
Feshbach resonances in ultracold gases

Cheng Chin

Department of Physics and James Franck Institute, University of Chicago, Chicago, Illinois
60637, USA

Rudolf Grimm

Center for Quantum Physics and Institute of Experimental Physics,
University of Innsbruck, Technikerstraße 25, 6020 Innsbruck, Austria
and Institute for Quantum Optics and Quantum Information,
Austrian Academy of Sciences, Otto-Hittmair-Platz 1, 6020 Innsbruck, Austria

Paul Julienne and Eite Tiesinga

Joint Quantum Institute, National Institute of Standards and Technology and
University of Maryland, 100 Bureau Drive, Gaithersburg, Maryland 20899-8423, USA

�Published 29 April 2010�
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quantum gases. They have found numerous experimental applications, opening up the way to
important breakthroughs. This review broadly covers the phenomenon of Feshbach resonances in
ultracold gases and their main applications. This includes the theoretical background and models for
the description of Feshbach resonances, the experimental methods to find and characterize the
resonances, a discussion of the main properties of resonances in various atomic species and mixed
atomic species systems, and an overview of key experiments with atomic Bose-Einstein condensates,
degenerate Fermi gases, and ultracold molecules.
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I. INTRODUCTION

A. Ultracold gases and Feshbach resonances: Scope of the
review

The impact of ultracold atomic and molecular quan-
tum gases on present-day physics is linked to the ex-
traordinary degree of control that such systems offer to
investigate the fundamental behavior of quantum matter
under various conditions. The interest goes beyond
atomic and molecular physics, reaching far into other
fields, such as condensed matter and few- and many-
body physics. In all these applications, Feshbach reso-
nances represent the essential tool to control the inter-
action between the atoms, which has been the key to
many breakthroughs.

Ultracold gases are generally produced by laser cool-
ing �Metcalf and van der Straten, 1999� and subsequent
evaporative cooling �Ketterle and van Druten, 1997�. At
temperatures in the nanokelvin range and typical num-
ber densities somewhere between 1012 and 1015 cm−3,
quantum-degenerate states of matter are formed when
the atomic de Broglie wavelength exceeds the typical
interparticle distance and quantum statistics governs the
behavior of the system. The attainment of Bose-Einstein
condensation �BEC� in dilute ultracold gases marked the
starting point of a new era in physics �Anderson et al.,
1995; Bradley et al., 1995; Davis et al., 1995�, and degen-
erate atomic Fermi gases entered the stage a few years
later �DeMarco et al., 1999; Schreck et al., 2001; Truscott
et al., 2001�. The developments of the techniques to cool
and trap atoms by laser light were recognized with the

1997 Nobel prize in physics �Chu, 1998; Cohen-
Tannoudji, 1998; Phillips, 1998�. Only four years later,
the achievement of BEC in dilute gases of alkali atoms
and early fundamental studies of the properties of the
condensates led to the 2001 Nobel prize �Cornell and
Wieman, 2002; Ketterle, 2002�.1

In this review, we give a broad coverage of Feshbach
resonances in view of the manifold applications they
have found in ultracold gases. Regarding theory, we fo-
cus on the underlying two-body physics and on models
to describe Feshbach resonances. In the experimental
part, we include applications to few- and many-body
physics; we discuss typical or representative results in-
stead of the impossible attempt to exhaustively review
all developments in this rapidly growing field. Several
aspects of Feshbach resonances and related topics have
already been reviewed elsewhere. An early review on
Feshbach resonance theory was given by Timmermans
et al. �1999�. In another theoretical review, Duine and
Stoof �2004� focused on atom-molecule coherence. Hut-
son and Soldán �2006� and Köhler et al. �2006� reviewed
the formation of ultracold molecules near Feshbach
resonances. The closely related topic of photoassocia-
tion was reviewed by Jones et al. �2006�.

In Sec. II, we start with a presentation of the theoret-
ical background. Then, in Sec. III, we present the vari-
ous experimental methods to identify and characterize
Feshbach resonances. There we also discuss the specific
interaction properties of different atomic species, which
can exhibit vastly different behaviors. In Sec. IV, we
present important applications of interaction control in
experiments on atomic Bose and Fermi gases. In Sec. V,
we discuss properties and applications of ultracold mol-
ecules created via Feshbach association. Finally, in Sec.
VI, we discuss some related topics, such as optical Fes-
hbach resonances, interaction control in optical lattices,
few-body physics, and the relation to molecular scatter-
ing resonances and cold chemistry.

B. Basic physics of a Feshbach resonance

The physical origin and the elementary properties of a
Feshbach resonance can be understood from a simple
picture. Here we outline the basic ideas, whereas in Sec.
II we provide a more detailed theoretical discussion.

We consider two molecular potential curves Vbg�R�
and Vc�R�, as shown in Fig. 1. For large internuclear
distances R, the background potential Vbg�R� asymptoti-
cally connects to two free atoms in the ultracold gas. For
a collision process, having small energy E, this potential
represents the energetically open channel, in the follow-

1For overviews on laser cooling and trapping, BEC, and ul-
tracold Fermi gases see the proceedings of the Varenna sum-
mer schools in 1991, 1998, and 2006 �Arimondo et al., 1992;
Inguscio et al., 1999, 2008�. For reviews on the theory of de-
generate quantum gases of bosons and fermions see Dalfovo
et al. �1999� and Giorgini et al. �2008�, respectively, and Strin-
gari and Pitaevskii �2003� and Pethick and Smith �2008�.
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ing referred to as the entrance channel. The other po-
tential Vc�R�, representing the closed channel, is impor-
tant as it can support bound molecular states near the
threshold of the open channel.

A Feshbach resonance occurs when the bound mo-
lecular state in the closed channel energetically ap-
proaches the scattering state in the open channel. Then
even weak coupling can lead to strong mixing between
the two channels. The energy difference can be con-
trolled via a magnetic field when the corresponding
magnetic moments are different. This leads to a mag-
netically tuned Feshbach resonance. The magnetic tun-
ing method is the common way to achieve resonant cou-
pling and it has found numerous applications, as
discussed in this review. Alternatively, resonant coupling
can be achieved by optical methods, leading to optical
Feshbach resonances with many conceptual similarities
to the magnetically tuned case �see Sec. VI.A�. Such
resonances are promising for cases where magnetically
tunable resonances are absent.

A magnetically tuned Feshbach resonance can be de-
scribed by a simple expression,2 introduced by Moerdijk
et al. �1995�, for the s-wave scattering length a as a func-
tion of the magnetic field B,

a�B� = abg�1 −
�

B − B0
� . �1�

Figure 2�a� shows this resonance expression. The back-
ground scattering length abg, which is the scattering
length associated with Vbg�R�, represents the off-
resonant value. It is directly related to the energy of the
last-bound vibrational level of Vbg�R�. The parameter B0
denotes the resonance position, where the scattering

length diverges �a→ ±��, and the parameter � is the
resonance width. Note that both abg and � can be posi-
tive or negative. An important point is the zero crossing
of the scattering length associated with a Feshbach reso-
nance; it occurs at a magnetic field B=B0+�. Note also
that we use G as the magnetic field unit in this paper
because of its near-universal usage among groups work-
ing in this field, 1 G=10−4 T.

The energy of the weakly bound molecular state near
the resonance position B0 is shown in Fig. 2�b� relative
to the threshold of two free atoms with zero kinetic en-
ergy. The energy approaches threshold at E=0 on the
side of the resonance where a is large and positive.
Away from resonance, the energy varies linearly with B
with a slope given by ��, the difference in magnetic mo-
ments of the open and closed channels. Near resonance
the coupling between the two channels mixes in
entrance-channel contributions and strongly bends the
molecular state.

In the vicinity of the resonance position at B0, where
the two channels are strongly coupled, the scattering
length is very large. For large positive values of a, a
“dressed” molecular state exists with a binding energy
given by

Eb = �2/2�a2, �2�

where � is the reduced mass of the atom pair. In this
limit Eb depends quadratically on the magnetic detuning
B−B0 and results in the bend shown in the inset of Fig.
2. This region is of particular interest because of its uni-
versal properties; here the state can be described in
terms of a single effective molecular potential having
scattering length a. In this case, the wave function for
the relative atomic motion is a quantum halo state which
extends to a large size on the order of a; the molecule is
then called a halo dimer �see Sec. V.B.2�.

2This simple expression applies to resonances without inelas-
tic two-body channels. Some Feshbach resonances, especially
the optical ones, feature two-body decay. For a more general
discussion including inelastic decay see Sec. II.A.3.
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FIG. 1. �Color online� Basic two-channel model for a Fesh-
bach resonance. The phenomenon occurs when two atoms col-
liding at energy E in the entrance channel resonantly couple to
a molecular bound state with energy Ec supported by the
closed channel potential. In the ultracold domain, collisions
take place near zero energy, E→0. Resonant coupling is then
conveniently realized by magnetically tuning Ec near 0 if the
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FIG. 2. �Color online� Feshbach resonance properties. �a�
Scattering length a and �b� molecular state energy E near a
magnetically tuned Feshbach resonance. The binding energy is
defined to be positive, Eb=−E. The inset shows the universal
regime near the point of resonance where a is very large and
positive.
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A useful distinction can be made between resonances
that exist in various systems �see Sec. II.B.2�. For narrow
resonances with a width � typically well below 1 G �see
the Appendix� the universal range persists only for a
very small fraction of the width. In contrast, broad reso-
nances with a width typically much larger than 1 G tend
to have a large universal range extending over a consid-
erable fraction of the width. The first class of resonances
is referred to as closed-channel dominated resonances,
whereas the second class is called entrance-channel
dominated resonances. For the distinction between both
classes, the width � is not the only relevant parameter.
Also the background scattering length abg and the differ-
ential magnetic moment �� need to be taken into ac-
count. Section II.B.2 discusses this important distinction
in terms of a dimensionless resonance strength.

Figure 3 shows the observation of a Feshbach reso-
nance as reported by Inouye et al. �1998� for an optically
trapped BEC of Na atoms. This early example highlights
the two most striking features of a Feshbach resonance,
the tunability of the scattering length according to Eq.
�1� and the fast loss of atoms in the resonance region.
The latter can be attributed to strongly enhanced three-

body recombination and molecule formation near a Fes-
hbach resonance �see Sec. III.A.2�.

A Feshbach resonance in an ultracold atomic gas can
serve as a gateway into the molecular world and is thus
strongly connected to the field of ultracold molecules
�see Sec. V�. Various techniques have been developed to
associate molecules near Feshbach resonances. Ultra-
cold molecules produced in this way are commonly re-
ferred to as Feshbach molecules. The meaning of this
term is not precisely defined, as Feshbach molecules can
be transferred to many other states near threshold or to
much more deeply bound states, thus being converted to
more conventional molecules. We use the term Fesh-
bach molecule for any molecule that exists near the
threshold in an energy range set by the quantum of en-
ergy for near-threshold vibrations. The universal halo
state is a special very weakly bound case of a Feshbach
molecule.

C. Historical remarks

Early investigations on phenomena arising from the
coupling of a bound state to the continuum go back to
the 1930s. Rice �1933� considered how a bound state
predissociates into a continuum, Fano �1935� and Fano
et al. �2005� described asymmetric line shapes occurring
in such a situation as a result of quantum interference,
and Beutler �1935� reported on the observation of highly
asymmetric line shapes in rare gas photoionization spec-
tra. Nuclear physicists considered basically the same
situation, having nuclear scattering experiments in mind
instead of atomic physics. Breit and Wigner �1936� con-
sidered the situation in the limit when the bound state
plays a dominant role and the asymmetry disappears.
Later interference and line-shape asymmetry were taken
into account by several authors �Blatt and Weisskopf,
1952�.

Feshbach �1917–2000� and Fano �1912–2001� devel-
oped their thorough treatments of the resonance phe-
nomena that arise from the coupling of a discrete state
to the continuum. Their work was carried out indepen-
dently using different theoretical approaches. While Fes-
hbach’s work originated in the context of nuclear physics
�Feshbach, 1958, 1962�, Fano approached the problem
on the background of atomic physics �Fano, 1961�. refor-
mulating and extending his earlier work �Fano, 1935;
Fano et al., 2005�. Nowadays, the term “Feshbach reso-
nance” is most widely used in the literature for the reso-
nance phenomenon itself, but sometimes also the term
“Fano-Feshbach resonance” appears. As a curiosity Fes-
hbach himself considered his name being attached to a
well-known resonance phenomenon as a mere atomic
physics jargon �Kleppner, 2004; Rau, 2005�. Fano’s name
is usually associated with the asymmetric line shape of
such a resonance, well known in atomic physics as a
“Fano profile.”

A prominent example for the observation of a Fesh-
bach resonance in atomic physics is the experiment of
Bryant et al. �1977� on photodetachment by the negative
ion of hydrogen. Near a photon energy of 11 eV two
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FIG. 3. Observation of a magnetically tuned Feshbach reso-
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field interaction by expansion of the condensate after release
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abg. From Inouye et al., 1998.
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prominent resonances were seen, one of them being a
Feshbach resonance and the other one a “shape reso-
nance” �see Sec. II.A.3�. Many more situations where
Feshbach resonances play an important role can be
found in atomic, molecular, and chemical physics �see
Spence and Noguchi �1975�, Gauyacq and Herzenberg
�1982�, MacArthur et al. �1985�, Nieh and Valentini
�1990�, and Weber et al. �1999� for a few examples�. In
such experiments, the resonances occur when the scat-
tering energy is varied. This is in contrast to the experi-
ments on ultracold gases, where scattering takes place in
the zero-energy limit and the resonances occur when an
external field tunes bound states near threshold.

In the context of quantum gases, Feshbach resonances
were first considered by Stwalley �1976�, who suggested
the existence of magnetically induced Feshbach reso-
nances in the scattering of spin-polarized hydrogen and
deuterium atoms �H+D and D+D�. He pointed to en-
hanced inelastic decay near these resonances and sug-
gested that they should be avoided to maintain stable
spin-polarized hydrogen gases. A related loss resonance
in hydrogen was observed by Reynolds et al. �1986�. The
positive aspect of such resonances was first pointed out
by Tiesinga et al. �1993�, who showed that they can be
used to change the sign and strength of the interaction
between ultracold atoms. In 1998, the possibility of in-
teraction tuning via Feshbach resonances was demon-
strated by Inouye et al. �1998� for a 23Na BEC, as already
discussed in the preceding section. In the same year,
Courteille et al. �1998� demonstrated a Feshbach reso-
nance in a trapped sample of 85Rb atoms through the
enhancement of photoassociative loss induced by a
probe laser.

