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Physical interactions in quantum many-body systems are typically local: Individual constituents
interact mainly with their few nearest neighbors. This locality of interactions is inherited by a decay
of correlation functions, but also reflected by scaling laws of a quite profound quantity: the
entanglement entropy of ground states. This entropy of the reduced state of a subregion often merely
grows like the boundary area of the subregion, and not like its volume, in sharp contrast with an
expected extensive behavior. Such “area laws” for the entanglement entropy and related quantities
have received considerable attention in recent years. They emerge in several seemingly unrelated
fields, in the context of black hole physics, quantum information science, and quantum many-body
physics where they have important implications on the numerical simulation of lattice models. In this
Colloquium the current status of area laws in these fields is reviewed. Center stage is taken by rigorous
results on lattice models in one and higher spatial dimensions. The differences and similarities
between bosonic and fermionic models are stressed, area laws are related to the velocity of
information propagation in quantum lattice models, and disordered systems, nonequilibrium
situations, and topological entanglement entropies are discussed. These questions are considered in
classical and quantum systems, in their ground and thermal states, for a variety of correlation
measures. A significant proportion is devoted to the clear and quantitative connection between the
entanglement content of states and the possibility of their efficient numerical simulation.
Matrix-product states, higher-dimensional analogs, and variational sets from entanglement
renormalization are also discussed and the paper is concluded by highlighting the implications of area
laws on quantifying the effective degrees of freedom that need to be considered in simulations of
quantum states.
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I. INTRODUCTION

In classical physics concepts of entropy quantify the
extent to which we are uncertain about the exact state of
a physical system at hand or, in other words, the amount
of information that is lacking to identify the microstate
of a system from all possibilities compatible with the
macrostate of the system. If we are not quite sure what
microstate of a system to expect, notions of entropy will
reflect this lack of knowledge. Randomness, after all, is
always and necessarily related to ignorance about the
state.

In quantum mechanics positive entropies may arise
even without an objective lack of information. To see
this, consider a quantum lattice systems �see, e.g., Fig. 1�
as an example for a quantum many-body system where
each of the vertices i of the lattice L is associated with
an individual quantum system. This quantum many-
body system is thought to be in its nondegenerate pure
ground state �= ������ at zero temperature which has
vanishing von Neumann entropy

S��� = − tr�� log2 �� .

We now distinguish a region of this quantum lattice sys-
tem, denoting its sites with the set I and all other sites
with O=L \I. If we consider the reduced state �I
=trO��� of the sites of the region I, the state will not be
pure in general and will have a nonvanishing von Neu-
mann entropy S��I�.

1

In contrast to thermal states this entropy does not
originate from a lack of knowledge about the microstate
of the system. Even at zero temperature we encounter a
nonzero entropy. This entropy arises because of a fun-
damental property of quantum mechanics: entangle-
ment. This quite intriguing trait of quantum mechanics
gives rise to correlations even in situations where the
randomness cannot be traced back to a mere lack of
knowledge. The mentioned quantity, the entropy of a
subregion, is called entanglement entropy or geometric

entropy and in quantum information entropy of entangle-
ment, which represents an operationally defined en-
tanglement measure for pure states �for recent reviews
see Plenio and Virmani �2007� and Horodecki et al.
�2009��.

In the context of quantum field theory, questions of
scaling of entanglement entropies in the size of I have
some tradition. Seminal work on the geometric entropy
of the free Klein-Gordon field �Bombelli et al., 1986;
Srednicki, 1993� and subsequent work on conformal
field theories �Callan and Wilczek, 1994; Fiola et al.,
1994; Holzhey et al., 1994; Hawking et al., 2001; Cala-
brese and Cardy, 2004� was driven in part by the intrigu-
ing suggested connection to the Bekenstein-Hawking
black hole entropy �Bekenstein, 1973, 2004; Hawking,
1974�.

In recent years, studies of properties of the entangle-
ment entropy in this sense have enjoyed a revival initi-
ated by Audenaert et al. �2002�; Osborne and Nielsen
�2002�, Osterloh et al. �2002�, and Vidal et al. �2003�. Im-
portantly, this renewed activity is benefitting from the
new perspectives and ideas of quantum information
theory, and from the realization of their significance for
the understanding of numerical methods and especially
their efficiency for describing quantum many-body phys-
ics. Quantum information theory also provides novel
conceptual and mathematical techniques for determin-
ing properties of the geometric entropy analytically.

At the heart of these studies are questions like: What
role do genuine quantum correlations—entanglement—
play in quantum many-body systems? Typically, in such
investigations, one abstracts to a large extent from the
microscopic specifics of the system: Quite in the spirit of
studies of critical phenomena, one thinks less of detailed
properties, but is rather interested in the scaling of the
entanglement entropy when the distinguished region
grows in size. In fact, for quantum chains this scaling of
entanglement as genuine quantum correlations—a priori
very different from the scaling of two-point correlation
functions—reflects to a large extent the critical behavior
of the quantum many-body system, and shares some re-
lationship to conformal charges.

At first sight one might be tempted to think that the
entropy of a distinguished region I will always possess an
extensive character. Such a behavior is referred to as a
volume scaling and is observed for thermal states. In-
triguingly, for typical ground states, however, this is not
at all what one encounters: Instead, one typically finds
an area law, or an area law with a small �often logarith-
mic� correction: This means that if one distinguishes a
region, the scaling of the entropy is merely linear in the
boundary area of the region. The entanglement entropy
is then said to fulfill an area law. It is the purpose of this
Colloquium to review studies on area laws and the scal-
ing of the entanglement entropy in a nontechnical man-
ner.

The main four motivations to approach this question
are as follows.

• The holographic principle and black hole entropy:

1Of interest are also other entropies, such as the Renyi entro-
pies, S����= �1−��−1 log2 tr���� with ��0. For �↘1 the usual
von Neumann entropy is recovered. In particular, in the con-
text of simulatability, Renyi entropies for arbitrary � play an
important role.

FIG. 1. �Color online� A lattice L with a distinguished set
I�L �shaded area�. Vertices depict the boundary �I of I with
surface area s�I�= ��I�.
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The historical motivation to study the entanglement
or geometric entropy stems from considerations of
black hole physics: It has been suggested by Bom-
belli et al. �1986� and Srednicki �1993� that the area
law of the geometric entropy for a discrete version of
a massless free scalar field—then numerically found
for an imaginary sphere in a radial symmetry—could
be related to the physics of black holes �Hawking et
al., 2001� in particular the Bekenstein-Hawking en-
tropy of a black hole which is proportional to its
boundary surface. It has been muted that the holo-
graphic principle �Bousso, 2002�—the conjecture that
the information contained in a volume of space can
be represented by a theory which lives in the bound-
ary of that region—could be related to the area law
behavior of the entanglement entropy in microscopic
theories.

• Distribution of quantum correlations in quantum
many-body systems: Area laws also say something on
how quantum correlations are distributed in ground
states of local quantum many-body systems. Interac-
tions in quantum many-body systems are typically
local, which means that systems interact only over a
short distance with a finite number of neighbors. The
emergence of an area law then provides support for
the intuition that short ranged interactions require
that quantum correlations between a distinguished
region and its exterior are established via its bound-
ary surface. That a strict area law emerges is by no
means obvious from the decay of two-point correla-
tors, as we will see. Quantum phase transitions are
governed by quantum fluctuations at zero tempera-
ture, so it is more than plausible to observe signa-
tures of criticality on the level of entanglement and
quantum correlations. This situation is now particu-
larly clear in one-dimensional �1D� systems �Aude-
naert et al., 2002; Fannes et al., 2003; Vidal et al.,
2003, 2007; Calabrese and Cardy, 2004, 2006a; Jin
and Korepin, 2004; Latorre et al., 2004, 2005; Dür et
al., 2005; Eisert and Cramer, 2005; Farkas and
Zimboras, 2005; Its et al., 2005; Keating and Mezza-
dri, 2005; Barthel et al., 2006; Eisert and Osborne,
2006; Cardy et al., 2007; Casini and Huerta, 2007;
Franchini et al., 2007; Hastings, 2007a; Amico et al.,
2008� but progress has also been made in higher-
dimensional systems �Hein et al., 2004; Plenio et al.,
2005; Bravyi et al., 2006; Cramer and Eisert, 2006;
Cramer et al., 2006; Fradkin and Moore, 2006; Kitaev
and Preskill, 2006; Riera and Latorre, 2006; Ver-
straete et al., 2006; Wolf, 2006; Farkas and Zimboras,
2007�, with rigorous area laws specifically for quasi-
free bosonic �Plenio et al., 2005; Cramer and Eisert,
2006; Cramer et al., 2006� and fermionic �Gioev and
Klich, 2006; Wolf, 2006; Cramer et al., 2007; Farkas
and Zimboras, 2007� systems, as well as in disordered
systems �Refael and Moore, 2007�.

• Complexity of quantum many-body systems and
their simulation: One of the key motivations for
studying area laws stems from a quite practical con-

text: the numerical simulation of quantum many-
body systems. In fact, if there is little entanglement
in a ground state of many-body systems, one might
suspect on intuitive grounds that one can describe
this ground state with relatively few parameters.
More specifically, for one-dimensional systems one
would expect numerical algorithms like the powerful
density-matrix renormalization group method
�White, 1992; Schollwöck, 2005� �DMRG� to perform
well if the ground state contains a small amount of
entanglement. This suspicion can in fact be made rig-
orous �Peschel, 2004; Verstraete and Cirac, 2006;
Hastings, 2007a; Schuch et al., 2008a� as it turns out
that the scaling of entanglement specifies how well a
given state can be approximated by a matrix-product
state �Fannes et al., 1992; Schollwöck, 2005� as gen-
erated in DMRG. It is hence not the decay behavior
of correlation functions as such that matters here,
but in fact the scaling of entanglement.

• Topological entanglement entropy: The topological
entanglement entropy is an indicator of topological
order �Wen, 1989; Witten, 1998; Nussinov and Ortiz,
2009�, a new kind of order in quantum many-body
systems that cannot be described by local order pa-
rameters �Kitaev and Preskill, 2006; Levin and Wen,
2006; Haque et al., 2007; Papanikolaou et al., 2007;
Nussinov and Ortiz, 2009�. Lattice models having a
nonvanishing topological entanglement entropy may
be seen as lattice instances of topological quantum
field theories. Here a global feature is detected by
means of the scaling of geometric entropies.

In this Colloquium we do not have space to give an
account of all known derivations of area laws for the
entanglement entropy. However, we will try not to
merely remain at a superficial level and only state re-
sults, but will explain a number of key techniques and
arguments. When we label main statements as “theo-
rems” this is done to highlight their special role, to make
it easier to follow the line of reasoning. For details of
arguments and proofs, often technically involved, we re-
fer the interested reader to the original work. The rea-
son for the technicality of proofs originates from the
type of question that is posed: to distinguish a region of
a lattice breaks the translational symmetry of the
problem—even in a translationally invariant setting.
While numerical studies are sometimes easier to come
by, analytical argument can be technically involved, even
for quasifree models. In this paper, we discuss the study
of entanglement entropy primarily �i� from the view-
point of quantum information theory, �ii� with an em-
phasis on rigorous and analytical results, and �iii� the
implications on the efficiency of numerical simulation.

II. LOCAL HAMILTONIANS AND AREA LAWS

Throughout this paper, we consider quantum many-
body systems on a lattice. Such quantum lattice systems
are ubiquitous in the condensed matter context �Vojta,
2003�, where they play a key role in obtaining an under-
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standing of material properties from a microscopic basis.
Lattices systems are also of considerable importance in
the study of quantum field theories where a lattice pro-
vides a natural ultraviolet cutoff and facilitates numeri-
cal simulations of quantum fields �Montvay and Mün-
ster, 1994�. One could think of systems of strongly
correlated electron systems or lattice vibrations of a
crystal lattice. With the advent of research on cold atoms
in optical lattices, quantum lattice systems can also be
prepared in laboratory conditions with an unprec-
edented degree of control �Bloch et al., 2008�.

We will consider—at least in parts of this paper—
general lattices. Each vertex of the lattice is associated
with a quantum system, such as a spin, a bosonic, or a
fermionic system. It is convenient to think of this lattice
as a simple graph G= �L ,E� with vertices L, and the
edge set E labeling neighborhood relations. G could be
the graph representing a one-dimensional chain with pe-
riodic boundary conditions, and in fact a good propor-
tion of this paper will deal with such quantum chains.
For later purposes, it will be convenient to think in
terms of such a slightly more general picture, however.
The Hilbert space of the total many-body system is then
the tensor product H= � j�LHj, where Hj is the Hilbert
space associated with the physical system on lattice site
j. On such a lattice, one has dist�j ,k� for j ,k�L as the
natural graph theoretical distance, which is the length of
the shortest path connecting j and k. For a cubic lattice
of dimension D with periodic boundary conditions, in
turn, dist�j ,k�=�d=1

D �jd−kd�, where the components of
j ,k�L are taken modulo the base length of the cubic
lattice.

We are concerned largely with local Hamiltonians on
lattices. This means that the physical system associated
with a specific lattice site will interact only with its
neighbors and not with all sites of the lattice. The total
Hamiltonian can hence be written as

H = �
X�L

HX,

where HX has a compact support X, independent of the
system size, that is the number of lattice sites denoted by
�L�.

The boundary surface area s�I� of a distinguished re-
gion I of the lattice L can be defined in a natural fashion
on such a graph as the cardinality of the set of boundary
points

�I = 	i � I: there is a j � L \ I with dist�i,j� = 1
 , �1�

so s�I�= ��I�; see Fig. 1. Throughout the paper, unless de-
fined specifically otherwise, we say that the entangle-
ment entropy satisfies an area law if

S��I� = O„s�I�… .

This means that the entropy of the reduced state �I
scales at most as the boundary area of the region I.

Before we dive into the details of known results on
area laws in quantum many-body systems, we appreciate
how unusual it is for a quantum state to satisfy an area

law. In fact, a quantum state picked at random will ex-
hibit a different scaling behavior. If one has a lattice
system with d-dimensional constituents and divides it
into a subsystem I�L and the complement O=L \I,
then one may consider the expected entanglement en-
tropy of I for the natural choice, the unitarily invariant
Haar measure. One finds �Page, 1993; Foong and
Kanno, 1994; Sen, 1996�

E�S��I�� � �I�log2�d� −
d�I�−�O�

2 log2�2�
.

That is, asymptotically, the typical entropy of a sub-
system is almost maximal, and hence linear in the num-
ber of constituents �I�. Hence a “typical” quantum state
will asymptotically satisfy a volume law, and not an area
law. As we will see that area laws are common for
ground states of quantum many-body systems, we find
that in this sense ground states are very nongeneric. This
fact is heavily exploited in numerical approaches to
study ground states of strongly correlated many-body
systems: One does not have to vary over all quantum
states in variational approaches, but merely over a much
smaller set of states that are good candidates of approxi-
mating ground states of local Hamiltonians well; that is,
states that satisfy an area law.

III. ONE-DIMENSIONAL SYSTEMS

Most known results on area laws refer to one-
dimensional chains such as harmonic or spin chains. This
emphasis is no surprise: After all, a number of physical
ideas—like the Jordan-Wigner transformation—as
well as mathematical methods—such as the theory of
Toeplitz determinants and Fisher-Hartwig techniques—
are specifically tailored to one-dimensional translation-
ally invariant systems.

If we distinguish a contiguous set of quantum systems
of a chain, a block I= 	1, . . . ,n
, the boundary of the
block consists of only one �two� site�s� for open �peri-
odic� boundary conditions. An area law then clearly
means that the entropy is upper bounded by a constant
independent of the block size n and the lattice size �L�,
i.e.,

S��I� = O�1� . �2�

We will see that in quantum chains a clear picture
emerges concerning the scaling of the entanglement en-
tropy. Whether an area law holds or not will largely de-
pend on whether the system is at a quantum critical
point or not. We summarize what is known in one-
dimensional systems at the end of the detailed discus-
sion of quantum chains, starting with bosonic harmonic
chains.

