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Understanding the characteristics of jammed particle packings provides basic insights into the
structure and bulk properties of crystals, glasses, and granular media and into selected aspects of
biological systems. This review describes the diversity of jammed configurations attainable by
frictionless convex nonoverlapping �hard� particles in Euclidean spaces and for that purpose it stresses
individual-packing geometric analysis. A fundamental feature of that diversity is the necessity to
classify individual jammed configurations according to whether they are locally, collectively, or strictly
jammed. Each of these categories contains a multitude of jammed configurations spanning a wide and
�in the large system limit� continuous range of intensive properties, including packing fraction �, mean
contact number Z, and several scalar order metrics. Application of these analytical tools to spheres in
three dimensions �an analog to the venerable Ising model� covers a myriad of jammed states, including
maximally dense packings �as Kepler conjectured�, low-density strictly jammed tunneled crystals, and
a substantial family of amorphous packings. With respect to the last of these, the current approach
displaces the historically prominent but ambiguous idea of “random close packing” with the precise
concept of “maximally random jamming.” Both laboratory procedures and numerical simulation
protocols can and, frequently, have been used for creation of ensembles of jammed states. But while
the resulting distributions of intensive properties may individually approach narrow distributions in
the large system limit, the distinguishing varieties of possible operational details in these procedures
and protocols lead to substantial variability among the resulting distributions, some examples of which
are presented here. This review also covers recent advances in understanding jammed packings of
polydisperse sphere mixtures, as well as convex nonspherical particles, e.g., ellipsoids, “superballs,”
and polyhedra. Because of their relevance to error-correcting codes and information theory, sphere
packings in high-dimensional Euclidean spaces have been included as well. Some remarks are also
made about packings in �curved� non-Euclidean spaces. In closing this review, several basic open
questions for future research to consider have been identified.
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I. INTRODUCTION

The importance of packing hard particles into various
kinds of vessels and the questions it raises have an an-
cient history. Bernal remarked that “heaps �close-packed
arrangements of particles� were the first things that were
ever measured in the form of basketfuls of grain for the
purpose of trading or the collection of taxes” �Bernal,
1965�. Although packing problems are easy to pose, they
are notoriously difficult to solve rigorously. In 1611, Ke-
pler was asked: What is the densest way to stack equal-
sized cannon balls? His solution, known as “Kepler’s
conjecture,” was the face-centered-cubic �fcc� arrange-
ment �the way your greengrocer stacks oranges�. Gauss
�1831� proved that this is the densest Bravais lattice
packing �defined below�. But almost four centuries
passed before Hales proved the general conjecture that
there is no other arrangement of spheres in three-
dimensional Euclidean space whose density can exceed
that of the fcc packing �Hales, 2005�; see Aste and
Weaire �2008� for a popular account of the proof. Even
the proof of the densest packing of congruent �identical�
circles in the plane, the two-dimensional analog of
Kepler’s problem, appeared only 70 years ago �Rogers,
1964; Conway and Sloane, 1998�; see Fig. 1.

Packing problems are ubiquitous and arise in a variety
of applications. These exist in the transportation, pack-
aging, agricultural, and communication industries. Fur-
thermore, they have been studied to help understand the
symmetry, structure, and macroscopic physical proper-
ties of condensed-matter phases, liquids, glasses, and
crystals �Mayer and Mayer, 1940; Bernal, 1960, 1965;
Stillinger, DiMarzio, and Kornegay, 1964; Stillinger and
Salsburg, 1969; Weeks et al., 1971; Ashcroft and Mermin,
1976; Hansen and McDonald, 1986; Woodcock and An-
gell, 1981; Speedy, 1994; Chaikin and Lubensky, 1995�.

Packing problems are also relevant for the analysis of
heterogeneous materials �Torquato, 2002�, colloids �Rus-
sel et al., 1989; Chaikin and Lubensky, 1995; Torquato,
2009�, and granular media �Edwards, 1994�. Understand-
ing the symmetries and other mathematical characteris-
tics of the densest sphere packings in various spaces and
dimensions is a challenging area of long-standing inter-
est in discrete geometry and number theory �Rogers,
1964; Conway and Sloane, 1998; Cohn and Elkies, 2003�
as well as coding theory �Shannon, 1948; Conway and
Sloane, 1998; Cohn and Kumar, 2007b�.

It is appropriate to mention that packing issues also
arise in numerous biological contexts, spanning a wide
spectrum of length scales. This includes “crowding” of
macromolecules within living cells �Ellis, 2001�, the
packing of cells to form tissue �Torquato, 2002; Gevertz
and Torquato, 2008�, the spiral patterns seen in plant
shoots and flowers �phyllotaxis� �Prusinkiewicz and Lin-
denmayer, 1990; Nisoli et al., 2010� and the competitive
settlement of territories by animals, the patterns of
which can be modeled as random sequential packings
�Tanemura and Hasegawa, 1980; Torquato, 2002�. Figure
2 shows macromolecular crowding and a familiar phyl-
lotactic pattern.

We call a packing a large collection of nonoverlapping
�i.e., hard� particles in either a finite-sized container or
in d-dimensional Euclidean space Rd. The packing frac-
tion � is the fraction of space covered by �interior to� the
hard particles. “Jammed” packings are those particle
configurations in which each particle is in contact with
its nearest neighbors in such a way that mechanical sta-
bility of a specific type is conferred to the packing �see
Sec. IV�. Jammed packings and their properties have
received considerable attention in the literature, both

FIG. 1. �Color online� A portion of the densest packing of
identical circles in the plane, with centers lying at the sites of a
triangular lattice. The fraction of R2 covered by the interior of
the circles is �=� /�12=0.906 899. . .. The first claim of a proof
was made by Thue in 1892. However, it is generally believed
that the first complete error-free proof was produced only in
1940 by Fejes Tóth; see Rogers �1964� and Conway and Sloane
�1998� for the history of this problem.

FIG. 2. �Color online� Biological examples of packing geom-
etries. Left panel: Schematic representation of the approxi-
mate numbers, shapes, and density of packing of macromol-
ecules inside a cell of Escherichia coli. �Illustration by David S.
Goodsell, the Scripps Research Institute.� Molecular crowding
occurs because of excluded volume effects due to the mutual
impenetrability of all of the macromolecules. This nonspecific
steric repulsion is always present, regardless of any other at-
tractive or repulsive interactions that might occur between the
macromolecules. Thus, molecular crowding is essentially a
packing problem �Ellis, 2001�. Right panel: Closeup of a daisy
capitulum �flower head�, as given by Prusinkiewicz and Lin-
denmayer �1990�. The most prominent feature is two sets of
spirals, one turning clockwise and the other counterclockwise.
There are several models that relate such phyllotactic patterns
to packings problems �Prusinkiewicz and Lindenmayer, 1990�.
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experimental and theoretical. Within the domains of
analytical theory and computer simulations, two concep-
tual approaches for their study have emerged. One is the
“ensemble” approach �Bernal, 1960, 1965; Edwards,
1994; Liu and Nagel, 1998; Edwards and Grinev, 2001;
Makse and Kurchan, 2002; Silbert et al., 2002, 2005;
O’Hern et al., 2003; Wyart et al., 2005; Gao et al., 2006;
Song et al., 2008; Parisi and Zamponi, 2010�, which for a
given packing procedure aims to understand typical con-
figurations and their frequency of occurrence. The other,
more recently, is the “geometric-structure” approach
�Torquato et al., 2000, 2003; Torquato and Stillinger,
2001, 2007; Kansal et al., 2002b; Donev, Cisse, et al.,
2004; Donev et al., 2004a; Donev, Connelly, et al., 2007�,
which emphasizes quantitative characterization of
single-packing configurations, without regard to their oc-
currence frequency in the algorithmic method used to
produce them. Our primary objective is to review the
latter approach, while at the same time to show that
these two approaches are complementary in that they
represent different aspects of the larger context of hard-
particle jamming phenomena. In particular, a wide range
of jammed packing ensembles can be created by the
choice of the generating algorithm, and the geometric-
structure approach analyzes and classifies individual
members of those ensembles, whether they be crystal-
line or amorphous at any achievable packing fraction �.

The process of cooling an initially hot liquid ulti-
mately to absolute zero temperature provides a close
and useful analogy for the subject of hard-particle jam-
ming. Figure 3 summarizes this analogy in schematic
form, showing typical paths for different isobaric cooling
rates in the temperature-volume plane. While these
paths are essentially reproducible for a given cooling
schedule, i.e., giving a narrow distribution of results, that
distribution depends sensitively on the specific cooling
schedule or protocol that has been used. A very rapid
quench that starts with a hot liquid well above its freez-
ing temperature will avoid crystal nucleation, producing
finally a glassy solid at absolute zero temperature. A
somewhat slower quench from the same initial condition
can also avoid nucleation but will yield at its T=0 end
point a glassy solid with lower volume and potential en-
ergy. An infinitesimal cooling rate in principle will fol-
low a thermodynamically reversible path of equilibrium
states, will permit nucleation, and will display a volume
discontinuity due to the first-order freezing transition on
its way to attaining the structurally perfect crystal
ground state. By analogy, for hard-particle systems com-
pression qualitatively plays the same role as decreasing
the temperature in an atomic or molecular system. Thus
it is well known that compressing a monodisperse hard-
sphere fluid very slowly leads to a first-order freezing
transition, and the resulting crystal phase corresponds to
the closest packing arrangement of those spheres �Mau
and Huse, 1999�. The resulting hard-sphere stacking
variants are configurational images of mechanically
stable structures exhibited, for example, by the vener-
able Lennard-Jones model system. By contrast, rapid
compression rates applied to a hard-sphere fluid will cre-

ate random amorphous jammed packings �Rintoul and
Torquato, 1996b�, the densities of which can be con-
trolled by the compression rate utilized �see Fig. 11�. In
both the cases of cooling liquid glass formers and of
compressing monodisperse hard spheres, it is valuable to
be able to analyze the individual many-particle configu-
rations that emerge from the respective protocols.

We begin this review, after introducing relevant termi-
nology, by specifically considering packings of friction-
less identical spheres in the absence of gravity, which
represents an idealization of the laboratory situation for
investigations of jammed packings; see Sec. III. This
simplification follows that tradition in condensed-matter
science to exploit idealized models, such as the Ising
model, which is regarded as one of the pillars of statis-
tical mechanics �Onsager, 1944; Domb, 1960; Gallavotti,
1999�. In that tradition, this idealization offers the op-
portunity to obtain fundamental as well as practical in-
sights and to uncover unifying concepts that describe a
broad range of phenomena. The stripped-down hard-
sphere “Ising model” for jammed packings �i.e.,
jammed, frictionless, and identical spheres in the ab-
sence of gravity� embodies the primary attributes of real
packings while simultaneously generating mathematical
challenges. The geometric-structure approach to analyz-
ing individual jammed states produced by this model

FIG. 3. �Color� Three isobaric �constant pressure� cooling
paths by which a typical liquid may solidify, represented in a
volume vs temperature diagram. An infinitesimal cooling rate
from the high-temperature liquid traces out the thermody-
namic equilibrium path �shown in green�, including a disconti-
nuity resulting from the first-order freezing transition. This re-
versible path leads to the ground-state defect-free crystalline
structure in the T→0 limit. Very slow but finite cooling rate
�not shown� can involve crystal nucleation but typically creates
defective crystals. More rapid cooling of the liquid �blue
curves� can avoid crystal nucleation, passing instead through a
glass transition temperature range, and resulting in metastable
glassy solids at absolute zero. The volumes, energies, and other
characteristics of those glasses vary with the specific cooling
rate employed in their production.
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covers not only the maximally dense packings �e.g.,
Kepler’s conjecture� and amorphous “Bernal” packings
but an unbounded collection of other jammed configu-
rations. This approach naturally leads to the inevitable
conclusion that there is great diversity in the types of
attainable jammed packings with varying degrees of or-
der, mechanical stability, and density.

Important insights arise when jammed sphere pack-
ings are placed in a broader context that includes
jammed states of noncongruent spheres as well as non-
spherical objects, as discussed in Secs. IX and X. These
extensions include polydisperse spheres, ellipsoids, su-
perballs, and polyhedra in three dimensions. In addition,
this broader context also involves sphere packings in
Euclidean space with high dimensions �Sec. XI�, which is
relevant to error correcting codes and information
theory �Shannon, 1948; Conway and Sloane, 1998�, and
packings in non-Euclidean spaces �Sec. XII�. Finally, in
Sec. XIII, we identify a number of basic open questions
for future research.

II. PRELIMINARIES AND DEFINITIONS

Some basic definitions concerning packings are given
here. A packing P is a collection of nonoverlapping solid
objects or particles in d-dimensional Euclidean space Rd.
Packings can be defined in other spaces �e.g., hyperbolic
spaces and compact spaces, such as the surface of a
d-dimensional sphere�, but our primary focus in this re-
view is Rd. A saturated packing is one in which there is
no space available to add another particle of the same
kind to the packing.

We will see subsequently that whether a particle pos-
sesses central symmetry plays a fundamental role in de-
termining its dense packing characteristics. A
d-dimensional particle is centrally symmetric if it has a
center C that bisects every chord through C connecting
any two boundary points of the particle, i.e., the center
is a point of inversion symmetry. Examples of centrally
symmetric particles in Rd are spheres, ellipsoids, and su-
perballs �defined in Sec. X�. A triangle and tetrahedron
are examples of noncentrally symmetric two- and three-
dimensional particles, respectively. Figure 4 shows ex-
amples of centrally and noncentrally symmetric two-
dimensional particles. A d-dimensional centrally
symmetric particle for d�2 is said to possess d equiva-
lent principal �orthogonal� axes �directions� associated
with the moment of inertia tensor if those directions are
twofold rotational symmetry axes such that the d chords

along those directions and connecting the respective pair
of particle-boundary points are equal. �For d=2, the
twofold �out-of-plane� rotation along an orthogonal axis
brings the shape to itself, implying the rotation axis is a
“mirror image” axis.� Whereas a d-dimensional super-
ball has d equivalent directions, a d-dimensional ellip-
soid generally does not �see Fig. 4�.

A lattice � in Rd is a subgroup consisting of the integer
linear combinations of vectors that constitute a basis for
Rd. In the physical sciences and engineering, this is re-
ferred to as a Bravais lattice. Unless otherwise stated,
the term “lattice” will refer here to a Bravais lattice only.
A lattice packing PL is one in which the centroids of the
nonoverlapping identical particles are located at the
points of �, and all particles have a common orientation.
The set of lattice packings is a subset of all possible
packings in Rd. In a lattice packing, the space Rd can be
geometrically divided into identical regions F called fun-
damental cells, each of which contains the centroid of
just one particle. Thus, the density of a lattice packing is
given by

� = v1/Vol�F� , �1�

where v1 is the volume of a single d-dimensional particle
and Vol�F� is the d-dimensional volume of the funda-
mental cell. For example, the volume v1�R� of a
d-dimensional spherical particle of radius R is given ex-
plicitly by

v1�R� = �d/2Rd/��1 + d/2� , �2�

where ��x� is the Euler gamma function. Figure 5 shows

FIG. 4. �Color online� Symmetries associated
with three particle shapes. Chords pass
through each particle centroid. Left panel: A
“superdisk” is centrally symmetric and pos-
sesses two equivalent principal axes. Middle
panel: An ellipse is centrally symmetric but
does not possess two equivalent principal
axes. Right panel: A triangle is not centrally
symmetric.

FIG. 5. �Color online� Examples of lattice packings �i.e., Bra-
vais lattices� depicted in two dimensions. Left panel: A portion
of a lattice packing of congruent spheres. Each fundamental
cell �depicted as a rhombus here� has exactly one assigned
sphere center. Right panel: A portion of a lattice packing of
congruent nonspherical particles. Each fundamental cell has
exactly one particle centroid. Each particle in the packing must
have the same orientation.

2636 S. Torquato and F. H. Stillinger: Jammed hard-particle packings: From Kepler to …

Rev. Mod. Phys., Vol. 82, No. 3, July–September 2010



lattice packings of congruent spheres and congruent
nonspherical particles.

A more general notion than a lattice packing is a pe-
riodic packing. A periodic packing of congruent particles
is obtained by placing a fixed configuration of N par-
ticles �where N�1� with “arbitrary nonoverlapping ori-
entations” in one fundamental cell of a lattice �, which
is then periodically replicated without overlaps. Thus,
the packing is still periodic under translations by �, but
the N particles can occur anywhere in the chosen funda-
mental cell subject to the overall nonoverlap condition.
The packing density of a periodic packing is given by

� = Nv1/Vol�F� = �v1, �3�

where �=N /Vol�F� is the number density, i.e., the num-
ber of particles per unit volume. Figure 6 shows a peri-
odic nonlattice packing of congruent spheres and con-
gruent nonspherical particles. Note that the particle
orientations within a fundamental cell in the latter case
are generally not identical to one another.

Consider any discrete �possibly infinite� set of points
with position vectors X��r1 ,r2 , . . . � in Rd. Associated
with each point ri�X is its Voronoi cell Vor�ri�, which is
defined to be the region of space no farther from the
point at ri than to any other point rj in the set, i.e.,

Vor�ri� = �r:	r − ri	 � 	r − rj	 for all rj � X� . �4�

The Voronoi cells are convex polyhedra whose interiors
are disjoint but share common faces, and therefore the
union of all of the polyhedra is the whole of Rd. This
partition of space is called the Voronoi tessellation.
While the Voronoi polyhedra of a lattice are congruent
�identical� to one another, the Voronoi polyhedra of a
non-Bravais lattice are not identical to one another. At-
tached to each vertex of a Voronoi polyhedron is a De-
launay cell, which can be defined as the convex hull of
the Voronoi-cell centroids nearest to it, and these De-
launay cells also tile space. Often the Delaunay tessella-
tion is a triangulation of space, i.e., it is a partitioning of
Rd into d-dimensional simplices �Torquato, 2002�. Geo-
metrically the Voronoi and Delaunay tessellations are

dual to each other. The contact network is only defined
for a packing in which a subset of the particles form
interparticle contacts. For example, when the set of
points X defines the centers of spheres in a sphere pack-
ing, the network of interparticle contacts forms the con-
tact network of the packing by associating with every
sphere a “node” for each contact point and edges that
connect all of the nodes. As we will see in Sec. IV, the
contact network is crucial to determining the rigidity
properties of the packing and corresponds to a subclass
of the class of fascinating objects called tensegrity frame-
works, namely, strut frameworks; see Connelly and
Whiteley �1996� for details. Figure 7 shows the Voronoi,
Delaunay, and contact networks for a portion of a pack-
ing of congruent circular disks.

Some of the infinite packings that we consider in this
review can only be characterized spatially via statistical
correlation functions. For simplicity, consider a nonover-
lapping configuration of N identical d-dimensional
spheres centered at the positions rN��r1 ,r2 , . . . ,rN� in a
region of volume V in d-dimensional Euclidean space
Rd. Ultimately, we pass to the thermodynamic limit, i.e.,
N→	, V→	 such that the number density �=N /V is a
fixed positive constant. For statistically homogeneous
sphere packings in Rd, the quantity �ngn�rn� is propor-
tional to the probability density for simultaneously find-
ing n sphere centers at locations rn��r1 ,r2 , . . . ,rn� in Rd

�Hansen and McDonald, 1986�. With this convention,
each n-particle correlation function gn approaches unity
when all particle positions become widely separated
from one another. Statistical homogeneity implies that
gn is translationally invariant and therefore only de-
pends on the relative displacements of the positions with
respect to some arbitrarily chosen origin of the system,
i.e.,

gn = gn�r12,r13, . . . ,r1n� , �5�

where rij=rj−ri.
The pair correlation function g2�r� is the one of pri-

mary interest in this review. If the system is also rota-
tionally invariant �statistically isotropic�, then g2 de-
pends on the radial distance r�	r	 only, i.e., g2�r�=g2�r�.

