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Dramatic progress has been made over the last decade in the numerical study of quantum
chromodynamics (QCD) through the use of improved formulations of QCD on the lattice (improved
actions), the development of new algorithms, and the rapid increase in computing power available to
lattice gauge theorists. In this article simulations of full QCD are described using the improved
staggered quark formalism, “asqtad” fermions. These simulations were carried out with two
degenerate flavors of light quarks (up and down) and with one heavier flavor, the strange quark.
Several light quark masses, down to about three times the physical light quark mass, and six lattice
spacings have been used. These enable controlled continuum and chiral extrapolations of many low
energy QCD observables. The improved staggered formalism is reviewed, emphasizing both
advantages and drawbacks. In particular, the procedure for removing unwanted staggered species in
the continuum limit is reviewed. Then the asqtad lattice ensembles created by the MILC
Collaboration are described. All MILC lattice ensembles are publicly available, and they have been
used extensively by a number of lattice gauge theory groups. The physics results obtained with them
are reviewed, and the impact of these results on phenomenology is discussed. Topics include the heavy
quark potential, spectrum of light hadrons, quark masses, decay constants of light and heavy-light
pseudoscalar mesons, semileptonic form factors, nucleon structure, scattering lengths, and more.
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I. INTRODUCTION

The standard model of high-energy physics encom-
passes our current knowledge of the fundamental inter-
actions of subatomic physics. It consists of two quantum
field theories: the Weinberg-Salam theory of electro-
magnetic and weak interactions, and quantum chromo-
dynamics (QCD), the theory of the strong interactions.
The standard model has been enormously successful in
explaining a wealth of data produced in accelerator and
cosmic ray experiments over the past 30 years. Our
knowledge of it is incomplete, however, because it has
been difficult to extract many of the most interesting
predictions of QCD: those that depend on the strong
coupling regime of the theory and therefore require
nonperturbative calculations.

At present, the only means of carrying out nonper-
turbative QCD calculations from first principles and
with controlled errors is through large-scale numerical
simulations within the framework of lattice gauge
theory. These simulations are needed to obtain a quan-
titative understanding of the physical phenomena con-
trolled by the strong interactions, such as the masses,
widths, and scattering lengths of the light hadrons, and
to make possible the determination of the weak interac-
tion Cabibbo-Kobayashi-Maskawa (CKM) matrix ele-
ments from experiment. A central objective of the ex-
perimental program in high-energy physics, and of
lattice QCD simulations, is to determine the range of
validity of the standard model, and to search for new
physics beyond it. Thus, QCD simulations play an im-
portant role in efforts to obtain a deeper understanding
of the fundamental laws of physics.

Major progress has been made in the numerical study
of QCD over the last decade through the use of im-
proved formulations of QCD on the lattice, the develop-
ment of new algorithms, and the increase in computing
power available to lattice gauge theorists. The lattice
formulation of QCD is not merely a numerical approxi-
mation to the continuum formulation. The lattice regu-
larization is every bit as valid as any of the popular con-
tinuum regularizations, and has the distinct advantage of
being nonperturbative. The lattice spacing a establishes
a momentum cutoff =/a that removes ultraviolet diver-
gences. Standard renormalization methods apply, and in
the perturbative regime they allow a straightforward
conversion of lattice results to any of the standard con-
tinuum regularization schemes.

There are several formulations of the lattice QCD La-
grangian in current widespread use. The gauge field ac-
tion can be constructed with varying degrees of im-
provement that are designed to reduce cutoff effects at
nonzero lattice spacing. The quark action can be formu-
lated using Wilson’s original method (Wilson, 1974) with
modern improvements (Sheikholeslami and Wohlert,
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FIG. 1. (Color online) Comparison of the ratio of lattice QCD and experimental values for several observables, where the lattice
QCD calculations are done in the quenched approximation (left) and with 2+1 flavors of asqtad sea quarks (right). Adapted from

Davies et al., 2004.

1985) or with the twisted mass (Frezzotti et al., 2000,
2001; Frezzotti and Rossi, 2004) or other variants (Zan-
otti et al, 2002; Morningstar and Peardon, 2004), with
the Kogut-Susskind or staggered fermion formulation
(Kogut and Susskind, 1975; Banks et al, 1976, 1977,
Susskind, 1977) with improvements, and with the more
recently implemented chiral methods that include
domain-wall fermions (Kaplan, 1992; Shamir, 1993; Fur-
man and Shamir, 1995) and overlap fermions (Naray-
anan and Neuberger, 1995; Neuberger, 1998b). Other im-
provements also in production use are Wilson quarks
with hypercubic (HYP) smearing to reduce lattice arti-
facts (Hasenfratz et al., 2007; Schaefer et al., 2007), or to
approximate good chiral behavior (Gattringer, 2001).

In this article, we review a ten-year research program
founded on a particular improvement of staggered fer-
mions called “asqtad” (Blum et al., 1997; Lepage, 1998;
Lagae and Sinclair, 1999; Orginos and Toussaint, 1999;
Orginos et al., 1999; Bernard et al., 2000b) [named for its
O(a?) level of improvement and its inclusion of a “tad-
pole” renormalization]. Over this time, the MILC Col-
laboration has created a significant library of gauge field
configuration ensembles with the full complement of the
light sea quarks u, d, and s. The masses of the u and d
quarks have been taken to be equal, which has a negli-
gible effect (<1%) on isospin-averaged quantities. In
planning the parameters of these ensembles, an attempt
has been made to address the three primary sources of
systematic errors in lattice QCD calculations: the chiral
and continuum extrapolations, and finite size effects. It
is straightforward to perform simulations with the mass
of the s quark close to its physical value, and in most of
the ensembles that has been done. However, up to now
it has been too computationally expensive to perform
simulations at the physical mass of the u and d quarks.
Instead, ensembles have been generated with a range of
light quark masses in order to perform extrapolations to
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the chiral (physical value of the u and d quark mass)
limit guided by chiral perturbation theory. Simulations
have been performed with six values of the lattice spac-
ing in order to enable controlled extrapolations to the
continuum (zero lattice spacing) limit, and in almost all
cases the physical size of the box in which the simula-
tions have been carried out has been taken to be more
than four times the Compton wavelength of the pion in
order to minimize finite size effects. Finally, because
SU(3) chiral perturbation theory converges rather slowly
for the s quark mass close to its physical value, a number
of ensembles have been generated with lighter than
physical s quark masses to improve the chiral extrapola-
tion. These ensembles are publicly available, and have
been used by a number of research groups to calculate a
variety of hadronic quantities ranging from chiral prop-
erties of light mesons to hadronic parton distributions to
semileptonic decays of mesons with a charm or bottom
quark to the spectroscopy of heavy quarkonium.

The asqtad improved staggered fermion approach has
enjoyed considerable success. Its comparatively high de-
gree of improvement and its relatively low computa-
tional cost enabled a broad set of full QCD phenomeno-
logical calculations earlier than was possible with other
fermion methods. In Fig. 1 we show the effects of includ-
ing sea quarks in a variety of physical quantities (Davies
et al., 2004). Computations with asqtad sea quarks are
able to account for a variety of known decay constants,
some hadronic masses, and several quarkonium mass
splittings to a precision of a few percent (Davies et al.,
2004). Their predictions for a few heavy-light leptonic
(Aubin et al., 2005a) and semileptonic decays (Aubin et
al., 2005b) have been experimentally confirmed. They
provide values for the strong fine structure constant a;
(Davies et al., 2008), the charm quark mass (Davies et al.,
2009), the CKM matrix elements |V, (Bernard et al.,
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2007b), |V.,| (Bernard er al., 2009a), and |V,,;,| (Bailey et
al., 2009), and the D* and D, leptonic decay constants
(Follana et al., 2008) that are competitive with the most
accurate determinations to date.

In Sec. II, we begin with a review of lattice gauge
theory, discussing gauge field and fermion field formula-
tions and numerical simulation methods. We end Sec. 11
with an overview of the asqtad and the more recent
highly improved staggered quark (HISQ) fermion for-
mulations.

Section III first discusses the inclusion of staggered
discretization errors in chiral perturbation theory, result-
ing in “staggered chiral perturbation theory” (SyPT).
The application to the light pseudoscalar meson sector is
described in detail; applications to heavy-light mesons
and to a mixed-action theory (with chiral valence quarks
and staggered sea quarks) are treated more briefly. We
then turn attention to the procedure used to deal with
the extra species that occur for staggered fermions. Each
staggered field (each flavor of quark) normally gives rise
to four species in the continuum limit. The additional
degree of freedom is called “taste.” To obtain the cor-
rect counting of sea quarks it is necessary to take the
fourth-root of the fermion determinant. This rooting
procedure has been shown to produce a theory that is
nonlocal on the lattice, leading to the legitimate ques-
tion of whether the nonlocality persists as the lattice
spacing goes to zero. Such nonlocality would spoil the
continuum limit, giving a theory inequivalent to QCD.
Recently, however, there has been much work on this
issue, and there is now a substantial body of theoretical
and computational evidence that the fourth root meth-
odology is indeed correct. We discuss some of that work
in Sec. III, and also explain how to take rooting into
account properly in the chiral effective theory.

In Sec. IV, we list the ensembles of publicly available
asqtad gauge configurations, and describe tests of their
intended properties, including the determination of the
lattice scale and the topological susceptibility. In the fol-
lowing sections, we review physics results obtained with
them. In Sec. V, we review the spectroscopy of light had-
rons other than the pseudoscalar mesons, including vec-
tor and scalar mesons and baryons. Section VI is de-
voted to properties of the pseudoscalar mesons,
including masses, decay constants, and Gasser-
Leutwyler low energy constants. We turn in Secs. VII
and VIII to the masses and decays of mesons containing
one heavy (charm or bottom) quark and one light anti-
quark. Section VII treats masses and leptonic decays;
Sec. VIII, semileptonic decays.

In Sec. IX, we review a variety of other calculations,
including the determination of the strong coupling «,
quarkonium spectroscopy, the spectroscopy of baryons

containing one or two heavy quarks, K,-K, and Bj-B,
mixing, the muon anomalous magnetic moment, and
quark and gluon propagators.

Finally, in Sec. X, we discuss further improvements
under way or under consideration, including the incor-
poration of electromagnetic effects and the implementa-
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tion of the HISQ action, and briefly comment on future
prospects for the field.

We do not review applications of the asqtad formula-
tion to QCD thermodynamics. A recent article by De-
Tar and Heller (2009) contains a review of high tempera-
ture and nonzero density results, including those
obtained using the asqtad fermion action.

II. FERMIONS ON THE LATTICE: IMPROVED
STAGGERED FORMALISM

A. Brief introduction to lattice gauge theory

1. Basic setup

Euclidean, i.e., imaginary time, field theories can be
regulated by formulating them on a space-time lattice,
with the lattice points, called sites, separated by the lat-
tice spacing a. This introduces an ultraviolet cutoff =/a
on any momentum component. Matter fields then reside
only on the lattice sites, while the gauge fields are asso-
ciated with the links joining neighboring sites. The gauge
fields are represented by gauge group elements U ,(x) on
the links, which represent parallel transporters from site
x to the neighboring site x+au, where 4 is the unit vec-
tor in the direction w, with wu=1,...,d for a
d-dimensional lattice,

X+ap
U,(x)=Pexp) ig J dy,A,(y)
= exp{iga[AM(x +anl2)

a? .
+ ﬂ&iAM(x +apl2) + -

=1+iagA, (x +ap/2) + . (1)

Under gauge transformations V(x), restricted to the
sites of the lattice, the gauge links transform as

U,(x) — V(x) U#(x)V*(x +ap). (2)

The traces of products of gauge links around closed
loops on the lattice, so-called Wilson loops, are then
gauge invariant. The gauge action can be built from the
sum over the lattice of combinations of small Wilson
loops with coefficients adjusted such that in the con-
tinuum limit, a—0, it reduces to [d?x3 Tr Ffw up to
terms of O(a?). The simplest gauge action, the original
action introduced by Wilson (1974), consists of a sum
over plaquettes (1 X1 Wilson loops)

So=L3 ReTr(1-U), @)
N
where B=2N/g?, for gauge group SU(N), with g the
bare coupling constant.
Fermions, in Euclidean space, are represented by

Grassmann fields , and ,, which in the lattice formu-
lation reside on the sites of the lattice. A generic fer-
mion action can be written as
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Sp= 2 IZXMF;x,ywy» (4)
x’y

where the fermion matrix Mp., , is some lattice discreti-
zation of the continuum Dirac operator D +m. Details of
lattice fermion actions are described below.

The lattice gauge theory partition function is then
given by

Z(p) = f [TdU, 11 [dy.dJexpi-S¢ - a*SH,
(5)

where dU ,(x) is the invariant SU(N) Haar measure and

dipdip, indicate integration over the Grassmann fields.

Since S is quadratic in the fermion fields, the integra-
tion over the Grassmann fields can be carried out, lead-
ing to (up to a trivial overall factor)

Z(B) = f 11 dU,(x)det Mpexp{- S}

= f H dUM(x)eXp{— Seff}7 (6)

with Seff:SG—Tr In MF'
The expectation value of some observable O is given
by

<O>_TB)IHdU (x)

X H [d(_ﬂxdlrllx]o eXp{_ SG - a4SF}

Z(,B)fHdU (x)O det My exp{- Sg}

Z(B)fHdU (x)O exp{- Set}- ™)

If the observable O involves fermion fields ¢, and ny
then, in the third line of Eq. (7) each pair is replaced by
M le , 1n all possible combinations with the appropriate
minus signs for Wick contractions of fermion fields.

2. Improved action

As mentioned before Eq. (3), the typical gauge action
on the lattice reduces to the continuum action up to
terms of O(a?). These terms lead to O(a?) deviations
from the continuum result of physical observables com-
puted at finite lattice spacing. These O(a?) effects can be
reduced by using an improved gauge action (together
with improved operators, where necessary) in an im-
provement program initiated by Symanzik (1980, 1983).

For the gauge action, the improvement can be
achieved by adding 2 X 1 (planar) rectangle (labeled “rt”)
and generalized three-dimensional 1X1X1 parallelo-
gram (labeled “pg”) Wilson loop terms (see Fig. 2) to the
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a) u b) u c)‘”

FIG. 2. Liischer-Weisz action Wilson loops: (a) standard
plaquette, (b) 21 rectangle, and (c) 1 X1 X1 parallelogram.

Wilson action, Eq. (3), with coefficients computed, at
one-loop order in perturbation theory, by Liischer and
Weisz (1985a, 1985b),

Siw= %{E ¢ Re Tr(1 -U,) + 2, ¢, Re Tr(1-U,)
pl rt

+ > Cpg Re Tr(1 - Upg)}. (8)
g
The coefficients ¢;= +47-ra0c(1) at one loop can be

found in Table I of Luscher and Weisz (1985a).

Bare lattice perturbation theory results generally con-
verge slowly but can be improved by using tadpole-
improved perturbation theory (Lepage and Mackenzie,
1993). This starts with using a more continuumlike gauge

link U,— U M:ualU « The so-called tadpole factor u is
determined in numerical simulations either as the expec-
tation value of U, in Landau gauge or, more commonly,
from the expectation value of the average plaquette

uy=(N"'Re Tr U,)"*. 9)

The Liischer-Weisz action can now be tadpole improved
by explicitly pulling a u(jl factor out of each link and
replacing «aq in the one-loop perturbative coefficients c;
with a nonperturbatively renormalized coupling «, de-
fined, for gauge group SU(3), in terms of the measured
lattice value of u, by

a, = — 1.303615 In u,, (10)

where the proportionality factor is determined by the
one-loop expression for Inu, Defining BLWEu54/3cP,
since U, involves the product of four links, the im-
proved action can be written as (Alford et al., 1995)

B
S;w= —gw{z Re Tr(1 - U,)
pl
1 +0.4805
Y u Re Tr(1 - U,)
rt 20”0
0.03325
—2 “ Re Tr(1 - pg)}. (11)
“0

Since higher perturbatlve orders in the coefficients are
neglected, the one-loop improved Liischer-Weisz action,
Eq. (11), leads to remaining lattice artifacts of (’)(af,az).
Sometimes, only a tree-level improved action without
the terms proportional to «, in Eq. (11) is used, leading
to lattice artifacts of O(a,a?). Since the parallelogram
terms are then absent such simulations are somewhat
faster. It should be noted that Eq. (11) does not include
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the one-loop contributions from dynamical fermions,
which were unknown at the time the MILC Collabora-
tion started the (2+1)-flavor simulations reviewed in this
article. Therefore, for those simulations, the leading lat-
tice artifacts in the gauge sector are O(a,a®) as in the
fermion sector, described later. The one-loop fermion
contribution has recently been computed by Hao, von
Hippel, Horgan, Mason, and Trottier (2007).

B. Fermions on the lattice

1. The doubling problem

Putting fermions on a lattice, one replaces the covari-
ant derivative in the continuum fermion action with a
covariant (central) difference

Snaive = E ’Z/(X){E 'y,u.v/ﬁb(x) + me)} > (12)
x n

where

1
V() = (U, 0+ af) = Ul x = ai)lx = aid)
(13)

The inverse propagator in momentum space derived
from the action Eq. (12) in the free case, with all link
fields U,=1, is

aS~Nap) = ) Y, sin(ap,) +am. (14)

y
In the massless case, this inverse propagator not only
vanishes when p=0, but also when p,=0 or p,=m/a for
each u=1,...,4, i.e., on all 16 corners of the Brillouin
zone in d=4 dimensions. Thus, when we try to put one
fermion on the lattice we actually get 16 in the con-

tinuum limit. This is the infamous doubling problem of
lattice fermions.

2. Wilson fermions

This doubling problem was recognized by Wilson
when he first formulated lattice gauge theories. He also
proposed a solution: adding an irrelevant term—a term
that vanishes in the continuum limit, a—0 (Wilson,
1975),

S = Snave = 5 2 0D A,940) = §Dwlm)p, - (15)
x w

where r is a free parameter, usually set to r=1, and the
Laplacian is

1
Aifx) = S[ULOY0x+ afe) + Uy(x - ap)ix - a)

—29(0)]. (16)

The free inverse propagator now is
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aSap) =i, Y, sin(ap,,) + am — r> [cos(ap,) —1].

M M

(17)

The doublers, with n momentum components p,=m/a,
now attain masses m+2nr/a, and only one fermion, with
p =0, remains light.

We note that the Wilson Dirac operator is ys Hermit-
ian,

Diy(m) = ysDy(m)ys. (18)

Thus det DI,V(m)zdet Dy/(m), implying that two
flavors—and by extension any even number of flavors of
Wilson fermions—Ilead to a manifestly positive (semi)
definite fermion determinant, det[D@V(m)D w(m)].

The price for eliminating the doubling problem in this
Wilson fermion approach is that the action Eq. (15) vio-

lates the chiral symmetry Siy=iaysi, 51];:iaz,7ry5 of mass-
less fermions (with « an infinitesimal parameter). As a
consequence, the massless limit of fermions is no longer
protected—the mass gets an additive renormalization; to
get massless quarks requires a fine tuning of the bare
mass parameter.

According to the usual, renormalization group based
universality arguments, the chiral symmetry, broken at
finite lattice spacing only by an irrelevant dimension-five
operator, will be recovered in the continuum limit after
fine tuning of the bare mass parameter. But the explicit
violation of chiral symmetry allows the generation of
other contributions to dimension-five operators, which
are suppressed by only one power of the lattice spacing
a. The lattice artifacts for Wilson fermions are therefore
of O(a), rather than O(a?) as in the pure gauge sector.

Besides (x)Ay(x), with A=3 A, there is a second
dimension-five (chiral symmetry breaking) operator

ia -

Ssw= " Csw Hx)0 F ) ). (19)

where F,,(x) is a lattice representation of the field
strength tensor F,,(x), and ¢,,=5[7v,,7,]. Inclusion of
Eq. (19) into the fermion action, with properly adjusted
coefficient cgy, was proposed by Sheikholeslami and
Wohlert (1985) to eliminate the O(a) effects of the Wil-
son fermion action. Since F,,(x) on the lattice is usually
represented by a “clover leaf” pattern of open
plaquettes, the action including the term Eq. (19) is com-
monly referred to as the clover action.

The appropriate coefficient cgy of the clover term,
Eq. (19), can be computed in perturbation theory (Woh-
lert, 1987; Liischer and Weisz, 1996), or even better non-
perturbatively (Liischer et al., 1996, 1997)—truly reduc-
ing the remaining lattice effects from O(a) to O(a?).

Another problem with Wilson fermions is that be-
cause of the additive mass renormalization the fermion
determinant det Dy/(m) is not positive definite even
for putative positive quark mass. Configurations with
det Dy(m)=0 can occur, called exceptional configura-
tions, which can slow down numerical simulations con-
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siderably. A formulation that removes such exceptional
configurations, introduced by Frezzotti et al. (Frezzotti et
al., 2000, 2001; Frezzotti and Rossi, 2004) is called
“twisted-mass QCD.” For two flavors one considers the
Dirac operator

Dyyiss=D +m+ipyss, (20)

where the isospin generator 73 acts in flavor space. In the
continuum, the twisted-mass Dirac operator is equiva-
lent to a usual Dirac operator with mass Vm?+u?. On
the lattice, however, with D replaced by the (massless)
Wilson Dirac operator Dy(0) of Eq. (15), the twisted-
mass term ensures a positive-definite two-flavor deter-
minant, det[ D, (m)Dy/(m)+u?]>0. An added benefit of
the twisted-mass (Wilson) fermion formulation is, that at
maximal twist tan a=u/m, the twisted-mass Wilson
Dirac operator is automatically O(a?) improved (Frez-
zotti and Rossi, 2004). Unfortunately, the real part of the
mass m still receives an additive renormalization so that
achieving maximal twist requires a fine tuning. Further-
more, at finite lattice spacing, isospin symmetry is bro-
ken, making the 7’ mass different from the mass of the
.

3. Staggered fermions

Another way of dealing with the doubling problem,
alleviating though not eliminating it, is the staggered fer-
mion formalism (Kogut and Susskind, 1975; Banks et al.,
1976, 1977; Susskind, 1977). One introduces a new fer-
mion field by

Yx) =T x(x), fx) = YT, (21)
with

rx — 7(1x1/a) y(zleu) 7(3x3/a) Y£x4/a)- (22)
Using I''T',=1 and

TIy T g = (- DOt = 4 (), (23)

the naive fermion action, Eq. (12), can be written as

Ss= S )'((x){E POV () + mx(x)}

= X(Dgs+m)x, (24)

where matrix multiplication is implied in the final ex-
pression. Here, the four Dirac components decouple
from each other, and the fermion field y(x) can be re-
stricted to a single component, thereby reducing the
doubling by a factor of 4, from 16 to 4. It is, in principle,
possible to interpret these four remaining degrees of
freedom as physical flavor (u,d,s,c), but, in order to
give different masses to the flavors, one must introduce
general mass terms coupling nearby sites (Gockeler,
1984; Golterman and Smit, 1984). That approach then
leads to a variety of practical problems including com-
plex determinants and the necessity of fine tuning.
Instead, we follow modern usage and refer to the
quantum number labeling the four remaining fermion
species as taste, which, unlike flavor, is an unwanted de-
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gree of freedom that must be removed. We describe how
this removal is accomplished by the so-called “fourth-
root procedure” at the end of this section, and discuss it
in more detail in Sec. III.C. If more than one physical
flavor is required, as is, of course, the case for simula-
tions of QCD, one then needs to introduce a separate
staggered field for each flavor. For example, for QCD
with three light flavors, one employs three staggered
fields x,, x4 and Xs.l However, for simplicity, we con-
sider only a single staggered field (one flavor) in the re-
mainder of this section.

The one-component fermions with action Eq. (24) are
referred to as (standard) staggered or Kogut-Susskind
fermions. The “standard” distinguishes them from im-
proved versions, described later on.

An important discrete symmetry of the staggered fer-
mion action, Eq. (24), is shift symmetry (van den Doel
and Smit, 1983; Golterman and Smit, 1984)

x(x) = p()x(x +ap),
X(x) = p,(X)x(x +ag),

U, (x) = Uyx+ap), (25)

with the phase p,(x) defined by p,(x)=(-1)Fus1t +xale,
Additional discrete symmetries of the staggered action
are 90° rotations, axis inversions, and charge conjuga-
tion. In the continuum limit, these symmetries are ex-
pected to enlarge to a direct product of the Euclidean
Poincaré group and a vector SU(4),, among the tastes
(plus parity and charge conjugation) (Golterman and
Smit, 1984).

For massless quarks, m=0, the staggered fermion
action also has a continuous even-odd U(1),XxU(1),
chiral symmetry (Kawamoto and Smit, 1981; Kluberg-
Stern et al., 1981; Kluberg-Stern, Morel, and Petersson,
1983), a remnant of the usual chiral symmetry for mass-
less fermions in the continuum. The U(1), X U(1), sym-
metry is

x(x) — explia tx(x),  x(x) — ¥(x)exp{-ia,}

for x = even,
(26)

x(x) — expliapx(x),  x(x) — x(x)exp{-ia.}

for x = odd,

where «, and ¢, are the symmetry parameters, and a site
x is called even or odd if = ,(x,/a) is even or odd. The
“axial part” of this symmetry, o,=—-a,= «,, is known as
U(1), symmetry (Kawamoto and Smit, 1981) and takes
the form

In practice, since one usually takes m,=m # my, the u and d
fields can be simulated together, and one can use only two
staggered fields. For clarity, we ignore this technical detail.
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x(x) — expliae(x)hx(x), x(x) — x(x)explia.e(x)}
with e(x) = (= 1)ZxX/9) (27)

The chiral symmetry, Eq. (26) or (27), protects the mass
term in Eq. (24) from additive renormalization, while
the discrete symmetries (especially shift symmetry) are
also needed to prevent other mass terms (coupling x and
X at nearby sites) from arising (Golterman and Smit,
1984). In particular, an alternative version of staggered
quarks called the “Dirac-Kdhler action” (Becher and
Joos, 1982) does not have shift symmetry and therefore
generates a mass term at one loop even when m=0 (Mi-
tra and Weisz, 1983).

The even-odd symmetry is spontaneously broken to
the diagonal vector U(1), (quark number) symmetry,
a,=a,, with an ensuing Goldstone boson. In addition,
the mass term breaks the U(1),X U(1), symmetry ex-
plicitly, giving mass to the Goldstone boson, méocm.

The staggered Dirac operator Dgg in Eq. (24) obeys
(Smit and Vink, 1987)

Dg=-Dys=eDgse, (28)

where ¢ is a diagonal matrix in position space with e(x)
along the diagonal, and the second equality follows from
the fact that D g connects only even and odd sites. The
fact that D gy is antihermitian implies that its eigenvalues
are purely imaginary; the ¢ relation in Eq. (28) then tells
us that the nonzero eigenvalues come in complex-
conjugate pairs. For m >0, which is the case of interest
here, this ensures that the staggered determinant
det(Dygg+m) is strictly positive.> Note that the con-
tinuum Euclidean Dirac operator Dy, is also anti-
Hermitian and obeys a corresponding equation

Dzont == Dcont = ¥sDcont Vs> (29)

which similarly results in a positive determinant for posi-
tive quark mass.

The one-component staggered fermion fields y(x) can
be assembled into Dirac fields g(y), living on 2* hyper-
cubes of the original lattice, labeled by y, with corners
x=2y+aA, where A,=0,1 (Duncan et al., 1982; Gliozzi,
1982; Kluberg-Stern, Morel, Napoly, and Petersson,
1983). One has

1
q(y)ai= gE (Fa)aiUa)x(2y +aA),
A

(30)

*We do not expect any exact zero modes on generic configu-
rations, even those with net topological charge. Such configu-
rations will in general have only some near-zero [O(a) or
smaller] eigenvalues. So, in fact, the determinant should be
positive even for m <0. This is different from the case of chiral
fermions discussed in Sec. I1.B.4.
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1
G()ia= 52 X2y +aA) UL (n)(T o)1,
A

where «, i label the Dirac and taste indices, respectively,
and Uy(y) is a product of the gauge links over some
fixed path from 2y to 2y +aA. Bilinear quark operators,
with spin structure y,=I; and taste structure g,:rj are
defined by (Sharpe and Patel, 1994)

Ou=q(y)(v, @ &)q(y)

1
= 2 X2y + aA) UL () Up(y)
A,B

1
X x(2y + aB)Z Tr(I, I, (31)

In the free case [all U,(x)=1], the quark action in Eq.
(24) can be expressed in terms of the fields g(y) as
(Kluberg-Stern, Morel, Napoly, and Petersson, 1983)

Sis= 163 q@){m(l oD+ [y, DV,
y M

+alys ® f,gsmﬂ]}q(y), (32)

where [ is the identity matrix, the factor of 16 arises
from the fact that there are 1/16 as many y points as x
points, and V,, and A, are the free-field versions of Eqgs.
(13) and (16), but acting on the doubled (y) lattice

1
Vufly) = [y +2a) - fly - 2a/2)],

1
Aufy) = 5y + 2a) = 2f(y) + fly = 2a)]. - (33)

These derivatives go to d,f(y) and aif(y), respectively, in
the continuum limit. In the interacting case there is an-
other dimension-five, O(a), term, involving the field-
strength tensor F,,, in addition to the A, term in Eq.
(32). There are also higher contributions of O(a?) start-
ing at dimension six (Kluberg-Stern, Morel, Napoly, and
Petersson, 1983).

In the V, (first derivative) kinetic energy term of Eq.
(32), the even-odd U(1),XU(1), symmetry is enlarged
to a full continuous chiral symmetry, U(4); X U(4)g, act-
ing on the taste indices of the right and left fields,
qr()=3(1+¥5)q(y) and q,(y)=5(1-¥5)q(y). The mass
term breaks this down to an SU(4),, vector taste symme-
try [plus the U(1)y of quark number]. On the other
hand, because of the explicit taste matrices, the second
derivative term in Eq. (32) breaks the full chiral symme-
try to the U(1),XU(1), symmetry (plus the discrete
staggered symmetries). Because these are all symmetries
of the original staggered action, they remain symmetries
in the taste basis, even when the additional terms that
appear in Eq. (32) in the interacting case are taken into
account.
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The key point is that, in the interacting theory, one
can split the staggered Dirac operator in the taste basis
as

DKS:D®I+CIA, (34)

where [ is the 4 X4 identity matrix in taste space and A
is the taste-violating (traceless) part, with minimum di-
mension five. One expects the SU(4), vector taste sym-
metry to be restored in the continuum limit because A
should be irrelevant in the renormalization-group sense.

In the free case, the shift symmetry, Eq. (25), takes the
form for the Dirac fields g(y) (Luo, 1997)

q(y) =3I ® &, + ¥57, ® &)q(y)
+ (1 ® g/.l, - 757;1, ® fS)fI(y + 2al&')]> (35)

Gy — 3[G0UI @ &, — 57, ® &)
+q(y+2am)I® &, + ys7,® &)]. (36)

As the continuum limit is approached, shifts become
simply multiplication by the taste matrix &,, plus higher-
dimension terms involving derivatives. Thus shifts are
basically discrete vector taste transformations, coupled
with translations.

In the taste basis, the axial U(1), symmetry is

q(y) — explia,(ys ® &)1q(y),
(37)
q(y) — q(y)explia.(ys ® &)}.

Because of the &, this is clearly a taste nonsinglet axial
symmetry, and hence is nonanomalous. The anomalous
axial symmetry U(1), must be a taste singlet,

q(y) — explias(ys ® Diq(y),
(38)
q(y) — q(y)explias(ys @ D}.

Indeed, this symmetry is not an invariance of the stag-
gered lattice action in the massless limit, and the sym-
metry violations generate, through the triangle graph,
the correct axial anomaly in the continuum limit
(Sharatchandra et al., 1981).

The bilinear quark operators in Eq. (31) can create (or
annihilate) mesons. Therefore, for staggered quarks,
each meson kind with given spin (Dirac) structure I’y
(e.g., I'y=1s for the pion, I';=1y, for the rho, etc.) comes
in 16 varieties, labeled by the taste index ¢. In the con-
tinuum limit all nonsinglet mesons of a given spin are
degenerate’™—SU(4),, taste symmetry connects them.
But at nonzero lattice spacing, there is only the stag-
gered symmetry group, the group of the discrete symme-

*Mesons that are singlets under taste and any additional fla-
vor symmetries need not be degenerate with the nonsinglet
mesons, since they can have physically distinct disconnected
contributions to their propagators. An important example is
7', which will get a contribution from the anomaly and have a
mass in the continuum limit different from that of all other
pseudoscalars.
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tries of the staggered action (shifts, 90° rotations, axis
inversions, and charge conjugation) plus the U(1)y of
quark number, which are remnants of the continuum
Poincaré, taste SU(4)y, quark number, and discrete sym-
metries. Meson states may be classified under the sub-
group of the staggered symmetry group, the “staggered
rest frame symmetry group,” which is the symmetry
group of the transfer matrix (Golterman, 1986a, 1986b).
The 16 tastes of a meson with given spin structure are
not degenerate at finite lattice spacing, but are split ac-
cording to irreducible representations of the rest frame
group. In particular, only the pion with pseudoscalar
taste structure §,:7; is a Goldstone boson, denoted by
7p (P stands for pseudoscalar taste), whose mass van-
ishes for massless quarks, m=0. To leading order in the
chiral expansion (see Sec. III.A) the other tastes have
masses

mit = mf,P +a*8,=2Bm +ad*s,, (39)
with B a low-energy constant and &, a taste-dependent
splitting that is independent of a (up to logarithms) for
small a. The non-Goldstone pions become degenerate
with the Goldstone pion only in the continuum limit.
The taste violations in the pion system are found to be
larger than those for other hadrons (Ishizuka et al.,
1994).

Since staggered fermions have only one (spin) compo-
nent per lattice site, and since they have a remnant chi-
ral symmetry that insures positivity of the fermion deter-
minant at positive quark mass, they are one of the
cheapest fermion formulations to simulate numerically.
The main drawback is the need to eliminate the un-
wanted extra tastes, using the so-called “fourth-root pro-
cedure.” Each continuum fermion species gives a factor
of det M in the partition function, Eq. (6). Therefore, to
reduce the contribution from four tastes to a single one,
we take the fourth root of the determinant, (det M),
where M gg=D gs+m® I, with Dgg given in Eq. (34). The
procedure was first introduced in the two-dimensional
version of staggered fermions (where it is a “square-root
procedure” because there are only two tastes) by Mari-
nari et al. (1981b). The point is that the Dirac operator
Dy (and hence M) should become block diagonal in
taste space in the continuum limit because A is an irrel-
evant operator. The fourth-root procedure then be-
comes equivalent to replacing the Dgg by its restriction
to a single taste. Conversely, the nontriviality of the pre-
scription arises because taste symmetry is broken at
nonzero lattice spacing. In Sec. II1.C, we discuss the sta-
tus of this procedure and the evidence that it accom-
plishes the goal of producing, in the continuum limit, a
single quark species with a local action.

