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The light-matter interaction has been at the heart of major advances from the atomic scale right to the
microscopic scale over the past four decades. Confinement by light, embodied by the area of optical
trapping, has had a major influence across all of the natural sciences. However, an emergent and
powerful topic within this field that has steadily merged but not gained much recognition is optical
binding: the importance of exploring the optically mediated interaction between assembled objects
that can cause attractive and repulsive forces and dramatically influence the way they assemble and
organize themselves. This offers routes for colloidal self-assembly, crystallization, and organization of
templates for biological and colloidal sciences. In this Colloquium, this emergent area is reviewed
looking at the pioneering experiments in the field and the various theoretical approaches that aim to
describe this behavior. The latest experimental studies in the field are reviewed and theoretical
approaches are now beginning to converge to describe the binding behavior seen. Recent links
between optical binding and nonlinearity are explored as well as future themes and challenges.
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I. INTRODUCTION

The momentum of light and the exertion of optical
forces have had a profound and far-reaching impact in
the past four decades. These concepts have been at the
core of a revolution in the interaction of light with
atomic systems that has led to the topics of laser cooling
�Chu, 1998; Cohen-Tannoudji, 1998; Phillips, 1998� and
Bose-Einstein condensation �Ketterle, 2002�. The me-
chanical effects of light have also manifested themselves
upon systems at larger size scales, notably through the
controlled motion of microscopic particles where light
can readily trap and move particles with no physical con-
tact or damage whatsoever �Neuman and Block, 2004;
Dholakia and Lee, 2008; Jonáš and Zemánek, 2008�. In
particular, this ability to move colloidal microparticles
around at will has led to some spectacular and far-
reaching advances in the biological sciences: when used
as a force transducer the position of a trapped particle
can be determined to subnanometer level accuracy and
allow one to monitor motion of macromolecules that are
attached to such particles using surface chemistry. Other
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major areas of science have benefited from such optical
forces: microrheology of polymers, studies of the laws of
thermodynamics and Brownian dynamics at the micro-
scopic scale, and optical angular momentum transfer.
Additionally the interaction of particles suspended in a
flowing fluid with an optical field �commonly termed an
“optical potential energy landscape”� has led to interest-
ing dynamics and the concepts of optical sorting and
fractionation. In the domain of colloidal science self-
organization and assembly of microscopic objects enable
the study of phase-transition-like behavior and explore
interaction potentials as—in addition to light-induced
organization—we can tune interactions with the surface
chemistry of the particles themselves and by judicious
choice of solvent. Colloids have a well-defined thermo-
dynamic temperature and can give insight into processes
at the atomic scale with the added benefit of individual
particle monitoring due to sophisticated techniques in
video tracking software.

At the heart of optical trapping there is the interplay
between what are commonly termed the gradient and
scattering forces. The gradient force can be understood
in a number of ways. For small objects �nanoscale� it is
best understood as the interaction of an induced dipole
with the field gradient of the focused electromagnetic
field: the dipole positions itself at the point of the high-
est field to minimize its interaction energy. For large di-
ameter particles, with the diameter exceeding signifi-
cantly the light wavelength, one can invoke the
refraction of light by the particle that again leads to a
force upon the object pulling it to the location of the
maximal field intensity. These particle behaviors apply
for the case of particles of higher refractive index than
their surroundings. Scattering forces naturally play a
role too. These forces arise due to the light momentum
change upon the scattering from an object and generally
point in the direction of the light propagation. In a single
beam gradient trap, termed “optical tweezers,” the pres-
ence of scattering causes the equilibrium position of the
particle to be displaced in the direction of the beam
propagation slightly beyond the beam focus. In another
highly popular trapping geometry, that of a dual beam
counter propagating �CP� trap, the scattering force is
dominant in keeping the particle equilibrium position
between the two incident beams.

The phenomenon of optical binding represents a
rather specific manifestation of light-induced forces. In
contrast to the above-discussed gradient and scattering
forces, which arise directly from the incident field, the
binding forces rely on the modification of the incident
field in the presence of multiple simultaneously illumi-
nated objects. These objects interact mutually through
the light scattering and, consequently, organize them-
selves into specific static or dynamic configurations. The
topic of optical binding has come to the fore within the
past decade. Although it was originally considered to be
a mere niche in the general field of optical trapping and
manipulation, it has actually turned out to be a rich di-
verse area of its own featuring some fascinating physics.

In this Colloquium we describe and review the emer-

gent topic of “optical binding.” Even though this term is
well accepted and used by the community it is perhaps
not well defined nor clearly understood within the con-
text of the broad topic of optical micromanipulation.
From the historical perspective optical binding generally
refers to the generation of stable spatial configurations
of microparticles following light illumination where the
light redistribution by a given object can influence the
equilibrium position of its neighbors and vice versa.
These microparticles have well-defined interparticle dis-
tances and their stable configuration is reached through
the interplay of the scattered photons, the physical at-
tributes of the particles and the surrounding medium,
and the illuminating light field. Commonly colloidal ob-
jects interact over long distances through electrostatic or
magnetic interactions. These types of interparticle cou-
pling mechanisms require special particles, for example,
application of surface-treatment or material properties
such as superparamagnetism, to be effective and, hence,
they lie outside of the scope of this article. Here we
focus on the laser light-mediated coupling, optical bind-
ing, that is typically much weaker than electrostatic or
magnetic interactions but that is active for a wide range
of particles made of various materials. It is noteworthy
to mention that optical binding leads not only to attrac-
tive forces but also to repulsive forces; therefore the
term “binding” is perhaps a little misleading. For the
purposes of this paper we define optical binding as the
mechanism based on the light-mediated momentum ex-
change between particles leading to spatial configura-
tions of particles or clusters of particles with distances
between them larger than the extent of any electrostatic
forces from any surface charges present.

Why has the topic of optical binding become so inter-
esting? Generally the interparticle forces produced by
light scattering have different properties compared to
those of electrostatic interactions. For example, they are
not conservative and have a varying dependence upon
the interparticle separation. However, they are also able
to create the so-called “optically bound matter” where
the dynamics of optically bound particles are more com-
plex when compared to bound atoms, which leads to
numerous spectacular experimental phenomena. These
phenomena are rather disparate and lead to an interest-
ing area of complexity with optical fields and new links
to topics such as nonlinear optics and photonic crystals.
In contrast to the single beam optical trapping and mul-
tiple beam optical trapping, in binding no predescribed
optical traps are generated through the spatial shaping
of the incident beam. The stable configuration between
objects can be established even in a homogeneous beam
�at least along the beam propagation axis� as a result of
light momentum redistribution in the incident beam by
the objects together with the light scattered from one
object toward the others. Therefore, self-arranged con-
figurations of colloids with micrometer-scale interpar-
ticle distances may be realized even by plane-wave illu-
mination of the sample.

For a long time the mechanical effects of the light
scattered between particles were ignored in multipar-
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ticle optical manipulation because it was expected that
for a small number of microparticles they were negli-
gible compared to the optical forces arising from the
incident beams. However, experimental observations
proved that this is not the case and that this redistrib-
uted light momentum can greatly influence the equilib-
rium positions of other adjacent colloidal objects. There-
fore, a more complete description of this interaction
among many particles through light would lead not only
to enhance understanding of the theory of optical forces
but also of the cumulative role of other relevant interac-
tions at this scale �hydrodynamic coupling, electrostatic,
radiometric, thermally driven stochastics, etc.�. This
could provide a powerful and unexplored route toward
the colloidal self-assembly and creation of microscopic
and mesoscopic templates. This is an exciting and poten-
tially powerful route for a myriad of studies; examples
include the creation of templates that may then subse-
quently seed nucleation of larger crystals. From a colloid
scientists’ viewpoint this facilitates studies of phase tran-
sitions and may even create structures that exhibit band-
gap behavior �e.g., photonic crystals�. As we shall see,
the particle-particle interactions mediated by light are
pushing our understanding of nonlinearity and complex-
ity in colloidal science. Binding leads to feedback which
in turn means we can see bistability, multistability, and
nonlinear responses. We know from the early work of
Ashkin and Smith how colloidal particles can act as non-
linear media �Ashkin et al., 1982; Smith et al., 1982�: with
optical forces pulling particles into bright field lines one
can see how a modulation of the refractive index might
occur in such systems. Optical binding is not only re-
stricted to colloidal objects but it is also applicable to
living cells �Buican et al., 1987; Metzger et al., 2005�.
Exploitation of optically assisted organization of cells is
still at its infancy; however, the topic holds promise as
the control of initial cell patterns dictates subsequent
cell growth for tissue engineering, cell signaling studies,
and other studies in synthetic biology �Akselrod et al.,
2006�.

In the remainder of this review we discuss optical
binding and provide an overview of the key experiments
and theoretical approaches in this area. While optical
trapping has been in existence for over 40 years, one
must note that the field of optical binding is far from
being mature or well developed: we elucidate upon the
present results obtained and challenges this field faces as
well as indicate some future approaches that will lead to
new discoveries. We begin with a review of the pioneer-
ing experimental studies that have been performed and
comment on the theoretical approaches that are perti-
nent to the experiments. We then discuss more elaborate
experiments that give further insights and finally sum-
marize our findings with an emphasis on where further
work needs to be carried out.

II. THE PIONEERING EXPERIMENTS OF OPTICAL
BINDING

The history of optical binding of microparticles is a
good example of an experimentally driven phenomenon:

the pioneering observations were reported first and the
related substantiating theoretical explanations came sev-
eral years later. At the time of these experiments only
theoretical predictions for optical binding of molecules
were available �Thirunamachandran, 1980�. Based on
the experiments optical binding has been subdivided
into two areas: so-called transverse �lateral� binding and
longitudinal binding. For the transverse binding, the in-
cident light field propagates orthogonally to the direc-
tion of the binding process. For longitudinal optical
binding, the light field propagates in the direction of or-
ganization of the particle chains. This is somewhat arbi-
trary and based mainly on the experimental configura-
tions used as a fully comprehensive theoretical basis of
optical binding would naturally encompass both of these
binding topics into one.

In this section we review the major experimental
achievements together with their intuitive explanations.
A detailed discussion of the available theories will be
presented in Sec. II.A.

A. Lateral optical binding

The first key studies of optical binding were per-
formed by Burns, Fournier, and Golovchenko �1989,
1990� soon after the discovery of optical tweezers �Ash-
kin et al., 1986�. They studied the self-arrangement of
dilute colloidal suspensions of polystyrene spheres
placed on a substrate and illuminated by an interference
field composed of up to five beams. The created optical
lattice confined microspheres in the maxima of light in-
terference patterns and pushed them, due to the radia-
tion pressure, against the top surface of the sample cell.
This configuration produced well-ordered colloidal crys-
tals with lattice properties defined by the optical lattice.
They also illuminated the colloidal sample with a single
large diameter beam and observed a close-packed crys-
tal in the center of the beam; this was the key step in
observing the “strange” behavior of adjacent spheres ap-
proaching the crystal nucleus from the beam periphery.
They realized this was caused by the light scattering and
designed a new experiment where a single beam was
shaped into a narrow ribbon—a line of light �see Fig. 1�.
In this configuration, the particles inside the beam were
pushed by the radiation pressure in the light propaga-
tion direction to the top surface of the sample cell. Lat-
erally they were localized in the direction perpendicular
to the light line in the high-intensity region of the beam
via the “gradient optical forces” that we described ear-
lier. If two spheres of diameter 1.43 �m were placed to-
gether into the beam �vacuum wavelength of 515.5 nm�,
they formed a bound structure with preferred interpar-
ticle distances between 4 and 11 laser light wavelengths.
Due to the thermal activation �Brownian motion�, the
interparticle distance changed, however, the analyses of
the experiment revealed the existence of well-defined
minima in the interaction energy �bound states� sepa-
rated approximately by one laser wavelength �see Fig.
2�. Based on the simplified theory of two induced dipole
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oscillators separated by R they presented the interaction
energy W in the form

W � −
1
2

�2k2cos�kR�
R

�E�2, �1�

where � is the polarizability of the oscillator, k=2� /� is
the wave number in the medium surrounding the oscil-
lator, and E is the amplitude of the electric component
of the light. The presented simplified formula is valid if
the polarization of the incident light is perpendicular to
the direction connecting the oscillators. Even though the
used particles were quite large to be described by the
induced dipoles, it was proven that such an approxima-
tion gave good predictions of the principal behavior of
the studied system. We explore this theory in detail later.
Surprisingly this pioneering experiment was largely ne-
glected for a long time before interest in this topic was
renewed through new experiments and initiated new
theoretical effort. To date there remains the unanswered
question of the role of the surface proximity in the pre-
sented optical binding studies as it is known that even a

weak light wave back reflected from the water-glass in-
terface can significantly influence the behavior of single
particle near the surface �Jonáš et al., 2001; Jákl et al.,
2003; Fujiwara et al., 2004�.

