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Hard spheres are ubiquitous in condensed matter: they have been used as models for liquids, crystals,
colloidal systems, granular systems, and powders. Packings of hard spheres are of even wider interest
as they are related to important problems in information theory, such as digitalization of signals, error
correcting codes, and optimization problems. In three dimensions the densest packing of identical
hard spheres has been proven to be the fcc lattice, and it is conjectured that the closest packing is
ordered �a regular lattice, e.g., a crystal� in low enough dimension. Still, amorphous packings have
attracted much interest because for polydisperse colloids and granular materials the crystalline state
is not obtained in experiments for kinetic reasons. A theory of amorphous packings, and more
generally glassy states, of hard spheres is reviewed here, that is based on the replica method: this
theory gives predictions on the structure and thermodynamics of these states. In dimensions between
two and six these predictions can be successfully compared with numerical simulations. The limit of
large dimension is also discussed where an exact solution is possible. Some of the results presented
here were published, but others are original: in particular, an improved discussion of the large
dimension limit and new results on the correlation function and the contact force distribution in three
dimensions. The main assumptions that are beyond the theory presented are clarified and, in
particular, the relation between static computation and the dynamical procedures used to construct
amorphous packings. There remain many weak points in the theory that should be better investigated.
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I. INTRODUCTION

The study of amorphous states of hard spheres is rel-
evant for a large class of physical systems, including liq-
uids, glasses, colloidal dispersions, granular matter, pow-
ders, and porous media. Therefore, after pioneering
works done in the 1960s �Bernal and Mason, 1960; Ber-
nal et al., 1962; Scott, 1962; Mason and Clark, 1965, 1966;

Scott and Kilgour, 1969; Finney, 1970�, a large amount of
precise numerical and experimental data is now avail-
able �see, e.g., Bennett �1972�, Matheson �1974�, Powell
�1979�, Berryman �1983�, Pusey and Van Megen �1986�,
Lubachevsky and Stillinger �1990�, Clarke and Jónsson
�1993�, Torquato �1995, 2002�, Rintoul and Torquato
�1996�, Speedy �1998�, O’Hern et al. �2002, 2003�, Donev
et al. �2005a�, Krauth �2006�, Silbert et al. �2006�, Skoge
et al. �2006�, Angelani and Foffi �2007�, Majmudar et al.
�2007�, Somfai et al. �2007�, and Jerkins et al. �2008��.
Moreover, the sphere packing problem is related to
many mathematical problems and arises in the context
of signal digitalization and of error correcting codes, and
it has been investigated in detail by the information
theory community �Rogers, 1964; Conway and Sloane,
1993�. Nevertheless, a satisfactory characterization of
the amorphous states of a system of identical hard
spheres is not yet available and the definition of amor-
phous close-packed states is still a matter of debate
�Torquato et al., 2000; O’Hern et al., 2002; Kamien and
Liu, 2007�. From the rigorous point of view, for space
dimension d�3 only some not very restrictive bounds
have been obtained, and, in particular, it is still unclear
whether the densest packings for d→� are amorphous
or crystalline �see Sloane �2007� for a list of all known
densest packings up to d=128�.

Dense amorphous packings of hard spheres are usu-
ally produced according to some specific dynamical pro-
tocol. Typically one starts from an initial random con-
figuration of the spheres, obtained, e.g., by throwing
them into a container, and then shaking, tapping, or agi-
tating in some way the spheres until a jammed structure
is found �Scott and Kilgour, 1969; Bennett, 1972; Pusey
and Van Megen, 1986; Torquato, 2002; Dauchot et al.,
2005; Schröter et al., 2005; Abate and Durian, 2006;
Daniels and Behringer, 2006; Majmudar et al., 2007; Pica
Ciamarra et al., 2007; Jerkins et al., 2008�. In numerical
simulations, amorphous packings are produced by inflat-
ing the particles while avoiding superposition either by
molecular dynamics �Lubachevsky and Stillinger, 1990;
Donev et al., 2005a; Skoge et al., 2006� or by using soft
particles and minimizing the energy �Clarke and Jóns-
son, 1993; O’Hern et al., 2002, 2003; Silbert et al., 2006;
Somfai et al., 2007�. As a matter of fact, most of these
procedures, if crystallization is avoided, lead to final
packing fractions close to 0.64 in d=3 and to 0.84 in d
=2. These values of density, which are approximately
10% smaller than the values of the ordered close pack-
ing, have been called “random close-packing density.”

Unfortunately, the algorithms �or procedures� that are
used to create such packings are complicated dynamical
nonequilibrium procedures. Obtaining analytical results
for the properties of the final states requires an analyti-
cal solution of such complicated dynamical processes,
which is very difficult even in the simplest theoretical
models �Torquato and Stillinger, 2006a; Krzakala and
Kurchan, 2007�. The aim of this paper is then to identify
a class of amorphous packings that might be described
using equilibrium statistical mechanics, that is, in a static
framework. These packings will be defined as the infinite
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pressure limit of glassy states of hard spheres: such
glassy states, if dense enough, are well-defined meta-
stable states with very long lifetimes and should then be
correctly described by equilibrium statistical mechanics.
The idea of studying amorphous packings as the infinite
pressure limit of a metastable state has been discussed
�Biroli and Mézard, 2001; Pica Ciamarra et al., 2003;
Aste and Coniglio, 2004; Rivoire et al., 2004; Tarzia et
al., 2004; Parisi and Zamponi, 2005; Kamien and Liu,
2007; Krzakala and Kurchan, 2007; Zamponi, 2007� and
is appealing because it converts a difficult dynamical
problem into a much simpler equilibrium problem.

Our approach to study glassy states will be based on
the so-called random first-order transition �RFOT�
theory of glasses, whose theoretical foundations were
posed in a series of papers by Kirkpatrick, Thirumalai,
and Wolynes �Kirkpatrick and Thirumalai, 1987; Kirk-
patrick and Wolynes, 1987a� �see Cavagna �2009� for a
detailed review�. In this theory the glass transition of
particle systems is assumed to be in the universality class
of the one-step replica symmetry breaking �1RSB� tran-
sition that happens in some mean-field exactly solvable
spin-glass models �Gross and Mézard, 1984; Mézard et
al., 1987�. Under this assumption, the glassy states of
realistic finite-dimensional systems can be studied ana-
lytically, within some approximation, using equilibrium
statistical mechanics by means of density-functional
theory �Stoessel and Wolynes, 1984; Singh et al., 1985;
Kirkpatrick and Wolynes, 1987a; Dasgupta and Valls,
1999; Kim and Munakata, 2003; Chaudhuri et al., 2005;
Yoshidome et al., 2007� and of the replica trick �Monas-
son, 1995; Mézard and Parisi, 1996�. In particular, the
replica method seems to give good quantitative esti-
mates of the glass transition temperature �or density�
and of the equation of state of the glass for Lennard-
Jones systems �Coluzzi et al., 1999; Mézard and Parisi,
1999a, 1999b, 2000� and hard spheres �Cardenas et al.,
1998, 1999; Parisi and Zamponi, 2005, 2006a�.

Beside the large amount of numerical and experimen-
tal data available, there is an important advantage in
working with hard spheres with respect to Lennard-
Jones–like potentials. “Ground states” of hard spheres
are obtained in the infinite pressure limit and corre-
spond then to sphere packings that have interesting geo-
metrical and topological properties, which can be inves-
tigated by looking at the network of contacts and at
contact forces. This is very interesting because one can
identify a set of geometrical observables that can be
computed within the theory and directly compared with
simulation and experiments. In this paper we show that
this allows a precise test of the theory. Moreover, a more
direct geometrical approach is possible; it has been
largely exploited �see, e.g., Richard et al. �1999�, Kansal
et al. �2002�, Aste �2005�, Aste et al. �2005�, Donev et al.
�2005a, 2007�, Lochmann et al. �2006�, Skoge et al. �2006�,
Anikeenko and Medvedev �2007�, Anikeenko et al.
�2008�, and van Meel et al. �2009�� and led to some im-
portant successes in the characterization of sphere pack-
ings. This is not possible for Lennard-Jones–like par-
ticles since the �zero-temperature� ground states of the

system do not have special geometrical properties and
indeed their structure is quite similar to typical liquid
configurations. One might consider instead a soft poten-
tial that vanishes outside a finite radius; then the zero-
energy ground states correspond to hard sphere configu-
rations. In this way one obtains a system that displays
the same geometrical properties of hard spheres at zero
temperature and energy but at the same time becomes
soft at finite temperature. This has been largely ex-
ploited �O’Hern et al., 2002, 2003; Schreck and O’Hern,
2008; Berthier and Witten, 2009a, 2009b� to obtain im-
portant information on the properties of amorphous
hard sphere packings. Therefore in this paper we focus
on the hard sphere case and we discuss the limits of the
theory and how it compares with numerical and experi-
mental results. We show that despite the strong idealiza-
tions involved in the theory, the agreement with numeri-
cal data is surprisingly good. Moreover, we study the
limit of large space dimension and obtain the asymptotic
value of the density of amorphous packings.

Remarkably, a class of mean-field hard sphere models
has recently been formulated for which the RFOT sce-
nario is exact �Biroli and Mézard, 2001; Pica Ciamarra et
al., 2003; Rivoire et al., 2004; Tarzia et al., 2004; Sellitto et
al., 2005; Krzakala et al., 2008; Mari et al., 2009�. These
models allowed one to test the methods used here, con-
firming that they are reliable at least at the mean-field
level. In particular, Mari et al. �2009� formulated a model
in this class whose phase diagram is exactly the same as
the one discussed below for finite-dimensional hard
spheres.

It is worth noting that in experiments on granular sys-
tems and powders the role of friction is important �Dau-
chot et al., 2005; Schröter et al., 2005; Abate and Durian,
2006; Daniels and Behringer, 2006; Pica Ciamarra et al.,
2007; Shundyak et al., 2007; Somfai et al., 2007; Lech-
enault et al., 2008�, for instance, in determining the exis-
tence of loose packings �Onoda and Liniger, 1990; Jer-
kins et al., 2008; Song et al., 2008�. Friction complicates a
lot of the theoretical analyses of the packing problem
since the system is intrinsically out of equilibrium and
standard equilibrium statistical mechanics is, in prin-
ciple, useless. Nevertheless, since the pioneering work of
Edwards �Edwards and Oakeshott, 1989; Edwards,
1998�, statistical mechanics ideas have been used to de-
scribe frictional systems, leading to remarkable results
�Goldbart et al., 2005�. Comparison with experimental
results is made difficult by the fact that in most experi-
ments samples are polydisperse, often with a large range
of particle sizes as in the case of many granulars.

For reasons of space, this paper is focused on our ap-
proach, that we will discuss in full detail; therefore, in
the following we will consider mainly the statistical
properties of a system of frictionless spheres, since our
method is based on equilibrium statistical mechanics.
We will not discuss in detail neither the geometrical
properties �unless needed to compare numerical data
with our results� of amorphous packings nor how their
properties are influenced by the presence of friction.
While in principle polydispersity can be included in our
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theory, here we limit ourselves to the simple case of
monodisperse systems, and only at the end we consider
the case of binary mixtures. The literature on hard
spheres, in general �and on the role of friction and ge-
ometry, in particular�, is immense and covering it here
would require a considerable effort; the reader is there-
fore referred to the original literature and to the existing
books and reviews, e.g., Rogers �1964�, Conway and
Sloane �1993�, Alexander �1998�, Liu and Nagel �2001�,
Torquato �2002�, Aste �2005�, Goldbart et al. �2005�, and
Krauth �2006�. Similarly, many excellent books and re-
views on the physics of glasses and the glass transition
exist �see, e.g., Ediger et al. �1996�, Debenedetti and
Stillinger �2001�, Donth �2001�, Binder and Kob �2005�,
Leuzzi and Nieuwenhuizen �2007�, and Cavagna �2009�,
just to quote a few�.

A. Organization of the paper (and how to read it)

This paper is organized as follows. Section II is de-
voted to a general discussion of the ideas that lead to the
connection between packings that are produced by dy-
namic protocols and infinite pressure glassy states. In
Sec. III the replica method is introduced in a general
context and it is explained how it can be used to com-
pute the phase diagram of glassy states. In Sec. IV a first
implementation of the method, which works far from
jamming, is discussed. Sections V–VIII contain the main
results of the paper: the method is implemented in a way
that works up to jamming and most of the results are
presented. In particular, Sec. VI contains the discussion
of the d→� limit. Many technical parts of the paper are
in Appendixes A–E.

We tried where possible to make the different parts of
the paper independent. There are different ways to read
the paper:

• The discussion of Sec. II is self-contained. We sug-
gest to the reader not interested in technical details
to read only Sec. II, then skip the computations and
look directly to the figures and tables that contain
most of our results, and finally jump to the Conclu-
sions. Each figure where results are presented con-
tains a reference to the section where the corre-
sponding calculations are discussed.

• The general discussion of the replica method in Sec.
III is as self-contained as possible. This might be
read together with Appendix A if one wants to ob-
tain more insight into the method without going into
the technical details of the computations.

• The technical sections, IV–VIII, are all independent
one from the other; to understand one of them in
detail one needs only to read Sec. III and Appen-
dixes A–E.

• Finally, in Sec. IX we present results on the extension
of the theory to binary mixtures, which are based on
the method of Sec. VII.

It is important to stress that we present different
implementations of the method separately, together with

the corresponding results. Clearly, another possible
choice would be to collect the results together in a sepa-
rate section. Our choice has been made to stress that
each approximation scheme gives slightly different re-
sults; although the qualitative picture stays the same, it is
difficult to compare quantitatively different approxima-
tions. Moreover, each approximation has some advan-
tages and disadvantages that we discuss in detail; in par-
ticular, some observables can be computed within some
approximation and not within others. We leave to the
reader the tasks to compare the different methods and
to choose the best one according to their personal taste.

B. Notations

It is useful to give some definitions that will be widely
used in the following. We consider a system of hard hy-
perspheres in d dimension with diameter D. We denote
by

Vd�D� =
�d/2

��1 + d/2�
Dd,

�1�
�d�D� = dD−1Vd�D� = 2�d/2Dd−1/��d/2�

the volume and surface of a sphere of radius D, respec-
tively. It is also convenient to define

Vd = Vd�1� = �d/2/��1 + d/2� ,
�2�

	d = �d�1� = 2�d/2/��d/2� .

Note that 	d is the d-dimensional solid angle.
Often, if there is no ambiguity, we use the symbols

x ,y , . . . to denote vectors in Rd. If there is an ambiguity,
we use the letter r and in this case we use r� for a
d-dimensional vector and r= �r�� for its modulus. Corre-
spondingly �dr�F�r�� will indicate an integral over r��Rd

while �a
bdrF�r� will indicate an integral over the real r.

We use the notation 
��r��−D� for the distribution de-
fined by �dr�F��r���
��r��−D�=�d�D�F�D�, while 
�r−D� is
defined by �0

�drF�r�
�r−D�=F�D�. They are related by

��r��−D�=	d
�r−D�.

For a generic potential ��r� we define b�r�=e−��r� and
the Mayer function f�r�=b�r�−1. For the specific case of
hard spheres we have b�r�=��r�=
��r�−D�.

Defining �=N /V the number density of the spheres,
we introduce as usual the packing fraction �
=�Vd�D /2�, i.e., the fraction of volume covered by the
spheres. In the following, when talking about “density,”
we usually refer to the packing fraction.

II. A CLASS OF AMORPHOUS PACKINGS: INFINITE
PRESSURE GLASSY STATES

In this section we define a class of “amorphous pack-
ings” of hard spheres that can be studied within the
framework of equilibrium statistical mechanics. We start
by discussing some algorithms that are commonly used
to construct amorphous packings. Then we argue that
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the final states reached by these algorithms are well-
defined metastable states whose properties can be inves-
tigated by a static computation �i.e., without any knowl-
edge of the dynamical process that generated the
packings�. This point is very delicate and is receiving
much attention in the context of optimization problems
�Krzakala and Kurchan, 2007�, where it has not yet been
solved. The discussion that follows is tentative and the
problem deserves further investigation.

A. Algorithms to construct amorphous packings

The usual way to construct amorphous packings in
experiments or numerical simulations is to compress
the system according to some protocol. In early experi-
ments particles were thrown randomly in a box which
was then shaken �Scott and Kilgour, 1969� or were de-
posited randomly around a small seed cluster �Bennett,
1972�. In numerical simulations a common protocol �Lu-
bachevsky and Stillinger, 1990� is to slowly increase, at a
given rate �, the particle diameter during a molecular
dynamics run; it has recently been used extensively in
three �Donev et al., 2005a� and higher �Skoge et al.,
2006� dimensions to produce amorphous packings of N
�104 spheres. Another possibility is to increase the di-
ameter of the spheres until two of them overlap, then
eliminate the overlap by following a gradient descent
using some potential vanishing outside the radius of the
particle �Xu et al., 2005; Gao et al., 2006� or, alterna-
tively, to start from a random configuration and mini-
mize the energy at fixed density, repeating the procedure
while increasing the density until it becomes impossible
to find a zero-energy final configuration �O’Hern et al.,

2002, 2003�. These two procedures give similar results
�Schreck and O’Hern, 2008�. Other similar algorithms
have been proposed and analyzed by Jodrey and Tory
�1985�, Clarke and Jónsson �1993�, and Lochmann et al.
�2006�.

Based on standard concentration arguments, it is be-
lieved that, in the limit N→�, the density of the final
state is independent of the randomness built in the
algorithm1 �e.g., the initial configuration�. This has been
numerically verified for the soft-potential algorithms
�O’Hern et al., 2002, 2003; Xu et al., 2005; Gao et al.,
2006�; the final density is very close to 0.64 and has been
called J point. It is a fact that for all algorithms that have
been devised to construct amorphous packings of mono-
disperse frictionless spheres, for N→� the final density
of the system converges to a value of � close to 0.64 in
three dimensions. It has been proposed to call the value
�=0.64 random close-packing density and different
more precise definitions of this concept have been pro-
posed. However, the precise numerical value of the lat-
ter quantity is found to depend on the details of the
experimental protocol, and this led some authors to
criticize the notion of random close packing �Torquato et
al., 2000�.

To illustrate this difficulty, we concentrate on data ob-
tained using the Lubachevsky-Stillinger procedure at
different rates � �Skoge et al., 2006� and shown in Fig. 1.
In this algorithm, during the compression, the �hard�

1Similar results have been shown for some classes of algo-
rithms to solve optimization problems �see, e.g., Barthel et al.
�2003� and Semerjian and Monasson �2003��.
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FIG. 1. �Color online� Evolution of the pressure during compression at rate � in d=3 �left� and d=4 �right�. The density � is
increased at rate � and the reduced pressure p���=�P /� is measured during the process. See Skoge et al. �2006� for details. The
quantity �̃j���=p���� / �p���−d� is plotted as a function of �. If the system jams at density �j, p→� and �̃j→�j. Thus the final
jamming density is the point where �̃j��� intersects the dot-dashed line �̃j=�. �Left� The dotted line is the liquid �Percus-Yevick
�PY�� equation of state. The curves at high � follow the liquid branch at low density; when they leave it, the pressure increases
faster and diverges at �j. The curves for lower � show first a drop in the pressure, which signals crystallization. �Right� All curves
follow the liquid equation of state �obtained from Eq. �9� of Bishop and Whitlock �2005�� and leave it at a density that depends on
�. In this case no crystallization is observed. For �=10−5 the dot-dashed line is a fit to the high-density part of the pressure �glass
branch�. The arrow marks the region where the pressure crosses over from the liquid to the glass branch. From Skoge et al., 2006.
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spheres evolve according to molecular dynamics at some
temperature; the value of the temperature is irrelevant
and fixes the unit of time �Skoge et al., 2006�. One can
measure the �kinetic� reduced pressure p���=�P /�,
where �=1/T, during the evolution. This quantity is
shown in Fig. 1 for different values of �. One observes
that, on compressing the low-density liquid at a constant
rate �, the pressure of the system follows the equilib-
rium pressure of the liquid up to some density �g���
�often called glass transition density� around which the
pressure starts to increase faster than in equilibrium and
diverges on approaching a value of density �j���, which
is called jamming density. At this point the algorithm
stops because the system cannot be compressed any-
more: most of the spheres are in contact with their
neighbors.2 Values of �j��� have been accurately mea-
sured by Skoge et al. �2006� as a function of �. On the
contrary, �g��� is not precisely determined as long as
��0: the glass transition is smeared and happens in
a crossover region ��g

−��� ,�g
+���� �marked by an arrow

in the right panel of Fig. 1�. However, the amplitude of
the crossover interval seems to decrease3 for �→0 �see
Fig. 1�.

To characterize the typical configurations reached by
the algorithm at �=�j���, one could try to solve the dy-

namics of the algorithm and compute, for instance, the
correlation function g�r� as a function of “time.” This
has been done for much simpler algorithms, such as the
ghost random sequential addition algorithm �Torquato
and Stillinger, 2006a�, which, however, are unable to
reach interesting densities.4 More efficient algorithms
such as the random sequential addition �RSA�, where
one attempts to add a sphere randomly and accepts the
move only if there are no overlaps, already cannot be
analyzed analytically and one has to resort to numerical
investigation �Talbot et al., 2000; Torquato et al., 2006�.

For this reason, in order to compute analytically the
properties of jammed configurations, one would like to
make use of a static computation. This can be justified as
follows: If we plot the jamming density �j��� as a func-
tion of �, we obtain the plot reported in the right panel
of Fig. 2. For �→0, the algorithm is equivalent to an
equilibrium compression and the pressure should follow
the equilibrium equation of state; then the final state will
be the most dense state, which is a crystal at least if the
dimension is not very large. However, for small but non-
zero �, crystallization is not observed and the data of
Skoge et al. �2006� suggest the existence of a plateau at
some value of density, which we call �GCP for reasons
that will be clear in the following. This is a hint of the
existence of a long-lived metastable state; if this is the
case, one can compute its properties by means of a ther-
modynamic computation by restricting the partition2At low compression rates, crystallization is observed in d

=3, but it seems to be strongly suppressed by kinetic effects in
dimension d�3 so we neglect it for the moment.

3See Möller et al. �2006� for a recent theoretical discussion of
these effects.

4For instance, in d=3 the limiting density for the algorithm is
�=0.125.
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FIG. 2. �Color online� Jamming density �j��� as a function of �. �Left� Schematic plot of the jamming density �j��� as a function
of compression rate � for the Lubachevsky-Stillinger algorithm. At quite high rates, the algorithm should be similar to the J-point
procedure and converge to packings of density �j�� large���J. On decreasing � the jamming density decreases �cf. Fig. 1� and
reaches a plateau at �j=�GCP. For smaller � the system is able to crystallize and �j�0�=�crystal. In d=3, crystallization is fast and the
plateau is not observed, while in d�3 crystallization is so slow that it is not observed at all in numerical simulations �Skoge et al.,
2006�. �Right� The same plot for hyperspheres in d=4. The solid line is the close-packing density achieved by the D4 crystal,
�D4=�2 /16 �Conway and Sloane, 1993�. Circles are values of �j��� �the point where the curves intersect the dashed line in the right
panel of Fig. 1�. The dot-dashed line is the value of the J-point density �Schreck and O’Hern, 2008�. In addition, we report the
estimates of the glass transition density �g��� �squares�; error bars mark the amplitude of the crossover region and correspond to
the arrow in the right panel of Fig. 1. Dashed lines are fits to �j���=0.473+0.023/ �log10���+0.85� and �g���=0.409
+0.02/ �log10���+2.13�.
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function to the region of amorphous configurations. In
Sec. II.B we discuss this issue in more detail.

It seems that many different algorithms that produce
packings starting from a random configuration and with-
out allowing the particles to relax much �O’Hern et al.,
2002, 2003; Xu et al., 2005; Gao et al., 2006� lead to close
values of density �the J point�. Therefore for large � �but
still small enough to allow for some minimal relaxation
of the particles� the final density of the Lubachevsky-
Stillinger algorithm should be close to the one reached
by the J-point procedure, leading to the schematic plot
reported in the left panel of Fig. 2. This is what indeed
happens in a simple mean-field model �Cugliandolo and
Kurchan, 1993� and seems confirmed by the data for
spheres in d=4 reported in the right panel of Fig. 2.
However, the validity of this statement is very debated
for more general mean-field models �Krzakala and Kur-
chan, 2007�. We will return to this point in the following.

Before concluding this section, we stress that here we
focused only on the behavior of algorithms that are cur-
rently used to construct amorphous packings; these al-
gorithms typically perform local moves in phase space.
Many other algorithms to simulate hard spheres have
been invented. Smarter algorithms can be designed,
which are able to sample the equilibrium measure at
higher density �Dress and Krauth, 1995; Grigera and Pa-
risi, 2001; Krauth, 2006�.

B. The equilibrium phase diagram

The equilibrium phase diagram of hard spheres in R3

is shown in Fig. 3, where the pressure is reported as a
function of the packing fraction. At low density the sys-
tem is in a liquid phase �as defined, e.g., by the low-
density virial expansion�; the maximum possible density
is realized by the fcc lattice, as conjectured by Kepler
and proven by Hales �2005�. A first-order phase transi-
tion between the liquid phase and the fcc crystal phase is
found by numerical simulations �Alder and Wainwright,
1957; Wood and Jacobson, 1957� and in experiments on

colloidal systems �Pusey and Van Megen, 1986; Phan et
al., 1996�. This is the equation of state that the system
will follow if compressed at a really infinitesimal rate.
We wish instead to focus on a small but finite rate in
such a way to follow the liquid branch of the equation of
state inside its metastability region.

1. What is the fate of the liquid above freezing?

The first ideas to define amorphous states of hard
spheres at high density are to assume that the liquid
phase can be continued above the freezing density �f
and to look at its properties at large density �Aste and
Coniglio, 2004; Kamien and Liu, 2007�. For instance,
one can choose a functional form that represents well
the equation of state of the liquid below �f �e.g., the
Carnahan-Starling or Percus-Yevick equation of state
�Hansen and McDonald, 1986�� and assume that it de-
scribes the liquid phase also above �f. On increasing the
density the pressure of the liquid increases as the aver-
age distance between particles decreases: one may ex-
pect that it diverges at a point where the particles get in
contact with their neighbors and the system cannot be
further compressed. Then one might identify this point
with the random close-packing density �see the left
panel of Fig. 3�.

The first objection that has been raised against this
proposal is that an intrinsic stability limit of the liquid �a
spinodal point� might exist at a density above �f due to
thermodynamic or kinetic reasons. It is probable that a
thermodynamic spinodal does not exist because any rea-
sonable continuation of the liquid equation of state does
not predict such an instability �manifested, e.g., by an
infinite compressibility�. A kinetic spinodal, related to
the existence of the crystal �Cavagna et al., 2005�, could
instead exist at least in monodisperse systems. This
would imply the impossibility of reaching amorphous
jammed states if the compression rate is not very high.
We will assume in the following that the metastable liq-
uid can be compressed as slow as wished avoiding crys-
tallization. This is not a very good assumption for mono-
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FIG. 3. �Color online� Schematic phase diagram of hard spheres in R3. �Left� Continuation of the liquid equation of state in the
metastable region. �Right� Expected behavior in the presence of a thermodynamic glass transition.
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disperse three-dimensional spheres but seems to be
more close to reality for larger dimension �Skoge et al.,
2006� �see Fig. 1� or for suitably chosen binary mixtures.
This point requires a better investigation, e.g., following
the analysis of Cavagna et al. �2005�, and we will not
discuss it further here.

