i ¼ ð�ini; miÞ for the quantum

numbers]: (a) vertex associated with terms of the form

v
;
;
0 ;�
0
�1n1 ;...;�4n4

ðqÞ or v
;�
;
0 ;
0
�1n1 ;...;�4n4

ðqÞ; (b) vertex of umklapp type,

v
;
;�
;�

�1n1...�4n4

ðqÞ, (c) vertex of backscattering type, v
;�
;�
;

�1n1 ;...;�4n4

ðqÞ;
and (d) vertex respecting the SU(2) valley-pseudospin symmetry

v
;�
;
0 ;�
0
�1n1 ;...;�4n4

ðqÞ.
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One may then redefine the wave vector q0 ¼ q�K,
which is eventually an integration variable in the
interaction Hamiltonian (143), and the interaction
vertex becomes

v
;�
;�
;

�1n1...�4n4

ðq0Þ / 2�e2

"jq0 �Kj e
�q02l2B=2


 2�e2

"jKj e
�q02l2B=2: (150)

As an order of magnitude, with jKj 
 1=a, one notes
that the backscattering interaction vertex is sup-

pressed by a factor of a=lB 
 0:005� ffiffiffiffiffiffiffiffiffiffi
BðTÞp

as
compared to the leading energy scale e2="lB.

� The leading interaction vertex is therefore the SU(2)
valley-pseudospin symmetric one depicted in Fig. 13(d),
for which the rapidly oscillating contribution at K
vanishes, as may be seen directly from the form
factors (142).

The above argument, which generalizes symmetry consid-
erations for the interactions in a single relativistic LL (Alicea
and Fisher, 2006; Goerbig et al., 2006; Doretto and Morais
Smith, 2007; Herbut, 2007b), shows that although the valley
SU(2) symmetry is not an exact symmetry, such as the SU(2)
symmetry associated with the physical spin, it is approxi-
mately respected by the long-range Coulomb interaction.
Valley-symmetry-breaking terms are due to lattice effects
beyond the continuum limit and therefore are suppressed by
the small factor a=lB, which quantifies precisely corrections
due to effects on the lattice scale. If one takes into account the
additional spin degree of freedom, the resulting fourfold
spin-valley degeneracy may then be described within the
larger SU(4) symmetry group, which turns out to be relevant
in the description of strong-correlation effects in partially
filled LLs (Sec. V).

2. SU(4) spin-valley-symmetric interaction Hamiltonian

The SU(4)-symmetric part of the interaction Hamiltonian
(143) finally reads

H
sym
int ¼ 1

2

X
q

X
�1n1;...;�4n4

v
sym
�1n1;...;�4n4

ðqÞ ���1n1;�3n3
ð�qÞ

� ���2n1;�4n4
ðqÞ; (151)

where the symmetric interaction vertex is

v
sym
�1n1...�4n4

ðqÞ ¼ 2�e2

"jqj F �1n1;�3n3 ð�qÞF �2n2;�4n4 ðqÞ;
(152)

in terms of the reduced density operators

���n;�0n0 ðqÞ�
X

¼�

�
;

�n;�0n0 ðqÞ

¼ X

¼�

X
�¼";#

X
m;m0

hmje�iq�Rjm0icy�n;m;
;�c�0n0 ;m0;
;�;

(153)

where we have explicitly taken into account the spin index
� ¼" , # in the last line.

We note that the graphene form factors (141) may also be
rewritten in terms of the LL form factors

Fn;n0 ðqÞ ¼ hnje�iq��jn0i; (154)

which arise in a similar decomposition of the Coulomb
interaction in Landau states in the nonrelativistic 2D electron
gas, as

F �n;�0n0 ðqÞ ¼ 1�n1�n0Fn�1;n0�1ðqÞ þ ��02�n2�n0Fn;n0 ðqÞ:
(155)

To summarize the differences and the similarities between the
interaction Hamiltonians in graphene and the nonrelativistic
2D electron system, one first realizes that its structure is the
same if one replaces the LL form factor (154) by the graphene
form factors (141) and if one takes into account the larger
(approximate) internal symmetry SU(4), due to the spin-
valley degeneracy, instead of the spin SU(2) symmetry.

In the remainder of this section, we neglect the symmetry-
breaking part of the Hamiltonian and consider that the
Coulomb interaction respects the SU(2) valley symmetry.

B. Particle-hole excitation spectrum

The considerations of the previous section allow us to
discuss the role of the Coulomb interaction within a pertur-
bative approach in the IQHE regime for � ¼ �2ð2nþ 1Þ,
where the (noninteracting) ground state is nondegenerate and

separated by the cyclotron gap
ffiffiffi
2

p ðℏvF=lBÞð
ffiffiffiffiffiffiffiffiffiffiffiffi
nþ 1

p � ffiffiffi
n

p Þ
from its excited states. Quite generally, the inter-LL transi-
tions evolve into coherent collective excitations, as a conse-
quence of these Coulomb interactions. Prominent examples
in the nonrelativistic 2D electron gas are the upper hybrid
mode (sometimes also called the magnetoplasmon), which is
the magnetic-field counterpart of the usual 2D plasmon
(Giuliani and Vignale, 2005), and magnetoexcitons (Kallin
and Halperin, 1984). In the present section, we discuss how
these modes manifest themselves in graphene in comparison
with the nonrelativistic 2D electron gas.

1. Graphene particle-hole excitation spectrum at B¼0

Before discussing the particle-hole excitation spectrum
(PHES) for graphene in the IQHE regime, we briefly review
that for B ¼ 0 as well as its associated collective modes
(Shung, 1986; Ando, 2006a; Wunsch et al., 2006; Hwang
and Das Sarma, 2007). Quite generally, the PHES is deter-
mined by the spectral function

Sðq; !Þ ¼ � 1

�
Im�ðq; !Þ; (156)

which may be viewed as the spectral weight of the allowed
particle-hole excitations, in terms of the polarizability
�ðq; !Þ, which plays the role of a density-density response
function (Mahan, 1993; Giuliani and Vignale, 2005).

The particle-hole excitations for noninteracting electrons
in doped graphene are depicted in Fig. 14.19 In contrast
to the PHES of electrons in a single parabolic band (the

19We consider here only the case of a Fermi energy �F in the

conduction band, for simplicity.
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nonrelativistic 2D electron gas), there are two different

types of excitation: intraband excitations [labeled by I in

Fig. 14(a)], where both the electron and the hole reside
in the conduction band (CB), and interband excitations

[labeled by II in Fig. 14(a)], where an electron is promoted

from the valence band (VB) to the CB. In undoped graphene,

there exist naturally only interband excitations (II). If the
electron and the hole have energies close to the Fermi energy,

the allowed excitations imply a wave-vector transfer that lies

between q ¼ 0 (Ia) and q ¼ 2qF (Ib). At nonzero values � of

the transferred energy, one needs to search for available
quantum states at larger wave vectors, and the particle-

hole-pair wave vector is then restricted to �=ℏvF < q <
2qF þ �=ℏvF, as a consequence of the linear dispersion

relation in graphene. This gives rise to the region I, which
describes the intraband particle-hole continuum, and its lin-

ear boundaries in the PHES described by the spectral func-

tion in Fig. 14(b).
In addition to intraband excitations, one notes that inter-

band excitations become possible above a threshold energy of

�F, where an electron at the top of the VB (at q ¼ 0) may be

promoted to an empty state slightly above the Fermi energy.
The associated wave-vector transfer is naturally q ¼ qF. The
point ðqF; �FÞ marks the bottom of the region II in Fig. 14(b),

which determines the region of allowed interband excitations

(interband particle-hole continuum). Direct interband excita-
tions with zero wave-vector transfer are possible above an

energy of 2�F.
Another aspect of the PHES in Fig. 14 is the strong

concentration of spectral weight around the central diagonal
! ¼ ℏvFjqj. This concentration is a particularity of graphene
due to the electrons’ chirality (Polini et al., 2008). Indeed, if

one considers a 2qF backscattering process in the vicinity of

the Fermi energy in the CB, Eq. (50) indicates that the
chirality, i.e., the projection of the sublattice pseudospin on

the direction of the wave vector, is preserved. The inversion

of the direction of propagation in the 2qF process would

therefore require an inversion of the A and B sublattices
that is not supported by most of the scattering or interaction

processes. This effect is reflected by a strong suppression of

the spectral weight when approaching the right boundary of
region I in the PHES associated with processes of type Ib in
Fig. 14(a). Similarly, the conservation of the electrons’ chi-
rality (50) favors 2qF processes in the interband region (II)
and the suppression of direct q ¼ 0 interband excitations of
type IIa in Fig. 14(a). Note that, although the direction of the
wave vector is inverted in a 2qF process, this still indicates
the absence of backscattering because the group velocity v ¼
rq�

�
q=ℏ ¼ �vFq=jqj remains unchanged—the change in

sign due to the inversion of the wave vector is indeed canceled
by that associated with the change of the band index.

a. Formal calculation of the spectral function

In order to obtain the spectral function, it is apparent from
Eq. (156) that one needs to calculate the polarizability
�ðq; !Þ of the 2D system, which may be found with the
help of the Green’s functions Gðq; !Þ,

�ðq; !Þ ¼ �iTr
Z d!0

2�

X
q0
Gðq0; !0ÞGðqþ q0; !þ!0Þ;

(157)

where Tr means the trace since the Green’s functions are
2� 2 matrices as a consequence of the matrix character of
the kinetic Hamiltonian. Diagrammatically, the polarizability
may be represented by the so-called bubble diagram shown
in Fig. 15(a), and one finds for noninteracting electrons in
graphene (Shung, 1986; Ando, 2006a; Wunsch et al., 2006;
Hwang and Das Sarma, 2007; Polini et al., 2008)

�0ðq; !Þ ¼ g

A

X
q0 ;�;�0

nð~��q0 Þ � nð~��0
q0þqÞ

~��q0 � ~��
0

q0þq þ ℏ!þ i�

� C��0 ðq0;q0 þ qÞ; (158)

where ~��q ¼ �ℏvFjqj � �F is the energy of the quantum state

c �ðqÞ measured from the Fermi energy �F, g ¼ 4 takes into
account the fourfold spin-valley degeneracy, and nð~��qÞ is

the Fermi-Dirac distribution function that reduces to a
Heaviside step function nð~��qÞ ¼ �ð�~��qÞ at zero tempera-

ture. Equation (158) is nothing other than the Lindhard
function (Mahan, 1993; Giuliani and Vignale, 2005), apart
from the factor

FIG. 14 (color online). Zero-field particle-hole excitation spec-

trum for doped graphene. (a) Possible intraband (I) and interband

(II) single-pair excitations in doped graphene. The excitations close

to the Fermi energy may have a wave-vector transfer comprised

between q ¼ 0 (Ia) and q ¼ 2qF (Ib), in terms of the Fermi wave

vector qF. (b) Spectral function Im�0ðq; !Þ in the wave-vector–

energy plane. The regions corresponding to intraband and interband

excitations are denoted by I and II, respectively.

FIG. 15 (color online). (a) Particle-hole bubble diagram (polar-

izability) in terms of Green’s functions Gðq; !Þ (lines). (b) Spectral
function Im�RPAðq; !Þ for doped graphene in the wave-vector–

energy plane. The electron-electron interactions are taken into

account within the random-phase approximation (RPA). We have

chosen G ¼ 1 here.
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C��0 ðq0;q0 þ qÞ � 1þ ��0 cos�q0;q0þq

2
; (159)

in terms of the angle �q0 ;q0þq between q0 and q0 þ q, which

takes into account the particular chirality properties of
graphene; as mentioned, this chirality factor vanishes for
backscattering processes, i.e., for intraband (� ¼ �0) 2qF
processes with �q0 ;q0þq ¼ � as well as for interband

(� ¼ ��0) q ¼ 0 processes with �q0 ;q0þq ¼ 0 or 2�.

Note that the quantity � in Eq. (158) is an infinitesimal
energy in the case of pure graphene and may be used (for
finite values) as a phenomenological measure of the impurity
broadening � ’ ℏ=�, in terms of the lifetime � of the
excitations.

b. Polarizability in the random-phase approximation

The diagrammatic approach is particularly adapted for
taking into account the electronic interactions on the level
of the random-phase approximation (RPA), which amounts to
calculating a geometric series of bubble diagrams and which
has been shown to yield reliable results for doped graphene
(Wunsch et al., 2006; Hwang and Das Sarma, 2007; Sabio
et al., 2008). The RPA has also been applied to undoped
graphene (González et al., 1994; González et al., 1999), but
its validity has been questioned (Kotov et al., 2008;
Gangadharaiah et al., 2008) because of the vanishing density
of states, which would require one to take into account
diagrams beyond the RPA (Katsnelson, 2006). The RPA
polarizability then becomes

�RPAðq; !Þ ¼ �0ðq; !Þ
"RPAðq; !Þ ; (160)

in terms of the polarizability (158) for noninteracting elec-
trons and the dielectric function

"RPAðq; !Þ ¼ 1� 2�e2

"jqj �
0ðq; !Þ: (161)

The spectral function associated with the RPA polarizabil-
ity (160), which is shown in Fig. 15(b), reveals the character-
istic coherent 2D plasmon mode, which corresponds to the
solution of the implicit equation "RPAðq; !plÞ ¼ 0. The dis-

persion relation of the plasmon mode reads

!plðqÞ ’
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2e2�F
ℏ2"

q

s
(162)

in the small-q limit (Shung, 1986; Wunsch et al., 2006).
Interestingly, Eq. (162) is also valid for nonrelativistic elec-
trons in conventional 2D electron systems (Stern, 1967) if one
takes into account the difference in the density dependence of
the Fermi energy (�F ¼ �nel=mb for nonrelativistic 2D elec-
trons and �F ¼ ℏvF

ffiffiffiffiffiffiffiffiffiffi
�nel

p
in graphene) as well as that in the

Fermi velocity (vF ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�F=mb

p
for nonrelativistic electrons,

as compared to a constant vF in graphene). Note that the
dispersion relation is restricted to small values of q (as
compared to the Fermi wave vector kF), whereas the numeri-
cal solution presented in Fig. 15 indicates that the asymptotic
dependence of the plasmon mode is given by the central
diagonal !uhðqÞ * vFq (Shung, 1986; Wunsch et al.,
2006). Therefore, contrary to the plasmon in 2D metals

with a parabolic dispersion relation, the plasmon in graphene
does not enter region I, but only the interband particle-hole
continuum (region II). In this region, the Landau damping is
less efficient, and the coherence of the mode thus survives to a
certain extent without decaying into incoherent particle-hole
excitations.

2. Polarizability for B�0

In the case of a strong magnetic field applied perpendicular
to the graphene sheet, one needs to take into account in the
calculation of the polarizability the quantization of the kinetic
energy into relativistic LLs described in Sec. II.A.1, as well as

the spinorial eigenfunctions c 

n�;m. One finds a similar ex-

pression for the zero-temperature polarizability of noninter-
acting electrons as in Eq. (158),

�0
Bðq;!Þ¼g

X
�n;�0n0

�ð�F��ℏ!0 ffiffiffi
n

p Þ��ð�F��0ℏ!0 ffiffiffiffiffi
n0

p Þ
�ℏ!0 ffiffiffi

n
p ��0ℏ!0 ffiffiffiffiffi

n0
p þℏ!þi�

�jF �n;�0n0 ðqÞj2; (163)

in terms of the graphene form factors (141) and the character-

istic frequency !0 ¼ ffiffiffi
2

p
vF=lB introduced in Sec. II.A.1. One

notes that the first part is nothing other than a Lindhard
function (Mahan, 1993; Giuliani and Vignale, 2005) for
relativistic LLs filled up to the Fermi energy �F ¼
ℏðvF=lBÞ

ffiffiffiffiffiffiffiffiffi
2NF

p
, which is chosen to be situated between a

completely filled (NF) and a completely empty (NF þ 1) LL
in the CB (IQHE regime). The second factor is the squared
modulus of the graphene form factors, which plays the role of
the chirality factor C�;�0 ðq0;q0 þ qÞ in the absence of a

magnetic field (Shizuya, 2007; Roldán et al., 2009; Roldán
et al., 2010).20

As for the zero-field case, one may distinguish two con-
tributions to the polarizability, one that may be viewed as a
vacuum polarizability �vacðq; !Þ and that stems from inter-
band excitations when the Fermi level is at the Dirac point,
and a second one that comes from intraband excitations in the
case of doped graphene. Because undoped graphene with zero
carrier density does not correspond to an IQHE situation—as
discussed in Sec. II.A, the zero-energy LL n ¼ 0 is only half
filled then—we define here the vacuum polarizability with
respect to the completely filled zero-energy level.

In order to describe more explicitly the different contribu-
tions to the polarizability, we define the auxiliary quantities
(Roldán et al., 2009)

��n;�0n0 ðq; !Þ ¼ jF �n;�n0 ðqÞj2
�ℏvF

ffiffiffi
n

p � �0ℏvF

ffiffiffiffiffi
n0

p þ ℏ!þ i�

þ ð!þ ! �!�Þ (164)

where !þ ! !� indicates the replacement ℏ!þ i� !
�ℏ!� i� and

20A similar expression for the polarizability has also been obtained

by Berman et al. (2008) and Tahir and Sabeeh (2008), although

with approximate form factors.
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��nðq; !Þ ¼ X
�0

Xn�1

n0¼0

��n;�0n0 ðq; !Þ

þX
�0

XNc

n0¼nþ1

��n;�0n0 ðq; !Þ þ��n;��nðq; !Þ;

(165)

which verify��nðq; !Þ ¼ ����nðq; !Þ. The vacuum polar-
ization may then be defined as

�vacðq; !Þ ¼ �XNc

n¼1

�þnðq; !Þ; (166)

where Nc is a cutoff that delimits the validity of the contin-
uum approximation. Note that, in the absence of a magnetic
field, the validity of the continuum approximation is already
delimited by a maximal energy 
t. One may then introduce
an upper-level cutoff with the help of �Nc

¼ ℏðvF=lBÞ�ffiffiffiffiffiffiffiffiffi
2Nc

p 
 t, which leads to Nc 
 104=½BðTÞ�; this is a rather
high value even for strong magnetic fields. However, because
the separation between LLs in graphene decreases with
increasing n, it is always possible to obtain reliable semi-
quantitative results from smaller values of Nc.