4. Chirally invariant fermions

None of the ways of dealing with the fermion dou-
bling problem outlined so far are entirely satisfactory.
Wilson-type fermions explicitly break chiral symmetry,
and staggered fermions have a remaining doubling prob-
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lem, requiring the fourth-root procedure, that continues
to be somewhat controversial because of the broken
taste symmetry at finite lattice spacing.

Indeed, the chiral anomaly implies that no lattice ac-
tion can have an exact flavor-singlet chiral symmetry
(Karsten and Smit, 1981). There is even a no-go theorem
(Nielsen and Ninomiya, 1981) that states that the dou-
bling cannot be avoided with an ultralocal* and unitary
fermion action. However, actions with a modified form
of chiral symmetry on the lattice can avoid doubling
while retaining most of the desirable features of chiral
symmetry. Such actions couple arbitrarily distant points
on the lattice but with exponentially suppressed cou-
plings, exp{-r/r,}, where r; should be of the order the
lattice spacing to ensure a local action in the continuum
limit. There are three known ways of achieving this.

The first goes under the name of “domain-wall fermi-
ons” and was developed by Kaplan (1992), Shamir
(1993), and Furman and Shamir (1995). The construction
of Furman and Shamir is usually used nowadays. One
introduces an additional, fifth dimension of length L,
and considers five-dimensional Wilson fermions with no
gauge links in the fifth direction, and the four-
dimensional (4D) gauge links independent of the fifth
coordinate s,

L1 B 1
SDW: E E w(xas){z ('}’Mv,u_ EAM) '#(xas)

s=0 x

—Mi(x,s)— P_y(x,s +1) = P, Jx,s — 1)},

(40)

where P, = %(1 +ys) are chiral projectors and we have set
r=a=1. M, introduced here with a sign opposite that of
the mass term for Wilson fermions, Eq. (15), is often
referred to as the domain-wall height and needs to be
chosen such that 0 <M <2. For free fermions, M=1 is
the optimal choice, while in the interacting case M
should be somewhat larger. The fermion fields satisfy
the boundary condition in the fifth direction,

P_ix,Ly) =— mfP,lﬂ(x,O),
(41)
Pop(x,—1) =~ mfPer(xaLs -1),

where m; is a bare quark mass.

For m;=0, the domain-wall action, Eq. (40), has 4D
chiral modes bound exponentially to the boundaries at
s=0 and s=L,—1, which are identified with the chiral
modes of 4D fermions as

*We denote by “ultralocal” an action that couples only sites
a finite number of lattice spacings apart. A “local” action is
either ultralocal, or the coupling falls off exponentially with
distance with a range of the order of a few lattice spacings, so
that the action becomes local in the continuum limit. Such
local actions are believed not to change the universality class in
the renormalization group sense. Any other action is called
nonlocal.
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q"(x) = P.y(x, L= 1),  q"(x) = P_y(x,0),

(42)
") = Ylx, Ly - 1)P_,  G"(x) = Y(x,0)P,.

When L,— the chiral modes become exact zero
modes, the left- and right-handed modes g and ¢® do
not interact for m;=0, and the domain-wall action has a
chiral symmetry. At finite L, the chiral symmetry is
slightly broken. Often L,=0(10-20) is large enough to
keep the chiral symmetry breaking negligibly small. The
computational cost of domain-wall fermions is roughly a
factor of L larger than that for Wilson-type fermions.

Related to these domain-wall fermions are the so-
called overlap fermions developed by Narayanan and
Neuberger (1995) and Neuberger (1998b). The overlap
Dirac operator for massless fermions can be written as
(Neuberger, 1998b)

aD,, = M[1 + ys®(ysDyw(- M))], (43)

where Dy(—M) is the usual Wilson Dirac operator with
negative mass m=-M, and again 0<M <2 should be
used. O(X) is the matrix sign function, for a Hermitian
matrix X, that can be defined as

0(X) = X1\ X2. (44)

Using the fact that ®%(X)=1, it is easy to see that the
Neuberger Dirac operator satisfies the so-called
Ginsparg-Wilson relation (Ginsparg and Wilson, 1982)

{yS’DOU} = aDov75RDou7 (45)

with R=1/M, or equivalently, when the inverse of D, is
well defined,

{ys,D,;} =aysR. (46)

In the continuum, chiral symmetry implies that the
massless fermion propagator anticommutes with ys. The
massless overlap propagator violates this only by a local
term that vanishes in the continuum limit. Ginsparg and
Wilson argued that this is the mildest violation of the
continuum chiral symmetry on the lattice possible. In
fact, any Dirac operator satisfying the Ginsparg-Wilson
relation (45) has a modified chiral symmetry at finite
lattice spacing (Liischer, 1998),

Sy=iays(1—aD2M)y, Sp=iay(l —aD/2M)vys,
(47)

or

Sp=iays(1—aDIM)p=ia¥sih, Sp=iaihys, (48)

with ys=7ys5(1—aD/M) satistying «9}:&5 and, using the
Ginsparg-Wilson relation, Eq. (45), %:1.

The close connection between domain-wall and over-
lap fermions can be made more explicit by integrating
out the “bulk fermions,” which have masses of the order
of the cutoff 1/a, from the domain-wall action, Eq. (40)
[see Neuberger (1998c¢), Kikukawa and Noguchi (1999),
Borici (2000), and Edwards and Heller (2001)]. In the
limit L;— o0, one ends up with the overlap Dirac opera-
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tor, but with the Hermitian Wilson kernel Hy=vysDy
in Eq. (43) replaced by a more complicated Hermitian
kernel,

1 1

Hy=Hy——F—. (49)

T 1+ 2asH,,ys 1+2asH,,ys

Here we denote the lattice spacing in the fifth direction
by as. It is usually chosen to be the same as the 4D
lattice spacing, as=a, which, in turn, is usually set to 1.
From Eq. (49) we see that domain-wall fermions in the
limit L;— o, followed by the limit as— 0 become identi-
cal to overlap fermions with the standard Neuberger
Dirac operator.

The difficulty with numerical simulations using over-
lap fermions is the evaluation of the sign function
O(Hy) of the Hermitian Wilson Dirac operator Hy
=vysDy in Eq. (43). This can be done with a Lanczos-
type algorithm (Borici, 1999). Alternatively, ©(Hy,) can
be represented as a polynomial, or, more efficiently, as a
rational function that can be rewritten as a sum over
poles (Neuberger, 1998a; Edwards et al., 1999), with the
optimal approximation, using a theorem of Zolotarev,
first given in van den Eshof et al. (2002),

ELIHZ "
®(Hw)=Hwﬁ—Hw[ 0+2 Hz—erk]
JHEwW
]
(50)

All d’s are positive, and the necessary inversions with
the sparse matrix H>, are done using a multishift conju-
gate gradient inverter (Frommer et al., 1995; Jegerleh-
ner, 1996, 1998).

Finally, two versions of fermions that satisfy the
Ginsparg-Wilson relation approximately have been con-
sidered. One, the so-called fixed point action (Hasen-
fratz, 1998), approximates the fixed point of a renormal-
ization group transformation by truncating to a small
range. Hasenfratz ef al. (1998) showed that (untruncated)
fixed point fermion actions satisfy the Ginsparg-Wilson
relation. The second version (Gattringer, 2001) directly
minimizes deviations from the Ginsparg-Wilson relation
by adjusting the parameters in an arbitrary Dirac opera-
tor with a finite (small) number of terms.

C. Numerical simulations

After having chosen a gauge and fermion action one
computes expectation values of interesting observables,
Eq. (7), by numerical Monte Carlo simulations. For this
one creates a sequence of gauge field configurations
{UY(x)}, i=1,...,N, distributed with probability distri-
bution
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PRUY )} = ?[det MAU))° exp{- Sc(U)}

= 75) exp{- Sex(U)}. (51)

Here 6=ny the number of flavors, for Wilson and
chirally invariant fermions, and 6=n,/4 for (rooted) stag-
gered fermions,” and now

Setr(U) =S(U) -

Expectation values (O) are then computed as an average
over the ensemble of gauge field configurations,

S5Trin M(U). (52)

1 N
(0)= NE oY, (53)
i=1

where O(")zO(Uz)) is the observable evaluated on the
gauge field configuration i.

For pure gauge simulations, when no fermions are
present, or in the quenched approximation, where the
fermion determinant is set to one (det M=1), the action
is local (in the gauge fields) and the sequence of configu-
rations can be generated with a local updating algo-
rithm, such as the Metropolis algorithm (Metropolis et
al., 1953) or a heatbath algorithm (Creutz, 1980;
Kennedy and Pendleton, 1985).

With the fermion determinant present, all gauge
fields are coupled and the local updating algorithms be-
come impractical. Molecular dynamics based algorithms
(Callaway and Rahman, 1982, 1983) have become the
standards for simulations with dynamical fermions. For
a scalar lattice field theory with action S(¢,) one intro-
duces a fictitious momentum p, on each lattice site, and
considers the Hamiltonian

2
H(p,9)= 3 5 +5(4). (54)

X

This Hamiltonian defines a classical evolution in a ficti-
tious time 7 by

d’x:va p.x:_as/aqsx’ (55)
where the dot denotes the derivative with respect to 7.
Given some initial values [p,(0), ¢(0)] these equations
of motion define a trajectory [p.(7), ¢,(7)] through phase

space. The classical partition function corresponding to
the set of all such trajectories is

SThe sketch here is somewhat schematic: each fermion with a
different mass would get its own determinant factor. Further-
more, My should be Hermitian and positive semidefinite. For
Wilson fermions one takes M p= DWDW and uses d=n/2, while
for staggered fermions one takes Mp= [DKSDKSL where ee
refers to the matrix restricted to the even sublattice. This is
possible, since DIGDKS block diagonalizes to even and odd
sublattices. Restricting to only one sublattice removes the dou-
bling introduced by the “squaring.”
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2= [ Tl tap.asesei- Hip. )

=N f [ de, exp{- S(#)}, (56)

where in the second step the quadratic integration over
the p, has been carried out, and A is a normalization
factor. The integration of Hamilton’s equations, Eq. (55),
conserves the Hamiltonian, Eq. (54), up to numerical
errors. To get the correct distribution corresponding to
the canonical partition function, Eq. (56), the fictitious
momenta are “refreshed” periodically by replacement
with new Gaussian random numbers (Duane and Kogut,
1985, 1986). This algorithm goes under the name of hy-
brid molecular dynamics (HMD).

Relying on the ergodicity hypothesis, the expectation
value of observables can then be computed by averaging
over many MD trajectories

1 T+

(0)= ;f drO(¢(7)). (57)
70

Integration of the equations of motion, Eq. (55), is
done numerically by introducing a finite step size At
and using a volume-preserving integration algorithm,
such as leapfrog. Due to the finite step size, the Hamil-
tonian is not exactly conserved during the MD evolu-
tion, leading to finite step size errors in observables,
including the Hamiltonian itself, of O((A7)?) for the
leapfrog integration algorithm. These step size errors
can be eliminated—the algorithm made exact—by com-
bining the refreshed MD evolution with a Metropolis
accept-reject step at the end of each trajectory (Duane et
al., 1987), resulting in the so-called hybrid Monte Carlo

(HMC) algorithm.
For a lattice gauge theory the equations of motion
have to be set up such that the gauge fields remain group

elements. This is ensured by writing

U,(x) =iH ,(x)U,(x), (58)
with H M(x):Eut"hZ(x) a traceless Hermitian matrix and

* the SU(N) generators, see, e.g., Gottlieb ef al. (1987).
The MD Hamiltonian is given by

1
H(H,(),U,(x)) = 2 5 Tr Hy(x) + Seqe(U, (1) (59)
X,

The equation of motion for H,(x) is then, somewhat
schematically,

. Sei(U
0= 10,605 (60
" TH

where TH denotes the traceless Hermitian part. The

term on the right-hand side of Eq. (60) is usually re-
ferred to as the force term. With S, of Eq. (52) we have
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aSeff( U)
U ,(x)

_ 6 {aMFw)

To evaluate Eq. (61) we need to know all matrix ele-
ments of M;'(U), a dense matrix, even though the fer-
mion matrix Mg(U) is sparse. This would be prohibi-
tively expensive. Instead, one estimates the inverse
stochastically. Let R be a Gaussian random field such
that

R (X)Rp(y) =

where A,B denote color indices, and for Wilson-type
fermions also Dirac indices. Then,

S4B 0y (62)

+OM(U)
U ,(x)

T {&MF(U) D R, (63)

-1
0,0 " (U)} -
and for each random vector R only a single inversion
M7 (U)R is needed. Typically, for each time step in the
MD evolution one uses just one Gaussian random vec-
tor, and hence one inversion. This algorithm goes under
the name of HMD R algorithm (Gottlieb et al., 1987).

Instead of doing molecular dynamics starting with S
of Eq. (52) one can first represent the fermion determi-
nant by an integral over bosonic fields, called pseudo-
fermions

det M(U) = f [1[d® (x)ad(x)]

Xexp{— ®'M (U)D}. (64)

HMD using Eq. (64), referred to as the ® algorithm
(Gottlieb et al., 1987), consists in creating, together with
the momenta refreshments, a ®-field distributed accord-
ing to Eq. (64).° and then integrating the molecular dy-
namics equations for the effective action

Ser(U,®) = S(U) + DM (U), (65)
with the & field fixed. Now the force term becomes

3Sest(U,®)  dSg(U)
U, (x) — oU,(x)

M g(U)
U ,(x)

MM U)———M(U)®.

(66)

This again requires one inversion, M}l(U)CID, in each step
of the MD evolution. One major benefit of the
®-algorithm formulation is that an accept-reject Me-
tropolis step is easily implemented at the end of each
trajectory resulting in an exact HMC algorithm.

The representation of the fermion determinant by
an integral over pseudofermion fields, Eq. (64), can
formally be extended to fractional powers 6=ns/4, as
needed for rooted staggered fermions, and d=n,/2, as
needed for odd number of flavors for Wilson fermions,

For M #=D'D this can be achieved by creating random
Gaussian variables R and then setting ®=DTR.
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[det Mi(U)]°= f [1[d®f(x)dd(x)]

Xexp{— ®TM(U)D}. (67)

The problem then is how to deal with M}°. In the HMD
R algorithm this is handled by weighting the fermionic
contribution to the force by a factor of 6 and evaluating
M™'R at a point in the integration time chosen so that
the errors in observables remain order 2, where ¢ is the
step size in the molecular dynamics integration (Gottlieb
et al., 1987). Clark and Kennedy proposed using a ratio-
nal function approximation rewritten as a sum over
poles (Clark and Kennedy, 2004, 2005),

MP(U) = r(M(U)) = ay + 2 m (68)

with suitable constants a; and b;,. A ® algorithm can
then easily be constructed, resulting in the so-called ra-
tional hybrid molecular dynamics (RHMD) algorithm,
or, with inclusion of the Metropolis accept-reject step to
eliminate errors from nonzero e, the rational hybrid
Monte Carlo (RHMC) algorithm. Elimination of the
noisy estimator yields smaller errors than in the HMD R
algorithm at a given integration step size.

Several improvements of the HMD-type algorithms
over the last several years have made them substantially
more efficient. These improvements include multiple
time step integration schemes (Sexton and Weingarten,
1992), preconditioning of the fermion determinant by
multiple pseudofermion fields (Hasenbusch, 2001;
Hasenbusch and Jansen, 2003), and replacing the leap-
frog integration scheme with more sophisticated “Ome-
lyan integrators” (Sexton and Weingarten, 1992; Ome-
lyan et al., 2002a, 2002b, 2003; Takaishi and de Forcrand,
2006).

D. Asqtad improved staggered fermions

Staggered fermions, with only one component per lat-
tice site, and the massless limit protected by a remnant
even-odd U(1), X U(1), chiral symmetry, are numerically
very fast to simulate. One of the major drawbacks is the
violation of taste symmetry. At a lattice spacing a of
order 0.1 fm, which until recently was typical of numeri-
cal simulations, the smallest pion taste splitting Eq. (39)
for standard staggered fermions is of order A(m%,)
=a’5p~ (300 MeV)?, i.e., more than twice the physical
pion mass. Even when the lattice spacing is reduced to
about 0.05 fm this smallest splitting is still the size of the
physical pion mass. It is therefore important to reduce
taste violations. Since the different taste components
live on neighboring lattice sites and in momentum space
have momentum components that differ by =/a, emis-
sion or absorption of gluons with (transverse) momen-
tum components close to 7/a can change the taste of a
quark. Exchange of such ultraviolet gluons thus leads to
taste violations.
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Suppressing the coupling to such UV gluons thus
should reduce the taste violations (Blum et al., 1997;
Lepage, 1998; Lagae and Sinclair, 1999; Orginos and
Toussaint, 1999; Orginos et al, 1999). This can be
achieved by replacing the link field U, in the covariant
difference operator V,, [see Eq. (13)] by a smeared link
built from three-link staples (fat3)

FU (%)
= U,(x) +wa® X, AU, (x), (69)

VFE U

U,(x) — Uf(x) =

where the superscript € indicates that the Laplacian acts
on a link field,

AU, (x [U(x)U (x+ad)U'(x +ap)

+Ul(x - av)U,(x —av)U,(x —av+ajf)
-2U,(x)]. (70)

In momentum space, expanding to first order in g, Eq.
(69) leads to

A,(p) — A (p)+ 0 X {24,(p)cos(ap,) — 1]

vFE N
+4sin(ap ,/2)sin(ap,/2)A,(p)}. (71)

Choosing w=1/4 eliminates the coupling to gluons
A,(p) with a single momentum component p,=m/a.
Adding a five-link staple (fat5)

U (x) —

Ul (x) = 7 U ,(x)

—Uﬁ(x)+§ 2 AAULX) (72)

pFEVFEL
eliminates the coupling to gluons with two momentum

components p,=m/a and adding a seven-link staple
(fat7)

U,(x) — U/Z(x) = ]—'ﬂUM(x)
a6

— Ufs(x) 4+ —

5 2 AAAUL®K)

TFEPFVEM

(73)

eliminates the coupling to gluons with all three trans-
verse momentum components p,=1/a.

For smooth gauge fields, with p =0, the Laplacian, Eq.
(70), becomes

¢
AU, (x)=aD F,, + -, (74)

where the ellipsis represents higher order terms in a.
The change in Eq. (69) thus produces a change
~a’D F,, to the gauge field A,. This is a new O(a?)
lattice artifact, and will occur when using fat3, fatS, or
fat7 links. It, in turn, can be canceled by a straight five-
link staple (Lepage, 1999)
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1 ) )
AU (x) = 2LV U, (x + ad)U ,(x + 2a7)

X Ui(x +av+ a,&)Ui(x +ap) + Ui(x —av)
XUNx—2ap)U,(x-2ap)U,(x—2aD + aji)
XU (x—av+ap)-2U,(x)]

=aD,F,, + -, (75)

referred to as the Lepage term. In momentum space,
expanding to first order in g, this becomes

zl—a{Aﬂ(p)[cos(Zap ») — 1]+ 2 sin(ap ,/2)

X[sin(ap,/2) + sin(3ap /2)]1A,(p)}, (76)

and thus does not affect the coupling to gluons with mo-
mentum components at the corners of the Brillouin
zone. Therefore, replacing

U,(x) = U (x) = F7HU ,(x)

2
= U(x) - % S AU, (x) (77)

V#E R

eliminates, at tree level, the coupling to gluons with any
of the transverse momentum components p,=/a with-
out introducing new lattice artifacts.

Finally, for a complete O(a®) improvement we include
a so-called Naik term (Naik, 1989) to improve the free
propagator, and hence the free dispersion relation. To
keep the structure of the couplings to the different tastes
unchanged, this involves adding a three-hop term,

2
YV x(x) = V x(x) - %(v,fxoc)

1 1 .,
= (1 + g)VM)((x) - @[Uﬂ(x)UM(x +ap)
XU, (x +2ap)x(x + 3af) - Ul(x — ajh)

X UL(x —2a/) UL(x —3ap)x(x —3am)].

(78)
In the free inverse propagator this changes
a!sin(ap W = a!sin(ap DI+ % sin’(ap Pl
=p,+ O(a%). (79)

The fermion action with only the improvement in Eq.
(79) is referred to as the Naik action. This is also the free
(noninteracting) limit of the asq and asqtad fermion ac-
tions, defined next.

We now have all ingredients for an improved stag-
gered fermion action, called the asq action [O(a?) im-
proved action]: use the covariant derivative with the
Naik term, Eq. (79), and in the one-link term replace the
gauge links U, by the fat7 links with Lepage term U]ZL
of Eq. (77). Replacing the various coefficients in the asq
action by tadpole improved coefficients finally gives the
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FIG. 3. (Color online) Illustration of taste violations for stag-
gered fermion actions with various link fattenings. The valence
quark masses were adjusted to give the same m_/m,=0.55 for
all fermion actions. The results are for quenched gauge field
configurations with a Symanzik improved gauge action using
B=7.30. The staggered fermion actions are standard, or one-
link (OL), fat3+Naik (OFN), fat5, and asqtad. The pions are
labeled by the taste structure, with the taste singlet the heavi-
est, and the taste pseudoscalar (7s), the pseudo-Goldstone bo-
son, the lightest. For more comparisons see Orginos et al.
(2000).

asqtad fermion action. The reduction of taste violations
for pions with increasing amount of link fattening is
shown in Fig. 3.

The Naik term, Eq. (79), reduces the lattice artifacts in
the pressure for free fermions, and thus in the very high
temperature limit of QCD as shown in Fig. 4, left panel,
and in the “speed of light” determined from the pion
dispersion relation, right panel, from Bernard et al
(1998)

In Fig. 4, left panel, p4 fermions are another variant of
improved staggered fermions (Heller et al., 1999) de-
signed to improve the dispersion relation and high tem-
perature behavior. The speed of light, shown in the right
panel, is determined from pion energies E_(p) for vari-
ous momenta as

2 =[EA(p) - EX(0))/p. (80)

The O(a?) improvement of the asqtad action gives a
staggered fermion formulation with good scaling proper-

ties, as shown in Fig. 5 for a quenched study (Bernard et
al., 2000b).

E. Highly improved staggered fermions

The largest contribution to the O(a®) error in the
asqtad action originates from the taste-exchange interac-
tions. This error can be completely eliminated at one-
loop level by adding four-quark interactions (which are
hard to implement in dynamical simulations) or reduced
by additional smearings. Multiple smearings, for in-
stance
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FIG. 4. (Color online) The pressure (left) per fermion degree of freedom for free Kogut-Susskind, Naik, Wilson, and p4 (Heller et
al., 1999) fermions as a function of Ny=1/aT. The continuum value is shown as the horizontal solid line. From Bernard et al., 2005;
an earlier version appeared in Bernard et al. (1998). The “speed of light squared” (right) calculated from the pion dispersion

relation, for Naik and K-S pions. From Bernard et al., 1998.

U,(x) — X,,(x) = FT"EFU (x), (81)

are found to further reduce mass splittings between
pions of different taste. However, they increase the num-
ber of products of links in the sum for X,(x) links and
effectively enhance the contribution of two-gluon verti-
ces on quark lines [see Follana et al. (2007) for a detailed
discussion]. Thus, an operation that bounds smeared
links needs to be introduced,

U, (x) = X, (x) = F""UF U (x), (82)

where U is an operation that projects smeared links onto
the U(3) or SU(3) group. Cancellation of the O(a?) arti-
facts introduced by fat7 smearing with the Lepage term
can be achieved on the outermost level of smearing, and
Eq. (82) can be simplified,

U, (x) = X,(x) = FTFUFTU (x) = FBCU ,(x). (83)

Introducing smeared and reunitarized links that arise af-
ter each operation in Eq. (83)

V,(x) = }'ﬁUM(x), (84)
W, (x) =UV ,(x) =UFU ,(x), (85)
X,(x) = FEW (x) = FSQU (x), (86)

we can write the covariant derivative that replaces the
naive one,
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FIG. 5. (Color online) Rho masses (left) and nucleon masses (right) in units of r;=~0.32 fm. Octagons are unimproved staggered
fermions with Wilson gauge action, diamonds are unimproved staggered fermions with Symanzik improved gauge action, crosses
are Naik fermions, and squares are asqtad fermions, both with Symanzik improved gauge action. For comparison we also show
tadpole clover improved Wilson fermions with Wilson gauge action (Bowler et al., 2000) (fancy squares) and with Symanzik
improved gauge action (Collins et al., 1997) (fancy diamonds). Adapted from Bernard et al., 2000b.

Rev. Mod. Phys., Vol. 82, No. 2, April-June 2010



1364 Bazavov et al.: Nonperturbative QCD simulations with 2+1 ...

a2

V. LUlx(x) =V, (0)[X]x(x) - 5 (1+&) (V) [W]x(x).

(87)

Equation (87) is a recently proposed highly improved
staggered quark (HISQ), discretization scheme (Follana
et al., 2007). In square brackets we indicate which links
are used as gauge transporters in the derivatives. The
second term is the Naik term evaluated using the reuni-
tarized links W ,(x). Its coefficient includes a correction
¢ introduced to compensate for the order (am)* and
a,(am)? errors. This correction is negligible for light
quarks, but may be relevant for charm physics if a level
of accuracy better than 5-10 % is desired. The correc-
tion & can be either tuned nonperturbatively or calcu-
lated in perturbation theory (Follana et al., 2007).

The HISQ action suppresses the taste-exchange inter-
actions by a factor of about 2.5 to 3 compared to the
asqtad action, which makes it a good candidate for the
next generation of simulations with 2+1 or 2+1+1 fla-
vors of dynamical quarks, where in the latter case the
last quark is the charm quark. We discuss preliminary
studies of the HISQ action in more detail in Sec. X.

III. STAGGERED CHIRAL PERTURBATION THEORY
AND “ROOTING”

A. Chiral effective theory for staggered quarks

Because simulation costs increase with decreasing
quark mass, most QCD simulations are done with the
masses of the two lightest quarks (up and down) larger
than their physical values. The results, therefore, have to
be extrapolated to the physical light quark masses. This
is done using chiral perturbation theory, the effective
field theory that describes the light quark limit of QCD
(Weinberg, 1979; Gasser and Leutwyler, 1984, 1985).

Even with the asqtad improvement of staggered fer-
mions, taste-symmetry violations are not negligible in
current simulations. It is therefore important to include
the effects of discretization errors in the chiral perturba-
tion theory forms one uses to extrapolate lattice data to
physical light quark masses and to infinite volume; in
other words, one needs to use staggered chiral perturba-
tion theory (SyPT). Indeed, it is not possible to fit the
mass dependence of the staggered data to continuum
chiral forms (Aubin et al., 2004b). Once the discretiza-
tion effects are included explicitly by making SyPT fits,
one can gain good control of the errors from the con-
tinuum extrapolation. Furthermore, the effects of taking
the fourth root of the staggered determinant can be in-
cluded in SyPT. The resulting rooted staggered chiral
perturbation theory (rSyPT) allows us to understand the
nonlocal and nonunitary consequences of rooting on the
lattice and to test that these sicknesses go to zero as
a—0.

Lee and Sharpe (1999) first developed SyPT for a
single staggered flavor (a single staggered field) at O(a?);
this was generalized to an arbitrary number of flavors by
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Aubin and Bernard (2003a, 2003b). Here we outline the
theory with Ny flavors to this order; for the next order
see Sharpe and Van de Water (2005).

To derive SyPT, one starts by determining, to the de-
sired order in a?, the Symanzik effective theory (SET)
(Symanzik, 1983) for staggered quarks. The SET is an
effective theory for physical momenta p small compared
with the cutoff (p<<1/a); it parametrizes discretization
effects by adding higher-dimensional operators to con-
tinuum QCD. In particular, taste violations appear to
O(a?) in the SET as four-quark (dimension six) opera-
tors. These operators arise from the exchange of gluons
with net momenta ~r/a between two quark lines. Such
gluons can change taste, spin, and color, but not flavor.
Therefore, the operators generated have the form

Oss’tt’ = Q[(’YS ® gt)qi(jj('ys’ ® gt’)qj, (88)

where i and j are flavor indices, spin and taste matrices
have the notation of Eq. (31), and color indices are omit-
ted because they play no role in what follows. The
SU(N)) vector flavor symmetry guarantees that Oy, is
a flavor singlet, which means that i,j are (implicitly)
summed over their N, values in Eq. (88).

The possible choices of the spin and taste matrices in
Eq. (88) are constrained by the staggered symmetries.
First, we can use the separate U(1), for each flavor. This
forces each of the bilinears making up Oy, for ex-
ample g,(y,®&)q;, to be U(1l), invariant by itself for
each i. From Eq. (37), we then have that {y;®&;, v,
® &}=0, which gives 12 choices for v, and &: One of
them must be a scalar, tensor, or pseudoscalar (S, T, or
P) and the other must be a vector or axial vector (V or
A). For example, we might have A® T, that is, y,® ¢
=Y,5®§,,, with the notation y,s=1v,ys (and similarly
for tastes), and §V>\:%[§,,,§)\] (and similarly for spins).
Such operators are called “odd” because, in the original
one-component form of Eq. (24), the fields y and y are
separated by an odd number of links (1 or 3) within an
elementary hypercube. This is easily seen from the
equivalence given in Eq. (31).

Shift symmetry gives the next constraint. As men-
tioned following Eq. (36), shift symmetries are a combi-
nation of discrete taste symmetries and translations. In
the SET, however, where external momenta are always
small compared with the cutoff, it is possible to redefine
the fields ¢(y) to make the action invariant under arbi-
trary translations, like in any continuum theory (Ber-
nard, Goltermann, and Shamir, 2008). The shifts then
have the form

qy) = U®EDq(y); qly) = qy)U®E,). (89)

Thus, for each of the 16 possibilities for &, the bilinear
Gi(y,® &)q; undergoes a unique set of sign changes un-
der shifts in the four directions . Since the only bilin-
ears that are invariant under all shifts are those with &
=1, this immediately shows why taste symmetry cannot
be broken by bilinear operators. Moreover, it forces &
=¢, in the four-quark operators of the SET, Eq. (88).
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We now consider the implications of rotations and
parity. Rotational symmetry requires that Lorentz (Eu-
clidean) indices be repeated and summed over, but since
the lattice action is invariant only under 90° rotations, an
index can be repeated any even number of times before
summing, not just twice. Further, with staggered quarks,
the lattice rotational symmetry transforms the taste in-
dices together with the space-time (and spin) indices
(van den Doel and Smit, 1983; Golterman and Smit,
1984). Since, &=¢,, the spin indices on 7y, must be the
same as those on 1v,. Parity then forces 7y, and vy, to be
identical; combinations such as y,=v,, y,=7v,s are for-
bidden. There are now only two choices: either the spin
indices and taste indices are separately summed over or
there are some indices that are common to both the spin
and taste matrices. Lee and Sharpe (1999) called the
former class of operators type A, and the latter type B.

Because there are 12 choices for an odd bilinear, there
are a total of 12 type-A operators. An example is

Otyxp) =47, ® &)q,q/(v, ® &)q;, (90)

with the repeated index u summed over. The fields here
have standard continuum dimensions, sO we write ex-
plicit factors of a to give the operator dimension four.
Note that type-A operators are invariant over the full
Euclidean space-time rotation group, SO(4), as well as a
corresponding SO(4) of taste, a subset of the complete
SU(4)y of taste that appears in the continuum limit.

In order to have a sufficient number of indices to con-
struct a type-B operator, either y,=1y, or §=§, must be
a tensor (7); the other set is then either V or A. Thus
there are four type-B operators. An example is

O, x1,1= 1317, ® £.)0:0,(7, ® £,)4q;

where the second term ensures that the operator has no
separate spin- or taste-singlet piece. Since the index w is
repeated four times, one sees explicitly from Eq. (91)
that type-B operators are invariant only under joint 90°
rotations of spin and taste.

The SET to O(a?) for Ny flavors of (unrooted) stag-
gered fermions is then simply the continuum QCD La-
grangian for 4N spec1es together with the above type-A
and type-B operators Given this SET, the (’)(az) chlral
Lagrangian is constructed by finding—with a “spurion”
analysis, outlined below—the chiral operators that break
the full SU4Np); X SU(4Np)g symmetry in the same way
as the four-quark operators in the SET do. However, the
symmetry is also broken by the quark mass terms in the
SET. In order to arrive at a consistent expansion scheme

"There are additional O(a?) terms in the SET, for example,
from the gluon sector, that we ignore here for simplicity. Such
terms are taste invariant, and at leading order only produce
“generic” effects in the chiral Lagrangian: O(a?) changes in the
physical low-energy constants.
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(a consistent power counting) for the chiral theory, we
must first decide how the breaking by a® terms compares
with the breaking by mass terms.

The standard power counting, which we follow here,
takes a>~m, where m is a generic quark mass. More
precisely, we assume that [see Eq. (39)]

a’6~m% =2Bm, (92)
where a?§is a typical pion taste splitting. The taste split-
tings and squared Goldstone pion masses are indeed
comparable in current MILC ensembles. Goldstone pion
masses range from about 240 to 600 MeV; while, on the
“coarse” (a=0.12 fm) ensembles, the average taste split-
ting is about (320 MeV)?. This splitting drops to about
(210 MeV)? on the “fine” (a=0.09 fm) ensembles and to
about (125 MeV)? on the “superfine” (a=0.06 fm) en-
sembles. It is clear that Eq. (92) is appropriate in the
range of lattice spacings and masses we are working on.
However, for future analysis of data that include still
finer lattices and omit the coarse and possibly the fine
ensembles, it might be reasonable to use a power count-
ing where a? is taken to be smaller than m.

To derive the leading order (LO) chiral Lagrangian,
we start with the Lagrangian in the continuum limit, i.e.,
in the absence of taste-breaking operators. In Euclidean
space, we have
f2

L£eont = Tr(a 39,37 - —Bf2 Tr(MS + M)

@ 2
+ 4 [Tr(d)]°, (93)

where the meson field @, 2=exp(i®/f), and the quark
mass matrix M are 4Ny X 4N, matrices, and f is the pion
decay constant at LO. The field ¥ transforms under
SU(4Np); X SU(4Npg as = — LZR". The field ® is given
by

U = K
= D K°
il : (04)

where each entry is a 4 X4 matrix in taste space, with,
for example, 7*=3!° 7'T,. The 16 Hermitian taste
generators T, are T,={&s,ié,s,i&,,(u>v),€,,I}. Since
the normal staggered mass term is taste invariant
[see Eq. (32)], the mass matrix has the form M
=diag(m,I,mql,m,...).

