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The description of inclusive production of single unpolarized light hadrons using fragmentation
functions in the framework of the factorization theorem is reviewed. The factorization of observables
into perturbatively calculable quantities and these universal fragmentation functions are summarized
and some improvements beyond the standard fixed order approach are discussed. The extraction of

fragmentation functions for light charged ��±, K±, and p / p̄� and neutral �KS
0 and � /�̄� hadrons using

these theoretical tools is discussed through global fits to experimental data from reactions at various
colliders, in particular from accurate e+e− reactions at the Large Electron-Position Collider �LEP�, and
the subsequent successful predictions of other experimental data, such as data gathered at Hadron
Electron Ring Accelerator �HERA�, the Tevatron, and the Relativistic Heavy Ion Collider �RHIC�,
from these fitted fragmentation functions as allowed by factorization universality. These global fits
also impose competitive constraints on �s�MZ�. Emphasis is placed on the need for accurate data from
pp�p̄� and ep reactions in which the hadron species is identified in order to constrain the separate
fragmentation functions of the gluon and each quark flavor for each hadron species.
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I. INTRODUCTION

Fragmentation functions �FFs� constitute one of the
most important free inputs required for a comprehen-
sive description of most collider processes to which per-
turbative QCD is applicable, being a necessary ingredi-
ent in any sufficiently complete calculation of processes
involving detected hadrons in the final state. They quan-
tify the hadronization of quarks and gluons which must
eventually occur in every process in which hadrons are
produced. While parton distribution functions �PDFs�,
another important free input, are relevant for collisions
involving at least one hadron, most importantly at
present for pp collisions at the CERN Large Hadron
Collider �LHC� FFs are relevant in principle for all col-
lisions even those without any initial state hadrons such
as electron-positron collisions at the future International
Linear Collider. Furthermore, while knowledge and ap-
plication of PDFs are limited to the types of hadrons
that can be practically used in the initial state, being
almost exclusively nucleons, FFs can be constrained by,
and/or used for the predictions of, measurements of the
inclusive productions of neutral and charged hadron
species ranging from the almost massless to the very
heavy. Such a large range of processes provides a large
range of information on hadronization, and hence con-
tributes to our understanding of nonperturbative physics
in general, and allows for a particularly incontrovertible
phenomenological determination of the applicability
and limitations of various approximations used in the
context of QCD factorization. Such data are also suffi-
ciently accurate to allow for competitive extractions of
�s�MZ�, the strong coupling constant of QCD evolved
for convenience to the Z-pole mass MZ, and the remain-
ing of the most important free inputs, which improves
the accuracy of perturbative QCD calculations in gen-
eral and imposes constraints on new physics. We note
here that while other inputs such as higher twist, multi-
hadron FFs, fracture functions, etc. become important in
certain kinematic limits, FFs are always necessary for a
complete description of inclusive hadron production.

In this article, we review the progress in understand-
ing the hadronization of partons, embodied in FFs, and
their application to inclusive hadron production. The
concept of fragmentation was first introduced by Field
and Feynman �1977� to explain the limited transverse
momenta and energy fraction scaling of hadrons in jets
produced in e+e− collisions, as well as the presence of a
few high transverse momentum �pT�2 GeV� hadrons in
hadron-hadron collisions. In the latter case, the collision
of a pointlike constituent particle of one hadron with
that of another produces a pair of particles whose direc-
tions of motion are opposite to one another but at any
angle to the parent particles, including large angles.
These elementary particles must eventually hadronize to
produce the high pT hadrons. Intuitively, any inclusive
single hadron production processes may be predicted by
first calculating the equivalent partonic process �i.e., re-
placing the detected hadron by a parton and the inclu-
sive sum over hadron final states by a sum over partonic

ones�, then allowing the “detected” parton to hadronize.
This parton model is made more precise with the factor-
ization theorem.

Our discussion is limited to inclusive single unpolar-
ized hadron production, being better understood than its
polarized counterpart. Final state partons will on aver-
age hadronize to hadrons of all species that are not ki-
nematically forbidden by the particular reaction, but, of
all the charged hadrons, partons will mostly hadronize to
the three lightest ones, �±, K±, and p / p̄, so their FFs are
the most phenomenologically well constrained. The spe-
cies of neutral meson and neutral baryon most likely to
be produced in the hadronization process are �0 and
n / n̄, respectively, but their FFs are accurately approxi-
mated by the FFs for �± and p / p̄ due to SU�2� �nuclear�
isospin symmetry between the u and d quark flavors.
The next lightest species of meson and baryon are KS

0

and � / �̄, respectively, whose FFs have therefore also
been greatly studied. �KL

0 is not usually observed in ex-
periment because it takes a long time to decay into
charged particles.� Together with �, f0, �±, �0, �, K*±, ��,
a0, and 	 mesons, whose FFs are unfortunately either
unknown or rather poorly known at present, the par-
ticles mentioned here complete the list of known had-

rons which have a mass less than or equal to the � / �̄
mass and which are the most copiously produced in had-
ron production, and thus measurements of their produc-
tion lead to a rather comprehensive picture of the had-
ronic final state. In this article we focus on the

production of �±, K±, p / p̄, KS
0, and � / �̄.

Much of the techniques for global fitting of PDFs can
be carried over to global fitting of FFs, for example, the
treatment of systematic errors on the experimental data
and the propagation of experimental errors to the FFs,
as well as the techniques used for the minimization of
chi squared. On the theoretical side, much of the formal-
ism of both the fixed order �FO� calculations and its im-
provement, via, e.g., large x resummation and incorpo-
ration of heavy quarks and their masses, is also very
similar.

To date, the subject of fragmentation has been impor-
tant in various areas of phenomenology �Albino et al.,
2008�, and we give an incomplete list of examples: Phe-
nomenological constraints on the nucleon PDFs for po-
larized quarks and antiquarks separately, which are im-
portant for the determination of the source of nucleon
spin, can be obtained using the FFs for these particles to
calculate measurements of semi-inclusive deeply inelas-
tic scattering �DIS� with polarized initial state particles
for the inclusive production of single unpolarized light
charged hadrons �de Florian, Sampayo, and Sassot, 1998;
Hasegawa, 1998; Airapetian et al., 2004, 2005; de Flo-
rian, Navarro, and Sassot, 2005�. Unpolarized valence
quark PDFs can be similarly extracted but from data for
which the initial state particles are unpolarized �Gronau,
Ravndal, and Zarmi, 1973; Arneodo, 1989�. In both
cases, the differences between FFs for positively and
negatively charged particles are required, which are
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relatively poorly constrained by data from, e.g., pp reac-
tions and are not constrained at all by accurate e+e− re-
action data. Polarized pp�p̄� reaction data for inclusive
hadron production from, e.g., RHIC can also impose
constraints on the nucleon PDF for the polarized gluon
�de Florian, 2003; Jager, Schafer, Stratmann, and Vogel-
sang, 2003�, and measurements of photoproduction in
inclusive hadron production in polarized ep reactions at,
e.g., the proposed electron-RHIC �eRHIC� �Deshpande,
Milner, Venugopalan, and Vogelsang, 2005� or Large
Hadron-Electron Collider �LHeC� �Dainton, Klein,
Newman, Perez, and Willeke, 2006� colliders can impose
constraints on the photon PDF for polarized partons
�Jager, Stratmann, and Vogelsang, 2003, 2005�. FFs pro-
vide a consistency check on transverse momentum de-
pendent FFs, which replace FFs when the transverse
momentum of the detected hadron is measured in addi-
tion to the longitudinal since formally the FFs are repro-
duced by integrating them over the transverse momen-
tum. The suppression of �0 production in heavy ion
collisions relative to pp collisions �Adler et al., 2003a;
Adcox et al., 2005� measured at RHIC and to be further
investigated by the ALICE, ATLAS, and CMS Collabo-
rations at the LHC provides information on the much
anticipated scenario of a quark-gluon plasma that filled
the Universe the first ten millionths of a second after the
big bang and created the primordial matter. Such studies
may therefore contribute to our understanding of both
cosmology and the physics of nonperturbative QCD.
Photons produced by partonic fragmentation �Koller,
Walsh, and Zerwas, 1979; Gluck, Reya, and Vogt, 1993�
contribute significantly to the photonic background of
various direct photon signals in inclusive hadron produc-
tion in general, such as the photon signal of the Higgs
boson production from hadrons. Fragmentation of a
quark to a lepton pair �Braaten and Lee, 2002� or,
equivalently, to a virtual photon �Qiu and Zhang, 2001�
is perturbatively calculable if the invariant mass is much
greater than �QCD, in contrast to FFs for hadrons and
for the real photon, so measurement of the polarization
of the virtual photon that decays to the lepton pair of
the Drell-Yan cross section can be used to test models of
the formation of J /
 particles, whose production from
fragmentation is otherwise similar to that of the virtual
photon. Hirai, Kumano, Oka, and Sudoh �2008� pro-
posed to identify exotic hadrons such as tetraquarks by
identifying properties of the extracted FFs of a newly
observed particle which are typical of FFs for quarks
whose flavor is favored, i.e., that are of the same flavor
as any of the detected hadron’s valence quarks. Some
fragmentation studies of squarks and gluinos into had-
rons have been performed by Katsoufis and Vlassopulos
�1985� and by Vlassopulos �1985� and recently into su-
persymmetric hadrons by Chang, Chen, Fang, Hu, and
Wu �2007�, which may be relevant at the LHC. The su-
persymmetric extension of the Dokshitzer-Gribov-
Lipatov-Altarelli-Parisi �DGLAP� evolution of FFs for
light charged hadrons has been studied by Fodor and
Katz �2001�, Coriano and Faraggi �2002�, Aloisio, Bere-
zinsky, and Kachelriess �2004�, and Cafarella �2006� in

the context of ultrahigh energy cosmic rays. FFs for light
charged hadrons are required for the calculation of had-
ronic signatures of black hole production at the LHC
�Mocioiu, Nara, and Sarcevic, 2003�.

The rest of this article is structured as follows. The
basic results of the QCD factorization theorem, which
forms the starting point of all calculations of inclusive
hadron production, are given in Sec. II, in particular the
separation from the overall cross section of the process
dependent parts, which can be calculated using the FO
approach to perturbation theory. �The derivation of
these results is outlined in Appendix A.� Then in Sec. III
we discuss the extraction of FFs from accurate e+e− data
and from various well motivated nonperturbative as-
sumptions. The ability of using these calculations for fit-
ted FFs to reproduce measurements is studied in Sec. IV.
Then we turn to recent progress: Improvements to the
standard FO approach that have not been incorporated
into nearly all global fits are given in Sec. V, namely,
hadron mass effects and large x resummation. The treat-
ment of experimental errors and their propagation to
fitted quantities, which has been rather comprehensively
implemented in PDF fits but to a somewhat lesser de-
gree in FF fits, is discussed in Sec. VI. The three most
recent global fits, in which the implementation of these
improvements can be found, are discussed and com-
pared in Sec. VII. Finally, in Sec. VIII we examine the
improvement of the standard FO approach at small x by
resummation of soft gluon logarithms, which has so far
been successfully tested at LO, and we consider what is
needed for a full treatment of soft gluon logarithms to
near-to-leading order �NLO�. In Sec. IX we predict fu-
ture experimental and theoretical progress of FF extrac-
tion and summarize the current progress in Sec. X. Defi-
nitions of various momentum fractions for the detected
hadron, in particular the light-cone momentum fraction
important in the factorization theorem, are given in Ap-
pendix B for general processes. The LO splitting func-
tions are given in Appendix C for reference, the relevant
Mellin space formulas in Appendix D, and a summary of
all data that can be calculated and used to provide con-
straints on FFs in Appendix E. Some of these issues
have recently been discussed by Arleo �2009�, with an
aim toward extending the formalism to describe frag-
mentation in QCD media.

II. RESULTS OF THE QCD FACTORIZATION THEOREM

Intuitively, the detected hadron h of inclusive single
hadron production events is inclusively produced in
the jet formed by a parton i produced at a short distance
1/�f in the overall process and carries away a fraction
z of the momentum of i, as shown by the amplitude in
Fig. 1.

The probability density in z for this to take place is
given by the FF Di

h�z ,�f
2�. The hadronic cross section is

then equal to the cross section with h replaced by i,
hereafter referred to as the partonic cross section,
weighted with the FF of i and summed and integrated
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over all degrees of freedom such as i and z, i.e., Eq. �1�
below. According to the factorization theorem, which
follows from QCD in a model independent way, the
leading twist component of any inclusive single hadron
production cross section takes this intuitive form, where
the FFs are process independent or universal among dif-
ferent initial states. The factorization theorem also as-
serts that all processes in the partonic cross section that
have energy scale below the factorization scale �f factor
out of the partonic cross section and are accounted for
by the FFs and that the resulting factorization scale de-
pendence of these FFs may be calculated perturbatively.
In this section, we highlight the results of the factoriza-
tion theorem. An outline of the formal derivation of the
factorization theorem is given in Appendix A.

Formally, the cross section is independent of the
“probing scale” �f. However, the perturbative approxi-
mation to the factorized partonic cross section depends
on �f through logarithms of the ratio of �f to the “en-
ergy scale” Es of the process, which occur with higher
powers at higher orders in �s and spoil the accuracy of
the series when large. Thus, the choice �f=O�Es� should
be made to ensure reliable results in practice. The pre-
cise choice of Es in terms of the kinematic variables is
somewhat arbitrary and conventional and will be chosen
such that, for each process, the perturbative approxima-
tions of the partonic cross sections are reliable for the
choice �f=Es for all kinematic ranges to be studied.
Note that Es is a fixed physical quantity, in contrast to
�f which should be allowed to vary in the range
�f=O�Es�.

A. Factorized cross sections

In general, an inclusive single hadron production pro-
cess depends on both Es and the fraction x of the avail-
able light-cone momentum carried away by the detected
hadron h �see Appendix B for more detailed discussion
and definitions of momentum fractions such as x�. For
example, in e+e−→�*→h+X, whose kinematics are
shown in Fig. 2 �left�, x�2�ph� /�s and Es=�s. We assume
for now that it is reasonable to neglect the effect of the
hadron mass mh, which is of O�mh

2 /ph
2� when mh
ph,

where ph is the momentum of the detected hadron.
When the effect of hadron mass, to be discussed in Sec.
V.A, is taken into account in the calculations, the scaling
variable x of the factorization theorem and the ratios xp

and xE �see Appendix B� must be distinguished from
one another. Note that the cross section may depend on
other variables in addition to x and Es, but we will not
indicate this explicitly unless necessary. The factoriza-
tion theorem asserts that the cross section takes the
form of a convolution,

d�h�x,Es
2� = �

i=−nf

nf �
x

1

dzd�i�x

z
,
Es

2

�f
2 ,	mk

2

Es
2
,as��f

2��
�Di

h�z,�f
2� , �1�

up to higher twist terms, which are suppressed relative
to the overall cross section by a factor O��QCD/Es� or
more. The parton label i=0 for the gluon, while i= �−�I
for �anti�quarks, where I=1, . . . ,6 corresponds to the fla-
vors d, u, s, c, b, and t, respectively. In other words,
capitalized roman indices refer to �anti�quarks only,
while uncapitalized roman indices refer to all partons
including the gluon. The fact that nf�6 necessarily will
be explained below. mk is a renormalization scheme-
dependent mass associated with parton k, which will be
taken to be its pole mass, and as=�s / �2�� is the expan-
sion parameter in perturbative series. The d�i are the
equivalent partonic cross sections obtained by replacing
the detected hadron h with a real on-shell parton i mov-
ing in the same direction but with momentum ph /z and
the sum over unobserved hadrons replaced with a sum
over unobserved partons. Dividing Eq. �1� by dx and
then performing the change of integration variable to
z�=x /z followed by the replacement z�→z, which en-
sures that the partonic cross sections are now differen-
tial in z instead of x /z, we obtain the more familiar
form,

d�h

dx
�x,Es

2� = �
i=−nf

nf �
x

1 dz

z

d�i

dz
�z,

Es
2

�f
2 ,	mk

2

Es
2
,as��f

2��
�Di

h�x

z
,�f

2� . �2�

hph

i

k = ph
z

X

Dh
i (z, µ2

f)

FIG. 1. Amplitude for the inclusive production of a hadron h
from a parton i. After summing the modulus squared over X,
the blob can be identified with the FF Di

h�z ,�f
2�, where �f is

the energy scale at which the parton is produced.

�

�

�

�

�

�

�

�

�

�

�

�

�

q

γ∗

e−

e+

qj

qj

hph

i

k = ph
z

X

X

Dh
i (z, µ2

f)

FIG. 2. Schematic illustration of factorization in inclusive had-
ron production. Amplitude for the process e+e−→�*→qj+ q̄j
→h+X �left�. Time flows from left to right. The virtual photon
momentum q obeys q2=s, where �s is the center of mass �c.m.�
energy. The blob contains all QCD processes consistent with
its external propagators and legs. Also shown is a schematic of
the leading twist component of this process after factorization
�right�, involving an intermediate real parton i that fragments
to the detected hadron h. The top right blob and its external
lines represents the FF Di

h, while the rest of the diagram is the
equivalent partonic cross section, i.e., with h replaced by i. The
lower label X refers to a sum over partons and their physical
degrees of freedom, so is strictly speaking different to the up-
per label X.
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For example, e+e−→h+X reactions can be factorized
into the form of Eq. �1� �or Eq. �2�
 as in Fig. 2 �right�. In
this case, d�i is completely calculable in perturbation
theory. For processes involving initial state hadrons,
such as ep→e+h+X at HERA and pp�p̄�→h+X at the
LHC or RHIC, d�i will be given by convolutions of per-
turbatively calculable quantities with PDFs for each ini-
tial state hadron, a result which also follows from the
factorization theorem. The d�i are otherwise perturba-
tively calculable if all subprocesses, with energy scale
below some arbitrary factorization scale �f��QCD, are
factored out of them and into the FFs Di

h �and PDFs if
applicable� according to the factorization theorem.
While the d�i differ from process to process, the FFs are
universal and therefore, through them, measurements of
one process impose constraints on others in which the
same hadron is produced.

In more detail, the perturbative expansion of the un-
factorized d�i in the limit Es�mi contains potential mass
singularities, given by logarithms of the form ln�mi /Es�
raised to powers of integers and, because the largest
power in a given order in as grows with the order, they
may spoil the convergence of the series even when mi
�0. These potential mass singularities, which arise from
energy processes much below Es or, equivalently, �f,
may be factored out of the d�i. There is clearly some
freedom in choosing whether to place each process of
energy scale around �f in d�i or Di

h, and this choice
defines the factorization scheme. �In practice the scheme
is fixed by the choice of subtraction terms in the factor-
ization.� Although the leading twist component of d�h is
formally independent of the factorization scale and
scheme choices, its perturbative approximation dis-
cussed above will depend on these choices, which there-
fore reflects the physics of the overall process. The the-
oretical error in the perturbative approximation can also
be estimated by varying the arbitrary scale and scheme
over the full range of physically reasonable choices. The
potential mass singularities from �anti�quarks with mass
mJ�Es are dampened by factors of Es /mJ, i.e., they ap-
proximately decouple �Appelquist and Carazzone, 1975�
and as such must not be factorized since doing so would
introduce large uncanceled counterterms in d�i. There-
fore, the active partons, those partons whose potential
mass singularities are factored out of d�i and into the
FFs and to which the summation over i in Eq. �1� is
restricted so that nf labels the number of species of ac-
tive quarks, should be limited to include only those par-
tons whose masses mi�Es. This will always include the
gluon and, since perturbative QCD is only valid in the
region Es��QCD, the light quarks, defined to be those
quarks whose masses are of O��QCD� or less, i.e., the
three lightest quarks d, u, and s or I=1,2 ,3. The intrin-
sic light hadron PDF of a quark is expected to be of
O�mh /mJ� or less �Witten, 1976�, but the same property
may not necessarily hold for FFs. Therefore, it may also
be necessary to always include some of the heavy
quarks, defined to be those quarks whose mass mJ
��QCD, i.e., c, b, and t or I=4,5 ,6, in the list of active

partons, in which case the cross section will not be per-
turbatively calculable if mJ
Es. For example, it could
happen that intrinsic charm quark fragmentation is
deemed important in a cross section, but it cannot be
incorporated into the calculation of the cross section if
the only appropriate scheme is the three flavor one. This
problem would be avoided if a method was known for
correctly incorporating the intrinsic FF of quark J in a
cross section when this quark is not active. This issue
will be discussed further in Sec. II.C in the context of
matching conditions between quantities defined with dif-
ferent numbers of active partons.

Note that there is another type of potential mass sin-
gularity appearing in the cross section, which behaves as
a power of ln�Es /mJ� as mJ→� for any heavy quark
mass mJ�Es. These can be absorbed into the strong
coupling constant as using a renormalization scheme for
which quark J is not active.

The nfth scheme is a renormalization and factoriza-
tion scheme for which the number of active quark fla-
vors is nf. Results are usually presented in the nfth
Collins-Wilczek-Zee �CWZ� scheme �Collins, Wilczek,
and Zee, 1978�, also known as the decoupling scheme,
which reduces to the modified minimal subtraction �MS�
scheme for only nf massless quark flavors in the limit
that nf active quark masses vanish, and the remaining
quarks’ masses become infinite so that they completely
decouple from the theory. The unsubtracted partonic
cross sections, with heavy quarks and their masses in-
cluded, as well as their subtraction terms in the CWZ
schemes, have been calculated for e+e− reactions by Na-
son and Webber �1994� and Kneesch, Kniehl, Kramer,
and Schienbein, �2008� and for ep reactions by Kretzer
and Schienbein �1999�. The inclusion of heavy quarks
and their masses in the partonic cross sections for pp�p̄�
reactions have been calculated by Beenakker, Kuijf, van
Neerven, and Smith �1989�, Nason, Dawson, and Ellis
�1989�, and Beenakker, van Neerven, Meng, Schuler, and
Smith �1991� and their subtraction terms by Kniehl,
Kramer, Schienbein, and Spiesberger �2005a, 2005b,
2008�.

B. DGLAP evolution

Roughly speaking, factorization replaces each loga-
rithm ln�mi /Es�, where i=0, . . . ,nf, in the partonic cross
section with ln��f /Es�. As mentioned at the beginning of
this section, these artifacts of factorization may spoil the
accuracy of the perturbation series in the same way that
the potential mass singularities did unless we ensure that
�f=O�Es�, in which case the �f dependence of Di

h�z ,�f
2�

must also be known. Fortunately, unlike the z depen-
dence, this �f dependence is perturbatively calculable,
provided �f��QCD: writing the �f

2 dependence of the
FFs in the form of the Dokshitzer-Gribov-Lipatov-
Altarelli-Parisi �DGLAP� equation �Gribov and Lipatov,
1972; Lipatov, 1974; Altarelli and Parisi, 1977; Dok-
shitzer, 1977; Collins and Qiu, 1989�,
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d

d ln �f
2Di

h�z,�f
2� = �

j=−nf

nf �
z

1 dz�

z�
Pij„z�,as��f

2�…

�Dj
h� z

z�
,�f

2� , �3�

with i=−nf , . . . ,nf, the splitting functions Pij�z ,as� are
each perturbatively calculable as a series in as. Specifi-
cally, denoting the square matrix with components Pij by
P, their expansion in as takes the form

P�z,as� = �
n=1

�

P�n−1��z�as
n, �4�

where P�n−1��z� are nonsingular even in the limits for
which any active parton mass vanishes. In general, Pij
can depend on parton masses. To ease calculations it is
preferable to use schemes in which Pij are mass indepen-
dent, such as the commonly used CWZ �Collins, Wilc-
zek, and Zee, 1978�. Because of this mass independence,
P in the nfth CWZ scheme is equal to that of the MS
scheme for nf massless quarks only. Equations �3� and
�4� serve similar purposes to the evolution of as,

d

d ln �2as��2� = �„as��2�… , �5�

where � is the renormalization scale, and the perturba-
tive expansion of the � function,

��as� = − �
n=2

�

�n−2as
n, �6�

respectively, which are used to resum powers of the
logarithm ln�� /Es� in perturbatively calculated quanti-
ties. In other words, the ultimate purpose of the
DGLAP equation is to resum powers of the logarithm
ln �f in the partonic cross section. The physical interpre-
tation of Eq. �3� is most easily made from its solution,
which takes the form

Di
h�z,�f

2� = �
j=−nf

nf �
z

1 dz�

z�
Eij� z

z�
,as��f

2�,as��f0
2 ��

�Dj
h�z�,�f0

2 � . �7�

Each quantity Eij„z ,as��f
2� ,as��f0

2 �…, which also obeys Eq.
�3� on taking Di

h→Eik, may be interpreted as the FF of
parton i at resolution scale �f into parton j at resolution
scale �f0 carrying a fraction z of parton i’s momentum. It
is subject to the boundary condition Eij�z ,as ,as�=�ij��1
−z� and depends only on P�n−1��z� of Eq. �4�. We will see
in Sec. II.E that an analytic form for the perturbative
calculation of E may be obtained in Mellin space.

C. Changing the number of active partons

So far, we have only considered the case where a fixed
choice of parton species is active, i.e., whose mass loga-
rithms are factored out of the partonic cross sections.
Specifically, we have chosen the nfth CWZ scheme �Col-

lins, Wilczek, and Zee, 1978� in which the gluon and the
nf lightest quarks are active. This choice is necessary for
reliable results when Es is in the range O�mnf

��Es
�O�mnf+1�. However, this means that all quantities must
be calculated in the �nf+1�th CWZ scheme when Es is in
the range O�mnf+1��Es�O�mnf+2�. Consequently, this
assignment of active quarks must be allowed to vary.
Fortunately, the factorized partonic cross sections d�i as
a function of nf are known, as are the necessary pertur-
bative matching conditions between different schemes
for as �Marciano, 1984� and for the FFs. Writing the FFs
of the nfth scheme as Di

h with i=−nf , . . . ,nf and the FFs
of the �nf+1�th scheme as Di

h� with i=−�nf+1� , . . . ,nf
+1, the matching conditions for the FFs take the form

Di
h��z,�f

2� = �
j=−nf

nf �
z

1 dz�

z�
Aij� z

z�
,	mk

2

�f
2 
,as��f

2��
�Dj

h�z�,�f
2� , �8�

where the matching matrix A is perturbatively calculable
for �f=O�mnf+1�, where this matching should therefore
be done. Otherwise, the precise choice of this matching
threshold is arbitrary because it is nonphysical and
should be distinguished from nonarbitrary physical
thresholds such as that for the production of a charm
quark. In the CWZ scheme �Collins, Wilczek, and Zee,
1978�, A depends on mnf+1 but not on mk and is now
known to NLO �Cacciari, Nason, and Oleari, 2005�. The
only nonzero components at NLO are Agg, which van-
ishes if the matching is done at �f=mnf+1 and Anf+1,g.
The latter quantity is not needed if the full FF of the
�nf+1�th flavor heavy quark, both the intrinsic and ex-
trinsic components, is treated as one single unknown
function which must be fitted to data, which is usually
the case. This is in contrast to the spacelike case: be-
cause the intrinsic component of a heavy quark PDF for
the proton can normally be neglected, it can be treated
as being completely extrinsic: i.e., the heavy quark is
produced perturbatively from a light parton in the pro-
ton. In other words, heavy quark PDFs can be perturba-
tively calculated from the light parton PDFs, without the
need for further unknown functions.

According to Eq. �8�, a heavy quark FF with a negli-
gible intrinsic component �i.e., its FF vanishes when it is
not active� is fully determined from the other FFs.
Therefore, if the intrinsic components of the heavy
quarks’ FFs are negligible, their FFs are perturbatively
completely determined by only the gluon and the light
quarks in the nf=3 scheme: using Eq. �8� to convert to
nf=4 scheme gives the charm quark FF in terms of the
gluon and light quark FFs: i.e., charm quark fragmenta-
tion proceeds via perturbative fragmentation to a gluon
or light quark, which then fragments nonperturbatively
to the detected hadron. Similarly the bottom quark FF
for nf=5 active quark flavors is fully determined from
the gluon, light, and charm quark FFs.

It is not a good approximation, on the other hand, to
neglect the intrinsic heavy quark FFs even for light had-
rons. For example, processes such as c→D+X followed
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by D→�+X, where D refers to any D meson, contrib-
ute significantly to pion production. The intrinsic charm
FF is certainly not negligible for charmed hadrons such
as D mesons. In many calculations for light hadron pro-
duction, the charm quark FF D4

h��z ,�f
2� is treated as an

unknown function at the matching scale where �f
=O�m4�, just as the gluon and light quark flavor FFs at
the initial scale �f=�f0 are, and the gluon and all four
quark FFs are evolved from there according to the
DGLAP equation of the nf=4 scheme. A similar proce-
dure is performed for the bottom quark FF. While this
incorporation of intrinsic charm in the nf=4 scheme is
consistent with the factorization scheme, the conven-
tional approach of setting the complete charm quark FF
to zero in the cross section calculated in the nf=3
scheme is not because intrinsic charm quark fragmenta-
tion effects should not depend on the choice of scheme
�although the precise definition of the intrinsic charm
quark FF itself is scheme dependent�. Consequently, this
approach contains an inconsistency: when Es, and there-
fore �f, is close to the charm quark mass, both the three
and four flavor number schemes will be valid but will
lead to very different cross sections in the case that the
intrinsic charm quark FF is large. In practice, this incon-
sistency of the three flavor scheme and four flavor
scheme when one also considers a possibly important
bottom quark FF does not matter since most cross sec-
tions of interest are of a sufficiently high energy scale
that the five flavor scheme should suffice for all calcula-
tions.

D. Various treatments of quarks with non-negligible mass

In the above discussion, we have assumed that all
quarks have non-negligible but finite masses. In practice,
the energy scale is usually not close to any quark mass,
so all perturbative results are usually approximated
by the zero mass variable flavor number scheme
�ZM-VFNS�, where the masses mJ of quarks J above
�f=O�Es� are set to infinity so that these quarks de-
couple from the theory, which introduces a relative error
of O�Es

2 /mJ
2� to the cross section, while all quarks with

masses below are treated as active and their masses mi
are set to zero, which introduces a relative error of
O�mi

2 /Es
2�. Such an approach therefore fails when the

energy scale is of the order of a quark mass but is oth-
erwise a reasonable approximation. However, the proce-
dure discussed in the previous sections is more general
and is called the general mass variable flavor number
scheme �GM-VFNS�, where both quarks and their
masses are treated in a similar fashion to their treatment
in the Aivazis-Collins-Olness-Tung �ACOT� scheme
�Aivazis, Collins, Olness, and Tung, 1994; Collins, 1998b�
of spacelike factorization. Such a procedure has, for ex-
ample, been explicitly implemented for heavy flavor
hadrons in photoproduction �Kramer and Spiesberger,
2001, 2003, 2004� and hadroproduction �Kniehl, Kramer,
Schienbein, and Spiesberger, 2005a, 2005b, 2008� in pp̄
reactions and more recently for e+e− reactions �Kneesch,

Kniehl, Kramer, and Schienbein, 2008�. The usual sim-
plifications and improvements that have been made to
the ACOT scheme since its inception may also be ap-
plied to fragmentation, at least in principle. For ex-
ample, assuming that the intrinsic fragmentation of a
heavy quark is negligible, the power suppressed terms in
the NLO factorized cross section for the inclusive pro-
duction of this heavy quark appearing in the overall had-
ronic cross section are in fact arbitrary since the only
purpose of this heavy quark cross section is to complete
the cancellation of all potential mass singularities in the
overall hadronic cross section such that there are no sin-
gularities in the massless limit �Collins, 1998b�. In the
S-ACOT scheme �Krämer, Olness, and Soper, 2000�,
these power suppressed terms are set to zero for simplic-
ity, while in the ACOT ��� scheme �Tung, Kretzer, and
Schmidt, 2002�, the accuracy of the perturbative calcula-
tion relative to the original ACOT scheme is improved:
The heavy quark production cross section is chosen
again to be that for the production of a massless quark
as in the S-ACOT scheme, but its LO part is also mul-
tiplied by a z dependent step function which is equal to
that multiplying the gluon production cross section’s po-
tential mass singularity to ensure it and its counterterm
only ever appear at the same values of z.

E. Analytic Mellin space solution of the DGLAP equation

The integrations over z on the right-hand sides of Eqs.
�1�, �3�, and �7� are known as convolutions and are a
typical feature of results of the factorization theorem.
The Mellin transform, discussed in Appendix D, which
does not destroy any information because this transform
is invertible using the inverse Mellin transform of Eq.
�D5�, converts these convolutions into simple products,
and therefore analytic work is usually performed in Mel-
lin space. For example, Eq. �3� becomes

d

d ln �f
2D�N,�f

2� = P„N,as��f
2�…D�N,�f

2� , �9�

where for further simplification we are now also omit-
ting parton labels i, j and the more trivial hadron label h:
it is understood in Eq. �9� that the matrix P acts on the
column vector D according to the usual matrix product
definition. The elements of P„N ,as��f

2�… for integer N
are equal to the anomalous dimensions of the twist two
spin N gauge invariant operators in D, which are needed
in the operator product expansion �OPE�. In the solu-
tion to Eq. �9�,

D�N,�f
2� = E„N,as��f

2�,as��f0
2 �…D�N,�f0

2 � , �10�

which is the Mellin transform of Eq. �7�, the elements of
E may be expressed analytically in terms of N, as��f

2�,
and as��f0

2 � up to the same accuracy as P �Furmanski and
Petronzio, 1982; Ellis, Kunszt, and Levin, 1994�: since
the LO result,
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ELO�N,as,a0� = exp�−
P�0��N�

�0
ln

as

a0
� , �11�

is an exact solution to Eq. �9� with P=asP
�0�, we are

motivated to write the solution to any order in the form

E�N,as,a0� = U�N,as�ELO�N,as,a0�U−1�N,a0� �12�

�note that the boundary condition E�N ,a ,a�=1 is
obeyed
. In the perturbative expansion of U,

U�N,as� = 1 + �
n=1

�

U�n��N�as
n, �13�

the coefficients U�n� are constrained, via Eq. �9�, in terms
of P�m�. These constraints are implemented by convert-
ing Eq. �9� via Eq. �12� to an evolution equation for U,

dU

das
= −

R

�0
+

1

�0as
�U,P�0�
 , �14�

where R=�n=1
� as

n−1R�n�=−�0�P /�+P�0� /�0as
U. The ex-
ponentiation in Eq. �11� and the commutator in Eq. �14�
are handled by choosing a specific basis for the FFs in a
factorization scheme in which the symmetries of QCD
are obeyed. Such a basis will be given in Sec. II.F.