B. Longitudinal optical binding

Investigation of optical binding received a major im-
petus in 2002–2003 when two groups �Tatarkova et al.,
2002; Singer et al., 2003� independently performed stud-
ies using the so-called counterpropagating dual beam
trap which was similar to the first optical trap realized by
Ashkin in 1970 �Ashkin, 1970�. This trap is based on two
weakly focused counterpropagating light beams with
beam foci displaced in such a way the beams push the
particles with the scattering force �radiation pressure�
longitudinally to a location between the beam foci
where both forces compensate each other. Laterally the
gradient force is sufficient to confine the particles to the
laser beam propagation axis. Both groups used wider
diameter beams where the longitudinal changes of the
optical intensity were much smaller compared to single
beam trapping in optical tweezers. Perhaps surprisingly
they observed that when multiple particles entered the
central trap region, the particles did not coagulate, as
might be expected, but rather assumed equilibrium po-
sitions with spacings that were several times the particle
diameters �see Fig. 3�. This effect was not caused by the
interference between two counterpropagating incident
light fields because they used mutually incoherent
beams. This self-arrangement—termed “longitudinal”
optical binding—was observed along the propagation
axis �called one-dimensional binding� but far from any
surface and so in three dimensions.

Electrostatic interactions could potentially play a role
in such particle array formation. The interaction be-
tween charged particles can be described by the
Derjaguin-Landau-Verwey-Overbeek theory �Derjaguin
and Landau, 1941; Verwey and Overbeek, 1948�. Ac-

FIG. 1. Experimental setup of the first experiment with lateral
optical binding. Ar laser of 10 W power and wavelength of
541.5 nm transformed into line focus was used. From Burns et
al., 1989.

FIG. 2. Lateral optical binding in a line focus. The separation
of two polystyrene spheres shown of diameters 1.43 �m placed
in water and illuminated with laser wavelength 541.5 nm. Left:
Time development of interparticle separation distance. Right:
Histogram of the particle separation distances. From Burns et
al., 1989.

FIG. 3. Longitudinal optical binding in counterpropagating
beam geometry. Experimental data for the arrays of �a� two,
�b� three, and �c� seven spheres �each 3 �m in size�. The dia-
grams on the right elucidate how the particles fill up the ap-
proximately harmonic potential well created by the two coun-
terpropagating beams. From Tatarkova et al., 2002.
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cording to this theory, the range of the electrostatic in-
teraction is limited due to the particle charge screening
in the presence of ions in the immersion medium. For
the experimental parameters of Tatarkova et al. the
characteristic screening length is short ��100 nm� and
the electrostatic interactions are restricted to a length
scale of much less than a micron, an order of magnitude
lower than the interparticle spacing observed in the
bound particle arrays. Reduction of the screening length
by dispersing the spheres in 1M NaCl led to no discern-
ible change in the observed interparticle spacing. This
validated their premise that the arrays were created
solely by optical forces.

In their experiment Tatarkova et al. used a geometry
close to that of the original Ashkin study in 1970 �Ash-
kin, 1970�. This comprised of two free space counter-
propagating incoherent Gaussian beams. Experimen-
tally they tracked the equilibrium positions of the
spheres for bound arrays containing two to seven par-
ticles. They observed that the particles in the middle of
an optically bound cluster are closer to each other when
compared to the outermost particles. In order to de-
scribe the stability of the bound particle arrays, they
used a quantitative model of diffusion activated escape
from a one-dimensional potential well, assuming the
overdamped equation of particle motion due to the vis-
cous drag acting on the particles in the immersion liquid
medium. The residence time for the spheres was studied
as a function of the number of bound spheres. Further-
more, their experimental data provided quantitative in-
formation on the exact form of the trapping potential
and allowed them to calculate the axial corner frequency
fc=k / �2�b�, with b denoting the viscous damping term.
By fitting the experimental data to a parabolic potential
model with the force proportional to the displacement,
they were able to determine the corner frequency of
the order from 100 to 1000 Hz. Besides examining the
static case they also provided the first observation of
the dynamic behavior of the optically bound particle
structures—breathing modes and oscillations of the cen-
ter of mass. The lowest center-of-mass oscillation mode
of the longitudinally bound chain was observed, which
corresponds to synchronous motion of all particles in
one direction.

Later they presented a detailed theoretical treatment
of the longitudinal optical binding based on the paraxial
wave optics �see Sec. III.B.3� which provided an intuitive
but illustrative explanation of the binding based on the
experimental observation of field distribution between
bound particles �McGloin et al., 2004; Metzger, Wright,
and Dholakia, 2006�. Within their approach, small
spherical particles are treated as small lenses of focal
length f=a / �np−nm�, where a is the particle radius and
np and nm denote the refractive index of the particle and
the immersion medium, respectively. Each of these mi-
crolenses focuses the incident beams and creates an op-
tical trap for its neighbors that in turn create similar
traps for the first particle. Therefore there exists a
built-in feedback mechanism stabilizing the positions of
the microparticles.

Independently of the Tatarkova et al. studies, a similar
experiment was performed by Singer et al. �2003�. In this
case they used counterpropagating beams coming from
single-mode fibers �the so-called dual beam fiber trap
�Constable and Kim, 1993�� that were potentially more
robust than two free space light fields. They investigated
polystyrene spheres of diameters from 0.79 to 10 �m
and observed that spheres of diameters 0.79, 1.44, and
2 �m arranged themselves into a chain with characteris-
tic interparticle spacings that increased with increasing
particle sizes. On the other hand, the distances between
the particles decreased with increasing number of ob-
jects in the chain. Changes of the laser power in one
beam did not affect the interparticle distances and
changes of the immersion medium refractive index influ-
enced them only slightly. An increase of the separation
between the fiber ends also slightly increased the inter-
particle spacing. They observed that spheres larger than
2 �m arranged themselves into a close-packed chain
where the objects touched each other.

They developed a simplified theoretical description
that supported their observations; their model assumed
that the particle chain scatters light similarly to a diffrac-
tion grating illuminated by a plane wave. With the help
of experimental observations they matched the trans-
verse periodicity of the distributed light with the inter-
particle periodicity and obtained good coincidence be-
tween the observations and theory. However, some
deviations from their theory were expected because it
has been shown that the interparticle distances are not
the same and the lateral beam has a Gaussian profile in
fact rather than that of a plane wave.

III. THEORETICAL MODELS

A. Optical binding of nanoparticles

We start this section dedicated to the theoretical de-
scription of optical binding by studying the interaction
between two radiating induced dipoles representing ei-
ther symmetric �nanospheres� or asymmetric �nanotubes
and molecules� nanoparticles with no permanent electric
dipole. The radiation from the dipoles is a consequence
of charge oscillation induced by the incident electromag-
netic field. Even though a detailed quantitative experi-
ment dealing with nanoparticle binding has yet to be
reported, we have seen in Sec. II.B that such a theoret-
ical approximation can give analytical results with a rea-
sonable first-order explanation of the problem. Conse-
quent analyses with more sophisticated theories can
then follow and refine these results.

1. General model for two nanoparticles

In this section we use the classical model of in-
duced oscillating dipoles to express the forces acting
upon them. We denote the induced dipole moments
p�rA� and p�rB� and place them at rA and rB, respec-
tively. We further assume that they are induced by the
total electric field at the respective dipole locations
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E�rA , t�=E�rA�exp�−i�t� and E�rB , t� of a similar form. If
we omit the time dependence, the dipole components
can be expressed using the Einstein summation conven-
tion �the sign � is skipped when the same index appears
twice in the summation formula�,

pi�rA� = �ij
AEj�rA�, pi�rB� = �ij

BEj�rB� , �2�

where �A and �B are the polarizability tensors of par-
ticles A and B, respectively. Within the linear physics
formalisms these dipoles oscillate at the same frequency
as the incident field and, consequently, emit radiation
through which they interact with the other dipole. The
total electric field at the position of the dipole is given by
the sum of the incident field EI�r� and the field emitted
by the other dipole,

Ei�rA� = Ei
I�rA� + Gij�rA,rB��jk

B Ek�rB� ,
�3�

Ei�rB� = Ei
I�rB� + Gij�rB,rA��jk

AEk�rA� ,

where we used the field propagator between two dipoles

Ḡ �also called the dyadic Green’s function� in the form

Gjk =
exp�ikR�
4��0�mR3��3 − 3ikR − k2R2�

RjRk

R2

+ �k2R2 + ikR − 1��jk	 . �4�

Here R is the length given by R=rB−rA, k=2� /� is the
wave number of the light in the medium, �0 is the per-
mittivity of vacuum, �m is the relative permittivity of the
medium, and �jk denotes the Kronecker delta. Equation
�4� contains three terms proportional to �kR�−1, �kR�−2,
and �kR�−3. Each of them dominates for different dis-
tances between nanoparticles �Novotny and Hecht,
2006�. The far-field term �kR�−1 dominates at R	�,
whereas the near-field term �kR�−3 dominates at R��.
The last term with �kR�−2 plays the key role in the inter-
mediate separation distances R
�. Comparison of the
spatial distribution of the amplitude for an electric field
emitted by the oscillating dipole is shown in Fig. 4 for
the near field and far field. Whereas in the far field the
nanoparticle only weakly emits along the direction of
the oscillating dipole, in the near field the electrostatic
components increase the electric field amplitude along
the direction of the dipole moment.

The solution of Eq. �3� for particle B is

Ei
B = KijEj

IB + KijGjk�km
A Em

IA, �5�

where Kij denotes the components of the inverse tensor

�Ī−Ḡ�rB ,rA��AḠ�rA ,rB��B�−1 and we simplified the
notation Ei�rA��Ei

A, Ei�rB��Ei
B, and Gij�rA ,rB�

=Gij�rB ,rA��Gij. The tensor Kij includes multiple scat-
tering between both objects. However, it differs signifi-
cantly from unity only for configurations where the di-
poles are close to each other. For particles of diameters
in the range of tens of nanometers it fulfills the condi-
tion

Kij � �ij, �6�

which is coherent with the first Born approximation
�Born and Wolf, 1999�.

Once the total electric component of the optical field
is known, the time-averaged component F
 of the optical
force acting on the object B can be expressed as �de
Groot and Suttorp, 1971; Chaumet and Nieto-
Vesperinas, 2000a�


F
�rB�� =
1
2

Re��pi
*�rB�

�Ei�r�
�r


�
r=rB

� , �7�

where Re�X� denotes the real part of X. To simplify the
notation further, we denote the force component F
 act-
ing on the dipole B as F


B and partial derivatives at r
=rB as �


B. Therefore, Eq. �7� has the following compact
form if Eq. �2� is also employed:

F

B = 1

2 Re��ij
B*Ej

B*�

BEi� , �8�

where the indices i , j=1,2 ,3 denote the Cartesian axes
x ,y ,z and �


BEi has the form

�

BEi = �


BEi
IB + �


B�Gik��km
A Em

IA. �9�

If we substitute Eqs. �5� and �9� into Eq. �8�, the general
optical force acting on particle B can be expressed as

F

B = 1

2 Re��ij
B*�Ej

IB* + Gjk
* �km

A*Em
IA*���


BEi
IB

+ �

B�Giq��qr

A Er
IA�� . �10�

The force acting on dipole A can be obtained by inter-
changing the letters A and B. The total optical force �10�
can be further simplified if one realizes that only par-
ticles much smaller than the radiation wavelength are
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FIG. 4. �Color online� Examples of the amplitude distribution
of the electric field emitted by the oscillating dipole oriented
along the x axis �arrow�. �a� The upper row shows the far field
where the emitted field amplitude decreases much faster along
the x axis. �b� The bottom row shows the near field where in
contrast the field amplitude decreases slowly along the x axis.
Black contours denote places of the same field intensity; field
amplitudes on neighboring contours differ by one order of
magnitude.
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considered here. Their polarizabilities are generally very
small and therefore terms with product of three and
more �ij can be omitted,

F

B = 1

2 Re��ij
B*Ej

IB*�

BEi

IB + �ij
B*Gjk

* �km
A*Em

IA*�

BEi

IB

+ �ij
B*Ej

IB*�

B�Giq��qr

A Er
IA� . �11�

The first term is the classical formula for the optical
force acting upon an isolated dipole B placed in an inci-
dent field EIB without the presence of dipole A,

OFF

B = 1

2 Re��ij
*Ej

IB*�

BEi

IB� . �12�

This force is determined solely by the spatial distribu-
tion of the incident field and it is usually further divided
into gradient force and scattering force components
�Harada and Asakura, 1996; Chaumet and Nieto-
Vesperinas, 2000a; Novotny and Hecht, 2006�. The sec-
ond force term in Eq. �11� describes the interaction be-
tween the incident field EI�rB� and the part of the dipole
B induced by the field scattered from the dipole A lo-
cated at rA. The third term corresponds to when the
dipole is induced by the incident field at rB but interacts
with the field scattered from dipole A placed at rA. The

second and third terms �all depending on Ḡ� describe
the coupling force acting between the nanoobjects which
is mediated by the light scattering—the so-called optical
binding force. Adjective binding, however, does not
mean that this force is purely attractive. For optically
bound particles, there exist equilibrium configurations
characterized by a well-defined separation distance. If
the separation of the particles becomes larger than the
equilibrium one, the binding force is attractive and pulls
the particles together. If, on the other hand, the separa-
tion decreases with respect to the equilibrium one, the
binding force is repulsive and pushes the particles apart
�see Fig. 5�.

