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I. INTRODUCTION

Elastic plates are probably some of the oldest sup-
ports of sound production. They were used by most hu-
man cultures. Clay drums dated from the Chalcolithic
have been found in graves in central Europe, and bronze
drums dated from the second millenary B.C. have been
discovered in Sweden and Hungary. However, it is usu-
ally acknowledged that the scientific study of the vibra-
tion of elastic plates goes back only to the end of the
18th century, when the German researcher Ernst
Chladni carried out the first systematic investigations on
the production of sound by plates �Chladni, 1802; Smi-
lansky and Stöckmann, 2007�. When the plate was fixed
in its middle and struck with a bow, it was set into vibra-
tion. The mode that was being excited was physically
visualized by pouring sand on the plate: the sand accu-
mulates at nodal lines, that is, lines along which the plate
does not oscillate. Some insight was brought into the
mathematical theory of vibrating plates by the French
mathematician Sophie Germain, who published Recher-
ches sur la théorie des surfaces élastiques in 1821. In the
course of the 19th century, Poisson, Kirchhoff, Lamé,
Mathieu, and Clebsch devised analytic expressions for
the description of the oscillation for elementary shapes
such as the rectangle, the triangle, the circle, and the
ellipse.

The motivation for studying this problem was mainly
that the wave phenomenon at the heart of membrane
oscillations is in fact quite general. The stationary wave
equation describing the problem arises in a variety of
situations. In many fields of physics, such as acoustics,
seismology, hydrodynamics, and heat propagation, the
mathematical formulation of the problem involves par-
tial differential equations, and general solutions of these
equations can be found as superpositions of solutions of
the so-called Helmholtz equation. In a d-dimensional
space a stationary solution to the wave equation is an
unknown function of d variables describing the problem,
and the Helmholtz equation reads

�f + Ef = 0, �1�

where � is the d-dimensional Laplacian. Under suitable
approximations, numerous problems can be cast in that
form. For instance, in a certain regime the oscillations of
height f= f�x ,y� of a thin vibrating plate at point �x ,y�
can be described by Eq. �1�.

At the end of the 19th century, James C. Maxwell
showed that the electric and magnetic fields behave like
waves and established equations governing the time evo-
lution of the electromagnetic field. From Maxwell’s
equations, it is easy to prove that the electric and mag-
netic field components also obey the same wave equa-
tion �1�. Further interest developed in this equation
when the wavelike behavior of matter was discovered in
the early years of quantum mechanics. The Schrödinger
equation was established in 1926 by Erwin Schrödinger
to describe the space-time evolution of a quantum sys-
tem. The behavior of a particle can be described, in the
framework of quantum mechanics, by a wave function �,
which is a function of the position of the particle, and
which characterizes the probability amplitude ��x� that
the particle be located at a position x. If the system is
described by the Hamiltonian H, the wave function sat-
isfies the stationary Schrödinger equation H�=E�,
where E is the energy of the particle. For a particle of
mass m and momentum p evolving in a box defined by
its contour �B, the Hamiltonian describing the free mo-
tion inside the box reads H=p2 /2m inside the box en-
closure �B and � outside, and the time-independent
Schrödinger equation takes the form �1�.

Mathematically, solutions of the Helmholtz equation
are readily obtained in dimension d=1. The problem of
vibrating strings had been solved in the 18th century by
Jean Le Rond d’Alembert. For a string of length L fixed
at its two ends, solutions are simply given by f�x�
=sin�n�x /L�, where n is an integer. The sound produced
by the string has the possible frequencies n�0 with the
fundamental frequency given by �0=c / �2L�.

Just as the one-dimensional case—which can describe
a variety of physical situations—can be seen as a prob-
lem of vibrating strings, the two-dimensional case is usu-
ally studied from the perspective of its simplest math-
ematical equivalent, namely, billiards. Billiards �in the
mathematical sense� are two-dimensional compact do-
mains of the Euclidean plane R2. For instance, in quan-
tum mechanics, the billiard models the behavior of a
particle moving freely in a box whose dimensions are
such that it can be approximated by a two-dimensional
enclosure. The billiard problem is solved by looking for
eigenfunctions � and eigenvalues E that are solutions of
Eq. �1� inside the billiard, imposing boundary conditions
on the boundary �B of the billiard. Physical problems
impose specific boundary conditions. For instance, hard
wall domains in quantum mechanics require that the
wave function vanishes on the boundary. In acoustics,
the clamping of an elastic membrane requires that the
oscillations and their derivative along the boundary van-
ish. The billiard problem usually considers the two fol-
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lowing boundary conditions: Dirichlet boundary condi-
tions ���B=0 for which the function vanishes on the
boundary, or Neumann boundary conditions �n���B=0
for which the normal derivative vanishes on the bound-
ary. If such boundary conditions are imposed, there is an
infinite but countable number of solutions to Eq. �1�. We
denote eigenfunctions of the operator −� by �n and ei-
genvalues by En, n�N, with 0�E1	E2	E3	¯. Of
course any combination of the above boundary condi-
tions yields a different spectral problem. In this review,
however, we are mainly concerned with Dirichlet bound-
ary conditions.

In the second half of the 20th century, quantum bil-
liards were studied in the framework of quantum chaos.
Quantum properties of classical systems were investi-
gated, and different behaviors were found according to
the properties of integrability or chaoticity of the under-
lying classical dynamics. This quantum-classical corre-
spondence led to various conjectures for integrable sys-
tems �Berry and Tabor, 1977� and chaotic systems
�Bohigas et al., 1984�. These conjectures rest on powerful
mathematical tools that allow insight into the properties
of solutions of the Helmholtz equation �1�. For instance,
the Weyl formula �see Sec. V.A� or semiclassical trace
formulas �see Sec. V.B.2� provide a connection between
the density of energy levels and classical features of the
domains such as area, perimeter, or properties of classi-
cal trajectories in the domain. The existence of such for-
mulas and the conjectures on the quantum-classical cor-
respondence indicate that the spectrum of a billiard
contains a certain amount of information about the
shape of the billiard. Therefore it is natural to ask how
much information about the billiard can be retrieved
from knowledge of the eigenvalue spectrum. For rectan-
gular or triangular billiards, it is known that a finite
number of eigenvalues suffices to entirely specify the
shape of the billiard �see, e.g., Chang and Deturck
�1989�� but is this true for more complicated shapes?

In 1966, in a celebrated paper Kac �1966� formulated
the famous question “Can one hear the shape of a
drum?” This provocative question is of course to be un-
derstood mathematically as follows: Is it possible to find
two �or more� nonisometric, Euclidean simply connected
domains for which the sets �En �n�N� of solutions of
Eq. �1� with ��boundary=0 are identical? More broadly,
the question raises the issue of the inverse problem of
retrieving information about a drum from knowledge of
its spectral properties. As the spectroscopist A. Schuster
put it in an 1882 report to the British Association for the
Advancement of Science: “To find out the different
tunes sent out by a vibrating system is a problem which
may or may not be solvable in certain special cases, but
it would baffle the most skillful mathematicians to solve
the inverse problem and to find out the shape of a bell
by means of the sounds which it is capable of sending
out. And this is the problem which ultimately spectros-
copy hopes to solve in the case of light. In the meantime
we must welcome with delight even the smallest step in
the desired direction” �Mehra and Rechenberg, 2000�.
Actually, it was known very early, from Weyl’s formula,

that one can “hear” the area of a drum and the length of
its perimeter �see Sec. V.A and Vaa et al., 2005, for a
historical account of the problem�. But could the shape
itself be retrieved from the spectrum? That is, what kind
of information on the geometry is it possible to gather
from the knowledge of the spectrum, for instance, using
semiclassical methods that allow investigation of the
quantum-classical correspondence? And what kind of
sufficient conditions allow the geometry to be entirely
specified from the spectrum?

Formally, an answer “no” to Kac’s question amounts
to finding isospectral billiards, that is, nonisometric bil-
liards having exactly the same eigenvalue spectrum.
Since the appearance of Kac’s paper �Kac, 1966�, far
more than 500 papers have been written on the subject,
and innumerable variations on “hearing the shape of
something” can be found in the literature. Early ex-
amples of flat tori sharing the same eigenvalue spectrum
were found in 1964 by Milnor in R16 from nonisometric
lattices of rank 16 in R16 �see Sec. III�. Other examples
of isospectral Riemannian manifolds were constructed
later, for example, on lens spaces �Ikeda, 1980� or on
surfaces with constant negative curvature �Vignéras,
1980�. In 1982, Urakawa produced the first examples of
isospectral domains in Rn, n
4 �Urakawa, 1982�. �These
examples are also described by Protter �1987�.� More
specifically, it is proved that there exist domains C and
C� in the unit sphere Sn−1 in Rn, n
4, which are Dirich-
let and Neumann isospectral but not congruent in Sn−1.
This existence follows from the observation that there
are finite reflection groups W and W� that act on the
same Euclidean space Rn, n
4, for which the sets of
exponents coincide, and the intersections �C and C�� of
their chambers with Sn−1 are not congruent in Sn−1. Then
the work of Bérard and Besson �1980� is applied.

In the late 1980s, various other papers appeared giv-
ing necessary conditions that any family of billiards shar-
ing the same spectrum should satisfy �Melrose, 1983; Os-
good et al., 1988a, 1988b�. Necessary conditions given as
inequalities on the eigenvalues were reviewed by Protter
�1987�.

But it was almost 30 years after Kac’s paper that the
first example of two-dimensional billiards having exactly
the same spectrum was finally exhibited in 1992. The
pair was found by Gordon, Webb, and Wolpert in their
paper “Isospectral plane domains and surfaces via Rie-
mannian orbifolds” �Gordon et al., 1992a�. They gave a
no as a final answer to Kac’s question, and, as a reply to
Kac’s paper, they published a paper titled “One cannot
hear the shape of a drum” �Gordon et al., 1992b�. The
most popularized example is shown in Fig. 1.

Crucial for finding the example was a theorem by Su-
nada �see Sec. VII.C� asserting that when two subgroups
are “almost conjugate” in a group that acts by isometries
on a Riemannian manifold, the quotient manifolds are
isospectral. In fact, the other examples constructed after
1992 all used Sunada’s method. Later, the so-called
transplantation technique was used, giving an easier way
for detecting isospectrality of planar billiards. Still, es-
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sentially only 17 families of examples that say no to
Kac’s question were constructed in a 40-year period.

Since the literature on isospectrality is large and cov-
ers a broad spectrum of mathematical topics, we have
chosen here to put the focus on isospectral billiards, that
is, two-dimensional isospectral domains of the Euclidean
plane, with Dirichlet boundary conditions. It is worth
noting that simple examples of isospectral domains can
be constructed in the case of mixed Dirichlet-Neumann
boundary conditions. Such constructions were proposed
by Levitin et al. �2006� �see Sec. VIII.A�. We now review
some results on related topics, to which we will not re-
turn in this paper.

First we mention several fundamental results on iso-
spectrality that will be omitted. Zelditch �1998� proved
that isospectral simple analytic surfaces of revolution are
isometric. That is, he considered the moduli space R of
metrics of revolution �S2 ,g� with the following proper-
ties. Suppose that there is an effective action of S1 by
isometries of �S2 ,g�. The two fixed points are N and S.
Denote by �r ,�� geodesic polar coordinates centered at
N, with �=0 being some fixed meridian �M from N to S.
The metric g can then be written as g=dr2+a�r�d�2,
where a : �0,L��R+ is defined by a�r�= �Sr�N�� / �2��,
with �Sr�N�� the length of the distance circle of radius r
centered at N. The properties now are as follows: �i� g is
real analytic, �ii� a has precisely one critical point r0
� �0,L�, with a��r0��0, corresponding to an equatorial
geodesic �E, and �iii� the nonlinear Poincaré map P�E

for
�E is of twist type.

Denote by R*�R the subset of metrics with simple
length spectra in the sense of Zelditch �1998�. Then
Zelditch proved that Spec:R*�R+

N is 1:1. Furthermore,
Zelditch �1999�—see also Zelditch �2000�—showed that
real plane domains  that �1� are simply connected and
real analytic, �2� are Z2�Z2 symmetric �i.e., have the
symmetry of an ellipse�, and �3� have at least one axis
that is a nondegenerate bouncing ball orbit, the length
of which has multiplicity 1 in the length spectrum
Lsp��, are indeed determined by their spectrum. In re-
cent work Zelditch �2004a� pursued his goal of eventu-
ally solving the inverse spectral problem for general real

analytic plane domains. We return to this issue in more
detail in Sec. V.J.

Concerning the known counterexamples in the plane,
it should be remarked that the constructed domains are
not convex �see, e.g., Appendix A�. The objective of
Gordon and Webb �1994� is to exhibit pairs of convex
domains in the hyperbolic plane H2 that are both Dirich-
let and Neumann isospectral. They are obtained from
nonconvex examples in the real plane by modifying the
shape of a fundamental tile. Other interesting variations
on the problem include the construction of a pair of
isospectral �nonisometric� compact three-manifolds,
called “Tetra” and “Didi,” which have different closed
geodesics �Doyle and Rossetti, 2004�.

The related question of graph isospectrality has also
attracted much interest. We mention here a few results.
A quantum graph is a metric graph equipped with a dif-
ferential operator �typically the negative Laplacian� and
homogeneous differential boundary conditions at the
vertices. „Recall that a metric graph is a graph such that
to each edge e is assigned a finite �strictly positive�
length �e�R so that it can be identified with the closed
interval �0,�e��R. Without the boundary conditions, the
graph “consists of” edges with functions defined sepa-
rately on each edge.… So there is a natural spectral
theory associated with quantum graphs. Many results
exist, and we mention a few striking ones. One of the
main results in that spectral theory can be found in Gut-
kin and Smilansky �2001�, where the trace formula is
used to show that �under certain conditions� a quantum
graph can be recovered from the spectrum of its Laplac-
ian. �Necessary conditions include the graph being
simple and the edges having rationally independent
lengths.� Using a spectral trace formula, Roth �1984� in
an early paper constructed isospectral quantum graphs.
von Below �2001�, on the other hand, used the connec-
tion between spectra of discrete graphs and spectra of
�equilateral� quantum graphs to transform isospectral
discrete graphs into isospectral quantum graphs. Finally,
we note that Parzanchevski and Band �2010� presented a
method for constructing isospectral quantum graphs
based on linear representations of finite groups. Note
that a different notion of graph isospectrality was con-
sidered by Thas �2007b� based on the spectrum of the
adjacency matrix of the graph. We return to this point in
Sec. IV.A.4.

To end this section, we give a short description of the
contents of the paper.

To familiarize the reader with the notions involved,
we start by presenting a simple proof of isospectrality
for the seminal example of Gordon et al. �1992a� in Sec.
II. Then the first historical examples of higher-
dimensional isospectral pairs of flat tori are constructed
�Sec. III�. �Much more work has been done on isospec-
trality for the Laplace-Beltrami operator on flat tori in
higher dimensions than just the material we cover in
Sec. III. We refer to that section for more commentaries
on that matter.� Section IV is devoted to the mathemati-
cal aspects lying behind the construction of the known
examples of isospectral pairs. Then we review various

FIG. 1. Paradigmatic pair of isospectral billiards with seven
half-square-shaped base tiles. The dotted lines are just a guide
for the eye.
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aspects of the properties of isospectral pairs �Sec. V�, as
well as experimental implementations and numerical
checks of isospectrality �Sec. VI�. As the first examples
of isospectral billiards were produced by applying Su-
nada theory, a review of this theory is given in Sec. VII.
In the last section we examine questions related to Kac’s
problem.

II. A PEDESTRIAN PROOF OF ISOSPECTRALITY

The first examples of isospectral billiards in the Eu-
clidean plane were constructed using powerful math-
ematical tools. We postpone these historical construc-
tions to Sec. VII.E. The present section aims at
illustrating the main ideas involved in isospectrality so
that the reader can acquire some intuition about it.
More rigorous mathematical grounds will be provided in
the next sections.

A. Paper-folding proof

We start with a simple construction method that was
proposed by Chapman �1995�. It is based on the so-
called paper-folding method. To illustrate it we follow
Thain �2004�, where the method is illustrated on a
simple example.

Consider the two billiards in Fig. 2. Each billiard is
made of seven identical rectangular building blocks. The

solid lines are hard wall boundaries; the dotted lines are
just a guide to the eye marking the building blocks. Let
� be an eigenfunction of the left billiard with eigenvalue
E. The goal is to construct an eigenfunction of the right
billiard with the same eigenvalue, that is, a function
which verifies the Helmholtz equation �1�, vanishes on
the boundary of the billiard, and has a continuous nor-
mal derivative inside the billiard.

The idea is to define a function � on the right billiard
as a superposition of translations of the function �.
Since the Helmholtz equation �1� satisfied by � is linear,
any linear combination of translations of � will be a
solution of the Helmholtz equation with the same eigen-
value E in the interior of each building block of the
second billiard. The problem reduces to finding a linear
combination that vanishes on the boundary and has the
correct continuity properties inside the billiard. The
paper-folding method allows us to satisfy all these con-
ditions simultaneously.

Take three copies of the left billiard of Fig. 2. Fold
each copy in a different way, as shown in Fig. 3 �left
column�. Then the three-times folded billiards are
stacked on top of each other as indicated in the right
column of Fig. 3; note that the first shape �folding 1� has
been translated on the left before being stacked, and
that the second shape �folding 2� has been rotated by �
in the plane of the figure. Once superposed, these three
billiards yield the shape on the bottom right, which is the
right billiard of Fig. 2.

Now we make a correspondence between stacking
two sheets of paper and adding the functions defined on
these sheets; moreover, stacking the reverse of a sheet
corresponds to assigning a minus sign to the function.
For instance, in folding 3, a minus sign is associated in
the right column with tiles 3 and 4 since they are folded

3 4

7

1 2

5 6

1 2 3 4

5 6 7

FIG. 2. The pair 73 �see Appendix A� of isospectral billiards
with a rectangular base shape.

folding 1

folding 2

folding 3

1 2 3 4

5 6 7

−7

2+4

5−6+7

−4+7

−1+2−5 3−6

−4

1

1 2−3

5 6

−1+2−5 1+3−6 5−6+7

2+4+6 1−4+7

1 2 3 4

5 6 7

2−3−7

3

3−4+5

FIG. 3. Pictorial representation of the paper-folding method.
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back, and a plus sign is assigned to the other tiles since
they are not folded. The function � is defined by this
“folding and stacking” procedure. For instance, it is de-
fined in the tile numbered 1 in the right billiard of Fig. 2
by

���tile 1 = −���tile 1 +���tile 2 −���tile 5. �2�

The procedure above ensures that � vanishes on the
boundary and has a continuous derivative across the tile
boundaries. Indeed, consider for instance the leftmost
vertical boundary of the right billiard �i.e., the left edge
of tile 1�. On this boundary, we have���tile 5=0 �since it is
at the boundary of the left billiard� and ���tile 1=���tile 2
since tiles 1 and 2 are glued together. Thus, � given by
Eq. �2� indeed vanishes on the leftmost vertical bound-
ary of the right billiard. After we have checked by in-
spection all �inner and outer� boundaries, we have
proved that the two billiards of Fig. 2 are isospectral.

With the paper-folding method, it is clear that what
matters is the way the building blocks �the elementary
rectangles in our example� are glued to each other, irre-
spective of their shape. We now show how the paper-
folding proof generalizes to other shapes. Suppose we
denote by 1, 2, and 3 the left, right, and bottom edges of
tile 4 in the left billiard of Fig. 2, respectively. To obtain
the whole billiard one unfolds tile 4 with respect to its
side number 3, getting tile 7. Then tile 7 is unfolded with
respect to its side number 2, yielding tile 6, and so on.
The unfolding rules can be summed up in a graph speci-
fying the way we unfold the building block. The graphs
in Fig. 4 correspond to the unfoldings yielding the bil-

liards of Fig. 2 when applied to a rectangular building
block. The vertices of the graph represent the building
blocks, and the edges of the graph are “colored” accord-
ing to the unfolding rule, that is, depending on which of
its sides the building block is unfolded. The graphs can
alternatively be encoded by permutations a��� ,b���, 1
	�	3. For instance, for the first graph we have a�1�

= �23��56�, a�2�= �12��67�, and a�3�= �25��47�. In fact, only
three sides of the rectangle are involved in the unfold-
ing. So we can start with any triangular-shaped building
block and unfold it with respect to its sides just as the
billiards in Fig. 2 are obtained from the rectangular
building block. This leads to billiard pairs whose isospec-
trality is granted by the paper-folding proof given above.

For example, starting from the triangle in Fig. 4 and
following the same unfolding rules, we get the pair of
isospectral billiards shown in Fig. 4, right. Taking a
building block in the form of a half square, we recover
the example of Fig. 1 when the same unfolding rules are
applied.

The building block is in fact not even required to be a
triangle or a rectangle. Any building block possessing
three edges around which to unfold leads to a different
pair of isospectral billiards. Another interesting example
is obtained by taking a heptagon and unfolding it with
respect to three of its sides, following the unfolding rules
of Fig. 4. This yields the first example produced by Gor-
don et al. �1992a, 1992b�; see Fig. 5.

Chapman �1995� produced more involved examples
following the same procedure. Starting from the build-
ing block of Fig. 6, left, one obtains an example of a pair
of chaotic billiards with holes. Similarly Dhar et al.
�2003� constructed chaotic isospectral billiards based on
the same idea: scattering circular disks were added in-
side the base triangular shape in a way consistent with
the unfolding.

The central building block of Fig. 6 yields a simple
disconnected pair where each billiard consists of a dis-
joint rectangle and triangle. In this case, isospectrality
can be checked directly by calculating the eigenvalues
since the eigenvalue problem can be solved exactly for
triangles and half squares.

1

2
3

FIG. 5. Isospectral billiards. The top left is the seven-edged
building block. From Gordon et al., 1992a.

3

2
1

+ =

4

4 7 6 5 2

3

1 5

7

6

1

432

7

6

5

2

3 1

1

2

3

5

6

4

7

FIG. 4. Graphs corresponding to a pair of
isospectral billiards: If we label the sides of
the triangle by �=1,2 ,3, the unfolding rule
by symmetry with respect to side � can be
represented by edges made of � braids in the
graph. From a given pair of graphs, one can
construct infinitely many pairs of isospectral
billiards by applying the unfolding rules to
any shape.

FIG. 6. Examples of building blocks yielding isospectral pairs.
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Sleeman and Hua �2000� considered a building block
with piecewise fractal boundary: Starting from a
�� /2 ,� /3 ,� /6� base triangle they cut each side into
three pieces and remove the three triangular corners.
Along the freshly made cuts a Koch curve is con-
structed, while the untouched sides still allow the Chap-
man unfolding �Fig. 6, right�. This yields a pair of iso-
spectral billiards with fractal boundary of dimension
ln 4/ ln 3.

A separate problem that will not be presented here is
to find inhomogeneous vibrating membranes isospectral
to a homogeneous membrane with the same shape �see,
e.g., Gottlieb �2004� for circular membranes�. Knowles
and McCarthy �2004� used the isospectrality of the bil-
liards of Fig. 1 to construct a pair of isospectral circular
membranes by a conformal mapping.

B. Transplantation proof

The paper-folding proof can be made more formal by
means of the so-called transplantation method. This
method was introduced by Bérard �1989� and Bérard
�1992, 1993� and discussed by Buser et al. �1994� and
Okada and Shudo �2001�. It will be presented in more
detail in Sec. III. Here we sketch the main ideas using a
simple example.

Consider the isospectral pair of Fig. 2. Let � be an
eigenstate of the first billiard. Any point in the billiard
can be specified by its coordinates a= �x ,y� inside a
building block, and a number i arbitrarily associated
with the building block �for example, 1	 i	7 in our ex-
ample of Fig. 2�. Thus � is a function of the variable
�a , i�. According to the paper-folding proof, a building
block i of the second billiard is constructed from a su-
perposition of three building blocks j obtained by fold-
ing the first billiard. We can code the result of the
folding-and-stacking procedure in a matrix T as

T =	
− 1 1 0 0 1 0 0

1 0 1 0 0 − 1 0

0 1 − 1 0 0 0 − 1

0 0 0 0 1 − 1 1

0 0 1 − 1 1 0 0

0 1 0 1 0 1 0

1 0 0 − 1 0 0 1


 . �3�

The paper-folding proof consists in showing that one can
construct an eigenstate � of the second billiard as

��a,i� = N�
j

Tij��a,j� , �4�

where N is some normalization factor. That is, one can
“transplant” the eigenfunction of the first billiard to the
second one. The matrix T is called a “transplantation
matrix.” The proof of isospectrality reduces to checking
that � given by Eqs. �3� and �4� vanishes on the bound-
ary and has a continuous derivative inside the billiard.

We first transform the problem into an equivalent one
on translation surfaces. Translation surfaces �Gutkin and
Judge, 2000�, also called planar structures, are manifolds
of zero curvature with a finite number of singular points
�see Vorobets �1996� for a more rigorous mathematical
definition�. A construction by Zemlyakov and Katok
�1976� allows us to construct a planar structure on ratio-
nal polygonal billiards, that is, polygonal billiards whose
angles at the vertices are of the form �i=�mi /ni, with
mi ,ni positive integers. This planar structure is obtained
by “unfolding” the polygon, that is, by gluing to the ini-
tial polygon its images obtained by mirror reflection
with respect to each of its sides and repeating this pro-
cess on the images. For polygons with angles �i
=�mi /ni, this process terminates and 2n copies of the
initial polygon are required, where n is the greatest com-
mon divisor of the ni. Identifying parallel sides, one gets
a planar structure of genus in general greater than 1.
This structure has singular points corresponding to ver-
tices of the initial polygon where the angle �i=�mi /ni is
such that mi�1. The genus of the translation surface
thus obtained is given by �Richens and Berry, 1981�

g = 1 +
n

2 �
i

mi − 1

ni
. �5�

A very simple example of a translation surface is the flat
torus, obtained by identifying the opposite sides of a
square. Such a translation surface corresponds to four
copies of a square billiard glued together.

