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The nucleus is one of the most multifaceted many-body systems in the Universe. It exhibits a
multitude of responses depending on the way one “probes” it. With increasing technical advancements
of beams at the various accelerators and of detection systems the nucleus has, over and over again,
surprised us by expressing always new ways of “organized” structures and layers of complexity.
Nuclear magnetism is one of those fascinating faces of the atomic nucleus discussed in the present
review. We shall not just limit ourselves to presenting the by now large data set that has been obtained
in the past two decades using various probes, electromagnetic and hadronic alike and that presents
ample evidence for a low-lying orbital scissors mode around 3 MeV, albeit fragmented over an energy
interval of the order of 1.5 MeV, and higher-lying spin-flip strength in the energy region 5–9 MeV in
deformed nuclei nor to the presently discovered evidence for low-lying proton-neutron isovector
quadrupole excitations in spherical nuclei. To the contrary, the experimental evidence is put in the
perspectives of understanding the atomic nucleus and its various structures of well-organized modes
of motion and thus enlarges the discussion to more general fermion and bosonic many-body systems.
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I. INTRODUCTION

A. General remarks

Nucleons moving inside the atomic nucleus naturally
generate orbital and spin magnetism. In certain mass
regions—in particular, for nuclei between closed shells—

the orbital magnetism can give rise to cooperative ef-
fects between the many nucleons in the nucleus. Collec-
tive modes might result from the out-of-phase motion of
protons and neutrons and of those, magnetic dipole
modes at fairly low energies �0�� excitations� excited
with electromagnetic probes are one of the most pro-
nounced ones. Besides these, at higher excitation ener-
gies, cooperative effects may even lead to collective
spin-flip modes, as well as to even higher-lying genuine
collective dipole modes �2�� excitations� which so far
have not even been seen directly in experiments. In the
present article, we start from a discussion of the early
attempts in order to describe nucleonic out-of-phase
motion leading to magnetic collective excitations �Sec.
II� before entering into a discussion of magnetic dipole
excitations in heavy nuclei �Sec. III�. The experimental
evidence that has been accumulated over the years con-
cerning the observation of a so-called scissors mode in
which the neutrons and protons in a deformed nucleus
perform small angle vibrations in a scissorslike motion
with respect to each other, using both electromagnetic
and hadronic probes, is listed. Theoretical concepts con-
cerning the description of the low-lying orbital scissors
strength in even-even nuclei are presented. Collective
�geometric and algebraic� and microscopic �shell-model
and quasiparticle random phase approximation �QRPA�
studies� models are discussed and they are related to one
another in order to better understand both the comple-
mentarity and the specific model effects. The difficult
problem of addressing the observed fragmentation of or-
bital magnetic strength will also be looked in the light of
collective and microscopic approaches.

The aspects related to the experimental evidence and
the derivation of a theoretical description of the concen-
tration of spin-flip strength at higher excitation energies
is presented in Sec. III as well, using mainly QRPA and
shell-model calculations. In Sec. IV magnetic dipole ex-
citations in heavy odd-mass nuclei are discussed. There
the problem of missing strength in the measured spectra
is looked at in some detail and the need for a better
theoretical description of the fragmented transition
strength is pointed out. Section V discusses experimen-
tal examples from magnetic dipole excitations in light
and medium-heavy nuclei and their theoretical treat-
ment in terms of the shell model and the QRPA. In Sec.
VI we discuss the magnetic dipole isovector transitions
in vibrational nuclei, illuminating the intimate connec-
tion with the scissors mode typical to rotational nuclei.
In Sec. VII we bring the former discussion within a
broader context of general many-body systems, e.g., de-
formed metallic clusters, quantum dots, and scissors mo-
tion in trapped Bose-Einstein condensates. In the final
Sec. VIII, conclusions and an outlook are given concern-
ing the issue of magnetic dipole excitations within the
broader context of past and future nuclear physics re-
search. Relevant literature on the subject that appeared
until the end of 2009 has been considered in this review.
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B. Magnetic dipole response in atomic nuclei: A qualitative
overview

Even on rather general grounds, one can make a fin-
gerprint figure for the magnetic dipole response in heavy
rare-earth deformed nuclei on one side and more spheri-
cal and light nuclei on the other side. We illustrate the
salient features of this response in two figures that shall
be referred to quite often in the present review.

In even-even strongly deformed �rare-earth and ac-
tinide� nuclei, particularly due to the lifting of the
spherical symmetry and the associated degeneracy in the
various m components for a spherical orbital with angu-
lar momentum j, one can separate four different ener-
gies regions �see Fig. 1�:

�i� At the excitation energy of about twice the pair-
ing gap �2��2–2.5 MeV�, two quasiparticle �2qp�
J�=1+ excitations show up with a very specific
shell-model structure and thus, if these stay rather
pure, can be detected in electromagnetic decay
and selective transfer reactions.

�ii� At the excitation energy around 3 MeV, one ob-
serves a concentration of orbital magnetic dipole
strength, built up from various 2qp configurations,
into a weakly collective 0�� mode, called the scis-
sors mode. Here a number of proton and neutron
2qp configurations �lj�→ �lj� contribute in a more
or less coherent way, depending on external quan-
tities such as nuclear deformation and the posi-
tion of the Fermi level �number of protons Z and
the number of neutrons N� in the Nilsson de-
formed single-particle spectrum.

�iii� In the excitation energy interval of 6–8 MeV, one
starts observing the spin Gamow-Teller giant

resonance �with a bound part, depending on the
precise location in energy, and a resonance part�
resulting from particle-hole �p-h� excitations
across the major closed shells. In particular, shell-
model transitions of the type �j= l+ 1

2 �→ �j= l− 1
2 �

play a major role. In the rare-earth region, de-
pending on the precise proton and neutron num-
ber, the 1g9/2→1g7/2, 1h11/2→1h9/2, and 1i11/2
→1i11/2 transitions contribute most to the 1+ spin
mode. Moreover, the residual �� ·��	� ·	� repulsive
part of the effective nucleon-nucleon interaction
concentrates the spin strength from the lower-
lying 2qp states around 2–4 MeV into this state.
The final result is a large concentration of spin M1
strength.

�iv� Still higher in excitation energy, near 20 MeV, the
K�=1+ component of the isovector giant quadru-
pole resonance should eventually show up. This
particular mode, built in a microscopic way from a
coherent superposition of 2�� configurations, has
originally been studied in macroscopic collective
models and this state would correspond to the
“real scissors mode” in strongly deformed, rota-
tional nuclei. Unfortunately, due to the very high
excitation energy and due to the fact that its tran-
sition strength vanishes at the photon point be-
cause the M1 operator contains no radial depen-
dence, such a state in the continuum is difficult to
observe unambiguously.

The excitation mechanisms described in �i�–�iv� should
thus lead to the typical fingerprint pattern of the mag-
netic dipole response in deformed rare-earth nuclei, in
the actinides, and partly also in the medium-heavy de-
formed nuclei in the fp-shell region as shown schemati-
cally in Fig. 1. In the following discussion, we concen-
trate on these various patterns and give a thorough but
succinct discussion of the experimental facts validating
this former, more “idealized” picture, emerging from the
basic underlying shell structure in deformed nuclei in
combination with the essential multipole components of
the residual two-body interactions: the pairing compo-
nent, the repulsive �� ·��	� ·	� component, and the long-
range quadrupole force.

In the spherical, lighter fp-shell nuclei but also in the
region of lighter rare-earth nuclei �nuclei with neutron
number N near to 82, and proton number Z between 50
to 66�, a somewhat different and slightly simpler struc-
ture emerges �see Fig. 2�:

�i� On the lower excitation energy side, one observes
a rather stable �in energy� predominantly orbital
1+ excitation which is produced through coupling
the lowest proton 2�

+ excitation with the lowest
neutron 2


+ excitation. Depending on the precise
shell structure, one can also find some higher-
lying 4�

+
� 4


+, 6�
+

� 6

+ fragments, in general, with

rapidly decreasing M1 excitation strength. This
feature is particularly evident in the light nuclei

��
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FIG. 1. Schematic representation of the magnetic dipole
strength distribution in even-even heavy deformed nuclei and
its model character. From Richter, 1990.
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with protons and neutrons filling the spherical
1f7/2 shell-model orbital.

�ii� Removed from this lower state by several MeV
and near to 10 MeV of excitation energy for
the nuclei in the mass A=50 region, one finds the
spin Gamow-Teller giant resonance. Here the re-
pulsive spin-isospin force component is respon-
sible for a coherent state made of 1p-1h excita-
tions, mainly. For nuclei around mass A=50, this
will predominantly be a 1f7/2→1f5/2 excitation,
whereas in the somewhat heavier mass A=90 re-
gion, one will encounter 1g9/2→1g7/2 transitions.

The particular magnetic dipole response shown sche-
matically in Fig. 2 forms the salient features amply dis-
cussed in the present article when highlighting J�=1+

states and the associated M1 strength for light and
medium-heavy even-even nuclei. Besides the extensive
exploration of the magnetic dipole response in deformed
nuclei and also in the region of light to medium-heavy
nuclei, uncovering the presence of a scissors mode �Sec.
I.B�, during the last decades, much progress has been
made lately in the study of proton-neutron 2+ excited
states in vibrational and transitional nuclei, correspond-
ing with mixed-symmetry wave functions in the proton
and neutron building blocks. Here small amplitude
quadrupole oscillations �phonons� dominate the low-
energy nuclear structure properties. Coupling the proton
2�

+ and neutron 2

+ phonons can result in multiphonon

states where the phonons move in phase �characterized
by symmetric wave functions with shorthand notation S�
but also with out-of-phase motion �with mixed-
symmetry �MS� wave functions�. This is shown in Fig. 3.
Recent review articles �Kneissl et al., 2006; Pietralla, von
Brentano, and Lisetsky, 2008� discussed the regions in
which such 2+ states have been observed as well as pre-
sented the experimental techniques needed to character-
ize unambiguously those isovector excitations �photon
scattering, electron scattering, Coulomb excitation, � de-
cay, inelastic neutron scattering, and light-ion fusion re-
actions as the major probes�.

In view of the isoscalar and isovector components of
the magnetic dipole operator �see also Secs. III.B.1 and
VI for its precise structure and a more detailed discus-
sion�, the experimental identification of these isovector
excitations, shown schematically in Fig. 3, is character-
ized by �i� strong M1 transitions �matrix element of
�1�N� between the MS and S states �thick full lines�, �ii�
weakly collective E2 transitions �a few percent of the
large isoscalar B�E2;21

+→01
+� transition probability, typi-

cal for vibrational and transitional nuclei� between the
MS and S states �thin dashed lines�, and �iii� strongly
collective E2 transitions in between states with MS char-
acter, with strength typical for the collective E2 transi-
tions between symmetric states �thick dashed lines�.

These particular fingerprints properties result from
a systematic exploration of isovector excitations in vi-
brational and transitional regions during the last decade
�Pietralla, von Brentano, and Lisetsky, 2008� and clear-
cut evidence for the observation of the lowest 2ms

+ �both
of a one-phonon and two-phonon nature� as well as
two-phonon 3ms

+ and 1ms
+ isovector excitations exists now

for the mass regions with Z�40, N�50 and Z�50,
50�N�82, rare-earth nuclei in the region 54�Z�82,
72�N�82 �i.e., Xe, Ba, Ce, Nd, and Sm nuclei�, as well

FIG. 2. Schematic representation of the magnetic dipole
strength distribution in even-even light nuclei and its interpre-
tation in terms of the shell model. The subscripts � and 

denotes the proton and neutron contributions, respectively.
From Richter, 1990.

IS IV

0 ...,4
+ +
,

2
+

0 ,2 ,4
+ + +

M1

E22+

0
+

FIG. 3. Schematic representation of the M1 and associated E2
transitions of states with symmetric �lhs� and mixed-symmetric
�rhs� wave functions in vibrational nuclei near closed shells.
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as nuclei in the A�60 mass region, and heavy nuclei
near 208Pb.

C. Scissors modes in other many-body systems

In the Introduction we have pointed out that the mag-
netic dipole response in strongly deformed atomic nuclei
is characterized by a clearly separated orbital scissors
mode �small-angle vibration of neutrons versus protons�
at the lower energies and at the higher-energy side by a
resonancelike structure comprised of proton and neu-
tron spin-flip excitations. In nuclei with vibrational and
transitional character, near to closed shells, mixed-
symmetry excitations result from the isovector coupling
of the lowest one-phonon proton and neutron 21

+ excita-
tions. The essential ingredient in both cases is the pres-
ence of two distinguishable components, proton and
neutron fluids, in the atomic nucleus.

It turns out that in other many-body systems very
similar rotational oscillatory scissors motion has been
discussed and, in certain cases, also been observed ex-
perimentally. The presence of a two-component or two-
fluid quantum system is essential in this respect. In Sec.
VII we address the main results obtained in the study of
�i� metallic clusters �Lipparini and Stringari, 1989a; Nes-
terenko et al., 1999�, �ii� elliptically deformed quantum
dots �Serra et al., 1999; Alhassid, 2000�, and �iii� the os-
cillatory behavior induced by the rotation of the atomic
cloud in a deformed trap and the corresponding super-
fluid effects caused by Bose-Einstein condensation
�Guéry-Odelin and Stringari, 1999; Maragò et al., 2000,
2001�, as well as their connections with the study of mag-
netic dipole excitations in atomic nuclei. The underlying
common mechanism as well as some typical illustrations
will also be presented.

II. EARLY THEORETICAL SUGGESTIONS FOR THE
MAGNETIC SCISSORS MODE AND ITS EXPERIMENTAL
DISCOVERY

A. Overview: A piece of history

Low-energy collective modes in atomic nuclei, for
both spherical and deformed nuclei, displaying nuclear
density oscillations or more permanently deformed
structures of the density have been well described within
the Bohr-Mottelson model �Bohr and Mottelson, 1975�.
In those excitations both the proton density ��r�� and
the neutron density 
�r�� exhibit variations that act in
phase, i.e., isoscalar collective modes are obtained. It
was soon realized that, besides these symmetric collec-
tive modes, nonsymmetric density variations might also
show up. The latter excitations are expected to occur at
much higher excitation energies, though, because of the
symmetry energy term, coupling the proton and neutron
density oscillations preferentially in a symmetric way.
The giant electric-dipole mode—which in even-even nu-
clei excites negative parity states—is the best-known and
well-documented example for such isovector excitations,

the mode in which the center-of-mass for the charge and
mass distributions do not coincide but perform an out-
of-phase motion around the equilibrium value.

Nonsymmetric collective modes were considered
quite early by Greiner �1965, 1966� and Faessler �1966�,
independently, at the end of the 1960s for spherical nu-
clei and this on the basis of isovector quadrupole collec-
tive excitations. Somewhat later but again, about at the
same time and independently, Hilton �1976�, Suzuki and
Rowe �1977�, and Lo Iudice and Palumbo �1978, 1979�
suggested an extension of the Bohr-Mottelson descrip-
tion of rotational motion. The latter treated the nucleus
in terms of a geometrical two-rotor model �TRM�, in
which a collective magnetic dipole �M1� mode could be
formed by a rotational oscillation of the proton versus
the neutron deformed density distribution �or fluids giv-
ing a rotational flow that is strongly excited as an orbital
magnetic excitation�. The name “scissors mode” was
suggested much later after the experimental discovery of
this mode originating in the peculiar nature of its geo-
metrical picture �Richter, 1983; Bohle, Richter, et al.,
1984�.

At that time, these nonsymmetric excitations, in par-
ticular the scissors mode in deformed systems, were a
mere theoretical suggestion built on the strong funda-
ment in describing nuclear collective motion �for both
spherical and deformed nuclei�. A determining factor in
order to estimate the excitation energy and the strength
was of course knowledge of the symmetry energy con-
nected to the nonsymmetric motion. In the early calcu-
lations, the full symmetry energy term, known from a
liquid-drop model treatment of global nuclear structure
properties, was considered giving rise to energies and
B�M1� values much too large. It was only when the ex-
citation energy of the scissors mode �having both a mass
parameter and a restoring force strength� was adjusted
to the observed experimental low-lying B�E2� values in-
cluding also pairing correlation in the protons and neu-
trons participating in the scissors motion that excitation
energies of about 3–5 MeV �Suzuki and Rowe, 1977; De
Franceschi et al., 1983, 1984; Lipparini and Stringari,
1983� but still fairly high B�M1� values of 9–18 �N

2 were
obtained �De Franceschi et al., 1983, 1984; Lipparini and
Stringari, 1983�.

Strong support for the above idea came from a differ-
ent way of treating collective modes of motion in the
nuclear many-body problem. Working in an algebraic
framework and using the concepts of symmetry, Arima
and Iachello �1975a, 1975b� formulated a model in which
the interacting fermion problem is replaced by an inter-
acting boson problem, only considering s �L=0� and d
�L=2� boson degrees of freedom �interacting boson
model �IBM��. It was known from standard shell-model
two-body interactions that the 0+ coupled pair state and,
to a much lesser extent, the 2+ coupled pair dominate
the binding of two-nucleon systems. By studying the
symmetries of such an interacting boson model with the
U�6� symmetry �the symmetry describing an interacting
system of s and d bosons� and at the same time incorpo-
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rating the proton and neutron degrees of freedom �IBM-
2�, a class of states with nonsymmetric spatial and also
nonsymmetric charge structure �mixed-symmetry states�
showed up naturally. By fitting the parameters in the
IBM-2 model to known fermionic properties, a B�M1�
value for a scissorslike mode of about 2–3 �N

2 has been
predicted �Iachello, 1981�.

B. Experimental discovery

Both the predictions of Lo Iudice and Palumbo �1978,
1979� within the TRM and of Iachello �1981� and Diep-
erink �1983� within the IBM-2 formed the essential basis
for high-resolution inelastic electron scattering experi-
ments at the Darmstadt Electron Linear Accelerator
�DALINAC� to search for this mode. And indeed after
much experimental efforts it has first been detected in
the strongly deformed nucleus 156Gd with essentially all
the properties that were predicted �Richter, 1983�.

Figure 4 from the work of Bohle, Richter, et al. �1984�
displays two of the original spectra measured at a back-
ward angle of �=165° where magnetic excitations are
expected to show up strongly. The spectrum, taken at
the low bombarding energy E0=30 MeV �corresponding
to a low momentum transfer�, reveals a rich fine struc-
ture of excited low-spin states with known experimental
levels up to about 2.5 MeV of excitation energy. The
only strong transition is to a state at Ex=3.075 MeV.
This state is almost absent in the E0=50 MeV spectrum
�i.e., at a higher momentum transfer�, in which, however,
a well-known collective J�=3− state at Ex=1.852 MeV is
strongest. The state at Ex=3.075 MeV dominating all
measured spectra at low momentum transfer has a form-
factor behavior consistent with a J�=1+ assignment and
a transition strength B�M1�↑ of about 1.5�N

2 .
Immediately after its discovery in 156Gd it has been

shown that the newly found M1 mode of course is not

unique to this particular nucleus but is a general prop-
erty of heavy deformed nuclei. This has been proven
by inelastic electron scattering measurements at the
DALINAC on the deformed nuclei 154Sm, 158Gd, 164Dy,
168Er, and 174Yb �Bohle, Küchler, et al., 1984�, where also
first evidence for the fragmentation of the scissors mode
strength has been presented in the nucleus in which it
has been discovered, 156Gd. Furthermore, the new mode
has also immediately been verified in nuclear resonance
fluorescence experiments with real photons �Berg, 1984;
Berg, Ackermann, et al., 1984; Berg et al., 1984�.

Since then, the experimental evidence for such scis-
sorslike excitations in strongly deformed nuclei but
also in vibrational, transitional, and gamma-soft nuclei
has become compellingly large. Moreover, the scissors
mode has been explored besides the purely electromag-
netic probes �electrons and photons� also with hadronic
probes �proton scattering, and low-energy neutron-
induced compound reactions� all over the nuclear mass
table. A rather complete summary of the experimental
data from electron and photon scattering can be found
in Enders et al. �2005�. Several articles covering this
work from both the experimental and the theoretical
point of view have appeared �Richter, 1985, 1990, 1991,
1993, 1994, 1995; Berg and Kneissl, 1987; Heyde, 1989;
Kneissl et al., 1996; Lo Iudice, 1997, 2000; Zawischa,
1998�. In the next section �Sec. III.A.1�, we discuss this
experimental evidence for magnetic excitation of states
of mixed-symmetric character �spatially and in the
proton-neutron charge coordinates� and present all of
the salient features in depth although not exhaustively.
We put emphasis mainly on the overall and systematic
features rather than on each individual case, separately.
Thereby, we are able to focus on the essential properties
of this mode of motion.

FIG. 4. Backward angle
156Gd�e ,e�� spectra indicating
the almost uniform excitation
of many low-spin states in the
measured energy region except
for a strongly excited J�=1+

state seen in the 30 MeV
spectrum at Ex=3.075 MeV
and a known J�=3− state at
Ex=1.825 MeV in the 50 MeV
spectrum. The excitation of the
state at Ex=3.075 MeV is due
to the scissors mode �Bohle,
Richter, et al., 1984�.
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III. MAGNETIC DIPOLE EXCITATIONS IN HEAVY
NUCLEI

A. Low-energy scissors mode

1. Experimental evidence

a. Overview

The early systematics of the scissors mode in
heavy deformed nuclei known mainly from high-
resolution electron and photoexcitation experiments at
the DALINAC and the S-DALINAC in Darmstadt and
the DYNAMITRON accelerator in Stuttgart was de-
scribed by Richter �1995� and Kneissl et al. �1996�. The
majority of nuclei studied are even-even ones but the
scissors mode has also been detected in a number of
heavy odd-mass nuclei �Sec. IV�. Very often the transi-
tion strength of the scissors mode is fragmented. In
order to detect weak transitions, highly efficient gamma-
ray detector systems with proper background suppres-
sion have to be used in photon scattering �also called
nuclear resonance fluorescence �NRF�� experiments as
discussed by Kneissl et al. �1996�. In present-day nuclear
resonance fluorescence experiments reduced transition
strengths of B�M1�↑ �0.01�N

2 for magnetic dipole tran-
sitions at an energy of about 3 MeV can be detected.
The scissors mode has been studied in vibrational and
rotational nuclei and in chains of isotopic nuclei. Ad-
vances in gamma spectroscopy, e.g., by the use of
EUROBALL detector modules �von Neumann-Cosel,
1997�, have extended our knowledge of the scissors
mode to �-soft nuclei, 194,196Pt �von Brentano et al., 1996;
Linnemann et al., 2003�, and the chain of Xe isotopes
�von Garrel et al., 2006�. For example, in the rare-earth
region a total of 42 isotopes ranging from Nd to Pt have
been studied providing detailed experimental informa-
tion on the systematics of the scissors mode. Further-
more, it has been verified in the actinide mass region
�Heil et al., 1988; Margraf et al., 1990�.

Comparison of different probes for the case of 156Gd
is shown in Fig. 5 �Richter, 1990�. A combined analysis
of the �e ,e�� and �� ,��� experiments �Bohle et al., 1986�
revealed five more weakly excited J�=1+ states in the
vicinity of the strongest one, bringing the total M1
strength up to about 2.4�N

2 . The strongest state might be
viewed acting as a doorway for the others. A high-
resolution inelastic proton-scattering spectrum �Wessel-
borg et al., 1986� is also shown in Fig. 5 and the absence
of any of the states seen in the �e ,e�� and �� ,��� reac-
tions is already a strong hint that the scissors mode is
excited through the orbital part of the magnetic dipole
operator.

The salient features of the scissors mode in heavy de-
formed nuclei unraveled in high-resolution electron,
photon, and proton-scattering experiments �Richter,
1995� are the following:

�i� Its mean excitation energy scales roughly as
66�A−1/3 MeV with � being the deformation
parameter.1 This puts the center of gravity of the
orbital M1 strength distribution in rare-earth nu-
clei at Ex�3 MeV.

�ii� The total transition strength from the ground
state into the J�=1+ states is �B�M1�↑ �3�N

2 and
the maximum strength that is carried in the tran-
sition to an individual state is roughly 1.5�N

2 .

�iii� In the nuclear transition current the orbital part
dominates over the spin part and one has typically
Bl�M1� /B��M1��10.

1In this article, the quadrupole deformation parameter used
is mainly denoted by �. Slightly different parametrizations
��2 ,�2� exist, which can all be related with each other �Löbner
et al., 1970; Hasse and Myers, 1988�. To lowest order �2��
� 3

4
	5/��2.

FIG. 5. Comparison of different scattering probes for 156Gd.
High-resolution nuclear fluorescence �upper part� and inelastic
electron scattering �middle part� spectra showing a strongly
excited J�=1+ state �hatched� and several weaker 1+ states, all
marked by arrows. These states are conspicuously absent in
the inelastic proton-scattering �lower part� spectrum �Richter,
1990�.

2371Heyde, von Neumann-Cosel, and Richter: Magnetic dipole excitations in nuclei: …

Rev. Mod. Phys., Vol. 82, No. 3, July–September 2010



�iv� The summed experimental transition strength up
to Ex�4 MeV varies quadratically with the quad-
rupole ground state deformation parameter.