A second objection is that in the presence of a first-
order phase transition the continuation of one phase
into its metastable region is not well defined due to the
appearance of essential singularities at �f. Many possible
continuations of the low-density equation of state above
�f are possible: the properties of the “liquid” above �f
depend on the history of the sample, much as it happens
for the hysteresis of a ferromagnetic system. Neverthe-
less, the ambiguity is expected to be exponentially small
in the distance from �f, and as the distance between �f
and the maximum density �fcc is not so large, one might
expect to obtain a meaningful result in this way. Indeed,
different possible continuations of the liquid equation of
state �e.g., Carnahan-Starling, Percus-Yevick,and hyper-
netted chain� differ by less than 10% in the dense region
around ��0.64 in d=3. Moreover, the ambiguity be-
comes smaller and smaller on increasing the dimension.

The extrapolation to infinite pressure can give very
different results; Kamien and Liu �2007� showed that
one can reasonably fit the pressure in the metastable
region by a free volume equation of state and obtain a
divergence of the pressure at �RCP�0.64 in d=3. On the
other hand, all possible analytic continuations of the liq-
uid equation of state, based on resummations of the
virial series, predict a divergence of the pressure at un-
physical large values of �: e.g., the CS equation predicts
a divergence in �=1 which is clearly wrong since it is
larger than the fcc value and implies that the available
volume is completely covered by the spheres. Moreover,
the g�r� computed using these resummations do not
show the characteristic features observed in amorphous
jammed packings. Therefore, from a theoretical point of
view it is difficult to justify the validity of the phenom-
enological free volume fit discussed by Kamien and Liu
�2007� on the basis of an analytical continuation of the
liquid equation of state. Clearly we cannot exclude that
a more refined resummation of the virial series will give
a continuation of the liquid branch with a divergence in
0.64 and a g�r� similar to the one of amorphous pack-
ings; but such a theory has not been found yet. This
motivates the study of different proposals, such as the
existence of a phase transition in the liquid branch. This
idea is also supported by accurate integral equations
based on improvements of the PY equation that seem to
indicate the existence of a phase transition at high den-
sity �Robles and de Haro, 2003�.

2. The ideal glass transition

In this section we discuss the existence of a thermody-
namic glass transition in the metastable liquid branch of
the phase diagram �Woodcock and Angell, 1981; Stoes-
sel and Wolynes, 1984; Speedy, 1994, 1998; Cardenas et
al., 1998�. Such a transition can be expected for various

reasons: it is predicted by mean-field models �Biroli and
Mézard, 2001; Pica Ciamarra et al., 2003; Rivoire et al.,
2004� and is suggested by the results of Robles and de
Haro �2003�. Moreover, from a dynamical point of view,
an ergodicity breaking transition is predicted by mode-
coupling theory �Bengtzelius et al., 1984; van Megen and
Underwood, 1993; Götze, 1999; Sellitto et al., 2005�, and
a recently published set of accurate experimental and
numerical data �Berthier and Witten, 2009a, 2009b;
Brambilla et al., 2009� on three-dimensional spheres
strongly indicates a divergence of the equilibrium relax-
ation time in the metastable liquid phase at a density �0
at which the pressure is still finite. This supports the
existence of a phase transition at �0 in three dimensions.
In two dimensions the situation seems quite different
�Santen and Krauth, 2000; Donev et al., 2006; Tarzia,
2007�.

The existence of an ideal glass transition in a finite-
dimensional system is a matter of intense debate �see
e.g., Santen and Krauth �2000�, Xia and Wolynes �2001a,
2001b�, Bouchaud and Biroli �2004�, Brumer and Reich-
man �2004�, Donev et al. �2006�, Tarzia �2007�, and Cava-
gna �2009��. To avoid entering in this discussion, we take
a more “pragmatic” point of view. We assume that a
thermodynamic glass transition exists and investigate its
consequences. It will become clear that for comparison
with numerical and experimental data the existence of a
true thermodynamic transition is not a key issue since in
reality one is always stuck in metastable glassy states.

Assume again that the liquid phase can be continued
above �f and neglect the �small� ambiguity in its defini-
tion due to its intrinsic metastability with respect to crys-
tallization. We assume that at a density �K a thermody-
namic glass transition �sometimes called ideal glass
transition� happens.5 The transition is signaled by a jump
in the compressibility of the system. A simple qualitative
argument to explain this is the following: in the dense
liquid phase particles vibrate on a fast time scale in the
cages made by their neighbors, while on a much larger
time scale cooperative relaxation processes happen
�structural relaxation�. If we change the density by ��,
the pressure will instantaneously increase by a �P0; very
rapidly the average size of the cages will decrease due to
the increase in density and the pressure will relax to a

5The density �K has been associated with the name of Kauz-
mann, who first observed that in some molecular glasses ex-
trapolating the liquid entropy at low temperature one would
obtain at some point an entropy smaller than that of the crystal
�Kauzmann, 1948�. Based on the intuitive notion that a liquid
should have more states than a crystal, hence more entropy, he
concluded that some kind of transition should happen prevent-
ing the liquid entropy from crossing the crystal one. However,
in the case of hard spheres, it is well known that the crystal
entropy becomes bigger than that of the liquid at the freezing/
melting transition. Hence the entropy of the liquid is smaller
than that of the crystal in the whole metastable liquid branch.
At �K the complexity �that will be introduced below� vanishes;
but this quantity is different from the difference between liq-
uid and crystal entropies in the case of hard spheres.
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value �Pf��P0. Then, on the time scale of structural
relaxation, the structure will change to follow the change
in density and the pressure will relax further to a value
�P���Pf. We assume that at the glass transition the
latter relaxation is frozen and the corresponding time
scale becomes infinite: in other words, as usually done in
the glass transition literature �Ediger et al., 1996�, we
identify �K with the density �0 defined by Berthier and
Witten �2009a, 2009b� and Brambilla et al. �2009�. Thus,
in the glass phase the increase in pressure following a
change in density will be larger than in the liquid phase,
leading to a smaller compressibility K=�−1��� /�P�.

The schematic phase diagram that we expect in the
presence of a glass transition is shown on the right panel
of Fig. 3. The existence of a glass transition can cure the
behavior of the pressure of the liquid, which seems to
diverge at a density bigger than the fcc density. The pres-
sure of the glass diverges at a “glass close-packing”
�GCP� density �GCP and we are tempted to identify �GCP
with the RCP density. In next section we discuss a fur-
ther complication: the existence of a large number of
glassy states, in addition to the ideal �thermodynamic�
glass, with different densities. Before concluding this
section, we stress again that, although recent very accu-
rate numerical data �Berthier and Witten, 2009b� sup-
port the existence of a glass transition of the type dis-
cussed for hard spheres, this remains one of the most
debated problems in the community.

3. Many glassy states: The “mean-field” phase diagram

The glass transition, in the standard picture coming
from the analysis of mean-field models, is related to the
appearance of many metastable glassy states6 in addition
to the ideal glass one. These states appear in the liquid
above some density �d and can be defined, for instance,
as minima of a suitable density functional �Thouless et
al., 1977; Kirkpatrick and Wolynes, 1987a; Mézard et al.,
1987; Dasgupta and Valls, 1999; Chaudhuri et al., 2005�
�see Appendix A for a more detailed discussion�. In the
interval of densities �d����K, particles vibrate around
these locally stable structures, which are visited subse-
quently on the scale of the structural relaxation. If we

6There are here two “types” of metastability: the first is the
metastability of the whole amorphous branch with respect to
crystallization. We are now discussing a second type of meta-
stability, i.e., the existence of glassy states that have lower den-
sity �or smaller entropy� with respect to the glassy state with
maximal density �the ideal one� and consequently they are
metastable with respect to it. In order to avoid confusion, we
indicate that some of the glassy states are metastable with re-
spect to the ideal glass only when needed. Otherwise, we use
“glassy states” to indicate both metastable glasses and the
ideal glass. In any case these states will have a small but finite
probability of decaying into the ideal state; this probability
should go exponentially to zero when their density approaches
the density of the ideal glassy state.
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FIG. 4. �Color online� Schematic mean-field phase diagram of hard spheres in R3 �see the text for a detailed description�. �Left�
�P ,�� diagram: The full black line represents the equilibrium phase diagram with the liquid-solid transition �see Fig. 3�. The
metastable liquid is made by a single state below �d, while above this density it is the superposition of many glassy states. If the
system is stuck in one of these states and compressed, it follows one of the glass branches of the phase diagram. At �K the system
reaches the most dense states, and if further compressed it enters the ideal glass state. The pressure of the latter diverges at �GCP.
In the inset, the complexity, i.e., the logarithm of the number of glassy states, is plotted as a function of the jamming density �j. The
boxes show a picture of the �dN-dimensional� phase space of the system: black configurations are allowed; white ones are
forbidden by the hard-core constraint. In the supercooled liquid phase the allowed configurations form a connected domain;
however, on approaching �d the connections between different metastable regions become smaller and smaller. Above �K, they
disappear in the thermodynamic limit and glassy states are well defined. �Right� For comparison, the standard glassy phase
diagram for a soft potential �e.g., Lennard-Jones�, specific volume vs temperature at fixed pressure, is reported �Ediger et al., 1996;
Debenedetti and Stillinger, 2001; Cavagna, 2009�. The similarity is evident if one identifies �→1/� and T→1/P �i.e., one should
reflect the left diagram on a diagonal line joining the upper left corner and the lower right corner�.
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“artificially” freeze the structural relaxation and com-
press the system, the pressure increases faster than if the
structure is allowed to relax for the same reason as
above: the system is forced to reduce the size of the
cages to respond to a change in density. The pressure
diverges at the point where the particles contact their
neighbors and the average size of the cages is zero. In
this way, to each configuration of the liquid at a given
density �� ��d ,�K� one can associate a jammed configu-
ration at a density �j��� that is obtained by compressing
this configuration fast enough to avoid structural relax-
ation. A glass state can be thought of as a set of configu-
rations leading to the same jammed configuration after a
fast compression7 �Speedy, 1998�.

In the Lubachevsky-Stillinger protocol already dis-
cussed �see Fig. 1� one chooses a priori a compression
rate � and the system can equilibrate only up to a den-
sity �g��� where the relaxation time becomes of the or-
der of the compression rate. At this density the structure
can no longer follow the compression and basically the
system responds to the compression by reducing the
cages up to the jamming density �j���. Calling �th the
value of the jamming density of the states that first ap-
pears at �d, it follows that �in the mean-field picture� we
can produce jammed configurations in a whole range of
densities �th����GCP �Krzakala and Kurchan, 2007;
Zamponi, 2007�. The notation �GCP �glass close-packing
density� is appropriate since �GCP is the highest possible
density of infinite pressure glassy states.

Note that as the structural relaxation time scale is ex-
pected to diverge on approaching �K �Berthier and Wit-
ten, 2009a, 2009b; Brambilla et al., 2009�, at some point
it will fall beyond any experimentally accessible time
scale and necessarily the system will be frozen into a
glassy state which is not the ideal glass. The ideal glass
states are unobservable in practice: one will observe in-
stead a nonequilibrium glass transition to a state that,
again, will depend on the experimental protocol. This is
very familiar in the structural glass literature, and in fact
the diagram in Fig. 4 �left panel� is analogous to the
usual specific volume versus temperature plot �right
panel in Fig. 4� that characterizes structural glasses if
one identifies � with the inverse of specific volume and
1/P with temperature.

To summarize, the phase diagram inspired by mean-
field models is shown in Fig. 4 and in Table I. It is char-
acterized by the presence of the following phases and
transitions:

• At equilibrium, a low-density-liquid phase and a
high-density crystal phase separated by a first-order
transition, with corresponding freezing density �f

and melting density �m �black full line and black dots
in Fig. 4�.

• A metastable dense liquid phase: above some density
�d this phase is made by a collection of glassy states
corresponding to locally stable configurations around
which the system vibrates for a long time. Thus, �d is
defined, in a static framework, as the density at
which glassy states first appear8 and for this reason is
often called clustering transition density.9

• The liquid exists up to a density �K where an ideal
glass transition happens. The ideal glass transition is
signaled by a jump in the compressibility and by a
divergence of the equilibrium relaxation time of the
liquid10 �Berthier and Witten, 2009a; Brambilla et al.,
2009�.

• For each density �� ��d ,�K�, a different group of
glassy states dominates the partition function. These
can be followed by compressing very fast, and each
group is characterized by a jamming density �j���.
We call �GCP=�j��K� the jamming density of the
ideal glass state and �th=�j��d� the jamming density
of the less dense glassy states.

The number of glassy states corresponding to jamming
densities �j� ��th ,�GCP� grows exponentially with the
size of the system, N��j�=exp�N���j��. The function
���j�, usually called complexity or configurational

7In systems with soft potentials a similar procedure has been
proposed by Stillinger and Weber �1982, 1985� in order to as-
sociate to each configuration of energy e a mechanically stable
configuration or “inherent structure” of lower energy eIS: start-
ing from the reference configuration one quenches the system
at zero temperature and finds a minimum of the potential,
which is the corresponding inherent structure. We describe the
same procedure, with energy replaced by �inverse� density and
temperature by �inverse� pressure. See Speedy �1998� for
details.

8At the mean-field level this point corresponds to the mode-
coupling transition �MCT.

9Glassy states are called clusters in optimization problems.
10Mode-coupling theory would predict a divergence of the

relaxation time at the smaller density �MCT��d; however, in a
finite-dimensional system there are strong arguments indicat-
ing that the liquid can be equilibrated up to �K, thanks to
activated processes that allow a jump over the barriers sepa-
rating metastable glassy states �see Appendix A�.

TABLE I. Special points of the phase diagram obtained within
the replica computation �see Fig. 4�. For each special point, we
list the densities defined in Table II associated to it. Note that
�g and �RCP depend on the protocol used; hence they are not
associated to any special point in the replica computation. The
identification of �J and �MRJ with �th is tentative and probably
not stricly true; still we expect these points to be quite close
�see the text for details�.

Point Densities Replica parameter

Dynamic transition �d, �MCT m=1
Static transition �K, �0 m=1

Glass close packing �GCP m=0
Threshold states �th, �J�? �, �MRJ�? � m=0
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entropy,11 has the shape reported in the inset of Fig. 4: it
jumps at a positive value at �th and vanishes at �GCP
�therefore, the number of ideal glasses is not exponential
in the system size�. A more precise definition of this
equilibrium complexity is presented in Appendix A.

4. Remarks on the static phase diagram

The striking similarity of the phase diagram in Fig. 4
with the numerical results12 of Skoge et al. �2006� �see
Fig. 1� makes it a good starting point to understand the
physics of jammed amorphous states. However, one
should keep in mind the following important remarks:

�1� This phase diagram is an idealization that discards
many difficulties in the definition of amorphous
packings, mainly related to metastability, either of
metastable glass states with respect to the ideal glass
state or of the ensemble of glassy states with respect
to the crystal. The ambiguity in the definition of the
liquid equation of state due to its metastability �Ka-
mien and Liu, 2007� also affects the glass: the glass
equation of state is theoretically not well defined,
with an ambiguity of the order of 10%, depending
on the equation of state one chooses to describe the
liquid. Note that these difficulties might not be so
important in some cases where the nucleation time
of the crystal is very large, e.g., high-dimensional
spheres or binary mixtures, as discussed. In particu-
lar, in the limit d→� we believe that the theory
should be exact.

�2� In a finite-dimensional system, pure equilibrium
states cannot exist in exponential numbers. In fact,
the states corresponding to �j��GCP can be stable
only on a finite length scale and for a finite time in
finite-dimensional systems as discussed originally by
Kirkpatrick and Thirumalai �1987� and Kirkpatrick
and Wolynes �1987a�, in more detail by Kirkpatrick
and Wolynes �1987b� and Kirkpatrick et al. �1989�,
and more recently by Mézard and Parisi �2000�.
Therefore the notion of complexity makes sense
only on a finite time and length scale. The problem

of evaluating this length and time scales has recently
been reformulated in terms of a nucleation problem
�Xia and Wolynes, 2001a, 2001b; Bouchaud and
Biroli, 2004� and is probably the most active subject
of research in the glass transition community. The
subject is difficult and we cannot discuss it in detail
here. The interested reader should look at the origi-
nal literature �Xia and Wolynes, 2001a, 2001b;
Bouchaud and Biroli, 2004; Franz, 2005; Montanari
and Semerjian, 2006; Cavagna et al., 2007�. In the
rest of this paper we neglect this difficulty and as-
sume that mean-field states are stable on every
length scale; however, we try to give a more precise
definition of states in Appendix A, where we explic-
itly show the origin of the difficulties in finite dimen-
sion and explain why our theory might be a reason-
able approximation of the real situation.

�3� The structure of the states close to �th might be
more complicated than described here. In mean-
field models processes such as state crossing, tem-
perature �density� chaos, birth and death of states,
etc., are known to happen. This complicates the
analysis; unfortunately at present we cannot say
much more on this important issue. More insight
should come from the study of mean-field hard
sphere models such as those discussed by Biroli and
Mézard �2001�, Krzakala et al. �2008�, and Mari et al.
�2009�.

�4� For finite-dimensional systems, the transition to a
metastable glass state is smeared and becomes a
crossover, as seen in Fig. 1 �see also Ediger et al.
�1996�, and Möller et al. �2006��. Only the ideal glass
transition has a chance to survive as a real phase
transition. For this reason the free volume fit of Ka-
mien and Liu �2007�, which describes the metastable
liquid branch without assuming a phase transition, is
not incompatible with the point of view presented
here.

�5� When looking to actual configurations, it might be
difficult to distinguish between a configuration rep-
resentative of a pure glass state and one representa-
tive of a mixture of glass and crystal �Torquato et al.,
2000�. Thus if one really wants to look at single con-
figurations of finite systems, the definition of amor-
phous states discussed above is not very useful, and
a definition based on order metrics may be more
suitable �Torquato et al., 2000�. This leads to the
concept of maximally random jammed �MRJ� pack-
ings, defined as follows: one chooses a function �
that measures the order in some way, with �=1 cor-
responding to most ordered and �=0 to most disor-
dered configurations. Then one defines �MRJ as the
density of the jammed configurations that minimize
� �see Torquato et al. �2000� for details�. This defi-
nition may be suitable when one studies single con-
figurations, and it has been shown numerically that a
value �MRJ�0.64 is obtained for many different or-
der metrics. It is therefore important to stress that

11Although sometimes used as synonyms, in other cases these
words denote different concepts: in fact, especially in the ex-
perimental literature the word configurational entropy denotes
the difference between the entropy of a system in its liquid and
crystalline phases. This difference is often used as an estimate
of the complexity. Already in the case of soft potentials, this
gives rise to a number of interpretation problems �see, e.g.,
Binder and Kob �2005� and Cavagna �2009� for detailed discus-
sion�. In the particular case of hard spheres, the situation is
even worse since energy is irrelevant and the liquid-crystal
transition is completely driven by entropy; hence the crystal
entropy is bigger than the liquid one above the melting density.
It follows that the configurational entropy defined as the dif-
ference between liquid and crystal entropy has nothing to do
with the complexity; in particular it will be negative at all den-
sities above the melting density. Here, we will always use the
word complexity in order to avoid confusion.

12Recall that in Fig. 1 the pressure has been rescaled.
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the phase diagram above refers to thermodynamic
states and not to configurations. Note that it is likely
that the local order in the configurations typical of
the infinite pressure states at density �j depends on
�j, i.e., 	�
��j� is not constant; this does not neces-
sarily mean that the packings at higher �j cannot be
considered as amorphous since 	�
��� increases with
density also in the liquid state, which is definitely an
amorphous state at all densities.

Before turning to the technical part, it is useful, hav-
ing in mind this phase diagram, to return to the behavior
of algorithms that are used to construct jammed amor-
phous packings, and to review some basic features that
are observed in the structure of such packings.

C. On the protocol dependence of the random close-packing
density

Up to now we discussed a specific algorithm: a
molecular-dynamics simulation during which the system
is compressed at a given rate, the Lubachevsky-Stillinger
algorithm. In a more general setting, we can consider an
algorithm or experimental protocol attempting to pro-
duce jammed amorphous configurations of a hard
sphere system. The algorithm stops when the system is
jammed: the final density is a random variable depend-
ing on the initial data and possibly on some randomness
built in the algorithm itself. To investigate the probabil-
ity P��j� of reaching a final density �j, we make the as-
sumption that when the system is jammed, each glassy
state contains only one configuration.13 Then the num-
ber N��j� of jammed states with density �j is given by
N��j��exp�N���j��, where ���j� is the complexity in-
troduced above.

We define also the probability Pa��j� that the algo-
rithm finds one particular configuration with density �j.
This probability is related to the “basin of attraction” of
configurations, i.e., to the number of trajectories of the
algorithm that leads to the final configuration. Again, on
the basis of concentration arguments, we expect the scal-
ing Pa��j��exp�Nsa��j��.

Note that N��j� depends only on the geometrical
properties of the configuration space of hard spheres,
while Pa��j� encodes the properties of the algorithm
�Xu et al., 2005; Krzakala and Kurchan, 2007�. The re-
sulting P��j�=N��j�Pa��j��exp�N����j�+sa��j��� will be
strongly peaked around a given value �j

a, the maximum
of ���j�+sa��j� �Krzakala and Kurchan, 2007�. The im-
portant point is that �j

a will depend on the particular
algorithm through the function sa��j�, giving rise to the
protocol dependence observed in experiments and nu-
merical simulations �Xu et al., 2005; Chaudhuri et al.,
2009�.

Therefore it is highly nontrivial to associate the phase
diagram of Fig. 1 to the behavior of a given algorithm or
experimental protocol. The same problem has been dis-
cussed in the context of optimization problems, where a
similar phase diagram is found, without yet reaching
many conclusive statements. We can only make some
remarks and conjectures:

�1� In the static computation, infinite pressure states are
found only in the interval ��th ,�GCP�. One cannot
exclude the existence of states with very small vol-
ume in phase space that are not seen in the static
computation. However, due to the smallness of their
volume, to observe them one should design a spe-
cific algorithm. Thus we assume that reasonable pro-
cedures, which allow for some exploration of phase
space, will always find states with jamming density
�j� ��th ,�GCP�.

�2� In the case of equilibrium dynamics �e.g., a
molecular-dynamics simulation with infinitely slow
compression�, the system is expected to equilibrate
at each density. Thus, neglecting crystallization, we
expect the system to follow the liquid branch up to
�K and then the ideal glass branch up to �GCP.

�3� The mode-coupling theory instead predicts a diver-
gence of the relaxation time at �MCT��K. However,
in the context of structural glasses it is well known
that the mode-coupling transition is avoided and be-
comes a crossover to a nonequilibrium glass state at
a compression-rate dependent �g. At the mean-field
level, the mode-coupling transition corresponds to
the point �d where the liquid state breaks into an
exponential number of disconnected states.

�4� The equilibration is particularly slow above �MCT
��d, being due to activated processes �Xia and
Wolynes, 2001a, 2001b; Bouchaud and Biroli, 2004;
Franz, 2005�.14 For moderately high rates, the sys-
tem will leave the liquid branch close to �d and will
jam at �th. Thus the procedure of O’Hern et al.
�2002�, which corresponds to a fast compression,
should produce packings around �th. At the mean-
field level one would have �J��th. However, one
should keep in mind �see Appendix A� that states
close to �th are particularly unstable in finite dimen-
sion and therefore �th is an ill-defined concept in
this case.

�5� Remarkably, the value �GCP defined as the point
where ���j� vanishes is a property of the system that
does not depend on the algorithm �at least if one
accepts the idealizations previously discussed, i.e., if
one neglects the existence of the crystal�.

�6� The behavior of more complex algorithms should be
discussed on a case-by-case basis. Thus, if one de-

13If this assumption is false one should change the definition
of complexity but the following argument would remain true
�see Appendix A for a detailed discussion�.

14In the constant-pressure ensemble the times are propor-
tional to exp�P�V�, where �V is the volume barrier to go from
one state to another state.
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fines the random close-packing density as the final
density for a given protocol, its value can be every-
where in ��th ,�GCP� �and maybe outside this interval
for very particular protocols�. One would like to
identify �RCP with �GCP, if one is thinking to slow
quasiequilibrium compressions, or with �th��J, if
one is thinking to fast quenches.

In Table II we summarize the different densities defined
up to now.

D. Structural properties of amorphous states

Despite the difficulty in determining the final jamming
density for a given experimental protocol, it turns out
that many structural properties of the final state, mani-
fested for instance in the pair-correlation function g�r�,
are roughly independent of the protocol. This suggests
that at least some of these properties are common to all
amorphous packings in the range �j� ��th ,�GCP� and are
therefore characteristic of “random close-packed” struc-
tures. We are able to compute the correlation function
g�r� for these states; therefore it is interesting to review
the main features that are observed in numerical simu-
lations.

Detailed numerical and experimental results for
g�r� at jamming have been reported by Clarke and
Jónsson �1993�, O’Hern et al. �2002, 2003�, Aste et al.
�2005�, Donev et al. �2005a, 2005b�, Silbert et al. �2006�,
and Skoge et al. �2006�. Depending on the procedure
one approaches the jamming point �j from below,

�=�j−��0 �Donev et al., 2005a, 2005b; Skoge et al.,
2006� for hard particles, or from above, 
�=�−�j�0,
for soft particles �O’Hern et al., 2002, 2003; Silbert et al.,
2006�. The main features that are observed are the fol-
lowing:

�1� A delta peak close to r=D due to particles in con-
tact. One has g�D��
�−1 and the width of the peak
�
�. The delta peak has the scaling form

g�r� /g�D�= f���, where �� �r−D�
�−1 /D, if �→�j
−

for hard particles �Donev et al., 2005a�, with f�t� as a
scaling function independent of 
�. The area of this
peak gives the average number of particles in con-
tact with a reference one, which is found to be z
=2d once rattlers �particles without contacts� are re-
moved; this property is called isostaticity.

�2� A square-root singularity g�r���r−D�−�, with �
=0.5, close to r=D. This singularity is integrable and
does not contribute to the number of contacts. The
value of the exponent is debated: some claim that it
is equal to 0.5 irrespective of the value of �j, the
procedure, etc. �Silbert et al., 2006�. However, some
dependence on the procedure has been claimed by
Donev et al. �2005a�, where a value ��0.4 has been
found.

�3� A dip around r /D�1.2 with respect to the liquid is
observed. This is due to the particles of the first shell
which are pushed toward contact �r=D� for 
�→0.

�4� A split second peak in r /D=�3 �Donev et al., 2005a;
Silbert et al., 2006�. It is not clear what the exact
behavior of g�r� close to this peak is �Silbert et al.,
2006�, in particular, if g�r� is divergent or has only
divergent slope for r /D→�3−. Even if g�r� is not
divergent for r /D→�3, it has at least a jump in �3.

�5� A similar behavior is observed in r /D=2. Both fea-
tures have been interpreted by Clarke and Jónsson
�1993� and Silbert et al. �2006� as coming from the
network of contacts. In fact, r /D=2 is the maximum
distance at which two particles sharing one neighbor
can be found, while r /D=�3 is the maximum dis-
tance for two particles sharing two neighbors.