The quantity m, in Eq. (93) is the anomaly contribu-
tion to the mass of the taste- and flavor-singlet meson,
the 7' «Tr(®). As usual, the %' decouples in the limit
my— . However, one may postpone taking the limit
and keep 7' as a dynamical field (Sharpe and Shoresh,
2001) in order to avoid putting conditions on the diago-
nal elements of ®. These diagonal fields, U,D,..., are

then simply the uit, dd bound states, which makes it easy
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to perform a “quark flow” analysis (Sharpe, 1990, 1992)
by following the flow of flavor indices through diagrams.

Since a typical pion four-momentum p obeys pz~m%T
~2Bm, both the kinetic energy term and the mass term
in Eq. (93) are O(m). By our power counting scheme,
Eq. (92), we need to add O(a?) chiral operators to com-
plete the LO Lagrangian. These are induced by the
O(a*) operators in the SET. We start with the type-A
operator Opyyxp; of Eq. (90). Using qi=q%+qF, with
gft=[(1+vs5)/2]q;, and similarly for g; with &=
=q;[(1F ys5)/2], we have

Orvxp1= 02[67{?(7’# ® &)qF + q_iL(YM ® &)qr P
=[q"(y, ® FR)g" + 3" (v, ® F)g"*,  (95)

where flavor indices are implicit in the last expression.
The spurions Fr and F; will eventually take the values

FR = aést) = afS ® ]ﬂavor> FL = ag(SNf) = a§5 ® ]ﬂavorv
(96)

but for the moment are given spurious SU(4Ny);
X SU(4N) transformation properties Fx— RFxR" and
F;—LF;L" in order to make O[yxp) “invariant.”

The corresponding O(a?) operators in the chiral La-
grangian are then invariants constructed only from X,
3%, and quadratic factors in Fg and/or F;. We cannot use
derivatives or factors of the mass matrix M because
such terms would be higher order. It turns out that there
is only one such operator,

C1 TI'(FLEFRET) = C1a2 Tr(‘ngf)EééNf)ET), (97)

where C; is a constant that can be determined in prin-
ciple by fits to staggered lattice data.

The 11 other type-A operators can be treated in the
same way, though of course different operators will have
different spurions with different transformation proper-
ties. Some of the type-A operators give more than one
chiral operator, but, because of repeats, a total of only
eight chiral operators are generated.

The type-B operators couple space-time and taste
indices, and are invariant only under 90° rotations.
Their chiral representatives must therefore have deri-
vatives to carry the space-time indices; an example is
Tr(E&METEgV f)ET&,LEéHNf)) (Sharpe and Van de Water,
2005). Because of the derivatives, however, these opera-
tors are higher order and do not appear in the LO chiral
Lagrangian. This was an important insight of Lee and
Sharpe (1999). It means that at LO the physics has the
“accidental” SO(4) taste symmetry of the type-A opera-
tors.

We can now write down the complete LO chiral La-
grangian,

2 P :
=5 Tr(d,209,2") - é_le Tr(MZ + M)
m2
+ 2—£[Tr(¢>)]z +a’V, (98)

where the taste-violating potential V is given by

V= T ENSENIST) %[Tr(ggNﬂzéyNﬂz) fHel+ %[Tr(égﬂzggﬁf)z) tHel

+ % Tr(¢NSENSY) + %/[Tr(fiNf)E)Tr(é}Nf)E) +He]+ %[Tr(;ﬁgvﬁz)Tr(ggfzﬂz) +H.c.]

+ ST THEN S+ SATHEY S THEY S, (99)

2

with implicit sums over repeated indices.

Expanding Eq. (98) to quadratic order in the meson
field ®, we find that pions with nonsinglet flavor fall into
SO(4) taste multiplets, labeled by P,A,T,V,S. We show
numerical evidence for this in Sec. III.C. The splittings &,
of Eq. (39), witht=P,A,T,V S, are given in terms of Cy,
C3, C4, and Cg. The presence of two traces in the terms
multiplied by C,y, C,4, Csy, and Cs, means that they
cannot contribute at this order to the masses of (flavor)
charged mesons. Aubin and Bernard (2003a) showed
that such terms do generate “taste hairpins,” which mix
the flavor-neutral mesons of taste V (and separately,
taste A). In other words, there are terms of the form
aZ;,V(UM+D#+SM+---)2 and M%(U#5+D#5+S#5+---)2 in
the expansion of Eq. (98), where &), and & are functions
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of Cyy, Cyy, Csy, and Cs,. These terms have been indi-
rectly observed (Aubin et al., 2004b) in fits to charged
pion masses and decay constants to one-loop expres-
sions derived from Eq. (98). Because of the practical
difficulties in simulating disconnected diagrams, taste
hairpins have not yet been studied directly in two-point
functions of neutral mesons.

So far the entire discussion of SYPT has been in the
context of unrooted staggered quarks. Bernard (2002)
and Aubin and Bernard (2003a) proposed that rooting
could be taken into account using quark flow to deter-
mine the presence of closed sea-quark loops in an SyPT
diagram, and then multiplying the diagram by a factor of
1/4 for each such loop. This is a natural assumption,
because it is exactly what happens in weak coupling per-
turbation theory (Bernard and Golterman, 1994). In the
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chiral theory, however, the validity of the prescription is
not obvious.

To study in more detail how rooting should be
handled in SyPT, it is convenient to replace the quark-
flow picture with a more systematic way to find and ad-
just the sea-quark loops. This is provided by a “replica
rule,” introduced for this problem by Aubin and Ber-
nard (2004). Since rooting is defined as an operation on
sea quarks, it is useful first to separate off the valence
quarks by replacing the original theory with a partially
quenched one: introduce new (valence) quarks along
with ghost (bosonic) quarks to cancel the valence deter-
minant. The adjustment to the SyPT theory, Eq. (98), is
the standard one for a partially quenched theory (Ber-
nard and Golterman, 1994): just add some additional
quark flavors and corresponding bosonic flavors. The
masses of the valence quarks may be equal to or differ-
ent from the sea masses. The latter case is clearly un-
physical, but is useful for getting more information out
of a given set of sea-quark configurations.

We now replicate each sea-quark flavor n, times,
where n, is a positive integer, so that there are a total of
n,Nr flavors. We then calculate as usual with the repli-
cated (and partially quenched) version of Eq. (98), going
to some given order in chiral perturbation theory. The
result will be a polynomial in #,, where factors of n, arise
from summing over the indices in chiral loops. Finally,
we put n,=1/4 in the polynomial. We thus take into ac-
count the rooting by effectively counting each sea-quark
flavor as 1/4 of a flavor, which cancels the factor of 4
that arises from the taste degree of freedom. The chiral
theory obtained by applying this replica rule to SyPT is
called rSyPT.

Note that we have done nothing to the valence
quarks. Since the number of tastes of the sea quarks has
been reduced by a factor of 4, it is clear that there is a
mismatch, even when the valence masses are taken
equal to the sea masses. This is still true in the con-
tinuum limit, where the issue is particularly transparent.
When taste symmetry is exact, rooting removes three of
the four tastes from the quark sea for each physical fla-
vor, but leaves the valence quarks unaffected. It is there-
fore possible to construct Green’s functions, at either the
quark or the chiral level, which are unphysical, in the
sense that the external particles have no counterpart
in the intermediate states. Sharpe has called this the
“valence-rooting problem” (Sharpe, 2006b). The solu-
tion is, however, straightforward (Sharpe, 2006b; Ber-
nard, Golterman, et al., 2007, 2008b): the physical sub-
space can be obtained simply by choosing all external
particles to have a single value of taste (taste 1, say).
Using flavor and taste symmetries, other Green’s func-
tions may also be constructed that happen to equal these
physical correlators in the continuum limit (Bernard,
Golterman, et al., 2007). Nevertheless, most Green’s
functions will be unphysical. This is not a cause for con-
cern as long as there is a physical subspace. In fact such
a situation has nothing, per se, to do with rooting: it will
happen in continuum QCD, or in any lattice version
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thereof, if we introduce arbitrary numbers of valence
quarks.

We emphasize that the replica rule tells us to take into
account only the explicit factors of n, from chiral loops.
Putting n,=1/4 in the polynomial resulting from the
SxPT calculation is thus a well-defined procedure. We
are not concerned with the fact that, if replication is
done in the fundamental, QCD-level theory, the low-
energy constants (LECs) such as f and B will be (im-
plicit) functions of n,. Such dependence is in general un-
known and nonperturbative, and not amenable to
analytic continuation in n,. Instead, as is always the case
in chiral perturbation theory, we treat the LECs as free
parameters. After setting explicit factors of n, to 1/4 in
our calculations, the LECs can be determined by fitting
the lattice data to the resulting chiral forms. The un-
known dependence of the LECs on #n, is however an
obstacle in trying to show, directly from the fundamental
theory, that rSyPT is the correct chiral theory. This is
discussed further in Sec. II1.C.

B. Extensions of staggered chiral perturbation theory

The purely staggered theory discussed thus far is often
insufficient for calculations of many physical quantities.
It would be very difficult, for example, to simulate heavy
quarks with the asqtad action at currently available lat-
tice spacings because of the large discretization errors
that appear when am~1. Thus, the determination of
phenomenologically important properties of heavy-light
mesons and baryons has usually been carried out by
adding a heavy valence quark with the Fermilab (El-
Khadra et al., 1997) or NRQCD (Thacker and Lepage,
1991) action to asqtad simulations of the sea quarks and
light valence quarks. Alternatively, HISQ valence
quarks have been used on the asqtad sea configurations
to get precise results for charmed mesons (Follana et al.,
2008). To the accuracy strived for in current calculations,
the effects of heavy sea quarks can be neglected; that is,
these quarks can be treated in the quenched approxima-
tion.

For several other quantities, the complicated effects
of taste-symmetry violation make staggered quarks dif-
ficult to use. Since these effects often present the great-
est obstacle in the valence sector, a very successful com-
promise, first introduced in Renner ef al. (2005), has
been to add domain-wall valence quarks on top of the
MILC sea-quark ensembles. Such “mixed-action” simu-
lations are being used to study scalar mesons (Aubin et
al., 2008), By and related quantities (Aubin ef al., 2007a,
2008, 2009), nucleon properties (Edwards et al., 2006b;
Renner et al., 2007; Hiagler et al., 2008; Bratt et al., 2009),
hadron spectroscopy (Edwards et al, 2006a; Walker-
Loud et al., 2009), meson scattering (Beane et al., 2008Db,
2008c), and nuclear-physics topics (Beane et al., 2007,
2008a; Detmold et al., 2008a, 2008b).

To take full advantage of simulations with heavy va-
lence quarks or mixed actions, it is useful to have chiral
effective theories that properly include the discretization
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effects. We discuss such theories, starting with the
mixed-action case of domain-wall valence quarks on a
staggered sea. The basic ideas of mixed-action chiral
perturbation theory were developed in Bir ef al. (2003,
2004) and Golterman et al. (2005) for the case of Wilson
fermions in the sea and chiral fermions in the valence
sector. By chiral fermions we mean overlap or domain
wall quarks, where we assume for domain wall quarks
that L, is large enough that the residual mass is negli-
gible. The extension to chiral valence fermions on stag-
gered sea quarks (Bér et al., 2005) is then fairly straight-
forward. Features of mixed-action chiral theory that are
universal, in the sense that they are independent of the
sea-quark action, have been discussed by Chen et al.
(2007, 2009).

Because the valence and sea quarks have different ac-
tions, a mixed-action theory lacks the symmetries that
would normally rotate valence into sea quarks (or vice
versa) in a standard theory. Since we assume that both
the valence and sea sectors approach the expected con-
tinuum theories as a—0, these symmetries should be
restored in the continuum limit. At the level of the Sy-
manzik effective action, the violation of these symme-
tries first appears at O(a?) in the existence of indepen-
dent “mixed” four-quark operators: in our case, the
product of a domain-wall (valence) bilinear and a stag-
gered (sea) bilinear. We know, following the develop-
ment in Sec. III.A, that each bilinear must be separately
chirally invariant, and that any staggered bilinear must
be taste invariant. It is then simple to see that only two
mixed four-quark operators are possible,

Oy = azl_ﬂam%%()’# ® q;,
(100)

04 =a* by, vstai(¥5s7, ® Da.

where ¢, is a domain-wall quark or ghost of valence
flavor a, and g; is a staggered quark of sea flavor i, and a
and i are summed over. As in the pure staggered case,
the color indices in these operators are irrelevant.

In addition to the operators in Eq. (100), there are the
full complement of standard, purely staggered four-
quark operators in the sea sector, and standard, purely
domain-wall four-quark operators involving valence
quarks and valence ghosts. In a normal theory, the rela-
tive coefficients of corresponding sea-sea, valence-
valence, and valence-sea operators would be fixed by the
symmetries. But in the mixed case, all such operators are
independent and must be treated separately.

In the corresponding chiral effective theory, the
purely sea-quark sector is the same as the sea-quark sec-
tor of a standard staggered theory. Similarly, the purely
valence-quark sector is the same as the valence-quark
sector of a standard domain-wall theory. Mixed valence-
sea mesons are affected by various operators, including
the operator corresponding to Eq. (100),

— GZCMiX Tr( 7'32 T32T) 5

where ¥ is the complete chiral field involving both sea
and valence (and ghost-valence) quarks, and 73 is a diag-

(101)
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onal matrix that takes the value +1 in the sea sector and
—1 in the valence sector. At LO one finds (Bér et al.,
2005; Chen, Golterman, et al., 2009)

mfwb = B(m,+my),
m? ;.= B(m;+m)) + a*é,, (102)

2
m :B(mi+ma)+a25Mixv

,ia

where a,b are domain-wall (valence) flavors, i,j are stag-
gered (sea) flavors, ¢ is the taste of a sea-sea meson, as in
Eq. (39), and 8y, is a function of Cyy, and other low-
energy constants. Aubin et al. (2008) and Orginos and
Walker-Loud (2008) have determined &y, numerically
by measuring the masses of mixed mesons.

The mixed-action chiral Lagrangian thus developed
can be used to calculate one-loop effects in pseudoscalar
masses and decay constants (Bér et al, 2005), in By
(Aubin et al, 2007b) and [=27— 7 scattering (Chen et
al., 2006).

Next, we consider the case of heavy-meson staggered
chiral perturbation theory (HMSyPT), the relevant chi-
ral theory for a heavy meson made out of a heavy va-
lence quark and a light staggered valence quark, on the
background of staggered sea quarks. HMSyPT is de-
signed to parametrize the light quark chiral extrapola-
tion and the light quark discretization effects. Discreti-
zation errors due to the heavy quark are not included; it
is assumed that they can be estimated independently by
using heavy-quark effective theory (HQET) (Isgur and
Wise, 1992; Neubert, 1994) to describe the lattice heavy
quark (Kronfeld, 2000, 2004).

At the level of the SET, the first nontrivial effect of
combining the heavy quark with the staggered theory is
again the generation of mixed four-quark operators (a
heavy-quark bilinear times a light-quark one). As be-
fore, such operators do not break taste symmetry. Fur-
thermore, unlike the mixed-action case, symmetry be-
tween heavy and light quarks is already strongly broken
by the heavy-quark mass. So the mixed operators have
no important effects in this case.

The power counting for heavy-light mesons in yPT
makes the HMSyPT at LO rather simple (Aubin and
Bernard, 2006). In the continuum, the chiral Lagrangian
for heavy-light mesons (Manohar and Wise, 2000) starts
at O(k), with k the residual momentum of the heavy
quark. The light meson momentum p should also be
O(k). In our staggered power counting, Eq. (92), we take
p?~m?%~a’. This means that the LO heavy-light meson
terms are lower order than the O(a?) discretization er-
rors in the light quark action. The LO heavy-light meson
propagator and vertices are thus the same as in the con-
tinuum, as are the heavy-light currents that enter, e.g., in
leptonic and semileptonic decays. The light-quark dis-
cretization errors in heavy-light meson quantities first
appear at one loop (NLO), through the taste violations
in the light meson propagators in the loop. These cor-
rections have been calculated for heavy-light leptonic
decay constants (Aubin and Bernard, 2006), for semilep-
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FIG. 6. (Color online) Squared charged pion masses, in units of r, as function of quark mass (left). From Bernard et al., 2006c,
2007c. A previous version appeared in Bernard et al. (2001). The splittings appear to be independent of the quark mass. The taste
splittings as function of a?a? (right) in a log-log plot, showing the expected behavior, indicated by the diagonal straight line.

Adapted from Bernard et al., 2007a.

tonic heavy-to-light decays, e.g., B— 7 (Aubin and Ber-
nard, 2007), and for semileptonic heavy-to-heavy decays,
e.g., B—D and B— D" (Laiho and Van de Water, 2006).
There are also analytic NLO corrections to physical pro-
cesses, coming both from light-quark mass corrections
(as in the continuum) and from taste-violating correc-
tions to the LO Lagrangian and currents. In practice, it
is usually easy to guess these analytic NLO corrections
from symmetry arguments, so it is not necessary to use
the complicated NLO heavy-light Lagrangian (Aubin
and Bernard, 2006).

C. The issue of rooting

The extra tastes are eliminated in staggered dynamical
simulations by taking the fourth root of the fermion
determinant—the fourth-root procedure. In the past few
years there has been progress in understanding and vali-
dating this procedure, and we give a brief overview of
this progress here. For more detailed discussions see
Sharpe (2006b), Kronfeld (2007), and Golterman (2008).

The fourth-root procedure would be unproblematic if
the action had full SU(4), taste symmetry, which would
give a Dirac operator that was block diagonal in taste
space. Indeed, this is the “cartoon version” of what we
expect in the continuum limit. Assuming taste symmetry
is restored, the positive fourth root of the positive stag-
gered determinant would then become equal to the de-
terminant of a single continuum species.

At nonzero lattice spacing a, taste symmetry is broken
and the Dirac operator is not block-diagonal [see Eq.
(32)]. From Eq. (34), one has

In det(DKS +me® I)
=41Indet(D +m) +Indet{I+[(D +m)~! ® IaA}.
(103)

Since (D+m)~! is nonlocal, we should not expect the
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rooted theory to be local for a # 0. In fact it is possible to
prove (Bernard, Golterman, and Shamir, 2006) that the
fourth root of the determinant is not equivalent to the
determinant of any local lattice Dirac operator.8 The
idea of the proof is simple: If there were such a local
operator, then one could construct a theory with four
degenerate quarks, each one with that local action. Call-
ing this introduced degree of freedom taste, one now has
a local theory with exact SU(4)y taste symmetry by con-
struction, and whose determinant is equivalent to that of
the original staggered theory. This is a contradiction, be-
cause the taste symmetry of the constructed theory guar-
antees that it has 15 pseudo-Goldstone bosons (pions),
whereas the staggered pions are known to split up into
nondegenerate irreducible representations (Golterman,
1986b; Lee and Sharpe, 1999). Indeed, Fig. 6 shows our
lattice measurements of the pion splittings as a function
of quark mass (left) and lattice spacing (right). The left
plot clearly shows the characteristic splitting of the
charged pion (7") multiplet into the five nondegenerate
submultiplets with tastes P, A, T, V, S. This is as pre-
dicted at O(a?) in the chiral expansion, as discussed in
Sec. III.A. Further splitting at higher order into a total
of eight submultiplets is allowed by the lattice symme-
tries (Golterman, 1986b), but we see little evidence of
that at the current level of statistics.

The same features of the rooted theory that imply
nonlocality also imply nonunitarity on the lattice (Ber-
nard, 2006; Prelovsek, 2006b; Bernard, DeTar, et al.,
2007; Bernard, Golterman, et al., 2007). The issue is par-
ticularly sharp in the rooted one-flavor theory. The
physical one-flavor theory should have no light pseudo-

8“Equivalent” here means equal up to a factor of the expo-
nential of some local effective action of the gauge field. This is
enough to guarantee that the two theories have the same phys-
ics at distances much larger than the lattice spacing (Adams,
2005; Shamir, 2005).
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scalar mesons (pions) but only a heavy %’. In a rooted
theory with exact taste symmetry (e.g., with four copies
of rooted overlap quarks), this works automatically: the
fourth power of the fourth root of a (positive) determi-
nant is equal to the determinant itself. Alternatively, one
can check directly in the rooted four-taste theory that, in
physical correlators, the pion intermediate states cancel
and only the 7' remains (Bernard, Golterman, et al.,
2007). On the other hand, in the rooted one-flavor stag-
gered theory, the pions have different masses at nonzero
lattice spacing and cannot cancel, leaving light interme-
diate states with both positive and negative weights. This
is a clear violation of unitarity.

In the continuum limit, we expect that all pions be-
come degenerate. For the tree-level improved asqtad
fermions, generic lattice artifacts are of order O(a,a?).
Taste violations, however, require exchange of at least
two UV gluons, since the coupling of a quark to a single
gluon with any momentum components equal to 7/a
vanishes. Therefore taste violations with the asqtad ac-
tion should vanish as a?a” as a—0. The lattice-spacing
dependence of the pion splittings, shown in the right-
hand plot of Fig. 6, agrees well with this expectation.
Note that since we are looking here at flavor-nonsinglet
pions, the taste singlet 7; also becomes degenerate with
the other 15 pions as the continuum limit is approached.

Thus, the rooted staggered theory is inherently nonlo-
cal and nonunitary at nonzero lattice spacing, but should
become local and unitarity in the continuum limit if taste
symmetry is restored. This is because, in the limit of
exact taste symmetry, rooting of the sea quarks is
equivalent to restriction to a single taste, which is a local
operation. Clearly, the numerical evidence for taste-
symmetry restoration in the continuum is strong, and
accords with the theoretical expectation coming from
the fact that taste violation is due to an operator with
dimension five. How, then, could rooting go wrong? The
main problem is that the theoretical expectation is based
on standard lore of the renormalization group (RG) that
operators with dimension greater than four are irrel-
evant in the continuum limit. This standard lore for the
scaling of operators assumes a local lattice action, which
does not apply here. The numerical results indicate that
the lore is not leading us astray, but of course numerical
evidence does not constitute a proof.

There is a further problem in the formal argument we
have made so far that rooting is equivalent in the con-
tinuum limit to restriction to a single taste. The argu-
ment seems to require that taste symmetry is restored
for the Dirac operator Dgg, Eq. (34), itself. In Fig. 6,
however, we are only testing the restoration of taste
symmetry at physical scales, those much larger than the
lattice spacing. At the scale of the cutoff, there is actu-
ally no reason to expect that taste symmetry is restored.
Indeed, direct studies of the eigenvalues of Dgg on the
lattice (Diirr et al., 2004; Follana et al., 2004) find only
approximate quartets of eigenvalues (indicating approxi-
mate taste symmetry) for low-lying eigenvalues, those
corresponding to long (physical) distance scales.
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Shamir (2005, 2007) set up an RG framework for both
unrooted and rooted staggered theories, and used it to
address the potential problems of rooting. The renor-
malization group is clearly the natural framework to
study the scaling of operators, and it also makes possible
a more precise treatment of the continuum limit. As one
blocks Dgg to longer distance scales, the eigenvalues at
the scale of the cutoff are removed, and one may then
expect that taste symmetry is truly restored.

Shamir’s RG scheme starts with unrooted staggered
quarks, and blocks them on the hypercubic lattice by a
factor of 2 at each step, integrating out the finer quark
fields. The gauge fields are also blocked, but the integra-
tion over them is postponed until the end, so that the
quark action stays quadratic at every step. The starting
“fine” lattice spacing ay is blocked n times to a final
“coarse” lattice spacing a.. As n is increased, the coarse
spacing is held fixed but small, with a.<1/Aycp. The
fine lattice spacing thus obeys a;=27"a., and the con-
tinuum limit is n—cc, which sends a; to zero. In this
unrooted theory, the scaling of A like ay is guaranteed by
the standard lore, since the action is local.

The rooted theory cannot be blocked in the same way
because rooted quarks are not defined by a standard
Lagrangian, but by a rule to replace the fermion deter-
minant by its fourth root in the path integral. We can,
however, apply the rule at every stage of the (unrooted)
blocking, obtaining, at the nth step, the theory given by

ZKSroot f dA det"™ (D, +m, ® 1), (104)

where Dg, is the blocked staggered Dirac operator, m,,
is the (renormalized) mass on the blocked lattice, and
dA is the full gauge measure (which includes integrals
over gauge fields at each level of blocking, as well as
Jacobian terms coming from integrating out the fermi-
ons on the coarse lattices). This defines a RG for the
rooted theory. However, it is difficult to make progress
directly from Eq. (104), because of the problem of non-
locality.

Shamir’s key insight is that one may define, at each
stage of blocking, an intermediate “reweighted theory,”
which becomes closer to the rooted staggered theory but
retains locality. Define D, to be the taste-singlet part of
Dgs . and agA, to be the remainder,

D,=;TrDks,)s Disn=D,®I+ad,,  (105)

where Tr, is the trace over taste, and [/ is the identity in
taste space. This parallels Eq. (34). We see below the
explicit ay in the second term of Eq. (105) does not mis-
lead us about the scaling of aA. The operator D, is local
because Dy is. Further, det(D,+m,)=det"*((D,+m,,)
®1I). The (rooted) reweighted theory is then defined by

Z;eweighted — f dA det(Dn + mn) . (106)

Now, since the reweighted theory is QCD-like, albeit
with a more complicated gauge integration than usual,
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we expect it to be renormalizable and asymptotically
free. The running of the operator ag,, from ay to a, can
then be calculated perturbatively because in this range
the lattice spacings are all <1/Acp. Because the theory
is local, the standard lore tells us that the perturbative
running will be a reliable guide to the complete nonper-
turbative behavior. Thus we expect that the operator

norm of aA, will obey, in an ensemble-average sense,
laA |l =< ag/ai=2""/a,, (107)

where the =< sign implies that the scaling is true up to
logarithms. For the same reasons, the mass m, should
run logarithmically, just as in QCD. From this and Eq.
(105), we have

det"™(Dgg, +m, ® 1)
=det(D, + m,)
Xexp(3Tr In{l + [(D,, +m,)”' ® Nag,})

=det(D, + m,,){l + (’)(—zaf—)} ,
a;m,

(108)
where the quark mass provides a lower bound to the
absolute value of the eigenvalues of D, +m,,. Thus,

lim ZESroot = lim Z;ewelghted.

n—oo n—o

(109)

In other words, the nonlocal rooted staggered theory
coincides with a local one-taste theory in the continuum
limit, as desired.

Note that Eq. (108) makes it clear that one must take
the continuum (a;—0) limit before the chiral (m—0)
limit for rooting to work. This is not surprising, since
it is already well known (Smit and Vink, 1987;
Bernard, 2005; Diirr and Hoelbling, 2005; Bernard, Gol-
terman, et al., 2007) that the two limits do not commute
for all physical quantities, and that taking the chiral limit
first can give incorrect answers. This is true even for the
unrooted staggered theory. As a trivial example, con-
sider the low-energy constant B [see Eq. (39)] defined at
a given lattice spacing a by B(a)=m?/(2m) for some
taste ¢. Unless t=P, giving the Goldstone pion, one has
lim,_, lim,,_o B(a)=%; while the desired result is
limmﬂo lima*)() B([l)ZB

One may worry that the argument thus far presumes
too much about how perturbation theory works in the
reweighted theory. After all, the perturbation theory in-
volves multiple levels of gauge integrations, making it
quite complicated. Indeed, no such perturbative calcula-
tions have been performed to date. Shamir (2007)
pointed out, however, that we may avoid the details of
perturbation theory in the reweighted theory by leaning
a bit more on the standard lore and on perturbation
theory in the unrooted staggered theory, which is fairly
well understood; see Sharpe (2006b), and references
therein. One starts by considering the unrooted stag-
gered theory replicated n, times, where #, is an integer.
In this theory the B function and the logarithmic anoma-
lous dimension of aA, will be the standard functions of
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the total number of fermion species, and aA, will scale
as expected as long as n, is not so large that asymptotic
freedom is lost.

Now, ag,, is just the difference between the (repli-
cated) unrooted staggered theory and a (replicated) un-
rooted reweighted theory defined by the Dirac operator
(D,+m,)®I. Since af, gets small as n—o in one
theory, it must get small in the other theory. Both theo-
ries are local, so the standard lore says that aA,, scales as
expected in perturbation theory in the unrooted re-
weighted theory—however complicated such calcula-
tions would actually be in practice. The results of pertur-
bation theory to any fixed order are polynomial in n,,
with the power of n, just counting the number of closed
quark loops. In this perturbation theory, we may put n,
=1/4 to obtain the perturbation theory for the rooted
reweighted theory, Eq. (106). Thus we do not have to
calculate explicitly in either the unrooted or rooted re-
weighted theories; we know that aA,, will scale to zero
as expected in perturbation theory. Now the standard
lore takes over for the local rooted reweighted theory,
and says asA, will scale to zero as n— o even nonpertur-
batively.

A numerical test of the scaling of aA, was attempted
by Bernard et al. (2006a). The results were encouraging
but far from conclusive, due to quite large statistical er-
rors.

Although the above arguments make it plausible that
rooting works, they do not constitute a rigorous proof.
As always in lattice QCD, one relies heavily on the stan-
dard lore about RG running of irrelevant operators,
which is what “guarantees” universality. Further, we are
unable to do justice here to all arguments and assump-
tions involved in the perturbative analysis. We have also
ignored the nontrivial issues involving the Jacobian ob-
tained by integrating out the fermions at each level of
blocking. The Jacobian can be written as the exponential
of an effective action for the gauge fields. The claim is
that this effective action is local, basically because it
comes from short-distance fluctuations of the fermions;
see Shamir (2007), Sharpe (2006b), Kronfeld (2007), and
Golterman (2008) for details and discussion.

‘We now consider the question of whether rSyPT is the
correct chiral theory for rooted staggered QCD. This is
important first because rSyPT allows us to fit lattice data
and take the limits a— 0 and m—0 in the correct order
and with controlled errors. In addition, the validity of
rSxPT, coupled with the strong numerical evidence for
the restoration of taste symmetry for a—0 (see Fig. 6),
guarantees that rooted staggered QCD produces the de-
sired results for the pseudoscalar meson sector in the
continuum limit. This is because rSyPT becomes con-
tinuum yPT when taste symmetry is restored.

Before discussing the arguments supporting rSyPT,
we note that rSyPT has the main features desired for a
chiral effective theory of the rooted theory. In particular
rSxPT reproduces the nonunitarity and nonlocality of
rooted staggered QCD at nonzero lattice spacing. This
comes about because rSyPT, like the rooted staggered
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Ng —— +2
S —15/8
Vv +4/8
T +6/8
A +4/8
P +1/8

FIG. 7. (Color online) Relative weights (shown at the right of
each line) of two-particle intermediate states in the scalar,
taste-singlet correlator in the one-flavor case. The two-7; state
(S indicates taste singlet) is shown at top; while the various
two-pion states below are labeled by the pion taste
(S,V,T,A,P). The height of each line represents, qualitatively,
the relative mass of the state.

theory itself, is not an ordinary Lagrangian theory, but a
Lagrangian theory with a rule. For rSyPT the rule is:
calculate in the replicated theory for integer n, number
of replicas, and then set n,=1/4. Setting n,=1/4 gives
“funny” relative weights for different diagrams, which
can result ultimately in negative weights for some inter-
mediate states in an ostensibly positive correlator. For
example, Fig. 7 shows the weights of various two-meson
intermediate states coming from a rSyPT calculation
(Bernard, 2006; Bernard, DeTar, et al., 2007) of the sca-
lar taste-singlet correlator in a one-flavor rooted stag-
gered theory. The physical theory should only have a
two-7' intermediate state, but here we have various light
pion states, with the taste-singlet pions9 having a nega-
tive weight. In the continuum limit, however, the pions
become degenerate, and they decouple since their
weights add to zero.

The first argument for the validity of rSyPT was given
by Bernard (2006). The starting point is the observation
that the case of four degenerate flavors of rooted stag-
gered quarks is particularly simple because it is the same
as the case of one flavor of unrooted staggered quarks.
Thus we know the chiral theory: it is exactly that ob-
tained by Lee and Sharpe (1999) for one unrooted flavor.
This chiral theory is equivalent to that of rSyPT for four
degenerate flavors. The equivalence is manifest order by
order in the chiral theory: Since the result for any physi-
cal quantity is polynomial in the number of degenerate
flavors, taking 4ny degenerate flavors and then putting
np=1/4 gives the same chiral expansion as a one-flavor
theory.

The case of four nondegenerate flavors may then be
treated by expanding around the degenerate limit. The
expansion is, however, somewhat subtle. Once we move
away from the degenerate limit, nontrivial weighting

“The taste-singlet pion is distinct from the 7’ here because it
is a flavor nonsinglet arising at the arbitrary, integral n, values
at which the calculation is done.
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factors of various diagrams, caused by the fourth root of
the determinant of the sea quarks, come into play. This
means that it is impossible to write all needed deriva-
tives with respect to the quark masses as derivatives in
the one-flavor unrooted theory of Lee and Sharpe. The
solution is to keep the sea quarks degenerate, but to
introduce arbitrary numbers of valence quarks. Bernard
then showed that it is possible to rewrite all derivatives
with respect to sea-quark masses as sums of various
combinations of derivatives with respect to the valence
quark masses. This approach allows us to remain in the
degenerate sea-quark limit, where the chiral theory is
known. It is however necessary to assume that partially
quenched chiral perturbation theory (PQxPT) (Bernard
and Golterman, 1994) is valid in the unrooted case.
Since the unrooted case is local, this is very plausible.
Further, there is a significant amount of numerical work
that supports the validity of PQyPT for local theories,
using other fermion discretizations, not just staggered
quarks. It should be pointed out that partially quenched
chiral theories rest on shakier ground than the standard
chiral theory for QCD, as emphasized recently by
Sharpe (2006a). For example, the argument by Weinberg
(1979) for QCD invokes unitarity, which partially
quenched theories do not have. On the other hand, the
argument by Leutwyler (1994) emphasized cluster de-
composition instead of unitarity and may be possible to
apply to a partially quenched Euclidean theory. Work on
putting PQxPT on a firmer foundation is in progress
(Bernard and Golterman, 2009).