Before these observations are compared with various
nuclear model predictions in Sec. III.A.2, we concen-
trate on a few more experimental characteristics of the
mode.

b. Form factor

One of the first strong hints that indeed J�=1+ states
were excited from the J�=0+ ground state came from
the measurements of form factors in inelastic electron
scattering at low momentum transfers �Bohle, Küchler,
et al., 1984; Bohle, Richter, et al., 1984�. In all cases a
shape characteristic for a magnetic dipole form factor
has been found. As an example, one such form factor
�Bohle, Kilgus, et al., 1987� is shown in Fig. 6 for the
transition into a scissors mode state in 164Dy at Ex
=3.11 MeV. It is compared to a form factor calculated
�Scholtz et al., 1989� in the distorted wave Born approxi-
mation �DWBA� with a QRPA transition density to a
state at Ex=3.128 MeV, i.e., very close to the experi-
mental state. The full curve is the total form factor �or-
bital plus spin� and the dashed one its orbital part alone.
It is evident that the experimental form factor is well
described at and above its first maximum by the model,
considering the sizable uncertainty due to the smallness
of the form-factor values at momentum transfers larger
than 1 fm−1. Similarly to the QRPA model, the interact-
ing boson model-2 �IBM-2�—to be discussed later on—

describes the data as well and points in particular also to
the orbital nature of the transition.

c. Photon polarization and parity assignments

Although the excitation of the scissors mode states by
inelastic electron scattering and the measurement of the
respective form factors has already provided a clear in-
dication of the magnetic nature of the transition, it can
be established beyond any doubt using polarized pho-
tons either in the entrance or in the exit channel in NRF
experiments �see Kneissl et al. �1996� for a detailed dis-
cussion�. In the former method of ��� ,���, which has been
successfully used at the photon scattering facilities at
Gent �Govaert et al., 1994� and Rossendorf �Schwengner
et al., 2007�, the linearly polarized bremsstrahlung causes
a positive azimuthal asymmetry for pure electric and a
negative one for pure magnetic dipole excitations of the
detected photon in the exit channel. In the latter method
of �� ,����, which has been employed recently at Stuttgart
�Margraf et al., 1995�, the parity assignments for the ex-
cited states in the nucleus result from the measurement
of the linear polarization of the scattered photons with a
Compton polarimeter. In a pioneering experiment �Kas-
ten et al., 1989� in the field of the scissors mode this
technique has been used to measure directly �and model
independently� the parity of three strongly excited states
near 3 MeV in the deformed nucleus 150Nd. They were
shown to be of positive parity, i.e., J�=1+ states excited
through the scissors mode �Fig. 7�.

For transitions into states at excitation energies above
4 MeV, however, the application of this technique will
be difficult simply because the already small analyzing

FIG. 6. Comparison of the experimental form factor for the
transition into one of the J�=1+ scissors mode states in 164Dy
with form factors predicted in QRPA �Scholtz et al., 1989�. The
dashed curve denotes the orbital part only �Richter, 1990�.

FIG. 7. Experimental asymmetries �= �N�−N
� / �N�+N
� of
Compton-scattered photons determined by a five-detector po-
larimeter. The experimental data are compared with the calcu-
lated polarization sensitivity of the setup given by the solid
lines. Three strongly excited M1 transitions into states around
3 MeV excitation energy in the deformed nucleus 150Nd have
been identified. For comparison an E1 transition into a state at
3.4 MeV in the spherical nucleus 142Nd is also shown. From
Kasten et al., 1989.
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power of the Compton polarimeter at low energies be-
comes even smaller at higher energies. Here the use of
polarized photons in the entrance channel of the reac-
tion and the subsequent measurement of the intensity
distribution of the scattered photon is preferable for the
parity determination of nuclear dipole transitions. The
analyzing power of this process is 100% and indepen-
dent of the energy of the scattered photon. In a concep-
tually simple experiment, Pietralla et al. �2001� measured
unambiguously the parity of a number of dipole excita-
tions in 138Ba in the range Ex=5.5–6.5 MeV using pho-
tons from the Duke/OK-4 Storage Ring Free Electron
Laser backscattered from relativistic electrons, now
called the High Intensity Gamma-Ray Source �HI�S�
facility �Weller et al., 2009�. The produced photon beam
has been intense �107 photons/s� and nearly monochro-
matic ��E� /E��3.8%�. This very efficient technique in-
deed will have a future in the study of elementary dipole
transitions below threshold for particle emission.

d. Branching ratios of spin-one states in deformed nuclei and the
K quantum number

In NRF measurements, spin-one levels of both pari-
ties are selectively exited which decay either to the 0+

ground state or to low-lying excited states. Figure 8
shows two parts of a NRF spectrum taken at a brems-

strahlung end point energy slightly above 4.6 MeV for
the strongly deformed ��=0.27� nucleus 154Sm. A num-
ber of transitions clustering around 3 MeV, i.e., the lo-
cation of the states excited by the scissors mode, are
observed �Ziegler et al., 1993�. Multipolarities of indi-
vidual transitions were ascertained by simultaneous two-
point angular distribution measurements at 90° and 127°
with respect to the direction of the incoming brems-
strahlung beam. Those data sufficed to clearly distin-
guish between quadrupole and dipole transitions. In the
case of 154Sm it has been possible to determine the na-
ture of the dipole transitions �M1 or E1� by supplement-
ing the present �� ,��� data with �e ,e�� form-factor mea-
surements �Ziegler et al., 1993�. However, there is still
another property attached to the J=1 levels excited
from the J�=0+ ground state, i.e., its K quantum num-
ber. The pairs of the lines connected by brackets in the
spectrum of Fig. 8 correspond to the decay of the J=1
levels into the ground state or the first excited J�=2+

state of 154Sm. From the observed branching ratio one
obtains information on the K quantum number of the
J=1 state as shown in Fig. 8.

The branching ratios for the deexcitation of levels in
deformed nuclei to various states of a rotational band
are governed by the so-called Alaga rules �Alaga et al.,
1955� which yield for the ratio of transition strengths
B�1→2� /B�1→0�=0.5 for �K=1 and 2 for �K=0 tran-
sitions, respectively.

Examination of the decay of about 200 J=1 levels in a
number of rare-earth nuclei �Zilges et al., 1990� indeed
showed maxima at experimental branching ratios of 0.5
�as expected for states with K=1� and of 2.0 �as expected
for states with K=0�. Figure 9 shows an update including
additional data which appeared since the original publi-
cation �Enders et al., 2005�. The number of K=1 states is
at least twice the number of K=0 �note that there are no
positive parity states with K=0�. Thus, the majority of
the branching ratios are in good agreement with the
Alaga rules. Furthermore, recent parity measurements
of strong dipole transitions in 172,174Yb confirm the
E1/M1 assignments based on the K quantum numbers
�Savran et al., 2005�.

FIG. 8. Two parts of a NRF spectrum of 154Sm. The ratio of
the areas of peaks linked by brackets, corresponding to the
ground state and the 2+ transitions, allows the assignment of
the K quantum number to the excited spin-one state. In the
upper part two examples for J� ;K=1−;0, and in the lower part
two examples for J� ;K=1+,− ;1 assignments are shown �Rich-
ter, 1991�.
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FIG. 9. Frequency distribution of experimental branching ra-
tios for about 320 transitions observed in NRF in deformed
rare-earth and actinide nuclei. One notes two distinct maxima
at 0.5 for K=1 and at 2.0 for K=0 spin-one levels. Adapted
from Zilges et al., 1990.
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But what is the reason for a number of cases with
branching ratios in between the limits set by the Alaga
rules? Some of them are known to result from rather
strong E1 transitions of J�=1− states with a strength
hitherto still unexplained �Zilges et al., 1996�. The devia-
tions, however, may also be taken as evidence for pos-
sible K mixing. In fact K mixing matrix elements have
been calculated from the measured energies, branching
ratios, and absolute transition strengths and are about
50 keV �von Brentano et al., 1994�.

e. Evidence for quasiparticle excitations at low energy

The high-resolution �e ,e�� data, obtained by Bohle,
Küchler, et al. �1984�, as well as NRF results �Wesselborg
et al., 1988� on 164Dy have shown, in addition to the
strongly excited J�=1+ states around Ex�3 MeV, a sec-
ond group of J�=1+ states about 0.5 MeV lower in exci-
tation energy which carry a much weaker strength. Simi-
lar results have been obtained in the 168Er�e ,e��
spectrum proving that the occurrence of a lower-lying
weakly excited group of J�=1+ states seems to be a gen-
eral phenomenon in heavy deformed nuclei. On the ba-
sis of �e ,e�� form-factor measurements, albeit difficult
for the lower group of states because of the smallness of
the experimental cross sections and the corresponding
large uncertainty, it has been speculated that the two
groups of states might be of very different structure
�Richter, 1990�.

That this is indeed the case has been proven indepen-
dently in a study of the proton pick-up reaction
165Ho�� , t�164Dy �Freeman et al., 1989�. As can be seen
from the top part of Fig. 10 the J�=3+ to 8+ members of
a K�=1+ rotational band have been identified in this
single-particle transfer reaction. The reconstruction of
the �not populated� 1+ bandhead energy resulted in Ex
=2.543�13� MeV which can be safely identified with the
J�=1+ state energy of Ex=2.539 MeV observed in �e ,e��
scattering �Bohle, Kilgus, et al., 1987� and the NRF ex-
periments �Wesselborg et al., 1988�. This 1+ state thus
corresponds most likely to a two-quasiproton configura-
tion �bottom part of Fig. 10� of the form 7 / 2−�523�
� 5 / 2−�523�, and such a configuration is of course not
consistent with a collective magnetic dipole transition
from the ground state into it, as pointed out earlier by
Hamamoto and Åberg �1984� and later also by Otsuka
�1990�. Furthermore, no rotational states built upon the
J�=1+ scissors mode states around Ex�3.1 MeV are
seen in the spectrum supporting the collective interpre-
tation of the latter.

f. The scissors mode and deformation

Deformation so far has been mentioned alongside the
discussion of the experimental data on the scissors
mode. The most important observation made since the
discovery of the mode itself has been that the measured
orbital magnetic dipole strength increases linearly with
the square of the deformation parameter �. This is
shown in Fig. 11, where the summed M1 strength is plot-

ted versus �2, for a chain of even-even Sm isotopes �Zie-
gler et al., 1990�. This striking result has later been
verified in corresponding experiments on a series of
even-even Nd isotopes �Margraf et al., 1993�. Those ob-
servations have been anticipated in a systematic theoret-

FIG. 10. Members of a K�=1+ rotational band observed in the
single-particle transfer reaction 165Ho�3H, 4He�164Dy. The �not
populated� 1+ bandhead lies at an excitation energy of
2.543�13� MeV which can be identified with the 1+ state energy
of 2.539 MeV, observed in nuclear resonance fluorescence and
inelastic electron scattering experiments �Richter, 1990�.
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FIG. 11. The summed orbital M1 strengths observed in even-
even Sm isotopes and plotted versus the square of the defor-
mation parameter � �Ziegler et al., 1990�. See also Fig. 24 for
the systematics of rare-earth nuclei including the present data.
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ical study �De Coster and Heyde, 1989� of M1 strength
in nuclei of the rare-earth region within the Nilsson
model. Immediately after the experimental results
shown in Fig. 11, it was further realized that the orbital
M1 strength in a given nucleus is also proportional to
the strength of the E2 transition to the lowest J�=2+

state �Rangacharyulu et al., 1991�. The empirical relation

�
f

Bf�M1�↑ � B�E2;01
+ → 21

+� � �2, �1�

thus represents �as expressed by Lo Iudice �2000�� the
most spectacular manifestation of the scissors nature of
the low-lying magnetic dipole transitions and their col-
lectivity. Since the neutron-proton interaction is mainly
responsible for the nuclear quadrupole deformation, the
experimental observation of the strong M1/E2 correla-
tion is of much interest for a test of nuclear models of
deformation as shown below.

g. Summary

In Secs. III.A.1.a, III.A.1.b, III.A.1.c, III.A.1.d,
III.A.1.e, and III.A.1.f, experimental evidence has been
presented for the existence of strong magnetic dipole
transitions of orbital character into states at an excita-
tion energy of Ex�3 MeV in even-even heavy deformed
nuclei. The total orbital strength into these states
amounts in strongly deformed nuclei to �B�M1��3�N

2 .
It hardly moves at all with excitation energy, i.e., it re-
mains low lying, is scissorslike and weakly collective, but
strong on the single-particle scale. Its observability is a
strong effect as a consequence of the fact that the
nuclear particle-hole force has swept the competing
stronger spin-flip strength up to higher excitation energy
�see Fig. 1 and Sec. III.B�. Furthermore, the existence of
weakly excited two-quasiparticle J�=1+ excitations at
about twice the pairing gap, i.e., below the states associ-
ated with the scissors mode, has been shown. Thus, re-
turning to the schematic picture of Fig. 1, the salient
experimental features of magnetic dipole excitations be-
low about 4 MeV of excitation energy in heavy de-
formed nuclei have been demonstrated in this section.

The weakly collective scissors mode excitation has be-
come an ideal test of models, especially microscopic
models, of nuclear vibrations. Most models are usually
calibrated to reproduce properties of strongly collective
excitations �e.g., of J�=2+ or 3− states, giant resonances,
etc.�. Weakly-collective phenomena, however, force the
models to make genuine predictions and the fact that
the transitions in question are strong on the single-
particle scale makes it impossible to dismiss failures as a
mere detail, especially in light of the overwhelming ex-
perimental evidence for them in many nuclei �Richter,
1995; Kneissl et al., 1996�. This should be kept in mind in
assessing the wide variety of nuclear models which the
scissors mode has inspired after its discovery about two
and a half decades ago.

2. Theoretical description: From collective to microscopic
models

a. Geometric collective models

As a special case of the generalized isovector Bohr-
Mottelson model, a TRM considering both proton ���
and neutron �
� degrees of freedom was worked out by
Lo Iudice and Palumbo �1978, 1979�. Describing these
two systems as axially symmetric rigid rotors that are
able to perform rotational oscillations around a common
axis orthogonal to their symmetry axes �Fig. 12, left-
hand side �lhs��, the following Hamiltonian was defined:

H =
�Î� + Î
�2

2Jintr
+

�Î� − Î
�2

2Jintr
+

1
2

C�2, �2�

in which the restoring force constant C is related to the
symmetry energy constant in the semiempirical mass for-
mula. Using known properties of deformed nuclei: the
moment of inertia Jintr of the ground-state band, the
symmetry energy, and the B�E2;01

+→21
+� transition

strength, one can determine both the excitation energy
Esc=�	C /Jintr and the B�M1� transition strength,

B�M1;0+ → 1+� =
3

16�
Jintr

�2 Esc�gp − gn�2�N
2 . �3�

Here gp and gn denote the orbital gyromagnetic factors
associated with the rotation of the deformed proton and
neutron systems, respectively. It turned out that the
early calculations of both the excitation energy and the
M1 strength gave too large values compared with the
first experimental observations of 1+ scissors excitations
in deformed nuclei �the B�M1� value exceeds experi-
mental values for the strongest 1+ states by a factor of
almost 7�. However, it cannot be emphasized enough
how important the seminal work of Lo Iudice and

p np n

FIG. 12. Pictorial representation of the scissors mode. We view
the mode in a proton-neutron two-fluid model �left part� and in
a presentation where an inert core exists and only a small part
of the proton and neutron fluids take part in the scissors mo-
tion �right part�. The proton-neutron rotational oscillation is
the basis of the two-rotor model which is the rotational analog
of the semiclassical model of the giant electric dipole reso-
nance.
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Palumbo �1978, 1979� has been in the experimental
search which finally led to the discovery of the scissors
mode in 156Gd �Bohle, Richter, et al., 1984�. Moreover,
the confrontation of the conceptually simple TRM with
the wealth of experimental data having accumulated
rapidly in the late 1980s and early 1990s of the last cen-
tury has led to a steady improvement of the model �Lo
Iudice, 1997, 2000� which still allows first insight in the
dynamics which causes the scissors mode to show up at
all in deformed nuclei.

A geometrical model for strongly deformed nuclei �as-
suming axial symmetry� with separate proton and neu-
tron deformations has been formulated by Rohozinski
and Greiner �1985�. There the scissors mode was ex-
plained as a relative vibration of the proton and neutron
collective surface. Moreover, rotational bands are ob-
tained on top of K�=0+, 1+, and 2+ vibrational excita-
tions.

Through the experimental observations, we now know
the restoring force constant C in Eq. �2� much better
which determines largely the excitation energy Esc of the
mode. Furthermore, introducing pairing correlations
among the participating protons and neutrons and thus
effectively reducing the number of protons and neutrons
participating in the scissors motion �Fig. 12, right-hand
side �rhs�� resulted in reduced M1 strengths, but still too
large by factors 4–5 as compared to experiment. In this
purely collective approach, all M1 strength is concen-
trated in a single state whereas the data are much more
fragmented.

As a consequence of the too high excitation energy
and the too large M1 strength for the 1+ scissors excita-
tion, Faessler and Nojarov �1986� concentrated on a
more detailed study of the restoring force for this isovec-
tor mode �Faessler et al., 1986�. Considering the fact that
the symmetry energy coefficient exhibits a strong 2/3

density dependence, the isovector symmetry energy be-
comes �Nojarov et al., 1986; Faessler and Nojarov, 1987�

Esym
IV = D� �p − n�2/�p + n�1/3dr� , �4�

with D=91.6 MeV fm2. This symmetry energy has been
calculated microscopically, using proton and neutron
densities p, n derived from a deformed Woods-Saxon
potential, also including pairing. Identifying the isovec-
tor symmetry energy with the scissors potential energy
1
2C�2, a much improved restoring force constant C could
be derived. This reduces the scissors excitation energy
by a factor of about 2 but still a too large B�M1� value is
obtained. Isovector motion of protons and neutrons has
also been discussed �Faessler, 1966; Faessler and No-
jarov, 1987� for systems performing harmonic small-
amplitude vibrations around a spherical equilibrium
shape, using an extended Bohr-Mottelson model. The
implications will be studied in Sec. VI.

The collective two-fluid model, both for rotational
and for vibrational excitations, has been studied and re-
fined over the years in much detail. The results have

been summarized by Lo Iudice �1997, 2000� and partly
by Zawischa �1998�. We refer the interested reader to
these for further details.

b. Algebraic collective models

When discussing the nuclear structure aspects of an
interacting fermion system, it is striking that for the low-
energy collective modes to develop, the nucleon-nucleon
correlations acting in the L=0 �paired state� and also in
the L=2 configuration are particularly important. It has
been shown that the L=0 correlations among identical
nucleons lead to a generalized seniority classification
while the addition of the L=2 pair component gives rise
to the possibility to develop strong collective excitations
when both proton and neutron valence particles are
present. Considering those two-nucleon pair configura-
tions, it is possible to formulate a model in which these
pairs are now treated as genuine bosons: the L=0 pair is
mapped onto the s boson and the L=2 pair onto the d
boson �Arima and Iachello, 1975a, 1975b�. This system
of interacting bosons �IBM concept� has been studied in
detail, in particular emphasizing the group structure
�which is the group U�6�� and its reductions, by Iachello
and Arima �1987�.

In examining the model more closely to the shell
model with protons and neutrons interacting, the charge
degree of freedom was introduced in order to distin-
guish between s and d proton and neutron bosons, dou-
bling the space of independent degrees of freedom. The
fact that for bosons the total wave function needs to be
symmetric under the interchange of any two bosons, it is
still possible to construct wave functions that have
mixed-symmetry character in both the spatial and the
charge part separately. Using the group-theoretical for-
mulation, the product irreducible representations �ir-
reps� of U��6� � U
�6� contains, besides the one-row,
also two-row irrep or, even more explicitly,

�N�� � �N
� = �N� + N
,0� � �N� + N
 − 1,1� � ¯ .

�5�

The physics of these mixed-symmetry U�6� irreps be-
comes clear when studying the energy eigenvalues for a
total IBM-2 Hamiltonian which also contains, besides
the pure proton and neutron parts, the coupling term
between the proton-neutron combined parts. This
IBM-2 Hamiltonian can be written as

H = �d�
n̂d�

+ �d

n̂d


+ ��Q̂� + Q̂
� · �Q̂� + Q̂
� + �M̂�
.

�6�

We can show the essential results easily in the case of
only two bosons �Fig. 13� where one s� and d� and one
s
 and d
 boson are considered.

The symmetric coupling �2,0� corresponds to the 0, 1,
and 2 quadrupole phonon structure of the well-known
symmetric quadrupole vibrator; the �1,1� irrep gives rise
to the nonsymmetric 1+, 2+, and 3+ levels. Here too the
energy separation between the 0+ and 2ms

+ states is re-
lated to the collective symmetry energy in the interact-
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ing boson model, an energy which is governed by the

strength � of the Majorana term M̂�
 in the IBM-2
Hamiltonian of Eq. �6�; see Scholten et al. �1985�. This is
very much the same physics underlying the splitting of
the various isospin T components resulting from com-
bining protons and neutrons in fermion space, as dis-
cussed in the Introduction �Fig. 3�. An equivalent two-
valued variable �called F spin� has thus been introduced
�Arima et al., 1977; Iachello, 1984� to characterize the
charge �or spatial� part of the boson wave function. If
the proton and neutron bosons are characterized with
the help of their F-spin quantum number F=1/2, Fz
=+1/2 and F=1/2, Fz=−1/2 respectively, a system of
N� proton and N
 neutron bosons can be classified ac-
cording to its total F spin. The totally symmetric orbital
�sd boson space� states have maximal F spin, i.e., Fmax

= 1
2 �N�+N
� while the mixed-symmetric states are la-

beled by decreasing F-spin values down to Fmin= 1
2 �N�

−N
�. The class of mixed-symmetry states with F=Fmax
−1 are the lowest lying and can be excited from the
ground state of an even-even nucleus by a �F=1 transi-
tion.

The usual M1 operator in fermion space,

TF�M1� =	 3

4��
i

�gl�i�l̂i + gs�i�ŝi��N, �7�

has its image in boson space

TB�M1� =	 3

4�
�g�L̂� + g
L̂
��N, �8�

with gl and gs being the fermion orbital and spin g fac-
tors and g� and g
 being the respective proton and neu-

tron boson g factors. The quantities L̂� and L̂
 are the
corresponding orbital angular momentum operators of
the proton and neutron boson system.

In IBM-2 studies, concentrating on deformed nuclei,
one is using the SU�3� reduction of the U�6� group struc-

ture, and for those nuclei it was shown that the lowest-
lying states of the family of mixed-symmetry character
were characterized by the Fmax−1, J�=1+ quantum num-
bers �Iachello, 1981, 1984�. These findings corroborate
results obtained from a totally different starting point,
viz., the TRM. The IBM-2 J�=1+ states are also called
scissors states although there is no immediate reference
in the algebraic formulation to specific coordinate forms
and thus also not of shapes and shape dynamics. Using a
coherent-state formalism, Dieperink �1983� showed the
correspondence explicitly and, moreover, found indeed
that only the valence nucleons contribute to the strength
of the scissors mode thus leading in a natural way to a
much lower B�M1� strength compared to the early TRM
calculations.

In studying the M1 excitation properties within the
IBM-2, because of the specific difference in magnetiza-
tion properties for proton and neutron bosons, it was
clear that M1 transitions could appear naturally now, in
contrast to the former IBM-1. Using mapping from fer-
mion magnetic properties onto boson ones, it was pos-
sible to also determine the analogous boson g� and g

factors �Sambataro and Dieperink, 1981; Sambataro et
al., 1984; Allaart et al., 1988�. This item has been a topic
of much discussion because the mapping calculations all
seem to result with values g��1�N and g��0�N but
empirical fits in various mass regions have indicated
quite important deviations �Wolf et al., 1987; Mizusaki et
al., 1991; Kuyucak and Stuchbery, 1995�. For the pure
SU�3� limit, though, an analytically closed form could be
derived for the transition strength

B�M1� =
3

4�

8N�N


2N − 1
�g� − g
�2�N

2 , �9�

an expression when applied to 156Gd and using the
above boson factors g�, g
 gives the result of B�M1�
�2.8 �N

2 , quite close to the experimentally observed
value. Thus the realistic estimate of Iachello �1981�, in
the IBM-2, for the transition strength has been equally
important in the search for the scissors mode �Bohle,
Richter, et al., 1984� as the estimate of Lo Iudice and
Palumbo �1978, 1979� in the TRM for the excitation en-
ergy.

The subject of mixed-symmetry states appearing as a
new class of states in the IBM-2 has been investigated
afterwards in much detail. There has been an investiga-
tion of the various limiting cases that appear if dynami-
cal symmetries hold �Van Isacker et al., 1986� but also
rather extensive numerical studies have been carried out
�Scholten et al., 1985�. As an illustration, we compare in
Fig. 14 the experimental M1 transition strengths in Sm
isotopes with the results of the pure SU�3� limit and of
the numerical IBM-2 calculations �Scholten et al., 1985�.

c. Microscopic descriptions

On the opposite side from the collective model con-
cepts, the nuclear shell-model allows for possibilities to
describe nuclear coherent motion from first principles
using a Hartree-Fock basis and a self-consistent proce-

FIG. 13. Schematic representation of a coupled proton-
neutron system with boson numbers N�=1, N
=1. The sym-
metric states �in the box� and the antisymmetric states are
drawn at the right-hand side of the figure. Adapted from
Heyde, 1989.
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dure in order to determine both global and local nuclear
structure properties. The study of scissors motion start-
ing from a microscopic shell-model basis can be sepa-
rated into two parts. For light and medium-heavy nuclei,
regular shell-model calculations have been performed
and also M1 excitation properties been studied. Once
entering the region of heavy and deformed nuclei, the
model space to be considered becomes prohibitively
large and approximations to the shell model have been
used, mainly the QRPA.

Magnetic dipole excitations have, by now, been mea-
sured over a large part of the nuclear mass table �Sec.
III.A.1�. In contrast to most of the purely collective
models, the low-lying M1 strength is spread out over an
energy interval in the region of 2.5–4 MeV, depending
on the specific nucleus and thus depending on its prox-
imity to the closed shells.

