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Modified gravity theories have received increased attention lately due to combined motivation coming
from high-energy physics, cosmology, and astrophysics. Among numerous alternatives to Einstein’s
theory of gravity, theories that include higher-order curvature invariants, and specifically the particular
class of f�R� theories, have a long history. In the last five years there has been a new stimulus for their
study, leading to a number of interesting results. Here f�R� theories of gravity are reviewed in an
attempt to comprehensively present their most important aspects and cover the largest possible
portion of the relevant literature. All known formalisms are presented—metric, Palatini, and metric
affine—and the following topics are discussed: motivation; actions, field equations, and theoretical
aspects; equivalence with other theories; cosmological aspects and constraints; viability criteria; and
astrophysical applications.
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I. INTRODUCTION

A. Historical

As we approach the closing of a century after the in-
troduction of the theory of general relativity �GR� in
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1915, questions related to its limitations are becoming
more and more pertinent. However, before coming to
the contemporary reasons for challenging a theory as
successful as Einstein’s, it is worth mentioning that it
took only four years from its introduction for people to
start questioning its unique status among gravitation
theories. Indeed, it was just 1919 when Weyl and 1923
when Eddington �the very man who three years earlier
had provided the first experimental verification of GR
by measuring light bending during a solar eclipse�
started considering modifications of the theory by in-
cluding higher-order invariants in its action �Weyl, 1919;
Eddington, 1923�.

These early attempts were triggered mainly by scien-
tific curiosity and a will to question and therefore under-
stand the then newly proposed theory. It is quite
straightforward to realize that it is not very appealing to
complicate the action and, consequently, the field equa-
tions with no apparent theoretical or experimental mo-
tivation. However, the motivation was soon to come.

Beginning in the 1960s indications appeared that com-
plicating the gravitational action might indeed have its
merits. GR is not renormalizable and, therefore, cannot
be conventionally quantized. In 1962, Utiyama and De-
Witt showed that renormalization at one loop demands
that the Einstein Hilbert action be supplemented by
higher-order curvature terms �Utiyama and DeWitt,
1962�. Later on, Stelle showed that higher-order actions
are indeed renormalizable �but not unitary� �Stelle,
1977�. More recent results show that, when quantum
corrections or string theory are taken into account, the
effective low-energy gravitational action admits higher-
order curvature invariants �Birrell and Davies, 1982;
Buchbinder et al., 1992; Vilkovisky, 1992�.

Such considerations stimulated the interest of the sci-
entific community in higher-order theories of gravity,
i.e., modifications of the Einstein-Hilbert action in order
to include higher-order curvature invariants with respect
to the Ricci scalar �see Schmidt �2007� for a historical
review and a list of references to early work�. However,
the relevance of such terms in the action was considered
to be restricted to very strong gravity regimes and they
were expected to be strongly suppressed by small cou-
plings, as one would expect when simple effective field
theory considerations are taken into account. Therefore,
corrections to GR were considered to be important only
at scales close to the Planck scale and, consequently, in
the early universe or near black hole singularities—and
indeed there are relevant studies, such as the well-
known curvature-driven inflation scenario �Starobinsky,
1980� and attempts to avoid cosmological and black hole
singularities �Shahid-Saless, 1990; Brandenberger, 1992,
1993, 1995; Mukhanov and Brandenberger, 1992; Bran-
denberger et al., 1993; Trodden et al., 1993�. However, it
was not expected that such corrections could affect the
gravitational phenomenology at low energies and conse-
quently large scales such as, for instance, in the late uni-
verse.

B. Contemporary motivation

More recently, new evidence coming from astrophys-
ics and cosmology has revealed a quite unexpected pic-
ture of the universe. Our latest data sets coming from
different sources, such as the cosmic microwave back-
ground radiation and supernovae surveys, seem to indi-
cate that the energy budget of the universe is the follow-
ing: 4% ordinary baryonic matter, 20% dark matter, and
76% dark energy �Riess et al., 2004; Eisenstein et al.,
2005; Astier et al., 2006; Spergel et al., 2007�. The term
“dark matter” refers to an unknown form of matter,
which has the clustering properties of ordinary matter
but has not yet been detected in the laboratory. The
term ‘‘dark energy’’ is reserved for an unknown form of
energy which not only has not been detected directly but
also does not cluster as ordinary matter does. More rig-
orously, one could use the various energy conditions
�Wald, 1984� to distinguish dark matter and dark energy:
Ordinary matter and dark matter satisfy the strong-
energy condition, whereas dark energy does not. Addi-
tionally, dark energy seems to very closely resemble a
cosmological constant. Due to its dominance over mat-
ter �ordinary and dark� at present times, the expansion
of the universe seems to be an accelerated one, contrary
to past expectations.1

Note that this late-time speedup comes to be added to
an early-time accelerated epoch as predicted by the in-
flationary paradigm �Guth, 1981; Linde, 1990; Kolb and
Turner, 1992�. The inflationary epoch is needed to ad-
dress the horizon, flatness, and monopole problems �Mis-
ner, 1968; Weinberg, 1972; Linde, 1990; Kolb and Turner,
1992� as well as to provide the mechanism that generates
primordial inhomogeneities acting as seeds for the for-
mation of large-scale structures �Mukhanov, 2003�. Re-
call also that, in between these two periods of accelera-
tion, there should be a period of decelerated expansion,
so that the more conventional cosmological eras of ra-
diation domination and matter domination can take
place. Indeed, there are stringent observational bounds
on the abundances of light elements, such as deuterium,
helium, and lithium, which require that big bang nucleo-
synthesis, the production of nuclei other than hydrogen,
takes place during radiation domination �Burles et al.,
2001; Carroll and Kaplinghat, 2002�. On the other hand,
a matter-dominated era is required for structure forma-
tion to occur.

1Recall that from GR in the absence of the cosmological con-
stant and under the standard cosmological assumptions �spatial
homogeneity, isotropy, etc.� one obtains the second Friedmann
equation,

ä/a = − �4�G/3��� + 3P� , �1�

where a is the scale factor, G is the gravitational constant, and
� and P are the energy density and the pressure of the cosmo-
logical fluid, respectively. Therefore, if the strong-energy con-
dition �+3P�0 is satisfied, there can be no acceleration �grav-
ity is attractive�.
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Puzzling observations do not stop here. Dark matter
makes its appearance not only in cosmological data but
also in astrophysical observations. The “missing mass”
question had already been posed in 1933 for galaxy clus-
ters �Zwicky, 1933� and in 1959 for individual galaxies
�Kahn and Woltjer, 1959�, and a satisfactory final answer
has been pending ever since �Rubin and Ford, 1970;
Bosma, 1978; Rubin et al., 1980; Persic et al., 1996;
Moore, 2001; Ellis, 2002�.

One therefore has to admit that our current picture of
the evolution and the matter-energy content of the uni-
verse is at least surprising and definitely calls for an ex-
planation. The simplest model that adequately fits the
data creating this picture is the so-called concordance or
� cold dark matter ��CDM� model, supplemented by
some inflationary scenario, usually based on some scalar
field called the inflaton. Besides not explaining the ori-
gin of the inflaton or the nature of dark matter itself, the
�CDM model is burdened with the well-known cosmo-
logical constant problems �Weinberg, 1989; Carroll,
2001a�: the magnitude problem, according to which the
observed value of the cosmological constant is extrava-
gantly small to be attributed to the vacuum energy of
matter fields, and the coincidence problem, which can be
summed up in the following question: since there is just
an extremely short period of time in the evolution of the
universe in which the energy density of the cosmological
constant is comparable with that of matter, why is this
happening today when we are present to observe it?

These problems make the �CDM model more of an
empirical fit to the data whose theoretical motivation
can be regarded as quite poor. Consequently, there have
been several attempts either to directly motivate the
presence of a cosmological constant or to propose dy-
namical alternatives to dark energy. Unfortunately, none
of these attempts are problem-free. For instance, the so-
called anthropic reasoning for the magnitude of �
�Carter, 1974; Barrow and Tipler, 1986�, even when
placed onto firmer ground through the idea of the “an-
thropic or string landscape” �Susskind, 2003�, still makes
many physicists feel uncomfortable due to its probabilis-
tic nature. On the other hand, simple scenarios for dy-
namical dark energy, such as quintessence �Peebles and
Ratra, 1988; Ratra and Peebles, 1988; Wetterich, 1988;
Ostriker and Steinhardt, 1995; Caldwell et al., 1998; Car-
roll, 1998; Bahcall et al., 1999; Wang et al., 2000�, do not
seem to be as well motivated theoretically as one would
desire.2

Another perspective for resolving the issues described
above, which might appear as more radical to some, is
the following: Gravity is by far the dominant interaction
at cosmological scales and therefore it is the force gov-

erning the evolution of the universe. Could it be that our
description of the gravitational interaction at the rel-
evant scales is not sufficiently adequate and stands at the
root of all or some of these problems? Should we con-
sider modifying our theory of gravitation and, if so,
would this help in avoiding dark components and an-
swering the cosmological and astrophysical riddles?

It is rather pointless to argue whether such a perspec-
tive would be better or worse than any of the other
solutions already proposed. It is definitely a different
way to address the same problems and, as long as these
problems do not find a plausible, well-accepted, and
simple solution, it is worth pursuing all alternatives. Ad-
ditionally, questioning of the gravitational theory itself
definitely has its merits: it helps us to obtain a deeper
understanding of the relevant issues and of the gravita-
tional interaction, it has a high chance to lead to new
physics, and it has worked in the past. Recall that the
precession of Mercury’s orbit was at first attributed to
some unobserved �“dark”� planet orbiting inside Mercu-
ry’s orbit, but was actually explained only after the pas-
sage from Newtonian gravity to GR.

C. f(R) theories as toy theories

Even if one decides that modifying gravity is the way
to go, this is not an easy task. To begin with, there are
numerous ways to deviate from GR. Setting aside the
early attempts to generalize Einstein’s theory, most of
which have been shown to be nonviable �Will, 1981�, and
the best-known alternative to GR, scalar-tensor theory
�Brans and Dicke, 1961; Dicke, 1962; Bergmann, 1968;
Nordtvedt, 1970; Wagoner, 1970; Faraoni, 2004a�, there
are still numerous proposals for modified gravity in con-
temporary literature. Typical examples are Dvali-
Gabadadze-Porrati gravity �Dvali et al., 2000�, brane-
world gravity �Maartens, 2004�, tensor-vector-scalar
theory �Bekenstein, 2004�, and Einstein-Aether theory
�Jacobson and Mattingly, 2001�. The subject of this re-
view is a different class of theories, f�R� theories of grav-
ity. These theories come about by a straightforward gen-
eralization of the Lagrangian in the Einstein-Hilbert
action,

SEH =
1

2�
� d4x�− gR , �2�

where ��8�G, G is the gravitational constant, g is the
determinant of the metric, and R is the Ricci scalar
�c=�=1�, to become a general function of R, i.e.,

S =
1

2�
� d4x�− gf�R� . �3�

Before we go further into the discussion of the details
and the history of such actions—this will happen in the
forthcoming section—some remarks are in order. We
have already mentioned the motivation coming from
high-energy physics for adding higher-order invariants
to the gravitational action, as well as a general motiva-
tion coming from cosmology and astrophysics for seek-
ing generalizations of GR. There are, however, still two

2We are referring here not only to the fact that the mass of
the scalar turns out to be many orders of magnitude smaller
than any of the masses of the scalar fields usually encountered
in particle physics but also to the inability to motivate the ab-
sence of any coupling of the scalar field to matter �there is no
mechanism or symmetry preventing this� �Carroll, 2001b�.
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questions that might be troubling the reader. The first
one is the following: Why specifically f�R� actions and
not more general ones, which include other higher-order
invariants, such as R��R��?

The answer to this question is twofold. First, there is
simplicity: f�R� actions are sufficiently general to encap-
sulate some of the basic characteristics of higher-order
gravity, but at the same time they are simple enough to
be easy to handle. For instance, viewing f as a series
expansion, i.e.,

f�R� = ¯ +
	2

R2 +
	1

R
− 2� + R +

R2


2
+

R3


3
+ ¯ , �4�

where the 	i and 
i coefficients have the appropriate
dimensions, we see that the action includes a number of
phenomenologically interesting terms. In brief, f�R�
theories make excellent candidates for toy theories—
tools from which one gains some insight into such grav-
ity modifications. Second, there are serious reasons to
believe that f�R� theories are unique among higher-
order gravity theories in the sense that they seem to be
the only ones that can avoid the long-known and fatal
Ostrogradski instability �Woodard, 2007�.

The second question calling for an answer is related to
a possible loophole that one may have already spotted in
the motivation presented: How can high-energy modifi-
cations of the gravitational action have anything to do
with late-time cosmological phenomenology? Would not
effective field theory considerations require that the co-
efficients in Eq. �4� be such as to make any corrections
to the standard Einstein-Hilbert term important only
near the Planck scale?

Conservative thinking would give a positive answer.
However, one also has to stress two other serious fac-
tors: first, there is a large ambiguity about how gravity
really works at small scales or high energies. Indeed,
there are certain results already in the literature claim-
ing that terms responsible for late-time gravitational
phenomenology might be predicted by some more fun-
damental theory, such as string theory �see, for instance,
Nojiri and Odintsov �2003b��. On the other hand, one
should not forget that the observationally measured
value of the cosmological constant corresponds to some
energy scale. Neither effective field theory nor any other
high-energy theory consideration has thus far been able
to predict or explain it. Yet it stands as an experimental
fact and putting the number in the right context can be
crucial in explaining its value. Therefore, in any phe-
nomenological approach, it seems inevitable that some
parameter will appear to be unnaturally small at first
�the mass of a scalar, a coefficient of some expansion,
etc., according to the approach�. The real question is
whether this initial “unnaturalness” can still be ex-
plained.

In other words, the motivation for infrared modifica-
tions of gravity in general and f�R� gravity in particular
is, to some extent, hand waving. However, the impor-
tance of the issues leading to this motivation and our
inability to find other, successful, more straightforward,

and maybe better-motivated ways to address them, com-
bined with the significant room for speculation which
our quantum gravity candidates leave, have triggered an
increase of interest in modified gravity that is probably
reasonable.

To conclude, when all of the above concerns are taken
into account, f�R� gravity should be neither over-
estimated nor underestimated. It is an interesting and
relatively simple alternative to GR from the study of
which some useful conclusions have been derived al-
ready. However, it is still a toy theory, as already men-
tioned; an easy-to-handle deviation from Einstein’s
theory to be used mostly in order to understand the
principles and limitations of modified gravity. Similar
considerations apply to modification of gravity in gen-
eral: We are probably far from concluding whether it is
the answer to our problems at the moment. However, in
some sense, such an approach is bound to be fruitful
since, even if it only leads to the conclusion that GR is
the only correct theory of gravitation, it will still have
helped us both to understand GR better and to secure
our faith in it.

II. ACTIONS AND FIELD EQUATIONS

As can be found in many textbooks—see, for ex-
ample, Misner et al. �1973� and Wald �1984�—there are
actually two variational principles that one can apply to
the Einstein-Hilbert action in order to derive Einstein’s
equations: the standard metric variation and a less stan-
dard variation dubbed the Palatini variation �even
though it was Einstein and not Palatini who introduced
it �Ferraris et al., 1982��. In the latter the metric and the
connection are assumed to be independent variables and
one varies the action with respect to both of them �we
will see how this variation leads to Einstein’s equations
shortly�, under the important assumption that the matter
action does not depend on the connection. The choice of
the variational principle is usually referred to as a for-
malism, so one can use the terms metric �or second-
order� formalism and Palatini �or first-order� formalism.
However, even though both variational principles lead
to the same field equation for an action whose Lagrang-
ian is linear in R, this is no longer true for a more gen-
eral action. Therefore, it is intuitive that there will be
two versions of f�R� gravity, according to which varia-
tional principle or formalism is used. Indeed this is the
case: f�R� gravity in the metric formalism is called metric
f�R� gravity and f�R� gravity in the Palatini formalism is
called Palatini f�R� gravity �Buchdahl, 1970�.

Finally, there is actually even a third version of f�R�
gravity: metric-affine f�R� gravity �Sotiriou and Liberati,
2007a, 2007b�. This comes about if one uses the Palatini
variation but abandons the assumption that the matter
action is independent of the connection. Clearly, metric-
affine f�R� gravity is the most general of these theories
and reduces to metric or Palatini f�R� gravity if further
assumptions are made. In this section we present the
actions and field equations of all three versions of f�R�
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gravity and point out their differences. We also clarify
the physical meaning behind the assumptions that dis-
criminate them.

For an introduction to metric f�R� gravity see Nojiri
and Odintsov �2007a�, for a shorter review of metric and
Palatini f�R� gravities see Capozziello and Francaviglia
�2008�, and for an extensive analysis of all versions of
f�R� gravity and other alternative theories of gravity see
Sotiriou �2007b�.

A. Metric formalism

Beginning from the action �3� and adding a matter
term SM, the total action for f�R� gravity takes the form

Smet =
1

2�
� d4x�− gf�R� + SM�g��,�� , �5�

where � collectively denotes the matter fields. Variation
with respect to the metric gives, after some manipula-
tions and modulo surface terms,

f��R�R�� − 1
2 f�R�g�� − ����� − g����f��R� = �T��,

�6�

where, as usual,

T�� =
− 2
�− g

�SM

�g�� , �7�

a prime denotes differentiation with respect to the argu-
ment, �� is the covariant derivative associated with the
Levi-Civita connection of the metric, and ������.
Metric f�R� gravity was first rigorously studied by Buch-
dahl �1970�.3

It has to be stressed that there is a mathematical jump
in deriving Eq. �6� from the action �5� having to do with
the surface terms that appear in the variation: As in the
case of the Einstein-Hilbert action, the surface terms do
not vanish just by fixing the metric on the boundary. For
the Einstein-Hilbert action, however, these terms gather
into a total variation of a quantity. Therefore, it is pos-
sible to add a total divergence to the action in order to
“heal” it and arrive at a well-defined variational prin-
ciple �this is the well-known Gibbons-Hawking-York
surface term �York and James, 1972; Gibbons and
Hawking, 1977��. Unfortunately, the surface terms in the
variation of the action �3� do not consist of a total varia-
tion of some quantity and it is not possible to heal the
action by just subtracting some surface term before per-
forming the variation.

The way out comes from the fact that the action in-
cludes higher-order derivatives of the metric and, there-
fore, it should be possible to fix more degrees of free-
dom on the boundary than those of the metric itself.
There is no unique prescription for such a fixing in the
literature so far. Note also that the choice of fixing is not

void of physical meaning since it will be relevant for the
Hamiltonian formulation of the theory. However, the
field equations �6� will be unaffected by the fixing chosen
and, from a purely classical perspective, such as the one
followed here, the field equations are all that one needs
�see Sotiriou �2007b� for a more detailed discussion on
these issues�.

Setting aside the complications of the variation we can
now focus on the field equations �6�. These are obviously
fourth-order partial differential equations in the metric
since R already includes second derivatives of the latter.
For an action that is linear in R, the fourth-order
terms—the last two on the left-hand side—vanish and
the theory reduces to GR.

Notice also that the trace of Eq. �6�,

f��R�R − 2f�R� + 3�f� = �T , �8�

where T=g��T��, relates R with T differentially and not
algebraically as in GR, where R=−�T. This is already an
indication that the field equations of f�R� theories will
admit a larger variety of solutions than Einstein’s theory.
As an example, we mention here that the Jebsen-
Birkhoff theorem, stating that the Schwarzschild solu-
tion is the unique spherically symmetric vacuum solu-
tion, no longer holds in metric f�R� gravity. Without
going into detail, we stress that T=0 no longer implies
that R=0 or is even constant.

Equation �8� will turn out to be useful in studying
various aspects of f�R� gravity, notably its stability and
weak-field limit. For the moment, we use it to make
some remarks about maximally symmetric solutions. Re-
call that maximally symmetric solutions lead to a con-
stant Ricci scalar. For R=const and T��=0, Eq. �8� re-
duces to

f��R�R − 2f�R� = 0, �9�

which, for a given f, is an algebraic equation in R. If R
=0 is a root of this equation and one takes this root, then
Eq. �6� reduces to R��=0 and the maximally symmetric
solution is Minkowski space-time. On the other hand, if
the root of Eq. �9� is R=C, where C is a constant, then
Eq. �6� reduces to R��=g��C /4 and the maximally sym-
metric solution is de Sitter or anti–de Sitter space de-
pending on the sign of C, just as in GR with a cosmo-
logical constant.

Another issue that should be stressed is that of energy
conservation. In metric f�R� gravity the matter is mini-
mally coupled to the metric. One can therefore use
the usual arguments based on the invariance of the ac-
tion under diffeomorphisms of the space-time manifold
�coordinate transformations x�→x��=x�+
� followed
by a pullback, with the field 
� vanishing on the bound-
ary of the space-time region considered, leave the phys-
ics unchanged; see Wald �1984�� to show that T�� is
divergence-free. The same can be done at the level of
the field equations: a “brute force” calculation reveals
that the left-hand side of Eq. �6� is divergence-free

3Specific attention to higher-dimensional f�R� gravity was
given by Gunther et al. �2002, 2003, 2005� and Saidov and Zhuk
�2006, 2007�.
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�generalized Bianchi identity� implying that ��T��=0
�Koivisto, 2006a�.4

Finally, we note that it is possible to write the field
equations in the form of Einstein equations with an ef-
fective stress-energy tensor composed of curvature
terms moved to the right-hand side. This approach is
questionable in principle �the theory is not Einstein’s
theory and it is artificial to force upon it an interpreta-
tion in terms of Einstein equations� but in practice it has
been proved to be useful in scalar-tensor gravity. Specifi-
cally, Eq. �6� can be written as

G�� � R�� − 1
2g��R =

�T��

f��R�
+ g��

�f�R� − Rf��R��
2f��R�

+
�����f��R� − g���f��R��

f��R�
�10�

or

G�� =
�

f��R�
�T�� + T��

�eff�� , �11�

where the quantity Geff�G / f��R� can be regarded as the
effective gravitational coupling strength, in analogy to
what is done in scalar-tensor gravity—positivity of Geff
�equivalent to the requirement that the graviton is not a
ghost� imposes that f��R��0. Moreover,

T��
�eff� �

1

�
� f�R� − Rf��R�

2
g�� + ����f��R�

− g���f��R�	 �12�

is an effective stress-energy tensor which does not have
the canonical form quadratic in the first derivatives of
the field f��R� but contains terms linear in the second
derivatives. The effective energy density derived from it
is not positive definite and none of the energy conditions
holds. Again, this situation is analogous to that occur-
ring in scalar-tensor gravity. The effective stress-energy
tensor �12� can be put in the form of a perfect fluid
energy-momentum tensor, which will turn out to be use-
ful in Sec. IV.

B. Palatini formalism

We have mentioned that the Einstein equations can
be derived using, instead of the standard metric varia-
tion of the Einstein-Hilbert action, the Palatini formal-
ism, i.e., an independent variation with respect to the
metric and an independent connection �Palatini varia-
tion�. The action is formally the same but now the Rie-
mann tensor and the Ricci tensor are constructed with
the independent connection. Note that the metric is not
needed to obtain the latter from the former. For clarity
of notation, we denote the Ricci tensor constructed with

this independent connection as R�� and the correspond-
ing Ricci scalar5 is R=g��R��. The action now takes the
form

SPal =
1

2�
� d4x�− gf�R� + SM�g��,�� . �13�

GR will come about, as we will see shortly, when f�R�
=R. Note that the matter action SM is assumed to de-
pend only on the metric and the matter fields and not on
the independent connection. This assumption is crucial
for the derivation of Einstein’s equations from the linear
version of the action �13� and is the main feature of the
Palatini formalism.

It has been mentioned that this assumption has con-
sequences for the physical meaning of the independent
connection �Sotiriou, 2006b, 2006d; Sotiriou and Libe-
rati, 2007b�. We now elaborate on this. Recall that an
affine connection usually defines parallel transport and
the covariant derivative. On the other hand, the matter
action SM is supposed to be a generally covariant scalar
which includes derivatives of the matter fields. There-
fore, these derivatives ought to be covariant derivatives
for a general matter field. Exceptions exist, such as a
scalar field, for which a covariant and a partial derivative
coincide, and the electromagnetic field, for which one
can write a covariant action without the use of the cova-
riant derivative �it is the exterior derivative that is actu-
ally needed; see the next section and Sotiriou and Libe-
rati �2007b��. However, SM should include all possible
fields. Therefore, the assumption that SM is independent
of the connection can imply one of two things �Sotiriou,
2006d�: either we are restricting ourselves to specific
fields or we are implicitly assuming that it is the Levi-
Civita connection of the metric that actually defines par-
allel transport. Since the first option is implausibly lim-
iting for a gravitational theory, we are left with the
conclusion that the independent connection ��

�� does
not define parallel transport or the covariant derivative
and the geometry is actually pseudo-Riemannian. The
covariant derivative is actually defined by the Levi-
Civita connection of the metric 
�

���.
This also implies that Palatini f�R� gravity is a metric

theory in the sense that it satisfies the metric postulates
�Will, 1981�. We now clarify this: matter is minimally
coupled to the metric and not coupled to any other
fields. Once again, as in GR or metric f�R� gravity, one
could use diffeomorphism invariance to show that the
stress-energy tensor is conserved by the covariant de-
rivative defined with the Levi-Civita connection of the

metric, i.e., ��T��=0 �but �̄�T���0�. This can also be
shown using the field equations, which we present
shortly, in order to calculate the divergence of T�� with
respect to the Levi-Civita connection of the metric and
show that it vanishes �Barraco et al., 1999, Koivisto

4Energy-momentum complexes in the spherically symmetric
case have been computed by Multamaki et al. �2008�.