An additional, technical assumption for this approach
is that the mass expansion does not encounter any sin-
gularities. This is reasonable because the expansion is
about a massive theory, and one therefore does not ex-
pect infrared problems.

To reach the more interesting case of three light fla-
vors, Bernard raised the mass of one of the four quarks
(call it the charm quark, with mass m,.) to the cutoff,
decoupling it from the theory. This requires an addi-
tional technical assumption, arising from the fact that
there is a range of masses, which begins roughly at m,
~2my (with m, the strange quark mass), where the
charm quark has decoupled from the chiral theory, but
not yet from the QCD-level theory. While the resulting
three-flavor chiral theory has the same form as that of
QCD when a—0, the assumption does leave open the
possible “loophole” that the LECs have different nu-
merical values from those of QCD.

The above argument takes place entirely within the
framework of the chiral theory. It has the nice feature
that the recovery of the correct QCD chiral expressions,
and the vanishing of nonlocal and nonunitary effects,
only requires taste violations to vanish in the continuum
limit in the unrooted, and hence local, theories with in-
tegral n,. The vanishing of these taste violations in the
rooted chiral theory then follows. On the other hand,
because the argument does not connect rSyPT to the
QCD-level rooted staggered theory, the replica rule
ends up emerging rather mysteriously. The chain of rea-
soning also depends on several technical assumptions.



Bazavov et al.: Nonperturbative QCD simulations with 2+1 ... 1373

An argument for the validity of rSyPT directly from
the fundamental rooted staggered theory is therefore
desirable. It has been developed by Bernard, Golter-
man, and Shamir (2008) by starting from the RG frame-
work of Shamir. The basic idea is to generalize the fun-
damental (lattice-level) theory to one in which the
dependence on the number of replicas n, is polynomial
to any given order in the fine lattice spacing a. Then we
can find the chiral theory for each integer #n, in a stan-
dard way (because the theories are local), and apply the
replica rule to get the rooted staggered theory at the
fundamental level and rSyPT at the chiral level.

For simplicity we focus on a target theory with n, de-
generate quarks in the continuum limit. Unlike the pre-
vious argument, the extension here to quarks with non-
degenerate masses is straightforward. Consider Eg.
(104), the rooted staggered theory at the nth step of
blocking, but with n, degenerate staggered flavors

ZESroot(n‘Y) _ f dA detn“'M(DKS,n +m, ® [) (110)

Now generalize this, using the definitions of Eq. (105), to
Z¥(ngn,) = J d A det"s(D,, + m,)

det"[(D, +m,) ® I + taA,,]
det"[(D,+m,) ®1]

(111)

where ¢ is a convenient interpolating parameter. When
t=1 and n,=n,/4, this reduces to Eq. (110) because the
determinants of the reweighted fields [those involving
D,+m or (D,+m)®1 only] cancel, and the remaining
determinant is just that of the rooted staggered theory.
When =0, on the other hand, Eq. (111) gives a local
theory of ng reweighted one-taste quarks.

Equation (111) has an important advantage over Eq.
(110). While the dependence on g is unknown and non-
perturbative in both cases, the dependence on n, of
Z%"(ng,n,) is well controlled because it vanishes when
the taste violations vanish (a,A,=0 or t=0). This makes
it possible to apply a replica rule on n, at the fundamen-
tal QCD level. To see this, we first write

det"[(D, +m,) ® I + taA,,]
det"{(D,,+ m,) ® I]
=exp(n,TrIn{l +[(D, +m,) ' @ [taA,}). (112)

We then expand in powers of the fine lattice spacing ay.
These can come from the explicit factor ay in the taste-
violating term or from the implicit dependence on ay of
the gluon action and the lattice operators D, and A,,.
The parameter ¢ serves to keep track of the explicit de-
pendence; the power of r must be less than or equal to
the power of a; to which we expand. From Eq. (112), the
power of n, must in turn be less than or equal to the
power of t. Thus, to any fixed order in ay the depen-
dence of the theory on n, must be polynomial. This
means that #, is a valid replica parameter of the funda-
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mental theory (again to any fixed order in ay). We can in
principle find the polynomial dependence of any corre-
lation function by calculations for integer values of n,
only, and then determine the correlation function in
the rooted staggered theory by simply setting n,=n,/4
(and t=1).

We now discuss the effective theories, the SET and
the chiral theory. For convenience, we can work at t=1.
For n, and ny (positive) integers, Z5"(n,,n,) is a local,
but partially quenched, theory that can be written di-
rectly as a path integral. It is partially quenched because
the determinant in the denominator needs to be gener-
ated as an integral over ghost (bosonic) quarks. Finding
the SET and the chiral effective theory for such local
theories is standard, although the caveats about the
foundations of PQyPT apply. All that we really need to
know is that the effective theories exist for any integer
n, and ng, and that their dependence on 7, is polynomial
(because the dependence in the underlying theory is
polynomial). In the chiral theory we can then set n,
=ng/4. At the QCD level this just gives the rooted stag-
gered theory for n, flavors. At the chiral level, the re-
weighted parts of the theory again cancel order by order
at n,=n,/4, because we have n, flavors of one-taste
quarks and n, flavors of four-taste ghost quarks, with
exact taste symmetry. We are then left with exactly the
result we would have gotten from rSyPT.

This argument avoids the loophole and technical as-
sumptions of the argument of Bernard (2006). It also
makes clear how the replica rule arises from the funda-
mental theory. On the other hand, it inherits the assump-
tions of Shamir (2007), since it is based on that frame-
work. Both arguments rely on the standard PQyPT for
local theories. This is not surprising since rooted stag-
gered QCD inherently shares some features of a par-
tially quenched theory: Since rooting is done only on the
sea quarks, there is an excess of valence quarks. As
noted earlier, however, this valence-rooting issue is not a
fundamental problem because there is a physical sub-
space.

A nice feature of the current argument is that, by cou-
pling rSyPT directly to the RG framework it makes nu-
merical tests of rSyPT into tests of the RG framework,
and hence of the validity of rooting at the fundamental
level. We discuss such tests in Sec. VI.

We now turn to the objections raised to rooted stag-
gered quarks by Creutz (2006a, 2006b, 2007a, 2007b,
2007¢, 2008a, 2008b). Since these objections have been
refuted (Bernard, Golterman, et al., 2007, 2008a, 2008b;
Adams, 2008; Golterman, 2008)—see also Sharpe
(2006b) and Kronfeld (2007)—we give only a very brief
discussion here. The main point is that most of Creutz’s
claims apply equally well to the proposed continuum
limit theory of rooted staggered quarks: a rooted four-
taste theory with exact taste symmetry, which is called a
rooted continuum theory (RCT) by Bernard, Golter-
man, et al. (2008b). Such a theory provides a tractable
framework in which to examine Creutz’s claims. Be-
cause, as emphasized before, det"*((D+m)®I)=det(D
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+m), the RCT is clearly equivalent to a well-behaved
one-taste theory, and gives a counterexample to most of
Creutz’s objections. Alternatively, Adams (2008) found
counterexamples to Creutz’s claims in a simple lattice
context, namely, a version of twisted Wilson quarks.

While the RCT is equivalent to a one-taste theory, it is
not exactly the same in the following sense: In the RCT,
with its four tastes, one can couple sources to various
tastes and generate Green’s functions that have no ana-
log in the one-taste theory. Such unphysical Green’s
functions are at the basis of many of the “paradoxes”
Creutz finds. For example, one can find 't Hooft vertices
that are singular in the limit m — 0. Nevertheless, these
unpleasant effects exist purely in the unphysical sector
of the RCT; in the physical sector all t Hooft vertices
are well behaved.

Finally, Creutz noticed that there is a subtlety involv-
ing rooted staggered quarks for negative quark mass,
and this is in fact true. Independent of the sign of the
quark mass, the staggered determinant is positive, as dis-
cussed following Eq. (28). The fourth root of the deter-
minant generated by the dynamical algorithms, Sec.
I1.C, is then automatically positive for any sign of m. In
other words, the rooted staggered theory is actually a
function of |m|, not m. This means that rooted staggered
fermions cannot be used straightforwardly to investigate
the effects that are expected (Dashen, 1971; Witten,
1980) to occur for an odd number of negative quark
masses.'” A related problem occurs when one adds a
chemical potential to the theory—the determinant be-
comes complex, and the fourth root, ambiguous (Golter-
man et al., 2006). Nevertheless, these problems have no
relevance to the validity of the rooted staggered theory
in the usual case of positive quark mass and zero chemi-
cal potential. For more details, see Bernard, Golterman,
et al. (2007).

IV. OVERVIEW OF THE MILC LATTICE ENSEMBLES

In this program of QCD simulations, ensembles of lat-
tices were generated at several lattice spacings and sev-
eral light quark masses. This allows extrapolations to
zero lattice spacing (the “continuum extrapolation”) and
to the physical light quark mass (the “chiral extrapola-
tion”). In all ensembles the masses of the up and down
quarks are set equal, which has a negligible effect
(<1%) on isospin-averaged quantities. The original
goals of the program were to simulate with three dy-
namical quark flavors, with a large enough physical vol-
ume to make finite size effects small, and to vary the
quark masses to study the effects of “turning on” the
dynamical quarks. It later became clear that more lattice
spacings were needed to understand the continuum

In principle, the negative mass region can be simulated by
adding a 6 term to the action. Because of the sign problem, this
would be extremely challenging in four dimensions. However,
it has been shown to work well in the Schwinger model (Diirr
and Hoelbling, 2006).
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limit. Fortunately, computer power was increasing rap-
idly, which made the simulations with smaller a practical.

Currently, the lattice spacings of the ensembles fall
into six sets, with lattice spacings =0.18, 0.15, 0.12, 0.09,
0.06, and 0.045 fm. In many places these are called ex-
tracoarse, medium coarse, coarse, fine, superfine, and ul-
trafine, respectively. The 0.12 fm lattices were the first to
be generated. Over time, as computer power permitted,
the lattice spacing was reduced progressively by =1/ 2
so that in each reduction the estimated leading finite
lattice spacing artifacts were a factor of 2 smaller than in
the previous set. The coarser lattices were added to sup-
port thermodynamics studies and to provide further le-
verage for continuum extrapolations. The medium
coarse ensemble was added after coarse and fine and has
a better tuned strange quark mass based on analysis of
the other ensembles.

For comparison, at a=0.12, 0.09, and 0.06 fm,
quenched ensembles with the same gauge action were
also generated. For each of these lattice spacings, the
gauge coupling 8=10/g? was adjusted as the light quark
mass was changed to keep the lattice spacing approxi-
mately fixed. However, the lattice spacing could only be
determined accurately after the large ensembles were
generated, so it is necessary to take into account the
small differences in lattice spacing among the ensembles
in the same set. In Sec. IV.B, we describe measurement
of the lattice spacing on each ensemble, and a param-
etrized fit to smooth out statistical fluctuations.

The strange quark mass in lattice units am, was esti-
mated before simulations began, and was held fixed as
the light quark mass and gauge coupling were varied.
Later analysis, described in Sec. VI, determined the cor-
rect strange quark mass more accurately, and in fact the
initial estimates turned out to be wrong by as much as
25%.

In the a=0.12 fm set, several ensembles have a large
dynamical quark mass—as large as 11 times the physical
strange quark mass. This was done to investigate the
physics of continuously turning on the quarks by lower-
ing their masses from infinity. There are also a number
of ensembles with a lighter-than-physical strange quark
mass. These were generated to explicitly study depen-
dence on the sea strange quark mass, and, since the
lighter strange quark implies less sensitivity to higher
orders in SU(3) chiral perturbation theory, enable im-
proved determinations of the parameters in the chiral
expansion, particularly of the low-energy constants (see
Sec. VI).

The fields satisfy periodic boundary conditions in the
space directions, while the boundary condition in the
Euclidean time direction is periodic for the gauge fields
and antiperiodic for the quark fields.

Table I shows the parameters of the asqtad ensembles
(a few short “tuning” ensembles are not included). Here
am; is the dynamical light quark mass in lattice units and
amy is the strange quark mass. Figure 8 shows the quark
masses and lattice spacings of these ensembles.



TABLE 1. The asqtad ensembles. u is the input tadpole factor, Eq. (9), rather than the value determined from the ensemble
average of the plaquette. Lattice spacings are from the smoothed fit described in the text, except where indicated by a *. For these
ensembles, ri/a is from this ensemble alone, rather than the smoothed fit. To convert to physical units, use r{=0.31 fm. A |
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indicates that the run is in progress. This list of ensembles and counts of archived lattices are as of December 2008.

B=10/g> amy am (L/a)*%(T/a) Lats. Uy rla m L
a=0.18 fm
6.503 0.0492 0.0820 163 % 48 250 0.85636 1.778(8) 9.07
6.485 0.0328 0.0820 163 % 48 334 0.85585 1.785(7) 7.47
6.467 0.0164 0.0820 163 % 48 416 0.85492 1.801(8) 5.36
6.458 0.0082 0.0820 163 % 48 484 0.85489 1.813(8) 3.84
a=0.15 fm
6.628 0.0484 0.0484 163 % 48 621 0.8623 2.124(6) 8.48
6.600 0.0290 0.0484 163 % 48 596 0.8614 2.129(5) 6.63
6.586 0.0194 0.0484 163 % 48 640 0.8609 2.138(4) 5.46
6.572 0.0097 0.0484 163 % 48 631 0.8604 2.152(5) 3.93
6.566 0.00484 0.0484 203 x 48 603 0.8602 2.162(5) 3.50
a=0.12 fm
8.000 o o 20% X 64 408 0.8879 2.663(6)* na
7.350 0.4000 0.4000 203 X 64 332 0.8822 2.661(7)* 29.4
7.150 0.2000 0.2000 203 X 64 341 0.8787 2.703(7)* 19.6
6.960 0.1000 0.1000 20% X 64 340 0.8739 2.687(0)* 13.7
6.850 0.0500 0.0500 20% X 64 425 0.8707 2.686(8) 9.70
6.830 0.0400 0.0500 20% X 64 351 0.8702 2.664(5) 8.70
6.810 0.0300 0.0500 20% X 64 564 0.8696 2.650(4) 7.56
6.790 0.0200 0.0500 203 X 64 1758 0.8688 2.644(3) 6.22
6.760 0.0100 0.0500 203 X 64 2023 0.8677 2.618(3) 4.48
6.760 0.0100 0.0500 283 X 64 275 0.8677 2.618(3) 6.27
6.760 0.0070 0.0500 203 X 64 1852 0.8678 2.635(3) 3.78
6.760 0.0050 0.0500 243 X 64 1802 0.8678 2.647(3) 3.84
6.790 0.0300 0.0300 203 X 64 367 0.8689 2.650(7) 7.56
6.750 0.0100 0.0300 203 X 64 357 0.8675 2.658(3) 4.48
6.715 0.0050 0.0050 323X 64 701 0.8671 2.697(5) 5.15
a=0.09 fm
8.400 o o0 283X 96 396 0.89741 3.730(7)* na
7.180 0.0310 0.0310 283X 96 500 0.8808 3.822(10) 8.96
7.110 0.0124 0.0310 283x96 1996 0.8788 3.712(4) 5.78
7.100 0.0093 0.0310 283x96 1138 0.8785 3.705(3) 5.04
7.090 0.0062 0.0310 283x 96 1946 0.8782 3.699(3) 4.14
7.085 0.00465 0.0310 323x96 5407 0.8781 3.697(3) 4.11
7.080 0.0031 0.0310 403x 96 1012 0.8779 3.695(4) 421
7.075 0.00155 0.0310 643X 96 5307 0.877805 3.691(4) 4.80
7.100 0.0062 0.0186 28396 985 0.8785 3.801(4) 4.09
7.060 0.0031 0.0186 403x 96 642 0.8774 3.697(4) 422
7.045 0.0031 0.0031 403x 96 4407 0.8770 3.742(8) 4.20
a=0.06 fm
7.480 0.0072 0.0180 483X 144 625 0.8881 5.283(8) 6.33
7.475 0.0054 0.0180 483 x 144 617 0.88800 5.289(7) 5.48
7.470 0.0036 0.0180 483 x 144 771 0.88788 5.296(7) 4.49
7.465 0.0025 0.0180 563 % 144 800 0.88776 5.292(7) 4.39
7.460 0.0018 0.0180 643 x 144 826 0.88764 5.281(8) 427
7.460 0.0036 0.0108 643 x 144 483 0.88765 5.321(9) 5.96
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TABLE 1. (Continued.)
B=10/g> am am (L/a)>*X(T/a) Lats. 1 rila m,L
a=0.045 fm
7.810 0.0028 0.0140 643192 861 0.89511 7.115(20) 4.56

A. Algorithms and algorithm tests

The earlier ensembles were generated using the R al-
gorithm (Gottlieb et al., 1987) described in Sec. II.C. The
molecular dynamics step size was generally set at about
two-thirds of the light quark mass in lattice units. Recent
lattice generation has used rational function approxima-
tions for the fractional powers described in Sec. II.C. In
those simulations, we have used the Omelyan second-
order integration algorithm (Sexton and Weingarten,
1992; Omelyan et al., 2002a, 2002b, 2003; Takaishi and
de Forcrand, 2006). We used different step sizes for the
fermion and gauge forces (Sexton and Weingarten,
1992), with the step size for the fermion force three
times that of the gauge force. We used four sets of
pseudofermion fields and corresponding rational func-
tions (Hasenbusch, 2001; Hasenbusch and Jansen, 2003).
The first set implements the ratio of the roots of the
determinants for the physical light and strange quarks to
the determinant for three heavy “regulator” quarks with
mass am,=0.2. That is, it corresponds to the weight
det(M(m,))V? det(M(m))"* det(M(m,))~>*. The remain-
ing three pseudofermion fields each implement the force
from one flavor of the regulator quark, or the fourth
root of the corresponding determinant. These choices
are known to be reasonably good, but could be opti-
mized further.

For all but the largest lattices generated with rational
function methods, we included the Metropolis accept-
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FIG. 8. (Color online) Lattice spacings and quark masses used.
The octagons indicate ensembles with the strange quark near
its physical value, while the crosses indicate those with an un-
physically light strange quark. The burst at lower left shows
the physical light quark mass. Here the quark masses are in
units of MeV, but using the asqtad action lattice regularization.
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reject decision to eliminate step size errors, or the
RHMC algorithm. Because the integration error is ex-
tensive, use of the RHMC algorithm for the largest lat-
tices would have forced us to use very small step sizes
and double precision in many parts of the integration.
For these lattices it was much more efficient to run at a
small enough step size that the integration error was less
than other expected errors in the calculation (the
RHMD algorithm).

Errors from the integration step size in the R algo-
rithm were originally estimated from short runs with dif-
ferent step sizes, as described by Bernard et al. (2001)
and Aubin et al. (2004a). In several cases, ensembles
originally generated with the R algorithm were later ex-
tended with the RHMC algorithm. This allows an ex
post facto test of the step size errors in the R algorithm,
with much higher statistics than possible for a tuning
run. Figure 9 shows the average plaquette for one a
~(.12 fm run as a function of step size squared, combin-
ing the early tuning runs with the R and RHMC algo-
rithm production runs. Table II compares the expecta-
tion values of the plaquette and the light-quark
condensate and, in some cases, the lattice spacing and
pion mass, for the ensembles where both algorithms
were used. The differences are small and in most cases
are comparable to the statistical errors.

In one case, a=0.12 fm and am,=0.01/0.05, an en-
semble with a larger spatial size (28%) was generated to
check for effects of the spatial size. In general, these
effects were found to be small as expected, although the

| p=6.76, am=0.01/0.06 |
1.7010 H -
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-@ + 4

L R 4
1.7008 H -
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FIG. 9. (Color online) The plaquette as a function of integra-
tion step size squared for 20° X 64 lattices with 8=6.76 and
am,=0.01/0.05. The point at £2=0 is from the RHMC algo-
rithm, and the point indicated by R is the value used in the R
algorithm production runs. The remaining two points are from
short test runs described by Aubin et al. (2004a).
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TABLE II. Comparison of plaquette and light-quark condensate for ensembles run partly with the R algorithm and partly with the
RHMC algorithm. For the a=0.09 fm ensembles, we also show r;/a and the pion mass.

B am, am; € O(R) O(RHMC) difference Jip(R) YW (RHMC) difference
6.79 0.020 0.050 0.01333 1.709160(26) 1.708805(16) —0.000355(30) 0.052553(61)  0.052306(28) 0.000251(67)
6.76  0.010  0.050 0.00667 1.700917(21) 1.700879(18) —0.000038(28) 0.036875(43)  0.037174(36) 0.000300(56)
6.76  0.007  0.050 0.00500 1.701183(22) 1.701177(18) —0.000006(29) 0.031388(54)  0.031306(38)  —0.000082(66)
6.76  0.005  0.050 0.00300 1.701181(17) 1.701211(11)  0.000030(20) 0.027551(50)  0.027597(25) 0.000045(56)
711 0.0124 0.031 0.00800 1.789213(19) 1.789075(7)  —0.000138(20) 0.024584(22)  0.024620(10) 0.000036(24)
7.09 0.0062 0.031 0.00400 1.784552(9)  1.784541(6)  —0.000011(11) 0.015622(17) 0.015608(14)  —0.000015(22)
7.08 0.0031 0.031 0.00200 1.782300(8)  1.782254(11) —0.000046(11) 0.010664(18)  0.010860(19) 0.000196(26)

B am amy € ﬂ( R) ﬂ( RHMC) difference am (R) am (RHMC) difference

a a
711 0.0124 0.031 0.00800 3.708(13) 3.684(17) —-0.024(21) 0.20640(20) 0.20648(20) 0.00008(28)
7.09 0.0062 0.031 0.00400 3.684(12) 3.681(8) —-0.003(14) 0.14797(20) 0.14767(13) —0.00030(24)
7.08 0.0031 0.031 0.00200 3.702(8) 3.682(7) —-0.020(11) 0.10528(9) 0.10545(9) 0.00017(13)

effects on f,. and fy differ significantly from one-loop
chiral perturbation theory estimates, as discussed in
Sec. VL.

B. The static potential and determining the lattice spacing

Since results of lattice QCD simulations are initially in
units of the lattice spacing, knowing the lattice spacing is
crucial to calculating any dimensionful quantity. Since
ratios of dimensionful quantities (mass ratios) calculated
on the lattice will only have their physical values at the
physical quark masses and in the continuum limit, there
is arbitrariness in the determination of the lattice spac-
ing except in the physical limit. Some dimensionful
quantity must be taken to be equal to its physical value
or to some a priori model.

Following the practice of most current lattice simula-
tion programs, we use a Sommer scale (Sommer, 1994)
as the quantity kept fixed, and determine this scale from
some well controlled measurement.

A Sommer scale is defined as the length where the
force between a static (infinitely heavy) quark and anti-
quark satisfies 7°F(r)=-C, where C is a constant. Intu-
itively, this is a length where this static potential changes
behavior from the short distance Coulomb form to the
long distance linear form. In particular, the most com-
mon choice is ry, defined by C=1.65. We have chosen to
use rq, defined by C=1. This choice was made based on
early simulations at a=0.12 fm where it was found that
r; had smaller statistical errors than r, (Bernard et al.,
2000a).

The calculation of the static potential on the earlier
ensembles is described in Bernard ef al. (2000a). We be-
gin by fixing the lattice to Coulomb gauge. In this gauge,
we can evaluate the potential from correlators of (non-
periodic) Wilson lines, where the line at (¥,) with length
T is WT()?,I)zl'[iT;O1 U,(x,t+1i). The Coulomb gauge fixing,
which makes the spatial links as smooth as possible, is an
implicit way of averaging over all spatial paths closing
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the loop at the top and bottom. Because we do not ex-
plicitly construct the spatial parts, it is easy to average
over all lattice points (£,f) and to get the potential at all
spatial separations R.

The first step in determining ry is to extract V(R) from
the expectation value of the correlators of Wilson lines.
We expect

L(R,T) = (Wh(z,nW(x + R,1))

:Ae_V(R)T'FA e—V’(R)T+ e (113)

where V', etc. are potentials for excited states. For
a=0.09 fm, the excited states are negligible for fairly
small 7, and we simply take V(R)=In(L(R,T)/L(R,T
+1)). Specifically, we use T=3 for a=0.15 fm, T=4 for
a=0.12 fm, and 7=5 for a=0.09 fm. Figure 10 shows
the resulting potential for the run at a=0.09 fm and m,

1.6 T T T T d
A=7.09 am=0.0062/0.031 F3&
1.0 —
= r 00°%
= & 08 00
© | o R o
0.6 — o) 0.6 [ o 1 -
o
0.4-I““|““|“-
r 1 2 3
0.06———— b |
0 5 10
R/a

FIG. 10. The static quark potential for the ensemble with a
~0.09 fm and m,;=0.2m,. This was obtained from time range
five to six. The inset magnifies the short distance part, showing
a lattice artifact which is discussed in the text.
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FIG. 11. The static quark potential and first excited state po-
tential for the ensemble with a=0.06 fm and n1;=0.1m;. This
was obtained from time range three to twenty, using the APE
smeared time links discussed in the text.

=0.2my. The inset shows the short distance part of the
potential. In this inset, there is a visible lattice artifact
where the point at R=2, or separation (2,0,0) is slightly
below a smooth curve through the nearby points with
off-axis distances R. However, at R=3 the lattice arti-
facts are quite small. In fact, what appears to be a single
point at R=3 is actually two points, one for R=(3,0,0)
and another for R= (2,2,1). The small objects in the cen-
ter of the plot symbols are the statistical error bars on
V(R).

For a=0.06 fm, the above procedure for finding V(R)
gave large statistical errors. This is primarily because a
large constant term in the potential causes a rapid falloff
of L(R,T) with T. This constant can be considered a
self-energy of the static quark, diverging as 1/a. To fix
this, the timelike links were smeared by adding a mul-
tiple of the three link “staples” (Albanese et al., 1987),
namely, fat3 links defined in Eq. (69) with w=0.1. The

Wilson line correlators L(R,T) were computed from the
smeared time direction links as described above. As ex-
pected, this reduces the constant term in V(R), and com-
parison with the potential from unsmeared links sug-
gests that any systematic effects on ri/a are less than
0.005 at a=0.06 fm, smaller than the statistical errors.

With the smeared time links, the correlators L(R,T) are
statistically significant out to 7" as large as 20 (for small
R). It is then advantageous to do a two state fit to

L(R,T). For the a=0.06 fm ensembles, we generally fit
these two states over a time range 3<7'<20. An ex-
ample of the potential from this procedure is shown in
Fig 11. The first excited state potential is also shown, but
we caution the reader that in addition to having large
statistical errors this excited state potential has not been
carefully checked for stability under varying fit ranges,
or under addition of a third state to the fit.
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Once V(R) is determined, we find r; by fitting V(R) to
a range of R approximately centered at r;. We use a fit

form
1 )
lat R ‘

Here C is part of the quarks’ self-energy, o is the string
tension and B is —%as for a potential definition of «.

The last term, %|lm— %, is the difference between the lat-
tice Coulomb potential,

B 1
V(R):C+§+0-R+)\(—

= (114)

1 d*p .
—| =4 DY (p)ePR
R lat i f (277 3700 (p)e

with Dé%)(p) the free lattice gluon propagator calculated
with the Symanzik improved gauge action, and the con-
tinuum Coulomb potential 1/R. Use of this correction
term was introduced by the UKQCD Collaboration
(Booth et al., 1992). This correction was used for R <3.
The scale r; (or ry) was then found from solving r*F(r)
=—C with \ set to zero, r;=V\(1+B)/o. Since we often
want lattice spacing estimates from only a few lattices,
and there are a large number of distances to be fit, these
fits were generally done without including correlations

among the different R. Errors on r; are estimated by the
jackknife method, where the size of the blocks elimi-
nated ranges from 30 to 100 simulation time units. Spot
checks comparing fits including the correlations con-
firmed that the jackknife errors are consistent with de-
rivative errors in the correlated fits, and that the fit func-
tion does fit the data well over the chosen range.

For the a=0.18 fm ensembles, we used the spatial
range from 1.4 or 1.5 to 6.0; for the a=0.15 fm en-
sembles, \"EsRSS; for the a=0.12 fm ensembles, 2
<R<6; and for the a=0.09 fm ensembles, 2<R<7.
For the a=0.06 fm ensembles, where the two state fits
with smeared links were used, the spatial range was 4
<R<7, and for the a=0.045 fm run, it was S<R=<10.

The static quark potentials for different lattice spac-
ings can be overlaid after rescaling to check for lattice
effects and to plot the potential over a large range. Fig-
ure 12 shows such a plot in units of r; for five different
lattice spacings, using the ensembles with n;=0.2m, at
each lattice spacing. Bernard et al. (2000a), found that
including the dynamical quarks modifies the static po-
tential in the expected way. This can be seen by plotting
dimensionless quantities such as ry/r; or rq Vo. When this
is done in a region where the potential is approximated
by Eq. (114) and r, is found from r,=v(1+B)/o, this
amounts to plotting the coefficient of 1/R in the fit.

Once r; is estimated for each ensemble, the estimate
can be improved by fitting all values of r;/a to a smooth
function of the gauge coupling and quark masses. We
have used two different forms for this smoothing. In the
first form, we fit In(r;/a) to a polynomial in B and
2am;+amy. The second form is a function based on work
of Allton (1996):
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FIG. 12. (Color online) The static quark potential in units of r
for five different lattice spacings. In all cases, these are for light
quark mass of two-tenths the simulation strange quark mass.
For each lattice spacing, a constant has been subtracted to set
V(r1)=0. The ruler near the bottom of the plot shows distance
in units of fm, using r;=0.318 fm. The multiple rulers in the
upper half of the plot show distance in units of the lattice
spacings for the different ensembles.

alry = (Cof + Cogf* + Cug*f)I(1 + Dog’f?),

where

(115)

£= (bog?) /) expl— 1/(2byg?)].
b= (11-2n43)/(4m)?,

b;=(102 - 38nf/3)/(477)4, am,,, = 2amy/f + amy/f,
(116)

Co= Coo + Copamy/f + Corsamy/f + Coolamy,)?,

Cy = Cyp+ Crramyy,.

Here COO, COlla COls’ C(]z, Czo, C21, C4, and Dz are param-
eters. The second form is a slightly better fit, and we
have used it for the r,/a values in Table 1. Errors on the
smoothed r|/a are estimated by a bootstrap for which
artificial data sets were generated. In these data sets the
value of ri/a for each ensemble was chosen from a
Gaussian distribution centered at the value for the en-
semble given by the fit, and the standard deviation was
given by the statistical error in r;/a for the ensemble.
To find r; in physical units, we use a quantity that is
both well-known experimentally and accurately deter-
mined in a lattice calculation. One such quantity, and the
one used in most of our work, is the splitting between

two energy levels of the bb mesons. These splittings
have been calculated on several of the asqtad ensembles
by the HPQCD/UKQCD Collaboration (Gray et al.,
2003, 2005; Wingate et al., 2004). From fitting the 2S-1S
splittings on the a=0.12 fm ensembles with quark
masses an;/amg=0.01/0.05, 0.02/0.05, 0.03/0.05, and
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0.05/0.05, and the a=0.09 fm ensembles with light
masses am,;/am;=0.0062/0.031 and 0.0124/0.031, to the
form ry(a,am;,amy)=r" +c,a®+cam;lam,, we find
PP¥=0.318 fm with an error of 0.007 fm. [Gray et al.
(2005) used a different fitting procedure to estimate
PI¥S=0.321(5) fm.]

More recently, analysis of the light pseudoscalar me-
son masses and decay constants gave an accurate value
of f.. The fitting procedure to arrive at this is compli-
cated; see Sec. VI. Requiring that f,. in the continuum
and chiral limits match its experimental value gives rq
:0.3108(15)(f%g) fm, where the errors are statistical and
systematic, respectively.

To summarize, we set the scale for each ensemble by
a=(alr) Xr‘fhys, where (a/r;) is the output of the
smoothing function, Eq. (115), at the ensemble values of
am,, am, and g%, and ™" is the physical value of ry,

obtained from either bb mesons splittings or f,. The
scheme is useful for generic chiral extrapolations, and
tends to result in fairly small dependence of physical
quantities on the sea-quark masses. However, chiral per-
turbation theory assumes a mass-independent scale set-
ting scheme, because all dependence on quark masses is
supposed to be explicit. So detailed fits to chiral pertur-
bation theory forms require a mass-independent scale
procedure, especially if one hopes to extract low-energy
constants that govern mass dependence. Once the r
smoothing form is known, though, it is easy to modify
the procedure to make it mass independent: instead of
using the ensembles’ values of amy; and amg in the
smoothing function, Eq. (115), use the physical values.
This mass-independent scheme is used for the analysis
of light pseudoscalars described in Sec. VI.

C. Tuning the strange quark mass

In most of these ensembles, the original intent was to
fix the strange quark mass at its correct value, and to set
the light quark mass to a fixed fraction of the strange
quark mass. The correct strange quark mass, however, is
actually not known until the lattices are analyzed. In
practice, the best that can be done is to estimate the
correct strange quark mass from short tuning runs or by
scaling arguments from results of earlier runs. As de-
scribed in Sec. VI, the physical strange and up-down
quark masses are determined by demanding that the
light pseudoscalar meson masses take their physical val-
ues. For the strange mass, we find am,=0.0439(18) at a
~0.15 fm, am;=0.0350(7) at a=0.12 fm, am,;=0.0261(5)
at a=0.09 fm, and am,=0.0186(4) at a=0.06 fm. For the
up-down mass, we find am;=0.00158(7) at a=0.15 fm,
am;=0.00126(2) at a=0.12 fm, am;=0.000955(8) at a
~(0.09 fm, and am;=0.000684(8) at a=0.06 fm. The er-
rors include statistical and systematic effects, but they
are dominated by the systematic effects.
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D. The topological susceptibility

The topological structure of the QCD vacuum is an
important characteristic of the theory. A stringent test
for lattice simulations consists in correctly capturing the
dependence of the topological susceptibility on the num-
ber of quarks and their masses, since this susceptibility
reveals the effect of the quarks on the nonperturbative
vacuum structure. Chiral perturbation theory predicts
Xtopol7is,m;) in the chiral limit (Leutwyler and Smilga,
1992). Lattice calculations, however, have struggled to
reproduce this dependence satisfactorily because the to-
pological charge is not uniquely defined and the fermion
action typically breaks chiral symmetry. The asqtad ac-
tion combined with rSyPT gives us good control over
the taste and chiral symmetry breaking effects; thus we
expect that a careful treatment of the topological charge
will lead to an accurate computation of the topological
susceptibility. This has been explored by Bernard et al.
(2003c¢), Billeter et al. (2004), and Bernard et al. (2007¢).

