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The main theme of this review is the many-body physics of vortices in quantum droplets of bosons or
fermions in the limit of small particle numbers. Systems of interest include cold atoms in traps as well
as electrons confined in quantum dots. When set to rotate, these in principle different quantum
systems show remarkable analogies. The topics reviewed include the structure of the finite rotating
many-body state, universality of vortex formation and localization of vortices in both bosonic and
fermionic systems, and the emergence of particle-vortex composites in the quantum Hall regime. An
overview of the computational many-body techniques sets focus on the configuration-interaction and
density-functional methods. Studies of quantum droplets with one or several particle components,
where vortices as well as coreless vortices may occur, are reviewed, and theoretical as well as
experimental challenges are discussed.
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I. INTRODUCTION

In recent years, advances in experimental methods in
quantum optics as well as semiconductor physics have
made it possible to create confined quantum droplets of
particles and to manipulate them with unprecedented
control. Bose-Einstein condensates of ultracold atomic
gases, for example, may be set rotating either by rotating
the trap or by “stirring” the cold atoms with lasers.
These clouds of bosons are large in present day experi-
ments, but the regime of few-particle bosonic droplets
ultimately may be reached. Confined electron droplets,
on the other hand, are nowadays routinely realized as
low-dimensional nanostructured quantum dots in semi-
conductors, where the droplet size and its angular mo-
mentum can be accurately fixed by an external voltage
bias and a magnetic field, respectively. A bosonic atom
cloud in a trap and electrons confined in quantum dots
are different systems by nature. However, when set to
rotate, their microscopic properties show remarkable
analogies. While quantum dots are usually quasi-two-
dimensional due to the semiconductor heterostructure,
the dimensionality is reduced also in a trapped rapidly
rotating atom gas due to the centrifugal force, which
flattens the cloud of atoms.

The structure of a quantum state describing a rotating
droplet fundamentally reflects how the system carries
angular momentum. Intriguingly, some of the underlying
mechanisms appear universal in two-dimensional �2D�

systems regardless of the particle statistics, wave-
function symmetries, and the form of the interparticle
interaction. For example, both bosonic and fermionic
droplets show formation of vortices in the droplet with
increasing angular momentum. Eventually, in the regime
of rapid rotation, finite-size precursors of fractional
quantum Hall states with particle-vortex composites are
predicted to emerge similarly in both bosonic and fermi-
onic systems. Due to these universalities in the structure
of the quasi-two-dimensional many-body state, rotating
quantum droplets can often be described theoretically
by similar concepts and analogous vocabulary. These
analogies are the main theme of this review, where bo-
son and fermion systems are treated in parallel and simi-
larities and differences between these systems are exten-
sively discussed.

Despite the close connection between rotating cold
atom gases and electrons in nanostructured quantum
systems in solids, research efforts in these fields have
advanced mostly independently of each other. In this
review we highlight the similarities between these fields,
with the hope that it may inspire further studies on ro-
tating quantum systems where complex and sometimes
unexpected phenomena emerge.

A. Finite quantum liquids in traps

Confining elementary particles or indistinguishable
composite particles, such as atoms, by cavities or exter-
nal potentials at low temperatures, one may create
finite-size quantum systems with particle numbers rang-
ing from just a few to millions. Cold atomic quantum
gases in traps and lattices, photons in cavities, and elec-
trons confined in low-dimensional semiconductor nano-
structures are well-known examples.

1. Atoms in traps

Bose and Einstein predicted already in the 1920s the
condensation of an ideal gas of bosonic particles into a
single coherent quantum state �Bose, 1924; Einstein,
1924, 1925�. Apart from strongly interacting systems
such as liquid helium, the experimental discovery of this
phenomenon had to wait many decades, until advances
in cooling and trapping techniques for dilute atomic
gases finally made possible the observation of Bose-
Einstein condensation �BEC� in a cloud of cold bosonic
alkali atoms �Anderson et al., 1995; Davis, Mewes, An-
drews, et al., 1995; Davis, Mewes, Joffe, et al., 1995; En-
sher et al., 1996; Cornell and Wieman, 2002; Ketterle,
2002�. These celebrated experiments clearly marked a
new era in quantum physics combining the fields of
quantum optics, condensed matter physics, and atomic
physics. For the physics of BEC, see the review article
by Leggett �2001� as well as Dalfovo et al. �1999�, Ingus-
cio et al. �1999�, Pethick and Smith �2002�, Pitaevskii and
Stringari �2003�, and Leggett �2006�.

A BEC can be set rotating not only by rotating the
trap but also by stirring the bosonic droplet with lasers
�Chevy et al., 2000; Madison et al., 2000, 2001;
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Abo-Shaeer et al., 2001� or by evaporating atoms �Hal-
jan et al., 2001; Engels et al., 2002, 2003� �see the discus-
sion in the recent review by Fetter �2009��. A weakly
interacting dilute system becomes effectively two dimen-
sional when set rotating, making a description in the
lowest Landau level possible. We mainly restrict our
analysis of BECs in this review to this limit of quasi-two-
dimensional droplets of atoms.

Recently superfluid states have also been realized for
trapped fermionic atoms, where fermion pairing or mol-
ecule formation can occur in two distinct regimes de-
pending on the atomic interaction strength. Pairing can
take place in real space via molecule formation and
these composite bosons may then show Bose-Einstein
condensation �Greiner et al., 2003; Jochim et al., 2003;
Regal et al., 2004; Zwierlein et al., 2004�. Pairing can also
occur in momentum space via formation of correlated
Cooper pairs and the superfluid state would be analo-
gous to the Bardeen-Cooper-Schrieffer �BCS� type of a
superconducting state �Zwierlein et al., 2005; Chin et al.,
2006�. This is a relatively novel field and not treated
here; part of it has been reviewed by Bloch et al. �2008�
and Giorgini et al. �2008�.

2. Electrons in low-dimensional quantum dots

Quantum dots are man-made nanoscale droplets of
electrons trapped in all spatial directions. As they show
typical properties of atomic systems, such as shell struc-
ture and discrete energy levels, they are often referred
to as artificial atoms �Ashoori, 1996�. Electron numbers
in quantum dots may reach thousands. Quantum dots
are often fabricated in semiconductor materials, but the
use of graphene has also been proposed �Trauzettel et
al., 2007; Wunsch et al., 2008�. These nanostructured fi-
nite fermion systems have been studied extensively for
two decades. Several reviews discussing the quantum
transport through quantum dots �van der Wiel et al.,
2003�, electronic structure �Reimann and Manninen,
2002�, the role of symmetry breaking and correlation
�Yannouleas and Landman, 2007�, as well as spin in con-
nection with quantum computing �Cerletti et al., 2005;
Coish and Loss, 2007; Hanson et al., 2007� were pub-
lished.

The semiconductor quantum dots discussed here are
of either lateral or vertical type. In a lateral device the
electrons in a two-dimensional electron gas are trapped
by external electrodes, while vertical dots are formed by,
e.g., etching out a pillar from a wafer containing a het-
erostructure. In both cases the motion of electrons is
restricted into a thin disk, with a typical radius of few
tens up to hundred nanometers, and a thickness that is
often an order of magnitude smaller. Electrons in quan-
tum dots can be set rotating by external magnetic fields
perpendicular to the plane of motion. Other stirring
mechanisms have also been proposed, e.g., rotation in
the electric field of laser pulses �Räsänen et al., 2007�.
Due to the band structure of the underlying semicon-
ductor material, magnetic field strengths giving rise to
transitions in the electronic structure of quantum dots

are orders of magnitude lower than in real atomic sys-
tems and attainable in laboratories. Much of the infor-
mation about the electronic structure must be extracted
from electron transport measurements �Oosterkamp et
al., 1999�. Direct imaging methods of electron densities
in quantum dots have also been attempted, see, for ex-
ample, Fallahi et al. �2005� and Dial et al. �2007� but not
yet proven equally useful in this context.

Quantum dots in external magnetic fields have a close
connection to quantum Hall systems, the main differ-
ence being that the quantum Hall effect is measured in a
sample of the two-dimensional electron gas �2DEG�,
which is often modeled as an infinite system. Quantum
dots, however, are finite-size many-body systems. At
strong magnetic fields, where electrons occupy only the
lowest Landau level, they are thus often referred to as
“quantum Hall droplets” �Oaknin et al., 1995; Yang and
MacDonald, 2002�. Many concepts familiar from the
theory of the quantum Hall effect, such as the Landau
level filling factor, can be generalized for these finite-size
droplets �Kinaret et al., 1992; Reimann and Manninen,
2002�. However, due to the presence of the external con-
fining potential in quantum dots, the analogy to quan-
tum Hall states in the infinite 2DEG is not exact and
edge effects play an important role �Cooper, 2008; Vief-
ers, 2008�.

B. Vortex formation in rotating quantum liquids

The formation of vortices in a liquid that is set to
rotate is often a result of turbulent flow. In the epic
poem “The Odyssey,” Homer described Ulysses’ en-
counter with Charybdis, a monster-goddess who sucked
sea water and created a giant whirlpool �Homer, 8th cen-
tury B.C.�. This early account of vortex dynamics is strik-
ingly accurate in identifying the characteristics of vorti-
ces, namely, the rotating current of the whirlpool and the
cavity at the center of the vortex which engulfed the
ships sailing nearby. Homer’s description may well be
illustrated by other examples of more harmless vortices,
such as whirlpools in bathtubs where water is draining
out �Andersen et al., 2003�. Other well-known examples
of vortices in air include tornadoes or wake vortices cre-
ated by an airplane wing �Figs. 1�a� and 1�b��.

Vortices are also ubiquitous in quantum-mechanical
systems under rotation �see Figs. 1�c�–1�e��. It is well
known that the magnetic field in type-II superconduct-
ors penetrates through vortex lines �Tinkham, 2004�; see
Fig. 1�c�. Superfluid 4He is another example where vor-
tices may form in a strongly interacting bosonic quan-
tum fluid �Williams and Packard, 1974; Yarmchuk et al.,
1979; Yarmchuk and Packard, 1982�. �See also the early
work by Onsager �1949�, London �1954�, and Feynman
�1955� and, for example, Donnelly �1991�.� Vortices ap-
pear as a general phenomenon in Bose as well as in
Fermi systems with high as well as low particle density.
They may emerge for short-range interactions between
the particles, as in condensates of neutral atoms �as
shown in Fig. 1�d� for a rotating Bose-Einstein conden-
sate of 87Rb atoms� or, perhaps more surprisingly, even
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in electron systems with long-range Coulomb repulsion,
see Fig. 1�e� showing the vortices in a quantum dot at a
strong magnetic field.

1. Vortices in Bose-Einstein condensates

For vortices in rotating Bose-Einstein condensates,
early theoretical descriptions have focused on the
Thomas-Fermi regime of strong interactions, see, for ex-
ample, Rokhsar �1997�, Feder et al. �1999a, 1999b�,
García-Ripoll and Pérez-García �1999�, and Svidzinsky
and Fetter �2000�, as well as weak interactions �Butts
and Rokhsar, 1999; Mottelson, 1999; Kavoulakis et al.,
2000�. Baym and Pethick �1996� treated vortex lines in
terms of the Gross-Pitaevskii approach and later on also
discussed the transition to the lowest Landau level when
the rotation frequency was increased �Baym and
Pethick, 2004�.

Intense experimental research efforts were made to
observe vortices in rotating clouds of bosonic atoms, see,
e.g., the early experimental work by Matthews et al.
�1999�, as well as Madison et al. �2000�, Abo-Shaeer et al.
�2001�, Engels et al. �2002, 2003�, and Schweikhard et al.
�2004�. For recent reviews, see Bloch et al. �2008� as well
as Fetter �2009�.

In weakly interacting and dilute systems, an effective
reduction of dimensionality can, for example, be caused
by rotation as a simple consequence of the increase in
angular momentum. Due to the reduction in dimension-
ality, phase singularities, i.e., nodes in the wave func-
tions, become important.

With increasing angular momentum, one finds succes-
sive transitions between patterns of singly quantized vor-
tices arranged in regular arrays. In finite-size systems,

so-called “vortex molecules” are formed, in much anal-
ogy to finite-size superconductors �Milošević and
Peeters, 2003�.

There exist many analogies of a rotating cloud of
bosonic atoms with �fractional� quantum Hall physics
�Wilkin et al., 1998; Cooper and Wilkin, 1999; Viefers et
al., 2000; Ho, 2001�. This in fact may also give important
theoretical insights into the regime of extreme rotation
which has not yet been achieved experimentally. �For
related reviews, see Cooper �2008�, Viefers �2008�, and
Fetter �2009�.�

2. Vortices in quantum Hall droplets

Vortices have been an integral part of the theory of
quantum Hall states in the 2D electron gas since the
proposal of the Laughlin state �Laughlin, 1983�. They
also emerge in quantum dots �Saarikoski et al., 2004;
Toreblad et al., 2004� at strong magnetic fields, and close
connections of these vortices to those that can be found
in rotating bosonic systems have been established �Tore-
blad et al., 2004, 2006; Manninen et al., 2005; Borgh et al.,
2008�. The vortex patterns in quantum dots depend on
the strength of the external magnetic field and on intri-
cate details of particle interactions �Saarikoski et al.,
2004; Tavernier et al., 2004�.

In the regime of slow rotation, vortices �except those
originating from the Pauli principle� are not bound to
particles and form charge deficiencies in the density dis-
tribution, which may localize to structures in the particle
and current densities that resemble the aforementioned
vortex molecules or regular vortex arrays in rotating
Bose-Einstein condensates �Saarikoski et al., 2004; Saari-
koski, Reimann, et al., 2005; Manninen et al., 2005�. The
emergence of vortices that carry the angular momentum
of the droplet is manifest in the structure of the many-
body states. For fermions they may be described as hole-
like quasiparticles �Manninen et al., 2005�. When the
number of vortices increases with the angular momen-
tum, the electrons and vortices may form composites
well known from the theory of the fractional quantum
Hall effect, see, for example, Jain �1989� or Viefers
�2008�.

3. Quantum Hall regime in bosonic condensates

In quantum dots, the fractional quantum Hall regime
with a high vortex density can be readily attained at high
magnetic fields. For the case of rotating cold atom con-
densates, despite extensive experimental studies �Cod-
dington et al., 2003; Schweikhard et al., 2004�, this regime
of extreme rotation is not yet within easy reach. Re-
cently, however, it was suggested to exploit the equiva-
lence of the Lorentz and the Coriolis force to realize
“synthetic” magnetic fields in rotating neutral systems,
which could be an important step forward in the efforts
to realize BECs at extreme rotation �Lin et al., 2009�. To
date experiments with rotating BECs are only able to
access states where the number of vortices is relatively
small compared to the number of particles �Matthews
et al., 1999; Madison et al., 2000; Abo-Shaeer et al., 2001;

FIG. 1. Examples of vortices and vortex lattices. Vortices are
ubiquitous in both classical and quantum systems: �a� classical
whirlpool vortex �Andersen et al., 2003�, �b� wake vortex of a
passing airplane wing, revealed by colored smoke �NASA Lan-
gley Research Center, Figure ID: EL-1996-00130�, �c� STM im-
age of an Abrikosov vortex lattice �Abrikosov, 1957� in a
type-II superconductor �Hess et al., 1989�, �d� vortex lattice in a
rotating Bose-Einstein condensate of 87Rb atoms �adapted
from Coddington et al. �2004��, �e� cluster of vortices in the
calculated electron density of a 24-electron quantum dot, after
Saarikoski et al. �2004�. In �c�–�e�, the vortices appear as
“holes” in the particle density.
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Engels et al., 2002, 2003; Schweikhard et al., 2004; Fetter,
2009�. A high vortex density creates a highly correlated
state. Counterparts of typical quantum Hall states, such
as the bosonic Laughlin state and other incompressible
states, as well as states having non-Abelian particle ex-
citations, are predicted to emerge �Wilkin et al., 1998;
Cooper and Wilkin, 1999; Viefers, 2008; Lin et al., 2009�.
Compared to the quantum Hall systems in the 2D elec-
tron gas, rotating cold-atom condensates offer a high
level of tunability since particle interactions and trap ge-
ometries can be modified. This makes bosonic quantum
Hall states an extremely interesting field of research
�Cooper, 2008; Viefers, 2008�.

4. Self-bound droplets

A common feature of all the systems discussed above
is that the particles are bound by an external confine-
ment, which often can be approximated to be harmonic.
Nuclei, helium droplets, and atomic clusters provide
other interesting finite quantum systems where rota-
tional states have been studied. These systems are self-
bound due to attractive interactions between �at least
some of� the components.

Rotational states, shape deformations, and fission of
self-bound droplets are interesting topics in their own
right. However, while in a harmonic confinement the fast
rotation causes the droplet to flatten into a quasi-two-
dimensional circular disk, this is usually not the case in
self-bound clusters, where the rotation can be accompa-
nied with a noncircular deformation, often a two-lobed
or even more complicated shape �Hill and Eaves, 2008�.
Eventually this can lead to a fission of the droplet to
smaller fragments, preventing the occurrence of very
large angular momenta and vortex formation. In the
case of nuclei, the rotational spectrum is usually related
to deformation �Bohr and Mottelson, 1975�. In fact, the
possibility of vortexlike excitations has also been dis-
cussed, see Fowler et al. �1985� and Brink and Broglia
�2005�, and nuclear matter is expected to carry vortices
in neutron stars �Baym et al., 1969; Link, 2003; Avo-
gadro et al., 2007�.

The only small self-bound system where vortices are
likely to occur is a helium droplet. Grisenti and Toennies
�2003� indicated that anomalies in their cluster beam ex-
periments could be caused by vortex formation. How-
ever, no clear experimental evidence of vortex formation
in small helium droplets has yet emerged, while theoret-
ical studies suggest that vortices form in 4He nanodrop-
lets �Mayol et al., 2001; Lehmann and Schmied, 2003;
Sola et al., 2007�. The properties of helium nanodroplets
were reviewed by Barranco et al. �2006�.

C. About this review

The main concern of this review are the structural
properties of the many-body states of small two-
dimensional quantum droplets, where rotation induces
strong correlations and vortex formation. The direct
connections between bosonic and fermionic systems as

well as finite-size quantum droplets and infinite quantum
Hall systems are recurrent themes. Other reviews
complement our work by taking different approaches:
we refer to Fetter �2009� for a review of rotating BECs
especially in the regime which is accessible with present
day experimental setups and to Viefers �2008� for a re-
view which focuses on the quantum Hall physics in ro-
tating BECs. Another review by Cooper �2008� de-
scribes rotating atomic gases in both the mean-field and
strongly correlated regimes. A review on the many-body
phenomena and correlations in dilute ultracold gases
that also discusses rotation was given by Bloch et al.
�2008�.

Quantum dot physics is a versatile field. We refer to
Reimann and Manninen �2002� and Yannouleas and
Landman �2007� as well as van der Wiel et al. �2003� and
Hanson et al. �2007� for reviews on the electronic struc-
ture and spin-related phenomena. Vortices in supercon-
ducting quantum dots have also been much discussed
but are not treated here. We instead refer the interested
reader to recent articles by Baelus et al. �2001, 2004�,
Baelus and Peeters �2002�, and Grigorieva et al. �2006�.

We begin this review in Sec. II by introducing basic
concepts to characterize the many-body states of rotat-
ing systems. Section III discusses some of the computa-
tional many-body methods used. Section IV discusses
vortex formation in rotating quantum liquids which are
composed of one type of particles �or one spin compo-
nent�, while Sec. V is concerned with coreless vortices in
multicomponent systems. We conclude the review and
discuss possible future challenges in Sec. VI.

Unless stated otherwise, equations are presented in SI
units, whereas most results of calculations are in atomic
units.

II. MANY-BODY WAVE FUNCTION

In the following, we describe concepts and methods to
analyze the internal structure of the many-body states,
such as pair-correlation functions and conditional prob-
abilities. We then proceed to show the connections be-
tween boson and fermion states, and particle-hole dual-
ity that treats vortices as holelike quasiparticles. We
finally give an overview of the connections to the quan-
tum Hall physics in the �infinite� two-dimensional elec-
tron gas.

A. Model Hamiltonian

1. Rotating quantum droplets of bosons

Clouds of bosonic condensates are usually confined by
a harmonic trap that extends in all three spatial dimen-
sions. An axisymmetric rotation with frequency � leads
to centrifugal forces which flatten the density by extend-
ing the radial size of the system, while the cloud con-
tracts in the axial direction. The ratio between the axial
thickness Rz and radial thickness R� of the rotating
cloud, i.e., the aspect ratio, can be calculated within the
Thomas-Fermi approximation �Fetter, 2009�
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Rz

R�

=
���

2 −�2

�z
, �1�

where �z and �� are the radial and axial trapping fre-
quencies, respectively. Imaging of the condensate �Ra-
man et al., 2001; Schweikhard et al., 2004� confirms that
the rotation reduces the aspect ratio effectively.

One conveniently introduces a rotating frame at the
angular velocity �, in which the Hamiltonian contains
an extra inertial term −�L, where L is the total angular
momentum operator. In the case of circular symmetry of
the 2D system, for its rotation around the z axis, the
angular momentum operator L=Lz commutes with the
Hamiltonian. We may write

H� = H −�Lz, �2�

where the many-body Hamiltonian is

H = �
i=1

N � pi
2

2m
+ Vext�ri�� + �

i�j
V�2��ri − rj� . �3�

Here Vext is the trapping potential that is usually har-
monic with oscillator frequency �,

Vext = 1
2m�2r2, �4�

and V�2� is the two-body interaction between the trapped
atoms.

The ground states of the Hamiltonian �2� are then an-
gular momentum eigenstates of the Hamiltonian �3�
which have the lowest energy at some finite frequency of
rotation �.

The effective interaction between the bosons is often
assumed to be a contact interaction of zero range,

V�2��ri − rj� =
1
2

g�
i�j
��ri − rj� , �5�

where g=4��2a /M, with atom mass M and a being the
scattering length for elastic s-wave collisions between
the atoms. In the regime of weak interactions, gn���,
where n is the particle density and �� is the quantum
energy of the confining potential. In a rotating system,
the problem becomes effectively two dimensional when
gn is much smaller than the energy difference between
the ground and first excited states for motion along the z
axis.

The single-particle energies of the two-dimensional
harmonic oscillator are 	=���2n+ 	m	+1�, where n is the
radial quantum number and m is the single-particle an-
gular momentum. In a noninteracting rotating many-
particle system, consequently, the lowest-energy configu-
ration is characterized by quantum numbers n=0 and
0
m
L, where m has the same sign as the angular
momentum L. This single-particle basis is identical to
the lowest Landau level �LLL� at strong magnetic fields.
In this subspace, a configuration can be denoted by the
Fock state 	n0n1n2¯nm¯nL
, where ni is the �here
bosonic� occupation number for the single-particle state
with angular momentum m, and m=L is the largest
single-particle angular momentum that can be included

in the basis. As the angular momentum L is a good
quantum number, we have the restriction �mmnm=L.

For a harmonic trap, there is a large degeneracy in the
absence of interactions, which originates from the many
different ways to distribute the N bosons on the basis
states with 0
m
L �Wilkin et al., 1998; Mottelson,
1999�. Interactions break this degeneracy, and a particu-
lar state can be selected at a given L that minimizes the
interaction energy. With reference back to the nuclear
physics terminology, the highest angular momentum
state at a given energy is called the yrast state �Grover,
1967; Bohr and Mottelson, 1975�, the name originating
from the Swedish word for “the most dizzy.” The line
connecting the lowest energy states in the energy-
angular momentum diagram is consequently called the
yrast line.

For interacting particles, the yrast line is a nonmono-
tonic function of the angular momentum. At angular
momenta corresponding to the ground states at a certain
trap rotation frequency �, it shows pronounced cusps
reflecting the vortex structures of the system, as it will
become clear later on.