The spectral function Sðq; !Þ ¼ �Im�0
Bðq; !Þ=� is

shown in Fig. 16 for NF ¼ 3 and for two different values of
the phenomenologically introduced LL broadening �. One
notes that the spectral weight is restricted to the two regions I
and II corresponding to the intraband and interband particle-
hole continuum, respectively, in the zero-field limit. This is
not astonishing because the electron-hole-pair wave vector
remains a good quantum number in the presence of a mag-
netic field and because the overlap between the electron and
hole wave functions is largest in these regions; if one con-
siders the pair with its overall charge neutrality, its motion is
unaffected by the magnetic field. Indeed, the pair momentum
may be viewed as the sum of the pseudomomenta associated
with the guiding-center variable for the electron, R� ez=l

2
B,

and the hole, �R0 � ez=l
2
B, respectively. Each of the pseu-

domomenta is naturally a constant of motion because so is the
guiding center, as discussed in Sec. II.A.1. One therefore
obtains

q ¼ �R� ez=l
2
B or �R ¼ jqjl2B; (167)

where �R ¼ R�R0 is the distance between the guiding
center of the electron and the hole. The boundaries of the
PHES in Fig. 16 may then be obtained from the decomposi-
tion (90), which yields �0 � � � �R � �0 þ �, with the

help of the average values � � hj�ji ¼ lB
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2nþ 1

p
and �0 ¼

lB
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2n0 þ 1

p
,

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2n0 þ 1

p
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2nþ 1
p � qlB �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2n0 þ 1

p
þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2nþ 1
p

:

(168)

Because the energy scales also with
ffiffiffi
n

p
, one obtains the linear

boundaries of the particle-hole continua as in the zero-field
case mentioned above.

In contrast to these similarities with the zero-field PHES,
one notes a structure in the spectral weight that is due to the
strong magnetic field. As a consequence of the relativistic LL
quantization, the spectral weight corresponds to inter-LL

transitions at energies ! ¼ ffiffiffi
2

p
ℏðvF=lBÞð

ffiffiffi
n

p � �
ffiffiffiffiffi
n0

p Þ, where
n > NF and n0 � NF (for � ¼ þ) or n0 > 0 (for � ¼ �). For
larger values of NF, or quite generally when increasing the
energy, the level density increases due to the

ffiffiffi
n

p
scaling of the

LLs and the transitions. The LL structure is therefore visible
only in the lower part of the PHES, in the clean limit � ¼
0:05ℏvF=lB [Fig. 16(a)], whereas the inter-LL transitions are
blurred at larger energies or even for the lower transitions
in the case of less clean samples [Fig. 16(b) for
� ¼ 0:2ℏvF=lB].

21

In addition to the (blurred) LL structure in the PHES, one
notes another structure of the spectral weight, which is
organized in lines parallel to the central diagonal ! ¼
ℏvFjqj. This weight is again decreased when approaching
the right boundary of the intraband continuum (region I) and
the left one of the interband continuum (region II), due to the
above-mentioned chirality properties of electrons in gra-
phene. The emergence of diagonal lines is a consequence
of the graphene form factors (141), the squared modulus of
which intervene in the polarization function. Indeed, these
form factors F �ðnþmÞ;�0nðqÞ are (associated) Laguerre poly-

nomials with nþ 1 zeros (Gradshteyn and Ryzhik, 2000) due
to the overlap between the wave function of the hole in the
level �0n and the wave function of the electron in the LL
�ðnþmÞ (Roldán et al., 2010). These zeros in the inter-LL
transitions are organized in lines that disperse parallel to the
central diagonal and thus give rise to zones of vanishing
spectral weight. Interestingly, it is this structure of diagonal
lines that survives in more disordered samples in which the
horizontal lines associated with inter-LL transitions start to
overlap, i.e., once the LL spacing is smaller than the level
broadening �.22

FIG. 16 (color online). Particle-hole excitation spectrum for gra-

phene in a perpendicular magnetic field. We have chosen NF ¼ 3 in

the CB and a LL broadening of (a) � ¼ 0:05ℏvF=lB
and (b) � ¼ 0:2ℏvF=lB. The ultraviolet cutoff is chosen such that

Nc ¼ 70.

21The value � ¼ 0:2ℏvF=lB is a reasonable estimate for today’s

exfoliated graphene samples on SiO2 substrate (Ando, 2007a).
22This behavior is in stark contrast to that of nonrelativistic 2D

electrons, where the LL spacing is constant and given by the

cyclotron energy ℏeB=mb. If this quantity is larger than the level

broadening �, there is no qualitative difference between low and

high energies, and the horizontal lines associated with the inter-LL

excitations (multiples of the cyclotron energy) remain well

separated.
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3. Electron-electron interactions in the random-phase

approximation: Upper hybrid mode and linear

magnetoplasmons

The PHES of noninteracting electrons in graphene already
gives insight into the collective modes that one may expect
once electron-electron interactions are taken into account.
Indeed, the regions of large spectral weight evolve into
coherent collective excitations as a consequence of these
interactions. Because the regions of large spectral weight
are organized in lines parallel to the central diagonal ! ¼
ℏvFjqj, as mentioned, one may expect that the dominant
collective excitations are roughly linearly dispersing modes
instead of the more conventional weakly dispersing magneto-
excitons, which emerge from the inter-LL transitions (Kallin
and Halperin, 1984). However, it has been argued that such
magnetoexcitons may play a role at low energies in clean
samples with low doping (Iyengar et al., 2007) and that they
may renormalize the cyclotron energy at zero wave vector
(Bychkov and Martinez, 2008).

As in the zero-field case, we take into account the Coulomb
interaction within the RPA [see Eq. (160)]. The resulting
spectral function is shown in Fig. 17 for the same choice
of parameters as in the noninteracting case (Fig. 16).
Furthermore, we have chosen a dimensionless interaction
parameter G ¼ 1 here, which corresponds to a dielectric
constant of " ’ 2.

One notes the prominent mode that evolves in the origi-
nally forbidden region for particle-hole excitations. This
mode, which is called the upper hybrid mode, is the
magnetic-field descendent of the 2D plasmon mode (162)
and acquires a density-dependant cyclotron gap !C ¼
eBv2

F=�F ¼ eBvF=ℏvF
ffiffiffiffiffiffiffiffiffiffi
�nel

p
. Its dispersion relation in the

small-q limit is then given by

!uhðqÞ ’
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
!2

plðqÞ þ!2
C

q

’
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ℏe2vF

ffiffiffiffiffiffiffiffiffiffi
�nel

p
ℏ2"

qþ
�

eBv2
F

ℏvF
ffiffiffiffiffiffiffiffiffiffi
�nel

p
�
2

vuut ; (169)

as may be shown easily within the hydrodynamic approach
that has been successfully applied to the upper hybrid mode

in nonrelativistic 2D electron systems (Chiu and Quinn,
1974). It is apparent from Fig. 17 that this mode remains
coherent also within region II, which corresponds to the
B ¼ 0 interband particle-hole continuum.

In addition to the upper hybrid mode, one notes linearly
dispersing coherent modes in regions I and II that emerge
from the lines of large spectral weight in the noninteracting
PHES, as expected from the qualitative discussion above. We
may call these modes linear magnetoplasmons (Roldán
et al., 2009; 2010) in order to distinguish them clearly from
the upper hybrid mode (169) and the weakly dispersing
magnetoexcitons at low doping (Iyengar et al., 2007).
These modes are more prominent in the interband than in
the intraband region, although they are also visible there.
They are peculiar to graphene with its characteristic

ffiffiffiffiffiffiffi
Bn

p
LLs that inevitably overlap in energy, above a critical LL n, if
level broadening is taken into account, and they may not be
captured in the usual magnetoexciton approximation where
the collective modes are adiabatically connected to the inter-
LL excitations (Kallin and Halperin, 1984; Iyengar et al.,
2007; Bychkov and Martinez, 2008).

4. Dielectric function and static screening

We end this section with a discussion of the dielectric
function (161) in the static limit,

"RPAðqÞ � "RPAðq; ! ¼ 0Þ ¼ 1� 2�e2

"jqj �
0ðq; ! ¼ 0Þ;

(170)

comparing the B � 0 to the zero-field case, as shown in
Fig. 18. As mentioned, one may distinguish two separate
contributions to the static polarizability, the vacuum
polarizability �vacðqÞ � �vacðq; ! ¼ 0Þ due to interband
excitations and the intraband contribution �dopðqÞ �
�dopðq; ! ¼ 0Þ, which is present only in doped graphene,

�0ðq; ! ¼ 0Þ ¼ �vacðqÞ þ�dopðqÞ: (171)

One notes that up to 2qF the zero-field static polarizability
[Fig. 18(a)] remains constant. Indeed, the interband contri-
bution (blue dashed line) increases linearly with the wave
vector (González et al., 1999; Ando, 2006a)

FIG. 17 (color online). Particle-hole excitation spectrum for gra-

phene in a perpendicular magnetic field. The Coulomb interaction

is taken into account within the RPA. We have chosen NF ¼ 3 in

the CB and a LL broadening of (a) � ¼ 0:05ℏvF=lB and

(b) � ¼ 0:2ℏvF=lB. The ultraviolet cutoff is chosen such that

Nc ¼ 70.

FIG. 18 (color online). Static polarization function �0ðq; ! ¼ 0Þ
for noninteracting electrons in graphene (a) without and (b) with a

magnetic field. To compare the two cases, we have chosen a Fermi

wave vector qF ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2NF þ 1

p
=lB ¼ ffiffiffi

7
p

=lB that corresponds to

NF ¼ 3. The full black line represents the total polarizability,

whereas the dotted and the dashed lines show the intraband and

the interband contributions, respectively. From Roldán et al., 2010.
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��vacðqÞ ¼ q

4ℏvF

(172)

and thus cancels the linear decrease of the intraband contri-
bution (dotted line),

��dopðjqj & 2qFÞ ’ �ð�FÞ
�
1� q

2qF

�
; (173)

where

�ð�FÞ ¼ �F
2�ℏ2v2

F

(174)

is the density of states per unit area at the Fermi energy.
At wave vectors larger than 2qF, the intraband contribution
dies out, and the polarizability is dominated by interband
excitations.

With the help of these two contributions, we may rewrite
the static dielectric function (170) as

"RPAðqÞ ¼ "1
�
1þ �G

2"1
�dopðqÞ
�vacðqÞ

�
; (175)

where

"1 � "RPAðjqj ! 1Þ ¼ 1þ �

2
G; (176)

i.e., the value that the static dielectric function approaches at
large wave vectors. Note that this is precisely the RPA result
for the intrinsic dielectric constant for undoped graphene
(González et al., 1999). The above form of the static dielec-
tric function may be cast into a Thomas-Fermi form,

"TFðqÞ ’ "1
�
1þ �

G

qF
q

�
(177)

in terms of the effective coupling constant

�
G ¼ G

"1
¼ G

1þ �G=2
; (178)

which is plotted in Fig. 19.
One notes that interband excitations yield a contribution

to the dielectric constant that originally takes into account
the dielectric environment in which the graphene sheet is
embedded, " ! "� ¼ ""1. This is a direct consequence of

the linear behavior of the vacuum polarization (172) as a
function of the wave vector and thus specific to graphene.
Furthermore, one may also define an effective Thomas-Fermi
wave vector q�TF ¼ qTF="1 ¼ �

GqF, which describes the

screening length in the presence of the vacuum polarization.
As a consequence of the saturation of the effective coupling
constant (178) at large values of G, the effective Thomas-
Fermi vector is thus always on the order of the Fermi wave
vector unless G 	 1, where �

G 
 G. The relevant effec-

tive parameters are summarized in Table I for free-standing
graphene and graphene on commonly used substrates.23

Finally, the screened Coulomb interaction potential is
given by

vscrðqÞ ’ 2�e2

""1ð1þ �
GqF=qÞq

: (179)

One notes from this expression that processes at wave vectors
q 	 qF, where the interband excitations play a negligible
role [see Fig. 18(a)], are still governed by the bare coupling
constant G 
 vscrðq 	 qFÞ=ℏvFq. However, processes at or
above the Fermi wave vector, such as those that are relevant in
the electronic transport, are characterized by the effective
coupling constant �

G 
 vscrðq 	 qFÞ=ℏvFq, which saturates
at a value of 2=� as mentioned above. If we consider the
value (133) G ’ 2:2 for the bare coupling constant of gra-
phene in vacuum, the effective coupling is roughly four times
smaller, �

G ’ 0:5, so that the electrons in doped graphene

approach the weak-coupling limit. The situation is different in
undoped graphene, where recent renormalization-group
(Herbut et al., 2009a; 2009b; Juričić et al., 2009) and
lattice-gauge theoretical calculations (Drut and Lähde,
2009a; 2009b) indicate a flow toward strong coupling at
moderate values of G.

In Fig. 18(b) we plotted the static polarizability for gra-
phene in the IQHE regime. Qualitatively, the result agrees
with the zero-field behavior, with a (roughly) linearly increas-
ing vacuum polarizability and a decreasing intraband contri-
bution, apart from some superimposed oscillations due to the
overlap functions that are reflected by the form factors (141).
An important difference is manifest in the small-wave-vector
limit of the polarizability. In contrast to the zero-field case,
where the polarizability saturates at a nonzero density of
states, the system is gapped in the IQHE regime, with a
resulting vanishing density of states at the Fermi energy.
This gives rise to a q2 behavior of the polarizability at small
wave vectors. Furthermore, the static dielectric function,

2 4 6 8 10

0.2
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0.6

0.8

1.0

2/π

G

G

α

α ∗

FIG. 19 (color online). Effective coupling constant �
G as a func-

tion of the bare coupling G. The dashed line indicates the

asymptotic value 2=� obtained for large values of the bare coupling

(rs  1).

TABLE I. Dielectric constants " and "1, bare coupling G, and
effective coupling �

G for graphene in vacuum and popular sub-
strates.

Graphene " G "1 �
G

In vacuum 1 2.2 4.5 0.5
On SiO2 2.5 0.9 2.4 0.38
On h-BN 2.3 1 2.4 0.39
On SiC 5.5 0.4 1.6 0.25

23The dielectric constant " is then the average of the dielectric

constant of the substrate material and that of the vacuum.
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which is shown in Fig. 20 (Shizuya, 2007; Roldán et al.,
2010), no longer diverges in this limit, contrary to the zero-
field Thomas-Fermi result (177). Indeed, the small-q behav-
ior is given by

"RPAðqÞ � 1 / GN
3=2
F qlB; (180)

which is the same as for nonrelativistic 2D electrons (Aleiner
and Glazman, 1995).24 The maximum of the static dielectric
function is obtained at qlB 
 1=qFlB 
 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2NF þ 1

p
, at the

value "max ’ "RPAðq
 1=lB
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2NF þ 1

p Þ 
 GNF. It there-
fore scales as "max / NF in contrast to the

ffiffiffiffiffiffiffi
NF

p
scaling in

nonrelativistic 2D systems (Aleiner and Glazman, 1995). At
large wave vectors, the static dielectric function saturates at
the same value "1 as in zero magnetic field.

IV. MAGNETOPHONON RESONANCE IN GRAPHENE

In the previous section, we discussed the role of electron-
electron interactions in the IQHE regime, where a perturba-
tive (diagrammatic) approach may be applied. Similarly, one
may treat the electron-phonon interaction in a perturbative
manner in this regime. This is the subject of the present
section; we then discuss again electron-electron interactions
in the strong-coupling limit of partially filled LLs (Sec. V).

As a consequence of the honeycomb-lattice structure of
graphene, with two inequivalent sublattices, there are four in-
plane phonons, two acoustic and two optical. Each phonon
type occurs in a longitudinal [longitudinal acoustic and lon-
gitudinal optical (LO)] and a transverse [transverse acoustic
and transverse optical (TO)] mode. In addition to these four
phonons, one finds two out-of-plane phonons, one acoustic
and one optical [for a review of phonons in graphene, see
Saito et al. (1998) and Wirtz and Rubio (2004)]. Here we
concentrate on the in-plane LO and TO phonons, which
couple to the electronic degrees of freedom. More specifi-
cally, we discuss these phonons at the � point (E2g modes) in

the center of the first BZ. These phonons are attributed to the
G band at ℏ!ph ’ 0:2 eV in the Raman spectra [see, e.g.,

Ferrari et al. (2006); Gupta et al. (2006); Graf et al. (2007);
Pisana et al. (2007); Yan et al. (2007)].

One of the most prominent effects of electron-phonon
coupling in metals and semiconductors is the so-called

Kohn anomaly (Kohn, 1959), which consists of a singularity
in the phonon dispersion due to a singularity in the electronic
density-density response function. The analog of the Kohn
anomaly in graphene yields a logarithmic divergence of the

phonon frequency when the bare-phonon frequency coincides
with twice the Fermi energy (Ando, 2006b; Lazzeri and
Mauri, 2006; Castro Neto and Guinea, 2007). We investigate
how this renormalization manifests itself in graphene in a

strong magnetic field (Ando, 2007b; Goerbig et al., 2007). In
Sec. IV.A, we consider the specific form of the electron-
phonon coupling and discuss its consequences for the renor-
malization of the optical phonons at the � point in

Sec. IV.B. More specifically, we consider both nonresonant
(Sec. IV.B.1) and resonant coupling (Sec. IV.B.2), the latter
being specific to graphene in a magnetic field when the
phonon is in resonance with an allowed inter-LL transition

(magnetophonon resonance) (Goerbig et al., 2007).

