
Failure processes in elastic fiber bundles

Srutarshi Pradhan*

Department of Physics, Norwegian University of Science and Technology,
NO-7491 Trondheim, Norway
and SINTEF Petroleum Research, NO-7465 Trondheim, Norway

Alex Hansen†

Department of Physics, Norwegian University of Science and Technology,
NO-7491 Trondheim, Norway

Bikas K. Chakrabarti‡

Theoretical Condensed Matter Physics Division and Centre for Applied Mathematics and
Computational Science, Saha Institute of Nuclear Physics, 1/AF Bidhan Nagar,
Kolkata 700064, India

�Published 1 March 2010�

The fiber bundle model describes a collection of elastic fibers under load. The fibers fail successively
and, for each failure, the load distribution among the surviving fibers changes. Even though very
simple, this model captures the essentials of failure processes in a large number of materials and
settings. A review of the fiber bundle model is presented with different load redistribution
mechanisms from the point of view of statistics and statistical physics rather than materials science,
with a focus on concepts such as criticality, universality, and fluctuations. The fiber bundle model is
discussed as a tool for understanding phenomena such as creep and fatigue and how it is used to
describe the behavior of fiber-reinforced composites as well as modeling, e.g., network failure, traffic
jams, and earthquake dynamics.
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I. INTRODUCTION

In materials science and engineering, a class of simple
models, known as fiber bundle models �FBMs�, has
proven to be effective in practical applications such as
fiber-reinforced composites. In this context, such models
have a history that goes back to the 1920s �Peirce, 1926�,
and they constitute today an elaborate toolbox for
studying such materials, rendering computer studies or-
ders of magnitude more efficient than brute force meth-
ods. Since the late 1980s �Sornette, 1989�, these models
have received increasing attention in the physics com-
munity due to their deceptively simple appearance
coupled with an extraordinary richness of behaviors. As
these models are just at the edge of what is possible
analytically and typically are not very challenging from a
numerical point of view, so that extremely good statistics
on large systems are available, they are perfect as model
systems for studying failure phenomena as a part of the-
oretical physics.

Fracture and material stability have interested hu-
manity for practical reasons ever since we started using
tools: our pottery should be able to withstand handling;
our huts should be able to withstand normal weather. As
science took on the form we know today during the Re-
naissance, 500 years ago Leonardo da Vinci studied ex-
perimentally the strength of wires—fiber bundles—as a
function of their length �Lund and Byrne, 2001�. System-
atic strength studies, but on beams, were also pursued by
Galileo Galilei 100 years later; Edme Mariotte �of gas
law fame� pressurized vessels until they burst in connec-
tion with the construction of a fountain at Versailles. For
some reason, mainstream physics moved away from
fracture and breakdown problems in the 19th century,
and it is only during the last 20 years that fracture prob-
lems have been studied within physics proper �see, e.g.,
Chakrabarti and Benguigui, 1997; Alava et al., 2006�.
The reason for this is most probably the advent of the
computer as a research tool, rendering problems that
were beyond the reach of systematic theoretical study
now accessible.

If we were to single out the most important contribu-
tion from the physics community with respect to fracture
phenomena, it must be the focus on fluctuations rather
than averages. What good is the knowledge of the aver-
age behavior of a system when we are faced with a single
sample that is liable to break down given the right fluc-
tuation? This review reflects this point of view, and
hence fluctuations play an important role throughout it.

Even though we may trace the study of fiber bundles
to Leonardo da Vinci, their modern story starts with the
work by Peirce �1926� already mentioned. In 1945,
Daniels published a seminal review cum research article
on fiber bundles, which still today must be regarded as
essential reading in the field �Daniels, 1945�. In this pa-
per, the fiber bundle model is treated as a problem of

statistics and the analysis is performed within this frame-
work rather than being treated within materials science.
The fiber bundle is viewed as a collection of elastic ob-
jects connected in parallel and clamped to a medium
that transmits forces between the fibers. The elongation
of a fiber is linearly related to the force it carries, up to
a maximum value. When this value is reached, the fiber
fails by no longer being able to carry any force. The
threshold value is assigned from some initially chosen
probability distribution and does not change thereafter.
When the fiber fails, the force it carried is redistributed.
If the clamps deform under loading, fibers closer to the
just-failed fiber will absorb more of the force compared
to those further away. If the clamps, on the other hand,
are rigid, the force is equally distributed to all the sur-
viving fibers. Daniels discussed this latter case. Typical
questions posed and answered in this paper would be
the average strength of a bundle of N fibers and also the
variance of the average strength of the entire bundle.
The present review takes the same point of view, dis-
cussing the fiber bundle model as a statistical model.
Only in Sec. V do we discuss the fiber bundle model in
the context of materials science with all the properties of
real materials considered. However, we have not at-
tempted to include any discussions of the many experi-
mental studies that have been performed on systems
where fiber bundles constitute the appropriate tool. This
is beyond the scope of this statistical-physics-based re-
view.

After introducing the fiber bundle model �Sec. II�, in
Sec. III we present the equal-load-sharing �ELS� model,
which was sketched just a few lines back. This seemingly
simple model is in fact extremely rich. For example, the
load at which catastrophic failure occurs is a second-
order critical point with essentially all the features usu-
ally seen in systems displaying such behavior. However,
in this case, the system is analytically tractable. In fact,
we believe that the equal-load-sharing fiber bundle may
be an excellent system for teaching second-order phase
transitions at the college level. In Sec. III.B, we discuss
the burst distribution, i.e., the statistics of simulta-
neously failing fibers during loading: When a fiber fails
and the force it was carrying is redistributed, one or
more other fibers may be driven above their failing
thresholds. In this equal-load-sharing model, the abso-
lute rigidity of the bar �transmitting forces among the
fibers� suppresses the stress fluctuations among the fi-
bers. As such, there is no apparent growth of the
�fluctuation-correlation� length scale. Hence, although
there are precise recursion relations and their linearized
solutions are available near the fixed point �see Sec. III�,
no straightforward application of the renormalization
group techniques �Fisher, 1974� has been made to ex-
tract the exponents through length scaling.

In Sec. IV local load sharing �LLS� is discussed. This
bit of added realism comes at the added cost that ana-
lytical treatment becomes much more difficult. There
are, still, a number of analytical results in the literature.
One may see intuitively how local load sharing compli-
cates the problem since the relative positions of the fi-
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bers now become important. Under global load sharing,
every surviving fiber gets the same excess force and,
hence, where they are does not matter. There are essen-
tially three local load-sharing models in the literature.
The first one dictates that the nearest surviving neigh-
bors of the failing fiber absorb its load. Then there are
“softer models” where the redistribution follows a
power law in the distance to the failing fiber. Last, there
is the model where the clamps holding the fibers are
elastic themselves, and this leads to nonequal redistribu-
tion of the forces.

Section V contains a review of the use of fiber bundle
models in applications such as materials science. We dis-
cuss fatigue, thermal failure, viscoelastic effects, and
precursors of global failure. We then go on to review the
large field of modeling fiber-reinforced composites. Here
fiber bundle models constitute the starting point of the
analysis, which, by its very nature, is rather complex
seen from the viewpoint of statistical physics. Last, we
review some applications of fiber bundle models in con-
nection with systems that initially would seem quite far
from the concept of a fiber bundle, such as traffic jams.

We end this review with a summary and a few con-
cluding remarks in Sec. VI.

II. FIBER BUNDLE MODELS

Imagine a heavy load hanging from a rigid anchor
point �say, at the roof� by a rope or a bundle of fibers. If
the load exceeds a threshold value, the bundle fails.
How does the failure proceed in the bundle? Unless all
the fibers in the bundle have identical breaking thresh-
olds �and that never happens in a real rope�, the failure
dynamics proceeds in a typical collective load transfer
way. One can assume that in this kind of situation the
load is equally shared by all the intact fibers in the
bundle. However, since the breaking threshold for each
of the fibers is different, some fibers fail before others
and, consequently, the load per surviving fiber increases
as it gets redistributed and shared equally by the rest.
This increased load per fiber may induce further break-
ing of some fibers and the avalanche continues, or it
stops if all the surviving fibers can withstand the redis-
tributed load per fiber. This collective or cooperative
failure dynamics and the consequent avalanches or
bursts are typical for failure in any many-body system.
The model captures the essential features of failure dur-
ing fracture propagation �recorded by acoustic emis-
sions�, earthquake avalanches �main and aftershocks�,
traffic jams �due to dynamic clustering�, etc.

The model was first introduced in 1926 by Peirce
�1926� in the context of textile engineering. Since then it
has been modified a little and investigated, mainly nu-
merically, with various realistic fiber threshold distribu-
tions by the engineering community �Daniels, 1945;
Coleman, 1957a; Harlow and Phoenix, 1978; Phoenix
and Smith, 1983�. Starting from the late 1980s, physicists
took interest in the avalanche distribution in the model
and in its dynamics �Sornette, 1989, 1992; Newman and
Gabrielov, 1991; Hemmer and Hansen, 1992; Gomez

et al., 1993; Lee, 1994; Andersen et al., 1997; Kloster et
al., 1997; Zapperi et al., 1997; Kun et al., 2000; Pradhan et
al., 2002�. A recursive dynamical equation was set up for
the equal-load-sharing version �da Silveira, 1999;
Pradhan and Chakrabarti, 2001� and the dynamic critical
behavior is now solved exactly �Pradhan et al., 2002;
Bhattacharyya et al., 2003; Pradhan and Hemmer, 2007�.
In addition to the extensive numerical results �Hansen
and Hemmer, 1994b; Zhang and Ding, 1994� on the ef-
fect of short-range fluctuations �local load-sharing
cases�, some progress with analytical studies �Harlow,
1985; Harlow and Phoenix, 1991; Gomez et al., 1993;
Duxbury and Leath, 1994; Kloster et al., 1997� has also
been made.

There are a large number of experimental studies of
various materials and phenomena that have been ana-
lyzed successfully within the framework of the fiber
bundle model. For example, Layton and Sastry �2004�
used the fiber bundle model to propose explanations for
changes in fibrous collagen and its relation to neuropa-
thy in connection with diabetes. Toffoli and Lehman
�2001� proposed a method to monitor the structural in-
tegrity of fiber-reinforced ceramic-matrix composites us-
ing electrical resistivity measurements. The basic idea
here is that, when the fibers in the composite themselves
fail rather than just the matrix in which they are embed-
ded, the structure is about to fail. The individual fiber
failures are recorded through changes in the electrical
conductivity of the material. Acoustic emission, the
crackling sounds emitted by materials as they are
loaded, provides yet another example where fiber
bundle models play an important role �see, e.g., Nechad
et al. �2005��.

III. EQUAL-LOAD-SHARING MODEL

The simplest and the oldest version of the model is
the ELS model, in which the load previously carried by a
failed fiber is shared equally by all the remaining intact
fibers in the system. As the applied load is shared glo-
bally, this model is also known as the global load-sharing
�GLS� model or the democratic fiber bundle model. Be-
cause of its consequent mean-field nature, some exact
results could be extracted for this model and this was
demonstrated by Daniels �1945� some 60 years ago. The
typical relaxation dynamics of this model has been
solved recently, and has established a robust critical be-
havior �Pradhan et al., 2002; Bhattacharyya et al., 2003;
Pradhan and Hemmer, 2007�. It may be mentioned at
the outset that the ELS or GLS model does not allow
for spatial fluctuations �due to the absolute rigidity of
the platform in Fig. 1� and hence such models belong to
the mean-field category of critical dynamics �see, e.g.,
Stanley �1987� and Sornette �2000��. Fluctuations in
breaking time or in avalanche statistics �due to random-
ness in fiber strengths� are of course possible in such
models and are discussed in this section.

A bundle can be loaded in two different ways: strain-
controlled and force controlled. In the strain-controlled
method, at each step the whole bundle is stretched until
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the weakest fiber fails. Clearly, when the number of fi-
bers N is very large, strain is increased by an infinitesi-
mal amount at each step until complete breakdown and
therefore the process is considered as a quasistatic way
of loading. On the other hand, in the force-controlled
method, the external force �load� on the bundle is in-
creased by the same amount at each step until the
breakdown. The basic difference between these two
methods is that the first method ensures the failure of a
single fiber �the weakest one among the intact fibers� at
each loading step, while in the second method some-
times none of the fibers fail and sometimes more than
one fails in one loading step.

Let x denote the strain of the fibers in the bundle.
Assuming the fibers to be linearly elastic up to their
respective failure points �with unit elastic constant�, we
can represent the stresses on each of the surviving fibers
by the same quantity x. The strength �or threshold� of a
fiber is usually determined by the stress value x it can
bear and beyond which it fails. We therefore denote the
strength �threshold� distribution of the fibers in the
bundle by p�x� and the corresponding cumulative distri-
bution by P�x�=�0

xp�y�dy. Two popular examples of
threshold distributions are the uniform distribution

P�x� = �x/xr for 0� x� xr

1 for x� xr,
� �1�

and the Weibull distribution

P�x� = 1 − exp�− �x/xr��� . �2�

Here xr is a reference threshold, and the dimensionless
number � is the Weibull index �Fig. 2�.

In strain-controlled loading, at a strain x, the total
force on the bundle is x times the number of intact fi-
bers. The expected or average force at this stage is
therefore �Sornette, 1989, 1992; Hemmer and Hansen,
1992�

F�x� = Nx�1 − P�x�� . �3�

The maximum Fc of F�x� corresponds to the value xc for
which dF /dx vanishes,

1 − P�xc� − xcp�xc� = 0. �4�

Here the failure process is basically driven by fluctua-
tions and can be analyzed using extreme order statistics
�Sornette, 1989, 1992; Hemmer and Hansen, 1992;
Kloster et al., 1997�.

In the force-controlled method, if force F is applied
on a bundle having N fibers, when the system reaches an
equilibrium, the strain or effective stress x is �see Fig. 1�

x�F� =
F

N�1 − P�x��
. �5�

Therefore, at equilibrium, Eqs. �3� and �5� are identical.
It is possible to construct recursive dynamics �da Sil-
veira, 1998, 1999; Pradhan and Chakrabarti, 2001� of the
failure process for a given load and the fixed-point solu-
tions explore the average behavior of the system at the
equilibrium state.

A. Average behavior

Figure 1 shows a static fiber bundle model in the ELS
model where N fibers are connected in parallel to each
other �clamped at both ends� and a force is applied at
one end. At the first step all fibers that cannot withstand
the applied stress break. Then the stress is redistributed
on the surviving fibers, which compels further fibers to
break. This starts an iterative process that continues un-
til an equilibrium is reached or all fibers fail. The aver-
age behavior is manifested when the initial load is mac-
roscopic �very large N�.

F

x

FIG. 1. A fiber bundle model having N parallel fibers. The
original position of the rigid platform on which force has been
applied is indicated. All the fibers are assumed to have the
same elastic constant �normalized to unity here� until they
break, while the breaking strengths of these fibers are assumed
to be randomly dispersed. As the bundle becomes strained �x
�0�, some weaker fibers �having lower stress or strain capac-
ity� fail, and the number of intact fibers decreases from its
starting value N. Consequently, the stress on them �or the
strain� increases due to the redistribution or transfer of loads
from the failing fibers. Some of these fibers may fail further as
they cannot support this extra redistributed load. The process
stops if there is no further failure, and the bundle will show
nonlinear elastic response �although each fiber has linear elas-
tic behavior until breaking�. Otherwise, the bundle fails when
the stress concentration on the fibers �due to the dynamic
stress redistribution� becomes so high that none of the fibers
can withstand that.

x

p(
x)

xr x

p(
x)

xr(b)(a)

FIG. 2. Threshold distributions: �a� The uniform distribution
and �b� the Weibull distribution with �=5 �solid line� and 10
�dotted line�.
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1. Recursive breaking dynamics

The breaking dynamics can be represented by recur-
sion relations �da Silveira, 1999; Pradhan and Chakra-
barti, 2001� in discrete steps. Let Nt be the number of
fibers that survive after step t, where t indicates the num-
ber of stress redistribution steps. Then one can write �da
Silveira, 1999�

Nt+1 = N�1 − P	 F

Nt

� . �6�

Now we introduce �=F /N, the applied stress, and
Ut=Nt /N, the surviving fraction of total fibers. The ef-
fective stress after step t becomes xt=� /Ut and after t
+1 steps the surviving fraction of total fibers is Ut+1=1
−P�xt�. Therefore we can construct the following recur-
sion relations �Pradhan and Chakrabarti, 2001; Pradhan
et al., 2002�:

xt+1 =
�

1 − P�xt�
, x0 = � , �7�

and

Ut+1 = 1 − P��/Ut�, U0 = 1. �8�

At equilibrium Ut+1=Ut�U* and xt+1=xt�x*. These
equations �Eqs. �7� and �8�� can be solved at and around
the fixed points for the particular strength distribution
p�x�.

2. Solution of the dynamics: Critical behavior

We now choose the uniform density of fiber strength
distribution �Eq. �1�� up to the cutoff xr=1. Then the
cumulative distribution becomes P�� /Ut�=� /Ut. There-
fore from Eqs. �7� and �8� we can construct a pair of
recursion relations,

xt+1 =
�

1 − xt
�9�

and

Ut+1 = 1 −
�

Ut
. �10�

These nonlinear recursion equations are somewhat char-
acteristic of the dynamics of fiber bundle models and
such dynamics can be obtained in many different ways.
For example, the failed fraction 1−Ut+1 at step t+1 is
given by the fraction F /NUt=� /Ut of the load shared by
the intact fibers at step t, and for the uniform distribu-
tion of thresholds �Fig. 2�a��, one readily gets Eq. �10�.

At the fixed point the above relations take the qua-
dratic forms

x*2 − x* + � = 0 �11�

and

U*2 − U* + � = 0, �12�

with the solutions

x*��� = 1
2 ± ��c − ��1/2 �13�

and

U*��� = 1
2 ± ��c − ��1/2. �14�

Here �c= 1
4 is the critical value of applied stress beyond

which the bundle fails completely. Clearly, for the effec-
tive stress �Eq. �13�� solution, that with a ��� sign is the
stable fixed point and that with a ��� sign is the unstable
fixed point, whereas for a fraction of unbroken fibers
�Eq. �14��, it is just the opposite. Now the difference
U*���−U*��c� behaves like an order parameter signaling
partial failure of the bundle when it is nonzero �posi-
tive�, although unlike conventional phase transitions it
does not have a real-valued existence for ���c. Here

O�U*��� − U*��c� = ��c − ���, � = 1
2 . �15�

Figure 3 shows the variation of x*, U*, and O with the
externally applied stress value �. One can also obtain
the breakdown susceptibility �, defined as the change of
U*��� due to an infinitesimal increment of the applied
stress �:

� = 
dU*���
d�

 = 1

2
��c − ��−	, 	 =

1
2

. �16�

Such a divergence in � has already been reported �Zap-
peri et al., 1997, 1999a; da Silveira, 1999; Moreno et al.,
2000�.

To study the dynamics away from criticality ��→�c
from below�, the recursion relation �Eq. �10�� can be re-
placed by a differential equation

−
dU

dt
=

U2 − U + �

U
. �17�

Close to the fixed point, Ut���=U*���+
U �where

U→0� and this gives

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2 0.25 0.3

σ

U*

x*O

FIG. 3. �Color online� Variation of effective stress �x*�, frac-
tion of unbroken fibers �U*�, and the order parameter �O� with
the applied stress � for a bundle with uniform distribution �Eq.
�1�� of fiber strengths.
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U = Ut��� − U*��� � exp�− t/�� , �18�

where �= 1
2 �

1
2 ��c−��−1/2+1�. Therefore near the critical

point,

� � ��c − ��−
, 
 = 1
2 . �19�

At the critical point ��=�c�, a dynamic critical behavior
has been observed in the relaxation of the failure pro-
cess to the fixed point. From the recursion relation �Eq.
�10�� it can be easily verified that the fraction Ut��c� fol-
lows a simple power-law decay:

Ut =
1
2
	1 +

1

t + 1

 , �20�

starting from U0=1. For large t �t→��, this reduces to
Ut−1/2� t−�, �=1, indicating critical slowing down,
which is a robust characterization of the critical state.

3. Universality class of the model

The critical properties obtained above are for the uni-
form threshold distribution, and the natural question is
how general the results are. To check the universality of
the ELS model, two other types of fiber strength distri-
butions can be easily considered �Bhattacharyya et al.,
2003�: a linearly increasing and a linearly decreasing
density distribution.

For linearly increasing density of fiber strengths in the
interval �CL ,CR�, the normalized density function and
the cumulative distribution are given by �see Fig. 4�

p�x� = �
0, 0� x� CL

2�x − CL�
�CR − CL�2

, CL� x� CR

0, CR� x
� �21�

and

P�x� = �
0, 0� x� CL

	 x − CL

CR − CL

2, CL� x� CR

1, CR� x .
� �22�

Now we introduce the transformed quantities:

�0 =
�

CR − CL
, �L =

CL

CR − CL
, �t =

xt

CR − CL
. �23�

For an initial stress CL���CR �or �L��0��L+1�
along with the cumulative distribution given by Eq. �22�,
the recursion relations �7� and �8� appear as

�t+1 =
�0

1 − ��t − �L�2
�24�

and

Ut+1 = 1 − 	�0

Ut
− �L
2, U0 = 1. �25�

The fixed-point equations �11� and �12� now assume cu-
bic form:

��*�3 − 2�L��*�2 + ��L
2 − 1��* + �0 = 0, �26�

where �*=x* / ��R−�L�, and

�U*�3 + ��L
2 − 1��U*�2 − �2�L�0�U* + �0

2 = 0. �27�

Consequently each of the recursions �24� and �25� has
three fixed points—only one in each case is found to be
stable. For the redistributed stress the fixed points are

�1
* =

2
3
�L + 2K0 cos

�

3
, �28�

�2
* =

2
3
�L − K0 cos

�

3
+ �3K0 sin

�

3
, �29�

�3
* =

2
3
�L − K0 cos

�

3
− �3K0 sin

�

3
, �30�

where

K0 = 1
3
�3 + �L

2 �31�

and

cos� =
�L�9 − �L

2 � − 27�0/2

�3 + �L
2 �3/2 . �32�

Similarly, for the surviving fraction of fibers the fixed
points are

U1
* =

1 − �L
2

3
+ 2J0 cos

�

3
, �33�

U2
* =

1 − �L
2

3
− J0 cos

�

3
+ �3J0 sin

�

3
, �34�

0

1

2

3

10/3

0 L 0.5 R 1

p(
x)

x
C C

2
C C-

R L

(a)

0

1

2

3

0 L 0.5 R 1

P
(x

)

x
C C

(b)

FIG. 4. Increasing threshold distributions: �a� The density
function p�x� and �b� the cumulative distribution P�x� of ran-
dom fiber strengths x distributed with linearly increasing den-
sity in the interval �CL ,CR�. In the particular instance shown
CL=0.15 and CR=0.75.
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U3
* =

1 − �L
2

3
− J0 cos

�

3
− �3J0 sin

�

3
, �35�

where

J0 = 1
3
���L

2 − 1�2 + 6�L�0 �36�

and

cos� =
�1 − �L

2 ����L
2 − 1�2 + 9�L�0� − 27�0

2/2

���L
2 − 1�2 + 6�L�0�3/2 . �37�

Of these fixed points �2
* and U1

* are stable whereas �1
* ,�3

*

and U2
* ,U3

* are unstable �Fig. 5�.
The discriminants of the cubic equations �26� and �27�

become zero at a critical value �c �or �c� of the initial
applied stress,

�c =
�c

�R − �L
= 2

27��L�9 − �L
2 � + �3 + �L

2 �3/2� , �38�

and then each of the quantities � and U has one stable
and one unstable fixed point. The critical point has the
trivial lower bound �c�CL. The expression of �c in Eq.
�38� shows that it approaches the lower bound as �L
→�, which happens for finite values of CL and CR when
�CR−CL�→0. It follows that the upper bound for the
critical point is also trivial: �c�CR. At the critical point
we get from Eqs. �32� and �37�,

cos�crit = cos�crit = − 1 �39�

or

�crit =�crit = � . �40�

The stable fixed points �2
* and U1

* are positive real
valued when �0��c; thus the fiber bundle always

reaches a state of mechanical equilibrium after partial
failure under an initial applied stress �0��c. For �
��c �or �0��c�, �2

* and U1
* are no longer real valued

and the entire fiber bundle eventually breaks down. The
transition from the phase of partial failure to the phase
of total failure takes place when � just exceeds �c and
the order parameter for this phase transition is defined
as in Eq. �15�:

O�U1
* − U1-crit

* . �41�

Close to the critical point but below it, we can write,
from Eqs. �37� and �40�, that

� −�� sin��
3�3�c�3 + �L

2 �3/4��c − �0�1/2

���L
2 − 1�2 + 6�L�c�3/2 �42�

and the expressions for the fixed points in Eqs. �33� and
�34� reduce to the forms

U1
* �U1-crit

* +
�c�3 + �L

2 �3/4

��L
2 − 1�2 + 6�L�c

��c − �0�1/2 �43�

and

U2
* �U2-crit

* −
�c�3 + �L

2 �3/4

��L
2 − 1�2 + 6�L�c

��c − �0�1/2, �44�

where

U1-crit
* = U2-crit

* =
1 − �L

2

3
+

1
3
���L

2 − 1�2 + 6�L�c �45�

is the stable fixed-point value of the surviving fraction of
fibers under the critical initial stress �c. Therefore, fol-
lowing the definition of the order parameter in Eq. �41�
we get from the above equation,

O =
�c�3 + �L

2 �3/4

��L
2 − 1�2 + 6�L�c

��c − �0�1/2, �0 → �c − . �46�

When the transformed variable �0 is replaced by the
original �, Eq. �46� shows that the order parameter goes
to zero continuously following the same power law as in
Eq. �15� for the previous case when � approaches its
critical value from below.