FIG. 6. �Color online� Examples of periodic nonlattice pack-
ings depicted in two dimensions. Left panel: A portion of a
periodic nonlattice packing of congruent spheres. The funda-
mental cell contains multiple spheres located anywhere within
the cell subject to the nonoverlap constraint. Right panel: A
portion of a periodic nonlattice packing of congruent non-
spherical particles. The fundamental cell contains multiple
nonspherical particles with arbitrary positions and orientations
within the cell subject to the nonoverlap constraint.

FIG. 7. �Color� Geometric characterization of packings via
bond networks. Left panel: Illustrations of the Voronoi and
Delaunay tessellations for a portion of a packing of congruent
circular disks. The blue and red lines are edges of the Voronoi
and Delaunay cells. Right panel: The corresponding contact
network shown as green lines.
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It is important to introduce the total correlation function
h�r��g2�r�−1, which, for a disordered packing, decays to
zero for large 	r	 sufficiently rapidly �Torquato and Still-
inger, 2006b�. We define the structure factor S�k� for a
statistically homogeneous packing via

S�k� = 1 + �h̃�k� , �6�

where h̃�k� is the Fourier transform of the total correla-
tion function h�r��g2�r�−1 and k is the wave vector.
Since the structure factor is the Fourier transform of an
autocovariance function �involving the “microscopic”
density� �Hansen and McDonald, 1986; Torquato and
Stillinger, 2006b�, then it follows it is a non-negative
quantity for all k, i.e.,

S�k� � 0 for all k . �7�

The non-negativity condition follows physically from the
fact that S�k� is proportional to the intensity of the scat-
tering of incident radiation on a many-particle system
�Hansen and McDonald, 1986�. The structure factor S�k�
provides a measure of the density fluctuations in the
packing at a particular wave vector k.

III. LESSONS FROM DISORDERED JAMMED PACKINGS
OF SPHERES

The classical statistical mechanics of hard-sphere sys-
tems has generated a large collection of scientific publi-
cations, dating back at least to Boltzmann, 1898. That
collection includes examinations of equilibrium, trans-
port, and jammed packing phenomena. With respect to
the last of these, the concept of a unique random close
packing �RCP� state, pioneered by Bernal �1960, 1965�
to model the structure of liquids, has been one of the
more persistent themes with a venerable history �Scott
and Kilgour, 1969; Anonymous, 1972; Visscher and Bol-
sterli, 1972; Gotoh and Finney, 1974; Berryman, 1983;
Jodrey and Tory, 1985; Tobochnik and Chapin, 1988;
Zinchenko, 1994; Jullien et al., 1997; Pouliquen et al.,
1997; Kamien and Liu, 2007�. Until about a decade ago,
the prevailing notion of the RCP state was that it is the
maximum density that a large random collection of con-
gruent �identical� spheres can attain and that this density
is a well-defined quantity. This traditional view has been
summarized as follows: “Ball bearings and similar ob-
jects have been shaken, settled in oil, stuck with paint,
kneaded inside rubber balloons and all with no better
result than �a packing fraction of�… 0.636” �Anony-
mous, 1972�. Torquato et al. �2000� argued that this RCP-
state concept is actually ill-defined and thus should be
abandoned in favor of a more precise alternative.

It is instructive to review these developments because
they will point to the need for a geometric-structure ap-
proach generally to understand jammed packings,
whether disordered or not. It has been observed
�Torquato et al., 2000� that there has existed ample evi-
dence, in the form of actual and computer-simulation
experiments, to suggest strongly that the RCP state is
indeed ill-defined and, in particular, dependent on the

protocol used to produce the packings and on other sys-
tem characteristics. In a classic experiment, Scott and
Kilgour �1969� obtained the ‘‘RCP’’ packing fraction
value �
0.637 by pouring ball bearings into a large con-
tainer, vertically vibrating the system for sufficiently long
times to achieve a putative maximum densification, and
extrapolating the measured volume fractions to elimi-
nate finite-size effects. Important dynamical parameters
for this kind of experiment include the pouring rate as
well as the amplitude, frequency, and direction of the
vibrations. The shape, smoothness, and rigidity of the
container boundary are other crucial characteristics. For
example, containers with curved or flat boundaries could
frustrate or induce crystallization, respectively, in the
packings, and hence the choice of container shape can
limit the portion of configuration space that can be
sampled. The key interactions are interparticle forces,
including �ideally� repulsive hard-sphere interactions,
friction between the particles �which inhibits densifica-
tion�, and gravity. The final packing fraction will inevita-
bly be sensitive to these system characteristics. Indeed,
one can achieve denser �partially and imperfectly crys-
talline� packings when the particles are poured at low
rates into horizontally shaken containers with flat
boundaries �Pouliquen et al., 1997�.

It is tempting to compare experimentally observed
statistics of so-called RCP configurations �packing frac-
tion, correlation functions, and Voronoi statistics� to
those generated on a computer. One must be careful in
making such comparisons since it is difficult to simulate
the features of real systems, such as the method of
preparation and system characteristics �shaking, friction,
gravity, etc.�. Nonetheless, computer algorithms are
valuable because they can be used to generate and study
idealized random packings, but the final states are
clearly protocol dependent. For example, a popular rate-
dependent densification algorithm �Jodrey and Tory,
1985; Jullien et al., 1997� achieves � between 0.642 and
0.649, a Monte Carlo scheme �Tobochnik and Chapin,
1988� gives �
0.68, a differential-equation densification
scheme produces �
0.64 �Zinchenko, 1994�, and a
“drop and roll” procedure �Visscher and Bolsterli, 1972�
yields �
0.60, and each of these protocols yields differ-
ent sphere contact statistics.

As noted it has been argued that these variabilities of
RCP arise because it is an ambiguous concept, explain-
ing why there is no rigorous prediction of the RCP den-
sity, in spite of attempts to estimate it �Gotoh and
Finney, 1974; Berryman, 1983; Song et al., 2008�. The
phrase “close packed” implies that the spheres are in
contact with one another with the highest possible aver-
age contact number Z. This would be consistent with the
aforementioned traditional view that RCP presents the
highest density that a random packing of close-packed
spheres can possess. However, the terms ‘‘random’’ and
‘‘close packed’’ are at odds with one another. Increasing
the degree of coordination �nearest-neighbor contacts�
and thus the bulk system density comes at the expense
of disorder. The precise proportion of each of these
competing effects is arbitrary and therein lies a funda-
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mental problem. Moreover, since “randomness” of se-
lected jammed packings has never been quantified, the
proportion of these competing effects could not be
specified. To remedy these serious flaws, Torquato et al.
�2000� replaced the notion of close packing with jam-
ming categories �defined in Sec. IV�, which requires that
each particle of a particular packing has a minimal num-
ber of properly arranged contacting particles. Further-
more, they introduced the notion of an “order metric”
to quantify the degree of order �or disorder� of a single
packing configuration.

Using the Lubachevsky-Stillinger �LS� �Lubachevsky
and Stillinger, 1990� molecular-dynamics growth algo-
rithm to generate jammed packings, it was shown
�Torquato et al., 2000� that fastest particle growth rates
generated the most disordered sphere �MRJ� packings
�with �
0.64; see the left panel of Fig. 8�, but that by
slowing the growth rates larger packing fractions could
be continuously achieved up to the densest value
� /�18
0.740 48. . . such that the degree of order in-
creased monotonically with �. Those results demon-
strated that the notion of RCP as the highest possible
density that a random sphere packing can attain is ill-
defined since one can achieve packings with arbitrarily
small increases in density at the expense of correspond-
ingly small increases in order. This led Torquato et al.
�2000� to supplant the concept of RCP with the maxi-
mally random jammed �MRJ� state, which is defined to
be that jammed state with a minimal value of an order
metric �see Sec. V�. This work pointed the way toward a
quantitative means of characterizing all packings,
namely, the geometric-structure approach.

We note that the same LS packing protocol that leads
to a uniformly disordered jammed state in three dimen-
sions typically yields a highly crystalline “collectively”
jammed packing in two dimensions. Figure 8 shows the
vivid visual difference between the textures produced in
three and two dimensions �see Sec. VII for further re-
marks�. The low-concentration occurrence of crystal de-

fects in the latter is evidence for the notion that there
are far fewer collectively jammed states for N hard disks
in two dimensions compared to N hard spheres in three
dimensions. This distinction can be placed in a wider
context by recalling that there is only one type of
jammed state for hard rods in one dimension, and it is a
defect-free perfect one-dimensional crystal. These cases
for d=1, 2, and 3, numerical results for MRJ packing for
d=4, 5, and 6, and theoretical results �Torquato and
Stillinger, 2006b�, indicating that packings in large di-
mensions are highly degenerate, suggest that the num-
ber of distinct collectively jammed packings �defined in
Sec. IV.A� for a fixed large number N of identical hard
spheres rises monotonically with Euclidean dimension d.
The questions and issues raised by these differences in
the degree of disorder across dimensions emphasizes the
need for a geometric-structure approach, to be elabo-
rated in the following.

IV. JAMMING CATEGORIES, ISOSTATICITY, AND
POLYTOPES

A. Jamming categories

In much of the ensuing discussion, we treat packings
of frictionless congruent spheres of diameter D in Rd in
the absence of gravity, i.e., the “Ising model” of jammed
sphere packings. Packing spheres is inherently a geo-
metrical problem due to exclusion-volume effects. In-
deed, the singular nature of the hard-sphere pair poten-
tial �plus infinity or zero for r
D or r�D, respectively,
where r is the pair separation� is crucial because it en-
ables one to be precise about the concept of jamming.
Analyzing this model directly is clearly preferable to
methods that begin with particle systems having “soft”
interactions, which are then intended to mimic packings
upon passing to the hard-sphere limit �Donev et al.,
2004c�.

Three broad and mathematically precise jamming cat-
egories of sphere packings can be distinguished depend-
ing on the nature of their mechanical stability �Torquato
and Stillinger, 2001, 2003�. In order of increasing strin-
gency �stability�, for a finite sphere packing, these are
the following: �1� Local jamming: each particle in the
packing is locally trapped by its neighbors �at least d
+1 contacting particles, not all in the same hemisphere�,
i.e., it cannot be translated while fixing the positions of
all other particles; �2� collective jamming: any locally
jammed configuration is collectively jammed if no subset
of particles can simultaneously be displaced so that its
members move out of contact with one another and with
the remainder set; and �3� strict jamming: any collec-
tively jammed configuration that disallows all uniform
volume-nonincreasing strains of the system boundary is
strictly jammed.

We stress that these hierarchical jamming categories
do not exhaust the universe of possible distinctions
�Bezdek et al., 1998; Torquato and Stillinger, 2001;
Donev et al., 2004a, 2004b�, but they span a reasonable
spectrum of possibilities. Importantly, the jamming cat-

FIG. 8. �Color online� Typical protocols used to generate dis-
ordered sphere packings in three dimensions produce highly
crystalline packings in two dimensions. Left panel: A three-
dimensional MRJ-like configuration of 500 spheres with �

0.64 produced using the Lubachevsky-Stillinger �LS� algo-
rithm with a fast expansion rate �Torquato et al., 2000�. Right
panel: A crystalline collectively jammed configuration �Sec.
IV.A� of 1000 disks with �
0.88 produced using the LS algo-
rithm with a fast expansion rate �Donev et al., 2004a�.
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egory of a given sphere configuration depends on the
boundary conditions employed. For example, hard-wall
boundary conditions �Torquato and Stillinger, 2001� gen-
erally yield different jamming classifications from peri-
odic boundary conditions �Donev et al., 2004a�. These
jamming categories, which are closely related to the con-
cepts of “rigid” and “stable” packings found in the
mathematics literature �Bezdek et al., 1998�, mean that
there can be no “rattlers” �i.e., movable but caged par-
ticles� in the packing. Nevertheless, it is the significant
majority of spheres that compose the underlying
jammed network that confers rigidity to the packing,
and in any case, the rattlers could be removed �in com-
puter simulations� without disrupting the jammed re-

mainder. Figure 9 shows examples of ordered locally and
collectively jammed packings of disks in two dimensions
within hard-wall containers. Observe the square-lattice
packing with square hard-wall boundary conditions can
only be collectively jammed �not strictly jammed� even
in the infinite-volume limit. This is to be contrasted with
MRJ packings, where the distinction between collective
and strict jamming vanishes in the infinite-volume limit,
as discussed in Sec. IV.B. Note that the configurations
shown in Fig. 8, generated under periodic boundary con-
ditions, are at least collectively jammed.

To emphasize the fact that the jamming category de-
pends on the boundary conditions of a packing, we tabu-
late whether common periodic structures are locally, col-
lectively, or strictly jammed. Table I gives the jamming
classification for such packings with hard-wall boundary
conditions. These results are compared to corresponding
jamming categories for periodic boundary conditions in
Table II. The latter results will depend on the choice of
the number of particles N within the fundamental cell.

Rigorous and efficient linear-programming algorithms
have been devised to assess whether a particular sphere
packing is locally, collectively, or strictly jammed �Donev
et al., 2004a, 2004b�. It is noteworthy that the jamming
categories can now be ascertained in real-system experi-
ments using imaging techniques that enable one to de-
termine configurational coordinates of a packing �e.g.,
tomography �Aste et al., 2006�, confocal microscopy
�Brujic et al., 2003�, and magnetic resonance imaging
�Man et al., 2005��. Given these coordinates �with high
precision�, one can rigorously test the jamming category
of the experimentally generated packing using the afore-
mentioned linear programming techniques.

FIG. 9. �Color online� Illustrations of jamming categories.
Leftmost panel: Honeycomb-lattice packing within a rectangu-
lar hard-wall container is locally jammed but is not collectively
jammed �e.g., a collective rotation of a hexagonal particle clus-
ter, as shown, will unjam the packing�. Middle panel: Square-
lattice packing within a square hard-wall container is collec-
tively jammed. Rightmost panel: The square-lattice packing
shown in the middle panel can be sheared and hence is not
strictly jammed. Thus, we see that the square-lattice packing
with square hard-wall boundary conditions can only be collec-
tively jammed even in the infinite-volume limit. Thus, the dis-
tinction between collective and strict jamming for such pack-
ings remains in the thermodynamic limit.

TABLE I. Classification of some of the common jammed periodic �crystal� packings of identical
spheres in two and three dimensions, where Z denotes the contact number per particle and � is the
packing fraction for the infinite packing �Torquato and Stillinger, 2001�. Here hard boundaries are
applicable: in two dimensions we use commensurate rectangular boundaries and in three dimensions
we use a cubical boundary, with the exception of the hexagonal close-packed crystal in which the
natural choice is a hexagonal prism.

Periodic �crystal� structures
Locally
jammed

Collectively
jammed

Strictly
jammed

Honeycomb �Z=3, �=0.605. . .� Yes No No
Kagomé �Z=4, �=0.680. . .� Noa Noa Noa

Square �Z=4, �=0.785. . .� Yes Yes No
Triangular �Z=6, �=0.907. . .� Yes Yes Yes
Diamond �Z=4, �=0.340. . .� Yes No No
Simple cubic �Z=6, �=0.524. . .� Yes Yes No
Body-centered cubic
�Z=8, �=0.680. . .�

Yes Yes No

Face-centered cubic
�Z=12, �=0.740. . .�

Yes Yes Yes

Hexagonal close packed
�Z=12, �=0.740. . .�

Yes Yes Yes

aWith appropriately placed regular triangular- or hexagonal-shaped boundaries, the kagomé struc-
ture is locally, collectively, and strictly jammed.
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B. Isostaticity

A packing of N hard spheres of diameter D in a
jammed framework in d-dimensional Euclidean space is
characterized by the �Nd�-dimensional configuration
vector of centroid positions R=rN��r1 , . . . ,rN�. Assume
that a configuration RJ represents a collectively jammed
framework of a packing �i.e., excluding rattlers� with
packing fraction �J, where there are M interparticle con-
tacts.

Isostatic packings are jammed packings that possess
the minimal number of contacts for a jamming category;
namely, under periodic boundary conditions, for collec-
tive jamming, M=2N−1 and 3N−2 for d=2 and d=3,
respectively, and for strict jamming, M=2N+1 and 3N
+3 for d=2 and d=3, respectively �Donev et al., 2005c�.
Thus, we see that the relative differences between isos-
tatic collective and strict jammed packings diminish as N
becomes large, and since the number of degrees of free-
dom is essentially equal to Nd �depending on the jam-
ming category and boundary conditions �Donev et al.,
2005c��, an isostatic packing has a mean contact number
per particle Z equal to 2d. Collectively or strictly
jammed MRJ packings in the infinite-volume limit are
isostatic. Note that packings in which Z=2d are not nec-
essarily collectively or strictly jammed; for example, we
see from Table II that the square and kagomé lattices
�with Z=4� and the simple-cubic lattice �with Z=6� are
neither collectively nor strictly jammed. Isostaticity has
attained a special status in the field and has been closely
linked to “generic” or “random” packings �Moukarzel,
1998�. In fact, as we will show, isostatic packings can be
perfectly ordered; see also Mari et al. �2009�. Packings
having more contacts than isostatic ones are hyperstatic
and those having fewer contacts than isostatic packings
are hypostatic; for sphere packings, these latter packings
cannot be collectively or strictly jammed in the above
sense �Donev, Connelly, et al., 2007�. The terms overcon-
strained and underconstrained �or hypoconstrained�, re-
spectively, were used by Donev, Connelly, et al. �2007� to
describe such packings.

C. Polytope picture of configuration space

Full understanding of the many-body properties of N
particles in a d-dimensional container of content �vol-
ume� V is facilitated by viewing the system in its
dN-dimensional configuration space. This is an espe-
cially useful approach for hard-particle models and helps
us to understand the full range of issues concerning the
approach to a jammed state. For the moment, we restrict
attention specifically the cases of d-dimensional hard
spheres. When container content V is very large for
fixed N, i.e., when packing fraction �
0, the hard
spheres are free to move virtually independently. Con-
sequently, the measure �content� C of the available mul-
tidimensional configuration space is simply C
VN. But
decreasing V enhances the chance for sphere collisions
and correspondingly reduces C, the remaining fraction of
configuration space that is free of sphere overlaps. The
amount of reduction is related exponentially to the ex-
cess entropy S�e��N ,V� for the N-sphere system,

C�N,V� 
 VN exp�S�e��N,V�/kB� , �8�

where kB is Boltzmann’s constant.
In the low-density regime, the excess entropy admits

of a power series expansion in covering fraction �,

S�e��N,V�
NkB

= N �
n�1

� �n

n + 1
� �

v1
n

. �9�

Here v1 is the volume of a particle, as indicated in Eq.
�2�. The �n are the irreducible Mayer cluster integral
sums for n+1 particles that determine the virial coeffi-
cient of order n+1 �Mayer and Mayer, 1940�. For hard
spheres in dimensions 1�d�8, these coefficients for
low orders 1�n�3 are known exactly, and accurate nu-
merical estimates are available for n+1�10 �Clisby and
McCoy, 2006�. This power series represents a function of
� obtainable by analytic continuation along the positive
real axis to represent the thermodynamic behavior for
the fluid phase from �=0 up to the freezing transition,
which occurs at �
0.4911 for hard spheres in three di-

TABLE II. Classification of the same periodic sphere packings described in Table I but for periodic
boundary conditions �Donev et al., 2004a�. We chose the smallest fundamental cells with N particles
for which an unjamming motion exists if there is one. The lattice vectors for each packing are the
standard ones �Donev et al., 2004a�.