2. Electron droplet in a magnetic field

We focus here on droplets of electrons trapped in a
quasi-two-dimensional quantum dot �Reimann and
Manninen, 2002�. The spatial thickness of the confined
electron droplet is of the order of nanometers for typical
quantum dot samples. Electrons in quantum dots are set
rotating, not by mechanical stirring but instead by apply-
ing an external magnetic field perpendicular to the dot
surface �i.e., along the z axis� quite analogously to the
circular motion in a cyclotron.

A droplet of electrons in a quantum dot can be mod-
eled using an effective-mass Hamiltonian in the x-y
plane,

H = ��
i=1

N
�− i��i + eA�2

2m*
+ Vext�ri�� +

e2

4�	�i�j

1

rij
, �6�

where N is the number of electrons, m� and 	 are the
effective mass and dielectric constant of the semiconduc-
tor material, A is the vector potential of the magnetic
field, B=��A, and the Zeeman term has been omitted.
The external confining potential Vext is usually parabolic
to a good accuracy �Matagne et al., 2002�. The single-
particle states in the external harmonic potential Eq. �4�
are known as Fock-Darwin states �Fock, 1928; Darwin,
1931�. At strong magnetic fields the magnetic confine-
ment dominates over the electric confinement, and the
Fock-Darwin states bunch to Landau levels, as de-
scribed above for the case of rotation. The LLL is then
the most important subspace for ground-state properties
of the system.

Using a symmetric gauge A=B�yêx−xêy� /2 the first
term in the Hamiltonian �6� can be expanded to give two
terms that are proportional to the magnetic field. The
diamagnetic term is scalar, �e2B2 /8m*��x2+y2�, and the
other, the paramagnetic term, is proportional to the z
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component of the angular momentum �e� /2m*i�Br��

= �e /2m*�BLz. The scalar term depends on the square
radius from the center of the droplet and describes the
squeezing effect of the magnetic field. The latter term
lowers the energy of the states that circulate in the di-
rection of the cyclotron motion and favors alignment of
the magnetic moment parallel to the external magnetic
field. By combining the diamagnetic term in the Hamil-
tonian �6� with the external confining potential and writ-
ing the paramagnetic term as �e /2m*�BLz=�Lz, we see
directly that, except for the Zeeman term and the type
of interparticle interactions, the Hamiltonian is exactly
the same as that for a rotating bosonic system �2�. The
rotation corresponds to a magnetic field strength of B
= �2m*� /e�êz in a weaker confinement Vext� = 1

2m*��0
2

−�2�r2. This constitutes a close analogy between sys-
tems in mechanical rotation and systems of charged par-
ticles in a perpendicular magnetic field.

3. Role of symmetry breaking

In the thermodynamic limit, mean-field theories incor-
porating order parameters can describe states with bro-
ken symmetries. However, the exact wave function of
the many-body system must always preserve the under-
lying symmetry of the Hamiltonian.

Construction of a symmetry-broken state and a subse-
quent restoration of symmetry has been proposed to
construct wave functions in rotating, correlated many-
particle systems �Yannouleas and Landman, 2007�. By
construction, this approach focuses on the role of par-
ticle ordering in the confining trap potential. On the
other hand, small perturbations in the symmetric poten-
tials can be used to probe the internal structure of the
many-body states. For vortices in small quantum drop-
lets, this may be achieved effectively using point pertur-
bations, or deforming the external field slightly �Saariko-
ski, Reimann, et al., 2005; Christensson, Borgh, et al.,
2008; Parke et al., 2008; Dagnino, Barberán, and Lewen-
stein, 2009; Dagnino et al., 2009�.

B. Vortices in the exact many-body wave function

Vortices in a complex-valued wave function are asso-
ciated with phase singularities. They are manifested
through a phase change of a multiple of 2� in every path
encircling the singularity. The phase is not defined at the
singularity, which means that the wave function must
vanish at this point. The particle deficiency in the vicin-
ity of the singularity gives rise to the vortex core. Differ-
ent types of phase singularities can be recognized: �i�
those which are related to the antisymmetry of the fer-
mion wave function, �ii� those which are largely indepen-
dent of particle positions and may be called isolated or
free vortices �and occur for bosonic as well as fermionic
systems in a rather similar way�, and �iii� those which are
attached to particles to form a bound system, i.e., a
“composite” particle.

1. Pauli vortices

Exchange of two identical, indistinguishable bosons or
fermions can change the wave function of the system at
most by a factor C= ±1 so that �� . . . ,ri , . . . ,rj , . . . �
=C�� . . . ,rj , . . . ,ri , . . . �. In the 2D plane, making two ex-
changes �with a total phase change of 2�� is equivalent
to rotating the particles in plane with respect to each
other. In the LLL this phase change implies that there is
a vortex attached to the electron �see Fig. 3�b��. This
vortex �related to the fermion antisymmetry� is called a
“Pauli vortex” �or, as in quantum chemistry, the “ex-
change hole”�. As a trivial consequence, a delta-
function-type interparticle interaction does not have any
effect on fermions with the same spin.

2. Off-particle vortices

Vortices that are not attached to any particles are
called “off-particle” vortices. These elementary excita-
tions may occur in boson as well as in fermion systems.

For the two-dimensional electron gas, off-particle vor-
tices have been studied in connection with the quantum
Hall effect, both for the bulk and in finite-size quantum
dots. The connection between the wave-function phase
and the vorticity in such systems can most easily be seen
by using the vector potential A�r� of the magnetic field
that couples to the momentum operator in the Hamil-
tonian �Eq. �6��. A finite magnetic field leads to an extra
phase change of 
�= �e /���A

BA�r� ·dr when the electron
moves from A to B. In a closed path in the 2D plane the
phase shift must be 2�l, where l is an integer, which
causes the magnetic field to penetrate the 2D plane as
vortices carrying magnetic flux quanta �0=h /e. The in-
teger l is called the winding number or vortex multiplic-
ity �l=0 means no vortex�.

3. Particle-vortex composites

When the total angular momentum and thus also the
number of vortices increases, the correlations favor the
attachment of additional vortices to the particles. This is
well established in the 2DEG, where it leads to
Laughlin-type quantum Hall states at high magnetic
fields. These states are discussed in Sec. II.E. Analogous
Laughlin states are predicted to also form in rotating
bosonic systems �Wilkin et al., 1998; Cooper and Wilkin,
1999; Wilkin and Gunn, 2000; Cooper et al., 2001�. In
general, the wave-function antisymmetry requires that
fermions must have an odd number of vortices attached
to them, while bosons have an even number of vortices.

In multicomponent systems particle deficiency associ-
ated with off-particle vortices in one component may
attract particles of other components. In finite-size
quantum droplets this is usually energetically favorable.
The structures that form are called “coreless vortices”
since vortex cores are filled by another particle compo-
nent, but the singularities in the phase structure remain.
Coreless vortices will be analyzed further in Sec. V.
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C. Internal structure of the many-body states

The exact many-particle wave function is in many
cases known only as a numerical approximation, with
the complexity growing exponentially with the particle
number N. Its dimensionality must be reduced to allow
visualization of the correlations and phase structures
since symmetries of the underlying Hamiltonian often
hide the internal structures in the exact many-body
state. Thus, pair-correlation functions and reduced wave
functions are often applied. The former has been a stan-
dard tool in many-body physics for many years. The lat-
ter, on the other hand, is more suitable to visualize the
phase structure of the wave function and its singularities.

1. Conditional probability densities

The pair-correlation function is a conditional prob-
ability density describing the probability of finding a par-
ticle at a position r when another particle is at a position
r�. For systems with only one kind of indistinguishable
particles, one may write

P�r,r�� = ��	n̂�r�n̂�r��	�


=
 	��r,r�,r3, . . . ,rN�	2dr3 ¯ drN, �7�

where 	�
 is the many-body state, n̂ is the density opera-
tor, and � is the many-body wave function. For particles
with spin �or another internal degree of freedom as, for
example, in the case of different particle components�,
labeled by an index �, the pair-correlation function is
correspondingly defined as

P�,���r,r�� = ��	n̂��r�n̂���r��	�
 , �8�

where n̂� and n̂�� are the density operators for the com-
ponents.

In a homogeneous system P depends only on the dis-
tance 	r−r�	 while in a finite system this is not the case.
Instead, one has to choose a reference point r� around
which the pair-correlation function may then be plotted
as a function of r. The details of the pair correlation in
finite systems are sensitive to the selection of this refer-
ence point. The inherent arbitrariness in choosing the
off-centered fixed point must be taken care of by sam-
pling over a range of values for r� to allow any reason-
able interpretation. Usually, a position that does not co-
incide with any symmetry point and where the density of
the system is at a maximum gives the most informative
plot. Note, however, that in fermion systems the pair
correlations at short distances are strongly dominated by
the exchange-correlation hole of the probe particle,
which may complicate the analysis.

2. One-body density matrix

The one-body reduced density matrix is defined as

n�1��r,r�� = ��	�̂†�r��̂�r��	�
 , �9�

where �̂† and �̂ are field operators �with given statistics�,
creating and annihilating a particle. The eigenfunctions
�i and eigenvalues ni of the density matrix are solutions
of


 dr�n�1��r,r���i
*�r�� = ni�i

*�r� . �10�

For a noninteracting system, the eigenfunctions are sim-
ply the single-particle wave functions, while the eigen-
values give the occupation numbers. For interacting
bosons, it is suggestive that the exact eigenstate corre-
sponding to the highest eigenvalue �n1� of the density
matrix plays the role of a “macroscopic wave function”
�order parameter� of the Bose condensate. This connec-
tion was established many decades ago in the context of
off-diagonal long-range order �Ginzburg and Landau,
1950; Landau and Lifshitz, 1951; Penrose, 1951; Penrose
and Onsager, 1956; Yang, 1962; Pethick and Smith, 2002;
Pitaevskii and Stringari, 2003�. For a discussion of frag-
mentation �Leggett, 2001� in this context, see, for ex-
ample, Baym �2001�, Mueller et al. �2006�, and Jackson et
al. �2008�.

Since the eigenstates of the density matrix can be
complex, their phase can show singularities as they are
characteristic for vortices. However, the density matrix
bears the same symmetry as the Hamiltonian and, con-
sequently, so do its so-called “natural orbitals” �

i
*�r�. In

a circular confinement, the eigenfunctions of the density
matrix can thus only show an overall phase singularity at
the origin but not at the off-centered vortex positions.

In a study of vortex formation in boson droplets this
problem has been circumvented by adding a quadrupole
perturbation to the confining potential �Dagnino et al.,
2007; Dagnino, Barberán, and Lewenstein, 2009; Dag-
nino et al., 2009�. Indeed, the positions of all vortices are
then seen as phase singularities of the complex “order
parameter” �1

*�r�. With a related symmetry breaking of
the external confinement, the vortices may also be seen
as minima in the total particle density �Toreblad et al.,
2004; Saarikoski, Harju, et al., 2005; Dagnino et al.,
2007�, and as circulating currents as shown, for example,
in Fig. 29.

3. Reduced wave functions

Pair-correlation functions smoothen out the finer de-
tails of the many-particle wave function. As real-valued
functions, they are not suited to probe the phase struc-
ture, and zeros �nodes� at the center of the vortex cores
cannot be directly identified either since integrations
over particle coordinates blur their effect. The concept
of a reduced �or conditional� wave function has thus
been introduced to map out the nodal structure of the
wave function as a “snapshot” around the most probable
particle configuration. For fermions, reduced wave func-
tions were introduced in the context of two-electron at-
oms �Ezra and Berry, 1983� and coupled quantum dots
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�Yannouleas and Landman, 2000�, and then generalized
to many-particle systems �Harju et al., 2002; Saarikoski
et al., 2004; Tavernier et al., 2004�. The basic idea is
simple: Instead of calculating average values, the wave
function is calculated in a subspace by fixing N−1 par-
ticles to positions given by their most probable configu-
ration r2

* , . . . ,r
N
* . The reduced wave function for the re-

maining �probing� particle is then calculated at r,

�c�r� =
��r,r2

*, . . . ,rN
* �

��r1
*,r2

*, . . . ,rN
* �

, �11�

where r1
* is the most probable position of the probe par-

ticle and the denominator is used to normalize the maxi-
mum value of �c to unity. The most probable configura-
tion for fixed particles �r1

* ,r2
* , . . . ,r

N
* � is obtained by

maximizing the absolute square of �.
It is often convenient to visualize �c�r� by plotting its

absolute value using contours, usually in a logarithmic
scale, together with its phase as a density plot. The re-
sulting diagram represents a single-particle wave func-
tion in a selected “particle’s-eye-view” reference frame.
Nodes in the wave function can be identified as zeros in
�c�r� associated with a phase change of integer multiple
of 2� for each path that encloses the zero. Figure 2
shows the reduced wave function in the simple case of a
two-electron quantum dot in the spin singlet and triplet
states, respectively. One electron position is fixed, as
marked by the cross. In the singlet state, the electrons
have opposite spins and there is no vortex. In the triplet
state, a vortex is attached to the fixed electron in accor-
dance with the Pauli principle.

In the case of larger particle numbers, interpretation
of the reduced wave function requires a careful analysis
since nodes for different reference frames of fixed par-
ticles may not coincide �Graham et al., 2003�. However,
localized nodes can be readily identified as vortices.
These include off-particle vortices, which are associated
with holes in the particle density. Also particle-vortex
composites can be identified as nodes attached to the
immediate vicinity of particles.

The reduced wave function as defined for single-
component systems in Eq. �11� can be readily general-
ized also for multicomponent systems with two or more
particle species distinguishable from each other. The
wave function is then a direct product of the wave func-
tions of different particle species. As a consequence, the
reduced wave function can still be written as in Eq. �11�
although different particle species have to be distin-
guished. The reduced wave function depends on the spe-
cies of the probe particle, unless the number of particles
of each species is equal. The fact that phase singularities
of one species coincide with particles of another species
�see Fig. 3�c�� may indicate formation of coreless vorti-
ces. This is discussed further in Sec. V. As an example,
Fig. 3 exemplifies the appearance of the reduced wave
functions for different nodal structures, as here for fer-
mions with spin-1 /2. Correlations in the many-body
state can be further studied by analyzing the reduced

wave function in the vicinity of the most probable con-
figuration�s�.

D. Particle-hole duality in electron systems

In infinite quantum Hall liquids, particle-hole duality
can be used to study vortex formation by interpreting
holes as vortices �Girvin, 1996; Shahar et al., 1996; Bur-
gess and Dolan, 2001�. Similar arguments for the sym-
metry of particle and hole states can be used in finite-
size systems to gain insight into issues such as vortex
localization and fluctuations. We here consider polarized
electrons or, more generally, fermions of only one kind
�i.e., spinless fermions�. However, much of the consider-
ations can be generalized to systems with more degrees
of freedom, such as, for example, spinor gases.

In the occupation number representation, the Hamil-
tonian for interacting electrons in the lowest Landau
level can be written as

FIG. 2. �Color online� Reduced wave function of a two-
electron quantum dot in �a� the singlet and �b� the triplet state.
The fixed electron is marked by the cross to the right. The
contours give the logarithmic electron density of the probing
electron and the gray scale illustrates the phase of the wave
function. The phase jumps from 0 to 2� on the line where the
scale changes from white to darkest gray. In the singlet state,
the electrons have opposite spins and there is no vortex. In the
triplet state, the electrons have same spin and a vortex �circle
with an arrow in the direction of phase gradient� is attached on
top of the fixed electron in accordance with the Pauli principle.
Due to fermion antisymmetry the phase changes by 2� if the
probe electron is moved around the fixed electron in this case.
From Harju, 2005.
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Hp = �
i
	ici

†ci + �
ijkl

vijklci
†cj

†clck, �12�

with annihilation and creation operators ci and ci
† acting

on determinants of states constructed from a given
single-particle basis. Here we use the property that the
occupation of each state for fermions can only be zero
or one. We note that the annihilation operator ci can be
viewed as an operator creating a hole in the Fermi sea.
Formally we can define new operators di=ci

† and di
†=ci

as creation and annihilation operators of the holes.
Equation �12� can then be written as a Hamiltonian of
the holes. For the lowest Landau level, considering only
states with good total angular momentum, it reduces to

Hh = �
i
	̃idi

†di + �
ijkl

vijkldk
†dl

†djdi + const, �13�

where

	̃i = 2�
j

�vijji − vijij� − 	i. �14�

It is important to note that the interaction between the
holes is equal to the interaction between the particles
�assuming normal symmetry vijkl=vklij�, but the single-
particle energies of the holes are affected by the inter-
particle interactions. We can thus solve the many-
particle problem either for the particles or for the holes.
The use of the holes, however, does not reduce the com-
plexity of the problem: The same accuracy of the solu-
tion requires diagonalization of a matrix which has the
same size for particles or holes. However, considering
holes instead of particles provides an alternative way to

understand the localization of vortices in fermion sys-
tems �Jeon et al., 2005; Manninen et al., 2005�.

Using the above particle-hole duality picture we can
treat the off-particle vortices as holelike quasiparticles
�Kinaret et al., 1992; Ashoori, 1996; Yang and Mac-
Donald, 2002; Saarikoski et al., 2004; Manninen et al.,
2005�. In electron systems, these vortices carry a charge
deficiency of an elementary charge e. In the particle-hole
duality picture the particles and holes �vortices� can be
treated on equal footing. They form a quantum liquid of
interacting electrons and vortices, where correlations
play an important role.

For a correct description of the internal structure of
the many-body system, we need to analyze all correla-
tions between the constituents of the system, i.e.,
particle-particle, vortex-vortex, and particle-vortex cor-
relations. The relative strength of these correlations de-
termines the physics of the ground state. To give an ex-
ample, clustering of electrons to a Wigner-crystal-like
“molecule” of localized electrons is a signature of par-
ticularly strong particle-particle correlations. Analo-
gously, the formation of a cluster or “molecule” of local-
ized vortices shows the correlations between the vortex
positions. Since the vortex dynamics is not independent
of the electron dynamics, strong correlations between
electrons and vortices may emerge, leading to the for-
mation of particle-vortex composites.

E. Quantum Hall states

Vorticity increases with angular momentum, leading
to the formation of particle-vortex composites at high
magnetic fields. In the theory of the quantum Hall effect
they were introduced to explain formation of incom-
pressible electron liquids at fractional filling �Laughlin,
1983; Jain, 1989�. However, the phenomenon is more
general, and similar in both fermion and boson systems
where vorticity is sufficiently high �Wilkin et al., 1998;
Cooper and Wilkin, 1999; Viefers, 2008�.

It should be noted that the analogy between quantum
Hall states in finite-size droplets and corresponding
states in the infinite 2D electron gas is only approximate
since the particle density inside the trapping potentials is
often inhomogeneous, and edge effects play an impor-
tant role. Nevertheless, in order to �at least approxima-
tively� relate the states in finite-size electron droplets to
those in the infinite gas, the Landau level filling factor
concept has been generalized to finite-size systems.
There is obviously no unique way to do such a generali-
zation. However, a definition

� = �
N�N − 1�

2L
, �15�

which is based on the structure of Jastrow states, has
been used in the ��1 regime �Girvin and Jach, 1983;
Laughlin, 1983�. In large fermion systems, the filling fac-
tor becomes equal to the particle-to-vortex ratio, being a
useful quantity also to classify rapidly rotating bosonic
systems. Its relation to the fermion filling factor defined

b)a)

Off−particle vortex Pauli vortex

c) d)

Coreless vortex

= spin down spin up=

Particle−vortex composite

= nodefermion fermion

FIG. 3. �Color online� Appearance of vortex structures in the
reduced wave function. The details of reduced wave functions
for spin-1 /2 fermions are shown. The most probable position
of the probing particle is to the right; the contours show the
magnitude �on a logarithmic scale�, and the gray scale shows
the phase �darkest gray=0, lightest gray=2��. �a� An isolated
localized vortex which is not attached to any particle. �b� A
Pauli vortex �exchange hole� which is mandated by the wave-
function antisymby metry between interchange of indistin-
guishable fermions. �c� A coreless vortex where the vortex core
of spin-down component is filled by a spin-up fermion. �d� A
composite of a fermion �with a Pauli vortex� and two addi-
tional nodes which are bound to the particle, reminiscent of
the Laughlin �= 1

3 state. From Saarikoski et al., 2009.
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above is modified by the absence of Pauli vortices in the
bosonic wave function.

The quantum Hall liquid is theoretically described by
the Laughlin wave function �Laughlin, 1983� with its ex-
tensions, or by the related Jain construction �Jain, 1989;
Jeon et al., 2004�. These trial wave functions can be con-
structed using symmetry arguments without any detailed
knowledge of the interparticle interactions. It has been
shown that similar trial wave functions work for bosons
and fermions �Regnault and Jolicoeur, 2003, 2004�. Be-
low we discuss the vortex structures of these trial wave
functions and demonstrate that one can map the boson
wave function onto the fermion wave function, allowing
a direct comparison of the vortex structures in these dif-
ferent systems.

1. Maximum density droplet state and its excitations

When an electron droplet is placed in a sufficiently
strong magnetic field, it may polarize and the single-
particle orbitals in the lowest Landau level become sin-
gly occupied. �We remark that at some angular momenta
the electrons may polarize even if the Zeeman effect is
ignored1 �Reimann and Manninen, 2002; Koskinen et al.,
2007�.� The spin-polarized compact droplet of electrons
in the LLL, with total angular momentum L=N�N
−1� /2, is called the maximum density droplet �MDD�
state �MacDonald et al., 1993�. The MDD has the lowest
possible angular momentum which is compatible with
the Pauli principle. In the MDD, each electron carries a
Pauli vortex and the wave function can be written as

�MDD = �
i�j

N

�zi − zj�exp�− �
i=1

N

ri
2/2� , �16�

where zj=xj+ iyj, r2=x2+y2, and x and y are coordinates
in the 2D plane. The MDD can be written as a single-
determinantal wave function; for example, for seven par-
ticles it is |11111110000¯
, where a 1 at position i de-
notes an occupied state in the LLL with single-particle
angular momentum i−1. Clearly, the MDD is the finite-
size counterpart of the integer quantum Hall state with
�=1.

Removing the Jastrow factor ��zi−zj� �i.e., the Pauli
vortices� from the MDD in Eq. �16� leaves a product of
Gaussians which form the nonrotating bosonic ground
state. The MDD state can therefore be interpreted as a
fermionic “condensatelike” state of particles that engulf
the flux quanta and, in effect, move in a zero magnetic
field. In this way, the MDD state with LMDD=N�N
−1� /2 is closely related to the nonrotating L=0 state of
a bosonic system. We discuss this relation further in Sec.
II.F, where we show conceptually that by removing the
Pauli vortices from each fermion the wave function of a
fermion system at L is often a good approximation for a
bosonic state with angular momentum L�=L−LMDD.

The first excitation of the MDD in the LLL can be
approximated as a single determinant where one of the
single-particle states is excited to a higher angular mo-
mentum. This state can be understood in two different
ways. It is definitely a center-of-mass excitation since

	11 ¯ 110100 ¯ 
 = �
i=1

N

zi	MDD
 . �17�

On the other hand, this state is also a simple single-
particle excitation where a hole enters the droplet from
the surface. This hole is associated with a phase singu-
larity in the reduced wave function.

To illustrate the nodal structure of a MDD, we show
in Fig. 4�a�, with seven particles as an example, the re-
duced wave function for this state. Figure 4�b� shows the
reduced wave function of the four-particle state
|1010101000
 with three holes in the MDD, demonstrat-
ing that the holes localize on the sites of the “missing”
electrons, each of them carrying a vortex that is charac-
terized by zero density at the core, and the correspond-
ing phase change.

It is important to note that in the reduced wave func-
tion only the positions of the particles are fixed, while
the vortices are free to choose their optimal positions.
This is shown in Figs. 4�c� and 4�d� for a center-of-mass
excitation: When one of the atoms �here fixed at the
vertices of a hexagon� is moved to the center, the free
vortex correspondingly moves from the center to the
hexagon.

2. Laughlin wave function

The angular momentum of a quantum Hall state in-
creases with the formation of additional vortices. When
there are three times more vortices than electrons ��
=1/3�, fermion antisymmetry is preserved if two addi-
tional vortices �on top of Pauli vortices� are attached to
each fermion. The corresponding wave function is the
celebrated Laughlin state1Nonpolarized states will be discussed in Sec. V.

