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For a few years now, cosmology has a standard model. By this term, we mean a consistent theoretical
background which is at the same time simple and broad enough to offer coherent explanations for the
vast majority of cosmological phenomena. This review will briefly summarize the cosmological model,
then proceed to discuss what we know from observations about the evolution of the Universe and its
contents and what we conclude about the origin and the future of the Universe and the structures it
contains.
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I. THE COSMOLOGICAL STANDARD MODEL

A. Historical outline

This review will not follow the historical sequence of
discoveries but rather present the arguments in perhaps
a more logical order than history has allowed. We begin
with a brief and necessarily fragmental historical outline.

Modern cosmology began in 1915 with Einstein’s
theory of general relativity, from which Friedmann in
1922 derived the homogeneous and isotropic class of
world models which to this date forms the foundation of
the cosmological standard model. His discovery that
static world models were impossible confirmed Einstein
in his introduction of the cosmological constant, which
he abandoned in the 1930s after Slipher, Hubble, and
Humason had discovered the cosmic expansion. Earlier,
Lemaître had speculated about a primordial fireball
which seemed the natural starting point of an expanding
universe.

First evidence for dark matter was found by Zwicky in
galaxy clusters and by Babcock and Oort in galaxies be-
tween 1933 and 1940. In 1946, Lifshitz worked out rela-
tivistic perturbation theory and started applying it to the
linear growth of cosmic structures. In the late 1940s,
Gamow, Alpher, and Herman worked out how nuclear
fusion may have proceeded in the early Universe and

predicted a cosmic radiation background with a tem-
perature of a few kelvin.

The cosmic microwave background �CMB� was dis-
covered by Penzias and Wilson and explained by Dicke
and collaborators in 1965. In 1970, Peebles and Yu as
well as Sunyaev and Zel’dovich independently predicted
structures in the CMB and found that they should have
relative amplitudes near 10−4, where subsequent
searches did not find them. Peebles suggested in 1982
that a lower CMB fluctuation level could be explained if
the dark matter could not interact with light. It was
quickly realized by means of the numerical simulations
by Davis, Efstathiou, Frenk, and White that cosmologi-
cal structure formation could be explained within the
emerging paradigm of cold dark matter �CDM�. This
paradigm experienced further strong support when tem-
perature fluctuations at the revised level were finally
found in the CMB with the Cosmic Background Ex-
plorer �COBE� satellite in 1992.

It was suggested by Guth in 1981 that a phase of in-
flationary expansion could solve the horizon and flatness
problems of Friedmann cosmology. Mukhanov and Chi-
bisov immediately saw that inflated quantum fluctua-
tions could be the origin of cosmic structures. At least in
simple scenarios, inflation requires a spatially flat uni-
verse and thus a total energy density equal to its critical
value, but it became obvious that matter alone cannot
be as dense. The difference was tentatively attributed to
the cosmological constant, which was confirmed by sev-
eral groups in the late 1990s through the accelerated
cosmic expansion inferred from type-Ia supernovae. The
cosmological standard model could be considered com-
plete when recent measurements of the CMB tempera-
ture fluctuations confirmed that the Universe is spatially
flat.

Modern cosmology is thoroughly described in many
textbooks. To mention a few, see Padmanabhan �1993�,
Peebles �1993�, Peacock �1999�, Coles and Lucchin
�2002�, Dodelson �2003�, Weinberg �2008�, and the text-
book on the CMB �Durrer, 2008�.

This review is structured as follows. The Introduction
proceeds by summarizing the framework of the Fried-
mann models in Sec. I.B and the growth of cosmic struc-
tures in Sec. I.C. Section II describes what we know
about the age of the Universe from its ingredients
through nuclear cosmochronology �Sec. II.A�, stars �Sec.
II.B�, and the cooling of white dwarfs �Sec. II.C�. In Sec.
III, measurements of the Hubble constant from Hub-
ble’s law �Sec. III.A� and gravitational lensing �Sec.
III.B� are reviewed. Big-Bang nucleosynthesis is the sub-
ject of Sec. IV, with sections on the production of light
elements �Sec. IV.A� and the observed element abun-
dances �Sec. IV.B�. Section V gives an overview of the
matter density in the Universe, as constrained by galax-
ies �Sec. V.A�, galaxy clusters as individual objects �Sec.
V.B�, and as an evolving population �Sec. V.C�. Section
VI on the cosmic microwave background begins with the
isotropic CMB �Sec. VI.A� and continues with its fluc-
tuations �Sec. VI.B�. Cosmic structures are reviewed in
Sec. VII, which starts with the quantification of struc-
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tures �Sec. VII.A� and continues with their measurement
and results obtained �Sec. VII.B�. Section VIII on cos-
mological weak lensing follows, in which gravitational
light deflection is first summarized �Sec. VIII.A� before
measurements are described �Sec. VIII.B�. Supernovae
of type Ia are the subject of Sec. IX, where the principles
of their cosmological application �Sec. IX.A�, the rea-
sons thereof, and the observational results are described
�Sec. IX.B�. Section X on the normalization of the
matter-fluctuation power spectrum begins with an intro-
duction �Sec. X.A� and continues describing constraints
from CMB fluctuations �Sec. X.B�, cosmological weak
lensing �Sec. X.C�, galaxy clusters �Sec. X.D�, and the
Lyman-� forest �Sec. X.E�. Section XI discusses the mo-
tivation and the evidence for cosmological inflation �Sec.
XI.A� and ends with remarks on dark energy �Sec.
XI.B�.

B. Friedmann models

1. The metric

Cosmology studies the physical properties of the Uni-
verse as a whole. The only one of the four known inter-
actions which can play a role on cosmic length scales is
gravity. Electromagnetism, the only other interaction
with infinite range, has sources of opposite charge which
tend to shield each other on comparatively very small
scales. Cosmic magnetic fields can perhaps reach coher-
ence lengths on the order of �10 Mpc, but they are far
too weak for them to be important for the cosmic evo-
lution. The weak and strong interactions, of course, have
microscopic range and must thus be unimportant for
cosmology as a whole.

The best current theory of gravity is Einstein’s theory
of general relativity, which relates the geometry of a
four-dimensional space-time manifold to its material and
energy content. Cosmological models must thus be con-
structed as solutions of Einstein’s field equations. Sym-
metry assumptions greatly simplify this process. Guided
by observations to be specified later, we assume that the
Universe appears approximately identical in all direc-
tions of observation; in other words, it is assumed to be
isotropic on average. While this assumption is obviously
incorrect in our cosmological neighborhood, it holds
with increasing precision if observations are averaged on
increasingly large scales. The assumption of isotropy can
only be valid in a preferred reference frame which is at
rest with respect to the mean cosmic motion. The mo-
tion of the Earth within this rest frame must be sub-
tracted before any observation can be expected to ap-
pear isotropic.

The second assumption asserts that the Universe
should appear equally isotropic about any of its points.
Then, it is homogeneous. Isotropic and homogeneous
solutions for Einstein’s field equations admit the
Robertson-Walker metric whose line element is

ds2 = − c2dt2 + a2�t��dw2 + fK
2 �w��d�2 + sin2 � d�2�� ,

�1�

with the radial coordinate w and the radial function

fK�w� = �K−1/2 sin�K1/2w� �K � 0�
w �K = 0�
�K�−1/2 sinh��K�1/2w� �K 	 0� .

� �2�

The curvature parameter K, which can be positive, nega-
tive, or zero, has the dimension of an inverse squared
length. The scale factor a�t� isotropically stretches or
shrinks the three-dimensional spatial sections of the
four-dimensional space-time. The scale factor is com-
monly normalized to a0=1 at the present time. As usual,
the line element ds gives the proper time measured by
an observer moving by „dw , fK�w�d� , fK�w�sin �d�…
within the coordinate time interval dt. For light, ds=0.

Observers attached to the coordinate grid �w ,� ,�� on
the spatial hypersurfaces for constant cosmological time
t are called comoving. The cosmic expansion does not
change the comoving coordinates x� , but the physical co-
ordinates r�=ax� .

2. Redshift and expansion

The changing scale of the Universe causes the cosmo-
logical redshift z. The wavelength of light from a distant
comoving source seen by a comoving observer changes
by the same amount as the Universe changes its scale
while the light is traveling. Thus, the emitted and ob-
served wavelengths 
 and 
0, respectively, are related by


0



=

a0

a
=

1

a
, �3�

where a is the scale factor at the time of emission. The
relative wavelength change is the redshift,

z �

0 − 




=

1

a
− 1, �4�

thus

1 + z = a−1, a = �1 + z�−1. �5�

When the metric is inserted into Einstein’s field equa-
tions, two ordinary differential equations result,

	 ȧ

a

2

=
8�G

3
� −

Kc2

a2 +
c2

3
, �6�

ä

a
= −

4�G

3
	� +

3p

c2 
 +
c2

3
, �7�

relating ȧ and ä to the density �, the pressure p, the
cosmological constant , and the curvature K. Equation
�7� can be eliminated and replaced by

d

dt
��c2a3� + p

d�a3�
dt

= 0, �8�

from which the change of � with a can be inferred once
p is given. Relativistic matter �r, “radiation”� has p
=�c2 /3, while nonrelativistic matter �m, “dust”� is char-
acterized by �c2�p�0. Thus
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�r � a−4, �m � a−3. �9�

For a model universe containing only matter, radia-
tion, and the cosmological constant, Eq. �6� can be
brought into the form

H2 = H0
2��r0

a4 +
�m0

a3 + �0 +
1 − �m0 − �r0 − �0

a2 
� H0

2E2�a� . �10�

This is commonly called Friedmann’s equation, in which
the relative expansion rate ȧ /a is replaced by the
Hubble function H�a� whose present value is the Hubble
constant H0�H�a0�=H�1�, and the matter-energy con-
tent is described by the three density parameters �r0,
�m0, and �0.

H0 is often expressed in dimensionless form by

h �
H0

100 km s−1 Mpc−1 . �11�

Since lengths in the Universe are typically measured
with respect to the Hubble length, they are often given
in units of h−1 Mpc. Similarly, luminosities are typically
obtained by multiplying fluxes with squared luminosity
distances and are thus often given in units of h−2L�. We
avoid this notation where possible in the following and
insert h=0.7 where appropriate.

The dimensionless parameters �m0 and �r0 describe
the densities of matter and radiation today in units of
the critical densities

�cr �
3H2

8�G
, �cr0 �

3H0
2

8�G
. �12�

A Robertson-Walker metric whose scale factor satis-
fies Friedmann’s equation is called a Friedmann-
Lemaître-Robertson-Walker metric. The cosmological
standard model asserts that the Universe at large is de-
scribed by such a metric and is thus characterized by the
four parameters �m0, �r0, �0, and H0. Since the critical
density and the densities themselves evolve in time, so
do the density parameters.

The remainder of this review article is devoted to an-
swering two essential questions: �1� What are the values
of the parameters characterizing Friedmann’s equation?
�2� How can we understand the deviations of the real
Universe from a purely homogeneous and isotropic
space-time?

Table I, adapted from Komatsu et al. �2009�, summa-
rizes the most important cosmological parameters and
the values adopted below unless stated otherwise.

3. The radiation-dominated phase

It is an empirical fact that the Universe is expanding.
Earlier in time, therefore, the scale factor must have
been smaller than today, a	1. In principle, it is possible
for Friedmann models to never reach a vanishing scale,
a=0, within finite time into the past. However, a few
crucial observational results suffice to rule out such
“bouncing” models. This implies that a Universe like
ours which is expanding today must have started from
a=0 a finite time ago; thus, there must have been a big
bang.

Equation �10� shows that the radiation density in-
creases like a−4 as the scale factor decreases, while the
matter density increases with one power of a less. Even
though the radiation density is much smaller today than
the matter density, there must have been a period in the

TABLE I. Cosmological parameters obtained from the 5-yr data release of WMAP �Komatsu et al.,
2009�, without and with the additional constraints imposed by baryonic acoustic oscillations �BAOs�
�Sec. VII.A.6� and type-Ia supernovae �SNe� �Sec. IX�. The dimensionless Hubble constant h is
defined in Eq. �11�, the normalization parameter �8 in Eq. �267�, and the spectral index in Eq. �28�.
Reionization is discussed in Sec. X.B.2. Note that spatial flatness �K=0� was assumed in deriving
most of these values, as mentioned in last column.

Parameter Symbol

WMAP-5

CommentAlone
+BAO+SNe
�reference�

CMB temperature TCMB 2.728±0.004 K From Fixsen et al., 1996
Total energy density �tot 1.099−0.085

+0.100 1.0052±0.0064

Matter density �m0 0.258±0.03 0.279±0.015 Assuming spatial flatness
Baryon density �b0 0.0441±0.0030 0.0462±0.0015 Here and below
Cosmological constant �0 0.742±0.03 0.721±0.015
Hubble constant h 0.719−0.027

+0.026 0.701±0.013

Power-spectrum normalization �8 0.796±0.036 0.817±0.026
Age of the Universe in Gyr t0 13.69±0.13 13.73±0.12
Decoupling redshift zdec 1087.9±1.2 1088.2±1.1
Reionization optical depth � 0.087±0.017 0.084±0.016
Spectral index ns 0.963−0.015

+0.014 0.960−0.013
+0.014
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early evolution of the Universe when radiation domi-
nated the energy density. The scale factor when both
densities were equal is called aeq. This radiation-
dominated era is very important for several observa-
tional aspects of the cosmological standard model. Since
the radiation retains the Planckian spectrum which it
acquired in the very early Universe in the intense inter-
actions with charged particles, its energy density is fully
characterized by its temperature T. As the energy den-
sity is proportional to both T4 and a−4, its temperature
falls like T�a−1.

At the times relevant for our purposes, only photons
and neutrinos need to be considered as relativistic spe-
cies. Since photons are heated by electron-proton anni-
hilation after neutrinos decoupled from the cosmic fluid,
the photons are heated above the neutrinos by a factor
�11/4�1/3, which follows directly from entropy conserva-
tion. If T is the temperature of the cosmic microwave
background after electron-positron annihilation, the en-
ergy densities in the photons and the three neutrino spe-
cies are

�r,CMB =
�2

15
�kT�4

��c�3 , �r,� = 3 �
7
8
� 	 4

11

4/3

�r,CMB

�13�

or, as long as all neutrino species are relativistic,

�r = �r,CMB�1 +
21
8
	 4

11

4/3 � 1.68�r,CMB. �14�

4. Age, distances, and horizons

Since Friedmann’s equation gives the relative expan-
sion rate ȧ /a, we can use it to infer the cosmic time,

t = �
0

t

dt� = �
0

a�t� da

ȧ
= �

0

a�t� da

aH�a�
=

1

H0
�

0

a�t� da

aE�a�
,

�15�

which illustrates that the age scale is the inverse Hubble
constant H0

−1. A simple example is given by the
Einstein–de Sitter model, which �unrealistically� as-
sumes �m0=1, �r0=0, and �=0. Then, from Eq. �10�,
E�a�=a−3/2 and

t =
1

H0
�

0

1
�ada =

2

3H0
. �16�

The cosmic age is t0= t�a0�= t�1�. The cosmic time and
the lookback time t0− t are shown in Fig. 1 as functions
of the redshift.

Distances can be defined in many ways which typically
lead to different expressions. The proper distance Dprop
is the distance measured by the light-travel time, thus

dDprop = cdt ⇒ Dprop =
c

H0
� da

aE�a�
, �17�

where the integral has to be evaluated between the scale
factors of emission and observation of the light signal.

The comoving radial coordinate w is the comoving dis-
tance measured along a radial light ray. Since light rays
propagate with zero proper time, ds=0, this gives

dw =
cdt

a
⇒ w = c� da

aȧ
=

c

H0
� da

a2E�a�
. �18�

The angular-diameter distance Dang is defined such that
the same relation as in Euclidean space holds between
the physical size of an object and its angular size. It turns
out to be

Dang�a� = afK�w�a�� , �19�

with fK�w� given by Eq. �2�. The luminosity distance
Dlum is analogously defined to reproduce the Euclidean
relation between the bolometric luminosity of an object
and its observed flux. This results in

Dlum�a� =
Dang�a�

a2 =
fK�w�a��

a
. �20�

Figure 2 shows the angular diameter and the proper dis-
tance as functions of redshift.

These distance measures rapidly diverge for scale fac-
tors a	1. For small distances, i.e., for a�1, they all re-
produce the linear relation

D�z� = cz/H0. �21�

Since time is finite in a universe with a big bang, any
particle can only be influenced by and can only influence
events within finite regions, called horizons. Several dif-
ferent definitions of horizons exist. They are typically
characterized by some speed, e.g., the light speed, times
the inverse Hubble function which sets the time scale.

C. Structures

1. Structure growth

The hierarchy of cosmic structures is assumed to have
grown from primordial seed fluctuations in the process

0
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0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

tim
e
(G
yr
)

redshift z

cosmic time
lookback time

FIG. 1. Cosmic time �solid curve� and lookback time �present
age of the Universe minus cosmic time� in Gyr as functions of
redshift. Here and below, the parameters labeled as “refer-
ence” in Table I are used.
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of gravitational collapse: overdense regions attract ma-
terial and grow. They are described by the density con-
trast ��x� , t� as a function of the comoving coordinates x� ,
which is the density fluctuation relative to the mean den-
sity �̄�t�,

��x� ,t� �
��x� ,t� − �̄�t�

�̄�t�
. �22�

Linear perturbation theory shows that, during the
matter-dominated era, the density contrast � of subhori-
zon perturbations is described by the second-order dif-
ferential equation

�̈ + 2H�̇ − 4�G�̄� = 0 �23�

if the dark matter is cold, i.e., if dark-matter flows have
negligible velocity dispersion. Equation �23� has two so-
lutions, one growing and one decaying. While the latter
is irrelevant for structure growth, the growing mode is
described by the growth factor D+�a�, defined such that
the density contrast at the scale factor a is related to the
density contrast today �0 by ��a�=�0D+�a�. In most cases
of practical relevance, the growth factor is accurately
described by

D+�a� = G�a�/G�1� �24�

with the fitting formula

G�a� � a�m��m
4/7 − � + 	1 +

�m

2

	1 +

�

70

−1

,

�25�

where the density parameters have to be evaluated at
the scale factor a. For a standard cosmological model,
Eq. �25� deviates from the accurate solution by �0.2%
for a� �0.01,1�. The linear growth factor is shown in Fig.
3 together with the fractional cosmic age t / t0.

An important length scale for cosmic structure growth
is set by the horizon size at the end of the radiation-
dominated phase. Structures smaller than that became
causally connected while radiation was still dominating.

The fast expansion due to the radiation density inhibited
further growth of such structures until the matter den-
sity started dominating. Small structures are thus sup-
pressed compared to large structures, which became
causally connected only after radiation domination. The
horizon radius weq at the end of the radiation-dominated
era thus separates larger structures which could grow
without inhibition from smaller structures which were
suppressed during radiation domination. In comoving
coordinates,

weq = 2��2 − 1�
c

H0
	 aeq

�m0

1/2

. �26�

2. The power spectrum

It is physically plausible that the density contrast in
the Universe is a Gaussian random field, i.e., that the
probability for finding a density contrast between � and
�+d� is given by a Gaussian distribution. The principal
reason for this is the central limit theorem. A Gaussian
random process is characterized by two numbers, the
mean and the variance. By construction, the mean of the
density contrast vanishes, such that the variance defines
it completely.

In linear approximation, density perturbations grow in
place, as Eq. �23� shows because the density contrast at
one comoving position x� does not depend on the density
contrast at another. As long as structures evolve linearly,
their scale will be preserved, which implies that it is ad-
vantageous to study structure growth in Fourier rather

than real space. The variance of the density contrast �̂�k� �
at the comoving wave vector k� in Fourier space is called
the power spectrum

��̂�k� ��̂*�k���� � �2��3P��k��D�k� − k��� , �27�

where the Dirac function �D ensures that modes with
different wave vectors are independent.

Once the power spectrum is known, the statistical
properties of the linear density contrast are completely
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FIG. 2. Angular-diameter distance �solid curve� and proper
distance in Mpc as functions of redshift.
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growth as functions of redshift.
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specified. It is a remarkable fact that two simple assump-
tions about the nature of the cosmic structures and the
dark matter constrain the shape of P��k� completely. If
the rms mass fluctuation enclosed by the horizon is in-
dependent of time and if the dark matter is cold, the
power spectrum will behave as

P��k� � �kns �k � keq�
kns−4 �k � keq� ,

� �28�

with the spectral index ns=1 �Harrison, 1970; Peebles
and Yu, 1970; Zeldovich, 1972; Peebles, 1982; Weinberg,
2008�. The comoving wave number keq=0.01 Mpc−1 of
the peak location in the power spectrum is set by the
comoving horizon radius at matter-radiation equality
weq given in Eq. �26�. The steep decline for structures
smaller than weq reflects the suppression of structure
growth during radiation domination. Figure 4 shows the
linearly and the nonlinearly evolved power spectra of
CDM.

3. Nonlinear evolution

As the density contrast approaches unity, its evolution
becomes nonlinear. In the course of nonlinear evolution,
overdensities contract, causing matter to flow from
larger to smaller scales. Power in the density-fluctuation
field is thus transported toward smaller modes or toward
larger wave numbers k. This mode coupling process de-
forms the power spectrum on small scales, i.e., for large
k. Detailed studies of the nonlinear evolution of cosmic
structures require numerical simulations, which need to
cover large scales and to resolve small scales well at the
same time. Much progress has been achieved in this field
within the last two decades due to the fortunate combi-
nation of increasing computer power with highly sophis-
ticated numerical algorithms, such as particle-mesh and
tree codes, and adaptive mesh refinement techniques
�Efstathiou et al., 1985; Barnes and Hut, 1986; Hockney
and Eastwood, 1988; Springel and Hernquist, 2002;
Monaghan, 2005�.

The onset of nonlinear evolution can be described by

the so-called Zel’dovich approximation, which approxi-
mately describes particle trajectories �Zel’dovich, 1970�.
Although the Zel’dovich approximation breaks down
as the nonlinear evolution proceeds, it is remarkable
for two applications. First, it allows a computation of
the shapes of collapsing dark-matter structures and ar-
rives at the conclusion that the collapse must be aniso-
tropic, leading to the formation of sheets and filaments
�Doroshkevich, 1970�. Filamentary structures thus ap-
pear as a natural consequence of gravitational collapse
in a Gaussian random field. Second, it provides an ex-
planation for the origin of the angular momentum of
cosmic structures.

II. THE AGE OF THE UNIVERSE

A. Nuclear cosmochronology

1. The age of the Earth

How old is the Universe? We have no direct way to
measure how long ago the Big Bang happened, but
there are various ways to set lower limits to the age of
the Universe. They are all based on the same principle:
since the Universe cannot be younger than any of its
parts, it must be older than the oldest objects it contains.
Three methods for age determination have been devel-
oped. One is based on the radioactive decay of long-
lived isotopes, another constrains the age of globular
clusters, and the third is based on the age of white
dwarfs.

Nuclear cosmochronology compares the measured
abundances of certain long-lived radioactive isotopes
with their initial abundances, which are eliminated by
comparing abundances in different probes.

To give a specific example, consider the two uranium
isotopes 235U and 238U. They both decay into stable lead
isotopes, 235U→ 207Pb through the actinium series and
238U→ 206Pb through the radium series. The abundance
of any of these two lead isotopes is the sum of the initial
abundance plus the amount produced by the uranium
decay, e.g.,

N207 = N207,0 + N235�e
235t − 1� �29�

for 207Pb, where N235 is the abundance of 235U nuclei
today. A similar equation with 235 replaced by 238 and
207 replaced by 206 holds for the decay of 238U to 206Pb.
The decay constants for the two uranium isotopes are
measured as


235 = �1.015 Gyr�−1, 
238 = �6.45 Gyr�−1. �30�

The idea is now that ores on Earth or meteorites
formed during a period very short compared to the age
of the Earth te, so that their abundances can be assumed
to have been locked up instantaneously and simulta-
neously a time te ago. Chemical fractionation has given
different abundances to different samples but could not
distinguish between different isotopes of the same ele-
ment. Thus, we expect different samples to show differ-
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ent isotope abundances, but identical abundance ratios
between different isotopes.

The unstable lead isotope 204Pb has no long-lived par-
ents and is therefore a measure for the primordial lead
abundance. Thus, the abundance ratios between 206Pb
and 207Pb to 204Pb calibrate the abundances in different
samples. Suppose we have two independent samples a
and b, in which the abundance ratios

R206 � N206/N204 and R207 � N207/N204 �31�

are measured. They are given by

Ri = Ri,0 +
Nj

N204
�e
jte − 1� , �32�

with �i , j�= �206,238� or �207,235�. The present lead
abundance ratios R206,0 and R207,0 should be the same in
the two samples and cancel when the difference between
the ratios in the two samples is taken. Then, the ratio of
differences can be written as

R207
a − R207

b

R206
a − R206

b =
N235

N238

e
235te − 1

e
238te − 1
. �33�

Once the lead abundance ratios have been measured in
the two samples, and the present uranium isotope ratio

N235/N238 = 0.007 25 �34�

is known, the age of the Earth te is the only unknown in
Eq. �33�. This method yields �Patterson, 1956; Wasser-
burg et al., 1977�

te = 4.6 ± 0.1 Gyr. �35�

2. The age of the Galaxy

A variant of this method can be used to estimate the
age of the Galaxy, but this requires a model for how the
radioactive elements were formed during the lifetime of
the Galaxy until they were locked up in samples where
we can measure their abundances today. Again, we can
assume that the Galaxy formed quickly compared to its
age tg.

Suppose there was an instantaneous burst of star for-
mation and subsequent supernova explosions a time tg
ago and no further production thereafter. Then, the ra-
dioactive elements found on Earth today decayed for
the time tg− te until they were locked up when the Solar
System formed. If we can infer from supernova theory
the initially produced abundance ratio N235/N238, we can
conclude from its present value �Eq. �34�� and the age of
the Earth what the age of the Galaxy must be.

The situation is slightly more complicated because el-
ement production did not stop after the initial burst.
Suppose that a fraction f of the total number Np of the
heavy nuclei locked up in the Solar System was pro-
duced in a burst at t=0 and the remaining fraction 1− f
was added at a steady rate until t= tg− te when the Earth
was formed. Given the constant production rate p, the
abundance of a radioactive element with decay constant

 is

N = Ce−
t + p/
 �36�

before tg− te, with a constant C to be suitably chosen,
and

N = N0e−
�t−�tg−te�� �37�

thereafter, where N0 is the abundance of the element
locked up in the Solar System, as before. The initial con-
ditions then require

N�0� = C + p/
 = fNp �38�

after the burst at t=0, thus

N�tg − te� = e−
�tg−te��fNp +
p



�e
�tg−te� − 1� �39�

when the Earth formed and

N�tg� = e−
tg�fNp +
p



�e
�tg−te� − 1� �40�

today when the Galaxy reaches its age tg. Since the pro-
duction rate must be

p = �1 − f�Np/�tg − te� , �41�

the present abundance is

N = Npe−
tg�f +
�1 − f�

�tg − te�

�e
�tg−te� − 1� �42�

in terms of the produced abundance Np. Supernova
theory says that the produced abundance ratio of the
isotopes 235U and 238U is �Cowan et al., 1987, 1991�

N235,p/N238,p = 1.4 ± 0.2. �43�

Taking the ratio of Eq. �42� for the present abundances
of 235U and 238U and inserting the decay constants from
Eq. �30�, the abundance ratios from Eqs. �34� and �43�
and the age of the Earth te from Eq. �35� yield an equa-
tion which contains only the age of the Galaxy tg in
terms of the assumed fraction f. This gives

tg = �6.3 ± 0.2 Gyr, f = 1

8.0 ± 0.6 Gyr, f = 0.5

12 ± 2 Gyr, f = 0.
� �44�

More detailed models �Meyer and Schramm, 1986;
Cowan et al., 1987, 1991; Fowler, 1989� yield comparable
results. Common assumptions and results from galaxy-
formation theory assert that at least 1 Gyr is necessary
before galactic disks could have been assembled. There-
fore, nuclear cosmochronology constrains the age of the
Galaxy to fall approximately within

7 � tg � 13 Gyr. �45�

Interestingly, nuclear cosmochronology has also been
applied to metal-poor and therefore presumably very
old stars, in which heavy elements are nonetheless over-
abundant. For example, Cayrel et al. �2001� constrained
the age of such a star to 12.5±3 Gyr.
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B. Stellar ages

Another method for measuring the age of the Uni-
verse caused much trouble for cosmologists for a long
time. It is based on stellar evolution and exploits the fact
that the time spent by stars on the main sequence of the
Hertzsprung-Russell or color-magnitude diagram �see
Fig. 5� depends sensitively on their mass and thus on
their color.

Stars are described by the stellar-structure equations,
which relate the mass M, the density �, and the pressure
p to the radius r and specify the temperature T and the
luminosity L. They are

dp

dr
= −

GM�

r2 ,
dM

dr
= 4�r2� , �46�

which simply state hydrostatic equilibrium and mass
conservation, and

dT

dr
=

3L��

4�r2aSBcT3 ,
dL

dr
= 4�r2�� , �47�

which describe radiative energy transport and energy
production. � is the opacity of the stellar material, � is
the energy production rate per unit mass, and aSB is the
Stefan-Boltzmann constant. Assuming � is independent
of temperature, the energy-transport equation, the mass
conservation, the hydrostatic equilibrium, and the equa-
tion of state for an ideal gas yield the scaling relations

L �
RT4

�
, M � �R3, p �

�M

R
, p � �T . �48�

The second pair of equations gives T�M /R, which
yields L�M3 when inserted into the first pair.

