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I. INTRODUCTION

The study of the evolution of structure in atomic nu-
clei with changing numbers of their proton and neutron
constituents dates back to the early days of the field. It
was fundamental, for example, to the development of
the shell model with the recognition of magic numbers
and inert closed shells. The appearance of certain char-
acteristic excitation spectra in other nuclei led to the
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development of early paradigms of collective
structure—simple models for spherical nuclei that can
vibrate and ellipsoidally shaped nuclei that can both vi-
brate and rotate—and encouraged study of manifesta-
tions of structure intermediate between these idealiza-
tions.

Yet the last years have seen major developments in
the experimental study of structural evolution with pro-
ton, neutron, and mass numbers �Z, N, and A�, in under-
standing this phenomenology with simple models, and in
seeking its microscopic foundations in nucleonic motion
and interactions. Many of these advances are due to, or
inspired by, important technological developments in the
production and exploitation of exotic nuclei, in the de-
velopment of more powerful instruments �such as those
for the selection of nuclei produced in heavy ion reac-
tions and for their spectroscopy or of trapping devices
and storage rings for mass measurements�, and in the
capacity of modern computers both to handle such data
and to facilitate the often increasingly complex theoret-
ical descriptions.

Among the most dramatic developments in recent
years are those related to the expansion of our knowl-
edge of these new nuclei, on the one hand, and, on the
other hand, the study of regions of rapid structural
�shape� change—often drastic changes within a span of a
change of only two nucleons—and their description in
terms of quantum phase transitions �QPTs�. The latter
area is the prime focus of this review. The concept of a
QPT �sometimes also called zero temperature or
ground-state phase transitions� refers to a sudden trans-
formation in the structure of the ground or equilibrium
state as a function of some variable.1 QPTs in atomic
nuclei are reflected by rapid structural changes with
varying N or Z. In general, QPTs are related to �but
different from� the more familiar thermodynamic phase
changes seen in many macroscopic systems. A key issue
that we address is the implications for nuclear QPTs
arising from the fact that nuclei are finite systems
whereas the idea of phase transitions is traditionally re-
served for infinite systems.

This review has the following structure: We start in
Sec. II with an empirical overview of nuclear structure
and its evolution in terms of simple nuclear models and
the most useful observables. This is followed by an out-
line of the microscopic underpinnings of the develop-
ment of collectivity and deformation. Section III intro-
duces basic quantitative approaches to treat shape
transitions in nuclei: the geometric model, the interact-
ing boson model, and some microscopically oriented

techniques. Attention is then mostly focused on the first
two models. Section IV discusses the evolution of collec-
tive behavior within the interacting boson model and
Sec. V deals with the geometric model. While the atten-
tion in Sec. IV is focused on finite-size precursors of
nuclear shape-phase transitions and on the definition of
phases in terms of symmetries, in Sec. V we look more
closely at the critical point itself, introducing specific ap-
proximate critical-point solutions of the geometric
Hamiltonian, particularly the models known as X�5� and
E�5� for first- and second-order spherical-deformed
phase transitions, respectively �Iachello, 2000, 2001�. In
all cases, predictions of the models are compared with
available experimental data. Section VI extends the dis-
cussions to more exotic types of transitions and more
sophisticated models. This section also contains discus-
sions of common aspects of nuclear phase transitions
which may be relevant in general many-body systems.
The last section provides a summary.

It needs to be stressed that in this review we aim
mostly at macroscopic models of nuclear collective dy-
namics. Microscopic approaches to shape transitions
represent a principal subject of nuclear-structure phys-
ics, addressed in a large number of studies �some of
them cited below�, but are not of our primary concern
here. With few exceptions, nearly all the discussions will
deal with even-even nuclei. Similar ideas apply to odd-A
species but have been much less studied experimentally
and much less worked out theoretically.

Our focus here is on the conceptual underpinnings of
QPTs and structural evolution in nuclei rather than at-
tempting a complete cataloging of all experimental and
theoretical results. In this regard note that there have
been several other recent reviews by Casten �2006,
2009�, Casten and McCutchan �2007�, and Cejnar and
Jolie �2009� to which we refer the interested reader for a
detailed discussion of such results.

II. EVOLUTION OF NUCLEAR STRUCTURE

An important challenge of nuclear structure physics is
to map out the evolution of structure with nucleon num-
ber and to understand this phenomenology both micro-
scopically and macroscopically. Microscopically, one
deals with nucleon degrees of freedom and their inter-
actions. Current microscopic nuclear theory is in the
midst of a renaissance due to the advent of immensely
growing computing power. There is a roadmap for fu-
ture progress, centered around such concepts as effec-
tive field theory �Epelbaum et al., 2009� and the use of
density functional theory �Bender et al., 2003; Stoitsov et
al., 2003, 2007�. Yet, a detailed understanding of nuclear
structure as a function of N, Z, and A is still well in the
future. Even if such a goal is achieved, collective model
approaches, which express structure directly in terms of
the many-body degrees of freedom, symmetries, and
their associated quantum numbers, provide an invalu-
able and complementary perspective.

It is our task in this section to give an overview of how
the structure of even-even nuclei evolves. To set the

1The term quantum phase transition originates from
condensed-matter physics, where it was introduced for transi-
tions between specific ordered and disordered phases �like fer-
romagnetic and paramagnetic states of a spin-lattice system�
driven by a varying interaction strength at zero temperature
�Hertz, 1976�. Because of vanishing thermal fluctuations, the
only motions responsible for the onset of disorder are the
quantum fluctuations. Reviews of QPTs in condensed matter
physics were given by Sachdev �1999� and Vojta �2003�.
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stage for the theoretical descriptions that follow we start
in Sec. II.A with some remarks on the theoretical mod-
eling of atomic nuclei. This is followed by an extensive
look at actual data on structural evolution �Sec. II.B�. Of
course, the greatest interest will naturally focus on re-
gions of rapid structural change where there is often a
competition between various degrees of freedom and
where the interplay of microscopic �shell structure� driv-
ers and macroscopic �collective� behavior is often the
most crucial. In Sec. II.C we also discuss the microscopic
background of structural evolution in a qualitative way.

A. Theoretical underpinning

Theoretical descriptions of nuclei invariably proceed
by a number of simplifications in order to make the task
tractable and, often, more physically intuitive. In prin-
ciple, one would want to derive the structure of nuclei
from the interactions of quarks and gluons. In practice,
this is a very long term goal. A first approximation is to
utilize the concept of nucleons and their interactions.
Electron scattering experiments at Jefferson Laboratory
�Cardman, 2006� and related calculations have shown
that the approximation of treating nuclei in terms of
nucleons works well down to surprisingly small distance
scales ��0.5 fm� and that the quark-gluon based de-
scription is more appropriate at the level of �0.1 fm.
The description at the nucleon level is an approximation
that nearly all nuclear models adopt and we will also.

So-called ab initio models attempt to derive nuclear
properties in terms of the free interactions of their con-
stituent nucleons �Pieper et al., 2002; Navrátil et al.,
2009�. Even so, the many-body problem rapidly becomes
intractable with increasing A, and such approaches are
limited to very light nuclei. For heavier nuclei, the full
many-body problem can be grossly simplified by assum-
ing a one-body mean field potential, that is, it is assumed
in first approximation that all the nucleons conspire to
create a single potential in which they orbit indepen-
dently �of course, for protons, one needs to add the Cou-
lomb force�.

Over many years, various refined prescriptions have
been adopted to obtain this mean field potential but,
basically, it closely resembles a Wood-Saxon shape, that
is, a rounded square well that asymptotically goes to
zero at a distance of a few femtometers �Heyde, 2004�.
Such a potential, supplemented by a spin-orbit interac-
tion, naturally gives a clustering of levels of different
oscillator and angular momentum quantum numbers.
When combined with the Pauli principle, which limits
the number of identical nucleons that can fill a given
orbit of angular momentum j to 2j+1, the famous magic
numbers are obtained. These correspond to closed shells
analogous to the inert gases of atomic structure.

The principal magic numbers coincide with nucleon
numbers 2, 8, 20, 28, 50, 82, and 126, with 40 and 64
sometimes serving that role. However, we immediately
stress that these traditional benchmarks of structure
were originally motivated by the data on nuclei near
stability and that an important aspect of the study of

nuclei far from stability in the last years has been the
recognition that the magic numbers themselves can and
do change as a function of N and Z �Janssens, 2005�.

While the nuclear independent particle model �IPM�
does usually give the correct ground-state spins for
odd-A nuclei with a single particle outside closed shells
and often also those of low-lying excited states, it faces
immediate difficulties when extended to nuclei with
more than one “valence” nucleon. Hence follows the
well-known need to introduce residual interactions be-
yond the mean-field potential. That is, we can think in
terms of a Hamiltonian of the general form

H = HIPM + Hresid. �2.1�

The IPM supplemented by residual interactions is the
shell model �Haxel et al., 1950; Mayer, 1950; de-Shalit
and Talmi, 1963�, which has remained for half a century
as the conceptual underpinning of microscopic ap-
proaches to nuclear structure. Many choices of Hresid ap-
pear in the literature. Normally they are restricted to
two-body interactions, depending on the distance and
spin coordinates of the two particles. An essential fea-
ture of the residual interactions is a short-range and
mostly attractive character.2 For some purposes, a �
function gives a good guide and matches experimental
results for nuclei with, say, two valence nucleons of one
type. This type of interaction gives rise to fundamental
pairing correlations in nuclei. The remaining part of the
residual interactions �that of long range� creates correla-
tions of individual nucleons at large distances across the
nucleus. It is a consequence of these interactions that
collective features emerge in nuclei with an increasing
number of nucleons outside a closed shell �Åberg et al.,
1990; Nazarewicz, 1992�.

When extended to nuclei with large numbers of va-
lence nucleons, each allowed to occupy any of several
IPM orbits, the number of configurations for each total
angular momentum grows combinatorially, and, conse-
quently, the shell model entails the solution of a Hamil-
tonian matrix of larger and larger dimensions, rapidly
becoming intractable. Today, one can deal with up to
about 109 basis states �multinucleon configurations� us-
ing various approximation or Monte Carlo schemes and
computational algorithms �Caurier et al., 2005�. How-
ever, even a nucleus such as 154Sm, which is far from
midshell, has approximately 3�1014 states with angular
momentum and parity L�=2+ if one considers only
single active proton and neutron major shells. Such a
Hilbert space is totally intractable. Moreover, even if
matrices of this size could be diagonalized, it would be
extremely difficult to develop a conceptual understand-
ing of the resultant structure since the degrees of free-
dom would remain those of the nucleons rather than of
the many-body ensemble itself.

2Note that even an overall attractive force can have repulsive
components for some angles between the orbital planes of the
two interacting nucleons. This is discussed by Heyde �1989�
and Casten �2000�.
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The emergence of collective observables in complex
systems is a crucial problem of many-body physics and
of quantum mechanics in general �Omnès, 1992�. The
shape of a nucleus can be extracted from such observ-
ables. Vast empirical evidence shows that the shape
plays a major role in the classification of nuclei and their
basic excitations. However, it is not obvious how the
shape observables can be incorporated into the micro-
scopic theory. This has given rise to generations of mac-
roscopic models based on a purely geometric description
of shapes or on some more refined types of symmetry in
the nucleus. Free parameters contained in these models
are adjusted in applications to specific nuclei, which
opens the way to describing shape evolution across the
nuclear chart by means of varying properties of the
ground state and low-lying excited states with the model
parameters. This is how the idea of the quantum phase
transition enters the field. Much of our discussion in
later sections will be couched in terms of these ap-
proaches.

B. Empirical observables

Before entering into a detailed discussion of phase-
transitional behavior, it is important to develop a feeling
for the data that needs to be understood and we there-
fore turn to an overview of nuclear structural evolution
from an empirical standpoint, cast in terms of very
simple models �Casten, 2000�. We first discuss a few key
observables that will appear many times in what follows.
Unless otherwise indicated, the data are taken from the
Nuclear Data Sheets.

1. Energies of 21
+ and 41

+ states

In even-even nuclei the ground state always has total
angular momentum �traditionally called the “spin” in
nuclear physics� and parity L�=0+. Although the origins
of this have been much discussed in recent years �see,
for example, Johnson et al. �1998��, such a feature is a
natural consequence of a short-range attractive interac-
tion and the Pauli principle which favors the coupling of
two identical nucleons in the same orbit to angular mo-
mentum zero and, in the many-body system, leads to a
condensate of such pairs. �In nuclei with many valence
nucleons, this picture is highly oversimplified but such a
pairing mechanism, reminiscent of Cooper pairs in elec-
tronic systems, still plays a pivotal role.�

Above the ground state are excited levels with a vari-
ety of spins, and the spectra can be quite complex. How-
ever, almost always, the first excited state is a 2+ level,
and very often the next is a 4+ state. It is quite revealing
to inspect the relative energies of these 2+ and 4+ states
as a function of nucleon number, as well as their ratio
R4/2=E�41

+� /E�21
+�, where the subscripts denote the first

state of each spin.
Although nuclei are complex strongly interacting

many-body systems with up to hundreds of nucleons in
close proximity orbiting �1021 times per second, they
often display remarkable simplicities and regularities. In

much of this section overviewing the essential data rel-
evant to the equilibrium structure of nuclei, we see
abundant evidence for these regularities.

We start by considering the simplest case of nuclei
with just two like particles above a doubly magic core
�examples would be 134Sn with Z=50 and N=84 or 210Pb
with Z=82 and N=128�. In such a case, the low-lying
levels can be described by IPM configurations of the
type �j2 ,L� with both particles in a state characterized by
the angular momentum j. A short range, predominantly
attractive, residual interaction gives a spectrum with a
large jump in energy from the 0+ ground state to a close-
lying set of states with spins L=2,4 , . . . , �2j−1�.3 Such a
typical spectrum is seen on the left in Fig. 1. Hence,
R4/2�2.

As valence nucleons are added, configuration mixing
is generated by the residual interactions, and collective
behavior emerges. Typically, as we discuss below, this
situation leads to R4/2�2.0. To illustrate how the 21

+ and
41

+ levels behave for such nuclei, Fig. 2 shows the energy
E�41

+� plotted against E�21
+� for all collective nuclei with

Z between 38 and 82 �a large swath of the nuclear chart�.
A remarkably simple phenomenology appears. Nearly
all the data points are aligned along two linear segments,
with slopes 2.00 and 3.33 and with a sharp change be-
tween these slopes at E�21

+��120 keV. The line with
slope 2.00 has a finite intercept: these data points there-
fore approximately satisfy E�41

+�=2E�21
+�+�4. We will

see shortly that this corresponds to a model of a nucleus
that can undergo small amplitude quadrupole �angular
momentum 2� oscillations about a spherical equilibrium
shape. The line with R4/2=3.33 will be seen to corre-
spond to nonspherical �deformed� nuclei that rotate ac-
cording to the eigenvalue expression for a quantum me-
chanical symmetric top.

3Odd-L states are forbidden for two identical fermions �as
well as for two identical bosons� as a consequence of the anti-
symmetrization �symmetrization� procedure.

FIG. 1. Stages of structural evolution from near magic to mid-
shell. The thicknesses of the transition arrows roughly indicate
the strength of the B�E2� values.
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We now turn to a somewhat more detailed discussion
of vibrational and rotational states in nuclei and to the
simple models that describe them. Near singly closed
shells, i.e., for nuclei with either N or Z just above a
magic value, the number of nucleons outside of a de-
formable core is small and the zero-point energy of the
lowest oscillations is greater than the energy of deforma-
tion. Therefore, the shape of the core is not stabilized.
These vibrational nuclei have a spherical ground-state
shape and exhibit surface vibrations around the equilib-
rium form when they are excited. While the microscopic
description of such motions in terms of fermionic de-
grees of freedom can be rather complex, a macroscopic
perspective in terms of quantized surface oscillations
�phonons with angular momentum �� is very simple.

Without knowing the underlying microscopic struc-
ture, one can introduce creation and annihilation opera-
tors of phonons, Q��

† and Q�� �where � is for the angu-
lar momentum projection�, to relate different vibrational
states of the nucleus. These operators fulfill the standard
boson commutation rules, �Q�� ,Q����

† �=��������, all
other commutators being zero. The operator counting
the number of � phonons is given by N�=	�Q��

† Q�� and
the simplest vibrational Hamiltonian becomes the one of
the harmonic oscillator,

Hvib = 	
�

	
��N� + � + 1
2 � , �2.2�

where 
� is the oscillator frequency associated with the
selected mode. The eigenvalues of this Hamiltonian are
obtained by substituting N�=0,1 ,2 , . . ..

As noted above, almost all even-even nuclei have as
the first excited state a 2+ state corresponding to domi-
nant �=2 �quadrupole� phonons. At a higher energy,
there is evidence for a 3− excitation, which can be de-
scribed by an octupole phonon with �=3. A single-
phonon state with �=2 has angular momentum L=2 and

excitation energy Eex=	
2. Using angular-momentum
coupling and symmetrization, the two-phonon states
turn out to have L=0,2 ,4 and Eex=2	
2 which gives the
ratio R4/2=2.

A few states of such a spectrum are indicated in the
middle panel of Fig. 1. Many nuclei are observed with
spectra approximating such patterns. However, har-
monic vibrations following Eq. �2.2� require that
phonons do not interact with each other. As demon-
strated in Fig. 2, real nuclei often exhibit anharmonic
effects �indicated by the intercept �4 characterizing the
sequence of vibrational nuclei�, which can be described
by introducing appropriate residual interactions of
phonons. Then one often sees spectra with R4/2 values
between �2.2 and �2.4 �see also Figs. 3 and 4, discussed
further below�. Examples of these are found in the A
�80 region, in Cd isotopes, and elsewhere.

If the number of nucleons outside the deformable
core is such that the zero-point energy of the oscillations
is much less than the energy of deformation, the system
can develop a stable deformed shape. In this case, sur-
face vibrations still represent existing collective modes,
but the lowest-energy collective motion becomes the ro-
tational one. This leads to typical rotational spectra of
deformed nuclei with both N and Z well away from
magic numbers.
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FIG. 2. A correlation plot for energies of the 41
+ and 21

+ states
in even-even nuclei with Z=38–82 and E�41

+� /E�21
+��2.05.

The two straight lines demarcate two distinct types of nuclear
structure. Adapted from Casten et al., 1993.
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chart. From Cakirli et al., 2009.
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From classical considerations, we know that if the sys-
tem has a permanent nonspherical shape, there exists a
body-fixed system �1,2,3� in which the inertial tensor is
diagonal. It is related to the laboratory-fixed system
�x ,y ,z� by an Euler transformation. The inertial tensor
then has components �I1 ,I2 ,I3�, so that the rotational
Hamiltonian is just

Hrot =
L1

2

2I1
+

L2
2

2I2
+

L3
2

2I3
, �2.3�

with Li the body-fixed components of angular momen-
tum. The simplest rotational system is an axially sym-
metric quadrupole4 rotor �with the symmetry axis 3�, for
which the moments of inertia I1=I2
I and the rotation
around the symmetry axis does not contribute to energy.
Then the energies are directly found to be EL,K
=	2�L�L+1�−K2� /2I, where L is the total angular mo-
mentum quantum number and K is a projection of the
angular momentum to the symmetry axis.

If the lowest state is 0+ �hence K=0�, the symmetry
with respect to the reflection of the third axis ensures
that only states with even L and positive parity appear
in the rotational band. The band above the ground state
of an even-even nucleus therefore follows the sequence
0+,2+ ,4+ , . . .. Applying the last formula we find R4/2
=3.33 �see the rightmost panel in Fig. 1�. As we know
from Fig. 2, this ratio is actually observed in many rota-
tional nuclei �although the sequence of points with the
slope 3.33 in Fig. 2 is relatively short, it contains a large
number of nuclei; see also Figs. 3 and 4�. These rota-
tional nuclei mostly show prolate �cigarlike� or, less com-
monly, oblate �pancakelike� quadrupole equilibrium
shapes.

Taken as a whole, Fig. 1 shows schematically the se-
quence of spectra often seen as a function of succes-
sively larger numbers of valence nucleons. Associated

with these spectra are the corresponding shapes. Once
midshell is reached, one thinks in terms of the numbers
of missing nucleons �holes� to the next closed shell and
the structure, along with the systematics of these observ-
ables, roughly reverses the pattern in Fig. 1.5

Figure 3 �upper panel� shows R4/2 values across the
nuclear chart. The patterns reflect the above comments:
R4/2 is less than 2 near magic numbers and then in-
creases toward �3.33 in the center of each box bounded
by pairs of magic numbers. How large the region of de-
formation depends largely on shell size: a certain mini-
mum number of valence nucleon interactions is needed.
Key to this is the competition between the spherical-
driving pairing interaction and the configuration-
inducing deformation-driving valence proton-neutron
�p-n� interaction. We codify this competition in Sec.
II.C. Note that the extent of the deformed regions is
highly mass dependent. In light nuclei, the shells are
smaller and hence a much smaller range of nucleon
numbers is available for the development of deformed
shapes. In heavy nuclei, in contrast, perhaps half are
situated in deformed regions. This, in fact, is one reason
that much of the study of QPTs concerns the structure of
medium and heavy nuclei. We will see more focused
views of the behavior of R4/2 later.

While R4/2 values are interesting, if one wants to dis-
cuss changes in structure, even more revealing are dif-
ferences of R4/2 for even-even nuclei with proton num-
bers Z and Z+2 or neutron numbers N and N+2. The
differences with respect to N are shown in the lower
panel of Fig. 3. Here one sees the rapid changes in struc-
ture that occur in narrow regions of the chart, specifi-
cally in nuclei that are a few protons and neutrons re-
moved from doubly magic nuclei. The most studied of
these regions, and the one in which QPTs were first dis-
cussed, is that near N=90, around Z�62. Here �R4/2
values reach magnitudes above 0.5 for adjacent even-
even nuclei. The A�100 region is another well-known
region of extremely rapid structural change. The rate at
which this evolution occurs depends on many factors,
including the underlying shell structure, the strength of
residual interactions, the number of nucleons spanned
by each major shell, and the possible changes in under-
lying shell or subshell structure. Some of this will be
discussed below.

The relevance of the simple models �anharmonic vi-
brator and symmetric rotor� to real nuclei was shown in
Fig. 2. Figure 4 shows the same data in a different way in
terms of a frequency occurrence histogram of R4/2 val-
ues. A wide range of values appears but we note the
peaks at R4/2�2.3 and 3.33. The former corresponds to
slightly anharmonic spherical vibrators and the latter, of

4Higher-order distortions, such as octupole or hexadecapole
shapes, can also occur but they are typically at higher energy.
This is plausible since they involve changes in shape that occur
more rapidly with angular position on the nuclear surface and
hence have shorter wavelengths and higher energies. The Ray-
leigh criterion for a liquid drop gives such a result.

5We note that this is not strictly true because the single-
particle angular momenta for a major oscillator shell in typical
mean-field potentials are large at the beginning of a shell and
small at the end. Therefore, both the effects of the Pauli prin-
ciple and of residual interactions differ, and hence structural
evolution is not fully symmetric about midshell.

FIG. 4. The distribution of R4/2 values in the Z=50–82, N
=82–126 major shell. Figure courtesy of R. B. Cakirli.

2160 Cejnar, Jolie, and Casten: Quantum phase transitions in the shapes of …

Rev. Mod. Phys., Vol. 82, No. 3, July–September 2010



course, to deformed nuclei with rotational spectra. We
caution here �and will return to this point in Sec. III.B.3�
that R4/2 alone does not uniquely determine the struc-
ture �except at extremes such as 2.0 or 3.33�.

In new regions of nuclei far from stability, only sparse
data will be available and it is useful to have indicators
that are even simpler to measure. Since the development
of collectivity entails extensive configuration mixing,
which lowers the energy of the collective state, it is not
surprising that the first 2+ state energy rapidly decreases
going into deformed regions of nuclei. This was sketched
in Fig. 1 and demonstrated by real data in Fig. 2. Abso-
lute values of E�21

+� are not as immediately useful as R4/2
values because they exhibit mass-dependent variations
due to changes in the inertial parameter, which scales as
A−5/3. However, within a mass region, they can be re-
vealing. Since E�21

+� decreases as deformation develops,
while R4/2 increases, it is, in fact, more useful to plot
1 /E�21

+�. An example will be shown later.

2. E2 transition strengths

Since deformation and collectivity go hand in hand,
another observable that acts as a sensitive signature of
structure is the strength of the electric quadrupole �E2�
transition between the 21

+ and 01
+ states, B�E2:21

+→01
+�,

which can be expressed in e2 fm2=10−2 e2 b2 or in Weis-
skopf units �W.u.� �Bohr and Mottelson, 1975�. As col-
lectivity grows, so do these B�E2� values �see the simple
toy model in Sec. II.C�. The data for the Z=50–82, N
=82–126 major shells are shown in Fig. 5. The growth
from negligible values near magic numbers, to a peaking
near midshell, and a parallel decrease toward the next
doubly magic region is clear. The B�E2� value �in e2 fm2�
can be related to the intrinsic quadrupole moment Q �in
e fm� and the Bohr deformation parameter � �see Sec.
III.A.1� through

�Q� = �16�B�E2:21
+ → 01

+� =
3Ze
�5�

R0
2�� + 0.16�2� ,

�2.4�

where R0 �in fm� parametrizes the nuclear radius. This
formula, based on a rotor model, is not reliable in
spherical nuclei but gives an overall perspective on the
shape evolution through the connection to the quadru-
pole deformation �.

Some other B�E2� values, as well, turn out to be im-
portant indicators of shape. For instance, the E2
strength of the 41

+→21
+ transition also increases in the

spherical-to-deformed transition, but the ratio B4/2

=B�E2:41
+→21

+� /B�E2:21
+→01

+� decreases. Both transi-
tions in this case connect states within the ground-state
band.

The transitions between different bands are also sen-
sitive to shape changes. As an example, consider the
22

+→21
+ transition. In an axially symmetric deformed

nucleus this transition connects the so-called � or 
 vi-
brational band with the ground-state band and is there-

fore relatively weak. In deformed nuclei which are un-
stable against the onset of triaxiality, the strength of this
transition rises considerably, while a moderate increase
is observed also in vibrational nuclei. Note that some
interband E2 transitions were considered as signatures
of coexisting vibrational and rotational spectral struc-
tures in nuclei at the critical point between spherical and
deformed shapes �Zamfir et al., 1999�. Other transitions,
such as 22

+→01
+, vanish in the deformed, axially unstable,

and vibrator limits but peak in transition regions for
which they therefore serve as useful indicators.

3. Two-neutron separation energies

Thus far, we have discussed observables based on ex-
citation spectra. However, the structure of nuclei is also
seen in their masses and binding energies which reflect
the sum of all binding effects, both single particle and
residual interactions. As these binding energies �roughly
8 MeV per nucleon� can reach values well above 1 GeV
in heavy nuclei, it is more convenient to deal with vari-
ous differences of binding energies. Here we consider
separation energies. In particular, to avoid oscillations
between odd and even nuclei due to pairing, we look at
the two-neutron separation energies S2n. This is shown
for two mass regions in Fig. 6. The most obvious feature
is the large decrease in S2n just after closed shells which
occurs because the valence nucleons now enter signifi-
cantly less bound orbits in a new shell. Such data, in fact,

FIG. 5. B�E2:21
+→01

+� values in Weisskopf units for the Z
=50–82, N=82–126 major shells. Figure courtesy of R. B.
Cakirli.
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were among the early indicators of the magic numbers.
Besides these dramatic drops, there are other charac-

teristic features of the S2n systematics. Often, they are
typified by long, nearly linear, segments for each isotopic
or isotonic chain. This feature emerges naturally �Fos-
sion et al., 2002� from global properties �see, for ex-
ample, the Bethe-Weiszäcker mass formula �Heyde,
2004��. The primary contribution to the linear behavior
is the asymmetry term which gives rise to changes in
binding as successive independent particle model orbits
are filled.

Superposed on this are contributions from collective
effects. Collectivity in nuclei corresponds to mixing of
various shell model configurations or, in the interacting
boson approximation �IBA� approach �Iachello and
Arima, 1987�, of bosonic degrees of freedom, which are
related to pairing properties of shell model configura-
tions. Such collective effects contribute both to the lin-
earity of S2n and to nonlinearities. The most visible of
these �see the bottom panel of Fig. 6� appears near N
=90 where a local increase in S2n values �a flattening�
relative to the linear decrease occurs. This happens at
neutron numbers where deformation rapidly sets in and
reflects the extra binding associated with the deformed
equilibrium shape. As noted above, this is, in fact, the
region where first-order QPT behavior was initially rec-
ognized, and these nuclei will be a focus of our attention
below. In the corresponding plot of S2n vs Z, the succes-
sive isotonic sequences bunch together in this same mass
region. Besides these highly visible deviations from lin-

earity at phase-transitional points, one sees more subtle
curvatures in Fig. 6 as well, such as for the isotopes of
Dy-Hf. These too arise from and can be highly sensitive
to collective correlations �García-Ramos et al., 2001;
Fossion et al., 2002; Cakirli et al., 2009�.

4. Other observables

Other observables also reflect structural evolution.
Three will be discussed below: E0 transitions, isotope
shifts, and two-nucleon transfer cross sections.

Electric monopole �E0� transitions, especially be-
tween the excited collective 0+ states and the ground
state, have long been associated with shape changes
�Wood et al., 1999�. It was shown by von Brentano et al.
�2004�, in the context of the IBA, that the strength
�2�E0:02

+→01
+� should be small in spherical nuclei, in-

crease rapidly in regions of shape change, and remain
large in deformed nuclei. We return to the discussion of
E0 transitions in Sec. IV.B.1.