FIG. 4. �Color online� Reduced wave functions. �a� A seven-
particle MDD state, �b� the MDD state with three holes, and
�c� and �d� MDD state with a center-of-mass excitation. The
upper panels show the phase and the lower panels the magni-
tude of the reduced wave function. The bullets mark the fixed
particle positions.
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�m = �
i�j

N

�zi − zj�m exp�− �
i=1

N

ri
2/2� , �18�

where the antisymmetry of fermion wave functions re-
quires that the exponent m is an odd integer �Laughlin,
1983�. The analogous wave function for a boson system
in a trap is given by even values of m. The exponent m is
related to the filling factor �=1/m and to the angular
momentum L=mN�N−1� /2. According to computa-
tional studies that apply diagonalization schemes to the
many-body Hamiltonian �see Sec. III�, the Laughlin
wave function with �=1/3 gives a good approximation
of the ground state at the corresponding filling factors in
finite-size quantum Hall droplets. We discuss this regime
of strong correlations in the context of rapidly rotating
quantum droplets in Sec. IV.F.

3. Jain construction and composite particles

The composite-fermion �CF� theory �Jain, 1989, 2007�
generalizes the Laughlin wave function to a larger set of
possible filling fractions. The basic idea is that when an
even number of vortices or flux quanta is bound to elec-
trons, these interact less as the vortices keep them apart,
i.e., the exchange hole is widened by the cores of bound
vortices. In addition, the composites move in an effec-
tive magnetic field that is weaker than the original one.

Formally, the composite fermion wave function can be
written as �Jain, 2007�

�CF = PLLL�S�
i�j

�zi − zj�m, �19�

where �S is a single Slater determinant of single-particle
states, the product ��zi−zj�m adds m vortices at each
electron, and the operator PLLL projects the wave func-
tion to the lowest Landau level. If �S is taken to be the
MDD, Eqs. �16� and �19� lead to the Laughlin wave
function for the fractional Hall effect with filling factor
�=1/ �m+1� and no projection to the LLL is needed.
However, �S is not restricted to the LLL, which allows
constructing the states along the whole yrast line. For
example, in order to get the MDD of composite par-
ticles, we have to take for �S a MDD of states with
negative angular momenta, which means replacing zi
and zj with their complex conjugates z

i
* and z

j
* in Eq.

�16�. Note that the states with negative angular momenta
are at higher Landau levels. Multiplying this by
��zi−zj�2 and projecting to the LLL gives the normal
MDD wave function of Eq. �16�. Wave functions be-
tween �=1 and 1/3 can be obtained by starting from
properly chosen Slater determinants for �S �Jain, 2007�.
The projection to the LLL, however, is the most difficult
part of the Jain construction. In practice, it can be done
by replacing z

i
*’s by partial derivatives �Girvin and Jach,

1984�.
The composite fermion picture accurately describes

states at high angular momentum �L�LMDD� where two
vortices �in addition to the Pauli vortex� are attached to
each electron. However, for the states immediately

above the MDD �L�LMDD� the CF theory still requires
the attachment of two vortices to each electron. This
means that the composite particle �electron and two vor-
tices� has to move in an effective magnetic field which is
opposite to the true magnetic field. In this case the pro-
jection operator PLLL will remove the two vortices �at-
tached by the product ��zi−zj�2� and leads to the physi-
cally correct result that only one �Pauli� vortex is
attached to each electron. The true number of vortices
attached to each electron can thus be determined only
after the projection to the lowest Landau level.

Comparison with exact numerical calculations have
shown that the CF theory in the mean-field approxima-
tion does not predict all ground states correctly �Harju
et al., 1999; Yannouleas and Landman, 2007�. It is pos-
sible to go beyond mean-field theory, but the price to
pay is that the beauty of not having variational param-
eters in the wave function is lost �Jeon et al., 2007�.

The CF theory has also been used for bosons �Cooper
and Wilkin, 1999; Viefers et al., 2000; Cooper, 2008;
Viefers, 2008�. In this case an odd number of vortices are
attached to each particle, i.e., the exponent m in Eq. �19�
is odd. Interestingly, the boson wave function is con-
structed as a product of two antisymmetric fermionic
wave functions. The composite fermion picture naturally
predicts a close relation between the bosonic and fermi-
onic states along the yrast line, discussed in the next
section.

F. Mapping between fermions and bosons

In the Laughlin state, the difference in angular mo-
mentum between the boson and fermion states equals
that of the maximum density droplet since, trivially,

�
i�j

N

�zi − zj�m = �
i�j

N

�zi − zj��
i�j

N

�zi − zj�m−1. �20�

As long as the single-particle basis is restricted to the
lowest Landau level, a similar transformation can be
used to add a Pauli vortex to each bosonic particle, i.e.,
by multiplying the boson wave function with the deter-
minant of the MDD,

�fermion = �
i�j

N

�zi − zj��boson. �21�

This transformation is also valid, in addition to the
Laughlin states, for the Jain construction. It is expected
that the same mapping is a good approximation for any
many-particle state in the lowest Landau level �Ruuska
and Manninen, 2005�.

The accuracy of the boson-fermion mapping has been
studied in detail by computing the overlaps between the
exact fermion wave function and the wave function ob-
tained by transforming the exact boson state to a fer-
mion state using Eq. �21� �Borgh et al., 2008�. At high
angular momenta where the particles localize, the map-
ping becomes exact, while at small angular momenta the
mapping is justified by the small number of possible con-
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figurations in the LLL. It is important to note that the
free vortices of the bosonic system stay as free vortices
also in the fermionic state. Only the Pauli vortices which
localize at the particle positions are added. After trans-
forming the bosons to fermions, particle-hole duality al-
lows a detailed study of the vortex structure of the
bosonic many-body wave function.

Figure 5 shows the calculated overlap between the
transformed boson state and the exact fermion state as a
function of the total angular momentum for eight par-
ticles. The transformation described by Eq. �21� does not
always result in the ground state of the fermion system
at given angular momentum. Instead, it may be one of
the low-lying excitations and, consequently, the overlap
drops to zero in these cases, as shown in Fig. 5. More-
over, the complexity of the wave function increases,
while overlaps of the transformed wave function with
the true fermion ground states tend to decrease with the
number of particles N.

Figure 6 shows the effect of the mapping for a droplet
with N=20 particles in a harmonic trap at angular mo-
menta where three free vortices form. The radial density
profile of the bosonic state shows a minimum at the ex-
pected radial distance. When the bosonic state is trans-
formed to a fermionic one, its radial density expands
and becomes nearly identical to the exact density of the
corresponding fermion system. The mapping allows us
to study the internal structure of the vortex lattice in the
particle-hole duality picture: Fig. 6 also shows the
particle-particle and vortex-vortex correlation functions,
indicating similar localization of three vortices in both
cases.

The simple mapping of Eq. �21� is computationally
demanding when the particle number increases. This is
due to the fact that every configuration of the boson
wave function fragments to numerous fermion configu-
rations. A simpler mapping was suggested by Toreblad
et al. �2004� with a one-to-one correspondence between
each boson and fermion configuration in the few-body
limit. This mapping captures the most important con-
figurations but could not give as good overlaps.

The above transformation �Eq. �21�� can be general-
ized to two-component quantum droplets. The transfor-
mation Lboson=Lfermion−LMDD would attach a Pauli vor-
tex to each boson. It is apparent that fermion states with

Lfermion�LMDD cannot have bosonic counterparts in the
LLL. Nevertheless, suggestive analogies in the �coreless�
vortex structures between bosonic and fermionic states
have been obtained in the few-particle limit �Koskinen
et al., 2007; Saarikoski et al., 2009�.

III. COMPUTATIONAL MANY-BODY METHODS

The complexity of the many-body wave function
grows exponentially with the particle number N, which
makes computational studies indispensable. We give
here an overview of the central methods used in the
computational approaches to physics of rotation in both
bosonic and fermionic systems, and their applicability to
small droplets. As it is often the case for approximate
approaches, the methods presented have their limits of
usability—no “universal” method exists which is supe-

FIG. 5. Overlap between the fermion ground state and the
transformed boson ground state as a function of the total an-
gular momentum, for eight particles. From Borgh et al., 2008.

FIG. 6. Mapping between boson and fermion states. The up-
per panels show the particle density of 20 �a� bosons and �b�
fermions with Coulomb interactions, in the region of three vor-
tices as a function of the radial distance of the droplet center.
For bosons, the density of the mapped fermion system is
shown as a dashed line. The lower panels show in column �c�
the particle-particle pair-correlations determined from the fer-
mion wave functions. The position of the reference point is
marked by the arrow at the bottom of the exchange-
correlation hole. In column �d� the corresponding vortex-
vortex pair correlations are shown.
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rior to the others in capturing the essential physics in all
parameter regimes.

The exact diagonalization or so-called configuration-
interaction �CI� method does not introduce any approxi-
mations to the solution of the Schrödinger equation
apart from a cutoff in the used basis set. Therefore it is
ideally suited to analyze correlations in the system. This
method is, however, limited to relatively small particle
numbers. Mean-field and density-functional methods are
often needed to complement data for larger systems. In
the density-functional approach, correlation effects are
usually incorporated using local functionals of the spin
densities. The method is able to reveal some of the un-
derlying correlations in the system, but local approxima-
tions may fail to describe properly the complex particle-
vortex correlations and formation of particle-vortex
composites �Saarikoski, Reimann, et al., 2005�. In the
following, we draw upon the analogies between �a con-
ventionally fermionic� density-functional theory and the
Gross-Pitaevskii approach for bosons. We finally sum-
marize the configuration-interaction method for the di-
rect numerical diagonalization of the many-body Hamil-
tonian.

Rather generally, the ground-state energy of an inter-
acting many-body system trapped by an external poten-
tial Vext�r� can be written as a functional of the particle
density n�r�, summing up the kinetic, potential, and in-
teraction energy contributions,

E�n�r�� = T0�n�r�� +
 drn�r�Vext�r�

+
1
2 
 dr
 dr�n�r�n�r��V�2��r,r�� + Exc,

�22�

where T0�n�r�� is assumed to be the noninteracting
kinetic-energy functional, the second term accounts for
the trap potential, the third term is the Hartree term for
a two-particle potential V�2�, and the exchange-
correlation energy Exc is defined to include all other
many-body effects.

Introducing a set of single-particle orbitals �i�r�, the
density may be expressed as

n�r� = �
i=0

�

fi	�i�r�	2, �23�

with occupancies �ifi=N, following either bosonic or fer-
mionic statistics. One can then write the noninteracting
kinetic-energy functional for the orbitals �i in the form

T0�n�r�� = �
i

fi
 dr�i
*�r��−

�2�2

2m
��i�r� . �24�

The crux of the matter is that Eq. �24� not necessarily
holds for the exact kinetic-energy functional T�n�r��. In
many cases there will be a substantial correlation part in
the kinetic-energy functional that is not accounted for
by the expressions above. In the spirit of density-

functional theory,2 the last term in Eq. �22�, Exc, thus has
the task to collect what was neglected by this assump-
tion, together with the effects of exchange and correla-
tion that originate from the difference between the true
interaction energy and the simple Hartree term. It is
important to note that the Hohenberg-Kohn theorem
guarantees that this quantity is a functional of only the
density, Exc=Exc�n�r��.

A. The Gross-Pitaevskii approach for trapped bosons

1. Gross-Pitaevskii equation for simple condensates

In the case of bosons, for a simple condensate all
bosons are in the lowest state �0�r� and the particle den-
sity is

n�r� = 	�0�r�	2 = N	�0�r�	2, �25�

where the condensate wave function �0�r� is normalized
to N, and the corresponding “order parameter” �0�r� to
unity.

Using contact interactions and ignoring the correla-
tions in Eq. �22� one obtains the well-known Gross-
Pitaevskii energy functional,

E�n�r�� =
 dr�−
�2

2m
	��0�r�	2 + Vext�r�	�0�r�	2

+
1
2

g	�0�r�	4� . �26�

Finding the ground state usually amounts to a varia-
tional procedure, i.e., independent variations in � and �*

under the condition that the total number of particles in
the trap is constant. For the variation with respect to �0

*,

�

��0
*�r�

�E��0,�0
*� − �
 dr	�0�r�	2� = 0, �27�

where the chemical potential � plays the role of a
Lagrange multiplier to fulfill the constraint. We then ar-
rive at the time-independent Gross-Pitaevskii equation

�−
�2

2m
�2 + Vext�r� + g	�0�r�	2��0�r� = ��0�r� �28�

having the typical form of a self-consistent mean-field
equation. The corresponding N-particle bosonic wave
function is

��r1,r2, . . . ,rN� = �
i=1

N

�0�ri� . �29�

The Gross-Pitaevskii approach, already derived in the
1960s independently by Gross �1961� and Pitaevskii
�1961�, has been applied extensively for the theoretical
description of inhomogeneous and dilute Bose gases at

2See, for example, the book by Dreizler and Gross �1990� for
an extensive discussion of these issues.
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low temperatures.3 It is often convenient to solve the
Gross-Pitaevskii equations in the imaginary-time evolu-
tion method, using a fourth-order split-step scheme
�Chin and Krotscheck, 2005�.

2. Gross-Pitaevskii approach for multicomponent systems

The above Gross-Pitaevskii equation for a simple
single-component Bose condensate Eq. �28� can also be
straightforwardly generalized to multiple components of
distinguishable species of particles. Consider as an ex-
ample a two-component gas of atoms of types A and B
that are interacting through the usual s-wave scattering
with equal interaction strengths g=gAA=gBB=gAB. The
order parameters �A and �B of the two components then
play an analogous role than the spin “up” and “down”
orbitals in the spin-dependent Kohn-Sham formalism
�see Sec. III.B�. The corresponding Gross-Pitaevskii en-
ergy functional in the rest frame is

E = �
�=A,B


 dr�
�
*�−

�2�2

2M
+ Vext�r����

+
g

2

 dr�	�A	4 + 	�B	4 + 2	�A	2	�B	2� , �30�

where �= �A ,B� plays the role of a pseudospin 1/2. In
analogy to the single-component case described above,
we minimize the energy functional with respect to �

A
*

and �
B
* , which results in two coupled Gross-Pitaevskii

equations:

� p2

2M
+

1
2

M�2r2 + g�	�A	2 + 	�B	2���A = �A�A,

� p2

2M
+

1
2

M�2r2 + g�	�B	2 + 	�A	2���B = �B�B.

Naturally, it is required that NA=�dr	�A	2 and NB
=�dr	�B	2, which determines the chemical potentials �A
and �B. One may choose to normalize the order param-
eter of one of the components, say, B, to unity. Then, NA
is determined by the ratio NA /NB. For the total angular

momentum, L=�dr��
A
* L̂z�A+�

B
* L̂z�B�=LA+LB. The

above-mentioned imaginary-time evolution method is
also in the multicomponent case the method of choice to
numerically solve the Gross-Pitaevskii equations.

B. Density-functional approach

The density-functional theory for the solution of
many-body problems in physics and chemistry was pro-
posed by Hohenberg, Kohn, and Sham in the 1960s �Ho-
henberg and Kohn, 1964; Kohn and Sham, 1965�. It is a
correlated many-body theory where all the ground-state
properties can in principle be calculated from the par-
ticle density �Hohenberg and Kohn, 1964; Parr and

Yang, 1989; Dreizler and Gross, 1990; Kohn, 1999�. The
original density-functional theory did not take into ac-
count the effects of a nonzero spin polarization and cur-
rents induced by an external magnetic field. Since these
effects have marked consequences on the ground-state
properties of the rotating many-body systems, for a de-
scription of quantum dots in strong magnetic fields, ex-
tensions such as the spin-density-functional method
�Gunnarsson and Lundqvist, 1976; von Barth, 1979� and
the current-spin-density-functional method �Vignale and
Rasolt, 1987, 1988; Rasolt and Perrot, 1992; Capelle and
Gross, 1997� were applied. For a pedagogic review on
density-functional theory, see Capelle �2006�.

1. Spin-density-functional theory for electrons

In the spin-density-functional formalism one can de-
rive self-consistent Kohn-Sham equations for the Hamil-
tonian �6� that describes N interacting electrons in an
external magnetic field:

�2VH = − n/	 , �31�

n��r� = �
i

N�

	�i,��r�	2, �32�

� 1

2m*
�p + eA�r��2 + Veff,��r���i,� = 	i,��i,�. �33�

Equation �31� is the Poisson equation for the solution of
the Hartree potential VH, i.e., the Coulomb potential for
the electronic charge density n, where 	 is the dielectric
constant of the medium. Equation �32� determines the
spin densities, where �= �↑ , ↓ � is the spin index, N� is
the number of electrons with spin �, �i,�’s are the one-
particle wave functions, and the summation is over the
N� lowest states �which here have fermionic occupancy�.
In Eq. �33�, the effective scalar potential for electrons

Veff,��r� = Vext�r� + VH�r� + Vxc,��r� + VZ �34�

consists of the external scalar potential Vext, the Hartree
potential VH, the exchange-correlation potential Vxc,
and the Zeeman term VZ=g*�BBs�, where �B is the
Bohr magneton, s�= ±1/2, B is the magnetic field, and
g* is the gyromagnetic ratio. All interaction effects be-
yond the Hartree potential VH are incorporated in the
exchange-correlation potential Vxc. A more fundamental
generalization of the density-functional method for sys-
tems in external magnetic fields is the current-density-
functional method �Vignale and Rasolt, 1987, 1988�,
where the vector potential A is replaced by an effective
vector potential Aeff=A+Axc accounting for many-
particle effects on the current densities. In the above
equations, only the conduction electrons of the semicon-
ductor are explicitly included in the theory, while effects
of the lattice are incorporated via material parameters
such as effective mass, dielectric constant, and effective
g factor.

Density-functional approaches are often combined
with local approximations for the exchange-correlation

3For a more detailed discussion, see, for example, Pethick
and Smith �2002� and Pitaevskii and Stringari �2003�.
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potential where Vxc in actual calculations is usually
taken as the exchange-correlation potential of the uni-
form electron gas. In 2D electron systems, approximate
parametrizations have been calculated �Tanatar and
Ceperley, 1989; Attaccalite et al., 2002� and the approach
leads to a set of mean-field-type equations. It should be
emphasized that density-functional theory a priori is not
a mean-field method but a true many-particle theory. Its
strength is that it often may provide accurate approxi-
mations to the ground-state properties such as the total
energy with the computational effort of a mean-field
method. It is important to note that single-particle states
�Kohn-Sham orbitals� and their eigenenergies are auxil-
iary parameters in the Kohn-Sham equations. However,
as an approximation, the Kohn-Sham orbitals may still
be used to construct a single Slater determinant to ac-
count for the nodal structure.

The density-functional approach in the local density
approximation, as well as the unrestricted Hartree-Fock
method, may show broken symmetries in particle and
current densities. This is often interpreted as reflections
of the internal structure of the exact many-body wave
function.4 However, a caveat is that implications of
symmetry-breaking patterns may in some cases yield
wrong implications of the actual many-body structure of
the exact wave function. This problem is well known in
quantum chemistry as “spin contamination,” and we re-
fer the interested reader to Szabo and Ostlund �1996� as
well as Harju et al. �2004�, Borgh et al. �2005�, and
Schmidt et al. �2008� for a thorough discussion. This con-
ceptual problem of spin-density-functional theory often
calls for an analysis by more exact computational meth-
ods.

2. Density-functional theory for bosons

The Gross-Pitaevskii mean-field approach discussed
above is the most widely used theoretical tool to de-
scribe Bose-Einstein condensates and has been exten-
sively applied to investigate vortex structures in rotating
systems. Clearly, it is a density-functional method based
on the functional Eq. �27� where the density is a square
of a single one-particle state Eq. �25�. However, there
are many situations where correlations determine the
many-body states that cannot be captured by the stan-
dard Gross-Pitaevskii approach �Bloch et al., 2008�.

The exact diagonalization method, which captures all
correlation effects, cannot be used for systems which
consist of more than just a few particles. A bosonic
density-functional theory has been introduced as one
possible way to go beyond the mean-field approximation
�Griffin, 1995; Braaten and Nieto, 1997; Nunes, 1999;
Kim and Zubarev, 2003; Hunter, 2004; Rajagopal, 2007;
Capelle, 2008�. For ground states this approach is not
efficient due to a lack of nodal structure in the wave
function. This, however, is different in the case of frag-

mented or depleted condensates �Mueller et al., 2006;
Capelle, 2008�.

Following the well-known Hohenberg-Kohn theorem,
the energy functional E�n�r�� is minimized by the
ground-state density. This in fact is independent of
whether the particles are bosons or fermions, and a cor-
responding density-functional approach to bosonic sys-
tems was recently formulated by Capelle �2008�. Taking
the Exc contributions into account, the variation of Eq.
�22� adds the potential �Nunes, 1999�

Vxc =
1

��r�
�Exc

���r�
. �35�

However, ��r� cannot describe correctly the many-body
state if the ground state contains “uncondensed” bosons
or requires a macroscopic occupation of more than one
single-particle state. Capelle �2008� showed that since
the Hohenberg-Kohn theorem still holds in these cases,
the Gross-Pitaevskii equation �Eq. �28�� can be more
generally expressed as

�−
�2

2m
�2 + Vext�r� +
 drn�r�n�r��V�2��r − r��

+
�Exc�n�
�n�r� ��i�r� = 	i�r��i�r� , �36�

with the label i now running over all solutions of the
equation. The orbitals �i do not have a simple relation
to the Gross-Pitaevskii order parameter, but they do
provide the correct density via Eq. �23� with �bosonic�
occupancies fi of the states �i. These equations took a
form that is indeed familiar from the usual Kohn-Sham
equations for fermions discussed above �Capelle, 2008�.
For an account of viable approximations to Exc, see
Capelle �2008�, as well as Nunes �1999� and Kim and
Zubarev �2003�.

C. Exact diagonalization method

The CI method, also called “exact diagonalization,” is
a systematic scheme to expand the many-particle wave
function. It traces back to the early days of quantum
mechanics, to the work of Hylleraas �1928� on the he-
lium atom. It has been extensively used in quantum
chemistry but nowadays found its use also for quantum
nanostructures as well as cold atom systems. In the basic
formulation of this approach, one takes the eigenstates
of the noninteracting many-body problem �called con-
figuration� as a basis and evaluates the interaction ma-
trix elements between these states. The resulting Hamil-
tonian matrix is then diagonalized.

Rules to calculate the matrix elements were originally
derived by Slater �1929, 1931� and Condon �1930� and
developed further by Löwdin �1955�. We note that the
use of the term exact diagonalization that has been
widely adopted by the community, often replacing the
quantum-chemistry terminology of “configuration inter-

4For a comprehensive discussion of this issue in the context of
quantum dots, see Reimann and Manninen �2002�.
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action,” might in some cases be misleading, as truly ex-
act results are obtained only in the limit of an infinite
basis.

Consider a Hamiltonian operator split into two parts
H=H0+HI, where the Schrödinger equation of the first
part is solvable,

H0	�i
 = �i	�i
 , �37�

and the states 	�i
 form an orthonormal basis. The solu-
tion for the full Schrödinger equation can be expanded
in this basis as 	�
=�i�i	�i
. Inserting this into the
Schrödinger equation

H	�
 = E	�
 , �38�

results in

�H0 + HI��
i
�i	�i
 = E�

i
�i	�i
 �39�

or a matrix equation

�H0 + HI�� = E� , �40�

where H0 is a diagonal matrix with ��i	H0	�i
=�i and the
elements of HI are ��j	HI	�i
. The vector � contains the
values �i. In principle, the basis �	�i
� is infinite, but the
actual numerical calculations must be done in a finite
basis. The main computational task is to calculate the
matrix elements of HI and to diagonalize the corre-
sponding matrix. The convergence as a function of the
size of the basis set depends on the problem at hand and
is of course fastest for the cases where HI is only a small
perturbation to H0.

