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Attempts to estimate the influence of global cosmological expansion on local systems are reviewed.
Here “local” is taken to mean that the sizes of the considered systems are much smaller than
cosmologically relevant scales. For example, such influences can affect orbital motions as well as
configurations of compact objects, like black holes. Also discussed are how measurements based on
the exchange of electromagnetic signals of distances, velocities, etc. of moving objects are influenced.
As an application, orders of magnitude of such effects are compared with the scale set by the
apparently anomalous acceleration of the Pioneer 10 and 11 spacecrafts, which is 10~ m/s?. There is
no reason to believe that the latter is of cosmological origin. However, the general problem of gaining
a qualitative and quantitative understanding of how the cosmological dynamics influences local
systems remains challenging, with only partial clues being so far provided by exact solutions to the

field equations of general relativity.
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There is by now ample evidence that our Universe is
expanding on average. This means that on the largest
scales one observes redshifts from structures that are
interpreted as recessional motion, also called the
Hubble flow. To first approximation, the relative velocity
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between two structures grows linearly with their
mutual distance. The constant of proportionality is the
so-called Hubble constant H,, whose value is now fairly
accurately measured as being close to 70 km s~ Mpc™!;
see, e.g., Komatsu ef al. (2009). This means that for
any additional megaparsec (Mpc=3.262 X 10° lightyears
=3.086x 10! km) the recessional velocity picks up an
extra 70 km per second. Clearly, typical peculiar veloci-
ties superimpose on the global Hubble flow. For galaxies
they can be up to 1000 km per second, so that the
Hubble flow definitely dominates at distances above
200 Mpc, i.e., above supercluster scale. In this respect it
is remarkable that Hubble’s classic paper (Hubble, 1929)
of 1929 plots the velocity-distance relation of extragalac-
tic nebulae only up to 2 Mpc, though it has to be added
that in those days distances where generally underesti-
mated, sometimes up to a factor of 10.

For pedagogical purposes the global expansion is
sometimes represented by the two-dimensional balloon
model, in which three-dimensional space corresponds to
the two-dimensional surface of an inflating rubber bal-
loon; see, e.g., Misner et al. (1973). At each point at-
tached to the rubber material an observer sees other
points attached in a state of radial recessional motion,
the faster the further they are away. This picture is used
to stress that each point is locally (i.e., with respect to
the local rubber material) at rest but receding from all
other points because space in-between is itself expand-
ing. However, this global expansion does not affect all
structures: Local overdensities in the matter distribution
may inhibit space from expanding. In the balloon model
of Misner et al. (1973) this is represented by little pen-
nies being glued onto the balloon. The rubber material
underneath the coins does not expand due to the stiff
glue which holds it in place. The question arises. What,
in reality, are the structures corresponding to the coin
and what dynamical mechanism provides the glue? It is
often heard that “bound systems” do not participate in
the global expansion, or that systems below the scale of
galaxy clusters “break away” from the Hubble flow. But
what does bound and break away really mean?' For ex-
ample, is it obvious that the astronomical unit is not
affected by global expansion [compare Krasinsky and
Brumberg (2004) and Standish (2004)] or can it even be,
as suggested by Fahr and Siewert (2008), that our Uni-
verse is contracting on small scales while it expands in
the large? If so, what precisely would rule the relation
between contracting and expanding scales?

The purpose of this paper is to review and discuss
attempts that aim to make precise and answer some of
these fundamental questions, taking due account of the
dynamical laws and the kinematical framework of gen-
eral relativity. We emphasize the changes in kinematical
relations within time-dependent spacetime geometries,
which seem to be widely neglected in related discus-
sions.

'For a discussion on the meaning of “joining the Hubble
flow,” see Barnes et al. (20006).
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Next to being a question of fundamental interest, the
raised issue also needs to be clarified quantitatively in
connection with more practical aims, like, e.g., the mod-
eling of celestial reference frames (Klioner and Soffel,
2005). The specific question of whether the global ex-
pansion has any influence on the local dynamics and ki-
nematics within the Solar System has recently also at-
tracted increasing attention in connection with the so-
called “Pioneer Anomaly” (Anderson et al., 1998, 2002;
Markwardt, 2002; Nieto and Turyshev, 2004; Turyshev et
al., 2005a, 2005b), henceforth abbreviated by PA. Here
frequency measurements in Doppler tracking are trans-
lated into standard kinematical quantities, like velocity
and acceleration. The result shows an anomalous accel-
eration of the Pioneer satellites directed towards the
center of the Solar System. Markwardt (2002) reported
the magnitude of this acceleration to be a=8.6+1.34
%1071 m s72. Note that such an apparently small accel-
eration amounts to variations in spatial localization of
nearly 500 km after 10 years. It so happens that the
magnitude of this acceleration is very close to the prod-
uct of the current value of the Hubble constant H, and
the velocity of light in vacuum,

Hyc = (70 kms™! Mpc‘l)(3 X 10° kms™)

=7%x 107" ms2. (1)

Whether this “almost coincidence” of numbers does in-
deed have any deeper significance can and should only
be decided on the basis of reliable estimates within the
dynamical framework of general relativity. There al-
ready exist various speculations and claims in the litera-
ture that try to attribute the PA to either simple kine-
matical [see, e.g., Rosales and Sanchez-Gomez (1998)]
or dynamical [see, e.g., Fahr and Siewert (2008)] effects
of a time varying background geometry, though none of
them does justice to the requirements posed by general
relativity2 This is clearly a difficult task: There is little
analytical knowledge of how to model in terms of exact
solutions, or at least in terms of controlled approxima-
tions to exact solutions, the hierarchy of mutually em-
bedded systems: Solar System — Galaxy — Local Group
— Cluster — Supercluster — Standard-Cosmological So-
lution. Usually we expect each such system to define a
typical length scale beyond which we may consider it as
quasi-isolated (Cox, 2007). But, clearly, whether this is a
valid assumption or not can only be decided on the basis
of a self-consistent dynamical consideration. In our con-
text all this suggests to first study the influence of cosmic
expansion on the most simple systems immersed in an
otherwise homogeneous cosmological background. We
will see that this already poses a number of nontrivial
analytical as well as conceptual problems.

In this article we derive upper bounds for various ef-
fects of global expansion on local systems in the context
of such simple models. The idea here is that the upper

’The interested reader will soon find out that we disagree
with all such claims.
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bounds so derived will a fortiori be upper bounds in
more realistic models, since a further embedding of the
system we consider into a higher structure of local over-
densities will further suppress the influence of cosmo-
logical expansion. This is evidently true in situations in
which the spherically symmetric Einstein-Straus model
applies, but can also be argued for as a result of taking
into account small-scale anisotropies in the matter dis-
tribution, as has been done from first-order perturba-
tions of the Newtonian equations (Dominguez and
Gaite, 2001). We conclude from this that if we find the
relevant upper bounds to be outside current experimen-
tal reach, this will maintain to be the case in more real-
istic contexts.

II. STRATEGIC OUTLINE AND RESULTS
A. Improved Newtonian equations

The strategies that so far have been followed are two-
fold: Either one studies modified Newtonian or special
relativistic equations of motions for two point-particles
with a force of mutual attraction (gravitational or elec-
tromagnetic). The modifications are derived from put-
ting the system into a fixed standard-cosmological back-
ground (usually spatially flat) without back-reactions
being taken into account. We discuss this approach in
Secs. III and IV. Our discussion, based on Carrera and
Giulini (2005), complements the perturbative analysis in
Cooperstock et al. (1998), which misses all orbits which
are unstable under cosmological expansion (which do
exist). In this respect we follow a similar strategy as in
Price (2005) [the basic idea of which goes back at least to
Pachner (1963, 1964)] and also Adkins et al. (2007),
though we think that there are also useful differences.
We also supply quantitative estimates and clarify that
the improved Newtonian equations of motion are writ-
ten in terms of the right coordinates (nonrotating and
metrically normalized). The purpose of this model is to
develop a good physical intuition for the qualitative as
well as quantitative features of any dynamical effects
involved.

Eventually the Newtonian model just mentioned has
to be understood as a limiting case of a genuinely rela-
tivistic treatment. For the gravitational case this is done
in Sec. V (an alternative and more geometric derivation
is given in Sec. VL.B), where we employ the McVittie
metric to model a spherically symmetric mass embedded
in a spatially flat Friedmann-Lemaitre-Robertson-
Walker (FLRW) universe. The geodesic equation is then,
in a suitable limit, shown to lead to the improved New-
tonian model discussed above [see also Carrera and
Giulini (2005)]. The same holds for the electromagnetic
case, as shown in Sec. I'V. There we take a slight detour
to also reconsider a classic argument by Dicke and
Peebles (1964), which shows the absence of any relevant
dynamical effect of global expansion. Its original form
only involved the dynamical action principle together
with some simple scaling argument. Since this reference
is one of the most frequently cited in this field, and since
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the simplicity of the argument (which hardly involves
any real analysis) is definitely deceptive, we give an in-
dependent treatment that makes no use of any hypo-
thetical scaling rules for physical quantities other than
spatial lengths and times. Our treatment, which follows
Carrera and Giulini (2005), also reveals that the original
argument by Dicke and Peebles is insufficient to discuss
leading-order effects of cosmological expansion. It is
therefore also ineffective in its attempt to contradict
Pachner (1963, 1964).

B. Exact solutions

The other approach consists of finding exact solutions
to Einstein’s field equations for an inhomogeneous situ-
ation that, in the most simple case, models a single,
quasilocalized, nonrotating, electrically neutral inhomo-
geneity within a FLRW universe. Using this inhomoge-
neous solution as background one can then study the
motion of test particles (following geodesics in the back-
ground geometry) and, in particular, the influence of ex-
pansion on this motion.

This approach can be subdivided into two strategies.
The first tries to literally construct a new exact solution
out of two known ones, so that the new solution contains
a connected piece from each of the two old ones as iso-
metric submanifolds. These we refer to as matched solu-
tions. This is relaxed in the second, more general strat-
egy, where the new solution is merely required to
somehow approximate the relevant part of each of the
two old solutions in some region. These we refer to as
melted solutions. Needless to say that melted solutions
offer a much greater variety for construction than
matched ones. However, it is also true that often not
much is known about the proper physical interpretation
of the former. In this respect the matching solutions usu-
ally provide a much clearer picture.

According to the above requirements, in both cases
we restrict attention to spherically symmetric spacetimes
which approximate a FLRW solution of standard cos-
mology for “large radii” and a noncharged nonrotating
compact object characterized by the exterior Schwarzs-
child solution for “small radii.” (Clearly there must be
some characteristic radius in terms of which large and
small radii are defined.) Also, one often restricts atten-
tion to the spatially flat FLRW models for simplicity,
which also seems justified in view of current cosmologi-
cal data which are compatible with spatial flatness.

1. Matched solutions

A first approach to the matching idea was initiated by
Einstein and Straus (1945, 1946) and later worked out in
more analytical detail by Schiicking (1954). Here the
matched solution is really such that for radii smaller
than a certain matching radius R, (henceforth called the
vacuole or Schiicking radius) it is exactly given by the
Schwarzschild solution (exterior for a black hole, exte-
rior plus interior for a star) and for radii above this ra-
dius it is exactly given by a FLRW universe for dust
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matter without cosmological constant (this can be gener-
alized, see below). The radius R, is a function of the
central gravitational mass M and the cosmological mass
density o, through the latter of which it also depends on
the cosmological time ¢. It is determined by

?Rgg =M. )

This formula holds for flat as well as curved FLRW mod-
els if “radius” is taken to mean “areal radius,” the defi-
nition of which is that a two-sphere of areal radius R has
a proper surface area of 47R?. In flat space the areal
radius coincides with the proper radius (the geodesic dis-
tance between the center and any point on the sphere),
so that 477R3/3 is just the proper volume inside the
sphere of radius R, (cf. Sec. V.A). However, in back-
grounds of positive (negative) curvature this expression
is smaller (larger) than the proper volume [the proper
volume grows faster (slower) with areal radius] and
hence, for given g, the left-hand side of Eq. (2) is also
smaller (larger) than the proper mass of the dust con-
tained within a sphere of areal radius R,

Here we recall that the gravitational mass of a lump of
matter is not just proportional to the amount of matter
(baryons) in that region. For example, the kinetic energy
as well as the gravitational binding energy also contrib-
utes to the gravitational mass. This is expressed in Eq.
(D47) of Appendix D.4, where further explanations will
be provided. As is well known, the mathematical char-
acterization of appropriate notions of quasilocal gravita-
tional mass that would apply to general spacetimes is a
notoriously difficult problem to which various attempts
for solutions exist; see Szabados (2004) for the current
status. However, in the spherically symmetric case, to
which we restrict attention, the so-called Misner-Sharp
energy gives a satisfying and convenient concept of ac-
tive gravitational mass. Its definition will be given in Sec.
V.A and more details, including its equality in value to
the Hawking mass, are discussed in Appendixes D.3 and
D.4.

The original construction by Einstein and Straus and
its analytical completion by Schiicking were quite com-
plicated. We give a simpler and conceptually clearer de-
scription in Sec. V.C, using a suitable reformulation of
the condition for the matching of solutions. However, it
is not hard to gain some intuitive understanding for the
matching construction and the value of R, as defined by
Eq. (2). For the moment we restrict to the spatially flat
case and consider the homogeneous and isotropic dust-
filled universe at some moment of time ¢. The dust
within a three-ball of proper radius R, represents an
amount of matter of total mass M as given by Eq. (2).
Now compress this amount of matter in a spherically
symmetric fashion until it becomes a compact star or a
black hole. In Newtonian gravity the gravitational field
outside a spherically symmetric mass distribution only
depends on the total mass and not on its radial density
distribution. This is also true in general relativity, which
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is essentially the content of Birkhoff’s theorem.’ Hence
the above compression preserves equilibrium (albeit an
unstable one, see below) for the dust particles just out-
side the boundary sphere of radius R,. For radii smaller
than R, we have the Schwarzschild solution (which is the
unique nontrivial spherically symmetric vacuum solution
according to Birkhoff’s theorem) which therefore
matches to the FLRW solution for R=R,, at the bound-
ary R=R, where the matter density is discontinuous.
The spatial two-sphere R=R, is comoving with the
Hubble flow, meaning that its proper surface area grows
in case of expansion. Finally, in case of constant positive
(negative) spatial curvature, Eq. (2) tells us that the
matched Schwarzschild solution has a smaller (larger)
mass than the mass that the amount of dust represents
within the ball of areal radius R, within the FLRW uni-
verse.

The Einstein-Straus model can be generalized in sev-
eral ways. Instead of cutting out one ball, one can
cut several nonoverlapping ones and fill in the interiors
with Schwarzschild geometries of appropriate masses.
For obvious reasons these are sometimes referred to
as “swiss-cheese models.” These, in turn, can be gener-
alized to the cases of nonvanishing cosmological con-
stant (Balbinot et al, 1988) or nonvanishing pressure
(Bona and Stela, 1987). Finally, the Einstein-Straus
model can be generalized to spherically symmetric but
inhomogeneous Lemaitre-Tolman-Bondi (LTB) cosmo-
logical backgrounds (Bonnor, 2000).

Since for the Einstein-Straus model the geometry
within R<R, is exactly Schwarzschild (for vanishing
cosmological constant) or Schwarzschild—de Sitter space-
time (for nonvanishing cosmological constant), it is clear
that any dynamical system situated in this background
geometry (no back reaction) only detects that part of the
cosmic expansion that is due to a nonvanishing cosmo-
logical constant. In particular, for vanishing cosmological
constant, the cosmic expansion that goes on outside the
expanding vacuole R=R, is not felt from within. Hence
global expansion due to ordinary (localizable) matter
can, in principle, be completely inhibited by local inho-
mogeneities.

There are, however, several severe problems concern-
ing the Einstein-Straus approach. First, it cannot provide
a realistic model for the environment of small structures
in our Universe, small meaning below the scales of gal-
axy clusters or superclusters. To see this, apply Eq. (2) to
a spatially flat universe whose background matter den-
sity ¢ is given by the critical density

Ourit = 3H/87G, 3)
where G is Newton’s constant. Then Eq. (2) gives

R, = (RsR7)' =~ (M/M)"3400 ly, (4)
where

A proof of Birkhoff’s theorem will appear as a by-product
from our considerations in Appendix D.3.
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Rg:=2GM/c* = (M/M)3 km, (3)

Ry +=c/Hy=~ 4 Gpc =~ 1.3 X 10% km, (6)

are the Schwarzschild radius for the mass M and the
Hubble radius, respectively. Mo=2x 10" kg is the solar
mass.

For a single solar mass this gives a vacuole radius of
almost 400 lightyears, which is almost two orders of
magnitude larger than the average distance of stars in
our Galaxy. Therefore, the swiss-cheese model cannot
apply at the scale of stars in galaxies. This changes as
one goes to larger scales. For example, the Virgo cluster
is estimated to have a mass of approximately 10" solar
masses (Fouqué et al., 2001),* which makes its vacuole
radius 10° times larger than that for a single solar mass,
so that it is approximately given by 10 Mpc. This is just a
little smaller than the average distance of groups and
clusters of galaxies within the Virgo supercluster. Hence
the Einstein-Straus approach might well give viable
models above cluster scales. A similar conclusion can be
drawn for the vacuole construction in LTB spacetimes
(Bonnor, 2000): There it is argued that the vacuole might
be as big as the Local Group.

The Einstein-Straus solution (as well as its generali-
zation for LTB spacetimes given by Bonnor) may also be
criticized on theoretical grounds. An obvious one is its
dynamical instability: slight perturbations of the match-
ing radius to larger radii will let it increase without
bound, slight perturbations to smaller radii will let it
collapse. This can be proven formally [see, e.g., Krasin-
ski (1998) and Bonnor (2000)] but it is also rather obvi-
ous, since R, is defined by the equal and opposite gravi-
tational pull of the central mass on one side and the
cosmological masses on the other. Both pulls increase
as one moves towards their side, so that the equilib-
rium position must correspond to a local maximum
of the gravitational potential. Another criticism of the
Einstein-Straus solution concerns the severe restrictions
under which it may be generalized to non-spherically-
symmetric situations; see, e.g., Senovilla and Vera (1997)
and Mena et al. (2002, 2003, 2005).

2. Melted solutions

The above discussion shows that the Einstein-Straus
approach does not give us useful information regarding
the dynamical impact of cosmic expansion on structures
well below the scales of galaxy clusters. For this reason
other exact solutions are sought. In this respect we re-
mind the reader on the following general aspect: In
physics we are hardly ever in the position to mathemati-
cally rigorously model physically realistic scenarios.
Usually we are at best able to provide either approxi-
mate solutions for realistic models or exact solutions for
approximate models, and in most cases approximations
are made on both sides. The art of physics then precisely

*Their considerations are based on a LTB model for the
cluster.
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consists in finding the right mixture in each given case.
However, in this process our intuition usually strongly
rests on the existence of at least some “nearby” exact
solutions. Accordingly, one seeks exact solutions in gen-
eral relativity that, with some degree of physical ap-
proximation, model a spherically symmetric body im-
mersed in an expanding universe. However, it is not as
easy as one might think at first to characterize “body”
and “immersed.”’ Clearly it is associated with some in-
homogeneity in form of a spatial region with an over-
dense matter distribution, as compared to that of the
approximately homogeneous distribution far out. But a
body should also be quasi-isolated in order to be distin-
guishable from a mere local density fluctuation with a
smooth transition. Typical exact solutions that models
the latter are the LTB solutions, in which matter is rep-
resented by pressureless dust that freely falls into the
local overdense inhomogeneity. In some sense, these
form the other extreme to the Einstein-Straus solutions
in that they make the transition as smooth and mild as
one wishes. Here we are interested in models that some-
what lie in-between these extremes.

An attempt to combine an interior Schwarzschild so-
lution (representing a star) and a flat FLRW universe
was made by Gautreau (1984). Here the matter model
consists of two components, a perfect fluid with pressure
and equation of state p=p(@) outside the star, and the
superposition of this with the star’s dust matter inside
the star. However, Gautreau also made the assumption
that the matter outside the star moves on radially infall-
ing geodesics, which is only consistent if the pressure
outside is spatially constant. Thus one is reduced to ex-
act FLRW outside the star (van den Bergh and Wils,
1984) or the LTB model. [Further remarks may be found
in Krasinski (1998).] Other solutions, modeling a black
hole in a cosmological spacetime, have been given.
However, these solutions model objects which are either
rotating (Vaidya, 1977, 1984; Ramachandra et al., 2003),
charged (Gao and Zhang, 2004), or both (Patel and
Trivedi, 1982). Surveys on the subject of cosmological
black holes are given in Vishveshwara (2000) and Mc-
Clure (2006). Further interesting solutions are given in
Rajesh Nayak et al. (2001) and in Sultana and Dyer
(2005) and Faraoni and Jacques (2007). The solutions
proposed in the latter two works can be seen as gener-
alizations of McVittie’s model (McVittie, 1933), dis-
cussed in Sec. V.D. A crucial feature of these solutions
is, however, that the strength of the inhomogeneity6 var-
ies in time, whereas for the McVittie model it remains
constant. These solutions are of interest in their own
right [for a detailed analysis see Carrera and Giulini

>In a linear theory, the “simultaneous presence” of two struc-
tures, like a local inhomogeneity in an “otherwise” homoge-
neous background, naturally corresponds to the mathematical
operation of addition of the corresponding individual solu-
tions. In a nonlinear theory, however, no such simple recipe
exists.