Large-scale shell-model studies would be an ideal way
to probe the presence of concentration and fragmenta-
tion of M1 strength but this has not been possible for
heavy nuclei until recently. Within the context of a
Monte Carlo shell-model approach, worked out by
Otsuka and collaborators �Honma et al., 1995, 1996;
Mizusaki et al., 1996, 1999; Otsuka et al., 1998; Otsuka,
Mizusaki, and Honma, 1999; Utsuno et al., 1999; Shimizu
et al., 2001�, large-scale shell-model studies have been
performed in order to study the transition from spheri-
cal to deformed shapes with an application to the Ba
isotopes. Starting from a given Hamiltonian and for a
given single-particle energy spectrum that remains
fixed through the Ba isotopes, such microscopic calcula-
tions beyond mean-field approaches have given first evi-
dence that shape changes indeed do occur due to a
change of the number of interacting protons and neu-
trons. The M1 strength of the scissors mode serves as
a good measure of the deformation of the ground state
as discussed in Sec. III.A.1, in particular in the context

of Fig. 11 and Eq. �1�. Shimizu et al. �2001� calculated the
M1 sum rule for the ground state with the orbital g
factors having the free nucleon values. The spin contri-
butions have been omitted for simplicity at present.
In Fig. 15, the B�M1� sum rule values are plotted versus
the corresponding B�E2;01

+→21
+� values. One notices a

nearly perfect linearity between these two quantities
first observed experimentally �Ziegler et al., 1990�. As
mentioned previously, starting from symmetries within
the IBM and in the nuclear shell model, such a relation
also exists. The Monte Carlo shell-model calculation,
however, presents a first microscopic underpinning of
the connection between M1 and E2 properties in
nuclei and shows a validity that does not rely any longer
on particular symmetries of the nuclear many-body sys-
tem, i.e., it holds for the whole isotopic series in the Ba
nuclei.

Besides the nuclear shell-model explicitly, the QRPA
or the quasiparticle Tamm-Dancoff approximation
�QDTA�, where no ground-state correlations are consid-
ered, present an alternative to study the properties and
the internal orbital and spin character of the magnetic
dipole transitions involving the specific 1+ states under
study. The QRPA and QDTA models in itself will not be
discussed here, and we refer the interested reader to the
literature for a concise discussion �Rowe, 1970; Ring and
Schuck, 1980; Eisenberg and Greiner, 1987; Soloviev,
1992�. In the early calculations when applying the QRPA
to study the scissors mode excitations, most often rather
schematic forces have been used: quadrupole proton-
neutron forces and spin-spin and spin-isospin separable
interactions, including pairing �both monopole and
quadrupole multipoles� in order to study the role of
these components �Hamamoto, 1971; Bes and Broglia,
1984; Iwasaki and Hara, 1984; Kurasawa and Suzuki,
1984�. Recently �Balbutsev and Schuck, 2004, 2007� a
separable quadrupole-quadrupole residual interaction
has been used within a time-dependent Hartree-Fock
�TDHF� framework and its Wigner transform. Here the
aim was to derive a set of equations describing different
multipole moments, in particular the scissors and isovec-
tor giant quadrupole resonance and their coupling.
More recently, the effect of pairing has been incorpo-

FIG. 14. Orbital M1 strength versus mass number of the Sm
isotopes. The results from full IBM-2 calculations �dash-dotted
line� of Scholten et al. �1985� are shown, together with results
in the SU�3� limit using a Z=50 subshell closure �solid line�
and a Z=64 subshell closure �dashed line� �Richter, 1991�.

FIG. 15. Summed orbital B�M1� strength from the ground
state calculated in a Monte Carlo shell-model approach versus
the corresponding B�E2;01

+→21
+� values in the Ba isotopes

with mass numbers A=138–150. From Shimizu et al., 2001.
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rated into the formalism with application to the nuclear
scissors mode �Balbutsev et al., 2008, 2009; Balbutsev,
2010�. The results obtained are closely related to the
earlier work of Lipparini and Stringari �1989b�.

The pairing force is particularly important in generat-
ing the necessary correlations that relate the overall
summed orbital M1 strength to the nuclear quadrupole
deformation characterizing a given nucleus. Moreover,
the spin-isospin parts are determining factors in placing
the spin-flip part of the M1 response �Fig. 1� at the ex-
citation energy between 5 and 10 MeV. These studies
were instrumental in finding out the first and foremost
important physics elements that are at the origin of co-
herent orbital magnetic excitations with a scissors char-
acter. It has been pointed out �Heyde and De Coster,
1993; Ikeda and Shimano, 1993� that a correct treatment
of the full Coriolis term, and considering the coupling of
2qp excitations to a rotational core, induces specific cor-
relations that concentrate the independent M1 compo-
nents into a single peak.

Realistic application of the QRPA to the study of the
scissors mode exciting J�=1+ states has met with some
initial problems because the overall rotational motion of
an intrinsically deformed nucleus carries the same angu-
lar momentum as the scissors mode states themselves.
Similar to the case of the electric dipole mode leading to
the J�=1− states, one has to separate the spurious rota-
tional motion of the whole nucleus from the relevant
intrinsic 1+ excitations. This was the origin of the fact
that various QRPA calculations gave rise to rather large
differences in the 1+ excitation energy and, more impor-
tantly, in the M1 response. Removing this spurious rota-
tional motion, however, using various techniques such as
�i� constructing a basis orthogonal to the spurious rota-
tional motion, �ii� adding a specific symmetry restoration
term to the Hamiltonian, and �iii� using the Pyatov pre-
scription �Baznat and Pyatov, 1975� of replacing the
quadrupole field in the Hamiltonian in such a way that
rotational invariance is imposed, the results on J�=1+

energies and on M1 strengths converge with similar con-
clusions.

The various QRPA studies are now very close with
respect to a number of key issues characterizing the ob-
servation of a magnetic scissors type of excitation �No-
jarov and Faessler, 1990; Zawischa, Macfarlane, and
Speth, 1990; Zawischa and Speth, 1990; Soloviev, Sush-
kov, and Shirikov, 1997a, 1997b; Soloviev et al., 1997;
Beuschel et al., 2000�. Examples are shown in Figs.
16–18. Work using variants of QRPA starting from a
deformed Woods-Saxon potential, HFB calculations,
and schematic forces has also been carried out �Hama-
moto and Ronström, 1987; Sugawara-Tanabe and
Arima, 1989; Hilton, 1995; Lo Iudice, 1996a, 1996b; Hil-
ton et al., 1998�.

�i� A concentration of low-lying M1 strength is found
close to the energy of 3 MeV, whose overlap with
the scissors mode is as large as �40% if summed
up to 4 MeV �see Fig. 16, upper part�. The low-
energy M1 strength is of dominant orbital charac-

ter with orbit/spin ratios of the order of 10 or
larger �cf. Fig. 16, bottom part as an example�.
Furthermore, all calculations predict the existence
of a higher-lying scissors part. This issue, however,
is not closed since many come to largely different
conclusions concerning its mean energy and, more
importantly, its fragmentation.

FIG. 16. Calculated QRPA magnetic dipole strength distribu-
tion compared to the experimental data point of the strongest
transition observed in 156Gd �middle part� and orbit-to-spin
ratios of the M1 transition matrix elements �bottom part�. The
magnitude of these ratios is shown and negative ratios are in-
dicated by a dot on the top of the bar. The average overlap of
the calculated 1+ states with the scissors mode state �denoted
R� is displayed in the upper part. From Nojarov and Faessler,
1990.

FIG. 17. The complete magnetic dipole response of 156Gd up
to 10 MeV excitation energy, calculated using the QRPA ap-
proach. The individual levels have been folded with Gaussian
functions. From Zawischa, Macfarlane, and Speth, 1990 and
Zawischa and Speth, 1990.

2379Heyde, von Neumann-Cosel, and Richter: Magnetic dipole excitations in nuclei: …

Rev. Mod. Phys., Vol. 82, No. 3, July–September 2010



�ii� There is common agreement on the importance of
the pairing correlations in establishing a strong re-
lationship between the summed M1 strength and
nuclear deformation. These at first quite different
observables have a deeper connection which is
borne out from the microscopic QRPA studies
too as discussed below in more detail.

�iii� An important spin-flip M1 mode is observed in
the strongly deformed rare-earth nuclei in the en-
ergy region 5–10 MeV. There is, also here, an
open debate on the specific way in which the spin-
flip strength is distributed in energy. A two-bump
picture shows up but in some calculations the
bumps are mainly isoscalar and isovector in char-
acter, whereas other calculations comply with a
rather definite separation between proton and
neutron spin-flip modes. The solution here should
come from selective reaction studies �see Sec.
III.B for a discussion on this issue�.

We cannot provide a complete discussion of the mul-
titude of QRPA and QTDA studies in both the rare-

earth and actinide �and even light� nuclei. See Lo Iudice
�1997� for a detailed but still succinct presentation of the
major results. We note, however, that recently relativis-
tic QRPA calculations within a self-consistent relativistic
mean-field �RMF� framework have been carried out for
axially deformed nuclei �Peña Arteaga and Ring, 2008�.
Spin, orbital, and total M1 strengths were derived for
160Gd and 160Ne, with clear evidence for a scissors mode
in 160Gd �Peña Arteaga and Ring, 2007�.

d. Relationship between collective and microscopic models

Starting from collective models, the proton and neu-
tron degrees of freedom form the essential ingredients
to generate mixed-symmetry charge �and spatial� wave
function of the J�=1+ states. This was the case in the
two-rotor geometrical model and also within the proton-
neutron interacting boson model �IBM-2�.

Because the building blocks constituting the bosons
are nucleon pairs, the IBM-2 approach is rooted closely
in the nuclear shell model �see, e.g., the studies in the
light 1f7/2 nuclei by McCullen et al. �1964�, Zamick
�1986a, 1986b�, and Liu and Zamick �1987a, 1987b,
1987c��. In the QRPA, on the other hand, the building
blocks are highly correlated particle-hole �or 2qp� exci-
tations that make up for a microscopic description to the
collective phonon modes in the nucleus. It has been
pointed out explicitly �Lo Iudice, 1997� that in schematic
models the connection between the microscopic QRPA
and the collective two-fluid approaches �TRM� can be
shown in detail. An approximate relation for the scissors
total summed M1 strength is then

B�M1�↑ �
3

16�
Jintr

�2 Esc�N
2 , �10�

if all the 1+ states could be approximated by a single
centroid energy Esc as in Eq. �3�.

In all of the more detailed microscopic calculations,
be it large-scale shell-model studies or QRPA calcula-
tions, the immediate connection is not so obvious any-
more. Still, the observed spreading �or fragmentation� of
the population of 1+ states is rather well reproduced.
The QRPA calculations start mainly from different
single-particle structures �Nilsson or Woods-Saxon de-
formed mean-field, self-consistent energy spectra, etc.�
and also have been using differing two-body interactions
and as a result a large sensitivity of the 1+ energy and
strength distribution in realistic cases is expected.

There exists a model which tries to give microscopic
support of collective magnetic dipole excitations starting
from the SU�3� for light nuclei and pseudo-SU�3� for the
heavy deformed nuclei. This model goes back to the
seminal work of Elliott �1958, 1963� indicating that col-
lective model aspects are inherent in the proton-neutron
shell-model structure for light sd shell nuclei �Elliott,
1985, 1990�. Calculations within this approximation have
been carried out in sd- and fp-shell nuclei for the orbital
M1 properties and compared to the experimental values
�Chaves and Poves, 1986; Poves et al., 1989; Retamosa et
al., 1990�. The extension to heavier nuclei was hampered

FIG. 18. M1 transition strengths in 160Gd. �a� Experimental
data, �b� pure pseudo-SU�3� scheme, and �c� complete pseudo-
SU�3� calculation. The twist mode results when considering
triaxial proton and neutron distributions which allow addi-
tional rotation around their principal axes. It can be combined
with the scissors mode into a scissors plus twist mode. From
Beuschel et al., 2000.
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for some time as SU�3� is largely broken because of the
strong spin-orbit splitting. However, a suggestion has
been made in order to reorganize the level structure
conform with a pseudo-SU�3� scheme, explicitly incor-
porating proton and neutron degrees of freedom. In
former studies of this type, one had to rely on simple
Hamiltonians; this has been overcome and one can now
handle general one- and two-body Hamiltonians. So this
model, deeply rooted in the shell model, serves as a
bridge to connect the underlying microscopic structure
to the collective building blocks. Results for Sm, Gd,
and Dy nuclei have been obtained �Beuschel et al., 1998,
2000; Rompf et al., 1998� and even a reasonable frag-
mentation of M1 strength is achieved as shown in Fig. 18
for 160Gd.

3. Fragmentation of orbital dipole strength and sum rules

a. Fragmentation of the orbital strength

An important element in discussing relationships,
similarities but also complementary aspects of the col-
lective model approaches and shell-model or QRPA
studies, is the amount of fragmentation resulting from
these various models. As discussed in Sec. III.A.2, in
collective models the M1 scissors strength is concen-
trated in a single or very few strongly excited 1+ states
�Scholten et al., 1985� while in the microscopic models
strength needs to become concentrated in fewer strong
states compared with the unperturbed spectrum of 1+

states.
What are the major issues here? We present the above

elements of fragmenting collective M1 strength into a
background of microscopic configurations �2qp, 4qp,
etc.� much in the same way as fragmentation is generally
described in nuclear reaction theory �Fig. 19, upper

part�. There might remain some structure in the frag-
mented strength due to interactions with states that are
intermediate in complexity between the strongly collec-
tive states on one side and the regular shell-model con-
figurations on the other side. Such states could be due to
hexadecapole configurations �in certain regions of the
nuclear mass table this degree of freedom in the upper
part of the rare-earth mass region, particularly, can be
important�, triaxial shape configurations, etc. that first
split the M1 scissors strength in the manner of a door-
way state before it gets fragmented into the microscopic
background of 1+ states �Scholten et al., 1985�. These
strength function phenomena have been discussed in
Appendix D2 of Bohr and Mottelson �1969�. If the av-
erage coupling strength V� between a single collective
state and the background configurations is larger than
the distance between the discrete levels D=1/, with 
denoting the level density, then a Breit-Wigner damping
of collective strength over the microscopic background
results, given by a width of �=2�V�2. The strength
function, i.e., the probability of finding a simple, collec-
tive state in a unit energy interval of the spectrum, can
subsequently be derived. If, on the other hand, the level
density becomes too low for the above conditions to be
valid, one has to resort to diagonalizing the coupled sys-
tem of collective and shell-model configurations. A
model where this has been worked out explicitly for the
scissors 1+ state, as obtained in the IBM-2, coupling to
the underlying background of 1+ 2qp and 4qp configura-
tions was described by Heyde et al. �1996�. The back-
ground structure, as calculated using a Nilsson model for
the Gd nuclei, is shown in the lower part of Fig. 19. The
damping and fragmentation of the scissors mode into
this background has been derived using a constant cou-
pling matrix element between the states in the two
model spaces �Fig. 20, upper part�. For the fragmenta-
tion down to the 1% level, a coupling matrix element of
about 50 keV is obtained between the scissors mode and
the 2qp states. The experimental M1 strength plotted in
the lower part of Fig. 20 shows a similar fragmentation.

Starting from the opposite side, i.e., a shell-model or
QRPA approach, the diagonalization within the unper-
turbed basis of 2qp, 4qp, etc. states will eventually result
in the building up of collective correlations that are
reminiscent of a scissors magnetic dipole mode. Ex-
amples have been shown in Figs. 16–18 in the heavy
deformed rare-earth nuclei. The discussion in Sec.
III.A.2 has concentrated on this issue with references to
a number of calculations of that type. One can make use
of similar arguments as those used at the time by Brown
and Bolsterli �1959� in the discussion of how individual
1p-1h 1− configurations, interacting through a zero-range
force, could build a single collective isovector electric
dipole mode. In contrast to the study of this giant elec-
tric dipole resonant state in which the collective state is
mainly built from 1�� excitations, the orbital magnetic
dipole strength is mainly of 0�� nature. Richter and
Knüpfer �1980� showed that the separable characteristics
of the two-body matrix elements, which is essential for

FIG. 19. Doorway picture of the scissors mode. Upper part:
Schematic picture of the scissors mode embedded into the
background of dense qp states �no coupling�. Lower part:
Level density for 2qp and 4qp 1+ states for Gd isotopes calcu-
lated using the Nilsson model. Adapted from Heyde, 1989.
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the schematic Brown-Bolsterli model, no longer holds
for the magnetic multipole excitations, i.e., the particle-
hole matrix elements do not scale with the M1 transition
amplitudes. As a result, rather small energy shifts show
up compared to the unperturbed energy spectrum.
Therefore, there remains a concentration of mainly or-
bital M1 strength of 0�� origin in the energy interval
2.5–4 MeV. An example of the fragmentation process,
starting from the pseudo-SU�3� description, but treating
a more general Hamiltonian, has been discussed by
Draayer and co-workers and a particularly interesting
case is 196Pt �Beuschel et al., 2000� which is a prime ex-
ample of a �-soft nucleus �von Brentano et al., 1996�.

b. Level spacing distribution of scissors mode states

As previously mentioned, the complexity of the
nuclear many-body problem is clearly manifest in the
fragmentation of the experimental transition strength,
which is distributed over several levels of the same spin
and parity. This complexity has led Wigner, more than
40 years ago, to the introduction of random-matrix
theory �RMT�, reviewed by Guhr, Müller-Groeling, and
Weidenmüller �1998� and Weidenmüller and Mitchell
�2009�. This statistical approach models spectral fluctua-
tion properties: if the levels are correlated, one expects a
linear repulsion between them and Wigner-Dyson statis-
tics for the nearest-neighbor spacing distribution
�NNSD�. However, if correlations are absent, there is no
level repulsion and the NNSD is of Poisson type, i.e., an
exponential distribution. The validity of this ansatz has
been confirmed in various data analyses and summa-
rized in the two review articles cited.

In heavy nuclei, the picture emerges that high-lying
single-particle states containing many complex configu-
rations show Wigner-Dyson statistics �Haq et al., 1982�,
whereas low-lying collective states of simple structure
lack correlations and yield a Poisson distribution �Shri-
ner, Mitchell, and von Egidy, 1991; Garrett et al., 1997�.
This in turn allows one to use RMT to conclude from
spectral statistics if excitations are mainly of single-
particle or of collective character. This idea has also
been applied to states which belong to the scissors mode
�Enders et al., 2000�. As discussed in Sec. III.A.1, an
unprecedented data set is now available covering doubly
even nuclei in the N=82–126 major shell. By combining
the data sets from 13 heavy deformed nuclei, a data
ensemble has been constructed with a total number
of 152 states in the excitation energy window of about
2.5�Ex�4.0 MeV �Fig. 1�.

After unfolding the experimental spectra, i.e., remov-
ing the energy dependence of the average level spacing,
the NNSD, the cumulative NNSD, the number variance
�2, and the spectral rigidity �3 �Bohigas, 1991; Guhr,
Müller-Groeling, and Weidenmüller, 1998� were ex-
tracted from the data ensemble. The results are shown
in Fig. 21. All evaluated statistical measures agree very
well with the Poissonian behavior of uncorrelated levels.

FIG. 20. Damping and fragmentation of the scissors mode.
Upper part: Scissors M1 strength damped into the background
of 2qp and 4qp states shown in lower part of Fig. 19, averaged
over intervals of 100 keV. The black part indicates transitions
with a relative strength larger than 1%. Adapted from Heyde,
1989. Lower part: Experimentally measured orbital M1
strength distribution �Ziegler et al., 1993�. FIG. 21. Level spacing distribution of scissors mode states in

heavy deformed nuclei �152 states from 13 nuclei�. �a� Nearest-
neighbor spacing distribution, �b� cumulative nearest-neighbor
distribution, �c� number variance �2�L�, and �d� spectral rigid-
ity �3�L�, where L denotes the length of the sequence. The
histograms and open circles display the data. Poissonian be-
havior and expectations from the Gaussian orthogonal en-
semble �Wigner� are shown as short and long-dashed lines, re-
spectively �Enders et al., 2000�.
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Although the individual level sequences are rather short
�of order of 10 only�, the functions �2 and �3 clearly
show the lack of long-range correlations. Enders et al.
�2000� also showed that the influence of missing levels
due to the experimental conditions is negligible. Conse-
quently, the remarkable conclusion from the statistics of
the level spacings distribution may be drawn that the
scissors-mode states all have the same structure and are
excited collectively by the same mode.

c. Sum rules and relation to other observables

Even though the magnetic dipole strength appears
rather fragmented in the energy region 2.5–4.0 MeV,
experimental methods have been set up in order to dis-
tinguish those 1+ states that carry mainly orbital M1
strength �see also Kneissl et al. �1996��. The summed ex-
perimental strengths show remarkable correlations to
collective observables of the low-energy spectrum.

First, as mentioned, the summed M1 strength corre-
lates with the square of the equilibrium quadrupole de-
formation value for series of isotopes such as the Nd and
Sm nuclei �Fig. 11, from Ziegler et al. �1990��. Second,
the summed M1 strength also correlates linearly with
the B�E2;01

+→21
+� value for most nuclei in this mass re-

gion �Richter, 1995�. Furthermore, both the summed M1
strength and the particular B�E2� value scale in the
same way and saturate �Rangacharyulu et al., 1991�
when plotted, not as a function of proton �neutron�
number �Fig. 22� but using the variable P=NpNn / �Np
+Nn� with Np /2, Nn /2, the number of proton and neu-
tron pairs, respectively, counted from the nearest closed
shells �the number of bosons in the IBM-2 model�, in-
troduced by Casten et al. �1987�. Third, it has been
shown that the summed M1 strength even scales linearly
with the isotopic shift for those nuclei �Nd, Sm, and Dy�
where both sets of data are available �Heyde et al.,
1993�. These three important observations all point to-
ward close interconnections between the M1, E2, and
the E0 electromagnetic properties for the rare-earth re-
gion.

Before discussing in detail what theoretical models
predict for the behavior of the summed M1 strength, the
deformation dependence of the B�E2;01

+→21
+� strength

and the radius are rather obvious from a collective geo-
metrical approach �Bohr and Mottelson, 1975�. The con-
nection of the latter quantities to the summed magnetic
dipole strength, however, was much less expected to ap-
pear, in particular the quadratic dependence on defor-
mation and the same saturation behavior when passing
through the rare-earth region.

Starting from the generalized Bohr-Mottelson model,
Lo Iudice and Richter �1993� worked out a sum rule that
holds very generally and is essentially model indepen-
dent and parameter free. The resulting expression

B�M1�↑ � 0.0042EscA
5/3�2�gp − gn�2�N

2 �11�

directly contains the dependence on deformation as well
as on the gyromagnetic factors associated with the col-
lective motion of the deformed proton and neutron sys-

tems. In the region covering transitional and strongly
deformed rare-earth nuclei, the ratio of the experimen-
tal over the theoretical summed M1 strength is close to 1
over a large mass span, with a drop off toward the
heavier masses. A specific example in which the sum
rule is compared to a number of other models and the
data for the Sm nuclei is shown in Fig. 23 �Garrido et al.,
1991; Hamamoto and Magnusson, 1991; Heyde and De
Coster, 1991; Hilton et al., 1993; Lo Iudice and Richter,
1993�. While all of them roughly reproduce the qua-
dratic dependence, the theoretical model results exhibit
rather different slopes, in some cases with serious devia-
tions from the data for the more deformed A=152,154
nuclei. Lo Iudice �1997� also showed that the TRM and
IBM-2 sum rules are very closely related and all can be
brought back to the basic sum rule structure as deriving
from the QRPA study of collective magnetic dipole ex-
citations.

After the above experimental observations were well
established, various theoretical ideas in deriving closed
expressions for this summed M1 strength, aiming at es-
tablishing at the same time a relation to the E2 and the
E0 nuclear properties, have been explored. Here we dis-
cuss implications of both non-energy-weighted and
energy-weighted sum rules, using collective model as
well as shell-model approaches.

Ginocchio �1991� proposed a non-energy-weighted
M1 sum rule within the IBM for an N-boson system

FIG. 22. E2 and summed M1 strength in the even-even rare-
earth nuclei. Upper part: E2 transition strengths of the 21

+

states indicated in the figure versus P. Lower part: The same
for the summed M1 strength in the energy range Ex
=2.5–4 MeV. The solid lines correspond to fits explained in
Rangacharyulu et al. �1991�.
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� B�M1� =
9

4�
�g� − g
�2 P

N − 1
0+�n̂d�0+� , �12�

an expression which connects the summed M1 strength
with the expectation value of the number of d bosons in
the nuclear ground state. This latter quantity is also a
measure of deformation because the average number of
d bosons in the ground state 0+�n̂d�0+� /N can be ex-
pressed by a deformation parameter �IBM. A relation
was derived �von Neumann-Cosel et al., 1995� between
this specific IBM quantity and the corresponding geo-
metrical definition of deformation such as the Bohr-
Mottelson parameter �2 as

�IBM =
3�

2	�
Z

Zval
�2. �13�

Here Zval describes the number of protons in the va-
lence shell and � �not to be confused with Majorana
strength parameter in Eq. �6�� is a measure of how much
of the E2 sum rule is exhausted by the transition to the
21

+ state. The original sum rule of Ginocchio has thereby
been extended and applied to the full range of nuclei
spanning the Nd to W region providing an excellent de-
scription of the quadratic quadrupole deformation de-
pendence. This is shown in Fig. 24.

Making use of the IBM-2, other sum rules have also
been derived �energy-weighted M1 sum rule and even
sum rules for other multipoles�. The energy-weighted
sum rule indicates a direct relation between summed M1
strength and the B�E2;01

+→21
+� value when the assump-

tion is made that most E2 strength remains in the first

excited 2+ state �which is a rather good approximation
for transitional and definitely so for deformed nuclei�
and gives rise to the following relations:

01
+�†�Ĥ,T̂�M1��,T̂�M1�‡�01

+�

=
2
	3

� B�M1��Ex�1+� − �N� �14�

or

� B�M1��Ex�1+� − �N� = c � B�E2� �15�

when using F-spin symmetry in evaluating the quadru-
pole expectation value. Here � denotes the strength of
the Majorana term in Eq. �6�. This expression indeed
relates the energy-weighted M1 sum rule with the non-
energy-weighted E2 sum rule. The quantity c is intro-
duced to match dimensions of the left- and right-hand
sides of this equation. This relation was discussed and
illustrated more explicitly in Heyde et al. �1992� in which
it is shown under what approximations the above rela-
tion reduces to the non-energy-weighted M1 sum rule.
There it is also shown that the effect of the Majorana
term can be incorporated to a large extent.