The billiards of Fig. 2 possess one 2� angle, two 3� /2
angles, and eight � /2 angles each. The translation sur-
faces associated to these billiards are obtained by gluing
together 2n=4 copies of the billiards, yielding planar
surfaces of genus 4. They are shown in Fig. 7.

Opposite sides are identified �e.g., in the first surface,
the left edge of tile 1 is identified with the right edge of
tile 5�. Each surface has four singular points. The sym-
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FIG. 7. The pair 73 of isospectral billiards with a rectangular
base shape unfolded to a translation surface �i.e., flat billiard
with opposite sides identified�.
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bols � and � represent a 6� angle, while the � and �

symbols denote an 8� angle. An example of a straight
line drawn on the first surface is shown in Fig. 7. The
eigenvalue problem on these surfaces is equivalent to
the problem on the billiards. It is, however, simpler to
handle since the translation surfaces have no boundary.
Thus, only the continuity properties of the eigenfunc-
tions have to be checked.

Each translation surface is tiled by seven rectangles.
Again, any point on the surface can be specified by its
coordinates �a , i�. Each tile on the translation surface
has six neighboring tiles, attached at its left, upper left,
upper right, right, lower right, and lower left edges, and
numbered from 1 to 6, respectively. For instance tile 1 is
surrounded by tile 5 on its left edge, tile 6 on its right
edge, tile 3 on its upper left edge, tile 1 itself on its upper
right edge �because of the identification of opposite
sides�, tile 3 on its lower left edge, and tile 1 on its lower
right edge. The way the tiles are glued together can be
specified by permutation matrices A���, 1	�	6, such
that Aij

���=1 if and only if the edge number � of i glues
tile i to tile j. For instance, for the first translation sur-
face, the matrix specifying which tile is on the right of
which is

A�2� =	
0 0 0 0 0 1 0

0 0 1 0 0 0 0

0 0 0 0 0 0 1

0 0 0 1 0 0 0

1 0 0 0 0 0 0

0 0 0 0 1 0 0

0 1 0 0 0 0 0


 �6�

�tile 6 is on the right of tile 1, therefore A1,6
�1� =1, and so

on�. In a similar way, matrices B���, 1	�	6, can be de-
fined for the second translation surface. Now suppose
there exists a matrix T such that

A���T = TB���, ∀ �, 1	 �	 6. �7�

Then for any given eigenstate � of the first translation
surface, we can construct an eigenstate � for the second
translation surface, defined by Eq. �4�. In order to prove
isospectrality we only have to check for continuity prop-
erties at each edge. Suppose tiles i and j are neighbors.
This means that there exists a �, 1	�	6, such that
Aij

���=1. To prove the continuity of � between tiles i and
j, we have to show that the quantity

C = ��a,i� − ��a,j� �8�

is equal to zero for all a belonging to the edge between
i and j. By definition of � we have Aik

���=1 if and only if
k= j. Therefore

��a,j� = �
k

Aik
�����a,k� , �9�

and C is given by

C = ��a,i� − �
k

Aik
�����a,k� . �10�

Using Eq. �4�, we get

C = N�
k

Tik��a,k� − N�
k,k�

Aik
���Tkk���a,k�� . �11�

The sum over k on the right-hand side yields a term
�A���T�ik�. According to the commutation relation �7�, it
is equal to �TB����ik�, which gives

C = �
k

Tik���a,k� − �
k�

Bkk�
��� ��a,k�� . �12�

Now the continuity of the function � ensures that all the
terms between parentheses vanish. Thus C=0, and con-
tinuity of � is proved. Continuity of partial derivatives is
proved in the same way.

The proof rests entirely on the fact that we assumed
the existence of a transplantation matrix T satisfying the
commutation properties �7�. It turns out that such a ma-
trix exists. One can check that, given the matrix

T =	
1 0 0 1 0 0 1

0 1 0 0 1 0 1

0 0 1 0 0 1 1

1 0 0 0 1 1 0

0 1 0 1 0 1 0

0 0 1 1 1 0 0

1 1 1 0 0 0 0


 , �13�

the commutation relations �7� are satisfied for all �, 1
	�	6. Thus the proof of isospectrality is completed.
We return in Sec. IV to this transplantation proof of
isospectrality.

A natural question is to know how one can find a
suitable matrix T and permutation matrices A��� and B���

verifying all commutation equations �7�. Historically,
these matrices were obtained by the construction of Su-
nada triples, as explained in Sec. VII.C. In fact, it turns
out that the matrix T is just the incidence matrix of the
graph associated with a certain finite projective space
�the Fano plane in our example�, as explained in Sec. IV.

III. FURTHER EXAMPLES IN HIGHER DIMENSIONS

Milnor �1964� showed that from two nonisometric lat-
tices of rank 16 in R16 discovered by Witt �1941�, one can
construct a pair of flat tori that have the same spectrum
of eigenvalues �all relevant terms are defined below�.

In this section, we describe a simple criterion for the
construction of nonisometric flat tori with the same ei-
genvalues for the Laplace operator from certain lattices
�which was used by Milnor for the case mentioned
above�, and then we construct, for each integer n
17, a
pair of lattices of rank n in Rn that match the criterion.
Furthermore, we describe the results of Wolpert and
Kneser on the moduli space of flat tori. An interesting
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paper focused on the �elementary� construction theory
of isospectral manifolds has been given by Brooks
�1988�.

A. Lattices and flat tori

A lattice �that is, a discrete additive subgroup� can be
prescribed as AZn with A a fixed matrix. For example,
set

A = �1 0

1 1
 , �14�

then the lattice AZ2 consists of the points of the form

a�1,1� + b�0,1�, a,b � Z . �15�

An n-dimensional �flat� torus T is Rn factored by a lat-
tice L=AZn with A�GL�n ,R�. As a result the torus is
determined by identifying points that differ by an ele-
ment of the lattice.

If we return to the planar example above, the torus
topologically is a donut—one may see this by cutting out
the parallelogram determined by �1,1� and �0,1�, and
then gluing opposite sides together.

With A ,B�GL�n ,R� are associated the lattices AZn

and BZn. The tori Rn /AZn and Rn /BZn, B�GL�n ,R�,
are isometric if and only if AZn and BZn are isometric by
left multiplication by an element of O�n ,R�. The matri-
ces A and B are associated with the same lattice if and
only if they are equivalent by multiplication on the right
by an element of GL�n ,Z�. So the tori Rn /AZn and
Rn /BZn are isometric if and only if A and B are equiva-
lent in

O�n,R� \ GL�n,R�/GL�n,Z� . �16�

Here O�n ,R� is the orthogonal group in n dimensions.
Let H ,K be subgroups of the group G. Then the space

of double cosets H \G /K consists of the subsets �“double
cosets”� of the form HgK with g�G. �It is clear that G
can be partitioned into these double cosets, and each
such double coset itself can be partitioned into right
cosets of H, and also into left cosets of K.� So in
H \G /K, x�y if and only if there are h�H and k�K
such that hxk=y.

The metric structure of Rn projects to T, and volume
�T�= �det A�; T carries a Laplace operator

� = − �
i

�2/�xi
2, �17�

which is just the projection of the Laplacian of Rn. The
lengths of closed geodesics of T are given by �a� for a
arbitrary in L, �·� being the Euclidean norm.

Let P be a symmetric matrix that defines a quadratic
form on Rn. The spectrum of P is defined to be the se-
quence �with multiplicities� of values �=NTPN for N
�Zn. The sequence of squares of lengths of closed geo-
desics of Rn /AZn is the spectrum of ATA=Q; the se-

quence of eigenvalues of the Laplacian is the spectrum
of 4�2�A−1��A−1�T=4�2Q−1. The Jacobi inversion for-
mula yields for positive �

�
N�Zn

exp�− 4�2�NTQ−1N�

=
volume�T�

�4���n/2 �
M�Zn

exp�− 1

4�
MTQM . �18�

This equation therefore relates the eigenvalue spectrum
of the torus to its length spectrum. We show in Sec.
V.B.3 other examples of this connection between the
spectrum of the Laplacian and the length spectrum.

B. Construction of examples

If L is a lattice of Rn, L* denotes its dual lattice, which
consists of all y�Rn for which �x ,y��Z for all x�L;
here �·,·� is the usual scalar product on Rn�Rn. Clearly,
�L*�*=L, and two lattices L and L� are isometric if and
only if L* and L�* are.

Recall that two flat tori of the form Rn /Li, i� �1,2�,
are isometric if and only if the lattices L1 and L2 are
isometric. The following theorem gives a criterion for
isospectrality of flat tori.

Theorem III.1. Let L1 and L2 be two nonisometric lat-
tices of rank n in Rn, n
2, and suppose that for each r
�0 in R, the ball of radius r about the origin contains
the same number of points of L1 and L2. Then the flat
tori Rn /L1

* and Rn /L2
* are nonisometric while having the

same spectrum for the Laplace operator.
Proof. Suppose x�0 is an element of L1 of length �.

Then there is an ���� such that the ball of radius ��
centered at 0 contains all elements of L1 with length
strictly smaller than � �since L1 is discrete�. For any ��
	����, the ball of radius �� centered at 0 contains that
same number of elements. This ball contains as many
elements of L2 as of L1, and since the ball centered at 0
with radius � contains strictly more elements of L1, it
follows easily that L2 also contains vectors of length �.

Each element z�Li, i� �1,2�, determines an eigen-
function f�x�=e2��x,z�i for the Laplace operator on Rn /L

i
*

with corresponding eigenvalue �= �2��2�z ,z�, so the
number of eigenvalues less than or equal to �2�r�2 is
equal to the number of points of Li contained in the ball
centered at 0 with radius r.

We conclude that Rn /L1
* and Rn /L2

* have the same
spectrum of eigenvalues, while not being isometric. �

Milnor’s construction. Using the Witt nonisometric lat-
tices in R16 �Witt, 1941�, Milnor �1964� essentially used
the aforementioned criterion to construct the first ex-
ample of nonisometric isospectral flat tori.

Starting from these two nonisometric lattices L1
16 and

L2
16 of rank 16 in R16 as described by Witt �1941� one can

in fact construct examples of isospectral flat tori in Rn

for all n, n
16, as follows. The lattices L1
16 and L2

16 sat-
isfy the condition of Theorem III.1 �Witt, 1941, p. 324�.
Now embed R16 in R17 in the canonical way. Denote the
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coordinate axes of the latter by X1 ,X2 , . . . ,X17, such that
�X1 ,X2 , . . . ,X16�=R16. Suppose ��0 is a vector on the
X17-axis which has length strictly smaller than any non-
zero vector of L1 �and L2�. Define two new lattices Li

17

�of rank 17� generated by Li
16 and �, i=1,2. Since

X17�R16, it follows easily that, for any r�0, the ball
centered at the origin with radius r contains the same
number of elements of L1

17 as of L2
17. One observes that

these lattices are nonisometric. Thus by Theorem III.1,
we obtain two nonisometric flat tori R17/Li

17*, i=1,2,
which have the same spectrum of eigenvalues for the
Laplace operator. Inductively, we can now define, in a
similar way, the nonisometric lattices L1

n and L2
n of rank

n, n
17, satisfying the condition of Theorem III.1 and
thus leading to nonisometric flat tori Rn /L

i
n*, i=1,2,

which have the same spectrum of eigenvalues for the
Laplace operator.

C. The four-parameter family of Conway and Sloane

Let � be a positive-definite lattice. The theta function
of � is

����� = �
x��

ei���x�2
= �

x��

q�x�2
= �

m=0

�

Nmqm, �19�

where Im����0 and Nm is the number of vectors x��
of norm m. �� can be thought of as a formal power
series in the indeterminate q, although sometimes one
takes q=ei�� for further investigation with � a complex
variable. In that case, ����� is a holomorphic function of
� for Im���
0.

Conway and Sloane �1992� constructed a four-
parameter family of pairs of four-dimensional lattices
that are isospectral �equivalently that have the same
theta series �19��. In a similar way as before, such lattice
pairs yield isospectral flat tori. The main construction of
Conway and Sloane �1992� is given by the next result:

Theorem III.2 (Conway and Sloane, 1992). Let e�, e0,
e1, and e2 be orthogonal vectors satisfying

e� · e� = a/12, e0 · e0 = b/12, e1 · e1 = c/12,

e2 · e2 = d/12,

where a ,b ,c ,d�0, and let �w ,x ,y ,z� denote the
vector we�+xe0+ye1+ze2. Let v�

± = �±3,−1,−1,−1�, v0
±

= �1, ±3,1 ,−1�, v1
±= �1,−1, ±3,1�, and v2

±= �1,1 ,−1, ±3�.
Then the lattices L+�a ,b ,c ,d� spanned by v�

+, v0
+, v1

+, and
v2

+, and L−�a ,b ,c ,d� spanned by v�
−, v0

−, v1
−, and v2

− are
isospectral.

Some small values of a, b, c, and d give examples
which were first found by Schiemann �1990�. Substitut-
ing �a ,b ,c ,d�= �7,13,19,49�, one obtains the pair of Ear-
nest and Nipp �1991�.

D. The eigenvalue spectrum as moduli for flat tori

We now discuss some interesting results on the eigen-
value spectrum for flat tori. We already saw that there
exist nonisometric isospectral flat tori. A natural ques-
tion is now how such tori are distributed.

The following theorem gives insight into this question
by considering the case of a continuous family of iso-
spectral flat tori:

Theorem III.3 (Wolpert, 1978). Let Ts be a continuous
family of isospectral tori defined for s� �0,1�. Then the
tori Ts, s� �0,1�, are isometric.

An interesting result by Kneser is the following �see
Wolpert �1978� for a proof�. It states that, given an ei-
genvalue spectrum of some torus, only a finite number
of nonisometric tori can be isospectral to it.

Theorem III.4 (Kneser). The total number of noniso-
metric tori with a given eigenvalue spectrum is finite.

The following result is rather technical. Its main mes-
sage is that, given two tori Rn /AZn and Rn /BZn with the
same eigenvalue spectrum, then either these two tori are
isometric or the quadratic forms �ATA� and �BTB� lie on
a certain subvariety in the space of positive-definite qua-
dratic forms. A more precise statement is as follows.
Denote the space of positive-definite symmetric n�n
matrices by ��n ,R� and observe that the map

A � GL�n,R� � ATA � ��n,R� �20�

determines a bijection from O�n ,R� \GL�n ,R� to
��n ,R�. Then the following theorem holds:

Theorem III.5 (Wolpert, 1978). There is a properly dis-
continuous group Gn acting on ��n ,R� containing the
transformation group induced by the GL�n ,Z� action

S � A�Z� , �21�

where S���n ,R� and Z�GL�n ,Z�. Given P ,S
���n ,R� with the same spectrum, either g�P�=S for
some g�Gn or P ,S�Vn, where the latter is a subvariety
of ��n ,R�. Moreover, �i� Vn= �Q���n ,R� � spec�Q�
=spec�R� ,R���n ,R� with R�g�Q� for all g�Gn�, and
�ii� Vn is the intersection of ��n ,R� and a countable
union of subspaces of Rm for some m.

In this section we have seen that it is essentially
“easy” to construct �nonisometric� isospectral flat tori.
The Milnor example was exhibited in 1964. But it has
taken about 30 years to find counterexamples to Kac’s
question in the real plane.

IV. TRANSPLANTATION

The aim of this section is to describe the idea of trans-
plantation in a more mathematical way than in Sec. II.
This concept was first introduced by Bérard �see 1992
and 1993�. There is in fact a deep connection between
transplantation theory and the mathematical field of fi-
nite geometries. First we review some elementary facts
about finite geometries. Application of these tools to
transplantation theory sheds light on the reasons for the
existence of isospectrality.

2222 Olivier Giraud and Koen Thas: Hearing shapes of drums: Mathematical and …

Rev. Mod. Phys., Vol. 82, No. 3, July–September 2010



A. Tiling

1. Graphs and billiards by tiling

In this section, we follow Okada and Shudo �2001�.

a. Tiling

All known isospectral billiards can be obtained by un-
folding polygonal-shaped tiles. As the unfolding is done
along only three sides of the polygon, we can essentially
consider triangles. We call such examples isospectral Eu-
clidean TI domains. The known ones are listed in Ap-
pendix A. The way the tiles are unfolded can be speci-
fied by three permutation d�d matrices M���, 1	�	3
and d�N, associated with the three sides of the triangle
and defined in the following way: Mij

���=1 if tiles i and j
are glued by their side �, Mii

���=1 if the side � of tile i is
the boundary of the billiard, and 0 otherwise. The num-
ber of tiles is, of course, d. Call the matrices M��� “adja-
cency matrices.”

One can sum up the action of the M��� in a graph with
colored edges: each copy of the base tile is associated
with a vertex, and vertices i and j, i� j, are joined by an
edge of color � if and only if Mij

���=1. In the same way, in
the second member of the pair, the tiles are unfolded
according to permutation matrices N���, 1	�	3. We
call such a colored graph an involution graph for reasons
explained later in this section. An example of such
graphs is given in Fig. 4. If D is a Euclidean TI domain
with base tile a triangle, and M= ˆM��� ��� �1,2 ,3�‰ is
the set of associated permutation matrices �or, equiva-
lently, the associated coloring�, denote by ��D ,M� the
corresponding involution graph.

The following proposition is easy but rather useful
�Thas, 2007b�:

Proposition IV.1. Let D be a Euclidean TI domain
with base tile a triangle, and let M= ˆM��� ��� �1,2 ,3�‰
be the set of associated permutation matrices. Then the
matrix,

�ij = �
�=1

3

�Mij
��� − Mii

����ij� , �22�

where �ij is the Kronecker symbol, is the adjacency ma-
trix of ��D ,M�. �

b. Transplantability

Two billiards are said to be transplantable if there ex-
ists an invertible matrix T—the transplantation matrix—
such that

TM��� = N���T for all � . �23�

If the matrix T is a permutation matrix, the two domains
will have just the same shape. One can show that trans-
plantability implies isospectrality, as shown in Sec. II.

We now discuss an example exhibited by Buser et al.
�1994� and first found by Gordon et al. �1992a�.

2. The example of Gordon et al.

Buser �1988� constructed a pair of isospectral flat sur-
faces M1 and M2 as covers of a certain surface M0 using
a pair of almost conjugate subgroups of SL�3,2�. Gor-
don et al. �1992a� similarly constructed orbifolds O1 and
O2, respectively, being the quotient by an involutive
isometry of M1 and M2. Orbifolds are generalizations of
manifolds; they are locally modeled on quotients of
open subsets of Rn by finite group actions. See Scott
�1983� for a formal introduction. O1 and O2 have a com-
mon orbifold cover—it is the quotient by an involutive
isometry of the common cover of M1 and M2. The Neu-
mann orbifold spectrum of Oi is precisely the Neumann
spectrum of the underlying manifold M�Oi�, and these
latter underlying spaces are simply connected real-plane
domains. Furthermore, Dirichlet isospectrality of M�O1�
and M�O2� is obtained by exploiting the Dirichlet isos-
pectrality of M1 and M2.

We now analyze this pair of isospectral but noncon-
gruent Euclidean domains. We follow the transparent
approach of Buser et al. �1994� to show isospectrality. As
the reader will notice, this will in fact be an easy ap-
proach to �and example of� transplantability.

a. Setting

Let f be an eigenfunction of the Laplacian with eigen-
value ��R for the Dirichlet problem corresponding to
the left-hand billiard in Fig. 8. Let f0 , f1 , . . . , f6 denote the
functions obtained by restriction of f to each of the
seven tiles of the left-hand billiard, as indicated on the
left in Fig. 8. For the sake of convenience, we write i for
fi.

The Dirichlet boundary condition is that f must vanish
on each boundary segment. This is equivalent to the as-
sertion that f goes into −f if continued as a smooth
eigenfunction across any boundary segment; in fact, it
goes into f ��, where � is the reflection on the boundary
segment.

On the right in Fig. 8 we show how to obtain from f
another eigenfunction of the eigenvalue � for the right-
hand domain. We use the function 1+2+4, which is ac-
tually the function

2−5−3

1+2+4 4−3−6

6 1

5

2

0

4

3

0+5−4 0+3−1

0+6−2

1−6−5

FIG. 8. Two isospectral billiards with a triangular base shape
on seven tiles.
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f1 � �1 + f2 � �2 + f4 � �4, �24�

where for k=1,2 ,4, �k is the isometry from the central
triangle of the right-hand billiard to the triangle labeled
k on the left-hand one. Now we see from the left-hand
side that the functions 1,2,4 continue smoothly across
dotted lines into copies of the functions 0 ,5 ,−4, respec-
tively, so that their sum continues into 0+5−4 as shown.
Similarly one observes that this continues across a solid
line to 4−5−0 �its negative� and across a dashed line to
2−5−3, which continues across either a solid or dotted
line to its own negative. These assertions, together with
the similar ones obtained by cyclic permutation of the
arms of the billiards, suffice to show that the trans-
planted function is an eigenfunction of the eigenvalue �
that vanishes along each boundary segment of the right-
hand domain.

We have defined a linear map which for each � trans-
forms the � eigenspace for the left-hand billiard into the
� eigenspace for the right-hand one. This is a nonsingu-
lar map �the corresponding matrix is nonsingular�, and
so the dimension of the eigenspace on the right-hand
side is larger than or equal to the dimension on the left-
hand side. By symmetry, it follows that the dimensions
are equal. Since � was arbitrary, the two billiards are
Dirichlet isospectral.

3. The other known examples

A similar technique as in the previous section allowed
Buser et al. �1994� to show that the series of billiard pairs
they produced are indeed isospectral. All these pairs are
listed in Appendix A; they were first found by searching
for suitable Sunada triples and then verified to be isos-
pectral �in the plane� by the transplantation method. See
also Okada and Shudo �2001� for a further discussion
about the subject of this section.

4. Euclidean TI domains and their involution graphs

To conclude this section, we address a related prob-
lem, namely, isospectrality of the involution graphs asso-
ciated with isospectral billiards. We say that two �undi-
rected� graphs are isospectral if their adjacency matrices
have the same multiset of eigenvalues. Note that this
definition of graph isospectrality is different from the
definition introduced in, e.g., Gutkin and Smilansky
�2001� where the spectrum of a metric graph is defined
as the spectrum of the Laplacian on the graph whose
edges are assigned a given length.

The following question was posed by Thas �2007b�.
Let �D1 ,D2� be a pair of nonisometric isospectral Eu-
clidean TI domains and let ��D1�=��D1 , ˆM��� ��
� �1,2 ,3�‰� and ��D2�=��D2 , ˆN��� ��� �1,2 ,3�‰� be the
corresponding involution graphs. Are ��D1� and ��D2�
isospectral? Note that one does not require the domains
to be transplantable. �The term “cospectrality” is also
sometimes used in graph theory, instead of “isospectral-
ity.”�

We now show that the answer is “yes” when the do-
mains are transplantable. The proof is taken from Thas
�2007b�.

Theorem IV.2. Let �D1 ,D2� be a pair of nonisometric
isospectral Euclidean TI domains and let ��D1�
=��D1 , ˆM��� ��� �1,2 ,3�‰� and ��D2�=��D2 , ˆN��� ��
� �1,2 ,3�‰� be the corresponding involution graphs.
Then ��D1� and ��D2� are isospectral.

Proof. Define, for �=1,2 ,3, M
*
��� as the matrix which

has the same entries as M���, except on the diagonal,
where it has only zeros. Define matrices N

*
��� analo-

gously. Suppose that TM���T−1=N��� for all �.
Note the following properties.

• M
*
��� and N

*
���, �=1,2 ,3, are symmetric �0,1� matrices

with at most one 1 entry on each row.

• �M
*
����m=M

*
��� if the natural number m is odd and

�M
*
����m= IM

���, where �IM
����ii=1 if there is a 1 on the ith

row of M
*
���, and 0 otherwise, if m is even, �=1,2 ,3,

and similar properties hold for N
*
���.

• Tr�M
*
�i�M

*
�j��=Tr�M

*
�j�M

*
�i��=0 for i� j and Tr�N

*
�i�N

*
�j��

=Tr�N
*
�j�N

*
�i��=0 for i� j.

• Tr�M
*
�i�M

*
�j�M

*
�k�� and Tr�N

*
�i�N

*
�j�N

*
�k�� are independent

of the permutation �ijk� of �123� �this is because the
individual matrices are symmetric�.

• The value of all traces in the previous property is 0
„note that, if �i , j ,k�= �1,2 ,3�, such a trace equals 0
since the existence of a nonzero diagonal entry of
M

*
�i�M

*
�j�M

*
�k�, �N

*
�i�N

*
�j�N

*
�k��, implies ��D1�, ���D2��, to

have closed circuits of length 3….

From Proposition IV.1 it follows that A=��=1
3 M

*
��� is

the adjacency matrix of ��D1� and B=��=1
3 N

*
��� the ad-

jacency matrix of ��D2�.
Consider a natural number n�N0. Then, with the pre-

vious properties in mind, it follows that

Tr�An� = Tr�Bn� . �25�

Thus by the following lemma �cf. van Dam and Haemers
�2003�, Lemma 1� the adjacency matrices of ��D1� and
��D2� have the same spectrum.

Lemma IV.3. Two k�k matrices K and K� are iso-
spectral if and only if Tr�Kl�=Tr�K�l� for l=1,2 , . . . ,k.�

In Sec. VIII we will see that other graph theoretical
problems turn up in Kac theory.

