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The last two decades of progress in the theory of crystal surfaces in and out of equilibrium is reviewed.
Various instabilities that occur during growth and sublimation, or that are caused by elasticity,
electromigration, etc., are addressed. For several geometries and nonequilibrium circumstances, a
systematic derivation provides various continuum nonlinear evolution equations for driven stepped
�or vicinal� surfaces. The resulting equations are sometimes different from the phenomenological
equations derived from symmetry arguments such as those of Kardar, Parisi, and Zhang. Some of the
evolution equations are met in other nonlinear dissipative systems, while others remain unrevealed.
The novel and original classes of equations are referred to as “nonstandard.” This nonstandard form
suggests nontrivial dynamics, where phenomenology and symmetries, often used to infer evolution
equations, fail to produce the correct form. This review focuses on step meandering and bunching,
which are the two main forms of instabilities encountered on vicinal surfaces. Standard and
nonstandard evolution scenarios are presented using a combination of physical arguments,
symmetries, and systematic analysis. Other features, such as kinematic waves, some aspect of
nucleation, and results of kinetic Monte Carlo simulations are also presented. The current state of
experiments and confrontation with theories are discussed. Challenging open issues raised by recent
progress, which constitute essential future lines of inquiries, are outlined.
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I. INTRODUCTION

A major goal of theories on nonequilibrium surface
dynamics is to predict the continuum evolution of sur-
faces from knowledge of elementary microscopic pro-
cesses. Growth is an open nonequilibrium dissipative
process where matter is constantly brought into the
growing solid from the surrounding environment; it is a
prototype of problems where traditional statistical me-
chanics are difficult to apply. Principles such as maxi-
mum entropy, minimum free energy, etc., do not apply in
general.

Growth embraces several disciplines such as metal-
lurgy �solidification of alloys� �Tiller, 1991�, microelec-
tronics �growth of nanodevices� �Ritter et al., 1998�, bio-
physics �growth of proteins, cell and tumor growth, and
cytoskeleton polymerization in the immune system�
�Vekilov and Alexander, 2000�, etc. While each system
has its own specificities, the general hope is that progress
achieved on one given problem may help shed light on
problems with seemingly different underlying mecha-
nisms.

For our problem of surface dynamics, the nature of
crystalline surfaces is important. At the microscale, crys-
talline surfaces exhibit two distinct structures: �i� a rough
surface and �ii� a smooth or atomically flat surface. At
melting temperatures most metals and several organic
components fall into the first category �Jackson, 2004�.
In this case, the surface fluctuates strongly and the no-
tion of a crystalline plane is hard to define. In the second
category, surface atoms �or molecules� are perfectly
aligned in a smooth �atomically flat� plane. Semiconduc-
tors, some metals, and several organic materials belong
to this category; in theory, they can become rough if the
temperature is high enough �this temperature may be
above sublimation temperature�. The distinction be-
tween rough and smooth phases is precise. Indeed, crys-
talline surfaces are known to undergo a roughening
transition of Kosterlitz-Thouless �Kosterlitz and Thou-
less, 1973� type at a critical temperature TR given by

kBTR = 2a2�/� , �1.1�

where kB is the Boltzmann constant, a is the lattice spac-
ing in the crystal, and � is a macroscopic surface free
energy. In principle, by increasing the temperature, each
smooth �or atomically flat� surface should undergo a
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roughening transition. The temperatures at which mate-
rials are grown depend largely on the process of growth
�melting temperature for solidification, an appropriate
temperature for growth from the vapor phase, etc.�.
Given the “working temperature,” the surface may be
either rough or smooth at the microscale. There is, in
general, a transfer of information from the microscale to
the macroscale �Fig. 1�: roughening is accompanied with
the transition from facetted to rounded macroscopic
shapes.

The physics of crystal growth largely depends on the
microscopic nature of surfaces. For solids with rough
surfaces �i�, the addition of a new particle to the growing
solid is quick since many unsatisfied bonds are available.
In this case, growth is often limited by slow mass trans-
port to the crystal. A typical transport process is diffu-
sion from the bulk toward the surface. This is referred to
as diffusion-limited growth. For solids with smooth
�atomically flat� surfaces �ii�, attachment sites are rare
and the addition of particles to the surface is not an easy
process. Growth may occur either via two-dimensional
�2D� nucleation or via the attachment of atoms to the
preexisting steps. Steps may be created during a prepa-
ration process, such as cutting a material with a miscut
angle with respect to a closely packed plane. The result-
ing surface is called vicinal. Steps may also be occasional
or produced by screw dislocations emerging at the sur-
face of the solid �Burton et al., 1951�; see Fig. 2. The
interface attachment kinetics are rather slow in this cat-
egory. Here, besides diffusion, attachment kinetics and
2D nucleation play a �if not the� decisive role.

The first category �bulk diffusion-limited growth� usu-
ally leads to patterns in the form of dendrites or fractals.
The velocity selection of the dendritic tip has been a
problem, which shares some similarities with the width
selection of a Saffman-Taylor finger �Saffman and Tay-
lor, 1958� observed when a less viscous fluid �such as air�
is injected into a more viscous fluid �such as oil� in a
channel. Patterns such as fingers, dendriticlike struc-

tures, and fractal-like morphologies �or their formal ana-
logs� have been identified in diffusion-limited growth.
There has been a significant advance in both problems.
Both situations have proved to be nontrivial and nonlin-
ear selection problems, where surface tension plays the
role of a singular perturbation. Furthermore, in the den-
tritic problem, the crystalline anisotropy has been shown
to play a decisive role; for a review see Kessler et al.
�1988�.

We are interested in the second category of kinetics-
controlled growth problems. Here the interface is flat on
the microscale: terrace, individual steps, and individual
atoms can be identified �Fig. 3�. Adatoms have to diffuse
on the terrace, meet with other building blocks �2D
nucleation�, or attach to preexisting defects �steps and
islands�. The difficulties encountered in this category are
greater than in the first category of the dendrite problem
because of the variety of microscopic processes in-
volved. Materials in this category include semiconduc-
tors �used in everyday nanodevice manufacture�, many
organic components, and biological materials �such as
protein crystals �Chernov, 2003��. On the macroscale,
growth forms are often facetted, while on mesoscales
and nanoscales, they sometimes exhibit intricate pat-
terns, the understanding of which requires precise iden-
tification of the microscopic growth process. In its gen-
eral form, this problem continues to represent a
formidable challenge.

Kinetics-controlled growth can be classified according
to the mother phase into three prototypes: �i� growth

1.4 K

1. K

0.4 K

0.1 K

(b)(a) (c)

FIG. 1. �Color online� Roughening transition. �a� Facetting of
4He crystal. From top to bottom, the temperatures are succes-
sively 1.4, 1, 0.4, and 0.1 K. The size of the facets is larger than
on equilibrium shapes due to slow growth. From Balibar et al.,
2005. �b� and �c� NaCl crystal. From Heyraud and Métois,
1987. From �b� to �c�, the temperature is decreased leading to
the appearance of a facetted shape with an atomically flat sur-
face.

(b)(a)

FIG. 2. �Color online� Screw dislocations. �a� Atomic force
microscope picture of a screw dislocation during the growth of
an insulin crystal �Yip et al., 1998; Gliko et al., 2003�. �b� Low
distortion reflection electron microscope �REM� image of a
screw disclocation on Si�111� �Müller and Métois, 2005�.
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y
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step
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� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �

� � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � �

FIG. 3. Schematic view of the surface during 2D growth.
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from a solution �this is the case for many organic mate-
rials, minerals, biological materials, etc.�, where the el-
ementary building blocks diffuse in the solution �Cher-
nov and Nishinaga, 1987� along the surface �of the
growing material� and execute various kinetics, as
evoked above �e.g., nucleation, attachment to preexist-
ing steps, etc.�; �ii� growth from a vapor; and �iii� growth
from a beam �Saito, 1996; Pimpinelli and Villain, 1998;
Michely and Krug, 2004�. In cases �ii� and �iii�, the trans-
port process in the mother phase is nonessential. We
refer to the last two categories as ballistic growth or mo-
lecular beam epitaxy �MBE�.

MBE growth, to which a significant part of this review
is devoted, and other variants of vapor growth are used
to produce materials with abrupt surfaces on the atomic
scales �quantum wells, wires, dots, etc.�. Such materials
are used for optoelectronic and microelectronic devices.
The task of producing a surface with an atomic control is
often hampered by the presence of inherent instabilities
and/or by the kinetic roughness associated with, for ex-
ample, shot noise due to the deposition flux.

In principle, on a flat surface exposed to a flux in
MBE �usual fluxes in MBE range from a fraction of a
monolayer to a few monolayers per second�, each depos-
ited atom has ample time to diffuse and attach to a fa-
vorable site �e.g., a step� before a new atom is deposited.
On the other hand, it is known that shot noise �a noise
inherent to the deposition flux� is able to reinstitute it-
self and may cause kinetic roughening of the surface at
different scales. The surface may develop stochastic
roughness. Prominent examples of descriptions of this
type of roughness are the Edwards-Wilkinson equation
�Edwards and Wilkinson, 1982� and the Kardar-Parisi-
Zhang �KPZ� equation �Kardar et al., 1986�. The latter is
one of the earliest nonlinear evolution equations put for-
ward in MBE growth literature and was derived from
symmetries. In 1+1 dimensions, the KPZ equation reads

�th = ��xxh + ���xh�2 + ��x,t� , �1.2�

where h�x , t� is the surface height, x is the spatial coor-
dinate along the front, ��x , t� is a noise term, and � and
� are two positive coefficients.

A major outcome of the KPZ equation is the determi-
nation of the static roughness exponent � �which de-
scribes the degree of the increase in roughness by in-
creasing the size of the surface in the lateral direction L�
in the saturation regime and the dynamical exponent z
�which tells us how long it takes for a given surface with
a linear scale L to reach the saturation regime�. Rough-
ness w obeys a scaling law

w � L�f�t/Lz� . �1.3�

This scaling law has been identified for many continuum
models, as well as in Monte Carlo �MC� simulations
�Barabàsi and Stanley, 1995�. However, the KPZ equa-
tion raises several questions which are still a matter for
debate. One particularly important point is to specify its
range of applicability. More precisely, what are the
length and time scales beyond which the KPZ scaling
exponents describing surface roughness can be expected

to appear? Let it suffice to say that if growth is produced
without—or with only a small number of—defects �such
as holes, usually called overhangs in numerical simula-
tions� or if desorption of deposited atoms is unlikely on
the time and length scale of interest �which is often the
case in many MBE growth processes�, then a description
in terms of KPZ dynamics is not a priori justified. Other
alternatives have been suggested �see Barabàsi and
Stanley �1995� and Pimpinelli and Villain �1998�� to ac-
count for the absence of desorption and overhangs �or
holes�.

Besides the noise-driven roughness, there is now in-
creasing evidence that surface roughness may result
from a deterministic origin. Instabilities of deterministic
origin are the rule in systems which are brought away
from equilibrium. These instabilities may lead to pat-
terns which may be either ordered or disordered, de-
pending on specific nonequilibrium conditions. This re-
view is mainly devoted to these questions of
deterministic instabilities, albeit the effect of noise will
be discussed at different places.

One of the main goals in materials science is to de-
scribe the surface evolution including relevant micro-
scopic effects. This is a difficult task in general, from
both an analytical and a numerical point of view. Proper
analysis of the nucleation process represents a significant
challenge. For example, how does one describe surface
evolution including the nucleation process in a con-
tinuum theory? Several attempts have been made, but
often the theories are based on ad hoc assumptions and,
at best, only very qualitative features may be extracted.

Evoking symmetries for the effective evolution equa-
tions gives some hope for progress. However, in general,
it is not always easy to get information on the functional
dependence of the coefficients in the evolution equation
on relevant material and growth parameters. In addi-
tion, there are several situations �where derivation from
“microscopic” considerations becomes possible� where
the evolution equation is nontrivial and cannot be easily
inferred from symmetries or scaling arguments.

Progress in any complex field �such as the subject of
this review� can be made only by a progressive refine-
ment of concepts. This is why we focus on simplified
geometries where derivations of evolution equations,
their classification, and their outcomes become possible
and unambiguous; they are vicinal surfaces �Fig. 4� com-
prising terraces and steps. The advantage of these sur-
faces is that atom nucleation on the terraces may be
avoided �provided that the temperature is not too low,
the interstep distance is not too large, and the deposition
flux is not too high, so that deposited atoms reach a step
before other new atoms land�: deposited atoms or mol-
ecules wander along the terrace until they reach a ter-
race edge where preexisting steps act as a sink. Thus,
surface growth occurs by the addition of particles at the
steps; this growth mode is known as step flow. Figure 4
summarizes the basic growth processes. Vicinal surfaces
are widely used as templates for the production of many
surface nanoarchitectures. They present systems of both
fundamental and technological importance.
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Since atoms only diffuse �some may regain the atmo-
sphere via thermal agitation� and attach to the steps, the
problem amounts to solving the diffusion problem with
boundary conditions �such as conditions on the mass flux
at the step�. The definition of the growth problem in its
simple version is therefore nonambiguous. On this basis,
it is hoped to extract general prototypical evolution
equations.

Within this simplified picture of growth on a vicinal
surface, the problem remains complex on the absolute
level. On the one hand, while diffusion is described by a
linear equation, the fact that the step profiles �and thus
the surface morphology� are a priori unknown makes
the problem highly nonlinear and nonlocal. Even a nu-
merical solution of the surface dynamics in detail on a
reasonable sample size is still not completely feasible
despite the progress of recent computing facilities. Fur-
thermore, although a direct numerical solution may pro-
vide a full picture of dynamics and enables comparison
of results with experiments, it would be highly desirable
to dispose of analytical progress on surface evolution
dynamics. This has recently become possible in several
circumstances and constitutes a central issue of this re-
view.

This review focuses on a significant achievement: we
are now able to classify the type of dynamics on vicinal
surfaces on the basis of general considerations. Various
microscopic dynamics take place on a vicinal surface, as
shown in Fig. 4: deposition, surface diffusion, desorp-
tion, and step attachment or detachment. There are
other processes which require essential considerations.
Atoms that are in the vicinity of the step are not auto-
matically absorbed at their arrival sites: an atom may
wander along the step for a certain period of time before
it attaches to the step. Thus line diffusion may play an
essential role. On the other hand, steps may interact via
the elastic field because a step is a defect, and the elastic
distortions lead to an effective interaction with other
steps. We shall see that including or disregarding elastic-
ity leads to a drastically different dynamics. Thus, we
must identify the relevant physical processes in a given
situation.

Different types of approaches have recently been pub-
lished �Haselwandter and Vvedensky, 2008�. These are

based on the renormalization of stochastic lattice models
leading to continuum surface equations. While this ap-
proach is appealing, scenarios like those leading to
highly nonlinear equations are not captured. It will be
an interesting task for future studies to conceive of ap-
proaches of this type in order to deal with more general
scenarios.

A uniform vicinal surface is known to undergo two
types of primary instabilities: �i� step meandering �Fig.
5�a�� and �ii� step bunching �Fig. 5�b��. These instabilities
occur during growth or sublimation and their basic mi-
croscopic sources are quite diverse. For example, mass
diffusion with asymmetric attachment to a step may lead
to these instabilities. Likewise, the drift of surface atoms
due to a heating electric current �electromigration� or an
elastic stress often appears as a decisive component
causing instabilities �Jeong and Williams, 1999; Yagi et
al., 2001�. We encounter both “smooth” �weakly nonlin-
ear� and “strong” �highly nonlinear� instabilities. For ex-
ample, we may have smooth step meandering in some
cases, while in other cases step meandering may be so
strong that the initial vicinal surface may be completely
destroyed and look quite rough �Fig. 6�.

The interesting feature lies in the fact that it is now
feasible to describe these dynamics with the help of con-

ν+

ν−

DL

τ

D

F

FIG. 4. Summary of various atomic processes on a vicinal sur-
face. Deposition �with a flux F�, diffusion �with D as the diffu-
sion constant�, desorption �with rate 1/��, and step attachment
or detachment �with rate �± from each side� is shown. DL rep-
resents the line diffusion along the step.

(a) (b)

FIG. 5. �Color online� Instabilities on vicinal surfaces. �a� Me-
andering instability on Si�001�. From Omi and Ogino, 2000. �b�
Bunching instability with three macrosteps formed from
bunching of many monatomic steps. From Thürmer et al.,
1999.

(b)(a) (c)

FIG. 6. Changes in the morphology of the Si�111� surface dur-
ing the deposition of Si. The growth rate is 0.5 Å/s. �a� Before
growth. �b� One monolayer deposited. �c� Two monolayers de-
posited. �Dark field transmission electron microscope images
of a SiO2 coated surface.� The surface is initially smooth and
becomes rough after a meandering instability �Tung and
Schrey, 1989�.
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tinuum evolution equations without ad hoc assumptions.
In particular, the coefficients that enter the evolution
equations can be expressed in terms of basic quantities
�such as atom diffusion, desorption frequency, etc.�.
Broadly speaking, within the meandering and bunching
instabilities, it is now possible to identify two types of
dynamics: �i� smooth and �ii� strong �nonstandard form
of equations�. How and when each type prevails is be-
coming clearer. The continuum evolution equations de-
rived from microscopic considerations reveal a variety of
phenomena such as order or chaos, “diverging” ampli-
tudes, freezing of wavelength or perpetual coarsening,
etc. Interestingly enough, two equations that appear
quite similar may exhibit significantly different dynam-
ics. For example, in one case the wavelength is fixed �or
at least an average length scale persists over time�, while
in the other case we may have coarsening �an increase in
wavelength over time�. Some general criteria on when
coarsening is expected to occur are now beginning to
emerge �Politi and Misbah, 2004, 2006�.

The main objectives of this review are to present the
current state of the art in this fast-moving field and to
present a rational study of dynamics. Emphasis is put on
the concepts and ideas rather than on technical details,
although the review is largely self-contained. Compari-
sions with experiments are made whenever possible and
a list of questions remaining to be answered by future
investigations is presented.

Most of the review is devoted to the dynamics of vici-
nal surfaces. While the study of vicinal surfaces has now
been basically rationalized, the questions related to high
symmetry surfaces have been based on symmetry argu-
ments and qualitative reasoning. It is hoped that the
type of classification achieved on vicinal surfaces will
shed light on more general problems. Some progress has
been made on kinetic Monte Carlo �KMC� simulations,
and this will be mentioned. Finally, some stress effects
will be discussed in the context of vicinal surface dynam-
ics only.

II. FLUCTUATIONS AND WAVES

While morphological instabilities constitute the cen-
tral focus of the review, we first discuss fluctuations and
waves on stable surfaces. The first sections are devoted
to equilibrium fluctuations. The problem of kinetics at
global equilibrium is then outlined. Finally, the occur-
rence of kinematic waves on vicinal surfaces is discussed.

A. Equilibrium roughness and static correlations

Studying equilibrium properties of a surface consti-
tutes an important part of experimental investigations,
allowing for the determination of thermodynamic �e.g.,
step energy� as well as kinetic �e.g., diffusion� properties
by comparing observations with theoretical predictions.
Furthermore, this enables us to determine, among a
large manifold of possibilities, the prevailing mecha-
nisms �such as diffusion or step attachment or detach-
ment� for a given range of parameters �e.g., a specific

range of temperatures�. There are different levels of ap-
proach: microscopic, mesoscopic, and continuum ap-
proaches. Bridging between these three scales is, in gen-
eral, a formidable task. The microscopic scale would be
necessary in order to capture detailed microscopic dy-
namics �such as kinetics at the steps and anisotropic dif-
fusion�. This information could be injected into more
mesoscopic or macroscopic theories. Having a system-
atic bridge for each particular system is a program of
research that attracts a considerable amount of studies
and is far from being fulfilled. The strategy in this review
relies on a coarse-grained picture �of the step topogra-
phy�. It is thus hoped that a confrontation between me-
soscale analysis with continuum �or semicontinuum; the
step topography is treated as continuum, whereas the
steps will often be treated as individual entities� predic-
tions will shed light on this multiscale problem. For ex-
ample, while scanning tunneling microscope �STM� im-
aging of a step �such as in Fig. 7� can be viewed as a
microscopic probe for individual steps, the step topogra-
phy �and hence statistical analysis of fluctuations� can be
analyzed at a mesoscale. This way has provided satisfac-
tory agreement in several instances �Giesen, 2001�. It
must be kept in mind, however, that while STM can have
access to atomic resolution, obtaining reliable informa-
tion on a micrometer scale requires the collection of
many images for ensemble averaging. To our knowl-
edge, such a task has not yet been systematically per-
formed. Past reviews have been devoted to the experi-
mental study of static and kinetic fluctuations at global
equilibrium �Jeong and Williams, 1999; Giesen, 2001�.
Many of the experimental facts, as well as experimen-
tally measured parameters used here, are extracted from
these reviews.

1. Isolated step

Vicinal surfaces are made of terraces separated by
monatomic steps. A step is a one-dimensional entity for
which it is known that fluctuations may be much stron-

(b)(a)

FIG. 7. �Color online� Atomic steps wandering at equilibrium:
�a� STM image of steps on Cu�100� vicinal surface. The fuzzi-
ness accounts for the fast fluctuations �Giesen-Seibert et al.,
1993�. �b� REM image of Si�111� steps. Courtesy of J.-J.
Métois.
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ger than for a higher dimension entity, such as a surface.
Figure 7 shows STM and REM pictures where a step can
wander about its straight configuration; wandering may
have a large amplitude in comparison with atomic
length. This type of wandering can be analyzed and ex-
ploited to obtain interesting information. It must be re-
membered that step wandering is not mechanical, like
bending, but materialized by mass transport �diffusion
along the step, mass exchange with terraces, etc.�.

We start our consideration systematically from an iso-
lated step as shown in Fig. 8. x is the coordinate along
the average orientation of the step, while � refers to the
step position along the z direction. The local step defor-
mation ��x� increases the length of a step segment from
dx to ds=dx�1+ ��x��2, and the step perimeter length
increases. �Hereafter we use the abbreviated notation
for the partial derivative � /�x=�x.� Associated with this
increase in step length �for a constant mass�, there is a
cost in free energy, which is simply the line free energy 	
�we may also use the step free energy per length�. For a
crystal it is obvious that the free-energy cost 	 depends
on the step orientation 
 with respect to the crystallo-
graphic symmetry 	�
�.

When the step deforms by ��x�, orientation deviates

from an average 
̄ by �
, as shown in Fig. 8. Of course,
its average should vanish: ��
�=0. � and �
 are related:

�x� = tan �
	 �
 , �2.1�

where the last approximation is valid for small deforma-
tions and �
�1. The total free-energy cost is expanded
to quadratic order in the modulation ��x� or �
:

F =
 dx�	�
��1 + ��x��2 − 	�
̄�� 	
1
2
	̃�
̄� 
 dx��x��2.

�2.2�

Here 
 dependence of 	 is also expanded and introduces
the step edge stiffness 	̃=	+�

	 �Fisher et al., 1982� at

the average orientation 
̄.
For a step with a length L, the step deformation is

decomposed in Fourier modes

��x� = �
k
�keikx. �2.3�

With the assumption of a periodic boundary condition
��x+L�=��x�, the wave number takes the value k
=2�m /L, with m= ±1, . . . , ±�. The step energy �Eq.
�2.2�� is then written as

F = L�
k

1
2
	̃k2��k�2, �2.4�

and the probability of realizing the deformation �k� is
given by the Boltzmann factor

Peq��k�� � e−F/kBT. �2.5�

The interesting feature is that the energy in Fourier
space is additive and thus the probability appears as a
product. In other words, in Fourier space the modes are
independent. Thus, for example, the equilibrium corre-
lation is obtained from the equipartition law

���k�2�eq = kBT/L	̃k2. �2.6�

The correlation function of the step fluctuation at a
distance x is defined by

w2�x� � ����0� − ��x��2� , �2.7�

and it grows linearly with the distance x �when �x � �L�,1

w2�x� = 2�
k

���k�2�eq�1 − cos kx�

=
2kBT

	̃

1

L�
k

1 − cos kx

k2 =
kBT

	̃
�x� . �2.8�

For a periodic step with a length L, the step width is
defined and calculated by

weq
2 �

1

L



0

L

���x�2�eqdx = �
k

���k�2�eq =
kBT

12	̃
L . �2.9�

If both ends of the step are fixed, for example, by the
pinning of impurities �Alfonso et al., 1992�, then the
width of the step fluctuation increases like weq

2

=kBTL /6	̃. From this relation, the step stiffness can be
extracted from the experimental measurement of weq

2 .
For Si�111�, Alfonso et al. �1992� found 	̃=10−10 J /m.
These type of data were extracted systematically from
experimental pictures of steps in various systems �Jeong
and Williams, 1999; Giesen, 2001�. The characteristic
feature is that the correlation function w2�x� and the
equilibrium step width weq

2 increase linearly in propor-
tion to the distance x and the step length L, respectively.
This diverging fluctuation is a manifestation of the rough
character of a step. This problem is similar to that of
random walking in which x plays the role of “time” and
weq is the mean excursion of the random walker.

2. Train of steps

When the crystal surface is tilted from a singular sur-
face �see Fig. 9�a��, it is called a vicinal surface. On it, the
steps run parallel and the flat surface between two
neighboring steps is called a terrace.

In general, steps cannot cross or overlap due to the
large energy cost of overhangs. Steps also deform the

1The expression of the sum is obtained by integrating twice
the relation �xx�k�1−cos kx� /k2=�k cos kx=L��x�.

ζ
ds

x
n

zδθ

FIG. 8. Top view of a step of meander �. The average step
tangent vector is along x and the average normal is along z.
The arclength is denoted as s and �
 is the angle between z
and the normal n.
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underlying crystal and therefore interact elastically
�Marchenko and Parshin, 1980; Jayaprakash et al., 1984;
Houchmandzadeh and Misbah, 1995; Müller and Saul,
2004�. These interactions affect step fluctuation, and the
measurement of step fluctuation provides information
on the step-step interaction. We first discuss the har-
monic approximation of the step interaction in order to
see the general tendency of the interaction effects on
step fluctuation, and then treat the noncrossing condi-
tion by a mapping to the fermion problem �Akutsu et al.,
1988, 1989; Saam, 1989; Joós et al., 1991; Yamamoto et
al., 1994�. The terrace width fluctuation and its probabil-
ity distribution are discussed last.

a. Harmonic approximation

On a vicinal surface, steps run on average in the x
direction with an average separation �. The position of
the mth step is defined as

zm�x� = m� + �m�x� , �2.10�

where �m�x� is the deviation from the average position
�see Fig. 9 for notations�.

When the step is formed on the substrate, it induces
elastic deformation in the substrate and a force or force
doublet field is created on the surface. Therefore, two
straight steps interact with a certain potential U���.
When the terraces on both sides are not identical �due,
for example, to a surface reconstruction like on Si�001��
�Marchenko, 1981; Alerhand et al., 1988, 1990�, a force
field on the step produces the interaction U���=B ln �.
When the two terraces on both sides of a step have iden-
tical properties, the step can be viewed from the elastic
point of view as a location of a force doublet �March-
enko and Parshin, 1980; Jayaprakash et al., 1984; Houch-
mandzadeh and Misbah, 1995�. The force doublet yields
the interaction

U��� = A/�2. �2.11�

The order of magnitude of A can be obtained from a
simple dimensional analysis. Indeed, the relevant energy
scale is controlled by the Young modulus E and an
atomic length scale a. Therefore, one expects A�Ea4.
Taking E�1010 Pa and a�1 Å, one finds A�10−30 J m.

This is in the range of experimentally observed values
for A=4.610−30 J m on Si�111� at 900 °C �Alfonso et
al., 1992; Jeong and Williams, 1999�.

The single-step fluctuations and step-step interactions
contribute to variations in total step energy of a vicinal
surface2

F = �
m

 dx� 	̃

2
��xzm�2 + U�zm+1�x� − zm�x�� − U����

	 �
m

 dx� 	̃

2
��x�m�2 +

U����
2

��m+1�x� − �m�x��2� .

�2.12�

By assuming a small deformation �m�x�, the harmonic
approximation is performed in the second equality.

By allowing fluctuation of the mth step only, but freez-
ing all other deformations, �m��x�=0 for m��m, the
fluctuation of the mth step was calculated exactly by
Bartelt et al. �1990�. It remains finite,

wh
2 = kBT/�8U����	̃ , �2.13�

since it cannot escape from the harmonic potential
whose minimum lies at �m�x�=0 for all values of x. Sub-
script h in wh stands for harmonic.