%In Sec. V.D.1 we identify the strength of the inhomogeneity
with the Weyl part of the Misner-Sharp energy.
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(2009)], but our goal here is to focus on the effects due
to cosmological expansion and not on the effects due to
a changing strength of the central inhomogeneity. The
solution proposed in the former work (Rajesh Nayak er
al., 2001) is the melting of a Schwarzschild spacetime in
an Einstein’s static universe. This is a purely static solu-
tion whose properties and geodesics where studied in
Ramachandra and Vishveshwara (2002). For our pur-
poses, however, this spacetime is not interesting since it
is asymptotically an Einstein universe, and hence not in
agreement with the present picture of our universe at
large scales.

For these reasons in Sec. V.D we pay attention to the
McVittie model. This contains a distinguished central
object in the sense that the mass within a sphere cen-
tered at the inhomogeneity splits into a piece that comes
from the continuously distributed cosmological fluid
(with pressure) and a constant piece that does not de-
pend on the radius of the enclosing sphere; see Eq. (82).
Moreover, the latter piece is also constant in time, mean-
ing that the strength of the central inhomogeneity re-
mains constant. By the way, McVittie’s solutions contain
the Schwarzschild—de Sitter one as a special case, which
was recently used to estimate the effects of cosmological
expansion on local systems (Kagramanova et al., 2006;
Hackmann and Limmerzahl, 2008c). In Sec. V.D.2 we
show that in a suitable weak-field and slow-motion ap-
proximation the geodesic equation in McVittie space-
time reduces to the improved Newtonian equations dis-
cussed earlier. An alternative and more geometric
derivation of the improved Newtonian equations for the
McVittie case is presented in Sec. VI.B [see Eq. (149)].

C. Kinematical effects

1. Timing and distances

Neither the improved Newtonian model nor other
general dynamical arguments make any statement about
possible kinematical effects, i.e., effects in connection
with measurements of spatial distances and time dura-
tions in a cosmological environment whose geometry
changes with time. This is an important issue if one
wants to perform the tracking of a spacecraft, that is a
“mapping out” of its trajectory, which basically means to
determine its simultaneous spatial distance to the ob-
server at given observer times. But we know from gen-
eral relativity that the concepts of “simultaneity” and
“spatial distance” are not uniquely defined. This fact
needs to be taken due care of when analytical expres-
sions for trajectories, e.g., solutions to the equations of
motion in some arbitrarily chosen coordinate system,
are compared with experimental findings. In those situ-
ations it is likely that different kinematical notions of
simultaneity and distance are involved which need to be
properly transformed into each other before being com-
pared. For example, these transformations can result in
additional acceleration terms involving the product (1).
Accordingly, there were claims that these kinematical
effects could account for the PA; see, e.g., Rosales and
Sanchez-Gomez (1998), Rosales (2002), Nottale (2003),
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Nieto et al. (2005), Palle (2005), and Ranada (2005), and
also statements to the contrary (Limmerzahl et al.,
2008). In Sec. VI.A, following Carrera and Giulini
(2005), we confirm the existence of kinematical accelera-
tion terms proportional to Hc, but they are suppressed
with additional powers of B=v/c, which renders them
irrelevant as far as the PA is concerned.

2. Doppler tracking

The discussion in Sec. VI.B is based on Carrera and
Giulini (2006). We explain in some detail the geometric
theory for setting up the kinematical framework in
which Doppler tracking should be discussed in order to
properly speak of relative velocities and accelerations.
This is a nontrivial issue which is, not properly appreci-
ated in the literature on this subject [related general dis-
cussions are Bini ef al. (1995) and Bolés (2007)]. Using
this setting, we show how to derive an exact Doppler-
tracking formula for a flat FLRW universe. This we use
to give reliable upper bounds for kinematical effects
caused by cosmic expansion. We also discuss generaliza-
tions to McVittie spacetime. Even though such effects
exist, they again turn out to be irrelevant for the PA.

III. NEWTONIAN APPROACH

In order to gain intuition we consider a simple
bounded system, say an atom or a planetary system, im-
mersed in an expanding cosmos. We ask for the effects
of this expansion on our local system. Does our system
expand with the cosmos? Does it expand only partially?
Or does it not expand at all? Here we shall not be con-
cerned with the far more complex problem of how stable
large-scale structures may emerge from unstable local
gravitational dynamics in an expanding universe. This
has been discussed in Buchert and Dominguez (2005),
and references therein.

A. Restricted two-body problem in an expanding universe

We consider the dynamical problem of two bodies at-
tracting each other via a force with 1/R? falloff. For sim-
plicity we may think of one mass as being much smaller
than the other one, though this is really inessential. One
may think of two galaxies, a star and a planet, a planet
and a spacecraft, or a (classical) atom given by an elec-
tron orbiting around a proton. The system is placed into
an isotropically expanding ambient universe. We wish to
know the leading-order influence of the ambient expan-
sion onto the relative two-body dynamics.

To leading order, the global expansion is described by

the simple linear Hubble law R=HR, which states that
the relative radial velocity of two comoving objects at a
mutual distance R grows proportional to that distance.
More precisely, the term “distance” is understood here
as the geodesic distance in the spacetime hypersurface
of constant cosmological time ¢ between its two intersec-
tion points with the two worldlines of the objects con-
sidered. H denotes the Hubble parameter, which gener-
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ally depends on ¢ but not on space. It is given in terms of
the scale parameter a(t) via H=d/a.

Taking into account H =(d/a)- H?, the acceleration
that results from the Hubble law is given by

Rleosmace. = HR + HR = iiR/a = — gH’R, (7)
where

q =~ dald® =~ (ila)H™? ®)

is the dimensionless deceleration parameter. To get a
feeling for the magnitude, we remark that for the cur-
rent best estimates for the parameters H and ¢, H
~70 kms~! Mpc™! and g,=-0.6, respectively, we get
dla=~3x107°s2, which even at Pluto’s distance of
40 a.u. merely amounts to a tiny outward pointing accel-
eration of 2X 1072 m s7!,

Now note that, in the sense of general relativity, a
body that is comoving with the cosmological expansion
is moving on an inertial trajectory, i.e., it is force free.
On the other hand, according to Newton, a dynamical
force is, by definition, the cause for deviations from in-
ertial motion. In the present context this would mean
that dynamical forces are the causes for deviations from
the motions described by Eq. (7), which suggests that in

Newton’s law, mx :F, we should make the replacement

R+ R - (ila)R )

in order to apply to the (sufficiently slow) motion of
interacting point masses in an expanding universe. Note
that this also applies to gravitational interactions in a
Newtonian approximation in which gravity is considered
to be a force in the above sense.

As we will see, the replacement (9) can be justified
rigorously in a variety of contexts, like for gravitation-
ally bound systems, using the equation of geodesic de-
viation in general relativity. Whenever we attempt to
justify the replacement (9) we must not forget that the
Newtonian equations of motion (without Coriolis and
centrifugal type “forces” in them) necessarily refer to
preferred systems of coordinates which are (1) locally
nonrotating, (2) whose origin is freely falling, and (3) in
which the coordinate values directly refer to (local) iner-
tial time (time coordinate) and spatial geodesic distance
(space coordinates), as measured by comoving clocks
and rods. This is achieved by using so-called Fermi nor-
mal coordinates [see, e.g., Misner et al. (1973)] in a
neighborhood of a geodesic worldline—e.g., that of the
Sun or the proton. This is also the approach followed in
Cooperstock et al. (1998). Note that a Fermi system of
coordinates can be defined for worldlines of arbitrary
acceleration and correspond to locally nonrotating
frames, which may physically be realized by a system of
at least two noncollinear gyros in torque-free suspen-
sions taken along the worldline. Along a geodesic, that is
a worldline of zero acceleration, this system corresponds
to a local inertial observer and is called Fermi normal.
The equation of geodesic deviation in these coordinates
now gives the variation of the spatial geodesic distance
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to a neighboring geodesically moving object, e.g., a
planet or spacecraft. It reads’

d’x¥1d7 + R*yx' = 0. (10)

Here x* are the spatial nonrotating normal coordinates

whose values directly refer to the proper spatial dis-
tance. In these coordinates we further have (Cooper-
stock et al., 1998)

on the worldline of the first observer, where the overdot
refers to differentiation with respect to the cosmological
time, which reduces to the proper time along the observ-
er’s worldline.

Equations (10) and (11) simply state that in Fermi nor-
mal coordinates around one inertial observer another
nearby inertial observer is radially accelerating away at
a magnitude (d/a)R, just as envisaged before. In linear
approximation, this acceleration has to be added to that
resulting from the other metric perturbation that is
caused by the mass at the position of the first observer.
As a result, in the case of purely gravitational interac-
tion, we obtain the equation of motion of a test particle
(whose metric perturbation we neglect) in the gravita-
tional field of a heavier object whose metric perturba-
tion away from the FLRW cosmological background we
approximate to linear order. In the case of charged ob-
jects, we neglect the metric perturbations caused by the
masses of both charges as well as their electromagnetic
field, and simply take into account their mutual electro-
magnetic interaction.

Neglecting large velocity effects (i.e., terms quadratic
or higher order in v/c) we can now write down the equa-
tion of motion for the familiar two-body problem. After
specification of a scale function a(f), we get two ordinary
differential equations (ODEs) for the variables (R,¢),
which describe the position8 of the orbiting body with
respect to the central one,

R=L%R?- C/R*+ (ila)R, (12a)

R¢=1L. (12b)
These are the (d/a)-improved Newtonian equations of
motion for the two-body problem, where L represents
the (conserved) angular momentum of the planet (or
electron) per unit mass and C the strength of the attrac-
tive force. In the gravitational case C=GM, where M is
the mass of the central body, and in the electromagnetic
case, for the electron-proton system, C=e?/m (Gaussian
unit), where e and m are the electron’s charge and mass,
respectively. In Secs. V and IV we show how to obtain

7By construction of the coordinates, the Christoffel symbols
I'45 vanish along the worldline of the first observer. Since this
worldline is geodesic, Fermi-Walker transportation just re-
duces to parallel transportation.

8Recall that “position” refers to Fermi normal coordinates,
i.e., R is the radial geodesic distance to the observer at R=0.
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Eq. (12) in appropriate limits from the full general rela-
tivistic treatments.

We now study the effect the @ term has on the unper-
turbed Kepler orbits. We start with the remark that this
term results from the acceleration and not just the ex-
pansion of the universe.

Next we point out that, in the concrete physical cases
of interest, the time dependence of this term is negli-
gible to a good approximation. Indeed, putting f:=d/a,
the relative time variation of the coefficient of R in

Eq. (7) is f/f. For an exponential scale function a(r)
cexp(Nf) (vacuum-energy-dominated universe) this van-
ishes, and for a power law a(t) =" (for example, matter-
or radiation-dominated universes) this is —2H/\, and
hence of the order of the inverse age of the universe. If
we consider a planet in the Solar System, the relevant
time scale of the problem is the period of its orbit
around the Sun. The relative error in the disturbance,
when treating the factor d/a as constant during an orbit,
is hence smaller than 10~°. For atoms it is much smaller,
of course. In principle, a time varying d/a causes
changes in the semimajor axis and eccentricity of Kepler
orbits (Sereno and Jetzer, 2007). But here we neglect the
time dependence of Eq. (7) and set é/a equal to a con-
stant A. Because of Eq. (8) we have A:=—g,H3. Then
Eq. (12a) can be integrated,

IR+ UR)=E, (13)
where the effective potential is
U(R) = L*2R*- CIR - AR*2. (14)

We show below that the three parameters (L,C,A) can
be effectively reduced to two.

B. Specifying the initial-value problem

Solutions of Egs. (13) and (12b) are specified by initial

conditions (R,R,¢,¢)(ty)=(Ry,Vy, ¢y, w,) at the initial
time ¢,. The discussion of the dynamical behavior of R is
most effectively done in terms of the effective potential.
Moreover, since perturbations are best discussed in
terms of dimensionless parameters, we also introduce a
length scale and a time scale that appropriately charac-
terize the dynamical perturbation and the solution to be
perturbed.

The length scale is defined as the radius at which the
acceleration due to the cosmological expansion has the
same magnitude as the two-body attraction. This hap-
pens precisely at the critical radius

R, := (CI|A|)"3. (15)

For R<R, the two-body attraction dominates, whereas
for R> R, the effect of the cosmological expansion is the
dominant one.

In order to gain an understanding of the length scales
of the critical radius it is instructive to express it in terms
of the physical parameters. In the case of gravitational
interaction we have C/|A|=GM/(|qo|H3) and thus
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R.= (RgR7/12|qq) ™. (16)

Inserting the approximate value go=—1/2 of the present
epoch, this reduces to the Schiicking radius (4).

In the electromagnetic case, e.g., for an electron-
proton system, we have C/|A|=(e*/m)/(|qo|H}). Defin-
ing, in analogy with Eq. (5), the length scale

R, =2e*mc? =~ 5.64 X 1075 m, (17)
the critical radius (15) becomes
R.=(R,R%2|qo)"? =30 a.u., (18)

where in the last step we inserted g,=-1/2. This is about
as large as the Neptune orbit.

From Eqgs. (16) and (18) one sees that, in both cases, a
larger (smaller) |qo| implies a smaller (larger) critical ra-
dius, according to expectations.

So much for the length scale. The time scale is defined
to be the period of the unperturbed Kepler orbit (a so-
lution to the above problem for A=0) of semimajor axis
Ry. By Kepler’s third law it is given by

Tg:= 277(R(3)/C)1/2. (19)

It is convenient to introduce two dimensionless param-
eters which essentially encode the initial conditions Ry
and w,

2 L2
)\::< “o ):—, (20)
27T/TK CRO
R,\> R}
= sgn(A)<R7°) :AEO. (21)

For close to Keplerian orbits A is close to 1. For reason-
ably sized orbits « is close to 0. For example, in the Solar
System, where R;<100 a.u., one has |a| <1071, For an
atom whose radius is smaller than 10* Bohr radii we
have |a|<107.

Now, defining

x(t) = R(t)/Ry, (22)
Egs. (13) and (12b) can be written as

124 Qul T uy o(x) =e, (23)

¢ =y, (24)

where e:=E/ r(2J now plays the role of the energy constant
and the reduced two-parameter effective potential u, , is
given by

A1 e,

-—— ==X (25)

u)\,a(x) = 222 x 2

(compare Fig. 1). The initial conditions now read

(x,%,@,@)(t) = (1,Vo/Ro, g, wy) . (26)

The point of introducing the dimensionless variables is
that the three initial parameters (L,C,A) of the effec-
tive potential could be reduced to two: N\ and «. This will
be convenient in the discussion of the potential.



Matteo Carrera and Domenico Giulini: Influence of global cosmological expansion on ... 171

U)o A

07\\\\\\\\\\\\\\\\\\\\\\\\\\\\=

a=0

FIG. 1. The effective potential u, , for circular orbits (for
which A =1-a) for some values of a. The initial conditions are
x=1 and x=0 [see Eq. (22)]. At x=1 the potential has an ex-
tremum, which for a«<<1/4 is a local minimum corresponding
to stable circular orbits. For 1/4<a<1 these become un-
stable. The value =0 corresponds to the Newtonian case.

C. Discussion of the reduced effective potential

Circular orbits correspond to extrema of the effective
potential (14). Expressed in terms of the dimensionless
variables this is equivalent to u; ,(1)=-\+1-a=0. By
its very definition (20), A is always non-negative, imply-
ing @<1. For negative « (decelerating case) this is al-
ways satisfied. On the contrary, for positive « (accelerat-
ing case), this implies, in view of Eq. (21), the existence
of a critical radius, given by R., beyond which no circu-
lar orbit exists. These orbits are stable if the considered
extremum is a true minimum, i.e., if the second deriva-
tive of the potential evaluated at the critical value is
positive. Now, u} (1)=3\-2—-a=1-4a, showing stabil-
ity for «<1/4 and instability for «=1/4. For the accel-
erating case, in view of Eq. (21), this implies that the
circular orbits are stable iff R is smaller than the critical
value

Ry, = (1/4)'*R, =~ 0.63R,, (27)

where “sco” stands for “stable circular orbits.”
Summarizing, we have the following situation: in the
decelerating case (i.e., for negative « or, equivalently, for
negative A) stable circular orbits exist for every radius
Ry; one just has to increase the angular velocity by some
amount stated below in Eq. (28). On the contrary, in the
accelerating case (i.e., for positive «, or, equivalently, for
positive A), we have the following three regions:

* Ry<R.,, where circular orbits exist and are stable;

* R.,=Ry=<R,, where circular orbits exist but are un-
stable; and
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® Ry,>R,., where no circular orbits exist.

Generally, there exist no bounded orbits that extend
beyond the critical radius R, the reason being simply
that there is no R> R where U’'(R)>0. Larger systems
will just be slowly pulled apart by the cosmological ac-
celeration and approximately move with the Hubble
flow at later times.” Modifications of this strict qualita-
tive distinction implied by time dependencies of A in
Eq. (14) were discussed in Faraoni and Jacques (2007).

Turning back to the case of circular orbits, we now
express the condition for an extrema derived above, A
=1-a, in terms of the physical quantities, which leads to

wy = 2m Te)V1 - sgn(A)(Ry/R,)>. (28)

This equation says that, in order to get a circular orbit,
our planet, or electron, must have a smaller or bigger
angular velocity according to the universe expanding in
an accelerating or decelerating fashion, respectively.
This is just what one would expect, since the effect of a
cosmological “pulling apart” or “pushing together” must
be compensated by a smaller or larger centrifugal forces,
respectively, as compared to the Keplerian case. Equa-
tion (28) represents a modification of the third Kepler
law due to the cosmological expansion. In principle this
is measurable, but it is an effect of order (R,/R,)? and
hence very small indeed; e.g., smaller than 1077 for a
planet in the Solar System.

Instead of adjusting the initial angular velocity as in
Eq. (28), we can ask how one has to modify r( in order to
get a circular orbit with the angular velocity wy
=2/ Tg. This is equivalent to searching the minimum of
the effective potential (25) for A=1. This condition leads
to the fourth-order equation ax*—x+1=0 with respect
to x. Its solutions can be exactly written down using Fer-
rari’s formula, though this is not illuminating. For our
purposes it is more convenient to solve it approximately,
treating « as a small perturbation. Inserting the ansatz
Xmin=Co+cra+0(a?) we get cy=c;=1. This is really a
minimum since u’l”a(xmin):lJr(’)(a) >(. Hence we have

3
Rinin = Ro[l + SgMA)(%) + O((RO/RL‘)6):| (29)

This tells us that in the accelerating (decelerating) case
the radii of the circular orbits with wy=27/Tx becomes
bigger (smaller), again according to physical expectation.
As an example, the deviation in the radius for an hypo-
thetical spacecraft orbiting around the Sun at 100 a.u.
would be just of the order of 1 mm. Since it grows with
the fourth power of the distance, the deviation at
1000 a.u. would be of the order of 10 m.

This genuine nonperturbative behavior was not seen in the
perturbation analysis performed in Cooperstock et al. (1998).
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IV. GENERAL-RELATIVISTIC TREATMENT FOR
ELECTROMAGNETICALLY-BOUNDED SYSTEMS

In this section we show how to arrive at Eq. (12) from
a relativistic treatment of an electromagnetically
bounded two-body system embedded (without back-
reaction) into an expanding (spatially flat) universe. This
implies solving Maxwell’s equations in the cosmological
background (30) for an electric point charge (the proton)
and then integrate the Lorentz equations for the motion
of a particle (electron) in a bound orbit [cf. Bonnor
(1999)]. Equation (12) then appears in an appropriate
slow-motion limit. However, in order to relate this
straightforward method to the argument of Dicke and
Peebles, we proceed by taking a slight detour which
makes use of the conformal properties of Maxwell’s
equations.

A. The argument of Dicke and Peebles

Dicke and Peebles (1964) presented an apparently
general and elegant argument that purports to show the
insignificance of any dynamical effect of cosmological
expansion on a local system that is bound by either elec-
tromagnetic or gravitational forces and which should
hold true at any scale. Their argument involves a rescal-
ing of spacetime coordinates (¢,X)— (\¢,AX) and certain
assumptions on how other physical quantities, most
prominently mass, behave under such scaling transfor-
mations. For example, they assume mass to transform
like m~>\"'m. However, their argument is really inde-
pendent of such assumptions, as shown below. We work
from first principles to clearly display all assumptions
made.

We consider the motion of a charged point particle in
an electromagnetic field. The whole system, i.e., particle
plus electromagnetic field, is placed into a cosmological
FLRW space time with flat (k=0) spatial geometry. The
spacetime metric reads

g =cdi? - a*(1)(dr* + r’gg), (30)
where
g2 =d@ +sin® 6d¢® (31)

denotes the metric on the unit two-sphere in standard
coordinates. We introduce conformal time ¢, via

t d[’
pa')’
by means of which we can write Eq. (30) in a confor-
mally flat form

g=a(t)(c*de; - dr’ — r’gs) = al(t) n, (33)

I :f(t) = (32)

where 7 denotes the flat Minkowski metric. Here we
wrote a, to indicate that we now expressed the expan-
sion parameter a as function of ¢, rather than ¢, i.e.,

aC==a°f1. (34)
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The electromagnetic field is characterized by the ten-
sor F',,, comprising electric and magnetic fields,

Iz
E,/c )

0
F,,= . 35
w <—Em/c — &iB; (35)

In terms of the electromagnetic four-vector potential
AM:(@/C,—A) one has

Fo=0,A,~0,A,=V,A,~V,A, (36)

so that, as usual, E=—V¢—A. The expression for the
four-vector of the Lorentz force of a particle of charge e
moving in the field F,, is eF,u’, where u* is the parti-
cle’s four-velocity.