Similarly the susceptibility diverges by the same
power law as in Eq. �16� on approaching the critical
point from below,

� = 
dU1
*

d�

 � ��c − �0�−1/2, �0 → �c − . �47�

The critical dynamics of the fiber bundle is given by
the asymptotic closed-form solution of the recursion
�Eq. �25�� for �0=�c:

Ut − U1-crit
* � � �U1-crit

* �4

3��c�2 − 2�L�cU1-crit
* �1t , t → � ,

�48�

where �c and U1-crit
* are given in Eqs. �38� and �45�, re-

spectively. This shows that the asymptotic relaxation of
the surviving fraction of fibers to its stable fixed point
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FIG. 5. The fixed points of �a� the redistributed stress and �b�
the surviving fraction of fibers for the distribution of fiber
strengths shown in Fig. 4. In each part the curve for the stable
fixed points is shown by a bold solid line and those for the
unstable fixed points are shown by bold broken lines. We have
CL=0.15 and CR=0.75, so that �c=0.3375; the position of the
critical point is marked by an arrowhead. For ��CL the fixed
points are trivial: since there are no broken fibers x*=� and
U*=U0=1.
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under the critical initial stress has the same �inverse of
step number� form as found in the case of uniform den-
sity of fiber strengths �Eq. �20��.

We now consider a fiber bundle with a linearly de-
creasing density of fiber strengths in the interval
�CL ,CR�. The normalized density function and cumula-
tive distribution �see Fig. 6� are

p�x� = �
0, 0� x� CL

2�CR − x�
�CR − CL�2

, CL� x� CR

0, CR� x
� �49�

and

P�x� = �
0, 0� x� CL

1 − 	 CR − x

CR − CL

2, CL� x� CR

1, CR� x .
� �50�

With the transformed quantities defined in Eq. �23�
the recurrences �Eqs. �7� and �8�� for CL���CR appear
as

�t+1 =
�0

�1 + �L − �t�2
�51�

and

Ut+1 = 	1 + �L −
�0

Ut

2, U0 = 1. �52�

The fixed-point equations are again cubic:

��*�3 − 2�1 + �L���*�2 + �1 + �L�2�* − �0 = 0, �53�

�U*�3 − �1 + �L�2�U*�2 + 2�1 + �L��0U* − �0
2 = 0, �54�

and they have the following solutions:

�1
* =

2
3
�1 + �L� + 2K0� cos

��

3
, �55�

�2
* =

2
3
�1 + �L� − K0� cos

��

3
+ �3K� sin

��

3
, �56�

�3
* =

2
3
�1 + �L� − K0� cos

��

3
− �3K� sin

��

3
, �57�

where

K0� =
1 + �L

3
, �58�

cos�� =
27�0

2�1 + �L�3
− 1, �59�

and

U1
* =

�1 + �L�2

3
+ 2J0� cos

��

3
, �60�

U2
* =

�1 + �L�2

3
− J0� cos

��

3
+ �3J0� sin

��

3
, �61�

U3
* =

�1 + �L�2

3
− J0� cos

��

3
− �3J0� sin

��

3
, �62�

where

J0� = 1
3
��1 + �L�4 − 6�1 + �L��0, �63�

cos�� =
�1 + �L�3��1 + �L�3 − 9�0� + 27�2/2

��1 + �L�4 − 6�1 + �L��0�3/2 . �64�

Here �3
* and U1

* are stable fixed points while the rest are
unstable �Fig. 7�.

The discriminants of Eqs. �53� and �54� show that the
critical applied stress in this case, �c� �or �c��, is given by
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FIG. 6. Decreasing threshold distribution: �a� The density
function p�x� and �b� the cumulative distribution P�x� of fiber
strengths x distributed with linearly decreasing density in the
interval �CL ,CR�. Similar to the cases shown in Fig. 4 we have
CL=0.15 and CR=0.75 in this example also.
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FIG. 7. The fixed points of �a� the redistributed stress and �b�
the surviving fraction of fibers for the distribution of fiber
strengths shown in Fig. 6. The curve for the stable fixed points
is shown by a bold solid line and those for the unstable fixed
points are shown by bold broken lines. In this example too we
have CL=0.15 and CR=0.75; here �c=0.173 611, marked by an
arrowhead. The critical point is located lower than that in Fig.
5 due to an abundance of fibers of lower strengths compared to
the previous case.
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�c� =
�c�

CR − CL
=

4
27
�1 + �L�3 �65�

or

�c� =
4CR

3

27�CR − CL�2
. �66�

In order to satisfy the condition �c��CL, it follows from
Eq. �66� that CR�3CL, which imposes an upper bound
�c��CR /3.

As before, for �0��c� the stable fixed points are real
valued, which indicates that only partial failure of the
fiber bundle takes place before a state of mechanical
equilibrium is reached; for �0��c� the fixed points are
not real and a phase of total failure exists. The order
parameter O of the transition is given by the definition
in Eq. �41�.

For �0=�c� we get the following properties from Eqs.
�59�–�61� and �64�:

U1-crit
* = U2-crit

* = 4
9 �1 + �L�2, �67�

cos�crit� = − 1 or �crit� = � , �68�

and

cos�crit� = 1 or �crit� = 0. �69�

Comparing Eqs. �69� and �68� with Eq. �40� we see that
the critical values of � and �� are the same whereas
those of � and �� differ by � radians.

Near the critical point, but below it, we get from Eqs.
�60� and �61�

U1
* �U1-crit

* + 4
3 �1 + �L�1/2��c� − �0�1/2 �70�

and

U2
* �U2-crit

* − 4
3 �1 + �L�1/2��c� − �0�1/2. �71�

Therefore, by the definition of the order parameter in
Eq. �41� and that of the susceptibility in Eq. �47�, we get
in this case O� ��c�−�0�1/2 and �� ��c�−�0�−1/2, �0→�c�−.
These power laws have the same exponents as the cor-
responding ones in the previous cases and differ from
those only in the critical point and the critical amplitude.

At the critical point the asymptotic relaxation of the
surviving fraction of fibers to its stable fixed point �ob-
tained as an asymptotic solution to Eq. �52�� is again
found to be a power-law decay similar to Eqs. �20� and
�48�:

Ut − U1-crit
* �

4
3

U1-crit
*

t
, t → �

�
16
27
�1 + �L�2

1

t
. �72�

The two density functions �Eqs. �21� and �49�� can be
transformed from one to the other by a reflection on the
line x= �CL+CR� /2 �compare Figs. 4�a� and 6�a��. But
the fixed-point equations and their solutions do not have

this symmetry. This is because the density function p�x�
does not appear directly in the recursion relations for
the dynamics. It is the cumulative distribution P�x�
which appears in the recursion relations. Equations �22�
and �50� show that the cumulative distributions of these
two cases are not mutually symmetric about any value of
the threshold stress x �compare Figs. 4�b� and 6�b��.
However, a certain relation exists between the critical
values of the applied stress for a special case of these
two models: if CL=0, we get from Eqs. �38� and �65� that
�c /CR=�4/27 and �c� /CR=4/27, respectively; therefore
we have �c� /CR= ��c /CR�2.

The critical behavior of the models discussed here
shows that the power laws found here are independent
of the form of the cumulative distribution P. The three
threshold distributions studied here have a common fea-
ture: the function x*�1−P�x*�� has a maximum which
corresponds to the critical value of the initial applied
stress. All threshold distributions having this property
are therefore expected to lead to the same universality
class as the three studied here. If the threshold distribu-
tion does not have this property, we may not observe a
phase transition at all. For example, consider a fiber
bundle model with P�x�=1−1/x, x�1. Here x*�1
−P�x*��=1 and the evolution of the fiber bundle is given
by the recursion relation Ut+1=Ut /�, which implies that
there is no dynamics at all for �=1 and an exponential
decay to complete failure, Ut= ���−t, for ��1. There are
no critical phenomena and therefore no phase transi-
tion. However, this general conclusion may not be true
for finite-sized bundles �McCartney and Smith, 1983�.

Thus the ELS fiber bundles �for different fiber thresh-
old distributions� show a phase transition with a well-
defined order parameter, which shows similar power-law
variation in the way the critical point is approached. For
all cases discussed here, the susceptibility and relaxation
time diverge following similar power laws and the fail-
ure processes show similar critical slowing at the critical
point. This strongly suggests that the critical behavior is
universal, which we now prove through general argu-
ments �Hemmer et al., 2006�.

When an iteration is close to the fixed point, we have
for the deviation


Ut+1 = P	 �
U*

 − P	 �

U* + 
Ut

 = 
Ut

�

U*2p��/U*�

�73�

to lowest order in 
Ut. This guarantees an exponential
relaxation to the fixed point, 
Ut�e−t/�, with parameter

� = �ln	 U*2

�p��/U*�
�−1

. �74�

Criticality is determined by the extremum condition �4�,
which by the relation �8� takes the form

Uc
2 = �p��/Uc� .

Thus �=� at criticality. To study the relaxation at criti-
cality we must expand Eq. �73� to second order in 
Ut
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since to first order we simply get the useless equation

Ut+1=
Ut. To second order we obtain


Ut+1 = 
Ut − C
Ut
2,

with a positive constant C. This is satisfied by


Ut =
1

Ct
+ O�t−2� .

Hence, in general, the dominating critical behavior for
the approach to the fixed point is a power law with �
=1. The values �=	=
= 1

2 can be shown to be conse-
quences of the parabolic maximum of the load curve at
criticality. Thus all threshold distributions for which the
macroscopic strength function has a single parabolic
maximum are in this universality class.

It is clear that at the critical stress value �c ELS fiber
bundles show a phase transition from a partially to a
completely broken state. What is the order of this phase
transition? Zapperi et al. �1997, 1999a, 1999b� consid-
ered the fraction of unbroken fibers as the order param-
eter and as it has a discontinuity at the critical stress
value, they suggested, after a mean-field analysis, that it
can be seen as a first-order phase transition similar to
spinodal instability �Monette, 1994�. The additional rea-
son for identifying the transition at �=�c as a first-order
spinodal point had been �Kun et al., 2000� that, in the
presence of short-range interactions �as in LLS, see Sec.
IV�, the transition becomes discontinuous and first-
order-like. It is indeed hard to identify continuously
changing order parameter there. We, however, believe
the transition in ELS to be second order. Chronologi-
cally, a little later, a new parameter was identified
�Moreno et al., 2000�: the branching ratio ���, which is
defined as the probability of triggering further breaking
given an individual failure. The branching ratio continu-
ously approaches �Fig. 8� the value 1 at the critical stress
��c� starting from zero �for very small ��. It also shows a
power-law variation: 1−�� ��c−��	, with 	=1/2. There-
fore 1−� acts as the order parameter, showing a continu-
ous transition at the critical point, signaling a second-
order phase transition. As mentioned, Pradhan and
Chakrabarti �2001� and Pradhan et al. �2002� considered
the difference between the fraction of unbroken fibers at

any � and at �c as the order parameter �O�; it shows a
similar continuous variation with the applied stress: O
� ��c−��	, with 	=1/2. Apart from this, the susceptibil-
ity and relaxation time diverge at the critical point fol-
lowing power laws having universal exponent values
�Pradhan et al., 2002; Bhattacharyya et al., 2003�. One
may therefore conclude that at the critical point the ELS
fiber bundles show a second-order phase transition with
robust critical behavior as discussed here.

Finally, we compare the ELS fiber bundle model stud-
ied here with the mean-field Ising model. Though the
order parameter exponent �equal to 1

2 � of this model is
identical to that of the mean-field Ising model, the two
models are not in the same universality class. The sus-
ceptibilities in these models diverge with critical expo-
nents 1

2 and 1, respectively, on approaching the critical
point. The dynamical critical exponents are not the same
either: in this fiber bundle model the surviving fraction
of fibers under the critical applied stress decays toward
its stable fixed point as t−1, whereas the magnetization of
the mean-field Ising model at the critical temperature
decays to zero as t−1/2.

4. Relaxation behavior and critical amplitude ratio

When an external load F is applied to a fiber bundle,
the iterative failure process continues until all fibers fail
or an equilibrium situation with a nonzero bundle
strength is reached. Since the number of fibers is finite,
the number of steps tf in this sequential process is finite.
Following Pradhan and Hemmer �2007�, we now deter-
mine how tf depends on the applied stress �.

The state of the bundle can be characterized as pre-
critical or postcritical depending on the stress value rela-
tive to the critical stress �c=Fc /N above which the
bundle collapses completely. The function tf��� that we
now focus on exhibits critical divergence when the criti-
cal point is approached from either side. As an example,
we show in Fig. 9 the tf��� obtained by simulation for a
uniform threshold distribution.

FIG. 8. Branching ratio as a function of applied stress for three
different � �Weibull index�. From Moreno et al., 2000.
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FIG. 9. Number of relaxation steps tf��� for a fiber bundle with
a uniform threshold distribution �Eq. �1��. Here �c=0.25. The
figure is based on 1000 samples, each with N=106 fibers.

508 Pradhan, Hansen, and Chakrabarti: Failure processes in elastic fiber bundles

Rev. Mod. Phys., Vol. 82, No. 1, January–March 2010



We study the stepwise failure process in the bundle
when a fixed external load F=N� is applied. Let Nt be
the number of intact fibers at step number t, with N0
=N. We want to determine how Nt decreases until the
degradation process stops. When N is a large number,
we recall the basic recursion �Eq. �8�� to formulate the
breaking dynamics,

Ut+1 = 1 − P��/Ut� , �75�

where Ut=Nt /N is considered as a continuous variable.

a. Postcritical relaxation

We study first the postcritical situation ���c, with
positive values of �=�−�c, and start with the simplest
one, uniform threshold distribution �1� with the critical
point at xc=1/2, �c=1/4. Then the basic recursion rela-
tion �75� takes the form

Ut+1 = 1 −
�

Ut
= 1 −

1
4

+ �

Ut
. �76�

This nonlinear iteration can be transformed into a linear
relation. We first introduce Ut=

1
2 −yt

�� into Eq. �76�,
with the result

yt+1 − yt

1 + ytyt+1
= 2�� . �77�

Then we set yt=tan vt, which gives

2�� =
tan vt+1 − tan vt

1 + tan vt+1 tan vt
= tan�vt+1 − vt� . �78�

Hence we get vt+1−vt=tan−1�2���, with the solution

vt = v0 + t tan−1�2��� . �79�

In the original variable the solution reads

Ut =
1
2

− �� tan�tan−1� 1
2

− U0

�� � + t tan−1�2���� �80�

=
1
2

− �� tan�− tan−1�1/2��� + t tan−1�2���� , �81�

where U0=1 has been used.
Equation �76� shows that when Ut obtains a value in

the interval �0,��, the next iteration gives complete
bundle failure. Taking Ut=� as the penultimate value
gives a lower bound tf

l for the number of iterations, while
using Ut=0 in Eq. �81� gives an upper bound tf

u. Adding
unity for the final iteration, Eq. �81� gives the bounds

tf
u��� = 1 +

2 tan−1�1/2���
tan−1�2���

�82�

and

tf
l��� = 1 +

tan−1�	1
4

− �
���� + tan−1�1/2���

tan−1�2���
.

�83�

Figure 10�a� shows that these bounds nicely embrace the
simulation results.

Note that both the upper and lower bounds behave as
�−1/2 for small �. A rough approximation near the critical
point is

tf��� � �+�� − �c�−1/2, �84�

with �+=� /2.
Due to the inherent simplicity, uniform distribution is

somewhat easy to analyze. Therefore we now discuss
how to handle other distributions. We start with a
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FIG. 10. Simulation results with postcritical stress for �a� the uniform threshold distribution �Eq. �1�� and �b� the Weibull distri-
bution �Eq. �2�� with index 5. The graphs are based on 10 000 samples with N=106 fibers in each bundle. Open circles represent
simulation data and dashed lines are the theoretical estimates, Eqs. �82� and �83� in �a� and Eq. �92� in �b�.
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Weibull distribution �Eq. �2�� with index 5. The critical
parameters for this case are xc=5−1/5=0.724 78 and �c
= �5e�−1/5=0.593 399 4.

The interesting values of the external stress are close
to �c because for large supercritical stresses the bundle
breaks down almost immediately. For � slightly above �c
the iteration function

Ut+1 = f�Ut� = 1 − P��/Ut� = e−��/Ut�
5

�85�

takes the form shown in Fig. 11.
The iteration function is almost tangent to the reflec-

tion line Ut+1=Ut and a long channel of width propor-
tional to � appears. The dominating number of iterations
occurs within this channel �see Fig. 11�. The channel wall
formed by the iteration function is almost parabolic and
is well approximated by a second-order expression,

Ut+1 = Uc + �Ut − Uc� + a�Ut − Uc�2 + b��c − �� . �86�

Here Uc=e−1/5 is the fixed point, Ut+1=Ut, of the itera-
tion at �=�c. With u= �U−Uc� /b and �=�−�c Eq. �86�
takes the form

ut+1 − ut = − Aut
2 − � , �87�

with A=ab. In the channel u changes very slowly, so we
may treat the difference equation as a differential equa-
tion,

du

dt
= − Au2 − � , �88�

with the solution

t�A� = − tan−1�u�A/�� + const. �89�

Thus

te − ts = �A��−1/2�tan−1�us
�A/�� − tan−1�ue

�A/��� �90�

is the number of iterations in the channel, starting with
us, ending with ue. This treatment is general and can be
applied to any threshold distribution near criticality. Al-
though the vast majority of the iterations occur in the

channel, there are a few iterations at the entrance and
exit of the channel that may require attention in special
cases. The situation is similar to type-I intermittency in
dynamical systems, but in our case the channel is tra-
versed only once.

For the Weibull distribution the expansion �Eq. �86��
has the precise form

Ut = e−��/U�5 � e−1/5 + �U − Uc� −
5
2

e1/5�U − Uc�2

− 51/5�� − �c� , �91�

where Uc=e−1/5, a= 5
2e1/5, b=51/5, and A= 5

2 �5e�1/5. For
completeness we must also consider the number of itera-
tions needed to reach the entrance to the channel. It is
not meaningful to use the quadratic approximation �Eq.
�91�� where it is not monotonically increasing, i.e., for
U�Um=Uc+1/ �2a�= 6

5e−1/5�0.98. Thus we take Us
=Um as the entrance to the channel and add one extra
iteration to arrive from U0=1 to the channel entrance.
„Numerical evidence for this extra step: for �=�c the
iteration �Eq. �85�� starts as follows: U0=1.00, U1=0.93,
U2=0.90, while using the quadratic function with U0
=Um=0.98 as the initial value, we get after one step U1
=0.90, approximately the same value that the exact it-
eration reaches after two steps.… With Ue=0 we obtain
from Eq. �90�, in the Weibull case, the estimate

tf = 1 + �A��−1/2�tan−1�e−1/5�A/�/5b�

+ tan−1�e−1/5�A/�/b�� , �92�

with A= 5
2 �5e�1/5 and b=51/5.

Near the critical point Eq. �92� has the asymptotic
form

tf � ��A��−1/2 = �+�� − �c�−1/2, �93�

with �+=��2/5�1/2�5e�−1/10. The critical index is the same
as for the uniform threshold distribution. The theoreti-
cal estimates give an excellent representation of the
simulation data �see Fig. 10�b��.

b. Precritical relaxation

We now assume the external stress to be precritical,
���c, and introduce the positive parameter �=�c−� to
characterize the deviation from the critical point. Start-
ing with uniform threshold distribution and introducing
Ut=

1
2 +�� /zt and �= 1

4 −� into Eq. �76�, one gets

2�� =
zt+1 − zt

1 − zt+1zt
. �94�

In this case we set zt=tanh wt, which gives

2�� =
tanh wt+1 − tanh wt

1 − tanh wt+1 tanh wt
= tanh�wt+1 − wt� . �95�

Thus wt+1−wt=tanh−1�2���, i.e.,

wt = w0 + t tanh−1�2��� . �96�

Starting with U0=1, we obtain z0=2�� and hence

0.7

0.75

0.8

0.85

0.9

0.95

1

0.7 0.75 0.8 0.85 0.9 0.95 1

U
t+

1

U
t

FIG. 11. The iteration function f�U� for the Weibull distribu-
tion �Eq. �2�� with index 5. Here �=0.6, slightly greater than
the critical value �c=0.593 399 4.
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wt = �1 + t�tanh−1�2��� . �97�

This corresponds to

Ut =
1
2

+
��

tanh��1 + t�tanh−1�2����
�98�

in the original variable.
Apparently Ut reaches a fixed point U*= 1

2 +�� after
an infinite number of iterations. However, for a bundle
with a finite number of fibers, only a finite number of
steps is needed for the iteration to arrive at a fixed point
N*, which is �Pradhan et al., 2002; Pradhan and Hemmer,
2007�

N* =
N

2
�1 − �1 − 4�� +

1
2
�1 + �1 − 4��−1/2� . �99�

As a consequence, we can use

Ut =
N*

N
=

1
2

+ �� +
1

4N
�2 + �−1/2� �100�

as the final value in Eq. �98�. Consequently, we obtain
the following estimate for the number of iterations to
reach this value:

tf��� = − 1 +
coth−1�1 + �1 + 2���/4N��

tanh−1�2���
. �101�

Figure 12�a� shows that the simulation data are well ap-
proximated by the analytic formula �101�.

For very large N, Eq. �101� is approximated by

tf =
ln�N�

4
�−1/2 = �−��c − ��−1/2, �102�

with �−=ln�N� /4. The critical behavior is again charac-
terized by a square root divergence.

Again we use the Weibull distribution �Eq. �2�� as an
example of a threshold distribution. In principle, the it-
eration

Ut+1 = 1 − P��/Ut� �103�

will reach a fixed point U* after infinitely many steps.
The deviation from the fixed point Ut−U* will decrease
exponentially near the fixed point,

Ut − U* � e−t/�, �104�

with

� = 1/ln�U*2�−1/p��/U*�� . �105�

For the Weibull threshold distribution with index=5,

p��/U*� = 5��/U*�4 exp�− ��/U*�5� = 5�4/U*3 �106�

and thus

� = 1/ln�U*5/5�5� . �107�

If we allow ourselves to use the exponential formula
�Eq. �104�� all the way from U0=1, we obtain

Ut − U* = �1 − U*�e−t/�. �108�

For a finite number N of fibers the iteration will stop
after a finite number of steps. It is a reasonable suppo-
sition to assume that the iteration stops when Nt−N* is
of the order 1. This corresponds to taking the left-hand
side of Eq. �108� equal to 1/N. The corresponding num-
ber of iterations is then given by

tf = � ln�N�1 − U*�� �109�

in general and

tf =
ln�N�1 − U*��
ln�U*5/5�5�

�110�

in the Weibull case. Solving the Weibull iteration U*

=exp�−�� /U*�5� with respect to � and inserting into Eq.
�110�, we obtain

tf = −
ln�N�1 − U*��
ln�5�− ln U*��

, �111�
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FIG. 12. Simulation results with precritical stress for �a� the uniform threshold distribution �Eq. �1�� and �b� the Weibull distribu-
tion �Eq. �2�� with index 5. The graphs are based on 10 000 samples with N=106 fibers in each bundle. Open circles represent
simulation data and the dotted lines are the theoretical estimates, Eq. �101� in �a� and Eqs. �111� and �112� in �b�.
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� = U*�− ln U*�1/5. �112�

These two equations represent the function t��� in pa-
rameter form, with U* running from Uc=e−1/5 to U*=1.

For U*=Uc=e−1/5 Eq. �111� shows that tf is infinite, as
it should be. To investigate the critical neighborhood we
set U*=Uc�1+
U�, with 
U small, to obtain to lowest
order

tf =
ln�N�
5
U

, �113�

�c − � = 5
2��
U�2. �114�

The combination of Eqs. �113� and �114� gives, once
more, the square root divergence

tf��� � �−��c��−1/2, �115�

now with the magnitude

�− = 10−1/2�5e�−1/10 ln�N� . �116�

Simulation results for the precritical Weibull distribution
are shown in Fig. 12�b�, which shows good agreement
with the analytical solutions �111� and �112�.