Isotope shifts, that is, differences ��r2� of average
squared nuclear radii �r2� between the different isotopes
of the same element as a function of N, also reflect
changes in structure �Wilets et al., 1953�. They exhibit an
odd-even staggering indicating pairing effects and, natu-
rally, large jumps at shell closures, but, more relevant for
this review, they show kinks or discontinuities at
spherical-deformed shape phase transition regions. Fig-
ure 7 shows this for Z=38–42 isotopes.

Finally, two �identical� nucleon transfer reactions, e.g.,
the �p , t� and �t ,p� ones, can also signal rapid shape
change. Normally, cross sections to 0+ states are domi-

FIG. 6. Two-neutron separation energies vs neutron number
for two mass regions with quantum phase transitions. Data
from the 2003 AME �Audi et al., 2003�. Figure courtesy of R.
B. Cakirli.
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chains showing the jumps at N=60 when deformation sets in
�each curve adjusted to an arbitrary value at N=50�. Based on
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al., 2009.
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nated by the ground state, with excited-state cross sec-
tions representing less than 20% �most often, only a few
percent� of the ground-state cross sections. However,
when R4/2 changes rapidly, the cross section is shared
between ground and excited states �Hinds et al., 1965;
Bjerregaard et al., 1966; Maxwell et al., 1966; Fleming et
al., 1971; Oothoudt and Hintz, 1973�. The data for the
�p , t� reaction in the rare earth region are shown in
Fig. 8 and display exactly this behavior near N=90.

C. Microscopic considerations

There is an intimate relation between correlations on
the nucleonic level and collectivity and shape on the
macroscopic level �Åberg et al., 1990; Nazarewicz, 1992�.
Indeed, these two viewpoints provide complementary
perspectives with which to view nuclear structure and its
evolution. In this section, we explore some simple as-
pects of this relation and, in the process, discuss a simple
indicator of collective structure founded in the interac-
tions of valence nucleons.

Collectivity and the development of nonspherical
shapes demand mixing of shell model configurations.
The specific mechanism responsible for the onset of de-
formation in nuclei seems to be very closely related to
the process of spontaneous symmetry breaking de-
scribed for the first time by Jahn and Teller �1937�. The
concept was initially applied in molecular physics, where
it was shown that a molecule can develop a symmetry-
breaking ground-state form due to the interaction be-
tween degenerate electronic excitations and collective
modes of the molecule. In a similar way, the interaction
of degenerate nucleonic states with collective vibrations
of the nucleus mediates a strong coupling between
single-particle states, which may break the spherical
symmetry of the ground state �Reinhard and Otten,
1984; Nazarewicz, 1994�. In the context of this review, an

essential feature of the Jahn-Teller effect �which is
nowadays relevant in many different branches of phys-
ics� is its critical character.

The rise of collectivity with mixing can be seen with
the following simple toy model. Imagine a set of n shell
model configurations ��i� for 2+ states. Assume they are
all degenerate. Further assume that all have identical
reduced E2 matrix elements for decay to the 0+ ground
state, that is, �01

+
TE2
�i�=W for all i=1, . . . ,n. This cor-
responds to a B�E2:2+→01

+�=W2 /5. Now assume that
each of these 2+ basis states mixes due to some residual
interaction, with every other one and with equal matrix
elements, ��i�Hresid��j�=−�V�. Solving this toy model is
trivial and well known: n−1 levels move up by an energy
�E=+�V�, and one comes down by �E=−�n−1��V�.
Moreover, the wave function of the lowest state is a lin-
ear combination ��lowest�=n−1/2	i��i� with equal ampli-
tudes for all the basis states. This result, for the lowest
state, can be visualized as arising from successive mixing
with each of the other n−1 degenerate �i�1� basis
states, each of which pushes the i=1 state lower by an
amount V and contributes an equal mixing amplitude.

Now calculate the B�E2� from the lowest 2+ state to
the ground state. It is given by

B�E2:21
+ → 01

+� =
1
5

�01
+
TE2
21

+�2 = n
W2

5
, �2.5�

which is n times each of the unperturbed values. Thus,
not only is one state �the collective state� lowered sig-
nificantly in energy, but it collects all the E2 strength.

In practice, of course, shell model configurations, even
within a pair of major shells, are not at all degenerate
nor, involving different orbits and seniorities, would they
have equal matrix elements to the 0+ ground state, nor
equal mixing with each other, and, moreover, the ground
state itself is a coherent mixture. Therefore the estimate
in Eq. �2.5� is many orders of magnitude too large. Nev-
ertheless, the basic physics is correct. In fact, it gives
further insight into the ingredients needed for collectiv-
ity. Not only is mixing of configurations essential but the
collectivity will grow with the number n of mixing con-
figurations. Therefore, in general, collective effects in
nuclei require a certain minimum number of valence
nucleons and grow rapidly as that number is increased.
This is exactly the pattern seen in Figs. 3 and 5. Below
we exploit this further. We end this discussion by noting
that in typical deformed heavy nuclei the enhancement
factor of B�E2:21

+→01
+� values easily reaches a couple of

hundreds, as again seen in Fig. 5.
Residual interactions lend another ingredient to the

evolution of structure �Heyde et al., 1985�. One can ex-
pand the angular part of a residual interaction in
multipoles—Legendre polynomials in the angle between
the orbital planes of the interacting nucleons. The angles
at which each multipole is largest are the angles at which
they have the most effect. If the semiclassical angle be-
tween the orbital planes of two interacting particles in a
total L state of a configuration �j1j2L� is close to the
angle where a given multipole of the residual interaction
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at forward angles for rare earth nuclei. Shown is the ratio of
the cross sections for the strongest transition to an excited 0+

state relative to the ground-state cross section. Figure courtesy
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is large, that part of the residual interaction will be im-
portant in determining the energy of that two-particle
configuration. Of course, these angles and therefore the
affected L values will depend on the interaction: a �
force or quadrupole interaction would have quite differ-
ent effects in configurations of high j orbits. However,
the monopole part is unique in this regard as it is given
by just a constant, independent of angle. Its role is there-
fore to lower the energy of each level equally, that is, to
lower the energy of the entire multiplet. This is equiva-
lent to a change in single particle energies. As a conse-
quence, residual interactions can also affect shell struc-
ture. Thus, in studying the development of collectivity
and correlations, both configuration mixing and changes
in shell structure due to the residual interactions need to
be considered.6

It is widely recognized that the emergence of collec-
tive phenomena in nuclei is intimately connected to a
competition between the spherical-driving L=0 coupled
pairing interaction and the deformation-driving valence
p-n �proton-neutron� interaction �de-Shalit and Gold-
haber, 1953; Talmi, 1962; Federman and Pittel, 1977; Fe-
derman et al., 1979; Dobaczewski et al., 1988; Nazare-
wicz, 1992; Werner et al., 1994�. The importance of the
p-n interaction in contrast to p -p and n-n interactions
comes as a result of Pauli blocking, which reduces the
number of nonvanishing interaction matrix elements in
the like-particle cases. One can develop a simple guide
to this mechanism. The pairing interaction scales as the
number of valence protons and neutrons, Np+Nn, since
each nucleon pairs with only one other in the time re-
versed state of the same orbit. In contrast, the valence
p-n interaction acts between all valence nucleons. These
interactions are not all equal—they are highly orbit de-
pendent but let us assume they are all the same strength
for a moment. Then the total p-n strength scales as
NpNn. Hence a useful indicator of the pairing versus p-n
competition is �Casten et al., 1987�

P =
NpNn

Np + Nn
. �2.6�

Since the pairing interaction in heavy nuclei is roughly
1.5 MeV and the p-n interaction is roughly 300 keV, it
takes roughly five p-n interactions to begin to overcome
the pairing interaction. Thus P�5 should �and, remark-
ably, does� mark a boundary between spherical and axi-
ally deformed �R4/2�3.0� regions. Since P is always less
than the lower of Np and Nn, it is clear that P�5 re-
quires a fair number of both valence protons and neu-
trons. If a given pair of proton and neutron major shells

is large enough, then there will always be a region of
nuclei within the shell where deformation and associated
collective behavior occurs, at least near midshell. In me-
dium mass and heavy nuclei, Fig. 3 shows that there are
large regions of deformed nuclei and careful inspection
shows that the locus of large changes in R4/2 �see Fig. 3�
lies close to the locus of P�5.

With this background, it is useful to inspect a particu-
lar mass region to see how these ideas play out. The
upper and middle panels of Fig. 9 focus on R4/2 values
for the rare earth region plotted against N �top� and Z
�middle�. The upper plot shows a rapid rise of R4/2 near
N=90 from values typical of vibrational nuclei to those
corresponding to well deformed rotors signaling the on-
set of deformation. Rapid changes of R4/2 �seen also in
Fig. 3� were one of the original motivations for treating
this mass region in terms of phase-transitional behavior.
Not much more is easily gleaned from the upper panel
except one notices an intriguing pattern in which the
R4/2 values for Nd-Dy cross from below to above those
of Ba and Ce.

The plot in the middle panel of Fig. 9 shows the same
data and reveals the same physics but much more as
well. Of course, it shows a rapid rise in R4/2 to values

6There is another effect by which, in nuclei far from stability,
shell model energies can be altered, namely, if the mean-field
potential itself changes due, for example, to the presence of
weakly bound nucleons that contribute differently to the po-
tential than well-bound core nucleons. Indeed, an active re-
search area of late lies in studying changes in shell structure,
and disentangling which of these effects—residual interactions
or the mean-field itself—is at work.

FIG. 9. �Color online� R4/2 vs N �top� and Z �middle� and
1/E�21

+� vs Z �bottom� for the rare-earth region. Adapted from
Cakirli and Casten, 2008.
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near 3.33, but the sudden, phase-transitional, behavior is
even more evident in going from the N=88 curve to that
at N=90 or 92. Recalling that R4/2 is a minimum near
closed shells �see Fig. 3� and a maximum near midshell,
we see that Z=64 acts as a semiclosed shell for N�88,
while, for N�90, the value Z=64 behaves as a nearly
midshell number �64 is nearly midway between 50
and 82�. The change from a minimum to a maximum at
Z=64 leads to a kind of “bubble” pattern �Cakirli and
Casten, 2008�.

We recall that while protons in these nuclei are
in the midoccupancy of the shell with orbitals
2d5/2 ,1g7/2 ,1h11/2 ,2d3/2 ,3s1/2, neutrons start filling the or-
bitals 2f7/2 ,1h9/2 ,2f5/2 , . . . of the next shell. The middle
panel of Fig. 9 can be interpreted as a breakdown in
subshell structure at N=90. Microscopically, this has
been explained �Casten et al., 1981� in terms of the
Federman-Pittel mechanism �Federman and Pittel, 1977,
1979; Federman et al., 1979� as a consequence of the
lowering of the proton 1h11/2 orbit so that the gap after
the 1g7/2 and 2d5/2 proton orbits at Z=64 is obliterated.
This occurs as a function of neutron number due to the
strong monopole p-n interaction �Heyde et al., 1985� be-
tween these highly overlapping orbits as the neutron
1h9/2 orbit begins to fill.

The consequences of this are easy to see. Excitation of
protons into the 1h11/2 orbit expands the configuration
space and therefore produces a more deformed state.
Initially, the state is at relatively high energy, and the
two sets of proton orbits �1g7/2 and 2d5/2, and 1h11/2� are
still somewhat separated, creating a situation in which
one has a spherical ground state and a more collective or
slightly deformed excited 0+ state. As the neutron num-
ber increases and the proton 1h11/2 orbit drops in energy,
the energy of the deformed state decreases and mixing
of the two spaces increases. At N�90 the rather sudden
disappearance of the gap at Z=64 is tantamount to a
sudden increase in the effective number of valence pro-
tons and in the size of the valence space and to the rapid
onset of deformation. Thus the middle panel of Fig. 9
not only shows phase-transitional behavior, as does the
upper one, but also shows that it results from a change
in the underlying shell structure and is driven largely by
the valence p-n interaction. Indeed, it has been shown
that empirical measures of p-n interaction strengths are
directly correlated with R4/2 �Cakirli and Casten, 2006�.

It turns out that pairs of crossing and bubble patterns
appear frequently in medium mass and heavy nuclei.
Their appearance is a signature of phase-transitional be-
havior that is mediated by a change in underlying sub-
shell structure, and the nucleon type which experiences
the subshell change is that in terms of which one sees a
bubble pattern. The bottom panel of Fig. 9 shows an
additional example of the bubble pattern in the Z de-
pendence of 1/E�21

+�, which will often be far more
readily available experimentally in exotic nuclei. These
findings highlight the fact that looking at the same data
from different perspectives can often reveal physics that
is more hidden otherwise.

It is interesting and relevant to our later discussion of
phase transitions and critical-point solutions to think of
the process just described in terms of energy surfaces.
The concept of potential energy surface �PES�, i.e., the
dependence of the nuclear binding energy on shape pa-
rameters, will be often used in the forthcoming parts.
Figure 10 shows, in a schematic way, possible evolution
of the PES dependence on the Bohr deformation pa-
rameter � �Bohr and Mottelson, 1975� introduced in Sec.
III.A.1. For just a few valence nucleons the energy sur-
face has a single minimum at deformation parameter �
=0 �spherical shape�. As the number of valence nucleons
increases, a second highly excited minimum appears at
��0 �deformed shape�. This minimum decreases in en-
ergy with more valence nucleons added and, at some
point, it becomes degenerate with the spherical mini-
mum. This is the critical point of the phase transition
�we are describing a first-order phase transition for
which phase coexistence occurs�. For still more valence
nucleons, the deformed minimum becomes the ground
state. We will see in Sec. V that such a picture provides
the conceptual backdrop for the critical-point solutions.

Note several important features of this scenario.
First, the change in equilibrium deformation is
discontinuous—a signature of a first-order phase transi-
tion according to the Ehrenfest criterion �Ehrenfest,
1933�. Second, again associated with a first-order phase
transition, there is phase coexistence �two minima ap-
pear for some nucleon numbers, or for a certain range of
the control parameter as we will see later�. Third, recall-
ing the obvious fact that nuclei contain integer numbers
of nucleons and therefore their properties change dis-
cretely, it is clear that there is no mandate that any given
nucleus happens to land at exactly the critical point. This
may happen and, fortunately, seems to be the case, at
least in the region near A�150, and this happenstance
was one of the factors influencing the development of
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the critical-point descriptions that we will discuss later.
In other regions, phase-transitional behavior may well
occur but may not happen to produce a specific nucleus
at the critical point.

III. MODELS FOR SHAPE TRANSITIONS

In the previous section, we discussed basic experimen-
tal data on shape transitions in nuclei and outlined some
fundamental theoretical concepts for their interpreta-
tion. This section will introduce concrete approaches de-
signed to quantitatively describe the evolution of
nuclear shapes. The focus is set mainly on two phenom-
enological models, the geometric collective model �Sec.
III.A� and the interacting boson model �Sec. III.B�,
while fermionic models �which are not of our main in-
terest here� are mentioned in Sec. III.C.

A. Geometric collective model

The geometric or collective model of atomic nuclei
was introduced by Bohr �1952� and has been extensively
elaborated in the 1960s. A generalized geometric ap-
proach, referred to as the geometric collective model
�GCM�, was presented by Gneuss et al. �1969�. In the
following, we use the acronym GCM for the whole fam-
ily of geometric models, including a recent revival of this
type of description.

The model sees the nucleus as a droplet described
by a set of collective coordinates �. The clearest inter-
pretation of these coordinates is through an expan-
sion of the nuclear radius into spherical harmonics R
=R0�1+	���

�

���*Y�
����, with �* standing for the coeffi-

cients at each multipolarity. Since the dominant type
of nuclear deformation is the quadrupole one �see foot-
note 4�, the above sum can be, with a good degree of
approximation, restricted just to the terms with �=2
�hence �=−2, . . . ,+2�.

It should be stressed that the basic form of the geo-
metric model, as presented in Sec. III.A.1, has some
drawbacks in confrontation with data. In particular, its
oversimplified expression for the collective kinetic en-
ergy generates unrealistic moments of inertia �see, e.g.,
Caprio �2009��. This problem can in principle be treated
by the inclusion of more refined kinetic terms into the
GCM Hamiltonian �Gneuss et al., 1969�, which, however,
extends the number of unknown parameters or by
switching to the related interacting boson model, which
naturally contains more sophisticated kinetic terms con-
trolled by a moderate number of parameters. The latter
model will be introduced in Sec. III.B.

1. Bohr Hamiltonian and its phase structure

We begin with some formal remarks on the GCM
Hamiltonian and then turn to an analysis of the collec-
tive potentials describing a range of nuclear shapes and
transition regions. The assumption of �=2 in the
nuclear-radius expansion implies that coordinates � de-
scribing common nuclear deformations form a second-

rank spherical tensor. We know that the Hamiltonian
must be a scalar. For the quadrupole tensor �, there are
only two independent scalar combinations �Noack,
1968�, namely,

�� � ���0� � �2, †�� � ���2� � �‡�0� � �3 cos 3
 .

�3.1�

Note that we use the symbol �A�B���� for the coupling
of arbitrary tensors A and B �with ranks �1 and �2, re-
spectively� to angular momentum �; therefore �A
�B��

���=	�1,�2
��1�1�2�2 ����A�1

��1�B�2

��2�. We usually skip
the projection index � in the tensor notation.

In Eq. �3.1�, the parametrization �up to proportional-
ity constants� in terms of Bohr shape variables � and

 is given. These parameters capture the shape of the
nucleus in the intrinsic �body-fixed� frame, while any de-
pendence on the Euler angles �
��1 ,�2 ,�3�, describing
the orientation of the nucleus in an arbitrary laboratory
frame, is eliminated. Note that the usual way of intro-
ducing the shape variables is through the transformation
�→ �̄ of the deformation tensor into the frame con-
nected with the principal axes of the quadrupole defor-
mation. There one gets �̄±1

�2�=0, while the remaining com-
ponents are parametrized as �̄0

�2�
x=� cos 
 and
�2�̄±2

�2�
y=� sin 
.
The parameters � and 
 can be seen as polar coordi-

nates in the plane x�y �see Fig. 11�. The radius � quan-
tifies the degree of deformation: �=0 corresponds to
spherical nuclei and growing values of � generate in-
creasingly deformed shapes. The angular variable 

specifies the type and orientation of the deformed shape:
values of 
 equal to multiples of � /3 correspond to axi-
ally symmetric prolate or oblate shapes with different
symmetry axes �as shown in Fig. 11�, while intermediate
values of 
 are associated with triaxial shapes, i.e., de-
formed shapes with no axial symmetry. As various spa-
tial orientations of the deformed drop are mutually

FIG. 11. �Color online� Bohr variables � and 
 schematically
associated with the corresponding axially symmetric quadru-
pole shapes. Nonaxial shapes appear between the indicated
values of 
. Adapted from Fortunato, 2005.
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equivalent, it is sufficient to consider just a third of the
whole 2� domain, e.g., the interval 
� �−� /3 ,� /3� or
�due to the additional 
↔−
 symmetry� just the sextant
�0,� /3�.7

Exploiting relations �3.1�, we can write the most gen-
eral expression for the potential energy of the nuclear
droplet as V=V��2 ,�3 cos 3
�. If the deformation is as-
sumed to be small, it is well justified to consider only a
truncated Taylor expansion in parameter �. The sim-
plest reasonable formula of this type is

V = A�2 + B�3 cos 3
 + C�4

= �5A�� � ���0� −�35
5

B†�� � ���2� � �‡�0�

+ 5C��� � ���0��2, �3.2�

where A, B, and C stand for arbitrary coefficients. The
constraint C�0 is imposed to stabilize a finite deforma-
tion. Note that the square-root factors in the second of
Eq. �3.2� reflect some particular values of Clebsch-
Gordan coefficients and, in fact, define the proportion-
ality constants that we skipped in Eq. �3.1�.

The most general expression for the kinetic energy
depends on scalar combinations containing momenta p
associated with coordinates �. There are many combina-
tions of this type, namely, �p�p��0�, †�p����2��p‡�0�,
†�p�p��2���‡�0�, †�p�p��2��p‡�0�, etc. In most applica-
tions, only the first term is considered,

T =
�5

2M
�p � p��0� = Trot + Tvib, �3.3�

where M is a generalized mass parameter. The terms on
the right-hand side of Eq. �3.3� represent the rotational
and vibrational kinetic energies �Bohr, 1952�,

Tvib = −
	2

2M� 1

�4

�

��
�4 �

��
+

1

�2 sin 3


�

�

sin 3


�

�

� ,

�3.4�

Trot =
1

2M 	
k=1

3
Lk

2

4�2 sin2�
 −
2�

3
k� .

To compare predictions of the geometric model with
data, one also needs operators for the electromagnetic
transitions. The simplest and most important one is the
E2 operator, which in the general case represents a �
=2 tensor and can be expanded as

TE2 = A�* + B��* � �*��2� + ¯ , �3.5�

where A ,B , . . . are arbitrary coefficients. Usually only
one or two terms in Eq. �3.5� are taken into account, the
coefficients being derived from a model with charge uni-

formly distributed within the nuclear radius �cf. Eq.
�2.4��.

As we see in Eq. �3.4�, the operator corresponding to
the vibrational energy is composed of derivatives with
respect to � and 
 and of expressions containing these
variables. This is natural since vibrations are connected
solely with the shape of the nucleus. The rotational en-
ergy includes operators Lk of the angular momentum
components in the intrinsic frame. These operators are
expressed through the Euler angles and derivatives with
respect to them. The rotational energy in Eq. �3.4� still
depends on shape variables � and 
 through the mo-
ments of inertia Ik�� ,
� present in the denominator.
Therefore, the rotational and vibrational degrees of
freedom are coupled together in the geometric Hamil-
tonian.

The complicated form of the kinetic energy makes the
solution of the five-dimensional �two shape variables
and three Euler angles� Schrödinger equation H�=E�
with

H = Trot + Tvib + V �3.6�

a difficult task in general. Here we will not discuss the
methods of solution and their properties, at least not in
their full complexity. This is not necessary since in the
macroscopic limit of the model the potential alone is
capable to describe basic features of the GCM critical
properties. The macroscopic limit is obtained either as
M→� �i.e., the GCM effective mass going to infinity� or
as 	→0 �vanishing Planck constant implies that we are
settling down into the domain of classical physics�. Both
possibilities are fully equivalent here because the GCM
Hamiltonian contains only the combination 	2 /M of
both parameters. In this limit, the zero-point motion
vanishes and the absolute minimum of the potential in
one of the three angular sectors determines the shape of
the ground state.

We therefore analyze the form of potential �3.2� with
the aim to derive the basic GCM phase diagram shown
in Fig. 12. For A�0 �C�0�, the potential has only one
minimum at ��0 and 
=0 or � /3, depending on the
sign of parameter B. This corresponds to a deformed
axially symmetric shape, either prolate or oblate. As A
increases, one eventually reaches the point A1=0 �the
vertical line in Fig. 12�, where a secondary minimum of
the potential appears at �=0. Using the terminology of
phase transformations in condensed-matter physics, this
point is sometimes called spinodal. The minimum is
small at first but it deepens as A increases. At the critical
value Ac= 1

4B2 /C �the thick parabola in Fig. 12�, both
minima, the old one at ��0 and the new one at �=0,
swap. Increasing A further, the minimum at ��0 flat-
tens quickly until it disappears at the antispinodal point
A2= 9

32B2 /C �the thin parabola in Fig. 12�. For A�A2,
there is again a single global minimum, the one at �=0,
which determines the spherical shape. Here is a list of
the spinodal, critical, and antispinodal values,

7If considering only axially symmetric shapes, some prefer to
set 
=0 and allow for both positive and negative values of �.
This case is equivalent to ��0 and 
=0 or �, corresponding
therefore to both prolate and oblate shapes having z as the
symmetry axis.
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A1 = 0, Ac =
1
4

B2

C
, A2 =

9
32

B2

C
. �3.7�

Having passed the trajectory between A�A1 and A�
�A2, one has completed the deformed-to-spherical or
spherical-to-deformed transformation of the nucleus.
The crucial observation is that this change of shape has a
critical or phase-transitional character. Indeed, as the
spherical and deformed minima swap at Ac for B�0, the
slope �i.e., the derivative with respect to the running pa-
rameter A� of the potential minimum energy E0 �which
in the macroscopic limit coincides with the ground-state
energy� changes suddenly. Such a behavior constitutes a
first-order ground-state phase transition in terms of the
Ehrenfest classification.8 The curve Ac, where both po-
tential minima are equally deep, represents the critical
curve of the transition. The other curves A1 and A2 de-
fine a region of phase coexistence �spinodal region�,
where spherical and deformed shapes are simulta-
neously “present” in the spectrum of the system.

As we know, the deformed phase exists in two basic
forms: with the minimum either at 
=0 �for B�0� or at

=� /3 �for B�0�. These cases correspond to deformed
prolate and deformed oblate shapes of the nucleus, re-
spectively. Both forms transform to each other at B=0,

where the potential does not depend on 
 �hence is 

soft�. The line B=0 for A�0 constitutes a transition be-
tween the prolate and oblate shapes. Again, this transi-
tion has a critical character, defining another first-order
transition. This can be verified by evaluating the first
derivative of E0 with respect to B.

The phase diagram of the geometric model with the
basic potential �3.2�, as shown in Fig. 12, has phase tran-
sitions located along the critical parabola A=Ac and
along the 
-soft halfline B=0 for A�0. We found earlier
that these transitions are of the first order in the sense of
the Ehrenfest classification. However, there exists one
exception from the first-order type of behavior: it is the
point A=B=0. When following the deformed-to-
spherical transition along the B=0 line, the sombrero-
shaped potential valid for A�0 changes into the quartic
oscillator potential valid for A�0. The minimum is at

�0 = ��−
A

2C
for A � 0

0 for A � 0,
� �3.8�

and the minimum energy E0 changes with a discontinu-
ous second derivative d2E0 /dA2 at A=0. This defines a
second-order ground-state phase transition with the criti-
cal exponent9 equal to 1

2 . Interestingly, the intersection
of the first-order transitional lines in the second-order
transition constitutes a triple point of the phase diagram.

The actual realization of the simple phase diagram
from Fig. 12 in atomic nuclei was disclosed with the aid
of the interacting boson model �Dieperink et al., 1980;
Feng et al., 1981; Jolie et al., 2001�, which will be ad-
dressed in Sec. III.B. It should be stressed that the phase
structure of the above-described type was first discussed
by Landau �1937� within his classical theory of phase
transitions. Since an application of the Landau theory in
the interacting boson model �Jolie et al., 2002� requires a
sophisticated formalism of coherent states �Gilmore and
Feng, 1978; Gilmore, 1979� �see Sec. III.B.2�, the geo-
metric model, which yields an equivalent phase struc-
ture, was given priority here for pedagogical reasons.
Note that the phase diagram from Fig. 12 can be equiva-
lently described also in the framework of catastrophe
theory �López-Moreno and Castaños, 1996� in terms of
the so-called cusp catastrophe �Gilmore, 1981; Stewart,
1982�. The same phase diagram will appear in the some-
what different guise of a symmetry triangle in our dis-
cussion of the IBA.

2. Separable and quasiseparable potentials

The shape types contained in the above-described ver-
sion of the geometric collective model �with �=2 and the
potential up to the �4 term� capture the main structural

8The Ehrenfest classification �Ehrenfest, 1933� was originally
elaborated in connection with thermal phase transition. It as-
serts that the transition is of the kth order if the kth derivative
of the free energy with respect to temperature changes discon-
tinuously at the transitional point. It turned out that such a
statement is not always applicable since the derivatives may be
singular. The use of the Ehrenfest classification for structural
transitions of the ground state relies on the analogy between
the free energy �as a function of temperature� and the ground-
state energy �as a function of an external control parameter�.

9Critical exponents determine the behavior of some quanti-
ties in a vicinity of the critical point in terms of power-law
dependences. Here we extract the critical exponent associated
with the equilibrium deformation parameter �0.

FIG. 12. �Color online� The phase diagram associated with
potential �3.2� of the geometric model. The scale on both axes
is determined by the chosen value of the parameter C�0 and
is not shown here. The spherical-prolate, spherical-oblate, and
prolate-oblate phase transitions are of the first order, except at
the “triple point” �A ,B�= �0,0�
0 where the transitions are of
the second order.
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paradigms of nuclear physics, namely, �i� vibrational nu-
clei with a spherical equilibrium shape, �ii� rotational nu-
clei with 
-rigid �axially symmetric� deformed shapes �ei-
ther prolate or oblate�, and �iii� rotational nuclei with

-soft �axially unstable� deformed shapes �Zhang et al.,
1997. Possible nonaxially deformed and even more ex-
otic shapes will be discussed in Sec. VI.A. The shape
types �i�–�iii� can be obtained by a convenient �but not
unique� choice of the control parameters A ,B ,C in the
basic potential �3.2�. As we saw, variation of these pa-
rameters enables one to move along various paths be-
tween the shape types. Applications of the basic geomet-
ric Hamiltonian from Eqs. �3.2� and �3.3� to nuclei in the
phase-transitional regions can be found in Zhang et al.
�1999� and Caprio �2003�.

In order to improve the agreement with data while
keeping the problem mathematically tractable �in an op-
timal case on the analytic or approximate analytic level�,
a plethora of other potentials has been considered in the
past as well as in recent years. Although these potentials
go beyond the simple form �3.2� and its extensions to
higher-order terms, they mostly keep within the basic
typology �i�–�iii�. Two major results achieved in the last
couple of years are a semianalytic description of spectra
at the critical points of shape-phase transitions �Iachello,
2000, 2001� and new algebraic methods for a more effi-
cient numerical solution �Rowe, 2004b; Turner, 2005; De
Baerdemacker et al., 2007; Rowe et al., 2009�. The
critical-point geometric potentials will be discussed in
Sec. V.A. Some special families of parameter-dependent
potentials interpolating between different shape types
will be mentioned in Sec. V.B. Here we introduce the
problem of separability, which applies in a general case.

