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An experimental and theoretical perspective is provided on the behavior of unpolarized distribution
functions for the nucleon and pion on the valence-quark domain, namely, Bjorken x=0.4. This
domain is a key to much of hadron physics; e.g., a hadron is defined by its flavor content and that is
a valence-quark property. Furthermore, its accurate parametrization is crucial to the provision of
reliable input for large collider experiments. The focus is on experimental extractions of distribution
functions via electron and muon inelastic scattering, and from Drell-Yan interactions; and on
theoretical treatments that emphasize an explanation of the distribution functions, providing an
overview of major contemporary approaches and issues. Valence-quark physics is a compelling
subject, which probes at the heart of our understanding of the standard model. There are numerous
outstanding and unresolved challenges, which experiment and theory must confront. In connection
with experiment, an explanation that an upgraded Jefferson Laboratory facility is well suited to
provide new data on the nucleon is provided, while a future electron-ion collider could provide
essential new data for the mesons. There is also great potential in using Drell-Yan interactions, at
FNAL, CERN, J-PARC, and GSI, to push into the large-x domain for both mesons and nucleons.
Furthermore, it is argued that explanation, in contrast to modeling and parametrization, requires a
widespread acceptance of the need to adapt theory: to the lessons learnt already from the methods of

nonperturbative quantum-field theory and a fuller exploitation of those methods.
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I. INTRODUCTION

From the first deep inelastic-scattering experiments
(Bloom et al., 1969; Breidenbach et al., 1969) and the
advent of the parton model (Bjorken, 1967; Bjorken and
Paschos, 1969; Feynman, 1969), there has been a tre-
mendous effort to deduce the parton distribution func-
tions of the most stable hadrons—the proton, neutron,
and pion. The long sustained and thriving interest in
these structure functions is motivated by the necessity to
understand hadron structure at a truly fundamental
level. While it is anticipated that quantum chromody-
namics (QCD) will provide the explanation of hadron
structure, a quantitative description of hadrons within
QCD is not yet at hand. An explanation and prediction
of the behavior of parton distribution functions in the
valence-quark region,1 viz., Bjorken x = 0.4, poses an im-
portant challenge for QCD and related models of had-
ron structure. This is the domain on which the transition
takes place from deep inelastic scattering, with incoher-
ent elastic scattering from numerous loosely correlated
small-x partons, to scattering from dressed quarks that
become increasingly well correlated as x—1. We focus
our attention herein on the behavior of unpolarized
structure functions on the valence-quark domain.

The parton distributions are also essential to an un-
derstanding of QCD’s role in nuclear structure. It has
been known (Aubert et al., 1983) for more than two de-
cades that the parton distribution functions in a nucleus
cannot simply be obtained by adding together the distri-
butions within the constituent nucleons. This mismatch
is the so-called European Muon Collaboration (EMC)
effect, and although concerted efforts have led to the
identification of some of the ingredients necessary to an
explanation, we still lack a completely satisfactory un-
derstanding of the nuclear dependence of parton distri-
bution functions. This hampers us enormously. For ex-
ample, an accounting for the EMC effect in light nuclei
is key to extracting the neutron structure function. That
is a necessary precursor to a veracious determination of
the differences between the parton distribution func-
tions of the light quarks.

An accurate determination of the pointwise behavior
of distribution functions in the valence region is also
important to very high-energy physics. Particle discovery
experiments and standard model tests with colliders are
only possible if the QCD background is completely un-
derstood. QCD evolution, apparent in the so-called scal-
ing violations by parton distribution functions, entails
that with increasing center-of-mass energy Vs the sup-
port at large x in the distributions evolves to small x and

'As will become clear, for a given hadron in its infinite-
momentum frame, a parton’s Bjorken-x value specifies the
fraction of the hadron’s momentum carried by this parton.
There is no unambiguous beginning to the valence-quark do-
main. We choose x =0.4 because thereafter the gluon distribu-
tion can be said to be much smaller than the valence u-quark
distribution in the proton.
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thereby contributes materially to the collider back-
ground.

Deep inelastic scattering (DIS) of electrons from pro-
tons and bound neutrons at the Stanford Linear Accel-
erator Center (SLAC) led to the discovery of quarks.
These experiments observed more electrons scattering
with high energy at large angles than could be explained
if protons and neutrons were uniform spheres of matter.”
In the approximately 40 intervening years, electron DIS
has played a central role in measuring structure func-
tions, and SLAC has been especially effective in map-
ping the proton’s structure functions in the valence-
quark region.

More recently, muon scattering experiments—
performed by the EMC, the New Muon Collaboration
(NMC), and the Bologna-CERN-Dubna-Munich-Saclay
Collaboration (BCDMS)—have contributed to our store
of information. There have also been a substantial num-
ber of neutrino scattering experiments. However, they
have generally used nuclear targets rather than pure hy-
drogen targets. Drell-Yan experiments have been effec-
tive at measuring the antiquark distributions in the pro-
ton and nuclei. Putting all this together, it can be said
that as a consequence the proton structure function is
extremely well known, at least for x=<0.7.

Herein we discuss the status of charged-lepton and
Drell-Yan experiments, as well as prospects for new ex-
periments at, e.g., the Thomas Jefferson National Accel-
erator Facility (JLab) and FermiLab (FNAL). On the
other hand, although a number of experiments at the
Conseil Européen pour la Recherche Nucléaire (CERN)
and Deutsches Elektronen-Synchrotron have also pro-
vided measurements of the proton structure function,
many of these efforts focused on the low-x behavior and
hence they will not be discussed.

An experimental determination of the neutron struc-
ture function at high Bjorken x has proved especially
troublesome, the main reason being that most of our
information about the neutron structure function is ob-
tained from DIS experiments on a deuteron target, for
which the nature of the EMC effect is simply unknown.
Consequently, inference of the neutron structure func-
tion from proton and deuteron measurements is model
dependent. We treat this topic in some depth and, in
addition, canvass prospects for the future.

On the theoretical side the challenge is first to param-
etrize and ultimately to calculate the parton distribution
functions. We write ultimately because the distribution
functions are essentially nonperturbative and therefore
cannot be calculated in perturbation theory. Thus, in the
absence of a truly accurate, quantitative, and predictive
nonperturbative tool, the QCD calculation of parton
distribution functions remains an alluring but distant

’In both method and results this series of experiments, con-
ducted from 1966 to 1978 and for which Taylor, Kendall, and
Friedman were awarded the 1990 Nobel Prize in Physics, was
kindred to that which led Rutherford to discovery of the
nucleus in 1911.
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prospect. Herein we provide both an historical perspec-
tive on past attempts at a theoretical interpretation and
an overview of recent progress toward this goal. Nota-
bly, today, there are no computations of the pointwise
behavior of the nucleon’s valence-quark distribution
function that agree with the predictions of the QCD par-
ton model.

There has, on the other hand, been much success to
date with parametrization. A number of independent
groups have analyzed and performed a global fit to the
vast body of extant DIS and Drell-Yan nucleon
structure-function data. In this approach the physical
processes are factorized into the product of short- and
long-distance contributions. The so-called short-distance
parts are calculable in perturbation theory, whereas the
long-distance parts are determined by the parton distri-
bution functions. In this way, via the operator product
expansion in QCD, scattering processes involving had-
rons are connected to subprocesses involving partons.
The utility of this approach is grounded on the fact that
as long as factorization is valid, the parton distribution
functions are universal; namely, all hadron-level interac-
tions for which factorization applies are described by the
same small body of parton distribution functions. This
being true, the nonperturbative problem is reduced to
that described above: instead of calculating all cross sec-
tions from scratch, one has merely to calculate the dis-
tribution functions. Herein we introduce the modern pa-
rametrizations.

At its simplest, the nucleon is a three-body problem.
As ostensibly a two-body problem, it would appear
theoretically simpler to calculate properties of the pion
and hence the parton distributions therein. However, the
pion is, in fact, both a bound state and the Goldstone
mode associated with dynamical chiral-symmetry break-
ing (DCSB) in QCD. This amplifies the importance of
understanding its properties. However, it also signifi-
cantly complicates the calculation of the pion’s distri-
bution functions and places additional constraints on
any framework applied to the task: the pion simply can-
not veraciously be described as a constituent quark-
antiquark pair. Instead, key features of nonperturbative
quantum-field theory must be brought to bear.

Although it is not presently possible to perform deep
inelastic scattering on a free pion, the pion structure
function has been measured in pionic Drell-Yan experi-
ments at CERN and FNAL. Owing to predictions from
the QCD parton model, the form of the pion’s valence-
quark distribution function provides a stringent test of
our understanding of both QCD and QCD-based ap-
proaches to hadron structure. The FNAL Drell-Yan ex-
periment (Conway ef al., 1989) measured the pion struc-
ture function up to high Bjorken x, where the QCD
predictions were expected to be realized. However, they
were not manifest, so that a puzzling discrepancy re-
mains at this time. The status of structure-function mea-
surements of the pion as well as prospects for future
experiments at JLab and a possible future electron-ion
collider (EIC) will be presented, as will a full description
of the theoretical perspective.
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FIG. 1. Feynman diagram representing deep inelastic lepton
scattering from a hadron.

The purpose of this article is not to present a compre-
hensive review of all the issues involved in extracting
structure functions from high-energy data, as in Sterman
(1995), nor an exhaustive digest of theoretical develop-
ments in the field. Rather the focus will be on structure
functions in the valence region, which have chiefly been
extracted from electron and muon inelastic scattering, as
well as from Drell-Yan interactions. Moreover, we focus
on the theoretical treatments that emphasize an expla-
nation of these structure functions and summarize the
major contemporary approaches and issues. To end this
Introduction, a brief remark on notation: unless denoted
otherwise, when addressing a distribution function, it
will be that associated with the proton, e.g., u,(x) will
mean the proton’s valence u-quark distribution.

II. NUCLEON STRUCTURE FUNCTIONS FROM
ELECTRON AND MUON SCATTERING

A. Kinematics

The Feynman diagram for lepton inelastic scattering
from a hadron is given in Fig. 1. Practically, the leptons
in a laboratory scattering process can be electrons,
muons, or neutrinos, as shown in the figure, and the cur-
rent can be a photon, a charged weak current W*, or a
neutral weak current Z° of four-momentum transfer gq.
The incident lepton has incoming and outgoing four-
momenta of k and k', respectively, so that the momen-
tum and energy transfers are given by

g=k-k', (2.1)

v=E-FE', (2.2)

where the incident momentum and mass of the hadron
are given by p and M, while the outgoing debris after the
inelastic event has a momentum p’.

The invariants in the scattering process are the follow-
ing: the square of the four-momentum transfer; the
square of the invariant mass; p-¢q, which is related to the
energy transfer in the target rest frame; and the square
of the total energy in the center-of-mass frame. The
square of the four-momentum transfer depends on the
energy of the beam and scattered lepton as well as the
lepton scattering angle: neglecting the lepton’s mass,
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6
Q?:= - ¢*>=4EE’ sinzz. (2.3)

The square of the invariant mass W is given by
Wz:(p+q)2=M2—Q2+2p~q=M2+%QZ,
(2.4)
where M is the mass of the hadron and
x=02p-q (2.5)

is the Bjorken variable. The square of the total energy in
the center of mass is given by the Mandelstam variable s,

s=(k+p)* (2.6)
A final useful invariant is
y=p-qlp-k, (2.7)

which, in the target rest frame, is a measure of the frac-
tional energy loss by the incident lepton.
The Bjorken limit is theoretically defined as

0 — o, (2.8)

In this limit, x can be shown to equal the fraction of the
hadron’s momentum carried by the struck quark. Em-
pirically, in order to avoid complications associated with
the production of hadron resonances, the Bjorken scal-
ing regime is explored via

2p-q— », x=fixed.

Q2
QZ + W2 _ MZ
In principle, the deep inelastic approximation is only
good when

10% = QY 4M*x* > 1. (2.10)

However, it is empirically well established that scaling in
DIS sets in at tractable values of W and Q. As a prac-
tical matter, evaluations of data typically impose the re-
quirement that Q>=4 GeV? and W=3.5 GeV. As dis-
cussed and explored, e.g., by Malace ef al. (2009) and
Accardi et al. (2010), data at high Bjorken x but not
meeting these kinematic requirements would be subject
to large target-mass corrections, which are kinematic
and owe to binding of partons in the hadron. Before
discussing these topics in more detail, the cross section
for inelastic electron scattering will be presented.

W — oo, Q2 — o, Xx= = fixed. (29)

B. The cross section for charged-lepton scattering

The cross section for inelastic charged-lepton scatter-
ing from a hadron via a one-photon exchange process, as
shown in Fig. 1, is well known and given by

9 (g 0)—<ig)(£’>1f W
dQde' "7 N\ E)Tm

where L;, is the leptonic tensor and W*” is the hadronic
tensor. The leptonic tensor has the following straightfor-
ward dependence on the kinematic variables:

(2.11)
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L =2{k"k'" + k'k'* + g*'Tm* - (k- k)], (2.12)

where m is the lepton’s mass. Conserving current and
parity, the hadronic tensor for a spin-% charged particle
depends on two structure functions W,(v,Q? and
Ws(v,0?), viz.,

9.9y
W,U-V: W1<_gl“’+ _q%>

w, P q P q
+M2 p,u_ q2 q,u Pv— 612 q,|-
Contracting the leptonic tensor with the hadronic tensor

yields the well-known cross section of the form

do agE’2
(E,E',0)=4——
dQdE'’ (0]

(2.13)

{Wz(v, 0?)cos? g

0
+2W,(v,0%)sin? 5] . (2.14)
The quantities W; and W, in Eq. (2.14) are often writ-
ten in terms of dimensionless structure functions F; and
F, for the nucleon

MW,(v,0% = F,(x,07), (2.15)

vW,(v,0%) = F,(x,07). (2.16)

In turn, these structure functions are frequently written
in terms of the transverse (Fp) and longitudinal (F;)
structure functions, which correspond to absorption of
transverse and longitudinal virtual photons, respectively,

Fr(x,0% =2xF,(x,0?, (2.17)

F(x,0%) = F(x,07%) - 2xF,(x,0%). (2.18)

They can, in principle, be measured separately by per-
forming a longitudinal/transverse (L/T) separation, as
will be discussed in Sec. II.H. The most intuitive physical
picture of the interaction in the deep inelastic-scattering
regime is provided by the parton model.

C. The parton model

It was discovered at SLAC in the late 1960s that the
structure functions appeared to scale; i.e., their evolu-
tion with x is nearly independent of Q? over a very large
kinematic range. These important points are well docu-
mented not only in the original papers (Bjorken, 1967;
Bjorken and Paschos, 1969; Bloom et al., 1969; Breiden-
bach et al., 1969; Feynman, 1969) but also in the Nobel
lectures summarized by Friedman (1991), Kendall
(1991), and Taylor (1991) and here will only be reviewed
briefly.

The observed scaling feature means that the cross sec-
tion is not separately a function of the two kinematic
variables, energy transfer v and Q2. Instead, the behav-
ior of the cross section can be expressed in a depen-
dence on only one scaling variable, namely, Bjorken x.
Indeed, in the Bjorken limit [Eq. (2.9)], the proton struc-



Roy J. Holt and Craig D. Roberts: Nucleon and pion distribution functions in ... 2995

ture functions W; and W, assume a form consistent with
elastic scattering from a point fermion, viz.,

e 5
2 ~ —
2MW,(v,Q%) — 2F,(x) 2va25 1 M)’
(2.19)
QZ
vW,(v,0%) — Fy(x) ~ 5(1 - 2va>, (2.20)

where x is given by Eq. (2.5). This near dependence on
only a single dimensionless variable is referred to as
Bjorken scaling. Assuming this to be the case, then the
expression for the cross section [Eq. (2.11)] becomes

do a’E'?| Fy(x) 6
———(E,E',0) =4———| === cos® —
d0dE" ) =475 { %3
2F 6
2Hx) sin? —] ) (2.21)
M 2

Capitalizing on these results and assumptions, further
analysis leads to (Callan et al., 1969)

Fy(x) =2xF;(x). (2.22)

This Callan-Gross relation is observed to be approxi-
mately valid, a feature that is often cited as evidence
that the pointlike constituents of the proton, i.e., the
quarks, are Spin—% degrees of freedom.

An intuitive understanding of the observed scaling be-
havior is provided by the quark-parton model (QPM) or
QCD parton model. In this model the electron collides
with a collection of partons within the hadron. Owing to
Lorentz contraction of the hadron at extremely high mo-
mentum, these partons are practically frozen in time
during the extremely brief collision process. Moreover,
the probability of finding two partons near enough to
interact with each other drops as 1/Q?. Thus, initial- and
final-state interactions are suppressed in the DIS regime.
Within this model, the photon interacts incoherently
with individual partons and the cross section depends in
a simple way on the probability of finding a quark of
flavor i with fraction x of the proton’s momentum. These
properties are realized in the following simple expres-
sion for the electromagnetic structure function:

Fy(x) = 2xFy(x) = 2 €x[q,(x) + 4i(0)], (2.23)
where e; are the charges of the individual quarks and
q{(x) are the probability densities for finding quark i
with fraction x of the hadron’s momentum. Assuming
that only the relatively light quarks (u,d,s,c) and their
respective antiquarks contribute to the proton structure
function, then the proton structure function can be writ-
ten as

SR = S{u(0) + 20 + e(x) + 200)]
+ %[d(x) +d(x) +s(x) +5(x)]. (2.24)
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FIG. 2. (Color online) Quark flavor dependence of the proton
structure function according to the CTEQG6L (leading-order)
evaluation at a scale Q?=10 GeV? (Stump et al., 2003; Martin
et al., 2004). We plot the quantities e%xqi(x) in order to empha-
size the contribution to the structure function from the various
quark flavors.

In Fig. 2 we show the contributions of these quark
flavors to the structure function in the valence region.
The CTEQ6L leading-order (LO) evaluation (Stump et
al., 2003; Martin et al., 2004), a modern global evaluation
of existing data, was used for illustration. The distribu-
tion of up- and down-quark flavors is fixed primarily by
electron and muon scattering from the proton and neu-
tron, while the distribution of the u and d quark sea is
largely determined by Drell-Yan processes. The strange
and charm quark sea is determined by neutrino interac-
tions. The u-quark distribution is the dominant contri-
bution to the proton structure function, while the d and
anti-u quarks are significant. The charm and strange
quark distributions are small and are not easily distin-
guishable in the figure. We note that semi-inclusive elec-
tron scattering from the proton and deuteron is emerg-
ing as an important tool for determining the strange
quark distribution, thereby providing an important
complement to the method of neutrino scattering from
complex nuclei as a probe of nonvalence proton struc-
ture functions. Of course, the u- and d-quark distribu-
tions in the valence region are particularly important for
testing descriptions of nucleon structure, and it is there-
fore vital to obtain accurate and precise data and a reli-
able flavor separation in this region.

A primary goal of modern theory is the computation
of valence-quark distribution functions using QCD-
motivated or QCD-based models and nonperturbative
methods in QCD. Naturally, valence quarks have no
strict empirical meaning because experiment cannot
readily distinguish a valence from a sea quark. However,
valence-quark distributions for the u and d quarks in the
nucleon can be defined as the following flavor-nonsinglet
combinations:

U, (x) = u(x) — it(x), (2.25)
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FIG. 3. (Color online) Structure function of the proton at three
values of Q2 computed from the CTEQOL leading-order
evaluation.

d,(x) = d(x) - d(x). (2.26)

Conservation of charge leads to important normaliza-
tion conditions,

1 1
J dxu,(x) =2, f dxd,(x)=1. (2.27)
0 0
Naturally,
1
f dxs,(x) =0, (2.28)
0

with the same result for all heavier quarks. However, it
does not follow that s,(x) must be identically zero.

Consistent with nomenclature, the combinations in
Egs. (2.25) and (2.26) have nonzero values of various
flavor quantum numbers, such as isospin and baryon
number. Singlet distributions also play a role and are
constituted from a sum of quark distribution functions:
2(x)=2[g{x)+g;(x)]. Under QCD evolution, discussed
below, singlet distributions mix among themselves and
with the gluon distribution, but the nonsinglet distribu-
tions do not.

D. QCD and scaling violations

The proton structure function in the valence region is
shown in Fig. 3 as a function of Bjorken x and for three
values of Q? for the CTEQ6L LO evaluation. Although
the Q? range illustrated is relatively large, from
2 to 100 GeV?, the structure function does not exhibit a
strong dependence on QZ. This result validates the par-
ton model as an approximation to a QCD description of
the structure function. Of course, the structure functions
have a dependence on Q2 indicating the necessity of
QCD rather than a parton model to describe the data.
This relatively small Q% dependence is known as a scal-
ing violation.

The validity of the QPM led to the idea of factoriza-
tion in deep inelastic scattering. In factorization, the
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cross section is separated into two distinct contributions:
a short-distance part, described by perturbative QCD
(pQCD), and a long-distance part. The Q*-dependence
driving scaling violation originates in the pQCD part
and owes to the same phenomena that generate running
of the strong-coupling constant «, and hence asymptotic
freedom. This factorization for the moments of the
structure functions can be shown rigorously using the
operator product expansion and the renormalization-
group equations. Alternatively, a distribution function
where the moments can be written as products can be
expressed in terms of a convolution of two distributions.
Naturally, the long-distance part is only calculable using
nonperturbative methods and presents a challenge for
modern hadron theory.

At small distances or, equivalently, large momentum
transfers in QCD, the effective coupling constant be-
comes small. This feature is known as asymptotic free-
dom (Gross and Wilczek, 1974; Politzer, 1974). In terms
of the renormalization scale Agcp, the strong-coupling
constant has the perturbative form,

a@® 1 Bin@ O(l)
am By B \A)

where t:ln(Qz/AéCD), Bo=11-2n/3, B;=102-38n,/3,
and ny is the number of quark flavors involved in the
process. From Eq. (2.29) it is apparent that a,—0 as
Q?—, so that a parton-model limit is contained within
QCD:; e.g., as will become clear below, Eq. (2.23) is ob-
tained from Eq. (2.37) in this limit.

Plainly, the definition of short- and long-distance phe-
nomena is ambiguous, and associated with a separation
of the cross section into these two contributions is a fac-
torization scale, namely, a mass scale chosen by the prac-
titioner as the boundary between hard and soft. If that
scale is large enough, then the hard part of the scattering
cross section can be calculated in pQCD. This, however,
introduces another scale, associated with renormaliza-
tion. For convenience and economy, the factorization
and renormalization scales are usually chosen to be the
same. It follows, in addition, that factorization is scheme
dependent because the choice of renormalization
scheme implicitly specifies a division of the finite pieces
of the cross section into those that are retained in the
hard contribution and those understood to be contained
in the soft piece. The part identified as owing to long-
distance effects is basically the parton density distribu-
tion function.

__In fitting data to construct PDFs, it is usual to use the
MS (modified minimal subtraction) renormalization
scheme whereas, with regard to factorization, there are
two commonly used schemes. The DIS scheme (Altarelli
et al., 1978) was designed to ensure there are no higher-
order corrections to the expression for the F, structure
function in terms of the quark PDFs; i.e., all finite con-
tributions are absorbed into the PDF. On the other
hand, in the more widely used MS scheme (Bardeen et
al., 1978), in addition to the divergent piece, only the
usual (In 477— y;) combination is absorbed into ¢(x) and

(2.29)
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FIG. 4. Graphical representation of the leading-order DGLAP
equations.

hence the expression for F, exhibits explicit O(«,) cor-
rections [see Sterman et al. (1995) for more on these
points].

The CTEQ6L (leading-order) structure functions
shown in Fig. 3 were evaluated using the MS scheme. At
leading order there is no difference between factoriza-
tion schemes. As we will subsequently see (Fig. 4), radi-
ated gluons give rise to the scaling violation or Q? de-
pendence of the structure functions. They, and the quark
distribution functions defined therefrom, then depend
on both x and Q2. The Q? dependence is now routinely
described within the framework of next-to-leading-order
(NLO) QCD evolution.

An important and extremely useful feature of factor-
ization is that a measurement of a structure function at
relatively low Q? permits the calculation, through the
use of pQCD, of the structure function at high Q. In
leading order, a set of integrodifferential equations, now
known as the Dokshitzer-Gribov-Lipatov-Altarelli-
Parisi (DGLAP) evolution equations (Gribov and Lipa-
tov, 1972; Lipatov, 1975; Altarelli and Parisi, 1977; Dok-
shitzer, 1977), is used for this purpose. Intuitively, one
may think that as Q? increases, a parton can sometimes
be resolved into two partons; e.g., a quark can split into
a quark and a gluon or a gluon into two gluons—see Fig.
4 for a graphical representation of the leading-order
DGLAP equations. The two resolved partons then share
in the fraction of the nucleon momentum carried by the
initial unresolved parton at lower Q2. The parton distri-
bution thus becomes a function of Q2. Such evolution of
the parton distribution function (PDF) can be seen in
Fig. 3. At the highest values of Q? the structure function
is shifted toward lower values of x. This work has been
generalized to other reaction processes (Furmanski and
Petronzio, 1982).

We note that, in principle, the domain of “relatively-
low Q%" means, nevertheless, Q>> Agp. Notwithstand-
ing this, in some empirical determinations of PDFs
through data fitting (see Sec. V.C) and in the application
of models to their calculation (see Sec. V1), evolution is
sometimes applied from low Q2~4A6CD. In such cases
an interpretation of the low-Q? distribution as a parton-
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model density is questionable owing to the probable im-
portance of nonperturbative corrections. However, con-
tributions from such corrections are suppressed by
DGLAP evolution to larger Q” and hence one antici-
pates that in these applications there is always a Q2
whereafter the desired interpretation becomes valid.

As stated above, the evolution equations enable the
accurate calculation of the PDFs at a general Q2 pro-
vided they are known at another scale Q% so long as
pQCD is a valid tool at both scales. At next-to-leading
order the QCD evolution equations have the form (Her-
rod and Wada, 1980)

dqns-(x,0%)/dt = Pys. ® qys.(x',0%), (2.30)
where the convolution is defined as
1
C®f::f d—yC(y)f<’ﬁ) (2.31)
x Y y
and
d 2(x,Q2)) <E(x’,Q2)>
— =P . 2.32
dr<g<x,Q2> “\etr.0) (2:32)

In these formulas, gy =u—i, d—d and qyg,=(u+i)
—(d+d) or (u+ia)+(d+d)-2(s+5) are the nonsinglet
PDFs, while 3 =3,(¢g;+¢;) is the singlet combination. The
splitting functions are given by

Pst Py (x )+< ) Pys. (%), (2.33)
0 a \? 1
P= ;TP (x) + (E) Pi(x), (2.34)
where
- (P 2nPl
p/:< aq r qg)_ (2.35)
Py Py

The leading-order DGLAP equations are obtained sim-
ply by eliminating the af terms in the equations above.

It will be apparent from Egs. (2.30) and (2.31) that x
=1 is a fixed point, namely, that the x=1 value of each
distribution function is invariant under evolution—it is
the same at every value of the resolving scale Q2. This is
because the right-hand side of each evolution equation
vanishes at x=1. Naturally, when Bjorken x is unity, then
q*+2p-q=0 and hence one is strictly dealing with the
situation in which the invariant mass of the hadronic
final state is precisely that of the target: W=M in Fig. 1,
viz., elastic scattering. The structure functions inferred
experimentally in the neighborhood of x=1 are there-
fore determined by the target’s elastic form factors,
which all vanish in the limit Q>— . This fact per se is
not interesting. However, the rate at which distribution
functions vanish with x is important because it can lead
to nonzero renormalization-scale-invariant distribution-
function ratios at x=1. For example, the value of
lim,_,; d,(x)/u,(x) in the nucleon is an unambiguous
scale-invariant feature of QCD and hence a discrimina-
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tor between models. [For an illustration of this point, see
also Fig. 42, which shows uf(x)/ uy (x).] This is an impor-
tant consequence, and one much discussed and explored
in experiment and theory (see Secs. II.G and VI).