For a general threshold distribution the divergence
and its amplitude are easily deduced by expanding both
the load curve �=x�1−P�x�� and the characteristic time
� around the critical threshold xc. To lowest contributing
order in xc−x we find

� = �c − 1
2 �2p�xc� + xcp��xc�� + �xc − x�2 �117�

and

� =
xcp�xc�

2p�xc� + xc
2p��xc�

�xc − x� . �118�

Inserting for xc−x from the equation above and using
Eq. �110�, we find

tf = �−��c − ��−1/2, �119�

with

�− = xcp�xc��4p�xc� + 2xcp��xc��−1/2 ln�N� . �120�

To show how the magnitude of the amplitude �− de-
pends on the form of the threshold distribution, we con-
sider a Weibull distribution

P�x� = 1 − e�x/a�� �121�

with varying coefficient � and constant average strength.
With a=��1+1/�� the average strength �x� equals unity,
and the width takes the value

w = ��x2� − �x�2�1/2 = ���1 + 2/��/�2�1 + 1/�� − 1�1/2.

�122�

Here � is the Gamma function. Using the power-series
expansion ��1+z�=1−0.577z+0.989z2+¯, we see how
the width decreases with increasing �,

w�
1.52

�
. �123�

For the Weibull distribution �Eq. �121�� we use Eq.
�120� to calculate the amplitude �−, with the result

�− = ���1 + 1/��/2��1/2��e�−1/2� ln�N� � �2��−1/2 ln�N� ,
�124�

the last expression for large �. A comparison between
Eqs. �123� and �124� shows that for narrow distributions

�− � �w . �125�

That narrow distributions give small amplitudes could
be expected: many fibers with strengths of almost the
same magnitude will tend to break simultaneously;
hence the relaxation process goes more quickly.

c. Universality of critical amplitude ratio

As a function of the initial stress � the number of
relaxation steps tf��� shows a divergence ��−�c�−1/2 at
the critical point on both the precritical and postcritical
sides. This is a generic result, valid for a general prob-
ability distribution of the individual fiber strength
thresholds. On the postcritical side tf��� is independent
of the system size N for large N. On the precritical side
there is, however, a weak �logarithmic� N dependence,
as witnessed by Eqs. �46�, �47�, and �55�. Note that the
critical amplitude ratio takes the same value �−/�+
=ln�N� /2� for the uniform and Weibull distributions.
This shows the universal nature of the critical amplitude
ratio, independent of the threshold distribution. Note
the difference from normal critical phenomena �Aha-
rony, 1976� due to the appearance of ln�N� in the ampli-
tude ratio here.

5. Nonlinear stress-strain behavior

The fiber bundle model correctly captures the nonlin-
ear elastic behavior in the ELS mode �Sornette, 1989;
Bernardes, 1994; Pradhan et al., 2002�. In the case of
strain-controlled loading, using the theory of extreme
order statistics, it has been shown �Sornette, 1989� that
ELS bundles show nonlinear stress-strain behavior after
an initial linear part up to which no fiber fails. Similar
nonlinear behavior is seen in the force-controlled load-
ing case as well. Moreover, from the recursive failure
dynamics, the amount of stress drop at the breaking
point can be calculated exactly �Pradhan et al., 2002�. To
demonstrate the scenario we consider an ELS bundle
with uniform fiber strength distribution, having a low
cutoff CL, such that for stresses below the low cutoff,
none of the fibers fail. Hence, until failure of any of the
fibers, the bundle shows linear elastic behavior. As soon
as the fibers start to fail, the stress-strain relationship
becomes nonlinear. This nonlinearity can be easily cal-
culated in the ELS model using Eq. �8� for the failure
dynamics of the model.

Fibers here are assumed to be elastic, each having unit
force constant, with their breaking strengths �thresholds�
distributed uniformly within the interval �CL ,1�,
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p�x� = �0, 0� x� CL

1

1 − CL
, CL� x� 1.� �126�

For an applied stress ��CL none of the fibers break,
though they are elongated by an amount �=x=�. The
dynamics of breaking starts when applied stress � be-
comes greater than CL. For ��CL, the basic recursion
relation �Eq. �8�� takes the form

Ut+1 =
1

1 − CL
	1 −

�

Ut

 , �127�

which has stable fixed points,

U*��� =
1

2�1 − CL�
�1 + 	1 −

�

�c

1/2� . �128�

The model now has a critical point �c=1/4�1−CL� be-
yond which the bundle fails completely. At each fixed
point, there will be an equilibrium elongation ����, and
a corresponding stress S=U*���� develops in the system
�bundle�. From Eq. �127�, one gets �for ��CL�

U*��� =
1 − x*

1 − CL

, x* =
�

U*
. �129�

Also, from the force balance condition, at each fixed
point ����=x*. Therefore, the stress-strain relation for
the ELS model finally becomes

S = �� , 0� �� CL

��1 − ��/�1 − CL� , CL� �� �c

0, � � �c.
� �130�

The stress-strain relation in an ELS bundle is shown
in Fig. 13, where the initial linear region has unit slope
�the force constant of each fiber�. This Hooke’s region
for the stress S continues up to the strain value �=CL,
until which not one of the fibers breaks. After this, non-
linearity appears due to the failure of a few of the fibers
and the consequent decrease of U*���. It finally drops
to zero discontinuously by an amount x

c
*U*��c�

=1/4�1−CL� at the breaking point �=�c or �=x
c
*=1/2

for the bundle. It may be noted that in this model the
internal stress x

c
* is universally equal to 1/2, independent

of CL at the failure point �=�c.

6. Effect of a low cutoff: Instant failure situation

A low cutoff in the fiber threshold distribution ex-
cludes the presence of very weak fibers in a bundle. The
weaker fibers mainly reduce the strength of a bundle.
But in practice we always try to build stronger and
stronger materials �ropes, cables, etc.� from the fibrous
elements. Therefore this situation �exclusion of weaker
fibers� is very realistic. Here we discuss the effect
�Pradhan and Hansen, 2005� of a low cutoff on the fail-
ure properties of ELS bundles.

We follow the weakest-fiber-breaking approach
�Daniels, 1945; Hemmer and Hansen, 1992�: the applied
load is tuned in such a way that only the weakest fiber
�among the intact fibers� will fail after each step of load-
ing. We first find the extreme condition when the whole
bundle fails instantly after the first fiber ruptures. As the
strength thresholds of N fibers are uniformly distributed
between CL and 1 �Eq. �126��, the weakest fiber fails at a
stress CL �for large N�. After this single fiber failure, the
load will be redistributed within intact fibers resulting in
a global stress xf=NCL / �N−1�. Now, the number of in-
tact fibers having strength threshold below xf is

NP�xf� = N�
CL

xf

p�y�dy =
N�xf − CL�
�1 − CL�

. �131�

Stress redistribution can break at least another fiber if
NP�xf��1 and this “second” failure will trigger another
failure, and so on. Thus the successive breaking of fibers
cannot be stopped until the complete collapse of the
bundle. Clearly, there cannot be any fixed point �critical
point� for such an “instant failure” situation. Setting the
value of xf we get

N	 NCL

N − 1
− CL


�1 − CL�
� 1, �132�

which gives

CL� �N − 1�/�2N − 1� . �133�

In the large-N limit the above condition can be written
as CL�1/2. Therefore, the condition to get a fixed point
in the failure process is CL�1/2.

We can also calculate how many steps are required to
attain the final catastrophic failure for CL�1/2. We as-
sume that we have to increase the external load n times
before the final failure. At each step of such load incre-
ment only one fiber fails. Then after n steps the follow-
ing condition should be fulfilled to have a catastrophic
failure:

N�
xi

xi�1+1/�N−n��

p�y�dy� 1, �134�

where

S

ε

4(1-CL)
1------------

CL 1/2

FIG. 13. The stress-strain curve for an ELS bundle having
uniform fiber strength distribution with a low cutoff CL=0.2.

513Pradhan, Hansen, and Chakrabarti: Failure processes in elastic fiber bundles

Rev. Mod. Phys., Vol. 82, No. 1, January–March 2010



xi = CL +
n�1 − CL�

N
. �135�

The solution gives

n =
N

2
	1 −

CL

1 − CL

 . �136�

The above equation suggests that at CL=1/2, n=0. But
in reality we have to set the external load once to break
the weakest fiber of the bundle. Therefore, n=1 for CL
�1/2 �Fig. 14�. To check the validity of the above calcu-
lation we take “strictly uniform” and uniform on aver-
age distributions of fiber strength. In our strictly uniform
distribution the strength of the kth fiber �among N fi-
bers� is CL+ �1−CL�k /N. We can see in Fig. 14 that the
“strictly uniform distribution” exactly obeys the analytic
formula �136� but the uniform on average distribution,
shows slight disagreement, which comes from the fluc-
tuation in the distribution function for a finite system
size. This fluctuation will disappear in the limit N→�
where we expect perfect agreement.

B. Fluctuations

If the contributions to breakdown phenomena in ma-
terials science by statistical physics were to be expressed
in one word, that word would have to be fluctuations. In
the context of fiber bundles, this concept refers to the
effects of the fibers each having properties that are sta-
tistically distributed around some mean, which cannot
be reproduced by substituting the fiber bundle by an
equivalent one where each fiber is identical to all the
others.

Intuitively, it is not difficult to accept that fluctuations
must play an important role in the breakdown proper-
ties of fiber bundles or in fracture and breakdown phe-

nomena in general. A plane ride in turbulent weather
compared to one in smooth weather is a reminder of
this.

Closely connected to the question of fluctuations is
that of phase transitions and criticality �Stanley, 1987�.
Leaving the fiber bundles for a moment, consider a fluid
whose temperature is slowly raised. At a well-defined
temperature determined by the surrounding pressure,
the fluid starts to boil. Each gas bubble that rises to the
surface is due a fluctuation being larger than a well-
defined size for which the bubble grows rather than
shrinks away. At a particular pressure the character of
the boiling changes. There is no longer any size that
determines whether a nascent bubble grows or shrinks.
There are bubbles of all sizes. At this particular point,
the system is critical and undergoes a second-order
phase transition. The boiling process at other pressures
signals a first-order transition.

A brittle material under stress develops microcracks.
These appear where the material is weak or where the
local stress field is high. As the stress increases, more
and more microcracks accumulate until either one or a
few microcracks become unstable and grow to macro-
scopic dimensions causing failure. The spatial fluctua-
tions of the local material properties cause the appear-
ance of microcracks. Their subsequent growth
accentuates these initial fluctuations but in a highly com-
plex manner due to interactions between the growing
cracks. There are similarities between this scenario and
a first-order transition �Zapperi et al., 1997�. On the
other hand, stable mode-I crack growth as studied ex-
perimentally by Schmittbuhl and Måløy �1997� and
Måløy and Schmittbuhl �2001� indicates that the advanc-
ing crack front shows a dynamics compatible with being
at a critical point.

We now turn to the global load-sharing fiber bundle
model in light of the preceding remarks.

1. Burst distribution for continuous load increase

When a fiber ruptures somewhere, the stress on the
intact fibers increases. This may in turn trigger further
fiber failures, which can produce bursts �avalanches� that
lead either to a stable situation or to breakdown of the
whole bundle. A burst is usually defined as the amount
or number �
� of simultaneous fiber failures during
loading. One may study the distribution D�
� of the
bursts appearing during the entire failure process until
the complete breakdown of the bundle.

The property of the fiber bundle model of interest in
the present context is the fluctuation-driven burst distri-
bution. In order to define this property, we again con-
sider a finite bundle containing N elastic fibers whose
strength thresholds are picked randomly from a prob-
ability density p�x�. Let xk be the ordered sequence of
failure thresholds: x1�x2�¯�xN. Then the external
load or force F on the bundle �Eq. �3�� at the point
where the kth fiber is about to fail can be written as
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FIG. 14. The number of steps of load increase �until final fail-
ure� plotted against CL for an ELS model having 50 000 fibers.
The dotted line represents the analytic form �Eq. �136��, the
triangles are the simulated data for a strictly uniform strength
distribution, and the circles represent the data �averages are
taken for 5000 samples� for a uniform on average distribution.
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Fk = �N + 1 − k�xk, �137�

where the elastic constant of the fibers is set equal to
unity as before. Note that the sequence of external loads
Fk is not monotonically increasing. This may be readily
seen from Eq. �137�; the total load is the product of a
monotonically increasing fluctuating quantity xk and a
monotonically decreasing quantity �N+1−k�. Suppose
now that our control parameter is the total load F and
that k−1 fibers have broken. In order to be in this situ-
ation, F�Fk�Fj for all j�k. The latter inequality en-
sures that the situation we are studying is not unstable.
We increase F until it reaches Fk at which fiber k breaks.
If now Fk+1�Fk, then fiber k+1 will also break without
the external load F being further increased. The same
may be true for Fk+2 and so on until the �k+
−1�th
bond breaks. Thus, Fk+j�Fk for j�
. If now Fk+
�Fk,
the burst of breaking bonds then stops at this point, and
we have experienced a burst event of size 
.

The total force F expressed as a function of elongation
x is shown in Fig. 15. When the control parameter is
elongation x, the solid curve is followed. However, when

the force F is the control parameter, the broken lines
given by

Fph = LMF F�x� , �138�

where LFM designates the least monotonic function.

a. Generic case

Hemmer and Hansen �1992� showed that the average
number of burst events of size 
 per fiber D�
� /N fol-
lows a power law of the form

D�
�/N = C
−� �139�

in the limit N→�. Here

� =
5
2

�140�

is the universal burst exponent. The value �140� is, under
very mild assumptions, independent of the threshold dis-
tribution P�x�: the probability density needs to have a
quadratic maximum somewhere in the interval xmin�x
�xmax. We demonstrate this in Fig. 16. The prefactor C
in Eq. �139� is given by

C =
xcp�xc�2

�2��xcp��xc� + 2p�xc��
, �141�

where xc is the solution of

xcp�xc� = 1 − P�xc� �142�

and is the value of x for which the characteristic has a
maximum. Equations �139�–�142� were derived by Hem-
mer and Hansen �1992� using combinatorial arguments.
However, we will take an alternative route in the follow-
ing, based on a mapping between the global load-sharing
model and a Brownian process �Sornette, 1992; Hansen
and Hemmer �1994a�. Before we explain this mapping
we quote, for later comparison, the results of the
Hemmer-Hansen analysis �Hemmer and Hansen, 1992�:
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FIG. 15. The solid curve indicates the total force F�x� as a
function of x. However, when our control parameter is F
rather than x, the system will follow the dotted line �Eq. �138��.
The bursts are the horizontal parts of Fph�x�. Here N=100.
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FIG. 16. The burst distribution D�
� /N for �a� the uniform distribution and �b� the Weibull distribution with index 5. The dotted
lines represent the power law with exponent �=5/2. Both are based on 20 000 samples of bundles each with N=106 fibers.
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the probability ��
 ,x� that a burst event at elongation x
will have the size 
 is

��
,x� =


−1


!
m�x�

1 − m�x�
��1 − m�x��em�x�−1�
, �143�

where

m�x� = 1 −
xp�x�

1 − P�x�
. �144�

Note in particular that by Eq. �142� m�xc�=0. We now
assume that we do not load the fiber bundle until com-
plete collapse, i.e., until x=xc, but stop at a value xs
�xc. We may then ask for D�
 ,xs� /N, the expected
number of burst events of size 
 during the breakdown
process that occurs between x=0 and x=xs. This is given
by

D�
,xs�
N

= �
0

xs

p�x�dx ��
,x�

=

−3/2

�2�
�

0

xs

dx p�x�
m�x�

1 − m�x�

���1 − m�x��em�x��
, �145�

where on the right-hand side the Stirling approximation

!��2�

+1/2e−
 for large 
 has been used. The inte-
grand in Eq. �145� is strongly peaked near x=xc. We
therefore expand it to second order in y=xc−x to find

D�
,xs�
N

=

−3/2

�2�
p�xc�m��xc�

� �
xc−xs

�

dy ye−m��xc�
2y2
/2, �146�

where we have extended the upper integration limit to
�. We may use this integral to get

D�
,xs�
N

= C
−5/2e−m��xc�
2
�xc − xs�

2/2, �147�

where C is defined by Eq. �141�.
We may write Eq. �147� in scaling form,

D�
,xs�
N

= 
−�G�
,xs� = 
−�G„
��xc − xs�… , �148�

where

G�y� = Ce−m��xc�
2y2/2. �149�

In particular, G�y� tends to the constant C for y→0. Two
universal critical exponents appear, �=5/2 �Eq. �140��
and

� =
1
2

. �150�

It is, thus, in the above sense that the fracture process of
the fiber bundle approaches a critical point at total
breakdown: the distribution of burst events follows a

power law with an upper cutoff that diverges as the
bundle approaches total failure.

Sornette �1992� and later on Hansen and Hemmer
�1994a�, derived the burst distribution �Eq. �139�� from
the assumption that Fk may be directly interpreted as a
biased random walk. The precise nature of this random
walk is elucidated below. It is a peculiar asymmetric
walk with variable step length. In the limit N→� and
continuous time variable k /N→ t and 
k /N→�t�0, this
random walk may be mapped onto a continuous Brown-
ian process. Such Brownian processes have been studied
by Phoenix and Taylor �1973�, Daniels and Skyrme
�1985�, and Daniels �1989� in connection with the distri-
bution of the strength S of fiber bundles. In the follow-
ing we derive Eq. �145� by means of a biased random-
walk model with variable step length. We find this an
interesting example of universality in statistical physics:
the asymptotic behavior of one model is found by using
a different model with the same asymptotic behavior as
the first one, but which is simpler to solve before the
continuum limit is taken.

Under increasing load the variation of the force per
fiber f=F /N will consist of a systematic nonfluctuating
part, given by the average load-elongation characteris-
tics, with a small fluctuation of order 1/�N superim-
posed.

The precise value of the force fluctuation depends on
whether one studies the force f�x� at given elongation or
the force fk at which fiber number k breaks. We calcu-
late the variance of f, �f

2, for both quantities, starting
with the constant-k ensemble.

The force per fiber when the kth fiber is about to
break is, since Fk= �N+1−k�xk,

fk = �1 − P�x̄k��xk, �151�

where xk is the elongation when the kth fiber breaks,
and we have defined x̄k by

P�x̄k� =
k

N + 1
. �152�

For large N, x̄k is essentially the average value of xk. For
a fixed k the variance of fk is by Eq. �151� given by the
variance of xk,

�f
2�k� = �1 − P�xk��2�xk

2 , �153�

and therefore the probability ��x�dx that the kth thresh-
old in the ordered threshold sequence lies in the interval
�x ,x+dx�. This probability is given by

��x�dx =
N!

�k − 1�!�N − k�!
P�x�k−1�1 − P�x��N−kp�x�dx .

�154�

For large k and N, and using Eq. �152�, this is close to
the Gaussian distribution,
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��x�dx = 	 Np�x̄k�2

2�P�x̄k��1 − P�x̄k��

1/2

�e−Np�x̄k�
2�x − x̄k�

2/2P�x̄k��1−P�x̄k��dx . �155�

This gives the variance of xk and thus of fk,

�f
2�k� =

P�x̄k��1 − P�x̄k��3

Np�x̄k�2
. �156�

We now compare with the force fluctuation at con-
stant elongation. The force per fiber is the following
function of elongation x:

f�x� = N−1�
i=1

N

x��ti − x� , �157�

where ti is the breakdown threshold for the ith fiber and
��t� is the Heaviside function. This gives immediately
the average force

�f�x = x�1 − P�x�� , �158�

i.e., the characteristics, as well as the variance

�f
2�x� =

x2P�x��1 − P�x��
N

. �159�

Although the two types of force fluctuation have differ-
ent variances, in both cases ��1/�N.

The nonmonoticities of the force f within the fluctua-
tion zone produce bursts. Since the fluctuations are so
small for large N, one can treat the burst events locally.

We now consider the force sequence Fk as a stochastic
process. Since we seek the asymptotic burst distribution,
we are interested in the behavior after many steps of the
process. It is convenient, however, to start with the one-
step process.

We determine the probability distribution of the force
increase 
F=Fk+1−Fk between two consecutive bursts,
the first one taking place at elongation xk with Fk= �N
−k+1�xk. Since 
F= �N−k��xk+1−xk�−xk, we have


F� − xk. �160�

The probability of finding the �k+1�th threshold in
�xk+1 ,xk+1+dxk+1� for given xk,

�N − k − 1�
�1 − P�xk+1��N−k−2

�1 − P�xk��
p�xk+1�dxk+1, �161�

gives directly using the connection xk+1=xk+ �
F�xk�
+xk� / �N−k� the probability density ��
F ;xk� of 
F,

��
F ;xk� =
N − k − 1

N − k

�1 − P	xk +

F + xk

N − k

�N−k−2

�1 − P�xk��N−k−1

�p	xk +

F + xk

N − k

 . �162�

For large N−k this simplifies to

��
F ;xk�

= �
p�xk�

1 − P�xk�exp	− �
F + xk�p�xk�
1 − P�xk�


 for 
F� − xk

0 for 
F� − xk.
�

�163�

This one-dimensional random walk is asymmetric in
more than one way. First, it has nonzero bias,

�
F��xk� =
1 − P�xk� − xkp�xk�

p�xk�
. �164�

In addition, the probability distribution around this av-
erage is very asymmetric.

The variance is easily determined:

�
F
2 �xk� = 	1 − P�xk�

p�xk�

2. �165�

The Brownian motion limit of a one-dimensional ran-
dom walk is completely determined by the first and sec-
ond moments of the single-step probability distribution.
The results just obtained enable us therefore to select an
“ordinary” biased random walk with constant step
length a, which has the same Brownian motion limit as
the burst process.

We imagine having a one-dimensional random walk
along the z axis with a constant bias. Each step is of
length a. Let the probability to take a step in the nega-
tive z direction be q and let p be the probability to take
a step in the positive z direction. The walk is biased
when p is different from q. The probability distribution
of the position z1 after one step has the average

�z1� = a�p − q� �166�

and variance

�1
2 = 4pqa2. �167�

Elimination of a yields

p − q

2�pq
=
�z1�
�1

. �168�

Since p+q=1, the bias parameters are determined.
After k steps a Gaussian distribution

e−�zk − z0 − ka�p − q��2/8pqa2k

�8�pqa2k
�169�

is approached when k increases.
The two processes will have the same asymptotic be-

havior when we make the identification

p − q

2�pq
=
�
F�
�F

= 1 −
xkp�xk�

1 − P�xk�
= m�xk� , �170�

where m�x� is defined by Eq. �144�. When the bias is
small, both p and q are close to 1/2, and we have to
lowest order

517Pradhan, Hansen, and Chakrabarti: Failure processes in elastic fiber bundles

Rev. Mod. Phys., Vol. 82, No. 1, January–March 2010



p =
1
2
�1 + m�x�� ,

�171�

q =
1
2
�1 − m�x�� .

We have now made the promised mapping between the
fiber bundle problem and a random walk with a constant
bias. A constant bias may be used since bursts can be
treated locally.

The next step is to calculate the burst distribution for
such a biased random walk. Since this biased random
walk by construction has the same asymptotic behavior
in the limit N→� as the original fiber bundle problem,
the two burst distributions will asymptotically be the
same.

In terms of the biased random walk, a burst event of
size 
 at “time” k may be defined as follows: �i� zk+i
�zk for 0� i�
 and zk+
�zk. �ii� Furthermore, to en-
sure that we are not counting burst events inside other
burst events, the condition zk�zj for k� j is necessary.

The first condition is in fact a special case of the “gam-
bler’s ruin” problem �Feller, 1966�. A gambler plays a
series of independent games against a bank with infinite
resources. In each game, the gambler either loses or
wins one euro, and the probability that the bank wins is
p= �1+B� /2, while the probability that the gambler wins
is q= �1−B� /2. If the gambler starts out with a capital of
z euros, the probability that she is ruined after precisely

 games is

��z,
� =
z


� 





2
−

z

2
�p�
−z�/2q�
+z�/2. �172�

The probability that condition �i� is fulfilled for a biased
random walk burst of size 
 is then

1
2
��z = 1,
� =


−3/2

�2�
�1 − B

1 + B
�1 − B2�
/2, �173�

where we have assumed that 
�1.
The probability that a biased random walker returns

at least once to the origin is �Feller, 1966� 1− �p−q�=1
−B. The probability condition �ii�, namely, that zj�zk
for all j�k is fulfilled, is then simply 1− �1−B�=B and
we have that the probability for having a burst of size 

happening at “time” k is

�RW�
,B� =
1
2

B��z = 1,
� =

−3/2

�2�
Be−B2
/2, �174�

where we also assumed that B 1.
Returning to the fiber bundle model, the bias B

=m�x�. When x is close to xc, we have B=m��xc�y, where
y= �xc−x�. Thus, the probability to have a burst of size 

between y and y+dy is

�RW„
,m��xc�y…p�xc�dy

=

−3/2

�2�
p�xc�m��xc�e−m��xc�y

2
/2. �175�

Thus, the cumulative burst distribution up the elonga-
tion xs is

�
xc−xs

�

�RW„
,m��xc�y…p�xc�dy . �176�

Comparing this expression to Eq. �146�, we see that
they are identical. This completes the derivation of the
asymptotic burst distribution via the mapping between
the random-walk problem and the burst process.

b. Special cases

The burst distribution given in Eq. �145� is valid when
the threshold distribution has a parabolic maximum in-
side the interval of the thresholds. We now consider
threshold distributions that do not reach their maximum
at the boundaries of the interval �Kloster et al., 1997�.
Model examples of such threshold distributions are

P�x� = �0 for x� x0

1 − �1 + �x − x0�/xr�−�0 for x� x0.
� �177�

Here �0 and x0 are positive parameters and xr is a ref-
erence quantity, which we for simplicity set equal to
unity in the following. These distributions are all charac-
terized by diverging moments. When �0�1, even the
first moment—the mean—as well as all other moments
diverge. This class of threshold distributions is rich
enough to exhibit several qualitatively different burst
distributions.