5The term “f�R� gravity” is used generically for a theory in
which the action is some function of some Ricci scalar, not
necessarily R.
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2006a�.6 Clearly then Palatini f�R� gravity is a metric
theory according to the definition of Will �1981� �not to
be confused with the term “metric” in metric f�R� grav-
ity, which simply refers to the fact that one varies only
the action with respect to the metric�. Conventionally
thinking, as a consequence of the covariant conservation
of the matter energy-momentum tensor, test particles
should follow geodesics of the metric in Palatini f�R�
gravity. This can be seen by considering a dust fluid with
T��=�u�u� and projecting the conservation equation
�
T�
=0 onto the fluid four-velocity u
. Similarly, theo-
ries that satisfy the metric postulates are supposed to
satisfy the Einstein equivalence principle as well �Will,
1981�. Unfortunately, things are more complicated here
and therefore we set this issue aside for the moment. We
will return to it and attempt to fully clarify it in Secs.
VI.B and VI.C.2. For now, we proceed with our discus-
sion of the field equations.

Varying the action �13� independently with respect to
the metric and the connection, respectively, and using

�R�� = �̄����
�� − �̄����

�� �14�

we obtain

f��R�R���� − 1
2 f�R�g�� = �T��, �15�

− �̄���− gf��R�g��� + �̄���− gf��R�g�������
� �� = 0, �16�

where T�� is defined in the usual way as in Eq. �7�, �̄�

denotes the covariant derivative defined with the inde-
pendent connection ��

��, and ���� and ���� denote sym-
metrization or antisymmetrization over the indices �
and �, respectively. Taking the trace of Eq. �16�, it can be
easily shown that

�̄���− gf��R�g��� = 0, �17�

which implies that we can bring the field equations into
the more economical form

f��R�R���� − 1
2 f�R�g�� = �GT��, �18�

�̄���− gf��R�g��� = 0. �19�

It is now easy to see how the Palatini formalism leads to
GR when f�R�=R; in this case f��R�=1 and Eq. �19�
becomes the definition of the Levi-Civita connection for
the initially independent connection ��

��. Then, R��

=R��, R=R, and Eq. �18� yields Einstein’s equations.
This reproduces the result that can be found in text-
books �Misner et al., 1973; Wald, 1984�. Note that, in the
Palatini formalism for GR, the fact that the connection
turns out to be the Levi-Civita one is a dynamical fea-
ture instead of an a priori assumption.

It is now evident that generalizing the action to be a
general function of R in the Palatini formalism is just as
natural as it is to generalize the Einstein-Hilbert action
in the metric formalism.7 Remarkably, even though the
two formalisms give the same results for linear actions,
they lead to different results for more general actions
�Buchdahl, 1970; Shahid-Saless, 1987; Burton and Mann,
1998a, 1998b; Querella, 1999; Exirifard and Sheikh-
Jabbari, 2008�.

Finally, we present some useful manipulations of the
field equations. Taking the trace of Eq. �18� yields

f��R�R − 2f�R� = �T . �20�

As in the metric case, this equation will prove very use-
ful later on. For a given f, it is an algebraic equation in
R. For all cases in which T=0, including vacuum and
electrovacuum, R will therefore be a constant and a root
of the equation

f��R�R − 2f�R� = 0. �21�

We will not consider cases for which this equation has no
roots since it can be shown that the field equations are
then inconsistent �Ferraris et al., 1992�. Therefore,
choices of f that lead to this behavior should simply be
avoided. Equation �21� can also be identically satisfied if
f�R��R2. This very particular choice for f leads to a
conformally invariant theory �Ferraris et al., 1992�. As is
apparent from Eq. �20�, if f�R��R2 then only confor-
mally invariant matter, for which T=0 identically, can be
coupled to gravity. Matter is not generically conformally
invariant though, and so this particular choice of f is not
suitable for a low-energy theory of gravity. We will
therefore not consider it further �see Sotiriou �2006b� for
a discussion�.

Next, we consider Eq. �19�. We define a metric confor-
mal to g�� as

h�� � f��R�g��. �22�

It can easily be shown that8

�− hh�� = �− gf��R�g��. �23�

Then, Eq. �19� becomes the definition of the Levi-
Civita connection of h�� and can be solved algebraically
to give

��
�� = h�����h�� + ��h�� − ��h��� �24�

or, equivalently, in terms of g��,

6Energy supertensors and pseudotensors in Palatini f�R�
gravity were studied by Ferraris et al. �1992�; Borowiec et al.
�1994, 1998�, and Barraco et al. �1999� and alternative energy
definitions were given by Deser and Tekin �2002, 2003a, 2003b,
2007�.

7See, however, Sotiriou �2007b� for further analysis of the
f�R� action and how it can be derived from first principles in
the two formalisms.

8This calculation holds in four dimensions. When the number
of dimensions D is different from 4 then, instead of using
Eq. �22�, the conformal metric h�� should be introduced as
h����f��R��2/�D−2�g�� in order for Eq. �23� to still hold.
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��
�� =

1

f��R�
g��
���f��R�g��� + ���f��R�g���

− ���f��R�g���� . �25�

Given that Eq. �20� relates R algebraically with T, and
since we have an explicit expression for ��

�� in terms of
R and g��, we can in principle eliminate the indepen-
dent connection from the field equations and express
them in terms of only the metric and the matter fields.
Actually, the fact that we can algebraically express ��

��

in terms of the latter two already indicates that these
connections act as some sort of auxiliary field. We ex-
plore this further in Sec. III. For the moment, we take
into account how the Ricci tensor transforms under con-
formal transformations and write

R�� = R�� +
3
2

1

�f��R��2 ���f��R�����f��R��

−
1

f��R������ −
1
2

g���
f��R� . �26�

Contraction with g�� yields

R = R +
3

2�f��R��2 ���f��R�����f��R��

+
3

f��R�
�f��R� . �27�

Note the difference between R and the Ricci scalar of
h�� due to the fact that g�� is used here for the contrac-
tion of R��.

Replacing Eqs. �26� and �27� in Eq. �18� and after
some easy manipulations, one obtains

G�� =
�

f�
T�� −

1
2

g���R −
f

f�

 +

1

f�
����� − g����f�

−
3
2

1

f�2����f�����f�� −
1
2

g����f��2	 . �28�

Notice that, assuming that we know the root of Eq. �20�,
R=R�T�, we have completely eliminated the indepen-
dent connection from this equation. Therefore, we have
successfully reduced the number of field equations to 1
and at the same time both sides of Eq. �28� depend only
on the metric and the matter fields. In a sense, the
theory has been brought into the form of GR with a
modified source.

We can now straightforwardly deduce the following:

• When f�R�=R, the theory reduces to GR, as dis-
cussed previously.

• For matter fields with T=0, due to Eq. �21�, R and
consequently f�R� and f��R� are constants and the
theory reduces to GR with a cosmological constant
and a modified coupling constant G / f�. If we denote
the value of R when T=0 as R0, then the value of
the cosmological constant is

1
2
�R0 −

f�R0�
f��R0�
 =

R0

4
, �29�

where we have used Eq. �21�. Besides vacuum, T=0
also for electromagnetic fields, radiation, and any
other conformally invariant type of matter.

• In the general case T�0, the modified source on the
right-hand side of Eq. �28� includes derivatives of the
stress-energy tensor, unlike in GR. These are implicit
in the last two terms of Eq. �28� since f� is in practice
a function of T given that9 f�= f��R� and R=R�T�.

The serious implications of this last observation will
become clear in Sec. VI.C.1.

C. Metric-affine formalism

As pointed out, the Palatini formalism of f�R� gravity
relies on the crucial assumption that the matter action
does not depend on the independent connection. We
also argued that this assumption relegates this connec-
tion to the role of some sort of auxiliary field, and the
connection carrying the usual geometrical meaning—
parallel transport and definition of the covariant
derivative—remains the Levi-Civita connection of the
metric. All of these statements will be supported further
in the forthcoming sections, but for the moment con-
sider what would be the outcome if we decided to be
faithful to the geometrical interpretation of the indepen-
dent connection ��

��: this would imply that we would
define the covariant derivatives of the matter fields with
this connection and, therefore, we would have SM

=SM�g�� ,��
�� ,��. The action of this theory, dubbed

metric-affine f�R� gravity �Sotiriou and Liberati, 2007b�,
would then be �note the difference with respect to the
action �13��

SMA =
1

2�
� d4x�− gf�R� + SM�g��,��

��,�� . �30�

1. Preliminaries

Before going further and deriving field equations from
this action we need to clarify certain issues. First, since
now the matter action depends on the connection, we
should define a quantity representing the variation of SM
with respect to the connection, which mimics the defini-
tion of the stress-energy tensor. We call this quantity the
hypermomentum and it is defined as �Hehl and Kerling,
1978�

9Note that, apart from special cases such as a perfect fluid,
T�� and consequently T already include first derivatives of the
matter fields, given that the matter action has such a depen-
dence. This implies that the right-hand side of Eq. �28� will
include at least second derivatives of the matter fields and pos-
sibly up to third derivatives.
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��
�� � −

2
�− g

�SM

���
��

. �31�

Additionally, since the connection is now promoted to
the role of a completely independent field, it is interest-
ing to consider not placing any restrictions on it. There-
fore, besides dropping the assumption that the connec-
tion is related to the metric, we also drop the assumption
that the connection is symmetric. It is useful to define
the following quantities: the nonmetricity tensor

Q��� � − �̄�g��, �32�

which measures the failure of the connection to covari-
antly conserve the metric, the trace of the nonmetricity
tensor with respect to its last two �symmetric� indices,
which is called the Weyl vector,

Q� � 1
4Q��

�, �33�

and the Cartan torsion tensor

S��
� � ��

����, �34�

which is the antisymmetric part of the connection.
By allowing a nonvanishing Cartan torsion tensor we

are allowing the theory to include torsion naturally.
Even though this brings complications, it has been con-
sidered by some to be an advantage for a gravity theory
since some matter fields, such as Dirac fields, can be
coupled to gravity in a way that might be considered
more natural �Hehl et al., 1995�: one might expect that at
some intermediate- or high-energy regime the spin of
particles might interact with the geometry �in the same
sense that macroscopic angular momentum interacts
with geometry�, and torsion can arise. Theories with tor-
sion have a long history, probably starting with the
Einstein-Cartan�-Sciama-Kibble� theory �Cartan, 1922,
1923, 1924; Kibble, 1961; Sciama, 1964; Hehl et al., 1976�.
In this theory, as well as in other theories with an inde-
pendent connection, some part of the connection is still
related to the metric �e.g., the nonmetricity is set to
zero�. In our case, the connection is left completely un-
constrained and is to be determined by the field equa-
tions. Metric-affine gravity with the linear version of the
action �30� was initially proposed by Hehl and Kerling
�1978� and the generalization to f�R� actions was consid-
ered by Sotiriou and Liberati �2007a, 2007b�.

Unfortunately, if the connection is left completely un-
constrained a complication follows. Consider the projec-
tive transformation

��
�� → ��

�� + ��
�
�, �35�

where 
� is an arbitrary covariant vector field. One can
easily show that the Ricci tensor will correspondingly
transform as

R�� → R�� − 2����
���. �36�

However, given that the metric is symmetric, this implies
that the curvature scalar does not change,

R → R , �37�

i.e., R is invariant under projective transformations.
Hence the Einstein-Hilbert action or any other action
built from a function of R, such as the one used here, is
projective invariant in metric-affine gravity. However,
the matter action is not generically projective invariant
and this would be the cause of an inconsistency in the
field equations.

One could try to avoid this problem by generalizing
the gravitational action in order to break projective in-
variance. This can be done in several ways, such as al-
lowing for the metric to be nonsymmetric as well, or
adding higher-order curvature invariants or terms in-
cluding the Cartan torsion tensor �see Sotiriou �2007b�
and Sotiriou and Liberati �2007b� for a more detailed
discussion�. However, if one wants to stay within the
framework of f�R� gravity, which is our subject here,
then there is only one way to cure this problem: to
somehow constrain the connection. In fact, it is evident
from Eq. �35� that, if the connection were symmetric,
projective invariance would be broken. However, one
does not have to take such a drastic measure.

To understand this issue further, we should reexamine
the meaning of projective invariance. This is very similar
to gauge invariance in electromagnetism. It tells us that
the corresponding field, in this case the connections
��

��, can be determined from the field equations up to a
projective transformation �Eq. �35��. This invariance can
therefore be broken by fixing some degrees of freedom
of the field, similarly to gauge fixing. The number of
degrees of freedom that we need to fix is obviously the
number of the components of the four-vector used for
the transformation, i.e., simply 4. In practice, this means
that we should start by assuming that the connection is
not the most general that one can construct but satisfies
some constraints.

Since the degrees of freedom that we need to fix are 4
and seem to be related to the nonsymmetric part of the
connection, the most obvious prescription is to demand
that S�=S��

� be equal to zero, which was first suggested
by Sandberg �1975� for a linear action and shown to
work also for an f�R� action by Sotiriou and Liberati
�2007b�.10 Note that this does not mean that ���

� should
vanish, but merely that ���

�=���
�. This constraint can

easily be imposed by adding a Lagrange multiplier B�.
The additional term in the action will be

SLM =� d4x�− gB�S�. �38�

The action �30� with the addition of the term in Eq. �38�
is, therefore, the action of the most general metric-affine
f�R� theory of gravity.

10The proposal of Hehl and Kerling �1978� to fix part of the
nonmetricity, namely, the Weyl vector Q�, in order to break
projective invariance works only when f�R�=R �Sotiriou,
2007b; Sotiriou and Liberati, 2007b�.
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2. Field equations

We are now ready to vary the action and obtain field
equations. Due to space limitations, we will not present
the various steps of the variation here. Instead we give

�R�� = �̄����
�� − �̄����

�� + 2��
�������

��, �39�

which is useful to those wanting to repeat the variation
as an exercise, and we also stress our definitions for the
covariant derivative,

�̄�A�
� = ��A�

� + ��
�	A	

� − �	
��A�

	, �40�

and for the Ricci tensor of an independent connection,

R�� = R�
��� = ����

�� − ����
�� + ��

����
�� − ��

����
��.

�41�

The outcome of independent variation with respect to
the metric, the connection, and the Lagrange multiplier
is, respectively,

f��R�R���� − 1
2 f�R�g�� = �T��, �42�

1
�− g


− �̄���− gf��R�g��� + �̄���− gf��R�g�����
��

+ 2f��R��g��S��
� − g��S��

���
� + g��S��

��

= ����
�� − B����� ��

�� , �43�

S��
� = 0. �44�

Taking the trace of Eq. �43� over the indices � and � and
using Eq. �44�, one obtains

B� = 2
3��

��. �45�

Therefore, the final form of the field equations is

f��R�R���� − 1
2 f�R�g�� = �T��, �46�

1
�− g


− �̄���− gf��R�g��� + �̄���− gf��R�g�����
��

+ 2f��R�g��S��
� = ����

�� −
2
3

��
������ ��

�
 , �47�

S��
� = 0. �48�

Next, we examine the role of ��
��. By splitting Eq. �47�

into a symmetric and an antisymmetric part and per-
forming contractions and manipulations, it can be shown
that �Sotiriou and Liberati, 2007b�

��
���� = 0 ⇒ S��

� = 0. �49�

This straightforwardly implies two things: �a� Any tor-
sion is introduced by matter fields for which ��

���� is
nonvanishing and �b� torsion is not propagating, since it
is given algebraically in terms of the matter fields
through ��

����. It can therefore be detected only in the
presence of such matter fields. In the absence of the
latter, space-time will have no torsion.

In a similar fashion, one can use the symmetrized ver-
sion of Eq. �47� to show that the symmetric part of the
hypermomentum ��

���� is algebraically related to the
nonmetricity Q���. Therefore, matter fields with nonva-
nishing ��

���� will introduce nonmetricity. However, in
this case things are slightly more complicated because
part of the nonmetricity is also due to the functional
form of the Lagrangian itself �see Sotiriou and Liberati
�2007b��.

We will not perform a detailed study of different mat-
ter fields and their role in metric-affine gravity. We refer
the reader to the analysis of Sotiriou and Liberati
�2007b� for details and we restrict ourselves to the fol-
lowing remarks. Obviously, there are certain types of
matter fields for which ��

��=0. Characteristic examples
are the following:

• A scalar field since in this case the covariant deriva-
tive can be replaced with a partial derivative. There-
fore, the connection does not enter the matter ac-
tion.

• The electromagnetic field �and gauge fields in gen-
eral� since the electromagnetic field tensor F�� is de-
fined in a covariant manner using the exterior deriva-
tive. This definition remains unaffected when torsion
is included �this can be related to gauge invariance;
see Sotiriou and Liberati �2007b� for a discussion�.

On the contrary, particles with spin, such as Dirac
fields, generically have a nonvanishing hypermomentum
and will, therefore, introduce torsion. A more compli-
cated case is that of a perfect fluid with vanishing vortic-
ity. If we set torsion aside or if we consider a fluid de-
scribing particles that would initially not introduce any
torsion then, as for a usual perfect fluid in GR, the mat-
ter action can be written in terms of three scalars: the
energy density, the pressure, and the velocity potential
�Schakel, 1996; Stone, 2000�. Therefore, such a fluid will
lead to a vanishing ��

��. However, complications arise
when torsion is taken into account: Even though it can
be argued that the spins of the individual particles com-
posing the fluids will be randomly oriented and there-
fore the expectation value for the spin should add up to
zero, fluctuations around this value will affect space-
time �Hehl et al., 1976; Sotiriou and Liberati, 2007b�. Of
course, such effects will be largely suppressed, especially
in situations in which the energy density is small, such as
late-time cosmology.

It should be evident by now that, due to Eq. �49�, the
field equations of metric f�R� gravity reduce to Eqs. �15�
and �16� and, ultimately, to the field equations of Palatini
f�R� gravity �Eqs. �18� and �19�� for all cases in which
��

��=0. Consequently, in vacuo, where also T��=0, they
will reduce to the Einstein equations with an effective
cosmological constant given by Eq. �29�, as discussed in
Sec. II.B for Palatini f�R� gravity.

In conclusion, metric-affine f�R� gravity appears to be
the most general case of f�R� gravity. It includes en-
riched phenomenology, such as matter-induced non-
metricity and torsion. It is worth stressing that torsion
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comes quite naturally, since it is actually introduced by
particles with spin �excluding gauge fields�. Remarkably,
the theory reduces to GR in vacuo or for conformally
invariant types of matter, such as the electromagnetic
field, and departs from GR in the same way that Palatini
f�R� gravity does for most matter fields that are usually
studied as sources of gravity. However, at the same time,
it exhibits new phenomenology in less-studied cases,
such as in the presence of Dirac fields, which include
torsion and nonmetricity. Finally, we repeat once more
that Palatini f�R� gravity, despite appearances, is really a
metric theory according to the definition of Will �1981�
�and the geometry is a priori pseudo-Riemannian�.11 On
the contrary, metric-affine f�R� gravity is not a metric
theory �hence the name�. Consequently, it should also be
clear that T�� is not divergence-free with respect to the
covariant derivative defined with the Levi-Civita con-

nection �nor with �̄� actually�. However, the physical
meaning of this last statement is questionable and de-
serves further analysis since in metric-affine gravity T��

does not really carry the usual meaning of a stress-
energy tensor �for instance, it does not reduce to the
special relativistic tensor at an appropriate limit and at
the same time there is also another quantity, the hyper-
momentum, which describes matter characteristics�.

III. EQUIVALENCE WITH BRANS-DICKE THEORY AND
CLASSIFICATION OF THEORIES

In the same way that one can make variable redefini-
tions in classical mechanics in order to bring an equation
describing a system to a more attractive, or easy to
handle, form �and in a similar way to changing coordi-
nate systems�, one can also perform field redefinitions in
a field theory in order to rewrite the action or the field
equations.

There is no unique prescription for redefining the
fields of a theory. One can introduce auxiliary fields, per-
form renormalizations or conformal transformations, or
even simply redefine fields to one’s convenience.

It is important to mention that, at least within a clas-
sical perspective such as the one followed here, two
theories are considered to be dynamically equivalent if,
under a suitable redefinition of the gravitational and
matter fields, one can make their field equations coin-
cide. The same statement can be made at the level of the
action. Dynamically equivalent theories give exactly the
same results when describing a dynamical system that
falls within the purview of these theories. There are
clear advantages in exploring the dynamical equivalence
between theories: we can use results already derived for
one theory in the study of another, equivalent, theory.

The term “dynamical equivalence” can be considered
misleading in classical gravity. Within a classical perspec-

tive, a theory is fully described by a set of field equa-
tions. When we are referring to gravitation theories,
these equations describe the dynamics of gravitating sys-
tems. Therefore, two dynamically equivalent theories
are actually just different representations of the same
theory �which also makes it clear that all allowed repre-
sentations can be used on an equal footing�.

The issue of distinguishing between truly different
theories and different representations of the same
theory �or dynamically equivalent theories� is an intri-
cate one. It has serious implications and has been the
cause of many misconceptions in the past, especially
when conformal transformations are used in order to
redefine the fields �e.g., the Jordan and Einstein frames
in scalar-tensor theory�. It goes beyond the scope of this
review to present a detailed analysis of this issue. We
refer the interested reader to the literature and specifi-
cally to Sotiriou et al. �2008� and references therein for a
detailed discussion. Here we simply mention that, given
that they are handled carefully, field redefinitions and
different representations of the same theory are per-
fectly legitimate and constitute useful tools for under-
standing gravitational theories.

In what follows, we review the equivalence between
metric and Palatini f�R� gravity with specific theories
within the Brans-Dicke class with a potential. It is shown
that these versions of f�R� gravity are nothing but differ-
ent representations of Brans-Dicke theory with Brans-
Dicke parameter �0=0 and −3/2, respectively. We com-
ment on this equivalence and on whether preference to
a specific representation should be an issue. Finally, we
use this equivalence to perform a classification of f�R�
gravity.

A. Metric formalism

It was noticed quite early that metric quadratic gravity
can be cast into the form of a Brans-Dicke theory, and it
did not take long for these results to be extended to
more general actions that are functions of the Ricci sca-
lar of the metric �Teyssandier and Tourrenc, 1983; Bar-
row, 1988; Barrow and Cotsakis, 1988; Wands, 1994� �see
also Cecotti �1987�, Wands �1994�, and Flanagan �2003�
for the extension to theories of the type f�R ,�kR� with
k�1 of interest in supergravity�. This equivalence has
been reexamined recently due to the increased interest
in metric f�R� gravity �Chiba, 2003; Flanagan, 2004a;
Sotiriou, 2006b�. We now present this equivalence in
some detail.

We work at the level of the action but the same ap-
proach can be used to work directly at the level of the
field equations. We begin with metric f�R� gravity. For
convenience we rewrite here the action �5�,

Smet =
1

2�
� d4x�− gf�R� + SM�g��,�� . �50�

One can introduce a new field � and write the dynami-
cally equivalent action,

11As mentioned in Sec. II.B, although the metric postulates
are manifestly satisfied, there are ambiguities regarding the
physical interpretation of this property and its relation with the
Einstein equivalence principle �see Sec. VI.C.1�.
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Smet =
1

2�
� d4x�− g�f��� + f�����R − ��� + SM�g��,�� .

�51�

Variation with respect to � leads to

f�����R − �� = 0. �52�

Therefore, �=R if f�����0, which reproduces the action
�5�.12 Redefining the field � by �= f���� and setting

V��� = ����� − f„����… , �53�

the action takes the form

Smet =
1

2�
� d4x�− g��R − V���� + SM�g��,�� . �54�

This is the Jordan-frame representation of the action of
a Brans-Dicke theory with Brans-Dicke parameter �0
=0. An �0=0 Brans-Dicke theory �sometimes called
“massive dilaton gravity” �Wands, 1994�� was originally
proposed by O’Hanlon �1972a� in order to generate a
Yukawa term in the Newtonian limit and has occasion-
ally been considered in the literature �Deser, 1970;
Anderson, 1971; O’Hanlon, 1972a; O’Hanlon and Tup-
per, 1972; Fujii, 1982; Barber, 2003; Davidson, 2005;
Dabrowski et al., 2007�. It should be stressed that the
scalar degree of freedom �= f���� is quite different from
a matter field; for example, like all nonminimally
coupled scalars, it can violate all of the energy condi-
tions �Faraoni, 2004a�.