2. Lateral binding of two identical spherical nanoparticles

Now we simplify the above-presented equations to
provide a clearer picture of the behavior of two optically
bound spherical nanoparticles illuminated by an incident
wave EI propagating perpendicularly to the interparticle
displacement vector R. This geometry is similar to the
pioneering experiments of Burns et al. �1989� and has
been studied theoretically in detail by Depasse and Vi-
goureux �1994�, by Nieto-Vesperinas et al. �2004�, and
later by Romero et al. �2008� who used a quantum elec-
trodynamical approach.

We assume that the objects are identical isotropic
spheres, i.e., �ij

A��ij
B=��ij. The polarizibility � is in gen-

eral complex and usually expressed in the form of effec-
tive polarizability also including the radiation reaction
term �Draine, 1988; Novotny and Hecht, 2006�

� =
�0

1 − ik3�0/�6��0�m�
� �� + i��, �13�

�0 = 4��0�ma3 �p − �m

�p + 2�m
, �14�

where �p is the relative permittivity of the particle and
�� and �� are the real and imaginary parts of the polar-
izability �, respectively.

Without loss of generality we assume R
= �0,R sin � ,R cos �� and a linearly polarized incident
plane wave propagating along x axis with wave vector
k= �k ,0 ,0� and having electric field components EIB

=EIA= �0,0 ,E0 exp�ikx��. Their substitution into Eq.
�11� and using Eq. �4� give force components within the
first Born approximation. Based on the symmetry of the
problem it is advantageous to use the radial force com-
ponent Fr

B �along R� and azimuthal force component F�
B

�perpendicular to R and following increase of ��,

Fr
B = Fy

B sin � + Fz
B cos � ,

�15�
F�

B = Fy
B cos � − Fz

B sin � .

They provide the following simplified form of the forces:

Fr
B =

���2�E0�2

8��0�mR4 ��2k2R2�2 cos2 � − 1�

+ 3�1 − 3 cos2 ���cos�kR�

+ �k3R3�cos2 � − 1�

+ 3kR�1 − 3 cos2 ���sin�kR�� , �16�

F�
B =

���2�E0�2 sin�2��
8��0�mR4 ��k2R2 − 3�cos�kR�

− 3kR sin�kR�� , �17�

A

B
x

y zE
kI

R

rB

rA

B
x

y zE
kI

p r E r
I A I
( )= ( )A A�

p r E r
I B I
( )= ( )B B�

p r E r
A->B A I

( )= ( )B AG�

FIG. 5. �Color online� Definition of variables used for the
mathematical description �left�. Simplified scheme of the inter-
action between two particles without multiple scattering be-
tween them which is equivalent to the description given by Eq.
�11�. Incident field induces dipoles pI�rA�= �̄AEI�rA� or pI�rB�
= �̄BEI�rB� in particle A or B, respectively. The field emitted by
particle A reaches particle B and induces there the dipole com-
ponent pA→B�rA�=G�̄AEI�rA� which interacts with the incident
field EI�rB�. The second parallel path corresponds to the inter-
action of the emitted field by the dipole A with the dipole
induced in particle B by the incident field EI�rB�.
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Fx
B =

k

2
���E0�2 − Re� ��*�2�E0�2k exp�− ikR�

8��0�mR3

��3i − 3kR − ik2R2�sin2 � − 2i + 2kR� . �18�

Along the x axis the first term describes the scattering
force k���E0�2 /2 coming from the incident plane wave
and the second term corresponds to the scattering force
component caused by the interference of the incident
wave with the scattered wave from the other particle. In
order to better understand the interaction between par-
ticles in lateral plane we focus on the near- and far-field
regimes.

In the near-field region kR�1 we obtain �assuming
cos�kR�
1 and sin�kR�
kR�1�

Fr
B = −

3���2�E0�2

8��0�mR4 �3 cos2 � − 1� , �19�

F�
B = −

3���2�E0�2

8��0�mR4 sin�2�� , �20�

Fx
B =

k

2
���E0�2�1 + ��

2 − 3 sin2 �

2��0�mR3 	 . �21�

The dominant interaction between the dipoles in the
near field is due to the electrostatic field which justifies
using a quasielectrostatic approximation to explain the
dipoles behavior. If �=0, both nanoparticles are placed
on the z axis and since the electric field vector has only
a z component, it induces dipoles oriented along their
connecting line �→→�. Hence, the positive end of one
dipole is close to the negative end of the other, they
attract each other, and Fr

B is negative. If �
0 and �

�� /2, the force F�
B is negative pushing particle B to-

ward the z axis. Consequently, a torque acts on the sys-
tem of both dipoles that tends to orient them so that
their interconnection line is again parallel to z and con-
sequently to EIB. A certain value of � gives positive Fr

B

but together with negative F�
B both forces drag the par-

ticles toward the z axis. If �=� /2, the force Fr
B
0 and

the nanoparticles tend to separate because their positive
and negative parts of induced and parallel dipoles �↑↑�
repel each other. In this case the force F�

B=0; however,
this configuration is unstable and small variations in par-
ticle position generate nonzero F�

B pushing the dipole B
toward the z axis to a new position with vectors parallel
to the electric field and R. To conclude, in the near field
both nanoparticles tend to orient in such a way that their
interconnecting line is parallel to the electric field vector
and afterward both particles approach each other �see
Fig. 6�.

In the far-field region kR	1 we obtain

Fr
B =

���2�E0�2k2

8��0�mR2 �kR�cos2 � − 1�sin�kR�

+ 2�2 cos2 � − 1�cos�kR�� , �22�

F�
B =

���2�E0�2k2

8��0�mR2 sin�2��cos�kR� , �23�

Fx
B =

k

2
���E0�2 +

�E0�2k3 sin2 �

8��0�mR
����2 − ��2�sin�kR�

+ 2���� cos�kR�� . �24�

Under these conditions Fr
B�−�1−cos2 ��sin�kR� /R is

the dominant force component due to its 1 /R depen-
dence on the nanoparticle separation distance. It
reaches its extreme value for �=� /2 where the induced
dipoles in the nanoparticles are parallel to each other
and perpendicular to their connecting line �↑↑�. This
dominant force term describes the force acting on the
dipole B that is induced by the incident plane wave and
placed into the field radiated by the dipole A. As the
distance between the dipoles increases, the induced di-
pole B maintains its orientation and size because the
amplitude and phase of the incident field do not change.
However, the field radiated by dipole A changes its mag-
nitude and phase at the position of dipole B and this
causes the force oscillations described by sin�kR� and
cos�kR�. The stable configuration of these dipoles is de-
termined by sin�kR�=0 with kR=2M�, where M de-
notes larger natural number. Therefore, there exist sev-
eral stable radial configurations of the two-dipole chain
that differ by approximately the wavelength � of the
illuminating light in the medium. The second term
cos�kR� only negligibly varies this equilibrium position if
kR	1. The force F�

B is much weaker compared to Fr
B

due to its 1 /R2 dependence, but if the particle is placed
in the equilibrium position �sin�kR�=0�, F�

B determines
that the particles tend to orient parallel to the y axis, i.e.,
perpendicular to the electric field vector �see Fig. 6�.
Equation �22� also shows that if the dipoles are parallel
to the interconnecting line �→→�, the binding force is
much weaker and follows as cos�kR� / �kR�2. This behav-
ior is related to the fast decay of the emitted field am-
plitude along the direction of the induced dipole mo-
ment �see Fig. 4�.

FIG. 6. �Color online� Visualization of the forces acting on
particle B if particle A is placed at the origin of the coordinate
system. �a� The near- and �b� far-field cases, respectively.
Curves at the background follow the trajectories of particle B
toward equilibrium positions �denoted by the dotted edges�.

1774 Kishan Dholakia and Pavel Zemánek: Colloquium: Gripped by light: Optical binding

Rev. Mod. Phys., Vol. 82, No. 2, April–June 2010



3. Longitudinal binding of two spherical nanoparticles

We now focus on a different configuration where the
interparticle vector R= �R ,0,0� is parallel to the direc-
tion of the incident plane-wave propagation. Similar as
above we consider the incident electric field in the form
EIA= †0,0 ,E0

IA exp�ikx�‡, EIB= †0,0 ,E0
IB exp�ik�x+R��‡

�see Fig. 7� and identical spherical particles satisfying
�ij=�ij�. Inserting this form of the incident field into Eq.
�11� we obtain Fz

B=Fz
A=Fy

B=Fy
A=0 and

Fx
B = 1

2 Re��*Ez
IB*�x

BEz
IB + �*Gzz

* �*Ez
IA*�x

BEz
IB

+ �*Ez
IB*�x

B�Gzz��Ez
IA� . �25�

The first term is the classical optical force arising from
the interaction between the dipole B induced and the
incident field EI�rB�. The second term describes the in-
teraction between the incident field EIB and the part of
the dipole B induced by the field scattered from the di-
pole A located at rA. The third term corresponds to
when the dipole is induced by the incident field at rB but
interacts with the field scattered from dipole A at rA.
The force acting on dipole A can be obtained by inter-
changing the letters A and B in Eq. �25�.

If the incident fields are substituted into Eq. �25� and
Eq. �4� is utilized together with �x

BGzz=−�x
AGzz, one ob-

tains

Fx
A =

k

2
���E0�2 +

�E0�2

8��0�mR4 ��2��2k3R3 − 2k2R2����

− 2�2��2 + ��2�kR�sin�2kR�

+ �2����k3R3 + �3��2 + ��2�k2R2

− 2����kR − 3���2 + ��2��cos�2kR�� ,
�26�

Fx
B =

k

2
���E0�2 +

�E0�2

8��0�mR4 �2����k3R3

− ���2 + 3��2�k2R2 − 2����kR + 3���2 + ��2�� .

We can immediately see that the force Fx
A oscillates with

a period corresponding to the spacing between interfer-

ence maxima of two interfering counterpropagating
waves. This can be explained as follows. The incident
field induces a dipole at A and a dipole at B oscillating
with phase shift kR relative to dipole A. The dipole B
then radiates backward toward the dipole A; this
backward-scattered light reaches the oscillating dipole A
with the total phase shift of 2kR. The force Fx

A stems
from the interaction of the dipole A with the interfer-
ence product of the backward-scattered field and inci-
dent field at rA �see Fig. 7�. In contrast the force Fx

B

pushes the dipole B along the wave propagation direc-
tion without such oscillations.

In the near-field region we obtain

Fx
B = − Fx

A = 3�E0�2
���2

8��0�mR4 . �27�

Thus the interaction between both dipoles is repulsive
and very strong if they are close to each other. This con-
figuration is unstable and the dipoles will tend to orient
into the stable lateral configuration studied above.

In the far-field region we obtain from Eq. �26�

Fx
A =

��k�E0�2

2
+

k3�E0�2

4��0�mR
���2 sin�2kR�

+ ���� cos�2kR�� , �28�

Fx
B =

��k�E0�2

2
+

����k3�E0�2

4��0�mR
. �29�

It is not quite clear how the particles will move; there-
fore we define the binding force

Fx
BA = Fx

B − Fx
A = −

��k3�E0�2

4��0�mR
��� sin�2kR�

+ ���cos�2kR� − 1�� . �30�

If this force is positive, the particles are repelled from
each other and the interparticle distance R increases. In
contrast if the force is negative, the particles attract and
approach each other. Therefore stable positions occur at
sin�2kR�=0 with 2kR=2M�, where M is larger natural
number. This shows that in the far field both dipoles in
the longitudinal binding geometry find several stable
configurations with respect to each other; they are sepa-
rated � /2 which is half the distance compared to the
lateral binding configurations. However, such a stable
chain of both dipoles moves along the x axis due to the
scattering force ��k�E0�2 /2 resulting from the incident
beam. More general treatment would show that longitu-
dinal orientation is the most stable in the far field.