The total lifetime � of a star on the main sequence
must scale as L��M because the total energy radiated
L� must be a fraction of the total rest-mass energy. To-
gether with the earlier result, we find

� � M/L � M−2 � L−2/3. �49�

According to the Stefan-Boltzmann law, the star’s lumi-
nosity must be

L � R2T4 ⇒ R2 � M3/T4, �50�

but we also know from above that T�M /R. Thus

R2 �
M3R4

M4 �
R4

M
⇒ R � M1/2, T � M1/2, �51�

and the lifetime � on the main sequence turns out to
scale as ��T−1 by Eq. �49�. Afterwards, stars move away
from the main sequence toward the giant branch. Thus,
as a coeval stellar population ages, the point in its
Hertzsprung-Russell diagram up to which the main se-
quence remains populated moves toward lower lumi-
nosities and temperatures along �L ,T����−3/2 ,�−1�. Old
coeval stellar populations exist: they are the globular
clusters which surround the center of the Galaxy in an
approximately spherical halo. Therefore, the main-
sequence turn-off points can be used to derive lower
limits to the age of the Galaxy and the Universe.

In practice, such age determinations proceed by
adapting simulated stellar-evolution tracks to the
Hertzsprung-Russell diagrams of globular clusters and
assigning the age of the best-fitting stellar-evolution
model to the cluster �Renzini and Fusi Pecci, 1988;
Straniero and Chieffi, 1991; VandenBerg, 2000�. The
simulated stellar-evolution tracks depend on the as-
sumed metalicity of the stellar material, which changes
the opacity and thus the energy transport through the
stars.

Since observations cannot tell the luminosity of the
turn-off point on the main sequence, but only its appar-
ent brightness, age determinations from globular clus-
ters require observations measuring both the apparent
brightness of the main sequence turnoff and the distance
to the globular cluster. There are several ways for esti-
mating cluster distances. One uses the period-luminosity
relation of a class of variable stars, the RR Lyrae stars,
which are similar to the Cepheids that will play a central
role in the next section. Another method exploits that
stars on the horizontal branch have a typical luminosity
and can thus be used to calibrate the cluster distance.

Therefore, uncertainties in the distance determina-
tions directly translate to uncertainties in the age deter-
minations. If the distance is overestimated, so is the lu-
minosity, which implies that the age is underestimated
and vice versa. Globular clusters typically appeared to
have ages well above estimates based on the cosmologi-
cal parameters assumed �VandenBerg, 1983; Sandage
and Cacciari, 1990�. In the past decade or so, this has
changed because improvements in stellar-evolution
theory and direct distance measurements with the Hip-
parcos satellite have lowered the globular-cluster ages,

FIG. 5. �Color online� Hertzsprung-Russell or color-magnitude
diagram of the globular cluster M 68. The magnitude is a loga-
rithmic measure of the luminosity; colors are defined as mag-
nitude differences. Stars populate the main sequence while
burning hydrogen, then turn away from it toward the giant
branch. The main sequence turnoff is clearly visible. Courtesy
of Achim Weiß.
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while recently determined cosmological parameters
yield a higher age for the Universe as assumed before
�Salaris, degl’Innocenti, and Weiss, 1997; Chaboyer
et al., 1998�. Now, globular-cluster ages imply

t0 � 12.5 ± 1.3 Gyr �52�

for the age of the Universe, allowing for a Gyr between
the Big Bang and the formation of the globular clusters
�Chaboyer, 1998�. The uncertainty in this result may still
be considerable though �see, e.g., Grundahl et al. �2000��.

C. Cooling of white dwarfs

A third method for cosmic age determinations is
based on the cooling of white dwarfs �see Hansen and
Liebert �2003� for a review�. They are the end products
in the evolution of low-mass stars and form when the
nuclear fuel in the stellar cores is exhausted. This hap-
pens typically when a core of carbon and oxygen has
formed and temperature necessary for further fusion
cannot be reached. The C-O core then shrinks until it is
stabilized by electron degeneracy pressure. At this point,
the mean free path of the electrons becomes effectively
infinite and the core turns isothermal.

The pressure of a degenerate electron gas is indepen-
dent of temperature and depends only on the density. In
the nonrelativistic limit, p��5/3 or

p �
M5/3

R5 and
p

R
�

GM�

R2 �
GM2

R5 , �53�

where the latter two equations express hydrostatic equi-
librium. Together, these relations imply R�M−1/3, show-
ing that more massive white dwarfs have smaller radii.
Their surface gravity

g � M/R2 � M5/3, �54�

which can be determined from their spectra, is thus a
direct measure for their mass. It turns out that the vast
majority of white dwarfs are born with similar masses,
Mwd��0.55±0.05�M� �Cool et al., 1996�, which is a con-
spiracy of stellar evolution: more massive stars lose
more mass through stellar winds before they turn into
white dwarfs.

Except for the latent heat of crystallization, white
dwarfs cool passively by radiating the thermal energy
stored by their mass. Being born with essentially the
same mass, they start with very similar amounts of ther-
mal energy. Their temperatures and luminosities are de-
termined by the radiation processes and the opacities of
their atmospheres, which in turn depend on their metal-
icities. Age inferences from white dwarfs thus require
that their metalicities be known and the energy trans-
port through their atmospheres be modeled.

After an initial short phase of rapid neutrino cooling,
the energy loss slows down. This change in cooling time
causes the white dwarfs to pile up at the temperature
and the luminosity where the energy loss due to neutri-
nos falls below that due to radiative cooling. Thus, as
time proceeds, their luminosity distribution develops a

peak which is later slowly depopulated. Models for the
white-dwarf cooling sequence allow the construction of
time-dependent theoretical luminosity distributions
from which, by comparison with the observed luminosity
distribution, the age of a white-dwarf population can be
determined. This method yields

twd � 9.5 ± 1 Gyr �55�

for the age of white dwarfs in the galactic disk �Oswalt et
al., 1996; Salaris, Dominguez, et al., 1997; Chaboyer,
1998�. If we assume that massive spiral disks form at
redshifts below z�3, the implied age of the Universe is

t0 � 11 ± 1.4 Gyr. �56�

The age of the white-dwarf population in the globular
cluster M 4 has been measured to be �12.1 Gyr
�Hansen et al., 2004�.

D. Summary

Combining results, we see that the age of the Uni-
verse, as measured by its supposedly oldest parts, is at
least �11 Gyr, and this places serious cosmological con-
straints. In the framework of the Friedmann-Lemaître
models, they can be interpreted as limits on the cosmo-
logical parameters. Suppose we lived in an Einstein–de
Sitter universe with �m0=1 and �0=0. Then, we know
from Eq. �16� that

t0 = 2/3H0 � 11 Gyr ⇒ H0 � 2 � 10−18 s �57�

or H0�61 km s−1 Mpc−1 in conventional units. The
Hubble constant is measured to be larger than this,
which can immediately be interpreted as an indication
that we are not living in an Einstein–de Sitter universe.

III. THE HUBBLE CONSTANT

A. Hubble constant from Hubble’s law

1. Hubble’s law

Slipher discovered preceding 1920 that distant galax-
ies typically move away from us �Slipher, 1927�. Hubble
found that their recession velocity grows with distance,

� = H0D , �58�

and determined the constant of proportionality as H0
�559 km s−1 Mpc−1 �Hubble and Humason, 1931�. We
had seen in Eq. �21� that all distance measures in a
Friedmann-Lemaître universe follow the linear relation

D = cz/H0 �59�

to first order in z�1. Since cz=� is the velocity accord-
ing to the linearized relation between redshift and veloc-
ity, Eq. �59� is exactly the relation Hubble found.

The problem with any measurement of the Hubble
constant from Eq. �58� is that, while Eq. �59� holds for an
idealized, homogeneous, and isotropic universe, real gal-
axies have peculiar motions on top of their Hubble ve-
locity which are caused by the attraction from local den-
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sity inhomogeneities. For instance, galaxies in our
neighborhood feel the gravitational pull of a cosmologi-
cally nearby supercluster called the great attractor and
accelerate toward it. The galaxy M31 in Andromeda is
moving within the local group of galaxies and ap-
proaches the Milky Way.

Thus, the peculiar velocities of the galaxies either
must be known well enough, for which a model for the
velocity field is necessary, or they must be observed at
such large distances that any peculiar motion is unim-
portant compared to their Hubble velocity. Requiring
that the typical peculiar velocities, of order
300–600 km s−1, be less than 10% of the Hubble veloc-
ity, galaxies with redshifts

z � 10�
�300 – 600� km s−1

c
� 0.01 – 0.02 �60�

need to be observed. This is already so distant that it is
hard or impossible to apply simple geometric distant es-
timators. This illustrates why accurate measurements of
the Hubble constant are so difficult: nearby galaxies,
whose distances are more accurately measurable, do not
follow the Hubble expansion well, but the distances to
galaxies far enough to follow the Hubble law are very
hard to measure �see Sandage and Tammann �1974� for
an account of the difficulties�.

2. The distance ladder

Measurements of the Hubble constant from Hubble’s
law thus require accurate distance measurements out to
cosmologically relevant distance scales. Since this is im-
possible in one step, the so-called distance ladder must
be applied, in which each step calibrates the next.

The most fundamental distance measurement in the
astrophysical toolbox is the trigonometric parallax
caused by the annual motion of the Earth around the
Sun. By definition, a star at a distance of a parsec per-
pendicular to the Earth’s orbital plane has a parallax of
1 arc sec. Astrometric measurement accuracies of order
10−5� are thus necessary to measure distances of order
10 kpc. Although the astrometric satellite Hipparcos
could measure distances only to �1 kpc, its results
were used to calibrate the distance ladder with nearby
stars. In this way, it was possible to determine the
distance to the Large Magellanic Cloud as DLMC
=54.0±2.5 kpc �Feast and Catchpole, 1997�. An inde-
pendent distance estimate based on the elliptical ring
that appeared around the supernova 1987A gave DLMC
=46.77±0.04 kpc �Gould 1995; see also Panagia et al.,
1991�.

The next important step in the distance ladder is
formed by the Cepheids. These are stars in late evolu-
tionary stages which undergo periodic variability. The
underlying instability is driven by the temperature de-
pendence of the atmospheric opacity in these stars,
which is caused by the transition between singly and
doubly ionized helium. The cosmologically important as-
pect of the Cepheids is that their variability period � and
their luminosity L are related,

L � �1.1 �61�

in the V band �Feast and Walker, 1987; Madore and
Freedman, 1991; Udalski et al., 1999�, hence their lumi-
nosity can be inferred from their variability period and
their distance from the ratio of their luminosity to the
flux S observed from them,

D = �L/4�S . �62�

At the relevant distances, any distinction between differ-
ently defined distance measures is irrelevant.

It is important here that the calibration of the period-
luminosity relation depends on the metalicity of the pul-
sating variables used and thus on the stellar population
they belong to. Hubble’s originally much too high result
for H0 was corrected when Baade realized that he had
confused a metal-poor class of variable stars with the
metal-rich Cepheids �Baade, 1956�.

Measuring the periods of Cepheids and comparing
their apparent brightnesses in different galaxies thus al-
low determination of the relative distances to the galax-
ies. For example, comparisons between Cepheids in the
LMC and the Andromeda galaxy M31 show �Feast and
Catchpole, 1997�

DM31/DLMC = 16.4 ± 1.1, �63�

while Cepheids in the member galaxies of the Virgo
cluster yield �Freedman et al., 2001�

DVirgo/DLMC = 305 ± 16. �64�

Of course, for the Cepheid method to be applicable, it
must be possible to resolve at least the outer parts of
distant galaxies into individual stars and to reliably iden-
tify Cepheids among them. This was one reason why the
Hubble Space Telescope �HST� was proposed �Freedman
et al., 1994� to apply the superb resolution of an orbiting
telescope to the measurement of H0. Cepheid distance
measurements are possible to distances �30 Mpc.

Scaling relations within classes of galaxies provide ad-
ditional distance indicators. In the three-dimensional pa-
rameter space spanned by the velocity dispersion �� of
their stars, the radius Re enclosing half the luminosity,
and the surface brightness Ie within Re, elliptical galaxies
populate the tight fundamental plane �Djorgovski and
Davis, 1987; Dressler et al., 1987� defined by

Re � ��
1.4Ie

−0.85. �65�

Since the luminosity must be

L � IeRe
2, �66�

the fundamental-plane relation implies

L � ��
2.8Ie

−0.7. �67�

Such a relation follows directly from the virial theorem
if the mass-to-light ratio in elliptical galaxies increases
gently with mass,
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M/L � M0.2. �68�

Thus, if it is possible to measure the surface brightness Ie
and the velocity dispersion �� of an elliptical galaxy, the
fundamental-plane relation gives the luminosity, which
can be compared to the flux to find the distance.

An interesting way for determining distances to galax-
ies uses the fluctuations in their surface brightness
�Tonry and Schneider, 1988; Tonry et al., 1997, 2000�.
The idea behind this method is that the fluctuations in
the surface brightness will be dominated by the rare
brightest stars and that the optical luminosity of the en-
tire galaxy will be proportional to the number N of such
stars. Assuming Poisson statistics, the fluctuation level
will be proportional to �N, from which N and L�N can
be determined once the method has been calibrated
with galaxies whose distance is known otherwise. Again,
the distance is then found by comparing the flux to the
luminosity.

Planetary nebulae, which are late stages in the evolu-
tion of massive stars, have a luminosity function with a
steep upper cutoff �Jacoby, 1980; Hui et al., 1993�. More-
over, their spectra are dominated by sharp nebular emis-
sion lines which facilitate their detection even at large
distances because they appear as bright objects in
narrow-band filters tuned to the emission lines. Since the
cutoff luminosity is known, it can be converted to a dis-
tance.

An important class of distance indicators is superno-
vae of type Ia. As described in Sec. IX.B, their luminosi-
ties can be standardized, allowing their distances to be
inferred from their fluxes.

Although they are not standard �or standardizable�
candles, core-collapse supernovae of type II can also be
used as distance indicators through the Baade-Wesselink
method �Baade, 1926; Wesselink 1946�. Suppose the
spectrum of the supernova photosphere can be approxi-
mated by a Planck curve whose temperature can be de-
termined from the spectral lines. Then, the Stefan-
Boltzmann law fixes the total luminosity,

L = �SBR2T4. �69�

The photospheric radius, however, can be inferred from
the expansion velocity of the photosphere, which is mea-
surable by the Doppler shift in the emission lines, times
the time after the explosion. When applied to the super-
nova SN 1987A in the Large Magellanic Cloud, the
Baade-Wesselink method yields a distance of

DLMC = 49 ± 3 kpc �70�

based on infrared photometry �Schmidt et al., 1992�
which agrees with the direct distance measurements
�Gould, 1995�. Note that the Bade-Wesselink method
gives a one-step geometrical distance indicator bypass-
ing the distance ladder.

3. The HST key project

All these distance indicators were used in the HST
key project �Freedman et al., 2001� to determine accurate

distances to 26 galaxies between 3 and 25 Mpc and five
very nearby galaxies for testing and calibration.

Double-blind photometry was applied to the identi-
fied distance indicators. Since Cepheids tend to lie in
star-forming regions and are thus attenuated by dust and
since their period-luminosity relation depends on metal-
icity, respective corrections had to be carefully applied.
Then, the measured velocities had to be corrected by the
peculiar velocities, which were estimated by a model for
the flow field. The estimated luminosities of the distance
indicators could then be compared with the extinction-
corrected fluxes to determine distances, whose propor-
tionality with the velocities corrected by the peculiar
motions finally gave the Hubble constant. A weighed
average over all distance indicators is �Freedman et al.,
2001�

H0 = 72 ± 8 km s−1 Mpc−1, �71�

where the error is the square root of the systematic and
statistical errors summed in quadrature. An alternative
interpretation of the data is summarized by Sandage et
al. �2006�, who found a 14% smaller value for H0 be-
cause of a different calibration. Recently observations in
the near infrared of 240 Cepheids were used to improve
the value of the Hubble constant to

H0 = 74.2 ± 3.6 km s−1 Mpc−1 �72�

�Riess et al., 2009�.

B. Gravitational lensing

A completely different method for determining the
Hubble constant uses gravitational lensing. Masses bend
passing light paths toward themselves and therefore act
similarly to convex glass lenses. As in ordinary geometri-
cal optics, this effect can be described applying Fermat’s
principle to a medium with an index of refraction
�Schneider et al., 1992�

n = 1 − 2�/c2, �73�

where � is the Newtonian gravitational potential.
If it is strong enough, the bending of the light paths

causes multiple images to appear from single sources.
Compared to the straight light paths in absence of the
deflecting mass distribution, the curved paths are geo-
metrically longer, and they have to additionally propa-
gate through a medium whose index of refraction is n
�1. This gives rise to a time delay �Blandford and
Narayan, 1986� which has a geometrical and a gravita-
tional component,

� =
1 + zd

c

DdDds

Ds
�1

2
��� − �� �2 − ����� , �74�

where �� are angular coordinates on the sky and �� is the
angular position of the source. � is the appropriately
scaled Newtonian gravitational potential of the deflec-
tor, projected along the line of sight. According to Fer-
mat’s principle, images occur where � is extremal, i.e.,
�� 0�=0. The prefactor contains the distances Dd,s,ds from
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the observer to the deflector, to the source, and from the
deflector to the source, respectively, and the redshift zd
of the lens.

The projected lensing potential � is related to the
surface-mass density � of the deflector by

�� 2� = 2�/�cr � 2� , �75�

where the critical surface-mass density is

�cr �
c2

4�G

Ds

DdDds
. �76�

The dimensionless time delay � from Eq. �74� is related
to the true physical time delay t by

t � �/H0, �77�

where the proportionality constant is a dimensionless
combination of the distances Dd,s,ds with the Hubble ra-
dius cH0

−1 and the deflector redshift 1+zd. Equation �77�
shows that the true time delay is proportional to the
Hubble time, as it can intuitively be expected �Refsdal,
1964�.

Time delays are measurable in multiple images of a
variable source. The variable signal arrives after differ-
ent times in the images seen by the observer. If the de-
flector is a galaxy, time delays are typically of the order
of days to months and therefore observable with a rea-
sonable monitoring effort.

Interestingly, it can be shown in a lengthy calculation
�Kochanek, 2002� that measured time delays can be in-
verted to find the Hubble constant from

H0 � A�1 − ���� + B���� − 1� , �78�

where A and B are constants depending on the mea-
sured image positions and time delays, ��� is the mean
scaled surface-mass density of the deflector averaged
within an annulus bounded by the image positions, and
 �2 is the logarithmic slope of the deflector’s density
profile.

Therefore, if a model exists for the gravitationally
lensing galaxy, the Hubble constant can be found from
the positions and time delays of the images. Applying
this technique to five different lens systems, Kochanek
�2002� found

H0 = 73 ± 8 km s−1 �79�

assuming that the lensing galaxies have radially constant
mass-to-light ratios.

This result is remarkable because it was obtained in
one step without any reference to the extragalactic dis-
tance ladder. On the other hand, it is also problematic
because it is obtained only if significantly more concen-
trated density profiles of the lensing galaxies are as-
sumed than obtained, e.g., from the kinematics of the
stars in galaxies. If less concentrated lenses are adopted
which agree with the kinematic constraints, H0 derived
from gravitational time delays drops substantially to val-
ues near 50 km s−1 �Kochanek, 2003�. This hints at an as

yet unexplained discrepancy between measurements of
H0 and the measured time delays within the CDM
framework.

C. Summary

The results given so far are in excellent agreement
with the value

H0 = 70.1 ± 1.3 km s−1 Mpc−1, �80�

derived from CMB measurements �see Sec. VI and
Table I� assuming spatial flatness, K=0. Adopting it, we
can calibrate several important numbers that scale with
some power of the Hubble constant. First, in cgs units,
the Hubble constant is

H0 = �2.26 ± 0.04� � 10−18 s, �81�

which implies the Hubble time

H0
−1 = 14.01 ± 0.26 Gyr �82�

and the Hubble radius

c

H0
= �1.327 ± 0.025� � 1028 cm = 4.299 ± 0.08 Gpc.

�83�

The critical density of the Universe turns out to be

�cr0 =
3H0

2

8�G
= �9.15 ± 0.3� � 10−30 g cm−3. �84�

It corresponds to 5 protons/m3 or approximately
1 galaxy/Mpc3.

IV. BIG-BANG NUCLEOSYNTHESIS

A. The origin and abundance of 4He

1. Elementary considerations

Stellar spectra show that the abundance of 4He in stel-
lar atmospheres is in the range 0.2�Y�0.3 by mass �the
Sun has Y=0.263�, i.e., about a quarter of the baryonic
mass in the Universe is composed of 4He. It is produced
in stars in the course of hydrogen burning. Per 4He
nucleus, the amount of energy released corresponds to
0.7% of the masses involved or

!E = !mc2 = 0.007�2mp + 2mn�c2 � 0.028mpc2

� 26 MeV � 4.2� 10−5 erg. �85�

Suppose a galaxy such as ours, the Milky Way, shines
with a luminosity of L�1010L��3.8�1043 erg s−1 for a
good fraction of the age of the Universe, say for �=5
�109 yr�1.5�1017 s. Then, it releases a total energy of

Etot � L� � 5.7� 1060 ergs. �86�

The number of 4He nuclei required to produce this en-
ergy is
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!N =
E

!E
�

5.7� 1060

4.2� 10−5 � 1.4� 1065, �87�

which amounts to a 4He mass of

MHe � 4mp!N � 9.3� 1041 g. �88�

Assume further that the galaxy’s stars were all composed
of pure hydrogen initially and that they are all more or
less similar to the Sun. Then, the mass in hydrogen was
MH�1010M��2�1043 g initially and the final 4He
abundance by mass expected from the energy produc-
tion is

Y
*

�
9.3� 1041

2 � 1043 � 5%, �89�

much less than the 4He abundance actually observed.
This discrepancy is exacerbated by the fact that 4He is
destroyed in later stages of the evolution of massive
stars, a process affected also by mixing in stellar interi-
ors.

We thus see that the amount of 4He observed in stars
was highly unlikely produced by these stars themselves
under reasonable assumptions during the lifetime of the
galaxies. We must therefore consider that most of the
4He which is now observed may have existed already
well before the galaxies formed.

Nuclear fusion of 4He and similar light nuclei in the
early Universe is possible only if the Universe was hot
enough for a sufficiently long period during its early evo-
lution. The nuclear binding energies of order �MeV im-
ply that temperatures had to have fallen below T
�106 MeV�1.16�104 K/MeV=1.16�1010 K before
nucleosynthesis could begin. On the other hand, tem-
peratures needed to be still high enough for charged
nuclei to surmount the Coulomb barrier. Typical tem-
peratures during primordial nucleosynthesis were of or-
der kT�100 keV. Since the temperature of the �photon
background in the� Universe is now T0�3 K as we see
later, this corresponds to times when the scale factor of
the Universe was

anuc � 3/1.16� 109 � 2.59� 10−9. �90�

At times so early, the actual mass density and a pos-
sible cosmological constant are entirely irrelevant for
the expansion of the Universe, which is only driven by
the radiation density. Thus, the expansion function can
be simplified to E�a�=�r0

1/2a−2, and we find for the cosmic
time according to Eq. �15�,

t�a� =
1

�r0
1/2H0

�
0

a

a�da� =
a2

2�r0
1/2H0

� 2.40� 1019a2 s,

�91�

where we have inserted the Hubble constant from Eq.
�80� and the radiation-density parameter today, �r0
�8.51�10−5, which will be justified later �see Eq. �158��.
The function contains contributions from photons and
three neutrino species, which are the particles relativistic
at the relevant time.

Inserting anuc from Eq. �90� into Eq. �91� yields a time
scale for nucleosynthesis of order a few minutes. It is
instructive for later purposes to establish a relation be-
tween time and temperature based on Eq. �91�. Since
T=T0 /a,

t = 2.40� 1019	T0

T

2

s � 0.89	 T

MeV

−2

s. �92�

2. The Gamow criterion

A crucially important step in the fusion of 4He is the
fusion of deuterium d,

p + n → d + " , �93�

because the direct fusion of 4He from two neutrons and
two protons is extremely unlikely. The conditions in the
early Universe must have been such that deuterium
could be formed efficiently enough for the subsequent
fusion of 4He but not too efficiently because otherwise
too much deuterium would be left over after the end of
nucleosynthesis. Realizing this Gamow �1948� suggested
that the amount of deuterium produced had to be “just
right,” which he translated into the intuitive criterion

nB����t � 1, �94�

where nB is the baryon number density, ���� is the
velocity-averaged cross section for reaction �93�, and t is
the time available for the fusion, which we have seen in
Eq. �92� to be set by the present temperature of the
cosmic radiation background T0 and the temperature T
required for deuterium fusion.

Thus, from an estimate of the baryon density nB in the
Universe, from the known velocity-averaged cross sec-
tion ����, and from the known temperature required for
deuterium fusion, Gamow’s criterion enables an esti-
mate of the present temperature T0 of the cosmic radia-
tion background. Based on this, Alpher and Herman
�1949� were able to predict T0�1–5 K. After these re-
markably simple and far-reaching conclusions, we now
study primordial nucleosynthesis and consequences
thereof in more detail.

3. Elements produced

The fusion of deuterium �Eq. �93�� is the crucial first
step. Since the photodissociation cross section of d is
large, destruction of d is very likely because of the in-
tense photon background until the temperature has
dropped way below the binding energy of d, which is
only 2.2 MeV, corresponding to 2.6�1010 K. In fact,
substantial d fusion is delayed until the temperature falls
to T=9�108 K or kT�78 keV. As Eq. �92� shows, this
happens, t�150 s, after the Big Bang.

From deuterium, 3He and tritium t can be built, which
can both be processed to 4He. These reactions are now
fast, immediately converting the newly formed d. In de-
tail, these reactions are

d + p → 3He + " ,
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d + d → 3He + n ,
�95�

d + d → t + p ,

3He + n → t + p ,

followed by

3He + d → 4He + p ,
�96�

t + d → 4He + n .

Fusion reactions with neutrons are irrelevant because
free neutrons are immediately locked up in deuterons
once deuterium fusion begins, and passed on to t, 3He,
and 4He in the further fusion steps.

Since there are no stable elements with atomic weight
A=5, addition of protons to 4He is unimportant. Fusion
with d is unimportant because its abundance is very low
due to the efficient follow-up reactions. We can there-
fore proceed only by fusing 4He with t and 3He to build
up elements with A=7,

t + 4He → 7Li + " ,
�97�

3He + 4He → 7Be + " ,

followed by

7Be + e− → 7Li + �e.

Some 7Li is destroyed by

7Li + p → 2 4He. �98�

The fusion of two 4He nuclei leads to 8Be, which is un-
stable. Further fusion of 8Be in the reaction

8Be + 4He → 12C + " �99�

is virtually impossible because the low density of the
reaction partners essentially excludes that a 8Be nucleus
meets a 4He nucleus during its lifetime. While reaction
�99� is possible and extremely important in stars, it is
suppressed below any importance in the early Universe.
The absence of stable elements with A=8 thus prohibits
any primordial element fusion beyond 7Li.

4. Helium abundance

Once stable hadrons can form from the quark-gluon
plasma in the very early Universe, neutrons and protons
are kept in thermal equilibrium by the weak interac-
tions,

p + e− ↔ n + �e, n + e+ ↔ p + �̄e, �100�

until the interaction rate falls below the expansion rate
of the Universe. While equilibrium is maintained, the
abundances nn and np are controlled by the Boltzmann
factor

nn

np
= 	mn

mp

3/2

exp	−
Q

kT

 � exp	−

Q

kT

 , �101�

where Q=1.3 MeV is the energy equivalent of the mass
difference between the neutron and the proton.

The weak interaction freezes out when T�1010 K or
kT�0.87 MeV, which is reached t�2 s after the Big
Bang. At this time, the n abundance by mass is

Xn�0� �
nnmn

nnmn + npmp

�
nn

nn + np

= �1 + exp	 Q

kTn

−1

� 0.17. �102�

Afterwards, the free neutrons undergo � decay with a
half-life1 of �n=885.7±0.8 s, thus

Xn = Xn�0�e−t/�n. �103�

When d fusion finally sets in at td�150 s after the Big
Bang, the neutron abundance has dropped to

Xn�td� � Xn�0�e−td/�n � 0.14. �104�

Now, essentially all these neutrons are collected into
4He because the abundances of the other elements can
be neglected to first order. This simple estimate yields a
4He abundance by mass of

Y � 2Xn�td� � 0.28 �105�

because the neutrons are locked up in pairs to form 4He
nuclei. The Big-Bang model thus allows the prediction
that 4He must have been produced such that its abun-
dance is approximately 28% by mass, which is in re-
markable agreement with the observed abundance and
thus a strong confirmation of the Big-Bang model.

5. Expected abundances and abundance trends

Precise abundances of the light elements as produced
by the primordial fusion must be calculated solving rate
equations based on the respective fusion cross sections.
Uncertainties involved concern the exact values of the
cross sections and their energy dependence and the pre-
cise lifetime of the free neutrons. Since primordial nu-
cleosynthesis happens during the radiation-dominated
era, the expansion rate is exclusively set by the radiation
density. Then, the only other parameter controlling the
primordial fusion processes is the baryon density if the
neutron lifetime is taken for granted.

A recent review of these matters is Steigman �2007�,
to which we refer for further detail.