As a final remark, the Mellin space formalism makes
clear the importance of the DGLAP equation in
application of perturbation theory to cross-section
calculations: any set of functions Di of the variables
0�z�1 and 0��f

2�� obeys the form of the DGLAP
equation �Eq. �3�
 by choosing P„N ,as��f

2�…
= „dD�N ,�f

2� /d ln �f
2
…D−1�N ,�f

2�, which follows from its
Mellin transform �Eq. �9�
. �Here D can be regarded as a
matrix whose columns consist of Di for a given hadron
species which varies from column to column; i.e., there is
some freedom in the definition of P.� The importance of
the formalism behind the DGLAP equation is that P is
constrained in QCD to depend on purely partonic
graphs and furthermore to be perturbatively calculable
�these results follow from Eq. �A29�
, and therefore the
�f dependence of the FFs is completely and calculably
constrained. In particular, when expanded in as it takes
the form in Eq. �4� with nonsingular coefficients. How-
ever, Eq. �3� is not the only way to evolve the FFs in �f.
Alternatives to Eq. �3� may be preferable for certain
physical reasons, such as the double logarithmic ap-
proximation �DLA�, discussed in Sec. VIII.C, which is
more apt for the small x region, or the evolution pro-
posed by Dokshitzer, Marchesini, and Salam �2006�,
whose equivalent splitting functions may exhibit certain
physical properties not seen in the usual DGLAP split-
ting functions beyond LO, such as the Gribov-Lipatov
relations and the expected large x behavior beyond lead-
ing order due to purely multiparton quantum fluctua-
tions when the physical strong coupling constant is used
as the expansion parameter. Such equations are similar
to the DGLAP equation but with both occurrences of �f
in Eq. �3� multiplied by �different� powers of z to ensure
that the inverse of this modified scale represents the
fluctuation lifetimes of successive virtual parton states

pertinent to the kinematic region studied. However, if
required, it is always possible to recast such alternative
evolution equations back into the form of Eq. �3� and
thereby use them to obtain an alternative expansion for
P in the kinematic region of interest to that in Eq. �4�.
To put this in an alternative, but equivalent, way, Eq. �4�
is not the only possibility for approximating P: In gen-
eral, P in certain limits of N and as may be better ap-
proximated in the form P�N ,as�=�rX

rR�r��Y�, where X
and Y are each in general a suitably chosen function of
both N and as. We will see an example of such an alter-
native expansion in Sec. VIII.B, namely, Eq. �157�
�where �=N−1�.

F. Symmetries

Although FFs are not physical, the factorization
scheme should be chosen such that they respect the sym-
metries of QCD in order to keep results as simple as
possible, and we assume that this has been done. Indeed,
the commonly used MS scheme is such a scheme. Con-
sider first the charge conjugation symmetry of QCD.
Writing the cross section or FF for the production of h+

�or h−� as Oh+�or h−�, where O=Di or d�, respectively, and
then defining charge summed and charge asymmetry
quantities as Oh±

=Oh+
+Oh−

and O�ch±
=Oh+

−Oh−
, re-

spectively �or more generally as Oh/h̄=Oh+Oh̄ and

O�ch/h̄=Oh−Oh̄ which include also neutral hadrons�, this
symmetry implies that each of these two combinations
of cross sections only depends on FFs that have been
combined in the same way �or they vanish�. The calcu-
lation of such cross sections is therefore simpler than
that of the production of hadrons of a given charge,
which depends on both charge summed and charge
asymmetry FFs. The Lorentz invariance implies a simi-
lar feature for the polarization of the hadron and of the
partons, assuming that there are only two possibilities
for the hadron’s polarization.

We now study the simplifications to the evolution of
FFs when the charge conjugation symmetry is taken into
account. Letting DqI

h =DI
h �Dq̄I

h =D−I
h � denote the FF for

the hadron h of the �anti�quark of flavor I=1, . . . ,nf, this
symmetry is accounted for by the results that follow
from charge conjugation symmetry,

DqI

h+�or h−� = Dq̄I

h−�or h+�. �15�

Equation �15� implies that charge summed FFs DqI

h±

=Dq̄I

h±
=DqI/q̄I

h+
=DqI/q̄I

h−
where, for both h+ and h−,

DqI/q̄I
= DqI

+ Dq̄I
. �16�

Due to charge conjugation symmetry, these FFs and the
gluon FF mix only with each other on evolution but not
with the valence quark FFs defined in Eq. �20� below.
Furthermore, in a scheme for which P is explicitly inde-
pendent of quark masses, such as the CWZ �Collins,
Wilczek, and Zee, 1978�, the SU�nf� symmetry for nf ac-
tive quark flavors of equal mass that follows from QCD
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implies that the gluon FF will mix via Eq. �3� with the
quark FFs combined into one singlet quark FF,

D� =
1

nf
�
I=1

nf

DqI/q̄I
. �17�

In other words, Eq. �3� is obeyed with D= �D� ,Dg�T and

P = �P�� P�g

Pg� Pgg
� . �18�

This SU�nf� symmetry also implies that every nonsinglet
quark FF, being any linear combination of the DqI/q̄I

that
vanishes when they are all equal, will only mix with itself
on evolution; i.e., it obeys Eq. �3� but with P reduced to
the single quantity PNS which is the same for all nons-
inglets. The nonsinglets can be chosen such that they
and the singlet form a linearly independent set of nf FFs,
so that after evolution the FFs of quarks of each flavor
or any other alternative basis of FFs can be extracted by
taking appropriate linear sums. A common choice for
the set of nonsinglet FFs is

DqI,NS = DqI/q̄I
− D�. �19�

Equation �15� also implies that charge asymmetry FFs

DqI

�ch±
=−Dq̄I

�ch±
=D�cqI/q̄I

h+
=−D�cqI/q̄I

h−
where, for both h+

and h−,

D�cqI/q̄I
= DqI

− Dq̄I
, �20�

which we refer to as the valence quark FFs. Although
valence quark FFs are the same as charge asymmetry
FFs, we distinguish between them depending on the
context—when working with the symmetries of quarks
as we do in this section, we refer to them as valence
quark FFs. Due to charge conjugation symmetry, va-
lence quark FFs mix with each other on evolution but
not with the summed FFs defined in Eq. �16� above. As
for charge summed FFs, this mixing is further simplified
by the SU�nf� symmetry introduced above: The singlet
valence quark FF,

D�c� =
1

nf
�
I=1

nf

D�cqI/q̄I
, �21�

and the nonsinglet valence quark FFs, which, similarly
to the definition of nonsinglet quark FFs in Eq. �19�, we
take as

DI,�cNS = D�cqI/q̄I
− D�c�, �22�

will obey Eq. �3� but with P reduced to the single quan-
tity P�c� and P�cNS, respectively. As for PNS, P�cNS is the
same quantity for all nonsinglet valence quark FFs. At
NLO, P�c�=P�cNS, which leads to the simpler evolution
in which each valence quark FF only mixes with itself:
D�cqI/q̄I

obeys Eq. �3� with P=P�c� �or P�cNS�.
The above decomposition into singlets, nonsinglets,

and valence quarks allows us to explicitly determine ELO
from Eq. �11�, as well as U�n� in terms of P�m� from Eq.
�14�, and thus to obtain a perturbative expression for E
to any order via Eq. �12�. In the nonsinglet and valence

quark sectors, this is trivial since all quantities �P�0�, U,
etc.� are scalars, so ELO can be calculated directly in the
form given in Eq. �11� and because the commutator in
Eq. �14� vanishes U�n� is straightforwardly determined by
substitution of Eq. �13� into Eq. �14�. In the singlet quark
and gluon sectors, where P�0� is a 2�2 matrix that acts
on the two component “vector” consisting of the quark
singlet and the gluon, obtaining an explicit calculable
form for ELO from Eq. �11�, as well as dealing with the
commutator in Eq. �14� such that it can be solved for U,
is more involved. Both these problems can be overcome
by working in a basis in which the matrix P�0� is diagonal
�Furmanski and Petronzio, 1982; Ellis, Kunszt, and
Levin, 1994�,

P�0� = �+M+ + �−M−, �23�

where Mi are 2�2 projection matrices and �i are scalars,
to be explicitly determined. �More generally, because of
the projection operator property �iM

i=1, any nondiago-
nal matrix such as U can be written as a sum of its four
ijth components MiUMj in this basis.� Then, using the
projection operator property MiMj=Mi�ij, Eq. �11� di-
agonalizes to the directly calculable form

ELO�N,as,a0� = �
i

Mi�N��as/a0�−�i�N�/�0.

Furthermore, an order by order solution for U can be
obtained by projecting out the ijth component of Eq.
�14� in order to reduce the commutator to a matrix
which is simply proportional to the ijth component of U:
Matching the coefficient of as

n−1 on both sides gives the
relation between the ijth components of U�n� and R�n�:
nMiU�n�Mj=−MiR�n�Mj /�0+ ��j−�i�MiU�n�Mj /�0. Add-
ing all four components of U�n� thus obtained gives

U�n� = �
ij

1

�j − �i − �0n
MiR�n�Mj, �24�

which can be substituted into Eq. �13� to give a pertur-
batively calculable form for U. Since R�n�, defined imme-
diately after Eq. �14�, depends on the U�m� for m
=1, . . . ,n−1, U�n� have to be obtained iteratively from
Eq. �24�, beginning with U�1�.

It remains to determine �i and projection operators
Mi satisfying Eq. �23�. Using the property �iM

i=1, Eq.
�23� implies that M±= �P�0�−��1� / ��±−���. Using the
property MiMj=Mi�ij implies that the determinant of
M± vanishes, and therefore so does the determinant of
P�0�−��1. Consequently, �± are the eigenvalues of P�0�,

i.e., �±= �Pqq
�0�+Pgg

�0�±��Pqq
�0�−Pgg

�0��2−4Pqg
�0�Pgq

�0�
 /2.
In general, the zeros in the numerator of Eq. �24� lead

to singularities in E for complex values of N. In the
calculation of the cross section via the inverse Mellin
transform defined by Eq. �D5�, it is not necessary that
the contour C should lie to the right of these singulari-
ties. Although this arbitrariness due to the dependence
on the choice of C is of higher order than the order of
the calculation, for numerical purposes it is preferable to
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eliminate the singularities by choice of the spurious
higher order terms. For example, at NLO, E is free of
such singularities when Eq. �12� is calculated in the form
E=ELO+U�1�ELOas−ELOU�1�a0, which we note obeys
the desired boundary condition E�N ,a ,a�=1. Alterna-
tively, the singularities can be made to cancel simply by
choosing U−1�N ,a0� in Eq. �12� to be exactly equal to the
inverse of U�N ,a0� �Blümlein and Vogt, 1998� instead of
expanding U−1�N ,a0� to finite order in a0.

G. Sum rules

Intuitively, FFs as probability densities will be con-
strained by conservation laws. For example, from mo-
mentum conservation, the momentum of a parton i must
equal the total momentum of all hadrons to which it
fragments, giving the momentum sum rule

�
h
�

0

1

dzzDi
h�z,�f

2� = 1 �25�

for every parton i. Similarly, charge conservation implies
the charge sum rule

�
h
�

0

1

dzehDi
h�z,�f

2� = ei, �26�

where eh�i� is the electric charge of hadron h �parton i�.
In fact, although the probability density interpretation
of FFs may not be correct for all schemes, Eqs. �25� and
�26� hold in the MS scheme �Collins and Soper, 1982�:
They are true for the bare FFs DBi

h of Appendix A, for
which the probability density interpretation is valid,
which is seen by applying the operation �h�0

1dz�z�� to
the matrix element definition of the bare quark FFs in
Eq. �A12� �and the similar definition for the bare gluon
FF� and identifying the number operator for hadrons of
species h in an infinitesimal region of momentum space,
dNh= �2��d−1�dP+/2P+�dd−2PTah

†�P�ah�P�. Then Eqs.
�25� and �26� follow for factorized FFs at all values of �f
in schemes for which no subtraction is made on bare
quantities that are free of divergences, such as the MS
scheme. Such intuitive but theoretically solid results may
be regarded as “physical.”

In practice, Eqs. �25� and �26� are not directly used to
impose a precise constraint between FFs. First, the sum-
mation is over all hadron species h, so that they impose
no constraint in global fits of FFs in the case of a specific
hadron. Second, FFs at low z are poorly constrained be-
cause soft gluon logarithms render the FO approxima-
tion of the splitting functions inaccurate at small z. This
is in contrast to the momentum sum rule for PDFs,
which imposes a constraint between them for any given
hadron because the summation is over parton species i
instead of over hadron species, and PDFs are better un-
derstood at small momentum fraction. Instead, Eq. �25�
may serve as an upper bound on FFs and therefore as a
check on phenomenological extractions of them be-
cause, when the sum over h is limited to just a few had-
rons and the lower bound for the integral over z is re-

placed by a value sufficiently greater than zero, it will be
less than 1 if all FFs are positive. However, this positivity
condition only follows from the probabilistic interpreta-
tion for FFs, which is not quite correct.

Equations �25� and �26� do impose constraints on par-
tonic cross sections, examples are given in Sec. II.I,
which give a useful check on their perturbative calcula-
tions.

H. Properties of splitting functions

The LO coefficients of the splitting functions �the n
=1 coefficients P�0� in Eq. �4�
 of the quark singlet and
gluon sectors are given in Appendix C. Because of the
Gribov-Lipatov relations �Gribov and Lipatov, 1972�,
they are equal to the spacelike ones after the inter-
change P�g

�0�↔Pg�
�0� is made. The LO coefficients of the

splitting functions P�cNS, P�c�, P��, and PNS are equal to
one another. The NLO coefficients �the n=2 coefficients
P�1� in Eq. �4�
 have been calculated by Curci, Furman-
ski, and Petronzio �1980� and Furmanski and Petronzio
�1980� �see also Gluck, Reya, and Vogt �1993� and Ellis,
Stirling, and Webber �1996� for the correction to a mis-
print therein
. Although the simple Gribov-Lipatov re-
lation does not hold beyond LO, the timelike and space-
like splitting functions are related by analytic
continuation of the form factor from the spacelike to the
timelike case �Curci, Furmanski, and Petronzio, 1980;
Furmanski and Petronzio, 1980; Stratmann and Vogel-
sang, 1997; Mitov, Moch, and Vogt, 2006; Moch and
Vogt, 2008�. Of the next-next-to-leading order �NNLO�
coefficients P�2�, the nonsinglet and singlet valences and
the nonsinglet and the two diagonal singlet splitting
functions have been calculated by Mitov, Moch, and
Vogt �2006� and Moch and Vogt �2008� using this con-
tinuation. Only the off-diagonal splitting functions P�g

�2�

and Pg�
�2� need to be calculated before a full NNLO time-

like evolution of all FFs will be possible. The resulting
reduction in the theoretical error on all calculations
when upgraded from NLO to NNLO should lead to a
reduction on the total errors on FFs obtained in global
fits, although this reduction will be generally somewhat
smaller than the current experimental errors on FFs.

Using the momentum sum rule of Eq. �25� in Eq. �9�
with N=2 and all hadron species h summed over gives a
constraint on the splitting functions in the singlet and
gluon sectors,

�
0

1

dxx„2P��
�n��x� + P�g

�n��x�…

= �
0

1

dxx„2Pg�
�n��x� + Pgg

�n��x�… = 0. �27�

The factors of 2 account for the identical contributions
of quarks and antiquarks. Similar momentum sum rule
constraints exist for the spacelike splitting functions af-
ter the interchange P�g↔Pg� is made. Similarly, the
charge sum rule of Eqs. �26� and �9� with N=1 implies
that the valence quark splitting functions obey
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�
0

1

dxP�cNS
�n� �x� = �

0

1

dxP�c�
�n� �x� = 0, �28�

which are similar to the valence sum rule constraints on
the spacelike splitting functions.

I. The simplest case: e+e−\h+X

We are now in a position to highlight the main fea-
tures of the perturbative calculation of the above pro-
cess, which serves as a simple illustration of the calcula-
tion of factorized cross sections in general. In this
section we assume for simplicity that there are only nf
flavors of quarks, which are all massless. This process
proceeds via e+e−→�* ,Z→qJ+ q̄J→partons→h+X,
which is calculated by factorization of the modulus
squared of the diagram in Fig. 2 �left�, in which the re-
sulting partonic kinematics are also shown �right�. For
clarity, we neglect the effects of the Z boson for now and
discuss them later. The �anti�quark qJ �q̄J� at the elec-
troweak vertex, called the primary quark, of specific fla-
vor J is often identified or “tagged” in experiment, and
we assume for generality that this is the case. Thus we
make the replacements d�i�z , . . . �→d�qJ

i �z , . . . � and
d�h�x ,Es

2�→d�qJ

h �x ,s� in Eq. �2�. Recall that x is the
light-cone momentum fraction defined in Appendix B.
In the case that the detected hadron is massless, which,
however, we do not assume in this section, it is equal to
xp=2�ph� /�s �see Appendix B�. We work to LO in elec-
troweak theory. Expressed in terms of nonsinglets and
pure singlets, the cross section in Eq. �2� can be written
as

d�qJ

h

dx
�x,s� = �

x

1 dz

z �d�qJ

NS

dz
�z,s,�f

2�DqJ/q̄J

h �x

z
,�f

2�
+

1

nf
�
I=1

nf d�qJ

PS

dz
�z,s,�f

2�DqI/q̄I

h �x

z
,�f

2�
+

d�qJ

g

dz
�z,s,�f

2�Dg
h�x

z
,�f

2�� �29�

up to higher twist terms of O��QCD/�s� or less. The non-
singlet partonic cross section d�qJ

NS/dz contains only
those contributions in which the fragmenting quark
qJ / q̄J is part of the same quark line as that for the pri-
mary quark. The pure singlet partonic cross section
d�qJ

PS/dz contains all other contributions, i.e., those for
which the primary quark is not part of the same quark
line as the quark which fragments. It is independent of
the flavor of the fragmenting quark and gives the same
result when this quark is replaced by an antiquark. Fi-
nally, d�qJ

g /dz contains all contributions in which the
fragmenting parton is a gluon.

Each partonic cross section may be written as

d�qJ

X

dz
�z,s,�f

2� = �0�s�NcQqJ
�s�CX�z,as�s�, ln

�f
2

s
�

for X = NS, PS, and g . �30�

The quantity �0=4��2 /3s is the leading order �LO�
cross section for the process e+e−→�++�−, and the cou-
pling of the primary quark qJ is accounted for by
QqJ

�s�=ee
2eqJ

2 , where ef is the electric charge of a fermion
f: ee=−1 and eqJ

=2/3 and =−1/3 for up and down type
quarks qJ, respectively. Note that QqJ

becomes depen-
dent on s when the effects of the Z boson, which will be
discussed later, are included. The CX are the coefficient
functions whose NLO �Altarelli, Ellis, Martinelli, and Pi,
1979; Baier and Fey, 1979� and NNLO �Rijken and van
Neerven, 1996, 1997a, 1997b; Rijken, 1997; Mitov and
Moch, 2006� terms are known. For the choice �f

2=s, the
CX�z ,as ,0�=CX�z ,as� are given to NLO by

CNS�z,as� = ��1 − z� + asCF	�2�2

3
−

9
2
���1 − z�

−
3
2� 1

1 − z
�

+
+ �1 + z2�� ln�1 − z�

1 − z
�

+
+ 1

+ 2
1 + z2

1 − z
ln z +

3
2

�1 − z�
 ,

CPS�z,as� = O�as
2� ,

Cg�z,as� = asCF�2
1 + �1 − z�2

z
�ln�1 − z� + 2 ln z
� .

Note that the pure singlet contribution only enters at
NNLO. The coefficient functions in the case where the
masses of active heavy quarks are not neglected and the
remaining heavy quarks are not decoupled �i.e., their
masses are not set to infinity� are presented by Nason
and Webber �1994�.

In terms of singlets and nonsinglets,

d�qJ

h

dx
�x,s� = �

x

1 dz

z
�d�qJ

NS

dz
�z,s,�f

2�DqJ,NS
h �x

z
,�f

2�
+

d�qJ

S

dz
�z,s,�f

2�D�
h�x

z
,�f

2�
+

d�qJ

g

dz
�z,s,�f

2�Dg
h�x

z
,�f

2�� , �31�

where the singlet D�
h and nonsinglets DqJ,NS

h are defined
in Eqs. �17� and �19�, respectively, and the singlet par-
tonic cross sections is given by

d�qJ

S

dz
=

d�qJ

NS

dz
+

d�qJ

PS

dz
. �32�

The full untagged cross section can always be ob-
tained by summing the tagged quarks in Eq. �29� over all
flavors,
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d�h

dx
�x,s� = �

J=1

nf d�qJ

h

dx
�x,s� . �33�

Conversely, Eq. �29� may be obtained from Eq. �33� sim-
ply by setting all QqI

=0 except QqJ
. Thus the tagged

cross sections d�qJ

h /dx are physical at least in the sense
that they are factorization scheme and scale indepen-
dent.

We now include the effects of the Z boson, i.e., all
processes e+e−→�* ,Z→qJ+ q̄J→h+X. Under certain
assumptions, discussed next, the Z boson couples to the
primary quark in the same way as the virtual photon
does. Thus its effect is incorporated purely by a modifi-
cation to the electroweak coupling from the purely pho-
tonic one QqJ

�s�=ee
2eqJ

2 to �Schierholz and Schiller, 1980�

QqJ
= ee

2eqJ

2 + 2eeveeqJ
vqJ

s�s − MZ
2 �

�s − MZ
2 �2 + MZ

2 �Z
2

+ �ve
2 + ae

2��vqJ

2 + aqJ

2 �
s2

�s − MZ
2 �2 + MZ

2 �Z
2 , �34�

where the vector and axial-vector couplings of a fermion
f to the Z boson are given by

vf =
T3,f − 2ef sin2 �W

2 sin �W cos �W
,

�35�

af =
T3,f

2 sin �W cos �W
,

respectively, with �W the electroweak mixing angle and
T3,f the third component of weak isospin of the fermion’s
left-handed component: T3,e=−1/2 and T3,qJ

=1/2 and
=−1/2 for up and down type quarks qJ, respectively. The
energy dependence of the decay width of the Z boson
�Z can be neglected in most applications �Consoli and
Hollik, 1989�, in which case it is equal to 2.4952 GeV
�Amsler et al., 2008�.

The cross section obtained simply by choosing the ef-
fective electroweak coupling to be given by that in Eq.
�34� excludes, however, certain contributions coming
from the cross section involving a purely axial-vector
coupling of the Z boson to the primary quark. For a
detailed discussion of these contributions see Binnewies
�1997�, where they are referred to as class F contribu-
tions. These contributions cancel when at least one of
the two couplings on either side of the cut of the boson
�Z or �� to the primary quark is a purely vector coupling,
as a result of Furry’s theorem �Furry, 1937�. The total
class F contribution to the cross section, being equal for
particle and antiparticle production, will take the same
form as d�qJ

h /dx in Eq. �29� after factorization,

d�qJ,F
h

dx
�x,s� = �

x

1 dz

z �d�qJ,F
NS

dz
�z,s,�f

2�DqJ/q̄J

h �x

z
,�f

2�
+

1

nf
�
I=1

nf d�qJ,F
PS

dz
�z,s,�f

2�DqI/q̄I

h �x

z
,�f

2�
+

d�qJ,F
g

dz
�z,s,�f

2�Dg
h�x

z
,�f

2�� , �36�

where

d�qJ,F
X

dz
�z,s,�f

2� = �0�s�NcQqJ

F �s�CX,F�z,as�s�, ln
�f

2

s
�
�37�

with the effective electroweak coupling

QqJ

F �s� = �ve
2 + ae

2�aqJ

2 s2

�s − MZ
2 �2 + MZ

2 �Z
2 . �38�

In the untagged cross section, the replacement aqJ

2

→aqJ
�I=1

nf aqI
must be made in Eq. �38� in order to

account for interference effects between diagrams with
different quark flavors at the Z boson vertex. Since
aQu

=−aQd
, where Qu and Qd are any up and down type

quarks, respectively, the class F contribution to the un-
tagged cross section will vanish if every primary quark’s
partner in the same generation is also a primary quark
and the masses of the two quarks in this generation are
equal. Thus, for example, the class F contribution can be
neglected when only the u, d, s, and c quarks are active
and their masses can be neglected. In any case, the class
F contribution can be neglected in NLO calculations
since the series for CF,X begin at O�as

2�, where they are
proportional to CFTR. We stress, however, that future
NNLO calculations will be incomplete without the class
F contribution.

In a single event in e+e−→�* ,Z→qJ+ q̄J→h+X, the
number of hadrons of species h produced with energy or
momentum fraction between x and x+dx is

NqJ

h �x,s�dx =
dx

��s�

d�qJ

h

dx
�x,s� , �39�

where, choosing �=�s, the total cross section ��s� at
NLO is given by

��s� = �
I

�0�s�NcQqI
�s�„1 + 3

2CFas�s�… . �40�

From this result we can obtain two important sum rules.
First, by energy or momentum conservation, the total
energy of the final state �h,J�0

1dxNqJ

h �x ,s�Eh must equal
the energy of the initial state �s. Using x=2Eh /�s, this
equality of energies is equivalent to
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�qJ
�s� =

1
2�

h
�

0

1

dxx
d�qJ

h

dx
�x,s� , �41�

where �qJ
�s� is the total cross section when quark qJ is

tagged, given by Eq. �40� with all QqI
set to zero except

that for I=J. In the MS scheme, the momentum sum
rule of Eq. �25� and the nonsinglet, singlet, and gluon
coefficient functions for N=2 also imply Eq. �41�. The
total electric charge of the final state when quark qJ is
tagged is

�
h
�

0

1

dxeh
1

��s�

d�qJ

h

dx
�x,s� = 0, �42�

which follows from Eq. �26�.
A quantity which is often measured is the multiplicity

of hadrons of species h, being the average total number
of these hadrons produced in a single event. Using Eq.
�39�, the multiplicity is calculated from the cross section
according to

�nqJ

h �s�� = �
0

1

dx
1

��s�

d�qJ

h

dx
�x,s� . �43�

This can be interpreted in a physically meaningful sense
as the number of hadrons produced by fragmentation of
quark J because, at LO,

�nqJ

h �s�� = �
0

1

dx
QqJ

�
I=1

nf

QqI

DqJ/q̄J

h �x,s� , �44�

and because to all orders it is scheme and scale indepen-
dent. The total �i.e., untagged� multiplicity is given by
�nh�s��=�J�nqJ

h �s��.
The cross section considered so far in this section can

be decomposed into cross sections in which the vector
boson is transversely and longitudinally polarized with
respect to the direction of the detected hadron, denoted
by the subscripts T and L, respectively,

d�qJ

h

dx
=

d�qJ,T
h

dx
+

d�qJ,L
h

dx
. �45�

As usual, d�qJ,T
h /dx and d�qJ,L

h /dx are factorized in the
same way as d�qJ

h /dx in Eq. �29�. The corresponding co-
efficient functions are defined as before via

d�qJ,�
X

dz
�z,s,�f

2� = �0�s�QqJ
�s�C�,X�z,as�s�, ln

�f
2

s
� �46�

for X=NS,PS, and g and for �=T and L To O�as�,

CL,NS�z,as� = asCF,

CL,PS�z,as� = O�as
2� , �47�

CL,g�z,as� = asCF�4
1 − z

z
� .

Therefore, these coefficient functions up to and includ-
ing the O�as

2� terms are required for a NLO calculation
of d�qJ,L

h /dx, as is the LO part of the longitudinal com-
ponent of d�qJ,F

h /dx, being of O�as
2�. Note that the trans-

verse coefficient functions are given by CT,X=CX−CL,X.
From a standard tensor analysis, the dependence of

the differential cross section on the scattering angle � of
the detected hadron is �Mele and Nason, 1991; Nason
and Webber, 1994; Rijken and van Neerven, 1996, 1997a,
1997b; Rijken, 1997; Mitov and Moch, 2006�

d2�qJ

h

dxd cos �
=

3
8

�1 + cos2 ��
d�qJ,T

h

dx
+

3
4

sin2 �
d�qJ,L

h

dx

+
3
4

cos �
d�qJ,A

h

dx
. �48�

Equation �48� is in fact the most general form for the
inclusive production of a single hadron from a vector
boson and reduces to Eq. �45� on integrating over cos �.
The coefficient of cos �, the asymmetric cross section
d�qj,A

h /dx, is due to parity-violating effects of the Z bo-
son. Unlike d�qJ,T

h /dx, d�qJ,L
h /dx, and d�qJ,F

h /dx, the fac-
torized d�qJ,A

h /dx depends only on the valence quark
FFs,

d�qJ,A
h

dx
�x,s� = �

x

1 dz

z

d�qJ,A

dz
�z,s,�f

2�D�cqJ/q̄J

h �x

z
,�f

2� .

�49�

Here the partonic cross sections are given by

d�qJ,A

dz
�z,s,�f

2� = �0�s�QqJ

A �s�CA�z,as�s�, ln
�f

2

s
� , �50�

where the electroweak coupling is given by

QqJ

A �s� = 2aeaqJ
�eeeqJ

s�s − MZ
2 �

�s − MZ
2 �2 + MZ

2 �Z
2

+ 2vevqJ

s2

�s − MZ
2 �2 + MZ

2 �Z
2 � �51�

and, to NLO,

CA�z,as� = CT,NS�z,as� − asCF�1 − z� . �52�

III. GLOBAL FITTING OF FRAGMENTATION
FUNCTIONS FROM e+e− REACTION DATA

A comprehensive review of measurements of inclu-
sive single hadron production in e+e− reactions, e+e−

→�* ,Z→h+X, up to the year 1995 is given by Lafferty,
Reeves, and Whalley �1995�, and all data to the present
day can be obtained in numerical form from http://
durpdg.dur.ac.uk/HEPDATA/. Usually, the normalized
cross section

2501S. Albino: Hadronization of partons

Rev. Mod. Phys., Vol. 82, No. 3, July–September 2010



FSA

h �x,s� =

�
qJ�SA

d�qJ

h �x,s�/dx

�
qJ�SA

�qJ
�s�

�53�

is measured, where SA is the set of all tagged quarks.
Equation �41� requires the normalization of this cross
section to be such that

�
0

1

dx
x

2�
h

FSA

h �x,s� = 1. �54�

As for Eq. �41�, the factor 1/2 in Eq. �54� arises from the
fact that only half the c.m. energy is available to the
detected hadron. At LO, the results of Sec. II.A give

FSA

h �x,s� =

�
qJ�SA

QqJ
DqJ/q̄J

h �x,s�

�
qJ�SA

QqJ

, �55�

i.e., the measured cross section is essentially an FF or a
charge weighted sum of FFs. In practice, cross sections
are measured in an x bin of finite width. Setting the
range of the bin as xl�x�xh, such cross sections must
be calculated as

�FSA

h ��xl,xh,s� =
1

xh − xl
�

xl

xh

dxFSA

h �x,s� . �56�

Fortunately, by working in Mellin space this bin averag-
ing can be calculated analytically: from Eq. �D5�

�FSA

h ��xl,xh,s� =
1

xh − xl

1

2�i
�

C
dN

xh
1−N − xl

1−N

1 − N

�FSA

h �N,s� . �57�

The large amount of accurate data for inclusive single
light charged and neutral hadron production from these
reactions, in particular from LEP, has been used to ac-
curately constrain many of the degrees of freedom for
unpolarized charge summed FFs for light hadrons
through global fits. The experimental data sets from e+e−

reactions relevant for present global fits of FFs for �±,

K±, p / p̄, KS
0, and � / �̄ particles are summarized in

Tables III–VII. The normalization uncertainty common
to all data points is also given and therefore, in order to
be correctly implemented, should be treated separately
from the statistical uncertainty which varies from data
point to data point. This method will be discussed in Sec.
VI.B. Measurements in which the quark at the elec-
troweak boson vertex is tagged as either a light b or c
flavor quark have been performed by the TPC �Lu, 1986;
Aihara et al., 1987�, DELPHI �Abreu et al., 1998�, and
SLD �Abe et al., 1999� Collaborations and as either a d,
u, s, b, or c flavor quark by the OPAL Collaboration

�Abbiendi et al., 2000c�, which allows FFs of quarks with
the same electroweak couplings to be separately con-
strained, namely, u and c quark FFs can be separated
from one another and d, s, and b quark FFs can be
separated from one another �Kretzer, Leader, and Chris-
tova, 2001�. The tagging probabilities

�qJ

h �x,s� = �
x

1

dxFqJ

h �x,s� = �1 − x��FqJ

h±
��x,1,s� �58�

have been measured �Abbiendi et al., 2000c� by the
OPAL Collaboration for qJ=u, d, s, c, and b individu-
ally, which in particular are the only data from e+e− re-
actions that give phenomenological separate constraints
on the d and s quark FFs. However, they are rather
limited in number and/or accuracy and in particular only
exist for x�0.2. In addition, the experimental definition
of these measurements may not coincide with the theo-
retical definition in Eq. �58� �de Florian, Sassot, and
Stratmann, 2007b�.

