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Modern nanotechnology allows one to scale down various important devices (sensors, chips, fibers,
etc.) and thus opens up new horizons for their applications. The efficiency of most of them is based on
fundamental physical phenomena, such as transport of wave excitations and resonances. Short
propagation distances make phase-coherent processes of waves important. Often the scattering of
waves involves propagation along different paths and, as a consequence, results in interference
phenomena, where constructive interference corresponds to resonant enhancement and destructive
interference to resonant suppression of the transmission. Recently, a variety of experimental and
theoretical work has revealed such patterns in different physical settings. The purpose of this review
is to relate resonant scattering to Fano resonances, known from atomic physics. One of the main
features of the Fano resonance is its asymmetric line profile. The asymmetry originates from a close
coexistence of resonant transmission and resonant reflection and can be reduced to the interaction of
a discrete (localized) state with a continuum of propagation modes. The basic concepts of Fano
resonances are introduced, their geometrical and/or dynamical origin are explained, and theoretical
and experimental studies of light propagation in photonic devices, charge transport through quantum
dots, plasmon scattering in Josephson-junction networks, and matter-wave scattering in ultracold atom
systems, among others are reviewed.
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FIG. 1. (Color online) Ugo Fano (1912-2001). “Outstanding
interpreter of how radiation interacts with atoms and cells”
(Clark, 2001) and much more (this review).

I. HISTORICAL REMARKS

One of the important diagnostic tools in physics is
scattering of radiation (waves) by matter. It allows us to
investigate properties of matter and to control the radia-
tion. For example, Rydberg spectral lines (1888) of the
hydrogen atom allowed Niels Bohr to deduce his model
of an atom (1913), which laid the basis of quantum me-
chanics. Later, Beutler (1935) observed that some of the
Rydberg spectral atomic lines exhibit sharp asymmetric
profiles in absorption. It was Ugo Fano (1935) (Fig. 1)
who suggested the first theoretical explanation of this
effect and suggested a formula (also known as the
Beutler-Fano formula) that predicts the shape of spec-
tral lines based on a superposition principle from quan-
tum mechanics. The complexity of the physical phenom-
ena was encapsulated in a few key parameters, which
made this formula a workhorse in many fields of physics,
including nuclear, atomic, molecular, and condensed-
matter physics. According to Fano (1977): “the Beutler
spectra showed unusual intensity profiles which struck
me as reflecting interference between alternative mecha-
nisms of excitation.” The interpretation provided by
Fano of these “strange-looking shapes” of spectral ab-
sorption lines is based on the interaction of a discrete
excited state of an atom with a continuum sharing the
same energy level, which results in interference phe-
nomena. The first paper with a derivation of the line-
shape formula (Fano, 1935) was published in 1935 when
Fano was a young postdoctoral fellow in the group of
Enrico Fermi. Fano has acknowledged the influence of
his teacher on the derivation of this key result. The sec-
ond, much more elaborated, paper (Fano, 1961) became
one of the most important publications in the physics of
the 20th century rated among the first three most rel-
evant works published in Physical Review (Redner,
2004), with over 5700 citations by now (July 2010). “The
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paper appears to owe its success to accidental circum-
stances, such as the timing of its publication and some
successful features of its formulation. The timing coin-
cided with a rapid expansion of atomic and condensed
matter spectroscopy, both optical and collisional. The
formulation drew attention to the generality of the in-
gredients of the phenomena under consideration. In
fact, however, the paper was a rehash of work done
25 years earlier” (Fano, 1977; Vittorini-Orgeas and Bi-
anconi, 2009). In his pioneering papers, Fano introduced
an important new ingredient of matter-radiation interac-
tion in atomic physics, making him a key player in 20th-
century physics. This was also acknowledged by the
Fermi Award in 1995 for “his seemingly formal use of
fundamental theory” leading to “the underpinning of a
vast variety of practical results which developed natu-
rally from this understanding.”

Remarkably, the first observation of the asymmetric
line shapes can be traced back to the discovery made by
Wood in 1902, namely, the presence of unexpected nar-
row bright and dark bands in the spectrum of an optical
reflection grating illuminated by a light source with
slowly varying wavelength (Wood, 1902). Wood was as-
tounded to see that under special illumination condi-
tions the grating efficiency in a given order dropped
from maximum to minimum illumination, within a wave-
length range not greater than the distance between the
sodium lines. These rapid variations in intensities of the
various diffracted spectral orders in certain narrow fre-
quency bands were termed anomalies since the effects
could not be explained by the conventional grating
theory (Wood, 1935). The first theoretical treatment of
these anomalies is due to Lord Rayleigh (1907). His “dy-
namical theory of the grating” was based on an expan-
sion of the scattered electromagnetic field in terms of
outgoing waves only. This theory correctly predicted the
wavelengths (Rayleigh wavelengths) at which anomalies
occurred. However, one of the limitations of Rayleigh’s
approach is that it yields a singularity at the Rayleigh
wavelength and, therefore, does not give the shape of
the bands associated with the anomaly. Fano tried to
overcome this difficulty in a series of papers (Fano, 1936,
1937, 1938, 1941) by assuming a grating consisting of
lossy dielectric material and suggesting that anomalies
could be associated with the excitation of a surface wave
along the grating. The resonant excitation of leaky sur-
face waves near the grating, which occurs when a suit-
able phase matching between the incident plane wave
and the guided wave is satisfied, leads to a strong en-
hancement of the field near the grating surface (Hessel
and Oliner, 1965; Sarrazin et al., 2003; de Abajo, 2007).
As pointed out by Sarrazin et al. (2003), the observed
asymmetric profiles can be fitted by the Fano formula
with good accuracy. Thus, the interaction of excited
leaky modes with incoming radiation leads to similar in-
terference phenomena as in absorption by Rydberg at-
oms, where a leaky mode can be associated with a dis-
crete state and the incoming radiation with a continuum.
These examples reveal the universality of Fano’s ap-
proach in describing the origin of asymmetric line
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shapes in terms of interference phenomena, regardless
of the nature of the constituting waves, as well as in
predicting both the position and the width of the reso-
nance.

Similar asymmetric profiles were observed in various
other systems and settings. But sometimes it is not obvi-
ous to determine the origin of the interference. In the
present review, we provide a general explanation of the
appearance of the Fano resonances in various physical
systems based on a simple model, which sheds light on
the origin of the interference phenomena, and is well
along the lines of Steven Weinberg: “our job in physics is
to see things simply, to understand many complicated
phenomena in a unified way, in terms of a few simple
principles” (1979 Nobel Prize lecture). The aim of this
review is to demonstrate that the concept of the Fano
resonance can be applied to control transport and scat-
tering properties of waves in nanoscale devices.

II. THE FANO RESONANCE

We start from a description of systems where the Fano
resonance is typically observed. It will allow us to dem-
onstrate its basic properties and necessary conditions,
which will be covered in more detail below.

A. Two oscillators with a driving force

Usually, a resonance is thought to be an enhancement
of the response of a system to an external excitation at a
particular frequency. It is referred to as the resonant fre-
quency or natural frequency of the system. In many clas-
sical textbooks a resonance is introduced by the means
of a harmonic oscillator with periodic forcing. When the
frequency of the driving force is close to the eigenfre-
quency of the oscillator, the amplitude of the latter is
growing toward its maximal value. Often many physical
systems may also exhibit the opposite phenomenon
when their response is suppressed if some resonance
condition is met (which has, even lead to the term anti-
resonance). The simplest example can be illustrated us-
ing two weakly coupled harmonic oscillators, where one
of them is driven by a periodic force [see Fig. 2(a)]. In
such a system, in general, there are two resonances lo-
cated close to the eigenfrequencies w; and w, of the os-
cillators (Joe et al., 2006). One of the resonances of the
forced oscillator demonstrates the standard enhance-
ment of the amplitude near its eigenfrequency w_, while
in correspondence with the resonance w, we see an un-
usual sharp peak in the amplitude [see Figs. 2(b) and
2(c)]. The first resonance is characterized by a symmetric
profile, described by a Lorentzian function and known
as a Breit-Wigner resonance (Breit and Wigner, 1936).
The second resonance is characterized by an asymmetric
profile. It exhibits total suppression of the amplitude of
the forced oscillator at the eigenfrequency of the second
oscillator w,. The amplitude of the first oscillator be-
comes zero as a result of destructive interference of os-
cillations from the external force and the second oscilla-
tor. Indeed, it is known that the phase of the single
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FIG. 2. (Color online) Resonances of parametrically driven
coupled oscillators. (a) Schematic view of two coupled damped
oscillators with a driving force applied to one of them; (b) the
resonant dependence of the amplitude of the forced oscillator
|c1], and (c) the coupled one |c,|. There are two resonances in
the system. The forced oscillator exhibits resonances with sym-
metric and asymmetric profiles near the eigenfrequencies w,
=1 and w,=1.2 (b), respectively. The second coupled oscillator
responds only with symmetric resonant profiles (c). Adapted
from Joe et al., 2006.

forced oscillator exhibits a 7 jump at the resonance,
meaning that below the resonance the oscillator is in
phase with the driving force, and it becomes out of
phase above the resonance (Joe et al., 2006). In the case
of two coupled oscillators at the resonance of the second
oscillator there are effectively two driving forces acting
on the first oscillator, which are out of phase and cancel
each other. This example demonstrates one of the basic
properties of the Fano resonance, namely, resonant de-
structive interference, which makes it unique among
other resonances.

B. Light and atoms

The resonances with asymmetric line shape were first
described by Fano (1935, 1961) when he was attracted by
unusual sharp peaks in the absorption spectra of noble
gases observed by Beutler (1935). The nature of the
asymmetry was established with the theory of configura-
tion by Fano (1961). The photoionization of an atom can
proceed in various ways (Fig. 3). The first, straightfor-
ward one, is the excitation of the inner-shell electron
above the ionization threshold A +Av— A*+e. Another
possibility is to excite the atom into some quasidiscrete
level, which can spontaneously ionize by ejecting an
electron into the continuum, A+#v— A*— A*+e. Such
levels were said to be autoionizing, after Jevons and
Shenstone (1938). In other words, the autoionized state
is a bound state of an atom with energy above the first
ionizing threshold. Autoionization is one of the most
fundamental electron-electron correlation phenomena,
and it is forbidden in the noninteracting-particle ap-
proximation (Connerade, 1998). One of the possible au-
toionized states follows from the excitation of two elec-
trons by one photon when the excitation energies of
each electron are of the same order of magnitude and
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FIG. 3. (Color online) Fano resonance as a quantum interfer-
ence of two processes: direct ionization of a deep inner-shell
electron and autoionization of two excited electrons followed
by the Auger effect. This process can be represented as a tran-
sition from the ground state of an atom |g) either to a discrete
excited autoionizing state |d) or to a continuum |c). Dashed
lines indicate double excitations and ionization potentials.

the total excitation energy exceeds the atom ionization
threshold. The interaction between electrons leads to
the decay of this state when one electron transfers into a
lower state and the second electron is ejected into the
continuum, using the energy of the relaxed electron. In
spectroscopy, this process is known as the Auger effect
(Auger, 1925a, 1925b, 1926). Different types of other au-
toionizing states are described by Smirnov (2003). In
general, autoionization can be considered as a mecha-
nism that couples bound states of one channel with con-
tinuum states of another. Because of the superposition
principle of quantum mechanics, whenever two states
are coupled by different paths, interference may occur.

Fano used a perturbation approach to explain the ap-
pearance of asymmetric resonances. He considered a so-
called prediagonalized state by putting the coupling be-
tween discrete bound states, which is degenerate in
energy with a continuum of states, to zero. Such a pre-
diagonalized state may or may not have a clear physical
analogy but serves in any case as a convenient math-
ematical construction, which allows us to solve the prob-
lem. As a result, Fano obtained the formula for the
shape of the resonance profile (Fano, 1935, 1961) of a
scattering cross section:

2
7= (;++q1) ' W

using a phenomenological shape parameter g and a re-
duced energy e defined by 2(E—-Ep)/I'. Epis a resonant
energy and I is the width of the autoionized state. Equa-
tion (1) suggests that there are exactly one maximum
and one minimum in the Fano profile,

Omin=0 ate=-gq,

2
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FIG. 4. (Color online) Illustration of the Fano formula (1) as a
superposition of the Lorentzian line shape of the discrete level
with a flat continuous background.

omax=1+¢q*> ate=1/q.

In his original paper, Fano (1961) introduced the asym-
metry parameter ¢ as a ratio of the transition probabili-
ties to the mixed state and to the continuum (Fig. 4). In
the limit |g| — o, the transition to the continuum is very
weak, and the line shape is entirely determined by the
transition through the discrete state only with the stan-
dard Lorentzian profile of a Breit-Wigner resonance.
When the asymmetry parameter g is of the order of
unity, both the continuum and discrete transitions are of
the same strength, resulting in the asymmetric profile
[Eq. (1)], with the maximum value at E,,=Ep+1/(2q)
and minimum at E;,=FEr—I'q/2. The case of zero
asymmetry parameter ¢=0 is unique to the Fano reso-
nance and describes a symmetrical dip, sometimes called
an antiresonance (see Fig. 5). The main feature of the
Fano resonance is the possibility of destructive interfer-
ence, leading to asymmetric line shapes (Piao et al., 1990;
Nockel and Stone, 1994; Lee and Kim, 2000a; Bianconi,
2003; Bandopadhyay et al., 2004; Rau, 2004). The actual
resonant frequency of the discrete level Ep may lie
somewhere between the maximum and the minimum of
the asymmetric profile, and the parameter g defines the
relative deviation. In the situation |g|— o, the resonant
frequency coincides with the maximum of the profile,
while in the case ¢=0 the resonant frequency coincides
with the minimum. For g=1 it is located exactly at half
the distance between the minimum and maximum (see
Fig. 5).

e
o

o
=N

0.4
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FIG. 5. (Color online) Normalized Fano profiles (1) with the
prefactor 1/(1+¢?) (2) for various values of the asymmetry
parameter q.
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Because of recent advances in the generation of ul-
trashort attosecond pulses, Wickenhauser et al. (2005)
theoretically investigated the possibility of observing the
buildup of Fano resonances in time using attosecond
streaking techniques. Excitation by an ultrashort pump
pulse opens two interfering paths from the ground state
to the continuum, which are then studied by a weak
probe pulse. After the characteristic time of the autoion-
izing level, the transient coupling to the resonant state
starts to “burn a hole” in the energy distribution of the
initial Gaussian. This method may become useful in de-
termining both coherent and incoherent pathways to
ionization.

The Fano formula (1) was successfully used to fit and
explain various experimental data (Simpson and Fano,
1963; Fano, 1964, 1965; Fano and Cooper, 1965, 1968;
Heinzmann et al., 1970; Kessler and Lorenz, 1970; Fano
and Lee, 1973; Smith et al., 1973; Ramaker and Schrader,
1974; Bandrauk and Laplante, 1976; Kleinpoppen and
McDowell, 1976; Davis and Feldkamp, 1977; Druger,
1977; Armstrong et al., 1978; Dixit and Lambropoulos,
1979; Feneuille et al., 1979; Heller and Mukamel, 1979;
Yafet, 1981; Ganz et al., 1984; Ley et al., 1984; Harmin,
1985; Janzen et al., 1985; Oliveira and Wilkins, 1985;
Becker et al., 1986; Syage and Wessel, 1987; Ueda, 1987;
Meijerink and Blasse, 1989; Nussenzweig et al., 1990;
Chergui et al, 1991; Winstead and Langhoff, 1991;
Maeda et al., 1992; Sturm et al, 1992; Taylor and
Johnson, 1993; Nockel and Stone, 1994; Roney, 1994a,
1994b, 1995; Sanchez and Martin, 1994; dell’Orto et al.,
1995; Siegner et al., 1995; Simonian et al., 1995; Aoki et
al., 1996; Bar-Ad et al., 1997; Waligorski et al., 1997; Lee,
1998; Mehlhorn, 1998; Patthey et al., 1999; Pichl et al.,
2000; Marinho et al., 2001; Glutsch, 2002; Kokoouline et
al., 2002; Bortchagovsky and Fischer, 2003; Eichmann et
al., 2003; Bandopadhyay et al., 2004; Margulis and Pya-
taev, 2004; Kolorenc et al., 2005; Wickenhauser et al.,
2005; Hase et al., 2006; Xu and Xiong, 2006; Fransson
and Balatsky, 2007), thus revealing the underlying
mechanism of the observed resonances in terms of
quantum-mechanical interaction between discrete and
continuous states. In nuclear and atomic physics, inter-
ferences often originate from the interaction of open
(continuum) and closed (discrete-level) channels (Fesh-
bach, 1958, 1962). Bhatia and Temkin (1984) unified the
approaches of Fano and Feshbach with ab initio calcula-
tions and derived a rigorous expression for the asymme-
try parameter g (Bhatia and Temkin, 1984).