The field equations corresponding to the action �54�
are

G�� =
�

�
T�� −

1

2�
g��V��� +

1

�
������ − g����� ,

�55�

R = V���� . �56�

These field equations could have been derived directly
from Eq. �6� using the same field redefinitions that were
mentioned above for the action. By taking the trace of
Eq. �55� in order to replace R in Eq. �56�, one gets

3�� + 2V��� − �
dV

d�
= �T . �57�

This last equation determines the dynamics of � for
given matter sources.

The condition f��0 for the scalar-tensor theory to be
equivalent to the original f�R� gravity theory can be seen
as the condition that the change of variable �= f��R�
needed to express the theory as a Brans-Dicke one
�Eq. �54�� be invertible, i.e., d� /dR= f��0. This is a suf-
ficient but not necessary condition for invertibility: it is
only necessary that f��R� be continuous and one to one
�Olmo, 2007�. By looking at Eq. �52�, it is seen that

f��0 implies �= f��R� and the equivalence of the actions
�3� and �51�. When f� is not defined, or it vanishes, the
equality �= f��R� and the equivalence between the two
theories cannot be guaranteed �although this it is not
a priori excluded by f�=0�.

Finally, we mention that, as usual in Brans-Dicke
theory and more general scalar-tensor theories, one can
perform a conformal transformation and rewrite the ac-
tion �54� in what is called the Einstein frame �as opposed
to the Jordan frame�. Specifically, with the conformal
transformation

g�� → g̃�� = f��R�g�� � �g�� �58�

and the scalar field redefinition �= f��R�→ �̃ with

d�̃ =�2�0 + 3

2�

d�

�
, �59�

a scalar-tensor theory is mapped into the Einstein frame
in which the “new” scalar field �̃ couples minimally to
the Ricci curvature and has canonical kinetic energy, as
described by the gravitational action,

S�g� =� d4x�− g̃� R̃

2�
−

1
2

�	�̃�	�̃ − U��̃�	 . �60�

For the �0=0 equivalent of metric f�R� gravity we have

� � f��R� = e�2�/3�̃, �61�

U��̃� =
Rf��R� − f�R�

2�„f��R�…2 , �62�

where R=R��̃�, and the complete action is

Smet� =� d4x�− g̃� R̃

2�
−

1
2

�	�̃�	�̃ − U��̃�	
+ SM�e−�2�/3�̃g̃��,�� . �63�

A direct transformation to the Einstein frame, without
the intermediate passage from the Jordan frame, has
been discovered by Whitt �1984� and Barrow and Cot-
sakis �1988�.

We stress once more that the actions �5�, �54�, and �63�
are nothing but different representations of the same
theory.13 Additionally, there is nothing exceptional
about the Jordan or the Einstein frame of the Brans-
Dicke representation, and one can actually find infinitely
many conformal frames �Flanagan, 2004a; Sotiriou et al.,
2008�.

B. Palatini formalism

Palatini f�R� gravity can also be cast in the form of a
Brans-Dicke theory with a potential �Flanagan, 2004b;

12The action is sometimes called “R regular” by mathematical
physicists if f��R��0 �e.g., Magnano and Sokolowski �1994��.

13This has been an issue of debate and confusion �see, for
example, Faraoni and Nadeau �2007��.

462 Thomas P. Sotiriou and Valerio Faraoni: f�R� theories of gravity

Rev. Mod. Phys., Vol. 82, No. 1, January–March 2010



Olmo, 2005b; Sotiriou, 2006b�. As a matter of fact, be-
ginning from the Palatini f�R� action, repeated here for
convenience,

SPal =
1

2�
� d4x�− gf�R� + SM�g��,�� , �64�

and following exactly the same steps as before, i.e., in-
troducing a scalar field �, which we later redefine in
terms of �, we obtain

SPal =
1

2�
� d4x�− g��R − V���� + SM�g��,�� . �65�

Even though the gravitational part of this action is for-
mally the same as that of the action �54� this action is not
a Brans-Dicke one with �0=0: R is not the Ricci scalar
of the metric g��. However, we have already seen that
the field equation �18� can be solved algebraically for the
independent connection yielding Eq. �25�. This implies
that we can replace the connection in the action without
affecting the dynamics of the theory �the independent
connection is essentially an auxiliary field�. Alterna-
tively, we can directly use Eq. �27�, which relates R and
R. Therefore, the action �65� can be rewritten, modulo
surface terms, as

SPal =
1

2�
� d4x�− g��R +

3

2�
������ − V���


+ SM�g��,�� . �66�

This is the action of a Brans-Dicke theory with Brans-
Dicke parameter �0=−3/2. The corresponding field
equations obtained from the action �66� through varia-
tion with respect to the metric and the scalar are

G�� =
�

�
T�� −

3

2�2������� −
1
2

g���
�����


+
1

�
������ − g����� −

V

2�
g��, �67�

�� =
�

3
�R − V�� +

1

2�
������ . �68�

Once again, we can use the trace of Eq. �67� in order to
eliminate R in Eq. �68� and relate � directly to the mat-
ter sources. The outcome is

2V − �V� = �T . �69�

Finally, one can also perform the conformal transfor-
mation �58� in order to rewrite the action �66� in the
Einstein frame. The result is

SPal� =� d4x�− g̃� R̃

2�
− U���	 + SM��−1g̃��,�� , �70�

where U���=V��� / �2��2�. Note that here we have not
used any redefinition for the scalar.

To conclude, we have established that Palatini f�R�
gravity can be cast into the form of an �0=−3/2 Brans-
Dicke theory with a potential.

C. Classification

The scope of this section is to present a classification
of the different versions of f�R� gravity. However, before
we do so, some remarks are in order.

First, we use the Brans-Dicke representation of both
metric and Palatini f�R� gravities to comment on the
dynamics of these theories. This representation makes it
transparent that metric f�R� gravity has just one extra
scalar degree of freedom with respect to GR. The ab-
sence of a kinetic term for the scalar in the action �54� or
in Eq. �56� should not mislead us to think that this de-
gree of freedom does not carry dynamics. As can be
seen by Eq. �57�, � is dynamically related to the matter
fields and, therefore, it is a dynamical degree of free-
dom. Of course, one should also not fail to mention that
Eq. �56� does constrain the dynamics of �. In this sense
metric f�R� gravity and �0=0 Brans-Dicke theory differ
from the general Brans-Dicke theories and constitute a
special case. On the other hand, in the �0=−3/2 case,
which corresponds to Palatini f�R� gravity, the scalar �
appears to have dynamics in the action �66� or in Eq.
�68�. However, once again this is misleading since, as is
clear from Eq. �69�, � is in this case algebraically related
to the matter and, therefore, carries no dynamics of its
own �indeed the field equations �67� and �69� could be
combined to give Eq. �28�, eliminating � completely�. As
a remark, we state that the equivalence between Palatini
f�R� gravity and �0=−3/2 Brans-Dicke theory and the
clarifications just made highlight two issues already men-
tioned: the facts that Palatini f�R� gravity is a metric
theory according to the definition of Will �1981� and that
the independent connection is actually some sort of aux-
iliary field.

The fact that the dynamics of � are not transparent at
the level of the action in both cases should not come as
a surprise: � is coupled to the derivatives of the metric
�through the coupling with R� and therefore partial in-
tegrations to “free” �� or �g�� during the variation are
bound to generate dynamical terms even if they are not
initially present in the action. The �0=−3/2 case is even
more intricate because the dynamical terms generated
through this procedure exactly cancel the existing one in
the action.

We already saw an example of how different represen-
tations of the theory can highlight some of its character-
istics and be useful for our understanding of it. The
equivalence between f�R� gravity and Brans-Dicke
theory will turn out to be useful in the forthcoming sec-
tions.

Until now we have not discussed any possible equiva-
lence between Brans-Dicke theory and metric-affine
f�R� gravity. However, it is quite straightforward to see
that there cannot be any. Metric-affine f�R� gravity is not
a metric theory and, consequently, it cannot be cast into
the form of one, for instance, Brans-Dicke theory. For
the sake of clarity, we state that one could still start from
the action �30� and follow the steps of the previous sec-
tion to bring its gravitational part into the form of the
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action �66�. However, the matter action would have an
explicit dependence on the connection. Additionally,
one would not be able to use Eq. �27� to eliminate R in
favor of R, since this holds only in Palatini f�R� gravity.

In conclusion, metric-affine f�R� gravity is the most
general case of f�R� gravity. Imposition of further as-
sumptions can lead to both metric and Palatini f�R�
gravity, which can be cast into the form of �0=0 and
�0=−3/2 Brans-Dicke theories with a potential. In both
cases, restriction of the functional form of the action
leads to GR. These results are summarized in Fig. 1.

D. Why f(R) gravity then?

Since f�R� gravity in both the metric and Palatini for-
malisms can acquire a Brans-Dicke theory representa-
tion, one might be led to ask two questions: first, why
should we consider the f�R� representation and not just
work with the Brans-Dicke one, and, second, why, since
we know a lot about Brans-Dicke theory, should we re-
gard f�R� gravity as unexplored or interesting?

The answer to the first question is quite straightfor-
ward. There is actually no reason to prefer either of the
two representations—at least as far as classical gravity is
concerned. There can be applications where the f�R�
representation can be more convenient and applications
where the Brans-Dicke representation is more conve-
nient. One should probably mention that habit affects
our taste and therefore an f�R� representation seems
more appealing to relativists due to its more apparent
geometrical nature, whereas the Brans-Dicke represen-
tation seems more appealing to particle physicists. This
issue can have theoretical implications. To give an ex-
ample: If f�R� gravity is considered as a step toward a
more complicated theory, which generalization would be
more straightforward will depend on the chosen repre-
sentation �see also Sotiriou et al. �2008� for a discussion�.

Whether f�R� theories of gravity are unexplored and
interesting or just an already studied subcase of Brans-
Dicke theory is a more practical question that certainly
deserves a direct answer. It is indeed true that scalar-
tensor theories and, more precisely, Brans-Dicke theory

are well-studied theories that have been extensively
used in many applications, including cosmology. How-
ever, the specific choices �0=0, −3/2 for the Brans-
Dicke parameter are quite exceptional, as mentioned in
the previous section. It is also worthwhile pointing out
the following: �a� As far as the �0=0 case is concerned,
one can probably speculate that it is the apparent ab-
sence of the kinetic term for the scalar in the action that
did not seem appealing and prevented the study of this
theory. �b� The �0=−3/2 case leads to a conformally in-
variant theory in the absence of the potential �see
Sotiriou �2006b�, and references therein�, which consti-
tuted the initial form of Brans-Dicke theory, and hence
it was considered nonviable �a coupling with nonconfor-
mally invariant matter is not feasible�. However, in the
presence of a potential, the theory no longer has this
feature. Additionally, most calculations that are done for
a general value of �0 in the literature actually exclude
�0=−3/2, mainly because, merely for simplicity, they are
done in such a way that the combination 2�0+3 appears
in a denominator �see also Sec. V.A�.

In any case, the conclusion is that the theories in the
Brans-Dicke class that correspond to metric and Palatini
f�R� gravity had not yet been explored before the recent
reintroduction of f�R� gravity and, as will also become
clear later, several of their special characteristics when
compared with more standard Brans-Dicke theories
were revealed through studies of f�R� gravity.

IV. COSMOLOGICAL EVOLUTION AND CONSTRAINTS

We now turn our attention to cosmology, which moti-
vated the recent surge of interest in f�R� gravity in order
to explain the current cosmic acceleration without the
need for dark energy. Before reviewing how f�R� gravity
might provide a solution to the more recent cosmologi-
cal riddles, we stress that the following criteria must be
satisfied in order for an f�R� model to be theoretically
consistent and compatible with cosmological observa-
tions and experiments. The model must have the correct
cosmological dynamics, exhibit the correct behavior of
gravitational perturbations, and generate cosmological
perturbations compatible with the cosmological con-
straints from the cosmic microwave background, large-
scale structure, big bang nucleosynthesis, and gravity
waves. These are independent requirements to be stud-
ied separately, and they must all be satisfied.

A. Background evolution

In cosmology, the identification of our universe with a
Friedmann-Lemaitre-Robertson-Walker �FLRW� space-
time is largely based on the high degree of isotropy mea-
sured in the cosmic microwave background; this identi-
fication relies on a formal result known as the Ehlers-
Geren-Sachs �EGS� theorem �Ehlers et al., 1968� which
is a kinematical characterization of FLRW spaces stating
that, if a congruence of timelike freely falling observers
sees an isotropic radiation field, then �assuming that
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FIG. 1. Classification of f�R� theories of gravity and equivalent
Brans-Dicke theories. The flowchart shows the list of assump-
tions that are needed to arrive at the various versions of f�R�
gravity and GR beginning from the the general f�R� action. It
also includes the equivalent Brans-Dicke classes. From
Sotiriou, 2006b.
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isotropy holds about every spatial point� the space-time
is spatially homogeneous and isotropic and therefore a
FLRW one. This applies to a universe filled with any
perfect fluid that is geodesic and barotropic �Ellis,
Matravers, and Treciokas, 1983; Ellis, Treciokas, and
Matravers, 1983; Clarkson and Barrett, 1999�. Moreover,
an “almost-EGS theorem” holds: space-times that are
close to satisfying the EGS conditions are close to
FLRW universes in an appropriate sense �Stoeger et al.,
1995�. One would expect that the EGS theorem would
be extended to f�R� gravity; indeed, its validity for the
�metric� theory

S =
1

2�
� d4x�− g�R + 	R2 + 
R��R��� + SM �71�

was proved by Maartens and Taylor �1994� and Taylor
and Maartens �1995� and the generalization to arbitrary
metric f�R� gravity was given by Rippl et al. �1996�. The
validity of the EGS theorem can also be seen through
the equivalence between f�R� and Brans-Dicke theory:
the theorem was extended to scalar-tensor theories by
Clarkson et al. �2001, 2003�. Since metric and Palatini
f�R� gravities are equivalent to �=0 and −3/2 Brans-
Dicke theories, respectively, it seems that the results of
Clarkson et al. �2001, 2003� can be considered as
straightforward generalizations of the EGS theorem in
both versions of f�R� gravity as well. However, in the
case of Palatini f�R� gravity there is still some doubt
regarding this issue due to complications in averaging
�Flanagan, 2004b�.

1. Metric f(R) gravity

From the discussion above, it is valid to use the FLRW
line element

ds2 = − dt2 + a2�t�� dr2

1 − kr2 + r2�d�2 + sin2 �d�2�	 �72�

as a local description of space-time at cosmological
scales, where �t ,r ,� ,�� are comoving coordinates. We
remind the reader that k=−1,0 ,1 according to whether
the universe is hyperspherical, spatially flat, or hyper-
bolic and that a�t� is called the scale factor. Part of the
standard approach, which we follow here as well, is to
use a perfect fluid description for matter with stress-
energy tensor

T�� = �� + P�u�u� + Pg��, �73�

where u� denotes the four-velocity of an observer co-
moving with the fluid and � and P are the energy density
and pressure of the fluid, respectively.

Note that the value of k is an external parameter. As
in other works in the literature, in what follows we
choose k=0, i.e., we focus on a spatially flat universe.
This choice in made in order to simplify the equations
and should be viewed skeptically. It is sometimes
claimed that such a choice is favored by the data. How-
ever, this is not entirely correct. Even though the data
�e.g., Spergel et al. �2007�� indicate that the current value

of �k is very close to zero, it should be stressed that this
does not really reveal the value of k itself. Since

�k = −
k

a2H2 , �74�

the current value of �k is sensitive to the current value
of a�t�, i.e., to the amount of expansion the universe has
undergone after the big bang. A significant amount of
expansion can easily drive �k very close to zero. The
success of the inflationary paradigm is exactly that it ex-
plains the flatness problem—how the universe became
so flat—in a dynamical way, allowing us to avoid fine
tuning the parameter k �the value k=0 is statistically
exceptional�.

The above having been said, the choice of k=0 for
simplicity is not a dramatic departure from generality
when it comes to late-time cosmology. If it is viewed as
an approximation and not as a choice of an initial con-
dition, then one can say that, since �k as inferred from
observations is very close to zero at current times, the
terms related to k will be subdominant in the Friedmann
or generalized Friedmann equations and therefore one
could choose to discard them by setting k=0, without
great loss of accuracy. In any case, results derived under
the assumption that k=0 should be considered prelimi-
nary until the influence of the spatial curvature is pre-
cisely determined, since there are indications that even a
very small value of �k may have an effect on them �see,
for instance, Clarkson et al. �2007��.

Returning to our discussion, inserting the flat FLRW
metric in the field equations �6� and assuming that the
stress-energy tensor is that of Eq. �73� yield

H2 =
�

3f�
�� +

Rf� − f

2
− 3HṘf�	 , �75�

2Ḣ + 3H2 = −
�

f�
�P + �Ṙ�2f� + 2HṘf� + R̈f�

+
1
2

�f − Rf��	 . �76�

With some hindsight, we assume that f��0 in order to
have a positive effective gravitational coupling and f�
�0 to avoid the Dolgov-Kawasaki instability �Dolgov
and Kawasaki, 2003a; Faraoni, 2006a� discussed in Sec.
V.B.

A significant part of the motivation for f�R� gravity is
that it can lead to accelerated expansion without the
need for dark energy �or an inflaton field�. An easy way
to see this is to define an effective energy density and
pressure of the geometry as

�eff =
Rf� − f

2f�
−

3HṘf�
f�

, �77�
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Peff =
Ṙ2f� + 2HṘf� + R̈f� + 1

2 �f − Rf��
f�

, �78�

where �eff has to be non-negative in a spatially flat
FLRW space-time, as follows from the inspection of Eq.
�75� in the limit �→0. Then, in vacuo, Eqs. �75� and �76�
can take the form of the standard Friedmann equation,

H2 =
�

3
�eff, �79�

ä

a
= −

�

6
��eff + 3Peff� . �80�

Hence, in vacuo the curvature correction can be viewed
as an effective fluid.14

The effective equation of state parameter weff of
modified gravity can be expressed as

weff �
Peff

�eff
=

Ṙ2f� + 2HṘf� + R̈f� + 1
2 �f − Rf��

�Rf� − f�/2 − 3HṘf�
. �81�

Since the denominator on the right-hand side of Eq. �81�
is strictly positive, the sign of weff is determined by its
numerator. In general, for a metric f�R� model to mimic
the de Sitter equation of state weff=−1, it must be

f�
f�

=
ṘH − R̈

�Ṙ�2
. �82�

We also give two simple examples that can be found in
the literature for demonstrative purposes and without
considering their viability. First, one can consider the
function f to be of the form f�R��Rn. It is quite straight-
forward to calculate weff as a function of n if the scale
factor is assumed to be a generic power law a�t�
=a0�t / t0�	 �a general a�t� would lead to a time-dependent
weff� �Capozziello et al., 2003�. The result is

weff = −
6n2 − 7n − 1

6n2 − 9n + 3
�83�

for n�1, and 	 is given is terms of n as

	 =
− 2n2 + 3n − 1

n − 2
. �84�

A suitable choice of n can lead to a desired value for
weff. For instance, n=2 yields weff=−1 and 	=�, as ex-
pected, considering that quadratic corrections to the
Einstein-Hilbert Lagrangian were used in the well-
known Starobinsky inflation �Starobinsky, 1980�.

The second example we refer to is a model of the
form f�R�=R−�2�n+1� /Rn, where � is a suitably chosen
parameter �Carroll et al., 2004�. In this case, and once

again if the scale factor is assumed to be a generic power
law, weff can again be written as a function of n �Carroll
et al., 2004�,

weff = − 1 +
2�n + 2�

3�2n + 1��n + 1�
. �85�

The most typical model within this class is that with n
=1 �Carroll et al., 2004�, in which case weff=−2/3. Note
that, in this class of models, a positive n implies the pres-
ence of a term inversely proportional to R in the action,
contrary to the situation for the Rn models.

In terms of the quantity ��R�� f��R� one can rewrite
Eq. �81� as

weff = − 1 + 2
��̈ − H�̇�

R� − f − 6H�̇
= − 1 +

���̈ − H�̇�
3�H2 �86�

and

�eff + Peff =
�̈ − H�̇

�
=

�̇

�

d

dt
�ln� �̇

a

	 . �87�

An exact de Sitter solution corresponds to �̇= f��R�Ṙ
=0 or to �̇=Ca�t�=Ca0eH0t, where C�0 is an integration
constant. However, the second solution for ��t� is not

acceptable because it leads to f��R�Ṙ=Ca0eH0t, which is
not correct because the left-hand side is time indepen-
dent �for a de Sitter solution�, while the right-hand side
depends on time.

One could impose energy conditions for the effective
stress-energy tensor �12� of f�R� gravity. However, this is
not very meaningful from the physical point of view
since it is well known that effective stress-energy terms
originating from the geometry by rewriting the field
equations of alternative gravities as effective Einstein
equations do, in general, violate all the energy condi-
tions �e.g., Faraoni �2004a��.15 Also, the concept of gravi-
tational energy density is, anyway, ill defined in GR and
in all metric theories of gravity as a consequence of the
equivalence principle. Moreover, the violation of the en-

ergy conditions makes it possible to have Ḣ�0 and
bouncing universes �Carloni et al., 2006; Novello and
Bergliaffa, 2008�.

The field equations are clearly of fourth order in a�t�.
When matter is absent �a situation of interest in early-
time inflation or in a very late universe completely domi-
nated by f�R� corrections�, a�t� appears only in the com-
bination H� ȧ /a. Since the Hubble parameter H is a
cosmological observable, it is convenient to adopt it as

14Note the following subtlety though: if we had included mat-
ter it would enter the Friedmann equations with a modified
coupling � / f�. In general this effective fluid representation is
used only for demonstrative purposes and should not be over-
estimated or misinterpreted.

15Santos et al. �2007� derived the null-energy condition and
the strong-energy condition for metric f�R� gravity using the
Raychaudhuri equation and imposing that gravity be attrac-
tive, whereas for the weak-energy condition and the dominant-
energy condition an effective stress-energy tensor that includes
the matter was used. Perez Bergliaffa �2006� followed a differ-
ent approach in which the standard energy conditions on mat-
ter were used in an attempt to constrain f�R� gravity.
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the �only� dynamical variable; then the field equations
�75� and �76� are of third order in H. This elimination of
a is not possible when k�0 or when a fluid with density
�=��a� is included in the picture.

Regarding the dynamical field content of the theory,
the fact that quadratic corrections to the Einstein-
Hilbert action introduce a massive scalar field was noted
by Utiyama and DeWitt �1962�, Stelle �1977, 1978�,
Strominger �1984�, Buchbinder et al. �1992�, and Vilko-
visky �1992�; this applies to any f�R� gravity theory in the
metric formalism; �see, e.g., Ferraris et al. �1988�,
Hindawi et al. �1996�, and Olmo �2007��. The metric ten-
sor contains, in principle, various degrees of freedom:
spin-2 modes and vector and scalar modes, which can all
be massless or massive. In GR we find only the massless
graviton but, when the action is allowed to include terms
that depend on R, R��R��, and R����R����, other modes
show up. In f�R� gravity, a massive scalar mode appears,
which is evident in the equivalence with scalar-tensor
theory �see Sec. III�. As discussed in Sec. III.C, the sca-
lar field �=R is dynamical in the metric formalism and
nondynamical in the Palatini formalism.

2. Palatini f(R) gravity

As mentioned there has been some concern as to
whether the homogeneity approximation can justify the
use of the FLRW metric as a cosmological solution in
Palatini f�R� gravity �Flanagan, 2004b� �see also Li et al.
�2009��. Therefore, even though it is standard practice in
the literature to assume a FLRW background and a per-
fect fluid description for matter when studying cosmol-
ogy in Palatini f�R� gravity �e.g., Vollick �2003�, Meng
and Wang �2004a, 2004c, 2005�, Allemandi et al. �2004�,
Allemandi, Borowiec, et al. �2005�, Amarzguioui et al.
�2006�, and Sotiriou �2006a, 2006e��, and we are going to
review this approach here, the reader should approach it
with some reasonable skepticism until this issue is clari-
fied further.