A. Bosonic harmonic chain

Bosonic harmonic quantum systems, as well as fermi-
onic models and their quantum spin chain counterparts
like the XY model, play a seminal role in the study of
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quantum many-body systems. Harmonic lattice systems
model discrete versions of Klein-Gordon fields, vibra-
tional modes of crystal lattices, or of trapped ions and
serve generally as lowest-order approximations to an-
harmonic systems. The fact that they are integrable ren-
ders even sophisticated questions like the scaling of the
geometric entropy in instances amenable to fully analyti-
cal study, even in higher spatial dimensions. In fact, in
the latter case these so-called quasifree models are the
only settings that allow for rigorous analytical results so
far. Hence, they do form the central object of consider-
ation to explore what should be expected concerning
general scaling laws.

The Hamiltonian for a harmonic lattice L is given by

H =
1
2 �

i,j�L
�piPi,jpj + xiXi,jxj� , �3�

where X ,P�R�L���L� are real, symmetric, and positive
matrices determining the coupling structure of the sys-
tems. The canonical operators xi ,pi satisfy the canonical
commutation relations �xj ,pk�= i	j,k. In terms of the
bosonic annihilation operators bj= �xj+ ipj� /�2 the
Hamiltonian �3� reads

H =
1
2�

i,j
�bi

†Ai,jbj + biAi,jbj
† + biBi,jbj + bi

†Bi,jbj
†� , �4�

where A= �X+P� /2, B= �X−P� /2. Ground and thermal
states of the above Hamiltonian are fully characterized
by the second moments of the canonical operators, while
first moments vanish �Eisert and Plenio, 2003� �entangle-
ment properties of the state are invariant under changes
of first moments anyway�. The second moments define
the covariance matrix


i,j = �	ri,rj
� = �rirj� + �rjri� , �5�

where r= �x1 , . . . ,x�L� ,p1 , . . . ,p�L�� is the vector of cano-
nical operators. The covariance matrix of the ground
state of Eq. �3� is given by 
=
x � 
p, where 
p

=X1/2�X1/2PX1/2�−1/2X1/2 and 
x=
p
−1; see Cramer and

Eisert �2006� and Schuch et al. �2006�. On the level of
covariance matrices unitary operations express them-
selves as symplectic transformations S that preserve the
commutation relations �k,l= i�rk ,rl�, i.e., S�ST=�. Im-
portantly, Williamson’s theorem states that for any
strictly positive matrix A�R2N�2N there exist a symplec-
tic transformation S such that SAST=D, where D is a
diagonal matrix with the same spectrum as the positive
square roots of �i�A�2. The eigenvalues di of D are
called the symplectic eigenvalues of A.

Now, what is the entanglement content of the ground
state? To answer this we need to define entanglement
measures and compute them in terms of the properties
of the covariance matrix. The first of these is of course
the entropy of entanglement. Williamson’s theorem
shows that any function of a state that is unitarily invari-
ant is fully determined by the symplectic eigenvalues.

Notably, the entropy of a Gaussian state � with symplec-
tic eigenvalues d1 , . . . ,dN of the covariance matrix of � is
given by

S��� = �
j=1

N �dj + 1
2

log2
dj + 1

2
−

dj − 1
2

log2
dj − 1

2

 .

A key ingredient in the analytical work is another
full entanglement measure that was defined in quan-
tum information theory, the logarithmic negativity �Zyc-
zkowski et al., 1998; Eisert and Plenio, 1999; Eisert,
2001; Vidal and Werner, 2002; Plenio, 2005; Plenio and
Virmani, 2007�. It is defined as

EN��,I� = log2��
I�1,

where �A�1=tr��A†A�1/2� is the trace norm and �
I is the
partial transpose of � with respect to the interior I. The
partial transpose with respect to the second subsystem is
defined as ��i��k� � �j��l��
2 = �i��k� � �l��j�. On the level of
covariance matrices the partial transpose is partial time
reversal, i.e., pi�−pi if i�I while xi remains invariant.
Then for � with covariance matrix 
=
x � 
p we find
that �
I has covariance matrix 
�=
x � �F
pF�, where
the diagonal matrix F has entries Fi,j= ±	i,j, depending
on whether a coordinate is in I or O: Then one finds for
a state with covariance matrix 
=
x � 
p the logarithmic
negativity �Audenaert et al., 2002; Cramer, 2006�

EN��,I� =
1
2 �

k=1

�L�

log2 max	1,�k�
p
−1F
x

−1F�
 ,

where �k denote the eigenvalue. The logarithmic nega-
tivity has two key features. Mathematically, the impor-
tance of EN�� ,I� is due to

EN��,I� � S��I� , �6�

which holds for all pure states �. This upper bound for
the entanglement entropy is simpler to compute as one
does not have to look at spectra of reductions �I but of
the full system. This renders a study of area laws pos-
sible even in higher-dimensional systems. Second, in
contrast to the entropy of entanglement, the negativity is
also an entanglement measure for mixed states, such as
thermal states and provides an upper bound on other
important measures of mixed state entanglement �Ben-
nett et al., 1996; Vedral and Plenio, 1998; Christandl and
Winter, 2004; Plenio and Virmani, 2007�.

All of the above holds for general lattices L but for
the moment we focus on the one-dimensional setting;
that is, L= 	1, . . . ,N
 where N is even to allow us to con-
sider the symmetrically bisected chain I= 	1, . . . ,N /2

with periodic boundary conditions and P=1. We concen-
trate on the ground state and discuss thermal states
later.2 It is worth noting that in higher spatial dimension

2We do not discuss the entanglement properties in excited
states here as this area has not been explored in detail so far
�Stelmachovic and Buzek, 2004; Das and Shankaranarayanan,
2006�.
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the natural analog of this setting, the half-space, is of
some importance as it allows for a reduction in the prob-
lem in question to the 1D case discussed here �Cramer et
al., 2007�. Furthermore, the scaling behavior of the en-
tanglement of the half-chain has direct consequences on
the availability of efficient representations of the state
by means of matrix-product states as discussed later. For
a general nearest-neighbor coupling this means that X is
the circulant matrix,

X = circ�a,b,0, . . . ,0,b� , �7�

as a consequence of translational invariance. b specifies
the coupling strength, a defines the on-site term,
�min�X�=a−2�b�, i.e., positivity demands a�2�b�, and the
energy gap above the ground state is given by 
E
=�min

1/2 �XP�= �a−2�b��1/2. For the logarithmic negativity of
the symmetrically bisected half-chain we find �Aude-
naert et al., 2002� the following.

Theorem 1 (Exact negativity of the half-chain). Con-
sider a Hamiltonian of a harmonic chain on L
= 	1, . . . ,N
 with periodic boundary conditions, P=1, and
nearest-neighbor interactions as in Eq. �7�. Then the en-
tanglement entropy of the symmetrically bisected chain
and the logarithmic negativity satisfy

S��I� � EN��,I� =
1
4

log2�a + 2�b�
a − 2�b�
 =

1
2

log2� �X�1/2


E

 ,

�8�

where �·� is the operator norm and 
E=�min
1/2 �X�.

The quantity �X� will later be related to the speed of
sound in the system. This expression for the block en-
tanglement quantified with respect to the negativity is
exact and no approximation. This was the first rigorous
area law for a lattice system, complementing earlier
seminal work for fields �Callan and Wilczek, 1994�. Re-
markably, this expression is entirely independent of N,
the system size. The most important observation here is
that an area law holds, which can be expressed in terms
of the spectral gap in the system: Whenever the system
is noncritical in the sense that the energy gap 
E satis-
fies 
E�c�0 with a system size independent constant
c, a one-dimensional area law will hold. The above link
of entanglement entropy and spectral gap in the system
can be established in much more generality and we de-
lay this discussion to later.

The argument leading to Theorem 1 is involved, and
for details see Audenaert et al. �2002�. The interesting
aspect of this proof is that the spectrum of the half-chain
cannot be obtained analytically, thus not allowing for a
direct computation of the entanglement content. In-
stead, it is the particular combination of spectral values
of the partial transpose entering EN�� ,I� itself that can
be explicitly computed. The proof makes heavy use of
the symmetry of the problem, namely, the invariance un-
der a flip of the two half-chains.

This result suggested that the locality of the interac-
tion in the gapped model is inherited by the locality of
entanglement, a picture that was also later confirmed in
more generality. Note that the above bound is a particu-

larly tight one, and that it may well suggest what prefac-
tor in terms of the energy gap and speed of sound one
might expect in general area laws, as discussed later.

We now consider an important model for which the
energy gap vanishes in the thermodynamical limit N
→�: Taking a=m2+2N2, b=−N2, identifying lattice sites
by i=xN, and the canonical operators by xi=N−1/2��x�,
pi=N−1/2��x�, one obtains the Klein-Gordon field
Hamiltonian

H =
1
2�0

1

dx��2�x� + � �

�x
��x�
2

+ m2�2�x�� , �9�

in the field limit N→�. �For a detailed discussion of the
continuum limit for the Klein-Gordon field, see also
Botero and Reznik �2004��. From Eq. �8� for the en-
tanglement, we immediately obtain

EN��,I� =
1
4

log2�1 +
4N2

m2 
 ——→
N→�

1
2

log2�2N

m

 . �10�

This is a striking difference to the area laws that we have
observed earlier; now the entanglement does not satu-
rate but diverges with the length of the half-chain.3 The
behavior observed here will be mirrored by a similar
logarithmic divergence in critical quantum spin chains
and fermionic systems. This will be discussed in the fol-
lowing section.

B. Fermionic chain and the XY model

Following the initial work on bosonic models of Au-
denaert et al. �2002�, similar questions were explored in
fermionic systems and the associated spin models. The
numerical studies in Vidal et al. �2003� and Latorre et al.
�2004� presented a significant first step in this direction.
Their key observation, later confirmed rigorously �Jin
and Korepin, 2004; Its et al. 2005; Keating and Mezzadri,
2005� using techniques sketched in this section, is that
the scaling of the entanglement entropy as a function of
the block size appears to be related to the system being
quantum critical or not. Again, for a gapped system,
away from a quantum critical point, the entanglement
entropy would saturate; i.e., an area law holds. In turn in
all cases when the system was critical, the numerical
study indicated that the entanglement entropy grows be-
yond all bounds. More specifically, it grows logarithmi-
cally with the block size. This behavior is also consistent
with the behavior of geometric entropies in conformal
field theory �Callan and Wilczek, 1994; Holzhey et al.,
1994�, which applies to the critical points of the models
discussed by Korepin �2003�, Vidal et al. �2003�, Latorre
et al. �2004�, and Franchini et al. �2008�. The intriguing
aspect here is that being critical or not is not only re-
flected by the scaling of expectation values of two-point
correlators, but in fact by the ground-state entangle-
ment, so genuine quantum correlations.

3Compare also the divergence of the entanglement entropy in
collectively interacting chains �Unanyan et al., 2007�.
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This section defines the setting, introduces the basic
concepts required, and outlines the rigorous results in
more detail. Fermionic quasifree models, that is, Hamil-
tonians that are quadratic in fermionic operators fi and
fi

†,

H =
1
2 �

i,j�L
�fi

†Ai,jfj − fiAi,jfj
† + fiBi,jfj − fi

†Bi,jfj
†� �11�

may be treated by similar analytical techniques and fol-
low similar intuition to the bosonic case. In Eq. �11�, to
ensure Hermiticity of the Hamiltonian, AT=A and BT

=−B must hold for the matrices A and B defining the
coupling. The role of the canonical coordinates is taken
by the Majorana operators xj= �fj

†+ fj� /�2 and pj

= i�fj
†− fj� /�2, while the role of symplectic transforma-

tions is taken by orthogonal transformations. The en-
ergy gap above the ground state is given by the smallest
nonzero singular value of A+B.

Note that, in contrast to the bosonic case, the ground
state is 2�L�−rank�A+B�

¬q-fold degenerate. We define the
ground-state expectation � · �=tr� ·P0� /q, where P0
projects onto the ground-state sector. Then, as in the
bosonic case, the ground state is fully characterized by
two-point correlations embodied in the covariance ma-
trix with entries

− i
i,j = ��ri,rj�� = �rirj� − �rjri� ,

where now r= �x1 , . . . ,x�L� ,p1 , . . . ,p�L�� collects Majorana
operators. One then finds


 = � 0 − V

VT 0

, V = �A + B�+�A + B� , �12�

where � indicates the Moore-Penrose generalized in-
verse of a matrix �Horn and Johnson, 1985�, i.e., for a
unique ground state one simply has V= �A+B�−1�A+B�.
The entropy of a contiguous block I of fermions in the
ground state can be expressed in terms of the singular
values �k of the principle submatrix VI of V. One finds
S��I�=�kf��k�, where

f�x� = −
1 − x

2
log2�1 − x

2

 −

1 + x

2
log2�1 + x

2

 . �13�

All the above holds for general lattices but for the mo-
ment we turn to a discussion of L= 	1, . . . ,N
.

We have started the discussion on the level of fermi-
onic operators to highlight the similarity to the bosonic
case. It is important to note, however, that these fermi-
onic models share a close relationship to natural spin
models in the 1D setting. This is revealed by the Jordan-
Wigner transformation which relates fermionic opera-
tors with spin operators according to

�i
z = 1 − 2fi

†fi,
�i

x + i�i
y

2
= �

k=1

i−1

�1 − 2fk
†fk�fi, �14�

where �i
x ,�i

y ,�i
z denote the Pauli operators associated

with site i�L. The fermionic model �11� is hence

equivalent to a spin model with short- or long-range in-
teractions.

The most important model of this kind is the XY
model with a transverse magnetic field, with nearest-
neighbor interaction, Ai,i=�, Ai,j=−1/2 if dist�i , j�=1,
and Bi,j=−Bj,i=� /2 for dist�i , j�=1. This gives rise to

H = −
1
2�

�i,j�
�1 + �

4
�i

x�j
x +

1 − �

4
�i

y�j
y
 −

�

2 �
i�L

�i
z, �15�

where �i , j� denotes summation over nearest neighbors, �
is the anisotropy parameter, and � is an external mag-
netic field.4 Once again, translational invariance of the
model means that the spectrum can be readily computed
by means of a discrete Fourier transform. One obtains

Ek = 	�� − cos�2�k/N��2 + �2 sin2�2�k/N�
1/2,

for k=1, . . . ,N. This is a well-known integrable model
�Lieb et al., 1961; Barouch and McCoy, 1971�.

In the plane defined by �� ,�� several critical lines can
be identified: Along the lines �� � =1 and on the line seg-
ment �=0, �� � �1, the system is critical, limN→�
E�N�
=0. For all other points in the �� ,�� plane there exists a
c�0 independent of N such that 
E�c. The class of
models with �=1 is called Ising model. The most impor-
tant case subsequently is the isotropic case of the XY
model, then often referred to as the XX model or the
isotropic XY model. This is the case when �=0. The XX
model is critical whenever �� � �1. The XX model is
equivalent to the Bose-Hubbard model in the limit of
hard-core bosons, so the Bose-Hubbard model with the
additional constraint that each site can be occupied by at
most a single boson.

Assume that we have a nondegenerate ground state,
such that the entropy of entanglement S��I� really quan-
tifies the entanglement content. For the translation-
invariant system at hand, the entries Vi,j=Vi−j of V are
given by

4Note that the boundary conditions give rise to a �sometimes
overlooked� subtlety here. For open boundary conditions in
the fermionic model, the Jordan-Wigner transformation relates
the above fermionic model to the spin model in Eq. �15� with
open boundary conditions. For periodic boundary conditions,
the term fN

† f1 is replaced by the operator ��j=1
N �2fj

†fj−1��fN
† f1.