There are certain limitations to the applicability of the
Fano formula (1) (Connerade, 1998). First, it can be ap-
plied to describe only single isolated resonances. The
appearance of more than two propagation paths will
change the profiles. Second, the width of the discrete
level should be narrow compared to other resonant
structures in the scattering profile.

In general, the Coulomb interaction between an out-
going electron e~ and a charged ion core A™ during auto-
ionization leads to a renormalization of the energy levels
of the many-electron system. Such a renormalization is
known as the quantum defect of the Rydberg series. To
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precisely describe the positions and width of the reso-
nances, a multichannel quantum-defect theory was de-
veloped by Seaton (1966) and Fano (1970), which pro-
vides a rigorous description of the process. It allows us
to derive all asymptotic quantities such as phase shifts or
amplitudes of the autoionized levels. Equation (1) was
derived by Fano by neglecting effects due to long-range
Coulomb interaction. Still, it provides a physical insight
into the autoionization process in terms of quantum-
mechanical interference of discrete and continuum
states.

At the resonance the phase of the scattering wave
changes sharply by 7. Thus, the interaction of scattering
waves will result in constructive and destructive interfer-
ence phenomena located very close to each other, corre-
sponding to a maximum £, and a minimum E_;, of
the transmission and absorption, respectively. The width
of the resonance is proportional to the distance between
them, I'~ |E,.x— Eminl- In principle, they may be located
close to each other E .=~ E ., resulting in a very nar-
row resonance ['=0, corresponding to a long-lived qua-
sibound state (Stillinger and Herrick, 1975). Using arti-
ficial one-dimensional potentials, one can even achieve
I'=0 (von Neumann and Wigner, 1929), as a proof of
concept. By applying Feshbach’s theory of resonances to
two overlapping Fano resonances, Friedrich and Wint-
gen (1985a, 1985b) demonstrated that the interference of
several autoionization levels of a Rydberg atom may
lead to the formation of bound states in the continuum
with anomalously narrow resonances.

C. Light and structured matter

Experiments on the absorption cross section of a
single quantum dot, which is often considered as an ar-
tificial atom, revealed that the asymmetry parameter g
can be continuously tuned with the power of the laser
(Kroner et al., 2008). In this system, the transition rate to
the discrete level saturates at high power, while with in-
creasing laser power, the rate of the continuum transi-
tion does not (Zhang et al., 2006). Eventually, the ini-
tially weak continuum transition rate will match the
saturated transition rate to the discrete level. As a result,
a symmetric Lorentzian profile at low power will trans-
form to an asymmetric Fano profile at sufficiently large
power (see Fig. 6).

While probing bound-state formation in quantum
point contacts, the detector conductance exhibits a well-
defined Fano resonance, whose asymmetry can be
changed by contact separation (Yoon et al., 2009). This
effect became known as detector backaction in
quantum-mechanical measurement, because there is
wave-function overlap between the bound state and the
detector. This interaction, however, can be controlled
with the use of additional gates (Yoon et al., 2009). This
approach may become important in quantum computing
during qubit manipulation processes (Mourokh et al.,
2005).
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FIG. 6. Tuning of the asymmetry parameter of the Fano resonance. Measured (upper row) and calculated (bottom row) absorption
spectra of a single quantum dot for various laser powers. The absorption profile varies from a symmetrical to an asymmetrical one
with increase of the laser power, indicating the enhancement of the continuum transition. From Kroner et al., 2008.

In biased semiconductor superlattices, the Fano cou-
pling parameter I' between the discrete state and the
continuum can be continuously tuned by variation of the
applied electric field (Holfeld et al., 1998). The external
bias gives rise to Wannier-Stark states, which interact
with excitons and result in asymmetric absorption spec-
tra of the Wannier-Stark transitions (Hino and Toshima,
2005; Xu and Xiong, 2006). The external bias determines
the energy spacing of a Wannier-Stark subband and thus
controls the effective coupling between the discrete
states and the continua. It allows us to study the dephas-
ing dynamics of the Fano resonance.

In general, the asymmetry parameter g is not re-
stricted to be only real (Kobayashi et al., 2003). In sys-
tems with broken time-reversal symmetry, transition am-
plitudes to the discrete level and to the continuum may
become complex, as does the asymmetry parameter. The
Fano resonance in such systems can be studied by ana-
lyzing the dynamical response. In particular, Misochko et
al. (2005) found that the time-dependent reflection of
light by a bismuth single crystal after excitation by an
ultrashort laser pulse exhibits Fano asymmetric profiles
in the Fourier transform of a time-periodic signal. They
demonstrated that the asymmetric parameter varies pe-
riodically with the time delay between pump and probe
pulses. The breaking of time-reversal symmetry is indi-
cated by a change in the sign of the asymmetry param-
eter. Moreover, Bérnthaler ef al. (2010) suggested using
the complex g parameter as a probe of decoherence in
wave transport either via dissipation or dephasing. The
parameter variation of Fano resonances and the degree
of decoherence was implemented in transport through
microwave billiards (Rotter et al., 2004).

Asymmetric line shapes were also observed in Raman
spectra of heavily doped semiconductors (Hopfield et al.,
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1967; Bell et al., 1973; Cerdeira et al., 1973a; Bechstedt
and Peuker, 1975; Chandrasekhar et al., 1978; Magidson
and Beserman, 2002) and high-7. superconductors
(Friedl et al., 1990; Limonov et al., 1998, 2000; Misochko
et al., 2000). Although almost any asymmetric profile of
these spectra can be fitted by the Fano formula (Cer-
deira et al., 1973b; Cardona et al., 1974; Cardona, 1983;
Menéndez and Cardona, 1985; Belitsky et al., 1997; Jin et
al., 2001; Hase et al., 2006; Lee et al., 2006; Aleshkin et
al., 2007; Jin and Xu, 2007), a suitable theory for a quan-
titative description of these cases is still lacking. The
general qualitative understanding is that the absorbed
photon can initiate two kinds of processes. The first one
is the interband or intraband electronic transition from
the ground state to the continuum. The second process
is the transition to an intermediate state followed by a
one-phonon Raman emission and electron transition to
either the initial ground state or the excited donor state.
Thus, the interference of two processes may in principle
result in Fano resonance.

D. Atoms and atoms

When two atoms collide with each other, a quasi-
bound state can be formed, which is characterized by a
complex energy E=Ep+il'. In scattering theory this qua-
sibound state is called a resonance since it possesses a
finite lifetime A/I". The quasibound state is formed due
to the excitation and sharing of electrons and can be
interpreted as an interaction between discrete and con-
tinuous states (see Fig. 3). In a similar manner, the ob-
served asymmetric resonances in predissociation (Ban-
drauk and Laplante, 1976; Cotting et al., 1994; Lewis et
al., 2001; Lebech et al., 2006; Palffy et al., 2007) (or frag-
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FIG. 7. (Color online) Two-channel model for a Feshbach
resonance. Atoms that are prepared in the open channel un-
dergo a collision at low incident energy. In the course of the
collision, the open channel is coupled to the closed channel.
When a bound state of the closed channel has energy close to
zero, a scattering resonance occurs. From Bloch er al., 2008.

mentation) of molecules were explained by Rice (1933)
in terms of autoionization. The concept was introduced
by Feshbach (1958) in the context of reactions forming a
compound nucleus. A Feshbach resonance in a two-
particle collision appears whenever a bound state in a
closed channel is coupled resonantly with a scattering
continuum of an open channel (Bloch et al., 2008). The
scattered particles are temporarily captured in the qua-
sibound state, and the associated long time delay gives
rise to a Breit-Wigner-type resonance in the scattering
cross section (see Fig. 7).

A recent series of studies was devoted to the explicit
calculation of scattering states for one-dimensional
chains with two interacting bosons or fermions (Grupp
et al., 2007; Nygaard et al., 2008a, 2008b; Valiente and
Petrosyan, 2009). These systems allowed for two-particle
continuum states but also for bound states of two par-
ticles. By tuning of the Bloch wave number, the bound
state dissolves into the two-particle continuum. How-
ever, its trace inside the continuum remains, leading to a
7 phase shift of the scattering phase and to correspond-
ing Fano or Feshbach resonances in the scattering
length. Notably in these problems a clear notion of reso-
nant transport is absent since there is no difference be-
tween a probe beam and a target owing to indistinguish-
ability of the two particles.

Efimov predicted that a three-body quantum system
can support weakly bound states (trimers) under condi-
tions when none of the three constituent pairs are bound
(Efimov, 1970, 1971). Efimov trimer states appear in the
limit where the two-body interaction is too weak to sup-
port a two-body bound state (dimer). Such trimer states
should exist regardless of the nature of the two-body
interaction and thus are generic in few-body systems.
Recently, the first experimental observation of Efimov
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states has been reported in ultracold cesium trimers
(Kraemer et al., 2006) by measurement of the three-body
recombination process Cs+Cs+Cs— Cs,+Cs. The fin-
gerprint of Efimov trimers in this system appears as a
resonant enhancement and suppression of three-body
collisions as a function of the two-atom interaction
strength (Esry and Greene, 2006; Kraemer et al., 2006)
with typical asymmetric profiles. Mazumdar et al. (2006)
explained this asymmetric response in terms of a Fano
resonance, suggesting that the asymmetry can be used as
a diagnostic tool for the Efimov effect.

Despite the complexity of the original system where
the Fano resonance was first observed, the phenomenon
turned out to be a universal phenomenon in wave
propagation and interference, observed in various physi-
cal systems. It is for these reasons that the Fano reso-
nance can be equally observed in the transport of waves
described by classical or quantum-mechanical processes.

III. MODELING: COMPLEX GEOMETRIES

One possibility to model a Fano resonance is to
choose the geometry of a given system in such a way
that at least two scattering paths are available. In this
section we consider the basic geometries that do the job
and discuss several extensions.

A. Fano-Anderson model

One of the simplest models that describes the physics
and the main features of the Fano resonance is the
Fano-Anderson model (Mahan, 1993), which mimics the
energy level structures (see Fig. 3) of the model pro-
posed by Fano (1961). In a simplified version (Mirosh-
nichenko, Mingaleev, et al., 2005) it can be described by
the following Hamiltonian, which can be treated in a
classical way:

H=CX (¢pdyq+cc)+Edyf? + V(i o +c.c.),

3)

where the asterisk denotes complex conjugation. This
model describes the interaction of two subsystems. One
subsystem is a linear discrete chain with the complex
field amplitude ¢, at site n and nearest-neighbor cou-
pling with strength C. This system supports propagation
of plane waves with dispersion w;=2C cos k. The second
subsystem consists of a single Fano state ¢ with energy
Er. The interaction between these two subsystems is
given by the coupling coefficient V between the state
and one site of the discrete chain ¢,. A propagating
wave may directly pass through the chain or instead visit
the Fano state, return back, and continue with propaga-
tion. These two paths are the ingredients of the Fano
resonance.

The lattice Hamiltonian (3) generates the following
differential equations:
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id’n = C(¢n—l + ¢n+1) + vFl;bénOa

“4)
ifp=Epp+ Vidy.
With the ansatz
u(T) =A™, (1) = Be 7, (5)

we obtain a set of algebraic equations for the ampli-
tudes:

wAn = C(A,kl + An+1) + VFB5n0,

(6)
wB = EFB + VFAO'

For a scattering problem, the system Eq. (6) should be
solved for frequencies chosen from the propagation
band w=w; with the following boundary conditions:

Ie'km + pe~ikn - p <0,
An = ikn
Te'™ ", n>0,

™)

where I, r, and t represent the incoming, reflected, and
transmitted wave amplitudes, respectively.
From Eq. (6) it follows that

VA
B 0 (8)
o - Ep
and finally
V2
kan = C(An—l + An+1) + —FAO(snO' (9)
w— Ep

The main resulting action of the Fano state is that the
strength of the effective scattering potential V7/(wy
— Ep) resonantly depends on the frequency of the incom-
ing wave wy. If Ef lies inside the propagation band of
the linear chain |Ez<2C, the scattering potential will
become infinitely large for wy,=EF, completely blocking
propagation. Therefore meeting the resonance condition
leads to a resonant suppression of the transmission,
which is the main feature of the Fano resonance.

The transmission coefficient T=|7/I> can be com-
puted using the transfer matrix approach (Tong et al.,
1999) and expressed in the following form (Mirosh-
nichenko, Mingaleev, et al., 2005):

2

=k (10)
- ai +1°
where
ap=c(Ep— w)IVs, c,=2Csink. (11)

Transmission vanishes at w,=FEf. The expression for the
transmission coefficient [Eq. (10)] corresponds to the
Fano formula (1) with ¢ =0, where a; corresponds to the
dimensionless energy and E is the resonant frequency.
The Fano state is an additional degree of freedom which
allows waves propagating in the chain to interfere with
those propagating through the discrete state.
The width of the resonance is defined as
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2
Csin kj’

(12)

where kr is the wave number at the resonance Ep= W e
The width of the resonance is proportional to the square
of the coupling strength ijp.

The Fano-Anderson model [Eq. (3)] is perhaps the
simplest one-dimensional model that shows up with a
Fano resonance. Since its asymmetry parameter g=0,
the location of the maximum in the Fano profile is tuned
to infinity. The essence of the Fano resonance (destruc-
tive interference) is therefore not encapsulated in an
asymmetric scattering profile with both a maximum and
a minimum. It is the minimum that is generated by in-
terference along several propagation paths. Because of
its analytical simplicity the model may serve as a guide-
line for the analysis of more complicated physical mod-
els. There are many variations of this model (Burioni et
al., 2005, 2006; Miroshnichenko and Kivshar, 2005a;
Chakrabarti, 2006) studied recently.

B. Tuning the asymmetry parameter

The Fano-Anderson model [Eq. (3)] describes the
resonant suppression of the transmission with a symmet-
ric line shape (¢=0), emphasizing the main property of
the Fano resonance, which is destructive interference
(resonant reflection). It can be easily extended in order
to obtain a nonzero asymmetry parameter ¢ with asym-
metric line shapes, such that both resonant suppression
and resonant enhancement of the transmission will be
located close to each other. When a defect E; ¢; 5, is
introduced in the main array [Eq. (4)] [see Fig. 8(a)],
both paths for scattering waves will yield phase shifts.
As a result, both constructive and destructive interfer-
ence phenomena may coexist, generating asymmetric
transmission profiles [see Fig. 8(b)]. As shown in Fig.
8(b), the sign of the asymmetry parameter ¢ alternates
with increasing distance between the side-coupled defect
and the defect in the main array [which is known as ¢
reversal (Kim and Yoshihara, 1993)];

sgn(wy —wr )=(- 1. (13)

Note that the maximum of the transmission does not
need to reach the value 7=1. This incomplete construc-
tive interference is due to additional phase accumulation
along the propagation distance between two defects. It
does not affect the destructive interference, at which
strictly 7=0, confirming that 7=0 is the only necessary
and sufficient result of destructive interference and the
Fano resonance.

C. Many resonances

Consider now a replacement of the Fano site in the
Fano-Anderson model by a finite chainlet, consisting of
N coupled sites (Burioni et al, 2005; Miroshnichenko
and Kivshar, 2005a); see Fig. 8(c). If the chainlet is de-
coupled from the linear discrete chain, the standing
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FIG. 8. (Color online) Variations in the Fano-Anderson model. (a) Schematic view of the Fano-Anderson model with an addi-
tional defect in the chain. (b) Transmission coefficient for different distances between the Fano site and the additional defect for
parameters C=1, Vy=0.5, Er=0, and E;=1. (c) Schematic view of the Fano-Anderson model with a locally coupled N-defect
chainlet. (d) Transmission coefficient of the N-site chainlet model. All sites in the chainlet are identical and with zero eigenfre-
quencies E,,=0, and the couplings are C=V,,=1. Adapted from Miroshnichenko and Kivshar, 2005a.

waves of the chainlet will give rise to N eigenfrequen-
cies. Once the chainlet is coupled back to the linear dis-
crete chain, each of the standing waves will provide an
additional path for a propagating wave, leading to a va-
riety of interference phenomena. The finite chainlet
could be considered as an approximation of a complex
N-level system, such as a quantum dot, for example.
Miroshnichenko and Kivshar (2005a) showed that, in
general, there are exactly N total reflection (7=0) and
N-1 total transmission (7=1) resonances [see Fig. 8(d)].
Each frequency of the total reflection corresponds to an
eigenfrequency of the chainlet standing wave, and each
total transmission corresponds to an eigenfrequency of
the chainlet with N—1 sites, shown in Fig. 8(c). At reso-
nances, some particular eigenstates of the side-coupled
chainlet are excited.

Many other inhomogeneous networks have been con-
sidered in design of various topological filters (Burioni et
al., 2005, 2006). One can even plant Cayley trees into a
discrete array and gather well-pronounced Fano reso-
nances [see Fig. 9(a)].