The important role of Feshbach resonances in
present-day quantum gas experiments can be high-
lighted by looking at the number of publications per
year with Feshbach resonances in the title �see Fig. 4�.
Before 1998, one finds just a few publications with the
majority not related to ultracold atoms. Then, after
1998, a substantial increase is observed as a result of the
first successful experiments with Feshbach resonances in
ultracold gases. It then took a few years until Feshbach
resonances had become a fully established tool and
opened up many new applications in the field. This is

reflected in the steep increase of the publication rate in
the period from 2002 to 2004.

II. THEORETICAL BACKGROUND

This review primarily concentrates on magnetically
tunable resonances, described in the next sections, while
Sec. VI.A discusses optical changes in scattering lengths.
Here we describe the two-body physics of collision reso-
nances, not the few- or many-body aspects. Properties of
a number of magnetic Feshbach resonances are tabu-
lated in the Appendix.

A. Basic collision physics

The theory for describing two-body collisions is de-
scribed in a number of textbooks �Mott and Massey,
1965; Messiah, 1966; Taylor, 1972�. First consider the col-
lision of two structureless atoms, labeled 1 and 2 with
masses m1 and m2 interacting under the influence of the
potential V�R�, where R is the vector between the posi-
tions of the two atoms with magnitude R. The separated
atoms are prepared in a plane wave with relative kinetic
energy E=�2k2 / �2�� and relative momentum �k, where
�=m1m2 / �m1+m2� is the reduced mass of the pair. The
plane wave in turn is expanded in a standard sum over

spherical harmonic functions Y�m�
�R̂�, where � is the

relative angular momentum, m� is its projection along a

space fixed z axis, and R̂=R /R is the direction vector on
the unit sphere �Messiah, 1966�. This expansion is called
the partial wave expansion, and the various partial
waves �=0,1 ,2 , . . . are designated s ,p ,d , . . . waves.

If the potential V�R� is isotropic, depending only on
the magnitude of R, there is no coupling among partial
waves, each of which is described by the solution
���R�=���R� /R to the Schrödinger equation

−
�2

2�
d2���R�

dR2 + V��R����R� = E���R� , �3�

where V��R�=V�R�+�2���+1� / �2�R2� includes the cen-
trifugal potential, which is repulsive for �	0 and van-
ishes for the s wave. We assume V�R�→0 as R→�, so
that E represents the energy of the separated particles.
This equation has a spectrum of N� bound state solu-
tions at discrete energies En� for E
0 and a continuous
spectrum of scattering states with E	0. While bound
states are normally labeled by vibrational quantum num-
ber v=0, . . . ,N�−1 counting up from the bottom of the
potential, we prefer to label threshold bound states by
quantum number n=−1,−2, . . . counting down from the
top of the potential for the last, next to last, etc. bound
states. The bound state solutions �n�� are normalized to
unity, �	n� �n���2=1, and �n��R�= 	R �n��→0 as R→�.
The scattering solutions, representing the incident plane
wave plus a scattered wave, approach

FIG. 4. �Color online� Number of publications per year �from
1985 to 2008� with Feshbach resonances appearing in the title.
Data from ISI Web of Science.
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���R,E� → c
sin�kR − ��/2 + ���E��


k
ei���E� �4�

as R→�, where ���E� is the scattering phase shift
and c=
2� /��2 is a constant that ensures the wave
function �E�� is normalized per unit energy, 	E� �E���
=�0

��
�
*�R ,E����R ,E��dR=��E−E��. The scattering

phase shift is the key parameter that incorporates the
effect of the whole potential on the collision event.

Sadeghpour et al. �2000� reviewed the special proper-
ties of scattering phase shift near a collision threshold
when k→0. If V�R� varies as 1/Rs at large R, then
tan ��k2�+1 if 2�+1�s−2 and tan ��ks−2 if 2�+1�s
−2. While Levinson’s theorem shows that ��→N�� as
k→0, we need not consider the N�� part of the phase
shift in this review. For van der Waals potentials with s
=6, the threshold tan �� varies as k and k3 for s and p
waves and as k4 for all other partial waves. The proper-
ties of s-wave collisions are of primary interest for cold
neutral atom collisions, where near threshold, a more
precise statement of the variation of tan �0 with k is
given by the effective range expansion,

k cot �0�E� = − 1/a + 1
2r0k2, �5�

where a is called the s-wave scattering length and r0 is
the effective range. For practical purposes, it often suf-
fices to retain only the scattering length term and use
tan �0�E�=−ka. Depending on the potential, the scatter-
ing length can have any value, −�
a
+�.

When the scattering length is positive and sufficiently
large, that is, large compared to the characteristic length
scale of the molecular potential �see Sec. II.B.1�, the last
s-wave bound state of the potential, labeled by index n
=−1 and �=0, is just below threshold with a binding
energy Eb=−E−1,0 given by Eq. �2� in the Introduction.
The domain of universality, where scattering and bound
state properties are solely characterized by the scatter-
ing length and mass, is discussed in recent reviews
�Braaten and Hammer, 2006; Köhler et al., 2006�. The
universal bound state wave function takes on the form
�−1,0�R�=
2/a exp�−R /a� at large R. Such a state exists
almost entirely at long range beyond the outer classical
turning point of the potential. Such a bound state is
known as a “halo state,” also studied in nuclear physics
�Riisager, 1994� and discussed in Sec. V.B.2.

1. Collision channels

The atoms used in cold collision experiments gener-
ally have spin structure. For each atom i=1 or 2 in a
collision the electronic orbital angular momentum Li is
coupled to the total electronic spin angular momentum
Si to give a resultant ji, which in turn is coupled to the
nuclear spin Ii to give the total angular momentum fi.
The eigenstates of each atom are designated by the com-
posite labels qi. At zero magnetic field these labels are
fimi, where mi is the projection of fi. For example, alkali-
metal atoms that are commonly used in Feshbach reso-
nance experiments have 2S1/2 electronic ground states

with quantum numbers Li=0 and Si=1/2, for which
there are only two values of fi=Ii−1/2 and Ii+1/2 when
Ii�0. Whether fi is an integer or half an odd integer
determines whether the atom is a composite boson or
fermion.

A magnetic field B splits these levels into a manifold
of Zeeman sublevels. Only the projection mi along the
field remains a good quantum number, and B=0 levels
with the same mi but different fi can be mixed by the
field. Even at high field, where the individual fi values no
longer represent good quantum numbers, the fi value
still can be retained as a label, indicating the value at
B=0 with which the level adiabatically correlates.

Figure 5 shows the Zeeman energy levels versus B for
the 6Li atom, a fermion, according to the classic Breit-
Rabi formula �Breit and Rabi, 1931�. The two fi levels
are split at B=0 by the hyperfine energy, Ehf /h
=228 MHz. At large fields the lower group of three lev-
els is associated with the quantum number mS=−1/2,
while the upper group has mS=+1/2. The figure also
shows our standard notation for atomic Zeeman levels
for any species and any field strength. We label states by
lower case Roman letters a, b, c,… in order of increasing
energy. Some prefer to label the levels in order numeri-
cally as 1, 2, 3… . The notation qi can symbolically refer
to the fimi, alphabetical, or numerical choice of labeling

The collision event between two atoms is defined by
preparing the atoms in states q1 and q2 while they are
separated by a large distance R, then allowing them to
come together, interact, and afterward separate to two
atoms in states q1� and q2�. If the two final states are the
same as the initial ones, q1 ,q2=q1� ,q2�, the collision is
said to be elastic, and the atoms have the same relative
kinetic energy E before and after the collision. If one of
the final states is different from an initial state, the col-
lision is said to be inelastic. This often results in an en-
ergy release that causes a loss of cold atoms when the
energetic atoms escape from the shallow trapping poten-
tial. We concentrate primarily on collisions where the
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FIG. 5. �Color online� Atomic energy levels of the 6Li atom,
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two-body inelastic collision rate is zero or else very small
in comparison to the elastic rate since this corresponds
in practice to most cases of practical experimental inter-
est. This condition is necessary for efficient evaporative
cooling or to prevent rapid decay of the cold gas. Section
III.A.2 discusses how atom loss due to three-body colli-
sions can be used to detect the presence of two-body
resonances.

In setting up the theory for the collision of two atoms,
the scattering channels are defined by the internal states
of the two atoms 1 and 2 and the partial wave, ���
= �q1q2���m��, where 	R̂ ��m��=Y�m�

�R̂�. Since for colli-
sions in a magnetic field the quantum number M=m1
+m2+m� is strictly conserved, a scattering channel can
be conveniently labeled by specifying the set of quantum
numbers �q1q2�M. For s waves, where �=m�=0 and
M=m1+m2, it is only necessary to specify the quantum
numbers �q1q2 to label a channel.

When the two atoms are of the same isotopic species,
the wave function must be symmetric �antisymmetric�
with respect to exchange of identical bosons �fermions�.
We assume such symmetrized and normalized functions
as described by Stoof et al. �1988�. Exchange symmetry
ensures that identical atoms in identical spin states can
only collide in s ,d , . . . waves for the case of bosons and
in p , f , . . . waves in the case of fermions; in all other
cases, collisions in all partial waves are allowed.

The channel energy E�=E�q1�+E�q2� is the internal
energy of the separated atoms. Assume that the atoms
are prepared in channel � with relative kinetic energy E
so that the total energy is Etot=E�+E. Any channel �
with E��Etot is called an open channel and any channel
with E�	Etot is called a closed channel. A collision can
produce atoms in an open channel after the collision,
but not in a closed channel, since the atoms do not have
enough energy to separate to the product atoms.

2. Collision rates

The partial collision cross section for starting in open
channel � with relative kinetic energy E and ending in
open channel � can be expressed in terms of the S�,��E�
element of the multichannel unitary scattering matrix S.
The cross section for elastic scattering at energy E in
channel � is

�el,��E� = g���/k2��1 − S�,��E��2, �6�

whereas the unitarity property of S allows us to express
the cross section for loss of atoms from channel � as

�loss,��E� = g���/k2��1 − �S�,��E��2� . �7�

The corresponding partial elastic and inelastic rate coef-
ficients Kel,��E� and Kloss,��E� are found by multiplying
these partial cross sections by the relative collision ve-
locity v=�k /�. The factor g�=1 except for certain spe-
cial cases involving identical particles. The factor g�=2
for describing thermalization or inelastic collisions in a
normal Maxwellian gas of two atoms of the same species
in identical spin states. Inelastic decay of a pure Bose-

Einstein condensate has g�=1 �Kagan et al., 1985; Stoof
et al., 1989�.

If only one open channel � is present, collisions are
purely elastic and S�,��E�=exp�2i���E��. For s waves the
real-valued tan ���E�→−ka� as k→0 and a� is the scat-
tering length for channel �. When other open channels
are present, the amplitude �S�,��E�� is no longer unity,
and for s wave we can represent the complex phase
���E�→−kã� for k→0 in terms of a complex scattering
length �Bohn and Julienne, 1996; Balakrishnan et al.,
1997�

ã� = a� − ib�, �8�

where a and b are real, and 1− �S�,��E��2→4kb��0 as
k→0. The threshold behavior is

�el,��E� = 4�g��a�
2 + b�

2� �9�

for the s-wave elastic collision cross section and

Kloss,��E� = �2h/��g�b� �10�

for inelastic collisions that remove atoms from channel
�. Both �el,� and Kloss,� approach constant values when
E is sufficiently small.

The unitarity property of the S matrix also sets an
upper bound on the cross sections. Since there is a rig-
orous upper bound of �S�,��E���1, we find that the elas-
tic scattering cross section is maximum,

�el,��E� = �4�/k2�g�, �11�

for any channel � �and thus any partial wave �� when
S�,��E�=−1. Furthermore, �loss,��E�, if nonvanishing, has
a maximum value of �loss,��E�=g�� /k2 when S�,��E�=0.
These limits are called the unitarity limits of the cross
sections. For s-wave collisions this limit is approached at
quite low energy given by E��2 / �2�a�

2�, where ka��1.
In order to compare with experimental data the par-

tial rate coefficients must be summed over partial waves
and thermally averaged over the distribution of relative
collision velocities at temperature T. This defines the
total rate coefficients Kel,q1q2

�T� and Kloss,q1q2
�T� when

the atoms are prepared in states q1 and q2, respectively.
Often the temperatures are sufficiently small that only
the s-wave entrance channel contributes.

3. Resonance scattering

The idea of resonance scattering in atomic and mo-
lecular systems has been around since the earliest days
of quantum physics, as described in the Introduction. A
conventional “resonance” occurs when the phase shift
changes rapidly by �� over a relatively narrow range of
energy due to the presence of a quasibound level of the
system that is coupled to the scattering state of the col-
liding atoms. Such a resonance may be due to a quasi-
bound level trapped behind a repulsive barrier of a
single potential or may be due to some approximate
bound state which has a different symmetry and poten-
tial from that of the colliding atoms. The former is com-
monly known as a shape resonance, whereas the latter is
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often called a Feshbach resonance, in honor of Herman
Feshbach, who developed a theory and a classification
scheme for resonance scattering phenomena in the con-
text of nuclear physics �Feshbach, 1958, 1962�. We will
follow here Fano’s configuration interaction treatment
of resonant scattering �Fano, 1961�, which is common in
atomic physics. A variety of treatments of the two-body
physics of resonances in the context of ultracold Bose
gases has been given by Timmermans et al. �1999�, Duine
and Stoof �2004�, Góral et al. �2004�, Marcelis et al.
�2004�, and Raoult and Mies �2004�.