It is important though to study analogous sum rules
for the magnetic dipole strength but now starting from a
shell-model formulation of the problem. Using protons
and neutrons explicitly, Zamick and Zheng �1992� de-
rived an energy-weighted magnetic sum rule which was
refined subsequently �Moya de Guerra and Zamick,
1993� with the more general result

FIG. 23. Orbital M1 strength versus the square of deformation
in the Sm isotopes. The experimental points �black circles with
error bars� are compared to theoretical predictions from
Hamamoto and Magnusson �1991� �circles�, Garrido et al.
�1991� �crosses�, Hilton et al. �1993� �diamonds�, Heyde and De
Coster �1991� �squares�, Lo Iudice and Richter �1993� �tri-
angles�, and Sarriguren et al. �1994� �stars� �Richter, 1995�.
Note that the experimental points do overlap with the triangles
in a number of cases, making the distinction difficult.

FIG. 24. Experimental M1 scissors mode strengths as a func-
tion of the deformation parameter �2

2. �a� The straight line is a
least-squares fit assuming intercept zero. �b� Prediction of an
IBM-2 sum rule for the scissors mode strength of all even-even
stable nuclei from Nd to W �von Neumann-Cosel et al., 1995�.
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� B�M1�Ex�1+� =
9�

16�
�B�E2�IS − B�E2�IV� , �16�

which is indeed close to the form of the IBM-2 result in
Eq. �15�, except for the additional isovector �IV� contri-
bution. Here � denotes the strength of the quadrupole-
quadrupole interaction and the B�E2� values are in units
of e2 fm4. For many of the transitional and definitely for
the strongly deformed nuclei, the second term is small
and thus one recovers the IBM-2 result exactly. For a
number of cases though Zamick and Zheng �1992� ex-
plicitly showed the need for the isovector term in order
to have the correct physics in connecting M1 and E2
electromagnetic properties. It is important to note that,
similar to the collective IBM-2 formulation and the
TRM treatment, the residual two-body forces may con-
tain besides the strong quadrupole forces, pairing inter-
actions among identical nucleons. The sum rule is not
affected by the addition of the latter term.

Moreover, one can relate the non-energy-weighted
M1 sum rule to the nuclear monopole properties �Heyde
et al., 1993�. Starting from the IBM expression for the
monopole operator

T�E0� = �0n̂s + �0n̂d = �0N̂ + �0�n̂d, �17�

with n̂s, n̂d, N̂ representing the s, d, and total boson num-
ber operators, respectively, and �0���0−�0, one derives
the mean-square radius as

r2� = �0N + �0�n̂d� . �18�

Thus, the M1 sum rule of Eq. �12� can be recast in the
form

� B�M1� =
9

4�
�g� − g
�2 1

�0�

P

N − 1
�r2� − �0N� . �19�

This latter expression �see Fig. 25 for a comparison
with data� shows the connection between summed M1
strength and nuclear radial properties �the latter taken
from the compilation of Otten �1989��. Similar connec-
tions have also been suggested by Iachello �1981� and by
Otsuka �1992� separately because of the connection be-
tween the nuclear radial variation �r2� for a liquid drop
and the variation in quadrupole deformation ��2

2�.

d. Deformation dependence and saturation

Starting from a microscopic approach �deformed
mean field with residual pairing and quadrupole interac-
tions and even using Hartree-Fock calculations using
Skyrme effective forces �Garrido et al., 1991; Smith et al.,
1995; Lo Iudice, 1998��, the same dependence between
the summed M1 strength and nuclear deformation re-
sults, as discussed. Remarkably, it is the presence of pair-
ing forces that modifies the dependence of the summed
M1 strength from linear to quadratic. This was shown to
be the case by Hamamoto and Magnusson �1991� in a
Nilsson model study and also by Lo Iudice and Richter
�1993� using an RPA study of magnetic scissors motion.

The fact that the summed M1 strength shows this
striking collective behavior immediately leads to satura-
tion because the equilibrium quadrupole deformation
�in passing through the rare-earth region from A=140
toward the mass A=180 region� stabilizes at a value of
��0.25 in the region A�160 of strongly deformed
even-even nuclei. The precise origin of this saturation
stems from the specific single-particle structure in the
deformed mean field and from the balancing effects of
shell and pairing corrections to the liquid-drop energy
�Heyde et al., 1992�. The saturation arises after a steep
increase in deformation, which is reflected in a steep rise
in both the summed M1 strength and B�E2;01

+→21
+�

value when entering the region of deformation, starting
from closed-shell nuclei �see Fig. 22�. This strong corre-
lation between the summed M1 strength and the
ground-state equilibrium quadrupole deformation was
discussed by De Coster and Heyde �1989�.

The dominant role of pairing to obtain the correct
deformation dependence for the magnetic summed
strength is not straightforward but comes in indirectly. In
a quadrupole deformed potential, the strength of M1
transitions between Nilsson orbitals, characterized by �
�the projection of j on the symmetry axis� and shown by
the arrows in the top part of Fig. 26, can be expressed as

B�M1� =
3

4�
�u1v2 − u2v1�2��1�gll̂+ + gsŝ+��2��2. �20�

The occupation probabilities vi
2 �with ui

2=1−vi
2� of the

Nilsson orbitals �i are schematically drawn in the bot-
tom part of Fig. 26 for both small and large quadrupole
deformations. The doubly hatched lines indicate the po-
sition of the Fermi level �top part� and for an occupation
number 0.5 �lower part�. For small deformation the pair-
ing factor �u1v2−u2v1�2 quenches the M1 strength and

FIG. 25. Relation between the experimental summed M1
strength of all 1+ states below 4 MeV for 142,146–150Nd
�squares�, 144,148–154Sm �triangles�, 160–162Dy �circles�, and the
variation in the quantity �� P

N−1 r2�� related to the isotope
shift �Heyde et al., 1993�.
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vanishes for zero deformation. With increasing deforma-
tion, the Nilsson single-particle orbitals �i originating
from a single j shell-model orbital are more spread out
and the corresponding occupation probabilities become
different resulting in a rather large pairing factor. Then,
as deformation does not change much for increasing
mass numbers, the pairing factors remain roughly con-
stant, causing saturation before they start to decrease
again toward the end of the shell. Using the approxima-
tion that the energy of the Nilsson orbitals vary linearly
with deformation for not too large values of deforma-
tion, it can even be shown that the pairing factor �u1v2
−u2v1�2 becomes proportional to �2. This result comes
close to what Hamamoto and Magnusson �1991� also ob-
tained.

A particularly interesting example of this deformation
dependence has resulted from the study of magnetic di-
pole strength in superdeformed nuclei �Hamamoto and
Nazarewicz, 1992, 1994�. The summed B�M1� strength
was found to be much larger than in nuclei at normal
deformation. This can be understood from the growing
proton orbital contribution with increasing deformation
and the fact that, for the weak pairing present in the
superdeformed configuration, the pairing factor in Eq.
�20� becomes maximal. Applications for nuclei in the
proton-rich deformed Kr-Zr nuclei showed similar re-
sults �Nakatsukasa et al., 1994�.

Whereas QRPA calculations for strongly deformed
nuclei give rise to the �2 dependence of the M1 strength
and saturation for both the B�E2;01

+→21
+� and summed

M1 strength due to the importance of pairing correla-
tions among the interacting nucleons, the IBM does not
exhibit this characteristic behavior. In both the SU�3�
and O�6� limit of the IBM-2, the B�M1� transition into
the scissors 1+ mixed-symmetric state is proportional to
the P factor �Casten et al., 1987� which implies an almost
linear rise toward midshell before dropping off toward
the end of the major shell �Scholten, Heyde, and Van
Isacker, 1985�. This sheds light on the way in which to
count the boson number when highly deformed systems
are being described. Casten et al. �1988� showed that one
should consider in this region an effective boson num-
ber, following arguments by Otsuka et al. �1990�, through
which Pauli blocking is taken into account.

e. A comprehensive analysis

Even though it was previously shown that one can
obtain a qualitative understanding of the observed be-
havior of the summed magnetic dipole strength at low
energies �deformation dependence, saturation, and rela-
tion to other multipoles�, a quantitative agreement be-
tween the large body of experimental data and theory
has still been lacking. Part of the problem is related to
the fact that most model approaches use still too ideal-
ized assumptions concerning the way in which nucleons
behave inside the atomic nucleus: moments of inertia,
gyromagnetic ratios, etc. Therefore, a global study in
heavy even-even nuclei was carried out in order to ob-
tain as accurate a description of the scissors mode when
one uses as input the realistic physical parameters in the
calculations �Enders et al., 1999, 2005�.

This study makes use of the sum-rule method as de-
scribed by Lipparini and Stringari �1983, 1989b� and
starts from the energy-weighted �S+1� and the inverse
energy-weighted �S−1� sum-rule expressions

S+1 = EscB�M1�

=
3

20�
r0

2A5/3�2ED
2 mN

�2 �gp − gn�2�N
2 MeV �21�

and �cf. Eq. �10��

S−1 =
B�M1�

Esc
=

3

16�
Jsc

�2 �gp − gn�2 �N
2

MeV
, �22�

with r0=1.15 fm, A the nuclear mass number, � the
nuclear deformation parameter, ED the isovector giant
electric dipole resonance �IVGDR� excitation energy,
mN the nucleon mass, and gp �gn� the g factors for pro-
tons �neutrons�. With Esc we denote the excitation en-
ergy of the scissors mode and Jsc describes the moment
of inertia associated with the scissors mode vibrations,
which are of isovector type. These expressions are rather
general and express the fact that the scissors mode and
the IVGDR are both of isovector nature and strongly
related through the restoring force acting on the de-
formed proton and neutron bodies and also that the ma-
jor contribution to S−1 comes from the low-lying scissors
mode �0�� strength in Fig. 1� whereas the high-lying

FIG. 26. Schematic representation of the effect of deformation
on the orbital �lj�→ �lj� transition strength. The Fermi level is
denoted by the hatched lines �Richter, 1990�.
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scissors mode �2�� strength in Fig. 1� mainly contributes
to S+1.

We first discuss S−1 because the low-lying scissors
mode after all is well studied by now in heavy nuclei. To
begin we use the common relative g-factor values grel
=gp−gn=2Z /A �Bohr and Mottelson, 1975� and deduce
the moment of inertia �taking the assumption that the
scissors M1 strength resides in the energy region
2.5–4 MeV�. It is interesting to see �Enders et al., 1999,
2005� that the ground-band and scissors motion mo-
ments of inertia are very close to each other �except for
a systematic deviation in heavier nuclei�.

Next we take these two moments of inertia to be
equal,2 i.e., Jsc=Jgb, and evaluate the g factors starting
from the sum-rule value of S−1. There appears a striking
agreement between these values with only small devia-
tions �of the order of 10%�. When recalculating the mo-
ment of inertia related to the scissors motion in Eqs. �21�
and �22�, using the experimentally deduced g�2+� values
and comparing these moments with the ground-state
moments of inertia, an almost perfect overlap between
the two sets results. We can then draw the conclusion
that the g factors acting in the scissors mode are the
same as the ones for the ground band.

Since all quantities in the sum rules �Eqs. �21� and
�22�� are fixed, we are now in a position to rederive the
energies and the strengths for the scissors modes.
However, when dealing with S+1 one has to take into
account that contributions from the K=1 component of
the isovector giant quadrupole resonance �IVGQR� will
dominate, which have to be removed in order to com-
pare with the experimental data. This is achieved with a
procedure described by Lipparini and Stringari �1983�,
which leads to a correction factor �=EQ

2 / �EQ
2 +2ED

2 � to
Eq. �21�, where EQ denotes the centroid energy of the
isoscalar giant quadrupole resonance �ISGQR�.

When putting all low-lying �high-lying� M1 strength
�lowB�M1�=Bl ��highB�M1�=Bh� into a single state with
energy El �Eh�, one obtains

S−1 � Bl/El, S+1 � Bh · Eh, �23�

and using the expressions for S−1 and S+1, we can derive
an average energy

�̄ =
2

	15
	mN

�2 r0	4NZ

A2 A5/6ED	E2+�� , �24�

where use was made of the relation between scissors
mode and ground-state band moment of inertias estab-
lished above and the latter is expressed through the en-
ergy of the first excited state of the rotational band E2+

by Jgb=3�2 /E2+. The centroid energies of the IVGDR
and ISGQR are taken from mass-dependent systematics
�Harakeh and van der Woude, 2001�.

The values resulting from Eq. �24� are drawn as tri-
angles in Fig. 27 �upper part�. Excellent agreement with
the experimental data is obtained. When scaled by the
ratio of the scissors mode to the liquid-drop moment of
inertia, the energy of the isovector giant dipole reso-
nance �dashed line� also shows the proportionality to the
energy of the scissors mode predicted in Eq. �24�. We
note that the observed near constancy of � could also be
explained by Pietralla, von Brentano, Herzberg et al.
�1998� within a schematic RPA approach after inclusion
of the deformation dependence of paring effects analo-
gous to the previous discussion.

Similarly one obtains for the low-lying scissors
strength

Bl =
3

�
	 3

20
r0	4NZ

A2 A5/6ED	 mN�

�2E2+
� ggb

2 , �25�

with ggb= 1
2 �gp+gn�, the g factor of the 2+ level of the

ground-state band. Comparison to the experimental scis-
sors mode strength is shown in the lower part of Fig. 27.
The agreement is satisfactory except for some nuclei
with A�180. The strong deformation dependence is
generated by the interplay of E2+ and �. Indeed the ex-
perimentally established quadratic dependence of the
scissors-mode strength on the ground-state deformation
is easily derived from Eq. �25� recalling �Bohr and Mot-
telson, 1975� that the moment of inertia Jgb is roughly
proportional �albeit much larger� to the superfluid mo-
ment of inertia Jliq,

2More precisely the moment of inertia of isoscalar and isovec-
tor motion differ by a factor 4NZ /A2=0.96 �Lo Iudice and
Richter, 1993�.

FIG. 27. Sum-rule analysis of the scissors mode in rare-earth
nuclei. Excitation energy �upper part� and transition strength
systematics �lower part� are presented. Experimental values
�solid circles� and parameter-free predictions �open triangles�
are shown for the mean excitation energy �upper part� and the
summed M1 strength �lower part�. The deformation depen-
dence of the moment of inertia leads to the proportionality of
the excitation energies of the scissors mode and the IVGDR as
indicated by the dashed line �Enders et al., 2005�.
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Jgb� Jliq = Jrig�
2, �26�

where Jrig stands for the moment of inertia of a rigid
rotor.

f. Sum-rule relation between magnetic dipole and octupole
strength

In the spirit of the IBM-2 non-energy-weighted M1
sum rule �Ginocchio, 1991�, a relation between magnetic
dipole and octupole strength could be derived starting
from energy-weighted sum rules �Heyde et al., 1994�. It
has been possible to obtain an approximate, yet simple
relation

�
f

B�M1;01
+ → 1f

+�Ex�1f
+�

�
f

B�M3;01
+ → 3f

+�Ex�3f
+�

� � 6�g� − g
�
7��� −�
�

�2

. �27�

This relation establishes a link between different param-
eters of the IBM-2, the gyromagnetic boson factors and
octupole boson moments, and hence imposes constraints
on choosing them when fitting to other spectroscopic
data. One can, on the other hand, also use the relation
starting from common values for these parameters
�g� ,g
 ,�� ,�
� as derived from a phenomenological
and/or microscopic starting point and deduce an esti-
mate for the summed M3 strength, whenever informa-
tion on the summed M1 dipole strength is available. This
was discussed by De Coster et al. �1995�, where an esti-
mate of the summed M3 strength is presented in the
mass region 144�A�164. Even though it contains a
number of approximations, in the absence of systematics
on the M3 strength, the above method might be a first
guide for further experimental studies.

There are few studies on M3 transitions carried out by
now, both theoretically and experimentally. On the the-
oretical side, M3 transitions were investigated within the
framework of the IBM-2 by Scholten et al. �1984� and
within the context of a schematic RPA study for heavy
deformed nuclei by Lo Iudice �1988�. There has been an
early experimental search for M3 strength in 164Dy by
Bohle, Richter, et al. �1987� that made use of both the
electron accelerators at Darmstadt and Amsterdam.
Only an upper limit for such strength has been derived.
A more systematic search for magnetic octupole
strength is called for in light of the above approximate
connection with the summed M1 strength.

B. Spin-flip mode: Experimental evidence and theoretical
description

1. Qualitative nature of the magnetic dipole response

The magnetic dipole operator for a system of protons
and neutrons reads

T�M1� =	 3

4��
i

�gl�i�l̂i + gs�i�ŝi��N, �28�

with the usual orbital and spin gl, gs factors for neutrons
and protons �see also Eq. �7��. Using the isospin labels
tz�i�= ± 1

2 for neutron and proton, respectively, the mag-
netic dipole operator can be split into an isoscalar and
isovector term in the following way:

T�M1� =	 3

4�
�gJĴ + gSŜ��N + T�M1,IV� . �29�

Since Ĵ denotes the total angular momentum operator,
this term does not induce any M1 transitions and be-
cause gS= ��gs

�+gs

�−1� /2, the isoscalar spin part only

contributes in a minor way to M1 transitions. This is a
consequence of the opposite signs in the proton and
neutron spin gs factors resulting in a value of gS=0.38.

The isovector part of the M1 operator T�M1,IV�,

T�M1,IV� =	 3

4��1
2

�L̂� − L̂
�

+
1
2

�gs
� − gs


��Ŝ� − Ŝ
���N, �30�

splits into two pieces: the first part, describing the rela-
tive angular momentum between protons and neutrons,
generates the scissors orbital motion whereas the second
part, a spin-flip part, is nothing else but the �Tz=0 com-
ponent of the Gamow-Teller operator. This term can
strongly enhance spin-flip M1 transitions because of the
large factor 1

2 �gs
�−gs


� in front �with a numerical value
4.72 using free gs factors�.

The fact that the simple picture of the nuclear mag-
netic dipole response is approximately correct is shown
in Fig. 28 using the three nuclei 56Fe, 156Gd, and 238U as
examples. As discussed, the mean excitation energy of
the orbital mode scales approximately with deformation
as Ex�66�A−1/3 MeV. The spin M1 strength obtained in
inelastic proton scattering �Frekers et al., 1990� lies at
Ex�41A−1/3 MeV and thus exhibits a shell-model-like
excitation energy dependence. As shown in Fig. 28, the
spin strength represents the largest fraction of the M1
strength.

It is the residual particle-hole interaction acting in the
spin-isospin channel that shifts this spin M1 strength to
higher energies as can be seen in schematic model
�Zawischa, Macfarlane, and Speth, 1990; De Coster and
Heyde, 1991a; De Coster et al., 1992; Zawischa and
Speth, 1994� and in RPA studies �Sarriguren et al., 1993,
1994, 1996�. The orbital part of the M1 strength is hardly
moved by this force component and so one expects to
observe experimentally a good overall separation of the
orbital dipole magnetic excitations, at the lower-energy
end of 2.5–4 MeV, from the higher-lying spin magnetic
dipole excitations.

The experimental detection of spin strength in the en-
ergy region above 4 MeV needs a probe that is particu-
larly sensitive to the spin part of the nuclear current.
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Intermediate-energy scattering of �polarized� protons at
small forward angles should be the optimal selective re-
action to carry out such a search. First experiments per-
formed by a Darmstadt-Münster-TRIUMF Collabora-
tion on 154Sm, 158Gd, and 168Er used 200 MeV protons at
an angle of 3.4° covering final states up to 12 MeV. Ana-
lyzing those data clearly showed in all nuclei the pres-
ence of extra strength sitting on the tail of the IVGDR
�Fig. 29� with a double-hump structure �Frekers et al.,

1990; Richter, 1995�. The double hump has centroids
around 6 and 8.5 MeV and widths of about 1.5 and
2 MeV, respectively. Even more detailed substructure
becomes visible �see inset in Fig. 29�. Such a pronounced
splitting and fragmentation of magnetic dipole strength
has not been observed as yet in spherical nuclei. The
selectivity of the �p ,p�� reaction could be demonstrated
at the same time: the orbital M1 transition at 3.19 MeV
strongly excited in �e ,e�� and �� ,��� reactions was not
observed with an upper limit B�M1��0.1 �N

2 .
In order to obtain more complete insight in the struc-

ture of these excitations, angular distributions have been
taken for the three nuclei �Fig. 30�. No strong Z nor A
dependence shows up. A DWBA fit for a �S=1, �L
=0 transition considering a neutron spin-flip 1h11/2
→1h9/2 or a proton 1g9/2→1g7/2 transition has been per-
formed. These orbitals are clearly the dominant ones in
this mass region and for deformed nuclei; even the Nils-
son states are dominated by these particular spherical
components. A strength B�M1�=10.5�2.0��N

2 could be
extracted, a value in line with expectations for the theo-
retical spin-flip strength �see Fig. 17�.

Complementary experiments detecting the transverse
spin-flip probability Snn have been carried out �Wörtche,
1994�. Thereby the probability that an incoming proton,
interacting with the target nucleus, will leave with its
spin flipped ��S=1 process� is measured. The results for
154Sm are shown in Fig. 31 where, besides the cross sec-
tion in the energy interval 4–32 MeV, the corresponding
spin-flip probability Snn is given. Here one notices the
presence of increased Snn values in the region of the
observed spin M1 strength �6–8.5 MeV�, confirming the
spin-flip character of the structures located on the low-
energy tail of the GDR, the latter being split in two
fragments, due to nuclear deformation. This figure also

FIG. 28. The nuclear orbital and spin magnetic dipole re-
sponse in a medium-heavy, a heavy, and a very heavy nucleus,
derived from experiments with electromagnetic and hadronic
probes, respectively �Richter, 1994�.
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FIG. 29. Forward angle inelastic proton-scattering spectrum
taken at 200 MeV incident energy on 154Sm. The shaded area
constitutes the giant spin magnetic dipole resonance. In the
inset, the extracted B�M1� strength �in units �N

2 /80 keV� dis-
tribution is shown. Adapted from Frekers et al., 1990.

FIG. 30. Angular distribution of the summed double-humped
structures observed in 154Sm, 158Gd, and 168Er. The dashed and
full curves result from DWBA calculations based on the indi-
cated particle-hole excitations �Richter, 1991�.
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shows the presence of an IVGQR derived from a multi-
pole decomposition around 23 MeV, an excitation en-
ergy where it is has also been detected in other heavy
nuclei �Harakeh and van der Woude, 2001�. The analysis
of the Snn values is carried out consistently with the
DWBA analysis of the angular distributions.

Recently it has become clear that the E1 response in
heavy nuclei generally exhibits a local concentration of
strength �called the pygmy dipole resonance �PDR�� well
below the IVGDR overlapping with the excitation en-
ergy region of the spin-flip resonance. The PDR has
been observed at a variety of shell closures �see, e.g.,
Kneissl et al. �2006�, and references therein� but not yet
in heavy deformed nuclei. This raises the question
whether part of the strength attributed to the spin-flip
M1 resonance is in fact of E1 nature. While this problem
needs further experimental investigation, there are im-
mediately two arguments in favor of the present inter-
pretation: the angular distributions shown in Fig. 30 are
distinct from those of Coulomb-excited E1 transitions
and the Snn values in the bottom part of Fig. 31 display a
local maximum of the spin-flip strength.

Before concentrating on the theoretical description,
we show the M1 response for a set of nuclei spanning a
wide region of deformed rare-earth nuclei �Fig. 32�. In
all of these nuclei, a particularly stable pattern is emerg-
ing: at the lower energy side, at energies 2.5–4 MeV, a
concentration of orbital magnetic dipole strength shows
up with a ratio 	Bl /B��4, where Bl and B� denote the
reduced transition strength of the orbital and spin part
of the magnetic dipole operator �Eq. �30�� and B�M1�
= �	Bl±	B��2 �Willis et al., 1989�. Higher up, starting at

5.5 MeV up to almost 10 MeV, a rather broad and ex-
tended region with a clear double-hump structure in
most of these nuclei appears in which 	Bl /B��1. Figure
32 therefore reflects the magnetic dipole response for
strongly deformed nuclei in the rare-earth region to
electromagnetic and hadronic probes. The low-energy
part corresponds to an orbital magnetic dipole structure,
the scissors mode, and the higher part is the spin-flip
part mainly caused by proton and neutron single-particle
transitions between spin-orbit partners. Whereas the en-
ergy of the spin-flip M1 mode will be localized at the
energy of the gap in closed shells for spherical nuclei, in
the region where deformation sets in one expects split-
ting of the various Nilsson energy levels causing a
spreading of the spin-flip strength around the spherical
centroid energy. If this argument is correct, one should
obtain an A−1/3 excitation-energy dependence for the
observed peaks of M1 strength throughout the whole
mass region �cf. Fig. 28�. This seems indeed the case and
is shown in Fig. 33, in which the double-hump M1 spin
strength in deformed rare-earth and actinide nuclei is
connected �Richter, 1995� to the detailed knowledge of
the spin-flip strength in the doubly-magic 208Pb nucleus
�Laszewski et al., 1988�. Indications of a similar splitting
are observed in medium-mass nuclei �Djalali et al., 1982�
except for the stable Zr isotopes �Crawley et al., 1982�,
where the forward-angle �p ,p�� cross sections exhibit a
single bump at Ex�9 MeV identified as a spin-flip M1

FIG. 31. Differential cross section and transverse spin-flip
probability for inelastic polarized proton scattering on 154Sm.
The hatched areas show the double-humped GDR. Visible on
the low-energy side of the GDR is the spin-flip M1 resonance
between 5 and 12 MeV excitation energy and at Ex
=23.4 MeV for the IVGQR. The arrows visualize the connec-
tion between the electric resonances and dips in the spin-flip
probability �Richter, 1995�.