If all steps are allowed to fluctuate, then steps can
meander together, and fluctuations can diverge for an
infinitely large system. We transform the step fluctuation
in Fourier modes with wavelength k and phase � �Pimp-
inelli et al., 1994� to

�m�x� = 

0

2� d�

2�



−�

� dk

2�
�k�ei�kx+m��, �2.14�

where �−k−�=�
k�
* . We have assumed that the surface is

very large, making k a continuous variable. The step
energy is rewritten �Pierre-Louis and Misbah, 1998a�

F =
 d�

2�

 dk

2�
�1

2
	̃k2 + U�����1 − cos �����k��2,

�2.15�

and the probability distribution to realize the configura-
tion �k�� is given by the Boltzmann weight Peq��k���
�e−F/kBT. The equilibrium fluctuation of the mode �k ,��
is given by the equipartition law

���k��2�eq = kBT/�	̃k2 + 2U�����1 − cos ��� . �2.16�

If all steps fluctuate in phase ��=0�, the elastic effect
disappears and the result is that of an isolated step �Eq.
�2.6��. If �=� /2, the effect from the two neighboring

2Here steps interact with their nearest neighbors only. This
approximation is meaningful only if the sum of the interaction
energies of one step with all others is a convergent quantity.
This is the case in the presence of force doublets or for the
alternated monopoles �as in the case of the 21 reconstructed
Si�100� surface�. In the case of surfaces under stress in het-
eroepitaxy, the sum of all terms should be taken, as discussed
in Sec. IV.F.

x

z

y z

x

ζ
ζζ m+1

mm−1

ds

m+1
m−1 m

m−1 m m+1

(a) (b) n
δθ
z

FIG. 9. A schematic view of �a� a vicinal surface inclined down
in the z direction. Steps run parallel to the x direction on av-
erage. �b� A top view. The deviation of the mth step from its
regular position is �m�x�.
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steps disappears and the result by Einstein et al. �Bartelt
et al., 1990� �Eq. �2.13�� is recovered �upon Fourier trans-
form �FT��. In general, all phase fluctuations � must be
considered. For a system with a large size L, the asymp-
totics of the step width weq

2 can be evaluated in the har-
monic approximation because the long wavelength pro-
vides the dominant contribution. By taking the lower
cutoff k0=2� /L in the k integration, the width diverges
logarithmically �Pierre-Louis and Misbah, 1996, 1998a;
Ihle et al., 1998�,

weq
2 �

1

L



0

L 1

N �
m=1

N

���m�x��2�eqdx

=
 d�

2�

 dk

2�
���k��2� 	

kBT

2��	̃U����
ln� L

Le
� ,

�2.17�

with the characteristic “elastic” length

Le = ��	̃/U���� . �2.18�

Even when the elastic interaction is vanishingly small,
the step is not completely free since it cannot cross the
neighboring steps �Gruber and Mullins, 1967�. Indeed,
step crossing creates overhangs, which cost significant
excess energy. We now consider the effect of this short-
ranged hard-core repulsion on the step fluctuation. The
prohibition of double occupancy of a single site by steps
can be modeled by the fermion exclusion principle, and
the statistical mechanics of the step system can be cast
onto the quantum mechanics of the free fermion system
�Villain and Bak, 1981; Jayaprakash et al., 1984�, where
an exact solution is available. This result will be summa-
rized next, but first we give a qualitative explanation of
the result. For short length scales a step behaves as if
isolated. When the distance x along the step increases,
the thermal fluctuation enhances the step meandering
w�x� as given in Eq. �2.8�. Along the step, at a distance
of collision length

Lcoll = 	̃�2/kBT , �2.19�

the meandering w�Lcoll� becomes as large as the step
separation �, and the neighboring steps collide and sense
their noncrossing restriction �Fisher and Fisher, 1982�. A
step with a length L thus collides with its neighbors ap-
proximately L /Lcoll times and loses entropy because fur-
ther thermal fluctuation is blocked. The free energy of a
step then increases by around kBT on each collision. The
step free energy per unit length thus increases in propor-
tion to kBT /Lcoll. A more precise calculation from the
free fermion model gives the energy increase as

UFF��� = ��kBT�2/6	̃�2, �2.20�

which has the same �−2 dependence on the step separa-
tion as the elastic interaction �2.11�. Thus, for a train of
free steps, an effective interaction UFF is used. Equation
�2.17� gives the asymptotics for the step width as

weq
2 = ��2/2�2�ln�L/Lcoll� �2.21�

for a large system, in agreement with that of the free
fermion model �Akutsu et al., 1989; Bartelt, Einstein,
and Williams, 1992; Saito, 1996�.

b. Fermion model

Here we review a more precise treatment of the non-
crossing condition by mapping the statistical mechanics
of the step train system onto the quantum mechanics of
the one-dimensional fermion system. On a vicinal sur-
face of size LLz �Lz is the length along the vicinal
surface�, N steps run, on average, in the x direction �Fig.
9�. The position of the mth step is described by zm�x�,
and the noncrossing condition is represented by

0� z1�x�� z2�x�� ¯ � zN�x�� Lz �2.22�

for all values of x. First one disregards the elastic inter-
action between steps. Step deformation costs energy as
follows:

1
2 �

m=1

N 

0

L

	̃��xzm�x��2dx , �2.23�

and the partition function at temperature T is written as

Zint =
 Dz1�x� ¯ DzN�x�

 exp�− �
m=1

N 

0

L 	̃

2kBT
��xzm�x��2dx� . �2.24�

In the configuration sum Dz1�x�¯DzN�x� the noncross-
ing condition �2.22� must be considered. Interestingly,
Eq. �2.24� has the form of the Feynman path integral
representation �Feynman, 1972� for the partition func-
tion of a one-dimensional quantum mechanical system
with N free particles. zm represents the position of the
mth quantum particle with a “mass” 	̃ /kBT �the Planck
constant is chosen to be �=1�, L−1 represents the ficti-
tious “temperature” of the quantum system, and x rep-
resents the “path” from 0 to the “inverse temperature”
L. The quantum mechanical Hamiltonian operator only
contains a kinetic energy term �Yamamoto et al., 1994�

Ĥ = − �
m=1

N
kBT

2	̃

�2

�zm
2 . �2.25�

For a one-dimensional system, the noncrossing condi-
tion �2.22� is satisfied when the particles are fermions. In
this case, the traditional statistical mechanics of a step
train system in two dimensions reduce to the quantum
statistical mechanics of a one-dimensional free fermion
system. The partition function is then written as

Zint = Tr e−ĤL, �2.26�

where the trace is taken over the N fermion space. In
the second quantization form, the Hamiltonian is writ-
ten as
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Ĥ =
kBT

2	̃
� k2âk

+âk, �2.27�

where âk
+ and âk are the creation and annihilation opera-

tors of spinless fermions with the wave number k
=2�n /Lz, where n=0, ±1, . . . . The thermodynamic limit
with a large L of a step system corresponds to the “zero-
temperature” state in the fictitious quantum system, and

the “ground-state” energy E1 of Ĥ determines the ther-
modynamic behavior of the step system,

E1 =
kBT

2	̃
�

�k��kF

k2 →
kBT

2	̃
Lz

�2

3�3 , �2.28�

where kF=�N /Lz=� /� is the Fermi wave number for N
fermions in a one-dimensional system with a length Lz.
In the last step, the thermodynamic limit is taken with
Lz→� and N→� by keeping the step density �=1/�
fixed. The contribution of the step correlation to the sur-
face free energy density per area is thus obtained by

fint � −
kBT

LLz
ln Zint =

kBT

Lz
E1 =

�2�kBT�2

6	̃�
��3

=
�2�kBT�2

6	̃�
�
�3, �2.29�

where 
 is the angle of the average step orientation, �
=Lz /N is the average step separation, and �=1/� is the
step density. Since there are � steps in a unit area, each
step makes a contribution to the free energy equal to
fint /�=UFF, as previously described. The total surface
free energy f also includes the constant contribution
from the terrace f0 and the contribution 	�
�� from
straight steps in addition to fint:

f = f0 + 	�
�� + ��2�kBT�2/6	̃�
���3. �2.30�

The step width can be evaluated exactly using fermion
operators �Yamamoto et al., 1994�, while the asymptotic
behavior of weq

2 for a large system size L is correctly
given by the harmonic approximation �2.21�. The step
noncrossing restriction affects the fluctuation of long-
wavelength modes �k�2� /Lcoll� and gives rise to the
effective step-step interaction for modes with long wave-
lengths. The asymptotic step width is determined by
these long-wavelength modes, which can now be de-
scribed by the harmonic approximation.

When the steps m and m� interact repulsively with an
elastic interaction A / �zm−zm��

2, the quantum Hamil-
tonian �2.25� changes to

Ĥ = − �
m=1

N
kBT

2	̃

�2

�zm
2 +

A
kBT �

m�m�

1

�zm − zm��
2

=
kBT

2	̃ �− �
m=1

N
�2

�zm
2 + g �

m�m�

1

�zm − zm��
2� �2.31�

with the coupling constant g=2	̃A / �kBT�2. This is sim-
ply the one-dimensional interacting fermion system

solved exactly by Sutherland �1971�. The ground-state
energy is known exactly by

E1�g� = E1�̄
2�g� , �2.32�

where E1 is the ground-state energy of the free fermion

system �2.28� and the function �̄�g� is defined by

�̄�g� = 1
2 �1 + �1 + 2g� . �2.33�

The interactive part of the surface free energy density
fint in Eq. �2.29� is now modified by the elastic interac-
tion g,

fint�g� = ��kBT�2�̄2�g�/6	̃�
��3. �2.34�

The actual step interaction with elastic and noncrossing
conditions can now be written as

Ueff = ���kBT�2/6	̃�2��̄2�g� . �2.35�

The asymptotic divergence of the step width for a large
system size L is determined by the long-wavelength fluc-
tuation mode. For this macroscopic description, the har-
monic approximation gives the correct asymptotics.
Since the strength of the harmonic potential with elastic
interaction and noncrossing condition is written as

Ueff� ��� = ��kBT�̄�g��2/	̃�4, �2.36�

with step width asymptotics changing from Eq. �2.17� to

weq
2 = ��2/2�2�̄�g��ln�L�̄�g�/Lcoll� . �2.37�

c. Terrace width distribution

To obtain the form and strength of the step-step inter-
action, the terrace width fluctuation

Weq
2 � ��zm+1�x� − zm�x� − ��2� = ���m+1�x� − �m�x��2�

�2.38�

has been measured in various experiments �Rousset et
al., 1992; Barbier et al., 1996; Giesen, 1997�. In these
works the terrace width probability distribution P�s�,
where s= �zm+1−zm� /� is the normalized terrace width,
has been measured. A simple model �with noncrossing
condition� for the terrace width was earlier introduced
by Gruber and Mullins �1967�, where a free step is
trapped between two fixed walls separated by twice the
mean terrace width �. The terrace distribution function
reads

PGM�s� = sin2��s/2�, 0� s� 2, �2.39�

with the terrace width fluctuation

WGM
2 = �2��s2� − 1� = �2� 1

3 − 2/�2� . �2.40�

A remarkable feature is that the result does not depend
on temperature.

Several groups �Bartelt et al., 1990; Wang et al., 1990;
Alfonso et al., 1992� investigated cases of step elastic
interaction in the harmonic approximation. Even though
they fixed the positions of neighboring steps, the non-
crossing condition was not taken into account. The ter-
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race width fluctuation is the same as the step width wh in
Eq. �2.13� since the step m+1 is fixed �m+1=0:

Wh
2 = wh

2 = kBT/�8U����	̃ . �2.41�

For interactions which fall off as the inverse square of
the step separation �, we have U������−4, and the fluc-
tuation of the terrace width Wh is proportional to the
average width �. The distribution function is shown to
be Gaussian with a variance Wh �Bartelt, Goldberg, et
al., 1992�,

Ph�s� = ��/�2�Wh�exp�− �s − 1�2�2/2Wh
2� . �2.42�

The restriction to freeze all step configurations other
than that under consideration seems rather artificial. If
neighboring steps are allowed to fluctuate, the step
width weq

2 diverges with L as shown previously, but the
terrace width fluctuation Weq

2 still remains finite and is
proportional to the square of the average terrace width �
�Alfonso et al., 1992; Ihle et al., 1998�:

Weq
2 = 2


0

2� d�

2�



−�

� dk

2�
����k,���2��1 − cos ��

=
2

�

kBT
�U����	̃

=
4�2

�
wh

2 . �2.43�

As previously described, the step train system is
equivalent to the one-dimensional interacting fermion
system. Joós et al. �1991� showed that the terrace width
distribution function is related to the fermion two-
particle correlation function, whose form is known accu-
rately for specific values of the coupling g: g=1/2, 1, and
2 �Sutherland, 1971�. More generally, the correlation
functions in these special cases can be evaluated using
Dyson’s quarternion-determinant technique for the
random-matrix theory �Sutherland, 1971; Guhr et al.,
1998�. Joós et al. �1991� used this equation to calculate
the exact terrace distribution function numerically.

Recently, a more accurate expression has been pro-
posed �Einstein and Pierre-Louis, 1999� for the equilib-
rium terrace width distribution function P�s�. In the
random-matrix theory, the Wigner surmise3 of the distri-
bution is known for specific values of the coupling pa-
rameter g. The simplest interpolation for the general
values of the coupling g is proposed as

P�̄�g��s� = as2�̄�g� exp�− bs2� , �2.44�

where a and b are determined by the normalization of
the probability P and the unit-mean condition �s�=1, re-
spectively, as

a =
2b�̄�g�+1/2

�„�̄�g� + 1/2…
, b = � �„�̄�g� + 1…

�„�̄�g� + 1/2…
�2

. �2.45�

Here ��z� is the Gamma function defined by

��z� = 

0

�

xz−1e−xdx . �2.46�

The Wigner surmise corresponds to the probabilities at

�̄�g�=1/2, 1, and 2 and reproduces the exact probability
P�s� quite well. From the interpolation formula �2.44�,
the terrace width fluctuation is obtained as

Weq
2 /�2 = �s2� − 1 = ��̄�g� + 1/2�/b − 1, �2.47�

which naturally reproduces the exact values at �̄�g�
=1/2, 1, and 2. There is a plausible explanation for the
probability �2.44� based on a simple averaging approxi-
mation in a Langevin model for step dynamics �Pimp-
inelli et al., 2005�. Finally, it would be interesting to ex-
tend the derivation of terrace width distribution to other
laws of step-step interactions.

B. Fluctuation dynamics in equilibrium

The equilibrium step width contains information on
the energetics of the system, such as step stiffness and
elastic interaction, but is independent of kinetic pro-
cesses. In order to obtain kinetic properties, dynamical
quantities must be studied.

Various kinetic processes take place on a stepped sur-
face, as shown in Fig. 10, and the small amplitude of the
Fourier mode of Eq. �2.14� now depends on time �k��t�
and relaxes generically via the linear Langevin equation

�t�k��t� = i�k��k��t� + �k��t� , �2.48�

with the relaxation rate i�k� when step motion is slow
and nonlinear effects are neglected �the origin of nonlin-
earities will be explained later�. An equivalent approach
bypassing Langevin formalism can be found in Flynn
�2002�. The correlation of the thermal noise �k��t� is as-
sumed to satisfy the fluctuation-dissipation theorem

3Wigner proposed that fluctuations in the spacing of energy
levels exhibit certain universal features as follows from
random-matrix theory. It turns out that the terrace width dis-
tribution �in the fermion analogy� is equivalent to the distribu-
tion energy spacing which can be deduced exactly for specific
values of g. The Wigner surmise states that the probability
density function of the eigenvalue spacing of a random system
follows the Rayleigh distribution.

ν+

ν−

τ

D

W
S

F

y

z
x

FIG. 10. Schematic view of a vicinal surface. D is the diffusion
constant, F is the deposition flux, � is the desorption time, and
�± are step attachment coefficients from the lower and upper
sides, respectively. The potential barrier to jump over the step
is denoted as Ws.
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��k��t��k����t��� = − 8�2���k��2�eqi�k�

 ��k + k����� + �����t − t�� .

�2.49�

Upon integration on time, the initially straight step re-
laxes to thermal equilibrium

���k��t��2� = ���k��2�eq�1 − e2i�k�t� . �2.50�

The step fluctuation width is given as

w2�t� = ��m�x,t�2� = 

0

2� d�

2�



−�

� dk

2�
���k��t��2� �2.51�

and the terrace width fluctuation �Bartelt et al., 1990;
Alfonso et al., 1992� as

W2�t� = ���m�x,t� − �m+1�x,t��2�

= 

0

2� d�

2�



−�

� dk

2�
���k��t��2��1 − cos �� . �2.52�

The time correlation of the step fluctuation in equilib-
rium

G�t� = ���m�x,t� − �m�x,0��2�eq �2.53�

is often obtained in experiments. This is, in fact, propor-
tional to the step fluctuation width

G�t� = 2
 d�

2�

 dk

2�
���k��2�eq�1 − ei�k�t� = 2w2�t/2� .

�2.54�

Therefore, the step width w2�t� gives the same informa-
tion as the step correlation function G�t�.

1. Isolated step

In order for a step to change its conformation, various
kinetic processes are involved, as shown in Fig. 10. The
atoms composing the step have to change their posi-
tions. To do so, they can migrate along the step edge via
a process called edge or line diffusion �see Fig. 11, �1��.
They can also detach from somewhere on the step or
attach somewhere else �see Fig. 11, �3��. Atoms detached
from the step can still be adsorbed on the substrate

surface—they are then called adatoms—or they can mi-
grate on the terrace surface �surface or terrace diffusion,
Fig. 11, �2�� and attach to the step again or desorb to the
atmosphere. There is also a deposition flux of atoms
from the gas phase. These different mass transport pro-
cesses combine together to give rise to step motion.

The precise form of the relaxation rate i�k� depends
on the step relaxation kinetics mechanism. When kinet-
ics are limited by a single mass transport mechanism, a
power-law form of the relaxation rate can often be as-
sumed:

i�k� = i�k = − A0�k�n. �2.55�

Furthermore, for an isolated step as well as for a step
train in some specific regimes such as for short time cor-
relations, the phase shift � and elastic interaction are
irrelevant. Thus, ���k��2�eq in Eq. �2.50� can be replaced
by an isolated step fluctuation: ���k�2�eq=kBT / 	̃k2. The
integration in Eq. �2.51� is then performed straightfor-
wardly by partial integration, and changing the variable
2A0t�k�n=x,

w2�t� =
G�2t�

2
=

kBT

2�	̃
2


0

� dk

k2 �1 − e−2A0tkn
�

=
kBT

�	̃
n�2A0t�


0

�

dkkn−2e−2A0tkn

=
kBT

�	̃
��1 −

1

n
��2A0t�1/n, �2.56�

where ��z� is the Gamma function defined in Eq. �2.46�
and �� 1

2 �=��, �� 2
3 �=1.351 75. . ., and �� 3

4 �=1.225 41. . . .
Thus, the study of fluctuations provides �i� qualitative

information via the exponent n on the type of mass
transport entering into play at the surface and �ii� quan-
titative information on the kinetic coefficients via the
prefactor A0. We now look at some specific regimes in
more detail.

a. Attachment or detachment

The concentration c+ or c− of adatoms in front of or at
the back of the step is generally different from the equi-
librium concentration ceq. The difference drives the step
motion as shown in Fig. 11, �3� at velocities

V± =��J± + �±� =���±�c± − ceq� + �±� . �2.57�

Here the linear kinetics is assumed with the kinetic co-
efficient �±, as shown in Fig. 10, and J± represents fluxes
from both terraces to the step. The difference in the
coefficients �+ and �− is due to the Ehrlich-Schwoebel
�ES� effect �see Secs. II.B.2.b and IV.A for more details�.
� represents the specific area and �± is the thermal
noise. The total step velocity V is given as a sum of the
front and back contributions:

(2) (3)(1)

FIG. 11. Three basic mass transport mechanisms for an iso-
lated step: �1� edge diffusion, �2� terrace diffusion �nonlocal
mechanism�, and �3� attachment-detachment �local mecha-
nism�.
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V = V+ + V−. �2.58�

The equilibrium concentration ceq depends on the step
conformation. When the step forms a bump with a posi-
tive curvature

� = − �xx�/�1 + ��x��2�3/2 	 − �xx� , �2.59�

the line tension pushes the step back to the straight form
by sublimating atoms from the step. Therefore a higher
adatom concentration is required to keep the bump in
equilibrium.

In general, the shift of an equilibrium concentration
due to a new force can be written as

ceq = ceq
0 e�/kBT 	 ceq

0 �1 + �/kBT� . �2.60�

Here � is the chemical potential, including the contribu-
tion of the new force, and defined by the functional de-
rivative as

� =
�F
�N

=
�F
��

��

�N
=�

�F
��

�2.61�

at a constant temperature, where F is the free energy
and N is the number of particles. At the last equality, we
used the fact that the area solidified due to a displace-
ment � of the step is given by N�=��dx with a specific
area �, so that �� /�N=�. For F given by Eq. �2.2�,
�F /��= 	̃�. Therefore, for an isolated step, the curved
step equilibrium concentration ceq changes from the
straight step ceq

0 to

ceq�x� = ceq
0 �1 + ��� . �2.62�

Here �=�	̃ /kBT and it has a dimension of a length
�Bales and Zangwill, 1990; Bena et al., 1993�.

Even if the step is initially straight in coexistence with
the adatoms with concentration ceq

0 , thermal fluctuation
� drives the step in motion. c± in Eq. �2.57� is set to ceq

0 .
Combining Eqs. �2.57� and �2.62� in the linear approxi-
mation, the step motion is described �Bartelt, Einstein,
and Williams, 1992� as

�t� = V+ + V− = ��+ + �−��ceq
0 ��xx� + ��+ + �−�� .

�2.63�

The Fourier transformation gives the relaxation rate
�Mullins, 1957, 1959, 1963� as

i�k = − ��+ + �−��ceq
0 �k2, �2.64�

and the width is calculated from Eq. �2.56� with n=2
�Bartelt, Einstein, and Williams, 1992; Bartelt, Gold-
berg, et al., 1992; Bartelt et al., 1993�,

w2�t� =
G�2t�

2
=

kBT

�	̃
��1

2
��2��+ + �−��ceq

0 �t�1/2.

�2.65�

b. Edge diffusion

When the step relaxes via edge diffusion, as shown in
Fig. 11, �1�, the normal step velocity is determined from
the flux gradient by

Vn = −��sJL, �2.66�

where s is the arclength along the step and s=x in the
linear approximation. The mass flux along the step JL is
proportional to the chemical potential gradient

JL = − �M/���s� �2.67�

with a mobility

M = aDL/kBT �2.68�

along the edge, where DL is the macroscopic edge-
diffusion constant and a is the atomic length. Since the
chemical potential is given by �=��F /���x�=�	̃�, the
step profile evolution

Vn = �s�aDL�s����� �2.69�

is obtained. Linearizing this equation, we find �Bartelt,
Einstein, and Williams, 1992�

�t� = − aDL��xxxx� + �e, �2.70�

where �e is the noise term. The subscript e refers to
edge.4 Equation �2.70� gives the relaxation rate �Mullins,
1957, 1963; Bartelt, Einstein, and Williams, 1992�

i�k = − aDL�k4. �2.71�

The width is then obtained from Eq. �2.56� with n=4
�Bartelt, Einstein, and Williams, 1992; Bartelt et al.,
1993�,

w2�t� = G�2t�/2 = �kBT/�	̃��� 3
4 ��2aDL�t�1/4. �2.72�

c. Terrace diffusion

Atoms detaching from the step can migrate on the
terrace and then attach again to the same step in a dif-
ferent position �Fig. 11, �2��. The adatom concentration
c�x ,y , t� varies according to the diffusion law �Burton et
al., 1951�

�tc = D�2c + F − c/� = 0, �2.73�

where D is the surface diffusion constant, F is the depo-
sition rate, and � is the lifetime before desorption �Fig.
10�. Equilibrium is reached when F=Feq�ceq

0 /�. The
second equality in Eq. �2.73� holds under the stationary
approximation, where the step motion is sufficiently
slow compared to the diffusional variation of the con-
centration field c. This quasisteady approximation holds
for most practical purposes and will be adopted in this
review. The material conservation at the step leads to
the boundary condition

V± = ±�D�nc± 	 ±�D�zc±, �2.74�

where � refers to the front and back of the step and
�n�n ·� represents the derivative in the normal direc-
tion

4This noise is conserved, but instead of using this property
explicitly, we use the fluctuation-dissipation theorem �2.49�.
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n = �− �x�,1�/�1 + ��x��2 	 �− �x�,1� . �2.75�

For a small deformation � the normal derivative �n can
be replaced by the derivative �z in direction z in the
linear approximation. If the attachment-detachment ki-
netics is fast enough compared to the diffusional relax-
ation of the step, the local equilibrium approximation
c±=ceq obtained at the limit �±→� in Eq. �2.57� may be
used. Furthermore, we assume that deposition and de-
sorption effects are insignificant and can be ignored �F
=�−1=0�. Step fluctuation ��x , t�=�k�t�exp�ikx� thus in-
duces the density fluctuation c of the same wavelength k
in the x direction. The concentration obeys

��zz − k2�c = 0 �2.76�

and decays in the z direction at a decay rate �k�:

c�x,z� 0,t� = ceq
0 �1 + �k2�k�t�eikx−�k�z� ,

�2.77�
c�x,z� 0,t� = ceq

0 �1 + �k2�k�t�eikx+�k�z� .

The conservation law at the step �Eq. �2.74�� determines
step relaxation at the following rate �Mullins, 1957, 1963;
Bales and Zangwill, 1990; Pimpinelli et al., 1993, 1994�:

i�k = − 2DS��k�3, �2.78�

where DS=D�ceq
0 . Experimental evidence of the diffu-

sive regime with i�k�k3 has been reported recently by
means of low energy electron microscope diffraction
�Ondrejcek et al., 2005, 2006�. The step width can be
calculated from Eq. �2.56� with n=3 �Bartelt et al., 1994�,

w2�t� = G�2t�/2 = �kBT/�	̃��� 2
3 ��4DS�t�1/3. �2.79�

2. Step train

We now consider a step train where the steps are close
together with an average separation �. We have focused
on two situations where the dynamics differ qualitatively
from the isolated step situation.

a. Instantaneous kinetics

Steps interact via the diffusion field of adatoms. If the
local equilibrium assumption holds ��+=�−=��, modula-
tion of the mth step in the form �m�x , t�=�k��t�exp�i�kx
+m��� leads to the concentration variation between the
mth and �m+1�th steps:

c�x,y,t� − ceq
0 = ceq

0 �k2�k��t�
ei�kx+m��

sinh k�

 sinh k��m + 1�� − z�

− ei� sinh k�m� − z�� . �2.80�

Details of the calculation may be found in Pimpinelli et
al. �1994�. The conservation law �Eq. �2.74�� determines
the relaxation rate �Pimpinelli et al., 1993, 1994�,

i�k� = − 2DS�k3�cosh k� − cos ��/sinh k� . �2.81�

The rate depends explicitly on the phase � because a
step can incorporate adatoms emitted from another

step. After a long time when the long-wavelength mode
�k��1� dominates the dynamics, those modes with
phases � /2���3� /2 give the dominant contribution
to the � integration �Ihle et al., 1998�. This means we
cannot use Eq. �2.56� �based on the fact that the phase
shift is irrelevant at a sufficiently short time�, and careful
calculation yields the result �Pimpinelli et al., 1993; Ihle
et al., 1998�

w2�t� = G�2t�/2 	
kBT

�	̃
��1

2
� 4

�
�8DS�

�
t�1/2

. �2.82�

b. Ehrlich-Schwoebel effect

So far we have not explained that adatoms can be
incorporated in the step from the upper and lower ter-
races either symmetrically ��+=�−� or asymmetrically
��+��−�. For certain materials and temperature condi-
tions asymmetry is observed in �+ and �−. When an ada-
tom diffusing on the upper terrace jumps over the step,
it has to pass a configuration where an adatom finds
fewer substrate atom neighbors. Jumping over the step
therefore requires high activation energy Ws �see Fig.
10�, and incorporation into the step from the upper ter-
race is hampered, leading to a lower kinetic coefficient
on the upper side of the step �−��+ �Schwoebel and
Shipley, 1966; Schwoebel, 1969�. As an extreme limit, we
consider the one-sided model where mass exchange be-
tween a step and the upper terrace is forbidden ��−=0�.
For mathematical simplicity, we also assume infinitely
fast kinetics from the lower terrace ��+=�� such that
local equilibrium is reached: c+=ceq. The concentration
between the mth and �m+1�th steps is thus obtained by

c�x,y,t� = ceq
0 �1 + �k2�k��t�

ei�kx+m��cosh k��m + 1�� − z�
cosh k�

� . �2.83�

Details of the calculation can be found in Pimpinelli et
al. �1994�. The relaxation rate �Bales and Zangwill, 1990;
Pimpinelli et al., 1993, 1994� is

i�k� = − DS�k3 tanh k� , �2.84�

which is independent of the phase � of a step train. This
is a direct and obvious consequence of the one-sided
model. It does not matter how the neighboring steps
move if one is only interested in leading order since ad-
jacent terraces ignore each other because there is no
terrace mass exchange �strong ES effect�. The adatoms
emitted from a step are reflected back by another step
and can only be incorporated in the original step. There-
fore the phase difference of neighboring steps only
makes a second-order contribution to the step relax-
ation. In the long-wavelength limit k��1, the step
width is calculated from Eq. �2.56� with n=4 �Pimpinelli
et al., 1993; Pierre-Louis and Misbah, 1996�,
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w2�t� = G�2t�/2 	 �kBT/�	̃��� 3
4��2�DS�t�1/4. �2.85�

Since adatoms detached from the step are confined to
the terrace in front and eventually recaptured by the
original step, the step width w shows the same time de-
pendence as that of the edge-diffusion process discussed
in Sec. II.B.1.b, but the coefficient contains the terrace
width information �. Here the step mobility is

M = DS�/kBT �2.86�

instead of Eq. �2.68� for the case of edge diffusion.

3. Desorption

We include the desorption process via a desorption
time �. The concentration then obeys Eq. �2.73� �recall
that we consider here the case with F=0�. Desorption
means that the adatoms cannot diffuse on the substrate
over a distance much longer than desorption length

xs = �D��1/2. �2.87�

This length scale therefore acts as a cutoff length in the
diffusion field. The density fluctuation in Eq. �2.77� is
then modified and the decay rate �k� in the z direction is
replaced by �= �k2+xs

−2�1/2. The relaxation rate of an iso-
lated step for a one-sided model with desorption is given
by i�k=−DS�k2�. In a step train with an average terrace
width �, the diffusion field is shared by neighboring steps
and the rate is reduced �Bales and Zangwill, 1990; Pimp-
inelli et al., 1994�, thus

i�k� = − DS�k2� tanh ��

→ − DS�k2xs
−1 tanh��/xs� for kxs � 1. �2.88�

For an isolated step or ��xs, Eq. �2.56� with n=2 gives

w2�t� = G�2t�/2 	
kBT

�	̃
��1

2
��2DS�

xs
t�1/2

. �2.89�

Inversely, for coupled steps on a vicinal surface, ��xs
and

w2�t� = G�2t�/2 	
kBT

�	̃
��1

2
��2DS��

xs
2 t�1/2

. �2.90�

In both cases, the step width shows the same time de-
pendence as the kinetics-controlled relaxation �2.65�, but
here the exchange of adatoms with the ambient vapor
phase governs the relaxation.

4. Crossover behavior

Previously we considered the elementary kinetic pro-
cesses separately to clarify different time dependences
of the step width w. Actually, for a given system, all
these effects coexist and complicate the time evolution
of w. The most general expression of i�k� is given by
�Ihle et al., 1998�

i�k� = − b��k2 + �eff
−2�

� 2�ch − cos �� + ��d+ + d−�sh

�d+ + d−�� ch + �1 + d+d−�
2�sh

+ ��

k2

�
� ,

�2.91�

where b=DS� and new characteristic lengths are kinetic
attachment lengths d±=D /�±, �� =aDL /DS, �c

=�	̃ /2U����, �eff=�c�1−cos ��−1/2, and abbreviated nota-
tions sh=sinh���� and ch=cosh����.

When the Schwoebel effect is weak and the length
scales are well separated as for �� ,d+ ,d−����c�xs,
we can introduce characteristic time scales such as t1

=max���d±
2 /b ,��

3 /b�, t2=max�d±
3 /b ,��

3 /b�, t3=�3 /b, and
t4=��c

2 /b. These time scales are well separated as
t1� t2� t3� t4, and the width behaves as �Ihle et al.,
1998�

w2�t� = G�2t�/2 = kBT/�	̃

�
�� 3

4 ��2b���1/4t1/4 for t � t1

�� 1
2 �2b�1/d+ + 1/d−��1/2t1/2 for t1 � t � t2

�� 2
3 ��4b�1/3t1/3 for t2 � t � t3

�� 1
2 � 4
� �2b/�� + d+ + d−��1/2t1/2 for t3 � t � t4

no power law for t4 � t .
�

�2.92�

Initially, edge diffusion governs step deformation, fol-
lowed by attachment-detachment kinetics and terrace
diffusion. Up to time t3, the step fluctuation is small and
each step behaves independently. After t3, the steps
sense their neighbors �as signaled by the presence of the
interstep distance ��. After t4 when the elastic effect be-
comes dominant, the step width ceases to exhibit a
power-law behavior. Actually, in this regime, the evolu-
tion is logarithmic over time before saturation �full
equilibration� is reached �Saito, 1999�.

For a one-sided model with a strong ES effect �d−
=��, t1 and t2 are determined by d+ and ��. Furthermore,
new time scales t5=min�xs

4 /b� ,�c
4 /b�� and t6

=min�xs
2�c

2 /b� ,�c
4 /b�� are introduced. When the length

scales are well separated as �� ,d+���xs ,�c, the time
scales are also well separated as t1� t2� t3� t5� t6, and
the step width increases, thus

w2�t� = G�2t�/2 = kBT/�	̃

�
�� 3

4 ��2b���1/4t1/4 for t � t1

�� 1
2 ��2b/d+�1/2t1/2 for t1 � t � t2

�� 2
3 ��2b�1/3t1/3 for t2 � t � t3

�� 3
4 ��2b��1/4t1/4 for t3 � t � t5

�� 1
2 ��2b�/xs

2�1/2t1/2 for t5 � t � t6

no power law for t6 � t .

�
�2.93�

Up to time t3, the step width behaves essentially as be-
fore since the step is isolated from the others. After t3,
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the Schwoebel effect leads to effective edge diffusion
until the adatom desorption breaks the conservation and
yields effective kinetics-controlled behavior. Eventually,
the elastic effect induces non-power-law behavior in the
time dependence of the step width. Such scaling behav-
ior �Eqs. �2.92� and �2.93�� and crossover in the interme-
diate time scales are observed in the numerical integra-
tion of Eq. �2.72� using the most general i�k� of Eq.
�2.91� �Ihle et al., 1998�.

5. Low-temperature step relaxation and island diffusion

On several fcc metal surfaces, such as Cu�100� at room
temperature, mass transport is dominated by diffusion
along the steps �Giesen, 2001�. Within this limit, the
steps are described by an equation having a conserva-
tion form �Eq. �2.69�� �Mullins, 1957�. As seen in Sec.
II.B.1.b the step autocorrelation function must scale as
t1/4 in this situation. Nevertheless, low-temperature de-
viations toward the t1/2 law were observed in temporal
correlations of the steps on Cu�100� vicinal surfaces
�Giesen, 2001�. Such deviations were also observed for
the diffusion of single-layer islands. Assume that an
atom diffuses along a rough step of atomic distance a on
a time scale tm. If an island has a radius R, the resulting
displacement of the center of mass of the island is bCM
�a3 /R2. At equilibrium, there is a concentration cs of
mobile atoms along the step; their total number is N
�Rcs. Assuming that the motion of these atoms is un-
correlated, the diffusion constant of the cluster reads

Dc � N�bCM
2 /tm� , �2.94�

so that Dc�1/R3. A model based on Eq. �2.69� and aug-
mented with Langevin forces to account for fluctuations
confirms this result �Khare et al., 1995; Khare and Ein-
stein, 1996�. However, observation of small islands on
Cu�100� �Pai et al., 1997�, in agreement with kinetic
Monte Carlo simulations �Bogicevic et al., 1998; Combe
and Larralde, 2000�, reveals that Dc�R−�, where � var-
ies from �=3 for large islands and high temperatures to
�=1 for small islands and low temperatures.