B. Some projective geometry

There is a fascinating relation between the structure
of isospectral billiards and the geometry of vector spaces
over finite fields. In Sec. II we constructed pairs of iso-
spectral billiards using unfolding rules. These unfolding
rules can be encoded into graphs, like the ones in Fig. 4.
Thus the structure of a pair of isospectral billiards is
entirely encoded into a pair of graphs that have certain
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specific properties. The graphs of Fig. 4 are “colored”
according to a certain set of permutations. It turns out
that the group generated by these permutations is pre-
cisely the automorphism group of a projective space
over a finite field, the so-called Fano plane. The Fano
plane has many unique properties and appears in vari-
ous places, such as combinatorial problems or the mul-
tiplication table of the octonions. A representation of
this finite projective plane is given in Fig. 9. Here we see
that the adjacency matrix of the graph representing the
Fano plane is nothing but the transplantation matrix be-
tween the two isospectral billiards of Fig. 4.

In order to understand this deep connection, basic no-
tions of finite geometries and design theory are required.
In this section we provide the necessary tools. More de-
tails about the notions considered here can be found in
Hirschfeld �1998�. Note that some remarks about iso-
spectrality, projective geometry, and groups have been
made by Vorobets and Stepin �1998�; however, the re-
sults there are not fully mathematically rigorous.

1. Finite projective geometry

Let Fq be the finite field with q elements, q a prime
power, and denote by V�n ,q� the n-dimensional vector
space over Fq, and n a nonzero natural number. Define
the �n−1�-dimensional projective geometry PG�n−1,q�
over Fq as the set of all subspaces of V�n ,q�. Note that
PG�n−1,q� is often called the “Desarguesian” or “clas-
sical” projective space. The projective space PG�−1,q�
is the empty set and has dimension −1.

Points in PG�n ,q� correspond to one-dimensional
subspaces of V�n ,q�, lines in PG�n ,q� correspond to
two-dimensional subspaces of V�n ,q�, and so on. Any
d-dimensional subspace of PG�n ,q� contains �qd+1

−1� / �q−1� points. In particular, PG�n ,q� itself has
�qn+1−1� / �q−1� points. It also has �qn+1−1� / �q−1� hy-
perplanes �i.e., �n−1�-dimensional subspaces�.

Example. The Fano plane PG�2,2� shown in Fig. 9 has
seven points and seven hyperplanes or lines �one of
which is represented as a circle in Fig. 9�. Any line con-
tains three points �we say that three points are “inci-
dent” with each line�, and any point belongs to three
lines �we say that three lines are incident with each
point�. The use of the word incident in both cases en-
hances the symmetry between points and lines in this

geometry. It is precisely this geometry that lies at the
root of isospectrality.

2. Automorphism groups

The automorphism groups of finite projective spaces
play a key role in isospectrality as the generators of
these groups allow us to construct the graphs that en-
code the unfolding rules for the billiard construction. We
now define these groups and mention some of their
properties. For group theoretical notions not explained
here, see the beginning of Sec. VII.

An automorphism or collineation of a finite projective
space is a bijection of the points that preserves the type
of each subspace �i.e., lines are mapped to lines, and
more generally d-dimensional spaces to d-dimensional
spaces� and preserves incidence properties �i.e., inter-
secting lines are transformed into intersecting lines, etc�.
It can be shown that any automorphism of a PG�n ,q�,
n
3, necessarily has the following form:

�:xT � A�x��T, �26�

where A�GL�n+1,q�, � is a field automorphism of Fq,
the homogeneous coordinate x= �x0 ,x1 , . . . ,xn� repre-
sents a point of the space �which is determined up to a
scalar�, and x�= �x0

� ,x1
� , . . . ,xn

�� �recall that xi
� is the im-

age of xi under ��.
The set of automorphisms of a projective space natu-

rally forms a group, and in the case of PG�n ,q�, n
3,
this group is denoted by P�L�n+1,q�. The normal sub-
group of P�L�n+1,q� which consists of all automor-
phisms for which the companion field automorphism � is
the identity, is the projective general linear group, and
denoted by PGL�n+1,q�. So PGL�n+1,q�=GL�n
+1,q� /Z„GL�n+1,q�…, where Z„GL�n+1,q�… is the cen-
tral subgroup of all scalar matrices of GL�n+1,q�. Simi-
larly, one defines PSL�n+1,q�=SL�n+1,q� /Z„SL�n
+1,q�…, where Z„SL�n+1,q�… is the central subgroup of
all scalar matrices of SL�n+1,q� with unit determinant.
Recall that SL�n+1,q� consists of the elements of
GL�n+1,q� with unit determinant.

An elation of PG�n ,q� is an automorphism of which
the fixed points structure precisely is a hyperplane, or
the space itself. A homology either is the identity or it is
an automorphism that fixes a hyperplane pointwise, and
one further point not contained in that hyperplane.

3. Involutions in finite projective space

Let PG�n ,q�, n�N� �−1�, be the n-dimensional pro-
jective space over the finite field Fq with q elements so
that q is a prime power; we have �PG�n ,q��= �qn+1

−1� /q−1. �Note again that PG�−1,q� is the empty
space.�

We discuss the different types of involution that can
occur in the automorphism group of a finite projective
space �Segre, 1961�.

• Baer Involutions. A Baer involution is an involution
that is not contained in the linear automorphism

5

24

1 30

6

FIG. 9. The Fano plane.
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group of the space �so that q is a square�, and it fixes
an n-dimensional subspace over F�q pointwise.

• Linear involutions in even characteristic. If q is even,
and � is an involution that is not of Baer type, � must
fix an m-dimensional subspace of PG�n ,q� point-
wise, with 1	m	n	2m+1. In fact, to avoid triviali-
ties, one assumes that m	n−1.

• Linear involutions in odd characteristic. If � is a lin-
ear involution of PG�n ,q�, q odd, the set of fixed
points is the union of two disjoint complementary
subspaces. Denote these by PG�k ,q� and PG�n−k
−1,q�, k
n−k−1�−1. We do not consider the pos-
sibility of involutions without fixed points, as they
are not relevant for our purpose.

We are now ready to explore a connection between
incidence geometry and Kac theory.

C. Projective isospectral data

1. Transplantation matrices, projective spaces, and isospectral
data

Suppose one wants to construct a pair of isospectral
billiards, starting from a planar polygonal base shape.
The idea described by Giraud �2005� is to start from the
transplantation matrix T and choose it in such a way that
the existence of commutation relations

TM��� = N���T �27�

for some permutation matrices M���, N��� will be known
a priori. This is the case if T is taken to be the incidence
matrix of a finite projective space; the matrices M��� and
N��� are then permutations of the points and the hyper-
planes of the finite projective space.

An �N ,k ,��-symmetric balanced incomplete block de-
sign �SBIBD� is a rank-2 incidence geometry, defined on
a set of N points, each belonging to N subsets �called
blocks� such that each block is incident with k points,
any two distinct points are contained in exactly � blocks,
and each point is incident with k different blocks.

Example. The points and hyperplanes of an
n-dimensional projective space PG�n ,q� defined over
Fq is an �N ,k ,�� SBIBD with N= �qn+1−1� / �q−1�,
k= �qn−1� / �q−1�, and �= �qn−1−1� / �q−1�.

So the Fano plane is a �7,3,1� SBIBD.
Let � be an �N ,k ,�� SBIBD. The points and the

blocks can be labeled from 0 to N−1. One can define an
N�N incidence matrix T describing to which block each
point belongs. The entries Tij of the matrix are Tij=1 if
the point j belongs to the block i, and 0 otherwise. It is
easy to see that the matrix T verifies the relation

TTT = �J + �N − k��/�k − 1�I , �28�

where J is the N�N matrix with all entries equal to 1
and I the N�N identity matrix. In particular, the inci-
dence matrix of PG�n ,q� verifies

TTT = �J + �k − ��I , �29�

with k and � as given above.
Any permutation � of the points of a finite projective

space can be written as a d�d permutation matrix M
defined by Mi��i�=1 and the other entries equal to zero.
Here d is the number of points. If M is a permutation
matrix associated with an automorphism of the space,
then there exists a permutation matrix N such that

TM = NT . �30�

In other words, Eq. �30� means that permuting the col-
umns of T �which correspond to the hyperplanes of the
space� under M is in some sense equivalent to permuting
the rows of T �corresponding to the points of the space�
under N. The reason that this occurs is the concept of
“duality”; in a finite projective space the points and hy-
perplanes play the same role.

Consider a finite projective space �=PG�n ,q� with
incidence matrix T. With each hyperplane in �, we asso-
ciate a tile in the first billiard, and with each point in �,
we associate a tile in the second billiard. If we choose
permutations M��� in P�L�n+1,q�, then the commuta-
tion relation �30� will ensure that there exist permuta-
tions N��� verifying

TM��� = N���T . �31�

Since these commutation relations imply transplantabil-
ity, they also imply isospectrality of the billiards con-
structed from the graphs corresponding to M��� and N���.

Constraints. If the base tile has r sides, we need to
choose r elements M���, 1	�	r, in P�L�n+1,q� in
such a way that �at least� the following remarks are
taken into account.

• Since M��� represents the reflection of a tile with re-
spect to one of its sides, it has to be an involution.

• In order that the billiards be connected, no point
should be left out by the matrices M��� �in other
words, the graph associated to the matrices M���

should be connected�.

• If we want the base tile to be of “any” shape, there
should be no closed circuit in the graph �in other
words, it should be a finite tree�.

Assume one is looking for a pair of isospectral bil-
liards with d= �q3−1� / �q−1� copies of a base tile having
the shape of an r-gon, r
3. We need to search for r
involutions such that the associated graph is connected
and does not admit a closed circuit. Such a graph con-
nects d vertices and hence requires d−1 edges. For in-
volutions with s fixed points, there are �d−s� /2 indepen-
dent transpositions in its cycle decomposition, and each
transposition is represented by an edge in the graph. As
a consequence, q, r, and s have to satisfy the following
condition:
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r�q2 + q + 1 − s�/2 = q2 + q . �32�

More generally, we define “projective isospectral data”
as triples �P , ���i�� ,r�, where P is a finite projective space
of dimension at least 2, and ���i�� a set of r nontrivial
involutions of P, satisfying the following equation:

r��P� − Fix���� = 2��P� − 1� �33�

for some natural number r
3. Here Fix���=Fix���i�� is a
constant number of fixed points of P under each ��i�, and
�P� is the number of points of P.

One can now generate all possible pairs of isospectral
billiards whose transplantation matrix is the incidence
matrix of a PG�2,q�, with r and q restricted by the pre-
vious analysis.

Using the classification of involutions for dimension 2,
we examine the various cases.

Let q be even and not a square. Then any involution is
an elation and therefore has q+1 fixed points. There-
fore, q and r are constrained by

rq2/2 = q2 + q . �34�

The only integer solution with r
3 and q
2 is �r=3,
q=2�. These isospectral billiards correspond to the Fano
plane PG�2,2� and will be made of d=7 copies of a base
triangle.

Let q be odd and not a square. Then any involution is
a homology and therefore has q+2 fixed points. There-
fore, q and r are constrained by

r�q2 − 1�/2 = q2 + q . �35�

The only integer solution with r
3 and q
2 is �r=3,
q=3�. These isospectral billiards correspond to PG�2,3�
and will be made of d=13 copies of a base triangle.

Let q=p2 be a square. Then any involution fixes all
points in a Baer subplane PG�2,p� and therefore has
p2+p+1 fixed points. Therefore, p and r are constrained
by

r�p4 − p�/2 = p4 + p2. �36�

There is no integer solution with r
3 and q
2.
Closed circuits. One could also look for isospectral bil-

liards with closed circuits: this will require the base tile
to have a shape such that the closed circuit does not
make the copies of the tiles come on top of each other
when unfolded. If we allow just one closed circuit in the
graph describing the isospectral billiards, then there are
d edges in the graph instead of d−1, and the equation
for p and r becomes

r�p4 − p�/2 = p4 + p2 + 1, �37�

which has the only integer solution �r=3,p=2�. These
isospectral billiards correspond to PG�2,4� and will be
made of d=21 copies of a base triangle.

To summarize, we have the following:

• The Fano plane PG�2,2� provides three pairs �made
of seven tiles�.

• PG�2,3� provides nine pairs �made of 13 tiles�.

• PG�2,4� provides one pair �made of 21 tiles�.

It turns out that the pairs obtained in such a way are
exactly those obtained by Buser et al. �1994� and Okada
and Shudo �2001�.

Now consider the space PG�3,2�, which contains 15
points. The collineation group of PG�3,2� is the group

PGL�4,2� � P�L�4,2� � GL�4,2� . �38�

Generating all possible graphs from the 316 involutions,
one obtains four pairs of isospectral billiards with 15
triangular tiles, which completes the list of all pairs
found by Buser et al. �1994� and Okada and Shudo
�2001�. This list can be found in Appendix A.

For projective spaces of dimension 2, we thus have the
following result �Giraud, 2005�. Let P=PG�2,q� be the
two-dimensional projective space over the finite field Fq,
and suppose there exists projective isospectral data
�P , ���i�� ,r�. If q is not a square, then �r ,q�
� ��3,2� , �3,3��. If q is a square, then there are no inte-
ger solutions of Eq. �33�.

The method introduced by Giraud �2005� explicitly
gives the transplantation matrix T for all these pairs—
each one is the incidence matrix of some finite projective
space, and the transplantation matrix provides the map-
ping between eigenfunctions of both billiards. The in-
verse mapping is given by

T−1 = �1/qn−1��TT − ��/k�J� . �39�

2. Generalized isospectral data

Thas �2006a� obtained the next generalization for any
dimension n
2. It turns out that all possible candidates
PG�n ,q� other than the ones already obtained are ruled
out by the following results.

Theorem IV.4 (Thas, 2006a). Let P=PG�n ,q� be the
n-dimensional projective space over the finite field Fq,
and suppose there exists projective isospectral data
�P , ���i�� ,r�. Then q cannot be a square. If q is not a
square, then �r ,n ,q�� ��3,2 ,2� , �3,n ,3��, where in the
case �r ,n ,q�= �3,n ,3� each ��i� fixes pointwise a hyper-
plane, and also a point not in that hyperplane. However,
this class of solutions only generates planar isospectral
pairs if n=2.

Call a triple �P , ���i�� ,r�, where P is a finite projective
space of dimension at least 2, and ���i�� a set of r non-
trivial involutory automorphisms of P, satisfying

r��P�� − �
j=1

r

Fix���j�� = 2��P� − 1� �40�

for some natural number r
3, “generalized projective
isospectral data.”

These data were completely classified by Thas
�2006b�.

Theorem IV.5 (Thas, 2006b). Let P=PG�l ,q� be the
l-dimensional projective space over the finite field Fq, l

2, and suppose there exists generalized projective isos-
pectral data �P , ���i�� ,r� which yields isospectral billiards.
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Then l=2, the ��i� fix the same number of points of P,
and the solutions are as previously described, or l=3, r
=3, and q=2, and again the examples are as before.

3. The operator group

The same kind of results can be formulated at a more
abstract level. Suppose D is a Euclidean TI domain on d
base triangles, and let M���, �� �1,2 ,3�, be the corre-
sponding permutation d�d matrices. Define again invo-
lutions ���� on a set X of d letters �1 ,�2 , . . . ,�d �corre-
sponding to the base triangles� as follows: ������i�=�j if
Mij

���=1 and i� j. In the other cases, �i is mapped onto
itself. Then, clearly, ����� ��� �1,2 ,3�� is a transitive per-
mutation group on X, which we call the operator group
of D.

Suppose that �D1 ,D2� is a pair of noncongruent planar
isospectral domains constructed from unfolding an
r-gon, r
3, d�� times. Since Di are constructed by un-
folding an r-gon, we can associate r involutions �i

�j� with
Di, j=1,2 , . . . ,r and i=1,2. Define the operator groups

Gi = ��i
�j�� . �41�

Now suppose that

G1 � PSL�n,q� � G2, �42�

with q a prime power and n
2 a natural number. The
natural geometry on which PSL�n ,q� acts �faithfully� is
the �n−1�-dimensional projective space PG�n−1,q�
over the finite field Fq. It should be mentioned that
PSL�n ,q� acts transitively on the points of PG�n−1,q�.
So we can see the involutions �i

�j� for fixed i� �1,2� as
automorphisms of PG�n−1,q� that generate PSL�n ,q�.

This implies �by nontrivial means� that for fixed i
� �1,2� the triple

„PG�n − 1,q�,��i
�j��,r… �43�

yields generalized projective isospectral data. Theorem
IV.5 implies that �n ,q� is contained in
��3,2�,�3,3�,�4,2�,�3,4�� if n
3.

Now suppose that n=2. We have to solve the equation

r�PG�1,q�� − �
j=1

r

Fix��i
�j�� = 2„�PG�1,q�� − 1… �44�

for fixed i� �1,2�, where Fix��i
�j�� is the number of fixed

points in PG�1,q� of �i
�j�. Since �PG�1,q��=q+1 and

since a nontrivial element of PSL�2,q� fixes at most two
points of PG�1,q�, an easy calculation leads to a contra-
diction if q
3.

Now let q=2. Then PSL�2,2� contains precisely three
involutions, and they each fix precisely one point of
PG�1,2�. A numerical contradiction follows. �

Thus, the only possible examples of isospectral bil-
liards that can be constructed from the third family of
finite simple groups �see Conway et al. �1985�� are those
obtained by Buser et al. �1994�, Okada and Shudo
�2001�, and Giraud �2005�. They are listed in Appendix
A.

V. SEMICLASSICAL INVESTIGATION OF ISOSPECTRAL
BILLIARDS

The existence of isospectral pairs proves that the
knowledge of the infinite set of eigenenergies of a bil-
liard does not suffice to uniquely determine the shape of
its boundary. A natural question arises: If the set of ei-
genvalues is not sufficient to distinguish between two
isospectral billiards, then which additional quantity
would suffice to uniquely specify which is which? A par-
allel issue is to identify what kind of geometric informa-
tion on the system one can extract from the spectrum.
This type of inverse problem occurs in many fields of
physics, from lasing cavities to stellar oscillations.

It is well known that classical mechanics can be seen
as a limit of quantum mechanics when Planck’s constant,
seen as a parameter, goes to zero. It is therefore natural
that, for small enough values of this parameter, classical
characteristics of quantum systems begin to emerge. If
one considers an electron in a box, one can construct a
certain linear combination of stationary wave functions
that describes its probability density distribution at each
point of the box. At the classical limit, this probability
distribution gets mainly concentrated on classically au-
thorized trajectories. The quantum system thus some-
how “knows” about classical trajectories of the underly-
ing classical system. As shown in this section, the
semiclassical approach provides a constructive way to
retrieve geometric information on the system.

More formally, the time-dependent propagator of the
Schrödinger equation can be expressed as a Feynman
path integral, which is a sum over all continuous paths
going from the initial to the final point. Using a station-
ary phase approximation, Van Vleck �1928� obtained a
formula expressing the propagator �or, more precisely,
its discretized version� in the semiclassical limit as a sum
over all classical trajectories of the system. Balian and
Bloch �1974�, showed that the density of states can be
written as a sum over closed trajectories of the classical
system. Using a stationary phase approximation tech-
nique, the semiclassical Green function can be similarly
expressed as a sum over all classical trajectories. This led
to the Gutzwiller trace formula for chaotic systems �see
Gutzwiller �1991�, and references therein� or the Berry-
Tabor trace formula for integrable systems �Berry and
Tabor �1976��. These trace formulas relate the quantum
spectrum to classical features of the system. While the
leading terms of the mean spectral density provide geo-
metric information about global quantities of the sys-
tem, such as the area or perimeter, the trace formulas
contain information about classical trajectories. Correc-
tions to these trace formulas account for the presence of
other classical trajectories, such as diffractive orbits.

As mentioned in Sec. II.A, the transplantation proof
of isospectrality shows that pairs displaying any kind of
classical dynamics can be constructed from �pseudo�in-
tegrability to chaos. One might ask whether the spec-
trum of a billiard uniquely determines its length spec-
trum. As we will see the transplantation method
provides an answer to this question. However, in the
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pseudointegrable case where diffractive contributions to
the trace formula can be handled, it turns out that trans-
plantation properties of diffractive orbits are different
from those of periodic orbits.

In this section we first introduce some tools relevant
to semiclassical quantization and then review in more
detail various classical and quantum properties of iso-
spectral pairs that have been studied, either for generic
isospectral billiards or for particular examples such as
the example of Fig. 1.

A. Mean density of eigenvalues

The problem of calculating the eigenvalue distribution
for a given domain B �sometimes called Weyl’s problem�
is dealt with starting from the density of energy levels

d�E� = �
n
��E − En� , �45�

where � is the Dirac delta function and the sum runs
over all eigenvalues of the system. The counting func-
tion is the integrated version of the eigenvalue distribu-
tion,

N�E� = �
n
��E − En� , �46�

where � is the Heaviside step function. Statistical func-
tions of the energy can be studied by proper smoothing
of the delta functions in Eq. �45�. The mean of a function
f of the energy is defined by its convolution with a test
function �,

f̄�E� = �
−�

�

f�e���E − e�de . �47�

The test function � is taken to be centered at 0, normal-
ized to 1, and have an important weight only around the
origin, with a width �E large compared to the mean
level spacing but small compared to E.

Isospectral billiards share by definition the same
counting function N�E�. We study the mean behavior of
N�E�. Suppose the Hamiltonian of an N-dimensional
system is of the form

H�q,p� = p2/2m + V�q� . �48�

The Thomas-Fermi approximation consists in making
the assumption that each quantum state is associated
with a volume �2���N in phase space. The mean value of
N�E� is given by

N̄�E� � � dNpdNq

�2���N �„E − H�q,p�…

�
1

��N/2 + 1�� m

2��2N/2

��
V�q��E

�E − V�q��N/2dq �49�

after integration over p. In the case where we describe

the movement in an N-dimensional domain of volume V
we get

N̄�E� �
V

��N/2 + 1�� m

2��2N/2

EN/2, �50�

which is the first term in a series expansion of N̄�E�,
called the Weyl expansion. In particular, two isospectral
N-dimensional domains necessarily have the same vol-
ume.

For two-dimensional billiards and using our conven-
tions on units, this first term of the Weyl expansion reads

N̄�E� �
A
4�

E , �51�

where A is the area of the billiard. This means that a
necessary condition for isospectrality is that the billiards
have the same area. The asymptotic expansion of the
Laplace transform of the density of states �Stewardson
and Waechter, 1971� allows us to derive the following
terms in the Weyl expansion �Baltes and Hilf, 1976�. The
expansion is given by

N̄�E� �
A
4�

E�
L
4�

�E + K , �52�

where A and L are the area and the perimeter of the
billiard, respectively. The sign before L is ��� for Dirich-
let boundary conditions and ��� for Neumann boundary
conditions. The constant K depends on the geometry of
the boundary. For boundaries with smooth arcs of length
�i and corners of angle 0��j	2�, it reads

K =
1
24
� �
�j

−
�j

�
 + �

i
�
�i

��l�
2�

dl , �53�

where ��l� is the curvature measured along the arc.
The Weyl expansion �52� shows that if two billiards

have the same spectrum, then they necessarily have the
same area and the same perimeter. Furthermore, a cer-
tain combination of the properties of their angles and
curvatures must be the same. In the case of polygonal
isospectral billiards, such as those given in the examples
in Appendix A, the fact that K must be the same entails
that a certain relation between the angles �i of the first
billiard and the angles �i� of the first billiard must hold,
namely,

�
first billiard

� �
�i

−
�i

�
 = �

second billiard
� �
�i�

−
�i�

�
 . �54�

B. Periodic orbits

The previous section gives necessary relations that
must hold between two isospectral billiards, in particu-
lar, the fact that they must have the same area and pe-
rimeter. These relations were based on the fact that the
mean density of quantum eigenvalues �or the mean
counting function� could be related to classical features
of the billiards. In fact deeper relations exist between
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the quantum properties of a billiard and its classical fea-
tures. These relations are expressed through trace for-
mulas which express the density of energy levels as a
sum over classical trajectories in the semiclassical ap-
proximation. Semiclassical methods are based on the
fact that the classical limit of quantum mechanics is ob-
tained for �→0 in the path integral expressing the
propagator. The expansion of this path integral in pow-
ers of � allows us to calculate the sequence of quantum
corrections to the classical theory. The semiclassical ap-
proximation keeps in this expansion only the lowest-
order term in �. Corrections to this approximation cor-
respond to taking into account higher-order terms. In
this section we recall the main steps leading to a trace
formula for billiards and apply it to isospectrality.

1. Green function

The propagator of the system is defined as the condi-
tional probability amplitude K�qf , tf ;qi , ti� for the par-
ticle to be at point qf at time tf, if it was at point qi at
time ti. The propagator is the only solution of the
Schrödinger equation that satisfies the condition

lim
tf→ti

K�qf,tf;qi,ti� = ��qf − qi� . �55�

One can then show that the propagator can be written as
a Feynman integral

K�qf,tf;qi,ti� =� Dq�t�e�i/���dtL�q̇,q,t�, �56�

where the sum runs over all possible trajectories going
from �qi , ti� to �qf , tf� and L is the Lagrangian. The nota-
tion �56� has to be understood as the limit as n goes to
infinity of a discrete sum over all n step paths going from
�qi , ti� to �qf , tf�: the integral �56� runs over all continu-
ous, but not necessarily derivable, paths. One immedi-
ately sees that the classical limit of quantum mechanics
corresponds to letting the constant � go to 0: the main
contributions to the probability K then correspond to
stationary points of the action �dtL�q̇ ,q , t� �Feynman
and Hibbs, 1965�.

The advanced Green function is the Fourier transform
of the propagator, which is defined by

G�qf,qi;E� =
1

i�
�

0

�

dt K�qf,t ;qi,0�eiEt/�. �57�

It is a solution of

�− H + E�G�qf,qi;E� = ��qf − qi� . �58�

The action along a trajectory can be defined as the inte-
gral of the momentum

S�qf,qi;E� = �
qi

qf

p dq , �59�

and the Green function as

G�qf,qi;E� =
1

i�
� Dq�t�e�i/��S�qf,qi;E�, �60�

where the path integral now runs over all continuous
paths going from qi to qf at a given energy E.