Under the assumptions that the space-time is indeed
described at cosmological scales by the FLRW metric
�Eq. �72��, that the stress-energy tensor of matter is that
of Eq. �73�, and that k=0, easy manipulations reveal that
the field Eqs. �18� and �19� yield the following modified
Friedmann equation �see, for instance, Meng and Wang
�2004a� and Sotiriou �2006e��:

�H +
1
2

ḟ�
f�

2

=
1
6

��� + 3P�
f�

+
1
6

f

f�
, �88�

where the overdot denotes differentiation with respect
to coordinate time. Note that when f is linear, f�=1 and,

therefore, f�̇=0. Taking into account Eq. �20�, one can
easily show that in this case Eq. �88� reduces to the stan-
dard Friedmann equation.

We avoid representing the extra terms in Eq. �88� with
respect to the standard Friedmann equation as an effec-
tive stress-energy density and pressure since, as it is not
very difficult to see, the former equation does not carry
more dynamics than the latter. Indeed, assume as usual

that the cosmological fluid is composed of pressureless
dust �Pm=0� and radiation �Pr=�r /3�, and �=�m+�p and
P=Pm+Pr, where �m ,�p and Pm ,Pr denote the energy
density and the pressure of dust and radiation, respec-
tively. Due to Eq. �20� and the fact that for radiation T
=0, it is quite straightforward to derive an algebraic re-
lation between R and the energy density of the dust.
Combining this with energy conservation, one obtains
�Sotiriou, 2006e�

Ṙ = −
3H�Rf� − 2f�

Rf� − f�
. �89�

This equation can be used to replace Ṙ in Eq. �88�,
yielding

H2 =
1

6f�

2�� + Rf� − f

�1 −
3
2

f��Rf� − 2f�/f��Rf� − f��	2 . �90�

Considering now that, due to Eq. �20�, R is just an alge-
braic function of �m, it is easy to realize that Eq. �90� is
actually just the usual Friedmann equation with a modi-
fied source. The functional form of f will determine how
the dynamics will be affected by this modification.

It seems, therefore, quite intuitive that by tampering
with the function f one can affect the cosmological dy-
namics in a prescribed way. Indeed, it has been shown
that for f�R�=R−	2 /3R one approaches a de Sitter ex-
pansion as the density goes to zero �Vollick, 2003�. In
order to match observations of the expansion history,
one needs to choose 	�10−67 eV2�10−53 m−2. Addi-
tionally, in regimes for which ���	, Eq. �90� reduces
with high precision to the standard Friedmann equation.
The above can easily be verified by replacing this par-
ticular choice of f in Eq. �90�.

One could, of course, consider more general functions
of R. It would be of particular interest to have positive
powers of R higher than the first power added in the
action �since one could think of the Lagrangian as a se-
ries expansion�. Indeed this has been considered �Meng
and Wang, 2004a, 2004c, 2005; Sotiriou, 2006a, 2006e�.
However, it can be shown that such terms do not really
lead to interesting phenomenology as in metric f�R�
gravity: for instance, they cannot drive inflation as here
there are no extra dynamics and inflation cannot end
gracefully �Meng and Wang, 2004c; Sotiriou, 2006a�, un-
like in the scenario proposed by Starobinsky �1980� in
the metric formalism. As a matter of fact, it is more
likely that positive powers of R will lead to no interest-
ing cosmological phenomenology unless their coeffi-
cients are large enough to make the models nonviable
�Sotiriou, 2006a�.

B. Cosmological eras

As stated in the Introduction, the recent flurry of the-
oretical activity on f�R� models derives from the need to
explain the present acceleration of the universe discov-
ered with supernovae of type Ia �Filippenko and Riess,
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1998; Perlmutter et al., 1998; Riess et al., 1998, 1999,
2004; Schmidt et al., 1998; Knop et al., 2003; Tonry et al.,
2003; Borris et al., 2004; Astier et al., 2006�. We have
seen in the previous section how f�R� gravity can
achieve cosmic acceleration and an effective equation of
state parameter weff�−1; on the other hand, it was al-
ready known from R2-inflationary scenarios of the early
universe that this is possible, so we are actually witness-
ing a resurrection of this theoretical possibility in models
of the late universe—this parallels the use of scalar fields
to drive early inflation or late-time acceleration in quin-
tessence models. There are also attempts to unify early
inflation and late time acceleration in modified gravity
�Nojiri and Odintsov, 2007d, 2007e, 2008a, 2008b, 2008c;
Bamba and Odintsov, 2008�. However, any model at-
tempting to explain the cosmic speedup at late times
should not spoil the successes of the standard cosmologi-
cal model, which requires a definite sequence of eras to
follow each other, including �1� early inflation, �2� a ra-
diation era during which big bang nucleosynthesis oc-
curs, �3� a matter era, �4� the present accelerated epoch,
and �5� a future era.

Big bang nucleosynthesis is well constrained—see
Kneller and Steigman �2004�, Clifton and Barrow
�2005a�, Brookfield et al. �2006�, Lambiase and Scarpetta
�2006�, Nakamura et al. �2006�, and Evans et al. �2008�
for such constraints on f�R� models. The matter era must
last long enough to allow the primordial density pertur-
bations generated during inflation to grow and become
the structures observed in the universe today. The future
era is usually found to be a de Sitter attractor solution or
to be truncated at a finite time by a big rip singularity.

Furthermore, there must be smooth transitions be-
tween consecutive eras, which may not happen in all
f�R� models. In particular, the exit from the radiation era
has been studied and claimed to originate problems for
many forms of f�R� in the metric formalism, including
f=R−�2�n+1� /Rn, n�0 �Brookfield et al., 2006; Ca-
pozziello, Nojiri, Odintsov, and Troisi, 2006; Nojiri and
Odintsov, 2006; Amendola et al. 2007; Amendola, Polar-
ski, and Tsujikawa, 2007a� �but not in the Palatini for-
malism �Fay et al., 2007; Carvalho et al., 2008��. How-
ever, the usual model f�R�=R−�4 /R with “bad”
behavior was studied using singular perturbation meth-
ods �Evans et al., 2008� and a sufficiently long matter era
was definitely found.

Moreover, one can always find choices of the function
f�R� with the correct cosmological dynamics in the fol-
lowing way: one can prescribe the desired form of the
scale factor a�t� and integrate a differential equation for
f�R� that produces the desired scale factor �Capozziello,
Cardone, and Troisi, 2005; Capozziello, Nojiri, Odintsov,
and Troisi, 2006; de la Cruz-Dombriz and Dobado, 2006;
Multamaki and Vilja, 2006a; Nojiri and Odintsov, 2006,
2007b, 2007c; Faulkner et al., 2007; Fay, Nesseris, and
Perivolaropoulos, 2007; Fay, Tavakol, and Tsujikawa,
2007; Hu and Sawicki, 2007a, 2007b; Song et al., 2007�. In
general, this “designer f�R� gravity” produces forms of
the function f�R� that are rather contrived. Moreover,

the prescribed evolution of the scale factor a�t� does not
determine uniquely the form of f�R� but, at best, only a
class of f�R� models �Multamaki and Vilja, 2006a;
Sokolowski, 2007b, 2007a; Starobinsky, 2007�. There-
fore, the observational data providing information on
the history of a�t� are not sufficient to reconstruct f�R�:
one needs additional information, which may come from
cosmological density perturbations. There remains a ca-
veat on being careful to terminate the radiation era and
allowing a matter era that is sufficiently long for scalar
perturbations to grow.

While sometimes it is possible to find exact solutions
to the cosmological equations, the general behavior of
the solutions can only be assessed with a phase space
analysis, which constitutes a powerful tool in cosmology
�Wainwright and Ellis, 1997; Coley, 2003�. In a spatially
flat FLRW universe the dynamical variable is the
Hubble parameter H, and a convenient choice of phase
space variables in this case is �H ,R�. Then, for any form
of the function f�R�, the phase space is a two-
dimensional curved manifold embedded in the three-

dimensional space �H ,R , Ṙ� with de Sitter spaces as
fixed points �de Souza and Faraoni, 2007�; the structure
of the phase space is simplified with respect to that of
general scalar-tensor cosmology �Faraoni, 2005b�.

Studies of the phase space of f�R� cosmology �not lim-
ited to the spatially flat FLRW case� were common in
the pre-1998 literature on R2 inflation �Starobinsky,
1980; Muller et al., 1990; Amendola et al., 1992; Ca-
pozziello et al., 1993�. The presence or absence of chaos
in metric f�R� gravity was studied by Barrow and Cot-
sakis �1989, 1991�. Such studies with dynamical system
methods have become widespread with the recent surge
of interest in f�R� gravity to explain the present cosmic
acceleration. Of course, detailed phase space analyses
are possible only for specific choices of the function f�R�
�Easson, 2004; Nojiri and Odintsov, 2004b; Carloni et al.,
2005, 2009; Carroll et al., 2005; Clifton and Barrow,
2005b; Sami et al., 2005; Clifton, 2006a, 2007; Leach et
al., 2006, 2007; Amendola, Polarski, and Tsujikawa,
2007a, 2007b; Amendola et al., 2007; Carloni and
Dunsby, 2007; Fay, Nesseris, and Perivolaropoulos, 2007;
Fay, Tavakol, and Tsujikawa, 2007; Goheer et al., 2007,
2008; Li and Barrow, 2007; Abdelwahab et al., 2008;
Amendola and Tsujikawa, 2008; Carloni, Capozziello, et
al., 2008�.

C. Dynamics of cosmological perturbations

It is not sufficient to obtain the correct dynamics of
the background cosmological model for the theory to be
viable: in fact, the FLRW metric can be obtained as a
solution of the field equations of most gravitation theo-
ries, and it is practically impossible to discriminate be-
tween f�R� gravity and dark energy theories �or between
different f�R� models� using only the unperturbed
FLRW cosmological model, i.e., using only probes that
are sensitive to the expansion history of the universe. By
contrast, the growth of cosmological perturbations is
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sensitive to the theory of gravity adopted and constitutes
a possible avenue to discriminate between dark energy
and modified gravity. A change in the theory of gravity
affects the dynamics of cosmological perturbations and,
among other things, the imprints that these leave in the
cosmic microwave background �which currently provide
the most sensitive cosmological probe� and in galaxy sur-
veys �White and Kochanek, 2001; Sealfon et al., 2005;
Shirata et al., 2005, 2007; Knox et al., 2006; Koivisto,
2006b; Koyama and Maartens, 2006; Li and Chu, 2006;
Skordis et al., 2006; Stabenau and Jain, 2006; Li and Bar-
row, 2007; Song et al., 2007; Tsujikawa, 2007; Zhang et
al., 2007�. This is the origin of various efforts to con-
strain f�R� gravity with cosmic microwave background
data �Appleby and Battye, 2007; Hu and Sawicki, 2007b;
Li and Barrow, 2007; Li, Barrow, and Mota, 2007; Star-
obinsky, 2007; Amendola and Tsujikawa, 2008; Carloni,
Dunsby, and Troisi, 2009; Pogosian and Silvestri, 2008;
Tsujikawa, 2008; Tsujikawa et al., 2008; Wei and Zhang,
2008�.

Most of these works are restricted to specific choices
of the function f�R�, but a few general results have also
been obtained. The growth and evolution of local scalar
perturbations, which depend on the theory of gravity
employed, were studied in metric f�R� gravity theories
which reproduce GR at high curvatures in various pa-
pers �Carroll et al., 2006; Song et al., 2007; de la Cruz-
Dombriz et al., 2008� by assuming a scale factor evolu-
tion typical of a �CDM model. Vector and tensor modes
are unaffected by f�R� corrections. It is found that
f��R��0 is required for the stability of scalar perturba-
tions �Song et al., 2007�, which matches the analysis of
Sec. V.B.2 in a locally de Sitter background. The correc-
tions to the Einstein-Hilbert action produce qualitative
differences with respect to Einstein gravity: they lower
the large-angle anisotropy of the cosmic microwave
background and may help explain the observed low
quadrupole and they produce different correlations be-
tween the cosmic microwave background and galaxy sur-
veys �Song et al., 2007�. Further studies challenge the
viability of f�R� gravity in comparison with the �CDM
model: Bean et al. �2007� found that large-scale density
fluctuations are suppressed in comparison to small scales
by an amount incompatible with the observational data.
This makes it impossible to fit simultaneously large-scale
data from the cosmic microwave background and small-
scale data from galaxy surveys. Also, a quasistatic ap-
proximation used in a previous analysis �Zhang, 2007� is
found to be invalid.

de la Cruz-Dombriz et al. �2008� studied the growth of
matter density perturbations in the longitudinal gauge
using a fourth-order equation for the density contrast
�� /�, which reduces to a second-order one for subhori-
zon modes. The quasistatic approximation, which does
not hold for general forms of the function f�R�, is, how-
ever, found to be valid for those forms of this function
that describe successfully the present cosmic accelera-
tion and pass the Solar System tests in the weak-field
limit. It is interesting that the relation between the gravi-
tational potentials in the metric, which are responsible

for gravitational lensing, and the matter overdensities
depends on the theory of gravity; a study of this relation
in f�R� gravity �as well as in other gravitational theories�
is given by Zhang et al. �2007�.

Cosmological density perturbations in the Palatini for-
malism have been studied by Amarzguioui et al. �2006�,
Carroll et al. �2006�, Koivisto �2006b, 2007�, Koivisto and
Kurki-Suonio �2006�, Lee �2007, 2008�, Li, Chan, and
Chu �2007�, and Uddin et al. �2007�. Two different for-
malisms developed by Hwang and Noh �2002�, Lue et al.
�2004�, and Koivisto and Kurki-Suonio �2006�, were
compared for the model f�R�=R−�2�n+1� /Rn, and it was
found that the two models agree for scenarios that are
“close” �in parameter space� to the standard concor-
dance model but give different results for models that
differ significantly from the �CDM model. Although
this is not something to worry about in practice �all mod-
els aiming at explaining the observational data are close
to the standard concordance model�, it signals the need
to test the validity of perturbation analyses for theories
that do differ significantly from GR in some aspects.

V. OTHER STANDARD VIABILITY CRITERIA

In addition to having the correct cosmological dynam-
ics and the correct evolution of cosmological perturba-
tions, the following criteria must be satisfied in order for
an f�R� model to be theoretically consistent and compat-
ible with experiment. The model must have the correct
weak-field limit at both the Newtonian and post-
Newtonian levels, i.e., one that is compatible with the
available Solar System experiments; be stable at the
classical and semiclassical levels �the checks performed
include the study of a matter instability, of gravitational
instabilities for de Sitter space, and of a semiclassical
instability with respect to black hole nucleation�; not
contain ghost fields; and admit a well-posed Cauchy
problem. These independent requirements are discussed
separately in the following.

A. Weak-field limit

It is obvious that a viable theory of gravity must have
the correct Newtonian and post-Newtonian limits. In-
deed, since the modified gravity theories of current in-
terest are explicitly designed to fit the cosmological ob-
servations, Solar System tests are more stringent than
the cosmological ones and constitute a real test bed for
these theories.

1. The scalar degree of freedom

It is clear from the equivalence between f�R� and
Brans-Dicke gravities discussed in Sec. III that the
former contains a massive scalar field � �see Eqs. �54�
and �66��. While in the metric formalism this scalar is
dynamical and represents a genuine degree of freedom,
it is nondynamical in the Palatini case. We therefore
consider the role of the scalar field in the metric formal-
ism as it will turn out to be crucial for the weak-field
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limit. Using the notations of Sec. III.A, the action is
given by Eq. �54� and the corresponding field equations
by Eq. �55�.

Equation �52� for � has no dynamical content because
it only enforces the equality �=R. However, �=R is in-
deed a dynamical field that satisfies the wave equation,

3f������ + 3f�����	��	� + �f���� − 2f��� = �T . �91�

When f��0 a new effective potential W����V��� can
be introduced, such that

dW

d�
=

�T − �f���� + 2f���
3f����

. �92�

The action can be seen as a Brans-Dicke action with
�0=0 if the field �� f����= f��R� is used instead of � as
the independent Brans-Dicke field,

S =
1

2�
� d4x�− g��R − V���� + S�m�, �93�

where V��� is given by Eq. �53�.
Now one may think of studying the dynamics and sta-

bility of the model by looking at the shape and extrema
of the effective potential V��� but this would be mislead-
ing because the dynamics of � are not regulated by V���
�indeed, the wave equation �91� does not contain V� but
are subject to the strong constraint �=R, and R �or
f��R�� is ruled by the trace equation �8�.

The following example shows how the use of the po-
tential V��� can be misleading. As is well known, the
effective mass of a scalar field �corresponding to the sec-
ond derivative of the potential evaluated at the mini-
mum� controls the range of the force mediated by this
field. Thus, when studying the weak-field limit of the
theory it is important to know the range of the dynami-
cal scalar field �=R present in the metric formalism in
addition to the metric field g��, as this field can poten-
tially violate the post-Newtonian constraints obtained
from Solar System experiments if the scalar field gives
observable effects at the relevant scales. One way to
avoid Solar System constraints, however, is to have �
have a sufficiently short range �see Sec. V.A.2 for more
details�. Consider the example f�R�=R+aR2, with a a
positive constant. By naively taking the potential, one
obtains

V��� = a�2 �
m1

2

2
�2 �94�

with effective mass squared, m1
2=2a. Then, the small val-

ues of a generated by quantum corrections to GR imply
a small mass m1, and a long-range field � might be de-
tectable at Solar System scales �Jin et al., 2006; Chiba et
al., 2007; Olmo, 2007�. However, this conclusion is incor-
rect because m1 is not the physical mass of �. The true
effective mass is obtained from the trace equation �8�
ruling the evolution of R which, for f�R�=R+aR2, re-
duces to

�R −
R

6a
=

�T

6a
, �95�

and the identification of the mass squared of �=R as

m2 =
1

6a
�96�

is straightforward.16 A small enough value of a now
leads to a large value of m and a short range for17 �. The
situation is, however, more complicated; the chameleon
effect due to the dependence of the effective mass on
the curvature may change the range of the scalar
�Faulkner et al., 2007; Starobinsky, 2007�.

For a general f�R� model, the effective mass squared
of �=R is obtained in the weak-field limit by considering
a small, spherically symmetric, perturbation of de Sitter
space with constant curvature R0. One finds

m2 =
1
3
� f0�

f0�
− R0
 . �97�

This equation coincides with Eq. �6� of Muller et al.
�1990�, with Eq. �26� of Olmo �2007�, and with Eq. �17�
of Navarro and Van Acoleyen �2007�. It also appears in a
calculation of the propagator for f�R� gravity in a locally
flat background �Eq. �8� of Nunez and Solganik �2004��.
The same expression is recovered in a gauge-invariant
stability analysis of de Sitter space �Faraoni and Nadeau,
2005� reported in Sec. V.B.2 below.

Another possibility is to consider the field �� f��R�
instead of �=R and to define the effective mass of �
using the Einstein-frame scalar-tensor analog of f�R�
gravity instead of its Jordan-frame cousin already dis-
cussed �Chiba, 2003�. By the conformal transformation

g�� → g̃�� = f��R�g�� � �g�� �98�

and the scalar field redefinition �= f��R�→ �̃ with

d�̃ =�2�0 + 3

2�

d�

�
, �99�

a scalar-tensor theory is mapped to the Einstein frame in
which the new scalar field �̃ couples minimally to the
Ricci curvature and has canonical kinetic energy, as de-
scribed by the action

S�g� =� d4x�− g̃�R̃ −
1
2

�	�̃�	�̃ − U��̃�	
+ SM�e−�2�/3�̃g̃��,�� �100�

16It was already noted by Stelle �1978� that an R2 correction
to the Einstein-Hilbert Lagrangian generates a Yukawa cor-
rection to the Newtonian potential—this has to be kept small
at macroscopic scales by giving it a short range.

17The deflection of light by the Sun in GR plus quadratic
corrections was studied by calculating the Feynman amplitudes
for photon scattering, and it was found that, to linearized or-
der, this deflection is the same as in GR �Accioly et al., 1999�.
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�note once more the nonminimal coupling of the matter
in the Einstein frame�. For the �0=0 equivalent of met-
ric f�R� gravity we have

� � f��R� = e�2�/3�̃, �101�

U��̃� =
Rf��R� − f�R�

2�„f��R�…2 , �102�

where R=R��̃�. By use of d�̃ /d�=�3/2�f� / f�, the effec-
tive mass of �̃ is defined by

m̃eff
2 �

d2U

d�̃2
=

1
3
� 1

f�
+

�̃

f�
−

4f

�f��2	 �103�

�this equation appears in the footnote of Chiba �2003��.
By assuming a de Sitter background with constant cur-
vature R0=12H0

2= f0 /6f0�, this turns into

m̃eff
2 =

1

3f0�
� f0�

f0�
− R0
 =

meff
2

f0�
. �104�

In the Einstein frame, it is not the mass m̃ of a particle
or a field that is measurable but rather the ratio m̃ /m̃u

between m̃ and the Einstein-frame unit of mass m̃u,
which is varying, scaling as m̃u= �f��R��−1/2mu=�−1/2mu,
where mu is the constant unit of mass in the Jordan
frame �Dicke, 1962; Faraoni et al., 1999; Faraoni and
Nardone, 2007�. Therefore,

m̃eff
2

m̃u
2 =

meff
2

mu
2 . �105�

In practice, �� f��R� is dimensionless and its value must
be of order unity in order to obtain the gravitational
coupling strength measured in the Solar System; as a
result, the Einstein-frame metric g̃�� and the Jordan-
frame metric g�� are almost equal, and the same applies
to m̃u ,mu and to m̃eff ,meff, respectively. Then, the only
relevant difference between the Einstein and Jordan
frames is the scalar field redefinition �→ �̃.

2. Weak-field limit in the metric formalism

Having discussed the field content of the theory, we
are now ready to discuss the weak-field limit. Having the
correct weak-field limit at the Newtonian and post-
Newtonian levels is essential for theoretical viability.

From the beginning, works on the weak-field �New-
tonian and post-Newtonian� limit of f�R� gravity led to
opposite results appearing in the literature �Accioly et
al., 1999; Rajaraman, 2003; Dick, 2004; Easson, 2004;
Soussa and Woodard, 2004; Capozziello and Troisi, 2005;
Clifton and Barrow, 2005a, 2006; Navarro and Van Aco-
leyen, 2005, 2006; Olmo, 2005a, 2005b; Barrow and Clif-
ton, 2006; Capozziello et al., 2006, 2007b, 2008; Cembra-
nos, 2006; Multamaki and Vilja, 2006b, 2008; Shao et al.,
2006; Baghram et al., 2007; Hu and Sawicki, 2007b; Rug-
giero and Iorio, 2007; Zhang, 2007; Capozziello and
Tsujikawa, 2008; Iorio, 2009�. Moreover, a certain lack of

rigor in checking the convergence of series used in the
expansion around a de Sitter background often left
doubts even on results that, a posteriori, turned out to be
correct �Sotiriou, 2006c�.

Using the equivalence between f�R� and scalar-tensor
gravity, Chiba originally suggested that all f�R� theories
are ruled out �Chiba, 2003�. This claim was based on the
fact that metric f�R� gravity is equivalent to an �0=0
Brans-Dicke theory, while the observational constraint is
��0��40 000 �Bertotti et al., 2003�. This is not quite the
case and the weak-field limit is more subtle than it ap-
pears, as the discussion of the previous section might
have already revealed: The value of the parametrized
post-Newtonian �PPN� formalism parameter �, on which
the observational bounds are directly applicable, is prac-
tically independent of the mass of the scalar only when
the latter is small �Wagoner, 1970�. In this case, the con-
straints on � can indeed be turned into constraints on �0.
However, if the mass of this scalar is large, it dominates
over �0 in the expression of � and drives its value to
unity. The physical explanation of this fact, as men-
tioned, is that the scalar becomes short ranged and
therefore has no effect at Solar System scales. Addition-
ally, there is even the possibility that the effective mass
of the scalar field itself is actually scale dependent. In
this case, the scalar may acquire a large effective mass at
terrestrial and Solar System scales, shielding it from ex-
periments performed there, while being effectively light
at cosmological scales. This is the chameleon mechanism,
well known in quintessence models �Khoury and Welt-
man, 2004b, 2004b�.

Given the above, it is worth examining these issues in
more detail. Even though early doubts about the validity
of the dynamical equivalence with scalar-tensor theory
in the Newtonian limit �Faraoni, 2006b; Kainulainen, Pi-
ilonen, et al., 2007� have now been dissipated �Faraoni,
2007b�, a direct approach that does not resort to the
scalar-tensor equivalence is preferable as the equiva-
lence could in principle hide things �Olmo, 2005b�. This
was given in the metric formalism, first in the special
case �Erickcek et al., 2006� f�R�=R−�4 /R �which is al-
ready ruled out by the Ricci scalar instability �Dolgov
and Kawasaki, 2003a; Faraoni, 2006a�� and in the case
f�R�=Rn using light deflection and other Solar System
experiments18 �Clifton and Barrow, 2005a, 2006; Barrow
and Clifton, 2006; Zakharov et al., 2006�. Only later was
the case of a general function f�R� discussed �Jin et al.,
2006; Chiba et al., 2007; Olmo, 2007�. Chiba’s result
based on the scalar-tensor equivalence eventually turned
out to be valid subject to certain assumptions which are
not always satisfied �Jin et al., 2006; Chiba et al., 2007;
Olmo, 2007�—see below. This method, however, does
not apply to the Palatini version of f�R� gravity.