Periodic �crystal� structures N Locally jammed Collectively jammed Strictly jammed

Honeycomb 4 Yes No No
Kagomé 3 Yes No No
Square 2 Yes No No
Triangular 1 Yes Yes Yes
Diamond 4 Yes No No
Simple cubic 2 Yes No No
Body-centered cubic 2 Yes No No
Face-centered cubic 1 Yes Yes Yes
Hexagonal close packed 2 Yes Yes Yes
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mensions �Noya et al., 2008�. This value is slightly below
the minimum density �
0.4937 at which collective jam-
ming of d=3 hard spheres is suspected first to occur
�Torquato and Stillinger, 2007�. Consequently, the avail-
able configuration space measured by C�N ,V� remains
connected in this density range, i.e., any nonoverlap con-
figuration of the N spheres can be connected to any
other one by a continuous displacement of the spheres
that does not violate the nonoverlap condition.

A general argument has been advanced that thermo-
dynamic functions must experience a subtle but distinc-
tive essential singularity at first-order phase transition
points �Andreev, 1964; Fisher and Felderhof, 1970�. In
particular, this applies to the hard-sphere freezing tran-
sition and implies that attempts to analytically continue
fluid behavior into a metastable overcompressed state
are dubious. Aside from any other arguments that might
be brought to bear, this indicates that such extrapola-
tions are fundamentally incapable of identifying unique
random jammed states of the hard-sphere system. Nev-
ertheless, it is clear that increasing � beyond its value at
the thermodynamic freezing point soon initiates partial
fragmentation of the previously connected nonoverlap
configuration space in finite systems. That is, locally dis-
connected portions are shed, each to become an indi-
vidual jammed state displaying its own geometric char-
acteristics. �The jammed tunneled crystals mentioned in
Sec. VI are examples of such localized regions near the
freezing point.� We elaborate on this point within this
section after discussing the polytope picture of configu-
ration space near jamming points.

Consider decreasing the packing fraction slightly in a
sphere packing that is at least collectively jammed by
reducing the particle diameter by �D, =�D /D�1, so
that the packing fraction is lowered to �=�J�1−�d. We
call  the jamming gap or distance to jamming. It can be
shown that there is a sufficiently small  that does not
destroy the jamming confinement property, in the sense
that the configuration point R=RJ+�R remains trapped
in a small neighborhood J�R around RJ �Connelly,
1982�. Indeed, there exists a range of positive values of 
that depends on N and the particle arrangements that
maintains the jamming confinement property. We call 

*
the threshold value at which jamming is lost. How does


*
scale with N for a particular d? An elementary analy-

sis based on the idea that in order for a neighbor pair �or
some larger local group� of particles to change places,
the surrounding N−2 �or N−3, . . .� particles must be ra-
dially displaced and compressed outward so as to con-
centrate the requisite free volume around that local in-
terchangeable group concludes that 

*
�CN−1/d, where

the constant C depends on the dimension d and the
original jammed particle configuration.

It is noteworthy that for fixed N and sufficiently small
, it can be shown that asymptotically �through first or-
der in � the set of displacements that are accessible to
the packing approaches a convex limiting polytope �a
closed polyhedron in high dimension� P�R�J�R �Sals-
burg and Wood, 1962; Stillinger and Salsburg, 1969�.

This polytope P�R is determined from the linearized im-
penetrability equations �Donev et al., 2004a, 2004b� and,
for a fixed system center of mass, is necessarily bounded
for a jammed configuration. This implies that the num-
ber of interparticle contacts M is at least one larger than
the dimensionality dCS of the relevant configuration
space. Examples of such low-dimensional polytopes for
a single locally jammed disk are shown in Fig. 10.

Importantly, for an isostatic contact network, P�R is a
simplex �Donev et al., 2005c�. A d-dimensional simplex
in Rd is a closed convex polytope whose d+1 vertices
�zero-dimensional points� do not all lie in a
�d−1�-dimensional flat subspace, or alternatively, it is a
finite region of Rd enclosed by d+1 hyperplanes
��d−1�-dimensional “faces”� �e.g., a triangle for d=2, a
tetrahedron for d=3 or a pentatope for d=4�. For over-
constrained jammed packings �e.g., ordered maximally
dense states�, the limiting high-dimensional polytopes
have more faces than simplices do and can be geometri-
cally very complex �Salsburg and Wood, 1962; Stillinger
and Salsburg, 1969�. The fact that P�R is a simplex for an
isostatic packing enables one to derive rigorous results,
as we now describe.

Consider adding thermal kinetic energy to a nearly
jammed sphere packing in the absence of rattlers. While
the system will not be globally ergodic over the full sys-
tem configuration space and thus not in thermodynamic
equilibrium, one can still define a macroscopic pressure
p for the trapped but locally ergodic system by consid-
ering time averages as the system executes a tightly con-
fined motion around the particular configuration RJ.
The probability distribution Pf�f� of the time-averaged
interparticle forces f has been rigorously linked to the
contact value r=D of the pair-correlation function g2�r�
defined in Sec. II, and this in turn can be related to the
distribution of simplex face hyperareas for the limiting
polytope �Donev et al., 2005c�. Moreover, since the avail-
able �free� configuration volume scales in a predictable
way with the jamming gap , one can show that the re-
duced pressure is asymptotically given by the free-

FIG. 10. �Color online� The polytope of allowed displacements
P�R for a locally jammed disk �light shade� trapped among
three �left� or six �right, as in the triangular lattice� fixed disks.
The exclusion disks �dashed lines� of diameter twice the disk
diameter are drawn around each of the fixed disks, along with
their tangents �lines� and the polytope P�R they bound �black�.
The polytope for the isostatic �left� and overconstrained �right�
case is a triangle and hexagon, respectively.
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volume equation of state �Salsburg and Wood, 1962;
Stillinger and Salsburg, 1969; Donev et al., 2005c�,

p

�kBT
�

1


=

d

1 − �/�J
, �10�

where T is the absolute temperature and � is the number
density. So far as the limiting polytope picture is con-
cerned, the extremely narrow connecting filaments that
in principle connect the jamming neighborhoods have so
little measure that they do not overturn the free-volume
leading behavior of the pressure, even as system size is
allowed to go to infinity. Although there is no rigorous
proof yet for this claim, all numerical evidence strongly
suggests that it is correct. Equation �10� is remarkable
since it enables one to determine accurately the true
jamming density of a given packing, even if the actual
jamming point has not quite yet been reached, just by
measuring the pressure and extrapolating to p=+	.

This free-volume form has been used to estimate the
equation of state along “metastable” extensions of the
hard-sphere fluid up to the infinite-pressure end point,
assumed to be random jammed states �Torquato, 1995b,
2002�. To understand this further, it is useful to recall the
hard-sphere phase behavior in three dimensions; see Fig.
11. For densities between zero and the “freezing” point
��
0.49�, the thermodynamically stable phase is a liq-
uid. Increasing the density beyond the freezing point re-

sults in a first-order phase transition to a crystal branch
that begins at the melting point ��
0.55� and whose
ending point is the maximally dense fcc packing ��

0.74�, which is a jammed packing in which each par-
ticle contacts 12 others �Mau and Huse, 1999�. However,
compressing a hard-sphere liquid rapidly, under the con-
straint that significant crystal nucleation is suppressed,
can produce a range of metastable branches whose den-
sity end points are random jammed packings �Rintoul
and Torquato, 1996b; Torquato, 2002�, which can be re-
garded to be glasses. A rapid compression leads to a
lower random jammed density than that for a slow com-
pression. The most rapid compression presumably leads
to the MRJ state with �
0.64 �Torquato, 2002�.
Torquato �1995a, 1995b� reasoned that the functional
form of the pressure of the stable liquid branch �which
appears to be dominated by an unphysical pole at �=1�
must be fundamentally different from the free-volume
form �10� that applies near jammed states, implying that
the equation of state is nonanalytic at the freezing point
and proposed the following expression along any con-
strained metastable branch:

p

�kBT
= 1 + 4�gF

1 − �F/�J

1 − �/�J
for �F � � � �J, �11�

where �F
0.491 is the packing fraction at the freezing
point, gF
5.72 is the corresponding value of the pair-
correlation function at contact, and �J is the jamming
density, whose value will depend on which metastable
path is chosen. �Torquato �1995a, 1995b� actually consid-
ered the more general problem of nearest-neighbor sta-
tistics of hard-sphere systems, which required an expres-
sion for the equation of state.� Unfortunately, there is no
unique metastable branch �see Fig. 11� because it de-
pends on the particular constraints used to generate the
metastable states or, in other words, the protocol em-
ployed, which again emphasizes one of the themes of
this review. Moreover, in practice, metastable states of
identical spheres in R3 have an inevitable tendency to
crystallize �Rintoul and Torquato, 1996b�, but even in
binary mixtures of hard spheres chosen to avoid crystal-
lization the dispersion of results and ultimate non-
uniqueness of the jammed states still apply. We note that
Kamien and Liu �2007� assumed the same free-volume
form to fit the pressure of “metastable” states for mono-
disperse hard spheres as obtained from both numerical
and experimental data to determine �J. Their best fit
yielded �J=0.6465.

We note that density of states �vibrational modes� in
packings of soft spheres has been the subject of recent
interest �Silbert et al., 2005; Wyart et al., 2005�. Collec-
tive jamming in hard-sphere packings corresponds to
having no “soft modes” in soft-sphere systems, i.e., no
unconstrained local or global particle translations are al-
lowed, except those corresponding to rattlers. Observe
that it immediately follows that if a hard-sphere packing
is collectively jammed to first order in , a corresponding
configuration of purely soft repelling particles will pos-

FIG. 11. �Color� The isothermal phase behavior of three-
dimensional hard-sphere model in the pressure-packing frac-
tion plane. Increasing the density plays the same role as de-
creasing temperature of a molecular liquid; see Fig. 3. Three
different isothermal densification paths by which a hard-sphere
liquid may jam are shown. An infinitesimal compression rate
of the liquid traces out the thermodynamic equilibrium path
�shown in green�, including a discontinuity resulting from the
first-order freezing transition to a crystal branch. Rapid com-
pressions of the liquid while suppressing some degree of local
order �blue curves� can avoid crystal nucleation �on short time
scales� and produce a range of amorphous metastable exten-
sions of the liquid branch that jam only at the their density
maxima. Adapted from Torquato, 2002.
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sess quadratic modes in the vibrational energy spectrum
for such a system of soft spheres.

V. ORDER METRICS

The enumeration and classification of both ordered
and disordered jammed sphere packings for the various
jamming categories is an unresolved problem. Since the
difficulty of the complete enumeration of jammed pack-
ing configurations rises exponentially with the number
of particles, it is desirable to devise a small set of inten-
sive parameters that can characterize packings well. One
obvious property of a sphere packing is the packing frac-
tion �. Another important characteristic of a packing is
some measure of its “randomness” or degree of disor-
der. We have stressed that one ambiguity of the old RCP
concept was that randomness was never quantified. To
do so is a nontrivial challenge, but even the tentative
solutions that have been put forth during the past de-
cade have been profitable not only to characterize
sphere packings �Torquato et al., 2000; Truskett et al.,
2000; Kansal et al., 2002b; Torquato and Stillinger, 2003�
but also glasses, simple liquids, and water �Truskett et
al., 2000; Errington and Debenedetti, 2001; Errington et
al., 2002, 2003�.

One might argue that the maximum of an appropriate
“entropic” metric would be a potentially useful way to
characterize the randomness of a packing and therefore
the MRJ state. However, as pointed out by Kansal et al.
�2002b�, a substantial hurdle to overcome in implement-
ing such an order metric is the necessity to generate all
possible jammed states or, at least, a representative
sample of such states in an unbiased fashion using a
“universal” protocol in the large-system limit, which is
an intractable problem. Even if such a universal protocol
could be developed, however, the issue of what weights
to assign the resulting configurations remains. Moreover,
there are other fundamental problems with entropic
measures, as we will discuss in Sec. VIII, including its
significance for two-dimensional monodisperse hard-
disk packings as well as polydisperse hard-disk packings
with a sufficiently narrow size distribution. It is for this
reason that we seek to devise order metrics that can be
applied to single jammed configurations, as prescribed
by the geometric-structure point of view.

A many-body system of N particles is completely
characterized statistically by its N-body probability den-
sity function P�R ; t� that is associated with finding the
N-particle system with configuration R at some time t.
Such complete information is virtually never available
for large N and, in practice, one must settle for reduced
information, such as a scalar order metric �. Any order
metric � conventionally possesses the following three
properties: �1� it is a well-defined scalar function of a
configuration R; �2� it is subject typically to the normal-
ization 0���1; and �3� for any two configurations RA
and RB, ��RA����RB� implies that configuration RA is
to be considered as more ordered than configuration RB.
The set of order parameters that one selects is unavoid-

ably subjective, given that there appears to be no single
universal scalar measure of order. However, one can
construct order metrics that lead to consistent results
�e.g., common minima for jammed packings�, as we dis-
cuss after considering specific examples.

A. Specific order metrics

Many relevant order metrics have been devised, but
here we describe only some of them. The bond-
orientational order Q� �Steinhardt et al., 1983� in three
dimensions is defined in terms of the spherical harmon-
ics Y�m��i ,�i�, where �i and �i are the polar and azi-
muthal angles �relative to a fixed coordinate system� of
the near-neighbor bond for particle pair i. A near neigh-
bor could be defined as any sphere within a specified
local radius �e.g., set by the first minimum of the pair-
correlation function beyond contact� or by a sphere
within a face-sharing Voronoi polyhedron �Torquato,
2002�. The average of Q� over all of the near-neighbor
bonds Nb provides a global measure of symmetries in
many-particle systems. Of particular interest is the aver-
age when �=6, i.e.,

Q6 � �4�

13 �
m=−6

6 � 1

Nb
�
i=1

Nb

Y6m��i,�i��21/2

, �12�

since it reaches its maximum value for the perfect fcc
lattice and is zero for a Poisson �uncorrelated� point dis-
tribution in the infinite-volume limit �Rintoul and
Torquato, 1996a�; see Fig. 12 for the two-dimensional
analog. It is seen that Q�Q6 /Q6

fcc lies in the closed in-
terval �0,1� and therefore qualifies as an order metric
�Torquato et al., 2000�.

A more local measure of bond-orientational order
Q6,local can be obtained by evaluating the bond order at

FIG. 12. �Color online� Two types of order. �a� Bond-
orientational order contains information about the orientation
of the vectors connecting neighboring particles in the packing
of interest �left�. If these orientations persist throughout the
packing, as they do in a triangular lattice �right�, the packing is
considered to be perfectly bond-orientationally ordered. �b�
Translational order contains information about the relative
spacing of particles in the packing of interest at some fixed
number density �left� relative to that of the densest-particle
configuration at the same number density �right�.
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each sphere individually, and then averaging over all
spheres �Kansal et al., 2002b�, i.e.,

Q6,local �
1

N�
j=1

N �4�

13 �
m=−6

6 � 1

nj
�
i=1

nj

Y6m��i,�i��21/2

,

�13�

where nj is the number of nearest neighbors of sphere j.
This is analogous to the two-dimensional definition of
local bond-orientational order studied by Kansal et al.
�2000�. As noted in that work, such a local measure of
order is more sensitive to small crystalline regions within
a packing than is its global counterpart Q6, and thus
avoids the possibility of “destructive” interference be-
tween differently oriented crystalline regions.

Using the fcc lattice radial coordination structure as a
reference system, one can define a translational order
metric T based upon the mean occupation of sphere cen-
ters within thin concentric shells around each sphere in
the packing as compared to the mean occupation of the
same shells in the fcc lattice and the ideal gas at the
same packing fraction �Torquato et al., 2000; Truskett et
al., 2000�, i.e.,

T � � �
i=1

Nshells

�ni − ni
ideal�

�
i=1

Nshells

�ni
fcc − ni

ideal�� . �14�

Here ni is the average occupancy of the ith shell and
Nshells is the total number of shells employed. Figure 12
shows the two-dimensional analog of this order metric.

All of the order metrics defined above were con-
structed to yield their maximum values of unity �when
appropriately normalized� for the densest and most sym-
metrical �close-packed crystal� packing. Order metrics
that are not based on any specific crystal structure have
also been devised. For example, two different transla-
tional order metrics have been constructed that are
based on functionals of the pair-correlation function
�Truskett et al., 2000�. It has been suggested that local
density fluctuations within a “window” of a given size
also can be a useful order metric �Torquato and Still-
inger, 2003�. In particular, calculation of the local num-
ber variance for a variety of crystal, quasicrystal, and
“hyperuniform” disordered point patterns reveals that it
provides a useful rank order of these hyperuniform spa-
tial patterns at large length scales �Torquato and Still-
inger, 2003; Zachary and Torquato, 2009�. A hyperuni-
form point pattern is one which the infinite-wavelength
density fluctuations vanish or, equivalently, possesses a
structure factor S�k� �defined in Sec. II� that tends to
zero in the limit k→0 �Torquato and Stillinger, 2003�.

B. Characteristics of a good order metric

The specific order metrics have both strengths and
weaknesses. This raises the question of what are the
characteristics of a good order metric? There is clearly

an enormous family of scalar functions that possess the
aforementioned three generic properties of an order
metric �, but they may not necessarily be useful ones. It
has been suggested that a good order metric should have
the following additional properties �Kansal et al., 2002b�:
�1� sensitivity to any type of ordering without bias to-
ward any reference system; �2� ability to reflect the hier-
archy of ordering between prototypical systems given by
common physical intuition �e.g., perfect crystals with
high symmetry should be highly ordered, followed by
quasicrystals, correlated disordered packings without
long-range order, and finally spatially uncorrelated or
Poisson distributed particles�; �3� capacity to detect or-
der at any length scale; and �4� incorporation of both the
variety of local coordination patterns and the spatial dis-
tribution of such patterns should be included. Moreover,
any useful set of order metrics should consistently pro-
duce results that are positively correlated with one an-
other �Torquato et al., 2000; Torquato, 2002�. The devel-
opment of improved order metrics deserves continued
research attention.

VI. ORDER MAPS AND OPTIMAL PACKINGS

The geometric-structure classification naturally em-
phasizes that there is a great diversity in the types of
attainable jammed packings with varying magnitudes of
overall order, density, and other intensive parameters.
The notions of “order maps” in combination with the
mathematically precise “jamming categories” enable
one to view and characterize well-known packing states,
such as the densest sphere packing �Kepler’s conjecture�
and MRJ packings as extremal states in the order map
for a given jamming category. Indeed, this picture en-
compasses not only these special jammed states, but an
uncountably infinite number of other packings, some of
which have only recently been identified as physically
significant, e.g., the jamming-threshold states �least
dense jammed packings� as well as states between these
and MRJ.

The so-called order map �Torquato et al., 2000� pro-
vides a useful means to classify packings, jammed or not.
It represents any attainable hard-sphere configuration as
a point in the �-� plane. This two-parameter description
is but a very small subset of the relevant parameters that
are necessary to fully characterize a configuration, but it
nonetheless enables one to draw important conclusions.
For collective jamming, a highly schematic order map
has previously been proposed �Torquato et al., 2000�.