In many cases Eq. �58� allows us to calculate the
Green function. In the case of free motion in Euclidean
space, the Hamiltonian reduces to the Laplacian �up to a
sign�, and the Green function is solution of

��qf
+ E�G�qf,qi;E� = ��qf − qi� , �61�

where the qf index recalls that the derivatives of the
Laplacian are applied on variable qf. In two dimensions,
the Green function reads

G�qf,qi;E� =
1

4i
H0

�1��k�qf − qi�� , �62�

with k=�E and H0
�1� the Hankel function of the first

kind.

2. Semiclassical Green function

The expression �60� for the Green function
G�qf ,qi ;E� is a sum over all continuous paths joining qi
to qf at energy E. The semiclassical approximation con-
sists in keeping only the lowest-order term in the � ex-
pansion. This term is given by the stationary phase ap-
proximation. The only paths contributing to the integral
�60� are paths for which the action S reaches a stationary
value, that is, paths that correspond to classical trajecto-
ries. The semiclassical Green function can thus be ex-
pressed as a sum over all classical trajectories. Each
term in the sum is an exponential whose phase is given
by the classical action integrated along the trajectory.
The prefactor is obtained by the stationary phase ap-
proximation around the classical trajectory.

Choosing a coordinate system �q� ,q�� such that q� is
the coordinate along the trajectory and q� is the coordi-
nate perpendicular to the trajectory, one obtains the
semiclassical Green function as a sum over all classical
trajectories �Gutzwiller, 1991�,

Gs.c.�qf,qi;E� = �
cl

2�

�2i����N+1�/2

�� 1

q̇i�q̇f�

det�−
�2S

�qf�
�qi�

�1/2

�exp� i

�
S�qf,qi;E� − i�

�

2
 , �63�

where N is the space dimension. The phase � is called
the Maslov index of the trajectory. In two dimensions for
hard wall reflections, each reflection of the classical orbit
yields a contribution �=2 for Dirichlet boundary condi-
tions and �=0 for Neumann or periodic boundary con-
ditions.
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3. Semiclassical density of eigenvalues

We defined the Green function of a quantum system
by Eq. �57�. It will be more useful to express the Green
function as a sum over eigenvalues and eigenfunctions
of the Hamiltonian. It can be verified that formally

G�qf,qi;E� = �
n

�̄n�qi��n�qf�
E − En

, �64�

where �̄ denotes the complex conjugate of �, is a solu-
tion of Eq. �58�. In order to give a mathematically cor-
rect meaning to this expression, we use the advanced
Green function,

G+�qf,qi;E� = G�qf,qi;E + i�� . �65�

The words “Green function” will always implicitly refer
to the limit of the advanced Green function for �→0.
The density of energy levels �45� can be related to the
Green function by

d�E� = −
1

�
� Im G�q,q ;E�dq . �66�

To prove this, we use the fact that, for �→0,

lim
�→0

1

x + i�
= P

1

x
− i���x� �67�

�P denotes the principal value and � the Dirac delta
function�, and that, since H is Hermitian, its eigenvec-

tors verify ��̄m�n=�mn. The Green function G�q� ,q ;E�
diverges for q�→q but not its imaginary part. The ex-
pression Im G�q ,q ;E� has to be understood as the
imaginary part of G�q� ,q� taken at the limit q�→q.
Thanks to this relation, the density of states can be ex-
pressed as the trace of the Green function. Equation
�66� is the starting point of trace formulas. Note that, if
the density of states �45� is regularized as a sum of
Lorentzians

d��E� =
�

�
�
n

1

�E − En�2 + �2 , �68�

one gets

d��E� = −
1

�
� Im G�q,q ;E + i��dq . �69�

Equation �66� must therefore be understood as the limit,
as �→0, of each member of Eq. �69�. However, the den-
sity of states is usually calculated from the Green func-
tion by first evaluating the integral for q=q� �the trace of
the Green function� and then taking the imaginary part.
This can be made rigorous by multiplying the Green
function by some factor making the integral convergent
in the limit q=q� �Balian and Bloch, 1974�.

The semiclassical density of states is then obtained by
use of Eq. �63� with qi=qf. The density of states in the
semiclassical approximation is then the sum of a
“smooth part” and an oscillating term that is a superpo-
sition of plane waves,

ds.c.�E� = d̄�E� + dosc�E� . �70�

The term d̄ is obtained from the first term �51� of the
Weyl expansion, with a mean density of states given by

d̄ =
A
4�

. �71�

The oscillating term reads

dosc�E� �
i

�2i���3/2 �
PP,n

Tp

�det�Mp
n − I��1/2ein��Sp/��−�p��/2��

+ c.c. �72�

The Gutzwiller trace formula �72� is a sum over all
primitive periodic �PP� orbits, repeated n times. Each
primitive periodic orbit has a certain action Sp, period
Tp, monodromy matrix Mp, and Maslov index �p �taking
into account additional phases owing to integration�.
The identity matrix is denoted by I, and c.c. denotes the
complex conjugate.

In the case of integrable and pseudointegrable sys-
tems �such as, the isospectral pair of Fig. 1�, periodic
orbits are no longer isolated but appear within families
of parallel trajectories having the same length �cylinders
of periodic orbits�. The Gutzwiller trace formula no
longer applies. Pseudointegrable billiards are both non-
integrable and nonchaotic, and their classical character-
istics are intermediate between those of integrable and
those of chaotic billiards. Classical trajectories appear
within families of parallel trajectories of the same
length, but nevertheless the equations of motion are not
exactly solvable because of the presence of diffraction
corners. Berry and Tabor �1976� derived a trace formula
for multidimensional integrable systems that can be
adapted to polygonal billiards. In the case of a two-
dimensional polygonal billiard, the trace formula be-
comes

dosc�E� � �
PP

Ap

2��
n=1

�
eiknlpp−3i�/4−in�pp�/2

�8�knlpp

+ c.c., �73�

where Ap is the area occupied by the cylinder of peri-
odic orbits labeled by p. Equation �73� gives us a strong
relationship between periodic orbits of billiards having
the same spectrum. The trace formulas must be the
same, and one might think that the equality of the sums
over periodic orbits can be achieved only if the periodic
orbits are identical in the two billiards.

It turns out that this is true. It can be proved fairly
easily that two transplantable isospectral domains have
the same length spectrum �i.e., both domains have peri-
odic orbits of the same length� �Okada and Shudo,
2001�. The proof is given in Sec. V.I.1. Here we illustrate
this fact on a simple example. Consider the billiards of
Fig. 7. It is possible to encode any trajectory drawn on
the billiard �provided it does not pass through vertices�
by symbolic dynamics. Consider a trajectory Tij drawn
on the first billiard, going from tile i to tile j. Recall that
the way the building blocks are glued together �or,
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equivalently, the coloring of the associated graph� can be
described by matrices M��� ,N���, 1	�	3, as introduced
in Sec. II. With the trajectory Tij one can associate a
“word” �a1 ,a2 , . . . ,an� describing the sequence of edges
crossed by the trajectory on its way. With this trajectory
we then associate the matrix M=�M�ai�. Note that there
exists a trajectory between tiles i and j if and only if
Mij=1. We then define N=�N�ai�. The transplantation
between the two billiards can be described by some ma-
trix T such that TM���=N���T for 1	�	3. These com-
mutation relations imply that TM=NT also holds. In
particular, if k is a tile of the second billiard such that
Tki=1 and k� a tile of the second billiard such that Tk�j
=1, then �TM�kj=1= �NT�kj, which implies that Nkk�=1.
This is exactly equivalent to saying that the trajectory Tij
can be drawn on the second billiard between tiles k and
k�. Figure 10 shows two pencils of periodic orbits on
each billiard. One can check that these two pencils ap-
pear with the same length and the same width in both
billiards.

C. Diffractive orbits

The semiclassical trace formula �72�, which is ex-
pressed in terms of classical periodic orbits, is only a
leading-order approximation for small values of �.
Higher-order corrections to this formula take into ac-
count contributions from diffractive orbits: creeping tra-
jectories, trajectories between scattering points �Keller,
1962; Vattay et al., 1994; Pavloff and Schmit, 1995�, and
orbits almost tangent to a concave section of the bound-
ary �Primack et al., 1997�. In the case of polygonal bil-
liards, the semiclassical trace formula �73� has to be cor-
rected to take into account scattering trajectories, that
is, classical trajectories going from one scattering point
to another, or combinations thereof.

As in the case of periodic orbits, one might believe
that the equality of densities d�E� for isospectral bil-
liards must translate to an equality of diffractive orbits.
Surprisingly, this is not the case, as we now show. Again,
we concentrate on the simple example of polygonal iso-
spectral billiards.

In the case of polygonal billiards, Hannay and Thain
�2003� were able to derive an exact expansion for the
Green function as a sum over all scattering trajectories.
The exact Green function between a point a and a point
b reads

G�a,b� = �
n=0

�
1

�2��n �
n vertex

paths

1

2i
�

−�

�

ds1ds2 ¯ dsnH0
�1�

��kR�s1,s2, . . . ,sn��

� �
k=1

n
2�

��kMk + �k + isk�2 − �2 , �74�

where

R2�s1,s2, . . . ,sn� = �r0 + r1es1 + r2es1+s2 + ¯

+ rnes1+s2+¯+sn��r0 + r1e−s1

+ r2e−s1−s2 + ¯ + rne−s1−s2−¯−sn� .

�75�

The Green function appears as a sum over paths made
of n+1 straight lines of length ri, 0	 i	n. The first line
goes from point a to a diffracting corner, then there are
n scattering trajectories going from one diffracting cor-
ner to another, and finally a trajectory going from one
diffracting corner to point b. The diffraction angles are
Mk�k+�k, 1	k	n, with �k the measure of the angle at
the diffracting corner and Mk the number of times the
path winds around the diffracting corner �thus, 0	�k
��k�.

Giraud �2004� showed, using the expansion �74� of the
Green function, that isospectral domains can be distin-
guished by the fact that in general the lengths of their
diffractive orbits differ. This can be illustrated in the
case of the billiard with rectangular base tile unfolded to
a translation surface �Fig. 7�. If the sides of the base tiles
are incommensurate, then there cannot be diffractive or-
bits of the same length as a given diffractive orbit but in
the same direction in the plane. For instance, for the
dashed diffractive orbit drawn in the second billiard of
Fig. 10, orbits starting from a diffractive corner of the
first billiard in the same direction never reach another
diffractive corner. This means that the dashed orbit has
no partner in the first billiard.

The connection between the energy spectrum and the
length spectrum through the trace formula indicates,
however, that these discrepancies between diffractive or-
bits must be compensated in a certain way. This compen-
sation can be understood by analyzing the formula of
Hannay and Thain �74�. In fact each contribution to the
Green function in Eq. �74� has to be understood as an
infinite sum over all windings around vertices �see Fig.
11�. Here by vertices we mean the four corners and the
two points at the middle of the horizontal sides of each
of the seven rectangular tiles in Fig. 7.

If there is a diffracting corner �as is the case for in-
stance at the bottom right corner of tile 7 in the second
billiard of Fig. 7� then there is a nonzero contribution,

FIG. 10. Periodic and diffractive orbits in the unfolded pair of
Fig. 7.
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while if there is no scatterer �e.g., at the bottom left
corner of tile 7 in the second billiard� the series of dif-
fractive terms adds up to zero,

�
Mk=−�

�
2�

�2�Mk + � + isk�2 − �2 = 0. �76�

As a consequence, a diffractive contribution to the
Green function, going from a point a to a point b
through possibly several vertices, has to be understood
as a sum of trajectories winding around both scattering
and nonscattering vertices �see Fig. 12�. Now each of
these new “fictitious” trajectories avoids vertices �since
they wind around�. The reasoning we used in Sec. V.B
applies: with any trajectory one can associate a matrix M
describing the edges crossed by the trajectory. The ma-
trix N corresponding to M in the other billiard is such
that TM=NT, and a partner of the diffractive orbit can
be found between tiles i and j such that Nij=1.

Thus, even though diffractive orbit lengths might dif-
fer, each “expanded” diffractive orbit indeed has a part-
ner of the same length.

D. Green function

This relation between diffractive orbits translates to a
relation between Green functions of the two domains

�Giraud, 2004�. The matrices M ,N introduced in Sec.
V.B verify the property

�
i�,j�

Tii�Tjj�Mi�j� = 1 + 2Nij, �77�

which can be proved using the commutation relation �7�
and the fact that �T2�ij=1+2�ij. Thus, in the expansion
�74� of the Green function between a point in tile i and a
point in tile j in the first �second� billiard, each trajectory
appears with a weight Mij �Nij�. But according to Eq.
�77� we have

Nij =
1
2 �

i�,j�

Tii�Tjj�Mi�j� −
1
2

. �78�

Therefore from Eq. �74� and identity �78� one can infer a
relation between Green functions, namely,

G�B��a,i ;b,j� =
1
2 �

i�,j�

Tii�Tjj�G
�A��a,i�;b,j��

−
1
2

G�t��a ;b� , �79�

where G�t��a ;b� is the Green function on the base tile.
This relation between Green functions like the relations
between periodic orbits or diffractive orbits are all con-
sequences of the transplantation property, which is the
fundamental feature of all known examples of iso-
spectral billiards.

E. Scattering poles of the exterior Neumann problem

In Sec. V.C we considered the particular case of po-
lygonal isospectral billiards, for which it is possible to
express the exact Green function as an infinite expan-
sion given by Eq. �74�. In a more general setting, it is
also possible to express the Green function of the bil-
liard with Dirichlet boundary conditions as an infinite
sum taking into account all possible reflections on ob-
stacles. Balian and Bloch �1974� gave a general method,
called “multiple reflection expansion,” which gives the
Green function in terms of the free Green function G0.
Applied to a two-dimensional billiard, this expansion is
given by

G�q,q�;E� = G0�q,q�;E� − 2

��
�B

ds G0�q,s ;E��sG0�s,q�;E�

+ �− 2�2�
�B

ds ds� �sG0�q,s ;E�

��s�G0�s,s�;E�G0�s�,q�;E� , �80�

where s and s� are points along the boundary, and �x
denotes the derivative along an outward vector normal
to the boundary at point x. The first term G0�q ,q� ;E� on
the right-hand side of Eq. �80� corresponds to direct
�free� propagation from q to q�, the first integral corre-
sponds to trajectories from q to q� with one reflection on
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FIG. 11. A contribution to the Green function in the case of
forward diffraction. If the orbit goes through a vertex, the term
in Eq. �74� should be interpreted as the limit for �→0 of an
infinite number of trajectories. If there is no vertex only the
straight path contribution remains, the other �winding� terms
add up to zero.
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the boundary at point s, and so on. We introduce the
kernel KE�q ,q��=−2�q�G0�q ,q� ;E�, which is a continu-
ous infinite-dimensional operator defined on �B��B
��B is the boundary of the billiard�. One can express Eq.
�80� as

G�q,q�;E� = G0�q,q�;E� − 2�
n=0

� �
�B

ds ds� G0�q,s ;E�

�KE
n �s,s���s�G0�s�,q�;E� . �81�

Formal performance of the sum over n yields the
infinite-dimensional operator �I−KE�−1, where I is the
identity operator. Fredholm theory �Smithies, 1962�
showed that, for sufficiently “nice” billiards, the opera-
tor �I−KE�−1 is well defined and can be expressed as

�I − KE�−1 =
NE

D�E�
, �82�

where D�E� is the Fredholm determinant det�I−KE� and
NE is an infinite-dimensional operator defined on �B
��B. The Fredholm determinant admits an expansion

D�E� = �
n=0

�

Dn�E� , �83�

with D0�E�=1, and for n
1

Dn�E� =
�− 1�n

n!
�

�B
dq1 ¯ �

�B
dqn K�q,q� �84�

�q is the vector �q1 ,q2 , . . . ,qn��. We have introduced the
determinant

K�q,q�� = �
KE�q1,q1�� KE�q1,q2�� ¯ KE�q1,qn��
KE�q2,q1�� KE�q2,q2�� ¯ KE�q2,qn��

¯ ¯ ¯ ¯

KE�qn,q1�� KE�qn,q2�� ¯ KE�qn,qn��
� .

�85�

The operator NE is defined on �B��B by its expansion
NE=�n=0

� Nn with

Nn = �
k=0

n

Dk�E�KE
n−k. �86�

The Fredholm determinant D�E� appearing in the ex-
pression of the Green function has the property that it
has zeros at eigenvalues of the system �Georgeot and
Prange, 1995�. A natural question is whether isospectral
billiards share the same Fredholm determinant. It has
been shown by Tasaki et al. �1997� that, for billiards with
a C2 boundary, D�E� can be decomposed into an interior
and an exterior contribution, namely, D�E�
=D�0�dint�E�dext�E�. The exterior contribution dext�E� is
related to the scattering of a wave on an obstacle having
the shape of the billiard with Neumann boundary condi-
tions, i.e., the zeros of its analytic continuation are reso-
nances of the exterior scattering problem. The interior
contribution reads

dint�E� = eiAE/4�L2E

4
−AE/4�

e−A�E/2�

��
n=1

� �1 −
E

En
eE/En, �87�

where A and L are the area and the perimeter of the
billiard, respectively, and � is a constant depending on
the geometry of the billiard. The zeros of dint�E� are thus
the eigenenergies of the interior Dirichlet problem.

Isospectral billiards share the same interior part
dint�E�. But the exterior part depends on the shape of
the billiard. In particular, solutions of the exterior Neu-
mann scattering problem may differ between two isos-
pectral billiards. Therefore a conclusion of Tasaki et al.
�1997� is that isospectral pairs might be distinguished by
measuring the sound scattered by them.

To check this property, numerical investigations were
performed by Okada et al. �2005a�. In fact, Fredholm
theory applies only for billiards with a smooth boundary,
which is not the case for any of the known examples of
isospectral pairs. For billiards with a piecewise smooth
boundary, it is however possible to approximate the
Fredholm determinant D�E� by a discretized version
Dm�E�, depending on the number m of points taken on
the boundary of the billiard, which converges to D�E�
for large m. This convergence fails for boundaries with
corners: All Dm�E� tend to 0. Nevertheless, for domains
with corners Okada et al. �2005b� showed that it is pos-
sible to define a regularized version of Dm�E� that con-
verges to D�E� /D�0�=dint�E�dext�E�. Using this regular-
ized version, Okada et al. �2005a� computed zeros of the
regularized Fredholm determinant numerically for vari-
ous pairs of isospectral billiards. It was observed that
zeros of the determinant close to the real axis coincide,
as they should since they are eigenvalues of the interior
problem. On the other hand, complex zeros �remote
from the real axis�, which correspond to resonances of
the exterior Neumann problem, are shown to differ. To
quantify this discrepancy between the resonances of the
two billiards, the resonance counting number

N��r� = �z � C ; �z�� r,−
�

2
� arg�z�� − �� �88�

was studied by Okada et al. �2005a�. The best fit N��r�
=C�,Rr2, computed over the range r� �0,R�, yields no-
ticeably different values of C�,R for each billiard. This
clearly shows that isospectral pairs can indeed be distin-
guished by resonances of scattering waves.

F. Eigenfunctions

1. Triangular states

In general, analytical solutions to the Helmholtz equa-
tion ��+E��=0 with Dirichlet boundary conditions
cannot be found. However, it is possible to construct
particular solutions of this equation provided solutions
are known on elementary subdomains. This is, for in-
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stance, the case if the subdomains have the shape of a
half square �billiards of Fig. 1� or a rectangle �billiards of
Fig. 2�.

We take the example of the two billiards in Fig. 1.
Each billiard is made of seven triangular �half-square�
tiles. Eigenfunctions for a d�d square with Dirichlet
boundary conditions are of the form

sm,n�x,y� =
4

d2 sin�m�x

d
sin�n�y

d
 , �89�

with eigenvalues Em,n=�2�m2+n2� /d2, m ,n
1. Eigen-
functions for the elementary triangles with Dirichlet
boundary conditions are obtained from Eq. �89� by an-
tisymmetrization with respect to the diagonal,

tm,n�x,y� =
4

d2�sin�m�x

d
sin�n�y

d


− sin�m�y

d
sin�n�x

d
� , �90�

and the corresponding eigenenergies are given by
�2�m2+n2� /d2, m�n. For the sake of definiteness, we
consider the two isospectral pairs on a Cartesian refer-
ence frame, following Wu et al. �1995� as in Fig. 13. The
functions tm,n turn out to be elementary solutions of the
Helmholtz equation for both isospectral billiards of Fig.
13.

Indeed tm,n vanishes on all lines x=kd, y=kd, y=x
+2kd, and y=−x+2kd, k�Z, which are precisely the
lines on which the boundaries of both billiards lie �in the
convention of Fig. 13�. The particular solutions tmn are
called “triangular states.” An example of the lowest-
energy triangular state is given in Appendix A.

The labels of the lowest-energy triangular states
among the eigenvalues E1	E2	¯ of the billiards have
been calculated by Gottlieb and McManus �1998�. The
results are displayed in Table I.

Each integer pair �m ,n�, m�n, defines a triangular
state tm,n. Obviously, the fact that an integer can be rep-
resented in more than one way as a sum of two squares
leads to degeneracies for triangular states and hence for
the isospectral pairs of Fig. 1.

Note that for Neumann boundary conditions it can be
easily checked that the functions

um,n�x,y� =
4

d2�cos�m�x

d
cos�n�y

d


+ cos�m�y

d
cos�n�x

d
� �91�

for 0	m	n, �m ,n�� �0,0�, have a normal derivative
that vanishes on all lines x=kd, y=kd, y=x+2kd, and
y=−x+2kd, k�Z. Therefore um,n are solutions of Helm-
holtz equations for the billiards of Fig. 13 with Neumann
boundary conditions. Their label among the eigenstates
of the billiards is given in Table I �Gottlieb and Mc-
Manus, 1998�.

2. Mode-matching method

The knowledge of these particular triangular states is
the starting point for the so-called mode-matching
method. It consists in dividing the billiards into subdo-
mains for which solutions of the Helmholtz equation are
known analytically. Consider, for example, the left bil-
liard of Fig. 13. It is made of five elementary domains,
three triangles A, B, and E, and two squares C and D.
For each subdomain, analytical solutions for the Dirich-
let problem are given by �translations of� functions �89�
or �90�. We define the function �n�x ,y�
=sin�anx�sin�bny� / sin�bnd�, where d is the length of the
side of the elementary square, and we have set an

=n� /d and bn=�E−an
2. If given boundary conditions are

imposed on the boundaries of these subdomains, as in
Fig. 14, solutions can be written explicitly for these el-
ementary subdomains as superpositions of functions ob-
tained from translations or reflections of �n.

xx

yy

d 2d

2d

d

d 2d

A

B

E

B
D

E

C D

A

C

FIG. 13. Isospectral billiards divided into smaller regions.

TABLE I. First triangular modes tm,n. Left: Dirichlet boundary
conditions. Right: Neumann boundary conditions.

m n Eigenvalue m n Eigenvalue

1 2 E9 0 1 E5

1 3 E21 1 1 E9

2 3 E27 0 2 E15

1 4 E38 1 2 E20

2 4 E44 2 2 E29
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y

x
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x
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x
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x
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FIG. 14. Elementary regions building the isospectral pairs.
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In particular, one can construct functions taking the
value 0 on the plain boundary and sin�anx� �sin�any�� on
the dashed horizontal �vertical� boundary for each of the
domains shown in Fig. 14. Such functions are given by

 n
�A��x,y� = �n�x,d − y� − �n�y,d − x� ,

 n
�B1��x,y� = �n�x,y� − �n�d − y,d − x� ,

 n
�B2��x,y� = �n�y,x� − �n�d − x,d − y� ,

 n
�C1��x,y� = �n�y,x� ,

�92�
 n

�C2��x,y� = �n�y,d − x� ,

 n
�D1��x,y� = �n�y,d − x� ,

 n
�D2��x,y� = �n�x,d − y� ,

 n
�E��x,y� = �n�x,y� − �n�y,x� .

The mode-matching method consists in looking for a so-
lution � of the Helmholtz equation as a superposition of
such functions, with amplitudes chosen such that � and
its partial derivatives be continuous at each boundary
between subdomains. At the boundary between elemen-
tary subdomains, the eigenfunction � can be expanded
on the functions !n�x�=sin�anx� as

�AB�x,y� = �
n

An!n�x� ,

�BC�x,y� = �
n

Bn!n�y − d� ,

�93�
�CD�x,y� = �

n
Cn!n�y − d� ,

�DE�x,y� = �
n

Dn!n�x − 2d� ,

where the sum goes from 1 to some truncation number
N. The eigenfunction � is entirely determined by
knowledge of the vector V= �A1 , . . . ,AN ,B1 , . . . ,BN ,
C1 , . . . ,CN ,D1 , . . . ,DN�. Therefore � can be written as

�A�x,y� = �
n

An n
�A��x,y − 2d� ,

�B�x,y� = �
n

An n
�B1��x,y − d� + �

n
Bn n

�B2��x,y − d� ,

�C�x,y� = �
n

Bn n
�C1��x − d,y − d�

+ �
n

Cn n
�C2��x − d,y − d� , �94�

�D�x,y� = �
n

Cn n
�D1��x − 2d,y − d�

+ �
n

Dn n
�D2��x − 2d,y − d� ,

�E�x,y� = �
n

Dn n
�E��x − 2d,y� ,

where �X is the restriction of the function � to the el-
ementary domain X=A ,B ,C ,D, or E. The function � is
indeed an eigenfunction of the billiard if its normal de-
rivatives at the boundaries between domains are con-
tinuous. This latter condition can be written as a system
of linear equations that can be cast under the form
MV=0, where M is a 4N�4N matrix given by

M =	
U − 2W PWP − PV/2 0 0

PWP − PV/2 U − W − V/2 0

0 − V/2 U W

0 0 W U − PWP

 ,

�95�

with Umn= �bn cot bnd��mn, Vmn= �bn / sin bnd��mn, Wmn

=aman / �E−am
2 −an

2�, and Pmn= �−1�n�mn. The matrix M
depends on E through bn. Eigenvalues of the billiard
correspond either to values of E where det M=0 or to
V=0. In the case V=0, the wave function vanishes on
the boundaries between the domains, and the eigenfunc-
tion is a triangular state. If det M=0, Eqs. �94� give the
corresponding eigenfunction.