The equations of motion for the system particle +
electromagnetic field follow from an action which is the
sum of the action of the particle, the action for its inter-
action with the electromagnetic field, and the action for
the free field, all placed in the background (30). Hence
we write

S:SP+S1+SF, (37)
where
Sp= —mczf dr= —mcf Vg(z',z")dN, (38a)
z
S,:—ef Aﬂdx“:—efAﬂ(z(k))z’”dx
zZ
=— f d*xA ,(x) J dnedW(x - z(N)z'*, (38b)
1 4. pa v
SF:_Z XV—88" 8 F,LLVFaﬁ
1 4 a vB
:_4_1 d*x " n"PF F op. (38¢)

Here N is an arbitrary parameter along the worldline
z:A—z(\) of the particle, and z’ the derivative dz/dA\.
The differential of the proper time along this worldline
is

dz*dz”

[0 Ay el
dr= \’g(Z iy4 )d)\_ \/g,uv(z()\)) AN d\

d\. (39)

It is now important to note that (1) the background met-
ric g does not enter Eq. (38b) and that Eq. (38¢) is con-
formally invariant (in four space-time dimensions only).
Hence the expansion factor a(f.) does not enter these
two expressions. For this reason we could write Eq. (38¢c)
in terms of the flat Minkowski metric, though it should
be kept in mind that the time coordinate is now given by
conformal time ¢.. This is not the time read by standard
clocks that move with the cosmological observers, which
rather show the cosmological time ¢ (which is the proper
time along the geodesic flow of the observer field @/ dr).



Matteo Carrera and Domenico Giulini: Influence of global cosmological expansion on ... 179

The situation is rather different for the action (38a) of
the particle. Its variational derivative with respect to
z(\) is

2l 0] g ]
6z4(N) Vg(z',z')  dN[Vg(z',z')
(40)

We now introduce the conformal proper time 7. via
dr.=/c)Nn(z',z")dN = /ca)Vg(z',z")dN. (41)

We denote differentiation with respect to 7, by an over-
dot, so that, z'/\g(z',z’)=Z/ca. Using this to replace z’
by 2\g(z',z')/ca and also g by a’7 in Eq. (40) gives

! !
5S, \gz',z')

5ZM()\) - ma{ n,uaza - Pz,d),a} (42)
where
a=exp(¢/c?) and P%:= 6% — & (43)
- P BT e Cz Mope

Recalling that 8Sp=J[68S,/ 6z*(\)]oz#dN =[S,/
8z*(7.)]6z*d, and using Eq. (41), Eq. (42) is equivalent
to

s, e pa
_Léz“(rc) =ma(Z“-Pud,), (44)
where from now on we agree to raise and lower indices
using the Minkowski metric, ie., 7,,=diag(l,-1,-1,
—1) in Minkowski inertial coordinates.
Writing Eq. (38b) in terms of the conformal proper
time and taking the variational derivative with respect to
z(7.) leads to 85,/ 6z#(7,)=—eF 2%, so that

5S
oz(,)

The variational derivative of the action with respect to
the vector potential A is

=ma(Z, - Pfjd),a) —el, 2% (45)

8S
OA ,(x)

Equations (45) and (46) show that the fully dynamical
problem can be treated as if it were situated in static flat
space. The field equations that follow from Eq. (46) are
just the same as in Minkowski space. Hence we can cal-
culate the Coulomb field as usual. On the other hand,
the equations of motion receive two changes from the
cosmological expansion term: the first is that the mass m
is now multiplied with the (time-dependent) scale factor
a, the second is an additional scalar force induced by a.
Note that all space time-dependent functions on the
right-hand side are to be evaluated at the particle’s loca-
tion z(7,), whose fourth component corresponds to ct..
Hence, writing out all arguments and taking into ac-
count that the time coordinate is f., we have for the
equation of motion

= aaFlua(x) —e f ch5(X - Z(Tc))z.lu(Tc)' (46)
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- F* (7)z°
ma,(z°c) (22

— (= A+ 293, In a(%c)

e
M (p)a
ma.(z%c) o(2)2

— (= e+ 2#2%¢c)al(z"c)la ("), (47)

where a, is the derivative of a..

So far no approximations were made. Now we write
z*=1v(c,0), where U is the derivative of Z with respect to
the conformal time f., henceforth denoted by a prime,
and y=1/y1-v?/c?. Then we specialize to slow motions,
i.e., neglect effects of quadratic or higher powers in v/c
(special relativistic effects). For the spatial part of Eq.
(47) we get

e - -
7"+7'(ala) =——(E+Z' X B), (48)
ma,

c

where we once more recall that the spatial coordinates
used here are the comoving (i.e., conformal) ones and
the electric and magnetic fields are evaluated at the par-
ticle’s position Z(z,).

From the above equation we see that the effect of
cosmological expansion in the conformal coordinates
shows up in two ways: first in a time dependence of the
mass which scales with a., and, second, in the presence a
friction term. Dicke and Peebles neglect the friction
term and simply conclude as follows: In the adiabatic
approximation, which is justified if typical time scales of
the problem at hand are short compared to the world
age [corresponding to small &, in Eq. (98b)], the time-
dependent mass term leads to a time varying radius in
comoving (or conformal) coordinates of r(t,)o1/a.(t,).
Hence the physical radius (given by the cosmological
geodesically spatial distance) r =a.r stays constant in
this approximation. Hence, within this approximation,
electromagnetically bound systems do not feel any effect
of cosmological expansion.

But what does “this approximation” refer to? We will
see that it amounts to neglecting precisely the leading-
order contributions. This is easy to see if we cast Eq. (48)
into physical coordinates, given by the cosmological
time ¢ and the cosmological geodesic spatial distance
r:=a(t)r. We have dt./dt=1/a and the spatial geodesic
coordinates are y:=a(f)Z. Denoting the time derivative
by an overdot with respect to ¢, the two terms on the
left-hand side of Eq. (48) become

7" =a(yH? - yH) + a(y - yila), (49a)

7'(alla,) = — a(yH? - yH), (49Db)
where H=ad/a. This shows that the friction term cancels
against the first-order derivative terms in y and a that
one gets in rewriting the left-hand side of Eq. (48) in
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physical coordinates.'” The only additional term next to

y that survives is precisely the familiar acceleration term
(7). Inserting Eq. (49) into Eq. (48), whose right-hand
side we now specialize to a pure electric Coulomb field,
E(2)=07/|2]> and B(2)=0, we arrive at

. . (4 N
§ - yla) = 22 5. (50)
mly|

After introducing polar coordinates in the orbital plane
we exactly get Eq. (12).

B. Exact condition for nonexpanding circular orbits

Bonnor (1999) derived a necessary and sufficient con-
dition for the existence of nonexpanding orbits for the
electron-proton system in a spatially flat FLRW space-
time. Here “nonexpanding” is defined as of constant ar-
eal radius. This condition follows directly from the Lor-
entz equation of motion for the electron in the external
electric field of the proton, the normalization condition
of the electron’s four-velocity, and the condition of con-
stancy of the areal radius. In our notation, introducing
the dimensionless quantities A(f):=RH(t)/c, l:=L/Rc,
and w:=R,/2R, the conditions for the existence of non-
expanding circular orbits reads as follows:

E . (1 _ h2)3/2( ~ l2 + h2 )
Flaspa-m)

¢ (1P oD

Recall that R, is defined in Eq. (17) and H(f) and L
denote the Hubble function and, the (conserved) elec-
tron’s angular momentum per unit mass respectively.
The above condition is a first-order autonomous ODE
for the function A(r), and hence for the Hubble function
H(?). This is the constraint on the spacetime [more pre-
cisely, on the scale factor a(z)] that one gets by imposing
the existence of nonexpanding circular orbits for two
oppositely charged point masses. If such orbits exist, Eq.
(51) amounts to the generalization of Kepler’s third law
to FLRW spacetimes, which gives here a relation be-
tween the scale function, on the one hand, and the or-
bital parameters R and L as well as the field-strength
parameter R,, on the other hand. Recall that in Newton-
ian physics the third Kepler law is, in our notation, sim-
ply given by = pu.

The easiest solutions of Eq. (51) are of course the sta-
tionary ones, that is with A(t) = h, for some constant A,
This means that the scale factors is exponentially ex-
panding,

a(t) = ag exp(Hyt), (52)

where Hy:=hoc/R and a; is some positive constant. In
other words, the spacetime is given by the de Sitter so-

%Since the friction term cancels, the critical remark made in
note [27] of Adkins et al. (2007) regarding its magnitude is
based on a misunderstanding.
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lution (A-dominated universe). In this case Eq. (51) re-
duces to

P+ h?
S T ——, 53)
L
Ja+na-m “ (

Notice that a larger Hubble parameter, hence a larger
hy, makes the left-hand side larger. Consequently, Eq.
(53) tells us that with a larger Hubble parameter we
must give to the electron a smaller angular velocity
(smaller /) in order to keep it on a nonexpanding circular
orbit with the same radius. This, according to intuition,
is in order to compensate the extra cosmological pull
with a reduced centrifugal term. In case of Minkowski
spacetime (h,=0) the above relation reads /?/ v’ﬂ:,u;
hence one can interpret the factor 1/ Vi+P as a special-
relativistic correction to the Newtonian relation />=pu.
The largest radius at which, in an FLRW spacetime with
exponentially growing scale factor, there is a nonexpand-
ing orbit follows from Eq. (53) in the limit /—0. In this
limit the condition reduces to h%/ V/l—_h(z):,u, which, for
small parameters A, simplifies to h%z . Solving for R
this gives the radius (R,R%,/2)", which, taking into ac-
count that go=-1 because of Eq. (52), exactly corre-
sponds to the critical radius (18).

The other (nonstationary) solutions of Eq. (51) can
also be found. After separation of variables and an el-
ementary integration one gets ¢ as function of 4 in terms
of trigonometric functions composed with inverse hyper-
bolic functions. This exact expression is again not very
illuminating and cannot generally be explicitly inverted
so as to obtain 4 in terms of elementary functions of .
However, if we make use of the smallness of the param-
eters u, 2, and h?, a leading-order expansion in these
quantities gives a much simpler expression for #(/) which
can be explicitly inverted. In fact, this approximate solu-
tion A(f) is obtained much quicker by solving Eq. (51)
with the right-hand side being replaced with its leading-
order expansion in the mentioned quantities, that is, by
solving

Rhic=p—-1-h. (54)

Here w—I? is a constant which depends on the orbit
parameters. One must now distinguish between three
cases: (a) w—I=:,k>>0 for some positive «, (b) u—F>
=:—12 <0 for some positive v, and (c) u—>=0. Recalling
the Newtonian relation />=u, orbits in the three cases
have an angular momentum which is, respectively,
smaller, bigger, and equal to the Newtonian one. Inte-
grating Eq. (54) we get, putting without loss of generality
to=0, h(t)=« tanh(kct/R), h(t)=—vtan(vct/R), and h(t)
=R/ct, for the cases (a), (b), and (c), respectively. Then,
integrating once and exponentiating the result, we get
the corresponding scale functions:
(a) Case w—I?=: k>>0 (nonexpanding orbits have sub-
Newtonian angular momentum)
a(t) = ay cosh(kct/R),

t € [0,). (55a)
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(b) Case u—P=:-1”<0 (nonexpanding orbits have
super-Newtonian angular momentum)
R
alt) = ag cos(vet/R), 1 e {0,”—). (55b)
2vc

(c) Case u—1>=0 (nonexpanding orbits have Newton-
ian angular momentum)

t € (0,). (55¢)

In all three cases (a), (b), and (c) a, is a positive con-
stant and the acceleration term d/a is a constant which is
positive, negative, and zero, respectively. Hence, as one
would intuitively expect, the nonexpanding orbits have
an angular momentum which is smaller, larger, or equal
the Newtonian one, depending on whether the accelera-
tion factor d/a is positive, negative, or zero.

a(t) = apt,

V. GENERAL-RELATIVISTIC TREATMENT FOR
GRAVITATIONALLY-BOUNDED SYSTEMS

As discussed in Sec. I1.B, we now discuss exact solu-
tions that may represent quasi-isolated spherically sym-
metric gravitating systems “embedded” into cosmologi-
cal spacetimes. As regards the meaning of embedded we
distinguish between the strategies of “matching” and
“melting” as outlined in Sec. II.B.

A. Spherically symmetric matchings

The complexity and nonlinearity of Einstein’s equa-
tions make it a difficult task to construct a suitable vari-
ety of exact solutions which serve as realistic models for
actual physical situations. Often exact solutions are only
known for highly idealized situations, typically with high
degrees of symmetry, in which the field equations suffi-
ciently simplify. One way to construct new solutions (in a
suitable sense, see below) from old ones is to glue them
across suitably chosen hypersurfaces along which the
matter distribution may become singular due to surface
layers. This approach was pioneered by Lanczos in the
early 1920s (Lanczos, 1924) and put into geometric form
by Darmois (1927) and Israel (1966); see Misner et al.
(1973). In this section, under the assumption of spheri-
cally symmetry, we present a new alternative set of con-
ditions which are equivalent to the old ones. The new
conditions only involve scalar quantities, are easy to
verify, and have good physical interpretations. More de-
tails are given in Carrera (2010).

Here we restrict to piecewise continuous matter dis-
tributions without singular (5-distribution-like) surface
layers, as in the presence of stars with sharply defined
surfaces. Einstein’s equations can the be satisfied for
piecewise twice continuously differentiable fields, if the
field equations at the location of the matching hypersur-
face are replaced by their one-dimensional e-interval in-
tegrals in normal direction to the hypersurface. The con-
dition that two twice continuously differentiable
solutions (in the ordinary sense) can be matched into a
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piecewise twice continuously differentiable solution (in
the re-interpreted sense just explained) is then simply
given by the so-called Darmois junction conditions
(DJC): For a non-null matching hypersurface I, (i) the
induced metric gr and (ii) the extrinsic curvature K
shall be continuous through I'.

We pause for a moment to say a few more words
about the notion of “continuity through I'.” Gluing to-
gether two pieces of spacetimes means the following:
Initially one has two spacetimes, say (M*,g") and
(M~,g"), with oriented boundaries I'* and I'", respec-
tively. Given a diffeomorphism ¢:I'"—1I"~ between the
boundaries, the glued spacetime is the quotient of the
disjoint union of M* and M~ under the identification of
each point of p e I'* with ¢(p) € I'". The matching hyper-
surface I' is now the common image of I'* and I'™ after
identification in the quotient spacetime. Now, a tensor
field T is said to be continuous through I if T+ equals
T|-- under the push-forward action of the diffeomor-
phism ¢, hence if ¢ (T|p+)=T|r-.

We now return to the DJC and, in particular, their
physical interpretation. If n is a continuous choice of
unit normal of T, it implies that

T(n, -) is continuous through I'. (56)

This follows directly from Egs. (C8) of the Einstein ten-
sor given in Appendix C. If I' is timelike and hence n
spacelike, Eq. (56) just states the continuity of the nor-
mal components for the energy-momentum flux densi-
ties, whereas their tangential components together with
the energy density may jump across I'. In the absence of
surface layers this continuity condition is just a physi-
cally obvious consequence of local energy-momentum
conservation, whereas jumps in, say, the energy-density
must clearly be allowed for. For completeness we note
that for a spacelike matching surface (56) states the con-
tinuity of the densities of energy and momentum as
measured by an observer moving along n (taken to be
future pointing), whereas the corresponding currents
may jump.

We now restrict our attention to spherical symmetric
spacetimes glued along hypersurfaces of spherical sym-
metry. This means that the latter are left invariant, as
set, under the action of SO(3). We recall that the struc-
ture of a spherically symmetric spacetime is that of a
warped product M=BXgzS? of a two-dimensional
Lorentzian manifold B and the two-sphere by means of
the warping function, R:B— R,, called the areal radius.
The matching hypersurfaces are then of the form I'=vy
X zS?, where 1y is the projection of I into B and is called
the matching curve. The DJC should then reduce to ap-
propriate conditions along the curve 7. Indeed, Theorem
1 below shows that, in the spherically symmetric case,
the DJC are equivalent to the following:

Spherically symmetric junction conditions (SSJC): Let
I' be a smooth non-null spherically symmetric matching
hypersurface between two spherically symmetric space-
times and n a continuous choice of unit normal vector
field on I'. Denote with y the projection of I' onto 5.
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Moreover, let v the (unique up to a sign) spherically
symmetric, unit vector field on I' orthogonal to n. The
following four functions: (i) the arc length of v, (ii) the
extrinsic curvature of y in B: g(n,V,v), (iii) the areal
radius R, (iv) the Misner-Sharp energy E, shall be con-
tinuous through the matching curve 7.

The Misner-Sharp (MS) energy (Misner and Sharp,
1964; Hernandez and Misner, 1966), which we denote by
E, is a concept of quasilocal mass that can be defined in
presence of spherical symmetry, and which proves useful
for computational and interpretational purposes. It is a
function defined in purely geometrical manner as fol-
lows. Given a point p of spacetime, compute the sec-
tional curvature K of the plane tangent to the two-

dimensionahSOB) orbit through p and multiply this

with minus™ one-half of the third power of the areal
radius,
Los
E:=- ER K. (57)

From Eq. (D9) we immediately read off
E=(R/2)(1+{(dR,dR)), (58)

which provides a convenient expression for the compu-
tation of the MS energy. We show in Appendix D that
the MS energy is the charge of a conserved current and
how it depends on the energy-momentum tensor for the
matter. There we also discuss its Newtonian limit. This
allows one to interpret it as amount of active gravita-
tional energy contained in the interior of the sphere of
symmetry [SO(3) orbit] through p. There we also show
that the MS energy at p is equal to the Hawking quasilo-
cal mass of the two-sphere of symmetry [SO(3) orbit]
through p and hence converges to the Bondi mass at null
infinity and, in an asymptotically flat spacetime, to the
Arnowitt-Deser-Misner (ADM) mass at spatial infinity
[for the latter two issues see Szabados (2004) and also
Hayward (1996)]. Moreover, we give the decomposition
of the MS energy in its Ricci and Weyl parts; see Eq.
(D34).

The name “Misner-Sharp energy” seems now to be
well established; however, one should say that this mass
concept goes back at least to Lemaitre (1933),'* which
gives a coordinate expression for it. Its geometric defi-
nition (57) was first given in Hernandez and Misner
(1966) and its interpretation as the charge of a conserved
current was first derived in Kodama (1980). Later, an
alternative definition was given in Zannias (1990): There
it is showed that the MS energy can defined in terms of
the norm of the Killing fields generating the isometry
group SO(3), leading directly to Eq. (58). Further rel-
evant studies of the MS energy are Cahill and McVittie
(1970a, 1970b) and, more recently, Burnett (1991) and
Hayward (1996, 1998).

The minus sign here is a relict of our signature choice.
2For an English translation see Lemaitre (1997).
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Some comments are needed on the above SSJC. First
we note that, since n and v are spherically symmetric
and hence tangent to B we have in view of Egs. (D3) and
(C6) that g(n,V,v)=gs(ng,"V, vs)=ens)K)(vs,vp).
Hence, the quantity in (ii) is indeed (up to a possible
sign) the extrinsic curvature of the curve 7y in B. Second,
note that this quantity, being quadratic in v, does not
depend on the sign choice of v. Third, since the match-
ing hypersurface has the structure yXS?, the words
“continuous through the curve y” can be interchanged
with the words “continuous through the hypersurface
I',” depending on ones preference to think four or two
dimensional.

A great advantage of the SSJC is that they are easy to
verify: one simply has to impose continuity on four sca-
lars along the matching curve in the two-dimensional
base manifold B. Dealing with scalars, since their value
is independent on the particular coordinate choice, one
does not need to worry about introducing new coordi-
nates in both spacetimes to be glued, in order to get the
different metrics in a form which is comparable. This is
indeed an ingrate task: in general, these coordinates are
only needed in order to check if the junction conditions
are satisfied, and for nothing more. In the presence of
spherical symmetry all this can be circumvented using
our new junction conditions.

Furthermore, the SSJC have a good physical interpre-
tation: The continuity condition of both, the areal radius
as well as of the MS energy, can be read as equilibrium
condition for the gravitational pull acting from opposite
directions onto (fictitious) test masses at the location of
the matching surface. Concerning the continuity of the
extrinsic curvature of the matching curve, we note the
following: In the case where the matching hypersurface
I' is timelike, let y=(I") be a timelike curve in B and v
is future-pointing tangent. One can think of vy as the
“matching observer’s” worldline. Hence, in the timelike
case, the extrinsic curvature is nothing but the accelera-
tion of the matching observer. In the spatial case, on the
contrary, n is timelike and v is spacelike (and v tangent
to it). One can choose n to be future pointing and then
think of it as an observer field defined along the spatial
(one-dimensional) slice y. In view of Eq. (C7) one then
sees that the extrinsic curvature of vy is exactly’ the
shear expansion of n in direction of v “radial direction.”