Hence, the periodic fermionic model does not truly correspond
to the periodic XY model �De Pasquale and Facchi, 2009�.
Importantly, the degeneracy of ground states is affected by
this. For a degenerate ground state, the entanglement of for-
mation �Bennett et al., 1996�, the relative entropy of entangle-
ment �Vedral and Plenio, 1998�, the distillable entanglement
�Bennett et al., 1996�, or the logarithmic negativity of the
ground-state sector are the appropriate entanglement quanti-
fiers �Plenio and Virmani, 2007; Horodecki et al., 2009�, and no
longer the entropy of entanglement. Only in the case that for
large subsystems n one can almost certainly locally distinguish
the finitely many different ground states, the entropy of en-
tanglement for each of the degenerate ground states still gives
the correct value for the entanglement of a subsystem.
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Vl =
1

�L� �k=1

�L�

gke2�ilk/�L�, gk = �k� A + B

�A + B�
 . �16�

The entanglement properties of the model are encoded
in the numbers gk. For N= �L � →�, we can write

Vl =
1

2�
�

0

2�

d� g���eil�,

for �l � �N /2, where g : �0,2��→C is called the symbol of
V. Note that the Fermi surface is defined by the discon-
tinuities of the symbol. In order to evaluate the entropy
of a reduction S��I�, we merely have to know the singu-
lar values of n�n submatrices VI=Vn of V; see Eq. �13�.
For isotropic models, i.e., for B=0, V then being sym-
metric, the singular values are the absolute values of the
eigenvalues. In other words, in order to understand the
correlation and entanglement structure of sub-blocks
of such systems, one has to understand properties of
matrices the entries of which are of the form Ti,j=Ti−j.
Such matrices are called Toeplitz matrices. An n�n
Toeplitz matrix is entirely defined by the 2n−1 numbers
Tl, l=1−n , . . . ,n−1.

The spectral values �1�Tn� , . . . ,�n�Tn� of Tn are the
zeros of the characteristic polynomial

det�Tn − �1� = �
k=1

n

��k�Tn� − �� ,

so in order to grasp the asymptotic behavior of the spec-
trum of Tn, it is sufficient to know the asymptotic behav-
ior of this determinant expression.5 The mathematical
theory of determinants of such Toeplitz matrices is much
developed. The Fisher-Hartwig theorem provides ex-
actly the tools to study the asymptotic behavior of
Toeplitz determinants in terms of the symbol. Crudely
speaking, what matters are the zeros of g and the jumps:
Once g is written in what can be called a normal form,
one can “read off” the asymptotic behavior of the se-
quence of Toeplitz determinants defined by this symbol.
Note that the matrices Vn−z1 take here the role of Tn.
The exact formulation of the Fisher-Hartwig theorem is
presented in the Appendix.

This machinery was used by Jin and Korepin �2004�,
Eisert and Cramer �2005�, Its et al. �2005�, and Keating
and Mezzadri �2005� to evaluate the asymptotic behavior
of the block entropy for the critical XX model and other
isotropic models. In the first paper introducing this idea

�Jin and Korepin, 2004�, in fact, there is a single jump
from 1 to −1 in the symbol defining the Toeplitz matrices
�and no zeros�, which gives rise to the prefactor of 1/3 of
log2�n� in the formula for the entanglement entropy in
the XX model. This prefactor—which emerges here
rather as a consequence of mathematical properties of
the symbol—is related to the conformal charge of the
underlying conformal field theory. In more general iso-
tropic models, as pointed out by Keating and Mezzadri
�2005�, the number of jumps determines the prefactor in
the entanglement scaling. Hence in such quasifree iso-
tropic fermionic models the connection between critical-
ity and a logarithmic divergence is transparent and clear:
If there is no Fermi surface at all, and hence no jump in
the symbol, the system will be gapped and hence non-
critical. Then, the entropy will saturate to a constant.

In contrast, in case there is a Fermi surface this will
lead to jumps in the symbol, and the system is critical. In
any such case one will find a logarithmically divergent
entanglement entropy. The prefactor is determined by
the number of jumps. So more physically speaking, what
matters is the number of boundary points of the Fermi
surface in the interval �0,2��. So—if one can say so in a
simple one-dimensional system—the “topology of the
Fermi surface determines the prefactor.” This aspect will
be discussed in more detail later. Jin and Korepin �2004�,
Its et al. �2005�, and Keating and Mezzadri �2005� found
the following.

Theorem 2 (Critical quasifree fermionic chains). Con-
sider a family of quasifree isotropic fermionic Hamilto-
nians with periodic boundary conditions as in Eq. �11�
with B=0. Then, the entanglement entropy of a block of
I= 	1, . . . ,n
 continuous spins scales as

S��I� = � log2�n� + O�1� .

��0 is a constant that can be related to the number of
jumps in the symbol �defined above�. This applies, e.g.,
to the scaling of the entanglement entropy in the XX
spin model, for which

S��I� = 1
3 log2�n� + O�1� .

The constant � is not to be mistaken for the conformal
charge which will be discussed later. These arguments
correspond to the isotropic model with B=0, where the
Fisher-Hartwig machinery can be conveniently applied.
In contrast, the anisotropic case, albeit innocent looking,
is overburdened with technicalities. Then, in order to
compute the singular values of submatrices of V as in
Eq. �12�, it is no longer sufficient to consider Toeplitz
matrices, but block Toeplitz matrices where the entries
are conceived as 2�2 matrices. This setting has been
studied by Its et al. �2005� in the case of a noncritical
anisotropic system, finding again a saturation of the en-
tanglement entropy and by Its et al. �2007�, where the
prefactor of the area law for the entanglement entropy
in the gapped XX model was computed rigorously. Fran-
chini et al. �2008� also discussed other Renyi entropies in
this model.

5Once this quantity is known, one can evaluate the entropy
by means of

S��I� = �
k=1

n

f���k�� = lim
�→0

� dz

2�i
f��z�

�

�z
ln det�Vn − z1� . �17�

Here the integration path in the complex plane has been cho-
sen to contain all eigenvalues �k�Vn�. The function f� is a con-
tinuation of f: We require that lim�→0f��z�= f��z � �, including the
parameter � such that f� is analytic within the contour of
integration.
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Using an idea that originates from the concept of
single-copy entanglement all these technicalities may be
avoided and we can prove that the entanglement en-
tropy diverges at least logarithmically in the case of a
critical �anisotropic� Ising model. The � notation just
means that there is asymptotically a lower bound with
this behavior.6

Theorem 3 (Divergence for the critical Ising model).
The entanglement entropy in the critical Ising model
scales as

S��I� = ��log2 n� . �18�

The starting point leading to this result from Eisert
and Cramer �2005� is a lower bound in the operator
norm of �I leading to

��I�� = − log2 det��1 + Vn�/2� � − 1
2 log2�det�Vn�� .

�19�

This makes a big difference: we now no longer need the
singular values of Vn �which would lead to an enor-
mously complicated block Toeplitz expression, for a case
for which the Fisher-Hartwig conjecture has not yet
been proven�. Instead—as the absolute value of the de-
terminant is just as well the product of the absolute val-
ues of the eigenvalues as of the singular values—we can
use the ordinary Fisher-Hartwig machinery to get an
asymptotic handle on eigenvalues. For the critical Ising
model, we can find an explicit factorization of the
Fisher-Hartwig symbol, in terms of a function reflecting
a single discontinuity and an analytical function. Using
again a proven instance of the Fisher-Hartwig conjecture
�Libby, 1990�—albeit a different one than used in the
case of an isotropic model—one finds the bound as in
Eq. �18�; for details see Eisert and Cramer �2005�. The
entanglement in two blocks of the critical Ising model
has been studied by Facchi et al. �2008�.

Another useful starting point to obtain bounds to en-
tanglement entropies in fermionic systems is to make
use of quadratic bounds to the entropy function: Such
quadratic bounds immediately translate to a bound to
the function f in the expression of the entropy of a fer-
mionic state in terms of the covariance matrix as in Eq.
�13� as

�1 − x2�1/2 � f�x� � 1 − x2. �20�

This immediately translates to a bound of the form
tr��1−VIVI

T�1/2��S��I�� tr�1−VIVI
T�, where VI is the

submatrix of V associated with the interior I � Fannes et
al., 2003�. These bounds have also been exploited in
higher-dimensional analysis �Wolf, 2006�.

A method to obtain area laws, in particular, for sym-
metrically bisected quantum chains, is the so-called
method of corner transfer matrices. This method was first
used by Calabrese and Cardy �2004� for the computation
of the entanglement entropy, using ideas going back to
Peschel et al. �1999�. The infinite sum of Calabrese and

Cardy �2004� could be performed in Peschel �2004�, also
giving rise to a formula for the entanglement entropy in
the XX model. This idea has also applied to further
models by Weston �2006�.

To conclude the discussion of critical quasifree fermi-
onic models, we note that the correspondence of being
critical �gapped� and having a logarithmically divergent
�saturating� entanglement entropy holds true for local
systems only. If one allows for long-ranged interactions,
then one can indeed find gapped noncritical models that
exhibit a logarithmically divergent entanglement en-
tropy �Eisert and Osborne, 2006�.

Theorem 4 (Gapped model with long-range interac-
tions). There exist models with long-range interactions,
the coupling strength being bounded by r /dist�j ,k� for
some constant r�0, such that for some constant ��0,

S��I� = � log2�n� + O�1� .

Hence, being gapped—albeit having power-law
correlations—does not necessarily imply an area law. If
one allows for long-range interactions �and a fractal
structure of the Fermi surface�, one can show that one
can even approach arbitrarily well a volume law for the
entanglement entropy �Fannes et al., 2003; Farkas and
Zimboras, 2005�. Interestingly, states that are defined by
quantum expanders can have exponentially decaying
correlations and still have large entanglement, as proven
by Ben-Aroya and Ta-Shma �2007� and Hastings
�2007b�. These models again give rise to long-range
Hamiltonians, but they still clearly demonstrate a strong
distinction between correlations and entanglement.

C. General gapped local spin models

We now turn to the discussion of general 1D gapped
spin models with local interactions, where each site sup-
ports a d-dimensional quantum system. As stated rigor-
ously in the theorem below for such models an area law
always holds �Hastings, 2007a�. The proof is deeply
rooted in the existence of Lieb-Robinson bounds which
have also been essential in the proof of the exponential
decay of correlation functions in gapped local models
�Hastings and Koma, 2006; Nachtergaele and Sims,
2006�.7

As we allow for arbitrary d, it is sufficient to consider
Hamiltonians on the chain L= 	1, . . . ,N
 that have inter-
actions only to nearest neighbors. Then

6f�n�=�„g�n�… if ∃C�0,n0 : ∀ n�n0 : �Cg�n� � � �f�n��.

7This result is compatible with an earlier result of an area law
in 1D gapped quantum field theories, based on the c theorem
presented by Calabrese and Cardy �2004�. This work also con-
nected the role of the boundary points between regions I and
O with the cluster decomposition in quantum field theory. In
the gapless system with open boundaries, the entropy is then
half of the one in the situation of having periodic boundary
conditions.
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H = �
j�L

Hj,j+1, �21�

where Hj,j+1 is supported on sites j and j+1. We also
impose a constraint of finite-interaction strength in that
the operator norm �Hi,i+1 � �J for some J�0. Then
Hastings �2007a� found the following.

Theorem 5 (Area law for gapped spin chains). Con-
sider a local Hamiltonian H as in Eq. �21� with finite
interaction strength. Suppose H has a unique ground
state with a spectral gap 
E to the first excited state. As
before consider the block I= 	1, . . . ,n
. Then,

S��I� � Smax = c0� log�6��log�d�26� log�d�, �22�

for some numerical constant c0�0 of order unity, and
where �=max�2v /
E ,�C�, v is the velocity of sound, and
�C, which is of the order of unity.

The proof of this statement is quite intricate �Hast-
ings, 2007a� and well beyond the scope in this paper. At
its heart is the way locality enters by virtue of the Lieb-
Robinson theorem. It is a statement on the existence of
a speed of sound in local Hamiltonian systems with
finite-dimensional constituents: Imagine we single out
two disjoint sets X ,Y from a lattice, and consider ob-
servables A and B that have support only on X and Y,
respectively. Then �A ,B�=0. If we evolve A with time
under a local Hamiltonian H, it is no longer exactly true
that A�t� and B commute: A�t� will be significantly sup-
ported on more and more sites, “melting away,” and de-
veloping a long tail in support. For short times or large
distances between sets X and Y, the commutator of A�t�
and B will be very small. How small exactly is governed
by the Lieb-Robinson theorem �Lieb and Robinson,
1972; Hastings and Koma, 2006; Nachtergaele and Sims,
2006; Hastings, 2007a�.

Theorem 6 (Lieb-Robinson Theorem). Let H be as in
Eq. �21� a local Hamiltonian with a finite interaction
strength. Then there exists a velocity of sound v�0 and
� ,c�0 such that for any two operators A and B with
support on disjoint sets X and Y we have that

��A�t�,B�� � c�A� �B�exp	− ��dist�X,Y� − v�t��
 , �23�

where the distance between sets is taken to be
dist�X ,Y�=mini�X,j�Y��i− j��, and where

A�t� = eiHtAe−iHt.

The velocity v is of order J.
This statement, natural as it may seem when viewed

with a reasonable physical intuition, is a rigorous, and
profound statement on how locality manifests itself in
quantum lattice systems. From this bound, the decay of
correlation functions in gapped models can be proven
�Hastings and Koma, 2006; Nachtergaele and Sims,
2006�, the quantization of the Hall conductance for in-
teracting electrons �Hastings and Michalakis, 2009� an
area law as above �Hastings, 2007a�, as well as state-
ments concerning propagation of quantum informa-

tion and correlations through local dynamics �Bravyi et
al., 2006�.8 Lieb-Robinson bounds also feature in the
proof of a higher-dimensional Lieb-Schultz-Mattis theo-
rem �Hastings, 2004; Nachtergaele and Sims, 2007�.

We will later, in Sec. IV.G, encounter another conse-
quence of the Lieb-Robinson theorem, namely, that
quenched nonequilibrium systems generically satisfy
area laws when starting from a product state and under-
going time evolution under a local Hamiltonian. This
perspective receives much attention in the context of
nonequilibrium dynamics of quantum many-body sys-
tems. Here the Lieb-Robinson theorem is also the basis
for the functioning of numerical light cone methods to
study time evolution of quantum many-body systems
�Osborne, 2006, 2007a, 2007b; Hastings, 2008�, in which
effectively only the essential part inside the causal cone
is simulated.

D. Results from conformal field theory

In critical models the correlation length diverges and
the models become scale invariant and allow for a de-
scription in terms of conformal field theories. According
to the universality hypothesis, the microscopic details
become irrelevant for a number of key properties. These
universal quantities then depend only on basic proper-
ties such as the symmetry of the system, or the spatial
dimension. Models from the same universality class are
characterized by the same fixed-point Hamiltonian un-
der renormalization transformations, which is invariant
under general rotations. Conformal field theory then de-
scribes such continuum models, which have the symme-
try of the conformal group �including translations, rota-
tions, and scalings�. The universality class is
characterized by the central charge c, a quantity that
roughly quantifies the “degrees of freedom of the
theory.” For free bosons c=1, whereas the Ising univer-
sality class has c=1/2.

Once a model is known to be described by a confor-
mal field theory, powerful methods are available to com-
pute universal properties, and entanglement entropies
�or even the full reduced spectra� of subsystems.9 This
approach applies for �1+1�-dimensional systems; that is,
with one spatial dimension. In the seminal work of
Holzhey et al. �1994� the entanglement entropy in 1+1
dimensions has been calculated �see also Callan and Wil-
czek �1994� and Fiola et al. �1994��. Calabrese and Cardy
�2004� and Cardy et al. �2007� put this into a more gen-
eral context, and also allow for noncontiguous regions I.

8The assumption that we have a spin system, meaning finite-
dimensional local constituents, is crucial here.

9Conformal field theory provides—in this context specifically
in 1+1 dimensions—a powerful repertory of methods to com-
pute quantities that are otherwise inaccessible especially for
nonintegrable models. From a mathematical physics perspec-
tive, it is the lack of a rigorous proof of the relationship be-
tween the lattice model and the conformal field theory that
makes such a treatment nonrigorous.
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The local spectra of the reductions are discussed in Orus
�2005�, Orus et al. �2006�, and Calabrese and Lefevre
�2008�. Block-block entanglement is also discussed in
Franca and Capelle �2008� and Marcovitch et al. �2009�.
For a short nontechnical review, see Calabrese and
Cardy �2006a�.