Interestingly, the mode-matching method provides an
alternative proof to isospectrality �Wu et al., 1995�. The
matrix M� corresponding to M for the right billiard of
Fig. 13 is the 4N�4N matrix given by

M� =	
U − W PWP − PV/2 0 0

PWP − PV/2 U − W PV/2 W

0 PV/2 U − W PWP

0 W PWP U − W

 .

�96�

It can be easily checked that M and M� are related by

M = tTM�T , �97�

with

T =
1
�2	

0 1 0 P

1 0 P 0

0 − 1 0 P

− 1 0 P 0

 . �98�

If � is a solution of the Helmholtz equation for the first
billiard, it can be written under the form �94� with con-
stants specified by some vector V verifying MV=0. Let
�� be the function defined on the second billiard by
some constants given by the vector V�=TV. Because of
Eq. �97� the vector V� verifies M�V�=0, and therefore
�� is a solution of the Helmholtz equation for the sec-
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ond billiard. Since the relation between � and �� is
linear, the eigenenergy is the same for both functions,
and thus the billiards are isospectral.

G. Eigenvalue statistics

As explained in Sec. II, the shape of the elementary
building block of a pair of isospectral billiards can be
varied at will provided some conditions are satisfied.
Thus, examples of chaotic pairs, or pseudointegrable
pairs, or even pairs with a fractal boundary can be pro-
duced. However, the most popular examples of isospec-
tral billiards, e.g., those of Fig. 1, are constructed with a
triangular-shaped base tile. The resulting billiards are
thus polygonal billiards. Billiards with a polygonal
boundary can display a whole range of classical behav-
iors from integrability to chaos. Isospectral billiards
made of tiles whose angles are rational multiples of �
are pseudointegrable billiards �Richens and Berry, 1981�.
The properties of these billiards were mentioned in Sec.
II.B.

In the field of quantum chaos, many works have been
concerned with a characterization of the statistical prop-
erties of spectra of billiards. The question of the spectral
properties displayed by polygonal isospectral billiards
attracted some interest. Eigenvalue statistics for the pair
of Fig. 1 have been studied numerically by Wu et al.
�1995�, based on the first 598 energy levels. The short-
range correlations of the spectrum were shown to lie
between the random matrix statistics of the Gaussian
orthogonal ensemble �GOE� and Poisson statistics �see
Porter �1965� for a review on the seminal papers and
Guhr et al. �1998� for a review on random matrix
theory�. On removal of the 78 triangular states, it was
observed that the nearest-neighbor level spacing distri-
bution function P�s�, which characterizes the distribu-
tion of the spacings between nearest-neighbor energy
levels, agrees with the nearest-neighbor distribution for

GOE matrices. The spectral rigidity �̄3�L� �see, e.g.,
Mehta �1991� for a rigorous definition� measures the de-
viation of the integrated density of states N�E� �the
number of eigenvalues smaller than E� from a straight

line on an interval �E−L /2 ,E+L /2�. Computation of �̄3
showed that it is also of GOE type for these billiards.
Aurich et al. �1997� calculated the functions E�k ,L�,
which give the probability to find k energy levels in an
random interval of length L �Aurich and Steiner, 1990�
for isospectral billiards shaped as in Fig. 1, again show-
ing a behavior that is intermediate between the chaotic
and integrable cases.

H. Nodal domains

Nodal lines for two-dimensional billiards are one-
dimensional curves on which eigenfunctions vanish.
Nodal domains are connected regions of the billiard
where an eigenfunction has a constant sign. A theorem
by Courant and Hilbert �1953� states that the nth eigen-
function �n has at most n nodal domains. The number

�n of nodal domains in �n can be further estimated
�Pleijel, 1956�. We define a rescaled nodal-domain num-
ber �n=�n /n� �0,1�. If j1 is the first zero of the Bessel
function J0, then lim supn→� �n	 �2/ j1�2. The limit distri-
bution of �n is defined by

P��� = lim
E→�

1

NIg�E�
�

En�Ig�E�
��� − �n� , �99�

where Ig�E� is the interval �E ,E+gE� for some fixed g
�0, and NI is the number of eigenvalues in the interval
I. It has been shown by Blum et al. �2002� that this dis-
tribution has universal features.

For some instances of isospectral pairs, such as flat
tori in Rn with n
4 �Gnutzmann et al., 2005� �see also
Levitin et al. �2006��, it was conjectured that two isospec-
tral domains produce a different number of nodal do-
mains �domains separated by nodal lines where �=0�.
Heuristic arguments as well as numerical investigations
were collected by Gnutzmann et al. �2005� to support
this conjecture. A recent solution of this conjecture can
be found in Bruening et al. �2008�.

I. Isospectrality versus isolength spectrality

We now consider a related important question. Since
transplantation is a mapping between the two billiards,
the classical properties should map onto one another as
well. Here we investigate the mapping between periodic
orbits.

1. Okada and Shudo’s result on isolength spectrality

Let D be a planar domain obtained by unfolding N
times the same triangular building block B with sides
1,2,3. Then the length spectrum is the set of lengths of
closed trajectories �periodic orbits� of D. Any periodic
orbit on D can be regarded as a “lift” of a closed trajec-
tory on B because its projection is always a periodic
orbit on B. �The converse is, of course, not necessarily
true.� One observes that the number of closed lifts of a
given closed trajectory on B is counted as

nD��� = Tr�M��m�M��m−1�
¯ M��1�� , �100�

where �=��i ��i� �1,2 ,3�� denotes the sequence repre-
senting the order in which a given closed trajectory on B
hits the boundary segments. �The M��j�’s are adjacency
matrices.� Note that such a sequence is not uniquely de-
termined by a given closed orbit—the number of closed
lifts, however, is. So the length spectrum of D is deter-
mined by the length spectrum of B and by nD���. Hence,
if one considers two domains D and D� that are con-
structed by unfolding the same building block as above,
it is sufficient to prove that nD���=nD���� for all possible
sequences � in order to deduce “isolength spectrality.”

The following is now obvious.
Theorem V.1 (Okada and Shudo, 2001). Let D and D�

be two unfolded domains obtained by N times succes-
sive reflections of the same building block. If D and D�
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are transplantable, then nD���=nD���� for any sequence
�, so D and D� are isolength spectral. �

Let S be a finite set, say, S= �a1 , . . . ,ak� with k�N0.
The free group F=F�S� generated by S is defined as fol-
lows. Introduce a set S−1

ª �a1
−1 , . . . ,ak

−1� which consists of
the “inverse symbols” of S. A word with alphabet S �or
S�S−1� is just a finite sequence of elements of S�S−1. A
reduced word is a word in which any sequence consisting
of an element of S and its inverse is deleted. By defini-
tion, F consists of all reduced words with alphabet S,
together with the empty word. Group operation is just
concatenating words and reducing if necessary.

Theorem V.2 (Okada and Shudo, 2001). Let D and D�
be two unfolded domains obtained by N times succes-
sive reflections of the same building block. If nD���
=nD���� for any sequence �, then D and D� are trans-
plantable, so also isospectral.

Proof. Let G and G�—corresponding to D and D�
respectively—be the groups generated by the adjacency
matrices

G = �M����, G� = �N����; �101�

then clearly G and G� are subgroups of the symmetric
group SN on N letters. Let F3 be the free group gener-
ated by symbols a, b, and c. Define the surjective homo-
morphism

 D:F3 � G:� = �1�2 ¯ �m � M��m�M��m−1�
¯ M��1�.

�102�

Then

G � F3/ker D and G� � F3/ker D�, �103�

the latter notation being obvious.
Now assume that nD���=nD���� for any sequence �.

Then

ker D = ��� D��� = I� = ���nD��� = N�

= ���nD���� = N� = ��� D���� = I� = ker D�.

�104�

�Note that  D��� is a �0,1� matrix so that  D���= I if and
only if nD���=N.� So the map

�:G � G�: D��� � D���� �105�

yields an isomorphism between G and G�.
Let �identity maps�

"D:G � GL�N,C�, "D�:G� � GL�N,C� �106�

be linear representations of G and G�, respectively.
Since the latter groups are isomorphic,

" = "D� � �: D��� � D���� � GL�N,C� �107�

is another linear representation of G. Since nD��� and
nD���� become �equal� characters of the representations
"D and ", respectively, the representations are similar. So
there exists an invertible matrix T for which

TM��� = N���T �108�

for any �. Thus D and D� are transplantable. �

2. Penrose-Lifshits mushrooms

Since transplantation implies isolength spectrality, one
might wonder if two billiards with the same length spec-
trum are, in general, necessarily isospectral.

Lifshits, exploiting a construction attributed to Pen-
rose �see, e.g., Rauch �1978��, constructed a class of pairs
of R2 domains that, while not isometric, have periodic
geodesics of exactly the same lengths, including multi-
plicities. When the boundaries are �C�� smooth, it fol-
lows that the two billiards have the same wave invari-
ants, in the sense that the traces of their wave groups,
cos�t���, differ at most by a smooth function �Melrose,
1996�. Such billiards provide drums that sound different
but are similar geometrically.

In this section we describe a construction of smooth
Penrose-Lifshits mushroom pairs that are not isospec-
tral, following Fulling and Kuchment �2005�. The do-
mains are smooth, so the spectral difference is not at-
tributable to diffraction from corners.

We start from a half ellipse E with foci F and F� as
shown in Fig. 15. The map

�� ��, �109�

whether applied to regions, curves, or points, indicates
reflection through the minor axis of the ellipse. If objects
are interchanged by that reflection, we call them dual.
Now replace a line segment by a bounded smooth curve
defined over the same interval B1 on the left and B2 on
the right, with B1��B2, to form a smooth domain  �Fig.
16�.

Finally, carry out the same replacement operation �not
self-dually� between the foci in two dual ways �M and
M�� to get two domains j �Figs. 17 and 18�.

We call domains 1 and 2 constructed in this manner
Penrose-Lifshits mushroom pairs.

Theorem V.3 (Fulling and Kuchment, 2005). If B1 and
B2 are given and not dual, then there exist dual bumps

E

F F’O

FIG. 15. Starting half ellipse.

1

2B
B

F O F’

Ω

FIG. 16. Half ellipse with two bumps.
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M and M̃ such that the resulting Penrose-Lifshits mush-
rooms j have the same length spectra and wave invari-
ants but are not isospectral.

Proof. Following Fulling and Kuchment �2005� we
first handle the length spectra �Melrose, 1996; Zelditch,
2004b�.

Geodesics in an ellipse �logically� fall into two disjoint
categories �Keller and Rubinow, 1960; Rauch, 1978;
Berry, 1981�: those that intersect the major axis between
the foci and those that do so at or beyond the foci. �The
smoothness assumption guarantees that the major axis
will not bifurcate in j by diffraction.�

A similar observation holds for the domains j just
described before Theorem V.3: Any geodesic originating
in a curve B1 or B2 can never reach a curve M or M�,
and vice versa.

The geodesics that do not intersect the focal segment
FF� are the same for the two domains. Those for 1 that
do intersect this segment are identified one to one with
their duals in 2 by the reflection. Hence the two bil-
liards are length isospectral. It now suffices to show that
it is possible to choose an M in such a way that the two
billiards are nonisospectral. One considers the lowest ei-
genvalue of the domains whose boundary is modified by
a small perturbation. Using the Rayleigh-Hadamard for-
mula for change in the spectrum under domain pertur-
bations �cf. Garabedian and Schiffer �1952�, Ivanov et al.
�1977�, Zelditch �2004b�, or Garabedian �1998�, Sec. 15.1,
Exercise 9�, one can prove that this eigenvalue is differ-
ent for the two domains for a given choice of the pertur-
bation. Thus, one can construct nonisospectral billiards
having the same length spectrum, and the theorem is
proved. �

J. Analytic domains

As all known counterexamples to the question “Can
one hear the shape of a drum?” are plane domains with
corners, it might be possible that analytic drumheads are
spectrally determined. The paper of Zelditch �2009� is

part of a series �cf. Zelditch �2004a, 2004c�� devoted to
the inverse spectral problem for simply connected ana-
lytic Euclidean plane domains , the motivating prob-
lem being whether generic analytic Euclidean drum-
heads are determined by their spectra. The main results
of Zelditch �2009� give the strongest evidence to date for
this conjecture by proving it for two classes of analytic
drumheads: those with an up-down symmetry and those
with dihedral symmetry.

Planar drumheads with symmetry. We now state the
results more precisely. As before, by Lsp�� we denote
the length spectrum of , that is, the set of lengths of
closed trajectories of its billiard flow. A bouncing ball
orbit � is a two-leg periodic trajectory that intersects �
orthogonally at both boundary points. By rotating and
translating  we may assume that � is vertical with end-
points at A= �0,L /2� and B= �0,−L /2�. Zelditch’s in-
verse results �Zelditch, 2009� pertain to the following
two classes of drumheads, D1,L and Dm,L, which are de-
fined as follows: �i� the class D1,L of drumheads with one
symmetry � and a bouncing ball orbit of length 2L
which is reversed by � and �ii� the class Dm,L for m
2 of
drumheads admitting the dihedral group D2m �acting on
m letters� as symmetry group and an invariant m-leg
reflecting ray.

Note that the class D1,L consists of simply connected
real-analytic-plane domains  with the property that
there is an isometric involution � of  which “reverses”
a nondegenerate bouncing ball orbit �that is, ����=�−1,
i.e., the same orbit reversed� of length L�=2L. Other
geometric properties can be found in Zelditch �2009�.

Let SpecB denote the spectrum of the Laplacian �B of
the domain  with boundary conditions B. The result of
Zelditch is that, for Dirichlet �or Neumann� boundary
conditions B, the map SpecB :D1,L�R+

N is one to one.
As a corollary, one obtains the main result of Iant-
chenko et al. �2002� and Zelditch �1999, 2000� that a sim-
ply connected analytic domain with the symmetries of
an ellipse and with one axis of a prescribed length L is
spectrally determined within this class. The above theo-
rem admits a generalization to the special piecewise ana-
lytic mirror symmetric domains with corners that are
formed by reflecting the graph of an analytic function
�see Zelditch �2009��. For m
2, that is, “dihedrally sym-
metric domains,” Zelditch �2009� similarly proves that
the map SpecB :Dm,L�R+

N is one to one.
Higher-dimensional drumheads with the symmetry of

an ellipsoid. More generally, Hezari and Zelditch �2009�
proved that bounded analytic domains �Rn with #
mirror symmetries across all coordinate axes and with
one axis height fixed �and also satisfying some generic
nondegeneracy conditions� are spectrally determined
among other such domains. That is, you can hear the
shape of a real analytic drum in any number of dimen-
sions if you know in advance that the mystery drums
have the symmetries of an ellipsoid. It is one of the first
positive higher-dimensional inverse spectral results for
Euclidean domains that is not restricted to balls.

1

2

1

M

B

F O F’

Ω

B

FIG. 17. Perturbed half ellipse with two bumps.
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FIG. 18. Same as Fig. 17 but perturbed in a dual way.
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VI. EXPERIMENTAL AND NUMERICAL
INVESTIGATIONS

Although isospectrality is proved on mathematical
grounds, the knowledge of exact eigenvalues and eigen-
functions cannot be obtained analytically for such sys-
tems. Experimental as well as numerical simulations oc-
curred very early in the history of billiards. In 1909, in
the Bulletin International de l’Académie des Sciences de
Cracovie, Stanislas Zaremba proposed a way of “nu-
merically” calculating solutions of the Dirichlet and
Neumann problem at a given point �Zaremba, 1909�. To
solve the eigenvalue problem for the Helmholtz equa-
tion, one standard method is the boundary element
method �Riddel, 1979; Berry and Wilkinson, 1984�.
However, this approach faces problems when the billiard
has corners. Such situations have been addressed by
Pisani �1996� and Okada et al. �2005b�. The usual nu-
merical methods to compute eigenvalues and eigenfunc-
tions in polygonal billiards are based on the so-called
method of particular solutions introduced by Fox, Hen-
rici, and Moler �FHM� �1967�. At a diffracting corner
with angle ��, a wave function � admits a “corner”
decomposition into Bessel functions valid at a distance
smaller than that to the nearest diffracting corner. In
polar coordinates centered around the corner �� this
decomposition reads

��r,�� = �
k

akJk��kr�sin�k��� , �110�

where J� are Bessel functions of the first kind and k
=�E. The sine function in Eq. �110� ensures that the
function ��r ,�� is zero on the boundary edges con-
nected to corner ��. The idea of FHM is to require that
� also vanish on the rest of the boundary at a finite
number of points and to truncate the sum �110�. This
gives a system of m linear equations, which admits a
nonzero solution �ak ,1	k	m� if and only if the matrix
corresponding to this linear system is singular. The FHM
method therefore consists in varying the energy E and
tracking the singularities of the matrix M.

Unfortunately, for more than one diffracting corner it
becomes virtually impossible to track singularities, espe-
cially since in various circumstances the FHM method
fails to converge when the number of terms included in
Eq. �110� is increased. Even for the paradigmatic pair
with half-square base shape �Fig. 1�, which is one of the
simplest isospectral billiards, each pair has four diffrac-
tive angles, two 3� /2 and two 3� /4 angles, and the
FHM method fails to give eigenvalues with a good accu-
racy. This is why attention has been focused on physical
experiments.

All known pairs of isospectral billiards are built on the
same principle as the “historical” pair 7 of Fig. 1. As
explained in Sec. II any initial building block possessing
three sides along which to unfold the block can be used
to construct an isospectral pair. In particular, the prop-
erties of the resulting pair will depend strongly on the
choice of the initial building block. Physicists have

mainly concentrated on the paradigmatic example of
Fig. 1. This allows us to make comparisons between the
different approaches.

In this section we review both experimental and nu-
merical investigations which give insight into the behav-
ior of eigenvalues and eigenfunctions for isospectral bil-
liards.

A. Numerical investigations

1. Mode-matching method

Numerical approaches to the study of isospectrality
for the billiards of Fig. 1 have followed the experiments
of Sridhar and Kudrolli that are reviewed in the next
section. Various approaches have been used in order to
solve the Helmholtz equation ��+E��=0 with Dirichlet
boundary conditions inside the billiards. The first nu-
merical results were obtained by Wu, Sprung, and Mar-
torell and reported in Wu et al. �1995�. Using the mode-
matching method described in Section V.F.2, they
obtained eigenvalues of the billiard as the values for
which the determinant of the matrix M, given by Eq.
�95�, vanishes. The results obtained by this method are
displayed in column 2 of Table II. As expected, both
billiards yield the same values. The numerical results
were found to vary linearly in 1/N. Wu et al. �1995� com-
pared their results to results obtained by a finite-
difference method consisting in discretizing the Laplac-
ian �. This finite-difference method gives the results
displayed in column 1 of Table II �the numerical results
are again exactly the same for both billiards�. As a check
of the validity of this approach, one can identify the ei-
genvalues of triangular states. The lowest-energy trian-
gular states are expected to have eigenenergies equal to
5�2 /d2 and 10�2 /d2. As one can see in Table II, these
eigenvalues correspond to the 9th and 21st modes con-
sistently with Table I, respectively.

2. Expansion of eigenfunctions around the corners with the
domain-decomposition method

The main drawback of the mode-matching method of
Wu et al. �1995� is the fact that one has to know analytic
solutions of the Helmholtz equation on subdomains of
the billiard. Driscoll �1997� used a numerical method
based on an algorithm by Descloux and Tolley �1983�,
particularly suited to treating the case of polygonal bil-
liards. The idea is again to decompose the billiard into
domains, each domain Di containing only one diffracting
angle ai. On each domain the restriction of the eigen-
function � is supposed to be some �i that admits a
Bessel function expansion around corner ai, according to
Eq. �110�. Truncation of this expansion to some finite
order, reduces the problem to that of finding the coeffi-
cients of the expansion for the �i. Mode matching nu-
merically leads to undesired singularities. Instead, Des-
cloux and Tolley �1983� used an algorithm minimizing a
function that measures discrepancies between �i and
their derivatives at the boundaries between subdomains.
Improvement of this algorithm allowed Driscoll to ob-
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tain the first 25 eigenvalues for both billiards of Fig. 1
with an accuracy of up to 12 digits. Betcke and
Trefethen �2005� used a modified method of particular
solutions using 140 expansion terms at each singular cor-
ner, 140 boundary points on each side of the polygon,
and 50 interior points to obtain following estimates for
the first three eigenvalues: 2.537 943 999 798,
3.655 509 713 52, and 5.175 559 356 22.

B. Experimental realizations

1. Electromagnetic waves in metallic cavities

Many experimental studies have been carried out on
chaotic quantum billiards to check the various proper-
ties conjectured analytically for chaotic systems �Bohi-
gas et al., 1984�. One commonly used method is based on
the correspondence between the stationary Schrödinger
equation and the Helmholtz equation for electromag-
netic waves in two dimensions �which is also the equa-
tion obeyed by vibrating plates�. The experiments are
carried out by sending electromagnetic microwaves into

a cylindrical copper cavity. The height h of the cavity is
small, and the two other dimensions are shaped accord-
ing to the desired billiards to investigate. For wave-
lengths ��2h, i.e., frequencies below �0=c /2h, all
modes obey the two-dimensional wave equation ��
+k2��=0. The Ez component of the electric field plays
the role of the quantum wave and vanishes on the
boundary. Probes allow one to send an electromagnetic
wave into the cavity and to measure the transmission
spectrum. In particular, eigenvalues correspond to reso-
nances in the transmission spectrum. Various choices of
the probe locations ensure that no resonance is missed.

If A is the area of the cavity, the number of reso-
nances below �0 is approximately given by
�A /4���� /h�2. But the quality factor of the cavity is pro-
portional to h; therefore one has to find a compromise
between a high quality factor and a large number of
resonances.

Measurements of the intensity of the wave function
�or here the electric field� were achieved by the pertur-
bation body method �Sridhar, Hogeboom, and Willem-

TABLE II. Comparison between the first eigenvalues Ei of the isospectral pair obtained by various
methods, expressed in units of �2 /d2. The ninth mode corresponds to the triangular mode; its nor-
malized eigenvalue is expected to be equal to 5. �The conversion from frequencies to lengths is done
assuming vacuum in the cavity; Wu et al. �1995� gave the values for electromagnetic cavities with a
factor of 1.0006 corresponding to the presence of air in the cavity.�

Rank
Finite

differences
Mode

matching
Electromagnetic

waves
Smectic films �relative

values�

1 1.028936 1.028535 1.02471 1.02481 1.000000 1.000000
2 1.481865 1.481467 1.46899 1.47194 1.438000 1.430000
3 2.098249 2.097467 2.08738 2.08831 2.040000 2.027000
4 2.649715 2.649547 2.64079 2.63985 2.571000 2.548000
5 2.938176 2.937434 2.93297 2.92949 2.854000 2.823000
6 3.732689 3.732334 3.72695 3.71892 3.623000 3.570000
7 4.295193 4.294728 4.28393 4.28388 4.184000 4.153000
8 4.677665 4.677532 4.67021 4.66917 4.554000 4.507000
9 5.000002 5.000000 4.98838 4.98531 4.861000 4.811000

10 5.291475 5.290275 5.27908 5.27278 5.150000 5.095000
11 5.801531 5.801138 5.78755 5.78371
12 6.433894 6.432156 6.41357 6.43781
13 6.866260 6.866226 6.84891 6.84718
14 7.159802 7.159343 7.15242 7.16045
15 7.694737 7.692417 7.67783 7.70604
16 8.463655 8.463257 8.44285 8.45947
17 8.613536 8.611169 8.57859 8.62220
18 9.012405 9.010349 8.99495 8.97209
19 9.609968 9.609791 9.60312 9.59562
20 9.921131 9.921040 9.92583 9.93689
21 10.000008 10.000000 10.00330 10.03932
22 10.571020 10.569736 10.55227 10.55740
23 11.066916 11.065727 11.09578 11.10035
24 11.419551 11.418850 11.41874 11.40569
25 11.984650 11.984080 11.99364 11.98033

2241Olivier Giraud and Koen Thas: Hearing shapes of drums: Mathematical and …

Rev. Mod. Phys., Vol. 82, No. 3, July–September 2010



sen, 1992�: The resonance frequency of the cavity is
shifted by the presence of a small metallic body inside
the cavity. This shift is a function of the square of the
electric field at the point of the metallic body.

The first experimental investigation of isospectral bil-
liards was realized at Northeastern University, Boston
by Sridhar and Kudrolli �1994�. Sridhar and co-workers
carried out various studies on chaotic quantum billiards,
such as the Sinai billiard �a square billiard with a circular
obstacle in the interior� and the Bunimovitch stadium-
shaped billiard, observing the scarring of eigenfunctions
�Sridhar, 1991� or localization phenomena �Sridhar and
Heller, 1992� for such billiards. The experiments aimed
at investigating isospectrality were realized on cavities
having the shape of the isospectral pair of Fig. 1.