FIG. 32. Magnetic dipole response of several deformed rare-
earth nuclei determined by inelastic electron, photon, and pro-
ton scattering �Richter, 1995�.
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resonance. This may be related to the special shell struc-
ture at Z=40, where the high-j orbital near the Fermi
surface ��1g9/2� is essentially unoccupied and the corre-
sponding 1g9/2→1g7/2 transition suppressed.

2. Theoretical description

When trying to study the systematics of centroid en-
ergy and strength of the spin-flip transitions in rare-
earth nuclei, a first approximation is to look at the un-
perturbed M1 strength originating from a deformed
single-particle model. In carrying out this procedure,
De Coster and Heyde �1991a� studied the summed spin
M1 strength throughout the whole rare-earth region
from 140Ce up to 198Pt. The strongest values are obtained
at the end of the major shell near Z=82 and N=126
through proton 1h11/2→1h9/2 and neutron 1i13/2→1i11/2
transitions. The unperturbed energy of these transitions
is situated in the energy region 4–10 MeV. With the re-
sidual interaction switched on, the M1 strength will be
redistributed but the total strength should not change
much from the unperturbed case.

Comparison of the experimental strength distribution
in 154Sm with a number of QRPA and QTDA studies
has been carried out �Zawischa, Macfarlane, and Speth,
1990; Zawischa and Speth, 1990; De Coster and Heyde,
1991a; Sarriguren et al., 1993; Hilton et al., 1998� �see
Fig. 34�. The theoretical results have been folded with a
Gaussian of variable width in order to facilitate com-
parison. One concludes that the agreement between ex-

periment and theory is still on a qualitative level. The
position of the two peaks does not vary much but the
relative strength of the peaks is changing in a rather
important way pointing out the sensitivity of the calcu-
lations to both the underlying single-particle structure
and the residual interactions used. The QRPA calcula-
tions that come closer to the data �Sarriguren et al., 1993;
Hilton et al., 1998� have been carried out after the ex-
periments were performed. One also notices that the dif-
ference between QRPA and QTDA �Zawischa, Macfar-
lane, and Speth, 1990; Zawischa and Speth, 1990; De
Coster and Heyde, 1991a� are not dramatic pointing out
that ground-state correlations do not seem to play a ma-
jor role in determining both the energy and the strength
for these spin-flip transitions.

The specific double structure of the strength distribu-
tions is related to the residual spin-spin interaction
which changes the unperturbed picture in an important
way �De Coster et al., 1992�. Besides a shift of the spin
strength to higher energies, as expected from schematic
p-h models studying isovector excitations, a rather clear
separation into a protonlike and a neutronlike collective
spin mode remains. As a result, in 154Sm the lower peak
mainly originates from the proton 1g9/2→1g7/2 and the
1h11/2→1h9/2 excitations whereas the second, higher-
lying peak is mainly due to the 1h11/2→1h9/2 and 1i13/12
→1i11/2 spherical components. These simple p-h configu-

FIG. 33. Spin magnetic dipole strength distributions in 238U,
208Pb, and 154Sm. The center of gravity of the excitation energy
of the two peaks representing the main strength follows a
simple A−1/3 law, characteristic for spin-flip excitations be-
tween spin-orbit partners. The experimental strength distribu-
tion for 208Pb has been combined from inelastic electron and
photon scattering experiments �Richter, 1995�.

FIG. 34. Experimental and theoretical spin magnetic dipole
strength distributions in 154Sm. Underneath the experimental
data, theoretical predictions from various calculations are
given �in descending order�: QRPA from Zawischa, Macfar-
lane, and Speth �1990�; Zawischa and Speth �1990�, QTDA
from De Coster and Heyde �1991a�; De Coster et al. �1992�,
QRPA from Sarriguren et al. �1993�, and QRPA from Hilton et
al. �1998�.
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rations act as doorway states for the fragmentation of
the resonance in analogy to the discussion for the scis-
sors mode �cf. Fig. 20�.

For larger strengths of the spin-spin proton-neutron
interaction as used by Sarriguren et al. �1993, 1994,
1996�, the spin strength becomes more concentrated into
a full isoscalar and isovector part with proton and neu-
tron configurations strongly mixed. Zawischa and Speth
�1990� obtained results somewhat intermediate between
the two more extreme cases of very weak coupling and
strong coupling between the individual proton and neu-
tron spin-flip M1 configurations. The higher peak shows
a structure that is reminiscent of a genuine giant spin-flip
�or Gamow-Teller� mode of isovector character. In com-
paring both the incoherent sum of the separate proton
and neutron contributions with the actual calculation
where interference effects do play an important role, it
seems the lower part is mainly of proton character but
also an isoscalar part is present. They come to the con-
clusion that for the higher peak in 154Sm, using a
Landau-Migdal residual interaction, the neutron contri-
butions play the dominant role and come close to the
results of De Coster and Heyde �1991a�.

It is beyond our discussion that the starting points, i.e.,
different single-particle deformed potentials �Nilsson,
deformed Woods-Saxon, and deformed Hartree-Fock
mean field� and different residual interactions, lead to
results that differ in an important way in their interpre-
tation of the nature of the double-peak structure �proton
and neutron versus isoscalar and isovector�; see also Lip-
parini and Richter �1984�. Experiments that are sensitive
to the proton-to-neutron content in exciting those states
�such as inelastic �± scattering� can most probably solve
this issue and simultaneously give invaluable informa-
tion concerning the proton-neutron part of the spin-spin
component in the effective residual two-body interac-
tion.

In conclusion, the general structure and evolution of
spin-flip M1 strength can also be studied using schematic
models �Zawischa and Speth, 1990, 1994; De Coster and
Heyde, 1991b; De Coster et al., 1992� and these results
are in general consistent with those from the more de-
tailed QRPA studies. For not too strong spin-spin
proton-neutron coupling, while considering a two-level
model �or a four-level model� in the rare-earth region,
the strength becomes concentrated separately into a
pure proton and neutron collective spin-flip state. With
increasing strength, all components eventually contrib-
ute into an isovector mode at the higher energy and an
isoscalar part at the lower-energy side, albeit with the
neutron configurations and proton configurations domi-
nating in these two modes, respectively.

C. Magnetic dipole strength at higher excitation energy:
Prediction and experimental hints

Experiments have succeeded in studying the response
of the nucleus to medium-energy protons toward much
higher excitation energies. This was already shown in
Fig. 31 in which the cross section and the Snn transverse

spin-flip probability in 154Sm up to an energy of 32 MeV
are presented. Besides the dominant giant electric di-
pole resonance state, split by deformation, on the lower
side, the spin-flip M1 strength has been detected and is
discussed in Sec. III.B. On the higher-energy tail though,
excess strength is observed, which can be described by a
Lorentzian centered at Ex=23.4 MeV with a width of
6.8�6� MeV. These parameters as well as an exhaustion
of the corresponding energy-weighted sum rule of 76%
�11%� agree well with the �scarce� systematics �Harakeh
and van der Woude, 2001� of the IVGQR. The arrows
indicate dips in the Snn behavior which are directly re-
lated to the electric character of the strong states as
compared to the other spin magnetic excitations.

The dip is probably the K�=1+ component of the
IVGQR, which is split into various K components for
strongly deformed nuclei, and taken as the genuine
manifestation of a classical scissors motion. Lo Iudice
and Richter �1989� pointed out that the lower RPA 1+

solution does not collect the whole M1 strength. They
showed that a non-negligible fraction is obtained at
higher energy. For A=164 �N=Z�, they obtained a value
of 25 MeV for the excitation energy of a high-energy
mode with a corresponding strength of B�M1�=4.5�N

2 .
The quadrupole component then acquires, through the
M1 transition, an additional scissors characteristic.

As discussed in Sec. III.A.3, making a comprehensive
analysis of M1 excitations in atomic nuclei, a relation
between the energy and strength of a low- and high-
energy scissors state was indicated, i.e., �hBh=4�lBl
which gives interesting information on both the ex-
pected excitation energy and the M1 strength for a high-
energy mode. Such a mode will be mainly built out of
2�� quasiparticle excitations for which the M1 strength
becomes concentrated into a single strong state above
20 MeV. The issue of how well such a strong state at
that high energy will remain intact is not clearly settled.
A number of calculations �Hamamoto and Nazarewicz,
1992, 1994; Zawischa and Speth, 1994; Nojarov et al.,
1995; Zawischa, 1998� using schematic or more realistic
forces come to different conclusions. Nojarov et al.
�1995� and Hamamoto and Nazarewicz �1992� obtained a
large concentration in a strong peak if they truncated
the 2qp model space up to 20 MeV, in line with calcula-
tions within a schematic picture in which the higher-
lying M1 strength also remains concentrated �see Fig.
35�. Using a more extended space spreads out this
strength considerably. At this energy, the resonance is
highly unbound which will induce further spreading
making it a difficult task to unambiguously detect and
measure the amount of M1 strength. Thus, in view of the
largely different theoretical results, the question of a still
observable concentrated strong state will be difficult to
solve. Moreover, as shown in Fig. 31, there are consider-
able experimental difficulties arising from a strong back-
ground mainly due to quasifree scattering, whose exact
shape and strength are unknown and had be approxi-
mated by a semiempirical approach �Lisantti et al.,
1984�.
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The identification of the IVGQR permits an inter-
esting test of the energy-weighted M1 sum rule given
in Eq. �16� relating the summed M1 strength on the
lhs to the difference of the isoscalar and isovector
E2 summed strengths on the rhs of Eq. �16�. With the
experimental numbers for 154Sm �Ziegler et al., 1993�
one obtains for the energy-weighted M1 sum rule a
value of �7.71±0.44��N

2 MeV whereas the right-hand
part �the difference of summed E2 strength� becomes
�9.32±0.31��N

2 MeV. This is a rather good indication
that below 4 MeV, the region where the sum of M1
strength was carried out, the M1 sum rule is exhausted
already by 80%, leaving room for about 20% at the
high-energy part of M1 strength.

IV. MAGNETIC DIPOLE EXCITATIONS IN HEAVY ODD-
MASS NUCLEI

A. Experimental results and systematics

Naturally, the issue of what will happen in odd-mass
nuclei when a single nucleon �proton or neutron� is
coupled to the scissors mode in the even-even under-
lying core system arises. From the concept of particle-
core coupling and considering the low-lying isoscalar
quadrupole and octupole vibrational excitations in
spherical and transitional nuclei, ample evidence for all
states and a sharing of electromagnetic strength among
the particle-core coupled multiplet members has been
shown �Bohr and Mottelson, 1975�. In the situation
where the scissors mode M1 strength at the low-energy
region is already spread out over a large energy span
�2.5–4 MeV�, it is clear that an experimental verification
of �i� the presence of particle- �hole-� scissors coupled

configurations and, more compelling, �ii� if the total M1
strength summed up in the appropriate energy interval
in the odd-mass nucleus is consistent with the observed
M1 strength in the even-even adjacent nuclei, will not be
easy.

The problem is one of detecting all M1 strength, in
particular the M1 strength residing in the background of
many and complex configurations. On the other hand,
the challenge for a good description from the theoretical
side is also not an easy one. From a more phenomeno-
logical approach and taking the core M1 strength to be
concentrated in one state, one will clearly not be able to
correctly reproduce the strong fragmentation, however,
the summed strength puts a constraint on this kind of
model studies. From a more microscopic approach, odd-
mass nuclei can be studied using a quasiparticle-phonon
nuclear model �QPNM� �Soloviev, 1992�. Here one
needs to take into account the fact that the QRPA
phonons themselves are partly constructed from the
quasiparticle configurations one is coupling to. This so-
called Pauli blocking has been treated for deformed nu-
clei �Soloviev, 1992�. For spherical odd-mass nuclei, a
detailed study of the transition strength from core-
coupled configurations provided quantitative evidence
for Pauli blocking �Scheck et al., 2008�. Ultimately, one
aims at exact shell-model calculations but for the
strongly deformed rare-earth region this is at present
outside reach.

The experimental work covering a large part of the
deformed rare-earth region has mainly been carried out
by groups at Stuttgart, Köln, and Darmstadt, using in-
elastic photon scattering through the excited states in
these odd-mass nuclei. The first search in the odd-proton
165Ho nucleus using photon scattering with an end point
of about 2.5 MeV did result in appreciable amounts of
M1 strength �Huxel et al., 1992� albeit to be associated
with transitions among single one-quasiparticle proton
excitations in this particular nucleus. Partly due to the
low end point energy, no clear evidence for the presence
of M1 strength into the mixed-symmetric configurations,
to be expected beyond 2.5 MeV, was detected. Using
a higher end point energy of 4.8 MeV and an
EUROBALL cluster module �von Neumann-Cosel,
1997�, spectra of much higher quality could be measured
at the S-DALINAC �Huxel et al., 1999� and we give an
illustration for the case of 165Ho �Fig. 36�.

The first and quite clear indication for such M1 exci-
tations was obtained in the 163Dy odd-neutron nucleus
�Bauske et al., 1993�. Here a concentration of M1
strength near to 3 MeV excitation energy was detected
and the summed strength fits with the observed M1
strength in the neighboring even-even 162,164Dy nuclei.
Subsequent experiments on 161Dy and 157Gd �Margraf et
al., 1995�, however, showed a large fragmentation of
strength in the latter nucleus. This is quite difficult to
understand in light of the proximity to 161Dy �just a dif-
ference of two protons and two neutrons�. Further ex-
periments on some key nuclei in order to build up sys-
tematics in this region of the rare-earth nuclei were

FIG. 35. Prediction of the full M1 strength distribution
�summed in bins of 1 MeV� including the high-energy part in
160Gd. The dark-hatched zone represents spin strength, the
light-hatched one orbital strength. In the lower part, only 2qp
configurations up to 20 MeV are taken into account. In the
upper part, a much higher energy cutoff for these 2qp configu-
rations is imposed. From Nojarov et al., 1995.
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performed on 155Gd and 159Tb �the latter an odd-proton
nucleus�, and on the heavier 167Er �Schlegel et al., 1996�
and 165Ho, 169Tm �Huxel et al., 1999� nuclei.

Bringing these data together in Fig. 37, one observes
that starting from 155Gd, passing over the odd-mass Dy
nuclei and progressing toward heavier nuclei, M1
strength seemed to become more concentrated, pre-
cisely in those regions that were expected from the
knowledge of the M1 scissors mode strength in the
nearby even-even nuclei �Enders et al., 1997�. In Fig. 38
the full systematics of the Gd nuclei combining mass-
even and -odd isotopes is shown �Kneissl et al., 1996;
Nord et al., 1996�. Recent experimental data on 151,153Eu,
and with increased sensitivity, on 163Dy and 165Ho, have
been provided by Nord et al. �2003�. Conclusions from
all these data are �i� the fragmentation pattern is at best
rather badly understood and �ii� even worse only about
half to one-third of the M1 strength observed in the
even-even nuclei �when summing the strength in the
odd-mass nuclei in the interval 2.5–3.7 MeV� could be
detected firmly �see lower part of Fig. 37�.

One notable exception is the study of 167Er �Schlegel
et al., 1996�, where experiments have been carried out
with end point energies up to 5.8 MeV at the
S-DALINAC. The summed strength reaches
3.49�1.15��N

2 , a value that is at variance with many of the
former experiments by a factor of about 3. This experi-
ment gave a first hint that one needed to look for M1
fragments at energies higher than was first thought. As
discussed below, the calculated M1 strength using the
interacting boson-fermion model �Iachello and Van
Isacker, 1991� accounts well for this total strength al-

though in the theoretical study only two major peaks are
obtained below 4 MeV.

B. Missing strength: Experimental problem and its solution

Comparison between odd-mass and even-even nuclei
immediately poses the question: Where has the M1
strength gone in the odd-mass nuclei? The search was on
for the observation of a large part of M1 strength resid-
ing in a large number of complex states but with very
small B�M1� values and hidden in the background of
the spectra. A detailed statistical model analysis of the
high-quality data in 165Ho and 169Tm, obtained with an
EUROBALL cluster module, indeed revealed that a
significant part of the M1 strength is carried by the back-
ground states �Enders et al., 1997, 1998; Huxel et al.,
1999�. It has been shown �Enders et al., 1997� that the
statistical assumptions underlying the fluctuation analy-
sis approach are also capable to explain the large varia-
tions in the measured dipole distributions shown in Fig.
37. Monte Carlo distributions have been generated tak-
ing into account the properties of M1 and E1 distribu-
tions in even-even neighboring nuclei and allowing for
the energy dependence of the experimental sensitivity
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FIG. 36. Spectra of the 165Ho�� ,��� reaction in the energy
region E�=2.2–3.8 MeV observed with a Euroball Cluster de-
tector placed under 130° with respect to the incident beam
with an end point energy of 4.8 MeV. Only the strongest tran-
sitions assigned to 165Ho are marked with lines; brackets con-
necting two peaks indicate decay branches to low-lying excited
states. Other transitions are due to the calibration standard
27Al or result from background sources �Huxel et al., 1999�.

FIG. 37. Comparison of the magnetic dipole strength in the
odd-mass rare-earth nuclei �Enders et al., 1997�. Upper part:
Distribution of reduced ground-state decay widths. Lower
part: Summed B�M1� strengths assuming magnetic dipole char-
acter of all observed transitions in the energy range between
2.5 and 3.7 MeV. Large differences in total strength, fragmen-
tation, and the number of detected ground-state transitions is
observed. Data are from Bauske et al. �1993�, Margraf et al.
�1995�, Nord et al. �1996�, Schlegel et al. �1996�, and Huxel et al.
�1999�.
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limits. These results are shown in Fig. 39 and compared
to the data �Enders et al., 1997; Huxel et al., 1999�. Over-
all, the large variations of the total number of observed
levels and the summed dipole strengths can be simulta-
neously reproduced in a very satisfactory manner.

Subsequent experiments with unrivaled sensitivity
confirmed these results for the cases of 163Dy and 165Ho
�Nord et al., 2003�. The experiments showed a wealth of
previously unresolved weak transition as demonstrated

in Fig. 40, where the strength distribution deduced for
163Dy is compared to the first measurement �Bauske et
al., 1993�. The sum of the reduced dipole strength is
roughly doubled. However, the fragmentation pattern
into a few rather strong and many very weak transitions
in 163Dy seems to be peculiar, since a fluctuation analysis
cannot explain the still missing strength. On the other
hand, for 165Ho good agreement with previous work
�Huxel et al., 1999� was obtained when combining the
strength of resolved and unresolved transitions. It may
also be noted that a recent NRF measurement on 235U
also showed good agreement of the total M1 strength
deduced from a comparable statistical analysis with that
in the even-mass neighbor 236U �Yevetska et al., 2010�.

In conclusion for the present-day situation on scissors
states and scissors M1 strength in odd-mass nuclei one
can say that in the deformed odd-mass rare-earth �and
probably also actinide� nuclei, the mode seems to be
present with a strength expected from the even-even
systematics but a significant part—which can change
quite importantly from nucleus to nucleus depending on
the respective level densities and the photon scattering
end point energy—escapes detection in the photon scat-
tering experiments because of the very large fragmenta-
tion.

C. Theoretical description

As discussed coupling an odd particle or hole �proton
or neutron� to the collective modes of the even-even
core nucleus generally results in the observation of core-
coupled multiplets �Bohr and Mottelson, 1975�. Because
of the subsequent fragmentation of M1 scissors strength,
it is clear that in comparing theoretical results with data
at most indications for the total summed M1 strength
will be the guiding principle to judge the level of agree-
ment.

Within the context of the interacting boson-fermion
model �IBFM�, a sum rule was derived by Ginocchio
and Leviatan �1997� in which they studied the coupling
of a single j-shell particle �the unnatural parity orbital in
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FIG. 38. Ground-state decay width distributions for
154,155,156,157,158,160Gd extracted from photon scattering experi-
ments. For the even-even nuclei all �K=1 transitions are
shown. In a number of cases, the M1 character has been de-
termined by Compton polarimetry. Information from �e ,e��
form-factor measurements has also been considered. From
Nord et al., 1996.

FIG. 39. Number of ground-state dipole transitions and their
summed reduced width in deformed odd-mass rare-earth nu-
clei. Open bars refer to the data. Dotted bars stand for Monte
Carlo generated strength distributions based on a statistical
approach. Uncertainties of the random spectra have been es-
timated by 1000-fold repetition of the calculation. Error bars
denote a 1� deviation �Huxel et al., 1999�.
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FIG. 40. Ground-state decay width distributions for 163Dy
from Bauske et al. �1993� and Nord et al. �2003�. The latter
experiment had an order-of-magnitude improved sensitivity.
While transition strength agree well for prominent excitations,
many previously unresolved weak transitions are visible.
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fact� to the underlying scissors mode. In the limit of
good F spin and large boson number N, the resulting
new sum rule has been compared with a similar sum rule
derived for even-even nuclei �Ginocchio, 1991; von
Neumann-Cosel et al., 1995�. These results yield upper
limits and in the case of the odd-neutron 1i13/2 particle
coupled to the scissors for the nuclei 161Dy and 167Er as
some extremes �see data�, it is observed that the theo-
retical sum rule in 167Er is consistent with the data but
for 161Dy definitely largely overestimates them.

A number of interesting results were derived by Van
Isacker and Frank �1989� and by Frank et al. �1991� using
the more general IBFM. Analytical results could still be
derived under the assumption of good F spin and con-
sidering a single-j shell. Calculations were performed for
169Tm and 165Ho �Huxel et al., 1992�. A more detailed
study has also been carried out for 163Dy and 167Er. In
the case of 167Er, where the 1i13/2 odd-neutron deter-
mines the ground-state structure, this orbital only is
considered and again comparisons with summed
strengths are possible, as shown in Fig. 41. The multiplet
structure resulting from coupling the odd-particle to
the scissors excitation always underestimates fragmenta-
tion. Within the algebraic formulation, Devi and Kota
�1992a, 1992b, 1996� studied group-theoretical reduc-
tions for odd-A nuclei now including the g boson. By
introducing an extra boson degree of freedom, the effect
of fragmentation of course increases.

Microscopic studies in the deformed rare-earth region
have also been carried out using the coupling of a 1qp

excitation with the underlying collective phonon struc-
ture. Calculations have been performed by Raduta and
Lo Iudice �1989� and Raduta and Delion �1990� using
a coherent-state formalism to describe the collective
phonons. A more extensive calculation of this kind also
exists for a number of odd-mass nuclei �Soloviev, Sush-
kov, and Shirikova, 1996, 1997a; Soloviev et al., 1997�. In
the particular case of 157Gd shown in Fig. 42, the M1
strength is localized mainly between 2 and 2.5 and be-
tween 3 and 3.7 MeV, clearly overestimating the ob-
served M1 strength. The strongest concentration of M1
strength is situated near 3 MeV with a subsequent large
fragmentation �i� due to the fact that from the J; K
ground state, M1 excitations are possible into J+1, J, J
−1; K−1 and J+1; K+1 excited states and �ii� the 1qp-
phonon coupling mechanism also redistributes strength.
The calculations indeed give support to the presence of
scissors particle-core coupled configurations in the odd-
mass strongly deformed rare-earth nuclei, albeit with a
varying character of splitting and further fragmentation
over a background of complex microscopic configura-
tions.
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FIG. 41. Theoretical and experimental M1 strength distribu-
tion in 167Er. Bottom to top: Experimental M1 strength distri-
bution, strength distribution summed up in the indicated en-
ergy bins, comparison with an IBFM calculation, and expected
splitting of the energy spectrum through coupling of the un-
paired particle �Schlegel et al., 1996�.

FIG. 42. Experimental and theoretical reduced width distribu-
tions. Experimental ground-state reduced width distribution in
157Gd �top�, together with the QPNM predictions �Soloviev,
1992� for M1 �middle� and E1 �bottom� transitions to K
=1/2 ,3 /2 ,5 /2 final states displayed by full, dashed, and dotted
lines, respectively �Soloviev et al., 1997�.
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V. MAGNETIC DIPOLE EXCITATIONS IN LIGHT AND
MEDIUM-HEAVY NUCLEI

A. Experimental data

As in heavier nuclei, most experimental information
on ground-state isovector magnetic dipole transitions
comes from inelastic photon and electron scattering ex-
periments. A particularly interesting technique for the
study of even-mass nuclei is electron scattering at 180°
�Fagg, 1975� because of the dramatic suppression of the
background due to the radiative tail of elastic scattering.
If combined with a large-acceptance spectrometer, it
represent a powerful tool for the study of the M1 re-
sponse �Lüttge et al., 1995; Lüttge, von Neumann-Cosel,
Neumeyer, and Richter, 1996�. Data from �� ,��� in
lighter nuclei are limited. Summaries have been pro-
vided by Berg and Kneissl �1987� and Raman et al.
�1991�. The most exhaustive studies of M1 strength dis-
tributions are available from �e ,e�� data covering all
stable nuclides in the p shell, N=Z and Z+2 nuclides in
the sd shell, the stable Ca isotope chain, the N=28 iso-
tones, the open-shell nuclei 46,48Ti, 50Cr, 56Fe, and finally
58Ni.