Therefore two counterpropagating beams of the same
intensity are used experimentally to compensate the ra-
diation pressure and stop this motion of the center of
mass of the chain. Both beams should be incoherent so
that they do not interfere and no unwanted intensity
modulation �standing wave� is created. In the presence
of the second counterpropagating beam of the same in-
tensity and wavelength, additional force terms Fx

A− and
Fx

B− have to be added to the equations derived above
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FIG. 7. �Color online� Interaction between spherical nanopar-
ticles A and B in the case of longitudinal binding. Sphere A
radiates toward sphere B in the same direction as the incident
field and with the same wave vector size. Therefore the phase
of the incident and scattered field is independent of the inter-
particle distance R �left� if sphere A is fixed. In contrast the
sphere B radiates backward against the incident wave propa-
gation, thus the phase of the incident and scattered waves de-
pends on the interparticle distance as 2kR and it results in
oscillatory behavior of force Fx

A.
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satisfying Fx
A−=−Fx

B and Fx
B−=−Fx

A. One can easily dis-
cover that in this case the final force acting upon particle
B, Fx

2B and the binding force Fx
2BA between particles sat-

isfy the following equations in the far-field regime
�Karásek and Zemánek, 2007�:

Fx
2B = − Fx

2A = Fx
BA, Fx

2BA = 2Fx
BA. �31�

4. Optically induced forces between two nanotubes

The above procedures can become rather complex if
we assume that the particle is inhomogeneous and an-
isotropic and � can be considered as a tensor. However,
a different approach based on the quantum electrody-
namic formalism can be adopted for cylindrical particles.
This topic has been studied by Bradshaw and Andrews
�2005b� �Andrews and Bradshaw, 2005; Bradshaw and
Andrews, 2005a, 2006; Andrews et al., 2006�. They con-
sidered a pair of cylindrical particles elongated along
one axis and determined the light-induced system en-
ergy shift �Eind from the fourth-order perturbation
theory if the particles were illuminated by a plane wave
of electric field intensity E0. The simplified expression
can be derived if the long axes of both cylinders are
parallel along the x axis and the particles are displaced
by R along the z axis,

�Eind =
E0

2

4��0
��a�

2 sin2 � sin2 � + ��
2 cos2 ��

�� cos�kR�
R3 +

k sin�kR�
R2 −

k2 cos�kR�
R

�
− ��

2 sin2 � cos2 �� cos�kR�
R3 +

k sin�kR�
R2 �	

�cos�k · R� , �32�

where �� and �� denote object polarizability in a direc-
tion along the nanotube long axis and perpendicular to
it, respectively. � and � correspond to the angle of the
incident electric intensity vector with respect to the z
axis and with respect to the x axis in the x-y plane. The
light-induced force is then given by

Find = −
��Eind

�R
�33�

and describes the internal force acting on the objects.
This force is related to the forces previously presented
as Find= �FB−FA� /2. The approach of Bradshaw and An-
drews is very general: they presented detailed formulas
for a pair of nanotubes oriented parallel to each other
and for a tumbling pair of nanotubes �Bradshaw and
Andrews, 2005b, 2006�.

5. Optical binding of many nanoparticles

The method in Sec. III.A can be extended to many
nanoparticles by extending the system of Eqs. �3� to N
equations for N considered objects. A numerical solu-
tion of such a system of coupled equations also forms
the basis of an efficient method called coupled dipoles

�Purcell and Pennypacker, 1973; Draine, 1988�, which is
applicable to larger objects and will be discussed in Sec.
III.B.5.

Guillon �2006� considered a linear chain of dipoles
and focused on the field enhancement in such an ar-
rangement. He considered lateral binding configuration
in two counterpropagating waves and therefore the ex-
pected periodicity between neighboring particles was
one wavelength. However, neglecting scattering forces
he showed that this is valid only for the central part of
the many-nanoparticle chain whereas at the chain edges
the interparticle distance exceeds one wavelength by
several percent. He also studied the field enhancement
in such a chain and showed that the dipole in the middle
of the chain feels increasing field only up to a certain
number of dipoles in the chain; if this critical number is
exceeded, the field decreases together with the trapping
potential. To avoid this phenomenon for chains with
more particles he reduced the coherence of the laser
light. However, the field enhancement was not as large
as for the case of the spatially modulated phase of the
incoming light.

Particle binding in broadband light sources was con-
sidered by Rodriguez and Andrews �2009a, 2009b� using
the QED-cast method of induced moments. They
showed that the distance between the particles in the
chain can be tuned by filtering the broadband radiation.
The less coherent the source, the smaller the interpar-
ticle distance in the deepest �first� stable configuration.

de Abajo �2007� recently presented an extensive work
concerning light scattering by particles and holes ar-
ranged in planar periodic arrays. He focused mainly on
the reflectance or transmittance of such systems close to
the surface, considered resonance conditions, and the
influence of surface plasmons. However, he had not
dealt with the force interactions between the illuminated
objects.

6. Dipole near a planar surface

The study of dipole radiation near a surface or planar
layered media has found many useful applications in the
field of microscopy, single molecule spectroscopy, cavity
quantum electrodynamics, integrated optics, and surface
enhanced Raman spectroscopy above metallic surfaces.
Here we follow the theoretical treatment of Novotny
and Hecht �2006� using the dyadic Green’s function for-
malism. Consider first a single dipole placed at r0 �dis-
tance z0 above the surface�. Due to the presence of the
surface the field at the position r is given by

E�r� = EI�r� + �Ḡ�r,r0� + Ḡref�r,r0���̄E�r0� , �34�

where Ḡ�r ,r0� denotes the dyadic Green’s function in

free space used in Sec. III.A �Eq. �4�� and Ḡref�r ,r0� de-
notes the dyadic Green’s function due to the dipole ra-
diation reflection at the surface. Using the spectrum of
plane waves reflected from the surface the general form
for the field was found �Novotny, 1997a, 1997b; Novotny
and Hecht, 2006�. Unfortunately, no closed solution ex-
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ists for this problem without using certain approxima-
tions.

Chaumet and Nieto-Vesperinas �2000b� studied the
geometry of a single dipolar particle placed in a low
refractive index medium below a dielectric interface and
gradually extended this problem to a metal nanoparticle
�Chaumet and Nieto-Vesperinas, 2000c�. Their analyses
of the metal nanoparticles revealed different behavior if
the trapping laser wavelength was below the plasmon
resonance frequency. In this case, the particle polariz-
ability reverses its sign and the gradient force repels the
particle out of high-intensity regions. They also consid-
ered evanescent wave �EW� illumination when the angle
of the beam incident upon the surface is larger than the
critical angle.

Optical binding of two particles below the interface
has also been studied �Chaumet and Nieto-Vesperinas,
2001; Nieto-Vesperinas et al., 2004� but with no remark-
able deviations from the binding far from the surface. In
general, the influence of the surface is not dominant if
the particle center is further away from the surface than
its diameter �Arias-González and Nieto-Vesperinas,
2003�.

B. Optical binding of micro-objects

The theoretical description of the interaction between
larger particle �micro-objects� mediated by light is much
more complex than that used to describe nanoparticles.
However, it is important to extend our understanding of
the optical binding at this scale because micro-objects
are more closely aligned to typical experimental obser-
vations and thus facilitate direct and needed compari-
sons between experiment and theory.

1. Optical forces

The optical force is the result of the transfer of mo-
mentum from the light to a micro-object. Two general
theoretical approaches are typically adopted to express
such a force. One of these approaches builds on the fact
that an object illuminated by an incident light wave scat-
ters this light and, thus, modifies the final light distribu-
tion. From the overall momentum balance, the time-
averaged optical force acting on the illuminated object is
given by �Stratton, 1941�


F� =
1
2

Re��
S


T� · ndS� , �35�

where the integration is performed over an arbitrary
closed surface S enclosing the object and n is the outer
unit normal to the surface S. The components of the

stress tensor T̄ have the following form in a linear and
isotropic medium:

Tij = �0�mEiEj
* + �0�mHiHj

*

− 1
2 ��0�m�E�2 + �0�m�H�2��ij, �36�

where �E� and �H� is the magnitude of the electric and

magnetic field vector, �0 and �0 are the permittivity and
permeability of vacuum, and �m and �m are the relative
permittivity and permeability of the medium surround-
ing the object, respectively. The field components enter-
ing Eq. �36� correspond to the total field �i.e., incident
plus scattered� outside the object. No material proper-
ties of the object are present explicitly in Eq. �35�; how-
ever, they are hidden in the methods for calculating
these fields. Integration over an arbitrary surface enclos-
ing the studied object is the largest computational ad-
vantage of this method that facilitates analytical treat-
ment in some cases. The scattered field can be expressed
analytically only for a limited number of symmetries of
the object. The most frequently treated shape is a sphere
where Mie scattering theory is used �Barton et al., 1989;
Ren et al., 1996; Mazolli et al., 2003; Rohrbach, 2005;
Neves et al., 2007; Viana et al., 2007�. A group of spheres
can be treated using the multiple Mie scattering theory
�Xu, 1995; Ng, Lin, et al., 2005�. In addition to spherical
objects, spheroidal or cylindrical ones are also often con-
sidered theoretically �Nieminen et al., 2001; Grzegorczyk
et al., 2006c; Nieminen, Kröner, et al., 2007; Xu et al.,
2007�.

Optical forces acting on particles with more complex
shapes must be calculated using numerical schemes; for
example, the coupled dipole method �CDM� �Hoekstra
et al., 2001; Chaumet and Billaudeau, 2007�, finite ele-
ment method �White, 2000�, or finite-difference time-
domain �FDTD� method �Collett et al., 2003; Gauthier,
2005; Benito et al., 2008�. A MATLAB toolbox is available
for the calculation of optical forces acting on spherical
and spheroidal objects in Gaussian and other beams
�Nieminen, Loke, et al., 2007�. If the object is much
larger than the trapping light wavelength, the ray-optics
model can be used �Ashkin, 1992; Gussgard et al., 1992;
Gu et al., 1997; Mazolli et al., 2003�.

The second approach derives the optical force from
the Lorentz force acting on both currents J due to the
polarization of dielectric and bound charges �e at the
boundaries �Mansuripur, 2004, 2005; Kemp et al., 2005,
2006�,


F� =
1
2

Re�� 
�eE* + J � B*�dV� . �37�

The integration in Eq. �37� is performed over the vol-
ume of the particle. This method usually requires more
tedious numerical integration but can also be easily in-
tegrated into FDTD calculations �Zakharian et al., 2005,
2006�. In contrast to the stress tensor method, the Lor-
entz force approach can calculate the distribution of the
force density inside the object.

Both methods can be directly applied for the calcula-
tion of optical binding of micro-objects; however, vari-
ous numerical approaches must be used based on the
symmetry of the studied object.

2. Optical binding of spheres

This topic has been explored in depth by Ng, Lin, et
al. �2005� who assumed a configuration with two coun-
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terpropagating linearly polarized plane waves forming a
standing wave with steep intensity gradients between the
interference maxima and minima. This configuration lo-
calizes the particles in an intensity maximum or mini-
mum according to their size �Zemánek et al., 2002�.
Hence the particle behavior can be treated as quasi-two-
dimensional in the plane perpendicular to the propaga-
tion direction of the plane waves. The work of Ng, Lin,
et al. is the first example of a detailed theory for lateral
2D binding of microspheres. They calculated the time-
averaged force based on Eq. �35� and expressed the elec-
tromagnetic field around the particles using accurate
multiple-scattering theory �Xu, 1995�. A detailed theo-
retical description of this method is beyond the extent of
this paper; it is possibly the most accurate and efficient
way in which the optical binding of multiple spherical
particles can be treated. In the following, we present
some of the major results with their method.

They assumed that the calculated optical force acting
upon the sphere can be fitted asymptotically to

F
 

f
�a�

R
cos�kR + ��a�� , �38�

where 
 denotes the lateral components �here x,y� of the
optical force, f
�a� denotes the strength �amplitude� of
the optical force, and ��a� represents the fitted phase.
They showed that there exist several stable positions
along the x axis �in parallel with the light polarization�
separated by about a wavelength. However, if the bi-
sphere axis is oriented perpendicular to the light polar-
ization, only one stable position exists for touching
spheres, which is exactly opposite behavior as described
for nanoparticles �see Fig. 6� caused by the selected size
of the microspheres.