As explained by Aubin and Bernard (2003a) and Bil-
leter et al. (2004), the chiral anomaly couples to the faste-
singlet meson, not the Goldstone pion, which is the usual
focus of hadron spectroscopy calculations. (Of course, in
the continuum limit these mesons are degenerate.) To
leading order in rSyPT, the topological susceptibility de-
pends on this mass as

fameil8
1+ mi’l/(stsz) + 3’”37,1/(2’”%) ’

Xtopo = (117)

where m ,; is the taste-singlet pion mass, and m, comes
from the term representing the coupling of the anomaly
to the %’ in the chiral Lagrangian, Eq. (93). The strange
flavor-singlet, taste-singlet meson mass is denoted mg; ;.

Equation (117) interpolates smoothly between the in-
finite sea-quark-mass (quenched) prediction (Veneziano,
1979; Witten, 1979), X:fim%/ll which we can use to set
my, and the chiral limit, m;— 0, which is dominated by
the pion, y=f f,mi/ 8. Hence, to this order, we simply
replace the Goldstone pion mass with the mass of the
taste-singlet (non-Goldstone) pion in the Leutwyler-
Smilga formula. Note that this means that, at nonzero
lattice spacing, the topological susceptibility does not
vanish as m;—0, a reminder that the continuum limit
must be taken before the m;— 0 extrapolation.

In order to compute the topological charge density
q(x) on our lattice ensembles, we use three iterations of
the Boulder HYP smoothing method (DeGrand et al.,
1997; Hasenfratz and Knechtli, 2001), which we have
found (Bernard et al., 2003c, 2003d) compares well with
the improved cooling method of de Forcrand et al.
(1997). We define the topological susceptibility from the
correlator of g(x) via

Xtopo:<Q2>/V:fd4r<Q(r)Q(0)>- (118)

On our lattices, the short-distance part of the density
correlator has a strong signal, but the correlator at large
separation is noisy. To reduce the resulting variance, we
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FIG. 13. (Color online) Points used to compute {(q(r)q(0)).
Measured points (open symbols) are used for r<r.~9a. For
r>r, the fit function (solid curve) is used in Eq. (118). From
Bernard et al., 2007c.

define a cutoff distance r.. In the integral above, for r
<r. where the signal is strong, we use the measured
values of the correlator {q(r)q(0)). For r>r, we inte-
grate a function obtained by fitting the measured cor-
relator to a Euclidean scalar propagator

(q(nq(0)) ~ A, Ki(mp)lr+ A, Ki(m,r)ir,

where we use priors for the masses of the #» and %', and
K, is a Bessel function. This significantly reduces the
variance in Q. An example of the measured values of
q(r), the fit function, and the fitting range are shown in
Fig. 13.

Figure 14 shows this definition of x;p, computed on
our coarse (a=0.12 fm), fine (¢=0.09 fm), and superfine
(a=0.06 fm) lattices. The continuum limit is taken first
by fitting the susceptibility data to

1 . (m?
Xtopor[)

(119)

a) = AO + A1a2

>

+(Ay+ Aza® + Aya®)im’,,.  (120)

The solid black line in Fig. 14 shows the a— 0 form of
this function. Some representative points along this line
are shown with error bars reflecting the errors of the
continuum extrapolation. Finally, the chiral perturbation

- SREaas nass -

0.06 — 0O 0.12 fm —
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FIG. 14. (Color online) Topological susceptibility data, and its
continuum extrapolation, compared with the prediction of Eq.
(117). Adapted from Bernard et al., 2007c.
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theory prediction of Eq. (117), shown as a dotted line, is
based on the value for m set by the quenched data.

With the addition of the new a=0.06 fm data, we see
that the topological susceptibility is behaving as ex-
pected in the mi’,—>0 limit of rooted staggered chiral
perturbation theory.

These results lend further credibility to the use of the
fourth-root procedure to simulate single flavors, since
aberrant results from this procedure would be expected
to arise first in anomalous behavior of topological quan-
tities and correlations, as these are rather sensitive to
the number of flavors.

V. SPECTROSCOPY OF LIGHT HADRONS

Computing the masses of the light hadrons is a classic
problem for lattice QCD, since the masses and struc-
tures of these particles are highly nonperturbative. By
this point, hadron mass computations, including the ef-
fects of light and strange dynamical quarks, have been
done for several different lattice actions, including stag-
gered quarks, Wilson quarks (Ukita et al., 2007, 2009;
Diirr et al., 2008, 2009) and domain-wall quarks (Ukita ef
al., 2007; Allton et al., 2008) It has long been apparent
from these and other studies that lattice QCD repro-
duces the experimental masses within the accuracy of
the computations. For most of the light hadrons, how-
ever, this accuracy is not as good as for other quantities
discussed in this review. The reasons for this are that
these masses have a complicated dependence on the
light quark mass, making the chiral extrapolation (to the
physical light quark mass) difficult, and that all but a few
of these hadrons decay strongly. Most of the lattice
simulations are at heavy enough quark masses or small
enough volumes that these decays cannot happen, so the
chiral extrapolation crosses thresholds. With staggered
quarks there is the additional technical complication
that for all but the pseudoscalar particles with equal
mass quarks the lattice correlators contain states with
both parities, with one of the parities contributing a cor-
relator that oscillates in time.

Masses of the lowest-lying light-quark hadrons have
been computed on almost all of the MILC asqtad
ensembles. Hadron masses from the a=0.12 fm en-
sembles were reported by Bernard et al. (2001), masses
from the a=0.09 fm ensembles were added by Aubin
et al. (2004a), and nucleon and ()~ masses from the a
~0.06 fm ensembles by Bernard et al. (2007d). Simple
extrapolations of these masses to the continuum limit
and physical quark mass, including results from several
of the a=0.06 fm ensembles, are compared to experi-
ment in Fig. 15. In addition, this figure shows charm and
bottom meson mass splittings (Gray et al, 2003, 2005;
Wingate et al., 2004) compared with experimental values
(Amsler et al., 2008).

A. Hadron mass computations

The theory behind hadron mass computations with
staggered quarks was developed by Kluberg-Stern, Mo-
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FIG. 15. (Color online) The “big picture”—comparison of
masses calculated on the asqtad ensembles with experimental
values. For the light quark hadrons we plot the hadron mass,
and for the éc and bb masses the difference from the ground
state (15) mass. The continuum and chiral extrapolations of the
pion and kaon masses are described in Sec. VI, and most other
meson masses were extrapolated to the continuum and physi-
cal light quark masses using simple polynomials. Masses of
hadrons containing strange quarks were adjusted for the dif-
ference in the strange quark mass used in generating the en-
sembles from the correct value. The nucleon mass extrapola-
tion, described by Bernard et al. (2007d), used a one-loop
chiral perturbation theory form. The charmonium mass split-
ting is from Follana et al (2008) and the bb splittings from
Gray et al. (2003, 2005) and Wingate et al. (2004). Experimental
values are from Amsler et al. (2008). The Y 2S-1S splitting and
the 7 and K masses are shown with a different symbol since
these quantities were used to fix r in physical units and the
light and strange quark masses. Earlier versions of the plot
appeared in Aubin et al. (2004a) and the PDG “Review of
Particle Physics” (Amsler et al., 2008).

rel, Napoly, and Petersson (1983), Golterman and Smit
(1985), and Golterman (1986b) [see also Kilcup and
Sharpe (1987)]. Early implementations, in which techni-
cal aspects were addressed, include Marinari et al
(1981a), Bowler et al. (1987), Gupta et al. (1991), and
Fukugita et al. (1993).

The calculation begins with a Euclidean time correla-
tion function for any operator that can produce the de-
sired state from the vacuum. For instance, if an operator
O can annihilate a particle p and the adjoint O' can
create p, then we study the zero-momentum correlation
function, or “correlator” Cpip given by

Coiolt) = 2 (O(x,n07(0,0)). (121)

By putting in a complete set of states between the two
operators, we find

Corolt) = 2, (0|0[n)(n|OT|0)exp(~ M, ). (122)

If the particle p is the lowest-energy state n, then for
large Euclidean time the dominant contribution will be
(0|O|p)[*exp(~M,t). Generally, there will be additional
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FIG. 16. Pion and nucleon correlators plotted vs the distance from the source. These correlators are from the 8=6.76, am,/ am
=0.007/0.05 ensemble. The small symbols in the center of the octagons in the pion correlator are error bars. Note the increasing
fractional errors with distance in the nucleon correlator, and the constant fractional errors in the pion correlator.

contributions from higher mass states, and with stag-
gered quarks there are usually contributions from oppo-
site parity states of the form (—1)’exp(-M’¢). In addition,
because of the antiperiodic boundary conditions in time
for the quarks, there will be additional terms of the form
exp[—-M,(T-t)], where T is the time extent of the lattice.
Thus, with staggered quarks a meson correlator generi-
cally has the form

Coro(t) = Ag(e ™Mo 4 e MoT=0) L A (7M1 4 =M1(T-0)

+ o (= 1) A (e Mot 4 e MOT0) 4
(123)

Here the primed masses and amplitudes with the factor
of (—1)" correspond to particles with parity opposite that
of the unprimed. For baryons the form is similar, except
that the backwards propagating terms e~™("=) have an
additional factor of (-1)"*!. Here the overall minus sign
in the backwards propagating part is due to the antipe-
riodic boundary conditions for the quarks in the Euclid-
ean time direction. Figure 16 shows correlators for the
pion and nucleon in a sample asqtad ensemble. Statisti-
cal errors on the pion correlator are the small symbols in
the center of the octagons. The effect of periodic (for a
meson correlator) boundary conditions in time is clearly
visible. For short times, there are contributions from
heavier particles.

For hadrons other than glueballs evaluating this cor-
relator requires computing M y Where M is the matrix
deﬁmng the quark action. This can be done by making a

“source” vector b which is nonzero only at lattice point
y, or in some small region, and solving the sparse matrix
equation Ma=b, usually using the conjugate gradient al-
gorithm. (Here a and b are vectors with one component
for each color at each lattice site in the system—i.e., 3V
complex components. With Wilson-type quarks there
would also be four spin components per lattice site.)

The simplest possibility for O is an operator built
from quarks and antiquarks located in the same 2* hy-
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percube, often even on the same lattice site. This is usu-
ally called a point source. Because the point operator Op
tends to have a large overlap with excited states, it is
usually advantageous to take a “smeared” source opera-
tor O, where the quarks in the hadron may be created
at different lattice sites. One common approach is to
choose a smeared operator that creates quarks and an-
tiquarks with a distribution similar to that of the ex-
pected quark model wave function of the desired had-
ron. A cruder and simpler approach used in most of the
MILC light hadron mass calculations is to take a “Cou-
lomb wall” source, where the lattice is first gauge trans-
formed to the lattice Coulomb gauge, making the spatial
links as smooth as possible. Then a source is constructed
which covers an entire time slice, for example, with a 1
in some corner of each 2° cube in the time slice. This
works because with Coulomb gauge fixing contributions
from source components within a typical hadronic cor-
relation length interfere coherently, while contributions
average to zero if the quarks created by O are widely
separated (although they do contribute to the statistical
noise). In other words, (M tyt .x,) 1S significant
only when | ¢, — %, is less than a typlcalfhadronlc size. For
example, a Coulomb wall operator appropriate for a
Goldstone pion is

Ow(0) = 2 X(®.0(= D)™ x(7.0). (124)
£y

In a mass calculation, we want the state with zero spa-
tial momentum, which is isolated by summing the sink
position over all spatial points on a time slice. In many
matrix element studies, we need hadron states with non-
zero momenta, and they are isolated by summing over
the spatial slice with the appropriate phase factors.

Statistics are usually further enhanced by averaging
correlators from wall sources, or other types of sources,
from several time slices in the lattice. In general, each
different source requires a new set of sparse matrix in-
versions.
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For most hadrons, the statistical error is the limiting
factor in the mass computations. At long Euclidean time
t, a correlator with hadron H as its lowest mass constitu-
ent is proportional to e ™#’, The variance of this cor-
relator can itself be thought of as the correlator of the
square of the operator

(Oux)O}X) O} () On(y)), (125)

where in this correlator for flavor-nonsinglet hadrons it
is understood that quark lines all run from the operators
at x to those at y (Lepage, 1990). The behavior of the
variance at long distances is dominated by the lowest
mass set of particles created by OH(x)(’)L(x). Thus for
mesons (’)H(x)(’);,(x) creates two quarks and two anti-
quarks which can propagate as two pseudoscalar me-
sons. Then the variance decreases approximately as
e ?Mrst where Mpg is the mass of the pseudoscalar me-
son made from the quarks in OLOH. For baryons there
are three quarks and three antiquarks, and the variance
decreases approximately as e=>™s’, This behavior can be
seen in Fig. 16, where the fractional error on the pion
correlator does not increase with distance, while the
fractional error on the nucleon correlator grows quickly.

As discussed in Sec. I1.B.3, hadrons with staggered
quarks come with different tastes, all of which are de-
generate in the continuum limit. For pseudoscalar me-
sons, the mass differences between different tastes are
large, but they are well understood as discussed in Sec.
III.A. For the other hadrons, for which chiral symmetry
is not the most important factor in determining the
mass, taste symmetry violations are much smaller. In
particular, we have computed masses for four different
tastes of the p meson on many of our ensembles, and
have failed to find any statistically significant taste split-
tings. [See also Ishizuka et al. (1994).]

B. Correlated fits

There are several kinds of correlations in the numeri-
cal results of lattice gauge theory simulations. The Mar-
kov chain that produces the configurations produces cor-
related configurations. Thus, there are correlations in
“simulation time.” The correlations vary with the algo-
rithm, and one can reduce them by increasing the simu-
lation time gap between the configurations that are ana-
lyzed. Generation of configurations is computationally
expensive, however, and the autocorrelation length is
unknown until the run and some analysis is completed,
so one usually saves configurations with some degree
of correlation. A simple way to deal with these correla-
tions is to block successive configurations together and
then to estimate errors from the variance of blocks.
However, if the number of blocks is not many times
larger than the number of degrees of freedom, the finite-
ness of the sample size must be considered when esti-
mating goodness-of-fit or statistical errors on the param-
eters in a fit (Michael, 1994; Toussaint and Freeman,
2008). In cases where blocking is not practical, notably
the pseudoscalar meson analysis in Sec. VI, we have es-
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timated elements of the covariance matrix using the
measured autocorrelations in the data to rescale a cova-
riance matrix based on unblocked data.

Even if successive configurations are not correlated,
different physical quantities are correlated with each
other. For example, if the pion correlator is larger than
average at a separation ¢ from the source on a particular
configuration, it is likely to be larger at t+1. Thus, when
extracting hadron masses, or other fit parameters, we
must use the full correlation matrix in the fit model, not
just the variance in each particular element fit. To be
specific, let the values of the independent parameters be
denoted x; and corresponding lattice “measured” values
be y,;. The fitting procedure requires varying the model
parameters {\} that define the model function y,,(x;,{\})
in order to minimize )°. For uncorrelated data,

X = 2 yuli N - yillr, (126)

where o; is the standard deviation of y;,, When the data
are correlated, let C;;=Cov(y;,y;) and then

X =2 [y A - YC; [ym(x (N = ;1.

ij

(127)

(In practice Cj; is almost always estimated from the same
data as the y;, and in this case x* is more properly called
T?.) Uncorrelated data reduce to Cijzﬁijo%. If C;; has
positive off-diagonal entries, then the data will look
smoother than it would if uncorrelated.

In Fig. 17 we show how the fitted pion and nucleon
masses vary with the minimum distance from the source
that is included in the fit. The octagons and squares are
correlated fits, minimizing x? in Eq. (127). For the pion,
the octagons correspond to a single-particle (two-
parameter) fit, and the squares correspond to a two-
particle (four-parameter) fit. For the nucleon, the octa-
gons are fits including one particle of each parity. We
need to decide which fit is best, and we do that based on
the confidence levels of the fits, which are roughly indi-
cated by the symbol size. Figure 17 also contains fits
ignoring correlations while minimizing the )’ in Eq.
(126). It can be seen that the error bars on these points
are in general incorrect—they are neither a correct esti-
mate of how much the parameters would likely vary if
the calculation were repeated nor of how much the pa-
rameters are likely to differ from the true value. We also
see that the confidence levels are generally too large for
the uncorrelated fits. In particular, based on its confi-
dence level, one might accept the uncorrelated pion
fit with minimum distance five. But in fact it can be seen
that it differs significantly from the asymptotic value.
The effects on the confidence level from ignoring corre-
lations can be quite extreme. For example, in the single-
particle pion fits with D_;,=5, the correlated fit has
X>=180 for 25 degrees of freedom, for a confidence
of 1072%, while the uncorrelated fit has y>=14 for
25 degrees of freedom, or an (erroneous) confidence of
0.96.
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FIG. 17. (Color online) Result of fitting the correlators in Fig. 16 from a minimum distance to the center of the lattice (for the
pion) or distance at which the correlator loses statistical significance (for the nucleon). For the pion correlator (left panel), octagons
correspond to single-particle fits and squares to two-particle fits. The diamonds are from single-particle fits ignoring correlations
among the data points. For the nucleon fits (right panel), all fits use two particles, one of each parity. Octagons are correlated fits,
and diamonds are fits ignoring the correlations. The sizes of the symbols are proportional to the confidence level of the fits, with

the symbol size in the legends corresponding to 50% confidence.

Jackknife or bootstrap methods are often used with
correlated data. These methods give estimates of the er-
rors in fit parameters, but they do not provide informa-
tion about goodness of fit.

Once the hadron propagators are fit, we still need to
perform chiral or continuum extrapolations. In these
cases, it is also imperative to deal with the correlations
among the fitted quantities that come from the same
ensemble. With partial quenching these covariance ma-
trices can become quite large, so it is essential to have
enough configurations in each ensemble to be able to get
a good estimate of the covariance matrix.

C. Results for some light hadrons

The pseudoscalar mesons are special for several rea-
sons. First, very accurate mass computations are pos-
sible. This is because the statistical error in the cor-
relator (square root of the variance) decreases with the
same exponential as the correlator itself—the fractional
error is nearly independent of ¢, and accurate correlators
can be computed out to the full extent of the lattice.
Second, for equal mass quarks the pseudoscalar cor-
relator does not have oscillating contributions from op-
posite parity particles, and the oscillating contributions
are negligible for the kaon. Third, because of the pions’
role as the approximate Goldstone bosons for broken
chiral symmetry, the breaking of taste symmetry leads to
large mass splittings among the different taste combina-
tions. Finally, because it is related to the decay constant
of the meson, the amplitude of the pseudoscalar cor-
relator is as interesting as the mass. Because of the exact
U(1) chiral symmetry of the staggered quark action, the
axial-vector current corresponding to the Goldstone
(taste pseudoscalar) pion needs no renormalization, so
the decay constants can also be calculated to high preci-
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sion. For these reasons, discussion of the light pseudo-
scalar mesons is deferred to Sec. VI.

For the vector mesons, the fractional statistical error
in the correlator increases as e/™v-"rs)_ Also, the vector
mesons decay strongly. On the lattice, conservation of
momentum and angular momentum forbids the mixing
of a zero-momentum vector meson with two zero mo-
mentum pseudoscalars, so the vector meson is “stable
on the lattice” for pion masses large enough that
2\/Mf,s+(217/ L)>> M. (Taste breaking adds some addi-
tional complications to this.) For all of the asqtad en-
sembles except those with the smallest quark masses,
this condition is satisfied, and the vector meson masses
can be easily, if not accurately, found. However, the
problem of extrapolation through the decay threshold to
the physical quark mass has not been fully addressed.
Figure 18 shows the p meson mass as a function of light
quark mass for three different lattice spacings. Results
for the K* and ¢ are similar, except that there is an
added complication in that the mass needs to be ad-
justed to compensate for the fact that the strange quark
mass used in the correlator computations differs from
the physical m,. While the values in Bernard et al. (2001)
and Aubin et al. (2004a) used the same valence and sea
strange quark masses, the masses in Fig. 15 have been
interpolated to the correct valence strange quark mass.

The nucleon is stable and chiral perturbation theory
is available to guide the extrapolation in quark mass.
However, computation of reliable masses is difficult be-
cause the fractional error in the nucleon propagator in-
creases as eMN32ZMps)t - Also, there are excited states
with masses not too far above the nucleon mass that
contribute to the correlator. In fact, with staggered
quarks the simplest baryon source operators couple to
the A as well as the nucleon, so the lowest positive-parity
excited state in the correlator is the A (Golterman and
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FIG. 18. (Color online) The p mass in units of r, plotted vs the
squared pion mass. Since m? my, this is effectively a plot vs
light quark mass. The octagons are from ensembles with a
~(0.12 fm, the squares from ensembles with a=0.09 fm, and
the bursts from ensembles with a=0.06 fm. The decorated
plus at the left is the physical p mass, with the error on this
point coming from the error in r;. For reference, the upward
arrow indicates approximately where the quark mass equals
the strange quark mass.

Smit, 1985). Figure 19 shows nucleon masses for three
lattice spacings versus quark mass, together with a con-
tinuum and chiral extrapolation.

Another hadron of particular interest is the 0~ (Tous-
saint and Davies, 2005). This particle is stable against
strong decays. In one-loop chiral perturbation theory
there are no pion-baryon loops, so at this order there are

3 T T T T T T T T | T T T T | T T T T
L 0]
L oo J
L o] J
0: a=0.12 fm |
0: a=0.09 fm
%: a=0.06 fm
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o 1 1 1 1 | 1 1 1 1 | 1 1 1 1 | 1 1 1 1
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2
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FIG. 19. (Color online) The nucleon and a chiral fit. Nucleon
masses are shown for different light quark masses at three lat-
tice spacings. The cross at the left is the experimental value.
The slightly curved line and the diamond at the physical quark
mass are a continuum and chiral extrapolation. Lattice spacing
errors are assumed to be linear in a?a,. The particular chiral
form used here is a one-loop calculation with 77-N and m-A
intermediate states (Jenkins, 1992; Bernard, Kaiser, and Meiss-
ner, 1993). Adapted and updated from Bernard et al., 2007d.
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FIG. 20. (Color online) The Q~ mass. Results are shown
for three different lattice spacings. The points with a=~0.09
and =0.06 fm were fit to the form Mqr =A+Bad’a,
+C(mry)%. The sloping lines show this fit form evaluated at
the values of a’a, for these lattice spacings, and at a=0. Fi-
nally, the fancy cross with error bars is the fit form evaluated
at the physical pion mass, and the small diamond is the experi-
mental value. Note that in this case the vertical axis does not
begin at zero. Adapted and updated from Toussaint and
Davies, 2005 and Bernard et al., 2007d.

also no logarithms of m in the chiral extrapolation of
the mass. Therefore, we expect that a simple polynomial
extrapolation in light quark mass should be good. Un-
fortunately, the ()~ is a difficult mass computation with
staggered quarks, first because it is a heavy particle and
second because a baryon operator that has the ()™ as its
lowest-energy state has its three quarks at different lat-
tice sites (Golterman and Smit, 1985; Gupta et al., 1991).
The )~ mass is strongly dependent on the strange quark
mass, and in principle provides an independent way to
determine the correct lattice strange quark mass. Figure
20 contains ()~ mass estimates, using strange valence
quark masses at each lattice spacing that were indepen-
dently determined from the pseudoscalar meson analysis
in Sec. VI. To do this, ()~ correlators were generated
using two different strange quark masses near the de-
sired one, and the ()~ mass was obtained by linearly in-
terpolating to the strange quark mass determined sepa-
rately. This plot also shows a continuum and chiral
extrapolation using the simple form Mqr;=A+Ba’a
+C(mry)%

Masses of other particles, such as the a; and b; and
particles including strange quarks, were calculated by
Bernard et al. (2001) and Aubin et al. (2004a), and the
excited state of the pion was identified by Aubin et al.
(2004a) and Bernard et al. (2004). Light hybrid mesons
with exotic quantum numbers were studied by Bernard
et al. (2003a, 2003b), and exotic hybrid mesons with non-
relativistic heavy quarks by Burch et al. (2001, 2002) and
Burch and Toussaint (2003).
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D. Flavor singlet spectroscopy

Determining the masses of flavor-singlet mesons is
perhaps the most challenging endeavor in lattice QCD
light hadron spectroscopy. The difficulty in doing so has
three main sources.

(1) Flavor-singlet correlators have two different con-
tributions: quark-line connected and quark-line
disconnected. The quark-line disconnected piece
requires so-called “all-to-all” correlators. To
avoid the O(V) inversions to compute these all-to-
all propagators, stochastic methods are used.
Kuramashi et al. (1994) used a unit source at each
site and let gauge invariance do the averaging.
More common now is the use of random sources
(Dong and Liu, 1994; Venkataraman and Kilcup,
1997) similar to Egs. (62) and (63), with various
noise reduction techniques (Wilcox, 1999; Mc-
Neile and Michael, 2001; Struckmann et al., 2001;
Mathur and Dong, 2003; Foley et al., 2005), in-
cluding low-eigenmode preconditioning (Venkat-
araman and Kilcup, 1998; DeGrand and Heller,
2002).

(i)  While the stochastic noise of the quark-line con-
nected correlators falls off exponentially (albeit
with a smaller exponent than the signal), the noise
in the quark-line disconnected part is constant. So
the signal to noise ratio falls off much faster for
the disconnected part.

(iii) The quark-line connected correlator is the same
as for a flavor-nonsinglet meson—in particular the
pion for the pseudoscalar channel. Therefore, the
very noisy disconnected correlator first has to can-
cel the connected correlator before giving the
desired singlet correlator whose falloff gives the
flavor-singlet mass.

Since much larger statistics are needed for the compu-
tation of the flavor-singlet correlators, the UKQCD Col-
laboration has extended a couple of the MILC lattice
ensembles to around 30 000 trajectories (Gregory et al.,
2007, 2008, 2009). Their simulations are still on-going.
So far, the only result given is for the 0™* glueball,
whose correlator can be constructed from gauge field
operators and requires no noisy estimators and Dirac
operator inversions. For two different lattice spacings,
a=0.12 and 0.09 fm, the UKQCD Collaboration finds
mg++=1629(32) and 1600(71) MeV (Gregory et al., 2009),
respectively.

It is important to continue this investigation. In par-
ticular, obtaining the correct " mass would further sup-
port the correctness of the rooting procedure to elimi-
nate the unwanted tastes for staggered fermions.

E. Scalar mesons f;, and a,

In this section, we describe briefly the analysis of cor-
relators for two light, unstable scalar mesons, namely,
the isosinglet f, and the isovector ay.
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With the first good measurements of the a, channel in
the staggered fermion formulation a peculiarity was en-
countered: it was found that on coarse lattices the a
correlator appeared to have a spectral contribution with
an anomalously low mass, lighter than any physical de-
cay channel (Aubin et al., 2004a; Gregory et al., 2006).

For sufficiently light # and d quark masses, the f; de-
cays to two pions. Likewise, the isovector scalar meson
ay decays to a pion and an 7. On the lattice, the open
decay channels complicate the analysis of the scalar me-
son correlators. They are dominated by the spectral con-
tributions of the significantly lighter decay channels. As
a flavor singlet, the f; also suffers from the quark-line
disconnected contributions described in the previous
subsection. Finally, with staggered fermions at nonzero
lattice spacing, the splitting of the pseudoscalar meson
taste multiplets in the decay channel deals a seeming
coup de grdce.

Fortunately, one can make progress using rSyPT de-
scribed in Sec. IIILA (Bernard, DeTar, et al., 2006, 2007;
Prelovsek, 2006a, 2006b). The essential idea is to match
definitions of the desired correlator of local interpolat-
ing operators in the lattice QCD formulation and in
rSxPT. The lattice definition is the basis for the numeri-
cal simulation of the correlator, and the rSyPT definition
provides a model for fitting the result of the simulation,
including all taste-breaking effects in the decay chan-
nels. If we take the taste-multiplet masses from separate
calculations, then, despite the rather complicated set of
two-meson channels, that portion of the fit model de-
pends on only three low-energy constants. In principle,
even these constants can be determined from indepen-
dent measurements, leaving no free parameters. So this
fit provides a further test of the viability of rSyPT as a
low-energy effective theory for the staggered action.

The hadron propagator from lattice site 0 to y is de-
fined in the same way from the generating functionals
for both QCD and the chiral theory,

#InZ
amgp(y)omer ,(0)

(128)

In QCD, the source myz(y) generalizes the usual quark
mass term and includes off-diagonal flavor mixing f,f".
The same correlator is defined in rSyPT, where the local
source myp(y) appears in the generalized meson mass
matrix. This establishes a correspondence between the
correlator defined in terms of the quark fields g(y)g(y)
in QCD and in terms of the local meson fields BD?(y).

To lowest order in rSyPT, the meson correlator is
described by a bubble diagram, which gives the contri-
butions of the two-pseudoscalar-meson intermediate
states, including all taste multiplets and hairpins.
These contributions are determined from the multiplet
masses and the rSyPT low-energy constants B, &, and
8y described in Sec. IILLA. In addition to the bubble
diagram, one adds an explicit quark-antiquark a, or f;
state to complete the fit model. Results are shown in
Fig. 21, and results for the low-energy constants are
listed in Table III.
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FIG. 21. (Color online) Best fit to the aq correlator (left panel) for five momenta and the f; correlator (right panel) for four
momenta. The fitting range is indicated by darker points and lines. Occasional points with negative central values are not plotted.
Data are determined from the a=0.12 fm (coarse) ensemble with an;=0.005 and am,;=0.05. From Bernard, DeTar, et al., 2007.

It is particularly instructive to examine the variety of
two-pseudoscalar-meson taste channels contributing to
the scalar meson correlators. To be physical states, the
external scalar mesons a, and f; must be taste singlets.
Taste selection rules then require that they couple only
to pairs of pseudoscalar mesons of the same taste. Thus,
for example, for the a,, each flavor channel, such as - 7,
comes with a multiplicity of 16 taste pairs, although lat-
tice symmetries reduce the number of distinct thresholds
to 6. There is also a set of -7’ channels. To get the
energies of the thresholds, we look at the taste splitting
of the component hadrons. We have already seen how
the pion taste multiplet splits into the Goldstone state
and a variety of higher-lying states, all of which become
degenerate in the continuum limit. » and #’, on the
other hand, have unusual splitting because they mix with
the chiral anomaly. Since the anomaly is a taste singlet,
only the taste-singlet 7 and %’ mix with it in the usual
way. Thus, in the continuum limit only the taste singlet
states are expected to have the correct masses. They are
the only physical states. The 15 taste non-
singlet #’s and #'’s remain light. The pseudoscalar-taste
eta pairs with the pseudoscalar-taste pion. The unphysi-
cal pseudoscalar-taste -7 channel gives an anoma-
lously light spectral contribution to the a, correlator
(Prelovsek, 2006a, 2006b). A similar complication occurs
in the f; correlator, but it is masked by the expected
physical two-pion intermediate state.

TABLE III. Comparison of our fit parameters for the rSyPT
low energy constants with results from Aubin et al. (2004b).

fo and ag correlators Meson masses and decays

rim%/ (2m, ) 7.3(1.6) 6.7
Sy (prior) -0.016(23)
54 -0.056(10) ~0.040(6)
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The unphysical taste contributions provide a concrete
illustration of the breakdown of unitarity at nonzero lat-
tice spacing as a result of the fourth root. The theory
heals the scalar meson correlators in the continuum limit
by a mechanism that parallels exactly the one described
for the one-flavor model in Sec. III.C. The pseudoscalar
meson bubble diagram contains a negative-norm chan-
nel. This unphysical ghost channel has the weight
needed to cancel the contributions of all unphysical taste
components in the continuum limit. Thus in the con-
tinuum limit only the physical intermediate two-meson
states survive.

The behavior of the isovector scalar correlator has
also been analyzed for the case of domain-wall valence
quarks on the MILC staggered ensembles (Aubin et al.,
2008). In the mixed-action case, the a, correlator re-
ceives contributions from two-particle intermediate
states with mesons composed of two domain-wall
quarks, mixed mesons composed of one domain-wall
and one staggered quark, and mesons composed of two
staggered quarks. Because the symmetry of the external
valence quarks restricts the sea-sea mesons to be taste
singlets, the correlator does not receive contributions
from all of the taste channels. As in the purely staggered
case, the one-loop bubble contribution is determined by
three low-energy constants (Prelovsek, 2006b), which
are known from tree-level yPT fits to meson masses. For
domain-wall quarks on the coarse and fine MILC lat-
tices, the contribution from the bubble term is predicted
to be large and negative for several time slices. Thus a
comparison of the mixed-action yPT prediction for the
behavior of the a, correlator with lattice data provides a
strong consistency check.

Aubin et al. (2008) compared the mixed-action yPT
prediction for the bubble contribution with the lattice a
correlator for several domain-wall valence masses on the
coarse and fine MILC lattices. They found that in all
cases the size of the bubble contribution is quantitatively
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FIG. 22. (Color online) The isovector scalar (ag) correlator on
the MILC coarse am;/am;=0.007/0.05 ensemble with three
different domain-wall valence masses. Overlaid on the data are
the predicted bubble contributions, which should dominate
over the exponentially decaying contributions at sufficiently
large times. From Aubin et al., 2008.

consistent with the data, and that the behavior of the
data cannot be explained if mixed-action lattice artifacts
are neglected. For fixed light sea-quark mass, the size of
the bubble term decreases as the valence quark mass
increases (see Fig. 22). The bubble contribution also de-
creases as a — 0. These results of Aubin et al. (2008) sup-
port the claim that mixed-action yPT is indeed the low-
energy effective theory of the domain-wall valence,
staggered sea lattice theory. Furthermore, mixed-action
xPT describes the dominant unitarity-violating effects in
the mixed-action theory even when such effects are
larger than the continuum full QCD contributions that
one wishes to extract. Thus mixed-action yPT fits can be
used to remove taste-breaking and unitarity-violating ar-
tifacts and recover physical quantities.

F. Summary

In general these and other lattice spectrum calcula-
tions confirm that QCD does predict the hadron spec-
trum. Although we can see the effects of decay thresh-
olds as the quark mass is varied (e.g., Sec. V.E), and
though some scattering lengths can be indirectly deter-
mined through chiral perturbation theory (Leutwyler,
2006), most hadronic decay rates and cross sections re-
main to be calculated in the future.