In Appendix B we prove the following:

Theorem 1 (Equivalence of the junction conditions).
Let I' be a smooth non-null spherically symmetric
matching hypersurface between two spherically symmet-
ric spacetimes and n be a continuous choice of unit nor-
mal vector field on I". Assume, moreover, that the areal
radii of the two spacetimes are C' functions in an open
neighborhood of the matching hypersurfaces. Then the
DJC are equivalent to the SSJC.

BRecall that, because of our signature choice, the restriction
of the metric to spacelike directions is negative definite.
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Now suppose we are faced with the following situa-
tion: We are given two spherically symmetric solutions
of Einstein equation and we want to know if they can be
matched together at all, and if so, how to characterize
the curve 7y (respectively, the hypersurface I') along
which this is possible. Answers to these questions will be
provided by the junction conditions SSJC. Note that a
timelike or spacelike curve in the two-dimensional base
manifold (B,gp) can be described simply by a function
R(7), where R is the areal radius and 7 the curve’s arc
length which, in the timelike case, corresponds to the
matching observer’s proper time. The conditions (i) and
(iii) of the SSJC are then equivalent to the condition that
the functional dependence R(7) must be the same (up to
a trivial translation in 7) in both spacetimes to be
matched.

B. The Eisenstaedt theorem

Perhaps the simplest attempt to model a compact
body (star) in an expanding universe is trying to inglo-
bate it in a FLRW spacetime and to assume, for simplic-
ity, that the body is spherically symmetric. A direct con-
sequence of the SSJC is the following intuitive appealing
theorem due to Eisenstaedt (1977):

Theorem 2 (Eisenstaedt, 1977). Excise the full world-
tube W, of a comoving ball of comoving radius r, from
a FLRW spacetime and insert instead a spherical sym-
metric inhomogeneity (hence a piece of a spherically
symmetric spacetime together with a related matter
model, satisfying Einstein’s equations). Then a necessary
condition for the resulting spacetime to satisfy Einstein’s
equation is that the MS energy of the inserted inhomo-
geneity equals that of the excised ball.

This says that the mean energy density (measured
with the MS energy) of spherically symmetric inhomo-
geneities must be the same as the one of the FLRW
spacetime. That the FEisenstaedt theorem is a conse-
quence of the Darmois junction conditions was already
pointed out in Hartl (2006).

C. The Einstein-Straus vacuole revisited

As another application of the above described match-
ing procedure we revisit the Einstein-Straus solution
(Einstein and Straus, 1945, 1946; Schiicking, 1954),
which originally consists on a Schwarzschild spacetime
(called “vacuole”) matched to a dust FLRW universe
with zero cosmological constant. Later, this model was
generalized also to the case of a nonvanishing cosmo-
logical constant (Balbinot et al., 1988). We treat here the
general case of an arbitrary cosmological constant and
show that the SSJC allow substantial simplifications of
the computations. This technique can also be applied to
Bonnor’s vacuole construction in LTB spacetimes.

Notice that the matching condition (56) implies, in
particular, that the pressure must be continuous through
the matching hypersurface. Since the interior is a
vacuum spacetime, it follows that the pressure must van-
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ish also on the exterior part of the matching hypersur-
face and hence everywhere on the FLRW spacetime.
That is why one has to restrict to dust FLRW space-
times.

Since we leave the cosmological constant A arbitrary
(it may be positive, negative, or zero) the inner region
is given, respectively, by a Schwarzschild—de Sitter,
Schwarzschild-anti-de Sitter,'* or Schwarzschild space-
time (all abbreviated henceforth by SdS). Recall that the
SdS spacetime is given by the vacuum solution to Ein-
stein equation with cosmological term

g3 =V(R)dT? - V(R)"'dR? - R’g, (59a)
where
V(R)=1-2m/R - AR?/3. (59b)

Above g denotes the metric on the unit two-sphere
(31) and m is a constant which represents the central
mass.

A dust FLRW spacetime is given by the metric

2

>
1 - kr?

g RV =dp? - a(t)z( + rzgsz) (60)
together with the matter energy-momentum tensor”> T
=ou®u, where u=a/ dt is the (geodesic) velocity field of
the cosmological dust and ¢ is the matter energy density,
which depends on ¢ only. Here r is the comoving radial
coordinate and k is a constant which takes the values
0,-1,+1, depending on whether the spatial slices have
zero, negative, or positive curvature, respectively. The
Einstein equation is then equivalent to the following set
given by the Friedmann equation and a “conservation
equation”:

(z’)iﬁ C A,
a a @ 3 7

3
Qa’ = const,

(61a)

(61b)

where the constant C:=87gai/3 depends on the initial
conditions ay:=a(ty) and @, := @(fy) at some “initial” time
to. Here the dot denotes differentiation with respect to ¢
or, which is the same, along u.

The central question is now the following: How shall
we cut hypersurfaces I'sgs= ¥sqs X S? and T'gp gw= VrLrW
X 8% in the spacetimes SdS and, respectively, FLRW in
order that the resulting pieces can be matched? In order
to apply the SSJC we have to compute the MS energy
for both spacetimes. For the FLRW spacetime one has
RFLRW(t,r)za(t)r and hence dRFLRWZdrdt+adr and

%“The Schwarzschild— (anti-) de Sitter metric (59a) is often
called the Kottler solution, after Friedrich Kottler, who was the
first to write down this metric (Kottler, 1918). More details on
its analytic and global structure may be found in Geyer (1980).

15Throughou‘[ we denote the metric-dual (one-form) of a
vector u by underlining it, that is, u:=g(u,-) is the one-form
metric-dual to vector u. In local coordinates we have u
=u*d, and u=u,dx", where u, =g, u".
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(dR,dR)p grw=g"'R ,R ,=r*(k+d*)-1. From the defini-
tion (58) one then gets, using Friedmann’s equation,

EpLrw = 47/3) R} qw(@ + 0)), (62)

where 0,:=A/87 is the energy density associated with
the cosmological constant. Notice that this expression, as
well its derivation, is completely independent of the spe-
cific equation of state of the fluid and does not depend
on the spatial curvature k. For the SdS case one has
Rsgs=R and thus (dR,dR)s4s=—V(R) and

Egas=m + (47/3)Ri3s0- (63)

Now, the last two conditions of the SSJC, that is the
continuity of areal radius and MS energy across the
matching hypersurface (yet to be determined), are
equivalent to the continuity of the areal radius R rw
=Rg4s =: R, together with the suggestive relation

m=(4m/3)R3p. (64)

These two conditions already determine the matching
hypersurface. Indeed, inserting R =Ry gw=a(f)r into Eq.
(64) and using @(f)a*(t)=const valid for dust FLRW
models, one obtains the matching radius in terms of the
FLRW comoving radial coordinate,

m 13
=ry:= <—3> = const. (65)
(47/3)ap00
Here ag:=al(ty), and similarly for o, where ¢, is some
fixed “initial” time. This means that the matching ob-
server moves, in the FLRW spacetime, along the integral
curve of u=d/dt with initial condition (¢,,r,) and hence
is comoving with the cosmological matter.

So far we used the last two of the SSJC. As discussed
above, the continuity of the areal radius and the arc
length (the proper time, in the timelike case) of the
matching curve are equivalent to the equality of the
functional dependencies R(7) (up to a possible trivial
translation in 7) which describe the matching curves in
the two spacetimes to be matched. Now, because of Eq.
(65), the matching curve (worldline) in the FLRW space-
time is

R(7) =a(7)ro, (66)

where a is the (unique) solution of the Friedmann equa-
tion (61a) with initial condition a, at 7y=t,. (Recall that
in FLRW the proper time of an observer moving along
an integral line of u equals the cosmological time, hence
7=t.) From what we said above, the same functional re-
lation R(7) must hold also in the SdS—provided we
identify R with the areal radius and 7 with the matching
observer’s proper time, both referred to the SdS space-
time. This determines the matching curve in SdS.
Finally we need to show that the junction condition
(ii) is satisfied, hence that the matching observer’s accel-
erations coincide. Looking at the matching worldline
from the FLRW spacetime, it is immediately clear that it
is geodesic, hence its acceleration, vanishes. To conclude
the matching procedure, we have to check that this is
also true for the matching worldline in the SdS space-
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time. For this, one has to check that the function defined
in Eq. (66) satisfies the geodesic equation for a radial
motion. The latter is given by

R2+V(R) =é2, (67)

where e:=g%(8d/dT,v)=const and v=T8/dT+RJ/ IR
is the matching observer in the SdS spacetime. [Equa-
tion (67) can be derived from the fact that
v(g%8(9/ 9T ,v))=0, since @/aT is Killing and v geode-

sic. Inserting e:=g%(d/dT,v)=V(R)T into the normal-

ization condition 1=g%(v,v)=V(R)T2~R?/V(R) one
arrives at Eq. (67).] Now, inserting Eq. (66) with Eq. (65)
into Eq. (67) and using the Friedmann equation (61a),
one gets R*+V(R)=1-krj. Hence, the geodesic equa-
tion (67) is satisfied (with e?=1-krj) and herewith all
four junction conditions.

D. The McVittie model

Among all models discussed which represent a quasi-
isolated spherically symmetric gravitating system melted
into a cosmological spacetime, the one that is presum-
ably best understood as regards its analytical structure
as well as its physical assumptions is that of McVittie
(1933), thanks to the careful analysis of Nolan (1998,
1999a, 1999b). Here we restrict to the “flat” or k=0
model, which interpolates between an exterior
Schwarzschild solution, describing a local mass, and a
spatially flat (i.e., k=0) ambient FLRW universe. For
simplicity from now on we refer to this model simply as
the McVittie model. The cosmological constant is as-
sumed to be zero, although this assumption is not essen-
tial (see the last paragraph of Sec. V.D.1).

This is not to say that this model is to be taken at face
value in all its aspects. Its problems lie in the region
close to the central object, where the basic assumptions
on the behavior of matter definitely turn unphysical.
However, at radii much larger than (in geometric units)
the central mass (defined below) the k=0 McVittie solu-
tion seems to provide a viable approximation for the
transition between a homogeneous cosmological space-
time and a localized mass immersed in it. We now dis-
cuss this model and look at its geodesic equations, show-
ing that they reduce to Eq. (12) in an appropriate weak-
field and slow-motion limit. This provides another and
more solid justification for the Newtonian approach car-
ried out in Sec. III.

The characterization of the McVittie model is made
through two sets of a priori specifications. The first set
concerns the metric (left side of Einstein’s equations)
and the second set the matter (right side of Einstein’s
equations). The former consists in an ansatz for the met-
ric, which can formally be described as follows: Write
down the Schwarzschild metric for the mass parameter
m in isotropic coordinates, add a conformal factor a?(¢)
to the spatial part, and allow the mass parameter m to
depend on time. Hence the metric reads
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_(1=mWizr ’ 2 ( m>4 2 s
- (1 +m(l‘)/2r> dr {1+ 5 ) () (dr+rgs),
(68)

where g2 is given by Eq. (31). The metric (68) is spheri-
cally symmetric with the spheres of constant radius r
being the orbits of the rotation group. We discuss below
what this ansatz actually entails. For later convenience
we also introduce the orthonormal tetrad {e,},—...3
with respect to Eq. (68), where'®

e, =0/ ax*| " dldx* (69)

and {x*}={t,r, 0, ¢}.

The second set of specifications, concerning the mat-
ter, is as follows: The matter is a perfect fluid with den-
sity ¢ and isotropic pressure p. Hence its energy-
momentum tensor is given by

T=oudu+pueu-g). (70)

Furthermore, and this is where the two sets of specifica-
tions make contact, the motion of the matter is given by

u=e. (71)

No further assumptions are made. In particular, an equa-
tion of state, like p=p(@), is not assumed. The reason for
this will become clear soon.

Note that the vector field (71) is not geodesic for the
metric (68) (unlike for the FLRW and Gautreau met-
rics), which immediately implies that the pressure can-
not be constant. Being spherically symmetric, u is auto-
matically vorticity free. The last property is manifest
from its hypersurface orthogonality, which is immediate
from Eq. (68). Moreover, u is also shear free. This, too,
can be immediately read off Eq. (68) once one takes into
account the result that for spherically symmetric metrics
vanishing shear for a spherically symmetric vector field
is equivalent to the corresponding spatial metric being
conformally related to a spherically symmetric flat met-
ric. This is obviously the case here.

The nonvanishing components of the Einstein tensor
with respect to the orthonormal basis (69) are

Ein(e,,e)) = 3F7, (72a)
. ) A
Eln(ei,e]') =—|3F + ZEF 511, (72b)
2 [A\?
Ein(ey,e;) = P(E) (am)’, (72¢)

where an overdot denotes differentiation along @/ dx.
Before explaining the functions A, B, R, and F, we make
the important observation that the Einstein tensor is
spatially isotropic, where “spatially” refers to the direc-
tions orthogonal to e, By this we mean that Ein(e;,e;)
x §; or, expressed more geometrically, that the spatial

owe write [[v] = |g(v,v)].
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restriction of the Einstein tensor is proportional to the
spatial restriction of the metric.
In Eq. (72) and in the following we set

A(t,r):==1+m(0)/2r, B(t,r):=1-m()2r (73)
and

R(t,r) =[1+m()/2rFa(t)r, (74)
where R is the areal radius for the McVittie ansatz (68),
and also

a 1 (am)y
£, 9

Fi= (75)

a rB a
In passing we note that F has the geometric interpreta-
tion of being one-third the expansion of the vector field
e, that is, F=div(e;)/3. Hence Eq. (72) could also be
written in the form Ein(e,,e,)=[div(e;)]*/3. We will see
later that the product am which appears in Eq. (72¢) also
has a geometric meaning: it is just the Weyl part of the
MS energy; see Eq. (81).
Now, the nonvanishing components of the energy mo-
mentum tensor (70) and (71) are

T(ey.e0) =0, Tl(e,e)=ps;. (76)

The (ey,e;) component of Einstein’s equation therefore
implies (am) =0, which means that the Weyl part of the
MS energy is constant. Physically this can be interpreted
as saying that the central object does not accrete any
energy from the ambient matter. Using the constancy of
am in Eq. (75) we immediately get

F=dla=H. (77)

Hence Einstein’s equation is equivalent to the following
three relations between the four functions m(z), a(f),
e(,r), and p(z,r):

(am) =0, (78a)
a 2

871-9:3(;) , (78b)

. 3(@)2 2<_><%> (786)

=" a)  \a)\1-mpr) ¢

Note that here Einstein’s equation has only three inde-

pendent components (as opposed to four for a general

spherically symmetric metric), which is a consequence of

the fact, already stresses above, that the Einstein tensor

for the McVittie ansatz (68) is spatially isotropic.
Equation (78a) can be integrated,

m(t) = mgla(t), (79)

where m, is an integration constant. Below we show that
this integration constant is to be interpreted as the mass
of the central body. We call the metric (68) together with
condition (79) the McVittie metric.

Clearly the system (78) is underdetermining. This is
expected since no equation of state has yet been im-
posed. The reason why we did not impose such a condi-
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tion can now be easily inferred from Eq. (78): whereas
Eq. (78b) implies that ¢ only depends on ¢, Eq. (78c)
implies that p depends on ¢ and r iff (d/a) #0. Hence a
nontrivial relation p=p(@) is incompatible with the as-
sumptions made so far. The only possible ways to specify
p are p=0 or 0+p=0. In the first case Eq. (78¢c) implies
that d@/a=0 if my# 0 (since then the second term on the
right-hand side is r dependent, whereas the first is not,
so that both must vanish separately), which corresponds
to the exterior Schwarzschild solution, or a(f) <3 if
my=0, which leads to the flat FLRW solution with dust.
In the second case the fluid just acts like a cosmological
constant A=8m@ (using the equation of state ¢ +p=0 in
div T=0 it implies dp=0 and this, in turn, using again the
equation of state, implies dp=0) so that this case re-
duces to the Schwarzschild—de Sitter solution. To see
this explicitly, notice first that Egs. (78b) and (78¢) imply
the constancy of H=a/ a=yA/3 and hence one has a(1)
=a exp(t\s’M). With such a scale factor the McVittie
metric (68) with Eq. (79) turns into the Schwarzschild—de
Sitter metric (59a) and (59b) in disguise. The explicit for-
mulas for the coordinate transformation relating the two
can be found in Robertson (1928) and also in Klioner
and Soffel (2005). Finally, note from Eq. (78a) that con-
stancy of one of the functions m and a implies constancy
of the other. In this case Egs. (78b) and (78¢c) imply o
=p=0, so that we are dealing with the exterior Schwarzs-
child spacetime.

A specific McVittie solution can be obtained by
choosing a function a(¢), corresponding to the scale func-
tion of the FLRW spacetime which the McVittie model
is required to approach at spatial infinity, and the con-
stant m, corresponding to the “central mass.” Relations
(78b), (78c), and (79) are then used to determine @, p,
and m, respectively. Clearly this “poor man’s way” to
solve Einstein’s equation holds the danger of arriving at
unrealistic spacetime-dependent relations between @
and p. This must be kept in mind when proceeding in
this fashion. For further discussion of this point see No-
lan (1998, 1999a).

1. Interpretation of the McVittie model

In this section we discuss the interpretation of the
McVittie model, its singularities, trapped regions, sym-
metry properties, and also the motion of the matter. In
doing this, we take care to isolate those properties which
are intrinsic to the ansatz (68) independent of the impo-
sition of Einstein’s equation. The analysis can then also
be applied to all generalizations which maintain the an-
satz (68). Generalizations in this sense have been dis-
cussed in Faraoni and Jacques (2007), on which we com-
ment at the end of this section.

According to what has just been said, we regard the
McVittie solution as a candidate model for an isolated
mass m, in an “otherwise” flat FLRW universe with
scale function a(f). As emphasized in the Introduction,
this requires specific justification in view of the fact that
simple superpositions of solutions are disallowed by the
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nonlinearities. A set of criteria for when a solution rep-
resents a localized mass immersed in a flat FLRW back-
ground have been proposed and discussed in Nolan
(1998). The basic idea is to employ the MS energy (in a
spherically symmetric context, where it is equivalent to
the Hawking mass) in order to detect localized sources
of gravity. We follow this approach and for this purpose
compute the Ricci and the Weyl part of the MS energy.

This we now do for the class of metrics (68), without
at first making any use of Einstein’s equation. The geo-
metric definition of the MS energy in terms of the sec-
tional curvature, together with formula (A10b) for its
Ricci part specialized to metrics with spatially isotropic
Einstein tensor, implies that the Ricci part of the MS
energy is given by

Eg=+R’Ein(e,e)). (80)

The Weyl part is then obtained as the difference be-
tween the full MS energy and Eq. (80). We use Eq. (58)
for the former and write (dR,dR)=[e,(R)]*—[e;(R)]*.
The part involving ey(R) equals Eq. (80), due to the re-
lation Ein(e,,e;)=3[dR(ey)/R]?, which follows from the
comment below Egs. (75) and (D54) (for vanishing
shear). The Weyl part of the MS energy is therefore
given by (R/2)(1-[e;(R)]?). From Eq. (74) we calculate
e;(R) and hence obtain for the Weyl part of the MS
energy,

Ey=am. (81)

Now we invoke Einstein’s equation with source (70)
and four-velocity (71). Then the Ricci and Weyl contri-
butions to the MS energy can be written in the following
form, also taking into account Eq. (79):

Er=(47/3)R%, (82a)

EW =my. (82b)

Identifying the gravitational mass of the central object
with the Weyl part of the MS energy, its constancy
means that no energy is accreted from the ambient mat-
ter. As regards the Ricci part, note that the factor
(47r/3)R? in Eq. (82a) is smaller than the proper geomet-
ric volume within the sphere of areal radius R. This can
be attributed to the gravitational binding energy that
diminishes the gravitational mass of a lump of matter
below the value given by the proper space integral of
T(ey,ep). This is shown in Appendix D.4, in particular in
the exact equation (D47) and its leading-order approxi-
mation (D49).

It is also important to note that the central gravita-
tional mass in McVittie’s spacetime may be modeled by
a shear-free perfect-fluid star of positive homogeneous
energy density (Nolan, 1993). The matching is per-
formed along a world-tube comoving with the cosmo-
logical fluid, across which the energy density jumps dis-
continuously. This means that the star’s surface is
comoving with the cosmological fluid and hence, in view
of Eq. (89), that it geometrically expands (or contracts).
This feature, however, should be seen as an artifact of
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the McVittie model [in which the relation (89) holds],
rather than a general property of compact objects in any
cosmological spacetimes. Positive pressure within the
star seems to be only possible if 2ai+a><0 [see Eq.
(3.27) in Nolan (1993) with a=exp(8/2)], that is, for de-
celeration parameters g >1/2.