The observed deviations occur at low temperatures
where the distance between thermal kinks Lk is rela-
tively large. �Using the experimental results of Giesen
�2001� on Cu�100�, we find Lk�102 at room tempera-
ture.� When the typical distance between thermal kinks
is larger than the island size, we do not expect Eq. �2.69�
to be valid, and the time scale for the motion of a mobile
atom along the step is essentially limited by the prob-
ability of thermal kink presence. Therefore tm�Lk /R.
The number of mobile atoms along the step is now N
�1, and the distance along which the atom moves is
approximately the size of the island, leading to a dis-
placement of the center of mass bCM�a /R. From Eq.
�2.94�, we now find that Dc�1/R. Using Markov chains
describing atomic motion, this result has been analyzed
by Combe and Larralde �2000�.

Since the low-temperature deviations come from
jumps of atoms between kinks that are far apart, it may
be possible to incorporate this regime into a continuum

model by introducing an additional mobile atom concen-
tration field along the step, as shown in Fig. 12. Starting
from a phenomenological free energy, a variational deri-
vation �Pierre-Louis, 2001� leads to the following dy-
namical model for step position � and concentration c:

�−1�t� = ��c − ceq� + � , �2.95�

�tc = �x�B�xc − q� − ��c − ceq� − � , �2.96�

where ceq=ceq
0 �1+��� and the correlations of the Lange-

vin forces, � and q, are found within a local thermody-
namic equilibrium approximation:

���x,t���x�,t��� = 2�c�x,t���x − x����t − t�� ,
�2.97�

�q�x,t�q�x�,t��� = 2Bc�x,t���x − x����t − t�� .

The kinetic coefficient � is the relaxation frequency for
the concentration. It is therefore simply the inverse of
the time for one adatom to jump from one kink to an-
other, separated by a distance Lk:

� = Ds/Lk�Lk + dk+ + dk−� , �2.98�

where we have defined the diffusion constant of mobile
edge atoms between kinks Ds and the kink kinetic at-
tachment lengths dk±=a�exp�E±/kBT�−1�, with E± the
additional energy barriers �with respect to diffusion� for
atoms to stick to a kink from both sides. Furthermore,
the macroscopic diffusion constant B results from the
global diffusion process with jumps from kink to kink, so
that

B 	 �Lk
2 . �2.99�

This model predicts the low-temperature deviations for
long observation time scales when long-wavelength fluc-
tuations ��Lk dominate and

Glong�t� = �a2��3/4�/���b0
2�3/4�Bceq

0 �1/4t1/4, �2.100�

where b0
2=akBT / 	̃ is step diffusivity. This expression

corresponds to that given by Bartelt, Goldberg, et al.
�1992� and Bartelt et al. �1993� starting from the Mullins
model �Eq. �2.69��, with DL=aBceq

0 as expected from
Mullins �1957, 1959�. Note that this also provides an ex-
pression for the diffusion constant in the long scale limit
�Pierre-Louis, 2001�: DL=aceq

0 Ds / �1+ �dk++dk−�Nk�,
where Nk=1/Lk is the kink density. This expression for

ζ(x,t)

x

c(x,t)

(b)(a)

z

FIG. 12. Low temperature step relaxation. �a� Atomistic pic-
ture is coarse-grained to �b� a model with a continuous step
profile and a continuous concentration of atoms along the step.
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DL was confirmed by Monte Carlo simulations �Kallunki
et al., 2002�. For short observation time scales, only short
wavelengths ���Lk� contribute to G, and

Gshort�t� = �a3/2/�����ceq
0 b0

2�1/2t1/2. �2.101�

Using Eq. �2.98� and b0
2�Nk, valid at low T, the cross-

over between the two regimes is found to correspond to
G�t��a2. This result was found by Giesen-Seibert et al.
�1995� by means of a discrete random kink model and
MC simulations. From G�t*��a2, the crossover time be-
tween the two regimes is found to be

t* � �Nk
3a2Bceq

0 �−1. �2.102�

The numerical values for Cu�11n� vicinal surfaces given
by Giesen-Seibert et al. �1995� give t*

�10−19 exp�14 870/T� s, where T is in Kelvin. With ob-
servation times t*�1 s �Giesen-Seibert et al., 1995�, the
crossover is found for T	340 K, in quantitative agree-
ment with experiments �Giesen-Seibert et al., 1995�.
Also, in an isotropic circular model, correct scaling of
the diffusion constant of a two-dimensional island with a
radius R0 is found:

Dc =
�rCM

2 �t��
4t

=
a4ceq

0

�R0

1

R0
2/B + 1/�

, �2.103�

where rCM indicates the position of the center of mass of
the cluster. However, such a simple model does not ex-
plain the sintering of two-dimensional islands studied by
Liu and Evans �2002�, which involves far-from-
equilibrium concave shapes. Finally, similar deviations
from the macroscopic theories occur in the rate of de-
tachment of atoms from 2D clusters, as shown by Shao
et al. �1996�.

C. Kinematic bunching and introduction to instabilities

We have so far dealt with systems which are globally
at equilibrium. When the surface is driven out of equi-
librium, there are two major instabilities: �i� step mean-
dering and �ii� step bunching. We may also have coexist-
ence between bunching and meandering. In addition,
bunching may cause meandering �despite the fact the
step would be stable with respect to meandering if the
interstep distance were to be kept constant� �Kandel and
Weeks, 1995�. The reverse situation is also possible: me-
andering may cause steps to bunch. More generally, dy-
namics may be quite complex, and we approach these
notions in a progressive manner. Bunching can also take
place not as a result of an instability but rather as a
kinematic wave. Bunching and meandering occurring as
a result of instabilities are the subject of Secs. III and IV.
Here we present the traditional view of step bunching in
terms of a shock in a kinematic wave �Frank, 1958; Ben-
nema and Gilmer, 1973�. It must be emphasized that
there is a clear distinction between a shock wave and a
morphological instability.

1. Shock waves

We start with a description of shocks in kinematic
wave theory and their relation to step bunching. Since
the total number of steps on a vicinal surface is con-
served, the local step density � evolves within the con-
tinuum limit,

�t� = − �zQ = − Q�����z� . �2.104�

In kinematic wave theory, the flux �say, step flux� Q is
assumed to depend only on the local density �. Here we
can view Q�=dQ /d� as the local wave speed �local in
the sense that it depends on the actual density ��z , t��.
Since Q is a flux, we can write it in the usual form Q
=V�, with the step velocity V, which generally depends
on �. Supposing first that V is constant, �t�=−V�z�. This
equation has the general solution �= f�z−Vt�, meaning
that if we start with an initial form of the wave packet,
this will move in a shape-preserving manner. The situa-
tion is quite different if V is not constant or if Q is a
nonlinear function of �. In these cases, local speeds dif-
fer at different densities, and the wave packet will be
destroyed over time, as shown in Fig. 13. Shock fronts or
shock waves will occur in a way which is similar to the
breaking of waves on the seashore. Many systems are
known to exhibit shocks, including traffic flow, flood
waves, glaciers, chemical exchange processes, and sedi-
mentation in rivers �see Whitham �1976� for examples
and applications to many real systems�.

In the case of vicinal surfaces, these shocks lead to
rapid variations in step density. If Q��0, step bunches
are “convex,” and if Q��0, step bunches are “concave,”
as explained in Fig. 14. This figure shows that since a
shock corresponds to the location of an abrupt variation
of the density �say, the passage from high density to low
density on a very short length scale�, the shocks are not

ρ

z

(1) ρ

z

(3)ρ

z

(2)

FIG. 13. �Color online� Formation of a shock when the veloc-
ity Q� increases with the density �, i.e., Q��0. The plots �1�–
�3� are in chronological order.

z

ρ ρ

z

FIG. 14. Schematic view of the evolution of the bunches. Top
panel: Q��0, the bunches are convex. Bottom panel: Q��0,
the bunches are concave.
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the actual bunches, but correspond to their edges. By
conserving the number of steps through a shock, the
shock velocity reads

Vshock = �Q+ − Q−�/��+ − �−� , �2.105�

where the indices � refer to quantities evaluated imme-
diately to the left or right of the shock.

In a simple model such that the step velocity depends
linearly on step density, Vstep=V0�1+k0��, the flux of
steps is Q=�Vstep, and Q�=2k0V0. We find from Eq.
�2.105� that

Vshock = V0�1 + k0��+ + �−�� . �2.106�

Therefore, during growth, sublimation, or etching, we
expect the formation of shocks that move faster than the
average step motion �V0�1+k0��++�−� /2� if k0�0 and
slower if k0�0.

In order to analyze the density profile in the shock
region, we include the flux contributions due to a spatial
variation of density. Thus, we cease to assume that Q
depends on � only. In a long-wavelength expansion, the
first expected term is �z�. Including linear terms, as well
as the first nonlinear term, in �, together with the con-
tribution from �z�, we obtain �an expansion around a
given density �0� −Q	−Q0+��Q1+��2Q2 /2+D�z��,
where ��=�−�0 and Qi’s are constants. Using Eq.
�2.104�, we find the Burgers equation �Burgers, 1974�

�t�� = D�zz�� + Q2���z�� , �2.107�

where D represents the analog of viscosity �and is thus
assumed to be positive�. The term containing Q1 has
been absorbed in the time derivative by a Galilean
transformation. The Burgers equation is known to lead
to shocks which coalesce due to the fact that shocks of
different sizes move with different velocities. The aver-
age number of shocks per unit length is known to de-
crease with time �Burgers, 1974� t−2/3. It can also be dem-
onstrated �Burgers, 1974� that the density profile gets
smoother over time, namely, that ���2�1/2� t−1/3. Bunch-
ing is thus only transient and asymptotically vicinal sur-
faces should recover smoothness according to kinematic
wave theory. Note that upon adding a noise term to the
Burgers equation, we obtain the KPZ equation for �,
having set �z�=��.

Apart from the viscositylike effect, we may have the
first contribution coming from higher-order derivatives
�instead of a second derivative as in Eq. �2.107��, as in
the study of gravity waves on the surface of a liquid. The
third derivative5 first appears in the gravity-wave equa-
tion �Whitham, 1976�, and the density equation takes the
form

�t�� = − �zzz�� + ���z�� , �2.108�

where we have set Q2=1 �this is always possible by ap-
propriate rescaling�. The sign in front of �zzz is irrelevant

since it can be changed by the transformation �z ,���
→ �−z ,−���. This is known as the Korteweg–de Vries
�KdV� equation �Whitham, 1976�. It arises, in particular,
in the study of gravity waves on shallow water. The KdV
equation admits a steady-state solution in the form of a
soliton moving steadily in a shape-preserving manner.
More precisely, a solution of the KdV equation exists
which reads ���z , t�=U�z−ct�, where c is the soliton
speed and U is given by �Whitham, 1976�

U = − 3c sech2��c�z − ct�/2� . �2.109�

This is a family of solutions parametrized by the soliton
speed c. This means that this solution exists with an ar-
bitrary speed. Note that the maximum amplitude is −3c,
so the deeper the trough, the faster the soliton moves
and the narrower it is. We see later that the KdV equa-
tion arises naturally, within certain limits, when studying
step bunching under microscopic considerations.

2. Growth

It may be noticed that if the step velocity is taken to
be proportional to the local terrace width, as expected
during growth with a deposition flux F but without ada-
tom desorption, then Q=�F �and Vstep=�F /��. Since
Q=�F does not depend on density, no kinematic waves
in the form of shocks are to be expected. We see later
that, in fact, the bunching formation in this case follows
from an intrinsic instability, which will be indicated by a
negative constant D in Eq. �2.107�. This differs signifi-
cantly from shocks following from the Burgers equation.
However, it does not rule out the possibility that kine-
matic bunching may occur. Examples may be encoun-
tered under etching.

3. Etching

Recent studies have pointed out that step bunching
during etching of Si�111� surfaces in KOH solutions is of
kinematic origin �Garcia et al., 2004�. An STM image of
the bunches is shown in Fig. 15. The nonlinear depen-
dence on � of the etching rate was checked experimen-
tally. They showed that k0�0 �see Eq. �2.105��. Even
with Q�=2k0V0 being negative since V0�0, bunches ob-
served in experiments and the results of kinetic Monte
Carlo simulations are neither concave nor convex, as ex-
pected from kinematic wave theory. This dilemma needs
further investigation.

III. STEP MEANDERING

Instabilities are ubiquitous under nonequilibrium con-
ditions. Here we analyze the morphological instabilities
and the underlying mechanisms which trigger them.

A typical out-of-equilibrium situation is one where
the surface is exposed to an external flux F with desorp-
tion time � as shown in Fig. 10. If the flux exceeds the
equilibrium value Feq=ceq

0 /� for which adsorption ex-
actly compensates desorption from the terraces, the
crystal will grow. This is a prototype of a nonequilibrium

5In fact, at the scale of gravity waves, viscous effects together
with surface tension play a minor role.
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problem where the surface grows by particle addition.
We see that a vicinal surface suffers morphological insta-
bilities caused by adatom diffusion. Two types of insta-
bilities are generically encountered: step meandering,
which is treated here, and step bunching, which is
treated in the next section.

Meandering is the one-dimensional analog of the
Mullins-Sekerka �1964� instability and was first studied
in the linear regime by Bales and Zangwill �1990�. Once
the instability threshold is reached, nonlinear terms
must be taken into account. In the form of nonlinear
equations, we encounter two types of nonlinear regimes:
the standard regime where an expansion in terms of
leading powers of the nonlinearity is legitimate and a
nonstandard regime where the validity of the expansion
breaks down.

A. The strip model

During growth, steps are unstable with respect to me-
andering in the presence of front-back asymmetry at the
step. This instability is known as the Bales-Zangwill in-
stability �Bales and Zangwill, 1990�. One common idea
which is often evoked is the Erhlich-Schwoebel barrier:
as discussed in Sec. II.B.2.b, an atom usually attaches
more easily when coming from the lower terrace than
from the upper one. Here we present a simple model
based on the strip-mediated growth �Fig. 16�b�� scenario
and on the equilibrium relaxation laws of Sec. II.B. For
simplicity, we consider the one-sided attachment model.
Moreover, we assume isotropic step properties. A cutoff
length Lc related to diffusion on terraces accounts either
for the desorption length xs, defined in Eq. �2.87�, or for
the presence of other steps at a separation distance �.
The instability is a consequence of the increase of the
strip area in positively curved regions, leading to a local
increase of the growth rate. A protuberance is amplified,
hence instability sets in.

We quantify the argument that leads to such instabil-
ity, which is driven by mass transport in a strip of width
Lc. If all atoms landing on this strip attach to the step,
the attachment rate to a straight step per unit length is
FLc. Due to a step meander, the area feeding a step
element of length ds varies. This can be shown by a
simple calculation. Consider a strip of width Lc around a
circle of radius R. The area of the strip is A=��R
+Lc�2−�R2=�Lc�2R+Lc�. If L=2�R is the length of
the circle, A /L=Lc�1+Lc /2R�. This relation also holds
for a fraction of the circle with a small angle d
. The
length of a fraction of the circle is dL=Ld
 /2�, and the
corresponding area dA=Ad
 /2� obeys dA /dL=Lc�1
+Lc /2R�. Since the step is always locally tangent to a
circle of radius R=1/�, where � is the local curvature,
the following results:

dA 	 dsLc�1 + �Lc/2� , �3.1�

where � can be positive or negative. The number of at-
oms attaching to the step element of length ds is then
FdA=Vn

Ads /�, where Vn
A is the contribution to the step

normal velocity due to atom attachment. We therefore
find

Vn
A =�FLc�1 + �Lc/2� . �3.2�

From the Gibbs-Thomson relation �2.62�, the equilib-
rium concentration in the vicinity of a step is ceq=ceq

0 �1
+���. We assume that atoms detach from the step to the
strip, where they have a desorption rate of 1/�. The
number of atoms detaching from the step element ds per
unit time is then Vn

Dds /�=−ceqdA /�. Hence,

Vn
D = −�Lc�ceq

0 /���1 + ����1 + �Lc/2� . �3.3�

Previously we saw that edge diffusion is more efficient
than attachment-detachment kinetics with regard to
short-wavelength mode stabilization. We therefore add a

FIG. 15. STM image and cross section of vicinal Si�111� sur-
face etched for 5 min at room temperature with KOH. From
Garcia et al., 2004.

Vn
� � � � �
� � � � �
� � � � �

� � � � �
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ds

ds

Vn

dA

dA

cz

x

adatom
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(−) (+)step

FIG. 16. Two schematic descriptions of the meandering insta-
bility mechanism in the presence of an Ehrlich-Schwoebel ef-
fect. �a� Point effect. The higher density of isoconcentration
lines at the tip of protuberances indicates a larger attachment
mass flux, leading to faster growth, thus amplifying the pertur-
bation. �b� A strip of width Lc feeds the step. The area feeding
a small step element of length ds depends on the local curva-
ture.
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term related to diffusion along the strip, which is for-
mally analogous to edge diffusion and which will stabi-
lize short-wavelength modes. From Eq. �2.69�, this strip-
diffusion contribution reads

Vn
SD = aeffDL eff��ss� . �3.4�

It is then natural to assume that aeff=Lc and DL eff

=D�ceq
0 �only mobile atoms whose fraction is given by

�ceq
0 contribute�. Finally, adding the three contributions

Vn=Vn
A+Vn

D+Vn
SD, we find

Vn =�Lc�F − Feq�1 + �����1 + �Lc/2�

+ LcD�ceq
0 ��ss� �3.5�

with the equilibrium flux Feq=ceq
0 /�.

The velocity of a straight step ��=0� is then

V̄ =�Lc�F − Feq� . �3.6�

Linearizing Eq. �3.5� for small perturbations ��x , t�
around the moving straight step yields

�t� = − 1
2��F − Fc�Lc

2�xx� − LcD�ceq
0 ��xxxx� , �3.7�

where the critical flux is defined as

Fc = Feq�1 + 2�/Lc� . �3.8�

The Fourier transform of this relation �following the
definition in Sec. II.B� gives the growth rate of the per-
turbations as a function of the wave vector k. We seek
perturbations in the form ei�t. Instability is thus indi-
cated by a positive real part of i�. We find here

i� = 1
2��F − Fc�Lc

2k2 − LcD�ceq
0 �k4. �3.9�

Although the geometrical strip model is not exact, it in-
corporates the main features of the instability: �i� the
instability occurs when the incoming flux exceeds a criti-
cal value F�Fc; �ii� sufficiently small-wavelength modes
are stable, and �iii� the most unstable wavelength km

−1

with the largest i� diverges as �F−Fc�−1/2 when F be-
comes closer to the instability threshold Fc. The disper-
sion relation shows that the typical time for the appear-
ance of the instability is ��F−Fc�−2. Since the instability
corresponds to long-wavelength modes, our long-
wavelength assumption—on which the geometrical
model is based—is self-consistent in the vicinity of the
instability threshold.6

In the following sections we see that Eqs. �3.8� and
�3.9� are in agreement with the stability analysis of the
full step model at long wavelength up to some numerical
prefactors. More specifically, provided the length scales
are well separated, the threshold �3.8� agrees with the

exact result, with the cutoff length written as7

Lc = min�xs,�� , �3.10�

where Lc is the shortest cutoff length. The dispersion
relation �3.9� with Lc=xs corresponds to that obtained
for a one-sided isolated step with strong desorption. The
dispersion with Lc=� is obtained for a train of steps with
weak desorption or �→�. In this case Feq=ceq/�→0 and
thus Fc→0: the step is always unstable during growth.
While the weak and strong desorption limits are quite
similar in the linear regime �regarding the form �Eq.
�3.9�� of the dispersion relation�, drastic differences will
be encountered in the nonlinear regime.

B. Nonlinear evolution with desorption

1. An isolated step: The Kuramoto-Sivashinsky equation

In order to deal with the case of desorption, Eq.
�2.73�, which includes both deposition and desorption,
must be solved. First consider an isolated step in the
one-sided limit �only atoms coming from the lower ter-
race may be incorporated onto the step�. At a large
enough distance ahead of the step, the adatom concen-
tration is given by the number of atoms deposited F �per
unit surface and unit time� divided by the desorption
frequency �−1,

c�z = �� = �F . �3.11�

At the step if there is no barrier for attachment and if
the temperature is high enough so that kink density is
sufficiently large, then the concentration c+ in the imme-
diate vicinity of the step is

ceq
0 � �Feq. �3.12�

In reality, the equilibrium concentration at the step is
modified by curvature effects �the Gibbs-Thomson con-
dition� and Eq. �3.12� must, according to Eq. �2.62�, be
written as

c+ = ceq = �Feq�1 + ��� , �3.13�

where � is the step curvature defined by Eq. �2.59�. We
define curvature as being positive if the step profile is
convex �i.e., it is positive for a sphere�. Note that the line
tension effect � has a dimension of a length �see Sec.
II.B.1.a where � was first introduced�. Therefore, the
curvature effect is important only for protuberances
such that the step curvature is approximately or larger
than 1/�.

6Hence, it is justified to neglect higher-order contributions
��ss� coming from Vn

A and Vn
D which would provide terms

�k4. Indeed, these terms are proportional to F−Fc.

7A more general relation could be defined, which is valid for
a finite Ehrlich-Schwoebel effect: Lc=min�xs ,� ,d−�, where the
kinetic attachment length d−=D /�−. The kinetic coefficient �−
is defined in Sec. II.B and �+→�. In the case Lc=d−, the ex-
pression of the stability threshold given by Eq. �3.8� is valid,
but the form of the dispersion relation �3.9� changes.
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The normal velocity of the step is proportional to the
normal gradient of the concentration ahead of the step
according to Eq. �2.74�. Since attachment from the upper
terrace is not allowed, this reduces to

Vn =�D�nc+. �3.14�

Below we consider the case of growth where F�Feq. We

use a reference frame moving at the constant speed V̄ of
a straight step, so that the straight step is positioned at
z=0. The quantity ��x , t� will designate the deviation of
the profile from the straight step motion, so that c+
=c�z=��x , t�� in Eqs. �3.13� and �3.14�.

For a straight step, the solution c0�z� of Eq. �2.73� for
z�0 takes the form c0=�F+B0e−z/xs, which approaches
c�=�F asymptotically. We have used condition �3.11� in
this expression. Condition c�z=0�=ceq

0 for �=0 implies
B0=��Feq−F�, and the use of Eq. �3.14� yields the veloc-

ity V̄ of the straight step in the form of Eq. �3.6� with the
cutoff length Lc replaced by a desorption length xs.

Diffusion generally induces morphological instabili-
ties in moving interfaces �Mullins and Sekerka, 1964�. In
the presence of desorption, adatoms may regain the at-
mosphere before reaching the step, and only the ada-
toms within desorption length xs of the step matter to
stability. Due to this spatial limitation, a straight step
remains stable up to a critical flux Fc, beyond which the
step becomes unstable. The linear stability analysis can
be performed �Bena et al., 1993�. Since line tension is
known to stabilize a straight step at short length scales,
we consider step stability of only a long-wavelength
modulation with a wave number k such that kxs�1.
Close to the instability threshold, the result is �Bena et
al., 1993�

i� = 1
2��F − Fc�xs

2k2 − 3
4�Feq�xs

3k4 �3.15�

with Fc given by Eq. �3.8� and Lc=xs. The dispersion
relation is similar to that of the strip model in Eq. �3.9�.
Strong desorption is taken to mean that desorption is
significant on the length scales of interest �i.e., the de-
sorption length xs is short in comparison to the length
scale of interest�. This means here that kxs�1 and xs
�� �the separation of steps in a train of steps�. The first
term in Eq. �3.15� is only positive if the flux is greater
than the critical value Fc. Sufficiently close to the critical
point F	Fc, the amplification rate i� is positive for
small wave numbers below a critical value kc, obtained
by setting i�=0. It scales as

xskc � ��F − Fc�/�Fc − Feq� . �3.16�

This means that sufficiently close to the instability
threshold Fc only modes with small enough wave num-
bers will be active. Thus in real space we expect only the
leading spatial derivatives to be important �this is also
usually known as the “hydrodynamic limit”�. By invert-
ing back to real space, Eq. �3.15� yields the linear part of
the temporal evolution of the profile

�t� = − a�xx� − b�xxxx� , �3.17�

where a= 1
2��F−Fc�xs

2 and b= 3
4�Feqxs

3�.
We may now ask which nonlinear terms are permis-

sible a priori. If we assume that the meander � is small,
the largest nonlinearity is quadratic. For example, it may
be tempting to introduce �2, while, e.g., cubic terms such
as �3 would remain smaller. However, since step position
is undetermined up to an additive constant, this nonlin-
earity is not allowed. Indeed, if the z coordinate is trans-
formed to z�=z+C where C is constant, then the new
step position would be given by ��=�+C. The equation
should remain invariant under such a transformation,
which would not be the case if �2 was present. Thus, only
terms which contain derivatives with respect to x �and
which respect the x→−x symmetry� are permitted. The
simplest term of this sort is ��x��2. This term breaks an-
other symmetry, �→−�, but this is possible since we as-
sume that atoms can attach predominantly from the
lower terrace. Other nonlinearities �e.g., ��xx��2� would
be a priori possible. However, as seen above, since the
unstable modes have small wave vectors in the vicinity
of the instability threshold, ��xx��2 is negligible in com-
parison to ��x��2 and is therefore disregarded. The above
considerations are based on symmetries. A nonlinear
analysis was performed starting from the Burton-
Cabrera-Frank �BCF� model and led to the same conclu-
sion. The resulting evolution equation is �Bena et al.,
1993�

�t� = − a�xx� − b�xxxx� + V̄��x��2/2. �3.18�

Note that the coefficient of the nonlinear term is simply

V̄ /2, half of the straight step velocity �see Eq. �3.6��.
There is another edifying way to extract the nonlinear
term. Indeed, the step equation can be written, without
restriction, as follows:

Vn = V̄ + J��x�,�xx�, . . . � . �3.19�

J is a flux which is a function of the step deformation
�actually only of its derivatives due to translational in-
variance along the step in the uniform configuration�. J

=0 if �=0, so that Vn reduces to V̄, the velocity of a
straight step. The normal velocity Vn is related to �t� �in
the laboratory frame� by Vn= �V̄+�t�� /�1+ ��x��2. Insert-
ing this into Eq. �3.19� and expanding for small �, we
obtain the first nonlinear contribution

�t� = V̄��x��2/2 + Jlin + higher-order terms. �3.20�

We have kept only the leading linear term in J, denoted
as Jlin �already determined in the linear regime�. The

first nonlinearity is thus �V̄ /2���x��2, and, by combining
the linear order calculation and the above argument, the
nonlinear evolution equation is fixed to leading order.
We insist on the fact that the above is the leading non-
linearity. The truncation at leading order is valid, in prin-
ciple, close enough to the instability threshold. We now
introduce the following small parameter:
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� = �F − Fc�/Fc. �3.21�

The critical wave number kc �Eq. �3.16�� scales as ��xs
−1.

This means that the pattern associated with step modu-
lation varies slowly in comparison to the desorption
length. In real space this means that it is only after a
distance of �xs /�� that a noticeable variation takes
place. It is customary to introduce a slow spatial scale X
related to the original scale x by

X = x�� . �3.22�

The advantage in adopting a slow variable lies in the fact
that the small perturbative parameter � is explicitly
present in the equations. The dispersion relation �3.15�
shows that for the range of wave numbers �� the growth
rate i� scales as �2. We introduce a slow temporal vari-
able T related to time t by

T = �2t . �3.23�

This means that dynamics are slow close to the critical
point �this is the usual so-called critical slowing down�.
The introduction of the slow variable T means that dy-
namics evolve on a scale of order 1 in this variable. In-
troducing the slow variables X and T and omitting the
factors which do not depend on �, Eq. �3.18� can be re-
written as

�2�T� = − �2�XX� − �2�XXXX� + ���X��2. �3.24�

The nonlinear term is therefore of the same order as the
linear terms provided ���. Imposing this condition
guarantees the uniformity of the � expansion, where a
leading nonlinearity counterbalances the linear terms.
Introduction of

��x,t� = �Z�X,T� , �3.25�

meaning that Z is of order unity, means that the small
parameter scales out from Eq. �3.24� and reduces to the
form

�TZ = − �XXZ − �XXXXZ + ��XZ�2. �3.26�

This is a canonical form of the step evolution equation.
It is described in detail by Bena et al. �1993� as an ex-
pansion in powers of � of the concentration field and the
step position. Note that a similar type of evolution equa-
tion can always be written in the form of Eq. �3.26� with
all coefficients order unity. Indeed, if we had an equation
like �TZ=−a�XXZ−b�XXXXZ+c��XZ�2, then upon trans-
formations X�=X�a /b, T�=a2T /b, and Z�=cZ /a would
produce a universal form of Eq. �3.26� �an equation
which is free of parameters�.

Equation �3.18� is known as the Kuramoto-
Sivashinsky �KS� equation �Kuramoto and Tsuzuki,
1976; Sivashinsky, 1977� �which seems to have appeared
earlier in the literature �Nepomnyashchii, 1974��. It of-
ten arises as a generic nonlinear equation in dissipative
systems �Misbah and Valance, 1994�. The nonlinear term
in Eq. �3.18� only enters out of equilibrium. Indeed, this
term precludes one from writing the equation as a func-
tional derivative of some quantity, which is typical of

nonequilibrium situations. If the dynamics were written
as a functional derivative of some functional, the system
should have relaxed to the final equilibrium state deter-
mined by the minimization or maximization principle of
this functional. In this case, the complex dynamic behav-
iors could not be expected.

For F�Fc, the first term with a negative a in Eq.
�3.18� is stabilizing, thus there is no need to introduce
the fourth derivative as a stabilizing factor. Moreover, if
noise is introduced in this formulation, this results
�Karma and Misbah, 1993; Pierre-Louis and Misbah,
1996� in an additional stochastic term in Eq. �3.18�. We
then obtain the KPZ equation �Kardar et al., 1986�
which has been introduced phenomenologically as a
plausible candidate to describe kinetic roughening. For
F�Fc, a is positive, and the nonlinear equation �3.18� is
the KS equation and is known to lead to spatiotemporal
chaos. We thus expect the step to behave chaotically in
both space and time. Figure 17 shows a typical snapshot
of chaotic KS dynamics. The step develops a meander
with a cellularlike structure �i.e., periodic array of pro-
tuberances�. Then, as time elapses, each cell splits errati-
cally or collides with others, while on average the struc-
ture maintains an intrinsic length scale. For example, the
average structure factor Sk����k�2� �where the sample
average is introduced� as a function of k is found to
exhibit a peak at a value k	km=kc /�2, which is the
wave number corresponding to the fastest growing mode
in the linear regime �Karma and Misbah, 1993�.

The above analysis has focused on dynamics at lead-
ing order in the nonlinear term. The full lattice gas simu-
lation of Saito and Uwaha �1994� and the phase-field
simulation of dynamics by Pierre-Louis �2003b� both re-
vealed chaotic dynamics similar to the dynamics result-
ing from the KS equation.

By including the anisotropy of surface tension, a term
proportional to ��XZ�2�XXZ is added to the step equa-
tion �3.26� �Saito and Uwaha, 1996�. The equation then
interpolates between the chaotic KS equation and the
Cahn-Hilliard equation with periodic structure and slow
coarsening �Politi and Misbah, 2004, 2006�.

2. Noise and morphological instabilities: Competition between
the KS and KPZ equations

Visually, in the chaotic regime, it is tempting to say
that a rough step looks stochastic, owing to the apparent
erratic motion due to deterministic chaos. Chaos, how-

Z
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FIG. 17. A typical time evolution of the KS equation �3.26�.
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ever, still preserves a length scale resulting from the in-
stability, which corresponds �at least approximately� to
the fastest growing mode obtained from linear theory
�Karma and Misbah, 1993�. A question then naturally
arises: When and under what precise conditions would
step dynamics be due to noise or to deterministic chaos?
This question was addressed by Karma and Misbah
�1993�. If noise is added to Eq. �3.18� then a subtle inter-
play between noise and deterministic chaos takes place.
For F�Fc, noise dominates and dynamics is rather of
the KPZ type. For F�Fc, deterministic chaos prevails.
In the intermediate regime F�Fc, competition develops
between noise and determinism. With noise, Eq. �3.18�
takes the form

�t� = − �1�xx� − �2�xxxx� + �3��x��2 + � �3.27�

with the noise correlations

���x,t���x�,t��� = �0��x − x����t − t�� . �3.28�

Here �1��F−Fc�, �2 is a positive coefficient, and �3

= V̄ /2 with V̄ the velocity of the straight step. A system-
atic analysis �Karma and Misbah, 1993; Pierre-Louis and
Misbah, 1998b� allowed the determination of a criterion
to specify the condition where deterministic chaos com-
petes with noise. From a power counting argument
�Pierre-Louis and Misbah, 1998b�, the width of the re-
gion around the critical point where noise competes with
chaos �this is a nonequilibrium generalization of the
Ginzburg criterion known in phase transitions� can be
determined.8 Indeed, by rescaling space, time, and � in
Eq. �3.27� so that the linear and nonlinear terms take the
form �3.26�, a rescaled amplitude is obtained for noise,
Anoise��0�3

2�2
1/2�1

−7/2. The region around the critical
point where noise competes with chaos corresponds to
the condition Anoise�1 and leads to

�1 � �F − Fc� � �0
2/7�2

1/7�3
4/7. �3.29�

If noise is important �close to or below the threshold�,
the length scale picture disappears progressively and
only fluctuations �at the atomic scale� without a domi-
nant scale persist: purely noisy KPZ dynamics are
achieved �Karma and Misbah, 1993�.