Geometric potentials proposed for analytic treatment
can be sorted into two groups: either �a� they do not
include a dependence on the variable 
 or �b� they do. In
the majority of cases belonging to group �b�, the separa-
tion of potentials for � and 
 is invoked, assuming either
�Iachello, 2001�

V��,
� = V1��� + V2�
� �3.9�

or �Wilets and Jean, 1956; Bonatsos, Lenis, McCutchan,
et al., 2007�

V��,
� = V1��� + V2�
�/�2. �3.10�

As discussed below, in case �3.9� the separation of vari-
ables � and 
 can be done only approximately, while in
case �3.10� it is exact. The dependence on 
 is most com-
monly approximated by a harmonic potential V2=c
2,
where c�0, implying a prolate equilibrium deformation.
These assumptions are not exactly consistent with the
required dependence of V on the shape variable combi-
nations from Eq. �3.1�, but they can be taken as a rea-
sonable approximation of the dynamics in the vicinity of
the potential minimum.

Equipped with the above simplifications, one can find
exact or approximate solutions of the GCM eigenvalue
problem. In case �a� and also in case �b� with the poten-
tial of the form �3.10�, the solution ��� ,
 ,�� of the five-

dimensional Schrödinger equation can be factorized to a
part ����, depending solely on �, and a part ��
 ,��,
depending on 
 and the Euler angles � �Wilets and
Jean, 1956�. The second part, constrained by

�−
1

sin 3


�

�

sin 3


�

�

+ 	

k=1

3
�Lk/	�2

4 sin2�
 − 2�k/3�

+
2M
	2 V2�
����
,�� = ���
,�� , �3.11�

is inserted into the Schrödinger equation H�=E�,
yielding an equation for the � degree of freedom

�−
1

�4

�

��
�4 �

��
+

�

�2 +
2M
	2 V1�������� =

2ME

	2 ���� .

�3.12�

Here � is a separation constant. The application of the
above �−
 separation technique is hindered by the fact
that analytic solutions ��
 ,�� and � of Eq. �3.11� are
generally not known, except for the fully 
-independent
case �a� with V2�
�=0 �Wilets and Jean, 1956�. Note that
��
 ,�� is sometimes further factorized as ��
�DM,K

�L� ���,
where DM,K

�L� stands for a Wigner function carrying
angular-momentum indices. The 
−� separation cannot
be done in general, but the resulting wave functions can
be used as a basis for exact diagonalization. In case �b�
with the potential of the form �3.9�, the �-
 separation
is approximate already on the level of the defining dif-
ferential equations. This case will be discussed more in
Sec. V.A.1.

We return to the geometric description in Sec. V,
where we also present some comparisons of model pre-
dictions with the data on critical-point nuclei.

B. Interacting boson model

In previous paragraphs, collective nuclear excitations
�vibrations and rotations� have been treated without re-
ferring to the underlying shell structure. As indicated in
Sec. II, the origin of collective phenomena in even-even
nuclei lies in the microscopic degrees of freedom, which,
in spite of the progress in recent years, cannot be treated
in their full complexity yet. We deal with the newest
microscopic approaches to nuclear shape transitions in
Sec. III.C. Here we focus on a treatment which can be
placed between the phenomenological geometric model
and the microscopic shell model. In the so-called inter-
acting boson approximation �IBA�, proposed by Arima
and Iachello �1976, 1978, 1979�, collective excitations of
nuclei are described in terms of bosons, which can be
associated with pairs of valence fermions.

The IBA benefits from its proximity to the phenom-
enological geometric approach—it allows for exact
�sometimes analytic� solutions—but at the same time it
keeps links to the microscopic foundations. The map-
ping of the IBA to the fermionic space has been exten-
sively investigated. Early work by Otsuka et al. �1978�
was followed by a number of related approaches �see,
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e.g., Geyer and Lee �1982�; Kim and Vincent �1987�;
Klein and Marshalek �1991��. Also the mapping to the
quadrupole phonon model, a bosonized version of the
geometric model, has been analyzed �Janssen et al.,
1974; Blaizot and Marshalek, 1978; Klein et al., 1982;
Marshalek, 2006�. Additional arguments supporting the
IBA assumptions were given by Dukelsky and Pittel,
�2001�. The discussion of these microscopic aspects is
beyond the scope of the present review. Below we intro-
duce the main elements of the model and analyze its
phase structure.

1. Dynamical symmetries and forms of the Hamiltonian

An essential ingredient of the IBA is the use of two
types of bosons: an s boson, with angular momentum
and parity ��=0+, and a d boson, with ��=2+ �Arima
and Iachello, 1975�. The connection to the shell model is
provided by the realization that these bosons can repre-
sent valence nucleon pairs �Arima et al., 1977�. However,
they at the same time turn out to be suitable building
blocks for the description of collective excitations in nu-
clei. One can further refine the model by including a g
boson with ��=4+, as well as p and f bosons with ��

=1− and 3−, respectively, to treat negative parity states.
One can also introduce bosons that distinguish between
proton pairs and neutron pairs �or in light or exotic nu-
clei also proton-neutron pairs�. An overview of the dif-
ferent versions of the interacting boson model can be
found in Iachello and Arima �1987�, Bonatsos �1988�,
Casten and Warner �1988�, and Frank and Van Isacker
�1994�. Here we mostly restrict ourselves to the simplest
version of the model: a single-component s+d interact-
ing boson model abbreviated as IBM-1.

The interpretation of s and d bosons as fermion pairs
has far reaching consequences. First, the total number of
bosons NB is fixed to half of the valence nucleon number
or half the number of valence holes or a combination of
both. So all collective states in a given nucleus involve
the same number of bosons, which is in contrast to the
phonon interpretation given in Sec. II.B, where the pho-
non number increases with the excitation �zero for the
ground state, one for the 21

+ state, etc.�. In a vibrational
nucleus, the ground state will be made out of NB bosons
of type s, the first excited state contains NB−1 bosons of
type s and a single boson of type d, and so on for higher
excitations.

Second, while the electromagnetic transitions between
excited states in the collective model are insensitive to
the shell structure, in the IBA they are naturally de-
scribed by an appropriate combination of creation and
annihilation operators of the s and d bosons. This leads
to NB-dependent transition matrix elements which re-
flect the effects of a finite valence space.

Third, the use of s bosons, absent from the phonon
approach, has major consequences for a group theoreti-
cal treatment of the nuclear many-body problem. We
have seen in Secs. II.B and III.A that vibrational as well
as rotational spectra find a natural explanation in terms
of very simple models, which can be incorporated in a

unified framework in the geometric collective model.
The same is possible, in an elegant algebraic way, also
within the IBM-1.

Symmetry considerations have played an important
role in the development of the IBA �Iachello and
Arima, 1987�. In order to be able to implement a good
angular momentum, we redefine a general boson anni-
hilation operator b�� �where � and � are angular mo-
mentum and magnetic quantum numbers, respectively�
such that it behaves as a spherical tensor b̃��

= �−1��+�b��−��, and proceed to good angular momentum

��� generators �b�
† � b̃���

���. The d bosons, in analogy to
quadrupole phonons, can be coupled to 25 combinations

of the form �d†� d̃���� with �=0,1 ,2 ,3 ,4, which are gen-
erators of the algebra U�5�. The introduction of the
s-boson adds 11 generators of the form �s†�s��0�, �d†

�s��2�, and �s†� d̃��2�, which together with the previous
ones yield 36 generators of the algebra U�6�.

We first use the fact that U�5� is a subalgebra of U�6�
and that Hamiltonians made out of generators of this
subalgebra describe quadrupole vibrations. Moreover,
within the generators of U�5� those with �=1 are pro-
portional to the angular momentum operators, which
are generators of the O�3� rotational algebra.10 The lat-
ter subalgebra must be contained in all allowed decom-
positions of U�5� as it ensures the rotational symmetry
of the system. It turns out that in between U�5� and O�3�
another nested subalgebra occurs, O�5�, made by the
generators with �=1 and 3.

Besides the U�5��O�5� chain, the U�6� algebra turns
out to have two more decompositions ending with O�3�.
The first one contains SU�3� and describes an axially
symmetric rotor. The other chain of algebras includes
O�6��O�5�, which turns out to describe axially unstable
�
-soft� rotors. The model thus contains three basic
structural limits describing �i� vibrational nuclei, �ii� axi-
ally symmetric rotors, and �iii� 
-soft rotors. These limits
are essentially the same as in the geometric model, but
in the IBM-1 they are determined by the above-
described algebraic reductions.

Associated to the algebras are the groups describing
the corresponding transformations. These define basis
states which transform as irreducible representations �ir-
reps� of the groups and provide relevant quantum num-
bers of the problem. For the IBM-1, they can be sum-
marized as follows:

U�6� � U�5� � O�5� � O�3� � O�2�
↓ ↓ ↓ ↓ ↓

�NB� nd � ��L M

,

U�6� � SU�3� � O�3� � O�2�
↓ ↓ ↓ ↓

�NB� ��,�� KLL M

, �3.13�

10Although we consider here the special transformations with
determinant +1, the notation is usually O�n� instead of SO�n�.
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U�6� � O�6� � O�5� � O�3� � O�2�
↓ ↓ ↓ ↓ ↓

�NB� � � ��L M

.

Here �� and KL stand for the so-called missing labels
following from the ambiguity of the O�3� embedding.
Selection rules for the quantum numbers contained in
these formulas can be found in Iachello and Arima
�1987�.

The subalgebras U�5�, SU�3�, O�6�, O�5�, and O�3�
yield one linear and five quadratic Casimir operators.
Denoting by Cn�G� the nth-order Casimir operator of
the group G, the general Hamiltonian with up to two-
body interactions,

HIBM1 = E0 +  dnd + 	
�1�2�1��2��

v�1�2�1��2�
���

†�b�1

† � b�2

† ����

� �b̃�1�
� b̃�2�

����
‡

�0�, �3.14�

can be rewritten in the following way:

HIBM1 = E0� + aC1�U�5�� + bC2�U�5�� + cC2�O�5��

+ dC2�O�3�� + eC2�SU�3�� + fC2�O�6�� .

�3.15�

In these expressions, �v
�1�2�1��2�
��� � and �a , . . . , f� represent

alternative �equivalent� sets of external control param-
eters, while E0 and E0� are constants.

The chains of subalgebras in Eq. �3.13� define three
standard dynamical symmetries11 of the IBM-1, which
are denoted as U�5�, SU�3�, and O�6�. Additional sym-
metries SU�3� and O�6� can be obtained from phase
transformations of s- and d-boson operators �see below�.
In each of the dynamical-symmetry limits, the Hamil-
tonian �3.15� is expressed solely as a sum of commuting
Casimir operators belonging to the respective group
chain. As a consequence, analytical formulas for the ei-
genvalues can be written in terms of the conserved
quantum numbers associated with the chains �Iachello
and Arima, 1987�. The dynamical symmetries corre-
spond to integrable Hamiltonians and their associated
spectra provide the benchmarks for shapes. General
Hamiltonians are not analytically soluble but can be

solved numerically in a basis provided by any of the
three limits. These Hamiltonians describe transitions be-
tween the shapes.

Another general parametrization of the IBM-1
Hamiltonian is given by the following multipole form
�Iachello and Arima, 1987�:

HIBM1 = E0� +  dnd + c1�L · L� + !�Q" · Q"�

+ !3�T�3� · T�3�� + !4�T�4� · T�4�� , �3.16�

where the center dot represents a scalar product �A ·B�

�−1���2�+1�A����B�����0� and

L = �10�d† � d̃��1�, �3.17�

Q" = s†d̃ + d†s + "�d† � d̃��2�, �3.18�

T��� = �d† � d̃���� �3.19�

the angular momentum vector, the quadrupole deforma-
tion tensor, and an auxiliary set of tensors of order �,
respectively. The parameter " in the quadrupole tensor
�3.18� is usually restricted to 0� �"���7/2. Within the
so-called consistent-Q formalism, the same value of " is
used to define both the quadrupole interaction and the
quadrupole transition operators �Warner and Casten,
1982; Lipas et al., 1985�,

TE2 = qQ", �3.20�

where q is an effective boson charge adjusting absolute
units for the transition rates. The sign of " is connected
with the deformation type. The value "=−�7/2 is used
in the SU�3� limit, which describes prolate rotors,
"=+�7/2 is used in the SU�3� limit, which describes ob-
late rotors, and "=0 is used in the O�6� limit, which
describes 
-unstable rotors.

From the structural viewpoint, the terms �nd and
��Q" ·Q"� in the multipole expansion �3.16� are the most
important ones. In Sec. IV, the Hamiltonian will be fur-
ther simplified to either

H"��� = a��nd −
1 − �

NB
�Q" · Q"�� �3.21�

or alternatively

H"�#� = c��1 − #�nd −
#

4NB
�Q" · Q"�� , �3.22�

where NB in the denominators ensures the appropriate
�for NB$1� relative scaling of one- and two-body terms.
These parametrizations are related by a transformation

� =
4 − 4#

4 − 3#
, a = c�1 −

3
4

#� �3.23�

and will be used interchangeably, as they are in the lit-
erature.

The simple Hamiltonians �3.21� and �3.22� are of the
same type as the Hamiltonian of the well-known Ising
model �Ising, 1925�. They have two incompatible parts.
Here the first part leads to spherical �vibrational� solu-

11The concept of dynamical symmetry �Iachello, 1979, 2006;
Bohm et al., 1988� is a generalization of the invariant symme-
try. A system possessing an invariant symmetry under trans-
formations of group Ginv has a Hamiltonian, which can be
written as a function of the Casimir operator of Ginv and there-
fore commutes with all its generators. On the other hand, a
system possessing a dynamical symmetry given by a chain
G1�G2� ¯ �Ginv has a Hamiltonian expressed as a function
of Casimir invariants of all the groups involved. The Casimir
operators commute with each other and hence also with the
Hamiltonian, but not with generators of all groups. Only the
last group Ginv represents the invariant-symmetry group since
its generators commute with all the Casimir operators.
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tions while the second part drives the system into a de-
formed �rotational� solutions. The parameter � or # con-
trols the transition between these types of dynamics. As
mentioned, the parameter " selects the form of the de-
formed solution, going from prolate over 
 soft to oblate
shapes. The parameters a or c provide just an appropri-
ate energy scale and as such they are irrelevant for the
shape. So the above simplified parametrizations have
just two essential control parameters.

A convenient representation of the Hamiltonians
�3.21� and �3.22� is in the form of a triangle, in which the
three corners correspond to the U�5�, SU�3�, and SU�3�
dynamical symmetries, while O�6� is in the middle of the
�=0�#=1� side �Jolie et al., 2001�. It is shown in Fig. 13.
This triangle doubles the traditional IBM-1 triangle with
vertices corresponding just to the standard dynamical
symmetries U�5�, SU�3�, and O�6� �see Casten �1981��.
For simplicity, we use the traditional triangle in the fol-
lowing �as in Fig. 14� whenever the path of structural
evolution does not cross the prolate-oblate transition.

The SU�3� symmetry can be derived from SU�3� by a
similarity transformation keeping the energy spectrum
unchanged �Shirokov et al., 1998�. Indeed, the upper and
lower halves of the extended triangle in Fig. 13 �Hamil-
tonians with � or # fixed and "= ± �"�� differ just by a
relative sign between the s† and d† operators. Note that
an analogous similarity transformation �with a relative
phase factor between s† and d† equal to ±i� is applicable
only if the term C2�SU�3�� is missing in the Hamiltonian
�3.15� �Shirokov et al., 1998; Cejnar and Geyer, 2001�.
The corresponding isospectral partners are not included
in the forms �3.21� and �3.22�. In a more general param-

etrization, this transformation leads to the presence of
an additional dynamical symmetry O�6� �Van Isacker et
al., 1985�. Some consequences of the additional symme-
tries were discussed by Kusnezov �1997� and Cejnar and
Jolie �1998a�.

2. Coherent state formalism and phase transitions

The interacting boson model and its solutions are for-
mulated in terms of algebras. The shape of the nucleus,
on the other hand, is based on geometry. We therefore
need to extract geometry from the IBA algebra. An ef-
ficient way how this can be achieved was proposed by
Gilmore �1979� and subsequently applied by Dieperink
and Scholten �1980�, Dieperink et al. �1980�, and Feng et
al. �1981�. The method, which relies on the so-called
coset spaces and makes use of algebraic coherent states
�Zhang et al., 1990�, applies not only to the interacting
boson model in the form presented in Sec. III.B.1 but
also to its various clones with the d boson replaced by
bosons of other types �Cejnar and Iachello, 2007�; ex-
amples include the well-known one-dimensional Lipkin
model �see, e.g., Vidal et al. �2006��, as well as two- and
three-dimensional vibron models of molecular physics
�see, e.g., Dusuel et al. �2005b� and Pérez-Bernal and
Iachello �2008��. The use of algebraic coherent states in
these models leads to a clear and physically transparent
result formulated by means of boson condensate states
�Bohr and Mottelson, 1980; Ginocchio and Kirson,
1980a, 1980b�.

A condensate must satisfy the requirement that all NB
bosons present in the system happen to be in the same
single-particle state, which in the IBM-1 case is given by
a specific superposition of the s and d bosons. This
means

�3.24�

Here, �0� is the boson vacuum and as, a� �with �

FIG. 13. An extended structural triangle of the interacting bo-
son model. Parametrizations from Eqs. �3.21� and �3.22� are
schematically shown �the � and # axes are not in scale�. The
dots represent dynamical symmetries. Relevant shape phases
and transitions between them are shown, the converging lines
at #�0.5 schematically indicating the regions of spherical-
deformed �prolate or oblate� shape coexistence.

FIG. 14. The IBM-1 symmetry triangle. Left: Quantities � and
� �related to # and "� and the idea of orthogonal crossing
contours. Right: Contours of constant R4/2 for NB=10.
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=−2, . . . ,+2� stand for a “vector” of complex coefficients
having a norm 
a
2= �as�2+	��a��2.

It has been shown �Ginocchio and Kirson, 1980b� that
for a growing boson number NB condensate states are
increasingly good correlates of the IBM-1 ground-state
wave function, and in the infinite-size limit they capture
all its key properties. Clearly, the state �3.24� in general
combines constituents with different angular momenta
while the actual ground state must have a good angular-
momentum quantum number L. The agreement of the
results based on this technique with those of exact di-
agonalization is imperfect in the finite-NB cases, which
can be improved by projecting the condensate state onto
L=0 before the variation of coefficients �Dobeš, 1985,
1990�. However, the projected and unprojected results
converge for NB→�, as follows from calculations using
the 1/NB expansion technique �Kuyucak and Morrison,
1988�, and in this limit the condensate-state approxima-
tion becomes exact.

Condensate states provide an intuitive distinction of
phases of the bosonic system. If the NB→� ground state
is represented by a pure condensate of s bosons, it is
clear that the spherical symmetry of the system in its
intrinsic frame is preserved. This corresponds to a
spherical equilibrium shape. If, on the other hand, the
system in its ground state condenses in a mixture of s
and d bosons, then the spherical symmetry in the intrin-
sic frame is spontaneously broken. In this case we are
dealing with a deformed equilibrium shape.

These considerations can be elaborated more quanti-
tatively. Exploiting the freedom of choosing the overall
phase factor in Eq. �3.24�, we may assume as real. This
coefficient may be then absorbed in the normalization
factor, as=1, while the remaining coefficients can be pa-
rametrized as follows: a�=�

�
* + ip� It turns out that the

components � and p in this decomposition �their real or
imaginary parts� are directly associated with coordinates
and momenta, respectively, in the classical limit of the
IBM-1 Hamiltonian �Hatch and Levit, 1982�. The new
components satisfy the usual relations �

�
* = �−���−� and

the same for p, which are required for the quadrupole
tensors of coordinates and momenta in the geometric
collective model.

The above findings are important since they enable
one to bridge the gap between the geometric collec-
tive model and the interacting boson model. This
can be done by evaluating the expectation value
�NB,a�H�NB,a�
F of a general Hamiltonian in the co-
herent state �3.24�. The asymptotic expression Hcl�p ,��
=limNB→� F�NB,p ,�� /NB can be associated with the
classical version of the IBM-1 Hamiltonian written in
terms of coordinates � and momenta p.

To find the ground state in the NB→� limit �which in
the IBA corresponds to the classical 	→0 limit�, we set
the momenta p to zero �classically, the ground state cor-
responds just to absence of motion�. For coordinates �,
the same parametrization as that in Eq. �3.1� can be
used, yielding the IBM-1 counterparts of deformation
parameters � and 
. These parameters may be directly

read out from Eq. �3.24� with the condensate boson

�0
† =

1
�1 + �2�s† + � cos 
 d0

† + � sin 

d+2

† + d−2
†

�2
� .

�3.25�

The IBM-1 and GCM values of the deformation param-
eters � ,
 are related by a simple proportionality relation
�IBM=c�GCM �while 
IBM=
GCM�, where c�0 is a con-
stant.

The above-described procedure yields the following
potential energy surface V
�F�p=0:

V = E0 +
A�2 + B�3 cos 3
 + C�4

�1 + �2�2 . �3.26�

Here the parameters E0, A, B, and C depend on the
specific form of the IBM-1 Hamiltonian. For the Ha-
miltonian �3.21� with a=1, for instance, one gets
E0=−5�1−�� and

A = NB� − �1 − ���4NB + "2 − 8� ,

B = 4�2
7NB�1 − ��" , �3.27�

C = NB� − �1 − ���� 2
7NB + 5

7�"2 − 4� ,

where we assumed NB$1.
The similarity of Eq. �3.26� with the corresponding

geometric potential �3.2� is obvious. The only difference,
i.e., the denominator, results from the normalization
of coherent states and reflects the finiteness of the
IBM-1 spectrum. Indeed, the potential �3.26� has a finite
asymptotic value for �→�, which means that the spec-
trum of bound states terminates at a certain maximal
energy �which may differ from the asymptotic value�.

The ground state can be obtained through the mini-
mization of the potential �3.26� in � and 
. This proce-
dure yields essentially the same phase structure as al-
ready described for the geometric model �Sec. III.A.1�.
We therefore do not need to repeat all the steps here
and may just refer to Fig. 12. Note that the location of
the spinodal curve on the right is slightly different for
Eq. �3.26� than for Eq. �3.2�, but this is not so important
here. Otherwise, all structures remain at the same
places.

Figure 12 with the bosonic content receives a qualita-
tively new interpretation. The spherical and deformed
ground states �on the right- and left-hand sides of the
critical parabola� have the following forms:

��0� � �s†�NB�0�, ��0� � �s† ± �0d0
†�NB�0� , �3.28�

respectively, where �0 is the value of the deformation
parameter that minimizes the potential. We employed
the fact that the minimum is either at 
0=0 or at 
0=�
�cf. footnote 7�, therefore satisfying the condition sin 
0
=0. The sign in the second formula of Eq. �3.28� distin-
guishes the cases with B�0 and B�0, respectively,
yielding prolate �sign %� or oblate �sign &� shapes sym-
metric with respect to the axis z. If B=0, the condensate
can be taken with 
 either 0 or �, but due to the circular
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degeneracy of the potential minimum consistent results
are obtained using integration of the condensate state
over 
,

��0� � �
0

�/3

d
 sin 3
 �0
†��0,
�NB�0� , �3.29�

that is, a projection onto good O�5� quantum number �
=0 �Ginocchio and Kirson, 1980b; Dobeš, 1990�.

In Fig. 13, the spherical, prolate, and oblate ground-
state shapes, which represent the three shape phases of
the standard IBM-1, are drawn within the extended sym-
metry triangle. Although that triangle was discussed in
Sec. III.B.1 in connection with the specific Hamiltonians
�3.21� and �3.22�, we want to stress here that it captures
the phase structure of a broad class of Hamiltonians.
This follows from the fact that Eq. �3.26� represents the
most general form of the condensate-state energy func-
tional for the IBM-1 with two-body interactions. Exten-
sions following from the use of more sophisticated ver-
sions of the model will be outlined in Sec. IV.A.

For the simplified Hamiltonian �3.21� or �3.22�, the de-
composition �3.26� together with coefficients �3.27� en-
ables one to calculate the critical values of control pa-
rameters � or # and ". In particular, the locus of critical
points for the spherical-prolate and spherical-oblate
transitions is determined by

�c �
4 + 2"2/7

5 + 2"2/7
, #c �

1

2 + "2/14
, �3.30�

with the accuracy of order O�NB
−1�. The critical point for

the prolate-oblate transition is given by

"c = 0 �for � �
4
5 and # �

1
2 � , �3.31�

independently of NB.

3. Mapping nuclei onto the symmetry triangle

The basic IBM-1 Hamiltonians �3.21� and �3.22� pro-
vide equivalent spectroscopic predictions for nuclei
whose structure is linked to arbitrary internal points of
the symmetry triangle. Here we use the Hamiltonian
�3.22� since most mapping of nuclei onto the triangle has
been done with this form. The dynamical symmetries
correspond to the vanishing of one or the other term,
along with specific choices of "=0 or ±�7/2. Interior
points represent cases where both terms play a role and
it is the competition between them that determines the
structure.

We have often discussed structural evolution in terms
of R4/2. However, clearly this is not sufficient. Solutions
of the basic geometric model depend on the relative val-
ues of coefficients in the potential energy �3.2�, most
commonly the coefficients of the terms �3.1� �cf. Fig. 12�.
Likewise, the simple IBM-1 Hamiltonian spans a two-
dimensional triangle wherein the specification of a given
point requires two coordinates. A given R4/2 value there-
fore only defines a contour in the triangle. Another ob-
servable is needed to specify a given point.

The parameter # of Hamiltonian �3.22� is related to
the ratio �d /! of the coefficients of the nd and �Q" ·Q"�
terms in the general form �3.16� by

# =
4NB

4NB +  d/!
. �3.32�

When the nd term dominates, corresponding to #→0,
spherical nuclei with vibrational structure are obtained.
When the �Q" ·Q"� term dominates, corresponding to #
→1, deformed nuclei result. The parameter " deter-
mines the 
 softness, ranging from axially symmetric
�minimum of V at 
=0� for "=−�7/2 �prolate case� to 

flat for "=0. Thus one can specify a position in the tri-
angle by two quantities, one a radius vector of length �
from U�5� to a given point and the other an angle ' of
this vector off the U�5�-SU�3� axis. This vector is shown
in Fig. 14 �left�. The values of � and ' can be directly
expressed in terms of # and ".

Now consider a given value of R4/2, say R4/2=2.5. This
is the characteristic value for O�6� arising from the ���
+3� term in the eigenvalue expression for this symmetry
�Iachello and Arima, 1987�. Thus, one point in the tri-
angle corresponding to R4/2=2.5 is the O�6� vertex, as
seen in Fig. 14 �left�. However, R4/2 may take on a value
of 2.5 elsewhere in the triangle as well. To illustrate this,
note that, along the bottom axis of the triangle, R4/2 var-
ies from 2.0 to 3.33 and therefore must pass through 2.5
at some point. The same argument applies inside the
triangle and one can draw a contour such as that shown
in Fig. 14 �left�. Other values of R4/2 produce other con-
tours, running more or less vertically in the triangle.
Note that these contours are NB dependent.

If we now can identify an observable whose contours
run more or less perpendicularly to R4/2, it should be
straightforward to use empirical values of these observ-
ables to pinpoint the approximate location of a nucleus.
Then, diagonalization of the IBM-1 Hamiltonian with
the corresponding parameters # and " produces a full set
of energy and transition rate predictions �Harder and
Tang, 1996; Chou et al., 1997, 2001; McCutchan, Zamfir,
and Casten, 2004; McCutchan, Casten, and Zamfir, 2005;
McCutchan and Zamfir, 2005�. Unfortunately, the con-
tours of most easily measurable observables tend to run
roughly parallel to the R4/2 contours. However, there is a
class of observables that does work, constructed from
energy differences of intrinsic states �cf. Sec. IV.C�. The
easiest to measure is

E02 =
E�02

+� − E�22
+�

E�21
+�

. �3.33�

E02 ranges from negative values along the bottom U�5�-
SU�3� axis �that is, the 02

+ mode is lower than the quasi-

mode�, through the zero value located along the arc of
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regularity cutting through the triangle,12 to positive val-
ues on the U�5�-O�6� side above the arc. We illustrate
the case of E02=+0.4 in Fig. 14. Thus, if we had a nucleus
with 20 valence nucleons �NB=10� with empirical values
R4/2=2.5 and E02=+0.4, the crossing of these contours
gives an excellent starting point for IBM-1 calculations.

This method �McCutchan and Casten, 2006� is often
called the technique of orthogonal crossing contours.
Generally, since Eq. �3.33� involves a difference of in-
trinsic excitation energies rather than a ratio, some tun-
ing of parameters is often needed when adjusting the
scale of the Hamiltonian to reproduce the scale of ex-
perimental excitation energies. If needed, additional
terms such as one in L2 can be added to the Hamiltonian
of Eqs. �3.21� and �3.22� although such a term is usually
not needed or is quite small. In any case, it does not
affect the wave functions or transition rates. As an ex-
ample of this approach, Fig. 15 shows the comparison of
calculated and experimental level schemes for 186Pt.
Clearly, excellent levels of agreement can be obtained.
We return to this approach in Sec. IV.B.

We note for the later discussion that calculations with
the simplified IBM-1 Hamiltonians �3.21� or �3.22� near
the critical points for realistic boson numbers �NB�10�
do not give spectra typical of actual transitional nuclei
�e.g., they give R4/2�2.4�. The locus of R4/2�3 is quite
far off the phase-transitional line for such NB but ap-
proaches it as NB→�.