The basic procedure is straightforward textbook
knowledge of quantum mechanics. However, one should
bear in mind that much of the state-of-the-art computa-
tional knowledge must be employed when it comes to
numerical implementations, in order to model large and
highly correlated systems.

The usual starting point for the exact diagonalization
method is the noninteracting problem. In 2D harmonic
potentials, harmonic oscillator states or Fock-Darwin
states of noninteracting particles in a magnetic field—
can be used to construct a suitable basis, but it can also
be optimized using states from, e.g., Hartree-Fock or
density-functional methods �for a recent example, see
Emperador et al. �2005��. For fermions, the solution is a
Slater determinant formed from the eigenstates of the
single-particle Hamiltonian. The corresponding symmet-
ric N-boson state is a permanent. In the noninteracting
ground state, all bosons occupy the same state. On the
other hand, fermions occupy the N lowest states due to
the Pauli principle. Due to interactions, other configura-
tions than the one of the noninteracting ground state
have a finite weight in the expansion of the many-
particle wave function. Often, the increasing complexity
of the quantum states with large interaction strengths
and large system sizes causes severe convergence prob-
lems, where the number of basis states needed for an
accurate description of the many-body system increases
far beyond computational reach.

In rotating weakly interacting systems confined by
harmonic potentials, a natural restriction of the single-
particle basis is the LLL. It provides a well-defined trun-
cation of the Hilbert space for the given value of the
angular momentum L and particle number N. The LLL
approximation in the harmonic confinement implies that
the diagonal part of the Hamiltonian is independent of
the configuration, and solving the Hamiltonian reduces
to the diagonalization of the potential energy of the in-
terparticle interactions. This truncation also eliminates
the usual issue of regularization that emerges with the
use of contact forces in exact diagonalization schemes,
see, for example, Huang �1963�: the direct diagonaliza-
tion of the Hamiltonian with contact interactions on a
complete space yields unphysical solutions unless the
class of allowed basis functions obeys special and often
impractical boundary conditions �Esry and Greene,
1999�. The Hamiltonian matrix in the LLL is often
sparse, and in the limit of large N and L it is usually
diagonalized in a Lanczos scheme �Lehoucq et al., 1997�.

IV. SINGLE-COMPONENT QUANTUM DROPLETS

In the following, we describe the structure of single-
vortex states and the formation of vortex “clusters” or
vortex “molecules,” as they are also often called, in
single-component systems. In the strongly correlated re-
gime of rapid rotation, the increased vortex density
leads to finite-size counterparts of fractional quantum
Hall states, with both bosons and fermions. The exis-
tence of giant or multiple-quantized vortices in anhar-
monic traps is also discussed.

A. Vortex formation at moderate angular momenta

1. Vortex formation in trapped bosonic systems

Following the achievement of Bose-Einstein conden-
sation in trapped cold atom gases, experimental setups
were devised to study their rotational behavior. The first
observation of vortex patterns in these systems was
made for a two-component Bose condensate consisting
of two internal spin states of 87Rb, where the formation
of a single vortex was detected �Matthews et al., 1999�.
Soon after this seminal experiment, evidence for the oc-
currence of vortices was found by literally “stirring” a
one-component gaseous condensate of rubidium by a la-
ser beam �Madison et al., 2000�. While the vortex cores
are too small to be directly observed optically �the core
radius is typically from 200 to 400 nm�, vortex imaging is
possible if the atomic cloud first is allowed to expand by
turning off the trap potential �Madison et al., 2000�. In
this way, regular patterns of vortices were observed in
the transverse absorption images of the rubidium con-
densate �see Fig. 7�. At moderate rotation, above a cer-
tain critical frequency �c, first a central “hole” occurred,
clearly identified as a pronounced minimum in the cross
section of the density distribution, shown to the right in
Fig. 7�b�.
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As the rotation of the trap increases, the second,
third, and fourth vortices penetrate the bosonic cloud.
The vortices then arrange in regular geometric patterns.
Intriguingly, these patterns coincide with the geometries
of Wigner crystals of repulsive particles, as they have
been found, for example, in quantum dots at low elec-
tron densities or strong magnetic fields �Reimann and
Manninen, 2002�. Vortices with the same sign of the vor-
ticity effectively repel each other �see, for example, Cas-
tin and Dum �1999��. This supports the view of Wigner-
crystal-like arrangement of vortices, throwing light on
the much debated melting of the vortex lattice at ex-
treme rotation �see also Sec. IV.D�. The interplay be-
tween vortex and particle localization in a rotating har-
monic trap is discussed further in Sec. IV.B.

The theory of vortices in rotating BECs has attracted
much attention in recent years, and much work has been
published for the Thomas-Fermi regime of strong inter-
actions; see, for example, Rokhsar �1997�, Feder et al.
�1999a, 1999b�, García-Ripoll and Pérez-García �1999�,
and Svidzinsky and Fetter �2000�. In this limit, which
applies to most experiments on rotating BECs, the co-
herence length �= �8�na�1/2, where n is the density and a
is the scattering length, is much smaller than the exten-
sion of the bosonic cloud, and some properties of the
system resemble those of a bulk superfluid �Baym and
Pethick, 1996�. In the case of weakly interacting bosons
in a harmonic trap, however, the coherence length be-
comes larger than the size of the cloud, and the interac-
tion energy plays the dominant role: the mesoscopic
limit is reached, where the system becomes like a
quantum-mechanical Knudsen gas �Mottelson, 2001�. In
this mesoscopic limit, the analogies between trapped
bosons and quantum dots at strong magnetic fields be-
come apparent. This regime of weak interactions is our
primary concern in the following.

2. Weakly interacting bosons under rotation

We now consider a dilute system of N spinless bosons
in a harmonic trap, weakly interacting by the usual con-
tact force g��r−r0�, where g=4��2a /M is the strength of
the effective two-body interaction with scattering length
a and atom mass M. The condition for weak interactions
is that the interaction energy is much smaller than the
quantum energy of the confining potential, i.e.,

ng� �� , �41�

where n is the particle density. As explained in Sec.
II.A.1, requiring maximum alignment of the total angu-
lar momentum, the relevant single-particle states of the
oscillator are those of the LLL. This approach, which
has earlier proven successful for the description of the
fractional quantum Hall regime for the electron gas, was
introduced for bosonic systems by Wilkin et al. �1998�.
As mentioned in Sec. II.A.1, the large degeneracy origi-
nating from the many different ways to distribute the N
bosons on the single-particle states of the LLL is lifted
by the interactions.

Identifying the elementary modes of excitation, Mot-
telson �1999� showed that besides the usual condensa-
tion into the lowest state of the oscillator, the yrast states
�i.e., the states maximizing L at a given energy, see Sec.
II.A.1� involve additional kinds of condensations that
are associated with the many different possibilities for
distributing the angular momentum on the degenerate
set of basis states in the LLL. For 1�L�N, the yrast
states and low-energy excitations as a function of L can
be constructed by a collective operator

Q� =
1

�2N�!
�
p=1

N

zp
�, �42�

with coordinates of the pth particle zp=xp+ iyp.
In the case of attractive interactions, the lowest-

energy state for fixed angular momentum is the one in-
volving excitations of the center of mass of the cloud.
The yrast state is then described by 	�L
��Q1�L	�L=0

�Wilkin et al., 1998; Mottelson, 1999�.

In the case of repulsive interactions, for bosons in the
LLL at L=0 the only possible state is the pure conden-
sate in the m=0 single-particle orbital, thus maximizing
the interaction energy. Increasing the angular momen-
tum by one is possible via a center-of-mass excitation of
the nonrotating state. For L�1 and L�N, the excita-
tion energies of the modes Q��1 show that the yrast
states are predominantly obtained by a condensation
into the quadrupole ��=2� and octupole ��=3� modes,
as shown by Mottelson �1999�.

Bertsch and Papenbrock �1999� compared these re-
sults to a numerical computation of the yrast line. For
the harmonic trap in the lowest Landau level, the prob-
lem can be solved straightforwardly by numerical diago-
nalization of the Hamiltonian �3�; see the discussion in
Sec. III.C. The resulting interaction energy decreases
with increasing L for repulsive interactions since cen-
trifugal forces tend to keep the particles further apart

FIG. 7. Transverse absorption images of a Bose-Einstein con-
densate of 87Rb, stirred with a laser beam. As the rotation of
the trap increases from �a� to �e�, a clear vortex pattern
evolves. The inset to the right of �b� shows the cross section of
the optical density which shows a pronounced minimum at the
center. After Madison et al., 2000.
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when rotation increases �see Fig. 8 for N=25 and 50
bosons�. It shows a linear decrease in energy with L, that
extends up to L=N. This linearity was also found in a
study within the Gross-Pitaevskii approach by Kavou-
lakis et al. �2000�. The inset to Fig. 8 shows the excitation
spectra for N=50 bosons at angular momenta L
18.
“Spurious” eigenstates occur that originate from an
SO�2,1� symmetry �Pitaevskii and Rosch, 1997� only ex-
citing the center of mass, i.e., the yrast spectrum at L
+1 includes the full set of states at angular momentum
L. �These center-of-mass excitations were excluded in
the spectra shown in Fig. 8.� With harmonic confinement
the center-of-mass excitations are exactly separated
from the internal excitations and they are known to also
exist in Fermi systems �Trugman and Kivelson, 1985; Re-
imann and Manninen, 2002�.

The lower panel in Fig. 8 shows the occupancies of the
lowest single-particle states for a N=50 bosonic state
with angular momentum up to L=N. In agreement with
the aforementioned results of Mottelson �1999�, at small
L /N the yrast states are mainly built from single-particle
states with m=0, with small contribution from m�2 and
m�3, where m is the angular momentum of the single-
particle state �Bertsch and Papenbrock, 1999�. Ap-
proaching L /N=1, the yrast state takes a much simpler
structure, with a dominant occupancy of the m=1 single-

particle orbital. At L /N=1, a single vortex locates at the
center of the cloud.

An analytic expression for the exact energies for
2
L
N was conjectured by Bertsch and Papenbrock
�1999� and subsequently derived by Jackson and Kavou-
lakis �2000�; in atomic units it reads

	L = 1
2N�2N − L − 2� . �43�

Smith and Wilkin �2000� derived analytically the exact
eigenstate as an elementary symmetric polynomial of co-
ordinates relative to the center of mass. Later, exact
yrast energies for a universality class of interactions
were derived �Hussein and Vorov, 2002; Vorov et al.,
2003�. Generalizing a conjecture by Wilkin et al. �1998�
for the structure of the unit vortex at L=N,

	L = N
 = �
p=1

N

�zp − zc�	0
 , �44�

where zc= �z1+z2+ ¯+zN� /N is the center-of-mass coor-
dinate, Bertsch and Papenbrock �1999� demonstrated
that the exact wave function in the whole region 2
L

N is given by

	L
 = N �
p1�p2�¯�pL

�zp1
− zc�� �zp2

− zc� ¯ �zpL
− zc�

�	0
 , �45�

where N is a normalization constant, and the indices run
over all particle coordinates, up to the total particle
number N.

We now investigate the evolution of the pair-
correlated densities, defined in Sec. II.C.3. Figure 9
shows their contours, for N=40 bosons with the refer-
ence point located at a distance rA=3�0 �chosen outside

FIG. 8. Yrast lines and occupancies. Upper panel: Many-body
yrast lines for N=25 and 50 spinless bosons in a harmonic
confinement for angular momenta 2
L
50. The inset shows
the excitation spectrum for N=50 and L
18, excluding the
spurious center-of-mass excitations, see text. From Papenbrock
and Bertsch, 2001. Lower panel: Occupancies of the lowest
single-particle states of the harmonic oscillator in the lowest
Landau level, for m=0 �diamonds�, m=1 �squares�, m=2
�circles�, and m=3 �triangles�. Calculations are within the low-
est Landau level. After Bertsch and Papenbrock, 1999.

FIG. 9. Equidensity lines of the pair-correlation function
P�r ,rA� for N=40 spinless bosons at L=28, 32, 36, and 40. For
clarity, the reference point was located outside the cloud at
rA= �3,0�. The vortex, which approaches the center from the
right with increasing L, gives rise to a pronounced minimum in
the pair-correlation plots. From Kavoulakis et al., 2002.
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the bosonic cloud for clarity; �0 is the oscillator length�.
Starting from a homogeneous Gaussian density distribu-
tion at L=0, as L /N increases, the first vortex enters the
cloud from its outer parts. At L=N, the �azimuthally
symmetric� particle density has developed a pronounced
central hole that is also apparent from the correlation
function shown in the lower right panel of Fig. 9. The
nodal pattern of this state, as probed by conditional
wave functions, confirms the simple structure of the unit
vortex �see the L=N=5 state in Fig. 31�. For a discussion
of the low-energy excitations at and around the unit vor-
tex, see Ueda and Nakajima �2006�.

Recently Dagnino, Barberán, and Lewenstein �2009�
and Dagnino et al. �2009� studied the vortex nucleation
process by calculating the density matrix obtained from
the CI eigenstates for a trap with a small quadrupole
deformation. A related early study was presented by
Linn et al. �2001�, who applied a variational method to
investigate the ground-state phase diagram in an axially
asymmetric BEC. The analysis by Dagnino, Barberán,
and Lewenstein �2009� and Dagnino et al. �2009� indi-
cated that when the rotation frequency of the axially
deformed trap is increased and the system passes
through the first vortex transition, two of the “natural
orbitals” of the density matrix have equal weight. Nun-
nenkamp et al. �2009� also studied the noise correlations
at criticality for the elliptic trap, while Parke et al. �2008�
related the transition to vortex tunneling in the process
of nucleation.

In light of the above-mentioned findings, however, it is
worth noting that the overall picture strongly depends
on the symmetry of the chosen trap deformation and is
further complicated by finite-size effects—the latter be-
ing an inevitable restriction in the CI method that be-
comes more severe, when the angular momentum no
longer commutes with the Hamiltonian.

In the Gross-Pitaevskii approach, the vortices are di-
rectly visible in the density as well as the phase of the
order parameter, which breaks the rotational symmetry.
Butts and Rokhsar �1999� and Kavoulakis et al. �2000�
were among the first to apply this method to a weakly
interacting dilute condensate of bosonic atoms in a ro-
tating harmonic trap. Figure 10 shows the equidensity
surfaces for the Gross-Pitaevskii order parameter ��r�
for the states along the yrast line between L=0 and N
�Butts and Rokhsar, 1999�, demonstrating how the first
vortex enters the cloud. In the nonrotating case, the con-
densate forms a lump with zero angular momentum at

the center of the trap. Beyond a certain critical rotation,
however, the ground state becomes a vortex state with
one single-quantized vortex that manifests itself as a
central hole in the density �see l=1.0 in Fig. 10�. The
phase of the order parameter changes by 2� when en-
circling this hole �see Fig. 15, upper panel, left�. The
value of the critical rotation frequency depends on the
system parameters, but the angular momentum per par-
ticle l=L /N equals unity when the vortex reaches the
center. This result is also confirmed by the exact diago-
nalization calculations in the few-particle regime �see
Fig. 12�a��. The same mechanism of vortex entry was
also found in the Gross-Pitaevskii study by Kavoulakis
et al. �2000�. In the limit of large N, Jackson et al. �2001�
compared the energies obtained in the Gross-Pitaevskii
approach to those obtained by the CI method, and
found that the mean-field results provided the correct
leading-order approximation to the exact energies
within the same subspace. For a discussion of the mean-
field theory of single-vortex formation in bosonic con-
densates, see Fetter �2009�.

3. Single-vortex states in electron droplets

Two-dimensional electron droplets in quantum dots
can be rotated by applying a perpendicular magnetic
field. The number of confined electrons and the rotation
frequency can be controlled by an external gate voltage
and the field strength, respectively.

In symmetric quantum dot devices the confining po-
tential can often be modeled accurately by a 2D har-
monic potential �Bruce and Maksym, 2000; Matagne et
al., 2002; Nishi et al., 2006�. These systems would there-
fore be ideal testbeds for analysis of vorticity in rotating
fermionic systems with repulsive interactions. However,
direct experimental detection of signatures of vortex for-
mation in the electron density is difficult due to small
charge densities inside the electron droplet that is often
buried in a semiconductor heterostructure. Attempts to
extract any signatures of vortex formation have usually
focused on the analysis of quantum transport measure-
ments �Güçlü et al., 2005; Saarikoski and Harju, 2005�.

In weak magnetic fields, electron droplets in quantum
dots are composed of electrons which have their spin
either parallel or antiparallel to the magnetic field. As
the strength of the magnetic field increases, the system
gradually spin-polarizes. For details on this process and
electronic structure of quantum dots in this regime, see
Kouwenhoven et al. �2001� and Reimann and Manninen
�2002�. The first totally spin-polarized state in the LLL is
the maximum density droplet �MDD� state �MacDonald
et al., 1993� discussed in Sec. II.E.1. The existence of this
state was firmly established experimentally �Oosterkamp
et al., 1999� using quantum transport measurements.
When the angular momentum is further increased with
the magnetic field, the MDD state reconstructs, and a
vortex may form inside the electron droplet.

The breakdown mechanism of the MDD and its inter-
pretation has been one of the most discussed subjects in
the early theoretical studies of quantum dots. Many of

FIG. 10. Vortex entry for a spherical bosonic cloud at angular
momenta l=L /N. The surfaces of constant density obtained by
the Gross-Pitaevskii method are shown. The cloud flattens
with increasing angular momentum. From Butts and Rokhsar,
1999.
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these works were inspired by the theory of excitations of
the quantum Hall states. MacDonald et al. �1993� and
Chamon and Wen �1994� discussed the possibility of
edge excitations in large quantum Hall systems. Their
studies suggested that the MDD would break up via re-
construction of the MDD edge. This possibility was ex-
amined further by Goldmann and Renn �1999� using a
set of trial wave functions which described a MDD state
surrounded by a ring of localized electrons. In large
quantum dots, density-functional studies indicated a
charge-density-wave �CDW� solution along the edge of
the dot �Reimann et al., 1999� around a rigid MDD-like
dot center. These studies showed that for larger dot
sizes, a rotating single-component fermion liquid would
not develop vortex states but instead the edge of the
system would be excited around a rigid MDD-like cen-
ter. However, Hartree-Fock calculations for small elec-
tron droplets predicted that holes are created inside the
droplet that would bunch to minimize the exchange en-
ergy �Ashoori, 1996�. Yang and MacDonald �2002� used
the exact diagonalization approach and also found the
MDD state unstable toward creation of internal holes in
high magnetic fields. A Skyrmion type of excitation
above the MDD state was considered by Oaknin et al.
�1996�. This study generalized the theory of Skyrmion
type of excitations in the 2D electron gas �2DEG�
�Ezawa, 2000� to finite-size quantum Hall droplets,
which was motivated by localization of Skyrmions in a
Zeeman field. They proposed a wave function whose
form for large particle numbers is that of a mean-field
type of Skyrmion excitation. Heinonen et al. �1999�
found also edge spin textures in an ensemble density-
functional approach. A Skyrmion-type spin texture can
be treated as another manifestation of vorticity, as
pointed out in the context of two-component bosonic
condensates �see Sec. V�. For quantum dots with four
and six electrons, a recent study within the CI method
showed that meron excitations are dominant for the
lowest-lying states in very small quantum dots at strong
magnetic fields �in the limit of vanishing Zeeman cou-
pling�, see Petković and Milovanović �2007�.

Holes in the charge density were identified as vortex
cores in the density-functional studies of quantum dots
�Saarikoski et al., 2004�; see Fig. 11. This work also di-
rectly showed with the configuration-interaction method
that for the N=6 case the nodal structure of the many-
body wave function revealed an isolated vortex at the
center of the dot.

These results suggested that the first magnetic flux
quantum, which penetrates the electron droplet, is a free
vortex and not bound to any particle as in the Laughlin
wave function. Configuration-interaction calculations for
few-electron quantum dots provided further evidence
for vortex formation in few-electron systems �Tavernier
et al., 2004; Toreblad et al., 2004; Manninen et al., 2005�.
In the few-electron regime, the unit vortex can be local-
ized at the center of the electron droplet, just as in the
bosonic case discussed above. In this respect the vortex
in few-electron droplets is a localized holelike quasipar-
ticle �Saarikoski et al., 2004; Manninen et al., 2005�.

However, in the full quantum-mechanical picture the
vortex position in the electron droplet is always subject
to fluctuations as shown by the above diagonalization
studies.

For bosonic systems, Bertsch and Papenbrock �1999�
suggested an ansatz �see Eq. �45�� to describe a single-
quantized vortex at the center of the droplet at L /N
=1. Following Manninen, Viefers, et al. �2001� a similar
approximation for the corresponding single-vortex state
in fermionic droplets can be defined with L=LMDD+N,

�1v = �
i=1

N

�zi − zc�	MDD
 , �46�

where zc is the center-of-mass coordinate, as defined
above. When the number of electrons is large, the center
of mass is, with a high accuracy, at the center of the
trapping potential, and we can approximate zc=0 and
�1v=�zi	MDD
= 	0111¯111000¯ 
 �for arbitrary N�.
For a single-vortex state where the hole is not located at
the center, the wave function would be composed of
single determinants such as |11011¯11000¯
, where the
position of the hole determines the average radius
where the vortex is most likely to be found. The particle
density has a minimum at the distance where the ampli-
tude of the empty single-particle state has a maximum.
However, even in the LLL approximation the true
many-body state is a mixture of all other determinants in
the LLL subspace, and the exact vortex position is then
subject to fluctuations. This effect can be captured by
different trial wave functions. Oaknin et al. �1995� con-
structed a nearly exact wave function for the single-
vortex state. Jeon et al. �2005� described the vortices in
the composite fermion approach formulated for the hole
states. This issue is discussed further in Sec. IV.C which
addresses vortex localization and fluctuations.

In a bosonic system, the yrast line has a pronounced
cusp at angular momentum L=N �see Fig. 14�, corre-
sponding to a state with a single-quantized vortex at the

B= 9 T 11 Ta) b)

FIG. 11. �Color online� Charge and current densitites. �a�
Charge density �grayscale� and current density �arrows� in the
maximum density droplet state of a six-electron droplet at
magnetic field B=9 T calculated with the density-functional
method. The angular momentum is L=15, and the density in-
side the droplet is uniform. The solution also shows an edge
current reminiscent of those in quantum Hall states. �b� The
single-vortex state in the same droplet at slightly increased
magnetic field of B=11 T with L=21. It shows a pronounced
vortex hole in the middle with a rotating current around it.
Adapted from Saarikoski et al., 2004.
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center of the trap. In a fermion system, however, the first
cusp of the yrast line is not necessarily a central vortex
state. Yang and MacDonald �2002� showed that a �vor-
tex� hole is created at the center of the dot for low elec-
tron numbers. When N�13 the hole locates at a finite
distance from the center. In circularly symmetric sys-
tems, such a delocalized node would not be associated
with the usual rotating charge current around a localized
vortex core. A qualitatively similar regime of N�13 for
the central vortex was obtained within a spin-density-
functional analysis �Saarikoski and Harju, 2005�. Calcu-
lations using the “rotating electron molecule” model re-
ported a lower limit, N�7 �Li et al., 2006�. In the exact
diagonalization studies in the LLL �Harju, 2005� the
ground-state angular momenta for the first cusp state
beyond the MDD state shows a marked change in the N
dependence above N=12 �Fig. 12�b��. For N�12 the
node of the first cusp state is at the center of the electron
droplet as indicated by its angular momentum L
=LMDD+N. These solutions can be readily identified as
vortex states. However, for N�12 the angular momen-
tum increase is almost independent of N, which is an
indication that the node cannot reach the center but
stays delocalized close to the edge, as shown in Fig. 13.
This solution can also be interpreted as an edge excita-
tion which helps to understand why different models
and methods yield seemingly contradictory results for
the MDD reconstruction, as discussed above.