�6� Long-range correlations �h�r��1/r4 and S�k���k�
for large r and small k� are found for hard particles
�Donev et al., 2005b� and seem to also be present in
the soft particles case �Silbert et al., 2006�. This also

TABLE II. Summary of the relevant densities defined in the text. The values given in d=3 �for a monodisperse system� are
indicative; more detailed values will be given in the following. The label MF indicates that the corresponding concept can be
defined in mean-field theory but lacks an unambiguous operative definition in finite dimension.

Density Definition Type Value in d=3

�MRJ Maximally random jammed configurations �Torquato et al., 2000� Geometrical �0.64

�d The liquid state splits in an exponential number of states MF, static �0.58
�K Ideal glass phase transition—jump in compressibility static �0.62
�th Divergence of the pressure of the less dense states MF, static �0.64
�GCP Divergence of the pressure of the ideal glass static �0.68

�MCT Mode-coupling transition �van Megen and Underwood, 1993� MF, dynamic �0.58
�g Glass transition density; depends on the compression rate Dynamic 0.58–0.62
�0 Divergence of the equilibrium relaxation time Dynamic �0.62
�J J point: final state of the algorithm of O’Hern et al. �2002� Dynamic �0.64

�RCP No general agreement on the definition �0.64
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implies that S�0�=0, i.e., the packings are incom-
pressible.

�7� A particularly intriguing property of jammed amor-
phous configurations is the presence of an excess of
soft modes, i.e., vibrational modes with very small
frequency. This has been shown numerically by
O’Hern et al. �2003� and Silbert et al. �2005�. Wyart
�2005�, Wyart, Nagel, and Witten �2005�, and Wyart,
Silbert, et al. �2005� argued that this excess of soft
modes is related to the isostaticity property of the
network of contact; moreover, a diverging length
scale has been associated to these modes. It has also
been proposed that the square-root singularity of
g�r� is related to these modes �Wyart, 2005�. This set
of results seems to suggest a “critical” nature of
jammed amorphous packings that is currently re-
ceiving much interest �Hatano et al., 2007; Majmu-
dar et al., 2007; Olsson and Teitel, 2007; Zeravcic et
al., 2008�.

One of the main aims of the following discussion is to
show that the class of packings obtained as infinite pres-
sure glassy states shares at least some of these features,
which are common to all disordered jammed packings
produced with different protocols. We will be able to
partially compute the g�r� of these states and show that
it is consistent with the properties described above. This
fact supports the main assumption of this paper, that
final states reached by typical algorithms belong to the
class of infinite pressure glassy states.

III. THE METHOD

Assuming the phase diagram shown in Fig. 4 and ne-
glecting the ambiguities associated to the existence of
the crystal, the properties of the glass phase can be com-
puted using a replica method inspired by mean-field
models. The method has been described in great detail
in a number of papers �see, in particular, Monasson
�1995�, Mézard and Parisi �1996, 1999a, 2000�, and
Mézard �1999��; therefore we sketch it here, but the
reader who is interested in the details and has no previ-
ous knowledge of the replica method should refer to the
original papers for a more complete presentation.

An alternative route to compute the properties of
glassy states is to use density-functional theory �Singh et
al., 1985; Kirkpatrick and Wolynes, 1987a; Dasgupta and
Valls, 1999; Kim and Munakata, 2003; Chaudhuri et al.,
2005; Yoshidome et al., 2007�. In principle the two meth-
ods should be equivalent �see Castellani and Cavagna
�2005� for pedagogical discussion in the case of mean-
field models�; still it seems that the replica method gives
more accurate quantitative results and for this reason we
focus on this method in the following.

A. The replica method

The phase diagram shown in Fig. 4 is characterized by
the existence of many glassy states at densities above �d.
At constant density, states are characterized by their vi-

brational �or internal� entropy s, defined as the entropy
of the system constrained to be in this state without re-
laxing toward different states. The derivative of the in-
ternal entropy with respect to density is the pressure of
the states, which is plotted schematically in Fig. 4. Tak-
ing a constant � slice of the phase diagram in Fig. 4, one
will meet different states, depending on the pressure �or
equivalently on the entropy�. The number of states of
entropy s at a given density � is by definition N�s�
=exp �N��s ,���.

1. The ideal glass transition

The complexity ��s ,�� �sketched in Fig. 5� is a con-
cave function of s; it is reasonable to assume ��s ,�� to
be a decreasing function of s because at fixed density,
states of higher entropy correspond to more compact
structures �in order to have more free volume� and
should be more rare. Moreover ��s ,�� should continu-
ously vanish at some value smax��� corresponding to the
entropy of the best amorphous structures at this
density.15 The partition function of hard spheres at den-
sity � is just the total number of allowed configurations
at that density. In the thermodynamic limit, each rel-
evant configuration belongs only to one state and
exp�Ns�� is the number of configurations belonging to
the state �. Therefore one can write the partition func-
tion Z in the following way:

Z = eNS��� � 

�

eNs� = �
smin���

smax���

dseN���s,��+s�

� eN���s*,��+s*�, �3�

where in the last line we performed a saddle-point ap-

15As discussed one can construct denser structures by allow-
ing a small amount of local order: we are assuming to be able
to avoid this in some well-defined way, which will be discussed
in the following.

s
max

s

Σ

*s

slope −1

FIG. 5. �Color online� A schematic representation of ��s ,�� at
fixed �. The behavior at small s depends strongly on the model
and on the density �see Krzakala et al. �2007� for a more de-
tailed discussion�. On increasing s, ��s ,�� decreases and ulti-
mately vanishes at a value smax���. The value s* is defined by
d� /ds=−1. For ���K, s*�smax, while for ���K there is no
solution and s*=smax.
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proximation of the integral; s*��� is the point where
��s ,��+s assumes its maximum in the interval
�smin,smax�. Indeed, more compact structures have higher
vibrational entropy �free volume� and lower complexity
�their number�, and the partition function is dominated
by the best compromise, as expressed by the saddle-
point evaluation of Eq. �3�. For densities �d����K, the
saddle point s* falls inside the interval �smin,smax�. The
ideal glass transition is met at the density �K such that
s*��K�=smax��K� or equivalently ��s* ,�K�=0. Above this
density, the integral �3� is always dominated by the up-
per limit of integration; therefore we have

S��� = ���s*,�� + s*, � � �K

smax��� , � � �K.
� �4�

It is easy to see that �if ��s ,�� is a smooth function� at
�K a phase transition happens and is manifested by a
discontinuity in the second derivative of S���. Under our
assumptions, close to smax��� we have ��s ,��=�1����s
−smax����+ 1

2�2����s−smax����2+¯. �K is defined by
�1��K�=−1 and close to �K we have s*����smax���− �1
+�1���� /�2���. The derivative of S��� for �→�K

− is
given by S����=���s* ,�� /���−�1���smax� ����smax� ���
which coincides with the derivative for �→�K

+ . There-
fore the pressure is continuous at �K, while it is easy to
show that the compressibility jumps at �K, as discussed
in Sec. II.B.2.

2. The replicated partition function and the (m ,�) phase
diagram

The basic idea of the replica approach �Monasson,
1995; Mézard and Parisi, 1999a� is to introduce in Eq. �3�
a parameter m conjugated to the internal entropy of the
states. One can think of m as a control parameter that at
fixed density allows us to select a given group of states.

In practice this can be done by considering m copies
of the original system, constrained to be in the same

state by a small attractive coupling �the practical imple-
mentation will be discussed in the following�. The parti-
tion function of the replicated system is then

Zm = eNS�m,�� � 

�

eNms� = �
smin���

smax���

dseN���s,��+ms�

� eN���s*,��+ms*�, �5�

where now s*�m ,�� is such that S�m ,s�=ms+��s ,�� is
minimum. The introduction of the coupled replicas has
exactly the effect of giving a weight m to the vibrational
entropy in Eq. �5�. Only for integer m, the quantity Zm
has an explicit definition �and it can be evaluated by
direct numerical simulations�, but if m is allowed to as-
sume real values,16 the complexity can be estimated
from the knowledge of the function S�m ,��=ms*�m ,��
+�„s*�m ,�� ,�…. Indeed, it is easy to show that

s*�m,�� =
�S�m,��

�m
,

�6�

��m,�� = �„s*�m,��,�… = − m2
��m−1S�m,���

�m

= S�m,�� − ms*�m,�� .

The function ��s ,�� can be reconstructed from the para-
metric plot of s*�m ,�� and ��m ,��.

16This must be done by analytical continuation once the par-
tition function for integer m has been computed using some
approximation. In principle, the analytic continuation might
not be well defined, but it has been verified explicitly in mean-
field models that the procedure gives the correct results �see
Mézard et al. �1987�, Monasson �1995�, Mézard �1999�, Mézard
and Parisi �1999a�, Talagrand �2003�, and Franz and Tria
�2006�� for detailed general discussion of the replica method�.
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FIG. 6. �Color online� �m ,�� phase diagram. �Left� Schematic �m ,�� diagram: above the clustering line md��� a nontrivial solution
for the inter-replica correlation is found. This solution gives a positive complexity in the region enclosed between the lines md and
ms; therefore in this region glassy states are present. The line ms��� is defined by the condition ��m ,��=0 and corresponds to the
ideal glass state. The intersections of the line md �ms� with m=1 and 0 define �d ��K� and �th ��GCP�, respectively. �Right� Phase
diagram for d=3 as obtained by solving the replicated HNC equations �Sec. IV�. Note that the static line has an unreasonable
behavior at small m and that the densities �d and �th seem too big if compared with the accepted �MCT�0.58 and �J�0.64 values.
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For each density, one can define a point ms��� as the
solution17 of ��m ,��=0 �see left panel of Fig. 6�. On the
line ms���, from Eq. �5� we see that S�m ,��=msmax���,
then

Sglass��� � smax��� =
S„ms���,�…

ms���
. �7�

This simple prescription allows us to compute the en-
tropy of the glass once S�m ,�� is known.18

Generically, the entropy S�m ,�� turns out to be the
maximum of a functional of some order parameter,
which typically represents the inter-replica correlation
functions, and is obtained by maximizing the functional
�explicit examples will be given in the following�. For
each density, the inter-replica correlations are nonzero
only above some value md���, and in this case the repli-
cas are in the same state. In this region we obtain non-
trivial values of ��m ,��; thus md��� corresponds to the
minimum value smin��� below which there are no states
and �=0. We call md��� the clustering line because
above this line the space of configuration is disconnected
in many clusters corresponding to the glassy states. The
two lines md��� and ms��� in the plane �m ,�� define a
phase diagram which is schematically shown in Fig. 6
and mirrors the �P ,�� phase diagram. In fact, m is con-
jugated to the entropy, which is related to the pressure;
the two phase diagrams are related by a Legendre trans-
form. The lines ms and md touch at some value �TAP
below which there are no states except the liquid one.
Above �TAP, states are found for md����m�ms���.
When the line md��� reaches the line m=1, states begin
to be present in the liquid phase: this corresponds to the
point �d. When the static line ms crosses m=1, the liquid
ceases to exist and the ideal glass transition is met.

3. The equation of state of metastable glassy states

The replica method allows us to compute, for a given
density, the function ��s ,��. But to access the equation
of state of the metastable glassy states we must follow
the evolution of each state at different densities. This is,
in general a complicated problem already at the mean-
field level. Therefore in order to be able to perform the
computation, we make a strong additional assumption
on the phase-space structure of the model, namely, that
each state is labeled uniquely by its maximum possible
density or jamming density �j. This is the maximum
value of density for this given structure, corresponding

to infinite pressure, where particles are in contact with
their neighbors. We assume that if one starts from the
jammed structure at �j and slowly decreases the density,
the particles are allowed to vibrate slightly around the
original structure but the state maintains its identity un-
til it merges with the liquid. In other words, we assume
that there are no bifurcations of states, and states can
disappear only at �j.

If one starts in a jammed state at density �j and
slightly decompresses the system, the state acquires a
finite entropy s�� ,�j�. We can invert this relation to get
�j�s ,��. If there are no bifurcations and we denote the
logarithm of the number of structures with jamming
density �j as �j��j�, we have the simple relation

��s,�� = �j„�j�s,��… . �8�

This is a consequence of our assumption19 because if
states cannot bifurcate or die, their number remains con-
stant; this implies that we can label the states equiva-
lently by their jamming density �j or by their complexity
�j.

Then the procedure to extract s�� ,�j� from Eq. �6� is
the following: we fix a value �j and solve

��m,�� = �j �9�

to get m�� ,�j�. Then we have s�� ,�j�=s*„m�� ,�j� ,�….
As shown below, in the limit m→0 we find s*�m ,��
→−�, i.e., the pressure diverges. The jamming limit then
corresponds to m→0, and the relation between �j and
�j is simply

�j��j� = lim
m→0

��m,�j� . �10�

Inverting this equation we obtain �j��j�, which we can
substitute in s�� ,�j� to obtain s�� ,�j�.

To summarize, under our assumption, in the �m ,��
plane of Fig. 4, we can draw many lines, each defined by
��m ,��=�j. Each line identifies a group of states that
share the same jamming density �j, which is the point
where the line crosses m=0, and the same complexity �j.
For a given line, we can compute the internal entropy of
the corresponding states as s�� ,�j�=s*„m�� ,�j� ,�…, and
differentiating this with respect to � we get the pressure

17Note that the condition ��m ,��=0 is equivalent to
��S /m� /�m=0, which corresponds to the usual optimization of
the free energy with respect to m in the 1RSB computations.

18An important remark �Mézard and Parisi, 1999a� is that the
entropy of the replicated liquid S�m ,�� is analytic as long as
m�ms���. In fact, the introduction of m shifts the phase tran-
sition that happens for �=�K at m=1 to higher values of den-
sity for m�1 �see Fig. 6�. Therefore S�m ,�� can be computed,
in the whole interesting glassy region, by analytic continuation
of the low-density �replicated� liquid entropy.

19For this reason it is often called “isocomplexity” assump-
tion in the spin-glass literature. It holds for the simplest spin
glass the spherical p-spin glass, with a single value of p �Cugli-
andolo and Kurchan, 1993�, but for more general models �e.g.,
spherical spin glasses with interactions involving sets of p and
q spins with p�q or Ising spin glasses� its exact validity is
debated �Barrat et al., 1997; Montanari and Ricci-Tersenghi,
2004; Krzakala et al., 2008�; still there is a general agreement
that isocomplexity is approximately correct.
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of the states, as drawn in the right panel of Fig. 4.
Clearly if we choose �j=0 we recover the ideal glass
state as previously discussed.

B. The molecular liquid

The m copies are assumed to be in the same state.
This can be implemented by constraining each particle
of a given replica to be close to a particle of each of the
other m−1 replicas. The liquid is made of molecules of
m atoms, each belonging to a different replica of the
original system, or in other words, the atoms of different
replicas stay in the same cage. The replica method al-
lows us to define and compute the properties of the
cages in a purely equilibrium framework in spite of the
fact that the cages have been defined originally in a dy-
namic framework.20 The problem is then to compute the
free energy of a molecular liquid where each molecule is
made of m atoms. The m atoms are kept close to each
other by a small inter-replica coupling that is switched
off at the end of the calculation, while each atom inter-
acts with all other atoms of the same replica via the
original pair potential.

Note that the free energy of the replicated liquid is
assumed to be analytic in the whole region m�ms��� as
the only phase transition happens at ms��� when the
complexity vanishes. Thus we can use approximations
valid in the liquid phase to compute the free energy up
to ms���. This is enough because the free energy is con-
tinuous on the transition line, and therefore the free en-
ergy of the glass can be computed by approaching the
line ms��� from below, as discussed above. Note also
that we are interested in the regime of fairly high densi-
ties where we expect the cages to be small and the mo-
tion of atoms inside a state to be quite localized. Thus, if
all replicas are in the same state, inter-replica correla-
tions remain strong when we switch off the coupling.
Our task is then to compute the entropy of the repli-
cated liquid in a small cage regime when atoms in a
molecule are quite close to each other.

1. The partition function

We start from the grand canonical partition function
of the replicated system of molecules of coordinates x̄
= �x1 , . . . ,xm� in a volume V, and we put a harmonic at-
traction between particles in a molecule. Particles be-
longing to the same replica interact via the hard sphere
potential. The replicated partition function is

Zm��� = 

N=0

�

zN�
V

dNx1 ¯ dNxm

N! �
i�j

�
a

��xai − xaj�

� �
i

exp�−
�

m 

a�b

�xai − xbi�2�
= 


N=0

� �
V

dNx̄

N! �
i

z�x̄i��
i�j

�̄�x̄i, x̄j� , �11�

where ��x−y�=
��x−y�−D�, �̄�x̄ , ȳ�=�a��xa−ya�, and

z�x̄� = z exp�−
�

m 

a�b

�xa − xb�2� . �12�

It is clear that the derivative of S�m ,� ;��
�	N
−1 ln Zm��� with respect to � gives the average cage
radius, which is defined as the average distance of atoms
in two replicas a�b:

A �
1

2Nd�

i

�xai − xbi�2�
=

1

m�m − 1�d�

a�b

�xa − xb�2�
= −

1

�m − 1�d
dS�m,� ;��

d�
. �13�

Note that this cage radius could also be measured as the
large time limit of the mean-square displacement of a
single system �Angelani and Foffi, 2007�. We are inter-
ested in the limit of zero coupling between the replicas.
If there is only one thermodynamic state, the liquid,
then the replicas will decorrelate for �→0 and A�0�=�.
On the contrary, if there are many stable states, an in-
finitesimal coupling will be enough to send the replicas
into the same state; this will produce a correlation be-
tween the replicas and A will be of the order of the cage
radius inside one state. This phenomenon can be better
understood in term of the Legendre transform of
S�m ,� ;�� with respect to �, which is a function of A
defined by21

S�m,� ;A� = min
�

�S�m,� ;�� + �m − 1�dA�� , �14�

and is schematically shown on the right panel of
Fig. 7. As �m−1�d�=dS�m ,� ;A� /dA, the stationary
points of S�m ,� ;A� correspond to zero coupling and
in fact S�m ,��=maxA S�m ,� ;A�. In the liquid phase,
S�m ,� ;A� will have a single maximum in A=�, while
when glassy states are present, S�m ,� ;A� will have a
secondary maximum at finite A. See Mézard and Parisi
�2000� for detailed discussion of the Legendre transform
with respect to �.

We discuss in the following some approximation
schemes to compute Zm���. For the moment, we try to
give a “pictorial” representation of this method. A way

20Note that it has been pointed out that, already at the MCT
level, “cages” are in fact extended objects in the sense that
single atoms can always hop out of their local cage and only
groups of many atoms can be really blocked: strictly speaking
only when the number of atoms goes to infinity is the group
blocked. Depending on the approximation, we may or may not
be able to take into account this effect.

21Due to a global m−1 factor, maxima and minima are ex-
changed for m�1 in the following discussion.
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to visualize the partition function Zm��� �Eq. �11�� is that
the original system is represented by the reference coor-
dinates x1i of the first replica; around each reference par-
ticle, m−1 other particles vibrate on a small scale
�1/��. They are shown in Fig. 7 as dashed spheres. The
interaction is such that dashed spheres belonging to the
same replica cannot overlap.

Alternatively, the system can be thought of as a “mo-
lecular liquid” in which each molecule is built by the m
replicated particles vibrating around their center of mass
X=m−1
axa. The entropy of the replicated system is
given in Eq. �6� by S�m ,��=�„s*�m ,�� ,�…+ms*�m ,��.
In this picture, the entropy of the molecular system
S�m ,�� is given by the entropy of the centers of mass
��m ,�� plus the contribution due to the vibrations of
the m particles in a molecule around the center of mass,
which is m times the vibrational entropy s*�m ,��, i.e.,
the volume of a typical cage of the centers of mass sys-
tem. Note that for generic m, s* slightly depends on m
since the m replicas are not independent.

This representation of Zm��� shows that a consistent
way to remove the crystal state in this computation is to
describe the system of the centers of mass by a low-
density virial expansion, as done in the following �see
Appendix B�. In other words, we assume that the cen-
ters of mass X represent structures that are typical of the
liquid state. This is our operational definition of amor-
phous states and for this reason in our computation par-
tially crystallized states do not appear.

2. Correlation functions

The replicated liquid is characterized by the density
�a�x�= 	
i
�xia−x�
 of each replica and by the correlation
function

�ab�x,y� = �

ij


�xai − x�
�xbj − y�� , �15�

where the sum is over all ij if a�b and over i� j if a
=b. If there is symmetry between the replicas, �a�x�=�

and the two relevant correlations are the intrareplica
correlation g�x ,y�=�aa�x ,y� /�2 and the inter-replica cor-
relation g̃�x ,y�=�a�b�x ,y� /�2. In the following we show
that g�x ,y� has a quite different shape in the liquid and
in the glass at high pressure. Hence, we denote by
gG�x ,y� the pair distribution function in the glass phase,
while we keep the notation g�x ,y� for the one of the
liquid. To avoid confusion, we stress that g�x ,y� and
gG�x ,y� refer to the same observable in different phases,
while g�x ,y� and g̃�x ,y� are different observables.

If there are no correlations between different replicas,
g̃=1. This happens for m�md���, where no glassy states
are present. In the region m�md���, there are glassy
states. Each state � is characterized by a frozen density
profile ���x� and by its correlation function ���x ,y�. The
density profile can be computed, in principle, as the
minimum of a suitable density functional F���x�� �Singh
et al., 1985; Kirkpatrick and Wolynes, 1987a; Dasgupta
and Valls, 1999; Kim and Munakata, 2003; Chaudhuri et
al., 2005; Yoshidome et al., 2007�.

We are interested in averages over the states. Due to
translational invariance, ���x�=�, and for the intra-
replica correlation we have simply

g�x − y� = �−2���x,y� , �16�

where the overbar denotes the average over the states.
We assumed that the coupling between different rep-

licas is able to force them all to be in the same state.
Apart from that, in the limit of vanishing coupling no
other correlations are induced. Thus

g̃�x − y� = �−2���x����y� . �17�

3. Nonergodicity factor

Equation �17� allows us to relate the inter-replica cor-
relations to the so-called nonergodicity factor of mode-
coupling theory. We sketch here the connection but the
reader is referred to Bengtzelius et al. �1984�, van Megen
and Underwood �1993�, and Götze �1999� for more de-
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FIG. 7. �Color online� The molecular liquid. �Left� A molecule of the replicated liquid: each full �black� sphere of the original
liquid is replicated m times �dashed spheres�, and the m copies vibrate around the reference one. �Right� Replicated entropy as a
function of the order parameter A /A0, where A0 is some reference value and m<1. The full line is the mean-field curve, while the
dashed line takes into account the finite-dimensional nature of the system �see Appendix A�.
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tails. In mode-coupling theory it is usual to work in Fou-
rier space; the Fourier-transformed density reads

���q� =� dxeiqx���x� = �

i

eiqxi�
�

, �18�

where 	 · 
� denotes the thermal average in state �. The
main object of mode-coupling theory is the coherent
normalized scattering function

F�q,t� =
1

NS�q��

ij

eiq�xi�t�−xj�0��� , �19�

where S�q�=N−1
ije
iq�xi−xj�=1+�h�q� is the structure fac-

tor, which is related to the Fourier transform of h�r�
=g�r�−1 �Hansen and McDonald, 1986� and xi�t� is the
position of particle i at time t assuming that the position
at time t=0 has been extracted from the Gibbs distribu-
tion �mode-coupling theory is a theory of the equilib-
rium dynamics of glasses�. By definition, F�q ,0�=1; in
the glass phase F�q , t� develops a plateau that becomes
infinite at the mode-coupling transition �MCT. Hence for
���MCT the long-time limit of F�q , t� is nonzero; this is
called nonergodicity factor fq:

fq � lim
t→�

F�q,t� . �20�

In the replica interpretation, the fact that F�q , t� does
not vanish in the long-time limit �or, in other words, that
density fluctuations cannot relax completely� signals the
appearance of metastable states. Even for t→�, the sys-
tem cannot escape from the metastable state in which it
was at time t=0. However, it can decorrelate inside the
state. Therefore, in the long-time limit one has

�

ij

eiq�xi�t�−xj�0���
�

� �

i

eiqxi�t��
�
�


j
e−iqxj�0��

�

= ���q����− q� , �21�

and, taking into account that the initial condition �hence
the initial state �� has been extracted from the Gibbs
distribution, one finally obtains

fq =
���q����− q�

NS�q�
=

�h̃�q�
S�q�

, �22�

where h̃�q� is the Fourier transform of h̃�r�= g̃�r�−1.

IV. THE REPLICATED LIQUID: HYPERNETTED CHAIN
(HNC) EQUATIONS

The simplest way to compute the property of the rep-
licated liquid is the following. We consider the system of
the m replicas as an m-component mixture, which is
then described by the number density �a of type a par-
ticles, and by the correlation function gab�x ,y� which is
the probability of finding a particle of type b in y given
that there is a particle of type a in x.

A. Replicated HNC equations

The entropy of the replicated liquid can be expressed
as a functional of these quantities �Morita and Hiroike,
1961; De Dominicis and Martin, 1964; Hansen and Mc-
Donald, 1986�:

S��a,gab�x,y�� =−
1
2


ab
�dxdy�a�b�gab�x,y�ln gab�x,y�

− gab�x,y� + gab�x,y���ab�x,y� + 1�

− V

a

�a�ln �a − 1�

−
1
2 


n�3

�− 1�n

n
Tr��h�n

− �two-line irreducible diagrams� ,

�23�

and gab�x ,y� have to be determined by maximizing the
entropy. In Eq. �23� we assume that the inter-replica cou-
pling has already been sent to zero and look for non-
trivial solutions for the inter-replica correlation. As an
example, the diagrams contributing at order four in den-
sity are shown in Fig. 8.

The simplest approximation that allows us to obtain a
treatable functional amounts to neglecting two-line irre-
ducible diagrams; in this way one obtains the HNC
equations for gab:

ln gab�x,y� + ��ab�x,y� = hab�x,y� − cab�x,y� , �24�

where c is defined by the Ornstein-Zwenicke relation

hab�x,y� = cab�x,y� + 

c
� dzhac�x,z��cccb�z,y� . �25�

The interaction potential is �ab�x ,y�=��x−y�
ab,
where ��x� is the hard-core potential. Using transla-
tional invariance and a replica symmetric structure, we
have �a=�, gaa�x ,y�=g�x−y�, and ga�b�x ,y�= g̃�x−y�.
The replicated entropy becomes22

22We can set �=1 as temperature is irrelevant for hard
spheres. Note that the term �dr���r�g�r�=0.

ba

c d

FIG. 8. The three diagrams contributing to order four in den-
sity to the replicated free-energy functional. Each vertex is
associated to a density �a, while each line is associated to a
hab�xi ,xj�=gab�xi ,xj�−1 factor; a ,b=1, . . . ,m are replica indi-
ces. The value of the diagram is obtained by integrating over xi
and summing over the replica indices. Only the leftmost dia-
gram is kept in the HNC approximation �Hansen and Mc-
Donald, 1986�; the other two are two-line irreducible.
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S�m,�� =
S
N

= −
�

2
� dr��mg�r��ln g�r� − 1� + m�m

− 1�g̃�r��ln g̃�r� − 1� + m2 + m��r�g�r��

− m�ln � − 1� +
1

2�
� dq�

�2��d��m − 1�

�ln�1 + ��h�q� − h̃�q��� + ln�1 + ��h�q�

+ �m − 1�h̃�q��� − m�h�q� +
m�2h�q�2

2

+
m�m − 1��2h̃�q�2

2
� , �26�

where h�q�, h̃�q� are the Fourier transforms of h�r�, h̃�r�.
The HNC equations can be written as

ln g�r� = − ��r� + W�r� ,
�27�

ln g̃�r� = W̃�r� ,

where W�r�,W̃�r� are defined by their Fourier transforms

W�q� =
1

m

��h�q� + �m − 1�h̃�q��2

1 + ��h�q� + �m − 1�h̃�q��

+
m − 1

m

��h�q� − h̃�q��2

1 + ��h�q� − h̃�q��
,

�28�

W̃�q� =
1

m

��h�q� + �m − 1�h̃�q��2

1 + ��h�q� + �m − 1�h̃�q��

−
1

m

��h�q� − h̃�q��2

1 + ��h�q� − h̃�q��
.