Complementary information on the spin part of the
M1 strength stems from inelastic proton-scattering ex-
periments. As an example, in Fig. 43 spectra of the
�p ,p�� and �e ,e�� reactions off 48Ti under kinematics fa-
voring M1 excitations are compared �Richter, 1990�. All
transitions identified to have M1 character �marked by
arrows� are seen in both spectra although with different
relative intensities due to the interference of orbital and
spin strength in the latter reaction. Another case, 56Fe,
highlighting the close resemblance of spectra obtained
with both probes �Richter, 1994� is shown in Fig. 44.
Here all transitions observed above Ex=6 MeV possess

M1 character and represent the spin-M1 Gamow-Teller
resonance. At lower excitation energies mostly 2+ states
are populated except for the prominent transition seen
in the �e ,e�� spectrum at about 3.5 MeV, which again
carries most of the orbital M1 strength.

B. Theoretical description: The shell model and random phase
approximation

Contrary to the problems encountered to describe the
magnetic dipole excitation modes in strongly deformed
heavy nuclei within a shell-model framework, for the

FIG. 43. High-resolution �p ,p��
and �e ,e�� spectra in 48Ti. The
J�=1+ states are marked by ar-
rows �Richter, 1990�.

FIG. 44. High-resolution inelastic electron and proton-
scattering spectra in 56Fe measured at TRIUMF. Lines above
6 MeV correspond to the excitation of J�=1+ states under the
kinematic conditions of the two experiments �Richter, 1994�.
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light nuclei large-scale shell-model calculations have
been performed and used to study M1 excitation prop-
erties in detail. Concentrating on mixed-symmetry
states, Zamick and co-workers studied such excitations
for nuclei in the 1f7/2 shell-model region �Zamick, 1985,
1986a, 1986b; Liu and Zamick, 1987a, 1987b, 1987c�. We
treat 48Ti with two proton particles and two neutron
holes outside of the closed shell nucleus 48Ca as an ex-
ample �analogous arguments hold for other nearby nu-
clei�. The wave functions within the 1f7/2 model space
solely are expanded as

��J�� = �
Lp,Ln

DJ�Lp,Ln���1f7/2�Lp

2 ,�1f7/2�Ln

−2 ;JM� , �31�

in which the notation is self-explanatory and where the
coefficients DJ�Lp ,Ln� denote the amplitudes that the
two protons couple to Lp and the two neutron holes to
Ln. The M1 operator now induces transitions from the
0+ ground state into the 1+ states with a corresponding
B�M1� value of

B�M1� =
3

4�
�gj
� − gj


�2��
L

D0�L,L�D1�L,L��2

�L�L + 1��N
2 , �32�

in which gj
� and gj


 are the conventional single-
particle gyromagnetic factors gj

= ��2j−1�gl
+gs

� /2j and
gj
= ��2j+3�gl

−gs
� /2�j+1� for j= l+ 1

2 and l− 1
2 , respec-

tively, and =� ,
 �Brussaard and Glaudemans, 1977�.
One can derive a sum rule for the strength into all pos-
sible final 1+ states

� B�M1� =
3

4�
�gj
� − gj


�2��
L

D0�L,L��2
L�L + 1��N

2 .

�33�

For the case of 48Ti the mixed-symmetric 2+ state re-
sults from the mixed-symmetric combination of the Lp
=0, Ln=2 and Lp=2, Ln=0 components, whereas the 1+

scissors counterpart originates from the combinations
Lp=2, Ln=2; Lp=4, Ln=4, etc. While the use of a single
1f7/2 orbital keeps the M1 strength concentrated in a
single strong excitation, gradually increasing the shell-
model space with the inclusion of the 1f5/2, 2p3/2, and
2p1/2 orbitals opens the way into many new states and
fragmentation starts to set in, as shown in Fig. 45 �Liu
and Zamick, 1987c�. One notices that the low-lying J�

=1+ state is always well separated from the other 1+

states at higher excitation energy. It is mainly of orbital
nature and can be associated with an experimental state
at Ex=3.74 MeV which carries a strength of B�M1�↑
=0.52�8� �N

2 �Guhr et al., 1990�. We also emphasize that
within this single 1f7/2 shell-model space, the orbital M1
strength is a measure of dynamical quadrupole correla-
tions in the ground state since it depends on the �2p

+2n
+�

configuration admixture in the ground state.
An important issue in the study of scissors mode ex-

citations in the open-shell nuclei situated in the Ti, Cr,
Fe region is the orbital-to-spin ratio for the low-lying 1+

states. In contrast to heavy nuclei, only a few orbitals
determine the structure of the wave functions and,
therefore, a non-negligible spin contribution will be
present, even in the lowest 1+ state. This can be studied
by comparing �e ,e�� and �p ,p�� experiments �cf. Figs. 43
and 44�. However, a quantitative analysis of the �p ,p��
data is hampered by the dependence of the extracted
spin-M1 strengths on the choice of the effective projec-
tile target interaction, which can lead to variations up to
about 40% �Hofmann et al., 2007�.

Thus, it is important to find other means to disen-
tangle the spin and orbital parts. Abdelaziz and Elliott
�1987� discussed that the GT matrix element in � decay
might be used to estimate the spin contribution to a col-
lective isovector M1 transition. Such matrix elements
can also be measured in charge-exchange reactions
populating analog states in the odd-odd neighboring nu-
clei. A wealth of high-resolution data on the GT
strength distributions has recently become available
�Frekers, 2006; Fujita et al., 2008� and the dependence
on the effective projectile-target interaction in hadronic
reactions can partly be circumvented by normalizing to
�-decay results. However, isospin selection rules limit
the applicability to special cases �some of which are dis-
cussed below�. Electron scattering form factors present
another method to derive bounds on the relative impor-
tance of orbital versus spin magnetism in a number of
transitions. In Fig. 46 we show two form factors in 48Ti
for transitions to the 3.74 and 7.22 MeV 1+ states �Guhr
et al., 1990�. Whereas the first transition seems to pro-
ceed through the 1f7/2 orbital only �recoupling�, the sec-
ond transition is consistent with a spin-flip transition
1f7/2→1f5/2.

FIG. 45. Magnetic dipole strength distributions for 48Ti as cal-
culated for the model spaces given on the lhs of the figure.
From Liu and Zamick, 1987c.
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A systematic study of the orbital-to-spin ratio was car-
ried out by Oda, Himo, and Muto �1987� in which a
dependence on both the model space and the use of
effective g factors was explored. The result is that in-
cluding excitations from the 1f7/2 orbital into the higher-
lying 1f5/2, 2p3/2, 2p1/2 orbitals increases the orbital part
over the spin part in a systematic way for a number of
Ti, Cr, and Fe isotopes. Moreover, quenching the g fac-
tors from the free-nucleon values further reduces the
spin strength and reinforces the model space extension.
The latter result was also derived independently by
Heyde and Sau �1984�; see also Heyde �1989�. Studies of
the M1 response for the light Ti nuclei have been carried
out using the QRPA approach with similar results and
conclusions concerning the orbital-to-spin ratio �Nojarov
et al., 1987, 1991; Faessler and Nojarov, 1988; Faessler et
al., 1989�.

Truncations of the large-scale shell-model space and
choosing a specific proton-neutron force, on the other
hand, may lead to a symmetry-based approach to study
M1 properties. For light nuclei, the SU�3� shell model
has been used and applied to both sd- and fp-shell nuclei
�Chaves and Poves, 1986; Poves et al., 1989; Retamosa et
al., 1990�. Comparison of shell-model and IBM calcula-
tions was performed for the light Sc, Ti, and V fp-shell
nuclei �Abdelaziz et al., 1988�. A particular symmetry-
dictated truncation to realistic shell-model calculations,
emphasizing the importance of S, D, and G pairs, was
used for 54,56Cr and 56–60Fe �Halse, 1990, 1991b�. More-
over, a pseudo-SU�3� model was suggested to describe
rotational properties in this mass region �Halse, 1991a�.

Recent computational progress allows shell-model
studies of the M1 strength in large model spaces to de-
scribe details of the fragmentation of the mode. For ex-
ample, unrestricted calculations in the full fp model
space are possible now for 46,48Ti �Fearick et al., 2006�.
As an example of the state of the art, a study of the
stable N=28 isotones 48Ca, 50Ti, 52Cr, and 54Fe �Lan-
ganke et al., 2004� is discussed, whose experimental M1
strength distributions have been measured �Steffen et al.,
1980; Sober et al., 1985�. In Fig. 47, the results for 52Cr
are shown together with calculations based on two

widely used shell-model interactions called KB3G
�Poves et al., 2001� and GXPF1 �Honma et al., 2004�
derived in a G-matrix approach from nucleon-nucleon
interaction potentials. Because of the N=28 shell closure
a spherical ground state can be expected. Correspond-
ingly, no low-lying orbital transitions are observed. In
the energy region above 6 MeV, shown in Fig. 47, a
resonance structure arising from spin-flip transitions is
visible. The shell-model results are quite successful in
reproducing the features of the strength distribution
qualitatively and also quantitatively when analyzing the
resonance centroid and total strength, but in detail dif-
ferences remain.

The comparison made in Fig. 47 raises an important
and nontrivial question: How can one quantify the de-
gree of correspondence between data and calculation?
One possible way may be the extraction of scales char-

FIG. 46. Inelastic electron scat-
tering form factors for a pre-
dominantly orbital �left-hand
side� and predominantly spin-
flip �right-hand side� M1 transi-
tion �Richter, 1990�.

52

Cr Experiment

1.0

0.0

1.0

1.0

0.0

0.0
6 10 14

Excitation Energy (MeV)

Shell model
KB3G

Shell model
GXFP1

FIG. 47. M1 strength distribution in 52Cr from �top to bottom�
high-resolution �e ,e�� experiments �Sober et al., 1985� and
large-scale shell-model calculations using the KB3G �Poves et
al., 2001� and GXPF1 �Honma et al., 2004� interactions, respec-
tively.
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acterizing the fine structure of the mode by means of a
wavelet analysis �Shevchenko et al., 2008�. Fine structure
has been shown to be a global phenomenon of giant
resonances �Shevchenko et al., 2004, 2009; Kalmykov et
al., 2006�. Recent application of this method to M1
strength distributions in fp-shell nuclei �Petermann et al.,
2010� indeed reveals considerable differences in the
characteristic scales extracted from the M1 strength
functions obtained with different effective interactions
including those shown in Fig. 47, and in the case of 52Cr
the results from the KB3G calculation are found to be
closer to the data.

The capability of large-scale shell-model calculations
to describe the interference of spin and orbital parts has
been investigated in a detailed study of the electron scat-
tering form factor of the prominent M1 transition at
Ex=3.449 MeV in 56Fe, which contains spin and orbital
matrix elements of comparable size �Fearick et al., 2003�.
While different effective shell-model interactions de-
scribe the strength reasonably well, the predicted q de-
pendence differs considerably. Clearly, the spin-orbit in-
terplay remains a challenge to shell-model studies even
in very large model spaces.

It also became clear in the above studies that a reduc-
tion of the g factors from the free-nucleon values is gen-
erally increasing the orbital-to-spin matrix element ratio.
An independent approach to understand the g-factor
quenching has been carried out in this region of
medium-heavy and light nuclei, concentrating on the
comprehensively studied N=28 nuclei. Shell-model cal-
culations require in all cases a reduction in the spin part
of the magnetic dipole operator. A consistent descrip-
tion for the stable N=28 isotones can be reached using a
value gs

eff=0.75�2�gs
free �von Neumann-Cosel et al., 1998�.

The required reduction is remarkably close to the
quenching factor 0.744�15� obtained from a recent shell-
model analysis of GT �-decay transitions in the lower
fp-shell region �Martínez-Pinedo et al., 1996�. Indeed,
the most important mechanism responsible for the
quenching is, viz., the mixing with two-particle two-hole
configurations at high excitation energies, expected to
be the same as in the GT case �Bertsch and Hamamoto,
1982; Ichimura et al., 2006�.

C. Some astrophysical implications

Knowledge of the magnetic dipole strength in fp-shell
nuclei is also crucial in supernova modeling. It permits
one to determine cross sections of inelastic neutrino-
nucleus scattering, a process whose importance for su-
pernova dynamics was recognized only recently �Hix et
al., 2003�. Under the conditions of a supernova type II in
massive stars, neutrino-nucleus reactions are dominated
by GT transitions �Langanke and Martínez-Pinedo,
2003�. The description of inelastic scattering processes
requires knowledge of the T0→T0 isospin component of
the GT strengths, where T0 denotes the ground-state
isospin. Except for an overall factor relating the weak
and electromagnetic interaction this is nothing but the

spin part of the M1 strength. Orbital strength is negli-
gible in the stable N=28 isotones due to the shell clo-
sure; thus, the measured M1 distribution represents to a
good approximation the needed GT0 strength. Figure 48
shows differential cross sections of inelastic neutrino
scattering on 52Cr calculated under this assumption for
two typical neutrino energies E
=15 and 25 MeV �solid
line�.

Since the reaction network calculations in a supernova
require information on the GT0 strength in many nuclei,
one has to rely on model calculations. The set of highly
precise data in the N=28 isotones �Sober et al., 1985�
was used to demonstrate the capability of large-scale
shell-model calculations to describe M1 strength distri-
butions �Langanke et al., 2004�. If applied to the present
problem, differential neutrino scattering cross sections
shown by the dashed line in Fig. 48 result. These are
indeed in good agreement with the data, and it was con-
cluded that present-day shell-model calculations can
provide the necessary GT0 strengths needed as input to
the supernova simulations. Inclusion of inelastic
neutrino-nucleus scattering increases the neutrino opaci-
ties noticeably and strongly reduces the high-energy tail
of the neutrino spectrum emitted in the neutrino burst at
shock breakout. Relatedly, the expected event rates for
the observation of such neutrinos by earthbound detec-
tors are reduced by up to about 60% �Langanke et al.,
2008�.

D. Selected problems in light and medium-heavy nuclei

In light nuclei, magnetic dipole transitions have been
measured in almost all stable nuclei and detailed theo-
retical studies �mostly shell model� have been per-
formed. We do not attempt an exhaustive discussion of
these results. Rather, we highlight a few topics accessible
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FIG. 48. �Color online� Differential inelastic neutrino cross
sections for 52Cr and initial neutrino energies E
=15 and
25 MeV. The solid histograms are obtained from the M1 data,
the dashed ones from shell-model calculations. The bumps
represent the GT0 strength shifted by the centroid energy of
the resonance. The final neutrino energies are given by Ef
=E
−Ex �Langanke et al., 2004�.
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only in light nuclei or extending beyond the range of
physics questions discussed so far.

1. Quenching of the spin M1 strength: The case of 48Ca

A classical example of a clear-cut isovector M1 tran-
sition with a remarkably large transition strength
B�M1�↑ =3.9�3��N

2 was found in 48Ca in electron scatter-
ing experiments �Steffen et al., 1980�. It was interpreted
as a rather pure neutron 1f7/2→1f5/2 excitation �Richter,
1985�. The �e ,e�� form factor of this transition serves as a
another prime example to study the problem of quench-
ing of the spin part of the isovector M1 response. Since
GT and M1 strengths are quenched by comparable
amounts, one can expect that the responsible processes
are the same. Two major mechanisms are expected to
contribute �Ericson and Weise, 1988�. On the one hand,
a polarization of the nuclear core by the nucleon under-
going a spin-isospin transition occurs, which leads to a
virtual excitation of high-lying states by the tensor force
in second order; hence it is named second-order core
polarization. Alternatively, the GT and M1 operators
are modified by virtual �-hole excitations, analogous to
the Lorenz-Lorentz correction in dielectrics �Delorme et
al., 1976�. Both mechanisms lead to different redistribu-
tions of the strength. Thus, by measuring the response
up to high excitation energies, the former mechanism
was shown to dominate for GT transitions �Ichimura et
al., 2006�. The study of the �e ,e�� form factor permits
one to delineate the contributions in the case of the M1
response �Richter, 1991�. The most refined calculations
�Takayanagi et al., 1988�, although still not able to fully
explain the amount of quenching, confirm the dominant
role of core polarization leading to mixing with 2p-2h
states over the �-hole part, which contributes about
10% to the strength reduction. This value is in agree-
ment with an analysis of the �-hole contributions to the
quenching of GT strength �Ichimura et al., 2006�.

2. Cross-shell transitions in 36,38,40Ar

Magnetic dipole strength distributions in 36Ar and
38Ar deduced from electron scattering experiments
�Foltz et al., 1994� reveal marked differences. Calcula-
tions in a 0�� model space �sd shell� with a phenomeno-
logical interaction, generally successful in the descrip-
tion of M1 and GT strengths �Brown and Wildenthal,
1988�, work well for 36Ar �with a closed neutron sd shell�
but fail completely for 38Ar �with two neutrons in the fp
shell�, indicating the importance of sd→ fp cross-shell
contributions. This problem was recently studied by
Lisetskiy et al. �2007� based on an effective interaction
including the coupling of sd to the 1f7/22p3/2 orbitals
�Caurier et al., 2001�. Such cross-shell calculations
present a limit of present-day computational capabilities
and still require a significant truncation of the model
space. The first results support the importance of an in-
clusion of cross-shell transitions and make specific pre-
dictions for the even more neutron-rich 40Ar. Some in-
formation on M1 strength in 40Ar has recently been

reported �Li et al., 2006�, but a measurement of the full
M1 strength distribution would be important.

3. l-forbidden transitions

In sd-shell nuclei, an effective shell-model M1 opera-
tor has been determined by an empirical fit to the large
body of data on magnetic and M1 transitions �Brown
and Wildenthal, 1987�. The deviations from the bare
operator are incorporated in correction factors for the
spin and orbital parts and an induced-tensor term. Mi-
croscopic calculations �Arima et al., 1987; Towner, 1987�
are in good agreement except for an isovector tensor
correction. Tensor corrections are generally weak and
therefore buried in the dominant spin strength for most
M1 transitions. However, experimental information on
the tensor correction terms can be obtained from
l-forbidden transitions �1d3/2↔2s1/2 in the sd shell�. The
term “l forbidden” refers to a selection rule for the one-
body operator of M1 or GT transitions which does not
allow a change of the orbital quantum number. The
higher-order corrections to the l-forbidden transitions
are theoretically expected to be dominated by � reso-
nance admixtures into the nuclear wave functions
�Arima et al., 1987; Towner, 1987� and they are a unique
observable in this respect. The problem has been studied
extensively in 1d3/2→2s1/2 single-hole transitions in A
=39 nuclei. One finds an order of magnitude larger M1
strength �Grundey et al., 1981� relative to the GT
strength �Hagberg et al., 1994�, while the microscopic
results predict the tensor correction governing the
strength to be the same. However, the interpretation
could be blurred by weak cross-shell admixtures of the
type discussed in Sec. V.D.2. Therefore, data away from
the end of the sd shell are important. One such example
is an �e ,e�� study of the l-forbidden transition to the 1+

state in 32S at Ex=7.003 MeV �Reitz et al., 1999�. The
form factor exhibits an anomalous momentum-transfer
dependence compared to allowed M1 transitions be-
cause its finite strength results from higher-order terms
only. The shell-model analysis reconfirms the discrep-
ancy between empirical and microscopic approaches to
determine the tensor correction, and the problem re-
mains unresolved so far.

Of course, l-forbidden transitions are not restricted to
the case 1d3/2↔2s1/2 but can appear between all pairs of
shell-model orbitals with quantum numbers �n , l , j= l
+1/2� and „n−1, l+2, j�= �l+2�−1/2…, where n is the ra-
dial quantum number, and l and j are the orbital and
total angular momenta. Experimentally, the single-
particle energies of corresponding pairs of states show a
near degeneracy in many nuclei. This led to the concept
of pseudospin symmetry, where the doublet structure is
expressed in terms of a “pseudo”-orbital angular mo-

mentum l̃= l+1, in which the two levels represent spin-
orbit partners with a ‘‘pseudo’’-spin s̃=1/2. While pseu-
dospin symmetry was empirically established 40 years
ago �Arima et al., 1969; Hecht and Adler, 1969�, a deeper
understanding has been lacking. Relativistic corrections
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�Bohr and Mottelson, 1969� have been suggested as a
possible source and applied with some success to de-
scribe magnetic moments of pseudospin partners near
the N=82 shell closure �Heyde et al., 1977�. Recently,
pseudospin symmetry has been interpreted as a relativ-
istic SU�2� symmetry of the Dirac Hamiltonian which
occurs when the attractive scalar and repulsive vector
nuclear mean fields cancel �Ginocchio, 2005�. Evaluating
this concept, Ginocchio �1999� derived a relation be-
tween the magnetic moments of the pseudospin partners
and the strength of the l-forbidden M1 transition be-
tween them. Application to data near a variety of magic
numbers reveals overall good correspondence with a few
marked deviations �von Neumann-Cosel and Ginocchio,
2000�.

4. Enhancement of magnetic dipole strength by meson
exchange currents

Direct signatures of mesonic exchange currents
�MECs� in experimental observables are usually re-
stricted to few-body nuclear systems �Ericson and Weise,
1988� with the exception of magnetic dipole properties
�moments and transition strengths� as discussed previ-
ously. One such example is discussed here. It is well es-
tablished in sd-shell nuclei that full 0�� shell-model cal-
culations with an effective operator are able to describe
the M1 and GT matrix elements �Arima et al., 1987;
Brown and Wildenthal, 1987; Towner, 1987�. In self-
conjugate even-even nuclei with ground-state spin and
isospin J ;T=0+;0 the set of final states populated by is-
ovector M1, GT−, and GT+ transitions forms a triplet of
isobaric analog states. Their transition strengths are di-
rectly related, if spin-orbital interference effects are neg-
ligible. This is certainly not the case for individual tran-
sitions but holds on the level of 10% when studying full
strength distributions of sd-shell nuclei �Hino et al.,
1988� because of the sign variations of the mixing term.

When comparing M1 and GT strength distributions in
24Mg, excellent agreement of the GT strengths among
each other and with the shell model result. However, the
same calculations significantly underpredict the M1
strength. Such an enhancement of the experimental M1
strength can be traced back �Richter et al., 1990� to
MEC contributions. To make this clear it is convenient
to describe the M1 and GT strengths in the following
form:

B�M1� = C�M� + Ml + M� + MV
MEC�2, �34�

B�GT� = �M� + M� + MA
MEC�2. �35�

Here Ml and M� are the orbital and spin matrix ele-
ments, and M� is the contribution of �-isobar admix-
tures to the strength. The numerical factor C in Eq. �34�
equals to 2.643 �N

2 using free nucleon g factors. Neglect-
ing the orbital part, the main difference between M1
and GT excitations lies in the MEC contributions, which
are of vector type for the former and of axial-vector type
for the latter. Since axial-vector currents are strongly

suppressed because of the conservation of G parity
�Towner, 1987�, deviations of the ratio R�M1/GT�
=�B�M1� /2.643�B�GT� from unity point toward an en-
hancement of the M1 strength by vector-type MEC con-
tributions. Besides 24Mg, a clear enhancement was also
observed in 28Si �Lüttge, von Neumann-Cosel, Neum-
eyer, Rangacharyulu, et al., 1996; von Neumann-Cosel
et al., 1997�. In 32S the situation is less clear �Hofmann
et al., 2002� because �e ,e�� form factors indicate signifi-
cant orbital admixtures in some of the strongest transi-
tions, and the experimental information on the M1
strength distribution is limited to an excitation energy of
12 MeV and therefore incomplete. Another problem
noted in Richter et al. �1990� was that spin-M1 strengths
in self-conjugate sd-shell nuclei deduced from forward-
angle �p ,p�� data �Crawley et al., 1982� are systemati-
cally about 20% larger than the corresponding
GT±strengths. However, this discrepancy can probably
be resolved utilizing the latest experimental develop-
ments allowing true 0° measurements combined with
high energy resolution �Tamii et al., 2009�.

5. Isoscalar and isovector M1 transitions in 12C and isospin
mixing

Isospin is an approximate symmetry in nuclei broken
by the long-range Coulomb force and also by small
charge-dependent components of the nuclear interac-
tion. In light nuclei, Coulomb effects are weak and ex-
cited states possess a well defined isospin quantum num-
ber T experimentally known in many cases. This allows
one to study isospin mixing between states of the same
J� but different T. Evidence for isospin mixing beyond
the Coulomb force has been claimed from the observa-
tion of very large isospin mixing matrix elements but
later it was realized that the predictions exhibit a strong
dependence on the poorly known radial wave functions
of the involved single-particle states �Auerbach, 1983�.

A unique testing ground are the M1 transitions to the
pair of J� ;T=1+;0 and J� ;T=1+;1 states in 12C at 12.71
and 15.11 MeV, respectively. These are of 1p3/2→1p1/2
spin-flip character. Form factors of both transitions �al-
beit weak for the isoscalar case� at low momentum
transfer have been measured with high precision in in-
elastic electron scattering �von Neumann-Cosel et al.,
2000�. Analysis in a two-state model determines not only
the mixing amplitudes but also the relative sign through
the q dependence of the form factors. The resulting
Coulomb matrix element Hc�=118�8� keV, determined
with unequaled precision, is large but can be fully ex-
plained by Coulomb mixing �Harney et al., 1986�.

VI. ISOVECTOR MAGNETIC DIPOLE TRANSITIONS IN
VIBRATIONAL NUCLEI

A. Introduction

In most of this review we have concentrated on the
magnetic dipole orbital and spin response in stable, de-
formed nuclei, which has been studied using both elec-
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tromagnetic and hadronic scattering off the nuclear
ground state �Sec. I.B�. In particular, the scissors 1+

mode was shown to be excited with a summed strength
that scales with the square of the nuclear deformation.
Therefore, with decreasing deformation entering the re-
gion near closed shells, the scissors mode as well as a
stable intrinsic quadrupole deformation will cease to be
formed. This mass region is characterized by small am-
plitude quadrupole vibrational oscillations as the major
degree of freedom, with typical B�E2;21

+→01
+� strength

of the order a few tens of Weisskopf units �W.u.�. The
low-energy nuclear structure properties result in a first
excited 21

+ phonon excitation which is an in phase mo-
tion �or symmetric mode� in the proton and neutron col-
lective motion, also called isoscalar �IS� mode. Mul-
tiphonon states can then be constructed, as shown in Fig.
3, in which the proton and neutron motion combines
into symmetric �or IS� excitations. However, mul-
tiphonon states can also arise rise from proton and neu-
tron motion combining into nonsymmetric �or IV� exci-
tations. Besides the 1+ states, which is the counterpart of
the scissors mode in the vibrational nuclei, also 0+, 2+,
3+, 4+, states result.