Next we comment on the singularity properties of the
McVittie model. From Eq. (78c¢) it is clear that, unless
d/a is constant (the Schwarzschild—de Sitter case) or m
=0 (FLRW case), the pressure diverges at r=m/2 (that is
at R=2my=Ry). In fact, this corresponds to a genuine
curvature singularity which is built into the McVittie an-
satz (68) independently of any further assumption. To
see that r=m/2 (corresponding to R=2am=2Ey) is a
singularity it suffices to consider the scalar curvature
(i.e., the Ricci scalar) of Eq. (68),

A .
Scal=—12F* - 6—F, (83)
B

which is readily computed from Eq. (72). Carrera and
Giulini (2009) showed that this becomes singular in the
limit r —m/2, with the only exceptions being the follow-
ing three special cases: (i) m=0 and a arbitrary (FLRW
spacetimes), (ii) @ and m constant (Schwarzschild space-
time), and (iii) (am) =0 and (d/a) =0 (Schwarzschild—de
Sitter spacetime). This means that, as long as we stick to
the ansatz (68), at r=m/2 there will always (with the
only exceptions listed above) be a singularity in the Ricci
part of the curvature and thus, assuming Einstein’s equa-
tion is satisfied, also in the energy momentum tensor,
irrespectively of the details of its underlying matter
model. Hence any attempt to eliminate this singularity
by maintaining the ansatz (68) and merely modifying the
matter model is doomed to fail. In particular, this is true
for the generalizations in Faraoni and Jacques (2007),
contrary to what is claimed in that work. We also remark
that it makes no sense to absorb the singular factors 1/B
in front of the time derivatives by writing (A/B)d/dt as
e, and then argue, as done in Faraoni and Jacques
(2007), that this eliminates the singularity. The point is
simply that then e, applied to any continuously differen-
tiable function diverges as r—m/2. Below we show that
this singularity lies within a trapped region. Turning
back to the McVittie model, recall that in this case it is
assumed that the fluid moves along the integral curves of
d/ dt, which become lightlike in the limit as r tends to
m/2. Their acceleration is given by the gradient of the
pressure, which necessarily diverges in the limit r
—m/2, as one explicitly sees from Eq. (91). For a more
detailed study of the geometric singularity at r=m/2, see
Nolan (1999a, 1999b).

For spherically symmetric spacetimes the Weyl part of
the curvature has only a single independent component
[see Eq. (D8a)] which, by its very definition, is —2/R>
times the Weyl part of the MS energy [see Eq. (D36)].
The square of the Weyl tensor for the ansatz (68) may
then be conveniently expressed as [see Eqgs. (81) and
(D37)]
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(Weyl,Weyl) = 48(am)?/R°. (84)

This shows that R=0 also corresponds to a genuine cur-
vature singularity, though this is not part of the region
covered by our original coordinate system, for which r
>m/2 (that is R>2Ey).

It is instructive to also determine the trapped regions
of McVittie spacetime. We do this using the McVittie
ansatz (68) and making no further assumptions. Recall
that a spacelike two-sphere § is said to be trapped, mar-
ginally trapped, or untrapped if the product "6~ of the
expansions [defined below Eq. (D29)] for the ingoing
and outgoing future-pointing null vector fields normal to
S is positive, zero, or negative. Taking S to be Sg, that is,
a sphere of symmetry with areal radius R, it immediately
follows from Eq. (D31) that Sy is trapped, marginally
trapped, or untrapped iff (dR,dR) is positive, zero, or
negative, respectively. This corresponds to timelike,
lightlike, or spacelike dR, or, equivalently, in view of Eq.
(58), to 2E - R being positive, zero, or negative, respec-
tively. Using Eq. (80) together with Eq. (72a), the MS
energy for the McVittie ansatz can be written as E
=Ew+R3F?/2, so that

2E-R=FR*-R+R;, (85)

where Rg:=2FEy denotes the “generalized” Schwarzs-
child radius. Note that in general F depends itself on the
radial coordinate—except for the McVittie case, in
which one has F=H=:1/Ry (Ry denotes the Hubble ra-
dius). For computational simplicity we specialize in the
following to the McVittie case, referring to Carrera and
Giulini (2009) for the general case. Doing this, Eq. (85)
becomes a cubic polynomial in R which is positive for
R=0 and tends to = for R— +%. Hence it always has a
negative zero (which does not interest us) and two posi-
tive zeros iff

RyR;; <2/3Y3~0.38. (86)

This corresponds to the physical relevant case where the
Schwarzschild radius is much smaller than the Hubble
radius. One zero lies in the vicinity of the Schwarzschild
radius and one in the vicinity of the Hubble radius, cor-
responding to two marginally trapped spheres. The ex-
act expressions for the zeros can be easily written down,
but are not very illuminating. In leading order in the
small parameter Rg/ Ry, they are given by

R, =~ Ry[1+(RgRy)*, (87a)

From this one sees that for the McVittie model the ra-
dius of the marginally trapped sphere of Schwarzschild
spacetime (Rj) increases and that of the FLRW space-
time (Rj;) decreases. The first feature can be understood
as an effect of the presence of cosmological matter,
whereas the latter is an effect of the presence of a cen-
tral mass abundance. All the spheres with R<R; or R
>R, are trapped and those with R{<R<R, are un-
trapped. In particular, the singularity r=m/2, that is R
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=2FEw=Ry, lies within the inner trapped region.

Another aspect concerns the global behavior of the
McVittie ansatz (68). We note that each hypersurface of
constant time ¢ is a complete Riemannian manifold,
which, besides the rotational symmetry, admits a discrete
isometry given in (r, 6, ¢) coordinates by

#(r,0,9) =[(m/2)*r",6,0]. (88)

This corresponds to an inversion at the two-sphere r
=m/2 and shows that the hypersurfaces of constant ¢ can
be thought of as two isometric asymptotically flat pieces
joined together at the totally geodesic (being a fixed-
point set of an isometry and hence also minimal) two-
sphere r=m/2. Except for the time-dependent factor
m(t), this is analogous to the geometry of the r=const
slices in the Schwarzschild metric [the difference being
that (88) does not extend to an isometry of the space-
time metric unless m2=0]. This means, in particular, that
the McVittie metric cannot literally be interpreted as
corresponding to a point particle sitting at r=0 (r=0 is at
infinite metric distance) in a flat FLRW universe, just
like the Schwarzschild metric does not correspond to a
point particle sitting at »=0 in Minkowski space. Unfor-
tunately, McVittie seems to have interpreted his solution
in this fashion (McVittie, 1933) which even until recently
gave rise to some confusion in the literature [e.g.,
Gautreau (1984), Sussman (1988), Ferraris et al. (1996)].
A clarification was given by Nolan (1999a).

We now discuss the basic properties of the motion of
cosmological matter for the McVittie model. We men-
tioned that the vorticity and shear of the four-velocity u
vanish identically. On the other hand, the expansion (di-
vergence of u) is

0=3H, (89)

just as in the FLRW case [recall that here H:=d/a is
defined as in the FLRW case, see Eq. (77)]. In particular,
the expansion of the cosmological fluid is homogeneous
in space. The expression for the variation of the areal
radius along the integral lines of u (that is, the velocity
of cosmological matter measured in terms of its proper
time and the areal radius) is also just as in the FLRW
case,

u(R) = HR, (90)

which is nothing but Hubble’s law. The acceleration of u,
which in contrast to the FLRW case does not vanish, is
given by

mo(1+m/2r
V.u= R—;)(m)el (91)

In leading order in m/R this corresponds to the accel-
eration of the observers moving along @&/dT in
Schwarzschild spacetime [see Eq. (132) with A=0].

We conclude this section by commenting on the at-
tempts to generalize the McVittie model. The first gen-
eralization consists in allowing a nonvanishing cosmo-
logical constant. This is however trivial, since it is
equivalent to the substitution ¢ —+0, and p—p+py
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into Eq. (78), where 0,:=A/87 and p,:=—A/87 are the
energy density and pressure associated to the cosmologi-
cal constant A, respectively. Faraoni and Jacques (2007)
attempted to generalize the McVittie model by keeping
the ansatz (68) and relaxing the conditions on the matter
in various ways. More precisely, they showed that the
McVittie case may be generalized to allow for radial
fluid motions relative to the e, observer field [that is
relaxing condition (71)], provided one also allows for a
nonvanishing radial heat flow. Both energy flows are
necessary in order to get new solutions consistent with
the ansatz (68), even though the two radial energy flows
do not cancel in the energy balance. As a result, the
Weyl part of the MS energy will now change in time so
that the new solutions correspond to inhomogeneities of
variable strength due to accretion or loss of energy. For
further analysis of these solutions see Carrera and
Giulini (2009). Another generalization of the McVittie
model, this time away from the ansatz (68), is given in
Sultana and Dyer (2005). It is constructed by applying a
particular (time-dependent) conformal transformation
to the Schwarzschild spacetime. As shown in Carrera
and Giulini (2009), the metric so obtained cannot be
written in the McVittie form (68), contrary to what is
suggested in Faraoni and Jacques (2007). The corre-
sponding energy-momentum tensor (obtained via Ein-
stein’s equation) can be interpreted as a sum of two con-
tributions, one due to a perfect fluid and the other to a
null fluid.

2. Motion of a test particle in McVittie spacetime

We are interested in the motion of a test particle (ide-
alizing a planet or a spacecraft) in McVittie’s spacetime.
McVittie (1933) concluded within a slow-motion and
weak-field approximation that Keplerian orbits do not
expand as measured with the cosmological geodesic ra-
dius r =a(f)r. Later Pachner (1963) and Noerdlinger and
Petrosian (1971) argued for the presence of the accelera-
tion term (7) proportional to d/a within this approxima-
tion scheme, hence arriving at Eq. (12a). In the following
we show how to arrive at Eq. (12a) from the exact geo-
desic equation of the McVittie metric by making clear
the approximations involved. Related recent discussions
were given in Bolen et al. (2001), where the effects of
cosmological expansion on the periastron precession
and eccentricity are discussed for constant Hubble pa-
rameter H:=ad/a.

We again work with the areal radius R. Note that for
fixed ¢ the map r—R(t,r) is 2 to 1 and that R=2m,,
where R=2m, corresponds to r=mgy/2a. Hence we re-
strict the coordinate transformation (74) to the region
r>mgy/2a where it becomes a diffeomorphism onto the
region R>2m,. [The region R<2m, was investigated in
Nolan (1999b).] Reintroducing factors of ¢, McVittie’s
metric assumes the (nondiagonal) form in the region R
>2my [i.e., r>mgy/2a(t)]
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2h(t,R)

=[1-2u(R) - h(t,R)*|c*dr* + cdtdR
§ a V1 -2u(R)
dR? 5
where
w(R) :=mo/R, h(t,R) = H()Rlc (93)

with H(t):=(a/a)(t), as usual.

The equations for a timelike geodesic (i.e., param-
etrized with respect to proper time) 7—z*(7) with
g(z,z)=c? follows via variational principle from the La-
grangian L(z,2)=(1/2)g,.,(z)2#z". Spherical symmetry
implies conservation of angular momentum. Hence we
may choose the particle’s orbit to lie in the equatorial
plane #=/2. The constant modulus of angular momen-
tum is

R’¢=L. (94)

The remaining two equations are then coupled second-
order ODE:s for #(7) and R(7). However, we may replace
the first one by its first integral that results from g(z,z)

=c%

2h(t,R)

[1-2u(R) - h2(t,R)]c% + mciR
52
—(LIR*=¢%. (95)

C1-2u(R)

The remaining radial equation is given by
.. L?  myc? ;
R=[1=244(R) = h*(t.R)] 5 + —5-[1 - 2u(R)]P

~ RIHOM - 2u(R) ]V + H®’[1 - u(R)
m(R) - h*(L,R) R,

2 )
2AuR) - PR
1 —22®R) cH(t)(R/c)t=0. (96)

Recall that my=GM/c?, where M is the mass of the cen-
tral star in standard units.

Equations (95) and (96) are exact. We are interested in
orbits of slow motion (compared with the speed of light)
in the region where

Rg<R<Ry. (97)

Recall that Ry and Ry are the Schwarzschild and
Hubble radius, respectively [see Egs. (5) and (6)]. The
latter condition covers all situations of practical applica-
bility in the Solar System, since the Schwarzschild radius
Rg of the Sun is about 3 km=2X10"%a.u. and the
Hubble radius Ry, is about 13.7 X 10° ly=8.7x 10'* a.u.
The approximation now consists in considering small
perturbations of Keplerian orbits. Let 7 be a typical
time scale of the problem, like the period for closed or-
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bits or else R/v with v a typical velocity. The expansion
is then with respect to the following two parameters:

g, =~ vlc = (my/R)"?, (98a)

corresponding to a slow-motion and weak-field approxi-
mation, and

e, ~HT, (98b)

corresponding to the approximation for small ratios of
characteristic times to the age of the universe. In order
to make the expression to be approximated dimension-
less, we multiply Eq. (95) by 1/¢? and Eq. (96) by T?/R.
Then we expand the right-hand sides in powers of the
parameters (98a) and (98b), using the fact that
h:=(HR/c)= &,¢,. From this and Eq. (94) we obtain Eq.
(12) if we keep only terms to zero order in &; and lead-
ing (i.e., quadratic) order in &,, where we also reexpress
R as function of ¢. Note that in this approximation the
areal radius R is equal to the spatial geodesic distance
on the r=const hypersurfaces.

We mentioned that in the special case of con-
stant H=d/a the McVittie solution turns into the
Schwarzschild—de Sitter metric (59a) and (59b), which
also describes the spacetime inside the Einstein-Straus
vacuoles in case of nonvanishing cosmological constant.
Recently, exact expressions in terms of hyperelliptic
integrals for the integrated geodesic equation in
Schwarzschild—de Sitter spacetimes were derived in
Hackmann and Limmerzahl (2008a, 2008b). More-
over, a general discussion of Solar System effects
in Schwarzschild—de Sitter, like gravitational redshift,
light deflection, time delay, perihelion precession,
geodetic precession, and effects on Doppler tracking,
has been given in Kagramanova et al. (2006). For ex-
ample, it was found that a nonvanishing A could account
for the anomalous Pioneer acceleration if its value was
—107% m™2, which is minus 10'° times the current most
probable value. That value would also give rise to a peri-
helion precession four orders of magnitude larger than
the accuracy to which this effect has been measured to-
day.

We conclude by commenting on the geodesic equation
in the generalizations of McVittie’s model given in Sul-
tana and Dyer (2005) and Faraoni and Jacques (2007).
An essential feature, which distinguish these solutions
from the McVittie one, is that in the former the Weyl
part of the MS energy Ew=am is not a constant as for
McVittie but varies in time, meaning that there is an
accretion of cosmological matter by the inhomogeneity
[see Carrera and Giulini (2009)]. In view of the fact that
the combination

mlr=A’EywIR ~ Ey/R (99)

contained in the McVittie ansatz gives (minus) the
“Newtonian” part of the potential in the slow-motion
and weak-field approximation (see Sec. V.D.2), we de-
duce that in order to get the geodesic equation for the
generalized McVittie models it suffices to substitute m
with Ey in the equation of motion derived in Sec. V.D.2.
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This means that the strength of the central attraction
varies in time, leading to an in or out spiraling of the
orbits if Ey is increasing or decreasing, respectively.

3. Exact condition for nonexpanding circular orbits in
McVittie spacetime

Analogously to Sec. IV.B, where we ask whether there
exist nonexpanding circular orbits (i.e., of constant areal
radius) of the electron-proton system in a FLRW space-
time, we now ask whether there exist nonexpanding cir-
cular orbits of an (uncharged) test particle around the
central mass. The necessary and sufficient condition for
this to happen follows from inserting R=const in the
radial part of the geodesic equation (96) and using the
normalization condition (95) of the four-velocity in order

to eliminate ¢. In terms of the dimensionless quantities
h(t):=RH(t)/c, :=L/Rc, and u:=mg/R, the condition for
the existence of nonexpanding circular orbits can be
given in the following form:
Eh (1 =2p— W) (1 +3P) - P = 1]
c (1+P\1-2pu '

(100)

As for the electron-proton system in an FLRW space-
time [see Eq. (51)] this is a first-order autonomous
ODE for A(t) and therefore the Hubble function. In the
present case the ODE is even simpler since it has the
elementary form h=p(h?), where p is a polynomial of
degree two with constant coefficients. From Eq. (100), to
leading order in the small quantities u, /2, and h?, we get
the same approximate ODE (54) and hence the same
approximate solutions (55a)—(55¢). Hence, the same con-
clusions as drawn for the electron-proton system in
FLRW apply here.

From Eq. (100) it follows that stationary solutions
h(t)=const=:h,, corresponding to an exponentially
growing scale factor (52) (and hence leading to a
Schwarzschild-de Sitter spacetime), are those where h
satisfies

(P +h2)/(1+3P) = u, (101)

where we used that the first factor on the numerator of
the right-hand side of Eq. (100) is nonzero, as can be
immediately inferred from the normalization condition
(95). Notice that for a vanishing Hubble parameter (that
is, for hy=0) the above condition reduces to the third
Kepler law in Schwarzschild spacetime, as expected. The
effect of a nonvanishing Hubble parameter is again that
we must provide the orbiting particle with a smaller an-
gular velocity (smaller /) in order to keep it on a nonex-
panding circular orbit with the same radius. The largest
radius at which in a McVittie spacetime with exponen-
tially expanding scale factor (that is a Schwarzschild—de
Sitter spacetime) there is a nonexpanding circular orbit
follows from Eq. (101) in the limit /—0. Then the con-
dition reduces to hg:,u which, solving for R, gives
(RgR%,/2)'. This, exactly corresponds to the critical ra-
dius (16), taking into account that gy=-1 for an expo-
nentially growing scale factor.
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VI. KINEMATICAL EFFECTS

In this section we discuss the influence of cosmic ex-
pansion upon measurements of relative distances, ve-
locities, and accelerations. These kinematical notions
loose their a priori meaning in general spacetimes, in
particular in time-dependent ones. Hence it is of utmost
importance to carefully reconsider statements concern-
ing such notions and their precise relations to locally
observable quantities.

A. Einstein versus cosmological simultaneity

Misidentifications in the notion of simultaneity can
give rise to apparent anomalies in velocities and accel-
eration. Such an effect has been suggested in Rosales
and Sanchez-Gomez (1998) and again in Rosales (2002)
to be able to account for the PA. Their argument says
that in a spatially flat FLRW universe the mismatch be-
tween adapted cosmological coordinates, on the one
hand, and radar coordinates, on the other hand, amount
to an apparent difference in radial acceleration of mag-
nitude (1). We agree on the existence and conceptual
importance of such an effect but we disagree on the
magnitude, which seems to have been grossly overesti-
mated as shown below.

The cause of such effects lies in the way one actually
measures spatial distances and determines the clock
readings they are functions of (a trajectory is a “dis-
tance” for each given “time”). The point is this: equa-
tions of motions give us simultaneous (with respect to
cosmological time) spatial geodesic distances as func-
tions of cosmological time. This is what we implicitly did
in the Newtonian analysis. But, in fact, spacecraft rang-
ing is done by exchanging electromagnetic signals. The
notions of spatial distance and simultaneity thereby im-
plicitly used are not the same as those we referred to
above. Hence the analytical expression of the “trajec-
tory” so measured will be different.

We first recall the local version of Einstein si-
multaneity in general spacetimes (M,g). We take ds
=gudx*dx" to carry the unit of length so that dr=ds/c
carries the unit of time. In general coordinates {x*}
={t,x"}, where x"=t denotes the timelike coordinate, the
metric reads

ds*=g wdxtdx” = g,dt? +2gdtdx’ + gl-]-dxidxj . (102)

The observer at fixed spatial coordinates is given by the
vector field [normalized to g(u,u)=c?]

u=d|ad| A= ——alor.
N

(103)

Consider the light cone with vertex p € M; one has ds?
=0, which allows to solve for dr in terms of the dx' (all
functions g,, are evaluated at p, unless noted other-
wise),
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dty =Syl + \/(gLf’i - &[)dxidxf.
8t 8 8t

(104)

The plus sign corresponds to the future light-cone at p,
the negative sign to the past light-cone. An integral line
of u in a neighborhood of p cuts the light-cone in two
points, g, and q_. If 7, is the time assigned to p, then
tq+:tp+dtl and 1, =1,+dt,. The coordinate-time separa-
tion between these two cuts is tq+—tq7=dtl—dt2, corre-
sponding to a proper time vg,(dt;—dt,)/ca for the ob-
server u. This observer will associate a radar distance dl,
to the event p of ¢/2 times that proper time interval, that
is,

dli =h= (gtigtj/gtt - gij)dxidxj- (105)

The event on the integral line of u that the observer
will call Einstein synchronous with p lies in the middle
between ¢, and ¢_. Its time coordinate is in first-order
approximation given by %(tq++tq7)=tp+%(dt1+dt2)=tp
+dt, where

dt:= %(d[l +dty) = — (8,/8)dx". (106)

This means the following: The integral lines of u are
parametrized by the spatial coordinates {xi}i=1,2,3. Given
a point p, specified by the orbit coordinates x;, and the
time coordinate 7,, we consider a neighboring orbit of u
with orbit coordinates x;+dxi. The event on the latter
which is Einstein synchronous with p has a time coordi-
nate f,+dt, where dt is given by Eq. (106), or equiva-
lently

0:=dt + (g,/g,)dx' =0. (107)

Using a differential geometric language we may say that
Einstein simultaneity defines a distribution 8=0.

The metric (102) can be written in terms of the radar-
distance metric 4 (105) and the simultaneity one-form 6
as follows:

ds® = gudxtdx” = 8.0 —h, (108)

showing that the radar distance is just the same as the
Einstein-simultaneous distance. A curve vy in M inter-
sects the flow lines of u perpendicularly iff 6(y)=0,
which is the condition that neighboring clocks along vy
are Einstein synchronized.