A. Electron-phonon coupling

The LO and TO phonons in graphene are schematically
represented in Fig. 21(a). As mentioned, we concentrate on
phonons at small wave vectors, in the vicinity of the � point.
The origin of the electron-phonon coupling may easily be

understood from the variation of the bond length caused by
the phonon, which affects the electronic hopping amplitude
between NN carbon atoms. As discussed in Sec. I.D, the
effect may be quantified with the help of Harrison’s law

(Harrison, 1981), which yields @t=@a ’ �4:3 eV= �A [see
Eq. (57)]. The order of magnitude for the bare electron-
phonon energy is then obtained by multiplying this variation

by the typical length scale
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ℏ=M!ph

q
, which characterizes the

amplitude of a lattice vibration of frequency !ph within the

harmonic approximation. The intervening mass M is that
of the carbon atom. Indeed, a tight-binding calculation
(Ando, 2006b; Ishikawa and Ando, 2006) corroborates this

argument, apart from a numerical prefactor 3=2, and yields a
bare electron-phonon coupling

FIG. 20 (color online). Static dielectric function for graphene in

the IQHE regime for NF ¼ 1, 2, and 3 (in increasing order). From

Roldán et al., 2010.
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g ~ −dt/da
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Γ
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FIG. 21 (color online). Electron-phonon coupling in graphene.

(a) Optical phonons in graphene, with a wave vector q in the

vicinity of the � point at the center of the first BZ [see (c)]. The

amplitude of the LO phonon is in the direction of propagation, that

of the TO phonon perpendicular to it. The optical phonons modify

the bond lengths of the honeycomb lattice. (b) As a consequence of

the modified bond lengths, the electronic hopping is varied, and the

electron-phonon coupling is off diagonal in the sublattice index.

24Note, however, that the expression becomes exact only in the

large-NF limit and that in nonrelativistic 2D electron systems, the

coupling constant rs also depends on NF, rs 
 N�1=2
F .
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g ¼ � 3

2

@t

@a

ffiffiffiffiffiffiffiffiffiffiffiffiffi
ℏ

M!ph

s
’ 0:26 eV: (181)

This value agrees well with ab initio calculations (Piscanec
et al., 2004), although it is though lower than the value
determined experimentally, which ranges from g ’ 0:3 eV
(Pisana et al., 2007; Faugeras et al., 2009) to g ’ 0:36 eV
(Yan et al., 2007).

Furthermore, one notes that, because the electron-phonon
coupling is mediated by a bond variation between sites that
belong to two different sublattices, the coupling constant is
off diagonal in the sublattice basis. This is diagrammatically
depicted in Fig. 21(b).

1. Coupling Hamiltonian

The above considerations help us to understand the differ-
ent terms in the Hamiltonian

H ¼ Hel þHph þHcoupl

which serves as the basis for the analysis of the electron-
phonon coupling. The Hamiltonian for 2D electrons in a
magnetic field,

Hel ¼
X



Z
d2rc y


ðrÞH eff;

B c 
ðrÞ

¼ X
�n;m;


��;nc
y
�n;m;
c�n;m;
; (182)

may be written, in second quantization, in terms of the one-
particle Hamiltonian (75) and the fermionic fields

c 
ðrÞ ¼
X
�n;m

c �n;m;
ðrÞc�n;m;
;

where c �n;m;
ðrÞ is the wave function in position space

associated with the spinor (138).
The lattice vibration is characterized by the relative dis-

placement uðrÞ between the two sublattices, which may be

decomposed in terms of the bosonic operators b�;q and by�;q,

uðrÞ ¼ X
�;q

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ℏ

2NucM!�ðqÞ
s

ðb�;q þ by�;�qÞe�;qe
�iq�r;

(183)

where e�;q denotes the two possible linear polarizations (� ¼
LO; TO) at the wave vector q and Nuc ¼ A=ð3 ffiffiffi

3
p

a2=2Þ is
the number of unit cells in the system. The phonon
Hamiltonian then reads, on the level of the harmonic approxi-
mation,

Hph ¼
X
�;q

ℏ!�ðqÞby�;qb�;q (184)

in terms of the phonon dispersion !�ðqÞ. Note that, at the �
point, the frequencies of the LO and TO phonons coincide,
and one has !ph � !�ðq ¼ 0Þ. It is then convenient to

describe the phonon modes in terms of circularly polarized

modes, uvðrÞ ¼ ½uxðrÞ þ iuyðrÞ�=
ffiffiffi
2

p
and uuðrÞ ¼ u�

v
ðrÞ.

Finally, taking into account the above considerations on the
electron-phonon coupling, the coupling Hamiltonian reads

(Ando, 2006b; Ishikawa and Ando, 2006; Castro Neto and
Guinea, 2007)

Hcoupl ¼ g

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2M!ph

ℏ

s X



Z
d2rc y


ðrÞ½� ^ uðrÞ�c 
ðrÞ;

(185)

where � ^ uðrÞ ¼ ½� � uðrÞ�z ¼ �xuyðrÞ � �yuxðrÞ is the

2D cross product between the Pauli matrices and the dis-
placement field.

2. Hamiltonian in terms of magnetoexciton operators

As a consequence of the off-diagonal character of the
electron-phonon coupling (185), one notes that the interven-
ing matrix elements are proportional to �n;n�1, and one thus

obtains the selection rules

�n ! �0ðn� 1Þ; (186)

in analogy with the magnetooptical selection rules discussed
in Sec. II.A.1. Furthermore, if we fix the energy of the dipole

transition (105) to be25 �n � �n;�¼� ¼ ffiffiffi
2

p
ℏðvF=lBÞ�

ð ffiffiffiffiffiffiffiffiffiffiffiffi
nþ 1

p þ ffiffiffi
n

p Þ, there are two possible transitions, which
may be distinguished by the circular polarization of the
phonon to which they are coupled. Indeed, the form of the
electron-phonon coupling (185) indicates that thev-polarized
phonon is coupled to the transition�ðnþ 1Þ ! þn, whereas
the u-polarized phonon couples to the�n ! þðnþ 1Þ inter-
band transition (Goerbig et al., 2007).

It is then convenient to introduce magnetoexciton
operators, associated with the above-mentioned inter-LL
transitions,

�y
v
ðn; 
Þ ¼ i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ �n;0

p
N v

n

X
m

cyþn;m;
c�ðnþ1Þ;m;
;

�y
u
ðn; 
Þ ¼ i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ �n;0

p
N u

n

X
m

cyþðnþ1Þ;m;
c�n;m;
;

(187)

where the index A ¼ v, u characterizes the angular
momentum of the excitation, and where the normalization
factors

N v
n ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1þ �n;0ÞNB½ ���ðnþ1Þ � ��þn�

q
and

N u
n ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1þ �n;0ÞNB½ ���n � ��þðnþ1Þ�

q
are used to ensure the bosonic commutation relations of the

exciton operators ½�Aðn; 
Þ; �y
A0 ðn0; 
0Þ� ¼ �A;A0�
;
0�n;n0

including the twofold spin degeneracy. These commutation
relations are obtained within the mean-field approximation

with hcy�n;m;
c�0n0 ;m0;
0 i¼�
;
0��;�0�n;n0�m;m0 ð��;�þ��;þ ���nÞ,
where 0 � ���n � 1 is the partial filling factor of the nth LL,
normalized to 1.

One notes that the magnetoexciton operators are, apart
from a normalization constant, nothing other than the reduced

density operators (140), �y
v
ðn; 
Þ / ��
;


þn;�ðnþ1Þðq ¼ 0Þ and

25We consider mainly interband transitions here, which may

possibly be in resonance with the phonon of energy ℏ!ph 
 0:2 eV.
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�y
u
ðn; 
Þ / ��
;


þðnþ1Þ;�nðq ¼ 0Þ, respectively, at zero wave

vector. Note that, because of the relative sign 
 between the
kinetic part (182) and the electron-phonon-coupling
Hamiltonian (185), the optical phonons couple to the valley-
antisymmetric magnetoexciton combination �A;asðnÞ ¼
½�Aðn; 
 ¼ þÞ ��Aðn; 
 ¼ �Þ�= ffiffiffi

2
p

. This needs to be
contrasted with the magneto-optical coupling (Sadowski
et al., 2006; Abergel and Fal’ko, 2007; Iyengar et al.,
2007), where the photon couples to the valley-symmetric

mode �A;sðnÞ ¼ ½�Aðn; 
 ¼ þÞ þ�Aðn; 
 ¼ �Þ�= ffiffiffi
2

p
.

The magnetoexciton operators (187) allow one to rewrite
the electron-phonon Hamiltonian at the � point (q ¼ 0) in a
bosonic form as (Goerbig et al., 2007)

H ¼ X
�¼s;as

X
A;n

�n�
y
A;�ðnÞ�A;�ðnÞ þ

X
A

ℏ!phb
y
AbA

þ X
A;n

gAðnÞ½byA�A;asðnÞ þ bA�y
A;asðnÞ�; (188)

in terms of the effective coupling constants

gvðnÞ ¼ g
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ �n;0Þ	

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
���ðnþ1Þ � ��þn

p
and

guðnÞ ¼ g
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ �n;0Þ	

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
���n � ��þðnþ1Þ

p
(189)

with the constant 	 � 3
ffiffiffi
3

p
a2=2�l2B. One therefore remarks

that, although the bare coupling constant g is rather large [see
Eq. (181)], the effective coupling is reduced by a factor of
a=lB,

gAðnÞ 
 g
a

lB

 ð1–2 meVÞ ffiffiffiffiffiffiffiffiffiffi

BðTÞp
: (190)

B. Phonon renormalization and Raman spectroscopy

The Hamiltonian (188) shows that a phonon may be
destroyed by exciting a magnetoexciton, and the associated
Dyson equation for the dressed phonon propagator Dð!Þ
reads

DAð!Þ ¼ D0ð!Þ þD0ð!Þ�Að!ÞDAð!Þ; (191)

in terms of the bare bosonic phonon propagator

D0ð!Þ ¼ 1

ℏ
2!

!2 �!2
ph

(192)

and

�Að!Þ ¼ XNc

n¼NFþ1

2�ng
2
AðnÞ

ℏ2!2 ��2
n

þ 2~�NF
g2AðnÞ

ℏ2!2 � ~�2
NF

: (193)

The form of the last expression is transparent; the magneto-
exciton is a boson, and its propagator is therefore of the same
form as that of the bare phonon. It is equivalent to a particle-
hole propagation associated with a polarization bubble [see
Fig. 15(a)], but Eq. (193) also takes into account the square of
the effective coupling constant, which is due to the double
occurrence of the electron-phonon coupling, first when the
phonon is converted into a magnetoexciton and the second
time when the magnetoexciton is destroyed by creation of a
phonon. The last term in Eq. (193) takes into account the only

possible intraband magnetoexciton from the last filled LL, NF

to NF þ 1, with energy ~�NF
¼ ffiffiffi

2
p ðℏvF=lBÞð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
NF þ 1

p �ffiffiffiffiffiffiffi
NF

p Þ, which we have omitted in the Hamiltonian (188)
because it is irrelevant for resonant coupling. The parameter
Nc is the same high-energy cutoff, defined by �Nc

¼
ℏðvF=lBÞ

ffiffiffiffiffiffiffiffiffi
2Nc

p 
 t, as in Sec. III.B.
The renormalized phonon frequencies ~!A may be ob-

tained from the Dyson equation (191) by searching the poles
of the dressed phonon propagator

DAð!Þ�1 ¼ 0 ¼ DAð ~!AÞ�1 � �Að ~!AÞ; (194)

one finds (Ando, 2007b; Goerbig et al., 2007)

~!2
A �!2

ph ¼
4!ph

ℏ

� XNc

n¼NFþ1

�ng
2
AðnÞ

ℏ2 ~!2
A � �2

n

þ
~�NF

g2AðNFÞ
ℏ2 ~!2

A � ~�2
NF

�
: (195)

1. Nonresonant coupling and Kohn anomaly

Before discussing resonant coupling, i.e., coupling when
the phonon frequency is in resonance with a possible inter-LL
excitation in a strong magnetic field, we comment on the
relation between Eq. (195) and the (nonresonant) renormal-
ization of the phonon frequency in zero magnetic field. The
zero-field limit may indeed be obtained from Eq. (195) if one
replaces the sum

P
n by an integral

R
dn, i.e., if the spacing

between the LLs vanishes, ~�NF
! 0. Linearizing Eq. (195),

replacing ~!A ! !ph in the denominators, and using the

approximation
ffiffiffi
n

p þ ffiffiffiffiffiffiffiffiffiffiffiffi
nþ 1

p � 2
ffiffiffi
n

p
one obtains

~! ’ ~!0 þ ~�

� ffiffiffiffiffiffiffiffiffi
2NF

p vF

lB
�!ph

4
ln

�
!ph þ 2

ffiffiffiffiffiffiffiffiffi
2NF

p
vF=lB

!ph � 2
ffiffiffiffiffiffiffiffiffi
2NF

p
vF=lB

��
;

(196)

where ~� ¼ ð2= ffiffiffi
3

p
�Þðg=tÞ2 ’ 3:3� 10�3 is the dimension-

less electron-phonon coupling constant introduced by Ando
(2006b, 2007b), and

~!0 ’ !ph þ 2

ℏ

Z Nc

0
dn

�ng
2
AðnÞ

ℏ2!2
ph � �2

n

(197)

is the physical phonon frequency at zero doping. Indeed, the
frequency !ph is not relevant in a physical measurement in

graphene even if it occurs in the Hamiltonian, but one mea-
sures ~!0 at zero doping and B ¼ 0. Equation (196) coincides
precisely with the zero-field result (Ando, 2006b; Lazzeri and
Mauri, 2006; Castro Neto and Guinea, 2007) if one identifies
the chemical potential with the energy of the last filled LL,
� ¼ ffiffiffiffiffiffiffiffiffi

2NF

p
ℏvF=lB (Goerbig et al., 2007).

2. Resonant coupling

Apart from the nonresonant coupling discussed in the
preceding section, the high-field electron-phonon coupling
reveals a linear effect when the phonon is in resonance
with a particular magnetoexciton, ℏ!ph ’ �n. In this case,

the sum on the right-hand side in Eq. (195) is dominated
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by a single term and may be approximated by
2ð!ph=ℏÞg2AðnÞ=ðℏ ~!A � �nÞ. This results in a fine struc-

ture of mixed phonon-magnetoexciton modes, �A;asðnÞ�
cos�þ bA sin� with frequency ~!þ

A and �A;asðnÞ sin��
bA cos� with frequency ~!�

A [where cot2� ¼ ð�n �
ℏ ~!0Þ=2gA]. The frequencies of these mixed boson modes
read (Ando, 2007b; Goerbig et al., 2007)

~!�
AðnÞ ¼ 1

2

�
�n

ℏ
þ ~!0

�
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

4

�
�n

ℏ
� ~!0

�
2 þ g2AðnÞ

s
;

(198)

and the resulting phonon-magnetoexciton anticrossing is
depicted in Fig. 22(a).

The above-mentioned anticrossing of the coupled phonon-
magnetoexciton modes has been observed in recent Raman
experiments on epitaxial graphene. Remember that Raman
spectroscopy is sensitive to the phonon component of the
mixed modes (Faugeras et al., 2009). The results are shown
in Fig. 22(b) and corroborate the theoretically expected be-
havior (Ando, 2007b; Goerbig et al., 2007). Indeed, one may
obtain the oscillating behavior from a numerical solution of
Eq. (195) if one expresses the equation in terms of ~!0 instead
of !ph and if one takes into account a finite broadening of the

levels. If the phonon is out of resonance with an inter-LL
transition, its frequency is essentially field independent and
coincides with the energy of the E2g line at 1586 cm�1 ’
0:2 eV. When it approaches the resonance (on increase of the
magnetic field), its energy is shifted upward as a consequence
of the anticrossing but rapidly dies out in intensity once the
magnetoexciton component becomes dominant in the ~!þ

A
mode. Upon further increase of the magnetic field, the ~!�

A
mode becomes more phononlike and therefore visible in the
Raman spectra.

The fine structure of the high-field resonant electron-
phonon coupling may furthermore be investigated by sweep-
ing the chemical potential when the magnetic field is held
fixed at resonance. The effect is most pronounced for the
resonance ℏ!ph ’ �n¼0, which is expected at B ’ 30 T [see

Fig. 22(a)]. In this case, the mode consists of an equal-weight

superposition of the phonon and the magnetoexciton ( cos� ¼
sin� ¼ 1=

ffiffiffi
2

p
), and the E2g band appears as two lines, at the

energies ℏ ~!� ¼ ℏ ~!0 � gA, for the case of undoped gra-
phene.26 With the above estimation (181) for the bare
electron-phonon coupling constant, one obtains for the line
splitting 2gA 
 16 meV (
 130 cm�1), which greatly ex-
ceeds the G bandwidth observed by Ferrari et al. (2006),
Gupta et al. (2006), Graf et al. (2007), Pisana et al. (2007),
and Yan et al. (2007).

It is apparent from Eq. (190) for the effective coupling
constants gv and gu that the splitting may be controlled by
the LL filling factor. Exactly at zero doping, the two coupling
constants coincide, gv ¼ gu, but upon electron doping the
transition �1 ! 0 associated with the v polarization be-
comes weaker due to the reduced number of final states in

n ¼ 0, whereas the 0 ! þ1 transition (with polarization u)
is strengthened. As a consequence, the associated coupling
constants are increased and decreased, respectively, until the
coupling constant gv vanishes at � ¼ 2.

The above-mentioned filling-factor dependence has a di-
rect impact on the Raman lines (Goerbig et al., 2007).
Whereas at � ¼ 0 one expects two lines separated by the
energy 2gv ¼ 2gu, the degeneracy in the circular polariza-
tion is lifted in the range 0< �< 2.27 One therefore expects
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FIG. 22 (color online). (a) Anticrossing of coupled phonon-mag-

neto-exciton modes as a function of the magnetic-field. From

Goerbig et al., 2007. (b) Raman spectra as a function of the

magnetic-field. The continuous white lines indicate the magnetic-

field for which the phonon is in resonance with an inter-LL

excitation of energy �n. Top: data for the full B-field range.

Bottom: zoom on the range from 0 to 10 T. From Faugeras

et al., 2009.

26Note, however, that only an oscillation of the phonon mode, and

not a splitting, was observed in the experiment by Faugeras et al.

(2009).

27We present the argument for a Fermi energy in the CB, i.e.,

� > 0, but the situation is generic, and the argument also applies in

the VB if one interchanges the polarizations.
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to observe four lines instead of two, where the inner ones are
associated with the polarization v, whereas the outer ones
with increased splitting correspond to the opposite polariza-
tion u. The separation between the inner lines then vanishes
at � ¼ 2, where the splitting of the outer lines is maximal and
where one expects to observe three lines.