In what follows we adhere to, but streamline, the dis-
cussion of Chiba et al. �2007� with minor modifications in

18The perihelion precession in modified gravity is studied
by Baghram et al. �2007�, Iorio and Ruggiero �2007, 2008�,
Schmidt �2008�, and Iorio �2009�.
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order to compute the PPN parameter � for metric f�R�
gravity �see also Olmo �2007��. We consider a spherically
symmetric, static, noncompact body embedded in a
background de Sitter universe; the latter can exist in an
adiabatic approximation in which the evolution of the
universe is very slow in comparison with local dynamics.
The condition for the existence of a de Sitter space with
R��=R0g�� /4 and constant curvature R0=12H0

2 is

f0�R0 − 2f0 = 0, H0 =� f0

6f0�
. �106�

The line element is

ds2 = − �1 + 2��r� − H0
2r2�dt2 + �1 + 2��r� + H0

2r2�dr2

+ r2d�2 �107�

in Schwarzschild coordinates, where the post-Newtonian
potentials ��r� and ��r� are treated as small
perturbations.19 The goal is to compute the PPN param-
eter �=−� /� by solving the equations satisfied by these
potentials. A linearized analysis is performed assuming

���r��, ���r�� � 1, r � H0
−1, �108�

and

R�r� = R0 + R1�r� , �109�

where the deviation R1�r� of the Ricci curvature from
the constant R0 is also a small perturbation.20

Three assumptions are made:
Assumption 1: f�R� is analytical at R0.
Assumption 2: mr�1, where m is the effective mass

of the scalar degree of freedom of the theory. In other
words, this scalar field �the Ricci curvature, which is an
extra dynamical quantity in the metric formalism� must
have a range longer than the size of the Solar System—if
it is much shorter than, say, 0.2 mm �Hoyle et al., 2001�,
the presence of this scalar is effectively hidden from So-
lar System and terrestrial experiments. In this case, this
field could not have cosmological effects at late times
but could be important only in the very early universe at
high curvatures, e.g., in Starobinsky-like inflation �Star-
obinsky, 1980�.

Assumption 3: the pressure P�0 for the energy-
momentum of the local starlike object. The trace of the
corresponding energy-momentum tensor reduces to T1
�−�.

By expanding f�R� and f��R� around R0, the trace
equation �153� reduces to

3f0��R1 + �f0�R0 − f0��R1 = �T1, �110�

where T=T1 since T is zero in the background. For a
static, spherically symmetric body, R1=R1�r� and �R1
=�2R1=r−2�d /dr��r2dR1 /dr�. The reduced trace equa-
tion �110� then becomes

�2R1 − m2R1 = −
��

3f0�
, �111�

where

m2 =
f0� − f0�R0

3f0�
. �112�

By using R0=12H0
2=2f0 / f0�, this reduces to

m2 =
�f0��

2 − 2f0f0�

3f0�f0�
. �113�

This equation is found in various other treatments of
perturbations of de Sitter space �Nunez and Solganik,
2004; Faraoni and Nadeau, 2005; Navarro and Van Aco-
leyen, 2007; Olmo, 2007�.

Assumption 2 that the scalar R1 is light, which enables
the f�R� theory to produce significant cosmological ef-
fects at late times, also allows one to neglect21 the term
m2R1 in Eq. �111�. The Green’s function of the equation
�2R1=−�� /3f0� is then G�r�=−1/4�r and the solution is
R1��d3x���−���r�� /3f0��G�r−r��, which yields

R1 �
�M

12�f0�r
�mr � 1� . �114�

Now, the condition m2r2�1 yields

1
3
� f0�

f0�
− R0�r2 � 1 �115�

and, using H0r�1,

� f0�

f0�
�r2 � 1. �116�

We now use the full field equations �6�; by expanding
f�R� and f��R� and using f0=6H0

2f0� we get

�

	f0��R1 + f0��R


	 − 3H0
2�


	� −
f0�

2
R1�


	 − f0��
	�
R1

+ f0�R1R

	 = �T


	. �117�

Using again the assumption H0r�1, the d’Alembertian
� becomes ��

2 and, for �� ,��= �0,0�,

19Isotropic coordinates are usually employed in the study of
the weak-field limit of spherically symmetric metrics; however,
the difference is irrelevant to first order in � and � �Olmo,
2007�.

20The solution derived for the spherically symmetric metric is
valid only when mr�1, where m is the effective mass of the
scalar. If this assumption is not made, then �for example, ac-
cording to Jin et al. �2006��, it would seem that quantum cor-
rections in f�R�=R+aR2 with a�10−24 GeV−2 are ruled out by
Solar System constraints, which is not the case because these
corrections are equivalent to a massive scalar field with short
range that is not constrained by the available data.

21Although Chiba et al. �2007� provided Green’s functions in
both cases m2�0 and m2�0, the latter corresponds to a space-
time instability and is unphysical. This is irrelevant in the end
because only the case m2→0 is necessary and used in the cal-
culation �Faraoni and Lanahan-Tremblay, 2008�.
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f0��R0
0 − 3H0

2� −
f0�

2
R1 + f0�R1R0

0 + f0��
2R1 = − �� . �118�

By computing R0
0=3H0

2−�2��r� and dropping terms
f0�H0

2R1� f0��
2�, etc., we obtain

f0��
2��r� +

f0�

2
R1 − f0��

2R1 = �� . �119�

Recalling that �2R1�−�� /3f0� for mr�1, one obtains

f0��
2��r� =

2��

3
−

f0�

2
R1. �120�

Equation �120� can be integrated from r=0 to r�r0
�where r0 is the radius of the starlike object� to obtain,
using Gauss’ law,

d�

dr
=

�

6�f0�

�M

48�f0�r
2 −

C1

r2 , �121�

where M�r�=4��0
r0dr��r��2��r��. The integration constant

C1 must be set to zero to guarantee regularity of the
Newtonian potential at r=0. The potential ��r� then be-
comes

��r� = −
�M

6�f0�r
−

�M

48�f0�
r . �122�

The second term on the right-hand side is negligible; in
fact,

� �Mr/48�f0�

− �M/6�f0�r
� = � f0�

8f0�
�r2 � 1 �123�

and

��r� � −
�M

6�f0�r
. �124�

We now find the second potential ��r� appearing in
the line element �107�. Using the field equations �6� with
�a ,b�= �1,1�,

f0��R1
1 − 3H0

2� −
f0�

2
R1 − f0��

1�1R1 + f0�R1R1
1 + f0��R1 = �T1

1,

�125�

with T1
1�0 outside the star, and

R1
1 � 3H0

2 −
d2�

dr2 +
2

r

d�

dr
, �126�

g11�1�1R1 �
d2R1

dr2 , �127�

and neglecting higher-order terms, one obtains �Eq. �22�
of Chiba et al. �2007��

f0��−
d2�

dr2 +
2

r

d�

dr

 −

f0�R1

2
+

2f0�

r

dR1

dr
� 0. �128�

Now, using Eq. �114� for R1, one concludes that the third
term in Eq. �128� is negligible in comparison with the
fourth term. In fact,

� f0�R1/2

2f0�/rdR1/dr
� � � f0�

f0�
�r2 � 1. �129�

Then, again using Eq. �114� for dR1 /dr and Eq. �124� for
��r�, one obtains

d�

dr
= −

�M

12�f0�r
, �130�

which is immediately integrated to

��r� =
�M

12�f0�r
. �131�

The post-Newtonian metric �107� therefore gives the
PPN parameter � as

� = −
��r�
��r�

=
1
2

. �132�

This is a gross violation of the experimental bound
��−1��2.3 10−5 �Bertotti et al., 2003� and agrees with
the calculation of the PPN parameter �= ��0+1� / ��0
+2� found using the equivalence of metric f�R� gravity
with an �0=0 Brans-Dicke theory �Chiba, 2003�.

The results of Chiba et al. �2007� have been repro-
duced by Olmo �2007�, who worked in isotropic coordi-
nates with a slightly different approach. Kainulainen, Pi-
ilonen, et al. �2007� obtained spherically symmetric
interior solutions matched to the exterior solutions of
metric f�R� gravity and confirmed the result �=1/2.

a. Limits of validity of the previous analysis

One can contemplate various circumstances in which
the assumptions above are not satisfied and the previous
analysis breaks down. It is important to ascertain
whether these are physically relevant situations. There
are three main cases to consider.

i. The case of nonanalytic f�R�. While Chiba et al. �2007�
considered functions f�R� that are analytic at the back-
ground value R0 of the Ricci curvature, the situation in
which this function is not analytical was contemplated
by Jin et al. �2006�. Assuming that f�R� has an isolated
singularity at R=Rs, it can be expressed as the sum of a
Laurent series,

f�R� = �
n=0

+�

an�R − Rs�n. �133�

Jin et al. �2006� noted that it must be R�Rs in the dy-
namics of the universe because a constant curvature
space with R=Rs cannot be a solution of the field equa-
tions. Therefore, one can approximate the solution adia-
batically with a de Sitter space with constant curvature
R0�Rs. The function f�R� is analytical here and the pre-
vious discussion applies. This is not possible if f�R�
has an essential singularity, for example, if f�R�=R
−�2 sin��2 / �R−��� �Jin et al., 2006�. There is, of course,
no reason other than Occam’s razor to exclude this pos-
sibility.
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ii. Short-range scalar field. If the assumption mr�1 is
not satisfied, the scalar is massive. If its range is suffi-
ciently short, it is effectively hidden from experiments
probing deviations from Newton’s law and from other
Newtonian and post-Newtonian experiments in the solar
neighborhood. This is the case of quadratic quantum
corrections to Einstein’s gravity, e.g., f�R�=R+	R2. If
the effective mass is m�10−3 eV �corresponding to a
fifth-force range less than �0.2 mm, the shortest scale
currently accessible to weak-field experiments�, this cor-
rection is undetectable and yet it can still have large
effects in the early inflationary universe �Starobinsky,
1980�. However, it cannot work as a model for late-time
acceleration.

iii. Chameleon behavior. The chameleon effect �Khoury
and Weltman, 2004a, 2004b�, originally discovered in
scalar field models of dark energy, occurs when the ef-
fective mass m of the scalar degree of freedom is a func-
tion of the curvature �or, better, of the energy density of
the local environment�, so that m can be large at Solar
System and terrestrial curvatures and densities and small
at cosmological curvatures and densities—effectively, it
is short ranged in the Solar System and it becomes long
ranged at cosmological densities, thus causing the accel-
eration of the universe. The chameleon effect can be
applied to metric f�R� gravity �Cembranos, 2006;
Faulkner et al., 2007; Navarro and Van Acoleyen, 2007;
Starobinsky, 2007�, with the result that theories of the
kind �Carroll et al., 2004; Amendola, Polarski, and
Tsujikawa, 2007a, 2007b; Amendola et al., 2007�,

f�R� = R − �1 − n��2� R

�2
n

�134�

are compatible with the observations in the region of the
parameter space 0�n!0.25 with � sufficiently small
�Faulkner et al., 2007�. Precisely, using the Cassini bound
on the PPN parameter � �Bertotti et al., 2003�, the con-
straint

�

H0
! �3� 2

n�1 − n�	1/�2�1−n��

10�−6−5n�/�2�1−n�� �135�

is obtained �Faulkner et al., 2007�. Fifth-force experi-
ments give the bounds

�

H0
! �1 − n� 2

n�1 − n�	1/2�1−n�

10�−2−12n�/�1−n�. �136�

Preferred values seem to be m�10−50 eV�10−17H0
�Faulkner et al., 2007�. Note that n�0, which guarantees
f��0, is required for Ricci scalar stability �n=0 reduces
the model to GR with a cosmological constant, but
avoidance of the latter was exactly the reason why dark
energy and modified gravity were introduced in the first
place�.

These models work to explain the current cosmic ac-
celeration because, for small curvatures R, the correc-
tion in Rn with n�1 is larger than the Einstein-Hilbert
term R and comes to dominate the dynamics. On the
negative side, these theories are observationally indistin-

guishable from a cosmological constant and they have
been dubbed “vanilla f�R� gravity” �Amendola, Polarski,
and Tsujikawa, 2007a, 2007b; Amendola et al., 2007;
Faulkner et al., 2007; Amendola and Tsujikawa, 2008�.
However, they still have the advantage of avoiding a
fine-tuning problem in � at the price of a much smaller
fine tuning of the parameter �. As for all modified grav-
ity and dark energy models, they do not address the
cosmological constant problem.

The weak-field limit of metric f�R� theories which ad-
mit a global Minkowski solution around which to linear-
ize was studied by Clifton �2008�. These theories �includ-
ing, e.g., analytic functions f�R�=�n=1

+� anRn� are not
motivated by late-time cosmology and the Minkowski
global solution, although present, may not be stable
�Clifton and Barrow, 2005a�, which in practice detracts
from the usefulness of this analysis. Several new post-
Newtonian potentials are found to appear in addition to
the two usual ones �Clifton, 2008�.

3. Weak-field limit in the Palatini formalism

Early works on the weak-field limit of Palatini f�R�
gravity often led to contradictory results and to several
technical problems as well �Barraco and Hamity, 2000;
Dominguez and Barraco, 2004; Meng and Wang, 2004b;
Allemandi, Francaviglia, et al. 2005; Olmo, 2005a, 2005b,
2007; Sotiriou, 2006c; Allemandi and Ruggiero, 2007;
Bustelo and Barraco, 2007; Kainulainen, Reijonen, and
Sunhede, 2007; Ruggiero and Iorio, 2007; Ruggiero,
2009� which seem to have been clarified by now.

First, there seems to have been some confusion in the
literature about the fact that Palatini f�R� gravity re-
duces to GR with a cosmological constant in vacuum
and the consequences that this can have on the weak-
field limit and Solar System tests. It is, of course, true
�see Sec. II.B� that in vacuo Palatini f�R� gravity will
have the same solutions of GR plus a cosmological con-
stant and, therefore, the Schwarzschild–�anti–�de Sitter
solution will be the unique vacuum spherically symmet-
ric solution by �see also Sec. VI.C.1 for a discussion of
the Jebsen-Birkhoff theorem�. This was interpreted by
Allemandi and Ruggiero �2007� and Ruggiero and Iorio
�2007� as an indication that the only parameter that can
be constrained is the effective cosmological constant
and, therefore, models that are cosmologically interest-
ing �for which this parameter is very small� trivially sat-
isfy Solar System tests. However, even if one sets aside
the fact that a weak-gravity regime is possible inside
matter as well, such claims cannot be correct: they would
completely defeat the purpose of performing a param-
etrized post-Newtonian expansion for any theory for
which one can establish uniqueness of a spherically sym-
metric solution, as in this case we would be able to judge
Solar System viability just by considering this vacuum
solution �which would be much simpler�.

Indeed, the existence of a spherically symmetric
vacuum solution, irrespective of its uniqueness, does not
suffice to guarantee a good Newtonian limit. For in-
stance, the Schwarzschild–de Sitter solution has two free
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parameters; one of them can be associated with the ef-
fective cosmological constant in a straightforward man-
ner �using the asymptotics�. However, it is not clear how
the second parameter, which in GR is identified with the
mass of the object in the Newtonian regime, is related to
the internal structure of the object in Palatini f�R� grav-
ity. The assumption that it represents the mass defined in
the usual way is not, of course, sufficient. One would
have to actually match the exterior solution to a solution
describing the interior of the Sun within the realm of the
theory in order to express the undetermined parameter
in the exterior solution in terms of known physical quan-
tities, such as Newton’s constant and the Newtonian
mass. The essence of the derivation of the Newtonian
limit of the theory consists also of deriving such an ex-
plicit relation for this quantity and showing that it agrees
with the Newtonian expression. The parametrized post-
Newtonian expansion is nothing but an alternative way
to do that without having to solve the full field equa-
tions. Therefore, it is clear that more information than
the form of the vacuum solution is needed in order to
check whether the theory can satisfy the Solar System
constraints.

However, some early attempts toward Newtonian and
post-Newtonian expansions were also flawed. Barraco
and Hamity �2000� and Meng and Wang �2004b� per-
formed, for instance, a series expansion around a de Sit-
ter background in order to derive the Newtonian limit.
Writing

R = R0 + R1, �137�

where R0 is the Ricci curvature of the background and
R1 is a correction, one is tempted to expand in powers
of R1 /R0, regarding the latter as a small quantity. Since
one needs the quantities f�R0+R1� and f��R0+R1�, the
usual approach is to Taylor-expand around R=R0 and
keep only the leading order terms in R1. However, it has
been shown by Sotiriou �2006c� that this cannot be done
for most cosmologically interesting models because
R1 /R0 is not small.

Take as an example the model �Vollick, 2003�

f�R� = R −
"2

2

R
�138�

and "2�10−67eV2�10−53 m−2. Expanding as

f�R� = f�R0� + f��R0�R1 + 1
2 f��R0�R1

2 + ¯ �139�

and using Eq. �138� one obtains

f�R� = f�R0� + �1 +
"2

2

R0
2
R1 −

1
2

2"2
2

R0
3 R1

2 + ¯ , �140�

where now R0="2. It is then easy to see that the second
term on the right-hand side is of the order of R1,
whereas the third term is of the order of R1

2 /"2. There-
fore, in order to truncate before the third term, one
needs R1�R1

2 /"2 or

"2 � R1. �141�

This is not a stringent constraint: R0�"2 and so this is
the usual condition for linearization.

We return now to the trace �20�. For the model under
consideration,

R = 1
2 �− �T ± ��2T2 + 12"2

2� . �142�

According to Eq. �142�, the value of R, and conse-
quently R1, is algebraically related to T and, whether or
not the condition �141� is satisfied critically depends on
the value of the energy density. To demonstrate this,
pick the mean density of the Solar System, �
�10−11 g /cm3, which satisfies the weak-field limit crite-
ria. For this value, �"2 /�T��10−21, where T�−�. The
“physical” branch of the solution �142� is the one with
positive sign because, given that T�0, it ensures that
matter leads to a standard positive curvature in strong
gravity. Then,

R � − �T −
3"2

2

�T
�143�

and R1�−�T���. Thus, "2 /R1�10−21 and it is evident
that the required condition does not hold for some typi-
cal densities related to the Newtonian limit.

The situation does not improve even with the “un-
physical” branch of Eq. �142� with a negative sign. In
fact, in this case R1�"2�3"2 /�T+�3� and the correction
to the background curvature is of the order "2 and not
much smaller than that, as would be required in order to
truncate the expansion �140�. Barraco and Hamity
�2000� overlooked this fact and only linear terms in R1
were kept in the expansion of f�R� and f��R� around R0.
Meng and Wang �2004b� did not take this properly into
account at the outset, even though this fact is noticed in
the final stages of the analysis and is actually used, keep-
ing again only linear terms �see, e.g., Eq. �11� of Meng
and Wang �2004b��.

However, the algebraic dependence of R on the den-
sity does not only signal a problem for the approaches
just mentioned. It actually implies that the outcome of
the post-Newtonian expansion itself depends on the
density, as shown by Olmo �2005a, 2005b� and Sotiriou
�2006c�. Consider, for instance, along the lines of
Sotiriou �2006a, 2006c�, the conformal metric

h�� = f��R�g�� �144�

which was introduced in Sec. II.B �cf. Eq. �22��. In terms
of this metric, the field equations can be written in the
form

R�� −
1
2
Rh�� + �f� − 1��R�� −

R
2f�

h��
 = �T��, �145�

and R�� is the Ricci tensor of the metric h��. It is evi-
dent that, if f�=1, then h�� and g�� coincide and Eq.
�145� yields Einstein’s equation. However, since R and
consequently f��R� are functions of the energy density,
due to Eq. �20�, the deviation of f� from unity will always
depend on the energy density and the functional form of
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f. Therefore, one can definitely find some function f
which, for some range of energy densities, will give f�
=1 to high precision. However, for the same function f,
there will be large deviations from f�=1 at a different
density range. This dependence of the weak-field limit
on the energy density is a novel characteristic of Palatini
f�R� gravity.

This dependence can be made explicit if the problem
is approached via the equivalent Brans-Dicke theory
�Olmo, 2005a, 2005b�. Note that the usual bounds com-
ing from Solar System experiments do not apply in the
�0=−3/2 case, which is equivalent to Palatini f�R� grav-
ity. This is because the standard treatment of the post-
Newtonian expansion of Brans-Dicke theory, which one
uses to arrive at such bounds, is critically based on the
assumption that �0�−3/2 and the term 2�0+3 fre-
quently appears as a denominator. It is not necessary to
make this assumption, of course, in order to derive a
post-Newtonian expansion but it is a convenient choice,
which allows for this otherwise general treatment.
Therefore, a different approach, such as the one fol-
lowed in Olmo �2005b�, was indeed required for the �0
=−3/2 case. Following the standard assumptions of a
post-Newtonian expansion around a background speci-
fied by a cosmological solution �Will, 1981�, the follow-
ing relations were derived for the post-Newtonian limit:

−
1
2

�2�h00
1 − ��T�� =

�� − V���
2�

, �146�

−
1
2

�2�hij
1 + �ij��T�� = ��� + V���

2�
	 , �147�

where V is the potential of the scalar field � and ��T�
� ln�� /�0� The subscript 0 in �0, and in any other quan-
tity in the rest of this subsection, denotes that it is evalu-
ated at T=0.

The solutions of Eqs. �146� and �147� are

h00
�1��t,x�� =

2GeffM�

r
+

V0

6�0
r2 + ��T� , �148�

hij
�1��t,x�� = �2�GeffM�

r
−

V0

6�0
r2 − ��T�	�ij, �149�

where M���0�d3x���t ,x�� /�. The effective Newton con-
stant Geff and the post-Newtonian parameter � are de-
fined as

Geff �
G

�0
�1 +

MV

M�


 , �150�

� �
M� − MV

M� + MV
, �151�

where MV��−1�0�d3x��V0 /�0−V��� /��.
As stated differently by Olmo �2005b�, if the Newton-

ian mass is defined as MN��d3x���t ,x��, the requirement

that a theory has a good Newtonian limit is that GeffM�

equals GMN, where N denotes Newtonian, and ��1 to
very high precision. Additionally, the second term on the
right-hand side of both Eqs. �148� and �149� should be
negligible since it plays the role of a cosmological con-
stant term. ��T� should also be small and have a negli-
gible dependence on T.

Even though it is not impossible, as mentioned, to
prescribe f such that all of the above are satisfied for
some range of densities within matter �Sotiriou 2006c�,
this does not seem possible over the wide range of den-
sities relevant for the Solar System tests. As a matter of
fact, � is nothing but an algebraic function of T and
therefore of the density �since � is an algebraic function
of R�. The presence of the ��T� term in Eqs. �148� and
�149� signals an algebraic dependence of the post-
Newtonian metric on the density. This direct depen-
dence of the metric on the matter field is not only sur-
prising but also seriously problematic. Besides the fact
that it is evident that the theory cannot have the proper
Newtonian limit for all densities �the range of densities
for which it will fail depends on the functional form of f�,
consider the following: What happens to the post-
Newtonian metric if a very weak point source �approxi-
mated by a delta function� is taken into account as a
perturbation? And will the post-Newtonian metric be
continuous when going from the interior of a source to
the exterior, as it should be?

We refrain from further analysis of these issues here
since evidence coming from considerations different
from the post-Newtonian limit, which we review shortly,
will be of significant help. We return to this discussion in
Sec. VI.C.2.

B. Stability issues

In principle, several kinds of instabilities need to be
considered to make sure that f�R� gravity is a viable
alternative to GR �Chiba, 2005; Wang, 2005; Calcagni et
al., 2006; De Felice et al., 2006; Sokolowski, 2007a,
2007b�.

The Dolgov-Kawasaki �Dolgov and Kawasaki, 2003a�
instability in the matter sector, specific to metric f�R�
gravity, imposes restrictions on the functional form of f
and is discussed below. More generally, it is believed that
a stable ground state, the existence of which is necessary
in a gravitational theory, should be highly symmetric,
such as the de Sitter, Minkowski, or perhaps Einstein
static space. Instabilities of de Sitter space in the gravity
sector have been found by Faraoni �2004b, 2004c,
2005a�, Faraoni and Nadeau �2005�, Barrow and Hervik
�2006a�, and Dolgov and Pelliccia �2006� �see also Bar-
row and Ottewill �1983� and Muller et al. �1990� for pre-
1998 discussions�, while stability in first-loop quantiza-
tion of f�R� gravity and with respect to black hole
nucleation was studied by Cognola et al. �2005, 2008�,
Paul and Paul �2005, 2006�, and Cognola and Zerbini
�2006�. The linear stability of de Sitter space with respect
to homogeneous perturbations in generalized theories of
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the form f�R ,R��R�� ,R��	
R��	
� was studied by Cog-
nola and Zerbini �2008�. The stability of the Einstein
static space in metric f�R� gravity with respect to homo-
geneous perturbations was studied by Boehmer, Hollen-
stein, and Lobo �2007� while stability of this space with
respect to inhomogeneous isotropic perturbations was
established, with a gauge-invariant formalism and under
certain conditions, by Goswami et al. �2008�.