Optical binding between spheres can be greatly en-
hanced if they are close to one another and one exploits
so-called morphology-dependent resonances �MDRs�
�Ng, Chan, et al., 2005; Povinelli, Johnson, et al., 2005�.
Both attractive and repulsive binding forces were found
depending on whether the resonance mode of the two
bound spheres is symmetric or antisymmetric. The
forces are linearly enhanced by the quality of the MDR
resonator. Ng, Chan, et al. �2005� focused on a single
plane wave propagating along the bisphere axis. They
showed that even if the radiation pressure on a single
sphere is increased by just 30% and less due to MDR,
the binding force increase between the spheres can be
significantly higher especially for size parameters ka be-
tween 20 and 30.

3. Paraxial optics theory for larger spheres

The paraxial optics approach is an approximation to
the full vectorial Maxwell theory that provides a frame-
work for longitudinal optical binding of larger particles.
Here the dominant binding mechanism is light refocus-
ing by the trapped particles, for example, dielectric
spheres or cells. More specifically, the paraxial theory
applies to particles whose diameter is greater than the
optical wavelength, and trapping beams that are not too

tightly focused, thereby allowing for a scalar paraxial
treatment of the field propagation and small refractive
index differences between the spheres and host liquid so
that back reflections may be neglected to leading order.
In this limit the paraxial theory accurately captures the
refocusing of the binding laser beams due to the pres-
ence of the particles and provides a useful paradigm for
longitudinal optical binding based on refocusing. In
comparison to the more general vector Maxwell theory,
the paraxial theory has the virtues that it is considerably
less computer intensive, thereby allowing for treatment
of longitudinal optical binding over spatial scales much
larger than the wavelength. Naturally, of course, this has
limitations in that we cannot really deal with large re-
fractive index changes between the particle and the sur-
rounding medium and of course we may lose some of
the detailed physics of the situation.

For longitudinal optical binding we consider two
monochromatic laser beams of frequency � counter-
propagating along the z axis which interact with a sys-
tem of N transparent dielectric spheres of mass m, re-
fractive index np, and radius a, with centers at positions
�rj�t�� , j=1,2, . . . ,N, and which are immersed in a host
medium of refractive index nm. The monochromatic
electric field component Ei is expressed as a sum of the
positive and negative frequency components,

Ei�r� = Ei+�r�exp�ikz� + Ei−�r�exp�− ikz� , �39�

where E±�r� are the slowly varying electric field ampli-
tudes of the right or forward propagating ��� and left or
backward propagating ��� fields. Any paraxial incident
fields can be considered, e.g., collimated Gaussian
beams.

Consider first that the dielectric spheres are in a fixed
configuration at time t specified by the centers �rj�t��.
Then the dielectric spheres provide a spatially inhomo-
geneous refractive index distribution of the form

n2�r� = nm
2 + �np

2 − nm
2 ��

j=1

N

�„a − �r − rj�t��… , �40�

where �„a− �r−rj�t��… is the Heaviside step function
which is unity within the sphere of radius a centered on
r=rj�t� and zero outside. Then, following standard pro-
cedures, the counterpropagating fields evolve according
to the paraxial wave equations

±
�Ei±

�z
=

i

2k
��

2 Ei± + ik0
n2�r� − nm

2

2nm
Ei±, �41�

where k0=� /c and ��
2 =�2 /�x2+�2 /�y2 is the transverse

Laplacian describing the beam diffraction. A given con-
figuration of the dielectric spheres modifies the fields
Ei±�r� in a way that can be calculated from the above
field equations. Even in the case the spheres move and
hence the refractive index distribution varies, the fields
will always adiabatically slave to the instantaneous
sphere configuration. This paraxial wave theory has
been validated against experiment for propagation
through a system of dielectric spheres using a femto-
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second laser source and adding fluorescein to the host
liquid. The field intensity profile could be measured by
detecting the associated two-photon fluorescence
�Dholakia et al., 2004; Metzger, Wright, Sibbett, and
Dholakia, 2006�.

McGloin et al. �2004� applied the paraxial field pro-
pagation method to study the longitudinal optical bind-
ing of two and more spheres placed into counterpropa-
gating incoherent Gaussian beams with aligned centers
z=−L /2 for the forward field and z=L /2 for the back-
ward field, where L denotes the distance between beam
waists. The Gaussian input beams supply strong enough
transverse confinement that the sphere motion remains
directed along the z axis and only the z component of
the force is of interest. To calculate the forces acting on
the spheres they followed the approach of Zakharian et
al. and expressed the cycle-averaged force acting on the
jth dielectric using the Lorentz force law �Eq. �37��. The
first term in the integrand �eE* gives rise to a force act-
ing along the direction of polarization of the laser fields
and perpendicular to the z axis, and for the present con-
figuration it is not relevant. Using the paraxial form of
the field from Eq. �39� the second term in Eq. �37� gives
the force acting upon particle j in the system of dielectric
spheres with the optical polarization P�r , t�=�0�np

2�r�
−nm

2 �E�r , t� and the current density due to bound
charges Jb=�P /�t,

F�j��t� =
�0�np

2 − nm
2 �

4 �
V�j�

d3r�� ��E+�2

�z�
+

��E−�2

�z�
�

=
�0�np

2 − nm
2 �

4k
�

V�j�
d3r� Im�E−

*��
2 E− − E+

*��
2 E+� .

�42�

The final expression in Eq. �42� is used in the simula-
tions to determine numerically the force on each sphere;
in general, this force is a combination of both gradient
and scattering forces. This method has been used for
investigation of optical binding of two and three spheres
and successfully compared to experimental results of
longitudinal optical binding �Metzger, Dholakia, and
Wright, 2006; Metzger, Wright, and Dholakia, 2006�.

4. Optical binding of infinite cylinders

Grzegorczyk et al. �2006c� focused on the geometry of
infinite cylinders and used the exact Foldy-Lax multiple-
scattering equations to properly describe the interac-
tions between many particles �Foldy, 1945; Lax, 1951,
1952�. For the sake of simplicity they arranged the in-
coming wave vectors perpendicular to the axes of the
cylinders and as a result could treat arbitrary number of
cylinders of arbitrary sizes without an additional ap-
proximation. However, the disadvantage was that all
particles had to be cylinders of identical permittivity.
They calculated the electromagnetic field around the
cylinders using the multiple-scattering theory and ob-
tained the optical forces from the Maxwell stress tensor
�35�. The force along the x axis for various cylinder con-

figurations is again periodic with a period close to the
light wavelength �see Fig. 8�. In the considered cylinder
configurations, the majority of the cylinders are fixed
and create a diffractive structure scattering the incident
light toward one free cylinder spanning the space �Grze-
gorczyk et al., 2006a, 2006b, 2006c�. Figure 8 shows that
the force acting on the free cylinder increases with the
number of fixed cylinders arranged along the y axis.

Using the side scattering arrangement and plane-wave
illumination along the y axis, Grzegorczyk et al. �2006a�
suggested optical guiding, sorting, and even optical con-
finement between two arrays of fixed cylinders �Grze-
gorczyk et al., 2006b�. Their model also enabled them to
treat the mutual interactions between cylinders if illumi-
nated with spatially structured beams; for example,
three interfering plane waves. Figure 9 shows this model
with 20 dielectric cylinders placed in three-plane-wave
interference pattern.

5. Optical binding using the coupled dipole method

The coupled dipole approximation, also known as dis-
crete dipole approximation �Purcell and Pennypacker,
1973; Draine, 1988�, is based on the decomposition of
the object into N dipoles placed in an orthogonal grid
with interdipole distances d so small that the object
shape is described satisfactorily and the field in the vi-
cinity of each dipole can be considered uniform ��m�kd
�1, where m is the ratio of refractive indices of the
object and the surrounding medium and k is the wave
number�. Based on Eqs. �3� a linear system of coupled
equations describes the ith component of the total field
Ei


 at the position of dipole 
. However, N in the order

FIG. 8. Optical binding of infinite cylinders under plane-wave
illumination. Force along the x axis �light propagation direc-
tion� acting on the right-hand side cylinder for a varying num-
ber of cylinders on the left. Case 1 corresponds to two cylin-
ders; cases 2 and 3 are explained in the inset. The parameters
used are the following: cylinder radius a=0.3�, laser wave-
length �=546 nm, permittivity of polystyrene cylinder �p
=2.56, and water �m=1.69. From Grzegorczyk et al., 2006c.
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of thousands to millions is usually needed to obtain
exact results for micro-objects. Therefore iterative bi-
conjugate gradient methods must be used with the num-
ber of numerical operations 
N2 �Press et al., 1992�.
Another problem is the computer memory requirement
�
144N2 bytes� to allocate the matrices of the necessary
Green’s functions. Fortunately if the dipoles are situated
on a periodic lattice, a fast Fourier transform algorithm
is applicable and it further decreases the number of nu-
merical operations to N log N �Goodman et al., 1991;
Draine and Flatau, 1994; Hoekstra et al., 2001�. For large
N this is an important breakthrough.

Once the dipole moments of all dipoles in the system
are known, the final electric field components at the po-
sitions of each dipole can also be determined using Eq.
�7� and one can express the force acting on each dipole.
The force acting on the whole solid object B is done as
the sum of the forces acting on all dipoles forming this
object,

Fi
B = �

��B
Fi

�. �43�

The time-averaged optical forces 
F� acting on an ob-
ject can also be obtained using the stress tensor �35� with
the field components obtained from the CDM where the

double integration over the closed surface must be per-
formed numerically. Both methods based on Eqs. �43�
and �35� give similar results that differ in units of percent
from the exact forces obtained from the Mie approach
�Chaumet and Nieto-Vesperinas, 2000b�. The principal
advantage of the CDM is its applicability to general ob-
ject shapes and composition and its easy extension to the
optical torque calculations �Draine and Flatau, 1994;
Draine and Weingartner, 1996; Hoekstra et al., 2001;
Chaumet and Billaudeau, 2007�. It has been shown that
the CDM is equivalent to the digitized Green’s function
method or volume-integral equation formulation in the
low-frequency limit kd→0 �Draine and Flatau, 1994�.
The accuracy of the CDM suffers if the object refractive
index is high compared to the refractive index of the
surrounding medium. In this case it is preferred to use a
more complex description of the polarizability of the di-
polar units �dipoles� �Chaumet et al., 2004�.

Since the CDM inherently contains the interaction of
a selected dipole with all other dipoles in the system,
splitting one object into several objects provides an easy
way to treat optical binding between them by the CDM
�Karásek, Dholakia, and Zemánek, 2006; Karásek et al.,
2009�. It was shown �Karásek, Dholakia, and Zemánek,
2006� how minute variations of the Gaussian beam waist
radius by only 200 nm or particle diameter by 40 nm or
object refractive indices by just 
1% can cause the col-
lapse of a stable two-particle longitudinally bound struc-
ture or change the interparticle distance by several mi-
crometers. Since the CDM incorporates the backward-
scattered waves, in contrast to the paraxial approach the
CDM predicts correctly the existence of several equilib-
rium positions for each stable two-particle structure
separated from each other by half a wavelength. This
multistability comes from the interference of counter-
propagating waves explained for longitudinal binding of
dipoles. However, for larger objects examined here it
leads to the oscillations modulated on a more complex
force background. Karasek et al. also predicted that the
amplitude of the force oscillations depends on the size of
the bound objects �Karásek, Čižmár, and Zemánek,
2006� and for certain particle diameters they even disap-
pear. If the scattering object is so large that the
backward-scattered field is suppressed �within the CDM
model this happens due to the overall destructive inter-
ference from the dipoles in the scattering object�, the net
force coming from the interaction of this field with any
dipole forming the second object will be suppressed too.

The CDM can serve as a universal tool for direct com-
parison of various particle shapes or configurations with
experimental observations. For example, comparison of
the CDM results with experimental observations of lon-
gitudinal binding �Metzger, Dholakia, and Wright, 2006�
gave excellent coincidence taking into account the
spread of the experimental values. It even confirmed the
observed bistability of interparticle distances induced by
the refractive index variations of the surrounding me-
dium �Karásek, Dholakia, and Zemánek, 2006�. The
CDM was also applied in the study of longitudinal bind-
ing in “nondiffracting” beams �Durnin et al., 1987�.

FIG. 9. Optical binding of infinite cylinders in the interference
field of plane waves. Positions of 20 cylinders �white circles�
and field distributions �background gray-scale images� for �a�
random initial positions in a three-plane-wave interference
pattern, background shows unperturbed incident field distribu-
tion; �b� organized final positions due to the trapping and bind-
ing forces, background shows unperturbed incident field distri-
bution; �c� the same as �b� but final field distribution is shown
at the background; and �d� organized final positions corre-
sponding to another set of cylinders in initial positions. The
parameters used are the following: a=0.15�, �=546 nm, �p
=2.56, and �m=1.69. Adapted from Grzegorczyk et al., 2006c.
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These beams do not change their lateral profiles while
they propagate and, thus, longitudinal optical binding is
not influenced by the intensity variations of the axial
beam profile. Hence the interparticle interactions via
light scattering become the dominant mechanism re-
sponsible for the particle arrangement �Karásek and
Zemánek, 2007; Karásek et al., 2008, 2009�. The CDM
also enables, within the technical limitation of the used
computers, to treat optical binding of more objects. This
case was studied again for longitudinal binding in the
Bessel beams �Karásek et al., 2008� and the calculated
data were compared with the experimental results with
good agreement including the observation of the short-
and long-range self-arranged chains of particles �see Fig.
12�.