3. Train of steps: Coupled advected KS equations

On a vicinal surface, steps interact with each other via
several kinds of interactions. The best known are en-
tropic, elastic, or electric. Out of equilibrium steps also
interact in addition via the diffusion field �Pierre-Louis
and Misbah, 1996�. Indeed, steps compete for the same
diffusion field since a step that absorbs adatoms creates
a depletion which is felt by neighboring steps. It turns
out that this interaction prevails over all others provided
that �i� the deposition flux is not too small �about
0.1 monolayer/s at least in the case of Si�111� at usual

growth temperatures T�600 °C� and �ii� the interstep
distance is long enough �longer than a few atomic dis-
tances�. Inclusion of step-step interactions �of diffusive
and elastic nature� �Pierre-Louis and Misbah, 1996� pro-
duces a generalization of Eq. �3.26� to the mth step
among N �to leading order�,

�TZm = ��0�
−2 − �2�

−1�XX��Zm+1 − Zm−1�

+ ��−2�Zm+1 + Zm−1 − 2Zm�

− �XXZm − �XXXXZm + ��XZm�2. �3.30�

The parameters �0, �2, �, and � are functions of physical
quantities �see Pierre-Louis and Misbah �1998a, 1998b�
for more details�. The last three terms correspond to an
isolated step treated in the last section �Eq. �3.26��. The
other terms represent interaction with neighboring steps
m+1 and m−1. Here a finite ES effect is assumed, so
that the effect of the step behind the reference step is
felt.

Numerical solutions of Eq. �3.30� reveal �Pierre-Louis
and Misbah, 1996, 1998b� that the steps behave chaoti-
cally on the vicinal surface, as for isolated steps, while
executing their motion in a synchronized fashion.

4. Surface continuum limit: The advected anisotropic KS
equation

In many circumstances surface problems �e.g., rough-
ening transitions� are treated by resorting to a full con-
tinuum description. Previously the step was treated in a
continuum limit along itself, but in the orthogonal direc-
tion the steps maintain their identity. It is sometimes
useful to study the situation where the surface can be
treated as a continuum object, disregarding the discrete
nature due to individual steps. This has been done start-
ing from Eq. �3.30� �Pierre-Louis and Misbah, 1998a,
1998b�. The result is a new anisotropic equation for sur-
face height ��X ,Z ,T� which is a function of appropriate
dimensionless spatial and temporal variables. The equa-
tion takes the form

�T� = �̃2�ZXX� + �ZZ� − �XX� − �XXXX� + ��X��2,

�3.31�

where �̃2 is a coefficient dependent on various param-
eters �see Pierre-Louis and Misbah �1998b��.

An equation which shares some similarities with Eq.
�3.31� was derived phenomenologically by Rost and
Krug �1995�. Their equation lacks the term �ZXX�,
which arises naturally in the derivation of Eq. �3.31�
�Pierre-Louis and Misbah, 1998b�. Rost and Krug found
different regimes ranging from chaos to a coarsening of
rippled domains. To the best of our knowledge, the far-
reaching consequences of Eq. �3.31� have not yet been
studied. It would be interesting for future investigations
to analyze dynamical roughening for this equation in its
stable version �with a positive sign in front of �XX��. The
first numerical solution of the above equation revealed
�Pierre-Louis and Misbah, 1998b� several interesting fea-
tures. Of particular interest is the fact that the striplike
solution �the solution corresponding to an in-phase me-

8Interestingly, these scalings are changed in the case of a vici-
nal surface �Karma and Misbah, 1993; Pierre-Louis and Mis-
bah, 1998b�.
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ander� may be strongly destroyed in that the stripe pat-
tern emits chaotic spots where the notion of a vicinal
surface seems to lose its meaning �Fig. 18�.

C. Nonlinear dynamics with weak desorption: Nonstandard
nonlinear equations

We now consider the most frequent situation �at least
in MBE when the species are simple atoms� where de-
sorption of atoms is negligible on the scales of interest
�typically the terrace width ��xs� so that most of the
landing atoms have ample time to reach the surrounding
steps. We focus on a train of steps in a parameter range
where the distance between steps is small enough �or
diffusion is fast enough� that atoms reach an attachment
site at the steps quickly and nucleation is absent or may
be considered very rare. As shown in Sec. III.A by the
strip model, a uniform train corresponds to the situation
where each step moves at a constant velocity given by
F��. The question now arises of whether the nonlinear
equation for the step meander may be inferred from
simple arguments. Due to conservation �all landing at-
oms remain within the growing solid� and if no defects
�such as holes� are created, then a nonlinearity of the KS
or KPZ type is not permissible. A plausible candidate
would be �xx��x��2 �the conserved form of the KS or
KPZ nonlinearity�. We see using the minimal model of
BCF that the result came as a surprise �Pierre-Louis,
1997; Pierre-Louis et al., 1998; Gillet et al., 2000�.

We first focus on the situation where the train is syn-
chronized, giving collective uniform motion to the train,
i.e., ��x , t� is the same for all steps. We also assume that
xs→� and k��1 �small wave-number assumption, as
for the case with desorption�. The linear dispersion rela-
tion for small k� takes the form �see, e.g., Pimpinelli et
al. �1994��

i� = 1
2�F�2k2 − � 1

8F��4 + DS���k4 � ak2 − bk4,

�3.32�

where a and b are positive coefficients. The above dis-
persion relation has a form of Eq. �3.9� with Fc=0. By
inverting back to real space, we find

�t� = V̄ − a�xx� − b�xxxx� , �3.33�

where we have added the uniform train velocity V̄
=F�� since ��x , t� is measured in the laboratory frame.
The linear evolution has the same form as in the case
when allowance was made for desorption �Eq. �3.17��.
However, a nonlinearity of the KPZ type proportional
to ��x��2 is forbidden here because there is no desorp-
tion. Indeed, if the full equation consists of Eq. �3.33�
supplemented with a KPZ nonlinearity with a coefficient
c, its average along the step on a length L, longer than
any lengths of interest, would be

��t�� = V̄ − a��xx�� − b��xxxx�� + c���x��2� , �3.34�

where �¯ ���1/L��0
L
¯dx. Since on average there

should be no difference between two points at x=0 and
L, so that ��xx��=0 and ��xxxx��=0. This means that

��t�� = V̄ + c���x��2� . �3.35�

The result is that the average step velocity is not equal

to V̄=�F�, as it should be due to mass conservation.9

This implies that the KPZ nonlinearity must vanish, c
=0. The general equation of motion must have a conser-
vation form

�t� =�F� − �xJ��x�, . . . � �3.36�

with the current J. Averaging the above equation always
implies that ��t��=�F�. The main task is to determine J,
which in the linear regime is given by

J = a�x� + b�xxx� . �3.37�

It may be argued that the first natural nonlinearity in the
current would be �x���x��2� �due to symmetry if x is
changed to −x then the current must also change sign� or
��x��3; these are the first simplest nonlinearities which
are compatible with symmetry. Later we see that this
naive picture does not hold. This is one example where
primary intuition fails to produce the correct result. A
systematic investigation of the evolution equation is re-
quired before a general picture can be drawn of the class
of equations in which dynamics falls. An expansion in
powers series led us to discover that the above-
mentioned nonlinearities are inadequate. A surprising
feature is that the evolution equation is highly nonlinear
�Pierre-Louis, 1997; Pierre-Louis et al., 1998; Gillet et al.,
2000� and could not be inferred from simple dimensional
or symmetry arguments. This strongly contrasts with tra-
ditional studies in nonlinear science where close enough
to an instability threshold, and in the long-wavelength

9If defects such as holes are allowed then ��t���V0. It is
sometimes stated that the KPZ nonlinearity accounts for
“overhangs,” meaning holes that are left behind the front. This
is why the ballistic deposition algorithm where each atom
sticks to a neighboring column whenever it meets a column
along its trajectory—once it sticks it leaves holes below—is
believed to simulate the KPZ nonlinearity �see Barabàsi and
Stanley �1995��.
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FIG. 18. A typical pattern obtained from a 2D numerical so-
lution of Eq. �3.31�: �a� first, ripples form from the linear me-
andering instability; �b� then, chaos takes place.
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limit, weakly nonlinear equations are the rule. Recently
�Gillet et al., 2000� a general reason for the origin of this
behavior has been given. Below we present a simplified
version, albeit quite general, of this behavior. The highly
nonlinear behavior of the dynamics was discussed more
generally by Csahók et al. �1999� and Pierre-Louis
�2005�.

1. Scaling arguments: Why a weakly nonlinear equation is not
permissible

We now show explicitly how the highly nonlinear be-
havior arises in meander dynamics. We first define the
appropriate small parameter for the expansion. Without
desorption, the critical flux for instability Fc turns out to
be zero: for small flux F, there is always a band of un-
stable modes �see Eq. �3.32��

k� kc = ��F�/�2DS�� �3.38�

in a long-wavelength region of step modulation. Here
we have neglected the Fk4 term since F must be small
enough, close enough to the critical point. We thus take
a small parameter � proportional to the flux F,

�� �kc��2 � 1. �3.39�

The unstable modes we are interested in have long
wavelengths �k��2� �kc��2�1.

The most unstable mode �corresponding to the maxi-
mum of i� in Eq. �3.32�� has a wave number km=kc /�2,
and its wavelength �m reads

�m = 4��DS�/�F��1/2. �3.40�

As in the previous section we introduce the slow vari-
ables X and T �Eqs. �3.22� and �3.23��. Omitting the fac-
tors which do not depend on �, subtracting the contribu-
tion �F� in Eq. �3.36� �this means considering the
motion in the moving frame�, Eq. �3.36� can be rewritten
as

�2�T = − a��XX� − b�2�XXXX� − ���XJn, �3.41�

where we have used the linear part of the current �3.37�
and Jn refers to the nonlinear part of the current, to be
determined. Note that a is proportional to �. Because of
translational invariance, the current only depends on de-
rivatives of � such as �x�, �xx� , . . . �but not on � itself; the
origin of � is arbitrary�. This current is composed of two
contributions: �i� the equilibrium part and �ii� the non-
equilibrium part.

a. The equilibrium contribution

The equilibrium contribution is easily determined as a
derivative of a chemical potential. To leading nonlinear
order, the equilibrium current takes the form Jn

eq��x�.
Since we are only seeking the nonlinear contribution, �
must at least be a quadratic function of �. A possible
candidate is ��x��2. We have to remember, however, that
� must be written as a functional derivative of an energy
�due to the thermodynamic nature of the equilibrium
contribution�. As seen, there is no functional whose de-

rivative yields ��x��2. It is easier to focus first on the
energy. The smallest power in the energy that produces
a quadratic potential is 3, and thus the first attempt is
��x��3. This is not allowed by the parity symmetry �en-
ergy should be invariant under the transformation x
→−x�. The next choice is ��x��4. Its functional derivative
is ��x��x��3 �approximately the chemical potential� mak-
ing the current Jn

eq��xx���x��3���5/2�XX���X��3� �recall
that X=x���.

b. The nonequilibrium contribution

The nonequilibrium part Jn
neq vanishes at F=0. It is

natural to expect Jn
neq=FJ̄n

neq��J̄n
neq��5/2��X��3 �where

the leading nonlinearity compatible with symmetry—the
current is an odd function of the slope—is ��x��3; note

that J̄n
neq may itself depend on F; what matters is that it

vanishes with F�. Plugging the nonlinear contribution of
the current into Eq. �3.41� �omitting factors which do not
involve ��, we obtain

�2�T� = − �2�XX� − �2�XXXX� − �3�X���X��3�

− �3�XXX���X��3� . �3.42�

The leading nonlinear term ���3� can balance the linear
terms only if ��1/��. This is the major difference com-
pared with the case where allowance is made for desorp-
tion. This means that the standard � truncation, encoun-
tered when dealing with nonlinear equations, breaks
down.

The main reason for this “singular scaling” of � with
respect to � is that departure from equilibrium coincides
with the occurrence of instability. This appeared above
in the fact that F scaled as �. This strongly contrasts with
the case where a finite critical flux exists. In such cases,
the nonequilibrium part does not have to vanish at F
=0 but at F=Feq. Since F−Feq is finite at the instability
point F=Fc �i.e., it is not in general of order �1/2�, the
nonequilibrium contribution in the evolution equation
would have scaled as �2�XX���X��2� �instead of ��3�. Bal-
ancing the linear terms against this one yields ��1,
which leads us to the conserved KS limit

�T� = − �XX�� + �XX� + ��X��2� . �3.43�

This equation was derived in the context of bunching in
the absence of desorption �Gillet et al., 2001�. It should
be noted that without a conservation condition, we ob-
tained ���� and the KS equation as in the previous
section.

2. Derivation of the highly nonlinear equation

A systematic analysis of the BCF equation revealed
an astonishing fact �Pierre-Louis et al., 1998; Gillet et al.,
2000�: even in the presence of a small parameter � the
evolution equation is highly nonlinear and its precise
form could not be inferred from the simple scaling argu-
ment. This regime is nonstandard in nonlinear systems.
We saw above that the amplitude of � scales as �−1/2.
Note that the fact that the amplitude scales as �−1/2 may
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seem pathological. In reality, translational invariance
means that only the derivative of � matters. By defining
the variable Z=�1/2� of order 1, �x�=�XZ is also of order
1. Because the natural quantity describing the step is the
slope �x�, the nonlinear evolution equation can be ex-
pected to be highly nonlinear since the usual truncation
in powers of �x� is not legitimate here. Starting from the
full BCF model it is possible to derive the evolution
equation in a consistent manner. In terms of the physical
variable � and the physical quantities x and t this equa-
tion takes the form �Gillet et al., 2000�

�t� = − �x��0
�x�

1 + ��x��2 −
M0�x�

1 + ��x��2� , �3.44�

where � is the step curvature �Eq. �2.59��, and we have
defined

�0 =�F�2/2, M0 = DS�� . �3.45�

This equation is highly nonlinear as suspected from the
above scaling argument. It must be noted that though �
appeared in the scaling of �, the final equation contains
no � and thus no “divergence” is expected when � is
small. After the nonregular expansion that led to Eq.
�3.44�, � scaled out, so that its solution would lead to
behavior not necessarily diverging with �. Note that an
expansion of Eq. �3.44� in powers of � to leading order
yields the terms of Eq. �3.42� derived from phenomenol-
ogy and symmetry.

We introduce the slope m��x�. Differentiating Eq.
�3.44� with respect to x yields

�tm = − �xx� �0m

1 + m2 +
M0

1 + m2�x� �xm

�1 + m2�3/2�� , �3.46�

where we have explicitly used the expression of the cur-
vature �=−��xm� / �1+m2�3/2. Equation �3.46� is some-
what similar to that used in the context of growth on a
high symmetry surface �see Politi et al. �2000� for a re-
view� and proposed as a phenomenological model in-
ferred from numerical simulations. The first term inside
the brackets, m / �1+m2�, is indeed identical to that intro-
duced by others in this context �however, growth on a
singular surface from a beam is quite different from the
present situation where atoms are deposited on terraces
and the step advances in a step flow regime�. The second
part in our equation contains a distinct contribution
from studies on high symmetry surfaces: the prefactor of
the curvature term proportional to 1/ �1+m2�. The pres-
ence of this term destroys the overall picture of coarsen-
ing found on high symmetry surfaces. Instead, dynamics
in the step flow regime exhibit a frozen wavelength and
an amplitude that grows indefinitely over time. We re-
turn to this point later.

The same equation �Eq. �3.44�� is derived in cases of
meandering instability induced by electromigration drift
�Sato et al., 2002�, by the coexistence of two phases close
to the step �Kato et al., 2003�, or by surface reconstruc-
tion �Sato et al., 2003�.

3. Heuristic argument leading to the highly nonlinear equation

Following the same lines as in Sec. III.A, there is an
edifying way to arrive at Eq. �3.44�. In order to adapt the
geometrical model of Sec. III.A to the present case of
vicinal surfaces without desorption, we consider that the
strip is now a terrace between two steps undergoing an
in-phase meander.

Consider a curved part of the step as shown in Fig. 19.
The number of atoms entering the step element CC� of
arclength  s is given by Vn s /�=V x /�, where Vn is
the normal step velocity, V is the step velocity along the
vertical z axis, and  x is the length of CC� along the x
axis. In the one-sided model, step motion results from
incorporation of adatoms from the lower terrace. Mass
conservation applied to the hatched region CC�B�B be-
tween two steps determines the number of atoms enter-
ing the step element CC�,

V x/� = F S + J��x� − J��x +  x� , �3.47�

where  S is the hatched area and J��x� is the total flux
across the BC segment in Fig. 19.  S is written as

 S 	 � x − A�x� + A�x +  x� , �3.48�

where A�x� is the area of the triangle ABC in Fig. 19
and is a function of �x�:

A�x� =
�2

2
cos 
 sin 
 = −

�2

2
�x�

1 + ��x��2 , �3.49�

where 
 is the angle between the z axis and the normal
to the step. In the long-wavelength limit, the local geom-
etry of the terrace is described by ��=� cos 
—the
length of the BC segment in Fig. 19, �—the step curva-
ture, and their derivatives with respect to the arclength s
along the steps. Since the flux J� arises only because of
the change in the local terrace width, we have to leading
order

J� � �s�� � �x��x��2 � A � �x� , �3.50�

which shows that the terms stemming from J� can be
neglected at leading order in Eq. �3.47�. Combining Eqs.
�3.47�–�3.49� and letting  x go to zero, we find

x∆

� � � � � � � � � � �

� � � � � � � � � � �

� � � � � � � � � � �

� � � � � � � � � � �
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FIG. 19. Top view of an element of teracce area between two
steps along ABA�B� and CC� under step meandering.
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V =�F� − �x��F�2

2
�x�

1 + ��x��2� . �3.51�

Once the mean step velocity V̄=�F� is subtracted, we
recover the first �nonequilibrium� term of Eq. �3.44�.

The second term is the classical equilibrium contribu-
tion. As described in Sec. II.B.2.b, diffusion along the
terrace for long wavelengths can be seen as effective
edge diffusion along the step. Using the same formal
expression as Eq. �2.69�, we have

�t�
ED = �x�M�s�� , �3.52�

where step mobility �2.86� becomes

M = DS��/kBT �3.53�

in the present notation and �=�	̃� is the chemical po-
tential. Thus Jeq=−M�s� is the mass current along the
step, with the effective diffusion constant DS�� /a �a re-
fers to atomic length�. After substituting ��

=� /���x��2+1�� and �s��x, the Mullins equation �t�
��xx�, is recovered. In the present problem, full nonlin-
ear dependence of mobility M on step slope �x� must be
maintained, therefore the evolution equation is not pre-
cisely of the Mullins type. We see that the presence of ��

in the mobility is far from being innocuous since it com-
pletely destroys the nature of the dynamics. From Eqs.
�3.52� and �3.53� we can finally write

�t�
ED = �x�DS��x����

1 + ��x��2 � = �x� M0�x�

1 + ��x��2� , �3.54�

which is precisely the second term in Eq. �3.44�. Adding
the destabilizing contribution �3.51� and the stabilizing
contribution �3.54�, we obtain the full highly nonlinear
evolution equation �3.44�.

Note that if allowance is made for line diffusion along
the step, the full equation remains the same except now
the mobility acquires an additional term and reads

M = �DS�� + DLa�/kBT . �3.55�

Interpretation is simple: besides the diffusion that occurs
in a strip of width �� �terrace diffusion�, a line diffusion
occurs on a strip of atomic width of a.

4. Nonlinear meandering dynamics

a. Frozen wavelength

Besides the surprising effect for the scaling of � with �
which led to Eq. �3.44�, step evolution in this model ex-
hibits a perpetual increase in meander amplitude, while
wavelength is frozen at the early stages of dynamics.
Snapshots of the meander are shown in Fig. 20. After
transients have decayed, the pattern wavelength is close
to that of the linearly fastest growing mode �m defined
in Eq. �3.40�.

In the general case with finite attachment-detachment
kinetics on both sides of the step with the kinetic coef-
ficients �±, the dispersion relation in the long-
wavelength limit takes the form �Gillet et al., 2000�

i� = −
1
2
�F�2k2 d+ − d−

� + d− + d+
− ��DS� + DLa�k4,

�3.56�

with the kinetics attachment lengths d±=D /�± defined in
Sec. II.B.4. Within the one-sided limit and with instan-
taneous kinetics from the lower side �a limit which was
considered previously�, this gives d+→0 and d−→�. If,
in addition, we assume no line diffusion, the wavelength
of the most unstable mode is �m, defined in Eq. �3.40�.
This result is appropriate provided that �i� line diffusion
is neglected, �ii� the one-sided limit �only atoms from the
lower terrace attach to the step� is legitimate, �iii� the
attachment kinetics is fast for atoms from the lower ter-
race, and �iv� crystalline anisotropy is ignored. This scal-
ing may be significantly altered if these assumptions are
relaxed. For example, if line diffusion is allowed, Eq.
�3.56� gives

�m = 4����DS� + DLa�/�F�2. �3.57�

If line diffusion is more efficient than terrace diffusion,
then

�m = 4��−1��DLa/�F . �3.58�

The difference between pure terrace diffusion �Eq.
�3.40�� and line diffusion �Eq. �3.58�� lies in the � depen-
dence; it is �−1/2 in the first case and �−1 in the second
one. This difference is not beyond the reach of experi-
ments. Finally we consider another situation where ki-
netic attachment at the step is not instantaneous but
keep the condition that most atoms attach to the step
when they come from the lower terrace �d−�d+�. We
also assume that � is large in comparison to d−. If line
diffusion is negligible then

�m = 4���DS/�Fd−. �3.59�

That is to say, the meander wavelength is independent of
the interstep distance. Conversely, if line diffusion domi-
nates over terrace diffusion, we have

�m = 4���DLa/�Fd−� . �3.60�

This gives the same dependence with respect to � and F
as in the one-sided model �Eq. �3.40��. However, Eq.
�3.40� is obtained with pure terrace diffusion, while Eq.

0 5 10 15 20 25

ζ,
t

x / λ m

FIG. 20. Time evolution of step meandering as found from the
solution of highly nonlinear equation �3.44�, showing that the
wavelength is fixed at early stages.
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�3.60� is based on the assumption that line diffusion pre-
vails. Thus, it would be a priori difficult to discriminate
experimentally between the two situations only from the
� dependence of �m. Other information would be
needed, such as an analysis of the fluctuation correla-
tion, as we saw in the section devoted to equilibrium.

b. Amplitude and shape

We summarize the results originating from the nonlin-
ear evolution equation �3.44�. Numerically, the ampli-
tude is found to grow indefinitely as ��t �Fig. 21�. This
behavior can be understood from a simple analytical ar-
gument.

Because wavelength is frozen, it is appealing to seek a
solution to Eq. �3.44� in the steep slope region by

�s�x,t� = A�t�g�x� . �3.61�

For a large t, A is large and the first term in Eq. �3.44�
dominates

A�tA = �0�xxg/�g��xg�2� = C , �3.62�

where C is a constant. After integration, the result is

A = �2Ct�1/2, �3.63�

which agrees with the numerical solution of Eq. �3.44�.
Integration with respect to x provides us with the profile

g = �2�0/C�1/2 erf−1�4x/�s� , �3.64�

where �s is the width of a slope region. This function
produces a cuspy structure at maximum amplitude in-
stead of the plateau found numerically �Fig. 22�. A pla-
teau is induced by the second stabilizing term in Eq.
�3.44�. In order to deal with the plateau region of width
�0 /2 and meander amplitude of the order of a0t1/2, the
following Ansatz replaces Eq. �3.61� in the plateau re-
gion:

�p�x,t� = B±�t� + h�x� , �3.65�

with B±�t�= ±a0t1/2, where the plus and minus signs refer
to the maxima and minima regions, respectively. After
substitution in the evolution equation �Eq. �3.44��, the
three parameters �0, a0, and �s can be determined. This
Ansatz is in good agreement with the simulation of the

full evolution equation �for more details, see Gillet et al.
�2000��.

We now make some general remarks. Because we are
considering an in-phase mode �i.e., the steps move in
synchronization�, the evolution equation �3.44� takes the
form of a conservation law, �t�+�xJ=0. If the steps do
not move in phase, this form ceases to be valid �Pierre-
Louis, 1997� unless interlayer transport is forbidden. If
allowance is made for an arbitrary phase shift between
successive steps, then dynamics may prove to be much
more complex. Currently some preliminary results have
been published, showing complex dynamics involving to-
pological defect generation and annihilation �Danker,
2007�; see Sec. III.C.8.

5. The effect of elastic interaction on the meander: Modified
nonstandard nonlinear equation

Since the meander amplitude increases with time in-
definitely and the steps become closer and closer, it is
natural to ask whether or not the elastic repulsion be-
tween steps may limit this behavior. The steps are
known �provided that the two terraces adjacent to the
step are identical� to be a location of force doublets
�Marchenko, 1981�. Two steps interact repulsively via
the deformation of the underlying substrate with a law
1/�2, as described by Eq. �2.11�. In order to include the
elastic interaction, the equilibrium concentration �2.60�
has to be modified by including both line tension and the
elastic contribution in the chemical potential �, defined
by Eq. �2.61�. The interstep interaction between modu-
lated steps was first addressed by Houchmandzadeh and
Misbah �1995� and introduced in the study of meander-
ing by Paulin et al. �2001�. We can infer the elastic con-
tribution from the following reasoning. For curved steps
�supposed to be synchronous for simplicity� and in the
long-wavelength limit in which we are interested, we ex-
pect the elastic interaction law to remain the same pro-
vided that the interstep separation � is substituted by the
true distance ��=� / �1+ ��x��2�1/2. Since this distance
changes from one point to another along the step, the
elastic free energy must be written as an integral over an
energy density:
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FIG. 21. Evolution of the meander roughness with time, cor-
responding to Fig. 20.
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FIG. 22. A typical time evolution of the meander of a single
wave in Fig. 20. The step develops plateaus.

1008 Misbah, Pierre-Louis, and Saito: Crystal surfaces in and out of equilibrium: A …

Rev. Mod. Phys., Vol. 82, No. 1, January–March 2010



Felas = 

−�

+�

ds
A
��

2 =
A
�2


−�

+�

dx�1 + ��x��2�3/2. �3.66�

After a functional differentiation of Felas together with
the contribution from line tension, Eq. �2.61�, gives the
chemical potential

� =�	̃� + 3A��/��
2 ��1 + 2��x��2�� . �3.67�

As shown by Paulin et al. �2001�, this expression is iden-
tical to that obtained by Bonzel and Mullins �1996� start-
ing from the usual macroscopic phenomenological free
energy, expressed in terms of the step density ��h�:

Fsurf =
 dS�	0 + 	1��h� + 	3��h�3� , �3.68�

where h is the surface height, dS is a surface element,
and 	0, 	1, and 	3 are constants. The above free energy
was also derived in the section devoted to equilibrium
�see Eq. �2.30�, with �=�h /a�. The new nonlinear equa-
tion for meander profile � can be obtained simply by
substituting the equilibrium part �given in terms of � in
Eq. �3.52�� by the present � �Eq. �3.67� into Eq. �3.44��.
More precisely, the meander evolution equation takes
the form

Vn = �s�−
�Fl2

2
�x�

1 + ��x��2 + M�s�� , �3.69�

where effective mobility is M=M /�1+�x
2 and M is given

�when both terrace and line diffusion are included� by
Eq. �3.55� and � by Eq. �3.67�. The full equation can be
rewritten in terms of the slope m as in the elasticity-free
case �Eq. �3.46��:

�tm = − �xx� m

1 + m2 +
1

1 + C2
� 1

1 + m2 +
C2

�1 + m2�1/2�
 �x��1 + C1�1 + m2��1 + 2m2�

1 + C1
���� , �3.70�

where in order to show a minimal number of indepen-
dent parameters we introduced rescaled variables. C1

=3A / 	̃�2 represents the elastic strength and C2
=DLa /DS� represents the contribution from line diffu-
sion, while space �x and �� and time �t� were rescaled by
ax= �2�DS�+DLa�� /�F�2�1/2 and at=2ax

2 /�F�2, respec-
tively. It is easy to see that Eq. �3.70� reduces to Eq.
�3.46� if C1=0 and C2=0.

While both Eqs. �3.46� �without elasticity, C1=0� and
�3.70� �with elasticity, C1�0� have strong similarities in
their overall structures, they lead to two completely dif-
ferent dynamics. As seen in Sec. III.C.4, in the absence
of elasticity there is a perpetual increase in meander am-
plitude, while wavelength is frozen at a value close to
that corresponding to the fastest growing mode. Inclu-
sion of elasticity leads to dynamics which are drastically
different; coarsening occurs, that is to say, wavelength
increases with time, as shown in Fig. 23�b�. Amplitude
also grows. Step roughness always increases with the
same exponent w� t1/2, exactly as in the elasticity-free

case. However, the wavelength scaling exponent � �or
coarsening exponent�, defined by �� t�, critically de-
pends on the phenomena entering into play. More pre-
cisely, in the pure terrace diffusion regime �C2=0�, �
=0.17±0.02 is found, whereas if allowance is made for
line diffusion �C2�0� �=0.25±0.01. These results are
obtained from the full numerical solution of Eq. �3.70�.
A heuristic argument �see the next section�, as well as a
study based on phase diffusion, allows the capture of
these exponents analytically �Politi and Misbah, 2006�.

6. A heuristic argument for determining the exponents

There is a simple way to derive the above exponents
analytically. The idea is based on the existence of a self-
affine behavior for the meander ��x , t�. The starting
point is the use of the following scaling Ansatz:

� = t!f�x/t�� . �3.71�

We first note that ��0 is unphysical since it would char-
acterize an endless decrease of lateral length scales, in
contradiction with linear stability according to which
there is a short length cutoff �stemming from line stiff-
ness�. In addition, we must exclude the case where �
�! since this would be related to a step smoothening at
long time �the slope would go to zero�, which contradicts
the presence of linear instability. Hence, we must have

! � �� 0. �3.72�

Indeed, the typical slope ���x��2�1/2� t!−� increases with
time in all simulations. For large slopes m=�x�, Eq.
�3.70� behaves as

�tm � − �xx�1/m + m��xxm� , �3.73�

where � is an exponent whose value depends on the
physical mechanisms involved in the smoothening of the
step. With Eq. �3.70� we can check that in the presence
of elastic interaction �C1�0�, we have �=0 for a nonva-
nishing line diffusion �C2�0� and �=−1 for C2=0. Now,
inserting the scaling form �3.71� into Eq. �3.73� and bal-
ancing the term on the left-hand side �lhs� of Eq. �3.73�
with the first term on the right-hand side �rhs� yield the
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FIG. 23. Elastic effects on coarsening. �a� Without elasticity,
C1=0 and C2→� in Eq. �3.70�, the wavelength is frozen. �b�
With elasticity, C1=0.2, endless coarsening is observed.
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following value for the roughness exponent:

! = 1
2 . �3.74�

Balancing with the second term on the rhs of the same
equation leads to

�/! = �2 + ��/�4 + �� . �3.75�

This amounts to �=1/4 when allowance is made for line
diffusion and �=1/6 otherwise. These results are in
good agreement with the direct numerical integration of
Eq. �3.70�. Moreover, this analysis, which allowed extrac-
tion of the dynamics exponents, might be of interest for
the problem of mound formation �Politi et al., 2000�.

In the absence of elastic repulsion between steps �C1
=0�, similar analysis leads to an unphysical result, �
=−1/2. A more detailed analysis indicates the absence
of coarsening �i.e., �=0�, and !=1/2 �Gillet et al., 2000�.