Here we present a set of refined order maps for each
of three jamming categories in R3 �see Fig. 13� based
both upon early work �Torquato et al., 2000; Kansal et
al., 2002b� and recent investigations �Donev et al., 2004a;
Torquato and Stillinger, 2007�. Crucially, the order maps
shown in Fig. 13 are generally different across jamming
categories and independent of the protocols used to gen-
erate hard-sphere configurations and for present pur-
poses include rattlers. In practice, one needs to use a
variety of protocols to produce jammed configurations
in order to populate the interior and to delineate the
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boundary of the jammed regions shown in Fig. 13 �Kan-
sal et al., 2002b�. Moreover, the frequency of occurrence
of a particular configuration is irrelevant insofar as the
order map is concerned. In other words, the order map
emphasizes a geometric-structure approach to packing
by characterizing single configurations, regardless of
how they were generated or their occurrence probabil-
ity. In Fig. 13, the white and blue regions represent geo-
metrically possible configurations, while the dark shaded
regions are devoid of packings �e.g., maximally dense
packings with very low order-metric values do not exist�.
Clearly, an appreciably reduced region of attainable
packings will be occupied by jammed packings, and for
any finite packing, its size must decrease as the strin-
gency of the jamming category increases. In the infinite-
size limit �not shown in Fig. 13�, the regions occupied by
collectively and strictly jammed sets become identical.
The following extremal points or loci in each jammed
region are particularly interesting �Fig. 14�:

�1� The locus of points A-A� corresponds to the lowest-
density jammed packings. We denote by �min the
corresponding jamming-threshold packing fraction.
These packings are expected to be characterized by
a relatively high degree of order �Torquato and Still-
inger, 2007�.

�2� The locus of points B-B� correspond to the densest
jammed packings with packing fraction �max.

�3� The MRJ point represents the maximally random
jammed state. Exclusion of rattlers from the MRJ
state compromises its maximal irregularity; the cor-

responding displaced position in the order map in-
volves a small reduction in packing fraction from
�
0.64 and a slight increase in order measure.

�4� More generally, any point along the boundary of the
region is an extremal point, residing at the limit of
attainability for the jamming category under
consideration.

A. Strict jamming

We first discuss the strict-jamming order map. The
densest sphere packings in three dimensions which lie
along the locus B-B� are strictly jammed �Torquato and
Stillinger, 2001; Donev et al., 2004a� implying that their
shear moduli are infinitely large �Torquato et al., 2003�.
We take point B to correspond to the fcc packing, i.e., it
is the most ordered and symmetric densest packing. The
other points along the line B-B� represent the stacking
variants of the fcc packing. All can be conveniently
viewed as stacks of planar triangular arrays of spheres,
within which each sphere contacts six neighbors. These
triangular layers can be stacked on one another, fitting
spheres of one layer into “pockets” formed by nearest-
neighbor triangles in the layer below. At each such layer
addition there are two choices of which set of pockets in
the layer below are to be filled. Thus, all of the stacking
variants can individually be encoded by an infinite bi-
nary sequence and therefore constitute an uncountably
infinite number of maximally dense packings called the
Barlow packings �Barlow, 1883�. The most disordered

FIG. 13. �Color� Schematic order maps in the density-order ��-�� plane for the three different jamming categories in R3 under
periodic boundary conditions. White and blue regions contain the attainable packings, blue regions represent the jammed sub-
spaces, and dark shaded regions contain no packings. The locus of points A-A� correspond to the lowest-density jammed packings.
The locus of points B-B� correspond to the densest jammed packings. Points MRJ represent the maximally random jammed states,
i.e., the most disordered states subject to the jamming constraint. It should be noted that the packings represented are not subject
to rattler exclusion.

FIG. 14. �Color online� Three different opti-
mal strictly jammed packings identified in the
rightmost graph of Fig. 13. Left panel: �A� Z
=7. Middle panel: MRJ: Z=6 �isostatic�.
Right panel: �B� Z=12.
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subset of these is denoted by point B�. A rigorous proof
that �max=� /�18=0.740 48. . . has only recently ap-
peared �Hales, 2005�. In two dimensions, the strictly
jammed triangular lattice is the unique densest packing
�Fejes Tóth, 1964� and so for d=2 the line B-B� col-
lapses to a single point B.

The MRJ state is a well-defined minimum in an order
map in that for a particular choice of jamming category
and order metric it can be identified unambiguously. The
MRJ concept is automatically compromised by passing
to either the maximal packing density �fcc and its stack-
ing variants� or the minimal possible density for strict
jamming �tunneled crystals�, thereby causing any reason-
able order metric to rise on either side. This eliminates
the possibility of a flat horizontal portion of the lower
boundary of the jammed accessible region in the �-�
plane in Fig. 13 �multiple MRJ states with different den-
sities� and therefore indicates the uniqueness of the
MRJ state in density for a particular order metric. In-
deed, at least for collective and strict jamming in three
dimensions, a variety of sensible order metrics produce
an MRJ state with a packing fraction approximately
equal to 0.64 �Kansal et al., 2002b� �see Fig. 8�, close to
the traditionally advocated density of the RCP state, and
with an isostatic mean contact number Z=6. This con-
sistency among the different order metrics speaks to the
utility of the order-metric concept, even if a perfect or-
der metric has not yet been identified. However, the
packing fraction of the MRJ state should not be con-
fused with the MRJ state itself. It is possible to have a
rather ordered strictly jammed packing at this same den-
sity �Kansal et al., 2002b�, as shown in Fig. 13; for ex-
ample, a jammed but vacancy-diluted fcc lattice packing.
This is one reason why the two-parameter order map
description of packings is not only useful but necessary.
In other words, density alone is far from sufficient in
characterizing a jammed packing.

The packings corresponding to the locus of points
A-A� have received little attention until recently. Al-
though it has not yet been rigorously established as such,
a candidate for the lower limiting packing fraction �min
for strictly jammed packings is the subset of “tunneled
crystals” that contain linear arrays of vacancies
�Torquato and Stillinger, 2007�. These relatively sparse
structures are generated by stacking planar “honey-
comb” layers one upon another, and they all amount to
removal of one-third of the spheres from the maximally
dense structures with packing fraction �max. Conse-
quently, �min=2�max/3=0.493 65. . .. Every sphere in a
tunneled crystal contacts seven immediate neighbors in
one of two possible coordination geometries, and all of
the stacking variants exhibit some form of long-range
order. It is appropriate to view the two families of
maximum-density and minimum-density strictly jammed
packings as structural siblings of one another. Note that
jammed packings can trivially be created whose densi-
ties span the entire range between these extremal cases
simply by filling an arbitrary fraction of the vacant sites
in any one of the tunneled structures. The dashed lines

joining the points A to B and points A� to B� shown in
Fig. 13 are the result of sequentially filling the most or-
dered and disordered tunneled crystals with spheres un-
til the filling process ends with the most ordered and
disordered densest Barlow packings, respectively. Inter-
estingly, the tunneled crystals exist at the edge of me-
chanical stability since removal of any one sphere from
the interior would cause the entire packing to collapse.
It is noteworthy that Burnell and Sondhi �2008� showed
that an infinite subclass of the tunneled crystals has an
underlying topology that greatly simplifies the determi-
nation of their magnetic phase structure for nearest-
neighbor antiferromagnetic interactions and O�N� spins.

It should come as no surprise that ensemble methods
that produce “most probable” configurations typically
miss interesting extremal points in the order map, such
as the locus of points A-A� and the rest of the jamming-
region boundary, including remarkably enough the line
B-B�. However, numerical protocols can be devised to
yield unusual extremal jammed states, as discussed in
Sec. VII, for example.

Observe that irregular jammed packings can be cre-
ated in the entire nontrivial range of packing fraction
0.64
�
0.740 48. . . �Torquato et al., 2000; Kansal et al.,
2002b� using the LS algorithm. Thus, in the rightmost
plot in Fig. 13, the MRJ-B� portion of the boundary of
the jammed set, possessing the lowest order metric, is
demonstrably achievable. Until recently, no algorithms
have produced disordered strictly jammed packings to
the left of the MRJ point. A new algorithm described
elsewhere �Torquato and Jiao, 2010c� has indeed yielded
such packings with �
0.60, which are overconstrained
with Z
6.4, implying that they are more ordered than
the MRJ state �see Sec. VII for details�. The existence of
disordered strictly jammed packings with such anoma-
lously low densities expands conventional thinking
about the nature and diversity of disordered packings
and places in a broader context those protocols that pro-
duce “typical” configurations.

Indeed, there is no fundamental reason why the entire
lower boundary of the jammed set between the low-
density jamming threshold and MRJ point cannot also
be realized. Note that such low-density disordered pack-
ings are not so-called “random loose” packings, which
are even less well defined than RCP states. For example,
it is not clear that the former are even collectively
jammed. A necessary first step would be to classify the
jamming category of a random loose packing �RLP�,
which has yet to be done. Therefore, the current ten-
dency in the literature to put so-called RCP and RLP on
the same footing as far as jamming is concerned �Song et
al., 2008� is premature at best.

In R2, the so-called “reinforced” kagomé packing with
precisely four contacts per particle �in the infinite-
packing limit� is evidently the lowest density strictly
jammed subpacking of the triangular lattice packing
�Donev et al., 2004a� with �min=�3� /8=0.680 17. . .. Note
that this packing has the isostatic contact number Z=4
and yet is an ordered packing, which runs counter to the
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prevalent notion that isostaticity is a consequence of
“genericity” or randomness �Moukarzel, 1998�.

B. Collective and local jamming

Observe that the locus of points B-B� is invariant un-
der change of the jamming category, as shown in Fig. 13.
This is not true of the MRJ state, which will generally
have a different location in the local-jamming and
collective-jamming order maps. Another important dis-
tinction is that it is possible to pack spheres subject only
to the weak locally jammed criterion so that the result-
ing packing fraction is arbitrarily close to zero �Böröc-
zky, 1964; Stillinger et al., 2003�. But demanding either
collective jamming or strict jamming evidently forces �
to equal or exceed a lower limit �min that is well above
zero.

C. Broader applications to other condensed states of matter

Although methods for characterizing structural order
in regular crystalline solids are well established �Ash-
croft and Mermin, 1976; Chaikin and Lubensky, 1995�,
similar techniques for noncrystalline condensed states of
matter are not nearly as advanced. The notions of order
metrics and order maps have been fruitfully extended to
characterize the degree of structural order in condensed
phases of matter in which the constituent molecules
�jammed or not� possess both attractive and repulsive
interactions. This includes the determination of the or-
der maps of models of simple liquids, glasses, and crys-
tals with isotropic interactions �Truskett et al., 2000; Err-
ington et al., 2003�, models of water �Errington and
Debenedetti, 2001; Errington et al., 2002�, and models of
amorphous polymers �Stachurski, 2003�.

VII. PROTOCOL BIAS, LOSS OF ERGODICITY, AND
NONUNIQUENESS OF JAMMED STATES

A dilute system of N disks or spheres is free to recon-
figure largely independently of particle-pair nonoverlap
constraints. However, as � increases as a result either of
compression or of particle size growth, those constraints
consume larger portions of the dN-dimensional configu-
ration space, making reconfiguring more difficult. In-
deed, the available subspace begins to fracture, produc-
ing isolated “islands” that each eventually collapse with
increasing � into jammed states �Salsburg and Wood,
1962�. This fracturing or disconnection implies dynami-
cal nonergodicity. Owing to permutation possibilities for
N identical objects, each disconnected region belongs to
a large family of essentially N! equivalent regions. But
the configuration space fracturing has even greater com-
plexity in that the number of inequivalent such families
and their jamming limits rises exponentially with N in
the large-system asymptotic limit. The jamming-limit �
values for the families vary over the ranges shown in Fig.
13 for collective and strict jamming.

Figure 15 offers a simple schematic to illustrate this
dN-dimensional disconnection feature. Several allowed
regions with different sizes and shapes are shown. Their
boundaries consist of sets of slightly curved hypersur-
faces, each of which corresponds to a particle pair con-
tact or contact with a hard wall if present. Particle
growth or system compression causes hypersurfaces
�numbering at least dN+1 for hard walls� to move in-
ward, reducing region content toward zero. The larger
the region shown, the larger should be understood its
jamming � value. The basic issue involved in either
laboratory or computer experiments is how and why the
various jamming protocols used populate the discon-
nected regions. Presumably any given algorithm has as-
sociated with it a characteristic set of occupation
weights, leading in turn to well-defined averages for any
property of interest, including packing fraction � and
any chosen order metric �. The fact that these averages
indeed vary with algorithm is a major point of the
present review.

Ensemble methods have been invoked to attach spe-
cial significance to so-called “typical” or “unique” pack-
ings because of their frequency of occurrence in the spe-
cific method employed. In particular, significance has
been attached to the so-called unique J �jammed� point,
which is suggested to correspond to the onset of collec-
tive jamming in soft sphere systems �O’Hern et al.,
2003�. The order maps described in Sec. V as well as the
ensuing discussion demonstrate that claims of such
uniqueness overlook the wide variability of packing al-
gorithms and the distribution of configurations that they
generate. Individual packing protocols �numerical or ex-
perimental� produce jammed packings that are strongly
concentrated in isolated pockets of configuration space
that are individually selected by those protocols. There-
fore, conclusions drawn from any particular protocol are
highly specific rather than general in our view.

Indeed, one can create protocols that can lead to

FIG. 15. �Color online� A schematic of the disjoint set of
nearly jammed packings �dark shaded regions� that develop in
multidimensional configuration space as covering fraction �
increases. The two axes represent the collection of configura-
tional coordinates. Note that each individual region ap-
proaches a polytope in the jamming limit, as discussed in Sec.
IV.C.
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jammed packings at any preselected density with a high
probability of occurrence anywhere over a wide density
range. Unless it were chosen to be highly restrictive, a
typical disk or sphere jamming algorithm applied to a
large number N of particles would be capable of produc-
ing a large number of geometrically distinguishable re-
sults. In particular, these distinguishable jammed con-
figurations from a given algorithm would show some
dispersion in their � and � values. However, upon com-
paring the distributions of obtained results for a substan-
tial range of particle numbers N �with fixed boundary
conditions�, one must expect a narrowing of those distri-
butions with increasing N owing to operation of a cen-
tral limit theorem. Indeed, this narrowing would con-
verge individually onto values that are algorithm
specific, i.e., different from one another. Figure 16 pro-
vides a clear illustration of such narrowing with respect
to � distributions, with evident variation over algo-
rithms, as obtained by Jiao et al. �2010b�. The examples
shown contrast results for two distinctly different sphere
system sizes ��250 and �2500 particles� and for two dif-
ferent algorithms that have results for disordered
jammed packings converging, respectively, onto packing
fractions of about 0.60, 0.64, 0.68, and 0.72. The histo-
gram for the lowest density was produced using the new
algorithm �Torquato and Jiao, 2010c� noted in Sec. VI,
while the other two histograms were generated using the
LS algorithm. We stress again that any temptation to
select a specific � value as uniquely significant �e.g., 0.64�
is primarily based on inadequate sampling of the full
range of algorithmic richness and diversity that is avail-
able at least in the underlying mathematical theory of
sphere jamming.

VIII. ATTRIBUTES OF THE MAXIMALLY RANDOM
JAMMED STATE

The MRJ state under the strict-jamming constraint is
a prototypical glass �Torquato and Stillinger, 2007� in

that it is maximally disordered without any long-range
order and perfectly rigid �the elastic moduli are indeed
unbounded �Torquato et al., 2003��. This endows such
packings, which are isostatic �Z=2d�, with special at-
tributes �Donev et al., 2005, 2005c�. For example, the
pair-correlation function g2�r� �which provides the
distribution of pair distances� of three-dimensional
MRJ packings possesses a split second peak
�Zallen, 1983�, with a prominent discontinuity at twice
the sphere diameter, as shown in the left panel of Fig. 17,
which is a well-known characteristic of disordered
jammed packings. The values r=�3D and r=2D are
highlighted in Fig. 17, and match the two observed
singularities. Interestingly, an integrable power-law
divergence �1/ �r /D−1�� with �
0.4� exists for near
contacts �Donev et al., 2005c�. No peaks are observed at
r=�2D or r=�5D, which are typical of crystal packings,
indicating that there is no detectable undistorted crystal
ordering in the packing. We note that in a computational
study of stiff “soft” spheres �Silbert et al., 2002�, a nearly
square-root divergence for near contacts was found.

The MRJ state possesses unusual spatial density fluc-
tuations. It was conjectured �Torquato and Stillinger,
2003� that all strictly jammed saturated packings of con-
gruent spheres �disordered or not� are hyperuniform,
i.e., infinite-wavelength density fluctuations vanish or,
equivalently, the structure factor S�k� vanishes in the
limit k→0. �Recall that a saturated packing is one in
which no space exists to insert additional particles.� Dis-
ordered hyperuniform point distributions are uncom-
mon. Not only was this conjecture verified numerically
for an MRJ-like state using a million-particle packing of
monodisperse spheres, but it was shown that the struc-
ture factor has an unusual nonanalytic linear depen-
dence near the origin �Donev et al., 2005�, namely, S�k�
�	k	 for k→0, or equivalently, a quasi-long-ranged tail
of the total pair-correlation function h�r��−r−4. This
same linear nonanalytic behavior of S�k� near the origin

FIG. 16. �Color online� Packing protocols can
be devised that lead to strictly jammed states
at any specific density with a high probability
of occurrence anywhere over a wide density
range. Shown are histograms of jammed
packings that are centered around four differ-
ent packing fractions: �
0.60, 0.64, 0.68, and
0.72, as obtained by Jiao et al. �2010b�. The
distributions become narrower as the system
size increases.
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is also found in such diverse three-dimensional systems
as the early Universe �Peebles, 1993�, ground state of
liquid helium �Feynman and Cohen, 1956; Reatto and
Chester, 1967�, and noninteracting spin-polarized fermi-
onic ground states �Torquato et al., 2008; Scardicchio et
al., 2009�. The generalization of the aforementioned
conjecture that describes when strictly jammed satu-
rated packings of noncongruent sphere packings as well
as other particle shapes has been given by Zachary et al.
�2010�. Specifically, the void spaces of general MRJ
packings are highly constrained by the underlying con-
tact network, which induce hyperuniformity and quasi-
long-range behavior of the two-point probability func-
tion for the void phase.

The quasi-long-range behavior of g2�r� as well as the
aforementioned pair-correlation features distinguish the
MRJ state strongly from that of the equilibrium hard-
sphere fluid �Hansen and McDonald, 1986�, which is
characterized by a structure factor that is analytic at k
=0 and thus has a pair-correlation function that decays
exponentially fast to unity for large r. Consequently,
early attempts �Bernal, 1960� to use disordered jammed
packings to model liquid structure were imprecise.

It should be recognized that MRJ-like sphere pack-
ings created in practice via computer algorithms
�Torquato et al., 2000; O’Hern et al., 2002; Donev et al.,
2005� or actual experiments may contain a small concen-
tration of rattlers, the average concentration of which is
protocol dependent. The packings leading to the data
shown in Fig. 17 contain between 2% and 3% rattlers.
Thus, the hyperuniformity property of the MRJ state
requires that the rattlers be retained in the packing.

It is well known that lack of “frustration” �Jullien et
al., 1997; Torquato, 2002� in two-dimensional analogs of
three-dimensional computational and experimental pro-
tocols that lead to putative RCP states result in packings
of identical disks that are highly crystalline, forming
rather large triangular coordination domains �grains�.
Such a 1000-particle packing with �
0.88 is shown in
the right panel of Fig. 8 and is only collectively jammed
at this high density. Because such highly ordered pack-

ings are the most probable outcomes for these typical
protocols, “entropic measures” of disorder would iden-
tify these as the most disordered, a misleading conclu-
sion. An appropriate order metric, on the other hand, is
capable of identifying a particular configuration �not an
ensemble of configurations� of considerably lower den-
sity �e.g., a jammed vacancy-diluted triangular lattice or
its multidomain variant� that is consistent with our intui-
tive notions of maximal disorder. However, typical pack-
ing protocols would almost never generate such disor-
dered disk configurations because of their inherent
implicit bias toward undiluted crystallization. Note that
the same problems persist even for polydisperse disk
packings provided that the size distribution is sufficiently
narrow.