D. Nonlinear Fano resonance

The Fano state amplitude becomes largest
|Binas* = 4VHIPIT? (14)

exactly at the resonant value of the wave number kg,
and it diverges (and is therefore much larger than the
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amplitudes in the chain, which are bounded by /) in the
limit of small coupling strength V.

Whatever the physical origin of the waves whose scat-
tering is studied, large amplitudes call for corrections—
either many-body interactions in a quantum setting or
nonlinear response corrections in a classical setting. No-
tably, these corrections apply in first order only for the
Fano state. Taking the classical setting, nonlinear Fano
resonances (Miroshnichenko, Mingaleev, et al, 2005)
were studied by introducing nonlinear corrections to the
evolution equation for the Fano state only [Eq. (6)],

wB = EpB + \|BI’B + VzA,. (15)

The nonlinear transmission coefficient can be ex-
pressed in the following form (Miroshnichenko, Minga-
leev, et al., 2005):

x2

T=

) 16
2+1 (16)
where x=—cot §(k) is a function of the scattering phase
8(k) and satisfies the cubic equation

(P + D - ) = 7 =0 (17)

with the parameter 7y,=\c;|I|*/V}. The nonlinear Fano
resonance condition corresponds to x=0 in Eq. (17),
which needs the condition y,=-q; to be satisfied [see
Fig. 10(c)]. The transmission coefficient depends not
only on the frequency of the incoming wave w; but on
its intensity |/|> as well. The presence of nonlinearity
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numerical simulations of the soliton propagation. (b) Example
of the soliton reflection by a Fano-like defect. From Burioni et
al., 2005.

leads to a renormalization of the self-energy of the Fano
state and consequently to an intensity-dependent shift of
the resonance. Miroshnichenko, Mingaleev, et al. (2005)
showed that the nonlinear Fano resonance exists for any
value of the input intensity |I|> [see Fig. 10(c)]. There-
fore, nonlinearity allows us to tune the location of the
Fano resonance by changing the intensity of the input
waves. In general, there exist up to three solutions of the
cubic equation (17), which will result in bistable trans-
mission [see Fig. 10(d)].

E. Resonant reflection of pulses and solitons

So far we have discussed the scattering of monochro-
matic plane waves. Consider a pulse instead, which is
launched toward the scattering region. The narrower the
pulse is in real space, the broader is its spectral decom-
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position in Fourier (plane-wave) space k, which is char-
acterized by the maximum frequency w,, and the spec-
tral width Aw. Each pulse component in Fourier space k
will scatter as discussed above. The spectral width Aw
has to be compared with the width of a Fano resonance
I'. If Aw<T, tuning w,, into resonance with a Fano reso-
nance will lead to an almost complete reflection of the
pulse. If, on the contrary, Aw>1", only a narrow part of
the spectral component of the pulse will be reflected,
while the rest will be transmitted with a spectral hole
“burned” into it.

If nonlinearities are added into the propagation chan-
nel, they lead to an interaction between the various
plane waves constituting the pulse and may ultimately
yield nondispersing solitons. Their scattering by Fano
defects was studied as well (Miroshnichenko et al., 2003;
Burioni et al., 2005, 2006; Wulf and Skalozub, 2005).
There are two characteristic time scales important for
the scattering of solitons. One of them is the time the
soliton resides in the vicinity of the defect 7., which is
inversely proportional to its spectral width Aw and the
soliton velocity v. The second one is set by the nonlin-
earity. It is the time scale on which the plane waves that
constitute the soliton interact with each other 7
(Miroshnichenko et al., 2003). For fast-propagating soli-
tons the residence time is much smaller than the inter-
action time 7,<< 7. Then, during the scattering process
the soliton can be considered as a set of noninteracting
plane waves, and the above results of the pulse scatter-
ing apply (Miroshnichenko et al., 2003; Burioni et al.,
2005, 2006); see Fig. 9(b). In the opposite case, when the
residence time is much larger than the interaction time
TS Ty, the nonlinearity-induced mode-mode interac-
tion becomes crucial during the scattering process. In
general, a nonlinear interaction between many degrees
of freedom (modes or plane waves) will lead to chaotic
dynamics and consequently to a dephasing of individual
plane waves. Therefore phase coherence will not be
maintained during scattering, and interference effects
will vanish. The Fano resonance should quickly deterio-
rate as the soliton parameters are tuned into the region
of validity of the second case. This was numerically con-
firmed by Miroshnichenko ef al. (2003).

F. Quadratic nonlinearities

Consider wave scattering in an array of channel
waveguides with quadratic nonlinearity generated by pe-
riodic poling of several waveguides (Miroshnichenko,
Kivshar, et al., 2005). When the matching conditions are
satisfied, the fundamental-frequency mode with fre-
quency ® can parametrically generate a second-
harmonic wave with frequency 2w [see Fig. 11(a)], such
that a structure with several poled waveguides may be-
have as a nonlinear defect with spatially confined qua-
dratic nonlinearity (Iwanow et al., 2004). The waveguide
array can be described by a discrete model of weakly
coupled linear waveguides with several waveguides hav-
ing a quadratic nonlinear response (Iwanow et al., 2004;
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2005.

Miroshnichenko, Kivshar, et al., 2005), which is similar to
the Fano-Anderson model [Eq. (4)]. The fundamental
mode in this case can be considered as a continuum of
propagating states, while the generated second harmonic
can be either extended or effectively localized depend-
ing on the phase matching condition (Miroshnichenko,
Kivshar, et al., 2005). In the latter case, the excited sec-
ond harmonic will act as a discrete state in the con-
tinuum, leading to the appearance of a Fano resonance
in the transmission [see Fig. 11(b)]. Direct numerical
simulation results of the Gaussian beam scattering are in
good agreement with the plane-wave analysis [see Fig.
11(b)]. Figures 11(c) and 11(d) show the evolution of the
fundamental and second harmonic of the Gaussian
beam scattering at resonance. A part of the fundamental
harmonic of the Gaussian beam is resonantly reflected
by a single nonlinear defect [see Fig. 11(c)]. Since the
spectral width of the Gaussian beam is larger than the
width of the resonance, some part of the beam still
propagates through the defect. During the scattering the
second harmonic is resonantly excited [see Fig. 11(d)].
After the scattered beam parts leave the defect region,
the second harmonic persists in a self-sustained form.

IV. MODELING: COMPLEX DYNAMICS

Several propagation paths and interference phenom-
ena can be generated not only by imprinting complex

Rev. Mod. Phys., Vol. 82, No. 3, July—September 2010

geometries but also using complex dynamics. Nonlinear
wave excitations, e.g., discrete solitons, when scattering
small-amplitude waves, generate several propagation
paths purely dynamically. The reason is that the scatter-
ing potentials are time dependent (in fact usually time
periodic). The amplitude and the temporal period can be
tuned by controlling the characteristics of the nonlinear
excitations (Li and Reichl, 1999; Martinez and Reichl,
2001; Emmanouilidou and Reichl, 2002). Total resonant
reflection has also been observed (Bagwell and Lake,
1992). This is because the time-periodic scattering po-
tential generates several harmonics. In general, these
harmonics will correspond to open and closed propaga-
tion channels. The presence of such dynamically gener-
ated channels is equivalent to a local increase in the
spatial dimensionality, discussed in the previous section.
In other words, each new channel generates an alterna-
tive pathway in which the scattering wave can propa-
gate. The spectrum of excitations in each additional
closed channel may contain discrete (localized) states,
which happen to resonate with the continuum of the
original open channel. As a result, Fano resonances can
be expected, where the Fano state is the discrete state
from a dynamically generated closed channel.

A. Scattering by discrete breathers

Discrete breathers (DBs) are known as time-periodic
and spatially localized solutions of nonlinear wave equa-
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Kivshar, et al., 2005.

tions on lattices (MacKay and Aubry, 1994; Aubry, 1997,
Flach and Willis, 1998; Flach and Gorbach, 2008). They
originate from a constructive interplay between nonlin-
earity and discreteness. DBs exist independent of the
lattice dimension and do not rely on integrability prop-
erties. In return, these excitations cannot freely move
through lattices. Therefore, they act as scattering centers
for small-amplitude plane waves. By tuning the ampli-
tude of the DB excitation, one tunes its temporal period
and all other characteristics of the resulting time-
periodic scattering potential. DBs have been detected
and studied experimentally in interacting Josephson-
junction networks (Binder et al., 2000; Trias et al., 2000),
coupled nonlinear optical waveguides (Eisenberg et al.,
1998), lattice vibrations in crystals (Swanson et al., 1999),
antiferromagnetic structures (Schwarz et al., 1999), mi-
cromechanical cantilever arrays (Sato et al., 2003), Bose-
Einstein condensates loaded on optical lattices (Eier-
mann et al., 2004), and many others (Flach and Gorbach,
2008).

Resonant scattering of plane waves by DBs was stud-
ied and showed Fano resonances with zero transmission
T=0 (Kim and Kim, 2000, 2001; Lee and Kim, 2000b;
Flach, Miroshnichenko, and Fistul, 2003; Flach, Mirosh-
nichenko, Fleurov, and Fistul, 2003; Miroshnichenko,
Schuster, et al., 2005). Below we demonstrate the con-
cept using a particular example of wave scattering by
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DBs in the discrete nonlinear Schrodinger (DNLS)
model (Flach, Miroshnichenko, Fleurov, and Fistul,
2003).

The equations of motion for the DNLS model are
given by

W, =C(V, +V¥, )+ ¥,[*¥,, (18)

where n is an integer labeling the lattice sites, W, is a
complex scalar variable, and C describes the nearest-
neighbor interaction (hopping) on the lattice. The last
term in Eq. (18) is a cubic nonlinearity. For small-
amplitude waves W, (f)=ee/ %" the dispersion rela-
tion

wp=-2Ccos k (19)

follows from Eq. (18).
The DNLS model supports DB solutions with a single
harmonic,

A

V(1) =A™, A . —0, (20)

where the time-independent amplitude A, can be taken
real valued, and the breather frequency (), # w; is some
function of the maximum amplitude AO. The spatial lo-

calization is given by an exponential law An~e"“”‘

where cosh A=|Q,|/2C. Thus the DB can be approxi-
mated by a single-site excitation if |Q,|> C. In this case,

the relation between the single-site amplitude AO and ),
becomes szfl(z). In the following, the DB amplitudes
for n#0 will be neglected, i.e., A,,#Uxo, since /Alﬂ

~(C/Qy)Ay<A,.
We now perturb the breather solution with small fluc-
tuations ¢,(1),

W, (0) =W, () + ¢, (1), (1)

and substitute this ansatz into Eq. (18). Linearization in
the small fluctuating perturbation leads to the following
set of equations:

i(z)n = C(¢n+1 + d)nfl) + Qban,0(2¢0 + e—Zinld)é)’ (22)

with §,,, the Kronecker symbol. The DB generates a
scattering potential that consists of two parts: a static
(dc) one, which depends on the breather intensity only
~Qb=fl%, and a dynamical (ac) one, which depends pe-
riodically on time ~Q,e 2!, With the two-channel an-
satz

¢n(t) — Xneiwl + Y:e—i(20b+a))l (23)

Eq. (22) is reduced to a set of algebraic equations for the
complex channel amplitudes X,, and Y

— X, = C( Xy + X, 1) + 0,6, 02X, + Y)), (24)
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FIG. 12. (Color online) Time-periodic scattering potentials. (a)
Schematic view of the open channel X and closed channel Y
from Egs. (24)—(26). The dashed line indicates the localized
state of the closed channel Y inside the open channel X. (b)
Schematic view of the virtual states, generated by a possibly
infinite number of harmonics of the time-periodic scattering
potential.

2O+ @)Y, = C(Y g + Y1) + 04,8, 0(2Y + Xp).
(25)

For scattering problem the frequency w should be cho-
sen from the propagation band w;. As a result, the chan-
nel X, supports extended waves, while the Y, channel
does not since the frequency —(20),+w,) is outside the
propagation band w; (Flach, Miroshnichenko, Fleurov,
and Fistul, 2003); see Fig. 12(a). Therefore the scattering
takes place with an open channel X, which interacts
with a closed channel Y,
Consider the more general set of equations

- kan = C(Xn+1 + anl) - 5n,0(VxXO + VaYO)a (26)

(Q + (’)k)Yn = C(Yn+1 + Ynfl) - 5n,O(VyYO + VaXO)s
(27)

which can be reduced to Eq. (24) with the parameters
=20, and V,=V,=2V,=-2Q,. For V,=0 the closed
channel Y, possesses exactly one localized eigenstate

Y, =Ye M, (28)
with eigenfrequency
Vi +4C (29)

wg)=—9+\'

The transmission coefficient for the general case V,#0
(Flach, Miroshnichenko, Fleurov, and Fistul, 2003)

- 4 sin” k
" [2cosk—a-d*y/2-by) P +4sin’k’
(30)
gt Ve o OQrotV, o Ve
C C C

From Eq. (30) it follows that the transmission coefficient
vanishes when the condition

2-by=0 31)

is satisfied, which is equivalent to requesting the reso-
nance condition
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The conclusion is that total reflection takes place when a
local mode, originating from the closed Y channel, reso-
nates with the plane-wave spectrum w; of the open X
channel. The resonance condition is not renormalized by
the actual value of V,. The existence of local modes that
originate from the X channel for nonzero V, and possi-
bly resonate with the closed Y channel is evidently not
of any relevance. The resonant total reflection is a Fano
resonance, as it is unambiguously related to a local state
resonating and interacting with a continuum of extended
states. The fact that the resonance is independent of V,
is due to the local coupling between the Fano state
(originating from the Y channel) and the open channel
and originates from the approximative DB solution in
the limit |Q,|> C. Corrections to the DB solution will
increase the range of coupling between the Fano state
and the continuum and correspondingly lead to a renor-
malization of the resonance location (Flach, Mirosh-
nichenko, Fleurov, and Fistul, 2003). Therefore we con-
clude that the resonance location is not significantly
renormalized if the wavelength of the propagating wave
is large compared to the extension of the space region
where the coupling between a Fano state and a con-
tinuum occurs (Flach, Miroshnichenko, and Fistul,
2003).

If the closed channel is reduced to the localized dis-
crete Fano state Y only, the equations for the amplitudes
take the form

- Q)Xn = C(Xn_] + Xn+1) + VaY5n0,
(33)
- wY = EFY— VaXo.

The different signs in front of the coupling between the
chain and the Fano state are due to the fact that time-
periodic scattering potentials correspond to eigenvalue
problems with a symplectic propagator. In contrast,
complex geometries [Eq. (6)] remain as unitary propaga-
tors. Remarkably, these differences in the symmetries of
the underlying dynamical processes do not alter the final
result of destructive interference and Fano resonances.

The above analysis leads to a recipe for finding the
positions of resonances. One first calculates the localized
states of closed channels decoupled from the open one
(Flach, Miroshnichenko, and Fistul, 2003; Flach, Mirosh-
nichenko, Fleurov, and Fistul, 2003). When the coupling
is switched on again, Fano resonances will take place
exactly at the eigenfrequencies of the localized states for
weak coupling. For stronger coupling, the positions of
the resonances will renormalize. In general, there is an
infinite number of harmonics of the DB, which generate
an infinite number of closed channels (Flach, Mirosh-
nichenko, and Fistul, 2003; Flach, Miroshnichenko, Fleu-
rov, and Fistul, 2003). The approach described above is
rather generic and can be applied to the scattering
through many types of oscillating barriers, self-induced
(such as DBs) or parametrically driven (by external
forces) (Bagwell and Lake, 1992; Li and Reichl, 1999;
Boese et al., 2000; Martinez and Reichl, 2001; Emman-
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FIG. 13. (Color online) Light scattering by optical solitons. (a)
Sketch of the scattering setup by an optical soliton in a one-
dimensional waveguide array. The soliton beam is sent along
the z axis, while the probe beam propagates in the x-z-plane at
some angle to the soliton. (b) Top view of the scattering pro-
cess (c) Transmission coefficient vs k, for plane waves under
oblique incidence. There is total suppression of the transmis-
sion near k,~0.181. (d) Fourier spectrum of the incident
(dashed line) and transmitted (solid line) beams. The suppres-
sion of the resonant frequency [see (c)] in the spectrum is ob-
served. Adapted from Flach et al., 2005.

ouilidou and Reichl, 2002; Kim, 2002; Longhi, 2006). All
of them produce similar scattering potentials with an
open and a number of closed channels for small-
amplitude scattering waves.