Generalizing the above analysis to an arbitrary power-
law elastic repulsion �1/�n with n�1, the modified ver-
sion of Eq. �3.70� gives �=n−3 for pure terrace diffusion
and �=n−2 in the presence of line diffusion. Equations
�3.74� and �3.75� fix the value of the coarsening exponent
�, but the inequality !�� still holds: no power-law re-
pulsion �1/�n can prevent the shrinking of terrace
widths, although this tendency slows down as n in-
creases. The typical slope m=�x�� t!−� increases accord-
ing to a power law in all cases. This means that the local
interstep distance ���� / �m� tends toward zero. Elastic-
ity does not prevent step crowding forced by the un-
stable meander. The distance between steps decreases
until it reaches a few lattice spacings, below which the
simple algebraic law of elastic interaction may be al-
tered, and other effects such as entropic exclusion,
should be properly taken into account. This question is
not yet resolved and it constitutes an important task for
future research.

7. The effect of anisotropy on the meander: Modified
nonstandard nonlinear equation

This section will deal with the effect of anisotropy on
the meander. We first ignore elastic interactions. Aniso-
tropy is the rule rather than the exception in realistic
crystals. We see that anisotropy leads to interesting new
phenomena, such as interrupted coarsening or tilted cel-
lular structure of the meander �i.e., periodic array of pro-
tuberances that are inclined with respect to the growth
direction�. Since the methodology of the evolution equa-
tion derivation has been previously discussed, here we
focus on the results themselves. Detailed discussions of
the effect of anisotropy on the meander can be found in
Danker et al. �2003, 2004� and Danker �2007�.

There are several sources of anisotropy: line diffusion,
terrace diffusion, line stiffness, etc. First we consider an-
isotropy of the step properties only �line stiffness and
line diffusion�, while terrace diffusion will be introduced
later.

a. Anisotropic step properties

Due to anisotropic line tension and line diffusion, the
boundary conditions to be modified are �i� the equilib-
rium concentration at the step �3.13� expressing the ef-
fect of line tension �, where � is now treated as an an-
isotropic quantity; and �ii� the mass conservation
condition at the step �3.14�, which takes the form

Vn =�D�n̂ · �c�+ + a�s�DL�s����� . �3.76�

We set ��
�=�0A��
� and DL�
�=DL0AL�
�. For defi-
niteness, we adopt �see Fig. 24� a fourfold symmetry
�any other symmetry can be dealt with along the same
lines�:

A�,L�
� = 1 + ��,L cos�4�
 − 
�,L�� . �3.77�

Here 
=arctan��x�� is the angle of the local normal to
step with respect to the z axis, ��,L� �0,1� measures the
strength of the anisotropy, and 
�,L denotes the angle
along which � or DL reaches its largest value.

The linear stability analysis �Danker et al., 2003� pro-
vides us with the fact that the most unstable mode is the
in-phase mode and that the corresponding modulation
wavelength is given by

�m = 4���
̄��DS� + DL�
̄�a�/�Fl2�1/2, �3.78�

where 
̄ is the average orientation of the step. Thus the
wavelength has exactly the same form as in the isotropic
case �Eq. �3.57��, where the anisotropic functions � and
DL are evaluated at 
=0. As discussed in Sec. III.C.1 the
instability occurs however small the incoming flux is. Ex-
traction of the nonlinear equation follows exactly the
same strategy as in Sec. III.C.1. We only provide the
result for the meander evolution �Danker et al., 2003�

�tm = − �xx�0m/�1 + �m�2� − M̃0�
��x�A��
���� ,

�3.79�

where

θ =0 θ =π/4c c

FIG. 24. Fourfold step anisotropy of A� or AL. Top left: A
typical polar plot of an anisotropic function where 
=0 is a
maximum. In 
c, the index c stands for � or L. Bottom left: A
typical picture of the step profile �where the scenario of end-
less growth of the amplitude and frozen wavelength still holds�.
Top right: The function is maximum at an angle 
�0. Under
some conditions the step may temporarily be pinned along the
maximum anisotropy direction, as shown by the dotted lines at
bottom right. �This case may lead to interrupted coarsening.�
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M̃0�
� = M̃0 = �DS�� + DL�
�a��0/�1 + m2�1/2. �3.80�

This gives the same equation as in the isotropic case �Eq.
�3.44��. The difference lies in the dependence of DL and
� on 
.

As seen in Sec. III.C.4, in the isotropic model the
wavelength is frozen at the early stage of dynamics while
the amplitude grows as �t. Due to anisotropy, the system
may first undergo coarsening up to a certain wavelength
beyond which the wavelength is frozen, while the ampli-
tude continues to increase over time as �t. We refer to
this situation as interrupted coarsening. Figure 25 shows
the evolution of the meander as a function of time. The
final wavelength may significantly exceed the value �m
corresponding to the fastest growing mode. Criteria for
coarsening will be discussed later.

The interrupted coarsening scenario occurs for the
type of anisotropy considered here only if 
�,L�
�,L

0 ,
where 
�,L

0 is a critical angle �maximum anisotropy oc-
curs at ±� /4 with respect to the z axis�, and if the
strength of crystalline anisotropy measured by �� ex-
ceeds a certain value. The main physical reason for this
behavior is a balance between diffusion, which tends to
increase amplitude indefinitely �as shown for the isotro-
pic case� leading to increasingly larger slopes, and aniso-
tropy, which tends to pin the structure along ±
�,L

0 �Fig.
24�. Anisotropy triggers these solutions to a certain cel-
lular width � beyond which the gain in diffusion over-
comes the loss in crystalline pinning. Finally, we note
that there is no qualitative difference in the role of stiff-
ness and line diffusion anisotropies, denoted as A� and
AL, respectively. That is to say, both give rise to inter-
rupted coarsening.

b. Symmetry and drift of solutions

The cells of the meander �i.e., periodic array of protu-
berances� are tilted with respect to growth direction be-
cause of anisotropy. Since the step advances, we may
expect the cellular structure to drift sideways. The nu-
merical solution of Eq. �3.79�, however, reveals no drift.
This is a priori rather surprising. Close inspection of Eq.

�3.79� reveals that the evolution equation in terms of
m=�x� enjoys �x�→ �−x� symmetry. The equation in
terms of � enjoys the combined symmetry group �x ,��
→ �−x ,−��. The apparent dilemma is thus resolved.10

Drift occurs, however, when higher-order nonlinear
contributions in the evolution equation are considered.
Indeed, these contributions destroy the above-
mentioned symmetry group. For details see Danker et
al. �2003, 2004� and Danker �2007�.

Finally, it should be noted that loss of parity symmetry
may lead to drift only if the evolution equation is non-
variational or nonpotential; i.e., it cannot be written as
�t�=�x�M�x��F /����, where F is a functional. The physi-
cal reason is obvious and interested readers can find
simple formal proof in Danker et al. �2003�.

c. Terrace diffusion anisotropy

Another important source of anisotropy lies in the dif-
fusion of adatoms on the terraces. The mass current on
the terrace reads

J = − D= � c . �3.81�

Due to anisotropy mass diffusion is represented by a
tensor

D= = �D11 D12

D12 D22
� . �3.82�

Studies �Danker et al., 2003; Danker, 2007� have
shown that this problem can be mapped onto that of the
previous section. Thus, mapping by coordinate transfor-
mation

x̄ = x −
D12

D22
z, z̄ =

D0

D22
z, �̄ = �

D0

D22
, �3.83�

with D0=�D11D22−D12
2 allows transmission of the ter-

race anisotropy into effective step parameters which de-
pend on orientation.

Thanks to the mapping equation �3.83� there is of
course no need to rederive the nonlinear evolution
equation. We only need to refer to Sec. III.C.7.a �more
precisely Eq. �3.79��. This does not mean, however, that
the dynamics will be the same. Indeed the precise de-
pendence of the effective step parameters on anisotropy
originating from terrace diffusion is quite different in
nature from that treated previously. This leads to new
features summarized as follows. �i� Unlike the case
where either step stiffness or step edge diffusion are an-
isotropic, terrace diffusion anisotropy may lead to tilted
meandering ripples because of x and z coordinate mix-
ing in the transformation �3.83�. �ii� If the fast diffusion
axis is perpendicular to the steps, the instability is
weaker �i.e., longer time scales and longer wavelengths
are obtained� and does not exhibit coarsening. �iii� If the
fast diffusion direction is along the steps, the instability

10In principle, spontaneous parity symmetry breaking may oc-
cur �Misbah and Valance, 1994�, but this scenario has not been
observed so far for step meandering.

FIG. 25. A snapshot of a typical pattern when allowance is
made for anisotropy �Eq. �3.79��. Interrupted coarsening may
take place. Here we show the case where steps are stabilized
by anisotropic line diffusion and isotropic line tension. We
have chosen A��
�=1 and AL�
�=1+0.92 cos�4�
−� /4��.
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is stronger, and interrupted coarsening is found. �iv�
When anisotropy is very strong, the instability is weaker
for most orientations except if the fast diffusion axis is
almost perfectly aligned with the steps. For more details
see Danker et al. �2003� and Danker �2005�.

8. Two-dimensional meandering dynamics

Hitherto, the steps were supposed to move in phase
�in a synchronized fashion�. When this assumption is re-
laxed, several interesting features are revealed. Each
step has its own dynamics and is coupled to its neighbors
by a diffusion field and elasticity. Although the linear
stability analysis shows that the in-phase mode prevails,
the subsequent nonlinear evolution leads generically to
defects �Fig. 26�. The defects correspond to a phase shift
jump between successive steps. These are topological
defects. The dynamics of these coupled nonlinear equa-
tions has been investigated partially �Danker, 2007�. The
qualitative novelty is the occurrence of slow coarsening
�most likely logarithmic� of the meander wavelength due
to the drift and annihilation of topological defects of
opposite signs. Furthermore, if the in-phase motion as-
sumption leads to a frozen wavelength �if elastic interac-
tions are disregarded�, the allowance for arbitrary phase
shifts �thus allowing for the generation of topological
defects� seems to trigger coarsening. This problem con-
stitutes an interesting area for future investigations.

D. Nonequilibrium line diffusion: Kink ES effect

In several systems, such as Cu surfaces �Giesen-
Seibert et al., 1995�, the experimental study of equilib-
rium fluctuations proved that diffusion of mobile atoms
along steps plays a major role. Here, we discuss the ef-
fect of line diffusion on the surface morphology during
growth.

The nonequilibrium dynamics of the steps may be de-
scribed by a model for kink motion along the steps. The
main idea is the following: During growth, the step ES
effect—asymmetry in attachment kinetics at the steps—
was shown to lead to stabilization �as opposed to step
bunching� of vicinal surfaces by Schwoebel �1969� �see
Sec. IV.A.1�. Moreover, it was also shown to lead to the
destabilization of nominal surfaces �i.e., by creating is-

lands� by Villain �1991�. It is therefore expected that the
kink ES effect—asymmetry of attachment of mobile
step atoms to kinks—also leads to the stabilization of
vicinal steps and to the destabilization of nominal steps
during growth. From the analogy with the case of sur-
faces, a vicinal step is a step which has a slight misorien-
tation with respect to a high symmetry orientation, and a
nominal step is a step lying along a high symmetry ori-
entation. Here we discuss some ideas which have been
put forward regarding the ES effect at the kinks �i.e.,
along the steps and not along the vicinal surfaces�. It has
been suggested that this may lead to step instability in
the form of meandering. In order to be able to translate
known results on step dynamics to the case of kink dy-
namics, there is a prerequisite: the distance between
kinks should be large enough, i.e., much larger than
atomic distance so that the kinks are well-separated en-
tities. This is not the case at high temperatures �due to
thermodynamic roughening� or during fast growth �due
to kinetic roughening� or for some step orientations
where the kinks may be very close to each other.

During growth, the main processes are as follows. At-
oms from an atomic beam or a vapor land on the ter-
races and become adatoms. These adatoms diffuse and
may reach the steps. If the kink density is low enough,
they attach to the steps somewhere between kinks and
become mobile step atoms. Mobile step atoms may ei-
ther detach and go back to the terrace or diffuse along
the step and attach to a neighboring kink. Kink motion
therefore results from the incorporation of mobile step
atoms. Hence, kink dynamics are very similar to step
dynamics expect that kinks have no lateral length.
Aleiner and Suris �1992� were the first to notice that
kink dynamics during growth have an effect on step sta-
bility. As expected, they showed that vicinal steps are
stabilized during growth in the presence of a normal
kink ES effect �i.e., attachment is more difficult for a
mobile step atom moving around the kink�. It was then
pointed out by Murty and Cooper �1999� and Pierre-
Louis et al. �1999� that the kink ES effect also leads to
destabilization of nominal steps. We now mention the
main components of the models. In the presence of a
mass flux JL along the step, mass conservation at the
step takes a generalized form of Eq. �2.66�:

�1/� + c− − c+�Vn = n · J+ − n · J− − �sJL, �3.84�

where J± are fluxes from both terraces, as defined in Eq.
�2.57�. Flux along the step JL consists of two contribu-
tions. First is an equilibrium one driven by the chemical
potential gradient �Eq. �2.68��. The second contribution
is stabilizing from the stochastic nucleation process
�Politi and Villain, 1996�. It was found that �Politi and
Villain, 1996; Pierre-Louis et al., 1999�

JL
k ES =

Fs

2

�1 − �m��Ls

�1 + Ls��m� + 1/Lc��
m

��m� + 1/Lc�
, �3.85�

where m=�x� and �m��1. Fs is the accretion flux of ada-
toms onto steps, Lc is a cutoff length related to 1D
nucleation by aggregation of mobile atoms on the steps,
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FIG. 26. Snapshot of a train of unstable steps. Solution of the
coupled highly nonlinear evolution equations �Gillet, 2000;
Danker, 2005, 2007�.
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and Ls is the Schwoebel length �a typical excursion
length before overcoming an ES barrier�. Incorporating
the flux �3.85� in the mass conservation condition �3.84�
reproduces the expected stability or instability of the
steps with respect to meandering. A detailed study �Ru-
sanen et al., 2002� based on kinetic Monte Carlo simula-
tions revealed that the shape of the meander is consis-
tent with the nonlinear theory developed for mound
formation by Politi et al. �2000�.

By continuously changing the step orientation from
nominal to vicinal, the morphological stability of the
step may be changed. This transition was studied by
Pierre-Louis et al. �1999�, where it was shown that fluc-
tuations play an important role. The literature also
points out that the stability of vicinal surfaces with re-
spect to mound formations is always metastable �Politi
and Krug, 2000; Kallunki and Krug, 2004; Vilone et al.,
2005�. Kallunki and Krug �2004� reported that at a small
enough ES effect the vicinal surface is stable. This does
not seem to agree with other results. Metastability
means that a surface may be stable with respect to small
fluctuations, but after some finite time a large fluctuation
may occur, initiating instability. These studies were not
explicitly extended to the case of vicinal steps, and this
question remains open.

A more surprising effect is the possibility of inducing
mound formation or step bunching from the kink ES
effect. For simplicity, we assume that no step ES effect is
present. It is then shown in Fig. 27, that line diffusion
may lead to a mass flux along vicinal surfaces �Murty
and Cooper, 1999; Pierre-Louis et al., 1999�. Since line
diffusion is stabilizing against the meander, the flux is
uphill, as seen in Fig. 27. If it is destabilizing, the flux is
downhill. This effect is not specifically related to the
kink ES effect. Indeed, any line diffusion mechanism,
stabilizing or destabilizing, may lead to an average mass
flux along vicinal surfaces. As shown in Sec. V, this flux
may then induce various instabilities.

A calculation of the flux induced by a kink ES effect
obtained using kinetic Monte Carlo �KMC� simulations
is given by Murty and Cooper �1999�. It was shown that
these mass fluxes can lead to mound formation �Murty

and Cooper, 1999; Pierre-Louis et al., 1999�. They can
also lead to step bunching �Politi et al., 2000� or to step
meandering �Nita and Pimpinelli, 2005�.

E. Simulations of the meander instability

Three main questions have been addressed by means
of KMC simulations. �1� Can the behavior expected
from the analytical study in the nonlinear dynamics be
reproduced �Bena et al., 1993�? Specifically, can the spa-
tiotemporal chaos related to the KS dynamics in the
presence of desorption and the power-law increase of
amplitude t1/2 in the absence of desorption be observed
�Pierre-Louis et al., 1998�? �2� How do the different
mechanisms for instability �ES effect vs kink ES effect�,
as well as the stabilizing processes �terrace or edge dif-
fusion�, compete or combine during the dynamics? �3�
When and how may mounds be formed on a surface
which undergoes a meandering instability?

1. Dynamics of the amplitude

Shortly after the derivation of the KS equation for a
single step �Bena et al., 1993�, chaotic dynamics of the
KS instability were rapidly confirmed by KMC simula-
tions �Saito and Uwaha, 1994� using a terrace-step-kink
model, where overhangs are forbidden. Recently the full
solution of the step model with the help of a phase-field
model also confirmed chaotic dynamics �Pierre-Louis,
2003a�. Using a terrace-step-kink model once again, but
without desorption, the expected t1/2 scaling law of the
meandering �without interactions� was found by Pierre-
Louis et al. �1998�. Subsequent simulations did not show
this result and no general scaling law applies �Kallunki et
al., 2002�. These results point to the fact that it is difficult
to reach the asymptotic t1/2 scaling law; since the ampli-
tude of the meander becomes large while the wave-
length is fixed, the distance between steps reaches the
atomic scale. Within this limit a BCF-type model should
be revised to evoke microscopic dynamics and interac-
tions that should prevent steps from coming too close
together. This issue should be clarified further in the fu-
ture.

2. Competition between the different mechanisms

The exponent ! for the growth of the meanders in the
case of kink ES instability has been found to depend on
the model. For example, Pierre-Louis et al. �1999� found
that !	0.3 for the weak kink ES effect led to rounded
shapes with cusps and !	0.6 for the strong kink ES
effect gave zigzag shapes. On the other hand, a more
systematic study by Rusanen et al. �2001, 2002� in the
regime of strong kink ES effect showed that !	1/3,
with a shape transition from zigzag in the early stages to
rounded with cusps in the late stages. Moreover, the
shape of the meander and the meandering wavelength
from KMC simulations were shown to be in agreement
with the continuum theory previously presented �Ru-
sanen et al., 2002�. It was further found �Kallunki et al.,
2002� that the amplitude of the meander in KMC simu-

Uphill

Downhill

FIG. 27. �Color online� During growth on a vicinal surface,
atoms from a molecular beam land on terraces and become
adatoms. Adatoms diffuse on the terrace up to a step and be-
come mobile step atoms. Mobile step atoms diffuse along
steps. If line diffusion is stabilizing, mobile step atoms diffuse
toward the concave parts of the steps �as shown with arrows�,
thereby creating an uphill mass flux.
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lations seems to saturate �i.e., !=0� for the kink ES ef-
fect instability while it increases linearly �i.e., !=1� for
the step ES effect instability. The difference in the
asymptotic behavior in different simulations may be
caused by large meandering amplitudes, leading to large
surface slopes where the meaning of step and terrace
structures may be lost. Complete understanding of the
dynamics in these high slope regions �which were shown
to control asymptotic behavior; see Sec. III.C.4.b�, is still
lacking.

Finally, although asymptotic dynamics are not well un-
derstood, the meandering wavelength from the KMC
simulations was shown to be in good agreement with
continuum models for both kink ES effect and step ES
effect �Kallunki et al., 2002; Rusanen et al., 2002�.

3. Nucleation and mound formation in the presence of
meandering instability

Up to now we have considered growth on vicinal sur-
faces in the absence of nucleation on terraces. The as-
sumption which lies behind this regime is the fact that
steps are not too far apart so that adatoms, which land
and diffuse on terraces, will most probably find a step
and attach to it before meeting another atom. It is natu-
ral to ask whether or not—even when it is rare—
nucleation may ultimately lead to the formation of
mounds, and if so, how would this couple to the mean-
dering instability. The study of mound formation within
a one-dimensional model for the growth of vicinal sur-
faces has been addressed �Rost et al., 1996; Vilone et al.,
2005�. The main conclusion is that step flow is meta-
stable �Vilone et al., 2005� with respect to the formation
of mounds. Indeed, there is a critical size of the mound
above which its growth is fast enough to prevent being
erased by steps coming from uphill in the vicinal. So, if
statistical fluctuations lead to the formation of a mound,
whose size surpasses the critical size, the mound will
grow indefinitely. Further studies have shown that
mounds may form in the presence of meandering insta-
bility �Rost et al., 1996; Kallunki et al., 2002; Rusanen et
al., 2002�. Nevertheless, the precise coupling between
the two instabilities, such as the existence of a preferred
location for nucleation events on a vicinal surface exhib-
iting meanders, needs further clarification. Another
mechanism leading to the breakdown of the vicinal char-
acter of surfaces may be triggered by the meandering
itself. Indeed, KMC simulations �Kallunki and Krug,
2004� have shown that the meander leads to the forma-
tion of two-dimensional voids behind the step. These
voids then grow in depth as other steps pass through,
leading ultimately to pits, as discussed by Pierre-Louis
and Misbah �1998a�.

F. Experiments

Several methods, such as x-ray diffraction, have been
used to probe surfaces in and out of equilibrium �Vlieg
et al., 1988; Robinson and Tweet, 1992; van der Vegt et
al., 1992; Conrad, 1996�. Unlike fluctuations at equilib-

rium �Sec. II� and bunching �Sec. IV�, quantitative ex-
perimental data on meandering are rather sparse. This
issue merits greater attention in the future since x-ray
diffraction itself lends naturally to ensemble average and
thus to a more adequate comparison with the theoretical
description.

We focus here on a few experimental studies of step
meandering performed on metals or semiconductors
during growth. The most systematic work concerns the
study of growth on vicinal surfaces of Cu�100�; see Fig.
28. The instability was first identified by means of
helium-atom beam scattering �Schwenger et al., 1997�,
but the most systematic analysis was performed from
direct imaging with STM �Maroutian et al., 2001�.

The main results can be summarized as follows. �i�
Scaling of the wavelength with temperature and incom-
ing flux seems to disagree with the prediction of the
Bales-Zangwill instability �such as the typical wave-
lengths �3.57�–�3.60��, and to be in qualitative agreement
with the instability due to an ES effect at the kink. The
experimental results of Maroutian et al. �2001� indicated
that the observed wavelength scales as �F−0.21. The step
Schwoebel effect leads to a wavelength �F−0.5 for all
cases discussed in Sec. III.C.4.a. In the case of an insta-
bility induced by a kink Erhlich-Scwoebel effect �Pierre-
Louis et al., 1999�, the initial wavelength can be derived
from an analogy with mound formation models in 1+1
dimensions. A strong or weak kink Scwhoebel effect
would thus lead to a wavelength �F−1/4 �Krug, 1997� or
�F−3/8 �Politi and Villain, 1996�, respectively. However,
a more careful analysis and identification of the relevant
stabilizing mechanism are still needed before a conclu-
sive answer can be given. Indeed, it is still unclear if the
stabilization is due to the cost of the meander in step
free energy or rather to the 1D nucleation process that
occurs along steps. �ii� So far, no measurable change of
wavelength as a function of time has been observed on
this system. This may suggest that coarsening is absent
and the system should select a length scale.11 If the mini-

11As discussed in Sec. III.C.8, however, the presence of topo-
logical defects may affect coarsening and render it extremely
slow.

(b)(a)

FIG. 28. �Color online� Step meandering during MBE growth
on �a� Cu�1,1,17� and �b� Cu�0,2,24�. From Maroutian et al.,
2001.
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mal model of BCF is adopted and instability is taken to
be due to the ES barrier at the step, then on the basis of
Sec. III.C.5 we may speculate that elastic interactions
between steps may affect dynamics. This is based on the
study according to which elastic interactions trigger
coarsening �see Sec. III.C.5�. However, due to the fact
that the instability wavelength does not follow the ex-
pected scaling with the flux �as obtained by Bales and
Zangwill; Eq. �3.40��, we refrain from taking this conclu-
sion as granted. It is clear that further analyses will be
needed before drawing conclusive answers. �iii� The am-
plitude of the wave modulation grows as a power law
but seems to be closer to t1/3 than to t1/2. As mentioned,
this is still a formidable task for both theory and simu-
lations. A kinetic Monte Carlo simulation which could
account accurately for high slopes �including facets other
than �100�� would be very useful. �iv� Mounds appear in
the late stages of the instability, as expected from Sec.
III.E.3.

Other experiments were carried out on Si�111� sur-
faces �see Fig. 29�b��. For temperatures lying in the vi-
cinity of the transition �11�↔ �77�, meandering is
observed �Hibino et al., 2003�. The instability is inter-
preted as being due to an effective step Ehrlich-
Schwoebel effect induced by the partial �77� recon-
struction of the terrace on the upper side of the steps,
which locally modifies the diffusion constant �Hibino et
al., 2003�. This induces asymmetry in the step attach-
ment. Other observations of meandering in the form of
a zigzag pattern on Si�111� surfaces were reported by
Omi and Ogino �2000�, as shown in Fig. 29�a�.

IV. STEP BUNCHING

In this section we consider another type of instability
of nonequilibrium surfaces: step bunching. We consider
a situation where a surface with a step train is exposed
to an external flux F but adsorbed atoms may desorb
with a desorption time �. Many different mechanisms
are known to produce step bunching. We consider spe-
cific ones in detail: bunching induced by the Ehrlich-
Schwoebel effect during sublimation, by electromigra-
tion, and by elasticity in heteroepitaxy.

It must be emphasized that there are many other

physical ingredients that may lead to step bunching but
will not be discussed here. We believe, however, that
their nonlinear description should enter one of the
classes presented in this section. To cite just a few ex-
amples, step bunching also occurs �i� by surface contami-
nation �van den Eerden and Müller-Krumbhaar, 1986;
Kandel and Weeks, 1992�, �ii� due to nonquasistatic ef-
fect �Keller et al., 1993; Ranguelov and Stoyanov, 2008�,
�iii� in the presence of several species at the surface
�Wheeler et al., 1992; Vladimirova et al., 2001�, �iv� as a
result of the coupling between composition and elastic-
ity �Duport et al., 1995; Tersoff, 1996�, and �v� due to
oscillations of macroscopic fields �Derényi et al., 1998;
Pierre-Louis and Haftel, 2001�.

A. The Schwoebel instability

1. The instability mechanism

Here we recall the Ehrlich-Schwoebel �ES� effect dis-
cussed in Sec. II.B.2.b. This corresponds to an asymmet-
ric attachment at the step. This asymmetry was discov-
ered experimentally by Ehrlich and Hudda �1957� and
analyzed theoretically by Schwoebel �1969�. Under non-
equilibrium conditions, this asymmetry induces a net
mass flux, which may be either uphill or downhill. This
depends on whether the surface is under growth or sub-
limation. A step-bunching instability under sublimation
was discovered by Schwoebel �1969�.

For simplicity, we often consider the extreme case
where there is no interlayer mass transport. This is the
“one-sided model,” where adatoms only attach or de-
tach from the lower terrace. During sublimation a step
emits atoms onto the terrace in front. The number of
emitted atoms increases with the terrace size. This
means that the wider the terrace, the faster the step re-
cession. This explains the step-bunching instability.

Consider a train of steps during sublimation, where
the terrace width is � for all terraces, except one which is
narrower �Fig. 30�a��. Atoms detached from the step de-
sorb into the atmosphere after a lifetime �. If the terrace
in front of the step is narrow �the second step from the
left in Fig. 30�a��, a detached adatom may reattach to the
original step and be reincorporated. Therefore, its re-
traction speed is slower than that of the others. Since the
step at the front end of the narrow terrace �the third step
from the left� recedes faster, two steps approach each
other: bunching instability follows. How the instability
evolves in the nonlinear regime is a question which will
be addressed later.

Had we considered growth instead of sublimation, we
would have seen the reverse situation. Indeed, the nar-
rower terrace �that now moves to the right in Fig. 30�b��
will get fewer landing atoms attaching to the step delim-
iting the wide terrace on the left side. That step would
then move more slowly than the others, causing the nar-
row terrace to expand. The vicinal surface is stable. In
short, a vicinal surface is unstable regarding step bunch-
ing under sublimation and is stable under growth. This
scenario is valid as long as a direct ES effect �mass ex-

(b)(a)

FIG. 29. �Color online� STM images of step meander on
Si�111�. �a� From Omi and Ogino, 2000. �b� From Hibino et al.,
2003.

1015Misbah, Pierre-Louis, and Saito: Crystal surfaces in and out of equilibrium: A …

Rev. Mod. Phys., Vol. 82, No. 1, January–March 2010



change between a step and its adjacent lower terrace is
predominant� is assumed. If the opposite is adopted �an
inverted ES effect�, the result will be just the reverse:
stability under sublimation and instability under growth.

2. One-dimensional step model

We consider a simple 1D one-sided model under sub-
limation. Adatoms diffuse and may desorb after a char-
acteristic time �. We first disregard deposition �F=0�.
The diffusion equation �2.73� becomes

D�zzc − c/� = 0. �4.1�

We assume fast step kinetics ��+→�� together with an
infinite ES barrier ��−=0�. It follows from Eqs. �2.57�
and �2.74� that

�zc− = 0, c+ = ceq
m , �4.2�

where " and � refer to the lower and the upper sides of
the step, respectively. The first equation expresses a zero
flux across a descending step �one-sided attachment�,
while the second equation corresponds to equilibrium
on the ascending side �rough steps�. The local equilib-
rium concentration ceq

m at the mth step contains a contri-
bution from the elastic step-step interaction, Felas

�A /�m
2 +A /�m−1

2 �nearest-neighbor approximation�.
Here A is the strength and �m=zm+1−zm and zm are the
terrace width and position of the mth step, respectively.
The chemical potential �m is obtained by taking the
functional derivative of Felas with respect to zm instead
of � in Eq. �2.61�, and using Eq. �2.60� the following is
obtained:

ceq
m = ceq

0 �1 + A�1/�m
3 − 1/�m−1

3 �� , �4.3�

where we have defined the elastic volume as A
=�A /kBT.

Assuming �c�1, mass conservation at the steps
reads

Vm � �tzm =��D�zc+�m. �4.4�

The model presented above can be solved explicitly and
the step velocity can be expressed as a function of the
position of the neighboring steps,

Vm = − ��ceq
m xs/��tanh��m/xs� , �4.5�

where xs= �D��1/2 is the desorption length �Eq. �2.87��.
Note that the elastic effect is hidden in ceq

m .

3. Linear stability analysis

In order to perform the linear stability analysis we
define the deviation �m from the regular step flow mo-

tion with average velocity V̄:

zm = m� + V̄t + �m. �4.6�

This expression is substituted into Eq. �4.5� and ex-
panded for small �. At leading order �i.e., for �=0�, we
obtain the step velocity of a uniform train:

V̄ = − ��ceq
0 xs/��tanh��/xs� . �4.7�

Then the well-known BCF result �Burton et al., 1951� is
found.

To first order in �, we find

�̇m = ane��m − �m+1� − aeq�2�m − �m+1 − �m−1� , �4.8�

where we have set ane=−�V̄ /��= ��ceq
0 /��cosh−2�� /xs�

�0 and aeq=3��ceq
0 /��tanh�� /xs�Axs /�4�0. The first

term on the right-hand side of Eq. �4.8� represents the
nonequilibrium contribution due to diffusion, while the
second term corresponds to the part representing the
elastic stabilizing effect. Note also that the first term
contains only a contribution from steps m and m+1.
This is a consequence of the one-sided model: the dy-
namics of step m depend only on the diffusion field in
front. Unlike the nonequilibrium part, the equilibrium
contribution involves step m−1 since it originates from
the elastic interaction. We also see that the first term is
destabilizing whereas the second is stabilizing �because
the elastic interaction is repulsive�.

As in the sections devoted to equilibrium fluctuations,
we define the Fourier transform and its inverse as

(a)

(b)

m m+1m−1

m−1 m m+1

FIG. 30. �Color online� Consequences of the ES effect on the
stability of a train of steps. The arrows represent the step ve-
locities, which are proportional to the downhill terrace width.
The dotted line indicates the motion of the steps. For both �a�
and �b�, we have plotted the steps and their velocities for an
initial configuration where one terrace is larger than the oth-
ers. Below, the steps are shown at a later time, having sub-
tracted step motion of the unperturbed surface for the sake of
clarity. �a� During sublimation, the wider terrace becomes in-
creasingly wider resulting in step-bunching instability. �b� Dur-
ing growth the opposite is obtained �see text� and the surface is
stabilized.
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��� =
 dt�
m

e−i�t−im��m�t� ,

�4.9�

�m�t� =
 d�

2�

 d�

2�
ei�t+im����,

where �m�t� is decomposed into Fourier modes ���. In a
linear regime, Fourier modes are decoupled, so it is suf-
ficient to consider a single mode �m�t�=��� exp�i�t
+ i�m�. The variable � corresponds to a phase shift be-
tween steps and �=2� /N represents a perturbation with
a spatial periodicity N. Hence, �=� corresponds to the
formation of step pairs �N=2�. This is a short-
wavelength mode. �=0 corresponds to a global transla-
tion of the train. Modes with �→0 correspond to long-
wavelength ��=2�� /��1� perturbations along the ẑ
direction.