Importantly, previously reported low packing frac-
tions of 0.82–0.84 for so-called RCP disk arrangements
�Berryman, 1983� were found not even to be collectively
jammed �Donev et al., 2004a�. This conclusion demon-
strates that the distinctions between the different jam-
ming categories are crucial. Moreover, the geometric-
structure approach to jamming reveals the basic
importance of collective motions potentially involving
an arbitrarily large number of particles. Therefore,
methods that assume collective jamming based only on
packing fraction and local criteria, such as nearest-
neighbor coordination and Voronoi statistics �Song et al.,
2008�, are incomplete.

IX. PACKINGS OF SPHERES WITH A SIZE
DISTRIBUTION

Polydispersity in the size of the particles constitutes a
fundamental feature of the microstructure of a wide
class of dispersions of technological importance,
including those involved in composite solid propellant
combustion �Kerstein, 1987�, sintering of powders
�Rahaman, 1995�, colloids �Russel et al., 1989�, transport
and mechanical properties of particulate composite
materials �Christensen, 1979�, and flow in packed beds
�Scheidegger, 1974�.
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FIG. 17. �Color online� Pair statistics for packings in the immediate neighborhood of the three-dimensional MRJ state �Kansal et
al., 2002b� with �
0.64. Left panel: Computational data on the pair-correlation function g2�r� vs r /D−1 averaged over five
packings of 10 000 spheres �Donev et al., 2005c� of diameter D. It is normalized so that at large distances it tends to unity,
indicating no long-range order. The split second peak, the discontinuity at twice the sphere diameter, and the divergence near
contact are clearly visible. Right panel: The corresponding structure factor S�k� as a function of the dimensionless wave number
kD / �2�� for a million-particle packing �Donev et al., 2005�. The inset shows the linear �	k	� nonanalytic behavior at k=0.
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The spheres generally possess a distribution in radius
R characterized by a probability density f�R� that nor-
malizes to unity, i.e.,

�
0

	

f�R�dR = 1. �15�

The average of any function w�R� is defined by

�w�R�� = �
0

	

w�R�f�R�dR . �16�

The overall packing fraction � of the system is defined
as

� = ��v1�R�� , �17�

where � is the total number density, v1�R� is given by Eq.
�2�, and �v1�R�� is the average sphere volume defined by

�v1�R�� =
�d/2

��1 + d/2�
�Rd� . �18�

There is a variety of choices for the size distribution
f�R� that deserve consideration. Two continuous prob-
ability densities that have been widely used to character-
ize physical phenomena are the Schulz �1939� and
logarithmic-normal �Cramer, 1954� distributions. The
Schulz distribution is defined as

f�R� =
1

��m + 1�
�m + 1

�R�
m+1

Rm exp�− �m + 1�R
�R� � ,

�19�

where ��x� is the Gamma function. When the parameter
m is restricted to non-negative integer values, ��m+1�
=m!, and the nth moment of this distribution is given by

�Rn� =
�m + n�!

m!

1

�m + 1�n �R�n. �20�

By increasing m, the variance decreases, i.e., the distri-
bution becomes sharper. In the monodisperse limit m
→	, f�R�→�R− �R��. The case m=0 gives an exponen-
tial distribution in which many particles have extremely

small radii. By contrast, the logarithmic-normal distribu-
tion is defined as

f�R� =
1

R�2��2
exp�−

�ln�R/�R���2

2�2 � , �21�

where �2= ��ln R�2�− �ln R�2. The quantity ln R has a nor-
mal or Gaussian distribution. The nth moment is given
by

�Rn� = exp�n2�2/2��R�n. �22�

As �2→0, f�R�→�R− �R��. Figure 18 shows examples
of the Schulz and logarithmic-normal size distributions.

One can obtain corresponding results for spheres with
M discrete different sizes from the continuous case by
letting

f�R� = �
i=1

M
�i

�
�R − Ri� , �23�

where �i and Ri are number density and radius of type-i
particles, respectively, and � is the total number density.
Therefore, the overall volume fraction using Eq. �17� is
given by

� = �
i=1

M

��i�, �24�

where

��i� = �iv1�Ri� �25�

is the packing fraction of the ith component.
Sphere packings with a size distribution exhibit in-

triguing structural features, some of which are only be-
ginning to be understood. It is known, for example, that
a relatively small degree of polydispersity can suppress
the disorder-order phase transition seen in monodis-
perse hard-sphere systems �Henderson et al., 1996�. In-
terestingly, equilibrium mixtures of small and large hard
spheres can “phase separate” �i.e., the small and large
spheres demix� at sufficiently high densities but the pre-
cise nature of such phase transitions has not yet been
established and is a subject of intense interest; see Dijk-
stra et al. �1999�, and references therein.
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FIG. 18. Frequently used hard-sphere size distributions. Left panel: Schulz size distribution for several values of m. Right panel:
Logarithmic-normal size distribution for several values of �.
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Our main interest here is in dense polydisperse pack-
ings of spheres, especially jammed ones. Little is rigor-
ously known about the characteristics of such systems.
For example, the maximal overall packing fraction of
even a binary mixture of hard spheres in Rd, which we
denote by �max

�2� , for arbitrary values of the mole fractions
and radii R1 and R2 is unknown, not to mention the
determination of the corresponding structures. How-
ever, one can bound �max

�2� from above and below in
terms of the maximal packing fraction �max

�1� for a mono-
disperse sphere packing in the infinite-volume limit us-
ing the following analysis of Torquato �2002�. It is clear
that �max

�2� is bounded from below by the maximum pack-
ing fraction �max

�1� . The lower bound �max
�2� ��max

�1� is inde-
pendent of the radii and corresponds to the case when
the two components are completely phase separated �de-
mixed�, each at the packing fraction �max

�1� . Moreover, one
can bound �max

�2� from above in terms of the monodis-
perse value �max

�1� for arbitrary values of R1 and R2. Spe-
cifically, consider a wide separation of sizes �R1�R2�
and imagine a sequential process in which the larger
spheres are first packed at the maximum density �max

�1�

for a monodisperse packing. The remaining interstitial
space between the larger spheres can now be packed
with the smaller spheres at the packing fraction �max

�1�

provided that R1 /R2→0. The overall packing fraction in
this limit is given by 1− �1−�max

�1� �2, which is an upper
bound for any binary packing. Thus, �max

�2� �1− �1
−� /�12�2
0.991 for d=2 and �max

�2� �1− �1−� /�18�2


0.933 for d=3, where �max
�1� corresponds to the maximal

packing fraction in two and three dimensions, respec-
tively.

The same arguments extend to systems of M different
hard spheres with radii R1 ,R2 , . . . ,RM in Rd �Torquato,
2002�. Specifically, the overall maximal packing fraction
�max

�M� of such a general mixture in Rd �where � is defined
by Eq. �17� with Eq. �23�� is bounded from above and
below by

�max
�1� � �max

�M� � 1 − �1 − �max
�1� �M. �26�

The lower bound corresponds to the case when the M
components completely demix, each at the density �max

�1� .
The upper bound corresponds to the generalization of
the aforementioned ideal sequential packing process for
arbitrary M in which we take the limits R1 /R2→0,
R2 /R3→0, . . . ,RM−1 /RM→0. Specific nonsequential pro-
tocols �algorithmic or otherwise� that can generate struc-
tures that approach the upper bound �Eq. �26�� for arbi-
trary values of M are currently unknown and thus the
development of such protocols is an open area of re-
search. We see that in the limit M→	 the upper bound
approaches unity, corresponding to space-filling polydis-
perse spheres with an infinitely wide separation in sizes
�Herrmann et al., 1990�. Furthermore, one can also
imagine constructing space-filling polydisperse spheres
with a continuous size distribution with sizes ranging to
the infinitesimally small �Torquato, 2002�.

Jammed binary packings have received some atten-

tion but their characterization is far from complete.
Here we note work concerned with maximally dense bi-
nary packings as well as disordered jammed binary
packings in two and three dimensions. Among these
cases, we know most about the determination of the
maximally dense binary packings in R2. Let RS and RL
denote the radii of the small and large disks �RS�RL�,
the radii ratio �=RS /RL and xS be the number fraction
of small disks in the entire packing. Ideally, it is desired
to obtain �max as a function of � and xS. In practice, we
have a sketchy understanding of the surface defined by
�max�� ,xS�. Fejes Tóth �1964� reported a number of can-
didate maximally dense packing arrangements for cer-
tain values of the radii ratio in the range �
�0.154 701. . .. Maximally dense binary disk packings
have been also investigated to determine the stable crys-
tal phase diagram of such alloys �Likos and Henley,
1993�. The determination of �max for sufficiently small �
amounts to finding the optimal arrangement of the small
disks within a tricusp: the nonconvex cavity between
three close-packed large disks. A particle-growth Monte
Carlo algorithm was used to generate the densest ar-
rangements of small identical disks �ranging in number
from 1 to 19� within such a tricusp �Uche et al., 2004�. All
of these results can be compared to a relatively sharp
upper bound on �max given by

�max � �U =
��2 + 2�1 − �2�arcsin��/�1 + ���

2��1 + 2��1/2 . �27�

The fraction �U corresponds to the densest local packing
arrangement for three binary disks shown in Fig. 19 and

FIG. 19. One large disk and two small disks in mutual contact
provide the densest local arrangement of binary disks �Florian,
1960�. The intersection of the shaded triangle with the three
disks yields the local packing fraction �U= ���2+2�1
−�2�arcsin�� / �1+���� /2��1+2��1/2, where �=RS /RL.
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hence bounds �max from above �Florian, 1960�. Inequal-
ity �27� also applies to general multicomponent pack-
ings, where � is taken to be the ratio of the smallest disk
radius to the largest disk radius.

The most comprehensive study of the densest possible
packings of binary spheres in R3 as well as more general
size-discrete mixtures has recently been reported by
Hudson and Harrowell �2008�. They generated candi-
date maximally dense polydisperse packings based on
filling the interstices in uniform three-dimensional tilings
of space with spheres of different sizes. They were able
to find for certain size ratios and compositions a number
of new packings. See Hudson and Harrowell �2008� for
details and some history on the three-dimensional prob-
lem.

One of the early numerical investigations of disor-
dered jammed packings of binary disks in R2 and binary
spheres in R3 employed a drop and roll procedure �Viss-
cher and Bolsterli, 1972�. Such numerical protocols and
others �Okubo and Odagaki, 2004�, in which there is a
preferred direction in the system, tend to produce statis-
tically anisotropic packings, which exhibit lower densi-
ties than those generated by packing protocols that yield
statistically isotropic packings �Donev et al., 2004a�. It is
not clear that the former packings are collectively
jammed. In two dimensions, one must be especially
careful in choosing a sufficiently small size ratio in order
to avoid the tendency of such packings to form highly
crystalline arrangements. The LS algorithm has been
used successfully to generate disordered strictly jammed
packings of binary disks with �
0.84 and �−1=1.4
�Donev et al., 2006�. By explicitly constructing an expo-
nential number of jammed packings of binary disks with
densities spanning the spectrum from the accepted
amorphous glassy state to the phase-separated crystal, it
has been argued �Donev et al., 2006; Donev, Stillinger,
and Torquato, 2007� that there is no “ideal glass transi-
tion” �Parisi and Zamponi, 2005�. The existence of an
ideal glass transition remains a much debated topic of
research.

In three dimensions, it was shown by Schaertl and
Sillescu �1994� that increasing polydispersity increases
the packing fraction over the monodisperse value that
an amorphous hard-sphere system can possess. The LS
algorithm has been extended to generate jammed sphere
packings with a polydispersity in size �Kansal et al.,
2002a�. It was applied to show that disordered packings
with a wide range of packing fractions that exceed 0.64
and varying degrees of disorder can be achieved; see
also Chaudhuri et al. �2010�. Not surprisingly, the deter-
mination of the maximally random jammed �MRJ� state
for an arbitrary polydisperse sphere packing is a wide
open question. Clusel et al. �2009� carried out a series of
experiments to understand polydisperse random pack-
ings of spheres. Specifically, they produced three-
dimensional random packings of frictionless emulsion
droplets with a high degree of size polydispersity and
visualize and characterize them using confocal micros-
copy.

The aforementioned investigations and the many co-

nundrums that remain serve to illustrate the richness of
polydisperse jammed packings but further discussion is
beyond the scope of this review.

X. PACKINGS OF NONSPHERICAL PARTICLES

Jammed packing characteristics become considerably
more complex by allowing for nonspherical particle
shapes �Betke and Henk, 2000; Roux, 2000; Williams
and Philipse, 2003; Donev, Cisse, et al., 2004; Donev,
Stillinger, et al., 2004; Donev et al., 2005a, 2005b; Man et
al., 2005; Conway and Torquato, 2006; Chaikin et al.,
2007; Donev, Connelly, et al., 2007; Chen, 2008; Haji-
Akbari et al., 2009; Torquato and Jiao, 2009a, 2009b,
2010b; Chen et al., 2010; Jiao et al., 2010a; Kallus et al.,
2010�. We focus here on the latest developments in this
category, specifically for particle shapes that are continu-
ous deformations of a sphere �ellipsoids and superballs�
as well as polyhedra. Nonsphericity introduces rota-
tional degrees of freedom not present in sphere packings
and can dramatically alter the jamming characteristics
from those of sphere packings. �We note in passing that
there has been deep and productive examination of the
equilibrium phase behavior and transport properties of
hard nonspherical particles �Frenkel and Maguire, 1983;
Frenkel et al., 1984; Allen, 1993; Yatsenko and
Schweizer, 2008�.�

Recent developments have provided organizing prin-
ciples to characterize and classify jammed packings of
nonspherical particles in terms of shape symmetry of the
particles �Torquato and Jiao, 2009a�. We elaborate on
these principles in Sec. X.C where we discuss packings
of polyhedra. We begin the discussion by considering
developments within the last several years on ellipsoid
packings, which has spurred much of the resurgent inter-
est in dense packings of nonspherical particles.

A. Ellipsoid packings

One simple generalization of the sphere is an ellip-
soid, the family of which is a continuous deformation of
a sphere. A three-dimensional ellipsoid is a centrally
symmetric body occupying the region

�x1/a�2 + �x2/b�2 + �x3/c�2 � 1, �28�

where xi �i=1,2 ,3� are Cartesian coordinates and a, b,
and c are the semiaxes of the ellipsoid. Thus, we see that
an ellipsoid is an affine �linear� transformation of the
sphere. A spheroid is an ellipsoid in which two of the
semiaxes are equal, say, a=c, and is a prolate �elongated�
spheroid if b�a and an oblate �flattened� spheroid if b
�a.

Figure 20 shows how prolate and oblate spheroids are
obtained from a sphere by a linear stretch and shrinkage
of the space along the axis of symmetry, respectively.
This figure also illustrates two other basic points by in-
scribing the particles within the smallest circular cylin-
ders. The fraction of space occupied by each of the par-
ticles within the cylinders is an invariant equal �due to
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the affine transformations� to 2/3. This might lead one
to believe that the densest packing of ellipsoids is given
by an affine transformation of one of the densest sphere
packings, but such transformations necessarily lead to
ellipsoids that all have exactly the same orientations. Ex-
ploiting the rotational degrees of freedom so that the
ellipsoids are not all required to have the same orienta-
tions turns out to lead to larger packing fractions than
that for maximally dense sphere packings. Furthermore,
because the fraction of space remains the same in each
example shown in Fig. 20, the sometimes popular notion
that going to the extreme “needlelike” limit �b /a→	� or
extreme “disklike” limit �b /a→0� can lead to packing
fractions � approaching unity is misguided.

Experiments on M&M® candies �spheroidal particles�
�Donev, Cisse, et al., 2004; Man et al., 2005� as well as
numerical results produced by a modified LS algorithm
�Donev et al., 2005a, 2005b� found MRJ-like packings
with packing fractions and mean contact numbers that
were higher than for spheres. This led to a numerical
study of the packing fraction � and mean contact num-
ber Z as a function of the semiaxes �aspect� ratios.

The results were quite dramatic in several respects. It
was first shown that � and Z, as a function of aspect
ratio, each have a cusp �i.e., nondifferentiable� minimum
at the sphere point, and � versus aspect ratio possesses a
density maximum; see Fig. 21, which shows the more
refined calculations presented by Donev, Connelly, et al.
�2007�. The existence of a cusp at the sphere point runs
counter to the prevailing expectation in the literature
that for “generic” �disordered� jammed frictionless par-
ticles the total number of �independent� constraints
equals the total number of degrees of freedom df, imply-
ing a mean contact number Z=2df �df=2 for disks, df
=3 for ellipses, df=3 for spheres, df=5 for spheroids, and
df=6 for general ellipsoids�. This has been referred to as
the isostatic conjecture �Alexander, 1998� or isocounting
conjecture �Donev, Connelly, et al., 2007�. Since df in-
creases discontinuously with the introduction of rota-
tional degrees of freedom as one makes the particles
nonspherical, the isostatic conjecture predicts that Z

should have a jump increase at aspect ratio �=1 to a
value of Z=12 for a general ellipsoid. Such a discontinu-
ity was not observed by Donev, Cisse, et al. �2004�,
rather it was observed that jammed ellipsoid packings
are hypostatic Z
2df near the sphere point, and only
become nearly isostatic for large aspect ratios. In fact,
the isostatic conjecture is only rigorously true for amor-
phous sphere packings after removal of rattlers; generic
nonspherical-particle packings should generally be hy-
postatic �or subisostatic� �Roux, 2000; Donev, Connelly,
et al., 2007�.

Until recently, it was accepted that a subisostatic or
hypostatic packing of nonspherical particles cannot be
rigid �jammed� due to the existence of “floppy” modes
�Alexander, 1998�, which are unjamming motions
�mechanisms� derived within a linear theory of rigidity,
i.e., a first-order analysis in the jamming gap  �see Sec.
IV.C�. The observation that terms of order higher than
first generally need to be considered was emphasized by
Roux �2000�, but this analysis was only developed for
spheres. It has recently been rigorously shown that if the
curvature of nonspherical particles at their contact
points are included in a second-order and higher-order
analysis, then hypostatic packings of such particles can
indeed be jammed �Donev, Connelly, et al., 2007�. For
example, ellipsoid packings are generally not jammed to
first order in  but are jammed to second order in 
�Donev, Connelly, et al., 2007� due to curvature devia-
tions from the sphere.

To illustrate how nonspherical jammed packings can
be hypostatic, Fig. 22 shows two simple two-dimensional
examples consisting of a few fixed ellipses and a central
particle that is translationally and rotationally trapped
by the fixed particles. Generically, four contacting par-
ticles are required to trap the central one. However,
there are special correlated configurations that only re-
quire three contacting particles to trap the central one.

FIG. 20. �Color online� A sphere inscribed within the smallest
circular cylinder �i� undergoes a linear stretch and shrinkage of
the space along the vertical direction leading to a prolate
spheroid �ii� and an oblate spheroid �iii�. This linear transfor-
mation leaves the fraction of space occupied by the spheroids
within the cylinders unchanged from that of the fraction of the
cylinder volume occupied by the sphere, equal to 2/3.

1 1.5 2 2.5 3
Aspect ratio �

0.64

0.66

0.68

0.7

0.72

0.74

�

��� (oblate)
�����
�����
��	��
��
 (prolate)

1 2 3
�

6

8

10

12

Z

FIG. 21. �Color online� Density � vs aspect ratio � for MRJ
packings of 10 000 ellipsoids as obtained by Donev, Connelly,
et al. �2007�. The semiaxes here are 1,�� ,�. The inset shows
the mean contact number Z as a function of �. Neither the
spheroid �oblate or prolate� nor general ellipsoids cases attain
their isostatic values of Z=10 or 12, respectively.
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In such instances, the normal vectors at the points of
contact intersect at a common point, as is necessary to
achieve torque balance. At first glance, such configura-
tions might be dismissed as probability-zero events.
However, it was shown that such nongeneric configura-
tions are degenerate �frequently encountered�. This “fo-
cusing capacity” toward hypostatic values of Z applies to
large jammed packings of nonspherical particles and in
the case of ellipsoids must be present for sufficiently
small aspect ratios for a variety of realistic packing pro-
tocols �Donev, Connelly, et al., 2007�. It has been sug-
gested that the degree of nongenericity of the packings
be quantified by determining the fraction of local coor-
dination configurations in which the central particles
have fewer contacting neighbors than the average value
Z �Jiao et al., 2010a�.