C. Fermionic approaches

The theoretical framework for the description of
quantum phase transitions in nuclear shapes is not lim-
ited to the models discussed in previous sections. These
transitions also appear in some fermion models of
nuclear structure. In fact, the use of the term “phase

transition” in connection with nuclear shapes goes back
to Thouless �1960, 1961�, who worked in the context of
the Hartree-Fock theory and the random phase approxi-
mation for vibrational states. Here �our prime concern
being in the macroscopic models� we outline some re-
sults obtained in more microscopically oriented ap-
proaches. The interested reader is referred to the origi-
nal literature for a more detailed description of these
approaches.

1. Phenomenological fermion models

One of the oldest fermionic many-body models in
which the quantum phase transition has been much
studied is the Lipkin model �Lipkin et al., 1965�. The
model describes a system of NF interacting fermions oc-
cupying a pair of single-particle levels, both having the
same degree of degeneracy (�NF. Fermions on differ-
ent levels interact through a pairing type of interaction.
If the interaction strength is lower than a certain value,
the ground state of the system has the form of a single-
particle state in which all fermions are placed on the
lower level �phase A�. If, however, the interaction ex-
ceeds that value, the ground state becomes a superposi-
tion of single-particle configurations on both levels
�phase B�. We stress that the transition becomes truly
critical only in the infinite-size limit �NF ,(→��. This
phenomenon was studied by Gilmore and Feng �1978�
within the catastrophe theory for zero as well as nonzero
temperatures.

There is a tight connection of the Lipkin model with
the IBA. Indeed, the Lipkin model can be formulated in
terms of the pseudospin SU�2� algebra of fermionic op-
erators, which can be alternatively expressed �using the
Schwinger mapping� in a bosonic way. The resulting
form of the model is similar to the IBM-1 except that the
d boson is replaced by a pseudoscalar t boson �Van
Roosmalen, 1982; Vidal et al., 2006�. Using the bosonic
coherent-state formalism �see Sec. III.B.2� one arrives at
an equivalent description of the phase transition, with
the phases A and B represented by condensates in the
s-boson state and in an appropriate s+ t superposition,
respectively. Note that the Lipkin model became a use-
ful toy for testing various approximations of nuclear
physics as well as for investigating basic features of
quantum phase transitions in many-body systems �see,
e.g., Heiss �1988�, Dusuel et al. �2005b�, Leyvraz and
Heiss �2005�, and Arias et al. �2007��. More sophisticated
but still related models have been studied in connection
with the pairing �superconducting� phase transition in
nuclei �see, e.g., Davis and Heiss �1986�, Chen et al.
�1990�, and Bahri et al. �1998��.

Another example of a fermionic model in which quan-
tum phase transitions can be described exactly is the
so-called fermion dynamical symmetry model �FDSM�
�Ginocchio, 1980; Wu et al., 1986�. Designed as a fermi-
onic counterpart of the IBA, the FDSM works with
nucleon pairs of angular momentum �=0 �an S pair� and
�=2 �a D pair�. This is achieved by splitting the total
single-nucleon angular momentum to pseudo-orbital

12The arc of increased regularity disclosed by Alhassid and
Whelan �1991� and Whelan and Alhassid �1993� approximately
coincides—on the deformed side of the triangle—with the de-
generacy curve for the �- and 
-bandheads �Jolie, Casten, et
al., 2004; Macek et al., 2007�. A similar effect exists also in the
geometric model �Stránský et al., 2009a, 2009b�.

FIG. 15. Illustration of IBM-1 calculations with parameters
obtained with a method closely allied to the technique of or-
thogonal crossing contours �McCutchan and Zamfir, 2005�.
The arrows represent relative B�E2� strengths.
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and pseudospin components and assuming that only one
of these components is active if two nucleons are
coupled to a pair �the passive components are coupled
to zero�. The model is formulated in an algebraic lan-
guage and possesses several dynamical symmetries,
which are different from those present in the IBA. The
infinite-size limit can be studied with the aid of algebraic
coherent states, allowing for a similar geometric inter-
pretation as the bosonic condensates studied above. A
detailed analysis presented by Zhang, Feng, and Ginoc-
chio �1988� and Zhang, Wu, et al. �1988� disclosed quan-
tum �structural� phase transitions between spherical and
deformed equilibrium shapes of the ground state. Simi-
larly as in the IBM-1 case, the transitions can be of both
first and second orders, depending on whether one deals
with the 
-rigid or 
-soft case. In contrast to the IBM-1,
however, an additional transition from axial to triaxial
shapes appears as a consequence of Pauli blocking ef-
fects �Zhang, Wu, et al., 1988�.

2. Microscopic calculations

The above-mentioned models are of a great heuristic
importance as they show that quantum phase transitions
of a rather similar nature as those observed within the
GCM and IBA can be present also in the fermionic
framework. They also allow one to perform calculations
in the infinite-size limit explicitly, with the aid of alge-
braic coherent states. On the other hand, none of these
models is sufficiently equipped for a realistic description
of complex nuclei. Finite-size signatures �precursors� of
the ground-state shape-phase transitions are therefore
sought in truly microscopic calculations using the shell
model or related approaches. Some of the relevant re-
sults were mentioned in Sec. II.C. Here we do not at-
tempt to give an exhaustive list of references to all rel-
evant works on the microscopic treatment of nuclear
shape transitions. Instead, we sample the field by point-
ing out some selected analyses, illustrating the tremen-
dous progress achieved within the last decades.

In an early work by Federman et al. �1979� the shell
model was applied to 96,98Zr nuclei, with two valence
protons and zero or two valence neutrons restricted just
to three orbitals above the inert core of 94Sr. The dimen-
sions of the Hamiltonian matrices for 0+, 2+, and 4+

states in 98Zr were between 35 and 145. In spite of these
severe limitations, the authors were able to identify the
essential factor driving the Zr nuclei to a deformed
ground-state configuration �which is manifest in 100Zr�,
namely, the residual interaction between specific proton
and neutron orbitals �see Sec. II.C�.

The above simple calculation can be compared with a
much more recent large-scale shell model analysis by
Shimizu et al. �2001� of the shape transition in 138–150Ba
isotopes. The entire major shells 50�Z�82 and 82
�N�126 were taken into account for 6 valence protons
and 0–12 valence neutrons. To bypass the generic prob-
lem of an intractable number of basis states, a sophisti-
cated Monte Carlo technique was used, which allowed
them to select important configurations out of the whole

Hilbert space and to efficiently approximate exact diago-
nalization of the full shell model Hamiltonian. Realistic
two-body residual interactions were employed and pair-
ing correlations were taken into account. The calcula-
tion nicely reproduced basic trends in the spectra of the
ground-band energies as well as the mass dependence of
the B�E2:21

+→01
+� value, showing a transition from vi-

brational to rotational spectral attributes within the
chain of Ba isotopes.

In some cases, more instructive than evaluating the
spectrum and transition rates for a given nucleus is the
determination of the potential energy surface in the
plane of quadrupole deformation parameters �if the 

degree of freedom is omitted, we speak about a poten-
tial energy curve �PEC��. Such surfaces �or curves� are
calculated by a series of variational evaluations of the
lowest energy of the many-body system under changing
constraints on the average quadrupole moment of the
spatial density distribution. This approach was chosen,
for example, by Fossion et al. �2006�, who used the self-
consistent relativistic Hartree-Fock-Bogoliubov theory
to calculate PECs for Pd, Xe, Ba, Nd, Sm, Gd, and Dy
isotopic chains and for some other heavy nuclei. The
resulting curves display transitions between spherical
and deformed �or between prolate and oblate� configu-
rations. A similar study of a large sample of isotopic
chains in various transitional regions was presented by
Robledo et al. �2008�, who extended the calculations to
explore also the 
 degree of freedom.

For a quantitative description of transitional nuclei,
however, the mean-field calculations involving the stan-
dard treatment of pairing correlations are not sufficient.
One needs to consider effects such as fluctuations of the
deformation parameters, the restoration of rotational
symmetry, and particularly the projection on a fixed par-
ticle number. Recently Nikšić et al. �2007� employed the
relativistic density-functional formalism extended to ad-
equately treat these effects to reproduce the shape tran-
sition in 142–152Nd isotopes. The results not only show
the crossover from vibrational to rotational PECs and
spectral characteristics but also indicate that the PEC of
the transitional isotope 150Nd exhibits a relatively flat
potential well in the variable � �see Fig. 16�. This con-
forms with the assumption of the critical-point solution
called X�5� for a first-order phase transition, as discussed
in Secs. V.A.1 and V.A.2.

To simplify computations based on complex micro-
scopic approaches, the constraint of a strict axial symme-
try is often imposed, including the last cited work. How-
ever, Caprio �2005� studied �−
 coupling effects in the
kinetic energy term of the Bohr Hamiltonian and, in
particular, the effects of 
 stiffness on the predicted en-
ergies and transition rates and found considerable sensi-
tivity to triaxial shapes. The importance of the 
 degree
of freedom was also examined on the microscopic level
for the Nd isotopic chain by Rodríguez and Egido
�2008�, who showed that it may play a substantial role in
transitional nuclei, although it does not modify the inter-
pretation of Fig. 16.

2176 Cejnar, Jolie, and Casten: Quantum phase transitions in the shapes of …

Rev. Mod. Phys., Vol. 82, No. 3, July–September 2010



The prospect of a systematic solution of this problem
was outlined by Nikšić et al. �2009�. They introduce a
general geometric Hamiltonian and exploit the extended
relativistic density-functional theory to determine all its
unknown inputs �mass parameters, moments of inertia,
and the collective potential� as functions of both quad-
rupole shape variables � and 
. The resulting geometric
Hamiltonian is then solved numerically to obtain collec-
tive spectra and transition rates, results of these calcula-
tions being compared with experimental data in well-
deformed Gd nuclei. Although these calculations were
not performed in the shape-transitional region, this
work opened the route for future studies and has been
followed up by Li et al. �2009�, who analyzed shape tran-
sitions in the Nd isotopes, including triaxial shapes. They
confirmed the rapid structural changes at N=90 and
found that the phase transition is sharpest for 150Nd
�152Sm and 154Gd, in their calculations, are slightly past
the critical point� where the resulting potential shows a
rather flat bottom for a prolate shape, similar
to X�5�. Other recent microscopic calculations can be
found in Meng et al. �2005�, Sheng and Guo �2005�, and
Yu et al. �2006�.

Finally, we note a new approach �Nomura et al., 2008�
which used a Skyrme Hartree-Fock plus BCS calculation
on the microscopic side to guide the choice of param-
eters for a proton-neutron IBA Hamiltonian on the col-
lective side. This offers preliminary indications that it
might be possible to blend microscopic and macroscopic
approaches to benefit from their complementarity in
starting from nucleonic and many-body degrees of free-
dom, respectively.

To conclude this section, we note that fully micro-
scopic calculations of the structure of heavy nuclei based
on reliable nucleon interactions are still an ultimate task
for future studies. Since progress in this field has accel-
erated dramatically in the past couple of years, one may
also expect a rapid increase of knowledge on the nature

of nuclear shape transitions. We should stress that be-
cause the finite size of atomic nuclei is naturally built
into the microscopic treatment, such calculations can
never show really discontinuous shape transitions as
those observed in the macroscopic models. Below, we
focus on the description of shape-transitional nuclei by
means of the IBA and GCM.

IV. SHAPE TRANSITIONS IN THE INTERACTING BOSON
MODEL

In this section, the interacting boson model �intro-
duced in Sec. III.B� will be applied in the description of
atomic nuclei located in the shape-transitional regions of
the structural triangle in Fig. 13. Section IV.A presents
some introductory concepts and discusses the possibili-
ties to detect the QPT behavior in finite nuclear systems.
In Sec. IV.B, we focus on the specific signatures of vari-
ous types of shape phase transitions in nuclei and their
comparison with the IBM-1 predictions. Finally, Sec.
IV.C presents a theoretical interpretation of these results
in terms of quasidynamical symmetries. Application of
the geometric model in transitional nuclei will be pre-
sented in Sec. V.

A. Finite-size precursors of quantum phase transitions

We use the simple IBM-1 Hamiltonian �3.21� to de-
scribe the spectra of nuclei going across spherical-
deformed and prolate-oblate phase transitions. The in-
teracting boson model deals in its actual application to
nuclei with a limited number of bosons NB, typically be-
tween 4 and 20. Therefore, strictly speaking, the signa-
tures of quantum phase transitions that we may observe
in nuclei are only precursors of real phase transitions,
which would only occur for an infinite size of the nucleus
�hence infinite number of bosons�.13 This property is
common also to many other quantum systems, but in the
case of nuclei we deal with a genuinely quantum object
having at the same time numerous mesoscopic at-
tributes.

Calculations allow a detailed study of phase-
transitional behavior using a continuous variation of the
control parameters and high boson numbers, making the
precursors of the shape phase transitions more pro-
nounced �Frank, 1989; Casten et al., 1999; Cejnar and
Jolie, 2000�. As an example consider the Hamiltonian
�3.21� with �=0. In this case the Hamiltonian contains
one free parameter ", which we vary from the SU�3�
value �"=−�7/2� over the O�6� value �"=0� to the SU�3�
value �"=+�7/2�. In an inset of Fig. 17 the absolute en-
ergy of the ground state is shown. In the O�6� limit, i.e.,
at "=0, the energy of the ground state makes a kink
whose sharpness increases with NB. The first derivative

13A discontinuous change of the ground-state properties in a
finite system is, in fact, possible if there exists a real crossing of
the two lowest energy eigenstates �see, e.g., Arias, Dukelsky,
and García-Ramos �2003��.

FIG. 16. �Color online� Potential-energy curves for axially de-
formed shapes �q is the mass quadrupole moment� calculated
within the covariant density-functional formalism for a chain
of Nd isotopes. From Nikšić et al., 2007. Extended calculations
�Rodríguez and Egido, 2008; Li et al., 2009� indicate that the
oblate “minima” �q�0� are saddle points in the �-
 plane.
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of the ground-state energy becomes discontinuous when
NB goes to infinity, indicating the first-order transition
between prolate and oblate shapes. In the other inset of
Fig. 17 the location of the potential energy minimum in

 �order parameter for the prolate-oblate transition� is
drawn as a function of ", showing a flip from 
0=0 to

0=� /3 �or, equivalently, to 
0=� �see Fig. 11�� when "
passes through zero.

A useful quantity to probe the critical character of
a particular transition is the wave function entropy W
=−	i�ai�2ln �ai�2, which quantifies the fragmentation of a
given eigenvector ���=	iai��i� in a selected basis ��i�
�Cejnar and Jolie, 1998a, 1998b�. For the prolate-oblate
phase transition, the SU�3� wave function entropy
W0

SU�3� measuring the spread of the ground state ��0� in
the SU�3� basis is most convenient. In the main panel of
Fig. 17 we show the dependence of r0

SU�3�� �exp�W0
SU�3��

−1� on ". While r0
SU�3�=0 implies perfect localization of

the ground state in the SU�3� basis, the normalization is
chosen so that the case r0

SU�3��1 corresponds to a com-
pletely random overlap �obtained as an average for a
randomly generated basis�. We observe that the entropy
exhibits a steplike increase around "=0, meaning that
the wave function of the ground state gets spread signifi-
cantly in the SU�3� basis just in a vicinity of the first-
order critical point. The entropy in the SU�3� basis
would yield a complementary picture.

The control parameter for these changes is the value
of " in the quadrupole operator. This brings in a subtle
point. In a standard situation, the control parameter rep-
resents a linear weight factor between two competing
parts of the Hamiltonian governing the phase transfor-
mation. Although linearity is not a necessary condition,
it facilitates the analysis of the QPT effects �see, e.g.,
Cejnar and Jolie �2009� and Sec. VI.B�. This is fulfilled
for the dependence on � but not for ", which enters the
Hamiltonian �3.21� quadratically. Nevertheless, a linear

dependence is recovered in a local regime since near
O�6� one obtains

H = −
a

NB
�Q0 · Q0 + "�Q0 · T�2� + T�2� · Q0� + O�"2�� ,

�4.1�

where Q0 �more clearly, Q"=0� and T�2� are defined in
Eqs. �3.18� and �3.19�, respectively.14

Although the QPT behavior is seen in the evolution of
the ground state, it is useful to see the dynamics of the
whole spectrum in the transition through the critical
point. Figure 18 shows absolute energies of all 0+ eigen-
states of the Hamiltonian �3.21� for NB=30 for three
paths in the parameter plane: the one with "=−�7/2 for
the prolate-spherical transition �upper panel�, the one
with �=0 for the prolate-oblate transition �middle
panel�, and the one with "=0 for the 
-unstable-
spherical transition �lower panel�. Locations of the dy-
namical symmetries at the beginning and end of each
trajectory are indicated.

One observes the phase transitions between spherical
and deformed shapes around �=0.8, where the ground-
state energy in the upper and lower panels suddenly
becomes negative �on the deformed side�. Also observ-
able is the difference between first- and second-order
phase transitions �upper and lower panels, respectively�,
whereby the latter exhibits a much smoother depen-
dence. This is more clearly demonstrated in the upper
and lower insets of Fig. 18 by the peaks of the second
derivative of the ground-state energy. The quantity c1
�−�d2E0 /d�2, displayed in the insets for NB increasing
from 10 to 80, is significant for the first- and second-
order transitions. While the NB→� limit of c1 has a sin-
gularity of the �-function type in the first-order transi-
tion, it shows just a discontinuity in the second-order
transition. For finite NB, the observed dependence is al-
ways smooth and we see that the second derivative of E0
acts as a “magnifying glass” strongly emphasizing devia-
tions from the infinite-size limit.

Since all states shown have the same angular momen-
tum, there are some interesting effects connected to the
symmetries present. At the four dynamical symmetry
points some levels can cross without interaction as these
points are characterized by good quantum numbers.15

Especially at the U�5� dynamical symmetry large degen-
eracies are observed due to the absence of anharmonic

14Since " occurs in Eq. �4.1� in both linear and quadratic
terms, the Hamiltonian is not a simple mirror reflection around
"=0. On the other hand, the "�0 and "�0 halves of the
dependence are connected by a unitary transformation
�s† ,d†�� �s† ,−d†�, which ensures complete symmetry of the
energy spectrum. This is a special case of the parameter sym-
metry discussed in Sec. III.B.1.

15Crossing of levels Ei and Ej requires that the difference of
the respective diagonal elements of the Hamiltonian matrix
vanishes simultaneously with the nondiagonal matrix element,
which is unlikely except if the interaction of levels is zero due
to symmetry constraints �von Neumann and Wigner, 1929�.

FIG. 17. The prolate-oblate transition for the Hamiltonian
�3.21� with �=0. The main panel shows an exponential of the
SU�3� wave function entropy �see text� for NB=30. Insets: The
ground-state absolute energy for NB=10 and 40, and the evo-
lution of the shape parameter 
.
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terms in the Hamiltonian. At O�6� in the middle panel,
avoided level crossings occur when " differs from zero,
but most levels are also nondegenerate at "=0. Around
this point it is clear that the ground state and the first
excited state interchange character and one can follow
each state through its mixing with several states.

On the ��0.8 side of the second-order critical point
of the O�6�-U�5� transition, in the lower panel of Fig. 18,
one observes a bunching of levels with real crossings
also present. The crossings are due to the fact that �, the
O�5� quantum number called seniority, is preserved
along the whole path between O�6� and U�5�. The level

dynamics for this transition can then be studied as a
function of � �Heinze et al., 2006�. Such an analysis
shows that levels with the same values of � exhibit a
series of avoided crossings located in the bunching re-
gion. The sharpness of avoided crossings increases with
decreasing �. As discussed in Sec. VI.C, these phenom-
ena indicate nonanalytic evolutions of individual excited
states in the limit NB→� �Cejnar et al., 2006; Macek et
al., 2006�. It can be shown that the bunching demarcates
a border between the parts of the spectrum related to
the limiting dynamical symmetries; while the U�5�-like
part is located above the bunching, the O�6�-like part
resides below it.

We now focus our attention to other observables that
can be used to search for shape phase transitions in nu-
clei. Figure 19 shows some of observables discussed in
Sec. II.B as functions of both � and " for NB=5 and 15,
namely, the energy ratio R4/2, the quadrupole moment
Q�21

+� of the first excited state, and a strength B�E2:22
+

→21
+� of the E2 transition between the first and second

2+ states. The locations of the prolate-oblate and
spherical-deformed transitions are clearly observed as
the places of sudden changes of the observables. While
R4/2 illustrates well the three different regions, it does
not provide a unique signature for the determination of
the deformation type. This can be achieved using Q�21

+�
displayed in the middle panel of Fig. 19. The quadrupole
moment of the first excited 2+ state is directly propor-
tional to the ground-state order parameter �0 when us-
ing the sign convention introduced in Sec. III.B.2.
Therefore the middle panel shows the abrupt change in
the order parameter, which flips from zero to positive or
negative values at the spherical-deformed phase transi-

FIG. 18. Calculated absolute energies �arbitrary units� of all 0+

states of the Hamiltonian �3.21� as a function of the respective
control parameter for the prolate-spherical �top�, prolate-
oblate �middle�, and 
-soft-spherical �bottom� transitions for
NB=30. The upper and lower insets show the quantity c1 �see
text� in arbitrary units for NB=10, 20, 40, and 80 increasing
from lower to higher curves.

FIG. 19. Calculated values of R4/2, Q�21
+�, and B�E2:22

+→21
+�

for the Hamiltonian �3.21� with NB=5 �left� and NB=15 �right�.
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tion and from negative to positive at the prolate-oblate
phase transition. The third observable, the B�E2:22

+

→21
+�, peaks sharply at the prolate-oblate phase transi-

tion. It shows almost exactly the opposite behavior as
the R4/2 ratio. While for NB=5 the dependence of all
observables at the phase transitions is rather smooth,
already the use of 15 bosons makes the changes much
sharper.

Several studies have used calculations with high boson
numbers to analyze the QPT precursors in the interact-
ing boson model �see, e.g., Cejnar and Jolie �2000�,
Arias, Alonso, et al. �2003�, Arias, Dukelsky, and García-
Ramos �2003�, Cejnar et al. �2003, 2005, 2007�, Rowe
�2004a�, García-Ramos, Dukelsky, and Arias �2005�,
Pan, Zhang, and Draayer �2005�, Turner and Rowe
�2005�, Vidal et al. �2006�, and Williams et al. �2008��.
These works are reviewed by Cejnar and Jolie �2009�
and will be discussed in Sec. VI.B.

B. Description of structural evolution in the symmetry
triangle

So far we have mostly discussed the results at large
values of NB, for which the QPT signatures are most
pronounced. In this section, the experimental evidence
of shape phase transitions in real nuclei will be analyzed,
hence calculations at low NB become more relevant.

1. Signatures of first-order phase transitions

Since the early days, the IBA was used not only to
describe nuclei �such as 110Cd, 196Pt, or 156Gd� that con-
stitute specific realizations of the dynamical symmetries
�3.13� but also as a tool providing concrete predictions
for nuclei located between the symmetry limits. The
phase-transitional character of structural changes inside
the symmetry triangle soon became an important issue
�Dieperink and Scholten, 1980; Dieperink et al., 1980�.
The first work on a systematic comparison of IBM-1 cal-
culations with experimental data for the transitional re-
gion between U�5� and SU�3� dynamical symmetries was
by Scholten et al. �1978�. They studied in particular the
samarium isotopes as examples of nuclei showing the
spherical-deformed transition. It was found that 152Sm is
located indeed close to the transitional region, some
consequences being later discussed �already in the QPT
context� by Casten et al. �1998�, Iachello et al. �1998�, and
Jolie et al. �1999�. Subsequent experimental studies,
which will be described in Sec. V in connection with the
X�5� critical-point solution, showed that this was the
case for several N=90 isotones �McCutchan, Zamfir, and
Casten, 2005�.

Detailed IBM-1 calculations of rare earth nuclei were
done by García-Ramos et al. �2003�. Chains of Nd, Sm,
Gd, and Dy isotopes were fitted using the simple form
�3.21� as well as a more general IBM-1 Hamiltonian.
Good descriptions for the excitation energies and the
B�E2� values were obtained together with the two-
neutron separation energies S2n. The latter are extracted
from the calculated absolute energies E0 of the IBA

ground state for the two nuclei differing by two neu-
trons; therefore they can be considered as direct signa-
tures of the QPT behavior �Dieperink et al., 1980�. If �
and �� stand for the model control parameters �or sets of
parameters� corresponding to both nuclei, while NB and
NB+1 are the associated boson numbers �for simplicity
we assume nuclei below the midshell�, the two-neutron
separation energy is obtained using S2n=E0��� ,NB+1�
−E0�� ,NB�+�, where � is a constant shift adjusting the
absolute energy. This yields

S2n � � +
�E0

�NB
+

�E0

��
��� − �� . �4.2�

The calculated results �obtained by fitting the model
parameters � with respect to specific low-energy observ-
ables in each nucleus� are shown in Fig. 20 along with
experimental values. Since the dominant dependence of
E0 on NB is quadratic, the first two terms of Eq. �4.2�
yield a smooth roughly linear decrease of S2n with in-
creasing neutron number N �or mass number A�. This is
in agreement with the data. However, one expects an
irregular dependence of S2n at the first-order QPT
points, where the last term of Eq. �4.2� is discontinuous
in the infinite-size limit. Indeed, the experimental and
theoretical plots show well distinguished “plateaux,”
where the decrease of the separation energy with A is
interrupted. As explained in Sec. II.B.3, these plateaux
indicate the gain of energy due a rapid onset of defor-
mation.

The behavior of other observables also gives informa-
tion on the spherical-to-deformed shape evolution. Fig-
ure 21 shows E2 strengths of the two lowest transitions
in the ground-state bands of Sm and Gd. Experimental
values are in a satisfactory agreement with the calcu-
lated ones, obtained by García-Ramos et al. �2003� using
the same values of the IBM-1 parameters as in Fig. 20.
As explained in Sec. II.B, the observed rise of B�E2�
values for the ground-state band transitions indicates the
onset of deformation for both nuclei localized in the
critical region N�90. Various B�E2� values and other

FIG. 20. Two-neutron separation energy for Nd, Sm, Gd, and
Dy isotopes as a function of A. The IBM-1 predictions are
drawn by solid lines. From García-Ramos et al., 2003.
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observables were compared with the IBM-1 predictions
for several chains of nuclei going across the first-order
spherical-deformed phase transition by Scholten et al.
�1978�, McCutchan, Zamfir, and Casten �2004�, and
García-Ramos, Heyde, et al. �2005�.

As discussed in Sec. II.B.4, another clear indicator of
the transition to deformed shapes is a rapid increase in
the rate of the E0 transition between the ground state
and 0+ excited states on the deformed side of the tran-
sition. In the IBM-1, the E0 transitional operator is
given �Iachello and Arima, 1987� by

TE0 = As†s + B�d† � d̃��0� = ANB + � B
�5

− A�nd,

�4.3�

with A ,B adjustable coefficients, where only the second
term in the last expression is relevant. The summed E0
strength 	i�0��01

+�TE0�0i
+��2 for transitions to the ground

state from all 0+ states yields a value proportional to
��nd

2�01
+ 
�01

+�nd
2�01

+�− �01
+�nd�01

+�2, which is the dispersion
of the number of d bosons in the ground-state wave
function. Clearly, for the spherical phase we get
��nd

2�01
+ /NB=0 in the limit NB→�, while in the deformed

phase it is greater than zero. The calculation for the 02
+

→01
+ transition, performed by von Brentano et al. �2004�,

is in agreement with existing E0 data for shape-
transitional nuclei �Wood et al., 1999� as well as with a
recent measurement for 154Sm �Wimmer et al., 2009�. A
comparison of experimental and theoretical ��E0�2 val-
ues is shown in Fig. 22.

The evolution of two identical particle transfer inten-
sities �cf. Sec. II.B.4�, as well, has been proposed as a

specific indicator of shape phase transitions �Fossion et
al., 2007�. Their evaluation in the IBM-1 framework is
possible with a general form of the L=0 pair transfer
operator �Iachello and Arima, 1987�

T2n
† = As† + B†�d† � d†��2� � d̃‡�0� + C�d† � d†��0�s

+ Ds†�d† � d̃��0� + Es†s†s �4.4�

or with its various simplifications such as T2n
† �s† em-

ployed by Fossion et al. �2007�. For instance, the trans-
fer intensity to the ground state can be obtained
within the coherent-state formalism using Igs→gs� ��NB

+1,�0��T2n
† �NB,�0��2, where �0 and �0� are the ground-

state deformation parameters associated with the initial
and final nuclei characterized by boson numbers NB and
NB+1, respectively. Evaluation of the transfer amplitude
shows that the ground and excited 0+ state cross sections
are strongly sensitive to changes in � �Fossion et al.,
2007�. It has recently been shown �Clark et al., 2009� that
�p , t� and �t ,p� cross sections depend on the magnitude
of the change in structure �change in # or �� between
initial and final nuclei. Large changes in R4/2, for ex-
ample, are expected to yield large cross sections to ex-
cited 0+ states even in regions where there is no phase
transition. However, first-order phase transitional re-
gions �with large changes in R4/2� are the most obvious
case where the two-nucleon transfer cross sections will
be most shared between ground and excited 0+ states, as
indeed seen in Fig. 8.

Global properties of the spectrum of 0+ excited states
also carry important information on collectivity �Chou et
al., 2001�. It turns out that at the spherical-deformed
phase transition, the spectrum is considerably com-
pressed in energy �Cejnar and Jolie, 2000�. This can be
understood in terms of a widening of the potential en-
ergy surface in the parameter region close to the critical
point. Using the �p , t� reaction, an extended search for
0+ states covering a large number of even-even rare-

FIG. 21. Calculated and measured B�E2� values for the 21
+

→01
+ and 41

+→21
+ transitions in Sm and Gd isotopes as a func-

tion of A. Adapted from García-Ramos et al., 2003.