B. Light scattering by optical solitons

The above concept of scattering by solitary excitations
was applied to predict resonant light scattering by opti-
cal solitons in a slab waveguide with an inhomogeneous
refractive index core (Flach et al., 2005, 2006). The soli-
ton is generated in a nonlinear planar waveguide by a
laser beam injected into the slab along the z direction
[see Fig. 13(a)]. The soliton beam is confined in the y
direction by total internal reflection. The localization in
the x direction is achieved by a balance between linear
diffraction and an instantaneous Kerr-type nonlinearity.
The analogy with the scattering problem discussed
above by time-periodic potentials comes from the possi-
bility of interpreting the spatial propagation along the z
direction as an artificial time (Agrawal, 1995). Thus, the
propagation constant of the soliton can be considered as
the frequency of the breather. The evolution of the soli-
ton envelope function satisfies the nonlinear
Schrédinger equation, the continuum analog of Eq. (18)
(Flach et al., 2005). Analysis of the scattering problem is
similar to that discussed above. Figure 13(c) shows the
dependence of the transmission coefficient for oblique
incident light for various k, wave numbers. It results in a
Fano resonance for plane waves at k,~0.181, where the
transmission coefficient vanishes. This result has been
confirmed by direct numerical simulations of a propagat-
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FIG. 14. (Color online) Plasmon scattering by discrete breath-
ers in Josephson-junction ladders. (a) Schematic setup for the
measurement of plasmon scattering with the use of controlled
bias currents ;; (b) oscillating power P,  at the right end with
(solid line) and without (dashed line) the DB; (c) transmission
coefficient T, derived from (b) by using Eq. (34). Adapted from
Miroshnichenko, Schuster, et al., 2005.

ing small-amplitude wave packet scattered by the optical
soliton (Flach et al., 2006); see Fig. 13(b). The Fourier
spectrum of the transmitted wave packet reveals that the
resonant wave number k,=~(0.181 was filtered out from
the initial wave packet [see Fig. 13(d)]. Such a spectral
hole-burning effect can be used as a characteristic fea-
ture for the detection of the Fano resonance in an ex-
perimental setup.

C. Plasmon scattering in Josephson-junction ladders

Another theoretical prediction concerns the plasmon
wave scattering by DBs in Josephson-junction ladders
(JJLs). JJLs are formed by an array of small Josephson
junctions that are arranged along the spars and rungs of
a ladder [see Fig. 14(a)]. Each junction consists of two
small, weakly coupled superconducting islands. The dy-
namical state of a junction is described by the phase
difference ¢(f) (Josephson phase) of the superconduct-
ing order parameters of two neighboring islands. When
the difference does not vary in time, ¢(f)=const, the
junction is traversed by a superconducting current only,
with zero voltage drop. Otherwise, the junction is tra-
versed in addition by a resistive current component with
a nonzero voltage drop V= ¢(t). It was observed experi-
mentally that JJLs support dynamic localized states
(DBs) (Binder et al., 2000; Trias et al., 2000). A discrete
breather is characterized by a few junctions being in the

resistive state (¢)# 0 while the others reside in the su-

perconducting state (¢)=0. The frequency of a DB is
proportional to the average voltage drop across the re-

sistive junctions Q, (). Miroshnichenko, Schuster, et
al. (2005) proposed an experimental setup to measure
Fano resonances in that transmission line. Small-
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amplitude waves are generated in a JJL with open ends
by local application of a time-periodic current 7;(z)
=v,c cos(wt). The local current acts as a local parametric
drive. It excites edge junctions at a frequency w. This tail
extends into the ladder. To monitor the linear wave
propagation in the system, the time-averaged oscillation

power Pac,,,:(d)b is measured. The transmission coeffi-
cient can be obtained by relating the oscillation power at
the right boundary with and without an excited DB in
the system,

P, x(with DB)
P,.r(without DB) "

(34)

Figures 14(b) and 14(c) show the presence of resonant
suppression of the transmission coefficient for particular
frequencies . The analysis by Miroshnichenko,
Schuster, et al. (2005) revealed that they correspond to
Fano resonances, which originate from localized states
of closed channels of the time-periodic scattering poten-
tial that is generated by the DB.

D. Matter-wave scattering in Bose-Einstein condensates

Over the last couple of years it has been shown that
optical lattices, generated by counterpropagating laser
beams and providing a periodic potential modulation for
the atoms, introduce many interesting and potentially
useful effects by modifying single-atom properties and
enhancing correlations between atoms (Morsch and
Oberthaler, 2006). Using about 1000 8Rb atoms in a
quasi-one-dimensional optical lattice, Eiermann et al
(2004) obtained a spatially localized Bose-Einstein con-
densate (BEC) which is an experimental manifestation
of a gap soliton or a discrete breather. The solitary state
exists due to the atom-atom interaction, which can be
tuned in various ways experimentally.

Vicencio et al. (2007) considered a BEC on a lattice,
where interactions between atoms are present only in a
localized region (see Fig. 15). Such a situation could be
realized experimentally by combining optical lattices
with atom-chip technology (Hénsel et al., 2001; Ott et al.,
2001) or in optical microlens arrays (Dumke et al., 2002).
The system is described by the DNLS equation, a clas-
sical variant of the Bose-Hubbard model appropriate for
a BEC in a periodic potential in the tight-binding limit
(Morsch and Oberthaler, 2006). With interactions being
present only on site number 7., it follows that

A,
dt

where W, is the complex amplitude of the condensate
field at site n and —y=U/J is the interaction strength on
site n,, J is the tunneling energy between the lattice sites,
and U is the on-site interaction energy per atom.

Equation (35) supports a localized state W,(f)
= pxlnnd exp(—iE,t), where x:—%(Eb+g) with g=yb?, b
is the condensate amplitude, and E,=—(4+g%)"? is the
chemical potential.

== (Vo1 + V) = AV, PV, S s (35)
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FIG. 15. (Color online) Scattering scheme in an optical lattice.
The incoming, reflected, and transmitted beams of atoms are
represented as plane waves. The atoms interact only around
n=n., where the BEC is centered. From Vicencio et al., 2007.

The scattering of propagating atomic matter waves
with the energy E,=-2 cos k by this localized BEC was
calculated analytically within the framework of the
Bogoliubov—de Gennes equations (Vicencio et al., 2007).
The transmission 7'(k) is shown in Fig. 16 for three val-
ues of g (solid curves). As g increases, the width and the
position of the resonance increase. Furthermore, the
more localized the BEC becomes, the more strongly it
reflects the atom beam off resonance. By tuning the
nonlinear parameter g, we can thus choose the amount
of the beam that passes through the BEC. Off resonance
(for larger values of k), we can select the percentage of
the incoming beam that is transmitted for a defined qua-
simomentum. Therefore, the actual setup can be used as
a 100% blockade or as a selective filter.

Analytical results have been confirmed by numerical
simulation of Eq. (35) with a Gaussian atom beam pro-
file. The results are shown in Fig. 16 by symbols for
three different values of the parameter g. The agree-
ment between theory and simulations is good.

V. LIGHT PROPAGATION IN PHOTONIC DEVICES

Optical microcavity structures are of great interest for
device applications, and many of these structures in-

1
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0 /8 /4 31/8 /2
k

FIG. 16. (Color online) Transmission 7' vs momentum k. Lines,
analytic solution; symbols, real time numerical simulations of
Eq. (35) using wave packets for g=0.36 (line and boxes), g
=0.6 (line and diamonds), and g=0.9 (line and triangles). From
Vicencio et al., 2007.
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FIG. 17. Typical resonant structures. Schematic setup for (a) a
waveguide directly coupled to a cavity and (b) a waveguide
side-coupled to a cavity.

volve coupling of one or several cavities to a waveguide.
Such waveguide-cavity systems can naturally exhibit
Fano resonances with high quality factors, and they can
be used for optical modulations and switching. The on-
off switching functionality can be realized by shifting the
resonant frequency either toward or away from the sig-
nal frequency.

The basic geometry of a waveguide-cavity system that
demonstrates a sharp Fano resonance has been intro-
duced and analyzed by Haus and Lai (1991) and Xu et al.
(2000). It consists of a waveguide coupled to a cavity (or
resonator). In general, two-port photonic devices based
upon waveguide-resonator interaction can be presented
in two geometries, as shown in Figs. 17(a) and 17(b). The
first configuration is based on a direct-coupling geom-
etry (Marin Soljacic and Joannopoulos, 2002), and the
second geometry is a waveguide side coupled with a
single-mode cavity (Xu et al., 2000; Yanik, Fan, and Sol-
jacic, 2003). Such structures are tunable by addition of
cavities with nonlinear response or by employing an ex-
ternal control. Next, we review the basic properties of
the simplest waveguide-cavity systems and discuss sev-
eral generalizations, including all-optical switching struc-
tures based on the concepts of Fano resonances.

A. Green’s function formalism

The Green’s function approach (Mingaleev and
Kivshar, 2002a, 2002b) allows us to obtain accurate re-
sults in comparison to the time-consuming direct nu-
merical finite-difference time-domain (FDTD) simula-
tions, even for rather complex geometries of the
waveguide-cavity systems. To derive the corresponding
equations, one takes the explicit temporal dependencies
into account, which allows one to study the pulse propa-
gation and scattering.

We consider a photonic crystal created by a periodic
square lattice of infinite cylindrical rods parallel to the z
axis. We neglect the material dispersion and assume the
dielectric constant €(7) to be periodic in two transverse
directions, 7=(x,y). The evolution of the E-polarized
electric field propagating in the (x,y) plane is governed
by the scalar wave equation
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V2E(7,7) —&Z[e(r)E (F,7)]=0, (36)
where szﬂzxﬂﬂi. We assume that the light field propa-
gating in such structures can be separated into fast and
slow components, E (7, 7)=e“’E(7,7|®), where
E(F,7|w) is a slowly varying envelope of the electric
field, "E(7, 7| w) < wd,E(F, 7|). This allows us to
simplify Eq. (36) to the following form:

2
{v% e(f)(%) ]E(r Aw) = - 2ie(P) 5 w IEC (:“’)

(37)

Both the straight waveguide and the side-coupled cav-
ity are created by introducing defect rods into a perfect
two-dimensional periodic structure. Therefore, the di-
electric constant can be represented as a sum of two
components, describing the periodic and defect struc-
tures €(7)=e€,.+Jde. We employ the Green’s function of
the two-dimensional periodic structure without defects
and rewrite Eq. (37) in the integral form

E(x,7w) = f d*y G(x,y|w)LE(y,,0), (38)
where we introduce the linear operator
2
o 1%
= (9> Se(7) + 2ie(F) 2 — (39)
c car

and consider the time evolution of the slowly varying
envelope as a perturbation to the steady state.

The defect rods introduced into the periodic structure
can formally be described as follows:
> [5e,)
n,m

Se(7) = A XIEx do)Pl0x - x,,,,),  (40)

where we use the 6 function to describe the position of a
defect rod at site n, m, with 6(x)=1 for x inside the
defect rods and 6(x)=0 otherwise. 56 ,, 1s the variation
of the dielectric constant of the defect rod (m,n). Impor-
tantly, this approach allows us to incorporate a nonlinear
response in a straightforward manner, which is assumed
to be of the Kerr type described by the term x'¥|EJ%.

Substituting Eq. (40) into the integral equation (38)
and assuming that the electric field does not change in-
side the dielectric rods, we can evaluate the integral at
the right-hand side of Eq. (38) and derive a set of dis-
crete nonlinear equations

.0
lo-a_En,m - En,m + E Jn—k,m—l(w)(b‘egg?
T k.l

+ XP|EwPE, =0, (41)

for the amplitudes of the electric field E, (7o)
=E(x,,,, 7| ) calculated at the defect rods. The param-
eters o and J; (w) are determined using the correspond-
ing integrals of the Green’s function, where information
about the photonic crystal dispersion is now hidden in
their specific frequency dependencies, which can be
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FIG. 18. (Color online) Modeling Fano resonances in photonic
crystals. Schematic view of (a) photonic crystal waveguide with
an isolated side-coupled cavity and (b) effective discrete sys-
tem. (c) Typical profile of the Fano resonance.

found in Mingaleev and Kivshar (2001) and Mingaleev et
al. (2006). In this way, the Green’s function needs to be
calculated only once for a given photonic structure, e.g.,
by employing the approach outlined by Ward and Pen-
dry (1998), and then it can be used to study any photonic
circuit in that structure.

For the simple system when the photonic crystal has a
waveguide side coupled to a single defect [see Fig.
18(a)], the problem describes a discrete system studied
earlier [see Fig. 18(b)], and the transmission shows a
Fano resonance [see Fig. 18(c)], analyzed by Mirosh-
nichenko, Mingaleev, et al. (2005) and Mingaleev et al.
(2006).

In a general case, the effective interaction between
defect rods is of long-range nature (Mingaleev et al.,
2000; Mingaleev and Kivshar, 2002b). However, the cou-
pling strength decays exponentially with increasing dis-
tance, and as a result, for coupled-resonator optical
waveguides, the specific discrete arrays with nearest-
neighbor interactions (at L=1) already give a excellent
agreement with direct FDTD simulations (Mingaleev
and Kivshar, 2002b).

B. Defects in the waveguide

The two basic geometries shown in Figs. 17(a) and
17(b) can be further improved by placing partially re-
flecting elements into the waveguides (Fan, 2002; Khelif
et al., 2003). These elements allow creation of sharp and
asymmetric response line shapes. In such systems, the
transmission coefficient can vary from 0% to 100% in a
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FIG. 19. Light propagation in a photonic crystal waveguide
with a side-coupled cavity. (a) Photonic crystal waveguide
formed by removing a single row of rods. Within the line de-
fect there are two smaller rods. A point defect, created by
reducing the radius of a single rod, is placed away from the
waveguide. (b) Transmission spectra through the structure (a)
with (solid) and without (dashed) the two defects in the wave-
guide. From Fan, 2002.

frequency range narrower than the full width of the
resonance itself.

To illustrate the effect of defects, Fan (2002) simulated
the response of the structure shown in Fig. 19(a) using a
FDTD scheme with perfectly matched layer boundary
conditions. A pulse is excited by a monopole source at
one end of the waveguide. The transmission coefficient
is then calculated by Fourier transforming the amplitude
of the fields at the other end; it is shown as a solid line in
Fig. 19(b). In comparison, the transmission spectrum for
the same structure, but without the two small cylinders
in the waveguide, is shown by a dashed line.

Importantly, no detailed tuning of either the resonant
frequency or the coupling between the cavity and the
waveguide is required to achieve asymmetric line
shapes. Also, since the reflectivity of the partially re-
flecting elements need not to be large, the underlying
physics here differs from that in typical coupled-cavity
systems and resembles Fano resonances involving inter-
ference between a continuum and a discrete level.

C. Sharp bends

One of the most fascinating properties of photonic
crystals is their ability to guide electromagnetic waves in
narrow waveguides created by a sequence of line de-
fects, including light propagation through extremely
sharp waveguide bends with nearly perfect power trans-
mission (MeKis et al., 1996; Lin et al., 1998). It is believed
that the low-loss transmission through sharp waveguide
bends in photonic crystals is one of the most promising
approaches to combining several devices inside a com-
pact nanoscale optical chip.

Interestingly, the transmission through sharp bends in
photonic crystal waveguides can be reduced to a simple
model with Fano resonances, where the waveguide bend
hosts a specific localized defect. Miroshnichenko and
Kivshar (2005b) derived effective discrete equations for
two types of waveguide bends in two-dimensional pho-
tonic crystals and obtained exact analytical solutions for
the resonant transmission and reflection.
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FIG. 20. (Color online) Add-drop filter. (a) Schematic diagram
of two waveguides coupled through an element which supports
a localized resonant state. (b) Electric field pattern of the pho-
tonic crystal at the resonant frequency. The white circles indi-
cate the position of the rods. From Fan et al., 1998.

D. Add-drop filters

Fano resonances can be employed for a variety of
photonic devices based on resonant tunneling. In par-
ticular, if two waveguides interact through a coupling
element which supports a localized mode, a channel
add-drop filter can be realized via the resonant tunnel-
ing between the waveguides (Fan et al., 1998, 1999; Sol-
jacic et al., 2003). The schematic diagram of a generic
coupled system of this kind is shown in Fig. 20(a). At
Fano resonance, the propagating state excites the reso-
nant modes, which in turn decay into both waveguides.
The transmitted signal in the first waveguide is made up
of the directly propagating signal and the signal that
originates from the second path which visits the coupling
region. In order to achieve complete transfer from one
waveguide to the other, these two signal components
must interfere destructively. The reflected amplitude, on
the other hand, originates entirely from the second path
into the coupling region. Hence, at least two states in the
coupling region are needed to also achieve destructive
interference of backscattered waves in the first wave-
guide. With these conditions satisfied, one may reso-
nantly transfer excitation from the first into the second
waveguide.

This concept was developed by Fan et al. (1998) for
the propagation of electromagnetic waves in a two-
dimensional photonic crystal. To realize this concept,
they used two photonic crystal waveguides and two
coupled single-mode high-Q cavities, as shown in Fig.
20(b). The photonic crystal is made of a square lattice of
high-index dielectric rods, and the waveguides are
formed by removal of two rows of dielectric rods. The
cavities are introduced between the waveguides by re-
duction of the radius of two rods. The resonant states
have different symmetry. An accidental degeneracy,
caused by an exact cancellation between the two cou-
pling mechanisms, is enforced by reducing the dielectric
constant of four specific rods in the photonic crystal. The
cancellation could equally have been accomplished by
reducing the size of the rods instead of their dielectric
constant.