Having established that curvature deviations from the
spherical reference shape exert a fundamental influence
on constraint counting �Donev, Connelly, et al., 2007�, it
is clear that similar effects will emerge when the hard-
particle interactions are replaced by nonspherical par-
ticles interacting with soft short-range repulsive poten-
tials. It immediately follows that jamming to first and
second order in  for hard nonspherical particles, for
example, leads to quadratic and quartic modes in the
vibrational energy spectrum for packings of such par-
ticles that interact with purely soft repulsive interac-
tions. See Mailman et al. �2009� and Zeravcic et al. �2009�
for studies of the latter type for ellipses and ellipsoids,
respectively.

It is noteworthy that in striking contrast with MRJ-
like sphere packings the rattler concentrations of the
MRJ-like ellipsoid packings appear practically to vanish
outside of some small neighborhood of the sphere point
�Donev, Connelly, et al., 2007�. It was shown that MRJ-
like packings of nearly spherical ellipsoids can be ob-
tained with �
0.74, i.e., packing fractions approaching
those of the densest three-dimensional sphere packings
�Donev, Cisse, et al., 2004�. This suggested that there
exist ordered ellipsoid packings with appreciably higher
densities. Indeed, the densest known ellipsoid packings

were subsequently discovered �Donev, Stillinger, et al.,
2004�; see Fig. 23. These represent a new family of non-
Bravais lattice packings of ellipsoids with a packing frac-
tion that always exceeds the density of the densest Bra-
vais lattice packing ��=0.740 48. . . � with a maximal
packing fraction of �=0.7707. . . for a wide range of as-
pect ratios ���1/�3 and ���3�. In these densest
known packings, each ellipsoid has 14 contacting neigh-
bors and there are two particles per fundamental cell.

For identical ellipse packings in R2, the maximally
dense arrangement is obtained by an affine stretching of
the optimal triangular-lattice packing of circular disks
with �max=� /�12, which leaves �max unchanged �Fejes
Tóth, 1964; Donev, Stillinger, et al., 2004�; see Fig. 24.
This maximally dense ellipse packing is not rotationally
jammed for any noncircular shape, since it can be
sheared continuously without introducing overlap or
changing the density �Donev, Connelly, et al., 2007�. The
packing is, however, strictly translationally jammed.

B. Superball packings

Virtually all systematic investigations of the densest
particle packings have been carried out for convex ob-
jects. A d-dimensional superball is a centrally symmetric
body in d-dimensional Euclidean space occupying the
region

FIG. 22. �Color online� Simple examples of hypoconstrained
packings in which all particles are fixed, except the central one.
Left panel: Generically, four contacting particles are required
to trap the central one. Right panel: Special correlated con-
figurations only require three contacting particles to trap the
central one. The normal vectors at the points of contact inter-
sect at a common point, as is necessary to achieve torque bal-
ance.

FIG. 23. �Color online� The packing fraction of the “lami-
nated” non-Bravais lattice packing of ellipsoids �with a two-
particle basis� as a function of the aspect ratio �. The point
�=1 corresponding to the face-centered-cubic lattice sphere
packing is shown, along with the two sharp maxima in the
packing fraction for prolate ellipsoids with �=�3 and oblate
ellipsoids with �=1/�3, as illustrated in the insets. For both
�
1/�3 and ���3, the packing fractions of the laminated
packings drop off precipitously holding the particle orienta-
tions fixed �lines�. The presently maximal achievable packing
fraction �=0.7707. . . is highlighted with a thicker line, and is
constant for ��1/�3 and ���3 because there is an affine
stretch by an arbitrary factor along a direction in a mirror
plane of the particle directions; see Donev, Stillinger, et al.
�2004�.
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	x1	2p + 	x2	2p + ¯ + 	xd	2p � 1, �29�

where xi �i=1, . . . ,d� are Cartesian coordinates and p
�0 is the defomation parameter �not pressure as de-
noted in Sec. IV.C�, which controls the extent to which
the particle shape has deformed from that of a
d-dimensional sphere �p=1�. Thus, superballs constitute
a large family of both convex �p�0.5� and concave
�0�p
0.5� particles �see Fig. 26�.

In general, a “superdisk,” the designation in the two-
dimensional case, possesses square symmetry. As p
moves away from unity, two families of superdisks with
square symmetry can be obtained depending on whether
p
1 or p�1 such that there is a 45° rotation with re-
spect to the “protuberances.” When p
0.5, the super-
disk is concave �see Fig. 25�. The candidate maximally
dense packings were recently proposed for all convex
and concave shapes �Jiao et al., 2008�. These are
achieved by two different families of Bravais lattice
packings such that �max is nonanalytic at the “circular-
disk” point �p=1� and increases significantly as p moves
away from unity. The broken rotational symmetry of
superdisks influences the packing characteristics in a
nontrivial way that is distinctly different from ellipse
packings. Recall that for ellipse packings, no improve-
ment over the maximal circle packing density is possible.
For superdisks, one can take advantage of the fourfold
rotationally symmetric shape of the particle to obtain a
substantial improvement on the maximal circle packing
density. By contrast, one needs to use higher-

dimensional counterparts of ellipses �d�3� in order to
improve on �max for spheres. Even for three-
dimensional ellipsoids, �max increases smoothly as the
aspect ratios of the semiaxes vary from unity �Donev,
Stillinger, et al., 2004� and hence has no cusp at the
sphere point. In fact, congruent three-dimensional ellip-
soid packings have a cusplike behavior at the sphere
point only when they are randomly jammed �Donev,
Cisse, et al., 2004�.

Increasing the dimensionality of the particle imbues
the optimal “superball” packings with structural charac-
teristics that are richer than their two-dimensional coun-
terparts �Jiao et al., 2009�. For example, in three dimen-
sions, a superball is a perfect sphere at p=1 but can
possess two types of shape anisotropy: cubelike shapes
�three-dimensional analog of the square symmetry of the
superdisk� and octahedronlike shapes, depending on the
value of the deformation parameter p �see Fig. 26�. As p
continuously increases from 1 to 	, we have a family of
convex superballs with cubelike shapes; at the limit p
=	, the superball is a perfect cube. As p decreases from
1 to 0.5, a family of convex superballs with octahedron-
like shapes are obtained; at p=0.5, the superball be-
comes a regular octahedron. When p
0.5, the superball
still possesses an octahedronlike shape but is now con-
cave, becoming a three-dimensional “cross” in the limit
p→0. Note that the cube and regular octahedron �two
of the five Platonic polyhedra� have the same group
symmetry �i.e., they have the same 48 space-group ele-
ments� because they are dual to each other. Two polyhe-
dra are dual to each other if the vertices of one corre-
spond to the faces of the other.

Jiao et al. �2009� obtained analytical constructions for
the densest known superball packings for all convex and
concave cases. The candidate maximally dense packings
are certain families of Bravais lattice packings �in which
each particle has 12 contacting neighbors� possessing the
global symmetries that are consistent with the symme-
tries of a superball. Evidence is provided that these
packings are indeed optimal, and Torquato and Jiao
�2009b� conjectured that the densest packings of all con-
vex superballs are their densest lattice packings; see Fig.
27. For superballs in the cubic regime �p�1�, the candi-
date optimal packings are achieved by two families of
Bravais lattice packings �C0 and C1 lattices� possessing
twofold and threefold rotational symmetries, respec-
tively, which can both be considered to be continuous
deformations of the fcc lattice. For superballs in the oc-
tahedral regime �0.5
p
1�, there are also two families
of Bravais lattices �O0 and O1 lattices� obtainable from
continuous deformations of the fcc lattice keeping its
fourfold rotational symmetry and from the densest lat-

FIG. 24. �Color online� A portion of the densest packing of
congruent ellipses, which is simply an affine transformation of
the densest circle packing, i.e., the densest triangular lattice of
circles. This maximally dense ellipse packing is not rotationally
jammed for any noncircular shape but is strictly translationally
jammed.

FIG. 25. �Color online� Superdisks with dif-
ferent values of the deformation parameter p.
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tice packing for regular octahedra �Minkowski, 1905;
Betke and Henk, 2000�, keeping the translational sym-
metry of the projected lattice on the coordinate planes,
which are apparently optimal in the vicinity of the
sphere point and the octahedron point, respectively �see
Fig. 27�.

The proposed maximal packing density �max as a func-
tion of deformation parameter p is plotted in Fig. 28. As
p increases from unity, the initial increase in �max is lin-
ear in p−1 and subsequently �max increases monotoni-
cally with p until it reaches unity as the particle shape
becomes more like a cube, which is more efficient at
filling space than a sphere. These characteristics stand in
contrast to those of the densest known ellipsoid pack-
ings, achieved by certain crystal arrangements of con-
gruent spheroids with a two-particle basis, whose pack-
ing density as a function of aspect ratios has zero initial
slope and is bounded from above by a value of 0.7707…
�Donev, Stillinger, et al., 2004�. As p decreases from
unity, the initial increase of �max is linear in 1−p. Thus,
�max is a nonanalytic function of p at p=1, which is con-
sistent with conclusions made about superdisk packings
�Jiao et al., 2008�. However, the behavior of �max as the
superball shape moves off the sphere point is distinctly
different from that of optimal spheroid packings, for
which �max increases smoothly as the aspect ratios of the
semiaxes vary from unity and hence has no cusp at the
sphere point �Donev, Stillinger, et al., 2004�. The density
of congruent ellipsoid packings �not �max� has a cusplike
behavior at the sphere point only when the packings are
randomly jammed �Donev, Cisse, et al., 2004�. The dis-
tinction between the two systems results from different
broken rotational symmetries. For spheroids, the con-
tinuous rotational symmetry is only partially broken, i.e.,
spheroids still possess one rotationally symmetric axis,
and the three coordinate directions are not equivalent,
which facilitates dense non-Bravais packings. For super-
balls, the continuous rotational symmetry of a sphere is

completely broken and the three coordinate directions
are equivalently fourfold rotationally symmetric direc-
tions of the particle. Thus, a superball is less symmetric
but more isotropic than an ellipsoid, a shape character-
istic which apparently favors dense Bravais lattice pack-
ings. The broken symmetry of superballs makes their
shapes more efficient in tiling space and thus results in a
larger and faster increase in the packing density as the
shape moves away from the sphere point.

As p decreases from 0.5, the superballs become con-
cave particles, but they still possess octahedronlike
shapes �see Fig. 26�a��. The lack of simulation tech-
niques to generate concave superball packings makes it
difficult to find the optimal packings for the entire range
of concave shapes �0
p
0.5�. However, based on their
conclusions for convex superball packings, Jiao et al.
�2009� conjectured that near the octahedron point, the
optimal packings possess similar translational symmetry
to that of the O1-lattice packing, and based on theoreti-
cal considerations proposed candidate optimal packings
for all concave cases with a density versus p as shown in
Fig. 29.

Jiao et al. �2010a� determined the packing fractions of
MRJ packings of binary superdisks in R2 and monodis-
persed superballs in R3. They found that the MRJ den-
sities of such packings increase dramatically and
nonanalytically as one moves away from the circular-
disk and sphere point �p=1�. Moreover, these disor-
dered packings were demonstrated to be hypostatic, i.e.,
the average number of contacting neighbors is less than
twice the total number of degrees of freedom per par-
ticle, and the packings are mechanically stable. As a re-
sult, the local arrangements of the particles are necessar-
ily nontrivially correlated to achieve jamming and hence
“nongeneric.” The degree of nongenericity of the pack-
ings was quantitatively characterized by determining the
fraction of local coordination structures in which the
central particles have fewer contacting neighbors than

FIG. 26. �Color online� Superballs with differ-
ent values of the deformation parameter p.

(a) (b) (c) (d)

FIG. 27. �Color online� Candidate optimal packings of superballs. �a� The C0 lattice packing of superballs with p=1.8. �b� The C1
lattice packing of superballs with p=2.0. �c� The O0 lattice packing of superballs with p=0.8. �d� The O1 lattice packing of superballs
with p=0.55.
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the average value Z. Figure 30 shows local packing
structures with more contacts than average and those
with less contacts than average in MRJ binary superdisk
packings for different p values. It was also explicitly
shown that such seemingly “special” packing configura-
tions are counterintuitively not rare. As the anisotropy
of the particles increases, it was shown that the fraction
of rattlers decreases while the minimal orientational or-
der �as measured by the cubatic order metric� increases.
These novel characteristics result from the unique rota-
tional symmetry breaking manner of superdisk and su-
perball particles.

C. Polyhedron packings

Until some recent developments, little was known
about the densest packings of polyhedral particles. The
difficulty in obtaining dense packings of polyhedra is re-
lated to their complex rotational degrees of freedom and
to the nonsmooth nature of their shapes.

The Platonic solids �mentioned in Plato’s Timaeus� are
convex polyhedra with faces composed of congruent

convex regular polygons. There are exactly five such sol-
ids: the tetrahedron �P1�, icosahedron �P2�, dodecahe-
dron �P3�, octahedron �P4�, and cube �P5�; see Fig. 31.
�We note that viral capsids often have icosahedral sym-
metry; see, for example, Zandi et al. �2004�.� Here we
focus on the problem of the determination of the dens-
est packings of each of the Platonic solids in three-
dimensional Euclidean space R3, except for the cube,
which is the only Platonic solid that tiles space.

It is useful to highlight some basic geometrical prop-
erties of the Platonic solids that we employ in subse-
quent sections of this review. The dihedral angle � is the
interior angle between any two face planes and is given
by
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FIG. 28. �Color online� Density vs deformation parameter p
for the packings of convex superballs �Jiao et al., 2009�. Inset:
Around pc

�=1.1509. . ., the two curves are almost locally paral-
lel to each other.

FIG. 29. �Color online� Density vs deformation parameter p
for the lattice packings of concave superballs �Jiao et al., 2009�.
Inset: A concave superball with p=0.1, which will become a
three-dimensional cross at the limit p→0.

FIG. 30. �Color� Local packing structures with more contacts
than average �shown in blue� and those with less contacts than
average �shown in pink� in two-dimensional MRJ binary super-
disk packings for different values of the deformation param-
eter p, as obtained from Jiao et al. �2010a�. Note that the de-
gree of nongenericity decreases �fraction of space occupied by
the pink colored particles decreases� as p moves away from its
sphere-point value. Here the size ratio �diameter of large su-
perdisks divided by the diameter of the small superdisks� is 1.4
and the molar ratio �number of large superdisks divided by the
number of small superdisks� is 1 /3.

FIG. 31. �Color online� The five Platonic solids: tetrahedron
�P1�, icosahedron �P2�, dodecahedron �P3�, octahedron �P4�,
and cube �P5�.
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sin
�

2
=

cos��/q�
sin��/p�

, �30�

where p is the number of sides of each face and q is
the number of faces meeting at each vertex �Coxeter,
1973�. Thus, � is 2 sin−1�1/�3�, 2 sin−1�� /�3�,
2 sin−1�� /��2+1�, 2 sin−1��2/3�, and � /2 for the tetra-
hedron, icosahedron, dodecahedron, octahedron, and
cube, respectively, where �= �1+�5� /2 is the golden ra-
tio. Since the dihedral angle for the cube is the only one
that is a submultiple of 2�, the cube is the only Platonic
solid that tiles space. It is noteworthy that in addition to
the regular tessellation of R3 by cubes in the simple cu-
bic lattice arrangement, there is an infinite number of
other irregular tessellations of space by cubes. This
tiling-degeneracy example illustrates a fundamental
point made by Kansal et al. �2002b�, namely, packing
arrangements of nonoverlapping objects at some fixed
density can exhibit a large variation in their degree of
structural order. We note that there are two regular
dodecahedra that independently tile three-dimensional
�negatively curved� hyperbolic space H3, as well as one
cube and one regular icosahedron �Coxeter, 1973�; see
Sec. XII for additional remarks about packings in curved
spaces.

Every polyhedron has a dual polyhedron with faces
and vertices interchanged. The dual of each Platonic
solid is another Platonic solid, and therefore they can be
arranged into dual pairs: the tetrahedron is self-dual
�i.e., its dual is another tetrahedron�, the icosahedron
and dodecahedron form a dual pair, and the octahedron
and cube form a dual pair.

An Archimedean solid is a highly symmetric semi-
regular convex polyhedron composed of two or more
types of regular polygons meeting in identical vertices.
There are 13 Archimedean solids: truncated tetrahedron
�A1�, truncated icosahedron �A2�, snub cube �A3�, snub
dodecahedron �A4�, rhombicosidodecahdron �A5�, trun-
cated icosidodecahdron �A6�, truncated cuboctahedron
�A7�, icosidodecahedron �A8�, rhombicuboctahedron
�A9�, truncated dodecahedron �A10�, cuboctahedron
�A11�, truncated cube �A12�, and truncated octahedron
�A13�; see Fig. 32. Note that the truncated octahedron is
the only Archimedean solid that tiles R3. The duals of
the Archimedean solids are an interesting set of new
polyhedra that are called the Archimedean duals or the
Catalan polyhedra, the faces of which are not regular
polygons.

Another important observation is that the tetrahe-
dron �P1� and the truncated tetrahedron �A1� are the
only Platonic and nonchiral Archimedean solids, respec-
tively, that are not centrally symmetric. The chiral snub
cube and chiral snub dodecahedron are the only other
noncentrally symmetric Archimedean solids. A particle
is centrally symmetric if it has a center C that bisects
every chord through C connecting any two boundary
points of the particle, i.e., the center is a point of inver-
sion symmetry. We will see that the central symmetry of
the majority of the Platonic and Archimedean solids

��P2�–�P5� and �A2�–�A13�� distinguish their dense pack-
ing arrangements from those of the noncentrally sym-
metric ones ��P1� and �A1�� in a fundamental way.

Tetrahedral tilings of space underlie many different
molecular systems �Conway and Torquato, 2006�. Since
regular tetrahedra cannot tile space, it is of interest to
determine the highest density that such packings of par-
ticles can achieve �one of Hilbert’s 18th problem set�. It
is of interest to note that the densest Bravais lattice
packing of tetrahedra �which requires all of the tetrahe-
dra to have the same orientations� has �=18/49
=0.367. . . and each tetrahedron touches 14 others. Re-
cently, Conway and Torquato �2006� showed that the
maximally dense tetrahedron packing cannot be a Bra-
vais lattice �because dense tetrahedron packings favor
face-to-face contacts� and found non-Bravais lattice �pe-
riodic� packings of regular tetrahedra with �
0.72. One
such packing is based upon the filling of “imaginary”
icosahedra with the densest arrangement of 20 tetrahe-
dra and then arranging the imaginary icosahedra in their
densest lattice packing configuration. Using “tetrahe-
dral” dice, Chaikin et al. �2007� experimentally gener-
ated jammed disordered packings of such dice with �

0.75; see also Jaoshvili et al. �2010� for a refined ver-
sion of this work. However, because these dice are not
perfect tetrahedra �vertices and edges are slightly
rounded�, a definitive conclusion could not be reached.
Using physical models and computer algebra system,
Chen �2008� discovered a dense periodic arrangement of
tetrahedra with �=0.7786. . ., which exceeds the density
of the densest sphere packing by an appreciable amount.