We first consider the standard scattering picture away
from any collision threshold defined by a two-channel
Hamiltonian H. Assume that we can describe our sys-
tem to a good approximation by two uncoupled “bare”
channels, as schematically shown in Fig. 1. One is the
open background scattering channel |bg� with scattering
states �E�=�bg�R ,E��bg� labeled by their collision en-
ergy E. The other is the closed channel �c� supporting a
bound state �C�=�c�R��c� with eigenenergy Ec. The
functions �c�R� and �bg�R ,E� are the solutions to Eq.
�3� for the background potential Vbg�R� and the closed
channel potential Vc�R�, respectively. Here �c�R� is nor-
malized to unity. The scattering in the open channel is
characterized by a background phase shift �bg�E�. When
the Hamiltonian coupling W�R� between the two chan-
nels is taken into account, then the two states become
mixed or dressed by the interaction, and the scattering
phase picks up a resonant part due to the bound state
embedded in the scattering continuum,

��E� = �bg�E� + �res�E� , �12�

where �res�E� takes on the standard Breit-Wigner form
�Mott and Massey, 1965; Taylor, 1972�,

�res�E� = − tan−1� 1
2
��Ec�

E − Ec − �E�Ec�
� . �13�

The interaction W�R�, which vanishes at large R, deter-
mines two key features of the resonance, namely, its
width,

��E� = 2��	C�W�R��E��2, �14�

and its shift �E to a new position at Ec+�E�E�,

�E�E� = P�
−�

� �	C�W�R��E���2

E − E�
dE�, �15�

where P implies a principal part integral, which includes
a sum over the contribution from any discrete bound
states in the spectrum of the background channel. When
the resonance energy is not near the channel threshold,
it is normally an excellent approximation to take the
width and shift as energy-independent constants, ��Ec�
and �E�Ec�, evaluated at the resonance energy Ec, as in
Eq. �13�. The resonance phase changes by �� when E
varies over a range on the order of � from below to
above resonance.

The essential difference between conventional and
threshold resonance scattering is that if Ec is close to the
open channel threshold at E=0, the explicit energy de-
pendence of the width and shift become crucial �Bohn
and Julienne, 1999; Marcelis et al., 2004; Julienne and
Gao, 2006�,

�res�E� = − tan−1� 1
2
��E�

E − Ec − �E�E�
� . �16�

The threshold laws for the s-wave width and shift as k
→0 are

1
2��E� → �kabg��0, �17�

Ec + �E�E� → E0, �18�

where �0 and E0 are E-independent constants. Since
��E� is positive definite, �0 has the same sign as abg.
Combining these limits with the background phase prop-
erty, �bg�E�→−kabg, and, for the sake of generality, add-
ing a decay rate � /� for the decay of the bound state
into all available loss channels give in the limit of k→0

ã = a − ib = abg +
abg�0

− E0 + i��/2�
. �19�

The unique role of scattering resonances in the ultra-
cold domain comes from the ability to tune the thresh-
old resonance position E0 through zero by varying either
an external magnetic field with strength B or optical
field with frequency �.

Both magnetically and optically tunable resonances
are treated by the same theoretical formalism given
above, although the physical mechanisms determining
the coupling and tuning are quite different. In the case
of a magnetically tunable resonance, the channel can of-
ten be chosen so that � is zero or small enough to be
ignored, whereas optical resonances are always accom-
panied by decay processes � due to decay of the excited
state. The resonance strength �0 is fixed for magnetic
resonances, but �0�I� for optical resonances can be
turned off and on by varying the laser intensity I. It may
also be possible to gain some control over �0 using a
combination of electric and magnetic fields �Marcelis
et al., 2008�.

In the case of a magnetically tunable resonance, there
is a difference ��=�atoms−�c between the magnetic mo-
ment �atoms of the separated atoms and the magnetic
moment �c of the bare bound state �C�. Thus, the energy
Ec of the state �C� relative to the channel energy of the
separated atoms,

Ec = ���B − Bc� , �20�

can be tuned by varying the magnetic field, and Ec is
zero at a magnetic field equal to Bc. Then, given that �
=0, the scattering length takes on the simple form given
in Eq. �1�,
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a�B� = abg − abg�/�B − B0� , �21�

where

� = �0/�� and B0 = Bc + �B �22�

are the width and the position of the singularity in the
scattering length, shifted due to the interaction bet-
ween the closed and open channels by an amount �B
=−�E /��. Note that � has the same sign as �� /abg. Fig-
ure 2 schematically shows the scattering length near the
point of resonance B0.

The complex scattering length of an optically tunable
resonance at laser frequency � includes the collisional
loss due to excited state decay �Fedichev, Kagan, et al.,
1996; Bohn and Julienne, 1999�,

ã��,I� = abg +
abg�0�I�

h�� − �c − ���I�� + i��/2�
, �23�

where the optically induced width �0�I� and shift ���I�
are linear in I, and �c represents the frequency of the
unshifted optical transition between the excited bound
state and the collisional state of the two atoms at E=0.

Whenever bound state decay is present, whether for
magnetically or optically tunable resonances, Eq. �19�
shows that resonant control of the scattering length,

a = abg − ares
�E0

E0
2 + ��/2�2 , �24�

is accompanied by collisional loss given by

b =
1
2

ares
�2

E0
2 + ��/2�2 . �25�

The resonant length parameter

ares = abg�0/� �26�

is useful for defining the strength of an optical resonance
�Bohn and Julienne, 1997; Ciuryło et al., 2005� or any
other resonance with strong decay �Hutson, 2007�. Fig-
ure 6 gives an example of such a resonance. The scatter-
ing length has its maximum variation of abg±ares at E0
= ±� /2, where b=ares. Resonances with ares� �abg� only
allow relatively small changes in scattering length, yet b
remains large enough that they are typically accompa-
nied by large inelastic rate coefficients. On the other
hand, if ares� �abg�, losses can be overcome by using large
detuning since the change in scattering length is a−abg

=−ares�� /E0� when �E0���, whereas b / �a−abg�=
1
2 �� /E0�

�1.
The resonance length formalism is quite powerful. By

introducing the idea of an energy-dependent scattering
length �Blume and Greene, 2002; Bolda et al., 2002� it
can be extended to Feshbach resonances in reduced di-
mensional systems such as pancake or cigar-shaped op-
tical lattice cells �Naidon and Julienne, 2006�.

While this discussion has concentrated on resonant
scattering properties for E	0, the near-threshold reso-
nant properties of bound Feshbach molecules for energy
E
0 are important aspects of Feshbach physics �see Fig.
2 and Köhler et al. �2006��. In particular, as the bound

state becomes more deeply bound, the closed channel
character of the bound state increases and the binding
energy Eb is no longer described by the universal ex-
pression in Eq. �2�. The dressed or true molecular bound
state of the system with energy −Eb is a mixture of
closed and background channel components,

��b�R�� = 
Z�c�R��c� + �bg�R��bg� , �27�

where 0�Z�1 represents the fraction of the eigenstate
��b�R�� in the closed channel component �Duine and
Stoof, 2003�. Unit normalization of ��b�R�� ensures that
���bg�R��2dR=1−Z. Since the variation of the energy
−Eb with a parameter x of the Hamiltonian satisfies the
Hellman-Feynmann theorem ��−Eb� /�x= 	�b��H /�x��b�,
it follows from Eq. �27� that

Z = ��− Eb�/�Ec = ��b/�� . �28�

Here ��b=�Eb /�B=�atoms−�b is the difference between
the magnetic moment of the separated atoms and the
magnetic moment �b of the dressed molecular eigen-
state. Since ��b vanishes in the limit B→B0, where Eb
→0 according to the universality condition in Eq. �2�,
then Z vanishes in this limit also. Section II.C.5 develops
more specific properties and conditions for Eb and Z in
this limit.

B. Basic molecular physics

Most atoms that can be trapped at ultracold tempera-
tures have ground S states with zero electronic orbital
angular momentum �L=0� as for alkali-metal or
alkaline-earth-metal atoms. The collision between two
atoms is controlled by the electronic Born-Oppenheimer
interaction potential�s� between them. All potentials are
isotropic for the interaction of two S-state atoms. We
restrict our discussion of molecular physics to such cases.
Figure 7 shows as an example the 1�g

+ and 3�u
+ potentials

for two ground state 2S Li atoms, which are analogous to

FIG. 6. �Color online� Scattering length for an optically tun-
able Feshbach resonance as a function of laser tuning �−�0.
The lengths a and b are defined in Eqs. �24� and �25�. Here
abg=5.29 nm, �0 /h=21 MHz at I=500 W/cm2, ares=5.47 nm,
and � /h=20 MHz. Numerical values for the strength and spon-
taneous linewidth of the resonance are typical for 87Rb and are
taken from Fig. 1 of Theis et al., 2004.
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the similar potentials for the H2 molecule or other
alkali-metal atoms. The superscripts 1 and 3 refer to sin-
glet and triplet couplings of the spins of the unpaired
electrons from each atom, i.e., the total electron spin S
=S1+S2 has quantum numbers S=0 and 1. The � refers
to zero projection of electronic angular momentum on
the interatomic axis for the S-state atoms, and g �u� re-
fers to gerade �ungerade� electronic inversion symmetry
with respect to the center of mass of the molecule. The
g �u� symmetry is absent when the two atoms are not of
the same species.

The Born-Oppenheimer potentials are often available
from ab initio or semiempirical sources. When R is suf-
ficiently small, typically less than Rex�1 nm for alkali-
metal atoms, electron exchange and chemical bonding
effects determine the shape of the potentials. For R
�Rex, the potentials are determined by the long-range
dispersion interaction represented by a sum of second-
order multipolar interaction terms.

1. van der Waals bound states and scattering

Many aspects of ultracold neutral atom interactions
and of Feshbach resonances, in particular, can be under-
stood qualitatively and even quantitatively from the
scattering and bound state properties of the long-range
van der Waals potential. The properties of this potential
relevant for ultracold photoassociation spectroscopy
have been reviewed by Jones et al. �2006�. Its analytic
properties are discussed by Mott and Massey �1965�,
Gribakin and Flambaum �1993�, and Gao �1998b, 2000�.

In the case of S-state atoms, the leading term in the
long-range part of all Born-Oppenheimer potentials for
a given atom pair has the same van der Waals potential

characterized by a single C6 coefficient for the pair. Con-
sequently, all q1q2 spin combinations have the long-
range potential

V��R� = −
C6

R6 +
�2

2�

��� + 1�
R2 . �29�

A straightforward consideration of the units in Eq. �29�
suggests that it is useful to define length and energy
scales,

RvdW =
1
2
�2�C6

�2 �1/4

and EvdW =
�2

2�

1

RvdW
2 . �30�

Gribakin and Flambaum �1993� defined an alternative
van der Waals length scale which they called the mean
scattering length,

ā = �4�/��1/4�2�RvdW = 0.955 978 . . . RvdW, �31�

where ��x� is the gamma function. A corresponding en-

ergy scale is Ē=�2 / �2�ā2�=1.09 422. . .EvdW. The param-
eter ā occurs frequently in formulas based on the van
der Waals potential. Table I gives the values of RvdW and
EvdW for several cases. Values of C6 for other systems
are tabulated by Tang et al. �1976�, Derevianko et al.
�1999�, and Porsev and Derevianko �2006�.

The van der Waals energy and length scales permit a
simple physical interpretation �Julienne and Mies, 1989�.
A key property for ultracold collisions is that C6 /R6 be-
comes large compared to the collision energy E when
R
RvdW. Thus, the wave function for any partial wave
oscillates rapidly with R when R
RvdW since the local
momentum �k�R�=
2��E−V�R�� becomes large com-
pared to the asymptotic �k. On the other hand, when
R	RvdW, the wave function approaches its asymptotic
form with oscillations on the scale determined by the
long de Broglie wavelength of the ultracold collision.
The energy scale EvdW determines the nature of the con-
nection between the long- and short-range forms of the
wave function. The de Broglie wavelength �=2��RvdW�
for E=EvdW. When E�EvdW so that ��RvdW, a WKB
connection cannot be made near RvdW between the
asymptotic s wave and the short-range wave function
�see Fig. 15 of Jones et al. �2006��. Consequently, the
quantum properties of the collision are manifest for E

EvdW.

The van der Waals length also characterizes the extent
of vibrational motion for near-threshold bound state.
The outer turning point for classical motion for all low �
bound states is on the order of RvdW. The wave function
for �=0 oscillates rapidly for R
RvdW and decays expo-
nentially as e−kbR for R�RvdW, where �2kb

2 / �2�� is the
binding energy. The only case where the wave function
extends far beyond RvdW is that of the last s-wave bound
state for the case of the universal halo molecule, where
a�RvdW �see Secs. II.A and V.B.2�.

The van der Waals potential determines the interac-
tion over a wide zone between RvdW and the much
smaller Rex where chemical forces become important.
Thus, near-threshold bound and scattering state proper-
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FIG. 7. �Color online� Molecular potentials V�R� /h vs R of the
two electronic states of Li2 that correlate with two separated
2S atoms. The inset shows an expanded view of the long-range
s-wave potentials of 6Li at B=0, indicating the five hyperfine
states of the separated atoms �see Fig. 5� for which the total
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tential.
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ties are determined to a large extent by the long-range
van der Waals potential. The effect of short range is then
contained within the phase of the wave function or,
equivalently, the logarithmic derivative �Moerdijk and
Verhaar, 1994; Vogels et al., 2000�. More precisely, for
any Rz satisfying Rex
Rz�RvdW so that k�Rz��k, the
wave function phase is nearly independent of E and al-
most the same for all near-threshold bound or scattering
states. In fact, the phase is nearly independent of partial
wave � as well since the centrifugal potential is typically
small compared to the van der Waals potential for such
an Rz. Using this phase as a boundary condition for
propagating the wave function to large R in the
asymptotic domain determines the energy-dependent
scattering phase ���E� and bound state energies. In fact
the phase of the wave function in the zone Rex
Rz
�RvdW is uniquely related to the s-wave scattering
length �Gao, 1998a�. Consequently, to a good approxi-
mation the near-threshold bound states and scattering
properties for all low partial waves are determined by
the s-wave scattering length, the C6 constant, and the
reduced mass �Gao, 2001�.

Gao �2000� worked out the energies En,� of the bound
states of all partial waves for a van der Waals potential
as a function of the s-wave scattering length, where n
=−1,−2, . . . is the vibrational quantum number and � is
the rotational quantum number of the bound state. He
showed that the energies of weakly bound states have a
��=4 periodicity. Figure 8 shows bound state energies
as a function of � for two values of a. In the left panel
a= ±� so there is a s-wave bound state with E=0. The
figure shows that for �=4 there is also bound state with
E /EvdW=0. In fact Gao �2000� showed for �=8,12, . . .
that there will be a bound state at zero energy as well.
The right panel of Fig. 8 shows that when a= ā there is a
bound state at zero energy for �=2. There will also be a
bound state at zero energy for �=6,10, . . ..

Figure 8 can also be used to define the concept of
“energy bins” in which, regardless of the value of a,

there must be a bound state. Bins are most easily de-
fined by starting from a case with a bound state at zero
binding energy. By changing the short-range logarithmic
derivative its binding energy can be increased or its en-
ergy lowered and at some point the binding energy is so
large that a new bound state appears at zero binding
energy. This is exactly the situation shown in Fig. 8�a� for
s and g waves. In other words, for s waves there must be
a n=−1 bound state between −39.5EvdW and 0EvdW,
while for g waves there must be a n=−1 bound state
between −191EvdW and 0EvdW. The n=−2 s-wave bound

TABLE I. Characteristic van der Waals scales RvdW and EvdW for several atomic species �1 amu
=1/12 mass of a 12C atom, 1 a.u.=1Eha0

6 where Eh is a hartree and 1 a0=0.052 917 7. . . nm�.