6. Optical binding near a flat surface

The description of an induced dipole radiation near a
surface introduced in Sec. III.A.6 can be extended using
the CDM to larger objects. Chaumet and Nieto-
Vesperinas used such an approach to calculate the opti-
cal forces acting on a sphere placed close to a surface
�Chaumet and Nieto-Vesperinas, 2000b� and on a pair of
spheres with and without the presence of a surface
�Chaumet and Nieto-Vesperinas, 2001�. As shown in Fig.
10 the presence of a surface influences the binding in the
considered configuration only weakly for larger objects.
For smaller spheres there is a shift in the equilibrium
distances between the spheres reaching hundreds of na-
nometers. Behavior of two and three metallic nanopar-
ticles in various configurations near a surface was inves-
tigated by Zelenina et al. �2007�. They showed enhanced
near-field binding forces for nonlinear arrangement of

the particles and for the wavelength close to the plas-
mon resonance. Stronger binding forces were observed
for three particles in a nonlinear arrangement.

Numerical approaches are more suitable to describe
the real experimental situations. The finite element
method and commercial software �COMSOL� �Gaugiran
et al., 2005, 2007� or finite-difference time-domain
method �Benito et al., 2008� express the electromagnetic
field around the particles and the optical forces are then
calculated using Eq. �35�. However, there have been
relatively few results in this area.

C. Dynamical phenomena in optical binding of micro-objects

1. Particle dynamics due to optical forces

The existence of a stable configuration of particles
with zero force acting on each of them does not ensure
the overall long-term stability of the cluster and, indeed,
we need to consider that these are dynamically evolv-
ing systems due to the presence of fluid and hydro-
dynamics for example. The dynamical behavior must be
treated using the equation of motion of the individual
particles to obtain the stability criteria. Ng, Lin, et al.
�2005� treated the problem of optically bound micro-
spheres in two dimensions in a general way. They
considered only the influence of the optical forces and
omitted the hydrodynamic interactions and the sto-
chastic thermal activation. To describe the particle
positions, they used general position vector r̃eq

= �r̃1
eq, r̃2

eq, . . . , r̃2N−1
eq , r̃2N

eq �. Coordinate pairs r̃2i−1 , r̃2i de-
scribe the position of ith particle in the lateral plane
�xi ,yi�. The linearized equation of motion at r̃eq then has
the following form:

m
d2�r̃j

dt2 � K̃jk�r̃k − b
�r̃j

dt
, �44�

where m is the spheres mass, �r̃j= r̃j− r̃j
eq denotes the

displacement of jth component of general position vec-
tor of the spheres r̃j from its local equilibrium compo-
nent r̃j

eq, b is the viscous damping constant, and the stiff-

ness tensor K̃jk satisfies

K̃jk =
�F̃j

��r̃k
, �45�

where F̃j is the jth component of the general optical
force vector constructed in the same way as r̃.

It is assumed above that the equilibrium is created by
the zero force acting upon each sphere �the so-called
static equilibrium�. However, Ng, Lin, et al. �2005�
showed that a special type of equilibrium called drifting
equilibrium also exists. In this case the forces on each
sphere are not equal to zero but are constant and iden-
tical �cf. Eq. �29��. Therefore the spheres keep their dis-
tances fixed but the whole formation �cluster� moves
while keeping its shape. Dynamic equilibrium is a more
generalized description requiring an extra additive term
at the right-hand side of Eq. �44�. Such an equation,

FIG. 10. Optical binding of spheres near a planar dielectric
interface. Two glass spheres are placed at the same distance
below the dielectric interface oriented along the x axis. The
incident beam ��=632.8 nm� impinges perpendicularly to the
interface and illuminates both spheres. The binding forces
shown between these spheres for s �marked �� and p polariza-
tions. Full curves denote the forces in the presence of the sur-
face and dashed curves without it. Glass spheres have radii of
�a� 10 nm and �b� 100 nm. From Chaumet and Nieto-
Vesperinas, 2001.
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however, can be transformed back to the form of Eq.
�44�. Using the coordinate transform �r̃j=Vjk�k, Ng, Lin,
et al. �2005� decoupled Eq. �44� into

m
d2�j

dt2 = K̃j�j − b
�j

dt
, �46�

where Vjk for k=1, . . . ,2N are eigenvectors of K̃ so that

K̃ is diagonalized with eigenvalues K̃i. The expected so-
lution of Eq. �46� has the form �j=�j0 exp�i�j0t� where
the natural frequency of the eigenmode is given by �j0

=�−K̃j /m. Therefore the eigenvalues K̃i dictate the sta-
bility of the optically bound cluster of particles. The gen-
eral solution of Eq. �46� is obtained as a linear combina-
tion of neutral, unstable, stable, complex unstable, and
quasistable modes. A cluster is called stable if all its
eigenmodes are neutral or stable. However, the stable
cluster formations found by the linear analyses must also
be stable against the thermal fluctuations occurring in
real experiments. This requires that dissociation energy
per sphere is much higher than kBT �kB being the Bolt-
zmann constant and T being the absolute temperature�.
An unstable cluster is formed if one unstable or complex
unstable mode is present. Finally, a cluster is termed
quasistable if it consists of neutral, stable, and quasis-
table mode�s�. Quasistable clusters can be locked into a
periodic orbit if appropriate friction is present but their
behavior can only be studied by molecular dynamics.
Ng, Lin, et al. �2005� presented a detailed theoretical
description and numerous results. Figure 11 shows ex-
amples of static and drifting equilibria together with
stable and quasistable clusters.

Ng and Chan �2006� also studied a different configu-
ration of a linear array of N spheres confined in a stand-
ing wave formed from two counterpropagating plane
waves. Each of the particles occupied one intensity
maximum in the standing wave where it was confined by
the gradient forces but laterally their motion was dic-
tated by the optical binding. They showed that the po-
tential energy of each sphere in the array could increase

by 20% due to the contribution of the binding force as
the number of spheres in the array increased from 1 to
100. Even though the field intensity did not vary in the
lateral plane, the equally spaced particles formed a lin-
ear array with three distinct vibration mode branches.
The best sphere localization and the highest sustained
vibrational frequencies were provided in the vibration
along the beam propagation direction and were caused
by the standing-wave traps. In this configuration, optical
binding stabilized the lateral motion of the objects. Lat-
eral vibrations in the direction parallel or perpendicular
to the field polarization were less localized with lower
vibrational frequencies.

2. Hydrodynamic equations

The optical forces derived above are useful to calcu-
late the equilibrium positions of the particles for which
the optical forces Fj=0. However, full equations of par-
ticle motion are required to deal with transient or noise-
driven phenomena. In general the motion of the par-
ticles in the host fluid will be overdamped and
hydrodynamics interactions will influence the particle
dynamics in addition to the optical forces �Metzger et al.,
2007�. In the overdamped limit the equation of motion
for the spheres is

vj =
drj

dt
= �

k=1

N

HjkFk + fj�t� , �47�

with the Oseen tensor H given by

Hjk =
I
b

�jk +
3a

4brjk
�1 − �jk��I +

rjkrjk

rjk
2 � , �48�

where I is the unit second rank tensor, rjk=rj−rk, and
b=6��a, � being the viscosity of the host medium. The
Oseen tensor accounts for cross coupling between the
particle motions due to hydrodynamic forces, and fj�t�
are randomly fluctuating vector functions representing
the fluctuating forces acting on the particles due to
Brownian motion.

The above general formulation can be greatly simpli-
fied to treat the correlations that exist between two op-
tically bound particles with equilibrium separation R. In
this case the random forces associated with the Brown-
ian motion will drive small motions that can become
correlated by optical binding forces and hydrodynamic
interactions �Meiners and Quake, 1999; Bartlett et al.,
2001�. The two identical spheres are assumed to be lon-
gitudinally optically bound along the z axis due to illu-
mination by a pair of mutually incoherent but otherwise
identical counterpropagating laser fields in a dual beam
fiber trap. We label the deviations of the sphere centers
from their equilibrium positions along the z axis by zj�t�,
j=1, 2, and assume that the spheres are tightly bound in
the plane transverse to the laser propagation axis due to
the confinement provided by the Gaussian intensity pro-
files. Thus, we can concentrate on the longitudinal par-
ticle motions along the z axis. Adopting the notation of

FIG. 11. �Color online� Stability of optical binding of multiple
identical spheres. Examples of equilibrium configurations cal-
culated for varying numbers of polystyrene ��p=2.53� spheres
of radius a=0.414 �m placed in vacuum �air� and illuminated
with horizontal polarization of the incident light with a wave-
length �=0.52 �m. Configurations �a�–�e� have all eigenmodes
stable, �b� and �e� are in drifting equilibrium, and �f� and �g�
have either stable or quasistable modes �see the text�. From
Ng, Lin, et al., 2005.

1782 Kishan Dholakia and Pavel Zemánek: Colloquium: Gripped by light: Optical binding

Rev. Mod. Phys., Vol. 82, No. 2, April–June 2010



Bartlett et al. �2001� for small sphere displacements Eq.
�47� can be reduced to the matrix Langevin equation,

d

dt
�z1

z2
� = �A11 A12

A12 A11
��f1�t� − kz1 + 
z2

f2�t� − kz2 + 
z1
� , �49�

where A12=1/6��a=�A11, �=3a / �2R� describe the lon-
gitudinal particle mobilities and the fluctuating forces
fj�t� have zero mean 
fj�t��=0 and correlation functions

fj�t�fk�t���=2�A−1�jkkBT��t− t�� at temperature T. The
force terms proportional to the spring constant k
0
represent the restoring forces on a sphere chosen when
that sphere is displaced while the other sphere is held
fixed, and the force terms proportional to 

0 describe
the cross force acting on the sphere chosen at its equi-
librium position when the other sphere is displaced.

To facilitate the analysis of the matrix Langevin equa-
tion �Eq. �49�� normal mode coordinates Z1= �z1+z2� /2
for the center-of-mass motion and Z2=z1−z2 for the
relative motion may be used. Then applying the meth-
ods described by Bartlett et al. �2001�, Metzger et al.
�2007� found the normal mode correlation functions

Cj�t� =

Zj�t�Zj�0��


Zj
2�t��

= exp�−
�t�
�j
� , �50�

where t is the delay time and the decay times �j for the
center-of-mass �j=1� and relative �j=2� normal modes
are given by

1

�1
= kA11�1 + ���1 −




k
	 ,

�51�
1

�2
= kA11�1 + ���1 +




k
	 .

Experimentally the decay times �1,2 can be measured
and the above formulas can then be combined to yield




k
=

�1 + ��/�1 − �� − �2/�1

�1 + ��/�1 − �� + �2/�1
. �52�

Since � is known, the force constants k and 
 may be
inferred from Eqs. �51�. Thus, measurements of noise
correlations can lead to information about the optical
forces responsible for the longitudinal optical binding.

Different types of dynamical effects have been studied
by Gordon et al. �2008�. They also studied longitudinal
binding in a dual beam trap but used a generalized mul-
tipole technique to describe the light distribution outside
the objects and then applied Eq. �35� to calculate the
optical force on each particle. They considered hydrody-
namic coupling in the form of Eq. �48� and—since they
did not consider the stochastic thermal activation—their
theory showed no particle oscillations if both beams
were collinear. However, small lateral offset of the
beams caused self-sustained oscillations of the whole op-
tically bound cluster of particles. The frequency of these
oscillations decreased with an increasing number of par-
ticles in the cluster. After removing the hydrodynamic

term from the equations, the oscillations were still ob-
served but their frequency and their damping rate de-
creased.