V. ELECTRONIC CORRELATIONS IN PARTIALLY FILLED

LANDAU LEVELS

This last section is devoted to the physics of interacting
electrons in the strong-correlation limit of a partially filled
LL. The motivation stems from nonrelativistic quantum Hall
systems in GaAs heterostructures, where these correlations
lead to the formation of incompressible quantum-liquid
phases, which display the fractional quantum Hall effect
(FQHE) (Tsui et al., 1982), as well as from exotic
electron-solid phases, such as the high-field Wigner crystal
(Andrei et al., 1988; Williams et al., 1991) or the theoreti-
cally predicted bubble and stripe phases (Fogler et al., 1996;
Koulakov et al., 1996; Moessner and Chalker, 1996). The
latter are likely to be at the origin of highly anisotropic
transport properties at half-filled higher LLs (Du et al.,
1999; Lilly et al., 1999), particular electron transport under
microwave irradiation (Lewis et al., 2002; 2004; 2005), and
an intriguing reentrance of the IQHE in n ¼ 1 and n ¼ 2
(Cooper et al., 1999; Eisenstein et al., 2002).

It is therefore natural to ask whether such strongly corre-
lated phases exist also in graphene and if so what the differ-
ences are with respect to nonrelativistic 2D electrons.
Moreover, the fact that the electrons reside at the surface
opens up the possibility of probing these phases by spectro-
scopic means, such as scanning tunneling spectroscopy,
which has already been applied successfully in the analysis
of the electron density distribution of exfoliated (Martin
et al., 2007) and epitaxial (Mallet et al., 2007) graphene,
as well as graphene on graphite substrates (Li et al., 2009b).

After discussing the Coulomb interaction in graphene as
compared to nonrelativistic 2D electrons, we introduce the
basic model of interacting electrons in a partially filled
relativistic LL (Sec. V.A). This model yields a qualitative
understanding of the above-mentioned correlated electronic
phases in the context of graphene, as compared to nonrela-
tivistic electrons. In Sec. V.B, we apply this model to quan-
tum Hall ferromagnetism with an internal SU(4) symmetry
that is the relevant symmetry in graphene LLs and discuss its
relation with the experimentally observed degeneracy lifting
of the zero-energy LL n ¼ 0 (Zhang et al., 2006). We
conclude this section with a review of the specific FQHE in
graphene (Sec. V.C), which has recently been observed in the
two-terminal (Bolotin et al., 2009; Du et al., 2009) as well as
in the four-terminal (Ghahari et al., 2011; Dean et al., 2011)
geometry.

A. Electrons in a single relativistic Landau level

Quite generally, the origin of strongly correlated electron
phases is a quenched kinetic energy, where the partially filled
LL is separated by the cyclotron gap from the neighboring
ones such that inter-LL excitations constitute high-energy

degrees of freedom. The Coulomb interaction, which may
be small with respect to the cyclotron gap, remains then as the
only relevant energy scale that dominates the low-energy
degrees of freedom if we can neglect disorder effects. This
leads to the seemingly counterintuitive finding of strongly
correlated phases in weakly correlated matter.

In order to quantify the degree of separation between the
energy scales, one may use a similar argument to the one that
led us to the definition of the dimensionless interaction
parameter (131), introduced in Sec. III. One needs to compare
the Coulomb interaction energy Eint ¼ e2="RC at the char-

acteristic length scale RC ¼ lB
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2nþ 1

p
to the LL spacing

ℏ!C ¼ ℏeB=mb. We concentrate on nonrelativistic electrons
first,

rBs ¼ e2

ℏ"vFðn; BÞ with vFðn; BÞ � RC!C: (199)

If one identifies the Fermi wave vector kF ’ ffiffiffiffiffiffi
2n

p
=lB, one

obtains the same expression as for the zero-field coupling
constant (132),

rBs ¼ rs ¼ mbe
2

ℏ2"
k�1
F 
 1

a�0kF
: (200)

This means that the degree of LL mixing is still governed by
rs, and the inter-LL excitations are well separated from the
low-energy intra-LL degrees of freedom unless rs becomes
very large. Note, however, that rs 
 1 in most 2D electron
systems.

In the case of partially filled relativistic LLs in graphene,
one is tempted to apply the same argument: if the Coulomb
interaction e2="RC is sufficiently small as compared to the

LL spacing ~�n, the relevant degrees of freedom are those that
couple quantum states in the same LL, whereas inter-LL
excitations may be considered as frozen out (see Fig. 23).
Although this seems a reasonable assumption for the lowest
LLs, one is confronted with the apparent problem that the LL
spacing rapidly decreases once the Fermi level resides in
higher LLs,

~�n ¼ ffiffiffi
2

p ℏvF

lB

� ffiffiffiffiffiffiffiffiffiffiffiffi
nþ 1

p � ffiffiffi
n

p �
’ ℏvF

lB
ffiffiffiffiffiffi
2n

p : (201)

Note, however, that this decrease is balanced by the 1=
ffiffiffiffiffiffi
2n

p
scaling of the characteristic Coulomb interaction, such that
even in higher LLs the separation between low- and high-
energy degrees of freedom is governed by the dimensionless
coupling constant

LL
separation

x x x x

)b()a(

X
X

FIG. 23 (color online). (a) Completely filled topmost LL. Because

of the Pauli principle, the only possible excitations are inter-LL

transitions. (b) Partially filled LL. For sufficiently small values of rs
(or G), the inter-LL excitations constitute high-energy degrees of

freedom that may be omitted at low energies, where the relevant

degrees couple states within the same LL.
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B
G ¼ e2="lB

ffiffiffiffiffiffi
2n

p

ℏvF=lB
ffiffiffiffiffiffi
2n

p ¼ e2

ℏ"vF

¼ G; (202)

which coincides with the scale-invariant zero-field coupling
constant (133). From the interaction point of view, the re-
striction of the electron dynamics to a single partially filled
LL in the large-n limit is therefore as justified as for the
lowest relativistic LLs. Naturally, this statement holds true
only in the absence of disorder which induces stronger LL
mixing for n  1 than in n ¼ 0 or �1.

1. SU(4)-symmetric model

Formally, the above-mentioned separation into high- and
low-energy degrees of freedom may be realized with the help
of the reduced density operators (140). For the moment, we
consider only the case where 
 ¼ 
0, i.e., we concentrate on
the valley-symmetric model, in which case the reduced (intra-
valley) density operators (153) fall into two distinct classes:
for n � n0 or � � �0, the operators ���n;�0n0 ðqÞ describe den-

sity fluctuations corresponding to inter-LL transitions of an

energy equal to or larger than the LL separation ~�n, whereas
the projected density operators

��ðqÞ � ���n;�nðqÞ
¼ X


¼�

X
�¼";#

X
m;m0

hmje�iq�Rjm0icy�n;m;
;�c�n;m0;
;�

(203)

describe the density fluctuations inside the LL �n that interest
us here. Note that we have dropped the index �n in the
definition of the projected density operators; they satisfy the
quantum-mechanical commutation relations (Girvin et al.,
1986)

½ ��ðqÞ; ��ðq0Þ� ¼ 2i sin

�
q0 ^ ql2B

2

�
��ðqþ q0Þ; (204)

where q0 ^ q ¼ ðq0 � qÞz ¼ q0xqy � q0yqx is the 2D vector

product between q0 and q, and these commutation relations
are independent of the LL index �n. The information about
the LL varies with the effective interaction potential

vnðqÞ ¼ 2�e2

"q
½F nðqÞ�2; (205)

in terms of the LL form factors [see Eq. (141) and their
explicit form (A2), discussed in the Appendix]

F nðqÞ ¼ 1

2

�
ð1� �n;0ÞLn�1

�
q2l2B
2

�

þ ð1þ �n;0ÞLn

�
q2l2B
2

��
e�q2l2B=4; (206)

independent of the band index � (Goerbig et al., 2006;
Nomura and MacDonald, 2006). The Hamiltonian resulting
from Eq. (151),

Hn ¼ 1

2

X
q

vnðqÞ ��ð�qÞ ��ðqÞ; (207)

therefore defines, together with the commutation relation
(204), the model of strongly correlated electrons restricted

to a single relativistic LL. The model respects the SU(4) spin-
valley symmetry, and naturally there is no kinetic-energy
scale because all processes involve states within the same LL.

a. Algebraic properties The SU(4) spin-valley symmetry is
formally described with the help of the spin and valley-
pseudospin operators

�S�ðqÞ ¼ ðS� � 1Þ � ��ðqÞ and

�I�ðqÞ ¼ ð1 � I�Þ � ��ðqÞ; (208)

respectively, which are tensor products between the projected
density operators (203) and the operators S� and I�, which
are (up to a factor of 1=2) Pauli matrices and that describe the
spin and valley-pseudospin degrees of freedom, respectively.
The operators ðS� � 1Þ and ð1 � I�Þ are the generators of the
SUð2Þ � SUð2Þ subgroup of SU(4). However, once combined
in a tensor product with the projected density operators ��ðqÞ,
the SUð2Þ � SUð2Þ extended magnetic translation group is no
longer closed due to the noncommutativity of the Fourier
components of the projected density operators. The commu-
tators ½ �S�ðqÞ; �I�ðq0Þ� yield the remaining generators of the
SU(4) extended magnetic translation group (Ezawa and
Hasebe, 2002; Ezawa et al., 2003; Douçot et al., 2008).

Physically, the operators introduced in Eq. (208) play the
role of projected spin and valley-pseudospin densities, where
the LL projection is induced by the projected charge-density
operator ��ðqÞ. Their noncommutativity with the projected
charge densities, ½ �S�ðqÞ; ��ðq0Þ� � 0 and ½ �I�ðqÞ; ��ðq0Þ� � 0,
which are due to the commutation relation (204), is at the
origin of the (pseudo)spin-charge entanglement in quantum
Hall systems: as we discuss in Sec. V.B.2, this entanglement
yields (pseudo)spin-texture states that carry an electric in
addition to their topological charge.

b. Validity of the model With the help of the Hamiltonian
(207), we may render more transparent the model assumption
of electrons restricted to a single relativistic LL. We need to
show that the energy scale that governs the model (207) and
its resulting phases is indeed given by e2="RC and not
e2="lB. As an upper bound for the energy scale, one may
use the energy of a completely filled LL described by

hcy�n;m;
;�c�n;m0;
;�i ¼ �m;m0 , the mean-field energy hHni=N
of which is simply the exchange energy,28

En
X ¼ � 1

2

X
q

vnðqÞ ¼ � e2

2"

Z 1

0
dq½F nðqÞ�2: (209)

In order to estimate the integral in the large-n limit, one may
use the scaling form (Abramowitz and Stegun, 1970;
Gradshteyn and Ryzhik, 2000) of the Laguerre polynomials

Ln

�
q2l2B
2

�
e�q2l2B=4 ’ J0ðqlB

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2nþ 1

p Þ (210)

in terms of the Bessel function J0ðxÞ, such that one obtains by
a simple change of the integration variable

R1
0 dq½F nðqÞ�2 ’

ðlB
ffiffiffiffiffiffi
2n

p Þ�1
R1
0 dx½J0ðxÞ�2 ¼ c=lB

ffiffiffiffiffiffi
2n

p
, where c is a numerical

factor of order 1. The exchange energy of a completely filled
LL n therefore scales with n  1 as

28The direct energy is compensated by the positively charged

background (‘‘jellium model’’) (Mahan, 1993).
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En
X ’ �c

e2

"lB
ffiffiffiffiffiffi
2n

p ’ �c
e2

"RC

; (211)

in agreement with the model assumption of a separation
between high- and low-energy degrees of freedom and the
definition (202) of the coupling constant B

G.

2. Symmetry-breaking long-range terms

When the Coulomb interaction was decomposed in the
two-spinor basis (Sec. III.A), we saw that the SU(4)-
symmetric model yields the leading energy scale, whereas
the only relevant symmetry-breaking term is associated with
backscattering processes at an energy scale roughly a=lB
times smaller than the leading one. When restricted to a
single relativistic LL �n, these backscattering terms yield a
contribution

Hsb
n ¼ 1

2

X

¼�

X
q

vsb
n ðqÞ ��
;�
ð�qÞ ���
;
ðqÞ (212)

in terms of the effective backscattering potential

vsb
n ðqÞ ¼ 2�e2

"q
jFþ;�

�n;�nðqÞj2

¼ 2�e2

"q

ð1� �0;nÞ
2n

ðqy � KyÞ2l2B

�
�
L1
n�1

�jq�Kj2l2B
2

��
2
e�jq�Kj2l2B=2; (213)

where we have made use of Eq. (142) and the explicit
expressions for the intervening matrix elements (A4).

The effect of this symmetry-breaking term is discussed in
Sec. V.B in the context of the SU(4) quantum Hall ferromag-
netism. The term (212) is relevant only in relativistic LLs
n � 0 as a consequence of the factor (1� �n;0) in Eq. (213)

for the backscattering potential (Goerbig et al., 2006). This
is a consequence of the chiral symmetry of the zero-energy
LL (Arikawa et al., 2008) where the sublattice index is the
same as the valley pseudospin, as may be seen from the
expression (88) for the associated wave functions. Notice,
however, that there may occur other symmetry-breaking
terms in n ¼ 0 as a consequence of short-range interactions

on the lattice scale (Alicea and Fisher, 2006; Doretto and
Morais Smith, 2007; Herbut, 2007b).

3. Qualitative expectations for correlated electron phases

The model of interacting electrons in a single relativistic
LL has the same structure as that for nonrelativistic LLs: in
both cases, one has an interaction Hamiltonian that is qua-
dratic in the projected density operators (203) which satisfy
the commutation relations (204). This is a noteworthy result
in the sense that, whereas nonrelativistic 2D electron systems
are governed by Galilean invariance, the electrons in gra-
phene are embedded in a Lorentz-invariant ‘‘space-time.’’
However, once restricted to a single LL, the electrons forget
about their original spatial symmetry properties and are
governed by the magnetic translation algebra, which is at
the origin of the commutation relations (204). As a conse-
quence, and in contrast to the IQHE, the differences between
strongly correlated electrons in graphene and nonrelativistic
2D electrons do not stem from their respective space-time
properties, as one would expect from a mean-field Chern-
Simons approach (Peres et al., 2006; Khveshchenko, 2007).

The differences between graphene and nonrelativistic 2D
electrons are rather to be sought in the larger internal sym-
metry: instead of an SU(2) spin symmetry, one has an SU(4)
spin-valley symmetry if one neglects the small symmetry-
breaking term (212) in the interactions. Another difference
arises from the different effective interaction potential (205)
instead of

vnonrel
n ðqÞ ¼ 2�e2

"q

�
Ln

�
q2l2B
2

��
2
e�q2l2B=2 (214)

for the usual 2D electron gas. As one may see from the
graphene form factors (206), the effective interaction poten-
tial in graphene for n � 0 is the average of the nonrelativistic
ones in the adjacent LLs n and n� 1, whereas for n ¼ 0 there
is no difference between the relativistic and the nonrelativ-
istic cases (see Fig. 24), as a consequence of the above-
mentioned chiral properties.

One notes, furthermore, that the difference between the
relativistic and nonrelativistic effective interaction potentials
become less prominent in the large-n limit [see n ¼ 5 in
Fig. 24(a)]. This may be understood from the approximate
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FIG. 24 (color online). (a) Comparison between the relativistic (black curves) and nonrelativistic (gray curves) potentials for the LLs n ¼ 0,

1, and 5 in real space. The dashed line shows the potential in n ¼ 0, which is the same in both the relativistic and nonrelativistic cases.

(b) Pseudopotentials for n ¼ 0, n ¼ 1 relativistic, and n ¼ 1 nonrelativistic. The lines are a guide to the eye. The open circles represent

pseudopotentials with even relative pair angular momentum that are irrelevant in the case of completely spin-valley polarized electronic

states. The energies are given in units of e2=�lB. From Goerbig et al., 2006.
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expression (210) of the form factors, which yields

F nðqÞ’½J0ðqlB
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2nþ1

p ÞþJ0ðqlB
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2n�1

p Þ�=2’JðqlB
ffiffiffiffiffiffi
2n

p Þþ
Oð1=nÞ. This result agrees to leading order in 1=n with the
scaling expression of the form factors (154) for the usual non-
relativistic 2D electrons.

The strongest difference in the interaction potentials is thus
found for n ¼ 1, which in graphene is quite reminiscent of
the potential for n ¼ 0, apart from a reduced repulsion at very
short distances, whereas for nonrelativistic 2D electrons it has
an additional structure [see Fig. 24(a)]. The behavior of the
effective interaction potential may also be analyzed with the
help of Haldane’s pseudopotentials (Haldane, 1983)

Vn
‘ ¼ 1

2�

X
q

vnðqÞL‘ðq2l2BÞe�q2l2B=2; (215)

which represent the interaction between pairs of electrons in a
magnetic field, in a relative angular momentum state with
quantum number ‘. This quantum number is related to the

average distance lB
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2‘þ 1

p
between the two particles con-

stituting the pair and is a good quantum number for any two-
particle interaction potential vðri � rjÞ. The pseudopotentials
for graphene are shown in Fig. 24(b) for n ¼ 0 and 1.

Haldane’s pseudopotentials are extremely helpful in the
understanding of the possible FQHE states that one may
expect in 2D electron systems. One notes first that as a
consequence of the antisymmetry of a two-particle wave
function under fermion exchange, the relative angular mo-
mentum quantum number ‘ must be an odd integer, i.e., only
the pseudopotentials with odd values of ‘ play a physical role
in the description of two interacting electrons of the same
type (spin or valley). Even-‘ pseudopotentials become rele-
vant if the SU(4) spin-valley pseudospin is not completely
polarized, in the treatment of two electrons with different
internal quantum numbers, � or 
. One then notes that the
n ¼ 1 pseudopotentials, apart from the difference in V‘¼0, are
much more reminiscent of those in n ¼ 0 than of those for
nonrelativistic 2D electrons in the same LL n ¼ 1 [see
Fig. 24(b)]. If one considers polarized electrons, one there-
fore expects essentially the same strongly correlated elec-
tronic phases in graphene for n ¼ 1 as for n ¼ 0 (Goerbig
et al., 2006); this is also corroborated by numerical studies for
FQHE states (Apalkov and Chakraborty, 2006; Töke et al.,
2006; Goerbig and Regnault, 2007; Töke and Jain, 2007;
Papić et al., 2009) and electron-solid phases (Zhang and
Joglekar, 2007; 2008; Poplavskyy et al., 2009). Because the
pseudopotentials (215) are systematically larger in n ¼ 1
than in n ¼ 0 (apart from the short-range component for
‘ ¼ 0), the gaps of the FQHE states in n ¼ 1 are larger
than the corresponding ones in n ¼ 0, as one may also see
from numerical calculations (Apalkov and Chakraborty,
2006; Töke et al., 2006).