The starting point of the computations is the observa-
tion that powers of the reduced density matrix �I

n for any
positive integer n can be computed. The series tr��I

n�
=�j�j��I�n is absolute convergent and analytic for all
Re�n��1. The derivative exists, and hence one can
make use of

S��I� = lim
n↘1

−
1

ln2
�

�n
tr��I

n�

to compute the entanglement entropy. This procedure
is typically referred to as “replica trick.” This leads in
1+1 dimensions to the expression �Holzhey et al., 1994�

S��I� =
c

3
log2�l/a� + O�1� , �24�

where c is as above the central charge, l is the length of
a single interval forming region I, and a is an ultraviolet
cutoff, corresponding to a lattice spacing, to avoid an
ultraviolet divergence; cfp. Eq. �10�. The above constant
C is nothing but c /3. This divergence is also removed
using the mutual information �Casini and Huerta, 2007�,
see Sec. V.B. The offset constant in Eq. �24� is nonuni-
versal. So the logarithmic divergence of the entangle-
ment entropy in the length of the interval is recovered
here. From the expression given in Calabrese and Cardy
�2004� for �I

n, one also finds for the Renyi entropies for
��1,

S���I� =
c

6
�1 + 1/��log2�l/a� + O�1� .

If one is close to the critical point, where the correlation
length ��0 is large but finite, one can often still effec-
tively describe the system by a conformal field theory.
One then obtains for the entanglement entropy �Cala-
brese and Cardy, 2004� �compare also Casini �2005��

S��I� →
c

3
log2��/a� .

E. Disordered spin chains

Natural systems will generally exhibit a certain
amount of quenched disorder, which means that the
model parameters are drawn randomly and the resulting
correlation functions or entanglement entropies E�S��I��
have to be considered as being averaged over the a pri-
ori distributions, with average E. The critical behavior of
quantum spin chains with “quenched” disorder is re-
markably different from its counterpart in the corre-
sponding pure case, in several respects. Hence, it is only
natural to ask whether the scaling of the entanglement

entropy is influenced by having some disorder in the
model. This question has first been posed by Refael and
Moore �2004� for the spin-1 /2 random antiferromagnetic
Heisenberg model,

H = �
j�L

Jj��j
x�j+1

x + �j
y�j+1

y + �j
z�j+1

z � ,

with 	Jj
 drawn from a suitable continuous distribution.
The low-energy properties of this model, along with the
random XX model, are described by what is called a
random-singlet phase �Laflorencie, 2005�. Using a real-
space renormalization group approach �Refael and
Moore, 2004�, the intuition can be developed that in this
phase, singlets form in a random fashion, distributed
over all length scales. The entanglement entropy of a
subblock is hence obtained by effectively counting the
singlets that cross the boundary of the subblock. This
intuition has been further developed by Refael and
Moore �2007�. Within the framework of a real-space
renormalization group approach—it is shown that the
averaged entanglement entropy for a large class of dis-
ordered models scales like

E�S��I�� =
�

3
log2�n� + O�1� .

In this class one observes universal behavior in the scal-
ing of the averaged entanglement entropy. The intuition
elaborated to above is further corroborated by work on
the random antiferromagnetic XXZ chain �Hoyos et al.,
2007�, described by a Hamiltonian

H = �
j�L

Jj��j
x�j+1

x + �j
y�j+1

y + 
j�j
z�j+1

z � ,

where 	Jj
 are positive uncorrelated random variables
drawn from some probability distribution and the uncor-
related anisotropy parameters 	
j
 are also taken from a
probability distribution. In this work, the observation is
further explored that the scaling of the averaged en-
tanglement entropy can be universal, even if correlation
amplitudes are not, in that they would manifest them-
selves only in nonleading order terms in the entangle-
ment entropy. This intuition has also been further cor-
roborated by Lin et al. �2007� and Yu et al. �2008�, on the
entanglement entropy in a two-dimensional �2D� situa-
tion.

From a fully rigorous perspective, the entanglement
entropy in the random Ising model—for which Refael
and Moore �2004� found a scaling with the effective cen-
tral charge of log��2�—has been revisited with methods
and ideas of percolation theory �Grimmett et al., 2007�.
This approach is more limited than the Fisher-Hartwig
techniques in terms of the class of models that can be
considered—the Ising model only—but is more power-
ful in that also disordered systems with no translational
invariance can be considered.
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Theorem 7 (Nontranslationally invariant Ising model).
Consider the Ising model

H = −
1
2 �

j,k�L,dist�j,k�=1
�j,kXjXk − �

j�L
	jZj,

where �j,k�0 and 	j�0 are the spin-coupling and exter-
nal field intensities, respectively, which may depend on
the lattice site in a nontranslationally invariant system.
The total number of sites is, N=2m+n+1, with 	1, . . . ,n

the distinguished region. Then there exist � ,� ,C with
properties as in the subsequent footnote.10 If ��4 ln 2,
then there exist constants c1 ,c2�0 depending only on �
such that

S��I� � c1 log2�n� + c2 �26�

for m�0, so the entanglement entropy is at most loga-
rithmically divergent.

The general picture that emerges is that the entangle-
ment entropy scales as in the nonrandom case, but with
a different prefactor in the logarithmic divergence. This
seems natural, as the disorder tends to “localize” excita-
tions, and, hence, with faster decaying correlations one
would expect less entanglement to be present in the sys-
tem. Yet, there are exceptions: cases in which one does
find a logarithmic divergence, but with a larger prefactor
compared to the nonrandom case. This includes the ran-
dom quantum Potts model with spin dimension d: Here
for the very large dimension of d�41 one finds a larger
factor �Santachiara, 2006�. The exploration and com-
plete classification of the role of disorder to entangle-
ment properties of ground states—including noncritical
and higher-dimensional models—remains an interesting
challenge.

F. Matrix-product states

Matrix-product states �MPS� play a central role in the
context of area laws for the entanglement entropy. They
form the class of states that is at the root of the work-
horse of simulating strongly correlated quantum
chains—DMRG. This link will be elaborated upon in
Sec. VI. Here we focus on the entanglement and corre-
lation properties of MPS. In the original sense, MPS are
states defined on quantum chains consisting of N sites,
each constituent being a d-level system. There are sev-
eral ways of defining and introducing MPS, the relation-
ship of which may not be entirely obvious. This is also
the reason that it was left unnoticed for some time that
MPS—as being generated in DMRG—and finitely cor-
related states �Fannes et al., 1992�—as being considered

in the mathematical physics literature—are up to trans-
lational invariance essentially the same objects.

One way of looking at MPS is via a valence-bond pic-
ture: For each of the constituents one introduces a vir-
tual substructure consisting of two particles. Per site
with Hilbert space Cd, one associates a Hilbert space
CD � CD for some D. This D is sometimes referred to as
the dimension of the correlation space, or D called the
auxiliary or virtual dimension.

These D-dimensional virtual systems are thought to
be prepared to a maximally entangled state with each
one particle of each of the neighbors, arranged on a ring
�see Fig. 2�. In other words, one starts from a pure state
defined by the state vector ��D��n, where we have de-
fined the maximally entangled state vector as

��D� =
1

�D
�
k=1

D

�k,k� . �27�

Then, one applies a local linear map to each of the pairs
of systems associated with every physical constituent in
the center of the chain,

A�k� = �
j=1

d

�
a,b=1

D

Aa,b
�k��j��j��a,b� , �28�

where k=1, . . . ,N. This procedure will prepare a certain
class of states: indeed the MPS. We may conceive for
each site k�L the collection of complex numbers Aa,b

�k��j�
as the elements of d matrices A�k��1� , . . . ,A�k��d�. For a
quantum spin chain with d=2, we hence simply have two
matrices A�k��1�, A�k��2� per site. This procedure of lo-
cally projecting to the physical dimension d gives rise to
state vectors of the form

��� = �
i1,. . .,iN=1

d

tr�A�1��i1� ¯ A�N��iN���i1, . . . ,iN� . �29�

This is the most frequently used form of representing
matrix-product states. For open boundary conditions in
a chain L= 	1, . . . ,N
, A�1��i1� and A�N��iN� are row and
column vectors, respectively. MPS are described by only
a number of parameters polynomial in the system size,
O�dND2�, in contrast to the scaling of the dimension of

10Let � ,	� �0,�� and write �=� /	. There exist constants
� ,C� �0,��—depending on � only—and a constant �=����
satisfying 0���� if ��1, such that, for all n�1,

��N
n − �M

n � � min	2,Cn�e−�N
, 2 � N � M . �25�

Here �N
n denotes the reduced state of n sites in a system of

total size N. One may find such a � satisfying �→� as �↘0.

A(N)A(2)A(1) · · ·

Two virtual particles
per physical site |ψD〉}

|ψ〉 =
∑

i1,...,iN

tr
[
A

(1)
i1

· · ·A(N)
i1

]
|i1 · · · iN 〉|ψ〉 =

d∑
i1,...,iN=1

tr[A(1)[i1] . . . A(N)[iN ]]|i1, . . . , iN 〉

FIG. 2. �Color online� The valence-bond picture underlying
matrix-product states.
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the full Hilbert space �Cd��N, which is exponential in
N.11

The particular construction of MPS immediately
shows that MPS satisfy an area law. In fact, it follows
trivially from their definition �see also Fig. 2� that

S��I� � 2 log2�D� ,

so the entanglement entropy is always bounded from
above by a constant in N. Hence MPS have an in-built
area law property. As shown earlier the ground states of
a variety of Hamiltonians exhibit exactly such an area
scaling when the system is noncritical but a logarithmic
divergence when the system is critical. This already sug-
gests that MPS may be a good description for ground
states of noncritical systems but that this description
may become less efficient in critical systems. Indeed, it
will be discussed and highlighted later that systems sat-
isfying an area law can be economically represented as
MPS so that MPS with a small auxiliary dimension D
can indeed typically approximate ground states of local
Hamiltonians.

G. Single-copy entanglement

The entanglement entropy—occupying center stage in
this paper—quantifies entanglement in a precise sense:
for pure states it is the distillable entanglement �Plenio
and Virmani, 2007; Horodecki et al., 2009�, so the rate
with which one can locally extract maximally entangled
pairs from a supply of identically prepared systems. Spe-
cifically, local refers here to a subsystem I of the system,
but to a collective operation on many identically pre-
pared states. In a quantum many-body system, needless
to say, this means that one performs operations that are
local to all constituents in I collectively in all specimens
at hand.

When having the entanglement content in mind, one
can equally reasonably ask how much entanglement is

contained in a single spin chain. The concept of single-
copy entanglement grasps this notion of distilling en-
tanglement from a single specimen of a quantum spin
chain with certainty.

If D is the largest integer such that one can determin-
istically transform a state into the maximally entangled
state ��D���D� �see Eq. �27�� by local operations and clas-
sical communication �LOCC�, i.e.,

� � ��D���D� , �30�

one assigns the value E1=log2�D� to the state as its
single-copy entanglement. For pure states, such transfor-
mations on the level of specimens are perfectly well un-
derstood �Jonathan and Plenio, 1999; Nielsen, 1999;
Vidal, 1999� and are linked to the well-established
theory of majorization in linear algebra �Horn and
Johnson, 1985�. For our present purposes, for a pure
state �= ������, we find that Eq. �30� holds if and only if
��I��1/D. Hence,

E1��I� = log2����I�−1�� .

This, in turn, means that single-copy entanglement can
be derived from the �-Renyi entropy of the reduction in
the limit of large �. A surprising insight is that in critical
systems we do not only find a local spectrum leading to
the logarithmic divergence of the entanglement entropy
but that there is more structure to the spectrum, govern-
ing all of its Renyi entropies. For example, for quasifree
models, we find that once the entanglement entropy di-
verges, so does the single-copy entanglement, with a
prefactor that is asymptotically exactly half the value of
the entanglement entropy �Eisert and Cramer, 2005;
Orus et al., 2006�.

Theorem 8 (Single-copy entanglement). Consider a
family of quasifree fermionic Hamiltonians as in Theo-
rem 2. Then, whenever the entanglement entropy scales
as

S��I� = � log2�n� + O�1� ,

for some constant ��0, then the scaling of the single-
copy entanglement is found to be

E1��I� =
�

2
log2�n� + O�1� .

This means that exactly half the entanglement can be
distilled from a single critical chain rather than what is
available as a rate in the asymptotic setting �Peschel and
Zhao, 2005; Orus et al., 2006�. This finding has also been
corroborated by the behavior of all critical models for
which the local spectra can be described by their confor-
mal field theory in quite some generality �Orus et al.,
2006�. Zhou et al. �2006� studied Renyi entropies in
boundary critical phenomena, and hence also arrived at
a relationship between the entanglement entropy and
the single-copy entanglement. Riera and Latorre �2006�
considered the entropy loss along the renormalization
group trajectory driven by the mass term in free massive
theories, and also discussed the single-copy entangle-
ment in such situations. Keyl et al. �2006� studied the

11If one allows D to �exponentially� grow with the system
size, one can show that actually every state vector from �Cd��N

can be represented as a MPS of the form as in Eq. �29�. It is
important to note that MPS cannot only be described with
linearly many parameters in the system size: One can also ef-
ficiently compute local properties from them, which is a prop-
erty not merely following from the small number of param-
eters to define them. For expectation values of observables
having a nontrivial support on sites k , . . . ,k+ l�L, we find
�Sk¯Sk+l�=tr�E1

�1�
¯E1

�k−1�ESk

�k�
¯ESk+l

�k+l�E1
�k+l+1�

¯E1
�N��, where

the transfer operators are defined as

ES
�l� = �

j,k=1

d

�j�S�k�†A�l��k� � �A�l��j��
*
‡ ,

the star denoting complex conjugation. The decay of correla-
tion functions can also be studied: If all matrices are the same
per site, A�k��j�= :A�j� for all j�L, and similarly define E1,
then one finds �SkSk+l�− �Sk��Sk+l�=O„��2�E1��l−1

…, where �2�E1�
denotes the second to largest eigenvalue of the transfer opera-
tor of the identity E1.
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situation of single-copy entanglement in the situation of
bipartite systems between blocks when there is a gap of
a finite number of sites between the two blocks. Inter-
estingly, there are critical models in which the single-
copy entanglement still diverges in this sense.12

H. Summary of one-dimensional systems

In a nutshell, the situation in one-dimensional transla-
tion invariant models is quite clear: If a system is local
and gapped, an area law always holds rigorously. In
many specific models, prefactors can be computed. In
contrast, if the interactions may be long ranged, area
laws may be violated. For critical lattice models for
which one can directly evaluate the entanglement en-
tropy, a logarithmic divergence is encountered. This pic-
ture is supported by the findings of conformal field
theory. The situation will be less transparent and more
intricate in higher-dimensional models. In any case, in
the light of the previous findings one may be tempted to
formulate the following conjecture on the numerical
bound on the right-hand side of the previously discussed
area law.

Conjecture 1 (Area bound in one dimension). There
exists a function f :R+→R+—equipped with further suit-
able properties—such that in any gapped one-
dimensional model, we have

S��I� � f�v/
E� ,

where 
E is the spectral gap and v is the speed of sound
as used in the Lieb-Robinson bound.

Indeed, while most explicit studies do indicate a be-
havior linear in log�1/
E� of the entanglement
entropy—the above-mentioned quasifree models—one
can construct models �Gottesman and Hastings, 2009;
Irani, 2009� for which one finds a dependence which is
polynomial in 1/
E.

IV. AREA LAWS IN HIGHER DIMENSIONS

For a chain, to satisfy an area law for the entangle-
ment entropy means simply that it saturates with in-
creasing block sizes. Needless to say, the notion of hav-
ing entropic quantities scaling like the boundary area of
a subregion becomes specifically relevant in the case of
higher dimensions: Then the boundary of the region I is
a nontrivial object. Now we are in a position to approach
the question: Given a ground state of a quantum many-
body system, does the entanglement entropy of a subre-
gion I fulfill an area law? This question has been initi-

ated by Bombelli et al. �1986� and Srednicki �1993�,
where also a numerical answer has been found.

The answer to this question for ground states is very
much developed in the case of quasifree bosonic or fer-
mionic models. Even in such systems, the rigorous an-
swer to this question will turn out to be technically quite
involved. The reason for these technicalities is essen-
tially rooted in the fact that one distinguishes a subre-
gion, thus breaking translational symmetry of transla-
tionally invariant systems, and analytical methods are
hard to come by. The first rigorous higher-dimensional
area law has been proven by Plenio et al. �2005�, with
refinements for arbitrary harmonic interactions by
Cramer and Eisert �2006� and Cramer et al. �2006� so
that for such bosonic free models the problem can be
considered solved in all generality forming a “labora-
tory” of what one should expect in general systems.