FIG. 32. �Color online� The 13 Archimedean solids: truncated
tetrahedron �A1�, truncated icosahedron �A2�, snub cube �A3�,
snub dodecahedron �A4�, rhombicosidodecahdron �A5�, trun-
cated icosidodecahedron �A6�, truncated cuboctahedron �A7�,
icosidodecahedron �A8�, rhombicuboctahedron �A9�, trun-
cated dodecahedron �A10�, cuboctahedron �A11�, truncated
cube �A12�, and truncated octahedron �A13�. This typical enu-
meration of the Archimedean solids does not count the chiral
forms �not shown� of the snub cube �A3� and snub dodecahe-
dron �A4�, which implies that the left-handed and right-handed
forms of each of these pairs lack central symmetry. The re-
maining 11 Archimedean solids are nonchiral �i.e., each solid is
superposable on its mirror image� and the only noncentrally
symmetric one among these is the truncated tetrahedron.
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In an attempt to find even denser packings of tetrahe-
dra, Torquato and Jiao �2009a, 2009b� formulated the
problem of generating dense packings of polyhedra
within an adaptive fundamental cell subject to periodic
boundary conditions as an optimization problem, which
they call the adaptive shrinking cell �ASC� scheme.
Starting from a variety of initial unjammed configura-
tions, this optimization procedure uses both a sequential
search of the configurational space of the particles and
the space of lattices via an adaptive fundamental cell
that shrinks on average to obtain dense packings. This
was used to obtain a tetrahedron packing consisting of
72 particles per fundamental cell with packing fraction
�=0.782. . . �Torquato and Jiao, 2009a�. Using 314 par-
ticles per fundamental cell and starting from an “equili-
brated” low-density liquid configuration, they were able
to improve the packing fraction to �=0.823. . . �Torquato
and Jiao, 2009b�. This packing arrangement interestingly
lacks any long-range order. Haji-Akbari et al. �2009� nu-
merically constructed a periodic packing of tetrahedra
made of parallel stacks of “rings” around “pentagonal”
dipyramids consisting of 82 particles per fundamental
cell and a density �=0.8503. . ..

Kallus et al. �2010� found a remarkably simple “uni-
form” packing of tetrahedra with high symmetry consist-
ing of only four particles per fundamental cell �two
“dimers”� with packing fraction �= 100

117 =0.854 700. . .. A
uniform packing has a symmetry �in this case a point
inversion symmetry� that takes one tetrahedron to an-
other. A dimer is composed of a pair of regular tetrahe-
dra that exactly share a common face. Torquato and Jiao
�2010a� subsequently presented an analytical formula-
tion to construct a three-parameter family of dense uni-
form dimer packings of tetrahedra again with four par-
ticles per fundamental cell. �A uniform dimer packing of
tetrahedra has a point of inversion symmetry operation
that takes any dimer into another.� Making an assump-
tion about one of these parameters resulted in a two-
parameter family, including those with a packing frac-
tion as high as �= 12250

14319 =0.855 506. . . �see left panel of
Fig. 33�. Chen et al. �2010� recognized that such an as-
sumption was made in the formulation of Torquato and
Jiao �2010a� and employed a similar formalism to obtain
a three-parameter family of tetrahedron packings, in-
cluding the densest known dimer packings of tetrahedra
with the slightly higher packing fraction �= 4000

4671
=0.856 347. . . �see right panel of Fig. 33�. The most gen-
eral analytical formulation to date to construct dense
periodic packings of tetrahedra with four particles per
fundamental cell was carried out by Torquato and Jiao
�2010b�. This study involved a six-parameter family of
dense tetrahedron packings that includes as special cases
all of the aforementioned “dimer” packings of tetrahe-
dra, including the densest known packings with packing
fraction �= 4000

4671 =0.856 347. . .. This recent investigation
strongly suggests that the latter set of packings are the
densest among all packings with a four-particle basis.
Whether these packings are the densest packings of tet-

rahedra among all packings is an open question for rea-
sons given by Torquato and Jiao �2010b�.

Using the ASC scheme and a variety of initial condi-
tions with multiple particles in the fundamental cell
Torquato and Jiao �2009a, 2009b� were also able to find
the densest known packings of the octahedra, dodecahe-
dra, and icosahedra �three nontiling Platonic solids� with
densities 0.947…, 0.904…, and 0.836…, respectively. Un-
like the densest tetrahedron packing, which must be a
non-Bravais lattice packing, the densest packings of the
other nontiling Platonic solids found by the algorithm
are their previously known optimal �Bravais� lattice
packings �Minkowski, 1905; Betke and Henk, 2000�; see
Fig. 34. These simulation results as well as other theo-
retical considerations, described below, led them to gen-
eral organizing principles concerning the densest pack-
ings of a class of nonspherical particles.

Rigorous upper bounds on the maximal packing frac-
tion �max of nonspherical particle packings of general
shape can be used to assess the packing efficiency of a
particular dense packing of such particles. However, it
has been highly challenging to formulate upper bounds
for nontiling particle packings that are nontrivially less
than unity. It has recently been shown that �max of a
packing of congruent nonspherical particles of volume
vP in R3 is bounded from above according to

�max � �max
U = min�vP

vS

�

�18
,1� , �31�

where vS is the volume of the largest sphere that can be
inscribed in the nonspherical particle and � /�18 is the
maximal sphere-packing density �Torquato and Jiao,

FIG. 33. �Color online� Closely related dense tetrahedron
packings. Left panel: A portion of one member of the densest
two-parameter family of tetrahedron packings with four par-
ticles per fundamental cell and packing fraction �= 12250

14319
=0.855 506. . . �Torquato and Jiao, 2010a�. The lighter shade
particles represent two dimers �i.e., four tetrahedra� but from
this perspective each dimer appears to be a single tetrahedron.
Right panel: A portion of one member of the densest three-
parameter family of tetrahedron packings with four particles
per fundamental cell and packing fraction �= 4000

4671
=0.856 347. . . �Chen et al., 2010; Torquato and Jiao, 2010b�.
The lighter shade particles represent two dimers. It is clear
that these two packings are configurationally almost identical
to one another.
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2009a, 2009b�. The upper bound �Eq. �31�� will be rela-
tively tight for packings of nonspherical particles pro-
vided that the asphericity � �equal to the ratio of the
circumradius to the inradius� of the particle is not large.
Since bound �31� cannot generally be sharp �i.e., exact�
for a nontiling nonspherical particle, any packing whose
density is close to the upper bound �31� is nearly optimal
if not optimal. It is noteworthy that a majority of the
centrally symmetric Platonic and Archimedean solids
have relatively small asphericities and explain the corre-
sponding small differences between �max

U and the pack-
ing fraction of the densest lattice packing �max

L

�Minkowski, 1905; Betke and Henk, 2000�.
Torquato and Jiao �2009a, 2009b� demonstrated that

substantial face-to-face contacts between any of the cen-
trally symmetric Platonic and Archimedean solids allow
for a higher packing fraction. They also showed that
central symmetry enables maximal face-to-face contacts
when particles are aligned, which is consistent with the
densest packing being the optimal lattice packing.

The aforementioned simulation results, upper bound,
and theoretical considerations led to the following three
conjectures concerning the densest packings of polyhe-
dra and other nonspherical particles in R3 �Torquato and
Jiao, 2009a, 2009b, 2010b�:

Conjecture 1. The densest packings of the centrally
symmetric Platonic and Archimedean solids are given by
their corresponding optimal lattice packings.

Conjecture 2. The densest packing of any convex, con-
gruent polyhedron without central symmetry generally
is not a �Bravais� lattice packing, i.e., set of such polyhe-
dra whose optimal packing is not a lattice is overwhelm-
ingly larger than the set whose optimal packing is a lat-
tice.

Conjecture 3. The densest packings of congruent, cen-
trally symmetric particles that do not possesses three
equivalent principle axes �e.g., ellipsoids� generally can-
not be Bravais lattices.

Conjecture 1 is the analog of Kepler’s sphere conjec-
ture for the centrally symmetric Platonic and
Archimedean solids. Note that the densest known pack-
ing of the noncentrally symmetric truncated tetrahedron
is a nonlattice packing with density at least as high as
23/24=0.958 333. . . �Conway and Torquato, 2006�. The
arguments leading to conjecture 1 also strongly suggest

that the densest packings of superballs are given by their
corresponding optimal lattice packings �Torquato and
Jiao, 2009b�, which were proposed by Jiao et al. �2009�.

D. Additional remarks

It is noteworthy that the densest known packings of
all of the Platonic and Archimedean solids as well as the
densest known packings of superballs �Jiao et al., 2009�
and ellipsoids �Donev, Stillinger, et al., 2004� in R3 have
packing fractions that exceed the optimal sphere pack-
ing value �max

S =� /�18=0.7408. . .. These results are con-
sistent with a conjecture of Ulam who proposed without
any justification �in a private communication to Gardner
�2001�� that the optimal packing fraction for congruent
sphere packings is smaller than that for any other con-
vex body. The sphere is perfectly isotropic with an as-
phericity � of unity, and therefore its rotational degrees
of freedom are irrelevant in affecting its packing charac-
teristics. On the other hand, each of the aforementioned
convex nonspherical particles break the continuous ro-
tational symmetry of the sphere and thus its broken
symmetry can be exploited to yield the densest possible
packings, which might be expected to exceed �max

S

=� /�18=0.7408. . . �Torquato and Jiao, 2009a�. However,
broken rotational symmetry in and of itself may not be
sufficient to satisfy Ulam’s conjecture if the convex par-
ticle has a little or no symmetry �Torquato and Jiao,
2009a�.

Apparently, the two-dimensional analog of Ulam’s
conjecture �optimal density of congruent circle packings
��max=� /�12=0.906 899. . . � is smaller than that for any
other convex two-dimensional body� is false. The
“smoothed” octagon constructed by Reinhardt �1934� is
conjectured to have smallest optimal packing fraction
��max= �8−4�2−ln 2� / �2�2−1�=0.902 414. . . � among all
congruent centrally symmetric planar particles.

It will also be interesting to determine whether con-
jecture 1 can be extended to other polyhedral packings.
The infinite families of prisms and antiprisms provide
such a class of packings. A prism is a polyhedron having
bases that are parallel, congruent polygons and sides
that are parallelograms. An antiprism is a polyhedron
having bases that are parallel congruent polygons and

FIG. 34. �Color online� Portions of the densest lattice packings of three of the centrally symmetric Platonic solids found by the
ASC scheme �Torquato and Jiao, 2009a, 2009b�. Left panel: Icosahedron packing with packing fraction �=0.8363. . .. Middle panel:
Dodecahedron packing with packing fraction �=0.9045. . .. Right panel: Octahedron packing with packing fraction �=0.9473. . ..
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sides that are alternating bands of triangles. They are
generally much less symmetric than either the Platonic
or Archimedean solids. Moreover, even the centrally
symmetric prisms and antiprisms generally do not pos-
sess three equivalent directions. Thus, it is less obvious
whether Bravais lattices would still provide the optimal
packings for these solids, except for prisms that tile
space, e.g., hexagonal prism or rhombical prisms
�Torquato and Jiao, 2009b�. Torquato and Jiao �2009b�
also commented on the validity of conjecture 1 to poly-
topes in four and higher dimensions.

XI. PACKING SPHERES IN HIGH-DIMENSIONAL
EUCLIDEAN SPACES

There has been resurgent interest in sphere packings
for d�3 in both the physical and mathematical sciences
�Conway and Sloane, 1995; Frisch and Percus, 1999; El-
kies, 2000; Parisi and Slanina, 2000; Cohn, 2002; Cohn
and Elkies, 2003; Parisi and Zamponi, 2006, 2010; Skoge
et al., 2006; Torquato, 2006; Torquato and Stillinger,
2006a, 2006b; Rohrmann and Santos, 2007; Adda-Bedia
et al., 2008; Scardicchio et al., 2008; van Meel, Charbon-
neau et al., 2009; van Meel, Frenkel, and Charbonneau,
2009, Cohn and Kumar, 2009; Lue et al., 2010�. Remark-
ably, the optimal way of sending digital signals over
noisy channels corresponds to the densest sphere pack-
ing in a high-dimensional space �Shannon, 1948; Conway
and Sloane, 1998�. These “error-correcting” codes un-
derlie a variety of systems in digital communications and
storage, including compact disks, cell phones, and the
Internet; see Fig. 35. Physicists have studied sphere
packings in high dimensions to gain insight into liquid
and glassy states of matter as well as phase behavior in
lower dimensions �Frisch and Percus, 1999; Parisi and
Slanina, 2000; Parisi and Zamponi, 2006, 2010; Skoge et
al., 2006; Rohrmann and Santos, 2007; Adda-Bedia et al.,
2008; van Meel, Charbonneau, et al., 2009�. Finding the
densest packings in arbitrary dimension is a problem of
long-standing interest in discrete geometry �Conway and
Sloane, 1998�. A comprehensive review of this subject is
beyond the scope of this article. We instead summarize
the relevant literature leading to a recent development
that supports the counterintuitive possibility that the
densest sphere packings for sufficiently large d may be
disordered �Torquato and Stillinger, 2006b; Scardicchio
et al., 2008� or at least possess fundamental cells whose
size and structural complexity increase with d.

The sphere packing problem seeks to answer the fol-
lowing question: Among all packings of congruent
spheres in Rd, what is the maximal packing density �max
and what are the corresponding arrangements of the
spheres �Conway and Sloane, 1998�? The optimal solu-
tions are known only for the first three space dimensions
�Hales, 2005�. For 4�d�9, the densest known packings
are Bravais lattice packings �Conway and Sloane, 1998�.
For example, the “checkerboard” lattice Dd, which is a
d-dimensional generalization of the fcc lattice �densest
packing in R3�, is believed to be optimal in R4 and R5.

The remarkably symmetric E8 and Leech lattices in R8

and R24, respectively, are most likely the densest pack-
ings in these dimensions �Cohn and Kumar, 2009�. Table
III lists the densest known sphere packings in Rd for
selected d. Interestingly, the nonlattice �periodic� pack-
ing P10c �with 40 spheres per fundamental cell� is the
densest known packing in R10, which is the lowest di-
mension in which the best known packing is not a �Bra-
vais� lattice. It is noteworthy that for sufficiently large d,
lattice packings are most likely not the densest �see Fig.
36�, but it becomes increasingly difficult to find explicit
dense packing constructions as d increases. Indeed, the
problem of finding the shortest lattice vector in a par-
ticular lattice packing �densest lattice packing� grows su-
perexponentially with d and is in the class of NP-hard
�nondeterministic polynomial-time hard� problems
�Ajtai, 1998�.

For large d, the best that one can do theoretically is to
devise upper and lower bounds on �max �Conway and
Sloane, 1998�. The nonconstructive lower bound of
Minkowski �1905� established the existence of reason-
ably dense lattice packings. He found that the maximal
packing fraction �max

L among all lattice packings for d
�2 satisfies

FIG. 35. �Color online� A fundamental problem in communi-
cations theory is to find the best way to send signals or “code
words” �amplitudes at d different frequencies� over a noisy
channel. Each code word s corresponds to a coordinate in Rd.
The sender and receiver desire to design a “code book” that
contains a large number of code words that can be transmitted
with maximum reliability given the noise inherent in any com-
munications channel. Due to the noise in the channel, the code
word s will be received as r�s such that 	s−r	
a, where the
distance a is the maximum error associated with the channel.
Shannon �1948� showed that the best way to send code words
over a noisy channel is to design a code book that corresponds
to the densest arrangement of spheres of radius 2a in Rd. To
understand this result, shown are two choices for the code
book in two dimensions. Left panel: Three code words �de-
picted as points labeled 1, 2, and 3� that are circumscribed by
circles of radius a are shown in which the distance between any
two words is chosen to be less than 2a. The received signal falls
in the region common to all circles and therefore the receiver
cannot determine which of the three code words shown was
sent. Right panel: By choosing a code book in which the code
words are at least a distance 2a apart �which corresponds to a
sphere packing�, any ambiguity about the transmitted code
word is eliminated. Since one desires to send many code words
per unit volume, the best code book corresponds to the dens-
est sphere packing in Rd in the limit that the number of code
words tends to infinity.
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�max
L � ��d�/2d−1, �32�

where ��d�=�k=1
	 k−d is the Riemann zeta function. Note

that for large values of d, the asymptotic behavior of the

Minkowski lower bound is controlled by 2−d.
Since 1905, many extensions and generalizations of

Eq. �32� have been obtained �Davenport and Rogers,
1947; Ball, 1992; Conway and Sloane, 1998; Vance,
2009�, but none of these investigations have been able to
improve upon the dominant exponential term 2−d. It is
useful to note that the packing fraction of a saturated
packing of congruent spheres in Rd for all d satisfies

� � 1/2d. �33�

The proof is trivial. A saturated packing of congruent
spheres of unit diameter and packing fraction � in Rd

has the property that each point in space lies within a
unit distance from the center of some sphere. Thus, a
covering of the space is achieved if each sphere center is
encompassed by a sphere of unit radius and the packing
fraction of this covering is 2d��1. Thus, the bound �Eq.
�33��, which is sometimes called the “greedy” lower
bound, has the same dominant exponential term as Eq.
�32�.

We know that there exists a disordered but unsatur-
ated packing construction, known as the “ghost” random
sequential addition �RSA� packing �Torquato and Still-
inger, 2006a�, that achieves the packing 2−d for any d.
This packing, shown in Fig. 37 and described in its cap-
tion, is a generalization of the standard RSA packing,
also described in the caption of Fig. 37. It was shown
that all of the n-particle correlation functions of this
nonequilibrium model, in a certain limit, can be ob-
tained analytically for all allowable densities and in any
dimension. This represents the first exactly solvable dis-
ordered sphere-packing model in arbitrary dimension.
�Note that Matérn �1986� gave an expression for the
pair-correlation function for this model.� The existence
of this unjammed disordered packing strongly suggests
that Bravais lattice packings �which are almost surely
unsaturated for sufficiently large d� are far from optimal
for large d. Further support for this conclusion is the fact
that the maximal “saturation” packing fraction of the
standard disordered RSA packing apparently scales as
d2−d or possibly d ln�d�2−d for large d �Torquato et al.,
2006�. Spheres in both the ghost and standard RSA
packings cannot form interparticle contacts, which ap-
pears to be a crucial attribute to obtain exponential im-
provement on Minkowski’s bound �Torquato and Still-
inger, 2006b�, as discussed below.

The best currently known lower bound on �max
L for

dimensions not divisible by four was obtained by Ball
�1992�. He found that

�max
L � 2�d − 1���d�/2d. �34�

For dimensions divisible by four, Vance �2009� recently
found the tightest lower bound on the maximal packing
fraction among lattice packings,

�max
L � 6d/2de�1 − e−d� . �35�

Table IV gives the dominant asymptotic behavior of sev-
eral lower bounds on �max

L for large d. Note that the best
lower bounds on �max

L improve on Minkowski’s bound

TABLE III. The densest known sphere packings in Rd for
selected d. Except for the nonlattice packing P10c in R10, all of
the other densest known packings listed are lattice packings: Z
is the integer lattice, A2 is the triangular lattice, Dd is the
checkerboard lattice �a generalization of the fcc lattice�, Ed is
one of the root lattices, and �d is the laminated lattice. See
Conway and Sloane �1998� for further details.

Dimension, d
Packing
structure Packing fraction, �

1 Z 1
2 A2 � /�12=0.9068. . .
3 D3 � /�18=0.7404. . .
4 D4 �2 /16=0.6168. . .
5 D5 2�2 / �30�2�=0.4652. . .
6 E6 3�2 / �144�3�=0.3729. . .
7 E7 �3 /105=0.2952. . .
8 E8 �4 /384=0.2536. . .
9 �9 2�4 / �945�2�=0.1457. . .
10 P10c �5 /3072=0.09961. . .
16 �16 �8 /645120=0.01470. . .
24 �24 �12/479001600=0.001929. . .