Experimentally, each cavity has nine rectangular sides.
The base shape is an isosceles rectangular triangle �a
half square� whose smaller side is d=76 mm �3 in.� long.
The height of the cavity is h=6.3 mm ��0.25 in.� so that
microwaves at frequencies below �0=25 GHz are actu-
ally two dimensional. Measurements carried out to ob-
tain the 54 lowest eigenvalues showed that, as expected,
the eigenvalues of the two cavities are equal. Relative
discrepancies of 0.01–0.2 % between pairs of eigenval-
ues were found. These discrepancies and the width of
the resonances was assumed to be caused by imperfec-
tions due to the assembly of the pieces forming the cav-
ity. This experiment also allowed insight into the prop-
erties of eigenvalues of isospectral pairs. It was checked
that the eigenvalues found experimentally agree with
the Weyl formula �51� for the integrated density of
states,

N̄�E� �
A
4�

E −
L
4�

�E + K . �111�

For the choice d=3 in. one gets an area A=31.5 in.2 and
a perimeter L=27 in.; the constant K is given by Eq. �53�
and yields K=5/12. It was observed that, at least for the
lowest eigenvalues, no degeneracy occurred. By measur-
ing the electric field inside the cavity, some of the lowest
eigenfunctions were obtained. The results for the ten
first eigenvalues are displayed in Table II. It is interest-
ing to note that these pairs of eigenfunctions look quite
different, although they possess the same eigenvalues. It
was checked that one eigenfunction could be deduced
from the other by transplantation. The particular case of
the ninth mode, which is a triangular state, is well repro-
duced. Indeed, as shown in Table II, the measured ninth
eigenvalue is very close to its theoretical value E
=5�2 /d2.

Later �Dhar et al., 2003� applied a similar technique to
a chaotic isospectral billiard made of a billiard with a
half-square base tile with scattering circular disks inside,
showing experimentally that isospectrality is indeed re-
tained, provided scatterers are added in a way consistent
with the unfolding rules.

2. Transverse vibrations in vacuum for liquid crystal smectic
films

Another experimental realization of Kac’s membranes
was achieved using liquid crystal films in a smectic
phase, spanning a shape of the form of the isospectral
billiard �Even and Pieranski, 1999�. First, the shapes
were etched in circular stainless-steel wafers of diameter
4 cm and thickness 125 �m. The smectic film is then
drawn on the shape, and after a few hours it reaches an
equilibrium with uniform thickness e of several hundred
nanometers �corresponding to a few dozens monomo-
lecular layers� over the whole surface. The whole experi-
ment is set in vacuum. The film then obeys the wave
equation

��z = "e
�2z

�t2 , �112�

where � is the intrinsic tension of the film �in the experi-
ments ��5�10−2 N/m� and " is the density with a ver-
tical displacement z vanishing on the border. The film is
excited by a voltage applied by an electrode under the
film, and the amplitude and phase of its oscillations are
measured by sending in a laser beam and measuring its
deviations with a photodiode. The signal detected is pro-
portional to the height of the film at the position of the
electrode. The frequency of the excitation is varied from
a few Hz to several kHz, and eigenfrequencies corre-
spond to resonance peaks. Displacing the electrode over
the whole shape allows us to reconstruct eigenmodes.

The experiment was carried out on isospectral bil-
liards with an isosceles triangular base shape: two angles
$=� are equal, while the third one is varied from �
=67.5° to 97.5°. The angle �=90° corresponds to the
example of Fig. 1. The first 30 modes for both shapes
were measured. The average relative difference between
two eigenvalues for a given mode is 0.3%, which is
within the estimated experimental error of order 0.5%.
For the right-angle triangle ��=90° � the modes can be
compared with other numerical or experimental results.
Data for the ten first eigenvalues of the �=90° billiards
were given by Even and Pieranski �1999� and are dis-
played in Table II. When the parameter � is varied,
there is an avoided crossing between eigenvalues of the
eight and ninth modes. Since the ninth mode is a trian-
gular mode �see Sec. II� and the eight is not, the cou-
pling between these two modes necessarily comes from
experimental imperfections.

This experiment has also been tested on a billiard
where the gluing scheme of the base triangles is modi-
fied. That is, tile E in Fig. 13 �left� is flipped around the
line x=5d /2. This leads to a significantly different spec-
trum. In particular, the triangular modes are no longer
eigenstates of such a billiard. Again this is a check that
the way the tiles are glued together, according to the
rules constructed from finite projective spaces or from
Sunada triples, is of primary importance for isospectral-
ity.

2242 Olivier Giraud and Koen Thas: Hearing shapes of drums: Mathematical and …

Rev. Mod. Phys., Vol. 82, No. 3, July–September 2010



3. Isospectral electronic nanostructures

Recently �Moon et al., 2008� an experiment was done
involving electrons confined in isospectral billiards, with
the purpose of using transplantation to reconstruct the
quantum phase of measured wave functions. Each bil-
liard consisted of a wall of 90 CO molecules, constructed
by positioning the molecules with the tip of a scanning
tunneling microscope. The chosen billiards were built
according to the pattern of Fig. 1, but the base shape was
chosen to be a triangle with angles �� /2 ,� /3 ,� /6�. As
in Even and Pieranski �1999�, it was checked that bil-
liards violating the isospectral construction rule led to a
different result.

Amusingly, Moon et al. �2008� took Kac’s question lit-
erally by converting the average measured spectra into
audio frequencies, checking that one could indeed
“hear” nonisospectrality.

VII. SUNADA THEORY

The examples of isospectral billiards considered so far
can be proved to be isospectral by quite simple tools;
however, historically they were constructed by a group
theoretical approach. The mathematical theory of isos-
pectrality rests on a theory by Sunada. We first review
the necessary basic notions of group theory. Then, in
Sec. VII.E, we introduce Sunada theory.

A. Permutations

Following the usual conventions, we denote permuta-
tion action exponentially �i.e., the image of an element x
by the permutation g is xg� and let elements act on the
right. We denote the identity element of a group by id or
1 if no special symbol has been introduced for it before.
A group G without its identity id is denoted G�. The
number of elements of a group G is denoted by �G�.

A permutation group �G ,X� is a pair consisting of a
group G and a set X such that each element g of G
defines a permutation g :X→X of X, and the permuta-
tion defined by the product gh, g ,h�G, is given by
gh :X→X :x� �xg�h.

Finally, an involution in a group is an element g of
order 2, that is, such that g2= id.

B. Commutator notions

The group theoretic setting of Sunada theory requires
introduction of some notions such as the commutator of
two groups and perfect groups. The conjugate of g by h
is gh=h−1gh. Let H be a group. The commutator of two
group elements g ,h is equal to �g ,h�=g−1h−1gh. The
commutator of two subsets A and B of a group G is the
subgroup �A ,B� generated by all elements �a ,b�, with
a�A and b�B. The commutator subgroup of G is also
denoted by G�. Two subgroups A and B centralize each
other if �A ,B�= �id�. The subgroup A normalizes B if
Ba=B for all a�A, which is equivalent to �A ,B� being a

subgroup of B. If A and B are two subgroups of the
group G, then they are conjugate�d� if there is an ele-
ment g of G such that Ag=B. The subgroup A of G is �a�
normal �subgroup� in �of� G if Ag=A for all g�G. In
such a case, we write A�G. If A�G, we also write
A�G.

Inductively, we define the nth central derivative
�G ,G��n� of a group G as †G , �G ,G��n−1�‡, and the nth
normal derivative �G ,G��n� as †�G ,G��n−1� , �G ,G��n−1�‡.
For n=0, the zeroth central and normal derivatives are
by definition equal to G itself. If, for some natural num-
ber n, �G ,G��n�= �id�, and �G ,G��n−1�� �id�, then we say
that G is solvable �soluble� of length n. If �G ,G��n�
= �id� and �G ,G��n−1�� �id�, then we say that G is nilpo-
tent of class n. The center of a group is the set of ele-
ments that commute with every other element, i.e.,
Z�G�= �z�G � �z ,g�= id , ∀g�G�. Clearly, if a group G
is nilpotent of class n, then the �n−1�th central deriva-
tive is a nontrivial subgroup of Z�G�.

A group G is the central product of its subgroups A
and B if AB=G, A�B is contained in the center of G,
and A and B centralize each other. Sometimes we write
G=A �B in such a case.

A group G is called perfect if G= �G ,G�=G�.
Let R be a finite group. The Frattini group ��R� of R

is the intersection of all proper maximal subgroups, or is
R if R has no such subgroups.

C. Finite simple groups

A group is simple if it does not contain nontrivial nor-
mal subgroups.

The finite simple groups are often regarded as the el-
ementary particles in finite group theory. Before we ex-
plain this more precisely, recall that a composition series
of a group G is a normal series

1 = H0�H1� ¯ �Hn = G , �113�

such that each Hi is a maximal normal subgroup of Hi+1.
Equivalently, a composition series is a normal series
such that each factor group Hi+1 /Hi is simple. The factor
groups are called composition factors.

A normal series is a composition series if and only if it
is of maximal length. That is, there are no additional
subgroups that can be “inserted” into a composition se-
ries. The length n of the series is called the composition
length.

If a composition series exists for a group G, then any
normal series of G can be refined to a composition se-
ries. Furthermore, every finite group has a composition
series.

A group may have more than one composition series.
However, the Jordan-Hölder theorem states that any
two composition series of a given group are equivalent.

The classification of finite simple groups �see Solomon
�2001� for a survey� states that every finite simple group
is cyclic, or alternating, or is contained in one of 16 fami-
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lies of groups of Lie type �including the Tits group,
which strictly speaking is not of Lie type�, or one of 26
sporadic groups.

Conway et al. �1985� provide a list of the finite simple
groups �see also Gorenstein �1986�, pp. 490–491�. In this
review, we encounter several aspects of certain simple
groups in the construction theory of counterexamples to
Kac’s initial question.

D. p-groups and extraspecial groups

The present section will be useful for construction of
examples in Sec. VII.F.

For a prime number p, a p-group is a group of order
pn for some natural number n�0. A Sylow p-subgroup
of a finite group G is a p-subgroup of order pn such that
pn+1 does not divide �G�.

A p-group P is special if either �P ,P�=Z�P�=��P� is
elementary Abelian or P itself is. �A group is elementary
Abelian if it is Abelian, and if there exists a prime p
such that each of its nonidentity elements has order p.�
Note that P / �P ,P� is elementary Abelian in that case.
So

P/�P,P� � V�n,p� , �114�

where V�n ,p� is the n-dimensional vector space over Fp
�here seen as its additive group�, and �P�=pn��P ,P��.

Hence we have the exact sequence

1 � �P,P� � P � V�n,p� � 1 . �115�

If furthermore �Z�P��= ��P ,P��= ���P��=p, P is called ex-
traspecial.

We now present a classification for extraspecial
groups that depends on the knowledge of the non-
Abelian p-groups of order p3.

There are four non-Abelian p-groups of order p3 �see
Gorenstein, 1980�. First, we have M=M�p�,

M�p� = �x,y,z��xp = yp = zp = 1,�x,z�

= �y,z� = 1,�x,y� = z� . �116�

�Note that this is the general Heisenberg group of order
p3 which we will encounter later on.� Next, define

M3�p� = �x,y��xp2
= yp = 1,xy = xp+1� . �117�

Finally, we have the dihedral group D of order 8 and the
generalized quaternion group Q of order 8.

Theorem VII.1 (Gorenstein, 1980). An extraspecial p-
group P is the central product of r
1 non-Abelian sub-
groups of order p3. Moreover, we have the following.

�1� If p is odd, P is isomorphic to NkMr−k, while if p
=2, P is isomorphic to DkQr−k for some k. In either
case, �P�=p2r+1.

�2� If p is odd and k
1, NkMr−k is isomorphic to
NMr−1, the groups Mr and NMr−1 are not isomorphic
and Mr is of exponent p.

�3� If p=2, then DkQr−k is isomorphic to DQr−1 if k is
odd and to Qr if k is even, and the groups Qr and
DQr−1 are not isomorphic.

All the products considered are central products.

E. Sunada theory

We now turn to the main theorems of Komatsu and
Sunada, which allowed Gordon et al. to produce the first
known example of isospectral billiards. Sunada’s idea
was to reduce the problem of finding isospectral mani-
folds to a group theoretical problem, namely, construct-
ing triplets of groups having a certain property. As the
groups that appear in Sunada’s proof are Galois groups,
we need some more definitions.

A field extension L /K is called algebraic if every ele-
ment of L is algebraic over K, i.e., if every element of L
is a root of some nonzero polynomial with coefficients in
K. �Field extensions which are not algebraic, i.e., which
contain transcendental elements, are called transcenden-
tal.�

Let K be an algebraic number field of degree n. Recall
that a number field is a finite, algebraic field extension of
Q; its degree is the dimension over Q as a Q-vector space.
A standard example is Q��2�.

The ring of integers of an algebraic number field K,
often denoted by OK, is the ring of algebraic integers
contained in K. �An algebraic integer is an element of K
that is a root of some monic polynomial with coefficients
in Z.�

The �Dedekind� zeta function %K�s� �associated with
K�, s being a complex variable, is defined by

%K�s� = �
I

�NQ
K�I��−s, �118�

taken over all ideals I of the ring of integers OK of K,
I� �0�. Note that NQ

K�I� denotes the norm of I �to Q�,
equal to �OK /I�.

An ideal P of a ring R is a prime ideal if it is a proper
ideal and if for any two ideals A and B in R such that
AB�P, we have that A�P or B�P. Let p be a rational
prime. Let P1 , . . . ,Pg be the prime ideals of I OK lying
above p. Then

�p� = �
i=1

g

Pi
ei, �119�

where

ei = eK�Pi� . �120�

Here eK�Pi� is the ramification index of Pi over K. If ei
�1 for some i� �1, . . . ,g�, then p is said to be ramified in
K. If ei=1 for all i, p is unramified in K.

The conjugate elements of an algebraic element �,
over a field K, are the roots of the minimal polynomial
of � over K. �For example, the cube roots of the number
1 are 1,−1/2+�3/2i ,−1/2−�3/2i. The latter two roots
are conjugate elements in the field K=Q��−3�.�
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Let K=Q��� be as above, that is, an algebraic number
field of degree n ���C�. Suppose �1 ,�2 , . . . ,�n are the
conjugates of � over Q. If

Q��1� = ¯ = Q��n� = K , �121�

then K is a Galois extension of Q.
Suppose that E is an extension of the field F �written

as E /F�. Consider the set of all automorphisms of E /F
�that is, isomorphisms � from E to itself such that ��x�
=x for every x�F�. This set of automorphisms with the
operation of function composition forms a group, some-
times denoted by Aut�E /F�. If E /F is a Galois extension,
then Aut�E /F� is called the Galois group of �the exten-
sion� E over F and is usually denoted by Gal�E /F�.

A number theoretic exercise which asks for noniso-
morphic number fields K1 and K2 with the same zeta
function has the following answer:

Theorem VII.2 (Komatsu, 1976). Let K be a finite Ga-
lois extension of Q with Galois group G=Gal�K /Q�, and
let K1 and K2 be the subfields of K corresponding to
subgroups G1 and G2 of G, respectively. Then the fol-
lowing conditions are equivalent.

�i� Each conjugacy class of G meets G1 and G2 in the
same number of elements.

�ii� The same primes p are ramified in K1 and K2 and
for the unramified p the decomposition of p in K1
and K2 is the same.

�iii� The zeta functions of K1 and K2 are the same.

In particular, if G1 and G2 are not conjugate in G,
then K1 and K2 are not isomorphic while having the
same zeta function. It should be noted that several such
triples �G ,G1 ,G2� are known—see the examples further
in this section.

Any group triple �G ,G1 ,G2� satisfying Theorem
VII.2�i� is said to satisfy property �� �.

Sunada’s idea was to establish a counterpart of this
theorem for Riemannian geometry. In that context,
there is an analog for the Dedekind zeta function. For
M a Riemannian manifold, one defines

%M�s� = �
i=1

�

�i
−s, Re�s�& 0, �122�

where

0� �1	 �2	¯ �123�

are the nonzero eigenvalues of the Laplacian for M. The
function %M has an analytic continuation to the whole
plane, and it is well known that %M1

�s�=%M2
�s� if and

only if M1 and M2 are isospectral.
The following theorem gives sufficient conditions for

two manifolds to have the same zeta function.
Theorem VII.3 (Sunada, 1985). Let � :M�M0 be a

normal finite Riemannian covering with covering trans-
formation group G, and let �1 :M1�M0 and
�2 :M2�M0 be the coverings corresponding to the sub-
groups H1 and H2 of G, respectively. If the triplet

�G ,H1 ,H2� satisfies property �� �, then the zeta functions
%M1

�s� and %M2
�s� are identical.

The proof of the latter theorem makes use of an in-
teresting trace formula, which we present now.

If A is a non-negative self-adjoint operator of a Hil-
bert space, one defines the trace of A as an extended
real number by the possibly divergent sum �k�Aek ,ek�,
where �ej�j is an orthonormal base of the space. It is of
trace class if and only if Tr�A���.

Let V be a Hilbert space on which a finite group G
acts as unitary transformations and let A :V�V be a
self-adjoint operator of trace class such that A com-
mutes with the G-action. For a subgroup H of G, denote
by VH the subspace of H-invariant vectors.

Trace formula. The restriction of A to the subspace
VG is also of trace class, and

tr��A�VG� = �
�g���G�

��Gg��−1tr�gA� , �124�

where �G�= ��g��, �g� is the conjugacy class of g in G, and
Gg is the centralizer of g in G.

If the triplet �G ,G1 ,G2� satisfies property �* �, then

tr��A�VG1� = tr��A�VG2� . �125�

Even if G1 and G2 are not conjugate, the manifolds M1
and M2 could possibly be isometric.

Theorem VII.4 (Sunada, 1985). There exist finite cov-
erings �1 :M1�M0 and �2 :M2�M0 of Riemann sur-
faces with genus 
2 such that for a generic metric g0 on
M0, the surfaces �M1 ,�1

*g0� and �M2 ,�2
*g0� are isospec-

tral, but not isometric.
Sunada’s theorem allows us to construct isospectral

pairs provided we find triples �G ,G1 ,G2� satisfying
property �� �—“Sunada triples.” Now we give examples
of such triples.

F. Examples of Sunada triples

Example 1—see Gerst (1970). Let G be the semidirect
product Z /8Z�›Z /8Z, and define G1 and G2 by

G1 = ��1,0�,�3,0�,�5,0�,�7,0�� ,
�126�

G2 = ��1,0�,�3,4�,�5,4�,�7,0�� .

Example 2—see Gassmann (1926). Let G=S6 be the
symmetric group on six letters �a ,b ,c ,d ,e , f�. Set

G1 = �1,�ab��cd�,�ac��bd�,�ad��bc�� �127�

and

G2 = �1,�ab��cd�,�ab��ef�,�cd��ef�� . �128�

Example 3—see Komatsu (1976). Let G2 and G2 be
two finite groups with the same order, and suppose that
their exponents �equal to the least common multiples of
the orders of their elements� both equal the same odd
prime p. Set �G1�= �G2�=ph for h�N� and embed G1 and
G2 in the symmetric group Sph on ph letters by their left

2245Olivier Giraud and Koen Thas: Hearing shapes of drums: Mathematical and …

Rev. Mod. Phys., Vol. 82, No. 3, July–September 2010



action on themselves. For a conjugacy class �g� corre-
sponding to the partition

�Sph� = ph! = p + p + ¯ + p , �129�

we have

���g� � G1�� = ph − 1 = ���g� � G2�� , �130�

while ���g��Gi��=0 otherwise.
Concretely, let G1= �Z /pZ�3, and let G2 be the group

G2 = �a,b��ap = bp = �a,b�p = 1,a�a,b� = �a,b�a,b�a,b�

= �a,b�b� , �131�

that is, G2 is the extraspecial group of order p3. Then
�Sp3 ,G1 ,G2� verifies property �� �.

One can in fact generalize Komatsu’s example by de-
fining the following group. The general Heisenberg
group Hn of dimension 2n+1 over Fq, with n a natural
number, is the group of square �n+2�� �n+2� matrices
with entries in Fq, of the following form �and with the
usual matrix multiplication�:

	1 � c

0 In $T

0 0 1

 , �132�

where � ,$�Fq
n, c�Fq, and with In the �n�n�-unit ma-

trix. Let � ,�� ,$ ,$��Fq
n and c ,c��Fq; then

	1 � c

0 In $T

0 0 1

 � 	1 �� c�

0 In $�T

0 0 1



= 	1 � + �� c + c� + ��,$��
0 In $ + $�

0 0 1

 . �133�

Here �x ,y�, with x= �x1 ,x2 , . . . ,xn� and y= �y1 ,y2 , . . . ,yn�
elements of Fq

n, denotes x1y1+x2y2+ ¯+xnyn.
The following properties hold for Hn.

�i� Hn has exponent p if q=ph with p an odd prime; it
has exponent 4 if q is even.

�ii� The center of Hn is given by

��0,c,0��c � Fq� . �134�

�iii� Hn is nilpotent of class 2.

Then, as above, �Sp2n+1 ,Hn , �Z /pZ�2n+1� verifies prop-
erty �� �.

Any finite group arises as the fundamental group of a
compact smooth manifold of dimension 4. For a triplet
�G ,G1 ,G2� of the type described in example 3, we find a
compact manifold M0 with fundamental group G. Let
M be the universal covering of M0. Then the quotients
Mi=M /Gi have nonisomorphic fundamental groups Gi,
i=1,2. By Theorem 3 the manifolds �M1 ,�1

*g0� and
�M2 ,�2

*g0� are isospectral for any metric g0 on M0, but
not isometric.

VIII. RELATED QUESTIONS

The literature on isospectrality is large, and it is out of
the question to review the entire field. In the present
paper we have concentrated on the questions addressed
by planar two-dimensional domains with Dirichlet
boundary conditions. To open the topic further, we now
mention some questions related to the main one dis-
cussed in the present paper, some of which have been
addressed in the literature, and some of which remain
open problems.

A. Boundary conditions

So far we have mainly dealt with billiards with Dirich-
let boundary conditions. More recently attention has
been concentrated on mixed Dirichlet-Neumann bound-
ary conditions, that is, having either �=0 or �n�=0 on
different intervals of the boundary �n being the normal
to the boundary�. This is much simpler than the Dirich-
let problem. Simple instances of mixed-boundary condi-
tion isospectral pairs are proposed in Levitin et al. �2006�
�see also Jakobson et al. �2006��. Their simplest example
is reproduced in Fig. 19. The eigenfunctions are given by

sin
��m + 1/2�x

d
sin
�ny

d
, n
 1, m
 0, �135�

for the square of side length d, and

sin
��m + 1/2�x

d�2
sin
��n + 1/2�y

d�2

− sin
��n + 1/2�x

d�2
sin
��m + 1/2�y

d�2
, m� n
 0,

�136�

for the triangle of side lengths d�2 and 2d.
These examples can be generalized: Levitin et al.

�2006� gave a procedure to construct similar pairs. The
idea is to construct an elementary domain, or “construc-
tion block,” whose boundary is made of two line seg-
ments a and b on the plane, with ends joined by two
arbitrary curves. Imposing any mixed Neumann-
Dirichlet boundary conditions on the construction block
boundary, one obtains a Neumann-Dirichlet isospectral
pair by gluing the construction block together with its
reflection with respect to either a or b �and imposing
Neumann boundary conditions to the segment itself, Di-
richlet to its image�. This technique can be further gen-

1

1

1

1

FIG. 19. Isospectral billiards with mixed Neumann-Dirichlet
boundary conditions. Solid line, Dirichlet; dashed line, Neu-
mann.
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eralized by gluing together more copies of the construc-
tion block, yielding more complicated examples. In
particular, this method shows that for mixed boundary
conditions it is possible to construct isospectral pairs
such that one member is connected and the other is not,
isospectral pairs such that one member is smooth and
the other is not, isospectral 4-tuples, and billiards whose
spectrum remains invariant when Dirichlet and
Neumann boundaries are swapped. These billiards were
investigated by Jakobson et al. �2006�. The simplest
example is a billiard of semicircular shape: if the
equation of the billiard on the complex plane is given by
�z�C ;0	arg�z�	� ; �r�	1�, the Dirichlet boundary
conditions correspond to �z�C ; �r�=1,� /4	arg�z�
	3� /4 ,R�z��0�. A necessary condition for this
Dirichlet-Neumann isospectrality is that the Dirichlet
boundary has the same total length as the Neumann
boundary. Such domains have been investigated numeri-
cally �Driscoll and Gottlieb, 2003� as well as analytically
�Okada and Shudo, 2001�, and experimental setups have
been proposed by Driscoll and Gottlieb �2003�.

All these examples have the property that the length
differences between the Dirichlet boundary and the
Neumann boundary are the same. This turns out to be a
necessary condition similar to those obtained from
Weyl’s law �52� applied to isospectral billiards derived by
Levitin et al. �2006� for mixed-boundary-condition isos-
pectral billiards. In particular, such isospectral pairs
need to have the same area, the same length difference
between the Dirichlet boundary and the Neumann
boundary, and the same curvature-singularity properties,
namely,

2�
�B
��s�ds + �

DD

�2 − $2

$
+ �

NN

�2 − $2

$

−
1
2 �

DN

�2 + 2$2

$
, �137�

where � is the curvature and $ represents the angles
at the Dirichlet-Dirichlet, Neumann-Neumann, or
Dirichlet-Neumann boundary intersections, which must
be the same.

Finally, we observe that for some of the examples pro-
duced by Levitin et al. �2006�, it was shown that two
isospectral domains produce a different number of nodal
domains �domains separated by nodal lines where �=0;
see Sec. V.H�.

B. Homophonic pairs

Homophonic pairs in R2 are nonisometric compact
domains that have a distinguished point such that the
corresponding �normalized� Dirichlet eigenfunctions
take equal values at that point. This could be interpreted
in the following way: If the corresponding drums are
struck at these special points, then they sound the same
in such a way that every frequency is excited to the same
intensity for each.

An example of two billiards that are isospectral and
homophonic �Buser et al., 1994� is provided in Appendix
A �example 211 right�. These billiards sound the same
when struck at the interior points where six triangles
meet.

C. Spectral problems for Lie geometries

There exists a vast literature on spectral problems for
�finite� graphs—see van Dam and Haemers �2003�. In
this section we consider a spectral �“Kac type”� problem
for graphs that are associated with the most important
incidence geometries.