Species
Mass
�amu�

C6
�a.u.�

RvdW
�a0�

EvdW/kB
�mK�

EvdW/h
�MHz�

6Li 6.0151223 1393.39a 31.26 29.47 614.1
23Na 22.9897680 1556b 44.93 3.732 77.77
40K 39.9639987 3897b 64.90 1.029 21.44
40Ca 39.962591 2221c 56.39 1.363 28.40
87Rb 86.909187 4698d 82.58 0.2922 6.089
88Sr 87.905616 3170c 75.06 0.3497 7.287
133Cs 132.905429 6860e 101.0 0.1279 2.666

aYan et al., 1996.
bDerevianko et al., 1999.
cPorsev and Derevianko, 2002.
dvan Kempen et al., 2002.
eChin, Vuletić et al., 2004.
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FIG. 8. �Color online� Bound state energies of the last vibra-
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text. Adapted from Gao, 2000.
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state appears between −272EvdW and −39.5EvdW. Figure
8�b� can similarly be used to define the bins for other
waves.

When the scattering length is large compared to ā and
positive, a simple expression for the van der Waals cor-
rection to the binding energy of the last s-wave bound
state can be worked out �Gribakin and Flambaum,
1993�,

E−1,0 = − �2/�2��a − ā�2� . �32�

The universal formula in Eq. �2� only applies in the limit
that a� ā and �E−1,0��EvdW. Gao �2004� worked out
higher order corrections to the binding energy due to
the van der Waals potential, which can be recast as

E−1,0 = −
�2

2��a − ā�2�1 +
g1ā

a − ā
+

g2ā2

�a − ā�2 + ¯ � .

�33�

Here g1=��1/4�4 /6�2−2=0.9179. . . and g2= �5/4�g1
2−2

=−0.9468. . . are constants.
Similarly, the effective range of the potential in Eq. �5�

is also determined from the van der Waals potential,
given the s-wave scattering length �Gao, 1998a; Flam-
baum et al., 1999�,

r0 =
��1/4�4

6�2 ā�1 − 2
ā

a
+ 2� ā

a
�2� , �34�

where ��1/4�4 / �6�2��2.9179. When a� ā, this simplifies
to r0=2.9179ā. Note that r0 diverges as a→0.

The energy levels of the van der Waals potential are
not exact due to the slight influence from the actual
short-range potential and extremely long-range retarda-
tion corrections. They are, nevertheless, relatively accu-
rate guides to the expected energy spectrum for real
molecules. For example, when the scattering length is
slightly larger than ā, which corresponds to Fig. 8�b� with
all bound states shifted to slightly more positive ener-
gies, the d-wave bound state becomes a shape reso-
nance, that is, a decaying quasibound state with E	0
trapped behind the d-wave centrifugal barrier. For 23Na
and 87Rb the experimentally observed scattering length
is 10–20 % larger than ā and, indeed, in both cases a
d-wave shape resonance has been observed under vari-
ous circumstances �Boesten et al., 1997; Samuelis et al.,
2000; Buggle et al., 2004; Thomas et al., 2004�. Similarly,
a p-wave shape-resonance occurs when a is slightly
larger than 2ā as for 40K �DeMarco et al., 1999� and
171Yb �Kitagawa et al., 2008�. In addition Kitagawa et al.
�2008� showed how the scattering length and binding en-
ergies of the last few bound states for the single poten-
tial of the Yb+Yb interaction are related as the reduced
mass is changed using different isotopic combinations of
Yb atoms. The scattering length and binding energies
can be “tuned” over a wide range by choosing different
pairs of atoms among the seven stable isotopes of Yb.

The ��=4 characteristic of van der Waals potentials
also has practical consequences for ultracold scattering.

For 85Rb the scattering length has been found to be
large compared to RvdW and a g-wave shape resonance
has been observed �Boesten, Tsai, et al., 1996�. For 133Cs
the scattering length is large compared to RvdW, and nu-
merous g-wave bound states with binding energies much
smaller than EvdW were observed by Chin, Vuletić, et al.
�2004� at low magnetic field. In fact, some of these
bound states appear as magnetic Feshbach resonances in
the collision of two Cs atoms. Recently, a weakly bound
l=8 or l-wave state has been observed as well �Mark,
Ferlaino, et al., 2007�.

2. Entrance- and closed channel dominated resonances:
Resonance strength

The van der Waals theory is useful for characterizing
and classifying the basic properties of the resonances
discussed in Sec. II.A.3 by expressing lengths in units of

ā and energies in units of Ē �see Eq. �31��. The numera-
tor of the resonant term in Eq. �19� defines a resonance
strength parameter to be abg�0, where �0=��� �see Eq.
�22��. It is helpful to define a dimensionless resonance
strength parameter sres to be

sres = rbg
�0

Ē
=

abg

ā

���

Ē
, �35�

where rbg=abg/ ā is the dimensionless background scat-
tering length. The sign of sres is always positive. The
resonance phase in Eq. �16� is determined by the tunable
resonance position and the resonance width and shift. In
the limit E→0, both the width

1
2��E� = �kā��Ēsres� �36�

and the shift �Góral et al., 2004; Julienne and Gao, 2006�

�E =
1 − rbg

1 + �1 − rbg�2 �Ēsres� �37�

are proportional to Ēsres. Section II.B.5 describes widths
and shifts for some typical resonances. Sections
II.C.3–II.C.5 give additional analytic properties of
threshold scattering and bound states associated with
Feshbach resonances and show how Eq. �37� can be de-
rived.

The strength parameter sres allows us to classify
Feshbach resonances into two limiting cases. Stoll and
Köhler �2005� and Köhler et al. �2006� used �=1/sres to
do this. When sres�1, the resonance is called an en-
trance channel dominated resonance. Here the near-
threshold scattering and bound states have the spin char-
acter of the entrance channel for detuning E0 over a
large fraction of the width �0 and thus for B−B0 over a
large fraction of the resonance width �. In this regime,
the resonance can be well modeled by the B-dependent
scattering length of Eq. �1�. The bound state is universal
with Z�1 �see Eq. �27�� over this large detuning range
and with a binding energy well approximated by Eq. �2�.
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Resonances of this type have the largest resonance
width � and are conventionally called “broad reso-
nances.”

Resonances with sres�1 are called closed channel
dominated resonances. Here the near-threshold scatter-
ing and bound states have the spin character of the en-
trance channel only over a small fraction of the width �0
near E0=0 and thus over a small fraction of the reso-
nance width � near B=B0. A universal bound state only
exists over this small detuning range. Thus, the closed
channel fraction Z is only small near B=B0 and is near
unity over a wide detuning range away from B=B0. Such
resonances need to be modeled by a coupled-channel
description. Resonances of this type often have a small
width � and are conventionally called “narrow reso-
nances.”

It should be emphasized that the conventional use of
“broad” or “narrow” resonances referring to those that
can or cannot be modeled by single channel model is not
rigorously defined. Exceptions exist where resonances
with apparently broad widths are actually closed channel
dominated. The terms introduced here, entrance and
closed channel dominances, better reflect the nature of
the near-threshold states over a detuning range on the
order of the width � and can be unambiguously assigned
to a resonance by evaluating sres.

Section II.B.5 illustrates the differences between en-
trance and closed channel dominated resonances by giv-
ing specific examples of such resonances. Section II.C.5
develops a simple model for the bound states for any
type of resonance and shows that the norm Z of the
closed channel part vanishes in the limit that E0→0 near
the point of resonance B0 even for closed channel domi-
nated resonances. Szymanska et al. �2005� discussed in
detail the implication of the distinction between open
and closed channel dominances for the modeling of
many-body systems, a topic that is beyond the scope of
this review.

The Appendix shows the wide range of resonance
strengths sres and widths � observed for various alkali
atom resonances. Broad resonances with � larger than
�1 G tend to have sres	1 and thus be entrance channel
dominated ones. Narrow resonances with � smaller than
�1 G tend to have sres
1 and thus be closed channel
dominated ones. A notable exceptions is the 7Li 737 G
resonance with sres
1 that is very broad yet tends to-
ward being closed channel dominated �see Sec. II.B.5�.

Equation �36� allows us to address the question
whether a sharp resonance feature appears at small but
finite collision energy above threshold. A condition for
having a sharp resonance is that the width 1

2��E� should
be smaller than the collision energy E. It is convenient
to rewrite Eq. �36� as 1

2��E�= �sres /kā�E. For an entrance
channel dominated resonance with sres�1 and kā
1 or

E
 Ē, it follows that 1
2��E�	E. Thus, there can be no

sharp resonance features evident in the above-threshold
phase ��E ,B� of an entrance channel dominated reso-

nance when E
 Ē. A sharp resonance feature can only

appear when E� Ē. Nygaard et al. �2006� illustrated this
case for a resonance involving 40K atoms. On the other
hand, for a closed channel dominated resonance with
sres�1 a sharp resonance feature in ��E ,B� with
1
2��E��E can appear immediately above threshold.

3. Coupled-channel picture of molecular interactions

While many insights can be gained from the proper-
ties of the long-range van der Waals potential, actual
calculations require taking into account the full molecu-
lar Hamiltonian, including not only the full range of the
Born-Oppenheimer potentials but also the various spin-
dependent couplings among them. In general, the poten-
tial should be viewed as a spin-dependent potential ma-
trix, the elements of which account for the interaction
among the various spin states of the atoms. The wave
function for atoms prepared in channel � can be written
as a coupled-channel expansion in the separated atom
spin basis described in Sec. II.A.1 �Mott and Massey,
1965; Stoof et al., 1988; Gao, 1996; Mies et al., 2000; Hut-
son et al., 2008�,

����R,E�� = �
�

�������R,E�/R . �38�

The allowed states ��� in this expansion are those that
have the same projection quantum number M=m1+m2
+m� �see Sec. II.A.1�. In addition parity conservation
implies that all partial waves �� in the expansion are
even if �� is even and odd if �� is odd.

Substituting Eq. �38� in the Schrödinger equation
gives the coupled-channel equations for the vector
��R ,E�,

−
�2

2�

d2��R,E�
dR2 + V�R���E,R� = E��E,R� . �39�

The solutions to these coupled equations give the bound
and scattering states of the interacting atoms. The po-
tential matrix V�R� gives the matrix elements of the
Hamiltonian between the channel basis sets. It takes on
the following form in the asymptotic spin basis:

V�� = �E� + �2����� + 1�/�2�r2����� + Vint,���R� . �40�

The interaction matrix Vint�R� contains the electronic
Born-Oppenheimer potentials discussed in Sec. II.B and
the relativistic electron spin-dependent interactions,

Vint�R� = Vel�R� + Vss�R� . �41�

For collisions of S state atoms the term Vel�R� repre-
sents the strong isotropic electronic interaction that is
diagonal in � and m� but off diagonal in the atomic chan-
nel quantum numbers q1q2. The diagonal elements Vel,��
vary at long range as the van der Waals potential �see
Fig. 7�. It has normally been unnecessary to include
small retardation or nonadiabatic corrections to long-
range molecular potentials in order to fit experimental
data on ground state collisions within their experimental
error �see, e.g., Kitagawa et al. �2008��. The off-diagonal
elements Vel,��, where ���, decrease exponentially at
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large R as the exchange potential becomes small com-
pared to the atomic hyperfine splitting for R	Rex. The
Vel coupling is responsible for elastic scattering and in-
elastic spin-exchange collisions and gives rise to the larg-
est resonance strengths.

The term Vss�r� in Eq. �41� represents weak relativistic
spin-dependent interactions. These include the spin-spin
dipole interaction �Stoof et al., 1988; Moerdijk et al.,
1995� and the second-order spin-orbit interaction �Ko-
tochigova et al., 2000�, important for heavy atoms �Leo
et al., 2000�. The two contributions are both anisotropic
and are off diagonal in both q1q2 and �. Thus, Vss�r�
couples different partial waves. At long range Vss�r� is
proportional to �2 /R3, where �=1/137.0426 is the fine
structure constant. This anisotropic potential only con-
tributes diagonal terms for partial waves ��1 and does
not contribute to the potential Vint,���R� when � repre-
sents an s-wave channel. The Vss�r� coupling is respon-
sible for weak inelastic relaxation and normally gives
rise to small resonance strengths.

The Born-Oppenheimer potentials are normally never
known with sufficient accuracy to permit accurate calcu-
lations of threshold scattering properties. Consequently,
it is usually necessary to vary the short-range potentials
over some range of R
Rex to calibrate theoretical mod-
els so that they reproduce measured threshold bound
state or scattering data. In some cases the van der Waals
coefficients are accurately known, whereas in other
cases they need to be varied to fit the data as well. Once
this is done, coupled-channel theoretical models typi-
cally are robust and predictive of near-threshold colli-
sion and bound state properties. Some examples of high
quality theoretical models based on fitting Feshbach
resonance data are given by van Abeelen and Verhaar
�1999a� for 23Na, Chin et al. �2000� and Leo et al. �2000�
for 133Cs, Marte et al. �2002� for 87Rb, Bartenstein et al.
�2005� for 6Li, Werner et al. �2005� for 52Cr, and Ferlaino
et al. �2006� and Pashov et al. �2007� for 40K 87Rb. Infor-
mation on other models can be found in the references
listed in Secs. III.B and III.C.

4. Classification and molecular physics of Feshbach resonances

The previous sections have laid the groundwork for
classifying and understanding the properties of Fesh-
bach resonance states in ultracold collisions of ground
S-state atoms. This classification can be made according
to the quantum numbers �q1q2�M �qc�c, where
�q1q2�M characterize the entrance channel �see Sec.
II.A.1� and �qc�c characterize the “bare” closed channel
bound state that gives rise to the resonance. Such a
bound state has the same M as the entrance channel.
Some possible choices for quantum numbers comprising
the composite qc are given below.

It is important to note that �c need not be the same as
the entrance channel partial wave �. Parity conservation
ensures that ��−�c� is even. In the case of two L=0 at-
oms the Vel term is isotropic and only gives rise to non-
zero matrix elements when �c=�. On the other hand, �c

can be different from � for the anisotropic Vss term. We
are primarily concerned with entrance channel s waves,
although some resonances with p-wave �e.g., 6Li, 40K,
and 133Cs� or d-wave �52Cr� entrance channels are
known in the �K domain.