By defining i�=Re�i��+ i Im�i��, we can write

ei�t+im� = eRe�i��teim��, �4.10�

where m�=m−Vphaset with Vphase=−Im�i�� /�. A posi-
tive Re�i�� indicates instability. Im�i�� accounts for the
propagation of the perturbation at velocity Vphase.

Taking the Fourier transform of Eq. �4.8�, we obtain

i� = �ane − 2aeq��1 − cos �� − iane sin � . �4.11�

Since there is instability if Re�i���0, it occurs if ane
�2aeq. Using the expressions of ane and aeq given above,
this condition reads

r � �3/3A�xs/��sinh�2�/xs�� 1. �4.12�

When r�1, the train of steps is stable. The most un-
stable mode �maximum growth rate Re�i��� is the pair-
ing mode �=�.

Actually, a distinction must be made between two sce-
narios:

�i� The weak desorption limit where xs�� and r
	�3 /6A. From a dimensional analysis �Houch-
mandzadeh and Misbah, 1995� it is to be expected
that A�Ea3 /kBT, where E is the Young modulus
of the solid and a is an atomic length. Using typi-
cal values �E�1010 Pa and a�Å�, we obtain A
�1 Å3��3. Therefore, the instability condition
r�1 is safely satisfied: the train of steps is un-
stable for sufficiently weak desorption rates.

�ii� For high desorption rates xs��, we have r�1
and the uniform train is stabilized �the denomina-
tor in Eq. �4.12� dominates�. Atoms detaching
from a step will most probably desorb to the at-
mosphere before reaching another step, and the
desorption acts as a short circuit preventing steps
from “attraction” via the diffusion field, qualita-
tively described in Sec. IV.A.1. Steps then only
interact via �repulsive� elastic distortion, which
stabilizes the train.

It must be remembered that for silicon experiments are
performed in the limit xs�� �case �i��, therefore the

condition r�1 is unlikely. Note that the one-sided
model �strong ES effect� assumption is still controver-
sial. The experimental study of step bunching in the
presence of electromigration has proven to be clearer
and has given rise to an interesting interaction between
experiments, theory, and simulations. Note that, as dis-
cussed in Sec. V, the Schwoebel instability can also be
understood within a macroscopic picture.

4. Interlayer exchange

At high enough temperatures where sublimation
takes place and steps recede, the ES barrier is usually
not strong enough to prevent interlayer mass transport.
It is thus essential to set a finite barrier so that interlayer
exchange becomes permissible. With a finite �− but infi-
nitely fast incorporation �+=�, Eqs. �2.57� and �2.74�
yield the following boundary conditions:

c+ = ceq, �4.13�

D�zc− = �−�c− − ceq� . �4.14�

As seen, these relations introduce a kinetic attachment
length d−=D /�− that an adatom has to travel on average
before it descends a step. Mass conservation at a step
now reads

Vm/� =�D�zc+�m −�D�zc−�m. �4.15�

As in the previous section, the model can be solved ex-
plicitly. We defer presentation of the explicit solution in
favor of some qualitative discussion. Quantitatively al-
lowing for interlayer mass transport changes the dynam-
ics close to the instability threshold. Indeed, surface dif-
fusion across the steps becomes an efficient channel to
stabilize the vicinal surface at short scales. To demon-
strate this, consider two simple linear models where step
evolution is dictated locally by a chemical potential dif-
ference �m. In the first model �referred to as model A,
according to the traditional nomenclature�, no interlayer
transport is allowed. The terraces exchange mass only
with a three-dimensional phase �a reservoir�. Therefore,
the rate of detachment of adatoms from the mth step is
�mGA

m, where GA
m is a given function of the neighboring

terrace widths. Consider the other extreme limit, model
B, where only interlayer mass transport is allowed. The
mass flux from the mth to the �m+1�th step is given in
this case by ��m+1−�m�GB

m. For the two models we have

model A: Vm = − �mGA
m ,

�4.16�
model B: Vm = ��m+1 − �m�GB

m − ��m − �m−1�GB
m−1.

Due to translational invariance, a shift of all steps by the
same distance does not change the chemical potential.
From this, and by taking into account nearest-neighbor
interaction, the chemical potential assumes the following
form in the linear regime:
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�m 	 − ��m − �m−1�H = − ��m+1 − 2�m + �m−1�H ,

�4.17�

where H is a function of the average terrace width �. It
follows that the step velocity is given by

model A: Vm = HGA 2�m, �4.18�

model B: Vm = − HGB 4�m, �4.19�

where GA and GB correspond to GA
m and GB

m evaluated
at a value �. We have defined  2�m=�m+1−2�m+�m−1 and
 4�m= 2� 2�m�. Models A and B depict two basic relax-
ation processes for one-dimensional vicinal surfaces. If
the variations of � are smooth on the scale of �, the finite
difference operators  2 and  4 can be approximated by
partial derivatives �yy and �yyyy, respectively �see Fig. 9
for the coordinate axes�. The usual diffusion �or
Edwards-Wilkinson� and �linearized� Cahn-Hilliard �or
Mullins� equations result. From Eqs. �4.18� and �4.19�,
the dispersion relations are obtained:

model A: Re�i�� = − 2�1 − cos����H���GA��� ,

�4.20�

model B: Re�i�� = − 4�1 − cos����2H���GB��� ,

�4.21�

and Im�i��=0. At long wavelength �→0, Re�i���−�2

is found in model A and Re�i���−�4 in model B.
Therefore, for long enough wavelengths �i.e., �2

#GA��� /GB����, the nonconserved contribution �model
A� always dominates. Nevertheless, we must remember
that at short wavelengths �i.e., ��O�1�� the balance be-
tween the two contributions depends on the precise mi-
croscopic components of the model.

Now, consider the specific case of the step flow model
�steps recede due to a net surface desorption� with inter-
layer exchange as introduced at the beginning of the
present section. The step velocity of a uniform train is
modified from Eq. �4.7� to

V̄ = −
�ceqL
�

d− + 2L
d− + L

�4.22�

with the cutoff length

L = xs tanh ��/xs� 	 min��,xs� , �4.23�

which has the same form as that introduced in Eq. �3.10�.
The dispersion relation reads �following from the analog
of Eq. �4.5� after including the ES effect�

Re�i�� = 2��ceq
0 d−

2�
��B − V̄

A

�4��1 − cos ��

− 4�ceq
0 DB

A

�4L
�1 − cos ��2,

�4.24�
Im�i�� = i sin ���V̄ ,

where

B = 1/�1 + d−/L� . �4.25�

The coefficient B which multiplies the diffusion constant
D in Eq. �4.24� accounts for the kinetic slowing down of
adatoms diffusing across the steps: the steps introduce
an extra barrier to surface diffusion.

The dispersion relation �4.24� has the generic form

Re�i�� = a2�1 − cos���� − a4�1 − cos����2, �4.26�

with a4�0. This dispersion relation is a combination of
models A and B introduced above. This form arises
whenever the step velocity is a function of the nearest-
and next-nearest-neighboring step positions and when
the basic state �i.e., the uniform vicinal surface� pos-
sesses translational invariance.

From the behavior of Re�i�� as plotted in Fig. 31, the
results of the linear stability can be summarized in the
following three categories:

�i� If a2�0, the train of steps is stable �the lowest
curve in Fig. 31�. Stabilization is most efficient for
the pairing mode �=�. The typical time for stabi-
lization of the pairing mode is ts=−2� /

�Re�i����=�. It is expressed as

ts = �/�2a4 − a2� . �4.27�

The mode �=0 is always marginally stable since
Re�i��=0. This is traced back to the transla-
tional invariance of the uniform train and cor-
responds to a global shift of the train.

�ii� If 0�a2�2a4, there is a range 0����c of un-
stable modes �i.e., Re�i���0�, as shown by the
middle curve in Fig. 31. �c and the most unstable
mode �m are calculated by

�c = arccos�1 − a2/a4�, �m = arccos�1 − a2/2a4� .

�4.28�

The typical time for the appearance of the insta-
bility is tm=2� /�Re�i����=�m

. We find

tm = 2�4a4/a2
2. �4.29�

( iii )

( ii )

( i )

0 1 2
φ/π

-5

0

5

R
e[

iω
]

FIG. 31. The dispersion relation �4.26� for the three different
cases: �i� a2�0, �ii� 0�a2�2a4, and �iii� a2�2a4.
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�iii� When a2�2a4, all modes are unstable, as shown
by the top curve in Fig. 31. The most unstable
mode is �=�, with

tm = �/�a2 − 2a4� . �4.30�

The linear analysis provides us with information on the
initial stability or instability against small perturbations
and on typical time and length scales that are likely to
grow first. Because a4�0, a fact which is related to the
stabilizing effect of the elastic interactions with A, the
instability occurs at long wavelengths �small �� in the
vicinity of the instability threshold �where a2 is small�.
This result introduces a small parameter �� that ren-
ders a systematic nonlinear expansion possible. Next we
analyze the nonlinear evolution.

5. The Benney equation: A compromise between solitons and
spatiotemporal chaos

Following the same lines as in Sec. III, we perform a
systematic nonlinear expansion which allows derivation
of simplified nonlinear equations from the initial full
BCF model. This task will also allow us to put dynamics
into a more general context.

The first step consists of identifying the spatial and
temporal scales in the vicinity of the instability thresh-
old. Since the distance to the instability threshold van-
ishes when a2=0, we define a small parameter

� = a2/a4 �4.31�

around the threshold, with a2�0. Then, from Eq. �4.28�,
the relevant mode for the bunching dynamics has a
phase shift of ���m��c��1/2 with a characteristic
time scale given by Eq. �4.29�. Hence, the spatiotempo-
ral scales at which the instability develops follow the
scaling

t � 1/Re�i�� � �−2, �4.32�

m � 1/�� �−1/2. �4.33�

Therefore, we expand the model equation with a finite
ES barrier using Eqs. �4.32� and �4.33� together with the
Ansatz

�� �$. �4.34�

We then take the same general scaling arguments devel-
oped for meandering and look for the largest value $c of
$ for which nonlinearities enter into play. We find $c
=1 �i.e., ���� and the evolution equation reads at lead-
ing order in �,

�t�m = ���V̄� 1�m − a2 2�m − a4 4�m + 1
4 ����V̄�

�� 1�m+1�2 + � 1�m−1�2� , �4.35�

where V̄ is given in Eq. �4.22� and  1�m= ��m+1−�m−1� /2.
This equation may be called the discrete-advected
Kuramoto-Sivashinsky �DAKS� equation.

Since dynamics occurs at large scales, it is natural to
take the continuum limit of the DAKS equation. To do
so, define the “vertical” coordinate y, as indicated in Fig.
9�a�, so that the mth step has a height y=ma, where a is
the step height. The finite difference derivatives in Eq.
�4.35� are then expanded to

 1�m = a�y��y� + �a3/3!��yyy��y� + O�a5� �4.36�

and similarly for  2 and  4. Substituting these into Eq.

�4.35� and absorbing a��lV̄��y� into a Galilean transfor-

mation, y�=y−a���V̄�t, we obtain

�t� = − a2a2�y�y�� + �a3/6����V̄��y�y�y�� − a4a4�y�y�y�y��

+ �a2/2�����V̄���y���
2. �4.37�

After dropping the primes and rescaling time, space, and
amplitude, we find

�TZ = − �YYZ + b�YYYZ − �YYYYZ + ��YZ�2, �4.38�

where

T =
a2

2

a4
t, Y = � a2

a2a4
�1/2

y, Z =
����V̄�

2a2
� , �4.39�

and

b = ���V̄�/6�a2a4�1/2 � �−1/2. �4.40�

Equation �4.38� is known as the Benney equation
�Benney, 1966�. The Benney equation is a combination
of the Kuramoto-Sivashinsky �KS� equation �Eq. �3.26�,
encountered in the study of meandering� and the
Korteweg–de Vries �KdV� equation �Eq. �2.108�, with
��→Z, introduced in the study of kinematic waves�. The
KS equation shows spatiotemporal chaos, while the
KdV equation exhibits solitons. The Benney equation is
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FIG. 32. Benney dynamics: �a� Dynamics of the step density
�=1/�yz �z�y� is the surface profile� from the Benney equation
�4.38� with b=24.6. �b� Evolution of the step density � from the
full solution of the step model for 200 steps �Eqs. �4.13� and
�4.14��. Parameters are chosen such that D=1 and �=1. We
took �=0.28, A=0.01, ceq

0 =10, and �−=1. These parameters
lead to b=24.6 from Eq. �4.40�.
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thus known to produce a transition from chaos to order
upon increasing b. Its numerical solution is shown in Fig.
32�a�. Since b��−1/2, we took a large value of b as b
=24.6�1 and ordered bunches appear as expected. We
do not exclude the fact that the physical prefactor enter-
ing b might make b of order 1, in which case spatiotem-
poral chaos would prevail. This depends on physical sys-
tems, parameter ranges, etc.

It is interesting to note that a comparison between the
solution of the Benney equation and the full solution
�without any expansion and without taking the con-
tinuum limit� reveals good agreement as shown in Fig.
32. The Benney equation was derived in the context of
bunching caused by electromigration �Sato and Uwaha,
1995; Misbah and Pierre-Louis, 1996�, a topic discussed
in Sec. IV.C. It was also derived in the context of step
meandering under electromigration with a current ori-
ented in a titled direction with respect to the step nor-
mal �Sato et al., 1998�.

B. Large diffusion length: Conserved dynamics—The
conserved Benney equation

In most experimental situations, and especially on
Si�111�, desorption of adatoms is a rare event on the
scales of interest. Therefore we do not expect the Ben-
ney equation in this case. Indeed, as in Sec. III.C, the
quadratic nonlinearity ��y��2 should vanish since it is not
a divergence of a flux. This is a consequence of mass
conservation. This limit has been tackled by Gillet et al.
�2001�. It has been shown that in the limit of a large
desorption length, if ES effect is weak, the surface pro-
file obeys the following equation:

�t� = − �yy�� + b�y� + �yy� − ��y��2� . �4.41�

This equation exhibits drastically different dynamics
from that of the Benney equation. A typical profile is
shown in Fig. 33. The profile undergoes a coarsening
process. It was found numerically �Gillet et al., 2001�
that the wavelength increases as t1/2 and the amplitude
increases as t. The same equation appeared slightly ear-
lier in the context of sand ripple formation �Csahók et
al., 2000�. A heuristic analytical argument was given by
Csahók et al. �2000� to show the t1/2 coarsening behavior.
A more recent study of this equation can be found in

Frisch and Verga �2006�. We note that the above equa-
tion does not always hold and it may happen that the
equation is highly nonlinear �nonstandard regime�, as
encountered in the study of meandering in Sec. III.C
�see Sec. IV.C.3.c for the analog situation regarding step
bunching�.

C. Migration

1. Observations on Si(111)

In 1989, Latyshev et al. �1989� investigated vicinal sur-
faces of Si�111� heated by the Joule effect due to a direct
electric current. The current is perpendicular to the av-
erage step orientation. Depending on temperature and
the sign of the electric current, bunches of steps may
form �Fig. 34�: the regular surface becomes unstable
against step bunching. When the current is reverted, the
vicinal surface is restored �it becomes stable�. The cur-
rent direction �up step or down step� for which bunching
is observed depends on temperature. Métois and Stoy-
anov �1999� performed new experiments using a tech-
nique allowing the adaptation of supersaturation so that
both growth and sublimation could be studied. A sum-
mary of the stability in the plane of parameters �super-
saturation � and the current I� is shown in Fig. 35.

Above the transition temperature TR for �77�→ �1
1� reconstruction �TR	830 °C�, four different re-
gimes are known. The diagram in Fig. 35�a� represents
the results in the range TR�T�T1 �regime I� and T2
�T�T3 �regime III�. In ranges I and III, the vicinal
surface behaves qualitatively in the same manner. Figure
35�b� contains the results in the second temperature re-
gime T1�T�T2 �regime II�, which differs from regimes
I and III. Finally, at very high temperature T�T3,
bunching is observed during sublimation for an uphill
current �I�0� and no instability is found for a downhill
current. The only work which reports on this regime is
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FIG. 33. Surface profile showing coarsening in a conserved
system when dynamics is described by Eq. �4.41�.

FIG. 34. STM observation of the Si�111� vicinal surface as a
function of the direction of heating current �arrow� and the
temperature range. In the upper panel the current is ascending
�I�0� and thus the vicinal surface is stable in regimes I and III
�left and right panels�, while it is unstable in the middle range
�regime II�. Reversal of the direction of the electric current
�lower panel� inverts the situation. From Yang et al., 1996.
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that of Latyshev et al. �1989�. Note that the values of the
transition temperatures mentioned above vary from one
experiment to another due to the difficulty of measuring
temperatures accurately at the surface T1
=1000–1100 °C, T2=1180–1250 °C, and T3=1300 °C.
The transition temperatures also exhibit a weak depen-
dence on the interstep distance �Degawa et al., 2001�.

The discovery of meandering �Degawa et al., 1999�
instability and pairing �Pierre-Louis and Métois, 2004�
instability �shown in Fig. 36� further increases the com-
plexity of the stability diagram. Furthermore, small
bunches whose size did not increase �unlike all the other
bunches which underwent coarsening� with time were
also found during growth in range II �Pierre-Louis and
Métois, 2004�; region C in Fig. 35�b�.

Note that in the late stages of the bunching instability
antibands appear, i.e., there is an alternation between
the usual bunches and bunches forming in the opposite
direction �see Fig. 37�. In range II, step meandering is
also found to take place in the antibands. After a long
time, bunches may become so large that they are visible
in an optical microscope �Degawa et al., 1999�.

Under an ac heating electric current bunching was
predicted to occur below a certain frequency �Houch-
mandzadeh et al., 1994�. This prediction was confirmed
experimentally �Métois and Audiffren, 1997� and the re-
sult was used in order to estimate the effective charge of
the drifting atoms along the vicinal surface �see the next
section for a discussion on the effective charge�.

Since surface stability depends on current direction,
there is no doubt about the relevance of the heating
current in the mechanism by which the instability takes
place. Stoyanov �1990� suggested that electromigration,
i.e., the drift of adatoms on the surfaces, is responsible
for this instability.

Latyshev et al. �1989� observed that the size of the
bunches increases with time �i.e., bunches undergo
coarsening�. Systematic analysis of the experimental
evolution of bunches over time reveals that the size of
the bunch behaves according to t1/2 �Yang et al., 1996�.
While bunches succumb to coarsening, step meandering
occurring under a heating current seems to keep a con-
stant wavelength �Degawa et al., 1999�.

Other experimental studies have focused on the slope
and shape of the bunches. More precisely, the smallest
terrace width �min within a bunch is found to scale with
the bunch size N �the number of steps within the bunch�
as a power law: �min�N−� �Fujita et al., 1999�. The ex-
ponent � varies slightly from one regime to another: �
=0.68±0.03 in regime II and �=0.60±0.04 in regime III
�both experiments were performed during sublimation�.

Overall, it seems that surface evolution under a heat-
ing current is rich and complex, and this has given rise to
a number of theoretical studies that we present in some
detail hereafter.

2. The notion of electromigration

When a crystal is subjected to an electric current, de-
fects and impurities may drift. The drift may be due to
the fact that either atoms carry a real charge and/or to
the transfer of momentum from the charge carriers in
the metal or semiconductor to the mobile atoms. This
phenomenon is called electromigration. Electromigra-
tion is an important problem since it is one of the major
causes of collapse of many electronic circuits �Blech,
1976�: migration of impurities, vacancies, etc., may accu-
mulate at various junctions, weakening the device, which
may then easily rupture at those sites. Although elec-
tromigration has been widely studied in crystal bulk, sur-
face electromigration is still poorly understood.

We consider a mobile atom diffusing on a high sym-
metry surface. Two origins of the drift may be identified.
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FIG. 35. Surface morphology of Si�111� under electromigra-
tion. I�0 for downhill current and � is the supersaturation.
��0 corresponds to growth and ��0 corresponds to sublima-
tion. �a� Temperature ranges I �low temperatures� and III �high
temperatures�. Bunching instability occurs irrespective of the
supersaturation sign �no difference between sublimation and
growth�. �b� Intermediate temperatures, range II. The bunch-
ing instability critically depends on the sign of the supersatu-
ration. There are also additional instabilities. The “pairs” re-
gion corresponds to the case where step pairs form, while in
the “C” region small bunches are observed whose width does
not increase with time. F̃p denotes a critical supersaturation
below which step pairs form.

FIG. 36. �Color online� REM image of pairs of steps on Si�111�
under dc current. From Pierre-Louis and Métois, 2004.

FIG. 37. Late-time morphology of bunches �the quite visibile
macrsotep� with antibunches �less visible in between the mac-
rosteps�. Courtesy of E. D. Williams
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The first is a direct force fd=zdeE on a charge carrier
with an effective valence zd under the electric field E
and e is the absolute value of the electron charge. The
second origin arises from the scattering of charge carri-
ers on an atom �even neutral�, resulting in a partial mo-
mentum transfer. The resulting force is known as wind
force and will be denoted fw. The wind force is easily
calculated using a ballistic model �Fiks, 1959�. Let n de-
note the electron �or hole� density at the surface, v their
average velocity, � their mean free path, and �a the cross
subsection of the atom. The number of collisions per
unit time is �anve. We now assume that during each col-
lision the electron transfers all its momentum eE� to an
atom, where �=� /ve is the relaxation time of the elec-
tron. Then, we have fw=−��anve�eE�=−��an��eE. An
effective wind force valence zw can be defined using fw
=zweE. We find for the effective valence,

zw = − �an� . �4.42�

In a metal, typically n�10−2 Å3, ��102 Å, and �a
�1 Å2. This leads to zw�−1. From a more sophisticated
model, Rous et al. �1994� calculated zw�−21 on a
Cu�111� surface. Thus, wind force seems to dominate
over direct force. Further investigations of electromigra-
tion in the bulk �Bosvieux and Friedel, 1962; Turban et
al., 1976; Lodder, 1989� showed that there is a screening
of the direct charge from the conduction electrons,
meaning that direct force should vanish totally. Never-
theless, we cannot simply extend this result to the sur-
face. A quantitative analysis of step fluctuations on Ag
surfaces allowed one to extract the value of the migra-
tion force �Williams et al., 2007�. Surprisingly, a very
strong migration force is found for atoms along steps,
with zw�−102.

On semiconductors, using bulk values for Si at
1150 °C �Kandel and Kaxiras, 1996� n�10−5 Å3, �
�3 Å, and �a�1 Å2, we find zw�−10−4. The smallness
of the effective wind charge raises the question of the
relevance of a direct force once again. Some attempts
have been made to obtain a quantitative value for the
effective charge �Kandel and Kaxiras, 1996�, but the
question, remains open for the surface of semiconduc-
tors. Indeed, Kandel and Kaxiras �1996� proposed that
charge will change with temperature. This disagrees with
experimental observations of the shape changes of a
rectangular groove �Degawa et al., 2000; Yagi et al.,
2001�. Indeed, experiments showed that the direction of
migration does not change with temperature. The elec-
tromigration force can also be derived indirectly from
the observation of its consequences on step dynamics.
Several works showed that the effective charge is posi-
tive and zw�10−2–10−1 on Si�111� surfaces. These re-
sults may, for example, be obtained from the critical fre-
quency for an oscillatory electric current to produce step
bunching �Métois and Audiffren, 1997� or from the
shape of steps that run between two bunches �Thürmer
et al., 1999�.

From the Einstein relation, mobile adatoms on ter-
races drift at an average velocity12 given by

ve = Df/kBT , �4.43�

where f=zeE is the total force. The linear relation �4.43�
is accurate for small forces, and its form does not de-
pend on the microscopic details of the migration pro-
cess. The total mass flux on terraces �i.e., far from steps�
which accounts simultaneously for diffusion and migra-
tion then reads

J = − D � c + cve = D�− �c + c/%em� , �4.44�

where %=kBT / f is a length scale characterizing migra-
tion and em is a unit vector pointing in the direction of
the migration force. Other effects may come into play
on Si surfaces, such as microvacancy diffusion and mi-
gration, as studied by Misbah et al. �1995�. We shall not
consider this effect here, although it may have important
consequences on the stability of the surface.

3. Opaque steps and highly nonlinear continuum equations
and facets

Because the various scenarios of the Si�111� instability
cannot be described by a single model in all temperature
ranges, several authors were led to introducing new in-
gredients related to the fact that steps may be opaque
�the usual picture, meaning that atoms are absorbed at a
step site� or transparent �atoms may not be absorbed at
a step but wander around several steps before absorb-
tion�. It seems that adopting the opaque picture in
ranges I and III and the transparency assumption in
range II allows the various scenarios to be described. It
should be stated that the link between transparency or
opacity and the atomistic description is not obvious and
it is quite astonishing a priori that by further increasing
the temperature �range III� the steps become opaque.

a. Mechanism of the instability

As Eq. �4.11� reveals, the basic ingredient for the oc-
currence of instability is the presence of an asymmetric
dependence of step motion on the width of the neigh-
boring terraces. Therefore, electromigration may be
viewed as a bias which induces an effective ES effect.
This effective ES barrier may lead to an instability which
is similar to that mentioned in Sec. IV.A.1. The effective
value of the ES effect due to electromigration can be
calculated quantitatively, as shown by Houchmandzadeh
et al. �1994�.

To be more precise we use a heuristic argument. Con-
sider a 1D conserved model under electromigration with
neither adsorption nor desorption. The steps are consid-
ered to be straight and perpendicular to the z axis. The
migration force is taken to be along the z axis: em= ẑ.
The motion of the steps results from mass exchange be-
tween steps themselves via terrace diffusion and drift
due to electromigration. On each side of the step, at-

12We have assumed that the surface is isotropic for simplicity.
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tachment is proportional to the local concentration,
while detachment occurs at a fixed rate. Assuming sym-
metric kinetics �which is probably valid for Si�111� sur-
faces at a high enough temperature, as mentioned in
Sec. IV.C.1�, at the steps we have

J+ · n = − D�zc+ + Dc+/% = − �̄�c+ − ceq� ,
�4.45�

J− · n = − D�zc− + Dc−/% = �̄�c− − ceq� ,

where �̄ is a kinetic coefficient, J± are the mass fluxes
�4.44� on both sides of the step, and n= ẑ is the normal to
the steps. Mass conservation at the steps reads

V = −��J+ − J−� · n =��̄��c+ − ceq� + �c− − ceq��

= 2��̄�c̄ − ceq� , �4.46�

where

c̄ = �c+ + c−�/2 �4.47�

is the average step concentration.
In the quasistatic approximation, concentration on the

terraces is assumed �on step motion time scales� to reach
a steady state. Therefore, � ·J=0, where the mass flux J
is given by Eq. �4.44�. Within our 1D description, this
can be written as

D�zzc − �D/%��zc = 0. �4.48�

Consider the case where attachment-detachment kinet-
ics at steps are slow. Adatoms have ample time to dif-
fuse on the terrace before being incorporated into the
steps. Thus, a steady state is reached on terraces where
the mass flux is small: J	0. Using Eq. �4.44�, this reads
�zc−c /%	0. We also consider a very small migration
force, so that concentration is only slightly perturbed:
c	ceq. Hence, �zc	ceq/%. For clarity, we also disregard
the stabilizing effect of elastic interactions and set ceq

	ceq
0 accordingly. We thus find that the concentration

gradient on the terraces is constant and does not depend
on the terrace width:

�zc 	 ceq
0 /% . �4.49�

The concentration on a terrace then varies linearly with
z:

c 	 ceq
0 �1 + z/%� . �4.50�

Moreover, since adsorption and desorption are ne-
glected on the terraces, the average concentration must
be ceq

0 . Therefore we should place the origin z=0 in the
middle of the terrace, so that �−1�dzc=ceq

0 on a terrace
of width �. The average concentration �4.47� at a step
then reads

c̄ 	 ceq
0 �1 + ��− − �+�/4%� . �4.51�

Finally, using Eq. �4.46� for the speed of the mth step we
have

Vm 	 ��ceq
0 �̄/2%���− − �+�

= − ��ceq
0 �̄/2%���m+1 + �m−1 − 2�m� . �4.52�

Schematics of the instability in terms of microscopic step
motion are shown in Fig. 38. Vm=�t�m and the finite dif-
ference becomes ��zz� in the continuum limit so that
the above equation becomes a diffusion equation with
the diffusion constant �−�ceq�̄ /2%. This is negative if
%�0 �descending direction� and positive if %�0. This
means that there is instability if %�0 and stability if %
�0. Note that we could also perform a stability analysis
on the discrete version, as in Sec. IV.A.3. The fastest
mode is the �=� mode.

b. Nonlinear nonconserved dynamics: The Benney equation

The electromigration process is often accompanied by
a strong Joule heating process induced by the electric
current. As reported in Sec. IV.C.1, the substrate tem-
perature sometimes exceeds 1000 °C. At such tempera-
tures, desorption of atoms from the surface to the
atmosphere �or vacuum� is not negligible. At high tem-
peratures, where desorption is large enough, it is also
likely that the ES effect is weak, so that the instability
discussed in Sec. IV.A induced by the ES effect is irrel-
evant. Hence instability is basically expected to be
driven by electromigration only. The linear stability of
the model equations was first studied by Stoyanov
�1990�. The nonlinear dynamics are studied by means of
a multiscale analysis, following the same lines as in Sec.
IV.A. We obtain the same DAKS equation �4.35� of step
evolution in a discrete step picture. Under growth or
sublimation where the steps are moving at a finite aver-
age velocity, the evolution equation acquires a term pro-
portional to  1�m and nonlinear terms �� 1�m±1�2. As
exemplified in Eq. �4.52�, electromigration leads to the
term � 2�m, which governs the instability of the mor-

ceq

ceq

(b)

(a)

FIG. 38. �Color online� Instability of a vicinal surface under
migration. The sawtoothlike profile �4.50� of the concentration
is plotted. Black dots indicate the average concentration c̄ at
the steps. If c̄�ceq �%�0�, the step moves forward, and if c̄
�ceq �%�0�, it moves backward. The surface is �a� destabilized
for downhill migration and �b� stablilized for uphill migration.
The large arrow shows the migration direction and the small
ones indicate step motion.

1023Misbah, Pierre-Louis, and Saito: Crystal surfaces in and out of equilibrium: A …

Rev. Mod. Phys., Vol. 82, No. 1, January–March 2010



phology. Step repulsion always gives a stabilizing contri-
bution represented here by the term � 4�m. In a con-
tinuum limit, the form of the final equation is identical
to the Benney equation �4.38� �Sato and Uwaha, 1995;
Misbah and Pierre-Louis, 1996�. The length scales and
time scales on which Benney dynamics are relevant de-
pend on the parameter values. We shall not, however,
dwell on this question.

Note that by “nonconserved” we do not only mean
“sublimation” but also that the diffusion length xs is
small �or of the same order� compared to length scales
of interest. The opposite situation enters the class of
conserved dynamics since sublimation appears just as an
additive global term in the evolution equation �Gillet et
al., 2001�, like a negative flux F in MBE.

c. Nonlinear conserved dynamics: A highly nonlinear continuum
equation and facets

If no allowance is made for desorption, and in the
quasistatic limit �as adopted throughout this review�,
mass conservation imposes

Vm = − Jm + Jm−1, �4.53�

where Jm−1 and Jm are the mass fluxes at the mth step
from the left and right terraces, respectively. This con-
servation constraint drastically changes the nonlinear
dynamics of the surface. We saw in Sec. IV.B that in the
limit of fast kinetics and under growth, the evolution
equation is given by the conserved Benney equation
which leads to coarsening. In the general situation,
analysis may require special treatment. For example, we
may find a somewhat similar situation to that encoun-
tered in the study of step meandering in the zero desorp-
tion limit, described in Sec. III.C. Indeed, it may happen
that �Chang et al., 2006� the dynamics are highly nonlin-
ear �nonstandard regime� and ���−1/2, making a weakly
nonlinear analysis illegitimate. Since we have electromi-
gration in mind, we stick to this situation and discuss the
appropriate evolution equation. The evolution equation
obtained from the multiscale analysis is �Chang et al.,
2006�

�t� = − a�y��Dceq
0

1 + d�
�1

%
− A�a2�yy�

3�� , �4.54�

where �=1/ ��+a�y�� is the local step density, A is the
elastic interaction parameter, and d=2D /�. It can be
checked that if d is small enough and if there is weak
desorption �or growth�, then the front profile equation
reduces to Eq. �4.41�, derived by Csahók et al. �1999� and
Gillet et al. �2001�, otherwise the highly nonlinear equa-
tion �4.54� results. This is the nonstandard regime. More
details are given by Misbah et al. �2008�.