The corresponding macroscopic bundle strength per
fiber is

�F��x�
N

= �x for x� x0

x

�1 + x − x0��0
for x� x0. � �178�

In Fig. 17 the corresponding macroscopic force curves
�F��x� are sketched. We note that when �0→1, the pla-
teau in Eq. �178� becomes infinitely wide.

The distribution of burst sizes is given by Eq. �145�. In
the present case the function m�x� takes the form

m�x� =
xp�x�

1 − P�x�
=

�0x

1 + x − x0
. �179�

A simple special case is x0=1, corresponding to

p�x� = �0x−�0−1 for x� 1

since then the function �179� is independent of f,

m�x� = �0.

This gives
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D�
�
N

=
1 − �0

�0



−1


!
��0e−�0�


�
1 − �0

�0
�2�


−3/2��0e1−�0�
. �180�

In other cases it is advantageous to change the inte-
gration variable in Eq. �145� from x to m:

D�
�
N

=


−1

e

!

1

�0
�0−1�1 − x0��0

�
�0x0

�0

��0 − m��0−1

��1 − m�m−1�me1−m�
 dm . �181�

The asymptotics for large 
, beyond the 
−3/2 depen-
dence of the prefactor, is determined by the

-dependent factor in the integrand. The maximum of
me1−m is unity, obtained for m=1, and the asymptotics
depends crucially on whether m=1 falls either outside
the range of integration or inside �including the border�.
If the maximum falls inside the range of integration the
D�
��
−5/2 dependence remains. A special case of this
is �0=1, for which the maximum of the integrand is lo-
cated at the integration limit and the macroscopic force
has a “quadratic” maximum at infinity. Another special
case is �0x0=1 �and �0�1�, for which again the standard
asymptotics 
−5/2 is valid. In this instance the macro-
scopic force has a quadratic minimum at x=x0 �see Fig.
17 for �0=1/2�, and critical behavior arises just as well
from a minimum as from a maximum.

In the remaining cases, in which m=1 is not within the
range of integration in Eq. �181�, the burst distribution is
always a power law with an exponential cutoff,

D�
�
N

� 
−�A
. �182�

Here � and A depend on the parameter values x0 and �0,
however. This is easy to understand. Since

dm�x�
dx

=
�0�1 − x0�
�1 + x − x0�2

, �183�

we see that m�x� is a monotonically decreasing function
for x0�1, so that the maximum of me1−m is obtained at
the lower limit x=x0, where m=�0x0. The asymptotics

D�
� � 
−5/2��0x0e1−�0x0�
 �184�

follows.
This is true merely for �0x0�1, however. For �0x0

�1 the macroscopic force �F��x� decreases near x=x0 so
that a macroscopic burst takes place at a force x0 per
fiber, and stabilization is obtained at a larger elongation
x1 �Fig. 17�. The subsequent bursts have an asymptotic

D�
� � 
−5/2�a�f1�e1−m�x1��
, �185�

determined by the neighborhood of x=x1. For t0�1, the
maximum of me1−m is obtained at x=�, leading to the
asymptotic

D�
� � 
−3/2−�0��0e1−�0�
, �186�

reflecting the power-law behavior of the integrand at in-
finity.

The results are summarized in Table I. Note that the
x0=1 result �Eq. �180�� cannot be obtained by setting
x0=1 in Eq. �184� since in Eq. �181� the order of the
limits 
→� and x0→1 is crucial.

c. Crossover behavior

When all the bursts are recorded for the entire failure
process, we have seen that the burst distribution D�
�
follows the asymptotic power law D�
−5/2. If we just
sample bursts that occur near the breakdown point, a
different behavior is seen. As an illustration we consider
the uniform threshold distribution and compare the
complete burst distribution with what one gets when one
samples merely burst from breaking fibers in the thresh-
old interval �0.9xc ,xc�. Figure 18 shows that in the latter
case a different power law is seen.

This observation may be of practical importance, as it
gives a criterion for the imminence of catastrophic fail-
ure �Pradhan, Hansen, and Hemmer, 2005�. This pro-
posal has so far not been tested experimentally. How-
ever, it is interesting to note the observation by
Kawamura of a crossover behavior in the magnitude dis-

TABLE I. Asymptotic behavior of the burst distribution for
strong threshold distributions in the ELS model.

Parameters Asymptotics

0�x0�1, �0�1 
−3/2−�0��e1−�0�


0�x0�1, �0=1 
−5/2

x0=1, �0�1 
−3/2��0e1−�0�


1�x0��0
−1 
−5/2��0x0e1−�0x0�


1�x0=�0
−1 
−5/2

1��0
−1�x0 
−5/2e−
/
0

0 2 4 6
x

0

1

2

3

4

<
F>

(x
)

FIG. 17. The macroscopic bundle strength �F��x� for the dis-
tribution �Eq. �177��, with x0=2xr, and for �0=1/3 �upper
curve�, 1 /2 �middle curve�, and 2/3 �lower curve�. The broken
part of the �0=2/3 curve is unstable and the macroscopic
bundle strength will follow the solid line.
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tribution before large earthquakes appears �Kawamura,
2006�. We return to this result in Sec. V.C and Fig. 61.

We introduce the following notation in Eq. �145�:

D�
�
N

=


−1e−



!
�

0

xc

p�x�r�x��1 − r�x��
−1

�exp�
r�x��dx , �187�

where

r�x� = 1 −
xp�x�
Q�x�

=
1

Q�x�
d

dx
�xQ�x�� �188�

and Q�x�=�x
�p�x�dx. We note that r�x� vanishes at the

point xc. If we have a situation in which the weakest
fiber has its threshold x0 just a little below the critical
value xc, the contribution to the integral in the expres-
sion �187� for the burst distribution will come from a
small neighborhood of xc. Since r�x� vanishes at xc, it is

small here, and we may in this narrow interval approxi-
mate the 
-dependent factors in Eq. �187� as follows:

�1 − r�
e
r = exp�
�ln�1 − r� + r��

= exp�− 
�r2/2 + O�r3���

� exp�− 
r�x�2/2� . �189�

We also have

r�x� � r��xc��x − xc� . �190�

Inserting everything into Eq. �187�, we obtain to
dominating order

D�
�
N

=


−1e−



!
�

x0

xc

p�xc�r��xc��x − xc�

�e−
r��xc�
2�x − xc�

2/2 dx

=


−2e−
p�xc�
�r��xc��
!

�e−
r��xc�
2�x − xc�

2/2�x0

xc

=


−2e−



!
p�xc�
�r��xc��

�1 − e−
/
c� , �191�

with


c =
2

r��xc�2�xc − x0�2
. �192�

By use of the Stirling approximation 
!�

e−
�2�
,
the burst distribution �Eq. �191�� may be written as

D�
�
N

= C
−5/2�1 − e−
/
c� , �193�

with a nonzero constant

C = �2��−1/2p�xc�/�r��xc�� . �194�

We can see from Eq. �193� that there is a crossover at a
burst length around 
c,

D�
�
N

� �
−3/2 for 
 
c


−5/2 for 
� 
c.
� �195�

We have thus shown the existence of a crossover from
the generic asymptotic behavior D�
−5/2 to the power
law D�
−3/2 near criticality, i.e., near global breakdown.
The crossover is a universal phenomenon, independent
of the threshold distribution p�x�.

The simulation results we have shown so far are based
on averaging over a large number of samples. For appli-
cations it is important that the crossover signal can also
be seen in a single sample. We show in Fig. 19 that
equally clear crossover behavior is seen in a single fiber
bundle when N is large enough. Also, as a practical tool
one must sample finite intervals �xi, xf� during the frac-
ture process. The crossover will be observed when the
interval is close to the failure point �Pradhan, Hansen,
and Hemmer, 2005� and Pradhan et al. �2006�.

The ELS fiber bundle model is a simple model in that
it is analytically tractable. A step up in complexity from
the ELS fiber bundle model is the random fuse model
�Herrmann and Roux, 1990�. While resisting most ana-
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10-2

10-1

100

1 10

∆

D(∆)
D(1)

x0 = 0

x0 = 0.9 xc

FIG. 18. The distribution of bursts for thresholds uniformly
distributed in an interval �x0 ,xc�, with x0=0 and 0.9xc. Based
on 50 000 samples, each containing N=106 fibers. The expo-
nents of the distributions are �=5/2 and 3/2, respectively.
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FIG. 19. The distribution of bursts for the uniform threshold
distribution for a single fiber bundle with N=107 fibers. Results
with x0=0, i.e., when all bursts are recorded, are shown as
squares and data for bursts near the critical point �x0=0.9xc�
are shown as circles.
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lytical treatments, this model retains computational trac-
tability. The fuse model consists of a lattice in which
each bond is a fuse, i.e., an Ohmic resistor as long as the
electric current it carries is below a threshold value. If
the threshold is exceeded, the fuse burns out irrevers-
ibly. The threshold t of each bond is drawn from an un-
correlated distribution p�t�. The lattice is placed be-
tween electrical bus bars and an increasing current is
passed through it. The lattice is a two-dimensional
square placed at 45° with regard to the bus bars, and the
Kirchhoff equations are solved numerically at each
node, assuming that all fuses have the same resistance.
We show the model in Fig. 20. The ELS fiber bundle
model may be interpreted as a mean-field version of the
random fuse model �Zapperi et al., 1997�. Hence, the
random fuse model may be used as a testing ground for
results �see Table II� found with the ELS fiber bundle
model to explore their robustness when other effects not
present in the fiber bundle model enter.

To test the crossover phenomenon in a more complex
situation than for the ELS fiber bundle model, we con-

sider the random fuse model �Pradhan, Hansen, and
Hemmer, 2006�. When one records all the bursts in the
random fuse model, the distribution follows a power law
D�
��
−� with ��3, which is consistent with the value
reported in recent studies. We show the histogram in
Fig. 21. With a system size of 100�100, 2097 fuses blow
on the average before catastrophic failure sets in. When
the burst distribution is measured only after the first
2090 fuses have blown, a different power law is found,
this time with �=2. After 1000 blown fuses, on the other
hand, � remains the same as for the histogram recording
the entire failure process �Fig. 21�.

In Fig. 22 we show the power dissipation E in the
network as a function of the number of blown fuses and
as a function of the total current. The dissipation is given
as the product of the voltage drop across the network V
times the total current that flows through it. The break-
down process starts by following the lower curve and
follows the upper curve returning to the origin. It is in-
teresting to note the linearity of the unstable branch of
this curve. In Fig. 23 we record the avalanche distribu-
tion for power dissipation Dd�
�.

Recording, as before, the avalanche distribution
throughout the entire process as well as recording only
close to the point at which the system catastrophically
fails, we obtain two power laws, with exponents �=2.7
and 1.9, respectively. It is interesting to note that in this
case there is not a difference of unity between the two
exponents. The power dissipation in the fuse model cor-
responds to the stored elastic energy in a network of
elastic elements. Hence, the power dissipation avalanche
histogram in the mechanical system would correspond to

TABLE II. Exponents for order parameter �O�, breakdown
susceptibility ���, relaxation time ���, avalanche size distribu-
tion D�
�, and energy burst distribution g�E� in the ELS
model.

Exponent for Value Comment

Order parameter ��� 1/2
Breakdown susceptibility �	� 1/2
Relaxation time �
� 1/2 Amplitude

ratio=ln N /2�
Avalanche size
distribution ���

3 Discrete load increase

5/2 Continuous load
increase

Energy burst
distribution ��e�

5/2 In the asymptotic limit;
for the low energy
limit, distribution

is nonuniversal

I

V

FIG. 20. A fuse model of size 100�100. Each bond is a fuse
with a burn-out threshold t drawn from a probability distribu-
tion p�t�.
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FIG. 21. The burst distribution based on 300 sample random
fuse lattices of size 100�100. The threshold t is uniformly dis-
tributed on the unit interval. On average, catastrophic failure
sets in after 2097 fuses have blown. The circles denote the
burst distribution measured throughout the entire breakdown
process. The squares denote the burst distribution based on
bursts appearing after the first 1000 fuses have blown. The
triangles denote the burst distribution after 2090 fuses have
blown. The two straight lines indicate power laws with expo-
nents �=3 and 2, respectively.

521Pradhan, Hansen, and Chakrabarti: Failure processes in elastic fiber bundles

Rev. Mod. Phys., Vol. 82, No. 1, January–March 2010



the released energy. Such a mechanical system could
serve as a simple model for earthquakes.

Divakaran and Dutta �2007a� studied the critical be-
havior of a bundle of fibers under global load-sharing
scheme with threshold strength chosen randomly from a
distribution which is uniform but discontinuous. The
form of the distribution is

p�x� =�
1

1 − �x2 − x1�
, 0� x� x1

0, x1� x� x2

1

1 − �x2 − x1�
, x2� x� 1,� �196�

where x2−x1 is the gap in the threshold distribution as
shown in Fig. 24. Here a fraction f of the fibers belongs
to the weaker section �0�x�x1� and the remaining be-

long to the stronger section �x2�x�1�. The condition of
uniformity of the distribution demands

x1 =
f

1 − f
�1 − x2� , �197�

so that fixing x1 and f immediately settles the value of x2.
To study the dynamics of this model, the recursive

equation approach was again used. The redistributed
stress must cross x2 for the complete failure of the
bundle to take place. When the external load is such that
the redistributed stress at an instant t, i.e., x�t�, is greater
than x2, the fixed-point solution has the form

U* =
1

2�1 − �x2 − x1��
	1 +�1 −

�

�c

 , �198�

so that the critical stress �c is

�c =
1

4�1 − �x2 − x1��
�199�

and the redistributed stress at the critical point is found
to be 1/2 as in the uniform distribution �Pradhan,
Hansen, and Hemmer, 2005�. This immediately restricts
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FIG. 22. Power dissipation E as a function of the number of broken bonds �upper� and as a function of the total current I flowing
in the fuse model �lower�.

100

102

104

106

1 10 100

(∆
)

∆

D
d

∆−2.7

∆−1.9

FIG. 23. The power dissipation avalanche histogram Dd�
� for
the fuse model. The slopes of the two straight lines are −2.7
and −1.9, respectively. The circles show the histogram of ava-
lanches recorded after 1000 fuses have blown, whereas the
squares show the histogram recorded after 2090 fuses have
blown. This is close to catastrophic failure.

p(
x)

x
x1 x20 1

FIG. 24. Mixed uniform distribution.

522 Pradhan, Hansen, and Chakrabarti: Failure processes in elastic fiber bundles

Rev. Mod. Phys., Vol. 82, No. 1, January–March 2010



the value of x2 to be less than 1/2 and therefore x2
=0.5 is defined as the critical distribution in this model.
On the other hand, the uniformity condition �Eq. �197��
sets another restriction, namely, x1� f. Interestingly, the
critical stress is a function of the gap x2−x1 and reduces
to one-fourth when the gap goes to zero. The exponents
related to the order parameter and susceptibility stick to
their mean-field values. However, the existence of a for-
bidden region shows a prominent signature in the ava-
lanche size distribution of the mixed model. The expres-
sion for the total avalanche size distribution D�
� in this
model includes two terms, one due to the contribution
from thresholds between 0 and x1 and the other from the
stronger section of fibers. Hence, the total avalanche
size D�
� is D�
� /N=D1�
�+D2�
�, where

D1�
� =


−1


!

1

1 − x2 + x1
�

0

x1

dx	1 − x2 + x1 − 2x

x



�� x

1 − x2 + x1 − x
exp	− x

1 − x2 + x1 − x

�

�200�

and

D2�
� =


−1


!

1

1 − x2 + x1
�

x2

0.5

dx	1 − 2x

x



�� x

1 − x
exp	− x

1 − x

�
. �201�

The leading behavior of D1�
� is given by �Divakaran
and Dutta, 2007a�

D1�
� = 
−5/2e�1−xm�
xm

 , �202�

where

xm =
x1

1 − x2
, �203�

which clearly indicates a rapid fall of the contribution of
weaker fibers. On the other hand, D2�
� resembles the
imminent failure behavior studied by Pradhan, Hansen,
and Hemmer �2005�, where the avalanche size exponent
shows a crossover from 5/2 to 3/2 as x2→0.5. For the
mixed model, the total avalanche size distribution D�
�
shows a nonuniversal behavior for small 
 values,
though eventually there is a crossover to the universal
mean-field value. The most fascinating observation is
the following: though the gap in the distribution is al-
ways present, nonuniversality is prominent only in the
limit x2→0.5. Divakaran and Dutta showed that this
nonuniversal behavior stems from the avalanche of fi-
bers in the weak section and only in the vicinity of the
critical distribution, the contribution of D1�
� over-
comes D2�
�. Otherwise, the faster fall of D1�
� and
large value of D2�
� together force the avalanche size
exponent to be 5/2. It should be noted that the nonuni-
versal behavior is most prominent at a critical distribu-
tion where the avalanche size exponent crosses over to
3/2 in the asymptotic limit. The typical behavior of D�
�

is shown in Fig. 25 for two different distributions, high-
lighting the increase in nonuniversal region as x2 ap-
proaches 0.5. However, for many discontinuities in the
threshold distributions, avalanche size distribution
shows a nonuniversal, non-power-law behavior �Divaka-
ran and Dutta, 2008� for small-size avalanches, although
the large avalanches still exhibit similar crossover behav-
ior as we discuss here.

Divakaran and Dutta also looked at the model where
fibers from two different Weibull distributions are mixed
�Divakaran and Dutta, 2007b�. Though an interesting
variation of the critical stress with the mixing parameter
was obtained using a probabilistic method introduced by
Moreno et al. �2000�, there is no deviation in the ava-
lanche size exponent. Hidalgo, Kovacs, et al. �2008� re-
cently studied the infinite-gap limit of the discontinuity
model. They considered a fraction �inf of the fibers hav-
ing infinite threshold strength mixed with fibers having
threshold chosen from a distribution p�x�. They ob-
served a critical fraction �c such that for �inf��c, the
avalanche size exponent switches from the well-known
mean-field exponent �=5/2 to a lower value �=9/4. It
was also shown that such a behavior is observed for
those distributions where the macroscopic constitutive
behavior has a maximum and a point of inflection. They
also claimed that below a critical gap the model of
Hidalgo, Kovacs, et al. �2008� of reduces to the disconti-
nuity model of Divakaran and Dutta. Kun and Nagy
�2008� studied the global load-sharing fiber bundle
model in a wedge-shaped geometry. That is, the fibers
are connected to two rigid blocks placed at an angle with
respect to each other. The fibers are loaded by rotating
the blocks with respect to each other, resulting in a lin-
ear loading gradient on them. In the limit of a threshold
distribution tending toward zero width, the fibers break
in an orderly fashion according to the load and, hence
position in the wedge. As the width is increased, a pro-
cess zone—i.e., a zone where some fibers fail whereas
others stay intact—develops. When the threshold distri-
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FIG. 25. Total avalanche size distribution D�
�, D1�
�, and
D2�
� obtained by numerical integration of Eqs. �200� and
�201�. �a� corresponds to x1=0.08,x2=0.28, and f=0.1 and �b�
corresponds to x1=0.25, x2=0.42, and f=0.3. As x2→0.5, the
nonuniversal region increases in the small 
 region, whereas

�
−5/2 for large 
. The dotted line has a slope of −5/2. From
Divakaran and Dutta, 2007a.
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bution is wide enough, the process zone spans the entire
bundle. In this limit a burst size exponent �=5/2 is re-
covered. However, with a narrower distribution, so that
a well-defined process zone smaller than the size of the
bundle develops, the burst exponent �=2.0 is found.

2. Burst distribution for discrete load increase

When the bundle is stretched continuously from zero,
fluctuation plays a crucial role and the generic result is a
power law �Hemmer and Hansen, 1992� D�
��
−�, for
large 
, with �=5/2. However, experiments may be per-
formed in a different manner, where the load is in-
creased in finite steps of size �. The value of the expo-
nent then increases �Pradhan et al., 2002; Hemmer and
Pradhan, 2007� to 3: D�
��
−3. The basic reason for the
difference in the power laws is that an increase in steps
of the external load reduces the fluctuations in the force.
The derivation �see Sec. III.B.1� of the asymptotic size
distribution D�
��
−5/2 of avalanches, corresponding to
stretching by infinitesimal steps, shows the importance
of force fluctuations �Hemmer and Hansen, 1992�. An
effective reduction of the fluctuations requires that the
size � of the load increase is large enough so that a con-
siderable number of fibers break in each step.

Here is an analytic derivation, following Hemmer and
Pradhan �2007�, showing how to calculate the burst dis-
tribution in such a situation. For the uniform distribu-
tion of thresholds �Eq. �1��, the load curve is parabolic,

�F� = Nx�1 − x� , �204�

so that the expected critical load equals Fc=N /4. With a
sufficiently large � we may use the macroscopic load
equation �Eq. �204�� to determine the number of fibers
broken in each step. The load values are m�, with m
taking the values m=0,1 ,2 , . . . ,N /4� for the uniform
threshold distribution. By Eq. �204� the threshold value
corresponding to the load m� is

xm =
1
2
�1 − �1 − 4m�/N� . �205�

The expected number of fibers broken when the load is
increased from m� to �m+1�� is close to


 = Ndxm/dm = �/�1 − 4m�/N . �206�

Here the minimum number of 
 is �, obtained in the
first load increase. The integral over all m from 0 to
N /4� yields a total number N /2 of broken fibers, as ex-
pected, since the remaining one-half of the fibers burst
in one final avalanche.

The number of avalanches of size between 
 and 

+d
, D�
�d
, is given by the corresponding interval of
the counting variable m: D�
�d
=dm. Since

d


dm
=

2�2

N
�1 − 4m�/N�−3/2 =

2

N�

3, �207�

we obtain the following distribution �Pradhan et al.,
2002; Hemmer and Pradhan, 2007� of avalanche sizes:

D�
� =
dm

d

=

1
2

N�
−3 �
� �� . �208�

For consistency, one may estimate the total number of
bursts by integrating D�
� from 
=� to �, with the re-
sult N /4�, as expected.

Figure 26 shows that the theoretical power law �Eq.
�208�� fits the simulation results perfectly for sufficiently
large 
. The simulation records also a few bursts of mag-
nitude less than � because there is a nonzero probability
to have bundles with considerably fewer fibers than the
average in a threshold interval. However, these events
will be of no importance for the asymptotic power law in
the size distribution.

In order to see whether the asymptotic exponent
value �=3 is general, simulations for another threshold
distribution have been performed, the Weibull distribu-
tion �Eq. �2�� with index 5, which confirms similar
asymptotic behavior �Fig. 27�.

For a general threshold distribution P�x� a load inter-
val � and a threshold interval are connected via the load
equation �F�=Nx�1−P�x��. Since d�F� /dx=N�1−P�x�
−xp�x��, an increase � in the load corresponds to an in-
terval

dx =
�

N�1 − P�x� − xp�x��
�209�

of fiber thresholds. The expected number of fibers bro-
ken by this load increase is therefore


 = Np�x�dx =
p�x�

1 − P�x� − xp�x�
� . �210�

Note that this number diverges at the critical point, i.e.,
at the maximum of the load curve, as expected.

Following the similar method, as in the case of uni-
form distribution, we can determine �Hemmer and
Pradhan, 2007� the asymptotic distribution for large 
:
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FIG. 26. Avalanche size distribution for the uniform threshold
distribution �Eq. �1�� when the load is increased in steps of �
=10 and 50 �upper curve�. The dotted lines show the theoreti-
cal asymptotics �Eq. �208�� for �=10 and 50. Based on 10 000
samples with N=106 fibers in the bundle.
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D�
� � C
−3, �211�

with a nonzero constant

C = N�
p�xc�2

2p�xc� + xcp��xc�
, �212�

where we have used that at criticality 1−P�xc�=xcp�xc�.
Thus the asymptotic exponent value �=3 is universal.

For the Weibull distribution considered in Fig. 27 we
obtain

D�
� = N�
−325x9e−x5

4 + 5x5 and 
 =
5�x4

1 − 5x5 . �213�

This burst distribution must be given in parameter form;
x cannot be eliminated explicitly. The critical point is at
x=5−1/5 and the asymptotics is given by Eq. �211�, with
C=N��625e�−1/5.

If we let the load increase � shrink to zero, we must
recover the asymptotic D�
��
−5/2 power law valid for
continuous load increase. Thus, as a function of �, there
must be a crossover from one behavior to the other. It is
to be expected that for � 1 the D�
��
−5/2 asymptotics
is seen and when ��1 the D�
��
−3 asymptotics is
seen.