Figure 20(b) shows the field pattern at resonance. The
quality factor is larger than 10°. The backward-
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transferred signal is almost completely absent over the
entire frequency range.

This type of four-port photonic crystal system can be
employed for optical bistability, being particularly suit-
able for integration with other active devices on a chip
(Soljacic et al., 2003). A similar concept can be employed
for the realization of all-optical switching action in a
nonlinear photonic crystal cross-waveguide geometry
with instantaneous Kerr nonlinearity. There the trans-
mission of a signal can be reversibly switched on and off
by a control input (Yanik et al., 2003).

E. All-optical switching and bistability

A powerful principle that could be explored to imple-
ment all-optical transistors, switches, and logical gates is
based on the concept of optical bistability. The use of
photonic crystals enables the system to be of a size of
the order of the wavelength of light, consume only a few
milliwatts of power, and have a recovery and response
time smaller than 1 ps. Several theoretical and experi-
mental studies explored nonlinear Fano resonances for
designing optimal bistable switching in nonlinear photo-
nic crystals (Marin Solja¢i¢ and Joannopoulos, 2002;
Mingaleev and Kivshar, 2002b; Cowan and Young, 2003;
Yanik, Fan, and Soljaci¢, 2003; Mingaleev et al., 2007,
2006; Maes et al., 2008). A photonic crystal provides op-
timal control over the input and output and facilitates
further large-scale optical integration.

The main idea of using the Fano resonance for all-
optical switching and bistability is quite simple: One
should introduce an element with nonlinear response
and achieve nonlinearity-induced shifts of the resonant
frequency, as discussed above for discrete models. Thus,
by employing nonlinear Fano resonances we can achieve
bistability in many of the device structures suggested on
the photonic-crystal platform. For example, for the side-
coupled geometry shown in Fig. 17(b), one could take
advantage of the interference between the propagating
wave inside the waveguide and the decaying wave from
the cavity to greatly enhance achievable contrast ratio in
the transmission between the two bistable states. This
approach was realized by Yanik, Fan, and Soljacic
(2003), who demonstrated that such a configuration can
generate extremely high contrast between the bistable
states in its transmission with low input power.

One of the great advantages in using nonlinear pho-
tonic crystal cavities is the enhancement of nonlinear
optical processes, including nonlinear Fano resonance
(Soljacic and Joannopoulos, 2004; Bravo-Abad et al.,
2007) (Fig. 21). Such an enhancement can be efficient in
the regime of slow-light propagation that was demon-
strated experimentally with the smallest achieved group
velocity ¢/1000 (Notomi et al., 2001; Gersen et al., 2005;
Jacobsen et al., 2005; Vlasov et al., 2005). Because of this
success, the interest in slow-light applications based on
photonic crystal waveguides is rapidly growing and pos-
ing problems of a design of different types of functional
optical devices which would efficiently operate in the
slow-light regime.
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FIG. 21. (Color online) Electric field distributions in a photo-
nic crystal for (a) high and (b) low transmission states. The
same color scale is used for both panels. The black circles in-
dicate the positions of the dielectric rods. From Yanik, Fan,
and Soljacic, 2003.

Recently Mingaleev et al. (2007) studied the resonant
transmission of light through a photonic crystal wave-
guide coupled to a nonlinear cavity and demonstrated
how to modify the structure geometry for achieving bi-
stability and all-optical switching at ultralow power in
the slow-light regime. This can be achieved by placing a
side-coupled cavity between two defects of a photonic
crystal waveguide, assuming that all the defect modes
and the cavity mode have the same symmetry. In this
structure the quality factor grows inversely proportion-
ally to the group velocity of light at the resonant fre-
quency, and, accordingly, the power threshold required
for all-optical switching vanishes as the square of the
group velocity (see Fig. 22).

The numerically obtained dependence Q(vy)~1/vy,
is shown in Fig. 22(a), and it is in an excellent agreement
with the theoretical predictions. Since the bistability
threshold power of the incoming light in waveguide-
cavity structures scales as Py~ 1/Q? (Mingaleev et al.,
2006), one observes a rapid diminishing of Py~ vf, when
the resonance frequency approaches the band edge, as
shown in numerical calculations summarized in Figs.
22(b) and 22(c).

By now, several experimental observations of optical
bistability enhanced through Fano interferences have
been reported (Weidner et al., 2007; Yang et al., 2007). In
particular, Yang et al. (2007) employed a high-Q cavity
mode (Q=30000) in a silicon photonic crystal and dem-
onstrated Fano-resonance-based bistable states and
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bistable transmission at the frequencies with 80% of linear
light transmission vs the incoming light power for different
values of the rod radius. (c) Switch-off bistability threshold vs
the group velocity at resonance. From Mingaleev et al., 2007.
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FIG. 23. (Color online) Dynamical instability of the nonlinear
Fano resonance. (a) Nonlinear transmission coefficient and (b)
imaginary part of eigenvalues of the stability problem vs input
power. In the vicinity of the nonlinear Fano resonance the
plane-wave excitation becomes dynamically unstable. Tempo-
ral evolution of (c) and (e) the field inside the side-coupled
cavity and (d) and (f) the transmission coefficient for two dif-
ferent values of the input power values, indicated in (a). Near
the resonance the dynamics of the field inside the nonlinear
cavity yields a buildup of a modulation instability in time.
Adapted from Miroshnichenko et al., 2009.

switching with thresholds of 185 uW and 4.5 ] inter-
nally stored cavity energy that might be useful for scal-
able optical buffering and logic.

It is important to note that the nonlinear Fano reso-
nance shows dynamical instabilities with plane-wave ex-
citations (Miroshnichenko, 2009a; Miroshnichenko et al.,
2009). Near the resonance the intensity of the scattered
wave starts to grow in time, leading to modulational in-
stability, while far from resonance it converges to a
steady-state solution (see Fig. 23). However, as demon-
strated by Miroshnichenko et al. (2009), this instability
can be suppressed for temporal Gaussian pulse excita-
tions, providing an effective method of recovering the
bistable transmission.

F. Overlapping resonances

An important effect associated with the Fano reso-
nances in double-resonator photonic structures can be
linked to electromagnetically induced transparency
(EIT) (Fleischhauer et al, 2005). Coupled-resonator-
induced transparency (CRIT) structures were intro-
duced in 2004 (Maleki et al., 2004; Smith et al., 2004; Suh
et al., 2004), although early work (Opatrny and Welsch,
2001) already suggested the idea of a macroscopic
double-resonator optical system exhibiting an EIT-like
effect. Recently, the CRIT effect has been observed ex-
perimentally in a system of two interacting microresona-
tors (glass spheres of about 400 um in diameter) with
whispering-gallery modes (Naweed et al., 2005), in a cav-
ity with at least two resonant modes (Franson and Hen-
drickson, 2006), in integrated photonic chips with two
microring resonators (Xu et al, 2006; Tomita et al.,
2009), and in planar metamaterials (Fedotov et al., 2007;
Papasimakis et al., 2008, 2009; Papasimakis and Zhe-
ludev, 2009). Providing an efficiently tunable transpar-
ency on an optical chip, such CRIT devices are consid-
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ered as a crucial step toward the development of
integrated all-optical chips (Boyd and Gauthier, 2006).
To explain the origin of CRIT resonances, we charac-
terize the light transmission by the transmission and re-
flection coefficients, which can be presented in the form

(w)

Tw) = A (w)+1°

R(w) (42)

B 1
CF(w)+ 1]

where the detuning function o(w) may have a quite dif-
ferent type of frequency dependence for different types
of waveguide-cavity structure. Zero transmission (total
reflection) corresponds to the condition o(w)=0, while
perfect transmission (zero reflection) corresponds to the
condition o(w)= +°.

For the waveguide-cavity structure shown in Fig.
17(b), we obtain (Mingaleev et al., 2006)

O-(w) = (wa - w)/yav (43)

where w, is the eigenfrequency of the localized cavity
mode of an isolated cavity «. The spectral width vy, of
the resonance is determined by the overlap integral be-
tween the cavity mode and the guided mode at the reso-
nant frequency.

To find o(w) for the two-cavity structure, one can ap-
ply a variety of methods but the simplest approach is
based on the transfer-matrix technique (Fan, 2002).
When two cavities are separated by the distance d
=2mm/k(w,), where k(w) is the waveguide’s dispersion
relation, m is any integer number, and the frequency o,
is defined below, and there is no direct coupling between
the cavities, we obtain

(04— 0)wp— o)
o) = A (44)
with the total resonance width I'=vy,+y; and the fre-
quency of perfect transmission ,=(y,0g+Y50,)(7,
+7p) 7", lying between the two cavity frequencies o, and
wg of zero transmission.

In the case when the cavities a and S are identical, we
obtain a single-cavity resonance, and the only effect of
using two cavities is the doubling of the spectral width
I'=2v,, of the resonant reflection line, as shown in Fig.
25(a). However, introduction of even the smallest differ-
ence between two cavities leads to the opening of an
extremely narrow resonant transmission line on the
background of this broader reflection line, as shown in
Fig. 25(c). Indeed, for slightly different cavities we may
rewrite Eq. (44) in the vicinity of the resonant transmis-
sion frequency w,=w,+dw/2 as o(w)=T",/(0—w,), with
the linewidth I',=dw?/87y,, which can easily be con-
trolled by tuning the frequency difference dw. The qual-
ity factor of this transmission line Q,=w,/2l,
~4y,0,/ 60’ grows indefinitely when Sw vanishes. As
mentioned, this effect is the all-optical analog of the
electromagnetically induced transparency and is now of-
ten referred to as the effect of coupled-resonator-
induced transparency (Smith et al., 2004).
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FIG. 24. (Color online) Two types of the geometries of a pho-
tonic crystal waveguide side-coupled to two nonlinear optical
resonators. Light transmission and bistability are qualitatively
different for (a) on-site and (b) intersite locations of the reso-
nator along the waveguide. Adapted from Mingaleev et al.,
2008.

In contrast, the intercoupling between two cavities, as
shown in Fig. 24(b), manifests itself as a qualitatively
new effect of coupled-resonator-induced reflection
(CRIR): for small detuning dw=wg— w,, one of the reso-
nant reflection frequencies shifts close to the perfect
transmission frequency w,, producing a narrow resonant
reflection line, as shown in Fig. 25(d). The frequency of
this line is always close to the frequency w, of the cavity
mode, while its spectral width is determined by the fre-
quency difference dw, growing indefinitely as dw van-
ishes (Landobasa, Mario, and Chin, 2006; Mingaleev et
al., 2008).

It should be emphasized that, despite such a qualita-
tive difference in their spectral manifestations, both
CRIT and CRIR effects have the same physical origin,
which can be attributed to the Fano-Feshbach reso-
nances (Feshbach, 1958, 1962; Mies, 1968) that are
known to originate from the interaction of two or more
resonances (e.g., two Fano resonances) in the overlap-
ping regime, where the spectral widths of resonances are
comparable to or larger than the frequency separation
between them. In a general situation it leads to a drastic
deformation of the transmission spectrum and the for-
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FIG. 25. (Color online) Overlapping Fano resonances. Typical
transmission curves for four different cases. (a) Two identical
side-coupled defects w,=wg (solid). Transmission for a single
side-coupled cavity is shown by a dashed line. (b) Two side-
coupled cavities with strongly detuned eigenfrequencies |w,
—wg|>1. (c) and (d) Two side-coupled cavities with slightly
detuned eigenfrequencies |w,—wg| <1 for (c) on-site coupling
and (d) intersite coupling. From Mingaleev et al., 2008.
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FIG. 26. Light scattering by photonic crystal slabs. (a) Geom-
etry of the photonic crystal film. (b) Transmission and (c) re-
flection spectra. The solid lines are for the photonic crystal
structure, and the dashed lines are for a uniform dielectric slab
with a frequency-dependent dielectric constant. Adapted from
Fan and Joannopoulos, 2002.

mation of additional resonances with sharp peaks. The
Fano-Feshbach resonances are associated with a collec-
tive response of multipe interacting resonant degrees of
freedom, and they occur frequently in quantum-
mechanical systems (Magunov et al., 2003; Raoult and
Mies, 2004).

Finally, we discuss the interaction between two Fano
resonances (Hino, 2001; Miroshnichenko, 2009¢), which
can be employed to stop and store light coherently, with
an all-optical adiabatic and reversible pulse bandwidth
compression process (Yanik and Fan, 2004; Yanik et al.,
2004). Such a process overcomes the fundamental band-
width delay constraint in optics and can generate arbi-
trarily small group velocities for any light pulse with a
given bandwidth, without any coherent or resonant
light-matter interaction. The mechanism can be realized
in a system consisting of a waveguide side coupled to
tunable resonators, which generates a photonic band
structure that represents a classical EIT analog (Yanik et
al., 2004; Maes et al., 2005).

G. Guided resonances in photonic crystal slabs

Scattering of light by photonic crystal slabs leads to
another class of Fano resonances associated with the
presence of guided resonances in periodic structures. A
photonic crystal slab consists of a two-dimensional
periodic-index contrast introduced into a high-index
guiding layer Fig. 26(a). Such modulated structures sup-
port in-plane guided modes that are completely confined
by the slab without any coupling to external radiation.
In addition to in-plane waveguiding, the slabs can also
interact with external radiation in a complex and inter-
esting way (Fan and Joannopoulos, 2002; Fan et al.,
2003; Koshino, 2003). Of particular importance is the
presence of guided resonances in the structures. Guided
resonances can provide an efficient way to channel light
from within the slab to the external environment. In ad-
dition, guided resonances can significantly affect the
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transmission and reflection of external incident light, re-
sulting in complex resonant line shapes which can be
linked to Fano resonances.

Fan and Joannopoulos (2002) calculated the transmis-
sion and reflection coefficients at various k points for the
structure shown in Fig. 26(a). The calculated spectra for
s-polarized incident waves are shown in Figs. 26(b) and
26(c). The spectra consist of sharp resonant features su-
perimposed upon a smoothly varying background. The
background resembles Fabry-Perot oscillations when
light interacts with a uniform dielectric slab. To clearly
see this, the background is fitted to the spectra of a uni-
form slab, which are shown as dashed lines in Figs. 26(b)
and 26(c). The uniform slab has the same thickness as
the photonic crystal. Resonances can be described by
employing the Fano-type formulas, with the effective di-
electric constant as the only fitting parameter. The fitting
agrees well with the numerical simulations [see also Ko-
shino (2003)].

By introduction of a nonlinear layer into the slab with
a periodic lateral structure, we can generate a bistable
transmission for significant intensity ranges due to Fano
resonances and achieve a strong frequency-dependent
transparency variation related to the transfer via guided
modes. A self-consistent simulation tool which allows
for the computation of multivalued transmission was de-
veloped by Lousse and Vigneron (2004). It explained the
peculiar shape of the hysteresis loops associated with
nonlinear Fano resonances.

Complex resonant line shapes due to Fano resonances
have been observed experimentally in several settings
(Grillet et al., 2006; Harbers et al., 2007, Qiang et al.,
2008; Yang et al., 2008; Chen et al., 2009). In particular,
Grillet et al. (2006) observed Fano resonances in the op-
tical transmission spectrum of a chalcogenide glass pho-
tonic crystal membrane and first demonstrated the sup-
pression of optical transmission by over 40 dB, the
strongest reported so far, and a remarkable result for a
dielectric structure with a thickness of only 330 nm.
These results will allow further progress toward the en-
gineering of very sharp resonances and, combined with
the large intrinsic nonlinearity of the chalcogenide
glasses, should allow for the observation of optical bista-
bility in a photonic crystal mirror.

Recently it was experimentally demonstrated that the
shape of the Fano resonance in light scattering by a
high-Q planar photonic-crystal nanocavity can be con-
trolled by variation of the waste of the Gaussian beam
(Galli et al., 2009). For a tightly focused beam with a
spot diameter d;=~2 um, a strong asymmetric Fano
resonance was observed with the asymmetry parameter
q1=-0.348 [see Fig. 27(a)]. On the other hand, for a
slightly defocused Gaussian beam with the spot diam-
eter d,~10 um, a symmetric Fano resonance was ob-
served with g,=-0.016 [see Fig. 27(b)]. In this geometry,
the light reflected from the nanocavity mimics the scat-
tering through a discrete level, while the light reflected
from the photonic crystal pattern can be considered as
scattering to the continuum. The interference of these
two reflected components leads to the Fano resonance.
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FIG. 27. (Color online) Measured scattering spectra (dots) and
fitting by the Fano formula (solid lines) of a photonic crystal
nanocavity for two different excitation conditions: (a) a tightly
focused and (b) a slightly defocused laser beam of diameters d,
and d,, respectively, indicated by circles. Note that the actual
profiles are inverted ones because of the use of cross-polarized
detection. From Galli et al., 2009.