1. Ricci stability in the metric formalism

In the metric formalism, Dolgov and Kawasaki dis-
covered an instability in the prototype model f�R�=R
−�4 /R �now called the Dolgov-Kawasaki, Ricci scalar,
or matter instability�, which manifests itself on an ex-
tremely short time scale and is sufficient to rule out this
model �Dolgov and Kawasaki, 2003a�. Their result was
confirmed by Nojiri and Odintsov �2003a, 2004b�, in
which it was also shown that adding to this specific f�R�
an R2 term removes this instability. The instability was
rediscovered by Baghram et al. �2007� for a specific form
of the function f�R�. The analysis of this instability is
generalized to arbitrary f�R� theories in the metric for-
malism in the following way �Faraoni, 2006a�.

We parametrize the deviations from Einstein gravity
as

f�R� = R + "#�R� , �152�

where " is a small parameter with the dimensions of a
mass squared and # is arranged to be dimensionless �in
the example f=R−�4 /R, one has "=�2, #=−�2 /R, and
��H0�10−33 eV�.

Using the trace equation �8�,

3�f��R� + f��R�R − 2f�R� = �T , �153�

and evaluating �f�,

�R +
#�
#�

�	R�	R +
�"#� − 1�

3"#�
R =

�T

3"#�
+

2#

3#�
. �154�

We assume that #��0: if #�=0 on an interval then the
theory reduces to GR. Isolated zeros of #�, at which the
theory is “instantaneously GR,” are in principle possible
but will not be considered here.

Consider a small region of space-time in the weak-
field regime and approximate locally the metric and the
curvature by

g�� = ��� + h��, R = − �T + R1, �155�

where ��� is the Minkowski metric and �R1 /�T�$1. This
inequality excludes the case of conformally invariant
matter with T=0, a situation considered later. Equation
�155� yields, to first order in R1,

R̈1 − �2R1 −
2�#�

#�
ṪṘ1 +

2�#�

#�
�� T · �� R1

+
1

3#�
�1

"
− #�
R1 = �T̈ − ��2T −

��T#� + 2#�
3#�

, �156�

where �� and �2 are the gradient and Laplacian in Eu-
clidean three-dimensional space, respectively, and an
overdot denotes differentiation with respect to time.
The function # and its derivatives are now evaluated at
R=−�T. The coefficient of R1 in the fifth term on the
left-hand side is the square of an effective mass and is
dominated by the term �3"#��−1 due to the extremely
small value of " needed for these theories to reproduce
the correct cosmological dynamics. Then, the scalar
mode R1 of the f�R� theory is stable if #�= f��0 and
unstable if this effective mass is negative, i.e., if #�= f�
�0. The time scale for this instability to manifest is es-
timated to be of the order of the inverse effective mass
�10−26 s in the example "#�R�=−�4 /R �Dolgov and Ka-
wasaki, 2003a�. The small value of #� gives a large effec-
tive mass and is responsible for the small time scale over
which the instability develops.

Consider now matter with vanishing trace T of the
stress-energy tensor. In this case Eq. �156� becomes

R̈1 +
#�
#�

Ṙ1
2 − �2R1 −

#�
#�

��� R1�2 +
1

3#�
�1

"
− #�
R1 =

2#

3#�
.

�157�

Again, the effective mass term is ��3"#��−1, which has
the sign of f�, and the previous stability criterion is re-
covered. The stability condition f��R��0 is useful to
veto f�R� gravity models.22

When f��0, the instability of these theories can be
interpreted, following Eq. �156�, as an instability in the
gravity sector. Equivalently, since it appears inside mat-
ter when R starts deviating from T �see Eq. �155��, it can
be seen as a matter instability �this is the interpretation
taken in Dolgov and Kawasaki �2003a��. Whether the
instability arises in the gravity or matter sector seems to
be a matter of interpretation.

The instability of stars made of any type of matter in
theories with f��0 and sufficiently small is confirmed
with a different approach �a generalized variational prin-
ciple� by Seifert �2007�, in which the time scale for insta-
bility found by Dolgov and Kawasaki in the 1/R model
is also recovered. The stability condition f��0 is recov-
ered in studies of cosmological perturbations �Sawicki
and Hu, 2007�.

The stability condition f��R��0, expressing the fact
that the scalar degree of freedom is not a ghost, can be
given a simple physical interpretation �Faraoni, 2007b�.
Assume that the effective gravitational coupling
Geff�R��G / f��R� is positive; then, if Geff increases with
the curvature, i.e.,

22Nojiri �2004� and Multamaki and Vilja �2006a� hinted to-
wards the stability criterion, but did not fully derive it because
a decomposition in orders of "−1 was not performed.
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dGeff

dR
=

− f��R�G
�f��R��2 � 0, �158�

at large curvature the effect of gravity becomes stronger,
and since R itself generates larger and larger curvature
via Eq. �153�, the effect of which becomes stronger and
stronger because of an increased Geff�R�, a positive feed-
back mechanism acts to destabilize the theory. There is
no stable ground state if a small curvature grows and
grows without limit and the system runs away. If instead
the effective gravitational coupling decreases when R in-
creases, which is achieved when f��R��0, a negative
feedback mechanism operates which compensates for
the increase in R and there is no running away of the
solutions. These considerations have to be inverted if
f��0, which can happen only if the effective energy den-
sity �eff also becomes negative. This is not a physically
meaningful situation because the effective gravitational
coupling becomes negative and the tensor and scalar
fields of metric f�R� gravity become ghosts �Nunez and
Solganik, 2004�.

GR, with f��R�=0 and Geff=const, is the borderline
case between the two behaviors corresponding to stabil-
ity �f��0� and instability �f��0�, respectively.

Remarkably, besides the Dolgov-Kawasaki instability
which manifests itself in the linearized version of Eq.
�153�, there are also recent claims that R can be driven
to infinity due to strong nonlinear effects related to the
same equation �Appleby and Battye, 2008; Frolov, 2008;
Tsujikawa, 2008�. More specifically, Tsujikawa �2008�
found an oscillating mode as a solution to the perturbed
version of Eq. �153�. This mode appears to dominate
over the matter-induced mode as one goes back into the
past and, therefore, it can violate the stability conditions.
Equation �153� was studied by Frolov �2008� with the use
of a convenient variable redefinition but without resort-
ing to any perturbative approach. It was found that
there exists a singularity at a finite field value and energy
level. The strongly nonlinear character of the equation
allows R to easily reach the singularity in the presence of
matter. As noticed by Appleby and Battye �2008�, since
when it comes to cosmology the singularity lies in the
past, it can in principle be avoided by choosing appro-
priate initial conditions and evolving forward in time.
This, of course, might result in a hidden fine-tuning is-
sue.

All three studies mentioned consider models in which
f�R� includes, besides the linear term, only terms that
become important at low curvatures. It is the form of the
effective potential governing the motion of R, which de-
pends on the functional form of f�R�, that determines
how easy it is to drive R to infinity �Frolov, 2008�. There-
fore, it seems interesting to study how the presence of
terms that become important at large curvatures, such as
positive powers of R, could affect these results. Finally, it
would be interesting to see in detail how these findings
manifest themselves in the case of compact objects and
whether there is any relation between this issue and the
Dolgov-Kawasaki instability.

2. Gauge-invariant stability of de Sitter space in the metric
formalism

One can consider the generalized gravity action

S =� d4x�− g� f��,R�
2

−
����

2
�	��	� − V���	 ,

�159�

incorporating both scalar-tensor gravity �if f�� ,R�
=����R� and modified gravity �if the scalar field � is
absent and fRR�0�. In a spatially flat FLRW universe
the vacuum field equations assume the form

H2 =
1

3f�
��

2
�̇2 +

Rf�
2

−
f

2
+ V − 3Hḟ�
 , �160�

Ḣ = −
1

2f�
���̇2 + F̈ − Hḟ�� , �161�

�̈ + 3H�̇ +
1

2�
�d�

d�
�̇2 −

�f

��
+ 2

dV

d�

 = 0, �162�

where f���f /��, F��f /�R, and an overdot denotes dif-
ferentiation with respect to t. We choose �H ,�� as dy-
namical variables; then the stationary points of the dy-
namical system �Eqs. �160�–�162�� are de Sitter spaces
with constant scalar field �H0 ,�0�. The conditions for
these de Sitter solutions to exist are

6H0
2f0� − f0 + 2V0 = 0, �163�

� df

d�
�

0
−�2

dV

d�
�

0
= 0, �164�

where f0�� f���0 ,R0�, f0� f��0 ,R0�, V0�V��0�, and R0

=12H0
2. The phase space is a curved two-dimensional

surface embedded in a three-dimensional space �de
Souza and Faraoni, 2007�.

Inhomogeneous perturbations of de Sitter space have
been studied using the covariant and gauge-invariant
formalism of Bardeen �1980�, Ellis and Bruni �1989�, and
Ellis et al. �1989, 1990� in a version provided by Hwang
�1990a, 1990b, 1997, 1998� and Hwang and Noh �1996�
for generalized gravity. The metric perturbations are de-
fined by

g00 = − a2�1 + 2AY�, g0i = − a2BYi, �165�

gij = a2�hij�1 + 2HLY� + 2HTYij� . �166�

Here Y are scalar spherical harmonics, hij is the three-

dimensional metric of the FLRW background, �̂i is the
covariant derivative of hij, and k is the eigenvalue of

�̂i�̂
iY=−k2Y. Yi and Yij are vector and tensor harmonics

satisfying

Yi = −
1

k
�̂iY, Yij =

1

k2 �̂i�̂jY +
1
3

Yhij, �167�

respectively. The Bardeen gauge-invariant potentials are
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�H = HL +
HT

3
+

ȧ

k
�B −

a

k
ḢT
 , �168�

�A = A +
ȧ

k
�B −

a

k
ḢT
 +

a

k
�Ḃ −

1

k
�aḢT�·	 , �169�

the Ellis-Bruni variable is

�� = �� +
a

k
�̇�B −

a

k
ḢT
 , �170�

and analogous gauge-invariant variables �f, �f�, and �R
satisfy first-order equations given by Hwang �1990a,
1990b, 1997, 1998� and Hwang and Noh �1996�, which
simplify significantly in the de Sitter background
�H0 ,�0� �Faraoni, 2004b, 2005a; Faraoni and Nadeau,
2005�.

To first order and in the absence of ordinary matter,
vector perturbations do not appear �Hwang, 1990a,
1990b, 1997, 1998; Hwang and Noh, 1996�, and de Sitter
space is always stable with respect to first-order tensor
perturbations. Focusing on scalar perturbations, modi-
fied gravity corresponds to ��1 and f= f�R� with f��R�
�0 in Eq. �159�. The gauge-invariant perturbations �H
�from which one easily obtains �A and �R� satisfy

�̈H + 3H0�̇H + �k2

a2 − 4H0
2 +

f0�

3f0�

�H = 0 �171�

�Faraoni, 2004b, 2005a; Faraoni and Nadeau, 2005�,
where the term k2 /a2 can be dropped at late times and
for long-wavelength modes. Linear stability ensues if the
coefficient of �H is non-negative, i.e. �using Eq. �163��,
if23

�f0��
2 − 2f0f0�

f0�f0�
� 0. �173�

The only term containing the comoving wave vector k in
Eq. �171� becomes negligible at late times and/or for
zero-momentum modes and thus the spatial dependence
effectively disappears. In fact, Eq. �173� coincides with
the stability condition that can be obtained by a straight-
forward homogeneous perturbation analysis of Eqs.
�160� and �161�. As a result, in the stability analysis of de
Sitter space in modified gravity, inhomogeneous pertur-
bations can be ignored and the study can be restricted to
the simpler homogeneous perturbations, which are free
of the notorious gauge-dependence problems. This re-
sult, which could not be reached a priori but relies on
the inhomogeneous perturbation analysis, holds only for
de Sitter spaces and not for different attractor �e.g.,
power-law� solutions that may be present in the phase
space. The stability condition �173� is equivalent to the

condition that the scalar field potential in the Einstein
frame of the equivalent Brans-Dicke theory has a mini-
mum at the configuration identified by the de Sitter
space of curvature R0 �Sokolowski, 2007b�.

As an example, consider the prototype model

f�R� = R −
�4

R
. �174�

The background de Sitter space has R0=12H0
2=�3�2 and

the stability condition �173� is never satisfied: this de Sit-
ter solution is always unstable. An improvement is ob-
tained by adding a quadratic correction to this model

f�R� = R −
�4

R
+ aR2. �175�

Then, the condition for the existence of a de Sitter solu-
tion is again R0=�3�2, while the stability condition �173�
is satisfied if a�1/3�3�2, in agreement with Nojiri and
Odintsov �2003a, 2004b� who used independent meth-
ods.

Different definitions of stability lead to different,
albeit close, stability criteria for de Sitter space �see
Cognola et al. �2005, 2008� for the semiclassical stability
of modified gravity, Bertolami �1987� for scalar-tensor
gravity, and Seifert �2007� for a variational approach ap-
plicable to various alternative gravities�.

3. Ricci stability in the Palatini formalism

For Palatini f�R� gravity the field equations �18� and
�19� are of second order and the trace equation �20� is

f��R�R − 2f�R� = �T , �176�

where R is the Ricci scalar of the nonmetric connection
���

� �and not that of the metric connection 
 ��
� � of g���.

In contrast to the metric case, Eq. �176� is not an evolu-
tion equation for R; it is not even a differential equation
but rather an algebraic equation in R once the function
f�R� is specified. This is also the case in GR, in which the
Einstein field equations are of second order and taking
their trace yields R=−�T. Accordingly, the scalar field �
of the equivalent �0=−3/2 Brans-Dicke theory is not
dynamical. Therefore, the Dolgov-Kawasaki instability
cannot occur in Palatini f�R� gravity �Sotiriou, 2007a�.

4. Ghost fields

Ghosts �massive states of negative norm that cause
apparent lack of unitarity� appear easily in higher-order
gravities. A viable theory should be ghost-free: the pres-
ence of ghosts in f�R ,R��R�� ,R��	
R��	
� gravity has
been studied by Utiyama and DeWitt �1962�, Stelle
�1977, 1978�, Strominger �1984�, Buchbinder et al. �1992�,
Vilkovisky �1992�, Codello and Percacci �2006�, De Fe-
lice �2007�, and De Felice and Hindmarsh �2007�. Due to
the Gauss-Bonnet identity, if the initial action is linear in
R��	
R��	
, one can reduce the theory under consider-

23The generalization of the condition �173� to D space-time
dimensions, derived by Rador �2007� for homogeneous pertur-
bations, is

�D − 2��f0��
2 − Df0f0�

f0�f0�
� 0. �172�
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ation to24 f�R ,R��R��� which, in general, contains a mas-
sive spin-2 ghost field in addition to the usual massless
graviton and the massive scalar. f�R� theories have no
ghosts �Utiyama and DeWitt, 1962; Stelle, 1978, 1977;
Strominger, 1984; Ferraris et al., 1988; Buchbinder
et al., 1992; Vilkovisky, 1992�, and the stability condi-
tion f��R��0 of Dolgov and Kawasaki �2003a� and
Faraoni �2006a� essentially amounts to a guarantee
that the scalaron is not a ghost. Theories of the kind
f�R ,R��R�� ,R����R����� in general are plagued by
ghosts �this is the case, for example, of conformal grav-
ity, as noticed long before the 1998 discovery of the cos-
mic acceleration �Riegert, 1984��, but models with only
f�R ,R2−4R��R��+R����R����� terms in the action have
been claimed to be ghost-free �Comelli, 2005; Navarro
and Van Acoleyen, 2006�.

C. The Cauchy problem

A physical theory must have predictive power and, to
this extent, a well-posed initial value problem is a re-
quired feature. GR satisfies this requirement for most
reasonable forms of matter �Wald, 1984�. The well-
posedness of the Cauchy problem for f�R� gravity is an
open issue. Using harmonic coordinates, Noakes showed
that theories with action

S =
1

2�
� d4x�− g�R + 	R��R�� + 
R2� + SM �177�

in the metric formalism have a well-posed initial value
problem in vacuo �Noakes, 1983�. Using the dynamical
equivalence with the scalar-tensor theory �54� when
f��R��0, the well-posedness of the Cauchy problem can
be reduced to the analogous problem for Brans-Dicke
gravity with �0=0 �metric formalism� or �0=−3/2 �Pala-
tini formalism�. The fact that the initial value problem is
well posed was demonstrated for particular scalar-tensor
theories by Cocke and Cohen �1968� and Noakes �1983�
and a general analysis has recently been presented �Sal-
gado, 2006; Salgado et al., 2008�. This work, however,
does not cover the �0=0,−3/2 cases.

A system of 3+1 equations of motion is said to be well
formulated if it can be rewritten as a system of equations
that are of only first order in both time and space de-
rivatives. When this set can be put in the full first-order
form

�tu� + Mi�iu� = S� �u� � , �178�

where u� collectively denotes the fundamental variables
hij, Kij, etc., introduced below, Mi is called the character-
istic matrix of the system, and S� �u� � describes source
terms and contains only the fundamental variables but
not their derivatives. The initial value formulation is
well posed if the system of partial differential equations
is symmetric hyperbolic �i.e., the matrices Mi are sym-

metric� and strongly hyperbolic if siM
i has a real set

of eigenvalues and a complete set of eigenvectors for
any 1-form si and obeys some boundedness conditions
�see Solin �2006��.

The Cauchy problem for metric f�R� gravity is well
formulated and is well posed in vacuo and with matter,
as shown below. For Palatini f�R� gravity, instead, the
Cauchy problem is unlikely to be well formulated or
well posed unless the trace of the matter energy-
momentum tensor is constant, due to the presence of
higher derivatives of the matter fields in the field equa-
tions and to the impossibility of eliminating them �see
below�.

A systematic covariant approach to scalar-tensor
theories of the form

S =� d4x�− g�����R
2�

−
1
2

�	��	� − W���	 + SM

�179�

is due to Salgado �2006�, who showed that the Cauchy
problem of these theories is well posed in the absence of
matter and well formulated otherwise. With the excep-
tion of �0=−3/2, as we will see later, most of Salgado’s
results can be extended to the more general action

S =� d4x�− g�����R
2�

−
����

2
�	��	� − W���	 + SM,

�180�

which contains the additional coupling function ����
�which is different from the Brans-Dicke parameter �0�
�Lanahan-Tremblay and Faraoni, 2007�.

The field equations, after setting �=1, are

G�� =
1

�
���������� − g���

	��	�� + ��������

− g������ +
1

�
��������� −

1
2

g���
	��	�


− W���g�� + T��
�m�	 , �181�

��� +
��

2
R − W���� +

��

2
�	��	� = 0, �182�

where a prime denotes differentiation with respect to �.
Equation �181� can be cast in the form of the effective
Einstein equation G��=T��

�eff�, with the effective stress-
energy tensor �Salgado, 2006�

T��
�eff� =

1

����
�T��

��� + T��
��� + T��

�m�� �183�

and

T��
��� = ������������ − g���


��
��

+ ����������� − g����� , �184�
24Furthermore, R��R�� can be expressed in terms of R2 in a

FLRW background �Wands, 1994�.
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T��
��� = ����������� −

1
2

g���

��
�
 − W���g��.

�185�

The trace of the effective Einstein equations yields

�� = ���� +
3����2

2�
	�−1���T�m�

2
− 2��W���

+ �W���� + �−
���

2
−

��

2
�� + 3���	�c��c�� .

�186�

The 3+1 Arnowitt-Deser-Misner formulation of the
theory proceeds by introducing lapse, shift, extrinsic cur-
vature, and gradients of � �Wald, 1984; Reula, 1998; Sal-
gado, 2006�. Assume that a time function t exists such
that the space-time �M ,g��� admits a foliation with hy-
persurfaces %t of constant t with unit timelike normal na.
The three-metric and projection operator on %t are h��

=g��+n�n� and h	

, respectively. Moreover,

n�n� = − 1, h	
n
 = h	
,

n	 = 0, h	

h
� = h	�. �187�

The metric is then

ds2 = − �N2 − NiNi�dt2 − 2Nidtdxi + hijdxidxj �188�

�i , j=1,2 ,3�, where N�0, n	=−N�	t, N	=−h	

t
 is the

shift vector, while t	 obeys t	�	t=1 and t	=−N	+Nn	 so
that N=−n	t	 and N	n	=0. The extrinsic curvature of %t
is

K	
 = − h	
�h


���n� �189�

and the three-dimensional covariant derivative of h	
 on
%t is defined by

Di
�3�T	1¯


1¯
= h	1

�1
¯ h�1


1
¯ h�

i��
�3�T�1¯

�1¯
�190�

for any 3-tensor �3�T�1. . .
�1. . ., with Dih��=0. The spatial

gradient of the scalar � is Q��D�� �where D� denotes
the covariant derivative of h���, while its momentum is
&=Ln�=n���� and

Kij = − �inj = −
1

2N
� �hij

�t
+ DiNj + DjNi
 , �191�

& =
1

N
��t� + N�Q�� , �192�

�tQi + Nl�lQi + Ql�iN
l = Di�N&� . �193�

The effective stress-energy tensor T	

�eff� is decomposed as

T	

�eff� =

1

�
�S	
 + J	n
 + J
n	 + En	n
� , �194�

where

S	
 � h	
�h


�T��
�eff� =

1

�
�S	


��� + S	

��� + S	


�m�� , �195�

J	 � − h	
�T��

�eff�n� =
1

�
�J	

��� + J	
��� + J	

�m�� , �196�

E � n	n
T	

�eff� =

1

�
�E��� + E��� + E�m�� . �197�

Its trace is T�eff�=S−E, where S�S�
�. The Gauss-

Codazzi equations then yield the Hamiltonian constraint
�Wald, 1984; Salgado, 2006�

�3�R + K2 − KijK
ij = 2E , �198�

the vector constraint

DlK
l
i − DiK = Ji, �199�

and the dynamical equations

�tK
i
j + Nl�lK

i
j + Ki

l�jN
l − Kl

j�lN
i + DiDjN − �3�Ri

jN

− NKKi
j =

N

2
��S − E��j

i − 2Sj
i� , �200�

where K�Ki
i. The trace of Eq. �200� yields

�tK + Nl�lK + �3��N − NKijK
ij =

N

2
�S + E� , �201�

where �3���DiDi. Our purpose is to eventually elimi-
nate all second derivatives. ��, which is present in Eqs.
�195�–�197�, can actually be eliminated using Eq. �186�,
provided that ��−3����2 / �2��.

To be more precise, a direct calculation yields the �
and � quantities of Eqs. �195�–�197�,

E��� = ���D�Q� + K&� + ��Q2, �202�

J	
��� = − ���K	

�Q� + D	&� − ��&Q	, �203�

S	

��� = ���D	Q
 + &K	
 − h	
���

− ���h	
�Q2 − &2� − Q	Q
� , �204�

where Q2�Q�Q�, while

S��� = ���D�Q� + K& − 3��� + ���3&2 − 2Q2� , �205�

and

E��� =
�

2
�&2 + Q2� + W��� , �206�

J�
��� = − �&Q�, �207�

S	

��� = �Q	Q
 − h	
��

2
�Q2 − &2� + W���	 , �208�

S��� =
�

2
�3&2 − Q2� − 3W��� . �209�

The Hamiltonian and the vector constraints become
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�3�R + K2 − KijK
ij −

2

�
����D�Q� + K&� +

�

2
&2

+
Q2

2
�� + 2���	 =

2

�
�E�m� + W���� , �210�

DlK
l
i − DiK +

1

�
����Ki

cQc + Di&� + �� + ���&Qi�

=
Ji

�m�

�
, �211�

respectively, and the dynamical equation �200� is

�tK
i
j + Nl�lK

i
j + Ki

l�jN
l − Kj

l�lN
i + DiDjN − �3�Ri

jN

− NKKi
j +

N

2�
����Q2 − &2� + 2W��� + ������j

i

+
N��

�
�Dj

i + &Ki
j�

N

�
�� + ���QiQj

=
N

2�
��S�m� − E�m���j

i − 2S�m�i
j� , �212�

with trace

�tK + Nl�lK + �3��N − NKijK
ij −

N��

�
�D�Q� + &K�

+
N

2�
���Q2 − �2� + 3���&2�

=
N

2�
�− 2W��� − 3���� + S�m� + E�m�� , �213�

where �Salgado, 2006�

Ln& − &K − Q�D��ln N� − D�Q�

= − �� = −
1

��� + 3����2/2�����T�m�

2
− 2��W���

 + �W���� + �− ���

2
− �� + 3���

��

2
	������� .