We now apply the foregoing to isotropic cosmological
metrics. In what follows we drop for simplicity the an-
gular dimensions. Hence we consider metrics of the
form

ds® = dt’ — a(t)*dr’. (109)
The comoving observer field
u=cdlot (110)

is geodesic and of expansion 3H. On a hypersurface of
constant ¢ the radial geodesic distance is given by a(f)r.
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Making this distance into a spatial coordinate r, we con-
sider the coordinate transformation

t—=t =t r—r_=al)r. (111)
The field @/ 9, is given by

dlot, = dldt— Hrdldr, (112)
to which the observer field

u,:=claor | aor, (113)

corresponds. In contrast to Eq. (110), whose flow con-
nects comoving points of constant coordinate r, the flow
of Eq. (112) connects points of constant geodesic dis-
tances, as measured in the surfaces of constant cosmo-
logical time. This could be called cosmologically instan-
taneous geodesic distance. It is now important to realize
that this notion of distance is not the same as the radar
distance that one determines by exchanging light signals
in the usual (Einsteinian) way. We now explain this in
detail.

From Eq. (111) we have adr=dr —r Hdt, where H
:=d/a (Hubble parameter). Rewriting the metric (109) in
terms of 7, and r, yields

ds?®=c2(1 - (Hr [c)})dt* - dr? + 2Hr dtdr,

) 5 Hr:iz/c2 2
=cHl - (Hr /o) dt, + ————=dr.

(- i s = s,
8t .t

dri
1—(HrJc)*

—_—

h (114)

Hence the differentials of radar distance and time lapse
for Einstein simultaneity are given by

dr,
dl,= — | (115a)
V1 - (Hr fc)?
Hr /c?
=- (115b)

dt,=——————dr,.
1 - (Hr,Jc)?

Let the distinguished observer (us on Earth) now
move along the geodesic r,=0. Integration of Eq. (115)
from r,=0 to some value r, then gives the radar distance
[, as well as the time lapse Af, as functions of the cos-
mologically simultaneous geodesic distance r:
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I, = (c/H)arcsin(Hr /c)

= r*{l + é(Hr*/c)z + O((Hr*/c)3)}, (116a)

At, = (12H)In[1 - (Hr,/c)?]

= (r*/c){— %(Hr*/c) + (’)((Hr*/c)z)}. (116b)

Combining both equations in Eq. (116) allows us to ex-
press the time lapse in terms of the radar distance

At, = H ' In[cos(Hl /c)]

= (l*/c){— %(Hl*/c) + O((Hl*/c)z)}. (117)

Now, suppose a satellite S moves on a worldline r (z)
in the neighborhood of our worldline r,=0. Assume that
we measure the distance to the satellite by radar coordi-
nates. Then instead of the value r, we would use /, and
instead of the argument ¢, we would assign the time ¢,

—At, which corresponds to the value of cosmological
time at that event on our worldline that is Einstein syn-

chronous to the event (¢,,r,); see Fig. 2.
Hence we have

1.(t,) = (c/H)sin Yr (¢, + At,)H/c} (118a)

~r, - %(v/c)(Hc)(r*/c)z, (118b)

where Eq. (118b) is Eq. (118a) to leading order and all
quantities are evaluated at .. We set v=r,.

To see what this entails we Taylor expand in ¢, around
t,=0 (just a convenient choice),

1
I’*([x) =rp+ Uot* + _[loti"' te

119
> (119)
and insert in Eq. (118b). This leads to
1

l*(t*):fo'i'l;ol*'i'idoti'f' e, (120)
where

_ 1 5

Fo=rp— (Hc)z(vo/c)(ro/c) , (121a)

0o =g — (He)(vylc)*(rylc), (121b)

dy=ag— (Ho){(vo/c)® + (rolc)(vylc)(aplc)}. (121c)

These are, in quadratic approximation, the sought-after
relations between the quantities measured via radar
tracking (tilded) and the quantities which arise in the
(improved) Newtonian equations of motion (not tilded).

In particular, the last equation (121c) shows that there
is an apparent inward pointing acceleration, given by Hc
times the (v/c)*+--- term in curly brackets. As discussed
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observer: ry =0

\ satellite: 74 (¢«)

P2 @

tx = const.

Po @

FIG. 2. An observer moves on the geodesic worldline r =0
and observes a satellite by exchanging electromagnetic signals
(dashed line). Event p, corresponds to the signal emission by
the observer, p; to its reflection by the satellite, and p, to its
reabsorption by the observer. ¢, denotes the cosmological time
and the two curved lines correspond to hypersurfaces of con-
stant .. On the observer’s worldline event A is defined to be
simultaneous to p; with respect to 7, and A’ is defined to lie
half-way in proper time between p, and p, on the observer’s
worldline. In cosmological time A’ is A¢_ ahead of A. In cos-
mological coordinates, the satellite’s trajectory is represented
by the a function ¢ +>r (¢,), where r (¢,) denotes the proper
geodesic distance in the hypersurface r, =const between its in-
tersection points with both worldlines. However, using radar
coordinates, the observer takes A’ to be simultaneous with p;
and uses [, as measure for the satellite’s simultaneous distance.
Since r, and /_ are related by Eq. (116a), it follows that the
observer uses the function ¢~/ (r (t,—At)) to characterize
the satellite’s trajectory, which leads to Eq. (118).

in the Introduction, Hc is indeed of the same order of
magnitude as the PA, as emphasized in Rosales and
Sanchez-Gomez (1998) and Rosales (2002). However, in
contrast we also get the additional term in curly brack-
ets, which in case of the Pioneer spacecraft suppresses
the Hc term by 13 orders of magnitude!17 Hence we
conclude that, with respect to the PA, there is no signifi-
cant kinematical effect resulting from the distinct simul-
taneity structures inherent in radar and cosmological co-
ordinates.

Our Eq. (117) corresponds to Eq. (10) of Rosales and
Sanchez-Gomez (1998). From it, Rosales and Sanchez-Gomez
(1998) and Rosales (2002) immediately jumped to the conclu-
sion that there is “an effective residual acceleration directed
toward the center of coordinates; its constant value is Hc.” We
were unable to follow this conclusion. Likewise, we are unable
to follow the conclusion in Fahr and Siewert (2008).
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b2 0\

— observer

po ¢

FIG. 3. Exchange of electromagnetic signals (represented by
their rays at a slope of 45 degrees) between us and the space
vehicle. Time runs vertically.

B. Doppler tracking in cosmological spacetimes

Doppler tracking is a common method of tracking the
position of vehicles in space. It involves measuring the
Doppler shift of an electromagnetic signal sent from a
spacecraft to a tracking station on Earth. This signal ei-
ther is coming from an on-board oscillator or is coher-
ently transponded by the vehicle in response to a signal
received from the ground station. Here we focus on the
second of these modes, which is more useful for naviga-
tion, partly because the returning signal is measured
against the same frequency reference as that of the origi-
nally transmitted signal and partly because the Earth-
based frequency reference is also more stable than the
oscillator on-board the spacecraft.

1. Minkowski spacetime

It is clear that this method will be fundamentally in-
fluenced if performed within a time varying background
geometry. Before elaborating on this, we consider the
simple case of static Minkowski space.

In Fig. 3 we depicted two worldlines, one of the ob-
server (straight vertically) and one for the space vehicle.
A light signal is emitted by the observer at the event p,
reflected by the vehicle at event py, and finally received
back by the observer at event p,. We choose a global
Minkowski frame, that is global coordinates {x*}={t,x'}
with g(d/dx*,d/dx")=diag(1,-1,-1,-1), in which the
observer (for simplicity assumed to be inertial) is at rest
at the origin of the spatial coordinates. If B:=v/c de-
notes the radial velocity of the vehicle in units of c, the
well-known special-relativistic Doppler formula (applied
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twice) says that the ratio between the received and the
emitted frequencies is 8

w,(ty) _ 1-B(t)
wolty)) 1+ B(t)

Here ¢, t;, and ¢, refer to the global Minkowski time
attributed to pg,p;, and p,, respectively. In Doppler
tracking one is interested in the derivative of this ratio
with respect to t,, which yields a measure for the velocity
of the spacecraft. We assume w, to be constant in time
and note that, given the worldlines of the observer and
the vehicle, ¢; and ¢, are uniquely determined by ¢, (since
the events p; and p, are determined by p,). If r denotes
the spatial radius coordinate, we have t,—t;=r(t;)/c. Dif-
ferentiation with respect to ¢ leads to

(122)

a1
dlz B 1+ ﬁ(ll) (123)
and hence
ld)Z([2) _ -3
) oy(0) =Bt + B(ty)]
= Bt)[1 - 3B(t) + O(BH)]. (124)

This shows that —@,/2w,, namely, (minus one-half) the
derivative of the received to emitted frequency ratio
with respect to the proper time of the receiving observer,
gives the spacecraft’s spatial acceleration up to correc-
tions of order B. Note that in view of note 3 it would be
inappropriate to call these corrections “special relativis-
tic.”

The final goal of this section is to derive the generali-
zation of (124) for a cosmological spacetime. For this we
need two things: First, we need to know what is the
generalization of the concepts of spatial velocity and
spatial acceleration in an arbitrary spacetime and, sec-
ond, we need to know how electromagnetic signals
propagate in an arbitrary spacetime. This is taken care
of next.

2. General setting

In order to generalize the notions of spatial velocity
and spatial acceleration to arbitrary spacetime one
needs to introduce a fiducial reference “observer-field”;

8Note that in special relativity the Doppler formula does, of
course, not distinguish between moving emitter and moving
receiver. So Eq. (122) is obtained by squaring the frequency
shift \(1-p8)/(1+B), which is picked up once for the ratio
wg(tg)/ wi(t;) (receiver moving relative to the Minkowski
frame) and once for w,(f,)/w;(f;) (emitter moving relative to
Minkowski frame). Incidentally, exactly the same formula
would result in nonrelativistic physics if the observer is taken
to be at rest with respect to the wave-guiding medium (e.g., the
ether), which distinguishes the two states of relative motion.
Indeed, in this case we have w;(t))/wy(ty)=[1-B(¢;)] and
(1) wi(t;)=1/[1-B(t;]), whose product is again just Eq.
(122).
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compare Bini et al. (1995) and also Carrera (2010). An
observer at the event p is a future pointing unit timelike
vector in the tangent space 7,(M) of M at p. An ob-
server field is a field of future pointing unit timelike vec-
tors. Any observer u at p gives rise to an orthogonal split
of the tangent space 7,(M) at p in a part parallel to u
(the local time axis) and a part orthogonal to it (the local
rest space). Since u is not lightlike the two orthogonal
subspaces are complementary, that is, together they span
the whole tangent space and intersect only in the zero
vector. The orthogonal projections of an arbitrary vector
X e T,,(M) onto these subspaces are, respectively, given
by

0,(X) :=g(X,u)u, (125a)

P,(X):=X-gX,u)u, (125b)

which imply the decomposition identity X=0,(X)
+P,(X).

If two observers u and v are defined at the same point,
the spatial velocity (over ¢) of v with respect to u is given
by

P,v) v-g.uwu
||Qu(v)|| - g(v,u)

which is an element of the local rest space P,T(M). Its
modulus is given by

B.(v) = (126)

Buv) =B, 0)] = V1 - 1/g(u.v)*. (127)

Note that for the modulus we have B,(v)=£,(u), though
the vectors B,(v) and B,(u) are linearly independent as
they lie in P, T(M) and P,T(M), respectively. Note also
that g(u,v)=1/1- ,Bi(v) is the ordinary “gamma fac-
tor.” Finally, if e € P,T(M) is a unit vector, we define the
spatial velocity of v in direction e with respect to u by

Ba(v) =—g(e,B,(v)) =—gle,v)/gu,v).

The spatial acceleration of a worldline y with respect
to a given observer field u is defined as the rate of
change of the spatial velocity B,(¥) within the local rest
spaces P,T(M) of u and with respect to the clocks mov-
ing along u. Denoting this acceleration (divided by c¢)
with a, we have

au( 7) = V;ﬁu(')’) >

(128)

(129)

where we used the following covariant derivative for
P,T(M)-valued vector fields along y:

Vi = |QuH[ P, oV, o P, (130)
Here V,, denotes the ordinary (Levi-Civita) covariant de-
rivative along y. As an application one can, for example,
rewrite the geodesic equation, V;¥=0, for a worldline y
in terms of the spatial quantities just introduced. One
gets [see Carrera (2010) or, in a slightly different nota-
tion, Bini et al. (1995)]
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o, =— Sﬂu[au + ou(ﬂu) + wu(ﬂu)]7 (131)

where for better readability we omitted the arguments y
and ¥ in the spatial acceleration and spatial velocity.
Here a,:=V,u is the four-acceleration of the observer
field u, 6, and o, are, respectively, its shear-expansion
and rotation tensors of rank (1,1) (endomorphism), and
Sp,=P,+B,® B, is a rank (1,1) tensor which, in a slow-
motion approximation (neglecting quadratic and higher
terms in B), reduces to the identity on the local rest
space of u. Equation (131) should be seen as a local
version of Newtons equation. For example, in
Schwarzschild—de Sitter spacetime (59a) and (59b), tak-
ing u to be proportional to the timelike Killing field
/9T, one has 6,=w,=0 (because of the Killing equa-
tion and spherical symmetry, respectively) and
1 (m A

auZVuuZT/(E—gR)eR, (132)
where e denotes the the normalized radial vector field
d/ dR [we use here the coordinates and the notation of
Eq. (59a) and (59b)]. Hence, in slow-motion and weak-
field approximation (that is keeping only linear terms in
B, m/R, and AR?), the geodesic equation of motion in
the form (131) reduces to

m A
@, = —ﬁ+§R er,

which gives the “improved” Newtonian equation for
geodesic motions in Schwarzschild-de Sitter spacetime.
It has the same form as the improved Newtonian equa-
tion studied in Sec. III.

We turn now to electromagnetic signals and restrict
our attention to monochromatic waves in the geometric-
optics approximation (i.e., for wavelengths negligibly
small with respect to a typical radius of curvature of the
spacetime and with respect to a typical length over
which amplitude, polarization, and frequency vary). In
this approximation an electromagnetic signal propagates
on a lightlike geodesic along which the wave vector k is
tangent, future pointing, and parallelly transported. Re-
call that k is so normalized that the frequency measured
by an observer, say u, is

w,(k) = g(u,k).

(133)

(134)

Given a wave vector k and two observers u,v at the
same spacetime point, their observed frequencies are
thus w,(k)=g(v,k) and w,(k)=g(u,k), and their ratio is
given by

k P,k k

Here the spacelike unit vector k:=||P,(k)||"\P,(k) defines
the direction of k in the local rest space of u. In deriving
Eq. (135) we used Eq. (128) and |P,(k)|=g(u,k) to write
g(v ,Pu(k))z—g(v,u)g(u,k)ﬁﬁ(v). Equation (135) is the
general form of the Doppler formula.

(135)
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Now let u be an observer field along one integral line
of which the distinguished observer is moving. The
worldline of the vehicle is denoted by . The domain of
the field u is assumed to include a neighborhood of 7y.
The wave vector k, emitted at p, suffers the following
three changes: (1) propagation from p, to p: ko—ky; (2)
reflection at p: k;—kj; (3) propagation from p; to p,:
k{ — k2.

We are interested in the ratio of the received to the
emitted frequency,

&:M:<&)<w_i>(ﬂ>
wy  g(ug. ko) AYCIVAYC YA

What happens at reflection (the second process k;
—kj)? With respect to the spacecraft moving along y

with four-velocity v=7%, the wave vector k; at p; splits
according to

ki =0;(k) + Pyky).

A corner-cube reflector transported along y will reverse
P,(ky) while keeping Q;(k;) intact (here we neglect a
possible transponder shift which is irrelevant for our dis-
cussion),

ky = ki = Qs(ky) — Pi(ky) =20 (k1) - k.

Hence ;:=w,(k)=g(u;,k;) and o]:=w,(k))=g(u, k),
the in- and out-going frequencies measured by the ob-
server u at p;, are related by

(136)

(137)

(138)

1- 855
—1=2'8‘2‘—(’,/)|”‘—1, (139)
1_Bu(7)|p1

where in the last step we used Eq. (135) to rewrite the
ratio g(¥,k)/g(u k). This accounts for the middle ratio
on the right-hand side of Eq. (136).

To account for the other two ratios in Eq. (136), one
uses the laws of geometric optics in (curved) spacetime
to relate wy=g(uy,ky) (at py) and w,=g(u,,k,) (at p,) to
kinematical quantities of y at p;.~ For example, if u is a
Killing field (like u=@/d¢ in special relativity), we have
g(uy,ko)=g(u;,k,) and g(u,,k;)=g(u, k), so that

o 1B,
w 1= B (W),
As a trivial application, this includes the generalized

form of Eq. (122), the latter corresponding to purely ra-
dial motion.

0)_{ _ g(u”)/)g (j/?k)|p1
wl g (u’k)|p1

(140)

3. FLRW spacetimes

In standard cosmological spacetimes (FLRW), u
=@/ dt is not Killing, though X=a(r)d/ dt is conformally

YIn general spacetimes without timelike conformal Killing
fields these quotients will also explicitly depend on time.
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Killing (Lyg=2ag). One now has ayg(uy,ky)=a,g(u; k)
and a,g(u,,k,)=a,g(u,,kj), so that instead of Eq. (140)
one gets

1- .

@2 _ 4% z—ﬁ’f(’_’)|Pl Sid. (141)
1- ﬁu (7)|pl

We now want to relate the ¢, derivative of Eq. (141) to
the acceleration of . In order to calculate the derivative
(1) wy(ty) we need to know the derivatives dt,/dt, and
dty/ dt,. Restricting to the flat FLRW case for simplicity,
they follow from the law of null propagation:

2 dt 1 ("
T
(1) 4(0) CJri(t1(0p)

ty 1 ri(t1(tp)) L)
J ﬂ == f dr — J dr . (142b)
1o(ty) a() c|J, r1(t1(6))

0
Differentiation with respect to ¢, yields, respectively,

Wy dp

(1422)

dny _ a(ty) k(i V-1
dty  atry e Pl (1432
diy alt) 1= By (P, (143b)

dn, " o) 14 g (3,

The exact formula for the ¢, derivative of the
frequency-shift rate can now be computed. One obtains

an(t)  ap k A o - _
=2l TOor k- ,th ] k1-1r1 — g21-1
TR G AR IRV WIS
1= g |
+4g(a’ﬁ)z_i[1—§’9 [1-577
+ -
. @_@(1—;3’9)_[1—2;3@/32}
a ap 1+,3’; ] 1—,32 ’

(144)

where we suppressed the argument ¥ and index u at 8
for better readability. This formula provides an exact re-
lation between the time derivative of the observable fre-
quency shift (defined “here”) and the kinematical quan-
tities of the vehicle (defined “there”), provided the scale

function a(f) is known. For purely radial motion V';}A(
=0 and we obtain the simpler expression (now writing «

for a’A‘)
_Lann)  aw 3
2ot | & {0‘(1 P

1{__<1_E)M1_B” 145
2 ay ay 1+ﬂ 1+B

In order to consistently approximate this expression in
terms of small quantities 8 and HAt, where At:=(t,
—1y)/2, we think of Eq. (145) as being multiplied with At
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and regard aAt as being of order B. Then, keeping only
quadratic terms in B, linear terms in HAt¢ where At
:=(t,—1)/2, and also mixed terms BHAt, we get

o) 0 Lo
SEP a(1-38-3HAf) + HB.

(146)
Hence we see that in this approximation there are two
modifications, besides the —-38 term already familiar
from Eq. (124), due to cosmic expansion: First, there is
an additional contribution —3HA¢ acting in the same way
as the -3 term. It can also be interpreted in the same
fashion, as its corresponds to the velocity (over c) of HA¢
that a comoving systems picks up during the time the
signal went from the observer to the vehicle. Second,
there is a constant contribution HB to acceleration/c,
i.e., Hcp to acceleration, in a direction parallel to the
radial velocity (i.e., outward pointing if the vehicle re-
cedes from the observer). Hence it acts opposite to the
PA and is smaller in modulus by a factor of B. Applied
to the Pioneer spacecrafts, the HAt term amounts to
a small “anomalous” acceleration of Aa/a<<107'2, the
Hcp term to Aa/a<107".