The variation in the Fano profile with increase of the
excitation area can be understood as an enhancement of
the scattering to the continuum, leading to a decrease in
the asymmetry parameter ¢. Indeed, the variation in the
asymmetry parameter q,/q,~22 is proportional to the
variation of the excitation areas (d,/d;)>~25. Thus, by
changing the excitation conditions it is possible to tune
the Fano resonance in the scattering by a photonic crys-
tal nanocavity.

H. Light scattering by spherical nanoparticles

Light scattering by an obstacle is one of the funda-
mental problems of electrodynamics; see, e.g., the
monographs by van der Hulst (1981), Bohren and Huff-
man (1998), and Born and Wolf (1999). It was first de-
scribed by Lord Rayleigh and is characterized by a sharp
increase in scattering intensity with increasing light fre-
quency (Rayleigh, 1871a, 1871b, 1871c). It is used to ex-
plain why we can enjoy the blue sky during daytime (the
intensely scattered blue component of the sunlight) and
scarlet sunrises and sunsets at dawn and dusk (the
weakly scattered red component). Rayleigh’s studies
were generalized by Gustav Mie, who obtained the com-
plete analytical solution of Maxwell’s equations for the
scattering of electromagnetic radiation by a spherical
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FIG. 28. (Color online) Exact Mie solution of the light scatter-
ing by a plasmonic nanoparticle. The radius of the nanoparticle
is much smaller than the light wavelength a/\=0.083. (a) Fre-
quency dependence of the scattering light intensity in the vi-
cinity of the dipole and quadrupole resonances. In the latter
case both forward- (solid lines) and backward- (dashed lines)
scattering profiles exhibit asymmetric Fano resonances. (b) and
(c) The angular dependence of the light scattering in the vicin-
ity of the quadrupole resonance. The plasmonic frequency is
normalized to wpa/c=1. Adapted from Luk’yanchuk et al.,
2008.

particle valid for any ratio of diameter to wavelength
(Mie, 1908).

A common assumption is that the general Mie solu-
tion transforms into that of Rayleigh when particles are
small. However, recent studies of resonant scattering by
small particles with weak dissipation rates (Bashevoy et
al., 2005; Tribelsky and Luk’yanchuk, 2006) revealed
new and unexpected features, namely, giant optical reso-
nances with an inverse hierarchy (the quadrupole reso-
nance is much stronger than the dipole one, etc.), a com-
plicated near-field structure with vortices, and unusual
frequency and size dependencies, which allow such scat-
tering to be called anomalous. Tribelsky ef al. (2008) de-
scribed that the physical picture of this anomalous scat-
tering is analogous to the physics of Fano resonances.
This analogy sheds new light on the phenomenon. It al-
lows employment of the powerful methods developed in
the theory of Fano resonances (such as the Feshbach-
Fano partitioning theory) to describe resonant light scat-
tering. It also easily explains certain features of the
anomalous scattering and related problems, namely,
sharp changes in the scattering diagrams upon small
changes in o (see Fig. 28). Tribelsky et al. (2008) analyti-
cally obtained an asymmetric profile of the resonance
lines by analyzing the exact Mie solution of the light
scattering by a spherical nanoparticle (Miroshnichenko
et al., 2008).
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Figure 28 shows light scattering by a potassium colloi-
dal nanoparticle immersed in a KCI crystal, calculated
with a realistic dependence e(w) and fitting actual ex-
perimental data (Luk’yanchuk et al., 2008; Tribelsky et
al., 2008). A slight variation in the incident light fre-
quency in the vicinity of the quadrupole resonance dras-
tically changes the scattering pattern (see Fig. 28), result-
ing in asymmetric Fano-like profiles for intensities of the
forward- and backward-scattered light. In this case, ex-
cited localized plasmons (polaritons) are equivalent to
the discrete levels in Fano’s approach, while the radia-
tive decay of these excitations is similar to the tunneling
to the continuum. In general, it may lead to a significant
suppression of the scattering along any given direction
(Miroshnichenko, 2009b). Note that, in accordance with
the theoretical expression obtained from the Mie for-
mula, the points of destructive interference for the for-
ward and backward scattering lie on different sides of
the corresponding resonant peaks.

1. Plasmonic nanocavities and tunable Fano resonance

Recent progress in the fabrication and visualization of
nanosized structures gave rise to the novel and rapidly
emerging field of nanoplasmonics. The optical proper-
ties of metals are governed by coherent oscillations of
conduction-band electrons, known as plasmons (Bohm
and Pines, 1951). The interaction between light and me-
tallic nanoparticles is dominated mostly by charge-
density oscillations on the closed surfaces of the par-
ticles, called localized surface plasmon (LSP)
resonances. The studies of LSPs in noble-metal nanopar-
ticles, such as gold and silver, extended applications
from various surface-enhanced spectroscopies (Mosko-
vits, 1985) to novel nanometer optical devices and
waveguides (Barnes et al., 2003; Ozbay, 2006). One of
the most important properties of LSPs is the possibility
of strong spatial localization of the electron oscillations,
combined with their high frequencies varying from uv to
ir ranges. LSPs have the ability to strongly scatter, ab-
sorb, and squeeze light on nanometer scales, producing
large enhancement of electromagnetic field amplitudes.
Such unique properties of nanomaterials are essential
for the development of novel material functions with
potential technological and medical applications with
specific optical, magnetic, and reactivity properties.

Plasmonic nanostructures can be considered as a
physical realization of coupled oscillator systems at the
nanoscale. The energies and linewidths of the LSPs de-
pend mostly on the nanoparticle geometries, such as size
and shape. Thus, the spectral tunability of LSPs has
been widely investigated. As suggested by Hao et al
(2007), promising geometries for fine tuning are rings
and disks. In such structures the dipolelike resonance
can be tuned into the near-infrared region by changing
the width of the metallic ring, for example. One impor-
tant issue of nanoplasmonics is the effect of symmetry
breaking, which allows us to excite higher-order multi-
polar modes, leading to larger electromagnetic field en-
hancements. Symmetry breaking can be easily achieved
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FIG. 29. (Color online) A metallic nanostructure consisting of
a disk inside a thin ring supports superradiant and very narrow
subradiant modes. Symmetry breaking in this structure enables
a coupling between plasmon modes of differing multipolar or-
der, resulting in a tunable Fano resonance: (a) extinction spec-
tra as a function of incident angle 6; (b) the impact of filling the
cavity with a dielectric material on the extinction spectrum or
permittivity e=1 (solid line), 1.5 (dashed line), and 3 (dotted
line). Adapted from Hao et al., 2008.

in metallic ring or disk cavity structures by displacement
of the disk with respect to the center of the ring. The
plasmon resonances of a ring or disk cavity system can
be understood in terms of the interaction or hybridiza-
tion of the single ring and disk cavity plasmons. This
hybridization leads to a low-energy symmetric plasmon
and high-energy antisymmetric plasmon (Hao et al.,
2007). The latter is superradiant, i.e., it strongly radiates,
because disk and ring dipolar plasmons are aligned and
oscillate in phase. The low-energy symmetric plasmon is
subradiant because of opposite alignment of dipolar mo-
ments. It turns out that in a symmetry-broken structure
the quadrupole ring resonance couples to the superradi-
ant high-energy antisymmetric disk-ring dipole mode
(Hao et al., 2008). The direct coupling interferes with the
dispersive coupling between the quadrupolar ring mode
and the superradiant mode, resulting in a Fano reso-
nance in the extinction spectrum (see Fig. 29). By varia-
tion of the incident angle, the shape of the Fano reso-
nance can be altered from asymmetric to symmetric.

Other examples of nanoplasmonic structures support-
ing the asymmetric Fano resonance are metallic
nanoshells near a metallic film (Le et al., 2007) and het-
erogeneous dimers composed of gold and silver nano-
particles (Bachelier et al., 2008). Both structures have a
highly tunable plasmonic Fano resonance, accompanied
by large local electric field enhancement (Hao et al,
2009; Mirin et al., 2009; Verellen et al., 2009). Thus, the
strong response of LSP resonances may be effectively
used for biological and medical sensing applications.

A novel type of nonlinear Fano resonance has been
found in hybrid molecules composed of semiconductor
and metal nanoparticles (Zhang et al., 2006). The latter
support surface plasmons with a continuous spectrum,
while the former support discrete interband excitations.
Plasmons and excitons become strongly coupled via
Forster energy transfer. At high light intensities, the ab-
sorption spectrum demonstrates a sharp asymmetric
profile, which originates from the coherent interparticle
Coulomb interaction and can be understood in terms of
a nonlinear Fano resonance.
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J. Extraordinary transmission of light through metallic
gratings

Scattering by metallic gratings has been the subject of
extensive research for over a century. One important
early achievement of the optics of metallic gratings was
the discovery and understanding of Wood’s anomalies
(Wood, 1902, 1935; Rayleigh, 1907). One type of
anomaly is due to the excitation of surface plasmon-
polaritons propagating on the metallic surface. Another
is the diffraction anomaly when a diffracted order be-
comes tangential to the plane of the grating. It is char-
acterized by a rapid variation in the diffracted order in-
tensity, corresponding to the onset or disappearance of a
particular spectral order (Wood, 1935). This resonant be-
havior of the Wood’s anomaly can be understood in
terms of the coupling of the incoming waves with the
surface-bound states of periodic arrays (Fano, 1936,
1937, 1938, 1941; Hessel and Oliner, 1965; Neviere et al.,
1973; Magnusson and Wang, 1992). Thus, by considering
a surface-bound state as a discrete level and scattered
waves as a continuum, Wood’s anomaly can be inter-
preted as a Fano resonance (Abdulhalim, 2009; Bil-
laudeau et al., 2009).

It was demonstrated that for a periodic thin-film me-
tallic grating, formed from a two-dimensional array of
holes, the transmitted fraction of incident light can ex-
ceed the open fraction of the array for certain wave-
lengths (Ebbesen et al., 1998; Ghaemi et al., 1998). The
enhancement in the transmitted zero-order beam is re-
ported to be several orders of magnitude larger than
that from a pure metallic slab without holes. This phe-
nomenon has been called extraordinary transmission
through periodic arrays of subwavelength holes in me-
tallic films.

The common understanding of extraordinary trans-
mission is that it is due to a resonant excitation of sur-
face plasmon polaritons by incoming radiation (Ghaemi
et al., 1998; van der Molen et al., 2005). In addition to the
resonant enhancement of the transmission, resonant
suppression was observed as well. It was demonstrated
that these transmission minima correspond exactly to
loci of Wood’s anomaly (Ghaemi et al., 1998); see Fig. 30.
According to experimental observations, each extraordi-
nary transmission is accompanied by resonant suppres-
sion of transmission, resulting in asymmetric line shapes,
which can be perfectly fitted by the Fano formula (de
Abajo, 2007). Moreover, it was theoretically demon-
strated by Spevak et al. (2009) that periodically modu-
lated ultrathin metal films may exhibit resonant suppres-
sion of the transmittance, emphasizing the Wood’s
anomaly effect. Thus, the extraordinary resonant scat-
tering of light by modulated metal films can be described
in terms of the Fano resonance, revealing the interfer-
ence nature of the phenomenon.

Kobyakov et al. (2009) suggested the use of active lay-
ers to simultaneously enhance both transmittance and
reflectance at the resonance in subwavelength periodic
planar bimetallic grating by excitation of gain-assisted
surface plasmons.
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FIG. 30. Light scattering by metallic gratings. (a) Focused ion
beam image of a two-dimensional hole array in a polycrystal-
line silver film. (b) Observed transmission intensity as a func-
tion of photon energy and k, with predicted energy dispersion
of surface plasmon-polaritons (solid) and loci of Wood’s
anomaly (dashed lines). From Ghaemi et al., 1998.

K. Resonant four-wave-mixing-induced autoionization

Four-wave mixing involves the interaction of three la-
ser beams to produce a nonlinear polarization via the
cubic electric susceptibility y'*. The induced polariza-
tion acts as the source of a fourth coherent light beam,
detected as the signal. Four-wave mixing can be consid-
ered as the formation of and scattering from laser-
induced gratings. The grating is formed by two laser
beams, called grating beams, with wave vector k,. The
third probe beam with the wave vector k,, is then scat-
tered off the laser-induced grating and produces the
fourth scattered beam, which is detected as the four-
wave-mixing signal. Because of energy conservation, the
frequency of the signal beam must be equal to the fre-
quency of the probe beam w;=w,. Momentum conser-
vation results in a phase-matching condition for the sig-
nal wave vector,

k| = |kg1 -k, + k)|=w,lc, (45)
and the Bragg-scattering angular condition,
sin(6,/2)

Wp _ SINGl2) (46)

W, - sin(6,.,/2)’

where 6, is the angle between two grating beams and
0,_ is the angle between the probe and signal beams
(see Fig. 31).

In general, the four-wave-mixing process can take
place in any material. When the frequency of the inci-
dent laser beams matches the transition resonances of
the medium, a drastic enhancement of the signal inten-
sity can be observed. Such processes are called resonant
four-wave mixings (RFWMs), and they are used as spec-
troscopic and diagnostic tools for probing stable and
transient molecular species. Armstrong and Wynne
(1974) experimentally studied four-wave mixing involv-
ing an autoionizing resonance in an alkali-metal atomic
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FIG. 31. Planar wave-vector diagram illustrating the phase-
matching condition for RFWM. From Teodoro and McCor-
mack, 1999.

vapor. In their experiment, a two-photon transition be-
tween two bound states of the metal was excited, fol-
lowed by a single-photon absorption to the autoionizing
level. The detected signal demonstrated a characteristic
asymmetric response. Using the Fano formalism, they
derived an expression for the line shape and fitted it
with the Fano formula (Armstrong and Wynne, 1974),
which allows the width and asymmetry parameter for
the autoionizing states to be obtained (Armstrong and
Beers, 1975; Crance and Armstrong, 1982a, 1982b; Agar-
wal and Lakshmi, 1983; Alber and Zoller, 1983; Haan
and Agarwal, 1987; Meier et al., 1995). Thus, this form of
RFWM can be considered as one of the techniques to
study autoionizing levels.

A double-resonance version of RFWM is called two-
color RFWM (TCRFWM) and takes place when two op-
tical fields have frequencies in resonance with two dif-
ferent transitions. It yields a variety of excitation
schemes, which are useful for high-resolution spectros-
copy. In Fig. 32 possible TCRFWM excitation schemes
are shown, where the grating beams are in resonance
with the lower transition and the probe is tuned to the
upper transition [see Fig. 32(a)], and vice versa [see Fig.
32(b)]. Because of the presence of autoionizing states in
the overall FWM process, in both cases TCRFWM ex-
hibits asymmetric profiles, which can be approximated
by the Fano formula [see Fig. 32(c)]. Unlike the Fano
profile, the TCRFMW spectral lines have no exact zeros.
This can be explained using the dephasing during non-
linear parametric conversions, which is a key difference
from the usual Fano resonance case. Nevertheless,
TCRFMW provides an efficient way to coherently con-
trol the signal line shape (McCormack et al., 1998).

VI. CHARGE TRANSPORT THROUGH QUANTUM DOTS

In recent decades, charge transport through quantum
dots (QDs) has been extensively studied both theoreti-
cally and experimentally (Altshuler ez al., 1991; Kastner,
1992; Koch and Liibbig, 1992; Reimann and Manninen,
2002; Katsumoto, 2007; Hanson et al., 2007). One of the
reasons for that interest is the further miniaturization of
electronic device components. A comprehensive picture
of a large variety of underlying physical phenomena has
emerged [see, e.g., Alhassid (2000) and Aleiner et al.
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0
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FIG. 32. Two-color resonant four-wave mixing. (a) Nonpara-
metric and (b) parametric TCRFWM process. The autoioniz-
ing level (Fano state) above the ionization potential is indi-
cated by |7). |i) and |e) are ground and intermediate states,
respectively. (c) TCRFWM and Fano profiles. Inset: the slopes
of two profiles. Note the separation between the slope zeros
which correspond to profile minima. From Teodoro and Mc-
Cormack, 1998.

(2002), and references therein]. The finite size of the dot
is responsible for a dense but discrete set of single-
particle levels. Confinement of electrons in small quan-
tum dots leads to the necessity of taking into account
their Coulomb repulsion. As a result, at temperatures
below the charging energy the Coulomb blockade
emerges (Alhassid, 2000; Aleiner et al., 2002). At even
lower temperatures, the phase coherence of the excita-
tions in the quantum dot is preserved during scattering,
and additional interference phenomena appear, depend-
ing on the coupling strength to the leads. In view of the
enormous literature available, we introduce the main
physics and focus on results that are directly related to
the finding of destructive interferences and Fano reso-
nances.