�214�

In vacuo, the initial data �hij ,Kij ,� ,Qi ,&� on an initial
hypersurface %0 obey Eqs. �210� and �211�, Qi=Di�,
DiQj=DjQi. In the presence of matter, the variables
E�m�, Ja

�m�, Sab
�m� must also be assigned on the initial hyper-

surface %0. Fixing a gauge corresponds to specifying the
lapse and the shift vector. The system �210�–�213� con-
tains only first-order derivatives in both space and time
once the d’Alembertian �� is written in terms of �,
������, �, and its derivatives by means of Eq. �186� or
�214�. As mentioned, this can be done whenever ��
−3����2 / �2��. As pointed out by Salgado �2006� for the
specific case �=1, and which can now be generalized for
any ��−3����2 / �2��, the reduction to a first-order sys-
tem shows that the Cauchy problem is well posed in
vacuo and well formulated in the presence of reasonable
matter.

Now consider the results specific to f�R� gravity. Re-
call that Brans-Dicke theory, which is of interest for us
due to its equivalence with f�R� gravity, corresponds to
����=�0 /�, with ����=� and W→2V. This yields the
constraints

�3�R + K2 − KijK
ij −

2

�
�D�Q� + K& +

�0

2�
�&2 + Q2�	

=
2

�
�E�m� + V���� , �215�

DlK
l
i − DiK +

1

�
�Ki

lQl + Di& +
�0

�
&Qi
 =

Ji
�m�

�
, �216�

the dynamical equations

�tK
i
j + Nl�lK

i
j + Ki

l�jN
l − Kj

l�lN
i + DiDjN − �3�Ri

jN

− NKKi
j +

N

2�
�j

i�2V��� + ��� +
N

�
�DiQj + &Ki

j�

+
N�0

�2 QiQj =
N

2�
��S�m� − E�m���j

i − 2S�m�i
j� , �217�

�tK + Nl�lK + �3��N − NKijK
ij −

N

�
�D�Q� + &K�

−
�0N

�2 &2 =
N

2�
�− 2V��� − 3�� + S�m� + E�m�� , �218�

with

��0 +
3
2

�� =

T�m�

2
− 2V��� + �V���� +

�0

�
�&2 − Q2� .

�219�

The condition ��−3����2 / �2��, which needs to be satis-
fied in order for one to be able to use Eq. �186� in order
to eliminate ��, can be written in the Brans-Dicke
theory notation as �0�−3/2. One could of course have
guessed that by looking at Eq. �219�. Therefore, metric
f�R� gravity, which is equivalent to �0=0 Brans-Dicke
gravity, has a well-formulated Cauchy problem in gen-
eral and is well posed in vacuo. Further work by Salgado
et al. �2008� established the well-posedness of the
Cauchy problem for scalar-tensor gravity with �=1 in
the presence of matter; this can be translated into the
well posedness of metric f�R� gravity with matter along
the lines established above.

How about Palatini f�R� gravity, which, corresponding
to �0=−3/2, is exactly the case that the constraint �0
�−3/2 excludes? Actually, for this value of the Brans-
Dicke parameter, Eq. �69�, and consequently Eq. �219�,
include no derivatives of �. Therefore, one can actually
solve algebraically for �. �The same could be done using
Eq. �186� in the more general case where � is a function
of � when �=−3����2 / �2��.� We will not consider cases
for which Eq. �69� has no roots or when it is identically
satisfied in vacuo. These cases lead to theories for which,
in the Palatini f�R� formulation, Eq. �21� has no roots or
when it is identically satisfied in vacuo respectively. As
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mentioned in Sec. II.B, the first case leads to inconsis-
tent field equations and the second to a conformally in-
variant theory �Ferraris et al., 1992�; see also Sotiriou
�2006b� for a discussion.

Now, in vacuo one can easily show that the solutions
of Eq. �69� or �219� will be of the form �=const. There-
fore, all derivatives of � vanish and one concludes that
�0=−3/2 Brans-Dicke theory or Palatini f�R� gravity has
a well-formulated and well-posed Cauchy problem.25

This could have been expected, as noticed by Olmo and
Singh �2009�, considering that Palatini f�R� gravity re-
duces to GR with a cosmological constant in vacuo.

In the presence of matter, things are more compli-
cated. The solutions of Eq. �69� or �219� will give � as a
function of T, the trace of the stress-energy tensor. This
can still be used to replace � in all equations but it will
lead to terms such as �T. Therefore, for the Cauchy
problem to be well formulated in the presence of matter,
one not only has to assume that the matter is “reason-
able,” in the sense that the matter fields satisfy a quasi-
linear, diagonal, second-order hyperbolic system of
equations �see Wald �1984��, but also to require that the
matter field equations are such that they allow us to
express all derivatives of T present in Eqs. �215�–�218�
for �0=−3/2 in terms of only first derivatives of the mat-
ter fields. It seems highly implausible that this require-
ment can be fulfilled for generic matter fields. This
seems to imply that �0=−3/2 Brans-Dicke theory and
Palatini f�R� gravity are unlikely to have a well-
formulated Cauchy problem in the presence of matter
fields. However, more precise conclusions can be drawn
only if specific matter fields are considered on a case by
case basis. The complications arising from the appear-
ance of derivatives of T and consequently higher deriva-
tives of the matter fields in the equations, and which
seem to be critical for whether the Cauchy problem can
be well formulated in the presence of matter, will be
better understood in Sec. VI.C.2.

VI. CONFRONTATION WITH PARTICLE PHYSICS AND
ASTROPHYSICS

A. Metric f(R) gravity as dark matter

Although most recent motivation for f�R� gravity
originates from the need to find alternatives to the mys-
terious dark energy at cosmological scales, several au-
thors adopt the same perspective at galactic and cluster
scales, using metric f�R� gravity as a substitute for dark
matter �Capozziello et al., 2004; Capozziello, Cardone,

Carloni, et al., 2005; Capozziello, Cardone, and Troisi,
2006, 2007; Capozziello, Nojiri, and Odintsov, 2006; Ca-
pozziello, Troisi, and Cardone, 2007; Iorio and Ruggiero,
2007, 2008; Martins and Salucci, 2007; Saffari and
Sobouti, 2007; Jhingan et al., 2008; Nojiri and Odintsov,
2008a; Zhao and Li, 2008�. Given the equivalence be-
tween f�R� and scalar-tensor gravity, these efforts re-
semble previous attempts to model dark matter using
scalar fields �Matos and Guzman, 2000; Matos and
Urena-Lopez, 2001, 2007; Matos et al., 2001; Alcubierre
et al., 2002a, 2002b; Rodriguez-Meza and Cervantes-
Cota, 2004; Bernal and Matos, 2005; Rodriguez-Meza
et al., 2005, 2007; Bernal and Guzman, 2006a, 2006b,
2006c; Cervantes-Cota, Rodriguez-Meza, Gabbasov,
and Klapp, 2007; Cervantes-Cota, Rodriguez-Meza, and
Nunez, 2007�.

Most works concentrate on models of the form f�R�
=Rn. A theory of this form with n=1−	 /2 was studied
by Mendoza and Rosas-Guevara �2007� and Saffari and
Sobouti �2007� using spherically symmetric solutions to
approximate galaxies. The fit to galaxy samples yields

	 = �3.07 ± 0.18�  10−7� M

1010M�


0.494

, �220�

where M is the mass appearing in the spherically sym-
metric metric �the mass of the galaxy�. Notice that hav-
ing 	 depending on the mass of each individual galaxy
straightforwardly implies that one cannot fit the data for
all galactic masses with the same choice of f�R�. This
makes the whole approach highly implausible.

Capozziello et al. �2004�, Capozziello, Cardone, et al.
�2005�, Capozziello, Cardone, and Troisi �2006, 2007�,
and Capozziello, Troisi, and Cardone �2007� computed
weak-field limit corrections to the Newtonian galactic
potential and the resulting rotation curves; when
matched to galaxy samples, a best fit yields n�1.7. Mar-
tins and Salucci �2007� performed a �2 fit using two
broader samples, finding n�2.2 �see also Boehmer,
Harko, and Lobo �2008a� for a variation of this ap-
proach focusing on the constant velocity tails of the ro-
tation curves�. All these values of the parameter n are in
violent contrast with the bounds obtained by Clifton and
Barrow �2005a, 2006�, Barrow and Clifton �2006�, and
Zakharov et al. �2006� and have been shown to violate
also the current constraints on the precession of perihe-
lia of several Solar System planets �Iorio and Ruggiero,
2007, 2008�. In addition, the consideration of vacuum
metrics used in these works in order to model the gravi-
tational field of galaxies is highly questionable.

The potential obtained in the weak-field limit of f�R�
gravity can affect other aspects of galactic dynamics as
well: the scattering probability of an intruder star and
the relaxation time of a stellar system were studied by
Hadjimichef and Kokubun �1997�, originally motivated
by quadratic corrections to the Einstein-Hilbert action.

25This was missed by Lanahan-Tremblay and Faraoni �2007�,
who claimed that the Cauchy problem is not well posed be-
cause the constraint �0�−3/2 does not allow for the use of
Eq. �219� in order to eliminate ��. Note also that in the ab-
sence of a potential �there is no corresponding Palatini f�R�
gravity� �0=−3/2 Brans-Dicke theory does not have a well-
posed Cauchy problem, as noticed by Noakes �1983�, because
this theory is conformally invariant and � is indeterminate.
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B. Palatini f(R) gravity and the conflict with the standard
model

One important and unexpected shortcoming of Pala-
tini f�R� gravity is that it appears to be in conflict with
the standard model of particle physics in the sense that it
introduces nonperturbative corrections to the matter ac-
tion �or the field equations� and strong couplings be-
tween gravity and matter in the local frame and at low
energies. The reason that we call this shortcoming unex-
pected is that, judging by the form of the action �13�,
Palatini f�R� gravity is, as mentioned, a metric theory of
gravity in the sense that matter is only coupled mini-
mally to the metric. Therefore, the stress-energy tensor
is divergence-free with respect to the metric covariant
derivative, the metric postulates �Will, 1981� are satis-
fied, the theory apparently satisfies the Einstein equiva-
lence principle, and the matter action should trivially
reduce locally to that of special relativity.

We now see how this conflict comes about. This issue
was first pointed out by Flanagan �2004b� using Dirac
particles for the matter action as an example and later
on studied again by Iglesias et al. �2007� who assumed
that the matter action is that of the Higgs field �see also
Olmo �2008��. Both calculations use the equivalent
Brans-Dicke theory and are performed in the Einstein
frame. Although the use of the Einstein frame has been
criticized �Vollick, 2004�,26 it is equivalent to the Jordan
frame and both are perfectly suitable for performing cal-
culations �Flanagan, 2004a� �see also the discussion in
Sec. III and Faraoni and Nadeau �2007� and Sotiriou
et al. �2008��.

Nevertheless, since test particles are supposed to fol-
low geodesics of the Jordan-frame metric, it is this met-
ric which becomes approximately flat in the laboratory
reference frame. Therefore, when the calculations are
performed in the Einstein frame they are less transpar-
ent since the actual effects could be confused with frame
effects, and vice versa. Consequently, for simplicity and
clarity, we present the calculation in the Jordan frame, as
it appears in Barausse et al. �2008b�. We begin from the
action �66�, which is the Jordan-frame equivalent of Pa-
latini f�R� gravity, and we take matter to be represented
by a scalar field H �e.g., the Higgs boson�, the action of
which reads

SM =
1

2�
� d4x�− g�g����H��H −

mH
2

�2 H2
 �221�

�in units in which G=c=1�. As an example, we choose
f�R�=R−�4 /R �Vollick, 2003; Carroll et al., 2004�. For
this choice of f, the potential is V���=2�2��−1�1/2. To
go to the local frame, we expand the action to second
order around vacuum. The vacuum of the action �66�
with Eq. �221� as a matter action is H=0, �=4/3 �using
Eq. �69��, and g������ ��2�� acts as an effective cos-
mological constant, so its contribution in the local frame
can be safely neglected�.

However, when one tries to use a perturbative expan-
sion for �, things stop being straightforward: � is alge-
braically related to the matter fields as is obvious from
Eq. �69�. Therefore, one gets ���T /�2�mH

2 �H2 /�3�2

at energies lower than the Higgs mass �mH
�100–1000 GeV�. Replacing this expression in the ac-
tion �66� perturbed to second order, one immediately
obtains that the effective action for the Higgs scalar is

SM
eff �� d4x�− g

1

2�
�g�����H���H −

mH
2

�2 �H2

 �1 +

mH
2 �H2

�2�3 +
mH

2 ���H�2

�4�3 	 �222�

at energies E$mH. Taking into account the fact that
�2���H0

2, where H0
−1=4000 Mpc is the Hubble radius

and �H�mH because E$mH, it is not difficult to esti-
mate the order of magnitude of the corrections: at an
energy E=10−3 eV �corresponding to the length scale
L=� /E=2 10−4 m�, the first correction is of the order

mH
2 �H2/�2�3 � �H0

−1/�H�2�mH/MP�2 � 1,

where �H=� /mH�2 10−19–2 10−18 m is the Compton
wavelength of the Higgs and MP= ��c5 /G�1/2=1.2
 1019 GeV is the Planck mass. The second correction
is of the order

mH
2 ���H�2/�4�3 � �H0

−1/�XH�2�mH/MP�2�H0
−1/L�2 � 1.

Clearly, it is unacceptable to have such nonperturbative
corrections to the local frame matter action.

An alternative way to see the same problem would be
to replace ���mH

2 �H2 /�3�2 directly in Eq. �66�. Then
the coupling of matter to gravity is described by the in-
teraction Lagrangian

Lint �
mH

2 �H2

�3 ��g +
�2�g

�2 

�

mH
2 �H2

�3 �g�1 + �H0
−1

L

2	 . �223�

This clearly exhibits the fact that gravity becomes non-
perturbative at microscopic scales.

It is obvious that the algebraic dependence of � on
the matter fields stands at the root of this problem. We
have still not given any explanation for the “paradox” of
seeing such a behavior in a theory which apparently sat-

26Note that in the case of Flanagan �2004b� in which fermions
are used as the matter fields, one could decide to couple the
independent connection to them by allowing it to enter the
matter action and define the covariant derivative �which would
be equivalent to assuming that the spin connection is an inde-
pendent variable in a tetrad formalism� as noted by Vollick
�2005�. Although the results of Flanagan �2004b� would cease
to hold in this case, this cannot be considered a problem:
clearly in this case we would be talking about a different
theory, namely, metric-affine f�R� gravity �Sotiriou and Libe-
rati, 2007b�.
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isfies the metric postulates in both the f�R� and the
Brans-Dicke representations. However, this will become
clear in Sec. VI.C.2.

C. Exact solutions and relevant constraints

1. Vacuum and nonvacuum exact solutions

We now turn our attention to exact solutions starting
from metric f�R� gravity. We mentioned in Sec. II.A
that, as can be seen easily from the form of the field
equations �6�, the maximally symmetric vacuum solution
will be either Minkowski space-time, if R=0 is a root of
Eq. �9�, or de Sitter and anti–de Sitter space-time, de-
pending on the sign of the root of the same equation.
Things are slightly more complicated for vacuum solu-
tions with less symmetry: Using Eq. �6� it is easy to
verify that any vacuum solution �R��=�g��, T��=0� of
Einstein’s theory with a �possibly vanishing� cosmologi-
cal constant, including black hole solutions, is a solution
of metric f�R� gravity �except for pathological cases for
which Eq. �9� has no roots�. However, the converse is
not true.

For example, when spherical symmetry is imposed,
the Schwarzschild metric is a solution of metric f�R�
gravity if R=0 in vacuum. If R is constant in vacuo, then
Schwarzschild–�anti–�de Sitter space-time is a solution.
As mentioned though, the Jebsen-Birkhoff theorem
�Weinberg, 1972; Wald, 1984� does not hold in metric
f�R� gravity �unless, of course one wishes to impose fur-
ther conditions, such as that R is constant �Capozziello et
al., 2008��. Therefore, other solutions can exist as well.
An interesting finding is that the cosmic no-hair theorem
valid in GR and in pure f�R� gravity is not valid, in gen-
eral, in theories of the form

S =
1

2�
� d4x�− g�R + 	R2 + 
R��R�� − 2�� , �224�

for which exact anisotropic solutions that continue to
inflate anisotropically have been found �Barrow and
Hervik, 2006a, 2006b� �see also Maeda �1988� and
Kluske and Schmidt �1996��. However, isotropization
during inflation occurs in mixed f�� ,R� models �Maeda
et al., 1989�.

In addition to the exact cosmological solutions ex-
plored for the purpose of explaining the current cosmic
acceleration �see, e.g., Abdalla et al. �2005�; Clifton and
Barrow �2005b, 2006�; Modak et al. �2005�; Barrow and
Clifton �2006�; Clifton �2006a, 2007�; Capozziello et al.
�2007a�; Capozziello and De Felice �2008�; and Vakili
�2008� for an approach based on Noether symmetries;
see Carloni et al. �2006� for bouncing solutions and the
conditions that they satisfy�, exact spherically symmetric
solutions of metric f�R� gravity have been explored in
the literature, with most recent studies being motivated
by the need to understand the weak-field limit of cosmo-
logically motivated theories.

Regarding nonvacuum solutions, the most common
matter source is a perfect fluid. Fluid dynamics in metric
f�R� gravity was studied by Maartens and Taylor �1994�,
Taylor and Maartens �1995�, Rippl et al. �1996�, and
Mohseni Sadjadi �2008�. Spherically symmetric solutions
were found by Whitt �1985�, Mignemi and Wiltshire
�1992�, Bronnikov and Chernakova �2005a, 2005b,
2005c�, Clifton �2006a, 2006b�, Multamaki and Vilja
�2006b, 2007, 2008�, Bustelo and Barraco �2007�, and Ca-
pozziello et al. �2008�. We regret not being able to
present these solutions extensively here due to space
limitations and refer the interested reader to the litera-
ture for more details.

Stability issues for spherically symmetric solutions
were discussed by Seifert �2007�. In the theory

S =� d4x
�− g

�
�R − 	R2 − 
R��R��� + "� , �225�

where 	, 
, and " are constants and � is the Gauss-
Bonnet invariant, the Schwarzschild metric is a solution,
and the stability of Schwarzschild black holes was stud-
ied by Whitt �1985�. Surprisingly, it was found that the
massive ghost graviton present in this theory stabilizes
small-mass black holes against quantum instabilities �see
also Myers and Simon �1988, 1989��. In the case 
="
=0, which reduces the theory �225� to a quadratic f�R�
gravity, the stability criterion found by Whitt �1985� re-
duces to 	�0, which corresponds again to f��R��0. For
	=0 we recover GR, in which black holes are stable
classically �but not quantum mechanically due to Hawk-
ing radiation and their negative specific heat, a feature
that persists in f�R� gravity�, so the classical stability con-
dition for Schwarzschild black holes can be enunciated
as f��R��0.

We now turn our attention to Palatini f�R� gravity.
In this case things are simpler in vacuo: as we saw in
Sec. II.B, the theory reduces in this case �or more pre-
cisely even for matter fields with T=const, where T is
the trace of the stress-energy tensor� to GR with a cos-
mological constant, which might as well be zero for
some models �Ferraris et al., 1992, 1994; Borowiec et al.,
1998; Barraco et al., 1999�. Therefore, it is quite straight-
forward that Palatini f�R� gravity will have the same
vacuum solutions as GR with a cosmological constant.
Also, the Jebsen-Birkhoff theorem �Weinberg, 1972;
Wald, 1984� is valid in the Palatini formalism �Kainu-
lainen, Reijonen, and Sunhede, 2007; Barausse et al.,
2008a, 2008b, 2008c�.

Cosmological solutions in quadratic gravity were ob-
tained by Shahid-Saless �1990, 1991�. Spherically sym-
metric interior solutions in the Palatini formalism can be
found using the generalization of the Tolman-
Oppenheimer-Volkoff equation valid for these theories,
as found by Barraco and Hamity �2000�, Bustelo and
Barraco �2007�, and Kainulainen, Reijonen, and Sun-
hede �2007�. Indeed, such solutions have been found and
matched with the unique exterior �anti–�de Sitter solu-
tion �Barraco and Hamity, 1998, 2000; Bustelo and Bar-
raco, 2007; Kainulainen, Piilonen, et al., 2007; Kainu-
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lainen, Reijonen, and Sunhede, 2007�. Nevertheless, a
matching between exterior and interior that can lead to
a sensible solution throughout space-time is not always
feasible, and this seems to have serious consequences for
the viability of f�R� gravity �Barausse et al., 2008a,
2008b, 2008c�. This is discussed extensively in the next
section.

We close this section with some remarks on black hole
solutions. As is clear from the above discussion, all black
hole solutions of GR �with a cosmological constant� will
also be solutions of f�R� in both the metric and the Pa-
latini formalism �see also Barausse and Sotiriou �2008�
and Psaltis et al. �2008��. However, in the Palatini formal-
ism they will constitute the complete set of black hole
solutions of the theory, whereas in the metric formalism
other black hole solutions can exist in principle, as the
Jebsen-Birkhoff theorem does not hold. For a discussion
on black hole entropy in f�R� gravity see Jacobson et al.
�1994, 1995� and Vollick �2007�.27

2. Surface singularities and the incompleteness of Palatini f(R)
gravity

In Secs. V.A.3, V.C, and VI.B, we already spotted
three serious shortcomings of Palatini f�R� gravity,
namely, the algebraic dependence of the post-Newtonian
metric on the density, the complications with the initial
value problem in the presence of matter, and a conflict
with particle physics. In this section we study static
spherically symmetric interior solutions and their match-
ing to the unique exterior with the same symmetries, the
Schwarzschild–de Sitter solution, along the lines of
Barausse et al. �2008a, 2008b, 2008c�. As we will see, the
three problems mentioned earlier are actually very
much related and stem from a specific characteristic of
Palatini f�R� gravity, which the discussion of this section
will help us pin down.

A common way of arriving at a full description of a
space-time that includes matter is to solve the field equa-
tions separately inside and outside the sources and then
match the interior and exterior solutions using appropri-
ate junction conditions �called Israel junction conditions
in GR �Israel, 1966��. This is what we are going to at-
tempt here. We already know the exterior solution so,
for the moment, we focus on the interior. Since we as-
sume that the metric is static and spherically symmetric,
we can write it in the form

ds2 � − eA�r�dt2 + eB�r�dr2 + r2d�2. �226�

We can then replace this metric in the field equations of
Palatini f�R� gravity, preferably in Eq. �28�, which is the
simplest of all the possible reformulations. Assuming
also a perfect fluid description for matter with T��= ��
+P�u�u�+Pg��, where � is the energy density, P is the

pressure, and u� is the fluid four velocity, and represent-
ing d /dr with a prime,28 one arrives at

A� =
− 1

1 + �
�1 − eB

r
−

eB

F
8�GrP +

	

r

 , �227�

B� =
1

1 + �
�1 − eB

r
+

eB

F
8�Gr� +

	 + 


r

 , �228�

	 � r2�3
4
�F�

F

2

+
2F�

rF
+

eB

2
�R −

f

F

	 , �229�


 � r2�F�

F
−

3
2
�F�

F

2	, � �

rF�

2F
, �230�

where F��f /�R. To determine an interior solution we
need a generalization of the Tolman-Oppenheimer-
Volkoff �TOV� hydrostatic equilibrium equation. This
has been derived for Palatini f�R� gravity by Barraco
and Hamity �2000�, Bustelo and Barraco �2007�, and
Kainulainen, Reijonen, and Sunhede �2007�. Defining
mtot�r��r�1−e−B� /2 and using Euler’s equation

P� = −
A�

2
�P + �� , �231�

one can use Eqs. �227� and �228� to arrive at the gener-
alized TOV equations,

P� = −
1

1 + �

�� + P�
r�r − 2mtot�

�mtot +
4�r3P

F

−
	

2
�r − 2mtot�
 , �232�

mtot� =
1

1 + �
�4�r2�

F
+

	 + 


2
−

mtot

r
�	 + 
 − ��
 .