Using Eq. �6�, the free energy and complexity of the
states are

s*�m� =
�S�m�

�m
= −

�

2
� dr��g�r��ln g�r� − 1�

+ �2m − 1�g̃�r��ln g̃�r� − 1� + 2m + ��r�g�r��

− ln � + 1 +
1

2�
� dq�

�2��d�ln�1 + ��h�q�

− h̃�q��� +
�h̃�q�

1 + ��h�q� + �m − 1�h̃�q��
− �h�q�

+
�2h�q�2

2
+

�2m − 1��2h̃�q�2

2 � ,

�29�

��m� = − m2
��S�m�/m�

�m

=
�m2

2 � dr��g̃�r��ln g̃�r� − 1� + 1�

−
1

2�
� dq�

�2��d�ln�1 + ��h�q� − h̃�q���

− ln�1 + ��h�q� + �m − 1�h̃�q���

+
m�h̃�q�

1 + ��h�q� + �m − 1�h̃�q��
+

m2�2h̃�q�2

2 � .

The advantage of this formulation is that Eqs. �27� are
relatively easy to solve numerically and give direct ac-
cess to both the thermodynamic property of the glass
�entropy and pressure�, the structure factor g�r�, and the
nonergodic parameter g̃�r�.

B. Results

The above equations were used by Mézard and Parisi
�1996� and Cardenas et al. �1998, 1999� to compute the
properties of amorphous states of hard spheres. We now
reproduce these calculations for illustration.23

1. Phase diagram

The �m ,�� phase diagram for d=3 is shown in Fig. 6.
The values of �K=0.63 and �d=0.619 are reasonable
even if �d is a bit too large if compared to �MCT�0.58
�van Megen and Underwood, 1993�. Also, the value of
�th�0.67 that one can guess from the extrapolation of
md to m=0 is larger than the accepted value �J�0.64
from numerical simulations.

Moreover, one immediately notices that the static line
does not seem to extrapolate to zero at reasonable
densities.24 This was already observed by Mézard and
Parisi �1996� and was one of the major problems of the
HNC approximation. Before discussing this issue in de-
tail, we discuss the results for the correlation functions.

2. Correlation functions

Clearly, in the liquid phase m=1 and the correlation
function of the liquid coincides with the one obtained

23The HNC equations were solved by an iterative Picard
scheme using an initial Gaussian guess for c̃�x�. We used a grid
defined by imposing a cutoff r�L=8D and discretizing space
with a step a=D /128. We checked the stability of the reported
results by doubling the cutoff and inverse step.

24It is worth noting at this point that on increasing the density,
long-range correlations seems to develop and short-range sin-
gular behavior emerges in g�r� as expected from numerical
simulations. Thus one is forced to increase the cutoff and in-
verse step used in the discretization of the HNC equations. We
checked that in the range shown in Fig. 6 the resulting ms, md
are not affected by discretization corrections.
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within the nonreplicated HNC approximation. The re-
sult for gG�r� along the line ms��� �i.e., for the ideal
glass� is shown in Fig. 9. Many interesting features ex-
pected from numerical simulations �see Sec. II.D� are
observed: First, gG�r� develops a delta peak close to r
=D, whose shape �inset of the left panel� is quite similar
to the one observed by Donev et al. �2005a�. Moreover, a
dip for r�1.2 is developed due to particles of the first
shell getting closer to the reference one. Another inter-
esting feature is the jump that develops in r=2D and the
cusp in r=3D, which are in fact related to the delta peak
in r=D. Finally, we observe that on increasing the den-
sity gG�r� develops long-ranged oscillations for large r,
even if a systematic study of these correlations would
require the investigation of smaller values of m at which
the approximation gives inconsistent results.

As for g̃�r�, the most interesting feature is the peak
close to r=0 that describes the particle of replica b
which is in the same molecule of the reference particle
of replica a. Its shape has a clear scaling form on de-
creasing m: the cage radius, i.e., the scale on which the
delta peak is rounded, decreases and goes to 0 for m
→0, as previously anticipated. The behavior for larger r
is similar to the one of g�r�, “rounded” by the fluctua-
tions inside each molecule of particles of different repli-
cas. Finally, in Fig. 10 we show the nonergodicity factor
fq �Eq. �22��, which is a central object of mode-coupling
theory. The shape of fq obtained with replicas is qualita-
tively similar to the one obtained within MCT �Bengtze-
lius et al., 1984; van Megen and Underwood, 1993;
Götze, 1999� and experiments �van Megen et al., 1991�,
although from the quantitative point of view marked dif-
ferences are present.

C. Discussion

The replicated HNC equation gives interesting quali-
tative indications on the phase diagram and correlations
functions and is not too bad from the quantitative point
of view. However, the value �d=0.619 is too large com-
pared with numerical estimates, and the nonergodicity

factor is quite far from the measured values. Another
unsatisfactory feature of the HNC approximation is that
it gives a complexity � of the order of 0.01, which is two
orders of magnitude smaller compared to what is ob-
served in simulations and experiments, where ��1. As
for the correlation of the glass, this approximation
misses the peak at r=�3D �which should be encoded in
the diagrams that have been neglected� and the square-
root singularity close to r=D but well reproduces the
other characteristic features of jammed disordered pack-
ings.

Unfortunately, the results of the HNC approximation
definitely become bad at small values of m, i.e., deep
inside the glass phase on approaching jamming. This can
be understood quite easily by inspecting the diagrams
that have been neglected in the HNC approximation,
already at the lowest nontrivial order in density; these
are shown in Fig. 8. The argument goes as follows: As
discussed, when the pressure is high �or m is small� the
cage becomes very small, and the peak in g̃�r� close to
r=0 approaches a delta function. Consider the contribu-
tion to the diagrams in Fig. 8 when the replica indices
are all different, a�b�c�d; then on each link there is
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FIG. 9. �Color online� gG�r� and g̃�r� along the ideal glass line ms��� at three different densities, computed using the replicated
HNC equations �Sec. IV�. Inset: Scaled plot of gG�r� /gG�D� vs p�r−D� /D and g̃�r� / g̃�0� vs pr /D, where p=1+4�gG�D�.
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FIG. 10. �Color online� Nonergodicity factor, defined in Eq.
�22�, computed using the replicated HNC equations �Sec. IV�
at �=0.62��d and �=0.63��K.
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a factor g̃�xi−xj�. We focus on the small xi−xj behavior;
then g̃�xi−xj��
�xi−xj� and the leftmost diagram has a
contribution

� dx1dx2dx3dx4
�x1 − x2�
�x2 − x3�

�
�x3 − x4�
�x4 − x1� � 
�0� �30�

since three delta functions are enough to constrain the
four integration variables to be close to each other. The
notation 
�0� here is a formal way to indicate that the
contribution above will diverge roughly as the maximum
of the peak of g̃�r�. Now, the other two diagrams in Fig.
8 have more links; performing the same computation as
above, we find that they diverge as 
�0�2 and 
�0�3. But
these diagrams are not included in the HNC and this
makes the approximation bad at high pressure. Actually,
this reasoning shows that the HNC is keeping the less
divergent diagrams at each order, while the maximally
divergent diagrams are the completely connected ones,
at least as far as the contribution with different replica
indices is concerned. Therefore to study the jamming
limit we need to treat correlations inside a molecule in a
more appropriate way. We discuss next a different ap-
proximation scheme that fixes this problems by taking
into account all correlations between different replicas
�in some sense, resumming the contribution of com-
pletely connected diagrams�.

The argument above is supported by the fact that we
were not able to derive analytically the limit m→0 of
the HNC equations, and we have a strong feeling that
they become pathological in this limit. The same prob-
lem is present in the limit d→� and should be con-
nected to the fact that the cage radius is very small in
this limit, as shown below. In summary, the HNC ap-
proximation does not work for small cage radius: mul-
tiple correlation functions in the replica sector become
important.

V. THE REPLICATED LIQUID: EFFECTIVE POTENTIALS

A way to compute the replicated free energy for a
system of Lennard-Jones particles in a more accurate
way, by taking into account multiple correlations inside a
molecule, has been described by Mézard and Parisi
�1999b�. The idea is to write the free energy as a func-
tion of the cage radius A and expand systematically in
powers of A, which is assumed to be small. Thus we
expect this method to work well in the dense region and
for m�0, where the HNC approximation fails. The
method is successful but cannot be extended straightfor-
wardly to hard spheres because at some stage in their
work Mézard and Parisi �1999b� assumed that vibrations
were harmonic, an approximation that clearly breaks
down for hard-core potentials. In this section we discuss
a general method that allows us to map the replicated
free energy onto the nonreplicated free energy of a liq-
uid of particles interacting via some effective potentials
to be computed below. The method is similar in spirit to

the self-consistent phonon theory used by Stoessel and
Wolynes �1984� and Hall and Wolynes �2003, 2008� to
study the stability of a glass state. This will allow us to
derive in a simple way the small cage expansion for the
case of hard spheres. Moreover, the correlation function
of the glass turns out to be the correlation function of
the effective liquid, thus simplifying much of its compu-
tation. Similar ideas have been recently used by Steven-
son et al. �2008�.

A. Entropy as a functional of the single-molecule density

We wish to compute the entropy as a functional of the
order parameter A, the cage radius, whose expected be-
havior has been schematically shown in Fig. 7. Instead of
directly expanding the partition function �11� for large �
and then Legendre transform with respect to � as in Eq.
�14�, we will first use standard liquid theory to perform a
Legendre transform of Eq. �11� with respect to the full
function z�x̄�. In this way we obtain the entropy as a
functional of the single-molecule density

��x̄� = �

i


�x̄ − x̄i�� , �31�

where 
�x̄− x̄i�=�a
�xa−xai�, and of the interaction func-
tion �̄�x̄ , ȳ�,

S���x̄�,�̄�x̄, ȳ�� =� dx̄��x̄��1 − ln ��x̄��

+ 
 �a class of diagrams� . �32�

The class of diagrams contributing to Eq. �32� is defined
precisely by Morita and Hiroike �1961�, De Dominicis
and Martin �1964�, and Hansen and McDonald �1986�
but is not important here. What is important is that a
diagram D represents an integral of the form

D =
1

S
� �

i
��i�dx̄i�

�
��̄��� − 1� , �33�

where i are the vertices of the diagram and �= �i� j� are
the links, and to shorten the notation we defined ��i�
=��x̄i� and �̄���= �̄�x̄i , x̄j�. S is the symmetry factor of the
diagram, i.e., the number of equivalent relabelings of the
vertices of the diagram.

The reason why we start from Eq. �32� instead of Eq.
�11� is that the single-molecule density ��x̄� is directly
related to the order parameter A we want to study. In
particular, we can make a simple Gaussian ansatz25

25This simple ansatz assumes that all particles have the same
cage radius �A. However, at very high pressure, it is well
known that most of the particles are immobile, while a small
fraction �typically �5%� can vibrate in a cage that remains
finite even at infinite pressure. These particles are called “rat-
tlers” in the literature on jamming. Our ansatz completely ne-
glects rattlers. One could think to improve it by introducing
two cage radii, one associated to jammed particles and the
other to rattlers: we did not explore this possibility.

810 Giorgio Parisi and Francesco Zamponi: Mean-field theory of hard sphere glasses and …

Rev. Mod. Phys., Vol. 82, No. 1, January–March 2010



��x̄� =
�m−d/2

�2�A��m−1�d/2 exp�−
1

2mA 

a�b

�xi
a − xi

b�2�
=

�

�2�A�md/2 � dX exp�−
1

2A

a

�xa − X�2�
= �� dX�

a

e−�1/2A��xa − X�2

�2�A�d/2

� �� dX�
a

�A�xa − X� , �34�

where �A�x� is a normalized Gaussian with variance A;
we then have �dx̄��x̄�=�V=N; therefore � has the inter-
pretation of the number density of molecules �note that
having Legendre transformed we are now working at
fixed N�.

The Gaussian ansatz for ��x̄� is not equivalent to the
Gaussian ansatz �12� for the single-molecule activity; in
fact ��x̄� is a sum of diagrams containing z�x̄� and the
interaction function, so it is Gaussian at lowest order in
� but has corrections coming from higher orders. The
corrections are singular because of the singularity of the
interaction. For this reason it is convenient first to Leg-
endre transform with respect to z�x̄� and then to make
the Gaussian ansatz for ��x̄�: the resulting small A ex-
pansion has a better behavior.

The Gaussian form �34� allows us to compute exactly
the ideal-gas term of the entropy:

1

N
� dx̄��x̄��1 − ln ��x̄��

= 1 − ln � −
d

2
�1 − m�ln�2�A� −

d

2
�1 − m − ln m�

� 1 − ln � + Sharm�m,A� , �35�

where we defined

Sharm�m,A� =
d

2
�m − 1�ln�2�A� +

d

2
�m − 1 + ln m� .

�36�

We want to find a simple way to rewrite the replicated
entropy exploiting the fact that A is small.

B. The effective nonreplicated liquid

Before proceeding to the formal computation, it is
better to understand intuitively what the result will be.
To this aim, note that we assumed that the vibrations of
the m copies of the particles, x= �x1 , . . . ,xm�, are de-
scribed by the Gaussian distribution �34�, corresponding
to harmonic vibrations.

The width A is a variational parameter and we maxi-
mize the entropy with respect to it at the end; for the
moment we assume that A is small. The idea is to choose
a replica �say, replica 1� as a reference and consider the
vibrations of the other m−1 particles around the refer-
ence one. At the zeroth order in A, the m−1 copies

essentially coincide with the reference one, and
S�m ,� ;A��N−1S���x̄� , �̄�x̄ , ȳ�� is given by the entropy
S��� of the nonreplicated liquid �corresponding to rep-
lica 1� plus the free energy of m−1 harmonic oscillators
of spring constant A:

S�0��m,� ;A� = S��� + Sharm�m,A� . �37�

We see indeed that the ideal-gas term �35� corresponds
to Eq. �37� where S��� has been approximated by the
ideal-gas contribution.

A first-order approximation is obtained by consider-
ing the effective two-body interaction induced on the
particles of replica 1 by the coupling to m−1 copies. We
consider two particles x1 and y1 of replica 1 belonging to
two molecules x̄ and ȳ. Each particle of a given replica a
interacts with the other particles of the same replica via
the hard-core potential ��r�. The effective interaction
between particles in replica 1 is obtained by averaging
this interaction over the probability distribution ��x̄� of
the two molecules x̄ and ȳ:

e−�eff�x1−y1� =� dx2,mdy2,m�−2��x̄���ȳ��
a=1

m

e−��xa−ya�

� e−��x1−y1���
a=2

m

e−��xa−ya��
x1,y1

. �38�

As an example, the potential �eff�r� for hard spheres in
d=3 is shown in Fig. 11 for some values of A and m �see
Appendix C for its calculation�. A first-order approxi-
mation to S�m ,� ;A� is then obtained by substituting to
the entropy S��� of the simple hard sphere liquid the
free energy of a liquid of particles interacting via the
potential �eff�r�,

0 0.5 1 1.5 2 2.5 3
(r-D)/(2A

1/2
)

-5

-4

-3

-2

-1

0

1

2

-l
n[

1+
Q

(r
)]

m=0.01
m=0.1
m=0.5
m=3

FIG. 11. �Color online� The non-hard-core part of the effect-
ive potential �eff�r�−��r�=−ln�1+Q�r�� �Eq. �38�� as a func-
tion of �r−D� /�4A for r�D for different values of m
=0.01,0.1,0.5,3 �from bottom to top� in d=3. Note that the
range of the potential is O��A� and that it is attractive for m
�1 and repulsive for m�1. The strength of the potential di-
verges for m→0.
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S�1��m,� ;A� = − �F�� ;�eff�r�� + Sharm�m,A� . �39�

It is now evident that we can obtain better approxima-
tions of the true function S�m ,� ;A� by also considering
the three-body interactions induced on particles of the
replica 1 and so on.

This procedure can be justified more formally by in-
troducing a diagrammatic expansion in powers of A and
resumming a class of diagrams: this is discussed in detail
in Appendix B. The result is the following: the repli-
cated entropy �32� can be exactly rewritten as

S�m,� ;A� � N−1S���x̄�,�̄�x̄, ȳ��

= Sharm�m,A� − �Feff�� ;�eff,�eff
�2�,�eff

�3�, . . . � ,

�40�

where the effective potentials �eff
�n� depend on both A

and m. The correlation function of the glassy states as a
function of A and m is just the correlation function of
the liquid described by Feff.

The effective potential �eff
�n� is constructed as follows:

one constructs all possible connected diagrams with n
links and such that one pair of vertices is not connected
by more than one link. Then one numbers the vertices
x1 ,x2 , . . .. The effective potential �eff

�n� for one chosen dia-
gram depends on the variables x1 ,x2 , . . . �whose numbers
depend on the diagram�. For n=1, we have only one
possibility, �eff depends only on r�=x1−x2 by translation
invariance and is given by Eq. �38�. Also, for n=2 we
have only one possibility where the two links share one
vertex; the resulting potential depends on r�=x1−x2 and
s�=x1−x3 �denoting by x1 the common vertex�, and we
have

e−�eff
�2��x−y,x−z� =

��
a=2

m

e−��xa−ya�e−��xa−za��
x,y,z

��
a=2

m

e−��xa−ya��
x,y
��

a=2

m

e−��xa−za��
x,z

,

�41�

where the brackets denote averages similar to the one in
Eq. �38� �see Appendix B for details�. There it is also
shown that the correlation function gG�r� of the glass is
given by the correlation function geff�r� of the effective
liquid.

C. Properties of the effective potentials

The effective potentials have the following general
properties, which are discussed in Appendix B:

�1� If for at least one of the links the distance r= �xi

−xj� is such that �r−D���A, the potential vanishes
exponentially as e−�r − D�2/A.

�2� For the reason above, we can argue that they con-
tribute O�An/2� to the free energy, where n is the
number of links in the potential. This is because the

potential is nonvanishing only if, for all links,
�r−D���A, and this region has volume O�An/2�.

�3� One can show that the leading order of the poten-
tials vanishes if the unit vectors of the links are or-
thogonal. Then, one can argue that in the limit d
→� where the links are almost always orthogonal,
the potentials for n�2 give vanishing contributions.

�4� All potentials are O�m−1� for m→1. Thus in this
limit they can be treated as perturbations of the
hard-sphere liquid.

�5� In the opposite limit A→0 with A=�m �jamming
limit, see below�, the potentials tend to become
delta functions around r=D.

In the following we use these properties to derive the
glass equation of state and its structure factor as a func-
tion of the dimensionality.

Before concluding we remark that in the case of a
smooth potential it might be preferable to use the center
of masses as reference positions instead of the coordi-
nates of replica 1. The expansion of Appendix B can be
carried out similarly in this case and leads to analogous
expressions for the effective potentials. The difference is
that in the case of a smooth potential the small cage
expansion starts with a term of order A and one can
show that if the center of masses is chosen as reference
positions, the n-body potential is of order An−1. Con-
versely, if one uses replica 1 as a reference, all potentials
are of order A. The advantage of using replica 1 as a
reference is that the correlation function of the effective
liquid is directly the correlation function of the glass. In
the case of hard spheres the expansion is well behaved
because of the properties above. One should keep in
mind that depending on the problem at hand, one ex-
pansion might be better than the other.

VI. THE LIMIT OF LARGE SPACE DIMENSION

We begin by the study of the limit d→� because in
this limit all expressions simplify and we are able to ob-
tain a consistent solution in all regions of the phase dia-
gram. Moreover, this limit is interesting because meta-
stability effects should be less important in high
dimension: the limit d→� is a kind of mean-field limit
where the surface and the volume are of the same order
of magnitude and nucleation becomes almost impos-
sible. As discussed in the Introduction, the limit d→�
also has interesting applications in the digitalization of
signals �see Conway and Sloane �1993��.

A. The liquid in d\�

The problem of computing the entropy of the hard-
sphere liquid for d→� was addressed by Frisch and Per-
cus �1999� and Parisi and Slanina �2000�, where the same
result was obtained in two independent ways. Frisch and
Percus �1999� showed that the ring diagrams dominate
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the virial series order by order in � for large d. The
resummation of these diagrams gives

S��� = 1 − ln � +
�

2
� dr�f�r� −

1

2�
� dq�

�2��d

��ln�1 − �f̂�q�� + �f̂�q� +
��f̂�q��2

2
� , �42�

where f̂�q� is the Fourier transform of the Mayer func-
tion f�r�=��r�−1,

f̂�q� = − Vd��d

2
+ 1�� 2

q
�d/2

Jd/2�q� . �43�

The key observation is that, up to a density �max
HS

=exp�d�1−ln 2� /2� /2d, the logarithm does not have
poles so that the above expression is well defined. If 2d�
is not exponentially large, the nonring diagrams are con-
jectured to give only exponentially small corrections
�Frisch and Percus, 1999�, and one can show that the last
term is exponentially small �Frisch and Percus, 1999�.
Therefore, if 2d� does not grow exponentially with d,
S��� is given by the ideal-gas term plus the first virial
correction �i.e., by the van der Waals equation� up to
exponentially small corrections,

S��� = 1 − ln � − 2d−1� + O�e−d� ,
�44�

g�r� = ��r��1 + O�e−d�� .

Parisi and Slanina �2000� introduced simple equations
for the pair-correlation function g�r� and solved in the
limit d→�; it was shown that one obtains the same re-
sult, up to �max

HS , meaning that Eq. �44� might be a rea-
sonable analytic continuation of the liquid equation of
state up to �max

HS which is exponentially larger than 2d. At
this value of the density a pole develops at finite q that
seems to correspond to a liquid instability �the Kirk-
wood instability �Frisch and Percus, 1999��.

The physical meaning of this instability is not clear.
Although interesting from the mathematical point of
view �maybe also in relation to the problem of finding
the most dense lattices �Parisi, 2008��, this question is
not physically relevant in this context. We show later
that the glass transition indeed preempts this instability
that is therefore in a nonphysical region of the density:
this system becomes unstable toward replica symmetry
breaking at a density ��2−dd before reaching the Kirk-
wood instability.

B. The effective liquid: The Baxter model in d\�

To compute the free energy of the replicated liquid,
we will neglect all the potentials but the two-body one.
This is because, as discussed above, we have indications
that the corrections coming from the many-body poten-
tials vanish in this limit. However, this point deserves a
more careful investigation.

1. Two-body potential in large dimension

The calculation of the two-body potential was already
done at first order by Parisi and Zamponi �2005�; in Ap-
pendix C it is carried out at any order. The resulting
effective potential �Eq. �38�� is shown in Fig. 11 for d
=3. Note that at fixed m the effective potential is a func-
tion of �r−D� /�4A only.

In the limit d→� the correlations of the liquid vanish
and its g�r� approaches a step function 
�r−D�; on the
contrary, as shown below, the cage radius in the relevant
region is very small �of the order of 1/d�. Then, as the
two-body potential vanishes on a scale �A, it is reason-
able to approximate it with a delta function in r=D: this
leads to the Baxter model �Baxter, 1968� where

e−�eff�r� = ��r��1 + Q�r��

→ ��r��1 + DGm�A�Vd�1�
�r − D�� , �45�

where Gm�A� is related to the integral of Q�r� by Eq.
�C4� of Appendix C,

Gm�A� =
1

Vd�D� � dr���r�Q�r� =
d

Dd�
D

�

drrd−1Q�r� .

�46�

We show below that the natural scale for A in this limit

is Â=d2A /D2 which is of order 1 at the glass transition.
With this scaling it is possible to compute the leading
expression in the limit d→� �see Eq. �C32� in Appendix
C�,

lim
d→�

G�m,D2Âd−2� � Gm�Â�

= �
−�

�

dyey���y + Â

�4Â
�m

− 
�y�� ,

�47�

where ��t�= 1
2 �1+erf�t��.

2. The Baxter liquid in large dimension

We have then to solve the Baxter model in the limit
d→�. To do this it is enough to observe �Parisi and
Slanina, 2000� that the Fourier transforms of 
�r−D�
and 
�D−r� coincide at the leading order in the limit d
→�. Using the results of Parisi and Slanina �2000� it is
easy to show that

f̂eff�q� = �1 − Gm�Â��f̂�q� , �48�

where f̂eff is the Mayer function corresponding to the
Baxter potential �45�. Note that this relation is exact for
q=0. It is possible to show �e.g., by direct numerical

computation� that, for all m and Â, Gm�Â��1; therefore
the coefficient 1−G is positive and the only difference
between the Baxter liquid and the hard sphere liquid is
in an O�1� renormalization of the density. Therefore, up
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to a density �max
Baxter=�max

HS / �1−Gm�Â��, the free energy of
the Baxter liquid is given by

− �FBaxter�m,� ;Â� = 1 − ln � − 2d−1��1 − Gm�Â�� .

�49�

We will see that the replica instability happens for �
��max

Baxter, so this expression will be enough for our pur-
poses. The replicated entropy is finally given by substi-
tuting Eqs. �49� and �47� into Eq. �39�,

S�m,� ;A� = Sharm�m,A� + 1

− ln � − 2d−1�„1 − Gm�Â�…

= S��� + Sharm�m,A� + 2d−1�Gm�Â�

= 1 − ln � − 2d−1� −
d

2
�1 − m�ln�2�Â/d2�

−
d

2
�1 − m − ln m� + 2d−1�

��
−�

�

dyey���y + Â

�4Â
�m

− 
�y�� . �50�

From this expression �that might be exact in the large
dimension limit� it is possible to derive the phase dia-
gram of the system.

C. The equation for A and the clustering transition

From Eq. �50� we obtain the equation for A from the
condition �S /�A=0,

d

2d�
=

Â

1 − m

�Gm�Â�

�Â
� Fm�Â� . �51�

The solution to this equation must be substituted into
Eq. �50� to obtain the replicated entropy S�m ,��. For

generic m, Fm�Â� has the shape shown in Fig. 12 for m
=1. Therefore a solution exists only if

� �
d

2d

1

maxÂ Fm�Â�
� �d�m� , �52�

which defines the clustering transition density �d�m�. As

maxÂ Fm�Â� is a quantity of order 1 for all m, the scale
of the clustering transition is �d�d /2d. The same result
was obtained by Kirkpatrick and Wolynes �1987a� by
means of density-functional theory. Moreover, this result
compares well with the results of Torquato et al. �2006�
who found that simple algorithms are able to construct
packings up to this scale of density.

For ���d�m�, the equation for Â admits two solu-
tions, the physical one being the smallest, which corre-
spond to a maximum of the free energy for m�1, as
usual in the replica computations. This solution has the
right physical behavior as the cage radius becomes
smaller on increasing the density. While the full curve
�d�m� can easily be computed numerically from Eq. �52�,
we focus in the following on the special cases m=1 and 0
that define the equilibrium clustering transitions �d and
�th, respectively.