Global fits to data from e+e− reactions have been per-
formed by Chiappetta, Greco, Guillet, Rolli, and Werlen
�1994�, Cowan �1994�, Binnewies, Kniehl, and Kramer
�1995a, 1995b, 1996�, de Florian, Stratmann, and Vogel-
sang �1998�, Kniehl, Kramer, and Pötter �2000�, Kretzer
�2000�, Bourhis, Fontannaz, Guillet, and Werlen �2001�,
Bourrely and Soffer �2003�, Albino, Kniehl, and Kramer
�2005, 2006, 2008b�, Hirai, Kumano, Nagai, and Sudoh
�2007�, and de Florian, Sassot, and Stratmann �2007a,
2007b� via minimization of �2, which is typically
achieved through the minimization program MINUIT
�James, 1998; James and Roos, 1975�. Currently, all cal-
culations are performed to NLO accuracy, and competi-
tive phenomenological extractions of �s�MZ� have si-
multaneously been performed in some of these fits.
Other determinations of FFs �Baier, Engels, and Peters-
son, 1979; Anselmino, Kroll, and Leader, 1983; Greco
and Rolli, 1993, 1995; Greco, Rolli, and Vicini, 1995�
using theoretical constraints such as dimensional-
counting rules for the large z behavior �Baier, Engels,
and Petersson, 1979; Jones and Gunion, 1979� or Monte
Carlo �Greco and Rolli, 1993, 1995; Greco, Rolli, and
Vicini, 1995� have used such data to motivate the values
of the parameters used in these approaches. Data for
which the energy scale Es is less than a few GeV are
excluded to avoid higher twist effects, detected hadron
mass effects, the unreliability of truncated perturbative
series, and other effects beyond the standard FO ap-
proach that may be relevant at low Es. Usually, data for
which x�0.1 or even x�0.05 are excluded from fits be-
cause small x logarithms in the FO calculation may pre-
vent this region from being described and because of
other possible small x effects not accounted for in the
calculations. Improvements to the theoretical descrip-
tion of this region will be discussed in Sec. VIII. Mea-
surements of p / p̄ production in e+e− reactions are rather
inaccurate, and therefore more accurate measurements
of production of unidentified particles, when used to-
gether with measurements of �± and K± production
and/or FFs for these two particles, would make a signifi-
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cant improvement to the constraints on FFs for p / p̄.
However, the amount of contamination by charged par-
ticles other than the light charged hadrons in unidenti-
fied particle data is unknown but may be significant: As
noted by Kniehl, Kramer, and Pötter �2000�, particle uni-
dentified data from the ALEPH �Aranda, 1995; Buskulic
et al., 1995a, 1995b� and OPAL �Ackerstaff et al., 1999�
Collaborations are inconsistent with similar data from
DELPHI �Abreu et al., 1998� and SLD �Abe et al., 1999�.
Furthermore, including such data would require uniting
the fits for each hadron species into a single fit, which is
a greater computational challenge than performing
these fits separately �although the fits for different had-
ron species may have to be united if �s�MZ� is included
in the list of parameters to be fitted
.

Longitudinal and transverse cross section measure-
ments for hadron production in e+e− reactions have pro-
vided accurate constraints on the summed FFs DqI/q̄I

h .
Measurements of the longitudinal cross section could
significantly improve the current constraints on the
gluon FF because it appears at LO according to Eq. �47�.
However, for all such data �Akers et al., 1995; Aranda,
1995; Buskulic et al., 1995b; Abreu et al., 1999b� the par-
ticle has not been unidentified. The differences between
the FFs, namely, the valence quark FFs D�cqI/q̄I

h , could be
constrained by measurements of the asymmetry cross
section d�qJ,A

h /dx, which has been performed at LEP
�Akers et al., 1995; Abreu et al., 1999b�. Unfortunately,
no identification of the detected charged particle’s spe-
cies has been made in these asymmetry measurements,
so that, as mentioned in Sec. I, the only constraints on
the valence quark FFs are provided by data from pp
reactions at RHIC which are rather poor, and also by
HERMES data for which low Es=Q effects may be im-
portant.

In global fits, the FFs are extracted at some “initial”
or “starting” scale �f=�f0. The FFs Di, which are usually

taken to be Di
h/h̄, and the charge asymmetry Di

�ch/h̄

�which in the case that i is a quark are equal to the

summed and valence quark FFs, respectively� or Di
h Di

h̄

are typically parametrized in the form

Di�z,�f0
2 � = Niz

ai�1 − z�bifi�z� , �59�

and the parameters Ni ,ai ,bi , . . . are freed in the fit. The
function fi�z�, which was set to 1 in early fits, depends on
further free parameters and is used to extend the func-
tion space available to Di. The �1−z�b behavior is moti-
vated by dimensional-counting rules �Jones and Gunion,
1979� and is expected to set in at large enough �f due to
the large z behavior of the splitting functions �Albino
and Ball, 2001�. The za behavior is chosen because of the
evolution behavior at small �but not too small� z, to be
discussed in Sec. VIII. However, these physical argu-
ments do not precisely follow from QCD and, further-
more, the choice of parametrization used in a fit only
needs to provide a sufficient region of function space to
the FFs for the data to be as well described as the high
energy theory approximation allows. Usually, �f0 is cho-

sen to be below the lowest value of Es of the data, but
such that �f0��QCD in order for the perturbative calcu-
lation of the DGLAP evolution to still be valid. Typi-
cally �f0=O�1� GeV. In principle, any value may be cho-
sen. Even the choice �f0=O��QCD� may be justified
since the resulting large theoretical errors in the evolu-
tion around this scale would effectively be absorbed into
the parameters on fitting, i.e., these low scale effects es-
sentially just modify the choice of parametrization, al-
though then the choice of parametrization in Eq. �59�
may not be suitable.

These choices of parametrization for each FF are usu-
ally the strongest nonperturbative theoretical constraint
if other nonperturbative constraints are exact or at least
good approximations in the framework of current ex-
perimental and theoretical information. An example of
such a reliable constraint is Eq. �15�, which is exact in
the standard model �in a physical scheme such as MS�.
On the other hand, as noted for the generation of the
asymmetry between strange quark and antiquark PDFs
of the proton of Catani, de Florian, Rodrigo, and Vogel-
sang �2004�, because P�c��P�cNS beyond NLO �see the
discussion following Eq. �22�
, the condition for FFs of
unfavored quarks qJ to obey DqI

h =Dq̄I

h for all �f is only
possible in certain cases. For example, neglecting elec-

troweak effects, suppose we impose the constraint Du
�+

−Dū
�+

=D
d̄

�+

−Dd
�+

at �f=�f0, which follows from SU�2�
isospin symmetry between u and d. This symmetry is
exact in the limit that the masses of these quarks are
equal �and electroweak effects can be ignored�, which is
a reasonable assumption given that their masses are
1.5–4 and 4–8 MeV, respectively. Then, if the charge

symmetry constraint DqI

�+
=Dq̄I

�+
for qI=s ,c ,b , . . . is also

chosen to hold at �f=�f0, it will hold for all �f, as will
the isospin symmetry constraint above, because D�c�

and DI,�cNS, which do not mix with any other FFs on
evolution, vanish at �f=�f0 and therefore all �f. In other
words, the small violation of SU�2� isospin is responsible
for the asymmetry between the fragmentation to �+

from an unfavored quark such as s and that from its
antiquark. Therefore, these unfavored asymmetries to
�+ are expected to be smaller than the unfavored asym-
metries to, e.g., h=K+ because the differences in masses

between u and s imply that Du
K+

−Dū
K+

and Ds̄
K+

−Ds
K+

cannot be expected to be similar for all z. Note that
electroweak effects only predict nonzero unfavored
asymmetries for �+ and K+ but do not predict which of
these two asymmetries is the largest. Similarly as for
Eqs. �25� and �26�, the �f independence of the isospin
and charge symmetry constraints implies that these con-
straints may be regarded as physical but only when
taken together. Other than the constraints mentioned
above, insufficient phenomenological constraints in glo-
bal fits may require imposing yet further theoretical con-
straints between FFs which have no real physical justifi-
cations and which may not hold for all �f. We consider
some examples below.
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If FFs for different hadron species are related by sym-
metry, FFs for one of these hadron species can be used
to make predictions for, or can be constrained by, pro-
cesses in which another of these hadrons is detected. For
example, SU�2� isospin symmetry implies that

Di
�0

= 1
2Di

�±
, Du,d,s,c,b,g

KS
0

= 1
2Dd,u,s,c,b,g

K±
,

�60�
Du,d,s,c,b,g

n/n̄ = Dd,u,s,c,b,g
p/p̄ .

However, we note that some hadrons are not produced
by direct partonic fragmentation but rather by decay
from another hadron, which itself may have been pro-
duced by either partonic fragmentation or hadronic de-
cay. If the decay channels involved in the production of,
e.g., �0 and �± do not respect SU�2� isospin symmetry,
the relation between their FFs above will be violated
even if it is true for direct fragmentation.

A valuable consequence of the second result in Eq.
�60� arises �Christova and Leader, 2007, 2009�: For any

initial state, the difference between d�K±
/2 and d�KS

0
de-

pends only on the FF �Dd−Du�K±
/2= �Du−Dd�KS

0
, which

is a nonsinglet. Therefore, this FF is rather well con-
strained relative to the other FF components. This is
similar to the consequence from charge conjugation
symmetry that the difference between d�h+

and d�h− de-
pends only on the charge asymmetry FFs. The assump-

tion Ds,c,b,g
KS

0
= 1

2Ds,c,b,g
K±

may be violated by those K± and
KS

0 arising from complicated decay channels involving
other hadrons instead of from direct partonic fragmen-
tation, which may differ between K± and KS

0. However,
SU�2� isospin suggests that these hadronic decay pro-
cesses for K± should be similar to those for KS

0. An in-
dication of this is found in the AKK08 �Albino-Kniehl-
Kramer, 2008b� fit because the fitted masses of K± and
KS

0 differ from their true masses by the same amount, as
discussed in Sec. VII.C. Since the nonsinglet splitting
functions and coefficient functions for e+e− reactions are

known to NNLO, the nonsinglet �Du−Dd�KS
0

can also
be extracted �Albino and Christova, 2010; Christova,
Leader, and Albino, 2010� and through it �s�MZ� to
NNLO. Such a procedure would be similar to the
NNLO extraction of the nonsinglet PDF fu

p− fd
p and

�s�MZ� using data from proton and deuteron targets
�Blümlein, Böttcher, and Guffanti, 2004, 2007� and
would allow for a further test of perturbative stability
in the timelike case. Note in particular that because soft
gluon logarithms at small x are absent in nonsinglet
splitting functions and coefficient functions, fits of

�Du−Dd�KS
0

to measurements on the difference between
K± production and twice the KS

0 production at much
lower x values than those of the data used in global fits
should be possible.

Aside from the rather limited measurements of tag-
ging probabilities from OPAL �Abbiendi et al., 2000c�,
defined in Eq. �58�, measurements at LEP, taken at c.m.
energies at the Z pole mass, have not implemented tag-
ging of individual flavors of light quarks. Consequently,
global fits to LEP data will not significantly constrain the
differences between the individual light quark flavor
FFs. If the OPAL tagging probabilities are not included
in the fit, these differences will be completely uncon-
strained, leading to significant discrepancies between
each of the light quark FFs from different sets such as
Binnewies-Kniehl-Kramer �BKK� and Kretzer, as shown
in Fig. 3.

These discrepancies are constrained solely by theoret-
ical constraints, which differ from one set to another.
However, LEP data do constrain the sum of these FFs
weighted with the respective electroweak couplings
given by Eq. �34� �neglecting effects beyond LO�. In fact,
because these electroweak couplings are approximately
equal at the Z pole mass according Eq. �34� this sum is
approximately proportional to the three flavor singlet
quark FF �Kretzer, Leader, and Christova, 2001�. This
may explain why, despite the different theoretical con-
straints on the Kniehl-Kramer-Pötter �KKP� �Kniehl,
Kramer, and Pötter, 2000� and Kretzer �2000� sets, the
values for this FF from these sets are similar in the fit
range of x �see Fig. 4� except at large z because the data
at large x are scarce.

Some data for �s�MZ were also used in the extrac-
tion of these FF sets, although they are much lower in
accuracy and value compared to the LEP data. Data
over a range of c.m. energies will provide some con-
straints on the difference between the u quark FF and

u=d
s
c
b
g
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this fit / BKK

Dπ±
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z
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FIG. 3. Comparison of FFs from different global fits. Ratios of Kretzer �labeled “this fit”� FFs to BKK FFs for �± �left� and K±

�right� at �f
2=100 GeV2 �where �f is written as Q�. From Kretzer, 2000.
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the sum of the d and s quark FFs. This may explain why,
in Fig. 3, the u quark FFs from BKK and Kretzer are
similar, at least relative to the s quark FF for �± and K±,
and also relative to the d quark FF for K±. However,
because the electroweak couplings of the d and s quarks
are equal at all energies, no untagged e+e− reaction data
can constrain the difference between their FFs. There-
fore, since the OPAL tagging probabilities were not
available at the time that these analyses were carried
out, the difference between d and s quark FFs were con-
strained by fixing one of these two FFs in the fit. For
example, in the KKP fit, the d quark FF for �± is fixed to
the u quark one, which according to SU�2� isospin sym-
metry is a good approximation. For K±, the s quark FF is
fixed to the u quark FF, which would be a valid approxi-
mation if the s and u quark masses were similar. This is
clearly not the case—the s quark FF should be some-
what larger because the u �ū� quark must form a bound
state with a heavier s̄ �s� quark from the vacuum �Field
and Feynman, 1977�. This strangeness suppression, mea-
sured by the strangeness suppression factor �s, being the
ratio of the production probability from the hadroniza-
tion sea of s quarks to that of u and d quarks, is indeed
observed in the OPAL tagging probabilities �Abbiendi et
al., 2000c�, where it is found to be in the range 0.5��s

�0.35. For p / p̄, the d quark FF is fixed to half the u
quark FF merely to reflect the fact that there are more u
than d quarks in the proton. This condition is chosen to
hold at �f=�f0 but cannot hold for all �f and is therefore
not physical.

To illustrate the reliability of the theoretical approach
used in global fits �including the choice of FF parametri-
zation and SU�2� isospin symmetry
, we show in Fig. 5
the description, over a large range of c.m. energies and
using the KKP FF set, of �± data from e+e− reactions,
which provide stronger constraints on FFs for �± than
other data do on other FFs. The description of all data
except the oldest data, from DASP, is good in the range
x�0.1. Data below this range were excluded in the fit,
which hence the deviation there from the data is no

cause for concern. The fact that this deviation is so large
may be due to neglected theoretical effects at small x
such as unresummed logarithms or mass effects of the
detected hadron.

IV. PREDICTIONS FROM GLOBALLY FITTED
FRAGMENTATION FUNCTIONS

The universality of FFs between processes with differ-
ent initial states as implied by the factorization theorem
allows data from one process to be described using FFs
sufficiently constrained by data from another process,
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FIG. 4. As in Fig. 3 for the ratios of the Kretzer �labeled “K”� to the KKP values for the singlet D�
�+
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at �f
2=100 GeV2 �left� and 2 GeV2 �right�. From Kretzer, Leader, and Christova, 2001.
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FIG. 5. NLO �solid� and LO �dashed� predictions using the
KKP FF set for inclusive �± production at �from top to bot-
tom� DASP �Brandelik et al., 1979�, ARGUS �Albrecht et al.,
1989�, TPC �Aihara et al., 1988a, 1988b�, TASSO �Braun-
schweig et al., 1989a, 1989b�, and SLD �Abe et al., 1999� at
�s=5.2, 9.98, 29, 34, and 91.2 GeV, respectively. Each pair of
curves is rescaled relative to the nearest pair above by a factor
of 1/10. From Kniehl, Kramer, and Pötter, 2000.
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giving a test of theoretical and/or experimental results.
Essentially, such a universality test involving predictions
that have been measured would really be a test of
whether all relevant physics effects have been accounted
for in the calculations used in the global fits and in the
calculations for the predictions, assuming experimental
errors on FFs, to be discussed in Sec. VI, have been
propagated to these predictions. In other words, such fits
will give a handle on the importance of contributions of
supposedly negligible effects such as higher twist. In this
section we discuss such programs, focusing mainly on
descriptions of data from ep and pp reactions.

A. ep reactions from HERA

In this section we discuss inclusive single hadron pro-
duction in neutral current DIS, ep→e+h+X or, omit-
ting the purely leptonic subprocess and assuming that
the contribution from Z boson exchange is negligible,
�*p→h+X, whose relevant kinematics are shown in Fig.
6 �left�.

The hard scale Es of the process is provided by the
real positive number Q, where

Q2 = − q2 � 0 �61�

is the negative virtuality of the spacelike virtual photon
�*. Unlike e+e− reactions, ep reactions are complicated
by the initial state hadron, which at leading twist con-
tributes partons with densities given by PDFs to the
hard interaction with the virtual photon and contributes
hadronic remnants to the final state. Because of the
hardness of the collision, the hadronic final state sepa-
rates into two clusters which are kinematically fairly dis-
tinguishable: those produced by fragmentation of a hard
parton which must therefore be assigned to h and those
which are proton remnants contained in X. However,
some hadrons cannot be unambiguously assigned to
h or the proton remnants, which at the theoretical
level translates into the need for fracture functions

�Graudenz, 1994; Trentadue and Veneziano, 1994; Grau-
denz, 1997; Collins, 1998a� in the cross section to absorb
those additional potential mass singularities which are
not absorbed by the FFs and PDFs. These fracture func-
tions describe the process

p → h + i + X �62�

and are complementary, but different, to FFs, which de-
scribe the process i→h+X and to PDFs, which describe
the process p→ i+X. Fracture functions may be repre-
sented mathematically as Mp,i

h �� ,x ,�f
2�, where x is the

fraction of available light-cone momentum taken from
the detected hadron, as defined in Appendix B, and 0
���1−x is the fraction of the initial proton p’s light-
cone momentum taken from the parton i. The factoriza-
tion scale �f represents the energy scale of the parton i
as usual. The detected hadron h in Eq. �62� is a remnant
of the initial proton and the parton i in Eq. �62� is re-
quired to connect the process in Eq. �62� with the hard
interaction. In other words, fracture functions describe
the partonic structure of the initial hadron after it has
produced the detected hadron. In this sense, a fracture
function is both an FF and a PDF, which explains why it
depends on two momentum fractions. Fracture functions
are nonperturbative and therefore, like FFs and PDFs,
contribute unknown degrees of freedom to the cross sec-
tion. Since on evolution they mix with both FFs and
PDFs but not vice versa, one anticipates the existence of
a scheme and scale independent cross section which
does not depend on them. Indeed, fracture functions do
not contribute to the cross section when the direction of
the detected hadron’s momentum is within the current
fragmentation region: In the Breit frame, which is the
frame in which the virtual photon’s energy vanishes and
its spatial momentum is antiparallel with the initial pro-
tons �see Fig. 7�, this region is defined by ��� /2, where
� is the angle between the spatial momentum of the de-
tected hadron and that of the virtual photon.
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jk’=wp

FIG. 6. Schematic of factorization in the current fragmentation
region for inclusive single hadron production in neutral current
DIS ep→e+h+X, giving all relevant kinematics including that
of the initial �k�� and final �k� state real partons involved in the
hard interaction. The blob on the left is the PDF fi

proton�w ,�f
2�,

on the right the FF Dj
h�z ,�f

2�, and in the center the hard inter-
action d�ij

„xB /w ,x /z ,Q2 /�f
2 ,as��f

2�…, where xB is the Bjorken
x defined in Eq. �63�, Q2 is the photon’s negative virtual mass
squared �see Eq. �61�
, and x is the light-cone momentum frac-
tion defined in Appendix B. As mentioned in Fig. 2, each label
X does not refer to the same final state.
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FIG. 7. Kinematics of the virtual photon and quark in the
proton which it strikes, before and after this happens, in the
Breit frame. Only the time and three components of momenta
are given, in that order, the one and two components vanishing
in all cases. At LO, all proton remnants move in the negative
3-direction, while the struck quark will fragment into a hadron
moving in the positive three direction. At any order, most had-
rons produced by fragmentation of a hard parton will go into
the current fragmentation region, i.e., will have a positive three
component of momentum.
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This region, consequently, is essentially devoid of pro-
ton remnants: i.e., hadrons in this region are assigned to
h and not X, which results in all nonperturbative infor-
mation in the calculation of the corresponding leading
twist cross section provided by the FFs and PDFs only.
The scaling variable for the initial proton is the Bjorken
scaling variable

xB = Q2/2Pq , �63�

where Q2 was defined in Eq. �61�. The light-cone mo-
mentum fraction x of Appendix B is defined in the class
of frames in which the virtual photon’s and initial pro-
ton’s spatial momenta are parallel and in opposite direc-
tions. Note that the Breit frame belongs to such a class.
Aligning the three axes with the virtual photon’s direc-
tion, its momentum in light-cone coordinates �defined at
the beginning of Appendix B� is given by

q = �q+,− Q2/2q+,0� �64�

and the initial proton’s momentum by

P = �0,P−,0� . �65�

Then x=ph
+/q+, which has the same value in all frames of

this class since the � component is invariant under
boosts in the 3-direction. It is easily verified by direct
calculation that the fully Lorentz invariant definition of
x is

x = Pph/Pq . �66�

The Breit frame is obtained by setting q+=Q /�2 in Eq.
�64�, i.e., by choosing

q = �Q/�2,− Q/�2,0� . �67�

At LO, the detected hadron will have a momentum

ph = �xq+,0,0� , �68�

in which case x=xp, where

xp = 2phq/q2, �69�

which is an alternative scaling variable also used in the-
oretical calculations �Sakai, 1979� and in experiment
�see, e.g., Breitweg et al. �1997�
. In the Breit frame, this
variable coincides with the definition of xp defined in
Appendix B because xp=2�ph� /Q.

From Fig. 6 �right� the cross section d�proton
h �x ,xB ,Q2�

is given by the equivalent partonic cross section
d�ij�x /z ,xB /w ,Q2� weighted by the probability
dwfj

proton�w ,�f
2� for the proton to produce a parton i car-

rying away a momentum fraction in the range w to

w+dw and weighted by the probability dzDi
h�z ,�f

2� for
the parton j to fragment to a hadron h carrying away a
momentum fraction in the range z to z+dz summed
over all partons i , j and all kinematically allowed �infini-
tesimal� ranges dw and dz,

d�proton
h �x,xB,Q2� = �

ij
�

x

1

dz�
xB

1

dw

�d�ij�xB

w
,
x

z
,
Q2

�f
2 ,as��f

2��
�fj

proton�w,�f
2�Di

h�z,�f
2� . �70�

For simplicity, we used the same value �f for the factor-
ization scale of the PDFs as that for the FFs. The PDF of
parton i in a hadron h is written as fi

h, and d�ij is the
cross section for the equivalent purely partonic pro-
cesses �*i→ j+X, which is known to NLO �Altarelli, El-
lis, Martinelli, and Pi, 1979; Baier and Fey, 1979�. Note
that, by comparing with Eq. �1�, the cross section for the
production of a parton i is given by

d�i�x

z
,
Es

2

�f
2 ,as��f

2�� = �
j
�

xB

1

dwd�ij�xB

w
,
x

z
,
Q2

�f
2 ,as��f

2��
�fj

proton�w,�f
2� . �71�

After the change of integration variables z→x /z �as per-
formed in Eq. �1� in order to obtain Eq. �2�
 and
w→xB /w in Eq. �70�, we find that

d�proton
h

dxdxBdQ2 �x,xB,Q2� = �
ij
�

x

1 dz

z
�

xB

1 dw

w

�
d�ij

dzdwdQ2�w,z,
Q2

�f
2 ,as��f

2��
�fi

proton�xB

w
,�f

2�Dj
h�x

z
,�f

2� .

�72�

At LO, the purely partonic cross section is given by

d�ij

dzdwdQ2�w,z,
Q2

�2 ,as��2��
=

d�0

dQ2 �Q2��
I

�ij�iIeqI

2 ��1 − w���1 − z� , �73�

where �0 is the cross section for the elastic process e�
→e� involving one photon exchange in the t channel.

The normalized cross section,

Gproton
h �x,cuts� =

�
cuts

dxBdQ2d�proton
h �x,xB,Q2�/dxdxBdQ2

�
cuts

dxBdQ2d�proton�xB,Q2�/dxBdQ2

, �74�

2507S. Albino: Hadronization of partons

Rev. Mod. Phys., Vol. 82, No. 3, July–September 2010



is measured in practice, where d�proton is the DIS �ep
→e+X� cross section. Some cancellation of PDF uncer-
tainties between the numerator and denominator of Eq.
�74� should occur. In any case, these uncertainties are
expected to be lower than the FF ones. The normaliza-
tion of Gproton

h may be obtained by following similar
steps to those that lead to Eq. �54�: Similar to Eq. �39�,
the number of hadrons of species h produced with en-
ergy or momentum fraction between x and x+dx is
Nh�x ,Q2�dx= �dx / �d�proton/dxBdQ2
�d�proton

h /dxdxBdQ2.
The total momentum in the 3-direction of the hadrons in
the current fragmentation region is �h�0

1dxNh�x ,Q2�ph,
where ph is the three component of the detected had-
ron’s momentum. This must equal that of the struck
quark, which according to Fig. 7 is Q /2 in the Breit
frame. Therefore, since Eq. �69� implies that x=2ph /Q
in this frame, Gproton

h �x , cuts� has the normalization

�
0

1

dxxGproton
h �x,cuts� = 1. �75�

From the momentum sum rule �Eq. �25�
, this implies
that the denominator in Eq. �74� is calculated from

d�proton

dxBdQ2 �xB,Q2� = �
i
�

xB

1 dw

w

d�i

dwdQ2�w,
Q2

�2 ,as��2��
�fi

proton�xB

w
,�2� , �76�

where

d�i

dwdQ2 = �
j
�

0

1

dz
d�ij

dzdwdQ2 , �77�

which at LO is therefore

d�i

dwdQ2 =
d�0

dQ2 �Q2��
I

�iIeqI

2 ��1 − w� . �78�

As shown by Sandoval �2009�, the contribution from
Z boson exchange can be as much as 15% in the region

Q�100 GeV. However, this effect approximately can-
cels between the numerator and denominator of the nor-
malized cross section in Eq. �74�, which is why we
choose to neglect the effect of the Z boson.

The region of the �xB ,Q2� plane, written “cuts” in Eq.
�74�, is usually specified by experimentalists as cuts on
the squared c.m. energy of the virtual photon-proton
system,

W2 = �P + q�2 = Q2�1/xB − 1� , �79�

on the fraction of the energy of the initial electron or
positron which is lost in the rest frame of the proton,

yB = Pq/Pk = Q2/xBs , �80�

where �s is the c.m. energy of the initial ep system and
on the scattered electron or positron’s energy E� in the
laboratory frame,

E� = E − Q2�E/xBs − 1/4E� , �81�

where E is the initial electron or positron energy, also in
the laboratory frame. A lower bound on E� prevents the
scattered electron or positron being falsely identified
with isolated low energy deposits in the calorimeter
while the true scattered electron or positron passes un-
detected down the beam pipe. The H1 Collaboration
imposed additional cuts �Kant, 1995; Adloff et al., 1997;
Dixon, 1997� on the angle of deflection of the electron or
positron and struck parton in the laboratory frame, �e
and �p, respectively, to maintain good detector accep-
tance. These are given in terms of xB and Q2 by

cos �e =
xBs�4E2 − Q2� − 4E2Q2

xBs�4E2 + Q2� − 4E2Q2 �82�

and

cos �p =
xBs�xBs − Q2� − 4E2Q2

xBs�xBs − Q2� + 4E2Q2 . �83�

The regions in the �xB ,Q2� plane used by the H1 Col-
laboration of Adloff et al. �1997� and by the ZEUS Col-
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FIG. 8. Cuts in the �xB ,Q2� plane �where xB is written x� used in the H1 analysis of Adloff et al. �1997� �top�, with E
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laboration of Derrick et al. �1996� are shown in Fig. 8.
As for FSA

h in e+e−, Gproton
h is usually averaged over a

finite bin width in x. Conservation of energy and mo-
mentum implies that, after being struck by the virtual
photon, the quark’s spatial momentum changes in sign
only, as shown in Fig. 7. Therefore, at LO, all hadrons
produced in the current fragmentation region originate
from fragmentation of the struck quark. �We note in
passing that, at LO, hadrons produced in the remaining
region ��� /2, the target fragmentation region �see Fig.
7�, can only be proton remnants, which theoretically
means that fracture functions play a more important
role than FFs �or PDFs� in this region, making this a

region for extracting fracture functions.
 Therefore,
measurements in the current fragmentation region can
provide good constraints on the FFs. The distribution of
hadrons in this region is similar to that in any one of the
two event hemispheres in e+e− reactions with �s=Q,
where a hemisphere is defined to be the union of all
directions that make an angle less than � /2 with the
thrust axis of the hadron distribution of the event, which
at LO is aligned with either the primary quark or anti-
quark. In mathematical terms, if the range in Q2 is neg-
ligible, which is usually a good approximation since
Gproton

h is independent of Q up to O�1/ ln Q� corrections,
the LO calculation

Gproton
h �x,cuts� =

�
J=1

nf

eqJ

2
„gqJ

�Q2�DqJ

h �x,Q2� + gq̄J
�Q2�Dq̄J

h �x,Q2�…

�
J=1

nf

eqJ

2
„gqJ

�Q2� + gq̄J
�Q2�…

�84�

is similar to that for e+e− in Eq. �55� with �s=Q and
tagged quarks summed over all flavors �and with QqJ
→eqJ

2 because the contribution to the ep reaction cross
section from Z boson exchange has not yet been calcu-
lated� except for the presence of the PDF dependent
factors

gqJ
�Q2� = �

cuts
dxBfqJ

proton�xB,Q2� .

Such factors drop out of single flavor quark tagged ep
reactions, i.e., quark tagged ep and e+e− reactions are
even more physically similar. Because of the variation
among gqJ

and assuming that SU�2� isospin symmetry
and charge symmetry of the initial proton’s sea are poor
approximations, the separation of the different quark
flavor FFs and the valence quark FFs if the charge of the
detected hadron in ep reactions is identified can be con-
strained by suitable data from both e+e− and ep reaction
data or even by ep data alone by choosing different re-
gions in the �xB ,Q2� plane for cuts. Recall that untagged
data from e+e− reactions alone can constrain neither the
separation between FFs of quarks of the same elec-
troweak couplings nor in the case of transverse and lon-
gitudinal cross sections, the valence quark FFs.

The ratios of the various tagged cross sections to the
total cross section, for both ep and e+e− reactions, are
shown in Fig. 9 using the AKK �Albino, Kniehl, and
Kramer, 2005� FF set.

Calculations for ep reactions are also performed using
the KKP and Kretzer FF sets. As for e+e− reactions,
quark tagging for ep reactions is performed by setting
the electroweak coupling to zero for all quark flavors

except that of the tagged quark flavor and is therefore
“physical” in the sense of being scheme and scale inde-
pendent. However, quark tagging in ep reactions may
not be possible at least in the near future. The purpose
of Fig. 9 is only to highlight the relative differences in
importance of the contributions to the overall produc-
tion from the fragmentations of the various quarks in
both reactions. In particular, u quark fragmentation
proves to be more important in ep reactions while b
quark fragmentation is more important in e+e− reactions,
as expected from the relative magnitudes of the proton
PDFs for these quarks. According to Fig. 10, the relative
yields of the various hadron species are similar. Thus the
complementary information on fragmentation between
e+e− and ep reactions should also apply at the level of
hadron identification, which is of primary interest at
present.

Data from ep reactions are no better than data from
e+e− reactions at constraining the gluon FF since it again
only enters at NLO and not at LO according to Eq. �84�.
The most significant constraints on gluon fragmentation
come at present from pp�p̄� reactions, discussed in Sec.
IV.B.

Comparisons have been made by Albino, Kniehl,
Kramer, and Sandoval �2007�, with data from the H1
�Adloff et al., 1997� and ZEUS �Derrick et al., 1996;
Breitweg et al., 1997� experiments using the CYCLOPS

program �Graudenz, 1997�, the CTEQ6M PDF set
�Pumplin, Stump, Huston, Lai, Nadolsky, and Tung,
2002�, and the AKK, Kretzer, and KKP FF sets. The
comparison with the H1 data at low and high Q2 ranges
is shown in Fig. 11.
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The strong disagreement between the calculations
from the different FF sets at large x most likely arises
from large experimental errors on the FFs due to poor
constraints from e+e− reaction data at large momentum
fraction. Otherwise, the calculations are fairly indepen-
dent of the FF set used despite different theoretical con-
straints on the FFs among the different sets. In other
words, any dependence of the cross section on those FF
components not well constrained by e+e− reaction data
which may arise as a consequence of the differences
among the gqJ

factors in Eq. �84� is in fact negligible
and/or the theoretical constraints on the FFs in the case

of the KKP and Kretzer sets and the OPAL tagging
probabilities in the case of the AKK set are sufficiently
reliable. At high Q2, the calculation for all three FF sets
agrees well with the data, which may be due to reliable
constraints on the charged pion production �note in par-
ticular that light quark flavor OPAL tagging probabili-
ties were used in the extraction of the AKK set and
SU�2� isospin in the extraction of the Kretzer and KKP
sets
, which dominates the cross section. Therefore, the
disagreements at small x values and, perhaps, at large x
values found with the lower Q2 data may be due to ne-
glected effects beyond the FO approach at leading twist.
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For example, resummation of soft gluon emission loga-
rithms that become large at small and large x may be
necessary to improve the calculation here. This is shown
in Fig. 12 by the effect of renormalization and factoriza-
tion scale variation on the calculation, being largest at
small and large x and for the lower Q2 range.