The appearance of IV proton-neutron excitations has
been proposed in the context of the IBM-2 �Arima et al.,
1977; Iachello, 1984; Otsuka and Ginocchio, 1985; Iach-
ello and Arima, 1987�. This approach points out that the
isovector excitations appear in a natural way by combin-
ing the lowest-lying proton and neutron 21

+ d-boson con-
figurations �Iachello, 1984; Van Isacker et al., 1986� into
states of mixed-symmetry �MS� character �Iachello,
1984�. Besides, the shell model constitutes a microscopic
framework in order to describe excitations that are non-
symmetric in its proton and neutron coordinates �Heyde
and Sau, 1986; Lisetskiy et al., 2000; Boelaert, Smirnova,
et al., 2007; Holt et al., 2007�. Moreover, it is possible to
describe isoscalar and isovector excitations within the
framework of a quasiparticle-phonon model which de-
fines RPA phonons and then to construct states in a ba-
sis of one-, two-, and three-phonon components. Since
this approach has a microscopic �QRPA� underpinning,
it allows one to bridge the gap between a fully micro-
scopic shell-model approach and the algebraic IBM-2
�Lo Iudice and Stoyanov, 2000, 2002, 2004, 2006; Lo Iu-
dice et al., 2009, 2008�.

In order to locate these mixed-symmetry �MS� states,
one can use the particular structure of the M1 and E2
operators. We have shown that the M1 magnetic dipole
operator can be separated into its isoscalar and isovector
parts �see Sec. III.B.1�. In view of the structure of the
isovector part, one expects strong magnetic dipole tran-
sitions in the decay of the mixed-symmetry states into
the low-lying symmetric states. Likewise, one can sepa-
rate the electric quadrupole operator T�E2�

T�E2� = e��
i=1

Z

ri,�
2 Y2�r̂i,�� + e
 �

i=Z+1

A

ri,

2 Y2�r̂i,
� , �36�

with e� and e
 the proton and neutron effective charges
into an isoscalar and isovector part

T�E2� =
e� + e


2
T�E2,IS� +

e� − e

2

T�E2,IV� . �37�

Here T�E2,IS� and T�E2,IV� are the symmetric and an-
tisymmetric combinations of the proton and neutron
parts of the E2 operator. Because of the specific symme-
try character of the IS and IV excitations, strong E2
transitions are expected between S and MS states, sepa-
rately, but rather weak E2 transitions from MS to S
states. These characteristics are highlighted in Fig. 3.

In view of the above discussion, the key signature, in
order to assign mixed-symmetry character to a state, de-
rives from the E2 and M1 decay properties: �i� strong
M1 transitions �B�M1� of the order of �1 �N

2 � to low-
lying symmetric states restricting to transitions between
states with equal number of phonons mainly, �ii� weak
collective E2 transitions �with transition probabilities
about 10% of the strong E2 transitions such as 21

+→01
+�

to low-lying symmetric states, and �iii� strong collective
E2 transitions among the MS states themselves.

B. Experimental results and theoretical description

From an experimental point of view, the study of MS
states in nuclei of vibrational and transitional structure
is rather different from the mapping of scissors mode 1+

excitations in deformed nuclei. In the latter case �see
Sec. I.B�, electron, photon, and hadron scattering start-
ing from the 0+ ground state in deformed nuclei allowed
to determine orbital and spin-flip M1 strength. In the
present situation, the identifying elements are both a
strong M1 transition into the isoscalar �mostly the 21

+

state� state accompanied by a weak E2 transition into
the 0+ ground state �with a magnitude of the order of a
few % of the B�E2;21

+→01
+� reduced transition probabil-

ity�. Thus, in order to obtain a unique characterization
of the mixed-symmetry states, different types of experi-
ments have to be carried out and combined. Typical ex-
periments will need to probe the lifetime of a given
level, the determination of J� values, �-decay branching
ratios and the ��E2/M1� mixing ratios and this for as
complete a set of states with given J� value. Classical
�-ray spectroscopic methods have to be used extensively
as well photon-scattering experiments as, e.g., � decay
following � decay that populates levels in nuclei under
study. Determining the nuclear lifetimes needs typically
the study of Doppler-shifted attenuation techniques
�DSAM� in �n ,n���, light-ion induced reactions, and
Coulomb excitation in inverse kinematics. Direct excita-
tion as used in electron scattering, photon scattering,
and Coulomb excitation on stable nuclei gives rise to
lifetimes in a rather straightforward way. A detailed re-
view of these techniques was presented by Kneissl et al.
�2006� and Pietralla, von Brentano, and Lisetsky �2008�.

1. The ZÈ40, NÈ50 mass region

The nucleus 94Mo forms a particularly suitable test
case of the above schematic picture because it has four
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protons outside of the Z=38 subshell closure and two
neutrons outside of the N=50 closed shell. With these
building blocks, ideal conditions show up to form both
symmetric and antisymmetric couplings of these pairs.
Detailed experimental studies have identified proton-
neutron mixed symmetry 2+ and 1+ states �Pietralla et al.,
1999�. In Fig. 49, the specific signatures of a MS 2+ state
�strong M1 transition into the 21

+ state, weakly collective
B�E2� transition from the ground state� are shown. The
data point toward the 23

+ state as the ideal MS candidate.
Experiments in 94Mo have furthermore shown �Pietralla
et al., 2000� evidence for two-phonon MS states built
from combining a symmetric �21

+� and antisymmetric �23
+�

state, thus forming states with spins in the range 0+–4+.
Clear-cut identification of the 2+ �Fransen et al., 2001�
and 3+ �Pietralla et al., 2000� members could be achieved
and candidates for the other spins were identified
�Fransen et al., 2003� based on the above discussed sig-
natures of MS states.

Independent evidence for one-phonon symmetric and
mixed-symmetric states has recently been demonstrated
in a combined study of high-resolution inelastic electron
and proton scattering off MS 2+ states in 94Mo �Burda et
al., 2007� when comparing with theoretical results de-
rived from quasiparticle-phonon, shell-model, and
IBM-2 calculations as shown in Fig. 50. Multiphonon
MS states have also been observed in the N=54 96Mo
nucleus �Lesher et al., 2007�.

The study of the variation in the MS states, keeping
the neutron number fixed at N=52 but changing the pro-
ton number, is quite interesting. In this spirit, experi-
ments have been carried out in 96Ru with Z=44 �Pi-
etralla, Barton, et al., 2001; Klein et al., 2002� pointing
out a strong similarity with 94Mo. Moreover, evidence
for a MS 1+ state was shown by Linnemann et al. �2005�.
A study of the 92Zr nucleus, with the same number of
neutrons, i.e., N=52, is quite different because in the

core nucleus, 90Zr, two 0+ states appear resulting from
the presence of both �1g9/2�0+

2 and �2p1/2�0+
2 configura-

tions. The 0+ ground state therefore acquires extra bind-
ing energy which distorts the vibrational spectra as com-
pared with the N=52 Mo and Ru nuclei. Still, photon
scattering �Werner et al., 2002� and �n ,n��� inelastic neu-
tron scattering have enabled to observe 2+ and 1+ states
with a MS character. Recent experiments �Elhami et al.,
2007, 2008; Werner et al., 2008� concentrated on the spe-
cial situation in the Zr nuclei.

The nuclei with proton number 40�Z�50 and neu-
tron number close to N=50 �here, N=52�, with in par-
ticular the nucleus 94Mo, form an ideal testing ground
for the IBM-2, the QPM, as well as the nuclear shell
model. It was shown �Iachello, 1984� that the IBM-2
framework naturally predicts a class of states with MS
character in the proton and neutron contributions. De-
tailed selection and intensity rules have been derived for
E2 and M1 transitions in the various limits of the IBM-2
�Scholten et al., 1985; Van Isacker et al., 1986�. Compari-
son of the IBM-2 results has been carried out in 94Mo as
well as the adjacent N=52 isotones Ru and Zr with a
consistent description of MS states with both a one- �2+�
and two-phonon �1+,2+ ,3+ ,4+� character as well as of
their decay properties to lower-lying symmetric zero-
and one-phonon states �see, e.g., Pietralla, von Bren-
tano, and Lisetsky �2008� for more detail�. Keeping
within the context of the IBM-2, a particular scheme
�called Q-phonon scheme� was set up by Otsuka and
Kim �1994�, which allows for the description of these
symmetric and MS excitations as phonons, applicable in
the U�5� and O�6� symmetry limits and in the transi-
tional nuclei between these two limits.

The IBM-2 has a drawback because the operator only
addresses the orbital part and specific spin contributions
are only considered in an average way. Therefore, mi-
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FIG. 49. Measured E2 and M1 strengths in order to identify
the 21,ms

+ state in 94Mo. �a� B�M1;2+→21
+� values for the seven

lowest-lying identified nonyrast 2+ states. �b� Corresponding
B�E2;01

+→2i
+� values. The error bars are displayed as boxes.

From Fransen et al., 2003.

FIG. 50. Inelastic electron and proton scattering off 94Mo.
Momentum-transfer dependence of the symmetric �21

+, upper
part� and mixed-symmetric �23

+, lower part� one-phonon exci-
tation cross sections in 94Mo in inelastic electron �left side� and
proton �right side� scattering. The data �full squares� are com-
pared to QPM �solid lines�, shell-model �dashed lines�, and
IBM-2 �dotted lines� predictions �Burda et al., 2007�.
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croscopic techniques are needed such as the standard
shell-model and quasiparticle-phonon �QPM� ap-
proaches. The QPM approach has been applied with
considerable success in the region of vibrational nuclei
by Lo Iudice and Stoyanov �2000, 2002, 2004, 2006� and
Lo Iudice et al. �2008�. In the Z=40, N=50 region, it
turns out that the 21

+ RPA phonon has mainly a symmet-
ric structure in the interchange of proton and neutron
labels �or is F-spin symmetric in the IBM-2 language�
whereas the 22

+ RPA phonon is antisymmetric �or of
F-spin MS nature� to a good approximation. The QPM
eigenvalue problem is then solved in a basis including up
to three-phonon states and considering many phonons
of different J� nature. These results give support to the
IBM-2 calculations carried out in which these s and d
bosons are the only building blocks. Detailed results are
given for 94Mo �Lo Iudice and Stoyanov, 2000, 2002� and
for 92Zr �Lo Iudice and Stoyanov, 2004, 2006�.

Large-scale shell-model calculations have been car-
ried out for 94Mo �Lisetskiy et al., 2000�, 96Ru �Werner et
al., 2002�, and 92Zr �Klein et al., 2002� in the Z=40, N
=50 mass region using a surface delta interaction and
treating all valence protons and neutrons outside of the
88Sr core with Z=38 and N=50. Here both the orbital
and spin matrix elements contribute, the latter part be-
ing non-negligible for M1 transitions and moments. As
in the IBM-2 and QPM, the same structure shows up.
The specific characteristics of M1 and E2 decay charac-
terizing excited states give a microscopic underpinning
to the concepts of symmetric and mixed symmetric exci-
tations as used in the Q-phonon classification. The fin-
gerprints that characterize the decay of MS states �see
Sec. VI.A� are clearly observed in the results �Lisetskiy
et al., 2000�. Shell-model calculations for the N=52 nu-
clei have been performed within the same model space
but now using matrix elements derived from the low-
momentum Vlow k nucleon-nucleon interaction �Holt et
al., 2007� giving a rather good reproduction of the ex-
perimentally observed results. In Fig. 51 besides the cal-
culated total M1 strength the orbital and spin contribu-
tions, which interfere constructively, are given
separately.

2. Nuclei near other doubly closed shell regions

a. The region near Z�50

The Cd and Te nuclei with two proton holes �two pro-
ton particles� away from the Z=50 Sn closed core, com-
bined with the neutron filling of the 50�N�82 neutron
shell form an interesting region to expect mixed-
symmetric states. In this mass region, a variety of experi-
ments have been carried out, including the �n ,n��� reac-
tion �Garrett et al., 1996; Bandyopadhyay et al., 2003�,
for 112,114Cd, photon scattering, eventually combined
with Compton polarimetry to deduce the parity unam-
biguously �Lehmann et al., 1999; Gade et al., 2003;
Kohstall et al., 2005� for 108–116Cd, � decay �Linnemann
et al., 2007� for 106Cd, and recoil-distance Doppler-shift
�RDDS� measurement after fusion-evaporation reac-
tions �Boelaert, Dewald, et al., 2007� for 102,104Cd. Evi-
dence for the presence of MS 2+ states, slightly above
2 MeV excitation energy, as well as for MS 1+ states, at
the higher excitation energy near 3 MeV, have been ob-
tained in almost all of these nuclei.

Shell-model calculations have also been reported for
the light Cd nuclei with A=98–106, using the same core
as before �88Sr�, treating all the available valence pro-
tons �10 in the case of Cd� and neutrons �Boelaert,
Smirnova, et al., 2007�. A detailed mapping of shell-
model states onto MS states for both 2+ and 1+ states
was performed using as criterium strong M1 transitions
to the 01

+ and 21
+ symmetric states combined with weak

E2 transitions to these same states, and strong E2 tran-
sitions in between the MS 2+,1+ states. Likewise, in the
even-even 122–130Te nuclei, an experimental search for
MS 1+ and 2+ states was performed by Schwengner et al.
�1997a, 1997b� using photon inelastic scattering, and in
124Te by Georgii et al. �1995� using a variety of reactions.
This resulted in the detection of candidates for mixed-
symmetric 2+ states, slightly above 2 MeV excitation en-
ergy. Recently Hicks et al. �2008� provided detailed re-
sults on fragmentation of MS 2+ states in the 122–130Te
nuclei. The deformation dependence of the ground-state
scissors mode strength in these isotopes could by suc-
cessfully reproduced by QRPA calculations �Guliyev et
al., 2002�.

b. The rare-earth region: 54�Z�60 and 72�N�82

Early evidence for the presence of MS 2+ states in
rare-earth nuclei resulted from an analysis by Hamilton
et al. �1984�. They showed that in nuclei with two neu-
trons outside of the N=82 closed neutron shell, with an
even number of protons filling the 50�Z�82 proton
shell, 2+ states near 2 MeV would show up. Experiments
at the ILL Grenoble using �-� directional correlation
experiments �from �-mixing ratios and branching ratios�
allowed one to find in 140Ba, 142Ce, and 144Nd a 23

+ state
with the typical M1 and E2 branching into the lower-
lying symmetric excitations. Recently these nuclei have
been studied using NRF and �n ,n��� scattering, even
extending up to 148Sm �Vanhoy et al., 1995; Hicks et al.,
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1998; Gade et al., 2000, 2004; Li et al., 2005; Mukho-
padhyay et al., 2008� showing evidence for MS 2+ states,
in most cases exhibiting fragmentation over a number of
2+ states near or just above to 2 MeV excitation energy.
Likewise, experiments have been carried out in the N
=80 nuclei 134Xe, 136Ba, and 138Ce using the same tech-
niques and Coulomb excitation �Pietralla, von Brentano,
Gelberg, et al., 1998; Scheck et al., 2004; Rainovski et al.,
2006; Pietralla, von Brentano, and Lisetsky, 2008; Will-
iams et al., 2009�. They again showed the presence of MS
2+ states and fragmentation, the latter changing quite
drastically with the proton number increasing from Z
=56 to 58. As shown in Fig. 52 it is even possible to
extract the strength of the residual proton-neutron inter-
action from the energy splitting between lowest symmet-
ric and mixed-symmetric 2+ state in these N=80 nuclei
�Ahn et al., 2009�.

The N=80 nuclei were extensively studied by Lo Iu-
dice et al. �2008� within the QPM approach and in a
large-scale shell-model study �Sieja et al., 2009�. These
calculations described rather well both the variation in
excitation energy and the changing fragmentation pat-
tern, moving from 132Xe to 140Nd.

A number of nuclei in which both the proton number
and neutron number is steadily increasing moving away
from the Z=50 and N=82 shell closure, such as
126,128,130Xe, 134Ba, and 136Ce, have been studied using
techniques as discussed before �Fazekas et al., 1992;
Wiedenhöver et al., 1997; Gade et al., 2000; Ahn et al.,
2007; Bettermann et al., 2009�. In these nuclei, the signa-
ture of a MS 2+ state shows up consistently slightly
above 2 MeV excitation energy.

c. The A�60 region

The region near the doubly magic nucleus 56Ni with
proton and neutron hole or particle pairs outside of the
Z=N=28 core may well give rise to MS couplings of
proton and neutron building blocks. The nucleus 56Fe
forms an ideal testing case and was studied by Eid et al.
�1986� using �-decay studies, and by Hartung et al. �1989�
in electron scattering. Clear-cut evidence for fragmenta-
tion of MS 2+ strength has been observed around
2.6–2.9 MeV. In nearby nuclei such as 54Cr and 66Zn,
candidates for MS 2+ strength have been detected near
3 MeV excitation energy �Lieb et al., 1988; Gade et al.,
2002�. It is interesting to note the increase in energy

from the heavier nuclei, where the typical energies are
closer to 2 MeV.

d. Heavy nuclei in the vicinity of 208Pb

The idea of low-lying 2ms
+ excitations appearing in re-

gions where the number of protons and neutrons forms
a stable closed shell has been shown to be a general
property all through the nuclear mass region. Therefore,
the region around Z=82 and N=126 should be a most
interesting region one in order to explore the appear-
ance of states which exhibit a MS character in the pro-
tons and neutrons. Early evidence was shown by Ahmad
et al. �1989� for 2+ states near 1.5 MeV in 200Hg. Like-
wise a 2+ state near 2.2 MeV was observed in 196Pt �von
Brentano et al., 1996; Jewell et al., 1997�. This region has
by now not been studied in a systematic way but the Hg,
Pt, and also the Po, Rn nuclei with neutron numbers
close to N=126 should form an ideal testing ground but
require radioactive beams.

C. Summary

To sum up this section, we have presented evidence
for isovector proton-neutron excitations in which small
amplitude quadrupole oscillations form the basic build-
ing blocks. These isovector excitations result in a natural
way in both shell-model, collective �geometrical and al-
gebraic�, and quasiparticle-phonon theoretical ap-
proaches. The characteristic fingerprint of strong M1
transitions between MS and symmetric collective states,
associated with weak E2 transitions from MS states into
the symmetric collective states, has allowed us to iden-
tify the MS states. They are most clearly observed when
a given nucleus only contains a few proton particles
�holes� and neutron particles �holes� outside of closed
shells. The Z�40, N�50 region is one of the best stud-
ied regions showing besides the lowest MS 2+ state,
more complex MS 1+, 2+, 3+, and 4+ states �Zr, Mo, and
Ru nuclei�. Recently the presence of MS states has been
accumulated in nuclei near Z�50 �such as the Cd, and
Te nuclei�, in the rare-earth region �54�Z�60, 72�N
�82� and also for lighter nuclei near the Z=N=28
closed shells. In view of the very general characteristic
of these excitations, one can expect them to appear in
nuclei adjacent to any doubly-closed shell nucleus.

VII. SCISSORS MODES IN OTHER MANY-BODY
SYSTEMS

A. Rotational magnetic excitations in other fermion systems

1. Deformed metallic clusters

Mass spectra for a particular class of metallic clusters
were produced more than 20 years ago �Knight et al.,
1984�. They exhibit large abundance peaks at N
=8,20,40,58,92,138, . . .. These clusters were produced
in the expansion of an inert gas �typically argon or xe-
non� through a 0.1–0.2 mm wide nozzle, in which the
random thermal motion of the atoms is converted into a
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uniform translational motion, thereby also causing a
cooling of the inert gas. Introducing atomic Na vapor
into this system results into large clusters with an overall
broad size distribution. Details of the mechanism were
described by de Heer �1993�. The peculiar observation
for Na clusters and later shown to exist also for Ag, Au,
and Cs, points toward extra stability associated with the
delocalized motion of atomic 3s electrons, bound in a
spherical potential �see de Heer et al. �1987� and Bjørn-
holm et al. �1990, 1992� for a detailed discussion�. The
observation of quantal effects in clusters of atoms estab-
lished a deep connection between various fields in phys-
ics such as electronic motion in atoms and nucleonic mo-
tion in nuclei.

The Hamiltonian describing the neutral cluster con-
sisting of N nuclei with Z electrons each is fully deter-
mined through the Coulomb force but is generally too
complex to be solved exactly. In simple metals, though,
such as Ag, Al, Na, etc., the separation into valence elec-
trons and core electrons �well bound and localized� leads
to the simplification of xN interacting electrons �x the
number of valence electrons per atom� moving in the
field caused by the N ions. A further step results in com-
pletely ignoring the nuclear motion, thus leading to an
electronic Hamiltonian of the form

Hel = �
k=1

xN � pk
2

2m
+ VI�rk�� +

1
2 �

l�k=1

xN
e2

�rk − rl�
, �38�

with the ionic potential VI�rk� defined as

VI�rk� = − �
i=1

N
xe2

�rk − Ri�
. �39�

The latter potential most often is replaced by some
pseudopotential. At the end, a rather drastic but effi-
cient approximation consists of averaging out the ionic
structure and replacing the corresponding charge distri-
bution by a “constant” background charge in a finite
�spherical, deformed, vibrating, and/or rotating� volume.
This defines the so-called jellium model as used in the
description of metallic bulk and surface properties
�Brack et al., 1991a, 1991b; Brack, 1992�.

Collective dipole excitations are well known in alkali-
metal clusters �de Heer et al., 1987; de Heer, 1993� which
correspond to the classical surface-plasmon oscillations
�Ashcroft and Mermin, 1976� of the electron cloud
against the positively charged ions forming the cluster.
The relative motion of protons versus neutrons in
atomic nuclei, giving rise to the giant electric dipole
mode is equivalent to the electric dipole mode that re-
sults in electron motion in atoms. For deformed metallic
clusters, a magnetic excitation of orbital nature was pre-
dicted by Lipparini and Stringari �1989b� at an energy
much lower than the classical plasmon frequency. A
macroscopic illustration of this new magnetic excitation
derives from a displacement field u of the electron mo-
tion in the valence cloud. The suggested form is

u = �̂xr +
�

1 + �/3
� �xy� , �40�

with �̂ the unit vector in the z direction. The cluster is
described with a deformed electron density profile

e = 0�x2/Rx
2 + y2/Ry

2 + z2/Rz
2� , �41�

with Rx=Rz and the deformation � defined by

� =
3
2

Ry
2 − Rx

2

Ry
2 + 2Rx

2 . �42�

This displacement field satisfies the condition � ·u=0.
The first term solely corresponds to a rigid rotation of
the electrons with respect to the jellium background and
implies a scissors mode �Fig. 53�a�� with a restoring force
that is due to the Coulomb attraction between the elec-
tron cloud and the ion positive charged background.
This is similar to the proton-neutron symmetry term
causing the restoring force in case of atomic nuclei. In-
cluding the quadrupole term in the displacement field,
i.e., ��xy�, the corresponding motion �Fig. 53�b�� corre-
sponds to a rotation within a spheroidal rigid surface
with a velocity field such that�v ·n�surface=0.

In the limit of small deformation, one can determine
the frequency of the magnetic mode �M1=	K /� with K
the energy change originating from the displacement
field and � the collective mass parameter �related to the
moment of inertia�

�M1 = �	 4�F

mrs
2N−1/3. �43�

In this section, we use throughout the convention �=c
=1. In deriving this result, the approximate relation,

r2� = 3
5rs

2N2/3, �44�

was used. In the particular case of Na clusters, with
rs=4 a.u. and �F=3.1 eV, the frequency becomes �M1
=� 4.6N−1/3 eV. In the range of clusters with N
=10–100 and for typical deformations �=0.2–0.4, the
frequency amounts to 0.2–0.6 eV, much lower than the
dipole plasmon frequency of 3.4 eV. This collective state

(a) (b)

FIG. 53. Displacement field for the magnetic dipole low-lying
rotational state. Results shown correspond to �a� a rigid rota-
tion of the electrons with respect to the jellium background
and �b� a rotation within a rigid surface. The direction of the
unit vector �̂ �z direction� points out of the plane. From Lip-
parini and Stringari, 1989a.

2407Heyde, von Neumann-Cosel, and Richter: Magnetic dipole excitations in nuclei: …

Rev. Mod. Phys., Vol. 82, No. 3, July–September 2010



carries considerable M1 strength B�M1���M1��B
2 or us-

ing explicit expressions for the frequency and the mo-
ment of inertia �Lipparini, 2003� becomes

B�M1� = 4
5�	�Fmrs

2N4/3�B
2 , �45�

which, in the particular case of Na clusters, reduces to
the result B�M1���N4/3�B

2 with �B the Bohr magneton.
The particular results for both �M1 and B�M1� have a
very similar form as the expressions derived in Eqs. �2�
and �3� for the nuclear case.

The above semiclassical results can also be derived
starting from microscopic calculations. A schematic two-
level RPA model was studied by Lipparini and Stringari
�1989a� with results that corroborate the macroscopic
approach. More detailed studies of the orbital magnetic
dipole mode were carried out by Nesterenko et al.
�1999�, based on a self-consistent RPA approach �Nest-
erenko et al., 1997; Kleinig et al., 1998�. Using a phenom-
enological Woods-Saxon potential, the results confirm
those obtained by Lipparini and Stringari �1989b� dis-
cussed before. We show in Fig. 54 the salient features of
the M1 strength distribution as derived for Na clusters,
in which the N dependence �moving from N=15 toward
N=295� becomes particularly clear. In the heavy clusters
with N�300, the M1 strength reaches large values of the
order of �350–400��B

2 with the strength remaining con-
centrated in a rather narrow energy interval. Therefore,
it is in the heavy clusters that the collective nature of the
M1 mode becomes particularly clear with a N−1/3 fre-
quency dependence as pointed out in Eq. �43�. This dis-
tinguishes the magnetic mode from the regular electric
dipole surface-plasmon mode, which is much better
documented experimentally. As pointed out, the
strength in exciting this magnetic dipole mode is so
much weaker than the electric dipole strength that it has
not been observed experimentally as yet, contrary to the

nuclear case as discussed in the major part of the present
paper.