VI. RESULTS FOR THE LIGHT PSEUDOSCALAR
MESONS

A. Motivation

Precise computations are possible for light pseudo-
scalar mesons (see Sec. V.C), and they lead to interesting
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physics. If lattice calculations of light pseudoscalar me-
sons and decay constants can approach the chiral and
continuum limits, we can determine the up, down, and
strange quark masses and many of the low-energy con-
stants (LECs) of the chiral Lagrangian, including several
combinations of the NLO Gasser-Leutwyler constants
L; (Gasser and Leutwyler, 1984). From the ratio fx/f,,
we can extract |V,,| from the kaon leptonic branching
fraction, providing a test of CKM matrix unitarity for
the first row of the matrix.

B. From correlators to lattice masses and decay constants

Study of the light pseudoscalar mesons on MILC lat-
tices began in 2004 (Aubin et al., 2004b) and has in-
cluded several updates at the annual lattice conferences
(Bernard et al., 2006b, 2006¢, 2007b). We first review the
methodology of Aubin et al. (2004b). In the Goldstone
(taste pseudoscalar) case, we can use the partially con-
served axial-vector current relation to relate the decay
constant fpg to matrix elements of the spin- and taste-

pseudoscalar operator Op(f)=yfys® &) between the
vacuum and the meson. In terms of the one-component
staggered quark formalism,

Op(t) = X(%,0) (= ™Y(E,0), (129)

where a is the (summed) color index. As in Egs. (121)
and (122), we define a correlator by

L

Cpp(t) = V.

S (OpFOLE0) = cppe s 4 -+ |
v

(130)

where mpg is the mass of the (lightest) pseudoscalar and
V, is the spatial volume. After fitting the correlator to
this form, we can find the decay constant from

Vicpp

fps=(m,+m,) ) (131)

4mipg
where m, and m, are the two valence quark masses.

Although the decay constant is found from the over-
lap of the point-source operator with the meson state,
most directly obtained from the point-point correlator
Eq. (130), it is useful to use the Coulomb wall source Eq.
(124) and point sink to calculate the correlator

Cywp ={(Op(E,)O}(0)) = cyype™rs' + -+ (132)

The advantage of this correlator is that it has less con-
tamination from excited states than does Cpp, and helps
in fixing the pseudoscalar mass.

A random-wall source can also be used instead of a
point source to calculate Cpp, giving smaller statistical
errors. The source for the quark on each site of a time
slice is a three component complex unit vector with a
random direction in color space. Thus, contributions
where the quark and antiquark in a meson originate on
different spatial sites average to zero. After dividing by
the spatial lattice volume, this source is used instead of
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(’)} in Cpp. The preferred method is then to fit Cyyp and
the random-wall point-sink Cpp with three free param-
eters App, Awp, and mpg,

CPPZM?JSAPPQ_mPS[, prszgsAWPe_mPst, (133)
so that A pp is the desired combination cpp/ m%s that ap-
pears in Eq. (131). An appropriate range of Euclidean
time must be selected to get a good confidence level of
the fit. If the minimum distance from the source point is
too small, there will be excited state contamination. It is
essential to use the full correlation matrix of the data to
get a meaningful confidence level and avoid contamina-
tion.

For chiral fits used to extract LECs that govern the
mass dependence of physical quantities, it is important
to fix the scale in a mass-independent manner. This is
because all mass dependence should be explicit in yPT,
and none should be hidden in the scale-fixing scheme.
As described in Sec. IV.B, a mass independent method is
used to determine a in which r;/a is extrapolated to the
physical, rather than simulated, quark masses on the
given ensemble.

Partial quenching is very useful in order to obtain
enough data to perform the required chiral fits. For the
valence masses on a typical ensemble, nine different
masses from 0.1m, to m, (m, is the simulated strange sea
mass) may be used. This yields 45 distinct pairs of
valence masses, and hence 90 values (meson masses
and decay constants) for the chiral fit. Without partial
quenching, we would have only four values. Of course,
the correlations among the 90 values must be taken into
account.

Finite volume corrections are included in the one-loop
rSxPT forms used to fit the lattice data. Since the spatial
box sizes are at least 2.4 fm, and for the smallest light
sea-quark masses they are increased to about 2.9 fm or
larger, these corrections are always less than 1.5%.
Smaller, additional corrections representing “residual”
effects from higher-loop contributions are applied at the
end of the calculation, as described below. The results
cannot be fit without the one-loop finite volume correc-
tions, nor can they be fit with continuum yPT. Aubin et
al. (2004b) fitted five coarse and two fine ensembles with
continuum xPT; however, the confidence level of the fit
was 10720,

We now present methods and results from Bernard et
al. (2007b). A final version of the analysis, using added
ensembles and two-loop chiral logarithms (Bijnens et al.,
2004, 2006; Bijnens and Lahde, 2005), is in progress.

The fitting is done in two stages. In the first stage, the
leading order (LO) and next-to-leading order (NLO)
low-energy constants (LECs) are determined by fitting a
restricted set of data that is closer to the chiral and con-
tinuum limits than the additional points included later.
Specifically, the largest lattice spacing (a=0.15 fm) is
omitted and the valence quark masses are required to
obey am,+am,=<0.39am; (for a=0.12 fm), am,+am,
=0.51am (for a=0.09 fm), and am,+am,=<0.56am (for
a=0.06 fm). Further, for a=0.12 fm three higher-mass
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FIG. 23. (Color online) NNNLO fit to partially quenched
squared meson masses. Only the lightest sea-quark ensemble
for each lattice spacing is shown. The data fit includes the re-
sults for decay constants and is reflected in the number of de-
grees of freedom. From Bernard et al., 2007b.

combinations of sea-quark masses are omitted. Despite
the restrictions, it is found that due to the high precision
of the data it is necessary to add NNLO analytic terms in
order to get good fits. In the second stage, the range of
valence and sea-quark masses is extended to include the
region around the strange quark mass. The LO and
NLO low energy constants are constrained to be within
the range determined by the first stage of fitting. In this
stage, NNNLO analytic terms are needed to get good
fits.

In Fig. 23, we show the squared meson masses in units
of (GeV)?. For the pions m,=m,. For the kaons a few
fixed values of m, are picked for illustration, and m, is
varied. The horizontal axis is m,/m;. Only a small frac-
tion of the points used in the fit are shown. For each
lattice spacing, the plot contains only the lightest sea-
quark mass ensemble, and no decay constant data is
plotted. For this fit, y?=436 with 449 degrees of free-
dom, corresponding to a confidence level of 0.66. The
dashed line shows the continuum prediction after all
lattice spacing dependence in the fit parameters is ex-
trapolated away, the strange sea-quark mass is fixed to
its physical value and the light valence and sea masses
are set equal. The physical values of m, and ni=(m,
+my)/2 are required to simultaneously yield the kaon

and pion masses denoted K and # in the figure. These
masses correspond to what the kaon and pion masses
would be with isospin and electromagnetic effects re-
moved. Some phenomenological input is needed to ac-
count for the electromagnetic effects. This is explained
in detail in Aubin et al. (2004b). The vertical dotted line
is drawn at 1/ m;.

The residual finite volume corrections are then ap-
plied. Colangelo et al. (2005) showed that higher than
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FIG. 24. (Color online) The meson decay constants are plotted along with the NNNLO fit that was shown for the masses in Fig.
23. The left plot shows partially quenched data from more ensembles than in Fig. 23, but still only a fraction of the data fit. On the
right, still more ensembles are included, but only full QCD data points are plotted. From Bernard et al., 2007b.

one-loop yPT corrections can be significant in the
current range of quark masses and volumes. For a
~0.12 fm with sea masses am;/am;=0.01/0.05, there is a
direct test of finite volume effects on 20° and 283 vol-
umes that correspond to 2.4 and 3.4 fm box sides. Ber-
nard ef al (2007b) detailed the comparison between
these calculations and the one-loop result. On this basis,
a small correction is applied to the continuum predic-
tion. This amounts to 0.25% for f,, 0.05% for fx,
~0.15% for m%, and —0.10% for m%. These values are
also added to the systematic error.

By extending the kaon extrapolation line in Fig. 23,
one finds the value of m, that corresponds to the K*
mass [see Aubin ef al. (2004b)]. Two important mass ra-
tios are determined,

mym=272(1)(3)(0), m,/m,;=0.42(0)(1)(4). (134)
The errors are statistical, lattice systematic, and electro-
magnetic (from continuum estimates). Note that the
m,, =0 solution to the strong CP problem is ruled out at
the 100 level.

Having found the continuum fit parameters and the
physical quark masses, the decay constants are pre-
dicted. Figure 24 (left) shows (some of) the decay con-
stant data and the fit through the displayed data. For the
continuum prediction (dashed line), the strange sea-
quark mass is set to its physical value and the light va-
lence and sea masses are set equal. The left end of the
curve corresponds to m,=m,=r. The vertical error bar
to the left of the + shows the systematic error. The ex-
perimental result is shown as an octagon. It comes from
the decay m*— u'v, with the assumption that |V,,|
=0.97377(27) (Amsler et al., 2008). Figure 24 (right)
shows the full QCD points from a slightly different fit
with data from additional ensembles. Note that the data
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points at a=0.06 fm are quite close to the full QCD
continuum extrapolated curve.

Up to this point, the lattice spacing is set by calcula-
tion of the heavy-quark potential parameter r;, which
yields relative lattice spacings between ensembles, and
the continuum extrapolation of Y splittings determined
by the HPQCD Collaboration (Gray et al., 2005), which
gives an absolute scale. These results yield a value ry
=0.318(7) fm. On this basis,

fr=1283+0.5%¢ MeV,

fx=154320.4"2) MeV, (135)

filf»=12023)( 1y,

where the errors are from statistics and lattice systemat-
ics. This value for f, is consistent with the experimental
result f£'=130.7+0.1+0.36 MeV (Amsler et al., 2008).

An alternative approach is to set the scale from f,
itself. In this case, there are small changes in the quark
masses and

r1=0.3108(15)( %) fm, (136)

which is 1o lower (and with somewhat smaller errors)
than the value from the Y system. For the decay con-
stants,

fx=156.5+04"29 MeV,  fr/f,=1.197(3)( *%)),
(137)

where the errors are statistical and systematic.

Marciano (2004) noted that the lattice value of fx/f,
can be combined with measurements of the kaon
branching fraction (Ambrosino et al., 2006a, 2006b) to
obtain |V,|. From Eq. (137),



Bazavov et al.: Nonperturbative QCD simulations with 2+1 ... 1391

|Vl = 0.2246( 1), (138)

which is consistent with (and competitive with) the
world-average value |V,|=0.2255(19) (Amsler et al.,
2008) coming from semileptonic K decay coupled with
nonlattice theory.

Using the two-loop perturbative calculation of the
mass renormalization constant Z,, (Mason et al., 2006),
absolute quark masses can be found,

m =88(0)(3)(4)(0) MeV,

m=3.2(0)(1)(2)(0) MeV,
(139)
m, =1.9(0)(1)(1)(1) MeV,

my=4.6(0)(2)(2)(1) MeV.

The errors are statistical, lattice systematic, perturbative,
and electromagnetic (from continuum estimates). Non-
perturbative computations of Z,, are in progress.

The chiral fits also determine various Gasser-
Leutwyler low-energy constants and chiral condensates,

2L¢—Ly=04(1)(*3), 2Lg—Ls=-0.1(1)(1),
Ly=0403)(1), Ls=222)(5),

Lg=04(2)( ), Lg=1.0(1)(1),
Falfa=1.052(2)( 1),

(140)
(i), = - (278(1)( 3)(5) MeV)?,

Falfs=12105)(13),
()3 = — (242(9)( 71,)(4) MeV)?,

Flfs=1156) (), Gauy iy = 1.52(17)( 39).

The errors are statistical, lattice systematic, and pertur-
bative for the condensates. f, (f;) denotes the three-
flavor decay constant in the two- (three-) flavor chiral
limit, and (@u), ({iiu)3) is the corresponding condensate.
The low-energy constants L, are in units of 10~ and are
evaluated at chiral scale m,; the condensates and masses
are in the modified minimal subtraction (MS) scheme at
scale 2 GeV. The indications are that the L; will change
significantly when the two-loop logarithms are included,
just as they do in phenomenological estimates (Bijnens,
2007). Other results are very stable, however.

The rSyPT formalism relies on the replica procee-
dure, and taking the fourth root corresponds to n,=1/4,
where n, is the number of replicas. The fact that there

'With this two-loop Z,, factor a tadpole improved definition
of the bare quark mass should be used, where am, denoted
throughout this review should be replaced by upam,. The tad-
pole factors for the various MILC ensembles are listed in
Table 1.
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are good fits with the rSyPT formulas, but not with con-
tinuum xPT, is a test of staggered chiral perturbation
theory. A further test of rSyPT is to allow n, to be a
free parameter in the fits. For the low-mass data, n,
=0.28(2)(3) where the first error is statistical and the sec-
ond systematic coming from varying the details of the
chiral fits. We are encouraged by this strong constraint
on n,, and the success of rSyPT in describing the MILC
data.

C. Other computations of f,, and fx

Since the MILC Collaboration’s initial calculation of
the light pseudoscalar meson masses, decay constants,
and quark masses using the a=0.12 and 0.09 fm lattices
(Aubin et al., 2004b), several others have also computed
f» and fx on the MILC ensembles using different
valence quark formulations. All of the results are con-
sistent with those of the MILC Collaboration, Eq. (135),
and with each other.

The HPQCD Collaboration uses HISQ staggered va-
lence quarks and the MILC asqtad staggered sea-quark
ensembles with lattice spacings a=0.15, 0.12, and
0.09 fm (Follana et al., 2008). They generate one pion
point and one kaon point per ensemble, matching the
masses of the Goldstone HISQ pion to the asqtad one,
and the mass of the HISQ ss§ meson to 696 MeV, the
xPT value. Although Follana et al. (2008) performed
a mixed action lattice simulation, they extrapolated to
the physical light quark masses and the continuum using
continuum NLO xPT augmented by analytic terms
constrained with Bayesian priors. Terms proportional
to a’ and a* are included to test for conventional
discretization errors, while those proportional to a§a2,
aa’ In(m,), and a;a’m, are intended to test for residual
taste-changing interactions with the HISQ valence
quarks. HPQCD obtains the following results for f_, fx,
and the ratio:

£.=132(2) MeV, fx=157(2) MeV,
(141)
flfz=1.189(7),

where the largest source of error is the uncertainty in
the scale r; (1.4% for f,. and 1.1% for fx).

The NPLQCD Collaboration used domain-wall va-
lence quarks and four a=~0.12 fm ensembles with
m;/m.=0.14-0.6 (Beane, Bedaque, et al, 2007). They
tuned to match the valence pion and kaon to the corre-
sponding asqtad particles. Due to the mixed action,
there are still unitarity-violating artifacts that vanish
only in the limit a—0. They computed only the ratio
fx!fn which has a milder dependence upon the quark
mass than the individual decay constants, and extrapo-
lated to the physical light quark masses using the NLO
continuum yPT expression, which depends only on one
free parameter, Ls. The result is
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FIG. 25. (Color online) The ratio of light decay constants fx/f,.
from six calculations. The top four use MILC asqtad configu-
rations and the lower two use other types of quarks. Details
and references can be found in the text.

filfr=1218+0.002*55%,
(142)
Ls(m,) =2.22+0.02"01 x 1073,

where the first error is statistical and the second error is
the sum of systematic errors added in quadrature. The

dominant source of uncertainty is from the truncation of

the yPT expression ("5 for the ratio), which they es-

timated by varying the fit function through the addition
of NNLO analytic terms and double logarithms. Al-
though they did not include an error due to their use of
only a single lattice spacing, this is likely a small effect in
the ratio fx/f.

Aubin et al. (2009) also used domain-wall valence
quarks. In contrast with NPLQCD, however, they com-
puted many partially quenched points on the a=0.12
and 0.09 fm ensembles, and used NLO mixed action
xPT with higher-order analytic terms to extrapolate to
physical quark masses and the continuum (Bér et al.,
2005). Their preliminary results for the light pseudo-
scalar meson decay constants are

f»=129.1(1.9)(4.0) MeV,

fic=153.9(1.7)(4.4) MeV, (143)

Filf.=1.191(16)(17),

where the first error is statistical and the second is the
sum of systematic errors added in quadrature. The
dominant source of error is from the chiral extrapolation
procedure (2.2% for f, and 2.3% for fx), and is esti-
mated by varying the analytic terms included in the fit
function.

In Fig. 25, we compare results for fx/f, from a variety
of (2+1)-flavor calculations. The top four results all use
MILC agstad configurations and were discussed above.
The two lower results from the PACS-CS Collaboration
(Aoki et al., 2009) and the RBC/UKQCD Collaboration
(Allton et al., 2008) use clover quarks with the Iwasaki
gauge action and domain-wall quarks, respectively.
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VII. HEAVY-LIGHT MESONS: MASSES AND DECAY
CONSTANTS

Calculations of B- and D-meson masses and decay
constants using the (2+1)-flavor MILC configurations
have been performed in joint work by the Fermilab Lat-
tice and MILC Collaborations, and by the HPQCD Col-
laboration. Of quantities involving heavy b and ¢ quarks,
meson masses and decay constants are among the sim-
plest quantities to compute numerically and are often
well measured experimentally. Thus they provide valu-
able cross checks of lattice QCD methods. In particular,
once the treatment of the light sea and valence quarks
has been validated within the light pseudoscalar sector,
calculations of heavy-light meson masses and decay con-
stants allow tests of the various lattice QCD formalisms
used for heavy quarks. In this section, we describe the
(2+1)-flavor calculations by Fermilab/MILC and
HPQCD of heavy-light meson masses and decay con-
stants, and show that, with one exception, they are con-
sistent with experiment. These results give confidence in
other lattice QCD calculations involving b and ¢ quarks,
such as those of semileptonic form factors described in
Sec. VIIL

A. Heavy quarks on the lattice

Heavy quarks, i.e., those for which the quark mass in
lattice units am is large, present special challenges. As
long as am<1, heavy quarks on the lattice can be
treated with light-quark formalisms such as staggered
fermions. At the lattice spacings in common use, we
have am.~0.5-1.0 and am;,~2-3. For charm quarks,
light-quark methods can only be used if they are highly
improved to remove discretization errors. Bottom
quarks still require special heavy-quark methods.

1. Nonrelativistic QCD

A straightforward way of formulating heavy quarks
on the lattice is to rewrite the Dirac-like light-quark ac-
tion as a sum in a nonrelativistic operator expansion, as
is done in HQET (Isgur and Wise, 1992; Neubert, 1994)
and in nonrelativistic expansions in QED (Caswell and
Lepage, 1986; Lepage et al., 1992),

L

2m

1
SNRQCD = 2 ¢T(x)<— ng) + E A+ Eo-- B(x)

1
+ @(2 A,»)z P >¢(x), (144)

where

Vi (x) = a'[U, () p(x +app) - p(x)], (145)

and ¢ denote two-component fermions representing the
quarks. An analogous term in the action governs the
antiquarks. The leading heavy-quark mass dependence
is absorbed into the fermion field and vanishes from
explicit calculations. For b quarks in particles with a
single heavy quark, the first term in this action yields the
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static approximation (Eichten and Hill, 1990). In heavy-
light systems, the importance of operators in this expan-
sion is ordered according to HQET power counting
(N~A/mg). In quarkonium systems, operators are or-
dered by the heavy-quark velocity.

2. Wilson fermions with the Fermilab interpretation

In NRQCD, the kinetic energy operator of the Dirac

action, ¥(x)Z;y,V,i(x) is replaced by the leading kinetic
energy operator ¢'(x)(2m1)2;A;¢(x) plus a series of
higher dimension operators. The action for Wilson fer-
mions contains the leading kinetic energy operators
of both the Dirac and the nonrelativistic actions, as in
Eq. (15),

Sw=2 «L(x)(E A %E A, + m) Plx).  (146)
X M 2

The effects of the Laplacian term, which eliminates the
doubler states, vanish in the limit am—0. As am be-
comes larger, the importance of the Laplacian term
grows. When am>1, the Laplacian term dominates the
Dirac-like kinetic energy term, and the theory behaves
like a type of nonrelativistic theory in which the rest
mass m; = E(p>=0) does not equal the kinetic mass m,
=1/(20E/dp?). (Note that we use lower case m to refer
to quarks and capital M to refer to mesons in this sec-
tion.) As am—0, the two masses converge to the bare
quark mass m. For heavy quarks the kinetic mass con-
trols the physics, and the rest mass may be absorbed into
a field redefinition. This means that the Wilson action
and related actions can be used as actions for heavy
quarks as long as m,, with contributions from both terms
in the kinetic energy, is adjusted to equal the desired
physical mass (El-Khadra et al., 1997). It is possible to
set my=m, by breaking time-space axis-interchange
symmetry in the Lagrangian. If this is not done, m; and
m, have the tree-level form

amy =In(1 + am) (147)

and
(148)

The action of the nonrelativistic expansion can be
viewed as arising from a field transformation of the
Dirac field, the Foldy-Wouthuysen-Tani (FWT) transfor-
mation. The Wilson action, with both types of kinetic
energy operators, can be viewed as arising from a par-
tial FWT transformation. Like the action of NRQCD,
it produces the same physics as the Dirac action as long
as a series of correction operators is added to sufficient
precision (Oktay and Kronfeld, 2008). The leading
dimension-five correction operator has the same form
for heavy Wilson fermions as for light Wilson-clover fer-

mions [Eq. (19)], Sgw= (iag/4)cswzx¢(x)aﬁf#v(x)
Xi(x). All simulations to date using this approach to
heavy quarks have therefore used Wilson-clover fermi-
ons. A systematic improvement program is possible as
outlined in Sec. X.C.

1/(amy) = 2/[amy(2 + amgy) ] + 1/(1 + amy).
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3. The HISQ action

Because 0.5=<am,=<1 at currently accessible lattice
spacings, it is possible to use ordinary light-quark actions
to treat the charm quark. However, to obtain high pre-
cision it is necessary to correct the action to a high order
in am. This approach is followed with “highly improved
staggered quarks” (Follana et al., 2007), as explained in
Sec. IL.E.

B. Lattice calculations of masses and decay constants

As in the light pseudoscalar meson case, the heavy-
light decay constant is proportional to the matrix ele-
ment of the axial current,

<0|A/J.|Hq(p)> = iquP,u

where A,=qv,y;Q. Because of the heavy-quark nor-
malization in HQET, it is often useful to consider the
combination decay amplitude

(149)

¢Hq=qu\/M_Hq, (150)

which is computed from the correlators

Co(n) = <0Hq(t)OLq(O)>, Ca,() = <A4(t)0Lq(0)>-
(151)

For the case of Fermilab heavy quarks or NRQCD b
quarks, the heavy-light meson mass is obtained from the
kinetic mass (M,) in the dispersion relation, whereas for
HISQ charm quarks M;=M,, so both are simultaneously
set to the D- or D,-meson mass.

The Fermilab lattice and MILC Collaborations’ calcu-
lation of heavy-light meson decay constants (Aubin
et al., 2005a; Bernard et al., 2009¢c) employed the Fermi-
lab action for the heavy b and ¢ quarks and the asqtad
staggered action for the light u, d, and s quarks. They
constructed the heavy-light meson interpolating opera-
tor and axial vector current A, using the method for
combining four-component Wilson quarks with one-
component staggered quarks described by Wingate et al.
(2003). Their most recent determination from Lattice
2008 (Bernard et al., 2009c) used data on the medium-
coarse, coarse, and fine lattices, with 8-12 partially
quenched valence masses per ensemble. The clover co-
efficient cgy and hopping parameter « in the Fermilab
action are tuned to remove errors of O(1/mg) in the
heavy-quark action. In particular, they set cSW:u53, the
value given by tree-level tadpole-improved perturbation
theory (Lepage and Mackenzie, 1993). They chose the
charm quark hopping parameter k. so that the spin-
averaged (kinetic) D,-meson mass is equal to its physical
value, and chose the bottom quark hopping parameter
k, to reproduce the B,-meson mass in an analogous
manner; this implicitly fixes the b and ¢ quark masses.
They also removed errors of O(1/mg) from the heavy-
light axial vector current A, by rotating the heavy-quark
field in the two-point correlation function,
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Uy — Wy =1+ ady 7 D)y, (152)
where ﬁlat is the symmetric, nearest-neighbor, covariant
difference operator, and the tadpole-improved tree-level
value for d, is given by (El-Khadra et al., 1997)

dy = ug {112 + amy) + 1/[2(1 + amy) T} (153)

They obtained the renormalization factor needed to
match the lattice heavy-light current onto the continuum
using the method of Hashimoto et al. (1999),

71 o§IZR0E,

where the flavor-conserving factors Z%Q and Z?,Z are de-
termined nonperturbatively and the remaining factor is
determined to one-loop in lattice perturbation theory
(Lepage and Mackenzie, 1993; El-Khadra et al., 2007).

The Fermilab/MILC Collaboration fits its decay con-
stant data as a function of light-quark sea and valence
masses to the one-loop form given by HMSYPT (see Sec.
I11.B), supplemented by analytic NNLO terms, which
are quadratic in the light valence and/or sea masses. This
is very similar to the approach taken in the light pseu-
doscalar sector, as described in Sec. VI. While pure NLO
fits are adequate to describe the data for very light va-
lence mass, once this mass gets to be roughly half the
strange quark mass or higher, at least some NNLO terms
are necessary to obtain acceptable fits.

Figure 26 shows the preferred HMSyPT fit to data at
multiple lattice spacings for @, and @, , which are func-
tions of the light valence mass, the hgilt sea mass, and
the strange sea mass. In addition to taste-breaking dis-
cretization effects that appear as taste-splittings, taste-
hairpins, and taste-violating analytic terms, there are ge-
neric light-quark discretization effects, which can be
thought of as changes in the physical LECs [such as P,
the value of @ in the SU(3) chiral limit] with lattice spac-
ing. With the asqtad action, such effects are O(aga?).
They can be (approximately) accounted for by adding
additional parameters to the HMSyPT fit function, with
variations limited by Bayesian priors, following Lepage
et al. (2002). This is done in the fit shown in Fig. 26,
although the effects are quite small, and fits without the
additional parameters give almost the same results (and
confidence levels), but with somewhat smaller statistical
errors. Once the parameters of the HMSyPT fit are
known, taste-violating and generic discretization effects
through O(a?) can be removed by setting a=0. After
taking the continuum limit, the valence and sea-quark
masses are set to their physical values in order to obtain
the decay constants of a D* and D meson, up to small
isospin violations in the sea sector.

The HPQCD Collaboration’s calculation of the B-
and B;-meson decay constants (Gamiz et al., 2009) em-
ployed the NRQCD action for the heavy b quarks and
the asqtad staggered action for the light u, d, and s
quarks. They used six data points in their analysis—four
full QCD points on the coarse ensembles and two full
QCD points on the fine ensembles. They fixed the

(154)
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FIG. 26. (Color online) Chiral extrapolation for @ (octagons)
and ® D, (crosses or diamonds) by the Fermilab/MILC Collabo-
ration (Bernard et al., 2009c). Solid lines are the HMSyPT fit to
®p; dotted lines, to D, Although the full set of partially
quenched data is included in the fit, for ®p the plot shows only
those full QCD points for which the light valence and sea
masses are equal to m,, the mass on the abscissa. For ®p , only
points with the strange valence mass (my,) equal to the strange
sea mass are shown, plotted either as a function of m, (crosses),
or at my, (diamonds). The dashed lines show the fit after re-
moval of light-quark discretization errors, with the fancy plus
signs giving the chirally extrapolated results with statistical er-
rors.

b-quark mass so that the mass of a bb meson reproduces
the physical my (Gray et al., 2005). The HPQCD com-
putation included all currents of O(1/m,;) (Morningstar
and Shigemitsu, 1998) and used one-loop lattice pertur-
bation theory to match onto the continuum (Dalgic et
al., 2004). Therefore, they included all corrections to the
heavy-light current through O(Aqcp/my), O(ay), Olaay),
O(ey/(amy,)), and O(agAgcep/my). The HPQCD Col-
laboration used HMSyPT for the chiral extrapolations
of &y and (I)B in a manner similar to Fermilab/MILC.
They multlphed the NLO expression by 1+ca,a®+c'a’
in order to parametrize higher-order discretization ef-
fects. They also included an additional NNLO analytic
term o«(my—m,)?* in the extrapolation of the ratio
Op /| Dp.

The HPQCD Collaboration’s calculation of the D-
and D,-meson decay constants (Follana et al., 2008) em-
ployed the HISQ action (Follana et al., 2007) (see Sec.
IL.LE) for all of the u, d, s, and ¢ valence quarks. Because
they are treating the charm quark as a light quark, the
computation is similar to the determinations of f,, and fx
described in Sec. VI, except for differences due to the
fact that this is a mixed-action simulation with HISQ
valence quarks and asqtad sea quarks. They used the
medium-coarse, coarse, and fine MILC lattices, and in-
cluded seven full QCD points in their analysis. They
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fixed the c-quark mass so that the mass of the taste
Goldstone 7. meson agrees with experiment. Because
the HISQ axial current is partially conserved, it does not
need to be renormalized. Therefore this method avoids
the use of perturbation theory, whose truncation errors
can be difficult to estimate. The HPQCD calculation
does not use HMSYPT for the chiral extrapolations of f),
and fp, but simply applies continuum xPT, supple-
mented by Bayesian fit parameters. These parameters
test for the expected discretization effects of the form
asa?, a*, ayd?, aa® In(my,,), and aga®m ., from the
asqtad action, and the effects of residual taste-violating
interactions with HISQ valence quarks.

All of the (2+1)-flavor calculations of heavy-light me-
son decay constants rely upon power counting in order
to estimate the size of heavy-quark discretization errors.
In the Fermilab method, heavy-quark discretization er-
rors arise due to the short-distance mismatch of higher-
dimension operators in the continuum and lattice theo-
ries. The sizes of these mismatches are estimated using
HQET as a theory of cutoff effects, as described by
Kronfeld (2000) and Harada et al. (2002). This typically
leads to errors of a few percent on the fine MILC lat-
tices. In simulations with NRQCD b quarks, relativistic
errors arise from higher-order corrections to the
NRQCD action and the heavy-light current. Although
these are not all discretization errors proportional to
powers of the lattice spacing, many are proportional to
inverse powers of the heavy-meson mass, and hence
should be considered heavy-quark errors. The leading
relativistic error comes from radiative corrections to the
o-B term in the action, and is estimated to be of
O(ayAocp/Mp) ~3% (Gamiz et al., 2009). The HISQ ac-
tion is highly improved, and the leading heavy-quark er-
rors are formally of O(ay(m.a)?) and O((m.a)*) (Follana
et al., 2007), where a,~0.3 and am,.~0.5 on the fine
MILC lattices. The HPQCD Collaboration, however, re-
moved errors of O(a,(m.a)?) in the HISQ action by ac-
counting for radiative corrections in the coefficient of
the Naik term, and also extended the traditional Syman-
zik analysis to remove all O((m.a)*) errors to leading
order in the charm quark’s velocity. Thus the leading
charm quark discretization errors should be of
O((m.a)*(v/c)*>) ~0.5% or less for D mesons.

C. Results for masses and decay constants

Although the heavy-light meson decay constants, in
combination with experimental measurements of lep-
tonic branching fractions, can be used to extract CKM
matrix elements via the relation

T(H — v€) = (GH V) [ (8m)
X fomaM (1 — m3 M%), (155)

the matrix elements |V,4|, |V, and |V,;| can be ob-
tained to better accuracy from other quantities such as
neutrino scattering and semileptonic decays (Amsler et
al., 2008). Therefore lattice calculations of heavy-light
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meson decay constants provide good tests of lattice
QCD methods, especially the treatment of heavy quarks
on the lattice. Comparison of lattice calculations with
experimental measurements, however, relies upon the
assumption that, because leptonic decays occur at the
tree level in the standard model, they do not receive
large corrections from new physics. This is generally true
of most beyond-the-standard model theories, but in a
few models, such as those with leptoquarks, this is not
necessarily the case (Dobrescu and Kronfeld, 2008).
CKM unitarity implies that |V |=|V,| and |V
=|V,4l up to corrections of O(|V,,|*). Because both |V,
and |V, are known to subpercent accuracy, experimen-
talists use this relation to extract the D-meson decay
constants from the measured branching fractions. The
latest determinations of f, (Eisenstein et al, 2008) and
fp, (Alexander, 2009) from the CLEO experiment are

fp+=2058+8.9 MeV, fp+=259.5+73 MeV.
(156)

These results used the determination of |V,
=0.974 18(26) from superallowed 0*—0* nuclear B de-
cay (Towner and Hardy, 2008) and of |V,|=0.2256
(Eisenstein et al., 2008).12 The Fermilab Lattice and
MILC Collaborations’ preliminary determination of the
D-meson decay constants are (Bernard et al., 2009¢)

fp=207(11) MeV,  fp =249(11) MeV, (157)
where the dominant errors come from tuning the charm
quark mass and from heavy-quark discretization effects,
which are each ~3%. Both of these results are consis-
tent with experiment. The HPQCD Collaboration’s de-
terminations of the D-meson decay constants using
HISQ fermions are more precise (Follana et al., 2007),

fp=207(4) MeV,  fp =241(3) MeV, (158)
with total errors each below 2%. The largest contribu-
tion to the errors comes from the uncertainty in the
scale ri, and is 1.4% (1%) for fp (fp). Although
HPQCD’s result for fp is consistent with experiment,
their value for ng is ~2.50 below the CLEO measure-
ment, where o is dominated by the experimental uncer-
tainty. A comparison of lattice QCD and experimental
results for the D-meson decay constants is shown in the
left panel of Fig. 27.

Many of the statistical and systematic uncertainties
that enter the lattice calculations of fp, and fp_cancel in
the ratio. Therefore the quantity f,/f, allows for a
more stringent comparison between the results of
Fermilab/MILC and HPQCD. The Fermilab Lattice and
MILC Collaborations found (Bernard et al., 2009¢)

2Although Eisenstein er al. (2008) attributed |V,|=0.2256

to FlaviaNet (Antonelli, 2007), Antonelli (2007) gave |V,
=0.2246(12) from K, decays plus lattice QCD, and |V,
=0.2253(9) from K, and K3 decays plus lattice QCD.
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FIG. 27. (Color online) Comparison of lattice QCD and experimental results for f, and st (left panel) and of lattice QCD results

for fp and fp_(right panel).

folfp,=0.833(19), (159)
while the HPQCD Collaboration finds (Follana et al.,
2007)

folfp,=0.859(8). (160)
The lattice results for the ratio disagree slightly, but only
by ~1.60. The experimental uncertainties in f, and fp
are largely independent, and therefore add in quadraf
ture in the ratio (Alexander, 2009)

fD+/fD: =0.793 + 0.040. (161)
This increases the experimental errors and reduces the
significance of the discrepancy with HPQCD.