3. Energy bursts in fiber bundle model

So far we have discussed in detail the statistical distri-
bution of the size of avalanches in fiber bundles �Hem-
mer and Hansen, 1992; Pradhan, Hansen, and Hemmer,
2005; Hemmer et al., 2006; Raischel et al., 2006�. Some-
times the avalanches cause a sudden internal stress re-
distribution in the material and are accompanied by a
rapid release of mechanical energy. A useful experimen-
tal technique to monitor the energy release is to mea-
sure the acoustic emissions �AEs�, the elastically radi-
ated waves produced in the bursts �Fazzini, 1991;

Diodati et al., 1991; Scott, 1991; Petri et al., 1994; Garci-
martín et al., 1997; Guarino et al., 1998�. Experimental
observations suggest that AE signals follow power-law
distributions. What is the origin of such power laws?
Can we explain it through the general scheme of
fluctuation-guided breaking dynamics that has been
demonstrated well in the ELS fiber bundle model?

We now determine the statistics of the energies re-
leased �Pradhan and Hemmer, 2008� in fiber bundle ava-
lanches. As the fibers obey Hooke’s law, the energy
stored in a single fiber at elongation x equals 1

2x2, where
for simplicity we have set the elasticity constant equal to
unity. The individual thresholds xi are assumed to be
independent random variables with the same cumulative
distribution function P�x� and a corresponding density
function p�x�.

a. Energy statistics

We characterize a burst by the number 
 of fibers that
fail and by the lowest threshold value x among the 

failed fibers. The threshold value xmax of the strongest
fiber in the burst can be estimated to be

xmax� x +



Np�x�
�214�

since the expected number of fibers with thresholds in
an interval �x is given by the threshold distribution func-
tion as Np�x��x. The last term in Eq. �214� is of the
order 1/N, so for a very large bundle the differences in
threshold values among the failed fibers in one burst are
negligible. Hence the energy released in a burst of size 

that starts with a fiber with threshold x is given by

E =
1
2

x2. �215�

Following Hemmer and Hansen �1992� the expected
number of bursts of size 
, starting at a fiber with a
threshold value in the interval �x ,x+dx�, is

f�
,x�dx = N


−1

n!
1 − P�x� − xp�x�

x
X�x�
e−
X�x� dx ,

�216�

where

X�x� =
xp�x�

1 − P�x�
. �217�

The expected number of bursts with energies less than E
is therefore

G�E� =�


�

0

�2E/


f�
,x�dx , �218�

with a corresponding energy density

g�E� =
dG

dE
=�



�2E
�−1/2f�
,�2E/
� . �219�

Explicitly,
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FIG. 27. Avalanche size distribution for the Weibull distribu-
tion �Eq. �2�� with index 5. Open circles represent simulation
data, dashed lines are analytic expressions �Eq. �213��, and the
dotted line is the asymptotic power law with exponent −3. The
load is increased in steps of �=20. Based on 10 000 samples of
bundles with N=106 fibers.

525Pradhan, Hansen, and Chakrabarti: Failure processes in elastic fiber bundles

Rev. Mod. Phys., Vol. 82, No. 1, January–March 2010



g�E� = N�



g
�E� , �220�

with

g
�E� =


−1

2E
!
�1 − P�s� − sp�s��

�� sp�s�
1 − P�s�

exp	− sp�s�
1 − P�s�
�
. �221�

Here s��2E /
. With a critical threshold value xc, it
follows from Eq. �215� that a burst energy E can be ob-
tained only if 
 is sufficiently large, 
�2E /xc

2. Thus the
sum over n starts with 
=1+ �2E /xc

2�, where �a� denotes
the integer part of a.

b. High-energy asymptotics

Bursts with high energies correspond to bursts in
which many fibers rupture. In this range we use Stirling’s
approximation for the factorial 
!, replace 1+ �2E /xc

2� by
2E /xc

2, and replace the summation over 
 by an integra-
tion. Thus

g�E� �
N

2E3/2�1/2�
2E/xc

2

� e



3/2 �1 − P�s� − sp�s��

�� sp�s�
1 − P�s�

exp	− sp�s�
1 − P�s�
�
 d
 . �222�

By changing integration variable from 
 to s we obtain

g�E� �
N

2E3/2�1/2�
0

xc

�1 − P�s� − sp�s��

�� sp�s�
1 − P�s�

exp	1 −
sp�s�

1 − P�s�
�
 ds

=
N

2E3/2�1/2�
0

xc

�1 − P�s� − sp�s��e−Eh�s� ds , �223�

with

h�s� � 	− 1 − P�s� − sp�s�
1 − P�s�

+ ln
1 − P�s�

sp�s� 
 2

s2 . �224�

For large E the integral �Eq. �223�� is dominated by
the integration range near the minimum of h�s�. At the
upper limit s=xc we have h�xc�=0 since 1−P�xc�
=xcp�xc�. This is also a minimum of h�s�, having qua-
dratic form

h�s� � 	2p�xc� + xcp��xc�
xc

2p�xc�

2�xc − s�2. �225�

Inserting these expressions into Eq. �223� and integrat-
ing, we obtain the following asymptotic expression:

g�E� �N
C

E5/2 � E−�e, �226�

where

C =
xc

4p�xc�2

4�1/2�2p�xc� + xcp��xc��
. �227�

In Fig. 28 we compare the theoretical formula with
simulations for the uniform distribution �Eq. �1��, which
corresponds to xc= 1

2 and C=2−7�−1/2, and for the
Weibull distribution �Eq. �2�� with index �=2, which cor-
responds to xc=2−1/2 and C=2−5�2�e�−1/2.

The corresponding asymptotics �Eq. �226�� are also
shown in Fig. 28. For both threshold distributions the

100

102

104

106

108

0.001 0.01 0.1 1 10 100

g(
E

)

E

100

102

104

106

108

0.001 0.01 0.1 1 10 100

g(
E

)

E(b)(a)

FIG. 28. Simulation results for g�E� characterizing energy bursts in fiber bundles with �a� the uniform threshold distribution �Eq.
�1�� and �b� the Weibull distribution �Eq. �2�� of index 2. The graphs are based on 1000 samples with N=106 fibers in each bundle.
Open circles represent simulation data and dashed lines are the theoretical results �Eqs. �226� and �227�� for the asymptotics.
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agreement between the theoretical asymptotics and the
simulation results is satisfactory. The exponent −5/2 in
the energy burst distribution is clearly universal. Note
that the asymptotic distribution of the burst magnitudes

 is governed by the same exponent �Hemmer and
Hansen, 1992�.

c. Low-energy behavior

The low-energy behavior of the burst distribution is
by no means universal: g�E� may diverge, vanish, or stay
constant as E→0, depending on the nature of the
threshold distribution. In Fig. 29 we show simulation re-
sults for the low-energy part of g�E� for the uniform
distribution and the Weibull distributions of index 2 and
5.

We see that g�E� approaches a finite limit in the
Weibull �=2 case, approaches zero for Weibull �=5, and
apparently diverges in the uniform case. All this is easily
understood since bursts with low energy predominantly
correspond to single fiber bursts �
=1, i.e., E=x2 /2� and
to fibers with low threshold values. The number of
bursts with energy less than E therefore corresponds to
the number of bursts with x��2E, which is close to
NP��2E�. This gives

g�E� �N
p��2E�
�2E

when E → 0. �228�

For the uniform distribution g�E� should therefore di-
verge as �2E�−1/2 for E→0. The simulation results in Fig.
29 are consistent with this divergence. For the Weibull
distribution of index 2, on the other hand Eq. �228� gives
g�E�→2N when E→0, a value in agreement with simu-
lation results in the figure. Note that for a Weibull dis-
tribution of index �, the low-energy behavior is g�E�
�E��−2�/2. Thus the Weibull with �=2 is a borderline case
between divergence and vanishing of the low-energy

density. The same lowest-order results can be obtained
from the general expression �220� which can also pro-
vide more detailed low-energy expansions.

For high energies the energy density obeys a power
law with exponent −5/2. This asymptotic behavior is
universal, independent of the threshold distribution. A
similar power-law dependence is found in some experi-
mental observations on acoustic emission studies �Petri
et al., 1994; Garcimartín et al., 1997� of loaded composite
materials. In contrast, the low-energy behavior of g�E�
depends crucially on the distribution of the breakdown
thresholds in the bundle. g�E� may diverge, vanish, or
stay constant for E→0.

IV. LOCAL LOAD-SHARING MODEL

So far we have studied fiber bundles where the force
once carried by a failing fiber is spread equally among
all the surviving fibers. This may often be a very good
approximation. However, intuitively it is natural that fi-
bers closer to a failing fiber experience more of an effect
than fibers further away—an effect reminiscent of stress
enhancement around cracks. In this section we discuss
three classes of model where there are local effects in
how the forces carried by failed fibers are distributed.
We start with the most extreme, where the forces are
totally absorbed by the nearest surviving fibers. We then
move on to models where the stress is distributed ac-
cording to a power law in the distance from the failing
fiber, and lastly to a model where we assume the clamps
the fibers are attached to are soft and therefore deform
due to the loading of the fibers—as can be seen in pull-
ing on the hairs on one’s arm.

A. Stress alleviation by nearest neighbors

The extreme form for local load redistribution is that
all extra stresses caused by a fiber failure are taken up
by the nearest-neighbor surviving fibers �Harlow and
Phoenix, 1981, 1991; Phoenix and Smith, 1983; Harlow,
1985; Kuo and Phoenix, 1987; Duxbury and Leath,
1994�. The simplest geometry is one dimensional, so that
the N fibers are ordered linearly, with or without peri-
odic boundary conditions. In this case precisely two fi-
bers, one on each side, take up and divide equally the
extra stress �see Fig. 30�. When the strength thresholds
take only two values, the bundle strength distribution
has been found analytically �Harlow, 1985; Harlow and
Phoenix, 1991; Duxbury and Leath, 1994�.

At a total force F on the bundle the force on a fiber
surrounded by nl previously failed fibers on the left-
hand side, and nr on the right-hand side is then

F

N
�1 +

1
2
�nl + nr�� = f�2 + nl + nr� . �229�

Here
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FIG. 29. Simulation results for the burst distribution g�E�, in
the low-energy regime, for the uniform threshold distribution
�circles�, the Weibull distribution with �=2 �triangles�, and
Weibull distribution with �=5 �squares�. The graphs are based
on 1000 samples with N=106 fibers in each bundle.
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f =
F

2N
�230�

is one-half the force per fiber and is a convenient vari-
able to use as the driving force parameter.

Zhang and Ding �1994� and Hansen and Hemmer
�1994b� studied numerically the burst distribution in the
local load-sharing model. In Fig. 31 we show simulation
results similar to those first appearing in Hansen and
Hemmer �1994b� using threshold strengths randomly
distributed on the unit interval. Again a power-law dis-
tribution seems to appear. However, the burst exponent
� seems much larger than in the global load-sharing
model �Eq. �140��,

�� 5. �231�

Thus the relative frequency of long �nonfatal� bursts is
considerably reduced.

It was concluded from the numerics that systems with
local load sharing are not in the universality class of
fiber bundles with global load redistribution.

Kloster et al. �1997� set out to analytically calculate
the burst distribution in the local load-sharing model,
finding the surprising result that there is no power-law
distribution of bursts at all; it is exponential. They did
not find the burst distribution for general threshold dis-
tribution. Rather, they limited their study to the uniform
threshold distribution in the force parameter f, given by

P�f� = �f for 0� f� 1

1 for f� 1.
� �232�

Bursts in the local and global models have different
characters. In the local model a burst develops with one
failure acting as the seed. If many neighboring fibers
have failed, the load on the fibers on each side is high;
and if they burst the load on the new neighbors will be
even higher, etc. In this way a weak region in the bundle
may be responsible for the failure of the whole bundle.
For a large number N of fibers the probability of a weak
region somewhere is higher. This hints in a qualitative
way that the maximum load the bundle is able to carry
does not increase proportionally to N but more slowly
than linearly.

The result of a calculation based on combinatorics
�Kloster et al., 1997� was the burst distribution

D�
� = �
0

1/�
+2�

�
n=1

N

�
L1=


M�f�

�
L2=0

M�f�−L1 Pf�n,L1;f�
S�L1;f�

p�L1,
 ;f�

�Pf�N − n − 1,L2;f��1 − �L1 + L2 + 2�f�df ,

�233�

where S�l ; f� is the probability that selected regions of l
consecutive fibers have all failed whereas the two fibers
at both boundaries are still intact at force parameter y
and p�l ,a ; f�df is the probability that a force increase
from f to f+df leads to a burst of length l and magnitude
a. Pf�n ,L ; f� is the probability at force parameter f that
among the first n fibers there is no fatal burst and that
the last L fibers of these have all failed.

The load distribution rule �Eq. �229�� implies that a
burst of size 
 necessarily leads to a complete break-
down of the whole bundle if the external force is too
high, i.e., if x exceeds a critical value xmax. Since here a
fiber can at most take a load of unity, we have

F

F

FIG. 30. A fiber bundle with periodic boundary conditions.
The externally applied force F is the control parameter.
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FIG. 31. Burst distribution in local model as found numerically
for 4 000 000 samples with N=20 000 fibers �crosses� and cal-
culated from Eq. �233� �boxes�. The straight line shows the
power law 
−5 and the broken curve the function exp�−
 /
0�
with 
0=1.1. Note the small value of 
0.

528 Pradhan, Hansen, and Chakrabarti: Failure processes in elastic fiber bundles

Rev. Mod. Phys., Vol. 82, No. 1, January–March 2010



fmax =
1


 + 2
. �234�

We now attempt to find a simple estimate for the
maximal force per fiber that the fiber bundle can toler-
ate. In order to do that we assume that the fatal burst
occurs in a region where no fibers have previously failed
so that the burst has the same magnitude and length. We
know that a single burst of length 
= f−1−2 is fatal �Eq.
�234��, so our criterion is simply

D�f−1 − 2� = 1. �235�

If we take into account that the two fibers adjacent to
the burst should hold, and ignore the rest of the bundle,
the gap distribution would be

N−1D�
� � �
0

1/�
+2�

�1 − �2 + 
�f�2p�
,
 ;f�df

=
2p�
,
�


�
 + 1��
 + 2�
+1 . �236�

With the abbreviation

R
 =
p�
,
�
�
 − 1�!

,

we have

D�
�/N�
2�
 + 2�!


2�
 + 1�2�
 + 2�
+2R


�
�8��
 + 2�

2�
 + 1�2

e−
−2R
, �237�

using Stirling’s formula.
Taking logarithms we have

ln D�
� − ln N = − �
 + 2��1 +
ln R


 + 2

+ O	 ln 




�

� − �
 + 2� , �238�

using that

lim
n→�

Rn
1/n = 1 �239�

for R
 when 
 is large.
The failure criterion �235�� then takes the form

ln N�
1

f
. �240�

Since f=F /2N we have the following estimate for the
maximum force F that the fiber bundle can tolerate be-
fore complete failure:

F�
2N

ln N
. �241�

Due to the assumption that the fatal burst occurs in a
region with no previously failed fibers, the numerical
prefactor is an overestimate. The size dependence

F �
N

ln N
�242�

shows that the maximum load the fiber bundle can carry
does not increase proportionally to the number of fibers
but more slowly. This is to be expected since the prob-
ability of finding somewhere a stretch of weak fibers that
start a fatal burst increases when the number of fibers
increases.

The N / ln N dependence agrees with a previous esti-
mate by Zhang and Ding �1995, 1996� for a uniform
threshold distribution. The bimodal distribution used by
Harlow and Phoenix �1991� and Duxbury and Leath
�1994� also shows this behavior.

The burst distribution �Eq. �238�� is exponential. The
probability of a single burst zipping through the fiber
bundle grows with the system size N. This contrasts
strongly with the global load-sharing model whose
strength �the maximum force it can sustain� grows lin-
early with N and whose burst distribution follows a uni-
versal power law. If the latter behavior is reminiscent of
a second-order transition with a critical point, the local
load-sharing model behaves more as if moving toward a
first-order phase transition.

We now discuss the effect of a low cutoff �in fiber
strength distribution� on the failure properties of the
LLS model. As in the case of the ELS model �see Sec.
III.A�, we consider a uniform fiber threshold distribu-
tion having a low cutoff CL �Eq. �126��. We present a
probabilistic argument to determine the upper limit of
CL beyond which the whole bundle fails at once. Follow-
ing the weakest-fiber-breaking approach the first fiber
fails at an applied stress CL �for large N�. As we are
using periodic boundary conditions, the nc nearest
neighbors �nc is the coordination number� bear the ter-
minal stress of the failing fiber and their stress value
rises to xf=CL�1+1/nc�. Now, the number of nearest
neighbors �intact� having a strength threshold below xf is
�NN�fail=ncP�xf� �see Eq. �131��. Putting the value of
P�xf� and xf we finally get

�NN�fail =
CL

1 − CL
. �243�

If �NN�fail�1, then at least another fiber fails and this is
likely to trigger a cascade of failure events resulting in
complete collapse of the bundle. Therefore, to avoid the
instant failure situation we must have �NN�fail�1, from
which we get the upper bound of CL: CL�

1
2 . As the

above condition does not depend on the coordination
number n, at any dimension the whole bundle is likely to
collapse at once for CL�1/2. It should be mentioned
that the LLS model should behave almost like the ELS
model at the limit of infinite dimensions and therefore
the identical bound �of CL� in both cases is not surpris-
ing. A numerical study �Pradhan and Hansen, 2005� con-
firmed �Fig. 32� the above analytic argument in one di-
mension. When the average step value goes below 1.5,
then one-step failure is the dominating mode. One can
find the extreme limit of CL when all the nearest neigh-
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bors fail after the weakest fiber breaks. Then the LLS
bundle collapses instantly for sure. Setting �NN�fail=nc
one gets the condition CL�nc / �1+nc�, where the stress
level of all the nearest neighbors crosses the upper cut-
off 1 of the strength distribution. Clearly such failure is
very rapid �like a chain reaction� and does not depend
on the shape of the strength distributions, except for the
upper cutoff. Also, as nc increases �ELS limit�, CL for
instant failure assumes the trivial value 1. Similar sudden
failure in FBM has been discussed by Moreno, Gómez,
and Pacheco �2001� in the context of a “one-sided load
transfer” model.

The local load-sharing scheme introduces stress en-
hancement around the failed fiber, which accelerates
damage evolution. Therefore, a few isolated cracks can
drive the system toward complete failure through
growth and coalescence. The LLS model shows zero
strength �for fiber threshold distributions starting from
zero value� at the limit N→�, following a logarithmic
dependence on the system size �N� �Smith, 1980; Gomez
et al., 1993; Pradhan and Chakrabarti, 2003a�. Now for
threshold distributions having a low cutoff �CL�, the ul-
timate strength of the bundle cannot be less than CL.
For such a uniform distribution �Eq. �126��, numerical
simulations showed �Fig. 33� that as CL increases the
quantity �strength −CL� approaches zero following
straight lines with 1/N, but the slope gradually de-
creases, which suggests that the system size dependence
of the strength gradually becomes weaker.

Hansen and Hemmer �1994a� introduced and studied
a model interpolating between the global load-sharing
fiber bundle and a variant of a local load-sharing model.
Kim �2004� and Pradhan, Chakrabarti, and Hansen
�2005� followed up this work. In the model studied by
Pradhan, Chakrabarti, and Hansen �2005� a fraction g of
the load a failing fiber carries would be distributed
among its surviving neighbors and a fraction 1−g among
all surviving fibers. Hence, for g=1 the model would be
purely local load sharing, whereas for g=0 it would be
purely global load sharing. We show in Fig. 34 space-

time diagrams of the one-dimensional version of the
model for different values of g. For increasing values of
g, there is increasing localization.

Both Kim �2004� and Pradhan, Chakrabarti, and
Hansen �2005� found a phase transition when interpolat-
ing between the global load-sharing model and the local
load-sharing model discussed earlier. In the one-
dimensional model shown in Fig. 34, the critical value of
g is gc=0.79±0.01 for a flat threshold distribution
�Pradhan, Chakrabarti, and Hansen, 2005�.

B. Intermediate load-sharing models

A crucial mechanism in brittle fracture is the stress
enhancement that occurs at crack tips. The stress field
has a 1/�r singularity, where r is the distance to the
crack tip, in this region. It is the interplay between frac-
ture growth due to this singularity and weak spots in the
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FIG. 32. Numerical estimate of the upper bound of CL in the
LLS model: for CL�0.5 the average step values go below 1.5,
i.e., the bundle fails at one step in most of the realizations.
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material that drive the development of the fracture pro-
cess �Herrmann and Roux, 1990�. Clearly, there is a cut-
off in the stress field as r→0. This may be caused by
nonlinearities in the material constitutive relations or by
microstructure in the material such as the presence of
crystallites.

Hidalgo, Moreno, et al. �2002� introduced a fiber
bundle that contains a power-law dependence on the
distance from a failing fiber on the force redistribution
in order to model the stress singularity seen around
crack tips. The fiber bundle is implemented as a regular
two-dimensional grid of parallel fibers clamped between
two stiff blocks. Assuming that fiber j has just failed, a
force transfer function

F�ri,j,!� =
Z

rij
! , �244�

where

1

Z
=�

i�I

1

rij
! �245�

and I is the set of intact fibers, redistributes the forces. !
is treated as a parameter on the unit interval. There are
two limiting cases, !→0 which recovers the global load-
sharing fiber bundle and !→� which recovers the local
load-sharing model with nearest-neighbor stress allevia-
tion �Sec. IV.A�. The load increase on fiber i is hence
given by

fi → fi + �
j�B

fjF�rij,!� , �246�

where B is the set of failed fibers up to that point.
This model is too complex for analytical treatment

and numerical simulations must be invoked. Around !
=2.0 there is a transition in behavior between essentially
global load sharing and local load sharing as described in
Sec. IV.A: for !�2.0, the maximum sustainable force
scales the number of fibers in the bundle at the outset N,
whereas for !�2.0, an N / ln N behavior is observed as in
Eq. �242�. This is seen in Figs. 35 and 36.

The burst distribution shows a power-law distribution
with exponent �=5/2, again signaling global load-
sharing behavior for smaller values of !. As ! is in-
creased, deviations from this behavior are seen. This
must be interpreted as a crossover toward local load-
sharing behavior as described in the previous section
�see Fig. 37�.

Lastly, the structure of the clusters of failed fibers at
breakdown is studied. The global load-sharing model
implemented in two dimensions does not yield anything
particular. There is a percolation transition in the cluster
size distribution when the relative density of failed fibers
reaches the percolation threshold, but this has no par-
ticular significance in the evolution of the model.
Hidalgo, Moreno, et al. �2002� found a cluster distribu-
tion having two distinct behaviors, depending on
whether ! is smaller than or larger than 2. There is no
clear power-law behavior �see Fig. 38�.

Hidalgo, Zapperi, and Herrmann �2008� studied an
anisotropic version of this model. The force transfer
function �Eq. �244�� in this work is generalized to

FIG. 35. Strength at failure �c as a function of ! in the variable
range fiber bundle of Hidalgo, Moreno, et al. �2002� .
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F�ri,j,!� =
Z

���
xi,j
2 + �1 − ��
yi,j

2 ��!/2 , �247�

where � is an anisotropy parameter. The behavior of this
model turns out to be quite similar to that found in the
isotropic model.

Raischel et al. �2006� introduced a low cutoff in the
threshold distribution �Pradhan et al., 2002� in the
variable-range fiber bundle model of Hidalgo, Moreno,
et al. �2002�. They studied the burst distribution as a
function of ! and cutoff in the failure thresholds in terms
of deformation �L. Figure 39 summarizes their findings:
for the explored values of ! in the range 2.0�!�6.0, a
crossover from burst exponent �=5/2 to �=3/2 is seen
for small �L, whereas for larger !�6.0, the burst distri-
bution may be fitted to a value �=9/2 for small �L.

Newman and Gabrielov �1991� and Newman et al.
�1994� introduced a fiber bundle model where the fibers
are hierarchically organized. The fibers are paired two
by two. Each of these pairs is seen as an “order-1” fiber.
This pairing is repeated for the order-1 fibers, creating
order two fibers and so on. Within each sub-bundle, the
fibers are subject to equal load sharing. If the cumulative
threshold distribution for the fibers at order zero is
P0�x�=P�x�, then the threshold distribution at level 1 is

P1�x� = P0�x��2P0�2x� − P0�x�� , �248�

a result which is readily generalized to any level. Even
though the starting point here is global load sharing, the
approximation introduced by treating the fibers at each
level as fibers with given thresholds leads to the intro-
duction of spatial load dependence in the model. To our
knowledge, bursts have not been studied within this
framework.

C. Elastic medium anchoring

In this section we generalize the fiber bundle problem
to include more realistically the elastic response of the
surfaces to which the fibers are attached. So far, these
have been assumed to be infinitely stiff for the equal-
load-sharing model or their response has been modeled
as very soft but in a fairly unrealistic way in the local
load-sharing models �see Sec. IV.A�. We will end up with
a description that is somewhat related to the models of
the previous section, in particular, the model of Hidalgo,
Moreno, et al. �2002�. Batrouni et al. �2002� studied a
realistic model for the elastic response of the clamps.
The model was presented in the context of the failure of
weldings. In this language, the two clamps were seen as
elastic media glued together at a common interface.