2. Orbital current modes in deformed quantum dots

Recent advances in semiconductor technology have
allowed one to build nanostructures with varying shapes.
In these systems, electrons are laterally confined at the
semiconductor boundary and form a two-dimensional
�2D� quantum dot �see Alhassid �2000��. Until recently,
the vast majority of theoretical and experimental efforts
focused on systems with circular symmetry. Many of the
properties of these dots are well accounted for when
imposing a parabolic potential as confinement or invok-
ing the concept of a jellium disk �see Sec. VII.A.1�. Ex-
periments addressing deformed nanostructures using
Raman scattering and far-infrared spectroscopy �Sikor-
ski and Merkt, 1989; Demel et al., 1990; Strenz et al.,
1994; Schüller et al., 1996; Austing et al., 1999� have been
at the origin of theoretical studies relaxing on the circu-
lar symmetry �Koskinen et al., 1997; Hirose and Win-
green, 1999; Puente and Serra, 1999�.

With the breaking of the rotational symmetry of the
system �metallic cluster and quantum dot�, in particular
by introducing a quadrupole distortion, it turns out that
a low-energy orbital current excitation �OCE� is gener-
ated in the 2D dot with an energy dependence N−1/2 in
contrast with the N−1/3 dependence for three-
dimensional system �Lipparini, 2003�. Here N denotes
the number of electrons confined in the elliptic quantum
dot. Interesting here to remark is the fact that the fre-
quency goes to zero with N→ .

One can now perform essentially the same analysis as
was used in the description of deformed metallic clus-
ters, but now with an elliptic two-dimensional charge
distribution given as

e = 0�x2/Rx
2 + y2/Ry

2� , �46�

with Rx and Ry the ellipse radii and a deformation pa-
rameter ! defined by

! =
Ry

2 − Rx
2

Ry
2 + Rx

2 . �47�

The kinetic energy density has an expression analogous
to the charge distribution given in Eq. �46�. An OCE
follows, using a displacement field similar to the one dis-
cussed in Sec. VII.A.1 but for the 2D case which is ex-
pressed as �Serra et al., 1999�

u = �̂xr + ! � �xy� . �48�

The electronic motion becomes a collective rotating flow
along the ellipse contour lines. The frequency for this
orbital mode turns out to be

�OCE �
!

	1 − !2
	 16�F

3mrs
2N−1/2, �49�

where rs is the Wigner-Seitz radius �Ashcroft and Mer-
min, 1976�. Carrying out the same analysis but retaining
only the quadrupole deformation generating displace-
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FIG. 54. Energy distribution of the M1 strength for Na clusters
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acterizing the specific cluster is also given. From Nesterenko et
al., 1999.
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ment term u=��xy�, the frequency of the corresponding
quadrupole charge-density excitation �QCDE� becomes

�QCDE � 	2�0, �50�

where �0 is the average of the frequencies in x and y
directions for the confining parabolic potential. This fre-
quency is much larger than the frequency of the orbital
excitation. A most interesting illustration of the effects
of both modes is obtained when evaluating the magnetic

orbital response. This M1 response L̂z� has been calcu-
lated �Serra et al., 1999�, as a function of time, by modi-
fying the electron orbitals using the displacement opera-
tor of Eq. �48� �left-side part of Fig. 55� as well as the
corresponding M1 strength �right-side part of Fig. 55�.
Here the cases of �i� a pure rotational perturbation �ro-
tation�, �ii� orbital perturbation �OCE or scissors�, and
�iii� pure quadrupole perturbation are shown. These re-
sults are in line with the simple discussion of the fre-
quencies as presented before. The M1 orbital strength is
divided in two distinct regions: one at the higher-energy
side, which is associated with the quadrupole distortion,
and one at the low-energy end, associated with the or-
bital excitation. An in-depth study was presented by
Austing et al. �1999�. The distribution of scissors M1
strength in these elliptic quantum dots is quite similar to
the situation in strongly deformed nuclei in which the
M1 strength is also separated into a low-energy orbital
�the scissors mode� part and the higher-lying K�=1+

component of the isovector giant-quadrupole resonance
�see Sec. III.C�.

Besides these orbital charge-density excitations, it is
also possible to describe spin-density oscillations in

quantum dots. When the spin components oscillate in
phase, they describe the density modes; however, when
oscillating out of phase, spin modes can be created. A
particular interesting case is obtained as alternating ro-
tation of spin up and spin down densities in opposite
direction, This spin-twist mode is very soft �Puente and
Serra, 1999�, well below the spin dipole oscillation
modes.

3. Other Fermi systems

It turns out that scissor modes can also be realized in
a superfluid Fermi gas �Minguzzi and Tosi, 2001�. Con-
fining the Fermi gas inside a spherical harmonic trap and
solving the equations of motion for the density and con-
centration fluctuations gives rise to a single scissors fre-
quency for the superfluid situation and results in two
scissors frequencies in a normal Fermi gas.

Recently Hatada et al. �2005� suggested the possibility
that axially symmetric atoms in crystals with ionic bond-
ing can exhibit a scissors excitation. Its signature in this
case is the existence of a low-lying collective excitation
resulting from precessing atoms around the anisotropy
axis of the crystal cells. This excitation has a magnetic
dipole character and could be observed through the ab-
sorption of incoming photons which should exhibit a dif-
ferential dichroism. An extension to also cover crystals
with cubic symmetry was presented by Hatada et al.
�2010a�.

Other ways of observing scissors modes in crystals
start from a recent experiment that studied magnetic
properties of rare-earth systems �van der Laan et al.,
2008�. If one considers crystals in which the internal
electrostatic field is small with respect to the electron
spin-orbit coupling in the atoms, the so-called “spin-
orbit locking” situation, an applied external magnetic
field will rotate both the spin and charge density profiles
simultaneously. Switching off the magnetic field, the at-
oms will start oscillating around the axes of the crystal
cells �Hatada et al., 2010a�. Experiments have been pro-
posed that may be sensitive enough to detect the pho-
tons emitted when deexciting the scissors excitation
�Hatada et al., 2010b�.

B. Scissors modes of a trapped Bose-Einstein condensate

By now there exists a vast literature on trapped Bose-
Einstein condensates �Pitaevskii and Stringari, 2003;
Giorgini et al., 2008�. Superfluidity in these condensates
is one of the most spectacular consequences. It is, how-
ever, not easy to obtain unambiguous evidence for the
superfluid characteristics. Because superfluidity will af-
fect the moment of inertia of the trapped condensate
�such as a reduction over the classical rigid value�, one
could expect that a study of rotational properties of such
condensates can give rise to experimental evidence for
the existence of superfluidity. Guéry-Odelin and Strin-
gari �1999� studied the oscillatory behavior caused by
rotating a condensate with respect to the symmetry axis
when trapped in a deformed external potential of para-
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FIG. 55. Results for the time evolution of an elliptic quantum
dot with N=20 electrons, for a deformation value of !=0.28,
and this using three different initial perturbations: pure rota-
tion, orbital, and quadrupole distortions. In the left-side pan-
els, the simulated M1 signal, expressed as L̂z�, is plotted as a
function of time. The right-side panels show the corresponding
M1 excitation strength. The middle right-side panel also shows
the independent electron strength function �dashed line� and
the small arrows indicate the position of the solutions given by
Eqs. �49� and �50�. From Serra et al., 1999.
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bolic type. They concentrated in particular on the super-
fluid effects in the condensate. The restoring force asso-
ciated with such a rotation in the x-y plane is
proportional to �2, with the trapping potential given by

Vext�r� =
m

2
�x

2x2 +
m

2
�y

2y2 +
m

2
�z

2z2, �51�

with, moreover,

�x
2 = �0

2�1 + ��, �y
2 = �0

2�1 − �� . �52�

The mass parameter, determined by the moment of in-
ertia, in the superfluid case becomes proportional to �2

too �Rowe, 1970; Lipparini, 2003�. As a result, even
when the deformation of the external potential ap-
proaches zero, the frequency keeps a finite value. It is
only in the absence of superfluidity that the moment of
inertia regains its rigid value, and, therefore, a low-
frequency will characterize the oscillatory motion. The
outcome of the theoretical study �see Guéry-Odelin and
Stringari �1999� and Lipparini �2003�� is that a sudden
rotation of the trap symmetry axis by a small angle �0
will perturb the condensate from its equilibrium shape
and if the angle �0 is not too large, will start a scissors-
like motion3 in the x-y plane. This is shown schemati-
cally in Fig. 56 �right-hand side� in which both the trap-
ping potential and the condensate are drawn. An idea of
the dimensions of such condensates is also given. On the
left-hand side in Fig. 56, we compare with the analogous
situation in strongly deformed atomic nuclei, in which
protons and neutrons can give rise to a scissors motion.
Here too the dimension of the system is given in order
to stress the large difference in scales but keeping essen-
tially the same physics. Under the above conditions one
obtains

��t� = �0 cos��sct� , �53�

in which �sc=	2�0 or �sc=	�x
2+�y

2. In the absence of a
superfluid condensate and entering a high-temperature
regime, analytic solutions become possible �Guéry-
Odelin and Stringari, 1999� which, for small rotation
angles of the trap axis, are described by a differential
equation for ��t�. This equation now allows for different
solutions, propagating at high and low frequencies. In a
collisionless regime, the higher frequency becomes �+
=�x+�y and can be identified with an irrotational quad-
rupole oscillation. The lower frequency �−= ��x−�y�,
however, corresponds to the rotational mode of the sys-
tem, a component which is absent in the superfluid case.

Maragò et al. �2000, 2001� reported on a clear obser-
vation of the scissors mode with a Bose-Einstein con-
densed gas of 87Rb atoms brought into a magnetic trap.
They highlighted the importance of the discovery of the
scissors mode in atomic nuclei stating, “The experimen-
tal discovery of the scissors mode �Bohle, Richter, et al.,
1984�, first predicted in a geometrical model �Lo Iudice
and Palumbo, 1978; Lipparini and Stringari, 1983�, has
been one of the most exciting findings in nuclear physics
during the past two decades.”

The scissors mode has also been excited by a sudden
rotation of the deformed trapping potential �with the
constraints �x��z��y�. The condensate cooled to well
below the critical temperature for the Rb gas contains of
the order of 104 atoms. The time evolution of the scis-
sors oscillation �Fig. 57� exhibits a single undamped
mode corresponding to 265.6±0.8 Hz, which agrees with
the theoretical value of 265±2 Hz as deduced from �sc

=	�x
2+�y

2. This observation thus provides an unambigu-
ous demonstration of the superfluid nature the Rb con-
densate. In Fig. 57 we show the classical frequency and
the tilt angle for the trapped Bose-Einstein condensate
of 87Rb atoms, which correspond to 
=265.6±0.8 s−1

and �=7.2°, respectively.
It is instructive to compare the condensate result with

the scissors mode in the deformed nucleus 156Gd �Bohle,
Richter, et al., 1984�. We can extract both the frequency
�using the experimental energy of the 1+ state at Ex
=3.075 MeV� and a classical tilt angle identifying the re-

3The expression scissors mode has been taken over from
nuclear physics by the atomic physics and BEC community.
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FIG. 56. Schematic comparison of the scissors motion in
atomic nuclei with protons and neutrons generating the scis-
sors motion, on a length scale of 10 fm �left side�, and in Bose-
Einstein condensates trapped in an external potential, the lat-
ter acting on a length scale of 100 �m �right side�.
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storing force with the symmetry energy and making use
of the expression �= �CJintr /�2�−1/4 deduced from the
proton-neutron collective model �De Franceschi et al.,
1984; Nojarov et al., 1986� discussed in Sec. III.A.2. This
results in 
=7�1020 s−1 and ��6°. Thus, comparable
tilt angles are found characterizing the scissors motion,
albeit in different regimes of physics. A striking differ-
ence between the two systems, however, is the fact that
in the condensate the deformation of the trap can be
varied by choosing appropriate frequencies as well as
the temperature giving a large range to study the intri-
cate properties of quantum fluids and their transition
from the irrotational �superfluid case� to the rotational
regime. In the atomic nucleus, the deformation is fixed
for a given �Z ,N� combination.

Compared to the observation of scissors modes for
trapped Bose-Einstein condensates, scissorslike oscilla-
tions have also been observed in a quantum-degenerate
mixture of two such condensates consisting of different
atomic species, i.e., 41K and 87Rb �Modugno et al., 2002�.
In this case, the scissors mode is induced by interactions
between the two atomic species present in the trap.
Therefore, this situation is even closer to the nuclear
physics case where proton and neutron fluids are
present.

C. Rounding up

The above theoretical and experimental studies both
in fermionic �metallic clusters, quantum dots, Fermi gas,
and crystals� systems in which the electronic motion in
some “external” potential has been studied and in
bosonic systems �Bose-Einstein condensates in the su-
perfluid phase trapped in an external anisotropic poten-
tial� show the existence of scissors modes with proper-
ties in line of those observed in atomic nuclei. The
arguments can even be turned around: the observation
of low-lying scissors modes in these systems is a proof of
the superfluid characteristic of proton and neutron fluids
in the nuclear rotational motion.

VIII. CONCLUSIONS AND OUTLOOK

A. Conclusions

The study of the response of nucleons, moving inside
the atomic nucleus, to external �electromagnetic and
hadronic� probes in the magnetic dipole channel, dis-
cussed in depth in the present article, can be crystallized
and summarized in a succinct way. Here we take Figs.
1–3 as our guide.

�i� At the lower-energy side, orbital nucleonic mo-

tion is strongly excited by the L̂�− L̂
 part of the
M1 operator �contrarotational or scissorslike mo-
tion of protons versus neutrons�. This does not
show up, however, as a single collective state but
the orbital strength is fragmented within a rather
limited energy interval between 2.5 and 4 MeV.
In light nuclei, the strength distribution looks

more simple since it is contained mainly in the
2+��� � 2+�
�, 4+��� � 4+�
�, etc. configurations. In
strongly deformed rare-earth nuclei, there is more
spreading of strength which has been detected us-
ing �e ,e�� and �� ,��� reactions and not or very
weakly with proton scattering. A number of inter-
esting results are connected to the fact that the
non-energy-weighted M1 sum rule strength in the
interval 2.5–4 MeV exhausts the larger part of
the orbital M1 strength. Moreover, it was discov-
ered that this summed M1 strength correlates
strongly with deformation and thus with the
B�E2;01

+→21
+� strengths, indicating saturation

when progressing through the strongly deformed
rare-earth region.

�ii� Spin M1 strength is concentrated at higher excita-
tion energies because the spin-flip part of the M1
operator is mainly a 1�� excitation in the shell
model and has been studied throughout the re-
gion of deformed rare-earth and actinide nuclei.
In light nuclei, the strength is particularly associ-
ated with the spin-flip transition between spin-
orbit partners. In the heavier nuclei, it is the spin-
spin isospin-dependent part of the residual
interaction ��� ·��	� ·	�� that rules the concentration
or fragmentation of spin M1 strength.

�iii� At still higher excitation energies �2���, theoreti-
cal predictions indicate the presence of a K�=1+

component of the isovector giant quadrupole
resonance �IVGQR�, a state that could rightly be
associated with a collective scissors mode. Be-
cause of the high excitation energy, no systematic
experimental studies exist yet exploring such a
mode. Knowledge of the IVGQR strength, con-
nected to this response, allows the evaluation of
an energy-weighted sum rule to constrain the or-
bital M1 strength, which is exhausted to more
than 80%.

�iv� In nuclei with just a few valence protons and neu-
trons outside of closed shells, it has been experi-
mentally proven that low-lying mixed-symmetry
�isovector� 2+ excitations exist. They are charac-
terized by strong M1 decay into the first excited
21

+ state, a symmetric �isoscalar� mode in the pro-
ton and neutron motion, accompanied by weak
E2 decay into the 0+ ground state. The quadru-
pole degree of freedom dominates the low-energy
structure, resulting in energy spectra with a vibra-
tional character. However, isovector combinations
can also give rise to a 1+ state which is related to
the scissors 1+ state as it appears in strongly de-
formed nuclei.

�v� In odd-mass nuclei, the study of the M1 strength
distribution is more complicated because of the
odd-particle �-hole� coupling to the 1+ modes
which induces a large fragmentation. There oc-
curred a number of early problems in accounting
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for the observation of the M1 strength but the
present situation is such that, through careful
studies of the highly fragmented background
structures, the full summed M1 strength in odd-
mass nuclei is consistent with the summed M1
strength obtained in the adjacent even-even nu-
clei. Much more work needs to be done from the
side of theoretical studies in order to understand
the major mechanisms that can explain the frag-
mentation and the sometimes sudden important
changes in the observed fragmentation when go-
ing from nucleus to nucleus.

�vi� In the even-even nuclei, a number of general fea-
tures have resulted from detailed experimental
studies of the M1 response over many nuclei,
spanning the region from light to very heavy nu-
clei. One of the most important observations is a
strong correlation of the orbital magnetic dipole
response with other multipoles, in particular with
the E2 strength but also, be it in an indirect way,
with the nuclear charge radii, i.e., with the E0
strength. This connection has been formulated in
a more quantitative way using various M1 sum
rules that are proportional to the ground-state ex-
pectation value of the quadrupole-quadrupole
force and thus lead to new E2 sum rules. Lippa-
rini and Stringari �1989a� already pointed out such
a connection. The microscopic understanding of
this intimate relation between the M1 properties
on one side and the quadrupole and monopole
properties on the other side are more indirect. It
has been shown that the quadrupole deformation
of the nucleus spreads the individual single-
particle states �breaking the spherical symmetry�
and, with pairing included, the shell-model de-
scription of M1 strength is indirectly connected to
the E2 ground-state deformation characteristics
of the nucleus. This gives at the same time a natu-
ral explanation of the M1 orbital summed
strength saturation in the midshell region of the
rare-earth nuclei. It is a consequence of the fact
that the deformed rare-earth nuclei also exhibit a
saturation in the quadrupole deformation value
���0.25–0.30�.

�vii� At the present stage, the magnetic M1 strength
seems to be rather well understood and there ap-
pears a clear-cut concentration of orbital strength
at lower energies using various theoretical ap-
proaches: shell-model, QRPA and QPM calcula-
tions, and collective geometric and algebraic mod-
els all account rather well with the experimental
situation on a qualitative level. This is a highly
comforting situation with respect to the theoreti-
cal understanding of how M1 strength builds up at
the lower-energy side as mainly orbital in charac-
ter. Collective model approaches, however, by
their specific nature fail in accounting for the de-
tailed fragmentation. This holds for both the geo-

metrical and algebraic collective models. In order
to bridge the gap between the various theoretical
approaches, one will have to address and explore
the possibilities of large-scale shell-model calcula-
tions as a way to extract collective effects starting
from a microscopic basis.

B. Outlook and future perspectives

Having formulated a number of concluding elements
on how the nucleus responds when excited with electro-
magnetic and hadronic probes in the magnetic dipole
channel, a number of clear-cut problems remain to be
solved in the coming years. We also present a number of
topics that will deserve intensive thought and future ex-
perimental efforts such as to bring us closer to a quanti-
tative level of understanding the magnetic dipole chan-
nel �and some related other multipoles�.

�i� It will be particularly interesting to connect the
scissors 1+ mode, which was shown to be strongly
excited using electron and photon scattering off
deformed nuclei, to the recent observation of 1+

states in nuclei when approaching closed shells. In
the latter nuclei, the quadrupole mode determines
the dominant low-lying proton-neutron isoscalar
and isovector excitations. The exploration of a full
class of isovector �also called mixed-symmetry
states� excitations with spins ranging from 0+ to 4+

has begun but is clearly in need of still more sys-
tematic studies. In this quest, it is of utmost im-
portance to combine as many complementary
probes as possible �Coulomb excitation, lifetime
measurements, detailed �-spectroscopy measuring
branching ratios and ��E2/M1� mixing ratios,
etc.� so as to be able to pin down the nuclear wave
functions of these states.

�ii� The spin-flip magnetic dipole response that has
been studied using �polarized� proton-scattering
off nuclei in the energy region 5–10 MeV poses
some specific challenges. A particularly important
and unsolved problem at present concerns the
precise character of the two humps observed in
the spin-flip M1 strength distribution in many de-
formed nuclei. Theoretical studies come to oppos-
ing conclusions and only a more detailed experi-
mental survey of the precise charge character of
the two humps �proton or neutron versus isoscalar
or isovector� can resolve this issue. From the the-
oretical side and with the present-day numerical
capacities to perform large-scale shell-model cal-
culations, a precise survey of the M1 response in
both the sd-shell nuclei, in particular along the
N=Z line with nuclei such as 20Ne, 24Mg, . . ., 36Ar,
40Ca as well as in the heavier fp-shell nuclei would
be important, also in the light of existing high-
quality data in some of these light and medium-
heavy nuclei. Recent experimental developments
�Tamii et al., 2009�, which combine for the first
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time high-resolution measurements of the �p� ,p���
reaction at proton energies of several hundred
MeV with measurements at 0°, should allow one
to tackle all of these questions. Indeed, the feasi-
bility of such experiments has been proven for the
heaviest nuclei as shown in Fig. 58 for the ex-
ample of 208Pb �von Neumann-Cosel et al., 2009�.

�iii� The spin-flip magnetic dipole response, which is
connected to the axial-vector part of the Gamow-
Teller operator, may well be extended toward
higher excitation energies using the fact that the
spin-flip part probed in proton scattering is also
connected to the neutrino �axial-vector term� scat-
tering contribution. So, proton scattering may
provide valuable information concerning neutrino
scattering off nuclei in the giant resonance region
and, subsequently, give insight in neutrino-nucleus
cross sections and their importance in supernova
processes.

�iv� There are other magnetic modes to be explored
besides the dipole one, which formed the major
part of the present review. There has been a
search for magnetic quadrupole excitations of J�

=2− states in 48Ca and 90Zr using high-resolution
backward angle inelastic electron scattering �von
Neumann-Cosel et al., 1999�, extended to 58Ni
�Reitz et al., 2002�. Macroscopically, the orbital
M2 mode can be viewed as a vibrational counter-
rotation of different fluid layers in the upper and
lower hemispheres, hence the name “twist” mode
�Holzwarth and Eckart, 1977, 1979�. As for the
scissors mode, occurrence of an orbital M2 mode
is a general feature of quantum many-body sys-
tems as discussed, e.g., for the cases of metallic
clusters by Nesterenko et al. �2000� and ultracold
Fermi gases by Viñas et al. �2001�. Therefore this
mode deserves more intensive and systematic ex-
ploration.

�v� The proportionality of the summed M1 strength

to the nuclear deformation, more in particular
showing a �2 dependence, opens the possibility to
make use of measured magnetic dipole strengths
as a new fingerprint for exploring sudden shape-
phase transitions. Since there appear a number of
regions in the nuclear mass table that look like
potential places where sudden changes in nuclear
shape may occur, an in depth study of magnetic
dipole excitations in those regions can lead to ex-
tra information.

�vi� Last, but not least, a point of current interest is to
study the scissors mode moving away from the
valley of � stability. Because the nuclei to be ex-
plored are highly unstable, one will have to resort
to reactions in inverse kinematics such as Cou-
lomb excitation, inverse proton scattering utilizing
radioactive ion beam facilities such as RIKEN,
FAIR-GSI, SPIRAL II, and further on, FRIB.
New phenomena are expected �RIA, 2003� in very
neutron-rich nuclei when coupling a weakly
bound neutron skin to a well-bound deformed
core �cf. Fig. 59�. A soft scissors mode due to the
presence of a neutron skin, analogous to the soft
electric dipole mode, has been proposed within
both a geometrical approach by Van Isacker et al.
�1992� at an energy approximately half of the scis-
sors mode energy and within the IBM-2 �Warner
and Van Isacker, 1997; Caprio and Iachello, 2004�.
Considering the plans at FAIR, one may even
think about electron scattering on unstable nuclei.
These and more exotic possibilities may material-
ize at future RIB facilities, as discussed, e.g., in
recent report on upgrading the NSCL facility at
MSU �RIA, 2006�. The new generation facilities
should also allow one to systematically explore
mixed-symmetry states in the N�50 and �82 re-
gion by providing beams of high enough
luminosity.

To sum up, in the present review we have shown that
�i� the 1+ orbital scissors mode at low excitation energy,
�ii� the 1+ spin-flip mode at higher excitation energy, and
�iii� the 1+ component originating from the still higher-
lying isovector quadrupole mode are universal realiza-
tions of the nuclear many-body system. It turns out that

FIG. 58. Spectrum of the 208Pb�p� ,p��� reaction at E
=295 MeV and "=0° �von Neumann-Cosel et al., 2009� mea-
sured with an energy resolution �E�25 keV �full width at half
maximum�.

FIG. 59. �Color online� Schematic representation of the scis-
sors mode in stable deformed nuclei �left� as compared to ex-
otic nuclei with a weakly bound neutron skin �right�. From
RIA, 2003.
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these modes are not specific to nuclei only. On the con-
trary, the scissors mode also shows up in other many-
body systems. There is compelling evidence for M1 ex-
citations in deformed metallic clusters, in elliptically
deformed quantum dots and in Bose-Einstein conden-
sates of superfluid nature, and we have stressed the fas-
cinating interplay between nuclear physics and other
highly correlated many-body systems.
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