As much as we have emphasized the similarity between the
n ¼ 0 and n ¼ 1 LLs in graphene, we need to stress the
difference between the n ¼ 1 LL in graphene as compared to
n ¼ 1 in nonrelativistic 2D electron systems. Remember that
the physical phase diagram in the nonrelativistic n ¼ 1 LL is
extremely rich; an intriguing even-denominator FQHE has
been observed at � ¼ 5=2 (Willett et al., 1987) and probably
possesses non-Abelian quasiparticle excitations (Greiter et al.,
1991; Moore and Read, 1991). Furthermore, a particular

competition between FQHE states and electron-solid phases,
which is characteristic of the nonrelativistic n ¼ 1 LL
(Goerbig et al., 2003; 2004), is at the origin of the reentrance
phenomena observed in transport measurements (Eisenstein
et al., 2002; Lewis et al., 2005). These phenomena are
absent in the n ¼ 0 LL, and the similarity between the n ¼ 0
and the relativistic n ¼ 1 LL thus leads to the expectation that
FQHE states corresponding to the 5=2 state in nonrelativistic
quantum Hall systems and the above-mentioned reentrance
phenomena are absent in the n ¼ 1 LL in graphene. This
expectation has recently been corroborated in exact-
diagonalization studies on the non-Abelian 5=2 state (Wojs
et al., 2010).

4. External spin-valley symmetry-breaking terms

Before we consider the different phases due to electron-
electron interactions, we start with an analysis of the different
external effects,29 which are capable of lifting the fourfold
spin-valley degeneracy.

Probably the most familiar external symmetry-breaking
term is the Zeeman effect, which lifts the twofold spin
degeneracy while maintaining the SU(2) symmetry associ-
ated with the valley pseudospin. The size of the Zeeman
splitting is given by the energy �Z 
 1:2½BðTÞ� K, for a g
factor that has been experimentally determined as g
 2
(Zhang et al., 2006). If we adopt a compact eight-spinor
notation to take into account the four different spin-valley
components, in addition to the two sublattice components, the
Zeeman term has the form

�
spin
Z 
�yð1valley � 1AB � �zspinÞ�
 c Ay

K;"c
A
K;"

� c Ay
K;#c

A
K;# þ c Ay

K0;"c
A
K0 ;" � c Ay

K0 ;#c
A
K0 ;# þ ðA $ BÞ;

(216)

where the tensor product consists of the valley pseudospin
(represented by the Pauli matrices �

�
valley and 1valley), the sub-

lattice pseudospin (�
�
AB and 1AB), and the true spin (�

�
spin and

1spin). For a better understanding, we have given the explicit

expression in terms of spinor components in Eq. (216).
A possible valley-degeneracy lifting, which one could

describe with the help of a ‘‘valley Zeeman effect’’ similar
to Eq. (216),

�
valley
Z 
�yð�zvalley � 1AB � 1spinÞ�; (217)

is more involved because there is no physical field that
couples directly to the valley pseudospin, as suggested by
the otherwise intuitive form (217). There have, however, been
proposals that such an effect may be achieved with the help of
strain-induced disordered gauge fields that mimic large-scale
ripples (Meyer et al., 2007) and that yield an easy-plane
anisotropy in n ¼ 0 (Abanin et al., 2007a), similar to the
backscattering term (213) in higher LLs. Quite generally, a
valley-degeneracy lifting may be achieved indirectly in the
zero-energy LL n ¼ 0 via fields that couple to the sublattice
index. This is due to the fact that the components c A

K;� and

29By external effects we mean those that are not caused by the

mutual Coulomb repulsion between the electrons.
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c B
K0;� vanish as a consequence of the chiral properties that

identify the sublattice and the valley pseudospins in n ¼ 0, as
discussed in Sec. II.A.2.

In order to illustrate this indirect lifting of the valley
degeneracy, we consider the term (Haldane, 1988)

MH ¼ M�yð1valley � �zAB � 1spinÞ�; (218)

which breaks the lattice inversion symmetry and opens a mass
gap at the Dirac point in the absence of a magnetic field. In
the presence of a B field, the LL spectrum (85) is modified by
the term (218) and reads

��;n;
 ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 þ 2

ℏ2v2
F

l2B
n

s
(219)

for n � 0, independent of the valley index 
, whereas the fate
of the n ¼ 0 LL depends explicitly on 
,

�n¼0;
 ¼ 
M; (220)

such that the valley degeneracy is effectively lifted. Note,
however, that due to the vanishing components c A

K;� and

c B
K0;�, the mass term (218) is now indistinguishable (in

n ¼ 0) from the above-mentioned valley Zeeman term (217),

Mn¼0
H 
�yð1valley � �zAB � 1spinÞ�


�yð�zvalley � 1AB � 1spinÞ�: (221)

This is not the case for the LLs n � 0, where the valley
degeneracy is lifted only by an explicit valley Zeeman effect.
Amass termof the form (218) typically arises in the presence of
a frozen out-of-plane phonon that yields a crumbling of the
graphene sheet (Fuchs and Lederer, 2007).

Recent studies concentrated on a spontaneous deformation
of the graphene sheet due to frozen in-plane phonons that
yield a Kekulé-type distortion (Nomura et al., 2009; Hou,
et al., 2010). This distortion, which is associated with a
characteristic wave vector 2K and which therefore couples
the two valleys, directly breaks the valley degeneracy, via a
term MK ¼ Mx þMy, with

Mx;y ¼
�x;y

2
�yð�x;yvalley � 1AB � 1spinÞ�: (222)

Such a term yields the same energy spectrum (219) and (220)
as the mass term (218) if one replaces M by �kek=2, with the

characteristic energy scale �kek ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2

x þ �2
y

q
’ 2½BðTÞ� K,

(Ajiki and Ando, 1995; Hou, et al., 2010). Note that this
energy scale is slightly larger than, but roughly on the same
order as, the Zeeman energy scale.

Finally, we mention another class of terms that break the
spin-valley degeneracy and that have received recent interest
in the framework of research on topological insulators [for
recent reviews see Hasan and Kane (2010); Qi and Zhang
(2011)]. In an original work, Haldane argued that a time-
reversal-symmetry-breaking term with an inhomogeneous
flux distribution inside each hexagon opens a gap in a honey-
comb lattice with zero magnetic field (Haldane, 1988). Most
saliently, he showed that one may thus achieve a quantum
Hall effect without an external magnetic field, a system that is
now often referred to as the ‘‘quantum anomalous Hall

insulator’’ (Hasan and Kane, 2010; Qi and Zhang, 2011). A
similar situation arises when spin-orbit interactions are taken
into account; these are of the form

H SO ¼ �SO

2
�yð�zvalley � �zAB � �zspinÞ�; (223)

and they provide again the same LL spectrum (219) and (220)
if one replaces M by �SO=2 (Kane and Mele, 2005). In spite
of the conceptually appealing prospect of the quantum spin
Hall effect, which is revealed by this model because the spin
orientation is locked to a particular valley index via the term
(223), the associated energy scale �SO 
 10 mK turns out to
be vanishingly small in graphene, whereas an extrinsic
Rashba-type spin-orbit coupling in graphene can be on the
order of 1 K (Min et al., 2006).

5. Hierarchy of relevant energy scales

These energy scales associated with external fields need to
be compared to the characteristic (bare) interaction energy

e2=�lB ’ 625½ ffiffiffiffiffiffiffiffiffiffi
BðTÞp

="� K, which is, for experimentally ac-
cessible magnetic fields, much larger than �Z or �kek. As
discussed in Sec. III.B.4, interband LL excitations screen the
bare Coulomb interaction and yield a contribution to the
dielectric constant. In the absence of a quantizing magnetic
field, we have seen that this dielectric constant is given by
[see Eq. (176)]

"1 ¼ 1þ �

2
G ¼ 1þ �

2

e2

ℏ"vF

; (224)

where we remember that " is the extrinsic dielectric constant
of the surrounding medium. As one can see in Fig. 18, the
vacuum contribution �vacðqÞ (thick dashed lines) is only
marginally modified by the magnetic field, such that one
may use e2=""1lB as an approximation for the interaction-
energy scale for graphene, taking into account interband
screening.

TABLE II. Energy scales at different magnetic fields. The first
two lines show the energy scales associated with the major external
symmetry-breaking fields (Zeeman- and Kekulé-type lattice distor-
tion, �Z and �kek, respectively), which scale linearly in B. Shown
are the interaction-energy scales ( / ffiffiffiffi

B
p

), the bare one with an
unspecified dielectric constant, and the ones for different substrates
taking into account interband screening via the term "1 [Eq. (224)].
The last line yields the interaction-energy scale associated with the
intrinsic symmetry breaking due to intervalley coupling, discussed
in Sec. V.A.2.

Energy For arbitrary B For B ¼ 6 T For B ¼ 25 T

�Z ½1:2B ðTÞ� K 7 K 30 K
�kek ½2B ðTÞ� K 12 K 50 K

e2="lB (bare) 625½ ffiffiffiffiffiffiffiffiffiffiffi
B ðTÞp

="� K ð1550="Þ K ð3125="Þ K
e2=""1lB (vacuum) 139

ffiffiffiffiffiffiffiffiffiffiffi
B ðTÞp

K 344 K 694 K

e2=""1lB (on SiO2) 104
ffiffiffiffiffiffiffiffiffiffiffi
B ðTÞp

K 258 K 521 K

e2=""1lB (on h-BN) 109
ffiffiffiffiffiffiffiffiffiffiffi
B ðTÞp

K 270 K 543 K

e2=""1lB (on SiC) 71
ffiffiffiffiffiffiffiffiffiffiffi
B ðTÞp

K 176 K 355 K

�sb < ðe2="lBÞða=lBÞ <½1B ðTÞ� K <6 K <25 K
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The relevant energy scales are summarized in Table II

below for different values of the magnetic field, in compari-
son with the interaction-energy scales, taking into account the

effective dielectric constants for several widely used sub-
strates from Table I.

In view of the above discussion, one may conclude that the

SU(4)-symmetric part of the Coulomb interaction yields the
leading energy scale in the problem of electrons in partially

filled lower LLs, whereas external terms, such as the Zeeman

effect or spontaneous lattice distortions, play a subordinate
role. The remainder of this section is therefore concerned

with a detailed discussion of strongly correlated electron
phases that are formed to minimize the Coulomb interaction.

B. SU(4) Quantum Hall ferromagnetism in graphene

A prominent example of the above-mentioned strongly
correlated phases is the generalized quantum Hall ferromag-

net. It arises in systems with a discrete internal degree of
freedom described by an SUðN Þ symmetry, such that each

single-particle quantum state c n;m occurs in N copies.

Prominent examples are the nonrelativistic quantum Hall

systems when the electronic spin � ¼" , # (N ¼ 2) is taken
into account or bilayer quantum Hall systems that consist of

two parallel 2D electron gases, where the layer index may be

viewed as a ‘‘spin’’ 1=2 [N ¼ 2 or N ¼ 4 if one also takes
into account the physical spin (Ezawa and Hasebe, 2002;

Ezawa et al., 2003)].30 In this sense, graphene may be viewed
as an SU(4) quantum Hall system as a consequence of its

fourfold spin-valley degeneracy.

1. Ferromagnetic ground state and Goldstone modes

Quite generally, quantum Hall ferromagnetism arises when

the filling factor, defined from the bottom of the LL,31 is an
integer that is not a multiple of N (Arovas et al., 1999).

From the point of view of the kinetic Hamiltonian, one is thus
confronted with a macroscopic ground-state degeneracy.

Even if one has an integer filling factor, the situation is thus

much more reminiscent of the FQHE, i.e., the relevant energy
scale is the Coulomb interaction, and the system may be

described in the framework of the model (207) of interacting
electrons in a single (relativistic) LL. For the moment, we

consider that there are no symmetry-breaking terms, such as

the backscattering term (212) or Zeeman-type terms that are
discussed in Sec. V.A.4.

Qualitatively, one may understand the formation of a

ferromagnetic ground state as a consequence of the repulsive
Coulomb interaction. In order to minimize this interaction,

the electrons prefer to form a state described by a maximally
antisymmetric orbital wave function that must then be ac-

companied by a fully symmetric SUðN Þ spin-wave function
to satisfy an overall fermionic (antisymmetric) wave func-
tion. In a usual metal with a finite band dispersion, this

ferromagnetic ordering (e.g., all electrons in the spin- " states)
is accompanied by a cost in kinetic energy: indeed, the Fermi
energy for spin- " electrons is increased whereas that of
spin- # electrons is lowered. The competition between the
gain in interaction and the cost in kinetic energy defines the
degree of polarization, i.e., how ferromagnetic the electrons
effectively are. In the quantum Hall effect, however, we are
confronted with a highly degenerate LL that may be viewed
as an infinitely flat band, such that the kinetic-energy cost for
complete spin polarization is zero.

As an example of an SUðN Þ quantum Hall ferromagnet,
one may consider the state

jFMi ¼ Yk
i¼1

YNB�1

m¼0

cym;ijvaci; (225)

which consists of k <N arbitrarily chosen completely
filled subbranches [i 2 fðK; "Þ; ðK0; "Þ; ðK; #Þ; ðK0; #Þg, for the
SUðN ¼ 4Þ symmetry in graphene LLs], where we have
omitted the LL index �n at the fermion operators to
simplify the notation. The arbitrariness in the choice of
the SUðN Þ spin subbranches may be viewed as a sponta-
neous symmetry breaking that accompanies the ferromag-
netism. Indeed, the state (225) is no longer invariant under
an SUðN Þ rotation, but only under a rotation described by
the subgroup SUðkÞ � SUðN � kÞ, where the first factor
indicates a symmetry transformation in the fully occupied
subbranches i ¼ 1; . . . ; k and the second factor one in the
empty subbranches i ¼ kþ 1; . . . ;N . Therefore the quan-
tum Hall ferromagnet (225) is associated with an order
parameter with a spontaneous symmetry breaking descri-
bed by the coset space SUðN Þ=SUðkÞ � SUðN � kÞ �
Uð1Þ 
 UðN Þ=UðkÞ � UðN � kÞ, where the additional
Uð1Þ is due to the phase difference between the occupied
and the unoccupied subbranches (Arovas et al., 1999;
Yang et al., 2006).

The coset space, with its N 2 � k2 � ðN � kÞ2 ¼
2kðN � kÞ complex generators, defines also the Goldstone
modes, which are nothing other than the kðN � kÞ spin-
wave excitations of the ferromagnetic ground state (225).32

The number of spin-wave modes may also have been ob-
tained from a simple inspection into the LL-subbranch spec-
trum. Indeed, a spin wave can be described with the help of
the components of the projected density operators (203),

��ijðqÞ ¼
X
m;m0

hmje�iq�Rjm0icym;icm0 ;j; (226)

which represent coherent superpositions at wave vector q of
excitations from the occupied subbranch j to the empty
subbranch i. One has then k possibilities for the choice of
the initial subbranch j and N � k for the final one, and one
obtains therefore kðN � kÞ different spin-wave excitations,
in agreement with the above group-theoretical analysis.

Note that all spin-wave excitations have the same disper-
sion, which may be calculated within a mean-field approxi-
mation (Kallin and Halperin, 1984; Alicea and Fisher, 2006;
Yang et al., 2006; Doretto and Morais Smith, 2007),

30For a review on nonrelativistic multicomponent systems, see

Moon et al. (1995) and Ezawa (2000).
31Remember that the filling factor in graphene is defined with

respect to the center of the n ¼ 0 LL. There is thus a shift of 2 in the
filling factor as compared to the nonrelativistic case.

32The complex generators come in via pairs of conjugate opera-

tors, and each pair corresponds to one mode.
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Eq ¼ hFMj ��ijð�qÞHn ��ijðqÞ �HnjFMi

¼ 2
X
k

vnðkÞsin2
�
q ^ kl2B

2

�
; (227)

which saturates at large values of q ¼ jqj,
Eq!1 ¼ 2En

X ¼ X
k

vnðkÞ; (228)

i.e., at twice the value of the exchange energy (209). This
result is not astonishing insofar as the large-q limit corre-
sponds, as discussed in Sec. III.B.2 [see Eq. (167)], to an
electron-hole pair where the electron is situated far away
from the hole. The energy (228) is therefore nothing other
than the cost in exchange energy of creating a spin-flip
excitation, i.e., an electron with reversed spin and a hole in
the ferromagnetic ground state. Because of the large distance
between the electron and the hole in such an excitation and
the resulting decoupled dynamics, one may be tempted to
view this energy as the activation gap of the quantum Hall
state at � ¼ k, but we see in Sec. V.B.2 that there exist
elementary charged excitations (skyrmions) that have, in
some LLs, a lower energy than these spin-flip excitations.

In the opposite limit of small wave vectors (qlB 	 1), one
may not understand the excitation in terms of decoupled holes
and electrons, and the excitation can therefore not contribute
to the charge transport. A Taylor expansion of the sine in the
spin-wave dispersion (227) yields the usual q2 dispersion of
the spin-wave Goldstone modes,

Eq!0 ¼ �n
s

2
q2l2B; (229)

in terms of the spin stiffness

�n
s ¼ 1

4�

X
k

vnðkÞjkj2l2B: (230)

One notes that the above results for the excitation energies do
not depend on the size of the internal symmetry group, but
they can be derived within the SU(2) model of the quantum
Hall ferromagnetism (Sondhi et al., 1993; Moon et al.,
1995): the enhanced internal symmetry of graphene (or of a
general N -component system) affects only the degeneracies
of the different modes.