We reiterate, however, that the neighborhood of x=1
poses difficulties for experiment and for theory too, ow-
ing, e.g., to the importance on this domain of target-
mass corrections and higher-twist contributions (ex-
plained below). While the equivalence between x=1 and
elastic scattering cannot be avoided, one might choose
to approach the limit obliquely. For example, noting
from Eq. (2.9) that

Q> OEWEM (W M)W+ M)
Q2 + W2 _ M2 - Q2 ’
(2.36)

1l-x=1-

one would ideally choose a path such that both Q2 and
W—M are simultaneously kept as large as kinematically
possible. This is experimentally very difficult, as dis-
cussed in connection with Fig. 7. Future experimental
possibilities are outlined in Sec. I'V.

A great triumph of QCD is the good agreement be-
tween the evolved structure function for the proton and
experiment over many orders of magnitude in Q?. Of
course, the structure function should be calculated at the
same order as the PDFs. The equation for the structure
function at NLO in the DIS scheme is given by

FZ(x7 Qz) = xz €?{qi(x, Qz) + q_i(x’ QZ)

alO?
+ SéQ ){Ci ® [qi(x,0%) + G,(x,0%)]
T

+2C, ® g(x,Qz)}}, (2.37)

where g(x,Q?) is the gluon distribution and the Wilson
coefficients {C; .} are given by Furmanski and Petronzio
(1982) and Gliick et al. (1995).

During the past several years rather complete NNLO
fits (Martin et al., 2007) in the MS scheme have been
performed for the data. These fits have made use of
next-to-next-to-leading-order (NNLO) splitting func-
tions (Moch et al., 2004; Vogt et al., 2004). The LO, NLO,
and NNLO u-quark distribution functions are plotted at
a scale of Q?>=10 GeV? in Fig. 5 for comparison. Natu-
rally, the structure functions themselves are measured
quantities and do not depend on the order of the fit. In
the valence region, the largest difference occurs between
LO and NLO as expected. There is some evidence
(Yang and Bodek, 2000) from early NNLO analyses that
evolution at NNLO largely offsets the effect of high
twist in an NLO analysis on the large-x domain. How-
ever, a more recent analysis (Blumlein et al., 2007) per-
formed up to next-to-next-to-next-to-leading order
(N3LO) contradicts this finding.
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FIG. 5. (Color online) Comparison of the proton’s u(x) distri-
butions in LO, NLO, and NNLO at Q?=10 GeV?2.

E. High twist effects and target-mass corrections

As we have seen, the interactions between partons at
short distances that give rise to scaling violations are
reasonably well described in a pQCD approach through
the Q%-evolution equations. Probes of a hadron at inter-
mediate values of Q? might expose correlations among
the partons. Thus far, we have only considered the case
in DIS where structure functions are governed by inco-
herent scattering from the partons. As we move to lower
Q? where nucleon resonances could dominate or to very
high x where the elastic-scattering limit and complete
coherence dominate, then correlations between the par-
tons must be taken into account. Ultimately a theoreti-
cal treatment of these correlations demands an under-
standing of the way that quarks and gluons bind to form
hadrons. Although perturbative QCD cannot explain
binding effects, it does permit one to construct a model
of power corrections to the perturbative result. It was
found (Ellis et al., 1982, 1983) that the first power cor-
rection 1/Q? to the structure function is governed by the
intrinsic transverse components of the parton momen-
tum.

The operator product expansion is normally used to
order contributions to a DIS structure function accord-
ing to their twist 7 which is defined as the difference
between the naive mass dimension of an operator and its
“spin.” Here spin means the number of vector indices
contracted with the configuration-space four-vector z.
For example, Sterman (1995) considered the expansion
of a dimension six=2d; current-current correlator, typi-
cal of DIS,

Ja(z)‘]a(o) -~ 2 2 CT’n(Zz’MZ)Zvl e ZVn
=2 n=0
X 0’7;1"'1/,, (Z = 0,/.L2), (238)

where u is the factorization scale. One is interested in
the z?~0 behavior of the coefficient function
C,,n(zz,,uz):(Zz)*ddzé(zz,uz) because the more highly
singular is this function on the light cone, the more im-
portant is the associated operator at large Q%. Now, sup-
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pose the operator OT (,uz) has dimension do , then,
in order to balance d1mens1ons on both sides of Eq.
(2.38), one must have d-=2d;—(d, —n) since each fac-
tor of z on the right-hand side contributes mass dimen-
sion negative-one. Plainly, the largest value of d is ob-
tained with the smallest value of twist 7= do —n, and the
associated operators are those which domlnate the
large-Q? behavior of the correlator. As Eq. (2.38) indi-
cates, numerous operators with different dimensions
have the same twist and all such operators are associated
with the same degree of light-cone singularity.

As evident in the example above, the leading-twist
contributions in DIS are twist 2. In unpolarized DIS, the
higher-twist components, i.e., twist=4,6,..., are sup-
pressed by 1/0Q?,1/Q*%,..., respectively. Thus, in general,
a structure function should be expressed in the form
(Alekhin et al., 2004)

Fy(x,0% = F5"(x,0% + Hy(x,0%)/0% + O(1/10%),
(2.39)

where F£7 refers to the leading-twist part. As a practical
matter, the magnitudes of higher-twist terms are gener-
ally unknown and the estimates are therefore somewhat
controversial. Before one can claim discovery of higher-
twist components, it is essential that these be distin-
guished from target-mass corrections and Q?-evolution
effects.

Several analyses have shown that higher-twist coeffi-
cients can become quite large at high x and relatively
low Q?. An analysis (Virchaux and Milsztajn, 1992) of
BCDMS and SLAC data indicated that the twist-4 coef-
ficient is sizable for the proton and deuteron. Here, how-
ever, the inclusion of target-mass corrections reduced
the magnitude of the twist-4 coefficient. This finding was
supported in an analysis that included NNLO (Yang and
Bodek, 2000). It was found that the NNLO contribution
can partially compensate for a large higher-twist effect.
More recently, an analysis (Blumlein et al, 2007) of
world data indicated that the twist-4 coefficient is sizable
for NLO, NNLO, and N3LO for the proton and deu-
teron. While increasing the order of the QCD analysis of
the data reduces the twist-4 coefficient, the coefficient is
significant at high x. This is shown in Fig. 6, which plots
an empirically determined correction defined via

Fy(x,0%) = Oy [ Fy"™(x, Q)1 + Cpyylx, 0%/ 0%,
(2.40)

where Oy describes inclusion of target-mass correc-
tions of the twist-2 contributions to the structure func-
tion. At present, there exists no statistically significant
determination of the magnitude of the twist-6 coeffi-
cient.

In connection with the size of higher-twist contribu-
tions, it is relevant to consider their impact on Bloom-
Gilman duality (Bloom and Gilman, 1971). This is an
expectation that the nucleon structure function, when
measured in the region dominated by low-lying nucleon
resonances, should follow a global scaling curve that is
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FIG. 6. (Color online) Empirical nonsinglet higher-twist coef-
ficient, denoted Cy7, as a function of Bjorken x, for the proton
(left panel) and deuteron (right panel), as obtained when the
twist-2 contributions are treated at NLO, NNLO, and N3LO.
Adapted from Blumlein et al., 2007.

determined by high-energy data. It is important to note
that although the standard application of DGLAP evo-
lution to deep inelastic structure functions can appear to
be inconsistent with Bloom-Gilman duality at fixed W,
this apparent conflict is resolved if one takes into ac-
count the fact that the struck quark is far-off shell in the
x—1 domain (Lepage and Brodsky, 1980; Brodsky,
2005).

Underlying Bloom-Gilman duality is the assumption
of quark-hadron duality, namely, a belief that one ob-
tains equivalent descriptions of physical phenomena ir-
respective of whether one uses partonic or hadronic de-
grees of freedom (Shifman, 2000; Melnitchouk et al.,
2005). While this assumption is probably correct in prin-
ciple, in comparisons between computations that use
finite-order truncations, it can and is violated in practice.
The presence of large higher-twist contributions can
therefore entail an apparently strong violation of
Bloom-Gilman duality.

Experiments, particularly at the highest values of x,
might not be performed at sufficiently large momentum
transfer to avoid high-twist effects and target-mass cor-
rections. A pQCD treatment is truly valid only in the
limit that the mass of the hadron is negligible in com-
parison with the dominant scale Q. The target-mass
corrections are kinematic and owe to binding of partons
in the hadron. Nachtmann (1973) first pointed out that at
finite Q% and nonvanishing target mass, the scaling vari-
able should be the fraction ¢ of the nucleon’s light-front
momentum carried by the parton, viz.,

Ex,00) =2x/(1+ k), rk=\1+4>M*Q>.  (2.41)

Naturally, this Nachtmann variable reduces to Bjorken x
for M?/Q*—0.

It was subsequently shown (Georgi and Politzer, 1976)
that at leading order, if the quantity x>M?/Q? is reason-
ably small, then it is straightforward to apply corrections
for finite mass to the structure function. If the leading-
twist structure function is denoted by F*” and the target-
mass corrected structure function by F!™, then one has
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X M2x2 1
FM(x,0) = —F"(9 + f dx' Fi'(x')

22
2k Ok J,
M4 3 rl
L f dx"FET (e, (2.42)
(O
2 M3 (!
FM(x,0%) =5 F (9 + 6 4f dx'Fy"(x")
K Ok J;
4x4f1 i
+12 dx"Fy' (x"). (2.43)
Q4K5 x’ :

A concern with the Nachtmann or the Georgi-Politzer
approach is the so-called “threshold problem.” This
problem results from the fact that the maximum kine-
matic value of £ is less than unity, which means that the
corrected leading-twist structure function does not van-
ish at x=1.

Target-mass corrections have been extended to NLO
QCD (DeRdjula et al., 1977) and generalized to include
charge and neutral weak current deep inelastic scatter-
ing (Kretzer and Reno, 2004). De Rdujula et al. argued
that the threshold problem could be solved by consider-
ing higher-twist effects.

A recent interesting approach (Steffens and
Melnitchouk, 2006) to the threshold problem followed
the original Georgi-Politzer approach but with one criti-
cal difference. Namely, the upper limit of the integrals in
Eq. (2.42) becomes the upper limits of x” and x” that are
permitted by kinematics at x=1 rather than merely
unity. In terms of existing data, this solution does not
result in a large effect for Q*>>2 GeV? but can have a
significant effect below 1 GeV? where the underlying as-
sumption of factorization becomes questionable anyway.

In addition to target-mass corrections, there are also
effects from nonzero current-quark mass (Barbieri et al.,
1976). Such corrections will not be discussed herein be-
cause of our focus on high x, where heavy quarks have
little effect in nucleons and Goldstone bosons. These
effects, in addition to those arising from target-mass cor-
rections, are discussed in a recent review (Schienbein et
al., 2008). Furthermore, recent work (Accardi and Qiu,
2008) has pointed out that changing the upper limit of
the integrals in the Georgi-Politzer equations leads to an
abrupt cutoff at x=1 and proposed a “quark jet” mecha-
nism to give a more reasonable approach to the very
large x behavior.

F. The proton structure function

Measurements of structure functions at very high val-
ues of x are extremely challenging. The main problems
can be seen from Fig. 7. Here Q? is plotted from Eq.
(2.4) as a function of x. Typical evaluations of the parton
distribution functions require that W=3.5 GeV. Clearly,
the Q7 necessary to meet this demand is extremely high
and impractical, at present, for x=0.7.

The first DIS measurements, performed at SLAC,
were limited to a beam energy of 24.5 GeV. Although
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FIG. 7. Q? vs x for three values of W. Measurements at very
high x demand very high Q? to remain in the DIS region.

this beam energy limit is a serious problem for very high
x measurements, the SLAC experiments had good con-
trol of systematic errors. Relatively high luminosities
were possible, the incident electron energy was very well
known, and the spectrometer properties were relatively
well understood. A consistent reanalysis of all the early
SLAC experiments was performed by Whitlow et al.
(1992), and the result is shown in Fig. 8.

After the importance of the early SLAC experiments
was realized, the quest for additional data, particularly
at high Q?, led to muon scattering experiments at CERN
and FNAL. At CERN a series of experiments was per-
formed at muon energies between 90 and 280 GeV by
the NMC Collaboration (Amaudruz et al., 1992), be-
tween 120 and 280 GeV by the BCDMS Collaboration
(Benvenuti et al., 1990b), and at 280 GeV by the EMC
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FIG. 8. Proton structure function vs Bjorken x with W
=2.0 GeV. For ease of representation: the upper bands of data
were multiplied by a factor of 10 and correspond to the do-
main 25 < Q><40 GeV?; the next bands are scaled by a factor
of 3 and cover the domain 15< Q?<25 GeV?; the third-lowest
bands are unscaled and cover 7<Q?=<15 GeV?; and the low-
est bands are scaled by a factor of 1/5 and cover 2< Q?
<7 GeV2.
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FIG. 9. (Color online) The proton structure functions vs
Bjorken x with W=2 GeV. The dashed black curve represents
the CTEQG6L evaluation with Q?=10 GeV?2, while the solid
curve indicates the result obtained when target-mass correc-
tions are incorporated. From Malace et al., 2009.

collaboration (Aubert et al., 1987). In this case, the com-
bination of very high beam energies and relatively low
luminosities makes it difficult to obtain structure-
function data at very high x. The practical limit is about
x=0.75 as shown in Fig. 8. The FNAL E665 experiment
provides data at even lower x than the CERN experi-
ments since the beam energy was 470 GeV.

Data for various Q? ranges from the BCDMS (Ben-
venuti et al., 1990b), EMC (Aubert et al., 1983, 1987),
NMC (Amaudruz et al., 1992; Arneodo et al., 1997a), and
SLAC (Whitlow et al., 1990) experiments are plotted in
Fig. 8. The effect of the kinematic constraints on the
reach in x is evident throughout the relatively wide
range of values for Q%. The SLAC data persist out to the
highest values of x but only for relatively low values of
w.

If the condition on W is relaxed to W=2 GeV, then
data from SLAC exist up to x=0.85 as shown in Fig. 9.
Clearly, the CTEQ6L evaluation at the highest values of
x deviates from the data. However, if target-mass correc-
tions are taken into account, as shown by the dashed
curve in the figure, then good agreement is restored.
This illustrates that target-mass corrections are indis-
pensable in order to fully understand and extract parton
distributions at very high x.

G. The neutron structure function

Interest in the neutron structure function at very high
x has burgeoned during the past decade. The neutron
structure function or at least the ratio of the neutron
structure function to that of the proton is believed to be
one of the best methods to determine the d(x)/u(x) ra-
tio. A knowledge of this ratio in the valence region
would provide an important constraint on models for
the nucleon (Brodsky et al., 1995; Isgur, 1999). For ex-
ample, if one were to assume that a simple SU(6) flavor
symmetric model for the nucleon is valid, then the d/u
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ratio would just be 1/2 for the valence-quark distribu-
tions. In this model, the nucleon and A would be degen-
erate, so this is clearly not a correct description of the
nucleon. Other interesting limits occur, for example,
where the d quark in the proton is “sequestered” in a
pointlike scalar diquark. In this model, d/ul|,_;=0 and
F3/ F5|,_1=1/4. Furthermore, in a world where pQCD
could be applied naively and scattering at large x in-
volves only quarks with the same helicity as the target
hadron, then d/ul,_,=1/5 and F5/F5|,;=3/7=0.43.
(An extensive discussion of these issues is provided in
Sec. VI, where it is argued, e.g., that F5/F5|,_,;=0.36 and
only with reliable data at x=0.8 will one be empirically
able to determine the x— 1 behavior.)

The parton model is a good starting point for intro-
ducing the neutron structure function. Under the as-
sumption of isospin symmetry and recalling Egs. (2.27),
the neutron structure function is simply obtained from
Eq. (2.24) by the operation u «d, viz.,

LRI = 1) + 40 + e(x) + 200)]

1
+ §[u(x) +a(x) +s(x) +5(x)]. (2.44)
Neglecting the ¢ quarks, the expression for the neutron-
to-proton structure-function ratio is

Fi(x)  ulx)+ax) +4[d(x) + d(x)] + s(x) + 5(x)
B 4fu(x) + a(x)] + d(x) + d(x) +s(x) +5(x)
(2.45)

From this equation it is readily apparent that the ratios
are 1/4 when u quarks dominate and 4 when d quarks
dominate, and, if the sea dominates, the ratio ap-
proaches unity. Within the parton model, Eq. (2.45)
leads to the Nachtmann limit (Nachtmann, 1972),

F<P0)IB(x) <4. (2.46)

As interest has grown, a number of new methods for
measuring the F;/F ratio have been proposed. One ap-
proach (Fenker et al, 2003) is to tag very low-
momentum protons emerging from the deuteron when
deep inelastic scattering from the neutron is performed.
This technique minimizes off-shell effects since at very
low momentum the neutron is practically a spectator in
the deuteron. Another method (Afnan et al., 2000, 2003;
Bissey et al., 2001; Petratos et al., 2006) is to perform
deep inelastic scattering from *He and *H at very high x.
In forming the ratio of the scattering rates from these
two nuclei, the nuclear effects cancel to a high degree in
extracting the F5/F} ratio.

Two proposed methods avoid nuclear effects alto-
gether. Both a ratio of charge-current neutrino to
antineutrino scattering from the proton and parity-
violating deep inelastic electron scattering at high x from
the proton are sensitive to the d/u ratio. Nevertheless,
both of these methods are fraught with technical diffi-
culties, particularly at high x.
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FIG. 10. The ratio of the neutron-to-proton structure functions
as a function of x. The results of three extraction methods are
shown.

The primary problem with measuring the neutron
structure function is that there exists no practical free
neutron target. Typically, a deuteron target is employed
in experiments. The neutron structure function is then
extracted from a measurement of the proton and deu-
teron structure functions by employing a model for the
deuteron wave function. As an example, we consider the
covariant approach of Thomas and Melnitchouk (1998).
In this case, the proton and neutron structure functions
are convoluted with a nucleon density function in the
deuteron. The neutron is also off shell, so that a model
for the off-shell behavior is necessary. The expression
for the deuteron structure function is then given by

1 Mp/M . _

F3(x) = 52 f dy,PN/D(yl)Fizv(;,QZ + &MFD,
N Jx

(2.47)

where py,p(y’) is the probability of finding a nucleon of
momentum y’ in the deuteron and &°F% is the off-shell
correction. The extraction process is iterative. First the
off-shell effect is subtracted from the measured deu-
teron structure function. Then the proton structure func-
tion, convoluted as indicated by the first term in Eq.
(2.47), is subtracted from the remainder, leaving the con-
voluted neutron structure function. This remaining piece
is then deconvoluted to give the neutron structure func-
tion. The last three steps are then repeated until conver-
gence is achieved.

The results (Thomas and Melnitchouk, 1998) of this
procedure for the ratio of the neutron-to-proton struc-
ture functions are shown in Fig. 10. In this work a cova-
riant deuteron wave function and a consistent off-shell
correction were used (Melnitchouk et al., 1994). Another
application (Burov er al, 2004) of the covariant ap-
proach indicates that data for the deuteron structure
function at very high x are essential for constraining the
high x neutron structure function. Although the convo-
lution approach has been used by many as a step toward
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explaining the EMC effect, the convolution method has
no firm theoretical basis.

Two other extractions, also shown in Fig. 10, yield
different results at high x. The extraction, labeled
“Whitlow et al. (Paris)” (Whitlow et al., 1992), made use
of light-front kinematics with the null vector along
the incident-beam direction and an early deuteron wave
function. The extraction, labeled “Whitlow er al
(EMC)” (Whitlow et al., 1992), made a density-
dependent extrapolation of the EMC effect in heavy nu-
clei to that in the deuteron. There is significant contro-
versy (Yang and Bodek, 1999, 2000; Melnitchouk et al.,
2000) surrounding the density-dependent extrapolation
method.

A recent approach (Arrington et al.,, 2009) made use
of the light front, with null-plane dynamics and modern
deuteron wave functions. This framework, which can be
applied even when the constraints of DIS kinematics are
not met, greatly simplifies the convolution equation in
terms of the nucleon structure functions. The analysis
established that it is important to account properly for
the Q? dependence of the data and incorrect to use a
simple convolution formula to analyze data if those data
do not satisfy the DIS kinematic constraints. When the
CD-Bonn potential is used to determine the deuteron
wave function, the method of Arrington et al. (2009) pro-
duces a ratio similar to that labeled Whitlow et al. (Paris)
in Fig. 10, which was obtained using a light-front ap-
proach with the null vector aligned along the direction
of the incident electron beam (Frankfurt and Strikman,
1981). While this particular choice of null-vector orien-
tation is consistent with DIS kinematics, the very high x
SLAC data, included in the analysis, are not. They are
usually excluded when fitting PDFs.

H. The longitudinal structure function

Before the F, structure function can be extracted from
data, one must either know or measure the R structure
function. By combining Egs. (2.14)—(2.16), the expres-
sion for the cross section in terms of Fj(x,Q?% and
F,(x,Q?) is given by

do 2E"? F,(x,0% 0
EE .0 =42 | 720X ) (20
dar BEO =475 [ €08
2F 2
L 2He0) Lo f} . (2.48)
M 2

This cross section is often expressed in terms of the F,
and R structure functions in the following way:

do a’E"? Fy(x,0?%) 6
EE g =42 202) of
1045 )=d o T, %,

—-€
X{“ ¢ 1+R(x,Q2)}’ (2.49)

where
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-1
e=|1+2(1+ 1*Q*tan? g] (2.50)
and
n_ 0L F,(x,0?%) ( 2Mx) -
R(x,0%) = o= TeFi(x.00 1+ » 1. (2.51)

Here o; and o refer to the longitudinal and transverse

cross sections, respectively. Since the quarks are point-

like spin-% objects, the cross section for absorption of a

longitudinal photon is small in comparison with that for
a transverse photon. Furthermore, a vector-vector inter-
action preserves chirality, so the longitudinal cross sec-
tion will depend on violations of this chirality. Violations
of order mé/ Q? would be expected, where my, is the
struck quark’s current mass. Intrinsic transverse quark
momentum kt as well as higher orders in «, from the
gluon distribution can give rise to an increase in the lon-
gitudinal cross section. For example, the Bjorken-
Feynman model gives the result (Feynman, 1972) that

R=4(m2 + (k310 (2.52)

The QCD contribution to F; and, consequently, to R
of order « is given by (Reya, 1981; Altarelli, 1982)
1
o dy| 8
FHLQ%=Z%4~7{JH%Q%
T J, vy’ |3

+ 43()(1 - i)yG(y,Qz)] +O(d), (2.53)

where G is the gluon distribution function, and only four
flavors of quarks are considered in the second term. An
excellent extraction (Whitlow et al., 1990) of F, and R
was performed from a global analysis of the SLAC data.

It has long been believed that a tight constraint on the
gluon structure function can be built from good mea-
surements of F;. The best extractions for R in the va-
lence region are from the lower energy SLAC and JLab
data (Whitlow et al, 1990; Yang and Bodek, 2000;
Tvaskis et al., 2007). The best extractions of F; are from
HERA-DESY (Hadron Electron Ring Accelerator,
Deutsches Elektronen-Synchrotron) data but at lower x
than the subject of this review. Nevertheless, the de-
duced gluon distribution is very sensitive to the order of
a, used in the analysis (Martin et al., 2006).

1. The gluon structure function

Interest in the gluon structure function has grown
markedly during the past decade. Part of the interest
resides in the fact that gluons comprise more than 98%
of the rest mass of the nucleon as well as more than half
of its light-front momentum. This interesting aspect of
the role of glue in the nucleon can be seen from Fig. 11.
Here the mass of a light quark is plotted as a function of
the quark’s momentum. The “data” in the plot are re-
sults from lattice simulations, while the curves are from
Dyson Schwinger equation (DSE) calculations. The
curve labeled “chiral limit” is the DSE result obtained
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FIG. 11. (Color online) Dressed-quark mass function M(p):
curves—Dyson-Schwinger equation (DSE) results, obtained as
explained by Bhagwat er al. (2003) and Bhagwat and Tandy
(2006); data—numerical simulations of unquenched lattice-
QCD (Bowman et al., 2005). In the momentum dependence of
M(p), one observes the current quark of perturbative QCD
evolving into a constituent quark as its momentum becomes
smaller. The constituent-quark mass arises from a cloud of
low-momentum gluons attaching themselves to the current
quark. This is dynamical chiral-symmetry breaking (DCSB): an
essentially nonperturbative effect that generates a quark mass
from nothing, namely, it occurs even in the chiral limit.
Adapted from Bhagwat et al., 2007.

with the current-quark mass set to zero. Clearly, even if
the current-quark mass vanishes, the quark mass rises
rapidly to near 0.3 GeV at low quark momentum. This is
DCSB and a clear demonstration in QCD of the effect
on the quark mass produced by the presence of gluons
with strong self-interactions.

Sensitivity to the gluon structure function via lepton
beams can be produced by a careful measurement of
scaling violations, i.e., measurements of the longitudinal
structure function or the partial derivative of F,(x,Q?)
with respect to In Q2. This is particularly effective at low
values of x where this derivative is directly proportional
to the gluon distribution function at first order.

III. DISTRIBUTION FUNCTIONS FROM DRELL-YAN
INTERACTIONS

Informative reviews on the Drell-Yan process exist
(Kenyon, 1982; Reimer, 2007). In this section we empha-
size that the Drell-Yan interaction provides (i) the clean-
est access to the antiquark distributions in the valence
region in hadrons, (ii) a means to determine the quark
distributions in the proton at very high x, and (iii) the
most information on the parton distributions in mesons.
Naturally, in order to isolate the valence-quark distribu-
tions in the proton, it is imperative to measure the anti-
quark distributions.
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FIG. 12. Feynman diagram representing the Drell-Yan inter-
action.

A. The Drell-Yan interaction

The Drell-Yan process was devised (Drell and Yan,
1970a, 1971) to explain hadron-hadron collisions where
an antilepton-lepton pair is produced. For example, two
hadrons A and B collide and produce the lepton pair
rr,

A+B—-I'"+I+X. (3.1)
At relatively large values of momentum transfer, say

greater than a few GeV?, the underlying process is be-
lieved to be dominated by antiquark-quark annihilation,

(3.2)

The Feynman diagram for this underlying Drell-Yan
interaction is given in Fig. 12. Here two hadrons collide
and a timelike photon of mass M- is formed from the
annihilation of a quark in one of the hadrons with an
antiquark in the other. The photon then decays by emit-
ting an antilepton-lepton pair. In a typical experiment,
the lepton pair is often an antimuon-muon pair as a mat-
ter of technical convenience.

In this process the square of the four-momentum
transfer is given by the square of the dilepton mass,
Mz2+/—~ At leading order, the Drell-Yan cross section can
be determined in a straightforward manner to yield

qg+q—1r+1r.

do 4wa
dxbdx,

2 [‘Ibz(xb» )Qti(xn Qz)

9Ml+l— i

+ Gpilxp, Q%) q,i(x,, O], (3.3)
where qp,)i(x,(;) refers to the distribution function of
the quark of flavor i in the beam (b) or target (¢) hadron,
respectively. It has been shown (Altarelli et al., 1979)
that if the distribution functions have the same defini-
tion as those in deep inelastic scattering, namely, that if
one employs the DIS factorization scheme, then the
NLO part is calculable and becomes a multiplicative fac-
tor to the expression above, as discussed in Sec. I11.B.