For critical fermionic models �Barthel et al., 2006;
Gioev and Klich, 2006; Li et al., 2006; Wolf, 2006;
Cramer et al., 2007; Farkas and Zimboras, 2007� one can
find small violations of area laws: the area law is then
only satisfied up to a logarithmic correction. In this sec-
tion, we discuss quasifree models in great detail. Beyond
such quasifree models, no rigorous results are known for
states at zero temperature, with the exception of classes
of states that satisfy an area law by their very construc-
tion, and a subsection will specifically be devoted to
those.

The models discussed here, however, do provide a
clear intuition: Whenever one has a gapped and local
model, and hence a length scale provided by the corre-
lation length, one should reasonably expect an area law
to hold. In cases where the number of eigenstates with
vanishing energy density is not exponential in the
volume—a technical condition in its own right—one can
even prove an area law with at most a logarithmic cor-
rection from a sufficient decay of correlations �Masanes,
2009�. The converse is not true, as we see later, and one
can have area laws even for critical systems in which the
correlation length does not provide a length scale. For
systems at nonzero temperatures, by contrast, the en-
tropy of entanglement forms neither a meaningful mea-
sure of entanglement nor for quantum correlations. For
appropriately defined measures of correlations, how-
ever, one can restore an area law which holds in gener-
ality for a large class of systems.

A. Quasifree bosonic and fermionic models: Sufficient
conditions for an area law

We follow the general description of Cramer et al.
�2006�, where we think of the model being defined on a
general lattice L specified by a general simple graph. We
consider quadratic bosonic Hamiltonians as in Eq. �4�
and quadratic fermionic Hamiltonians as in Eq. �11�.
The key step is to relate correlation functions to en-
tropic quantities. As before in the case of a harmonic
chain, it is very involved to think of the entropy of en-
tanglement itself. What comes to our help, however, is
again that we can use the logarithmic negativity as an

12Note that the single-copy entanglement still grasps bipartite
entanglement in a quantum many-body system. Identifying
scaling laws for genuine multiparticle entanglement is an inter-
esting enterprise in its own right. Notably, Botero and Reznik
�2007� and Orus et al. �2008� considered the geometric en-
tanglement �the logarithm of the largest Hilbert-Schmidt scalar
product with a pure product state� and relate it to the confor-
mal charge of the underlying model.
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upper bound to the entanglement entropy �see Eq. �6��.
The logarithmic negativity is easier to treat analytically,
as we can at all times refer to the full system, and not to
subsystems I. In fact, we find that the logarithmic nega-
tivity can be bounded from above by the L1 norm of a
submatrix of the covariance matrix �Plenio et al., 2005�.
For fermions in turn, the entropy may be bounded di-
rectly using the bound in Eq. �20�.

Theorem 9 (Entropic bounds from matrix norms). The
entanglement entropy of ground states of quadratic
bosonic Hamiltonians as in Eq. �4� satisfies

S��I� � EN��,I� � 8�
x� �
i�I,j�O

��pipj�� .

The entanglement entropy of unique ground states of
quadratic fermionic Hamiltonians as in Eq. �11� satisfies

S��I� � 2 �
i�I,j�O

��fi
†fj� + �fifj�� .

This is a key tool towards proving the main theorem:
We can reduce the evaluation of an entropic quantity to
a counting argument over terms that can be evaluated
from two-point correlators. Note that the use of the
logarithmic negativity results in an important simplifica-
tion of the problem. This shows that ideas from quan-
tum information theory indeed help in finding proofs of
statements of the scaling of the entanglement entropy.

We are now in the position to state the bound of the
scaling of the ground-state entanglement in the bound-
ary area s�I�, Eq. �1�, of the distinguished region I
�Cramer, 2006; Cramer and Eisert, 2006; Cramer et al.,
2006�. It is remarkable that merely the decay of two-
point correlations matter here, and that even some criti-
cal models will give rise to an area law, as long as the
algebraic decay of correlations is sufficiently strong.

Theorem 10 (Quadratic Hamiltonians on general lat-
tices). Let �=D+1+2�, ��0, and assume that the
ground state is unique and fulfills for i , j�L, i� j, and
some constant K0,

K0

dist��i,j�
� ���pipj�� for bosons

��fi
†fj� + �fifj�� for fermions.�

Then

S��I� � K0cD��1 + ��s�I� � ��
x� for bosons

1 for fermions,�
where � is the Riemann zeta function and the constant
cD depends only on the dimension of the lattice.

A general version of what one should expect to be
true provides the connection to the spectral gap: For
gapped models the correlation functions decay exponen-
tially with the graph theoretical distance. One cannot
apply the Lieb-Robinson theorem to prove this, unfor-
tunately, as the involved operators are unbounded.
Hence, a technique that is applicable to describe cluster-
ing of correlations in such models had to be developed.
The ideas of the proof go back to Benzi and Golub
�1999�, generalized to arbitrary lattices by Cramer �2006�
and Cramer et al. �2006�. Key ideas of the proof are

polynomial approximations in the sense of Bernstein’s
theorem. For a thorough discussion of clustering of cor-
relations in translation-invariant harmonic systems, see
Schuch et al. �2006�. For general lattices and gapped qua-
dratic bosonic and fermionic Hamiltonians, one finds
that two-point correlation functions decay exponentially.
Together with the above theorem this leads to an area
law whenever the model is gapped.

Corollary 1 (Area law for gapped quasifree models).
The entanglement entropy of ground states of local
gapped models of the type of Eq. �4� for bosons and of
Eq. �11� for fermions for arbitrary lattices G= �L ,E� and
arbitrary regions I satisfies for a suitable constant ��0,

S��I� � �s�I� .

B. Logarithmic correction to an area law: Critical fermions

What can we say about situations in which the previ-
ous sufficient conditions are not satisfied? Specifically,
how is the scaling of the entanglement entropy modified
in the case of critical fermionic models? This is the ques-
tion that we will focus on in this section. Following the
bosonic result in Plenio et al. �2005� and Cramer et al.
�2006�, the entanglement entropy in fermionic models
was first studied by Wolf �2006� for cubic lattices. Here
the quadratic bound in Eq. �20� plays an important role,
to relate bounds to the entropy to feasible expressions of
the covariance matrix of the ground state. Here not
quite an area law, but only one up to a logarithmic cor-
rection is found. The results can be summarized as fol-
lows.

Theorem 11 (Violation of area laws for critical fermi-
ons). For a cubic sublattice I= 	1, . . . ,n
�D and an isotro-
pic quasifree model as in Eq. �11� with a Fermi sea of
nonzero measure and a finite nonzero surface there exist
constants c0 ,c1�0 such that the ground state fulfils

c0nD−1 log2�n� � S��I� � c1nD−1 log2
2�n� .

The stated lower bound makes use of the assumption
that the Fermi surface is finite �and of a technical as-
sumption that the sets representing the states cannot
have nontrivial irrelevant directions�; assumptions both
of which can be removed �Farkas and Zimboras, 2007�.

This fermionic quasifree case already exhibits a quite
complex phase diagram �Barthel et al., 2006; Li et al.,
2006�. At the same time, Gioev and Klich �2006� formu-
lated a similar result, based on a conjecture on the va-
lidity of Fisher-Hartig-type scaling results for higher-
dimensional equivalents of Toeplitz matrices as further
numerically corroborated by Barthel et al. �2006�. A
logarithmic divergence is not directly inconsistent with
the picture suggested in a conformal field theory setting,
as relativistic conformal field theories do not have a
Fermi surface �Ryu and Takayanagi, 2006a�. It is still
intriguing that critical fermions do not satisfy an area
law, but have logarithmic corrections. In this sense, criti-
cal fermionic models could be said to be “more strongly
entangled” than critical bosonic models.
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C. Difference between critical fermions and bosons: Half-
spaces

The scaling of block entropies for bosons and fermi-
ons in higher spatial dimensions hence exhibit remark-
able differences. Consider the case of a cubic lattice of
nD sites with periodic boundary conditions and I
= 	1, . . . ,m
� 	1, . . . ,n
�D−1 �without limitation of gener-
ality we distinguish the first spatial dimension�. Then
one may transform the Hamiltonian to a system of mu-
tually uncoupled one-dimensional chains using a unitary
discrete Fourier transform. After this decoupling proce-
dure the entanglement between I and O is given by a
sum of the entanglement between the sites I�
= 	1, . . . ,m
 and O�= 	m+1, . . . ,n
 of the nD−1 individual
chains

S��I�
s�I�

=
1

nD−1 �
i=1

nD−1

S��I�
i � .

We start with a discussion of fermions and focus on the
isotropic setting �B=0 in Eq. �11��. After taking the limit
n→�, the asymptotic behavior in m of the entanglement
S��I�

i � can then be read off Theorem 2 to yield the fol-
lowing statement �for technical details see Cramer et al.
�2007��.

Theorem 12 (Prefactor for fermionic half-spaces). As-
ymptotically, the entanglement entropy of fermionic iso-
tropic models of half-spaces satisfies

lim
n→�

S��I�
s�I�

=
log2�m�

6 �
s=1

�

svs + O�1� .

Here

vs =
�	� � �0,2��D−1����� = s
�

�2��D−1

is the integral over individual chains � with s disconti-
nuities ���� in their symbol.

Hence, one encounters a logarithmic divergence in m
of the entanglement entropy and the prefactor depends
on the topology of the Fermi surface: The symbols ex-
hibit discontinuities on the Fermi surface. If the Fermi
surface is of measure zero �i.e., the set of solutions to
��=0, �� �0,2��D, is countable, as, e.g., in the critical
bosonic case discussed below�, we have vs=0 and the
system obeys the area law.

For bosons, we discuss the important case of m=n /2
for the Klein-Gordon Hamiltonian as in Eq. �9�. After
the transformation to uncoupled chains, one finds
Hamiltonians for the individual chains that correspond
to a nearest-neighbor coupling matrix X of the form as
in Theorem 1, which yields

EN��,I�
s�I�

=� d�

4�2��D−1 log2�D − �
d=1

D−1

cos��d� + 1

D − �
d=1

D−1

cos��d� − 1�
in the limit n→�. This expression is independent of the
mass m and finite: For D=2, it evaluates to log2�3
+2�2� /4 and similarly for D�2. Hence, despite being
critical, the system obeys an area law, in contrast to the
fermionic case �for m=n /2 the entanglement for a criti-
cal fermionic system would diverge in n�.

Hence, in quasifree critical models it matters whether
a system is bosonic or fermionic when it comes to the
question whether or not an area law holds. The above
results confirm the numerical analysis of Srednicki
�1993� for critical bosonic theories, and of Li et al. �2006�
for two-dimensional fermionic systems. Motivated by
these findings, Ding et al. �2008� numerically studied the
nonleading order terms of an area law in nodal fermi-
onic systems: It was found that in noncritical regimes,
the leading subarea term is a negative constant, whereas
in critical models one encounters a logarithmic additive
term. A lesson from these higher-dimensional consider-
ations is that the simple relationship between criticality
and a violation of an area law is hence no longer valid
for local lattice models in D�1.

D. Entanglement in bosonic thermal states

In this section, we discuss area laws for notions of
entanglement in Gibbs states,

�� =
exp�− �H�

tr�exp�− �H��

for some inverse temperature ��0. The second mo-
ments matrix, the covariance matrix, is then found to be

=
x � 
p �Cramer and Eisert, 2006�:


x = X−1/2�X1/2PX1/2�1/2�1 + G�X−1/2,


p = X1/2�X1/2PX1/2�−1/2�1 + G�X1/2,

G = 2	exp���X1/2PX1/2�1/2� − 1
−1.

Using the methods of Benzi and Golub �1999� and
Cramer and Eisert �2006� one again finds the suitable
decay of correlations, which can be translated into an
area law for the entanglement content. Here the result—
taken from Cramer and Eisert �2006� and Cramer et al.
�2006�—is stated in terms of the logarithmic negativity.

Theorem 13 (Entanglement in thermal bosonic states).
The logarithmic negativity of thermal states of quadratic
finite-ranged bosonic Hamiltonians as in Eq. �4� for
�X ,P�=0 satisfies EN�� ,I���s�I� for a suitable constant
��0.

Since the logarithmic negativity is an upper bound to
the entanglement of formation and hence the distillable
entanglement �Plenio and Virmani, 2007; Horodecki et
al., 2009�, this implies an area law for these quantities as
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well. It is important to stress that the entropy of a sub-
region as such no longer reasonably quantifies entangle-
ment between that subregion and the rest of the lattice:
even classically correlated separable states will in gen-
eral have a positive entropy of the reduced state. The
latter quantity is then indeed extensive and fulfills a vol-
ume law, unlike the entanglement content. Area laws in
thermal states have been further studied by Anders and
Winter �2008�, where an emphasis has been put on iden-
tifying regions where the states become separable. Cav-
alcanti et al. �2008� and Ferraro et al. �2008� investigated
thermal bound entanglement—entanglement that is not
distillable—in bosonic quadratic and spin systems.

E. Results from conformal field theory

In systems with more than one spatial dimension, the
situation is more intricate, and there is no general ex-
pression known for entanglement entropies in
�d+1�-dimensional conformal field theories. For inter-
esting steps into a description of systems with two spatial
dimensions in the framework of conformal field theory,
see Fradkin and Moore �2006�, and Ryu and Takayanagi
�2006a�. For a class of critical models in two spatial di-
mensions �including the quantum dimer model�, it was
found that S��I�=2fs�L /a�+cg log�L /a�+O�1�, where L
is the length of the boundary area, fs is an area law
prefactor that is interpreted as a boundary free energy,
and g is a coefficient that depends on the geometric
properties of the partition into I and O. That is, in ad-
dition to a nonuniversal area law, one finds a universal
logarithmically divergent correction. For a further dis-
cussion of steps towards a full theory of entanglement
entropies in �d+1�-dimensional conformal field theories,
see Fradkin and Moore �2006� and Ryu and Takayanagi
�2006a�.

F. States satisfying area laws by construction: Projected
entangled pair states, graph states, and entanglement
renormalization

In this section, we discuss classes of states that have
the area law already built into their very construction. In
this sense, they grasp the entanglement structure of local
higher-dimensional models. These are projected en-
tangled pair states, so matrix-product states in higher
dimensions, and states from entanglement renormaliza-
tion. They are designed to be variational states well ap-
proximating true ground states of local many-body sys-
tems: As was already true for matrix product states, they
form a complete set of variational states. Yet, typically,
for a much smaller, polynomial or constant, number of
variational parameters they often deliver a very good
approximation. In projected entangled pair states, local-
ity is respected in just the same way as for MPS. En-
tanglement renormalization, in turn, is based on a scale-
invariant tree structure, intercepted by disentangling
steps, which in higher dimensions nevertheless leads to
an area law for the entanglement entropy.

Projected entangled pair states �PEPS� can be thought
of as being prepared as MPS in higher-dimensional cubic
lattices L= 	1, . . . ,N
�D, or in fact to any lattice defined
by any undirected simple graph G= �L ,E�. In this va-
lence bond construction, one again associates a physical
space with Hilbert space Cd with each of the vertices L
of G. Then, one places a maximally entangled pair of
dimension D�D �see Eq. �27�� for some positive integer
D between any two vertices that are connected by an
edge e�E. For a cubic lattice, one hence starts from a
cubic grid of maximally entangled state vectors. Then,
one applies a linear map P�k� :CD � ¯ � CD→Cd to each
physical site, as

P�k� = �
j=1

d

�
i1,. . .,i�S1�k��

D

Aj,i1,. . .,iek

�k� �j��i1, . . . ,i�S1�k��� .