These observations are found to some degree in the
comparison with the ZEUS data of Derrick et al. �1996�,
in Fig. 13, although disagreement of the predictions with
one another is largest around x=0.3. The description of
the data in the range 0.3�x�0.5 is generally good, but
above this range it fails for Q2�100 GeV2, which again
may be due to neglected effects at large x in the calcu-
lation. However, this is unlikely because the scale varia-
tion in this region is small, suggesting that the perturba-
tive series is stable here.

Finally, we show comparisons with the new data from
the H1 �Aaron et al., 2007� and ZEUS �Brzozowska,
2007� Collaborations in Fig. 14.

The H1 Collaboration reported using a sample which
is a factor of 10 larger than that for the older H1 data of
Adloff et al., 1997, discussed above to extract these data,
as well as a to better understand the experimental un-
certainties, while the ZEUS Collaboration reported an
integrated luminosity of 0.5 fb−1 to be compared with
0.55 pb−1 in the older ZEUS data of Derrick et al. �1996�
considered above. The description of these much more
accurate data is much worse compared to that of the
previous HERA data discussed above and thus may re-
quire better constrained FFs and/or further improve-
ments in the theory. One possible improvement for the
description of the ZEUS data at large Q2 may be the
inclusion of Z boson effects.

In general, various low Q2 effects that have been ne-
glected in these calculations may be important, particu-
larly higher twist, heavy quarks, and the mass of the
hadron. The effect of the latter will be considered in Sec.
V.A. Such effects may not be important when Q
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=O�1� GeV because, as Fig. 15 shows, the de Florian–
Sassot–Stratmann �DSS� Collaboration �de Florian, Sas-
sot, and Stratmann, 2007a� used the standard FO ap-
proach to successfully fit �+ and �− FFs to accurate �+

and �− production measurements from ep reactions at
HERMES obtained mostly in the range 1�Q�2 GeV.
However, it is possible that low Q effects not accounted
for in the standard FO approach were in fact absorbed
by the FFs as a consequence of the fitting. That such
data can truly be described by the standard FO ap-
proach could be tested by, for example, performing a
simultaneous fit both to these ep reaction data and to
accurate �+ and �− production measurements from e+e−

reactions for which 1��s�2 GeV.
We note that measurements of charged particle pro-

duction from ep reactions have been performed at the
European Muon Collaboration �Ashman, 1991�. Since
the particle species is not identified, these data have not
been used in fits due to their possible contamination by
particles other than light charged hadrons, such as elec-
trons.

B. Hadron-hadron reactions

The inclusive production of single hadrons in hadron-
hadron reactions are important because they can verify
and improve constraints on the charge and flavor sepa-
ration of quark FFs provided by ep and e+e− reactions.
Perhaps most importantly, data from pp reactions at
RHIC should constrain gluon FFs significantly better
than data from ep and e+e− reactions can, owing to the
occurrence of the gluon FF at LO in the calculation.

The dimensionless quantity describing the inclusive
single hadron production in the collision of two hadrons
h1 and h2, h1h2→h+X, which is measured in experi-
ment, is

Hh1h2

h �x,y,s� = s2E
d3�h1h2

h

dp3 �pT,y,s�

= s2 1

2�pT

d2�h1h2

h

dpTdy
�pT,y,s� �85�

�exploiting azimuthal symmetry in the second equality�,
where �s is the c.m. energy, E and p are the energy and
spatial momentum, respectively, of the detected hadron
h, pT is its transverse momentum relative to the spatial
momenta of h1 and h2, which are antiparallel, and the
rapidity

y =
1
2

ln
E + pL

E − pL
, �86�

with pL as the longitudinal momentum �in the direction
of the spatial momentum of h1� of h and x is the scaling
variable defined in Appendix B, i.e., in the c.m. frame
and for h massless it is given by

x =
2pT

�s
cosh y =

2E
�s

. �87�

We may also write

x = 1 − V + VW , �88�

where V and W are the variables typically used in per-
turbative calculations, related to the usual Mandelstam
variables s, t, and u of h through

V = 1 + t/s ,
�89�

W = − u/�s + t� .

According to Eq. �1�, the cross section at leading twist
factorizes according to

Hh1h2

h �x,y,s�

= �
i
�

x

1

dzHh1h2

i �x

z
,y,

s

�f
2 ,as��f

2��Di
h�z,�f

2� , �90�

where Hh1h2

i is the equivalent partonic production cross
section. This equation has the following physical inter-
pretation: In any frame related to the c.m. frame via a
boost �anti�parallel to the beam direction �for massless
hadrons the precise choice of frame is irrelevant—later
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FIG. 13. Comparisons of theoretical predictions using the
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FIG. 14. �Color online� Comparisons of theoretical predictions using the AKK, Kretzer, and KKP FF sets with the new data from
the H1 �Aaron et al., 2007� �top� and ZEUS �Brzozowska, 2007� �bottom� Collaborations.
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when we treat the mass effects of the detected hadron,
we need to specify a frame�, the reaction of h1 with h2
results in the inclusive production of a parton i, which
subsequently fragments to a hadron moving in the same
direction and carrying away a fraction z of the parton’s
momentum. Note that the partonic rapidity is the same
as the hadronic rapidity since for massless hadrons y can
be approximated by the pseudorapidity

� = − ln�tan �/2� , �91�

where � is the angle which both the detected hadron and
the massless fragmenting parton make with the beam in
the c.m. frame.

The quantity Hh1h2

i in Eq. �90� depends on the nonper-
turbative initial state hadrons hi, i=1,2 through their
PDFs according to

Hh1h2

i �x,y,
s

�f
2 ,as��f

2�� = �
i1i2

�
x

1

dx1�
x � x1

1

dx2Hi1i2
i � x

x1x2
,y,

x2

x1
,
x1x2s

�f
2 ,

x1x2s

M1
2 ,

x1x2s

M2
2 ,as��f

2�,as�M1
2�,as�M2

2��
�fh1

i1 �x1,M1
2�fh2

i2 �x2,M2
2� , �92�

where Mk, of which Hh1h2

i is formally independent, is the
factorization scale associated with the initial hadron hk.
This result, which also follows from the factorization
theorem, can be interpreted as the inclusive production
of parton i from the interaction of a parton ik from one
initial state hadron hk, where k=1,2, moving parallel to
it and carrying away a momentum fraction xk, with a
parton from the other. The perturbatively calculable
cross section Hi1i2

i describes the purely partonic process
i1i2→ i+X and has been calculated to NLO �Ellis, Fur-
man, Haber, and Hinchliffe, 1980; Ellis and Sexton,
1986; Aversa, Chiappetta, Greco, and Guillet, 1988a,
1988b, 1989�. It depends on the c.m. energy of the par-
tonic system i1i2, given by the square root of x1x2s. Since
it is not evaluated in the c.m. frame of this partonic pro-

cess, in order to make connection with the c.m. frame of
the overall hadronic process it must therefore also de-
pend on the ratio x1 /x2, which determines the Lorentz
transformations between the hadronic and partonic c.m.
frames �see Eq. �116� and the discussion preceding
.

The components of Hi1i2
i with i=g are of O�as

2�, while
the rest are either of this order or higher. Therefore the
gluon FF appears at LO in this cross section, in contrast
to ep and e+e− reactions, and therefore pp reactions can
provide NLO constraints on the gluon. However, large
NLO corrections �Ellis, Furman, Haber, and Hinchliffe,
1980� suggest that perturbative instability is a large
source of error. Indeed, the NLO cross section suffers a
large scale variation, as can be seen for instance in Fig.
22. This theoretical error is much greater than that com-
ing from the propagated PDF uncertainty.

As for ep reactions, the detected hadron h in, e.g.,
h1h2 reactions will sometimes be a soft remnant from
one of the initial state hadrons instead of being pro-
duced by the hard partonic processes i1i2→ i+X fol-
lowed by i→h+X. As for ep reactions, these production
channels are accounted for by fracture functions for
each initial state hadron �Trentadue and Veneziano,
1994�. No further nonperturbative input is required
since it is clear from which initial hadron a remnant had-
ron was produced. Mathematically, all potential mass
singularities which cannot be absorbed into PDFs and
FFs can be absorbed into fracture functions. As a result
of universality, they are process independent �apart from
the initial state hadron�s�
, so that the factorized fracture
functions in h1h2 reactions are identical to those in ep
reactions when the same factorization scheme is used, as
are the potential mass singularities that they absorb. As
for ep reactions, one anticipates the existence of a
scheme and scale independent cross section for h1h2
→h+X which does not depend on fracture functions
since the evolution of FFs and PDFs does not depend on
them, i.e., a current fragmentation region analogous to
that in ep reactions which is free of initial hadron rem-
nants. Certainly, contributions from target fragmenta-
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FIG. 15. �Color online� Comparison of the calculations using
the NLO DSS �labeled “THIS FIT”� and Kretzer �labeled
“KRE”� FF sets of the multiplicities for the production of posi-
tively �open circles� and negatively �full� �± measured by
HERMES. The shaded bands in the plots on the right indicate
estimates of theoretical uncertainties due to finite bin-size ef-
fects. From de Florian, Sassot and Stratmann, 2007a.
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tion to the cross section Hh1h2

h considered will decrease
with increasing pT and decreasing y �Blokzijl, 1975� be-
cause the detected hadron moves further away from the
beam. Removal of these target fragmentation effects al-
together may be possible by placing kinematic restric-
tions on processes with alternative final states for inclu-
sive single hadron production, such as the semi-inclusive
Drell-Yan process h1h2→�*+h+X �Ceccopieri and
Trentadue, 2008�.

As discussed in Sec. II.F, charge summed cross sec-
tions Hh±

=Hh+
+Hh−

�omitting the h1h2 subscript appear-
ing in, e.g., Eq. �85�
 depend only on charge summed
FFs, and charge asymmetry cross sections H�ch±

=Hh+

−Hh−
depend only on charge asymmetry FFs. In both

types of observable, the contributions to the production
from the fragmentations of the various partons in the
proton can be studied, imposing tests on FFs through
expectations for these contributions: Now restoring the
h1h2 subscript and omitting the h± superscript, we de-
compose the charge summed cross section into three
terms,

Hh±
= ĤuvDu

h±
+ ĤdvDd

h±
+ �

i=g,qs

ĤiDi
h±

, �93�

where we omit arguments, integral symbols, etc. define

Ĥqv=Ĥq−Ĥq̄, and use the label qs to refer to sea quarks.
The first and second terms in Eq. �94� quantify the con-
tribution to the overall production from fragmentations
of the initial proton’s u and d valence quarks, respec-
tively. These quarks are the source of the charge asym-
metry, to be discussed below. Since there are more va-
lence u than d quarks in the initial protons, the ratio of
the first term to the second is expected to be greater
than unity in the production of �± particles, which are
equally likely to be produced from u quark fragmenta-
tion as they are from d �see Fig. 16�. This ratio is ex-
pected to be larger for p / p̄ production �see third plot in
Fig. 16�, where u quark fragmentation is larger than d
and even larger for K± production �see second plot in
Fig. 16�, where d quark fragmentation is unfavored.

The third term in Eq. �93� corresponds to the charge
symmetric contribution. It can be regarded as the con-
tribution to the production from the fragmentation of
the collective sea of initial protons. This type of frag-
mentation does not contribute to the charge asymmetry
production because it is charge conjugation invariant.
Therefore, the larger the third term is relative to the first
two, the smaller the charge asymmetry cross section is
expected to be relative to the charge summed cross sec-
tion. In the case of hadron production with nonzero

strangeness, such as K±� / �̄ and KS
0, the third term in

Eq. �93�, which contains the contributions from the fa-
vored fragmentation of s quarks in the protons’ sea, is
expected to dominate over the first two terms because
fragmentation from the protons’ valence u and/or d
quarks necessarily involves the unlikely production of a
heavier s quark from an extrinsic gluon. This behavior is
seen in the third plot of Fig. 16. In the case of �± and

p / p̄ production, it is not clear whether the first two
terms are the most important terms due to favored u
and d quark fragmentation or the third term which ac-
counts for fragmentation from the protons’ abundant
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FIG. 16. Contributions, as fractional ratios, to the production
from fragmentation of the initial state protons’ valence quarks
and sea partons for BRAHMS kinematics with 2.9�y�3 us-
ing the AKK08 FF sets. The notation u− ū refers to the con-
tribution from u valence fragmentation ĤuDu

h±
−ĤūDū

h±

=ĤuvDu
h±

�see Eq. �93�
. The ratios are stacked, i.e., for a given
pT value, the distance on the y axis from zero to the first curve
gives the u− ū contribution, from the first to the second curve
the d− d̄ contribution, and from the second curve to 1 the sea
parton contribution. From Albino, Kniehl, and Kramer, 2008b.
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partonic sea. It turns out that the third term always
dominates.

The individual terms in Eq. �93� are factorization
scheme and scale dependent and are therefore unphysi-
cal. Fortunately, their above physical interpretations can
also be given to each term in the equivalent physical
decomposition at NLO,

Hpp =��Hpp̄ − Hpp��uv
+��Hpp̄ − Hpp��dv

+ �2Hpp − Hpp̄� ,

�94�

where��uv
���dv

� means that the valence d �u� quark PDF is
set to zero. Note that there is no contribution to the first
two terms from the protons’ sea parton PDFs. Interac-
tions between valence u quarks from one proton and
valence d quarks from the other do not contribute here
because the cross sections for the processes qIqJ→h±

+X and qIq̄J→h±+X with I�J are identical at NLO.
Although the third term in Eq. �93� is much smaller than
the third term in Eq. �94�, the relative sizes of the terms
in both equations �Fig. 16� are qualitatively similar.

The charge asymmetry is determined from the FFs
according to

H�ch±
= ĤuvDu

�ch±
+ ĤdvDd

�ch±
. �95�

Both terms are factorization scheme and scale indepen-
dent. Note that from the quark composition of �± that

Dd
�c�±

is expected to be negative and Du
�c�±

positive �this
should at least be true for their first moments�. In addi-
tion, the quark composition of the proton suggests that
the production of u over ū is greater than the production

of d over d̄, i.e., Ĥuv�Ĥdv�0. The first plot in Fig. 17 is
consistent with these expectations. This allows for the
excess of �+ over �−, but it should be noted that this

excess is not guaranteed unless Ĥuv is sufficiently greater

than Ĥdv or the magnitude of Dd
�c�±

is sufficiently

smaller than Du
�c�±

. For h±=p / p̄, all four quantities in
Eq. �95� are expected to be positive so that a definite
excess of p over p̄ is predicted. Because of the expecta-

tions Ĥuv�Ĥdv and, from the quark composition of p / p̄,
Du

�cp/p̄�Dd
�cp/p̄, the first term in Eq. �95� is expected to

dominate over the second. These expectations are ob-
served in the second plot of Fig. 17.

Likewise, an excess of K+ over K− is predicted, al-
though in this case the second term in Eq. �95� vanishes

due to the physically reasonable assumption Dd
�cK±

=0 at

NLO. Note that there is no dependence on Ds
�cK±

, so
that this FF is not constrained by pp�p̄� reaction mea-
surements.

C. Other processes

Further tests of universality have been performed by
Kniehl, Kramer, and Pötter �2001� by comparing calcu-
lations using the KKP FF set obtained with measure-
ments of unidentified hadron production from pp̄ reac-
tions at the Super Proton Synchrotron by the UA1 and

UA2 Collaborations and at the Fermilab Tevatron by
the CDF Collaboration and from photoproduction �re-
quiring photon PDFs� in �p reactions from H1 and
ZEUS at HERA and in �� reactions from OPAL at
LEP2. The data overall were measured over a wide
range of pT and y. Good agreement with all data was
found provided that the theoretical error was produced
in the cross section when �f /Es is allowed to vary from
1/2 to 2. This cross section variation is rather large, and
the experimental errors are unfortunately largest at
large pT where additional nonperturbative information
such as higher twist is expected to be the important. The
photoproduction calculations also acquire large errors
from the rather badly constrained parton distribution
functions �PDFs� of the photon. Distributions in y gen-
erally have even larger theoretical errors. More strin-
gent tests of universality were performed by Aurenche,
Basu, Fontannaz, and Godbole �2004�, Daleo, de Flo-
rian, and Sassot �2005�, and Kniehl, Kramer, and Mania-
tis �2005� through analysis of pseudorapidity and pT dis-
tributions from H1 for the process ep→e+�0+X and by
Kniehl, Kramer, and Maniatis �2005� through analysis of
pT distributions from ZEUS for the process ep→e+h
+X, which did not require the use of photon PDFs �ex-
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FIG. 17. Contributions to the charge asymmetry �ch± from
fragmentation of the initial state protons’ valence quarks for
BRAHMS kinematics for which 2.9�y�3 using the AKK08
FF sets. The notation u+ ū means ĤuDu

�c�±
+ĤūDū

�c�±

=ĤuvDu
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�see Eq. �95�
. The cross section is given by the
difference between the two curves. From Albino, Kniehl, and
Kramer, 2008b.
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cept in the low Q region �Fontannaz, 2004�
. The dis-
agreement found with the ZEUS data was reduced by
Nadolsky, Stump, and Yuan �2001� through resumma-
tion of multiple parton radiation at low pT.

V. IMPROVEMENTS TO THE STANDARD APPROACH

The standard FO calculation discussed so far de-
scribes much of the data well but is incomplete. The FO
approximation of the high energy parts of the factorized
cross section is only applicable to the kinematic regions
for which Es��QCD and x is not too close to 0 or 1. The
boundaries of this acceptable region are otherwise un-
known. Terms originating from the emission of soft glu-
ons become large for large and small x and low Es and
must be summed to all orders with a procedure known
as resummation. We now discuss the well-known proce-
dure of large x resummation in DGLAP evolution and
in e+e− reactions in Sec. V.B and leave the resummation
of soft gluon logarithms at small x to Sec. VIII. Only the
ZM-VFNS has been implemented in global fits so far,
whose error of O�1� whenever Es=O�mJ� can be re-
moved using instead the GM-VFNS. Even with these
improvements to the perturbative approximation, the
definition of the cross section considered so far itself
requires various formal modifications, which become in-
creasingly important with decreasing Es. The effects of
the detected hadron’s mass, of O�mh

2 /Es
2�, will be dis-

cussed in Sec. V.A. Higher twist effects, of O��QCD/Es�
or less, remain unknown at present.

A. Hadron mass effects

At sufficiently high energy scales, the standard FO ap-
proach describes data from various reactions well. In
particular, the same AKK FF set �Albino, Kniehl, and
Kramer, 2005� describes simultaneously the accurate
pion production data from pp and e+e− reactions. This
suggests that low Es and small x effects in general are
not important for these data. The strongest caveat to
this argument is the possible importance of hadron mass
effects, which are not so important for �±, being the
lightest hadrons, but which may be relevant for other
particles. Therefore, for the other particles it may be
necessary to account for hadron mass effects in the
theory. In fact, as discussed in Sec. VII, the fitted hadron

masses for �±, p / p̄, and � / �̄ occurring in the calculation
for the e+e− reactions in global fits are approximately
equal to their true values �Albino, Kniehl, and Kramer,
2008b�, suggesting that it is the first effect beyond the
standard FO approach to become relevant as x and the
energy scale Es of the process decreases.

In this section, we calculate the effects of hadron mass
in e+e−, ep, and hadron-hadron reactions. Our approach
is analogous to the collinear factorization framework ap-
proach of Aivazis, Olness, and Tung �1994� for incorpo-
rating target mass effects in fully inclusive DIS cross sec-
tions rather than the OPE approach of Georgi and
Politzer �1976�. A detailed review and study of the vari-

ous approaches to target mass corrections can be found
in Schienbein et al. �2008�, which also contains a collec-
tion of useful references. Our approach is not unique
since the ambiguity in the definition of the leading twist
contribution to the cross section is up to O�� /Es�.

We begin with Eq. �1� �or Eq. �2�
, whose perturbative
quantities are explicitly independent of the hadron mass
�and therefore given by their results calculated with the
hadron mass set to zero�, provided that z is the ratio of
the light-cone momentum fraction of the detected had-
ron to that of the fragmenting parton as dictated by the
factorization theorem. The light-cone momentum frac-
tion x of the factorization theorem and any experimen-
tally measured momentum fractions xe, such as xp and
xE �see Appendix B for the definitions of x, xp, and xE�,
are unequal when the detected hadron’s mass mh cannot
be neglected. It is therefore necessary to determine ex-
plicitly the functional dependence x=x�xe ,mh

2 /Es
2� and

to multiply the result calculated from the factorization
theorem, d� /dx„x�xe ,mh

2 /Es
2� ,Es

2
…, by the factor dx /dxe

in order to obtain the measured result d� /dxe�xe ,Es
2�.

Note that dx /dxe can depend on the momentum of the
parton from any initial state hadron that occurs in the
hard interaction. We assume that all quarks are massless,
although the generalization to massive quarks is concep-
tually straightforward.

1. e+e− reactions (Albino, Kniehl, Kramer, and Ochs, 2006)

We now obtain the relations between x, the light-cone
momentum fraction defined in Appendix B, and the ex-
perimentally measured fractions xp=2�ph� /�s and xE

=2Eh /�s. See Fig. 2 for the definitions of the various
kinematical quantities in this reaction, although we note
that the definition of z via k=ph /z, which holds when
the hadron is massless, will be generalized to Eq. �98�
below. Using the light-cone coordinates defined in Ap-
pendix B, we work in a frame for which the virtual bo-
son’s momentum is given by

q = ��s/�2,�s/�2,0� �96�

and the hadron’s momentum by

ph = �x�s/�2,mh
2/�2x�s,0� , �97�

which also serves as an implicit definition of x, the light-
cone momentum fraction defined explicitly in Appendix
B. The momentum fraction z is defined by the relation
to ph of the � component of each parton’s momentum k
which contribute at leading twist,

k+ = ph
+/z . �98�

Note that for massless partons, k−=0. The condition kT

=0 is always true. Using �ph�= �ph
+−ph

−� /�2, we find

xp = x�1 − mh
2/sx2� . �99�

Note that x and s appear in the combination x�s, which
is twice the minimum value of k+. Inverting Eq. �99�
gives
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x = xp�1
2

+
1
2
�1 + 4mh

2/sxp
2� . �100�

Consequently, the experimental cross section d�h /dxp,
for example, can be calculated according to

d�h

dxp
�xp,s� =

dx

dxp
�xp,mh

2/s�
d�h

dx
„x�xp,mh

2/s�,mh
2/s…

= �1
2

+
1
2�1 +

4mh
2

sxp
2 �−1/2�

�
d�h

dx
„x�xp,mh

2/s�,s… , �101�

where d�h /dx is calculated in Eq. �2�, which is explicitly
hadron mass independent. The above formulas with xE

in place of xp are the same but with mh
2 →−mh

2.
As Fig. 18 shows, hadron mass effects become more

important with decreasing x and decreasing �s. Further-
more, the effect of hadron mass for �± is much less than
that for the heavier p / p̄, for which the shift at small x in

the cross section created by hadron mass effects is sig-
nificantly larger than the theoretical error on the stan-
dard FO calculation.

2. ep reactions (Albino, Kniehl, Kramer, and Sandoval, 2007)

When the detected hadron’s mass is nonzero, Eq. �68�
is modified to

ph = �xq+,mh
2/2xq+,0� . �102�

The relation between xp defined in Eq. �69� and the
light-cone momentum fraction x is

xp = x�1 − mh
2/Q2x2� �103�

or

x = xp�1
2

+
1
2
�1 + 4mh

2/Q2xp
2� . �104�

As in Eq. �98� for e+e− reactions above, the parton’s �
component of momentum in the c.m. frame is given by
k+=ph

+/z, where k is the momentum of the fragmenting
partons at leading twist. For massless partons, k−=0 and
kT=0 is always true. The measured cross section is given
by

d�h

dxpdxBdQ2 �xp,xB,Q2�

= �1
2

+
1
2�1 +

4mh
2

Q2xp
2�−1/2�

�
d�h

dxdxBdQ2„x�xp,mh
2/Q2�,xB,Q2

… , �105�

where d�h /dxdxBdQ2 is the usual explicitly hadron mass
independent calculation, given in Eq. �72�. This modifi-
cation to the normalization is similar to that of Dok-
shitzer and Webber �1998�, Dixon, Kant, and Thompson
�1999�, and Breitweg et al. �1999� up to terms of
O„�mh

2 / �x2Q2�
2
….

As Fig. 19 shows, hadron mass effects become impor-
tant with decreasing x �left� and increasing hadron mass
�right�. Hadron mass effects are also found to become
less important with increasing Q �right� as expected.

Note that the effect of the initial proton’s mass in
HERA data is expected to approximately cancel be-
tween the numerator and denominator in Eq. �74� and
thus is not accounted for. Furthermore, it is only impor-
tant at large xB, while according to Fig. 8 the HERA
data are taken at relatively small xB values.

3. Hadron-hadron reactions (Albino, Kniehl, and Kramer,
2008b)

The cross section is related to its partonic equivalent
by
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FIG. 18. Comparison of the calculation using the AKK08 FF
sets with measurements of the invariant differential cross sec-
tions for inclusive production in e+e− reactions at �s=14 GeV
from TASSO �Althoff et al., 1983� �labeled “Default”�. Large x
resummation, discussed in Sec. V.B, has been implemented.
Also shown is the calculation when mass effects are neglected
�the dotted curve labeled mh=0� and when the ratio k=�f

2 /s is
increased to 4 �lower solid curve� and decreased to 1/4 �upper
solid curve�. In the case of �±, the mh=0 curve cannot be seen
because it overlaps with the default curve. From Albino,
Kniehl, and Kramer, 2008b.
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d�i1i2
h = �

ii1i2

� dx1� dx2fi1
h1�x1,�f

2�fi2
h2�x2,�f

2�

��
x

1

dzd�i1i2
i Di

h�z,�f
2� , �106�

where z is defined by

k+ = p+/z �107�

in the partonic c.m. frame, namely, the c.m. frame of the
two initial partons i1 and i2 if the 3-axis is taken to be
parallel with the parton’s and hadron’s spatial momenta.
The measured cross section Fh1h2

h of Eq. �85� is differen-
tial in the Lorentz invariant element d3p /E. Equation
�90� is produced by dividing the left-hand side of Eq.
�106� by this element, and its relation to the equivalent
partonic element d3k /k0 that appear explicitly on the
right-hand side must be found. Working in the partonic
c.m. frame and assuming massless partons for simplicity,
the relations k0= �k� and E=�p2+mh

2 and the fact that
the detected hadron and fragmenting parton are spa-
tially parallel imply first that

dp3

E
=

�p�2

��p�2 + mh
2
d�p�d ,

�108�
dk3

k0 = �k�d�k�d ,

where  is the solid angle, and second that, from Eq.
�107� and using k+= �k0+ �k�� /�2 and p+= �p0+ �p�� /�2,

2z�k� = �p� + ��p�2 + mh
2 . �109�

From these last two results we obtain

dp3

E
=

1

z2R2

dk3

k0 , �110�

where

R = 1 − mh
2/��p� + ��p�2 + mh

2�2. �111�

�We note a couple of misprints in the explicit result for R
Albino, Kniehl, and Kramer �2008b�: the right-hand side
should not have been raised to the power of 2 and the
“!” in front of mh

2 in the denominator should have read
“�.”
 Equation �106� then becomes

E
d3�h1h2

h

dp3 = �
ii1i2

� dx1� dx2fi1
h1�x1,�f

2�fi2
h2�x2,�f

2�

�� dz
1

z2R2 �k�
d3�i1i2

i

dk3 Di
h�z,�f

2� . �112�

Before Eq. �112� can be calculated, the explicit depen-
dence of R on x1 and x2 needs to be found. According to
Eq. �111�, this dependence will be known once we deter-
mine �p�= �p��pT ,y ,x1 ,x2�, where recall that p is the de-
tected hadron’s momentum in the partonic c.m. frame.
In this frame, where the rapidity is written y� and the
transverse momentum is the same as that in the had-
ronic c.m. frame, we find that

�p� = �mT
2 cosh2 y� − mh

2 , �113�

where
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FIG. 19. Variations in the cross section calculation. Left: Comparisons of theoretical predictions using the AKK FF sets with the
distribution in x �written xp here� of unidentified hadrons from ZEUS �Derrick et al., 1996�. The modifications to the default
predictions �solid line�, calculated with mh=0, arising from the replacement of the CTEQ6M PDF set of Pumplin, Stump, Huston,
Lai, Nadolsky, and Tung �2002� by the MRST2001 �Martin-Roberts-Stirling-Thorne 2001� PDF set of Martin, Roberts, Stirling, and
Thorne �2002� from the removal of the evolved gluon and from the incorporation of the hadron mass effect are shown. Right:
Comparisons of theoretical predictions using the AKK FF set with the ZEUS data �Breitweg et al., 1997� measured in the interval
0.1�xp�0.2 and for different values of mh. The four curves on the left �and the data they are to be compared with� are calculated
�and measured� with different kinematical cuts to the four curves and the data on the right. From Albino, Kniehl, Kramer, and
Sandoval, 2007.
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mT = �pT
2 + mh

2 . �114�

According to Eq. �113�, the dependence of �p� on x1 and
x2 will be determined once we find y�=y��y ,x1 ,x2�. Let-
ting e	�x1,x2� denote the boost factor which transforms the
sum of the energy and longitudinal component of mo-
mentum between the partonic and hadronic c.m. frames,
the relation between y� and y is

y� = y + 	�x1,x2� , �115�

To obtain 	=	�x1 ,x2�, we align the 3-axis with the
beams. The � �!� component of the parton from h1 �h2�
in the hadronic c.m. frame is k1

+=x1P1
+�k2

−=x2P1
+�, where

P1
+ is the � component of momentum of h1, equal to the

! component of momentum of h2. All other compo-
nents of these partons’ momenta vanish. In the partonic
c.m. frame, the � component of the parton from h1 and
the ! component of the parton from h2 are equal and
given by k1

+e	=k2
−e−	, so that x1e	=x2e−	, or, finally,

	 = ln �x2/x1, �116�

respectively.
In Fig. 20 hadron mass effects become more impor-

tant as the mass of the detected hadron increases and as
pT decreases but remain smaller than the theoretical er-

ror calculated in the standard approach. Similar results
are obtained in the whole range �y��3; i.e., the size of
hadron mass effects is fairly independent of rapidity in
this range.

B. Large x resummation

When x is sufficiently large, the accuracy of the FO
perturbative calculations for the equivalent hard par-
tonic cross section and the DGLAP evolution is wors-
ened by unresummed divergences occurring in the for-
mal limit x→1. Here the “large x” region refers to
where these logarithms are important but is otherwise
not more precisely defined and could even include
rather small x values. The possible importance of large x
resummation effects for available experimental data was
discussed by Bourhis, Fontannaz, Guillet, and Werlen
�2001�, where uncertainties due to unresummed large x
logarithms were minimized by scale optimization. Re-
summation of these logarithms should reduce this theo-
retical error. The effects of these unresummed loga-
rithms should become more significant with decreasing
Es, where errors due to perturbative truncation are larg-
est. Resummation of all large x logarithms that occur up
to NLO in e+e− reactions is now possible using recent
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FIG. 20. Comparison of the calculation using the AKK08 FF sets with measurements of the invariant differential cross sections for
inclusive production in pp collisions at �s=200 GeV data from STAR �Adams et al., 2006a, 2006b; Abelev et al., 2007� for which
−0.5�y�0.5 �labeled default�. Also shown is the calculation when mass effects are neglected �the dotted curve labeled mh=0� and
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2 /pT
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curve cannot be seen because it overlaps with the default curve. From Albino, Kniehl, and Kramer, 2008b.
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results �Cacciari and Catani, 2001�. Resummation makes
a significant improvement to current global fits �Albino,
Kniehl, and Kramer, 2008b�, discussed in Sec. VII.

In general, in the series expansion of the hard part
W�x ,as�, these large x divergences take the form
as

n�lnn−r�1−x� / �1−x�
+, where r=0, . . . ,n labels the class
of divergence. In Mellin space, these divergences there-
fore take the form as

n lnn+1−r N at large N; i.e., they spoil
the convergence of the series at large N. They may be
factored out, which results in the calculation of W taking
the form

W�N,as� = Wres�N,as���
n

as
nWFO

�n� �N�� , �117�

where the FO series in parenthesis on the right-hand
side is free of these divergences since they are all con-
tained in Wres. W at large N is approximated by Wres
when the divergences in Wres are resummed, which in-
volves writing Wres as an exponential and expanding the
exponent in as keeping as ln N fixed �i.e., in the language
in Sec. II.E the series is of the form ln Wres�N ,as�
=�rX

rR�r��Y� with X=as and Y=as ln N
. The perturba-
tive series for the NLO quark coefficient function Cq
=CNS=CS for inclusive quark production in e+e− reac-
tions contains leading �class r=0� and next-to-leading
�class r=1� divergences, which can be replaced in the
manner of Eq. �117� by all such divergences of these two
classes. These divergences are all contained in �Cacciari
and Catani, 2001�

ln Cq„N,as�s�… = �
0

1

dz
zN−1 − 1

1 − z ��
s

�1−z�s dq2

q2 A„as�s�…

+ B�as„�1 − z�s…�� + O�1� , �118�

where

�A,B��as� = �
n=1

�

�A,B��n�as
n. �119�

To determine them explicitly requires the following re-
sults:

A�1� = 2CF,

A�2� = − CF�CA��2

3
−

67
9
� +

20
9

TRnf� , �120�

B�1� = − 3
2CF.