B. QCD and higher-order corrections

The NLO QCD processes that contribute to Drell-
Yan scattering are shown in Fig. 13. These processes
lead to a modification of the Drell-Yan cross section by
introducing the so-called K factor,
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FIG. 13. Feynman graphs of NLO corrections to the Drell-Yan
process. Top row, Compton-like scattering in QCD, viz.,
gq— 7" (and also gg— 7", not shown explicitly). Middle row,
QCD radiative correction, viz., ¢g— v". Bottom diagram,
QCD vertex correction. Adapted from Reimer, 2007.

(NLO) = Kno———(LO).

34
dxbdxl 34

dxbdxt

With PDFs defined in the DIS factorization scheme, the
Knio factor is given by (Altarelli et al., 1979)

KNLO~1+2 (1+ 772) (3.5)

and assumes a value between 1.5 and 2. Consideration of
NNLO as well as NLO diagrams leads to a simple fac-
torization of the cross section and an approximate factor
of 2 for K. The factorization scheme dependence of the
K factor is described by van Neerven and Zijlstra (1992).
We note in addition that the K factor depends on kine-
matics, a fact shown by Wijesooriya et al. (2005) to be
important at very high x for pionic Drell-Yan studies.

C. High-x quark distribution functions

The Drell-Yan process presents a valuable method for
measuring parton distribution functions in hadrons at
very high x. For example, it can be used to probe the
quark distribution in the beam proton. To see how, con-
sider that if s and ¢ quarks are neglected and the beam-
target kinematics are chosen such that xp:=x,—x, is
large, then for proton+proton collisions Eq. (3.3) can be
rewritten (Webb, 2003) as
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FIG. 14. (Color online) Ratios of the measured Drell-Yan pp
(squares) and pd (triangles) cross sections to NLO calculations
based on the MRST 2001 PDF fit (Martin e al., 2002a), plotted
as a function of beam momentum fraction, here labeled xq,
with averaging over the target momentum fraction. The
shaded area between the solid lines represents the experimen-
tal uncertainty ranges (Martin et al., 2003) on 4u(x)+d(x) in the
MRST 2001 PDF fit. The data are from the FNAL E866 ex-
periment. Adapted from Webb, 2003 and Webb et al., 2003.

do 47Ta§K _
dxydx,  8ls [4145(x},, Q)i (x,, 0%
bYAt

+ dy(xp, 07)d,(x,,07)] (3.6)

because §,(x;) <qp(x,) and g,x,)<g,x,) for large x.
Now suppose that the target is a deuteron with a similar
kinematic setup, then Eq. (3.4) can be written (Webb,
2003) as

do 4ma’K
~ “—[4 ) +d 2
dxydx, 3ls [4up(xp, O7) + dp(xp, 07)]

X [it,(x, Qz) + (zt(xt’ Q2)]7

where, as usual herein, g(x) means the distribution of
flavor-g quarks in the proton, and one has assumed iso-
spin symmetry and neglected nuclear binding effects in
the weakly bound deuteron. It is thus apparent that this
kinematic setup produces Drell-Yan cross sections that
are primarily sensitive to the valence distributions in the
proton beam and the antiquark distributions at small x,
in the proton and deuteron targets.

Some results from analysis of the FNAL E866 Drell-
Yan data are reproduced in Fig. 14. In this figure the
E866 results for pp and pd collisions are divided by the
appropriate differential cross section computed using
the Martin-Roberts-Stirling-Thorne (MRST) 2001 PDFs
(Martin et al., 2002a). Analogous ratios plotted as a func-
tion of x, (Webb et al., 2003) indicate that the MRST
2001 PDFs provide a good description of the pp cross
section’s x, dependence on the complete x, domain and a
good description of the pd cross section for x,<0.15. In
this light, consider first the pp data, which hint that the
plotted ratio is smaller than one at x,=0.6. Given that
the u quark is responsible for roughly 80% of the cross
section, this observation can be interpreted as an indica-
tion that the MRST 2001 PDFs overestimate the pro-

(3.7)
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ton’s valence u-quark distribution. There is a strong sig-
nal from the pd cross section that the plotted ratio is less
than unity for x,=0.5. Given that this cross section is
proportional to 4u(x)+d(x) and the greater suppression,
one can argue that the PDFs overestimate the proton’s
valence d-quark distribution. A consideration of the im-
pact of this and other recent data on PDF fits is pre-
sented by Owens et al. (2007).

D. d/# ratio and the Gottfried sum rule

One of the most celebrated applications of the Drell-
Yan process is the measurement of the flavor depen-
dence of the antiquark sea in the proton. This was first
suggested more than 20 years ago (Bickerstaff et al.,
1984, 1986; Garvey, 1987; Ellis and Stirling, 1991) at
which time it was usually assumed that the light-quark
sea was flavor symmetric. Such experiments led subse-
quently to a demonstration that this is not true; namely,
the light-quark sea is flavor asymmetric.

One of the first indications that the light-quark sea
might be flavor asymmetric was the observation of the
violation of the Gottfried sum rule. The Gottfried sum
rule is defined by (Gottfried, 1967)

1
d
S = J IR0 - Fi) (3.8)

0

Using Egs. (2.25)—(2.27) and assuming isospin invari-
ance, S; becomes

—_

1 2" - 2
Se=5-3 f dx[d(x) —u(x)] = ——EI(;_L;-

- 3.9
33, 3 3.9)

If the sea is flavor symmetric, then the Gottfried sum
just evaluates to 1/3. Any other value is termed a “vio-
lation” of the sum rule.

The earliest hints of a possible violation of the sum
rule can be found in data from SLAC (Bodek et al.,
1973) and Fermilab (Ito et al., 1981). The NMC experi-
ment at CERN gave the result (Amaudruz et al., 1991;
Arneodo et al., 1994, 1997a),

S6=0.235+0.026, (3.10)

significantly different from 1/3. A more recent reevalu-
ation of the Gottfried sum, using a neural network pa-
rametrization of all available data on the nonsinglet
structure function F5°=F,—F (Benvenuti et al., 1989,
1990a; Arneodo et al, 1997b), yielded Sg
=0.244+0.045=7; ;=0.134%0.068 (Abbate and Forte,
2005), in agreement with the earlier analyses.

It was pointed out long ago that Pauli blocking would

give some enhancement of the ratio d/i (Field and
Feynman, 1977). This mechanism might have been suffi-
cient to explain the early SLAC data but Drell-Yan ex-
periments have since given far more information about
the magnitude of the effect. Pion cloud models also gen-
erate such an effect (Thomas, 1983).

A compilation (Peng, 2003) of values for Z;_;, which
characterizes the second term in Eq. (3.9), is given in
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TABLE 1. Values of Z;_;, which appears in the Gottfried sum
rule [Eq. (3.9)], compiled by Peng (2003). The original sources
are the following: NMC (DIS) (Amaudruz et al., 1991; Arne-
odo et al., 1994), HERMES (semi-inclusive DIS) (Ackerstaff et
al., 1998), and E866 (Drell-Yan) (Hawker ef al., 1998; Peng et
al., 1998; Towell et al., 2001). At NNLO, Z;_; is almost scale
independent for Q*>€[1,100] GeV?, as shown in Fig. 3 of Ab-
bate and Forte (2005).

Experiment Toa=[ édx[& (x)—i(x)]
NMC 0.147+0.039
HERMES 0.16+0.03

E866 0.118+0.011

Table I. The relative agreement is reasonable among
these determinations. The most accurate result quoted is
from the Drell-Yan experiment, FNAL E866, and the
comparison is meaningful because Z;_; is almost scale
independent for Q>€[1,100] GeV>.

The power of the Drell-Yan technique can be illus-
trated by making some simple assumptions. Consider
the yield per nucleon from a proton beam incident on a
target nucleus of atomic mass A, charge Z, and neutron
number N. Assuming that the yield Y,, from the pro-
cess factorizes into a simple sum of pp and prn interac-
tions, then

Yyu~ (Zoy, + Noy,)/A,

(3.11)
where o, and o, are the proton-proton and proton-
neutron Drell-Yan cross sections, respectively. If it is fur-
ther assumed that pp Drell-Yan interactions are domi-

nated by the target proton’s i,-quark distribution and

those for pn are dominated by the neutron’s
u,= ﬂp—quark distribution, then
Oyl Opn = ,1d,,. (3.12)

With Egs. (3.11) and (3.12), it is readily seen that the
ratio of yields for proton-nucleus to that of proton-
deuteron interactions becomes

Ypa o WN=2@=d) (3.13)
Ypa Aii + d)

where we now return to our convention of omitting the
subscript p when distribution functions in the proton are
meant. Clearly, if the flavor of the light-quark sea is sym-

metric; i.e., ii=d, then this ratio of yields becomes unity.
By considering the ratio of pp to pd Drell-Yan scatter-
ing, then the ratio becomes

Y, i-d

=]+ —

Ypa u+d

(3.14)

and the ratio d/ii becomes accessible experimentally
(Bickerstaff et al., 1984, 1986; Garvey, 1987). Of course,
the experiments are analyzed in a more sophisticated
manner without these simplifying assumptions.
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FIG. 15. (Color online) x dependence of d/ii. The solid
squares represent the measurements from FNAL ES866
(Hawker et al., 1998; Towell et al., 2001), while the triangle
indicates the CERN NAS51 measurement (Baldit ef al., 1994).
The shaded region indicates the uncertainty from the CTEQ6
evaluation of the world data.

The first Drell-Yan experiment that indicated that the
sea is not flavor symmetric was experiment NAS51 at
CERN (Baldit et al., 1994). This experiment found that

i/d=0.51+0.04+0.05 at x=0.18. Experiment E866 made
a more comprehensive study by extending the x range of
the experiment (Hawker et al., 1998; Towell et al., 2001).
These results are shown in Fig. 15.

As argued, e.g., by Steffens and Thomas (1997), Pauli
blocking is not sufficient to explain the large effect ob-
served in modern experiments. A number of theoretical
explanations have been advanced to explain this effect
in the context of models: pion cloud, chiral quark, chiral
soliton, and instanton. As real information about this
phenomenon is only available for x <0.3 and our focus is
x=0.4, we do not discuss it further herein but refer the
interested reader to Speth and Thomas (1997), Kumano
(1998), and Garvey and Peng (2001), and references
therein.

From Eq. (3.13) it should be apparent that the pro-
tonic Drell-Yan interaction with nuclei is an especially
valuable means to measure antiquark distributions in
nuclei. In fact, this method has been used (McGaughey
et al., 1992) and proposed (Reimer, 2007) to search for
an antiquark or, equivalently, a pion excess in nuclei. It
is believed (Friman et al., 1983; Thomas, 1983) that ob-
servation of the pion excess in nuclei would provide a
stringent confirmation of our understanding of conven-
tional nuclear theory, where the nuclear binding is pro-
duced by pion exchange. Thus far, no evidence for a
pion or antiquark excess in nuclei has been discovered
(McGaughey et al., 1992; Gaskell et al., 2001).
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FIG. 16. The & quark distribution function in the 7~. The data
are from a LO analysis of the FNAL E615 experiment (Con-
way et al., 1989). The curve reproduces a Dyson-Schwinger
equation calculation (Hecht er al, 2001), described in Sec.
VI.B.3, which is consistent with QCD expectations. The dis-
crepancy is disturbing and hitherto unresolved.

E. The pion structure function

The pion plays a key role in nucleon and nuclear
structure. It has been used not only to explain the long-
range nucleon-nucleon interaction, forming a basic part
of the standard model of nuclear physics (Pieper and
Wiringa, 2001; Wiringa, 2006), but also, e.g., to explain
the flavor asymmetry observed in the quark sea in the
nucleon. However, compared to that of other hadrons,
the pion mass is anomalously small. This owes to dy-
namical chiral-symmetry breaking and any veracious de-
scription of the pion must properly account for its dual
role as a quark-antiquark bound state and the Nambu-
Goldstone boson associated with DCSB (Maris et al.,
1998). It is this dichotomy and its consequences that
make an experimental and theoretical elucidation of
pion properties so essential to understanding the strong
interaction.

Experimental knowledge of the parton structure of
the pion arises primarily from pionic Drell-Yan scatter-
ing from nucleons in heavy nuclei (Badier et al., 1983;
Betev et al., 1985; Falciano et al., 1986; Conway, 1987;
Guanziroli et al., 1988; Conway et al., 1989; Heinrich et
al., 1991). A LO analysis of results from FNAL E615
(Conway et al., 1989) is shown in Fig. 16 but the shape of
the empirically extracted pion distribution function at
high x is contentious.

Indeed, theoretical descriptions disagree. The QCD
parton model (Ezawa, 1974; Farrar and Jackson, 1975),
which determines the pion distribution function from
the process shown in Fig. 17, indicates that at very high
x the distribution should behave as (1 —x)2. Perturbative
quantum chromodynamics (pQCD) (Brodsky et al,
1995; Ji et al., 2005) and continuum nonperturbative cal-
culations, such as DSE studies (Bloch et al., 1999, 2000;
Hecht et al., 1999, 2001; Maris and Roberts, 2003), which
express the momentum dependence of the dressed-
quark mass function that is evident in Fig. 11, indicate
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FIG. 17. (Color online) Feynman diagram of the parton pic-
ture of DIS on the pion, where one hard gluon exchanges prior
to absorption of the highly energetic photon, so that the struck
parton carries most of the momentum of the pion. Evaluation
of this diagram leads to a (1 -x)? dependence of the pion struc-
ture function at very high x (Ezawa, 1974; Farrar and Jackson,
1975).

that the high- x behavior should be (1-x)>*?, with an
anomalous dimension y>0.

In contrast, anti-de Sitter/QCD models using light-
front holography (Brodsky and de Teramond, 2008)
yield (1-x)“ with a=0, as do Nambu-Jona-Lasinio mod-
els when a translationally invariant regularization is used
(Davidson and Ruiz Arriola, 1995; Bentz et al., 1999;
Weigel et al., 1999). On the other hand, the Nambu-
Jona-Lasinio (NJL) models yield a=1 with a hard cutoff
(Shigetani et al, 1993), as do duality arguments
(Melnitchouk, 2003). Relativistic constituent-quark
models (Frederico and Miller, 1994; Szczepaniak et al.,
1994) give (1-x)* with 0<a<2 depending on the form
of model wave function, and instanton-based models
produce (1-x)* with 1<a<2 (Dorokhov and Tomio,
2000). A full discussion is presented in Sec. VI and, in
particular, in Sec. VL.B.3.

Given the importance of the shape of the pion distri-
bution function at high x as a test of QCD, a NLO analy-
sis of the FNAL E615 data was performed (Wijesooriya
et al., 2005). The results of this analysis are compared
with those of the original LO analysis in Fig. 18. The
solid curve is from the NLO analysis and in comparison
with the LO analysis (dashed curve) has some strength
shifted from the very high x region to the lower x region,
as one should expect from the gluon radiation involved
in the NLO processes shown in Fig. 13. Nevertheless,
the amount of additional depletion thus uncovered is
not yet sufficient to agree with the nonperturbative DSE
calculation, given by the black dotted curve in the figure,
or the pQCD prediction, which both give a very high-x
dependence of the form (1-x)>*”, where y>0.

This discrepancy remains a crucial mystery for a QCD
description of the lightest and subtlest hadron, and a
number of explanations have been advanced to explain
it. These range from simple experimental resolution-in-x
problems (Wijesooriya et al., 2005) to a higher-twist ef-
fect that, at fixed Q*(1 —x) with Q*— o, accentuates the
structure function associated with longitudinal photon
polarization (Berger and Brodsky, 1979) and theoretical
factorization issues (Kopeliovich et al, 2005) of Drell-
Yan at high x. Given this and some questions regarding
the Boer-Mulders effect, which are discussed in Sec.
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FIG. 18. (Color online) The pion distribution function. Dashed
curve, fit from the LO analysis of the FNAL E615 data; solid
curve, NLO fit to the E615 data (Wijesooriya et al., 2005); and
dotted curve, calculation of the distribution function using a
Dyson-Schwinger equation approach (Hecht er al, 2001),
which manifestly incorporates the momentum dependence of
the dressed-quark mass function that is shown in Fig. 11.

IILF, a new pionic Drell-Yan experiment with better
resolution is warranted.

F. Azimuthal asymmetries

The decay angular distribution of the lepton pair in
Drell-Yan interactions provides interesting additional in-
sight into the valence structure of the hadron. In the
simplest case, the decay angular distribution for a purely
transversely polarized Drell-Yan photon is given by

%(E> = i(1 +cos® 0), (3.15)

dQ) 16w

where the angles are defined in Fig. 19. For the more
general case where the Drell-Yan photon also has a lon-
gitudinal component, the decay angular distribution with
angles defined in Fig. 19 can be written as (Collins and
Soper, 1977)

hadron plane

lepton plane (cm)

FIG. 19. (Color online) The decay angular distribution of the
Drell-Yan process in the Collins-Soper frame.
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FIG. 20. The v or cos 2¢ component of the Drell-Yan angular
distributions obtained with a pion (NA10 and E615) or proton
(E866) beam plotted as a function of the transverse momen-
tum of the lepton pair. The dotted curve depicts a pQCD pre-
diction (Collins, 1979) [Eq. (3.17) and associated discussion].
The solid curve, which represents the Boer-Mulders effect
(Boer, 1999), was adjusted to describe the NA10 data [Eq.
(3.22) and associated discussion].

1(‘10) 3 L\ cos? 9+ sin20 ¢
—| === in
a\dQ 47N +3 €08 s o8

+ g sin® 6 cos 24. (3.16)

This expression is valid in all reference frames. Com-
monly used reference frames are the u channel, in which
the z axis is chosen antiparallel to the target beam direc-
tion; Gottfried and Jackson (1964) (¢ channel)—z axis is
chosen parallel to the beam nucleon; and Collins and
Soper (1977)—z axis bisects the angle between the z
axes in the other two frames. The quantities \, u, and v
in one frame can readily be related to their forms in
another (Conway et al., 1989).

For pionic Drell-Yan interactions, an interesting result
is that the parameter v in Eq. (3.16) was found (Badier et
al., 1983; Betev et al., 1985; Falciano et al., 1986; Conway,
1987; Guanziroli et al., 1988; Conway et al., 1989; Hein-
rich et al., 1991) to be large and dependent on the trans-
verse momentum of the lepton pair, as shown in Fig. 20.

In the late 1970s, two processes were investigated that
could produce an azimuthal asymmetry in Drell-Yan
processes. The first was a higher-twist effect (Berger and
Brodsky, 1979), while the second was a single gluon ra-
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diation process (Collins, 1979). In the former, the high-
twist diagrams considered gave rise to a cos ¢ depen-
dence in the Drell-Yan process. This is considered to be
important at very high x and relatively low Q. It is now
believed (Boer, 1999) that high-twist effects, such as
those explored by Brandenburg et al. (1994), cannot si-
multaneously describe the observed p and v in the
Drell-Yan experiments.

In connection with the latter process, diagrams (c) and
(d) in Fig. 13 were considered. The gluon radiation gives
rise to the transverse quark momentum. This simple
process produces a cos2¢ dependence in the angular
distribution of the Drell-Yan lepton pair. For example, it
was found that (Collins, 1979)

2
v= %, (3.17)
Q" +5Pr

where P7 is the total transverse momentum observed in
the process. It appears that this simple pQCD process
could explain a significant fraction of the large v ob-
served in the pionic Drell-Yan experiments, as shown by
the dotted curve in Fig. 20.

It is notable that for some time it was believed that if
soft gluon resummation is included (Chiappetta and Le
Bellac, 1986), then this process predicts very small val-
ues of v and restores in large part the naive Drell-Yan
cross section given by Eq. (3.15). However, it was re-
cently shown (Boer and Vogelsang, 2006) that the gluon
resummation in that work was not applied to both the
numerator and denominator in the cos 2¢ component of
the cross section. When the gluon resummation is ap-
plied correctly, then the effect partially cancels out, leav-
ing the simple pQCD process as dominant. This result is
verified by Berger et al. (2007). It remains mysterious
why the simple pQCD process overestimates v for the
proton Drell-Yan experiment, shown by the filled
squares in Fig. 20.

The mystery increases when the Lam-Tung relation is
considered. In the context of the parton model, a rela-
tionship exists between two of the decay angular distri-
bution parameters in Eq. (3.16) (Lam and Tung, 1980),

1-\=2w. (3.18)

The Lam-Tung relation is a consequence of the spin-%
nature of quarks. It is an analog of the Callan-Gross
relation in DIS [Eq. (2.22)] but is less sensitive to QCD
corrections. Nevertheless, a violation of the Lam-Tung
relation would suggest a rather significant nonperturba-
tive process. The pionic Drell-Yan data indicate a large
violation of the Lam-Tung relation, whereas the proton
data do not indicate a violation. A more recent treat-
ment (Berger et al, 2007) demonstrated that a re-
summed part of the helicity structure functions pre-
serves the Lam-Tung relation as a function of Pr to all
orders in aj.

The observed violation of the Lam-Tung relation led
to the suggestion of a new nonperturbative process
(Brandenburg et al., 1993). Therein, the violation of the
Lam-Tung relation was parametrized in terms of «
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1-N-2v=—4x, (3.19)

where an Ansatz was proposed for the Py dependence of
k. After that work, a new structure function was advo-
cated (Boer and Mulders, 1998), known now as the
Boer-Mulders structure function. The quantity A (x,k7)
represents the 7-odd, chiral-odd structure function that
describes quarks with the Bjorken x and intrinsic trans-

verse momentum k in one hadron, while ﬁf(}? ,P1) T€P-
resents the antiquarks in the second hadron. The cos 2¢
term arises from a double helicity flip process (Branden-
burg et al., 1993) and is generally expressed by the prod-
uct of two single chiral-odd, time-reveral odd (7-odd)
helicity flip amplitudes, one for each of the hadrons in-
volved in the process. Then the expression for v is pro-
portional to the product of the two T-odd structure func-
tions,

v o hi(x,kp) ® hi(¥,p7) (3.20)

[see also Bodwin et al. (1989), Boer et al. (2003), and
Collins and Qiu (2007)]. It is notable that a similar prod-
uct gives rise to the cos 2¢ asymmetry in semi-inclusive
DIS, where the antiquark distribution is replaced by the
Collins fragmentation function. A nonzero Boer-
Mulders function would signal a correlation between the
transverse spin and the transverse momentum of quarks
inside an unpolarized hadron.

We note that in contrast to the parton distribution
functions with whose properties we are primarily con-
cerned, the Boer-Mulders and Collins functions are ex-
amples of “dynamic” structure functions, which do not
have a probabilistic interpretation. As we have indicated
here, if nonzero, these functions can lead to a wide
range of effects that are not usually apparent in the par-
ton model (Brodsky, 2009).

An Ansatz similar to that from Brandenburg et al.
(1993) was used in later work (Boer, 1999), wherein it
was advocated that the parametrization of the Boer-
Mulders structure function should assume the same
form as that for the Collins fragmentation function (Col-
lins, 1993). This parametrization uses a quark mass scale
M., in a modified fermion propagator,

a MM
hitpr) == Cuy = exp(- amppfix),  (3:21)
T c

where M is the hadron mass, the parameter Cp is cho-
sen to be unity, ay=1 GeV~2, and f(x) is a parton distri-
bution function. In assuming that the Boer-Mulders
structure function and the Collins fragmentation func-
tion have exactly the same form, the result for v reduces
to

v="2k= Kk P2M?/(P3 + 4M?*)?. (3.22)

The solid curve in Fig. 20 results from Eq. (3.22) and
gives a reasonable description of the NA10 (pion) data.
However, to be consistent with these data, the quark
mass-scale parameter must be unnaturally large
[~2.3 GeV in Boer (1999)] in comparison with the
chiral-symmetry-breaking scale, typically 0.3 GeV, as
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evident in Fig. 11. There is no sound basis for this and
so, clearly, an improved theoretical description of this
structure function is necessary. In order to accept this
simple model as the explanation for the large asymmetry
in pionic Drell-Yan data, one would also require an un-
derstanding of how it may correctly be combined with
the apparently large pQCD component identified by
Collins (1979).

The Boer-Mulders asymmetry was found (Zhu et al.,
2007) to be extremely small in the proton Drell-Yan data
of FNAL E866 shown in Fig. 20. This small asymmetry
is not understood, but it might be our first indication
that the Boer-Mulders structure function is small for sea
quarks and the pQCD part is suppressed. The pionic
Drell-Yan data involve valence quarks in both the pion
and the nucleon target, while these proton Drell-Yan
data were taken with kinematics that focused attention
mainly on the valence domain in the beam proton and
the sea region in the target. An interesting test of this
idea would be a Drell-Yan experiment with an antipro-
ton beam and a proton target where the kinematics were
chosen such that the annihilating quarks could both be
valence quarks. Experiments of this type are planned for
the Facility for Antiproton and Ion Research (FAIR) at
Darmstadt. New studies of the pionic Drell-Yan data
will be initiated in the near future in the Common Muon
Proton Apparatus for Structure and Spectroscopy
(COMPASS) experiment at CERN.

A new suggestion (Lu et al., 2006, 2007) is to make use
of the cos 2¢ dependence in unpolarized Drell-Yan scat-
tering to measure the flavor dependence of the Boer-
Mulders structure function for both quarks and anti-
quarks. In order to measure the quark (antiquark)
distribution, a pion (proton) beam on both hydrogen and
deuteron targets is proposed to perform the flavor sepa-
ration.

The Boer-Mulders asymmetry can also be measured
in unpolarized semi-inclusive DIS (SIDIS). The general
expression for this cross section (Ahmed and Gehr-
mann, 1999), written to emphasize the azimuthal depen-
dence, is given by

do @ (A + B cos ¢+ Ccos2d)
= + COS + COS
dxdQ*dzdPrd¢ 20°z ’

(3.23)

where z is the fraction of the energy transfer imparted to
the produced hadron. In this case, the Boer-Mulders
structure function also gives rise to an azimuthal asym-
metry cos 2¢. In fact, the parameter C in Eq. (3.23) has
a term that is proportional to the product of the Boer-
Mulders structure function and the Collins fragmenta-
tion function.

This asymmetry must, however, be disentangled from
the Cahn effect (Cahn, 1978, 1989), which also gives rise
to cos ¢ and cos 2¢ dependence. The Cahn effect can
arise from the transverse momentum of the quark in a
manner similar to that for R given by Eq. (2.52). At
relatively large values of Pr, say Pr=1 GeV/c, the pa-
rameters B and C can also arise from gluon radiation
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effects (Georgi and Politzer, 1978). The azimuthal asym-
metries arising from these effects have been very well
established in SIDIS from the CERN EMC experiment
(Arneodo et al., 1987), FNAL E665 (Adams et al., 1993),
and HERA (Derrick et al., 1996). At Jefferson Labora-
tory the azimuthal asymmetries were found (Mkrtchyan
et al., 2008) to be small and consistent with the Cahn and
Boer-Mulders effects at very low values of P;. Future
results from HERMES and COMPASS and an upgraded
JLab facility (Avakian et al,, 2006) will probe a more
comprehensive kinematic space, so as to pin down these
effects in the valence region and provide new informa-
tion about the Boer-Mulders asymmetry.