1. The clustering (mode-coupling) transition

For m=1, the clustering transition can be identified
with the usual dynamical �or mode-coupling� transition.
This is because when the liquid splits into an exponential
number of glassy states, we expect the dynamics to be-
come very slow as the system must cross barriers to
change state. In d→� these barriers become very high
and we expect a real dynamical transition characterized
by a divergence of the relaxation time at �d. It would be
interesting to check this conjecture by investigating the
mode-coupling equations in the limit d→�.

We have from Eqs. �47� and �51�, taking26 the limit
m→1,

F1�Â� = − Â
�

�Â
�

−�

�

dyey��y + Â

�4Â
�ln ��y + Â

�4Â
� .

�53�

This function can be easily computed numerically: the

result is shown in Fig. 12. It has a maximum for Â
=0.576 where F1=0.208; the corresponding value for the
clustering transition is

�d = �d�1� = 4.8d/2d, d → � . �54�

Note that this value is somehow larger �but not too
much� than the saturation density �RSA=d /2d �Torquato
et al., 2006� of the random sequential addition process in
which spheres are added sequentially at random.

26Before taking the limit it is convenient to substitute in Eq.

�47� 
�y�→�„�y+Â� /�4Â…, it can be shown that the integral is
unchanged. This is due to the property �dr��qA�r�−��r��=0 �see
Appendix C�.
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FIG. 12. �Color online� The function F1�Â�.
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2. The J point in d\�

In the limit m→0 the cage radius A that optimizes the
free energy goes to 0. Therefore the jammed states are

obtained in the double limit m→0, Â→0, Â= �̂m, as
discussed in Sec. VI.D. Using the results of Appendix C,

in particular Eq. �C35�, one can show that Eq. �51� for Â
becomes in this limit

d

2d�
= F0��̂� =

1

4�̂
�

0

�

dyy2e−y−y2/4�. �55�

The function F0��̂� has the same qualitative shape of

F1�Â� �see Fig. 12� and assumes its maximum for �̂
=0.302 with F0=0.160. This gives the leading order in
d→� of the clustering density for m=0,

�th = �d�0� = 6.26d/2d, d → � . �56�

As discussed this density corresponds to the first appear-
ance of jammed states at infinite pressure and we con-
jecture that it coincides with the J-point density, at least
in this large dimension limit.

D. The ideal glass state

Once Eq. �51� has been solved, one can obtain the
entropy and complexity of glassy states from Eqs. �6�
and �50�,

s*�m,�� = − d ln d +
d

2
�ln�2�Â� + 1 +

1

m
�

+ 2d−1��mGm�Â� ,
�57�

��m,�� =
d

2
ln d −

d

2
�1 + ln�Â/m��

− 2d−1��1 + m2�mm−1Gm�Â��

− ln�2d�� −
1
2

ln��d� + 1,

where we used the Stirling formula to expand the
gamma function appearing in Vd. In the region of the

clustering transition we showed that 2d��d and Â
=O�1�; thus the first term in � always dominates and
gives a positive complexity.

To find the solution to ��m ,��=0 we have then to
choose �=d�̂ /2d and look to �̂→�. In this case the so-

lution for Â vanishes. For small Â, the function Gm�Â�
��4ÂQ0�m� �see Appendix C�. Substituting into Eq.

�51� we get Â��̂−2, and substituting this into Eq. �57�

��m,�̂� =
d

2
ln d −

d

2
��̂ + O�ln �̂�� . �58�

Then we see that the leading behavior is �̂=ln d inde-
pendently of m. The dependence on m comes from the
subleading terms �see Parisi and Zamponi �2006b� for an

analysis of these terms�. Therefore, both the Kauzmann
and glass close-packing density scale as

�K,�GCP = d ln d/2d, d → � �59�

for d→�. Note that in the limit m→0, Â= �̂m, the vi-

brational entropy goes to −� due to the term ln Â in Eq.
�57�. In summary, for m→0 the cage radius goes to 0, the
entropy goes to −�, and the pressure diverges: the par-
ticles get in contact and the system is jammed.

E. The correlation function

The correlation function of the glass is given by the
correlation function of the effective Baxter liquid. In the
ring resummation for hard spheres �Eq. �42��, we get

g�r� =
2

�


S


 ln ��r�
= ��r�y�r� ,

�60�

y�r� = 1 +� dq

�2��de−iqr �f̂�q�

1 − �f̂�q�
,

where f̂�q� is given by Eq. �43�. For the Baxter effective

liquid one has to substitute f̂�q�→ f̂eff�q� and ��r�
→e−�eff�r�. In both cases, for d→�, the analysis of Parisi
and Slanina �2000� or a direct investigation of Eq. �60�
shows that y�r�=1+e−�d/2�ŷ�r�, where the function ŷ�r� can
be determined �see Parisi and Slanina �2000��. Ignoring
this exponentially small corrections27 we are left with
gG�r�=e−�eff�r�. Therefore the correlation function of the
glass is essentially given by a step function plus a peak in
r=D, which becomes a delta function in the jamming
limit m→0, A=�m. We can compute the weight of the
delta peak ��r�Q�r�, which is related to the average
number of contacts per sphere z by

z = �� dr��r�Q�r� =
�	dDd

12�
= 2d�Gm�A� . �61�

In the jamming limit Gm�Â�→G0��̂� �see Eq. �C36�� and
�̂= �̂��� is the solution of Eq. �55�, so that

z = d� G0��̂�

F0��̂�
�

�̂=�̂���
, �62�

where F0��̂�= �̂dG0��̂� /d�̂ is defined in Eq. �55�. In the
limit �̂→0, which corresponds to random close packing,
we have G0��̂����̂ which implies z→2d, i.e., the pack-
ings are isostatic. However, for �̂�0, Eq. �62� gives z
�2d, with z�3.6d at the threshold density.

This strange result might be due to different reasons:
�i� subleading corrections that we neglected might affect
the result in some subtle way; �ii� the states correspond-
ing to finite �̂ might be unstable; it is possible that only

27That, however, is necessary to ensure that S�q��0 for all q
and that S�0�=0 �Parisi and Slanina, 2000�.

815Giorgio Parisi and Francesco Zamponi: Mean-field theory of hard sphere glasses and …

Rev. Mod. Phys., Vol. 82, No. 1, January–March 2010



states with �̂��ln d�−2 are stable; and �iii� it is possible
that other contributions, e.g., those of the square-root
singularity in lower dimension, are merged with the true
contacts on the scale of the delta peak. This point de-
serves further investigation.

F. Discussion

We showed that for d→� the model can be almost
completely solved, at least within our initial assump-
tions, i.e., that there is a clustering transition where the
configuration space splits into many disconnected clus-
ters without further structure28 and the phase diagram is
computed in full detail.

To further check the consistency of the small cage ex-
pansion, it is interesting to estimate the Lindemann ratio
in the glass phase when 2d��d ln d. The Lindemann
ratio L for a given solid phase is the ratio between the
typical amplitude of vibrations around the equilibrium
positions and the mean interparticle distance. In our
framework it can be defined as

L � �1/d�A . �63�

Using �Â=d�A /D�1/ �̂� �ln d�−1 as derived in Sec.
VI.D, and 2d�=�Vd�D��d ln d, one has

L � 1/��d ln d� � 1, �64�

which is consistent with the assumption that vibrations
are small.

We can compare our prediction for the glass close
packing �GCP�2−dd ln d with the best available bounds
on the density of crystalline packings. A classical lower
bound for the close packing density is the Minkowsky
bound, ��2−d. It has been improved by Ball �1992�
where, for the case of lattice packings, it is proved that
��2d2−d �see also Krivelevich et al. �2004� where a pro-
cedure to construct packings achieving this bound has
been discussed�. The best currently known upper bound
is reported by Kabatiansky and Levensthein �1978� and
has the asymptotic scaling ��2−0.5990. . .d Our result for
�GCP lies between these bounds �it is only a factor ln d
better than the lower bound� so we cannot give an an-
swer to the question whether the densest packings of
hard spheres in large d are amorphous or crystalline.
Hopefully better bounds on the density of crystalline
packings will address this question in the future. The
values of densities of crystalline laminated lattices �Con-
way and Sloane, 1993� up to d=50 seem to suggest that
there are lattices where 2d� grows exponentially in d. It
is, however, quite possible that this is a preasymptotic
effect �see Parisi �2008� for detailed discussion�. It would
be interesting to find the density of laminated lattices in
larger dimensions. Finally, it is worth noting that
Torquato and Stillinger �2006b� proposed that it is pos-

sible to achieve packings having density exponentially
higher than the Minkowsky lower bound and actually
very close to the upper bound cited above. Trying to
prove �or disprove� this conjecture is a challenge for fu-
ture research.

VII. FINITE DIMENSION: FIRST ORDER IN THE SMALL
CAGE EXPANSION

In this section we discuss the simplest approximation
that works well in finite dimension, namely, a first-order
expansion in the cage radius �A. Despite its simplicity,
we see that it is able to reproduce many of the available
numerical data with good accuracy. Its main drawback is
that it does not allow us to access the clustering transi-
tion nor the full shape of g�r� in the glass phase. In Sec.
VIII, we discuss different ways to try to improve over
this approximation.

A. First-order replicated free energy

We focus on the first correction in the expansion of
Eq. �40� in powers of �A. Then, we can neglect all n
�3-body potentials that give contributions O�A� �see
Appendix B�. Moreover, at fixed m the two-body poten-
tial is O��A� and we can treat it as a perturbation. Note
that in the limit m→0 this is not true, as in fact the
expansion parameter is A /m and not A. However, we
are interested in the limit m→0 with A=�m. Taking the
limit m→0 of the first-order term in �A will then give
the first-order term in ��.

1. The small cage expansion

Taking into account only the two-body potential, Eq.
�40� reduces to Eq. �39�, where

− �Feff�� ;�eff�r�� = N−1S†� ;��r��1 + Q�r��‡ , �65�

where S�� ;b�r�� is the entropy functional �32� for a non-
replicated liquid with interaction b�r�=e−�eff�r�. It is easy
to show, using standard liquid theory �Hansen and Mc-
Donald, 1986�, that for a translationally invariant system

1

N


S��,b�r��

 ln b�r�

=
�

2
g�r� , �66�

where g�r� is the pair distribution function of the liquid.
Using this relation to expand Eq. �65� for small Q�r� and
calling S���=N−1S�� ;��r�� the entropy of the nonrepli-
cated hard sphere liquid, the first-order expression for
the entropy is obtained from Eq. �40�,

S�m,� ;A� = N−1S���x̄�,�̄�x̄, ȳ��

= Sharm�m,A� + S��� +
�

2
� drg�r�Q�r� .

�67�

28In replica jargon this corresponds to a 1RSB solution. Un-
fortunately we cannot study the instability of this solution to-
ward more complicated replica symmetry-breaking solutions.
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To compute the correlation function of the glass, we
start from Eq. �B12�; we use Eq. �67� substituting �
→�e−� and we get

�2

2
gG�x,y� =

�2

2
g�x,y� +

�2

2 � dud�

g�u,��


 ln ��x,y�
Q�u,�� ,

�68�

and using Eq. �D9� of Appendix D,


g�u,��

 ln ��x,y�

= g�x,y�
�x − u�
�y − �� + �other terms�

�69�

�where the other terms contain basically the connected
four-point function�, we get

gG�r� = g�r��1 + Q�r�� + �other terms� , �70�

which is the result already obtained for Parisi and Zam-
poni �2005� in a completely different way. One can argue
that the contribution of the other terms is negligible for
r�D; therefore Eq. �70� allows us to access the shape of
the contact peak in gG�r�.

If �A�D, we can assume that the function g�r� is
essentially constant29 on the scale �A, g�r��g�D���r� for
r−D�O��A�. Then we have

� drg�r�Q�r� � g�D� � dr��r�Q�r�

� g�D�Vd�D�Gm�A� �71�

and

S�m,� ;A� = Sharm�m,A� + S��� + g�D�2d−1�Gm�A� ,

�72�

which resembles the expression for the Baxter model in
d→� �Eq. �50�� except for the factor g�D� in front of the
last term. The expansion in powers of �A is easily ob-
tained from Eq. �C23� in Appendix C,

S�m,� ;A� = Sharm�m,A� + S���

+ 2d�g�D�
d�A

D
Q0�m� . �73�

This result has been obtained by Parisi and Zamponi
�2005, 2006a�.

2. Optimization with respect to the cage radius

We finally have to optimize with respect to A in Eq.
�73� to get the free energy at the minimum. Note that
the derivative of Eq. �73� is a linear function of �A,
therefore it always allows a solution independently of
the values of � and m. Therefore investigating the dy-

namic transition, i.e., the point at which the solution for
A disappears, is not possible within this approximation.
This is because the function Fm�A� has a shape similar to
the one in Fig. 12: if we expand it for small A and keep
only the leading �A term, we lose the maximum in Fig.
12 and are left with a continuously increasing function.
Therefore the equation Fm�A�=const will have the solu-
tion for all values of the constant, i.e., of the density.

Keeping this in mind, we obtain for the replicated free
energy

S�m,�� = S��� −
d

2
�1 − m�ln�2�A*�

−
d

2
�m − 1 − ln m� ,

�74�

�A*�m� =
1 − m

Q0�m�
D

�Vd�D�g�D�
=

1 − m

Q0�m�
D

2d�Y���
,

where30 Y����g�D�. Applying Eq. �6� we get

s*�m,�� =
�S�m,��

�m
=

d

2
ln�2�A*�m��

+ d�1 − m�
Q0��m�
Q0�m�

+
d

2

m + 1

m
,

�75�
��m,�� = S�m,�� − ms*�m,��

= S��� −
d

2
ln�2�A*�m��

− dm�1 − m�
Q0��m�
Q0�m�

+
d

2
ln m − dm .

The important remark is that the only input in the ex-
pressions above is the entropy of the liquid S���; the
only other quantity is Y��� appearing in A*�m� �see Eq.
�74��, but the latter is related to S��� by the general re-
lation

p �
�P

�
= 1 + 2d−1�g�D� = − �

dS���
d�

, �76�

where p is the reduced pressure.
Given S���, the density �GCP is the solution of �j���

=limm→0 ��m ,��=0; using Eq. �75� and the asymptotic

behavior of Q0�m���� /4m �see Appendix C�, we ob-
tain the condition

�j��� = lim
m→0

��m,�� = S��� − d ln� �8

2d�Y���
� +

d

2
= 0,

�77�

while the Kauzmann density is the solution of �eq���
=��1,��=0, which gives the condition

29In fact this assumption is false: it will turn out at the end of
the computation that �A /D�0.01 but on this scale g�r� still
has structure close to contact. However, this assumption gives
consistently the first order in the small cage expansion.

30The reason for this notation is that y�r�=e��r�g�r� is continu-
ous in r=D �Hansen and McDonald, 1986� and Y���=y�D�
=g�D�.
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�eq��� = S��� − d ln� �2�

2dQ0�Y���
� = 0, �78�

with Q0�−Q0��m=1�=0.638. . . .
As Q0�m��m−1/2 for m→0, from the second equation

in Eq. �74� one can show that in the limit m→0, A�m,
and the first equation in Eq. �75� shows that the vibra-
tional entropy and the pressure both diverge. This is
consistent with the identification of the limit m→0 and
the jamming limit, as discussed in Sec. VI.D.

It has been shown by Parisi and Zamponi �2005,
2006a� that these first-order expressions already give
quantitative predictions that are in good agreement with
numerical simulations. In the following we review these
results.

B. Equation of state of the glass and complexity of the liquid

Once an equation of state for the liquid is given, Eq.
�75� give access to the phase diagram except for the dy-
namic transition. In this section we discuss the results in
different space dimensions.

1. d=1

In dimension d=1 we do not expect any glass transi-
tion. Indeed, the particles are always in a “state”: apart
from the trivial symmetries �permutations and global
translations�, they vibrate around the “configuration”
x1�x2� ¯ �xN. The packing fraction is �=�D. The di-
ameter of the cages is given by 2R=D�1−�� /�, and it is
easy to show that the distribution of the cage radii is
exponential. Therefore in this case we expect our Gauss-
ian approximation to be very inaccurate.

The entropy can be computed exactly and is given by
S���=1+ln�2R�=1−ln�� /D�+ln�1−��. The value of the
correlation function at contact is Y���=1/ �1−�� and di-
verges at close packing �=1.

In our approach, as there is only one state, we expect
to have Zm=exp�mNS����, then S�m ,��=−N−1 ln Zm

=−mS���, and s*���=−�mS�m ,��=S���, i.e., the vibra-
tional entropy is equal to the total entropy and the com-
plexity is �=0. Indeed, substituting the expressions
above for S��� and Y��� in Eq. �75� we easily find

2�A*�1� = D
1

0.638
1 − �

�
,

�79�

s*��� =
1
2

ln�2�A*�1��

= ln
�2�

2�0.638�
− ln��/D� + ln�1 − �� .

Thus the theory reproduces the exact result apart from a
�small� constant shift of the entropy �corresponding to a
multiplicative factor in front of the cage radius�. This is
probably due to the Gaussian approximation, which is
clearly wrong as the distribution of the cage is exponen-
tial, and to the small cage approximation. Indeed, for

��1, where the cages are small, the leading term of the
entropy is correctly reproduced by the expressions
above.

2. d=2

In dimension d=2 we can use either the Henderson
expression for Y��� �Henderson, 1975�,

YH��� =
1 − 7�/16

�1 − ��2 , �80�

or the improved expression of Luding �2001�,

YL��� = YH��� − �3/27�1 − ��4, �81�

with small quantitative differences. In the first case we
find31 �K=0.816 and �GCP=0.874, while in the second we
find �K=0.811 and �GCP=0.873.

Note that in d=2 the existence of an ideal glass
transition has recently been the object of an intense de-
bate �Santen and Krauth, 2000, 2001; Brumer and
Reichman, 2004; Donev et al., 2006; Tarzia, 2007�. In
fact, amorphous packings of monodisperse two-
dimensional spheres are particularly unstable �Brito and
Wyart, 2006�. For this reason, in the following we focus
on d�3.

3. dÐ3

In d=3 we used the Carnahan-Starling expression
�Hansen and McDonald, 1986� for the entropy S���,
which reproduces very well the numerical data for the
equation of state of the hard sphere liquid. In d�3 the
Carnahan-Starling equation of state can be generalized
to �Song et al., 1989�,

Y��� =
�1 − ���
�1 − ��d ,

�82�
� = d − 2d−1�B3/b2� ,

where Y���=g�D� is the value of the radial distribution
function at contact and b and B3 are the second and
third virial coefficients, whose exact expression is known
�Song et al., 1989�. The entropy of the liquid S��� is ob-
tained by integrating the exact expression �76�. In d=4
this equation is not very accurate �see Fig. 15� and an
equation of state based on Padé approximants �Bishop
and Whitlock, 2005� seems more accurate �see Fig. 1�.
Still the error is not so large and for simplicity in the
analytic computations we use the Carnahan-Starling ap-
proximation for all d�3.

Using this expression for S���, Eqs. �77� and �78� can
be easy solved numerically to get the values of �GCP and
�K for any given value of d. The results are reported in
Table III for d�8 and compared with �MRJ as reported

31Note that Zamponi �2007� erroneously stated that in d=2
the present method predicts the absence of a glass transition.
We thank F. Caltagirone for pointing out the error and provid-
ing the correct values of �K and �GCP.
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by Skoge et al. �2006�. The latter quantity is the density
of the maximally random �according to some measure of
“order”� collectively jammed packings of the system �see
Torquato et al. �2000� for the precise definition; it is es-
timated by Skoge et al. �2006� by the jamming density
�j��� for finite but small �, see Sec. IV of Skoge et al.
�2006� for detailed discussion�. As �j��� is expected to
increase on decreasing � and �GCP=lim�→0 �j��� �see
Fig. 2�, it follows that �MRJ, as estimated by Skoge et al.
�2006� should be strictly lower than �GCP, but close to it
consistently with the data in Table III. A plot of �K and
�GCP for d up to 19 is shown in Fig. 13. Note that it has
been suggested by Skoge et al., �2006� that 2d�MRJ�c1
+c2d and indeed, given that the compression rates used
in numerical simulation are not very small, �MRJ should
be quite close to �th, which scales as d /2d �see Eq. �56��.
Recalling that 2d�K ,2d�GCP�d ln d, we expect that at

some point �MRJ will become smaller than �K even if
this is not observed for d�6.

The very nice data for d=4 reported by Skoge et al.
�2006� and shown in Fig. 1 allow for a more precise com-
parison of the numerical and theoretical results: the
value of �j��� has been measured for five different val-
ues of �=10−3, 10−4, 10−5, 10−6, and 10−7 �see Fig. 2�. A
standard procedure to extrapolate to �→0 is to fit the
data to a Vogel-Fulcher law,

���j� = �010−D/��GCP−�j� ⇔ �j��� = �GCP +
D

log10��/�0�
.

Such extrapolations are often ambiguous; however, the
fit is good �see Fig. 2� and gives �GCP=0.473. A similar
extrapolation of �g��� �defined roughly as the point
where the curves in Fig. 1 leave the liquid equation of
state� to �=0 gives �K=0.409. The final results differ by
�10% from the theoretical values �see Table III�. This is
a very good result given the ambiguities that are present
both in the numerical data �numerical error and ex-
trapolation� and in the theory �the choice of a particular
expression for the equation of state of the liquid that is
not exact and the small cage expansion�. Note that a
similar extrapolation is not possible in d�4 due to crys-
tallization and for d�4 due to lack of numerical data.
Hopefully new data for d�4 will also allow for a similar
comparison in this case.

In Figs. 14 and 15 we report the inverse reduced pres-
sure as a function of the packing fraction for d=3 and
d=4. We plot the numerical data of Skoge et al. �2006�
reproduced in Fig. 1, and we choose two among the
smallest compression rates available. We see that the
numerical data are far from the ideal glass pressure and
are better described by metastable glassy states corre-
sponding to a complexity ��1. Indeed, it is well known
from numerical simulations of structural glass formers
that the system falls out of equilibrium when ��1. The
overall agreement of the theoretical predictions with the
data of Skoge et al. �2006� is very good.

TABLE III. Values of �K and �GCP from the first-order small cage expansion of Sec. VII �only values
for d�8 are reported for brevity; values for d�8 are in Fig. 13� compared with the available nu-
merically measured values of �J �O’Hern et al., 2003; Xu et al., 2005; Schreck and O’Hern, 2008� and
�MRJ �Skoge et al., 2006�. The last two columns give the values of �K and �GCP extrapolated from the
fits of the data of Skoge et al. �2006� shown in Fig. 2. The large-d scaling of �MRJ has been conjectured
by Skoge et al. �2006�.

d �K �theory� �GCP �theory� �J �num.� �MRJ �num.� �K �extr.� �GCP �extr.�

2 0.8165 0.8745
3 0.6175 0.6836 0.640 0.64
4 0.4319 0.4869 0.452 0.46 0.409 0.473
5 0.2894 0.3307 0.31
6 0.1883 0.2182 0.20
7 0.1194 0.1402
8 0.0739 0.0877
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FIG. 13. �Color online� Plot of �K �open squares, obtained
solving Eq. �78��, �GCP �full diamonds, Eq. �77��, and �MRJ �full
circles, numerical estimate of Skoge et al., 2006� as a function
of the dimension. Both �K and �GCP scale as 2d��d ln d for
large d, while their distance scales as 2d��GCP−�K��d. In the
inset the same plot for 3�d�6 �compare with Fig. 6 of Skoge
et al., 2006�.
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Finally, in Fig. 16 we show the equilibrium complexity
�eq���=��1,�� as a function of �. Numerical data from
Speedy �1998� and Angelani and Foffi �2007� are avail-
able, and the agreement is again very good.

C. Scaling close to jamming

In this section we derive asymptotic relations for the
behavior of the glassy states at �→�j. This is interesting
because close to �j the correlation function shows inter-

esting features that have been studied in detail numeri-
cally �see Sec. II.D�.

1. Scaling of the pressure

First we compute the scaling of the pressure close to
�j. It is convenient to recall the procedure already dis-
cussed in Sec. III.A.3. To each group of glassy states of
jamming density �j we can associate a complexity �j
given by Eq. �77�. Then one has to solve Eq. �9� to ob-
tain m�� ,�j� or equivalently m�� ,�j�. The function
m�� ,�j� represents a group of glassy states in the �m ,��
plane of Fig. 6, left panel. Once substituted into Eq. �75�,
it gives the entropy of the states32 labeled by �j as a
function of �.

We are interested in the equation of state of these
states close to m=0 or �=�j. Then we need to compute
m�� ,�j� at first order in �j−�. To this aim we have to
linearize ��m ,��−�j��j� at first order in m and �j−�;
after some computation �see Appendix E� we get

��m,�� − �j��j� � − �S���j� + d
Y���j�
Y��j�

+
d

�j
���j − ��

− dm , �83�

which gives, expressing S���� in terms of Y��� by means
of Eq. �76�,

m��,�j� =
1

d
�2d−1Y��j� − d

Y���j�
Y��j�

+
1 − d

�j
���j − ��

� ���j���j − �� . �84�

The latter result must be substituted into s*�m ,�� to get
the behavior close to �j. It is easy to see from Eqs. �75�

32We recall that the case �j=0 corresponds to the ideal glass.
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FIG. 14. �Color online� Equation of state in d=3 using the Carnahan-Starling equation of state to describe the liquid and in the
small cage approximation �Sec. VII�. �Left� �m ,�� phase diagram �compare with Fig. 6�. The line ms��� �dot-dash-dashed line�
separates the liquid and glass regions. The glass transition density is defined by ms��K�=1 and the glass close-packing density by
ms��GCP�=0: we find �K=0.62 and �GCP=0.68. The dot-dashed line refers here to a metastable glassy state defined by ��m ,��
=�j �here we chose �j=1.2� with jamming density �j=0.659. �Right� Inverse reduced pressure as a function of density. Full line is
the CS equation of state; dot-dash-dashed line is the ideal glass; dot-dashed line is the same metastable glass of left panel. Data
from Rintoul and Torquato �1996� �full circles� and more recent ones from Skoge et al. �2006� �dashed black line, same data as in
Fig. 1, left, for �=64�10−6� are shown for comparison.
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FIG. 15. �Color online� Inverse reduced pressure as a function
of density in d=4 using the Carnahan-Starling equation of
state �full line� to describe the liquid and in the small cage
approximation �Sec. VII�. Data from Skoge et al. �2006� �black
dashed line, same data as in Fig. 1, right, for �=10−6� and from
van Meel et al. �2009� are reported for comparison. The re-
ported metastable glass �dot-dashed line� corresponds to �j
=1.44 and has a jamming density �j=0.467. In this case the
Carnahan-Starling equation is less accurate; nevertheless, the
overall quantitative agreement is still good. The ideal glass
branch is reported as a dot-dash-dashed line.
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that for m→0, s*�m ,���d�1−m�ln m; therefore,

s��,�j� � d ln��j − �� − d���j���j − ��ln��j − �� + ¯

�85�

close to �j, and the �reduced� pressure diverges as

p��,�j� = − �
�s��,�j�

��
�

d�j

�j − �
− d�j���j�ln��j − ��

+ ¯ . �86�

It is important to remark that the corrections to the
leading order are quite large �logarithmically divergent�,
as observed in numerical simulations �Skoge et al., 2006�.