Since Eq. �118� is algebraically similar to the resummed
quark coefficient function of DIS �Catani and Trenta-
due, 1989�, we obtain all the divergences of classes r=0
and r=1, known as leading logarithms �LLs� and next-
to-leading logarithms �NLLs�, respectively, directly from
the MS result of Albino and Ball �2001�,

ln Cq
r=0,1�N,as� =

A�1�

as�0
2 ��1 − �s�ln�1 − �s� + �s


+
A�1��1

2�0
3 ln2�1 − �s� + �B�1�

�0
−

A�1��E

�0

+
A�1��1

�0
3 −

A�2�

�0
2 �ln�1 − �s�

− �A�2�

�0
2 −

A�1��1

�0
3 ��s, �121�

where �s=as�0 ln N. The first term in Eq. �121� accounts
for all LLs and the remaining terms for all NLLs. Ac-
cording to the general form of Eq. �117�, the resulting
resummed quark coefficient function that we seek is

Cq = Cq
r=0,1�1 + as�Cq

�1� − Cq
r=0,1�1��
 , �122�

where

Cq
r=0,1�1� =

A�1�

2
ln2 N + �A�1��E − B�1��ln N �123�

is the coefficient of the O�as� term in the expansion of
Cq

r=0,1 in as. The form of Eq. �122� ensures that the origi-
nal NLO result is obtained when the right-hand side is
expanded in as, i.e., when the resummation is “undone,”
up to O�as� because it prevents double counting of the
divergences. Note that there are an infinite number of
other schemes which are consistent with these criteria
and give the large N behavior of Eq. �121�, a typical
feature of perturbation theory. For example, Eq. �122� is
still correct up to NLO and up to NLL after the modifi-
cation N→N+a in Eq. �121� �and, therefore, in Eq. �123�
but not in Cq

�1�
, where a is a finite, possibly complex,
constant, so for not too large a Eq. �122� is expected to
be suitable in calculations of the cross section for both
large and intermediate x’s.

Equation �121� contains a Landau pole when �s=1,
where N is real and �1. However, in the inverse Mellin
transform it is not necessary for the contour in the com-
plex N plane to run to the right of this pole, as it should
for the other poles, because it is unphysical, created by
the ambiguity of the asymptotic series. In x space it gives
essentially a higher twist contribution and is therefore
negligible. Asymptotic convergence of the series occurs
when the contour is chosen to be to the left of this pole,
known as the minimal prescription �Catani, Mangano,
Nason, and Trentadue, 1996�, which is also more effi-
cient for the numerical evaluation of the inverse Mellin
transform than running the contour to the right of the
pole.

According to Fig. 21, the effect of the resummation is
to increase the cross section for e+e− reactions �at the
standard choice �f /�s=1� and more so with increasing x.
This behavior is also shown in Fig. 18. This is a typical
feature of soft gluon resummation in both timelike and
spacelike processes. Figure 21 also shows that resumma-
tion lowers the scale variation if the resummed result is
compared with the unresummed result at the same val-
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ues for �f=�. From this we can infer that resummation
lowers the theoretical error, assuming that the factoriza-
tion scale in the resummed case can be given the same
interpretation as the factorization scale in the unre-
summed case. However, caution is advised here because
resummation within a FO calculation is not a systematic
improvement to the original, unresummed, FO calcula-
tion in the same way that extending the original FO cal-
culation to higher orders is.

Explicit results for the resummation of large x loga-
rithms in ep reactions do not exist at present but, in the
current fragmentation region, are likely to be similar to
the results for e+e− reactions above due to the physical
similarities between these two processes.

Large x resummation is particularly valuable for pp�p̄�
reactions where the scale variation is large, as shown in
Fig. 22. Note again the reduction in theoretical error due
to the resummation. Unfortunately, in this case formal
results only exist for the case that rapidity is integrated
over all values, the results for a given finite rapidity
range having to be determined approximately �de Flo-
rian and Vogelsang, 2005�. Note that for a given pT the
effect of the resummation is expected to increase with
decreasing �s because x=2pT cosh y /�s �neglecting the
detected hadron’s mass�.

For consistency, the large x logarithms in the DGLAP
evolution of the FFs must also be resummed. These
logarithms occur in the diagonal parts of the splitting
function �i.e., in P�c�, P�cNS, PNS, P��, and Pgg of Sec.
II.F�. The FO result for P is already resummed because
these divergences approach 1/ �1−z� as z→1 or ln N as
N→N in Mellin space at every order �Korchemsky,
1989; Albino and Ball, 2001�. This is because they origi-
nate from soft radiation which is classical in nature and
therefore can be arranged to appear at LO only by

choosing a physical strong coupling �Kalinowski, Kon-
ishi, Scharbach, and Taylor, 1981�. In other words, there
are no r=0 divergences �i.e., LLs�, while the divergence
at LO, proportional to as ln N, is the only r=1 diver-
gence �NLL�, the divergence at NLO, proportional to
as

2 ln N, is the only r=2 divergence, etc. However, this
means that the FO expansion of the matrix U in Eq. �13�
is unresummed. Resumming the NLLs gives an im-
proved approximation of U at large N �Albino, Kniehl,
and Kramer, 2008b�,

U�N,as� = �
i

exp�u�i�i

�1
 as ln N + O„as�as ln N�n
…�Mi,

�124�

where �+=� and �−=g and

u�i�i

�1
 = lim
N→�

��1

�0
2P�i�i

�0� �N� −
1

�0
P�i�i

�1� �N��� ln N . �125�

A method for resumming these logarithms in the ana-
lytic Mellin space solution to the DGLAP equation of
Furmanski and Petronzio �1982� and Ellis, Kunszt, and
Levin �1994�, discussed in Sec. II.E is given by Albino,
Kniehl, and Kramer �2008b�. As shown in Fig. 23, the
effect of this resummation at � /�f=1 is much smaller
than that in the coefficient functions, although the modi-
fication to the theoretical error obtained by scale varia-
tion is substantial.

VI. THE TREATMENT OF EXPERIMENTAL ERRORS

One of the main purposes of fitting FFs to experimen-
tal data is to make predictions for other observables that
depend on them through the universality of FFs implied
by the factorization theorem. For example, FFs fitted to

FIG. 21. Dependence of the unresummed �fixed order� and
resummed cross section on the ratio �f /�s, written here as
� /Q. The renormalization scale is fixed to the factorization
scale. From Cacciari and Catani, 2001.
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tion scale �f, where �=�f /pT. The renormalization scale is
fixed to the factorization scale. From de Florian and Vogel-
sang, 2005.
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e+e− reaction data might be used to theoretically predict
future measurements from pp reactions. The more that
a prediction depends on components of the FFs which
were not well constrained by the experimental data used
in the fit, the greater the difference between a predic-
tion’s calculation and its measurement can be. For ex-
ample, the importance of the gluon FF relative to the
quark FFs in e+e− reactions is much less than in pp re-
actions, so that a pp reaction prediction could deviate
significantly from measurement when calculated using
FFs that were fitted only to e+e− reaction data. A fit
performed with the prediction’s measurement added to
the set of data to be fitted to is the optimal way to test
whether all relevant physics effects have been taken into
account in the theoretical calculations of all data. If a
large �2 is obtained then effects omitted from the calcu-
lation such as higher twist or even new physics beyond
the standard model are relevant. We assume of course
that the data and calculation are reliable. If it is not
possible to include the prediction’s measurement in the
fit, then this test can be performed by propagating the
calculated prediction’s error from the data used in the fit
and comparing with the measurement’s error. In this
case, relevant effects have been omitted in the calcula-
tion if these two errors do not overlap. For example, the
experimental error on the gluon FF fitted to e+e− reac-
tion data will be large, leading to a wide range of al-
lowed values for the pp reaction prediction. The propa-
gated error on a prediction is best determined by adding
a fictitious measurement of the prediction to the set of
data used in the fit and then repeating the fit multiple
times for a range of measurement values. Once done,
the acceptable values of this measurement are taken to
be those for which a good fit is obtained, i.e., for which
�2 is less than some value. This is precisely what is
achieved by the Lagrange multiplier method discussed
in Sec. VI.C. A less reliable but more practical alterna-

tive to constraining predictions is to perform the error
propagation in two steps �Pumplin, Stump, and Tung,
2002; Pumplin et al., 2002; Stump et al., 2002; Hirai, Ku-
mano, Nagai, and Sudoh, 2007�: the errors on the FFs
propagated from the data used in the fit are determined,
and then those FF errors are propagated to the predic-
tion. This method is more practical because a fit does
not need to be performed each time constraints on a
prediction are to be determined. However, the Lagrange
multiplier method avoids explicitly determining a large
number of propagated errors on the FFs.

In the above discussion, we assumed that the con-
straints provided by the experimental data used in a fit
are complete in the sense that all systematic effects in
the experiment are available. In practice it can happen
that some important systematic effects are unknown, re-
sulting in a failure to fit or to describe a measurement
even though all relevant physics effects are accounted
for in the calculation. In this case it must be determined
whether this measurement is consistent with other simi-
lar measurements from other experiments.

Recently a method has been developed and applied
by the NNPDF Collaboration which uses neural net-
works as unbiased interpolants �Ball, 2009; Honkanen,
2009; Ubiali, 2009�. This method solves a number of sta-
tistical issues in global fits.

In the rest of this section we discuss these issues in
more detail. We first discuss the meaning of �2 and the
interpretation of the parameter values at its minimum.
The current method of presenting PDF errors such that
they can be easily propagated to predictions is then dis-
cussed because this procedure is applicable to FFs. Fi-
nally, we discuss the Lagrange multiplier method already
applied in FF fits since this is perhaps the most reliable
method of propagating errors to predictions.

A. Relation between �2 and probability densities

In this section we define �2 for a given set of measure-
ments and explain why the location of its minimum in
the space of parameters of the theory corresponds to the
most likely parameters values according to these mea-
surements. Our starting point is Bayes’ theorem �Giele
and Keller, 1998; Amsler et al., 2008�, which states that
the probability, as a quantification of the present degree
of confidence from experience, for the vector fe of ex-
perimental values fi

e to take values between fe and fe

+dfe and for the vector ft of “true” values fi
t to take

values between ft and ft+dft is given by

P�fe,ft�dfedft = P�ft�fe�dftP�fe�dfe = P�fe�ft�dfeP�ft�dft.

�126�

The probability densities P�ft � fe�, P�ft�, P�fe�, and P�fe � ft�
appearing in Eq. �126� will now be defined. P�fe � ft�dfe is
the probability that measurements give results between
fe and fe+dfe given true values ft, and its dependence on
fe is determined from experiment. The quantity �2�fe , ft�
is defined through
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FIG. 23. Dependence of the unresummed �NLO� and re-
summed �NLO+res� nonsinglet FF on the renormalization
scale �. The factorization scale �f is written Q and k=� /Q.
From Albino, Kniehl, and Kramer, 2008b.
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P�fe�ft� " e−�1/2��2�fe,ft�. �127�

For example, in the case that the experimental uncer-
tainties are purely statistical and are Gaussian distrib-
uted,

�2 = �
i
� fi

t − fi
e

�i
�2

. �128�

We defer to Sec. VI.B the form of �2 when systematic
errors are present. P�ft�dft is the probability that the true
results lie between ft and ft+dft, which reflects the
knowledge of these observables prior to the fi

e±�i mea-
surements. P�fe�dfe is the probability that measurements
will give results between fe and fe+dfe prior to the ex-
periment taking place and may be determined from
P�fe � ft� and P�ft� by performing the integration in the
first and second equalities in Eq. �126� over ft using
�P�ft � fe�dft=1 and dividing out the factor dfe,

P�fe� =� P�fe�ft�P�ft�dft. �129�

Finally, P�ft � fe�dft quantifies the “degree of belief” for
the true observables to take values between ft and ft

+dft as a result of the experimental results fe and is the
quantity through which the test theoretical calculations
are constrained by the experimental data by identifying
these calculations with the test true values ft. From Eqs.
�126� and �129�,

P�ft�fe� =
P�fe�ft�P�ft�

� P�fe�ft�P�ft�dft

. �130�

If the experimental errors are sufficiently small, P�ft� will
be approximately constant in ft in the region of most
statistical relevance, fi

t±�i, and so approximately divides
out of this expression. Then also using Eq. �127�, we
have finally

P�ft�fe� " e−�1/2��2�fe,ft�. �131�

Consequently, the values of ft in which we are most con-
fident are those for which �2 is a minimum since then the
likelihood P�ft � fe� is maximal. In the absence of a model,
this would imply that the most likely values of ft are ft

= fe. Such a condition cannot be satisfied if the ft is be-
lieved to be described by a theory involving a vector a of
unknown parameters ai, whose number should be much
less than the number of data points or components of ft

in order to justify tests in which theory is compared with
data. In that case, we should be considering probability
densities in a instead of in ft. Now, any probability dis-
tribution p�ft� in ft and the equivalent p�a� in a are re-
lated via p�ft�dft=p�a�da, i.e., p�a�=p�ft�Jft�a�, where
Jft�a� is the Jacobian of ft in a. Again, if the experimental
errors are sufficiently small such that Jft�a� is approxi-
mately constant in a in the region of most statistical rel-
evance, P�a � fe�"P�ft � fe� and Eq. �131� becomes

P�a�fe� " e−�1/2��2
„fe,ft�a�…. �132�

Thus the minimization of �2 with respect to a gives the
most likely parameters values for these experimental
data.

If the theoretical model and experimental data are
reliable, the expected value of the minimized �2 is �min

2

=NDF±�2NDF �Soper and Collins, 1994; Collins and
Pumplin, 2001�, where NDF is the number of degrees of
freedom, i.e., the difference between the number of data
points and the number of parameters fitted. Often the
value of the reduced �min

2 , �DF
2 =�min

2 /NDF, is quoted
since this value is always expected to be around unity,
with an error �2/NDF.

B. Incorporation of systematic errors in �2

An experimental systematic effect is a physical effect
arising from a single experiment dependent source
�which does not include physical effects common to all
experiments measuring similar observables�, and there-
fore the modification to the central value of any data
point fi

e due to this systematic effect is correlated with its
modification to any other from the same experiment.
Thus, the Kth source of systematic uncertainty will cause
fi

e to be shifted to fi
e+�K�i

K, where �K, which is statisti-
cally distributed, measures the importance of the sys-
tematic effect itself and as a result is independent of the
measurements, and �i

K measures the influence of this
systematic effect on each measurement. While �K�i

K is
fixed, the relative normalization between �K and �i

K is
not. It can be fixed by choosing the probability density in
�K to be proportional to exp�−�K

2 /2�, assuming Gaussian
systematic errors. Therefore, �2 for Gaussian statistical
errors in Eq. �128� is modified to

�2 = �
i

� fi
t − fi

e − �
K

�K�i
K

�i

�2

+ �
K

�K
2 . �133�

For the specific theory used to calculate the data, mini-
mization of Eq. �133� with respect to �K gives an esti-
mate of the Kth systematic effect on each data point
�K�i

K knowing only the statistically acceptable maximum
size of this systematic effect on each data point ��i

K� and
its direction relative to the other data points �the sign of
�i

K�. Performing such a minimization numerically delays
termination of the minimization routine used to perform
the global fits. Therefore, this minimization should be
done analytically �Pumplin, Stump, Huston, Lai, Nadol-
sky, and Tung, 2002; Albino, Kniehl, and Kramer,
2008b�: the most likely values of the �K occur where

��2/��K = 0. �134�

Solving these equations for �K gives
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�K = �
i

fi
t − fi

e

�i
2 ��i

K − �
jkL

�i
L�j

L�C−1�jk�k
K� , �135�

where the covariance matrix is given by

Cij = �i
2�ij + �

K
�i

K�j
K. �136�

Substituting the best fit results for the �K in Eq. �135�
into Eq. �133� gives the more familiar expression for �2

when systematic errors are accounted for,

�2 = �
ij

�fi
t − fi

e��C−1�ij�fj
t − fj

e� . �137�

In practice, not all information on the systematic ef-
fects in an experiment is available. For example, the
analysis often provides only the “total” systematic error
on a data point equal to all systematic errors of the data
point from all sources added in quadrature. In this case,
Eq. �128� is typically used in global fits with the statisti-
cal error modified to be the statistical error and this total
systematic error added in quadrature. This corresponds
to setting the off-diagonal components of the covariance
matrix in Eq. �136� to zero, i.e., neglecting correlation
effects between data points. More serious is the pres-
ence of unknown systematic effects. Such effects have to
be neglected even though they could be important, but
as the number of data sets increases, the cancellation of
these effects among different experiments will increase
as far as the determination of the most likely value for
the parameters is concerned. Unfortunately, these un-
known systematic effects have to be accounted for in the
determination of parameter errors. We now discuss com-
mon methods for this in Sec. VI.C.

C. Propagation of experimental errors to fitted fragmentation
functions

For Gaussian statistical errors and no correlations be-
tween data points, Eqs. �131� and �128� imply that the
standard deviation error on fi

t is �i. This error is equal to
the amount by which fi

t has to increase or decrease, with
all other fj�i

t fixed, in order for �2 to increase by one
from its minimum value of zero. More generally, the er-
ror on a quantity related to the ft, such as a parameter ai
of the model, can be similarly determined. For simplic-
ity, instead of ai we work with the parameters

yi = ai − ai
0, �138�

where ai=ai
0 is the parameter space location of the mini-

mum in �2 for these data. All following expressions are
to lowest order in the yi. The change in �2 from its mini-
mum value at the origin yi=0 to any small values of the
yi is

��2 = �
ij

yiHijyj, �139�

where the Hessian H is given by

Hij =
1
2
�� �2�2

�yi�yj
��

yk=0
. �140�

The experimental error on a given ai is equal to the
magnitude of yi that is required to make

��2 = 1 �141�

when all other yj�i are fixed. Thus, in the absence of
correlations between the yi, so that the off-diagonal ele-
ments of H vanish, the experimental error on yi is
1 /�Hii. More generally, according to Eq. �132�, H is the
inverse of the covariance matrix for the parameters,

�yiyj� = �H−1�ij. �142�

According to Eq. �140�, this covariance matrix can be
determined numerically by calculating and then invert-
ing the matrix of second derivatives of �2, which corre-
sponds to the parabolic approximation of Eq. �139�. If
this approximation is not valid, the covariance matrix
can be determined by the criterion of Eq. �141� directly,
as done by Bourhis, Fontannaz, Guillet, and Werlen
�2001�.

The criterion of Eq. �141�, however, is too idealistic
for actual global fits. For example, Thorne �2002� high-
lighted the inconsistency between the resulting con-
straints on �s�MZ� determined from this criterion from
different data sets used in the CTEQ6 extraction of
PDFs �Pumplin, Stump, Huston, Lai, Nadolsky, and
Tung, 2002�. This is attributed by Botje �2002� and
Thorne �2002� to various sources. First, the published
statistical information on the experimental data may not
be sufficiently reliable—errors, including systematic
ones, may be inaccurate or not known at all or some
errors may not be Gaussian distributed, let alone sym-
metric. Thus, for example, a fit to and extraction of pa-
rameter errors from data from one experiment in which
the normalization error is underestimated may result in
a good fit and apparently sensible results, but a similar
analysis using data from two independent experiments
suffering this problem will usually not. Second, the
theory, including the parametrization used for the initial
FFs and PDFs, may not be valid in all kinematic regions
spanned by the data being fitted to. The simplest way to
handle the reasons for the failure of the ��2=1 rule,
whatever they may be, is to modify the criterion of Eq.
�141� to �Pumplin, Stump, and Tung, 2002; Pumplin et
al., 2002; Stump et al., 2002�

��2 = T2, �143�

where the tolerance parameter T is a constant somewhat
larger than 1. According to Eq. �137�, this is equivalent
to multiplying all errors, statistical and systematic, by a
factor T. For example, Hirai, Kumano, Nagai, and Su-
doh �2007� used T2�10. This is significantly less than the
choice T2=100 in the CTEQ6 analysis �Pumplin, Stump,
Huston, Lai, Nadolsky, and Tung, 2002�, although the
number of data points in the latter analysis exceeds that
of the former by a factor of almost 10.
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An alternative approach to Eq. �143� to handle un-
known systematic effects is to take into account the de-
gree of incompatibility of the data with one another.
This is done in the neural network approach of Ball
�2009�, Honkanen �2009�, and Ubiali �2009�.

The statistical information on parameters of a theory
from experimental data can be propagated to observ-
ables as follows. Consider a prediction X which depends
on the FF parameters ai. We determine the uncertainty
on X, ��X2, resulting from the uncertainties on the ex-
perimental data which constrain the ai. Since �X
=�i��X /�yi�yi if the error �yi� is small,

��X2� = �
ij

�X

�yi

�X

�yj
�yiyj� , �144�

where �yiyj�=�P�y � fe�yiyjdy. The probability distribution
in y is chosen to be P�y � fe�"exp�−��2 / �2T2�
, where
��2 is given by Eq. �139�, which is the same as Eq. �132�
except that the divisor T2 has been introduced to ensure
that the range of acceptable locations in parameter
space are those for which ��2#T2 �recall Eq. �143�
.
This modifies Eq. �142�, the covariance matrix of the
parameters, to �yiyj�=T2�H−1�ij.

A practical formula for calculating the error on a pre-
diction is

��X2� = �
ij

X�yk = $�ki� − X�yk = − $�ki�
2$

�T2�H−1�ij
X�yk = $�kj� − X�yk = − $�kj�

2$
,

�145�

where $ should be chosen to be less than or of the order
of the error on each yi but is otherwise arbitrary. In
other words, constraints on a prediction are obtained by
calculating it for each of the different sets of FFs for
which yk= ±$�ki. Knowledge of the fitted ai and their
errors or even the choice of parametrization is not re-
quired.

Equation �145� can be simplified by diagonalization of
the Hessian �Pumplin, Stump, and Tung, 2002; Pumplin
et al., 2002; Stump et al., 2002�, so that the parameters of
the new basis are uncorrelated. The normalizations of
these uncorrelated parameters zi are chosen such that

��2 = �
i

zi
2, �146�

which is achieved through Eq. �139� by taking

zi = �
j

�%iyjvji, �147�

where vlk is the kth eigenvector of Hij with eigenvalue
%k,

�
j

Hijvjk = %kvik, �148�

and the eigenvectors have been chosen to be orthonor-
mal,

�
i

vijvik = �jk, �149�

i.e., the matrix v obeys the orthonormal condition vT

=v−1. This change in the parameter correlations due to
the change of parameter basis is shown in Fig. 24.

Equation �145� is simplified to

��X2� =
1
2

T2

4t2�
i

�X„yk�zl = t�li�… − X„yk�zl = − t�li�…�2,

�150�

where the choice t�T should be made. Thus, for N free
parameters, errors on predictions can be calculated from
2N sets Si

± of FFs at parameter values yk=yk�zl= ± t�li�,
where i=1, . . . ,N as advocated by Soper and Collins
�1994�, Pumplin, Stump, and Tung �2002�, Pumplin et al.
�2002�, and Stump et al. �2002� and is the current way in
which PDFs are presented.

The Lagrange multiplier method �Pumplin, Stump,
and Tung, 2002; Stump et al., 2002�, implemented in the
global fit of de Florian, Sassot, and Stratmann �2007b�, is
a more reliable approach to obtaining errors on predic-
tions because it avoids the assumption that �2 has a qua-
dratic dependence on the parameters, as assumed in Eq.
�139�. The price is that it is computationally slower. The
error on a prediction X is given by the range of its values
for which the constrained minimum �2 �i.e., with the pa-
rameters constrained such that X is fixed to some value�
is no greater than an amount T2 above the uncon-
strained minimum �2. In practice, this is achieved by
minimization of

F = �2 + �X �151�

for a range of different values of � because the corre-
sponding minimized �2��� in each case is the minimum
�2 given that the prediction takes the value X���. To see
this, take dF=0 and choose the dai such that X��� is
fixed, i.e., such that �i��X /�ai�dai=0. Using this same
reasoning, we see that Eq. �151� leads to the same results
as the alternative form,

(a)
Original parameter basis

(b)
Orthonormal eigenvector basis

zk

Tdiagonalization and

rescaling by
the iterative method

ul

ai

2-dim (i,j) rendition of d-dim (~16) PDF parameter space

Hessian eigenvector basis sets

aj
ul

p(i)

s0
s0

contours of constant 2
global

ul: eigenvector in the l-direction
p(i): point of largest ai with tolerance T

s0: global minimum p(i)
zl

FIG. 24. �Color online� Illustration of the Hessian diagonaliza-
tion of Pumplin, Stump, and Tung �2002�, Pumplin et al. �2002�,
and Stump et al. �2002� for the case of two parameters for
simplicity, showing contours of constant �2 in parameter space.
In the new space of uncorrelated parameters �right�, the con-
tours are circles. From Pumplin et al., 2002.
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F = �2 + �X − X0

�X
�2

, �152�

with �X and X0 varied, and therefore the Lagrange mul-
tiplier method is equivalent to the method of fictitious
measurements discussed in the introduction to this sec-
tion.

Although the Lagrange multiplier method avoids the
quadratic approximation, it still suffers from the as-
sumptions of Sec. VI.A such as no unknown systematic
effects in the data, the linear dependence of the calcula-
tion on the parameters, and the independence of P�ft�
on the calculation, which may not always be reliable.
Furthermore, fits have to be repeated a number of times
because the dependence of �2 on the parameters is un-
known.

Figure 28 shows some results obtained with the
Lagrange multiplier method and will be discussed in Sec.
VII.B.

VII. CURRENT GLOBAL FITS

Recent global fits �de Florian, Sassot, and Stratmann,
2007a, 2007b; Hirai, Kumano, Nagai, and Sudoh, 2007;
Albino, Kniehl, and Kramer, 2008b� made use of various
experimental, computational, statistical, and theoretical
advances. Data from e+e− reactions have provided ac-
curate constraints on charge symmetry quark FFs.
pp reaction data from RHIC provides better,
and NLO, constraints on the gluon, and, along with
HERMES data from HERA, is the only available data
which can constrain the charge asymmetry FFs. How-
ever, due to the high accuracy and number of the e+e−

reaction data relative to other data, charge asymmetry
FFs remain much less constrained than charge symmetry
FFs. This means that the prediction for a cross section

for a particle of a given charge, which depends on Di
h+

=Di
h±

/2+Di
�ch±

/2 �or Di
h−

=Di
h±

/2−Di
�ch±

/2 for its anti-
particle� will carry a large error coming from the charge

asymmetry FFs Di
�ch±

. It is therefore preferable to pre-
dict charge symmetry cross sections since they depend

only on the charge symmetry FFs Di
h±

, as shown in Sec.
II.F, and therefore carry no large errors from the charge
asymmetry FFs. Since charge asymmetry cross sections
depend only on the charge asymmetry FFs, as also
shown in Sec. II.F, a global fit can be separated into two
fits, one for each type of FF and cross section, which
disentangles the large charge asymmetry FFs’ errors
from the charge symmetry FFs’ and allows for more ef-
ficient fitting.

Due to the large amount of data now available for
constraining FFs, it is important that cross sections can
be calculated quickly to ensure that the minimization of
�2 occurs in a reasonable time. Exploiting multicore pro-
cessors or multiple processors to perform the calculation
of fi

t− fi
e in Eq. �137� in parallel will substantially improve

the minimization time because calculation of �2 is “em-
barrassingly parallel” �Foster, 1995�. Calculating the

cross section via the inverse Mellin transform, with the
evolved Mellin space FFs obtained analytically accord-
ing to the results of Sec. II.E, is faster than via the
x-space convolution in Eq. �1� with the evolved FFs in z
space via numerical integration of Eq. �3�. However, the
calculations of the partonic d�i and partonic FFs Eij �de-
fined in Eq. �7�
 in Mellin space can still be time consum-
ing. Fortunately, since these quantities for each value of
Mellin N which serves as the supports for the integration
in the inverse Mellin transform �Eq. �D5�
 are fixed dur-
ing the fit, assuming of course that only the initial FFs’
parameters are fitted but �s�MZ� is kept fixed, they can
be calculated prior to fitting �Vogt, 2005; de Florian, Sas-
sot, and Stratmann, 2007a�. This precalculation is also
suitable for adaptive integrations such as that used in the
function GAUSS in the CERNLIB package because, for
any given number of points used for the integration,
each and every possible positioning of these points is
predictable, the number of positionings being finite in
number, and the values of d�i and Eij at each point need
to be calculated only once as and when they are needed
during the fitting and then stored. Most modern comput-
ers can manage the large amount of memory required
for this precalculation for adaptive integrations. Al-
though adaptive integration routines can take longer
than integration routines which use the same points each
time, they are more reliable. In the case that quantities
such as �s�Mz� and hadron mass are also fitted, d�i in
Mellin space will not themselves be fixed during the fit.
Some improvement to this simple precalculation ap-
proach to handle such scenarios will usually be possible.
Finally, note that it is not necessary for computational
work to replace the infinite contour of integration in
Mellin space by one of finite but large length because
the infinite contour can be mapped to a finite range by a
change of integration variable, and for most numerical
integration methods the supports never approach the in-
tegration limits.

Analytic results for the Hh1h2

i in Mellin space do not
exist. For example, they depend on PDFs which are nor-
mally extracted in x space from a numerical routine pro-
vided by the PDF Collaboration. An approximation to
Hh1h2

i in Mellin space can be obtained by fitting them in
x space to polynomials whose Mellin transform can be
obtained analytically, with some modification to account
for logarithmic singularities. Note that Hh1h2

i in x space
are free of delta functions because these are integrated
out in the convolution of H11i2

i with PDFs in Eq. �92�.
The use of the Chebyshev polynomials of the first kind
�Press et al., 2001� proves to be the best choice of poly-
nomial type for speed and accuracy �Albino, Kniehl, and
Kramer, 2008b�. After performing the analytic Mellin
transform of the Chebyshev expansions, Eq. �90� may be
evaluated in Mellin space. This leads to an accuracy of a
few parts per mil.

As well as these new experimental results and compu-
tational methods, the latest global fits of de Florian, Sas-
sot, and Stratmann �2007a, 2007b�, Hirai, Kumano, Na-
gai, and Sudoh �2007�, and Albino, Kniehl, and Kramer
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�2008b�, discussed in Secs. VII.A–VII.C, made use of the
theoretical methods discussed in Sec. V and the statisti-
cal methods discussed in Sec. VI. We compare some of
the results of these fits with one another in
Sec. VII.D.

A. HKNS

The Hirai-Kumano-Nagai-Sudoh �HKNS� FF sets
were obtained by Hirai, Kumano, Nagai, and Sudoh
�2007� from global fits of FFs for �±, K±, and p / p̄ to all
available e+e− reaction data, excluding particle unidenti-
fied data because it may be contaminated with other
particles beyond those just mentioned and also exclud-
ing the OPAL tagging probabilities of Abbiendi et al.
�2000c�, and the Hessian matrix of FF parameter errors
was calculated. The results with errors for the FFs for �±

are shown in Fig. 25. The plots on the left show a reduc-
tion in experimental errors propagated to FFs on going
from LO to NLO. This is particularly significant in the
case of the gluon FF probably because at LO the gluon
only contributes through the evolution and therefore the
cross section’s dependence on it is less than at NLO.
Furthermore, as can be seen by comparing these plots
with the plots on the right, FF errors are relatively
higher at lower factorization scales, and therefore FF
errors may be particularly important in pp reaction data.
The plots on the right suggest that the AKK, KKP, and
Kretzer FF sets are generally consistent with the e+e−

reaction data used in the HKNS analysis.

B. DSS

The DSS FF sets for �± and K± were obtained from
global fits of de Florian, Sassot, and Stratmann �2007a�,
which also included ep reaction data from the HERMES
Collaboration �Hillenbrand, 2005� at HERA and pp re-
action data from the BRAHMS, PHENIX, and STAR
Collaborations at RHIC. pp�p̄� reaction data for �± and
K± are summarized in Tables VIII and IX, respectively.
Systematic errors due to normalization uncertainties on
the data were accounted for. Although the HERMES
data are measured for Q�2 GeV, where low Q effects
may be important, a good fit is obtained as shown in Fig.
15 for �±. Since the particle charge is measured, these
data also provide much needed constraints on the va-
lence quark FFs or the charge asymmetry FFs which are
the same functions. The large difference, relative to the
experimental errors, between the calculations for the
BRAHMS data using the DSS and Kretzer FF sets
shown in Fig. 26 indicates that pp reaction data provide
constraints not provided by e+e− reaction data, which
were the only type of data used in the Kretzer analysis.
Note, however, that the calculation using the Kretzer FF
set is within the theoretical error, which is large com-
pared to the theoretical error on calculations for e+e−

reactions shown in Fig. 27.
The method of Lagrange multipliers discussed in Sec.

VI.C to determine errors on predictions was applied in
this analysis using the FFs at �f=5 GeV integrated from
z=0.2 to 1 as example predictions �for quark FFs, these
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FIG. 25. �Color online� Errors on the fitted HKNS FFs for �± propagated from the errors on the data. Left: The results from a LO
and NLO fit. Right: Comparison of the NLO HKNS FFs, with errors, with other FF sets. From Hirai, Kumano, Nagai, and Sudoh
�2007�.

2528 S. Albino: Hadronization of partons

Rev. Mod. Phys., Vol. 82, No. 3, July–September 2010



are equal to the LO calculations of the OPAL tagging
probabilities�. The result of this study for �+ is shown in

Fig. 28. �u+ū
�+

has the smallest error, equal to 3%, if the
tolerance parameter appearing in Eq. �143� is chosen to
be T=�15. This is because all observables in the fit have

a strong dependence on this FF. The error on �ū
�+

, 5%, is
not much larger. This quantity is expected to be well
constrained by ep and pp reaction data due to the large

PDFs for ū at low x and for u at high x. Because using

pp reaction data, the size of the error on �g
�+

relative to

that on the other �i
�+

shows that the gluon FF is reason-
ably well constrained relative to the quark FFs. Presum-
ably because b quark tagged observables can be mea-

sured more accurately than c quark tagged ones, �
b+b̄

�+

has a lower error than �c+c̄
�+

.
A global fit of FFs for p / p̄ �and, separately, for uni-

dentified particles� was performed by de Florian, Sassot,
and Stratmann �2007b� including pp data from STAR.
pp�p̄� reaction data for p / p̄ is summarized in Table X.
BRAHMS data were excluded due to possible contami-
nation of the sample by the beam from the large rapid-
ity.