We find that it is convenient to designate resonances
according to the value of the closed channel bound state
quantum number �c, as shown in Table II. If �c is even
�odd�, we assume an s- �p-� wave entrance channel un-
less otherwise stated. The strongest resonances with the
largest widths � are s-wave resonances with �=�c=0 and
are due to the Vel term in the Hamiltonian. A number of
weak resonances with small � are known where the
s-wave entrance channel is coupled through the Vss term
to bound states with even �c such as 2 or 4. Following
Table II the latter are designated as d- or g-wave reso-
nances, respectively. For example, d-wave resonances
are known for 87Rb �Marte et al., 2002� and g-wave reso-
nances for Cs �Chin, Vuletić, et al., 2004�. For s-wave
entrance channels the g-wave resonances are only pos-
sible due to second-order coupling in Vss. Entrance
channel p waves can be coupled to resonant bound
states of odd �c=1 or 3, although the latter would tend
to be quite weak and rarely observed.

The long-range potential Vel,���R� is diagonal for the
interaction of two ground state alkali-metal atoms for all
combinations q1q2 of Zeeman sublevels, and all channels
have the same van der Waals coefficient C6. Conse-
quently each channel will have a spectrum of vibrational
and rotational levels for a van der Waals potential as
shown in Fig. 8. The n=−1,−2, . . . levels associated with
closed spin channels �� can become scattering reso-
nances for entrance channel � if they exist near energy
E�. The value of n can be one of the values comprising
the set of approximate quantum numbers qc. Some ex-
amples of the use of n in resonance classification are
given by Marte et al. �2002� for 87Rb �see Fig. 14� or
Köhler et al. �2006� for 85Rb. The vibrational quantum
number can be either n, counting down from the top, or
v, counting up from the bottom of the well.

TABLE II. Classification of magnetic Feshbach resonances in
collisions of ultracold atoms. The type of the resonance is la-
beled by the partial wave �c of the closed channel bound state
rather than the entrance channel partial wave �. Almost all
cases known experimentally have �= 0 or 1. Note that identical
bosons �fermions� in identical spin states can only interact with
even �odd� partial waves. All other cases permit both even and
odd partial waves.

Type � �c

s-wave resonance 0, 2,… 0
p-wave resonance 1, 3,… 1
d-wave resonance 0, 2,… 2
f-wave resonance 1, 3,… 3
g-wave resonance 0, 2,… 4
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The approximate spin quantum numbers in qc are de-
termined by whatever set of quantum numbers that
blocks the Hamiltonian matrix into nearly diagonal
parts. This will depend on the nature of the coupling
among the various angular momenta of the problem so
that no unique general scheme can be given. For alkali-
metal dimers the spacing between vibrational levels,
which is on the order of tens of EvdW as seen from Fig. 8,
must be compared to the spacing between the channel
energies E�. For example, in a light molecule such as
6Li2 or 23Na2 they are large compared to the atomic hy-
perfine splitting Ehf= �EI+1/2−EI−1/2� and Zeeman interac-
tions. In this case, the vibrational levels are to a good
approximation classified according to the electronic spin
coupling, S=0 or 1, of the respective 1�g

+ and 3�u
+ Born-

Oppenheimer potentials, with additional classification
according to their nuclear spin substructure. van Abee-
len and Verhaar �1999a� and Laue et al. �2002� gave an
example of such a classification for 23Na2 and Simonucci
et al. �2005� gave an example for 6Li2.

In contrast to light species, heavy species such as Rb2
or Cs2 have vibrational spacings that are smaller than
Ehf, so that near-threshold bound states of the 1�g

+ and
3�u

1 potentials are strongly mixed by the hyperfine inter-
action. The near-threshold molecular states do not cor-
respond to either S=0 or 1 but often can be character-
ized by the approximate quantum number fc, where f
= f1+ f2. As with the f1 or f2 atomic quantum numbers, fc
is not a good quantum number at large B but can be
used as a label according to the low field state with
which it adiabatically correlates. Marte et al. �2002� gave
examples of such resonance classification for 87Rb and
Chin, Vuletić, et al. �2004� and Köhler et al. �2006� do so
for 133Cs and 85Rb, respectively. Hutson et al. �2008� de-
scribed improved computational methods for calculating
the coupling between bound state levels and character-
ized a number of experimentally observed avoided
crossings �Mark, Ferlaino, et al., 2007� between Cs2 lev-
els having different approximate quantum numbers.

5. Some examples of resonance properties

We use the fermionic species 6Li to illustrate some
basic features of Feshbach resonances. Figure 5 shows
the atomic Zeeman levels. The inset of Fig. 7 shows the
five channels and the potentials V���R� at long range
needed to describe the s-wave collision of an q1=a atom
with a q2=b atom. These five channels summarized in
Table III have the same van der Waals C6 coefficient and
the same projection M=0. Due to the light mass, the last
bound state of the van der Waals potential must lie in a
“bin,” that is, 39.5EvdW/h=24.3 GHz deep.

Figure 7 shows that the last two M=0 coupled-
channel s-wave bound states for B=0 have the character
of the n=−1 or v=38 level of the 1�g

+ potential. They
have a binding energy of �1.38 GHz relative to the
separated atom energy Eab, associated with the positive
scattering length of a=45.17a0 of the S=0 singlet poten-
tial �Bartenstein et al., 2005�. The two levels have total

nuclear spin I=0 or 2 and projection mI=0, where I
=I1+I2. The next bound states below threshold are three
M=0 spin components of the v=9 level of the 3�u

+ po-
tential, far below threshold with binding energies
�24 GHz near the bottom of the n=−1 bin. These
deeply bound levels are associated with the large nega-
tive scattering length of −2140a0 for the S=1 potential
�Abraham et al., 1997; Bartenstein et al., 2005�.

Figure 9 shows how the channel energies and the en-
ergies of the last two M=0 s-wave bound states of the
6Li2 molecule vary with magnetic field. Simonucci et al.
�2005� gave a detailed description of the molecular phys-
ics of these multichannel bound states. At high B field,
Eab varies linearly with B with a slope of nearly
dEab /dB=−2�B, where �B is the Bohr magneton. Since
both bound states have S=0 character near B=0, their
magnetic moment vanishes, i.e., dEc /dB=0 near B=0.
The I=2 state crosses Eab near B=543 G, where it inter-
acts weakly with the ab entrance channel and makes a
very narrow Feshbach resonance, as shown in Fig. 11.
On the other hand, the energy of the strongly interacting
I=0 bound state changes dramatically above about
540 G and becomes nearly parallel to the energy of the

TABLE III. Separated atom channel labels for the five s-wave
M=0 channels of 6Li. The �f1f2� quantum numbers are only
exact at B=0.

� �f1f2� mf1
,mf2

ab � 1
2

1
2 � + 1

2 ,− 1
2

ad � 1
2

3
2 � + 1

2 ,− 1
2

be � 1
2

3
2 � − 1

2 ,+ 1
2

cf � 3
2

3
2 � − 3

2 ,+ 3
2

de � 3
2

3
2 � + 1

2 ,− 1
2
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FIG. 9. �Color online� Last coupled-channel bound states of
the 6Li2 dimer with M=0. The arrows indicate the locations of
the 543 and 834 G Feshbach resonances, where the binding
energy of a threshold bound state equals 0. While the low B
field I=2 1�g

+�v=38� level retains its spin character as it crosses
threshold near 543 G, the I=0 level mixes with the entrance
channel and switches near �550 G to a bound level with ab
spin character, eventually disappearing as a bound state when
it crosses threshold at 834 G.
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ab entrance channel. This state switches to S=1 charac-
ter near the 540 G crossing region and transforms into
the v=10 level of the 3�u

+ potential at higher B. This
level becomes a very weakly bound “universal” halo
state of dominantly entrance channel character above
around 650 G and does not disappear until it reaches the
Eab threshold near 834 G �Bartenstein et al., 2005�,
where it makes a very broad Feshbach resonance, shown
in Fig. 10.

Figure 10 shows the near-threshold bound and scatter-
ing state properties of the 6Li ab channel between 500
and 1200 G, while Fig. 11 shows an expanded view of
the narrow resonance near 543 G. The energy range is
typical of the ultracold domain. The two figures illus-
trate two extremes of resonance behavior. The 834 G
resonance is strongly open channel dominated with sres
=59 �see Eq. �35�� and is well represented by a universal
halo bound state of entrance channel character over a

large fraction of its width �. The 543.2 G resonance is
strongly closed channel dominated with sres=0.001. It ex-
hibits open channel character and universal behavior
only over a negligible detuning range spanning at most a
few �G when B is tuned near B0.

It is instructive to examine the wave functions for the
coupled-channel bound states with the same binding
energy near each resonance. For example, the binding
energies in Figs. 10 and 11 are �200 kHz near 700
and 543.1 G, respectively. We calculate that the projec-
tion Z on the closed channel components, Z=1−n�,
are 0.002 and 0.98 for these respective cases, where n�
=�0

���ab,ab�R��2dR is the norm of the entrance channel
component �ab,ab�R� of the bound state from the
coupled-channel expansion in Eq. �38�. The small pro-
jection Z at 700 G is in good agreement with the value
measured by Partridge et al. �2005� �see Fig. 30�. These
projections for levels with the same near-threshold bind-
ing energy illustrate the very different character of en-
trance and closed channel dominated resonances.

The width � itself does not determine whether a reso-
nance is entrance or closed channel dominated. Rather,
it is necessary to apply the criterion in Eq. �35�. A good
example of this is provided by the bosonic 7Li system,

FIG. 10. �Color online� Near-threshold bound and scattering
state properties of the 6Li ab channel. The upper panel shows
the coupled-channel scattering length vs magnetic field B using
the model of Bartenstein et al. �2005�. The double-headed ar-
row indicates the point of singularity B0 for the broad reso-
nance near 834 G, which is an entrance channel dominated
resonance with width �=300 G and sres=59 �see Secs. II.A.3
and II.B.2�. There also is a narrow resonance with a singularity
near 543 G. The lower panel shows for E
0 the energy of the
bound state �solid line� that merges with the continuum at B0.
The zero of energy at each B is the ab channel energy Eab�B�.
An energy of E /h=0.4 MHz is equivalent to E /kB=19 �K.
The universal bound state energy from Eq. �2� is indistinguish-
able on the scale of this graph from the coupled-channel bound
state energy. The nearly vertical dotted line shows the energy
of the bare bound state Ec�B� of 1�g

+�v=38,I=0� character that
crosses threshold at Bc near 540 G. The shaded contour plot
for E	0 shows sin2 ��E ,B�. The broad light-colored region
near the point of resonance indicates the region where sin2 �
�1 and the cross section is near its maximum value limited by
the unitarity property of the S matrix. Since sres�1 the width
��E� in Eq. �36� is larger than E in the near-threshold region so
that there is no above-threshold resonance feature in the col-
lision cross section vs E.

FIG. 11. �Color online� Expanded view near 543 G of Fig. 10.
The upper panel shows the coupled-channel scattering length
vs magnetic field strength B, where the double-headed arrow
indicates the calculated point of singularity B0 for the narrow
resonance at 543.18 G with a width of �=0.10 G in excellent
agreement with the measured resonance at 543.26�10� G
�Strecker et al., 2003�. This is a closed channel dominated reso-
nance with sres=0.001. The lower panel shows for E
0 the
energy of the coupled-channel bound state that merges with
the continuum at B0. The dashed line shows the universal
bound state energy from Eq. �2�. Universality does not apply
for detunings over most of the width of the resonance but is
only applicable in an extremely narrow range very close to B0.
The shaded contour plot of sin2 ��E ,B� for E	0 shows a very
narrow and sharp resonance emerging above threshold with a
width ��E��E, with a linear variation of position with B and
with a very small domain of unitarity of the S matrix.
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which has a very broad resonance in the aa channel near
737 G with a width of 192 G �Khaykovich et al., 2002;
Strecker et al., 2002; Junker et al., 2008; Pollack et al.,
2009�, where a represents the state which correlates with
the |f=1, m=1� state at B=0. Because the background
scattering length is nearly two orders of magnitude
smaller for this 7Li case than for the 843 G 6Li reso-
nance, the sres parameter for the 7Li aa resonance is only
0.80 instead of 59. Consequently, this broad 7Li reso-
nance is tending toward closed channel dominance ac-
cording to our classification scheme and only has a small
region of universality spanning a few G when B is tuned
near B0. Figure 12 shows the pronounced differences
between the 6Li ab and 7Li aa resonances in spite of the
similar magnitudes of their widths �see also Sec. II.C.5�.

In order to illustrate the difference between the bare
and dressed resonance states introduced in Sec. II.A.3.
Figure 13 shows the coupled-channel bound state ener-
gies and scattering phases in the near-threshold region
for the 40K ab channel. The a and b states correlate at
B=0 with the �f= 9

2 ,m=− 9
2 � and �f= 9

2 ,m=− 7
2 � atomic

states of fermionic 40K. This resonance was observed by

Loftus et al. �2002� and Regal et al. �2003a� and has ad-
ditionally been characterized by Szymanska et al. �2005�
and Nygaard et al. �2006�. The actual eigenstates of the
dressed system �solid lines� result from the avoided
crossing of the ramping closed channel bare state energy
Ec=���B−Bc� and the last bare bound state at E−1 of
the background potential �dashed lines�. The shift in the
location of the singularity in a�B� at B0 from the thresh-
old crossing of the bare state at Bc is given from Eq.
�37�,

B0 − Bc = �rbg�1 − rbg�/�1 + �1 − rbg�2� . �42�

This same formula predicts the large difference between
B0 and Bc evident in Fig. 10 for the broad 6Li ab reso-
nance.