FIG. 36. �Color online� Lattice packings in sufficiently high
dimensions are almost surely unsaturated because the “holes”
or space exterior to the spheres dominates Rd �Conway and
Sloane, 1998�. To get an intuitive feeling for this phenomenon,
it is instructive to examine the hypercubic lattice Zd �square
lattice for R2 and the simple cubic lattice for R3�. Left panel: A
fundamental cell of Zd represented in two dimensions. Note
that the distance between the point of intersection of the long-
est diagonal in the hypercube with the hypersphere boundary
and the vertex of the cube along this diagonal is given by �d
−1 for a sphere of unit radius. This means that Z4 already
becomes unsaturated at d=4. Placing an additional sphere in
Z4 doubles the density of Z4 and, in particular, yields the four-
dimensional checkerboard lattice packing D4, which is be-
lieved to be the optimal packing in R4. Right panel: A sche-
matic “effective” distorted representation of the hypersphere
within the hypercubic fundamental cell for large d, illustrating
that the volume content of the hypersphere relative to the hy-
percube rapidly diminishes asymptotically. Indeed, the packing
fraction of Zd is given by �=�d/2 /��1+d /2�2d. It is the pres-
ence of the Gamma function, which grows as �d /2�!, in the
denominator that makes Zd far from optimal �except for d=1�.
In fact, the checkerboard lattice Dd with packing fraction �
=�d/2 /��1+d /2�2�d+2�/2 becomes suboptimal in relatively low
dimensions because it too becomes dominated by larger and
larger holes as d increases.
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by a linear factor in d rather than providing exponential
improvement. This suggests that the packing fraction of
the densest lattice packing in high d is controlled by the
exponential factor 2−d.

Nontrivial upper bounds on the maximal packing frac-
tion �max for any sphere packing in Rd have been de-
rived. Blichfeldt �1929� showed that the maximal pack-

ing fraction for all d satisfies �max� �d /2+1�2−d/2. This
upper bound was improved by Rogers �1958, 1964� by an
analysis of the Voronoi cells. For large d, Rogers’ upper
bound asymptotically becomes d2−d/2 /e. Kabatiansky
and Levenshtein �1978� found an even stronger bound,
which in the limit d→	 yields �max�2−0.5990d. All of
these upper bounds prove that the maximal packing
fraction tends to zero in the limit d→	. This rather
counterintuitive high-dimensional property of sphere
packings can be understood by recognizing that almost
all of the volume of a d-dimensional sphere for large d is
concentrated near the sphere surface. For example, the
volume contained with such a sphere up to 99% of it
radius is �99/100�d, which tends to zero exponentially
fast. Thus, in high-dimensional sphere packings �densest
or not�, almost all of the volume is occupied by the void
space �space exterior to the spheres�, which is to be con-
trasted with the densest sphere packings in low dimen-
sions in which the volume contained within the spheres
dominates over the void volume.

Cohn and Elkies �2003� obtained and computed linear
programming upper bounds, which provided improve-
ment over Rogers’ upper bounds for dimensions 4–36,
but it is not yet known whether they improve upon the
Kabatiaksky-Levenshtein upper bounds for large d.
Cohn and Kumar �2009� used these techniques to prove
that the Leech lattice is the unique densest lattice in R24.
They also proved that no sphere packing in R24 can ex-
ceed the density of the Leech lattice by a factor of more
than 1+1.65�10−30 and gave a new proof that E8 is the
unique densest lattice in R8. Table V provides the domi-
nant asymptotic behavior of several upper bounds on
�max for large d. Note that the best upper and lower
bounds on �max differ by an exponential factor as
d→	.

Since 1905, many extensions and generalizations of
Minkowski’s bound have been derived �Conway and
Sloane, 1998�, but none of them have improved upon the
dominant exponential term 2−d. Torquato and Stillinger
�2006b� used a conjecture concerning the existence of
disordered sphere packings and a g2-invariant optimiza-
tion procedure that maximizes � associated with a radial
“test” pair-correlation function g2�r� to provide the pu-
tative exponential improvement on Minkowski’s
100-year-old bound on �max. Specifically, a g2-invariant
process �Torquato and Stillinger, 2002� is one in which
the functional form of a test pair-correlation g2�r� func-
tion remains invariant as density varies, for all r, over
the range of packing fractions

FIG. 37. �Color online� The ghost RSA packing model in Rd is
a subset of the Poisson point process and a generalization of
the standard RSA process. The latter is produced by randomly,
irreversibly, and sequentially placing nonoverlapping objects
into a large volume in Rd that at some initial time is empty of
spheres �Widom, 1966; Feder, 1980; Cooper, 1988; Viot et al.,
1993�. If an attempt to add a sphere at some time results in an
overlap with an existing sphere in the packing, the attempt is
rejected and further attempts are made until it can be added
without overlapping existing spheres. As the process continues
in time, it becomes more difficult to find available regions into
which the spheres can be added, and eventually in the satura-
tion or infinite-time limit no further additions are possible. In
the ghost RSA process, a sphere that is rejected is called a
“ghost” sphere. No additional spheres can be added whether
they overlap an existing sphere or a ghost sphere. The packing
fraction at time t for spheres of unit diameter is given by
��t�= �1−exp�−v1�1�t�� /2d, where v1�R� is the volume of sphere
of radius R �cf. Eq. �2��. Thus, we see that as t→+	, �→2−d.
Shown is a configuration of 468 particles of a ghost RSA pack-
ing in a fundamental cell in R2 at a packing fraction very near
its maximal value of 0.25, as adapted from Scardicchio et al.
�2008�. Note that the packing is clearly unsaturated and there
are no contacting particles.

TABLE IV. Dominant asymptotic behavior of lower bounds
on �max

L for sphere packings for large d. The bound due to
Vance �2009� is applicable for dimensions divisible by four. The
best lower bounds do not provide exponential improvement on
Minkowski’s lower bound; they instead only improve on the
latter by a factor linear in d.

�2�2−d Minkowski �1905�
�ln��2�d�2−d Davenport and Rogers �1947�
�2d�2−d Ball �1992�
�6d /e�2−d Vance �2009�

TABLE V. Dominant asymptotic behavior of upper bounds on
�max for sphere packings for large d.

�d /2�2−0.5d Blichfeldt �1929�
�d /e�2−0.5d Rogers �1958�
2−0.5990d Kabatiansky and Levenshtein �1978�
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0 � � � �
*
. �36�

The terminal packing fraction �� is the maximum
achievable density for the g2-invariant process subject to
satisfaction of certain non-negativity conditions on pair
correlations. For any test g2�r� that is a function of radial
distance r�	r	 associated with a packing, i.e., g2�r�=0 for
r
D, they maximized the corresponding packing frac-
tion,

�
*

� lim
max

� , �37�

subject to satisfying the following two necessary condi-
tions:

g2�r� � 0 for all r �38�

and

S�k� � 0 for all k . �39�

Condition �39� is a necessary condition for the existence
of any point process �cf. Eq. �7��. When there exist
sphere packings with a g2 satisfying these conditions in
the interval �0,���, then one has the lower bound on the
maximal packing fraction given by

�max � �
*
. �40�

Torquato and Stillinger �2006b� conjectured that a test
function g2�r� is a pair-correlation function of a transla-
tionally invariant disordered sphere packing in Rd for 0
����� for sufficiently large d if and only if conditions
�38� and �39� are satisfied. There is mounting evidence to
support this conjecture. First, they identified a decorre-
lation principle, which states that unconstrained correla-
tions in disordered sphere packings vanish asymptoti-
cally in high dimensions and that the gn for any n�3 can
be inferred entirely �up to small errors� from a knowl-
edge of � and g2. This decorrelation principle, among
other results, provides justification for the conjecture of
Torquato and Stillinger �2006b�, and is exhibited by the
exactly solvable ghost RSA packing process �Torquato
and Stillinger, 2006a� as well as by computer simulations
in high dimensions of the maximally random jammed
state �Skoge et al., 2006� and the standard RSA packing
�Torquato, 2006�. Second, other necessary conditions on
g2 �Costin and Lebowitz, 2004; Torquato and Stillinger,
2006b; Hopkins et al., 2009� appear to only have rel-
evance in low dimensions. Third, one can recover the
form of known rigorous bounds �cf. Eqs. �32� and �34��
for specific test g2’s when the conjecture is invoked. Fi-
nally, in these two instances, configurations of disor-
dered sphere packings on the torus have been numeri-
cally constructed with such g2 in low dimensions for
densities up to the terminal packing fraction �Crawford
et al., 2003; Uche et al., 2006�.

Using a particular test pair correlation corresponding
to a disordered sphere packing, Torquato and Stillinger
�2006b� found a conjectural lower bound on �max that is
controlled by 2−�0.778 65. . .�d and the associated lower
bound on the average contact �kissing� number Z is con-

trolled by 2�0.221 34. . .�d �a highly overconstrained situa-
tion�. These results counterintuitively suggest that the
densest packings as d increases without bound may ex-
hibit increasingly complex fundamental cells or even be-
come disordered at some sufficiently large d rather than
periodic. The latter possibility would imply the existence
of disordered classical ground states for some continu-
ous potentials. Scardicchio et al. �2008� demonstrated
that there is a wide class of test functions �corresponding
to disordered packings� that lead to precisely the same
putative exponential improvement on Minkowski’s
lower bound and therefore the asymptotic form
2−�0.778 65. . .�d is much more general and robust than pre-
viously surmised.

Interestingly, the optimization problem defined above
is the dual of the infinite-dimensional linear program
�LP� devised by Cohn �2002� to obtain upper bounds on
the maximal packing fraction; see Cohn and Elkies
�2003� for a proof. In particular, let f�r� be a radial func-
tion in Rd such that

f�r� � 0 for r � D ,
�41�

f̃�k� � 0 for all k ,

where f̃�k� is the Fourier transform of f�r�. Then the
number density � is bounded from above by

min
f�0�

2df̃�0�
. �42�

The radial function f�r� can be physically interpreted to
be a pair potential. The fact that its Fourier transform
must be non-negative for all k is a well-known stability
condition for many-particle systems with pairwise inter-
actions �Ruelle, 1999�. We see that whereas the LP prob-
lem specified by Eqs. �38� and �39� utilizes information
about pair correlations, its dual program �Eqs. �41� and
�42�� uses information about pair interactions. As noted
by Torquato and Stillinger �2006b� even if there does not
exist a sphere packing with g2 satisfying conditions �38�
and �39� and the hard-core constraint on g2, the terminal
packing fraction �� can never exceed the Cohn-Elkies
upper bound. Every LP has a dual program and when an
optimal solution exists, there is no duality gap between
the upper bound and lower bound formulations. Re-
cently, Cohn and Kumar �2007a� proved that there is no
duality gap.

XII. REMARKS ON PACKING PROBLEMS IN NON-
EUCLIDEAN SPACES

Particle packing problems in non-Euclidean �curved�
spaces have been the focus of research in a variety of
fields, including physics �Bowick et al., 2006; Modes and
Kamien, 2007�, biology �Tammes, 1930; Goldberg, 1967;
Prusinkiewicz and Lindenmayer, 1990; Torquato et al.,
2002; Zandi et al., 2004�, communications theory �Con-
way and Sloane, 1998�, and geometry �Conway and
Sloane, 1998; Hardin and Saff, 2004; Cohn and Kumar,
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2007b�. Although a comprehensive overview of this
topic is beyond the scope of this review, we highlight
here some of the developments in spaces with constant
positive and negative curvatures. We limit the discussion
to packing spheres on the positively curved unit sphere
Sd−1�Rd and in negatively curved hyperbolic space Hd.

The kissing �or contact� number � is the number of
spheres of unit radius that can simultaneously touch a
unit sphere Sd−1 �Conway and Sloane, 1998�. The kissing
number problem asks for the maximal kissing number
�max in Rd. The determination of the maximal kissing
number in R3 spurred a famous debate between Issac
Newton and David Gregory in 1694. The former cor-
rectly thought the answer was 12, but the latter wrongly
believed that 13 unit spheres could simultaneously con-
tact another unit sphere. The optimal kissing number
�max in dimensions greater than three is only known for
R4 �Musin, 2008�, R8 and R24 �Levenshtein, 1979; Od-
lyzko and Sloane, 1979�. Table VI lists the largest known
kissing numbers in selected dimensions.

In geometry and coding theory, a spherical code with
parameters �d ,N , t� is a set of N points on the unit
sphere Sd−1 such that no two distinct points in that set
have inner product greater than or equal to t, i.e., the
angles between them are all at least cos−1 t. The funda-
mental problem is to maximize N for a given value of t,
or equivalently to minimize t given N �sometimes called
the Tammes problem, which was motivated by an appli-
cation in botany �Tammes, 1930��. One of the first rigor-
ous studies of spherical codes was by Schütte and van
der Waerden �1951�. Delsarte et al. �1977� introduced
much of the most important mathematical machinery to

understand spherical codes and designs. One natural
generalization of the best way to distribute points on
Sd−1 �or Rd� is the energy minimization problem: Given
some potential function depending on the pairwise dis-
tances between points, how should the points be ar-
ranged so as to minimize the total energy �or what are
the ground-state configurations�? The original Thomson
problem of “spherical crystallography” seeks the ground
states of electron shells interacting via the Coulomb po-
tential; but it is also profitable to study ground states of
particles interacting with other potentials on Sd−1 �Bow-
ick et al., 2006�. Cohn and Kumar �2007b� introduced the
beautiful idea of a universally optimal configuration, a
unique configuration that minimizes a class of potentials.
In particular, they proved that for any fixed number of
points N on Sd−1 there is a universally optimal configu-
ration that minimizes all completely monotonic poten-
tial functions �e.g., all inverse power laws�.

The optimal spherical code problem is related to the
densest local packing �DLP� problem in Rd �Hopkins et
al., 2010a�, which involves the placement of N nonover-
lapping spheres of unit diameter near an additional fixed
unit-diameter sphere such that the greatest radius R
from the center of the fixed sphere to the centers of any
of the N surrounding spheres is minimized. We recast
the optimal spherical code problem as the placement of
the centers of N nonoverlapping spheres of unit diam-
eter onto the surface of a sphere of radius R such that R
is minimized. It is has been proved that for any d, all
solutions for R between unity and the golden ratio �
= �1+�5� /2 to the optimal spherical code problem for N
spheres are also solutions to the corresponding DLP
problem �Hopkins et al., 2010b�. It follows that for any
packing of nonoverlapping spheres of unit diameter, a
spherical region of radius R less than or equal to � cen-
tered on an arbitrary sphere center cannot enclose a
number of sphere centers greater than one more than
the number that than can be placed on the spherical
region’s surface.

We saw in Sec. VIII that monodisperse circle �circular
disk� packings in R2 have a great tendency to crystallize
at high densities due to a lack of geometrical frustration.
The hyperbolic plane H2 �for a particular constant nega-
tive curvature, which measures the deviation from the
flat Euclidean plane� provides a two-dimensional space
in which global crystalline order in dense circle packings
is frustrated, and thus affords a means to use circle pack-
ings to understand fundamental features of simple liq-
uids, disordered jammed states, and glasses. Modes and
Kamien �2007� formulated an expression for the equa-
tion of state for disordered hard disks in H2 and com-
pared it to corresponding results obtained from
molecular-dynamics simulations. Modes and Kamien
�2007� derived a generalization of the virial equation in
H2 relating the pressure to the pair-correlation function
and developed the appropriate setting for extending
integral-equation approaches of liquid-state theory. For
a discussion of the mathematical subtleties associated
with finding the densest packings of identical

TABLE VI. The largest known kissing numbers for identical
spheres in Rd for selected d. Except for R9 and R10, the largest
known kissing numbers listed are those found in the densest
lattice packings listed in Table III. P9a is a nonlattice packing
with an average kissing number of 235 3/5 but with a maxi-
mum kissing number of 306. P10b is a nonlattice packing with
an average kissing number of 340 1/3 but with a maximum
kissing number of 500. See Conway and Sloane �1998� for fur-
ther details.

Dimension, d
Packing
structure Kissing number, �

1 Z 2
2 A2 6
3 D3 12
4 D4 24
5 D5 40
6 E6 72
7 E7 126
8 E8 240
9 P9a 306
10 P10b 500
16 �16 4320
24 �24 196560
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d-dimensional spheres in Hd, see Bowen and Radin
�2003�.

XIII. CHALLENGES AND OPEN QUESTIONS

The geometric-structure approach advanced and ex-
plored in this review provides a comprehensive method-
ology to analyze and compare jammed disk and sphere
packings across their infinitely rich variety. This ap-
proach also highlights aspects of present ignorance, thus
generating many challenges and open questions for fu-
ture investigation. Even for identical spheres, detailed
characterization of jammed structures across the simple
two-dimensional ��-�� order maps outlined in Sec. V is
still incomplete. A partial list of open and challenging
questions in the case of sphere packings includes the
following:

�1� Are the strictly jammed “tunneled” crystals
�Torquato and Stillinger, 2007� the family of lowest
density collectively jammed packings under periodic
boundary conditions?

�2� How can the extremal jammed packings that inhabit
the upper and lower boundaries of occupied regions
of each of those order maps be unambiguously iden-
tified?

�3� What would be the shapes of analogous occupied
regions if the two-parameter versions shown in Fig.
13 were to be generalized to three or more param-
eters?

�4� To what extent can the rattler concentration in col-
lectively or strictly sphere packings be treated as an
independent variable? What is the upper limit to
attainable rattler concentrations under periodic
boundary conditions?

�5� What relations can be established between order
metrics and geometry of the corresponding
configurational-space polytopes?

�6� Can upper and lower bounds be established for the
number of collectively and/or strictly jammed states
for N spheres?

�7� Upon extending the geometric-structure approach
to Euclidean dimensions greater than three, do crys-
talline arrangements with arbitrarily large unit cells
or even disordered jammed packings ever provide
the highest attainable densities?

Jamming characteristics of nonspherical and even
nonconvex hard particles is an area of research that is
still largely undeveloped and therefore deserves intense
research attention. Many of the same open questions
identified above for sphere packings are equally relevant
to packings of nonspherical particles. An incomplete list
of open and challenging questions for such particle
packings includes the following:

�1� What are the appropriate generalizations of the
jamming categories for packings of nonspherical
particles?

�2� Can one devise incisive order metrics for packings
of nonspherical particles as well as a wide class of
many-particle systems �e.g., molecular, biological,
cosmological, and ecological structures�?

�3� Can sufficient progress be made to answer the first
two questions that would lead to useful order maps?
If so, how do the basic features of order maps de-
pend on the shape of the particle? What are the
lowest density jammed states?

�4� Why does the deformation of spheres into ellipsoids
have the effect of strongly inhibiting �if not com-
pletely preventing� the appearance of rattlers in dis-
ordered ellipsoid packings for a wide range of aspect
ratios? Does this same inhibitory phenomenon ex-
tend to disordered jammed packings of other non-
spherical shapes?

�5� For nontiling nonspherical particles, can an upper
bound on the maximal packing fraction be derived
that is always strictly less than unity? „Note that up-
per bound �Eq. �31�� is strictly less than unity pro-
vided that the asphericity is sufficiently small.…

Jamming characteristics of particle packings in non-
Euclidean spaces is an area of research that is still
largely undeveloped and therefore deserves research at-
tention. This is true even for simple particle shapes, such
as spheres. For example, we know little about the jam-
ming categories of spheres in curved spaces. Does cur-
vature facilitate jamming or not? Does it induce order-
ing or disordering? These are just a few of the many
challenging issues that merit further investigation.

In view of the wide interest in packing problems that
the research community displays there is reason to be
optimistic that substantial conceptual advances are
forthcoming. It will be fascinating to see how future ar-
ticles covering this subject document those advances.
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