2. Skyrmions and entanglement

In addition to the above-mentioned spin-wave modes, the
SUðN Þ ferromagnetic ground state (225) is characterized by
a particular elementary excitation that consists of a topologi-
cal spin texture, the so-called skyrmion (Sondhi et al., 1993).
As for a spin wave in the limit qlB 	 1, the variation of the
spin texture in a skyrmion excitation is small on the scale of
the magnetic length lB, such that its energy is determined by
the spin stiffness (230) in the small-q limit. Indeed, one may
show that its energy is given by (Sondhi et al., 1993; Moon
et al., 1995; Ezawa, 2000)

Esk ¼ 4��n
s jQtopj; (231)

in terms of the topological charge Qtop, which may be viewed

as the number of times the Bloch sphere is covered by the spin

texture [see Fig. 25(b)] and which we discuss in more detail
below. Skyrmions are the relevant elementary excitations of
the quantum Hall ferromagnetism if the energy (231) is lower
than that of an added electron (or hole) with reversed spin,
which is nothing other than the exchange energy (209), i.e., if
Esk < En

X . Whereas in nonrelativistic LLs this condition is

fulfilled only in the lowest one n ¼ 0, skyrmions are the
lowest-energy elementary excitations in the graphene LLs
n ¼ 0, 1, and 2 (Töke et al., 2006; Yang et al., 2006), as a
consequence of the difference in the form factors.

As in the case of the spin waves discussed above, the
skyrmion energy is independent of the size of the internal
symmetry group, and we first illustrate the skyrmion texture
in an effective SU(2) model, where the texture is formed only
from states within the last occupied (k) and the first unoccu-
pied (kþ 1) LL subbranches. The skyrmion may then be
described with the help of the wave function, in terms of
the complex coordinate z ¼ ðx� iyÞ=lB,

jSk;kþ1i ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffij�j2 þ jzj2p ½zj "k ðzÞi þ �j #kþ1 ðzÞi�;

(232)

where j "k ðzÞi corresponds to states in the subbranch k and
j #kþ1 ðzÞi to those in kþ 1, at the position z. One notes that at
the origin z ¼ 0 the spin associated with these two compo-
nents is # because the first component of Eq. (232) vanishes,
whereas the spins are " at jz=�j ! 1 (see Fig. 25), where the
ferromagnetic ground state is recovered. The parameter �
plays the role of the skyrmion size, measured in units of lB;

(b)

(a)
z

y
x

z

y
x

FIG. 25. Excitations of the SU(2) ferromagnetic state. (a) Spin

waves. Such an excitation can be continuously deformed into the

ferromagnetic ground state [spin represented on the Bloch sphere

(right panel) by the thick arrow]: the gray curve can be shrunk into a

single point. (b) Skyrmion with nonzero topological charge. The

excitation consists of a reversed spin at the origin z ¼ 0, and the

ferromagnetic state is recovered at large distances jz=�j ! 1. In

contrast to spin-wave excitations, the spin explores the whole

surface of the Bloch sphere and cannot be transformed by a

continuous deformation into the majority spin (fat arrow). From

Girvin, 1999.
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indeed, for jzj ¼ j�j, both components are of the same weight
and the spin is therefore oriented in the xy plane.

The skyrmion excitation (232) can also be illustrated on
the so-called Bloch sphere on whose surface the (normalized)
spin moves (see Fig. 25). The angles (� for the azimuthal and
� for the polar angle) of the spin orientation on the Bloch
sphere correspond to the SU(2) parametrization jc i ¼
cosð�=2Þj "i þ sinð�=2Þ expði�Þj #i, and the spin orientation
at the circle jzj ¼ j�j in the complex plane describes the
equator of the Bloch sphere. The topology of the skyrmion
excitation is indicated by the number of full circles the spin
draws when it goes around the origin of the x� y plane on the
circle jzj ¼ j�j. More precisely, the topological chargeQtop is

not defined in terms of such closed paths, but is the number of
full coverings of the Bloch sphere in a skyrmion excitation
[Qtop ¼ 1 in the example (232)]. Note that a spin-wave

excitation has a topological charge Qtop ¼ 0 and corresponds

to an excursion of the spin on the Bloch sphere that is not
fully covered and that can then be reduced continuously to a
single point describing the ferromagnetic ground state
[Fig. 25(a)].

The above considerations may be generalized to systems
with larger internal symmetries, i.e., to SUðN Þ quantum
Hall ferromagnets. The state (232) is invariant under the
SUðN Þ subgroup SUðk� 1Þ � SUðN � k� 1Þ, where the
first factor describes a rotation of the occupied subbranches
that do not take part in the skyrmion excitation and
the second factor is associated with a symmetry transfor-
mation of the corresponding unoccupied subbranches
kþ 2; . . . ;N . A similar group-theoretical analysis to the
one presented in Sec. V.B.1 yields the number of residual
symmetry transformations (Yang et al., 2006) 2kðN �
kÞ þ 2ðN � 1Þ, where the first term describes the
Goldstone modes of the ferromagnetic ground state and
the second one corresponds to the N � 1 internal modes
of the skyrmion excitation.

In addition to the topological charge, skyrmions in quan-
tum Hall systems carry an electric charge that coincides, for
� ¼ k, with the topological charge. Indeed, the skyrmion
state (232) describes an electron that is expelled from the
origin z ¼ 0 in the " component, and its net electric charge is
therefore that of a hole. This means that skyrmions are
excited when the filling factor is swept away from � ¼ k,
and the net topological charge is given by Qtot ¼ j�� kjNB.
The number of internal modes is then QtotðN � 1Þ, in addi-
tion to one mode per charge that corresponds to a simple
translation z ! zþ a of the excitation (Douçot et al., 2008).
As a consequence of the Coulomb repulsion, it is energeti-
cally favorable to form a state in which Qtot skyrmions of
charge 1 are homogeneously distributed over the 2D plane
than a single defect with charge Qtot (Moon et al., 1995). A
natural (semiclassical) candidate for the ground state of Qtot

skyrmions is then a skyrmion crystal (Brey et al., 1995); this

has recently been reconsidered in the framework of the SU(4)

symmetry in graphene (Côté et al., 2007; 2008). In this case,

the QtotðN � 1Þ internal modes, which are dispersionless

zero-energy modes in the absence of electronic interactions

or Zeeman-type symmetry-breaking terms, are expected to

yield N � 1 Bloch bands of Goldstone type, in addition to

the Qtot translation modes that form a magnetic-field phonon

mode of the skyrmion crystal with a characteristic ! / q3=2

dispersion (Fukuyama, 1975).

a. Skyrmions and activation gaps in graphene

Quite generally, the activation gap in quantum Hall states
is the energy required to create a quasiparticle-quasihole pair,
in which the two partners are sufficiently well separated to
contribute independently to the charge transport. In the
framework of the quantum Hall ferromagnet, the activation
gap may be viewed as the energy needed to create a skyrmion
of topological charge Q ¼ 1 and an antiskyrmion of charge
Q ¼ �1 which are well separated from each other so that one
may neglect their residual interaction. The energy of such a
skyrmion-antiskyrmion pair is then given, in the absence of
symmetry-breaking terms, by twice the energy in Eq. (231),

�
sym
a ¼ 8��n

s : (233)

For graphene, the energies of the theoretical activation gaps
for n ¼ 0 and n ¼ 1 are shown in the Table III.

For further illustration, we consider the scenario in which
the Zeeman effect is the only SU(4) symmetry-breaking
term.33 Because of the Zeeman effect, spin- # electrons are
energetically favored. If only one spin-valley branch of a
particular LL is filled (k ¼ 1), the spin magnetization of the
spin-valley ferromagnet is preferentially oriented in this di-
rection, whereas the valley polarization may point in any
direction. The activation gap would then be dominated by
valley (anti)skyrmions with no reversed physical spin such
that one would not expect any dependence of the gap on the
in-plane component of the magnetic field, in agreement with
the experimental findings (Jiang et al., 2007b).

The situation is different when both valley branches of the
spin- # branch are occupied; an excitation of the SU(4) ferro-
magnet with a full spin polarization would then necessarily
comprise reversed spins, and the corresponding Zeeman
energy must be taken into account in the energy of the
(spin) skyrmion-antiskyrmion pair (233),

�Z
a ¼ 8��n

s þ 2Nrs�Z; (234)

where Nrs 
 j�j2 is the number of reversed spins in a single
(anti)skyrmion. Note that this number depends on the com-
petition between the Zeeman effect itself, which tries to
reduce the skyrmion size � , and the cost in exchange energy
due to the strong variation in small textures (Sondhi et al.,
1993; Moon et al., 1995).34 The energy of a skyrmion-
antiskyrmion pair in the spin channel (with two completely
filled valley sublevels) is therefore larger than that (233) of a
pair in the valley channel when only one valley subbranch of
the LL is completely filled. Note that this energy increase
may be significant even for large skyrmions because of the
larger number of reversed spins. As a rule of thumb, the

33The energetic argument remains valid in the case where the

dominant term is a valley Zeeman effect if one interchanges the

roles of the spin and the valley pseudospin.
34This energy cost may be evaluated from a gradient expansion of

the energy in the magnetization fields. At leading order, one obtains,

however, a nonlinear � model that is scale invariant, so that the

energy cost must be calculated at higher orders (Moon et al., 1995).
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stability of a quantum Hall state is proportional to the acti-
vation gap, which in the present case has been identified with
the skyrmion-antiskyrmion energy and which is dominated
by the Coulomb interaction energy. Additional external
symmetry-breaking terms, such as those discussed in
Sec. V.A.4, may enhance this stability although they provide
only a small correction to the activation energy.

b. Spin-valley entanglement in graphene

In an experimental measurement, one typically does not
have direct access to the full SU(4) spin that describes the
internal degrees of freedom in graphene LLs, but only to the
SU(2) part associated with the physical spin, e.g., in a mag-
netization measurement. It is therefore useful to parametrize
the SU(4) spin in such a manner as to keep track of the two
SU(2) copies associated with the physical spin and with the
valley pseudospin, respectively. This may be achieved with
the so-called Schmidt decomposition of the four-spinor

j�ðzÞi ¼ cos


2
jc Sijc Ii þ sin



2
ei�j�Sij�Ii; (235)

where  and � are functions of the complex position z, and
the local two-component spinors jc Si, j�Si, jc Ii, and j�Ii
are constructed according to

jc i ¼ cos�2
sin�2 e

i�

 !
and j�i ¼ � sin�2 e

�i�

cos�2

 !
: (236)

The angles � and � define the usual unit vector

nð�;�Þ ¼ ðsin� cos�; sin� sin�; cos�Þ; (237)

which explores the surface of the Bloch sphere depicted in
Fig. 25. Note that one has two Bloch spheres, one for the unit
vector nð�S; �SÞ associated with the spin angles �S and �S

and a second one for nð�I; �IÞ for the valley-pseudospin
angles �I and �I (see Fig. 26). In addition, one may associate
a third Bloch sphere with the angles  and � that describe the
degree of factorizability of the wave functions and thus the
degree of entanglement between the spin and the valley
pseudospin (Douçot et al., 2008).

With the help of the Schmidt decomposition (235), one
obtains immediately the reduced density matrices for the spin
and valley-pseudospin sectors,

�S ¼ TrIðj�ih�jÞ
¼ cos2



2
jc Sihc Sj þ sin2



2
j�Sih�Sj;

�I ¼ TrSðj�ih�jÞ ¼ cos2


2
jc Iihc Ij þ sin2



2
j�Iih�Ij;

(238)

respectively, and the local spin and valley-pseudospin den-
sities are simply

ma
S ¼ Trð�SS

aÞ ¼ coshc SjSajc Si ¼ cosnað�S;�SÞ
(239)

and

m
�
I ¼ Trð�II

�Þ ¼ coshc IjI�jc Ii ¼ cosn�ð�I; �IÞ;
(240)

where Sa and I� represent the components of the spin and
valley-pseudospin operators, respectively [see Eq. (208)].
One notes from these expressions that, for the cases  � 0
or � (i.e., cos2< 1), the local (pseudo)spin densities are no
longer normalized but are of length jmS=Ij2 ¼ cos2. Thus,

in a semiclassical picture, the (pseudo)spin dynamics is no
longer restricted to the surface of the Bloch sphere, but
explores the entire volume enclosed by the sphere (Fig. 26)
(Douçot et al., 2008). This result indicates that one may be
confronted, in the case of full entanglement (e.g.,  ¼ �=2),
with an SU(4) quantum Hall ferromagnet the (spin) magne-
tization of which completely vanishes, as one would naively
expect for an unpolarized state.

3. Comparison with magnetic catalysis

An alternative scenario proposed for the degeneracy lifting
in n ¼ 0 is that of the magnetic catalysis (Gusynin et al.,
2006; Ezawa, 2007; Herbut, 2007b; Gorbar et al., 2008;
Herbut, 2008), which was discussed even before the discov-
ery of graphene (Khveshchenko, 2001; Gorbar et al., 2002).
According to this scheme, the Coulomb interaction sponta-
neously generates a mass term for the (originally massless)

z

x

y

z

x

z

x

yy

α=0 α=0

β

entanglement

θ

φ

θ

φS

S
I

I
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(b)(a)

FIG. 26. Bloch spheres for entangled spin-pseudospin systems.

Bloch sphere for the (a) spin, (b) pseudospin, and (c) a third type of

spin representing the entanglement. In the case of spin-pseudospin

entanglement (j cosj � 1), the (pseudo)spin magnetizations ex-

plore the interior of their respective spheres (black arrows). From

Douçot et al., 2008.

TABLE III. Theoretical estimates for the activation gaps in the
n ¼ 0 and 1 graphene LLs due to well-separated skyrmion–anti-
skyrmion pairs.

Activation gap Arbitrary value of B

n ¼ 0 1
2

ffiffiffi
�
2

p
e2

""1lB
400ð ffiffiffiffiffiffiffiffiffiffiffi

B ðTÞp
=""1Þ K

n ¼ 1 7
32

ffiffiffi
�
2

p
e2

""1lB
175ð ffiffiffiffiffiffiffiffiffiffiffi

B ðTÞp
=""1Þ K
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2D electrons once the magnetic field increases the density of
states at zero energy by the formation of the highly degener-
ate n ¼ 0 LL. As a consequence of this mass generation, the
particles condense in a state of coherent particle-hole pairs
(excitonic condensation). The effect is at first sight reminis-
cent of the excitonic condensation at � ¼ 1 in nonrelativistic
bilayer quantum Hall systems (Fertig, 1989; Wen and Zee,
1992a; Ezawa and Iwazaki, 1993). Its superfluid behavior
gives rise to a zero-bias anomaly in the tunneling conduc-
tance between the two layers (Spielman et al., 2000) as well
as to a simultaneous suppression of the longitudinal and the
Hall resistance in a counterflow experiment (Kellogg et al.,
2004; Tutuc et al., 2004). The bilayer excitonic condensate
may be described as an easy-plane quantum Hall ferromagnet
(Moon et al., 1995), where the spin mimics the layer index.
The origin of this easy-plane anisotropy stems from the
difference in the interaction between electrons in the same
layer as compared to the weaker one for electron pairs in
different layers.

This comparison with nonrelativistic 2D electrons in bi-
layer systems indicates that there may exist a close relation
between the quantum Hall ferromagnetism and the scenario
of the magnetic catalysis also in graphene in a strong mag-
netic field. Note, however, that the excitonic state in graphene
is not in the same universality class as that of the quantum
Hall bilayer: in the latter case, the symmetry of the (interac-
tion) Hamiltonian is U(1) as a consequence of the easy-plane
anisotropy, and the symmetry breaking is associated with a
superfluid mode that disperses linearly with the wave vector,
! / q. In contrast to this system, the interaction Hamiltonian
(207) has the full SU(4) symmetry, and even for a sufficiently
strong Zeeman effect, the symmetry is quite large with
SUð2Þ" � SUð2Þ#, i.e., each spin projection " and # is governed
by the residual SU(2) valley symmetry and has the character-
istic ! / q2 pseudospin-wave modes.

The connection between the two scenarios becomes trans-
parent within a mean-field treatment of the Coulomb inter-
action Hamiltonian. The quantum Hall ferromagnetic states
discussed in the previous sections may be described equiv-
alently with the help of the mean-field order parameters

h�yð��valley � 1AB � �
�
spinÞ�i; (241)

where � denotes the same eight-spinor as in Sec. V.A.4.
Remember that a pure spin quantum Hall ferromagnet is
obtained for ��valley ¼ 1valley, whereas a pure valley-

pseudospin ferromagnet is described by an order parameter
(241) with �

�
spin ¼ 1spin. The remaining order parameters

describe states with a certain degree of spin-valley entangle-
ment, as discussed above.

Note, however, that the choice of order parameters is not
restricted to those in Eq. (241). One may also opt for a mean-
field calculation of the interaction Hamiltonian with the order
parameters (Gusynin et al., 2006; Gorbar et al., 2008)

Ms ¼ h�yð�zvalley � �zAB � 1spinÞ�i (242)

and

Mt ¼ h�yð1valley � �zAB � 1spinÞ�i; (243)

which describe mass gaps. Indeed, we already encountered a
term of the form (243) in Sec. V.A.4 and showed that it lifts
the valley degeneracy of the n ¼ 0 LL. Whereas such a term
arises naturally in the context of an out-of-plane distortion of
the graphene lattice, here it is generated dynamically via the
repulsive electron-electron interaction. The difference be-
tween the two mass terms Ms and Mt stems from the
residual symmetry of the SUð2Þ� groups. The term (242),
which may be viewed as a singlet mass term explicitly breaks
this symmetry, whereas the term (243) has been called the
triplet mass (Gusynin et al., 2006; Gorbar et al., 2008).