Ignoring possible modifications by nonstandard tem-
perature evolution, the only relevant parameter defining
the primordial abundances is the ratio between the num-
ber densities of baryons and photons. Since both densi-

1Particle Data Group, http://pdg.lbl.gov/
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ties scale like a−3 or, equivalently, like T3, their ratio  is
constant. Anticipating the photon number density to be
determined from the temperature of the CMB,

 = nB/n" = 10−10 10,  10 � 273�Bh2. �106�

Thus, once we know the photon number density and
once we can determine the parameter  from the primo-
dial element abundances, we can infer the baryon num-
ber density. Typical 2� uncertainties at a fiducial  pa-
rameter of  10=5 are 0.4% for 4He, 15% for d and 3He,
and 42% for 7Li. The 4He abundance depends only very
weakly on  because the largest fraction of free neutrons
is swept up into 4He without strong sensitivity to the
detailed conditions.

The principal effects determining the abundances of
d, 3He, and 7Li are the following: with increasing  , they
can more easily be burned to 4He and so their abun-
dances drop as  increases. At low  , an increase in the
proton density causes 7Li destruction in reaction �98�,
while the precursor nucleus 7Be is more easily produced
if the baryon density increases further. This creates a
characteristic “valley” of the predicted 7Li abundance
near  ��2–3��10−10.

B. Observed element abundances

1. Principles

Of course, the main problem with any comparison be-
tween light-element abundances predicted by primordial
nucleosynthesis and their observed values is that much
time has passed since the primordial fusion ceased and
further fusion processes have happened since. Seeking
to determine the primordial abundances, observers must
therefore select objects in which little or no contamina-
tion by later nucleosynthesis can reasonably be ex-
pected, in which the primordial element abundance may
have been locked up and separated from the surround-
ings, or whose observed element abundances can be cor-
rected for their enrichment during cosmic history in
some way.

Deuterium can be observed in cool neutral-hydrogen
gas �HI regions� via resonant UV absorption from the
ground state, in radio wavebands via the hyperfine spin-
flip transition, or in the submillimeter regime via dH
molecule lines. These methods all employ the fact that
the heavier d nucleus causes small changes in the energy
levels of electrons bound to it. 3He is observed through
the hyperfine transition in its ion 3He+ in radio wave-
bands or through its emission and absorption lines in
HII regions. 4He is of course most abundant in stars, but
the fusion of 4He in stars is virtually impossible to be
corrected precisely. Rather, 4He is probed via the emis-
sion from optical recombination lines in HII regions
�Izotov and Thuan, 2004�. Measurements of 7Li must be
performed in old local stellar populations. This restricts
observations to cool low-mass stars because of their long
lifetime and to stars in the galactic halo to allow precise
spectra to be taken despite the low 7Li abundance.

2. Evolutionary corrections

Stars brooded heavy elements as early as z�6 or even
higher �Ciardi and Ferrara, 2005�. Any attempts at mea-
suring primordial element abundances must therefore
concentrate on gas with a metal abundance as low as
possible. The dependence of the element abundances on
metalicity allows extrapolations to zero enrichment.

Such evolutionary corrections are low for d because it
is observed in the Lyman-� forest lines, which arise from
absorption in low-density cool gas clouds at high red-
shift. Likewise, they are low for the measurements of
4He because it is observed in low-metalicity extragalac-
tic HII regions. Probably, little or no correction is re-
quired for the 7Li abundances determined from the
spectra of very metal-poor halo stars �Charbonnel and
Primas, 2005�, but a lively discussion is on going �As-
plund et al., 2006; Korn et al., 2006�.

Inferences from 3He are different because 3He is pro-
duced from d in stars during the pre-main-sequence evo-
lution. It is burnt to 4He during the later phases of stel-
lar evolution in stellar cores but conserved in stellar
exteriors. Observations indicate that a net destruction of
3He must happen, possibly due to extra mixing in stellar
interiors. For these uncertainties, 3He is commonly ex-
cluded from primordial abundance measurements.

3. Specific results

Due to the absence of strong evolutionary effects and
its steep monotonic abundance decrease with increasing
 , d is perhaps the most trustworthy baryometer. Since it
is produced in the early Universe and destroyed by later
fusion in stars, all d abundance determinations are lower
bounds to its primordial abundance. Measurements of
the d abundance at high redshift are possible through
absorption lines in quasistellar object �QSO� spectra,
which are likely to probe gas with primordial element
composition or close to it. Such measurements are chal-
lenging in detail because the tiny isotope shift in the d
lines needs to be distinguished from velocity-shifted hy-
drogen lines, H abundances from saturated H lines need
to be corrected by comparison with higher-order lines,
and high-resolution spectroscopy is required for accu-
rate continuum subtraction.

A deuterium abundance of

nd/nH = �2.68−0.25
+0.27� � 10−5 �107�

in high-redshift QSOs relative to hydrogen appears con-
sistent with most relevant QSO spectra, although sub-
stantially lower values have been derived �Pettini and
Bowen, 2001�. A substantial depletion from the primor-
dial value is unlikely because any depletion should be
caused by d fusion and thus be accompanied by an in-
crease in metal abundances, which should be measur-
able.

Some spectra which were interpreted as having less
than or approximately equal to ten times the d abun-
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dance from Eq. �108� may be due to lack of spectral
resolution. The d abundance in the local interstellar me-
dium is typically lower,

nd/nH � 1.5� 10−5, �108�

which is consistent with d consumption due to fusion
processes. Conversely, the d abundance in the Solar Sys-
tem is higher because d is locked up in the ice on the
giant planets.

In low-metalicity systems, 4He should be near its pri-
mordial abundance and a metalicity correction can be
applied. Possible systematic uncertainties are due to
modifications by underlying stellar absorption, colli-
sional excitation of observed recombination lines, and
the exact regression toward zero metalicity. Values
between Yp=0.240±0.006 and 0.2477±0.0029 are con-
sidered realistic and likely �Peimbert et al., 2007� �see
Fig. 6�.

Observations of the 7Li abundance aim at the oldest
stars in the Galaxy, which are halo �Pop-II� stars with
very low metalicity. They should have locked up very
nearly primordial gas but may have processed it �Salaris
and Weiss, 2001; Pinsonneault et al., 2002�. Cool stellar
atmospheres are difficult to model, and 7Li may have
been produced by cosmic-ray spallation on the interstel-
lar medium �Steigman and Walker, 1992�.

In the limit of low stellar metalicity, the observed 7Li
abundances group around an approximately flat line �the
so-called Spite plateau �Spite and Spite, 1982��, which is
asymptotically independent of metalicity,

A�7Li� = 12 + log10�nLi/nH� = 2.2 ± 0.1, �109�

and show very little dispersion. Stellar rotation is impor-
tant here because it enhances mixing in stellar interiors
�Pinsonneault et al., 2002�.

The Spite plateau is unlikely to reflect the primordial
7Li abundance, but corrections are probably moderate.

A possible increase of 7Li with the iron abundance indi-
cates low production of 7Li, but the probable net effect
is a depletion with respect to the primordial abundance
by no more than �0.2 dex. A conservative estimate
yields

2.1� A�7Li� � 2.5. �110�

In absence of depletion, this value falls into the valley
expected in the primordial 7Li at the boundary between
destruction by protons and production from 8Be. How-
ever, if 7Li was in fact depleted, its primordial abun-
dance was higher than value �110�, and then two values
for  10 are possible.

4. Summary of results

Through relation �106�, the density of visible baryons
alone implies  10#1.5. The deuterium abundance de-
rived from absorption systems in the spectra of high-
redshift QSOs indicates  10=5.65–6.38. The 7Li abun-
dance predicted from this value of  is then A�7Li�p
=3.81–4.86, which is at least in mild conflict with the
observed value A�7Li�=2.1–2.3, even if a depletion by
0.2 dex due to stellar destruction is allowed.

The predicted primordial abundance of 4He is then
Yp=0.2477–0.2489, which overlaps with the measured
value YP=0.228–0.248. Thus, the light-element abun-
dances draw a consistent picture starting from the ob-
served deuterium abundance.

We thus find that big-bang nucleosynthesis alone im-
plies

0.0207��Bh2 � 0.0234 or 0.0399��B � 0.045

�111�

if conclusions are predominantly based on the deute-
rium abundance in high-redshift absorption systems. We
later see that this result is in agreement with indepen-
dent estimates of the baryon density obtained from the
analysis of structures in the CMB.

At this point it is important to note that primordial
nucleosynthesis depends on the number of relativistic
particle species and thus on the number of light neutrino
families. The theoretical abundances given here assume
three lepton families in the standard model of the elec-
troweak interaction. In fact, light-element abundances
had been used to constrain the number of lepton fami-
lies before it was measured in particle detectors �Steig-
man et al., 1977; Yang et al., 1984�.

V. THE MATTER DENSITY IN THE UNIVERSE

A. Mass in galaxies

1. Stars

Given the luminosity of a stellar population, what is
its mass? If all stars were like the Sun, the answer was
trivial, but this is not the case. We focus the discussion
here on stars which fall on the main sequence of the
color-magnitude diagram. Stars are formed with an ini-
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FIG. 6. Theoretically expected abundances of the light ele-
ments deuterium, 3He, 4He, and 7Li as functions of  10 �fol-
lowing Steigman, 2007�. The observed deuterium abundance is
marked by the two horizontal solid lines.

347Matthias Bartelmann: The dark Universe

Rev. Mod. Phys., Vol. 82, No. 1, January–March 2010



tial mass distribution, the “initial mass function,” which
is for our purposes reasonably approximated by the Sal-
peter form �Salpeter, 1955�,

dN/d ln M � M−1.35. �112�

Expressing the mass M in solar units, m�M /M�, and
normalizing the mass distribution to unity in the mass
range m0�m	$ yield

dN/dm = 1.35	m0

m

2.35dm

m0
. �113�

The accepted lower-mass limit for a star is m0=0.08
because nuclear fusion cannot set in in objects of lower
mass. However, we are interested in stars that are able
to produce visible or near-infrared light so that we can
translate the respective measured luminosities into mass.
For a simple estimate, assume that stars have approxi-
mate Planck spectra, for which Wien’s law holds, relating
the wavelength 
max of the peak in the Planck curve to
the temperature T,


max = 0.29	K

T

 cm. �114�

The effective solar temperature T�=5780 K implies

max=5.0�10−5 cm. Stars releasing the majority of their
energy in the optical and near-infrared regime should
have 
max�1 %m=10−4 cm and thus T�2900 K
�0.5T�. We saw in Eq. �51� that the temperature scales
as T�M1/2; thus, T�0.5T� implies m0�0.25.

We also saw following Eq. �48� that the luminosity
scales as L�M3. With l�L /L�, the mean mass-to-light
ratio of the visible stellar population is thus expected to
be

�m

l
� = �

m0

$ dN

dm
	m

l

dm = �

m0

$ dN

dm

dm

m2 =
1.35

3.35m0
2 � 6.4.

�115�

This shows that an average stellar population visible in
the optical and near-infrared spectral ranges is expected
to require �6.4 solar masses for one solar luminosity. In
order to produce, say, 1010L�, a galaxy thus needs to
have a mass of at least �6.4�1010M�. This estimate as-
sumes a homogeneous stellar population at the begin-
ning of its evolution and neglects corrections from the
exact spectral-energy distribution of the stars and the
emission of giant stars, but �m / l��6.4 still seems appro-
priate for evolved populations.

2. Galaxies

The rotation velocities of stars orbiting in spiral gal-
axies are observed to rise quickly with radius and then
to remain roughly constant �Sofue and Rubin, 2001�. If
measurements are continued with neutral hydrogen be-
yond the radii out to which stars can be seen, these ro-
tation curves are observed to continue at an approxi-
mately constant level �Kregel and van der Kruit, 2004�.

In a spherically symmetric mass distribution, test par-
ticles on circular orbits have orbital velocities of

�rot
2 �r� = GM�r�/r . �116�

Flat rotation curves thus imply that M�r��r, requiring
the density to drop like ��r��r−2. This is much flatter
than the light distribution, which shows that spiral gal-
axies are characterized by an increasing amount of dark
matter as the radius increases.

A mass distribution with ��r−2 has formally infinite
mass, which is physically implausible. However, at finite
radius, the density of the Galaxy falls below the mean
density of the surrounding Universe. The spherical-
collapse model �Gunn and Gott, 1972� often invoked in
cosmology shows that a spherical mass distribution can
be considered in dynamical equilibrium if its mean over-
density is approximately 200 times higher than the mean
density �̄. Let R be the radius enclosing this overdensity
and M be the mass enclosed, then

M

V
=

3M

4�R3 = 200�̄ ⇒
M

R
=

800��̄R2

3
. �117�

At the same time, Eq. �116� needs to be satisfied, hence

800��̄R2

3
=
�rot

2

G
⇒ R = 	 3�rot

2

800�G�̄

1/2

. �118�

Inserting typical numbers yields

R = 290 kpc	 �rot

200 km s−1
 . �119�

With Eq. �116�, this implies

M =
R�rot

2

G
= 2.7� 1012M�	 �rot

200 km s−1
3

. �120�

Typical luminosities of spiral galaxies are given by the
Tully-Fisher relation �Tully and Fisher, 1977�,

L = L
*	 �rot

220 km s−1
3–4

, �121�

with L
*
�2.4�1010L�. Thus, the mass-to-light ratio of a

massive spiral galaxy is found to be

m/l � 150 �122�

in solar units, where it is assumed that the Galaxy ex-
tends out to the virial radius of �290 kpc with the same
density profile r−2. Evidently, this exceeds the stellar
mass-to-light ratio by far. Of course, the mass-to-light
ratio of galaxies depends on the limiting radius assumed.
Values of m / l�30 are often quoted, which are typically
based on the largest radii out to which rotation curves
can be measured.

3. The galaxy population

Galaxy luminosities are observed to be distributed ac-
cording to the Schechter function �Schechter, 1976�,
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dN

dL
=
�

*

L
*

	 L

L
*

−�

exp	−
L

L
*

 , �123�

where the normalizing factor is �
*
�3.7�10−3 Mpc−3,

the scale luminosity is L
*

given by Eq. �121�, and the
power-law exponent is ��1 �Madgwick et al., 2002�. Ir-
respective of which physical processes this distribution
originates from, its functional form turns out to charac-
terize mixed galaxy populations very well, even in galaxy
clusters.

The luminosity density in galaxies is found to be

Lg = �
0

$

L
dN

dL
dL = �

*
L

*�
0

$

l1−�e−ldl = &�2 − ���
*
L

*

� �
*
L

*
� 7.4� 107 L�

Mpc3 . �124�

The average mass-to-light ratio �Eq. �122�� then allows
converting this number into a mass density,

��g� = �m

l
�Lg � 1.1� 10−4 M�

Mpc3

� 7.5� 10−31 g cm−3 �125�

and thus, with �cr0=9.15�10−30 g cm−3 from Eq. �84�,

�g0 � 0.08. �126�

Of course, estimates based on the more conservative
mass-to-light ratio m / l�30 find values which are lower
by a factor of �5. In summary, this shows that the total
mass expected to be contained in the dark-matter halos
hosting galaxies contributes of order 8% to the critical
density in the Universe.

B. Mass in galaxy clusters

1. Kinematic masses

The next step upward in the cosmic hierarchy are gal-
axy clusters, which were first identified as significant gal-
axy overdensities in relatively small areas of the sky
�Herschel, 1786, 1789�. Although the majority of galax-
ies is not in galaxy clusters, rich galaxy clusters contain
several hundred galaxies, which by themselves contain a
total amount of mass

Mg � 102L
*
�m/l� � 3 � 1014M�. �127�

The mass in stars is of course considerably lower. With
the mean stellar mass-to-light ratio of m / l�6.4 from Eq.
�115�, the same luminosity implies

M
*
� 1.3� 1013M�. �128�

The stellar mass of the Coma cluster, for instance, is
inferred to be M

*,Coma��1.4±0.3��1013M� �White et
al., 1993�.

The galaxies in rich galaxy clusters move with typical
velocities of order �103 km s−1, measured from the red-

shifts in their spectra. Therefore, only one component of
the galaxy velocity is observed. Its distribution is charac-
terized by the velocity dispersion ��.

If these galaxies were not gravitationally bound to the
clusters, the clusters would disperse within �1 Gyr.
Since they exist over cosmological time scales, clusters
need to be �at least in some sense� gravitationally stable.
Assuming virial equilibrium, the potential energy of the
cluster galaxies should be minus two times the kinetic
energy or

GM/R � 3��
2, �129�

where M and R are the total mass and the virial radius
of the cluster, and the factor 3 arises because the velocity
dispersion represents only one of the three velocity com-
ponents. We combine Eq. �129� with Eq. �117� to find

R = 	 9��
2

800�G�̄

1/2

� 2.5 Mpc	 ��
1000 km s−1
 , �130�

and, with Eq. �129�,

M � 1.7� 1015M�	 ��
1000 km s−1
3

. �131�

Hence, the mass required to keep cluster galaxies bound
despite their high velocities exceeds the mass in galaxies
by about one order of magnitude, even if the entire
virial mass of the Galactic halos is accounted for
�Zwicky, 1933, 1937�. The stellar mass apparently con-
tributes just about 1% to the total cluster mass.

2. Mass in the hot intracluster gas

Galaxy clusters are diffuse sources of thermal x-ray
emission. Their x-ray continuum is caused by thermal
bremsstrahlung, whose bolometric volume emissivity is

jX = Z2gffCXn2�T �132�

in cgs units, where Z is the ion charge, gff is the Gaunt
factor, n is the ion number density, T is the gas tempera-
ture, and

CX = 2.68� 10−24 �133�

in cgs units if T is measured in keV.
A common simple axisymmetric model for the gas-

density distribution in clusters, adapted to x-ray obser-
vations, is

n�x� =
n0

�1 + x2�3�/2 , x �
r

rc
=
�

�c
, �134�

where rc and �c are the physical and angular core radii.
The line-of-sight projection of the x-ray emissivity yields
the x-ray surface brightness as a function of the angular
radius �,
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SX��� = �
−$

$

jXdz =
��&�3� − 1/2�

&�3��
Z2gffCXrcn0

2�T

�1 + x2�3�−1/2 ,

�135�

where we have combined Eqs. �132� and �134� and as-
sumed for simplicity that the cluster is isothermal, so T
does not change with radius. The latter equation shows
that two parameters of the density profile �134�, namely,
the slope � and the �angular� core radius �c, can be read
off the observable surface-brightness profile.

The missing normalization constant can be obtained
from the x-ray luminosity,

LX = 4��
0

$

jXr2dr

= 4�rc
3Z2gffCX

�Tn0
2
��&�3� − 3/2�

4&�3��
, �136�

and a spectral determination of the temperature T. Fi-
nally, the total mass of the x-ray gas enclosed in spheres
of radius R is

MX�R� = 4��
0

R

n�r�r2dr , �137�

which is a complicated function for general �. For �
=2/3, which is a commonly measured value,

MX�R� = 4�rc
3n0	R

rc
− arctan

R

rc

 , �138�

which is of course formally divergent for R→$ because
the density falls off �r−2 for �=2/3 and r→$.

Inserting typical numbers, we set Z=1=gff, �=2/3
and assume a hypothetic cluster with LX=1045 erg s−1, a
temperature of kT=10 keV, and a core radius of rc
=250 kpc=7.75�1023 cm. Then, Eq. �136� yields the
central ion density

n0 = 5 � 10−3 cm−3 �139�

and thus the central gas mass density

�0 = mpn0 = 8.5� 10−27 g cm−3. �140�

Based on the virial radius �Eq. �130�� and on the mass
�Eq. �138��, we find the total gas mass

MX � 1.0� 1014M�. �141�

This is of the same order as the cluster mass in galaxies
and approximately one order of magnitude less than the
total cluster mass.

It is reasonable to believe that clusters are closed sys-
tems in the sense that there cannot have been much
material exchange between their interior and their sur-
roundings �White et al., 1993�. If this is indeed the case
and the mixture between dark matter and baryons in
clusters is typical for the entire Universe, the matter-
density parameter should be

�m0 � �b0
M

M
*

+ MX

� 10�b0 � 0.4, �142�

given determination �111� of �b0 from primordial nu-
cleosynthesis. More precise estimates based on detailed
investigations of individual clusters yield

�m0 � 0.3. �143�

3. Alternative cluster mass estimates

Cluster masses can be estimated in several other ways.
One of them is directly related to the x-ray emission
discussed above. The hydrostatic Euler equation for a
gas sphere in equilibrium with the spherically symmetric
gravitational potential of a mass M�r� requires

1

�

dp

dr
= −

GM�r�
r2 , �144�

where � and p are the gas density and pressure, respec-
tively. Assuming an ideal gas, the equation of state is p
=nkT, where n=� /%mp is the particle density and T is
the temperature. % is the mean particle mass in units of
the proton mass mp. A mixture of hydrogen and helium
with helium fraction Y has %=4/ �8−5Y� or %�0.59 for
Y=0.25. If we further simplify the problem assuming an
isothermal gas distribution, we can write

kT

%mp�

d�

dr
= −

GM�r�
r2 �145�

or solving for the mass

M�r� = −
rkT

G%mp

d ln �

d ln r
. �146�

For the � model introduced in Eq. �134�, the logarith-
mic density slope is

d ln �

d ln r
=

d ln n

d ln r
= − 3�

x2

1 + x2 . �147�

Thus the cluster mass is determined from the slope of
the x-ray surface brightness and the cluster temperature,

M�r� =
3�rkT

G%mp

x2

1 + x2 . �148�

With the typical numbers used before, i.e., R�2.5 Mpc,
��2/3, and kT=10 keV, the x-ray mass estimate gives

M�R� � 1.8� 1015M�, �149�

in reassuring agreement with the mass estimate �131�
from galaxy kinematics and again one order of magni-
tude larger than either the gas mass or the stellar mass.

A third completely independent way of measuring
cluster masses is provided by gravitational lensing. With-
out going into any detail, we mention here that it can
generate image distortions from which the projected
lensing mass distribution can be reconstructed. Mass es-
timates obtained in this way confirm those from x-ray
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emission and galaxy kinematics, although interesting dis-
crepancies exist in detail �Cypriano et al., 2004; Hoek-
stra, 2007�.

None of the cluster mass estimates is particularly reli-
able because they are all to some degree based on sta-
bility and symmetry assumptions. For mass estimates
based on galaxy kinematics, for instance, assumptions
have to be made on the shape of the galaxy orbits, the
symmetry of the gravitational potential, and the me-
chanical equilibrium between orbiting galaxies and the
body of the cluster. Numerous assumptions also enter
x-ray based mass determinations, such as hydrostatic
equilibrium, spherical symmetry, and, in some cases, iso-
thermality of the intracluster gas. Gravitational lensing
does not need any equilibrium assumption, but infer-
ences from strongly distorted images depend sensitively
on the assumed symmetry of the mass distribution, and
measure only the mass enclosed by the lensed images.

C. Mass density from cluster evolution

A conceptually interesting constraint on the cosmic
mass density is based on the evolution of cosmic struc-
tures. Abell’s cluster catalog �Abell et al., 1989� covers
the redshift range 0.02�z�0.2, which encloses a vol-
ume of �9�108 Mpc3. There are 1894 clusters in that
volume, which yield an estimate for the spatial cluster
density of

nc � 2 � 10−6 Mpc−3. �150�

It is a central assumption in cosmology that structures
formed from Gaussian random density fluctuations. The
spherical-collapse model then asserts that gravitationally
bound objects of mass M form where the linear density
contrast, smoothed within spheres of radius R enclosing
the average mass M, exceeds a critical threshold of �c
�1.686, quite independent of cosmology. The probabil-
ity for this to happen in a Gaussian random field with a
standard deviation �R�z� is

pc�z� =
1
2

erfc	 �c

�2�R�z�

 , �151�

where

�R�z� = �R0D+�z� �152�

because the linear growth of the density contrast is de-
termined by the growth factor, for which a fitting for-
mula was given in Eq. �25�.

Now, the present-day standard deviation �R0 must be
chosen such as to reproduce the observed number den-
sity of clusters given in Eq. �150�. The fraction of cosmic
matter contained in clusters is given by

pc� = Mnc/�cr0�m0 � 3 � 10−3�m0
−1 . �153�

The standard deviation � in Eq. �151� must now be cho-
sen such that this number is reproduced, which yields

�R0 � �0.61, �m0 = 1.0

0.72, �m0 = 0.3.
� �154�

Equations �151� and �152� can now be used to estimate
how the cluster abundance should change with redshift.
Simple evaluation reveals that the comoving cluster
abundance is expected to drop very rapidly with increas-
ing redshift if �m0 is high and much more slowly if �m0
is low. Qualitatively, this behavior is easily understood.
If, in a low-density universe, clusters do not form early,
they cannot form at all because the rapid expansion due
to the low matter density prevents them from growing
late in the cosmic evolution. From the observed slow
evolution of the cluster population as a whole, it can be
concluded that the matter density must be low. Esti-
mates arrive at

�m0 � 0.3, �155�

in good agreement with the preceding determinations.

D. Conclusions

What does it all mean? The preceding discussion
should have demonstrated that the matter density in the
Universe is considerably less than its critical value, ap-
proximately one-third of it. Since only a small fraction of
this matter is visible, we call the invisible majority dark
matter.

What is this dark matter composed of? Can it be bary-
ons? Tight limits are set by primordial nucleosynthesis,
which predicts that the density in baryonic matter
should be �B�0.04 �cf. Eq. �111��. In the framework of
the Friedmann-Lemaître models, the baryon density in
the Universe can be higher than this only if baryons are
locked up in some way before nucleosynthesis com-
mences. They could form black holes before, but their
mass is limited by the mass enclosed within the horizon
at, say, up to 1 min after the Big Bang. According to Eq.
�91�, the scale factor at this time was a�10−10, and thus
the matter density was of order �m�1030�cr0
�10 g cm−3. The horizon size is rH�ct�1.8�1012 cm;
thus the mass enclosed by the horizon is �3�104M�,
which limits possible black-hole masses from above.

Gravitational microlensing was used to constrain the
amount of dark compact objects of subsolar mass in the
halo of the Milky Way. Although they were found to
contribute part of the mass, they can certainly not ac-
count for all of it �Alcock et al., 2000; Lasserre et al.,
2000�. Black holes with masses of the order 106M�

should have been found through their microlensing ef-
fects �Wambsganss and Paczynski, 1992�. The abundance
of lower-mass black holes is limited by stellar-dynamics
arguments in particular by the presence of cold disks
�Rix and Lake, 1993; Klessen and Burkert, 1996�.

We are thus guided to the conclusion that the dark
matter is most probably not baryonic and not composed
of compact dark objects. We see in Sec. VI.B.2 why the
most favored hypothesis now holds that it is composed
of weakly interacting massive particles.
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Neutrinos, however, are ruled out because their total
mass has been measured to be way too low �	2 eV�.2

Their correspondingly high velocities require objects
more massive than galaxies to keep them bound. The
formation of galaxies would be much delayed in this
case until larger-scale objects could fragment into
smaller pieces. This is the opposite of the observed hier-
archy of cosmic structure formation, which shows that
galaxies appear substantially earlier than galaxy clusters.
Therefore, the conclusion seems inevitable that the dark
matter must be cold, i.e., consisting of particles moving
nonrelativistically �Peebles, 1982�. A sequence of nu-
merical simulations has shown that structure formation
in a universe filled with cold dark matter can be brought
into agreement with the observed large-scale cosmic
structures �Davis et al., 1985; White et al., 1987�.

VI. THE COSMIC MICROWAVE BACKGROUND

A. The isotropic CMB

1. Thermal history of the Universe

How does the Universe evolve thermally? We have
seen that the abundance of 4He shows that the Universe
must have gone through an early phase which was hot
enough for the nuclear fusion of light elements. But was
there thermal equilibrium? Thus, can we speak of the
“temperature of the Universe?”

From isotropy, we must conclude that the Universe
expanded adiathermally: no net heat can have flowed
between any two volume elements in the Universe be-
cause any flow would have singled out a direction, which
is forbidden by isotropy. An adiathermal process is adia-
batic if it proceeds slow enough for equilibrium to be
maintained. Then, it is also reversible and isentropic. Of
course, irreversible processes must have occurred during
the evolution of the Universe. However, as we see later,
the entropy in the Universe is so overwhelmingly domi-
nated by the photons of the microwave background ra-
diation that no entropy production by irreversible pro-
cesses can have added a significant amount of entropy.
Thus, we assume that the Universe has in fact expanded
adiabatically.

As the Universe expands and cools, particles are di-
luted and interaction rates drop, so thermal equilibrium
must break down at some point for any particle species
because collisions become too rare. Very early in the
Universe, however, the expansion rate was very high,
and it is important to check whether thermal equilib-
rium can have been maintained despite the rapid expan-
sion. The collision probability between any two particle
species will be proportional to their number densities
squared, �n2, because collisions are dominated by two-
body encounters. The collision rate, i.e., the number of
collisions experienced by an individual particle with oth-
ers, will be �n, which is �a−3 for nonrelativistic particles.
Thus, the collision time scale was �coll�a3.

According to Friedmann’s equation, the expansion
rate in the very early Universe was determined by the
radiation density and thus given by ȧ /a�a−2, and the
expansion time scale was �exp�a2. Equilibrium could be
maintained as long as the collision time scale was suffi-
ciently shorter than the expansion time scale,

�coll � �exp, �156�

which turns out to be well satisfied in the early Universe
when a�1. Thus, even though the expansion rate was
very high in the early Universe, the collision rates were
even higher, and thermal equilibrium could indeed be
maintained.