FIG. 22. Values of �2�E0:02
+→01

+� for Sr, Mo, Sm, Gd, and Zr
isotopes close to the spherical-deformed phase transition �von
Brentano et al., 2004�. Measured strengths are drawn vs the
fitted value of # from the parametrization �3.22� and compared
with the IBM-1 prediction �full line�. Figure courtesy of V.
Werner.
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earth nuclei was performed at the Garching Q3D spec-
trometer �Meyer et al., 2006�. With this reaction and with
the very high sensitivity and resolution of the spectrom-
eter, it was possible to identify the 0+ states up to rela-
tively high energies. Figure 23 shows the observed num-
bers of 0+ states below 2.5 MeV in a couple of nuclei as
a function of parameter � �see Eq. �3.21�� determined by
the technique of orthogonal crossing contours �see Sec.
III.B.3�. An increase of the 0+ state density at low en-
ergy was observed for 154Gd, which is located close to
the phase-transitional point �=0.8.

The technique of orthogonal crossing contours
�McCutchan and Casten, 2006� has been extensively
used to map the locations of many nuclei in the triangle.
Using the simple Hamiltonian �3.22�, McCutchan, Zam-
fir, and Casten �2004�, McCutchan, Casten, Zamfir
�2005�, and McCutchan and Zamfir �2005� performed
systematic fits of Gd-Pt isotopes, which allow the loca-
tion of these isotopes in the triangle. This mapping and
the trajectories of structural evolution it illustrates are
shown in Fig. 24. It was found that the first-order phase
transition is crossed in the interior of the triangle for

154Dy and 156Er, while 152Gd lies on the U�5�-SU�3� leg
before the phase transition and 154Gd lies close to it af-
ter the transition. As noted, Scholten et al. �1978� found
the same behavior for 152Sm. The Yb and Hf isotopes do
not cross the phase transition on the U�5�-SU�3� side,
that is, all isotopes considered here are on the deformed
side.

Finally we focus on the question whether there exist
chains of nuclei showing the first-order transition be-
tween prolate and oblate shapes. Although nuclei with a
well pronounced oblate deformation or those between
the 
-soft and oblate forms are rather rare, they do oc-
cur in the Pt and Hg isotopes close to the well-known
O�6� nucleus 196Pt. The three different observables from
Fig. 19 were used by Jolie and Linnemann �2003� to
identify the prolate-oblate transition in the neighboring
nuclei. In an attempt to span a large part of the ex-
tended symmetry triangle we plot these quantities in Fig.
25 for nuclei ranging from the well-deformed prolate
rotor 180Hf to 200Hg. A fit of the parameter " in the
simple Hamiltonian �3.21� was performed in each
nucleus associated with a specific NB, the resulting value
being shown on the abscissa of Fig. 25. Clearly, the quad-
rupole moments indicate the prolate-oblate phase tran-
sition and the other observables support this type of
shape change.

2. Comparison with second-order phase transition

While there is ample evidence for the nuclei situated
at or very close to the first-order phase transition be-
tween spherical- and prolate-deformed shapes, the situ-
ation is less clear for the second-order phase transition.
This is so despite the fact that the U�5�-O�6� side of the
IBM-1 symmetry triangle was thoroughly studied from
the theoretical side. The second-order phase transition is

FIG. 23. Number of observed 0+ states below 2.5 MeV as a
function of � �see text�. The lines just connect experimental
points.

FIG. 24. Trajectories of structural evolution of nuclei in the
rare earth region from calculations using an approach based on
the method of orthogonal crossing contours �McCutchan,
Zamfir, and Casten, 2004; McCutchan, Casten, and Zamfir,
2005; McCutchan and Zamfir, 2005�. Two slant lines across the
triangle demarcate the region of spherical-deformed phase co-
existence.

FIG. 25. Experimental values of Q�21
+� �the main panel�, R4/2

�upper inset�, and B�E2:22
+→21

+� �lower inset� for 180Hf,
182,184,186W, 188,190,192Os, 194,196Pt, and 198,200Hg vs the fitted
value of parameter " in the prolate-oblate transition �the "
axes in insets have the same scale as the main plot�. Adapted
from Jolie and Linnemann, 2003.
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more difficult to observe in the data on nuclei since it
generally yields smoother behavior of observable quan-
tities than the first-order transition.

Early work indicated that the neutron-rich Ru and Pd
isotopes are situated rather close to the second-order
spherical-deformed phase transition �Stachel et al.,
1982�. Later on, a chain of even-even Ru isotopes was
reanalyzed by Frank et al. �2001� in order to locate the
second-order critical nucleus. Using two-neutron separa-
tion energies, the systematics of level energies, and the
E2 transition rates, they concluded that the chain can be
described in terms of the U�5�-O�6� transition, with the
critical point situated at 104Ru.

Figure 26 shows the experimental and predicted two-
neutron separation energy for Ru nuclei between A
=98 and 110, demonstrating the above-mentioned prob-
lem to verify the second-order phase-transitional behav-
ior in nuclei. Indeed, while a first-order QPT leads to a
discontinuity of the S2n dependence, the second-order
transition predicts just a sudden change of the slope.
The latter effect is much more difficult to detect in finite
quantum systems, as shown in Fig. 26, where both ex-
perimental and theoretical dependences have a smooth
decrease. Note that the change of slope in theoretical
values between A=98 and 100 is not caused by the phase
transition, which is located by a fit of the IBM-1 param-
eters close to A=104.

Recently, the Zn isotopes were also studied and 64Zn
proposed to be near the critical point �Mihai et al., 2007�.
Moreover, the search for nuclei showing the second-
order critical-point solution E�5�, which will be discussed
in Sec. V.A.3, gives indications that 134Ba �Casten and
Zamfir, 2000� and 128Xe �Clark et al., 2004� are promising
candidates.

In view of experimental ambiguities, it is rather im-
portant to find observables which would discriminate be-
tween the first- and second-order phase-transitional be-
havior in nuclei. Iachello and Zamfir �2004� proposed
the quantity �2= ��02

+�nd�02
+�− �01

+�nd�01
+�� /NB, which is

proportional to the isomer shift �r2�02
+ − �r2�01

+ between

the first two 0+ states.16 It is positive in the spherical
phase and negative in the deformed phase. Since the
first-order QPT can be locally interpreted as a sharp
avoided crossing of the 01

+ and 02
+ states �Zamfir, von

Brentano, et al., 2002� while the second-order QPT is
seen as a much softer bunching of a larger number of 0+

states �Heinze et al., 2006; Cejnar et al., 2007�, the ob-
served dependence of �2 on the control parameter with a
moderate value of NB is different for the first- and
second-order transitions. Unfortunately, experimental
data on the isomer shifts are presently available only for
a limited number of isotopes and not the shifts between
0+ states but rather those between the 21

+ and 01
+ states

�Laubacher et al., 1983�. Therefore, more measurements
are needed to verify the above-outlined predictions.

An alternative observable capable to distinguish QPTs
of both orders is the energy ratio R6/0=E�61

+� /E�02
+� in-

troduced by Bonatsos, McCutchan, Casten, and Casper-
son �2008�. This quantity is much easier to measure
�even in exotic nuclei� and, in fact, its analysis in the
IBA framework was inspired by the X�5� critical-point
solution of the geometric model, for which one obtains
E�61

+��E�02
+� and therefore R6/0�1 �see Sec. V.A.1�.

Figure 27 shows R6/0 as a function of # in the IBM-1
parametrization from Eq. �3.22� for three " values. Note
that R6/0=1.5 in the U�5� limit �#=0�, as follows from the
ratio between excitation energies of the three-phonon 6+

and two-phonon 02
+ states. On the other hand, in the

16The isotope �or isotone� shifts, discussed in Sec. II.B.4, are
connected to the differences between expectation values
�01

+�nd�01
+� obtained for boson numbers NB and NB+1 and for

the control parameter values corresponding to the two respec-
tive nuclei. They are therefore straightforwardly related to the
changes of the order parameter �. For a comparison of IBM-1
predicted isomer shifts with data see McCutchan, Zamfir, and
Casten �2004�.

FIG. 26. Two-neutron separation energies in Ru nuclei with
the IBM-1 predictions. From Frank et al., 2001.

FIG. 27. �Color online� The ratio R6/0=E�61
+� /E�02

+� calcu-
lated with the Hamiltonian �3.22�, NB=100, for first-order �"
=−1.32 and −0.75� and second-order �"=0� phase transitions.
The locus of E�61

+�=E�02
+� in the symmetry triangle �for the

same boson number� is shown in the inset. Adapted from
Bonatsos, McCutchan, Casten, and Casperson, 2008.
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deformed limit of #=1 the value of R6/0 drops to small
values �tending to zero in the limit NB→��.

There are two important predictions relevant to
phase-transitional behavior in Fig. 27. First, R6/0 is unity
at or near the critical point for a wide interval of " val-
ues and this is the unique locus of E�61

+�=E�02
+� in the

triangle. The locus is shown in the inset of Fig. 27 up to
the point of an avoided crossing of 02

+ and 03
+ levels,

where the nature of the 02
+ state changes. Above that

point, one can switch to the line E�61
+�=E�03

+� �not
shown in the figure� which continues to the second-order
transitional region. This means that a generalized ratio
R6/0=E�61

+� /E�02,3
+ �, namely, the condition R6/0�1, is a

rather simple and general signature characterizing the
whole spherical-deformed phase-transitional region.

Second, as seen in the main panel of Fig. 27, R6/0 can
actually distinguish first- and second-order phase-
transitional behavior. In a first-order transition, it rises
just before the phase transition �reaching a value above
1.5� before dropping through unity to smaller values.
For a second-order case, the decrease is monotonic
starting �slowly� from the U�5� limit. We note that this
behavior is muted for finite NB but the general features
persist �for smaller NB, the R6/0�1 as well as R4/2�3
lines lie to the right of their locations in the large NB
limit�.

Figure 28 shows the experimental data on the
E�61

+� /E�02,3
+ � ratio for two known transition regions.

The data nicely reflect the IBA predictions for the A
�150 region, which exhibits first-order phase-
transitional behavior. Here the R6/0 dependence peaks
just before the critical value N=90 �see the upper panel�.
In contrast, in the second-order, 
-soft, spherical-
deformed region of the Ba and Xe nuclei below N=82,

the behavior �shown in the lower panel� is softly and
monotonically decreasing with increasing valence neu-
tron number Nn. This again demonstrates the smoothen-
ing of the second-order QPT effects in finite nuclei �cf.
Fig. 26�.

Another proposed signature of the spherical-
deformed transitions of both types, namely, the ratio of
E2 strengths B4/2=B�E2:41

+→21
+� /B�E2:21

+→01
+� was

discussed by Rowe et al. �2004�. Its behavior in the first-
and second-order transitions is qualitatively similar to
that of R6/0 or �2, hence allowing in principle one to
discriminate between the two cases. We also point out
that the U�5�-SU�3� and U�5�-O�6� transitional paths
were subject to comparative numerical studies focused
on several specific observables by Pan et al. �2003�, Pan,
Zhang, and Draayer �2005� and Zhang et al. �2007� and
particularly by Rowe �2004c� and Rosensteel and Rowe
�2005�. Related analyses were also performed by means
of the so-called quadrupole shape invariants �Werner et
al., 2000, 2002, 2008�.

We have seen that the IBM-1 Hamiltonian provides a
simple means of describing a rich range of collective
structures with extreme parameter efficiency. Indeed,
except for scale, most collective nuclei can be reasonably
well described, and the structural evolution with Z and
N mapped, using only two parameters, # or �, which
describes the spherical-deformed character, and ", which
quantifies the 
 softness �distinguishing the first- and
second-order transitions�. In recent years, developments
in geometrical models have opened a major new,
complementary, avenue to explore the phenomenology
of collectivity in nuclei. This will be discussed in Sec. V.

C. Quasidynamical symmetries

Apart from the above-analyzed signatures of critical
behavior in finite nuclei, a rather interesting aspect of
structural transitions concerns the definition of phases.
We know that the phases are associated with shape types
and, in the IBA, the latter can be linked to particular
dynamical symmetries which represent specific realiza-
tions of nuclei with given shapes. One may therefore
wish to relate shape phases to the limiting dynamical
symmetries. This seems possible in spite of the fact that
exact symmetries are usually broken near the critical re-
gions. The key concept for the symmetry-related defini-
tion of phases is the so-called quasidynamical symmetry.

Quasidynamical symmetries �QDSs� were first dis-
cussed by Rowe et al. �1988� and later invoked in the
context of a transition between superconducting and ro-
tational nuclear phases �Bahri et al., 1998; Rowe et al.,
1998�. The application to the IBM-1 phase transitions
was presented by Rowe �2004a, 2004c�, Rowe et al.
�2004�, and Rosensteel and Rowe �2005�. The term QDS
expresses the situation when some well-pronounced em-
pirical signatures of a certain dynamical symmetry occur
in a system in which the actual symmetry is badly bro-
ken. In other words, a system possessing a QDS exhibits
some attributes of an exact symmetry irrespective of the

FIG. 28. Experimental R6/0 values for regions of �top� first-
and �bottom� second-order phase transitions. Adapted from
Bonatsos, McCutchan, Casten, and Casperson, 2008.
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fact that this symmetry is not actually present. A formal
description makes use of the term embedded represen-
tation of a group G �Rowe et al., 1988�, which is intro-
duced as a representation formed by a coherent mixing
of basis states associated with various irreducible repre-
sentations of G. It turns out that such a coherent mixing
of irreps stands behind the surprising persistence of nu-
merous symmetry attributes in some systems far away
from dynamical symmetry limits.

In practice, a quasidynamical symmetry �which is usu-
ally limited to a certain low-energy fraction of the spec-
trum� can be expressed through the approximate validity
of a specific description based on or inspired by the cor-
responding exact symmetry. The QDS approach to
quantum phase transitions then leads to a picture in
which two distinct types of quasidynamical symmetry ex-
ist on either side of the transition �defining the two
“phases”� while the width of the transitional region
�with both symmetries broken� shrinks with increasing
size of the system. The IBM-1 quasidynamical symme-
tries are connected with the following methods of de-
scription.

�i� In the spherical phase, the low-energy spectrum is
expressed in terms of the bosonic random phase
approximation �RPA�. It starts from an uncorre-
lated s-boson condensate ��0�� �s†�NB�0�, from
which the excitations are created by applying op-
erators

Dm
† =

1
�NB

�Xdm
† s − Ys†dm� �4.5�

with coefficients satisfying �X�2− �Y�2=1. This
choice ensures that for nd)NB the operators are
well approximated by Dm

† �Xdm
† −Ydm with bo-

son commutation relations �Dm ,Dm�
† ���mm�.

While in the U�5� limit one gets �X ,Y�= �1,0�,
away from the U�5� symmetry the coefficients are
determined through the pair of RPA equations
�Rowe, 2004a, 2004c�.
A Hamiltonian close to U�5� is roughly given by
H��	mDm

† Dm, where the oscillator energy � is
determined from the RPA equations and depends
on the control parameters. This means that opera-
tors �4.5� play a role of phonons: the correlated
RPA ground state coincides with the D-phonon
vacuum while excited states have nD=1,2 , . . .. The
quality of this approximation increases with NB,
but it is strictly limited to the spherical phase since
at the critical point the nature of the ground state
changes and �→0 �tending to imaginary values on
the deformed side�. The range of applicability of
the RPA description defines the domain of the
U�5�-based QDS or in other words the U�5�-like
phase of the system.

�ii� In deformed prolate and oblate phases, the low-
energy spectrum is described by the bosonic
mean-field �BMF� basis with separated vibrational
and rotational excitations �Leviatan, 1987�. It is

derived from the boson condensate operator
�3.25� supplemented by �- and 
-boson operators

��
† =

1
�1 + �0

2�− �0s† + cos 
0 d0
† + sin 
0

d2
† + d−2

†

�2
� ,

�4.6�

�

† = − sin 
0 d0

† + cos 
0
d2

† + d−2
†

�2
,

with �0, 
0 associated with the ground-state defor-
mation parameters and by three additional opera-
tors �involving orthogonal superpositions of d±1

†

and d±2
† � related to angular momentum.

The ground state for NB→� is given by ��0�
� ��0

†�NB�0�, while �������
†��0

†�NB−1�0� and ��
�
��


†��0
†�NB−1�0� represent � and 
 vibrational exci-

tations of a deformed nucleus, respectively. A
combined application of operators from Eqs.
�3.25� and �4.6� generates an appropriate basis of
vibrational states with n� and n
 excitation quanta
of both types, providing information on the band-
heads of the rotational states built on these exci-
tations �hence the term intrinsic states�. To derive
energies and wave functions of the individual
members of these bands, one has to apply a suit-
able angular-momentum projection technique. In
the SU�3� or SU�3� limits we get �0=�2 and 
0
=0 or �, respectively. Away from these symme-
tries, the value of �0 must be redefined by the
minimization of the potential energy surface
�3.26�, but the essence of the method remains
valid until one gets very close to the prolate-
oblate or deformed-spherical phase separatrix
�Rowe et al., 2004; Rosensteel and Rowe, 2005�.
Figure 29 shows the quality of the mean-field
description of individual states in three basic
low-energy bands. Theoretical BMF predictions
of wave function components, shown by the
leftmost column in each panel, are confronted
with actual �numerical� components for states
with spins L�8. This figure shows the charac-
teristic property of an SU�3�-based QDS de-
scription, namely, a coherent mixing of distinct
SU�3� irreps, which are classified by labels
�� ,��, in the actual eigenstates.
It has been found �Jolie, Casten, et al., 2004�
that the � and 
 bandheads are nearly degener-
ate along a unique trajectory in the interior of
the triangle following the arc of regularity �see
footnote 12�. Recently Bonatsos et al. �2010�
found that all of the SU�3� degeneracies persist
along this arc, perhaps suggesting that an SU�3�
QDS underlies the arc on the deformed side of
the triangle. Bunching patterns of levels near
the arc were studied by Macek et al. �2007�.
Nevertheless, the coherent behavior of wave
functions �similar to that shown in Fig. 29� ex-
ists �Macek et al., 2009� also away from the arc,
covering a wide area of the triangle within the
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domain of 
-rigid deformed shapes.

�iii� The deformed 
-soft phase �that coincides with
the prolate-oblate phase transition� can be char-
acterized by a so-called shifted oscillator approxi-
mation �Rowe, 2004a, 2004c�. This technique
makes use of a substitution x=2�nd /NB�−1, which
in the limit NB→� becomes a continuous variable
entering wave functions �i�x�
�nd ��i� of indi-
vidual Hamiltonian eigenstates ��i�. The O�6�-
U�5� transitional Hamiltonian �in the energy-per-
boson form� then transforms into a differential
operator �Cejnar et al., 2006�

H

NB
� −

K
NB

2

d

dx
�1 − x2�

d

dx
+ A�x − x0�2 + E0, �4.7�

where the parameters K, A, x0, and E0 depend on
the control parameter, e.g., on � or # in param-
etrizations �3.21� or �3.22�. In the O�6� limit
one gets x0=0, but as proceeding toward the U�5�
limit the centroid position x0 decreases to nega-
tive values. The value of E0 follows the evolution
of the ground-state energy in the mean-field ap-
proximation.
In a general case, Eq. �4.7� can be identified with a

shifted oscillator having an x-dependent kinetic
term. The applicability of such a description de-
fines in the QDS language the O�6�-like phase of
the system. Since the definition of x allows values
−1�x�+1, the shifted oscillator approximation
fails for states whose domain �i�x�$0 exceeds
this interval. As a consequence, there exists an
upper energy and a certain critical value of the
control parameter where the quasi-O�6� approxi-
mation loses its sense. The critical parameter
value �the one for which x0=−1� coincides with
the point of the second-order QPT to the spheri-
cal phase.

We finally note that while the quasidynamical symme-
tries describe low-energy spectra on both sides of the
QPT critical point, some other symmetry-inspired ap-
proaches have been developed which apply at the criti-
cal point itself. One of those approaches resorts to the
so-called partial dynamical symmetries �Leviatan, 1996�
and is relevant at the first-order phase transition �Levia-
tan, 2005, 2006, 2007�. A semianalytic description of the
second-order shape-phase transition can be found in Le-
viatan and Ginocchio �2003�. A widely recognized ap-
proach based on the so-called critical-point symmetries
�solutions� will be discussed in the next section in the
framework of the geometric model.

V. SHAPE TRANSITIONS IN THE GEOMETRIC MODELS

Despite the richness of the geometric model �see Sec.
III.A�, little work has been actually done until recently
in terms of specific studies for a variety of potentials
V�� ,
�. One approach, incorporating higher-order terms
into the geometric Hamiltonian, is that of Gneuss et al.
�1969�. However, in its most general form it contains
eight parameters and has been little used. A simplified
version of the model was discussed by Zhang et al.
�1997�, who used the potential �3.2� and presented a
GCM structural triangle similar to that of the IBM-1
�see Fig. 30�.

Recently, an important development in geometrical
models is in the treatment of QPT with the concept of
critical-point solutions �CPSs� to describe nuclei at the
quantum phase-transitional point. In Sec. V.A we intro-
duce these ideas, compare them with the data, and dis-
cuss various alternate CPSs, while in Sec. V.B we sketch
some recent geometrical models of structural evolution.

A. Critical-point solutions

Nuclei at a shape-transitional point have always been
the most challenging and difficult to treat theoretically
�see, e.g., Kumar �1974��. In the last decade, a new class
of explicitly geometric models derived from critical-
point solutions of the Bohr Hamiltonian has been pro-
posed. These models are based on simple assumptions,
involving approximate potentials simulating the phase-
transitional point that allow simple �sometimes approxi-

FIG. 29. Absolute components of numerical wave functions
for the Hamiltonian �3.21� with �� ,"�= �0.5,−1.3� and NB=30
in a fraction of the SU�3� basis. Three panels show the compo-
nents for 0+, 2+, 4+, 6+, and 8+ states in the ground-state band
�bottom�, the � band �middle�, and the 
 band �top�. The
“BMF” column in each panel shows the value obtained by
applying the mean-field operators �3.25� and �4.6�. For an ex-
tended picture see Macek et al. �2009�.
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mate� solutions of the Schrödinger equation.17 Origi-
nally developed by Iachello �2000, 2001�, the concept has
now spawned a new generation of geometric treatments
of a variety of structures and even of ranges of structure
evolving in specific ways. Here we first discuss the X�5�
critical-point solution for a first-order phase transition in
detail and E�5� for a second-order case and compare
their predictions with the available data. Some of the
disagreements with the data will be valuable in pointing
to shortcomings, modifications, and refinements of these
CPS.

The starting point for the CPS Ansatz goes back to
Fig. 10 and, in particular, to the thick curve �No. 3�
where the spherical and deformed minima are degener-
ate, with a small barrier between them. The idea behind
the CPS is to simplify this behavior so that it can be
easily solved. This simplification consists of assuming
that the barrier between the minima is weak and can be
ignored and assuming that the rise in the potential at
large � is very steep. Taken to the extreme this leads to
an infinite square well model for nuclei at the critical
point. One also needs to introduce the other quadrupole
shape variable 
 and three Euler angles, arriving there-
fore at a five-dimensional problem.

The difference between X�5� and E�5� lies in the 

dependence of their potentials. Reference to a geometri-
cal structural triangle given in Fig. 30 shows that E�5�
lies along the vibrator to 
-soft rotor leg where the po-
tential is completely 
 independent. On the other hand,

X�5� represents a shape transition from a spherical vi-
brator to an axial rotor �along the bottom leg of the
triangle�, which justifies a quadratic approximation of
the 
 dependence near the potential minimum.

We note that while these CPSs and the IBA can both
test phase-transitional behavior, they are quite different
approaches. As is evident from Eq. �3.26�, the IBM-1
energy surface is not a square well in � and, for realistic
boson numbers, gives predictions quite different than
those we will see for X�5� and E�5�.

1. The X(5) critical-point solution

We start our discussion of X�5� by inserting the ap-
proximate potential

V��,
� = Vwell��� + c�
 − 
0�2 �5.1�

into the Bohr Hamiltonian of Eqs. �3.4� and �3.6�. Here,
as explained above, Vwell��� stands for a square-well po-
tential, Vwell=0 for �� �0,�M� and Vwell=� for ���M,
while the second term represents a quadratic approxi-
mation �c�0� of the 
 dependence in a vicinity of mini-
mum 
0 �most commonly 
0=0�.

The essential step in the X�5� solution is to make a
separation of variables � and 
. As discussed in Sec.
III.A.2 the separation is possible for a potential �3.10�,
which is of a slightly different form than that in Eqs.
�3.9� and �5.1�. The separation in X�5� is therefore only
an approximation. Nevertheless, it is key to the analyt-
icity and simplicity of X�5�. As we will see, the X�5�
Ansatz works extremely well, especially recognizing that
for an essential part of the energy spectrum it is
parameter-free except for scale.

However, having said that, the separability approxi-
mation can be quite severe. To achieve separability, in
Eq. �3.4� one replaces � in the terms containing 
 by an
“average” value �0. The impact of this approximation
thus depends on the softness of the potential in 
, being
worse for the 
-stiff case with 
0=0, where the second
term in Tvib is large. The effect of replacing � by �0 in
this term reduces its significance since it removes any
contributions from small � values. We return to this
point later and show results from an exact diagonaliza-
tion with no separability assumption.

For now, we follow Iachello �2001�. We seek solutions
of the Schrödinger equation H�=E� of the form

�L,M,K��,
,�� = *L,K��,
�DM,K
�L� ��� , �5.2�

where *L,K is a function to be determined, while DM,K
�L�

stands for the Wigner function of Euler angles � de-
pending on angular momentum quantum numbers L �to-
tal angular momentum�, M �projection to the z axis�,
and K �projection on the body-fixed symmetry axis�.
Carrying out the approximate separation of � and 
, one
obtains E�E���+E�
� and *L,K�� ,
���L,K����K�
�,
where the � degree of freedom is determined by the
following Bessel equation:

17The term critical-point symmetry is often used in the litera-
ture, which however is not rigorous since only in some CPS
cases the actual dynamical symmetry of the Hamiltonian can
be identified.

FIG. 30. Geometrical structural triangle analogous to the sym-
metry triangle for the IBM-1. The X�5� and E�5� critical-point
solutions are identified along with the first-order transition tra-
jectory linking them �the two lines indicate the region of phase
coexistence�. Potentials allowing semianalytic treatments of
the structural evolution �see Sec. V.B� and the domains of their
applicability are sketched.
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d2�̃�

dz2 +
1

z

d�̃�

dz
+ �1 −

�2

z2��̃� = 0. �5.3�

Here we introduced a reduced variable z=k�� with k�
2

=2ME��� /	2, a function �̃��z�=�3/2�L,K���, and

� =�L�L + 1� − K2

3
+

9
4

. �5.4�

Note that the last formula is due to Bijker et al. �2003�,
while the original treatment of Iachello �2001� is valid
for K=0.

Solutions of Eq. �5.3� are Bessel functions �̃��z�
�J��z� constrained by the boundary condition �̃��k��M�
=0 following from the square-well Ansatz. Denoting zs,�
the sth zero of the Bessel function J��z�, the spectrum of
energies for the � degree of freedom is given by

Es,L,K
��� =

	2

2M�zs,�

�M
�2

. �5.5�

We stress that the order of the Bessel function solutions
is an irrational number given by Eq. �5.4�.

We now proceed to discuss the 
 degree of freedom.
Since X�5� corresponds to an axially symmetric structure
we can take 
0=0 �prolate� or 
0=� /3 �oblate�. For sim-
plicity we consider the prolate case which is more fre-
quently encountered. Then the equation for the 
 de-
gree of freedom is well approximated by the radial
equation of an isotropic two-dimensional harmonic os-
cillator with angular momentum K /2 and the frequency
related to the parameter c in Eq. �5.1�. Its solutions
�K�
� are Laguerre polynomials, which contribute to the
total energy by

En


�
� �� 2	2c

M�0
2 �n
 + 1� , �5.6�

where n
=0,1 ,2 , . . . is the number of 
 phonons. The
allowed values of K=0, ±2, ±4, . . ., and n
 are interre-
lated by a simple selection rule �Iachello, 2001�.

Putting both formulas �5.5� and �5.6� together, we ex-
press the total energy in the following form:

Es,n
,L,K = E0 + E1zs,�
2 + E2n
, �5.7�

where the coefficients E0, E1, and E2 depend on the pa-
rameters M, �M, and c and on the average value �0. We
will see later that E2 transition strengths introduce ef-
fectively two additional parameters. In all, X�5� gives
parameter-free predictions for relative excitation ener-
gies and relative B�E2� values involving sequences of
states based on successive 0+ states, while to obtain ab-
solute predictions, including states with K�0, requires
in total four parameters.

Figure 31 �left� presents an extensive level scheme for
X�5� which includes the ground-state band and several
excited bands based on 0+ states. The levels are classi-
fied by the quantum number s �the ordinal number of
the J� zero for given L� into different families: the choice

s=1 leads to yrast18 levels which form a quasiground
band �although with properties far from those of a rotor,
see below�. For s=2, one has a 02

+-based sequence remi-
niscent of �but again, different from� a � band. The 

band in X�5� is separately parametrized and will be dis-
cussed below.

Since X�5� is a singular point in the structural pan-
theon, it brings with it a full set of correlated predictions
that cannot be varied to fit particular nuclei. Indeed, as
emphasized above, the model predictions in Fig. 31 are
fixed except for scales. The E2 rates can be calculated
with the aid of the general first- and second-order quad-
rupole transition operators �Eq. �3.5��. Neglecting the
second-order terms we obtain

T�
E2 = t��D�,0

�2� ���cos 


+ �D�,2
�2� ��� + D�,−2

�2� ����
sin 


�2
� , �5.8�

where t stands for an adjustable parameter, additional to
E1 and E2 from Eq. �5.7�. Since the E2 matrix elements
depend on the scale of wave functions, e.g., on the value
of �M, the treatment of absolute transition rates in its
most general form adds in total two parameters to the
two already discussed. Note that an analogous expres-
sion for the second-order term from Eq. �3.5�, yielding
an additional free parameter, can be found, e.g., in Cap-
rio and Iachello �2007�, but usually only the first-order
term given in Eq. �5.8� is used.