Given the importance of DCSB in QCD, it is also
worth mentioning in connection with SIDIS that a
leading-twist mechanism within QCD has been identi-
fied which can generate a transverse spin asymmetry
that directly probes partonic structure associated with
chiral-symmetry breaking (Brodsky et al., 2002a). This is
the so-called “Sivers asymmetry” (Sivers, 1990, 1991). In
hadron-induced hard processes, e.g., Drell-Yan, this
asymmetry exists and is reversed in sign and thereby
violates naive universality of parton densities (Brodsky
et al., 2002b; Collins, 2002). Indeed, in the Drell-Yan
process, even when both the beam and target are unpo-
larized, the annihilating quark and antiquark have a
transverse-momentum-dependent transversity. Exten-
sive discussions of distributions associated with quark
spin asymmetries are presented by Barone et al. (2002)
and D’Alesio and Murgia (2008).

We close this section by reiterating that antiproton-
proton Drell-Yan interactions, of the type planned for
FAIR, are a particularly powerful method for isolating
the Boer-Mulders structure function. In this case, the
cos 2¢ term is again given by Eq. (3.20), where now the
process involves annihilation of the quarks in the va-
lence region of the proton with the valence antiquarks in
the antiproton. Similarly, the Collins fragmentation

function can be determined from e*e™ — hh, where h and

h refer to the outgoing hadron and antihadron. Work
(Ogawa et al., 2007) has been performed at Belle in this
regard. A recent review (D’Alesio and Murgia, 2008) of
azimuthal asymmetries and single spin asymmetries in
hard scattering processes covers these topics in more de-
tail.

G. The kaon distribution functions

The valence structure of the kaon is comprised of a
light u or d quark or antiquark and a strange quark or
antiquark. If our understanding of meson structure is
correct, then the large difference between the current
masses of the s quark and the u and d quarks should
give rise to some interesting effects in the kaon structure
function. For example, owing to its larger mass, the s
quark should carry more of the charged kaon’s momen-
tum than the u quark. Then the u, quark distribution in
the kaon should be weighted to lower values in x than
that in the pion. A Nambu—Jona-Lasinio model calcula-
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FIG. 21. (Color online) Ratio of kaonic to pionic Drell-Yan
cross sections, which is usually interpreted as the ratio of the i
quark distribution function in the K~ to that in the #~. Data
from Badier et al. (1980), which are obtained from a sample of
dimuon events with invariant mass 4.1<M <8.5 GeV, and
solid curve from Shigetani et al. (1993), an NJL-model result
evolved from Qy=0.5 to 4.5 GeV (see also Fig. 42 and associ-
ated discussion).

tion (Shigetani er al., 1993) exhibits this behavior, as
shown in Fig. 21. A modern DSE prediction, discussed
in Sec. VI.B.3 and shown in Fig. 42, confirms this trend
and provides an improved understanding of its origin.

Experimentally, a Drell-Yan measurement (Badier et
al., 1980) of the ratio of K~ to 7~ is consistent with unity
over most of the x region, with a suggestion that the
ratio is dropping at high x. However, the data are not of
sufficient quality to test and verify our understanding of
pion and kaon structure. To explain, we note that one
might claim from the data in Fig. 21 that for x > 0.7 there
is a deviation from uvK(x)zu;T(x) at the 3.8¢ level. How-
ever, following Badier ef al (1980), which relied on
simple models for motivation, we observe that the entire
data set is fitted by (see Fig. 42)

Ri--(x) =1.1(1 — x)22, (3.24)

with x?/8=0.45, and this drops to just x*/3=0.032 for
data at x>0.7. Such values are unreasonably small.
Hence, it is essential to make a high accuracy measure-
ment of the structure function of the kaon at x>0.6 be-
fore the behavior in Fig. 21 can be viewed as anything
more than a hint.

IV. FUTURE EXPERIMENTS AT JLab, EIC, FNAL, CERN,
J-PARC, AND FAIR

The 12 GeV upgrade at JLab permits a new opportu-
nity to study structure functions at extremely high x. Al-
though the greater energy that will be available at JLab
will not be sufficient to avoid target-mass corrections for
the nucleon at the higher values of x, it does present the
prospect of obtaining precise data on the proton and
neutron structure functions. It might also represent a
new opportunity to study the pion structure function,
although assumptions concerning virtual pions would
have to be invoked (Wijesooriya et al., 2001). This is
because, in determining meson structure functions from
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FIG. 22. Feynman diagram for a possible DIS interaction with
a virtual pion in the proton.

deep inelastic scattering, it is necessary to consider scat-
tering from virtual mesons, as shown in Fig. 22.

An electron-ion collider (EIC) is aimed at polarization
studies of the nucleon structure function at lower values
of x. Nevertheless, it will permit access to the virtual
pion and kaon structure function through measurements
of the forward nucleon structure functions (Holt and
Reimer, 2001). For example, the scattering process
shown in Fig. 22 can be simulated using the RAPGAP
Monte Carlo program (Jung, 1995). These processes in-
clude DIS from an exchanged pion or pomeron (Holt-
mann et al., 1996; D’Alesio and Pirner, 2000). A com-
parison of results from RAPGAP with HERA data shows
reasonable agreement for fast outgoing neutrons (Adloff
et al., 1999).

The expected accuracy of a possible DIS experiment
from a virtual pion was estimated using events in which
a “spectator” neutron was identified (Holt and Reimer,
2001). In general, the neutron is scattered less than
50 mrad from the nominal proton beam axis. Events
were cut on Q?>>1 GeV?. For a 5 GeV electron beam
on a 25 GeV proton beam, the expected errors are
shown in Fig. 23. A modest luminosity of 10*?> cm™2 s7!
was assumed for a run lasting 10° s. Such an experiment
should be feasible because a similar experiment was
conducted at HERA (Chekanov et al., 2007). This ex-
periment gave the interesting result that the shape of the
sea distribution for the virtual pion is the same as that
for the proton.

The K* structure function can be measured by consid-
ering deep inelastic scattering from the kaon cloud sur-
rounding a proton. The basic Feynman diagram would
be the same as in Fig. 22, with the pion replaced by a
kaon and the neutron replaced by a A. The probability

0.85 coccben b ben b o b L
0 01 02 03 04 05 06 07 08 09 1

X1[
FIG. 23. The expected statistical error for a future experiment
to measure the 7" structure function at an electron-ion col-
lider. Adapted from Holt and Reimer (2001).
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FIG. 24. (Color online) (Color online) The absolute Drell-Yan
cross section is proportional to 4u(x)+d(x) in the beam proton.
The data are from the FNAL E866 experiment. The solid
circles are projected data from experiment E906 at FNAL.
Adapted from Webb, 2003, Webb et al., 2003, and Reimer et
al., 2006.

for scattering from the K* cloud surrounding the proton
should be comparable to that for the =" because the
KNA coupling constant is comparable to that of the
7NN vertex. In fact, one would only expect about a fac-
tor of 2 reduction in the vertex function for the kaon
compared to the pion.

The difficulty with this process is in the detection of
the A. The A decays predominantly (64%) to a proton
and a 7. Thus, a special forward proton spectrometer as
well as a forward pion spectrometer would be necessary.
This should be feasible since the ZEUS and H1 experi-
ments at HERA have already successfully employed for-
ward proton spectrometers.

It is also likely that an EIC will permit measurements
of the F5/F5 ratio at extremely high x. The technique
should be analogous to the method that would be used
for the pion and kaon structure function, with a deu-
teron target beam in this case. The scattered electron
would be detected in coincidence with either a forward-
going spectator proton or neutron, depending on
whether the DIS occurred on a neutron or proton, re-
spectively. In this case, a 5 GeV electron beam on a
25 GeV deuteron beam at a relatively modest luminos-
ity should be sufficient.

Reliable results at extremely high x are also expected
from forthcoming Drell-Yan measurements. For ex-
ample, the solid circles in Fig. 24 indicate the error limits
expected for the proposed Drell-Yan experiment at
FNAL (E906) (Reimer et al., 2006). The assumptions
that went into this simulation were a 120 GeV proton
beam from the FNAL main injector and a total inte-
grated luminosity of 5X 10°* cm™.

Finally, the Japanese Proton Accelerator Research
Center (J-PARC) facility, currently under construction
at Tokai, Japan, could make polarized Drell-Yan studies
possible. Serious consideration is being given to experi-
ments aimed at measuring parton distribution functions
in mesons. For example, pionic Drell-Yan experiments
are planned for the COMPASS II experiment at CERN.
In addition, FAIR, under construction at GSI (Gesell-
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schaft fir Schwerionenforschung) in Darmstadt, would
make it possible to directly measure the Drell-Yan pro-
cess from high-x antiquarks in the antiproton annihilat-
ing with quarks in the proton.

V. PRESENT-DAY PARAMETRIZATIONS OF THE PDFs

Excellent reviews of the parametrization of distribu-
tion functions exist. In fact, a good starting point for
most of the distribution functions can be found at the
Durham website.® At this website, one can access com-
pilations of data, codes, and grids associated with the
following distribution functions: MRST/MSTW—Sec.
V.A; CTEQ—Sec. V.B; GRV/GJR—Sec. V.C; and
ALEKHIN—Sec. V.D, as well as an online PDF calcu-
lator. Here we consider primarily the CTEQ, the MRST,
and the GRV parametrizations, emphasizing the differ-
ences between them. Another very useful website is that
of CTEQ.* Here the CTEQ QCD handbook (Sterman et
al., 1995) can readily be accessed. The recent status of
the MRST/MSTW PDFs can be found in Thorne et al.
(2009), wherein the MSTW2008 distribution functions
(Martin et al., 2009) are recommended.

The primary source of variations between the param-
etrizations are the different

e Data sets used in the fits.
e Selections of data within the data sets.

e pQCD choices—e.g., evolution order, factorization
scheme, renormalization scale, «.

e Parametric forms for the PDF.
e Theoretical assumptions about the x —1 behavior.

Although there are also distinct treatments of heavy
flavors, assumptions of sea flavor asymmetry, and x—0
behavior, these do not have a large impact on the va-
lence region.

Most parametrizations begin with valencelike input,
which means that at some infrared scale Qy=1 GeV all
distribution functions are represented as

xf(x,0F) ~ x(1 - x)#, (5.1)

where ;>0 and ;>0 are fit parameters, so that even
those of the sea and glue distributions are nonzero but
finite at the infrared boundary. Then, typically, the dis-
tribution functions are evolved to higher scales, com-
mensurate with experiment, and the parameters fitted to
obtain agreement with data. Some detailed starting dis-
tributions for the various parametrizations are given in
the identified sections below.

A. MRST and MSTW

The data sets included in the Martin-Roberts-Stirling-
Thorne (MRST 2002) (Martin et al., 2002a, 2003) param-

3http://durpdg.dur.ac.uk/HEPDATA/PDF
4http://www.phys.psu.edu/~cteq/
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TABLE II. For illustration, parameters characterizing the MRST 2001 NLO parton distribution

functions at Qj=1 GeV?, defined in Eq. (5.2).

Parton A o B y 1) n
dy(x, Q%) 0.040 0.27 3.88 52.73 0.5 30.65
u,(x, Q%) 0.158 0.25 333 5.61 0.5 55.49

etrization are the following: H1; ZEUS, both neutral
current and charge-current data; BCDMS; SLAC;
FNAL E665; CCFR; Drell-Yan data (FNAL E605,
E772, and E866); and FNAL CDF and DO data. The
MRST parametrization has a starting scale of Q}
=1 GeV? and accepts data down to Q*=2 GeV?. Thus,
the SLAC data have an influence at large values of x.

A parametrization of the parton distribution functions
is given by

xf(x,0%) = Agpx*(1 = x)P(1 + yx°+ 7). (5.2)

The parameters at the starting scale are given in Table II
for the MRST 2001 parametrization, a NLO fit to the
data.

The chief difference between the MRST 2003 set
(Martin et al., 2004b) and MRST 2002 is the exclusion of
data below 0?=10 GeV? and below x=0.005, whereas,
the MRST 2004 analysis (Martin et al., 2004) included
new HERA data at moderate values of x and high Q.
The MRST 2004 NNLO set was the first to use the full
NNLO splitting functions. The newer MSTW parametri-
zation (Watt et al., 2008; Martin et al., 2009) represents
an update of MRST. This update has a number of new
theoretical features aimed at the NNLO parametriza-
tion, e.g., NNLO corrections to the Drell-Yan data. This
parametrization also includes NuTeV and Chorus data,
the CDFII data, HERA inclusive jet data, and direct
high-x data on the F; structure function. The most in-
teresting feature of these updates is apparent in the va-
lence region of Fig. 25. The NLO MSTW evaluation

1000 T3
0.500F Q=10 GeV? E
L seee. dOMux) ]
=L
% 0100 —— CTEQ6.5M N .
3 E 3
§ 0.050 ----- MRST2002NLO 1
2 [ -~  GRVI998NLM T
<
o) - -
£ ooiok ALEKHIN2002NLO i
0.005F ——  MSTW2008NLO . 4
\
PR R T HR U S EU U BN
0.0015 0.1 02 03 04 05 06 0.7 0.8

FIG. 25. Five parton distribution evaluations at NLO in the
MS factorization scheme at Q?=10 GeV? in the valence re-
gion. There are three families of curves: the d(x)/u(x) ratios,
the xu(x) distributions, and the xd(x) distributions.
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gives a much smaller xd(x) distribution at very high x
than the previous work. Nevertheless, it is apparent in
the differences between the parametrizations at large x
that the d quark distribution is poorly constrained above
x=0.6. This further emphasizes the need for new data in
the very high x region.

B. CTEQ parametrization

The most recent parametrizations from the Coordi-
nated Theoretical-Experimental Project on QCD
(CTEQ) is the CTEQ6 series (Pumplin et al., 2001, 2002,
2007; Stump et al., 2003; Lai et al., 2007; Nadolsky et al.,
2008). The CTEQ Collaboration omits data for Q2
<4 GeV?. In particular, CTEQ6 omits SLAC data as
well as some high-Q? H1 data. CTEQ uses 10% system-
atic errors in quadrature with the statistical errors for
the Drell-Yan data in comparison with 5% systematic
errors assumed by MRST 2002. CTEQ uses a starting
scale of Q3=1.69 GeV2.

The functional form of the CTEQ6 parametrization of
the distribution functions is given by

xf(x,Q%) = Apx1(1 — x)22e43%(1 + eA4x)4s. (5.3)

The parameters at the starting scale are given in Table
III for the CTEQ6M parametrization, a NLO fit to the
data.

C. GRV/GJR distribution functions

The Gluck-Reya-Vogt (GRV) parton distribution
functions were developed in the 1990s (Gliick et al.,
1992a, 1993, 1995, 1998). They are dynamical distribu-
tions, which are generated radiatively from valencelike
inputs at a low resolution scale. The latest of this series
makes use of the 1994-1995 HERA data for Q2
=2 GeV? as well as the SLAC, BCDMS, NMC, and
E665 data with Q>=4 GeV? and the simply extracted
ratios F;/F} from the NMC, BCDMS, and E665 experi-
ments. This analysis takes into account the Drell-Yan
data and the u,/d, ratios extracted from the CERN
CDHSW and WAZ21 neutrino data.

The GRV parton distribution functions are param-
etrized as

xfx,02) = Apx*(1 - x)P(1 + S\x + 7). (5.4)

In Table IV we report the parameters at the starting
scale for the GRV98 LO parametrization, a leading-
order fit to the data, and the parameters at the starting
scale for the GRV98 NLO parametrization, a next-to-
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TABLE III. Parameters at Q3:1.69 GeV? for the CTEQ6M parton distribution functions, defined in

Eq. (5.3).

Parton A() Al A2 A3 A4 A5
dy(x, Q%) 1.4473 0.6160 4.9670 —0.8408 0.4031 3.0000
u,(x, Q%) 1.7199 0.5526 2.9009 -2.3502 1.6123 1.5917
glx, Q(z)) 30.4571 0.5100 2.3823 4.3945 2.3550 —3.0000
(@+d)(x, 02) 00616 02990 77170 —-0.5283 47539 0.6137
s(x, Q(ZJ) =5(x, Q%) 0.0123 —-0.2990 7.7170 —-0.5283 4.7539 0.6137

leading-order fit to the data in the MS scheme. It is in-
teresting that the value of B for u, and d,, systematically
increases in going from LO to NLO. This is expected
and consistent with the effect of gluon radiation reduc-
ing the hardness of the parton distribution.

These distributions are characterized by a relatively
low starting scale for evolution: LO, Q,=0.5 GeV, and
NLO, Qy=0.63 GeV. One might question whether
therefrom it is valid to employ pQCD evolution equa-
tions. In this connection, we observe that it is the com-
bination «(Q,)/[27] which appears in the evolution
equations. At leading order, «a(Qy=0.5 GeV)/[27]
~(.17 and hence {a(Q,)/[27]}*<0.03. Therefore both
the procedure and a physical interpretation of the distri-
butions at this scale might be meaningful if higher-twist
and essentially nonperturbative effects are not too im-
portant. At present one cannot answer whether the lat-
ter is true. Notwithstanding this, the procedure alone
can be useful as a fitting and correlating tool.

A more recent analysis (Gliick et al., 2008) extends the
GRVI8 analysis. The distribution functions are gener-
ated from a radiated valencelike positive input with Q
<1 GeV, where valencelike refers to Eq. (5.4). With
these constraints, the predictions for F; remain positive
throughout the accessible kinematic region. Constrain-
ing the starting distribution to be valencelike leads to
smaller quoted uncertainties in the very low-x region

than those analyses without this constraint.

D. Distributions in relief

A comparison of five modern parton distributions on
the valence domain at Q?>=10 GeV? is shown in Fig. 25.
All five evaluations are in remarkably good agreement
for the xu(x) distribution. Despite the large uncertainty
in the d/u ratio discussed in Sec. II.G, three of the dis-
tributions (MRST 2002 NLO, CTEQ6.5M, and GRV98)
are in remarkably good agreement for the d/u ratio. The
newest evaluations, MSTW 2008 (Martin et al., 2009),
differ here largely because of a more flexible parametri-
zation of the d quark distribution, and the inclusion of
new data from FNAL on the lepton charge asymmetry
from W decays and the Z rapidity distribution.

The ALEKHIN 2002 parametrization (Alekhin, 2003)
is a somewhat different case. This parametrization is
based on the SLAC, BCDMS, NMC, and HERA data
existing at the time. The cuts on the data included 2.5
< (0?%<300 GeV? and x<0.75. The model function was
parametrized for Q%:9 GeV?, much higher than most
other forms. The cuts in Q? and x give this parametriza-
tion more emphasis on the high-x SLAC data than
CTEQ or MRST. This could possibly explain the differ-
ences in the high-x d-quark distribution. Later

TABLE IV. Upper five rows—Parameters for the GRV98 LO parton distribution functions at Q3

=0.26 GeV?, defined in Eq. (5.4), where A=d-u and xs(x,Q(z)):xi(x,Q%). Lower five rows—
Parameters for the GRV98 NLO parton distribution functions at Q%:O.4O GeV2.

Parton Ay a B ) 7

dy(x,0%) 0.761 1.48 3.62 -18 95
u,(x,0%) 1.239 0.48 2.72 -1.8 9.5
xA(x,07) 0.23 0.48 113 -12.0 50.9
x(@+d)(x,0?) 1.52 0.15 9.1 -3.6 7.8
xg(x,0%) 17.47 1.6 3.8 — —

dy(x,0%) 0.394 1.43 4.09 — 182
u,(x,0%) 0.632 0.43 3.09 — 182
xA(x,07) 0.20 0.43 12.4 -133 60.0
x(i@+d)(x, Q(Z)) 1.24 0.20 8.5 -23 5.7
xg(x,07) 20.80 1.6 4.1 — —
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ALEKHIN parametrizations include Drell-Yan data
(Alekhin et al., 2006) as well as even lower momentum-
transfer data (Alekhin et al., 2008). However, the differ-
ences between these updated PDFs and the ALEKHIN
2002 distributions do not exceed one standard deviation.

Notwithstanding differences between the groups’
PDFs, it is evident from the figure and the tables that all
fits are consistent with

~1

d(x)/u(x)x~ 0. (5.5)

However, this empirical statement has large uncertain-
ties, some of which are discussed by Owens et al. (2007).
It reflects primarily upon the fact that u quarks domi-
nate proton cross sections and hence it is difficult to
tightly constrain the proton’s d-quark distribution.

MRS (Sutton et al., 1992) and GRV (Gliick et al.,
1992b, 1999) also produced analyses of the parton distri-
bution function in the pion. The pion distribution func-
tions were extracted from Drell-Yan and prompt photon
data. As discussed in Sec. III.LE, a more recent NLO
reanalysis of the FNAL E615 pionic Drell-Yan data
(Wijesooriya et al., 2005) indicated that there was more
curvature in the pion distribution at very large values of
x than given by either of these fits. As shown in Fig. 41,
this result strengthens the disagreement between the
data and contact-interaction models but does not pro-
duce as much curvature as expected from either pQCD
(Ezawa, 1974; Farrar and Jackson, 1975) or nonpertur-
bative DSE calculations (Hecht et al., 2001). This dis-
crepancy persists to this day and is one of the outstand-
ing problems in understanding the application of QCD
to real-world data. We therefore discuss it at length in
Sec. VL.

E. Neural network parton distribution functions

In recent years another approach to the parametriza-
tion of parton distribution functions has emerged,
namely, the neural network method (NNPDF) (Ball et
al., 2009). In this approach, instead of using predeter-
mined functional forms to parametrize the PDFs, such
as Eq. (5.2), which might introduce unanticipated preju-
dices, flexible neural networks are used as unbiased in-
terpolants. In addition, a Monte Carlo method for error
propagation is used to avoid Gaussian assumptions. This
method, which aims to avoid bias, could give significant
differences on the large-x domain, of interest herein,
whereupon mysteries have become apparent. In particu-
lar, the determination of pion NNPDFs would be wel-
come. The first global parton distribution determination
based on neural networks (NNPDF 2.0) and a descrip-
tion of the approach are given by Ball et al. (2010). This
latest work includes both DIS and hadron data, and uses
NLO QCD consistently throughout.
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VI. THEORETICAL INTERPRETATION OF THE
DISTRIBUTION FUNCTIONS

A. Evolving insight from models

We noted at the outset that while parton distribution
functions are basic elements of factorized perturbative
QCD, they are essentially nonperturbative; viz., they can
only be calculated using a nonperturbative framework.
Their calculation is a problem that has been with us for
more than 30 years [e.g., Politzer (1974)]. The interim
has seen the proposal and elucidation of numerous mod-
els for the phenomena of low-energy QCD, many of
which have been employed to estimate the valence-
quark distribution functions.

1. MIT bag model

Soon after it had been proposed, the MIT bag model
(Chodos, Jaffe, Johnson, and Thorn, 1974; Chodos,
Jaffe, Johnson, Thorn, and Weisskopf, 1974) was being
used to calculate structure functions (Jaffe, 1975). It is
still being used to make estimates, now of generalized
parton distribution functions [Pasquini et al. (2005) and
Scopetta (2005)].

The basic difficulties with this approach were noted at
the outset. The bag is treated as a static cavity, namely, a
spherical chamber with fixed radius R,. Among other
things, this places a lower bound on the domain of x for
which distribution functions can be calculated, i.e., x
=1/(2MR,) ~0.1, where M is the nucleon’s mass. More-
over, the bag boundary cannot realistically be static. It
should respond to the action of currents on the quarks it
contains and that would affect the form of the distribu-
tion functions. The target is treated as being at rest but
the framework is not Poincaré covariant and hence mo-
mentum is not conserved through the intermediate
Compton scattering state. This entails that the calcu-
lated structure functions do not possess the correct sup-
port; e.g., they do not vanish for x>1. In addition, in an
independent-particle picture arising from a spin-flavor
symmetric Hamiltonian the ratio in Eq. (2.45) is particu-
larly simple, viz.,

P _2

Vx: =
B 3

{SU(6) symmetric}, (6.1)

because the pointwise behavior of the distributions is
the same for both u and d quarks. This prediction con-
flicts with data (Fig. 10). Moreover, while the momentum
sum rule is satisfied, which is achieved with all the tar-
get’s momentum being carried by the quarks, experi-
mentally, the quarks’ momentum fraction should only be
~50%, i.e., (x)~3.

From a modern perspective, the last of these out-
comes is not seen as a critical impediment. The distribu-
tion functions are known to be scale dependent in QCD
and, in principle, once determined at a particular scale,
QCD predicts their pointwise form at any and all other
scales. It should nonetheless be noted that, owing to the
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role played by gluons in binding the compound hadron,
there is no scale at which the momentum fraction car-
ried by valence quarks can be equal to 1.

In practice, one views a model computation as provid-
ing the distribution functions at some infrared resolving
scale Qy. The evolution equations, discussed in Sec.
II.D, are then used to obtain their form at some other
scale, typically Q=2 GeV. In applying a model, Q, is
fixed a posteriori by requiring that the evolved distribu-
tion functions yield (x)~0.4, which is an empirical fea-
ture of the PDFs described in Sec. V, as evident, e.g., in
Fig. 2 of Gliick et al. (1992a). In contrast to modeling,
however, in a truly nonperturbative solution of QCD the
scale Oy would be known a priori.

The bag model does yield some insight and positive
results, on the other hand. For example, as treated,
Bjorken scaling is recovered for W; and (v/M*)W, in
Eq. (2.13). Moreover, in the Bjorken limit [Eq. (2.9)], W
vanishes and vW, scales and is calculable. Thus one pre-
serves the Callan-Gross relation. The structure functions
obey quantum number sum rules, such as the Adler re-
lation,

1
f A () - FP ) =2, (62)

0

where F}P"? are neutrino scattering analogs of the usual
F5. In addition, F; and F,/x are peaked at xy=1/N,
where N is the number of quanta in the target: if three
valence quarks are all the model possesses, then these
functions peak at xy=1/3. The width of the peak is re-
lated to the model’s confinement radius.

Primary among the problems identified above, in part
because it also affects other models, is the absence of
translational invariance and hence momentum conserva-
tion. In the usual mean-field approach the quarks move
independently within a spherical cavity of fixed radius
and definite location. The Hamiltonian associated with
this problem is not translationally invariant. From this
arises the so-called center-of-mass problem: particles
moving independently within the volume cannot consti-
tute an eigenstate of the total momentum, in particular,
they cannot properly describe a hadron at rest.

In general, the removal of spurious center-of-mass
motion from the hadron’s wave function is not a well-
defined problem and has no unique solution (Lipkin,
1958). The illness is typical of shell-like models. A num-
ber of prescriptions exist, which serve to mitigate the
undesirable effects that this spurious motion has on
physical observables. Among these, the Peierls-Yoccoz
projection (Peierls and Yoccoz, 1957) has been most
widely discussed. It projects exact eigenstates of the
center-of-mass momentum by forming a linear superpo-
sition of at-rest bag states at different locations. Arti-
facts remain, however, e.g., some expectation values ex-

A perhaps even greater difficulty is that in an interacting
relativistic theory, which the model is aimed to be, Lorentz
boosts change the particle number of a given state.
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FIG. 26. “Handbag diagram” contribution to the virtual-
photon-nucleon forward Compton scattering amplitude:
v (@)N(p)— ¥*(q)N(p). The intermediate state (or nucleon
remnant in the DIS process) here is assumed to be a scalar or
axial-vector diquark, with masses M and M, respectively.

hibit unexpected momentum dependence. A remedy
may be found in the Peierls-Thouless projection (Peierls
and Thouless, 1962) but that is difficult to implement.
Note that the Peierls-Yoccoz projection is a nonrelativ-
istic prescription and hence cannot properly account for
the boost experienced by the intermediate state in the
forward Compton scattering process. This means that
for an initial state at rest, the procedure can only be

internally consistent for [k|<M,,,
26, which corresponds to x=<0.6.