The final assumption is that the components of the
cosmic fluid behave as ideal gases. By definition, this
requires that their particles interact only via short-
ranged forces, which implies that partition sums can be
written as powers of one-particle partition sums and that
the internal energy of the fluids does not depend on the
volume occupied. This is a natural assumption which
holds even for charged particles because they shield op-
posite charges on length scales small compared to the
size of the observable universe.

It is thus well justified to assume that there was ther-
mal equilibrium between all particle species in the early
Universe, that the constituents of the cosmic “fluid” can
be described as ideal gases, and that the expansion of
the Universe can be seen as an adiabatic process. In
later stages of the cosmic evolution, particle species will
drop out of equilibrium when their interaction rates fall
below the expansion rate of the Universe. As long as all
species in the Universe are kept in thermodynamic equi-
librium, there is a single temperature characterizing the
cosmic fluid. Once particle species drop out of thermal
equilibrium because their interaction rates decrease,
their temperatures, if defined, may begin deviating.
Even then, we characterize the thermal evolution of the
Universe by the temperature of the photon background.

2. Mean properties of the CMB

As discussed, the CMB had been predicted in order to
explain the abundance of the light elements, in particu-
lar of 4He �Gamow, 1948; Alpher and Herman, 1949�. It
was serendipitously discovered by Penzias and Wilson in
1965 �Penzias and Wilson, 1965�. Measurements of the
energy density in this radiation were mostly undertaken
at long �radio� wavelengths, i.e., in the Rayleigh-Jeans
part of the CMB spectrum. To firmly establish that the
spectrum is indeed the Planck spectrum expected for
thermal blackbody radiation, the far-infrared absolute
spectrophotometer �FIRAS� experiment was placed on
board the COBE satellite, where it measured the best
realization of a Planck spectrum ever observed �Mather
et al., 1994; Fixsen and Mather, 2002�.

The temperature of the Planck curve best fitting the
latest measurement of the CMB spectrum by the COBE
satellite is2Particle Data Group, http://pdg.lanl.gov/
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T0 = 2.726 K, �157�

which implies the mean number density nCMB
=405 cm−3 of CMB photons and the energy density
uCMB=4.17�10−13 erg cm−3 in the CMB, equivalent to a
mass density of �r,CMB=4.63�10−34 g cm−3. Using Eq.
�14�, the density parameter in radiation is

�r0 = 8.51� 10−5, �158�

which shows that the scale factor at matter-radiation
equality was

aeq =
�m0

�r0
�

1
3280

� 3.0� 10−4. �159�

This calculation includes three neutrino species besides
the photons, which were relativistic at the time of
matter-radiation equality.

The number density of baryons in the Universe is

nB � �B0�cr/mp � 2.3� 10−7 cm−3, �160�

confirming that the photon-to-baryon ratio is extremely
high,

 −1 �
405

2.3� 10−7 � 1.8� 109. �161�

3. Decoupling of the CMB

When and how was the CMB set free? While the Uni-
verse was sufficiently hot to keep electrons and protons
separated �we neglect heavier elements here for simplic-
ity�, the photons scattered off the charged particles, their
mean free path was short, and the photons could not
propagate. When the Universe cooled below a certain
temperature, electrons and protons combined to form
hydrogen, free charges disappeared, the mean free path
became virtually infinite, and photons could freely
propagate.

The recombination reaction

p + e− ↔ H + " �162�

can thermodynamically be described by Saha’s equation
for the ionization fraction x,

x2

1 − x
=

��
4�2'�3� 

	mec2

kT

3/2

e−(/kT

�
0.26

 
	mec2

kT

3/2

e−(/kT, �163�

where ( is the ionization energy of hydrogen, (
=13.6 eV, and ' is the Riemann zeta function.

Notice that Saha’s equation contains the inverse of the
 parameter �Eq. �161��, which is a huge number due to
the high photon-to-baryon ratio in the Universe. This
counteracts the exponential which would otherwise
guarantee that recombination happens when kT�(, i.e.,
at T�1.6�105 K. Recombination is thus delayed by the
high photon number, which illustrates that newly formed
hydrogen atoms are effectively reionized by sufficiently

energetic photons until the temperature has dropped
well below the ionization energy. Setting x�0.5 in Eq.
�163� yields a recombination temperature of

kTrec � 0.3 eV, Trec � 3000 K �164�

and thus a recombination redshift of zrec�1100. Since
this is in the early matter-dominated era, the age of the
Universe was then

t = �
0

arec da

aH�a�
=

2arec
3/2

3H0
��m0

��1 + ��1 − 2�� + 2�3/2�

� 374 kyr �165�

�cf. Eq. �15��, where � : =aeq/arec�0.33.
Recombination does not proceed instantaneously. The

ionization fraction x drops from 0.9 to 0.1 within a tem-
perature range of �200 K, corresponding to a redshift
range of

!z �� dz

dT
�

zrec

!T �� d

dT
	 T

T0
− 1
�

zrec

!T �
!T

T0
� 75

�166�

or a time interval of

!t �
!a

aH
�

!z

H0
��m0�1 + z�5/2

� 50 kyr. �167�

We are thus led to conclude that the CMB was released
when the Universe was �374 000 yr old, during a phase
that lasted �50 000 yr. We have derived this result
merely using the present temperature of the CMB, the
photon-to-baryon ratio, the Hubble constant, and the
matter-density parameter �m0. The cosmological con-
stant or a possible curvature of the Universe does not
matter here.

B. Structures in the CMB

1. The dipole

The Earth is moving around the Sun, the Sun is orbit-
ing around the galactic center, and the Galaxy is moving
within the local group, which is falling toward the Virgo
cluster of galaxies. We can thus not expect the Earth to
be at rest with respect to the CMB. We denote the net
velocity of the Earth with respect to the CMB rest frame
by ��. Lorentz transformation shows that, to lowest or-
der in �� /c, the Earth’s motion imprints a dipolar inten-
sity pattern on the CMB with an amplitude of

!T/T0 = ��/c . �168�

The dipole’s amplitude has been measured to be
�1.24 mK, from which the Earth’s velocity is inferred to
be �Fixsen et al., 1996�

�� � 371 ± 1.5 km s−1. �169�

This is the highest-order deviation from isotropy in the
CMB, but it is irrelevant for our purposes since it does
not allow any conclusions on the Universe at large.
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2. Expected amplitude of CMB fluctuations

It is reasonable to expect that density fluctuations in
the CMB should match density fluctuations in the mat-
ter because photons were tightly coupled to baryons by
Thomson scattering before recombination. For adiabatic
fluctuations, the density contrast � in matter is 3 /4 that
in radiation. Since the radiation density is �T4, a density
contrast � is thus expected to produce relative tempera-
ture fluctuations of order

� =
3
4

4T3�T

T4 ⇒
�T

T
�
�

3
. �170�

Obviously, there are large-scale structures in the Uni-
verse today whose density contrast reaches or even sub-
stantially exceeds unity. Assuming linear structure
growth on scales where �0�1 and knowing the scale fac-
tor at recombination, we can thus infer that relative tem-
perature fluctuations of order

�T

T
�

1
3
	 �0

D+�arec�

 �

1

3arec
� 10−3 �171�

should be seen in the CMB, i.e., fluctuations of order
mK, similar to the dipole. Such fluctuations, however,
were not observed, although cosmologists kept search-
ing increasingly desperately for decades after 1965 �see
Uson and Wilkinson �1984� for an example�.

Why do they not exist? The estimate above is valid
only under the assumption that matter and radiation
were tightly coupled. Should this not have been the case,
density fluctuations did not need to leave such a pro-
nounced imprint on the CMB. In order to avoid the tight
coupling, the majority of matter must not interact elec-
tromagnetically. Thus, we conclude from the absence of
mK fluctuations in the CMB that matter in the Universe
must be dominated by something that does not interact
with light �Peebles, 1982�. This is perhaps the strongest
argument in favor of not-electromagnetically interacting
dark matter.

3. Expected CMB fluctuations

Before we come to the results of CMB observations
and their significance for cosmology, we summarize
which physical effects we expect to imprint structures on
the CMB �Peebles and Yu, 1970; Sunyaev and Zeldov-
ich, 1970; Bond and Efstathiou, 1984; Hu and Sugiyama,
1996; Seljak and Zaldarriaga, 1996�. The basic hypoth-
esis is that the cosmic structures that we see today
formed via gravitational instability from seed fluctua-
tions in the early Universe, whose inflationary origin is
likely but yet unclear. This implies that there had to be
density fluctuations at the time when the CMB was re-
leased. Via Poisson’s equation, these density fluctuations
were related to fluctuations in the Newtonian potential.
Photons released in a potential fluctuation �� lost en-
ergy if the fluctuation was negative and gained energy
when the fluctuation was positive. This energy change
can be translated to the temperature change

�T

T
=

1
3
��

c2 , �172�

which is called the Sachs-Wolfe effect �Sachs and Wolfe,
1967�. The factor 1/3 is caused by the gravitational red-
shift being offset by time retardation in the gravitational
field of the perturbation.

We now look into the expected statistics of the Sachs-
Wolfe effect. We introduced the power spectrum of the
density fluctuations in Eq. �27� as the variance of the
density contrast in Fourier space. Poisson’s equation im-
plies

��̂ � − �̂/k2 �173�

for the Fourier modes of the gravitational potential.
Thus the power spectrum of the temperature fluctua-
tions due to the Sachs-Wolfe effect is

PT � P� �
��̂�̂*�

k4 �
P�

k4 � �k−3, k � keq

k−7, k � keq
� �174�

according to Eq. �28� with ns=1. This shows that the
Sachs-Wolfe effect can only be important at small k, i.e.,
on large scales, and dies off quickly toward smaller
scales.

The main constituents of the cosmic fluid were dark
matter, baryons, electrons, and photons. Overdensities
in the dark matter compressed the fluid due to their
gravity until the rising pressure in the tightly coupled
baryon-electron-photon fluid was able to counteract
gravity and drive the fluctuations apart. In due course,
the pressure sank, gravity won again, and so forth: the
baryon-electron-photon fluid underwent acoustic oscilla-
tions but not the dark matter, which was decoupled.
Since the pressure was dominated by the photons, whose
pressure is a third of their energy density, a good ap-
proximation to the sound speed of the tightly coupled
photon-baryon fluid was

cs ��p

�
=

c
�3

� 0.58c . �175�

Only such density fluctuations could undergo acoustic
oscillations which were small enough to be crossed by
sound waves in the available time. The largest comoving
length that could be traveled by sound waves was the
comoving sound horizon,

ws = �
0

trec csdt

a
=

2cs
�arec

H0
��m0

��1 + � − ��� = 163.3 Mpc.

�176�

Larger-scale density fluctuations could not oscillate. We
saw in Eqs. �18� and �19� that the comoving angular-
diameter distance from today to scale factor arec is
fK�w�arec��=w�arec� if we assume spatial flatness, K=0. In
good approximation,
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fK�w�arec�� = w�arec� = 3.195
c

H0
	�m0

0.3

−0.4

. �177�

Thus, the sound horizon sets an angular scale of

�s = ws/w�arec� = 0.66 ° . �178�

This angular scale can be read off the first acoustic peak
in the CMB power spectrum �see Sec. VI.B.5 below�. Its
relation to the physical sound horizon �Eq. �176�� de-
pends almost precisely on the sum of �m0 and �0 if all
else remains fixed. Thus, the location of the first acoustic
peak determines the spatial curvature of the cosmologi-
cal model. When combined with measurements of H0,
latest data �cf. Table I� show that K=0 to high precision.

A third effect influencing structures in the CMB is
caused by the fact that, as recombination proceeds, the
mean-free path of the photons increases. If ne=xnB is
the electron number density and �T is the Thomson
cross section, the comoving mean-free path is


 � �xnB�T�−1. �179�

As the ionization fraction x drops toward zero, the
mean-free path approaches infinity. After N scatterings,
the photons will have diffused by


D � �N
 �180�

on average. The number of scatterings per unit time is

dN � xnB�Tcdt , �181�

and thus the diffusion scale is given by


D
2 �� 
2dN �� cdt

xnB�T
. �182�

Inserting x�1/2 as a typical value into the latter inte-
grand, we find


D
2 �

2c!t

nB�T
. �183�

Numerical evaluation returns a comoving damping
length of order 50 Mpc, corresponding to angular scales
of �D�10� on the sky. The effect of this diffusion pro-
cess is called Silk damping �Silk, 1968�. We thus expect
three principal mechanisms to shape the appearance of
the microwave sky: the Sachs-Wolfe effect on the largest
scales, the acoustic oscillations on scales smaller than the
sound horizon, and Silk damping on scales smaller than
a few arcminutes.

4. CMB polarization

If the CMB does indeed arise from Thomson scatter-
ing, interesting effects must occur because the Thomson
scattering cross section is polarization sensitive and can
thus convert unpolarized into linearly polarized radia-
tion. Suppose an electron is illuminated by unpolarized
radiation from the left, then radiation scattered toward
the observer will be linearly polarized in the perpendicu-
lar direction. Likewise, unpolarized radiation incoming
from the top will be linearly polarized horizontally after

being scattered toward the observer. Thus, if the elec-
tron is irradiated by a quadrupolar intensity pattern,
scattered radiation will be partially linearly polarized.
The polarized intensity is expected to be of order 10%
of the total intensity. Polarized radiation must reflect the
same physical effects as unpolarized radiation, and the
two must be cross correlated. Much additional informa-
tion on the physical state of the early Universe is thus
contained in the polarized component of the CMB,
apart from the fact that the mere detection of polariza-
tion supports the physical picture of the CMB’s origin.

5. The CMB power spectrum

Fourier transformation is impossible on the sphere,
but analysis of the CMB proceeds in a completely analo-
gous way by decomposing the relative temperature fluc-
tuations into spherical harmonics, finding the spherical-
harmonic coefficients

alm =� d2�
�T

T
Ylm���� , �184�

and from them the power spectrum

Cl �
1

2l + 1 �
m=−l

l

�alm�2, �185�

which is the equivalent on the sphere to the three-
dimensional power spectra defined in Eq. �27�. The av-
erage over m expresses the expectation of statistical isot-
ropy. If parts of the observed sky need to be masked,
care has to be taken to orthonormalize the spherical har-
monics on the remaining domain �see Fig. 7�.

The shape of the CMB power spectrum reflects the
three physical mechanisms identified above: at small l
�on large scales�, the Sachs-Wolfe effect causes a fea-
tureless plateau, followed by pronounced maxima and
minima due to the acoustic oscillations, damped on the
smallest scales �largest l� by Silk damping.
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FIG. 7. Schematic appearance of the CMB power spectrum
due to the three dominating physical effects defining its shape:
the Sachs-Wolfe effect on largest scales, the Silk damping on
smallest scales, and the acoustic oscillations in between.
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The detailed shape of the CMB power spectrum de-
pends sensitively on the cosmological parameters, which
can in turn be determined by fitting the theoretically
expected to the measured Cl. This is the main reason for
the detailed and sensitive CMB measurements pio-
neered by COBE, continued by ground-based and bal-
loon experiments, and culminating recently in the spec-
tacular results obtained by the Wikinson microwave
anisotropy probe �WMAP� satellite.

6. Secondary anisotropies and foregrounds

By definition, the CMB is the oldest visible source of
photons because all possible earlier sources could not
shine through the hot cosmic plasma. Therefore, every
source that produced microwave photons since or that
produced photons which became redshifted into the mi-
crowave regime by now must appear superposed on the
CMB. The CMB is thus covered by layers of foreground
emission that have to be unveiled before the CMB can
be observed.

Broadly, the CMB foregrounds can be grouped into
point sources and diffuse sources. The most important
among the point sources are infrared galaxies at high
redshift and bodies in the Solar System such as the ma-
jor planets and even some of the asteroids.

The population of infrared sources at high redshift is
poorly known, but the angular resolution of CMB mea-
surements has so far been too low to be significantly
contaminated by them. Future CMB observations will
have to remove them carefully �Toffolatti et al., 1998�.

Microwave radiation from bodies in the Solar System
has so far been used to calibrate microwave detectors.
CMB observations at an angular resolution below �10�
are expected to detect hundreds of minor planets.

Diffuse CMB foregrounds are mainly caused by our
Galaxy itself. There are three main components: syn-
chrotron emission, emission from warm dust, and brems-
strahlung �Haslam et al., 1982; Schlegel et al., 1998;
Dame et al., 2001; Finkbeiner, 2003�.

Synchrotron radiation is emitted by relativistic elec-
trons in the Galaxy’s magnetic field. It is highly linearly
polarized and has a power-law spectrum falling steeply
from radio toward microwave frequencies. It is centered
on the Galactic plane but shows filamentary extensions
from the Galactic center toward the Galactic poles.

The dust in the Milky Way is also concentrated in the
Galactic plane. It is between 10 and 20 K warm and thus
substantially warmer than the CMB itself. It has a ther-
mal spectrum modified by frequency-dependent self-
absorption. Due to its higher temperature, the warm
dust has a spectrum rising with increasing frequency in
the frequency window where the CMB is usually ob-
served.

Bremsstrahlung radiation is emitted by ionized hydro-
gen clouds �HII regions� in the galactic plane. Its spec-
trum has the shape typical for thermal free-free radia-
tion, falling exponentially at photon energies near and
above the gas temperature, but it is flat at CMB frequen-
cies. Further sources of microwave radiation in the Gal-

axy are less prominent. Among them are line emission
from CO molecules embedded in cool gas clouds.

The falling synchrotron spectrum, the flat spectrum of
the free-free radiation, and the rising spectrum of the
warm dust create a window for CMB observations be-
tween �100 and 200 GHz. The different spectra of the
foregrounds and their non-Planckian character are cru-
cial for their proper removal from the CMB data. There-
fore, CMB measurements have to be carried out in mul-
tiple frequency bands.

Secondary anisotropies are caused by propagation ef-
fects rather than photon emission. The most important
are the integrated Sachs-Wolfe effect and the �thermal
and kinetic� Sunyaev-Zel’dovich effects in galaxy clus-
ters.

The integrated Sachs-Wolfe effect is caused by gravi-
tational potential wells deepening while crossed by
CMB photons. It is determined by the line-of-sight inte-
gral of the time derivative of the potential fluctuations
caused by the density fluctuations between us and the
CMB. By cross-correlating CMB temperature fluctua-
tions with structures in the galaxy distribution, the inte-
grated Sachs-Wolfe effect has indeed been detected
�Gaztañaga et al., 2006; Giannantonio et al., 2006�. It
constrains the ratio D+�a� /a.

The Sunyaev-Zel’dovich effect �Sunyaev and Zeldo-
vich, 1972� is due to inverse Compton scattering of CMB
photons off hot electrons in the intracluster plasma. On
average, the photons gain energy and are thus moved
from the low- to the high-frequency part of the spec-
trum. When observed through a galaxy cluster, the CMB
therefore appears fainter at low and brighter at high fre-
quencies, with the transition at 217 GHz. This gives gal-
axy clusters a peculiar spectral signature in the micro-
wave regime as they cast shadows below, emit above,
and vanish at 217 GHz. Once the angular resolution of
CMB detectors will drop toward a few arcminutes, a
large number of galaxy clusters are expected to show up
in this way. Besides this thermal Sunyaev-Zel’dovich ef-
fect, there is the kinetic effect caused by the bulk motion
of the cluster as a whole, which causes CMB radiation to
be scattered by the electrons moving with the cluster.
Very few clusters have so far been detected in CMB
data, but thousands are expected to be found in future
missions.

7. Measurements of the CMB

Wien’s law �Eq. �114�� shows that the CMB spectrum
peaks at 
max�0.11 cm or at a frequency of �max
�282 GHz. As we saw, Silk damping sets in below
�10� arc min; thus most of the structures in the CMB
are resolvable for rather small telescopes. According to

!� � 1.44
/D �186�

relating the diffraction-limited angular resolution !� to
the ratio between wavelength and telescope diameter D,
we find that mirrors with
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D � 1.44
max/�D � 55 cm �187�

are sufficient to achieve sufficient angular resolution up
to the Silk damping scale �D. Detectors are needed
which are sensitive to millimeter and submillimeter ra-
diation and reach %K sensitivity, while the telescope op-
tics can be kept rather small and simple �see Fig. 8�.

Two types of detector are commonly used. The first
are bolometers, which measure the energy of the ab-
sorbed radiation by the temperature increase it causes.
They have to be cooled to very low temperatures, typi-
cally in the mK regime. The second are so-called high
electron mobility detectors, in which the currents caused
by the incoming electromagnetic field are measured di-
rectly. They measure amplitude and phase of the waves
and are thus polarization sensitive by construction,
which bolometers are not. Polarization measurements
with bolometers are possible with suitably shaped so-
called feed horns guiding the radiation into the detec-
tors.

Since water vapor in the atmosphere both absorbs and
emits microwave radiation through molecular lines,
CMB observations need to be carried out at high dry
and cold sites on the ground �e.g., in the Chilean Andes
or at the South Pole�, from balloons rising above the
troposphere, or from satellites in space.

After the breakthrough achieved with COBE �Bog-
gess et al., 1992�, progress was made with balloon experi-
ments and with ground-based interferometers. The bal-
loons covered a small fraction of the sky �typically
�1%� at frequencies between 90 and 400 GHz, while
the interferometers observe even smaller fields at some-
what lower frequencies �typically around 30 GHz�.

The first discovery of the CMB polarization and its
cross correlation with the CMB temperature was
achieved with the degree angular scale interferometer
�DASI� �Kovac et al., 2002�. The existence, location, and
height of the first acoustic peak had been firmly estab-
lished �Wang et al., 2003� before the NASA satellite
WMAP was launched, but the increased sensitivity and

the full-sky coverage of WMAP produced breath-taking
results �Spergel et al., 2007�. WMAP is still operating,
measuring the CMB temperature at frequencies be-
tween 23 and 94 GHz with an angular resolution of
�15�. The sensitivity of WMAP is barely high enough
for polarization measurements.

By now, data from the first five years of operation
have been published, and cosmological parameters have
been obtained fitting theoretically expected to the mea-
sured temperature-fluctuation power spectrum and the
temperature-polarization power spectrum. Results are
given in Table I, adapted from Komatsu et al. �2009�.

Although the CMB provides insight into the cosmo-
logical parameters on its own, it is most powerful when
combined with other data sets. In particular, the Hubble
constant is not an independent measurement from the
CMB alone. Only by assuming a flat CDM universe, it
can be inferred from the location of the first acoustic
peak in the CMB power spectrum to be H0
=70.1±1.3 km s−1 Mpc−1, which agrees perfectly with the
results of the Hubble key project and at least one inter-
pretation of the gravitational-lens time delays.

A European CMB satellite mission is under way: the
European Space Agency’s Planck satellite has been
launched in May 2009. It will observe the microwave sky
in nine frequency bands between 30 and 857 GHz with
about ten times higher sensitivity than WMAP and an
angular resolution of �5� �Tauber, 2004�. Its wide fre-
quency coverage will be important for substantially im-
proved foreground subtraction. It will also have suffi-
cient sensitivity to precisely measure the CMB
polarization in some of its frequency bands �Lamarre et
al., 2003; Valenziano et al., 2007�. Moreover, it is ex-
pected that Planck will detect a large number of galaxy
clusters through their thermal Sunyaev-Zel’dovich ef-
fect.

VII. COSMIC STRUCTURES

A. Quantifying structures

1. Introduction

We have seen before that there is a very specific pre-
diction for the power spectrum of cold dark matter-
density fluctuations in the Universe, characterized by
Eq. �28�. Recall that its shape was inferred from the
simple assumption that the rms mass of density fluctua-
tions entering the horizon should be independent of the
time when they enter the horizon and from the fact that
perturbation modes entering during the radiation era
are suppressed until matter begins dominating. Given
the simplicity of the argument and the corresponding
strength of the prediction, it is important for cosmology
to find out whether the actual power spectrum of matter-
density fluctuations does in fact have the expected
shape, and if it has, to determine the only remaining
parameter, i.e., the normalization of the power spec-
trum.

FIG. 8. �Color online� Power spectrum of CMB temperature
fluctuations as measured from the 5-yr data of WMAP and
several additional ground-based experiments. From Nolta
et al., 2009.
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Since the comoving wave number keq of the peak in
the power spectrum is set by the comoving horizon ra-
dius at matter-radiation equality �Eq. �26��,

keq �
2�

weq
� 	�m0

aeq

1/2

=
�m0

��r0

, �188�

it is proportional to the matter-density parameter �m0.
A measurement of keq would thus provide an indepen-
dent and very elegant determination of �m0.

Since the power spectrum is defined in Fourier space,
it is not obvious how it should be measured. The corre-
lation function is related to the power spectrum by

)�x� =
1

2�2�
0

$

P�k�
sin kx

kx
k2dk , �189�

whose inverse transform is

P�k� = 4��
0

$

)�x�
sin kx

kx
x2dx . �190�

The power spectrum can thus in principle be determined
from a measured correlation function )�x�.

2. Measuring the correlation function

The correlation function of the three-dimensional
density field cannot be measured directly. Gravitational
lensing by large-scale structures comes close by measur-
ing the weighed line-of-sight projection of the matter
power spectrum �see Sec. VIII�. Starting from the as-
sumption that galaxies may be tracers of the underlying
density field, we can use their correlation function as an
estimate for that of the matter.

Suppose we divide space into cells of volume dV small
enough to contain at most a single galaxy. Then, the
probability of finding one galaxy in dV1 and another in
dV2 is

dP = �n�x�1�n�x�2��dV1dV2, �191�

where n is the number density of the galaxies as a func-
tion of position. If we introduce a density contrast for
the galaxies in analogy to the density contrast for the
matter,

�n � n/n̄ − 1, �192�

and assume for now that �n=�, we find from Eq. �191�
with n= n̄�1+��,

dP = n̄2��1 + �1��1 + �2��dV1dV2

= n̄2�1 + )�x��dV1dV2, �193�

where x is the comoving distance between the two vol-
ume elements. This shows that the correlation function
quantifies the excess probability above random for find-
ing galaxy pairs at a given distance.

Thus, the correlation function can be measured by
counting galaxy pairs and comparing the result to the
Poisson expectation, i.e., to the pair counts expected in a
random point distribution. Symbolically,

1 + ) = �DD�/�RR� , �194�

where D and R represent the data and the random point
set, respectively. Several other estimators for ) have
been proposed which are all equivalent in the ideal situ-
ation of an infinitely extended point distribution. For
finite point sets, their noise properties differ �Hamilton,
1993b; Landy and Szalay, 1993�. The recipes for measur-
ing )�x� are thus to count pairs separated by x in the data
D and in the random point set R or between the data
and the random point set and to use one of the estima-
tors proposed.

The obvious question is then how accurately ) can be
determined. The simple expectation in the absence of
clustering is

�)� = 0, �)2� = 1/Np, �195�

where Np is the number of pairs found. Thus, the Pois-
son error on the correlation function is

!)/�1 + )� = 1/�Np. �196�

This is a lower limit to the actual error, however, be-
cause the galaxies are in fact correlated. It turns out that
the result �196� should be multiplied with 1+4�n̄J3,
where J3 is the volume integral over ) within the galaxy-
survey volume �Peebles, 1973�. The true error bars on )
are therefore hard to estimate.

Having measured the correlation function, it would in
principle suffice to carry out the Fourier transform �Eq.
�190�� to find P�k�, but this is difficult in reality because
of the inevitable sample limitations. Consider Eq. �189�
and an underlying power spectrum of CDM shape, fall-
ing off �k−3 for large k, i.e., on small scales. For fixed x,
the integrand in Eq. �189� falls off very slowly, which
means that a considerable amount of small-scale power
is mixed into the correlation function. Since ) at large x
is small and most affected by measurement errors, any
uncertainty in the large-scale correlation function is
propagated to the power spectrum even on small scales.

A further problem is the uncertainty in the mean gal-
axy number density n̄. Since 1+)� n̄−1 according to Eq.
�193�, the uncertainty in ) due to an uncertainty in n̄ is

!)/�1 + )� � !) = !n̄/n̄ , �197�

showing that ) cannot be measured with an accuracy
better than the relative accuracy of the mean galaxy
density.

3. Measuring the power spectrum

Given these problems with real data, it seems appro-
priate to estimate the power spectrum directly. The func-
tion to be transformed is the density field sampled by
the galaxies, which can be represented by a sum of Dirac
delta functions centered on the locations of the N galax-
ies,
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n�x�� = �
i=1

N

�D�x� − x� i� . �198�

The Fourier transform of the galaxy density contrast is
then

�̂g�k� � =
1

N�
i=1

N

eik�x� i. �199�

In the absence of correlations, the Fourier phases of the
individual terms are independent, and the variance of
the Fourier amplitude for a single mode becomes

��̂g�k� ��̂g
*�k� �� =

1

N2�
i=1

N

eik� ·x� ie−ik� ·x� i =
1

N
. �200�

This is the so-called shot noise present in the power
spectrum due to the discrete sampling of the density
field. The shot-noise contribution needs to be subtracted
from the power spectrum of the real correlated galaxy
distribution,

P�k� =
1

m � ��̂g�k� ��2 −
1

N
, �201�

where the sum extends over all m Fourier modes with
wave number k contained in the survey.

This is not the final result yet because any real survey
typically covers an irregularly shaped volume from
which parts need to be excised because they are overs-
hone by stars or unusable for any other reason. The
combined effect of mask and irregular survey volume is
described by a window function f�x�� which multiplies the
galaxy density,

n�x�� → f�x��n�x��, �1 + �g� → f�x���1 + �g� , �202�

implying that the Fourier transform of the mask needs
to be subtracted.