IV. FURTHER EXPERIMENTAL STUDIES AND
CONFIGURATIONS

In a series of papers, Metzger et al. explored the dy-
namics and interactions between two and six micropar-
ticles held in a dual beam fiber trap �Metzger, Dholakia,
and Wright, 2006; Metzger, Wright, and Dholakia, 2006;
Metzger, Wright, Sibbett, and Dholakia, 2006; Metzger
et al., 2007�. Careful investigation of the equilibrium po-
sitions in this system revealed a hitherto unsuspected
complexity: namely, they observed bistability in the in-
tersphere separations dependent on the refractive index
difference between the spheres and the host medium,
and hysteresis in the particle equilibrium separations as
the fiber separation was varied adiabatically �Metzger,
Dholakia, and Wright, 2006�. These observations
matched well with numerical simulations based on the
coupled equations for the light propagation �Eq. �41��
and the forces acting on the spheres based on Eq. �37�
�Metzger, Wright, and Dholakia, 2006�. Bistability and
bifurcation are ubiquitous in many physical and biologi-
cal systems and they are closely linked with the concept
of feedback. Competition between parameters such as
dispersion and nonlinearity in a wide variety of physical
systems can ultimately lead to the coexistence of several
stable solutions that may each be energetically favor-
able.

In the optical domain bistability is usually linked with
the notion of nonlinearity but one can also observe clas-
sical bistability with no explicit nonlinearity, for ex-
ample, the radiation pressure from the intracavity field
on a moving mirror. The observations of Metzger et al.
for a two-particle optically bound system constitute the
first realization of bifurcation and bistability that is in-
herently linked with the coupled nature of the problem
and the direct interplay between radiation pressure and
the light redistribution by each constituent microsphere
with accompanying positive feedback.

The light redistribution is a major feature of optical
binding: however, in virtually all light-matter interaction
experiments it is difficult if not impossible to visualize
the light itself. Naturally for optically bound matter this
would be useful given the importance of the light redis-
tribution in the various phenomena observed. Metzger
and colleagues �Metzger, Wright, Sibbett, and Dholakia,
2006� addressed this issue using a dye dissolved in the
liquid medium and an ultrashort pulsed femtosecond la-
ser to perform binding studies �Dholakia et al., 2004�.
The use of the femtosecond laser permitted two-photon
excitation of the fluorescein dye within the liquid. Given
the fact that the two-photon effect is strongly intensity
dependent the observed fluorescence gave good signa-
ture of the light intensity distribution, decoupled from
the excitation wavelength. This in turn permitted one to
visualize the particle spacing as well as the actual light
redistribution in the chamber.
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As described optical binding has been extended over
longer interaction distances using light immune to dif-
fraction, namely, the Bessel light beams. In one study
�Garcés-Chávez et al., 2004�, a vertically oriented zeroth-
order Bessel light beam created a one-dimensional array
of trapped colloidal objects over extended �millimeter-
range� distances. The particles were observed to align
with the beam and have equilibrium positions over the
entire length of the Bessel beam. This is a consequence
of the interplay between optical scattering and the self-
healing properties of the Bessel beam. The study can be
considered as an example of optically bound matter that
is created solely by the radiation pressure and gradient
forces of one light beam and its interplay with gravity.
Later studies by Karásek et al. �2008� looked at two
counterpropagating Bessel modes and the creation of
short and long particle chains �see Fig. 12�.

Separate studies by Gherardi et al. �2008� explored the
use of photonic crystal fibers to create novel forms of
dual beam traps where the properties of the fiber were
exploited. The fiber tends itself to being “endlessly”
single mode over a large range of wavelengths and thus
one could create bound matter at a number of wave-
lengths. Interestingly one could launch multiple wave-
lengths simultaneously into the fiber with the use of a
“white light” laser �supercontinuum beam�. The low
temporal coherence length of the field which was
smaller than the typical particle separation caused the
interparticle optical cross-talk mediated by the backscat-
tered light to be obviated. The overall observed behav-
ior is reminiscent of the studies carried out in monochro-
matic longitudinal optical binding configuration using
two counterpropagating Bessel beams �Karásek et al.,
2008�. In particular, the chains with larger numbers of
particles are more closely packed and the interparticle
separations in the center of the chain are smaller than
on the chain periphery. This interference exists when us-
ing a coherent source results in multistability in the in-

terparticle separations with a period of the standing
wave. The coherence length of the supercontinuum
source is less than the interparticle separation, leading to
interference suppression. From the experimental analy-
sis no evidence of such multistability for parameter
choices was seen.

A. Surface (evanescent field) optical binding

When a light beam passes through an interface from
an optically dense media to one which is optically less-
dense �of lower refractive index� media, it is totally re-
flected when its angle of incidence is above the critical
angle for what is termed total internal reflection. Al-
though in this case no wave per se propagates into the
less-dense medium, there is an electromagnetic field
called an evanescent wave present in the less-dense me-
dium that decays exponentially away from the surface,
with a decay length on the order of the optical wave-
length. One powerful and versatile experimental geom-
etry for multiple-particle optical binding has been the
use of surface traps where the light is delivered to the
particles in the form of an evanescent wave. In general
evanescent wave geometries have become an important
topic within the last five years. The Kretschmann geom-
etries, the use of total internal reflection microscope ob-
jectives, and the appropriate waveguides have all of-
fered a range of methods for generating evanescent field
traps. In 1992, Kawata and Sugiura demonstrated that
the evanescent field of an infrared laser could attract
particles toward the surface and subsequently guide
them along the surface �Kawata and Sugiura, 1992�.
Such behavior arises as a single laser beam at oblique
incidence upon the surface has a component of momen-
tum parallel to the surface that imparts a lateral force on
a microscopic particle �akin to a radiation pressure� and
drives the particles along the surface. In turn the particle

FIG. 12. Short- and long-range particle organization in counterpropagating Bessel beams. Top: Formation of chains with multiple
particles of diameter 802 nm �left� or 1070 nm �right�. Bottom: Self-organization of 1070 nm particles in wider Bessel beam cores
of radii �0=2.4 �m �left� and �0=3.7 �m �right�. From Karásek et al., 2008.
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converts the evanescent component of the light field into
a traveling wave component.

In this geometry a stable evanescent wave trap can be
generated using two counterpropagating laser beams so
that the tangential radiation pressure on the particles
averages to zero and the gradient force acting toward
the surface retains the particles in the overlap region
between both beams. However, the first evanescent field
optical trap was realized with a total internal reflection
microscope objective �Gu et al., 2004�. Subsequently
Garcés-Chávez et al. extended Kawata’s work using two
beams and generating a large area trap �Garcés-Chávez
et al., 2005�. They also patterned the surface with a Ron-
chi ruling and, as expected, observed the particles �5 �m
in diameter, five times the laser wavelength� to line up
with the projected light fringes.

Counterpropagating evanescent waves were used for
optical binding studies by Šerý et al. �2005� and Šiler et
al. �2006�. In their case, the illuminated area was about
40 �m long and 10 �m wide and they observed the for-
mation of chains of many particles with correlated lat-
eral motion. Smaller particles �with diameter of 350 nm�
were very close to each other and their interparticle dis-
tances were difficult to see; however, larger particles of
diameters 520 nm, 701 nm, and 802 nm settled with well-
resolved distances. A subsequent key experiment in this
geometry carried out by Mellor and Bain �2006� and
Mellor et al. �2006� with wider beams led to the obser-
vation of radically different and counterintuitive behav-
ior. In contrast to the previous observations, they dem-
onstrated that small microscopic particles in such
counterpropagating beams can self-assemble into or-
dered 2D arrays with either a rectangular or pseudohex-
agonal lattice. This series of experiments illustrates the
sensitivity of optical binding to a multitude of param-
eters and shows how, by a variation in one or two pa-
rameters in an equivalent optical system, radically differ-
ent experimental outcomes can be achieved.

We now examine the Mellor and Bain experiments in
more detail. In the first set of experiments they pro-
jected a set of linear interference fringes upon the sur-
face of a prism. As expected 500 nm diameter spheres
suspended in water were seen to migrate toward the re-
gion of the linear fringes. Initially the spheres performed
Brownian motion along any given fringe but as the par-
ticle density increased, the particles started lining up or-
thogonally to the fringe direction. Indeed as more
spheres migrated to the linear fringe pattern it started
turning into a saw-tooth-like arrangement and ulti-
mately a chessboard-type pattern. They inferred that op-
tical binding was dominating the organization of par-
ticles for their geometry. They linked their studies to
those of Garcés-Chávez et al. by exploring the range of
particle sizes and the typical behavior seen. When they
used particles of diameter 700 nm or greater they saw
simple alignment along the fringes as observed by
Garcés-Chávez et al., however, when they used smaller
objects �500 nm diameter or less� the lines evolved into
saw-tooth-like patterns resulting in an overall checker-
boardlike configuration. A surprising key observation

was that the particle organization through the optical
binding mechanism could be induced without any patter-
ing of the light field incident upon the substrate. In par-
ticular 460 and 520 nm particles formed pseudohexago-
nal arrays rather than rectangular unit cells, where the
packing fraction was 6% higher than the rectangular
cell. Other particle sizes �390 nm� formed square arrays
�regardless of the patterning upon the evanescent wave
surface�. They observed experimentally that the forma-
tion of optically bound matter was sensitive to the effec-
tive particle size which could be tuned by altering the
ionic strength of the solution: by increasing the ionic
strength the electrostatic particle repulsion is screened
and the particle separation decreases. They pointed to-
ward possible schemes for modeling the observed be-
havior based largely on the Mie-Debye theory which is
appropriate for particles that are approximately the size
of the illuminating wavelength. The challenge here is to
determine a self-consistent solution for a large number
of Mie scatterers placed in such an electromagnetic field.
New work by this team has already started and shed
some light on this process from a theoretical point of
view �Taylor et al., 2008�.

Mellor and colleagues extended this work in a de-
tailed experimental study where the role of the light po-
larization on the bound array formation was explored
�Mellor et al., 2006�. Particle sizes from 390 to 520 nm
were explored and a variety of cell geometries including
rectangular arrays, three forms of hexagonal arrays, and
a defective array with one row missing was observed.
These studies showed that optical binding can indeed
dominate over conventional optical trapping with star-
tling consequences: it can lead to the formation of par-
ticle arrays at odds with the geometry of the illuminating
interference fringes. The observed array symmetries as
well as the lattice spacings within the arrays were depen-
dent on both light field polarization and particle size. By
rotating the polarization by 90°, “phase transitions” be-
tween different array geometries were observed �see
Fig. 13�.

Optical fields used for the optical trapping and bind-
ing experiments can be significantly enhanced through
the exploitation of free electron oscillations in a metallic
structure. Such surface plasmon polaritons �SPPs� allow
the use of combined optical and thermal forces for large-
scale ordering of colloidal aggregations. Using an SPP-
based experimental setup, Garcés-Chávez et al. �2006�
explored three different regimes that led to the colloidal
aggregation. The observed outcome was governed by ju-
dicious choice of the sample chamber thickness and in-
cident SPP excitation optical power �see Fig. 14�. In par-
ticular if thermal effects �convection� were suppressed
through the use of chambers of thin depth, particles
were seen to accumulate at the center of the excitation
region and arrange into linear colloidal chains, attrib-
uted to a bindinglike behavior much like in the studies
of Reece et al. �2007� which will be described next.

The results presented demonstrate that evanescent
wave arrangement enables creation of optically bound
structures similar to photonic crystals. However, in clas-
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sical photonic structures the refractive index inhomoge-
neities are fixed and cannot be tuned. In contrast opti-
cally bound photonic crystals are under the influence of
the forming or propagating light and can change their
shape and consequently optical properties. This applica-
tion is in its infancy and just a few theoretical studies are
available �Povinelli, Johnson, et al., 2005; Povinelli, Lon-
car, et al., 2005�.

B. Optical binding and nonlinearity

It is interesting that complex phenomenon such as the
optical interaction among many particles in a liquid me-
dium was observed by Ashkin et al. in their first experi-
ments. This realization led to various experiments with
colloidal suspensions that included four-wave mixing
�Smith et al., 1981�, self-focusing optical beams �Ashkin
et al., 1982�, optical spatial soliton �OSS� propagation
�Yashin et al., 2005�, and modulation instability �MI�
�Reece et al., 2007�. How can we interpret the origin of
this nonlinearity? In the presence of a continuous-wave
optical field with inhomogeneous intensity profile I�r�
dielectric particles are exposed to the optical gradient
�dipole� force Fgrad=�rU�r�, with U�r�=��I�r� /4 denot-
ing the dipole interaction energy, �� being the real part
of the particle polarizability in the liquid given by Eq.
�14�. For the typical situation of microparticles and
nanoparticles of refractive index higher than the sur-
rounding liquid, ��
0, the gradient force attracts the
particles toward the regions of high optical intensity. The
optical nonlinearity of dielectric nanoparticle suspen-
sions then arises from the intensity-dependent modula-
tion of the local nanoparticle density and, consequently,
the local refractive index of the particle suspension.
Thus one can consider colloidal suspensions as the arti-
ficial Kerr media in which the induced change in refrac-
tive index is proportional to the applied light intensity:
�n�r�=n2KI�r�, with n2K the nonlinear Kerr coefficient.