Finally, we give an example of resonances for a heavy
species 87Rb where classification of near-threshold
bound states using the electronic spin S=0 and 1 quan-
tum numbers is not possible. The bin size �0.240 GHz
for the last bound state is much less than the 87Rb
ground state hyperfine splitting Ehf /h=6.835 GHz so
that the last few bound states of the 87Rb2 molecule are
mixed by the hyperfine interaction. Figure 14 shows the
coupled-channel s-wave bound states calculated by
Marte et al. �2002� for channels with M=m1+m2=2, 1,
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FIG. 12. �Color online� Scattering length and entrance channel
fraction for the 6Li 834 G open channel dominated resonance
�solid lines� and the 7Li 737 G resonance �dashed lines�, which
is tending toward closed channel dominance. The narrow 6Li
resonance is not shown. The upper panel shows the scattering
length a�B� vs magnetic field strength B, whereas the lower
panel shows the norm n��B� of the entrance channel spin com-
ponent of the coupled-channel wave function. The vertical
lines indicate the location B0 of each resonance, and the hori-
zontal double arrows indicate the width � of each. The dotted
lines on the lower panel indicates the slope of n��B�=1
−Z�B� predicted near the resonance position B0 by Eq. �51� of
Sec. II.C.5. While both resonances have quite large �, the 6Li
834 G one is clearly “open channel dominated” with 1−Z�B�
remaining near unity when �B−B0� ranges over half of its
width. On the other hand, the 737 G 7Li resonance has sres
=0.80 and is tending toward being “closed channel dominated”
since 1−Z�B� drops off rapidly from unity as �B−B0� increases
from resonance, with n��B�	0.5 only for ��B−B0� /��
0.11.
Furthermore, this resonance has a universal bound state �not
shown� only over a relatively small fraction of its width, with
the calculated binding energy departing from Eq. �2� by 10%
when ��B−B0� /��=0.06.

FIG. 13. �Color online� Bound states and scattering phase near
the 40K ab 202 G resonance. The energy is between E /h
= ±40 MHz �E /kB= ±1.9 mK� where the zero of energy is
taken to be the separated atom energy of an a and a b atom.
The horizontal solid line shows EvdW/h=21 MHz. The hori-
zontal dashed line shows the last bare bound state energy E−1
of the background potential and the sloping dashed line shows
the bare resonance level with energy ���B−Bc�, where �� /h
=2.35 MHz/G. The resonance width �=7.8 G �Greiner et al.,
2003�. The solid lines for E
0 indicate the coupled-channel
dressed energies of the 10K2 molecule. Away from resonance
these approach the bare energies. The strong avoided crossing
between the two bare states leads to the shift in the point of
singularity B0 from the bare crossing at Bc. For positive ener-
gies the interference between the background and resonant
phases is evident. Since this is an open channel dominated
resonance with sres=2, no sharp resonant feature appears in
sin2 ��E ,B� vs E for 0
E
EvdW. A sharp resonance feature
only emerges when E�EvdW.
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and 0. Unlike the 6Li case in Fig. 9, there are a number
of bound states within a few GHz of threshold. The lev-
els are labeled at B=0 by the spin quantum numbers
�f1f2� of the separated atoms and the vibrational quan-
tum number n counting down from the separated atom
dissociation limit. The figure shows the last three vibra-
tional levels of the lowest �f1f2�= �11� separated atom
limit. The B=0 energy of the �12� separated atom limit is
Ehf=6.835 GHz and only the n=−4 vibrational level ap-
pears in this range. Similarly only the n=−5 level ap-
pears for the �22� separated atom limit. The closed chan-
nel dominated resonance �sres=0.17� near 1007 G in the
�11�M=2 channel has been used to make molecules in
atomic gases �Dürr, Volz, Marte, and Rempe, 2004� and
lattices �Thalhammer et al., 2006�.

C. Simplified models of resonance scattering

While coupled-channel models are valuable for under-
standing the near threshold molecular physics of scatter-
ing resonances and for highly quantitative predictive cal-
culations for a range of B field and multiple spin
channels, they can be quite complicated to set up and
use. Consequently, it is highly desirable to have simpli-
fied models that are accessible to experimental and the-
oretical researchers. Fortunately, a variety of high qual-
ity models is available, each valid over a limited domain
of energy.

The key to practical approximations for the near
threshold bound and scattering states for ultracold neu-
tral atom interactions is the separation of the length and
energy scales associated with the separated atoms, on

the one hand, and the molecular interactions, on the
other hand. The molecular interactions are character-
ized by various energy scales associated with the van der
Waals potential, the potential at Rex, or the minimum of
the potential. This scale should be compared with the
hyperfine, Zeeman, and kinetic energies of the ultracold
atoms. For ranges of internuclear separation R where
the molecular energy scale is much larger than the
atomic one, the phases and amplitudes of the coupled-
channel wave function components ��� are nearly inde-
pendent of energy and partial wave over an energy
range on the order of the atomic scale. In effect, the
short-range wave function provides an energy-
independent boundary condition for connecting to the
near-threshold asymptotic bound or scattering states,
which are strongly energy dependent. While this separa-
tion of scales can be made explicit in methods based on
long-range coupled-channel calculations �Tsai et al.,
1997; van Abeelen and Verhaar, 1999a� or multichannel
quantum defect methods �Julienne and Mies, 1989;
Burke et al., 1998; Vogels et al., 1998; Raoult and Mies,
2004; Julienne and Gao, 2006�, it remains implicit as the
basis for many other approximation schemes.

A variety of simplified treatments shows that it is suf-
ficient to use the basic framework in Sec. II.A.3 to pa-
rametrize threshold resonances in ultracold atoms. Thus,
resonances are characterized by a reduced mass �, a
background scattering length abg, a tunable position E0
selected by an external field, and an energy- and tuning-
insensitive width �0. Resonances that decay, whether by
emission of light or by relaxation to lower energy open
channels, can readily be treated by introducing the de-
cay width � �Fedichev, Reynolds, et al., 1996; Bohn and
Julienne, 1999; Köhler et al., 2005; Hutson, 2007�. The
review of Köhler et al. �2006� described how two-channel
models can be especially effective when the resonance
parameters are already known.

1. Contact potential model

The simplest approximation for resonance scattering
is to use the Fermi pseudopotential �Huang and Lee,
1957�

V�R� =
2��2

�
a�B���R�

�

�R
R , �43�

with a strength proportional to the scattering length
a�B�. This zero-range delta-function pseudopotential is
an excellent approximation for the full molecular inter-
action when k�a�B���1 and kā�1 and becomes exact in
the limit E→0. It can be used for positive or negative a,
and its phase shift is tan ��E ,B�=−ka�B�. For a	0 it
has a bound state given by the universal energy of Eq.
�2�.

If the resonance parameters abg, �, and B0 are known,
the effect of tuning near a resonance can then be fully
incorporated using a�B� from Eq. �1�. For an entrance
channel dominated resonance with sres�1, so that the
universal binding energy in Eq. �2� applies �see Eq. �32��,
the scattering length is the only parameter needed to

FIG. 14. Coupled-channel 87Rb s-wave bound states. The dot-
ted lines show the channel energies for four different entrance
channels with f1= f2=1, labeled by the projection quantum
numbers �m1 ,m2�. The bound state energies �solid lines� for
these channels are shown as a function of magnetic field B with
quantum numbers �f1f2�n assigned at B=0, where n is the vi-
brational quantum number in the f1f2 channel counting down
from the separated atom limit in that channel. A Feshbach
resonance occurs when a bound state with quantum number
M=m1+m2 crosses a dissociation threshold having the same M
�solid dots�. From Marte et al., 2002.
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treat near-threshold bound states and scattering �Köhler
et al., 2006�. However, more robust approximations are
needed since universality will only apply for detunings
that at most span a range on the order of the width �
and can be much less, depending on sres.

2. Other approximations

Although the underlying molecular physics often in-
volves a number of coupled channels, many resonances
are isolated in energy and magnetic field. Then the prop-
erties of the bare resonance level are determined by en-
ergy scales large compared to the small kinetic energies
of the ultracold domain and the level can be accurately
approximated as coming from a single bound state chan-
nel, as in the Fano treatment summarized in Sec. II.A.3.
A number of groups have developed a variety of simpli-
fied methods for characterizing the properties of ultra-
cold scattering resonances, but we cannot review this
work exhaustively or in detail. For example, Moerdijk
et al. �1995�, Timmermans et al. �1999�, and Kokkelmans
et al. �2002� introduced the standard Feshbach formalism
of separating the system into bound and scattering sub-
spaces, Q and P, to characterize magnetically tunable
resonances for ground state alkali-metal atoms. Góral
et al. �2004� used a Green’s function formalism and in-
troduced a separable potential that is chosen to accu-
rately represent the two-body scattering and bound
states of the background channel. Marcelis et al. �2004�
were especially interested in representing the case of a
large negative abg, which is relevant to the 85Rb system.
Mies et al. �2000� used the resonances of two 23Na atoms
to show how to reduce a coupled five-channel problem
to an effective two-channel problem using a Lennard-
Jones pseudopotential with the correct van der Waals
coefficient. Nygaard et al. �2006� illustrated this method
for the 40K system.

One model that shows great promise for practical and
accurate fitting of resonance data is the asymptotic
bound state model based on the work of Moerdijk et al.
�1995�. Rather than solving for the bound states of a set
of coupled equations in order to locate resonance posi-
tions, it uses an expansion in the last bound states of the
Born-Oppenheimer potentials. The model is far less
computationally demanding than full coupled-channel
calculations. Stan et al. �2004� used a simplified version
of this model to characterize measured resonances due
to the triplet molecular state in the 6Li+ 23Na system.
Recently, Wille et al. �2008� used this model to quantita-
tively characterize a number of resonances of 6Li+ 40K
that involved strong mixing of the singlet and triplet mo-
lecular states.

3. van der Waals resonance model

By introducing the van der Waals C6 coefficient as an
additional model parameter, the properties of bound
and scattering states can be extended away from their
very near-threshold domain into the domain where kā
�1 and the binding energy is much larger than EvdW or

Ē. The reason is that there is a large range of R, namely,
Rex
R
RvdW, where the potential is accurately repre-
sented as −C6 /R6 and is much larger in magnitude than
EvdW. The properties of the van der Waals potential
have been discussed in Sec. II.B.1.

Feshbach resonances are characterized by a width
��E� and shift �E�E�. These are given in the E→0 limit
by Eqs. �36� and �37�, which depend on the dimension-
less resonance strength sres and rbg. The E→0 result can
be generalized to finite energy by introducing two stan-
dard functions Cbg�E�−2 and tan �bg�E� of multichannel
quantum defect theory �MQDT� �Julienne and Mies,
1989; Mies and Raoult, 2000; Raoult and Mies, 2004�,

1
2��E� = 1

2 �̄Cbg�E�−2, �44�

�E�E� = 1
2 �̄ tan �bg�E� , �45�

where for the van der Waals background potential �Juli-
enne and Gao, 2006�

�̄

2
= �Ēsres�

1

1 + �1 − rbg�2 = �0
rbg

1 + �1 − rbg�2 �46�

is proportional to sres and is independent of energy. The
MQDT functions have the following limiting form as
E→0: Cbg�E�−2=kā�1+ �1−rbg�2� and tan �bg�E�=1−rbg.

When E� Ē, Cbg�E�−2→1 and tan �bg�E�→0. Conse-

quently, ��E�= �̄ and �E�E� vanishes when E becomes

large compared to Ē. If �rbg��1, the Cbg�E�−2 function
has a maximum as a function of E and �tan �bg�E�� has
decreased to half its E=0 value at E��2 / �2��abg− ā�2�.

The functions Cbg�E� and tan �bg�E�, as well as �bg�E�,
depend on only three parameters, C6, �, and abg �Juli-
enne and Gao, 2006�. The near-threshold phase ��E� in
Eq. �16� can be evaluated over a wide range of energy

on the order of Ē and larger from a knowledge of these
three parameters plus sres, the magnetic moment differ-
ence ��, and the resonant position B0. The sin2 ��E ,B�
function evaluated using Eqs. �44� and �45� is virtually
indistinguishable from the coupled-channel results
shown in Figs. 10–13.

4. Analytic two-channel square well model

A very simple square well model, because it is analyti-
cally solvable, can capture much of the physics of near-
threshold bound and scattering states. Bethe �1935� used
such a model to successfully explain the threshold scat-
tering of cold neutrons from atomic nuclei, where the
neutron de Broglie wavelength was very large compared
to the size of the nucleus. Kokkelmans et al. �2002� and
Duine and Stoof �2004� introduced two-channel square
well models to represent Feshbach resonances in ultra-
cold atom scattering.

Figure 15 shows the bare background and closed
channel potentials for a square well model where for
convenience of analysis we take the width of the wells to
be the van der Waals length ā. The background entrance
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channel and the closed channel are designated by |bg�
and �c�, respectively. Using a two-state coupled-channel
expansion as in Eq. �38�, ���R ,E��= �c��c�R ,E� /R
+ �bg��bg�R ,E� /R, the potential matrix in Eq. �40� is

V = ��
− Vc W

W − Vbg
� for R
 ā

�� 0

0 0
� for R	 ā .� �47�

The off-diagonal matrix element W describes the weak
coupling between the two channels.

In order to simulate a magnetically tuned Feshbach
resonance, the model parameters need to be chosen so
as to give the correct parameters for that resonance. The
well depth Vbg is chosen so that the background channel
scattering length is abg. The well depth Vc is chosen so
that the well has a bare bound state at Ec. The tuning of
the bound state as Ec=���B−Bc� can be simulated by
varying Vc linearly with the external magnetic field B.
Finally, weak coupling requires �W�� �Vbg−Vc�. The cou-
pling parameter W can then be chosen to give the right
resonance width ��E�=2kabg��� at low energies �see
Eq. �17�� using the known resonance width �. Analyti-
cally calculating the matrix element defining ��E� in Eq.
�14� relates W to � as follows:

2VcW
2/�Vbg − Vc�2 = �rbg/�1 − rbg�2���� . �48�

With the chosen parameters, the square well model
yields analytic forms for the scattering phase shift as in
Eq. �16� and the scattering length as in Eq. �1�.

The square well model also permits an analytic
evaluation of the weakly bound state below the con-
tinuum. Assuming an eigenstate ��b� exists at energy
−Eb=−�2kb

2 / �2��
0 and �abg�� ā, we get

kb =
1

abg − ā
+

�sq/2

ā�Eb + Ec�
, �49�

where �sq/2=���rbg�1−rbg�−2. Marcelis et al. �2004� de-
rived a similar result for a contact potential. Note that
when the coupling term W→0 so that �sq→0, the solu-
tions Eb=−Ec and Eb=�2 / �2��abg− ā�2� correspond to
the bare states of the square well in the closed and open
channel �for abg	 ā� as expected. Since the resonant sin-
gularity in the scattering length occurs when Eb→0, tak-
ing this limit of Eq. �49� allows us to calculate the reso-
nance energy shift �E=���B0−Bc� as

�E = �sq�1 − rbg�/2. �50�

Both Eqs. �50� and �49� can also be derived from the

van der Waals model with �sq replaced by �̄=�sq�1
+ �rbg−1�−2�. Note that �sq and �̄ are nearly the same for
�rbg��1. The modified version of Eq. �50� is equivalent to
Eqs. �37� and �42�, derived from the van der Waals
model.