Without loss of generality, one of the media may be
assumed to be infinitely stiff whereas the other is soft.
When a force is applied to a given fiber, the soft clamp
responds by a deformation falling off inversely with the
distance from the loaded fiber. Hence, the problem be-
comes one of solving the response of the surface with
respect to a given loading of the fibers. Fibers exceeding
their maximally sustainable load fail, and the forces and
deformations must be recalculated. The two clamps can
be pulled apart by controlling �fixing� either the applied
force or the displacement. The displacement is defined as
the change in the distance between two points, one in
each clamp positioned far from the interface. The line
connecting these points is perpendicular to the average
position of the interface. In our case, the pulling is ac-
complished by controlling the displacement. As the dis-
placement is increased slowly, fibers will fail, eventually
ripping the two surfaces apart.

We now concretize these ideas in a model. It consists
of two-dimensional square L�L lattices with periodic
boundary conditions. The lower one represents the hard
stiff surface and the upper one the elastic surface. The
nodes of the two lattices are matched �i.e., there is no
relative lateral displacement�. The fibers are modeled as
in the previous sections: elastic up to a threshold value

10
0

10
1

10
2

10
3

s
10

−8

10
−6

10
−4

10
−2

10
0

n(
s)

γ = 0
γ = 2
γ = 2.15
γ = 2.2
γ = 2.5
γ = 3
γ = 7
γ = 9

FIG. 38. Size distribution of clusters of broken bonds at col-
lapse in the variable range fiber bundle of Hidalgo, Moreno, et
al. �2002�. There is no evident power-law behavior.

FIG. 39. �Color online� Burst size distributions in the variable-
range fiber bundle model for different ! and �L values: != �a�
2.0, �b� 2.5, �c� 3.0, and �d� 6.0. From Raischel et al., 2006.
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which has been individually chosen for each fiber from
some threshold distribution. The spacing between the
fibers is a in both the x and y directions. The force that
each fiber is carrying is transferred over an area of size
a2 to the soft clamp: as the two clamps are separated by
controlling the displacement of the hard clamp relative
to the zero level D, the forces carried by the fibers in-
crease from zero. When the force carried by a fiber
reaches its breaking threshold, it breaks irreversibly and
the forces redistribute themselves through the deforma-
tion of the soft clamp. Hence, the fibers are broken one
by one until the two clamps are no longer in mechanical
contact. The force fi carried by the ith fiber is given by

fi = − k�ui − D� , �249�

where k is the spring constant and ui is the deformation
of the elastic clamp at site i. All unbroken fibers have
k=1 while a broken fiber has k=0. The quantity ui−D
is, therefore, the length, and since k=1, also the force
carried by fiber i. The deformation of the soft clamp is
described by the coupled system of equations,

ui =�
j

Gi,jfj, �250�

where the elastic Green’s function Gi,j is given by �Lan-
dau and Litshitz, 1958; Johnson, 1985�

Gi,j =
1 − s2

�ea2 �
−a/2

+a/2�
−a/2

+a/2 dx� dy�

��x − x�,y − y���
. �251�

In this equation, s is the Poisson ratio, e is the elastic
constant, and �i�− j�� is the distance between sites i and j.
The indices i and j run over all L2 sites. The integration
over the area a2 is done to average the force from the
fibers over this area. As remarked by Batrouni et al.
�2002�, the Green’s function �Eq. �251�� applies for a me-
dium occupying the infinite half space. However, with a
judicious choice of elastic constants, it may be used for a
finite medium if its range is small compared to L, the
size of the system.

By combining Eqs. �249� and �250�, one obtains

�I + KG�f� = KD� , �252�

where matrix-vector notation is used. I is the L2�L2

identity matrix and G is the Green’s function repre-
sented as an L2�L2 dense matrix. The constant vector
D� is L2 dimensional. The diagonal matrix K is also L2

�L2. Its matrix elements are either 1 for unbroken fi-
bers or 0 for broken ones.

Once Eq. �252� is solved for the force f�, Eq. �250�
yields the deformations of the elastic clamp.

Equation �252� is of the familiar form Ax� =b� . Since
the Green’s function connects all nodes to all other
nodes, the L2�L2 matrix A is dense, which puts severe
limits on the size of the system that may be studied.

The simulation proceeds as follows: one starts with all
springs present, each with its stochastic breakdown
threshold. The two media are then pulled apart, the

forces calculated using the conjugate gradient �CG� al-
gorithm �Batrouni and Hansen, 1988; Press et al., 1992�,
and the fiber nearest to its threshold is broken, i.e., the
matrix element corresponding to it in the matrix K is
zeroed. Then the new forces are calculated, a new fiber
is broken, and so on until all fibers have failed.

However, there are two problems that render the
simulation of large systems extremely difficult from a
numerical point of view. The first is that since G is L2

�L2 dense matrix, the number of operations per CG
iteration scales like L4. Even more serious is the fact
that as the system evolves and springs are broken, the
matrix I+kG becomes ill conditioned. To overcome the
problematic L4 scaling of the algorithm, the matrix-
vector multiplications are done in Fourier space since
the Green’s function is diagonal in this space. Symboli-
cally, these multiplications may be written as follows:

�I + KF−1FG�F−1Ff� = KD� , �253�

where F is the fast Fourier transform �FFT� operator
and F−1 is its inverse �F−1F=1�. Since I and K are diag-
onal, operations involving them are performed in real
space. With this formulation, the number of operations
per iteration in the CG algorithm now scales like
L2 ln�L� rather than L4.

To overcome the ill conditioning of the matrix I+kG
we need to precondition the matrix �Batrouni et al.,
1986; Batrouni and Hansen, 1988�. This means that in-
stead of solving Eq. �253�, one solves the equivalent
problem

Q�I + KF−1FG�F−1Ff� = QKD� , �254�

where we simply have multiplied both sides by the arbi-
trary positive definite preconditioning matrix Q. Clearly,
the ideal choice is Q0= �I+KG�−1, which would always
solve the problem in one iteration. Since this is not pos-
sible in general, we look for a form for Q which satisfies
the following two conditions: �1� as close as possible to
Q0 and �2� fast to calculate. The choice of a good Q is
further complicated by the fact that, as the system
evolves and fibers are broken, corresponding matrix el-
ements of K are set to zero. So, the matrix I+KG
evolves from the initial form I+G to the final one I.
Batrouni et al. �2002� did not find a fixed Q that worked
throughout the entire breakdown process. They there-
fore chose the form

Q = I − �KG� + �KG��KG� − �KG��KG��KG� + ¯ ,

�255�

which is the Taylor series expansion of Q0= �I+KG�−1.
For best performance, the number of terms kept in the
expansion is left as a parameter since it depends on the
physical parameters of the system. It is important to em-
phasize the following points. �a� As fibers are broken,
the preconditioning matrix evolves with the ill-
conditioned matrix and therefore remains a good ap-
proximation of its inverse throughout the breaking pro-
cess. �b� All matrix multiplications involving G are done
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using FFTs. �c� The calculation of Q can be easily orga-
nized so that it scales as nL2 ln�L�, where n is the num-
ber of terms kept in the Taylor expansion �Eq. �255��.
The result is a stable accelerated algorithm which scales
essentially as the volume of the system.

Figure 40 shows the force-displacement curve for a
system of size 128�128 and elastic constant e=10.
Whether we control the applied force F or the displace-
ment D, the system will eventually suffer catastrophic
collapse. However, this is not so when e=100 as shown
in Fig. 41. In this case, only control of the force will lead
to catastrophic failure. In the limit when e→�, the
model becomes the equal-load-sharing fiber bundle
model, where F= �1−D�D. In this limit there are no spa-
tial correlations and the force instability is due to the
decreasing total elastic constant of the system making
the force on each surviving bond increase faster than the
typical spread of threshold values. No such effect exists
when controlling displacement D. However, when the
elastic constant e is small, spatial correlations in the
form of localization, where fibers that are close in space

have a tendency to fail consecutively, do develop, and
these are responsible for the displacement instability
seen in Fig. 40.

We now turn to the study of the burst distribution.
Figures 42 and 43 show the burst distribution for e=10
and 100. In both cases we find that the burst distribution
follows a power law with an exponent �=2.6±0.1. It was
argued by Batrouni et al. �2002� that the value of � in this
case is indeed 5/2 as in the global load-sharing model.
These two figures should be compared with Fig. 37
showing the burst distribution in the variable-range fiber
bundle model of Hidalgo, Moreno, et al. �2002�, where
�=5/2 is recovered as long as the range exponent ! is
small, rendering the forces long range among the fibers.

As the failure process proceeds, there is an increasing
competition between local failure due to stress enhance-
ment and local failure due to local weakness of material.
When the displacement D is the control parameter and e
is sufficiently small �for example, e=10�, catastrophic
failure eventually occurs due to localization. The onset
of this localization, i.e., the catastrophic regime, occurs
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when the two mechanisms are equally important. This
may be due to self-organized criticality �Bak et al., 1987�
occurring at this point. In order to test whether this is
the case, Batrouni et al. �2002� measured the size distri-
bution of broken bond clusters at the point when D
reaches its maximum point on the F-D characteristics,
i.e., the onset of localization and catastrophic failure.
The analysis was performed using a Hoshen-Kopelman
algorithm �Stauffer and Aharony, 1994�. The result is
shown in Fig. 44 for 56 disorder realizations, L=128, and
e=10. The result is consistent with a power-law distribu-
tion with exponent −1.6 and consequently with self-
organization. If this process were in the universality class
of percolation, the exponent would have been 2.05.
Hence, we are dealing with a new universality class in
this system. This behavior should be contrasted to the
one seen in the variable-range fiber bundle model stud-
ied by Hidalgo, Moreno, et al. �2002� where no power-
law distribution was found �see Fig. 38 in Sec. IV.B�.

V. FIBER BUNDLES IN MATERIALS SCIENCE AND
OTHER APPLICATIONS

The aim of this section is to demonstrate how the fiber
bundle model may be used as a tool for studying both
important phenomena occurring in materials, such as fa-
tigue, and important classes of materials, notably fiber-
reinforced composites. A general review has recently
been written by Mishnaevsky and Brøndsted �2009� on
this subject. We also discuss applications of fiber bundle
models in other contexts, ranging from traffic modeling
to earthquake dynamics.

A. Time-dependent failure: Fatigue or creep phenomena

Materials may undergo time-dependent deformation
under steady load. Sometimes when a load is applied,
though the system survives at first stage, it fails after a

long time. This type of failure is referred to as fatigue
failure or creep rupture �Lawn, 1993; Chakrabarti, 1994;
Kun et al., 2006�. Fatigue failure is basically a thermally
activated process �Phoenix and Tierney, 1983� and origi-
nates at the atomic level of the fibers where the mol-
ecules are in random thermal vibrations. Eventually a
molecule acquires sufficient thermal energy to overcome
the local energy barrier and slips relative to other mol-
ecules. The frequency of such events is greatly enhanced
by increases in temperature, stress, and impurity level.
After a molecular slip or rupture, neighboring molecules
become overloaded and the failure rate increases. These
molecular failures accumulate locally and produce mi-
crocracks within the material. Also, microcracks can
grow with time at the crack tips due to chemical diffu-
sion in the atmosphere �Lawn, 1993�, which helps the
growth of fractures. These failures nucleate around the
defects in the solid, and the failure behavior and its sta-
tistics therefore crucially depend on the disorder or im-
purity distribution within the sample. The system then
fails under a stress less than its normal strength ��c� and
the failure time ��� depends on both the applied load
and the impurity level.

Fatigue failure in the fiber bundle model was first
studied by Coleman �1956, 1957a, 1957b� considering
different classes of fibers and several breakdown rules.
The probabilistic analysis gives the lifetime distribution
under various loading conditions: constant load, loads
proportional to time, and periodic loads. “Time depen-
dent fatigue” and “cycle-dependent fatigue” are both
addressed in this work, introducing the concept of a
“memory” effect, i.e., the load history can affect the fail-
ure of fibers. Such time-dependent failure in fiber
bundles has been considerably extended and generalized
by Phoenix et al. �Phoenix, 1978, 1979; Phoenix and Tier-
ney, 1983; Newman and Phoenix, 2001� for equal load-
sharing �ELS� and local-load sharing �LLS� bundles. The
approximate fatigue lifetime distributions have been
achieved through probabilistic analysis introducing the
power-law and exponential breakdown rules at the mo-
lecular level �Phoenix and Tierney, 1983�.

When dry fibers are replaced by viscoelastic elements
having-time dependent deformation properties, the fiber
bundle model exhibits creep behavior �Moral et al., 2001;
Hidalgo, Kun, et al., 2002; Kun et al., 2003� in terms of
the macroscopic response under constant external load.
There exists a critical load �or stress� below which the
deformation attains a constant value �infinite lifetime�
and, above the critical load, deformation increases
monotonically, resulting is global failure �finite lifetime�.
Another extension of the classical fiber bundle model,
the continuous damage model �Hidalgo et al., 2001; Kun
et al., 2003�, captures similar creep behavior, assuming
that a fiber can fail more than once and at each failure
its stiffness is reduced by a constant factor. In both of
these models the lifetime of the bundle diverges at the
critical load, following robust power-law variation with
the applied load.

Also, a few experiments �Pauchard and Meunier,
1993; Banerjee and Chakrabarti, 2001; Kun et al., 2007�,
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FIG. 44. Area distribution of zones where glue has failed for
systems of size 128�128 and elastic constant e=10. The
straight line is a least-squares fit and indicates a power law
with exponent −1.6.
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have been performed to observe the failure time of ma-
terials and its statistics. The effect of thermal activation
and disordered noise on the failure have recently been
measured for material breakdown and approximate fa-
tigue behavior has been obtained �Guarino, Garcimar-
tín, and Ciliberto, 1999; Guarino, Scorretti, and Cilib-
erto, 1999; Roux, 2000; Scorretti et al., 2001; Guarino et
al., 2002; Pradhan and Chakrabarti, 2003b; Kun et al.,
2007�, using fiber bundle models.

In this section, we discuss several approaches to
achieving fatigue-failure behavior in equal-load-sharing
fiber bundle models. The approaches differ basically in
the way time dependence has been incorporated in the
failure process.

1. Thermally induced failure in fiber bundles

The influence of noise on macroscopic failure in the
fiber bundle model has been studied numerically
�Guarino, Garcimartín, and Ciliberto, 1999; Guarino,
Scorretti, and Ciliberto, 1999; Ciliberto et al., 2001; Scor-
retti et al., 2001; Guarino et al., 2002� using both disorder
noise and thermal noise. The strength of each fiber is
characterized by a critical stress xi

�c�, which is a random
variable that follows a normal distribution of mean x�c�

and variance kTd:

xi
�c� = x�c� + Nd�kTd� , �256�

where k is the Boltzmann constant and Nd is the disor-
der noise. Again each fiber is subjected to an additive
time-dependent random stress 
xi�t�, which follows a
zero mean normal distribution of variance kT:


xi�t� = NT�t,kT� . �257�

Here NT is the thermal noise.
Due to the equal-load-sharing scheme, if a number

n�t� of fibers are broken at time t after force F is applied
on the bundle, the local force on each of the remaining
fibers will be

xi�t� =
x0N

N − n�t�
+ 
xi�t� , �258�

where N is the total number of fibers in the intact bundle
and x0=F /N is the initial force per fiber. If kT=0, the
model reduces to the static one. In that case the applied
force is increased linearly from zero to the critical value
Fc above which the whole bundle breaks. Therefore, at a
constant force F, the bundle breaks in a single avalanche
only if F�Fc, otherwise it will never break. If kT�0
then the system can break at an applied force F�Fc due
to the thermal effect. Such thermal failure of the model
has been studied numerically as a function of x0, kT, and
kTd �Guarino, Garcimartín, and Ciliberto, 1999;
Guarino, Scorretti, and Ciliberto, 1999; Ciliberto et al.,
2001�.

When kT�0, the failure time �f as a function of �1
−x0�2 follows an exponential law for any fixed value of
kTd,

�f � exp���1 − x0�2� , �259�

where � is a fitting parameter �Fig. 45�a��, which is a
function of kT. At constant stress, the failure time de-
pends on thermal noise kT as
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FIG. 45. Failure time �f of a homogeneous bundle �kTd=0� in a creep test. �a� �f as a function of the normalized force �1−x0�2 for
several values of thermal noise variance kT: kT=0.0045 �cross�; 0.006 �circle�; and 0.01 �triangle�. �b� �f as a function of 1/kT for
several values of x0: x0=0.45 �box�; 0.54 �circle�; and 0.7 �triangle�. Continuous lines in �a� and �b� are the fits with Eqs. �259� and
�260�, respectively. Adapted from Ciliberto et al., 2001.
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�f � �0 exp	 A

kT

 , �260�

where A is a function of x �Fig. 45�b��. A similar result
has also been observed in the case of a heterogeneous
fiber bundle �Fig. 46�.

One can compare these results with Pomeau’s theory
�Pomeau, 1992� for the failure time of solids,

�f = �0 exp	�g
�s

dY�d−1�

kTeffPs
�2d−2�
 , �261�

where Ps is the imposed stress, �0 is a constant, �s is the
surface energy, Y is the Young modulus, �g is a constant
which depends on the geometry, Teff is an effective tem-
perature, and d is the dimensionality of the system. This
theory is based on the physical argument that thermal
activation of microcracks �Golubović and Feng, 1991;
Pomeau, 1992�, is responsible for the macroscopic fail-
ure of the material. Note that the functional dependence
of �f on stress is different for the fiber bundle model and
for solids, the main reason being the different geom-
etries of the stress distribution in the fiber bundle and
the solids.

These numerical studies suggest that disorder noise
amplifies the effect of thermal noise and reduces the
dependence of �f on the temperature and this can ex-
plain recent experimental observations on microcrystals
�Pauchard and Meunier, 1993�, gels �Bonn et al., 1998�,
and macroscopic composite materials �Guarino, Garci-
martín, and Ciliberto, 1999; Guarino, Scorretti, and
Ciliberto, 1999�.

The numerical observations described above have
been confirmed later through an analytic investigation
by Roux �2000�. In a homogeneous �no disorder in fiber
strengths� fiber bundle model, the force or stress on each
fiber is

x = x0 + � , �262�

where x0=F /N and � is the random noise with a Gauss-
ian distribution

p��� =
1

�2�kT
exp	− �2

2kT

 , �263�

with zero mean and variance kT. Now the probability
that one fiber survives after time step t is

p1�t� = �1 − P�1 − x0��t, �264�

where P is the cumulative probability. Then the prob-
ability that the entire bundle can survive after time step
t time is
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FIG. 46. Failure time �f of a heterogeneous bundle �kTd�0� in
creep test. The lifetime �f is plotted as a function of 1/kT at
x0=0.45. Different symbols correspond to different values of
kTd: kTd=0 �circle�; 0.02 �triangle�; and 0.04 �box�. Adapted
from Ciliberto et al., 2001.
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FIG. 47. The simulation results showing variation of average
failure time �f against �a� external stress � and �b� noise T �k
=1 here� for a homogeneous bundle containing N=105 fibers.
The insets show the variation of the fraction U of unbroken
fibers with time t for different T values �1.2 �cross� and 1.0
�plus�� in �a� and different � values �0.15 �cross� and 0.12 �plus��
in �b�. The dotted and dashed lines represent the theoretical
result �Eq. �277��.
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pN�t� = �1 − P�1 − x0��Nt. �265�

Therefore the average failure time is

��1� =
− 1

N ln�1 − P�1 − x0��
. �266�

After the first fiber breaks, the situation remains the
same with a smaller bundle and larger stress. Thus the
average failure time after i−1 broken fibers is

��i� =
− 1

�N − i�ln�1 − P�1 − Nx0/�N − i���
. �267�

Now the total failure time can be obtained by taking
the sum over all i as

��f� =�
i=1

N
− 1

�N − i�ln�1 − P�1 − Nx0/�N − i���
. �268�

When N is large, one can replace the sum by a continu-
ous integral,

��f� = N−1�
0

N − N

�N − y�ln�1 − P�1 − Nx0/�N − y���
dy

= �
x0

� − 1

ln�1 − P�1 − z��
dz

z
.

To achieve a closed-form equation it has been consid-
ered that the above sum is dominated by the time re-
quired for breaking the first fiber when x0 is much
smaller than the maximum load xc and when kT 1.
Then P can be considered to be much smaller than 1.
Now the derivative of the average time with respect to
x0 gives

���f�
�x0

=
1

x0 ln�1 − P�1 − x0��
�

1

x0P�1 − x0�
. �269�

When �1−x0�2�kT the error function can be ex-
panded as

P�1 − x0� =
�kT exp�− �1 − x0�2/2kT�

�2��1 − x0�
�1 + O�kT�� .

�270�

Finally, taking into account the dominating terms, one
gets

��f� =
�2�kT

x0
exp	− �1 − x0�2

2kT

 . �271�

These analytic expressions are identical to those ob-
served earlier �Guarino, Garcimartín, and Ciliberto,
1999; Guarino, Scorretti, and Ciliberto, 1999; Ciliberto et
al., 2001; Scorretti et al., 2001; Guarino et al., 2002� in
numerical simulations. A similar analysis �Roux, 2000�
showed that when fiber strengths are distributed �het-
erogeneous case�, the average first failure time can be
expressed as

��1� =
�2�

N

�1 − x0�
�k�T +��

exp	− �1 − x0�2

2k�T +��
 , �272�

where � is an effective temperature that is added to the
temperature T due to the disorder. Hence, the disorder
leads to an effective temperature Teff=T+�, and this is
what Scorretti et al. �2001� proposed: time-independent
heterogeneities of the system modify the effective tem-
perature.

Politi et al. �2002� estimated the total time to failure
for the thermally activated fiber bundle model and
found the same behavior as in Eq. �272�: the disorder
adds a constant to the temperature of the fiber bundle.
Guarino et al. �2006�, generalized these results to the
two-dimensional fuse model.

2. Noise-induced failure in fiber bundles

Not only the temperature but several other factors
can result in fatigue failure in materials: weather effects,
chemical effects, etc. �Lawn, 1993; Chakrabarti, 1994�.
Recently, there has been an attempt �Pradhan and
Chakrabarti, 2003b� to incorporate all the noise effects
through a single parameter kT �k is the Boltzmann con-
stant�, which can directly influence the failure probabil-
ity of the individual elements. Such a failure probability
p�� ,kT� at any applied stress �, induced by a nonzero
noise kT, has been formulated as

p��,kT� = ��x exp�− 1

kT
	 x

�
− 1
� , 0� �� x

1, � � x ,
�
�273�

where x is the failure strength of an element. Clearly, the
failure probability increases as � and kT increase. With-
out any noise �kT=0� the model is trivial: the bundle
remains intact for stress ���c and it fails completely for
���c, where �c is the critical stress value.

At kT�0 and under any stress � ���c� some fibers
�weaker fibers� fail and the total load has to be sup-
ported by the surviving fibers, which in turn enhances
their stress value, inducing further failure. The bundle
therefore fails at ���c after a finite time �f.

In the case of the homogeneous bundle �all fibers have
the same strength x�, the critical stress value for the
bundle is �c=x. Then the time dynamics at an applied
stress � can be written �Pradhan and Chakrabarti,
2003b� as

Ut+1 = Ut�1 − p	 �
Ut

,kT
� , �274�

where Ut is the fraction of total fibers that remains intact
after time step t. In the continuum limit, we can write
the above recursion relation in a differential form,

−
dU

dt
=
�

�c
exp�− 1

kT
	�c

�
U − 1
� . �275�

The solution gives the failure time
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�f = �
0

�f

dt =
�c

�
exp	− 1

kT

�

0

1

exp� 1

kT
	�c

�

U�dU .

�276�

Hence, for ���c,

�f = kT exp	− 1

kT

�exp	 �c

�kT

 − 1� . �277�

Again, for ���c, one gets Ut+1=0 from Eq. �274�, giving
�f=0. For small kT and as �→�c, �f�kT exp���c /�
−1� /kT� �see Fig. 47�. These results agree qualitatively
with recent experimental observations �Banerjee and
Chakrabarti, 2001; Guarino et al., 2002�.

In order to investigate the fatigue behavior in hetero-
geneous fiber bundles, uniform distribution of fiber
strengths has been considered �Pradhan and Chakra-
barti, 2003b�. The noise-induced failure probability has

the similar form p�� ,kT�=exp�−�1/kT��x /�−1�� for 0
���x and p�� ,kT�=1 for ��x, where x denotes the
strength of the individual fibers in the bundle. Now it is
difficult to tackle the problem analytically. However,
Monte Carlo simulations �Pradhan and Chakrabarti,
2003b� showed �Fig. 48� the variations of average failure
time ��f� with noise �kT� and stress level ���:

�f = kT exp	− 1

kT

�exp	 �c

�kT
+

1

kT

 − 1� , �278�

where �c is the critical stress. This phenomenological
form �Eq. �278�� is indeed very close to the analytic re-
sult �Eq. �276�� for the homogeneous fiber bundle.