In an infrequently used alternative (Szymacha, 1984;
Jasiak, 1997), one may augment the independent-
particle (bag-model) Hamiltonian for the composite
state by a fictitious attractive potential, which depends
on the center-of-mass coordinate, viz.,

in the notation of Fig.

PZ
H:ﬁ_{_HBM

2

- P
—>H:_+V(R)+HBM:HCM+HBM,

M (6.3)

where Hpgy, is a bag-model Hamiltonian. With the poten-
tial tuned such that the spectra of Hcy and Hpyy, are
approximately the same, then one has an equivalence
between the nonlocal composite and a translationally in-
variant pointlike state. Unlike the Peierls-Yoccoz pre-
scription, this method ensures that the valence-quark
distribution functions are correctly normalized (Jasiak,
1997); namely, Eqgs. (2.27) are satisfied independent of
model details.

With a prescription for removing the spurious center-
of-mass motion one can be confident that computed
valence-quark distribution functions will possess the cor-
rect support, i.e., are nonzero only for 0=<x<1. Typical
of such calculations are Steffens and Thomas (1994,
1995), which employ the Peierls-Yoccoz projection fol-
lowing Signal and Thomas (1988) and achieve a fair de-
gree of phenomenological success.

In this connection it is notable that having overcome
the problem of incorrect support, one can ask for more;
e.g., models of the nucleon can be classified and perhaps
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retained or discarded according to whether or not they
comply with the perturbative QCD constraint on the
valence-quark distribution function (Brodsky et al., 1995;
Avakian et al., 2007),

~1

qv(x) — (1 _ x)2n—1+25)\,

(6.4)
where n is the minimal number of fermion spectator
lines in the quark-level scattering process, and S\=|\?
—\| is the difference in helicities between the struck
parton and the hadron; e.g., oA is O for a struck quark
with helicity parallel to that of the J =% hadron and 1 for
a struck quark with helicity antiparallel. These counting
rules are first-principles predictions of QCD, in which
the power increases logarithmically under evolution to a
higher scale, and they satisfy Gribov-Lipatov reciprocity
(Gribov and Lipatov, 1971, 1972); namely, that at leading
order spacelike and timelike parton cascades are identi-
cal so that structure and fragmentation functions are al-
gebraically related.
For the proton, Eq. (6.4) means

x~1

)~ (1-xF B=3 (6.5)

for both u and d quarks unless nonperturbative effects
somehow preclude either the valence u quarks or d
quark from sharing in the proton’ helicity on a domain
that includes the neighborhood of x=1. Subsequently, in
connection with Eq. (6.98), we describe a quantitative
bound on the x domain within which Eq. (6.5) should be
observable.

A naive consideration of the isospin and helicity struc-
ture of the proton’s light-front quark wave function at
x=1 leads one to expect that d quarks are five times less
likely than u quarks to possess the same helicity as the
proton they comprise. This leads to the prediction (Far-
rar and Jackson, 1975)

d(x)X*?l 1

ux) 5
However, as we saw in Sec. V, while fitted PDFs produce
B, =3, they yield 4= B,=<5, the feature which leads to
Eq. (5.5). This may be understood as an indication that
the probability for a d quark at x=1 to possess the same
helicity as the proton is actually much less than the naive
expectation. Given the large uncertainties in the fits,
however, it does not necessarily require that 8,>f,. A
reliable nonperturbative approach to nucleon structure
is required in order to determine the relative strength of
the B;,=3 and 5 components in the proton.

As explained bg Brodsky et al. (1995) and we subse-
quently elucidate,” Eq. (6.4) is applicable at the infrared
resolving scale Q,. The exponent is a lower bound and
increases under QCD evolution to a larger momentum
scale. This is described in Sec. I1.D. Equation (6.5) can
therefore serve as a stringent discriminator. It is satisfied

(6.6)

oA quantitative definition of Q, is presented in Sec. VI.B.3
and specifically in connection with Eq. (6.83).
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FIG. 27. A bag-model result for the x-weighted sum of
valence-quark distributions in the proton. The model param-
eters are the following: bag radius R=0.8 fm; scalar and axial-
vector diquark masses, M;=0.55 GeV and M,=0.75 GeV; and
infrared resolving scale Qy=ux=0.26 GeV. Adapted from Stef-
fens and Thomas, 1995.

with bag-model valence-quark wave functions that fall
as 1/|p|* for large momentum |j| (Margolis et al., 1993),
whereas the often used independent-particle wave func-
tions with Gaussian decay fail this test [see Eq. (6.11)
and associated discussion].

The computation described by Steffens and Thomas
(1995) is formulated with four parameters: a bag radius
R; the masses of the two valence-diquark spectator
states in an impulse approximation to the forward
Compton scattering amplitude—scalar, M,, and axial-
vector, M,, (see Fig. 26); and the infrared resolving scale
at which the computation is supposed to be valid, de-
noted by Q, above and u therein.” Naturally, the calcu-
lated valence-quark distribution functions depend on
these parameters, which may therefore be fixed by ap-
plying leading- or next-to-leading-order evolution to the
calculated distributions and requiring a good least-
squares fit to the MRS parametrization (Martin et al.,
1993) of experimental data at Q?>=10 GeV?>.

At leading order (Fig. 4), the values R=0.8 fm, M,
=0.55 GeV, M,=0.75 GeV, and Qy=u=0.26 GeV yield
the results shown in Fig. 27. The diquark masses are
roughly 20% lower than estimates derived from QCD’s
Dyson-Schwinger equations [Eq. (B1)] (Burden et al.,
1997; Maris, 2002). Of more material concern is the
small value of Q, in which case the evolution equations
involve the coupling a(Q,)/[27]=0.4 (cf. the values con-
sidered reasonable in Sec. V.C).

Since this value of a(Q,) might be considered too
large for the fitting-by-evolution procedure to be valid,
Steffens and Thomas (1995) repeated the analysis using
the next-to-leading-order evolution equations [Egs.

A comparison between bag-model results and those of other
nontopological soliton models is presented by Bate and Signal
(1992). Marked quantitative differences can be found in spin-
dependent structure functions.



3018 Roy J. Holt and Craig D. Roberts: Nucleon and pion distribution functions in ...

(2.30)—(2.35)] and in this way obtained R=0.8 fm, M,
=0.7 GeV, M,=0.9 GeV, and Qy=x=0.34 GeV. While
the value of Q| is still small, these diquark masses agree
with contemporary estimates and now a(Q,)/[27]=0.1.
In comparison with Fig. 27, the NLO prescription can-
not significantly change the evolved distribution because
that is the quantity fitted. On the other hand, there is
a significant difference in the valence-quark distribution
at the new infrared scale Qy,=0.34 GeV: x[u,(x;Q)
+d,(x;Qp)] peaks at x=0.4 (reduced by 30%), has a
maximum value of 1.4 (reduced by 20%), and material
support only for x<<0.8 (domain contracted by 10%).
These differences owe primarily to the accelerated pro-
duction of sea quarks through valence-quark depletion
in NLO evolution as compared with the rate of this ef-
fect in LO evolution. The change in diquark masses
serves to fine tune the initial condition: more massive
intermediate states produce a Q distribution that peaks
at smaller x, a feature required to fit the data parametri-
zation when evolving from a larger value of Q,.

As one might have expected, the computation re-
viewed here does not ensure correct normalization of
the valence-quark distribution functions: roughly 20% of
the strength is missing. They argue plausibly that this
defect owes to modeling and parametrization of the in-
termediate state as opposed to its internally consistent
calculation. They assert that the missing strength is
probably localized in the sea-quark region, viz., x <0.3,
and one might therefore be justified in supposing that
this weakness affects only modestly the pointwise behav-
ior of the valence-quark distribution on the domain of
interest.

Upon the domain within which perturbative QCD
is unarguably valid the parametrizations of valence-
quark distribution functions are infinite at x=0 while
xq,(x ;Qﬁm)=0. The divergence is associated with par-
ton splitting (see Fig. 4) and may be understood intu-
itively by observing that infinitely many x~0 partons
are required to carry any fixed fraction of the proton’s
momentum. On the other hand, by assumption, model
calculations, such as that just described, generate
qU(x;Q(z))<oo because only a fixed number of valence
quarks (three for the proton) interact with the photon
probe, and the valence quark’s structure is not resolved;
i.e., there is no mechanism for them to fragment. While
the property g,(x; Q%) <= is not incompatible with the
evolution equations, it does disagree with data param-
etrizations (see, e.g., Sec. V).

2. Constituent quark models

In the minds of many, potential models framed in
terms of constituent-quark degrees of freedom are ex-
emplified by Isgur and Karl (1978). The application of
such models to the spectra and strong and electromag-
netic couplings of baryons is reviewed by Capstick and
Roberts (2000). It is noteworthy that as long as the po-
tential between N quarks depends only on the relative
coordinates within two-quark subsystems, {r; ;=r;—r;|i, j
=1,...,N}, and/or on the conjugate relative momenta,

Rev. Mod. Phys., Vol. 82, No. 4, October—December 2010

one can exactly eliminate the spurious center-of-mass
motion in nonrelativistic constituent-quark models
(CQMs) and hence they can be used effectively as a tool
to study the spectrum. However, one should bear in
mind that the absence of Poincaré covariance is a prob-
lem when studying scattering, in general, and deep in-
elastic scattering, in particular.

These models are defined by a Hamiltonian, which is
typically diagonalized in a harmonic-oscillator basis. The
Hamiltonian contains a hyperfine interaction, whose
structure is modeled according to a practitioner’s taste.
In many cases it is based on notions of one-gluon ex-
change [Isgur and Karl (1978)], in others, on
pseudoscalar-meson exchange [Glozman er al. (1998)].
Here it is only important that the Hamiltonian eigenvec-
tors do not exhibit SU(6) spin-flavor symmetry and
hence results other than Eq. (6.1) are possible.

Relevant here is a relationship that appears empiri-
cally to hold between the anomalous magnetic moments
of the neutron and proton «,, and the valence-quark
distribution functions [see Sec. 4.2.3 of Goeke et al
(2001)], viz.,

Ky 1| A0 0 .
K 2| WP+ | ‘
where
1
() = f dxxq,(x; Qo) (6.8)
0

is the fraction of the proton’s momentum carried by a
valence quark of type ¢ (=u,d,...) at the scale Q. Di-
rect computation shows that even though the numerator
and denominator on the right-hand side (rhs) in Eq. (6.7)
are separately scale dependent, the ratio is not. We reit-
erate and emphasize that Eq. (6.7) holds in a phenom-
enological sense: it is satisfied to within 1% by modern
parametrizations of parton distribution functions but has
not been proven theoretically.

The model described in Sec. VILA.1 yields (x),
=2(x); and hence, unsurprisingly, «,=-x, from Eqv.
(6.7). 1t is therefore evident that the magnitude of any
deviation from this result can serve as one gauge of the
amount by which SU(6) symmetry is broken within the
nucleon. Experimentally, «,/«,~-0.94, so the breaking
is small by this measure.

It has been argued (Traini et al., 1997) that in CQMs, if
one assumes

1 R .
qu(k)l2 = myn,(|k)), (6.9)

where ¢q(l€) is the momentum-space wave function for a
constituent quark of type ¢ within a nucleon of mass M,
and m,(Q,) and nq(|l€|) are the constituent quark’s mass
and momentum density distribution, respectively, then
the virtual-photon-nucleon Compton scattering ampli-
tude, shown in Fig. 26, can yield (k*=k+k5; see Appen-
dix A)
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xq,(x;Qp) = % f d3knq(|E|)§(x— kﬂ) (6.10)

This expression can satisfy the momentum sum rule if
sea quarks and gluons are absent at Q, and m,(Q)
=M/3. However, the distribution does not have correct
support: it is nonzero for x>1, nor does it satisfy the
normalization conditions (2.27).
Both flaws are overcome if one adopts the prescrip-
tion (Traini et al., 1997)
X k+>
-x M)’

xq,(x; Qo) = RS fd3k—nq(|12|)5(1
6.11)

which exhibits two modifications. The simpler is the re-
placement my— k", which provides the struck parton
with an amount k* of the target’s momentum, whereas it
was at rest in Eq. (6.10). This ensures that Egs. (2.27) are
satisfied.® More complicated is the modification of the
Dirac é function’s argument. It was inspired by an obser-
vation that only inelastic processes can contribute to the
distribution functions. In this case the intermediate fer-
mion line in Fig. 26 should carry momentum k+gq’,
where ¢q'=(v',§') with v'=v—v, and v,=Q%/(2M).
With this prescription the valence-quark distribution
function is defined such that the energy transfer does not
include the part absorbed in elastic scattering. An addi-
tional factor of 1/(1-x)? is necessary to preserve the
normalization.

Equation (6.11) is a reasonable definition, which can
be applied to a large class of CQMs. That of Isgur and
Karl (1978) is included. In this case the wave functions
are Gaussian, from which it follows immediately that the
model yields valence-quark distribution functions that
violate Eq. (6.5), namely, q,(x)~exp[-x?/(1-x)*]/(1
—x)% for x=1.

It is plainly the high-momentum components of
constituent-quark relative-momentum wave functions
that determine this behavior and Eq. (6.5) can be ob-
tained from Eq. (6.11) if and only if

|| o

n, (k) ~ 1/k[". (6.12)
[The behavior 1/|k|° gives (1-x)2, while 1/]k|® gives (1
—x)*] Hence, while the constituent-quark wave func-
tions in the CQMs of Bijker et al. (1994), Ferraris et al.
(1995), and Giannini et al. (2001) provide greater support
at high momentum than those of Isgur and Karl (1978),
in all cases it is still insufficient to give agreement with
Eq. (6.5) via Eq. (6.11). We know of no CQM that can.

Notwithstanding this, an illustration of the impact of
SU(6) symmetry breaking via CQMs might be valuable.
Such illustrations are provided by Traini et al. (1992) and
Pasquini et al. (2002). The more recent study compares
distribution functions calculated in the models of Isgur
and Karl (1978) and Glozman et al. (1998). Results are

®In the Bjorken limit, k*=xM in the target rest frame.
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FIG. 28. Fj(x)/F5(x). Left panel, computed in the model of
Isgur and Karl (1978): dot-dashed curve, at hadronic scale Qy
~0.4 GeV; dotted curve, leading-order evolution to Q(z)
=10 GeV?; and solid curve, next-to-leading-order evolution.
Right panel—computed in the model developed by Glozman
et al. (1998). In both panels—triangles, CTEQS fit to experi-
mental data (Lai et al., 2000); straight line, Eq. (6.1). Using Eq.
(2.45) and assuming s,(x)=0 on the valence-quark domain, the
large-x behavior in these panels corresponds to d,(x)/u,(x)
=1.0. Adapted from Pasquini et al., 2002.

shown in Fig. 28. It is apparent that evolution does not
dramatically affect the computed ratio, e.g., compare
with the large effect evident in Fig. 27. Hence a compari-
son between the models’ predictions is straightforward.
The Hamiltonian defining each model breaks SU(6)
symmetry, albeit in slightly different ways, and therefore
both produce curves which deviate from Eq. (6.1). No-
tably, the models exhibit quite different behavior at
large x. This is primarily because, in contrast to Isgur
and Karl (1978), a relativistic kinetic-energy operator is
used by Glozman et al. (1998) and that increases the
wave function’s support at high momentum.

Along with the two CQM calculations, Fig. 28 shows
the behavior of F5/F} that is inferred from the CTEQS
parametrizations of experimental data (Lai et al., 2000).
In this connection it is instructive to recall Fig. 10 and
the discussion in Sec. II.G, which emphasizes that F,/F}
is well known for x <0.7. The parametrization ratio can
therefore be viewed as a good representation of data on
this domain. The absence of a free neutron target only
introduces material uncertainty for x=0.7, a domain not
reproduced in the figure.

It is therefore significant that neither CQM yields be-
havior for F5/F} that is consistent with the parametriza-
tion ratio, not even for x=0.4, i.e., the valence-quark
domain, whereupon they are supposed by proponents to
provide a veracious description of the nucleon via its
salient degrees of freedom. For 0.4 <x <0.7 the ratio in
both panels lies well above the data parametrization.
This is in contrast to models wherein the struck quark is
partnered by scalar- and axial-vector-diquark intermedi-
ate states (Close, 1973; Carlitz, 1975; Close and Thomas,
1988; Meyer and Mulders, 1991) to which we shall re-
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turn. Pasquini ef al. (2002) argued that the large-x behav-
ior of the distribution functions is greatly influenced by
proper implementation of the Pauli principle. That is
neglected by Close (1973), Carlitz (1975), and Close and
Thomas (1988), which treat the diquarks as an elemen-
tary degree of freedom whose quark constituents are not
active in the scattering process. Naturally, this is a weak-
ness of those models, whose impact should be explored.
(N.B. That can be done within a Faddeev equation treat-
ment of the nucleon; see, e.g., Sec. VI.A.7 and Appendix
B).

With the information described hitherto one can ex-
amine Eq. (6.7) within CQMs. To this end three different
SU(6)-breaking Hamiltonians were considered in Gian-
nini et al. (2003); namely, those associated with the mod-
els of Isgur and Karl (1978), Ferraris et al. (1995), and
Giannini ef al. (2001): Eq. (6.7) is satisfied to within 1%
in each case. However, despite their differences, this col-
lection of models belongs to a class’ whose characteristic
is k,=—«k, precisely. It seems therefore that nature em-
ploys a different mechanism to break SU(6) symmetry
than that expressed in this class of models.

3. Pion cloud

Chiral symmetry and the pattern by which it is broken
are fundamental to the nature of hadron structure. Nei-
ther the MIT bag model nor constituent-quark models
express QCD’s chiral-symmetry correctly. In working to-
ward a theoretical understanding of distribution func-
tions it is therefore important to explore the influence of
correcting this defect.

Pseudoscalar mesons come naturally to mind when
considering chiral symmetry in QCD and mesons mean
antiquarks. The addition of gg pairs or correlations to
the intermediate state that is shown in Fig. 26 has long
been considered a plausible mechanism by which to
solve the normalization problem encountered in com-
puting the valence-quark distribution functions
(Schreiber et al., 1991).

This idea is canvassed by Kulagin et al. (1996) within
the framework of a dispersion representation of the
valence-quark distribution function (Kulagin ef al.,
1994),

Kimax(¥-x)
q(x;Q) = f dw f dip(w.k* x;0p).  (6.13)

o

Here p is the probability density associated with an in-
termediate spectator state of invariant mass w=(P—k)?
and

It appears that this class includes the model of Glozman et
al. (1998) if a point-form spectator model (PFSM) is employed
for the electromagnetic current operator (Melde et al., 2007).
Of the currents considered in this connection, only the PFSM
can produce results in fair agreement with experiment.

Rev. Mod. Phys., Vol. 82, No. 4, October—December 2010

FIG. 29. Depiction of three invariant-mass sectors conjectured
by Kulagin et al. (1996) to contribute to deep inelastic scatter-
ing. Left image A: low w—diquark spectators. Central image,
B: intermediate w—compound spectator system involving a
pion (dashed line), constituent quarks and diquarks. Right im-
age, C: large w—Regge-trajectory model for gg scattering from
a constituent quark. Adapted from Kulagin et al., 1996.

K2 (w.x) =x<M2 - %) (6.14)

max —x

where M is the nucleon mass, is the maximum kinemati-
cally allowed value of the struck quark’s squared-four
momentum, which is equivalent to its virtuality if the
quark is massless. In connection with Eq. (6.13),
convergence and internal consistency suggest that the
probability density can only have material support for
k*=<-M?. The condition

K2, (w,x) = — M2 = w?= M2(1 - x%)/x. (6.15)

Hence, in this case it follows that only intermediate
states with w=<M? are important for x=0.6. This ex-
plains the spectator diquark assumption of Fig. 26. How-
ever, as x decreases below x=0.6, intermediate states
with s> M? will play an increasingly important role and
must be included in order to obtain a pointwise-accurate
result for q,(x; Q).

A concrete model is used by Kulagin et al. (1996) to
illustrate these points. It is notable that by combining
the components indicated below, this study aims to pro-
duce a valence-quark distribution function that is valid
at a resolving scale Q=1 GeV, i.e., at a scale which may
lie within the perturbative domain. We judge that per-
turbative QCD evolution from such a scale is sounder
than from the manifestly infrared scales employed in
Secs. VILA.1 and VL.LA2.

The study divides the space of intermediate states into
three sectors, which are shown in Fig. 29 and described
here.

A:w=M? This is the diagram of Fig. 26, involving
diquark spectators, which the studies described in Secs.
VI.A.1 and VI.A.2 computed as the sole process con-
tributing to the valence-quark distribution function. It is
represented by a probability density

p_A(W5p2’x;QO) = 2 5(W _sz)fg/N pzsx;QO)’
D=0%1%

(6.16)
with f’g,N(pz,x;Qo) identified as the probability distri-

bution for finding a constituent quark in the nucleon
with invariant mass p?, proton light-cone momentum
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fraction x and partnered by a diquark with J®=D. The
Faddeev equation models of nucleon structure provide
an appropriate framework for its evaluation (see, e.g.,
Appendix B).

B:M?><w=w,,wy~2M?. One model for the addition
of gq pairs or correlations to the intermediate state is to
dress constituent quarks with pseudoscalar mesons.'’ In
Kulagin et al. (1996) the dressing sum is truncated at just
one-pion rung, shown in the central image of Fig. 29.
The remainder is shifted to sector C.

C:w=w,. The large invariant-mass spectator compo-
nent is modeled via a Regge trajectory, with intercept
ar=~1/2, to describe gg scattering from a constituent
quark. This piece provides a contribution to the valence-
quark distribution function that behaves as x “k for
small x. As reported in Sec. VI.A.1, this is a desirable
feature.

The model is elaborate and has numerous parameters.
Their values are fixed through comparison with data and
an eye to avoiding large discrepancies with legitimate
theoretical constraints. Important among the parameters
are the constituent-quark mass, m,=0.45 GeV; the di-
quark masses, with the large values'' my-=1.0 GeV and
my+=1.2 GeV appearing to be favored by data in this
framework; momentum-space widths used in parametri-
zations of constituent-quark—diquark Faddeev wave
functions, Ayp+=1.0 GeV and A;+=1.2 GeV, and expo-
nents for these vertex functions, ny+=2.0 and n;+=3.5,
chosen to guarantee Eq. (6.5); a hard-cutoff scale for the
constituent-quark—pion vertex, Ap,~1.0 GeV; and a
power-law form factor to model the p? and k* depen-
dences of the Regge exchange quark-quark scattering
amplitude, which is defined by a mass scale, Ap
=0.25 GeV, and a power, np=4.

Combining these ingredients, the valence-quark distri-
bution functions are computed at Qy=1 GeV from the
sum

qo(x;00) = Z;(Qo){g 4(x) + gp(x) — G5(x)

+qc(x) — ge(x)}, (6.17)

q=u,d,

with the normalization constants fixed by Egs. (2.27)
subject to the additional constraints [dxu 4(x)=2,
Jdxd 4(x)=1. The relative normalizations of the contri-
butions in Fig. 29 are determined once the model’s pa-
rameters are fixed; i.e., they are not additional indepen-
dent quantities. Hence, in this model, defined at Q,
=1 GeV, the total valence-quark normalization is consti-
tuted from the diagrams in Fig. 29 as follows:

This can be sensible even when one unfolds and under-
stands the structure of constituent quarks (Blaschke er al,
1996; Oertel et al., 2001; Cloét and Roberts, 2008). Indeed, it is
an integral step in a systematic truncation of QCD’s Dyson-
Schwinger equations.

UThese values are roughly 20% larger than extant computa-
tions of the mass scales associated with diquark correlations
[Eq. (B1)] (Burden et al., 1997; Maris, 2002).
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FIG. 30. Results illustrative of the pion-cloud model described
in connection with Fig. 29. Left panel: Total valence-quark dis-
tribution function. Complete calculation, combining all sectors
(solid curve); A+B (dashed curve); and A alone (dash-dotted
curve). Right panel: Contribution from sector A to the ratio of
valence-quark distribution functions. my:=1.0 GeV, m+
=12 GeV (solid curve) and my+=0.6 GeV, m+=0.8 GeV
(dashed curve). Both panels: Computed results are reported at
Qé:lO GeV? after LO evolution from Q,=1 GeV, whereat
a/[27]=0.03. Parametrizations of data (Martin et al., 1994; Lai
et al., 1995) are provided for comparison (shaded band).
Adapted from Kulagin et al., 1996.

1
f dx{u,(x;Qp) + d,(x;00)}
0

= A(56%) + B(16%) + C(28%). (6.18)
Moreover,
1
fo dxx{u,(x;Qo) +d,(x;Qo)}
= A(41%) + B(6%) + C(0.06%) = 0.47, (6.19)

which leaves 53% of the proton’s momentum to be car-
ried by nonvalence-quark degrees of freedom.

Figure 30 shows features of the model’s distribution
functions. Although the sector-A contribution is always
dominant on the valence-quark domain, it is evident
from the left panel that the renormalization effected by
adding the sector-53 and -C contributions plays an impor-
tant part within the model: it is a surrogate for evolu-
tion, shifting support to lower x at the model’s mass
scale of Q=1 GeV. The right panel exhibits that behav-
ior for the valence-quark flavor ratio which is typically
identified with diquark models: d,(x)/u,(x) decreases
monotonically with increasing x. The ratio plotted is
formed only from the sector-4 contributions. On the
valence-quark domain the full result may be estimated
by multiplying the value plotted in Fig. 30 by the ratio of
normalization constants, namely, Z,/Z,~2/3.

It is now clear that by implementing a scheme which
resolves some of the structure of a constituent quark it is
possible to shift the model scale Q, to a point where-
from perturbative evolution may plausibly be justified a
priori. In this way one can reproduce experimental data
and provide an interpretation. However, the price ap-
pears high: with many ingredients needing to be care-
fully constrained and combined, the predictive power of
an elaborate model is diminished.
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4. Topological soliton models

Attempts to describe baryons as topological solitons
are usually motivated by emphasizing the importance of
chiral symmetry and the pattern by which it is broken in
QCD:; the notion that when a carefully defined large-N,
limit is considered, QCD is a theory of weakly interact-
ing mesons (and glueballs) and strongly interacting bary-
ons; and the observation that a simple form of classical
nonlinear o model supports strongly interacting static
topological soliton solutions, which can be quantized as
fermions. Given this starting point, which possesses no
explicit quark degrees of freedom, a connection with the
parton model and DIS looks problematic.

A straightforward calculation (Jaffe, 1975) of distribu-
tion functions for localized field configurations is pos-
sible when the current operator is at most quadratic in
the fundamental fields and the associated propagators
are free-particle-like. The first of these conditions is dif-
ficult to satisfy in topological soliton models expressed
in terms of elementary meson fields because the nucleon
is a nonperturbative object involving all orders of the
pion field and hence the current operator cannot be qua-
dratic. This difficulty can be circumvented (Diakonov et
al., 1996; Weigel et al., 1997) by realizing the nonlinear o
model through a truncated bosonization of a four-
fermion theory (Cahill and Roberts, 1985; Ebert and
Reinhardt, 1986; Roberts et al., 1988, 1989). Point cou-
pling models of the Nambu—Jona-Lasinio type are often
used. A regularization prescription and an associated ul-
traviolet mass scale Ayy are an essential part of the defi-
nition of this model. In general, one cannot guarantee a
priori that Ayy plays no role in the Bjorken limit,
namely, that Q%/ A%, scaling violations are absent.