A final point must be made regarding the choice of
the reference observer field on which the kinematic
quantities related to the spacecraft (spatial velocity and
spatial acceleration) and the electromagnetic signal (fre-
quency and spatial propagation direction) crucially de-
pend. In the Minkowskian case the reference field was
just u=4d/dt, which is inertial, that is, geodesic and of
vanishing rotation, shear, and expansion. It is clear that
in a general spacetime such observer fields do not exist
and there is no natural choice to replace them. However,
in the case of spherical symmetry there is, in fact, a dis-
tinguished observer field, namely, that one whose orbits
lie within the timelike hypersurfaces of constant areal
radius and there run perpendicular to the orbits of the
rotation group. This clearly defines a nonrotating and
“nonexpanding” (with respect to the areal radius) refer-
ence field. It is the normalization of the so-called
Kodama vector field, discussed in Appendix D.3. In a
FLRW spacetime it is given by Eq. (113). Notice that in
the present case, where the hypersurfaces of constant
cosmological time ¢ are flat, the areal radius corresponds
also to the proper distance. Hence the integral curves of
u, intersect the hypersurface of constant cosmological
time at constant spatial geodesic distance. More pre-
cisely, the expansion and the shear scalar of u_ are given
by 6,=R*HH/[1-(RH)*}?? and o,=—6,/3, respectively,
showing that they are of order H> which we neglect.
In passing we remark that the expansion and shear
of u_ exactly vanish for the de Sitter case, whose metric
in “static” coordinates is given by Eq. (59a) and (59b)
for m=0. In this case d/dt,=d/dT, that is, u_ is pro-
portional to the timelike Killing vector field d/dT;
see Egs. (59a) and (59b). Coming back to the general
FLRW case, the acceleration of u, is given by a,
=(-Ril/a+R3H*)/[1-(RH)*]?e,, where e, is the unit
vector field orthogonal to u, and to the two-sphere,
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pointing in positive radial direction. Hence, in the slow-
motion and weak-field approximation of Eq. (146), but
keeping also quadratic terms in H, the geodesic equation
in the form (131) with respect to the observer field u,
reads as

au*(y) = (dr Ja)e o y. (147)
This is just an alternative derivation of the acceleration
term (7). We point out that had we we taken Eq. (110) as
observer field we would have arrived at the equation of
motion a,(y)=~-Hp,(vy) instead of Eq. (147), that is, no
acceleration term (7) would have resulted.

In the approximation within which Eq. (146) is de-
rived this equation remains valid if the quantities in it
are re-interpreted so as to refer to u_ instead of u. Hence
we may sum up the situation by saying that Eqs. (146)
and (147) give, respectively, the two-way Doppler-
tracking formula and the “Newtonian” equation in a
FLRW spacetime within the mentioned approximation.

4. McVittie spacetime

The same analysis can be generalized from the spa-
tially flat FLRW spacetime (30) to the spatially flat
McVittie spacetime (68). Here the observer moves along
d/ dt, which is not geodesic. The coordinate ¢+ does now
not measure proper time, denoted by 7, along the ob-
server’s worldline. The result corresponding to Eq. (146)
can now be stated as follows:

_Lanlm) a[1-3B-3A7(H - myc/R?)] + HB.
2 wy(7)

(148)

Here R denotes the areal radius of the observer during
the measurement. Note that even though it changes
along the observer’s worldline according to Eq. (90), we
do not need to account for the corresponding change in
Ammgc/ R? of (=2A7mc/R?)(HA7), which is of sublead-
ing order. The additional term in Eq. (148) has a
straightforward interpretation in terms of the accelera-
tion that the observer necessarily experiences while
keeping a constant radius R away from the central inho-
mogeneity.

As for the FLRW case, we chose the observer field to
which we refer the spatial quantities to be proportional
to the Kodama vector field (along which the areal radius
is constant). Putting r (¢,r):= A%(¢,r)a(t)r and t (t,r):=t, a
short computation shows that the vector field d/dr, is
again given by Eq. (112). In the slow-motion and weak-
field approximation used in Sec. V.D.2, the geodesic
equation in the form (131) with respect to the observer
field u, reads

a, (y) = (ar la - mo/rz)e* °y, (149)
where again e, denotes the unit outward-pointing vector
field orthogonal to u, and to the two-spheres of symme-
try. This is an alternative derivation of the improved
Newtonian equation for the McVittie spacetime carried
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out in Sec. V.D.2. Notice that, again, within the approxi-
mations used, Eq. (148) remains valid if one refers the
quantities to u_ instead of to u. Therefore Egs. (148) and
(149) give the two-way Doppler-tracking formula and
the improved “Newtonian” equation for the McVittie
spacetime within the mentioned approximation.

In the special case of purely radial motion, insertion
of Eq. (149) into Eq. (148) leads to a formula predicting
the two-way Doppler-shift rate in linear order in HA7

and my/r,, and quadratic order in B, (),

Lay(r)

"o (150)

~ 0 _38% + HEE.
r

Hence there are two corrections to the Newtonian con-
tribution. One is proportional to H and stems from the
cosmological expansion, the other, already familiar from
the special-relativistic treatment (124), is independent of
H and merely due to the finiteness of the propagation
speed of light (recall footnote 18). Their ratio is (up to a
factor \3) given by the square of the ratio of r, to the
geometric mean of the Schwarzschild radius m, and the
Hubble radius ¢/ H. The latter is of the order of 10>} km,
so that its geometric mean with a Schwarzschild radius
of 1 km is approximately given by 2400 a.u.. The ratio of
the effects is therefore of the order 10~7. Hence the cos-
mological contribution is negligible for any application
in the Solar System as compared to the 38 correction.
For the Pioneer 10 and 11 spacecrafts we have a radial
velocity of about 12 km/s. This amounts to a 38 correc-
tion of magnitude 4 X 10~ times the Newtonian gravita-
tional acceleration, in an outward-pointing direction.
This is indeed of the same order of magnitude as the PA
but directed oppositely.

VII. SUMMARY AND OUTLOOK

We think it is fair to say that there are no theoretical
hints that point towards a dynamical influence of cosmo-
logical expansion comparable in size to, say, that of the
anomalous acceleration of the Pioneer spacecrafts.
There seems to be no controversy over this point,
though for completeness it should be mentioned that
there exist speculations (Palle, 2005) according to which
it might become relevant for future missions. But such
speculations are often based on models which are not
easily related to the intended physical situation, like that
of Gautreau (1984). Rather, as the (d/a)-improved New-
tonian analysis in Sec. III together with its justification
given in the subsequent sections shows, there is no genu-
ine relativistic effect coming from cosmological expan-
sion at the levels of precision envisaged here.

On the other hand, as regards kinematical effects, the
situation is less unanimous. It is important to unambigu-
ously understand what is meant by “mapping out a tra-
jectory,” i.e., how to assign “times” and “distances.”
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Eventually we compare a functional relation between
distance and time with observed data. That relation is
obtained by solving some equations of motion and it has
to be carefully checked whether the methods by which
the tracking data are obtained match the interpretation
of the coordinates in which the analytical problem is
solved. In our way of speaking, dynamical effects really
influence the worldline of the object in question whereas
kinematical effects change the way in which one and the
same worldline is mapped out from another worldline
representing the observer. Here we have derived exact
results concerning the influence of cosmic expansion on
this mapping procedure, which allow one to reliably es-
timate upper bounds on their magnitude. They turn out
to be too small to be of any relevance in current satellite
trackings, which is in accord with naive expectation but
in contrast to some statements found in the literature.

At this point it is useful to again recall the general
philosophy behind such statements: From the Einstein-
Straus solution it is clear that local overdensities inhibit
cosmic expansion, or at least that part of it which is not
due to a cosmological constant. Also, as mentioned, the
effect of anisotropies is also to diminish the effect of
global expansion [see, e.g., Dominguez and Gaite
(2001)]. Hence calculating such an effect in simple mod-
els like the improved Newtonian equation discussed in
Sec. II.LA (backed up by the various justifications dis-
cussed in detail) means to overestimate the impact of
cosmic expansion in a realistic situation, where the
single overdensity (e.g., representing the Sun) is sur-
rounded by more overdense structures (the Solar System
environment, the Galaxy, etc.) with less symmetry. If this
overestimation gives an already insignificant upper
bound for the envisaged effect, we can conclude that it
becomes even more insignificant in more realistic mod-
els.

Satellite navigation is clearly not the only potential
source of interest in the question of how local inhomo-
geneities affect cosmological expansion. Many predic-
tions concerning cosmological data rely on computations
within the framework of the standard homogeneous and
isotropic models, without properly estimating the pos-
sible effects of local inhomogeneities. Such an estima-
tion would ideally be based on an exact inhomogeneous
solution to Einstein’s equations, or at least a fully con-
trolled approximation to such a solution. The dynamical
and kinematical impact of local inhomogeneities might
essentially influence our interpretation of cosmological
observations. As an example we mention recent serious
efforts to interpret the same data that are usually taken
to prove the existence of a positive cosmological con-
stant A in a context with realistic inhomogeneities
(Buchert, 2000; Risdanen, 2006; Wiltshire, 2007), i.e., tak-
ing into account that cosmological parameters are
dressed (Buchert and Carfora, 2003). See also Buchert
(2008) for a recent review. One might speculate that the
measured A can eventually be fully reduced to the ac-
tion of inhomogeneities, as suggested in Wiltshire (2007,
2008). For an earlier advance in this direction, see
Célérier (2000).
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APPENDIX A: NOTATION, CONVENTIONS, AND
GENERALITIES

A model for spacetime consists of a tuple (M,g),
where M is a four-dimensional manifold and g a Lorent-
zian metric whose signature we take to be (+,—,—,—),
i.e., we use the “mostly minus” convention. Throughout
we denote geometric objects, like tensor fields and cova-
riant derivative operators, by bold-faced letters or
words. The unique metric preserving and torsion-free
covariant derivative associated with g will be denoted by
V and the covariant derivative in the direction of a vec-
tor X by Vy. For a smooth tensor field T on M its cova-
riant derivative VT defines a linear map, X+ VT, from
the tangent space to the tensor space at each point of M
where T is defined. Since VT is again a tensor field [of
rank (p,g+1) if the rank of T was (p,g)] we can form
VVT:=V(VT). Note that (VVT)(X,Y):VXVYT—VVXYT.
For a scalar function f on M we have Vf=df, the ordi-
nary exterior differential, and VVf=Hess(f), the Hessian
of f. The metric g allows one to uniquely associate to any
vector X a linear form X:=g(X,-), called the dual (with
respect to g) of X. The inverse of this map will be de-
noted by an overline. The gradient of a function f is
then grad f=df. The metricity of V implies that the latter

commutes with the maps - and -, e.g., it holds: VyY
=VyY. The scalar product induced by g on the tensor
bundle will be denoted by (-, -).

Associated with any two linearly independent vectors
X.,Y at a point pe M is a curvature endomorphism,
R(X,Y), of the tangent space at p,

R(X,Y)Z=(VVZ)(X,Y)—-(VVZ)(Y.X)

= VXVYZ - VYVXZ - V[X,Y]Z (Al)

The Riemann or curvature tensor Riem is then defined
by

Riem(W,Z.X,Y) := g(W,R(X,Y)Z). (A2)

It is antisymmetric under the exchange X< Y or W—Z
and symmetric under the slotwise exchange of pairs
(W,Z)—(X,Y). Moreover, the antisymmetrization over
any three slots vanishes (first Bianchi identity). The Ricci
tensor Ric is defined by the trace of the following endo-
morphism:

Ric(Y,Z) :=tr(X— R(X,Y)Z), (A3)
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which is symmetric under exchange Y« Z. The scalar
curvature is defined by taking the trace of Ric, also
called the Ricci scalar, with respect to g (since Ric is not
an endomorphism, we need the metric to define its
trace)

Scal = try(Ric). (A4)

Finally, the Einstein tensor is the following combination
of Ric and Scal:

(AS5)

Associated to any spacelike or timelike two-
dimensional plane IT in the tangent space at p € M is the
sectional curvature. Its geometric interpretation is just
that of the ordinary Gaussian curvature at p of the two-
dimensional surface in M that is spanned by the geode-
sic curves through p tangent to II. In terms of Riem it
reads

ky = Riem(X,Y,X,Y)/Q(X,Y), (A6)

where X,Y are any two linear independent vectors in I1
and

O(X.Y) = g(X,X)g(Y,Y) - g(X,Y)’
=(g0g)(X, Y. X.Y). (A7)

Note that |Q(X,Y)| gives the square of the area of the
parallelogram spanned by X and Y which is nonzero iff
the considered plane is spacelike or timelike (nondegen-
erate).

In Eq. (A7) we introduced the product ©, which is
called the Kulkarni-Nomizu product. It is a symmetric
bilinear map from the space of symmetric (0,2) tensors
to the space of (0,4) tensors with the same algebraic sym-
metries as Riem. Its general definition is as follows:

(aOb)(W,Z,X,Y) := 3[a(W,X)b(Z,Y)
- a(W,Y)b(Z,X)
+b(W,X)a(Z,Y)
- b(W,Y)a(Z,X)]. (A8)

This can be used to conveniently write down the
g-orthogonal decomposition of the curvature tensor into
the Ricci and Weyl parts,

Ein := Ric - %Scal g.

Riem = Ricci + Weyl. (A9)
In four spacetime dimensions one has
1
Ricci := (Ric - gScal g) Og (A10a)
1 .
=| Ein - gtrg(Em)g Og. (A10Db)

Inserting this into Eq. (A9) gives the definition of Weyl.
The definition is such that the Ricci part is g orthogonal
to the Weyl part and that the latter is totally trace free.
Hence the Ricci and the Weyl part each contribute ten
independent components to the 20 independent compo-
nents of Riem. The Ricci part may be further decom-
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posed according to the decomposition of Ric into its
trace and a trace-free part, but this refinement will not
be needed here.

Einstein’s equation now express the local determina-
tion of the Ricci part of the curvature in terms of the
energy-momentum distribution of matter, the latter be-
ing encoded in the energy-momentum tensor T of the
matter. In units where Newton’s constant G and the ve-
locity of light ¢ equal 1,”° Einstein’s equation reads

Ein=87T. (A11)

Here we did not write down explicitly a cosmological
term, which can always be thought of as extra contribu-
tion to T of the form gA /8. Now, assuming that g sat-
isfies Einstein’s equation, the Ricci part of the Riemann
tensor is given in terms of T by

1
Ricci = 87T|:T - gtrg(T)g} Og. (A12)

APPENDIX B: PROOF OF THEOREM 1

In this section we prove Theorem 1, namely, the
equivalence, in the spherically symmetric case, of the
SSJC with the Darmois junction conditions.

Proof. The proof essentially consists in writing down
the induced metric and extrinsic curvature for a (non-
null) spherically symmetric hypersurface in a spherically
symmetric spacetime. This is most easily done by intro-
ducing an adapted orthonormal frame.

We first consider the case where I' is timelike, hence
vy=m(I") is a timelike curve in B. The following construc-
tion shall be carried out in both spacetimes. One defines
v as in the SSJC, hence as the (unique up to a sign)
spherically symmetric, unit vector field on I' orthogonal
to n. That is v, seen as a vector field on B, is tangent to
v. Since n is spacelike, v is timelike. The ambient metric
can be then written as

g=v®uv-no®n-Rgs, (B1)

so that the induced metric [compare Appendix C and
Eq. (C3)] on I is

gr=ve®uv-Rgg. (B2)

In view of Eq. (C3) note that here e(n)=-1. For the
extrinsic curvature (C6), using Eq. (D3) and the fact that
v is spherically symmetric and hence tangent to 3, one
has the decomposition

Ky =-g(n,V,u)v ® v - RdR(n)gs.. (B3)

Now, from Egs. (B2) and (B3) it follows that the DJC,
and hence the continuity of g and K, are equivalent to
the continuity of the following four functions: (a) the arc
length of vy, (b) R, (c) dR(n), and (d) g(n,V,v).

20therwise the factor 87 on the right-hand side of Eq. (A11)
should be replaced with 877G /c*.
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The statement of the theorem will now follow from

the following expression of the MS energy (58):
R

E=—{l+ [dR(v)]* - [dR(n)*}. (B4)
Simply note that if R is continuous through I" (recall the
definition of this concept below the definition of DJC in
Sec. V.A) the same holds for its derivatives tangent to I'.
In particular, dR(v) is continuous through I' and hence
we may substitute dR(n) by the MS energy in the above
list (a)—(d). This completes the proof for timelike I'.

In the case of spacelike I' the unit normal n is timelike
and v is chosen as the unique (up to a sign) spherically
symmetric unit vector field on I' orthonormal to n. Then
v is a spacelike “radial” unit vector field orthogonal to
the SO(3) orbits. The proof now proceeds analogously to
the timelike case. We list the expressions for the ambient
metric

g=n®n-voy-Rge,

the induced metric

gr=v®u+Rgge, (B5)
the extrinsic curvature

Ky =g(n,V,v)v ® v + RdR(n)gs2, (B6)
and the MS energy

E=2 {1+ [dR@)P - [dR@)P), (B7)
and conclude exactly as in the timelike case. |

APPENDIX C: SUBMANIFOLDS

In a Lorentzian manifold (M,g) endowed with Levi-
Civita connection V consider a smooth submanifold I" of
co-dimension one and normal vector field n. We assume
I" to be non-null, that is, either spacelike (then n is time-
like) or timelike (then n spacelike). Then I" inherits from
the ambient manifold M a (nondegenerate) metric and
a connection in a natural way. We introduce the or-
thogonal projectors

0,=¢emnen, (Cla)

P,:=id-Q,, (C1b)

where e(n) denotes the indicator, defined for any non-
null vector by

B gX,X) DR 1, if X is timelike
T lg(X,X)| | -1, if X is spacelike.

The induced metric on I (also called first fundamental
form) is given by

e(X): (C2)

gr=—smPyg, (C3)

where the sign is just in order to get a positive definite
metric in the case where I is spacelike. Given two vector
fields X, Y tangent to I', so that @, X=0,Y=0, one may
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decompose the covariant derivative of Y with respect to
X into its orthogonal components

VxY =P, (VyY) + Q,(VxY) ="Vy ¥+ Kp(X, Y)n,

(C4)
where
'VyY = P,(VyY) (C5)
is the induced connection on I' and
Kr(X,Y) := e(n)g(VxY,n) = - e(n)g(Vyn,Y) (C6)

is the extrinsic curvature of I' in M (also called the sec-
ond fundamental form). The second equality sign in Eq.
(C6) is an immediate consequence of the metricity of V
and the fact that X and Y are orthogonal to n. With this
alternative expression for the extrinsic curvature one has
Ky=-¢(n)P,Vn and hence?!

Ky =— sm)S(P,V n). (C7)

Since n is hypersurface orthogonal (by definition) we
have A(P,Vn)=0. Hence, the extrinsic curvature is a
symmetric (0,2)-tensor field. We recall also that the in-
duced connection is the Levi-Civita connection of
(I',gr), as one may easily check.

The full relations between the curvature of M and
those (intrinsic and extrinsic) of I' can be found in
Giulini (1998). Here we are only interested in the “Ein-
stein part” of the curvature. One gets

Ein(n,n) = 3[- &(n)" Scal + (trK)? - |K|/*], (C8a)

Ein(n,P,-) = — e(n)divp(K - (trK)gy), (C8b)

Ein(P,- P, )="Ein+ s(n)[%((trK)2 + || KI")gr

- (trK)K + L, (K - (trK)gr)] . (C8c)

APPENDIX D: SPHERICAL SYMMETRY

We recall that the isometry group Isom(M,g) of a
spacetime (M, g) is the subgroup of the diffeomorphism
group of M Diff(M) which leaves the metric g invari-
ant: Isom(M, g) :={¢ e Diff(M)| p*g=g}.

Definition 3 (Spherical symmetry). A four-dimensional
Lorentzian manifold (M, g) is said to be spherically sym-
metric if its isometry group Isom(M,g) contains a sub-
group g with the following two properties: (i) G is iso-
morphic to SO(3) and (ii) each orbit of G is spacelike
and two dimensional (up to some closed proper subset
of fixed points). A tensor field T on a spherically sym-
metric spacetime is said to be spherically symmetric if it
is invariant under G, hence if ¢*T=T for all ¢ € G.

*'Here and below S and A denote the projection operators of
full symmetrization and full antisymmetrization, respectively.
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From this definition it follows (excluding the case
where the orbits of G are diffeomorphic to the two-
dimensional real-projective space) that a four-
dimensional spherically symmetric Lorentzian mani-
fold (M.,g) can, at least locally, be expressed as a
warped product M =5X RS2 between a two-dimensional
Lorentzian manifold (3,gp), called the “base,” and the
standard unit two-sphere (5?,gs2), called the “fiber” [see
O’Neill (1983) and Straumann (2004)]. This means that,
at least locally, the manifold is a product

loc

M=Bx S§? (D1)
and the metric is given by
g=1(gp) — (Rom*0*(gs). (D2)

Here 7 and o are the projections of BX S? onto B and
§2, respectively, and 7, o their pull-backs. The warping
function R is nothing but the areal radius, since, for a
point p € B, the area of the fiber p X §? is just 47R(p)>.

In this situation, a vector field X on M at some point
(p,q) e BXS? has then a unique decomposition X
=tang X+tangz X in a component tangent to the
“leaves” BX g=0"'(q) and a component tangent to the
“fibers” p X §?=7"1(p). Arbitrary tensor fields on B and
on S? can be lifted to tensor fields on M in the standard
way. For covariant tensor fields (and hence, in particular,
for functions) this is achieved via the pull-pack of the
respective projection: as an example, look at Eq. (D2).
For contravariant tensor fields it suffices to consider the
special case of vector fields. Let, for instance, X be a

vector in the tangent space of B at p. Then the lift X at
(p,q) of X is defined as the unique vector in the tangent

space of M at (p,q) with 77*(5()=X and a*(i’)zo. Since
this assignment is smooth, one gets the lifting of a vector
field via the pointwise lifting just described. In this work,
we mainly omit lifts and projections and not explicitly
distinguish between original and lifted quantities. For
example, when referring to a vector “tangent to 5” we
refer to a vector in the tangent space of B or to the lift
thereof in the tangent space of M.