Newman and Phoenix �2001� considered the breaking
dynamics in a fiber bundle where each fiber has a failure
probability p determined by the loading time t and the
load � on it as p�t ,��=1−exp�−t��� and analyzed the life
time �tf� distribution. For 1/2���1, ELS and LLS
models have identical Gaussian distribution for tf. For
��1, LLS shows extreme statistics, while ELS gives
Gaussian behavior �see, e.g., Curtin and Scher �1997��.
Yoshioka et al. �2008� also studied similar tf distributions
and their scaling properties with load and temperature
variations.

3. Creep rupture in viscoelastic fiber bundles

Creep behavior has been achieved �Hidalgo, Kun, et
al., 2002; Kun et al., 2003� in a bundle of viscoelastic
fibers, where a fiber is modeled by a Kelvin-Voigt ele-
ment �see Fig. 49� and results in the constitutive stress-
strain relation

�0 = 	0�̇ + Y� . �279�

Here �0 is the applied stress, � is the corresponding
strain, 	0 denotes the damping coefficient, and Y is the
Young modulus of the fibers.

In the equal-load-sharing mode, the time evolution of
the system under a steady external stress �0 can be de-
scribed by

�0

1 − P���
= 	0�̇ + Y� . �280�
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FIG. 48. Simulation results of fatigue behavior: �a� average
failure time �f vs noise T �k=1 here� for three different stress
values and �b� �f vs � for three different noise values. The
bundle contains N=105 fibers with uniformly distributed
strength thresholds. The time variations of a fraction of surviv-
ing fibers are shown in the insets. The dotted lines in �a� and
�b� correspond to the fit with expression �Eq. �278�� where �c
�0.245 �exact value=1/4 �Pradhan et al., 2002; Bhattacharyya
et al., 2003��.

. . ..

FIG. 49. The viscoelastic fiber bundle: intact fibers are mod-
eled by Kelvin-Voigt elements which consist of a spring and a
dashpot in parallel. From Kun et al., 2003.
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As one can expect intuitively, there is a critical load �c
for the system and Eq. �280� suggests two distinct re-
gimes depending on the value of the external load �0:
when �0 is below the critical value �c, Eq. �280� has a
fixed-point solution �s, which can be obtained by setting
�̇=0 in Eq. �280�,

�0 = Y�s�1 − P��s�� . �281�

In this case the strain value converges to �s when t→�,
and no macroscopic failure occurs. But, when �0��c, no
fixed-point solution exists. Here �̇ remains always posi-
tive, which means in this case that the strain of the sys-
tem ��t� monotonically increases until the system fails
globally at a finite time tf �Hidalgo, Kun, et al., 2002�.

The solution of the differential equation �Eq. �280��
gives a complete description of the failure process. By
separation of variables, the integral becomes

t = 	0� d�
1 − P���

�0 − Y��1 − P����
+ C , �282�

where C is the integration constant.
Below the critical point �0��c the bundle slowly re-

laxes to the fixed-point value �s. The characteristic time
scale of such a relaxation process can be obtained by
analyzing the behavior of ��t� in the vicinity of �s. After
introducing a new variable �0 as �0�t�=�s−��t�, the dif-
ferential equation can be written as

d�0

dt
= −

Y

	0
	1 −

�sp��s�
1 − P��s�


�0. �283�

Clearly, the solution of Eq. �283� has the form �0
�exp�−t /��, with

� =
	0

Y

1

	1 −
�sp��s�

1 − P��s�

 , �284�

where � is the characteristic time of the relaxation pro-
cess.

The variation of the relaxation time � with the exter-
nal driving near the critical point �c is crucial for any
dynamical system. Since �0��s� has a maximum of the
value �c at �c, in the vicinity of �c one can use the ap-
proximation

�0 � �c − A��c − �s�2, �285�

where the multiplication factor A depends on the cumu-
lative distribution P. Using the approximation �285�, it
can be shown from Eq. �284� that

�� ��c − �0�−1/2 for �0� �c. �286�

Therefore, the relaxation time diverges following a uni-
versal power law with an exponent −1/2. Note that a dry
fiber bundle model, under constant load, shows similar
power-law divergence �see Sec. III.A�.

How does the system behave above the critical point?
The behavior can be analyzed in the same way when �0
is close to �c. Then one can write �0=�c+
�0, where


�0 �c. It is obvious that the relaxation steps are too
many when ��t� becomes close to �c. Therefore, the in-
tegral in Eq. �282� is dominated by the region close to �c.
Using Eq. �285� the integral in Eq. �282� becomes

tf � 	0� d�
1 − P���


�0 − A��c − ��2
. �287�

Evaluating the integration over a small � interval in the
vicinity of �c, one gets

tf � ��0 − �c�−1/2 for �0� �c. �288�

Thus, tf has a two-sided power-law divergence at �c with
a universal exponent − 1

2 independent of the specific
form of the disorder distribution P���, similar to � in the
case of the dry fiber bundle �see Sec. III.A�.

To check the validity of the universal power-law be-
havior of tf, simulations were performed �Hidalgo, Kun,
et al., 2002� with various disorder distributions, i.e., a
uniform distribution and the Weibull distribution of the
form P���=1−exp�−�� /"���, where " is the characteristic
strain and � is the shape parameter. The simulation re-
sults �Fig. 50� are in good agreement with the analytic
results.

4. Creep rupture in a bundle of slowly relaxing fibers

A slow relaxation following fiber failure can also lead
to creep behavior �Hidalgo et al., 2001; Kun et al., 2003�.
In this case, the fibers are linearly elastic until they
break, but after breaking they undergo a slow relaxation
process. Therefore when a fiber breaks, its load does not
drop to zero instantaneously. Instead it undergoes a slow
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FIG. 50. The behavior of the time to failure tf for uniform and
Weibull distributions with two different Weibull indices for the
ELS case. All three curves are parallel to each other on a
double logarithmic plot with an exponent close to 0.5, in agree-
ment with the general result �Eq. �288��. From Hidalgo, Kun,
et al., 2002.
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relaxation process and thus introduces a time scale into
the system. As the intact fibers are assumed to be lin-
early elastic, the deformation rate is

�̇f =
ẋ

Y
, �289�

where x denotes the stress, �f denotes the strain, and Y
is the Young modulus of the fibers. In addition, to cap-
ture the slow relaxation effect, the broken fibers with
the surrounding matrix material are modeled by Max-
well elements �Fig. 51�, i.e., they are assumed as a serial
coupling of a spring and a dashpot. Such arrangement
results in the following nonlinear response:

�̇b =
ẋb

Sb
+ Bxb

m, �290�

where xb is the time-dependent stress and �b is the time-
dependent deformation of a broken fiber. The relaxation
of broken fibers is characterized by few parameters: Sb
B, and m, where Sb is the effective stiffness of a broken
fiber, the exponent m characterizes the strength of non-
linearity, and B is a constant.

In equal-load-sharing mode, when external stress �0 is
applied, the macroscopic elastic behavior of the compos-
ite can be represented by the constitutive equation
�Hidalgo et al., 2001; Kun et al., 2003�,

�0 = x�t��1̇ − P„x�t�…� + xb�t�P„x�t�… . �291�

Here xb�t� is the amount of stress carried by the broken
fibers and P„x�t�… and 1−P„x�t�… denote the fraction of
broken and intact fibers at time t, respectively.

By construction �Fig. 51�, the two time derivatives
have to be always equal,

�̇f = �̇b. �292�

Now the differential equation for the time evolution of
the system can be obtained, using Eqs. �291�, �290�, and
�292� as

ẋ� 1

Y
−

1

Sb
�1 −

1

P�x�
+

p�x�
P�x�2

�x − �0���
= B��0 − x�1 − P�x��

P�x� �m. �293�

As in the viscoelastic model, two different regimes of
x�t� can be distinguished depending on the value of �0: if
the external load is below the critical value �c a fixed-
point solution xs exists which can be obtained by setting
ẋ=0 in Eq. �293�,

�0 = xs�1 − P�xs�� . �294�

This means that the solution x�t� of Eq. �293� converges
asymptotically to xs resulting in an infinite lifetime tf of
the system. When the external load is above the critical
value, the deformation rate �̇= ẋ /Y always remains posi-
tive, resulting in a macroscopic failure in a finite time tf.
Now we focus on the universal behavior of the model in
the vicinity of the critical point. Below the critical point
the relaxation of x�t� to the stationary solution xs can be
presented by a differential equation of the form

d�0

dt
� �0

m, �295�

where �0 denotes the difference �0�t�=xs−x�t�. Hence,
the characteristic time scale � of the relaxation process
emerges only if m=1. Also, in this case relaxation time
varies as ����c−�0�−1/2 when the critical point is ap-
proached from below. However, for m�1 the situation
is different: the relaxation process is characterized by
�0�t�=at1/1−m, where a→0 with �0→�c.

Again, close to the critical point, it can also be shown
that the lifetime tf shows power-law divergence when the
external load approaches the critical point from above,

tf � ��0 − �c�−�m−1/2� for �0� �c. �296�

The exponent is universal in the sense that it does not
depend on the disorder distribution. However, it de-
pends on the exponent m, which characterizes the non-
linearity of broken fibers.

As a check, numerical simulations have been per-
formed �Hidalgo et al., 2001; Kun et al., 2003� for several
different values of the exponent m �Fig. 52�. The slope
of the fitted straight lines agrees well with the analytic
predictions �Eq. �296��.

5. Fatigue-failure experiment

An interesting experimental and theoretical study of
fatigue failure in asphalt was performed by Kun et al.
�2007�. The experimental setup is shown in Fig. 53. The
cylindrical sample was subjected to cyclic diametric com-
pression at constant load amplitude �0, and the defor-
mation � as a function of the number of cycles Ncycle was
recorded together with the number of cycles Nf at which
catastrophic failure occurs.

Figure 54 shows deformation � as a function of the
number of cycles Ncycle for two different load amplitudes

. . . . .

FIG. 51. The fibers are modeled by Maxwell elements. From
Kun et al., 2003.
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�0 /�c=0.3 and 0.4. Here �c is the tensile strength of the
asphalt. Figure 55 shows the number of cycles to cata-
strophic failure as a function of the load amplitude
�0 /�c. This curve shows three regimes, the middle one
being characterizable by a power law,

Nf � 	�0

�c

−��. �297�

This is the Basquin regime �Suresh, 1991; Sornette et al.,
1992; Li and Metcalf, 2002; Si et al., 2002�. Kun et al.
�2007� found ��=2.2±0.1 for the asphalt system.

In order to model the behavior found in Figs. 54 and
55, Kun et al. �2007� introduced the equal-load-sharing
fiber bundle model as shown in Fig. 53�a�. Each fiber 1
� i�N is subjected to a time-dependent load xi�t�.
There are two failure mechanisms present. Fiber i fails
instantaneously at time t when xi�t� for the first time
reaches its failure threshold ti. However, there is also a
damage accumulation mechanism characterized by the
parameter ci�t�. In the time interval dt, fiber i accumu-
lates a damage

dci�t� = axi�t�! dt , �298�

where a�0 is a scale parameter and !�0 is an exponent
to be determined. Hence, the accumulated damage is

ci�t� = a�
0

t

xi�t��! dt�. �299�

When ci�t� for the first time exceeds the damage accu-
mulation threshold si, fiber i fails. The thresholds ti and
si are chosen from a joint probability distribution
pt,s�t ,s�. Kun et al. �2007� made the assumption that this
distribution may be factorized, pt,s�t ,s�=pt�t�ps�s�.

In addition to damage accumulation, there is yet an-
other important mechanism that needs to be incorpo-
rated in the model: damage healing �Si et al., 2002; Jo et
al., 2008�. A time scale � is associated with this mecha-
nism, and the ELS average force-load equation
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FIG. 52. Lifetime tf as a function of the distance from the
critical point, �o−�c, for two different values of the parameter
m. The number of fibers in the bundle is N=107. From Kun et
al., 2003.

FIG. 53. �Color online� Asphalt samples set up for experimen-
tal testing of fatigue failure. �a� shows how fatigue failure un-
der these experimental conditions is modeled using a fiber
bundle model and �b� shows a postfailure sample. From Kun et
al., 2007.

FIG. 54. Deformation � as a function of number of cycles
Ncycle, showing both experimental data and theoretical curves
based on the fiber bundle model. From Kun et al., 2007.

10-1 1

10

102

103

104

105

�

�

� �

�

�

�

�

�

�

�

�

� � � � � � � � � 	 


� � 


� � � � � 	 
 � � 
 	 � �

FIG. 55. Number of cycles at catastrophic failure Nf as a func-
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tal and fiber bundle model data. From Kun et al., 2007.
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�0�t��1 − Pt„x�t�…�x�t� , �300�

where Pt�t�=�0
t pt�t��dt� is the cumulative instantaneous

breaking threshold probability, is generalized to

�0�t� = �1 − Ps	a�
0

t

e−�t−t��/�x�t��! dt�
�
��1 − Pt„x�t�…�x�t� , �301�

where Ps�s�=�0
sps�s��ds�. Kun et al. �2007� showed that

the Basquin law �297� may be derived analytically from
Eq. �301� leading to ��=!. The solid curves in Fig. 54 are
fits of the theoretical curves based on Eq. �301� to the
experimental data for the � vs Ncycle. Likewise, Fig. 55
shows the fit of the theoretical Nf vs �0 /�c to the experi-
mental data. For this fit, !=2.0 and �=15 000.

B. Precursors of global failure

There is a fundamental question in strength consider-
ations of materials: when does the material fail? Are
there signals that can warn of imminent failure? This is
of uttermost importance in, e.g., the diamond mining
industry where sudden failure of the mine can be ex-
tremely costly in terms of lives. These mines are under
continuous acoustic surveillance, but at present there is
no tell-tale acoustic signature of imminent catastrophic
failure. The same type of question is of course also cen-
tral to earthquake prediction and initiates the search for
precursors of global �catastrophic� failure events �see,
e.g., Sahimi and Arbabi �1992, 1996� and Pradhan and
Chakrabarti �2005, 2006��. The precursor parameters es-
sentially reflect the growing correlations within a dy-
namic system as it approaches the failure point. As we
show, sometimes it is possible to predict the global fail-
ure points in advance. It is needless to mention that the
existence of any such precursors and detailed knowledge
about their behavior for major catastrophic failures,
such as earthquakes, landslides, and mine or bridge col-
lapses, would be of supreme value for our civilization. In

this section we discuss some precursors of global failure
in ELS models. We also comment on how one can pre-
dict the critical point �global failure point� from the pre-
cursor parameters.

1. Divergence of susceptibility and relaxation time

As discussed earlier �Sec. III.A� in the case of ELS
fiber bundles the susceptibility ��� and the relaxation
time ��� follow power laws �exponent =−1/2� with exter-
nal stress and both diverge at the critical stress. There-
fore, if we plot �−2 and �−2 with external stress, we ex-
pect a linear fit near the critical point, and the straight
lines should touch the X axis at the critical stress. We
indeed found similar behavior �Fig. 56� in simulation ex-
periments after taking averages over many samples.

For applications, it is always important that such a
prediction can be made on a single sample. For a single
bundle having a very large number of fibers, similar re-
sponses of � and � have been observed. The estimation
�through extrapolation� of the failure point is also quite
satisfactory �Fig. 57�.

2. Pattern of breaking rate

When we apply load on a material body, it is impor-
tant to know whether the body can support that load or
not. A similar question can be asked in the fiber bundle
model. We found that if we record the breaking rate, i.e.,
the amount of failure in each load redistribution, then
the pattern of the breaking rate clearly shows whether
the bundle is going to fail or not. For any stress below
the critical state, the breaking rate follows exponential
decay �Fig. 58� with the step of load redistribution and
for stress values above critical stress it is a power law
followed by a gradual rise �Fig. 58�. Clearly, at critical
stress it follows a robust power law with an exponent
value −2 that can be obtained analytically from Eq. �20�.
As we can see from Fig. 59, when the applied stress
value is above the critical stress, the breaking rate ini-
tially goes down with step number, then at some point it
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FIG. 56. Variation of �−2 and �−2 with applied stress for a bundle having N=50 000 fibers. Uniform distribution of fiber thresholds
is considered and averages are taken over 1000 samples. The dotted straight lines are the best linear fits near the critical point.
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starts going up and continues until the complete break-
down. That means if the breaking rate changes from a
downward to an upward trend, the bundle will surely
fail, but not immediately after the change occurs; it takes
a few more steps and the number of these steps de-
creases as we apply larger external stress �above the
critical value�. Therefore if we can locate this minimum
in the breaking-rate pattern, we can save the system
�bundle� from breaking down by withdrawing the ap-
plied load immediately. We have another important
question here: is there any relation between the
breaking-rate minimum and the failure time �time to
collapse� of the bundle? There is indeed a universal re-
lationship, which has been explored recently �Pradhan
and Hemmer, 2009� through numerical and analytical
studies: for a slightly overloaded bundle we can rewrite
Eq. �81� as

Ut =
1
2

− �� tan�A*t − B*� , �302�

where

A* = tan−1�2��� and B* = tan−1�1/2��� . �303�

From Eq. �302� follows the breaking rate

R�t� = −
dUt

dt
= ��A* cos−2�A*t − B*� . �304�

R�t� has a minimum when

0 =
dR

dt
� sin�2A*t − 2B*� , �305�

which corresponds to

t0 =
B*

A*
. �306�

When criticality is approached, i.e., when �→0, we have
A*→0 and thus t0→� as expected.

We see from Eq. �302� that Ut=0 for

tf = �B* + tan−1�1/2����/A* = 2B*/A*. �307�

This is an excellent approximation to the integer value
at which the fiber bundle collapses completely. Thus
with good approximation we have the simple connection
tf=2t0. When the breaking rate starts increasing we are
halfway �see Fig. 59� to complete collapse.

3. Crossover signature in avalanche distribution

The bursts or avalanches can be recorded from out-
side, without disturbing the ongoing failure process.
Therefore, any signature in burst statistics that can warn
of imminent system failure would be useful in the sense
of wide scope of applicability. As discussed in Sec. III.B,
when the avalanches are recorded close to the global
failure point, the distribution shows �Fig. 60� a different
power law ��=3/2� than the one ��=5/2� characterizing
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FIG. 57. Variation of �−2 and �−2 with applied stress for a single bundle having N=10 000 000 fibers with uniform distribution of
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the size distribution of all avalanches. This crossover be-
havior has been analyzed analytically in the case of the
ELS fiber bundle model and similar crossover behavior
is also seen �Pradhan, Hansen, and Hemmer, 2006� in
the burst distribution and energy distribution of the fuse
model, which is an established model for studying frac-
ture and breakdown phenomena in disordered systems.
The crossover length becomes larger and larger as the
failure point is approached and it diverges at the failure
point �Eq. �192��. In some sense, the magnitude of the
crossover length tells us how far the system is from the
global failure point. Most important is that this cross-
over signal does not hinge on observing rare events and
is seen also in a single system �see Fig. 19�. Therefore,
such a crossover signature has a strong potential to be a
useful detection tool. It should be mentioned that a re-
cent observation �Kawamura, 2006� suggested a clear
change in exponent values of the local magnitude distri-
butions of earthquakes in Japan before the onset of a

mainshock �Fig. 61�. This observation has definitely
strengthened the possibility of using crossover signals in
burst statistics as a criterion for imminent failure.

C. Fiber-reinforced composites

As we have seen, fiber bundle models provide a fertile
ground for studying a wide range of breakdown phe-
nomena. In some sense, they correspond to the Ising
model in the study of magnetism. In this section, we
review how the fiber bundle models are generalized to
describe composites containing fibers. Such composites
are of increasing practical importance �see, e.g., Fig. 62�.

The status of modeling fiber-reinforced composites
has recently been reviewed �Mishnaevsky, 2007; Mish-
naevsky and Brøndsted, 2009�. These materials consist
of fibers embedded in a matrix. During tensile loading
the main part of the load is carried by the fibers and the
strength of the composite is governed to a large extent
by the strength of the fibers themselves. The matrix ma-
terial is chosen so that its yield threshold is lower than
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that of the fibers which are embedded in it. Common
materials used for the fibers are aluminum, aluminum
oxide, aluminum silica, asbestos, beryllium, beryllium
carbide, beryllium oxide, carbon �graphite�, glass �E
glass, S glass, and D glass�, molybdenum, polyamide
�aromatic polyamide, aramid�, Kevlar 29 and Kevlar 49,
polyester, quartz �fused silica�, steel, tantalum, titanium,
tungsten, or tungsten monocarbide. Most matrix materi-
als are resins as a result of their wide variation in prop-
erties and relatively low cost. Common resin materials
are epoxy, phenolic, polyester, polyurethane, and vinyl
ester. When the composite is to be used under adverse
conditions such as high temperature, metallic matrix ma-
terials such as aluminum, copper, lead, magnesium,
nickel, silver, or titanium or nonmetallic matrix materi-
als such as ceramics may be used. When the matrix ma-
terial is brittle, cracks open up in the matrix perpendicu-
lar to the fiber direction at roughly equal spacing. In
metallic matrix materials, plasticity sets in at sufficient
load. Lastly, in polymer matrix composites, the matrix
typically responds linearly, but the fibers still carry most
of the load due to the large compliance of the matrix.
When a fiber fails, the forces it carried are redistributed
among the surviving fibers and the matrix. If the matrix-
fiber interface is weak compared to the strength of the
fibers and the matrix itself, fractures develop along the
fibers. When the matrix is brittle, the fibers bridging the
developing crack in the matrix will, besides binding the
crack together, lead to stress alleviation at the matrix
crack front. Thus, the energy necessary to propagate a
crack further increases with the length of the crack
�Sørensen and Jacobsen, 1998, 2000�, i.e., so-called
R-curve behavior �Lawn, 1993�. When the bridging fibers
fail, they typically do so through debonding at the fiber-

matrix interface. This is followed by pull out �see Fig.
63�.

The Cox shear lag model forms the basis for the stan-
dard tools used for analyzing breakdown in fiber-
reinforced composites �Cox, 1952; Chou, 1992�. It con-
siders the elastic response of a single fiber in a
homegeous matrix only capable of transmitting shear
stresses. By treating the properties of the matrix as ef-
fective and due to the self-consistent response by the
matrix material and the rest of the fibers, the Cox model
becomes a mean-field model �Räisänen et al., 1997�. Ex-
tensions of the Cox single-fiber model to debonding and
slip at the fiber-matrix interface have been published
�Aveston and Kelly, 1973; Budiansky et al., 1986; Hsueh,
1990, 1992�. In 1961 the single-fiber calculation of Cox
was extended to two-dimensional unidirectional fibers in
a compliant matrix, i.e., a matrix incapable of carrying
tensile stress, by Hedgepeth �1961�. In 1967, this calcu-
lation was followed up by Hedgepeth and Dyke �1967�
for three-dimensional unidirectional fibers placed in a
square or hexagonal pattern. They found the average
stress intensity factor �i.e., the ratio between local stress
in an intact fiber and the applied stress� to be

Kk = 
i=1

k
2i + 2

2i + 1
�308�

after failure of k fibers. Fichter �1969� extended these
calculations to aligned arrays of broken fibers mixed
with intact fibers. This approach was subsequently gen-
eralized to systems where the matrix has a nonzero stiff-
ness and hence is able to transmit stress �Beyerlein and
Landis, 1999; Landis and McMeeking, 1999�. Viscoelas-
ticity of the matrix has been included by Lagoudas et al.
�1989� and Beyerlein and Phoenix �1998�.

Curtin �1991� demonstrated that when the fibers re-
spond under global load-sharing conditions, a mean-field
theory may be constructed where the breakdown of the
composite is reduced to that of the failure of a single
fiber in an effective matrix �Curtin, 1993; Hild et al.,
1994; Hild and Feillard, 1997; Roux and Hild, 2002�.
Wagner and Eitan �1993� studied the redistribution of
forces onto the neighbors of a single failing fiber within

FIG. 62. �Color online� This dental bridge is made from a
fiber-reinforced composite with braided fibers made from poly-
ethylene. Due to the braided structure, this composite is four
times tougher than a composite made from the same materials
but without the braiding �Karbhari and Strassler, 2007�. Cour-
tesy of H. Strassler, University of Maryland Dental School and
V. Karbhari, University of Alabama, Huntsville.

FIG. 63. Postmortem micrograph showing a fiber-reinforced
composite where the matrix has undergone brittle failure fol-
lowed by failure of the bridging fibers through debonding.
From Karbhari and Strassler, 2007.
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a two-dimensional unidirectional composite using the
shear-lag model, finding that within this scheme the
stress enhancement is less pronounced than earlier cal-
culations had shown. Zhou and Wagner �1999, 2000� in-
troduced a multifiber failure model including debonding
and frictional effects at the fiber-matrix interface, finding
that the stress intensity factor decreased with increasing
interfiber distance. An important calculational principle,
the break influence superposition technique, was intro-
duced by Sastry and Phoenix �1993� based on the
method of Kachanov �1985� in order to handle models
with multiple fiber failures. The technique consists in
determining the transmission factors, which give the
load at a given position along a given fiber due to a unit
negative load at the single break point in the fiber
bundle. The multiple failure case is then constructed
through superposition of these single-failure transmis-
sion factors. This method has proven efficient from a
numerical point of view and has been later generalized
�see Beyerlein et al. �1996�, Beyerlein and Phoenix
�1997a, 1997b�, Landis et al. �2000�, and Li et al. �2006��.