C. AKK08

The AKK08 FF sets were obtained by Albino, Kniehl,
and Kramer �2008b� from global fits of FFs for �±, K±,

p / p̄, KS
0, and � / �̄ which included, as well as the usual

e+e− reaction data, the pp reaction data from RHIC and
pp̄ reaction data from the CDF Collaboration at the Fer-
milab Tevatron �Acosta et al., 2005�. Due to the unreli-
ability of perturbation theory at low pT, a cut of pT
�2 GeV was imposed. We note that such data are dan-
gerously close to the energy range 1�Q�2 GeV of the
HERMES data of Fig. 15, which they omitted from the
set of all data used in the fit. However, in contrast to the
HERMES data, the pp�p̄� reaction data are of much
lower accuracy than the e+e− reaction data, so that the
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constraints on the quark FFs still come essentially from
the latter data only. The pp�p̄� reaction data are in-
cluded only to improve the constraints on the already
poorly constrained gluon FF. As shown in Fig. 20 for the
case of STAR data, the description of the RHIC data

was good except in the case of the production of � / �̄.
Normalization errors were accounted for as systematic
errors in a covariance matrix according to the procedure
discussed in Sec. VI.B. �K at the location of the mini-
mum value of �2 was determined according to Eq. �135�
and was typically found to be in the expected range
��K��2. As for the DSS and HKNS fits, e+e− reaction
data for x values as low as 0.05 and for �s�MZ were
included with the LEP data at �s=MZ, in contrast to the
previous AKK fits �Albino, Kniehl, and Kramer, 2005,
2006� where a cutoff x�0.1 was imposed on the data
and only LEP data at �s=MZ and TPC data at �s
=29 GeV were used. Because of this additional lower �s
and smaller x data, the effect of hadron mass discussed
in Sec. V.A was incorporated into the calculations of
both the pp�p̄� and the e+e− reaction data. The hadron
mass appearing in the calculation of the e+e− reaction
data was fitted and in this way absorbed approximately
any other small x, low �s effects such as higher twist.
The results are shown in Table I.

The results for �±, p / p̄, and � / �̄ suggest that hadron
mass effects are important at small x, low �s effects for
the data considered. This is also consistent with the ex-
pectation that the contributions at higher twist fall off as
O�1/Q2� �Balitsky and Braun, 1989, 1991� in the sense
that if they fell slower, e.g., such as O�1/Q�, they would
be expected to dominate over hadron mass effects,
which fall as O�1/Q2�. The slight excess in the fitted
masses is expected because the overall production does
not arise solely from direct partonic fragmentation but
also includes contributions from decays of heavier par-
ticles. A full error analysis is required in order to deter-
mine whether the excess seen in the fitted masses is sig-
nificant. The large undershoot in the fitted masses of K±

and KS
0 is likely due to physics effects not present in the

production of �±, p / p̄, and � / �̄, the most likely effect
being the complicated production mechanisms of kaons
from decays of heavier hadrons. Note that the under-

shoots in the fitted masses of K± and KS
0, 156.7 and

154.6 MeV, respectively, are similar, which may be ex-
plained by similar production mechanisms, however
complicated, for these two particles, as expected from
SU�2� isospin symmetry. As discussed in Sec. III, this
result suggests that the argument by Christova and
Leader �2007, 2009� is unaffected by such production
mechanisms. Again, a full error analysis is required here.

For reasons stated earlier, charge summed and charge
asymmetry FFs were parametrized and fitted separately.
The strongest nonperturbative assumption used in the
AKK08 analysis is the parametrization of Eq. �59�, tak-
ing fi�z�=1+ci�1−x�di for charge summed FFs and fi�z�
=1 for the less well constrained charge asymmetry
FFs. No further constraints among FFs were imposed
other than Eq. �15�, which is exact in QCD, and

the SU�2� isospin symmetry conditions Du
�±/�c�±

�z ,�f
2�

=D
d̄

�±/�c�±

�z ,�f
2� which are also exact in QCD in the limit

that the difference between u and d quark masses van-
ishes. This is in contrast to the DSS and HKNS analyses,
where additional well-justified assumptions were also
imposed, which provide additional nonphenomenologi-
cal constraints on FFs.

The large x resummation discussed in Sec. V.B was
incorporated into the calculations of the e+e− reaction
data in the charge summed fits, made a significant im-

provement in the case of K±, p / p̄, and � / �̄ as Table II
shows, and does not worsen the fits for �± and KS

0. Ac-
curate large x, �±, K±, and p / p̄ production data from
BaBar at �s=10.54 GeV �Anulli, 2004�, shown in its pre-
liminary form in Fig. 29, would further ascertain
whether large x resummation improves the description
of e+e− reaction data. In this case it would be interesting
to determine whether it is in fact necessary either to
implement or to not implement large x resummation.

We note that large x resummation was not imple-
mented in the calculation of the pp�p̄� reaction data,
which in principle is inconsistent with the resummed cal-
culation of the e+e− reaction data. However, as men-
tioned, the pp�p̄� reaction data are of much lower accu-
racy and therefore do not significantly affect the quark
FFs that are constrained by the e+e− reaction data. Fur-

TABLE I. Fitted particle masses used in the calculation of the
hadron production from e+e− reactions in the AKK08 fit. For
comparison, the true particle masses are also shown. From Al-
bino, Kniehl, and Kramer, 2008b.

Particle
Fitted mass

�MeV�
True mass

�MeV�

�± 154.6 139.6
K± 337.0 493.7
p / p̄ 948.8 938.3

KS
0 343.0 497.6

� / �̄ 1127.0 1115.7

TABLE II. The minimized �2 values in each of the charge
summed AKK08 fits. For comparison, the �2 values for the
unresummed fit are shown �under “Unres. fit”�. From Albino,
Kniehl, and Kramer, 2008b.

H

�2

Main fit Unres. fit

�± 518.7 519.0
K± 416.6 439.4
p / p̄ 525.2 538.0

KS
0 317.2 318.7

� / �̄ 273.1 325.7
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thermore, the gluon FF, which is important for the pp�p̄�
reaction data, is only weakly constrained by the e+e− re-
action data.

D. Comparisons of the different FF sets

As an example of how the different FF sets compare,
we show the FFs for K± from the different sets in Fig. 30.
These represent an “average” comparison; i.e., better
agreement is found among the different FF sets for �±

and worse for p / p̄. In Fig. 30, as well as Figs. 31–33, the
scale �f=91.2 GeV has been chosen, although the FFs at
this scale are not significantly different to FFs in the
whole region 10#�f#91.2 GeV that is of experimental
interest at present. Similar results are obtained at inter-
mediate and large z for the u quark �except for DSS and
for AKK at large z� which is favored and for the c and b
quarks away from large z which is well constrained by c
and b quark tagged measurements. For the d quark,
which is unfavored, the results are very different. The
large difference between the DSS and AKK08 gluon
FFs suggests that the constraints on gluon fragmentation
provided by pp reaction data are not as significant as
might be hoped.

In Figs. 31–33 we show the charge asymmetry FF sets
for �±, K±, and p / p̄, respectively. The HKNS and DSS
results are generally rather similar. However, no phe-

nomenological constraints on the charge asymmetry FFs
were applied in the HKNS analyses, so this similarity is
most likely due to the similar nonperturbative assump-
tions used in the HKNS and DSS analyses, inspired by
physical effects such as the suppression of nonfavored
fragmentation, indicating that most of the constraint on
the charge asymmetry FFs in these two analyses may
come from these assumptions. These results show that
the charge asymmetry FFs, which help to extract impor-
tant information on nucleon PDFs �Gronau, Ravndal,
and Zarmi, 1973; Arneodo, 1989; de Florian, Sampayo,
and Sassot, 1998; Hasegawa, 1998; de Florian, 2003;
Jager, Schafer, Stratmann, and Vogelsang, 2003; Airape-
tian et al., 2004, 2005; de Florian, Navarro, and Sassot,
2005� as mentioned, are poorly constrained and high-
light the need for data in which the hadron species and
its charge are identified from, e.g., HERA and RHIC, as
well as for measurements of the asymmetric cross sec-
tion in e+e− reactions discussed in Sec. II.I.

Unfortunately, neither AKK nor DSS provides uncer-
tainty estimates. The differences between the FFs for
these sets shown in Figs. 30–33 provide the best error
estimate of the latest FFs at present.

VIII. IMPROVING THE CALCULATION AT SMALL x

Perhaps the most serious limitation of the standard
FO approach is its inability to describe a wealth of small
x data from e+e− reactions, mainly as result of unre-
summed soft gluon logarithms �SGLs� in both the evo-
lution and the coefficient functions spoiling the conver-
gence of the perturbation series. This problem even
renders some well-measured observable singular, such as
the multiplicity in Eq. �43�. For this reason, resummation
of SGLs is more urgent than the treatment of other low
Es and small x effects. However, because of those ef-
fects, resummation of SGLs may be insufficient for at
least some of the data at low Es and small x. To date, the
only way to determine which of these data can be de-
scribed when SGLs are resummed is phenomenologi-
cally through fits. Resummation of SGLs extends the
region of data that can be described by theory to smaller
x values but still does not allow for all small x data to be
described.

The advantage of SGL resummation is that it will al-
low use in global fits of data of lower x values than are
currently used and thus not only would new constraints
on FFs at smaller z be obtained but also, through the
convolution in Eq. �1�, further constraints on the FFs at
intermediate and large z. This resummation also permits
a calculation of the multiplicity.

In the DGLAP evolution, the largest of these SGLs,
the double logarithms �DLs�, can be calculated to all
orders and then resummed using the results of the
double logarithmic approximation �DLA�. Since the
only SGLs that appear at LO are DLs, a LO evolution
of FFs that includes small z is now possible. However, at
present the full DL contribution to the gluon coefficient
function for e+e− reactions is unknown and is necessary

FIG. 29. �Color online� Preliminary data from e+e− reactions at
BaBar for �±, K±, and p / p̄. Also shown are some published
data for comparison. From Arleo, 2009.
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for the calculation of the complete DL resummed cross
section. In a LO calculation, it may be a reasonable ap-
proximation to neglect this DL contribution because the
gluon contribution vanishes at this order. A consistent
NLO fit including small x data is not possible at present
because the next largest classes of SGLs after the DLs,
which in order are the single logarithms �SLs�, the sub-
single logarithms �sSLs�, and the subsubsingle loga-
rithms �ssSLs�, none of which are known in full, are all
present at this order.

In addition to these shortcomings, the inclusive single
hadron production data at small x is usually studied
within a different framework to the standard FO ap-
proach, namely, the framework of the modified leading
logarithmic approximation �MLLA� �Dokshitzer and
Troian, 1984a, 1984b; Dokshitzer, Khoze, Mueller, and
Troian, 1991; Dokshitzer and Olsson, 1993; Khoze and
Ochs, 1997�, in which both DLs and contributions from
the SGL-free part of evolution are accounted for, lead-

ing to a good description of the data over the whole x
range currently measured. In addition, in practical appli-
cations the nonperturbative components, the FFs, are
usually fixed, up to an overall normalization, by the as-
sumptions of local parton-hadron duality �LPHD� and
the limiting spectrum �Azimov, Dokshitzer, Khoze, and
Troian, 1985� rather than being fitted to experimental
data: The LPHD states that sufficiently inclusive had-
ronic processes have similar properties to the equivalent
partonic processes �except for particle number� at had-
ronic scales, which implies that the FFs are proportional
to partonic FFs, i.e., ��1−z�, at �f��. The limiting spec-
trum, which is a solution to the MLLA equation that is
assumed to be valid in the region �f��, can then be
used to evolve the hadronic FFs to any scale. Perhaps
the reason for this is that the way in which SGLs can be
incorporated into the FO evolution was recently not
known. A procedure for resumming SGLs in the evolu-
tion within the FO framework now exists: as for coeffi-
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cient functions, for every class of SGLs in the FO split-
ting functions, the remaining SGLs to all orders are
added. This approach reduces to the MLLA in certain
approximations, but it provides an alternative to the
MLLA because it is in principle complete: it contains
the quark contribution to the evolution, and it can be
systematically improved. However, the simplicity of the
MLLA still makes the MLLA an attractive alternative
for incorporating certain types of phenomenology such
as medium effects or double hadron production at small
x.

In this section, we discuss the present state of the art
in the description of small x data from e+e− reactions.
We first define, in Sec. VIII.A, the SGLs appearing in
FO calculations and then, in Sec. VIII.B, derive the form

taken by SGLs belonging to a specific class when they
are summed to all orders within the FO framework. We
discuss the DLA in Sec. VIII.C, which is crucial for de-
termining the DLs to all orders in the splitting functions
in the FO framework. By direct application of the DG-
LAP equation, we then generalize the DLA and FO ap-
proximations to a single approach in Sec. VIII.D. This
approach incorporates both approximations and is the
lowest-order approximation within the approach devel-
oped in Sec. VIII.B. It can be systematically improved
both in the FO part and in the SGL part. We show in
Sec. VIII.E that this approach reduces to the MLLA in
certain limits used within that framework. Some discus-
sion is then given on LPHD and the limiting spectrum
which are used to fix the remaining, nonperturbative,
degrees of freedom in the MLLA. Using the approach
of SGL resummation within the FO framework, we are
then able to give a perturbative argument for the results
of the LPHD and limiting spectrum in Sec. VIII.F by
studying the moments of the evolution.

A. The behavior of the evolution at small z

The approximation for P in Eq. �4� fails at small z due
to the presence of terms which, in the limit z→0, behave
as �as

n /z�ln2n−m−1 z for m=1, . . . ,2n−1. Such logarithms
are called SGLs and m labels their class. The class of
logarithms for which m=1 are the largest logarithms,
known as DLs, while the next largest, for which m=2,
are called SLs, the next largest sSLs, the next largest
ssSLs, etc. As z decreases, these unresummed SGLs
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FIG. 31. The quark FFs for �c�
± at �f=91.2 GeV.
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will spoil the convergence of the FO series for P�z ,as�
once ln�1/z�&O�as

−1/2�. Consequently, the evolution of
Di�z ,�f

2� will not be valid at such small values of z since
the range z#z�#1 contributes in Eq. �3�. Therefore,
according to Eq. �1�, the FO approach is only a good
approximation for cross sections whose x value, being
the minimum value of z, is sufficiently large, specifically
it must obey ln�1/x��O�as

−1/2�.
Using the result

1

�p =
1

p!
�

0

1

dzz�

lnp−1 1

z

z
�153�

for Re����0 and the integer p&1, we find that in Mel-
lin space these SGLs behave as as

n /�2n−m where �=N
−1; i.e., they become singular as �→0. Thus the stan-
dard FO approach in Mellin space will not be a valid
approximation once ���#O�as

1/2�. Sometimes, those Mel-
lin space terms for which m=2n, i.e., which behave as as

n

at small �, are often included in the definition of SGLs.
For example, in the MLLA, the m=2n=2 term in
P�z ,as� at LO is referred to as an SL. Since such terms
behave as as

n��1−z� in z space, i.e., do not affect the
accuracy of the FO expansion at low z and so do not
need to be resummed, we will not include such terms in
our definition of SGLs, which will always be restricted to
m#2n−1.

By writing Eq. �44� as

�nh�s�� =
QqJ

�
I=1

nf

QqI

DqJ/q̄J

h �� = 0,s� , �154�

it is clear then that the multiplicity is undefined in the
FO calculation because of the unresummed SGLs in the
splitting functions. �More precisely, the multiplicity at
any value of s cannot be determined from the multiplic-
ity at a given value of s because its s dependence in the
FO approach is singular if the SGLs are unresummed.�
Beyond LO, unresummed SGLs in the coefficient func-
tions will also give singular contributions to Eq. �154�.

B. A unified formalism for small and large z evolution

The correct way to approximate P�� ,as� such that
both the large and small ��� regions �and hence the large
and small z regions� of the evolution can be described by
the DGLAP equation is to put it in the form �Albino,
Kniehl, Kramer, and Ochs, 2005, 2006�

P��,as� = PSGL��,as� + PSGL��,as� , �155�

where PSGL is equal to P after all SGLs have been sub-
tracted, so that it can be approximated in Mellin space
for both large and small ��� as the FO series

PSGL��,as� = �
n=1

�

as
nPSGL�n−1���� , �156�

truncated at some finite value for n, similar to Eq. �4�
�note that PSGL�n−1����� ln � at large �, as discussed in
Sec. V.B�, and where PSGL contains all SGLs in P and
which therefore can be approximated in Mellin space by
the series

PSGL��,as� = �
m=1

� �as

�
�m

gm� as

�2� , �157�

truncated at some finite value for m. For a given value of
m, �as /��m gm�as /�2� in Eq. �157� is obtained by resum-
mation of all class m SGLs in P. Equation �157� is just
the general result of expanding a function of as and � in
as /� keeping as /�2 fixed �although it is not completely
general because the series starts at m=1�. Equation
�157� should be a good asymptotic approximation in the
region ���=O�as

1/2�, at least for sufficiently small as. In
fact, from incomplete calculations up to the class m=2
�Dokshitzer, Khoze, Mueller, and Troian, 1991�, in par-
ticular the splitting function for the MLLA evolution
of the gluon FF in Eq. �188� below, PSGL approximated
as in Eq. �157� is believed to be valid for the region
���#O�as

1/2� as well. In particular, at �=0 it is expected
to be a series in �as with finite coefficients, beginning at
O��as�. Note that PSGL falls to zero as ���→� because in
this limit it is well approximated by an expansion in as
keeping � fixed. This condition is met by Eq. �188� be-
low.

From Eq. �153�, the inverse Mellin transform of Eq.
�157� gives the z space result

PSGL�z,as� =
1

z ln z �
m=1

�

�as ln z�mfm�as ln2 z� , �158�

which can also be obtained by summing the SGLs in z
space for each m. Equation �158� shows that the ap-
proximation of Eq. �157� is valid in the evolution of
D�z ,Q2� in the region ln�1/z�#O�as

−1/2�, which includes
the small, but not arbitrarily small, z region ln�1/z�
=O�as

−1/2�. Note that the usual condition as
1 must still
hold in order that the approximation in Eq. �156� holds
everywhere in this range of z. If PSGL�� ,as� approxi-
mated as in Eq. �157� really is finite at �=0, then
PSGL�z ,as� in Eq. �158� must obey zPSGL�z ,as�→0 as
z→0.

Using the DLA, it is in fact possible to calculate the
m=1 term in Eq. �157� or equivalently in Eq. �158�, i.e.,
the complete DL contribution. We show how to do this
in Sec. VIII.C.

C. The double logarithmic approximation

The DLA �Bassetto, Ciafaloni, Marchesini, and Muel-
ler, 1982� states that if the evolution is written in the
form
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d

d ln �f
2D�z,�f

2� = �
z

1 dz�

z�

2CA

z�
Az�2�d/d ln �f

2�

��as��f
2�D� z

z�
,�f

2��
+ �

z

1 dz�

z�
P̄„z�,as��f

2�…D� z

z�
,�f

2� ,

�159�

where �2CA /z�A=PDL�0��z� is the LO term in the expan-
sion in as of the full DL contribution to P, PDL, where

PDL is equal to the m=1 term in Eq. �158�, then P̄�z ,as�
is free of DLs. A will be given explicitly in the basis of
singlet, nonsinglet, and valence quark FFs just now
when we will see that A is a projection operator, its nor-
malization being chosen such that it obeys A2=A, and
this property will make resummation calculations to ap-
pear later in this section easier. The solution to Eq. �159�
leads to the famous hump-backed plateau in the cross
section; i.e., the cross section can be approximated by a
Gaussian in ln�1/x�. This behavior is seen in the data
�see Fig. 35�.

We now give an outline of the derivation of Eq. �159�,
which is obtained from the generating functional tech-
nique �Dokshitzer, Khoze, Mueller, and Troian, 1991� in
the context of angular ordering �Fadin, 1983� of succes-
sive emissions of gluons in the process e+e−→q+ q̄+Ng,
where Ng refers to N gluons in the final state: The
double logarithms at small z are obtained by summing
all processes involving the emission of gluons from par-
ent gluons or the primary quark line because the prob-
ability that a gluon i−1 emits another gluon i at an angle
�i and energy Ei is proportional to as�d�i /�i��dEi /Ei�.
Since only the largest, double logarithmic, part of the
probability is required, the strong ordering condition
�E ,��i
 �E ,��i−1 is imposed. These successive emissions
of gluons from both gluons and the primary quark
and antiquark will be described by the DGLAP equa-
tion �Eq. �3�
 for small z and small z� �because the most
important contribution of the integrand to the integral
is in the region z��z�, where �f on the left-hand side
is the lower bound of the transverse energy Ei−1�i−1 of
the parent parton. However, since Ei�i
Ei−1�i−1, the
lower bound on the right-hand side for the transverse
energy Ei�i of the emitted parton should be chosen to be
z��f instead of �f as is done when z and z� are not small,

d

d ln �f
2D�z,�f

2�

= �
z

1 dz�

z�
as�z�2�f

2�P�0��z��D� z

z�
,z�2�f

2� . �160�

At low z and z�, P�0��z�� can be approximated by its
double logarithm, where the right-hand side of Eq. �160�
reduces to the first term in Eq. �159�. The second term in
Eq. �159� accounts for the remaining FO part of the evo-
lution.

The quantity P̄ is completely constrained by the DG-
LAP equation. It can be obtained in terms of P order by
order in as by expanding the operator in Eq. �159� in the
form

z�2�d/d ln �f
2� = exp�2 ln z�

d

d ln �f
2�

= �
n=0

�
�2 ln z��n

n! � d

d ln �f
2�n

�161�

and then repeatedly applying the evolution equations
�Eqs. �3� and �5�
 to the �d /d ln �f

2�n�as��f
2�D�x /y ,�f

2�

operations in Eq. �159�. For example, to O�as

2� �NLO�
one finds that

P̄�z,as� = P�z,as� − 2CAA�as

z
+ 2��as�

ln z

z

+ �
z

1 dz�

z�

2as ln z�

z�
P� z

z�
,as�� + O�as

3� .

�162�

In the square brackets on the right-hand side of Eq.
�162�, only the first term contributes to the O�as� �LO�
part of P̄, while the second and third terms contribute to
the O�as

2� part. To this accuracy, the third term is calcu-
lated with P�z ,as�=asP

�0��z� �see Appendix C for the ex-
plicit functions�. From Eq. �162� with P to NLO, we ob-

serve that P̄ to NLO is free of DLs. The DLs in P�z ,as�
to NLO are given by the NLO expansion of PDL,

PDL�z,as� = 2CA
A

z
as − 4CA

2 A ln2 z

z
as

2 + O�as
3� . �163�

In Eq. �159�, A is zero whenever D is a nonsinglet FF

or valence quark FF. In this case, Eq. �3� implies P̄=P,
i.e., the splitting functions for such FFs are free of DLs.
For D= �D� ,Dg�,

A = �0
2CF

CA

0 1
� . �164�

Note in general that A2=A, as mentioned earlier.
For consistency, resummation of the DLs in the hard

partonic cross sections �i.e., the coefficient functions� of
the process under consideration is also necessary. In
principle, this has been done for e+e− reactions by Muel-
ler �1983a, 1983b�, the result being that CNS and CPS are
free of DLs while

Cg��,as� =
2CF

CA
�1

2

� − ��2 + 16CAas

��2 + 16CAas
� . �165�
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The expansion up to NNLO of this result,

Cg��,as� =
2CF

CA
�− 4CA

as

�2 − 48CA
2 � as

�2�2� , �166�

may be compared with the small � limit of the result of
Blümlein and Ravindran �2006�,

Cg��,as� =
2CF

CA
�− 4CA

as

�2 + 40CA
2 � as

�2�2� . �167�

There is clearly agreement at NLO but not at NNLO.
The most likely reason is the difference in the choice of
scheme or rather, since the DLs should be scheme inde-
pendent, an � dependent difference in the choice of nor-
malization of Cg between the two approaches. Further
studies of the factorization procedure used by Mueller
�1983a, 1983b� are needed here. In any case, the coeffi-
cient functions for e+e− reactions at LO are free of DLs
and so it may be a reasonable approximation to neglect
them altogether. This is done in the MLLA, discussed in
Sec. VIII.E.

The DLA implies a relation among quark and gluon
FFs which simplifies calculations of cross sections. Ac-

cording to Eq. �159� with P̄ neglected, which is a reason-
able approximation at small z since it is free of DLs, the
ratio of dD� /d ln �f

2 to dDg /d ln �f
2 is 2CF /CA, while the

operation of d /d ln �f
2 on the nonsinglet and valence

quark FFs gives zero in this approximation. Integrating
these results over ln �f

2 and neglecting the constants of
integration relative to the FFs give

DqJ
= Dq̄J�

= �CF/CA�Dg, �168�

reducing the number of FFs required for the cross sec-
tion to just one, Dg. Although we will not use Eq. �168�
in this section, we consider an application of it in Sec.
VIII.D.

The analytic solution to Eq. �159� can be obtained
�Albino, Kniehl, Kramer, and Ochs, 2005, 2006� from its
Mellin space form,

�� + 2
d

d ln �f
2� d

d ln �f
2D = 2CAasAD

+ �� + 2
d

d ln �f
2�P̄D ,

�169�

where for brevity we have written D=D�� ,�f
2�, as

=as��f
2�, and P̄= P̄�� ,as�. Substituting Eq. �9� into Eq.

�169� gives

�� + 2
d

d ln �f
2��P − P̄� + 2�P − P̄�P − 2CAasA = 0,

�170�

where again for brevity P=P�� ,as�. Note that at this
point we have not assumed anything about P. Thus Eq.
�9� can be taken as a definition of P for now, in which
case Eq. �170� is simply an alternative way of writing Eq.
�169�. In particular, P�� ,as� in Eq. �170� must not be

�171�

O†�as /��2
‡, which �= �as /���as /�2�−1=O�as /�� and that

as= �as /��2�as /�2�−1=O†�as /��2
‡
 and finally extract the

first, O†�as /��2
‡, term to find that the constraint on PDL

is exactly

2�PDL�2 + �PDL − 2CAasA = 0. �172�

Equation �172� gives two solutions for each component
of P. Since P is never larger than a 2�2 matrix in the
basis consisting of singlet, gluon, nonsinglet, and valence
quark FFs, there are four solutions. The only solution
which can be expanded in as and which reproduces the
DLs in P at LO and NLO, given by

PDL��,as� =�0 as
4CF

�
− as

216CFCA

�3

0 as
2CA

�
− as

28CA
2

�3
� + O�as

3� ,

�173�

is

PDL��,as� = �A/4��− � + ��2 + 16CAas� . �174�

Equation �174� agrees with the results of Mueller �1983a,
1983b�, which are derived using the conventional renor-
malization group approach and with the results from the
generating functional technique of Dokshitzer, Khoze,
Mueller, and Troian �1991�. The remainder of P, i.e.,
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D. Incorporating the DLA into the DGLAP equation

To a first approximation, the evolution valid for all
ln�1/z�#O�as

−1/2� takes the form of Eq. �3� with

�175�

Here PDL in z space �the m=1 term in Eq. �158�
 is given
by

PDL�z,as� =
A�CAas

z ln
1

z

J1�4�CAas ln
1

z
� , �176�

where J1�y� is the Bessel function of the first kind, which
can be calculated from

J1�y� =
1

�
�

0

�

d� cos�y sin � − �� . �177�

In Fig. 34, we show that Pgg�z ,as� calculated as in Eq.
�175� interpolates well between its O�as� approximation
in the FO approach, asPgg

�0�, at large z and, Pgg
DL�z ,as�, at

Higher order calculations in the FO approach with no
resummation should extend the validity of the FO cal-
culation of the evolution to smaller z values. However,
for sufficiently small z, the improvement to the calcula-
tion due to SGL resummation will be better. The reason
is that, as z decreases, the order required for the evolu-
tion in the FO approach to be reasonably accurate will
eventually become higher than the order available. We

can use Eq. �176� to illustrate this point. Using the ex-
pansion

J1�y� =
y

2�
r=0

�
�− y2/4�r

r!�r + 1�!
, �178�

the series for PDL�z ,as� in as reads

PDL�z,as� =
2CAasA

z �
r=0

�
�− 1�r

r!�r + 1�!
�4CAas ln2 z�r.

�179�

The series in Eq. �179� may also be obtained by expand-
ing Eq. �174� to infinite order in as. For z�0, Eq. �179�
converges rapidly at sufficiently large r, but the value of
r around which this convergence sets in increases with
decreasing z. For example, for z=0.01, the accuracy of
the series reaches the level of a few percent only at r
=7, i.e., P in the FO approach would need to be known
to O�as

8� before evolution at z values as low as z=0.01
could be performed.

Using Eq. �174� for P in the DGLAP equation �9� the
dependence of the multiplicity in Eq. �154� on s is found
to be

�nh�s�� " exp�2�CA

�0

1
�as�s�

� , �180�

i.e., the calculation of the s dependence of the multiplic-
ity is finite once the DLs have been resummed. Of
course, the DL contribution from the gluon coefficient
function has been neglected, but this is probably negli-
gible relative to the LO quark coefficient function.

We now discuss how Eq. �175� was used in the phe-
nomenological studies of Albino, Kniehl, Kramer, and
Ochs �2006�. From Eqs. �29� �with tagged quarks qJ
summed over� and �30�, the LO cross section for e+e−

reactions reads

1

��s�
d�h

dx
�x,s� =

1

nf�Q�s���J=1

nf

QqJ
�s�DqJ/q̄J

h �x,�f
2� , �181�

where �Q�s��= �1/nf��J=1
nf QqJ

�s� is the average elec-
troweak coupling of quarks. Using Eq. �181�, fits to e+e−

reaction data were performed by Albino, Kniehl,
Kramer, and Ochs �2006�. The initial FFs were param-
etrized as

Di
h�z,�f0

2 � = N exp�− c ln2 z
z��1 − z�� �182�

because at large z its behavior is similar to Eq. �59� �with
fi=1�, which has so far sufficed for global fits to large x
data, while at small z Eq. �182� reduces, for c�0, to a
Gaussian in ln 1/z,

Di
h�z,�f0

2 � � N exp�− c ln2 1

z
− � ln

1

z
� , �183�

which is the empirical behavior of the cross section at
small x=z. As shown in Sec. VIII.F, Eq. �183� is also the
large �f0 behavior of the FFs predicted by the DLA and
MLLA, with ��0 to ensure that the center in ln 1/x is
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FIG. 34. The gluon splitting function in different approxi-
mations. �i� Pgg�z ,as� calculated as in Eq. �175� �labeled
DL+LO�+LO��
: �ii� Pgg�z ,as� calculated to O�as� in the FO
approach �labeled LO�: and �iii� Pgg

DL�z ,as� �labeled DL�.
as=0.118/ �2�� and x is z. From Albino, Kniehl, Kramer, and
Ochs, 2006.

2537S. Albino: Hadronization of partons

Rev. Mod. Phys., Vol. 82, No. 3, July–September 2010



at −� / �2c��0. The values of � and c were chosen to be
the same for the FFs of all partons, as dictated by the
DLA result in Eq. �168�. The choice �f=�s was made, as
well as the large value �f0=14 GeV, to ensure that the
form of Eq. �183� predicted by the DLA at large �f0 is
valid.

Data for unidentified hadron production at e+e− reac-
tions over a large range of values of �s were used, being
composed of the sets from TASSO at �s=14,35,44
�Braunschweig et al., 1990b�, and 22 GeV �Althoff et al.,
1984�, MARK II �Petersen et al., 1988� and TPC �Aihara
et al., 1988b� at 29 GeV, TOPAZ at 58 GeV �Itoh et al.,
1995�, ALEPH �Barate et al., 1998�, DELPHI �Abreu et
al., 1996�, L3 �Adeva et al., 1991�, OPAL �Akrawy et al.,
1990�, and SLC �Abrams et al., 1990� at 91 GeV,
ALEPH �Buskulic et al., 1997� and OPAL �Alexander et
al., 1996� at 133 GeV, DELPHI at 161 GeV �Ackerstaff
et al., 1997�, and OPAL at 172, 183, 189 �Abbiendi et al.,
2000a�, and 202 GeV �Abbiendi et al., 2003�. These data
also span a wide range in x, from large to small values,
as is usually the case with inclusive single hadron pro-
duction measurements. The level of accuracy of the cal-
culations of Albino, Kniehl, Kramer, and Ochs �2006�
was such that the possible contamination of these had-
ron unidentified data as discussed in Sec. III was not
considered a problem. However, such data are probably
not suited to a NLO fit because of this possible contami-
nation. The unresummed fit, i.e., using P=asP

�0� in Eq.
�3� fails at the small x values around and to the right of
the maximum, as shown in Fig. 35 �left�. On the other
hand, the resummed fit, i.e., using Eq. �175� for the split-
ting functions appearing in the evolution, of Fig. 35
�right� succeeds much better at these small x values,
while the large x description remains intact. The fitted
value of �QCD in the unresummed fit was 388 MeV,
which is fairly reasonable, but the resummed fit gave
�QCD=801 MeV, which is somewhat larger than ex-

pected. This may not be serious since �QCD carries a
multiplicative error of O�1�: Multiplying �QCD by a fac-
tor is equivalent to dividing the choices above for �f0

and �f by this factor, which by factorization scale inde-
pendence and perturbative convergence is allowed pro-
vided that this factor is of O�1�.