If X is spherically symmetric, then the component tan-
gent to the fibers must vanish: tangz X=0. Similarly, a
spherically symmetric one-form @ on M must necessar-
ily be tangent to B (i.e., normal to $?) and thus it can be
written as 0=m*(60g), where 6 is a one-form on B. Fi-
nally, a spherical symmetric function is simply the lift of
a function on B.

1. Connection and curvature decomposition

In the following we discuss relations which express the
curvature of M in terms of the warping function R and
the curvatures of the base B and the fiber S%. We start
out from the relations between the Levi-Civita connec-
tion V of (M,g) and the Levi-Civita connections of the

base and the fiber, denoted by ®V and SZV, respectively.
These relations can be derived, by means of the Koszul
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formula [see, e.g., O’Neill (1983), Proposition 7.35]. Let
in the following X, Y, Z be vector fields tangent to 3 and
U, V, W tangent to S?. Suppressing lifts and projections,
we have

VY =5V,Y, (D3a)

VyV=V,X=R'X(R)V, (D3b)
SZ

tang VyW="V W, (D3c)

tang VyW=—g(V,W)R"!VR. (D3d)

Note that, for a function f on B, the lift of the gradient is
equal to the gradient of the lifted function, that is (sup-
pressing the lifts): grad f= B grad f. For brevity, we write
just grad f for it. Take care that for the Hessian and the
Laplacian this is in general not true [see Egs. (D13) and
(D14)]. Therefore we write explicitly the superscripts B
in "Hess fand BAf to denote the Hessian and Laplacian
of f on B, respectively, or the lifts thereof.

By means of Eq. (D3) one can now compute the ex-
pressions for the Riemann tensor. As the sectional cur-
vature of $? is obviously constant and equal to 1, the
Riemann tensor, the Ricci tensor, and the Ricci scalar of
§? are simply given by SzRiem:gsz(DgSz, SzRic:gSz, and
$"Scal=2, respectively. Here we made again use of the
Kulkarni-Nomizu product (A8). Moreover, since the ba-
sis manifold B is two-dimensional, one can express its
curvature tensors in terms of the scalar curvature. The
expression for the Riemann tensor, Ricci tensor, and
Ricci scalar of a spherically symmetric Lorentzian mani-
fold (D1) and (D2) are, respectively,

B
. Scal 1 ) )
Riem = Tgl;@gg - F(l +(dR,dR))R°g2OR g

+2RgO"Hess R, (D4)
. BScal 2 5
Ric = 5 85— z Hess R + (1 + (dR,dR)
+ RPAR)gs, (D5)
and
B 2 45
Scal = “Scal — F(l +{dR,dR)) — R AR. (D6)
Hence, for the Einstein tensor we have
. 1 25 2 g
Ein = P(l +{dR,dR)) + R AR |gg— R Hess R
Scal 1, 5
+ — E AR |R°gg (D7)

and for the Weyl tensor, using Eqs. (A9) and (A10a), the
simple expression

Weyl = w(gzOgps + gsOR’gs2 + R’g2OR’gg). (D8a)

Here we put
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1 2 2
W= g(BScal - F(l +{dR,dR)) + }BAR> (D8b)

1 1
—=Scal + EBAR. (D8c)

6

In the derivation of Eq. (D8a)—(D8c) we made use of the
formula hsOgs=(1/2)(tr, hp)gsOgs, valid? for any
symmetric bilinear form hj; on B, in order to express the
only term involving “HessR in terms of the Laplacian of
R. Note that from Eq. (D8a) it is immediate that the
Weyl tensor of a spherically symmetric spacetime has
only one independent component, as it must be the case
due to it being of Petrov-type D.

Comparing Eq. (D4) with the definition of sectional
curvature (A6) one can immediately read off that the
sectional curvature K of the plane tangential to the (two
dimensional) SO(3) orbits at a given point is

K=- Lz(l +(dR,dR)), (DY)

R
and hence the MS energy, defined as (minus one-half) K
times the third power of the areal radius, is given by Eq.
(58). Using the MS energy (58), we can write the Ein-
stein tensor (D7) as

. 2(p E 2 5
Emzﬁ AR+ — |gs— — "Hess R

R? R
B
Scal 1
+( 5 —EBAR>R2gSz.

We conclude giving the decomposition for the diver-
gence of a spherically symmetric vector field (that is a
vector field X tangent to B) and for the Hessian and
Laplacian of a spherically symmetric function (that is a
function f on B). First, from Egs. (D3a) and (D3b), we
obtain the following decomposition for the covariant de-
rivative of X [expressed as a (0,2) tensor]:

(D10)

VX =VX- X(R)Rgs. (D11)
Note that the mixed term (B-S2) vanishes—as it should
due to spherical symmetry. Taking the trace of Eq. (D11)
one obtains the following expression for the divergence:

2 1
div X = divg X + EX(R) = — divg(R?X). (D12)

R

The decompositions for the Hessian and Laplacian of a
function f on B follow from inserting X=grad f in the
above formulas. One gets

2To prove this note that the only independent component of
this formula is the (ey,e;,ey,e;) one, where {e,} is an adapted
orthonormal basis of (M,g) such that ej,e; are tangent to 5
and e,,e; are tangent to S2. Then, the equality follows imme-
diately using the definition (A8) of the Kulkarni-Nomizu
product.
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Hess f= ®Hess f— g(grad f,grad R)Rgs> (D13)
and
Af="Af+2gs(grad f,grad R)/R, (D14)

respectively.

2. Einstein equation in case of spherical symmetry

A general spherically symmetric matter energy-
momentum tensor has the form

T=Tyz+pRgg, (D15)

where p is the spherical part of the pressure. Hence,
using the decomposition (D10) of the Einstein’s tensor
found in Appendix D, the Einstein equation takes the
form

2 E 2
E(F+ BAR)gB— 2 SHess R = 87Ty, (D16a)
B
Scal 1
S - —BAR =8mp (D16b)
Using the trace of the first equation,
1(g 2E
R AR + o =4mtrTg, (D17)

to eliminate AR, one can write Eq. (D16) in the equiva-
lent form

1[E

E<Pg5+BHess R) = —dmxTpx, (D18a)
BScal 2E

T+F=47T(trTB+2p). (D18b)

Here, and in the following, » denotes the Hodge-duality
map for (B,gp) [for the definition, see Straumann
(2004)]. In the first equation we used the identity *7x
=7—tr(7)g, which is valid for any bilinear form 7 on 5,
where the first (second) star acts on the first (second) slot
of 7.

Finally, the integrability condition divI'=0 for the
energy-momentum tensor (15) reads

div5(R’Tg) + pd(R?) = 0. (D19)

3. Misner-Sharp energy

We now turn to the MS energy and its properties. We
first show that it is the charge of a conserved current.
The treatment presented here follows mainly Hayward
(1996). In a spherically symmetric spacetime one defines
the Kodama vector field (Kodama, 1980) as the (unique
up to a sign) spherically symmetric vector field orthogo-
nal to, and of the same norm as, the gradient of R; hence
we put
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k= *dR. (D20)

With this sign choice k is future pointing if the gradient
of R is spacelike. The orthogonality between k and the
gradient of R is expressed by

k(R)=0, (D21)

which means that the integral curves of k stay at con-
stant areal radius.

An immediate but important property of the Kodama
vector field is that it is conserved,

divk=0. (D22)

Indeed, using Egs. (D12) and (D21), one has divk
=divgk=6k=—xd* *dR=0.

Now, a key point for the study of spherically symmet-
ric spacetimes is the following equation relating the MS
energy with the matter’s energy-momentum tensor:

dE = 4wR*%j, (D23)

where j is the so-called Kodama current (tangent to the
base manifold 5) defined by

j=Tk,-). (D24)

Equation (D23) follows from Einstein’s equation; more
precisely, it is equivalent to its B part [that is Eq. (D18a)]
fed with VR. To see this, just compute the differential of
Eq. (58) as follows: dE=(E/R)dR+(R/2)d{dR,dR)
=(E/R)dR+R PHessR-dR=R[(E/R?gy+ °HessR]-dR,

where the dot denotes the contraction of the last slot
of the tensor on the left with the first slot of the tensor
on the right of the dot. In the second step we use
that d(dR,dR))(X)=X(g(VR,VR))=2g5(VxVR,VR)
=2PHessR(VR,X) for any X tangent to B. Then, insert-
ing Eq. (D18a) and using that * is skew adjoint on one-
forms, one gets dE=—4mR>xTgx -dR=47R>x Tz xdR
and hence, using the definitions (20) and (24) together
with the symmetry of T, one arrives at Eq. (23).

From Eq. (23) it is clear that

J(E) =0, (D25)

which means that the vector field j is tangent to the
curves in B (hypersurfaces in M) of constant MS energy.
Moreover, Eq. (23) implies that j is also conserved

(D26)

where the divergence is here taken on the spacetime
(M., g). To see this, just compute the divergence of j with
Eq. (D12) and using the Hodge-dual version of Eq.
(D23):  divj=R2divz(R%)=R> 5(R2_Z) =(47R*») ' 6xdE
=0.

Following Hayward (1996), we can now show that the
charges corresponding to the conserved currents j and k
are, respectively, the MS energy and the areal volume.
Let 3 be some spatial three-dimensional hypersurface
which, because of spherical symmetry, decomposes as
3 =0 X 8%, where o is some spatial curve in B. Recall that
the charge related to a conserved current X is given by
Qx(3):=[sixm, where u is the volume form on M, and,

divj=0,
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because of spherical symmetry, the latter decomposes as
p=pupAR> g, where pg and ug are the volume forms
on B and on the unit two-sphere, respectively. After in-
tegration of the spherical part and since i;uz= *j, using
Eq. (D23) one gets

Q%)= J dE, (D27)

(o8

which means that the charge of j is the MS energy. This
justifies the interpretation of the MS energy as a quan-
tity associated to the interior of the considered sphere of
symmetry. In fact, due to Eq. (D26), the charge does not
depend how one choose the spatial slice to define the
interior. Similarly, since i uz= *k=dR, the charge to k is
simply [, 47R*dR and hence

OulS) = f d(“{m),

which says that the charge of k is the flat-space volume
computed with the areal radius.

Incidentally, the Kodama vector can be used to give
an elegant proof of Birkhoff’s theorem, which states that
spherically symmetric solutions of Einstein’s equations
are, in fact, static. Indeed, by direct computation one
shows that in vacuum k is Killing and, because of spheri-
cal symmetry, it is clearly also hypersurface orthogonal.

Next we turn to the relation between the MS energy
and the Hawking quasilocal mass (Hawking, 1968). The
latter is a quantity associated to a spatial two-sphere § in
an arbitrary spacetime. It is defined by

M(S) = \/Arlzaf)<1 + %T L 49’*6“;15). (D29)

Here ¢ :=tr(VI*)/2 are, respectively, the expansions of
the outgoing and ingoing future-pointing null vector
fields I* normal to S, the latter being partially normal-
ized such that g(I*,I7)=1 (there remains the freedom to
rescale I*— oI, where « is a positive real-valued func-
tion). In the special case of spherical symmetry we take
S to be an orbit of the rotation group. Then we have
Area(S)=4mR?. It is also obvious that the metric of the
base B, evaluated on S, can be written in the form

(D30)

Now, for V tangent to S, Eq. (D3b) gives Vyli*
=R 'I*(R)V so that #*=R'I*(R). Hence we have

26"0" =2R?dR(I")dR(I") = (dR,dR)/R?,

(D28)

ge=r'eolr+ral.

(D31)

where we used Eq. (D30), or rather its contravariant
version, in the last step. Equation (58) now establishes
the equality between the MS energy at p and the Hawk-
ing quasilocal mass of S, where p is any point on S,

E(p) = My(S). (D32)

As is the case for the Hawking quasilocal mass, the
MS energy can be naturally decomposed into a Ricci
and a Weyl part,
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E=Egx+Ey, (D33)
where

Eg:=—-1RKp, (D34a)

Ey:=-iRKy. (D34b)

Here Ky and Ky, denote, respectively, the Ricci and the
Weyl parts of the sectional curvature of the plane tan-
gential to the SO(3) orbits. These are obtained inserting
the decomposition of the Riemann tensor (A9) in the
definition of the sectional curvature (A6). The Ricci part
of the MS energy is determined by the local matter dis-
tribution via Einstein’s equation: Using Egs. (D15) and
(D2) for an arbitrary spherically symmetric energy-
momentum tensor and, respectively, metric in Eq. (A12)
one gets

4
Ep=— R(tTy+p). (D35)
For the Weyl part of the MS energy we have, in view of
Eq. (D8a), that

Euw = 1R3
w= 2 w,

(D36)
where w is given by Eq. (D8b) or (D8c). Hence, in par-
ticular, the Weyl tensor vanishes iff Ey does. Since
the square of the Weyl tensor is (Weyl, Weyl)
=W .5,sW*F7°=12w?, with Eq. (36) we obtain

(Weyl,Weyl) = 482, /R°. (D37)
W

From this one sees that, in a spherically symmetric
spacetime, the nonvanishing of Ey, (that is the nonvan-
ishing of the Weyl tensor) for R—0 implies a curvature
singularity at R=0.

To gain a better physical understanding of the Weyl
part of the MS energy we take a look at the equation of
geodesic deviation (sometime called Jacobi equation).
Let m be a geodesic observer field and s the spatial
[g(u,s)=0] separation vector between two nearby inte-
gral curves of u. Then the equation of geodesic deviation
[see, e.g., Straumann (2004)] is V,V,s=R(u,s)u=B,(s)
+C,(s). In the last step we decomposed the endomor-
phism on the r.h.s. of the geodesic deviation equation in
its Ricci and Weyl parts, denoted here by B, and C,,
respectively. For an arbitrary spherically symmetric
spacetime the latter is given by [see Egs. (8) and (36)]

2E E 2
Cu="5 P~ 5Py (D38)

u

the projector P,. Recall that P, projects onto the sub-
space of the tangential space orthogonal to u [see Eq.
(125b)]. Equation (D38) is exactly the same expression
one gets in Newtonian gravity—provided one identifies
Ey, with the mass of the central object. The spatial en-
domorphism C, describes the familiar volume-
preserving tidal deformation which produces an expan-

where Pf and PS’ are, respectively, the B and S? parts of
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sion in radial direction and a contraction in the
orthogonal directions tangential to the SO(3) orbits.

Concerning the Ricci part B, in the case where u is
the velocity field of dust, making use of FEinstein’s
equation [see Eq. (A12)] we have

B,=— (47/3)oP,. (D39)

This says that the local effect of matter (here given by
dust) is an isotropic contraction.

4. Spherically symmetric perfect fluids

We specialize now to a perfect fluid, which is de-
scribed by a four-velocity vector field u, density ¢, and
pressure p. In case of spherical symmetry u is tangent to
the basis manifold and the matter energy-momentum
tensor (79) decomposes as

T=ou®u+pu®u-gy+pRgg, (D40)

from which one can read off the part tangent to B,

Tpg=ou®u+pu®u-gp. (D41)

Usually, the description is to be completed with the
specification of an equation of state. We will not assume
any equation of state yet, since in some cases (e.g.,
McVittie spacetime) this happens to be determined by
Einstein’s equation.

Inserting Eq. (41) into Eq. (35) we get for the Ricci
part of the MS energy the simple expression

Er=(47/3)R%. (D42)

Also Eq. (23) for the differential of the MS energy sim-
plifies in case of a perfect fluid. Using Eq. (41) the
Kodama current (as one-form) becomes

Jj=(e+plglk,uu-pk. (D43)

It is useful to introduce an adapted orthonormal basis
{u,e} tangent to the basis manifold, where u is the ve-
locity vector field of the fluid and e is chosen to point in
direction of increasing areal radius. Because of our
choice of orientation we have e=*u (the volume form
on B is simply ug=ue). Using this expression for e and
the definition of the Kodama vector field (20) we have

BRecall that dust particles moves along geodesics by the
Euler equation.
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gk, u)=(k,u)=(*dR ,u)=—(dR, »u)=—(dR ,e)=-dR(e)
and, hence, the Hodge star of the Kodama current be-
comes

*j = - pdR(u)u — odR(e)e, (D44)
which, inserted into Eq. (23), gives the following expres-
sion for the differential of the MS energy for a perfect
fluid:

dE = — 47R*[pdR(u)u + ¢dR(e)e]. (D45)
Hence, the variation of the MS energy along u and e is,
respectively,

dE(u) = — 47R*pdR(u), (D46a)

dE(e) = + 4mR*0dR(e). (D46b)

These expressions have a good physical interpretation:
Since the matter moves along u, Eq. (D46a) expresses
the fact that the energy can only increase (decrease) if
the motion along u does (releases) work against (with)
the action of the pressure. Equation (D46b) expresses
the almost obvious increase (decrease) of gravitational
mass with increase (decrease) of volume in the rest sys-
tem of the matter. We said “almost” because 47R2dR(e)
is not quite the increment of proper volume. The differ-
ence accounts for the fact that kinetic and gravitational
binding energy are themselves gravitationally active. To
see that this is indeed what Eq. (D46b) implies, let p be
some point in spacetime and S, the two-sphere of
spherical symmetry through p. Assume S, to have a
regular interior, that is, that S, bounds a three-ball B,
in the hypersurface % orthogonal to u. Except for the
origin of B, we can write B,=0 X S?, where o is a space-
like curve in B orthogonal to u, going from the center
of symmetry to m(p). Using E=(R/2){1+[dR(u)T?
—[dR(e)]’} for the MS energy to eliminate dR(e) in Eq.
(D46b), integrating the latter over o, and reexpressing
the result as a volume integral, one gets

12
E(P)Zf Q<1+[dR(u)]2—%> M. (D47)
B

p

One sees that the MS energy contains the contribution
from the proper mass contained in the ball B,

M(p) = f Ops, (D43)
B

P

as well as contributions from the “kinetic” and “poten-
tial” energy (Misner and Sharp 1964; Hayward, 1996). In
a Newtonian approximation, that is for small “velocity”
dR(u) and weak field (small E/R) one can expand the
square root in Eq. (D47) and gets, in leading order,

1
E(p) = f (e + EQ[dR(u)]2 - %)Mz- (D49)
B
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In this approximation the MS energy is therefore just
the sum of the proper mass and the Newtonian kinetic
and potential energies contained in the ball B,,. This pro-
vides a sound justification for the interpretation of the
MS energy as the active gravitational energy.

At this point we can also compute the differentials of
the two parts (D34) of the MS energy separately. The
differential of the Ricci part follows directly from Eq.
(D42),

1
dEp = 477R2(QdR + ngg) (D50)
and the differential of the Weyl part is the difference of
this with Eq. (D45),

dE =— 47TR2|:(Q +p)dR(u)u + %Rd@] ) (D51)

Its components in the directions # and e are then

dEy(w) = ~ 470 + )R (W) 7 Rdo(w),

(D52a)

dEy(e) = - %TR%IQ(e). (D52b)

It is now instructive to express the variation along u of
the Ricci and Weyl parts of the MS energy in terms of
the kinematical properties of the fluid velocity u. Recall
that, because of spherical symmetry, the rotation tensor
vanishes identically and the shear tensor has only one
independent component. The kinematical quantities re-
duces thus to two scalars: the expansion

6:=divu (D53)
and the shear scalar
o= dR(u)/R - 39. (D54)

The shear tensor is then given by the trace-free endo-
morphism o=0(Qs2-20,), where Qg2 and Q, denote,
respectively, the projections onto the two-dimensional
subspace of T(M) tangential to the two-sphere and onto
the one-dimensional space parallel to e [for the latter see
Eq. (Cla)]. We recall that the divergence-freeness of the
energy-momentum tensor (D40) is equivalent to

(e+p)o=~-do(u), (D55a)

(¢ +p)b=—dple), (D55b)

where b:=-g(V,u,e) is the acceleration (scalar) of u in
positive radial direction (the minus sign in the latter for-
mula is because the metric is negative definite in spatial
directions).

Now, using Egs. (D55a) and (D54) we get

4
dE x(u) = ?WR3(3QU _po), (D56a)
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dEy(u) = - %WR%Q +p)3o. (D56b)

With the equations just derived we can now say when
the MS energy, and its Ricci and Weyl parts, are tempo-
rally or spatially constant. Here by temporally (spatially)
constant we mean that the variation in direction of u (e)
vanishes. We collect the results in the following:

Theorem 4. Consider a spherically symmetric fluid
with o+p #0 and restrict to the region where dR is
spacelike. Then for the MS energy E and its Ricci and
Weyl parts Ez and Ey the following statements hold
true: (i) E is temporally constant iff p=0 or dR(u)=0; (ii)
E is spatially constant iff ¢=0; (iii) Ey is temporally
constant iff =0; (iv) Ey is spatially constant iff ¢ is
spatially constant; (v) Ey is temporally (spatially) con-
stant iff R*p is temporally (spatially) constant.

The proof is a straightforward application of the for-
mulas just derived above. Note that the assumption @
+p # 0 is needed only for (iii). The assumption that dR is
spacelike is needed only for (ii): If dR is spacelike, then
for any spacelike spherically symmetric vector e (hence
tangent to the basis manifold B) it holds dR(e) # 0, since
in a two-dimensional Lorentzian manifold any two
spacelike vectors are linearly dependent.
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