In Sec. V.A.4, we argued that mass terms of the above form
lift the valley degeneracy only in the zero-energy LL n ¼ 0,
whereas they simply renormalize the LL energy for n � 0.
Furthermore, we saw that as a consequence of the vanishing
spinor components c A

K;� and c B
K0;�, the mass term Mt is

indistinguishable, in n ¼ 0, from a valley-pseudospin ferro-
magnetic state,

Mn¼0
t ¼ h�yð1valley � �zAB � 1spinÞ�i


 h�yð�zvalley � 1AB � 1spinÞ�i; (244)

whereas the singlet mass term simply renormalizes the over-
all chemical potential,

Mn¼0
s ¼ h�yð�zvalley � �zAB � 1spinÞ�i


 h�yð1valley � 1AB � 1spinÞ�i: (245)

These arguments lead to the conclusion that the magnetic
catalysis in n ¼ 0, i.e., the spontaneous generation of a mass
gap due to electron-electron interactions, may be fully de-
scribed in the framework of the SU(4) quantum Hall ferro-
magnetism. Furthermore, the recent observation of a fully
lifted spin-valley degeneracy in the n ¼ 1 graphene LL (Dean
et al., 2011) is naturally understood in the framework of
quantum Hall ferromagnetism, whereas the mass terms
(242) and (243), obtained from magnetic catalysis, would
not provide a fully lifted spin-valley degeneracy.

4. The quantum Hall effect at �¼�1 and �¼0

Before discussing the experimental results on the quantum
Hall effect, a clarification on the filling factor is required. In
Secs. V.B.1 and V.B.2, which were concerned with general
aspects of the quantum Hall ferromagnet in LLs with internal
degrees of freedom, the filling factor � ¼ k has been defined
with respect to the bottom of the partially filled LL. However,
in graphene, this is at odds with the natural definition of the
filling factor (101) in terms of the electronic density measured
from the charge neutrality point in undoped graphene; a zero
filling factor therefore corresponds to two completely filled
spin-valley subbranches (k ¼ 2) of the n ¼ 0 LL. In the
remainder of this section, we therefore make a clear distinc-
tion between the two filling factors; � denotes the filling of
the n ¼ 0 LL measured from the bottom of the level, whereas
the natural filling factor (101) is from now on denoted by �G.
Explicitly, the relation between the two filling factors reads

� ¼ �G þ 2: (246)

Early transport measurements in exfoliated graphene on a
SiO2 have revealed broken spin-valley-symmetry states at
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�G ¼ 0, �1, and �4 (Zhang et al., 2006; Jiang et al.,
2007b), where the latter corresponds to the LLs �1. Recent
experiments on exfoliated graphene on a h-BN substrate
furthermore revealed quantum Hall states at �G ¼ �3
(Dean et al., 2011), thus completing the full resolution of
the spin-valley quartet, not only in n ¼ 0 but also in �1.

The observed states may generally be understood in the
framework of the quantum Hall ferromagnetism, but the
understanding of the situation at �G ¼ 0 requires an addi-
tional consideration of the subleading external symmetry-
breaking terms discussed in Sec. V.A.4. The two-stage pic-
ture, which we adopt here based on the above discussions,
may be summarized as follows. (a) The quantum Hall ferro-
magnetic states are formed to minimize the leading energy
given by the Coulomb interaction. However, because of the
(approximate) SU(4) symmetry of the interaction, the orien-
tation of the quantum Hall ferromagnets is not fixed: a
polarization in the spin channel is as probable as one in the
valley channel, and this yields the high degeneracy of the
Goldstone modes described in Sec. V.B.1. (b) Therefore, in
spite of the small energy scale of the external fields, the latter
are relevant for the orientation of the ferromagnets and for the
degeneracy lifting of the Goldstone modes.

a. The quantum Hall effect at �G ¼ �1

For �G ¼ �1, only one spin-valley branch is completely
filled by electrons.35 The Zeeman effect would give a small
energetic advantage to spin- # electrons, such that the two
spin Goldstone modes associated with collective excitations
to the spin- " branch acquire a q ¼ 0 gap, given by �Z. In
contrast to the spin excitations, the Goldstone mode, which
couples the two valleys in the spin- # branch of n ¼ 0,
remains gapless, and the ground state may thus be viewed
as a valley-pseudospin ferromagnet in the spin- # branch. The
activation gap would be given by Eq. (233) for pseudospin
skyrmion-antiskyrmion pairs, and its associated scaling
e2="lB / ffiffiffiffi

B
p

has indeed been observed experimentally
(Jiang et al., 2007b). The residual valley SU(2) symmetry
may be broken by the lattice distortions, which we discussed
in Sec. V.A.4. Whereas an out-of-plane lattice distortion
would yield a gapped valley-pseudospin wave mode, a
Kekulé-type in-plane distortion orients the pseudospin ferro-
magnet in the X � Y plane, associated with a gapless U(1)
superfluid mode (Nomura et al., 2009). Note that the lattice
distortion characterized by the energy scale �kek is not in
competition, at �G ¼ �1, with the Zeeman effect, such that
the resulting ferromagnetic state is the same for �Z >�kek as
for�Z < �kek. In the remainder of this section, we restrict the
discussion of the valley-pseudospin degeneracy lifting to in-
plane distortions that seem to be energetically more relevant
than out-of-plane distortions, but the overall picture remains
unchanged if the latter are more relevant.

b. The quantum Hall effect at �G ¼ 0

The situation is more subtle at �G ¼ 0, where it is not
possible to fully polarize both the spin and the valley

pseudospin and where the Zeeman effect is in competition

with a lattice distortion that orients the valley pseudospin. For

�Z > �kek, it is favorable to fill both valley sublevels of the

spin- # branch and the resulting state is a spin ferromagnet

with gapped spin-wave excitations. For �Z < �kek, a

pseudospin-ferromagnetic ground state is favored with both

spin sublevels completely filled. The two different situations

are depicted in Fig. 27. Most saliently, the two phases reveal

drastically different transport properties as one may see from

their behavior at the sample edges.
The electronic behavior at the edges may be described

within a model of electron confinement, in which the sample

edge is described via amass confinement termMðyÞ�zAB in the

Hamiltonian, which has the symmetry of the term (218) or

else, in n ¼ 0, that of a valley Zeeman term (217), as argued

in Sec. V.A.4. The parameter MðyÞ is zero in the bulk and

increases drastically at the edge at a certain value of the

coordinate y.36 Although the model is a simplification to treat

the graphene edges in the continuum description of the Dirac

equation, a more sophisticated treatment that takes into ac-

count the geometry of the edges yields, apart from a fine

structure of the levels at the edge, qualitatively similar results

(Brey and Fertig, 2006). The mass term MðyÞ modifies the

valley coupling due to the lattice distortion and yields a

y-dependent term
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2

kek þMðyÞ2
q

, which therefore equally

diverges at the sample edge.37

These preliminary considerations on the gap behavior at

the edges allow us to appreciate the difference in the expected

electronic transport between a spin ferromagnet and a valley-

pseudospin ferromagnet at �G ¼ 0. Indeed, for �Z > �kek,

one obtains a quantum Hall state at �G ¼ 0 that is charac-

terized by a bulk gap associated with two counterpropagating

edge states [Fig. 27(a)]. In the bulk, where MðyÞ ¼ 0, both
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FIG. 27. Possible scenarios for the lifted spin-valley degeneracy at

�G ¼ 0. (a) �Z > �kek in the bulk. When approaching the edge, the

energy difference between the two valleys increases drastically, and

two levels ðK0; "Þ and ðK; #Þ cross the Fermi energy at the edge

depicted by the dashed line (quantum Hall state). (b) �kek > �Z in

the bulk. The K subbranches are already located above the Fermi

energy, and those of K0 below, such that the energy difference is

simply increased when approaching the edge with no states crossing

the Fermi energy (insulator).

35For �G ¼ þ1, the same arguments apply in terms of holes due to

particle-hole symmetry.

36For the present argument, we consider translation invariance in

the x direction.
37In the case of an out-of-plane distortion, the term MðyÞ simply

adds up to the energy scale �
valley
Z [see Eq. (217)], but the physical

picture remains unaltered.
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valley sublevels of the spin- # branch are filled (spin ferro-
magnet). When approaching the edge, however, the energy

term
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2

kek þMðyÞ2
q

is enhanced by the rapidly increasing

contribution from MðyÞ, and the ðK; "Þ level eventually
crosses the ðK0; #Þ one at the edge at the Fermi energy
(Abanin et al., 2007b). This situation corresponds to a
quantum Hall state with a bulk insulator and (two counter-
propagating) conducting channels. In contrast to usual quan-
tum Hall states, the edge states are not chiral, but the
chiralitiy, i.e., the transport direction, of each channel is
linked to its spin orientation.38 The quantum Hall state there-
fore remains stable unless magnetic impurities couple the two
chiralities (Shimshoni et al., 2009). One notes furthermore a
change in the spin polarization at the edge; whereas the spin
polarization in the bulk is complete, the system becomes spin
unpolarized at the edge. If one takes into account the ex-
change interaction, the change in the polarization takes place
over a certain distance, and the conducting properties may be
described in terms of spin-carrying one-dimensional edge
excitations (Shimshoni et al., 2009).

In the opposite limit with �Z < �kek in the bulk
[Fig. 27(b)], the system at �G ¼ 0 is already valley polarized,

and an increase of
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2

kek þMðyÞ2
q

when approaching the

edge does not induce a level crossing at the Fermi energy.
Thus, there are no zero-energy states at the edge, and the
system is insulating both in the bulk and at the edge.

From an experimental point of view, it is not fully settled
which of the two phases describes the state at �G ¼ 0.
Whereas early experiments in exfoliated graphene on SiO2

samples were discussed in the framework of a dominant
Zeeman effect (Zhang et al., 2006; Abanin et al., 2007b;
Jiang et al., 2007b), recent experiments at very large mag-
netic fields (Checkelsky et al., 2008; Checkelsky et al.,
2009) and on suspended graphene samples with increasing
mobility (Du et al., 2009) favor the insulating scenario of
Fig. 27(b) with a dominant valley-degeneracy lifting. In
particular, the high-field measurements hint at an easy-plane
or XY (valley-pseudospin) ferromagnetic ground state be-
cause the transition between the metallic and the insulating
states is reminiscent of a Kosterlitz-Thouless phase transition
(Kosterlitz and Thouless, 1973) if one replaces the tempera-
ture by the magnetic field as the parameter driving the
transition (Checkelsky et al., 2008; Checkelsky et al.,
2009; Nomura et al., 2009; Hou, et al., 2010). However, it
has also been argued that this effect may be understood within
the above scenario of a Zeeman-dominated quantum Hall
ferromagnet in the bulk, in the framework of a Luttinger-
liquid description of the domain wall separating the polarized
from the unpolarized region at the edge (Shimshoni et al.,
2009).

One notes that both the Zeeman effect and the Kekulé-type
lattice distortion are very close in energy (see Table II) so that
one may speculate that other effects, such as, e.g., impurities,
strongly influence the formation and the orientation of the
quantum Hall ferromagnet. Further experimental and theo-
retical studies therefore seem to be necessary to clearly

identify the leading symmetry-breaking mechanisms,
which need not be universal, in the zero-energy LL at
�G ¼ 0 and �1.

We finally mention scanning tunneling spectroscopic re-
sults for the level splitting at �G ¼ 0 that were performed on
graphene on a graphite substrate (Li et al., 2009a). Although
a gap has been observed as one may expect in the framework
of the above scenario, it saturates as a function of the mag-
netic field. This is in disagreement with both the

ffiffiffiffi
B

p
behavior

of an interaction-dominated gap and the linear dependence of
the Zeeman or lattice-distortion effects. A probable origin of
this gap is the commensurability of the graphene lattice with
the graphite substrate that may break the inversion symmetry
between the two sublattices by a term of the type (218). The
coupling to the substrate being essentially electrostatic, one
would then expect no or only a weak magnetic-field depen-
dence of the splitting, as observed in the experiment (Li
et al., 2009a).

C. Fractional quantum Hall effect in graphene

The most salient aspect of strongly correlated 2D electrons
in partially filled LLs is certainly the FQHE, which is due to
the formation of incompressible liquid phases at certain
magical values of the filling factor. As argued in Sec. V.A.3
on the basis of the pseudopotentials, the FQHE is expected to
be present in the graphene LLs n ¼ 0 and n ¼ 1, and the
main difference with respect to nonrelativistic 2D electron
systems should arise from the internal SU(4) symmetry [for a
recent theoretical review, see Papić et al. (2009)].

On the experimental level, recent progress in the fabrica-
tion of high-mobility samples, e.g., via current annealing
(Bolotin et al., 2008; Du et al., 2008), allowed for the
observation of several FQHE states in graphene. The first
observations of a state at �G ¼ �1=3 were reported in 2009
on current-annealed suspended graphene samples in the two-
terminal configuration (Bolotin et al., 2009; Du et al.,
2009).39 Recently, the FQHE has also been observed in the
four-terminal geometry, which allows for the simultaneous
measurement of the longitudinal and the Hall resistance, in
suspended graphene (Ghahari et al., 2011) and on graphene
on a h-BN substrate (Dean et al., 2011).

Before commenting in more detail on these first experi-
mental results (indeed, this part of graphene research has just
started), we introduce the theoretical four-component or SU
(4) picture of the FQHE in graphene, in terms of generalized
Halperin wave functions. These wave functions, which may
be viewed as multicomponent generalizations of Laughlin’s
wave function, provide the natural framework for the descrip-
tion of the phenomenon in view of the model of electrons
restricted to a single relativistic LL (Sec. V.A).

1. Generalized Halperin wave functions

The theoretical study of the FQHE is intimately related to
trial N-particle wave functions. In 1983, Laughlin proposed a
one-component wave function (Laughlin, 1983),

38These helical edges are the signature of a quantum spin Hall

effect (Hasan and Kane, 2010; Qi and Zhang. 2011).

39There are also some weak indications for FQHE states at filling

factors other than �G ¼ �1=3 in these samples.
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�L
mðfzkgÞ ¼

YN
k<l

ðzk � zlÞm exp�
�XN

k

jzkj2=2
�
; (247)

which allows for an understanding of incompressible FQHE
states at the filling factors � ¼ 1=m that are determined by
the exponent m for the particle pairs k, l in Eq. (247). The
variable zk ¼ ðxk � iykÞ=lB is the complex position of the kth
particle, and the form of the Laughlin wave function (247) is
dictated by the analyticity condition for wave functions in the
lowest LL.40 Furthermore, the exponent m must be an odd
integer as a consequence of the fermionic statistics imposed
on the electronic wave function. Even if Eq. (247) describes
only a trial wave function, one can show that it is the exact
ground state for a class of model interactions that yield, with
the help of Eq. (215), the pseudopotentials (Haldane, 1983)

V‘ > 0 for ‘ < m and V‘ ¼ 0 for ‘ � m: (248)

Although the Coulomb interaction does not fulfill such strong
conditions, the pseudopotentials decrease as 1=

ffiffiffiffi
m

p
for large

values of m. Because the incompressible ground state is
protected by a gap that is on the order of V1, one may view
the pseudopotentials V‘�m as an irrelevant perturbation that
does not change the nature of the ground state. Indeed, exact-
diagonalization calculations have shown that, for the most
prominent FQHE at � ¼ 1=3, the overlap between the true
ground state and the Laughlin state (247) is extremely large
(> 99%) (Haldane and Rezayi, 1985; Fano et al., 1986).

Soon after Laughlin’s original proposal, Halperin general-
ized the wave function (247) to the SU(2) case of electrons
with spin, in the absence of a Zeeman effect (Halperin, 1983):
one then has two classes of particles, N" spin- " and N# spin- #
particles, which are described by the complex positions zð"Þk"
and zð#Þk# , respectively. In the (theoretical) absence of interac-

tions between electrons with different spin orientation, the
most natural ground-state candidate would then be a simple
product of two Laughlin wave functions (247),

�L
m" ðfzð"Þk" gÞ�L

m# ðfzð#Þk# gÞ; (249)

one for each spin component with the exponents m" and m#,
respectively, which need not necessarily be identical.
Intercomponent correlations may be taken into account by
an additional factor

YN"

k"

YN#

k#

ðzð"Þk" � zð#Þk# Þn; (250)

where the exponent n can now also be an even integer
because the fermionic antisymmetry condition is concerned
only with electrons in the same spin state.

Halperin’s idea is easily generalized to the case of more
than two components, and the corresponding trial wave
function for an SUðN Þ quantum Hall system with N com-
ponents reads (Goerbig and Regnault, 2007)

c SUðN Þ
m1;...;mN ;nij ¼ �L

m1;...;mN
�inter

nij ; (251)

in terms of the product

�L
m1;...;mN

¼ YN
j¼1

YNj

kj<lj

ðzðjÞkj
� zðjÞlj

Þmje
�PN

j¼1

PNj
kj¼1

jzðjÞ
kj
j2=4

(252)

of N Laughlin wave functions and the term

�inter
nij ¼ YN

i<j

YNi

ki

YNj

kj

ðzðiÞki � zðjÞkj Þnij ; (253)

which describes intercomponent correlations. As in the case
of Halperin’s two-component wave function (Halperin,
1983), the exponents mj must be odd integers for fermionic

particles, whereas the exponents nij may also be even inte-

gers. These exponents define a symmetric N �N matrix
M ¼ nij, where the diagonal elements are nii � mi. This

exponent matrix encodes the statistical properties of the
quasiparticle excitations, such as their (fractional) charge
and their statistical angle (Wen and Zee, 1992a; 1992b).

Moreover, the exponent matrix M determines the compo-
nent densities �j or, equivalently, the component filling

factors �j ¼ �j=nB,

�1

..

.

�N

0
B@

1
CA ¼ M�1

1
..
.

1

0
B@

1
CA; (254)

where � ¼ �1 þ � � � þ �N is the total filling factor measured
from the bottom of the lowest LL. Note that Eq. (254) is only
well defined if the exponent matrix M is invertible. In this
case, all component filling factors �j are completely deter-

mined, whereas otherwise some of the component fillings
remain unfixed, e.g., �1 and �2 for illustration, although the
sum of them (�1 þ �2) is fixed. This is nothing other than a
consequence of the underlying ferromagnetic properties of
the FQHE state that, similar to the states at � ¼ k discussed in
Sec. V.B, are described by subgroups of SUðN Þ.

Finally, we note that not all SUðN Þ wave functions (251)
describe incompressible quantum liquids with a homogene-
ous charge density for all components. A generalization of
Laughlin’s plasma picture, according to which the modulus
square of the trial wave function corresponds to the
Boltzmann weight of a classical 2D plasma (Laughlin,
1983), shows that all eigenvalues of the exponent matrix M
must be positive (or zero for states with ferromagnetic order).
Otherwise, some of the different components phase separate
in the 2D plane because the intercomponent repulsion be-
tween them exceeds the intracomponent repulsion (de Gail
et al., 2008).