We have seen in the previous sections that the con-
struction of isospectral pairs is based on properties of
finite projective spaces and their automorphism groups.
In this section we show that this construction is a special
case of a wider class of similar constructions based on
so-called generalized polygons, which are the natural
generalization of projective planes.

One defines a finite axiomatic projective plane ' of
order n, where n�N, as a point-line incidence structure
satisfying the following conditions: �i� each point is inci-
dent with n+1 lines and each line is incident with n+1
points, and �ii� any two distinct lines intersect in exactly
one point and any two distinct points lie on exactly one
line.

One also traditionally requires that n be 
2 to ex-
clude the uninteresting cases of a single line and a point
not on it �n=−1�, a single line and one point on it �n
=0�, or the three vertices and three sides of a triangle
�n=1�. This is equivalent to requiring that ' contains an
ordinary quadrangle �four points with no three on a line�
as subgeometry. It is easily seen that a finite projective
plane of order n has n2+n+1 points and n2+n+1 lines.

The obvious examples of finite projective planes are
the projective planes PG�2,q� over finite fields Fq as
defined in Sec. IV. In this case the order n= �Fq� is a
prime power, and in fact no examples of finite projective
planes of nonprime power order are known. A classical
theorem of R. Moufang states that a finite projective
plane is isomorphic to some PG�2,q� if and only if a
certain configurational property corresponding to the
classical theorem of Desargues is satisfied. Projective
planes of this type are therefore often called Desargue-
sian, and since these correspond to planes coordinatized
over finite fields, we also use this terminology for pro-
jective spaces of dimension n
3, as mentioned. How-
ever, many finite projective planes are known which are
not Desarguesian; see Hughes and Piper �1973�.

Generalized polygons. Let n
3 be a natural number.
A �thick� generalized n-gon or �thick� generalized poly-
gon �GP� is a point-line geometry �= �P ,B ,I�, where P is
the point set, B is the line set, and I� �P�B�� �B�P� is
a symmetric incidence relation so that the following axi-
oms are satisfied.
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�i� � contains no k-gon �in the ordinary sense� for 2
	k�n.

�ii� Any two elements x ,y�P�B are contained in
some ordinary n-gon in �.

�iii� There exists an ordinary �n+1�-gon in �.

The point graph of a point-line geometry is the graph
of which the vertices are the points of the geometry, and
for which two vertices are joined by an edge if they are
collinear in the geometry. Equivalently, a generalized
polygon could be defined as a point-line geometry for
which the point graph is bipartite of diameter n and
girth 2n �see, e.g., Fig. 20�.

The generalized 3-gons are precisely the aforemen-
tioned projective planes. If �iii� is not satisfied for �, then
� is called thin. Otherwise, it is called thick. Each thick
generalized n-gon, n
3, � has an order: there are �not
necessarily finite� constants s�1 and t�1 so that each
point is incident with t+1 lines and each line is incident
with s+1 points. We then say that � has order �s , t�. Note
that, for a point x and a line L, xIL means that �x ,L�
�I �and so also �L ,x��I�.

Collinearity matrices and a spectral problem. Suppose
�= �P ,B ,I� is a finite GP �� has a finite number of points
and lines� of order �s , t�, set �P�=v, and let
�x1 ,x2 , . . . ,xv�=P be the point set. Define the collinearity
matrix A���=A as the v�v matrix �aij� for which aij
=1 if xi�xj�xi �the latter notation meaning that xi and
xj are different collinear points�, and 0 otherwise. So it is
the adjacency matrix of the point graph of �. The �point�
spectrum of � is the spectrum of A, and we denote it by
spec�A�.

The following quantum mechanical question is the
Kac inverse problem for the theory of GPs.

Question VIII.1. Let � and �� be distinct finite thick
generalized polygons with associated collinearity matri-
ces A and A�, respectively. Does spec�A�=spec�A�� im-
ply that ����?

Clearly, a similar problem can be posed for the line
spectrum, but as points and lines play essentially the

same role in a GP, we only consider the question in its
above form.

Question VIII.1 can be reduced to an important ques-
tion in the theory of GPs.

Theorem VIII.2 (Thas, 2007a). Let � and �� be dis-
tinct finite thick generalized polygons with associated
collinearity matrices A and A�, respectively. Then
spec�A�=spec�A�� if and only if � and �� have the same
order.

Details of the proof can be found in Appendix B.

D. Further questions

As mentioned, the literature on isospectrality is vast
and continuously growing. There is also a much litera-
ture on isospectral graphs. In this section we state some
fundamental open problems on billiards and graphs.

Interesting problems in construction theory are nu-
merous: We state only some of them. Perhaps the single
most important open problem in Kac theory is the fol-
lowing: We have constructed pairs of isospectral billiards
made of 7, 13, 15, or 21 tiles. Is it possible to go beyond
that number? In mathematical words, can one show that
for all N�N there exists an N*
N such that there are
isospectral pairs on N* tiles? Equivalently, can one show
that there are infinitely many pairs of involution graphs
that yield isospectral pairs?

All examples constructed so far are polygonal ex-
amples. Even if different base tiles can be chosen, the
unfolding rule imposes the presence of corners in the
boundary of the billiard. A natural question is thus, can
one construct isospectral R2 domains with smooth
boundaries?

We have seen that point-line duality in finite projec-
tive spaces is at the root of billiard isospectrality and
provides a transplantation property between billiards.
Since only one recipe is known for constructing isospec-
tral pairs, one may ask the following: Is it possible to
construct isospectral pairs that are not transplantable?

More generally, are the following statements achiev-
able? Derive criteria for pairs of involution graphs to
yield isospectral plane domains. Construct isospectral
pairs on � tiles �by a free construction?�. Find examples
of �planar� isospectral pairs not coming from Sunada
triples or still arising from Sunada triples but not being
transplantable.

On the group theoretical level, we pose the following
question: Are the operator groups of �transplantable�
isospectral pairs always two-transitive? If so, the classi-
fication of finite simple groups could be used to classify
such operator groups. In the same spirit, one could ask
as to whether other finite simple groups can act as op-
erator groups.

Develop a theory of isospectral “domains” for �=on�
general buildings. Note that the projective completion of
R2 is a rank 2 building over R �see Tits �1974� for an
introduction on buildings�. The same questions could all
be formulated for “isospectral n-tuples,” n�2.

FIG. 20. The unique generalized quadrangle of order 2: the
symplectic quadrangle W�3,2�.
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APPENDIX A: GALLERY OF EXAMPLES

1. Some modes

Here we plot some eigenfunctions for the pair of bil-
liards of Fig. 1. Figure 21 corresponds to the fundamen-

tal mode, Fig. 22 to the first triangular mode, whose
nodal lines coincide with edges between the triangular
tiles. Figure 23 corresponds to an excited state.

2. The 17 families of isospectral pairs and their mathematical
construction

The following gallery presents the 17 known families
of isospectral pairs, as obtained by Buser et al. �1994�,
Okada and Shudo �2001�, and Giraud �2005�. All are
based on a Sunada triple �G ,G1 ,G2�, where G=PSL�n
+1,q� is the special linear automorphism group of a fi-
nite projective space of �qn+1−1� / �q−1� points, and
G1 ,G2 are two subgroups, generated, respectively, by
a1 ,b1 ,c1 and a2 ,b2 ,c2. These automorphisms are col-
lineations of order 2 of the underlying finite projective
space; a1 ,b1 ,c1 act on points while a2 ,b2 ,c2 act on hyper-
planes, numbered from 0 to �qn+1−1� / �q−1�−1. The
generators ai and bi allow us to construct the graphs �see
Sec. II� that specify the way in which the tiles are glued
together. Figures 24–40 give examples of pairs of iso-
spectral billiards obtained by applying the unfolding
rules on an equilateral triangle �left panel� or on a
scalene triangle �right panel�.

Interestingly, the structure of pairs 136 and 152 forbids
the construction of any proper billiard, that is, structures
where triangles do not overlap. It is quite simple to con-

(a) (b)

FIG. 22. �Color online� First triangular mode �ninth mode�.

(a) (b)

FIG. 21. �Color online� Fundamental mode.

(a) (b)

FIG. 23. �Color online� 15th mode.

(a) (b)

FIG. 24. Pair 71. Sunada triple G=PSL�3,2�, Gi= �ai ,bi ,ci�, i
=1,2, with a1= �0 1��2 5�, b1= �0 2��3 4�, c1= �0 4��1 6�, a2
= �0 4��2 3�, b2= �0 1��4 6�, and c2= �0 2��1 5�.

2249Olivier Giraud and Koen Thas: Hearing shapes of drums: Mathematical and …

Rev. Mod. Phys., Vol. 82, No. 3, July–September 2010



(a) (b)

FIG. 25. Pair 72. Sunada triple G=PSL�3,2�, Gi= �ai ,bi ,ci�, i
=1,2, with a1= �0 1��2 5�, b1= �1 5��3 4�, c1= �0 4��1 6�, a2
= �0 4��2 3�, b2= �0 6��1 4�, and c2= �0 2��1 5�.

(a) (b)

FIG. 26. Pair 73. Sunada triple G=PSL�3,2�, Gi= �ai ,bi ,ci�, i
=1,2, with a1= �2 5��4 6�, b1= �1 5��3 4�, c1= �0 4��1 6�, a2
= �0 3��2 4�, b2= �0 6��1 4�, and c2= �0 2��1 5�.

(a) (b)

FIG. 27. Pair 131. Sunada triple G=PSL�3,3�, Gi= �ai ,bi ,ci�,
i=1,2, with a1= �0 12��1 10��3 5��6 7�, b1= �0 10��2 9��3 4��5 8�,
c1= �0 4��1 6��2 11��9 12�, a2= �0 4��2 3��6 8��9 10�, b2= �0 1 2�
�1 4��5 11��6 9�, and c2= �0 10��1 5��2 7��3 12�.

(a) (b)

FIG. 28. Pair 132. Sunada triple G=PSL�3,3�, Gi= �ai ,bi ,ci�,
i=1,2, with a1= �0 12��1 10��3 5��6 7�, b1= �1 12��2 9��3 8��4 5�,
c1= �0 4��1 6��2 11��9 12�, a2= �0 4��2 3��6 8��9 10�, b2= �0 1�
�4 12��5 11��8 10�, and c2= �0 10��1 5��2 7��3 12�.

(a) (b)

FIG. 29. Pair 133. Sunada triple G=PSL�3,3�, Gi= �ai ,bi ,ci�,
i=1,2, with a1= �1 7��3 5��4 9��6 10�, b1= �1 12��2 9��3 8��4 5�,
c1= �0 4��1 6��2 11��9 12�, a2= �0 9��4 10��6 8��7 12�, b2= �0 1�
�4 12��5 11��8 10�, and c2= �0 10��1 5��2 7��3 12�.

(a) (b)

FIG. 30. Pair 134. Sunada triple G=PSL�3,3�, Gi= �ai ,bi ,ci�,
i=1,2, with a1= �1 7��3 5��4 9��6 10�, b1= �0 5��1 2��6 12�
�9 11�, c1= �0 4��1 6��2 11��9 12�, a2= �0 9��4 10��6 8��7 12�, b2
= �0 11��1 8��2 7��3 4�, and c2= �0 10��1 2��2 7��3 12�.

(a) (b)

FIG. 31. Pair 135. Sunada triple G=PSL�3,3�, Gi= �ai ,bi ,ci�,
i=1,2, with a1= �1 7��3 5��4 9��6 10�, b1= �0 5��1 2��6 12�
�9 11�, c1= �0 4��1 6��2 11��9 12�, a2= �0 9��4 10��6 8��7 12�, b2
= �0 11��1 8��2 7��3 4�, and c2= �0 10��1 5��2 7��3 12�.

(a) (b)

FIG. 32. Pair 136. Sunada triple G=PSL�3,3�, Gi= �ai ,bi ,ci�,
i=1,2, with a1= �0 2��1 7��3 6��5 10�, b1= �0 6��2 4��3 8��5 9�,
c1= �0 5��1 2��6 12��9 11�, a2= �0 7��3 11��6 8��9 12�, b2= �0 8�
�1 10��5 11��7 9�, and c2= �0 11��1 8��2 7��3 4�.

(a) (b)

FIG. 33. Pair 137. Sun�ada triple G=PSL�3,3�, Gi= �ai ,bi ,ci�,
i=1,2, with a1= �0 2��1 7��3 6��5 10�, b1= �0 4��2 3��6 8��9 10�,
c1= �0 5��1 2��6 12��9 11�, a2= �0 7��3 11��6 8��9 12�, b2
= �0 12��1 1 0��3 5��6 7�, and c2= �0 11��1 8��2 7��3 4�.

(a) (b)

FIG. 34. Pair 138. Sunada triple G=PSL�3,3�, Gi= �ai ,bi ,ci�,
i=1,2, with a1= �0 10��1 5��2 7��3 12�, b1= �0 4��2 3��6 8�
�9 10�, c1= �0 5��1 2��6 12��9 11�, a2= �0 4��1 6��2 11��9 12�, b2
= �0 12��1 10��3 5��6 7�, and c2= �0 11��1 8��2 7��3 4�.

(a) (b)

FIG. 35. Pair 139. Sunada triple G=PSL�3,3�, Gi= �ai ,bi ,ci�,
i=1,2, with a1= �0 10��1 5��2 7��3 12�, b1= �1 10��3 6��5 7�
�9 11�, c1= �0 5��1 2��6 12��9 11�, a2= �0 4��1 6��2 11��9 12�, b2
= �0 3��2 4��6 8��7 11�, and c2= �0 11��1 8��2 7��3 4�.

(a) (b)

FIG. 36. Pair 151. Sunada triple G=PSL�4,2�, Gi= �ai ,bi ,ci�,
i=1,2, with a1= �0 14��1 12��2 6��4 5��7 11��9 10�, b1= �1 13�
�2 7��4 6��8 9�, c1= �1 14��2 12��3 4��8 11�, a2= �0 11��1 5��3 4�
�6 10��8 9��13 14�, b2= �0 10��1 2��6 9��12 14�, and c2= �0 5�
�2 4��6 7��11 14�.
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vince oneself of this fact. In the case of the billiard 136
�see Fig. 32�, the initial triangle is unfolded six times
around each of its corner. Clearly, to have a nonoverlap-
ping billiard, each angle should be less than � /3, which
is impossible unless the initial triangle is equilateral.

For the billiard 152 �see Fig. 37�, the initial triangle is
unfolded six times around two of its corners, four times
around the third one, and thus two angles have to be less
than � /3 and one less than � /2. While it is possible to
construct such a billiard, it is impossible to get a pair of
planar billiards. Indeed, the role of the angles is ex-
changed from one billiard to the other, which leads to
the condition that the three angles be less than � /3. On
the other hand, the presence of a loop in the pair 211
requires that one angle of the base triangle be � /3.

APPENDIX B: SPECTRAL PROBLEMS FOR LIE
GEOMETRIES

1. Generalized polygons

Generalized polygons were introduced by Tits �1959�
in order to have a geometric interpretation of certain
Chevalley groups of rank 2. They are also the building
bricks of �Tits� buildings, the natural geometries for the
groups with a BN-pair.

A group G is said to have a BN-pair �B ,N�, where
B ,N are subgroups of G, if the following properties are
satisfied: �BN1� �B ,N�=G, �BN2� H=B�N and N /H
=W is a Coxeter group �see, e.g., Tits �1974�� with dis-
tinct generators s1 ,s2 , . . . ,sn, �BN3� BsiBwB
�BwB�BsiwB whenever w�W and i� �1,2 , . . . ,n�,
and �BN4� siBsi�B for all i� �1,2 , . . . ,n�. The subgroup
B �W� is a Borel subgroup �Weyl group� of G. The natu-
ral number n is called the rank of the BN-pair.

Example. Suppose PG�1,q� is the projective line over

the finite field Fq; so PG�1,q� has q+1 points. Consider
the natural action of PSL�2,q� on PG�1,q�, and let x
and y be the distinct points of the projective line. Set
B=PSL�2,q�x and N=PSL�2,q��x,y�. Then �B ,N� is a
BN-pair for PSL�2,q�. Here N / �B�N�=W is just the
group of order 2.

Example. Consider the Desarguesian projective plane
PG�2,q� and PSL�3,q� in its natural action on the latter
plane. Let �x ,L� be an incident point-line pair, and � a
triangle �in the ordinary sense� that contains x as a point
and L as a side. Set B=PSL�3,q��x,L� and N
=PSL�3,q��, then �B ,N� is a BN-pair for PSL�3,q� and
N / �B�N�=W is the dihedral group of order 6.

See Payne and Thas �1984�, Van Maldeghem �1998�,
Thas �2004�, and Thas et al. �2006� for standard refer-
ences on the subject of generalized polygons. In this pa-
per we consider only thick GPs.

Now let G be a group with a BN-pair �B ,N� of rank 2.
One can associate a generalized polygon B�G� with the
group G in the following way. For this purpose, define
P1= �B ,Bs1� and P2= �B ,Bs2�.

• Call the right cosets of P1 “points.”

• Call the right cosets of P2 “lines.”

• Call two such �distinct� cosets “incident” if their in-
tersection is nonempty �so P1g is incident with P2h,

(a) (b)

FIG. 38. Pair 153. Sunada triple G=PSL�4,2�, Gi= �ai ,bi ,ci�,
i=1,2, with a1= �0 14��2 11��4 7��5 6��8 10��12 13�, b1= �1 13�
�2 7��4 6��8 9�, c1= �0 12��1 6��3 5��7 8�, a2= �0 9��2 5��3 4�
�6 8��10 11��12 13�, b2= �0 10��1 2��6 9��12 14�, and c2= �0 13�
�1 11��2 3��7 10�.

(a) (b)

FIG. 39. Pair 154. Sunada triple G=PSL�4,2�, Gi= �ai ,bi ,ci�,
i=1,2, with a1= �0 14��2 11��4 7��5 6��8 10��12 13�, b1= �1 4�
�2 8��7 9��8 9�, c1= �0 12��1 6��3 5��7 8�, a2= �0 9��2 5��3 4�
�6 8��10 11��12 13�, b2= �6 9��7 13��12 14�, and c2= �0 13�
�1 11��2 3��7 10�.

(a)

(b)

FIG. 40. Pair 211. Sunada triple G=PSL�3,4�, Gi= �ai ,bi ,ci�,
i=1,2, with a1= �2 7��3 11��5 12��8 18��13 14��15 17��16 20�,
b1= �0 17��3 8��4 12��6 13��9 19��14 15��16 18�, c1= �1 8��2 16�
�4 11��5 19��7 14��10 17��13 20�, a2= �0 1��4 17��7 12��9 16�
�10 20��11 13��15 19�, b2= �0 20��3 16��6 11��8 15��9 19�
�10 12��14 18�, and c2= �1 8��2 16��4 11��5 19��7 14��10 17�
�13 20�.

(a) (b)

FIG. 37. Pair 152. Sunada triple G=PSL�4,2�, Gi= �ai ,bi ,ci�,
i=1,2, with a1= �0 14��1 12��2 6��4 5��7 11��9 10�, b1= �1 13�
�2 7��4 6��8 9�, c1= �0 12��1 6��3 5��7 8�, a2= �0 11��1 5��3 4�
�6 10��8 9��13 14�, b2= �0 10��1 2��6 9��12 14�, and c2= �0 13�
�1 11��2 3��7 10�.
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g ,h�G, if P1g�P2h���.

Then B�G� is a GP—say, a generalized n-gon for some
natural number n—on which G acts naturally as an au-
tomorphism group that permutes transitively the or-
dered n-gons �in the ordinary sense�.

Conjecture (Tits, 1974, Sec. 11.5.1). If a finite thick
generalized n-gon is such that the automorphism group
permutes transitively the ordered n-gons �that is, if � is
associated with a BN-pair�, then � is isomorphic with
the GP of an absolutely simple group over a finite field,
or with the GP of a Ree group of type 2F4 over a finite
field.

For more on the classification of BN-pairs of rank 2,
see Thas �2009, 2010�, and Thas and Van Maldeghem
�2008�.

2. Duality principle

Let �= �P ,B ,I� be a GP of order �s , t�. Then �D

= �B ,P ,I� clearly again is a GP, but now of order �t ,s�.
�The latter geometry is called the point-line dual of �.�
So any theorem which holds for a GP has a dual inter-
pretation; we call this the duality principle.

3. Automorphisms and isomorphisms

Let �= �P ,B ,I� and ��= �P� ,B� ,I�� be GPs. Then an
isomorphism between � and �� is a pair �� ,$� for which
� is a bijection between P and P�, $ is a bijection be-
tween B and B�, and xIL �in �� if and only if x�IL$. If
there is an isomorphism between � and ��, we say they
are isomorphic and write ����.

If �=�� one speaks of an automorphism. The set of all
automorphisms of a GP forms a group, and the classical
examples of GPs are those examples that are associated
with a Chevalley group �or, equivalently, with a classical
BN-pair�, cf. Van Maldeghem �1998� for more details.

4. Point spectra and order

Let � be a finite thick GP of order �s , t� with associ-
ated collinearity matrix A. Our first concern is to calcu-
late spec�A�. First, we recall the theorem of Feit and
Higman �1964�: a finite thick generalized n-gon exists if
and only if n� �3,4 ,6 ,8�. We do a case-by-case analysis
according to this result.

Case n=3. Recall that a generalized 3-gon is the same
as an axiomatic projective plane. Now let � be a finite
projective plane of order n, n
2, and set n2+n+1=v, its
number of points. Then A=Jv− Iv, where Jv is the all 1
v�v matrix, and Iv the v�v-identity matrix. It follows
that

spec�A� = �− 1,v − 1� . �B1�

So if the spectra of two finite projective planes coincide,
their orders do as well.

Case n=4. Let � be a thick generalized 4-gon, or also
generalized quadrangle �GQ� of order �s , t�. Then using

the results of Payne and Thas �1984�, 1.2.2 we have

spec�A� = �− t − 1,s − 1,s�t + 1�� . �B2�

Now let �� also be a thick GQ, with the same spectrum,
of order �s� , t��. There is only one negative eigenvalue,
so −t−1=−t�−1 and t= t�. Since s−1�s�t+1� �s�−1
�s��t�+1��, it also follows that s=s�, and hence � and ��
have the same order.

Case n=6. For this case, we need one more definition.
A distance regular graph G with diameter d is a regular
connected graph with valency k for which there exist
natural numbers b0=k ,b1 , . . . ,bd−1; c1=1,c2 , . . . ,cd such
that for each pair of vertices x and y at distance j, we
have

��j−1�y� � �1�x�� = cj, 1	 j	 d ,

��j+1�y� � �1�x�� = bj, 0	 j	 d − 1.

Now define the constants aj= ��j�y���1�x�� for 0	 j	d.
A result of Brouwer et al. �1989� claims that the eigen-
values of the point graph of G are the eigenvalues of the
following intersection matrix:

	
0 1

k a1 c2

b1 a2 ¯

] b2 ¯

] cd

bd−1 ad


 . �B3�

It just so happens to be that the collinearity graph of a
generalized hexagon �a generalized 6-gon� is distance
regular with a diameter of 3. An easy exercise yields, for
a thick generalized hexagon of order �s , t�, the following
intersection matrix:

B =	
0 1 0 0

s�t + 1� s − 1 1 0

0 st s − 1 t + 1

0 0 st �t + 1��s − 1�

 . �B4�

The determinant of B−xI4 has the following roots:

x = − t − 1, x = s�t + 1� ,
�B5�

x = s − 1 − �st, x = s − 1 + �st .

One observes that −t−1 is strictly the smallest eigen-
value, while s�t+1� is the largest. It now easily follows
that, if a generalized hexagon of order �s� , t�� has the
same spectrum as �, then it has the same order.

Case n=8. Let � be a thick generalized octagon �8-
gon� of order �s , t�. Again, the point graph is distance
regular, now with a diameter of 4. The intersection ma-
trix is easily seen to be the following:
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B =	
0 1 0 0 0

s�t + 1� s − 1 1 0 0

0 st s − 1 1 0

0 0 st s − 1 t + 1

0 0 0 st �t + 1��s − 1�

 ,

�B6�

which has eigenvalues

x = − t − 1, x = s − 1,
�B7�

x = s�t + 1�, x = s − 1 − �2st, x = s − 1 + �2st .

The third largest eigenvalue is s−1, so if �� is a thick
generalized octagon of order �s� , t�� with the same spec-
trum, then s=s�. As s�t+1� is the largest eigenvalue of
spec�A�, it follows that t= t�. This ends the proof of
Theorem VIII.2.

5. Concluding remarks

In this section, we make some comments on general-
ized polygons that are characterized by their order.

Projective planes. For some small values, e.g. n=2, it is
known that there is a unique projective plane of order n
�up to isomorphism�. It is well known, however, that as
soon as n is large enough and not a prime, nonisomor-
phic examples exist. On the other hand, for p a prime,
only one example is known, namely, the classical ex-
ample PG�2,p� arising from a BN-pair in PSL�2,p�.

Generalized quadrangles. Many infinite classes of GQs
are known, and several examples with small parameters
are completely determined by their order. We refer the
interested reader to Payne and Thas �1984, Chap. 6�, for
these examples. We make some comments according to
the known orders. Below, q is always a prime power. We
also assume s	 t by reasons of duality. �Details and ref-
erences can be found in Thas �2004, Chap. 3�.�

• �s , t�= �q2 ,q3�. Only one example is known �for each
q�, namely, the Hermitian quadrangle H�4,q2�.

• �s , t�= �q−1,q+1�. If q
8 and q is even, nonisomor-
phic examples are known for every q. In the other
cases, only unique examples are known.

• �s , t�= �q ,q�. If q is odd, nonisomorphic examples are
known for every q. If q
8 and q is even, we have
the same remark. The other values give unique ex-
amples.