The intermediate angular momentum states between
the MDD and the 
L=N central vortex states show a
node in the wave function at a finite distance from the
center �Oaknin et al., 1995; Saarikoski, Harju, et al.,
2005� that can be interpreted as a delocalized vortex, i.e.,
a vortex approaching the center from the droplet surface
as in the case of Figs. 9 and 10 for bosons. Note that
these delocalized vortex states can be interpreted as
center-of-mass excitations, as explained in connection
with Eq. �17�.

For larger electron numbers it is energetically more
favorable to generate two �or even more� vortices al-
ready at L /N=1. In other words, the wave function
shows two or more delocalized nodes at a finite distance
from the center at L /N=1. This is contrary to Bose sys-
tems, where the central vortex state is the lowest-energy
state at L /N=1 for any particle number �see Figs. 12�a�
and 12�b��. Apart from this fact, vortices in both fermi-
onic and bosonic systems are manifest in the nodal struc-
ture of the wave function in a rather similar manner
�Toreblad et al., 2004; Borgh et al., 2008�.

B. Vortex clusters and lattices

When the angular momentum of the quantum droplet
increases with rotation, additional vortices successively
enter the cloud of particles. Normally, in a harmonic trap
these vortices are all singly quantized and arrange in
simple geometries, as observed for a rotating Bose-
Einstein condensate in the early experiment by Madison
et al. �2000�; see Fig. 7. With increasing system size and

rotation, the vortices order in arrays that resemble a tri-
angular Abrikosov lattice �Abo-Shaeer et al., 2001; Ho,
2001�.

1. Vortex lattices in bosonic condensates

We begin by investigating the vortex structures along
the yrast line, i.e., we study the states with highest angu-
lar momentum L at a given energy. Figure 14 shows the
yrast line for N=20 bosons up to L=3N calculated by
exact diagonalization. The vortex is located at the center
when L /N=1. The inset in Fig. 14 at L=20 shows the

FIG. 12. �Color online� Systematics of boson and fermion
ground states. When the external rotation � is gradually in-
creased from zero, a droplet of N particles goes through a
series of ground states with increasing angular momentum L.
Stars mark these L values as a function of N for �a� boson
droplets and �b� fermion droplets. Calculations are done with
the exact diagonalization method in the lowest Landau-level
approximation, and a harmonic confining potential Eq. �4�. In
the fermion results in �b�, the angular momentum of the maxi-
mum density droplet LMDD is subtracted from L. The linear N
dependence of the first �N ,L� combination in bosonic systems
�arrow� indicates that the first L above the nonrotating state
has a central vortex. Fermionic systems with repulsive interac-
tions show a similar behavior only until N=12, where the
breakdown mechanism of the MDD clearly changes �arrow�,
and a nonlocalized node emerges at a finite distance from the
center. From Harju, 2005 and Suorsa, 2006.
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pair-correlated density for that state, with a pronounced
minimum at the origin. At angular momenta L�N, the
slope of the yrast line changes abruptly, and the spec-
trum is no longer linear beyond the first cusp at L /N
=1. The inset in Fig. 14 shows the angular momenta of
the lowest-energy states for a given rotational frequency
� of the trap that are obtained by minimizing the energy
in the rotating frame, Erot=Elab−�L. The pronounced
plateaus correspond to stable states with vortices that
successively enter the bosonic cloud with increasing trap
rotation. Below a certain critical angular frequency, the
cloud remains in the L=0 ground state. Beyond that
frequency, the axially symmetric single vortex at the cen-
ter becomes the ground state until more vortices pen-
etrate the trap as the rotation increases.

In the exact results for small atom numbers, the vor-
tices appear as clear minima in the pair-correlated den-
sities, as here shown for the example of a two-vortex
solution at L /N=1.8, and a three-vortex state, for L

=2.85, see Fig. 14. Related results of vortex formation in
small systems were, for example, studied by Barberán et
al. �2006�, Dagnino et al. �2007�, and Romanovsky et al.
�2008�.

For weakly interacting bosons, many states between
angular momenta L=N and N�N+1� can be well de-
scribed with the composite particle picture �Cooper and
Wilkin, 1999; Viefers et al., 2000�. Cooper and Wilkin
�1999� showed that for most states with a clear cusp in
the yrast line the overlaps between the exact wave func-
tion and that of the Jain construction is in general close
to 1 for particle numbers N
10. Wilkin and Gunn
�2000� furthermore showed that at some angular mo-
menta in this region the so-called Pfaffian state is a good
analytic approximation for the exact wave function.

These findings are similar to the results of the mean-
field Gross-Pitaevskii method, where one finds succes-
sive transitions between vortex states of different sym-
metry. With increasing angular momentum, the arrays of
singly quantized vortices are characterized by a phase
jump of the order parameter around the density minima
at the vortex cores �Butts and Rokhsar, 1999; Kavoulakis
et al., 2000�.

Figure 15 shows schematically the equidensity sur-
faces for the unit vortex, a two-vortex and three-vortex

FIG. 13. Occupations of the single-particle �Fock-Darwin�
eigenstates with angular momentum m of fermions in a har-
monic trap at ground states with L=LMDD+13 for N=15 �left�
and 25 �right�. Since the mean particle distance from the center
increases with m the high-N states resemble more edge excita-
tions than central vortex states �cf. Fig. 12�. From Suorsa, 2006.

FIG. 14. �Color online� Yrast line of N=20 bosons in a har-
monic confinement, obtained by the CI method in the lowest
Landau level and for contact interactions between bosonic par-
ticles. The inset shows the total angular momentum of the
ground state, plotted as a function of � /�. Pair-correlated den-
sities �renormalized in height� are shown for increasing angular
momentum per particle, l=L /N=0.1, 1.0, 1.8, and 2.85 �as
marked by the triangles�. The reference point was chosen at
high density for radii of order unity. From Christensson,
Borgh, et al., 2008

FIG. 15. �Color online� Vortices in a rotating cloud of bosons.
Schematically shown are the vortex holes that penetrate the
boson cloud with increasing angular momentum. The lower
panel shows the phase of the order parameter, and its density
contours. �The black dots indicate the vortex positions.� From
Butts and Rokhsar, 1999.
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state in the upmost panel, as well as the contours and
the corresponding phase of the order parameter at
higher ratios l=L /N, as shown by Butts and Rokhsar
�1999�. At angular momenta beyond the unit vortex, the
rotational symmetry of the mean-field solutions is bro-
ken. At L�1.75N the optimized Gross-Pitaevskii wave
function shows a twofold symmetry when the second
vortex has entered the cloud, very similar to the afore-
mentioned experimental results for 87Rb �Madison et al.,
2000�, and in agreement with the pair-correlated densi-
ties in Fig. 14. Higher rotational frequencies introduce
new configurations of vortices. At l�2.1 there is a state
with three vortices symmetrically arranged around the
center of the trap. As l=L /N increases, more and more
vortices enter the cloud �Butts and Rokhsar, 1999;
Kavoulakis et al., 2000�, and eventually the vortices ar-
range in a pattern that resembles a triangular lattice
�Ho, 2001; Baym, 2003, 2005�. This is in agreement with
the experiments which were able to reach and image the
angular momentum regime where large vortex arrays
emerge �Abo-Shaeer et al., 2001�, reminiscent of the
Abrikosov lattices in type-II superconductors. Stable
multiply quantized vortices with phase shifts larger than
2� were not obtained �Madison et al., 2000� for a one-
component Bose gas in the purely harmonic trap, in
agreement with the theoretical results discussed above.

As discussed in Sec. III.A, the effective mean-field po-
tential in the Gross-Pitaevskii approach may break the
rotational symmetry of the Hamiltonian to lower the en-
ergy. As a consequence, such a mean-field solution for
the order parameter is not an eigenstate of the angular
momentum operator and the solution may reflect the
internal symmetry of the exact quantum state. Similar
behavior has also been observed in density-functional
studies of quantum dots �Reimann and Manninen, 2002�
and is further discussed in the review by Cooper �2008�.

Figure 16 shows the expectation value of the angular
momentum of a bosonic cloud as a function of the an-
gular velocity of the trap, as obtained from the Gross-
Pitaevskii approach �Butts and Rokhsar, 1999�. The dis-
continuities in l=L /N correspond to the topological
transformations of the rotating cloud that are associated
with the occurrence of additional vortices, as discussed
above.

In the purely harmonic trap, the oscillator frequency
� limits the angular rotation frequency �, see Eq. �1�.
When both quantities finally become equal, the conden-
sate is no longer confined and the atoms fly apart.

2. Vortex molecules and lattices in quantum dots

The close analogy between the bosonic ground state,
	N00000¯ 
 at L=0, and the fermionic maximum density
droplet state, |111¯111000¯
 at LMDD=N�N−1� /2 �see
Sec. II.F� suggests that vortex lattices may also emerge
in fermionic systems to carry the angular momentum.
Indeed, density-functional studies predicted the emer-
gence of clusters or “vortex-molecule-like” geometric
arrangements of vortices inside small droplets of elec-
trons in quantum dots �Saarikoski et al., 2004� when the

angular momentum increases beyond the MDD. This
happens in a similar way as in bosonic droplets at small
rotation frequencies �Toreblad et al., 2004�. An example
of these vortex molecules in few-electron quantum dots
is shown in Fig. 17. Figure 18 shows a cluster of 14 vor-
tices in a 24-electron quantum dot calculated with the
density-functional method in a local spin-density ap-
proximation �see Sec. III.B�.

These vortices correspond to off-electron nodes. The
filling factor of the state in Fig. 18 can be approximated
as ��0.63. As in the bosonic systems vortex clusters are
composed of single-quantized vortices �Saarikoski,
Reimann, et al., 2005�. Remarkably, the structure of the
vortices that appear localized on two concentric rings
with four vortices on the inner, and ten vortices on the
outer “shell,” matches that of a classical Wigner mol-
ecule with 14 electrons at the verge of crystallization
�Bedanov and Peeters, 1994�. This also holds for the
three- and four-vortex solutions shown in Fig. 17, where
the triangle and square match the three- and four-
particle classical Wigner-molecule configurations.

FIG. 16. Angular momentum per particle L /N as a function of
the rotational frequency � /� of the trap. The discontinuities
correspond to the transitions between different symmetries.
The insets show the surfaces of constant density in a spherical
trap for states with two and six vortices. �= �2/��1/2aN /�z, a
the scattering length and �z the axial width of the ground state
of a single particle in the trap. From Butts and Rokhsar, 1999.

B= 14 T 17 Ta) b)

FIG. 17. �Color online� Vortex molecules in a six-electron
droplet. Charge density �grayscale� and current density �ar-
rows� show rotating currents around �a� three and �b� four lo-
calized vortex cores in density-functional calculations. From
Saarikoski et al., 2004.
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The clustering of vortices has also been analyzed with
the CI method using reduced wave functions �see Sec.
II.C.3� in the case of few-electron circular �Saarikoski et
al., 2004; Tavernier et al., 2004, 2006; Stopa et al., 2006�
and elliptical �Saarikoski, Reimann, et al., 2005� quan-
tum dots. In these studies the formation of few-vortex
molecules has been found to follow a similar pattern in
both the CI method and the density-functional method.

Using the idea of the Bertsch-Papenbrock ansatz
�Bertsch and Papenbrock, 1999� and assuming n fixed
vortex sites, we can anticipate that the single determi-
nant describing a vortex ring would be �Toreblad et al.,
2004�

�nv = �
j=1

N

�
k=1

n

�zj − aei2�k/n�	MDD


= �
j=1

N

�zj
n − an�	MDD
 , �47�

where a is the radius of the ring of vortices. This wave
function is not an eigenstate of the angular momentum,
but it can be projected out by collecting the states with a
given power of a and symmetrizing the polynomial mul-
tiplying the |MDD
:

�nv = an�N−K�S��
j=1

K

zj
n�	MDD
 , �48�

where S is the symmetry operator and K determines the
average radius of the vortex ring. For example, with N
=7, K=5, and n=3, the most important configuration is
|1100011111000¯
, in agreement with the CI calcula-
tions �in the LLL approximation� for vortex rings by
Toreblad et al. �2004�. We discuss localization and fluc-
tuations of vortices further in Sec. IV.C.

Equation �48� also elucidates the origin of different
vortex types and the similarity of fermion and boson

systems. The zeros of the symmetric polynomial S��zj
n�

give the free vortices, while the zeros of |MDD
 give the
Pauli vortices. In a boson system, |MDD
 is replaced
with the boson condensate |0
 which has no zeros, and
only the free vortices appear, as shown in Fig. 19.

Studies of electron-vortex correlations in quantum
dots indicate that, at least in few-electron systems, the
electron-vortex separation de−v can be approximated by
a universal quadratic function of the filling factor, de−v
�de−e�

2, where de−e is the average electron-electron
separation �Anisimovas et al., 2008�. This shows that in
the limit of high angular momentum �low �� electrons
tend to attract vortices closer to electron positions,
which eventually leads to the formation of electron-
vortex composites and the emergence of finite-size coun-
terparts of the quantum Hall states.

The rotating electron molecule approach �Yannouleas
and Landman, 2002, 2003� has also been used to analyze
correlations between particles and vortices in electron
droplets. However, this approach has been found to un-
derestimate electron-vortex correlations �Anisimovas et
al., 2008� and vortex attachment to particles in the limit

FIG. 18. �Color online� Electron density �grayscale� and cur-
rent density �arrows� in a 24-electron quantum dot calculated
with the density-functional method. The solution shows a clus-
ter of 14 localized vortices arranged in two concentric rings.
From Saarikoski et al., 2004.

FIG. 19. �Color online� Reduced wave-function representation
of the vortex structure of the model wave function Eq. �48� for
bosons and fermions �N=7, n=2, K=2�. The fixed particles are
shown as light dots, the current field with arrows �logarithmic
scale�, and the particle density as shades of color �light color
corresponding to high density�.
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of high angular momentum �Tavernier et al., 2004�.
The vortex-molecule-like characteristics of the states

are expected to vanish gradually with increasing vortic-
ity. However, exact diagonalization studies of few-
electron systems with Coulomb interactions have sug-
gested that the above-described vortex ordering into
Wigner-molecule-like shapes continues down to a filling
factor �= 1

2 , where the electron number equals the �off-
electron� vortex number �Emperador, 2006�. At �= 1

2 the
structure of the state is complex �Emperador et al., 2005�
and possible electron pairing in this regime has been
studied �Harju et al., 2006; Saarikoski et al., 2008�. This
filling factor marks also the beginning of a regime �� 1

2
where the vortex attachment to particles becomes pro-
nounced �Emperador, 2006�. We further discuss the
breakdown of vortex molecules and the emergence of
fractional quantum-Hall-liquid-like states in Secs. IV.C
and IV.F, respectively.

3. Signatures of vortices in electron transport

For quantum dots in the fractional quantum Hall re-
gime, where vortices have been predicted to form, elec-
tron transport measurements have revealed a rich vari-
ety of transitions associated with charge redistribution
within the electron droplet �Ashoori, 1996; Oosterkamp
et al., 1999�.

Quantum dots contain a tunable and well-defined
number of electrons. The electron transport experiments
in the Coulomb blockade regime at low temperatures
�around 100 mK� measure the chemical potential

��N� = E�N� − E�N − 1� , �49�

which gives the minimum energy needed to add one
more electron to the electron droplet. Transitions in the
electron transport data can be seen as cusps or jumps in
the chemical potential. Different quantum Hall regimes
can be identified from these characteristic features of
the chemical potential as a function of both the electron
number and the magnetic field, see Fig. 20.

In experimental studies of vertical quantum dots, a
harmonic external potential has been found to give a
good approximation of the confining potential �Matagne
et al., 2002�. The harmonic confinement strength ��0 is
determined by the size of the quantum dot device and
usually depends on the number of electrons N inside the
quantum dot. The area of the electron droplet has been
found to increase with the gate voltage suggesting that
the electron density in the droplet remains constant
�Austing, Tokura, et al., 1999�. Confining potentials scal-
ing as ��0�N−1/4 in Koskinen et al. �1997� or ��0
�N−1/7 in Saarikoski and Harju �2005� have been used in
order to compare with experimental data.

The MDD state in quantum dots is the finite-size
counterpart of the �=1 quantum Hall state. Its existence
has been firmly established in experiments since it gives
rise to a characteristic shape in the chemical potential at
�=1 �Oosterkamp et al., 1999�. The MDD state assigns
one Pauli vortex at each electron position giving a total
magnetic flux of N�0. As the rotation is further in-

creased, the MDD reconstructs �MacDonald et al., 1993;
Chamon and Wen, 1994; Goldmann and Renn, 1999;
Reimann et al., 1999; Toreblad et al., 2006�, and a vortex
enters the electron droplet. This transition occurs ap-
proximately when the magnetic flux �=BA through the
MDD of area A exceeds �N+1��0. Subsequent transi-
tions involve an increasing number of such off-electron
vortices �Saarikoski et al., 2004; Toreblad et al., 2004�.
Assuming a constant electron density in the droplet, the
change in B required for the addition of subsequent off-
electron vortices in the droplet is 
B=�0n /N. This re-
sult can be compared to density-functional calculations,
which indicates a 1/N dependence of the spacing be-
tween the first major transitions after the MDD state.
However, the limited accuracy of the available electron
transport data at present does not allow to draw any
more firm conclusions.

The different ground states obtained within density-
functional theory are compared to electron transport
data in Fig. 20. The transition patterns in theory and
experiment show a narrowing of the stability domain of
the MDD.

Closer examination of the chemical potential for dif-
ferent N values and comparison with the mean-field re-
sults reveal different quantum Hall regimes as the mag-
netic field is increased. Figure 21 shows the chemical
potential for N=13 and 30.

The agreement with the electron transport data is best
in the vicinity of the MDD domain. Experimental data
show additional features not accounted for by the
density-functional theory �open triangles in Fig. 21�,
which could be attributed to correlation effects, espe-
cially a transition to partially polarized states �Oaknin et
al., 1996; Siljamäki et al., 2002�. In a quantum Monte
Carlo study by Güçlü et al. �2005� the frequency of tran-
sitions per unit of magnetic field was calculated in the
��1 regime and it was found to roughly correspond to
the frequency in experiments. However, many of the cal-
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FIG. 20. �Color online� Current peaks in the electron transport
experiments and transitions in the spin-density-functional
theory �lines�. The dashed lines denote the MDD boundaries
and the roman numerals indicate number of vortices in the
theory. Adapted from Saarikoski and Harju, 2005; the experi-
mental data are from Fig. 2�b� in Oosterkamp et al., 1999.
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culated transitions give rise to small changes in angular
momentum and energy. Direct comparison with experi-
ments is therefore difficult due to noise in experimental
setups and inevitable imperfections in the samples. Nishi
et al. �2006� did experimental measurements and de-
tailed modeling for few-electron quantum dots. High-
accuracy electron transport data that would go deep into
the fractional quantum Hall regime are still lacking for
higher electron numbers.

Magnetization measurements of quantum dots could
provide another way to probe for transitions caused by
vortex formation inside electron droplets. Observed os-
cillations in the magnetic susceptibility �=�M /�H have
been analyzed, showing the de Haas–van Alphen effect
in large arrays of quantum dots �Schwarz et al., 2002�.
However, to resolve transitions in individual states in the
regime of high angular momentum is challenging be-
cause the shapes of the quantum dots in the ensemble
must be sufficiently uniform, and the number of elec-
trons in the samples has to be small.

C. Localization of particles and vortices

We have seen above that localized vortices and vortex
molecules have been observed in rotating bosonic sys-

tems, and similar structures were predicted to occur in
rotating fermion droplets. Vortex localization can be
seen as analogous to particle localization within the
framework of the particle-hole duality picture, discussed
in Sec. II.D. We start this section with a discussion of
particle localization in 2D systems. Insight and concepts
derived from these studies are necessary as we proceed
to discuss the analogy between particle and vortex local-
ization.

1. Particle localization and Wigner molecules

Wigner crystallization �Wigner, 1934� has been ob-
served for electrons trapped at the surface of superfluid
liquid helium �Andrei et al., 1991� or in a two-
dimensional electron gas in a semiconductor hetero-
structure �Pudalov et al., 1993�. Recent addition energy
measurements of islands of trapped electrons floating on
a superfluid helium film have revealed signatures of a
Wigner-crystalline state �Rousseau et al., 2009�. In the
low-density limit, the kinetic energy of the 2D electron
gas becomes small and the interparticle interactions
dominate. The crystalline phase is expected to emerge at
the density parameter rs�37a

B
* , where a

B
* is the effective

Bohr radius �Tanatar and Ceperley, 1989� �rs is a radius
of a circle containing on average one electron�. This es-
timate is in agreement with recent computations by At-
taccalite et al. �2002, 2003�.

A finite system of a few �nearly� localized electrons is
commonly referred to as a “Wigner molecule.” In small
quantum dots, these Wigner molecules take the shapes
of simple polygons, depending on the number of elec-
trons that can be resolved by classical electrostatics
�Bolton and Rössler, 1993; Bedanov and Peeters, 1994�.
In the nonrotating case, the onset of electron localiza-
tion occurs already at relatively high densities rs�4a

B
*

�Jauregui et al., 1993; Egger et al., 1999; Reimann et al.,
2000; Yannouleas and Landman, 2007�. In this context it
is interesting to note that in small systems most of the
particles localize at the perimeter of the dot. For seven
electrons, for example, six particles localize at the verti-
ces of a hexagon, with the seventh particle at the dot
center �Bolton and Rössler, 1993�: the electrons along
the perimeter essentially form a 1D system where the
localization is even easier than in 2D �Kolomeisky and
Straley, 1996; Viefers et al., 2004�. Localization in the
radial direction takes place first followed by localization
in the angular direction �Filinov et al., 2001; Ghosal et
al., 2006�.

In small electron systems there are no true phase tran-
sitions and the localization of electrons increases gradu-
ally with decreasing electron density �Reimann et al.,
2000�. Inelastic light scattering experiments have only
been used to probe excitations of moleculelike states in
few-electron quantum dots in the high-density regime
where, however, localization has not yet occurred �Kal-
liakos et al., 2008�. Addition-energy spectra obtained
from Coulomb blockade experiments �Tarucha et al.,
1996� have been proposed as a direct probe for signa-
tures of localization �Güçlü et al., 2008�. In large quan-
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FIG. 21. �Color online� Chemical potential of a quantum dot
device with N=30 �upper panel� and N=13 �lower panel� com-
pared to the results from the spin-density-functional theory.
The experimental data are from Oosterkamp et al. �1999�.
Noise in the experimental data has been reduced by using a
Gaussian filter. In the calculations the confining potential is
assumed to be parabolic with ��0 being 4.00 meV for N=13
and 3.51 meV for N=30. Finite-size precursors of different
quantum Hall states are identified. The roman numbers be-
tween the filled triangles indicate the number of vortices inside
the electron droplet predicted by the density-functional calcu-
lations. The open triangles mark other possible transitions
which are beyond the reach of density-functional theory.
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tum dots, the crystallization occurs in ringlike patterns,
such as the shells of an onion �Filinov et al., 2001; Ghosal
et al., 2006�. A gradual rearrangement of addition energy
spectra, which indicates a change in shell fillings, is then
predicted to occur as the shell sizes of Wigner molecules
differ from those of nonlocalized electrons. However, no
experimental data yet exist in this regime.

Quantum dots are often modeled as circularly sym-
metric and the associated quantum states and ground-
state electron densities therefore also have the same
symmetry. The localization of particles takes place in the
internal frame of reference. In the laboratory frame the
localization is seen in the total density distribution only
when using approximate many-particle methods which
allow symmetry breaking, such as, for example, the un-
restricted Hartree-Fock approach �Yannouleas and
Landman, 1999�. Other possibilities are to break the
symmetry of the confining potential as, for example, by
an ellipsoidal deformation �Manninen, Koskinen, et al.,
2001; Saarikoski, Reimann, et al., 2005; Dagnino et al.,
2007, 2009; Dagnino, Barberán, and Lewenstein, 2009�
or to analyze localization of the probing particle in the
reduced wave function �Harju et al., 2002; Saarikoski et
al., 2004�. However, there are other straightforward
methods to see the localization in exact calculation for
circular confinement: Fig. 22 shows the pair-correlation
function �conditional probability� for four particles at
different values of the total angular momentum. Clearly,
when the angular momentum increases, the particles are
further apart and the localization becomes more pro-
nounced. Another possibility is to study the rotational
many-particle energy spectrum, which is more intricate,
but also more revealing.