Here �S1�k�� is the vertex degree of the vertex k�L. The
resulting state vector as such becomes

��� = �
i1,ı2,. . .,i�L�=1

d

C�	Ail
�k�
l��i1,i2, . . . ,i�L�� ,

where C denotes a contraction of all higher-order tensors
with respect to the edges E of the graph. This amounts
to a summation over all indices associated with con-
nected vertices. The objects A�k� are hence tensors of
an order that corresponds to the vertex degree of the
lattice �a second-order tensor—a matrix—for a one-
dimensional chain, a third-order tensor in hexagonal lat-
tices, a fourth-order tensor in cubic lattices with D=2,
and so on�. This construction is the natural equivalent of
the valence bond construction for matrix-product states
as explained in Eq. �28�. This ansatz as such is the one of
tensor-product states that is due to Martin-Delgado et al.
�2001� which in turn is generalizing earlier work on
AKLT-type valence bond states in two dimensions by
Niggeman et al. �1997� and Hieida et al. �1999�. The gen-
erated class of states is referred to as projected en-
tangled pair states �Verstraete and Cirac, 2004a� reflect-
ing the preparation procedure. PEPS states are
sometimes also in higher dimensions simply referred to
as matrix-product states �Hastings, 2007b�. This ansatz
has proven to provide a powerful and rich class of states.
Importantly, Verstraete and Cirac �2004a� provided a
first simulation method based on PEPS.13

This class of states is complete, in that any state of a
given finite lattice can be arbitrarily well approximated
by such a state if D is sufficiently large. Clearly, to com-
pute local observables in such an ansatz, one has to con-
tract this instance of a tensor network which in 2D is

13Note that 1D MPS based on a suitable order of the constitu-
ents do not form a good approximation for 2D models. This is
essentially rooted in the observation that one should expect an
area law for the entanglement entropy in gapped 2D models.
For a discussion of subsystems spectra in 2D integrable models
see Chung and Peschel �2000� and, for a discussion on DMRG,
see Verstraete and Cirac �2004b�.
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actually computationally hard.14 It is, however, possible
to provide approximation techniques, related to the
DMRG approach, that allow for the contraction of the
tensor network and then for the computation of the ex-
pectation values of local observables �Isacsson and Syl-
juasen 2006; Verstraete et al., 2006; Murg et al., 2007;
Verstraete et al., 2008�.

A particularly simple yet important subset of the pro-
jected entangled pair states is constituted by the so-
called graph states �Schlingemann and Werner, 2002;
Hein et al., 2004, 2006�. They are instances of stabilizer
states �Gottesman, 1997; Audenaert and Plenio, 2005�
which can be thought of as being prepared in the follow-
ing fashion: On any graph G= �L ,E�, one associates
each vertex with a C2 spin. This spin is prepared in �+�
= ��0�+ �1�� /21/2. Then, one applies a phase gate

U = �0,0��0,0� + �0,1��0,1� + �1,0��1,0� − �1,1��1,1�

to each pair of vertices that are connected by an edge.
This phase gate corresponds to an Ising interaction.
Clearly, this construction makes sense for any simple
graph, and this is a subset of the above projected en-
tangled pair states. Graph states readily satisfy an area
law by construction �Hein et al., 2004; Hamma et al.,
2005� as one merely needs to count the edges over the
boundary of a distinguished region to obtains the en-
tanglement entropy, then obviously linear in the bound-
ary area.15

Graph states may be generalized to weighted-graph
states �Anders et al., 2006; Hein et al., 2006; Plenio,
2007�, where the edges may carry a different weight, and
in turn generalize to the ansatz of a renormalization al-

gorithm with graph enhancement �Hübener et al., 2009�,
being a strict superset of matrix-product states and
weighted-graph states, one that can nevertheless be effi-
ciently contracted. As the graph defining the �weighted-�
graph state does not need to have the same structure as
the graph of the physical system whose quantum state
we would like to describe, �weighted-� graph states may
describe volume scaling on the level of the physical sys-
tem. This makes them particularly suitable for simula-
tion of time evolution, where no area law can be ex-
pected to hold.

Yet a different class of many-body states with applica-
tions in the simulation of quantum spin systems is given
by the states generated by entanglement renormaliza-
tion �MERA� �Vidal, 2007�. This is a class of states the
construction of which is inspired by a renormalization
scheme. Consider a tree tensor network with the physi-
cal sites at the end. This can be efficiently contracted.
Yet, when decimating, say, two spins of one layer to a
single “superspin” in the next layer in a single step of a
renormalization procedure, one loses information about
the state. The idea of a MERA ansatz is to allow for
disentangling unitaries, effectively removing entangle-
ment from a state, before doing a renormalization step.

More specifically, consider a cubic lattice L
= 	1, . . . ,N
�D in some dimension D, embodying ND

sites. Each site j�L is associated with a physical system
with Hilbert space Cd. The MERA is essentially a uni-
tary tensor network of depth O„log�N�…, preparing ���
from �0��N. It consists of layers of isometries—
performing the renormalization step—and disentanglers,
which minimize the entanglement in each step before
the next renormalization step. This renormalization step
may be labeled with a fictitious time parameter. Each of
the unitary disentanglers U�U�dm� in the disentangling
layer has a finite support on m sites. In the simplest
possible realization of a MERA this would be m=2. The
unitaries can be taken to be different in each layer, and
also different from each other within the layer. Unlike
PEPS, they do not give rise to strictly translationally in-
variant states, even if all unitaries are taken to be iden-
tical in each layer.

Such a procedure can be defined for cubic lattices of
any dimension D. In D=1, one does not in fact observe
an area law, but typically a logarithmic divergence of the
entanglement entropy, quite like in critical spin systems.
Indeed, the MERA ansatz as a scale-invariant ansatz is
expected to be suitable to approximate critical systems
well, and numerical simulations based on the MERA
ansatz corroborate this intuition �Evenbly and Vidal,
2007; Dawson et al., 2008; Rizzi et al., 2008; Evenbly and
Vidal, 2009�. A precise connection between homoge-
neous instances of a MERA ansatz and conformal field
theory is established in Giovanette et al. �2009� and Pfei-
fer et al. �2009�. In more than one dimension, D�1,
MERA again satisfy an area law, as a moment of
thought reveals: One encounters linearly many unitaries
over a boundary that have entangling power, rendering
the computation of an upper bound to the entanglement

14In fact, it is known that the exact contraction of such a
tensor network is contained in the complexity class #P com-
plete �Schuch et al., 2007�. Clearly, this means that no algo-
rithm is known with polynomial running time.

15Conversely the difficulty of actually contracting tensor net-
works, even if they correspond to states that approximate
ground states satisfying area laws well, is that such states can
have computational power for quantum computing. Indeed,
certain graph states or cluster states—as they are called for a
cubic lattice—are universal resources for quantum computing:
Quantum computing can be done by applying local measure-
ments onto single sites of such a cluster state, without the need
of additional unitary control. This computational model—
known as one-way computing �Raussendorf and Briegel,
2001�—can also be understood as a teleportation scheme in
virtual qubits �Verstraete and Cirac, 2004�. The tensor net-
works that occur when performing Pauli measurements can
still be efficiently contracted, but not under arbitrary measure-
ments, leading to universal computation. The program of using
general projected entangled pair states in quantum computing
based on measurements has been pursued �Gross and Eisert,
2007; Gross et al., 2007�, giving rise to new measurement-based
quantum computational models. This also highlights how the
disadvantage of having no classical efficient description can be
made an advantage: One can at each instance of the computa-
tion not efficiently compute the outcome, but on a physical
system realizing this model one could efficiently simulate any
quantum computer.
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entropy a combinatorial problem. Despite this observa-
tion, first numerical work on fermionic instances of
MERA ansatz appears to deliver promising results �Cor-
boz et al., 2009; Pineda et al., 2009�.

Theorem 14 (Area laws for PEPS, graph states, and
MERA). For any finite dimension D of the virtual sys-
tems, the entanglement entropy of a projected entangled
pair state satisfies S��I��s�I�D, where as before s�I� de-
notes the surface area of I on a graph. Hence, also graph
states with a fixed vertex degree satisfy area laws. A
family of states from entanglement renormalization will
also satisfy an area law for cubic lattices with D�2, and
a logarithmic divergence in D=1.

Interestingly, based on a PEPS description, one can
construct critical models that still satisfy an area law in
D=2 �Verstraete et al., 2006�, resembling the situation
for critical quasifree bosonic systems. The validity of an
area law follows trivially from construction, so the tech-
nical part in the argument amounts to showing that a
model is critical. Verstraete et al. �2006� showed this by
employing a quantum-classical correspondence: Take a
classical two-body spin Hamiltonian of the form
H��1 , . . . ,�N�=�dist�i,j�=1h��i ,�j�, �i=1, . . . ,d. This
Hamiltonian will have at some inverse temperature
��0 a partition function Z=��e−�H���. From this classi-
cal partition function, a quantum state can be con-
structed using the Boltzmann weights as superposition
coefficients,

��H,�� =
1

Z1/2 �
�1,. . .,�N

e−�H��1,. . .,�N�/2��1, . . . ,�N� .

This state vector has the properties that for diagonal
observables it gives rise to the same expectation values
and correlation functions as the corresponding classical
model does, it has a simple representation as a PEPS for
D=d, and it is—as any PEPS—the ground state of a
local Hamiltonian. The classical model can then be cho-
sen such that the appropriate decay of correlation func-
tions follows. This construction delivers critical spin
models that nevertheless satisfy an area law.

G. Quenches and nonequilibrium dynamics

A physical setting that receives much recent attention
is the nonequilibrium dynamics of quantum many-body
systems. A specifically interesting setting is the one of a
sudden quench �Eisert et al., 2004; Plenio et al., 2004;
Calabrese and Cardy, 2005, 2006b, 2007a, 2007b; Zurek
et al., 2005; De Chiara et al., 2006; Eisert and Osborne,
2006; Rodriguez et al., 2006; Eisler and Peschel, 2007;
Kollath et al., 2007; Barthel and Schollwöck, 2008;
Cramer, Dawson, et al., 2008; Cramer, Flesch, et al., 2008;
Eisler et al., 2008; Fagotti and Calabrese, 2008; Hastings,
2008; Schuch et al., 2008�: Here the initial condition is
the nondegenerate ground state of some local Hamil-
tonian H, with state vector ���. Then, one suddenly �lo-
cally� alters the system parameters to a new Hamil-
tonian V. Since ��� will typically no longer be an
eigenvalue of H, one arrives at a nonequilibrium situa-

tion: The state vector’s time evolution is simply given by
���t��=e−itV���. Studies of instances of such complex non-
equilibrium many-body dynamics and questions of the
dynamics of quantum phase transitions are enjoying a
renaissance recently, not the least due to the advent of
the high degree of control over quantum lattice systems
with cold atoms in optical lattices.16

For finite times, infinite quenched systems satisfy an
area law in the entanglement entropy �Calabrese and
Cardy, 2005; Bravyi et al., 2006; Eisert and Osborne,
2006� �strictly speaking, whenever one considers time
evolution under local finite-dimensional Hamiltonians
starting from product states�. For finite systems this
holds true for times that are sufficiently small compared
to the system size over the speed of sound. The intuition
is that when suddenly switching to a new Hamiltonian,
local excitations will be created. These excitations will
propagate through the lattice, but—except from an ex-
ponentially suppressed tail—at most with the Lieb-
Robinson velocity of Theorem 6 �Bravyi et al., 2006; Ei-
sert and Osborne, 2006; Hastings and Koma, 2006;
Hastings, 2008�. This is yet again a consequence for the
approximate locality in quantum lattice systems, similar
to the situation in relativity and implies that correlations
can only slowly build up, resulting in an area theorem.
In turn, such a quench does in general give rise to a
linear increase in the entanglement entropy, a statement
that is provably correct, and has been encountered in
numerous numerical studies on quenched nonequilib-
rium systems �Calabrese and Cardy, 2005; Bravyi et al.,
2006; Eisert and Osborne, 2006; Barthel and Schollwöck,
2008; Cramer et al., 2008; Schuch et al., 2008�. In fact,
finite subsystems can locally relax in time, to appear as if
they were in a thermal state �Cramer et al., 2008�. These
results may be summarized in the following statement.

Theorem 15 (Area laws in nonequilibrium systems).
Let ��� be a product initial state vector, and H a local
Hamiltonian. Then, for any time t�0 there exist con-
stants c0 ,c1�0 such that for any subset I the entangle-
ment entropy of the time evolved reduction �I of ��t�
=e−itH������eitH satisfies

S„�I�t�… � c0s�I� + c1. �31�

Specifically, this is true for any local Hamiltonian on a
cubic lattice in dimension D. This means that for any
constant time, the entanglement entropy satisfies what is
called an area law. In turn, there are product initial state
vectors ��� of one-dimensional spin chains, local Hamil-
tonians H, and constants c2 ,c3 ,c4 ,L0 ,s0 , t0�0 such that

S„�I�t�… � c2t + c3,

for L�L0 and s�s0 and t0� t�c4s, for I= 	1, . . . ,s
.
That is, for any fixed time t, one encounters an area

law for the entanglement entropy, but the prefactor can

16The situation of locally perturbing the state and hence gen-
erating a nonequilibrium situation has been considered �Cala-
brese and Cardy, 2007a; Eisler and Peschel, 2007; Eisler et al.,
2008�, where an area law is always expected to hold.
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grow linearly in time. In fact, by a suitable choice of
blocks, one can show that a lower bound grows linearly
in time. This fact is responsible for the hardness of simu-
lating time evolution of quantum many-body systems us-
ing instances of the DMRG approach: to represent such
states faithfully, exponential resources are then required.
Similar bounds give rise to statements on the minimal
time needed in order to prepare states with topological
order using local Hamiltonians �Bravyi et al., 2006�.

There is an interesting localization effect of entangle-
ment under quenched disorder, linking to the previous
discussion on ground-state entanglement in disordered
systems. Whereas one obtains from Lieb-Robinson
bound the estimate in time

S��I„t�… � c0�t�+ c1

for suitable constants c0 ,c1�0, in the disordered one-
dimensional XY spin chain this bound is replaced by the
tighter bound

S„�I�t�… � c0 log2�N�t�� + c1,

again for appropriate constants �Burrell and Osborne,
2007�. This means that due to quenched disorder the
growth of entanglement is merely logarithmic in time,
not linear. There is an intuitive explanation for this: The
linear sound cone provided by the Lieb-Robinson
bounds is replaced by a logarithmically growing or even
a constant one, leading to a suppressed entanglement
propagation. A similar behavior is observed under time-
dependent fluctuating disorder �Burrell et al., 2009�.

H. Topological entanglement entropy

The topological entanglement entropy is a quantity
that is constructed in a fashion that enables it to charac-
terize quantum many-body states that exhibit topologi-
cal order, a concept introduced by Wen �1989, 1990� �see
also Witten �1989� and Wen �1995��. On both sides of a
critical point in a system undergoing a quantum phase
transition, the quantum many-body system may have a
different kind of quantum order; but this order is not
necessarily one that is characterized by a local order pa-
rameter: In systems of, say, two spatial dimensions, to-
pological order may occur. Topological order manifests
itself in a degeneracy of the ground-state manifold that
depends on the topology of the entire system and the
quasiparticle excitations then show an exotic type of
anyonic quasiparticle statistics. These are features that
make topologically ordered systems interesting for
quantum computation, when exactly this degeneracy can
be exploited in order to achieve a quantum memory ro-
bust against local fluctuations. They even allow in theory
for robust instances of quantum computation, then re-
ferred to as topological quantum computation �Freed-
man et al., 2003; Kitaev, 2003�.

The topological entanglement entropy is now de-
signed as an instrument to detect such topological order.
Introduced by Kitaev and Preskill �2006� and Levin and
Wen �2006�, it received much attention recently �Fu-
rukawa and Misguich, 2007; Haque et al., 2007; Papani-

kolaou et al., 2007; Aguado and Vidal, 2008; Hemma et
al., 2008; Kargarian, 2008; Li and Haldane, 2008�. The
details of the relationship between positive topological
entanglement entropy and topological quantum order
are discussed in Nussinov and Ortiz �2009�.