2. Correlation function

The most interesting results on the scaling close to �j
are obtained by investigating the pair-correlation func-
tion of the spheres in the glass state. At first order we
obtained Eq. �70�; the first term describes the delta peak,
while the other terms do not contribute close to r=D. It
would be interesting to evaluate them, but this seems a
complicated task �see Appendix D for a complete list of
these terms�. Here we focus on the first term. We then
study the asymptotic behavior of Q�r� in the jamming
limit. This is done in Appendix C.3, and the result is

gG�r� = g�r��1 + Q�r�� = g�r��1 +
1

m
�m� r − D

�4mA
�� ,

�87�

where g�r� is the �extrapolated� correlation function of
the liquid at the same density, and m=m�� ,�j�, A
=A*„m�� ,�j�…; the function �m�t� is defined in Eq. �C38�
and shown in Fig. 25.

The function �m�t� gives the leading contribution to
gG�r� close to contact, which comes from neighboring
particles that are in contact with the reference particle
exactly at �j. This contribution is nonvanishing only for

r−D �A���j−� and becomes a delta peak at �j.
Other corrections are encoded in the remaining terms in
Eq. �70� or are missed by the first-order small cage ex-
pansion. A first consequence of this fact is that the inte-
gral of gG�r�−1 does not vanish at �=�j as it should,
being proportional to the compressibility. A second con-
sequence of our approximations is that Eq. �76� is not
satisfied: this is because from Eq. �87�, for �→�j

gG�D� = Y��j��1 + Q�D�� �
Y��j�

m
=

Y��j�
���j���j − ��

�88�

and therefore

1 + 2d−1�gG�D� �
2d−1�jY��j�

���j���j − ��
�

d�j

�j − �
= p��,�j� .

�89�

This is not a surprise since Eq. �76� is violated in most of
the approximate theories for the liquid phase �Hansen
and McDonald, 1986�. Note, however, that the differ-
ence is not so large because the first term in ���j�, given
by Eq. �84�, dominates as Y��� is quite large ��20� in
the density range of interest.

Using again m�� ,�j�=���j���j−�� and the expression
of A*�m� we get from Eq. �87� close to �j

gG�r�
gG�D�

� �0� �r − D���2d�jY��j�
D���j���j − ��

�
= �0���

2
r − D

D
�1 + 2d−1�gG�D���

= �0���

2
�� , �90�

having defined the variable �= �r−D��1
+2d−1�gG�D�� /D��r−D�p /D �the last equality holds
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FIG. 16. �Color online� Equilibrium complexity �eq��� as a
function of � in d=3 using the Carnahan-Starling equation of
state in the small cage expansion �Sec. VII�. The prediction is
compared with data from Speedy �1998� and Angelani and
Foffi �2007�.
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FIG. 17. �Color online� Scaling limit of the delta peak. Nu-
merical data, reproduced from Donev et al. �2005a�, refer to a
packing �j�0.64 and �j−��10−12. gG�r� /gG�D� is plotted vs
�= �r−D�p /D. The full line is the theoretical prediction �90�.
Compare with Fig. 9 for a similar result obtained in the HNC
approximation.

821Giorgio Parisi and Francesco Zamponi: Mean-field theory of hard sphere glasses and …

Rev. Mod. Phys., Vol. 82, No. 1, January–March 2010



only if Eq. �76� holds�. Note that the same scaling of the
delta peak was already predicted in the HNC approxi-
mation �see Fig. 9�; thus it is a robust feature that
emerges from the replica method independently of the
approximations.

This scaling form of the delta peak of gG�r� close to
jamming has been observed numerically by Donev et al.

�2005a�. In Fig. 17 we show numerical data from Donev
et al. �2005a� on the delta-peak contribution for a pack-
ing in d=3 with �j�0.64 and �j−��10−12. We see that
our result, given by Eq. �90� for �j=0.64, is in excellent
agreement with the numerical data.

In summary, from Eq. �87� and Appendix C.3, we get
the following scaling for the delta peak of gG�r�

gG�r� � �
1

�j − �
, r − D � �j − � , � � 1

1

��j − ���2 �
�j − �

�r − D�2 , �j − � � r − D � ��j − � , � � 1/��j − �

exp�− �r − D�2/��j − ���, r − D � ��j − � , � � 1/��j − � ,
� �91�

where the last line comes from the cutoff on the function
�m�t� at finite m �see Appendix C.3�.

In numerical simulations a �r−D�−� divergence of
gG�r� close to D is observed, with ��0.5. This leads to a
difference with respect to Eq. �91�, with the �r−D�−2 re-
gime extending only up to r−D���j−��2/3. This feature
is not present in our calculation; this discrepancy de-
serves further investigation.

3. Number of contacts

The interpretation of Eq. �91� is that for �→�j there
is a shell of width �j−� around a given particle where
the probability of finding other particles is very high.
These particles become neighbors of the particle in the
origin at �=�j, and their number is finite as the integral
of gG�r� on this shell is finite.

There is, however, a second shell �j−��r−D
���j−� where the probability of finding particles is
very high. The integral of gG�r� over this shell is of 1 so
also in this shell there is a finite number of particles that
will become neighbors of the particle in the origin.

The integral of gG�r� on a shell D�r�D+O���j−��
then gives the number of contacts for �→�j,

z = 	d�Dd−1g�D��
D

D+O��A�
dr�1 + Q�r�� . �92�

Recall that in the expression above, as everywhere in
the paper, g�D�=Y��� is the contact value of the liquid
correlation, which is finite; this should not be confused
with gG�D� which diverges at jamming. For �j−� finite
but small this number can be interpreted as the number
of particles that collide with the particle in the origin
during a finite but long time � �Brito and Wyart, 2006�.

Remarkably, the integral of the second term in Eq.
�92� can be computed exactly using Eq. �C39�; since the
function �m�t� contains an exponential cutoff at r−D

��A �see Fig. 25�, the upper integration limit can be
extended up to � and we obtain

	d�Dd−1g�D��
D

�

drQ�r� = 2d�1 − m� , �93�

i.e., z=2d for �=�j. Close to �j there is a correction 
z
�m��j−� coming from the equation above plus a sec-
ond correction 
z���j−� coming from the integral of 1
in Eq. �92�. The second correction dominates, then we
have

z = 2d + O���j − �� �94�

as found by Brito and Wyart �2006�. We can try to give a
quantitative estimate of the coefficient by observing that
the function �m�t� starts to drop exponentially at t=�m
and drops to 0 for t=��m with � close to 2. Clearly the
upper limit of integration � plays the role of a fitting
parameter, however, the value �=2 is reasonable from
Fig. 25, given also the uncertainty involved in the nu-
merical estimate. Thus we assume that the integral is
done up to r=D+2�A and we have

z = 2d + 	d�Dd−1g�D�2�A

= 2d + 2	d�Dd−1g�D�
1 − m

Qm

D

�Vd�D�g�D�

= 2d + 2d
1 − m

Qm
� 2d + 2d�4m

�

= 2d + 2d�4���j�
�

��j − � . �95�

The result is compared with numerical data in Fig. 18.
The value of ���j� is given in Eq. �84�. Despite the good
agreement, note that the square-root growth of 
z was
attributed by Brito and Wyart �2006� to the square-root
singularity of gG�r�, which is a different mechanism from
the one discussed above.
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4. Force distribution

Donev et al. �2005a� investigated the force distribution
of dense amorphous packings generated by using the
Lubachevsky-Stillinger algorithm in d=3. The interpar-
ticle forces are defined in this way: one takes a packing
of density �j, slightly reduces the density, and measures
the average momentum exchanged by two neighboring
particles over a large time t. Note that on very large
times and if the volume is large enough the packing will
be unstable and relax toward a more compact structure
�either at �GCP or at �fcc� �see Fig. 5 of Donev et al.
�2005a��. However, before this happens there is enough
time to measure the forces with sufficient accuracy.

The interparticle forces are then normalized such that
	f
=1 and the distribution P�f� is investigated. The
theory of Donev et al. �2005a� relates this quantity to the
shape of the delta peak close to contact �Fig. 17� by the
relation

gG���
gG�D�

= �
0

�

df fP�f�e−�f, �96�

where �= �r /D−1�p as in the previous sections. The pre-
vious equation expresses the fact that for small interpar-
ticle separation the gap h�1/ f, as discussed also by
Brito and Wyart �2006�. Equations �90� and �C40� give

gG���
gG�D�

= �0���

2
�� = 2�

0

�

dy ye−y2−���y

=
2

�
�

0

�

df fe−f2/�−�f �97�

and finally

P�f� =
2

�
e−f2/�. �98�

In Fig. 19 we see that this form reproduces well the nu-
merical data for large forces. The discrepancy at small
forces can be explained by �i� the fact that the small f
behavior of P�f� is related to the large � behavior of

gG���, and as discussed above in the large � region there
are corrections to gG��� that we are missing; and �ii� a
possible finite-size effect �indeed it seems that the data
for larger samples are in better agreement with the
theory�.

We stress again that here we focused only on the re-
sults of Donev et al. �2005a� that refer to packings pro-
duced using slow compressions; these should be related
to the infinite pressure glassy states that are the object of
this paper. Interestingly, similar results for P�f� have
been obtained by Snoeijer, Vlugt, Ellenbroek, et al.
�2004� and Snoeijer, Vlugt, van Hecke, et al. �2004� by
using an ensemble approach for the force network based
on Gaussian random matrices. O’Hern et al. �2002�
found a Gaussian tail in P�f� for packings close to the J
point; moreover, it has been shown that finite-size fluc-
tuations of the jamming density can introduce self-
averaging problems when averaging over many configu-
rations that in turn produce exponential tails in P�f�.
Therefore some care should be taken when comparing
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FIG. 18. �Color online� Number of contacts from Eq. �95�. �Left� Data from Donev et al. �2005a� in d=3 and �j�0.64. We have
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our prediction of a Gaussian shape of P�f� with numeri-
cal data. Moreover, the force distribution has been stud-
ied in great detail for packings of frictional spheres pro-
duced using different protocols and seems to depend
strongly on the protocol used. As discussed in the Intro-
duction, covering the relevant literature here is impos-
sible. In particular, friction strongly affects the force net-
work and is expected to have a dramatic effect on P�f�.

VIII. BEYOND FIRST ORDER IN THE SMALL CAGE
EXPANSION

In order to improve over the first-order expansion,
one could try to perform a second-order �and third, etc.�
expansion systematically. However, the convergence of
this procedure is not clear, and, moreover, the calcula-
tion of higher-order corrections becomes increasingly
difficult and is already difficult at second order. Follow-
ing the tradition of theoretical physics, we then try to
use resummation techniques for our expansion. Unfor-
tunately, the results presented here are not satisfactory,
but still we believe that they are interesting since they
illustrate a possible direction one can follow to improve
the theory. We believe that a more accurate treatment of
the resummation we discuss could indeed lead to much
better results.

The simple resummation we discuss in this section has
the advantage of being fully analytically solvable but un-
fortunately gives inconsistent results for the thermody-
namics of the ideal glass. The main idea is to fully ex-
ploit the resummation discussed in Sec. V, which has
been particularly useful to solve the model in the limit
d→�. Note that the small cage expansion of Sec. VII
does not give access to the pair-correlation function of
glass, which is one of the most interesting quantities to
compute �see Sec. II.D�. The advantage of the resumma-
tion we discuss here is that it allows, by finding a good
approximation to compute the properties of the effec-
tive liquid, a full computation of the correlation function
of the glass.

A. Percus-Yevick approximation for the Baxter model

To resum a class of terms in the small cage expansion
we start from Eq. �39�, i.e., we neglect all n�3-body
potentials but try to treat the two-body one as exactly as
possible. Then we have to compute the entropy of a
liquid with a hard-core repulsion and a small tail given
by �eff�r�=−ln�1+Q�r��. The tail is attractive for m�1
and repulsive for m�1 �see Fig. 11�.

The advantage of this formulation is that the correla-
tion function of the glass is simply

gG�r� = −
2

�
�
S†�,��r�e−��r��1 + Q�r��‡

d��r�
�

�=0
= geff�r� ,

�99�

where geff�r� is the pair correlation of the liquid with the
effective potential �eff. Therefore gG�r�, the correlation
of the glass, turns out to be equal to the correlation

function of the effective liquid and then automatically
has many of the reasonable properties of a correlation
function for hard particles �e.g., it is positive, it vanishes
inside the hard core, the structure factor is positive, etc.�.
We can use different approximation schemes �Percus-
Yevick �PY�, HNC, etc.� to compute the free energy and
correlation function of the effective liquid.

To further simplify the problem, we observe that in
the limit m→0 the cage radius vanishes and the strength
of the attractive part of the potential diverges. Then we
can approximate Q�r� with a delta function as in Eq. �45�
and the effective liquid becomes a Baxter model. Note
that the approximation �45� strictly holds only for m
→0, where A→0. However, it might be reasonable for
any m�1, as in this case the interaction is attractive and
its range is anyway much smaller than the hard-core di-
ameter. We run into problems, however, for m�1, as in
this case the interaction is repulsive and cannot be de-
scribed by Eq. �45�. Therefore in the following discus-
sion we always assume that m�1.33

Following the notation of Baxter �1968� we have

e−�eff�r� = ��r��1 + Q�r�� → ��r��1 +
4�D

12�

�r − D�� .

�100�

Comparing this with Eq. �C4�, we see that in d=3 the
effective liquid is finally reduced to a Baxter model at
the same density � and of interaction strength �
=1/4Gm�A�.

1. Free energy and the equation for A

Remarkably, the Percus-Yevick approximation for the
Baxter model has been solved exactly in d=3 �Baxter,
1968�: an analytical expression for the free energy has
been given in Eqs. �2.5� and �2.7� of Tejero and Baus
�1993�, while the correlation function can be computed
using the method of Wertheim �1963�.

The function ��m ,A� can be computed in d=3 by nu-
merical integration of Eqs. �C4� and �C17�. Then we get
an analytical �although complicated� expression for
S�m ,� ;A�,

S�m,� ;A� = Sharm�m,A� + 1 − ln
6�

�

− ���,
1

4Gm�A�� , �101�

where ��� ,�� is given in Eq. �2.7� of Tejero and Baus
�1993�. The equation for A reads, using the definition of
Appendix C.1,

33For m�1 the strength of the interaction is always finite
�and much smaller than for m�1�. In this case it seems
reasonable to use the first-order approximation derived
previously.

824 Giorgio Parisi and Francesco Zamponi: Mean-field theory of hard sphere glasses and …

Rev. Mod. Phys., Vol. 82, No. 1, January–March 2010



1 = −
8
3

d�

d�−1��,
1

4Gm�A��Fm�A� , �102�

and it has to be solved numerically for generic m, �.
However, some simplifications are possible. First, for

m→1 we have Gm�A�→0 and �→�. It is possible to
show that

SPY��� = 1 − ln
6�

�
− lim

�→�
���,�� ,

�103�

lim
�→�

����,��
��−1 = − �YPY��� .

Therefore the equation for A becomes

1 = 8
3�YPY���F1�A� . �104�

In the jamming limit m→0, A=�m, Gm�A�→G0���
that can be computed easily �see Eq. �C34��. Using Eq.
�C35� the equation for � is

1 = −
8
3

d�

d�−1��,
1

4G0����F0��� . �105�

The expression for the complexity can be simplified
similarly.

2. Results

Unfortunately, the results of the Baxter resummation
are poor in d=3. The main problem is that the static
value of m, ms��� is not a decreasing function of �. This
is inconsistent since it would imply that the ideal glass
state has smaller density than the liquid state at �=�K.
On the contrary, the behavior of the line md��� is rea-
sonable even if the value of the transition at m=1, �d
=0.418, is exceedingly smaller than the conjectured one,
�d�0.58. For these reasons the phase diagram in this
approximation seems unreliable �Fig. 20�.

More interesting is the result for the pair-correlation
function. Indeed, the pair-correlation function of the
Baxter liquid shows many characteristic features which
are observed in jammed packings of hard spheres, as
discussed by Miller and Frenkel �2004b�. The most inter-
esting among them are the peak at r /D=�3 and the
jump in r /D=2 which have been observed by Donev et
al. �2005a� for random jammed packings of monodis-
perse spheres. Unfortunately, the values of � that come
from the analysis above seem to be too high for these
features to be present in the gG�r� with the correct order
of magnitude so that a quantitative comparison with nu-
merical simulations seems to be impossible at this stage.

Note also that the g�r� of the Baxter liquid is charac-
terized by a delta peak at contact �due to the adhesive
potential�. From the amplitude of the latter peak, which
is analytically known in the Percus-Yevick solution �Bax-
ter, 1968�, we can compute a number of neighbors as a
function of density. The result is similar to what is ex-
pected: the number of neighbors increases from 0 to z
�6=2d, i.e., an isostatic packing �Fig. 20�. However, the
upper part of the curve corresponds to negative com-
plexity so that the corresponding packings do not exist.

B. Discussion

This particular simple resummation scheme seems un-
able to correctly describe the glassy states of hard
spheres. However, the idea of resumming all terms cor-
responding to the two-body interaction seems promising
as the resulting gG�r� shows some features that are ob-
served in real packings and the behavior of the delta
peak �number of contacts� is correct.

It is possible that three- �and more� body interactions
play a major role, however, it would be worth trying to
keep only the simplest two-body interactions and use
more refined equations for the effective liquid. For in-
stance, the delta-function approximation for Q�r� might
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FIG. 20. �Color online� The Baxter resummation. �Left� Phase diagram of the Baxter resummation �Sec. VIII�. The dashed line is
the boundary of the region where a solution for A is found. The full and dot-dashed lines are the boundary of the region where
the complexity is positive. �Right� Number of contacts z as a function of density along the line md���. The black dot corresponds
to md���=0. z increases almost linearly from 0 �liquid state� to z�6, the value expected for an amorphous jammed phase. Note,
however, that the upper part of the line corresponds to negative complexity.
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be too rough as �A�0.01 and on this scale the g�r� of
hard spheres has strong variations at least close to con-
tact. One could then try to solve numerically the Percus-
Yevick approximation for the exact potential �eff. Alter-
natively, a more precise equation of state �such as the
one proposed by Miller and Frenkel �2004a�� could be
used for the Baxter model.

One might be worried because of the fact that in the
limit m→0 we do not recover the small cage expansion
results �e.g., the complexity was positive for ��0.68 at
first order in �A while here we always found a negative
��. The reason is that for m→0, the small cage param-
eter is �=A /m and not A. Therefore, even if A→0 in
this limit, the small cage expansion is not recovered be-
cause � remains relatively big.

IX. BINARY MIXTURES

In this section we report the recent extension of the
theory to binary mixtures that was obtained by Biazzo et
al. �2009�. The extension to binary system is important
since in these systems crystallization can be easily
avoided; this allowed us to study their glass transition in
detail �see, e.g., Santen and Krauth �2000�, Foffi et al.
�2003, 2004�, Götze and Voigtmann �2003�, and Donev et
al. �2006� and, in particular, the recent works �Berthier
and Witten, 2009a, 2009b; Hermes and Dijkstra, 2010��.
Jamming of binary mixtures has also been investigated
�see, e.g., Dodds �1975, 1980�, Ouchiyama and Tanaka
�1981�, and O’Hern et al. �2002��. These investigations
allow us to test the prediction of the theory concerning
the variation with composition of packing density, struc-
ture, etc. Details of the computation of the function
S�m ,�� for a general multicomponent mixture, follow-
ing Coluzzi et al. �1999�, can be found from Biazzo et al.
�2009� in the framework of the first-order small cage ap-
proximation. Here we report only the results for a bi-
nary mixture of two types of three-dimensional spheres
�=A ,B in a volume V, with different diameter D� and
density ��=N� /V. We define r=DA /DB�1 the diameter
ratio, x=NA /NB the concentration ratio, �=�AV3�DA�
+�BV3�DB� the packing fraction, and !=�BV3�DB� /�
=1/ �1+xr3� the volume fraction of the small �B� compo-
nent.

As in the monodisperse case, once an equation of
state for the liquid has been chosen, one can obtain for a
given �j the equation of state of the corresponding
metastable glass, as well as its jamming density �j. The
equation of state used by Biazzo et al. �2009� is a gener-
alization of the Carnahan-Starling equation. The theo-
retical results were compared with numerical results ob-
tained from the Lubachevsky-Stillinger algorithm
discussed in Sec. II.A. In Fig. 21 the evolution of the
inverse reduced pressure during compression is shown
for a mixture with x=1 and r=1.4, which has been re-
cently studied �O’Hern et al., 2002; Berthier and Witten,
2009a, 2009b�. Overall, one observes the same behavior
already discussed in the monodisperse case. The curve
�numerical 1� corresponds to a relatively fast compres-

sion ��=10−2�. The curve �numerical 2� has been
obtained starting the compression �at the same compres-
sion rate� from a carefully equilibrated liquid configura-
tion of the same mixture at �=0.58 �see Berthier and
Witten �2009b� for details on how this configuration was
produced and equilibration was checked�. In the latter
case, since the relaxation time of the liquid at that den-
sity is already long compared to the compression rate,
the system falls immediately out of equilibrium and the
pressure increases fast until jamming occurs at a higher
density compared to the previous case. The numerical
equation of state is compared with that of glassy states
corresponding to �j=0.5, 1.2, 1.5. Starting the compres-
sion from a high-density-liquid equilibrium configura-
tion produces a glassy state with lower �j. This is confir-
mation of a prediction of the theory, that different glassy
states jam at different densities. Finally, we report, for
the same system, the numerically extrapolated value of
the reduced pressure p=�P /� at the ideal glass transi-
tion, pK=34.4, obtained by Berthier and Witten �2009b�.
Again, this corresponds well �within 10%� to the com-
puted value pK=31.8 from the theory �see Fig. 21�.

In Fig. 22, the jamming density �j is shown for differ-
ent mixtures, putting together numerical results �Biazzo
et al., 2009�, experimental data �Yerazunis et al., 1965�,
and the theoretical results. The latter have been ob-
tained by fixing �j=1.7 for all mixtures, which gives the
best agreement. Note that a single “fitting” parameter
�j, which is strongly constrained, allows us to describe
different sets of independent numerical and experimen-
tal data. The prediction of the theory is qualitatively
similar to previous ones �Dodds, 1980; Ouchiyama and
Tanaka, 1981�, but the quantitative agreement is much
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FIG. 21. �Color online� Inverse reduced pressure � /�P as a
function of the packing fraction � for a mixture with r=1.4 and
x=1. Numerical data are obtained using two different proto-
cols. In the first, compression is started at low density. In the
second, compression is started from an equilibrated configura-
tion at �=0.58. The equations of state of different metastable
glasses, corresponding to different �j, are reported as dashed
lines. The dot-dashed line is the pressure of the ideal glass,
corresponding to �j=0. A numerical estimate �Berthier and
Witten, 2009b� of the Kauzmann pressure, pK=34.4, is re-
ported as a dotted horizontal line.
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better. Interestingly, a similar qualitative behavior for
�MCT has been predicted by mode-coupling theory �Foffi
et al., 2003; Götze and Voigtmann, 2003�; although there
is no a priori reason why the variation with mixture
composition of �MCT and �j should be related, it is rea-
sonable to expect that they show similar trends �Foffi et
al., 2003�.

The average coordination numbers at �j are denoted
z�"��j�, and it was checked by Biazzo et al. �2009� that
their variations with �j are negligible. They are shown in
Fig. 23 for different mixtures. The numerical values have
been obtained by Biazzo et al. �2009� by removing the
rattlers from the packing. Experimental data from Pin-

son et al. �1998� are also shown on the right panel of Fig.
23. As discussed, the total coordination is close to the
isostatic value z=6, which is the value predicted by the
theory also for binary mixtures �Biazzo et al., 2009�. As
can be seen in Fig. 23, the computed values agree well
with the outcome of the numerical simulation, at least
for r not too large, while some discrepancies are ob-
served in the contacts of the large particles for large r.

X. CONCLUSIONS

This paper is based on the main assumption that
amorphous jammed packings of hard spheres can be
identified with the infinite pressure limit of glassy states.
In addition we assumed that the mean-field scenario for
the glass transition holds also in finite dimension, at least
on the time and length scales that are currently investi-
gated in numerical simulations �and sometimes also in
experiment on colloids and granular systems when the
number of particles is not so large� �Bouchaud and
Biroli, 2004�.

The mean-field picture leads to a nontrivial structure
of the phase diagram, whose main consequence is the
existence of amorphous jammed packings in a range of
densities ��th ,�GCP�. The random close packing density
can be any density within this interval and its precise
value depends on the details of the protocol used to
construct the packings �Krzakala and Kurchan, 2007�.

Based on these assumptions we used the replica
method to compute the properties of these glassy states.
Before concluding we summarize our results and discuss
some possible future developments, including how the
picture is modified in finite-dimensional systems.

A. Summary of our results

We used different approximation schemes for the rep-
licated liquid. The HNC approximation seems to work
well in the moderately dense phase close to �d and �K at
m=1. On the contrary, the small cage approximation
works better in the regime where cages are small,
namely, for m�0 close to the ideal glass line and in large
dimension. In dimension d=3 the mapping of the repli-
cated liquid onto the Baxter adhesive hard sphere model
seems a promising way to obtain a satisfactory descrip-
tion in the phase diagram but for the moment gives poor
quantitative results.

We list here the main results discussed in this paper;
many of them have been compared with numerical re-
sults in the figures.

• We presented a consistent description of the glass
transition for hard spheres in d→�: in particular we
give predictions for the clustering �Eqs. �54� and �56��
and Kauzmann �Eq. �59�� densities. We are able to
compute the correlation function �Eq. �60�� and the
number of contacts �Eq. �62��, which we find equal to
2d at least close to �GCP.

• We computed the Kauzmann and glass close-packing
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FIG. 22. �Color online� Packing fraction �j as a function of !
=1/ �1+xr3� at fixed r. Full symbols are numerical data from
Biazzo et al. �2009�. Open symbols are experimental results
from Yerazunis et al. �1965�. Lines are predictions from theory
obtained fixing �j=1.7. Note that the large r-small ! region
cannot be explored since for asymmetric mixtures the large
spheres form a rigid structure while small spheres are able to
move through the pores and are not jammed �Dodds, 1980;
Ouchiyama and Tanaka, 1981�.
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FIG. 23. �Color online� Partial average coordination numbers
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function of volume fraction of the small particles !=1/ �1
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from Biazzo et al. �2009�. Open symbols are experimental data
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different scale is used for zls.
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densities in any finite dimension in the small cage
expansion �see Table III and Fig. 13�.

• In d=3 we obtain an expression �Eq. �97�� for the
scaling of the contact peak of g�r� close to jamming.
This expression describes well the numerical results
�see Fig. 17�. From this expression it follows that the
distribution of contact forces is Gaussian �see Eq.
�98� and Fig. 19� and that the number of neighbors is
z=2d at jamming �i.e., packings are isostatic� �see
Eq. �95� and Fig. 18�. The form of the scaling func-
tion seems particularly robust as it is found both in
the small cage expansion and in the HNC approxi-
mation.

• We are able to reproduce the equation of state of the
glass for slow compression rates �see Figs. 14 and 15�
and the equilibrium complexity of the liquid �see Fig.
16�.

• In the HNC approximation we have indications for
the development in g�r� of a jump in r=2D and of
long-range correlations; these features cannot be
studied within the small cage approximation but
should also be present in the Baxter resummation.