A. From a single-electron transistor to quantum interference

A quantum dot is a small confinement region for elec-
trons (typically almost two dimensional) with leads
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coupled to it. The manufacturing of a large variety of
geometries is easily possible. In the simplest case, two
leads are used, and a voltage V is applied, resulting in a
current of electrons which enter the dot through one
lead and eventually exit into the second lead. Various
gate voltages can be additionally applied, e.g., V,, which
controls the energy of the electrons in the dot relative to
the leads, and others which control the strength of the
coupling between the leads and the dot. Here we con-
sider only situations where the applied voltage V be-
tween the two leads is small so that the energy eV is
smaller than all other relevant energy scales. This is also
called the equilibrium case, at variance with the non-
equilibrium case, which is also frequently studied.

Consider a closed dot with linear size L, when the
leads are decoupled. If one neglects the contribution
from Coulomb interaction, the spectrum of many-body
states in a quantum dot can be obtained from the solu-
tion of the single-particle problem. The single-particle
level spacing is given by Ay,=m#*/m*L* (Alhassid,
2000). The effective mass of an electron in GaAs is
rather low: m*=0.067m, (Alhassid, 2000). For L
=100 nm one obtains Ay, ~2 K, while for L=500 nm the
spacing is reduced to A, =90 mK. Addition of one elec-
tron to the closed dot therefore leads to an energy in-
crease of the order of Ay,. Now take the Coulomb inter-
action into account. If the number of electrons in the dot
is NV, then the charging energy of adding one additional
electron is E.~ Ne?/ L. Therefore, for large values of N
and not too small values of L, E.>Ag,. Note that typical
dot sizes are of the order 100 nm-1 um. N can vary
greatly, with values N~ 10°~10°. Characteristic values of
the charging energy are in the range E.~100-400 K
(12-50 meV). Therefore, for all practical purposes, E.
> Agp.

The number of electrons in a quantum dot is defined
by minimizing the energy of the dot with respect to N.
This energy is given by (Alhassid, 2000)

E(N) =-NeV,+ N**2C, (47)

where C is the total capacitance between the dot and its
surroundings. Apart from special values of the gate volt-
age, there will be a given electron number N with the
smallest energy, and changing the number of electrons
will cost an amount of about one charging energy E..
For particular values of the gate voltage Vi,"), however,
degeneracies between E(N) and E(N+1) appear.
Consider the experimental geometry shown in Fig. 33.
If the coupling to the leads is weak enough and the tem-
perature kT<E_, the Coulomb blockade regime sets in.
As long as V,# Vi,”), the charging energy prevents lead
electrons from entering the dot, and the conductance G
is practically zero. However, when Vg:Vfg,”), a degen-
eracy sets in between N- and (N+1)-electron states on
the dot. Therefore, electrons can pass through the dot
one by one, and the conductance takes the universal
value G=2¢?/h (here the factor 2 accounts for spin de-
generacy). Note that the Coulomb interaction is treated
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FIG. 33. Electron micrograph of a single-electron transistor
based on a GaAs/AlGaAs heterostructure. The split gates (I)
define the tunnel barriers and the additional gate electrode (II)
adjusts the potential energy on the quantum dot. From Gores
et al., 2000.

in a mean-field-type way; therefore no phase coherence
of the dot electrons is required.

On further temperature decrease, the phase coher-
ence of the dot electrons becomes essential [see, e.g., Ji
et al. (2000) and Aikawa et al. (2004a, 2004b)]. Note that
the typical electron mean free path can be of the order
of 10 wm, one to two orders of magnitude larger than
the dot size. It may also be possible to reduce decoher-
ence effects within some suitable range by increasing the
coupling of the dot to the leads, which may lead to a
shorter residence time of electrons inside the dot and
therefore to less scattering. With the option of having
several channels that electrons can use to pass through
the dot, phase coherence will lead to interference effects
and therefore to possible Fano resonances.

If a magnetic field is added, orbital and spin effects
have to be considered as well. The Zeeman energy E,
=gupH sets another temperature scale. Depending on
the Landé factor g, which can vary strongly from sample
to sample, the corresponding Zeeman energy E; is on
the order of 100-200 mK for B=1 T. If electrons are
allowed to traverse the dot along different paths, an
Aharonov-Bohm phase shift ¢ occurs because of the
nonzero magnetic flux penetrating the area S enclosed
by them (Altshuler er al, 1980): ¢=(e/h)BS. With §
=L? we find for L=100 nm that ¢/27=0.38 B/T, and
for L=1 um that ¢/27=38 B/T.

Therefore, for L=100 nm and B=1 T, it follows that
Ez <A, Then at low temperatures kT < E of the order
of T~50-100 mK and at a magnetic field B~1 T, the
Coulomb-blockaded dot has a well-defined spin: either
|IS.|=1/2 or §,=0. By changing the gate voltage and
reaching the next degeneracy E(N)=E(N+1), an elec-
tron with a well-defined spin is allowed to enter the
dot—either spin up or spin down. The allowed spin
value alternates as one tunes the gate voltage further to
the next degeneracy. If the phase coherence of electrons
is preserved during the scattering, one may again expect
interference phenomena—but this time, depending on
the chosen value of V,, only electrons with spin up (spin
down) will interfere along different channels. Increase in
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the coupling to the leads may cause spin-selective de-
structive interference for a given spin species, while the
other spin species freely passes through. The orbital ef-
fect of the magnetic field leads to an additional phase
shift of the order of 0.8, independent of applied gate
voltages.

For L=1 um the single-particle spacing Ag,~20 mK.
Therefore at B=1T it follows that E;> Ay, Then at
temperatures 7~50-100 mK the Coulomb-blockaded
dot is magnetized, but electrons that enter the dot can
have any spin, preventing spin-selective destructive in-
terference. The orbital effect of the magnetic field is
large, with a 27 phase shift every 25 mT upon change in
the magnetic field.

Before proceeding, we mention related studies of the
Kondo effect in transport through quantum dots. In the
Coulomb blockade, the number of electrons on the dot
is well defined and either even or odd. Assuming a
ground state only, the total electronic spin is either 1/2
(odd number of electrons) or zero (even number). In the
absence of a magnetic field and for odd numbers of elec-
trons, the whole dot could be viewed as some magnetic
impurity with spin 1/2, which scatters conduction elec-
trons passing from one lead to another. That calls for an
analogy with the well-known Kondo effect that is ob-
served in the low-temperature properties of the conduc-
tivity of electrons in metals with magnetic impurities
(Hewson, 1993). The resistivity in metals usually drops
with decrease in temperature since the number of
phonons, which are responsible for electron scattering
due to electron-phonon interaction, decreases. At
around 30 K a minimum in the resistivity appears for
some metals, and subsequently the resistivity increases
again with further decrease in the temperature. This in-
crease is caused by scattering of electrons by magnetic
impurities and originates from an exchange interaction
of the conductance-electron spin with the spin of the
magnetic impurity. The exchange interaction sets an en-
ergy and temperature scale (the Kondo temperature
Tx), which is typically of the order of Tk
~100 mK-1 K, similar to the Zeeman energy of an
electronic spin 1/2 in a magnetic field of 1 T. For tem-
peratures T<Tyg, the impurity spin is screened by a
cloud of renormalized conduction electrons. The Kondo
temperature depends sensitively on the coupling
strength (hybridization) I" between the conduction elec-
trons and the magnetic impurities. For weak coupling,
Tk is exponentially small in —1/I". This analogy led to
the idea to observe the Kondo effect in the conductance
of electrons through quantum dots. For that, low tem-
peratures have to be used, and the coupling of the leads
to the dot has to be increased (in order to increase 7).
An enormous number of theoretical studies have been
performed (Aleiner et al., 2002). Experimental results
showed a deviation from the Coulomb-blockade regime
for strong lead-dot coupling (see below). The relation to
theoretical models based on Kondo mechanisms is still
debated [see, e.g., Ji er al. (2000) and Aleiner et al.
(2002)].
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B. From Coulomb blockade to Fano resonances

A number of experimental studies reported on the
observation of Coulomb blockade in various quantum
dot realizations on the basis of AlGaAs heterostructures
(Cronenwett et al., 1998; Goldhaber-Gordon, Gores, et
al., 1998; Goldhaber-Gordon, Shtrikman, et al., 1998;
Schmid et al., 1998; Gores et al., 2000; Goldhaber-
Gordon et al., 2001; Kobayashi et al., 2002). The charging
energies are in the range E,.~100-300 K. Temperatures
were as low as 30 mK; applied magnetic fieldsup to 1 T
and higher. Therefore, the Zeeman energy E, is two to
three orders of magnitude lower than the charging en-
ergy E. The Coulomb blockade is usually observed in
the case of weak coupling between the leads and the dot.
In Fig. 34 the results of Gores ef al. (2000) are shown,
which correspond to the setup in Fig. 33. For weak lead-
dot coupling [Fig. 34(c)] the Coulomb-blockade regime
is observed (temperatures are around 100 mK, and the
drain-source voltage Vg4=5 uV<V,). With increasing
coupling the sharp peak structure is smeared out [Fig.
34(b)], which has been discussed in relation to the
Kondo effect. With further increase in the coupling,
Fano resonances are observed in the strong-coupling
case [Fig. 34(a)]. A fitting yields asymmetry parameters
q=-0.03 and -0.99 for the center and right resonances,
respectively. Note that also the peaks in Fig. 34(c) sepa-
rating Coulomb blockades with different numbers of
electrons on the dot are clearly asymmetric. They also
studied the temperature and weak magnetic field depen-
dence of the Fano profiles in the strong-coupling regime
for even larger absolute values of the gate voltage,
shown in Fig. 35.

The fitting of the resonances in Fig. 35(a) yields an
almost linear decrease in the linewidth I" with tempera-
ture, reaching values of 2 meV at 100 mK. The depth of
the Fano resonance increases with decreasing tempera-
ture, making the Fano resonance sharper and deeper at
low temperatures. The Fano resonances show very
strong dependence on the value of the weak applied
magnetic field [Fig. 35(b)]. Note that the largest applied
fields are at 50 mT, which corresponds to a Zeeman en-
ergy on the order of 10 mK or less.

The origin of the observed Fano resonances is inter-
ference of electrons along several channels (paths) tra-
versing the quantum dot. When the lead-dot coupling is
weak, the background conductance is very small [see
Fig. 34(c)]. An asymmetric line shape is still observed.
The Fano resonance (dip) may either be hard to detect
with that background or simply absent since essentially
only one path is active. Another possibility is that the
antiresonance is extremely narrow (weak coupling to a
dot state). Since the Fano resonances are well observed
at large lead-dot coupling, phase coherence of electrons
passing through the dot is therefore established and is
further increased with reduction in temperature.

The dramatic change of the resonance shape at weak
magnetic fields is attributed to a suppression of the cou-
pling into the dot states (Gores et al., 2000). That leads
to an enhancement of the asymmetry parameter g and
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FIG. 34. Conductance vs gate voltage. Comparison of conduc-
tance measurements in the (a) Fano regime, (b) intermediate
regime, and (c) Coulomb-blockade regime. From (c) to (a) the
lead-dot coupling increases. Fits to the Fano formula (1) are
shown for the center and right resonances in (a). The respec-
tive asymmetry parameters are g=-0.03 and -0.99. From
Gores et al., 2000.

correspondingly to a shifting of the Fano resonance (dip)
out of the window of available gate voltages. An alter-
native explanation of loss of phase coherence of the tra-
versing electrons does not account for the extremely
low-field scale at which the change occurs (Géres et al.,
2000). In a similar way, one can exclude orbital
Aharonov-Bohm effects, since the expected phase shifts
are of the order of ¢=<0.12.

C. From Fano to Aharonov-Bohm interferometers

In the experiments described above, the quantum dot
design allowed control of essentially only the lead-dot
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FIG. 35. Conductance vs gate voltage. (a) Temperature depen-
dence of the conductance for two Fano resonances. (b) Con-
ductance as a function of the gate voltage for various magnetic
fields applied perpendicular to the two-dimensional electron
gas. Adapted from Gores et al., 2000.

coupling. To further advance in the tunability of Fano
resonances with quantum dots, interferometer devices
have been manufactured. In addition to a small quantum
dot, which can be traversed by electrons, a second re-
gion (second dot, additional channel, or additional arm)
is coupled in a controlled way. Therefore, the coupling
to a second channel can be tuned systematically. Of
course there may already be several channels involved
in the traversing of electrons through the primary dot.

Impressive results were obtained by Johnson et al.
(2004) in designing a tunable Fano interferometer, which
consists of a quantum dot and an additional tunnel-
coupled channel (see Fig. 36). A sequence of several
Fano resonances was observed and well fitted with the
Fano formula (1). Moreover, Johnson et al. (2004) per-
formed careful fittings of various resonance shapes as
shown in Fig. 37. In Fig. 37(a) another set of resonances
is observed. Upon variation in the gate voltage, the
asymmetry of the resonance shape clearly changes, as
also seen in Fig. 37(e). In addition, the linewidth I is
changing [Fig. 37(d)]. In another gate voltage window
[Fig. 37(f)] these changes are even more drastic. Indeed,
the fit yields a change of the sign of ¢ with V, [Fig.
37(g)]. Note that according to Eq. (1), at g=0 a symmet-
ric resonant reflection, with no resonant transmission, is
predicted. Indeed, around the value V,~-1900 mV the
conductance in Fig. 37(f) shows a dip only.
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FIG. 36. (Color online) Channel conductance data (squares)
and fits (curves) vs gate voltage in the Fano regime. Bars show
fitting ranges. Inset: scanning electron microscope image of a
similar sample. From Johnson et al., 2004.

Yet another step was taken by Kobayashi et al. (2002)
with a qualitatively similar geometry but an additional
magnetic field penetrating the interferometer area and
turning it into an Aharonov-Bohm (AB) device (see Fig.
38). The currents through the quantum dot and the ad-
ditional arm (channel) can be controlled independently.
Magnetic fields were around 1 T. With the arm switched
off, a series of Coulomb-blockade peaks is observed (see
Fig. 39).
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FIG. 37. (Color online) Tunable Fano interferometer. (a) Ex-
perimental data with 12 Fano resonances. (b) Fits of one reso-
nance using different fitting parameters. (c)—(€) giotr &coh» I
and ¢ from (a). (f) Data exhibiting reversals of g. (g) Extracted
q values. From Johnson et al., 2004.
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FIG. 38. An Aharonov-Bohm ring with an embedded QD in
one of its arms. (a) Schematic representation of the experimen-
tal setup. (b) Scanning electron micrograph of the fabricated
device. From Kobayashi et al., 2002.

When the arm is made transmittable, clear interfer-
ence effects are observed through asymmetric Fano line
shapes (see Fig. 39). In that system, the discrete level
and the continuum are spatially separated, allowing us
to control Fano interference via the magnetic field pierc-
ing the ring, as shown in Fig. 40. The line shape changes
periodically with the AB period ~3.8 mT, which agrees
with the expected value using the ring dimension (Koba-
yashi et al., 2002). As the magnetic field B is swept, an
asymmetric line shape with negative g continuously
changes to a symmetric one and then to an asymmetric
one with positive g. Kobayashi et al. (2002) argued that,
because of the breaking of time-reversal symmetry in
the presence of a magnetic field, the matrix elements
defining g are not real as usually assumed, but complex,
therefore leading to complex g values. This confirms
theoretical investigations for the noninteracting single-
particle AB interferometer case (Aharony et al., 2002,
2003; Entin-Wohlman, Aharony, Imry, and Levinson,
2002; Entin-Wohlman, Aharony, Imry, Levinson, and
Schiller, 2002; de Guevara et al., 2003; Orellana et al.,
2004; Sasada and Hatano, 2005; Malyshev et al., 2006;
Gong, Zheng, Liu, Lii, et al., 2008). Note that the discus-
sion above assumed one or several resonances but only
one open channel. It has been generalized to the case of
one resonance and several open channels, e.g., in Nockel
and Stone (1994).

D. Correlations

An enormous amount of theoretical literature is avail-
able on various facets of the conductance properties of
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FIG. 39. Coulomb oscillation at V.=-0.12 V with the arm
pinched off and asymmetric Coulomb oscillation at V.=
—0.086 V with the arm transmissible. Here 7=30 mK and B
=0.91 T. Adapted from Kobayashi et al., 2002.
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FIG. 40. (Color online) Control of the Fano resonance via
magnetic field. Conductance of (a) two Fano peaks at 30 mK
and selected magnetic fields, (b) one Fano peak vs V, and B,
(c) same as (b) but for larger windows of V, variations. The
white line represents the AB phase as a function of V,. From

Kobayashi et al., 2002.

quantum dots. We discuss some of these results below.
We remind the reader about some characteristic scales.
The Coulomb energy (charging energy) of quantum dots
is of the order of 50 meV (380 K). The Kondo tempera-
ture in a typical metal with magnetic impurities is of the
order of 10 ueV (100 mK), comparable to the Zeeman
energy of a spin-1/2 electron in a magnetic field of
around 1 T. Therefore, when it is operating at tempera-
tures of the order of the Zeeman energy, the charge on a
typical quantum dot is extremely well fixed by the num-
ber of electrons. The next question is whether a conduc-
tance electron, when penetrating the quantum dot, is
able to efficiently interact with an excess spin-1/2 par-
ticle for odd electron numbers or whether it will usually
follow a path that avoids strong exchange interaction.
These, partly open, issues make it sometimes hard to
judge the relevance of many theories.