2. The use of generalized Halperin wave functions in graphene

These general considerations allow us to define the frame-
work for a basic description of the FQHE in graphene where
the SU(4) spin-valley symmetry imposes N ¼ 4. Four-
component Halperin wave functions are therefore expected
to play an equally central role in the description of the
graphene FQHE as Laughlin’s in a one-component system

40The lowest-LL condition of analytic wave functions may seem a

very strong restriction when discussing FQHE states in higher LLs.

However, the model (207) indicates that all LLs can be treated as the

lowest one, n ¼ 0, if the interaction potential is accordingly modi-

fied. We adopt this point of view here.
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or Halperin’s in two-component systems. In the remainder of
this section, we attribute the four spin-valley components as
1 ¼ ð"; KÞ, 2 ¼ ð"; K0Þ, 3 ¼ ð#; KÞ, and 4 ¼ ð#; K0Þ.

a. Fractional SU(4) quantum Hall ferromagnet

In a first step, we consider a four-component Halperin
wave function in which all components are equal (odd)
integers, mj ¼ nij ¼ m, regardless of whether they describe

intracomponent or intercomponent correlations. One obtains
then a completely antisymmetric orbital wave function that is
accompanied by a fully symmetric SU(4) spin-valley wave
function.

As argued in Sec. V.B.1, this situation represents precisely a
perfect SU(4) quantum Hall ferromagnet: indeed, for m ¼ 1,
the generalized Halperin wave function (251) is nothing other
than the orbital wave function of the state at � ¼ 1, i.e., when
one of the subbranches is completely filled. The SU(4) sym-
metry is then spontaneously broken, and the group-theoretical
analysis presented in Sec. V.B.1 yields three degenerate
Goldstone modes that are generalized spin waves.

The situation is exactly the same for any other odd ex-
ponent m, but the orbital wave function (251) is then a
Laughlin wave function (247) in terms of the particle posi-
tions zk regardless of their internal index j ¼ 1; . . . ; 4. The
ferromagnetic properties of these wave functions may be
described by the same equations as the spin wave and sky-
rmion modes derived in Sec. V.B if one takes into account a
renormalization of the spin stiffness, as discussed extensively
in the literature for SU(2) quantum Hall ferromagnets
(Sondhi et al., 1993; Moon et al., 1995; Ezawa, 2000).
States described by such a wave function are ground-state
candidates for the filling factors � ¼ 1=m, which correspond
to the graphene filling factors [see Eq. (246)] �G ¼ �2þ
1=m or hole states at �G ¼ 2� 1=m.

There are now two different ways to break the internal
SU(4) symmetry explicitly. The simplest one is the same as
for the quantum Hall ferromagnetism at �G ¼ 0 or �1, in
terms of external symmetry-breaking fields such as those
discussed in Sec. V.A.4. However, one may also change
some of the exponents in the generalized Halperin wave
function (251), in which case one also changes the filling
factor. One may for instance consider the ½m;m� 1; m�wave
function with mj ¼ m for all j, n13 ¼ n24 ¼ m� 1, and

n12 ¼ n14 ¼ n23 ¼ n34 ¼ m, which corresponds to a filling
factor41

� ¼ 2

2m� 1
or �G ¼ �2þ 2

2m� 1
: (255)

Indeed, the difference in the intercomponent exponents ex-
plicitly breaks the spin-valley symmetry: electrons in differ-
ent valleys are more weakly correlated (with an exponent
m� 1) than electrons in the same valley (exponent m),
regardless of their spin orientation. As a consequence, the
filling factors in each of the two valleys �K ¼ �1 þ �3 and
�K0 ¼ �2 þ �4 are fixed, �K ¼ �K0 ¼ 1=ð2m� 1Þ, and one

may view the wave function as a state with ferromagnetic
spin ordering, but that is valley-pseudospin unpolarized.
Alternatively, the ½m;m� 1; m� wave function may be inter-
preted as a tensor product of an SU(2) Halperin ðm;m;m� 1Þ
pseudospin-singlet wave function (Halperin, 1983) and a
completely symmetric (ferromagnetic) two spinor that de-
scribes the physical spin. The relevance of the ½m;m� 1; m�
wave function with m ¼ 3 (� ¼ 2=5) has been corroborated
in recent exact-diagonalization studies, in both the graphene
LLs n ¼ 0 and n ¼ 1 (Töke and Jain, 2007; Papić et al.,
2009).

The SU(4) spin-valley symmetry is fully broken, e.g., in
the case of the ½m;m� 1; m� 1� wave function with all
mj ¼ m and off diagonal nij ¼ m� 1. This wave function,

which describes a state at

� ¼ 4

4m� 3
or �G ¼ �2þ 4

4m� 3
; (256)

may be viewed as an SU(4) singlet where the filling factors of
all spin-valley components are 1=ð4m� 3Þ. Exact-
diagonalization calculations for N ¼ 4 and 8 particles have
shown that the ½m;m� 1; m� 1� wave function with m ¼ 3
(at � ¼ 4=9) describes to great accuracy the ground state for a
Coulomb interaction (205), with overlaps ON¼8 ¼ 0:992 in
n ¼ 0 and ON¼8 ¼ 0:944 and in the n ¼ 1 graphene LL
(Papić et al., 2009).

b. A route to understanding the graphene FQHE at �G ¼ �1=3

The discussion of the above-mentioned states was based on
the understanding acquired from quantum Hall systems in
semiconductor heterostructures, where the filling factor is
defined with respect to the bottom of the n ¼ 0 LL. The first
experimental observations, however, indicated a prominent
FQHE at �G ¼ �1=3, which corresponds to two completely
filled spin-valley sublevels of the graphene n ¼ 0 LL, and a
third one that is 1=3 filled, � ¼ 2þ 1=3. Such a state would
naturally arise in a system where the SU(4) symmetry is
strongly broken, e.g., by a strong Zeeman effect. However,
as argued in Sec. V.A.4, these external fields are weak as
compared to the leading interaction-energy scale, and it is
therefore natural to ask how such a state may arise from the
interaction point of view in the framework of four-component
Halperin wave functions.

A Halperin wave function that describes the above-
mentioned situation is (Papić et al., 2010)

c 2þ1=3 ¼
Y


¼K;K0

Y
i<j

ðz";
i � z";
j Þ3Y
i;j

ðz";Ki � z";K
0

j Þ3

� Y

¼K;K0

Y
i<j

ðz#;
i � z#;
j Þ; (257)

or any permutation of the spin-valley components. One notes
that this wave function implicitly breaks the SU(4) spin-
valley symmetry and, moreover, is not an eigenstate of the
full SU(4) pseudospin, such that it cannot describe the ground
state in the total absence of an external symmetry-breaking
field. However, exact-diagonalization calculations have
shown that even a small external Zeeman field is capable of
stabilizing the state (257), which becomes the ground state for
�1

Z ’ 0:01e2="lB (Papić et al., 2010). Furthermore, the state

41We only discuss electronic states here, but the arguments are

equally valid for the particle-hole symmetric states at �G ¼ 2�
2=ð2m� 1Þ.
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(257) possesses, in addition to the valley-pseudospin wave

Goldstone mode in the spin- " branch, low-lying spin-flip

excitations for moderately small Zeeman fields, even if the

charge (activation) gap is the same as for the usual 1=3
Laughlin state. This particular interplay between the leading

Coulomb energy and subordinate external spin-valley

symmetry-breaking terms, illustrated at the �G ¼ 1=3 ex-

ample, shows the complexity of the graphene FQHE, and

further surprises may be expected in future experiments.

3. Experiments on the graphene FQHE

We conclude this section on the graphene FQHE with a

short discussion of experimental observations in light of the

above-mentioned theoretical four-component picture.
a. Two-terminal measurements. In the first observations of

the FQHE, the two-terminal configuration was used, where

the voltage (and thus the resistance) is measured between the

same two contacts used to drive the electric current through

the sample (Bolotin et al., 2009; Du et al., 2009). In this two-

terminal configuration, it is not possible to measure simulta-

neously the Hall and the longitudinal resistance. It is

nevertheless possible to extract the Hall and longitudinal

conductivities from the two-terminal resistance with the

help of a conformal mapping, as a consequence of the 2D

nature of the quantum transport in these systems (Abanin and

Levitov, 2008; Williams et al., 2009). This technique has

been applied to obtain insight into the longitudinal conduc-

tivity the expected activated behavior of which yields a rough

estimate of the activation gap at �G ¼ 1=3 (�1=3 
 4:4 K at

B ¼ 12 T) (Abanin et al., 2010), which is an order of

magnitude smaller than the theoretically expected value

(Apalkov and Chakraborty, 2006; Töke et al., 2006).42

b. Four-terminal measurements. The activation gap of

the 1=3 FQHE state has also been measured in suspended

graphene in the four-terminal configuration, in which the

longitudinal resistance can be measured directly and inde-

pendently from the Hall resistance (Ghahari et al., 2011). In

this case, the activation gap has been estimated to be �1=3 

26 � � � 50 K at B ¼ 14 T, a value that agrees reasonably well

with the theoretically expected value (Apalkov and

Chakraborty, 2006; Töke et al., 2006) if one considers the

energy scale e2=""1lB, which takes into account the

RPA dielectric constant "1 for graphene in vacuum (see

Sec. III.B.4).
Finally, we mention recent high-field transport measure-

ments in the four-terminal configuration on graphene on a

h-BN substrate (Dean et al., 2011). These experiments

allowed for a clear identification of several states of the 1=3
family, at �G ¼ �1=3,�2=3, and�4=3 corresponding to the
zero-energy LL n ¼ 0, as well as at �G ¼ �7=3, �8=3,
�10=3, and �11=3 which reside in the n ¼ 1 LL.

Estimation of the activation gap at �G ¼ 4=3 agrees reason-
ably well with the theoretical expectation for the 1=3 state.
Perhaps the most salient (and unexpected) feature of the
transport measurement is the absence (or extreme weakness)
of the �G ¼ �5=3 representative of the 1=3 family, which
would correspond to the Laughlin state (� ¼ 1=3 $ �G ¼
�5=3 and the corresponding hole state) with a full SU(4)
spin-valley ferromagnetic order, as argued in Sec. V.C.2.

Whereas the absence of this state remains to be understood,
these findings corroborate the theoretical four-component
picture of the graphene FQHE. Indeed, it shows that the
SU(4) symmetry of the n ¼ 0 LL is essential because the
only correspondence between the FQHE states is particle-
hole symmetry that maps �G $ ��G. If the SU(4) symmetry
were broken, e.g., by a sufficiently strong Zeeman effect, the
only symmetry would be the valley SU(2) symmetry in each
spin branch of the n ¼ 0 LL, in which case there exist the
further mappings �2þ � $ �� in the spin- # branch and
� $ 2� � in the spin- " branch. However, the (observed)
�1=3 state would then be mapped on the (unobserved or
extremely weak) �5=3 state, and the strong difference in the
visibility between these two states is therefore difficult to
understand. This is also the case if the SU(4) symmetry is
fully broken by strong external spin and valley Zeeman fields,
such that all spin-valley sublevels are completely resolved,
and�5=3 would be mapped on�4=3, in the same manner as
�1=3 on �2=3.

VI. CONCLUSIONS AND OUTLOOK

We reviewed the quantum-mechanical properties of rela-
tivistic 2D electrons in monolayer graphene exposed to a
strong magnetic field. The main parts of this review are
concerned with the role of electronic interactions in graphene
LLs. Whereas, we have argued that these interactions may be
treated perturbatively in the regime of the relativistic (integer)
quantum Hall effect, they constitute the relevant energy scale
in partially filled graphene LLs due to the quenching of the
kinetic energy. This is reminiscent of partially filled LLs in
nonrelativistic 2D electron systems, and the most prominent
consequence of this quenched kinetic energy and the macro-
scopic LL degeneracy is certainly the FQHE. The graphene
FQHE is expected to be reminiscent of that of nonrelativistic
2D electrons, but it is governed by a larger internal degener-
acy described to great accuracy by the SU(4) group. The
experimental study of the FQHE in graphene is still in its
infancy, and surprises can be expected. Measurements in the
four-terminal geometry have only recently been reported;
these allow for an analysis of prominent characteristics of
FQHE states, such as the activation gaps. In view of the
generally accepted universality of the quantum Hall effect,
it will certainly be interesting to make a systematic compari-
son with the activation gaps of related FQHE states in con-
ventional 2D electron gases with a parabolic band.

In the perturbative regime of the RQHE, the theoretical
study of electron-electron interactions indicates the presence
of novel collective modes, such as linear magnetoplasmons,
that are particular to graphene and do not have a counterpart
in nonrelativistic 2D electron systems in a perpendicular
magnetic field. Also, the upper-hybrid mode, which is the

42Note that the theoretical estimates have been obtained within a

simplified two-component model, with a completely frozen spin

degree of freedom. In spite of this simplification, the above-

mentioned exact-diagonalization calculations with an implemented

SU(4) symmetry have shown that the charge gap, which is respon-

sible for the activated behavior, coincides indeed with that obtained

in the two-component model (Papić et al., 2010).
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magnetic-field counterpart of the usual 2D plasmon, is
expected to behave in a particular manner in graphene as a
consequence of the linear dispersion relation and the vanish-
ing band mass. Whereas, these studies are at present only
theoretical, these collective modes may find an experimental
verification in inelastic light-scattering measurements.

Similar to the role of electron-electron interactions in the
RQHE regime, the electron-phonon coupling yields exciting
resonance phenomena in graphene in a strong magnetic field.
The electron-phonon interaction in graphene LLs has been
discussed in the framework of a perturbative approach.
Indications for the magnetophonon resonance, for example,
have recently been found in Raman spectroscopy of epitaxial
graphene.

The present review has been limited to monolayer gra-
phene, and it is definitely a reasonable research program to
ask how the effects described here manifest themselves in
bilayer graphene. For example, the particular collective ex-
citations described in Sec. III have been attributed to the lack
of equidistant LL spacing and the presence of two bands.
Bilayer graphene also consists of two (particle-hole-
symmetric) bands in the low-energy regime, but the approxi-
mate parabolicity there yields almost equidistant LLs. The
presence of additional high-energy bands (in the 300 meV
range) certainly also affects the plasmonic modes.
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APPENDIX: MATRIX ELEMENTS OF THE DENSITY

OPERATORS

The matrix elements that intervene in the expression for
the density operators (139) are of the form hn;mj expð�iq �
rÞjn0; m0i and may be calculated with the help of the
decomposition of the cyclotron variable � and the guiding

center R into the ladder operators â and b̂, respectively [see
Eqs. (78), (91), and (94)]. We furthermore define the com-
plex wave vectors q � ðqx þ iqyÞlB and �q ¼ ðqx � iqyÞlB.43
One finds

hn;mje�iq�rjn0; m0i ¼ hmje�iq�Rjm0i � hnje�iq��jn0i
¼ hmje�ði= ffiffi

2
p Þðqb̂yþ �q b̂Þjm0i

� hnje�ði= ffiffi
2

p Þð �qâyþqâÞjn0i: (A1)

The two matrix elements may be simplified with the help of
the Baker-Hausdorff formula expðAÞexpðBÞ¼ expðAþBÞ�
expð½A;B�=2Þ, for the case ½A; ½A; B�� ¼ ½B; ½A; B�� ¼ 0
(Cohen-Tannoudji et al., 1973). The second matrix element
thus becomes, for n � n0,

hnje�iq��jn0i ¼ hnje�ði= ffiffi2p Þð �qâyþqâÞjn0i ¼ e�jqj2=4hnje�ði= ffiffi2p Þ �qâye�ði= ffiffi
2

p Þqâjn0i
¼ e�jqj2=4X

j

hnje�ði= ffiffi
2

p Þ �qây jjihjje�ði= ffiffi2p Þqâjn0i

¼ e�jqj2=4
ffiffiffiffiffiffi
n0!
n!

s ��i �qffiffiffi
2

p
�
n�n0 Xn0

j¼0

n!

ðn� jÞ!ðn0 � jÞ!j!
�
�jqj2

2

�
n0�j

¼ e�jqj2=4
ffiffiffiffiffiffi
n0!
n!

s ��i �qffiffiffi
2

p
�
n�n0

Ln�n0
n0

�jqj2
2

�
; (A2)

where we have used

hnje�ði= ffiffi
2

p Þ �qây jji ¼
� 0 for j > nffiffiffiffi

n!
j!

q
1

ðn�jÞ!

�
� iffiffi

2
p �q

�
n�j

for j � n

in the third line equality and the definition of the associated Laguerre polynomials (Gradshteyn and Ryzhik, 2000),

Ln�n0
n0 ðxÞ ¼ Xn0

m¼0

n!

ðn0 �mÞ!ðn� n0 þmÞ!
ð�xÞm
m!

:

In the same manner, one obtains for m � m0

43We use this notation solely in the Appendix. Throughout the main text, q denotes the modulus of the wave vector q, q ¼ jqj.
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hmje�iq�Rjm0i ¼ hmje�ði= ffiffi
2

p Þðqb̂yþ �q b̂Þjm0i

¼ e�jqj2=4
ffiffiffiffiffiffiffi
m0!
m!

s ��iqffiffiffi
2

p
�
m�m0

Lm�m0
m0

�jqj2
2

�
:

(A3)

With the help of the definition

Gn;n0 ðqÞ �
ffiffiffiffiffiffi
n0!
n!

s ��iqffiffiffi
2

p
�
n�n0

Ln�n0
n0

�jqj2
2

�
;

one may rewrite the expressions without the conditions
n � n0 and m � m0,

hnje�iq��jn0i ¼ ½�ðn� n0ÞGn;n0 ð �qÞ þ�ðn0 � n� 1Þ
� Gn0;nð�qÞ�e�jqj2=4 (A4)

and

hmje�iq�Rjm0i¼ ½�ðm�m0ÞGm;m0 ðqÞþ�ðm0 �m�1Þ
�Gm0;mð� �qÞ�e�jqj2=4: (A5)
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