2. Rotational spectrum of localized particles

When the particles are localized, we may consider the
system as a rotating “molecule” with a given point group
symmetry. In the case of two identical atoms in a mol-
ecule the rotational spectrum shows a twofold periodic-
ity in the angular momentum, which may be odd or even
depending upon whether the atoms are bosons or fermi-

ons �Tinkham, 1964�. Similarly, for N identical particles
forming a ring, only every Nth angular momentum is
allowed �Koskinen et al., 2001� in a rigid rotation around
the symmetry axis. For other angular momenta, the ro-
tational state should be accompanied by an internal ex-
citation. In the case of particles having no internal de-
grees of freedom �no spin�, the only such excitations are
vibrational modes of the molecule. Group theory can
then be used to resolve the vibrational modes which are
allowed to accompany a certain angular momentum ei-
genvalue �Maksym, 1996; Koskinen et al., 2001; Viefers
et al., 2004�.

Plotting the energies of the many-body system as a
function of the angular momentum, the lowest energy
�yrast line� has oscillations with a period of the symme-
try group. The minima correspond to pure rotational
states. Between the minima the states have vibrational
excitations which increase the energy. Maksym showed
that the energy spectrum of few electrons at high angu-
lar momenta can be quantitatively explained by a rotat-
ing and vibrating Wigner molecule �Maksym, 1996�
which is the basis for the molecular approaches to cor-
relations in quantum dots �Maksym et al., 2000� and
quantum rings �Koskinen et al., 2001�. Several other
studies have later confirmed this observation; for a re-
view, see Viefers et al. �2004�. This molecular approach
for rotating particles was also used by Yannouleas and
Landman �2002, 2003�, who introduced rotating electron
molecule wave functions to describe rotating molecular
states at high angular momenta. These wave functions
are available in analytic form, with their internal struc-
ture constructed by placing Gaussian functions at classi-
cal positions of electrons in high magnetic fields.

Formulating a molecular model of a rotating system,
we may approximate the many-particle spectrum �at
zero magnetic field� by

E =
L2

2IL
+ �

�

��L��n� +
1
2
� , �50�

where IL is the moment of inertia of the Wigner mol-
ecule and �L� is the vibrational frequencies. IL and �L�
can be determined using classical mechanics in the rotat-
ing frame, and thus depend on the angular momentum
as indicated with the subscript L. The eigenenergies Eq.
�50� can be compared to those calculated from the exact
diagonalization method.

To give an example for the signatures of localization
in the many-body energy spectra, Fig. 23 shows the ro-
tational three-particle spectrum. A broad range of low-
lying states may be described quantitatively with the
rotation-vibration model of Eq. �50�.

Figure 23 also shows examples of the pair-correlation
functions for a purely rotating state and for a state in-
cluding vibrational modes. Similar observations have
been reported for other vibrational modes and particle
numbers �Maksym et al., 2000; Nikkarila and Manninen,
2007a�. A more detailed quantum-mechanical analysis of
the molecular states has recently been reported by Yan-
nouleas and Landman �2009�.

L=10 L=18

L=30 L=42

FIG. 22. �Color online� Pair-correlation functions of four fer-
mions with repulsive Gaussian interactions at four different
angular momenta L=10, 18, 30, and 42, respectively, showing
that localization increases with rotation. The contour plots are
in the same scale to demonstrate the expansion due to the
rotation. From Nikkarila and Manninen, 2007a.
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Finally, we should consider what happens to the rota-
tional energy spectrum when the particles have internal
degrees of freedom, say, spin. In the classical limit, the
internal degrees of freedom separate from the spatial
excitations �vibrations� since the Hamiltonian is spin in-
dependent. The different spin states of the system will
eventually become degenerate. However, the existence
of the different spin states will give more freedom to
satisfy the required symmetry �bosonic or fermionic� of
the total wave function. Again, group theory can be used
to determine the spin states which are allowed for a
given angular momentum and a given vibrational state
�Maksym, 1996�. The energies agree well with the clas-
sical model of Eq. �50� �Koskinen et al., 2007�.

The localization of the particles may in fact also be
incomplete. This is indicated by the nonvanishing par-
ticle density in between the classically localized geom-
etries, as well as small deviations in the symmetry of the
Wigner crystal. The excited quantum Hall states �edge
states� may especially show such structures, as discussed
in connection with vortex formation, see Sec. IV.A. The
lowest-lying excitations of a large electron droplet above
the MDD state have been predicted to show particle
localization into rings of electrons around a compact
nonlocalized core of the MDD electrons �MacDonald et
al., 1993; Chamon and Wen, 1994�. The wave functions
of these states contain a single node at a finite distance
from the center �i.e., a nonlocalized vortex, see Sec.
IV.A.3�, which leads to a separated ring of localized elec-
trons at the edge, often referred to as the Chamon-Wen
edge that has been much discussed �Goldmann and
Renn, 1999; Reimann et al., 1999; Manninen, Koskinen,
et al., 2001; Reimann and Manninen, 2002; Toreblad et
al., 2006�. The localized edge state appears when the
MDD begins to break up with the entrance of the first
vortex, but before further vortex holes penetrate the
cloud �see Sec. IV.C.4�. It should be noted that the
current-spin-density-functional theory �Vignale and Ra-
solt, 1987, 1988� with the local density approximation
�Reimann et al., 1999� largely overemphasizes the local-

ization of electrons in the Chamon-Wen edge �Toreblad
et al., 2006�.

3. Localization of bosons

In a nonrotating condensate, all bosons may occupy
the same quantum state. In the regime of high angular
momenta, however, rotation may induce localization in
bosonic systems in the same way as in fermionic systems.
In both cases, the rotation pushes the particles further
apart, and the classical picture of a rotating and vibrat-
ing Wigner molecule �Maksym, 1996� sets in. The simi-
larity of bosons and fermions in reaching the classical
limit was suggested by Manninen, Viefers, et al. �2001�
on the basis of Laughlin’s theory �Laughlin, 1983� of the
fractional quantum Hall effect, and has been subse-
quently studied more quantitatively: a detailed compari-
son of few bosonic and fermionic particles in a harmonic
trap �Reimann et al., 2006a� indicated similar localiza-
tion effects in both systems. Note that for small particle
numbers in the LLL the mapping between boson and
fermion states discussed in Sec. II.D becomes increas-
ingly accurate when the angular momentum increases
�Borgh et al., 2008�, in accordance with the classical in-
terpretation of the spectrum.

4. Vortex localization in fermion droplets

There is an apparent analogy between vortex localiza-
tion and particle localization: we have seen that local-
ized vortices cause minima in the electron density, with
rotational currents around their cores. These “holes” ar-
range in vortex molecules, with shapes that indeed re-
semble those of Wigner molecules in the case of particle
localization, discussed in Sec. IV.C.1. �Note that the
Pauli vortices do not give rise to vortex structures in the
electron density since each electron carries one such vor-
tex.�

The vortex localization can be illustrated by the con-
figuration mixing of the exact quantum states. If the con-
figuration has, say, four vortices and |11110000111111¯


FIG. 23. Classical orbits and pair-correlation functions of localized electrons in rotating frame �upper panel�. At angular momen-
tum L=24 the lowest energy state is purely rotational while at L=25 a doubly excited rotational state is shown. In the rotating
frame the classical motion shows a pseudorotation �middle left� while the pair correlation shows maxima at the classical turning
points �middle right�.The spectrum �lower panel� compares the exact energies �dots� with those of the classical model �squares�. It
shows a periodicity of 
L=3 in angular momentum, which agrees with the localization in a triangular geometry �see upper panel�.
The horizontal dashed lines indicate the center-of-mass excitations which occur at all angular momenta. From Nikkarila and
Manninen, 2007b.
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has the largest weight, other configurations with the
same angular momentum, such as |11101001011111¯
,
have a finite weight. The CI method shows that the mix-
ing of these states happens mostly around the holes in
the filled Fermi sea, as shown in Fig. 24. This means that
the holes are strongly correlated and may localize.

This can be directly compared to the localization of
particles. As discussed in Sec. IV.C.1, the lowest-lying
excitations of a large electron droplet above the MDD
state were predicted to show particle localization into
ringlike geometries, with a single vortex hole at a finite
distance from the center �see Sec. IV.A.3�. In this case,
the configuration mixing is shifted to the outer edge of
the droplet where it leads to a ring of strongly correlated
particles as, for example, shown in Fig. 24.

The localization of particles and vortices in a circular
system breaks the internal symmetry �unless a single
vortex is localized at the center�. The density-functional
method, using a local approximation for the exchange-
correlation effects, may show the localization of par-
ticles and vortices directly in the particle and current
densities �see Fig. 18 and discussion of symmetry break-
ing in Sec. II.A.3� as discussed above. However, the true
many-body wave function of the system must have the
symmetry of the Hamiltonian. Figure 24 demonstrated
that the localization of vortices can be seen in the pair-
correlation functions by taking the reference point to be
at the same radius as the vortices. Moreover, in a one-
component fermion system, particle-hole duality �see
Sec. II.D� can be used to gain insight into correlations
between vortices. Transformation of a bosonic wave
function to a fermionic one can be used to illustrate the
vortex localization. Any fermion state can be written as
a determinant of the MDD times a symmetric polyno-
mial, where vortex structures are included in the latter
�Manninen et al., 2005�. On the other hand, this polyno-

mial is a good approximation to the exact boson wave
function, as discussed in Sec. II.F.

Figure 25 shows examples of the particle-particle and
hole-hole correlation functions which indeed reveal that
vortices in both boson and fermion systems are well lo-
calized. This can be understood by considering the an-
gular momentum of the system of holes, and the corre-
sponding filling factor of the LLL. For example, in the
case of four vortices, the hole filling factor is as low as
about 1/9, which corresponds to the value where the
particles form a Wigner solid in an infinite system. In
other words, when the electron filling factor approaches
unity �from below�, the hole filling factor approaches
zero, forcing the holes to be localized.

Hole-hole correlations in Fig. 25 show clearly the ef-
fect of the zero-point fluctuation in the vortex position.
To examine this further in the case of fermions, as an
example we investigate the singly quantized vortex for
six electrons in a harmonic confinement. As discussed in
Sec. IV.A.3 the MDD state in this case, with angular
momentum L=15, is characterized by a relatively flat
electron density. The electrons occupy the six lowest lev-
els of angular momentum in the lowest Landau level
with occupancies |11111100¯
. When the angular mo-
mentum increases, at stronger magnetic fields the MDD
state is reconstructed and a vortex hole is created in the
center. This state has angular momentum L=21. The
single-particle determinant |011111100¯
 with a weight
0.91 yields the largest contribution to the wave function
in the lowest Landau level. Due to fluctuations, the ex-
act many-body wave function includes other single-
particle determinants corresponding to L=21, such as
|1011110100¯
 and |11011100100¯
. However, since

111111100001111111111111000

111111010010111111111111000

mixing holes

111111110111111111111000000

111111111011111111110100000

mixing particles

FIG. 24. Electron-electron pair-correlation functions showing
localization of four vortices �left� and localization of electrons
at the edge of the cloud in the case of one vortex �right�. White
color means high density, and some constant-density contours
are shown. The two most important configurations are given in
each case, demonstrating that mixing of single-particle states
close to holes leads to hole localization, while correspondingly
the mixing of particles localizes particles. The results are cal-
culated with the CI method for 20 particles with angular mo-
menta L=242 �left� and L=202 �right�.

FIG. 25. �Color online� Pair-correlation functions for large fer-
mion and boson systems with four vortices. The pair-
correlation function of the MDD is displayed for comparison;
it only shows the exchange-correlation hole at the reference
point.
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their weights are relatively small, the state can be char-
acterized by a rather flat maximum density droplet con-
figuration with a vortex hole in the center. The electron
density of this state indeed shows a deep hole in the
center and a rotating current around it �upper panel of
Fig. 26�. Fluctuations in the vortex position cause the
particle density to remain finite in the center of the con-
fining potential. A single-determinant wave function
|01111100¯
 transformed into the center-of-mass coor-
dinates zi→zi−zCM shows a density profile that is close
to the exact results �upper panel of Fig. 26�. The
quantum-mechanical zero-point motion of the vortex
hole leads to a finite density at the vortex core. The
center-of-mass fluctuations decrease with electron num-
ber, which is reflected by localization increasing with
particle number �lower panel of Fig. 26�.

5. Vortex molecules

A section of the many-particle energy spectrum for
N=20 electrons for different angular momenta L is
shown in Fig. 27 �Reimann et al., 2006b�. The yrast line
shows periodic oscillations, with the oscillation length
�in units of L� equal to number of localized vortices in
the system. The reason behind these periodic oscilla-
tions in the energy spectrum is deeply connected with
the above-mentioned particle-hole duality and vortex lo-
calization: they are signatures of two, three, and four
vortices localized at the vertices of simple polygons with
C2v symmetry. For polarized fermions as in Fig. 27, the
rigid rotation of the vortex “molecule” with n-fold sym-
metry is allowed only at every nth angular momentum,
corresponding to a minimum �cusp� in the yrast line. At
intermediate angular momenta, the rigid rotation is ac-
companied by other excitations, such as vibrational
modes, that result in higher energies �Nikkarila and
Manninen, 2007a�. Figure 28 compares a small part of
the spectrum to that for three electrons. The marked
similarity of these spectra demonstrates not only that
the vortices are localized in a triangle, such as the three
electrons, but also that elementary excitations of the
many-particle energy spectrum are vibrational modes of
the vortex molecule.

Under certain circumstances the particle and current
densities of the �exact� many-body state may show di-
rectly the formation of vortex molecules. This may, for
example, be the case for a broken rotational symmetry
of the system as predicted for elliptically confined quan-
tum dots �Manninen, Koskinen, et al., 2001; Saarikoski,
Reimann, et al., 2005�. Figure 29 shows the electron den-
sity of an elliptical six-electron quantum dot calculated
by exact diagonalization.
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FIG. 26. �Color online� Radial electron densities. Upper panel:
Radial electron densities in a harmonic trap ��=1� in a six-
electron droplet with a central vortex at L=21 �in harmonic
oscillator units�. The exact solution in the LLL is shown by the
line, a single-determinant wave function which describes a cen-
tral vortex is shown by another line, and a single-determinant
wave function in the center of mass �CM� transformed coordi-
nates zi→zi−zCM is shown by the third line. Lower panel: Ra-
dial electron densities for central vortex states L=LMDD+N,
showing that vortex localization increases with electron num-
ber N due to decrease in the center-of-mass motion.

FIG. 27. �Color online� Fermion low-energy spectrum for 20
particles. The lowest energy many-particle states as a function
of the total angular momentum �yrast states� are connected
with lines to guide the eye. A smooth function of angular mo-
mentum was subtracted from the energies to emphasize the
oscillatory behavior of the yrast line. The periodicity of the
oscillation reveals the number of localized vortices as shown
schematically. From Reimann et al., 2006b.
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Two localized vortices can be identified as minima in
the charge density, around which the current shows the
typical loop structure. In highly eccentric confining po-
tentials, vortex structures containing three and more lo-
calized vortices were also predicted to form �Saarikoski,
Reimann, et al., 2005�. The effect of fluctuations in the
vortex positions is also seen in this case. To some extent,
electron localization is observed as well. In this case, the
wave function can be characterized by two holelike qua-
siparticles at the center of a ring of six electrons. It
should be noted that Fig. 29 shows the exact particle
density and not the mean-field particle density. Since el-
liptically deformed quantum dots have been realized ex-
perimentally �Austing, Sasaki, et al., 1999� this may be
the most direct way to image vortex structures in quan-
tum dots. Localized vortex structures have also been
predicted to emerge in other quantum dot geometries
�Helle et al., 2005; Saarikoski, Reimann, et al., 2005�.

A perturbative approach to visualize vortices in the
particle density is to include a point perturbation in the
external potential �Christensson, Borgh, et al., 2008�,

which can pin the vortices. The resulting particle density
shows the vortex localization. An example is shown in
Fig. 30 for a system of eight electrons. With this small
perturbation, the expectation value of the angular mo-
mentum has a nearly similar dependence on the rota-
tional frequency than the unperturbed system. It is thus
expected that each angular momentum jump in the non-
perturbed system corresponds to addition of one vortex
as seen in the perturbed system.

FIG. 28. �Color online� Fermion yrast spectrum for 20 par-
ticles and three vortices �upper panel� and three particles
�lower panel� show both the periodicity of 
L=3 associated
with the threefold rotational symmetry of the vortex molecule
in the former case and electron molecule in the latter case.
From Manninen et al., 2006.

FIG. 29. �Color online� Electron density and current density
�arrows� of an elliptically confined six-electron droplet with
two localized vortices, calculated by the exact diagonalization
method. The confinement strength is ��0=5.93 meV, the ec-
centricity of the elliptic confining potential �=1.2, and the
magnetic field is B=17 T. Inset: Profile of the electron density
at the longest major axis shows fluctuations in the vortex po-
sitions, which causes electron density to remain finite at the
density minima. Adapted from Saarikoski, Reimann, et al.,
2005.

FIG. 30. �Color online� Angular momentum as a function of
the rotational frequency of the parabolic trap with N=8 elec-
trons in the lowest Landau level. The unperturbed result �thin
line� is comparable to the expectation value of angular mo-
mentum in the presence of an added point perturbation which
breaks the rotational symmetry �thick solid line�. The insets
show the densities as shades of color in the perturbed system.
The vortices appear as pronounced minima in the density dis-
tribution, their number increasing with the trap rotation. Re-
sults are calculated with the exact diagonalization method
�Christensson, Borgh, et al., 2008�.
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D. Melting of the vortex lattice

After single vortex lines in rotating condensates were
experimentally realized by phase imprinting techniques
�Matthews et al., 1999�, many experimental studies con-
cerned the formation of lattices of vortices in bosonic
cold-atom gases in the regime of high particle-to-vortex
ratio �filling factor� �pv=N /Nv �Chevy et al., 2000; Madi-
son et al., 2000, 2001�. The modes of the vortex lattice
�Baym, 2003, 2004� as well as the structure of the vortex
cores were analyzed �Coddington et al., 2003, 2004;
Schweikhard et al., 2004�. When the vortex density in-
creases with the angular momentum, it is expected that
for rapid rotation the vortex density may finally become
comparable to the particle density �Cooper et al., 2001;
Fetter, 2001; Ho, 2001�. An interesting issue is how the
system then changes with the increasing particle-to-
vortex ratio �Baym, 2005�. At rapid rotation, strongly
correlated states analogous to fractional quantum Hall
states may emerge �Wilkin et al., 1998; Cooper, 2008;
Viefers, 2008�. These states are quantum liquidlike states
of particles and vortices where correlations may give rise
to the formation of particle-vortex composites. It is be-
lieved that a phase transition occurs with a vortex den-
sity somewhere between the rigid vortex lattice and the
quantum liquid of vortices. This transition is often re-
ferred to as “melting.” However, the process is not fully
understood and calculations yield different estimates for
the critical vortex density. Moreover, in present day ex-
periments the particle-to-vortex density is usually very
high, �pv 500 �Schweikhard et al., 2004�.

1. Lindemann melting criterion

The vortex density at the transition from localized
vortex lattice states to liquidlike states can be approxi-
mated by assuming that the melting process is analogous
to the melting of solids when atomic vibrations increase
above a threshold amplitude. In the Lindemann model
the melting point of solids is determined from the con-
dition that when thermal vibrations reach a critical am-
plitude, melting of the material occurs �Lindemann,
1910�. This amplitude in solids is often approximated to
be around 10–20 % of the lattice spacing. Using an
analogous idea, the melting point of the vortex lattice
can be approximated from the condition that thermal
and quantum zero-point vibrations reach a critical
threshold amplitude �Blatter and Ivlev, 1993�.

Rozhkov and Stroud �1996� studied superconductors
at zero temperature to obtain an estimate for the vortex
density where zero-point fluctuations become large
enough to melt the vortex lattice. Their study was moti-
vated by the presence of large quantum fluctuations in
high-Tc materials but their results gave also an estimate
of the vortex lattice melting in ultracold rotating Bose-
Einstein condensates. Using the Lindemann criterion
they approximated that melting takes place at particle-
to-vortex filling factor �pv�14 at a presumed threshold
zero-point vibration amplitude of 14% of the nearest-
neighbor intervortex distance.

Other calculations using the Lindemann criterion
have given comparable estimates of the filling factor at
the vortex lattice melting �see also the discussion in the
reviews by Cooper �2008� and Fetter �2009��. Sinova et
al. �2002� reported that the critical density in their model
system of rapidly rotating bosons corresponds to �pv
�8. Baym �2003, 2004, 2005� analyzed normal modes of
vortex lattice vibrations in the mean-field limit and
found that the vortex lattice melts at �pv�10.

2. Transition to vortex liquid state

The predictive power of the Lindemann model is poor
because melting in solids is known to be a cooperative
phenomenon, and the process therefore cannot be accu-
rately described in terms of the mean vibration ampli-
tude of a single particle. However, Rozhkov and Stroud
�1996� obtained another estimate �pv�11 for the melting
point of the vortex lattice by comparing the energy of a
Wigner crystal model wave function to the energy of a
Laughlin-type wave function. These wave functions
were assumed to correspond to the ordered vortex-
lattice state and the vortex-liquid state, respectively. Ex-
act diagonalization calculations with contact interactions
in a periodic toroidal geometry showed that the excita-
tion gap collapsed at �pv�6, which was interpreted as a
lower bound for a vortex lattice melting �Cooper et al.,
2001�. The associated vortex-liquid states at integer and
half-integer �pv were shown to be, in general, well de-
scribed with so-called parafermion states studied by
Read and Rezayi �1999�.

In contrast to bosonic systems, the vortex lattice melt-
ing has not been studied theoretically in fermion sys-
tems. However, we can obtain an estimate for a corre-
sponding transition using the particle-hole duality �Sec.
II.D�. There is a transition from the fractional quantum
Hall liquid to localized electrons �i.e., the formation of a
Wigner crystal� when the filling fraction of the LLL de-
creases below ��1/7 �Lam and Girvin, 1984; Pan et al.,
2002�. There are about 6 to 8 vortices per particle, not
counting the Pauli vortices, at the transition point. Using
the particle-hole duality we can now reverse the role of
particles and vortices. In the dual picture a lattice of
localized vortices then melts to a quantum Hall liquid
when the particle-to-vortex ratio decreases to a value
between 6 and �about� 8. This corresponds to a filling
factor between ��0.8 and 0.9, where a vortex lattice is
expected to melt in a 2DEG. The close relation between
boson and fermion states in the LLL �Eq. �21�� would
also suggest that in boson systems the vortex lattice
should melt when the particle-to-vortex ratio decreases
to about 8, which is not too different from the values
mentioned above.

In conclusion, even though the results of different cal-
culations show a considerable variation for the melting
point, they all indicate vortex lattice melting well before
the number of vortices in the system becomes compa-
rable to the particle number. However, much of the de-
tails are not understood, and experiments do not yet
reach the transition regime. The transition may happen
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gradually and go through several intermediate states
with increasing vortex delocalization or, as the name ex-
plicitly suggests, it may occur through an abrupt loss of
vortex ordering.

3. Breakdown of small vortex molecules

As discussed, rotation in the intermediate angular mo-
mentum regime in small quantum droplets may give rise
to formation of vortex molecules which are analogs of
vortex lattice states of infinite systems. However, in
finite-size systems, edge effects may play an important
role. This was also noted in the context of Wigner crys-
tallization in quantum dots, where the onset of localiza-
tion occurs at electron densities which are much higher
than the corresponding values for the infinite 2D elec-
tron gas. The importance of edge effects has also been
pointed out for bosonic systems �Cazalilla et al., 2005�.

Partly, localization effects account for the fact that
also in small systems the �=1/3 state appears localized
as, for example, visible in the pair-correlation functions.
The same applies to vortices, and in very small systems it
is difficult to make a difference between a vortex mol-
ecule and a vortex liquid since both show similar short-
distance correlations.