�233�

We now have three differential equations, namely,
Eqs. �231�–�233�, and four unknown functions, namely,
A, mtot �or B�, P, and �. The missing piece is the infor-
mation about the microphysics of the matter configura-
tion under investigation. In the case of a perfect fluid,
this is effectively given by an equation of state �EOS�. A
one-parameter EOS relates the pressure directly to the
energy density, i.e., P=P���. A simple form of such an
EOS is a polytropic equation of state P=k�0

�, where �0 is
the rest-mass density and k and � are constants. This is
the case that we consider here. Note that the rest-mass
density can be expressed in terms of the energy density �
and the internal energy U as �0=�−U. Assuming an
adiabatic transformation and using the first law of ther-

27See also Eling et al. �2006� for a derivation of the field equa-
tions of metric f�R� gravity based on thermodynamical argu-
ments applied to local Rindler horizons.

28In this section we modify our standard notation for
economy and a prime denotes differentiation with respect to
the radial coordinate instead of differentiation with respect to
the argument of the function.
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modynamics, one can express the internal energy in
terms of the pressure, i.e., U=P / ��−1�. Therefore, the
polytropic EOS can be rewritten as

� = �P

k

1/�

+
P

� − 1
, �234�

giving a direct link between P and �.
Without specifying the interior solution, we can al-

ready examine the appropriate matching conditions
needed. One needs continuity of the metric and of A� on
the surface of the matter configuration �A is given by
a second-order differential equation�. Since we know
that the exterior solution is unique and is the
Schwarzschild–de Sitter solution with a cosmological
constant equal to R0 /4, where R0 is the vacuum value of
R �see Sec. II.B�, we can directly write for the exterior

exp�− B�r�� = � exp�A�r�� = 1 − 2m/r − R0r2/12,

�235�

where � and m are integration constants to be fixed by
requiring continuity of the metric coefficients across the
surface, which is implicitly defined by r=rout, where P
=�=0. Using the definition of mtot�r� this gives, in the
exterior,

mtot�r� = m +
r3

24
R0. �236�

On the other hand, based on the exterior solution, one
gets on the surface

A��rout� =
2�rout

3 R0 − 12m�
rout�R0rout

3 − 12rout + 24m�
. �237�

Assuming that, approaching the surface from the in-
terior, A and mtot indeed take the correct values re-
quired for the matching, it can be shown that continuity
of A� across the surface requires F��rout�=0 for r→rout

−

�Barausse et al., 2008a�. Additionally, if this is the case
then �Barausse et al., 2008a�

mtot� �rout� =
2F0R0rout

2 + �rout
3 R0 − 8mtot�C�

16F0
, �238�

where

C =
dF

dP
�P + �� =

dF

d�

d�

dP
�P + �� . �239�

We now examine the behavior of mtot� at the surface
for different values of the polytropic index �. For 1��
�3/2, C�=dC /dPP��dC /dP�P+��→0 at the surface so
that Eq. �238� is finite and it gives continuity of mtot�
across the surface �cf. Eq. �236��. However, for 3/2��
�2, C�→� as the surface is approached, provided that
dF /dR�R0��0 and dR /dT�T0��0 �note that these con-
ditions are satisfied by generic forms of f�R�, i.e., when-
ever an R2 term or a term inversely proportional to R is
present�. Therefore, even though mtot remains finite �as
can be shown using the fact that P�=0 at the surface�,
the divergence of mtot� drives to infinity the Riemann

tensor of the metric R���� and curvature invariants, such
as R or R����R����, as can easily be checked.29 Clearly,
such a singular behavior is bound to give rise to unphysi-
cal phenomena, such as infinite tidal forces at the sur-
face �cf. the geodesic deviation equation�, which would
destroy anything present there. We are, therefore,
forced to conclude that no physically relevant solution
exists for any polytropic EOS with 3/2���2.

The following points about the result just presented
should be stressed:

• The sufficient condition for the singularity to occur is
that a polytropic EOS with 3/2���2 should ad-
equately describe just the outer layer of the matter
configuration �and not necessarily the whole configu-
ration�.

• In practice, there is no dependence of the result on
the functional form of f�R� �a few unrealistic excep-
tions can be found in Barausse et al. �2008a�� so what
is revealed is a generic aspect of Palatini f�R� gravity
as a class of theories.

• The singularities discussed are not coordinate, but
true singularities, as can be easily verified by check-
ing that curvature invariants diverge.

• The only assumptions made regard the EOS and the
symmetries. Thus, the result applies to all regimes
ranging from Newtonian to strong gravity.

We now interpret these results. Obviously, one could
object to the use of the polytropic EOS. Even though it
is extensively used for simple stellar models, it is not a
very realistic description for stellar configurations. How-
ever, one does not necessarily have to refer to stars in
order to check whether the issue discussed here leaves
an observable signature. Consider two very well-known
matter configurations which are exactly described by a
polytropic EOS: a monoatomic isentropic gas and a de-
generate nonrelativistic electron gas. For both of those
cases �=5/3, which is well within the range for which
the singularities appear. Additionally, both of these con-
figuration can be very well described even with Newton-
ian gravity. Yet Palatini f�R� gravity fails to provide a
reasonable description. Therefore, one could think of
such matter configurations as gedanken experiments
which reveal that Palatini f�R� gravity is at best incom-
plete �Barausse et al., 2008a, 2008b, 2008c�.

On the other hand, the use of the polytropic EOS
requires a perfect fluid approximation for the descrip-
tion of matter. One may therefore wish to question
whether the length scale on which the tidal forces be-
come important is larger than the length scale for which
the fluid approximation breaks down �Kainulainen, Pi-
ilonen, et al., 2007�. However, quantitative results for
tidal forces have been given by Barausse et al. �2008b�,
and it has been shown that the length scales at which the
tidal forces become relevant are indeed larger than

29This fact seems to have been missed by Barraco and Hamity
�2000�.
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would be required for the fluid approximation to break
down. The observable consequences on stellar configu-
rations have also been discussed there. To this, one
could also add that a theory that requires a full descrip-
tion of the microscopic structure of the system in order
to provide a macroscopic description of the dynamics is
not very appealing anyway.

In any case, it should be stated that the problem dis-
cussed is not specific to the polytropic EOS. The use of
the latter only simplifies the calculation and allows an
analytic approach. The root of the problem actually lies
with the differential structure of Palatini f�R� gravity.

Consider the field equations in the form �28�: it is not
difficult to see that these are second-order partial differ-
ential equations in the metric. However, since f is a func-
tion of R and R is an algebraic function of T due to Eq.
�20�, the right-hand side of Eq. �28� includes second de-
rivatives of T. Now T, being the trace of the stress-
energy tensor, will include up to first-order derivatives of
the matter fields �assuming that the matter action has to
lead to second-order field equations when varied with
respect to the matter fields�. Consequently, Eq. �28� can
be up to third order in the matter fields.

In GR and most of its alternatives, the field equations
are only of first order in the matter fields. This guaran-
tees that gravity is a cumulative effect: the metric is gen-
erated by an integral over the matter sources and, there-
fore, any discontinuities �or even singularities� in the
latter and their derivatives, which are allowed, will not
become discontinuities or singularities of the metric,
which are not allowed �see Barausse et al. �2008b� for a
detailed discussion�. This characteristic is not present in
Palatini f�R� gravity and creates an algebraic depen-
dence of the metric on the matter fields.

The polytropic description not only does not cause
this problem but, as a matter of fact, it makes it less
acute, simply because in the fluid approximation the
stress-energy tensor does not include derivatives of the
matter fields and effectively “smooths out” the matter
distribution. Actually, the fact that the metric is ex-
tremely sensitive to rapid changes of the matter field has
been exhibited also in the interior of stars described by
realistic tabulated EOSs in Barausse et al. �2008a�.

One should not be puzzled by the fact that this awk-
ward differential structure of Palatini f�R� gravity is not
manifest in the f�R� formulation of the theory �and the
field equations �18� and �19��. We have mentioned that
the independent connection is actually an auxiliary field
and the presence of auxiliary fields can always be mis-
leading when it comes to the dynamics. In fact, it just
takes a closer look to realize that the Palatini f�R� action
does not contain any derivatives of the metric and is of
only first order in the derivatives of the connection.
Now, given that the connection turns out to be an aux-
iliary field and can be algebraically related to derivatives
of the matter and of the metric, it no longer comes as a
surprise that the outcome is a theory with higher differ-
ential order in the matter than the metric.

By now, the fact that the post-Newtonian metric turns
out to be algebraically dependent on the density, as dis-

cussed in Sec. V.A.3, should no longer sound surprising:
it is merely a manifestation of the problem discussed
here in the weak-field regime. The fact that it is unlikely
that the Cauchy problem will be well formulated in the
presence of matter also originates from the same feature
of Palatini f�R� gravity, as mentioned. Similarly, the fact
that a theory, which manifestly satisfies the metric pos-
tulates and therefore is expected to satisfy the equiva-
lence principle, actually exhibits unexpected phenom-
enology in local nongravitational experiments and
conflicts with the standard model, as shown in Sec. VI.B
also ceases to be a puzzle: the algebraic dependence of
the connection on the derivatives of matter fields �as the
former is an auxiliary field� makes the matter enter the
gravitational action through the “back door.” This intro-
duces strong couplings between matter and gravity and
self-interactions of the matter fields, which manifest
themselves in the local frame. Alternatively, if one com-
pletely eliminates the connection �or the scalar field in
the equivalent Brans-Dicke representation� at the level
of the action or attempts to write down an action which
leads to the field equations �28� directly through metric
variation, then this action will have to include higher-
order derivatives of the matter field and self-interactions
in the matter sector. In this sense, the f�R� representa-
tion is simply misleading �see also Sotiriou et al. �2008�
for a general discussion of representation issues in gravi-
tational theories�.

D. Gravitational waves in f(R) gravity

By now it is clear that the metric tensor of f�R� gravity
contains, in addition to the usual massless spin-2 gravi-
ton, a massive scalar that shows up in gravitational
waves in the metric version of these theories �in the Pa-
latini version, this scalar is not dynamical and does not
propagate�. A scalar gravitational wave mode is familiar
from scalar-tensor gravity �Will, 1981�, to which f�R�
gravity is equivalent. Because this scalar is massive, it
propagates at a speed lower than the speed of light and
of massless tensor modes and is, in principle, detectable
in the arrival times of signals from an exploding super-
nova when gravitational wave detectors are sufficiently
sensitive �this possibility has been pointed out as a dis-
criminator between tensor-vector-scalar theories and
GR �Kahya and Woodard, 2007��. This massive scalar
mode is longitudinal and is of dipole nature to lowest
order �Will, 1981; Corda, 2007�. The study of its genera-
tion, propagation, and detection falls within the purview
of scalar-tensor gravity �Will, 1981�. The propagation of
gravitational waves in the specific model f�R�=Rn was
studied by Mendoza and Rosas-Guevara �2007� where
the massive scalar mode is missed, however.

The generation of gravitational waves specifically in
f�R� gravity has not received much attention in the lit-
erature. Even though the fact that the black hole solu-
tions of GR will also be solutions of metric f�R� gravity
�without the converse being true� implies that determin-
ing the geometry around a black hole is unlikely to pro-
vide evidence for such modifications of gravity �Psaltis et
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al., 2008�, solutions describing perturbed black holes do
behave differently and could, therefore, leave a detect-
able imprint on gravitational wave radiation �Barausse
and Sotiriou, 2008�. Note the analogy to the fact that
cosmological FLRW solutions are shared by most gravi-
tational theories, but cosmological perturbations reveal
more about the underlying theory of gravity than the
exact solutions themselves. Additionally, gravitational
radiation from binary systems would probably be more
revealing than that coming from perturbed black holes
when it comes to modified gravity.

The detection of gravitational waves generated in the
theories f�R�=1/R �already ruled out by Solar System
data �Clifton and Barrow, 2005a, 2006; Barrow and
Clifton, 2006�� and f�R�=R+aR2 were studied by
Corda and De Laurentis �2007� and Corda �2007�, and
Corda �2008�, respectively.

The study of cosmological gravitational waves in f�R�
gravity is perhaps more promising than that of astro-
physically generated waves. The stochastic gravitational
wave background produced in the early universe was
analyzed by Capozziello, Corda, and De Laurentis
�2007� and Capozziello et al. �2008�. The authors of this
last reference consider the model f�R�=R1+� and derive
an evolution equation for the metric perturbations hij

=h�t�eiklk
l
eij in a background FLRW universe with scale

factor a�t�=a0�t / t0�n,

ḧ +
�3n − 2��

t
ḣ + k2a0� t

t0

2

nh = 0. �240�

This can be solved in terms of Bessel functions; plots of
these wave amplitudes are reported in Capozziello et al.
�2008� for various values of the parameter �, but the
limit 0!��7.2 10−19 obtained by Clifton and Barrow
�2005a, 2006� and Barrow and Clifton �2006� leaves little
hope of detecting f�R� effects in the gravitational wave
background.

Ananda et al. �2008� gave a covariant and gauge-
invariant description of gravitational waves in a per-
turbed FLRW universe filled with a barotropic perfect
fluid in the toy model f�R�=Rn. The perturbation equa-
tions are solved �again, in terms of Bessel functions of
the first and second kind� in the approximation of scales
much larger or much smaller than the Hubble radius
H−1, showing a high sensitivity of the tensor-mode evo-
lution to the value of the parameter n. In particular, a
tensor mode is found that grows during the radiation-
dominated era, with potential implications for detect-
ability in advanced space interferometers. This study,
and others of this kind expected to appear in future lit-
erature, are in the spirit of discrimination between dark
energy and dark gravity or even between different f�R�
theories �if this class is taken seriously� when gravita-
tional wave observations become available: as re-
marked, this is not possible by consideration of only un-
perturbed FLRW solutions.

VII. SUMMARY AND CONCLUSIONS

A. Summary

While we have presented f�R� gravity as a class of toy
theories, various elevate modified gravity, in one or the
other of its incarnations corresponding to specific
choices of the function f�R�, to the role of a fully realistic
model to be compared in detail with cosmological obser-
vations and to be distinguished from other models. A
large fraction of the work in the literature is actually
devoted to specific models corresponding to definite
choices of the function f�R� and to specific parametriza-
tions.

Besides the power law and power series of R models,
which we have mentioned extensively, some other typi-
cal examples are functions that contain terms such as
ln��R� �Nojiri and Odintsov, 2004b; Perez Bergliaffa,
2006� or e�R �Carloni et al., 2006; Bean et al., 2007; Song
et al., 2007; Abdelwahab et al., 2008� or are more in-
volved functions of R, such as f�R�=R−a�R−�1�−m

+b�R−�2�n, with n ,m ,a ,b�0 �Nojiri and Odintsov,
2003a�. Some models have actually been tailored to pass
all or most of the known constraints, such as the one
proposed by Starobinsky �2007�, where f�R�=R
+�R0��1+R2 /R0

2�−n−1� with n ,��0 and R0 being of the
order of H0

2. Here we have tried to avoid considering
specific models and have attempted to collect general
model-independent results, with the viewpoint that
these theories are to be seen more as toy theories than
definitive and realistic models.

We are now ready to summarize the main results on
f�R� gravity. On the theoretical side, we have explored
all three versions of f�R� gravity: metric, Palatini, and
metric-affine. Several issues concerning dynamics, de-
grees of freedom, matter couplings, etc, have been ex-
tensively discussed. The dynamical equivalence between
both metric and Palatini f�R� gravity and Brans-Dicke
theory has been, and continues to be, a useful tool to
study these theories, given some knowledge of the as-
pects of interest in scalar-tensor gravity. At the same
time, the study of f�R� gravity itself has provided new
insight into the two previously unexplored cases of
Brans-Dicke theory with �0=0 and −3/2. We have also
considered most of the applications of f�R� gravity to
both cosmology and astrophysics. Finally, we have ex-
plored a large number of possible ways to constrain f�R�
theories and check their viability. In fact, many avatars
of f�R� have been shown to be subject to potentially
fatal troubles, such as a grossly incorrect post-
Newtonian limit, short time scale instabilities, the ab-
sence of a matter era, conflict with particle physics or
astrophysics, etc.

To avoid repetition, we will not attempt to summarize
here all of the theoretical issues, the applications, or the
constraints discussed. This, besides being redundant,
would not be very helpful to the reader, as, in most
cases, the insight gained cannot be summarized in a sen-
tence or two. Specifically, some of the constraints that
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have been derived in the literature are not model or
parametrization independent �and the usefulness of
some parametrizations is questionable�. This does not
allow for them to be expressed in a straightforward man-
ner through simple mathematical equations applicable
directly to a general function f�R�. Particular examples
of such constraints are those coming from cosmology
�background evolution, perturbations, etc.�.

However, we have encountered cases in which clear-
cut viability criteria are indeed easy to derive. We
would, therefore, like to make a specific mention of
those. A brief list of results that are quick and easy to
use is the following

• In metric f�R� gravity, the Dolgov-Kawasaki instabil-
ity is avoided if and only if f��R��0. The stability
condition of de Sitter space is expressed by Eq. �173�.

• Metric f�R� gravity might pass the weak-field limit
test and at the same time constitute an alternative to
dark energy only if the chameleon mechanism is
effective—this restricts the possible forms of the
function f�R� in a way that cannot be specified by a
simple formula.

• Palatini f�R� gravity suffered multiple deaths due to
the differential structure of its field equations. These
conclusions are essentially model independent.
�However, this theory could potentially be fixed by
adding extra terms quadratic in the Ricci and/or Rie-
mann tensors, which would raise the order of the
equations.�

• Metric-affine gravity as an extension of the Palatini
formalism is not sufficiently developed yet. At the
moment of writing, it is not clear whether or not it
suffers from the same problems that afflict the Pala-
tini formalism.

Of course, as mentioned, the situation is often more
involved and cannot be summarized with a quick recipe.

B. Extensions of and new perspectives on f(R) gravity

We have treated f�R� gravity here as a toy theory and,
as stated in the Introduction, one of its merits is its rela-
tive simplicity. However, we have seen a number of vi-
ability issues related to such theories. One obvious way
to address this issue is to generalize the action even fur-
ther in order to avoid these problems, at the cost of
increased complexity. Several extensions of f�R� gravity
exist. Analyzing them in detail goes beyond the scope of
this review, but we make a brief mention of the most
straightforward of them.

We have discussed the possibility of having higher-
order curvature invariants, such as R��R��, in the action.
In fact, from a dimensional analysis perspective, the
terms R2 and R��R�� should appear at the same order.
However, theories of this sort seem to be burdened with
what is called the Ostrogradski instability �Woodard,
2007�. Ostrogradski’s theorem states that there is a

linear instability in the Hamiltonians associated with
Lagrangians, which depend on higher than first-order
derivatives in such a way that the dependence cannot be
eliminated by partial integration �Ostrogradski, 1850�.
f�R� gravity seems to be the only case that manages to
avoid this theorem �Woodard, 2007� and it obviously
does not seem very appealing to extend it in a way that
will spoil this.30

The alert reader has probably noticed that the above
holds true only for metric f�R� gravity. In Palatini f�R�
gravity �and metric-affine f�R� gravity�, as mentioned
earlier, one could add more dynamics to the action with-
out having to worry about making it second order in the
fields. Recall that, in practice, the independent connec-
tion is an auxiliary field. For instance, the term R��R��

still contains only first derivatives of the connection. In
fact, since we have traced the root of some of the most
crucial viability issues of Palatini f�R� gravity to the lack
of dynamics in the gravity sector, such generalizations
could actually help by promoting the connection from
the role of an auxiliary field to that of a truly dynamical
field �Barausse et al., 2008b�. Such generalizations have
been considered by Li, Barrow, and Mota �2007�.

Another extension of metric f�R� gravity that ap-
peared recently is that in which the action also includes
an explicit coupling between R and the matter fields.
Bertolami et al. �2007�, Bertolami and Paramos �2008�,
and Boehmer et al. �2008b� considered the action

S =� d4x�− g� f1�R�
2

+ �1 + �f2�R��Lm� , �241�

where Lm is the matter Lagrangian and f1,2 are �a priori
arbitrary� functions of the Ricci curvature R. Since the
matter is not minimally coupled to R, such theories will
not lead to energy conservation and will generically ex-
hibit a violation of the equivalence principle �which
could potentially be controlled by the parameter ��.

The motivation for considering such an action spelled
out by Bertolami et al. �2007� was that the nonconserva-
tion of energy could lead to extra forces, which in turn
might give rise to phenomenology similar to modified
Newtonian dynamics �MOND� gravity �Milgrom, 1983�
on galactic scales. Other variants of this action have also
been considered elsewhere: in Nojiri and Odintsov
�2004a�, as an alternative to dark energy by setting
f1�R�=R and keeping only the nonminimal coupling of
matter to the Ricci curvature; in Dolgov and Kawasaki
�2003b� and Mukohyama and Randall �2004�, where the
idea of making the kinetic term of a �minimally coupled�
scalar field dependent on the curvature, while keeping
f1�R�=R, was exploited in attempts to cure the cosmo-
logical constant problem. Bertolami and Paramos �2008�
studied the consequences of such a theory for stellar
equilibrium and generalized constraints in order to

30However, one could consider adding a function of the
Gauss-Bonnet invariant G=R2−4R��R��−R	
��R	
�� �Nojiri
and Odintsov, 2005; Cognola et al., 2006�.
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avoid the instability discussed in Sec. V.B.1 were derived
by Faraoni �2007a�. The viability of theories with such
couplings between R and matter is still under investiga-
tion. However, the case in which both f1 and f2 are linear
has been shown to be non-viable �Sotiriou, 2008� and,
for the more general case of the action �241�, serious
doubts have been expressed �Sotiriou and Faraoni, 2008�
on whether extra forces are indeed present in galactic
environments and, therefore, whether this theory can re-
ally account for the MOND-like phenomenology that
initially motivated its use in Bertolami et al. �2007� as a
substitute for dark matter.

One could also consider extensions of f�R� gravity in
which extra fields appearing in the action couple to dif-
ferent curvature invariants. A simple example with a
scalar field is the action �159�, which is sometimes called
extended quintessence �Perrotta et al., 2000� similarly to
the extended inflation realized with Brans-Dicke theory.
However, such generalizations lie beyond the scope of
this review.

Finally, it is worth mentioning a different perspective
on f�R� gravity. It is common in the literature reviewed
here to treat f�R� gravity as an exact theory: the gener-
alized action is used to derive field equations, the solu-
tions of which describe the exact dynamics of the gravi-
tational field �in spite of the fact that the action might
be only an approximation and the theory merely a toy
theory�. A different approach �Bel and Sirousse Zia,
1985; Simon, 1990� that was recently revived by DeDeo
and Psaltis �2008� is that of treating metric f�R� as an
effective field theory: That is, assuming that the extra
terms are an artifact of some expansion of which we are
considering only the leading order terms. Now, when we
consider a correction to the usual Einstein-Hilbert term,
this correction has to be suppressed by some coefficient.
This approach assumes that this coefficient controls the
order of the expansion and, therefore, the field equa-
tions and their solutions are only to be trusted to the
order with which that coefficient appears in the action
�higher orders are to be discarded�. Such an approach is
based on two assumptions: first, some power �or func-
tion� of the coefficient of the correction considered
should be present in all terms of the expansion; second,
the extra degrees of freedom �which manifest them-
selves as higher-order derivatives in metric f�R� gravity�
are actually an artifact of the expansion �and there
would be a cancellation if all orders were considered�.
This way, one can do away with these extra degrees of
freedom just by proper power counting. Since many of
the viability issues troubling higher-order actions are re-
lated to the presence of such degrees of freedom �e.g.,
classical instabilities�, removing these degrees of free-
dom could certainly alleviate many problems �DeDeo
and Psaltis, 2008�. However, the assumptions on which
this approach is based should not be underestimated ei-
ther. For instance, early results that showed renormal-
ization of higher-order actions were based on an exact
treatment, i.e., it is fourth-order gravity that is renormal-
izable �Stelle, 1977�. Even though, from one hand, the
effective field theory approach seems reasonable �these

actions are regarded as low-energy limits of a more fun-
damental theory anyway�, there is no guarantee that ex-
tra degrees of freedom should indeed not be present in a
nonperturbative regime.

C. Concluding remarks

Our goal was to present a comprehensive but still
thorough review of f�R� gravity in order to provide a
starting point for the reader less experienced in this field
and a reference guide for the expert. However, even
though we have attempted to cover all angles, no review
can replace an actual study of the literature itself. It
seems inevitable that certain aspects of f�R� might have
been omitted or analyzed less than rigorously, and there-
fore the reader is urged to resort to the original sources.

Although many shortcomings of f�R� gravity have
been presented, which may reduce the initial enthusiasm
with which one might have approached this field, the
fact that such theories are mostly considered as toy theo-
ries should not be missed. The fast progress in this field,
especially in the last five years, is probably obvious by
now. And very useful lessons, which have helped signifi-
cantly in the understanding of �classical� gravity, have
been learned in the study of f�R� gravity. In this sense,
the statement made in the Introduction that f�R� gravity
is a very useful toy theory seems to be fully justified.
Remarkably, there are still unexplored aspects of f�R�
theories or their extensions, such as those mentioned in
the previous section, which can turn out to be fruitful.
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