It is easier to see the characteristic predictions if we
focus on the low-lying levels and transitions of X�5� as
shown on the left in Fig. 31. The most obvious predic-
tion of X�5� involves just the lowest yrast quasirotational
states, namely, R4/2=2.91. A value in this range is, of
course, reasonable for a potential intermediate between
a spherical vibrator �R4/2=2.0� and a deformed axial ro-
tor �R4/2=3.33�. In fact, the entire yrast sequence of
states in X�5� has energies intermediate between a vibra-
tor and a rotor as we will see later. Reference to Figs. 3
and 4 shows that values near 2.9 are rare, as befits a
value in a rapidly traversed transition region in a finite
system. Inspection of the rare earth region shows that
R4/2�2.9 occurs in nuclei such as 150Nd, 152Sm, 154Gd,
162Yb, and 178Os, which have P factors of 4.4–5.1, 5.4,
and 4.6, all near the typical transition point of P�5.
However, it is essential to recognize that not all nuclei
with R4/2�2.9 are necessarily X�5�-like: as our treatment
of the IBA in Sec. III.B.3 showed, R4/2 is only one indi-
cator of structure and, indeed, any given R4/2 value ac-
tually refers to a range of structures.

Perhaps the most striking and characteristic predic-
tion of X�5� is R0/2
E�02

+� /E�21
+�=5.66. This directly

links the yrast energies to those of the lowest intrinsic

18The name “yrast” is reserved for the state of a given spin L
which has the lowest energy, while “yrare” is sometimes used
to denote the next excited state with the same L.
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state. Stemming from the relation between E�02
+� and

E�21
+� and the energetics of the quasi-ground-state band,

one has the complementary prediction that R6/0


E�61
+� /E�02

+�=0.96. This particular near degeneracy
has a rather deep meaning, and in fact, as discussed in
Sec. IV.B.2, in the large NB limit of the IBM-1, R6/0
=1.0 has a unique locus along the first-order phase-
transitional line �Bonatsos, McCutchan, Casten, and
Casperson, 2008�.

Of course, there are many other characteristic X�5�
predictions, especially concerning transition rates. We
encounter them in more detail below when we compare
X�5� with nuclei that have been suggested as manifesting
a structure close to this CPS.

2. Empirical manifestations of X(5)

The first nucleus discussed to manifest an approxi-
mate X�5� description was 152Sm �Casten and Zamfir,
2001�, which, along with 150Nd �Krücken et al., 2002�,
remains the best studied empirical example. As we have
seen �Secs. II.B and IV.B.1�, there is abundant empirical
evidence for a rapid spherical-deformed shape change in
this region. The increase in quadrupole deformation �
�see Eq. �2.4�� implied in Fig. 5 has been confirmed by a
more rigorous treatment in terms of quadrupole invari-
ants �Werner et al., 2008�. This gives ground band quad-

rupole invariants for 152,154Gd of 1.77�17� e2 b2 and
3.89�2� e2 b2. Therefore this region is an ideal one in
which to compare the predictions of X�5� with the data.

Figure 31 includes on the right a level scheme for
152Sm providing, along with a few additional figures be-
low, a detailed comparison of the predictions of X�5�.
Given the extreme simplicity of X�5� it is noteworthy
that it works at all. The R4/2 values of the lowest two
quasibands in X�5� are 2.91 and 2.80. In 152Sm the em-
pirical values are 3.01 and 2.69. R0/2 is 5.62 and R6/0 is
1.03, both close to the X�5� predictions. The next yrast
energies also are close to X�5� as shown in Fig. 32 �left�.

FIG. 31. Partial level scheme and some E2 transition rates for the X�5� model �Iachello, 2001� compared with data on the yrast and
yrare levels in 152Sm �Casten and Zamfir, 2001�. Data from Zamfir et al. �1999, 2002a�; Klug et al. �2000�; Kulp et al. �2005�.

FIG. 32. Values of E�L� /E�21
+� for yrast and yrare levels in

152Sm compared to the harmonic vibrator, symmetric rotor,
and X�5�. Adapted from Casten and Zamfir, 2001.
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Thus, one sees that X�5� correctly predicts the relative
energies of yrast �quasirotational� states and intrinsic ex-
citation modes. Moreover, the intraband B�E2� values
connecting the yrast states are well described, and those
in the excited 0+ band reasonably well, although we note
that there are some differences in several measurements
�Zamfir et al., 1999; Kulp et al., 2004; McCutchan et al.,
2009� regarding intra-02

+ sequence of B�E2� values.
There are, however, two glaring discrepancies in Fig.

31, concerning yrare energies and intersequence B�E2�
values. The energies in the 02

+ sequence are much closer
experimentally compared to X�5� and the intersequence
B�E2� values are smaller experimentally than in X�5� by
a factor of 4 or so. It is useful to isolate exactly the
nature of those discrepancies. Figures 32 �right� and 33
show relative values for both observables, where the
theory has been normalized to the experimental values
for the 22

+ to 02
+ spacing and to the B�E2:22

+→01
+� value

of 33 W.u., respectively. Seen in this way, it is clear that
X�5� gives an excellent reproduction of the relative val-
ues in both cases and that the origin of the discrepancy
refers to the absolute scales for both. We return to this
shortly. Such predictions, given automatically in X�5�,
are not easy to obtain in the traditional vibrator or rotor
models without invoking multiparameter mixing among
nonrotational quasibands �Zamfir et al., 1999�.

As successful as X�5� is, however, one cannot ignore
the magnitude of the discrepancies just noted. In think-
ing about these, it is worth now commenting generally
on the history of phenomenological models. Invariably,
one starts with an utterly simple Ansatz �e.g., the har-
monic vibrator or perfect axial rotor� and notices that
the data closely resemble the simple predictions of such
idealized paradigms. The next step, equally invariable, is
that deviations are noted. These are useful since they
help suggest refinements to the simple model; for the
rotor, for example, they relate to centrifugal or pairing
effects which alter the moment of inertia and cause
small deviations from the L�L+1� law. However, a key
point is that those deviations, and the physics they re-

veal, would never have been recognized were it not for
the comparison to the original benchmark.

It is the same with X�5�, as we now discuss. As noted,
the two classes of discrepancies relate to the absolute
scales of the respective observables. It is indeed possible
to understand why the yrare energies in X�5� are pre-
dicted to have much larger spacings than the data and
why the predicted intersequence transitions are also
stronger. However, the reasons for these discrepancies
turn out to be very different.

Consider first the intersequence B�E2� values. The
transition 22

+→01
+ is forbidden in the vibrator or U�5�

symmetry since it represents the destruction of two
phonons. Likewise it vanishes in SU�3� where it violates
the �� ,�� selection rules. In between these limits, it
takes on finite values. This is actually typical of many
observables that are forbidden in idealized models, such
as the three dynamical symmetries of the IBM-1, but not
elsewhere, and therefore they peak somewhere for inter-
mediate or transitional structures �e.g., away from the
vertices of the IBM-1 triangle�. We now note that the
R4/2 ratio for 152Sm is equal to 3.01, which is slightly to
the rotor side of X�5� and therefore one expects the in-
tersequence B�E2� values to be reduced relative to X�5�.
Naturally, similar remarks apply to the other interse-
quence transitions. Another recent interpretation �Jolos
and von Brentano, 2009� argues that such deviations
from X�5� arise due to the need for a more complicated
mass tensor in the Bohr Hamiltonian or, equivalently,
with a more complex quadrupole operator. Calculations
in the latter scheme significantly reduce the interband
transitions, giving better agreement with the data.

For the yrare energies, the problem can be related
back to the X�5� assumption of an infinitely steep outer
wall in the potential as a function of �. Clearly, real
nuclei do not have such potentials and a sloped wall
would obviously be a better Ansatz. Caprio �2004� inves-
tigated this. The idea is shown in Fig. 34 where it is clear
that, if a sloped wall is substituted, the change in poten-
tial for the low-lying �yrast� states will be minimal but
the higher states will experience a wider potential and
therefore will have lower energies, as indicated. Explicit
calculations validate this insight �Caprio, 2004�. Note
that the X�5� predictions for low-lying states do not dif-
fer significantly from those obtained for a finite potential

FIG. 33. Relative values of B�E2:Li
+→Lj

+� for three N=90
nuclei compared to X�5�. The E2 strengths are normalized to
the 02

+→21
+ transition. From Casten and Zamfir, 2001.

FIG. 34. Schematic comparison of yrast and higher-lying levels
in a square well and in a well with sloped outer wall. Adapted
from Caprio, 2004.
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well �Caprio, 2002�. Thus we see that the two most ob-
vious discrepancies with X�5� give new insights into the
structure of 152Sm and point to possible improvements in
that model �albeit at the cost of additional parameters�.

The 150Nd and 154Gd nuclei have also been shown to
manifest X�5� quite well �Krücken et al., 2002; Kulp et
al., 2003; Dewald et al., 2004; Tonev et al., 2004�. Going
beyond the N=90 region, a number of other nuclei have
been tested as candidates for X�5�, including, for ex-
ample, 130Ce �Mertz et al., 2008�, 162Yb �McCutchan et
al., 2004, 2006�, 166Hf �McCutchan, Zamfir, and Casten,
2005�, and 178Os �Dewald et al., 2005�. A characteristic
feature is that, in each of these nuclei, some observables
�e.g., yrast energies and E2 strengths or intersequence
E2 strengths� agree well with X�5� while others do not.
The nuclei 226Ra and 226Th have also been interpreted as
critical point X�5�-like nuclei by Bizzeti and Bizzeti-
Sona �2004, 2008� and Bonatsos, Lenis, Minkov, et al.
�2005�. These nuclei and others in this mass region which
are known to exhibit octupole correlations will be dis-
cussed in terms of models that include critical point de-
scriptions in both the quadrupole and octupole degrees
of freedom in Sec. VI.A.2. A much more complete dis-
cussion of empirical manifestations of X�5�, including
both areas of agreement and disagreement, has been
presented by Casten �2006, 2009� and McCutchan and
Casten �2006�. A large literature on the subject exists.
We cite here, without further discussion, a number of
additional references relating to these studies: Bizzeti
and Bizzeti-Sona �2002�, Brenner �2002�, Caprio et al.
�2002�, Casten et al. �2003�, Clark et al. �2003�, Hutter et
al. �2003�, Dewald et al. �2005�, McCutchan, Zamfir, and
Casten �2005�, and Möller et al. �2006�.

Of course, other approaches besides X�5� have been
discussed to explain the phenomenology of the shape
transition region. Already before the proposal of X�5�,
Zamfir et al. �1999� showed that one could not reproduce
the data on 152Sm by mixing pure rotational bands built
on traditional � and 
 bands, but if one mixes ad hoc
quasibands, deviating from the bands of the pure rotor,
one could in fact fit the data. However, they showed that
this requires a large number of parameters to specify the
unperturbed bands and their mixing strengths. Later
Wood et al. �2002� argued that one could interpret the
data on 152Sm in terms of multiband mixing of conven-
tional � and 
 bands if one included an oblate intruder
band.

In a series of recent papers, Kulp and colleagues have
provided much new detailed spectroscopy of 152Sm and
154Gd which led them to a sequence of alternative model
interpretations. They interpreted �Kulp et al., 2003,
2005� the second excited 0+ state in these nuclei as a
pairing isomer. The failure to find evidence for a two
phonon mode of �� type led them �Kulp et al., 2004,
2008� to question the traditional interpretation of the
first excited 0+ state �at about 685 keV� in these two
nuclei as a � vibration. They have also disputed �Kulp et
al., 2007� the phase coexistence model and made a num-

ber of comparisons to other models, including the early
work of Kumar �1974�.

More recently Garrett et al. �2009� elaborated these
ideas with the suggestion that the ground and 02

+ states
are shape coexisting states arising from two Hilbert
spaces �analogously, but here within a single major shell,
to the normal and intruder states in Pb and Hg �see Sec.
VI.A.3��. The distinction between such shape coexist-
ence and the phase coexistence underlying X�5� pictures
is subtle and, as they point out, has been perhaps best
discussed by Heyde et al. �2004�. In the shape-
coexistence picture both the ground and first excited 0+

states act as base states for an independent spectrum of
excited quasibands. The experiments reported by Gar-
rett et al. �2009� characterized a number of negative-
parity states. They noted a repeating pattern of states
built on the ground and first excited 0+ state in apparent
support of a shape-coexistence picture. In this region,
with no obvious cross-shell intruder mechanism, the dif-
ference between the phase- and shape-coexistence sce-
narios needs to be elucidated. It is of particular interest
to determine if the empirical R4/2 values and the exten-
sive sets of collective �02

+ to ground-state sequence� in-
terband B�E2� values can be reproduced in these ap-
proaches and to asses this in the context of the number
of parameters required.

In the discussion of empirical consequences of the
X�5� model, we have so far considered only 0+-based
sequences of states. However, as seen in Eq. �5.1�, the
X�5� Ansatz includes a harmonic dependence on 
,
which yields a sequence of energies for the quasi-
 band.
Predictions for the decay properties of this band can also
be easily obtained, albeit at the cost of two additional
parameters. One of these parameters determines the en-
ergy of the 
 vibration and the other sets the transitions
from the 
 band to other states �Bijker et al., 2003�. Tak-
ing the prolate axially symmetric case corresponding to
X�5�, that is, 
0=0, we get the solutions given before
except the order of the Bessel function is now read off
from Eq. �5.4� with K�0, in general. We know already
that the wave functions in the 
 degree of freedom are
Laguerre polynomials. The B�E2� values are obtained
using the transition operator �5.8�, where only the first
term survives for �K=0 transitions �those considered
above�, while the second term describes �K=2 transi-
tions.

Some predictions for the 
 band are shown in Fig. 35
in comparison with data on 152Sm �Zamfir et al., 2002b;
Kulp et al., 2007�. A much more complete set of B�E2�
values is tabulated by Bijker et al. �2003�. The general
characteristics are as follows: intra-
-sequence transition
strengths are, of course, large, with �L=2 transitions
dominant over �L=1 ones for L�6 and vice versa for
L�6. Relative B�E2� values to the ground-state band
are largest �approximately 20% of the B�E2:21

+→01
+�

value� for transitions with �L=0 for even L initial
states. Spin increasing transitions with �L=2 are very
weak. These latter results, however, are only weak tests
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of this scheme as they are essentially the same as the
Alaga rules �Bohr and Mottelson, 1975�.

More characteristic of X�5� is that transitions from the

 band to the 02

+ sequence are weaker than those to the
ground state by one to two orders of magnitude but fol-
low similar overall trends in relative values, a reflection
of the Alaga rules.

As seen in Fig. 35, a comparison of these predictions
to the data for 152Sm shows an excellent overall agree-
ment. The absolute scale �inertial parameter� for the

-sequence energies is much closer to the data than we
saw for the 02

+ sequence. Also, if anything, the small de-
viations are actually in the opposite direction—the X�5�

-band spacings are slightly smaller than the observed
values. The relative energies are compared in Fig. 35
�bottom�. It is significant that the same scheme that re-
produces the relative yrast and yrare energies gives the
relative 
-band energies as well.

The comparison of E2 strengths is good as far as it
goes but it is worth stressing that, experimentally, a num-
ber of B�E2� values are only very roughly known. The
E2 comparison in Fig. 35 has an interesting historical
development as well. Bijker et al. �2003� gave the experi-
mental B�E2:2


+→22
+� value as 27 W.u. and this was

cited as the most glaring discrepancy with X�5� for the 

degree of freedom which predicts 0.20 W.u. in 152Sm.
Subsequently, this transition was remeasured �Kulp et

al., 2007� and found to be nearly pure M1 giving a nearly
vanishing B�E2� in agreement with X�5�.

Needless to say, 152Sm provides only one test case of
the 
 mode in X�5� and, moreover, the data are still
incomplete despite the fact that 152Sm is one of the best
studied atomic nuclei. Further experimental results
would be useful, both more accurate E2 strengths within
the 
 band for this nucleus and tests for other N=90
nuclei.

Having discussed X�5�, which involves the assumption
of separability of the � and 
 degrees of freedom, it is
important to return and consider the consequences of
this assumption. From Eq. �3.4� and our discussion at the
start of Sec. V.A.1 it is clear that the replacement of � by
an average value �0 would be an excellent approxima-
tion if the wave function were localized in a narrow
range of �. This is satisfied in a good rotor, but X�5�
invokes in its essence a �-flat potential, so this approxi-
mation may be quite severe. It is further exacerbated in
X�5� since V2�
2 favors small 
 �large 1/sin 3
� which
makes the second term in Tvib large. This term is effec-
tively a centrifugal force, pushing the wave function
probability distributions outward in � and shifting the
predictions of the � flat X�5� potential toward those of a
fixed � rotor. Note that this could be ameliorated in part
by incorporating a sloped wall into X�5� as well since the
“outer wall” in that case is effectively softer.

Caprio �2005� solved the Bohr Hamiltonian with-
out assuming separability for quadratic potentials
V2=c
2 parametrized by a dimensionless parameter a
=2Mc�M

2 /	2 quantifying the 
 softness. The value a=0
corresponds to a completely 
-flat potential �c=0� while
larger a values are obtained for stiffer potentials. Results
for a=200 and 1000 are shown in Fig. 36. One sees that
the quasi-� mode increases in energy along with a and
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FIG. 35. X�5� description of the quasi-
 band. Top: Compari-
son of the predictions of X�5� for the 
 band with the data in
152Sm. Based on Bijker et al., 2003 with the new results of Kulp
et al., 2007. Bottom: Comparison of the relative 
-band ener-
gies in 152Sm with X�5� and the rotor.

FIG. 36. Exact spectra and transition rates for the X�5� poten-
tial with two different 
-stiffness parameters a �see text� com-
pared with the approximate X�5� solution assuming separabil-
ity. Adapted from Caprio, 2005.
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that a number of B�E2� values change. That is, the
stiffer the potential in 
, the larger the centrifugal effects
in �, so that the � mode is squeezed and its energy in-
creases. Assuming separability reflects an interesting
conundrum, it works best for a 
-soft potential but X�5�
invokes a stiff potential. It turns out that a value of
a�200 best agrees with the original X�5� predictions, as
shown in Fig. 36. Indeed, for that case, the overlaps of
the exact solutions with the X�5� solutions are nearly
unity.

3. The E(5) critical-point solution

We now indicate the results for an analogous critical-
point solution called E�5�. It invokes a CPS description
of the second-order phase transition along the trajectory
from a harmonic vibrator to a 
-soft rotor. Historically,
E�5� was proposed by Iachello �2000� even before X�5�,
the name being derived from the Euclidian algebra in
five dimensions. Again, an infinite square well Ansatz is
made for the potential in �, while the potential in 
 is
assumed to be constant: V2�
�=0. The latter assumption
makes the separation of variables � and 
 exact and one
again, as in the X�5� case, gets Bessel function solutions
for the � degree of freedom. It turns out that for E�5�
the order of Bessel functions is a half integer, �=�
+3/2, where � is a phononlike O�6� quantum number
�seniority� that takes integer values. For more theoreti-
cal details see Caprio and Iachello �2007�.

The predictions for E�5� are shown on the left in Fig.
37. The levels split, as with X�5�, into families labeled by
a quantum number # and are further classified by the
quantum number �. The E�5� solution, of course, pre-
dicts a full set of level energies and B�E2� values. How-
ever, there is an important caveat that makes E�5� more
difficult than X�5� to identify experimentally. Figure 37
appears to show distinct predictions. However, the

-independent potential of E�5� carries with it an O�5�
symmetry, similar to that characterizing all IBM-1 solu-

tions along the entire U�5�-O�6� leg of the symmetry
triangle. Thus, E2 branching ratios within a # family only
identify the O�5� substructure. Moreover, the degenerate
multiplets are also a characteristic feature of O�5�. Thus,
the predictions truly unique to E�5� are the yrast ener-
gies, the relative energies of the # families, and the ab-
solute scales of B�E2� values between the different �# ,��
families.

Of course, the first signature one would look for is
yrast energies consistent with E�5�. The R4/2 value is
2.19, intermediate, as would be expected, between the
harmonic vibrator �R4/2=2.0� and the 
-soft rotor �R4/2
=2.5�. Another characteristic prediction is that the 0+

state with �# ,��= �2,0� is at 3.03 times E�21
+� and decays

to the 21
+ state, whereas the 0+ state with �# ,��= �1,3� is

slightly higher and decays to the 22
+ state with a strong

B�E2� value. Finally, not surprisingly, E2 transitions with
�#=0 are much stronger than those with �#�1. Never-
theless, the relative paucity of significant transition rates
has made identifications of E�5� more difficult than for
X�5�.

The first candidate for an empirical manifestation of
E�5� was 134Ba �Casten and Zamfir, 2000�. Comparison
of the data with E�5� is shown in Fig. 37. The most ob-
vious evidence comes from the yrast energies as well as
the characteristic branching ratios from the two excited
0+ states. The yrast E2 strengths also agree well with
E�5�. While the absolute B�E2� values from the 02

+ state
are known and in reasonable agreement with E�5�, those
for the 03

+ state are unknown and new measurements
would be valuable. Another nucleus, 128Xe, was also dis-
cussed by Clark et al. �2004� and Casten and McCutchan
�2007� as a possible example of E�5� and its level scheme
is also shown in Fig. 37. Other candidates for E�5� which
have also been discussed include 104Ru, 106,108Cd, 124Te,
and some Pd isotopes �Neuneyer et al., 1996; Arias,
2001; Frank et al., 2001; Zamfir et al., 2002a; Zhang and
Liu, 2002; Zhang et al., 2003; Kirson, 2004; Margínean et

FIG. 37. Comparison of E�5� with the data for 134Ba and 128Xe. Based on Casten and Zamfir, 2000, Clark et al., 2004, and
McCutchan, 2007.
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al., 2006�. In all cases, further data are needed both in
terms of experimental information in individual nuclei
and in the search for other possible candidates for E�5�.

Finally, we note that the relation between E�5� and
the IBM-1 has been explored by García-Ramos and
Arias �2008�. Caprio et al. �2002� carried out calculations
for a finite E�5�-like potential in � and showed that the
assumption of an infinite square well in E�5� is not se-
vere.

4. Other critical-point solutions

The success of the union of the QPT and CPS con-
cepts in the description of shape evolution in nuclei, as
reflected in X�5� and E�5�, has encouraged the develop-
ment of many other geometric models. These models
either discuss alternative critical-point solutions for vari-
ous structures or they describe structural evolution en
route to and from the critical points. We discuss the lat-
ter in Sec. V.B. Examples of the former are solutions
such as Y�5� �Iachello, 2003�, which describes a phase
transition in variable 
 �having a harmonic oscillator in
� and a square well in 
�, X�3� �Bonatsos, Lenis, Petrel-
lis, et al., 2006�, Z�4� �Bonatsos, Lenis, Petrellis, et al.,
2005�, and Z�5� �Bonatsos et al., 2004�, which employ the
same square well in � as in X�5� but have alternate po-
tentials in 
: X�3� and Z�4� have rigid potentials in 
,
with sharp minima at 
=0° and 30°, respectively. Thus
Z�4� could simulate a transition from spherical to a rigid
triaxial shape. In Z�5�, the 
 potential is a harmonic os-
cillator centered at 
=30° and is therefore related to a
prolate-oblate transition. A few predictions of these
CPSs are given in Table I.

As shown in Table I, various critical-point solutions
have different features but intriguingly those with infi-
nite square-well potentials in � �that is, all except Y�5��
share some remarkable uniformities due to approximate
and only recently recognized properties of their Bessel
function solutions �Bonatsos, McCutchan, and Casten,
2008�. An example is illustrated in Fig. 38 which shows
the energies of the 0+ states for X�5�, E�5�, and Z�5�. On
the left, these energies are shown in the usual way, nor-
malized to the energy of the first 2+ state. However, the
right side shows these same energies normalized to that
of the first excited 0+ state itself. Then one sees that the
relative energies are virtually identical in all three col-

umns. Moreover, these energies �relative to 01
+� can be

expressed to high accuracy by a simple approximate for-
mula E�0n+1

+ ��n�n+3� with n=1,2 ,3 , . . .. This expression
actually is an example of a more general result. If the 0+

states for other infinite square-well potentials, such as
X�4� or X�3�, are analyzed in the same way, one finds a
single universal formula for their 0+ spectra given by

E�0n+1
+ � = An�n +

D + 1
2

� . �5.9�

Here A is a constant depending on the model and D is
the effective dimension of the system �given in the
model name�. That is, the relative 0+ state energies de-
pend only on the dimensionality. This formula, as noted,
is only approximate, except for D=3 where it is exact.
Its approximate nature probably explains why it has not
been discovered until recently �Bonatsos, McCutchan,
and Casten, 2008�. It stems from simple approximate
properties of successive Bessel functions of different or-
ders.

There have been few detailed tests of these alternate
CPSs to date but they serve to illustrate the richness of
possibilities following from the square-well Ansatz. Gen-
erally speaking, potentials that are rigid in 
 for 
�0
have been found less useful to describe the equilibrium
structure of nuclei since it is well known that, with few
exceptions, axial asymmetry in even-even nuclei at low
spin almost always is of the 
-soft variety. Since a full
discussion of these issues is beyond the scope of this
review, we direct the interested reader to the original
literature.

5. Extension to odd-A nuclei

The CPS idea has also been extended �Iachello, 2005�
to odd-A nuclei within the E�5/4� model, which corre-
sponds to an odd fermion in a j= 3

2 orbit coupled to an
E�5� even-even core. A theoretical account of this situ-
ation was reviewed by Caprio and Iachello �2007�.

Low-j orbits tend to occur near the ends of major
shells in heavy nuclei, which is also where 
 softness
tends to manifest itself. Unfortunately, the shell model
orbits with j= 3

2 are invariably accompanied by j= 1
2 or-

bits as well �as in the p3/2−p1/2 or d3/2−s1/2 cases�. How-

TABLE I. A few predictions of various CPSs �Iachello, 2000,
2001; Bonatsos et al., 2004; Bonatsos, Lenis, Petrellis, et al.,
2005; Bonatsos, Lenis, Petrellis, et al., 2006; Casten, 2006�.

CPS R4/2 R0/2 E�2

+� /E�21

+�

X�5� 2.91 5.67
E�5� 2.19 3.03 2.19
Y�5� 3.33
X�3� 2.44 2.87
Z�4� 2.23 2.95 1.77
Z�5� 2.35 3.91 1.83 FIG. 38. �Color online� Energies of 0+ states for several CPSs.

Left: normalized to E�21
+�. Right: normalized to E�02

+�.
Adapted from Bonatsos, McCutchan, and Casten, 2008.
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ever, if the excitations originating from the j= 1
2 single-

particle state and those corresponding to a j= 1
2 particle

coupled to an excited core can be isolated, then at least
an approximate test of E�5/4� can be made. The nucleus
135Ba �that is, 134Ba plus a neutron in a d3/2 orbit� pro-
vides such a case if one assumes that the low-lying 1

2
+

state arises from a neutron in a nearly pure 3s1/2 orbit
�Fetea et al., 2006�.

We do not have space here for a detailed discussion.
Suffice it to say that it is possible to plausibly associate
most of the low-lying levels to corresponding states in
E�5/4�, that, overall, the measured B�E2� strengths are
in reasonable agreement with theory, but that the ener-
gies differ very much from the predicted values. Alonso
et al. �2007b� extended the E�5/4� model to the multi-j
case, with j= 1

2 , 3
2 , and 5

2 , leading to a model called
E�5/12�. Analytic solutions for the excitation energies
and B�E2� values are derived. Unfortunately, no com-
parison with experimental data is made. Clearly much
more work would be needed to advance the study of
odd-A nuclei near critical points, including especially the
incorporation of realistic combinations of shell model
angular momenta. We will return to problems of odd-A
nuclei in Sec. VI.A.3.

B. Calculations away from critical points

The critical-point descriptions we have been discuss-
ing describe singular situations, that is, nuclei with par-
ticular properties. Though these nuclei play crucial roles
as benchmarks in structural evolution, most nuclei, of
course, will not reflect these simple potentials. There-
fore, one must resort to more general �and, hence, usu-
ally more complicated� models. We already discussed
some predictions for the IBM-1 including the mapping
of actual nuclei into the symmetry triangle. Here it is
appropriate to look at a few geometric models that can
relate to a wider variety of structures and which can
describe particular trajectories of structural evolution.
We start with some simple cases and then discuss a re-
cent development that generalizes the capabilities to
handle arbitrary potentials in a simple way. Figure 30
shows the regions of structural evolution for each of the
models discussed below in the context of a geometrical
structural triangle.

Since vibrational nuclei correspond to V�����2 and
the square well in � can be approximated by V���
� �� /�M�2n with n→�, a series of models with n
=1,2 ,3 , . . . has been worked out for both the X�5�
�Bonatsos, Lenis, Minkov, Raychev, and Terziev, 2004b�
and E�5� �Bonatsos, Lenis, Minkov, Raychev, and Terz-
iev, 2004a� Ansätze regarding the 
 degree of freedom.
These approaches simulate the transition from the vibra-
tor up to the critical point for both 
-rigid and 
-soft
cases, the corresponding models being denoted as
X�5�-�2n and E�5�-�2n, respectively. Figure 39 shows
level schemes and transition rates for n=1 and 2. The
latter case for V�����4 was also discussed earlier by
Vorov and Zelevinsky �1985�. These geometrical de-

scriptions have been compared with IBM-1 calculations
for realistic boson numbers �McCutchan, Bonatsos, and
Zamfir, 2006�.