Moreover, the Fourier convolution theorem says that
the Fourier transform of the product f�x���g�x�� is the con-

volution of the Fourier transforms f̂�k� � and �̂g�k� �,

f�̂ = f̂ � �̂g �� f̂�k����̂g�k�� − k� �d3k�. �203�

If the Fourier phases of f̂ and �̂g are uncorrelated, which
is the case if the dimensions of the survey are large
enough compared to the size 2� /k of the density mode,
this translates to a convolution of the power spectrum,

Pobs = Ptrue � �f̂�k� ��2. �204�

This convolution smoothes the observed compared to
the true power spectrum and changes its amplitude.

If the Poisson error dominates in the survey, the dif-

ferent modes �̂g�k� � can be shown to be uncorrelated, and
the standard deviation after summing over the m modes
with wave number k is �2m /N, which yields the minimal
error bar to be attached to the power spectrum.

Thus, the shot-noise contribution and the Fourier
transform of the window function need to be subtracted,

the window function needs to be deconvolved, and the
amplitude needs to be corrected for the effective volume
covered by the window function before the measured
power spectrum can be compared to the theoretical ex-
pectation.

4. Biasing

What we have determined so far is the power spec-
trum of the galaxy number-density contrast �n rather
than that of the matter-density contrast �. Both are re-
lated by a possibly scale-dependent bias factor b�k�,
such that

�n̂�k� � = b�k��̂g�k� � . �205�

Clearly, different types of objects sample the underlying
matter-density field in different ways. Galaxy clusters,
for instance, are much more rare than galaxies and are
thus expected to have a substantially higher bias factor
than galaxies. Obviously, the bias factor enters the
power spectrum squared, e.g.,

Pgal = bgal
2 �k�P�k� . �206�

It constitutes a major and possibly systematic uncer-
tainty in the determination of the matter power spec-
trum from the galaxy power spectrum.

5. Redshift-space distortions

For any quantification of three-dimensional structures
in galaxy surveys, the three-dimensional positions x� i of
the galaxies in the survey need to be known. Distances
can be inferred only from the galaxy redshifts and thus
from galaxy velocities. These, however, are composed of
the Hubble velocities, from which the distances can be
determined, and the peculiar velocities,

� = �Hubble + �pec, �207�

which are caused by local density perturbations and are
unrelated to the galaxy densities. Since observations of
individual galaxies do not allow any separation between
the two velocity components, distances are inferred
from the total velocity � rather than the Hubble velocity
as they should be,

D =
�

H0
=
�Hubble + �pec

H0
= Dtrue + !D , �208�

giving rise to a distance error �D=�pec/H0, the so-called
redshift-space distortion.

The redshift-space distortions create a peculiar pat-
tern through which they can be corrected �Kaiser, 1987;
Hamilton 1993a�. Consider a matter overdensity such as
a galaxy cluster, containing galaxies moving with random
virial velocities in it. The virial velocities of order
1000 km s−1 scatter around the systemic cluster velocity
and thus broaden the redshift distribution of the cluster
galaxies. In redshift space, therefore, the cluster appears
stretched along the line of sight, which is called the
finger-of-god effect.

359Matthias Bartelmann: The dark Universe

Rev. Mod. Phys., Vol. 82, No. 1, January–March 2010



In addition, the cluster is surrounded by an infall re-
gion where the galaxies are not virialized yet but move
in an ordered radial pattern toward the cluster. Galaxies
in front of the cluster thus have higher recession veloci-
ties and galaxies behind the cluster have lower recession
velocities compared to the Hubble velocity, leading to a
flattening of the infall region in redshift space.

A detailed analysis shows that the redshift-space
power spectrum Pz is related to the real-space power
spectrum P by

Pz�k� = P�k��1 + �%2�2, �209�

where % is the direction cosine between the line of sight
and the wave vector k� and � is related to the bias pa-
rameter b through

� � f��m�/b . �210�

f��m� is the logarithmic derivative of the growth factor
D+�a�,

f��m� � d ln D+�a�/d ln a � �m
0.6. �211�

Thus, the characteristic pattern of the redshift-space dis-
tortions around overdensities allows a measurement of
the bias factor �Hawkins et al., 2003�. Another way of
measuring b is based on gravitational lensing �Hoekstra,
van Waerbeke, et al., 2002; Simon et al., 2007�. Measure-
ments of b show that it is in fact only weakly scale de-
pendent, near unity for “ordinary” galaxies, but depends
mildly on galaxy luminosity and type �Norberg et al.,
2001; Lahav et al., 2002; Cole et al., 2005�.

6. Baryonic acoustic oscillations

As seen in the discussion of the CMB, the cosmic fluid
underwent acoustic oscillations on comoving scales
smaller than the sound horizon �Eq. �176�� ws
=163.3 Mpc, corresponding to a comoving wave number
ks=2� /ws=0.038 Mpc−1. When the CMB decoupled, the
oscillations ceased, leaving structures in the cosmic mat-
ter distribution with a fundamental wavelength of ws
and its overtones. The other scale characterizing the cos-
mic structures is the horizon radius at matter-radiation
equality �26�, which was responsible to set the peak lo-
cation of the matter-fluctuation power spectrum at keq
=0.01 Mpc−1.

Thus, at wave numbers �3.8 times the peak scale and
above, we expect the wavelike imprint of these baryonic
acoustic oscillations �BAOs� on top of the otherwise
smooth dark-matter power spectrum. Mode coupling
due to nonlinear evolution of cosmic structures must
have stretched and distorted this pattern to some de-
gree. As we see below, the BAOs have indeed been dis-
covered in the largest galaxy surveys. They play an im-
portant role in attempts to recover the history of the
cosmic expansion rate �see Eisenstein �2005� for a recent
review�.

B. Measurements and results

1. The power spectrum

Successful measurements of the galaxy power spec-
trum became recently possible with the two largest gal-
axy surveys to date, the Two-Degree Field Galaxy Red-
shift Survey �2dFGRS� �Colless 1999� and the Sloan
Digital Sky Survey �SDSS� �York et al., 2000�. As antici-
pated in the preceding discussion, an enormous effort
had to be made to identify galaxies, measure their red-
shifts, select homogeneous galaxy subsamples by lumi-
nosity and color as a function of redshift so as not to
compare and correlate apples with oranges, estimate the
window function of the survey, determine the average
galaxy number density, correct for the convolution with
the window function and for the bias, and so forth �see
Fig. 9�.

Moreover, numerical calibration experiments were
carried out in which all measurement and correction
techniques were applied to simulated data in the same
way as to the real data to determine reliable error esti-
mates and to test whether the full sequence of analysis
steps ultimately yields an unbiased result.

Based on 221 414 galaxies, the 2dFGRS consortium
derived a power spectrum of superb quality �Cole et al.,
2005�. First and foremost, it agrees well with the power-
spectrum shape expected for cold dark matter on the

FIG. 9. Galaxy power spectra obtained from the 2dFGRS
�Cole et al., 2005� and two releases of the SDSS �Tegmark et
al., 2004; Percival et al., 2007�. The expected shape of the CDM
power spectrum is well reproduced, and the difference in am-
plitudes may be attributed to scale-dependent galaxy biasing.
From Percival et al., 2007.
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small-scale side of the peak. This is a remarkable result
on its own. The 2dFGRS power spectrum also shows a
turnover toward larger scales, signaling the presence of
the peak. The survey is still not quite large enough to
clearly show the peak, but the peak location can be es-
timated from the flattening of the power spectrum. Its
proportionality to �m0 allows an independent determi-
nation of the matter-density parameter. Finally the
power spectrum shows the baryonic acoustic oscillations,
whose amplitude allows an independent determination
of the ratio between the density parameters of baryons
and dark matter.

Apart from the fact that the galaxy power spectrum
supports the CDM shape on small scales, the results ob-
tained from the 2dFGRS can be summarized as follows:

�m0 = 0.233 ± 0.022, �b0/�m0 = 0.185 ± 0.046.

�212�

A Hubble constant of h=0.72 is assumed here. Indi-
rectly, the baryon density is constrained to be �b0
�0.04, which is in perfect agreement with the value de-
rived from primordial nucleosynthesis and the measured
abundances of the light elements.

Based on 522 280 galaxies, the power spectrum in-
ferred from the SDSS �Percival et al., 2007� is also well
compatible with the CDM shape. The estimate for the
matter-density parameter overlaps with that from the
2dFGRS on large scales, �m0=0.22±0.04, but increases
when small scales are included.

It should be kept in mind, however, that the assump-
tion of linear biasing may turn out to be too simplistic
for precise cosmological inferences to be drawn from
galaxy power spectra. Nonetheless, power spectra for
different types of galaxies will provide invaluable infor-
mation on the physics of galaxy formation.

VIII. COSMOLOGICAL WEAK LENSING

A. Cosmological light deflection

1. Deflection angle, convergence, and shear

Gravitational lensing was mentioned twice before:
first in Sec. III.B as a means for measuring the Hubble
constant through the time delay caused by gravitational
light deflection and second as a means for measuring
cluster masses in Sec. V.B.3. For cosmology as a whole,
gravitational lensing has also developed into an increas-
ingly important tool �see Mellier �1999�, Bartelmann and
Schneider �2001�, and Refregier �2003� for reviews�.

Matter inhomogeneities deflect light. Working out this
effect in the limit of a small Newtonian gravitational
potential, ��c2, leads to the deflection angle

�� ���� =
2

c2�
0

w

dw�
fK�w − w��

fK�w�
�� ���fK�w����� . �213�

The angle is determined by a weighted integral over the
gradient of the Newtonian gravitational potential � per-
pendicular to the line of sight into direction �� on the

observer’s sky, and the weight is given by the comoving
angular-diameter distance fK�w� defined in Eq. �2�. The
integral extends along the comoving radial distance w�
along the line of sight to the distance w of the source.

Equation �213� can be intuitively understood. Light is
deflected due to the pull of the dimensionless Newton-
ian gravitational field �� �� /c2 perpendicular to the oth-
erwise unperturbed line of sight, and the effect is
weighed by the ratio between the angular-diameter dis-
tances from the deflecting potential to the source fK�w
−w�� and from the observer to the source fK�w�. Thus, a
lensing mass distribution close to the observer gives rise
to a large deflection, while a lens near the source, w�
�w, has very little effect. The factor of 2 is a relic from
general relativity and is due to space-time curvature,
which is missing in Newtonian gravity. Assuming K=0,
we can replace fK�w� by w.

It is important to realize that the deflection itself is
not observable. If all light rays emerging from a source
were deflected by the same angle on their way to the
observer, no noticeable effect remained. What is impor-
tant, therefore, is not the deflection angle itself but its
change from one light ray to the next. This is quantified
by the derivative of the deflection angle with respect to
the direction �� ,

��i

��j
=

2

c2�
0

w

dw�
�w − w��w�

w

�2�

�xi�xj
�w���� . �214�

The additional factor w� in the weight function arises
because the derivative of the potential is taken with re-
spect to comoving coordinates xi rather than the angular
components �i. Obviously, the complete weight function

W�w�,w� � �w − w��w�/w �215�

vanishes at the observer, w�=0, and at the source, w�
=w, and peaks approximately half-way in between.

For applications of gravitational lensing, it is impor-
tant to distinguish the trace-free part of matrix �214�
from its trace,

tr	 ��i

��j

 =

2

c2�
0

w

dw�W�w�,w�	 �2�

�x1
2 +

�2�

�x2
2 
�w���� .

�216�

The derivatives of � can be combined to the two-
dimensional Laplacian, which can be replaced by the
three-dimensional Laplacian because the derivatives
parallel to the line of sight do not contribute to integral
�216�. Thus, we find

tr	 ��i

��j

 =

2

c2�
0

w

dw�W�w�,w�!� . �217�

Next, we can use Poisson’s equation to replace the
Laplacian of � by the density. In fact, we have to take
into account that light deflection is caused by density
perturbations and that we need the Laplacian in terms of
comoving rather than physical coordinates. Thus,
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a−2!� = 4�G�̄� , �218�

where � is the density contrast and

�̄ = �̄0a−3 = �cr�m0a−3 =
3H0

2

8�G
�m0a−3 �219�

is the mean matter density. Thus, Poisson’s equation
reads

!� = 3
2H0

2�m0�/a , �220�

and Eq. �217� becomes

tr	 ��i

��j

 =

3H0
2�m0

c2 �
0

w

dw�W�w�,w�
�

a
� 2� , �221�

where we have introduced the �effective� convergence �.
The trace-free part of matrix �214� is

��i

��j
−

1
2
�ij tr	 ��i

��j

 =

��i

��j
− �ij� � 	"1 "2

"2 − "1

 , �222�

which defines the so-called shear components "i. Specifi-
cally,

"1 =
1

c2�
0

w

dw�W�w�,w�	 �2�

�x1
2 −

�2�

�x2
2 
 ,

�223�

"2 =
2

c2�
0

w

dw�W�w�,w�	 �2�

�x1�x2

 .

Combining results, we can write the matrix of
deflection-angle derivatives as

	 ��i

��j

 = 	� + "1 "2

"2 � − "1

 . �224�

This matrix contains the important information on how
an image is magnified and distorted. In the limit of weak
gravitational lensing, the size of a lensed image is
changed by the relative magnification

�% = 2� , �225�

while the image distortion is given by the shear compo-
nents. In fact, an originally circular source with radius r
will appear as an ellipse with major and minor axes,

a = r/�1 − � − "�, b = r/�1 − � + "� , �226�

where "��"1
2+"2

2�1/2. The ellipticity of the observed im-
age of a circular source thus provides an estimate for the
shear,

� �
a − b

a + b
=

"

1 − �
� " . �227�

2. Power spectra

Of course, the exact light deflection expected along a
particular line of sight cannot be predicted because the
mass distribution along that light path is unknown. How-
ever, we can predict the statistical properties of weak
lensing from those of the density-perturbation field. We

are thus led to the following problem: Suppose the
power spectrum P�k� of a Gaussian random density-
perturbation field � is known, what is the power spec-
trum of any weighed projection of � along the line of
sight? The answer is given by Limber’s equation. Sup-
pose the weight function is q�w� and the projection is

g���� = �
0

w

dw�q�w����w���� . �228�

If q�w� is smooth compared to �, i.e., if the weight func-
tion changes on scales much larger than typical scales in
the density contrast, then the power spectrum of g is

Pg�l� = �
0

w

dw�
q2�w��

w�2 P	 l

w�

 , �229�

where l� is a two-dimensional wave vector which is the
Fourier conjugate variable to the two-dimensional posi-
tion �� on the sky.

Strictly speaking, Fourier transforms are inappropri-
ate because the sky is not an infinite two-dimensional
plane. Instead, the appropriate set of orthonormal base
functions are the spherical harmonics. However, lensing
effects are usually observed in areas whose solid angle is
very small compared to the full sky. If this is so, the
survey area can be approximated by a section of the
plane locally tangent to the sky, and Fourier transforms
can be used in this so-called flat-sky approximation.

Equation �221� is clearly of form �228� with the weight
function

q�w�� =
3
2
�m0

H0
2

c2

W�w�,w�
a

, �230�

thus the power spectrum of the convergence is, accord-
ing to Limber’s equation,

P��l� =
9�m0

2

4
H0

4

c4 �
0

w

dw�W̄2�w�,w�P	 l

fk�w��

 , �231�

with a new weight function

W̄�w�,w� � W�w�,w�/aw�. �232�

While it requires huge data sets and careful data
analysis to observe the differential magnification �% or
the convergence � �Scranton et al., 2005�, image distor-
tions can in principle be measured in a more straightfor-
ward way. With a brief excursion through Fourier space,
it can easily be shown that the power spectrum of the
shear is exactly identical to that of the convergence,

P"�l� = P��l� . �233�

Thus, the statistics of the image distortions caused by
cosmological weak lensing contains integral information
on the power spectrum of the matter fluctuations.

Since the shear is defined on the two-spheres �the ob-
server’s sky�, its power spectrum is related to its corre-
lation function )" through the two-dimensional Fourier
transform
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)"��� =� d2l

�2��2P"�l�ei�� ·l� = �
0

$ ldl

2�
P"�l�J0�l�� , �234�

where J� is the ordinary Bessel function of order �.

3. Correlation functions

In principle, shear correlation functions are measured
by comparing the ellipticity of one galaxy with the ellip-
ticity of other galaxies at an angular distance � from the
first. Ellipticities are oriented, of course, and one has to
specify against what other direction the direction of, say,
the major axis of a given ellipse is to be compared with.
Since correlation functions are measured comparing the
shear of galaxy pairs, a preferred direction is defined by
the line connecting the two galaxies of the pair under
consideration.

Let � be the angle between this direction and the ma-
jor axis of the ellipse, then the tangential and cross com-
ponents of the shear are defined by

"+ � " cos 2�, "� � " sin 2� . �235�

The factor 2 is important because it accounts for the fact
that an ellipse is mapped onto itself when rotated by an
angle �. This illustrates that the shear is a spin-2 field: it
returns into its original orientation when rotated by �
rather than 2�.

The correlation functions of the tangential and cross
components of the shear are

)++��� = �"+���"+�� + ���

=
1
2�0

$ ldl

2�
P��l��J0�l�� + J4�l��� �236�

and

)����� = �"����"��� + ���

=
1
2�0

$ ldl

2�
P��l��J0�l�� − J4�l��� , �237�

while the cross correlation between the tangential and
cross components must vanish, )+����=0. This suggests
to define the correlation functions )±=)++±)��, which
are related to the power spectrum through )+=)" and

)− = �
0

$ ldl

2�
P��l�J4�l�� . �238�

The principle of all measures for cosmic shear is the
same: they are integrals of the weak-lensing power spec-
trum times filter functions describing the specific re-
sponse of the measurement to the underlying power
spectrum of density fluctuations. The width of the filter
functions controls the range of density-perturbation
modes k� contributing to one specific mode l� of weak
lensing on the sky.

We can now estimate typical numbers for the cosmo-
logical weak-lensing effect. The power !� in the weak-

lensing quantities such as the cosmic shear is given by
the power spectrum P��l� found in Eq. �231� times the
volume in l space,

!��l� � l2P��l� . �239�

Assuming a cosmological model with �m0=0.3 and �0
=0.7, the CDM power spectrum and a reasonable source
redshift distribution !�

1/2�l� are found to peak on scales l
corresponding to angular scales 2� / l of 2�–3�, and the
peak reaches values of 0.04–0.05. This shows that cosmo-
logical weak lensing will typically cause source elliptici-
ties of a few percent, and correlations have a typical
angular scale of a few arcminutes. Details depend on the
measure chosen through the filter function.

B. Cosmic-shear measurements

1. Typical scales and requirements

How can cosmic gravitational-lensing effects be mea-
sured? As shown in Eq. �227�, the ellipticity of a hypo-
thetic circular source is an unbiased estimator for the
shear. However, typical sources are not circular but to
first approximation elliptical themselves. Thus, measur-
ing their ellipticities yields their intrinsic ellipticities in
the first place.

Let ��s� be the intrinsic source ellipticity. It is a two-
component spin-2 quantity. The cosmic shear adds to
that ellipticity, such that the observed ellipticity is

� � ��s� + " �240�

in the weak-lensing approximation. What is observed is
therefore the sum of the signal " and the intrinsic noise
component ��s�.

On sufficiently deep observations, �20
galaxies/arc min2 are routinely detected. Since the full
moon has half a degree diameter, it covers a solid angle
of 152�=700 arc min2 or �14 000 of such distant faint
galaxies. From this point of view, the sky is covered by
densely patterned “wallpaper” of distant galaxies. Thus,
it is possible to average observed galaxy ellipticities. As-
suming their shapes are intrinsically independent, the in-
trinsic ellipticities will average out, and the shear will
remain,

��� � ���s�� + �"� � �"� . �241�

It is a fortunate coincidence that the typical angular
scale of cosmic lensing, which we found to be of order a
few arcminutes, is large compared to the mean distance
between background galaxies, which is of order �1/20
�0.2�. This enables averages over background galaxies
without canceling the cosmic-shear signal. If " varied on
scales comparable to or smaller than the mean galaxy
separation, any average over galaxies would remove the
lensing signal as well.

The intrinsic ellipticities of the faint background gal-
axies have a distribution with a standard deviation of
���0.3. Averaging over N of them, and assuming Pois-
son statistics, yields expectation values of
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���s�� = 0, �� = ����s��2�1/2 = ��/�N �242�

for the mean and its intrinsic fluctuation.
A rough estimate for the signal-to-noise ratio of a

cosmic-shear measurement can proceed as follows. Sup-
pose the correlation function ) is measured by counting
pairs of galaxies with a separation within �� of �. As
long as � is small compared to the side length of the
survey area A, the number of pairs will be

Np = 1
2n2A2���� , �243�

and thus the Poisson noise due to the intrinsic elliptici-
ties will be

noise � 2��/n��A��� , �244�

where the factor of 2 arises because of the two galaxies
involved in each pair. The signal is the square root of the
correlation function ) given by

) � l2P��l�� ln l � l2P��l�
�l

l
� l2P��l�

��

�
, �245�

where we have used in the last step that �=2� / l. Thus,
the signal-to-noise ratio is estimated to be

S

N
�

�)
noise

�
ln ����AP�

2��
=

n��3AP�

��

��

�
. �246�

Evidently, the signal-to-noise ratio, and thus the signifi-
cance of any cosmic-lensing detection, grows with the
survey area and decreases with the intrinsic ellipticity of
the source galaxies. In evaluating Eq. �246� numerically,
we have to take into account that l2P��l� must be a di-
mensionless number, which implies that the power spec-
trum P� must have the dimension steradian. Therefore,
either the survey area A and the number density n in
Eq. �246� must be converted to steradians or P� must be
converted to square arcminutes first.

The signal-to-noise ratio increases approximately lin-
early with scale. Assuming �� /�=0.1, it is S /N�5 on a
scale of 0.5� for a survey of 1 sq deg area. This shows
that, if the cosmic shear should be measured on such
small scales with an accuracy of, say, 5%, a survey area
of A��20/5�2�16 sq deg is needed since the signal-to-
noise ratio scales like the square root of the survey area.
On such an area, the ellipticities of 16�3600�30�2
�106 background galaxies have to be accurately mea-
sured.

Matters are more complicated in reality, but the or-
ders of magnitude are well represented by this rough
estimate. Bearing in mind that typical fields of view of
telescopes large enough for detecting sufficiently many
faint background galaxies reach one-tenth of 1 sq deg up
to 1 sq deg and that typical exposure times are of order
1 h for that purpose, the total amount of telescope time
for a weak-lensing survey of about 100 sq deg is esti-
mated to be several hundred telescope hours. With per-
haps 5 h of telescope time per night and perhaps half of
the nights per year usable, it is easy to see that the time
needed for such surveys is measured in months.

Since typical sizes of the faint background galaxies
measure fractions of arcseconds, shape measurements
require a pixel resolution of, say, 0.1�. A total survey
area of 100 sq deg must therefore be resolved into 100
�3600�3600/0.12�1.3�1011 pixels.

These estimates neglect all sources of noise other than
the shot noise caused by the finite number of galaxies.
On angular scales below a few arcminutes, the cosmic
variance caused by field-to-field variations in the shear
signal due to the large-scale cosmic structures must be
added �Kilbinger and Schneider, 2004�.

2. Ellipticity measurements

The determination of image ellipticities is straightfor-
ward in principle but difficult in practice �Kaiser et al.,
1995�. Often, the surface-brightness quadrupole

Qij =
� I�x��xixjd

2x

� I�x��d2x

�247�

is measured, from whose principal axes the ellipticity
can be read off. Real galaxy images, however, are typi-
cally far from ideally elliptical. They are structured or
otherwise irregular. In addition, if they are small, they
are coarsely resolved into just a few pixels, so that only a
crude approximation to the integral in Eq. �247� can be
found.

How the image of a pointlike source, such as a star,
appears on the detector is described by the point-spread
function �PSF�. The PSF may be anisotropic if the tele-
scope optics is slightly astigmatic, and this anisotropy
may, and will in general, depend on the location in the
focal plane. The image is a convolution of the ideal im-
age shape prior to any distortion by the atmosphere and
the telescope optics. Any accurate measurement of im-
age ellipticities requires a PSF correction or deconvolu-
tion, for which the PSF must of course be known. It is
commonly measured off the images of stars in the field.

Many other effects may distort the PSF and thus the
images in systematic ways. For instance, if the CCD
chips are not exactly perpendicular to the optical axis of
the telescope, if the individual chips of a CCD mosaic
are not exactly coplanar, or if the telescope is slightly out
of focus, systematic image deformations may result
which typically vary across the focal plane. They have to
be measured and corrected. This is commonly achieved
by fitting the measured PSF by low-order two-
dimensional polynomials on the focal plane. Since part
of the image distortions may depend on time due to
thermal deformation, changing atmospheric conditions
and such, PSF corrections will also depend on time and
have to be determined and applied with much care.

Even if the surface-brightness quadrupole of the im-
age on the detector can be accurately determined, the
image appears affected by imperfections of the telescope
optics and by the turbulence in the atmosphere, the so-
called seeing. Due to the wave nature of light and the
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finite size of the telescope mirror, the telescope will have
finite resolution. The angular resolution limit is given by
Eq. �186�. With 
�6�10−5 cm and D=400 cm, the an-
gular resolution is !��0.04�, much smaller than needed
for our purposes.

The turbulence of the Earth’s atmosphere effectively
convolves images with a Gaussian whose width depends
on the site, the weather, and other conditions. Typical
seeing ranges around 1�. Under very good conditions, it
can shrink to �0.5� or even less. Clearly, if an image of
subarcsecond size is convolved with a Gaussian of simi-
lar width, any ellipticity is substantially reduced.

Systematic effects may remain which need to be de-
tected and quantified. Any coherent image distortions
caused by gravitational lensing must be describable by
the tidal gravitational field, i.e., by second-order deriva-
tives of a scalar potential. In analogy to the E� field in
electromagnetism, such distortion patterns are called E
modes. Similarly, distortion patterns which are described
as the curl of a vector field are called B modes. They
cannot be due to gravitational lensing and thus signal
systematic effects remaining in the data. Such B-mode
contaminations could recently be strongly reduced or
suppressed by improved algorithms for PSF correction
�Hoekstra, 2004�. Absence of B-mode contamination
does not allow the implication that the results are free of
systematics, though, because optical distortions also
tend to create spurious E modes.

3. Results

Despite the smallness of the effect and the many dif-
ficulties in measuring it, much progress in cosmic-shear
observations has been achieved in the past few years
�Heymans et al., 2006; Massey et al., 2007a�. Current and
ongoing surveys, in particular the Canada-France-
Hawaii Legacy Survey �CFHLS� �Semboloni et al., 2006;
Fu et al., 2008�, combined with well-developed largely
automatic data-analysis pipelines, have succeeded in
producing cosmic-shear correlation functions with very
small error bars covering angular scales from below an
arcminute to several degrees. The best correlation func-
tions could be shown to be at most negligibly contami-
nated by B modes.

The power spectrum P��l� depends crucially on the
nonlinear evolution of the dark-matter power spectrum.
This and the exact redshift distribution of the back-
ground galaxies are the major uncertainties now remain-
ing in the interpretation of cosmic-shear surveys. Apart
from that, the measured cosmic-shear correlation func-
tions agree very well with the theoretical expectation
from CDM density fluctuations in a spatially flat low-
density universe.

As Eq. �231� shows, the weak-lensing power spectrum
P��l� depends on the product of a factor �m0

2 due to the
Poisson equation times the amplitude A of the matter
power spectrum. An additional weak dependence on
cosmological parameters is caused by the geometric

weight function W̄�w� ,w�. The cosmic-shear correlation

function thus measures approximately the product
A�m0

2� , ��1, which means that the amplitude of the
power spectrum is nearly degenerate with the matter
density parameter. Only if it is possible to constrain �m0
or A in any other way can the degeneracy be broken.

We see later how this may work. The amplitude of the
power spectrum A is conventionally described by a pa-
rameter �8

2 which will be described in Sec. X. Weak lens-
ing thus constrains the product �8�m0

� , and latest mea-
surements find �8��m0 /0.25�0.64�0.784±0.043 �Fu et al.,
2008� �see Fig. 10�.

Weak gravitational lensing is a fairly new field of cos-
mological research. Within a few years, it has consider-
ably matured and returned cosmologically interesting
constraints. Considerable potential is attributed to weak
lensing in wide-area surveys in particular when com-
bined with photometric redshift information because
this is expected to allow constraints on the growth of
cosmic structures.

IX. SUPERNOVAE OF TYPE Ia

A. Standard candles and distances

1. The principle

Before discussing supernovae of type Ia and their cos-
mological relevance, we set the stage with a few illustra-
tive considerations. Suppose we had a standard candle
whose luminosity L we knew precisely. Then, according
to the definition of the luminosity distance in Eq. �20�,
the distance can be inferred from the measured flux S
through

Dlum = �L/4�S . �248�

Besides the redshift z, the luminosity distance will de-
pend on the cosmological parameters,
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FIG. 10. �Color online� Constraints in the �m0-�8 plane from
weak lensing on large angular scales in the CFHTLS. The Uni-
verse is assumed spatially flat here. From Fu et al., 2008.
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Dlum = Dlum�z ;�m0,�0,H0, . . . � , �249�

which can in principle be used to determine cosmologi-
cal parameters from a set of distance measurements
from a class of standard candles.

For this to work, the standard candles must be at a
suitably high redshift for the luminosity distance to de-
pend on the cosmological model. As seen in Eq. �21�, all
distance measures share the low-z limit

D � cz/H0 �250�

and lose their sensitivity to all cosmological parameters
except H0.