The analysis of few-electron quantum dots using the
exact diagonalization method has shown that the final
breakup of vortex molecules and the transition into the
fractional quantum Hall regime of electrons is associ-
ated with the formation of composites of particles and
vortices �Saarikoski et al., 2004�. Electrons “capture”
free vortices, breaking up the vortex molecules. Similar
processes have also been reported for bosons in the LLL
by analyzing the vortex attachment with reduced wave
functions �see Fig. 31�.

These calculations suggest, however, that vortices con-
tinue to show ordering at surprisingly low particle-to-
vortex filling factors, well below the obtained stability
limits of vortex lattices in bosonic condensates. This is
also evident for fermions, as shown in Fig. 24, where
hole correlations show vortex molecules at very high an-
gular momentum and large zero-point fluctuations. In

the case of fermions, vortex localization may continue to
filling factors down to �= 1

2 where a transition from
prominent vortex localization into particle localization
occurs �Emperador, 2006�. These calculations showed
signs of vortex-hole bunching and the formation of con-
centric rings of localized vortices, until the number of
�free� vortices was equal to the number of particles. Be-
low �= 1

2 , no such signatures are seen. Instead, this re-
gime is characterized by particle localization. The condi-
tional probability densities begin to show prominent
localized structures �Koskinen et al., 2001; Yannouleas
and Landman, 2007�. The corresponding bosonic case
has not been studied, but due to close analogies of
bosonic and fermionic states similar results are expected
to hold also for small bosonic droplets where vortex lo-
calization should disappear at �pv=1.

These results suggest that signatures of vortex local-
ization in small systems disappear at a particle-to-vortex
ratio which is an order of magnitude lower than the
value where vortex lattice melting occurs in large
bosonic condensates. However, as mentioned, in small
systems the separation of liquid and solid is difficult, and
the observed transition is also related to the formation
of composite particles �see Sec. IV.F�.

E. Giant vortices

In multiply quantized vortices, the phase changes sev-
eral integer multiples of 2� when encircling the singu-
larity. However, they are not stable in a purely harmonic
confinement potential. The existence of many singly
quantized vortices is energetically preferred, and the ef-
fective repulsive interaction between the vortex cores
leads to a lattice of singly quantized vortices �Butts and
Rokhsar, 1999; Castin and Dum, 1999; Lundh, 2002�.
The instability of multiply quantized vortices in har-
monic potentials, and the breakup into singly quantized
vortices was further discussed by Pu et al. �1999� and
Möttönen et al. �2003�. Disintegration of a multiple
quantized vortex has also been observed experimentally
�Shin et al., 2004�.

Rotating condensates in anharmonic potentials that
rise more rapidly than r2, however, show a behavior that
is different from purely harmonic traps. Most commonly,
a quartic perturbation is added to the oscillator
confinement.5 Due to the anharmonicity it is possible to
rotate the system sufficiently fast such that the centrifu-
gal force may create a large density hole at the trap
center. So-called “giant” vortices with a large core at the
center may exist that originate from multiple quantiza-
tion. Singly quantized vortices may also form a close-
packed ensemble inside a large density core. In addition,
for certain parameter ranges, the usually quantized lat-

5See, e.g., Fetter �2001�, Kasamatsu et al. �2002�, Lundh
�2002�, Fischer and Baym �2003�, Kavoulakis and Baym �2003�,
Jackson and Kavoulakis �2004�, Jackson et al. �2004�, Fetter et
al. �2005�, Fu and Zaremba �2006�, and Blanc and Rougerie
�2008�.

FIG. 31. �Color online� Reduced wave functions of a bosonic
five-particle system in a harmonic trap, showing the formation
of one and two free vortices in the region of high particle
density �marked as circles� at low angular momenta L=5 and
L=8, respectively �left and middle�. When the angular momen-
tum increases, two vortices are finally captured by each par-
ticle to form a state which is approximated by the bosonic
Laughlin state m=2 �two concentric circles� at L=20 �right�.
Particle interactions are Coulombic here and the probe par-
ticle is at the bottom. After Suorsa, 2006.
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tice exists. Kavoulakis and Baym �2003� found a rich
phase diagram, for which a schematic is given in Fig. 32,
showing the different possible phases as a function of
the interaction strength and the trap rotation.

In the following, we discuss the formation and struc-
ture of such giant vortex states both in bosonic and in
fermionic quantum droplets.

1. Bose-Einstein condensates in anharmonic potentials

Lundh �2002� proposed that in the presence of anhar-
monicity of the confining trap potential multiply quan-
tized vortices with a giant vortex core could exist in a
rotating condensate, and calculated the ground-state
vortex structures within the Gross-Pitaevskii formalism.
In fact, vortices in these states are not truly multiple-
quantized vortices but rather dense-packed ensembles
of single-quantized vortices �Kasamatsu et al., 2002; Fis-
cher and Baym, 2003�. Phase singularities do not com-
pletely merge into the same point because the residual
interaction between phase singularities is logarithmic as
a function of intervortex separation in the region of low
particle density surrounding the cores. Despite this fact,
the composite core has a large and uniform spatial ex-
tent. Therefore, the name “giant vortex” was coined for
these structures. Depending on the strength of the an-
harmonicity, the condensate can exist in a phase where
only single-quantized vortices occur, in a state where all
vortices form a giant vortex, and in a mixed phase where
both giant and single-quantized vortices exist �Kasa-
matsu et al., 2002; Kavoulakis and Baym, 2003; Jackson
and Kavoulakis, 2004; Jackson et al., 2004�. An example
of the latter is shown in Fig. 33.

We further note that anharmonicity, which is required
for giant vortex formation, may be induced also via the
presence of another, distinguishable particle component.
The interaction between the particles would then create
an effectively anharmonic potential for the particle com-
ponents which may induce giant vortex formation �Bargi
et al., 2007; Christensson, Bargi, et al., 2008; Yang et al.,
2008�. This is discussed in Sec. V in the context of mul-
ticomponent quantum droplets.

2. Giant vortices in quantum dots

Giant vortex structures are predicted to also form in
fermionic droplets with repulsive interactions, as shown
by exact diagonalization calculations for few-electron
quantum dots �Räsänen et al., 2006�. Similarly to the
bosonic case, giant vortices emerge in anharmonic con-
fining potentials and their structure shows a large core
with multiple phase singularities. It was found that even
a slight anharmonicity in the confining potential is suffi-
cient for these giant vortex states to become energeti-
cally favorable. In addition to the particle interactions,
fluctuations tend to keep phase singularities separated,
broadening the charge deficiency in the core to a larger
area �see Fig. 34�. The electron density of a central giant
vortex state shows a ringlike distribution.

Unlike bosonic systems, giant vortices with repulsive
fermions were only found in the limit of small numbers

FIG. 32. Schematic phase diagram of the ground states of a
bosonic cloud in an anharmonic confinement. From Kavou-
lakis and Baym, 2003.

FIG. 33. �Color online� A rotating Bose-Einstein condensate
in a mixed state with a giant vortex in the center surrounded
by ten single-quantized vortices. The giant vortex is composed
of four phase singularities. The left panel shows the particle
density �white is high density and black is zero density� and the
right panel shows the phase profile. Locations of phase singu-
larities are marked with circles. The large circle marks the en-
semble of four phase singularities in the core of the giant vor-
tex. Adapted from Kasamatsu et al., 2002.

FIG. 34. �Color online� A giant vortex in a six-electron quan-
tum dot calculated with the exact diagonalization method. The
left panel shows the particle density �black is low density� and
current density �arrows�, and the right panel shows the reduced
wave function, where phase singularities are marked with
circles and electron positions with crosses. The giant core in
this case comprises three phase singularities. Interactions and
fluctuations keep the phase singularities separated. The probe
electron is on the bottom right. From Räsänen et al., 2006.
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of particles. This could be seen as another manifestation
of the tendency of vortices to drift toward the edge of
the droplet in the limit of large particle numbers �see
Sec. IV.A.3�, breaking apart the giant vortex pattern at
the center. In electron droplets interacting via Coulomb
forces, density-functional calculations predicted that gi-
ant vortex formation is generally limited to systems with
less than 20 fermions �Räsänen et al., 2006�.

F. Formation of composite particles at rapid rotation

In the regime of high vorticity, electron-vortex corre-
lations are particularly strong and cause vortices to be
bound to electrons. This regime is ultimately linked with
the fractional quantum Hall effect in the 2D electron
gas. Actually, early works aiming to explain this effect
used a disk geometry �Girvin and Jach, 1983; Laughlin,
1983� and are in fact more relevant for quantum dots
than for the bulk properties of quantum Hall systems.

Figure 35 shows the nodal structure of the reduced
wave function for the Laughlin state for N=5 electrons
as well as the corresponding L=30 state obtained with
the CI method. In the Laughlin �= 1

3 state, there are
three vortices on each electron position, one Pauli vor-
tex and two extra vortices, as shown in Fig. 35�a�. In the
exact wave function, there are clusters of three vortices
near each electron �except near the probe electron�.
There is one vortex on top of each electron position, as
required by the Pauli principle, but, in addition, there
are two vortices very close by, separated by their mutual
repulsion to opposite sides. Calculations show that small
changes in the position of one of the fixed electrons in
the reduced wave function causes the vortex to be
dragged along with the electron, which indicates vortex
attachment to the electron. The overlap between the ex-
act state and the Laughlin approximation is 0.98. The
state can be interpreted as a finite-size precursor of the
�= 1

3 fractional quantum Hall state, for which the Laugh-
lin wave function yields an accurate description. How-
ever, in contrast to the Laughlin state, the attachment of

nodes to particles in the exact wave function shows a
small spatial separation.

The attachment of vortices to particles also explains
the absence of vortices for the probe electron in the
exact many-body state �see Fig. 35�. In the fractional
quantum Hall regime, the density-functional method
failed to reveal the correct nature of the ground state.
The solutions of the spin as well as current-spin-density-
functional theory show only a cluster of vortices inside
the electron droplet, but these methods are unable to
associate two extra vortices to each electron �Saarikoski,
Harju, et al., 2005�; see Fig. 36.

The density-functional approach fails to properly in-
clude these correlations. A single-determinantal wave
function constructed from the self-consistent Kohn-
Sham orbitals yields an approximate description for few-
vortex states near �=1, but the overlaps with the exact
wave functions diminish as the angular momentum of
the system increases. Figure 37 shows that for a five-
electron system at �=1/3 the overlap is only of the order
of 0.5. Compared to this, the overlap with the Laughlin

FIG. 35. �Color online� The reduced wave functions for �a� the
approximate Laughlin state �= 1

3 and �b� the exact L=30
ground state for five electrons in a parabolic external potential.
The Laughlin state fixes a triple vortex �concentric rings� on
each electron position �crosses�. In the exact solution there are
clusters of three vortices near each electron.

FIG. 36. �Color online� A �= 1
3 state of five electrons in a har-

monic trap. Top: Electron density from the density-functional
method and current density �arrows�. The confinement
strength is ��0=5 meV and the magnetic field is B=18 T. Bot-
tom: Reduced wave function for the same state constructed
from the Kohn-Sham single-particle states. The probe electron
is at the top right.
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�=1/3 wave function that amounts to 0.98 is high.
When the angular momentum of the droplet increases

further, additional vortices appear in the Laughlin-like
state and the filling factor decreases below �=1/3. These
vortices are not bound to composite particles, rather
they correspond to the Laughlin excitations with frac-
tional charge. The pattern of vortex formation is ex-
pected to be similar to that after the MDD: first a single
vortex enters from the surface and moves toward the
center until it is energetically favorable to have two vor-
tices, etc. This is illustrated in Fig. 38, which shows the
vortex sites for a five-electron system determined from
the reduced wave function. Again, a similar behavior is
expected in the case of bosonic particles. However, de-
spite the recent progress in realizing BECs at extreme
rotation �Lin et al., 2009�, an analysis of these states ap-

pears still to be beyond the current experimental capa-
bilities.

There are two basic mechanisms to unbound the vor-
tices from the particles, namely the softening of the in-
teraction potential by the finite thickness of the system,
and second by impurities. When the system has a finite
thickness, the incompressible �=1/3 Laughlin state
breaks down as the vortices are gradually less bound to
the electron coordinates. This effect is in contrast to the
screening of the Coulomb interaction energy whereby, in
the strong-screening limit, the zeros are exactly localized
to the electron positions �Tölö and Harju, 2009�. We
should also mention that repulsive impurities attract vor-
tices at the impurity position �Bårdsen et al., 2009�.

V. MULTICOMPONENT QUANTUM DROPLETS

Multicomponent quantum droplets are composed of
different particle species that may, for example, be dif-
ferent atoms, different isotopes of the same atom, differ-
ent spin states of an atom or electron, or even different
hyperfine states of an atom. In such systems intercom-
ponent interactions can modify the many-body wave
function significantly.

The properties of multicomponent BECs have been
discussed, both experimentally and theoretically, over
the past few years. For recent reviews on multicompo-
nent BECs, see Kasamatsu et al. �2005a� and Fetter
�2009�. We do not attempt to cover the vast literature on
binary or spinor BECs but instead set our focus mainly
on structural properties and vorticity of few-particle
droplets and the analogies between bosonic and fermi-
onic two-component systems. Only a brief outlook on
spinor condensates with more components is given at
the end of this section.

Theoretical studies of multicomponent quantum liq-
uids were performed in the 1950s for superfluid helium
mixtures, see, for example, the early works by Guttman
and Arnold �1953�, Khalatnikov �1957�, and Leggett
�1975�. Examples for vortex patterns include the
Mermin-Ho vortex �Mermin and Ho, 1976� and the
Anderson-Toulouse vortex �Anderson and Toulouse,
1977�. These vortices are nonsingular and the order pa-
rameter is continuously rotated by superposing a texture
on it �see below�. Recently doubly quantized vortices in
the A phase of 3He were found by Blaauwgeers et al.
�2000�. With ultracold atoms, condensate mixtures may
be achieved using different atomic species, such as 87Rb
and 41K �Modugno et al., 2002� or, for example, the dif-
ferent isotopes of 87Rb �Burke et al., 1998; Bloch et al.,
2001� in the same trap.

Another possibility to create multicomponent conden-
sates is given by the different hyperfine states of the
same atom, as, for example, 87Rb with the hyperfine
states 	F=1,mf=−1
 and 	F=2,mf=1
 �Myatt et al., 1997;
Hall, Matthews, Ensher, et al., 1998; Hall, Matthews,
Wieman, et al., 1998; Matthews et al., 1998, 1999�. The
atoms in the two states have nearly equal intercompo-
nent and intracomponent scattering lengths, and the
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FIG. 37. �Color online� Overlap of a single-determinant wave
function with the exact one as a function of the angular mo-
mentum increase with respect to the MDD state 
L=L
−LMDD for five electrons in parabolic confinement. The higher
points �squares� are obtained with a coordinate transformation
to the center of mass zi→zi−zCM and the lower ones �circles�
without it. The star at 
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Laughlin �=1/3 state. The roman numbers count the vortices
inside the electron droplet. From Harju, 2005.

�

�
�

�

� �
�
�

�

�
�

� �

�

� �
�

�
�
�
�

�

�

�

�
�

�

�

FIG. 38. �Color online� Schematic of the sites of vortices, de-
termined from the reduced wave function of an exact diago-
nalization for five electrons with angular momentum L=16 �six
above the MDD, left� and L=36 �six above the state with fill-
ing factor 1/3, right�. Fixed electron positions with Pauli vor-
tices, vortices attached to electrons making composite par-
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spin flip rate is small due to weak hyperfine coupling,
which yields a stable two-component system with a long
lifetime �Julienne et al., 1997; Kasamatsu et al., 2005a�.
In fact, the first experiment by Matthews et al. �1999�
creating vortices in a BEC made use of these internal
spin states, following a suggestion by Williams and Hol-
land �1999�: they proposed a phase-imprinting tech-
nique, where an external coupling field was used to con-
trol independently the two components of the quantum
gas. In this way, angular momentum could be induced in
one component that formed a quantized vortex around
the nonrotating core of the other component when the
coupling was turned off. Since the magnetic moments
for the 87Rb atoms in the two hyperfine states are nearly
equal, they could be confined by the same magnetic trap.

Optical traps have the advantage that one is not re-
stricted by certain hyperfine spin states. Already in 1998,
experimentalists at MIT could create a BEC of 23Na
�Stamper-Kurn et al., 1998; Stenger et al., 1998� where
different “spinor” degrees of freedom of the atomic
quantum gas can be trapped simultaneously. Other ex-
amples are 39K and 87Rb �Barrett et al., 2001�. In these
alkali systems one can trap the three projections of the
hyperfine multiple with F=1, adding three �internal� de-
grees of freedom to the system. However, population
exchange �without trap loss� among the hyperfine states
may occur due to spin-relaxation collisions �Stenger et
al., 1998�. The dynamical loss of polarization of a BEC
due to spin flips was examined by Law et al. �1998�.
Larger atom spins can also be realized as, for example,
with 85Rb and 133Cs. Such condensates show a wealth of
quantum phenomena that do not occur in simple scalar
condensates �Ho, 1998; Ohmi and Machida, 1998�. The
interactions between the different components of the
trapped cold-atom gas may lead to topologically inter-
esting, new quantum states.

Rotating two-component fermion droplets may be re-
alized with electrons in quasi-two-dimensional quantum
dots �Reimann and Manninen, 2002� with a spin degree
of freedom. Usually, the magnetic field causes polariza-
tion of the droplet due to the Zeeman coupling. How-
ever, in 2D electron systems, the Zeeman splitting can
be tuned by applying external pressure �Leadley et al.,
1997� or by changing the Al content in a
GaAs/AlxGa1−xAs sample �Weisbuch and Hermann,
1977; Salis et al., 2001�. In systems with low Zeeman
coupling the regime of vortex formation beyond the
maximum density droplet is associated with various spin
polarization states �Siljamäki et al., 2002�. These states
occur in much analogy to those in two-component
bosonic systems �Saarikoski et al., 2009�. In the regime
of rapid rotation, some of the many-electron states can
also be identified as finite-size counterparts of nonpolar-
ized quantum Hall states, such as the much studied �
= 2

3 and 2
5 states �Chakraborty and Zhang, 1984; Xie,

Guo, and Zhang, 1989�.

A. Pseudospin description of multicomponent condensates

For a bosonic condensate with n components, the or-
der parameter � becomes of vector type ��1 ,�2 , . . . ,�n�.
One may interpret this as a “pseudospin” degree of free-
dom �Kasamatsu et al., 2005a, 2005b�. As an example,
for n=2 distinguishable particles of type A or B the or-
der parameter is then a spinor-type function, �
= ��A ,�B�, and the pseudospin T points “up” �T=1/2� or
“down” �T=−1/2� for either of the two components in
the absence of the other. This concept straightforwardly
extends to higher half-integer as well as integer pseu-
dospins.

When rotation is induced in the multicomponent or
spinor system, vortex formation becomes much more
complex due to the increased freedom of the system to
carry angular momentum. Spatial variations in the direc-
tions of the atomic spins may lead to different patterns,
such as the aforementioned spin textures. For atomic
quantum gases, these structures were investigated
theoretically.6 Many theoretical studies applied the spin-
dependent Gross-Pitaevskii formalism. The Thomas-
Fermi approach has been used to determine the density
profiles of ground state and vortex structures for two-
component mixtures of bosonic condensates �Ho and
Shenoy, 1996�. This approach was later simplified to de-
scribe segregation of components in the presence of vor-
ticity �Jezek et al., 2001; Jezek and Capuzzi, 2005�.

In their most general form, the two-body interactions
are often parameterized by Vij= �c0+c2�Ti ·Tj����ri−rj�
with the usual contact interactions of strengths c0. For
c2�0, i.e., repulsive spin-dependent interactions as, for
example, for 23Na, the system minimizes the total spin.
Consequently, this parameter regime is called the “anti-
ferromagnetic” one, while for c2�0 as, for example, for
87Rb, the spin interactions are called “ferromagnetic”
�Ho, 1998; Stamper-Kurn et al., 1998; Stenger et al., 1998;
Miesner et al., 1999�. Typically, the ratio of the spin-
dependent and spin-independent parts of the contact in-
teraction is of the order of a few percent. In the follow-
ing we set c2=0 and restrict the discussion to the special
case of SU�2� symmetry, unless otherwise stated.

B. Two-component bosonic condensates

We now consider a bosonic gas of atoms that is a mix-
ture of two distinguishable species A and B with fixed
numbers of atoms NA and NB. The majority of experi-
mentally studied two-component gases has similar inter-
actions between the like and unlike species. Similar
s-wave scattering lengths yield a small inelastic spin ex-
change rate �Julienne et al., 1997�, providing a stable

6See, e.g., Ho �1998�, Ohmi and Machida �1998�, Yip �1999�,
Al Khawaja and Stoof �2001a, 2001b, 2001c�, Chui et al. �2001�,
Isoshima et al. �2001�, Stoof et al. �2001�, Isoshima and Machida
�2002�, Kita et al. �2002�, Martikainen et al. �2002�, Mizushima,
Machida, and Kita �2002a, 2002b�, Mueller �2004�, and
Reijnders et al. �2004�.
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two-component system with a long lifetime �Kasamatsu
et al., 2005a�. Therefore, the case gAA�gBB�gAB �with
interaction strengths as defined in Sec. IV.A� appears as
the most relevant one. Thus, we first assume equal and
�pseudo�spin-independent coupling strengths g between
all particles and also choose the harmonic trapping po-
tentials for the two components to be identical. As men-
tioned, the two-component Bose gas is then described
by a pseudospin 1/2 and the order parameter is a vector,
��A ,�B�.

As shown in Sec. IV, for repulsive interactions a con-
densate with only one kind of atoms that is brought to
rotation develops a single vortex at the trap center at
L /N=1. With increasing angular momentum, the single
component, so-called “scalar,” condensate nucleates an
increasing number of vortices inside the condensate, un-
til the triangular Abrikosov vortex lattice is formed
�Madison et al., 2000; Abo-Shaeer et al., 2001�. For
weakly interacting and dilute gases, this was also found
within Gross-Pitaevskii mean-field theory �Butts and
Rokhsar, 1999; Kavoulakis et al., 2000�. The case of a
two-component gas is more complex since the system
may divide its angular momentum between its compo-
nents. One possibility is that one component is at rest,
while another carries all the angular momentum. The
component at rest may then fill the core of the first vor-
tex in the other component, creating a so-called coreless
vortex state. When the rotation increases, the Abrikosov
lattice of the scalar condensate now may become a lat-
tice of such coreless vortices. The vortex lattice geom-
etry depends crucially on the interactions between the
components and the sizes and numbers of components.

1. Asymmetric component sizes

Figure 39 shows the mean-field �Gross-Pitaevskii�
densities and phases of the order parameters �A and �B
for a two-component condensate with unequal particle
populations NB�NA �Bargi et al., 2007, 2008�.

At L /NA=1, the system forms a single vortex in the
smaller component A, which is seen in the phase plot of
the order parameter in Fig. 39. The phase jump is 2�
along any closed path encircling the origin. The larger
component rests at the origin LB=0 with no vorticity
�and, correspondingly, a flat phase profile in the order
parameter�. When the angular momentum reaches L
=NB, a singly quantized coreless vortex is formed in the
larger component B, while the component A now is sta-
tionary at the origin.

Referring back to the work of Skyrme in the context
of nuclear and high-energy physics �Skyrme, 1961, 1962�
such coreless vortices were also called “Skyrmions,” see
the review by Kasamatsu et al. �2005a�.7

A graphic illustration of the pseudospin behavior in a
single coreless vortex state is given in Fig. 40 by Mueller
�2004�, showing the top and perspective view of such a
Skyrmion in a two-component system. As L increases,
beyond L=NB, a second vortex enters the larger com-
ponent B, merging with the other vortex at L=2NB. The
smaller component A remains localized at the center,
and the system as a whole has a twofold phase singular-
ity at the center. An example is shown in Fig. 41. The
central minimum in the density of the larger component
B expands with increasing angular momentum. It en-
circles the smaller one, that is nonrotating and localized
at the trap center. A phase change of 4� in a closed path
around the center indicates a vortex that is twofold
quantized. At L=3NB a triple phase singularity emerges
at the center, but eventually the scenario breaks down
with increasing rotation frequency.