Kitaev and Preskill �2006� considered a disk in the
plane I with boundary length L. This disk is thought to
be much larger than the correlation length, and it is
hence assumed that an area law in the above sense
holds. The entanglement entropy of �I will then have the
form

S��I� = �L − � + O�1� , �32�

where the last term vanishes in the limit L→�. The
prefactor � is nonuniversal and ultraviolet divergent.
However, ��0 is an additive constant which is universal
and characterizes a global feature of the entanglement
in the ground state. This quantity is referred to as topo-
logical entanglement entropy by Kitaev and Preskill
�2006�. To avoid ambiguities when distinguishing the
constant term from the linear one in Eq. �32�, Kitaev
and Preskill �2006� made use of the following construc-
tion: The plane is divided into four regions, each of them
large compared to the correlation length. A, B, and C
are arranged as neighboring each other in three identical
subparts of a disk. D is the exterior of the disk. The
respective reductions to the parts are denoted as �A and
�AB to regions A and jointly A and B, respectively. The
topological entropy STopo is then defined as

STopo = S��A� + S��B� + S��C� − S��AB�

− S��BC� − S��AC� + S��ABC� . �33�

This is a linear combination of entropies of reductions,
constructed specifically in a way such that the dependen-
cies on the length of the respective boundaries of re-
gions cancel. It is not directly meant as an information
theoretical quantity, although the differences of entro-
pies resemble a mutual information expression. Also,
slightly different definitions with similar properties are
conceivable, and, indeed, the independent proposal of
Levin and Wen �2006� made use of an alternative com-
bination of entropies. The important aspect here is the
above-mentioned cancellation of the boundary term.
Taking the behavior as in Eq. �32� for granted, one in-
deed finds

STopo = − � .

From the way STopo is constructed it is a topological in-
variant, and depends only on a universal quantity �unal-
tered under smooth deformations, as long as one stays
away from critical points�, and on how the regions are
located with respect to each other, but not on their spe-
cific geometry �again assuming that the correlation
length is much smaller than the regions and does not
matter�. Interestingly, topological order is hence a global
property that is detected by the entanglement entropy.
This construction can also readily be used in numerical
studies. The explicit computation of how the entangle-
ment entropy detects the presence of topological order
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in an actually time-dependent model undergoing a quan-
tum phase transition from a spin-polarized to a topologi-
cally ordered phase has been systematically explored by
Hamma et al. �2008�, further strengthening the findings
of Kitaev and Preskill �2006�.

Since its proposal, this and related quantities have
been considered in a number of contexts. A natural can-
didate to explore this concept is the toric code state of
Kitaev �2003�: Consider for this a square lattice I
= 	1, . . . ,n
�2 with periodic boundary conditions, and
place the physical two-dimensional quantum spins on
the vertices of this lattice.17 This lattice is tiled into two
sublattices of different color, red and white. Every white
p and red plaquette s is then associated with one of the
commuting operators

As = �
j��s

�j
z, Bp = �

j��p
�j

x, �34�

respectively, with nontrivial support on four spins each,
where as before �i

x ,�i
y ,�i

z denote the Pauli operators
supported on i. The Hamiltonian of the system—a local
Hamiltonian—is then taken to be

H = − �
s

As − �
p

Bp.

This is a gapped and frustration-free Hamiltonian. It is
also straightforward to verify that for any closed path g
the operator �j�g�j

z commutes with all operators in Eq.
�34�. The ground-state manifold depends on the topol-
ogy of the lattice and is in the chosen case fourfold de-
generate. The topological entanglement entropy, evalu-
ated for this toric code state, gives �=log�2�. The ground
states can readily be cast into a PEPS language, as done
in Verstraete et al. �2006�. An analysis of how topological
order can be grasped in a language of entanglement
renormalization or MERA has been performed in
Aguado and Vidal �2008�: Indeed, the topological de-
grees of freedom can then be distilled to the top of the
tensor network.

An equally important explicit and closely related
model is the loop model on a honeycomb lattice �Kitaev,
2003�. Ground states of more general string-net lattice
models can also often be expressed in terms of remark-
ably simple tensor networks �Buerschaper et al., 2008;
Gu et al., 2008, 2009�. Entanglement entropies of topo-
logical color codes �Bombin and Martin-Delgado, 2008�
have been studied �Kargarian, 2008�. Equivalents of the
topological entanglement entropy for finite
temperature—where the very robustness can be
probed—have been considered and introduced �Castel-
novo and Chamon, 2007; Iblisdir et al., 2009�: Notably,
for Gibbs states it still makes sense to consider quanti-
ties of the type as in Eq. �33�, only with the respective
entropies replaced by mutual information grasping cor-

relations instead of entanglement, as discussed in Sec. V.
It is found that the interplay between thermal effects,
topological order, and the size of the lattice indeed give
rise to well-defined scaling relations.

The study of entanglement entropies in fractional
quantum Hall states in a spherical geometry has been
initiated by Haque et al. �2007� and Zozulya et al. �2007�
considered Abelian-Laughlin states as well as Moore-
Read states, where also rigorous upper bounds for par-
ticle entanglement entropies have been derived. Particle
partitioning entanglement in itinerant many-particle sys-
tems has been studied �Zozulya et al., 2008�. The MPS
representation of the Laughlin wave function has been
derived �Iblisdir et al., 2007�. The tolopogical entangle-
ment of integer quantum Hall states has been computed
�Rodriguez and Sierra, 2009�. Topological entanglement
Renyi entropies have been considered in Flammia et al.
�2009�. Similar quantities in Chern-Simons theories—the
best understood topological field theories—have been
identified �Dong et al., 2008�. The suggestion that the full
spectrum of H in �I=e−H should be considered to detect
topological order has been proposed �Li and Haldane,
2008�. As being certified by this list of recent develop-
ments, studies of entanglement entropies as indicators of
topological order are still under rapid development.

I. Relationship to black hole entropy

As mentioned one of the particularly intriguing moti-
vations for the study of area laws of the entanglement
entropy is the relationship to the area dependence of the
black hole entropy. The Bekenstein-Hawking area law
�Bardeen et al., 1973; Bekenstein, 1973; Hawking, 1974�
suggests that a black hole carries an entropy that is pro-
portional to its horizon area A,

SBH =
kc3A
4G�

.

Hence, according to this relationship, the �thermody-
namical� entropy of a black hole is just a quarter of its
area measured in Planck units �Bousso, 2002�, i.e., when
k=c=G=�=1. For the sum of this black hole entropy
and the matter entropy SMatter a second law of thermo-
dynamics is proposed to hold. Such a generalized second
law of thermodynamics led to the suggestion that one
would have a “spherical entropy bound” for matter: In
asymptotically flat space-time, any weakly gravitating
matter system would satisfy SMatter�2�kEr /�c, interest-
ingly not containing G. E denotes the total mass energy
of the system, whereas r denotes the smallest radius of a
sphere that contains the matter system at hand. The
range in which one can expect the validity of such a law
has been discussed by Bousso �2002�.

The linear relationship between the boundary area
and the �thermodynamical� entropy—formally, the two
equations look identical—suggests that one may expect
a close relationship between these area laws: On the one
hand, for the �von Neumann� entanglement entropy of a
subregion of a free quantum field in flat space-time, on

17Equivalently, one can place the physical spins on the edges
and formulate the operators 	As
 and 	Bp
 as nontrivially sup-
ported on the respective four spins associated with vertices and
plaquettes.

297Eisert, Cramer, and Plenio: Colloquium: Area laws for the entanglement …

Rev. Mod. Phys., Vol. 82, No. 1, January–March 2010



the other hand, for the black hole entropy. This intrigu-
ing connection was first suggested and explored by Bom-
belli et al. �1986� and Srednicki �1993� and extended by
Callan and Wilczek �1994�, Fiola et al. �1994�, and
Holzhey et al. �1994�. Indeed, there are physical argu-
ments that make the reduction in the situation of having
a scalar field in a static spherically symmetric space-time
to a scalar field in flat space-time plausible �Das et al.,
2008�. The exact status of the relationship between these
quantities �or to what extent they are related by origi-
nating from a common cause—the general locality of
interactions� is still subject to debate.18

This relationship has been employed to take steps in
computing the entanglement entropy in higher-
dimensional conformal field theories: The correspon-
dence relating a �d+2�-dimensional anti–de Sitter �AdS�
space to a �d+1�-dimensional conformal field theory
�CFT� �Witten, 1998; Aharony et al., 2000� has been used
to study the Bekenstein formula in the AdS context
�Ryu and Takayanagi, 2006a, 2006b�; see also Casini and
Huerta �2007�. In this way, the above formula is used as
a tool to compute the geometric entropy in a plausible
fashion in situations where the exact computation is not
known to be possible using the tools of conformal field
theory.

The holographic principle—dating back to ’t Hooft
�1985� and Susskind �1995�—goes even further, and sug-
gests that generally all information that is contained in a
volume of space can be represented by information that
resides on the boundary of that region. For an extensive
review, see Bousso �2002�.

V. AREA LAWS FOR CLASSICAL SYSTEMS AND FOR
TOTAL CORRELATIONS

A. Classical harmonic systems

Throughout we have been concerned with quantum
systems on a lattice. What if we have classical systems on
a lattice, could one still expect an area law to hold? Ob-
viously, the concept of entanglement is no longer mean-
ingful. Also, the Shannon entropy of, say, the marginal
distribution of a distinguished region I would not quan-
tify correlations in a reasonable fashion. What is worse,
in the case of harmonic classical systems on a lattice,
when thinking in terms of phase-space cells, this quan-
tity is burdened with the usual Gibbs paradox. However,
it does make perfect sense to talk about classical corre-
lations in classical systems, the appropriate quantity
grasping such correlations being the mutual information:

Given a probability distribution p on the lattice L, one
can quantify the correlations between the marginals with

respect to a distinguished region I and its complement O
by means of the mutual information. This tells us how
much information can be obtained on O from measure-
ments in I, and equally on I by measurements in O. This
quantity enjoys a number of very natural properties. The
mutual information is always positive—there can be no
negative correlations—and will vanish exactly if the
probability distribution factorizes, in which case one
cannot learn anything about O from I. Given the mar-
ginals pI and pO of the probability distribution p on I
and O, respectively, the mutual information is defined as

I�I:O� = S�pI� + S�pO� − S�p� , �35�

where S�p�=−�jpj log2�pj� is the standard information
theoretical Shannon entropy. It is noteworthy that the
mutual information does not suffer from the Gibbs para-
dox as shown below. How does the mutual information
scale with the size of a region in the case of a harmonic
coupled classical system? The subsequent statement
clarifies this situation. Consider a classical harmonic lat-
tice system, with Hamiltonian

H =
1
2��

j�L
pj

2 + �
j,k�L

xjVj,kxk
 , �36�

where now x= �x1 , . . . ,xN� and p= �p1 , . . . ,pN� are the
vectors of classical position and momentum variables
of classical oscillators arranged on a cubic lattice L
= 	1, . . . ,N
�D. The phase-space coordinates are then �
= �x ,p�. The matrix V�R�L���L� with a finite-ranged inter-
action defines the interaction.

The state of the system is defined by the phase-space
density, so a classical distribution � :RND→R+. For any
nonzero inverse temperature ��0, this phase-space dis-
tribution is nothing but

����� =
1

Z
e−�H���, Z =� d�e−�H���.

To define the mutual information, following the stan-
dard procedure, we split the phase space into cubic cells
each with a volume h2ND

, with h�0 some constant.
From the phase-space density, we can then identify a
discrete probability distribution, from an average of the
phase-space density over these cells, pj=�Celld����� for
j�L. The discrete classical entropy is then defined as
the Shannon entropy of this probability distribution as

SC�h� = − �
j�L

pj log2�pj� .

We now return to the situation of having a lattice system
with an interior I and an exterior O. The respective dis-
crete classical entropies are defined as SI�h� and SO�h�.
Obviously, the values of these entropies will depend on
the choice of h, and in the limit h→0 they will diverge,
logarithmically in h. This is a familiar observation in
classical statistical physics, the divergence being resolved
in the third law of thermodynamics. Here we are, how-
ever, interested in classical correlations, as being quanti-
fied in terms of the mutual information which in the

18For a review on this connection see Das et al. �2008�, for a
calculation of the one-loop correction to the Bekenstein-
Hawking entropy in the presence of matter fields and its rela-
tionship to the geometric entropy see Susskind and Uglum
�1994�, and for an entanglement-based view of the Bekenstein-
Hawking entropy law see Brustein et al. �2006� and Ryu and
Takayanagi �2006a�.
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limit of h→0 is well defined. Hence we can define the
classical mutual information of a harmonic lattice system
as I�I :O�=limh→0�SI�h�+SO�h�−SC�h��. We are now in
the position to state the area theorem for classical har-
monic systems �Cramer et al., 2006�.

Theorem 16 (Correlations in classical harmonic sys-
tems). Consider a harmonic lattice system with Hamil-
tonian as in Eq. �36� on a general lattice G= �L ,E�. Then
the classical mutual information I�I :O� of the Gibbs
state at some inverse temperature ��0 satisfies an area
law,

I�I:O� = O„s�I�… .

The interesting aspect of this proof �Cramer et al.,
2006� is that it relates this question of the classical mu-
tual information to a quantity that arises in the quantum
case where the coupling matrix Vx is replaced by Vx

2, and
is hence a simple corollary of earlier results on quantum
systems, now with a coupling that is replaced by the
squared coupling matrix. Hence, a “quantum proof” can
be applied to establish a statement on classical lattice
systems. The lesson to learn is that whenever one has
local interactions—even in classical systems—one
should not be too surprised if this manifests itself in an
area law in the correlations.

B. Classical correlations quantum spin models

The situation is even simpler for finite-dimensional
constituents. Indeed, in contrast to the overburdening
technicalities that render the question of area laws in
higher-dimensional quantum systems at zero tempera-
ture so difficult, the situation here can be clarified with
hardly any mathematics at all: An elegant, but simple
argument shows that total correlations in quantum �and
classical� systems at nonzero temperatures always satisfy
an area law. This is a statement on correlations—not
entanglement, in contrast to the discussion of Sec.
IV.D—in thermal states ��=e−�H /Z for some ��0 for
classical or quantum systems �Wolf et al., 2008�. The rel-
evant quantity grasping correlations is again the mutual
information

I�I:O� = S��I� + S��O� − S��� , �37�

where S stands either for the von Neumann quantum
entropy or for the Shannon entropy of the probability
distribution. The classical variant was first discussed in
Cramer et al. �2006�, and the quantum version in Casini
and Huerta �2004, 2007�. Casini and Huerta �2004� intro-
duced this quantity to avoid divergencies of the en-
tanglement entropy in quantum field theory: In a similar
fashion as above, regulators will in fact cancel each
other, and the familiar ultraviolet divergence in the
quantum field limit disappears.

Interestingly, a general statement on the scaling of
correlations at nonzero temperature in terms of Eq. �37�
can be derived which holds for any spin model with local
dimension d �see Bratteli and Robinson �1979� and also
Wolf et al. �2008��.

Theorem 17 (Classical correlations at nonzero tem-
perature). Consider a classical or a quantum system with
finite local dimension d defined on a translation-
invariant lattice G= �L ,E�. Consider the Gibbs state at
some inverse temperature ��0 of a local Hamiltonian
H with two-site interactions. In the classical case, where
each of the lattice sites corresponds to a spin with con-
figuration space Zd,

I�I:O� � �s�I��log2�d� . �38�

For a quantum system with local Hilbert spaces Cd, the
mutual information satisfies the area law

I�I:O� � ��h� �s�I�� , �39�

where �h� is the largest eigenvalue of all Hamiltonians
across the boundary of I and O.

This statement is valid in remarkable generality, given
the simplicity of the argument. We focus on quantum
systems in the following. One can write the Hamiltonian
H having two-site interactions as H=HI+H�+HO,
where HI and HO collect all interaction terms within the
regions, whereas H� stands for terms connecting the two
regions. The Gibbs state �� for some inverse tempera-
ture ��0 minimizes the free energy F���=tr�H��
−S��� /�. Therefore,

F���� � F��I � �O� ,

from which I�I :O��� tr�H���I � �O−���� is obtained. As
the right-hand side depends only on terms coupling the
inside to the outside, i.e., surface terms, Eq. �39� follows
straightforwardly. A naive limit �→� will not yield an
area law for zero temperature, as the right-hand side of
Eq. �39� then clearly diverges, but for any finite tempera-
ture one obtains a bound.