The simplest model, which retains the effect of Cou-
lomb interactions and correlations, uses exactly one
level from the quantum dot, adds links to leads (left and
right), and takes the Coulomb interaction of spin-up and
spin-down electrons into account—but only on the dot
[see Fig. 41(a)]. Within that frame we study the ballistic
transport into and out of the dot. The leads can also be
viewed as analogs of detectors in the asymptotic region
of a scattering experiment. The resulting Hamiltonian
has the following form:

FIG. 41. Typical resonant structures with quantum dots. Sche-
matic representation of (a) a serial model of leads and a quan-
tum dot [Egs. (48) and (49)], and (b) a T-shaped model of leads
and a side-coupled quantum dot [Eq. (50)].
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Hy=Hp+Hy, Hp=e X n,+Unn, (48)
Hy =, €,ChoChor+ (Vichd,+ Hee.). (49)
kor

Here n(,:df,do measures the number of electrons on the
quantum dot level, which interact with each other with
strength U. The left and right leads are denoted by r
=L(R). The level energy €, is measured from the Fermi
energy of the leads. The lead states are chosen in the
momentum representation. All fermionic creation and
annihilation operators c, ¢', d, d' obey the standard
anticommutation relations.

E. Interference

There are many ways to incorporate interference and
multiple paths in order to reach Fano resonances. One
of the simplest ones is a T-shaped scheme, which is a
small change of the above model by side coupling the
quantum dot to the quantum wire (leads) [see Fig.
41(b)]:

HT == tz (le,crcn—l,(r + C;,U'CYH’l,O') + E €10

n,o o

+ > (Vdlcy o+ V*cl ,d,) + Unin,. (50)

The lead states are chosen in the coordinate representa-
tion. Interference is possible because electrons can di-
rectly pass from the left to the right but can also visit the
side dot and exit again. These two paths are enough for
destructive interference.

Another possibility is to extend the serial dot scheme
[Egs. (48) and (49)] by adding a direct path (arm) for
electrons to transit from the left to the right leads (Hof-
stetter et al., 2001):

Hag=H,+H, H,=2> We'c] rc o +He (51)
kqo

The phase ¢ models a magnetic flux which is encom-
passed by the loop of the direct path and the path via
the quantum dot.

The Hamiltonians (48)—(50) belong to the class of
Anderson Hamiltonians (Anderson, 1961). Thus the
thermodynamic properties of both models are similar,
e.g., the average number of (spin-up and spin-down)
electrons on the dot (n,). However, the transport prop-
erties depend crucially on the chosen geometry (Koba-
yashi et al., 2004; Luo et al., 2004). Note that a change in
the dot level ¢, is qualitatively similar a variation of the
gate voltage of a quantum dot. The dot level is capable
of accepting at most one spin-up and one spin-down
electron.

Wiegmann and Tsvelick (1983) obtained analytical re-
sults for (n,) assuming a linearized spectrum of lead
electrons, which is not a crucial constraint, as long as the
lead electron bands are partially filled (ideally at half
filling), and as long as the temperature is much smaller
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FIG. 42. Conductance as a function of ¢, for different values
of background transmission 7). The AB phase ¢=0. From
Hofstetter et al., 2001.

than the distance from the Fermi energy to the band
edges. In addition, there exist various numerical meth-
ods to compute (n,) approximately.

With standard scattering matrix approaches, as well as
use of the Friedel sum rule (Langreth, 1966; Hewson,
1993), the conductance of the serial dot scheme [Egs.
(48) and (49)] at zero temperature can be expressed as
follows (Glazman and Raikh, 1988; Ng and Lee, 1988):

2V, Ve \?
o= (ﬁ) sin® (). (52)
Hofstetter er al. (2001) studied Fano resonances in trans-
port through the AB interferometer model [Eq. (51)] at
zero temperature. The schematic view of the AB inter-
ferometer is similar to Fig. 38(a). For zero AB phase ¢
=0 and the direct path switched off, W=0, there are
three states of a Coulomb blockade to be expected upon
variation in the gate voltage €,: the dot contains either
zero, one, or two electrons, with sharp transitions be-
tween them. We recall again that the empty dot is almost
nonconducting (Coulomb energy too large), and so is the
dot filled with two electrons (Pauli principle). When
there is one electron on the dot, a second can enter
while the first leaves. Despite application of a magnetic
field, the model of Eq. (51) is invariant under spin rever-
sal (because the bare dot levels are not Zeeman slit).
This may not be easy to achieve in an experiment.
Therefore, when there is one electron on the dot, it can
have either spin up or spin down, and on average {(n,)
=1/2 in that case. For ;>0 (the Fermi energy is placed
at zero) the dot is empty, and the conductance is zero.
When -U<¢€;<0, one electron can enter the dot but
not two. Then additional electrons can tunnel through,
giving maximal conductance. Finally, for ¢;<-U, two
electrons occupy the dot, and the conductance is zero
again. This broad region of almost perfect conductance
is due to spin-exchange processes on the quantum dot
level and can therefore be related to the Kondo effect
discussed above. Indeed, in Fig. 42 this is observed for
T,=0, with T),=4x/(1+x)?> being the background trans-
mission probability, where x=mW?N Ny and Ny p is
the density of states in the left (right) lead. With increas-
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ing T, the curves change dramatically. Most importantly,
a Fano resonance appears in the studied energy window,
qualitatively similar to experimental observations
(Kobayashi et al., 2002; Sato et al., 2005). For the model
considered the resonance location is shifting toward
—U/2, and its width tends to —U as T}, further increases
(Fig. 42). A variation in the AB phase ¢ in some
intermediate-T}, regime yields the possibility of changing
the sign of the asymmetry parameter q.

F. Spin filters

When a magnetic field is applied to the AB interfer-
ometer setup in Fig. 38(a), it is reasonable to also con-
sider its action on the quantum dot region itself, which
leads to a Zeeman splitting of the dot level. This is in-
corporated in the side dot model [Eq. (50)] by specifying

EII,J, = €4 — A/Z, (53)

where A is the Zeeman energy up to which the single-
particle level is slit for spin-down and spin-up electrons.
It is easy to incorporate the AB phase shift as well, as we
discuss below.

For U=0 Eq. (50) is reduced to the Fano-Anderson
model [Eq. (6)], and the transmission is computed within
the one-particle picture for an electron moving at the
Fermi energy e

- €F¢i = t(¢n—l + ¢n+l) + V*‘:Dﬁno’ (54)

€11 = € + A/Z,

— €Fp=— ed,o'go + Vd)()? (55)

where ¢, refers to the amplitude of a single particle at
site n in the conducting channel and ¢ is the amplitude
at the side dot. With the help of the Friedel sum rule
(Langreth, 1966; Hewson, 1993), one arrives at (Torio et
al., 2004)

g, =cos® mn,). (56)

This relation has a geometric origin and actually holds
for arbitrary U (at zero temperatures). For a nonzero
magnetic field A>I" the two Fano resonances for
spin-up and spin-down electrons are energetically sepa-
rated. Therefore, the current through the channel is
completely polarized at ez=¢€;; and €;=¢;,. The AB
phase can be easily included into the model [Eq. (50)]
similar to Eq. (51). Remarkably, it will not change the
position of the resonances [cf. also Eq. (9)] since the
position of the Fano resonance is entirely determined by
the matching condition between the dot level(s) and the
Fermi energy.

The spin filter obtained will operate at temperatures
kT<A. For a field of a few tesla that implies tempera-
tures below 100 mK. While that is possible in principle,
two more problems appear. First, to control such a spin
filter, one would have to control the gate voltage on the
scale of weV (because the spin-polarized Fano reso-
nances are separated in the gate voltage by the same
amount of the Zeeman energy). Second, as discussed,
Coulomb interactions have to be taken into account.
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FIG. 43. Spin filter with Fano dot. Left plots: (n,) vs ¢, for a finite splitting A=1.6, U=0 (top) and U=12 (bottom). The black
(white) dots represent the numerical results for the spin-up (spin-down) occupation number. Right plots: g,; vs €, for finite splitting
A=1.6, U=0 (top), and U=12 (bottom). The conductance is computed numerically for spin-up (black dots) and spin-down (white
dots) electrons. The solid and dashed lines on the top figures represent the exact results of Eq. (56). Adapted from Torio et al.,

2004.

For nonzero U and A, the results for the mean num-
ber of particles on the dot and for the spin-resolved con-
ductance, have been obtained by Torio et al. (2004), and
are shown in Fig. 43. The main outcome is that the pres-
ence of a strong Coulomb interaction shifts the two
Fano resonances for spin-up and spin-down electrons
further apart. Therefore, the current through the chan-
nel is completely polarized at ep=€,;+U and €y=¢, .
For U> A the distance between the two spin-polarized
Fano resonances is of the order of the charging energy
(and not the Zeeman energy). At the same time, the
Kondo regime is completely suppressed. For €x<¢, |,
the dot level is empty, and electrons pass directly from
the left to the right lead (background transmission). For
ep=¢,4 the dot is opened for spin-down electrons. A
Fano resonance appears, and its width is determined
solely by I'=2|V[?/|v /|, where vy=de/dq| e is the Fermi
velocity. For €; | <ep<e€;;+U the dot level is filled with
one spin-down electron and does not contribute to the
conductance, leading to direct transmission from left to
right leads. For ez=¢,;+ U the dot is opened for spin-up
electrons. A Fano resonance appears, with the same
width as in the previous case. Finally, for ez>¢€;,+U,
the dot is filled with two electrons and does not contrib-
ute to the conductance, leading to direct transmission
from left to right leads.

For typical quantum dots with L =100 nm and B
~1 T, the spin filter effect is expected to be active for
temperatures below 100 mK, with a distance between
the spin-polarized Fano resonances on the order of
20-50 meV. To observe it, one needs to monitor experi-
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mentally the spin-resolved flow of electrons with a spa-
tial resolution smaller than the dot dimension.

G. Perspectives

Gurvitz and Levinson (1993) obtained resonant reflec-
tion and transmission within a generalized description of
a conducting channel (with several transverse modes)
with a single impurity.

Extensions of the theoretical models in order to in-
clude many dot levels were performed by Stefanski et al.
(2004) for very large (0.1 eV) charging energies. Two
dots with rather small charging energies (1 meV) were
discussed by Stefanski (2003). Some considered the limit
U— o (Kang and Shin, 2000; Bulka and Stefanski, 2001;
Kang et al., 2001). It remains to be clarified whether such
models can be used to discuss temperature effects on
transport properties through quantum dots.

Lee and Bruder (2006) extended the spin filter model
by inclusion of spin-orbit interactions and extension of
the side dot into a side ring with many levels. Song et al.
(2003) discussed a possible realization of the spin filter in
an open quantum dot. Estimates of Kondo temperatures
and general temperature effects were discussed by Ali-
gia and Salguero (2004). Lobos and Aligia (2008) in-
cluded Rashba spin-orbit coupling into the consider-
ation of AB interferometers [see also Sanchez and Serra
(2006), Chi et al. (2007), Serra and Sanchez (2007), and
Gong, Zheng, Liu, Kariuki et al. (2008)]. Spin inversion
devices in a quasi-two-dimensional semiconductor wave-
guide under sectionally constant magnetic fields and
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spin-orbit interactions were discussed by Cardoso and
Pereyra (2008).

Experimental progress was reported by Neel et al.
(2007) through the contact of the tip of a low-
temperature scanning tunneling microscope with indi-
vidual cobalt atoms adsorbed on Cu(100), where Fano
resonances have been observed.

Single-molecule devices have attracted attention re-
cently. In these devices one sandwiches various mol-
ecules between gold electrodes and studies their conduc-
tance properties. Impressive Fano resonances (with the
background transmission dropping by several orders of
magnitude) were reported recently by Finch et al. (2009).
The additional influence of Andreev reflection at low
temperatures, when the metallic contacts turn supercon-
ducting, was studied by Korményos et al. (2009).

Since Fano resonances rely on the phase coherence of
electrons traversing the structure along different paths,
several have investigated the influence of phonons on
decoherence in quantum dots (Pastawski et al., 2002;
Torres et al., 2006). Clerk et al. (2001) studied the possi-
bility of extracting phase-decoherence properties from
measurements on the ¢ factor of the Fano resonance.

During recent decades, carbon nanotubes have been
studied extensively because of their unconventional
properties (Saito et al., 1998). For applications to nano-
scale electronic devices, researchers have fabricated
various forms of carbon nanotubes to engineer their
physical properties, including new morphologies such as
X- and T-shaped junctions (Terrones et al., 2000). These
developments offer interesting opportunities for study-
ing phase-coherent transport in novel geometries. Car-
bon nanotubes are excellent objects for observing phase-
coherence phenomena and Fano effects, and there are
many theoretical studies and experimental signatures of
the Fano effect in different types of carbon nanotube
(Kim et al., 2003, 2005; Yi et al, 2003; Babic and
Schonenberger, 2004; Zhang et al., 2004; Hu et al., 2006;
Zhang and Chandrasekhar, 2006). In particular, Fano
resonances are pronounced in the transport properties
of multiply connected carbon nanotubes where a
single tube branches into two smaller arms which then
merge into one. Both m-bonding and w*-bonding
(7r-antibonding) electron transport channels show reso-
nant Fano tunneling through discrete energy levels in
the finite arms (Kim et al., 2005).

There are many other systems where Fano resonances
have been observed and studied in detail, e.g., for reso-
nant phonon transport caused by nonlocal interaction
between two crystalline media in the presence of a
weakly bounded intermediate layer (Kosevich, 1997,
2008; Kosevich et al., 2008) or the generalized concept of
Mach-Zhender-Fano interferometry in photonic struc-
tures (Miroshnichenko and Kivshar, 2009; Wang et al.,
2009).

VII. CONCLUSIONS

This review offers a bird’s-eye view of Fano reso-
nances in various physical systems. All examples pre-
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sented here share the same basic feature—coexistence
of resonant and nonresonant paths for the scattering
waves to propagate. This results in constructive and de-
structive interference phenomena and asymmetric line
shapes, first quantitatively described by Ugo Fano. It
turns out to be a common situation in any complex sys-
tem describing wave propagation, either on a classical
footing or on a quantum-mechanical one. This makes
the Fano resonance a very generic phenomenon. The
characteristic fingerprints of the Fano resonance are
usually assumed to be related to an asymmetric profile
of a cross section or transmission as a function of some
relevant control parameters. A detailed study of the
problem shows that symmetric profiles are allowed as
well, and therefore a Fano resonance is indicating its
presence whenever a resonant suppression of forward
scattering (transmission) is observed. This is intimately
related to the presence of a quasibound state resonantly
interacting with a continuum of scattering states. The
pinning down of such a bound state may or may not be
an obvious undertaking, depending on the given physi-
cal setting. In particular, such quasibound states can be
generated by geometrical means and in more compli-
cated settings by many-body interactions. We focused
here on the study of Fano resonances in light propaga-
tion through artificial nanoscale optical devices and in
charge transport through quantum dots. Several other
potential applications were discussed as well, touching
such areas as superconductivity and Bose-Einstein con-
densates in optical lattices, among others.

Despite the Fano resonance being caused by interfer-
ence, we should point out that it is quite different from
other interference phenomena, such as, for instance,
double-slit experiments or weak localization in disor-
dered media (Gantmakher, 2005). The latter two share
the common feature of interference between two open
channels (or broad continua), represented by the similar
diffraction patterns of the slits in the first case and the
identical length of the two counterpropagating paths
along a loop in the second. The phase of a scattering
wave varies relatively slowly along a continuum. There-
fore, for nearly identical continua the phase accumula-
tion during propagation along two paths will be practi-
cally the same. Constructive or destructive interference
takes place when the sum of these two phases becomes
equal to zero or m, and, in general, they are well sepa-
rated from each other. In the case of a Fano resonance
the situation is quite different. Along the discrete-level
path, the phase undergoes sharp variations (in compari-
son with the continuum) with a consequent change of its
sign. It results in a very strong asymmetric profile where
constructive and destructive interferences are located
close to each other. Several detailed examples consid-
ered in this review demonstrate that systems which sup-
port Fano resonance can be mapped onto the Fano-
Anderson model [Eq. (3)]. This model is very simple and
provides us with a core understanding of the phenom-
enon. It can be considered as a guideline for explanation
of the Fano resonance in a particular system.
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