Ibnabdeljalil and Curtin �1997a, 1997b�, Curtin �1998�,
Xia and Curtin �2001�, and Xia et al. �2002� analyzed the
interaction between multiple breaks in unidirectional fi-
bers embedded in a matrix using a lattice Green’s func-
tion technique �Zhou and Curtin, 1995� to calculate the
load transfer from broken to unbroken fibers including
fiber-matrix sliding with a constant interfacial shear re-
sistance �, given either by a debonded sliding interface
or by matrix shear yielding. The differential load-
carrying capacity of the matrix is assumed to be negli-
gible. In the following we describe the Zhou-Curtin ap-
proach in some detail. The load-bearing fibers have a
strength distribution given by the cumulative probability

P��,L� = 1 − e−#��,L� �309�

of failure over a length of fiber L experiencing a stress �,
where

#��,L� =
L

L0
	 �
�0

�, �310�

and � is the Weibull index. When a fiber breaks, the load
is transferred to the unbroken fibers. We return to the
details henceforth. The newly broken fiber slides rela-
tive to the matrix. The shear resistance � provides an
average axial fiber stress along the single broken fiber,

��z� = min	2�z
r

,�0�z�
 � p�z� , �311�

at a distance z from the break, where r is the radius of
the fibers and �0�z� is the axial fiber stress prior to the
failure at point z. This defines a length scale

ls =
r�0�ls�

2�
. �312�

The total stress change within a distance ±ls of the break
is distributed to the other fibers. A key assumption in
what now follows is that the total stress in each plane z
is conserved: the stress difference �0�z�−��z� is distrib-

uted among the other intact fibers at the same z level.
In order to set up the lattice Green’s function ap-

proach, the system must be discretized. Each fiber, ori-
ented in the z direction, of length Lz is divided into Nz

elements of length �̄=Lz /Nz. The fibers are arranged on
the nodes of a square lattice in the x-y plane so that
there is a total of Nf=Nx�Ny fibers. The lattice con-
stants in the x and y directions are ax and ay, respec-
tively. Each fiber is labeled by n where 1�n�Nf. This is
shown in Fig. 64. The stress on fiber n in layer m along
the z direction is given by �n,m. Fiber n at layer m may
be intact. It then acts as a Hookean spring with spring
constant kt responding to the stress �n,m. If fiber n has
broken at layer m, it carries a stress equal to zero. The
third possibility is that fiber n has broken elsewhere at
m� and layer m is within the slip zone. It then carries a
stress

�n,m = min	2��̄
r
�m − m��,�n,m

0 
 � pn,m, �313�

which is the discretization of Eq. �311� with zero spring
constant.

Each element m of fiber n has two end nodes associ-
ated with it. At all such nodes, springs parallel to the x-y
plane are placed linking fiber n with its nearest neigh-
bors. These springs have spring constant ks. The dis-
placement of the nodes is assumed confined to the z
direction only. Zhou and Curtin denoted the displace-
ment of node connecting element m with element m+1
of fiber n, un,m

+ , and the displacement of node linking
element m with element m−1 of fiber n, un,m

− . The force
on element m of fiber n from element m of fiber n+1 is

fm�n ;n + 1� = ks�un+1,m
+ − un,m

+ � + ks�un+1,m
− − un,m

− � .
�314�

The reader should compare the following discussion
with that presented in Sec. IV.C. We now assume that it
is only layer m=0 that carries any damaged or slipped

FIG. 64. The discretization of a three-dimensional unidirec-
tional fiber-reinforced composite used by Zhou and Curtin
�1995�.
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elements; the rest of the layers m�0 are perfect. Let u
= �un,m

± �. If a force f= �fn,m
± � is applied to the nodes, the

response is

u = Gf , �315�

where G is the lattice Green’s function. Given the dis-
placements from solving this equation combined with
Eq. �314�, the force carried by each broken element is
found. The inverse of the lattice Green’s function is D
=G−1. The elements of D are either zero, ks or kt, re-
flecting the status of the springs: undamaged, slipping, or
broken. When there are no breaks in layer m=0, we
define D0= �G0�−1 and �D=D0−D. Hence, �D plays a
role somewhat similar to the matrix K defined in Eq.
�252�. By combining these definitions, Zhou and Curtin
found

G = �1 − G0�D�−1G0. �316�

The matrices G and D have dimension N�N, where
N=Nx�Ny�Nz. By appropriately labeling the rows and
columns, the matrices D and G may be written

G = 	Gdd Gdp

Gpd Gpp

 , �317�

where the �2NxNy�� �2NxNy� matrix Gdd couples ele-
ments within the layer m=0, where all the damage is
located. The matrix Gpp couples elements within the rest
of the layers. These are undamaged—“perfect.” The two
matrices Gdp and Gpd provide the cross couplings. The
matrix �D becomes in this representation

�D = 	�Ddd 0

0 0

 . �318�

Combination of this equation with Eq. �316� gives

Gdd = �I − �Ddd�−1Gdd
0 , �319�

where the intact Green’s function Gdd
0 may be found

analytically by solving Eq. �315� for the intact lattice in
Fourier space �q� �,

FG0F−1�q� � =
1
4
�ks sin2	qxax

2

 + ks sin2	qyay

2



+ kt sin2	qz�̄

2

�−1

. �320�

Using that fn,0
+ =−f−n ,0, Zhou and Curtin found that

un,0
+ − un,0

− =�
n�

�Gdd�n�+;n+� − Gdd�n�+;n−��fn�,0
+ ,

�321�

where n+ and n− refer to the upper and lower nodes,
respectively, attached to element n is layer m=0. Before
completing the model, the Weibull strength distribution
�Eqs. �309� and �310�� must be discretized. Each element
�n ,m� is given a maximum sustainable load sn,m from the
cumulative probability

Pf�s� = 1 − e−�s/�̄��, �322�

where �̄= �L0 / �̄�1/��0.
The breakdown algorithm proceeds as follows:

�1� Apply a force per fiber set equal to the smallest
breaking threshold, f0=minn,msn,m, to the system.

�2� Break the weakest fiber or fibers by setting their
spring constants to zero.

�3� Decrease the stresses in the elements below and
above the just broken fibers according to Eq. �313�.

�4� Solve Eq. �319� for the layers in which the breaks
occurred.

�5� Calculate the spring displacements in the layers
where the breaks occurred using Eq. �321� and an
effective applied force fn,m

+ = f0−pn,m. The force on
each intact spring in such a layer is then �n,m

=kt�un,m
+ −un,m

− �.

�6� With the new stresses, search for other springs that
carry a force beyond their thresholds sn,m. If such
springs are found, break these and return to �2�.
Otherwise proceed.

�7� Search for the spring that is closest to its breaking
threshold. This spring is the one with "
=minn,m�sn,m / fn,m�. Increase the load by a factor "�,
where � is equal to or somewhat larger than unity.
This factor is present to take into account the non-
linearities introduced in the system due to the slip of
the fibers.

�8� Proceed until the system can no longer sustain a
load.

By a change in the ratio kt /ks between the moduli of
the springs in the discretized lattice, it is possible to go
from fiber bundle behavior essentially evolving accord-
ing to equal load sharing to local load sharing.

Whereas the computational cost of finite-element cal-
culations on fiber-reinforced composites scales with the
volume of the composite, the break influence superposi-
tion technique and the lattice Green’s function tech-
nique scale with the number of fiber breaks in the
sample. This translates into systems studied by the latter
two techniques that can be orders of magnitude larger
than the former �Ibnabdeljalil and Curtin, 1997a�.

After this rather sketchy tour through the use of fiber
bundle models as tools for describing the increasing im-
portant fiber-reinforced composite materials, we now
turn to the use of fiber bundle models in nonmechanical
settings.

D. Failure phenomena in networks, traffic, and earthquakes

The typical failure dynamics of the fiber bundle model
captures quite faithfully the failure behavior of several
multicomponent systems such as communication or traf-
fic networks. As in the elastic networks considered here,
as the local stress or load �transmission rate or traffic
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currents� at any part of the network goes beyond the
sustainable limit, that part of the system or the network
fails or gets jammed and the excess load gets redistrib-
uted over the other intact parts. This, in turn, may in-
duce further failure or jamming in the system. Because
of the tectonic motions stresses develop at the crust–
tectonic plate resting �contact� regions and the failure at
any of these supports induces additional stresses else-
where. Apart from the healing phenomena in geological
faults, the fiber bundle models have built-in features to
capture the earthquake dynamics. Naturally, the statisti-
cally established laws for earthquake dynamics can be
easily recast into the forms derived here for the fiber
bundle models.

We consider here in more detail specifically these
three applications specifically.

1. Modeling network failures

The fiber bundle model has been applied �Kim et al.,
2005� to study the cascading failures of network struc-
tures, such as Erdös-Rényi �ER� networks �Erdös and
Rényi, 1959� and Watts-Strogatz �WS� networks �Watts
and Strogatz, 1994� to model the overloading failures in
power grids, etc. Here the nodes or the individual power
stations are modeled as fibers and the transmission links
between these nodes are utilized to transfer the excess
load �from one broken fiber or station to another�.

The load transfer of broken fibers or nodes through
the edges or links of the underlying network is governed
by the LLS rule �Harlow and Phoenix, 1978; Phoenix,
1978b; Smith and Phoenix, 1981�. Under a nonzero ex-
ternal load N�, the actual stress �i of the intact fiber i is
given by the sum of � and the transferred load from
neighboring broken fibers. The local load transfer, from
broken fibers to intact fibers, depends on the load con-
centration factor Ki��i /� with Ki=1+�j�mj /kj, where
the primed summation is over the cluster of broken fi-
bers directly connected to i, mj is the number of broken
fibers in the cluster j, and kj is the number of intact
fibers directly connected to j.

Let the external stress � be increased by an infinitesi-
mal amount �� starting from �=0. Fibers for which the
strength is less than Ki� break iteratively until no more
fibers break. For each increment of �, the size s��� of
the avalanche is defined as the number of broken fibers
triggered by the increment. The surviving fraction U���
of fibers can be written as

U��� = 1 −
1

N �
����

s���� . �323�

One can also measure directly the response function �
or the generalized susceptibility, denoted as

���� = 
dU

d�

 . �324�

The critical value �c of the external load can be defined
from the condition of the global breakdown U��c�=0.

The critical value �c and the susceptibility � have
been calculated numerically for the model under the
LLS rule on various network structures, such as the local
regular network, the WS network, the ER network, and
scale-free networks �Fig. 65�. The results suggest that the
critical behavior of the model on complex networks is
completely different from that on a regular lattice. More
specifically, while �c for the FBM on a local regular net-
work vanishes in the thermodynamic limit and is de-
scribed by �c�1/ ln�N� for finite-sized systems �see the
curve for p=0 in Fig. 65, corresponding to the WS net-
work with the rewiring probability p=0�, �c for all net-
works except for the local regular one does not diminish
but converges to a nonzero value as N is increased.
Moreover, the susceptibility diverges at the critical point
as ����c−��−1/2, regardless of the networks, which is
again in sharp contrast to the local regular network �see
Fig. 65�b��. The critical exponent 1/2 clearly indicates
that the FBM under the LLS rule on complex networks
belongs to the same universality class as that of the ELS
regime �Pradhan et al., 2002� although the load-sharing
rule is strictly local. The observed variation for �c is only
natural for the LLS model. In LLS model if n successive
fibers fail �each with a finite probability �f�, then the
total probability of such an event is N�f

n�1−�f�2 as the
probability is proportional to the bundle size N. If this
probability is finite, then n� ln N �for any finite �f, the
failure probability of any fiber in the bundle�. For a fail-
ure of n successive fibers, the neighboring intact fibers
get the transferred load �n�, which, if it becomes
greater than or equal to their strength, surely fails giving
�c�1/n�1/ ln N �see Sec. IV.A�.

The evidence that the LLS model on complex net-
works belongs to the universality class of the ELS model
is also found �Kim et al., 2005� in the avalanche size
distribution D�
�: the unanimously observed power-law
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FIG. 65. Fiber bundle model on networks: �a� The system size
�N� dependence of critical points ��c� for various networks
with N=28,29 , . . . ,215 vertices. �b� The susceptibility for the
networks with N=214. p and ! are the rewiring probability in
the WS networks and the exponent of degree distribution
P�k��k−!, respectively. The data points are obtained from the
averages over 104 �103 for N=215� ensembles. From Kim et al.,
2005.
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behavior D�
��
−5/2 for all networks except for the lo-
cal regular one �the WS network with p=0� is in perfect
agreement with the behavior for the ELS case �Hemmer
and Hansen, 1992�. On the other hand, the LLS model
for a regular lattice has been shown to exhibit com-
pletely different avalanche size distribution �Hemmer
and Hansen, 1994b; Kloster et al., 1997�. Also, one can
observe a clear difference in terms of the failure prob-
ability F��� defined as the probability of failure of the
whole system at an external stress �. While F��� values
for LLS on complex networks fall on a common line,
LLS on a regular network shows a distinctly different
trend �Kim et al., 2005� �see also Divakaran and Dutta
�2007c��.

2. Modeling traffic jams

One can apply the equal-load-sharing fiber bundle
model to study the traffic failure in a parallel road net-
work in a city. For some special distributions, such as the
uniform distribution, of traffic handling capacities
�thresholds� of the roads, the critical behavior of the
jamming transition can be studied analytically. This, in
fact, is exactly comparable with the asymmetric simple
exclusion process in a single channel or road �Chakra-
barti, 2006�.

Traffic jams or congestion occur essentially due to the
excluded volume effects �among the vehicles� in a single
road and due to the cooperative �traffic� load sharing by
the �free� lanes or roads in multiply connected road net-
works �see, e.g., da Silveira �1999� and Chowdhury et al.
�2000��. Using FBM for the traffic network, it has been
shown �Chakrabarti, 2006� that the generic equation for
the approach of the jamming transition in FBM corre-
sponds to that for the asymmetric simple exclusion pro-
cesses �ASEPs� leading to transport failure transition in
a single channel or lane �see, e.g., Stinchcombe �2005��.

Let the suburban highway traffic, on entering the city,
get fragmented equally through the various narrower
streets within the city and become combined again out-
side the city �see Fig. 66�. If IO denotes the input traffic
current and IT is the total output traffic current, then at

the steady state, without any global traffic jam, IT=IO. If
IT falls below IO, a global jam starts, and soon IT drops
to zero. This occurs if IO�Ic, the critical traffic current
of the network, beyond which a global traffic jam occurs.
Let the parallel roads within the city have different
thresholds for traffic handling capacity: ic1

, ic2
, . . . , icN

for
the N different roads �the nth road gets jammed if the
traffic current i per road exceeds icn

�. Initially i=IO /N
and increases as some of the roads get jammed and the
same traffic load IO has to be shared equally by a lower
number of unjammed roads. Next, we assume that the
distribution p�ic� of these thresholds is uniform up to a
maximum threshold current �corresponding to the wid-
est road traffic current capacity�, which is normalized to
unity �sets the scale for Ic�.

The jamming dynamics in this model starts from the
nth road �say, in the morning� when the traffic load i per
city roads exceeds the threshold icn

of that road. Due to
this jam, the total number of uncongested roads de-
creases and the rest of these roads have to bear the en-
tire traffic load in the system. Hence the effective traffic
load or stress on the uncongested roads increases and
this compels some more roads to get jammed. These two
sequential operations, namely, the stress or traffic load
redistribution and further failure in service of roads,
continue until an equilibrium is reached, where either
the surviving roads are strong �wide� enough to share
equally and carry the entire traffic load on the system
�for IO�Ic� or all the roads fail �for IO�Ic� and a �glo-
bal� traffic jam occurs in the entire road network system.

This jamming dynamics can be represented by recur-
sion relations in discrete time steps. Let Ut�i� be the frac-
tion of uncongested roads in the network that survive
after �discrete� time step t, counted from the time t=0
when the load �at the level IO= iN� is put in the system
�time step indicates the number of stress redistribu-
tions�. As such, Ut�i=0�=1 for all t and Ut�i�=1 for t=0
for any i; Ut�i�=U*�i��0 for t→� if IO�Ic, and Ut�i�
=0 for t→� if IO�Ic.

Here Ut�i� follows a simple recursion relation

Ut+1 = 1 − it, it =
IO

UtN

or Ut+1 = 1 −
i

Ut
. �325�

The critical behavior of this model remains the same as
discussed in Sec. III.A in terms of i and the exponent

I TI

Suburban Highway Suburban Highway

O

ic1

ic2

ic3

City roads/lanes

icN

FIG. 66. The highway traffic current IO gets fragmented into
uniform currents i in each of the narrower roads and the roads
having threshold current icn

� i get congested or blocked. This
results in extra load for the uncongested roads. We assume
that this extra load per uncongested roads gets equally redis-
tributed and gets added to the existing load, causing further
blocking of some more roads.

l+1l I

J

FIG. 67. The transport current I in the one-dimensional lane
or road is possible if, say, the lth site is occupied and the
�l+1�th site is vacant. The intersite hopping probability is indi-
cated by J.
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values remain unchanged: �=1/2=	=
, �=1 for all
these equal �traffic� load-sharing models.

In the simplest version of the asymmetric simple ex-
clusion process transport in a chain �see Fig. 67�, the
transport corresponds to movement of vehicles, which is
possible only when a vehicle at site l, say, moves to the
vacant site l+1. The transport current I is then given by
�Stinchcombe, 2005�

I = J�l��1 − �l+1� � , �326�

where �l� denotes the site occupation density at site l,
and J denotes the intersite hopping probability. The
above equation can be easily recast in the form

�l+1� = 1 −
�

�l�
, �327�

where �=I /J. Formally it is the same as the recursion
relation for the density of uncongested roads in the
FBM model discussed above; the site index here in the
ASEP plays the role of time index in FBM. Such exact
correspondence indicates identical critical behavior in
both the cases. The same universality for different cases
�different threshold distributions� in FBM suggests simi-
lar behavior for other equivalent ASEP cases as well
�Bhattacharjee, 2007�. For extension of the model to
scale-free traffic networks, see Zheng et al. �2008�.

3. Modeling earthquake dynamics

The Earth’s outer crust, several tens of kilometers in
thickness, rests on tectonic shells. Due to the high
temperature-pressure phase changes and consequent
ionizations of the metallic ores, powerful magnetohydro-
dynamic convective flows occur in the Earth’s mantle at
several hundreds of kilometers in depth. The tectonic
shells, divided into about ten mobile plates, have rela-
tive velocities of the order of a few centimeters per year
�see, e.g., Scholz �2002��. The stresses developed at the
interfaces between the crust and the tectonic shells dur-
ing the �long� sticking periods get released during the
�very short� slips, causing the releases of the stored elas-
tic energies �at the fault asperities� and consequent
earthquakes.

Two well-known phenomenologically established laws
governing the earthquake statistics are �a� the
Gutenberg-Richter law

N�E� � E−��, �328�

relating the number density �N� of earthquakes with the
released energy greater than or equal to E, and �b� the
Omori law

d„Ñ�t�…/dt = 1/t��, �329�

where Ñ denotes the number of aftershocks having mag-
nitude or released energy larger than a preassigned
small but otherwise arbitrary threshold value.

As mentioned, because of the tectonic motions,
stresses develop at the crust–tectonic plate contact re-
gions and the entire load is supported by such regions.

Failure at any of these supports necessitates load redis-
tributions and induces additional stresses elsewhere. In
fact, the avalanche statistics discussed in Sec. III.B can
easily explain the Gutenberg-Richter law �Eq. �328��
with the identification ��=�−1. Similarly, the decay of
the number of failed fibers N�t�=N�1−Ut� at the critical
point, given by N�t�� t−� �see, e.g., Eq. �20��, crudely
speaking, gives in turn the Omori law behavior �Eq.
�329�� for the fiber bundle model, with the identification
��=1+�.

For some recent discussions on further studies along
these lines, see, e.g., Moreno, Correig, et al. �2001� and
Turcotte and Glassco �2004�. The stick-slip motion in the
Burridge-Knopoff model �see, e.g., Carlson et al. �1994��,
where the blocks �representing a portion of the solid
crust� connected with springs �representing the elastic
strain developed due to tectonic motion� are pulled uni-
formly on a rough surface, has the same feature of stress
redistribution as one or more blocks slip and the dynam-
ics was mapped onto a ELS fiber bundle model by Sor-
nette �1992�. The power-law distributions of the
fluctuation-driven bursts around the critical points have
been interpreted as the above two statistical laws for
earthquakes.

VI. SUMMARY AND CONCLUDING REMARKS

The fiber bundle model enjoys a rare double position
in that it is both useful in a practical setting for describ-
ing a class of real materials under real working condi-
tions and at the same time is abstract enough to function
as a model for exploring fundamental breakdown
mechanisms from a general point of view. Very few mod-
els are capable of such a double life. This means that a
review of the fiber bundle model may take on a very
different character depending on the point of view. In
this review we have emphasized the fiber bundle model
as a model for exploring fundamental breakdown
mechanisms.

Failure in loaded disordered materials is a collective
phenomenon. It proceeds through a competition be-
tween disorder and stress distribution. The disorder im-
plies a distribution of local strength. If the stress distri-
bution were uniform in the material, it would be the
weakest spot that would fail first. Suppose now that
there has been a local failure at a given spot in the ma-
terial. The further away we go from this failed region,
the weaker the weakest region within this distance will
be. Hence, the disorder makes local failures repel each
other: they will occur as far as possible from each other.
However, as the material fails locally, the stresses are
redistributed. This redistribution creates hot spots where
local failure is likely due to high stresses. Since these hot
spots occur at the boundaries of the failed regions, the
effect of the stress field is an attraction between the local
failures �Roux and Hansen, 1990�. Hence, disorder and
stress have opposite effects on the breakdown process,
repulsion versus attraction, and this leads to competition
between them. Since the disorder in the strength of the
material, leading to repulsion, diminishes throughout
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the breakdown process, whereas the stresses create in-
creasingly important hot spots, it is the stress distribu-
tion that ends up dominating toward the end of the pro-
cess.

The fiber bundle model catches this essential aspect of
the failure process. Depending on the load redistribu-
tion mechanism, the quantitative aspects change. How-
ever, qualitatively it remains the same. In the ELS case,
there are no localized hot spots; all surviving fibers are
loaded the same way. Geometry does not enter into the
redistribution of forces, and we may say that the “hot
spots” include all surviving fibers. This aspect gives the
ELS fiber bundle model its mean-field character, even
though all other fluctuations are present, such as those
giving rise to bursts.

As shown in Sec. III, the lack of geometrical aspects
in the redistribution of forces in the ELS model enables
us to construct the recursion relations �e.g., Eq. �8��,
which capture well the failure dynamics. We find that the
eventual statistics, governed by the fixed points for �
��c, the average strength of the bundle, essentially
shows a normal critical behavior: order parameter O
���c−���, breakdown susceptibility ����c−��−	, and
relaxation time �=���c−��−
 with �=1/2=	=
 and
�−/�+=ln N /2� for a bundle of N fibers, where the sub-
scripts � and � refer to postcritical and precritical cases,
respectively. The statistics of fluctuations over these av-
erage behaviors is given by the avalanche size distribu-
tions D�
��
−� with �=3 for discrete load increment
and =5/2 for quasistatic load increment in such ElS
cases. The critical stress �c of the bundle is of course
nonuniversal and its magnitude depends on the fiber
strength distribution.

For the LLS model, we essentially find �see Sec. IV.A�
the critical strength of the fiber bundle �c�1/ ln N,
which vanishes in the macroscopic system size limit. The
avalanche size distribution is exponential for such cases.
For range-dependent redistribution of load �see Sec.
IV.B� one recovers the finite value of �c and the ELS-
like mean-field behavior for its failure statistics.

Extensions of the model to capture creep and fatigue
behavior of composite materials are discussed in Sec.
V.A Precursors of global failure are discussed in Sec.
V.B. It appears that detailed knowledge of the critical
behavior of the model can help precise determination of
the global failure point from the well-defined precursors.
Section V.C provides a rather cursory review of models
of fiber-reinforced composites. These models go far be-
yond the simple fiber bundle model in complexity and
represent the state of the art of theoretical approaches
to this important class of materials. However, as compli-
cated as these models are, the philosophy of the fiber
bundle model is still very much present. Finally, we dis-
cussed a few extensions of the model to failures in com-
munication networks, traffic jams, and earthquakes in
Sec. V.D

As discussed here in detail, the fiber bundle model not
only gives an elegant and profound solution of the dy-
namic critical phenomena of failures in disordered sys-

tems, with the associated universality classes, etc., but
also offers the first solution to the entire linear and non-
linear stress-strain behaviors for any material up to its
fracture or rupture point. Although the model was intro-
duced at about the same time �1926� as the Ising model
for static critical phenomena, it is only now that the full
�mean-field� critical dynamics in the fiber bundle model
is solved. Apart from these, as discussed, several aspects
of the fluctuations in this model are now well under-
stood. Even from this specific point of view, the model is
not only intuitively very attractive, its behavior is ex-
tremely rich and intriguing. It would be surprising if it
did not offer new profound insight into failure phenom-
ena in the future also.
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