To further improve the small x description, hadron
mass effects were accounted for as discussed in Sec. V.A.
The hadron mass was fitted and thus would absorb any
other low �s, small x effects such as higher twist. In the
case of the unresummed fit, the description of all fitted
data was as good as the resummed fit of Fig. 35 �right�,
while the resummed fit did not improve substantially.
However, the resummed fit gave the reasonable values
�QCD=399 MeV and mh=252 MeV �assuming the had-
ron sample is composed mostly of �±�, while the unre-
summed fit gave the unreasonable value �QCD

=1308 MeV and perhaps slightly too large value mh

=408 MeV. Thus the conclusion from these analyses is
that both DL resummation and treatment of hadron
mass effects are needed in order to achieve a reasonable
fitted value of �QCD and to improve the description of
the data at smaller x values.

Calculations with SGLs resummed should be valid
down to small x because Eq. �157� is expected to be valid
for all � including as �→0. Thus the small x data may
be described by performing the calculation with the
complete SL contribution to the evolution and/or the
complete DL contribution in the gluon coefficient func-
tion. There may, however, also be a discrepancy between
the theoretical and experimental definitions of the cross
section, such as the effective exclusion, in experiment, of
partons emitted outside the jet, which are included in
the theoretical calculation. Such effects become more
important with decreasing x.
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FIG. 35. Fit to data using DGLAP evolution in the FO approach to LO �left� and using DGLAP evolution in the FO approach to
LO but with DLs resummed �right�. The variable �=ln 1/x. Only some of the data sets used for the fit are shown, together with
their theoretical predictions from the results of the fit. Data to the right of the horizontal dotted lines have not been used in the
fit. Each curve is shifted up by 0.8 for clarity.
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E. The modified leading logarithmic approximation

Equation �3� with P given by Eq. �175� reduces to the
MLLA master equation �Dokshitzer and Olsson, 1993�,
differentiated with respect to the factorization scale �Lu-

pia and Ochs, 1998�, if PSGL�0� in Eq. �175� is replaced, in
Mellin space, by its value at �=0, i.e.,

P��,as� = asP
SGL�0��� = 0� + PDL��,as� .

�184�

In discussions of the MLLA, the term

PSGL�0��� = 0� = � 0 − 3CF
2
3TRnf − 11

6 CA − 2
3TRnf

�
�185�

is usually referred to as the SL term, as discussed follow-
ing Eq. �153�. At small �, the accuracy of Eq. �184� is
similar to the accuracy of Eq. �175�, while for all �, Eq.
�184� is still a better approximation for P than P=PDL is.
By coincidence �Dokshitzer, Khoze, Mueller, and
Troian, 1991�, Eq. �184� leads to a similar result at large
z as Eq. �175� or �4� does. In any case, the approach of
Eq. �175� or more generally Eq. �155� incorporates more
information than the MLLA, in particular in the large �
region, and should therefore be more accurate.

In many applications of the MLLA, Eq. �168� is used.
Together with the gluon component of Eq. �169� with
D= �D� ,Dg�, it implies that the gluon FF evolves accord-
ing to

Dg��,�f
2� = Egg� „�,as��f

2�,as��f0
2 �…Dg��,�f0

2 � , �186�

where writing

Egg� „�,as��f
2�,as��f0

2 �…

= exp��
M=�f0

M=�f

d ln �f
2Pgg� „�,as��f

2�…� , �187�

the splitting function Pgg� expanded in the form in Eq.
�156� is given by �Dokshitzer, Khoze, Mueller, and
Troian, 1991�

Pgg� ��,as� =
1
4

�− � + ��2 + 16CAas�

+ as��11CA

6
−

2nfTR

3
� 4CAas

�2 + 16CAas

−
1
2�11CA

6
+

2nfTR

3CA
2 �

��1 +
�

��2 + 16CAas
��

+ O��as

�
�3� as

�2�n� . �188�

As for PDL, Pgg� �� ,as� is finite as �→0. Furthermore,
Eq. �168� reduces Eq. �181� to

1

��s�
d�h

dx
�x,s� =

2CF

CA
Dg�x,s� . �189�

We have derived these MLLA results using the DLA
and the FO approximation results, but they were first
derived as a correction to the derivation of the DLA
using the generating functional technique mentioned in
Sec. VIII.C.

It is often convenient and simpler to study the mo-
ments of the cross section. The nth moment of a function
f�z� is given by

Kn =��−
d

d�
�n

ln f����
�=0

. �190�

According to Eq. �186�, the �f
2 dependence of the nth

moment of f�z�=Dg�z ,�f
2� is given by

Kn��f
2� = �Kn„as��f

2�,as��f0
2 �… + Kn��f0

2 � , �191�

where �Kn„as��f
2� ,as��f0

2 �… is the nth moment of
Egg� „z ,as��f

2� ,as��f0
2
…�, given by

�Kn„as��f
2�,as��f0

2 �… = �
M=�f0

M=�f

d ln M2�−
d

d�
�n

�Pgg� „�,as�M2�… . �192�

From Eq. �188�, for n&1,

�Kn„as��f
2�,as��f0

2 �… = as
−�n+1�/2��f

2�„Cn
�0� + Cn

�1�as
1/2��f

2�

+ O�as�… − �as��f
2� ↔ as��f0

2 �� .

�193�

The explicit results for the Cn
�0,1� can be calculated from

Eq. �188� and are presented by Fong and Webber �1989�
for the first few values of n. For n&3 and odd, Cn

�0�=0.
Equation �193� also applies for n=0 but with the pres-
ence of a term proportional to ln as.

F. Local parton-hadron duality and the limiting spectrum

Perturbative QCD is incomplete in that it cannot de-
scribe the physics of hadrons entirely. An intuitive solu-
tion to this problem is provided by the LPHD, which
states that the distribution of partons in inclusive pro-
cesses with a sufficiently low energy scale is similar to
the distribution of hadrons, up to the number of par-
ticles actually produced �the multiplicity�. This implies
that the hadronic FF is proportional to the partonic FF
at a factorization scale of O��QCD�. In other words, as-
suming that Eq. �168� is valid at such low scales, we must
ensure that our initial gluon FF obeys

Dg�z,�f0
2 � = N��1 − z� �194�

if we choose �f0=O��QCD�. Ordinarily, evolution at such
low scales will not be possible in perturbation theory
because the convergence of the perturbation series is
spoilt and can even be singular. However, using hyper-
geometric functions, it is possible to write the MLLA
evolution of Dg and therefore the s dependence of the
cross section in Eq. �189�, such that the calculation is
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well defined at �f=�QCD. This calculation is known as
the limiting spectrum. In this section we show how the
limiting spectrum and the result of the LPHD in Eq.
�194� arise as accidental consequences of truncated per-
turbation theory.

According to Eq. �193� and the result as�M2�→0 as
M→�, for sufficiently large �f we may neglect Kn��f0

2 �
relative to �Kn„as��f

2� ,as��f0
2 �… except for n=0 because

the cross section is sensitive to N=exp�K0��f0
2 �
. From

Eq. �190� with f�z�=Dg�z ,�f0
2 � and Kn��f0

2 �=0 for n&1,
we see that Dg�z ,�f0

2 � takes the form in Eq. �194�. In
other words, at high energies it appears as if the initial
FF at low energy is a delta function �Albino, Kniehl, and
Kramer, 2004�, even though it could be a different func-
tion.

The second, �f0 dependent, part of Kn in Eq. �193�
may also be neglected relative to the first, �f dependent,
part for sufficiently large �f because in this limit as��f

2�

as��f0

2 �. Coincidentally, because as�M2�→� as M
→�QCD, the neglect of the second, �f0 dependent, part
of Kn Eq. �193� is equivalent to choosing �f0=�QCD, pro-
vided that the series in as

1/2 is terminated at O�as
n/2� be-

cause the next term will be finite and the terms following
that will be singular. In other words, at high energies, it
appears as if the choice �f0=�QCD is justified �Albino,
Kniehl, and Kramer, 2004� even though it is in fact not.

We conclude that the LPHD and limiting spectrum in
the context of hadron production can only be verified
using low energy data because their consequences at
high energy are also implied by perturbation theory
alone.

With the two approximations above, Eq. �191� finally
becomes

Kn��f
2� � �Kn„as��f

2�,�… for n & 1, �195�

which are the moments of the limiting spectrum. Equa-
tion �195� implies an interesting large �f behavior of the
gluon FF and hence, from Eq. �168�, of all quark FFs.
The inverse Mellin transform of the gluon FF,

zDg�z,�f
2� =

1

2�i
�

C
d� exp���
Dg��,�f

2� , �196�

where �=ln�1/z�, may by making the replacement y
= i�� where �2=K2��f

2�, be written as

zDg�z,�f
2� =

N
��2�

exp�−
�2

2
�R��,�$n�� , �197�

where N=exp�K0��f
2�
 �so that N��f0

2 �=N in Eq. �194�
,
�= ��− �̄� /� with �̄=K1��f

2� as the average value of �, the
real quantity R is given by

R��,�$n�� =
e�2/2

�2�
�

−�

�

dy exp��
n=3

�

$n
�− iy�n

n! �
�exp�iy� −

y2

2
� , �198�

and

$n =
Kn��f

2�
K2

n/2��f
2�

= as
�n−2�/4��f

2��1 + O„as
1/2��f

2�…
 . �199�

Equation �193� has been used for the second equality in
Eq. �199�. Because of that property, we can expand the
$n-dependent exponential in Eq. �198� in powers of the
$n up to the required accuracy and perform the integral
for each term. Then, writing R as an exponential of the
form

R = exp��
i=0

�

Ai�
i� , �200�

we find that the series in the exponent will terminate at
a finite value of i when it is expanded in as to some finite
order even if �=O�1�. In particular, if $n=0 for n&3,
which is always a reasonable approximation because of
Eq. �199�, then all Ai=0 so that R=1. Therefore, from
Eq. �197� the gluon FF at large �f and therefore the
cross section at large �s will be a �distorted� Gaussian
over the range from large to small x. This justifies the
choice for the small z behavior of Eq. �183� used for the
FFs in the fits of Albino, Kniehl, Kramer, and Ochs
�2006�.

IX. OUTLOOK

A. Possible experimental results for the future

Accurate measurements of light charged and neutral
hadron production at HERA are now possible. As noted
by Albino, Kniehl, Kramer, and Sandoval �2007� and
Jung et al. �2008�, such data in which the hadron species
is identified, which do not yet exist and which may only
be possible for short lived particles such as the neutral

hadrons KS
0 and � / �̄, would make a significant improve-

ment to the current knowledge of FFs. In particular,
such data together with data from e+e− reactions already
used in global fits could significantly improve the flavor
separation of the FFs for each hadron species if the ep
reaction data are in similar kinematic regions to the e+e−

ones and the validity of the quark tagging often per-
formed in measurements of e+e− reactions can be stud-
ied. By identification of the charge of the detected had-
rons as well, perhaps the greatest improvement to the
current constraints on FFs that ep reaction data could
provide is on the valence quark FFs, which at present
are only constrained by similar but relatively much less
accurate data from RHIC. The accurate set of measure-
ments from BaBar �Anulli, 2004� mentioned in Sec.
VII.C should appear in the next year or so and will pro-
vide much needed constraints on FFs at large z that are
not provided by any current data sets. Because these
data are taken at a different �s to that of the currently
most accurate data, which is at �s=91.2 GeV, such data
will also significantly improve the constraints on �s�MZ�.
In addition, new more accurate pp reaction data are be-
ing taken at RHIC which includes larger pT values than
before and hence will also improve the large z con-
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straints. Furthermore, the inclusion of these BaBar data
in global fits could help to determine whether there are
any general problems with the factorization framework
at large x, a possibility suggested by the inconsistency
found between high energy �ALEPH and OPAL� and
low energy �Belle and CLEO� data for charmed meson
production �Cacciari, Nason, and Oleari, 2006; Kneesch,
Kniehl, Kramer, and Schienbein, 2008�.

In the further future, accurate results for e+e− reac-
tions may be extracted from the raw data taken at
CLEO, Belle, and LEP. The constraints on valence
quark FFs could also be improved by measurements of
the asymmetric cross section in e+e− reactions. Further
ep reaction data could be taken at the proposed eRHIC
and LHeC colliders. Finally, measurements of pp reac-
tions at the LHC, which at present could be obtained
from the first run at �s=900 GeV, would likely be of
sufficiently high accuracy to significantly improve the FF
constraints.

B. Future theoretical input to global fits

A number of improvements which global fits may
benefit from are possible, and we list those which are
most likely to be available first:

�1� The inclusion of heavy quarks and heavy quark
masses in the partonic cross sections.

�2� The application of large x resummation to pp reac-
tion calculations for a finite rapidity range and also
for ep reactions both with and without cuts in pT.

�3� The calculation of the NNLO off-diagonal splitting
functions, as well as the NNLO partonic cross sec-
tions in ep and pp reactions.

�4� The calculation of the full DL contribution to the
gluon coefficient function in e+e− reactions data, and
possibly further SGLs here, and in the splitting func-
tions, with the incorporation of these improvements
in global fits to e+e− reaction data including more of
the data at small x that have previously been ex-
cluded. The resummation of the same classes of
SGLs in other types of processes may also be ben-
eficial if there exist measurements of those processes
whose calculations would improve due to the
resummation.

Of course, a simultaneous treatment of the above im-
provements simultaneously in a single global fit would
be an additional goal, but one which is further into the
future.

Global fits of FFs can be further improved by fitting
other quantities not determinable in perturbation
theory, such as higher twist contributions, intrinsic FFs,
fracture functions, and the modifications associated with
hadronic decay channels, whose fitted results would con-
tribute significantly to the current knowledge of QCD
physics.

X. SUMMARY

We have given a comprehensive account of important
methods and results in the phenomenological extraction
of FFs from experimental data. Many FF components
for many particles are now well constrained. FFs have
been useful in the study of other phenomena and in the
extraction of other physical quantities, some examples
are given in Sec. I, and the number and intensity of such
applications is expected to increase as the constraints on
FFs improve. The best constraints on FFs at present
come from e+e− reaction data. However, these data do
not constrain the valence quark FFs �or charge asymme-
try FFs�, and to a large degree the gluon FF, which can
be at least weakly constrained by current data from
RHIC. Theoretically, calculations of inclusive single
hadron production in all reactions that have been per-
formed experimentally can be calculated to NLO, and
the effects of large x resummation in e+e− reactions and
heavy quarks effects in all reactions can be included at
this level of accuracy. The deviation of the fitted de-
tected hadron mass from its true value gives a quantifi-
cation of how important the production of this particle
from decays of heavier hadrons instead of from direct
partonic fragmentation. We note here that the produc-
tion of particles such as pions from direct partonic frag-
mentation only could be determined in the future by
subtracting the contribution to pion production coming
from the decays of resonances such as �, K*, 	, etc.,
which requires measuring the production of these reso-
nances. In global fits, systematic errors are now ac-
counted for through a covariance matrix, and various
sound approaches for propagating experimental errors
from measurements to predictions have been applied.

There is a lot of room for improvement in this pro-
gram, perhaps the most important being the eventual
incorporation in global fits of future accurate measure-
ments of hadron production at HERA in which both the
species and charge of the hadrons are measured in order
to significantly improve the constraints on the differ-
ences between FFs of different quark flavors �the non-
singlet quark FFs� and of different quark charges �the
valence quark FFs�, respectively. Such FF components
are currently constrained by intuitive but experimentally
untested nonperturbative assumptions. A significant im-
provement in the extraction of �s�MZ� would also result
from such fits relative to previous fits. Because of the
theoretical similarity between charge summed data from
e+e− and ep reactions, further tests on FF universality
would also result from the inclusion of hadron species
identified data from HERA in global fits together with
data from e+e− reactions.

Note that FF universality tests are provided by the
inclusion of pp�p̄� reaction data but, because of their
much lower accuracy, to a much lesser degree than by
the inclusion of ep reaction data. At present, pp�p̄� re-
action data are crucial for the extraction of the currently
badly constrained gluon and valence quark FFs, and
therefore future accurate measurements from RHIC
and LHC will be most welcome. We note that the con-

2541S. Albino: Hadronization of partons

Rev. Mod. Phys., Vol. 82, No. 3, July–September 2010



straints on these FFs could also be significantly im-
proved by measurements of the longitudinal and asym-
metric cross sections �with hadron species identification,
of course� in e+e− reactions, respectively.
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APPENDIX A: DERIVATION OF THE QCD
FACTORIZATION THEOREM

In this appendix, we discuss the factorization theorem
applied to inclusive single hadron production. That is,
we show how such processes can be calculated in the
form in Eq. �1�, where the hard partonic cross sections
d�i and the �f

2 dependence of the universal FFs Di
h are

perturbatively calculable, i.e., are nonsingular and re-
main so as the first nf quark masses vanish and/or the
remaining quark masses approach infinity. We restrict
our discussion to the process e+e−→�*→h+X of Fig. 2,
although it can be applied to other inclusive single had-
ron production processes. This cross section can be de-
composed as

d� = L�'W�', �A1�

where L�' is the well-known tensor describing the pro-
cess e+e−→�* �we work to LO in QED�, while the tensor

W�'�q,ph� =
1

2�
� d4xeiqx�0�J��x�ah

†�ph��X�

��X�ah�ph�J'�0��0� , �A2�

where ah
�†��ph� is the annihilation �creation� operator for

a hadron h with momentum ph �we do not assume a
massless hadron in this appendix� describes the hadronic
process �*→h+X and is the quantity in which we are
interested. W may be partially calculated using pertur-
bation theory by decomposing it into the form �omitting
the space-time indices �' for brevity�

W = wD + r , �A3�

where the remainder r is power suppressed, i.e.,

r = O„��QCD/�s�p
… , �A4�

w is a vector of the equivalent, factorized, full partonic
processes wi �where the parton species label i includes
�combinations of� the spin state�s� and charge�s� as dis-
cussed in Sec. II.F
 for the processes �*→ i+X and D is
a vector of factorized FFs Di. Equation �A3� is then the
same as Eq. �1�. The “product” wD involves sums and
integrations over all species of the “detected” final state
parton of w, which is a real particle moving spatially
parallel to the detected hadron. Note that the momen-
tum integration is precisely the convolution of Eq. �1�,
i.e., over the momentum fraction z and not over all four
components of momentum. In the language of the OPE

�Georgi and Politzer, 1974; Gross and Wilczek, 1974;
Floratos, Ross, and Sachrajda, 1977; Buras, 1980; Reya,
1981; Sterman, 1995; Weinberg, 1996; Moch and Verma-
seren, 2000�, Eq. �A3� corresponds to a twist expansion,
the term wD being referred to as the leading twist com-
ponent. The variable p&1 in Eq. �A4�, so at large
enough energy the higher twist terms are smaller than
the radiative corrections of O�1/ ln �s�.

In the remainder of this appendix, we outline the for-
mal derivation of the factorization theorem of Collins
�1998b�, where full details and more references may be
found. In Appendix A.1, we outline the steps given by
Collins �1998b� for separating the nonleading twist part,
whose order of magnitude can be reliably estimated
from the cross section such that it is suitable for factor-
ization. In Appendix A.2, we discuss the factorization
approach of Collins �1998b�, which is essentially a gen-
eralization of former approaches. Then, in Appendix
A.3, we connect it with the older factorization approach
of Ellis, Georgi, Machacek, Politzer, and Ross �1978,
1979�, Curci, Furmanski, and Petronzio �1980�, and Fur-
manski and Petronzio �1980, 1982�. Because the manner
in which a parton should be treated in factorization de-
pends on the magnitude of its mass relative to the hard
scale, different schemes are appropriate for different en-
ergies and therefore, in Appendix A.5, we discuss
matching conditions between quantities in these differ-
ent schemes. However, we note there that the correct
treatment of quarks with mass much greater than the
hard scale has not been specified so far, and we indicate
how this may be remedied. Finally, in Appendix A.6, we
summarize the open issues remaining in the factoriza-
tion theorem.

1. Twist expansion

For now, assume that all partons have masses less than
or of the order of the hard scale �s. We return to the
case that there are also quarks with masses much greater
than �s in Appendix A.4. Collins �1998b� derived the
form of Eq. �A3� for DIS, eh→e+X �in which case D is
a vector of PDFs�, by starting from an expansion in
graphs which are two-particle irreducible �2PI�, i.e., can-
not be disconnected by cutting through two internal
lines, in the t channel and then using the result that all
graphs that contribute at leading twist are two-particle
reducible �Libby and Sterman, 1978a, 1978b�. There are
many subtleties involved in getting to this result; see Sec.
IV.A of Collins �1998b� for details and references. By
repeating these arguments but with the negative virtual-
ity of the exchanged boson replaced with positive virtu-
ality and the incoming hadron replaced with an outgoing
hadron, one obtains the factorized form of the cross sec-
tion e+e−→�*→h+X. The expansion is shown in Fig. 36
which, using the shorthand 1+K0+K0

2+ ¯ =1/ �1−K0�,
may be represented as

W = C0
1

1 − K0
T0 + B . �A5�
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As it stands, Eq. �A5� is no use for practical calcula-
tions. First, T0 and B contain hadron legs for which no
perturbative or other analytic representation exists. Sec-
ond, perturbation theory cannot be applied even to cal-
culate the equivalent purely partonic cross section
C0 / �1−K0�: In general, each parton species contributes
potential mass singularities, which are logarithms of
each parton mass that becomes singular as that mass
approaches zero. The potential mass singularities of any
quark then will not be singular if all quarks are taken to
be massive, but they will be large if this quark’s mass mi

is much less than �s, i.e., in the limit that this mass be
neglected. However, neglecting the mass mi of a parton i
should only introduce a relative error of O�mi

2 /s� on the
cross section as dictated by the decoupling theorem �Ap-
pelquist and Carazzone, 1975�. In fact, because the po-
tential mass singularities are raised to a power that in-
creases with the order in as, for sufficiently large s they
will cause the perturbative calculation to diverge. Third,
the products in Eq. �A5� are rather complicated, con-
taining sums and integrations over all virtual partons
connecting 2PI graphs, which we call connecting par-
tons. To tackle the second and third problems, we begin
with the observation that, in a physical gauge such as the
light-cone gauge, which we use from now on, the 2PI
graphs are free of potential mass singularities �Ellis,
Georgi, Machacek, Politzer, and Ross, 1978, 1979�,
which therefore arise from those connecting partons
which are in the vicinity of being real, i.e., on shell and
with physical spin, and moving spatially parallel to the

detected hadron. These 2PI graphs are also free of UV
singularities after renormalization of the strong coupling
and quark masses. Thus we introduce a projection op-
erator Z=Z2 which projects onto the connecting partons
in a manner which includes all those partons with mo-
menta responsible for the potential mass singularities.
The operator 1−Z therefore annihilates the potential
mass singularity between any two 2PI graphs. Now we
give one explicit definition of such an operator. We use
light-cone coordinates �defined in Appendix B� and
work in a frame for which the detected hadron’s momen-
tum is given by Eq. �97� and the virtual boson’s momen-
tum by Eq. �96�. Considering only massless partons for
simple illustration, mass singularities arise from connect-
ing partons with physical spins and physical momenta
obeying

k = �ph
+/z,0,0� . �A6�

Then

Z���;�,���k,l� = 1
4����

− ����
+ �2��4��k+ − l+���k−���2��kT�

�A7�

and something similar for gluons. Note that Eq. �A7� is
consistent with the projection operator property Z=Z2.
The extension of Eq. �A7� to massive quarks �we assume
all quarks’ and the detected hadron’s masses are non-
negligible� is quite straightforward, in particular the !

component of Eq. �A6� becomes zmi
2 / �2ph

+� and the
mass singularities become potential mass singularities.
Like K0, Z can be regarded as a graph with two partons
at the top, each with momentum k, and two with mo-
mentum l at the bottom. As shown in Fig. 37, the inser-
tion of Z between two graphs reduces the sums and in-
tegrations in the product between them to an integration
over z of the pair of connecting partons at the bottom of
the top graph, which have momenta given by Eq. �A6�,
i.e., they are on shell, and an integration over the mo-
menta l− and lT of the pair of connecting partons at the
top of the bottom graph, whose � component of mo-
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FIG. 36. 2PI t-channel expansion of the cross section for
e+e−→�*→h+X �with the electron and positron legs removed
for simplicity�. The left-hand side is the modulus squared of
the amplitude shown in Fig. 2, i.e., the external wavy legs rep-
resent the virtual photon �* and the external double lines the
detected hadron h. On the right-hand side, the lines between
2PI graphs are virtual partons in loops �i.e., summed and inte-
grated over all quantum numbers�. C0 and K0 represent all 2PI
t-channel contributions to the processes �*→ j+X and i→ j
+X, respectively. B and T0 represent all 2PI t-channel contri-
butions to �*→h+X and j→h+X, where in this case 2PI must
be defined by nonperturbative external field methods. Strictly
speaking, all graphs have a cut down the middle signifying the
final state and on which all particles must be real. Alterna-
tively, we may forget the cut if these graphs may be regarded
as forward amplitudes, whose imaginary component also gives
the cross section as dictated by the optical theorem.
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FIG. 37. The action of Z on the connecting partons of mass mi
between any graphs A and B. The momentum integration is
over the variables z, l−, and lT.
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mentum is the same as that in Eq. �A6�, i.e., l+=ph
+/z.

This is the case, for example, in the product between wD
in Eq. �A3�—in practice it is usually not necessary to
show explicitly the l− and lT integrations over the initial
state partons in D.

The Z operator is used to put Eq. �A5� into the form
of Eq. �A3� in Sec. V.B of Collins �1998b�, where the
remainder r is shown to be power suppressed �i.e., to
obey Eq. �A4�
. A general graph such as W, containing a
hard and a soft scale such as �s and �QCD, respectively,
will in general contain a leading region, i.e., a part which
is not power suppressed, coming from graphs which can
be expressed as a graph coupled to the hard scale, called
the hard graph, joined to a graph coupled to the soft
scale, called the soft graph, by two real partons of mass
much less than the hard scale �Libby and Sterman,
1978a, 1978b� which are collinear to the detected had-
ron. Being 2PI, B does not contain such graphs and
therefore does not contain a leading region, i.e., it is
power suppressed. This will not be the case in a general
gauge because additional gluon exchanges between the
hard and soft graphs are allowed. However, it is as-
sumed, without proof, that a suitable light-cone gauge
exists such that such graphs are power suppressed. At
least this is known to be true for the A+=0 gauge used
and in the case that these gluons’ momenta are almost
collinear with the detected hadron’s. In the leading re-
gion, lines in the hard graph will have much larger vir-
tualities than lines in the soft graph, from which we con-
clude that, again in the leading region, all lines in a 2PI
graph must have similar virtualities to one another.
Since Z projects out connecting partons which are real
and collinear to the detected hadron, a 1−Z insertion
between two graphs removes the contribution to the
leading region, so the result is of order
�highest virtuality in graph below to lowest virtuality in
graph above�p �Collins, 1998b�. Successive insertions of
1−Z between all 2PI graphs in Eq. �A5� will give succes-
sive factors of this suppression leading an overall power
suppression. Consequently,

r = C0�1 − Z�
1

1 − K0�1 − Z�
T0 + B �A8�

obeys Eq. �A4�, so r may be taken to represent all higher
twist terms in W. All potential mass singularities in r are
annihilated by the 1−Z insertions. All UV singularities
in r cancel: in the quantity �1−Z� / �1−K0�1−Z�
, the ac-
tion on partons from the left with Z introduces a UV

singularity, which is then canceled by the power-
suppressing 1−Z factors in essentially the same way as
these factors remove the potential mass singularities.
The leading twist component of W is therefore W−r,
which we now factorize in order to express it in its fa-
miliar form in Eq. �A3�.

2. The modern approach to factorization

The approach to factorization of Collins �1998b� con-
sidered in this section is a generalization of previous
approaches such as the OPE. Most importantly, it im-
plicitly uses the cut vertices �Mueller, 1978, 1981� and
nonlocal operators �Balitsky and Braun, 1989, 1991�
that were necessary in modifying the Wilson expansion
in local operators on the light cone, which can be
applied to, e.g., the time ordered product of currents
appearing in ep→e+X to the time ordered product of
currents appearing in e+e−→h+X, which is subtle due
to its nonlocal operator structure. The result that r
=O„��QCD/Q�2

…, i.e., that p=2 in Eq. �A3�, found by
Balitsky and Braun �1989, 1991�, using an expansion in
nonlocal operators, should be obtainable using the ap-
proach of Collins �1998b�. Using the Z operator, Eq.
�A5� may be rewritten in the form

W − r = wBDB. �A9�

In this expression, the vector

wB = C0
1

1 − �1 − Z�K0
Z �A10�

contains the equivalent “UV bare” �containing UV di-
vergences� partonic processes. It is clearly free of poten-
tial mass singularities. Note that the “detected” parton is
real due to the presence of Z on the right-hand side. The
UV bare FFs

DB = Z
1

1 − K0
T0 �A11�

appearing in Eq. �A9� describe the fragmentation of par-
tons. Clearly, DB contains all processes contributing to
the process i→h+X �i is in fact a virtual parton, but its
� component of momentum is fixed to that of the real
parton lines at the top of Z, while its remaining compo-
nents are integrated over� and may therefore be written
as a matrix element of unrenormalized operators. In a
general gauge, it is given by �Collins and Soper, 1981,
1982; Collins, 1993�

DBqI

h �z� =
zd−3

4�
� dx−e−iP+x−/z1

3
trcolor

1
3

trspin	�+�0�
qI

�0��0,0,0�T̄ exp�ig�0��
0

�

dy−Aa
�0�+�0,y−,0�ta

T�
�ah

†�P+,0,0�ah�P+,0,0�T exp�− ig�0��
x−

�

dy−Aa
�0�+�0,y−,0�ta

T�
̄qI

�0��0,x−,0��0�
 , �A12�
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for a quark of flavor qI, where 
qI
is the spinor field for

quarks of flavor I, g is the strong coupling, ta=�a /2
where �a are the Gell-Mann matrices, and Aa

� is the field

for gluons of color charge a. The operator T �T̄� orders
the field operators Aa

+�0,y− ,0� in the products in each
term of the exponential expansion in g such that an op-
erator is always to the left �right� of any other operator
with a lower �higher� value of y−. The superscript �0� on

qI

�0� implies that the operator �e.g., 
qI

�0�� or quantity �e.g.,
g�0�� is unrenormalized. The expression for the gluon FF
is similar, obtained essentially by replacing 
qI

�0� every-
where with the gluon field strength tensor. The Wilson
lines are not present in Eq. �A12� in the A+=0 gauge
that we have been using, i.e., the exponentials are equal
to unity. Their direct derivation involves going beyond
the 2PI expansion in a nontrivial way. Since the UV di-
vergences of the bare operators are subtracted by ordi-
nary multiplicative renormalization, the renormalized
FFs take the form

D = GDB, �A13�

where G=GZ renormalizes UV divergences in the op-
erator in DB in the standard way of operator renormal-
ization �see, e.g., Peskin and Schroeder �1995�
 and
therefore introduces a dependence of D on some opera-
tor renormalization scale �f. G is nonsingular as parton
masses vanish, as shown later �in the text following Eq.
�A25�
. Dimensional regularization is necessary to
implement the CWZ schemes �Collins, Wilczek, and
Zee, 1978�, in which case G will be singular as the num-
ber of dimensions approaches 4. As usual in operator
renormalization, the dependence of G on �f is governed
by the renormalization group equation

dG/d ln �f
2 = PG , �A14�

where the components of the matrix P are the relevant
perturbatively calculable anomalous dimensions for the
operators in DB and are known as splitting functions.
Therefore from Eq. �A13�,

dD/d ln �f
2 = PD , �A15�

which is the DGLAP equation. In studies using the
OPE, Eq. �A15� appears in Mellin space, where the Mel-
lin space variable N is an integer equal to the spin of the
given operator in the OPE, which is equivalent to Eq.
�A15� in z space just derived by applying the inverse
Mellin transform of Eq. �D5�.

We finally arrive at Eq. �A3� from Eq. �A9� by making
the identity

w = wBG−1, �A16�

where G−1 is defined such that GG−1=Z. Since wB and
G are free of potential mass singularities, so are the fac-
torized partonic processes w. In practice, w can be cal-
culated as follows: we may write

w0 = wBKB, �A17�

where

w0 = C0
1

1 − K0
Z �A18�

is the equivalent partonic process in which the detected
parton is real. Because w0 is a matrix element of un-
renormalized operators, it is free of UV divergences af-
ter renormalization of the coupling constant. However,
w0 contains potential mass singularities. The quantities
represented by

KB = Z
1

1 − K0
Z �A19�

are the bare FFs for partons to fragment to partons.
They are renormalized in the same way as DB defined in
Eq. �A11� was in Eq. �A13�,

� = GKB, �A20�

which is nonsingular as the regulator of UV singularities
is removed, but is singular as any parton masses vanish.
Note that KB and � are written by Collins �1998b�, as
ABp and ARp, respectively. Then, instead of calculating w
via Eq. �A16�, w may be explicitly calculated from w0
according to

w = w0�−1, �A21�

where �−1 is defined such that ��−1=�−1�=Z. Equation
�A21�, which is equivalent to Eq. �65� of Collins �1998b�
�after expanding in as�, makes it clear that the purpose
of � is to remove from w0 the potential mass singulari-
ties. In other words, each potential mass singularities in
w0 is canceled by counterterms in �. � may be chosen,
through the choice of G and Z in Eq. �A20�, to depend
on parton masses only through mass logarithms, which
will be the case for the CWZ schemes �Collins, Wilczek,
and Zee, 1978�. The precise form of this � �Eq. �A34�

will be derived later.