The structures on the deformed side of the phase tran-
sition can be described by the “moving-wall” potential,

V1��� = �0 for � � ��m,�M�
� otherwise,

� �5.10�

proposed by Pietralla and Gorbachenko �2004�. Here
�m, demarcating the inner edge of the square well, rep-
resents an adjustable parameter �additional to outer
edge �M�. For �m=0 we have the critical-point square-
well solution. As �m increases toward �M, the potential
describes deformed nuclei with decreasing softness in
the variable �, hence the name confined beta soft �CBS�
model. In the limit �m→�M, we would get an infinitely
rigid potential. Figure 40 shows examples of spectra gen-
erated by this model for various values of r�=�m/�M.
The method was originally designed for 
-rigid poten-
tials of the form �5.1�. A generalization to 
-soft cases

FIG. 39. Level schemes for �2 and �4 models in the X�5�
framework. Adapted from Bonatsos, Lenis, Minkov, Raychev,
and Terziev, 2004b.

FIG. 40. �Color online� Calculations in the CBS for increasing
values of the �-rigidity parameter r�. The �-soft case �r�=0�
coincides with X�5�. Values of R4/2=E�4s

+� /E�21
+� and R0/2

=E�0s
+� /E�21

+� are indicated below each band with s=1,2 ,3.
From Pietralla and Gorbachenko, 2004.
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was presented by Bonatsos, Lenis, Pietralla, and Terziev
�2006�. A combination of the �2n potentials and the CBS
model enables one to describe the path between the vi-
brator �spherical� nuclei and 
-rigid or 
-soft rotor �de-
formed� nuclei �see Fig. 30�.

An apparent drawback of this approach is the neces-
sity to join the two distinct models at the critical point
�n=� and �m=0�. A way to bypass this problem is to use
the potential introduced by Davidson �1932� in the con-
text of molecular physics. It reads as

V1��� = a��2 +
�0

4

�2� � 2 + � �

�0
−

�0

�
�2

, �5.11�

where a and �0 are adjustable parameters. For �0→0
one gets the harmonic oscillator, while increasing values
of �0 move the dynamics toward the rigid-rotor case �see
examples of Davidson potentials in Fig. 30�. Analytic
solutions of the Davidson potential are available �Elliott
et al., 1986; Rowe and Bahri, 1998�. This potential has
been compared to the critical-point solutions �Bonatsos,
Lenis, Minkov, Petrellis, et al., 2004a, 2004b� and also
used in the separable form �3.10� in the transitional re-
gions �Bonatsos, McCutchan, et al., 2007�. Other special
forms of potentials have also been considered for tran-
sitional nuclei. Calculations spanning a variety of struc-
tures with the Davidson, Morse, and Kratzer potentials
have been extensively discussed by Boztosun et al.
�2008�.

Lastly, separable potentials of the form �3.10� have
been studied, for cases where V2�
��
2 and V1��� is
either of X�5� form or of an oscillator form, as with the
Davidson potential �Bonatsos, Lenis, McCutchan, et al.,
2007�. Studies with 
0=0 and with 
0=30° have likewise
been carried out for separable Kratzer and Davidson
potentials �Fortunato, 2004; Fortunato and Vitturi, 2004;
Fortunato et al., 2006�.

It is beyond the scope of this review to collect and
discuss all the predictions of these models and other
geometric models utilizing the Bohr Hamiltonian. These
approaches incorporate important features of structural
evolution, they differ substantially from one another in
certain properties, like inertial behavior of quasibands
or B�E2� values, while agreeing in others, e.g., behavior
of E�02

+�. They have been discussed with many refer-
ences in several recent reviews �Casten, 2006; Bonatsos,
Lenis, and Petrellis, 2007; Casten and McCutchan, 2007�.
Some useful additional references are Arias, Alonso, et
al. �2003�, Bonatsos, Lenis, Minkov, et al. �2005�, García-
Ramos, Dukelsky, and Arias �2005�, and Bonatsos, Le-
nis, Petrellis, et al. �2006�.

Of course, ideally, one wants to solve the Bohr Hamil-
tonian for an arbitrary potential—of which the above
examples would just be specific realizations. Until re-
cently, this has been a formidable mathematical problem
due to the slow convergence in the diagonalization in
the traditional five-dimensional oscillator basis. How-
ever, recently an algebraic collective model has been de-
veloped which provides a major simplification by ex-
ploiting an SU�1,1��O�5� basis �Rowe, 2004b, 2005;

Rowe and Turner, 2005; De Baerdemacker et al., 2007,
2009; Caprio, 2009; Rowe et al., 2009�. In this basis, one
can solve for potentials with almost arbitrary shapes, ob-
taining rapid convergence and rather simple wave func-
tions. This has recently been exemplified in calculations
by Caprio �2009�. Figure 41 shows an example for the
Davidson potential from Eq. �5.11� supplemented by the
term V2�
��"�1−cos 3
�, where the coefficient " quan-
tifies the stiffness of the potential in 
. Clearly, one can
now obtain a large variety of observables, including
�though not shown� transition rates. Thus the purview of
the geometrical model is now greatly expanded and ri-
vals the richness of structure of the IBA.

VI. FURTHER DEVELOPMENTS

This section deals with some issues exceeding the
framework of the previous discussion. First, we hint at
possible modifications following from specific extensions
of the above-discussed models which lead to other types
of shapes and transitions �Sec. VI.A�. Second, we look
more closely at the mechanisms underlying the critical
behavior in these models �Sec. VI.B�. Finally, we review
new results related to nonanalytic evolutions of excited
states �Sec. VI.C�. In many cases, the topics discussed in
this section are still open. New findings are expected,
which may deepen our understanding of the QPT phe-
nomena in general quantum systems.

FIG. 41. Calculations by Caprio �2009� for the Davidson-like
potential with �0=3 and "=5 �see text�.
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A. Extensions of models

Our attention in the preceding sections was focused
entirely on the transitions within the phase diagram of
Fig. 12. As emphasized, the shape phases involved in
this diagram �spherical, axially symmetric prolate or ob-
late, and 
 soft� represent the most important structural
types of even-even nuclei. Nevertheless, other types of
shape and related transitions may be relevant as well.
They can be described theoretically if the models con-
sidered above are extended in various directions, e.g., by
taking into account nonquadrupole excitations, by sepa-
rating proton and neutron degrees of freedom, by con-
sidering higher-order interactions of bosons, etc. We
now discuss some of these extensions.

1. Simple treatment of triaxial shapes

We saw that both GCM and IBM-1 potential energy
surfaces �Eqs. �3.2� and �3.26�, respectively� depend on
the angle variable 
 solely through the cubic term
��3 cos 3
. This has an immediate consequence that the
equilibrium deformed shape of a nucleus is axially sym-
metric, either prolate �with ��0 and 
=0� or oblate
�with ��0 and 
=� /3 or, equivalently, ��0 and 
=0�,
depending on the sign of the coefficient B in front of the
cubic term. Nonaxial shapes, also called triaxial �all
three eigenvalues of the quadrupole tensor are different,
which can be represented as an ellipsoid having unequal
radii along the three principal axes�, do not appear in
this simple description.

However, for a few nuclei triaxial deformation may be
present either on the ground-state level or within the
spectrum of excited �rotational� states �Nilsson and Rag-
narsson, 1995�. This is also supported by various micro-
scopic calculations taking into account the �−
 coupling
�cf. Sec. III.C.2�. To get such shapes into the basic geo-
metric description, one simply includes in the GCM po-
tential a sextic term ��6 cos2 3
, which results from a
sixth-order scalar coupling of coefficients � �cf. Eq.
�3.1��. A phase corresponding to triaxial shapes �0�

�� /3� appears for sufficiently large values of the coef-
ficient in front of the sextic term if it has an opposite
sign than that of the cubic term, the phase transition
from the axially symmetric to triaxial shapes being of
second order. Such a possibility was discussed by Iach-
ello �2003�, who also introduced the associated critical-
point solution Y�5� and suggested 166,168Er as the most
likely candidates for the nuclei possessing this structure.
Numerical signatures of the axial-to-triaxial transition in
the geometric framework were discussed by Caprio
�2009�.

Can we obtain triaxial shapes also in the IBA frame-
work? The answer is yes, and there are actually many
ways how to do it. In Sec. VI.A.3 we discuss model ex-
tensions that describe the coupling of various degrees of
freedom �those corresponding to protons and neutrons,
paired and unpaired nucleons, normal and intruder con-
figurations� within the IBA framework. Some of these
extensions yield possible triaxial deformations. How-

ever, even the simple IBM-1 version of the model offers
several possibilities for the inclusion of triaxiality.

The first one relies on recognition of finite-size effects
in the IBA ground state �0�� ,
� expressed in a coordi-
nate representation �Chacón and Moshinsky, 1977�.
As shown by Castaños et al. �1984�, when evaluating the
mean value and rms deviation of the shape variable

 in the ground-state wave function, one obtains �
�
���
2�− �
�2�0 even for relatively large boson numbers
NB. Although this is just an effect of quantum fluctua-
tions �which vanish as NB→��, the interpretation in
terms of an effective triaxial deformation can be formu-
lated. Note the same mechanism also works for excited
states and in the geometric model �Caprio, 2009�. An-
other approach leading to similar conclusions makes use
of angular momentum and seniority projection of the s
+d condensate state �Dobeš, 1990�.

The second path to triaxiality within the IBM-1 pro-
ceeds via introduction of higher-order interactions of
bosons �Van Isacker and Chen, 1981; Van Isacker, 1999�.
In contrast to the first path, this allows one to produce
stable triaxial deformation in the limit NB→�. Such a
possibility was recently studied by Jolos �2004a� and Sor-
gunlu and Van Isacker �2008� using a simple Hamil-
tonian,

H = H"��� +
��1 − ��

NB�NB − 1�	�,l
c�†�d† � d†��l�

� d†
‡

��� · †�d̃ � d̃��l� � d̃‡���, �6.1�

where H"��� is the two-body Hamiltonian �3.21� and the
sum represents three-body interactions between d
bosons, with c� being specific constants. The parameter
��0, which measures an overall strength of the three-
body interaction in Eq. �6.1�, appears in front of the sex-
tic term �6 cos2 3
 / �1+�2�3 in the potential-energy sur-
face obtained from the standard coherent-state
formalism �Sec. III.B.2� and hence controls the onset of
triaxiality in the equilibrium shape �Van Isacker and
Chen, 1981�. The critical value �=�c, where the second-
order phase transition to triaxial shapes takes place, de-
pends on the other control parameters � and ". Not
surprisingly, �c is close to zero in the 
-unstable case �"
=0�, while in the 
-rigid case the value of �c grows with
�"�. Details can be found in Jolos �2004a, 2004b�.19

Finally, the third way that triaxial shapes can enter
into the IBM-1 description proceeds by imposing exter-
nal rotation onto the ensemble of interacting bosons
�Cejnar, 2002, 2003�. We stress that in this case the tri-
axiality does not appear in the 0+ ground state but may
affect the yrast states with higher angular momenta. The
cranking approach originates from fermionic models of

19We stress that certain types of three-body interactions do
not imply the occurrence of the triaxial phase; an example
using a triple product �†�Q0�Q0��2��Q0‡

�0� of quadrupole op-
erators from Eq. �3.18� was analyzed by Thiamova and Cejnar
�2006�.
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nuclear structure, where it is commonly used to describe
properties of rotating nuclei �e.g., moments of inertia�.
One starts from identifying the rotating-frame Hamil-
tonian Hcrank
H−
� ·L� , where H is the stationary
Hamiltonian, 
� is a vector of the rotational angular fre-
quency �pointing along the rotation axis�, and L� is the
vector of angular-momentum operators. Minimization of
the expectation value �Hcrank�
���Hcrank��� in the
mean-field states ��� for each value of the cranking fre-
quency yields a relation between 
 and an average an-
gular momentum �L�
���L� ·n� ���, where n� 

� /
.

For the IBA, the cranking analysis was explicitly dis-
cussed by Dukelsky et al. �1983�, Schaaser and Brink
�1984, 1986�, Cambiaggio et al. �1985�, and Alonso et al.
�1996�. Expectation values of Hcrank are evaluated in
condensate states of the known form �3.24� but with the
Ansatz �3.25� replaced by one with a±1�0. Geometric
interpretation of the modified condensate states follows
from evaluation of their associated expectation values
�Q"�
���Q"��� of the quadrupole tensor. The spherical
phase is identified with a pure s-boson condensate, while
the deformed phase is represented by a condensate in an
s+d superposition. For 
=0 one gets �L�=0, the equi-
librium shape being equivalent to that obtained from the
standard analysis. As 
 increases, �L� grows and also
expectation values of the quadrupole tensor change
�Cejnar, 2002�. The deformed shapes for 
�0 are tri-
axial as they generally show three different eigenvalues
of the �Q"� matrix. It should be stressed, however, that
in the cranking case there is no phase transition from
axial to nonaxial deformation; the axial shape �valid for

=0� smoothly changes into a triaxial shape observed at
arbitrarily small value 
�0.

Interestingly, the IBM-1 phase diagram in the rotating
frame �Cejnar, 2003� resembles a phase diagram of a
superconductor in an external magnetic field. The sepa-
ratrix between spherical and deformed phases �which
are analogous to superconducting and normal phases,
respectively� is demarcated by a curve starting at the
standard �first- or second-order� critical point for 
=0
and leaning toward the U�5� limit for increasing 
. Tran-
sition to the triaxial phase along this curve keeps the
same order as at 
=0. This indicates a possibility of a
rotation-induced spherical-to-deformed phase transi-
tion, which is supported by analyses of the backbending
phenomenon in a number of nuclei such as 108–114Cd,
108–104Pd, 100,102Ru, and 100Mo having nearly spherical
ground state �Regan et al., 2003; Cejnar and Jolie, 2004�.
Note that this kind of transition was absent in earlier
non-IBA analyses performed in the cranking framework
�Levit and Alhassid, 1984; Alhassid et al., 1987�. A nu-
merical study of transitional signatures of the IBM-1
eigenstates with different angular momenta was pre-
sented by Williams et al. �2008�.

2. Nonquadrupole degrees of freedom

A more radical departure from standard treatments of
nuclear shapes follows from the inclusion of other than

quadrupole types of deformation. In this respect, the oc-
tupole deformation �leading to pearlike nuclei� is the
most common possibility. Experimental observables �in
particular, the presence of a negative-parity band
1−,3− ,5− close to the positive-parity ground-state band
0+,2+ ,4+ as well as certain E1 and E3 transitions� indi-
cate the existence of stable octupole deformation in
some Th and Ra isotopes �Butler and Nazarewicz, 1996�.
Recently anomalies in binding energies were identified
just in these two regions �Neidherr et al., 2009a, 2009b�.

Scott et al. �1979� discussed signatures of a spherical-
deformed shape change for the octupole degree of free-
dom, noting a characteristic switch in the order of the
lowest 1− and 3− states. In the vibrational regime the
base octupole state is the 3− level and the 1− is a higher-
lying member of a two-phonon octupole vibration mul-
tiplet. In deformed nuclei, one has a series of rotational
bands with K=0,1 ,2 ,3. In an RPA analysis, Neergaard
and Vogel �1970� showed that, at the beginning of a
shell, the K�=0− mode and hence a 1− bandhead should
lie lowest and, in particular, below the 3− level. Such
crossovers are indeed seen in the Sm and Gd nuclei
around N=90. Recently Garrett et al. �2009� garnered
extensive new data on negative-parity states in 152Sm
which should shed light on both the role of octupole
correlations in the onset of deformation and on signa-
tures of transitional regions that they offer.

A theoretical description of octupole nuclear shapes
in their full complexity is not an easy problem; this is
because the octupole deformation itself has a large num-
ber of degrees of freedom and moreover must be treated
in conjunction with the �dominant� quadrupole deforma-
tion. It implies extension of kinematical variables by
those parametrizing the octupole shape coefficients ��

�3�

�in general, one needs seven new real variables� and in-
troduction of many additional parameters of the
quadrupole-octupole Hamiltonian.

Separation of internal and external variables �describ-
ing the shape in the body-fixed frame and its orientation
in the laboratory frame, respectively� is much more dif-
ficult in the octupole than in quadrupole case �Rohozin-
ski, 1988�. Bizzeti and Bizzeti-Sona �2004, 2008� intro-
duced a parametrization, in which the tensor of inertia is
diagonalized up to terms of first order in the quantities
describing nonaxial deformations, but severe dynamical
simplifications are needed to keep the problem trac-
table. With these simplifications, they introduced an
X�5�-like two-dimensional model in quadrupole and oc-
tupole deformation parameters �2 and �3. Similarly,
Bonatsos, Lenis, Minkov, et al. �2005� constrained the
system by requiring strict axial symmetry and investi-
gated solutions similar to X�5� and E�5� near the critical
point of the transition from dynamical octupole vibra-
tions to static octupole deformation. Both Bizzeti and
Bizzeti-Sona �2004, 2008� and Bonatsos, Lenis, Minkov,
et al. �2005� applied their models to the Ra-Th region
and identified 226Th and 226Ra as being close to critical
or border point nuclei in both the quadrupole and octu-
pole degrees of freedom.
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Octupole modes can be treated also within the IBA
description. The so-called spdf-IBM adds negative-
parity bosons p and f with ��=1− and 3−, respectively, to
the familiar pair of bosons s and d �Engel and Iachello,
1985, 1987�, hence also including E1 and E3 electromag-
netic transitions. This model has been addressed in sev-
eral works �see, e.g., Alonso et al. �1995��. Recently it
was applied to describe octupole collectivity in Sm iso-
topes �Babilon et al., 2005�, but its phase structure has
not been fully analyzed yet.

Even a more difficult problem is the inclusion of hexa-
decapole ���=4+� modes in both geometric and interact-
ing boson models. Dynamical symmetries of the
sdg-IBM �a version in which the g boson is added� were
discussed by Iachello and Arima �1987� and its shape
analysis was introduced by Devi and Kota �1990�. The
motivation for this extension of the IBA was not so
much the existence of stable hexadecapole deformations
in nuclei but rather the need to include the E4 dynami-
cal modes. A comprehensive shape phase analysis of the
sdg model would be in order. As in the previous case,
one of the main obstacles is the large number of vari-
ables and parameters involved. The phase structure of a
simplified sdg Hamiltonian was presented by Van
Isacker et al. �2010�.

More extensive �although still incomplete� results are
available for a simpler class of IBA modifications, in
which the new boson x=p , f ,g , . . . substitutes the d bo-
son instead of supplementing the sd set. Since in atomic
nuclei quadrupole modes represented by the d bosons
are essential, these sx-IBM descriptions �with x�d� are
not suitable for nuclear-structure physics. They are nev-
ertheless relevant in molecular physics, where they give
rise to the so-called vibron models �Frank and Van
Isacker, 1994; Iachello and Levine, 1995�.

The choice x=p leads to the three-dimensional �3D�
vibron model used to describe rotation-vibration spectra
of diatomic molecules, with U�4� being the spectrum
generating group. Phase transitions in this model were
considered by Van Roosmalen �1982� and recently sub-
ject to methods going beyond the mean field �Dusuel et
al., 2005b�. The choice x=�, where � is a two-component
boson �it must not be confused with a spin-1

2 particle�,
creates a two-dimensional �2D� vibron model based on
the U�3� algebra, which can be applied to bending vibra-
tions in polyatomic molecules �Iachello and Oss, 1996�.
Phase transitions in the 2D vibron model were studied
by Pan, Zhang, Jin, et al. �2005�, Iachello and Pérez-
Bernal �2008�, and Pérez-Bernal and Iachello �2008�.
General features of phase transitions between s and s
+x condensates in a wider class of U�2�–U�9� models
were compared and summarized by Cejnar and Iachello
�2007�.

3. Coupled boson-boson and boson-fermion systems

A number of modifications of the basic IBM-1 de-
scription follow from coupling of the Hilbert space gen-
erated by s† and d† boson operators to spaces associated
with some additional degrees of freedom. A well-known

example of such coupling is provided by an extended
version of the interacting boson model called IBM-2
�Iachello and Arima, 1987�. In this version, proton and
neutron degrees of freedom are taken into account sepa-
rately by distinguishing s and d bosons associated with
protons and neutrons. The corresponding operators may
be denoted s�† ,d�

�†, for the proton component, and
s�† ,d�

�†, for the neutron component, while the Hilbert
space of physical states can be formally identified with
H
H� � H�, a tensor product of spaces corresponding
to proton and neutron configurations.

The shape phase analysis of this model was presented
simultaneously by Arias et al. �2004� and by Caprio and
Iachello �2004� �see also Caprio and Iachello �2005��.
The Hamiltonian can be taken in the form �3.21�, but
with nd replaced by nd

��
nd
�+nd

� and Q" by Q"�,"�

��


Q"�

� +Q"�

� , where nd
� �or nd

�� and Q"�

� �or Q"�

� � stand for
the d-boson number operator and the quadrupole op-
erator of the proton �or neutron� component, respec-
tively. This Hamiltonian is of the form

H � H� + H� − 2
1 − �

NB
�Q"�

� · Q"�

� � , �6.2�

where the first two terms are given by Eq. �3.21� applied
to both proton and neutron components �with boson
numbers NB

� +NB
� =NB� and the last term, which in a gen-

eral case can be denoted H��, represents an interaction
between both components. Note that the proton and
neutron quadrupole-operator parameters "� and "� may
be equivalently expressed by "S= �"�+"�� /2 and "V
= �"�−"�� /2.

The coherent states exploited in the mean-field analy-
sis of a general IBM-2 Hamiltonian read as
�NB

� ,a� ,NB
� ,a��= �NB

� ,a�� � �NB
� ,a��, where �NB

x ,ax� with
x=� ,� stand for proton- and neutron-boson condensate
states from Eq. �3.24�. The energy functional F
= ���H��� derived from these two-component conden-
sates ��� contains, besides variables �� ,
� and �� ,
�

characterizing shapes of both proton and neutron “flu-
ids,” Euler angles describing the relative orientation of
both intrinsic frames.

It was proved that for the Hamiltonian �6.2� the mini-
mization in Euler angles can only lead to configurations
in which both proton and neutron quadrupole deforma-
tions have the same internal axes up to reordering.
Therefore, besides the phases known from the IBM-1
and their combinations, the two-component model
yields also a phase in which proton and neutron fluids
exhibit prolate or oblate deformations with perpendicu-
lar symmetry axes. These shapes lack axial symmetry. As
in the simple treatment outlined in Sec. VI.A.1, the tran-
sition from axially symmetric to triaxial shapes has a
critical character and is of the second order. The
spherical-deformed phase transition is of the first order
for axially symmetric deformed shapes and of the sec-
ond order for triaxial or 
-soft deformed shapes. The
phase diagram is shown in Fig. 42.

2199Cejnar, Jolie, and Casten: Quantum phase transitions in the shapes of …

Rev. Mod. Phys., Vol. 82, No. 3, July–September 2010



The situation is more complex in another extension of
the simple IBA description, which takes into account
multiple particle-hole �p-h� excitations across the closed
shell �Duval and Barrett, 1981, 1982�. It is well known
that such configurations may benefit from the attractive
internucleon interactions so that their energy becomes
comparable with normal collective excitations of the va-
lence shell; we then talk about intruder states �Heyde et
al., 1983, 2004�. A mean-field analysis of these excita-
tions was given �see, e.g., Nazarewicz �1993�, Reinhard et
al. �1999�, and Smirnova et al. �2003��, while an algebraic
description in the IBA framework was developed by De
Coster et al. �1996, 1997, 1999� and Lehman et al. �1997�.
Consider a simple example in which the valence-shell
�normal� collective excitations coexist with 2p-2h in-
truder configurations. While the normal states are de-
scribed by an IBM-1 Hamiltonian with a boson number
NB derived in a standard way from the occupancy of the
valence shell, the intruder states can be described by
another Hamiltonian with NB+2 bosons.

The Hilbert space of such an extended model can be
written as a direct sum H
H1 � H2, where H1 and H2
correspond to the orthogonal subspaces of normal and
intruder states, respectively, with the associated projec-
tion operators denoted as P1 and P2. The Hamiltonian
takes the form

H = P1H1P1 + P2H2P2 + Hmix. �6.3�

Here H1 and H2 represent IBM-1 Hamiltonians corre-
sponding to the normal and intruder configurations, re-
spectively, which may be associated with different equi-
librium shapes. These shapes coexist within the same
nucleus and become dynamically coupled due to the
mixing term Hmix, whose action on H1 yields vectors in
H2 and vice versa. In the 0p-0h plus 2p-2h model we can

set Hmix=w0�s†s†+ss�+w2�d† ·d†+ d̃ · d̃�, where w0 ,w2
stand for adjustable constants.

The mean-field description of Hamiltonian �6.3� was
introduced by Frank et al. �2004� and later elaborated in
the phase-transitional analysis by Frank et al. �2006�,
Hellemans et al. �2007, 2009�, and Morales et al. �2008�.
The method can be reformulated in the following way:

A general wave function is written as a superposition
���=	ici��i�, with 	i�ci�2=1 and both normalized states
��i��Hi chosen in the form of condensate states �3.24�.
The condensates differ in the numbers of bosons, but
they are assumed to have the same set of shape param-
eters � ,
. In the 0p-0h plus 2p-2h case we have ��1�
= �NB,a� and ��2�= �NB+2,a�. The energy functional F

���H��� depends on shape parameters � ,
 as well as
on coefficients �ci�, so in search of the form of the
ground state it has to be minimized in both these sets of
variables. Since the energy functional can be written as

F = �c1
*,c2

*�� ��1�H1��1� ��1�Hmix��2�
��2�Hmix��1� ��2�H2��2�

��c1

c2
� , �6.4�

the task can be reduced to the minimization of the lower
eigenvalue of the middle 2�2 matrix in variables � ,
.
Indeed, the lower eigenvalue represents the minimal en-
ergy achievable by a mixing of the two configurations
�the 0p-0h and 2p-2h amplitudes in the ground-state
wave function being determined by the eigenvector
components c1 and c2, respectively�. The upper eigen-
value, in turn, represents the maximal energy and corre-
sponds to an excited mean-field state.

Examples of the potential energy surface calculated
for four even-even Pb isotopes are shown in Fig. 43.
These calculations take into account 0p-0h, 2p-2h, and
4p-4h configurations, hence generalize the above-
outlined approach to three-dimensional matrices. All
cases shown have a spherical ground state, but as seen,

FIG. 42. The phase diagram corresponding to the IBM-2
Hamiltonian �6.2�. Adapted from Caprio and Iachello, 2005.

FIG. 43. �Color online� The potential-energy surface for Pb
isotopes with A=186, 188, 190, and 192 calculated in the IBA
framework including the mixing of particle-hole configura-
tions. Here x=� sin�
+� /6� and y=� cos�
+� /6�. From
Frank et al., 2004.
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the surfaces in the lighter Pb isotopes go beyond the
simple forms following from the IBA description with-
out configuration mixing.

A comprehensive phase analysis has been so far per-
formed only for two-dimensional cases, with H1 and H2
corresponding to spherical and deformed configurations
�Frank et al., 2006; Hellemans et al., 2007� as well as to
two different deformed shapes �Morales et al., 2008;
Hellemans et al., 2009�. In general, a rather complex
phase structure is obtained, showing first- or second-
order phase transitions between spherical and prolate-
or oblate-deformed shapes localized in the domains that
sensitively depend on the Hamiltonian internal param-
eters. The studies performed to date have excluded the
phase corresponding to a stable triaxial deformation.

As the last type of coupling in the IBA framework we
discuss the interacting boson-fermion model �IBFM�
which describes odd-A nuclei in terms of an interacting
system of bosons and one fermion �Iachello and Schol-
ten, 1979; Iachello and Van Isacker, 1991�. A detailed
analysis of this case is of general interest since the influ-
ence of an odd fermion on the QPT in a bosonic core
may be relevant also in other quantum systems.

The IBFM Hilbert space can be written as a tensor
product of the bosonic and fermionic spaces, H
HB
� HF, while the Hamiltonian consists of parts describing
bosons alone �HB�, the odd fermion �HF�, and the mu-
tual boson-fermion interaction �HBF�. As a simple ex-
ample, consider a fermion on a single-particle shell with
angular momentum j interacting with the bosonic core
via a quadrupole-quadrupole coupling

�6.5�

where Q"
B
Q" stands for the IBM-1 quadrupole opera-

tor �3.18�, while Qj
F is its fermionic analog composed

of creation and annihilation operators ajm
† and ajm

= �−�j+mãj−m for angular momentum projection m. In a
wider context, this interaction can be taken as a part of
an IBFM Hamiltonian of the type �3.21�, where nd
nd

B

is replaced by nBF=nd
B+nj

F �with nj
F standing for the fer-

mion number operator� and Q"
B by Q"

BF=Q"
B+Qj

F. �Note
that the Qj

F ·Qj
F term does not count for states with a

single fermion.� As in Eq. �6.2�, the interaction strength
! is then rewritten as a function of �.

In a realistic case, the Hilbert space of the odd particle
should be created by several fermionic orbitals coming
from the valence shell of a nucleus, e.g., by the orbitals
with angular momenta j= 1

2 , 3
2 , 5

2 �cf. Sec. V.A.5�. This
situation was considered in the first phase-transitional
study for odd nuclei by Jolie, Heinze, et al. �2004� as well
as in subsequent analyses of Alonso et al. �2007a, 2007b,
2009�. In Fig. 44, we show as an example the evolution
of IBFM states with the total angular momentum L= 1

2
across the prolate-oblate transition. This case, investi-
gated numerically by Jolie, Heinze, et al. �2004�, indi-
cates that the phase-transitional behavior of the even-
even core remains present if an odd fermion is

introduced. For pedagogical purposes, in order to illus-
trate the influence of the odd particle on the bosonic
core, we now analyze a simpler schematic case with a
single j, namely, j= 3

2 , which represents a minimal model
in which the boson-fermion interaction from Eq. �6.5�
does not vanish �Alonso et al., 2005, 2006; Liu, 2007�.