It has been argued that within this framework the sin-
glet unpolarized quark distribution function in a nucleon
at rest may be written as (Diakonov et al., 1996)

2
m@+m@=%%4fﬂl

a2 PP

occup.

X[(Ip+ "), , (6.20)

p3=xM-E,

where @, is an eigenfunction, with energy E,, of a Dirac
Hamiltonian constructed using a so-called hedgehog
soliton Ansatz for the pion field; the sum runs over the
Dirac sea and the single discrete (valence) level bound in
the soliton background, with —-my < E,<m, containing
N, constituentlike quarks; and x&[-1,1]. In defining
Eq. (6.20) one must follow the usual soliton model steps
of projection and quantization to arrive at states with
the correct spin and isospin, and three-momentum.
Moreover, it is necessary to employ a Poincaré invariant
Pauli-Villars regularization of the underlying Nambu—
Jona-Lasinio model or an equivalent in order to pre-
serve, among other things, completeness of the eigen-
functions and positivity of the rhs in Eq. (6.20). The
singlet case is simplest in this approach because effects
associated with cranking the topological soliton can be
neglected. The distributions in Eq. (6.20) satisfy
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mm={“”’ x>0 (6.21)

_q_(_x)9 x <0.

It can be shown algebraically within the model that

1
J dx[u(x;Qp) + d(x;Qy)]
1

1
= f dx[uv(x;QO) + dv(X;QO)] = ch (622)
0

which may be compared with Egs. (2.27). It is notable
that the rhs of Eq. (6.22) is saturated by the discrete
level alone and hence that the Dirac continuum, dis-
torted by the presence of the large pion field, contrib-
utes nothing to the soliton’s baryon number. In addition,
with the Pauli-Villars regularization,

1 1
J dxx[u(x;Qq) + d(x;Q0)] = f dxx2(x;Q0)
1

0

1
= J dxx[u(x;Qp) + i (x;00) + d(x;Qq) + d(x;Q,)]
0

=1, (6.23)

so that at the resolving scale for which the model is as-
sumed to be defined, viz., Qy=Ayy=0.6 GeV, the pro-
ton’s complete momentum is carried by the model’s con-
stituent quarks and antiquarks.

Distributions typical of a topological soliton model
are shown in Fig. 31: left panel, valence-quark distribu-
tion, and right panel, the nonzero antiquark distribution.
In this model the discrete level contributes to both the
DIS valence-quark and antiquark distributions. Further-
more, the Dirac continuum, distorted by the soliton,
produces unequal distributions of quarks and antiquarks
and hence should not be solely identified with the sea. It
will be observed that while the model’s antiquark distri-
bution is incorrect in detail, it does have the important
property of possessing little support on the valence-
quark domain. Moreover, owing to the nonzero anti-
quark distribution, which only vanishes as N.— e, the
valence-quark distribution peaks at x<1/N.,.

A comparison between the left panels of Figs. 30 and
31 is instructive. Allowing for the difference in normal-
ization, there is a semiquantitative similarity between
the soliton model result and that produced by the sum of
sectors A and B in the model of Kulagin et al. (1996), i.e.,
constituent-quark plus pion (see Fig. 29). This highlights
the omission of sea-quark effects in the soliton model at
its resolving scale and also the role that sea quarks play
in general; e.g., with their inclusion, xg(x) has far greater
support at low x and commensurately less support on
the valence-quark domain.

It is interesting to compare the approach discussed
here with that in Sec. VI.A.1. In contrast to the static
cavity treatment of bag models, wherein the three con-
stituent quarks contribute only to quark distributions,
here they also generate an antiquark distribution owing
to the strong pion mean field, which distorts the
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FIG. 31. Results obtained in a topological soliton model whose infrared resolving scale is argued to be Qy~0.6 GeV. Left panel:
(x/2){u,(x;00) +d,,(x;Qp)}, proportional to the valence-quark distribution: contribution from the single discrete (valence) energy-
level bound in the soliton background (solid curve) and from the Dirac continuum (dotted curve). Right panel: (x/2){i(x; Q)

+d(x;Qy)}, proportional to the antiquark distribution. Both panels: squares, NLO data parametrization drawn from Gliick et al.
(1995), associated with Qy=0.56 GeV. Adapted from Diakonov et al. (1996): Ayy=0.56 GeV, the calculated nucleon mass is

1170 MeV, and N.=3 with 1/N, corrections neglected.

negative-energy continuum of the Dirac Hamiltonian. In
the context of Sec. VI.A.1, this might be mimicked by
incorporating effects of feedback between the constitu-
ent quarks and the bag surface.

In the approach outlined here the baryon number and
momentum sum rules are automatically preserved.
However, again owing to a lack of translational invari-
ance in the formulation, the model’s distribution func-
tions do not vanish at x=1 but behave as exp(—const
X N.x). That problem was considered in Gamberg et al.
(1998), which argues that distribution functions in the
infinite-momentum frame (IMF) may be obtained from
those calculated in the nucleon rest frame via the
substitution'?

1
1-x

grp(—1In[1 - x]). (6.24)

qvr(x) = 6(1 —x)
The same formula was derived in formulating a transla-
tionally invariant bag model in 1+1 dimensions (Jaffe,
1981), with the operation x— —In(1-x) identified as ex-
pressing Lorentz contraction of the baglike object. Akin
to Eq. (6.11), Eq. (6.24) maps a function with support on
[0,%) to one with support restricted to [0,1] and pre-
serves normalization, i.e.,

1 o
JdXCIIMF(X)=J dzqre(2). (6.25)

0 0

For a typical distribution, it increases the peak height
and suppresses the tail. The effects are large, perhaps
too large for favorable comparison with experiment, and
soliton rotation was not considered in the derivation
(Wakamatsu and Kubota, 1998). While the alternative of

2Recall that in the infinite-momentum frame the target’s mo-
mentum is equivalent to its light-front momentum and hence
Bjorken x coincides with the fraction of the target’s light-front
momentum carried by a parton. It is only in the IMF that ¢, (x)
can be interpreted as a single-parton probability density.
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merely neglecting the support problem is not meritori-
ous, the prescription of Eq. (6.24) is not widely em-
ployed.

5. Pion structure function in the topological soliton model

In topological soliton models chiral symmetry is em-
phasized and a strong pion mean field is indispensable in
order to realize a baryon. This said, it is natural to ask
what the model predicts for the pion’s valence-quark dis-
tribution functions. Suppose, as above, one specifies the
theory via a bosonization of a point-coupling Nambu-—
Jona-Lasinio model and, in addition, completes its defi-
nition using a two-subtraction Pauli-Villars regulariza-
tion scheme for the real part of the action. Under these
conditions it has been argued (Gamberg and Weigel,
2000) that the pion’s valence-quark distribution function
is

P(m?,x;0,)
a7(x;00) = ‘ (6.26)
f dxP(m?,x;Qy)
0
with
2 d v 2
P(mwax;QO) = d_qzq I[(q ;QO)|q2:mis (627)
2
d*k
II 2. ——3 i f —
(q 7Q0) lg) Cl (271_)4
« 1
[- k> —x(1-x)g*+ mé + AZ-ZUV]Z’
(6.28)

where {¢;, A;yv} are the Pauli-Villars parameters. It fol-
lows that in the chiral limit, viz., m%=0, an analytic point
in this calculation ¢ (x;Qy), is a constant whose integral
over x €[0,1] is unity. Hence,
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qlv)r soliton(x;QO) =1, (6.29)

which means that at the model’s resolving scale it is
equally likely for the u quark to carry any fraction of the
pion’s momentum: all, none, or some fraction in be-
tween, with the same probability.

To place Eq. (6.29) in context, the parton-model pre-
diction for the pion’s valence-quark distribution function
is (Ezawa, 1974; Farrar and Jackson, 1975; Berger and
Brodsky, 1979; Brodsky and Lepage, 1979)"

x~1
qr(x;Qp) ~ (1 -x)% (6.30)

Plainly, Eq. (6.4) is also applicable to /=0 hadrons since
n=1 and 26\=1 in this case (Brodsky, 2005). The extra
multiplicative factor of 1—x is present because x=1 cor-
responds to elastic scattering and hence o must vanish
for a spin-0 target. This imposes a helicity selection rule
at the parton level, which causes o to vanish a single
power faster as x—1 than one would anticipate from
dimensional counting (Llewellyn Smith, 1980). Owing to
this, Eq. (6.30) is consistent with the Drell-Yan-West
analyses (Drell and Yan, 1970b; West, 1970; Lepage and
Brodsky, 1980). The soliton model prediction in Egq.
(6.29) conflicts conspicuously with the parton-model re-
sult.

6. Pion in the Nambu-Jona-Lasinio model

Models of the Nambu-Jona-Lasinio (NJL) type have
long been used in connection with the strong interaction.
As described in Sec. VI.A 4, the NJL model provides a
framework within which quark distribution functions
may be defined in topological soliton models. However,
it is more common for NJL studies to emphasize
dressed-quark degrees of freedom and realize hadrons
as poles in n-point Green functions. Following this path
the model can be viewed from a Dyson-Schwinger equa-
tion (DSE) perspective (Roberts and Williams, 1994,
Gutiérrez-Guerrero et al., 2010).

The continuing appeal of the NJL model can be ex-
plained by two features; namely, it is defined by a simple
interaction and exhibits dynamical -chiral-symmetry
breaking (DCSB). This latter aspect, which the models
of Secs. VI.LA.1-VI.A.3 do not possess, suggests that it
might sensibly be used to explore the structure function
of the pion. As noted above, the pion is special in QCD
because it is both a dressed-quark-antiquark bound state
and the Goldstone mode arising from DCSB (Maris et
al., 1998).

By analyzing the Bjorken limit of the parton-model
expression for DIS from a pion target, one can derive a
model-independent formula for the quark distribution
function, which describes the quark-parton number den-
sity in the IMF,

13Equation (6.30) generalizes to qg_(x;QO) ~(1-x)*" for a
pseudoscalar meson with n+1 valence quarks. Again, the ex-
ponent 2n is a lower bound, saturated at the infrared resolving
scale. The value is increased by QCD evolution.
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FIG. 32. Depiction of the general handbag diagram contribu-
tion to deep inelastic scattering from the pion. As we saw in
Fig. 26, with an explicit expression for the single-flavor re-
moval amplitude H(k,€) one defines a model framework
within which to complete the calculation.

1 o
470600 = f dEeiwE
8

X (k)| (0) Y 4y ()| (k) (6.31)

where k>=m? or, equivalently, k= (k% +m?%)/k*. It fol-
lows from Eq. (6.31) that

1
1 .
f dxq;(x;Qy) = %(W(k)wq(()) Y, (0)|m(k)) =1,

0
(6.32)

independent of Q,, because the last matrix element is
simply the contribution of a single quark flavor to the
pion’s electromagnetic form factor.

Equation (6.31) can be expressed in momentum space
as follows:

. 1 de . .
q,,(x;Qo)=5f 77)46(6 - xk*)

2
Xtrep Y H A (k,€;Q0) (6.33)
1 d€‘d€lt " (l:00)
=4 Qm)* repY Ha(k,€;00 —
(6.34)

Here the matrix trace applies to color and spinor indi-
ces, and H (k,€;Q,) is the amplitude defined in Fig. 32:
it is partially amputated; i.e., the external pion legs are
removed. In this form,

: T, 1 d4€ +
dxq;(x;Q) = WUCDY H(k,€;Q0),

o 2k
(6.35)

and one recovers Eq. (6.32) because the integral on the
rhs is merely an expression of the matrix element de-
scribing a single flavor’s contribution to the form factor.
As we may readily establish, this identity is preserved in
the commonly used rainbow-ladder truncation as long as
in constructing H (k,€; Q,) the quark-photon vertex sat-
isfies the Ward-Takahashi identity and the pion Bethe-
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Salpeter amplitude is canonically normalized (Roberts,
1996).

Within the NJL model, Egs. (6.33) and (6.34) are not
yet meaningful. A regularization scheme must be speci-
fied and the result for g (x;Q,) depends critically on the
prescription adopted. To illustrate this we write explic-
itly the formal NJL-model expression for the rhs of Eq.
(6.34),

oL [ dCd

trepi Y58 miq

XS) Y S(€)iysgngeSk —€) .
Cr=xk*

(6.36)

where g.;, is the Bethe-Salpeter amplitude for the
pion14 and y' is the quark-photon vertex. Both are inde-
pendent of the quark-antiquark relative momentum in a
symmetry-preserving regularization of the NJL model
owing to the momentum-independent interaction.

One feature of a symmetry-preserving regularization
is translational invariance, following from which one can
use the Ward identity to rewrite

1 (dede,
q,(x;0Q) = 1 WtrCD”’ngiq

X S(€) Y S(€)ivsgmzyS(k - €) (6.37)
{r=xk*
9 Tk x) (6.38)
=— —= X .
ok? ’ e ’
Kkt (dede,
I(k,x) = > Wtrcpl%gm;q
X S(0)iysg nzgS(k — €) (6.39)
{t=xk*

Although written in a slightly different form, Egs. (6.38)
and (6.39) are simply a restatement of Eq. (6.26). This is
natural, given that the NJL model provides the frame-
work within which parton distribution functions are de-
fined in topological soliton models.

At this point it is worth emphasizing that light-front
concepts have hitherto appeared only as a result of a
change in integration variables and it is generally as-
sumed that the change of variables is nugatory. Hence
one is not actually working within a light-front formula-
tion of QCD. This makes no difference in perturbative
analyses. However, it does involve significant hidden as-

"It is generally true that parton distribution functions are
determined by a hadron’s Bethe-Salpeter amplitude. In the
light-front quantization of QCD the PDFs can be computed
from the absolute squares of light-front wave functions, inte-
grated over the transverse momentum up to the resolution
scale Q, (Brodsky et al., 1998).
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sumptions in connection with important nonperturbative
phenomena. For example, in order to evaluate Eq. (6.39)
one requires the light-front form of the nonperturba-
tively dressed-quark propagator. This quantity is, how-
ever, unknown. Thus, in proceeding from Egq. (6.39),
Bentz et al. (1999), for example, assumed that a dressed-
quark mass, two orders of magnitude larger than the
u-quark current mass, is generated nonperturbatively
and that g, is related to the dressed-quark mass via a
Goldberger-Treiman relation. Neither of these results
has yet been proved in the light-front formulation. This
problem was highlighted and considered by Bentz ef al.
(1999) [see, e.g., Eq. (3.31) therein], but it was not
solved, merely defined away. Thus, an internally consis-
tent treatment of Eq. (6.39) is wanting, so that a covari-
ant treatment following Landshoff et al. (1971) is prefer-
able.

Nonetheless, if one overlooks these caveats and pro-
ceeds, then it follows from Eq. (6.39) that in the chiral
limit with a translationally invariant regularization,

qy M Qo) = ¢y (1 Q) = 1 (6.40)

for all values of Q, and consequently (Dorokhov and
Tomio, 2000)

1

(g = fo dxx"q] M (x;Q0) = (64D
These results are themselves problematic and can di-
rectly be traced to the absence of a length scale charac-
terizing the pion’s transverse size when a translationally
invariant regularization is employed for a chiral-limit
NJL model. In this case both the interaction and the
regularization procedure are momentum independent
and hence neither can act to bound the relative momen-
tum of the pion’s constituents. This explains why the
model disagrees with the QCD parton-model prediction
[Eqg. (6.30)]: in QCD there cannot exist a resolving scale
at which the relative momentum of the pion’s constitu-
ents is unbounded.

However, one need not naively employ a translation-
ally invariant regularization scheme. An ultraviolet cut-
off Ayy can serve to mimic asymptotic freedom in QCD
in the sense that it defines an NJL-model quark-
antiquark interaction which vanishes for momenta
larger than Ayy. This procedure, adopted by Shigetani et
al. (1993) for analysis of the virtual-photon-pion forward
Compton scattering amplitude, yields

NJL
q, " Hx;00)
K m2 xm2
— Mo~ T

o — 2J‘Ocdm‘)(A2 - KEg)
égﬂqq 0 Uuv E (ic__’71£2)2

X Olm*x(1 - x) —xM? - (1 - x)«], (6.42)

where KE:—K+xmi—xm2Q/(1—x) and the constant of
proportionality is fixed by requiring [{dxq,(x; Q) =1.
The valence-quark distribution function obtained
from Eq. (6.42), with Ayy=0.9 GeV and m;=0.35 GeV,
is shown in Fig. 33. It differs markedly from Eq. (6.40).
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FIG. 33. (Color online) Pion’s valence-quark distribution func-
tion calculated in a Nambu-Jona-Lasinio model that is regu-
larized by using a hard cutoff (Shigetani et al., 1993). Under
one-loop evolution, a resolving scale of Qy=0.5 GeV optimizes
agreement with data parametrizations.

As will become clear, this could not have been otherwise
because the behavior of g;(x) for x=1 depends on the
precise form of the cutoff function. If this were not the
case, then the valence-quark distribution function would
be ineffectual as a discriminator between models for the
strong interaction and, furthermore, no behavior could
be uniquely identified with a prediction of QCD. With
the hard cutoff

x=1
g7 MMe(x; Q) = (1 -x). (6.43)

From the distribution function shown in Fig. 33 one ob-
tains,

5 e =039, (g He=022, (6.44)

values which are significantly smaller than those ob-
tained in the absence of a bound-state length scale [Eq.
(6.41)]. It is apparent that in a model whose interaction
acts at the resolving scale Q to bound the relative mo-
mentum of the pion’s constituents, the valence quarks do
not carry all the bound state’s momentum. The remain-
der may be associated with dressed gluons, which affect
binding within the pion bound state and are invisible to
the electromagnetic probe (Hecht et al., 2001) (see also
Sec. V.O).

The kaon’s valence-quark distribution functions were
also calculated by Shigetani et al. (1993). With a current-
quark-mass ratio of my/m,~25, they obtained mg/mp
~1.5, and given this value for the ratio of constituent-
quark-like masses, it is unsurprising that within the kaon
the valence s-quark distribution is harder than that of
the valence u quark: the heavier valence s quark must
typically carry more of the bound state’s momentum. It
follows from momentum conservation that ul’f(x)/ uy (x)
<1 on the valence-quark domain. This outcome is con-
sistent with experiment (Badier et al., 1980), as shown in
Figs. 21 and 42.

7. Nucleon in the Nambu—-Jona-Lasinio model

When emphasizing dressed-quark degrees of freedom,
it is natural to describe baryons using a Poincaré cova-
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riant Faddeev equation, aspects of which are described
in Appendix B. Early attempts to compute the valence-
quark distribution functions within this framework are
described by Kusaka et al. (1997) and Mineo et al. (1999).
These studies retained only a scalar-diquark correlation
and the latter employed a particularly severe truncation
of the quark-exchange kernel in Fig. 43, viz., the so-
called static approximation, in which all momentum de-
pendence is ignored in the propagator of the exchanged
quark. This impacts significantly on the results. The
studies also employ a simple current. In the former, the
current is built only from diagrams 1 and 2 in Fig. 44.
These diagrams are also the basis for the current in Mi-
neo et al. (1999) but therein, departing from the purely
valence-quark setup, it is augmented by two diagrams
argued to provide an estimate of the contribution from a
pion cloud.

Unsurprisingly, there are many similarities between
the nucleon study of Mineo et al. (1999) and that of the
pion in Bentz et al. (1999). In particular, a translationally
invariant regularization prescription is employed so that,
in the absence of a pion cloud, the valence quarks carry
all the nucleon’s momentum at the model’s resolving
scale, in analogy with Eq. (6.41). Some of this momen-
tum is transferred to the pions following their addition
to the current. The amount is related to the pion content
of a dressed quark, which is typically ~10% (Cloét and
Roberts, 2008).

As found by Kulagin et al. (1996) and shown in Fig. 29,
Mineo et al. (1999) reported that a pion cloud works to
soften the valence-quark distribution and increase its
support at low x. Unlike Kulagin et al. (1996), however,
Mineo et al. (1999) still needed a very low resolving
scale, namely, Qy=m=0.4 GeV, if agreement with the
parametrizations of Martin et al. (1994) is to be obtained
under NLO evolution. The NJL model, with its
momentum-independent interaction, must naturally pro-
duce hard distributions but the effect is compounded by
the static truncation used by Mineo et al. (1999). As a
result of this truncation, the nucleon’s Faddeev ampli-
tude is independent of the quark-diquark relative mo-
mentum, just as the pion’s Bethe-Salpeter amplitude is
independent of the quark-antiquark relative momentum
in the NJL model formulated with a translationally in-
variant cutoff.

As shown in Fig. 34, the results are also sensitive to
details of the regularization scheme. The favored
scheme is that adopted by Bentz et al. (1999), wherewith
a cutoff is placed on ¢, and q,(x;Qy) #0 on 0=x=<1.
However, in this case ¢,(x;Q,) exhibits a disconcerting
sharp and physically unacceptable increase at x=0.9,
which must artificially be suppressed before the evolu-
tion equations can be used. In practice, the distribution
was forced to behave as (1-x)!°. Owing to the behavior
produced by both regularization schemes, this model
cannot say anything meaningful about the distributions
at Qg for x=0.8. This is a serious limitation because
evolution is an area-preserving operation that shifts
strength from large to small x. Hence, after evolution
the behavior in this model of the distributions on the
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FIG. 34. Valence u-quark (left-panel) and d-quark (right-panel) distributions computed in a scalar-diquark picture of the nucleon
based on an NJL model (Mineo et al., 1999). The results exhibit a marked sensitivity to the manner in which the model is
regularized. In this study the TR scheme is judged best. Both schemes lead to unphysical behavior on x=0.8. NLO evolution of
the model results is performed from Qy=0.4 GeV. The parametrization is that of Martin ez al. (1994). Adapted from Mineo e al.,

1999.

valence-quark domain is primarily determined by arti-
facts induced by the regularization. This is neither a
sound basis for prediction nor for comparison with pa-
rametrizations of data.

Some general features of the distributions are none-
theless physically reasonable. For example, in this rep-
resentation of the proton, the d quark appears only as a
constituent of a [u,d] scalar diquark with mass m,
<m+<2m. Hence, the probability of finding a valence
d quark in the proton is obtained by convoluting two
probabilities, viz., that of striking a 0* diquark in the
nucleon with that of striking a d quark in the scalar di-
quark. Naturally, therefore, the valence d-quark distri-
bution peaks at smaller x than the valence u-quark dis-
tribution and is softer for 0.6=<x=0.8.

A realistic picture of the nucleon must include axial-
vector diquark correlations, which generate significant
attraction (Hecht et al., 2002), and in Mineo et al. (2002)
they are added to the model just described. The Fad-
deev equation is still solved in the static truncation but
the regularization procedure denoted by LB in Fig. 34 is
adopted. As apparent, it forces the distribution functions
to vanish at x=0.8, which, while still unphysical, is less
difficult to overlook than the sharp rise produced by the
TR scheme. The LB regularization procedure defines a
model in which the distributions are extremely soft at
Q,- Needless to say, such behavior is inconsistent with
Eq. (6.5), which specifies the behavior of distribution
functions on a domain that includes the neighborhood of
x=1.

The model has other internal difficulties. Notably, the
axial-vector diquark is unbound and, owing to the ab-
sence of confinement, the A resonance cannot be formed
without requiring the proton to possess what, within the
model, is an unrealistically large axial-vector diquark
component. Notwithstanding these problems, one might
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hope for useful information about the ratio F;(x)/F5(x)
on the valence-quark domain. Figure 35 shows this ra-
tio’s sensitivity to the strength of the proton’s axial-
vector diquark component. While the pointwise behav-
ior in x is unlikely to be accurate, we judge that the
general trend is a reliable indication of one effect of
axial-vector diquark correlations within the nucleon;

oo} 0= 12 GeV? |
08
07 F
06 |
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04

03 |

02

" " L L " L L
0 0.1 02 03 04 05 06 07 08 09
X

FIG. 35. F5(x)/F;(x) computed by Mineo et al. (2002). r, mea-
sures the strength of axial-vector diquark correlations in the
proton. It is a free parameter. Used in conjunction with mg
=0.4 GeV and my+=0.68 GeV, the model-preferred value is
r,=0.25, at which the axial-vector correlation contributes just
7% to the proton’s normalization. r,=0 reproduces the scalar-
diquark only model (Fig. 34). With r,=2/3, the axial-vector
diquark contributes 39% to the proton’s normalization. NLO
evolution of the model results is performed from Q,
=0.4 GeV. An explanation of the experimental points is pro-
vided by Melnitchouk and Thomas (1996). Adapted from Mi-
neo et al., 2002.



3028 Roy J. Holt and Craig D. Roberts: Nucleon and pion distribution functions in ...

1.6 T T T T T T

F e Q3 =0.16GeV? 1
1.4 2 2 |

I LT —— Q2= 5.0GeV? |
1.2 ™. - - - - Empirical

[ ’ (5.0GeV?)

FIG. 36. (Color online) Valence-quark distribution functions
computed by Cloét er al. (2005), which differs from Mineo et al.
(1999) primarily in the choice of regularization prescription.
The marked sensitivity to regularization scheme in NJL-type
models is evident through comparison with Fig. 34. NLO evo-
lution of the model results is performed from Qy=0.4 GeV.
“Empirical” denotes the parametrization of Martin et al.
(2002b). Adapted from Cloét et al., 2005.

viz., a d quark in an axial-vector diquark can possess the
same helicity as the proton target.

The analysis of Mineo et al. (1999) is updated by Cloét
et al. (2005), wherein the model is redefined through a
proper-time regularization procedure. In addition to the
ultraviolet regulator, an infrared cutoff is also used in
the reformulation. This expedient serves to mock up
confinement (Ebert ef al., 1996) and thereby enables an
improved description of the A resonance.

In effecting a soft cutoff at Q, the proper-time pre-
scription yields much improved behavior of the distribu-
tion functions on the valence-quark domain. This is
shown in Fig. 36, which was computed with, (in GeV)
AIRZO.ZS, AUV:O.66, MQ:0.4, m0+=0.65, m1+=1.2, and
diquark coupling strengths r,=0.5, r,=0.08. The splitting
between the scalar and axial-vector diquarks is more
than twice the usual size [cf. Eq. (B1)] and the values of
re, T, suggest that the axial-vector diquark contributes
<2% to the proton’s normalization.

Both the u- and d-quark distributions in Fig. 36 be-
have as (Cloét, 2009)

x=1

0" 70 Q0) ~ (L -2 e~ 15, (6:45)

a result which, however, still conflicts with the parton-
model constraint [Eq. (6.5)]: (1-x)3. On the other hand,
for the flavor ratio one finds

x—1

dy 106 Q) 1 Qo) = 02, (6.46)

which corresponds to F5/F5—0.43 as x—1 [see Eq.
(2.45) and cf. Fig. 35]. However, the agreement between
Eq. (6.46) and the leading-order vector-gluon prediction
of Farrar and Jackson (1975) is incidental. Instead, the
value reflects the role and strength of axial-vector di-
quarks in the proton.
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8. Pion in the instanton liquid

The instanton liquid model derives from the notion
that topological soliton solutions of the classical
Euclidean-space Yang-Mills equations might play a role
in describing QCD’s ground state (Schafer and Shuryak,
1998). This possibility is actively discussed (Lian and
Thacker, 2007; Ilgenfritz et al, 2008) and the model
meanwhile continues to be used.