Lange et al. �2009� extended the above model to pre-
cisely determine the scattering length and the resonance
parameters in the magnetic field regime where multiple
Feshbach resonances overlap.

5. Properties of Feshbach molecules

A variety of properties of Feshbach molecules can be
calculated by solving Eq. �49� for the binding energy Eb.
For example, the closed channel fraction Z of the eigen-
state can be found by differentiating Eb with respect to
Ec �see Eq. �28��. In the limit B→B0 where Eb vanishes
and a→+�, we have

Z =
1

�
�B − B0

�
� , �51�

where the dimensionless proportionality constant

� =
1
2

sres�rbg� =
rbg

2

2

�����

Ē
�52�

determines the rate at which the Feshbach molecular
state deviates from the entrance channel dominated re-
gime or, equivalently, the halo molecule regime, when B
is tuned away from B0. Equation �51� shows that having
a small closed channel fraction Z�1 requires the mag-
netic field to be close to resonance, �B−B0������. Figure
12 of Sec. II.B.5 compares 1−Z from Eq. �51� for the
respective open and closed channel dominated 6Li
834 G and 7Li 737 G resonances.

For open channel dominated resonances, where sres
�1, it is usually true that �rbg��1 and ��1, and Z re-
mains small over a large fraction of the resonance width
�. The bound state wave function takes on primarily
entrance channel character over this range �see the ex-
amples of the 6Li 834 G or 40K 202 G resonances in Fig.
16�. Closed channel dominated resonances have sres�1
and small ��1. Consequently, Z remains small only
over a small range of the resonance �see the example of

0

-Vbg

-V
C

a

entrance channel
en

er
gy

atomic
separation R

closed channel

E
C

FIG. 15. �Color online� Two-channel square well model of a
magnetic Feshbach resonance. The potential for the bare en-
trance background channel has a well depth −Vbg. The spatial
width is chosen to be ā so as to simulate the length scale of a
van der Waals potential. The potential for the bare closed
channel has a well depth −Vc relative to the separated atoms
and is infinite for R	 ā. The value of Vbg is chosen so that the
background scattering length is abg. The value of Vc is chosen
so that there is a bound state with energy Ec near E=0. We
assume that this energy varies with magnetic field as Ec
=���B−Bc�, where �� is a relative magnetic moment and Ec
=0 at B=Bc.
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the 87Rb 1007 G or 6Li 543 G resonances in Fig. 16�. A
small �Rb=0.09 for the Rb 1007 G resonance implies
that the molecular state is entrance channel dominated
only within �9% of the resonance width. In the Appen-
dix � is listed for several other resonances.

Expanding Eq. �49� at small binding energies, the mo-
lecular binding energy has the following form in the
threshold limit:

Eb = �2/�2��a − ā + R*�2� , �53�

where R*= ā /sres. This expression applies in the limit
that a� ā and a�4R*. The binding energy Eb shows two
corrections to the universal 1 /a2 threshold law in Eq. �2�.
One is the finite range correction ā shown in Eq. �32�;
the other one, R*, introduced by Petrov �2004�, is unique
to Feshbach resonances. The correction R* is negligibly
small for open channel dominated resonances with
sres�1. Closed channel dominated resonances can have
large R*� ā. Such resonances only have a regime with a
bound state of predominant entrance channel character
near B0 where a�4R*. This condition is consistent with
the one given previously, namely, �B−B0������.

III. FINDING AND CHARACTERIZING FESHBACH
RESONANCES

Magnetically tunable Feshbach resonances have been
experimentally observed in essentially all alkali-metal

species, in some mixtures of different alkali-metal at-
oms, as well as for Cr atoms. Experimental data on the
resonance positions have in many cases enabled the con-
struction of accurate models to describe the near-
threshold behavior, including scattering properties and
molecular states. We first review the various experimen-
tal approaches to identify and characterize Feshbach
resonances in Sec. III.A and then discuss observations of
Feshbach resonances for alkali-metal atoms in Sec. III.B
and various other systems in Sec. III.C.

A. Experimental methods

Experimental approaches to detect magnetic Fesh-
bach resonances can be classified into several types. Af-
ter some general considerations in Sec. III.A.1, we will
discuss detection by inelastic collisional trap loss in Sec.
III.A.2, by elastic collision properties in Sec. III.A.3, and
by loss in the presence of optical radiation in Sec.
III.A.4. Finally, Sec. III.A.5 discusses precision radio-
frequency spectroscopy of Feshbach molecules.

1. General considerations

a. What is the magnetic field range to be explored?

The typical spacing between two Feshbach resonances
can be estimated from the ratio of the energy splitting
between closed channel molecular levels and the relative
magnetic moment �� between the entrance channel and
the closed channel. The vibrational energy splitting be-
tween near-threshold bound states is determined by the
long-range van der Waals potential to be on the order of
100EvdW �see Sec. II.B.1�. For alkali-metal atoms �� is
on the order of two Bohr magneton 2�B=2.8 MHz/G
and six times larger for 52Cr. For atoms with a small
hyperfine splitting compared to 100EvdW, Feshbach reso-
nances are induced by the last bound states. This leads
to a typical s-wave Feshbach resonance separation of
�10 000 G for 6Li and �100 G for 52Cr. For atoms with
hyperfine splittings much larger than 100EvdW, reso-
nances can be induced by much deeper bound states in
the closed channel �see Fig. 14 for 87Rb�, and the ex-
pected spacings can be estimated accordingly.

The density of Feshbach resonances increases when
higher partial wave scattering and multiple closed hyper-
fine channels, defined in Sec. II.B.3, are included. The
relevant number of channels is determined by the angu-
lar momentum dependence of the molecular potentials
and identical particle statistics. For alkali-metal atoms
there are on the order of ten closed channels for the
lowest partial wave �=0. The number of channels in-
creases rapidly for higher partial waves. The ultralow
temperature usually limits scattering to s- and some-
times p-wave entrance channels, but coupling to molecu-
lar states with up to �c=4 has been observed �see Tables
II and IV�.

For species without unpaired electrons, e.g., Sr and
Yb, one expects no or limited magnetic tunability be-
cause there is no electron contribution to the magnetic
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FIG. 16. �Color online� Closed channel fraction �a� and energy
�b� of weakly bound molecular states as a function of magnetic
field for selected Feshbach resonances. The dots are from
coupled-channel calculations as described in Sec. II.B.3. The
solid curves are calculated based on Eq. �49�, Eq. �28�, and the
parameters given in the Appendix. The slope of Z at B=B0
defines the � parameter; an example for the 87Rb 1007 G reso-
nance is shown as the dashed line with �Rb=0.09. This 87Rb
resonance and the 6Li 543 G one are closed channel domi-
nated and have sres ,�
1. The 6Li 834 G and the 40K 202 G
resonances are open channel dominated resonances with
sres ,�	1.
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moment and the nuclear contribution is very small. In
these systems, Feshbach resonances can possibly be op-
tically induced �see Sec. VI.A�.

b. What is the required magnetic field resolution?

The width of the resonance generally determines the
magnetic field resolution required for detection. Many
s-wave Feshbach resonances have widths larger than
1 G �see the Appendix�. High partial wave Feshbach
resonances are typically much narrower because of the
weaker Feshbach coupling strength. Usually, a reso-
lution in the milligauss range is required to detect d- or
g-wave Feshbach resonances.

c. How to trap atoms for collision studies?

Optical dipole traps, reviewed by Grimm et al. �2000�,
are the main tool to confine cold atoms for collision
studies related to Feshbach resonances. Optical poten-
tials trap atoms in any sublevel of the electronic ground
state and permit investigation of collisions in any corre-
sponding spin channel. For many experimental applica-
tions, the lowest atomic state is of particular interest,
which is a high-field seeking state and can therefore not
be trapped magnetically. Optical dipole traps allow for
the application of arbitrary homogenous magnetic fields
without affecting the trapping potential. In contrast,
magnetic traps can only confine atoms in low-field seek-
ing states, and the application of a magnetic bias field for
Feshbach tuning can strongly influence the trap param-
eters. This limits the application of Feshbach tuning in
magnetic traps to very few situations.

d. How low a temperature is needed to observe the resonances?

In most experiments, a temperature of a few �K is
sufficiently low to observe a clear resonant structure in
inelastic collisional loss. Collision studies can be per-
formed with thermal samples, BECs, or degenerate
Fermi gases. Elastic collision measurements are more
complex. Enhancement of elastic collision rates near
Feshbach resonances is more prominent at lower tem-
peratures 
1 �K. On the other hand, suppression of
elastic collision rates due to a zero crossing of the scat-
tering length can be easily seen well above 1 �K �see
Sec. III.A.3�.

2. Inelastic loss spectroscopy

Resonant losses are the most frequently observed sig-
natures of Feshbach resonances in cold atom experi-
ments. These losses can be induced by two- or three-
body processes. Loss occurs because of the release of
internal energy into the motion when colliding atoms
end up in a lower internal state or when a molecule is
formed. The gain in kinetic energy is on the order of the
Zeeman energy, the hyperfine energy, or the molecular
vibrational energy, depending on the inelastic channel,
and is generally so large that all atoms involved in the
collisions are lost. Near a Feshbach resonance, inelastic

loss is strongly enhanced because the Feshbach bound
states have strong couplings to inelastic outgoing chan-
nels.

Two- and three-body collision losses can be quantified
based on the evolution of the atom number N�t�, which
for a single species satisfies

Ṅ�t� = −
N�t�
�

−� �L2n2�r,t� + L3n3�r,t��d3r , �54�

where � is the one-body lifetime, typically determined by
background gas collisions, n�r , t� is the position- and
time-dependent atomic density distribution, and L2 �L3�
is the thermally averaged two-body �three-body� loss co-
efficient.

The loss equation can be further simplified under the
assumption that thermalization is much faster than in-
elastic loss. For example, for a thermal cloud with tem-
perature T in a three-dimensional �3D� harmonic trap,
one finds

ṅ̄�t� = −
n̄�t�
�

− L2n̄�t�2 − �4/3�3/2L3n̄�t�3, �55�

where n̄=N�̄3�4�kBT /m�−3/2 is the mean density; m is
the atomic mass and �̄ is the geometric mean of the
three trap vibrational frequencies. Examples of density-
dependent loss curves are shown in Fig. 17.

The trap loss coefficient L2 is related to the inelastic
loss coefficient in Sec. II.A.2 by L2=Kloss�T�, where we
have assumed that both atoms are lost in one collision
event. Near a Feshbach resonance, L2 is enhanced and
has a Lorentzian profile at low temperatures �see Sec.
II.A.3 for more details on inelastic scattering reso-
nances�. Two-body collision loss has been observed in
many cold atom system �see Fig. 18 for an example�.

Three-body loss, as described by the loss coefficient
L3 in Eq. �54�, is also strongly enhanced near Feshbach
resonances. In many experiments cold atoms are polar-
ized in the lowest ground state and two-body inelastic
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FIG. 17. Time evolution of the peak atomic density in a cloud
of 133Cs atoms in the �f=4,m=−4� state at T=5.3 �K. The
solid circles show the off-resonant evolution at B=140 G,
whereas the open circles show the on-resonant evolution at
B=205 G �open circles�, where a Feshbach resonance is lo-
cated. The fit is based on Eq. �55� with L3=0 and the peak
density corresponds to 2
2n̄. From Chin, Vuletić, et al., 2004.
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collisions �in the aa channel� do not occur so that three-
body recombination loss is the dominant trap loss pro-
cess. Three-body recombination occurs when three at-
oms interact and form a diatomic molecule and a free
atom. In this process, the molecular binding energy is
released into the kinetic energies of the outgoing mol-
ecule and the third atom, which except for very small
molecular binding energies leads to immediate trap loss.

In the first experimental report on atomic Feshbach
resonances, Inouye et al. �1998� observed very fast trap
loss of a sodium BEC near a Feshbach resonance. In this
experiment, three-body recombination is the leading
trap loss process. Recombination losses induced by Fes-
hbach resonances have been observed and studied in
numerous later experiments, for example, by Roberts
et al. �2000� on 85Rb, by Marte et al. �2002� and Smirne
et al. �2007� on 87Rb, and by Weber et al. �2003a� on
133Cs.

For bosonic atoms with large scattering length a� ā
and low temperatures, L3 scales generally as a4

�Fedichev, Reynolds, et al., 1996; Esry et al., 1999;
Nielsen and Macek, 1999; Braaten and Hammer, 2006�
but with additional quantum features �resonance and in-
terference effects� as discussed in Sec. VI.C on Efimov
physics. For fermionic atoms the situation is more com-
plicated because of Pauli suppression effects �see Sec.
IV.B�, but generally a loss feature accompanies a Fesh-
bach resonance.

3. Elastic collisions

Elastic collisions refer to scattering processes in which
the colliding atoms only change their motional state but
not the internal state. The cross section �el for elastic
s-wave collisions follows from Eq. �6�. Neglecting the

effective range correction �r0=0 in Eq. �5��, one obtains
the simple expression

�el�E� = g4�a2/�1 + k2a2� , �56�

where a depends on magnetic field B and g is the sym-
metry factor introduced in Sec. II.A.2. Near a Feshbach
resonance, the scattering length becomes very large. The
elastic s-wave cross section is g4�a2 at very low energy
as k→0 and approaches its upper bound g4� /k2 in the
unitarity limit at finite k where ka�1. The latter can be
reached in the �K regime if a becomes very large.

A strong enhancement of the thermally averaged elas-
tic collision rate n	�elv� can indicate the occurrence of a
Feshbach resonance. One experimental approach is to
measure the thermalization rate, which is proportional
to the elastic collision rate as �n	�elv�. Here � are nu-
merically calculated as 2.7 in the low temperature
k→0 limit �Monroe et al., 1993� and 10.5 in the unitarity
limit �Arndt et al., 1997�. Similarly, DeMarco et al. �1999�
found �=4.1 for p-wave collisions in Fermi gases. Find-
ing Feshbach resonances based on analyzing thermaliza-
tion rates was reported by Vuletić et al. �1999� on 133Cs
atoms and by Loftus et al. �2002� on 40K.

Near a resonance the thermalization rate can be lim-
ited under hydrodynamic conditions, which are reached
when the cross section is so large that the collision rate
in the trap exceeds the trap frequency �Vuletić et al.,
1999�. The maximum collision rate is also bounded by
the unitarity limit when a is large. In both cases reso-
nance structure that is due to elastic scattering can be-
come less evident near B0.