In reality, we rarely know the absolute luminosity L
even of cosmological standard candles. The problem is
that they need to be calibrated first, which is only pos-
sible from a flux measurement once the distance is
known by other means, such as from parallaxes in case
of the Cepheids. Supernovae, however, which are the
subject of this section, are typically found at distances
which are way too large to allow direct distance mea-
surements. Therefore, the only way out is to combine
distant supernovae with local ones, for which the ap-
proximate distance relation �250� holds.

Any measurement of flux Si and redshift zi of the ith
standard candle in a sample then yields an estimate for
the luminosity L in terms of the squared inverse Hubble
constant,

L = 4�Si�czi/H0�2. �251�

Since all cosmological distance measures are propor-
tional to the Hubble length c /H0, the dependence on H0
on both sides of Eq. �248� cancels, and the determination
of cosmological parameters other than the Hubble con-
stant becomes possible. Thus, the first lesson to learn is
that cosmology from distant supernovae requires a
sample of nearby supernovae for calibration.

Of course, this nearby sample must satisfy the same
criterion as the distance indicators used for the determi-
nation of the Hubble constant: their redshifts must be
high enough for the peculiar velocities to be negligible,
thus z�0.02. If the redshifts are low enough for the lin-
ear approximation �250� to hold, the interpretation of
the nearby sample is independent of the cosmological
model.

It is important to note that it is not necessary to know
the absolute luminosity L even up to the uncertainty in
H0. If L is truly independent of redshift, cosmological
parameters could still be determined through Eq. �248�
from the shape of the measured relation between flux
and redshift even though its precise amplitude may be
unknown. It is only important that the objects used are
standard candles, but not how bright they are.

2. Requirements and degeneracies

We now collect several facts about cosmological infer-
ence from standard candles. Since we aim at the deter-
mination of cosmological parameters, say �m0, it is im-
portant to estimate the accuracy that we can achieve

from measurements of the luminosity distance. Suppose
we restrict the attention to spatially flat cosmological
models, for which �0=1−�m0. Then, because the de-
pendence on the Hubble constant was canceled, �m0 is
the only remaining relevant parameter. We estimate the
accuracy through first-order Taylor expansion,

!Dlum �
dDlum

d�m0
!�m0, �252�

about a fiducial model, such as a CDM model with
�m0=0.3.

At a fiducial redshift of z�0.8, we find numerically

d ln Dlum/d�m0 � − 0.5, �253�

which shows that a relative distance accuracy of

!Dlum/Dlum � − 0.5!�m0 �254�

is required to achieve an absolute accuracy of !�m0. For
!�m0�0.02, say, distances thus need to be known to
�1%.

This accuracy requires sufficiently large supernova
samples. Assuming Poisson statistics for simplicity and
distance measurements to N supernovae, the combined
accuracy is

�!�m0� �
2

�N

!Dlum

Dlum
. �255�

That is, an accuracy of !�m0�0.02 can be achieved
from �100 supernovae whose individual distances are
known to �10%.

Anticipating physical properties of type-Ia superno-
vae, their intrinsic peak luminosities in blue light are L
�3.3�1043 erg s−1, with a relative scatter of order 10%.3

Given uncertainties !L in the luminosity L and !S in
the flux measurement S, error propagation on Eq. �248�
yields the relative distance uncertainty

!Dlum

Dlum
=

1
2
�	!L

L

2

+ 	!S

S

21/2

. �256�

Even if the flux could be measured precisely, the intrin-
sic luminosity scatter currently forbids distance determi-
nations to better than 10%.

Fluxes have to be inferred from photon counts.
For various reasons to be clarified later, supernova
light curves should be determined until �35 days
after the peak when the luminosity has typically
dropped to �2.5�1042 erg s−1. The luminosity dis-
tance to z�0.8 is �5 Gpc, which implies fluxes
S�1.1�10−14 erg s−1 cm−2 at peak and S�8.7
�10−16 erg s−1 cm−2 35 days later.

Dividing by an average photon energy of 5
�10−12 erg, multiplying with the area of a typical tele-
scope mirror with 4 m diameter, and assuming a total

3As we see later, type-Ia supernovae are standardizable
rather than standard candles, and the standardizing procedure
is currently not able to reduce the scatter further.
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quantum efficiency of 30%, we find detected photon
fluxes of S"�85 s−1 at peak and S"�7 s−1 35 days after-
wards. These fluxes are typically distributed over a few
CCD pixels.

Supernovae need to be identified against the back-
ground of their host galaxies and the sky brightness. For
distant supernovae, the sky brightness on the area of the
supernova image is typically 10–1000 times higher than
the supernova itself, dominating the noise budget. Let
NSN and Nsky the numbers of photons received from the
supernova and the sky, respectively, on the supernovae
image, and assume for simplicity Nsky�100NSN. Then,
an estimate for the signal-to-noise ratio for the detection
is

S

N
�

NSN

�NSN + Nsky

�
NSN

�100NSN

�
�NSN

10
. �257�

Signal-to-noise ratios of �10–35 days after the maxi-
mum thus require NSN�104 photons from the super-
nova. This implies exposure times of order 104/7
�1400 s or about 20 min. Typical exposure times are
thus of order 15–30 min to capture supernovae out to
redshifts z�1. Then, the photometric error around peak
luminosity is certainly less than the remaining scatter in
the intrinsic luminosity, and relative distance accuracies
of order 10% are within reach.

However, a major difficulty is the fact that the identi-
fication of type-Ia supernovae requires spectroscopy.
Sufficiently accurate spectra typically require exposures
lasting 1–3 h/spectrum on the world’s largest telescopes,
such as European Southern Observatory’s �ESO’s� Very
Large Telescope which consists of four individual mir-
rors with 8 m diameter each.

In order to see what we can hope to constrain by mea-
suring luminosity distances, we form the gradient of
Dlum in the �m0 -�0 plane,

g� � ��Dlum/��m0,�Dlum/��0�T, �258�

at a fiducial CDM model with �m0=0.3. When normal-
ized to unit length, it turns out to point into the direction

g� = 	− 0.76

0.65

 . �259�

This vector rotated by 90° then points into the direc-
tion in the �m0 -�0 plane along which the luminosity
distance does not change. Thus, near the fiducial CDM
model, the parameter combination

P � g� · 	�m0

�0

 = − 0.76�m0 + 0.65�0 �260�

is degenerate. The degeneracy direction, characterized
by the vector R�� /2�g� = �0.65,0.76�T, encloses an angle
of arctan�0.76/0.65�=49.5° with the �m0 axis almost
along the diagonal from the lower left to the upper right
corner of the parameter plane. Thus, it is almost perpen-
dicular to the degeneracy direction obtained from the
curvature constraint due to the CMB. This illustrates
how parameter degeneracies can efficiently be broken

by combining suitably different types of measurement.
Moreover, combining supernova data from a wide red-
shift range partially lifts the parameter degeneracy ob-
tained from them already.

B. Supernovae

1. Types and classification

Supernovae are “eruptively variable” stars. A sudden
rise in brightness is followed by a gentle decline. They
are unique events which at peak brightness reach lumi-
nosities comparable to those of an entire galaxy or
�1010–1011�L�. They reach their maxima within days and
fade within several months.

Supernovae are traditionally characterized by their
early spectra �Filippenko, 1997�. If hydrogen lines are
missing, they are of type I, otherwise of type II. Type-Ia
supernovae show silicon lines, unlike type-Ib/c superno-
vae, which are distinguished by the prominence of he-
lium lines. Normal type-II supernovae have spectra
dominated by hydrogen. They are subdivided according
to their light-curve shape into type IIL and type IIP.
Type-IIb supernova spectra are dominated by helium in-
stead.

Except for type Ia, supernovae arise due to the col-
lapse of a massive stellar core, followed by a thermo-
nuclear explosion which disrupts the star by driving a
shock wave through it. Core-collapse supernovae of type
II arise from stars with masses between 8M� and 30M�,
those of type I �i.e., types Ib/c� from more massive stars
�Woosley et al., 2002�.

Type-Ia supernovae, which we are dealing with here,
arise when a white dwarf is driven toward the Chan-
drasekhar mass limit by mass overflowing from a com-
panion star. In a binary system, the more massive star
evolves faster and can reach its white-dwarf stage before
its companion leaves the main sequence and becomes a
red giant. When this happens, and the stars are close
enough, matter will flow from the expanding red giant
on the white dwarf.

Electron degeneracy pressure can stabilize white
dwarfs up to the Chandrasekhar mass limit of �1.4M�

�Chandrasekhar, 1984; Hillebrandt and Niemeyer, 2000�.
Because the core material is degenerate, its pressure is
independent of its temperature. The mass accreted from
the companion star increases the pressure until nuclear
burning can begin in isolated places somewhere in the
core. The electron degeneracy is lifted, the temperature
rises dramatically, and the thermonuclear runaway sets
in. Neutrinos produced in inverse beta decays carry
away much of the explosion energy unnoticed because
they can leave the supernova essentially without further
interaction.

This thermonuclear runaway destroys the white
dwarf. Since this type of explosion �more precisely, de-
flagration� involves an approximately fixed amount of
mass, it is physically plausible that the explosion releases
a fixed amount of energy. Thus, the Chandrasekhar mass
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limit is the main responsible for type-Ia supernovae to
be approximate standard candles.

The nuclear fusion processes in type-Ia supernovae
convert the carbon and oxygen in the core of the white
dwarf into 56Ni, which later decays through 56Co into
stable 56Fe. According to detailed numerical explosion
models, the nuclear fusion is started at random points
near the center of the white dwarf �Röpke et al., 2007�.

The presence of silicon lines in the type-Ia spectra
indicates that not all of the white dwarf’s material is
converted into 56Ni. This shows that there is no explo-
sion, but a deflagration, in which the flame front propa-
gates at velocities below the sound speed. The deflagra-
tion can burn the material fast enough if it is turbulent
because the turbulence dramatically increases the sur-
face of the flame front and thus the amount of material
burnt per unit time. Theoretical models predict that
�0.5M� of 56Ni is typically produced.

The peak brightness is reached when the deflagration
front reaches the former white dwarf’s surface and
drives it as a rapidly expanding envelope into the sur-
rounding space. The " photons released in the nuclear
fusion processes are redshifted by scattering off the ex-
panding material and finally leave the explosion site as
x-ray, UV, optical, and infrared photons.

Once the thermonuclear fusion has ended, additional
energy is released by the � decay of 56Co into 56Fe with
a half-life of 77.12 days. The exponential nature of the
radioactive decay causes the typical exponential decline
phase in supernova light curves �Truran et al., 1967; Col-
gate and McKee, 1969�. Since the supernova light has to
propagate through the expanding envelope before we
can see it, the opacity of the envelope and thus its met-
alicity are important for the appearance of the super-
nova �Blinnikov et al., 2006�.

2. Observations

Since supernovae are transient phenomena, they can
only be detected by sufficiently frequent monitoring of
selected areas in the sky. Typically, fields are selected by
their accessibility for the telescope to be used and the
least degree of absorption by the Galaxy. Since a type-Ia
supernova event lasts for about a month, monitoring is
required every few days.

Supernovae are then detected by differential photom-
etry, in which the average of all preceding images is sub-
tracted from the last image taken. Since the seeing var-
ies, the images appear convolved with point-spread
functions of variable width even if they are taken with
identical optics; thus the objects on them appear more
or less blurred. Before they can be meaningfully sub-
tracted, they therefore have to be convolved with the
same effective point-spread function. This causes several
complications in the later analysis procedure, in particu-
lar with the photometry.

Of course, this detection procedure returns many vari-
able stars and supernovae of other types, which are not
standard candles and have to be removed from the
sample. Preselection of type-Ia candidates is done by

color and the light-curve shape, but the identification of
type-Ia supernovae requires spectroscopy in order to
identify the decisive silicon lines at 6347 and 6371 Å.
Since these lines move out of the optical spectrum at
redshifts z�0.5, near-infrared observations are crucially
important for the high-redshift supernovae relevant for
cosmology �see Fig. 11�.

Nearby supernovae, which are needed for calibration,
reveal that type-Ia supernovae are not standard candles
but show a substantial scatter in luminosity. It turned out
that there is an empirical relation between the duration
of the supernova event and its peak brightness in that
brighter supernovae last longer �Phillips et al., 1999�.
This relation between the light-curve shape and the
brightness can be used to standardize type-Ia superno-
vae. It was seen as a major problem for their cosmologi-
cal interpretation that the origin for this relation was
unknown and that its application to high-redshift super-
novae was based on the untested assumption that the
relation found and calibrated with local supernovae
would also hold there. Recent simulations indicate that
the relation is an opacity effect �Kasen and Woosley,
2007�: brighter supernovae produce more 56Ni and thus
have a higher metalicity, which causes the envelope to
be more opaque, the energy transport through it to be
slower, and therefore the supernova to last longer.

Thus, before a type-Ia supernova can be used as a
standard candle, its duration must be determined, which
requires the light curve to be observed over sufficiently
long time. It must be taken into account here that the
cosmic expansion leads to a time dilation, due to which
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FIG. 11. �Color online� Constraints in the �m0-�0 plane ob-
tained from type-Ia supernovae in the SNLS. From Astier et
al., 2006.
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supernovae at redshift z appear longer by a factor of 1
+z. We note in passing that the confirmation of this time
dilation effect indirectly supports the cosmic expansion.
After the standardization, the scatter in the peak bright-
nesses of nearby supernovae is substantially reduced.
This encourages �and justifies� their use as standardiz-
able candles for cosmology.

The remaining relative uncertainty is now typically
between 10% and 15% for individual supernovae. Since,
as seen following Eq. �254�, we require relative distance
uncertainties at the percent level, of order a hundred
distant, supernovae are needed before meaningful cos-
mological constraints can be placed, which justifies the
remark after Eq. �255�.

An example for the several currently ongoing super-
nova surveys is the Supernova Legacy Survey �SNLS�
�Astier et al., 2006� in the framework of the CFHLS,
which is carried out with the 4-m Canada-France-Hawaii
telescope on Mauna Kea. It monitors four fields of 1 sq
deg each five times during the 18 days of dark time be-
tween two full moons �lunations�.

Differential photometry is performed to find out vari-
ables, and candidate type-Ia supernovae are selected by
light-curve fitting after removing known variable stars.
Spectroscopy on the largest telescopes �mostly ESO’s
Very Large Telescope, but also the Keck and Gemini
telescopes� is then needed to identify type-Ia superno-
vae. To give a few characteristic numbers, the SNLS has
taken 142 spectra of type-Ia candidates during its first
year of operation, of which 91 were identified as type-Ia
supernovae.

The light curves of these objects are observed in sev-
eral different filter bands. This is important to correct
for interstellar absorption. Any dimming by intervening
material makes supernovae appear fainter and thus
more distant and will bias the cosmological results to-
ward faster expansion. Since the intrinsic colors of
type-Ia supernovae are characteristic, any deviation of
the observed from the intrinsic colors signals interstellar
absorption which is corrected by adapting the amount of
absorption such that the observed is transformed back
into the intrinsic color.

This correction procedure is expected to work well
unless there is material on the way which absorbs
equally at all wavelengths, so-called “gray dust”
�Aguirre, 1999�. This could happen if the absorbing dust
grains are large compared to the wavelength. Currently,
it is quite difficult to conclusively rule out gray dust,
although it is implausible based on the interstellar ab-
sorption observed in the Galaxy �Riess et al., 2004; Öst-
man and Mörtsell, 2005�.

After applying the corrections for absorption and du-
ration, each supernova yields an estimate for the lumi-
nosity distance to its redshift. Together, the supernovae
in the observed sample constrain the evolution of the
luminosity distance with redshift, which is then fit vary-
ing the cosmological parameters except for H0, i.e., typi-
cally �m0 and �0. This yields an “allowed” region in
the �m0 -�0 plane compatible with the measurements
which is degenerate in the direction calculated before.

More information or further assumptions are neces-
sary to break the degeneracy. The most common as-
sumption, justified by the CMB measurements, is that
the Universe is spatially flat. Based on it, the SNLS data
yield a matter-density parameter of

�m0 = 0.263 ± 0.037. �261�

This is a remarkable result. First, this result confirms the
other independent measurements already discussed,
which were based on kinematics, cluster evolution, and
the CMB. Second, it shows that, in the assumed spatially
flat universe, the dominant contribution to the total en-
ergy density must come from something else than mat-
ter, possibly the cosmological constant.

It is important for later discussion to realize in what
way the parameter constraints from supernovae differ
from those from the CMB. The fluctuations in the latter
show that the Universe is at least nearly spatially flat,
and the density parameters in dark and baryonic matter
are near 0.24 and 0.04, respectively. The rest must be the
cosmological constant or the dark energy. Arising early
in the cosmic history, the CMB itself is almost insensitive
to the cosmological constant, and thus it can only con-
strain it indirectly.

Type-Ia supernovae, however, measure the angular-
diameter distance during the late cosmic evolution when
the cosmological constant is much more important. As
Eq. �260� shows, the luminosity distance constrains the
difference between the two parameters,

�0 = 1.17�m0 + P , �262�

where the degenerate parameter P is determined by the
measurement. Assuming �0=1−�m0 as in a spatially
flat universe yields

P = �1 – 2.17��m0 � 0.43 �263�

from the SNLS first-year result �Eq. �261��, illustrating
that the survey has constrained the density parameters
to follow

�0 � 1.17�m0 + 0.43. �264�

The relative acceleration of the Universe ä /a is given
by Eq. �7�, which can be simplified to read

ä

a
= H0

2	�0 −
�m0

2a3 
 �265�

if matter is pressureless. Thus, the expansion of the Uni-
verse accelerates today �a=1� if ä=H0

2��0−�m0 /2��0
or �0��m0 /2. Given measurement �264�, the conclu-
sion seems inevitable that the Universe’s expansion does
indeed accelerate today �Riess et al., 1998; Perlmutter
et al., 1999; Leibundgut and Blondin, 2005; Astier et al.,
2006�.

If the Universe is indeed spatially flat, then the tran-
sition between decelerated and accelerated expansion
happened at
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1 − 0.263 � 0.263/2a3 ⇒ a = 0.56 �266�

or at redshift z�0.78. Luminosity distances to superno-
vae at higher redshifts should show this transition, and
in fact they do �Riess et al., 2004�.

3. Potential problems

The problem with possible gray dust has already been
mentioned: While the typical colors of type-Ia superno-
vae allow the detection and correction of the reddening
coming with typical interstellar absorption, gray dust
would leave no trace in the colors and remain undetect-
able. However, gray dust would re-emit the absorbed
radiation in the infrared and add to the infrared back-
ground, which is quite well constrained. It thus seems
that gray dust is not an important contaminant if it ex-
ists.

Gravitational lensing is inevitable for distant superno-
vae �Holz and Wald, 1998�. Depending on the line of
sight, they are either magnified or demagnified. Since
high magnifications due to nonlinear structures may oc-
casionally happen, the magnification distribution must
be skewed toward demagnification to keep the mean of
unit magnification. Thus, the most probable magnifica-
tion experienced by supernova is below unity. In other
words, lensing may lead to a slight demagnification if
lines of sight toward type-Ia supernovae are random
with respect to the matter distribution. In any case, the
rms cosmic magnification adds to the intrinsic scatter of
the supernova luminosities. It may become significant
for redshifts z�1.

It is a difficult and debated question whether superno-
vae at high redshifts are intrinsically the same as at low
redshifts where they are calibrated. Should there be un-
detected systematic differences, cosmological inferences
could be wrong. In particular, it may be natural to as-
sume that metalicities at high redshifts are lower than at
low redshifts. Since supernovae last longer if their atmo-
spheres are more opaque, lower metalicity may imply
shorter supernova events, leading to underestimated lu-
minosities and overestimated distances. Simulations of
type-Ia supernovae, however, seem to show that such an
effect is probably not significant. For this and other sys-
tematic effects, see Leibundgut �2001�.

It was also speculated that distant supernovae may be
intrinsically bluer than nearby ones due to their possibly
lower metalicity. Should this be so, the extinction correc-
tion, which is derived from reddening, would be under-
estimated, causing intrinsic luminosities to be underesti-
mated and luminosity distances to be overestimated.
Thus, this effect would lead to an underestimate of the
expansion rate and counteract the cosmological con-
stant. There is currently no indication of such a color
effect.

Supernovae of types Ib/c may be mistaken for those of
type Ia if the identification of the characteristic silicon
lines fails for some reason. Since they are typically
fainter than type-Ia supernovae, they would contami-
nate the sample and bias results toward higher luminos-
ity distances and thus toward a higher cosmological con-

stant. It seems, however, that the possible contamination
by non-type-Ia supernovae is so small that it has no no-
ticeable effect.

Several more potential problems exist. It has been ar-
gued for a while that, if the evidence for a cosmological
constant was based exclusively on type-Ia supernovae, it
would probably not be considered entirely convincing.
However, since the supernova observations come to con-
clusions compatible with virtually all independent cos-
mological measurements, they add substantially to the
persuasiveness of the cosmological standard model.
Moreover, recent supernova simulations reveal good
physical reasons why they should in fact be reliable stan-
dardizable candles.

X. THE NORMALIZATION OF THE POWER SPECTRUM

A. Introduction

We saw in Sec. VII.B that the measured power spec-
trum of the galaxy distribution follows the CDM expec-
tation in the range of wave numbers where current large
surveys allow its measurement. This range can be ex-
tended to some degree toward smaller scales by measur-
ing the autocorrelation of hydrogen absorption lines in
the spectra of distant quasars. Such observations of the
power spectrum of the so-called Lyman-� forest lines
show that the power spectrum does indeed turn toward
the asymptotic behavior �k−3 �McDonald et al., 2005;
Viel et al., 2008�. In addition, we have seen that the peak
location agrees with the expectation for a universe with
�m0�0.3 and h�0.72. This indicates that the CDM ex-
pectation for the dark-matter power spectrum is indeed
at least very close to its real shape, which is a remark-
able finding.

Although the shape of the power spectrum could thus
be quite well established, its amplitude still poses a sur-
prisingly obstinate problem. We see in this section why it
is so difficult to measure. For this purpose, we discuss
four ways of measuring �8; the amplitude of large-scale
temperature fluctuations in the CMB, the cosmic-shear
autocorrelation function, the abundance and evolution
of the galaxy-cluster population, and the statistics of
Lyman-� forest lines.

For historical reasons, the amplitude of the dark-
matter power spectrum is characterized by the variance
of the density fluctuations within spheres of 8h−1 Mpc
radius. More generally, one imagines placing spheres of
radius R randomly and measuring the density-contrast
variance within them. Since the variance in Fourier
space is characterized by the power spectrum, it can be
written as

�R
2 = �

0

$ d3k

�2��3P��k�WR
2 �k� , �267�

where WR�k� is a window function selecting the k modes
contributing to the variance within the spheres.

Imagining spheres of radius R in real space, the win-
dow function should be the Fourier transform of a step
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function, which is inconvenient because it extends to in-
finite wave numbers. It is thus more common to use ei-
ther Gaussians since they Fourier transform to Gauss-
ians or step functions in Fourier space. For simplicity of
the following illustrative calculations, we use the latter
choice, thus

WR�k� = *�kR − k� = *	2�

R
− k
 . �268�

This is a step function dropping to zero at k=2� /R. In-
serting this into Eq. �267� gives

�R
2 = �

0

2�/R k2dk

2�2 P��k� . �269�

All modes larger than R contribute to the density fluc-
tuations in spheres of radius R because all smaller
modes average to zero. The normalization of the power
spectrum is usually expressed in terms of �8, fixing R to
its historical value of 8h−1 Mpc.

B. Fluctuations in the CMB

1. The large-scale fluctuation amplitude

We saw in Sec. VI.B.3 that the long-wavelength
�low-k� tail of the CMB power spectrum is caused by the
Sachs-Wolfe effect, giving rise to relative temperature
fluctuations �Eq. �172�� in terms of the Newtonian poten-
tial fluctuations ��. The three-dimensional temperature-
fluctuation power spectrum is then

P��k� = P��k�/9c4. �270�

The Poisson equation in its form �220� implies that the
power spectra of potential and density fluctuations are
related through

P��k� =
9H0

4

4
�m0

2 	D+�arec�
arec


2P��k�
k4 , �271�

where the linear growth factor D+�arec� was introduced
to relate the potential-fluctuation power spectrum at the
time of decoupling to the present density-fluctuation
power spectrum P��k�.

Now we need to account for projection effects. A
three-dimensional mode with comoving wave number k
and comoving wavelength 
=2� /k appears under an
angle �=
 /wrec, where wrec�w�arec� is the comoving
angular-diameter distance �177� to the CMB. The angu-
lar wave number under which the mode appears is thus

l � 2�/� � wreck . �272�

Expressing now the power spectrum �270� in terms of
the angular wave number l yields, with Eq. �271�,

P��l� � 	H0

c

4

�m0
2 	D+�arec�

arec

2 1

wrec
2

wrec
4

l4 P�	 l

wrec

 ,

�273�

where the factor wrec
−2 arises because of the transforma-

tion from spatial to angular wave numbers l �cf. Limber’s
equation �229��, and the factor wrec

4 / l4 expresses the fac-
tor k−4 from the squared Laplacian. This shows that the
angular power spectrum P��l� of the large-scale CMB
temperature fluctuations can only be translated into the
amplitude of the dark-matter power spectrum A if the
cosmological parameters are already known well
enough.

A further complication is added by the integrated
Sachs-Wolfe effect introduced in Sec. VI.B.6. It depends
on D+�a� /a and adds secondary anisotropies to the CMB
unless D+�a�=a. The primordial CMB fluctuations are
then lower than measured and need to be corrected by
subtracting the integrated Sachs-Wolfe contribution,
which adds a further dependence on the cosmological
parameters.

2. Translation to �8

Two more complications arise in the translation of the
large-scale amplitude A to �8. Since structures with
wave numbers larger than the peak location keq in the
power spectrum contribute to �8, the dependence of keq
on the cosmological parameters comes in. Finally, the
spectral index ns may affect the extrapolation from large
to small scales substantially because of the long lever
arm between the scales involved.

Of course, one could also use the small-scale part of
the CMB power spectrum for normalizing the dark-
matter power spectrum. Due to the acoustic oscillations,
however, this part depends in a much more complicated
way on additional cosmological parameters, such as the
baryon density. Reading �8 off the low-order multipoles
is thus a safer albeit intricate procedure.

Even if the cosmological parameters are now known
well enough to translate the low-order CMB multipoles
to �8, an additional uncertainty remains. We know that
although the Universe became neutral �400 000 years
after the Big Bang, it must have been reionized after the
first stars and other sources of UV radiation formed.
Since then, CMB photons are traveling through ionized
material again and experience Thomson �or Compton�
scattering. The optical depth for Thomson scattering is

� =� ne�Tcdt , �274�

where ne is the number density of free electrons and �T
is the Thomson scattering cross section. After propagat-
ing through the optical depth �, the CMB fluctuation
amplitude is reduced by exp�−��.

Of course, the CMB photons cannot disappear
through Thomson scattering; thus the CMB’s overall in-
tensity cannot change in this way, but the fluctuation
amplitudes are lowered in this diffusion process. The op-
tical depth � depends on the path length through ionized
material. In view of the CMB, this means that the de-
gree of fluctuation damping depends on the reionization
redshift, i.e., the redshift after which the cosmic baryons
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were transformed back into a plasma. Unless the reion-
ization redshift is known, we cannot know by how much
the CMB fluctuations were suppressed.

So far, the reionization redshift can be estimated in
two ways. First, as discussed in Sec. VI.B.4, Thomson
scattering creates linear polarization. Of course, the po-
larization due to reionized material appears superposed
on the primordial polarization but on different angular
scales. The characteristic scale for secondary polariza-
tion is the horizon size at the reionization redshift, which
is much larger than the typical scales of the primordial
polarization. Thus, the reionization redshift can be in-
ferred from large-scale features in the CMB polariza-
tion, provided the cosmological parameters are known
well enough to translate angular scales into physical
scales �Zaldarriaga, 1997�. Modern cosmological param-
eter estimates aim at fitting the available data simulta-
neously for all relevant parameters mostly by Monte
Carlo Markov chain techniques, as explained in, Durrer
�2008�.

Unfortunately, this is aggravated by the polarized mi-
crowave radiation from the Milky Way. Synchrotron and
dust emission can be substantially polarized and masked
the CMB polarization, which can only be measured re-
liably if the foregrounds of galactic origin can be accu-
rately subtracted �Page et al., 2007�. Thus, the degree to
which the foreground polarization is known directly de-
termines the accuracy of the �8 parameter derived from
the CMB fluctuations. This contributes considerably to
the remaining uncertainty in the �8 derived from the
5-yr WMAP data given in Table I.

The other way to constrain the reionization redshift
uses the spectra of distant quasars. Light with wave-
lengths shorter than the Lyman-� wavelength cannot
propagate through neutral hydrogen because it is imme-
diately absorbed. Therefore, quasar spectra released be-
fore the reionization redshift must be completely ab-
sorbed blueward of the Lyman-� emission line. The
appearance of this so-called Gunn-Peterson effect
�Gunn and Peterson, 1965� at high redshift thus signals
the transition from ionized into neutral material. Using
this technique, the reionization was estimated to end at
redshifts �6–8 �Fan et al., 2006�, while the secondary
polarization of the CMB implies a reionization redshift
of 11.0±1.4 if instantaneous reionization is assumed
�Dunkley et al., 2008�. These apparently discrepant val-
ues do not contradict each other because a small admix-
ture of neutral hydrogen is enough to produce the
Gunn-Peterson effect, which therefore persists until
reionization has completed.