In the present context, the instanton liquid model may
be viewed as corresponding to a type of NJL model in
which the interaction is momentum dependent. With
this feature it generates, e.g., a dressed-quark mass and
pion Bethe-Salpeter amplitude that are momentum de-
pendent and thereby overcomes a material weakness of
the contact-interaction NJL model described above. On
the other hand, the momentum dependence differs sig-
nificantly from that of QCD: it is exponential, not power
law, and hence possesses too little support away from
zero relative momentum, which is the domain most rel-
evant to the valence-quark distribution.

In this form the instanton liquid model has been em-
ployed to calculate the pion’s valence-quark distribution
function (Dorokhov and Tomio, 2000). As should be an-
ticipated, the momentum dependence of the interaction
leads to an x-dependent distribution at Qy=0.55 GeV,
which vanishes at x=0,1, in contrast to that obtained
with some regularizations of the contact-interaction NJL
model [see, e.g., Egs. (6.29) and (6.40)].

Following leading-order evolution from (Q,
=0.55 GeV to Q=2 GeV, the model’s result for the dis-
tribution function on 0.2=<x=<0.9 is uniformly larger
than experiment (see Fig. 41) and the parametrization of
Sutton ef al. (1992) which is based upon it."> They at-
tribute this to their omission of gluon, sea, and higher
Fock state contributions at Q, which is plausible given
the content of Fig. 30. If the curve is multiplied by 0.65,
a factor representing a crude estimate of the renormal-
ization attendant upon inclusion of the omitted effects,
then the magnitude is in better agreement with the pa-
rametrization. Following this rescaling, one finds that
the large-x behavior is softer than that of the parametri-
zation. Indeed, in this model

x=1
g7 ™M(x;00) ~ (1 -x)%, €~ 1.53-1.56. (6.47)

While this behavior also conflicts with the QCD parton-
model prediction [Eq. (6.30)], it is a less striking dis-
agreement than any other result described hitherto.

B. Modern QCD perspective

Today there are a few approaches to the calculation of
parton distribution functions that are firmly founded in
QCD. There is the numerical simulation of lattice-
regularized QCD of course. There are also frameworks
which go beyond modeling by incorporating and ex-

SRecall the critical reanalysis of the conclusions drawn from
the E615 experiment, which is reviewed in Sec. IIL.E.
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FIG. 37. Handbag diagram contribution to the virtual Compton scattering process: y*(q)T(p)— y(q')T'(p’). Left panel—
kinematic variables in a symmetric reference frame. Right panel—light-front representation of H? in Eq. (6.48). Adapted from

Boffi and Pasquini, 2007.

pressing effects that are rigorously established features
of QCD. In the best cases these approaches are directly
connected with QCD via a symmetry-preserving trunca-
tion so that quantitative calculations can be performed
with readily quantifiable errors, which can be estimated
a priori.

1. Generalized parton distributions

These quantities [generalized parton distributions
(GPDs)] were considered by Dittes et al. (1988) and
Miiller et al. (1998) but have risen to prominence in had-
ron physics owing to their connection with deeply virtual
Compton scattering (Radyushkin, 1996b; Ji, 1997) and
hard meson production (Radyushkin, 1996a). Unlike the
usual parton distribution functions, GPDs are nondiago-
nal matrix elements and hence do not have a simple
probability interpretation. Instead, GPDs describe inter-
ference between amplitudes that represent different par-
tonic configurations within a hadron and provide a
means by which to chart correlations between different
momentum states of a given parton. They are of interest
here because the usual parton distribution functions can
be expressed in terms of the GPDs.' It follows that ei-
ther (1) valence-quark distribution functions can be used
to constrain the parametrization of GPDs or (2) com-
plete knowledge of GPDs fixes the valence-quark distri-
butions. The former link is used in present-day practice
and that will not soon change. Herein we nevertheless
elucidate connections between GPDs and PDFs.

In Fig. 37 we show a handbag diagram contribution to
a deeply virtual Compton scattering process, in which a
high-energy photon with large spacelike virtuality, Q?
=—¢?, impacts upon an hadronic target and produces a
real photon and an hadronic final state with invariant
mass p>< Q2 The amplitude depends on the Bjorken
variable xz=0%/(2p-q), defined in Eq. (2.5), and the
momentum transfer r=(p’ —p)?>=A2 It is assumed that ¢
<Q>

For a spin—% hadron 4 with initial and final helicities, A
and N\, respectively, one can define eight GPDs. For our
purposes it is enough to consider only two of them ex-
plicitly, namely, the unpolarized distributions H} and E7,

16 . .
For our purposes, we need not consider transversity
distributions.
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dz-
8

Xé(— §>7+q<§>lh(p,>\)>

1 — ! !
= 2P+”h(P DY ){HZ(x,&tW

e(i/2)xz’P+<h(pr,)\r)|

2*=0.2, =0

1
+ EZ(x,f,t)ﬁﬂmﬁa} uy(p,\), (6.48)

where x=k*/P* is the average quark longitudinal-
momentum fraction and é=(p*—p'*)/(p*+p’") is the so-
called skewness. The GPDs also depend on the resolving
scale Q.

These two GPDs are relevant herein because in the
forward limit, i.e., p'=p, one has

H(x=xp,6=0,1=0;0,)
i {qh(xB;Q()),

= qn(=xp:Qp), xp<0,

xr>0
B (6.49)

from which if follows that

1 1
J dxx®"Hj(x,0,0; Qo) = f dxx®qy(x; Qo) = ("),
-1 0

(6.50)

Furthermore,

1
J dxH{(x,&,t;00) = F,(1),
1
(6.51)
1
f drEfx.£.6:0) = F0),
-1
where, e.g., F{,(¢) is the contribution to the hadron’s

Dirac form factor owing to quarks of flavor ¢g. The stan-
dard normalization is such that

F(t=0)=2, (6.52)
Fl(t=0)=1, (6.53)
ng(t =0)= KZ =2k, + K, = 1.673, (6.54)
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F3,(t=0) = k) = K, + 2K, = — 2.033. (6.55)

It is noteworthy that the right-hand sides in Egs. (6.51)
are independent of ¢ because integrating over x elimi-
nates all information about the particular light-front di-
rection with respect to which ¢ is defined, viz., owing to
Lorentz invariance.

Poincaré invariance entails that there is only one gen-
eralized quark-parton distribution for the pion (Diehl,
2003),

dZ_ . —p+ _ Z
Hi(x,£100) = fge(’m“ P(W*(p')lq(— 5)

(6.56)

X fq(%)IW*(p»

z*=0,z =0

Naturally, coupled with the fact that the pion’s polarized
GPD is identically zero, i.e., I:IWEO,17 it follows that
Aq(x)=0; i.e., the pion’s spin-dependent parton distri-
bution function vanishes. When isospin is a good sym-
metry, one has

H = H . + H., = H“"" = H"}*, (6.57)
H=H - H = - H", (6.58)
HY = 0. (6.59)

The analogs of Egs. (6.49) and (6.50) are correct, and,
MmOreover,

1
J dxH(x,£,1;00) = Fi(r), Ft) - Fl(t) = 2F (1).
1

(6.60)

2. Lattice QCD

An operator expression for the pion’s quark distribu-
tion function is given in Eq. (6.31). We have seen in Sec.
VI.B.1 that it is generally true; namely, in a spinless had-
ron h with total momentum k, the distribution function
is given by

1 [~ o
(@00 == | e
8

-

X (h(K) [y (0) ¥ g (€ (K)). (6.61)

This expression is usually understood as representing
the distribution in light-cone gauge, i.e., A, =0, where
A* is the gluon field. Equation (6.61) can readily be gen-
eralized to bound states with spin.

It is straightforward to modify Eq. (6.61) so that the
expectation value is gauge invariant and yet unchanged
in light-cone gauge; viz., one introduces a path-ordered
exponential (Wilson line)

7With the replacement y*— y"ys in Eq. (6.48), one arrives at
the definition of I:Ih.
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. 0 a
EE)=P CXP{ égf dz‘%AZ(O,z‘,GL)} (6.62)
&

as follows:

(" e
q"(x:€:00) = — f dg e
87)_.

X(h(K)|q(0)y"E(&)q(E)|h(k)). (6.63)
With Eq. (6.63) one has a gauge-invariant expectation
value of a bilocal operator evaluated along a lightlike
line. It is mathematically precise and provides the point-
wise behavior of the distribution function. However, it
cannot be evaluated using the numerical approach of
lattice-regularized QCD.

Lattice methods can, however, be used to evaluate ex-
pectation values of local operators. Consider therefore

1
@, = f dxx"[q"(x;€;00) - (= 1)"q"(x;;09)].
0
(6.64)

It is notable that

1
(xOly = f dxql(:£:Q) = NI, (6.65)

0

namely, the number of valence quarks of type ¢ in had-
ron Aa. Furthermore, in general,

1
g, = f dxx’[q"(x:€:00) - §"(x:€:Q0)]
0

1
= f dxx*"q(x;€:Qy), (6.66)
0

1
<x2n+1>1éo=f dxx2n+l[qh(x;5;Q0) + qh(x;g;QO)]-
0

(6.67)

It is apparent from these two results that the even mo-
ments express properties of a nonsinglet distribution
whereas the odd moments probe the singlet distribution.
Therefore, they are independent and do not mix under
evolution. Importantly, unlike the singlet distribution, a
nonsinglet distribution does not receive contributions
from disconnected diagrams.

Introducing the Wilson line does not alter the distri-
bution function’s domain of support and, moreover, one
still has ¢"(x)=—g"(-x). Hence,

1 ©

(", = f dxx"q"(x;€:Q0) = f dxx"q"(x;€;Qy).
-1 —o0

(6.68)

Now, upon insertion of Eq. (6.63), one obtains
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(", = kYRR 4y (0) ¥ [iD* (001", (0) |1 (K)),
(6.69)

where

D)= -2~ ighAr(z) (670
=——ig— .

u(z 7, 85 Aulz

is QCD’s covariant derivative. [N.B. A connection with
Eq. (6.33) is readily established.] The moment on the left
of Eq. (6.69) is Poincaré invariant but it only has a
probabilistic interpretation in the infinite-momentum
frame. Owing to Poincaré invariance, one may equally
write

n\h
2k e, K K,

= (h(K)| 1, (0){y*9iD*1(0) - -- iD*n(0)}4f,(0) | (k)),
(6.71)

where the parentheses indicate a symmetrization of
indices and the subtraction of traces, e.g., {k%kﬂl}
=k, k:”‘l —5M0M1k2. With Eq. (6.71) one has an expression
for the moments of quark distribution functions that can
be evaluated wusing modern lattice-QCD methods
(Soper, 1997).

Computations are readily performed for low-order
moments; ie., n=0,1,2,3. Of course, owing to Eq.
(6.65), there is no information in (x°): it merely provides
a check on the numerical procedure. One must also bear
in mind that discretized space-time does not possess the
full rotational symmetries of the Euclidean continuum.
Hence, for n=4 it is impossible to define lattice opera-
tors that are precisely equivalent to those of Eq. (6.71):
the lattice analogs cannot transform irreducibly and
computations therefore require a numerical determina-
tion of the coefficients that describe mixing with opera-
tors of lower dimension.

Suppose therefore that one focuses on the n<3 mo-
ments, namely, those most directly accessible within the
lattice framework. A typical lattice-QCD result for
any one of these moments will contain, in addition to
statistical errors, systematic errors from the following
sources (Guagnelli et al., 2005): the so-called “quenched
approximation”—which is not an approximation but a
truncation, and is still common today but will become
less so in future; nonperturbative renormalization—the
method used to obtain a renormalization-group invari-
ant moment from which continuum results can be in-
ferred; discretization—extrapolation to zero lattice spac-
ing; finite volume—extrapolation to infinite lattice size;
and chiral extrapolation—inferring the value of a mo-
ment at the real-world current-quark masses from that
computed at large unphysical values, which is discussed,
e.g., by Detmold et al. (2003). The extent to which these
errors have been accounted for and the nature of the
procedure employed for each type of error must be con-
sidered when comparing the value of a moment ob-
tained from a lattice simulation with its empirical or
phenomenologically determined value.

Rev. Mod. Phys., Vol. 82, No. 4, October—December 2010

TABLE V. Lowest nontrivial moments of the pion’s valence
u=d quark distribution function. The rows report “Par.92”—
moments at Qy=2 GeV determined from the fits of Sutton et
al.  (1992); “Emp.05”—empirical result determined by
Wijesooriya et al. (2005) at Qy=5.2 GeV. (After evolution,
these results are consistent with those in Par.92.) “Lat. 07—
lattice-QCD computation reported by Brommel et al. (2007)
with nonperturbative evolution to Qy=2.0 GeV (statistical
and renormalization error added in quadrature); “Lat.
972 —quenched computation reported by Best et al. (1997),
with renormalization scale Qy=2.4 GeV fixed via one-loop
chiral-limit lattice perturbation theory (statistical error only);
and “Lat. 03”—reanalysis of the results of Best et al. (1997)
using a different extrapolation to physical current-quark
masses (Detmold et al., 2003). The row labeled “DSE 01” is the
result obtained using the Dyson-Schwinger equation frame-
work of Hecht et al. (2001).

<x”>60 Q, (GeV) n=1 n=2 n=3
Par.92 2.0 0.24+0.01  0.10+£0.01 0.058+0.004
Emp.05 52 0.217+0.011 0.087+0.005 0.045+0.003
Lat. 07 2.0 0.271+0.010 0.128+0.008 0.074+0.010
Lat. 979 2.4 0.273+0.012 0.107+0.035 0.048+0.020
Lat. 039 2.4 024+0.02  0.09+0.03 0.043+0.015
DSE 01 2.0 0.24 0.098 0.049
<xn>on Qp (GeV) n=1 n=2 n=3

Lat. 979 24 0.334+0.021 0.174+0.047 0.066+0.039

Lattice results are available for the first three mo-
ments of the pion distribution function; e.g., Best et al.
(1997) and Brommel et al. (2007), with the results re-
ported in Table V. The more recent study (Brommel et
al., 2007) employed O(a)-improved Clover-Wilson fer-
mions with two flavors of dynamical quarks and pion
masses of 430, 600, and 800 MeV. A linear extrapolation
in mi was used to infer a result at the physical pion
mass. They estimated rudimentarily that finite-size ef-
fects are of the order of 10% at the smallest pion mass
used. Since disconnected diagrams were neglected in
calculating all the moments and the simulation pion
masses are large, it is reasonable to identify the results
with moments of the pion’s valence-quark distribution.
This interpretation turns lattice artifacts to advantage in
order to circumvent practically a problem of principle;
viz., it is plain from Egs. (6.66) and (6.67) that odd mo-
ments of the valence-quark distribution are not readily
accessible via the vector current operator. The valence-
quark distribution is directly accessible though moments
of the more complicated V—-A current operator.

The earlier study (Best et al., 1997) used Wilson fermi-
ons in a quenched simulation, with current-quark masses
which correspond to m =480, 650, and 780 MeV. Val-
ues for the moments at a physical light-quark current
mass were obtained through linear extrapolation in mi.
This could plausibly therein lead to overestimation of
the first three moments by 10-20 % (Detmold et al.,
2003) (see Table V) and therefore also by Brommel et al.
(2007).
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It is curious that there is little material difference be-
tween the results in rows 3-5: all agree within quoted
errors even though they were obtained over a ten-year
time span in which lattice methods improved greatly. In
our view, for this reason and because the pion is so im-
portant to strong-interaction physics, the evaluation of
the pion’s moments is a problem worth renewed atten-
tion.

Low moments of the p meson’s valence-quark distri-
bution functions are also inferred by Best ef al. (1997).
There are three different structure functions for the
spin-1 p: unpolarized, with moments denoted by a,; po-
larized, with moments denoted by r,; and spin projec-
tion, with moments denoted by d,. The spin-projection
structure function is absent for a spin-% hadron. In the
infinite-momentum frame it measures the difference be-
tween quark distributions in J,=1 and O targets. Here,
however, we are concerned with unpolarized distribu-
tions and so only a,, 5 are listed in Table V. With the
parameters of this lattice simulation, the 7 and p mo-
ments differ noticeably and the first moments do not
agree within statistical errors. It appears to us, therefore,
that it is obtuse to claim that the results of Best et al.
(1997) support an assumption that F7(x)= F{(x), as was
done therein.

More attention has focused on the nucleon, with the
first computations in Martinelli and Sachrajda (1989)
and an overview in Zanotti (2008), but it remains true
that disconnected diagrams are neglected in almost all
extant studies. It follows that only results for isovector
quantities are directly comparable with those deter-
mined empirically, i.e.,

<xn>1é—0d — <xn>1é—on )

For the reason noted above, calculations are restricted
to at most the first three nontrivial moments. We list
some results in Table VI.

We present two sets of determinations from Dolgov et
al. (2002). Both were obtained with Wilson fermions.
However, one set was computed in quenched-QCD,
while the other was calculated using two degenerate fla-
vors of dynamical sea quarks, with four current-quark
mass values that provide for m,/m,€[0.69,0.83]. Per-
turbative renormalization was employed to quote results
at Qp=2 GeV. The studies possess significant but un-
quantified finite-size and volume errors, and a linear ex-
trapolation in mi was used to infer results at physical
current-quark masses.

The fifth row of results in Table VI is compiled from
Gockeler et al. (2005), a quenched-QCD study that em-
ployed an O(a)-improved Wilson action and fully non-
perturbative renormalization to reach Q,=2.0 GeV.
They argued that finite-volume errors were unimportant
and were attentive in estimating systematic errors aris-
ing from nonperturbative renormalization, operator
choice, and continuum and linear chiral extrapolations.

We also list the estimate made by Hégler et al. (2008)
for the n=1 moment, which was the only moment con-
sidered therein. This analysis employed a mixed-action

(6.72)
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TABLE VI. Lowest nontrivial moments of the isovector
nucleon distribution function, all evolved to Qy=2 GeV, albeit
using different methods. While they are all moments of nons-
inglet distributions, in principle, only n=2 is connected with a
difference of valence-quark distributions. The rows report
“Emp.90”"—empirical result determined from the parametriza-
tions of x[u,(x)+d,(x)] and xd,(x) in Kwiecinski et al. (1990),
which were fitted to then-extant data via next-to-leading-order
evolution from a starting scale of Q,=2.0 GeV [these values
are little changed in more modern parametrizations, e.g., using
MRST 2002, available through the Durham database
(Durham, 2009), (x)tz‘vaé%,:O.157i0.009, as indicated in the row
labeled “Emp.02”]; “Lat. 029 and “Lat. 02”—lattice QCD
computations reported by Dolgov et al. (2002), the former in
quenched QCD, both with perturbative evolution to Q, and
linear chiral extrapolation (statistical error only); “Lat.
059" —quenched-QCD study described in Gockeler et al.
(2005), with renormalization scale Q fixed via nonperturbative
renormalization and linear chiral extrapolation (error is statis-
tical combined with estimates of systematic errors arising from
renormalization, operator choice, and continuum and chiral
extrapolations); “Lat. 08”—analysis reported by Hégler et al.
(2008), with renormalization scale Q, fixed via nonperturba-
tively improved one-loop renormalization and extrapolation
via covariant baryon chiral perturbation theory (Dorati et al.,
2008) (before extrapolation (x)*~¢=0.205+0.015, statistical er-
ror only).

(x")"Q;)d n=1 n=2 n=3
Emp.90 0.16 0.054 0.023
Emp.02 0.157+0.009

Lat. 029 0.251+0.018 0.098+0.068 0.028+0.049
Lat. 02 0.269+0.023 0.145+0.069 0.078+0.041
Lat. 059 0.245+0.009 0.083+0.017 0.059+0.018
Lat. 08 0.157+0.010

approach, namely, domain-wall valence quarks but 2+1
flavors of staggered sea quarks, with light-quark masses
corresponding to m,=350 MeV. A nonperturbatively
improved perturbative renormalization scheme was used
to quote a result at Qy=2 GeV. It was argued that finite-
volume errors are negligible with respect to statistical
errors, while errors associated with nonzero lattice spac-
ing (a=0.124 fm) were not discussed. In order to quote a
result at the physical pion mass, covariant baryon chiral
perturbation theory was employed (Dorati et al., 2008).
As anticipated by Detmold et al. (2001), an extrapolation
nonlinear in m?% can have an enormous impact: in this
instance, a 25% reduction in the value of the moment.

A consideration of Fig. 38 and the results listed in
Table VI demonstrate that agreement between the em-
pirical value of (x)*~¢ and that obtained using lattice-
QCD is only possible if there is significant nonlinearity
in the m?% dependence of (x)*~¢ on m%<0.1 GeV2 On
the other hand, given that a chiral expansion of physical
quantities is invalid for m%=0.2 GeV? (Chang et al.,
2007) and reliable lattice results are restricted to this
domain, it is unsurprising that extant results from lattice
QCD do not exhibit nonlinearity.
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FIG. 38. (Color online) Current-quark-mass dependence of
(x)"Q’Od, Q=2 GeV, computed directly through numerical simu-
lations of lattice-regularized QCD: circles (Ohta and
Yamazaki, 2008); diamonds (Orginos et al., 2006); boxes (Ha-
gler et al., 2008); right triangles (Brommel et al., 2008); and left
triangles (Gockeler et al., 2005). The empirical value is marked
by an asterisk. The clover and domain wall fermion results are
in excellent agreement, except at the lightest pion mass, a dis-
crepancy which can likely be attributed to finite-size effects.
The mixed-action results appear to differ from the others by a
normalization factor, which is perhaps understandable given
that Higler ef al. (2008) does not use the fully nonperturbative
renormalization procedure employed in the other studies.
Adapted from Zanotti, 2008.

It is evident from the discourse in this section that
contemporary lattice QCD provides little aid in under-
standing the vast amount of DIS data, in general, and
the valence-quark distributions, in particular. Practitio-
ners express hope that this will change. However, it
should be noted that low moments of parton distribution
functions are only very weakly sensitive to the pointwise
behavior of ¢"(x;Q,) on x=0.4. For example, consider
two valence-quark distributions with large-x behavior
(1-x)"1 (Sutton et al., 1992) and (1-x)'¥ (Hecht et al.,
2001). The exponents differ by 60% but the n=3 mo-
ments, which are the highest accessible in modern
lattice-QCD calculations, are indistinguishable within
experimental error. One must compute the n=5 mo-
ments before the difference exceeds 20%. Plainly, point-
wise calculations of the distribution functions are vital in
order to probe the valence region.

3. Dyson-Schwinger equations

As elucidated by Roberts and Williams (1994), the
Dyson-Schwinger equations (DSEs) are a system of
coupled integral equations that have long been used in
nuclear and particle physics. The DSEs provide a non-
perturbative approach to QCD in the continuum and
are particularly well suited to the study of QCD because
of asymptotic freedom, which entails that model depen-
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dence can always, in principle, be restricted to infrared
momenta, viz., p=<1 GeV. Today, some elements of the
approach are well constrained even on that domain ow-
ing to positive feedback between DSE and lattice-QCD
studies. Applications of DSEs to hadron physics are re-
viewed by Roberts and Schmidt (2000), Alkofer and von
Smekal (2001), Maris and Roberts (2003), Fischer (2006),
and Roberts et al. (2007).

The physics of hadrons is ruled by two emergent phe-
nomena, namely, confinement and dynamical chiral-
symmetry breaking. Confinement is the empirical fact
that no quarks have been detected in isolation. Dynami-
cal chiral-symmetry breaking (DCSB), which is respon-
sible among many other things, for the large mass split-
ting between parity partners in the spectrum of light-
quark hadrons, that is present even though the relevant
Lagrangian current-quark masses are small, explains the
origin of constituent-quark masses and underlies the
success of chiral effective-field theory. Neither confine-
ment nor DCSB is apparent in QCD’s Lagrangian but
yet they play a dominant role in determining the observ-
able characteristics of real-world QCD.

With respect to confinement, it is important to appre-
ciate that the static potential measured in quenched lat-
tice QCD is not related in any simple way to the ques-
tion of light-quark confinement. It is a basic feature of
QCD that light-quark creation and annihilation effects
are nonperturbative and thus it is impossible, in prin-
ciple, to compute a potential between two light quarks
(Bali et al., 2005).

On the other hand, confinement can be related to the
analytic properties of QCD’s Schwinger functions (Rob-
erts et al., 1992; Roberts and Williams, 1994; Roberts,
2008), which are the basic elements of the DSE ap-
proach. Hence the question of light-quark confinement
can be translated into the challenge of charting the in-
frared behavior of QCD’s universal 3 function.' Solving
this well-posed problem is an elemental goal of modern
hadron physics. It can be addressed in any framework
enabling the nonperturbative evaluation of renormaliza-
tion constants.

Through the DSEs, the pointwise behavior of the
function determines the pattern of chiral-symmetry
breaking. Moreover, the DSEs connect the $ function to
experimental observables, so that a comparison between
computations and observations of, e.g., the valence-
quark distribution functions, can be used to learn about
the evolution of the B function into the nonperturbative
domain.

A notable and relevant recent success of the DSE ap-
proach to hadron physics is its provision of an under-
standing of DCSB via QCD’s gap equation. The dressed-

8This function may depend on the scheme chosen to renor-
malize the theory but it is unique within a given scheme (Cel-
master and Gonsalves, 1979).
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quark propagator can be written in a number of
equivalent forms, e.g.,

S(p) =-iy-poy(p® ) + os(p® )
_ 1 ZpLD)
iy pAQPLO) +BPLP) iy p+MpY’
(6.73)

It is important that the mass function M(p?)
=B(p?,2?)/A(p?, %), shown in Fig. 11, is independent of
the renormalization point, {. Furthermore, this propaga-
tor and, indeed, all colored Schwinger functions are
gauge covariant. Therefore, when contracted in the ex-
pression for a color-singlet and gauge-invariant observ-
able, all information about the evolution of the quark
mass with momentum, shown in Fig. 11, is retained.
Hence, this manifestation of DCSB has an impact on
cross sections that is truly observable.

The impact is greatly amplified in observables involv-
ing the pion, which, as QCD’ Goldstone mode, is in-
nately connected with DCSB. Indeed, the DSEs explain
the pion as simultaneously both a Goldstone mode and
an intricate bound state of a dressed quark and anti-
quark, described by a Bethe-Salpeter amplitude,

I'(k;P) = ys[iE (k;P) + v+ PF (k;P)
+y-kk- PG (k;P)+ 0,k ,P,H (k;P)].
(6.74)

Through the axial-vector Ward-Takahashi identity,
which is the statement of chiral-symmetry and the pat-
tern by which it is broken, the DSEs yield (Maris et al.,
1998) a set of Goldberger-Treiman relations for the pion,
which are exact in the chiral limit, viz.,

frEA(k;0) = B(k?), (6.75)
Fr(k;0) + 2f . F (k;0) = A(k?), (6.76)
Grl(k;0) +2f,G (k;0) =2A"(k?), (6.77)
H(k;0) + 2f .H (k;0) = 0, (6.78)

where the functions on the right-hand sides are defined
in Eq. (6.73); f,. represents here the pion’s leptonic decay
constant; and Fg, Gy, and Hy are associated with terms
in the axial-vector vertex that are regular in the neigh-
borhood of the pion pole.