The trial mean-field state can be written in the form
���= �NB,a� � �	mcmajm

† �0��, where the first part stands
for the familiar boson condensate �3.24� and the second
one represents a single-fermion state in the subshell j
�with 	m�cm�2=1�. The energy functional F
���H���
must be minimized in both sets of variables � ,
 �char-
acterizing the bosonic core� and �cm� �characterizing the
odd fermion�. Equivalently, one may write down the
Hamiltonian matrix expressed in the orthogonal set of
states �NB,a� � ajm

† �0� and minimize its lowest eigenvalue
in variables � ,
. For the Hamiltonian �6.5� the second
method leads to the following function to be minimized:

F

NB
=

FB

NB
−

�!�
�5
��2 − "̄�3 cos 3
 + "̄2�4/4

�1 + �2�2 , �6.6�

where we skipped an unimportant energy shift and in-
troduced notation "̄=�2/7". The term FB/NB stands for
the known potential energy surface of the boson Hamil-
tonian HB given by Eq. �3.26� while the square-root term
represents the contribution of the boson-fermion inter-
action.

The phase structure of the model can be read out
from Eq. �6.6�. Since ��F /����=0�0 for !�0, the
quadrupole-quadrupole interaction with an odd fermion
always generates a deformation of the bosonic core. The
spherical-deformed transition of this type does not have
a critical character.

The evolution of the deformed shape with increasing
value of the interaction strength �!� depends on interre-
lation of the coefficient B from Eq. �3.26� and the pa-
rameter " in the boson-fermion interaction �6.5�. If B

FIG. 44. Level dynamics of the L= 1
2 spectrum across the

prolate-oblate transition in the IBFM with NB=10 bosons and
a single fermion with j= 1

2 , 3
2 , 5

2 . The inset shows the corre-
sponding dynamics of L=0 states of the bosonic core �cf. Fig.
18�. Adapted from Jolie, Heinze, et al., 2004.
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�0 and " have the same sign, the deformation remains
axially symmetric �prolate for B�0 or oblate for B�0�
and its 
 rigidity �G��2F /�
2��0,
0

increases with �!�. For
B=0, the type of axial deformation is determined by the
sign of ", the point "=B=0 demarcating the prolate-
oblate transition �cf. Fig. 44�. However, if B�0 has the
opposite sign than " �that is, if the boson-fermion inter-
action drives the bosonic core to the opposite type of
deformation than the boson-boson interaction�, the in-
crease of �!� can lead to phase transitions changing the
deformation, e.g., from prolate to triaxial and eventually
from triaxial to oblate. Critical values of �!� for these
transitions depend on coefficients A, B, and C from Eq.
�3.26�.

We conclude by noting that a comprehensive analysis
of the phase structure for realistic IBFM Hamiltonians is
an important task for the future. This is so not only be-
cause of the need to treat the shape evolution in odd
nuclei but also because interacting boson-fermion sys-
tems are of great interest in a broader physical context.

B. Mechanism of critical phenomena

In this section, we turn attention to more theoretical
aspects of structural phase transitions related to the ori-
gin of such phenomena in general quantum systems. In
particular, we ask what in the fundamental description
of the system converts a smooth transition �crossover�
observed in the finite-size case to a nonanalytic phase
transition in the infinite-size limit and how it decides
whether the transition will be of the first order or con-
tinuous. These questions are still open, but some prom-
ising clues have been suggested.

1. Critical-point scaling properties

As pointed out above �see Sec. IV.A�, phase transi-
tions do not typically appear in finite systems. In a finite
system, the variation of the ground-state properties with
changing control parameters is locally smoothed by
quantum fluctuations. This was demonstrated in both
the IBM-1 and GCM, whose infinite-size and semiclassi-
cal limits are synonymous; therefore, the absence of the
zero-point motion in the infinite case drives the ground
state to evolve along a sharp �possibly nonanalytic� tra-
jectory of the potential minimum. In a finite case, how-
ever, the smeared form of the wave function prohibits a
nonanalytic change of the ground-state properties.

Nevertheless, it has been argued �Fisher and Berker,
1982� that the use of the term phase transition makes
good sense even in finite cases. The key observation is
that at the critical point the scaling of some quantities
with the system’s size becomes singular, i.e., different
from elsewhere in the parameter space. For instance, if
the number of IBM-1 bosons NB is increasing to
asymptotic values, the Hamiltonians �3.21� and �3.22�
yield an energy gap �=E�21

+�−E�01
+� between the

ground state and the first excited state of order ��NB�
�O�1� everywhere except at the critical curves of the
phase diagram in Fig. 13. At these curves the gap de-

creases to zero with NB→�, the type of the critical de-
pendence �c�NB� being specific for the first- and second-
order phase transitions present in the symmetry
triangle.20

Scaling properties of various observables in the IBM-1
and the related Lipkin and vibron models were studied
by Dusuel et al. �2005a, 2005b�, Vidal et al. �2006�, Arias
et al. �2007�, and Pérez-Bernal and Iachello �2008� with
the aid of sophisticated methods going beyond the
mean-field �coherent-state� approximation. These analy-
ses showed, for example, that the critical behavior of the
gap between the ground state and the first excited state
is �c�NB

−1/3 in the second-order �"=0� spherical-
deformed transition and �c�exp�−aNB� �with a�0 de-
pending on "� in the first-order transition. Scaling for
some other quantities can be found in the above refer-
ences.

Rowe �2004a� presented a simple reasoning for the
algebraic scaling at the second-order critical point. At
this point, the IBM-1 Hamiltonian in an appropriate co-
ordinate transcription has the form of a five-dimensional
quartic oscillator. In particular, for NB$1 and ��0 �the
region near the potential minimum� one can write

Hc �
1

2MNB
��

2 + CNB�4, �6.7�

where ��
2 is the Laplace operator in a five-dimensional

space and M and C are constants depending on the spe-
cific parametrization of the Hamiltonian. After rescaling

the coordinates according to �̃=NB
1/3�, the dependence

of Eq. �6.7� on NB is expressed by an overall factor NB
−1/3

in front of the whole Hamiltonian. Note that an equiva-
lent argument holds in an extended family of interacting
boson models, i.e., also in the Lipkin and vibron models.
Closely related scaling properties of the spectrum at the
second-order critical point are also valid in the GCM
with the basic potential �3.2� �see Turner and Rowe
�2005��. As discussed by Arias, Alonso, et al. �2003� and
García-Ramos, Dukelsky, and Arias �2005�, the fact that
the IBM-1 spectrum at the second-order critical point
converges with NB→� to the spectrum of a quartic os-
cillator is in contrast to the Ansatz of the E�5� critical-
point solution used in the GCM framework.

The above-mentioned result on the scaling in the first-
order transition has been obtained within an extended
Lipkin model �Vidal et al., 2006�. This model can be
transformed into a one-dimensional problem with a po-
tential

V =
Ax2 + Bx3 + Cx4

�1 + x2�2 , �6.8�

which is analogous to the GCM and IBM-1 potentials in
Eqs. �3.2� and �3.26�. In the spinodal region around the

20Scaling laws in the form of power-law dependences are in-
troduced for second-order critical points. In the present con-
text, another type of scaling is also applied in first-order
transitions.
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first-order QPT, the potential �6.8� has a double-well
form, the two minima being symmetric at the transi-
tional point. At this point, the low-energy spectrum is
formed by nearly degenerate pairs of levels, whose wave
functions yield the same weight for the localization in
both minima, having symmetric and antisymmetric
forms with respect to the exchange of minima. For a
decreasing value of 	�NB

−1, the tunneling amplitude be-
tween the two wells quenches, which exponentially re-
duces the separation of the levels within the doublets
and therefore also the gap �c between the ground state
and the first excited state.

To numerically analyze scaling properties of the first-
order transition in the IBM-1 �Rowe, 2004a; Rosensteel
and Rowe, 2005�, gets trickier because of the difficulty to
access large values of NB for a general IBM-1
Hamiltonian.21 Unfortunately, the first-order critical
Hamiltonian obtained from Eqs. �3.21� and �3.22� or
from similar parametrizations exhibits a small energy
barrier between the coexisting wells �Jolie et al., 1999�.
To get a sufficient part of the spectrum below the barrier
would require extremely large values of NB. A way to
produce a first-order IBM-1 Hamiltonian with a larger
barrier was described by Leviatan �2006, 2007�. Never-
theless, a comprehensive analysis of the IBM-1 scaling
properties for the first-order phase transition is not yet
available.

2. Relation to thermal phase transitions

Critical-point scaling properties are closely related to
the mechanisms underlying the first- and second-order
phase transitions in general quantum systems. It turns
out that these mechanisms can be formulated in parallel
to standard phase transitions in thermodynamics, al-
though the actual physical contents are different in both
cases.

A direct analogy between quantum and thermal phase
transitions follows from a formal association of the
ground-state energy E0��� as a function of the control
parameter � with the thermodynamic equilibrium free
energy F0�T� as a function of temperature T. The Ehren-
fest classification of QPTs is based on this analogy. Such
an approach enables one to define a direct QPT analog
of the specific heat �Cejnar et al., 2003, 2005�, namely,
c1=−d2E0 /d�2, which behaves exactly as ordinary spe-

cific heat in thermal phase transitions of the respective
order �omitting an unimportant T-dependent scaling fac-
tor�. Examples of the c1 dependence for the IBM-1 first-
and second-order phase transitions were shown in the
insets of Fig. 18 for increasing boson numbers NB. Note
that some other possible definitions of the QPT “specific
heat” were discussed by Cejnar et al. �2001, 2003�.

A more sophisticated link between QPTs and classical
thermodynamics can be elaborated using a fundamental
approach to thermal phase transitions proposed by Yang
and Lee �1952�. It proceeds by extending the tempera-
ture �or another thermodynamic control parameter� into

the complex plane T̃=T+ iT� and analyzing the system’s

partition function Z�T̃�
 Z̃ in this plane. By definition,

the value of Z̃ cannot vanish at the real axis, but it can
be zero at some places with T��0. In finite systems,
these places form isolated points which may appear at
an arbitrarily small distance from the real axis. If the

Z̃=0 points with an increasing size of the system accu-

mulate infinitesimally close to T̃c=Tc+ i0, one encoun-
ters a thermodynamic singularity �phase transition� at
temperature T=Tc in the infinite-size limit. The degree
of accumulation �the asymptotic density of zeros close to

T̃c� determines the type and order of the phase transi-
tion �Grossmann and Rosenhauer, 1967; Borrmann et
al., 2000�.

A similar mechanism to the one described above was
shown to also be applicable to quantum phase transi-
tions �Heiss, 1988; Heiss and Sannino, 1991; Cejnar et al.,
2005, 2007; Heiss et al., 2005�. Since the temperature is
zero in the QPT case, the parameter to be extended to
complex values is identified with the interaction strength
� driving the system through the transition. We assume
here a general linear Hamiltonian

H = H0 + �H�, �H0,H�� � 0, �6.9�

where � is a real number and H0 ,H� are two incompat-
ible Hermitian operators, and consider its extension to

�̃=�+ i��. The Hamiltonian H̃=H0+ �̃H� is non-

Hermitian, i.e., has complex eigenvalues Ẽi. The places

where two �or more� eigenvalues are equal �Ẽi= Ẽj� form

isolated points in the plane �̃ and may be called non-
Hermitian degeneracies �Zirnbauer et al., 1983; Berry,
2004�.

The degeneracies can in general be sorted to the so-
called diabolic points and exceptional �or branch� points
�Kato, 1966; Berry and Wilkinson, 1984�.22 The diabolic

21The large-NB calculations along the U�5�-O�6� side of the
symmetry triangle make use of the fact that in absence of the
SU�3� term in the decomposition �3.15� the IBM-1 Hamil-
tonian is invariant under the transformations of the underlying
group O�5�. As a consequence, seniority � is a good quantum
number along the whole transitional path and the Hamiltonian
remains integrable all the way. The determination of the spec-
trum for large boson numbers can then be performed using
approaches such as Richardson equations �Arias, Dukelsky,
and García-Ramos, 2003�, the continuous unitary transforma-
tion technique �Dusuel et al., 2005b� or with the aid of large-
size diagonalization �Cejnar et al., 2007; Pan et al., 2008; Will-
iams et al., 2008�.

22This distinction concerns the local behavior of the differ-
ence �̃ij= Ẽi− Ẽj as a function of �̃= �̃− �̃0 close to the degen-
eracy at �̃0. While in a diabolic point the behavior of �̃ij is
essentially linear in �̃ �the local dependence of energies has a

conical topology�, in the branch point it is proportional to ��̃,
which implies that the Ẽi and Ẽj Riemann sheets are mutually
entangled by the square-root singularity.
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point is the only type of degeneracy in the Hermitian

case, i.e., at real �̃. However, since we consider here only
the sets of levels with the same symmetry quantum num-
bers, the Hermitian degeneracies �crossings of levels in
variable �� are forbidden �von Neumann and Wigner,

1929�. On the other hand, the degeneracies in complex �̃
are always present. They are generically of the branch-
point type and form n�n−1� /2 conjugate pairs in the
complex plane, where n is the dimension of the Hilbert
space �Zirnbauer et al., 1983�. Whenever a non-
Hermitian degeneracy comes close to the real axis, one
observes an avoided crossing of the corresponding real
levels.

As shown by Cejnar et al. �2005, 2007�, the non-
Hermitian degeneracies play an analogous role in the

QPTs as do the complex zeros of Z̃ in thermal phase
transitions. In particular, a cumulation of the degenera-

cies near �̃c=�c+ i0 in the infinite-size limit of the system
leads to a quantum phase transition at �=�c. Similarly as
in the thermodynamical case, the type �order� of this
transition depends on the asymptotic density of the de-

generacies near �̃c. There is, however, one important dif-
ference between these cases. While the thermodynamic

system at any T̃ yields a unique value Z̃, the quantum

system is characterized by a multivalued function Ẽi��̃�.
It is useful to think about this function as a single-valued
function living on a system of n interconnected Riemann
sheets �Heiss, 1988; Heiss and Sannino, 1991�. These
sheets can be enumerated according to the ordering of

energy levels at real �̃. Only the degeneracies affecting
the Riemann sheet connected with the lowest level are
relevant for the ground-state phase transitions.

Extension of the ideas indicated above led to the fol-
lowing redefinition of the QPT specific heat:

�6.10�

where the sum U0 replaces the ground-state energy E0
from the expression of c1 given above. Equation �6.10�
can be derived from a similarity relation between the

partition function Z̃ and a suitable power of the product

D̃0=�i�0�Ẽi− Ẽ0� �Cejnar et al., 2005�. Such a relation

captures the above-postulated analogy of the Z̃=0 and

Ẽi= Ẽ0�D̃0=0� points, although the actual partition func-

tion of the system is of course not given by D̃0.23 Note
that Eq. �6.10� is independent of the energy scale and

that the prefactor ensures a proper normalization with
increasing size of the system �dimension n of the Hilbert
space�.

It turns out that in case of a first-order QPT, an
asymptotic form of the quantity in Eq. �6.10� exhibits a
�-functional or stronger type of singularity with a non-
zero �finite or infinite� value of the “latent heat” q2

=lim�→0��c−�
�c+�c2d�. This is always connected with a non-

zero asymptotic density of complex degeneracies at the
point �c of the real axis. In second- and higher-order
transitions �as well as in continuous phase transitions
having no Ehrenfest order�, the infinite-size limit of c2
still shows a singular peak, but with q2=0. Such singu-
larities are caused by distributions of complex degenera-
cies which come infinitely close to the real axis with a
density vanishing at �c.

The latent heat q2 at the critical point can be esti-
mated from the asymptotic-size behavior of the height h
and width w of the peak in c2���. Results for the IBM-1
second-order phase transition, namely, for the Hamil-
tonian �3.21� with �=�c= 4

5 and "=0, are shown as a
function of the boson number in Fig. 45. Note that only
the states with spin L=0 and seniority �=0 are taken
into account and that the whole energy spectrum is mul-
tiplied by an extra factor NB

−1 �i.e., is expressed as energy
per boson�. One observes a roughly linear decrease of
the product hw with NB in the log-log scale for NB
�104, which indicates an asymptotic power-law depen-
dence �h ·w��NB

−k, with the exponent very close to k
� 1

3 . This is tightly connected with the above-discussed
scaling of the spectrum at the second-order critical point
�Sec. VI.B.1�. The density of low-energy levels of the
critical Hamiltonian �in the energy-per-boson form�
grows ��NB

4/3, and the same scaling affects also the den-
sity of degeneracies on the ground-state Riemann sheet
near the critical point. The convergence implies q2=0,

23Alternatively, Eq. �6.10� can be derived �Cejnar et al., 2007�
as a suitable measure of an overall proximity of the relevant
branch points to �̃=�+ i0, exploiting fictitious association of the
branch points on the ground-state Riemann sheet with a two-
dimensional gas of charged particles �then c2 represents a gra-
dient of the “field intensity”�.

FIG. 45. Features of the “specific heat” c2 from Eq. �6.10�
around the second-order critical point of the IBM-1 Hamil-
tonian �3.21� scaled by an extra factor NB

−1. Inset: The depen-
dence of c2 on � for various boson numbers NB. The main
panel: The NB dependence of the product hw, where h is the
height of the peak in c2 and w its width at half maximum. The
hw�NB

−1/3 decrease indicates that the “latent heat” q2=0
�Cejnar et al., 2007�.
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which indicates that density of degeneracies at �=�c
+ i0 remains zero in the asymptotic-size limit, in agree-
ment with the second-order character of the transition.

We point out that a similar numerical study of the
first-order transition has not been performed yet.
Progress in this direction is hindered by the above-
mentioned difficulty to access large values of NB for a
general IBM-1 Hamiltonian. A partial analysis �Cejnar
and Stránský, 2010� of simpler cases �like a one-
dimensional Schödinger equation with a double-well po-
tential� indicates that the first-order QPT can be locally
described as a sharp avoided crossing of just two levels:
the ground state and the first excited state �cf. Zamfir et
al. �2002� and Arias, Dukelsky, and García-Ramos
�2003��. This leads to a much stronger singularity in the
dependence c2���, which in some cases produces even
infinite values of the latent heat. In contrast, the second-
order transition is a “collective” phenomenon, con-
nected with a larger number of levels coming close to-
gether in the asymptotic-size regime due to a flat �e.g.,
quartic� form of the potential.

C. Quantum phase transitions for excited states

Since quantum phase transitions occur at zero tem-
perature, it is clear that their rigorous definition is re-
stricted merely to the ground state. Nevertheless, as we
discussed above, low-lying excited states reflect the
change of the ground state in a variety of ways. But how
far in the spectrum is the QPT felt? In solid-state phys-
ics, the finite-temperature �canonical� approach is stan-
dardly applied to answer this question, showing that the
T=0 QPT usually extends to the T�0 domain in the
form of a thermal phase transition �Sachdev, 1999; Vojta,
2003�.24 However, in the case of a finite quantum system
�such as an atomic nucleus� the microcanonical approach
is more convenient. It is based on considering individual
excited states rather than a thermal population of the
whole ensemble of states. As shown below, even with
this approach one may observe nonanalytic properties
accompanying the ground-state QPT up to very high ex-
citation energies. The relation of these properties to
known features of thermal phase transitions is not yet
completely analyzed, but the present class of models of-
fers a suitable tool for related research.

Excited-state quantum phase transitions �ESQPTs�
can be observed in the “dynamics” of energy levels with
variable control parameter, as well as in the dependence
of the level density on excitation energy. It turns out that
in a vicinity of the first- and second-order QPTs the
spectrum of excited states develops some characteristic
singularities in both these signatures. A simple example
is given in Fig. 46, where we show level dynamics around

ground-state QPTs for a one-dimensional Hamiltonian

H = −
	2

2M

d2

dx2 + x4 + ax2 + bx �6.11�

with the so-called cusp potential �referring to terminol-
ogy of the catastrophe theory�. This Hamiltonian is a
prototype for �a� first-order and �b� second-order quan-
tum phase transitions, which are achieved �a� for a�0
and b variable �the critical point at bc=0, where two
coexisting minima of the potential swap� and �b� for b
=0 and a variable �the critical point at ac=0, where the
potential changes from a degenerate double-well to a
single-well form�. The dynamics of excited levels close to
these critical points is shown in the upper and lower
panels of Fig. 46.

We know that the ground-state transitions for the
Hamiltonian �6.11� become truly discontinuous only in
the infinite-size limit M→�. In this limit, the first-order
QPT is accompanied by singularities forming a �-shaped
region, which can be observed in the upper panel of Fig.
46 �the leftmost and rightmost limits of this region coin-
cide with the spinodal and antispinodal points of the
potential�. The lower two sides of this triangle corre-
spond to the first-order ESQPT: the slope of individual

24Note that in the context of solid-state physics models a
more important issue than the QPT-related thermal �classical�
phase transitions is the existence of a 0�T�Tup quantum
critical region �with Tup a certain cutoff temperature� where
quantum and thermal fluctuations compete �Vojta, 2003�.

FIG. 46. Level dynamics of the cusp Hamiltonian �6.11� with a
finite value of mass parameter M around the first-order �upper
panel� and second-order �lower panel� QPTs. The upper inset
shows the evolution of the fifth-state squared wave function,
while the lower one depicts the dynamics of positive parity
states. Adapted from Cejnar and Stránský, 2008.
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level energies changes abruptly as the level enters the �
region and the level density jumps to a higher value. The
upper side of the � region represents a continuous
ESQPT �with no Ehrenfest classification�, where the
level density develops a singular peak. The inset shows a
squared wave function of the fifth level �thick curve in
the main panel� as an illustration of a changing structure
of eigenstates passing the transitional region.

The second-order ground-state transition, on the
other hand, induces a chain of ESQPTs along the line
E=0, a�0, which is seen in the lower panel of Fig. 46. In
this case, similarly as for the upper side of the � region,
the transitions are continuous with no Ehrenfest order.
Note that for b=0 parity can be assigned to all eigen-
states and the lower inset shows a subset with �=+.

The cusp Hamiltonian is also closely connected with
the Lipkin model including, in general, parity-breaking
terms �Vidal et al., 2006�. Moreover, the case with b=0 is
related to the subset of IBM-1 states with L=0 along the
U�5�-O�6� transition �vanishing admixture of the SU�3�
Casimir invariant� as well as to the U�2�-O�3� and U�3�-
O�4� transitions in the 2D and 3D vibron models, re-
spectively. Although the use of the coherent-state for-
malism in these models leads to potentials that replace
the linear term of the cusp potential by a cubic one �cf.
Eq. �6.8��, the link between both forms is possible with
the aid of suitable transformations �Cejnar and Iachello,
2007�. The mass parameter in the cusp Hamiltonian is
given by �NB

2 in the bosonic models �in the energy-per-
boson scaling of the Hamiltonian�, although in the latter
case the kinetic terms are generally more complicated.

Instead of parity, which needs to be taken into ac-
count in the reflection-symmetric �b=0� cusp and Lipkin
models, the U�n�-O�n+1� transitions in the IBM-1 and
vibron models are characterized by generalized angular
momentum quantum numbers associated with the un-
derlying algebra O�n�. Along the U�5�-O�6� transition in
the IBM-1 all states with O�3� angular momentum L
=0 are sorted by the O�5� quantum number �seniority�
into groups that behave differently with respect to the
phase transition. Specifically, it can be shown that the
ESQPT signatures fade away with increasing seniority,
the scaling being described by variable � /NB �Cejnar et
al., 2006�. Note that in the lower panel of Fig. 18 we
showed the dynamics of L=0 states with all allowed se-
niorities. The E�0 level bunching pattern that can be
seen in this figure is an analog of the ESQPT structure in
the lower panel of Fig. 46.

The excited-state phase transition in the Lipkin model
�the parity conserving version� was first noticed by
Leyvraz and Heiss �2005�, although probably an equiva-
lent result had been derived in the finite-temperature
formalism already by Gilmore and Feng �1978�. The
same phenomenon was independently analyzed in the
IBM-1 �Cejnar et al., 2006; Heinze et al., 2006; Macek et
al., 2006� and later also in the 2D vibron model �Pérez-
Bernal and Iachello, 2008�. The latter examples ex-
ploited a close relation of the ESQPT in two-
dimensional cases with the existence of the so-called

monodromy in the phase space of the corresponding
classical system.25 It was shown that rather similar tran-
sitions exist in a much wider class of many-body models
with a second-order QPT �Caprio et al., 2008�. Recent
work by Relaño et al. �2008� and Pérez-Fernández et al.
�2009� demonstrated the general importance of ESQPT
effects in quantum dynamics of coupled quantum sys-
tems.

Concerning the ESQPT structures accompanying the
first-order ground-state QPT, the results are much
scarcer. Cejnar and Stránský �2008� analyzed the one-
dimensional cusp case �upper panel of Fig. 46� as well as
a two-dimensional model closely related to the GCM
with L=0. It turns out that the role of dimension is cru-
cial. An increase of dimension generically leads to
quenching of the ESQPT signatures, although a larger
sample of model examples is needed to verify this con-
clusion. Excited-state structures along the first-order
phase-transitional path in the IBM-1 await an analysis.

Finite-size precursors of excited-state phase transi-
tions should be sought in nuclear spectra, but in view of
the relatively high excitation energies where the ESQPT
predictions become relevant we have to wait for a sig-
nificant extension of experimental results. In molecules,
on the other hand, the sudden density changes of high-
energy spectra predicted by the vibron and related mod-
els can be observed with the aid of present day technol-
ogy. Similar effects probably exist in many other finite
quantum systems, forming an analog of thermal phase
transitions in macroscopic systems. One may therefore
expect rapid progress in this field.

VII. SUMMARY

The study of ground-state or quantum phase transi-
tions in atomic nuclei was proposed in the late 1970s
within the framework of the interacting boson approxi-
mation. During the last decade, the subject has under-
gone a real revival which we have reviewed here. Essen-
tial thereby were, on the one hand, the elaboration of
critical-point solutions and the discussion of N=90 iso-
tones as examples of the X�5� description and, on the
other hand, the systematic numerical studies using the
interacting boson model.

We have highlighted in Sec. II the empirical evidence
that the shape of an atomic nucleus is an important at-
tribute. The key experimental signatures of collective
behavior, nuclear shapes, and their variations for ex-
tended regions of the nuclear chart have been presented.
From these data, two essential classes of even-even nu-
clei emerged: spherical nuclei that exhibit vibrational

25Monodromy is a certain topological anomaly in the phase
space of a classical integrable system of dimension two, which
shows up as a point defect in the spectrum of quantum states
�Cushman and Bates, 1997�. For one-dimensional systems, a
similar anomaly may result from the presence of a phase-space
separatrix. These nonanalytic structures represent specific clas-
sical counterparts of the ESQPT �Caprio et al., 2008�.
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collective excitations and deformed nuclei, showing both
rotational and vibrational features, for which the de-
formed shapes can be either prolate, oblate, or 
 soft
�i.e., unstable against the onset of triaxiality�. Of course,
many nuclei are intermediate between these classes, in-
cluding the phase-transitional nuclei that are the focus
of this review.

In Sec. III, the geometrical collective model and inter-
acting boson model were presented and interrelated via
the formalism of coherent states. The role of dynamical
symmetries, which yield benchmarks of nuclear shapes,
was presented as well as the so-called consistent-Q
Hamiltonian and the associated symmetry triangle. Two
first-order phase transitions were found, a spherical-
deformed one and a prolate-oblate one, as well as an
isolated second-order phase transition at the intersec-
tion of both. A connection to Landau theory of continu-
ous phase transitions could be established both for the
interacting boson model and for the geometric collective
model. The results obtained in these simple models are
reflected by a number of studies of shape-phase transi-
tions in more microscopically oriented models, which
translate the findings of the simpler models to language
at the level of nucleons and their interactions. This is
typical for research in nuclear structure, where the com-
plexity of the many-body problem can only be attacked
by a clever mix of phenomenological and microscopic
descriptions.

In Sec. IV, the shape phase transitions in the interact-
ing boson model were studied and compared to experi-
mental data. The effects of the finite number of bosons
�associated with pairs of valence nucleons or holes� are
of particular interest here, as they smooth the signatures
of phase transitions. Several regions of the nuclear chart
were compared to the predictions of the model. Clear
examples of both types of the first-order phase transition
could be identified, as well as candidates indicating the
second-order phase transition. We have highlighted the
relation between phases of a many-body system and the
underlying symmetries using the concept of the quasidy-
namical symmetry.

In Sec. V, we presented the X�5�, E�5�, and some other
critical-point solutions of the geometric collective
model. These represent special forms of the potential
V�� ,
� which, when introduced into the Bohr Hamil-
tonian, allow for semianalytic descriptions of spectra at
the critical points of shape-phase transitions. The X�5�
predictions were compared in detail with data on 152Sm
and candidates for E�5� were also discussed. In addition,
models incorporating ranges of structures, e.g., between
the vibrator and X�5� or between X�5� and the axial ro-
tor, have been reviewed. One very positive outcome of
the shape phase transitions is a real revival of the use of
the geometric collective model.

In Sec. VI, the most important extensions of the
above-discussed models to more complex systems were
outlined. These extensions deal with new degrees of
freedom, allowing, e.g., the treatment of nuclei with an
odd number of nucleons. Research in this field, so far
mostly theoretical, is important not only because of its

potential relevance for actual nuclear systems but also
because it provides a valuable insight into the nature of
quantum phase-transitional phenomena in general. It
was argued that the models of nuclear collective motion,
apart from their empirical content, represent a useful
laboratory for testing and even inventing new theoreti-
cal descriptions of various types of critical phenomena in
quantum many-body systems.
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