• For binary mixtures, we showed that the theory cor-
rectly predicts the variation with mixture composi-
tion of the jamming density and the partial
coordinations.

Recently strong evidence has been reported for a diver-
gence of the equilibrium relaxation time of a hard
sphere liquid at a density �0 at which the pressure of the
liquid stays finite �Berthier and Witten, 2009a, 2009b;
Brambilla et al., 2009�. This seems consistent with the
existence of a Kauzmann transition at �0=�K of the kind
discussed in this paper even if a computation of the com-
plexity for this system is still missing. These results seem
to exclude the possibility that the equilibrium relaxation
time diverges only at random close packing as proposed
by some.

B. Discussion and perspectives

There are still many important points that deserve in-
vestigation. A tentative list is the following:

• Our theory is based on an equilibrium computation
�where we also include metastable long-lived states�.
Hence, a key role is played by entropy. We stress that
in the context of metastable glassy states there are
two important concepts related to entropy: the first
one is the complexity, which counts the number of
such states; the second is the surface tension between
different amorphous states, which must also be of
entropic nature since we are dealing with hard
spheres. The existence of a surface tension �a free-
energy cost� to match different glassy states is neces-
sary for those states to be well defined �see Appendix
A and Xia and Wolynes �2001a�, Bouchaud and
Biroli �2004�, and Cavagna �2009� for complete dis-
cussion�. While the complexity can be computed, at

least approximately, within the theory presented
here, a first-principles method to compute the sur-
face tension is still missing despite preliminary at-
tempts in simplified models �Franz, 2005�. However,
the study of the latter has recently become the sub-
ject of intense numerical effort �Biroli et al., 2008;
Cammarota et al., 2009�, which will hopefully lead to
a more complete understanding of the properties of
glassy states.

• Clearly, a major open problem is whether a thermo-
dynamic glass transition really exists in finite-
dimensional systems. Our mean-field theory has not
much to say on this problem. It might seem that in
our theory the existence of a Kauzmann transition is
a major assumption. This is indeed not true: going
carefully over the discussion, it will become clear
that what really matters is the existence of long-lived
metastable glassy states. The glass transition might
be avoided in finite dimension because of some still
unknown mechanism. The existence of metastable
glassy states seems well established and mean-field
theory provides a precise description of their proper-
ties.

• As discussed in Appendix A, in finite dimension, in
the limit of infinite volume and if one waits an infi-
nite time, only the ideal glass state �if any� remains
stable at finite �but arbitrarily large� pressure; there-
fore in a finite-dimensional system stable amorphous
packings exist strictly only at �GCP. Here we say that
a packing is stable if the system remains close to it
for an infinite time when the pressure is made finite
by slightly decompressing the particles. It might be
useful to elucidate the relation of this notion of sta-
bility with the jamming categories of Torquato et al.
�2000� and Donev et al. �2007�. On the other hand,
the time scale needed to observe the instability
should diverge exponentially in the distance from
�GCP, with an associated diverging length scale
�Bouchaud and Biroli, 2004�; therefore for all practi-
cal purposes we expect the mean-field picture to hold
in finite systems. A systematic investigation of the
stability of packings as a function of system size
would be very important in this respect.

• The existence of a further phase transition has re-
cently been recognized in the context of mean-field
models defined on random graphs, including for in-
stance the hard sphere model of Biroli and Mézard
�2001�. It has been called freezing or rigidity transi-
tion and is characterized by the appearance of a fi-
nite fraction of frozen particles in the system �Zde-
borová and Krzakala, 2007; Semerjian, 2008�. In
other words, at densities below the freezing transi-
tion, even if the structure is frozen, particles can still
diffuse out of their cages, while above the freezing
transition a finite fraction of them is really stuck in-
side his cage and can only vibrate; the diffusion co-
efficient is strictly zero for these particles. This tran-
sition is peculiar to mean-field models: indeed, it has
been shown �Osada, 1998� that for finite-dimensional
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hard spheres the diffusion constant of a tagged par-
ticle is always strictly positive at finite pressure. Even
if this transition is avoided in finite-dimensional sys-
tem, it might play some role for finite volumes and
finite times. Its role in the context of jamming should
be clarified.

• An important result that attracted much attention in
the last years is the presence of an anomalous bunch
of soft modes in jammed packings at �J �O’Hern et
al., 2003; Silbert et al., 2005; Wyart, Nagel, and Wit-
ten, 2005; Majmudar et al., 2007�. These modes are
related to isostaticity; they are associated to a diverg-
ing length scale and have been related to the boson
peak observed in glasses at low temperature. It
would be interesting to find out the origin of these
soft modes within the approach presented here.

• Another subject of discussion in the community is
the role of rattlers �particles that are not blocked by
their neighbors� in jammed packings. In our theory
the presence of rattlers is ignored due to the simple
form we chose for the single-molecule density �Eq.
�34��. A more refined ansatz for this quantity could
allow us to compute the fraction of rattlers, and it
would be interesting to compare this with numerical
simulations. Also, in the presence of rattlers the in-
ternal entropy of the glass should remain finite at
jamming �even if its derivative, the pressure, should
diverge�. It would be important to check this explic-
itly.

• An important role might be played by three- and
many-body interactions in the effective replicated
liquid, at least in finite dimension. In this paper we
ignored these interactions. The inclusion of the
three-body interaction will allow us to compute the
second order in the small cage expansion and might
cure the unsatisfactory behavior of the Baxter re-
summation. We believe that this is the most impor-
tant technical point to be studied in the future.

• The result for the number of neighbors in d→� is
strange and should be reconsidered with more care.
In particular, one should check whether the 1RSB
solution is stable and look more carefully to sublead-
ing corrections, also coming from many-body inter-
actions.

• Our result for the clustering transition for d→�, �d
�d /2d, suggests that a dynamical glass transition
happens around this density. It would be interesting
to study the mode-coupling equations in the limit d
→� to investigate this possibility.

• The Baxter resummation can be improved in differ-
ent ways as discussed in the last section. In particular,
there are some features of the g�r� such as the
square-root singularity and the peak in r=�3D, that
we are not able to reproduce at present and might be
captured by a more careful resummation.

• An extension to nonspherical particles such as ellip-
soids should be possible and interesting since these

systems show a nontrivial behavior of packing den-
sity with aspect ratio �Donev et al., 2004�.

• Potentials made by a hard-core part plus a short-
range attractive potential can be investigated: at the
mode-coupling level these potentials show an inter-
esting phase diagram characterized by a reentrant
glass transition and a glass-glass transition line �char-
acterized by higher-order mode-coupling singulari-
ties�. These results have been partially reproduced
by a static HNC computation by Velenich et al.
�2006�, still with no evidence of a glass-glass transi-
tion. It would be interesting to see if better approxi-
mation schemes �such as the small cage approxima-
tion� could also describe the glass-glass transition.

• Soft repulsive potentials such as those used by
O’Hern et al. �2002, 2003� and Berthier and Witten
�2009a, 2009b� could be studied with this method, but
this will require matching between the small cage ex-
pansion for hard spheres discussed here with the har-
monic expansion of Mézard and Parisi �1999a�. This
might be technically difficult.

We hope that future work will address at least some of
these issues.
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APPENDIX A: METASTABLE GLASSY STATES IN
FINITE DIMENSION

In this appendix we discuss how the concepts of meta-
stable glassy state and of complexity should be modified
in finite-dimensional systems. We refer the interested
reader to the original literature for more details.
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1. Metastable states in ferromagnetic systems

As discussed, the key feature of mean-field theory is
the existence of an exponential number of metastable
glassy states at high density. In the mean field these
states can be defined as the minima of a suitable free-
energy functional: the TAP functional �Thouless et al.,
1977; Mézard et al., 1987� for spin systems or a suitable
density functional for particle systems �Kirkpatrick and
Wolynes, 1987a; Dasgupta and Valls, 1999; Chaudhuri et
al., 2005�. These states are stable because in the infinite
range case the barriers may be divergent. However, in
finite-dimensional systems, states that have a free energy
�per particle� greater than the ground state can always
decay toward the ground state by a nucleation process
by crossing a barrier that may diverge only when the
energy difference with the ground state goes to zero.

Therefore we should find a suitable definition of these
states. First recall the way this is done, for instance, in a
ferromagnetic system. In positive magnetic field, the
state �called �� with negative magnetization is meta-
stable with respect to the # state. However, one can
study the � state by preparing the system in the nega-
tive field where this state is stable and then slowly in-
creasing the field toward its final positive value. After
some time the # state will nucleate. Still, if one is far
enough from the spinodal of the � state, the nucleation
time is long enough and one is able to follow the � state
into the positive field region and measure its properties
�e.g., its magnetization�. In dimension d the lifetime
of the metastable state diverges for small h as ��h�
=exp�Ah1−d�. This example shows that once the correct
order parameter has been identified, one can study
metastable states by adding a suitable external field
coupled to the order parameter in order to stabilize this
state and then change the external field following the
evolution of the state into the region where it is meta-
stable.

Actually this can be turned into a practical computa-
tional scheme as follows. Suppose we fix the magnetic

field to its positive value but then perform an expansion
of the free energy in 1+m, assuming that the system is in
the metastable � state and therefore its magnetization
m is close to −1. One can check explicitly that below the
critical temperature for ferromagnetism the free energy
obtained in this way displays a minimum at m=−m*,
which gives the magnetization of the � state. One might
wonder why a minimum appears as the free energy for
positive magnetic field should be convex and have a
single minimum at positive m. The key observation is
that the decay of the metastable state is nonperturbative
in 1+m, so that it is missed at any order in perturbation
theory34 around m=−1. Thus, the expansion around m
=−1 also stabilizes the metastable minimum for a finite-
dimensional system. This might seem an artifact of the
approximation, but in some sense it reflects a physical
property of the system, the existence of a metastable
state, which is relevant for numerical simulations and
experiments as far as they are able to probe this state.
This is exactly what we are interested in.

2. Free energy functional for metastable glassy states: Order
parameter and coupled replicas

In the case of a 1RSB transition to an amorphous
state, it is not possible to identify a simple order param-
eter since the density profile of each state is amorphous
and depends on the state. For each state, one should add
to the Hamiltonian a specific external potential that fa-
vors the specific density profile of that state, but this is
impossible since the density profiles are not known a
priori.

A precise definition of the complexity was given by
Franz and Parisi �1997�, Mézard �1999�, and Mézard and
Parisi �2000� and it is based on the same idea discussed
above in the case of the ferromagnet: one couples an
external field to the order parameter in order to prepare
the system in the metastable state. In this case one needs
to consider a replicated system, as discussed in Sec. III,
since the order parameter is the overlap between repli-
cas �or equivalently the cage radius�. The derivation is
the same as in Sec. III.B.1. We introduce a parameter �
which is coupled to the average distance between repli-
cas and allows us to compute the entropy as a function
of the cage radius �see Fig. 7� via a Legendre transform.
The physical values of A for a given � are the solutions
of �AS�m ,� ;A�=d�m−1�� and we are ultimately inter-
ested in the case �=0. The function S�m ,� ;A� is there-
fore the entropy of the system of m copies with the con-
straint that each pair of copies is at fixed �in the

34Technically speaking the free energy is nonanalytic at the
point h=0, being however, a C� function of h. This fact is
practically invisible from the expansion around m= ±1. If we
analytically continue the free energy in the region of a negative
magnetic field, it should acquire an imaginary part propor-
tional to ��h�−1, signaling that a sharp definition of the proper-
ties of the metastable phase is not possible. See Parisi �1988�
for detailed discussion.

FIG. 24. �Color online� The shape of the function q=A0 /A for
���d: the full line is the correct result and the dashed line is
the output of a mean-field approximation.
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thermodynamic limit� distance A given by Eq. �13�.
The typical shape of S�m ,� ;A� is shown in Fig. 7. In a

mean-field model, at densities below �K, the correlated
phase is metastable and the system is liquid; at the glass
transition it becomes stable as discussed above. In the
mean field all this is well defined and one can perform
explicit computations �Monasson, 1995; Mézard, 1999�.
In a finite-dimensional system, however, S�m ,� ;A� must
be a convex function of A: then the minimum at small A
should disappear below �K. However, if we compute
S�m ,� ;A� in a power series expansion around A=0, we
will find a stable minimum at small A. This is exactly the
same effect discussed for the ferromagnetic case. In this
way, the properties of the metastable state can also be
studied in finite-dimensional systems. We focus on the
region where the equation for A has two solutions that
correspond to a local minimum of S�m ,� ;A�−d�m
−1��A. At fixed density, by varying � one of the two
solutions looses its stability and it disappears: these two
curves are the equivalent of the spinodal lines in usual
first-order transition. The dynamical transition is the
point where for the first time the small-A solution exists
at �=0: only at higher density the two coupled replicas
may remain at a high value of the overlap in absence of
a force that keeps them together. On the contrary the
static transition is characterized by the fact that the co-
existence line of the two solutions touches the axis �=0.

In finite dimension, general arguments tell us that the
free energy is a convex function of A, so that the correct
shape of the function S can be obtained by the Maxwell
construction. To discuss the consequences of this fact on
the definition of the complexity we consider the function
q���=A0 /A��� �for some reference value of A0� for den-
sities bigger than �d, which is shown in Fig. 24. As can
be seen from the figure, the point where we evaluate the
complexity �i.e., �=0 and high q� is always in the meta-
stable region for ���K where the equilibrium complex-
ity is nonzero. This causes an intrinsic ambiguity in the
definition of complexity because the free energy in not
defined with infinite precision in the metastable phase.
However, we can use the fact that the free energy is a C�

function of � near the discontinuity point to extrapolate
the high � free energy in the metastable region. This
ambiguity becomes smaller and smaller the more we ap-
proach the Kauzmann density and in general it is rather
small unless we are very near to the clustering phase
transition. This ambiguity is not important from practi-
cal purposes; however, it implies that there is no sharp
infinitely precise definition of the equilibrium complex-
ity. If we forget this intrinsic ambiguity in the definition
of the complexity, we may arrive at contradictory results.

It is important to remark once again that this discus-
sion can be turned into a practical computational
scheme to obtain the complexity analytically via the
small cage expansion or in numerical simulations, where
it has been used for both Lennard-Jones �Coluzzi et al.,
1999� and hard sphere �Angelani and Foffi, 2007� sys-
tems �see the original papers for details�.

3. The physical meaning of the small A minimum of the free
energy

The previous discussion was based only on the ana-
lytic properties of the replicated free energy S�m ,� ;A�.
To complete the description, it is desirable to have an
understanding of the mechanism that is beyond the
metastability of the small A minimum. This is a key
point because the mechanism is completely different in
mean-field and in finite dimension.

a. Mean field

We first discuss what happens in the mean field. In this
case, glassy states are really stable in the sense that they
are local minima of a well-defined free-energy func-
tional, separated by barriers whose height diverges in
the thermodynamic limit. In a dynamical perspective,
once the system is prepared in a glassy state, it will re-
main there forever. There is a real “ergodicity breaking”
in the liquid state above �d, corresponding to the ideal
mode-coupling dynamical transition. So why is the small
A minimum metastable with respect to the liquid one
between �d and �K?

The reason is that the number of glassy states is expo-
nentially large in system size between �d and �K. Con-
sider for instance the case of two coupled replicas, m
=2. If the limit of zero coupling and if both replicas are
in the same state, the total entropy will be twice the
internal entropy of a state, plus the complexity � that
represents the contribution of all possible states in which
the two copies can be. On the other hand, if the two
replicas are uncorrelated, the total entropy is twice the
internal entropy, plus twice the complexity, since now
each replica can be in each state independently. It is
clear that by forcing the two replicas in the same state,
one loses entropy. This is why the small A minimum has
lower entropy or higher free energy and is metastable as
long as the complexity ��0.

Therefore, in the mean field, glassy states are stable
but their large number is responsible for the fact that the
replicated system finds it more convenient to have each
replica in a different state. This situation is very strange:
indeed it is specific of the mean-field structure and it
changes completely when one considers finite-
dimensional systems.

b. Finite dimension

What goes wrong in the above picture when applied
to finite-dimensional systems?

The main problem is that, in a finite-dimensional sys-
tem, an exponential number of equilibrium states cannot
exist. This can be argued as follows:

�1� Pure states are defined by taking the thermody-
namic limit with a specified sequence of boundary
conditions and the number of different boundary
conditions scales as e$Ld−1

, i.e., as the exponential of
the surface of the system, so that the number of
states cannot be exponential in the volume. The pic-
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ture of the liquid state split in an exponential num-
ber of stable pure states does not make sense in
finite dimension. On the contrary, at and above �K
the number of states is not exponential in the system
size even in the mean field. Therefore in this case
the picture does not need to be modified in finite
dimensions: a subexponential number of pure states
are perfectly allowed as the number of possible
boundary conditions is still very large.

�2� A better argument can be made for soft particles if
we consider the minima of the energy. Of course
there can be an exponentially large number of
minima of the energy. A true metastable state would
be a configuration whose energy cannot be de-
creased by moving a finite number of particles. It is
easy to argue that such a configuration must have
the same free energy of the ground state. On the
other hand, we can consider local minima of order
k, i.e., configurations whose energy cannot be de-
creased by moving at most k particles. It is quite
evident that the associated complexity densities
�k�E� will be different from zero, although they will
tend to zero when k goes to infinity �Biroli and Mo-
nasson, 2000�. Note that analytic computations
based on the small cage expansion discussed in this
paper will likely predict something similar to �1�E�,
and the effective value of k will increase with the
precision of the computation. However, for not too
large times and, in particular, in the experiments it is
quite possible that �1�E� or �2�E� are the relevant
quantities.

The two arguments above strongly suggest that the
metastability of the small A minimum in finite dimen-
sions is connected to the large-scale properties of the
states and, in particular, to large-scale rearrangements.
This is at the origin of the ambiguity in the definition of
the complexity discussed previously.

Then, in what sense can exponential number of meta-
stable glassy states, giving a finite complexity, exist in
this case? A consistent “real-space” formulation of the
problem has recently been discussed �Xia and Wolynes,
2001a, 2001b; Bouchaud and Biroli, 2004; Franz, 2005�.
One first assumes that for a finite �and small� system it is
possible to define metastable states and that they ini-
tially are exponentially many in system size. Then, one
can ask whether these states remain stable on increasing
the system size. The key observation is the following
�Bouchaud and Biroli, 2004�. Consider a ball of size R
inside the system. The rest of the system will influence
the ball through its boundary, therefore favoring one
particular state � of the ball among the exponentially
many through a surface contribution F�=−$Rd−1 to the
free energy of the ball when the latter is in state �. On
the other hand, the ball might be in any other state �
��, and in this case it will gain entropy because of the
large multiplicity of states: Fnot �=F�all possible ����
=−T�Rd. The ball will choose whether to stay in state �
or not according to which is the largest between F� and

Fnot �. It is easy to see that for small enough R, F� wins,
while for large enough R, the other term wins and the
ball will choose not to stay in the state � suggested by its
boundary. This reasoning shows that, for large R, the
assumption of the existence of an exponential number of
states is inconsistent since for entropic reasons sub-
systems will always ignore the influence of their bound-
ary and escape from the state.

See Xia and Wolynes �2001a, 2001b�, Franz �2005�,
and, in particular, Bouchaud and Biroli �2004� for de-
tailed discussion. In this series of papers the discussion
above was precisely formulated in a nucleation theory
where the driving force is of entropic nature. Remark-
ably, methods to compute the length of the critical nuclei
�droplets� and their relaxation time have been proposed;
this is a first step toward a quantitative description of
activated processes between �d and �K even if a com-
plete theory is still lacking.

c. Finite dimension, finite volume

The last point to be discussed is the assumption made
previously that for finite and small enough systems an
exponential number of states still exist and can be taken
as the starting point for the nucleation theory discussed
by Xia and Wolynes �2001a� and Bouchaud and Biroli
�2004�.

We discuss this crucial point in the specific case of
hard spheres, which is of interest here. Consider a sys-
tem of hard spheres enclosed in a finite box with, for
simplicity, hard walls. It is very easy to see that for a
small box and high enough density, there will be discon-
nected sets of configurations in the sense that there are
pairs of configurations that cannot be transformed one
into the other simply by continuously moving the
spheres. Therefore we can group each set of configura-
tions that can be continuously transformed one into
each other in a state. We can say that configurations
inside a state are “blocked” in the sense that once the
system is prepared in a state it will never escape.35 We
can define a finite-volume complexity as �V
= �1/V� ln NV, where NV is the number of such states in
a volume V.

Now we can increase the volume of the box while at
the same time adding particles in order to keep the den-
sity fixed. On a general ground, we expect �V to be a
decreasing function of V since by increasing the volume
one will open new channels to “unblock” the configura-
tions and connect some states that will be merged in a
bigger state. On the basis of the analysis of Bouchaud
and Biroli �2004�, we expect three possible behaviors of
�V:

35We use the word blocked in order to avoid confusion with
the concept of “jamming.” In a jammed configuration no par-
ticle can move. Instead, in a blocked configuration particles
can move a little but the whole system is unable to visit the
phase space; the existence of blocked configurations was
shown a long time ago by Ruelle �1977�.
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�1� For ���d, in the unclustered liquid phase, we ex-
pect �V to fall very rapidly to 0 as for large enough
volumes all configurations will be connected and
form the unique liquid state.

�2� For �d����K we are in the clustered liquid phase;
then we expect that �V first decreases to a finite
plateau for small enough volume. The plateau cor-
responds to the mean-field value ����. On larger
length scales, once the nucleation effect described
previously becomes effective, the glassy states are
unblocked and the complexity will drop to zero;
only the liquid state survives.

�3� For ���K, the plateau value goes to zero since the
mean-field complexity vanishes. Therefore in this
case the complexity will go to zero fast as in case �1�.
Still, even in the V→� limit a large number of
amorphous states will survive �but their number is
not exponential�.

It is interesting to remark that in case �2� “unblocking” a
configuration will require a long time since a large num-
ber of particles have to rearrange together. Therefore
the dynamics in this region will be very slow and the
system will stay for a long time close to a configuration
that is made by patches of locally blocked configura-
tions, the “mosaic state” of Xia and Wolynes �2001a�.
Conversely, in case �3�, the dynamics will be completely
frozen even in the thermodynamic limit.

A consequence of this discussion is that an infinite
system of hard spheres at finite pressure, even if very
large, will always relax to the ideal glass state, i.e., at
density �GCP �if crystallization is avoided�. Therefore the
ideal glass states at �GCP are the only jammed states that
remain stable if pressure is made very large but finite in
the limit V→�. Of course for finite sizes or finite times
this will be true also for metastable glasses.

APPENDIX B: THE “LINK” EXPANSION FOR HARD
SPHERES

We describe here a formal way to justify the introduc-
tion of the effective potentials to integrate over m−1
replicas and obtain an expression for the replicated en-
tropy which is formally equal to the one of a nonrepli-
cated liquid. We use one replica, say replica 1, as a ref-
erence and integrate over the small displacements of the
other m−1 replicas. Note that we are not breaking the
replica symmetry: we are only looking for a way to ex-
pand the entropy for small A. In the following we use
the notation x= �x2 , . . . ,xm�.

The expansion of a given diagram proceeds as follows.
At the zeroth order �A=0�, the function ��x̄� is a product
of delta functions; therefore all replicas coincide. Then
we have

D = D0 =
1

S
� �

i
�dxi�

�
����� − 1� , �B1�

i.e., D0 is the corresponding diagram of the nonrepli-
cated system.

The quantities x1−xa are of order �A. Then the cru-
cial observation is that, for a�2, the function ��xai
−xaj� in Eq. �33� is essentially constant if �x1i−x1j� differs
from D by a quantity ��A; in fact it becomes simply
equal to ��x1−y1�=
��x1−y1�−D�. This means that the
integration region in the space x1i such that ��x1i−x1j�
−D���A for all links �= �i� j� does not give any contri-
bution apart from the zeroth-order one. We call a link �
such that ��x1i−x1j�−D���A a “critical link”: the idea is
to isolate the contribution of the regions such that k
links are critical, whose volume is of order Ak/2.

1. Expansion of the replicated entropy

We define Dx1=�i�dx1i and Dx=�i���i� /��dxi and
note that using Eq. �34� we have �Dx=1. Defining
�a���=��xai−xaj�, we have for a diagram D contributing
to S

D =
1

S
� �

i
��i�dx1idxi�

�
��̄��� − 1� =

1

S
� DxDx1�

�
��1��� − 1 + �̄��� − �1����

=
1

S
� Dx1�

�
��1��� − 1� +

1

S
� Dx1


�
�

����

��1���� − 1� � Dx��̄��� − �1����

+
1

S
� Dx1 


����
�

����,��

��1���� − 1� � Dx��̄��� − �1������̄���� − �1����� + ¯

= D0 +� Dx1

�

Q̃��� �
����

��1���� − 1� +� Dx1 

����

Q̃2��,��� �
����,��

��1���� − 1� + ¯

= D0 + 

n�1

� Dx1 

�1�¯��n

Q̃n��1, . . . ,�n� �
����1,. . .,�n�

��1��� − 1� , �B2�
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having defined the functions Q̃n��1 , . . . ,�n� from

Q̃1��� = Q̃��� =� Dx��̄��� − �1����

=� dxidxj
��i���j�

�2 ��̄�i,j� − �1�i,j�� ,

�B3�

Q̃n��1, . . . ,�n� =� Dx�
i=1

n

��̄��i� − �1��i��

=� �
i��Ln

dxi
��i�

�
�

��Ln

��̄��� − �1���� .

The integral over Dx contains all vertices of the original
diagram. However, the integrand depends only on the
vertices that are adjacent to one of the links Ln
= ��1 , . . . ,�n�; calling this set �Ln and because the inte-
grals over the other vertices give 1, we obtained the last
equality in Eq. �B3�.

Note that, for example, the function Q̃2�� ,��� depends
on three or four xi depending whether the two links � ,��
are adjacent or not. But if the two links are nonadjacent,

then Q̃2�� ,���=Q̃���Q̃����. This motivates the introduc-

tion of the connected functions, defined by Q̃c���=Q̃���,

Q̃2��,��� = Q̃���Q̃���� + Q̃2
c��,��� ,

�B4�
Q̃3��,��,��� = Q̃���Q̃����Q̃����

+ �Q̃2
c��,���Q̃���� + perm.�

+ Q̃3
c��,��,��� ,

and so on, as usual in statistical mechanics. The impor-
tant property of these functions is that they are nonva-
nishing only if the subdiagram identified in D by the
links in Ln is connected.

Now we insert the expression of the connected func-
tions in Eq. �B4� into Eq. �B2�. It is not difficult to check

that we can resum the contributions containing Q̃��� to
obtain

D =
1

S
� Dx1�

�
��1��� + Q̃��� − 1�

+
1

S
� Dx1 


����

Q̃2
c��,��� �

����,��

��1���� + Q̃��� − 1�

+ ¯ . �B5�

The interpretation of the above equation is the follow-
ing: the original diagram of the replicated liquid gener-
ates a diagram in which the vertices carry a factor � and

the links carry a function �1+Q̃−1, plus a sum of con-
tributions in which a subdiagram made of links Ln is
marked and on each of its connected parts an interaction

Q̃c is placed. The unmarked links carry again the func-

tion �1+Q̃−1 and the vertices a factor �. In fact, it is
easy to check on specific examples that the explicit sum
over the links in Ln can be rearranged by grouping to-
gether, as usual, diagrams with the same topology. In this
way the multiplicity factors S are corrected to become
the exact-symmetry factors of the diagram with marked
links.