C. Cosmological weak lensing

Compared to the outlined procedure to obtain �8
from the CMB, it appears completely straightforward to
derive it from the cosmic-shear measurements. As dis-
cussed in �Sec. VIII.B.3�, the cosmic-shear power spec-
trum is proportional to �m0

2� times the amplitude A of
the dark-matter power spectrum, which leads to the ap-

proximate degeneracy �m0
� �8�const between �8 and

the matter-density parameter �m0.
A more subtle dependence on �m0 and to some de-

gree also on other cosmological parameters is intro-

duced by the geometrical weight function W̄�w� ,w�
shown in Eq. �232� and by the growth of the power spec-
trum along the line of sight. This slightly modifies the
form of the �8−�m0 degeneracy but does not lift it.
Knowing �m0 well enough, we should be able to read �8

off the cosmic-shear correlation function. However,
there are three problems associated with that.

First, the cosmic shear measured on angular scales be-
low �10� is heavily influenced by the onset of nonlinear
structure growth and the effect of this has on the dark-
matter power spectrum. While the linear growth factor
can be straightforwardly calculated analytically, nonlin-
ear growth can only be quantified by means of large
numerical simulations and recipes derived from them
�Peacock and Dodds, 1996; Smith, Peacock, et al., 2003�.
Insufficient knowledge of the nonlinear dark-matter
power spectrum is a major uncertainty in the cosmologi-
cal interpretation of cosmic shear.

Second, the amplitude of cosmological weak-lensing
effects depends on the redshift distribution of the
sources used for measuring ellipticities. Since these
background galaxies are typically very faint, it is de-
manding to measure their redshifts. Two methods have
typically been used. One adapts the known redshift dis-
tribution of sources in narrow very deep observations
such as the Hubble deep field to the characteristics of
the observation to be analyzed. The other relies on pho-
tometric redshifts, i.e., redshift estimates based on multi-
band photometry. Yet, the precise redshift distribution
of the background sources adds additional uncertainty
to estimates of �8.

Third, it is possible that systematic effects remain in
weak-lensing measurements because the effect is so
small, and many corrections have to be applied to mea-
sured ellipticities before the cosmic shear can be ex-
tracted. Advanced correction methods have been devel-
oped which made the B-mode contamination almost or
completely disappear. This is good news, but it does not
yet guarantee the absence of other systematic effects in
the data.

Nonetheless, cosmic lensing, combined with estimates
of the matter-density parameter, is perhaps the most
promising method for precisely determining �8. Table II
lists values of �8 derived from some cosmic-shear mea-
surements under the assumption of �m0=0.30 in a spa-
tially flat universe.

The systematic deviations between them are probably
due to three different uncertainties. First, the redshift
distribution of the background sources needs to be
known; second, nonlinear evolutions of the matter
power spectrum need to be accurately modeled; and
third, all kinds of PSF distortions need to be corrected.
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D. Galaxy clusters

1. The mass function

Based on the assumption that the density contrast is a
Gaussian random field and the spherical-collapse model
�Press and Schechter, 1974� derived a mass function for
dark-matter halos. It compares the standard deviation
�R of the density-fluctuation field to the linear density-
contrast threshold �c�1.686 for collapse in the
spherical-collapse model. The mean mass contained in
spheres of radius R sets the halo mass, which brings the
mean �dark-�matter density �̄ into the game.

The standard deviation �R is related to the power
spectrum. For convenience, we introduce an effective
slope

n = d ln P�k�/d ln k �275�

for the power spectrum, which will of course be scale
dependent. On large scales, n�1, while n→−3 on small
scales, i.e., for small halo masses. For galaxy clusters, n
�−1.

We introduce the nonlinear mass scale M
*

as the mass
contained in spheres of radius R chosen such that �R
=1. Since �R grows with the linear growth factor D+�a�,
the nonlinear mass grows with time. It is convenient
here to express the amplitude of the power spectrum,
and thus �8, in terms of M

*
. In sufficient approximation,

�R = �M
*
/M��, � � 1

2 �1 + n/3� . �276�

In terms of the dimensionless mass m�M /M
*
, the

Press-Schechter mass function can be cast into the form

N�m,a�dm =� 2

�

�̄�c

M
*
2D+�a�

�m�−2

�exp	−
�c

2

2D+
2�a�

m2�
dm . �277�

The Press-Schechter mass function and some im-
proved variants of it �Jenkins et al., 2001; Sheth and Tor-
men, 2002� have been confirmed by numerical simula-
tions �Springel et al., 2005�. It shows that the mass
function is a power law with an exponential cutoff near
the nonlinear mass scale M

*
. For galaxy clusters,

n�−1, thus ��1/3, and

N�m,a�dm � m−5/3 exp	−
�c

2

2D+
2�a�

m2/3
dm , �278�

with an amplitude characterized by M
*
, the mean dark-

matter density �̄, and the growth factor D+�a�.
This opens a way to constrain cosmological param-

eters as well as �8 with galaxy clusters: if the abundance
and evolution of the cluster mass function can be mea-
sured, they can be determined from the mass scale of the
exponential cutoff and the amplitude of the power-law
end. Today, the nonlinear mass scale is a few times
1013M�. Therefore, the exponential cutoff in the halo
mass will not be seen in the galaxy mass function. Clus-
ters, however, show a pronounced exponential cutoff
�Rosati et al., 2002�, and thus their population is very
sensitive to changes in �8. In principle, therefore, �8
should be well constrained by the cluster population.

2. What is a cluster’s mass?

The main problem here is how observable cluster
properties should be related to quantities used in theory.
Cluster masses, as used in the theoretical mass function
�278�, are not observables. Cluster observables are the
x-ray temperature and flux, the optical luminosity and
the velocity distribution of their galaxies, and their
gravitational-lensing effects. Before we discuss their re-
lation to mass, we first see what the “mass of a galaxy
cluster” could be.

It is easy to define masses of gravitationally bound,
well localized objects, such as planets or stars. They have

TABLE II. Values for �8 derived from cosmic-shear measurements under the assumption of a spa-
tially flat universe with �m0=0.3.

�8 Data Reference

0.86−0.13
+0.09 RCS Hoekstra, Yee, and Gladders, 2002

0.71−0.16
+0.12 CTIO Jarvis et al., 2003

0.72±0.09 Combo-17 Brown et al., 2003
0.97±0.13 Keck-II Bacon et al., 2003
1.02±0.16 HST/STIS Rhodes et al., 2004
0.83±0.07 Virmos-Descart Van Waerbeke et al., 2005
0.68±0.13 GEMS Heymans et al., 2005
0.85±0.06 CFHTLS-wide Hoekstra et al., 2006
0.80±0.1 GaBoDS Hetterscheidt et al., 2007

0.866−0.068
+0.085 COSMOS Massey et al., 2007b

0.74±0.04 100 sq. deg combined Benjamin et al., 2007
0.70±0.04 CFHTLS wide Fu et al., 2008

373Matthias Bartelmann: The dark Universe

Rev. Mod. Phys., Vol. 82, No. 1, January–March 2010



a well-defined boundary, e.g., the planetary surfaces or
the stellar photospheres. This is markedly different for
objects such as galaxies and galaxy clusters. As far as we
know, their densities drop smoothly toward zero like
power laws, �r−�2–3�. Thus, although they are gravitation-
ally bound, it is less obvious what should be seen as their
outer boundary. Strictly speaking, there is none.

The only way out is then to define an outer boundary
in such a way that it is well defined in theory and iden-
tifiable in observational data. A common choice was in-
troduced in Sec. V.A.2: it defines the boundary by the
mean overdensity it encloses. Although this is problem-
atic as well, it may be as good as it gets. Three immedi-
ately obvious problems created by this definition are
that objects such as galaxy clusters are often irregularly
shaped rather than spherical, that the overdensity of 200
is as arbitrary as any other even if it is inspired by virial
equilibrium in the spherical-collapse model, and that its
measurement requires a sufficiently accurate density
profile to be known or assumed.

How could standardized radii such as R200 be mea-
sured? This could for instance be achieved applying
equations such as Eq. �148� after measuring the slope �
and the core radius of the x-ray surface-brightness pro-
file together with the x-ray temperature, by calibrating
an assumed density profile with galaxy kinematics based
on the virial theorem, or by constraining the cluster
mass profile with gravitational lensing.

Obviously, all these measurements have their own
problems. Being sensitive to all mass along the line of
sight, gravitational lensing cannot distinguish between
mass bound to a cluster or just projected onto it. Any
measurement based on the virial theorem must of
course rely on virial equilibrium, which takes time to be
established and is often perturbed in real clusters be-
cause of merging and accretion. The common interpre-
tation of x-ray measurements requires the assumption
that the x-ray gas be in hydrostatic equilibrium with the
host cluster’s gravitational potential.

This illustrates that it may be fair to say that there is
no such thing as the mass of a galaxy cluster. Even if
measurements of cluster “radii” were less dubious, it re-
mained unclear whether they mean the same as those

assumed in theory, which are related to the spherical-
collapse model. Interestingly, but not surprisingly, clus-
ter masses obtained from numerical simulations suffer
from the same poor definition of the concept of a “clus-
ter radius.”

How can we make progress then? Observables such as
the cluster temperature TX or its x-ray luminosity LX

should be related to the depth of the gravitational po-
tential they are embedded in, which should in turn be
related to some measure of the total mass. If we can
calibrate such expected temperature-mass or luminosity-
mass relations, e.g., using numerical simulations of gal-
axy clusters, a direct comparison between theory and
observations seems possible. This is sometimes called an
external calibration of the required relations.

Internal or self-calibrations, i.e., calibrations based on
cluster data alone, have become increasingly fashionable
over the past years. Here empirical temperature-mass
and luminosity-mass relations are obtained based on one
or more of the mass estimates sketched above.

The result of both procedures is qualitatively the
same. It allows the conversion of observables to mass
and thus of the observed cluster temperature or lumi-
nosity functions to mass functions, which can then be
compared to theory. The shape and amplitude of the
power spectrum and the growth factor can then be
adapted to optimize the agreement between observed
and expected mass functions. Clusters at moderate or
high redshift constrain the evolution of the mass func-
tion and allow an independent estimate of the matter-
density parameter �m0, as sketched in Sec. V.C.

In view of the many difficulties listed, it is an aston-
ishing fact that, when applied to cluster samples rather
than individual clusters, the determination of the cluster
mass function and its evolution seems to work quite
well. Values for �8 derived therefrom are given in Table
III. Systematic differences between these values are
most likely due to the uncertainties of the calibration
procedures applied to the relations between cluster
masses and observables.

TABLE III. Values of �8 derived from the galaxy-cluster population based on different observational
data.

�8 Data Reference

1.02±0.07 M -T relation Pierpaoli et al., 2001
0.77±0.07 M -T relation Seljak, 2002

0.68−0.09
+0.11 M -L relation Reiprich and Böhringer, 2002

0.75±0.16 Lensing masses Smith, Edge, et al., 2003

0.79−0.07
+0.06 Luminosity function Pierpaoli et al., 2003

0.77−0.04
+0.05 Temperature function Pierpaoli et al., 2003

0.69±0.03 Lensing masses Allen et al., 2003
0.78±0.17 Optical richness Eke et al., 2006

0.67−0.05
+0.04 Lensing masses Dahle, 2006
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E. The Lyman-� forest

The Lyman-� forest lines mentioned before arise from
absorption in neutral-hydrogen clouds. It is reasonable
to assume that they are located where the dark matter is
overdense, such that fluctuations in the neutral-
hydrogen density are proportional to the dark-matter-
density contrast �. Then, observations of the Lyman-�
forest lines, in particular their number per unit redshift,
equivalent-width distribution and correlation properties,
must contain information on the shape and the normal-
ization of the dark-matter power spectrum.

Retrieving this information would be straightforward
if the biasing relation between the neutral-hydrogen and
dark-matter densities was known and simple, the gas
temperature was known, redshifts were unaffected by
peculiar motions, and nonlinear structure evolution
could be neglected. While this is not the case in reality,
these perturbing effects can be calibrated with numerical
simulations and corrected. Two different methods have
been proposed; one inverts the Lyman-� forest directly
�Nusser and Haehnelt, 1999�, while the other adapts
power spectra of numerical simulations to those recov-
ered from Lyman-� forest observations �Croft et al.,
1998�. Both methods have allowed interesting con-
straints which are summarized in Table IV.

The method is young but promising. Values of �8 ob-
tained so far seem to be typically systematically higher
than those derived from other observables. Possible
sources of systematic error are the onset of nonlinear
structure growth and, perhaps most importantly, the
temperature of the hydrogen gas and its relation to the
gas density �often called its equation of state�.

XI. INFLATION AND DARK ENERGY

A. Cosmological inflation

1. Motivation

In the preceding sections, we have seen the remark-
able success of the cosmological standard model, which
is built upon the two symmetry assumptions underlying
the class of Friedmann-Lemaître-Robertson-Walker
models which experienced a Big Bang a finite time ago.
We now discuss a fundamental problem of these models
and a possible way out. Historically, the problem was
raised in a different way, but it intrudes with the very
straightforward realization that it is by no means obvi-
ous why the CMB should appear as isotropic as it is, and
why there should be large coherent structures in it.

We begin with the so-called comoving particle hori-
zon, which is the comoving distance that light can travel
between the Big Bang and time t. It is given by Eq. �176�
with the sound speed cs replaced by the light speed c,

wH = �
0

trec cdt

a
=

2c�arec

H0
��m0

��1 + � − ��� = 282.8 Mpc,

�279�

with ��0.33 as defined below Eq. �165�. On the other
hand, we have seen in Eq. �177� that the comoving
angular-diameter distance to the CMB is

w�arec� = 3.195
c

H0
	�m0

0.3

−0.4

Gpc, �280�

which implies that the angular size of the particle hori-
zon is

�rec = wH/w�arec� � 1.14 ° ��m0/0.3�−0.1. �281�

The physical meaning of the particle horizon is that no
event between the Big Bang and recombination can ex-
ert any influence on a given particle if it is more than the
horizon length away. Our simple calculation thus shows
that we can understand how causal processes could es-
tablish identical physical conditions in patches of the sky
with about 1° radius. Points on the CMB separated by
larger angles were never causally connected before the
CMB was released. It is therefore not at all plausible
how the CMB could have attained almost the same tem-
perature across the entire sky. The simple fact that the
CMB is almost entirely isotropic across the sky thus pos-
sesses a problem which the standard cosmological model
is apparently unable to solve. Moreover, the formation
of coherent structures larger than the particle horizon
remains mysterious. This is one way to state the horizon
problem. It is sometimes called the causality problem:
How can coherent structures in the CMB be larger than
the particle horizon was at recombination?

Another uncomfortable problem of the standard cos-
mological model is the flatness or at least the near flat-
ness of spatial hypersurfaces of our Universe. To see
this, we write Friedmann’s equation �Eq. �6�� in the form

H2�a� = H2�a���tot�a� − Kc2/a2H2� , �282�

which is equivalent to

�tot�a� − 1 = Kc2/a2H2. �283�

The right-hand side typically grows as some power of
the time t,

TABLE IV. Selection of �8 values obtained from Lyman-� forest data alone.

�8 Data Reference

0.73±0.04 Keck spectra Croft et al., 2002
0.94±0.08 LUQAS sample, Keck Viel et al., 2004
0.91±0.07 SDSS spectra Viel and Haehnelt, 2006
0.92±0.09 LUQAS sample Zaroubi et al., 2006
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�a2H2�−1 = ȧ−2 � t�, �284�

e.g., �=2/3 in a matter-dominated universe without cos-
mological constant. Then,

�tot�a� − 1 � t�. �285�

This shows that any deviation of the total density pa-
rameter �tot from unity tends to grow with time. Thus,
�spatial� flatness is an unstable property. If it is not very
precisely flat in the beginning, the Universe will develop
away from flatness. Since we know that spatial hypersur-
faces are now almost flat, ��tot�a�−1��1% �cf. Table I�,
the deviation from flatness must have been of order

��tot�arec� − 1� � 1% � �trec/t0�� � 10−5 �286�

or ten parts per million at the time of recombination.
Clearly, this requires enormous fine tuning. This is called
the flatness problem: How can we understand flatness in
the late Universe without assuming an extreme degree
of fine tuning at early times?

2. The idea of inflation

Since c /H is the Hubble radius, the quantity rH
�c /aH is the comoving Hubble radius. According to
Eq. �284�, it typically grows with time as rH� t�/2. Since
we can write Eq. �283� as

�tot�a� − 1 = KrH
2 , �287�

this is equivalent to the flatness problem.
This motivates the idea that at least the flatness prob-

lem may be solved if the comoving Hubble radius could,
at least for some sufficiently long period, shrink with
time. If that could be arranged, any deviation of �tot�a�
from unity would be driven toward zero.

Conveniently, such an arrangement would also re-
move or at least alleviate the causality problem. Possi-
bly, the Hubble radius, characterizing the radius of the
observable Universe, could be driven inside the horizon
and thus move the entire observable Universe into a
causally connected region. When the hypothesized ep-
och of a shrinking comoving Hubble radius is over, it
starts expanding again, but if the reduction was suffi-
ciently large, it could remain within the causally con-
nected region at least until the present.

How could such a shrinking comoving Hubble radius
be arranged? Obviously, we require

d

dt

c

aH
= −

c

�aH�2 �ȧH + aḢ� = −
cä

�aH�2 	 0, �288�

which is possible if and only if ä�0, in other words, if
the expansion of the Universe accelerates. This appears
counterintuitive because the cosmic expansion is domi-
nated by gravity, which should be attractive and thus
necessarily decelerate the expansion. Friedmann’s equa-
tion �7� implies the matter condition

�c2 + 3p 	 0 ⇒ p 	 − �c2/3. �289�

In other words, cosmic acceleration is possible if and
only if the dominant ingredient of the cosmic fluid has

sufficiently negative pressure. Equation �8� implies the
density evolution

�̇

�
= − 3

ȧ

a
	1 +

p

�c2
	 − 2
ȧ

a
�290�

for a cosmic fluid satisfying Eq. �289�, showing that its
density would fall off flatter than a−2 and thus less
steeply than the matter or radiation densities. Thus,
once a component of the cosmic fluid with sufficiently
negative pressure reaches a density comparable to the
densities of matter or radiation, it quickly starts domi-
nating the cosmic expansion. In the limiting case �̇=0 or
p=−�c2, Eq. �7� reduces to

ä

a
=

8�G

3
� = const� 0, �291�

which implies the exponential expansion or inflation

a � exp�	8�G

3
�
1/2

t . �292�

3. Slow roll, structure formation, and observational constraints

We have seen that we need inflation to solve the flat-
ness and causality problems, and inflation needs a form
of matter with negative pressure. What could that be?
Consider a scalar field � with a self-interaction potential
V���. Then, field theory shows that pressure and density
of the scalar field are related by the equation of state

p� = w��c2 with w �

1
2
�̇2 − V

1
2
�̇2 + V

. �293�

Evidently, negative pressure is possible if the kinetic en-
ergy of the scalar field is sufficiently smaller than its po-
tential energy. For the cosmological-constant case, �̇=0,
we have w=−1 or p=−�c2, in agreement with the con-
clusion from Eq. �290�. In other words, a suitably
strongly self-interacting scalar field has exactly the prop-
erties we need.

Inflation, i.e., accelerated expansion, broadly requires
�̇2 to be sufficiently smaller than V. Moreover, we need
inflation to operate long enough to drive the total
matter-density parameter sufficiently close to unity for it
to remain there to the present day. These two conditions
are conventionally cast into the form

� �
1

24�G
	V�

V

2

� 1 and  �
1

8�G

V�

V
� 1 �294�

�see Liddle and Lyth �2000��. They are called the slow-
roll conditions. The first assures that inflation can set in
because if it is satisfied, the potential has a small gradi-
ent and cannot drive rapid changes of the scalar field.
The second restricts the curvature of the potential and
thus assures that the inflationary condition is satisfied
long enough.
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Estimates show that inflation needs to expand the
Universe by �50–60 e foldings �Alabidi and Lyth, 2006�
�i.e., by a factor of e50–60� for it to solve the causality and
flatness problems. Inflation ends once the slow-roll con-
ditions are violated. By then, the Universe will have be-
come extremely cold. While the density of the inflaton
field � will be approximately the same as at the onset of
inflation �as for the cosmological constant, this is a con-
sequence of the negative pressure�, all other matter and
radiation fields will have their energy densities lowered
by factors of a−3–4, i.e., by �100 orders of magnitude.

Once � approaches unity, the kinetic term �̇2 will
dominate the potential, and the scalar field will start os-
cillating rapidly. It is assumed that the scalar field then
decays into ordinary matter which fills or reheats the
Universe after inflation is over.

It is an extremely interesting aspect of inflation that it
also provides a mechanism for seeding structure forma-
tion �Mukhanov and Chibisov, 1981�. As any other quan-
tum field, the inflaton field � must have undergone
vacuum oscillations because the zero-point energy of a
quantum harmonic oscillator cannot vanish due to
Heisenberg’s uncertainty principle. These vacuum oscil-
lations cause the spontaneous creation and annihilation
of particle-antiparticle pairs. Once inflation sets in,
vacuum fluctuation modes are quickly driven out of the
horizon and lose causal connection. Then, they cannot
decay any more and “freeze in.” Thus, inflation intro-
duces the breath-taking notion that density fluctuations
in our Universe today may have been seeded by vacuum
fluctuations of the inflaton field before inflation set in
and enlarged them to cosmological scales.

This idea has precisely quantifiable consequences
�Guth and Pi, 1982; Pagels, 1983; Brandenberger, 1984;
Halliwell and Hawking, 1985�. First, linear density fluc-
tuations created by the inflaton field must be adiabatic
and, by the central limit theorem, they should form a
Gaussian random field. This is because they arise from
incoherent superposition of extremely many indepen-
dent fluctuation modes whose amplitude and wave num-
ber are all drawn from the same probability distribution.
Under these circumstances, the central limit theorem
shows that the result, i.e., the superposition of all these
modes, must be a Gaussian random field.

Second, it implies that the statistics of density fluctua-
tions in the Universe today must be explicable by the
statistics of vacuum fluctuations in a scalar quantum
field. This is indeed the case. The power spectrum result-
ing from this consideration is very close to the scale-free
Harrison-Zel’dovich-Peebles shape introduced in Sec.
I.C.2,

P��k� � kns, �295�

with ns�1. The spectral index ns would be precisely
unity if inflation lasted forever. Since this was obviously
not so, ns must deviate slightly from unity, and detailed
calculations show that it must be slightly smaller �Liddle
and Lyth, 2000; Alabidi and Lyth, 2006�,

ns = 1 + 2 − 6� . �296�

The latest WMAP measurements �Komatsu et al., 2009�
do in fact show that

ns = 0.960−0.013
+0.014 �297�

�cf. Table I�. The completely scale-invariant spectrum,
ns=1, is thus excluded at more than 3�. The measured
deviation of ns from unity also restricts the number N of
e foldings completed by inflation. Under fairly general
assumptions,

N = 54 ± 7 �298�

�Alabidi and Lyth, 2006� based on the three-year
WMAP data.

Another prediction of inflation is that it may excite
not only scalar but also tensor perturbations �Liddle and
Lyth, 2000�. Scalar perturbations lead to the density fluc-
tuations; tensor perturbations correspond to gravita-
tional waves. Vector perturbations do not play any role
because they decay quickly as the Universe expands.
Simple models of inflation predict that the ratio r be-
tween the amplitudes of tensor and scalar perturbations,
taken in the limit of small wave numbers, is

r = 16� . �299�

An inflationary background of gravitational waves is in
principle detectable through the polarization of the
CMB �Seljak and Zaldarriaga, 1997�. Limits of order r
�0.05 are expected from the upcoming Planck satellite
�Kinney, 1998; Kamionkowski and Jaffe, 2001�. Together
with the result ns�1 from WMAP, it will then be pos-
sible to constrain viable inflation models, i.e., to con-
strain the shape of the inflaton potential.

B. Dark energy

1. Motivation

The CMB shows us that the Universe is at least nearly
spatially flat. Constraints from kinematics, from cluster
evolution, and from the CMB show that the matter den-
sity alone cannot be responsible for flattening space, and
primordial nucleosynthesis and the CMB show that
baryons contribute at a very low level only. Something is
missing, and it even dominates today’s cosmic fluid.

From structure formation, we know that this remain-
ing constituent cannot clump on the scales covered by
the galaxy surveys and below. It is thus different from
dark matter. The terms dark energy, kosmon, or quintes-
sence have been coined for it �Peebles and Ratra, 1988,
2003; Wetterich, 1988�. The type-Ia supernovae tell us
that it behaves at least very similar to a cosmological
constant in the recent cosmic past. Maybe the dark en-
ergy is a cosmological constant? Nothing currently indi-
cates any deviation from this “simplest” assumption
�see, e.g., Komatsu et al., 2009�. So far, the cosmological
constant is a perfectly viable description for all observa-
tional evidence we have. However, this is deeply dis-
satisfactory from the point of view of theoretical physics.
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The problem is the value of �0. As we have seen
above, a self-interacting scalar field with negligible ki-
netic energy behaves like a cosmological constant. Then,
its density should simply be given by its potential V.
Simple arguments suggest that V should be the Planck
mass divided by the third power of the Planck length,
which turns out to be 120 orders of magnitude larger
than the cosmological constant derived from observa-
tions. Since this fails, it seems natural to expect that the
cosmological constant should vanish, but it does not.
The main problem with the cosmological constant is
therefore why is it not zero if it is so small?

Anthropic arguments suggest that we observe the
Universe as it is because it needs to be that way for us to
exist. The Universe needs to be old enough for stars to
have produced carbon, on which life must be based to
the best of our knowledge. Yet, it must not be too old for
the majority of stars to have evolved past their main-
sequence life for the stability of benign conditions for
life. If the cosmological constant was much larger, infla-
tionary expansion would have prohibited structure for-
mation and thus also the formation of life. It may thus
be that the cosmological parameters have the values we
measure because otherwise we would not exist to mea-
sure them.

The explanation of inflation by means of an inflaton
field suggests another way out. As we have seen there,
accelerated expansion can be driven by a self-interacting
scalar field while its potential energy dominates. More-
over, it can be shown that if the potential V has an ap-
propriate shape, the dark energy has attractor properties
in the sense that a vast range of initial density values can
evolve toward the same value today �Zlatev et al., 1999�.
At this point at the latest, we leave the realm of what
may be considered the established cosmological stan-
dard model and enter into the very controversial discus-
sion of dark energy.

2. Observational constraints?

If the dark energy is indeed dynamical and provided
by a self-interacting scalar field, how can we find out
more about it? Reviewing the cosmological measure-
ments we have discussed so far, it becomes evident that
they are all derived from constraints on cosmic time, as
in the age of the Galaxy or of globular clusters, or in
primordial nucleosynthesis; distances, as in the spatial
flatness derived from the CMB, the type-Ia supernovae
or the geometry of cosmological weak lensing; or the
growth of cosmic structures, as in the acoustic oscilla-
tions in the CMB, the evolution of the cluster popula-
tion, the structures in the galaxy distribution, or the
source of cosmological weak-lensing effects.

We must therefore seek to constrain the dark energy
by measurements of distances, times, and structure
growth. Since they can all be traced back to the expan-
sion behavior of the Universe as described by Fried-
mann’s equation, we must see how the dark energy en-
ters there and what effects it can seed through it.

We therefore assume that the dark energy is a suitably
self-interacting homogeneous scalar field. Then, its pres-
sure can be described by

p = w�a��c2, �300�

where the equation-of-state parameter w is some func-
tion of a. According to Eq. �289�, accelerated expansion
needs w	−1/3, and the cosmological constant corre-
sponds to w=−1. Since all cosmological measurements
to date are in agreement with the assumption of a cos-
mological constant, we need to arrange things such that
w→−1 today. Suppose we had some function w�a�,
which could be obtained either from a phenomenologi-
cal choice, a model for the self-interaction potential
V��� through Eq. �293� or from a suitable ad hoc param-
eterization. Then, Eq. �290� implies

�̇/� = − 3�1 + w�ȧ/a �301�

or

��a� = �0 exp�− 3�
1

a

�1 + w�a���
da�

a� � � �0f�a� . �302�

For constant w, this simplifies to

��a� = �0 exp�− 3�1 + w�ln a� = �0a−3�1+w�. �303�

If w=−1, we recover the cosmological-constant case �
=�0=const for pressureless material, w=0 and ��a−3,
and for radiation, w=1/3 and ��a−4.

Therefore, we can take account of the dynamical dark
energy by replacing the term �0 in the Friedmann
equation �10� by �DE0f�a�, and the expansion function
E�a� turns into

E�a� = ��r0a−4 + �m0a−3 + �DE0f�a� + �K0a−2�1/2,

�304�

where �K0=1−�r0−�m0−�DE0 is a density parameter
assigned to the spatial curvature.

We thus see that the equation-of-state parameter en-
ters the expansion function in integrated form. Since all
cosmological observables are integrals over the expan-
sion function, including the growth factor D+�a�, this im-
plies that cosmological observables measure integrals
over the integrated equation-of-state function w�a� �see
Fig. 12�. Note that in cosmological models with dynami-
cal dark energy, the growth factor is more complicated
than described by Eq. �23� because dark-energy cluster-
ing needs to be taken into account �see, e.g., Kunz and
Sapone, 2007�. Needless to say, the dependence of cos-
mological measurements on the exact form of w�a� will
be extremely weak, which in turn implies that extremely
accurate measurements will be necessary for constrain-
ing the nature of the dark energy.