To summarize, w and the �f dependence of D are
perturbatively calculable. The components of w are the
standard coefficient functions up to electroweak cou-
plings, etc. Like DB, the factorized FFs D in Eq. �A26�
are universal since all details of the initial state are con-
tained in C0.

3. Connection with the older approach to factorization

Finally, we make some connections between the
above approach and the earlier approach of Ellis,
Georgi, Machacek, Politzer, and Ross �1978, 1979�,
Curci, Furmanski, and Petronzio �1980�, and Furmanski
and Petronzio �1980, 1982�. The latter approach was for-
mulated for the case of massless quarks only, so we need
to make some modifications to these earlier approaches
to account for massive quarks as well. In addition, our
definitions of bare FFs will need to differ from the ear-
lier approach in order to obtain reliable results. We be-
gin with an alternative to Eq. �A9� which corresponds to
the starting point of calculations in the literature �i.e.,
Eq. �A21�
,
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W − r = w0D0, �A22�

where the “bare” FF in this case is

D0 = Z
1

1 − K0�1 − Z�
T0, �A23�

which is free of UV singularities because the UV singu-
larity introduced by acting from the left with Z is can-
celed by 1−Z insertions occurring to the right, similar to
the cancellation of UV singularities in r discussed in the
text following its definition in Eq. �A8�. We define a pro-
jection operator P=P2 which projects in the same way
as Z on parton lines above �so that ZP=P� and which
projects in a similar way as Z on parton lines below
except that, in contrast to Z, it becomes sufficiently sup-
pressed for increasing momenta of these lines such that
it does not introduce UV singularities. The scale at
which this suppression sets in is called the factorization
scale, which is written as �f since it will turn out to be
identical to the operator renormalization scale defined
above. Thus, for example, we may choose P �in the case
of massless quarks for simplicity� to be given by Eq.
�A7� multiplied by a function f�k−/�f ,kT /�f� such that
f�0,0�=1 and f�� ,��=0. A more explicit definition of P
�or f� is not required since an implicit definition will be
given later. Note that, like Z, P is flavor diagonal. As a
projection operator, P2=P, and insertion of 1−P be-
tween two 2PI graphs annihilates the potential mass sin-
gularity due to the connecting partons.

The momentum dependence of P can lead to prob-
lems with gauge invariance and with rapidity diver-
gences �Collins, 2003, 2008�. Such problems were not
considered by Ellis, Georgi, Machacek, Politzer, and
Ross �1978, 1979�, Curci, Furmanski, and Petronzio
�1980�, and Furmanski and Petronzio �1980, 1982�, which
were limited to the case of massless quarks. We assume
that some suitable choice for the remaining degrees of
freedom in P exists such that these problems do not
arise in the case of massive quarks. Further work is
needed here to prove that such a P exists.

The dependence of �, which was introduced in Eq.
�A20�, on P is

� = �1 + PK0
1

1 − K0
�Z , �A24�

which can be interpreted as the FFs for hard partons
fragmenting to on-shell soft partons. Using Eq. �A20�,
we may write

G = �1 + �P − Z�K0
1

1 − �1 − Z�K0
�Z , �A25�

i.e., G is free of potential mass singularities because, in
the P−Z operator, those potential mass singularities
projected out by Z are identical to those projected out
by P. This behavior was noted just after Eq. �A13�. Ac-
cording to Eqs. �A3� and �A21�, the factorized FFs de-
fined in Eq. �A13� may also be written as

D = �D0. �A26�

Using Eq. �A21�, the hard partonic cross section in terms
of P reads

w = C0
1

1 − �1 − P�K0
Z , �A27�

which is free of both UV singularities and potential mass
singularities. �=Z�=�Z is a function only of the ratio of
the � component of light-cone momenta of its initial
and final partons, as well as of parton masses and indi-
ces. By giving this function explicitly, Eq. �A24� defines
P implicitly. The simplest possible choice for �, which
occurs for the CWZ schemes �Collins, Wilczek, and Zee,
1978�, is when the coefficients in the perturbative series
for � are themselves finite series in ln �f

2 /mi
2, where i

runs over all partons. Although the gluon mass must be
zero for renormalizability, connecting gluons can be
given a small mass after renormalization has been per-
formed within the 2PI graphs. Although the perturba-
tive approximation for � fails in the numerical sense, its
�f dependence does not because

d�/d ln �f
2 = P� , �A28�

where the splitting functions

P = � d

d ln �f
2P�K0

1

1 − �1 − P�K0
Z �A29�

are free of UV and potential mass singularities. This is
obviously true since the perturbatively calculable w must
obey a similar equation to Eq. �A28� in order for Eq.
�A3�, in particular wD, to be independent of �f. Thus,
when � is chosen to depend on parton masses only
through finite powers of potential mass singularities, as
discussed in the text preceding Eq. �A28�, P will be in-
dependent of all parton masses. The DGLAP equation
�A15� may be obtained from Eqs. �A26� and �A28�.

4. Treatment of nonpartonic quarks

Up to this point, all results are only valid when no
parton mass is much greater than �s. Because the poten-
tial mass singularities of quarks with mass much greater
than �s are power suppressed by O�s /mi

2�, where mi is
the mass of any such quark, they must not be subtracted
by a large counterterm, i.e., they must be treated differ-
ently. Thus partons must be distinguished according to
how they are treated: the partons that are treated as
discussed in the last three sections are called active par-
tons, while the rest, which should include those for
which mi��s, are called nonpartonic quarks. Note that
a quark for which mi=O��s� can be treated as either
active or nonpartonic since its potential mass singulari-
ties and their corresponding counterterms are not large.
We define the 2PI graphs to be 2PI in nonpartonic
quarks as well. The choice of Z on nonpartonic quarks
must be that r remains both power suppressed and free
of UV singularities; i.e., Z on nonpartonic quarks must
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be that the arguments around Eq. �A8� still hold. Choos-
ing Z=0 when acting on nonpartonic quark lines as is
done by Collins �1998b� leads to UV singularities in r
and therefore is not a valid possibility. One possibility
which is valid is to choose Z�k , l� when the magnitude of
l is large to behave in the same way on nonpartonic
quark lines as on active quark lines, i.e., to choose Eq.
�A7� to hold for nonpartonic quarks as well, thus guar-
anteeing the cancellation of UV divergences in r, while
the Z�k , l� on nonpartonic quark lines vanishes as l be-
comes small both to guarantee the power suppression of
r and to ensure that no large counterterms are intro-
duced for potential mass singularities due to nonpar-
tonic quarks, which are suppressed or not large. In other
words, Z on nonpartonic quark lines may be chosen in a
similar way to how P acting on active quark lines was in
the text following Eq. �A23�, except that now
f�k−/�f ,kT /�f� is replaced with another function,
g�k−/�f ,kT /�f� say, where �f is another arbitrary scale at
which the suppression of Z acting on nonpartonic quark
lines sets in, which obeys g�0,0�=0 and g�� ,��=1. In
this case, Z would no longer be a projection operator
and r is now scheme and scale dependent; i.e., it depends
on the number of flavors and on �f. Neither of these two
facts presents any problems. However, as noted in the
text preceding Eq. �A24�, introducing a momentum de-
pendence into a projection operator can lead to prob-
lems with gauge invariance and with rapidity diver-
gences, so further work is needed to prove that a Z
exists for which these problems do not arise.

The other types of potential mass singularity that a
nonpartonic quark contributes, namely, logarithms of its
mass mqI

that become singular as mqI
��s, are absorbed

into the strong coupling constant in, e.g., a CWZ scheme
�Collins, Wilczek, and Zee, 1978�. Note that for active
partons, for which mi
�s, such logarithms are power
suppressed by O�mi

2 /s�.

5. Matching conditions

Next we consider the relation or matching conditions
between D and w, in schemes that differ by the number
of active partons. For simplicity, we choose Z on non-
partonic quark lines to be the same as Z on active quark
lines �i.e., the massive quark equivalent of Eq. �A7�
.
Note that in this case r is free of UV singularities but is
no longer power suppressed. Then, in the presence of
nonpartonic quarks, all results derived so far still hold
except that the sum over partons in all products such as
that in Eq. �A3� includes nonpartonic quarks. In certain
physical schemes, defined in Sec. II.G such as the CWZ
schemes �Collins, Wilczek, and Zee, 1978� in which no
subtraction is made on quantities which are free of UV
singularities, G depends on nonpartonic quark masses
only and is singular as such masses vanish �recall from
Appendix A.2 that G is nonsingular as active parton
masses vanish�, while � is independent of nonpartonic
quark masses. When acting on nonpartonic quark lines,
P must be chosen such that it does not introduce large

counterterms to cancel power suppressed potential mass
singularities, e.g., P can be chosen to vanish on nonpar-
tonic quark lines.

Taking all previous factorized quantities to be defined
for nf active quark flavors and using primes to denote
quantities defined with nf+1 active quark flavors, Eq.
�A13� implies that the matching conditions for FFs and
coefficient functions are

D� = AD �A30�

and

w� = wA−1, �A31�

respectively, where A=G�G−1=���−1 is a function only
of the ratio of the � component of light-cone momenta
of its initial and final partons, as well as of parton masses
and indices. Diagrammatically it is given by

A = Z�1 + �P� − P�
1

1 − K0�1 − P�
K0�Z . �A32�

Note that A remains nonsingular as the regulator of UV
singularities is removed, in contrast to G, and, as for G,
contains no potential mass singularities due to active
parton masses. G can be chosen such that A depends on
nonpartonic quark masses only and only through mass
logarithms. This is the case in the CWZ schemes �Col-
lins, Wilczek, and Zee, 1978�. Recall that some modifi-
cations of our incomplete results are needed to ensure
that r is properly power suppressed. Again, similar to P
above, if � is chosen to have the simplest possible form
as discussed in the text preceding Eq. �A28�, the only
parton mass that A can depend on is mnf+1. Since the
series for K0 starts at O�as�, since P�−P projects out a
potential mass singularity from the �nf+1�th quark, and
since n factors of K0 contain n−1 pairs of connecting
partons and therefore a product of n−1 potential mass
singularities, A in Mellin space and as a matrix in parton
species can be chosen to take the simplest form

A�N,�f
2� = 1 + �

n=1

�

as
n��f

2� �
m=0

n

Am
�n��N�lnm �f

2

mnf+1
2 . �A33�

From this we obtain the simplest possible form for �,

� = �
i=0

nf �1 + �
n=1

�

as
n��f

2� �
m=0

n

Am
�n��N�lnm �f

2

mi
2� . �A34�

In practice, Am
�n� are chosen such that w in Eq. �A21� is

finite in the limit that active parton masses vanish �al-
though these limits do not of course need to be taken in
the actual cross section calculations�. The CWZ scheme
�Collins, Wilczek, and Zee, 1978� is obtained by choos-
ing Am

�n� such that w in Eq. �A21� reduces to the MS
scheme for a theory with nf massless flavors only in the
limits that active parton masses vanish and nonpartonic
masses approach infinity �which again do not need to be
taken in actual applications�.

In calculations of light hadron production, it may or
may not be possible to neglect the contribution of intrin-
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sic fragmentation, namely, the nonpartonic components
in the product in Eq. �A3�. In the case of PDFs, accord-
ing to the decoupling theorem those graphs that contain
a nonpartonic quark i will be suppressed by a power of
�QCD/mi �Witten, 1976�, which is therefore the relative
error on the cross section due to the neglect of the in-
trinsic PDF of parton i. If such a suppression also occurs
for FFs then as for PDFs Dnf+1 can be neglected, in
which case Eq. �A30� implies that Dnf+1� is determined
entirely from the Di for i=0, . . . ,nf. This component of
Dnf+1� describes the extrinsic fragmentation of parton nf

+1. However, the results of Witten �1976� only apply to
the case of local operators, such as those relevant to
DIS, but not necessarily to FFs for which nonlocal op-
erators must be used, as mentioned. If the intrinsic frag-
mentation of a nonpartonic quark is deemed important
�e.g., charm fragmentation in a three flavor scheme�, cal-
culations would need to be made in which Z acting on
nonpartonic lines takes the form discussed in Appendix
A.4 that leads to a power suppressed remainder r. In the
meantime, a quark whose intrinsic fragmentation is
large must be treated as an active parton, with an intrin-
sic FF that can be fitted to experimental data as is the
case for the light partons and thus �s cannot be too small
relative to its mass.

6. Open issues

We have given a summary of the current status of
factorization which was developed by Collins �1998b�.
This approach both generalizes earlier approaches and
solves a number of issues therein. However, some issues
remain. In particular, the necessary modification pro-
posed here to the behavior of Z on nonpartonic quark
lines given by Collins �1998b� as well as our proposed
relations between the results of Collins �1998b� and
those of the earlier approach of Ellis, Georgi, Machacek,
Politzer, and Ross �1978, 1979� Curci, Furmanski, and
Petronzio �1980�, and Furmanski and Petronzio �1980,
1982� in terms of P need more explicit study in order to
ensure that there are no problems with gauge invariance
or rapidity divergences, which are a general conse-
quence of momentum dependent projection operators.
Furthermore, while it has been proved that graphs in
which there is an exchange between the hard and soft
graphs of gluons collinear to the detected hadron are
power suppressed, a proof is lacking for the cases where
these gluons are not collinear.

APPENDIX B: MOMENTUM FRACTION

The light-cone momentum fraction x of the detected
particle h plays a central role in the factorization
theorem as the scaling variable of single hadron
inclusive production processes. Specifically, defining
light-cone coordinates V= „V+= �V0+V3� /�2,V−= �V0

−V3� /�2,VT= �V1 ,V2�… for any vector V, x is the fraction
of the available+component of momentum that h car-
ries away from some process, i.e.,

x = �p3h + Eh�/�p3h max + Eh max� . �B1�

Here Eh is the particle’s energy, ph3�0 its z component
of the spatial momentum ph, and the subscript max re-
fers to the maximum value that the variable can take, in
other words the amount of this variable available to the
particle. For example, in e+e−→h+X reactions, Eh is

TABLE III. Summary of the measurements for inclusive
single �± production in e+e− reactions. The column labeled “#
data” gives the number of data for which x&0.05. The last
column refers to the normalization uncertainty on the data.

Collaboration Tagging
�s

�GeV� # data
Norm.

�%�

TASSOa Untagged 12 5 20
TASSOb Untagged 14 10 8.5
TASSOb Untagged 22 1 6.3
HRSc Untagged 29 6
TPCd l tagged 29 9
TPCd c tagged 29 9
TPCd b tagged 29 9
TPCe Untagged 29 27
TASSOa Untagged 30 4 20
TASSOf Untagged 34 10 6
TASSOf Untagged 44 7 6
TOPAZg Untagged 58 8
ALEPHh Untagged 91.2 22 3
DELPHIi l tagged 91.2 17
DELPHIi b tagged 91.2 17
DELPHIi Untagged 91.2 17
OPALj u tagged 91.2 5
OPALj d tagged 91.2 5
OPALj s tagged 91.2 5
OPALj c tagged 91.2 5
OPALj b tagged 91.2 5
OPALk Untagged 91.2 20
SLDl l tagged 91.2 28
SLDl c tagged 91.2 28
SLDl b tagged 91.2 28
SLDl Untagged 91.2 28
DELPHIm Untagged 189 3
Total 338

aBrandelik, �TASSO Collaboration�, 1980.
bAlthoff, �TASSO Collaboration� �1983�.
cDerrick, �HRS Collaboration� �1987�.
dAihara, �TPC/Two-Gamma Collaboration� �1987�; Lu �1986�.
eAihara, �TPC/Two-Gamma Collaboration� �1988a, 1988b�.
fBraunschweig, �TASSO Collaboration� �1989a�.
gItoh, �TOPAZ Collaboration� �1995�.
hBuskulic, �ALEPH Collaboration� �1995a�.
iAbreu, �DELPHI Collaboration� �1998�.
jAbbiendi, �OPAL Collaboration� �2000c�.
kAkers, �OPAL Collaboration� �1994�.
lAbe, �SLD Collaboration� �2004�.
mAbreu, �DELPHI Collaboration� �2000�.

2548 S. Albino: Hadronization of partons

Rev. Mod. Phys., Vol. 82, No. 3, July–September 2010



maximal when X= h̄, so that the energy available to the
particle is Eh max=�s /2. Other convenient “momentum”
fractions can be defined, such as the fraction of available
energy

xE = Eh/Eh max, �B2�

which for e+e−→h+X reactions is then 2Eh /�s, and the
ratio of the particle’s spatial momentum to the available
energy

xp = �ph�/Eh max, �B3�

which for e+e−→h+X reactions is then 2�ph� /�s. If the
hadron’s mass can be neglected, xE=xp=x=ph /ph max.
Note that the definitions of xE and xp in Eqs. �B2� and
�B3� are frame dependent. Although the definition of
x in Eq. �B1� is also frame dependent, it is invariant
with respect to boosts in the 3-direction since in that
case±components change by the same factor.

APPENDIX C: LEADING ORDER SPLITTING FUNCTIONS

The LO coefficients of the splitting functions are
given by

TABLE IV. As in Table III, but for K±.

Collaboration Tagging
�s

�GeV� # data
Norm.

�%�

TASSOa Untagged 12 3 20
TASSOb Untagged 14 9 8.5
TASSOb Untagged 22 7 6.3
HRSc Untagged 29 7
MARKIId Untagged 29 2 12
TPCe Untagged 29 26
TASSOa Untagged 30 2 20
TASSOf Untagged 34 5 6
TOPAZg Untagged 58 5
ALEPHh Untagged 91.2 18 3
DELPHIi l tagged 91.2 17
DELPHIi b tagged 91.2 17
DELPHIi Untagged 91.2 17
OPALj u tagged 91.2 5
OPALj d tagged 91.2 5
OPALj s tagged 91.2 5
OPALj c tagged 91.2 5
OPALj b tagged 91.2 5
OPALk Untagged 91.2 10
SLDl l tagged 91.2 28
SLDl c tagged 91.2 28
SLDl b tagged 91.2 28
SLDl Untagged 91.2 28
DELPHIm Untagged 189 3
Total 286

aBrandelik, �TASSO Collaboration�, 1980.
bAlthoff, �TASSO Collaboration� �1983�.
cDerrick, �HRS Collaboration� �1987�.
dSchellman, �MARK II Collaboration� �1985�.
eAihara, �TPC/Two-Gamma Collaboration� �1988a, 1988b�.
fBraunschweig, �TASSO Collaboration� �1989a�.
gItoh, �TOPAZ Collaboration� �1995�.
hBarate, �ALEPH Collaboration� �1998a�; Buskulic, �ALEPH

Collaboration� �1995a�.
iAbreu, �DELPHI Collaboration� �1998�.
jAbbiendi, �OPAL Collaboration� �2000c�.
kAkers, �OPAL Collaboration� �1994�.
lAbe, �SLD Collaboration� �2004�.
mAbreu, �DELPHI Collaboration� �2000�.

TABLE V. As in Table III, but for p / p̄.

Collaboration Tagging
�s

�GeV� # data
Norm.

�%�

TASSOa Untagged 12 3 20
TASSOb Untagged 14 9 8.5
TASSOb Untagged 22 9 6.3
HRSc Untagged 29 7
TPCd Untagged 29 20
TASSOa Untagged 30 3 20
JADEe Untagged 34 2 14
TASSOf Untagged 34 7 6
TOPAZg Untagged 58 5
ALEPHh Untagged 91.2 18 3
DELPHIi l tagged 91.2 17
DELPHIi b tagged 91.2 17
DELPHIi Untagged 91.2 17
OPALj u tagged 91.2 5
OPALj d tagged 91.2 5
OPALj s tagged 91.2 5
OPALj c tagged 91.2 5
OPALj b tagged 91.2 5
OPALk Untagged 91.2 10
SLDl l tagged 91.2 29
SLDl c tagged 91.2 29
SLDl b tagged 91.2 29
SLDl Untagged 91.2 29
DELPHIm Untagged 189 3
Total 289

aBrandelik, �TASSO Collaboration�, 1980.
bAlthoff, �TASSO Collaboration� �1983�.
cDerrick, �HRS Collaboration� �1987�.
dAihara, �TPC/Two-Gamma Collaboration� �1988a, 1988b�.
eBartel, �JADE Collaboration� �1981�.
fBraunschweig, �TASSO Collaboration� �1989a�.
gItoh, �TOPAZ Collaboration� �1995�.
hBarate, �ALEPH Collaboration� �1998a�; Buskulic, �ALEPH

Collaboration� �1995a�.
iAbreu, �DELPHI Collaboration� �1998�.
jAbbiendi, �OPAL Collaboration� �2000c�.
kAkers, �OPAL Collaboration� �1994�.
lAbe, �SLD Collaboration� �2004�.
mAbreu, �DELPHI Collaboration� �2000�.
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P��
�0� �z� = CF�− 1 − z + 2� 1

1 − z
�

+
+

3
2

��1 − z�� ,

P�g
�0��z� = 2CF

1 + �1 − z�2

z
,

�C1�

Pg�
�0��z� = TRnf�z2 + �1 − z�2
 ,

Pgg
�0��z� = 2CA�1

z
− 2 + z − z2 + � 1

1 − z
�

+
�

+ �11
6

CA −
2
3

TRnf���1 − z� ,

where TR=1/2 and, for the color gauge group SU�3�,
CA=3 and CF=4/3. The �f�z�
+ operation occurs often in
perturbative calculations and can be most usefully de-
fined by its behavior in a convolution �in which it will
always appear�

TABLE VI. As in Table III, but for KS
0.

Collaboration Tagging
�s

�GeV� # data
Norm.

�%�

TASSOa Untagged 14 8 15
TASSOb Untagged 14.8 8
TASSOb Untagged 21.5 5
TASSOa Untagged 22 5 15
HRSc Untagged 29 12
MARK IId Untagged 29 17 12
TPCe Untagged 29 7
TASSOf Untagged 33.3 7 15
TASSOa Untagged 34 13 15
TASSOb Untagged 34.5 13
CELLOg Untagged 35 9
TASSOb Untagged 35 13
TASSOb Untagged 42.6 13
TOPAZh Untagged 58 4
ALEPHi Untagged 91.2 16 2
DELPHIj Untagged 91.2 13
OPALk u tagged 91.2 5
OPALk d tagged 91.2 5
OPALk s tagged 91.2 5
OPALk c tagged 91.2 5
OPALk b tagged 91.2 5
OPALl Untagged 91.2 16 6
SLDm l tagged 91.2 9
SLDm c tagged 91.2 9
SLDm b tagged 91.2 9
SLDm Untagged 91.2 9
DELPHIn Untagged 183 2
DELPHIn Untagged 189 3
Total 252

aAlthoff, �TASSO Collaboration� �1985�.
bBraunschweig, �TASSO Collaboration� �1990a�.
cDerrick, �HRS Collaboration� �1987�.
dSchellman, �MARK II Collaboration� �1985�.
eAihara, �TPC/Two-Gamma Collaboration� �1984�.
fBrandelik �TASSO Collaboration� �1981�.
gBehrend, �CELLO Collaboration� �1990�.
hItoh, �TOPAZ Collaboration� �1995�.
iBarate, �ALEPH Collaboration� �1998a�.
jAbreu, �DELPHI Collaboration� �1995�.
kAbbiendi, �OPAL Collaboration� �2000c�.
lAbbiendi, �OPAL Collaboration� �2000a�.
mAbe, �SLD Collaboration� �1999�.
nAbreu, �DELPHI Collaboration� �2000�.

TABLE VII. As in Table III, but for � / �̄.

Collaboration Tagging
�s

�GeV� # data
Norm.

�%�

TASSOa Untagged 14 3 20
TASSOa Untagged 22 4 20
HRSb Untagged 29 12
MARK IIc Untagged 29 15
TASSOd Untagged 33.3 6 15
TASSOa Untagged 34 6 20
TASSOe Untagged 34.8 9 9
CELLOf Untagged 35 7
TASSOg Untagged 42.1 4 9
ALEPHh Untagged 91.2 16 4
DELPHIi Untagged 91.2 7
OPALj u tagged 91.2 5
OPALj d tagged 91.2 5
OPALj s tagged 91.2 5
OPALj c tagged 91.2 5
OPALj b tagged 91.2 5
OPALk Untagged 91.2 12
SLDl l tagged 91.2 4
SLDl c tagged 91.2 4
SLDl b tagged 91.2 4
SLDl Untagged 91.2 9
DELPHIm Untagged 183 3
DELPHIm Untagged 189 3
Total 145

aAlthoff, �TASSO Collaboration� �1985�.
bBaringer, �HRS Collaboration� �1986a�.
cde la Vaissiere, �MARK II Collaboration� �1985�.
dBrandelik �TASSO Collaboration� �1981�.
eBraunschweig, �TASSO Collaboration� �1989b�.
fBehrend, �CELLO Collaboration� �1990�.
gBraunschweig, �TASSO Collaboration� �1989a�.
hBarate, �ALEPH Collaboration� �1998a�.
iAbreu, �DELPHI Collaboration� �1993�.
jAbbiendi, �OPAL Collaboration� �2000c�.
kAlexander, �OPAL Collaboration� �1997�.
lAbe, �SLD Collaboration� �1999�.
mAbreu, �DELPHI Collaboration� �2000�.
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�
x

1 dz

z
�f�z�
+D�x

z
� = �

x

1 dz

z
f�z��D�x

z
� − zD�x��

− D�x��
0

x

dzf�z� �C2�

for any functions f�z� and D�z�. Supposing that f�z� may
contain a singularity as z→1 but nowhere else, Eq. �C2�
is nonsingular provided f�z� is less singular than 1/ �1
−z�2 because the quantity in square brackets in the first
integral on the right-hand side falls to zero as fast as 1
−z in this limit. On the other hand, without the � 
+ op-
eration, Eq. �C2� is only nonsingular provided f�z� is less
singular than 1/ �1−z�. By choosing D�z�=z−N, removing
the common factor x−N, and then replacing the lower
limit of the integration on the left-hand side with 0, we
find the Mellin transform of �f�z�
+ to be

��f�z�
+��N� = �
0

1

dz�zN−1 − 1�f�z� . �C3�

Transforming Eq. �C1� to Mellin space gives

P��
�0� �N� = CF�3

2
+

1

N�N + 1�
− 2S1�N�� ,

P�g
�0��N� = 2CF

N2 + N + 2

�N − 1�N�N + 1�
,

�C4�

Pg�
�0��N� = TRnf

N2 + N + 2

N�N + 1��N + 2�
,

Pgg
�0��N� = 2CA�11

12
+

1

N�N − 1�
+

1

�N + 1��N + 2�

− S1�N�� −
2
3

TRnf,

where for integer N, the harmonic sum

S1�N� = �
k=1

N
1

k
. �C5�

Equation �C5� can be analytically continued to complex
N�−1,−2, . . . �Albino, Kniehl, and Kramer, 2005� by
making the replacement �k=1

N →�k=1
� −�k=N+1

� and then
making the replacement k→k−N in the second sum.
The result is

S1�N� = �
k=1

�
N

k�k + N�
. �C6�

This sum converges but rather slowly. For numerical
work, S1�N� should be calculated using the result �Al-
bino, Kniehl, and Kramer, 2005�

S1�N� = S1�N + r� − �
k=1

r
1

k + N
, �C7�

which follows from Eq. �C5�, where r should be chosen
such that �N+r� is large and then calculating S1�N+r�
as an expansion in 1/ �N+r� �Abramowitz and Stegun,
1965; Albino, 2009�.

APPENDIX D: MELLIN SPACE

Any succession of convolutions, which may be written
as

f�z� = �
z

1 dz1

z1
�

z1

1 dz2

z2
¯ �

zn−2

1 dzn−1

zn−1
f1� z

z1
�

�f2�z1

z2
�¯ fn−1� zn

zn−1
�fn�zn−1� , �D1�

is converted by the Mellin transform, defined by the in-
tegral transformation

TABLE VIII. As in Table III, but for pp�p̄� reactions. In the case of the BRAHMS data, the values
in brackets are the normalization errors below 3 GeV.

Collaboration Rapidity
�s

�GeV� # data
Norm.

�%�

y� �2.9,3
 8 11,7,8�13�,2,1�3�
BRAHMSa y� �3.25,3.35
 200 7
PHENIXb ��0� ����0.35 200 13 9.7
STARc ��0� �=3.3 200 4 16
STARc ��0� �=3.8 200 2 16
STARd �y��0.5 200 10 11.7
Total 44

aArsene, �BRAHMS Collaboration� �2007�.
bAdler, �PHENIX Collaboration� �2003b�.
cAdams, �STAR Collaboration� �2006b�.
dAdams, �STAR Collaboration� �2006a�.
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f�N� = �
0

1 dz

z
zNf�z� , �D2�

into an analytically more manageable succession of
products

f�N� = f1�N�f2�N� ¯ fn�N� . �D3�

Equation �D3� is most easily proved by applying the
Mellin transform to an alternative form of Eq. �D1�,

f�z� = �
0

1

dz1�
0

1

dz2 ¯ �
0

1

dzn��z − z1z2 ¯ zn�

�f1�z1�f2�z2� ¯ fn�zn� . �D4�

The Mellin transform is invertible via the inverse Mellin
transform

f�z� =
1

2�i
�

C
dNz−Nf�N� , �D5�

where C is a contour in complex N space which starts
from a point at Im�N�=−�, ends at a point at Im�N�
=�, and passes to the right of all poles in f�N�. Accord-
ing to Cauchy’s theorem, the contour C may be de-
formed provided that it does not pass through any poles
in the process. The numerical evaluation of the integra-
tion in Eq. �D5� converges fastest when a contour for
which Re�−N�→� is used because then z−N falls expo-
nentially to zero along it.

Often in a convolution of two functions,

g�z� = �
z

1 dz�

z�
g1�z��g2� z

z�
�

=
1

2�i
�

C
dNz−Ng1�N�g2�N� , �D6�

the analytic Mellin transform of one of these functions,
g1 say, may not be calculable. �Note that Eq. �D6� in-
cludes the cases of multiple convolutions in Eq. �D1�
since g1 can be equated with a subset of the convolutions
in Eq. �D1� and g2 with the rest.
 An example is the Fh1h2

i

appearing in Eq. �92�. In this case the Mellin transform
of g1=Fh1h2

i may be performed numerically but only af-
ter dealing with a subtlety: Eq. �D2� with f→g1 implies
that the second equality in Eq. �D6� has a divergent con-
tribution proportional to �CdN�z /z��−Ng2�N� whenever
0�z��z if the contour C is chosen as discussed. How-
ever, inspection of the first equality in Eq. �D6� reveals
that f�z� is independent of g1�z�� in this region. Thus
g1�N� in the second equality in Eq. �D6� must be re-
placed with the modified Mellin transform

g1�N ;z� = �
z

1 dz�

z�
z�Ng1�z�� . �D7�

It can sometimes happen that the analytic Mellin trans-
form of the other function, g2, cannot also be obtained.
Unfortunately, Eq. �D7� cannot be used to also calculate
the Mellin transform of g2 because then the inverse Mel-
lin transform does not converge: as well as Eq. �D7�,
assume a second result which is the same as Eq. �D7� but
with g1→g2 and z�→z�. Then Eq. �D6� has a divergent

TABLE IX. As in Table VIII, but for K±.

Collaboration Rapidity
�s

�GeV� # data
Norm.

�%�

y� �2.9,3
 8 11,7,8�13�,2,1�3�
BRAHMSa y� �3.25,3.35
 200 6

CDFb �KS
0� ����1 630 37 10

STARc �KS
0� �y��0.5 200 9 11.7

Total 60

aArsene, �BRAHMS Collaboration� �2007�.
bAcosta, �CDF Collaboration� �2005�.
cAdams, �STAR Collaboration� �2006a�.

TABLE X. As in Table VIII, but for p�p̄�.

Collaboration Rapidity
�s

�GeV� # data
Norm.

�%�

y� �2.9,3
 7
BRAHMSa y� �3.25,3.35
 200 5 11,7,8�13�,2,1�3�
STARb �y��0.5 200 8 11.7
Total 20

aArsene, �BRAHMS Collaboration� �2007�.
bAdams, �STAR Collaboration� �2006a�.

TABLE XI. As in Table VIII, but for KS
0.

Collaboration Rapidity
�s

�GeV� # data
Norm.

�%�

�K±� y� �2.9,3
 8
BRAHMSa y� �3.25,3.35
 200 6 11,7,8�13�,2,1�3�
CDFb ����1 630 48
STARc �y��0.5 200 9 11.7
Total 71

aArsene, �BRAHMS Collaboration� �2007�.
bAcosta, �CDF Collaboration� �2005�.
cAdams, �STAR Collaboration� �2006a�.

TABLE XII. As in Table VIII, but for � / �̄.

Collaboration Rapidity
�s

�GeV� # data
Norm.

�%�

CDFa ����1 630 34 10
STARb �y��0.5 200 9 11.7
Total 43

aAcosta, �CDF Collaboration� �2005�.
bAbelev, �STAR Collaboration� �2007�.
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contribution proportional to �CdN�z /z�z��−N from the
region z�z��z, which exists even though z��z and z�
�z. One solution is instead to approximate g2 in z space
as, e.g., an expansion in Chebyshev polynomials and
then analytically Mellin transform it.

APPENDIX E: SUMMARY OF INCLUSIVE SINGLE
HADRON PRODUCTION MEASUREMENTS

Here we list all �±, K±, p / p̄, KS
0, and � / �̄ data which

can be reasonably reliably calculated and which are
therefore suitable for global fits.

1. e+e− reactions

Tables III–VII show a summary of the measurements
for inclusive �± reactions.

2. pp(p̄) reactions

Tables VIII–XII show a summary of the measure-
ments for inclusive �± production in pp�p̄� reactions.
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