The HPQCD Collaboration also used HISQ charm
quarks to compute the D- and Dg;-meson masses (Fol-
lana et al., 2007),

Mp=1.863(7) GeV, Mp =1.962(6) GeV,  (162)
and their results agree with the experimental values
Mp=1.869 GeV and MDS=1.968 GeV (Amsler et al.,
2008). This lends credibility to their calculation of fp ,
and suggests that both improved experimental measure-
ments and lattice calculations are necessary to deter-
mine whether or not this discrepancy is new physics, a
statistical fluctuation, or yet something else. Currently,
Fermilab/MILC’s determination of the D-meson decay
constant lies between the experimental measurement
and the calculation of HPQCD. Once the uncertainties
in the calculation are reduced, which is expected to oc-
cur with the addition of statistics, finer lattice spacings,
and a more sophisticated analysis, the Fermilab Lattice
and MILC Collaborations hope to shed light on this in-
triguing puzzle.

B-meson leptonic decays are much more difficult to
observe than D-meson decays because they are CKM
suppressed («|V,,[?). In addition, B decays to light lep-
tons are suppressed by the factor m? in Eq. (155), and
only decays to 7s have been observed thus far. Further-
more, the branching fraction I'(B — 7v) is known only to
~30% accuracy (Amsler et al., 2008). Thus there are no
precise experimental determinations of the B-meson de-
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cay constants, and the lattice calculations of fp and fp
should be considered predictions that have yet to be ei-
ther confirmed or refuted by experiment.

The Fermilab Lattice and MILC Collaborations pre-
liminary determinations of fz, fz, and the ratios are
(Bernard et al., 2009¢) ’

fz=195(11) MeV,  fy =243(11) MeV,

(163)
falfy, =0.803(28).

The largest errors in the individual decay constants are
due to scale and light-quark mass uncertainties, light-
quark discretization effects, and heavy-quark discretiza-
tion effects, all of which are ~2%. The HPQCD Col-
laboration’s determinations are consistent and have
similar total uncertainties (Gamiz et al., 2009),

fz=190(13) MeV,  fy =231(15) MeV,

(164)
falfs, = 0.812(19).

Their largest source of error is the ~4% uncertainty
from one-loop perturbative operator matching. A com-
parison of lattice QCD calculations of the B-meson de-
cay constants is shown in the right panel of Fig. 27.
There are currently no calculations of the B- and
Bg-meson masses using the (2+1)-flavor MILC lattices.
This is, in part, because the staggered yPT expressions
for heavy-light meson masses needed to extrapolate the
numerical lattice data to the physical light-quark masses
and the continuum are not known, and would require a
nontrivial extension of the continuum expressions.

VIII. SEMILEPTONIC FORM FACTORS

Lattice calculations of semileptonic form factors allow
the extraction of many of the CKM matrix elements
from experiment. The processes we consider for this
purpose are dominated by tree-level weak decays of
quarks at short distances, but are dressed by the strong
interactions at longer distances, such that only mesons
appear on the external legs. Given the nonperturbative
form factor that parameterizes the strong interactions of
the mesons, one can extract the CKM parameters that
accompany the flavor-changing weak vertex. With
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enough processes one can overconstrain the four stan-
dard model parameters that appear in the CKM matrix,
and thus test the standard model.

A.D—wlv and D—K(v

Semileptonic decays of D mesons, D— K{v and D
— afv, allow determinations of the CKM matrix ele-
ments |V,,| and |V 4,
trix elements are well determined within the standard
model by unitarity, with results for other processes, the
form factors can be obtained from experiment (assuming
the standard model), and thus serve as a strong check of
lattice calculations. Such calculations bolster confidence
in similar calculations of B— m{v, allowing a reliable
determination of |V,,|, one of the more important con-
straints on new physics in the flavor sector. Precise cal-
culations of semileptonic form factors for charm decays
are also interesting in their own right, given the discrep-
ancy between the HPQCD and experimental values for
the D leptonic decay.

The necessary hadronic amplitude (P|V,|D) (P
=K, ) is parametrized in terms of form factors by

(PIVID)=f(@))(pp+pp— D)+ fol@)D,, (165

where g=pp—pp, A,=(mp- mp)q#/q and V,=q7v,0.
The differential decay rate dI'/dq” is proport10nal to
[Vellfi(g?))?, with x=d,s. The CKM matrix element
|V, is determined using the experimental decay rate
and the integral over g” of the lattice determination of
£

The matrix element (P|V,|D) is extracted from the
three-point function, where the P meson is given a non-
zero momentum p,

CE 7 (tt,p) = 2 ePY(Op(0)V,(y) O} (x)),
Xy

(166)

and Op and Op are the interpolating operators for the
initial and final meson states. The calculation of this
quantity by the Fermilab Lattice, MILC, and HPQCD
Collaborations (Aubin et al., 2005b) uses the Fermilab
action [improved through O(Agcp/m,), With Agcp in
the HQET context] for the ¢ quark and the asqtad ac-
tion for the light valence quarks. The D meson and the
heavy-light bilinears V, are constructed from a stag-
gered light quark and a Wilson-type (Fermilab) heavy
quark using the procedure described by Wingate et al.
(2003) and Bailey et al. (2009). In order to extract the
transition amplitude (P|V,|D) from Eq. (166), we need
the analogous two-point correlation function,

CM(t,,p) =, e®X0,(0)0},(x)) with M=D,P.

(167)

As in the case of decay constants, the renormalization
factor matching the heavy-light currents on the lattice to
the continuum is
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ng4zpv1ﬂz Z[‘I/Z’

where the factors Z9€ and Z{ are computed nonpertur-
batively, and the remaining factor pgq (close to 1 by
construction) is determined in one- loop perturbation
theory (Harada, Hashimoto, et al., 2002).

The quantities f; and f, are more natural quantities
than f, and f; in the heavy-quark effective theory, and
are defined as

(168)

(PV¥D) = \2mp[v*fi(E) + pf (E)], (169)

where v=pp/mp, p,=pp—Ev, and E=v-pp is the en-
ergy of the light meson. The chiral extrapolation and
momentum extrapolation or interpolation are carried
out in terms of these parameters, which are then con-
verted into f; and f,. The chiral extrapolation by Aubin
et al. (2005b) was performed at fixed E, where f and f,
were fit simultaneously to the parametrization of Becir-
evic and Kaidalov (2000) (BK),

F@) = FILA =) (1 - ag?)],  folq®) = FI(1 - §°1B),

(170)

where G>=q*/m3-, and F=f,(0), @ and g are fit param-
eters. The BK form contains the pole in f.(¢%) at ¢>
=m%:. Even so, the BK parametrization builds into the
calculation unnecessary model dependence. The more
recent calculation of the similar semileptonic process
B — wlv does not make use of this assumption, as de-
scribed next.
Aubin et al. (2005b) obtained for the form factors at
q°=0,
F277(0) = 0.64(3)(6),

FP=K0)=0.733)(7). (171)

where the first error is statistical and the second is sys-
tematic. They also determined the shape dependence of
the form factor as a function of ¢°. This is shown in Fig.
28, along with experimental data from the Belle (Abe et
al., 2005), BABAR (Aubert et al., 2007b) and CLEO
(Cronin-Hennessy et al., 2008; Ge et al., 2009) Collabo-
rations that confirms their prediction. Taking the most
recent CLEO results (Ge et al, 2009) f2=7(0)| V4|
=0.143(5)(2) and f27%(0)| V| =0.744(7)(5) we obtain

0.223(8)(3)(23), |V, =1.019(10)(7)(106),
(172)

|Vcd| =

where the first error is the (experimental) statistical er-
ror, the second is the (experimental) systematic error,
and the third is the total lattice error. If we use unitarity
along with |V,,| and |V, then we can use the CLEO
measurements to predict the form factors. We then ob-
tain £277(0)=0.634(25) and £27%(0)=0.764(9), in good
agreement with the result in Eq. (171). Clearly, the lat-
tice error still dominates the uncertainties. The largest
errors in the lattice calculation are due to discretization
errors and statistics. Improved calculations at finer lat-
tice spacings and higher statistics are underway.
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FIG. 28. (Color online) Comparison of the Fermilab/MILC/
HPQCD lattice prediction for the normalized D — K¢v form
factor (bands) with the subsequent results from Belle (dia-
monds), BABAR (squares), and CLEO (triangles). The dark
gray band is the lo error band from statistics, and the light
gray band is the 1o band for all errors added in quadrature.
Adapted from Bernard et al., 2009b. An earlier version ap-
peared in Kronfeld (2006).

B. B— (v and |V,

Comparison between theory and experiment for
B — mfv has been more troublesome than for other lat-
tice calculations in CKM physics. Leptonic decays and

BB mixing amplitudes are described by a single param-
eter. The semileptonic decays B— D®¢v and K — mlv
can be described to high accuracy by a normalization
and a slope. For B— m€v, on the other hand, the form
factors have a complicated g> dependence. Lattice data
have covered only the low momentum, high ¢? end of
the pion momentum spectrum, and errors are highly ¢>
dependent and highly correlated between g bins in both
theory and experiment.

It has long been understood that analyticity, unitarity,
and crossing symmetry can be used to constrain the pos-
sible shapes of form factors (Bourrely et al., 1981; Boyd
et al., 1995; Lellouch, 1996; Boyd and Savage, 1997). This
has been used recently to simplify the comparison of
theory and experiment for B— m€v. All form factors are
analytic functions of g?> except at physical poles and
threshold branch points. In the case of the B — w/v form
factors, f(g?) is analytic below the B production region
except at the location of the B* pole. The fact that ana-
lytic functions can always be expressed as convergent
power series allows the form factors to be written in a
particularly useful manner.

Consider mapping the variable g onto a new variable,
zZ, in the following way:

[ 2 [
1 —q°/t,— N1 —tylt
V q \ o'+ (173)

Z(qz’t ) = >
O =@+ 1=y,

where t,=(mg+m,)?, t_=(mg—m,)? and t, is a free pa-
rameter. Although this mapping appears complicated, it
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actually has a simple interpretation in terms of g?; this
transformation maps ¢>> ¢, (the production region) onto
|z|=1 and maps ¢><t, (which includes the semileptonic
region) onto real z e [—1,1]. In the case of B— m{v, the
physical decay region is mapped into roughly —0.3<z
<0.3. In terms of z, the form factors can be written in a
simple form,

oo

> ax(to)z(q> 1)~

1
. — 174
P(q®) d(q* 1) = (7

flg* =

Most of the g? dependence is contained in the first two,
perturbatively calculable, factors. The Blaschke factor
P(q?) is a function that contains subthreshold poles and
the outer function ¢(q?,t,) is an arbitrary analytic func-
tion (outside the cut from ¢, < g?< o), which is chosen to
give the series coefficients a; a simple form; see Arnesen
et al. (2005), Bailey et al. (2009), and references therein
for the explicit forms of these expressions. With the
proper choice of ¢(q?,t,), analyticity and unitarity re-
quire the a; to satisfy

N
Da=1. (175)
k=0

The fact that —0.3<z<<0.3 means that according to
analyticity and unitarity only five or six terms are re-
quired to describe the form factors to 1% accuracy. (In
B— D%¢v and K— 7€, z is on the order of a few per-
cent in the physics decay region, which is why these de-
cays can be accurately described by just two param-
eters.) Becher and Hill (2006) have argued that the
heavy-quark expansion implies that the bound is actu-
ally much tighter than analyticity and unitarity alone de-
mand. They argued that 3} a7 should be of order
(Aocp/mp)?. This would lead to the expectation that
only two or three terms will be sufficient to describe the
form factors to 1% precision.

Calculations have been performed by the Fermilab
Lattice and MILC Collaborations using Fermilab b
quarks, and by the HPQCD Collaboration using
NRQCD b quarks. Many of the details of the Fermilab/
MILC calculations are the same as those for the
Fermilab/MILC computation of heavy-light decay con-
stants, described previously. For the semileptonic de-
cays, only full QCD valence masses are used, as opposed
to the partially quenched masses used in leptonic decays.
The calculations used the a=0.12 and 0.09 fm gauge
field ensembles. The HMSyPT continuum and chiral ex-
trapolations are done with the full NLO expressions plus
additional NNLO analytic terms. These formulas allow
the simultaneous interpolation in pion energy along with
the continuum and chiral extrapolations, thus reducing
the total systematic uncertainty.

Figure 29 shows the result of a fully correlated simul-
taneous z fit to the Fermilab/MILC lattice data and the
BABAR 12-bin experimental results (Aubert et al,
2007a), with |V,,| being a parameter in the fit.
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FIG. 29. (Color online) Results for the normalized B — w{v
form factor P, ¢.f, from the Fermilab/MILC lattice calcula-
tions (circles) and BABAR (stars). The solid line is the results
of a fully correlated simultaneous fit. Requiring that lattice and
experiment have the same normalization yields |V,;|. From
Bailey et al., 2009.

The resulting z-fit parameters are a,=0.0218+0.0021,
a,;=-0.0301+0.0063, a,=-0.059+0.032, a3;=0.079+0.068,
and

|Vl = (3.38 +0.36) X 1073 (176)

(Bailey et al., 2009). The coefficients of z" are indeed of
order (Agcp/my)*? as argued by Becher and Hill (2006).
Because the ~11% uncertainty comes from a simulta-
neous fit of the lattice and experimental data, it contains
both the experimental and theoretical errors in a way
that is not simple to disentangle. If we make the assump-
tion that the error in |V,,;| is dominated by the most
precisely determined lattice point, we can estimate that
the contributions are roughly equally divided as ~6%
lattice statistical and chiral extrapolation (combined),
~6% lattice systematic, and ~6% experimental. The
largest lattice systematic uncertainties are heavy-quark
discretization, the perturbative correction, and the un-
certainty in gg.p, all of which are about 3%. Our deter-
mination is ~(1-2)o lower than most inclusive determi-
nations of |V,,|, where the values tend in the range
(4.0-4.5) X 1073 (Di Lodovico, 2008). Our determination
is, however, in good agreement with the preferred values
from the CKMfitter Collaboration [|V,,|=(3.4470%2
X 1073 (Charles et al., 2008)] and the UTfit Collaboration
[|V.s]|=(3.48+0.16) X 107> (Silvestrini, 2008)].

Many of the details of the HPQCD calculation of
B — m{v are the same as described previously for heavy-
light decay constants. They used NRQCD b quarks and
asqtad light quarks. On the coarse, a~0.12 fm en-
sembles, they performed the calculation on four un-
quenched ensembles plus an additional two partially
quenched light quark masses on one ensemble. They
also used full QCD data on two fine, a=0.09 fm en-
sembles in order to constrain the size of discretization
effects. They used HMSYPT to perform the chiral ex-
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FIG. 30. (Color online) Values of |V,;| obtained from averag-
ing the exclusive determinations compared with inclusive de-
terminations using different theoretical inputs.

trapolations separately for various fiducial values of E .
after interpolating in E_. They also showed that they
obtained consistent results with simpler chiral extrapo-
lation methods. They performed fits to their data using
the z-fit method described above, as well as several
other functional forms including the Becirevic-Kaidalov
parametrization (Becirevic and Kaidalov, 2000) and Ball-
Zwicky form (Ball and Zwicky, 2005). Note that they did
not use a combined fit of experimental and lattice data
using the z-fit method to extract |V,,|. Rather, they used
the various parametrizations to integrate the form factor
f.(g%) over ¢°, and they showed that they obtain consis-
tent results with all methods. Applying their results to
2008 data from the Heavy Flavor Averaging Group
(HFAG) (Di Lodovico, 2008) yields

[V, = (340 £ 0.207030) x 107 (177)

(Dalgic et al., 2006), where the first error is experimental
and the second is from the lattice calculation. Figure 30
shows the comparison between an average of the
Fermilab/MILC and HPQCD results for |V,;| and two
inclusive determinations of the same quantity using dif-
ferent theoretical inputs (Lange et al., 2005; Gambino et
al., 2007).

C. B—D{v and B—D*(v

The CKM parameter |V,,| is important because it nor-
malizes the unitarity triangle characterizing CP violation
in the standard model, and must be determined precisely
in order to constrain new physics in the flavor sector.
The standard model prediction for kaon mixing contains
|V.| to the fourth power, for example. It is possible to
obtain |V,,| from both inclusive and exclusive semilep-
tonic B decays. The inclusive decays (Chay et al., 1990;
Bigi, Blok, et al., 1992; Bigi, Uraltsev, and Vainshtein,
1992; Bigi, Shifman, et al., 1993; Bigi, Shifman, and
Uraltsev, 1997) make use of the heavy-quark expansion
and perturbation theory, while the exclusive decays re-
quire the lattice calculation of the relevant form factors.
Each of the exclusive channels B— D{v and B— D*{v
allows a lattice extraction of |V,|, and thus they provide
a useful cross check, both of each other, and of the in-
clusive determination. We have so far considered the
calculations of the necessary form factors only at zero
recoil, as this leads to considerable simplification and
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reduced theoretical errors (Hashimoto et al., 2002).
The differential rate for the decay B— D{v is

dT(B— Dtv) G2
dw 487
X[V P1G(w)

my(mg + mp)(w? —1)>?

2, (178)

with
Gw) =h,(w) = [(mp—mp)/(mp +mp)lh_(w),
where G is Fermi’s constant, 4, (w) and h_(w) are form

factors, and w=v'-v is the velocity transfer from the ini-
tial state to the final state. The differential rate for the

semileptonic decay B — D*{v; is

dr(B — D) Gp , ( 2
dw = 4 DB T D

(179)

XAW? = 1V P xW)|Fw) 2, (180)

where x(w)|F(w)|? contains a combination of four form
factors that must be calculated nonperturbatively. At
zero recoil (w=1) we have y(1)=1, and F(1) reduces to a
single form factor, & A1(1)‘

We compute the form factor 4, at zero recoil using the
double ratio (Hashimoto et al., 1999)

(D|éy,b|BY(B|byc|D) _
<D|C_74C|D><B|E7’4b|l§>

This double ratio has the advantage that the statistical
errors and many of the systematic errors cancel. The
discretization errors are suppressed by inverse powers of
heavy-quark mass as a,(Agcp/2mp)* and (Agcp/2mgp)?
(Kronfeld, 2000), and much of the current renormaliza-
tion cancels, leaving only a small correction that can be
computed perturbatively (Harada, Hashimoto, et al.,
2002). The extra suppression of discretization errors by a
factor of A/2m occurs at zero recoil for heavy-to-heavy
transitions, and is a consequence of Luke’s theorem
(Luke, 1990).

In order to obtain /_, it is necessary to consider non-
zero recoil momenta. In this case, Luke’s theorem does
not apply, and the HQET power counting leads to larger
heavy-quark discretization errors. However, this is miti-
gated by the small contribution of 4_ to the branching
fraction. The form factor /4_ is determined from the
double ratio (Hashimoto er al., 1999)

[h (D (181)

(D|cyb|BXD|cy,c|D)
(D|éy,b|BXD|cyb| D)

h(w)]{

[1 non ][
which is extrapolated to the zero-recoil point w=1.
Combining the determinations of 4,(1) and Ah_(1), we
obtain the preliminary result G(1)=1.082(18)(16) (Oka-
moto, 2006), where the first error is statistical and the
second is the sum of all systematic errors in quadrature,
and where we have included a 0.7% QED correction

h_(w)
2h,(w)

(w— 1)}, (182)
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FIG. 31. (Color online) Values of |V ;| from the exclusive de-
cays B— D{v, B— D*{v, and the inclusive determination.

(Sirlin, 1982). Combining this with the latest average
from the HFAG, G(1)|V,.|=(423+1.5)x10"3 (Di
Lodovico, 2008), we obtain the preliminary result

V| =(39.1+£1.4£0.9) X 107, (183)

where the first error is experimental and the second is
theoretical.

The form factor at zero-recoil needed for B— D*{v is
computed using the double ratio (Bernard et al., 2009a)

(D~ Eyjysb|B><B|B 7’]‘7’5C|D*>
(D*|Gy4c|D*)B|by,b|B)

where again, the discretization errors are suppressed by
inverse powers of heavy-quark mass as a,(Agcp/2mg)?
and (Apcp/ 2mQ)3, and much of the current renormaliza-
tion cancels, leaving only a small correction that can be
computed perturbatively (Harada, Hashimoto, et al,
2002). We extrapolate to physical light quark masses us-
ing the appropriate rHMSxPT (Laiho and Van de Water,
2006).

Including a QED correction of 0.7% (Sirlin, 1982), we
obtain F(1)=0.927(13)(20) (Bernard et al., 2009a), where
the first error is statistical and the second is the sum of
systematic errors in quadrature. Taking the latest HFAG
average of the experimental determination F(1)|V |
=(35.49+0.48) X 103 (Di Lodovico, 2008), we obtain

V| =(38.3£0.5+1.0) X 107, (185)

The experimental average includes all available mea-
surements of F(1)|V,,|, but we point out that the global
fit is not very consistent [x?>/dof=39/21 (CL=0.01%)].
The Particle Data Group handles this inconsistency by
inflating the experimental error by 50% (Amsler et al.,
2008). The dominant lattice errors are discretization er-
rors and statistics, and work is in progress to reduce
these. Note that there is some tension between this and
the inclusive determination of |V,|=41.6(6) X 103 (Bar-
berio et al., 2007), as shown in Fig. 31.

= |ha (WP, (184)

IX. OTHER COMPUTATIONS USING MILC LATTICES

In this section, we describe a variety of additional re-
sults based on the MILC ensembles. Over 85 physicists
outside the MILC Collaboration, at nearly 40 institu-
tions throughout the world, have used the MILC con-
figurations in their research. Their research covers a
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broad range of topics including determinations of the
strong coupling constant, the quark masses, the quarko-
nium spectrum and decay widths, the mass spectrum of
mesons with a heavy quark and a light antiquark, the
masses of baryons with one or more heavy quarks, stud-
ies of the weak decays of mesons containing heavy
quarks, the mixing of neutral K and B mesons with their
antiparticles, the quark and gluon structure of hadrons,
the scattering lengths of pions, kaons and nucleons, the
hadronic contributions to the muon anomalous magnetic
moment, and meson spectral functions.

A. Determination of the strong coupling constant and the
charm quark mass

1. The strong coupling constant from small Wilson loops

The HPQCD Collaboration used MILC lattice en-
sembles to compute the strong coupling constant «;
(Mason et al., 2005; Davies et al., 2008). They compute
nonperturbatively (i.e., numerically on the MILC lat-
tices) a variety of short-distance quantities Y, each of
which has a perturbative expansion of the form

o)

Y= c,ayldla),

n=1

(186)

where ¢, and d are dimensionless a-independent con-
stants and ay(d/a) is the running QCD coupling con-
stant in the so-called V scheme (Lepage and Mackenzie,
1993) for n;=3 flavors of light quarks.

The coupling ay(d/a) is determined by matching the
perturbative expansion, Eq. (186), to the nonperturba-
tive value for Y. Perturbatively converting from the V to
the MS scheme and running up to the Z boson mass,
switching to n/=4 and then 5 at the ¢ and b quark
masses, gives a determination of the strong coupling
constant ays(Mz,n=5).

The HPQCD Collaboration considered 22 short dis-
tance quantities Y, consisting of the logarithms of small
Wilson loops and ratios of small Wilson loops (Davies et
al., 2008). The scales d in Eq. (186) are determined per-
turbatively by the method of Lepage and Mackenzie
(1993), ¢, for n=1, 2, and 3 were computed in lattice
perturbation theory (Mason, 2004), and higher orders,
up to n=10 were included in a constrained fitting proce-
dure. In practice, ay{d/a) for all different scales d/a
used was run to a common scale of 7.5 GeV, and «
=ay (7.5 GeV) was used as a free fitting parameter in
the constrained fits for each of the observables.

Corrections to the perturbative form, Eq. (186), from
condensates appearing in an operator product expansion
(OPE) for short-distance objects, were included in the
constrained fitting procedure. Other systematic errors
such as finite lattice spacing effects and scale-setting un-
certainties were considered. As their final result, the
HPQCD Collaboration quotes

ay(7.5 GeV,np=3)=0.2120(28) and
(187)
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FIG. 32. (Color online) Summary of determinations of the
strong coupling constant a,(M ). The lattice QCD determina-
tion is the most precise one. From Amsler et al., 2008.

axis(M z,np=15) =0.1183(8).

The lattice determination of aypg(M,) is compared to
other determinations in Fig. 32.

Maltman et al. (2008) performed a reanalysis of three
of the short distance quantities used by the HPQCD
Collaboration with the result

axis(M z,np=5) = 0.1192(11), (188)

in good agreement with other next-to-next-to-leading-
order determinations (Bethke, 2007). The two analyses
differ in the way the perturbative running and matching
was done, the value of the gluon condensate used in the
OPE subtraction, the way the scale setting for each lat-
tice ensemble is treated, and a slight difference of the
value used for the scale setting. For more details see
Maltman et al. (2008).

2. The charm quark mass and the strong coupling constant
from current-current correlators

A new approach to extract ¢, and to determine the
charm quark mass m,. was used by Allison et al. (2008).
It consists of comparing moments of charmonium
current-current correlators computed nonperturbatively
on the lattice with high-order continuum QCD pertur-
bation theory. Vector current-current correlators have
previously been used to obtain some of the most precise
determinations of m, from the experimental e*e”
—hadrons cross section (Kiihn and Steinhauser, 2001;
Kiihn et al., 2007). On the lattice, many types of correla-
tors are available that are not accessible to experiment.
In particular, the pseudoscalar current-current correlator
can be computed to very high statistical accuracy, and
the presence of a partially conserved axial vector current
makes current renormalization unnecessary.
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Consider the 7, current-current correlator

G(1) = a°2 (amy ) (0js(%.0j5(0.0)[0), (189)
with moments
T2

G,= 2 (t/a)"G(r). (190)
t==T/2

In the continuum limit, these moments can be computed
perturbatively as

Gyla=0) = g,(anis(w), wim)[(am ()", (191)

where g, is known to O(af) for n=4, 6, and 8. The ap-
proach to the continuum limit is improved by dividing
by the tree-level results, and tuning errors in m, and
errors in the scale setting are ameliorated by multiplying
with factors of the lattice 7, mass

Ry=G,G? and
(192)

R,= [M} (G GOV for n> 4.
(ZamOC) "

The ratios R,, are extrapolated to the continuum limit
using constrained fits. Comparing with continuum
perturbative ratios ry=g,/g\” and r,=(g,/g”)""** for
n>4 allows apg to be extracted from R, and ratios
R,/R, ., given the charm quark mass, and the charm
quark mass can be obtained from the R, with n>4,
given the value of the strong coupling constant,

m’®P r, (angs, plm,)
2 R,(a=0)

Allison et al. (2008) used eight MILC lattice ensembles
with four different lattice spacings. The charm correla-
tors were computed using HISQ staggered quarks (Fol-
lana et al., 2008, 2007). They obtained for m,,

my(3 GeV,np=4)=0.986(10) GeV  or

me(p) = (193)

(194)
my(me,ny=4)=1.268(9) GeV.

This is in good agreement, and about twice as precise as
the best previous determination (Kthn et al., 2007).
They obtained for «;

axis(Mz,np=5) = 0.1174(12), (195)

in good agreement with the lattice determination de-
scribed earlier and with other NNLO determinations
(Bethke, 2007).

B. Onia and other heavy mesons

Heavy quarkonia were important in the early days of
QCD because potential models could be used to ap-
proximately understand their dynamics before first-
principles calculations were possible. The approximate
validity of potential models helps in the selection of op-
erators needed in the improvement program for quarko-
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nia. The different methods for formulating heavy quarks
on the lattice have various advantages and disadvan-
tages for quarkonia. NRQCD employs the operators of
the nonrelativistic, heavy-quark expansion. The opera-
tor expansion converges poorly for charmonium, and
fails when Agcp/m, is not small. The Fermilab interpre-
tation of Wilson fermions interpolates between a nonrel-
ativistic type of action at ma>1 and the usual Wilson-
type action at ma<<1. It can be used for all ma, but has
a more cumbersome set of operators, and has been less
highly improved than other heavy-quark actions. The
HISQ action is a light quark action that fails when
ma>1, but has been improved at tree level to high or-
ders in ma and works well for ma close to 1.

1. Bottomonium with NRQCD heavy quarks

The HPQCD and UKQCD Collaborations have stud-
ied bottomonium spectroscopy on several MILC en-
sembles with lattice spacings a=0.18, 0.12, and 0.09 fm
(Gray et al., 2005). Even on the finest of these en-
sembles, am;~2. They used lattice NRQCD to formu-
late the b quarks in the regime am>1 (Thacker and
Lepage, 1991; Lepage et al., 1992; Davies et al., 1994).
The form of the action of NRQCD was shown in Eq.
(144). The b quark is nonrelativistic inside the bottomo-
nium bound states, with velocity vi ~0.1. NRQCD, as an
effective field theory, can be matched order by order to
full QCD in an expansion in v? and «,. The action cur-
rently in use includes corrections of O(v?) beyond lead-
ing order. Discretization errors have also been corrected
to the same order in v2.

The spin-averaged Y mass splittings are expected to
be quite insensitive to many lattice uncertainties, such as
light sea-quark masses and normalization of correction
operators. They are, therefore, expected to be calculable
to high accuracy on the lattice. Gray et al. (2005) com-
puted spin-averaged mass splittings, 1P-1S (i.e.,
1'P;-1°S)),2S5-1S (ie., 2°S,-1°5,), 2P-1S, and 3S-1S
in lattice units, and then use the experimental splittings
to determine the lattice scale, as described in Sec. IV.B.
Figure 33 shows the results, where the lattice spacing has
been set by the 25-1S8 splitting, and m, has been set
from M~y. The left-hand figure compares the results in
GeV at two lattice spacings, for quenched and un-
quenched calculations. The right-hand figures show the
splittings calculated on the lattice divided by experi-
ment, in the quenched approximation (left narrow fig-
ure) and unquenched (right narrow figure). Clear dis-
agreements with experiment in the quenched
approximation are removed in the unquenched calcula-
tions.

As for the Y(1S) hyperfine splitting, Gray et al. (2005)
quoted AM=61(14) MeV, corresponding to r;AM
=0.099(22), following an extrapolation to the physical
point. This result is consistent with the recent observa-
tion of the 7, by the BABAR Collaboration (Aubert et
al., 2008, 2009) who found a splitting of 71(4) MeV from
the Y(1S).
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FIG. 33. (Color online) The Y spectrum. Left: spin-averaged radial and orbital levels in GeV. Closed and open symbols are from
coarse and fine lattices, respectively. Squares and triangles denote unquenched and quenched results, respectively. Lines represent
experiment. Right: Spin-averaged mass differences from the same data divided by experiment, in the quenched approximation
(left narrow figure) and unquenched (right narrow figure). From Gray et al., 2005.

2. Onia with Fermilab quarks

The Fermilab and MILC Collaborations have com-
puted charmonium and bottomonium masses on many
of the MILC lattice ensembles with lattice spacings from
a=0.18 to a=0.09 fm (di Pierro et al., 2004; Gottlieb et
al., 2006a, 2006b). For the heavy charm and bottom
quarks they use Fermilab quarks (El-Khadra et al,
1997). An updated study is underway (Burch et al.,
2009).

In Fig. 34 (Burch et al., 2009) all resulting masses for
charmonium and bottomonium are shown as splittings
from the spin-averaged 1§ state. The chirally extrapo-
lated values for each lattice spacing are plotted. They
are compared with the experimental values given by
solid lines, where the experimental results are known. In
the cases where they are not known and are estimated
from potential models, they are shown as dashed lines.
The charmonium spectrum shows good agreement with
experiment for the ground states, except for the x.,
which may be slightly heavier than the experimentally
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measured value. The excited S-wave states are also
heavier than their respective experimental results, but
one has to remember that these states are difficult to
determine without careful consideration of finite-volume

effects since they are close to the DD threshold. The
bottomonium summary panel shows the general ten-
dency of the result to approach the experimental values
as the lattice spacing decreases.

Charm annihilation processes give a possible addi-
tional correction to the charmonium hyperfine splitting.
DeTar and Levkova (2007) and Levkova and DeTar
(2009) have started to study these quark-line discon-
nected diagrams using MILC ensembles with lattice
spacings a=0.06 and 0.09 fm. They used stochastic esti-
mators with unbiased subtraction (Mathur and Dong,
2003) to compute the disconnected contribution to the
7. propagator. They found that annihilation processes
increase the 7. mass a small amount [by 5.5(8) MeV for
a fine lattice and 3.4(3) MeV for superfine], thereby de-

L Bottomonium .

s [ . ¥ 1

ésoo_—% o % A - N
>

2 L i
=

()] + 4
=]

= L 4

O go X —

(b) I Mo T hy Xbo Xbt  Xbz

FIG. 34. (Color online) Summary of the charmonium (left) and bottomonium (right) spectra. The fine ensemble results are in fancy
squares, the coarse in circles, the medium coarse are in diamonds, and the extracoarse results are in squares. Included in the error
budget is an estimated systematic uncertainty from setting the heavy quark masses.
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creasing slightly the predicted hyperfine
(Levkova and DeTar, 2009).

splitting

3. Charmonium with highly improved staggered quarks

The HPQCD and UKQCD Collaborations studied
charmonium spectroscopy on MILC ensembles using
the HISQ action for the valence quarks. They used
MILC ensembles with lattice spacings a=0.12 and
0.09 fm, where am,.=0.66 and 0.43, respectively, to dem-
onstrate the advantages of the HISQ action, and com-
puted the charmonium spectrum, using the 7. mass to
tune the input value for am,. They corrected discretiza-
tion errors in am up to order (am)*, and showed that this
produces a speed of light that is independent of p and
equal to 1, within errors, in E?>=p?c?+m?c*. The results
are shown in Fig. 7 of Follana et al. (2007). In particular,
they found for the hyperfine mass splitting M;,—M,,
=109(5) MeV. This result is the closest to the physical
value of 117(1) MeV that has yet been achieved.