The first of these relations [Eq. (6.75)] states that in
the chiral limit the dominant pseudoscalar part of the
pion’s Bethe-Salpeter amplitude is completely deter-
mined by the scalar piece of the dressed-quark self-
energy. This exact result in QCD expresses an extraor-

In order to maintain easy contact with existing literature, in
this section we employ a Euclidean metric. In concrete terms

that means for Dirac matrices {y,,7,}=28,,, 7};:7/“ Vs

= VANV Y3 VYLV YpYo=—4€ upor and a-b=3] a;b;. A time-
like vector p,, has p*<0. More information can be found in
Sec. 2.1 of Roberts and Schmidt (2000).
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k-q-P

k+q+P

FIG. 39. “Handbag” contributions to the virtual-photon-pion
forward Compton scattering amplitude. , dashed line; y, wavy
line; S, internal solid line, dressed-quark propagator [Eq.
(6.73)]. The filled circles represent the pion’s Bethe-Salpeter
amplitude I' ,, in Eq. (6.74) and the dressed-quark-photon ver-
tex T, discussed in Appendix B, depending on which external
line they begin or end. Adapted from Hecht et al., 2001.

dinary fact; viz., owing to DCSB, the solution of the
two-body problem in the pseudoscalar channel is
known, almost completely, once the quark one-body
problem is solved.?’ In combination with the feature that
the dressed-quark propagator has a spectral representa-
tion when considered as a function of current-quark
mass (Langfeld er al., 2003), Eq. (6.75) entails that the
chiral-limit dressed-quark scalar self-energy provides an
accurate pointwise approximation to E_(k;P) at physical
light-quark current masses.

It will now be evident that, through the mesonic ana-
log of Fig. 26, shown in Fig. 39, the leading x depen-
dence of the physical pion’s valence-quark distribution
function is determined by the chiral-limit dressed-quark
scalar self-energy. As with the electromagnetic pion
form factor, the leading-order contribution is accurate
apart from small corrections to the anomalous dimen-
sion (Maris and Roberts, 1998; Maris and Tandy, 2000a).
This has far reaching consequences, which can be re-
vealed by considering the gap equation.

Imagine a theory in which the kernel of the gap equa-
tion behaves as

q2>M2D
aAqlg® = (Ug)'", (6.79)
where x>0 and M7 is some intrinsic, characteristic
scale. Then, using the method of Higashijima (1984) and
Roberts and McKellar (1990), one finds

“'The following three relations establish that the pion neces-
sarily has pseudovector components because the dressed-
quark wave-function renormalization is not identically one.
This fact has an extremely important impact on the pion’s elec-
tromagnetic form factor at large momentum transfer (Maris
and Roberts, 1998; Gutiérrez-Guerrero et al., 2010).
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=M
B(k?) o« (1/k*)M~. (6.80)
The case of QCD is similar: the kernel is
2 2
a(g?) 7> acp 1 AT
q2 = 21282 1 (6.81)
q q~In[q /AQCD]

where N=12/(33-2n,), with n; as the number of active
fermion flavors, and

F=Adep )\ 1 1\
: P(ln[kz/AgCD]) ‘

The general pattern should now be clear; namely, the
momentum dependence of the chiral-limit dressed-
quark self-energy replicates, up to an anomalous dimen-
sion, that of the quark-quark interaction and this behav-
ior is manifest for k> M2

With this perspective, the analysis of Ezawa (1974) can
now be understood to predict that, in a theory with an
interaction of the type in Eq. (6.79), the pion’s valence-
quark distribution function must evolve according to

B(k?) (6.82)

x~1
qr(x;Qp) = (1-x)*19 VvV Qu> M), (6.83)

This indicates and interprets the scale at which
“counting-rule” behavior should be evident; viz., it is the
mass scale at which the asymptotic form of the evolution
of the chiral-limit dressed-quark scalar self-energy is
manifest.

One can readily translate the preceding argument into
a QCD prediction, namely,

x~1
q7(x;Q0) = (1-x)*"7, Qp=1 GeV, (6.84)

where 0<y<1 is an anomalous dimension because, as
shown in Fig. 11, 1 GeVZ%ZOAéCD is the mass scale at
which the chiral-limit dressed-quark mass function has
assumed its asymptotic form [Eq. (6.82)]. Given Eq.
(6.83), it is unsurprising that the exponent 2 in Eq. (6.84)
is a lower bound. As indicated, the additional logarith-
mic correction to the momentum dependence of the
mass function, a manifestation of asymptotic freedom,
leads truly to an exponent greater than 2 at the
counting-rule resolving scale. Moreover, this exponent
increases under QCD evolution to Q> Q,.

It is now instructive to reconsider Eq. (6.83) in con-
nection with models of the NJL type (Sec. VI.A.6). Such
a model, in the chiral limit and regularized in a transla-
tionally invariant manner, may be realized through an
analytic continuation of Eq. (6.79) to k=—1. One then
reads the mass function from Egq. (6.80): Vk?, B(k?)
=my, i.e., a constant. The pion’s valence-quark distribu-
tion function in this model follows from Eq. (6.83):
q, NIL1i(x)=1. In the absence of any regularization scale,
this is the chiral-limit prediction at all resolving scales.
Of course, in concrete applications of such models, an
ultraviolet regularization scale is finally introduced: typi-
cally Ayy~1 GeV. The model’s practitioners describe
this scale as the boundary between the nonperturbative
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and perturbative domains. As the only scale in the mod-
el’s description of a chiral-limit pion, it should properly
define the model’s intrinsic resolving scale. Hence, one
arrives at the prediction

g7 V(00 = Apy) = 1. (6.85)

Our modernization of the analysis of Ezawa (1974)
serves to eliminate much of the ambiguity in under-
standing what is meant by the “QCD prediction” for
q,(x). We have provided a clean definition of the resolv-
ing scale at which this prediction should be valid. More-
over, with Egs. (6.83)-(6.85) and the associated discus-
sion, we have demonstrated that the pointwise behavior
of the pion’s quark distribution function on the valence-
quark domain is a sensitive probe of the nature of the
quark-quark interaction. To be concrete, if the conclu-
sion of Conway et al. (1989) is confirmed, then the
theory underlying hadron physics is not QCD. The argu-
ments can be generalized to other hadrons.

Additional information can be explicated through a
recapitulation of a calculation of the pion’s valence-
quark distribution function within the DSE framework.
The diagrams in Fig. 39, an explicit realization of Fig. 32,
provide the starting point for the computation of Hecht
et al. (2001). The upper diagram represents the renor-
malized matrix element,

4
Tv(q,P)=trf d—kzl[tl“ﬁ(kr;—P)S(kt)ieQFV(kt,k)
a 2m)

X S(k)ieQT ,(k,k)S(k)7,I 7 (kp;P)S(ky)],
(6.86)

where TiZ%(TliiTz) is a combination of Pauli matrices;
S(€)=diag[S,(£),S,(£)], with §,=5,=8, assuming isospin
symmetry, and kr=k—q-P/2, k,=k—q, and k,=k—q
—P. The fully dressed-quark-photon vertex I',,(€;,€5) ap-
peared in Eq. (6.34) and here Q=diag(2/3,-1/3) is the
quark-charge matrix. The matrix element represented
by the lower diagram is the crossing partner of Eq. (6.86)
and is obvious by analogy. The hadronic tensor relevant
to inclusive deep inelastic lepton-pion scattering can be
obtained from the forward Compton process via the op-
tical theorem,

W,.(q;P) =W, (q;P) + W, (q;P)
1
=5 Im[ T, (q;P) + T,,(q;P)]. (6.87)

In the Bjorken limit one finds explicitly (Hecht et al.,
2001)

W,.(q;P) = F{(x)t,, + F5(x)q,q./2x, (6.88)
Lyv= 0= 44 4%, 4,=q,+2xP,, and
F;(x) =2xFj(x), Fj,(x)—0asx—1. (6.89)

Combining these results with their analogs for W, one
recovers Bjorken scaling of the deep inelastic cross sec-
tion; namely, the cross section depends only on x and not
separately on P-q and g°>. One may therefore write
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F5(x) = F3(x) + F(x) = 3lxu(x) + xid(x)]

+5lxd(x) + xd(x)] + -+,
(6.90)

where the ellipsis denotes contributions from heavier
quarks, which are small. We emphasize that this result is
only valid at lowest order in the strict Bjorken limit. It is
not preserved under QCD evolution (see Sec. I1.D).

In an explicit calculation of the handbag diagrams
(Fig. 39), the resolving scale is exposed through the act
of taking the imaginary part when employing the optical
theorem in Eq. (6.87). At this point a snapshot is taken
of the dressed-quark propagators underlined in Eq.
(6.86). Their dressing functions are sampled at the par-
ticular renormalization point and this defines the resolv-
ing scale Qy. One can recover the analysis of Ezawa
(1974), augmented by perturbative QCD evolution, by
pursuing this route at a resolving scale deep into the
perturbative domain.

On the other hand, Hecht et al. (2001) employed alge-
braic Ansdtze for the elements in Eq. (6.86) whose form
is known even on the nonperturbative domain. They are
determined by studies of meson properties (Burden et
al., 1996; Roberts, 1996; Maris and Roberts, 1998) and
exhibit behavior that is broadly consistent with that of
QCD’s n-point functions; viz., the ultraviolet power laws
are explicitly expressed but the logarithms are sup-
pressed in order to achieve a level of simplicity. Hence,
following the path described above, Hecht et al. (2001)
delivered a representation of the pion’s distribution
functions at an infrared resolving scale through the defi-
nitions

uT(x;Q0) = 3F{(x;Q0),  d7(x;Qp) = 18F;(x;0).
(6.91)

How should Egs. (6.91) be understood? Hecht et al.
(2001), interpreted the computation within the setting of
a rainbow-ladder DSE truncation. Hence, sea-quark
contributions are absent because they cannot appear
without nonperturbative dressing of the quark-gluon
vertex (Cloét and Roberts, 2008; Chang and Roberts,
2009; Chang et al., 2009). Thus, Egs. (6.91) describe
valence-quark distribution functions and one should
have

1 1
f dxuT(x;Q0)=1= f dxd™(x;Q,), (6.92)

0 0

viz., the 7" contains one and only one u-valence quark
and one d-valence quark. Note that one has (Ef(x;QO)
=u;7+(x;Q0)=d;T (x;Qy) in this calculation.

It is a deficiency of this and kindred calculations that
the model’s resolving scale is not determined a priori.
This can be overcome by calculating the moments of the
pion’s distribution via Eq. (6.33), in which case the re-
solving scale is identical to the renormalization point
used in computing the dressed Schwinger functions. The
cost of that approach, however, is a loss of direct knowl-
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FIG. 40. (Color online) Solid curve, pion’s valence-quark mo-
mentum distribution computed by Hecht er al. (2001). Dashed
curve, A(1-x)", with the parameters drawn from Eq. (6.97).

edge about the distribution’s pointwise evolution. Hecht
et al. (2001) choose Q so that the computed distribution,
when evolved to Qj=2 GeV using leading-order formu-
las, produced first and second moments in agreement
with those reported by Sutton et al. (1992). This yields*'
0y=0.54 GeV so that Eq. (6.92) is satisfied with a
valence-quark mass M=0.30 GeV =M (Q,).

It is apparent that this procedure views the distribu-
tions defined in Egs. (6.91) as infrared boundary-value
input for the valence-quark evolution equations. This is
strictly valid only if all nonperturbative corrections are
negligible for Q> Q,, a constraint whose faithful imple-
mentation would require Qy>1 GeV. On the other
hand, it might be an efficacious approximation as long as
a(Qy)?/(47%) <1. In this connection, it is notable that

a(Q)H47=0.017, Qy=0.54 GeV, (6.93)

whereas a(0.5Q)?/(47)=0.60. Plainly, there is a narrow
domain upon which this perspective may be reasonable.
This view mirrors that described in Sec. V.C. Further-
more, and significantly, these considerations do not af-
fect the pointwise behavior of the distribution function
at Qo.

The valence-quark distribution function computed by
Hecht et al. (2001) is shown in Fig. 40. From this form
one finds the momentum fraction carried by the valence
quarks, viz.,

1

(xq)50:0_54 GeV = J dxx[ug(x;Q0) + c],’f(x;Qo)] =0.72.
0

(6.94)

The remainder is carried by the gluons, namely, <x8>50
=0.28, which are invisible to the electromagnetic probe,
since the sea distribution is zero at Q,. The pion is a
bound state of finite extent formed through the ex-
change of dressed gluons between a dressed quark and
antiquark, and hence gluons are necessarily always
present. It is therefore plain that at no resolving scale

2The quantitative similarity between this and the mass scale
for LO evolution in Sec. V.C is noteworthy.
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could all the pion’s momentum be carried by the valence
quarks. For comparison, the parametrized valencelike
pion parton distributions of Gliick et al. (1999) yield a
gluon momentum fraction of? (x )Q =029 at Q,
=0.51 GeV. From Hecht er al. (2001), the second and
third moments are

3 aw
(X, 2 0p=054 Gev = 021.
(6.95)

The low moments are primarily determined by the
distribution function’s behavior at small x (see Sec.
VI.B.2). Sensitivity to the nature of QCD’s interaction is
found at large x, which corresponds to large relative mo-
mentum between the dressed quark and antiquark. Two
questions come immediately to mind, namely, what
should one expect for the x dependence of the distribu-
tion in Fig. 40 at large x and what truly constitutes the
large-x domain?

The first question is readily answered. In this case
Q%ESA%)CD, which corresponds to a scale whereat the
chiral-limit mass function is dropping rapidly but does
not yet exhibit the behavior associated with its truly
asymptotic momentum dependence: Q;=0.54 GeV does
not lie beyond the inflexion point of the chiral-limit mass
function (see Fig. 11). One would therefore anticipate
that, for x~1, u,(x;0¢=0.54 GeV)=(1-x)7, with n=2.
It was found by Hecht er al. (2001) that the distribution
in Fig. 40 is pointwise accurately interpolated by the
function

2
<xu+g‘l>50:o.54 Gev = 0.30,

xuT(x;00) = Ax"(1 — elx + yx)(1 —x)™ (6.96)
with the fit parameters taking the values
A €
! Y 7 (6.97)

11.24 143 2.44 254 1.90°

These parameters depend on Q and the value of 7, is
fully consistent with expectation.

The second question posed above can now also be
answered quantitatively using Eqgs. (6.96) and (6.97). The
dashed curve in Fig. 40 is the component of Eq. (6.96)
which dominates the x dependence of u; (x; Q) at “large
x.” On the domain

= {x|x > 0.86}, (6.98)
the dominant component agrees at the level of 20% or
better with the full curve. The extent of this domain
depends weakly on the mass scale Mp: it is a little larger
in a model with a smaller value of M, and the disagree-
ment increases to 37% at x=0.76

From Hecht er al. (2001), using leading-order evolu-
tion, the distribution in Fig. 40 is evolved to Q=2 and

22A novel perspective on the magnitude of a hadron’s gluon
momentum fraction is discussed by Chen et al. (2009a, 2009b)
and Ji (2009).
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FIG. 41. (Color online) Compilation of results for the

valence-u-quark distribution in the pion: solid curve, DSE re-
sult (Hecht et al., 2001); dotted-dashed curve, NJL model (see
Sec. VI.A.6); short-dashed curve, instanton model (Dorokhov
and Tomio, 2000); dash-dot-dotted curve, light-front
constituent-quark model (Frederico and Miller, 1994); squares,
Drell-Yan data presented by Conway et al. (1989); and long-
dashed curve, reanalysis of that Drell-Yan data described by
Wijesooriya et al. (2005), which is also shown in Fig. 18. All
calculations evolved at leading order to Qy=4.0 GeV using a
four-flavor value of Aqgcp=0.204 GeV, except that from Wije-
sooriya et al. (2005), which is reported at Qy=5.2 GeV.

4 GeV. The u-quark moments at the former scale are
presented in Table V and the curve at the latter scale is
presented in Fig. 16.

In Fig. 41 we display a compilation of results for the
valence-u-quark distribution in the pion. The elucida-
tion here explains why only the DSE prediction exhibits
behavior at large x that is consistent with the QCD par-
ton model [Eq. (6.84)] first derived by Ezawa (1974) and
Farrar and Jackson (1975). The discussion of Wije-
sooriya et al. (2005) and Sec. III.E shows that one cannot
draw firm conclusions about the large-x behavior of the
pion’s valence-quark distribution function from the
single extant /N Drell-Yan experiment (Conway et al.,
1989). The status of QCD as the strong-interaction piece
of the standard model will seriously be challenged if an
improved experiment, such as that canvassed in Wije-
sooriya et al. (2001), is also incompatible with Eq. (6.84).

Computations of the valence-quark distribution func-
tions in other mesons are underway (Nguyen, 2010;
Nguyen et al., 2010) using the DSE approach that suc-
cessfully predicted the pion’s electromagnetic form fac-
tor (Maris and Tandy, 2000a, 2000b). The impact of the
dressed-quark mass function on the ratio uf(x)/ uy (x) is
shown in Fig. 42. In comparison with the nonpointlike-
pion-regularized NJL result of Shigetani et al. (1993),
one finds that the momentum-dependent mass function
markedly affects the separate behaviors of u;(x) and
uX(x), especially on the valence-quark domain. How-
ever, the preliminary indication is that it does not mate-
rially affect the ratio, e.g.,
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FIG. 42. (Color online) Solid curve, preliminary Dyson-
Schwinger equation prediction for the ratio of kaon-to-pion
valence-quark distribution functions at Q=5 GeV, evolved at
leading order from the dashed curve, which is the DSE predic-
tion at Qy=0.57 GeV (Nguyen, 2010; Nguyen et al., 2010). Dot-
ted and dash-dotted curves, our reevaluation of uvK(x)/ uy (x)
using the model of Shigetani ez al. (1993); filled circles, the ratio
of kaon-to-pion Drell-Yan cross sections obtained from a
sample of dimuon events with invariant mass 4.1<M
<8.5 GeV (Badier et al., 1980); thin dashed line, the curve
ullf(x):uf(x); and thin dashed-dotted curve, fit to the data
given in Eq. (3.24).
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We anticipated a nonzero value for the ratio because, in
the neighborhood of x=1, the u-quark distribution
should have the same pointwise behavior in all pseudo-
scalar mesons. These features and predictions add addi-
tional emphasis to the need for a much improved mea-
surement of the kaon structure functions. Before
claiming understanding of QCD, it is crucial to verify
the predicted large-x behavior, especially those proper-
ties which are environment dependent and those which
are not.

The calculation of baryon valence-quark distribution
functions is also possible; e.g., using the Poincaré cova-
riant Faddeev equation described in Appendix B. This
approach capitalizes on the importance of scalar and
axial-vector diquark correlations within the nucleon. In
QCD these correlations are essentially nonpointlike
(Maris, 2004; Alexandrou et al., 2006). While no DSE
computations of the pointwise behavior of the nucleon
structure functions are yet available, based on the
diquark-correlation probabilities presented in Table II
of the DSE study of nucleon electromagnetic form fac-
tors described by Cloét et al. (2009) and the fact that the
ratio is a fixed-point under evolution, one can estimate

x—1 x—1

d(x)/u(x) = 0.12 = F;(x)/F5(x) = 0.36 (6.100)

[cf. Egs. (5.5), (6.6), and (6.46) and Figs. 10, 28, and 35].
In addition, the nonzero value highlights the important
role of axial-vector diquark correlations: they enable a
truly valence d quark to carry the proton’s helicity,
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which is impossible if scalar diquarks are the only corre-
lations present in the proton’s Faddeev amplitude.

VII. PERSPECTIVE AND PROSPECTS

Understanding the physics of hadrons on the valence-
quark domain is a definitive task for hadron physics. In-
deed, a given hadron is defined by its flavor content and
that is a valence-quark property. While significant con-
tinuing and new investments in experiment and theory
are required in order to acquire this understanding, the
potential rewards are great. For example, this informa-
tion is essential to both an elucidation of the standard
model and the provision of reliable parton distribution
functions for use in the analysis of large collider
experiments—our best tool for uncovering phenomena
outside this paradigm.

We have highlighted numerous outstanding and unre-
solved challenges in the valence region, which experi-
ments must confront. Important among them are the x
>(.8 region of the nucleon and the pion, and the kaon
distribution function. The upgraded Jefferson Labora-
tory facility is well suited to provide new data for the
valence region in the nucleon from both inclusive and
semi-inclusive deep inelastic scattering. Moreover, a fu-
ture electron-ion collider could provide crucial new data
for both mesons and nucleons. There is also great poten-
tial in using Drell-Yan interactions, at FNAL, CERN,
J-PARC, and GSI, to push into the large-x domain for
mesons and nucleons.

The challenges for theory are exciting and equally
great. The valence-quark domain is the purview of non-
perturbative methods in QCD. Hence, true understand-
ing, in contrast to modeling and parametrization as a
simple means of identifying and highlighting key fea-
tures, requires a widespread acceptance of the need to
adapt theory: to the lessons learnt already from the
methods of nonperturbative quantum-field theory and a
fuller exploitation of those methods. Thus, before an
elucidation of hadron structure can be achieved, theory
must accept the most conspicuous of QCD’s challenges.
The standard model will not otherwise be solved.

Note added in proof. After this manuscript was sub-
mitted, a new analysis of extant data on the pion-
nucleon Drell-Yan process was performed, which in-
cluded, for the first time, next-to-leading logarithmic
resummation effects (Aicher et al., 2010). As a result, a
considerably softer pion u-valence distribution is ob-
tained at high x, in line with predictions of perturbative
QCD and Dyson-Schwinger equations.
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APPENDIX A: LIGHT-FRONT CONVENTIONS

Unless otherwise specified, we use the following light-
front notation:

=00+, ¢=0-0, ¢ =0, (A.1)

where €# is any quantity that transforms as a contravari-
ant four-vector. Naturally, £,=¢ and €>=¢*¢"—€,-€,.
It follows that

f d¢—1 J de-derde .

The spinor describing a spin-% hadron is orthonormal-
ized according to

a(p' N u(p,\) =2p*2m)38,,. dp’ —p) &' —p.).
(A.3)

(A.2)

where N\, N\’ are helicities.

If one considers a particle’s momentum, then k*=0 in
the light-front frame. Hence, the only way to make a
zero-momentum Fock state is for every particle it con-
tains to have k*=0. Although this defines a set of mea-
sure zero in the light-front phase space, such states can-
not casually be discarded because operators exist which
are singular at k*=0. For example, to throw away these
states is, perhaps, to preclude dynamical chiral-
symmetry breaking, a keystone of nonperturbative QCD
and hadron physics.

APPENDIX B: DRESSED QUARKS, THE FADDEEV
EQUATION, AND THE CURRENT

When emphasizing dressed-quark degrees of freedom
it is now natural to describe baryons using a Poincaré
covariant Faddeev equation. This approach sits squarely
within the ambit of the application of Dyson-Schwinger
equations (DSEs) in QCD (Roberts and Schmidt, 2000;
Maris and Roberts, 2003; Roberts et al., 2007).

One arrives at the Faddeev equation by noticing that
in quantum-field theory a nucleon appears as a pole in a
six-point quark Green’s function. The pole’s residue is
proportional to the nucleon’s Faddeev amplitude, which
is obtained from a Poincaré covariant Faddeev equation
that sums all possible exchanges and interactions that
can take place between three dressed quarks. A trac-
table Faddeev equation for baryons was formulated by
Cahill er al. (1989). Shown in Fig. 43, it is founded on the
observation that an interaction which describes color-
singlet mesons also generates quark-quark (diquark)

correlations in the color-3 (antitriplet) channel (Cahill et
al., 1987).

The dominant correlations for ground-state octet and
decuplet baryons are scalar (0*) and axial-vector (1) di-
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FIG. 43. Poincaré covariant Faddeev equation. V¥ is the Fad-
deev amplitude for a nucleon of total momentum P=p,+p,. It
expresses the relative-momentum correlation between the
dressed quark and diquarks within the nucleon. The shaded
region demarcates the kernel of the Faddeev equation, in
which the single line denotes the dressed-quark propagator; I'
is the diquark Bethe-Salpeter-like amplitude; and the double
line is the diquark propagator. [Full explanation provided in
Appendix A of Cloét et al. (2009), from which this figure is
adapted.]

quarks because, for example, the associated mass scales
are smaller than the baryons’ masses (Burden et al,
1997; Maris, 2002), namely (in GeV),

m[ud]w =0.7- 08,

(B1)
M)+ = Mud),+ = Mdd),+ = 0.9-1.0.

While diquarks do not appear in the strong-interaction
spectrum [see, e.g., Bender et al. (1996, 2002) and
Bhagwat et al. (2004)], the attraction between quarks in
this channel justifies a picture of baryons in which two

quarks are always correlated as a color-3 diquark
pseudoparticle, and binding is effected by the iterated
exchange of roles between the bystander and diquark-
participant quarks.

The kernel of the Faddeev equation is completed by
specifying that the quarks are dressed, with two of the

three dressed quarks correlated always as a color-3 di-
quark. As shown in Fig. 43, binding is then effected by
the iterated exchange of roles between the bystander
and diquark-participant quarks. The Faddeev equation
yields the nucleon’s mass and amplitude.

In order to calculate nucleon distribution functions
one must know the manner in which the nucleon de-
scribed by the Faddeev equation couples to a photon.
This is derived in Oettel et al. (2000) and shown in Fig.
44. Naturally, the current depends on the electromag-
netic properties of the diquark correlations. A detailed
explanation of the diagrams in Fig. 44 is presented in
Appendix C of Cloét et al. (2009). Here we only provide
a brief explanation.

Diagram 1 represents the photon coupling directly to
the bystander quark. It is a necessary condition for cur-
rent conservation that the quark-photon vertex satisfies
the Ward-Takahashi identity. Since the quark is dressed,
the vertex is not bare. It can be obtained by solving an
inhomogeneous Bethe-Salpeter equation.

Diagram 2 depicts the photon coupling directly to a
diquark correlation. Naturally, the diquark propagators
match the line to which they are attached. Moreover, the
interaction vertices satisfy Ward-Takahashi identities
and obey QCD constraints.



3040 Roy J. Holt and Craig D. Roberts: Nucleon and pion distribution functions in ...

FIG. 44. Vertex which ensures a conserved current for on-shell
nucleons described by the Faddeev amplitudes W; ; obtained
from the Faddeev equation shown in Fig. 43. The single line
represents the dressed-quark propagator; the double line, the
diquark propagator; and I is the diquark Bethe-Salpeter am-
plitude. The remaining vertices are described in the text: the
top-left image is diagram 1, the top right, diagram 2 etc., with
the bottom-right image, diagram 6. In connection with DIS,
the photon line is equated with a zero-momentum insertion.
[A full explanation of the diagrams depicted here is provided
in Appendix C of Cloét ef al. (2009), from which this figure is
adapted.]

Diagram 3 shows a photon coupling to the quark that
is exchanged as one diquark breaks up and another is
formed. It is a two-loop diagram. It is noteworthy that
the process of quark exchange provides the attraction
necessary in the Faddeev equation to bind the nucleon.
It also guarantees that the Faddeev amplitude has the
correct antisymmetry under the exchange of any two
dressed quarks. This key feature is absent in models
with elementary (noncomposite) diquarks.

Diagram 4 differs from Diagram 2 in expressing the
contribution to the nucleons’ form factors owing to an
electromagnetically induced transition between scalar
and axial-vector diquarks. This transition vertex is a
rank-2 pseudotensor, kindred, e.g., to the matrix element
describing the py*7” transition (Maris and Tandy, 2002).

Diagrams 5 and 6 are the so-called “seagull” terms,
which appear as partners to diagram 3 and arise because
binding in the Faddeev equations is effected by the ex-
change of a dressed quark between nonpointlike diquark
correlations (Oettel et al., 2000). The new elements in
these diagrams are the couplings of a photon to two
dressed quarks as they either separate from (diagram 5)
or combine to form (diagram 6) a diquark correlation.
As such they are components of the five point Schwinger
function which describes the coupling of a photon to the
quark-quark scattering kernel. These terms vanish if the
diquark correlation is represented by a momentum-
independent Bethe-Salpeter-like amplitude; i.e., the di-
quark is pointlike.
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