Despite the fact the artificial Kerr media model has
been successfully applied to experiments on nonlinear
optics in colloidal suspensions, the nature of the non-
linearity for this soft condensed matter system is still
under much debate �Conti et al., 2005; El-Ganainy,
Christodoulides, Musslimani, et al., 2007; El-Ganainy,
Christodoulides, Rotschild, and Segev, 2007; Gordon et
al., 2007; Matuszewski et al., 2008, 2009�. The crucial
point is that the electrostriction model for the nonlinear
optical response ultimately leads to an exponential
model for the change of a colloidal suspension refractive
index at temperature T �Smith et al., 1982�,

�n�I� = �n�I = 0�exp� ��I

4kBT
	 . �53�

The Taylor expansion for small argument of Eq. �53�
gives the coefficient of the Kerr nonlinear optical re-
sponse proportional to the optical intensity I of the
beam but of course it is part of an infinite expansion of

FIG. 13. Particle self-organization due to optical binding in the
vicinity of a planar interface. Sequence of video frames of an
array of 520 nm particles as a quarter-wave plate is rotated to
change the polarization of one of the counterpropagating
beams from s ��=0° � to p ��=45° �. Hexagonal packing nucle-
ating at the center of the array is seen at �b� and then the
hexagonal crystalline structure grows outward toward the left-
and right-hand sides of the array. From Mellor et al., 2006.

FIG. 14. Particle self-organization due to the combination of
optical binding and thermophoresis in the vicinity of a metal-
coated planar interface. Increasing the incident light power in
a thin chamber �with height of 10 �m� formed above a metal-
coated interface triggers lateral thermophoresis that results in
the repulsion of particles �silica, with diameter of 5 �m� from
the center of the illuminated region where the SPPs are excited
�hot to cold movement�. Subsequently the repelled colloids ar-
range into linear arrays at the periphery of the region. Light
scattered by the colloids �no additional white light illumina-
tion�. The top and bottom insets are detailed views of the lin-
ear ordering of the accumulated particles acquired with addi-
tional white light illumination. From Garcés-Chávez et al.,
2006.
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higher-order nonlinearities. Is such an exponential
model an accurate representation of the nonlinearity of
colloidal suspensions? How might we access or demon-
strate the higher-order nonlinearities in an experimental
scenario? More broadly how does this link affect the
topic of optical binding? The resolution of these ques-
tions is not immediately evident: notably the exponen-
tial model is a single-particle model that neglects
particle-particle interactions �optical binding� which in
turn can limit the compressibility of the liquid suspen-
sion, potentially limiting the nonlinear optical response
of the soft condensed matter system to the leading Kerr
term. For four-wave mixing experiments this Kerr ap-
proximation is acceptable if the incident optical intensi-
ties are controlled such that n2KI�1. Recent studies of
Conti et al. �2005� introduced a nonlocal Kerr nonlinear
model for generic soft condensed matter systems that
yields stable OSSs. However, they did not address how
such an approach may link to the exponential model for
colloidal suspensions. Further studies by El-Ganainy,
Christodoulides, Musslimani, et al. �2007� and El-
Ganainy, Christodoulides, Rotschild, and Segev �2007�
and independently by Gordon et al. �2007� suggested
that the full exponential model should be employed to
investigate OSS in colloidal suspensions. The caveat in
this approach is that it will only apply to low colloidal
densities, although how one interprets the definition of
“low” is somewhat unclear. A crucial point is that in-
cluding the full exponential model renders the OSS
highly unstable due to the supercritical self-focusing col-
lapse that arises for higher-order self-focusing nonlin-
earities �Kosmatov et al., 1991�. This contradicts recent
experimental observations of relatively stable OSS that
seem to agree reasonably with the Kerr model �Yashin et
al., 2005; Reece et al., 2007�. Separately, Matuszewski et
al. �2008, 2009� treated theoretically the colloidal sus-
pension as a hard sphere gas. This permitted them to
incorporate the compressibility of the system. The net
result of such an approach is the prediction of saturating
the exponential nonlinearity at high intensities.

Recent theoretical and experimental studies �Hansen
et al., 2005; Reece et al., 2007; Lee et al., 2009� indicated
that the exponential nonlinearity model seems to have
the lowest correlation with experiments, followed by the
artificial Kerr medium approach �Lee et al., 2009�. The-
oretical nonideal gas based model including the effects
of the limited compressibility of the particle suspension
agreed well with the experimental results. While this is
an important step forward it is still unclear how the
granularity of the colloidal suspensions enters the non-
linear optical response and how the theoretical ap-
proaches in optical binding might be reconciled with
such studies. When the laser beam waist and mean
particle-particle distances are comparable, one might
need to invoke the nonlocal nonlinear model of Conti et
al. �2005� that could lead to a further softening of the
nonlinear optical response in comparison with the expo-
nential model.

Reece et al. �2006, 2007� added another twist to the
problem. In 2007 they explored the behavior of 410 nm

diameter particles in a surface geometry with unpat-
terned illumination based on two counterpropagating
beams that balanced their radiation pressures and pre-
vented net motion of particles along the surface away
from the highest intensity regions. For the experimental
work a prism-coupled resonant dielectric waveguide was
used to generate counterpropagating �CP� waveguide
modes with an evanescent wave �EW� component ex-
tending into the colloidal suspension �see Fig. 15�. Trans-
verse optical gradient forces due to the EW acting on
particles in the proximity of the supporting surface re-
sulted in the accumulation of particles at the center of
the illuminated area, where the scattering forces due to
the CP fields along the propagation x axis were bal-
anced. In contrast to the work of Mellor et al. they ob-
served particles organizing into parallel linear arrays in
the absence of any illuminating light intensity pattern-
ing. Interestingly they attributed this trend to a nonlin-
ear interparticle interaction and interpreted the results
as the observation of modulation instability and the on-
set of solitonlike behavior in the colloidal sample.

Optical spatial solitons are spatially localized, nondif-
fracting light propagation modes that may exist in non-
linear optical media. They occur as a result of the bal-
ance between diffraction and nonlinearity connected
with the refractive index increase in the high-intensity
parts of the optical field that results in self-focusing un-
der intense illumination �Ashkin et al., 1982�. For a
plane-wave incident field, small wave front perturba-
tions can cause the optical field to break up into periodic
arrays of OSS or more complex patterns, an effect
known as MI. Both OSS and MI are generic properties
of the wave propagation governed by the nonlinear
Schrödinger equation. In addition to nonlinear optics,
there are numerous examples in other physical systems
where such solitary waves and related phenomena are
observed particularly in pattern formation in granular
systems and complex fluids.

An interesting parallel can be drawn between the OSS
and MI interpretation of optical force induced self-
organization of colloidal dispersions and optical force

FIG. 15. Formation of OSSs under unpatterned plane-wave
illumination. The temporal evolution of the OSS created from
polymer particles of diameter 410 nm formation for illuminat-
ing powers above the threshold. Each panel is a CCD image of
the illuminated region at different times after the light has
been coupled into the system. Bright-field imaging also con-
firms the presence of ordered colloids in regions of high inten-
sity. From Reece et al., 2007.
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mediated particle-particle interactions observed in opti-
cal binding, particularly in light of the recent reports of
two-dimensional checkerboardlike array formation in a
trapping geometry similar to the one described above.
An interpretation of the behavior of optically bound col-
loidal systems from a nonlinear systems approach may
provide further insights into the observed pattern forma-
tion for such lateral binding. MI in nonlinear systems
may also lead to more complex pattern formation, such
as two-dimensional square lattices and hexagonal and
spiral type formations; this may be achieved by driving
the system well above the threshold.

C. Experimental studies of optical binding of nanoparticles

Previous results have indicated that optical binding
between nanoparticles is highly dependent on used ge-
ometries and shows behavior dictated by polarization
and wavelength of the illuminating light. Naturally
Brownian motion must be overcome for particles to at-
tain stable equilibrium positions �Zelenina et al., 2007�.

In the experiments of Svedberg et al. �2006� metallic
nanoparticle pairs were created to study surface en-
hanced Raman spectroscopy. They explored the behav-
ior of the system in which one trapped nanoparticle was
brought in close vicinity of another adhered nanopar-
ticle. The immobilized particle affected the potential en-
ergy landscape of the system and a second deep poten-
tial well for the trapped particle confinement was seen
that was attributed to optical binding. This meant the
trapped particle might “hop” between both potential
wells. Electrodynamic calculations backed up this pre-
liminary observation.

In later and related work, Dienerowitz et al. explored
the behavior of two nanoparticles inside a dark trap cre-
ated by an annular Laguerre-Gaussian beam �Dienero-
witz et al., 2008�. In this instance the particles were con-
fined via scattering of the light field of the beam that was
tuned below the plasmon resonance of the particles. The
observed particles did not attract each other or amal-
gamate as typically observed in traditional optical twee-
zers; rather repulsion between the particles was ob-
served with particles assuming opposite positions �180°
apart� in the trap. Due to the use of the Laguerre-
Gausian beam particle orbiting was also observed. They
attributed this behavior to an optical binding type inter-
action between the objects. A similar configuration has
been studied by Bradshaw and Andrews �2005b� using
QED calculations. Further work here may show more
clearly links between experiment and theory.

D. Optical binding in air

While the vast majority of experiments in optical mi-
cromanipulation are performed in a liquid medium,
trapping is also possible in air and vacuum. The original
studies were conducted in the 1970s again by Ashkin
and Dziedzic �1975, 1976� and Ashkin �2006�. Trapping
in air may lead to the trapped particle acting as an un-
derdamped harmonic oscillator and show behavior

markedly different from the typical overdamped case.
Interesting experiments have been performed recently
in the area of optical binding in gaseous environment.
Guillon et al. reported the generation of arrays of micro-
droplets in air �Guillon et al., 2006�. Their work concen-
trated on the trapping of small droplets in a counter-
propagating laser beam geometry where the trapping
occurs in the region with near equal irradiance from
both beams. The strong refractive index contrast distin-
guished these studies from optical binding in liquid me-
dium. This first study and analysis proved somewhat
contentious �Guillon et al., 2008; Liu and Yu, 2008� and
an erratum �Guillon et al., 2007� in fact stated that there
was some misinterpretation of the data: the doublets
seen were in fact single particles and the three particles
were in fact only two. However, the spectroscopic stud-
ies of the scattering resonances fitted well the Mie scat-
tering theory and allowed an accurate determination of
the droplet radii. Subsequent studies by Guillon sought
to make detailed measurements of this phenomenon.
These studies looked at both direct and spectroscopic
imaging of optically trapped Mie droplets. Light scatter-
ing by the droplets led to “glare” points around the
droplet’s azimuth. They explored oil and salt water drop-
lets trapped in counterpropagating geometries with
�150 mW at 532 nm. Orthogonal �90°� elastic light scat-
tering from the droplets gave images that were fitted
with theory. The droplet radius was determined by fit-
ting whispering gallery mode resonances to the theoret-
ical Mie model. The observed glare points were depen-
dent on the angular momentum number of the excited
resonance mode.

V. CONCLUSIONS

The light-matter interaction has been at the core of
exceptional scientific advances and insights in the past
40 years. The broad topic of optical micromanipulation
has impacted the fields of colloidal science, biomedical
research, atom optics, and quantum gases. For particles
with sizes from the nanoscale upward, the traditional
and well-known gradient and scattering forces have re-
cently been supplemented with optical binding: essen-
tially an optically mediated particle-particle interaction.
Although still at its infancy, this research area has al-
ready seen some fascinating and complex particle behav-
ior. Optical binding has brought further complexity to
the realm of relevant forces governing interactions be-
tween colloidal particles and it can contribute signifi-
cantly to the spontaneous organization of the colloids
that serve as increasingly popular model systems for the
solid-state phenomena. A number of numerical ap-
proaches have been developed to understand this ex-
perimentally driven topic and some good agreement be-
tween the observations and theory has already been
observed. In this area the paraxial theory and CDM ap-
proaches have gained prominence and applicability but
have limitations and it would be important to try and
design and implement experiments that can look at the
detailed predictions of more exact theoretical ap-
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proaches. Intriguingly the light-particle interaction is
“nonlinear” due to inherent feedback and leads to inter-
esting multistable configurations as well as behavior
reminiscent of nonlinear media, namely, modulation in-
stability and the emergence of optical solitons. Despite
the recent progress much work still needs to be done to
unify the various mathematical approaches and truly en-
gineer and utilize the binding interaction to create tem-
plates and arrays in controlled configurations at will.
This remains a major task and much work needs to be
accomplished but the basic framework is certainly in
place.
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