VI. CONNECTION TO SIMULATABILITY

There is an intimate connection between area laws for
the entanglement entropy and questions of the simulat-
ability of quantum many-body systems. The fact that
there is “little entanglement” in a system that satisfies an
area law is at the core of the functioning of powerful
numerical techniques such as the density-matrix renor-
malization group �DMRG� methods. To describe the
large research field of numerical simulation using
DMRG-type methods is beyond the scope of the present
review. Instead, we concentrate on the direct relation-
ship between the “effective degrees of freedom” that
must be considered when classically describing quantum
systems.

A. Numerical simulations with the density-matrix
renormalization group method

This connection is particularly clear in one-
dimensional systems, that is, for quantum spin chains.
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Indeed, one can say that the fact that ground states of
gapped systems satisfy an area law—and to a lesser ex-
tent that critical systems merely have a logarithmic di-
vergence of the entanglement entropy—is responsible
for the success of the density-matrix renormalization ap-
proach. Matrix-product states also satisfy a one-
dimensional area law. As MPS are underlying the
DMRG approach this suggests that the entanglement
content of a state and the best possible performance of a
DMRG approach can be intimately linked.

Historically, DMRG was born out of an idea of renor-
malization, where one iteratively identifies the relevant
degrees of freedom, grasping the essential physics of the
problem, when going from one step of the procedure to
the next one. This general idea goes back to the real-
space renormalization group approach, presented by
Wilson �1975� in the mid-1970s. This approach was par-
ticularly successful in the numerical assessment of the
Kondo problem, whereas for other problems results
were not quite what was hoped for. The birth of the
DMRG approach as such was related to a clear analysis
of the strengths and weaknesses of the real-space renor-
malization group approach to study the low-energy
properties of quantum many-body systems �White and
Noack, 1992�. White �1992� was the one in which the
DMRG method was introduced. Since then, this method
has seen a standard method in the numerical study of
strongly correlated quantum many-body systems. For a
recent review, see Schollwöck �2005�.

Initially, the formulation of DMRG was based on the
above renormalization idea. However, in the following
years it became clear that DMRG generates matrix-
product states, an insight reported in Östlund and Rom-
mer �1995� for the thermodynamical limit of DMRG,
and in Dukelsky et al. �1998� for finite-size DMRG
methods with the latter placing a particular emphasis on
exploiting a rotational symmetry in variational ap-
proaches. Peschel et al. �1999� gave an early overview
over variational ansatz with matrix-product states and
the relationship with the DMRG idea. Östlund and
Rommer �1995� hinted at the possibility for treating pe-
riod boundary conditions in the MPS picture but chose
translation invariant matrices. Verstraete et al. �2004� re-
laxed this constraint to demonstrate that a suitable for-
mulation significantly outperforms standard DMRG for
periodic boundary conditions in terms of memory re-
quirements.

Hence, DMRG—in its several variants—can be seen
as a variational method, where the optimization prob-
lem

minimize ���H��� ,
�40�

subject to ��� � �Cd��N,

impractical already because of its exponentially large
feasible set, is replaced by a variant of an optimization
problem over a polynomially large set

minimize ���H��� ,
�41�

subject to

��� � �Cd��N is an MPS vector of dimension D .

In this variant, or more accurately in each of these vari-
ants, one does not attempt in one go to identify the glo-
bal optimum, but rather effectively iteratively solves for
the local matrices involved. Such an iteration will then
certainly converge �albeit, strictly speaking, not neces-
sarily to the global minimum�.19

B. Approximation of states with matrix-product states

Any such method can then only be as good as the best
possible MPS can approximate the true ground state at
hand. This, in fact, is related to the entanglement con-
tent, in that it matters whether or not the true ground
state satisfies an area law or not. In light of previous
discussions, this connection is not that surprising any-
more: after all MPS satisfy an area law for the entangle-
ment entropy. Hence, one aims at approximating ground
states with states that have in this sense little entangle-
ment, and those states can be well approximated by
MPS that satisfy an area law in the first place.

This connection has been hinted at already in the first
work on DMRG �White, 1992�, where the spectrum of
the half-chain has been considered and put into relation-
ship with the “truncation error” in DMRG. This is a key
figure of merit of the quality of an approximation in a
step, so unity minus the weight of those terms being kept
in a step of the iteration.

This connection between the decay of spectral values
of half-chains, the more rapid the decay the better can
DMRG perform, has been made more precise and
fleshed out in Peschel et al. �1999�. Latorre et al. �2004�
emphasized the relationship to criticality in this context.
Riera and Latorre �2006� presented a short review on
this question. In more recent quantitative approaches,
the optimal approximation that can possibly be obtained
by a MPS of a given D is considered. Denote with HN
= �Cd��N the Hilbert space of a quantum chain of length
N. MPS are considered as defined in Eq. �29� for open
boundary conditions. Given a family 	��N�
N of state vec-
tors, it is said that it can be approximated efficiently by
MPS if for every 	�0 there exists a sequence ��N,D�N��
of MPS with D�N�=O„�poly	�N�… such that

� ��N���N� − ��N,D�N����N,D�N�� �1 � 	 ,

where � · �1 denotes the usual trace norm. In contrast, it is
said that this sequence cannot be approximated effi-
ciently by MPS if there exists some 	�0 such that no
sequence of MPS with D�N� growing polynomially can
approximate ������ up to a small error 	 in trace norm
�Schuch et al., 2008b�.

19For mixed state simulations, see Verstraete et al. �2004� and
Datta and Vidal �2007�.
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Theorem 18 (Approximatability with MPS). Consider
sequences of state vectors 	��N�
N�HN of a quantum
chain of length N, and denote as before the reduced
state of a block I= 	1, . . . ,n
 of length n with �I. If the
sequence of �I satisfies an area law for a Renyi entropy
S� for ��1,

S���I� = O�1� ,

then the sequence 	��N�
N is efficiently approximable by
MPS. In contrast, if the von Neumann entropy S1��I�
=��n�, so grows at least linearly with the block size,
then it cannot be approximated efficiently by MPS. This
means that states satisfying a volume law cannot be ap-
proximated. The same holds true if any Renyi entropy
S� for some ��1 grows at least as S���I�=��n�� for
some ��1. Otherwise, the connection is undetermined,
in that examples for both approximable and inapprox-
imable states can be found.

This statement clarifies the connection between the
entanglement content and the possibility of describing
states with matrix-product states. The validity of an area
law implies that there is sufficiently little entanglement
in the state such that an economical description in terms
of matrix-product states is possible. The success of
DMRG is related to the fact that gapped systems satisfy
an area law. Even if the system is critical, the logarithmic
divergence still allows for a relatively economical de-
scription in terms of matrix-product states. The fact that
Renyi entropies for � smaller than or larger than unity
feature here may be seen rather as a technical detail.
The general message is clear: The arealike entanglement
scaling, with or without small corrections, allows for an
efficient approximation in D for matrix-product states.

To reiterate the point made in Sec. IV.G: Quenched,
nonequilibrium systems can indeed fall exactly into the
category of having an effectively linearly growing block
entropy, so are characterized by a volume law for the
entanglement entropy. More precisely, we face the inter-
esting situation that while for each time we have an area
law in n, the constant in the upper bound grows in time
such that for a suitable choice for the sub-block, one
arrives effectively at a volume law, as made precise in
Theorem 15. This has severe practical implications: For
small times, t-DMRG �Daley et al., 2004; Vidal, 2004;
White and Feiguin, 2004; Schollwöck, 2005; Kollath et
al., 2007; Cramer et al., 2008� the time-dependent ver-
sion of DMRG, can accurately keep track of the dynam-
ics of the system. This is a variant in which one essen-
tially makes a Lie-Trotter approximation of the time
evolution operator, and then approximates in each time
step the resulting state vector by an MPS, following
Vidal �2004�. The functioning of this algorithm can es-
sentially be traced back to the observation that an arbi-
trarily good approximation to the propagator can be es-
tablished with polynomial computational resources in
the system size �Osborne, 2006�. In time, however, one
will eventually encounter typically an exponential in-
crease in the number of degrees of freedom to be kept in
order to faithfully describe the state. This eventually

limits the time up to which one can numerically simulate
time evolution using a variant of DMRG. The increase
in the entanglement content also eventually limits clas-
sical simulations of quantum adiabatic algorithms based
on MPS, which nevertheless perform often impressively
well �for a numerical analysis, see Banuls et al. �2006��. It
is interesting to note, however, that this complexity does
not necessarily translate in the difficulty of following the
time evolution of specific observables when evolving
them in the Heisenberg picture using t-DMRG. Then, in
some cases the Heisenberg time evolution can be carried
out exactly for finite bond dimension and arbitrary long
times �Prosen and Pizorn, 2007; Znidaric et al., 2008;
Clark et al., 2009; Hartmann et al., 2009�.

There are numerical simulation methods that allow
for the simulation of certain quantum states that do not
satisfy an area law. MERA already allows for a logarith-
mic divergence of the entanglement entropy in one-
dimensional systems. Weighted graph-state-based ap-
proaches �Anders et al., 2006� and its 1D variant, the
renormalization algorithm with graph enhancement
�Hübener et al., 2009�, can cope with instances of volume
laws for the entanglement entropy, the latter in one di-
mension, and the former in arbitrary spatial dimensions.
Early work on the simulation of a particular kind of
discrete time evolution, namely, the application of ran-
dom unitary circuits, suggests that this may be a prom-
ising approach for the “efficient simulation of quantum
many-body systems beyond area laws.”

We end with a note from the computer science rather
than from the physics perspective: The fact that a true
ground state is, strictly speaking, well approximated by
an MPS does not necessarily mean that DMRG will also
efficiently find this best approximation. In practice,
DMRG works well, and it typically produces good and
reasonable results. It is remarkable how well this ap-
proximation is found in the iterative scheme as being
pursued by any DMRG algorithm: After all, the full
problem �41� is a nonconvex polynomial global optimi-
zation problem of very high order ����H��� is of degree
N2 in D�. Still, by local variations and sweeping one
achieves good results. The ultimate reason for this im-
pressive performance is yet to be ultimately understood.

Having said that, the worst case complexity of the
problem of finding the best approximation can be com-
putationally difficult in the sense of computer science. In
fact, the class of problem of keeping some matrices fixed
and varying over a finite subset has in worst case in-
stances that are NP hard �Eisert, 2006�. In nontransla-
tion invariant settings, one even finds that if one could
efficiently identify the best possible MPS approximation,
one could efficiently solve NP-hard problems �Schuch et
al., 2008�. Even more strongly put, the problem of ap-
proximating the ground-state energy of a system com-
posed of a chain of quantum systems is QMA complete
�Aharonov et al., 2009�.

This should be seen as a warning sign: The functioning
of variational algorithms such as DMRG is essentially
based on heuristics, and in worst case one can encounter
hard problems. The energy landscape is then so rugged
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that one gets stuck in local optima. Still, while it is im-
portant to acknowledge that DMRG is, strictly speaking,
not certifiable, it is still true that it works very well in
practice and is one of the pillars of the numerical assess-
ment of strongly correlated systems in one dimension.

C. Implications on higher-dimensional simulations

For higher-dimensional systems, tensor-product states
or PEPS, as well as those of MERA, satisfy area laws,
as discussed in Sec. IV.F. This fact suggests that when
minimizing ���H��� for an N�N lattice subject to ���
� �Cd��N2

being a PEPS or MERA described by polyno-
mially many real parameters, one encounters a good ap-
proximation whenever the system at hand already satis-
fies an area law. In light of the fact that even critical
two-dimensional systems can satisfy an area law, this
would mean that they can be well described by PEPS or
MERA with relatively few parameters. Numerical work
in case of PEPS indicates that this is indeed the case
�Verstraete and Cirac, 2004; Isacsson and Syljuasen,
2006; Murg et al., 2007; Verstraete et al., 2008�.

A rigorous result similar to Theorem 18, yet, is still
lacking for PEPS or MERA. The intuition developed so
far, however, is in one way or the other quite certainly
right: Whenever an area law is satisfied, PEPS with small
bond dimension should give rise to a reasonably good
approximation. Here subtle aspects are rather connected
to the fact that the exact contraction of the tensor net-
works of PEPS, and hence the computation of expecta-
tion values, is inefficient, and that approximate contrac-
tions have to be employed. Suitable subsets, such as the
class of string states, can always be efficiently con-
tracted, giving rise to variational sets in higher-
dimensional systems �Schuch et al., 2008�. The Osborne
�2007a� method also gives rise to certifiable approxima-
tions of 2D ground states for a class of models, exploit-
ing quasiadiabatic evolutions.

As before, one has to distinguish the variational set
from the computational method of varying over this set.
Usually, one has to find practical and heuristically suit-
able methods of solving a global optimization problem
over many variables. Several strategies may be followed
when varying over suitable sets to simulate higher-
dimensional strongly correlated systems: One may use
local variations such as in DMRG, imaginary time evo-
lution, or flow methods �Dawson et al., 2008�, making
use of gradient flow and optimal control ideas to vary
over the manifold of unitary gates that describe the
variational set of states at hand. For MERA, the same
intuition should hold true. Here the approaches imple-
mented so far are focused on one-dimensional systems
�Evenbly and Vidal, 2007; Dawson et al., 2008; Rizzi et
al., 2008�, but the ideas are also applicable in higher di-
mensions. It would be an interesting approach to sys-
tematically explore the performance of the simulation of
higher-dimensional strongly correlated systems using a
MERA approach.

VII. PERSPECTIVES

In this Colloquium, we presented the state of affairs in
the study of area laws for entanglement entropies. As
pointed out, this research field is presently enjoying
much attention for a number of reasons and motiva-
tions. Yet, needless to say, there are numerous open
questions that are to be studied, of which we mention a
few to highlight further perspectives:

• Can one prove that gapped higher-dimensional gen-
eral local lattice models always satisfy an area law?

• In higher-dimensional systems, critical systems can
both satisfy and violate an area law. What are further
conditions to ensure that critical systems satisfy an
area law? What is the exact role of the Fermi surface
in the study of area laws in fermionic critical models?

• Can one compute scaling laws for the mutual infor-
mation for quasifree systems?

• For what 1D models beyond quasifree and confor-
mal settings can one find rigorous expressions for the
entanglement entropy?

• Under what precise conditions do quenched disor-
dered local models lead to having “less entangle-
ment”?

• What are the further perspectives of using conformal
methods for systems with more than one spatial di-
mension?

• Can the link between the Bekenstein formula in the
AdS context and the scaling of geometric entropies
in conformal field theories be sharpened?

• To what extent is having a positive topological en-
tropy and encountering topological order one to
one?

• How can the relationship between satisfying an area
law and the efficient approximation of ground states
with PEPS be rigorously established?

• What efficiently describable states satisfy an area
law, such that one can still efficiently compute local
properties?

• Are there further instances for 1D systems satisfying
an area law that allow for certifiable approximations
in terms of matrix-product states?

These questions only touch upon the various perspec-
tives that open up in this context. The quantitative study
of a research area that could be called “Hamiltonian
complexity”20 is just beginning to emerge. The puzzle of
how complex quantum many-body systems are, and how
many effective degrees of freedom are exploited by na-
ture, is still one of the intriguing topics in the study of
interacting quantum systems.

20This term has been coined by B. M. Terhal.
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APPENDIX: FISHER-HARTWIG THEOREM

In this appendix we present an important technical
result concerning the asymptotic behavior of Toeplitz
matrices �Böttcher and Silbermann, 2006�.

Lemma 1 (Fisher-Hartwig). Consider a sequence of
n�n Toeplitz matrices 	Tn
n with entries �Tn�i,j= �Tn�i−j,

�Tn�l =
1

2�
�

0

2�

d� g���e−il�,

generated by g : �0,2��→C. Let g be of the form

g��� = b����
r=1

R

t�r
�� − �r�u�r

�� − �r� ,

with t����=e−i���−��, u�= �2−2 cos�����, Re����−1/2,
and b : �0,2��→C a smooth nonvanishing function with
winding number zero. Then �Basor, 1978; Böttcher and
Silbermann, 1985; Libby, 1990�, for �Re��r���1/2 and
�Re��r���1/2 or R=1, �=0 �Re�����5/2, the
asymptotic behavior of the determinant of Tn is given by

lim
n→�

det�Tn�

EGnn�r=1
R ��r

2−�r
2�

= 1,

where E=O�1� in n and

G = exp� 1

2�
�

0

2�

d� log2�b����
 .
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