The above equation quite naturally follows from an
elementary consideration. From Eq. �4.53� in a con-
tinuum limit, we must have �t�=−a�yJ, where the mass
flux J contains one contribution from electromigration
and one from elasticity. The electromigration current
�see also Sec. IV.C.3� is from Eq. �4.45� given as
�Dceq

�0� /%. The contribution due to elasticity appears in

the equilibrium concentration as Eq. �4.3�. In the con-
tinuum limit where lm=1/�, the elastic contribution in
ceq is proportional to A��m

−3−�m−1
−3 �→Aa�y�

3. The stabi-
lizing flux on a terrace is therefore proportional to
�D /�m��ceq

m+1−ceq
m �→D�a2ceq

0 A�yy�
3. Finally, we must re-

member �see also Sec. IV.C.3� that the bare diffusion
constant D must be replaced by DB=D / �1+d�� stating
that diffusion is reduced by the presence of steps due to
noninstantaneous kinetics at the steps. The evolution
equation �4.54� follows naturally.

The set of periodic steady-state solutions of Eq. �4.54�
can be analyzed �Chang et al., 2006�. Because of the spe-
cial form of Eq. �4.54�, the explicit value of the flux for
any periodic steady state can be calculated from a simple
integration over one period. In a steady state the flux in
the partial derivative by y on the rhs of Eq. �4.54� is

constant and equal to J̄. Integrating J̄�1/�+d� along y on
a distance Na �or equivalently along z on a width � by
incorporating dy /dz=�a� gives

J̄

�Dceq
0 �� + Nd� =

�

%
− Aa��y�+

3 − �y�−
3� , �4.55�

where �y�±
3 are the values of �y�

3 at the boundaries of
the integration domain. If integration is performed over
one period or �=�, we have �y�+

3 =�y�−
3 and N /�= �̄ is

the average slope. Finally, the flux of a steady state is
obtained by

J̄ =
�Dceq

0

1 + d�̄

1

%
, �4.56�

which generalizes the law derived by Liu et al. �1998�
from a phenomenological argument within the limit of a
large d. An important result can be drawn from Eq.

�4.56�: the flux J̄ only depends on the average slope �̄

and not on the precise surface profile. Therefore, J̄ is the
same for all periodic steady states of a given surface.

Under this constant flux J̄, various properties of the pe-
riodic steady states of Eq. �4.54� are determined by
Chang et al. �2006�, whose main results will be summa-
rized shortly. The wavelength � as a function of the size
of the largest terrace L0 �proportional to the inverse of
the smallest slope in the period� is given in Fig. 39�a�.
The wavelength of the continuum steady-state solutions
is always smaller than the critical wavelength �c �defined
by Re�i��=0� since for ���c the basic trivial solution is
linearly unstable. On the basis of the results reported by
Politi and Misbah �2004�—which are presented in Sec.
V.C.2—one is tempted to say that a frozen wavelength of
the bunches should be observed instead of coarsening.

The real behavior of the branch of steady-state solu-
tions turns out to be more subtle. Inspection of the den-
sity profile computed from Eq. �4.54� reveals the exis-
tence of cusps, as shown in Fig. 39�b�. A cusp position
corresponds to a height y of very small step density or
large isolated terraces. This hints that the surface splits
into bunches separated by wide terraces instead of hav-
ing a gradual density profile. This result is confirmed by
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the full solution of the step model as shown in Fig. 39�c�.
Since wide terraces form in the course of time, the con-
tinuum description of the surface profile should break
down. This singular behavior may be analyzed by means
of a semicontinuum approach. We consider wide iso-
lated terraces coupled with a bunch in which step den-
sity is treated in the continuum limit. The boundary con-
ditions at the edge of the bunches are extracted from the
full step model �Chang et al., 2006�. From this model,
which explicitly takes into account dense regions
�treated in the continuum limit� and wide terraces
�treated in a discrete manner�, the wavelength of the
periodic steady states is calculated and shown in Fig.
39�a�. As a function of the width of the largest terrace
L0, the periodicity � of the steady states exhibits a mini-
mum. We expect endless coarsening �as discussed in Sec.
V.C.2�.

Figure 39�a� shows three different regimes. The first
regime corresponds to the situation where �m�L0�%,
in which

�m = 2��6A%�̄3a2��̄ + 1/d��1/2 �4.57�

is the wavelength of the linearly most unstable mode
�Chang et al., 2006�. It is also found that the width of the
largest terrace L0 is greater than that of the bunch W as

L0�W. Hence, N= �̄�W+L0�	 �̄L0. Moreover, J̄ still
obeys the generalized Liu-Weeks relation �4.56�. A sys-
tematic analysis of this regime �Chang et al., 2006� yields
the following scaling:

W � N1/3�m
2/3�̄−1/3, �4.58�

Lmin � N−2/3�m
2/3�̄−1/3, �4.59�

L1 � N−1/3�m
2/3�̄−1/3, �4.60�

where W is the bunch width, Lmin is the width of the
smallest terrace in the bunch, and L1 is the width of the
terrace at the border of the bunch. Interestingly, the
bunches are abrupt, which means that there is no tan-
gential matching �no zero slope at the facet� between the
bunch and the terrace. In the limit of very large bunches
L0�%, which we refer to as the second regime, and if
N�%3/2A−1/2 �Chang et al., 2006�,

J̄ � N−1/2, �4.61�

W � %5/6A1/18N1/2, �4.62�

Lmin � �A%�1/4N−1/2. �4.63�

This means that Eq. �4.56� is no longer valid. Indeed, it
appears that this equation relies on the assumption that
all terrace widths are smaller than %. Using orders of
magnitude that are adapted to the case of Si�111�, we
find that N�%3/2A−1/2 implies N�1012, which is unrea-
sonably large. Therefore, this regime, though interesting
from a conceptual point of view, is not relevant to
Si�111� experiments. We cannot exclude this regime a
priori for other systems, such as metals. Finally, it is
worth noting that there is an additional intermediate re-
gime where Lmin�N−1/3 �see Chang et al. �2006��.

The first regime �Eqs. �4.58� and �4.59�� was studied by
Liu et al. �1998�, Stoyanov and Tonchev �1998�, and Sato
and Uwaha �1999�. It should be mentioned that they did
not use the boundary condition at bunch edge by ana-
lyzing the matching between bunch and terrace �as dis-
cussed in this section�. Careful analysis, however, reveals
that the scaling �4.58� and �4.59� is not altered and only
the numerical prefactor is different �Chang et al., 2006�.

Stoyanov and Tonchev �1998� and Sato and Uwaha
�1999� studied the limit of fast attachment kinetics
d�̄�1. The important point is that the maximum slope
Lmin �as seen above� does not depend on �̄ in this limit,
unlike Eqs. �4.58� and �4.59� �however, scaling with the
other parameters remains the same�. The opposite limit
of slow attachment kinetics has been studied by Liu et al.
�1998�. They found that the maximum slope Lmin de-
pends on �̄ and is therefore a function of the position of
the neighboring bunches. In both cases of fast and slow
attachment kinetics regimes, Lmin�N−2/3 as in Eq.
�4.59�. Quantitative comparisons of bunch thermal relax-
ation with experiments on Si�111� �Liu et al., 1998� seem
to indicate that attachment kinetics are slow. Moreover,
the scaling of the smallest terrace size Lmin was con-
firmed experimentally by Fujita et al. �1999�. The scaling
of the width of the first terrace L1, given by Eq. �4.60�,
has not yet been measured experimentally, as far as we
know.

Finally, we discuss the time dependence of bunch size.
While a full analysis can be made from the step dynam-
ics equations �Sato and Uwaha, 1999�, here we have cho-
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FIG. 39. A step bunching scenario for conserved systems. �a�
Wavelength � of the periodic steady-state solutions as a func-
tion of the largest terrace width L0. The solid line represents
the steady state obtained by solving the continuum and semi-
continuum models, as explained in Sec. IV.C.3, Eq. �4.53�. The
arrows show that, in principle, for ���m the system will
choose the ascending branch; the arrows also show the path
followed by the system upon coarsening. The solid decreasing
part of the curve is not essential since the system does not
explore it; it is an unstable branch. �b� Time evolution of the
local step density � obtained by the numerical integration of
the nonlinear equation �4.54�. �c� Full evolution of step posi-
tions in conserved dynamics.
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sen to present a heuristic argument that does not need
the model equation to be specified. This argument was
presented by Liu et al. �1998�. The crux of their analysis
is the assumption that dynamics depend on a unique
length scale, which we consider to be the typical number
of steps in the bunch N� t!. We then expect both mass

flux J̄ and surface profile z to be described by the self-
affine Ansätze,

J�y,t� = t�JJ�y/t!� , �4.64�

z�y,t� = t��Z�y/t!� . �4.65�

These scaling forms are constrained by two relations.

First, from Eq. �4.56�, J= J̄ is constant �as discussed
above, this is valid in the experimentally relevant re-

gime, where L0�%�. Using Eq. �4.64�, the relation J= J̄
suggests �J=0. As a second constraint, the average slope
�̄ is fixed. This latter property may be written as ��yz�
=1/ �̄, where � � denotes a spatial average along y. Sub-
stitution into Eq. �4.65� now suggests ��=!. Using these
Ansätze in mass conservation, written as

�tz�y,t� = − �yJ�y,t� , �4.66�

we find !=1/2. This result is in agreement with experi-
ments �Yang et al., 1996�.

d. Hierarchical bunching

It was first noticed by Sato and Uwaha �1998� that
step bunching might occur via a scenario where steps
initially form pairs and then pairs may form quadruplets,
which in turn coalesce to produce increasingly larger
bunches �see Fig. 39�c��. The analysis of Sato and Uwaha
�1998� was made under global equilibrium conditions
�neither growth nor sublimation, but only electromigra-
tion inducing mass transport from one step to the other�.
This inverted-tree-like scenario is found to occur when
elastic interactions are sufficiently weak. In the regime
of weak elasticity, it is known that the linearly most un-
stable mode is the step pairing mode �in this regime all
modes are unstable�; see Sec. IV.A.4. In principle, we
should expect step pairing to occur first. The parameters
used by Sato and Uwaha �1998� create the regime where
all modes are unstable, and the initially fastest growing
mode is the pairing mode.

In this scenario, the bunches maintain their identity:
bunches are distinctly separated from each other. There-
fore, the resulting dynamics may be analyzed with the
help of the semicontinuum description of Sec. IV.C.3.c.
Their regime corresponds to that described by the scal-
ing equations �4.58� and �4.59�.

D. Differential diffusion and step transparency

The existence of regime II observed in the Si�111� ex-
periment as described in Sec. IV.C cannot be explained
using the previous model. An a priori quite natural as-
sumption is that the effective charge changes sign in re-
gime II �Kandel and Kaxiras, 1996�. This assumption is

ruled out by the experiment of Degawa et al. �2000�.
Another alternative is the activity of advacancies �Mis-
bah et al., 1995� that naturally explains the change of
regime. At present it is not easy to experimentally test
this idea. Another idea which has been put forward is
that the step may be viewed as “transparent” in regime
II �Stoyanov and Tonchev, 1998�: in this image they sug-
gest that adatoms visit many terraces before attaching to
the crystal phase or leaving the surface by sublimation.
Perfect transparency would mean that concentration is
continuous at the steps, c+=c−. Actually, another process
which could force c+=c− is that atoms attach instanta-
neously to the step regardless of the side from which
they arrive �upper or lower terrace�. This limit means
�+=�−=� �fast attachment from both sides of a step�.
Referring to Eqs. �4.45�, this implies c+=ceq and c−=ceq,
and hence c+=c−. This idea explains the occurrence of
step bunching in regime II during sublimation and
growth �Pierre-Louis, 2003a�. This theory does not, how-
ever, explain the simultaneous occurrence of both
bunching and meandering, as seen experimentally �see
Fig. 35�b��. For that purpose, it has been argued �Zhao et
al., 2004� that there should still be finite kinetics attach-
ment at the step ��+ and �− are finite; symmetric attach-
ment is assumed �+=�−=� �Zhao et al., 2004�� in regime
II, but that adatom diffusion in the step zone becomes
faster than that in the terrace �diffusion is enhanced in
the vicinity of the step�. This may be called the differen-
tial diffusion model. As shown by Zhao et al. �2004� this
results in negative kinetic coefficient �. This idea has ac-
counted for the occurrence of meandering in regime II.
Nevertheless, the formation of pairs, as seen experimen-
tally in regime II �see Fig. 35�b��, could not be captured
by this model.13 Based on the same physical ingredient
of differential diffusion, Pierre-Louis and Métois �2004�
proposed that steps would be partially transparent and
have a negative transparency kinetic coefficient. Such a
model accounts for the observed formation of stable
pairs in regime II. In addition, it was found recently
�Pierre-Louis, 2006� that a variation of the migration
force in the vicinity of the steps would have similar con-
sequences as the differential diffusion hypothesis.

Partial transparency has been considered �Sato et al.,
2000; Pierre-Louis, 2003b�. The modification brought by
transparency is that boundary conditions �4.45� trans-
form to

n · J+ = − �+�c+ − ceq� − �0�c+ − c−� ,
�4.67�

n · J− = �−�c− − ceq� − �0�c+ − c−� ,

where �0 is a transparency coefficient. �0=0 means
opaque steps, while �0→� imposes c+=c−, meaning per-
fectly transparent or permeable steps. In the latter case,
a combination of the above two equations and the use of

13Note that the pairing evoked by Zhao et al. �2004� simply
means that the mode corresponding to a phase shift �=� is the
most unstable one, but the nonlinear dynamics does not select
step pairing, contrary to the explanation provided.
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the mass conservation law �4.46� lead to �see Eq. �2.60��

c+ = c− = ceq
* = ceq

0 �1 + �/kBT + !V� , �4.68�

where � accounts for other contributions �e.g., elasticity�
to the concentration, and

! = 1/ceq
0 D��d+

−1 + d−
−1� �4.69�

is the kinetic coefficient. A generalization of these
boundary conditions has been given by Pierre-Louis
�2003a, 2006�. Relation �4.68� allows for another inter-
pretation of the transparency. When !=0, meaning that
step attachment-detachment kinetics are fast on both
sides, then concentration at the step �on both sides� is at
local equilibrium. Conversely, when the kinetic coeffi-
cient ! is large, the above boundary condition means
that the concentration at the step may vary due to non-
equilibrium conditions, but it is kept permanently at the
same values on both sides of the steps.

1. The instability mechanism

In a perfectly transparent case, concentration is con-
tinuous across the steps �i.e., c+=c−� and the instability
mechanism depicted in Sec. IV.C.3.a �Fig. 38� cannot be
invoked. Indeed, in the absence of growth and sublima-
tion, the surface is linearly stable since atom fluxes
equilibrate due to transparency. The situation is quite
different, however, under growth or sublimation. The
number of atoms per time unit landing on a terrace de-
pends on the terrace size �the larger the terrace, the
larger the amount of mass�. Figure 40 summarizes this
situation. Here we have an instability only for downhill
migration during growth and only for uphill migration
during sublimation. This is consistent with observations
in regime II �Sec. IV.C�.

An interesting consequence of transparency with a fi-
nite kinetic coefficient ! is the occurrence of the insta-
bility at a well-defined �and maybe long� wavelength
even in the absence of step-step repulsion �Liu et al.,
1998�. We ignore elasticity for the moment. With trans-
parency, it is found that instead of the dispersion rela-
tion shown in Fig. 31, the dispersion relation takes the
form given in Fig. 41. In the opaque regime �0=0, all
modes are unstable, and the maximum growth rate is at
�=� as shown by the black curve in Fig. 41. With finite
transparency coefficient �0, all modes are unstable but
the maximum growth rate occurs at a small �. This re-
sults from the fact that the destabilizing effect related to
step transparency is weaker for short wavelengths �like
�=�� since atoms can equilibrate more easily from one
terrace to another. Since the most unstable modes are
those with long wavelengths �and not the pairing mode�,
we do not expect a hierarchical bunching scenario as for
opaque steps.

Transparency has another consequence on the scaling
laws. Remember that in the opaque regime �Sec. IV.C.3�,
the minimal terrace width within the bunch, for ex-
ample, has a scaling property Lmin�N−2/3. Stoyanov and
Tonchev �1998� analyzed the scaling laws of bunches in
this regime and proposed Lmin�N−1/2 for close-to-

equilibrium sublimation and Lmin�N−3/5 for far-from-
equilibrium sublimation. The latter result is in agree-
ment with the experimental measurement of the bunch
shape �Fujita et al., 1999�.

2. Pairs

If we consider a stable regime, for example, sublima-
tion and downhill migration, the growth rate of a small
perturbation is simply the opposite of that correspond-

(b) Uphill force

(a) Downhill force

fastest step

FIG. 40. �Color online� Schematic of the instability for fast
step kinetics �either instantaneous step kinetics or strong step
transparency� during growth and in the presence of migration.
Atoms are deposited on terraces where they diffuse and attach
to steps. The arrows indicate the mass flow of freshly landed
atoms �i.e., atoms which have not yet reached a step�. Their
thickness is proportional to the amplitude of the mass flow. �a�
A downhill migration force produces a downhill attachment
bias on each terrace. We have assumed that one terrace is
wider than its neighbors �for example, due to statistical fluc-
tuations�. The fastest step is indicated, showing that the large
terrace widens for a downhill force, thereby leading to ampli-
fication of the surface perturbation, which gives rise to the
instability. �b� An uphill migration force produces an uphill
attachment bias. Following the same reasoning, the large ter-
race retracts for an uphill flux and the surface is stable. The
situation is reversed during sublimation.
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FIG. 41. �Color online� Dispersion relation for transparent
steps under growth and downhill migration �or sublimation
and uphill migration�. In order to focus on the consequences of
migration, the elastic interactions have been neglected �i.e.,
A=0�. As transparency increases, the peak splits into two. For
sublimation the corresponding curves are obtained by up-
down symmetry �Re�i��→−Re�i���. From Pierre-Louis,
2003b.
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ing to the unstable regime, as shown in Fig. 42, obtained
from the curve in Fig. 41 by up-down symmetry. Reduc-
ing transparency, the mode �=� is promoted �as we
know opacity favors this mode; see curve in Fig. 42�. The
modes around �=� are unstable, while the modes away
from �=� are stable. Provided that the unstable band is
small enough around �=�, pairing instability should oc-
cur and no coarsening process is expected �since the only
unstable mode is �=�, while its higher harmonics are
stable�. Note that once the steps within pairs are close
enough to each other, the interstep distance within the
pairs saturates due to elastic repulsion �or entropic�. The
nonlinear pairing steady state can be calculated �Pierre-
Louis and Métois, 2004� and the transition to pairing
may be found to be subcritical �this is the analog of a
first-order transition�.

Recent experiments on Si�111� have confirmed the ex-
istence of step pairing �Pierre-Louis and Métois, 2004�
which requires, according to theory, that d0=�0 /D is
negative or that the migration force varies in the step
region �Pierre-Louis, 2006�. The former assumption is
consistent with the assumption of Zhao et al. �2004�.
Why should a kinetic coefficient become negative in re-
gime II, while remaining positive in regimes I and III,
and how could one develop a simple and unified picture
taking into account this feature, and account for bunch-
ing, meandering, and pairing, is still a largely open prob-
lem.

E. The Si(100) surface

1. Equilibrium

The Si�100� surface looks very different from the
Si�111� surface described in Sec. IV.C.1 at the micro-
scopic level due to the �21� dimer-row reconstruction.
The orientation of the dimer rows is alternated from one
terrace to the other, and the resulting vicinal surface is
sometimes called a biperiodic grating. Accordingly,
there are two types of single steps, SA and SB �see Fig.
43�a��, which run parallel and perpendicular to the dimer
rows on the adjacent upper terrace, respectively.

At equilibrium, these surfaces experience a step-
doubling transition if the step density is sufficiently high
�Alerhand et al., 1990�. On the one hand, the free energy
of double steps Ed proved to be smaller than EL, the
energy of separate single steps. On the other hand, sepa-
ration of the double steps into single steps leads to re-
laxation of the elastic energy of the �21� reconstruc-
tion. This relaxation is known to lead to the spontaneous
formation of strips of stress domains on nominal sur-
faces �Alerhand et al., 1988�. The total difference of en-
ergy per unit area between double-step and single-step
vicinal surfaces is

Ed − EL = − �1/����/2 − � ln��/�a�� , �4.70�

where ��0 is the difference in step free energy between
SA plus SB steps and one double step. The second term
results from the elastic energy. The logarithmic depen-
dence can be traced back to the fact that the �21�
reconstruction leads to anisotropic surface stress. This
results in net force density at a step which separates the
two domains. Since elasticity is essentially a Laplacian
field �such as electromagnetism�, the interaction energy
between two forces applied at a distance r is propor-
tional to 1/r. We then have to integrate along both steps
and consider the energy per unit length. This leads to an
interaction energy per unit length �ln��� between two
steps separated by a distance �. Finally, since the step
density per unit area is �1/�, we obtain the second con-
tribution in Eq. �4.70�. The surface undergoes a step-
doubling transition when Ed−EL becomes negative, i.e.,
when ���c, with

�c = �a exp��/2�� . �4.71�

This result is in quantitative agreement with experi-
ments at 500 °C, giving a transition at a miscut angle of

c=2° �terrace width given by �c=a tan�
c��. Neverthe-
less, the details of this transition seem to be more com-
plex, as shown by Pehlke and Tersoff �1991a, 1991b�, for
example.
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FIG. 42. �Color online� Dispersion relation for sublimation
and downhill migration �Sec. IV.D.2�. The solid curve is ob-
tained from the curve in Fig. 41 from an up-down symmetry
�Re�i��→−Re�i���. The dashed curve is obtained by slightly
reducing transparency; opacity favors �=� as we know from
Sec. IV.C.3.a.

(b)(a)

FIG. 43. STM images of Si�100�. �a� Single-step biperiodic vici-
nal surface. Two successive steps fluctuate with significantly
different amplitudes. The strongly fluctuating one is called SB,
while the other is referred to as SA. �b� Double steps. Courtesy
of M. Lagally.
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2. Growth

During growth, fast pairing and subsequent bunching
of the pairs have been observed in experiments. This
appears in an intermediate regime, where the tempera-
ture is neither too low �so that no nucleation is observed
on terraces� nor too high �so that thermodynamic
smoothening is not too efficient�. Interestingly, a novel
coarsening scenario is proposed �Myslivecek et al., 2002�,
called the “ripple-zipper” mechanism.

Experimental measurement of the decay of mounds
�Tanaka et al., 1997� seems to support the idea of trans-
parent steps. The dynamics of biperiodic grating has
been studied �Frisch and Verga, 2005, 2006�.14 Here we
assume that Eq. �4.68� applies for the two types of steps,
with different kinetic coefficients, !A and !B �see Eq.
�4.69��. Due to the fact that there are fewer kinks in SA
steps than in SB steps �see Fig. 43�a��, it is tempting to set
!A�!B, which means that attachment is much easier on
SB steps. For simplicity, we take !B=0. The diffusion
equation on each terrace reads

0 = D��zzc + F on A terraces, �4.72�

0 = D��zzc + F on B terraces, �4.73�

where D� and D� are the diffusion constants along and
perpendicular to the dimer rows. In a simple model, we
consider the interaction of neighboring steps only. Since
we have seen that this interaction is logarithmic, the
chemical potential �, which is proportional to the de-
rivative of the energy with respect to �, scales as �−1.
Then, in the same way as for the boundary condition
�4.68�, we write the boundary conditions for concentra-
tions cA and cB at steps SA and SB, respectively. They
include the elastic interaction,

cA = ceq
A = ceq

0 �1 + A� 1

�B
−

1

�A
� + !AV� , �4.74�

cB = ceq
B = ceq

0 �1 + A� 1

�A
−

1

�B
�� , �4.75�

where �A and �B are the widths of the A terraces with
dimer rows parallel to the steps and the B terraces with
dimer rows perpendicular to the steps, respectively. Fi-
nally, mass conservation at the step reads

Vm/� =�D+�zc+�m −�D−�zc−�m, �4.76�

where D± and c± are the diffusion constants and the
concentrations on both sides of the steps, respectively.
Without desorption, steady-state growth is obtained
when all steps move at the same velocity V=�F� with
�= ��A+�B� /2. The steady-state condition implies that

ceq
A = ceq

B , �4.77�

which results into

1/�� − 1� + 1/� = !AV�/A , �4.78�

where �=�A/ ��A+�B�. Since the lhs of Eq. �4.78� is a
monotonously decreasing function of �, there is a
unique solution. In the limit of fast growth or weak in-
teractions, steps in the pairs are very close to each other
and

� = �A/��A + �B� 	 A/!AV� . �4.79�

It is obvious that the A terraces shrink because the B
steps, where attachment is easy, move faster than the A
steps. Due to elastic repulsion, the B steps slow down
when they get too close to A steps. Care must be taken,
however, as the coupling of this pairing with �equilib-
rium� step doubling may render the picture more com-
plex. This constitutes an interesting task for future inves-
tigations.

The step with fast kinetics �!B=0� catches up with the
slow kinetics step, thus forming a pair. The pair may
then be viewed as a single effective step, with an effec-
tive negative Schwoebel barrier �since atoms would at-
tach more easily at the back of the pair; the step where
kinetics are fast lies at the rear�. It must be remembered
that the picture may be more complex because the dis-
tance between the steps in a pair is not fixed. Recent
analysis of a similar model with nontransparent steps
�Frisch and Verga, 2005� was found to lead to pairs.
They found two pairing steady states for small fluxes,
and no pairing steady state for large fluxes. This is dif-
ferent from the transparent case where there is always a
solution. They then proved the occurrence of bunching
from a stability analysis of the train of pairs and from
the numerical solution of the full step model.

More complex patterns, such as zigzags, have been
observed during the growth of Si�100� vicinal surfaces
�Schelling et al., 1999�. From the complexity of its struc-
ture, the Si�100� surface produces a large number of
morphologies during growth. A complete and quantita-
tive description remains a challenge.

3. Electromigration

In the presence of an electric current, one of the two
terraces dominates, while the other one shrinks thus
leading to step pairs. This was observed experimentally
by Ichikawa and Doi �1992� and analyzed theoretically
by Stoyanov �1990�.

The bunching of these pairs of steps was observed by
Litvin et al. �1991� and Latyshev et al. �1998� for both
directions of the electric current �for small miscuts�.
They observed that the number of steps in the bunches
increases as �t1/2 and the average width W of the
bunches follows W�N−1/2 �similar to the situation with
Si�111� in the intermediate temperature range under suf-
ficiently weak nonequilibrium conditions �Stoyanov and
Tonchev, 1998; Fujita et al., 1999��. Further theoretical
investigations can be found by Sato et al. �2005� and
Zhao et al. �2005�.

For large miscuts �i.e., small terrace widths�, step
bunching is seen only for step-up current. These results

14These studies were performed without the transparency as-
sumption, leading to qualitatively similar results.
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are difficult to analyze due to the interference of this
effect with the spontaneous �equilibrium� pairing transi-
tion induced by elastic interactions on these surfaces, as
mentioned above. Experiments with arbitrary current
orientations have also been reported �Nielsen et al.,
2001� and analyzed by Zhao et al. �2005�.

F. Elastic relaxation in heteroepitaxy

In heteroepitaxial growth, material of the adsorbed
epitaxial layer is different from the substrate material.
Since in general there is a lattice misfit, the elastic stress
accumulates in epilayers and induces various surface in-
stabilities.

1. The instability mechanism and linear analysis

Two mechanisms of step bunching related to the elas-
tic relaxation of the crystal during heteroepitaxy have
been reported. The first mechanism �Tersoff et al., 1995�
is the transcription of the Asaro-Tiller-Grinfeld �ATG�
instability �Asaro and Tiller, 1972; Grinfeld, 1986� to
vicinal surfaces. The ATG instability results from the
fact that the elastic energy of a solid under biaxial stress
can be lowered by undulation of the surface. This undu-
lation is not due to the buckling of the solid but results
from mass transport from valleys to summits.

In the case of vicinal surfaces, the kinetics of mass
transport and elastic relaxation are governed by crystal
steps. During heteroepitaxy, a density of force mono-
poles is present at the steps. These forces are necessary
in order to achieve mechanical equilibrium �discontinu-
ity of the height across a step means that the stresses on
both sides of a step are unequal; the step is then a loca-
tion of a force monopole�. Unlike Si�001� �see Sec. IV.E�,
successive steps here have forces pointing in the same
direction, changing repulsion �Marchenko, 1981� into at-
traction. As for Si�001�, the interaction is logarithmic
with �. Since our aim is to analyze step bunching, we first
consider the case where steps are straight. In this case,
the chemical potential at the steps, obtained from the
derivative of the energy, is �1/�. We then have �Tersoff
et al., 1995�

�m = �
n�m

�−
�1

�zn − zm�
+

�2

�zn − zm�3� , �4.80�

where �i’s are constants. �1 is positive �Tersoff et al.,
1995� due to the above-mentioned attraction. This
atttraction obviously leads to instability. In Eq. �4.80�,
there is no term �1/ �zn−zm�2. This can be explained
with simple symmetry arguments. Indeed, expanding the
force distribution around the steps gives a force density
at leading order and a density of dipoles to subdominant
order. Interaction between the forces leads to the term
proportional to �1 in Eq. �4.80� and interaction between
the dipoles leads to the term proportional to �2 �in ho-
moepitaxy, there are no net forces at the steps and �1
=0�. However, the interaction between the forces and
the dipoles—which would scale as 1/ �zn−zm�2—

vanishes. Consider two steps denoted 1 and 2. The inter-
action energy between dipoles at step 1 with the forces
at step 2 is opposite to that between the forces at step 1
with the dipoles at step 2. The two contributions coun-
terbalance each other.

Consider conserved dynamics, with instantaneous at-
tachment kinetics at the steps under an incoming flux F.
This gives

�tzm =
�F

2
�zm+1 − zm−1� + B � �m+1

 zm+1
� , �4.81�

where  fm= fm− fm−1 is the finite difference operator.
Following Tersoff et al. �1995�, a stability analysis of

these equations can be performed. Note that the incom-
ing flux F only enters in the imaginary part of the growth
rate of small perturbations. Therefore, it only leads to
propagative effects and is irrelevant to the analysis of
stability in the linear regime. The instability is driven by
elasticity. If the destabilizing force is small, the instabil-
ity appears at long wavelength and the linear dispersion
relation is expanded to

Re�i�� � �̃1���3 − �̃2�
4, �4.82�

where �̃i are positive constants proportional to �i. This
dispersion relation is different from that reported previ-
ously. The odd destabilizing term ���3 results from �1.
The absolute value expresses the fact that elasticity is of
long range.15 In real space, the Fourier transform of ���
leads to an integral representation �the Hilbert trans-
form� pointing thus to nonlocality. The term propor-
tional to �4 is the traditional term leading to surface
relaxation �the Mullins term�.

There is a second mechanism, treated by Duport,
Nozières, and Villain �1995� �DNV�. As mentioned, a
step is a location of a force density. These forces interact
with the force dipoles located around each adatom. The
interaction potential between an adatom and a straight
step at a distance r is U�1/r �since the interaction en-
ergy of a force and a dipole is �1/r2 and that of a line of
forces and a dipole is �1/r�. The presence of the exter-
nal potential U created by the step leads to an additional
�drift� term in the quasistatic diffusion equation

D�z��zc +
c

kBT
�zU� + F = 0, �4.83�

U�z� = − �
m=−�

�
�0

z − zm
. �4.84�

We are dealing with a situation with an adsorption flux F
but no desorption. The gradients of the interaction po-
tential �zU lead to a drift of the adatoms perpendicular
to the steps.