• �s , t�= �q ,q2�. If q
5, nonisomorphic examples are
known for every q. The examples of order �2,4� and
�3,9� are unique.

Generalized hexagons. Up to duality, only two classes
of generalized hexagons are known �both associated to
classical groups�: the split Cayley hexagons H�q� of or-
der q, q a prime power, and the twisted triality hexagons
T�q ,q3� of order �q ,q3�: cf. Van Maldeghem �1998�,

Chapter 2. We know that H�q��H�q�D if and only if q is
a power of 3 �Van Maldeghem, 1998�.

And if q is not a power of 3, H�q��H�q�D, while both
have the same spectrum.

Generalized octagons. Up to duality, the only known
thick finite generalized octagons are the Ree-Tits octa-
gons O�q�, where q is an odd power of 2; they can be
constructed from a BN-pair in the Ree groups of type
2F4 �Van Maldeghem, 1998, Chap. 2�. They have order
�q ,q2�.

Finally, see Cvetkovic et al. �1998� for more informa-
tion on graph spectra. Also, van Dam and Haemers
�2003� surveyed the known cases of graphs that are de-
termined by their spectrum. Some generalized quad-
rangles with small parameters are mentioned that are
uniquely determined by their spectrum. Since such ex-
amples must have the property that they are determined
by their order, Payne and Thas �1984, Chap. 6� also
yields these examples.

APPENDIX C: LIVSIC COHOMOLOGY

In this appendix we describe a connection between
isospectrality and cohomology. Let �M ,g� be a Riemann-
ian manifold without boundaries. The length spectrum is
the discrete set

Lsp�M,g� = �L�1
� L�2

� ¯ � �C1�

of lengths of closed geodesics �j.
Denote by �T*M ,�jdxj∧d�j� the cotangent bundle of

M equipped with its natural symplectic form. Given the
metric g, we define the metric Hamiltonian by

H�x,�� = ��� =��
ij=1

n+1

gij�x��i�j, �C2�

and define the energy surface to be the unit sphere
bundle

S*M = ��x,������ = 1� . �C3�

The geodesic flow Gt is the Hamiltonian flow

Gt = exp t(H:T*M \ 0 � T*M \ 0, �C4�

where (H is the Hamiltonian vector field. Since it is ho-
mogeneous of degree 1 with respect to the dilatation
�x ,��� �x ,r��, r�0, one can restrict Gt to S*M. Its gen-
erator is also denoted by (.

Livsic’s cohomological problem asks whether a co-
cycle f�C��S*M� satisfying

�
�

f ds = 0 �C5�

for every closed geodesic of the metric g is necessarily a
coboundary f=(�g�, where ( is the generator of the
geodesic flow Gt and g is a function with a certain de-
gree of regularity. Under a deformation g� of a metric
g=g0 preserving the extended Lsp�M ,g� �including mul-
tiplicities�, one has
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�
�

ġ ds = 0, ∀ � . �C6�

When the cohomology is trivial, one can therefore write
ġ=(�f� for some f with the given regularity. One does
not expect the cohomology to be trivial in general set-
tings, but the results might be interesting for the length
spectral deformation problem.

REFERENCES

Aurich, R., A. Bäcker, and F. Steiner, 1997, Int. J. Mod. Phys.
B 11, 805.

Aurich, R., and F. Steiner, 1990, Physica D 43, 155.
Balian, R., and C. Bloch, 1974, Ann. Phys. �N.Y.� 85, 514.
Baltes, H., and E. R. Hilf, 1976, Spectra of Finite Systems �Bib-

liographisches Institut, Mannheim�.
Bérard, P., 1989, Astérisque 177-178, 127.
Bérard, P., 1992, Math. Ann. 292, 547.
Bérard, P., 1993, J. Lond. Math. Soc. 48, 565.
Bérard, P., and G. Besson, 1980, Ann. Inst. Fourier 30, 237.
Berry, M. V., 1981, Eur. J. Phys. 2, 91.
Berry, M. V., and M. Tabor, 1976, Proc. R. Soc. London, Ser. A

349, 101.
Berry, M. V., and M. Tabor, 1977, Proc. R. Soc. London, Ser. A

356, 375.
Berry, M. V., and M. Wilkinson, 1984, Proc. R. Soc. London,

Ser. A 392, 15.
Betcke, T., and L. N. Trefethen, 2005, SIAM Rev. 47, 469.
Blum, G., S. Gnutzmann, and U. Smilansky, 2002, Phys. Rev.

Lett. 88, 114101.
Bohigas, O., M.-J. Giannoni, and C. Schmit, 1984, Phys. Rev.

Lett. 52, 1.
Brooks, R., 1988, Am. Math. Monthly 95, 823.
Brouwer, A. E., A. M. Cohen, and A. Neumaier, 1989,

Distance-Regular Graphs �Springer, Heidelberg�.
Bruening, J., D. Klawonn, and C. Puhle, 2008, J. Phys. A:

Math. Theor. 40, 15143.
Buser, P., 1988, Geometry and Analysis on Manifolds (Katata/

Kyoto, 1987), Lecture Notes in Mathematics Vol. 1339
�Springer, Berlin�, p. 64.

Buser, P., J. Conway, and P. Doyle, 1994, Int. Math. Res. No-
tices 9, 391.

Chang, P.-K., and D. Deturck, 1989, Proc. Am. Math. Soc.
105�4�, 1033.

Chapman, S. J., 1995, Am. Math. Monthly 102, 124.
Chladni, E., 1802, Ed., Die Akustik �Breitkopf und Härtel,

Leipzig�.
Conway, J. H., R. T. Curtis, S. P. Norton, R. A. Parker, and R.

A. Wilson, 1985, Atlas of Finite Groups: Maximal Subgroups
and Ordinary Characters for Simple Groups �Oxford Univer-
sity Press, Oxford�.

Conway, J. H., and N. J. A. Sloane, 1992, Int. Math. Res. No-
tices 1992, 93.

Courant, R., and D. Hilbert, 1953, Methods of Mathematical
Physics �Interscience, New York�, Vol. I.

Cvetkovic, D. M., M. Doob, and H. Sachs, 1998, Spectra of
Graphs: Theory and Applications, 3rd ed. �Wiley, New York�.

Descloux, J., and M. Tolley, 1983, Comput. Methods Appl.
Mech. Eng. 39, 37.

Dhar, A., D. M. Rao, N. UdayaShankar, and S. Sridhar, 2003,
Phys. Rev. E 68, 026208.

Doyle, P. G., and Rossetti, J. P., 2004, Geom. Topol. 8, 1227.
Driscoll, T. A., 1997, SIAM Rev. 39, 1.
Driscoll, T. A., and H. P. W. Gottlieb, 2003, Phys. Rev. E 68,

016702.
Earnest, A. G., and G. Nipp, 1991, C. R. Math. Acad. Sci. Can.

13, 33.
Even, C., and P. Pieranski, 1999, Europhys. Lett. 47, 531.
Feit, W., and D. Higman, 1964, J. Algebra 1, 114.
Feynman, R. P., and Hibbs, A. R., 1965, Quantum Mechanics

and Path Integrals �McGraw-Hill, New York�.
Fox, L., P. Henrici, and C. Moler, 1967, SIAM �Soc. Ind. Appl.

Math.� J. Numer. Anal. 4, 89.
Fulling, S. A., and P. Kuchment, 2005, Inverse Probl. 21, 1391.
Garabedian, P. R., 1998, Partial Differential Equations �AMS

Chelsea, American Mathematical Society, Providence, RI�.
Garabedian, P. R., and M. Schiffer, 1952, J. Anal. Math. 2, 281.
Gassmann, F., 1926, Math. Z. 25, 665.
Georgeot, B., and R. E. Prange, 1995, Phys. Rev. Lett. 74,

2851.
Gerst, I., 1970, Acta Arith. 27, 121.
Giraud, O., 2004, J. Phys. A 37, 2751.
Giraud, O., 2005, J. Phys. A 38, L477.
Gnutzmann, S., U. Smilansky, and N. Sondergaard, 2005, J.

Phys. A 38, 8921.
Gordon, C., D. Webb, and S. Wolpert, 1992a, Invent. Math.

110, 1.
Gordon, C., D. Webb, and S. Wolpert, 1992b, Bull. Am. Math.

Soc. 27, 134.
Gordon, C. S., 1986, Contemp. Math. 51, 63.
Gordon, C. S., and D. L. Webb, 1994, Proc. Am. Math. Soc.

120, 981.
Gorenstein, D., 1980, Finite Groups, 2nd ed. �Chelsea, New

York�.
Gottlieb, H. P. W., 2004, Inverse Probl. 20, 155.
Gottlieb, H. P. W., and J. P. McManus, 1998, J. Sound Vib. 212,

253.
Guhr, T., A. Müller-Groeling, and H. Weidenmüller, 1998,

Phys. Rep. 299, 189.
Gutkin, E., and C. Judge, 2000, Duke Math. J. 103, 191.
Gutkin, B., and U. Smilansky, 2001, J. Phys. A 34, 6061.
Gutzwiller, M. C., 1991, in Chaos and Quantum Physics, edited

by M.-J. Giannoni, A. Voros, and J. Zinn-Justin, Les Houches
Summer School Lectures Session LII �North-Holland, Am-
sterdam�.

Hannay, J. H., and A. Thain, 2003, J. Phys. A 36, 4063.
Hezari, H. and S. Zelditch, 2009, Geom. Funct. Anal. 20, 160.
Hirschfeld, J. W. P., 1998, Projective Geometries over Finite

Fields, 2nd ed. �Clarendon Press/Oxford University Press,
New York�.

Hughes, D. R., and F. C. Piper, 1973, Projective Planes
�Springer-Verlag, New York�.

Iantchenko, A., J. Sjöstrand, and M. Zworski, 2002, Math. Res.
Lett. 9, 337.

Ikeda, A., 1980, Ann. Sci. Ec. Normale Super. 13, 303.
Ivanov, L., L. Kotko, and S. Krein, 1977, Boundary Value

Problems in Variable Domains �Mathematical Institute of
Lithuanian Academy of Sciences, Vilnius�, Vol. 19.

Jakobson, D., M. Levitin, N. Nadirashvili, and I. Polterovich,
2006, J. Comput. Appl. Math. 194, 141.

Kac, M., 1966, Am. Math. Monthly 73, 1.
Keller, J., 1962, J. Opt. Soc. Am. 52, 116.
Keller, J. B., and S. I. Rubinow, 1960, Ann. Phys. �N.Y.� 9, 24.
Knowles, I. W., and M. L. McCarthy, 2004, J. Phys. A 37, 8103.

2254 Olivier Giraud and Koen Thas: Hearing shapes of drums: Mathematical and …

Rev. Mod. Phys., Vol. 82, No. 3, July–September 2010

http://dx.doi.org/10.1142/S0217979297000459
http://dx.doi.org/10.1142/S0217979297000459
http://dx.doi.org/10.1016/0167-2789(90)90131-8
http://dx.doi.org/10.1016/0003-4916(74)90421-7
http://dx.doi.org/10.1007/BF01444635
http://dx.doi.org/10.1112/jlms/s2-48.3.565
http://dx.doi.org/10.1088/0143-0807/2/2/006
http://dx.doi.org/10.1098/rspa.1976.0062
http://dx.doi.org/10.1098/rspa.1976.0062
http://dx.doi.org/10.1098/rspa.1977.0140
http://dx.doi.org/10.1098/rspa.1977.0140
http://dx.doi.org/10.1098/rspa.1984.0022
http://dx.doi.org/10.1098/rspa.1984.0022
http://dx.doi.org/10.1137/S0036144503437336
http://dx.doi.org/10.1103/PhysRevLett.88.114101
http://dx.doi.org/10.1103/PhysRevLett.88.114101
http://dx.doi.org/10.1103/PhysRevLett.52.1
http://dx.doi.org/10.1103/PhysRevLett.52.1
http://dx.doi.org/10.2307/2322897
http://dx.doi.org/10.1088/1751-8113/40/50/N01
http://dx.doi.org/10.1088/1751-8113/40/50/N01
http://dx.doi.org/10.1155/S1073792894000437
http://dx.doi.org/10.1155/S1073792894000437
http://dx.doi.org/10.2307/2047071
http://dx.doi.org/10.2307/2047071
http://dx.doi.org/10.2307/2975346
http://dx.doi.org/10.1155/S1073792892000102
http://dx.doi.org/10.1155/S1073792892000102
http://dx.doi.org/10.1016/0045-7825(83)90072-5
http://dx.doi.org/10.1016/0045-7825(83)90072-5
http://dx.doi.org/10.1103/PhysRevE.68.026208
http://dx.doi.org/10.2140/gt.2004.8.1227
http://dx.doi.org/10.1137/S0036144595285069
http://dx.doi.org/10.1103/PhysRevE.68.016702
http://dx.doi.org/10.1103/PhysRevE.68.016702
http://dx.doi.org/10.1209/epl/i1999-00420-8
http://dx.doi.org/10.1016/0021-8693(64)90028-6
http://dx.doi.org/10.1088/0266-5611/21/4/013
http://dx.doi.org/10.1007/BF02825640
http://dx.doi.org/10.1103/PhysRevLett.74.2851
http://dx.doi.org/10.1103/PhysRevLett.74.2851
http://dx.doi.org/10.1088/0305-4470/37/7/016
http://dx.doi.org/10.1088/0305-4470/38/27/L01
http://dx.doi.org/10.1088/0305-4470/38/41/006
http://dx.doi.org/10.1088/0305-4470/38/41/006
http://dx.doi.org/10.1007/BF01231320
http://dx.doi.org/10.1007/BF01231320
http://dx.doi.org/10.1090/S0273-0979-1992-00289-6
http://dx.doi.org/10.1090/S0273-0979-1992-00289-6
http://dx.doi.org/10.2307/2160496
http://dx.doi.org/10.2307/2160496
http://dx.doi.org/10.1088/0266-5611/20/1/009
http://dx.doi.org/10.1006/jsvi.1997.1436
http://dx.doi.org/10.1006/jsvi.1997.1436
http://dx.doi.org/10.1016/S0370-1573(97)00088-4
http://dx.doi.org/10.1215/S0012-7094-00-10321-3
http://dx.doi.org/10.1088/0305-4470/34/31/301
http://dx.doi.org/10.1088/0305-4470/36/14/310
http://dx.doi.org/10.1007/s00039-010-0059-6
http://dx.doi.org/10.1016/j.cam.2005.06.019
http://dx.doi.org/10.2307/2313748
http://dx.doi.org/10.1364/JOSA.52.000116
http://dx.doi.org/10.1016/0003-4916(60)90061-0
http://dx.doi.org/10.1088/0305-4470/37/33/009


Komatsu, K., 1976, Aust. Math. Soc. Gaz. 28, 78.
Levitin, M., L. Parnovski, and I. Polterovich, 2006, J. Phys. A

39, 2073.
Mehra, J., and H. Rechenberg, 2000, The Historical Develop-

ment of Quantum Theory �Springer, New York�, Vol. 6.
Mehta, M. L., 1991, Random Matrices �Academic, New York�.
Melrose, R., 1983, Math. Sci. Res. Inst. Report No. 048-83.
Melrose, R. B., 1996, Proc. Centre Math. Appl. Austral. Nat.

Univ. 34, 137.
Milnor, J., 1964, Proc. Natl. Acad. Sci. U.S.A. 51, 542.
Moon, C. R., L. S. Mattos, B. K. Foster, G. Zeltzer, W. Ko, and

H. C. Manoharan, 2008, Science 319, 782.
Okada, Y., and A. Shudo, 2001, J. Phys. A 34, 5911.
Okada, Y., A. Shudo, S. Tasaki, and T. Harayama, 2005a, J.

Phys. A 38, L163.
Okada, Y., A. Shudo, S. Tasaki, and T. Harayama, 2005b, J.

Phys. A 38, 6675.
Osgood, B., R. Phillips, and P. Sarnak, 1988a, Proc. Natl. Acad.

Sci. U.S.A. 85, 5359.
Osgood, B., R. Phillips, and P. Sarnak, 1988b, J. Funct. Anal.

80, 212.
Parzanchevski, O., and R. Band, 2010, J. Geom. Anal. 20, 439.
Pavloff, N., and C. Schmit, 1995, Phys. Rev. Lett. 75, 61.
Payne, S. E., and J. A. Thas, 1984, Finite Generalized Quad-

rangles �Pitman Advanced, Boston�, Vol. 110.
Pisani, C., 1996, Ann. Phys. �N.Y.� 251, 208.
Pleijel, A., 1956, Commun. Pure Appl. Math. 9, 543.
Porter, C. E., 1965, Statistical Theories of Spectra: Fluctuations

�Academic, New York�.
Primack, H., H. Schanz, and U. Smilansky, and I. Ussishkin,

1997, J. Phys. A 30, 6693.
Protter, M. H., 1987, SIAM Rev. 29, 185.
Rauch, J., 1978, Am. Math. Monthly 85, 359.
Richens, P. J., and M. V. Berry, 1981, Physica D 2, 495.
Riddel, R. J., 1979, J. Comput. Phys. 31, 21.
Roth, J. P., 1984, Lect. Notes Math. 1096, 521.
Schiemann, A., 1990, Arch. Math. 54, 372.
Scott, G. P., 1983, Bull. London Math. Soc. 15, 401.
Segre, B., 1961, Lectures on Modern Geometry: With an Ap-

pendix by Lucio Lombardo-Radice �Edizioni Cremonese,
Rome�, Vol. 7.

Sleeman, B. D., and C. Hua, 2000, Rev. Mat. Iberoam. 16, 351.
Smilansky, U., and H.-J. Stöckmann, 2007, Eur. Phys. J. Spec.

Top. 145, V.
Smithies, F., 1962, Integral Equations �Cambridge University

Press, Cambridge�, Vol. 49.
Solomon, R., 2001, Bull. Am. Math. Soc. 38, 315.
Sridhar, S., 1991, Phys. Rev. Lett. 67, 785.
Sridhar, S., and E. J. Heller, 1992, Phys. Rev. A 46, R1728.
Sridhar, S., D. O. Hogenboom, and B. A. Willemsen, 1992, J.

Stat. Phys. 68, 239.
Sridhar, S., and A. Kudrolli, 1994, Phys. Rev. Lett. 72, 2175.
Stewardson, K., and R. T. Waechter, 1971, Proc. Cambridge

Philos. Soc. 69, 353.
Sunada, T., 1985, Ann. Math. 121, 169.
Tasaki, S., T. Harayama, and A. Shudo, 1997, Phys. Rev. E 56,

R13.
Thain, A., 2004, Eur. J. Phys. 25, 633.
Thas, J. A., K. Thas, and H. Van Maldeghem, 2006, Translation

Generalized Quadrangles �World Scientific, Singapore�, Vol.
26.

Thas, K., 2004, Symmetry in Finite Generalized Quadrangles
�Birkhäuser, Boston�, Vol. 1.

Thas, K., 2006a, J. Phys. A 39, L385.
Thas, K., 2006b, J. Phys. A 39, 13237.
Thas, K., 2007a, Inverse Problems 23, 2021.
Thas, K., 2007b, J. Phys. A: Math. Theor. 40, 7233.
Thas, K., 2009, Innov. Incidence Geom. 9, 189.
Thas, K., 2010, unpublished.
Thas, K., and H. Van Maldeghem, 2008, Trans. Am. Math. Soc.

360, 2327.
Tits, J., 1959, Inst. Hautes Etudes Sci. Publ. Math. 2, 13.
Tits, J., 1974, Buildings of Spherical Type and Finite BN-Pairs

�Springer, Berlin�, Vol. 386.
Urakawa, H., 1982, Ann. Sci. Ec. Normale Super. 15, 441.
Vaa, C., and P. M. Koch, and R. Blümel, 2005, Phys. Rev. E 72,

056211.
van Dam, E. R., and W. H. Haemers, 2003, Linear Algebr.

Appl. 373, 241.
Van Maldeghem, H., 1998, Generalized Polygons �Birkhäuser-

Verlag, Basel�, Vol. 93.
Van Vleck, J. H., 1928, Proc. Natl. Acad. Sci. U.S.A. 14, 178.
Vattay, G., A. Wirzba, and P. E. Rosenqvist, 1994, Phys. Rev.

Lett. 73, 2304.
Vignéras, M. F., 1980, Ann. Math. 112, 21.
von Below, J., 2001, Lect. Notes Pure Appl. Math. 219, 19.
Vorobets, Y. B., 1996, Russ. Math. Surveys 51, 779.
Vorobets, Y. B., and A. M. Stepin, 1998, Russian Mat. Zametki

63, 660 �Math. Notes 63, 582 �1998��.
Witt, E., 1941, Abh. Math. Semin. Univ. Hambg. 14, 323.
Wolpert, S., 1978, Trans. Am. Math. Soc. 244, 313.
Wu, H., D. W. L. Sprung, and J. Martorell, 1995, Phys. Rev. E

51, 703.
Zaremba, S., 1909, Bull. Int. Acad. Sci. Cracovie, Feb., 125.
Zelditch, S., 1998, J. Diff. Geom. 49, 207.
Zelditch, S., 1999, Math. Res. Lett. 6, 457.
Zelditch, S., 2000, Geom. Funct. Anal. 10, 628.
Zelditch, S., 2004a, Commun. Math. Phys. 248, 357.
Zelditch, S., 2004b, Surv. Differ. Geom. IX, 401.
Zelditch, S., 2004c, in Geometric Methods in Inverse Problems

and PDE Control, edited by C. B. Croke, I. Lasiecka, G.
Uhlmann, and M. S. Vogelius, IMA Math. Appl. Vol. 137
�Springer-Verlag, New York�, pp. 289–321.

Zelditch, S., 2009, Ann. Math. 170, 205.
Zemlyakov, A. B., and A. N. Katok, 1976, Math. Notes 18, 760.

2255Olivier Giraud and Koen Thas: Hearing shapes of drums: Mathematical and …

Rev. Mod. Phys., Vol. 82, No. 3, July–September 2010

http://dx.doi.org/10.1088/0305-4470/39/9/006
http://dx.doi.org/10.1088/0305-4470/39/9/006
http://dx.doi.org/10.1073/pnas.51.4.542
http://dx.doi.org/10.1126/science.1151490
http://dx.doi.org/10.1088/0305-4470/34/30/303
http://dx.doi.org/10.1088/0305-4470/38/9/L02
http://dx.doi.org/10.1088/0305-4470/38/9/L02
http://dx.doi.org/10.1088/0305-4470/38/30/004
http://dx.doi.org/10.1088/0305-4470/38/30/004
http://dx.doi.org/10.1073/pnas.85.15.5359
http://dx.doi.org/10.1073/pnas.85.15.5359
http://dx.doi.org/10.1016/0022-1236(88)90071-7
http://dx.doi.org/10.1016/0022-1236(88)90071-7
http://dx.doi.org/10.1007/s12220-009-9115-6
http://dx.doi.org/10.1103/PhysRevLett.75.61
http://dx.doi.org/10.1006/aphy.1996.0113
http://dx.doi.org/10.1002/cpa.3160090324
http://dx.doi.org/10.1088/0305-4470/30/19/012
http://dx.doi.org/10.1137/1029041
http://dx.doi.org/10.2307/2321342
http://dx.doi.org/10.1016/0167-2789(81)90024-5
http://dx.doi.org/10.1016/0021-9991(79)90060-3
http://dx.doi.org/10.1007/BFb0100128
http://dx.doi.org/10.1007/BF01189584
http://dx.doi.org/10.1112/blms/15.5.401
http://dx.doi.org/10.1140/epjst/e2007-00142-7
http://dx.doi.org/10.1140/epjst/e2007-00142-7
http://dx.doi.org/10.1090/S0273-0979-01-00909-0
http://dx.doi.org/10.1103/PhysRevLett.67.785
http://dx.doi.org/10.1103/PhysRevA.46.R1728
http://dx.doi.org/10.1007/BF01048844
http://dx.doi.org/10.1007/BF01048844
http://dx.doi.org/10.1103/PhysRevLett.72.2175
http://dx.doi.org/10.1017/S0305004100046764
http://dx.doi.org/10.1017/S0305004100046764
http://dx.doi.org/10.2307/1971195
http://dx.doi.org/10.1103/PhysRevE.56.R13
http://dx.doi.org/10.1103/PhysRevE.56.R13
http://dx.doi.org/10.1088/0143-0807/25/5/006
http://dx.doi.org/10.1088/0305-4470/39/23/L02
http://dx.doi.org/10.1088/0305-4470/39/42/004
http://dx.doi.org/10.1088/0266-5611/23/5/012
http://dx.doi.org/10.1088/1751-8113/40/26/009
http://dx.doi.org/10.1090/S0002-9947-07-04257-2
http://dx.doi.org/10.1090/S0002-9947-07-04257-2
http://dx.doi.org/10.1007/BF02684706
http://dx.doi.org/10.1103/PhysRevE.72.056211
http://dx.doi.org/10.1103/PhysRevE.72.056211
http://dx.doi.org/10.1016/S0024-3795(03)00483-X
http://dx.doi.org/10.1016/S0024-3795(03)00483-X
http://dx.doi.org/10.1073/pnas.14.2.178
http://dx.doi.org/10.1103/PhysRevLett.73.2304
http://dx.doi.org/10.1103/PhysRevLett.73.2304
http://dx.doi.org/10.2307/1971319
http://dx.doi.org/10.1070/RM1996v051n05ABEH002993
http://dx.doi.org/10.1007/BF02312837
http://dx.doi.org/10.1007/BF02940750
http://dx.doi.org/10.2307/1997901
http://dx.doi.org/10.1103/PhysRevE.51.703
http://dx.doi.org/10.1103/PhysRevE.51.703
http://dx.doi.org/10.1007/PL00001633
http://dx.doi.org/10.1007/s00220-004-1074-y
http://dx.doi.org/10.4007/annals.2009.170.205