In order to illustrate the required accuracies, consider
by how much the angular-diameter distance and the
growth factor change compared to CDM upon changes
in w away from −1,
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d ln Dang�z�/dw, d ln D+�z�/dw , �305�

as a function of redshift z. Assuming �m0=0.3 and �0
=0.7, we find typical values between −0.1 and −0.2 at
most. Since we currently expect deviations of w from −1
at most at the �10% level, accurate constraints on the
dark energy require relative accuracies of distances and
the growth factor at the percent level.

Clearly, all models for dynamical dark energy pro-
posed so far are purely phenomenological. The most
straightforward question to be addressed in this situa-
tion may be whether a cosmological constant can be
ruled out in some way. All suitable cosmological infor-
mation will need to be combined in order to progress.

Currently, the largest hope is put on the BAOs �see
Sec. VII.A.6� and on so-called tomographic measure-
ments. BAOs have a characteristic physical scale whose
angular scale depends on the angular-diameter distance,
which is in turn sensitive to the dark energy. Tomogra-
phy attempts to trace the evolution of structures
throughout cosmic history �Hu, 2002a, 2002b�. An ex-
ample is given by weak gravitational lensing: since its
geometrical sensitivity peaks approximately half-way be-
tween the sources and the observer, sources at higher
redshift also probe more distant and thus less evolved
cosmic structures. If lensing effects can be measured for
subsamples of sources in different redshift shells, the
growth factor can be probed differentially. First ex-
amples for this technique have been published. They
give rise to the expectation that clarifying the nature of
the dark energy may indeed be feasible in the near fu-
ture.

ACKNOWLEDGMENTS

I am most grateful to many colleagues for inspiring
and clarifying discussions, in particular to Peter
Schneider, Achim Weiß, and Simon White, whose de-
tailed comments helped improving this review substan-
tially. Three anonymous referees contributed numerous

thoughtful and constructive comments. This work was
supported in part by the German Science Foundation
�DFG� through the Collaborative Research Centres
�Grants No. SFB 439 and No. TRR 33�.

REFERENCES

Abell, G. O., J. H. G. Corwin, and R. P. Olowin, 1989, Astro-
phys. J., Suppl. Ser. 70, 1.

Aguirre, A., 1999, Astrophys. J. 525, 583.
Alabidi, L., and D. H. Lyth, 2006, J. Cosmol. Astropart. Phys.

8, 13.
Alcock, C., et al., 2000, Astrophys. J. 542, 281.
Allen, S. W., R. W. Schmidt, A. C. Fabian, and H. Ebeling,

2003, Mon. Not. R. Astron. Soc. 342, 287.
Alpher, R. A., and R. C. Herman, 1949, Phys. Rev. 75, 1089.
Asplund, M., D. L. Lambert, P. E. Nissen, F. Primas, and V. V.

Smith, 2006, Astrophys. J. 644, 229.
Astier, P., et al., 2006, Astron. Astrophys. 447, 31.
Baade, W., 1926, Astron. Nachr. 228, 359.
Baade, W., 1956, Publ. Astron. Soc. Pac. 68, 5.
Bacon, D. J., R. J. Massey, A. R. Refregier, and R. S. Ellis,

2003, Mon. Not. R. Astron. Soc. 344, 673.
Barnes, J., and P. Hut, 1986, Nature �London� 324, 446.
Bartelmann, M., and P. Schneider, 2001, Phys. Rep. 340, 291.
Benjamin, J., C. Heymans, E. Semboloni, L. van Waerbeke, H.

Hoekstra, T. Erben, M. D. Gladders, M. Hetterscheidt, Y.
Mellier, and H. K. C. Yee, 2007, Mon. Not. R. Astron. Soc.
381, 702.

Blandford, R., and R. Narayan, 1986, Astrophys. J. 310, 568.
Blinnikov, S. I., F. K. Röpke, E. I. Sorokina, M. Gieseler, M.

Reinecke, C. Travaglio, W. Hillebrandt, and M. Stritzinger,
2006, Astron. Astrophys. 453, 229.

Boggess, N. W., et al., 1992, Astrophys. J. 397, 420.
Bond, J. R., and G. Efstathiou, 1984, Astrophys. J., Lett. Ed.

285, L45.
Brandenberger, R. H., 1984, Nucl. Phys. B 245, 328.
Brown, M. L., A. N. Taylor, D. J. Bacon, M. E. Gray, S. Dye,

K. Meisenheimer, and C. Wolf, 2003, Mon. Not. R. Astron.
Soc. 341, 100.

Cayrel, R., et al., 2001, Nature �London� 409, 691.
Chaboyer, B., 1998, Phys. Rep. 307, 23.
Chaboyer, B., P. Demarque, P. J. Kernan, and L. M. Krauss,

1998, Astrophys. J. 494, 96.
Chandrasekhar, S., 1984, Rev. Mod. Phys. 56, 137.
Charbonnel, C., and F. Primas, 2005, Astron. Astrophys. 442,

961.
Ciardi, B., and A. Ferrara, 2005, Space Sci. Rev. 116, 625.
Cole, S., et al., 2005, Mon. Not. R. Astron. Soc. 362, 505.
Coles, P., and F. Lucchin, 2002, Cosmology: The Origin and

Evolution of Cosmic Structure, 2nd ed. �Wiley-VCH, New
York�, p. 512.

Colgate, S. A., and C. McKee, 1969, Astrophys. J. 157, 623.
Colless, M., 1999, Philos. Trans. R. Soc. London, Ser. A 357,

105.
Cool, A. M., G. Piotto, and I. R. King, 1996, Astrophys. J. 468,

655.
Cowan, J. J., F.-K. Thielemann, and J. W. Truran, 1987, Astro-

phys. J. 323, 543.
Cowan, J. J., F.-K. Thielemann, and J. W. Truran, 1991, Phys.

Rep. 208, 267.
Croft, R. A. C., D. H. Weinberg, M. Bolte, S. Burles, L. Hern-

quist, N. Katz, D. Kirkman, and D. Tytler, 2002, Astrophys. J.

-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

d
ln
D
+(
z)
/d
w
,d
ln
D
lu
m
(z
)/d
w

redshift z

d ln D+(z)/d w
d ln Dlum(z)/d w

FIG. 12. Relative changes of the growth factor D+ and the
luminosity distance Dlum with w as functions of redshift, as-
suming constant w.

379Matthias Bartelmann: The dark Universe

Rev. Mod. Phys., Vol. 82, No. 1, January–March 2010



581, 20.
Croft, R. A. C., D. H. Weinberg, N. Katz, and L. Hernquist,

1998, Astrophys. J. 495, 44.
Cypriano, E. S., L. J. Sodré, J.-P. Kneib, and L. E. Campusano,

2004, Astrophys. J. 613, 95.
Dahle, H., 2006, Astrophys. J. 653, 954.
Dame, T. M., D. Hartmann, and P. Thaddeus, 2001, Astrophys.

J. 547, 792.
Davis, M., G. Efstathiou, C. S. Frenk, and S. D. M. White,

1985, Astrophys. J. 292, 371.
Djorgovski, S., and M. Davis, 1987, Astrophys. J. 313, 59.
Dodelson, S., 2003, Modern Cosmology �Academic, Amster-

dam�, Vol. XIII, p. 440.
Doroshkevich, A. G., 1970, Astrofizika 6, 581.
Dressler, A., D. Lynden-Bell, D. Burstein, R. L. Davies, S. M.

Faber, R. Terlevich, and G. Wegner, 1987, Astrophys. J. 313,
42.

Dunkley, J., et al., 2009, Astrophys. J., Suppl. Ser. 180, 306.
Durrer, R., 2008, The Cosmic Microwave Background �Cam-

bridge University Press, Cambridge�.
Efstathiou, G., M. Davis, S. D. M. White, and C. S. Frenk,

1985, Astrophys. J., Suppl. Ser. 57, 241.
Eisenstein, D. J., 2005, New Astron. Rev. 49, 360.
Eke, V. R., C. M. Baugh, S. Cole, C. S. Frenk, and J. F. Na-

varro, 2006, Mon. Not. R. Astron. Soc. 370, 1147.
Fan, X., C. L. Carilli, and B. Keating, 2006, Annu. Rev. Astron.

Astrophys. 44, 415.
Feast, M. W., and R. M. Catchpole, 1997, Mon. Not. R. Astron.

Soc. 286, L1.
Feast, M. W., and A. R. Walker, 1987, Annu. Rev. Astron.

Astrophys. 25, 345.
Filippenko, A. V., 1997, Annu. Rev. Astron. Astrophys. 35,

309.
Finkbeiner, D. P., 2003, Astrophys. J., Suppl. Ser. 146, 407.
Fixsen, D. J., E. S. Cheng, J. M. Gales, J. C. Mather, R. A.

Shafer, and E. L. Wright, 1996, Astrophys. J. 473, 576.
Fixsen, D. J., and J. C. Mather, 2002, Astrophys. J. 581, 817.
Fowler, W. A., 1989, Ann. N.Y. Acad. Sci. 571, 68.
Freedman, W. L., et al., 1994, Astrophys. J. 427, 628.
Freedman, W. L., et al., 2001, Astrophys. J. 553, 47.
Fu, L., et al., 2008, Astron. Astrophys. 479, 9.
Gamow, G., 1948, Phys. Rev. 74, 505.
Gaztañaga, E., M. Manera, and T. Multamäki, 2006, Mon. Not.

R. Astron. Soc. 365, 171.
Giannantonio, T., R. G. Crittenden, R. C. Nichol, R. Scranton,

G. T. Richards, A. D. Myers, R. J. Brunner, A. G. Gray, A. J.
Connolly, and D. P. Schneider, 2006, Phys. Rev. D 74, 063520.

Gould, A., 1995, Astrophys. J. 452, 189.
Grundahl, F., D. A. VandenBerg, R. A. Bell, M. I. Andersen,

and P. B. Stetson, 2000, Astron. J. 120, 1884.
Gunn, J. E., and J. R. I. Gott, 1972, Astrophys. J. 176, 1.
Gunn, J. E., and B. A. Peterson, 1965, Astrophys. J. 142, 1633.
Guth, A. H., and S.-Y. Pi, 1982, Phys. Rev. Lett. 49, 1110.
Halliwell, J. J., and S. W. Hawking, 1985, Phys. Rev. D 31,

1777.
Hamilton, A. J. S., 1993a, Astrophys. J. Lett. 406, L47.
Hamilton, A. J. S., 1993b, Astrophys. J. 417, 19.
Hansen, B. M. S., and J. Liebert, 2003, Annu. Rev. Astron.

Astrophys. 41, 465.
Hansen, B. M. S., H. B. Richer, G. G. Fahlman, P. B. Stetson,

J. Brewer, T. Currie, B. K. Gibson, R. Ibata, R. M. Rich, and
M. M. Shara, 2004, Astrophys. J., Suppl. Ser. 155, 551.

Harrison, E. R., 1970, Phys. Rev. D 1, 2726.

Haslam, C. G. T., C. J. Salter, H. Stoffel, and W. E. Wilson,
1982, Astron. Astrophys. Suppl. Ser. 47, 1.

Hawkins, E., et al., 2003, Mon. Not. R. Astron. Soc. 346, 78.
Herschel, W., 1786, Philos. Trans. R. Soc. London 76, 457.
Herschel, W., 1789, Philos. Trans. R. Soc. London 79, 212.
Hetterscheidt, M., P. Simon, M. Schirmer, H. Hildebrandt, T.

Schrabback, T. Erben, and P. Schneider, 2007, Astron. Astro-
phys. 468, 859.

Heymans, C., et al., 2005, Mon. Not. R. Astron. Soc. 361, 160.
Heymans, C., et al., 2006, Mon. Not. R. Astron. Soc. 368, 1323.
Hillebrandt, W., and J. C. Niemeyer, 2000, Annu. Rev. Astron.

Astrophys. 38, 191.
Hockney, R. W., and J. W. Eastwood, 1988, Computer Simula-

tion using Particles �Hilger, Bristol�.
Hoekstra, H., 2004, Mon. Not. R. Astron. Soc. 347, 1337.
Hoekstra, H., 2007, Mon. Not. R. Astron. Soc. 379, 317.
Hoekstra, H., Y. Mellier, L. van Waerbeke, E. Semboloni, L.

Fu, M. J. Hudson, L. C. Parker, I. Tereno, and K. Benabed,
2006, Astrophys. J. 647, 116.

Hoekstra, H., L. van Waerbeke, M. D. Gladders, Y. Mellier,
and H. K. C. Yee, 2002, Astrophys. J. 577, 604.

Hoekstra, H., H. K. C. Yee, and M. D. Gladders, 2002, Astro-
phys. J. 577, 595.

Holz, D. E., and R. M. Wald, 1998, Phys. Rev. D 58, 063501.
Hu, W., 2002a, Phys. Rev. D 66, 083515.
Hu, W., 2002b, Phys. Rev. D 65, 023003.
Hu, W., and N. Sugiyama, 1996, Astrophys. J. 471, 542.
Hubble, E., and M. L. Humason, 1931, Astrophys. J. 74, 43.
Hui, X., H. C. Ford, R. Ciardullo, and G. H. Jacoby, 1993,

Astrophys. J. 414, 463.
Izotov, Y. I., and T. X. Thuan, 2004, Astrophys. J. 602, 200.
Jacoby, G. H., 1980, Astrophys. J., Suppl. 42, 1.
Jarvis, M., G. M. Bernstein, P. Fischer, D. Smith, B. Jain, J. A.

Tyson, and D. Wittman, 2003, Astron. J. 125, 1014.
Jenkins, A., C. S. Frenk, S. D. M. White, J. M. Colberg, S.

Cole, A. E. Evrard, H. M. P. Couchman, and N. Yoshida,
2001, Mon. Not. R. Astron. Soc. 321, 372.

Kaiser, N., 1987, Mon. Not. R. Astron. Soc. 227, 1.
Kaiser, N., G. Squires, and T. Broadhurst, 1995, Astrophys. J.

449, 460.
Kamionkowski, M., and A. H. Jaffe, 2001, Int. J. Mod. Phys. A

16, 116.
Kasen, D., and S. E. Woosley, 2007, Astrophys. J. 656, 661.
Kilbinger, M., and P. Schneider, 2004, Astron. Astrophys. 413,

465.
Kinney, W. H., 1998, Phys. Rev. D 58, 123506.
Klessen, R., and A. Burkert, 1996, Mon. Not. R. Astron. Soc.

280, 735.
Kochanek, C. S., 2002, Astrophys. J. 578, 25.
Kochanek, C. S., 2003, Astrophys. J. 583, 49.
Komatsu, E., et al., 2009, Astrophys. J., Suppl. Ser. 180, 330.
Korn, A. J., F. Grundahl, O. Richard, P. S. Barklem, L. Mas-

honkina, R. Collet, N. Piskunov, and B. Gustafsson, 2006,
Nature �London� 442, 657.

Kovac, J. M., E. M. Leitch, C. Pryke, J. E. Carlstrom, N. W.
Halverson, and W. L. Holzapfel, 2002, Nature �London� 420,
772.

Kregel, M., and P. C. van der Kruit, 2004, Mon. Not. R. Astron.
Soc. 352, 787.

Kunz, M., and D. Sapone, 2007, Phys. Rev. Lett. 98, 121301.
Lahav, O., et al., 2002, Mon. Not. R. Astron. Soc. 333, 961.
Lamarre, J. M., et al., 2003, New Astron. Rev. 47, 1017.
Landy, S. D., and A. S. Szalay, 1993, Astrophys. J. 412, 64.

380 Matthias Bartelmann: The dark Universe

Rev. Mod. Phys., Vol. 82, No. 1, January–March 2010



Lasserre, T., et al., 2000, Astron. Astrophys. 355, L39.
Leibundgut, B., 2001, Annu. Rev. Astron. Astrophys. 39, 67.
Leibundgut, B., and S. Blondin, 2005, Nucl. Phys. B �Proc.

Suppl.� 138, 10.
Liddle, A. R., and D. H. Lyth, 2000, Cosmological Inflation

and Large-Scale Structure �Cambridge University Press, Cam-
bridge�, p. 414.

Madgwick, D. S., et al., 2002, Mon. Not. R. Astron. Soc. 333,
133.

Madore, B. F., and W. L. Freedman, 1991, Publ. Astron. Soc.
Pac. 103, 933.

Massey, R., et al., 2007a, Mon. Not. R. Astron. Soc. 376, 13.
Massey, R., et al., 2007b, Astrophys. J., Suppl. Ser. 172, 239.
Mather, J. C., et al., 1994, Astrophys. J. 420, 439.
McDonald, P., et al., 2005, Astrophys. J. 635, 761.
Mellier, Y., 1999, Annu. Rev. Astron. Astrophys. 37, 127.
Meyer, B. S., and D. N. Schramm, 1986, Astrophys. J. 311, 406.
Monaghan, J. J., 2005, Rep. Prog. Phys. 68, 1703.
Mukhanov, V. F., and G. V. Chibisov, 1981, JETP Lett. 33, 532.
Nolta, M. R., et al., 2009, Astrophys. J., Suppl. Ser. 180, 296.
Norberg, P., et al., 2001, Mon. Not. R. Astron. Soc. 328, 64.
Nusser, A., and M. Haehnelt, 1999, Mon. Not. R. Astron. Soc.

303, 179.
Östman, L., and E. Mörtsell, 2005, J. Cosmol. Astropart. Phys.

2, 5.
Oswalt, T. D., J. A. Smith, M. A. Wood, and P. Hintzen, 1996,

Nature �London� 382, 692.
Padmanabhan, T., 1993, Structure Formation in the Universe

�Cambridge University Press, Cambridge�, p. 499.
Page, L., et al., 2007, Astrophys. J., Suppl. Ser. 170, 335.
Pagels, H. R., 1983, Astrophys. Lett. 23, 151.
Panagia, N., R. Gilmozzi, F. Macchetto, H.-M. Adorf, and R. P.

Kirshner, 1991, Astrophys. J. Lett. 380, L23.
Patterson, C., 1956, Geochim. Cosmochim. Acta 10, 230.
Peacock, J. A., 1999, Cosmological Physics �Cambridge Uni-

versity Press, Cambridge�, p. 704.
Peacock, J. A., and S. J. Dodds, 1996, Mon. Not. R. Astron.

Soc. 280, L19.
Peebles, P. J., and B. Ratra, 2003, Rev. Mod. Phys. 75, 559.
Peebles, P. J. E., 1973, Astrophys. J. 185, 413.
Peebles, P. J. E., 1982, Astrophys. J., Lett. Ed. 263, L1.
Peebles, P. J. E., 1993, Principles of Physical Cosmology,

Princeton Series in Physics �Princeton University Press,
Princeton, NJ�.

Peebles, P. J. E., and B. Ratra, 1988, Astrophys. J., Lett. Ed.
325, L17.

Peebles, P. J. E., and J. T. Yu, 1970, Astrophys. J. 162, 815.
Peimbert, M., V. Luridiana, and A. Peimbert, 2007, Astrophys.

J. 666, 636.
Penzias, A. A., and R. W. Wilson, 1965, Astrophys. J. 142, 419.
Percival, W. J., et al., 2007, Astrophys. J. 657, 645.
Perlmutter, S., et al., 1999, Astrophys. J. 517, 565.
Pettini, M., and D. V. Bowen, 2001, Astrophys. J. 560, 41.
Phillips, M. M., P. Lira, N. B. Suntzeff, R. A. Schommer, M.

Hamuy, and J. Maza, 1999, Astron. J. 118, 1766.
Pierpaoli, E., S. Borgani, D. Scott, and M. White, 2003, Mon.

Not. R. Astron. Soc. 342, 163.
Pierpaoli, E., D. Scott, and M. White, 2001, Mon. Not. R. As-

tron. Soc. 325, 77.
Pinsonneault, M. H., G. Steigman, T. P. Walker, and V. K.

Narayanan, 2002, Astrophys. J. 574, 398.
Press, W. H., and P. Schechter, 1974, Astrophys. J. 187, 425.
Refregier, A., 2003, Annu. Rev. Astron. Astrophys. 41, 645.

Refsdal, S., 1964, Mon. Not. R. Astron. Soc. 128, 307.
Reiprich, T. H., and H. Böhringer, 2002, Astrophys. J. 567, 716.
Renzini, A., and F. Fusi Pecci, 1988, Annu. Rev. Astron. As-

trophys. 26, 199.
Rhodes, J., A. Refregier, N. R. Collins, J. P. Gardner, E. J.

Groth, and R. S. Hill, 2004, Astrophys. J. 605, 29.
Riess, A. G., L. Macri, S. Casertano, M. Sosey, H. Lampeitl, H.

C. Ferguson, A. V. Filippenko, S. W. Jha, W. Li, R. Chornock,
and D. Sarkar, 2009, Astrophys. J. 699, 539.

Riess, A. G., et al., 1998, Astron. J. 116, 1009.
Riess, A. G., et al., 2004, Astrophys. J. 607, 665.
Rix, H.-W., and G. Lake, 1993, Astrophys. J. Lett. 417, L1.
Röpke, F. K., W. Hillebrandt, W. Schmidt, J. C. Niemeyer, S. I.

Blinnikov, and P. A. Mazzali, 2007, Astrophys. J. 668, 1132.
Rosati, P., S. Borgani, and C. Norman, 2002, Annu. Rev. As-

tron. Astrophys. 40, 539.
Sachs, R. K., and A. M. Wolfe, 1967, Astrophys. J. 147, 73.
Salaris, M., S. degl’Innocenti, and A. Weiss, 1997, Astrophys. J.

484, 986.
Salaris, M., I. Dominguez, E. Garcia-Berro, M. Hernanz, J.

Isern, and R. Mochkovitch, 1997, Astrophys. J. 486, 413.
Salaris, M., and A. Weiss, 2001, Astron. Astrophys. 376, 955.
Salpeter, E. E., 1955, Astrophys. J. 121, 161.
Sandage, A., and C. Cacciari, 1990, Astrophys. J. 350, 645.
Sandage, A., and G. A. Tammann, 1974, Astrophys. J. 190,

525.
Sandage, A., G. A. Tammann, A. Saha, B. Reindl, F. D. Mac-

chetto, and N. Panagia, 2006, Astrophys. J. 653, 843.
Schechter, P., 1976, Astrophys. J. 203, 297.
Schlegel, D. J., D. P. Finkbeiner, and M. Davis, 1998, Astro-

phys. J. 500, 525.
Schmidt, B. P., R. P. Kirshner, and R. G. Eastman, 1992, As-

trophys. J. 395, 366.
Schneider, P., J. Ehlers, and E. E. Falco, 1992, Gravitational

Lenses �Springer-Verlag, Berlin�, Vol. XIV, p. 112.
Scranton, R., et al., 2005, Astrophys. J. 633, 589.
Seljak, U., 2002, Mon. Not. R. Astron. Soc. 337, 769.
Seljak, U., and M. Zaldarriaga, 1996, Astrophys. J. 469, 437.
Seljak, U., and M. Zaldarriaga, 1997, Phys. Rev. Lett. 78, 2054.
Semboloni, E., Y. Mellier, L. van Waerbeke, H. Hoekstra, I.

Tereno, K. Benabed, S. D. J. Gwyn, L. Fu, M. J. Hudson, R.
Maoli, and L. C. Parker, 2006, Astron. Astrophys. 452, 51.

Sheth, R. K., and G. Tormen, 2002, Mon. Not. R. Astron. Soc.
329, 61.

Silk, J., 1968, Astrophys. J. 151, 459.
Simon, P., M. Hetterscheidt, M. Schirmer, T. Erben, P.

Schneider, C. Wolf, and K. Meisenheimer, 2007, Astron. As-
trophys. 461, 861.

Slipher, V. M., 1927, Publ. Astron. Soc. Pac. 39, 143.
Smith, G. P., A. C. Edge, V. R. Eke, R. C. Nichol, I. Smail, and

J.-P. Kneib, 2003, Astrophys. J. Lett. 590, L79.
Smith, R. E., J. A. Peacock, A. Jenkins, S. D. M. White, C. S.

Frenk, F. R. Pearce, P. A. Thomas, G. Efstathiou, and H. M.
P. Couchman, 2003, Mon. Not. R. Astron. Soc. 341, 1311.

Sofue, Y., and V. Rubin, 2001, Annu. Rev. Astron. Astrophys.
39, 137.

Spergel, D. N., et al., 2007, Astrophys. J., Suppl. Ser. 170, 377.
Spite, F., and M. Spite, 1982, Astron. Astrophys. 115, 357.
Springel, V., and L. Hernquist, 2002, Mon. Not. R. Astron. Soc.

333, 649.
Springel, V., et al., 2005, Nature �London� 435, 629.
Steigman, G., 2007, Annu. Rev. Nucl. Part. Sci. 57, 463.
Steigman, G., D. N. Schramm, and J. E. Gunn, 1977, Phys.

381Matthias Bartelmann: The dark Universe

Rev. Mod. Phys., Vol. 82, No. 1, January–March 2010



Lett. B 66, 202.
Steigman, G., and T. P. Walker, 1992, Astrophys. J. Lett. 385,

L13.
Straniero, O., and A. Chieffi, 1991, Astrophys. J., Suppl. Ser.

76, 525.
Sunyaev, R. A., and Y. B. Zeldovich, 1970, Astrophys. Space

Sci. 7, 3.
Sunyaev, R. A., and Y. B. Zeldovich, 1972, Comments Astro-

phys. Space Phys. 4, 173.
Tauber, J. A., 2004, Adv. Space Res. 34, 491.
Tegmark, M., et al., 2004, Astrophys. J. 606, 702.
Toffolatti, L., F. Argueso Gomez, G. de Zotti, P. Mazzei, A.

Franceschini, L. Danese, and C. Burigana, 1998, Mon. Not. R.
Astron. Soc. 297, 117.

Tonry, J., and D. P. Schneider, 1988, Astron. J. 96, 807.
Tonry, J. L., J. P. Blakeslee, E. A. Ajhar, and A. Dressler, 1997,

Astrophys. J. 475, 399.
Tonry, J. L., J. P. Blakeslee, E. A. Ajhar, and A. Dressler, 2000,

Astrophys. J. 530, 625.
Truran, J. W., W. D. Arnett, and A. G. W. Cameron, 1967, Can.

J. Phys. 45, 2315.
Tully, R. B., and J. R. Fisher, 1977, Astron. Astrophys. 54, 661.
Udalski, A., M. Szymanski, M. Kubiak, G. Pietrzynski, I. Sos-

zynski, P. Wozniak, and K. Zebrun, 1999, Acta Astron. 49,
201.

Uson, J. M., and D. T. Wilkinson, 1984, Astrophys. J., Lett. Ed.
277, L1.

Valenziano, L., et al., 2007, New Astron. Rev. 51, 287.
Van Waerbeke, L., Y. Mellier, and H. Hoekstra, 2005, Astron.

Astrophys. 429, 75.
VandenBerg, D. A., 1983, Astrophys. J., Suppl. Ser. 51, 29.
VandenBerg, D. A., 2000, Astrophys. J., Suppl. Ser. 129, 315.
Viel, M., G. D. Becker, J. S. Bolton, M. G. Haehnelt, M.

Rauch, and W. L. W. Sargent, 2008, Phys. Rev. Lett. 100,

041304.
Viel, M., and M. G. Haehnelt, 2006, Mon. Not. R. Astron. Soc.

365, 231.
Viel, M., J. Weller, and M. G. Haehnelt, 2004, Mon. Not. R.

Astron. Soc. 355, L23.
Wambsganss, J., and B. Paczynski, 1992, Astrophys. J. Lett.

397, L1.
Wang, X., M. Tegmark, B. Jain, and M. Zaldarriaga, 2003,

Phys. Rev. D 68, 123001.
Wasserburg, G. J., F. Tera, D. A. Papanastassiou, and J. C.

Huneke, 1977, Earth Planet. Sci. Lett. 35, 294.
Weinberg, S., 2008, Cosmology �Oxford University Press, New

York�.
Wesselink, A. J., 1946, Bull. Astron. Inst. Neth. 10, 91.
Wetterich, C., 1988, Nucl. Phys. B 302, 668.
White, S. D. M., C. S. Frenk, M. Davis, and G. Efstathiou,

1987, Astrophys. J. 313, 505.
White, S. D. M., J. F. Navarro, A. E. Evrard, and C. S. Frenk,

1993, Nature �London� 366, 429.
Woosley, S. E., A. Heger, and T. A. Weaver, 2002, Rev. Mod.

Phys. 74, 1015.
Yang, J., M. S. Turner, D. N. Schramm, G. Steigman, and K. A.

Olive, 1984, Astrophys. J. 281, 493.
York, D. G., et al., 2000, Astron. J. 120, 1579.
Zaldarriaga, M., 1997, Phys. Rev. D 55, 1822.
Zaroubi, S., M. Viel, A. Nusser, M. Haehnelt, and T.-S. Kim,

2006, Mon. Not. R. Astron. Soc. 369, 734.
Zel’dovich, Y. B., 1970, Astron. Astrophys. 5, 84.
Zeldovich, Y. B., 1972, Mon. Not. R. Astron. Soc. 160, 1P.
Zlatev, I., L. Wang, and P. J. Steinhardt, 1999, Phys. Rev. Lett.

82, 896.
Zwicky, F., 1933, Helv. Phys. Acta 6, 110.
Zwicky, F., 1937, Astrophys. J. 86, 217.

382 Matthias Bartelmann: The dark Universe

Rev. Mod. Phys., Vol. 82, No. 1, January–March 2010