The DNV effect is similar to an effective Schwoebel
barrier in the sense that it makes the concentration

15Actually, �3 is a product of ��� �resulting from elasticity� and
�2 due to the conservation constraint.
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asymmetric. Unlike the ATG instability, the main con-
tribution of this effect is local and to linear order it may
be viewed as a renormalization of the Schwoebel effect.
From Sec. IV.A, the additional term which comes into
play in the long-wavelength dispersion relation may be
inferred so that Eq. �4.82� now reads

Re�i�� � F��̃0 + S̃��2 + �̃1����3 − �̃2�
4, �4.85�

where S̃ is a term proportional to the Ehrlich-Schwoebel
effect, and �̃0 is proportional to �0. If the sum of the

DNV and the Schwoebel effects, A0= �̃0+ S̃, is positive
�i.e., uphill diffusion bias�, there is instability �Fig. 44�a��,
which dominates the ATG instability at long wavelength
�the growth rate of which is ��3�.

If FA0 is negative and small, there is instability at fi-
nite wavelength, as shown in Fig. 44�b�. If FA0 is nega-
tive and sufficiently large, the surface is linearly stable
�Fig. 44�c��.

2. Nonlinear dynamics: Highly nonlinear equation

Due to mass conservation, the resulting evolution
equation for the surface height h takes the form

�th = F̄ − �zJ , �4.86�

where F̄=�aF. The mass flux J takes the form �Xiang,
2002�

J =
F̄

12
�z�

−2 + F̄
B
2
�d− +

�0

kBT
ln�2�a�����

+ B�Dceq

kBT
�z

�E
�h

. �4.87�

The two first terms in Eq. �4.87� account for the break-
down of the up-down symmetry �Politi and Villain, 1996�
induced by step motion and for the uphill mass flux
forced by the ES effect. In light of this formulation, the
DNV effect appears as a slope-dependent straightening
of the ES effect. As in previous sections �see Eqs. �4.24�
and �4.54��, the prefactor B accounts for diffusion slow-
ing down due to the fact that atoms have to jump over

the ES as well as diffusion barriers �with a kinetic at-
tachment length d− and d+=0�. It reads

B = 1/�1 + d−�� . �4.88�

The energy E accounts for elastic interactions between
steps and takes the form

E =
 dz�− a2��1
h̃

2
H��� +

a3

2
�1� ln��� +

a3�2

12
�2�

3�
�4.89�

with h̃=h−z�̄, where �̄ is the average step density. We
have defined the Hilbert transform as

H�u� =
1

�

 dy

u�y�
z − y

. �4.90�

It can be checked that the second and third terms in the
energy �4.89� account for the force monopole-monopole
and dipole-dipole interactions, respectively. The first
term expresses the effect of deviation from the uniform
train and is related to a ��� dependence in the linear
dispersion relation. This type of term was also derived in
the context of the ATG instability �Kassner and Misbah,
2002�.

From the numerical solution of Eq. �4.81�, it was
found by Tersoff et al. �1995� that growth plays an im-
portant role in nonlinear dynamics. Indeed, in the ab-
sence of growth, coarsening is observed, with a scaling
law for the bunch size N� t1/4. If allowance is made for
an incoming flux �F�0, growth�, the bunch size exhibits
saturation after some finite amount of coarsening. This
is reminiscent of two effects mentioned earlier for local
nonlinear dynamics. First, propagative terms �as in the
Benney equation; see Sec. IV.A.5� seem to change the
dynamics equation qualitatively. Here the propagative
term is the first term on the rhs of Eq. �4.87�. Second, the
coarsening process seems to be similar to the inter-
rupted coarsening observed on the meanders of aniso-
tropic steps in Secs. III.C.7.a and III.C.7.c. It is then
tempting to speculate that, as in the case of meandering,
the interrupted coarsening might be related to the pres-
ence of a bounded branch �Fig. 46, �iii�� �the wavelength
as a function of amplitude exhibits a maximum� of
steady states. Clearly, further nonlinear analysis is
needed for a full understanding of the late stages of this
instability.

It is also natural to expect the ATG instability to ap-
pear via step meandering. The elastic relaxation related
to meandering was analyzed by Houchmandzadeh and
Misbah �1995�. The competition between bunching and
meandering instabilities in the limit of small perturba-
tions was studied by Leonard and Tersoff �2003�. It ap-
pears that, while both instabilities are usually present,
the meandering instability always dominates when the
distance between steps is sufficiently large.

Re[i ]ω

(c)

(b)

(a)

φ

FIG. 44. Dispersion relation �4.85� for bunching at long wave-
length ��1 during heteroepitaxial growth. �a� A0= �̃0+ S̃ posi-
tive: instability at long wavelength. �b� A0=negative and small:
instability at finite wavelength. �c� A0=negative and large: the
surface is stable.
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V. MACROSCOPIC PHENOMENOLOGICAL
DESCRIPTION AND COARSENING

In this section we present a phenomenological picture
for the study of instabilities on a vicinal surface and ana-
lyze the limit of a singular high symmetry surface. We
admit, on the basis of several explicitly studied ex-
amples, that the instability occurs at long wavelength.
This limit is encountered, for example, for step mean-
dering when the incoming flux is small enough. Typically
this holds if the step relaxation frequency which is of the
order of V /� is small in comparison to diffusion time
over a terrace, given by D /�2 �see Eq. �3.32� where one
finds that typical length scales �k��2�V�2 /DS� and the
hydrodynamic limit corresponds to �k��2�1�. Using
typical values one finds that the condition is satisfied.
For step bunching the hydrodynamic limit corresponds
to the situation where the length scale is large in com-
parison with the interstep distance. This condition al-
ways holds at the scale of the bunch. If the instability is
of short wavelength �an exception is step pairing�, a
long-wavelength limit makes sense if one concentrates
on the close vicinity of the bifurcation point �see Sec.
IV.D.2�. We also present our current understanding re-
garding criteria for the occurrence or not of coarsening.

A. Nonconserved dynamics

At a macroscopic scale, we may attempt to present a
general phenomenological continuum model. We first
consider a one-dimensional model. To leading order we
may write the normal velocity of the surface

vn = A0�
� + A1�
�� , �5.1�

where � is the curvature and 
 is the angle between the
normal and a reference axis. The presence of � is a natu-
ral consequence of the intrinsic character of curvature
�see also Csahók et al. �1999��. Keeping the first term
only, we obtain the Frank model �Frank, 1958; Pimp-
inelli and Villain, 1998�, which was used to explain the
�apparent� anisotropic growth shape of crystals in solu-
tions. Due to the orientation dependence of A0, an ini-
tially circular seed may assume either a smooth profile
or facets. The precise form of A0 determines which sce-
nario prevails. Following the same picture, we may ex-
tend the analysis to a vicinal surface, with a local misori-
entation 
 with respect to the high symmetry plane of
the terraces. Ignoring the curvature term for the mo-
ment, the local step velocity is given by Vstep=vn / sin 

=A0�
� / sin 
, where the surface orientation angle 
 is
related to local surface slope �= ��zy /a� as �= �tan 
 � /a
�in the present section, we shall deal with step nucle-
ation, so that the vicinal restriction breaks down, and the
surface slope does not necessarily correspond to the step
density anymore�. Thus, Vstep is simply a function of �.
Such a �-dependent velocity is the starting point of the
kinematic wave theory. The approach presented in Sec.
II.C may then be applied.

Before proceeding further, we make a comment re-
garding singular surfaces. This analysis cannot, in prin-
ciple, be easily extended to nonvicinal surfaces for two
reasons: �i� A0 is expected to be nonanalytic around fac-
ets �i.e., at 
=0�; �ii� for orientations close to a facet,
when 
 is small, 2D nucleation would take place, so that
step density may be a complex function of the orienta-
tion.

As discussed in Sec. II.C �a section dedicated to kine-
matic waves� a description in terms of � only cannot
account for morphological instability and higher-order
derivatives are necessary. This is encoded in the the sub-
dominant term A1�. It is simple to recognize that when
A1�
��0, a flat surface of orientation 
 is linearly un-
stable and is stable otherwise.

In order to deal with the stability of a vicinal surface
with respect to both bunching and meandering, a two-
dimensional model is required. A generalization of Eq.
�5.1� must include in the subdominant term the two prin-
cipal curvatures. For simplicity, we assume that the steps
have isotropic properties. Moreover, we consider a sca-
lar space-independent driving force �such as a deposition
flux, but no electromigration, for example�. To param-
etrize the surface we use the step curvature �s �along the
step direction� and the surface slope gradient �n� in the
direction orthogonal to the step. The simplest leading
order continuum model therefore reads

�th = A0��� + As����s + An����n� . �5.2�

We now use this model to study the linear stability of a
vicinal surface. Consider an initial vicinal surface with an
average step density �̄�0 along the z axis �i.e., along the
vicinal direction�. The actual surface height can be writ-
ten h=A0��̄�t−a�̄z+�h, where �h is the deviation from
the homogeneous profile. Expansion of Eq. �5.2� to lin-
ear order in �h yields

a�t�h = − ��A0��̄��z�h − �As��̄�/�̄��xx�h + An��̄��zz�h .

�5.3�

The first term on the right-hand side is purely imaginary
in Fourier space; it expresses a propagative �or a drift�
effect. The second term accounts for meandering modes;
step meandering occurs if As�0. The last term accounts
for step-bunching modes; a step-bunching instability is
indicated by An�0.

Note that the above analysis cannot be applied to a
nominal surface with �̄=0 since curvature �s and unit
vector normal to a step n are meaningless in this case.

B. Conserved dynamics

Now consider dynamics with a conservation con-
straint, such as deposition with no desorption. This
model was first discussed by Villain �1991� in the context
of mound formation induced by the ES effect. In one
dimension, we have
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�th = v̄ − �zJ�
� , �5.4�

where v̄ represents the average velocity, obeying �on av-
erage over the surface� ��th�= v̄. In a gradient expansion,
the dominant contribution to J is a simple angle depen-
dence J=J�
�. As shown in Figs. 45�a� and 45�b�, insta-
bility occurs if �
J�0.

As in the nonconserved case, a two-dimensional gen-
eralization of this criterion is easily obtained:

�th = v̄ − � · J . �5.5�

For an isotropic step model, with a scalar driving force,
the mass flux is to leading order16 along the normal to
the steps and only depends on surface slope

J = − nJ��� �5.6�

if n is the normal to the step. Consider a slight deviation
�h. As before, the height is written h= v̄t−a�̄z+�h. A
linear expansion of the model equation leads to

a�t�h = − �J��̄�/�̄��xx�h − ��J��̄��zz�h . �5.7�

As compared to the nonconserved case �Eq. �5.3��, no
propagative term appears �to leading order only�. This is
related to the fact that kinematic waves, as presented in
Sec. II.C, do not exist within this type of conserved
equation �this fact was mentioned in Sec. II.C�.

When �̄�0, we have a vicinal surface. Stability is then
deduced from Eq. �5.7�. Namely, if ��J��̄��0 step bunch-
ing occurs and if J��̄��0 �i.e., uphill mass flux� meander-
ing takes place �see Fig. 45�c��. The limit �̄→0 appears
to be problematic. This difficulty may be circumvented

by evoking a general physical argument. Indeed, symme-
try leads us to expect that J�0�=0 and that the flux
should be continuous for �=0. An expansion of the cur-
rent around �=0 should thus yield

J��� 	 ���J�0� . �5.8�

The limit �→0 can then be taken directly from Eq. �5.7�,
leading to

a�t�h = − ��J�0���xx�h + �zz�h� , �5.9�

which expresses the fact that mound formation instabil-
ity takes place when ��J�0��0. From Eq. �5.8�, the con-
dition for mounding instability can also be written as
J����0, i.e., an uphill flux. If we do not assume that
J��→0�→0 then the dynamics around a nominal surface
��=0� would not be well defined. Nevertheless, mounds
may be well defined if it is accepted that small slopes are
forbidden by �more or less ad hoc� dynamics. This ques-
tion was addressed in this context by Elkinani and Vil-
lain �1993� for the Zeno model, for which slopes smaller
than the inverse of the nucleation length are forbidden.
Later Politi and Villain �1996� put forward the idea that
stochastic nucleation could solve this problem since the
limit of �→0, J vanishes. Finally, studies of mound for-
mation in the presence of a finite ES effect have shown
that dynamics are in fact nonlocal at the top of mounds,
leading to a nonanalytic shape with a truncated mound
�curiously similar to the shape of the step meander stud-
ied by Gillet et al. �2000��. In the limit of a strong ES
effect, the width of the top terrace tends to zero and a
singular peaked shape is obtained �Krug, 1997; Politi,
1997�.

Similar problems are encountered when dealing with
the decay of mounds as shown by Chame et al. �1996�. In
this case, although global stability can be expected, caus-
ing structure decay, the dynamics are still not well de-
fined around facets at �=0. The results of the conserved
model are qualitatively shown in Fig. 45. There is now
significant literature on the phenomenological modeling
of flux J �Politi et al., 2000�. Additional higher-order
terms in the flux, which may account for the up-down
symmetry breaking of the surface and/or for short wave-
length surface stabilization, have been introduced. Here
we have attempted to show how a consistent picture
could be produced for the derivation of nonlinear evo-
lution equations when nucleation is absent. The incorpo-
ration of nucleation, which is an essential ingredient in
the study of dynamics of nominal surfaces, is to date
largely phenomenological.

C. Coarsening

1. Scaling and universality classes

We first recall the work of Paulin et al. �2001� on step
meandering in the presence of elastic interactions, which
was presented in Sec. III.C.5. In this work it was shown
that when meandering leads to endless coarsening, a
self-affine Ansatz can be used to find the coarsening ex-
ponents from a simple power-counting argument. This

16By this we mean to leading order in variation of the geom-
etry of the surface; for example, if we include a curvature term
as in the nonconserved case, we produce higher-order deriva-
tives in the final equation in terms of �h.
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� � � � � � � � � � � � � �
� � � � � � � � � � � � � �
� � � � � � � � � � � � � �
� � � � � � � � � � � � � �
� � � � � � � � � � � � � �
� � � � � � � � � � � � � �

(b)

(a)

(c)

FIG. 45. �Color online� Surface mass fluxes may stabilize or
destabilize the surface. There are three basic instabilities: �a�
mound formation induced by an uphill mass flux, �b� step
bunching induced by slope-dependent variations of the mass
flux, and �c� step meandering induced by an uphill mass flux.
We observe that mound formation and step bunching may be
described within the frame of a 1D model, while step mean-
dering requires a 2D description of the surface.
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method was also applied to step bunching �Pimpinelli et
al., 2002�. The basic assumption is a self-affine Ansatz:
h�x , t�= t�/zH�x / t1/z�. The exponents are extracted from a
power-counting method by comparing the different
terms in the nonlinear equation.

As pointed out by Krug et al. �2005� and Chang et al.
�2006�, the existence of more than one type of steady
state for the highly nonlinear equation �such as Eq.
�4.54�� casts doubt on the general validity of the crite-
rion.

It should be stressed that this type of reasoning
�power counting� has not been proven to work, for ex-
ample, for weakly nonlinear equations. There are at
least three terms in weakly nonlinear equations �desta-
bilizing, stabilizing, and nonlinear� such as the Benney
equation and Eq. �4.41�. Therefore, it is not clear how
the power-counting methods can be extended to these
equations.

A more powerful tool for determining the coarsening
exponent has been put forward �and proved for a large
class of equations�. It is based on analysis of the phase
diffusion equation �Politi and Misbah, 2004, 2006�. This
will be discussed next.

2. Coarsening versus noncoarsening of the pattern

So far we have seen that dynamics can broadly be
classified into three main categories: �i� fixed wave-
length, �ii� perpetual coarsening, and �iii� interrupted
coarsening; this intermediate stage may occur, in which
wavelength increases significantly beyond that of the
fastest growing mode before freezing at a typical value.
It is quite puzzling to see that some equations first ap-
pear to be quite similar �as encountered in Sec. III� but
lead to drastically different scenarios �such as coarsening
and wavelength selection�. We want to understand if
there are criteria that allow a distinction to be made
between these types of dynamics. We attempt to classify
the dynamics that is likely to take place without resort-
ing to a systematic numerical integration of the evolu-
tion equations.

The interesting feature is that a connection can be
made between the shape of the steady-state branch, ex-
pressed in terms of the amplitude A of the pattern as a
function of periodic structure wavelength �, and the oc-
currence or absence of coarsening. This connection is
possible for a certain class of equations as presented by
Politi and Misbah �2004, 2006�.

Three different generic scenarios may occur: �i� ��A�
is a decreasing function of A �Fig. 46, �i��, �ii� ��A� in-
creases indefinitely �Fig. 46, �ii��, and �iii� ��A� increases
then attains a maximum before decreasing �Fig. 46, �iii��.
In �i� it is found that there is no coarsening while the
wavelength is frozen at a value close to that of the fast-
est growing mode. In �ii� there is coarsening. In �iii�
there is coarsening until the wavelength reaches the
maximum value where coarsening is interrupted. While
there is no coarsening �case �i�� or when coarsening is
interrupted �case �iii��, the amplitude increases indefi-
nitely over time. We may refer to these solutions as “di-

verging solutions.” Note that there are other variations.
For example, in case �ii�, ��A� may first decrease before
increasing �see Fig. 39�a� and Politi and Misbah �2004��.
In this case, coarsening occurs. We may even have sev-
eral minima. What matters is that ��A� increases at large
�.

Finally, a fourth important distinct generic scenario
may occur: the steady-state branch increases up to a
maximum value of amplitude A, then reaches a turning
point before going back to lower values of A. Such a
case indicates that no standard coarsening can be ob-
tained and more complex behavior might occur; see
Politi and Misbah �2004, 2006� for a detailed discussion.

In a recent work �Politi and Misbah, 2004, 2006� it has
been argued that the absence or manifestation of coars-
ening may be linked to the so-called phase diffusion con-
stant. This is not restricted to crystal growth or sublima-
tion only but to classes of equations that may occur in
different domains.

More precisely, suppose that there is a steady-state
solution h0�x� with periodicity �, h0�x+��=h0�x�. This
steady state may become unstable with respect to wave-
length modulation, i.e., a sudden local increase in wave-
length may be enhanced due to intrinsic instability,
which is referred to as phase instability. Thus, if the
steady branch is always unstable �this is taken to mean
for “all wavelengths”� with respect to the phase, then we
expect perpetual coarsening to occur. Conversely, if the
branch is stable with respect to phase modulation, then
we expect the wavelength to be fixed.

For a steady-state periodic solution, the phase of the
pattern is �=kx, where k=2� /�. If the wavelength � is
locally perturbed �due to an inherent fluctuation�, then
the phase � becomes a function of space and time �ei-
ther relaxing toward the initial local wavelength or de-
viating away from it; these two situations correspond to

FIG. 46. Three scenarios for coarsening. �i� No steady state
above the most unstable wavelength �m. No coarsening. �ii�
Perpetual coarsening. �iii� Steady states up to a value of � cor-
responding to maximum of the curve ��A�. If �m is larger than
that value, no coarsening occurs; if it is lower, interrupted
coarsening takes place.
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stable and unstable patterns with respect to phase fluc-
tuations�. The �slow� phase &�X ,T�=��x , t� /� �where � is
a small parameter measuring the strength of phase
modulation and X=x�� and T=�t are the slow variables�
can be shown �Politi and Misbah, 2004, 2006� to obey a
diffusion equation

�&/�T = D�2&/�X2, �5.10�

where D is the phase diffusion coefficient which is a
function of the steady-state solution h0, which itself is
parametrized by the wave number. Consider the follow-
ing evolution equation:

�th = �x
2h − F�h� , �5.11�

where F is a general function of h. This is referred to as
the generalized Ginzburg-Landau equation in Politi and
Misbah �2004�. h0�x� is its steady-state solution with pe-
riodicity � and amplitude A. It can be shown �Politi and
Misbah, 2004, 2006� that D in Eq. �5.10� is given by

D = �k�k���h0�2�/����h0�2� � D1/D2. �5.12�

In the above, �¯ �= �2��−1�0
2�
¯d� is the inner product,

the denominator D2 is always positive, and the sign of D
is fixed by the numerator D1=�k�k���h0�2�. Using me-
chanical analogy �since the steady version of Eq. �5.11�,
�th=0, is analogous to Newton’s equation of a fictitious
particle having a position h0�x� and x plays the role of
time; thus �x

2h is acceleration and F force� it has been
shown �Politi and Misbah, 2004, 2006� that the sign of D1
is the same as that of −�A�. Consequently, if ��A� is an
increasing function of �, as in scenario �ii� �Fig. 46�, then
D�0 and the pattern is always unstable with respect to
wavelength modification and coarsening occurs.17

Politi and Misbah �2004, 2006� extended the argument
based on phase diffusion constant analysis to other
equations and seemed to work perfectly well according
to the three scenarios presented above. We have seen
throughout that these three scenarios and their dynam-
ics are consistent with the general picture drawn above.

3. Coarsening exponents

It has been argued and shown by Politi and Misbah
�2006� that the phase diffusion equation could be ex-
ploited to determine the coarsening exponent.

A negative D implies unstable behavior of the phase
diffusion equation �t&=−�D ��xx&, which displays expo-
nential growth. The idea by Politi and Misbah �2006� is
based on the fact that if coarsening takes place, only
time measurement t and pattern length scale � are ex-
pected to survive as the essential scales over a long time
and large spatial scales. Since coarsening is triggered by

phase instability, represented by its diffusion coefficient
D, there is only one way to link these quantities to-
gether, namely,

�D���� 	 �2/t . �5.13�

In general D��� can always be determined, at least nu-
merically, without resorting to any time-dependent cal-
culation �it is determined only from knowledge of
steady-state solutions as in Eq. �5.12��. It turns out that
for a large class of equations, D��� can be extracted ana-
lytically in the asymptotic limit �large ��, and thus an
analytical expression of the coarsening exponent can be
derived �Politi and Misbah, 2006�. For all known equa-
tions in the class of equations studied by Politi and Mis-
bah �2006�, the exact exponent was recovered. As dis-
cussed by Politi and Misbah �2006�, an analytical
derivation of a coarsening exponent is made for some
classes of equations where the one-dimensional charac-
ter of the equation is essential. While a link between the
phase diffusion coefficient and the behavior of a steady-
state branch is currently difficult to achieve beyond 1D,
the phase diffusion equation can be derived at an arbi-
trary dimension. This suggests that t��2 /D is worth
testing in a higher dimension. If it works, since D only
contains information on the periodic steady-state solu-
tions, it is sufficient to obtain these solutions to deter-
mine the coarsening law. Numerical determination of
these solutions is straightforward and thus the behavior
of D as a function of � can easily be extracted. Thus the
coarsening law can be obtained without resorting to a
time-dependent simulation. This presentation partially
answers the challenging question: When and under
which conditions does coarsening take place? It is hoped
that this type of analysis will be extended to other non-
linear equations and to higher dimensions.

VI. CONCLUSION AND FUTURE DIRECTIONS

This review presents the major results known for vici-
nal surfaces regarding both bunching and meandering.
Both standard and nonstandard nonlinear regimes are
encountered. In conclusion, we discuss the major prob-
lems, constituting important tasks for future investiga-
tions.

The meandering study, together with bunching, have
led to various nonlinear equations; some of them are
known in other nonlinear systems, while others were yet
unrevealed. The nonlinear equations are derived ana-
lytically from BCF equations. Their numerical solutions
reveal four basic scenarios: �i� chaotic dynamics, �ii�
fixed wavelength with increasing amplitude, �iii� per-
petual coarsening, and �iv� interrupted coarsening. Inte-
gration of the BCF model �without approximation,
which consists in reducing the BCF system into nonlin-
ear partial differential equations �PDEs�� and lattice gas
simulations capture the same essential features �Saito
and Uwaha, 1994; Kallunki et al., 2002; Danker, 2005�.
This points to the fact that the above scenarios are in-
trinsic properties of the basic BCF model. A deep math-

17In principle one could think that D�0 may also lead to a
decrease of the wavelength �via cell splitting�. However, this is
not consistent with the fact that for ���c, the straight step is
stable. Thus only an increase of � should be expected, a priori.
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ematical understanding on why, for example, two appar-
ently similar PDEs exhibit entirely different dynamics is
lacking; some preliminary work has been undertaken
�Politi and Misbah, 2004, 2006�. The task, which consists
in developing general criteria on the properties of the
PDEs and their far-reaching consequences, offers a ma-
jor panel of research in applied mathematics in this field
with increasing importance and embraces a wide spec-
trum of scientific communities, ranging from fundamen-
tal research to applications.

From the physical point of view many questions re-
main unsolved or continue to be a matter for debate. To
explain meandering instability two mechanisms have
been evoked: �i� the Ehrlich-Schwoebel effect at the step
and �ii� the same effect at the kinks. It has not yet been
determined whether one prevails over the other or if it
depends mainly on the systems and the parameter val-
ues. More refined experiments, together with micro-
scopic simulations, are necessary in order to shed further
light on these questions.

Bunching occurs in many circumstances, but here the
emphasis has been on bunching caused by electromigra-
tion since many experimental data are available in this
case. The intermediate temperature range for experi-
ments on Si�111� has proven rather mysterious at first
sight. Several ideas have been put forward to resolve the
dilemma raised by this regime: �i� change of effective
charge with temperature �ruled out by experiments�, �ii�
step transparency to atoms �or fast kinetics attachment
on both sides of the step�, �iii� differential diffusion
model �in that atoms diffuse faster closer to the step
than elsewhere�, �iv� partial transparency, �v� change of
electromigration of atoms close to a step, and �vi� adva-
cancy effect. While each model has its own merit, there
is a need for a clear understanding of the physics of
Si�111� surfaces at the microscopic level. In addition,
why transparency or differential diffusion should occur
just in the intermediate temperature range remains as a
major challenge. Further experiments on other systems
should help guide and promote a deeper understanding
of nonequilibrium-driven interfaces.

It must be stressed that in many cases step bunching
has been regarded within a one-dimensional picture.
The extraction of nonlinear PDEs from the BCF equa-
tions including 2D dynamics is largely an unexplored
area of research. Beyond step flow dynamics a system-
atic incorporation of nucleation on terraces in a con-
tinuum description of surface evolution is also lacking.

More recent different types of approaches for deriving
continuum nonlinear equations have been published
�Haselwandter and Vvedensky, 2008�. These are based
on the renormalization of stochastic lattice models lead-
ing to continuum surface equations. While this approach
is appealing, scenarios like those leading to highly non-
linear equations, as those met here, are not captured. It
will be an interesting task for future studies to conceive
of approaches of this type in order to deal with more
general scenarios.

Besides analytical tools which have proved successful
in extracting nonlinear evolution equations from the ba-

sic growth model, it is essential to pursue analyses on
phase-field modeling �Pierre-Louis, 2003a� and level set
approaches �Ratsch et al., 2002�, together with kinetic
Monte Carlo �KMC� simulations �Saito and Uwaha,
1994; Kallunki et al., 2002; Rusanen et al., 2002�. These
analyses should also be made in a concerted fashion with
more atomistic �e.g., ab initio� calculations in order to
determine energetic and kinetic parameters to be in-
jected into more coarse-grained theories. This last step is
essential if we want to use the knowledge accumulated
in this field in a more quantitative application to specific
systems. Several numerical studies have focused on the
dynamics of nominal surfaces on the basis of KMC simu-
lations, and some key ingredients are beginning to
emerge. It is an important task for future investigations
to determine whether or not dynamics may be captured
by simple prototypical continuum evolution equations.

The field of this review is, on the one hand, a major
area of research in fundamental science, providing a
plethora of examples of nonequilibrium and nonlinear
statistical physics. On the other hand, this field is at the
frontier of technological applications. One important
promising issue is the possibility �or ability� of taking
advantage of the deterministic instabilities to monitor
vicinal surfaces and use them as a template for nano-
structure formation.

Periodic arrays of nanofeatures, such as nanoislands
�or nanodots�, are useful as a basis of a variety of nan-
odevices, including electronic, acoustic, photonic, and
magnetic devices. These arrays are traditionally ob-
tained by means of lithographic techniques. Nowadays
there is an increasing interest toward the use of sponta-
neous self-organization of islands and wires. It may now
also be envisaged to take advantage of the meandering
instability offering a 2D ordered template �see, for ex-
ample, Fig. 29�. Deposition of new species on the tem-
plate that have preferential nucleation sites either at the
summits of the zigzag pattern or at the valleys may lead
to an ordered array of quantum dots. This goal may be
achieved thanks to a control of the following features of
the instability: �i� the functional dependence of the
wavelength with parameters �which will thus allow one
to fix the size of the dots at will� and �ii� the control of
long-range order of the instability �which ensures high
ordered nanostructures�. In many optical applications
�e.g., light emitting devices�, monodisperse quantum
dots should allow coherent peaked emission spectra.
The typical size requirement of quantum dot application
in optics is the range 10–20 nm. The nonperiodic ar-
rangement of such memory devices and logic devices
may reduce the effectiveness and usefulness of the nano-
patterned device array. For example, in the case of mag-
netic hard disk media, undesirable switching or read er-
ror of magnetically written bits may occur if periodicity
is not sufficiently precise �tolerance in inhomogeneity
should be much smaller than the size of the reading de-
vice�.

Examples of nanostructure production have been
demonstrated for the growth of wires and platelets along
atomic steps �Gambardella et al., 2000; Li et al., 2000;
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Himpsel et al., 2001; Gai et al., 2002�. The width of these
wires is usually several atomic spacings. Several at-
tempts have focused on the organization of nanodots on
step bunches �Ronda et al., 2003; Goldfarb, 2007�. But,
long-range order has not been produced yet on these
surfaces. Another possible direction is to use templates
which simultaneously undergo bunching and meander-
ing instabilities, leading to a 2D pattern, such as in Néel
et al. �2003�. But, to our knowledge, no 2D meandering-
bunching pattern with long-range order has been ob-
tained yet in experiments. This promising route toward
directed self-assembly crucially depends on the control
of the morphology of vicinal substrates, which is a cen-
tral focus of the present review. Another promising ap-
proach is to combine vicinal surfaces which provide pe-
riodicity in one direction, and surface reconstruction on
terraces, which provides a periodicity in the direction
parallel to steps. This method has been used successfully
for the growth of magnetic dot assemblies �Repain et al.,
2002�.

A more refined understanding of the various essential
physical ingredients of the meandering and bunching in-
stabilities and their interplay with stress and reconstruc-
tion is necessary before reaching a mature level toward
applications.

In conclusion, this review has presented the main
questions, problems, and solutions related to equilib-
rium and out-of-equilibrium vicinal surfaces. While sig-
nificant progress has been made during the past two de-
cades, there is still a myriad of unresolved questions at
both fundamental and practical levels. We believe that
this field merits a higher level of research activity.

LIST OF SYMBOLS AND ACRONYMS

a atomic length scale
A=�A /kBT elastic interaction volume
A elastic interaction constant
ATG Asaro-Tiller-Grinfeld
BCF Burton-Cabrera-Frank step model
c adatom concentration on terraces
ceq equilibrium concentration
d±=D /�± kinetic attachment lengths
d0=D /�0 transparency length
D diffusion constant on terraces
DL macroscopic line diffusion constant
DS=�ceqD macroscopic terrace diffusion constant
DAKS discrete advective Kuramoto-

Sivashinsky equation
DNV Duport-Nozieres-Villain
ES Erhlich-Schwoebel effect
f=zeE electromigration force
F deposition flux on terraces
F free energy
Fc critical flux
Feq=ceq/� equilibrium deposition flux
FT Fourier transform
G�t� temporal step autocorrelation
h surface height

J flux
JL flux along the step
k wave vector �FT space variable x�
kB Boltzmann’s constant
kc critical wave vector
km=kc /�2 most unstable wave vector
KdV Korteweg–de Vries
KMC kinetic Monte Carlo simulations
KPZ Kardar-Parisi-Zhang equation
KS Kuramoto-Sivashinsky equation
� step separation, terrace width
Lc cutoff length
Lk distance between kinks
m step index
m=�x� step slope
M mobility
MBE molecular beam epitaxy
n normal to a step
NSNE nonstandard nonlinear equation
REM reflection electron microsope
s arclength
STM scanning tunneling microscope
V step velocity

V̄ mean step velocity
weq equilibrium step width
w�t� step fluctuation width
X ,Y ,Z ,T slow variables
xs= �D��1/2 desorption length
�=�	̃ /kBT step capillary length
	 step line tension
	̃=	+	� step stiffness
� small parameter
� step meander
� thermal noise

 step orientation
� curvature
�m wavelength of the fastest growing mode
� chemical potential
�± attachment-detachment step kinetic co-

efficients
�0 transparency kinetic coefficient
%=kBT / f migration length
� step density
� desorption time on terraces
� phase shift �FT step index variable m�
� atomic area
� pulsation �FT time variable t�
i� complex amplification rate
�x partial derivative with respect to x
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