In single-component quantum liquids, multiply quan-
tized vortices are not favored in parabolic potentials.
However, any external potential that grows more rapidly
than quadratically may give rise to these giant vortex
structures �Lundh, 2002; Kavoulakis and Baym, 2003�
discussed in Sec. IV.E. In two-component systems, it was
found that the smaller nonrotating component at the
trap center may effectively act as an additional potential
to the �harmonic� trap confinement, rendering the po-
tential effectively anharmonic close to the trap center
for the rotating component �Bargi et al., 2007�. With in-
creasing rotation, both components carry a finite frac-

7This terminology has also been used for analogous textures
in liquid 3He-A �Mermin and Ho, 1976; Anderson and Tou-
louse, 1977; Salomaa and Volovik, 1987� and in quantum Hall
states �Lee and Kane, 1990; Sondhi et al., 1993; Barrett et al.,
1995; Aifer et al., 1996; Oaknin et al., 1996�.

FIG. 39. �Color online� Densities �left� and phases �right� in a
two-component rotating Bose-Einstein condensate, as ob-
tained from the Gross-Pitaevskii equations, for a ratio of atom
numbers in the two components of NA /NB=0.36 and equal
coupling strengths gAA=gAB=gBB=50 a.u. �The densities are
cut in one quadrant in order to visualize them for both com-
ponents in one diagram.� The rotational frequency is �=0.45.
The upper panel shows a coreless vortex at angular momen-
tum L=NA, where the smaller component A shows a unit vor-
tex at the center, as seen from the phase of �A plotted to the
right �from dark to light shading�, changing by 2� when the
center is encircled once. The phase singularity is absent in B
component. The lower panel shows the case L=NB, where
now the larger component encircles the smaller one, filling the
unit vortex at the center. The phase singularity consequently
now occurs in the order parameter of B component, as shown
to the right �from dark to light�. From Bargi et al., 2008.
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tion of the total angular momentum, and multiply quan-
tized or giant vortex states are no longer energetically
favorable.

In exact diagonalization studies of multicomponent
systems, the additional degree of freedom through the
pseudospin increases the dimension of the Hamiltonian
matrix significantly, which leads to severe restrictions in
the particle numbers or angular momenta that can be
studied. Nevertheless, the results obtained for few-
particle systems confirm the existence of Anderson-
Toulouse and Mermin-Ho types of coreless vortices, as
obtained within the Gross-Pitaevskii approach. For a
two-component system with NA+NB=8 bosons with
contact interactions in a harmonic trap, Fig. 42 shows
the total angular momentum L as a function of the ro-
tational frequency � /�. As in the case of scalar Bose
gases �see Fig. 14�, plateaus with increasing � can be
associated with vortices that successively enter the
bosonic cloud with increasing trap rotation �Butts and

Rokhsar, 1999; Kavoulakis et al., 2000�. These plateaus
correspond to cusp states along the yrast line in the two-
component system �Bargi et al., 2010�.

The exact quantum states retain the symmetry of the
Hamiltonian, and thus one must turn to conditional
probability densities �pair-correlation functions� and re-
duced wave functions to map out the internal structure
of the wave function, as discussed in Sec. II. For unequal
populations of the two species, here NA=2 and NB=6, at
those angular momenta where the pronounced plateaus
occur in the L versus � plot in Fig. 42, the pair correla-
tions are shown in Fig. 43.

FIG. 40. Schematic of a Skyrmion �top and perspective�. The
spin tilts from “up” for one component at the center, where
one component shows a maximum density filling the vortex in
the other component, to “down” toward the edge. From Muel-
ler, 2004.

FIG. 41. �Color online� Densities �left� and phases �right� of
the Gross-Pitaevskii order parameters in a two-component ro-
tating Bose-Einstein condensate with a coreless vortex with a
double phase singularity. For notation see Fig. 39. Adapted
data from Bargi et al., 2008.

FIG. 42. �Color online� Angular momentum as a function of
the trap rotation frequency �in arbitrary units� for N=8 bosons
with equal masses and interactions, in a harmonic trap, for
equal population �NA=NB=4� and unequal population �NA
=2 and NB=6�. From Bargi et al., 2010.

FIG. 43. �Color online� Density plots of conditional probabili-
ties for a two-component few-boson system in a harmonic trap,
with two bosons in component A and six bosons in component
B. The reference point was chosen in component B at an off-
center position close to the maximum of the probability den-
sity. Axes are from �−4,4� in atomic units. The scale in the
density plots is from zero to maximum. �To increase the visibil-
ity, the plot range of the conditional probabilities in the two
components was re-scaled to the same constant in all panels.�
The charge deficiency of the vortex cores causes deep minima
to appear in the pair-correlation functions. Adapted from
Bargi et al., 2010.

2824 Saarikoski et al.: Vortices in quantum droplets: Analogies …

Rev. Mod. Phys., Vol. 82, No. 3, July–September 2010



At L=2 a vortex is seen as a hole at the center in the
smaller component, encircling the larger component that
forms a Gaussian at the trap center. At angular momen-
tum L=6 a single vortex is created in the larger compo-
nent, as seen in the middle panel. Twice this angular
momentum creates a twofold quantized vortex structure
in the larger component. The existence of coreless vor-
tices, as predicted by the Gross-Pitaevskii equation in
the mean-field limit �Sec. V.B�, is accurately reproduced
by the exact solutions in the few-body regime.

2. Condensates with symmetric components

When the cloud has equal populations of the two
components, i.e., NA=NB, a different scenario emerges:
a vortex enters each of the components from “opposite”
sides, reaching a minimum distance of one oscillator
length from the center of the trap when L=NA=NB
�Christensson, Bargi, et al., 2008�. An example is given
by the Gross-Pitaevskii solution shown in the upper
panel of Fig. 44.

Similarly to the one-component case, increasing rota-
tion adds more vortices to the cloud. For two equal com-
ponents, the vortices become interlaced, with density
maxima in one component located at the vortices in the
other, minimizing the interaction energy between the
different components �lower panel of Fig. 44�. In the
limit of large N and L a lattice of coreless vortices is
formed �Kasamatsu et al., 2005a�.

These Gross-Pitaevskii results are in good correspon-
dence with exact diagonalization results of few-particle
systems. The left panel of Fig. 45 shows conditional
probability densities of a symmetric configuration NA
=NB=4. When L=NA=NB=4, the clouds separate, with
a vortex hole emerging at the maximum density location
in the other component. These solutions correspond to a

Mermin-Ho vortex �or a meron pair, where each meron
accounts for half of the spin texture of the coreless vor-
tex� as obtained in Gross-Pitaevskii theory �Kasamatsu
et al., 2005a�.

For higher angular momenta, as here for L=10, the
correlation functions indicate interlaced vortices as in
Fig. 44 above, with density maxima in one component
localizing at the minima �vortex cores� in the other com-
ponent. The interlaced pattern of density minima and
maxima becomes more apparent with higher particle
number as shown in the right panel of Fig. 45 for N
=20 bosons, where NA=NB=10, at angular momentum
L=26.

The conditional probability densities average out the
effect of phase singularities as signatures of vortices.
However, the nodal structure of the many-body state
may straightforwardly be probed by reduced wave func-
tions �Saarikoski et al., 2009� �see Sec. II.C.3�, as shown
in Fig. 46 for a system with NA=NB=3 bosons.

Coreless vortices form one by one as the angular mo-
mentum increases: in the example shown here for L=6
and L=12, the phase singularities in one component oc-
cur at the most probable positions of the particles of the
other component, indicating formation of two and three
coreless vortices, respectively, in each particle compo-
nent �Fig. 46�.

3. Vortex lattices and vortex sheets

Vortex lattices in two-component bosonic condensates
may show a variety of different structures, depending on
the strength and sign of the interspecies interaction
�Mueller and Ho, 2002�. In the antiferromagnetic case
�c2�0�, for weak interactions square lattices form,
whereas for strong interactions the vortices are arranged
into triangular Abrikosov lattices. In the former case the
square lattice is energetically favored because the anti-
ferromagnetic interaction between adjacent vortex holes
makes a triangular lattice frustrated �Kasamatsu et al.,

FIG. 44. �Color online� Mean-field order parameters �left� and
phases �right� of a symmetric condensate with NA=NB, at L
=1.2�NA+NB�, for equal coupling strengths gAA=gAB=gBB
=50, showing �a� one and �b� two interlaced coreless vortices in
the two components. Component B is only shown in a half-
plane to make the vortex in the component A visible. Adapted
from Bargi et al., 2008.

FIG. 45. �Color online� As in Fig. 43, but for equal compo-
nents NA=NB=4 �left panel�. The density minima in one com-
ponent coincide with the density maxima in the other compo-
nent. This suggests that these states are finite-size precursors of
interlaced vortex lattices that occur in the limit of large N. The
picture becomes much more clear for larger particle numbers,
as shown in the right panel for N=20 and L=26. From Bargi et
al., 2010.
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2003�. At c2=0 the system has metastable states such as
a stripe phase. In the regime of ferromagnetic interspe-
cies coupling �c2�0�, spin domains spontaneously form.
These vortex sheets form “serpentinelike” structures
that are nested into each other �Kasamatsu et al., 2003;
Kasamatsu and Tsubota, 2009�. A number of metastable
lattice structures that were energetically almost degener-
ate have also been found in an antiferromagnetic spin-1
BEC �Kita et al., 2002�.

C. Two-component fermion droplets

Recent electronic structure studies of quantum dots
with spin degrees of freedom predicted the formation of
coreless vortices in fermion droplets analogously to the
bosonic case �Dai et al., 2007; Koskinen et al., 2007; Pet-
ković and Milovanović, 2007; Saarikoski et al., 2009�.
This comes as no surprise since analogies in the struc-
ture between fermion and boson states �Sec. II.F� are
not limited to single-component systems, but an ap-
proximate mapping between two-component fermion
and boson states can be constructed as well. In the fol-
lowing we discuss coreless vortices in fermion droplets
and some of the consequences of the fermion-boson
analogy with few-electron droplets as a particular ex-
ample.

1. Coreless vortices with electrons

The angular momentum for a system with eight fermi-
ons with both balanced �NA=NB=4� and unbalanced
�NA=2,NB=6� component sizes is shown as a function

of the trap rotation frequency in Fig. 47. The staircase
shape is strikingly similar to the bosonic counterpart
�Fig. 42� with Lboson=Lfermion−LMDD=Lfermion−28. In
the fermion case with asymmetric components NA=2
and NB=6, the first pronounced plateaus appear at L
=LMDD+NA=28+2 and L=LMDD+NB=28+6, which
correspond to a coreless vortex in the A and B compo-
nents, respectively. In the case of symmetric component
occupations NA=NB=4 the first major plateau moves to
L=LMDD+4 and the coreless vortex configuration is
analogous to a meron pair �Petković and Milovanović,
2007� in bosonic systems. The lengths of these plateaus
indicate that coreless vortex states are also stable in fer-
mion systems.

The fermionic “quantum-dot” analog to the unbal-
anced few-boson system �with NA=2 and NB=6� dis-
cussed above would be a system with N=8 electrons and
fixed Sz=2, which demands two spins antiparallel to the
external magnetic field �component A� and six spins par-
allel to the field �component B�. Both components form
compact maximum density droplets independently at
LMDD=28 that corresponds to the L=0 nonrotating con-
densate in the bosonic case. When the angular momen-
tum exceeds that of the MDD by two units of �, a hole
forms at the center of the smaller component which is
associated with a vortex state, while the larger one re-
mains a MDD. This can be seen from the pair-correlated
density shown in Fig. 48. Note that in the case of fermi-
ons, there is a clearly visible exchange-correlation hole
around the reference point in the pair correlation. This
is due to the Pauli principle which is naturally absent in
the bosonic case. Due to the strong repulsion between
fermions, this hole is mirrored in the other component.
For larger angular momentum, multiply quantized vorti-
ces are found in the larger component, in direct analogy
to the bosonic case discussed above. This happens in our
example for Lfermion=LMDD+6 and Lfermion=LMDD+12
�shown in Fig. 48�.

The case of equal components corresponds to fixed
Sz=0. For L=NA=NB, just as in the bosonic case, a vor-
tex appears at some distance from the trap center, with a

L=6 L=12d)c)

L=3L=0 b)a)

FIG. 46. �Color online� Reduced wave functions in a symmet-
ric system of NA=NB=3 bosons, showing the correlations be-
tween phase singularities �circles� with the most probable po-
sitions of the particles of opposite species �triangles�. This is an
indication for the formation of coreless vortices one by one in
the system as the angular momentum increases. �a� The non-
rotating state, �b� a state with one coreless vortex per particle
species, c� two coreless vortices, and �d� three coreless vortices
are shown. Note that for identical components A and B, the
reduced wave functions for the two species are necessarily
symmetric, and only one component is shown here. From
Saarikoski et al., 2009.

FIG. 47. �Color online� Angular momentum as a function of
the trap rotation frequency �in arbitrary units� for N=8 fermi-
ons with symmetric and asymmetric component occupations,
in Fig. 42. From Bargi et al., 2010.
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density maximum on the other side, and vice versa.
These textures are again similar to the meron pairs in
the bosonic two-component system discussed above. For
higher angular momenta, the interlaced vortex lattice is
seen for fermions at L=LMDD+8 and L=LMDD+10 �see
Fig. 49�. �Note again the occurrence of the exchange
hole, that should not be confused with the holes of off-
electron vortices.�

Figure 50 shows the reduced wave functions �see Eq.
�11�� for a two-component fermion droplet with Cou-
lomb interactions and N=6 particles, with symmetric
component occupations NA=NB=3. The sequence of
states in this figure shows the formation of coreless vor-
tices one by one inside the fermion droplet, in analogy
to the bosonic case in Fig. 46, with the angular momenta
for boson and fermion systems shifted by Lfermion

=Lboson+LMDD. In comparison to the bosonic case, for
fermions the Pauli vortices keep the particles further
apart.

2. Quantum dots with weak Zeeman coupling

The formation of coreless vortices, as discussed, can
also be observed in quantum dots where Zeeman cou-
pling is weak. Then, the first reconstruction of the MDD
may not be directly into the completely polarized states
with one additional vortex, but into an excitation which
is reminiscent of the vortex state, with one spin flipped
antiparallel to the magnetic field. This transition would
be followed by a second one, involving a spin flip into
the completely polarized state �Oaknin et al., 1996�. Sil-
jamäki et al. �2002� studied the effect of Landau-level
mixing in the MDD reconstruction, using the variational
quantum Monte Carlo method. They found significant
changes in the ground states for systems consisting of up
to seven electrons. Figure 51 shows the different states
of a six-electron quantum dot in the vicinity of the
MDD.

The partially polarized state after the MDD has a
leading determinant of the form |01111100¯
 for the
majority-spin component and |100¯
 for the minority-
spin component: the vortex hole at the center of the dot
in the majority-spin component is filled by a particle
with opposite spin polarization. Consequently, the state
shows formation of a coreless vortex and is completely
analogous to the case of asymmetric particle populations
in a two-component bosonic system, as discussed in Sec.

FIG. 48. �Color online� Pair-correlated densities for fermions,
as in Fig. 43, but here for fermions with Coulomb interactions
�NA=2 and NB=6�. Angular momenta corresponding to the
pronounced plateaus in Fig. 47 are shown. Compared to the
bosonic case the densities show analogous structures except for
an additional exchange hole at the reference point in compo-
nent B which is reflected also in the component A due to Cou-
lomb repulsion. From Bargi et al., 2010.

FIG. 49. �Color online� Pair-correlated densities for fermions,
as above, but for Sz=0, i.e., equal components �NA=4 and
NB=4�. From Bargi et al., 2010.

c) L=27d)L=21

a) b)L=15 L=18

FIG. 50. �Color online� Reduced wave functions in a two-
component system. In a two-component fermion droplet with
symmetric occupations NA=NB=3 the reduced wave function
in the lowest Landau level reveals coreless vortices as correla-
tions between phase singularities �circles� with the most prob-
able positions of the particles of opposite spin �triangles�. �a�
The MDD state with total spin S=3 and Sz=0, �b� a state with
one coreless vortex per particle species, �c� two coreless vorti-
ces, and �d� three coreless vortices are shown. This sequence of
states is analogous to that of a bosonic system in Fig. 46. Note
that vortices of the MDD state are not shown in order to ease
the comparison to the bosonic case. From Saarikoski et al.,
2009.
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V.B.1. The minority-spin component has a MDD-like
structure, which corresponds to the nonrotating compo-
nent in the bosonic case, and the majority-spin compo-
nent shows a single vortex core localized at the center.

3. Nonpolarized quantum Hall states

In the regime of rapid rotation vortices are expected
to also attach to particles in two-component quantum
droplets. One of the studied model wave functions for
two-component states was introduced to explain the
quantum Hall plateau at �=2/3 �Halperin, 1983�:

� = �
i�j

N/2

�zi − zj�q�
k�l

N/2

�z̃k − z̃l�q�
m,n

N/2

�zm − z̃n�p, �51�

where q is an odd integer �due to fermion antisymme-
try�, p is a positive integer, and the Gaussians have been
omitted. The last product in Eq. �51� attaches p vortices
to each electron with opposite spin and these can be
interpreted as coreless vortices. The corresponding
nodal structure can also be found in spin-compensated
few-electron systems near the �=2/3 filling. Figure 52
shows the reduced wave function of the NA=NB=3, L
=24 electron state where one �Pauli� vortex is attached
to each particle of the same spin and two �coreless� vor-
tices are attached to particles of the opposite spin, in
good agreement with the Halperin model with q=1 and
p=2 �Saarikoski et al., 2009�. However, despite the cor-
respondence in the nodal structures, the overlap of this
state with the Halperin wave function has been found to
be small for large particle numbers due to a mixing of
spin states in the Halperin model �Koskinen et al., 2007�.

D. Bose gases with higher spins

Experimentally the investigations with two-
component quantum gases have been extended to
higher pseudospins �T=1� �Leanhardt et al., 2003�. For a
rotating trap in the LLL approximation, the phase dia-
gram of pseudospin T=1 bosons was studied by
Reijnders et al. �2004�, both using mean-field approaches
and numerical diagonalization. The stability of the
Mermin-Ho and Anderson-Toulouse vortices has been
demonstrated for rotating ferromagnetic condensates
with pseudospin T=1 �Mizushima, Machida, and Kita,
2002b, 2002c�. At small rotation the ground state is a
coreless vortex. As an example, Fig. 53 shows the
ground-state structure of a ferromagnetic T=1 spinor

FIG. 51. Partially polarized states beyond the maximum den-
sity droplet reconstruction, obtained from a variational Monte
Carlo study by Siljamäki et al. �2002�. The diagrams show the
different states of a six-electron quantum dot as a function of
the magnetic field and the strength of the Zeeman coupling per
spin in the lowest Landau-level �LLL� approximation �upper
panel� and including Landau-level mixing �LLM� �lower
panel�. The states are labeled as �N↑ ,
L�, where N↑ is the
number of electrons with spins parallel to the magnetic field
and 
L=L−LMDD is the additional angular momentum with
respect to the MDD. The Zeeman coupling strength for GaAs
is marked by dashed lines. The confinement strength is ��
=5 meV and the material parameters are for GaAs, m� /me
=0.067 and 	r=12.4.

ν ∼ 2/3

FIG. 52. �Color online� Reduced wave function of the L=24
fermion state with symmetric occupations NA=NB=3. The
nodal structure closely corresponds to that of the q=2,p=1
Halperin wave function with one phase singularity in the com-
ponent of the probing particle and two phase singularities in
the opposite component. The approximate Landau-level filling
for the above finite-size system is ��2/3, just as for the Hal-
perin state proposed to describe the �=2/3 quantum Hall pla-
teau. The symbols in the figure were explained in Fig. 3. From
Saarikoski et al., 2009.
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condensate for the three different components of the
order parameter �Martikainen et al., 2002�. The three-
dimensional trap was chosen with strong confinement in
the z direction of a harmonic trap, such that the system
was effectively two dimensional. The density distribu-
tions �where light shade corresponds to the maximum
density� in the x-y plane are shown for m=1, 0, and −1.
The m= ±1 components show two coreless vortices in
much similarity to the two-component case discussed
above. The third component, m=0, shows a regular ar-
ray of four vortices that occur at the same positions of
the coreless vortices.

VI. SUMMARY AND OUTLOOK

In finite systems with only a small number of particles,
vortex formation can be studied by a numerical diago-
nalization of the many-body Hamiltonian. Often, a rea-
sonable approximation is to assume the confinement to
be a two-dimensional harmonic oscillator and to restrict
the single-particle basis to the lowest Landau level. This
is in particular the case in the limit of weak interactions.
The close relationship of the many-body problem to the
quantum Hall liquid then helps to explain the vortex
localization and the similarity of vortex formation in bo-
son and fermion systems. The many-body energy spec-
trum, although experimentally yet inaccessible, provides
a wealth of information on the localization of vortices
and their mutual interactions. The energy spectrum
should also allow an approximation of the partition
function and thus evaluation of temperature effects in
future studies �Dean and Papenbrock, 2002�.

The exact diagonalization is limited to systems with
only a few particles. Mean-field and density-functional
methods are necessary for capturing basic features of
vortices in larger systems. In general, the density-
functional methods describe the vortex structures in ex-
cellent qualitative agreement with the exact diagonaliza-
tion results. In most density-functional approaches, the
particles move in an effective field which allows internal
symmetry breaking, making the observation of vortices
more transparent than in the exact diagonalization
method. However, the present state-of-the-art density-
functional approaches fail to describe properly the

highly correlated regime at small filling fractions where
vortices start to attach to particles, forming composites.

Experimentally, clear signatures of vortices in small
electron droplets are still waiting to be observed. Imag-
ing methods of electron densities in quantum dots may
provide direct evidence of vortex formation in the future
�Pioda et al., 2004; Fallahi et al., 2005; Dial et al., 2007�.
The predicted localization of vortices in asymmetric con-
finements and in the presence of pinning impurities
open a possible way to direct detection of vortices by
means of measurements of the charge density of the
electron droplet. Scanning probe imaging techniques
have been developed to visualize the subsurface charge
accumulation �Tessmer et al., 1998�, localized electron
states �Zhitenev et al., 2000�, and charge flow �Topinka
et al., 2003� of a quantum Hall liquid. Similar methods
could also turn out to be useful in probing electron den-
sity of two-dimensional electron droplets in quantum
dots.

In rotating traps the present observation techniques
are based on releasing the atoms from the trap and are
limited to large atom numbers. Naturally, the experi-
mental goal has been the study of large condensates.
Optical lattices, with a small number of atoms in each
lattice site, could in the future provide information of
vortex formation in the few-body limit.

Despite experimental and theoretical advances in
studies of rotating finite-size systems this review can
provide only glimpses of this rich field of physics where
vorticity plays a central role. Many important theoretical
results presented here remain unverified in experiments.
Theoretical challenges remain as well, especially in the
regime of rapid rotation �Baym, 2005� where strong cor-
relations may lead to emergence of exotic states. Vortex
localization and ordering in the transition regime to a
quantum Hall liquid, as well as the breakdown of this
liquid state into a crystalline one, are still lively dis-
cussed themes in the field.
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FIG. 53. Density plots of the Gross-Pitaevskii order param-
eters of the three components �m=−1,0 ,1� for a T=1 ferro-
magnetic condensate �see text�. The calculation was performed
for 1.7�104 bosonic atoms of 87Rb. Length units in the figure
are in oscillator lengths. The total angular momentum per par-
ticle for the state shown was L /N=1.85, and the rotation fre-
quency in units of the trap frequency was �=0.17. White color
indicates maximum density. From Martikainen et al., 2002.
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