In summary, we can write

D = D0��1 + Q̃� + D2��1 + Q̃,Q̃2
c� + D3��1 + Q̃,Q̃2

c,Q̃3
c�

+ ¯ , �B6�

where the Dn represent diagrams that are built from the
original diagram by marking n links in all the possible
topologically inequivalent ways and placing the interac-
tions Qc on the marked connected parts. Each diagram
has a symmetry factor S which is the number of equiva-
lent relabeling of the vertices, taking into account the
presence of the marked links. Clearly, summing the con-
tribution of all the diagrams and Eq. �35� we get

S���x̄�,�̄�x̄, ȳ�� = NSharm + S0��,�1�x − y� + Q̃�x − y��

+ S2��,�1�x − y�

+ Q̃�x − y�,Q̃2
c�x,y,z�� + ¯ , �B7�

where S0�� ,1+ f� is defined in the same way as the func-
tional �32�, but for one single copy of the system and
with f on the links of the diagrams, while the other terms
come from interactions involving more than two par-
ticles.

It is worth noting at this point that the specific form of

the effective potentials Q̃n
c depends on the topology of

the subdiagram that carries them. For the three-body
interactions there is only one possible diagrams �the one
in which � ,�� are adjacent, i.e., they share one vertex�
but for n�3 there are many possible diagrams that cor-
respond to different interactions.

The Q̃c functions are quite difficult to handle. How-
ever, from their definition one can show that, for small
A, they are nonzero only if for all the links it holds �xi

−xj��D+O��A�, as expected on the basis of the argu-
ment put forward at the beginning of this section. More-
over, for m�0 these functions are bounded in the sense
that when they are different from zero, they stay finite
for A→0. This implies that, for example, the contribu-

tion coming from diagrams containing Q̃2
c is of order A

because the integrals over the two link variables have to
support only on an interval of order �A. Therefore, Eq.
�B7� is an expansion in powers of �A, where the term Sn
is proportional to An/2. Note that this is specific to the
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hard sphere potential which is always constant except
for the discontinuity in r=D. For smooth potentials, the
corrections come from all values of �xi−xj�, and in this
case it is more convenient to integrate over the displace-
ment of the replicas at a fixed center of mass �see
Mézard and Parisi �1999a��. Another remarkable prop-
erty of the effective potentials is that in the limit of in-
finite dimension only the two-body potential should give
important contributions.

2. The effective potentials

To gain physical intuition on the effective liquid de-
scribed by the entropy functional �B7�, it is convenient
to compute its partition function. First, we define the
potentials Q by

Qn��1, . . . ,�n� =
Q̃n��1, . . . ,�n�

�1��1� ¯ �1��n�

=� �
i��Ln

dxi
��i�

�
�

��Ln

��
a=2

m

�a��� − 1�
=� �

��Ln

��
a=2

m

�a��� − 1��
�Ln

�B8�

and similarly for the connected potentials. The brackets
indicate the average over the ��i� of the vertices in �Ln.

When constructing the partition function that gener-
ates the diagrams in Eq. �B7�, we must take into account

the fact that if a link is labeled it carries the function Q̃n
c

instead of the usual function f���=�1����1+Q����−1.
This leads, using standard liquid theory, to the following
grancanonical partition function:

Zeff�z� = 

N=0

� zN

N!
� dNx�

�
�1����1 + Q���� �

����
�1 +

Q2
c��,���

�1 + Q�����1 + Q�����
�

� �
������� �1 +

Q3
c��,��,���

�1 + Q�����1 + Q������1 + Q�������1 +
Q2

c��,���

�1 + Q�����1 + Q�����
� � perm.�� � ¯ , �B9�

where now the links are all possible pairs of particles.
This makes it possible to identify the n body potentials
of the effective liquid. For instance, we have

e−�eff�x−y� = ��x − y��1 + Q�x − y��

= ��x − y���
a=2

m

��xa − ya��
x,y

,

�B10�

e−�eff
�2��x−y,x−z� = 1 +

Q2
c�x − y,x − z�

�1 + Q�x − y���1 + Q�x − z��

=

��
a=2

m

��xa − ya���xa − za��
x,y,z

��
a=2

m

��xa − ya��
x,y
��

a=2

m

��xa − za��
x,z

,

and so on. As before, the brackets denote averages over
the Gaussian distribution of the molecule. The entropy
functional �B7� is obtained by expanding Zeff in a Mayer

series of z and then Legendre transforming to the den-
sity. Then one has

S���x̄�,�̄�x̄, ȳ�� = NSharm − �NFeff, �B11�

where Feff is the canonical free energy of the liquid �B9�.

3. Correlation function of the glass

It is interesting to compute the correlation function of
the glass state; it is the correlation function of one rep-
lica �see Sec. III.B.2�. It can be computed as follows. We
choose one replica and we add to the hard-core interac-
tion an additional potential ��x−y�, only to this replica.
Then it is easy to show that

�2

2
gG�x − y� = −� 
S��̄,�̄�


��x − y�
�

�=0
. �B12�

This can be done by looking at the partition function
Zm��� �Eq. �11��. If we add a potential to replica 1, we
get an additional term
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exp�−
1
2 � dxdy��x − y�


i�j

�x − x1i�
�y − y1j�� .

�B13�

Then if we differentiate with respect to ��x−y� we get

�
 ln Zm���

��x − y�

�
�=0

= −
1
2�


i�j

�x − x1i�
�y − y1j��

= −
1
2

�11�x,y� = −
�2

2
gG�x − y� . �B14�

The derivative of S is exactly the same because it is the
Legendre transform of ln Zm���.

The expression of S�m ,� ;A� in the presence of the
additional interaction � is simple; indeed the only modi-

fication is �1→�1e−�, which has to be substituted in the
final result �B7�. Note that the functions Q ,Q2, etc., do
not contain �1 explicitly because they depend only on
the potentials of the replicas 2 , . . . ,m �see Eq. �B8� so
that they will not depend on ��. Therefore the correla-
tion of the glass is given by the correlation of the liquid
described by the partition function �B9�.

APPENDIX C: THE TWO-BODY EFFECTIVE POTENTIAL

1. Definitions

The function Q�x ,y�=Q�x−y� is defined in Eq. �B8�.
Making use of Eq. �34� we get

Q�x − y� = �−2� dxdy��x,x���y,y���
a=2

m

��xa − ya� − 1�
=� dXdY�A�x − X��A�y − Y���� d%d!�A�%��A�!���X + % − Y − "��m−1

− 1�
=� dXdY�A�x − X��A�y − Y��qA�X − Y�m−1 − 1� , �C1�

where

qA�r�� =� d%d!�A�%��A�!���r� + % − !�

=� dr�� �2A�r�� ���r� − r�� � . �C2�

The last equality is obtained by introducing r�� =!−% and
observing that as % and ! are independent Gaussian
variables with variance A, their difference is also a
Gaussian variable of variance 2A. Following a similar
procedure,36 we obtain

Q�r�� =� dr�� �2A�r�� ��qA�r� − r�� �m−1 − 1� . �C3�

We are particularly interested in the integral

Gm�A� =
1

Vd�D� � dr���r��Q�r��

=
1

Vd�D� � dr��qA�r��m − qA�r���

=
1

Vd�D� � dr��qA�r��m − ��r��� , �C4�

which is the contribution to the virial of the nontrivial
part of the two-body effective potential given in Eq.
�B10�; the different expressions in Eq. �C4� are obtained
starting either from Eq. �C3� or directly from Eq. �C1�
and performing similar manipulations to the ones in Eq.
�C1�.

We are also interested in the following functions:

Fm�A� �
A

1 − m

�Gm�A�
�A

=
mA

1 − m

1

Vd�D� � dr�qA�r��m−1�qA�r��
�A

,

�C5�

Hm�A� � − m
�Gm�A�

�m

= −
m

Vd�D� � dr�qA�r��m ln qA�r�� .

In the limit m→1 we have Gm�A�→0 while

Fm�A� → F1�A� � −
A

Vd�D� � dr� ln�qA�r���
�qA�r��

�A
,

�C6�
36We start from the last line of Eq. �C1� and introduce %=x

−X and !=y−Y, and then r�� =!−%.
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Hm�A� → H1�A� � −
1

Vd�D� � dr�qA�r��ln qA�r�� .

In the limit m→0, A=�m, we show that Gm�A�
→G0��� which is a finite function of �. We also show
that

Fm�A� → F0��� = �
dG0���

d�
,

�C7�

Hm�A� → H0��� = �
dG0���

d�
= F0��� .

Finally, we are interested in the large d limit with the
following scaling:

Gm�Â� � lim
d→�

Gm�D2Âd−2� ,

�C8�
Fm�Â� � lim

d→�
Fm�D2Âd−2� .

Unfortunately a full analytical evaluation of these in-
tegrals is not possible. In the following we will discuss
some particular cases in which analytical calculations are
possible.

2. The function qA(r) and the virial coefficient Gm(A)

The function qA�r� defined in Eq. �C2� is the convolu-
tion of a Gaussian and the theta function ��r�. This in-
tegral can be reduced to a one-dimensional integral by
means of d-dimensional bipolar coordinates. This will be
proved in the next section.

a. Bipolar coordinates

To compute the convolution �C2� we introduce
d-dimensional bipolar coordinates in the space r��
= �x1 , . . . ,xd�. We assume, without loss of generality,
thanks to rotational invariance that r� is directed along
the axis x1 in Rd, and we define u= �r�� �, �= �r�−r�� �, and
R=�x2

2+ ¯+xd
2 the distance between r�� and the axis x1.

We then look to the projection r�� of r�� on the hyper-
plane P�= �x2 , . . . ,xd� perpendicular to x1; the distance
of r�� from the origin in this plane is just R, and we can
introduce polar coordinates �R ,
d−1� on this plane, thus
defining a set 
d−1 of d−2 angles that specify the position
of r�� on the sphere of radius R in P�. We define in this
way the change to bipolar coordinates r�� → �u ,� ,
d−1�.

We compute the Jacobian of such a transformation. It
is easy to show that

��u,�,
d−1�
��x1, · ,xd�

=�
x1

u

x2

u
. . .

xd

u

x1 − r

�

x2

�
¯

xd

�

0� � �
d−1

��x2, . . . ,xd��� . �C9�

The reason for the zeros in the first column is that the
angles 
d−1 are independent of x1 as they describe the
position of r�� in P�. We can write the determinant of
this matrix as

J−1 = � ��u,�,
d−1�
��x1, . . . ,xd�

� =
x1R

u�  
x2

R
¯

xd

R

� �
d−1

��x2, . . . ,xd��  −
�x1 − r�R

u�  
x2

R
¯

xd

R

� �
d−1

��x2, . . . ,xd��  =
rR

u� 
x2

R
¯

xd

R

� �
d−1

��x2, . . . ,xd��  . �C10�

The matrix appearing in the previous equation is just the
Jacobian matrix for the change to spherical coordinates
in P� and its determinant is given by

 
x2

R
¯

xd

R

� �
d−1

��x2, . . . ,xd��  =
dRd
d−1

dd−1r��
=

1

Rd−2Jd−1�
d−1�
.

�C11�

From the two previous equations we obtain the desired
Jacobian

dr�� =
u�

r
Rd−3dud�Jd−1�
d−1�d
d−1

=
u�

r
Rd−3dud�d	d−1, �C12�

where the integral of d	d−1 is just the
�d−1�-dimensional solid angle 	d−1. The radius R is eas-
ily expressed as a function of u ,� by elementary geo-
metrical considerations,
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R�u,� ;r� =
�2u2�2 + 2u2r2 + 2�2r2 − u4 − �4 − r4

2r
.

�C13�

The �positive� variables u ,� ,r have to respect the trian-
gular inequalities, so the domain of integration is for
instance u� �0,��, �� ��r−u� ,r+u�.

Then, performing the change of variable w=�2− �r
−u�2 and using R�u ,w ;r�2=w�4ru−w� /4r2, we get

qA�r� = 	d−1�
0

�

du�
�r−u�

r+u

d�
u�

r

�R�u,� ;r�d−3
�u − D��2A���

=
	d−1

2r
�

D

�

duu
e−�u − r�2/4A

�4�A�d/2

��
0

4ru

dw�w�4ru − w�
4r2 ��d−3�/2

e−w/4A. �C14�

We now make use of the relation

�
0

1

e−Bx�x�1 − x���d−3�/2 = B�2−d�/2e−B/2����d − 1
2

�
�I�d−2�/2�B/2� �C15�

and of the definition 	d−1=2��d−1�/2 /���d−1� /2� to ob-
tain the final result

qA�r� = �
D

�

du�u

r
��d−1�/2e−�r − u�2/4A

�4�A

��e−ru/2A��
ru

A
I�d−2�/2� ru

2A
�� . �C16�

b. Three dimensions

Remarkably, in d=3 the integrand simplifies and a full
calculation of qA�r� is possible,

qA�r� =
1

r�4�A
�

D

�

duu�e−�r − u�2/4A − e−�r + u�2/4A�

=
1
2�erf� r − D

�4A
� − erf� r + D

�4A
�

+
2

r
�A

�
�e−�r − D�2/4A − e−�r + D�2/4A� + 2� ,

�C17�

with

erf�t� �
2

��
�

0

t

dxe−x2
,

�C18�

��t� =
1
2

�1 + erf�t�� =
1

��
�

−�

t

dxe−x2
.

Given that qA�r�→1 for r−D��A, this allows for a
simple numerical evaluation of the integral in Eq. �C4�
to compute Gm�A�. A full computation of Q�r� is also
possible using Eq. �C3�. It is also easy to check that uni-
formly in r we have,37

qA�r� � �� r − D
�4A

� + O��A� + O�e−D/�A� . �C19�

c. Finite dimension: Expansion in powers of �A

In general finite dimension the integral �C16� cannot
be explicitly evaluated. However, an expansion in pow-
ers of �A similar to Eq. �C19� holds. In fact, when A is
very small it is easy to realize that the main contribution
to qA�r� comes from the integration over the component
of r�� which is parallel to r�: in the orthogonal directions

��r�−r�� �−D� is essentially constant and the integration
over these components gives a correction O�e−D/�A�.
Then we have

qA�r� � �
−�

�

dr�
e−r�2/4A

�4�A

�r − r� − D� = �� r − D

�4A
� .

�C20�

The same result can be derived from Eq. �C16� by ob-
serving that for A→0, r�D, one has z=ur /2A→� and
for all n �Abramowitz and Segun, 1965�

e−z�2�zIn�z� → 1. �C21�

Thus we have, changing variables to t= �r−D� /�4A and
s= �u−D� /�4A,

qA�t� =
1

��
�

0

�

ds�D + s�4A

D + t�4A
��d−1�/2

e−�t − s�2

�
1

��
�

0

�

dse−�t − s�2
= ��t� . �C22�

The next-to-leading orders in �A can in principle be
computed using the large z expansion of the Bessel func-
tions �Abramowitz and Segun, 1965�.

In this way we can derive the leading-order contribu-
tion to Gm�A�: substituting qA�t�=��t� into Eq. �C4� we
get

37Note that ��t� is a “smoothed” theta function.
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Gm�A� =
d�4A

D
�

−D/�4A

�

dt

��D + t�4A

D
�d−1

���t�m − 
�t��

�
d�4A

D
�

−�

�

dt���t�m − 
�t�� =
d�4A

D
Q0�m� ,

�C23�

defining

Q0�m� = �
−�

�

dt���t�m − ��t�� . �C24�

One can check that the function Q0�m� is given by

Q0�m� = Q0�1 − m� + O„�1 − m�2
… ,

�C25�

Q0 = − �
−�

�

dt��t�ln ��t�

close to m=1 and that

Q0�m� � ��/4m��m�m �C26�

for m→0 using the t→−� expansion of the error func-
tion.

d. Infinite dimension

In the limit of infinite dimension, we are interested in

the scaling A=D2Â /d2. One could then naively expect
the small cage expansion of the previous section to work

well. However, one has z= �ur /2D2Â�d2, and an inspec-
tion of the large z expansion of the Bessel function In�z�
�Abramowitz and Segun, 1965� shows that it is indeed an
expansion in powers of n2 /z. Then, for n= �d−2� /2 as in
Eq. �C16� one has to resum all orders in this large z
expansion.

This can be done without difficulty either by looking
at the large z expansion or by a saddle-point evaluation
of the integral representation,

In�z� =
1

2�i
�

C
dtt−n−1e�z/2��t+1/t�, �C27�

and one can show that

lim
d→�

e−d2z�2�d2zI�d−2�/2�d2z� = e−1/8z. �C28�

Using this result in Eq. �C16�, we have

qA�r� = �
D

�

du�u

r
��d−1�/2e−�r − u�2/4A

�4�A
e−D2Â/4ru. �C29�

Changing variables again to t= �r−D� /�4A and s= �u
−D� /�4A and using

�u

r
��d−1�/2

=� 1 +
s�4Â

d

1 +
t�4Â

d
�

�d−1�/2

� e�s−t��4Â, �C30�

we get

qA�t� � e−Â/4 1
��
�

0

�

dse�s−t��4Â−�t − s�2
= ��t +

�Â

2
� .

�C31�

We can use this result to compute Gm�Â� as defined in
Eq. �C8�. Similarly to Eq. �C23�, we get

Gm�Â� = lim
d→�

�4Â�
−d/�4Â

�

dt�1 + t
�4Â

d
�d−1

����t +
�Â

2
�m

− 
�t��
� �4Â�

−�

�

det�4Â���t +
�Â

2
�m

− 
�t��
= �

−�

�

dyey���y + Â

�4Â
�m

− 
�y�� . �C32�

Note that if we expand the second line of Eq. �C32� for

small Â �which amounts to setting Â=0 in the integrand�
we obtain exactly the leading term �C23�, which indi-
cates that the two limits d→� and A→0 can be safely
exchanged.

e. Jamming limit

The jamming limit corresponds to m→0 and A=�m.
Note that Gm�A� is not analytic in A=m=0, so the limits
m→0 and A→0 cannot be exchanged.

However, the integral �C4� is uniformly convergent in
the jamming limit so we can exchange the limit with the
integral. As A→0, we can use Eq. �C20� for qA�r�; using
then the asymptotic expansion of the error function for
�t�→�, we can show that

lim
m→0,A=�m

�� r − D
�4A

�m

= �e−�r − D�2/4�, r � D

1, r � D .
�

�C33�

Then we have

G0��� = lim
m→0,A=�m

Gm�A� =
d

Dd�
0

D

drrd−1e−�r − D�2/4�.

�C34�

It is also possible to show that
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F0��� = �
dG0���

d�
= lim

m→0,A=�m

A

1 − m

�Gm�A�
�A

= − lim
m→0,A=�m

m
�Gm�A�

�m

=
d

4�Dd�
0

D

drrd−1�r − D�2e−�r − D�2/4�. �C35�

In the limit d→�, �=D2�̂ /d2, Eq. �C34� becomes, by
changing variable to y=d�D−r� /D,

G0��̂� = lim
d→�

G0�D2�̂/d2� = lim
m→0,Â=�̂m

Gm�Â�

= �
0

�

dye−y−y2/4�̂, �C36�

which can also be directly derived from Eqs. �C32� and
�C33�, confirming that the limits d→� and A→0 can be
exchanged without problems.

3. The function Q(r) in the jamming limit

Even if qA�r� can be fully computed, the function
Q�r�, defined in Eq. �C3�, cannot be computed analyti-
cally in finite dimension. Therefore we limit ourselves
here to the computation at first order in �A. In this case
we have qA�r���„�r−D� /�4A…; the integration over the
components of r�� orthogonal to r� gives 1 neglecting sub-
leading corrections and we get

Q�r� = �
−�

�

dr�
e−�r��2/4A

�4�A
��� r − r� − D

�4A
�m−1

− 1�
�

1

m
�m� r − D

�4mA
� , �C37�

where

�m�t� = m�
−�

� ds
��

e−�t�m − s�2
���s�m−1 − 1� . �C38�

It is easy to show that

�
0

�

dt�m�t� = �m�
−�

�

ds���s�m − ��s��

= �mQ0�m� →
m→0

��/4. �C39�

Using, for s→−�, ��s��e−s2
/2���s�, it is easy to show

that for m→0, �m�0�→1, for 1� t�1/�m, �0�t��1/2t2,
and for very large t�1/�m, �m�t��e−mt2. Indeed, we
have for any finite t

�0�t� � lim
m→0

�m�t� = 2�
0

�

dyye−y2−2ty

= 1 − ��tet2�1 − erf�t�� �
t�1

1

2t2 −
3

4t4 + ¯ . �C40�

The �one-dimensional� Fourier transform of �0�t� is
given by

�̂0�q� = �
−�

�

dteiqt�0��t��

= ���1 − eq2/4
��

2
�q��1 − erf� �q�

2
���

= ���0� �q�
2
� . �C41�

The function �m�t� is shown in Fig. 25 for different val-
ues of m.

APPENDIX D: DERIVATIVES OF THE CORRELATION
FUNCTIONS

In this appendix we show how to compute the deriva-
tive dg�u ,�� /d ln ��x ,y� that is needed to compute the
correlation function in the first-order small cage ap-
proximation �Eq. �68��. We start from the partition func-
tion as a function of the activity,

Z�z�x�,��x,y�� = 

N=0

� � dNx

N! �
i

z�xi��
i�j

��xi,xj�

=� exp�� dx�̂�x�ln z�x�

+
1
2 � dxdy�̂2�x,y�ln ��x,y�� , �D1�

where the � sign is a shorthand for 
N=0
� �dNx /N! and

�̂�x�=
i
�x−xi�, �̂2�x ,y�=
i�j
�x−xi�
�y−xj�. From the
last expression it is straightforward to show that
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FIG. 25. �Color online� The function �m�t� for different values
of m compared with the asymptotic behavior for m→0 and
large t.

840 Giorgio Parisi and Francesco Zamponi: Mean-field theory of hard sphere glasses and …

Rev. Mod. Phys., Vol. 82, No. 1, January–March 2010



� ln Z

� ln z�x�
= 	�̂�x�
 = ��x� ,

�D2�
� ln Z

� ln ��x,y�
=

1
2

	�̂2�x,y�
 =
�2

2
g�x,y� .

We define the entropy functional, the Legendre trans-
form of Z,

S���x�,��x,y�� = max
z�x�

�ln Z�z�x�,��x,y��

−� dx��x�ln z�x�� . �D3�

From this it follows that

�S
���x�

= − ln z�x� ,

�D4�
�S

� ln ��x,y�
=

� ln Z

� ln ��x,y�
=

�2

2
g�x,y�

because the explicit derivative with respect to z�x� van-
ishes due to the maximum condition.

Therefore we need to compute �2S/� ln ��x,y�� ln ��u,��. To
simplify the notation we write ln ��x ,y�=J1, ln ��u ,��
=J2, and ln z�x�= j�x�. Then

�2S
�J1�J2

=
�2 ln Z

�J1�J2
+� dt

�2 ln Z

�J1�j�t�
dj�t�
dJ2

=
�2 ln Z

�J1�J2

−� dtds
�2 ln Z

�J1�j�t�� �2 ln Z

�j�t��j�s��−1 �2 ln Z

�J2�j�s�
,

�D5�

where we computed dj�t� /dJ2 as follows. Recalling that
the derivatives in the last equation are done at constant
� we can write

0 =
d

dJ2
��t� =

d

dJ2

� ln Z

�j�t�

=
�2 ln Z

�j�t��J2
+� ds

�2 ln Z

�j�t��j�s�
dj�s�
dJ2

�D6�

from which

dj�t�
dJ2

= −� ds� �2 ln Z

�j�t��j�s��−1 �2 ln Z

�j�s��J2
. �D7�

The explicit derivatives of Z that appear in Eq. �D5�
can be explicitly related to correlation functions of the
liquid as follows �Hansen and McDonald, 1986�:

�2 ln Z

� ln ��x,y�� ln ��u,��

=
1
4

�	�̂2�x,y��̂2�u,��
 − 	�̂2�x,y�
	�̂2�u,��
�

=
�2

4
�
�x − u�
�y − �� + 
�x − ��
�y − u��g�x,y�

+
�4

4
�g4�x,y,u,�� + �−1�
�u − x�g3�y,u,��

+ 3 perm.� − g�x,y�g�u,��� ,

�2 ln Z

� ln ��x,y�� ln z�t�
=

1
2

�	�̂2�x,y��̂�t�
 − 	�̂2�x,y�
	�̂�t�
�

=
�3

2
„g3�x,y,t� + ��−1�
�x − t�

+ 
�y − t�� − 1�g�x,y�… ,
�D8�

�2 ln Z

� ln z�t�� ln z�s�
= 	�̂�t��̂�s�
 − 	�̂�t�
	�̂�s�


= ��
�t − s� + �h�t,s�� ,

� �2 ln Z

� ln z�t�� ln z�s��−1

=
1

�

�t − s� − c�t,s� ,

where the last equation follows from the Ornstein-
Zernicke relation �Hansen and McDonald, 1986�.

Finally, we have

dg�u,��
d ln ��x,y�

=
2

�2

�2S
� ln ��x,y�� ln ��u,��

=
1
2

�
�x − u�
�y − �� + 
�x − ��
�y − u��g�x,y� +
�2

2
�g4�x,y,u,�� + �−1�
�u − x�g3�y,u,�� + 3 perm.�

− g�x,y�g�u,��� −
�4

2 � dtds„g3�x,y,t� + ��−1�
�x − t� + 
�y − t�� − 1�g�x,y�…�1

�

�t − s� − c�t,s��

� „g3�u,�,s� + ��−1�
�u − s� + 
�� − s�� − 1�g�u,��… . �D9�
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By inspection of these contribution to Eq. �68� one can
show that only the first one is relevant to describe the
delta peak of g̃�x ,y�, which gives Eq. �70�.

APPENDIX E: SCALING CLOSE TO JAMMING

We will show here how to compute the behavior of
m�� ,�j� for �→�j. For this we will need the asymptotic
behavior of Q0�m� for m→0; one can show that

Q0�m� �� �

4m
e�m/2�ln mRm + Sm, �E1�

where Rm and Sm are C� functions of m with Rm=1
+R1m+¯ and Sm=S1m+S2m2+¯, so that

ln Q0�m� �
1
2

ln
�

4
−

1
2

ln m +
m

2
ln m + ln Rm

+ O�m3/2� , �E2�

where O�x�� represents a quantity which is bounded by
Cx� for x→0. From this relation it follows that

Q0��m�
Q0�m�

= −
1

2m
+

ln m

2
+

1
2

+
Rm�

Rm
+ O�m1/2� ,

�E3�
d

dm

Q0��m�
Q0�m�

=
1

2m2 +
1

2m
+ O�m−1/2� .

We have then from Eq. �75�

�m��m,�� =
d

2m
+

d

1 − m
+ 2dm

Q0��m�
Q0�m�

− d − dm�1 − m�
d

dm

Q0��m�
Q0�m�

= − d + O��m� . �E4�

On the other hand,

����m,�� = S���� + d
���A*�m��−1/2

�A*�m��−1/2

= S���� + d
����Y����

�Y���

= S���� +
d

�
+ d

Y����
Y���

, �E5�

and we obtain, close to �j,

m��,�j� � −
1

d
�S���� +

d

�
+ d

Y����
Y��� ���j − �� , �E6�

i.e., Eq. �84�.
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