4. The B, meson

The HPQCD, Fermilab Lattice and UKQCD Col-
laborations used MILC ensembles to predict the mass of
the B. meson (Allison et al., 2005) before it was accu-
rately measured. They used two different fermion ac-
tions for the heavy bottom and charm valence quarks,
choosing the more optimal action in each case. For the
bottom quark, they used lattice NRQCD (Thacker and
Lepage, 1991; Lepage et al., 1992; Davies et al., 1994),
because it has a better treatment of the v* interactions,
where v is the velocity of the heavy quark. For the
charm quark, they used the relativistic Fermilab action
(El-Khadra et al., 1997; Kronfeld, 2000), which treats
higher-order effects in v? better. This is appropriate,
since the velocity of the ¢ quark in B, is not particularly
small, v?~0.5.

Allison et al. (2005) calculated mass splittings, for
which many of the systematic errors cancel, namely,

A.//Y = mBC - (V;ld,-{' my)/Z,
(196)
App =mp —(mp +mp),

where n_’lwz (mnc+3mj/¢,)/4, n_iDS= (mDS+3mD*)/4, and
mp =(mp +3mp)/4 are spin-averaged masses. They
found no visible lattice-spacing dependence using en-
sembles with a=0.18, 0.12, and 0.09 fm. Extrapolating

the a=0.12 fm results linearly in the light sea-quark
mass they obtained

Ayy=39.8+38+11.27° MeV,
(197)
App =-[1238+30=11"3;,] MeV.

The errors are from statistics, tuning of the heavy-quark
masses, and heavy-quark discretization effects. Since the
statistical error on the first splitting is smaller, Allison et
al. (2005) used that to predict the B, mass as
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mp =6304+4+ 11758 MeV. (198)

Shortly after the lattice calculation was published, the
CDF Collaboration announced their precise mass mea-
surement (Abulencia et al., 2006)

mp_=6287+5 MeV, (199)

in good agreement with the lattice prediction, i.e.,
slightly more than 1o away.

C. Heavy baryons

Baryons containing a heavy quark comprise a rich set
of states. For example, there are currently 17 known
charmed baryons (Amsler et al., 2008). However, for bot-
tom baryons, there are only a few known states. Thus, it
is possible both to verify calculations by comparison
with known masses and to make predictions for as yet
undiscovered states.

Many of the heavy baryons contain one or more u or
d quarks, thus requiring a chiral extrapolation. Although
some early work on MILC configurations (Tamhankar,
2002; Gottlieb and Tamhankar, 2003) used clover quarks
for u, d, and s, this limited how closely one could ap-
proach the chiral limit, and recent work has used stag-
gered light quarks instead (Na and Gottlieb, 2006, 2007,
2009). The heavy quark is dealt with as in Sec. VILA.

The pioneering lattice work on heavy baryons by the
UKQCD Collaboration (Bowler et al., 1996) considered
two  operators  Os=g,, (Y Cysyh)¥S, and O L
=sabc(z#{TCyM¢12’)‘I’§§, where g,,. is the Levi-Civita ten-
sor, ¥ and i, are light valence quark fields for up, down,
or strange quarks, ¥ is the heavy valence quark field
for the charm or the bottom quark, C is the charge con-
jugation matrix, and a, b, and ¢ are color indices. The
former operator can be used to study the spin-1/2 bary-
ons A, and E,. The latter can be used, in principle, for
both spin-1/2 and spin-3/2 baryons. However, with the
current formalism, for operators with two staggered
quarks, there are cancellations in the spin-3/2 sector and
O, can only be used for spin-1/2 baryons (Na and Gott-
lieb, 2007). Gottlieb et al. (2008) considered the taste
properties of staggered di-quark operators in much the
way that Bailey (2007) studied staggered baryon opera-
tors. However, this method has not yet been applied in
calculations. For states with two heavy quarks, both
spin-1/2 and spin-3/2 states have been studied.

Another issue when dealing with states containing
heavy quarks is the distinction between the rest and ki-
netic masses (see Sec. VII). Calculation of kinetic masses
requires looking at states with nonzero momentum and
fitting a dispersion relation. This has not yet been done
for the heavy baryons, which means that we are re-
stricted to reporting mass splittings.

So far ensembles with three lattice spacings have been
studied (Na and Gottlieb, 2009). With a=0.15 fm, three
ensembles with m,;/my;=0.2, 0.4, and 0.6 were used. With
a=0.12 fm, m;/m,=0.007, 0.01, and 0.02, and with a
~0.09 fm, only m;/m;=0.2 and 0.4 were studied. Seven
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FIG. 35. (Color online) Independent mass differences of J: :%* singly charmed baryons (a) and singly bottom baryons (b). From

Na and Gottlieb, 2009.

to nine light quark masses are used to allow for chiral
extrapolation. The charm and bottom quark masses are
the same as in the meson work. Since mass splittings are
desired, ratios of hadron propagators are fit in prefer-
ence to fitting each hadron and subtracting the masses.
For baryons with a heavy quark, rfSyPT has not been
worked out yet, so the chiral extrapolation is based on a
polynomial in the valence and sea masses,

2
Pyuad = Co + €111 + €My + €3 + CMigey, (200)

where ¢ to ¢4 are the fitting parameters, m; is the light
valence quark mass, m, is the strange valence quark
mass, and mg, is the light sea-quark mass. These fits are
denoted quad in the figures. Alternative chiral extrapo-
lations use only the full QCD points, i.e., those in which
the valence and sea light quark masses are equal. These
are denoted full in the figures.

For the singly-charmed baryons in Fig. 35(a), three of
the four differences are in good agreement with the ex-
perimental results. The result that is not in good agree-
ment is one that involves one hadron from Os and one
from O . The other differences come from particles that
are both determined using the same operator. This be-
havior is a mystery.

3900 A B LA
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In Fig. 35(b), we consider the singly-bottom baryons
and find good agreement for the one observed differ-
ence for E,—A,. Also shown is the comparison with a
recent lattice calculation of Lewis and Woloshyn (2009).
The large value for the ,— A, splitting is again notice-
able.

In Fig. 36, we compare with the results of Lewis et al.
(2001) and Lewis and Woloshyn (2009) for both spin-1/2
and spin-3/2 baryons. The earlier calculation of
charmed baryons used quenched anisotropic lattices
generated with an improved gauge action. The more re-
cent calculation of bottom baryons uses configurations
containing the effects of dynamical quarks. In order to
compare the two calculations, and because kinetic
masses are not available in the calculation on MILC
configurations, a constant was added to the static masses
that depends on lattice spacing and whether the state
contains charm or bottom quarks, but not upon spin or
light quark content.

There are a number of ways to improve upon the cur-
rent work including increasing statistics, extending the
calculations to the finer ensembles, studying the kinetic
masses and studying new operators that will allow us to
explore the properties of the spin-3/2 baryons. It is also

10.4 A I B R B
L O : fine/full (b)
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FIG. 36. (Color online) The mass spectrum of doubly charmed (a) and bottom (b) baryons. The error bars are statistical only. From

Na and Gottlieb, 2009.
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possible to use HISQ quarks for all of u, d, s, and ¢
quarks to explore the charm sector using only staggered
operators.

D. K°-K° mixing: By

Experimental measurements of the size of indirect CP
violation in the neutral kaon system gy can be combined
with theoretical input to constrain the apex of the CKM
unitarity triangle (Buras, 1998). Because &g has been
measured to better than a percent accuracy (Amsler et
al., 2008), the dominant sources of error in this proce-
dure are the theoretical uncertainties in the CKM matrix
element |V |, which enters the constraint as the fourth
power, and in the lattice determination of the nonpertur-
bative constant By.

The kaon bag parameter By encodes the hadronic

contribution to K°- K mixing (Buchalla et al., 1996; Bu-
ras, 1998),

(K°|Qas—2(w)|K°)
(8/3)(K°[50y5d]0){015 v vsd| K*)
where Q g, is the effective weak four-fermion operator

Qas=—2(x) =[5y, d]ly_a(O)[5y,d]y_a(x) (202)

and u is a renormalization scale. The dependence on u
cancels that of a Wilson coefficient C(w) that multiplies
By(w) in physical observables such as the mass differ-
ence between K¢ and K;. The denominator in Eq. (201)
is the value of the matrix element with vacuum satura-
tion of the intermediate state. Often quoted is the value

BK(M)

(201)

of the renormalization group invariant form of By, By,
defined by

= C(w)Bg(p). (203)

Gamiz et al. (2000) carried out a calculation of By using
two MILC ensembles with lattice spacing a=~0.12 fm.
They employed asqtad valence quarks with valence ka-
ons made of degenerate quarks of mass m,/2. Using
one-loop matching with the coupling taken as ay(1/a)
they found the following value for By in the naive di-
mensional regularization scheme:

BYSNPR(2 GeV) = 0.618(18)(19)(30)(130), (204)

where the errors are from statistics, the chiral extrapo-
lation (Van de Water and Sharpe, 2006), discretization
errors, and the perturbative conversion to the MS-NDR

scheme. The value Eq. (204) corresponds to By
=0.83+0.18. The error is dominated by the uncertainty
from (’)(af) corrections to the perturbative lattice-to-
continuum matching.

Because the matching coefficients are known only to
one loop, the result in Eq. (204) is not competitive with
the published domain-wall fermion calculation by the
RBC and UKQCD Collaborations, in which the opera-
tor renormalization is done nonperturbatively using the
method of Rome-Southampton (Martinelli et al., 1995)
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and mixing is suppressed due to the approximate chiral
symmetry. They obtained, using a single, comparable lat-

tice spacing B x=0.720+0.019 (Allton et al., 2008), where
the dominant uncertainty is due to discretization errors,
and is estimated to be ~4% from the scaling behavior of
quenched data.

Recently Aubin, Laiho, and Van de Water obtained
the first unquenched determination of By at two lattice
spacings using domain-wall valence quarks on the MILC
ensembles (Aubin er al, 2010). Because dynamical
domain-wall lattice simulations are computationally ex-
pensive, this mixed-action approach is an affordable
compromise that takes advantage of the best properties
of both fermion formulations. Since the MILC en-
sembles are available at several lattice spacings with
light pion masses and large physical volumes, this allows
for good control of the chiral extrapolation in the sea
sector and the continuum extrapolation. Domain-wall
fermions do not carry taste quantum numbers, so there
is no mixing with operators of other tastes. Furthermore,
the approximate chiral symmetry of domain-wall fermi-
ons suppresses the mixing with wrong-chirality opera-
tors and allows the use of nonperturbative renormaliza-
tion in the same manner as in the purely domain-wall
case. Finally, the expression for By in mixed action yPT
contains only two more parameters than in continuum
xPT (Aubin et al., 2007b), both of which are known and
are, therefore, not free parameters in the chiral and con-
tinuum extrapolation. Aubin et al. (2010) obtained

BYSNPR(2 GeV) = 0.527(6)(20), (205)

where the first error is statistical and the second is sys-
tematic. With data on the coarse and fine MILC lattices,
Aubin et al. (2010) found that the discretization errors in
By are small. The largest error in By is ~3% and is
from the renormalization factor Zp , which is computed
nonperturbatively in the RIMOM scheme but must be
converted to the MS scheme using one-loop continuum
perturbation theory.

Bae et al. (2009) also computed By with a mixed-
action approach using HYP-smeared staggered valence
quarks (Hasenfratz and Knechtli, 2001) on the MILC
ensembles. They have preliminary data on the coarse,
fine, and superfine MILC ensembles and are computing
Zp, nonperturbatively in the RI'MOM scheme using the
Rome- -Southampton method. When completed, their re-
sult should be competitive with those of RBC/UKQCD
and Aubin et al. (2010).

E. B'-B° mixing

The mass differences between the heavy and light Bg,
q=d,s, are given in the standard model by (Buras et al.,
1990)
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AM" = (GEMylom)|V, V|
X 7’§S0(xt)Mqu%3qBBq,

where 775 is a perturbative QCD correction factor and S,

(206)

is the Inami-Lim function of x,=m?/Mj,. By is the
renormalization group invariant BS bag parameter that
can be computed in lattice QCD.

The four-fermion operators whose matrix elements

between Bg and Bg are needed to study Bg mixing in the
standard model are

OLT= [Baqa]V—A[b_cqc]v—A,

087 =[b"q")s_p[b°qs_p» (207)

039 =[b¢]s_p[b°q"]s_p,

where a,c are color indices. The leading-order BO-BS
mixing matrix element is parametrized by the product

3,535

(BylOLY|BYYS(u) = 5Mj, 5 BR> (1), (208)
where BI\BTS is related to B B, in Eq. (206) in an analogous
manner to Eq. (203). Beyond tree level, the operator
O L1 mixes with OS89, both on the lattice and in the con-

tinuum. Including the one-loop correction, the renor-
malized matrix element is given by

3

2My,

<0Lq>m(ﬂ) = [1 + ay- pLL(M,mb)]<OLq>lat(a)

+ ay - prs(p,mp)OS) (a).
(209)
The operator O3? is only needed to compute the width
difference AI'j (Lenz and Nierste, 2007).
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The HPQCD Collaboration calculated Bp , with g
=d,s on four MILC ensembles with a=0.12 fm and two
ensembles with a=0.09 fm, using an asqtad light valence
quark and lattice NRQCD for the bottom quark (Dalgic
et al., 2007; Gamiz et al., 2009). With NRQCD for the
heavy quark, a dimension seven operator contributes to
the relevant matrix element at order O(AQCP/My),
which was also taken into account. The HPQCD Col-
laboration found (Gamiz et al., 2009)

f5,N B, =0.266(6)(17) GeV,

(210)
f5,\Bg,=0216(9)(12) GeV,
and for the ratio
£=fs\By/fs By, =1258(25)(21), 11)

where the errors are from statistics plus chiral extrapo-
lation and from all other systematic errors added in
quadrature, respectively. The chiral and continuum ex-
trapolation is shown in the left panel of Fig. 37. Using
the result in Eq. (211) and the experimentally measured
mass differences AM,, x=s,d (Amsler et al., 2008) they
found

[Vidll|Vis| = 0.214(1)(5), (212)

where the errors are experimental and theoretical, re-
spectively.

A similar calculation is being performed by the Fer-
milab Lattice and MILC Collaborations (Evans et al.,
2007, 2009). They used Fermilab fermions for the heavy
quarks, and, like HPQCD, asqtad fermions for the light
valence quarks. The preliminary chiral and continuum
extrapolation is shown in the right panel of Fig. 37. As a
preliminary result they found £=1.205(52), with the sta-
tistical and systematic errors added in quadrature
(Evans et al., 2009).



1408 Bazavov et al.: Nonperturbative QCD simulations with 2+1 ...

¢

FIG. 38. (Color online) The lowest-order diagram for the
QCD correction to the muon anomalous magnetic moment at
O(c?). The bubble represents all possible hadronic states.
From Aubin and Blum, 2007.

F. Hadronic contribution to the muon anomalous magnetic
moment

One of the most precisely measured quantities, and
hence an astonishingly accurate test of QED, is the
anomalous magnetic moment of the muon, a #:(g
—2)/2. The QED contribution is known to four loops,
with the five-loop term having been estimated; see
Jegerlehner (2007, 2008) for recent reviews. With the ex-
perimental precision to which a,, is known, QCD correc-
tions are important at leading order via the QCD con-
tribution to the vacuum polarization, shown in Fig. 38.

This leading contribution can be estimated from the
experimental values of the e*e”—hadrons total cross
section, a;ILO:(692.115.6) x 10719 (Jegerlehner, 2007,
2008). Using this value the difference between the ex-
perimental and theoretical value is

S, =aP - q" = (287 +91) x 107,

p=a®—a (213)

about a 3.10 effect and a possible hint at effects from
physics beyond the standard model. The leading had-
ronic contribution can also be estimated from 7— v +
hadrons, giving a result of 10-20x 107! higher than
from the e*e™ cross section, but this estimate is on some-
what weaker footing due to isospin-breaking effects. A
purely theoretical calculation of a;ILO is thus desirable.

The muon anomalous magnetic moment can be ex-
tracted from the full muon-photon vertex. The first ef-
fects from QCD, at order O(a?), are shown in Fig. 38,
and can be computed from the vacuum polarization of
the photons II(g?) via (Blum, 2003)

2 o
aEL°=(§) | angm, (214)

0

with the kernel f(g?) given by Blum (2003). The kernel
f(g?) diverges as g>—0. This makes a precise calcula-
tions of I1(¢?) at low momentum necessary, and, in par-
ticular, makes perturbative computations unreliable.

Aubin and Blum (2007) described such a calculation
based on three MILC ensembles with lattice spacing a
~0.09 fm, and three different light quark masses. The
vacuum polarization I1(g?) is computed from the cor-
relator of the electromagnetic current in terms of quark
fields. Aubin and Blum used rSyPT to fit I1(¢?) at low ¢
(see Fig. 39), and used the result in the integral in Eq.
(214).
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FIG. 39. (Color online) Two different rSyPT fits to 11(¢?) for
three light masses: am;=0.0031 (diamonds), 0.0062 (squares),
and 0.0124 (circles) with am,=0.031. From Aubin and Blum,
2007, which contains the details.

Finally, they extrapolated to the physical light quark
mass, obtaining

a, " =(721+15)x 107" and
(215)
a, "0 = (748 +21) X 10717

with a linear and quadratic fit, respectively. The errors
are statistical only. Systematic errors in Eq. (215) other
than due to the quark mass extrapolation come from
finite lattice spacing and finite volume effects. Given
this, the lattice result should be taken as in broad agree-
ment with the estimate from the e*e™ cross section. Fur-
ther improvements need to be made before the lattice
calculation becomes competitive with other determina-
tions.

G. Quark and gluon propagators in Landau gauge

Quark and gluon propagators contain perturbative
and nonperturbative information about QCD. Quark
propagators play a crucial role in hadron spectroscopy
and the study of three- and four-point functions used in
form factor and matrix element calculations. The propa-
gators are not gauge invariant, and thus have to be stud-
ied in a fixed gauge, usually the Landau gauge. Never-
theless, they contain gauge independent information on
confinement, dynamical mass generation and spontane-
ous chiral symmetry breaking. Quark and gluon propa-
gators can be studied on the lattice. They are often
treated semianalytically in the context of Dyson-
Schwinger equations, see Fischer (2006) and Roberts
(2008) for recent reviews.

The Landau gauge gluon propagator has been studied
in full QCD using MILC lattices by Bowman et al. (2004,
2007). In the continuum, the Landau gauge gluon propa-
gator has the tensor structure

DY(q) =[8,,-(4,9,)/4°16"D(q?). (216)

where at tree level D(g?)=1/q?. The bare propagator is
related to the renormalized propagator D g(g*;u) by the
renormalization condition
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FIG. 40. (Color online) The gluon dressing function g*D(g?) for quenched and dynamical configurations with a=0.09 fm, from
Bowman et al., 2007 (left), and the quark mass function for light sea-quark mass in full QCD at a=0.12 and 0.09 fm, from

Parappilly et al., 2006 (right).

D(q%a) = Zs(a;1)D (g ),
(217)
DR(C]2§,U«)|q2:M2 =1/u?.

The gluon propagator in full QCD is somewhat less en-
hanced for momenta around 1 GeV than the quenched
propagator, see Fig. 40 (left), and shows good scaling
behavior (Bowman et al., 2007). The gluon spectral func-
tion shows clear violations of positivity in qualitative
agreement with Dyson-Schwinger equation studies [see
Fischer (2006), and references therein].

The quark propagator has been studied in full QCD
using MILC lattice ensembles with lattice spacings a
~(.12 and 0.09 fm by Bowman et al. (2005), Furui and
Nakajima (2006), and Parappilly et al. (2006). The bare
propagator can be parametrized, and related to the
renormalized propagator, by

S(p*a) = Z(p*a)liy-p + M(pH)]™!
=Zz(a;M)SR(P2;M),

where Z,(a;u) ::Z(pz;a)|p2:M2 and the mass function
M(p?) is renormalization point independent. Its
asymptotic behavior as p —« is related via the OPE to
the RGI quark mass and the chiral condensate, see, e.g.,
Bowman, Heller, et al. (2005).

The quark mass function for light sea-quark mass in
full QCD simulations at two different lattice spacings is
shown in Fig. 40 (right). It shows good scaling and clear
indication of dynamical mass generation (“constituent
mass”) at low momenta.

(218)

H. Further uses of MILC lattices

Besides the calculations previously described, the
MILC lattice ensembles have been used in other QCD
calculations. These include the study of hadronic scatter-
ing lengths and n-body interactions, reviewed by Beane,
Orginos, et al. (2008). Furthermore, computations of
nucleon structure, moments of parton and generalized
parton distribution functions, axial nucleon couplings,
electromagnetic form factors, and nucleon transition
amplitudes have been done using MILC lattice en-
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sembles; see Orginos (2006), Hagler (2007), and Zanotti
(2009) for recent reviews of lattice computations of these
quantities.

X. FURTHER IMPROVEMENTS: A LOOK TO THE
FUTURE

While the lattice QCD simulations described here are
quite mature, the errors of many of the observables
computed can be reduced in various ways. Many of the
calculations have omitted some of the available MILC
ensembles, in particular the more challenging ones with
small lattice spacings. Sometimes, not all available con-
figurations in an ensemble have been analyzed. Electro-
magnetic effects, where needed, have been taken from
nonlattice estimates (see Sec. VI). They can be included
directly in lattice simulations. Discretization effects com-
ing from the fermion actions used can be further re-
duced using improvements to the Fermilab action for
heavy quarks, and using highly improved staggered
quarks for both valence and sea light quarks. These im-
provements are outlined in this section.

A. Impact of new ensembles

The superfine (a=~0.06fm) and ultrafine (a
~(.045 fm) ensembles listed in Table I were recently
completed, as was the coarse (¢~0.12 fm) ensemble
with three degenerate light quarks. The fine ensembles
with m;/my=0.05 and with three degenerate light quarks
are still running, but should be completed soon. We have
presented here some preliminary results from the super-
fine ensembles for the hadron spectrum, the light pseu-
doscalar mesons, and the topological susceptibility, and
the HPQCD/UKQCD Collaboration has recently used
some of the superfine ensembles in its studies of
charmed physics (Davies, 2008); however, the physics
analysis of the new ensembles is in a very early stage.
When it is completed, we expect these ensembles to
have a major impact on many of the calculations de-
scribed above.

As indicated earlier, the leading finite lattice spacing
artifacts for the asqtad action are of order a?/In(a). So
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these artifacts for the superfine and ultrafine ensembles
are down from those of the fine ensembles by factors of
2.6 and 5.2, respectively. As one can see from Figs. 14,
19, and 24, results obtained to date from the superfine
ensembles are close to the rSyPT continuum extrapola-
tions, which should reduce discretization errors in calcu-
lations that make use of them. Furthermore, as shown in
Fig. 6, the decrease in taste splitting among the pions
with decreasing lattice spacing is consistent with
a?/In(a)?, as expected. Thus, this major source of system-
atic error will be significantly reduced using superfine
ensembles.

The a=0.045 fm, m;=0.2m, ensemble will provide an
anchor point for extrapolations to the continuum limit,
and is particularly important for calculations which use
the Fermilab method for heavy valence quarks. For
many of these quantities the discretization errors in the
heavy-quark action are the largest single source of sys-
tematic error. Although the size of heavy-quark discreti-
zation errors can be estimated using power-counting ar-
guments, the precise form of the lattice spacing
dependence is not explicitly known. It is thus important
to have a range of lattice spacings in order to study the
heavy-quark discretization effects. The heavy-quark er-
rors decrease as a/In(a) at the worst, so we expect the
0.045 fm ensemble to reduce the heavy-quark errors by
a factor of 2 in quantities of interest involving B and D
mesons, which thus far have only been computed on en-
sembles with lattice spacings a=0.09 fm and larger. The
reduction of the heavy-quark discretization errors does
not require the full set of light-quark masses that we
calculated at coarser lattice spacings; thus, we generated
only one ensemble at a=0.045 fm. By including the su-
perfine and ultrafine ensembles into our work on heavy-
light mesons, in conjunction with improving the statis-
tics, we expect to determine the Ieptonic decay
constants, the mixing parameters, and the corresponding
semileptonic form factors to an accuracy of better than
5%.

The physical strange quark mass is not light enough
for chiral perturbation theory to converge rapidly in its
vicinity. To anchor chiral fits and to test the convergence
of chiral perturbation theory, it is therefore extremely
helpful to have ensembles with the strange sea-quark
mass held fixed at a value well below the physical
strange quark mass. Furthermore, with three dynamical
quark flavors, there are two interesting chiral limits to
be considered: the two-flavor limit, in which the u and d
quarks become massless while the s stays at its physical
mass, and the three-flavor chiral limit, where all three
quarks become massless. The difference of various
quantities in these two limits is an important probe of
the nature of chiral symmetry breaking in QCD. The
extrapolation to m,;=0 necessary for the three-flavor chi-
ral limit is a long one, with attendant large errors. The
new ensembles with three degenerate light quarks were
created to help address these issues. We estimate that
incorporating all superfine ensembles into the analysis,
as well as all configurations with the strange sea-quark
mass held fixed below its physical value, will allow us to
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reduce the systematic errors on f,. and fx to 2% or bet-
ter, and should dramatically reduce the errors in low-
energy constants and quantities such as the ratio of the
two-flavor to three-flavor condensates (itu),/{iu);. This
would be an important milestone for lattice QCD calcu-
lations. We also expect corresponding improvements in
other physical quantities of interest. In particular, our
evaluation of |V, should become significantly more ac-
curate than the current world average.

B. Electromagnetic and isospin breaking effects

Most lattice calculations have not included electro-
magnetic or isospin breaking effects. However, as the
precision of calculations increases, including these ef-
fects will become increasingly important. In fact, we
have already seen in Sec. VI that electromagnetic effects
are important in the determination of the u and d quark
masses. Another interesting challenge for lattice QCD
would be to determine the proton-neutron mass differ-
ence, which will require accounting for the differences of
both the u and d quark masses and their charges.

The pioneering work by Duncan et al. (1996, 1997)
regarding electromagnetic effects was done with
quenched U(1) and quenched SU(3) fields. More re-
cently, the RBC Collaboration has been pursuing such
calculations but with domain-wall dynamical quarks. Ya-
mada et al. (2006) and Blum et al. (2007) calculated elec-
tromagnetic effects on 7 and K meson masses in Ny=2
configurations. Beane, Orginos, and Savage (2007) used
MILC configurations with a=0.12 fm to study isospin
breaking for the nucleons using domain-wall valence
quarks.

Electromagnetic effects in lowest order chiral pertur-
bation theory were first studied some 40 years ago by
Dashen (1969). A key result known as Dashen’s theorem
is that electromagnetic splittings of the pions and kaons
are equal at this order, i.e.,

AME = AM% — AM?

= (M. = Mio)em — (M2 = M20) e (219)

vanishes.

Recently, Bijnens and Danielsson (2007) calculated
electromagnetic corrections in partially quenched per-
turbation theory, which are particularly pertinent for
analysis of lattice QCD calculations. They emphasized
that a combination of meson masses with varying
charges and quark masses is a close approximation to
AM3,

AM? = M*(x1.X3.91:43) — M*(x1.X3.93.93)
- M*(x1,x1,91,93) + M*(x1,x1,93.93).  (220)

Here xi:Zqul_, where B is the continuum version of the
low-energy constant defined in Eq. (39), and ¢; is the
quark charge. In their notation, i=1 (3) refers to the
valence u (d) quark, respectively.

MILC has recently begun to explore electromagnetic
effects on the pseudoscalar masses (Basak et al., 2009),
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FIG. 41. (Color online) Correction to Dashen’s theorem, as a
function of the LO 7 mass squared (equivalent to the pion
mass squared with ¢2=0). From Basak et al., 2009.

using the quenched approximation for electromagne-
tism. The initial study on a=0.15 fm ensembles yielded
promising results. The key result is a rough estimate of
the correction to Dashen’s theorem. In Fig. 41, we show
results for two dynamical ensembles for various light va-
lence masses. After fitting the results and performing the
chiral extrapolation, we found that 0.7 X 10’3<AM%
<1.8x1073 GeV?. A recent phenomenological estimate
is 1.07 X 1073 GeV? (Bijnens and Danielsson, 2007).

It will be interesting to extend this work to smaller
lattice spacings and eventually to include dynamical
electromagnetic effects. There is also the prospect of in-
cluding isospin breaking in the generation of the con-
figurations.

C. Heavy Wilson fermion improvement program

The leading discretization errors contained in the
Wilson-clover action applied to heavy quarks have been
analyzed by Oktay and Kronfeld (2008), in an extension
to the original Fermilab formalism. Since the heavy
quarks introduce an additional scale 1/mg, they con-
sider all operators which have power counting of A\*
(\~Aa or A/my) and v® for the heavy-light (HQET)
and heavy-heavy (NRQCD) systems, respectively. This
leads to actions containing all possible dimension six and
some dimension seven operators. Many of these are re-
dundant and may be chosen for calculational conve-
nience by considering field transformations. For ex-
ample, multihop time derivative operators (which spoil
the properties of the transfer matrix) may be eliminated
in this way. Tree-level matching of observables in the
continuum and lattice QCD actions shows that six new
operators beyond the original Fermilab action are re-
quired at this level of improvement, four of dimension
six and two of dimension seven. In all, there are a total
of 19 nonredundant operators at this level, and one-loop
matching will presumably introduce more of these. One
can estimate the uncertainties due to nonzero lattice
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spacing by calculating the mismatch between the lattice
short-distance coefficients and their continuum counter-
parts. Initial estimates show that the new lattice action
reduces the errors to the few percent level.

D. Preliminary studies of the HISQ action

As discussed in Sec. II, the HISQ action improves
taste symmetry and is well suited for future studies with
dynamical quarks. Subtleties with dynamical HISQ
simulations, in particular from the reunitarization step,
Eq. (85), which can lead to large contributions to the
force, are described by Bazavov et al. (2009).

The first study of how the HISQ action reduces the
splitting between different tastes of pions was under-
taken by the HPQCD and UKQCD Collaborations by
Follana et al. (2007). They used valence HISQ on the
asqtad sea-quark configurations generated by MILC.
Similar findings for HISQ sea quarks were reported by
Bazavov et al. (2009). The results of a more recent study
are shown in Fig. 42: The splittings between the Gold-
stone and the other pion tastes for the HISQ action are
reduced by a factor of 2.5-3 compared to asqtad (notice
a vertical line that indicates a factor of 3 in logarithmic
scale in Fig. 42). Two HISQ ensembles, with a = 0.09 and
0.12 fm, are shown. The difference between the results
presented here and in Bazavov et al. (2009) is that the
current study uses the improved gauge action with the
one-loop fermion corrections induced by the HISQ fer-
mions (Hart et al., 2009a, 2009b), and the ensembles
were tuned to be close to the line of constant physics
with m;=0.2my.

XI. SUMMARY AND CONCLUSIONS

There has been a dramatic improvement in the accu-
racy of lattice QCD calculations over the past decade
due to a combination of developments:
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e The use of improved actions significantly reduces fi-
nite lattice spacing artifacts, improving the accuracy
of extrapolations to the continuum limit. The asqtad
improved staggered quark action the MILC Collabo-
ration used provides a particularly strong reduction
in taste symmetry breaking, the most challenging fi-
nite lattice spacing artifact for staggered quarks. The
HISQ action improves on asqtad in this respect by an
additional factor of 3. In general, one finds that a
HISQ ensemble has lattice artifacts approximately
half the size of an asqtad ensemble with the same
lattice spacing.

e The inclusion of up, down and strange sea quarks
with realistic masses is critical for reducing errors to
the few percent level, as is shown in Fig. 1.

e The use of partially quenched chiral perturbation
theory and, for staggered quarks, rooted staggered
chiral perturbation theory have greatly improved the
accuracy of the extrapolation of lattice data to the
physical masses of the up, down, and strange quarks.

e Improved algorithms, such as RHMC, have enabled
the generation of gauge field ensembles with signifi-
cantly smaller lattice spacings and lighter quark
masses than had previously been possible. These new
algorithms have changed the balance between gauge
field configuration generation and physics analysis on
the configurations. Whereas the former used to take
the bulk of the computing resources, now the re-
sources required for an analysis project often rival
those that went into the generation of the configura-
tions.

e The vastly increased computing resources available
to lattice gauge theorists over the past decade have
enabled us to take advantage of the developments
enumerated above. For example, between 1999 and
2008 the total floating point operations used per year
by the MILC Collaboration increased by approxi-
mately three orders of magnitude.

The MILC Collaboration has taken advantage of
these developments to generate, over the past ten years,
the ensembles of asqtad gauge field configurations de-
tailed in Table I. This is the first set of ensembles to have
a wide enough range of small lattice spacings and light
quark masses to enable controlled extrapolations of
physical quantities to the continuum and chiral limits.
These ensembles are publicly available, and we and oth-
ers are using them to calculate a wide range of physical
quantities of interest in high energy and nuclear physics.
This work has included calculations of the strong cou-
pling constant, the masses of light quarks and hadrons,
the properties of light pseudoscalar mesons, the topo-
logical susceptibility, the masses, decays and mixings of
heavy-light mesons, the charmonium and bottomonium

spectra, the K°-K° mixing parameter By, the mass of
the B, meson, the -7 and N-N scattering lengths, gen-
eralized parton distributions, and hadronic contributions
to the muon anomalous magnetic moment. The errors in
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these quantities have typically decreased by an order of
magnitude as the library of ensembles has grown, with
further improvements expected as the superfine and ul-
trafine ensembles are fully analyzed, and HISQ en-
sembles become available.

A number of quantities have been calculated to an
accuracy of a few percent, and some predictions have
been made that were later verified by experiment. The
work of the Fermilab Lattice, MILC, and HPQCD/
UKQCD Collaborations on the decays and mixings of
heavy-light mesons and the decays of light pseudoscalar
mesons has reached a level of accuracy where it is hav-
ing a significant impact on tests of the standard model
and the search for new physics. However, high precision
has been obtained only for quantities that are most
straightforward to calculate. There are many quantities,
such as scattering phase shifts, the masses and widths of
hadrons that are unstable under the strong interactions,
and parton distribution functions, which are of great in-
terest, but continue to pose major challenges.

Because it is relatively inexpensive to simulate, the
asqtad quark action was the first to produce a set of
gauge field ensembles with a wide enough range of lat-
tice spacings and sea-quark masses to enable controlled
extrapolations to the continuum and chiral limit. How-
ever, such ensembles are also being produced with other
quark actions, such as Wilson clover, twisted mass, do-
main wall, and overlap. These ensembles are already
producing impressive results. Over the next few years
one can expect major advances on a wide variety of cal-
culations with critical checks coming from the use of
different lattice formulations of QCD. Finally, the tech-
niques that have been developed for the study of QCD
can be applied to study many of the theories that have
been proposed for physics beyond the standard model.
Such work is just beginning, but appears to have a bright
future.
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