Another efficient method to identify Feshbach reso-
nances based on elastic collisions is to locate the zero
crossing of the scattering length, that is, the magnetic
field for which the scattering length vanishes near
resonance where B=B0+� �see Eq. �1��. This can be
monitored by measuring atom loss resulting from elastic
collisions during the process of evaporation. Thermali-
zation and evaporation loss are suppressed at the zero
crossing. Schemes to locate the zero crossing have been
applied to 85Rb by Roberts et al. �1998�, 133Cs by Chin et
al. �2000�, 40K by Loftus et al. �2002�, 6Li by Jochim et al.
�2002� and O’Hara, Hemmer, et al. �2002�, and 40K-87Rb
mixture by Zaccanti et al. �2006�. An example is shown
in Fig. 19. While the zero crossing is evident, no reso-
nance feature is seen near B0=834 G.

Finally, resonant changes of elastic scattering can also
be revealed through the detection of collision shifts in
atomic clock experiments �Marion et al., 2004� and by
measurements of the mean-field interaction in Bose-
Einstein condensates �Inouye et al., 1998; Cornish et al.,
2000; Regal et al., 2003b� �see discussion in Sec. IV.A.2�.

4. Radiative Feshbach spectroscopy

Radiative Feshbach spectroscopy makes use of red- or
blue-detuned light to detect the variation of the colli-
sional wave function near a Feshbach resonance. The
amplitudes of both the open and closed channel compo-
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FIG. 18. �Color online� Two-body inelastic loss coefficient of
cesium atoms in the �f=3,m=−3� state as a function of mag-
netic field. The loss coefficient is extracted from the atomic
density evolution, as shown in Fig 17. Three resonances are
identified here. The solid line is a Lorentzian fit. From Chin,
Vuletić, et al., 2004.
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nents of the wave function are strongly modified for dis-
tances on the order of or less than ā when B is tuned
near resonance. This is evident for the closed channel
component since the outer turning point will be on the
order of ā �see Sec. II.B.1�. The optical transition in-
duces loss of atoms by excitation of atom pairs at such
separations.

Courteille et al. �1998� adopted the idea of radiative
spectroscopy to identify a Feshbach resonance in 85Rb.
In this experiment, a photoassociation laser beam �Jones
et al., 2006� is held at a fixed frequency to the red of the
strong S→P atomic transition and serves as a sensitive
probe to measure the resonance position B0. The light
excites the colliding pair of atoms to an excited molecu-
lar level in a state with an attractive potential. The ex-
cited level decays by spontaneous emission, giving rise
to atom loss. The experiment monitors the atom loss as
B is varied near B0, thus locating the resonance.

In contrast, Chin et al. �2003� applied a laser with far
blue detuning to detect Feshbach resonances in cesium
samples. The blue-detuned light excites a molecular
state with a repulsive potential so that the atoms are
repelled, accelerated from one another, and lost from
the trap. This method requires less detailed knowledge
of molecular structure than the previous method. In this
experiment, multiple narrow p-, d-, f-, and g-wave reso-
nances were identified in two different collision channels
of cesium atoms �see Fig. 20�.

5. Binding energy measurements

The detection methods discussed previously provide
good ways to determine the existence of resonances and
their positions. Measurements of the magnetic-field-
dependent binding energies of near-threshold Feshbach
molecules can yield information to precisely determine
the scattering properties near a specific resonance �see
Fig. 2 and Sec. II.C.5�.

Regal et al. �2003a� and Bartenstein et al. �2005� em-
ployed rf spectroscopy on Feshbach molecules to mea-
sure very small molecular binding energies. An example
of the rf spectroscopy is shown in Fig. 21. In this experi-
ment, weakly bound molecules are first prepared near
the Feshbach resonance �see Sec. V.A�. An rf field is
then applied to drive either a “bound-free” transition,
which dissociates the molecules, or a “bound-bound”
transition, which converts them into a different molecu-
lar state. Based on the line-shape functions calculated by
Chin and Julienne �2005�, binding energy of Feshbach
molecules can be measured to 1 kHz. These kind of pre-
cise data can be combined with theoretical modeling to
determine the position and the width of the resonance.

Other efforts to spectroscopically probe weakly
bound states include oscillating magnetic field spectros-
copy employed by Thompson et al. �2005a� and Papp
and Wieman �2006� and rf and microwave techniques by
Mark, Ferlaino, et al. �2007� and Zirbel, Ni, Ospelkaus,
Nicholson, et al. �2008�. Using the theoretical models de-
scribed in Sec. II.C.4 Lange et al. �2009� showed how
Feshbach resonance parameters can be extracted from
molecular binding energy measurements.

B. Homonuclear alkali-metal systems

Feshbach resonances have been found and character-
ized in essentially all single-species alkali-metal systems.
The scattering properties show vast differences between
the various species and also between different isotopes
of the same species. Each system is unique and has par-
ticular properties. Here we give a brief account for each
species or isotope, ranging from first observations to the
best current knowledge, and we discuss the characteris-
tic properties. A table of important resonances can be
found in the Appendix.

FIG. 19. Fraction of trapped atoms remaining after evapora-
tion of 6Li atoms in an optical dipole trap after 1 s �open
circles� and 3 s �closed circles� hold times. The peak near
530 G indicates a minimum of evaporative loss. This minimum
results from the zero crossing of the scattering length induced
by the broad 834 G Feshbach resonance. From Jochim et al.,
2002.
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FIG. 20. Radiatively induced atom loss vs magnetic field due
to a far blue-detuned laser beam applied to a sample of 133Cs
atoms confined in an optical dipole trap at a temperature of
3 �K. The laser wavelength is tuned 5 nm above the free
atomic transition to excite the colliding atoms to a repulsive
molecular state. Once excited, the atoms quickly dissociate and
are lost from the trap. Multiple narrow Feshbach resonances
were observed. The inset shows an expanded view with more
resonances resolved. From Chin et al., 2003.
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1. Lithium

Lithium has two stable isotopes, one fermionic �6Li�
and one bosonic �7Li�.

6Li—In 1998 Houbiers et al. �1998� predicted Fesh-
bach resonances in cold collisions of fermionic 6Li. Ex-
perimental evidence for a prominent resonance was es-
tablished by monitoring inelastic decay �Dieckmann et
al., 2002� and elastic collision properties �Jochim et al.,
2002; O’Hara, Hemmer, et al., 2002�. These experiments
showed large variations in loss and thermalization rates
as a function of the magnetic field strength for equal
mixtures of the lowest two hyperfine ground states a and
b prepared in an optical dipole trap. Because of the fer-
mionic nature of 6Li even partial-wave scattering and, in
particular, s-wave scattering only occur between atoms
in unlike hyperfine states. Consequently, if the gas is suf-
ficiently cold such that the �	0 centrifugal barriers are
higher than the temperature of the gas, s-wave collisions
in the ab channel represent the essential thermalization
mechanism. Jochim et al. �2002� and O’Hara, Hemmer,
et al. �2002� reported a strongly suppressed thermaliza-
tion rate near 530 G, indicating the zero crossing of the
scattering length in the ab channel. Most recently, Du et
al. �2008� located the zero crossing to 527.5±0.2 G.
Dieckmann et al. �2002� observed enhanced inelastic loss
near 680 G, about 150 G below the actual resonance lo-
cation �B0=834 G�. Note that this particular resonance
is extraordinarily broad ���−300 G�. Further experi-
ments by Bourdel et al. �2003� and Gupta et al. �2003�
provided confirmation of this Feshbach resonance.

In order to further pinpoint the resonance position,
Bartenstein et al. �2005� conducted radio-frequency
spectroscopy on Feshbach molecules in the ab channel
as described in Sec. III.A.4. The resonance could be lo-
cated with an uncertainty of 1.5 G, more than two or-
ders of magnitude smaller than its width. Broad reso-
nances in two other entrance channels �ac and bc� were
reported as well.

Strecker et al. �2003� identified a narrow s-wave reso-
nance at 543.25 G in the ab channel and Zhang et al.
�2004� and Schunck et al. �2005� observed three p-wave
resonances near 200 G, one in each of the channels aa,
ab, and bb. All of these observed resonances are in-
duced by s- and p-wave rotational levels of the v=38
bound state of the singlet X 1�g

+ potential, as shown in
Fig. 9 for s-wave resonances.

The two s-wave resonances in the ab channel illus-
trate the concept of resonance strength, as described in
Sec. II.B.2. The broad resonance at 834 G is strongly
entrance channel dominated, while the narrow reso-
nance at 543 G is an extreme case of a closed channel
dominated resonance. The former has an extraordinarily
large magnetic field range of universal behavior, while
that for the latter is vanishingly small �detunings of a few
�G or less�; see Sec. II.C.5 and Fig. 16. This has impor-
tant consequences for molecules formed near these reso-
nances.

The broad resonance at 834 G in the ab channel is
used to create molecular Bose-Einstein condensates and
fermionic superfluids. This will be discussed in Sec. IV.B.

7Li—Moerdijk and Verhaar �1994� predicted Fesh-
bach resonances in collisions of bosonic 7Li atoms in
�f=1,m=1� �aa channel�. Strecker et al. �2002� identified
a zero crossing of the scattering length induced by a
broad Feshbach resonance. This resonance was used to
study the formation of bright solitons by Khaykovich et
al. �2002� and Strecker et al. �2002� at small and negative
scattering lengths near the zero crossing �see also Sec.
IV.A.3�. In these early experiments, the resonance posi-
tion was estimated to 720 G. Later measurements by
Junker et al. �2008� and Pollack et al. �2009� accurately
pinpointed the resonance position and the zero crossing
to 736.8�2� and 543.6�1� G, respectively.

Gross and Khaykovich �2008� observed two reso-
nances in the state �f=1,m=0� �bb channel�. A narrower
one was found at 831�4� G with a width of 7 G, while a
broader one �width of 34 G� was located at �884 G. In
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between these two resonances, a zero crossing was
found at 836�4� G.

2. Sodium

Inouye et al. �1998� pioneered experimental research
in locating Feshbach resonances. In an optically trapped
BEC of 23Na �the only stable isotope� with all atoms in
the lowest hyperfine state �f=1,m=1�, they identified
resonances at 853 and 907 G. A third resonance in a
different channel at 1195 G was later reported by
Stenger et al. �1999�. All three resonances are narrow
and s wave in nature. The 1998 experiment showed both
strongly enhanced trap loss and the dispersive tuning of
the scattering length near the 907 G resonance �see Fig.
3�.

The experimental determination of the resonances
has enabled detailed models of the interaction potentials
between ultracold Na atom �van Abeelen and Verhaar,
1999a�. These models were further refined by Samuelis
et al. �2000� based on conventional molecular spectros-
copy in combination with photoassociation data.

The Feshbach resonance at 907 G was used to create
ultracold Na2 molecules �Xu et al., 2003� and to demon-
strate coherent molecule optics �Abo-Shaeer et al.,
2005�; see also Sec. V.A.1.

3. Potassium

Potassium has three stable isotopes, two of them are
bosonic �39K and 41K� and one is fermionic �40K�.

39K—In 1996 Boesten, Vogels, et al. �1996� predicted
Feshbach resonance locations in collisions between 39K
atoms. Their results were based on spectroscopic data of
binding energies of rovibrational states of the X 1�g

+ and
3�u

+ potentials. The data, however, were not sufficiently
complete to give quantitative resonance locations, but
they did show that the likelihood of resonances was
large. Another early prediction of resonance locations
was made by Bohn et al. �1999�.

Feshbach resonances in 39K were observed at 402 G,
analyzed by D’Errico et al. �2007�, and applied to create
a tunable BEC of this species �Roati et al., 2007�. The
zero crossing of the scattering length near the broad
402 G resonance has found intriguing applications for
atom interferometry with noninteracting condensates
�Fattori, D’Errico, et al., 2008�; see also Sec. IV.A.4. This
resonance has an intermediate character between that of
an entrance channel and a closed channel dominated
resonance.

40K—Early predictions on Feshbach resonances in
40K were made by Bohn et al. �1999�. The first experi-
mental observation was reported by Loftus et al. �2002�,
who demonstrated resonant control of elastic collisions
via the 202 G resonance in a mixture of the lowest two
spin states �ab channel�. One year later, the same group
reported on a p-wave resonance at 199 G �Regal et al.,
2003b�; they measured the resonantly enhanced elastic
collision rate of atoms in the second-lowest hyperfine
state �bb channel� at a temperature of 3 �K. At an even

lower temperature and by monitoring the collision-
induced heating rate, Ticknor et al. �2004� found that this
resonance is actually a doublet. This doublet structure in
the p-wave resonance is due to a small energy splitting
between the ��=1,m�=0� and ��=1,m�= ±1� molecular
states. The anisotropic nature of the p-wave resonances
has found interesting applications in low-dimensional
traps �Günter et al., 2005�.

In spin mixtures with s-wave interactions, Regal and
Jin �2003� and Regal et al. �2003b� identified 10-G-wide
s-wave Feshbach resonances in the ab and ac channels
at 201.6�6� and 224.21�5� G, respectively, by monitoring
the thermalization rate and mean-field shifts. These
resonances provide a convenient tool to study strongly
interacting Fermi gases and fermionic condensates �see
Secs. IV.B�.

41K—A Feshbach resonance was recently observed by
Kishimoto et al. �2009� at 51.4 G in the cc channel. The
observation confirmed a theoretical prediction by
D’Errico et al. �2007�, which was based on experimental
data available for the other potassium isotopes.

4. Rubidium

85Rb—Courteille et al. �1998� reported a Feshbach
resonance in a magnetically trapped thermal sample by
observing enhanced photoassociative loss �see Sec.
III.A.4�. This result confirmed the prediction by Vogels
et al. �1997�. van Abeelen et al. �1998� suggested using
photoassociation as a probe to identify Feshbach reso-
nances. By monitoring inelastic loss, Roberts et al. �1998�
determined the position of this 10-G-wide resonance to
be at 155 G. Claussen et al. �2003� then used a BEC to
perform a high-precision spectroscopic measurement of
the molecular binding energy and determined the reso-
nance parameters B0 and � within 20 mG.

Attainment of BEC in 85Rb crucially depended on the
existence of the 155 G resonance �see Sec. IV.A.1�. Only
in a 10 G window near the resonance the scattering
length is positive and Cornish et al. �2000� were able to
Bose condense 85Rb. As the first available BEC with
widely tunable interactions the system has received con-
siderable attention �see Sec. IV.A.3�. Coherent atom-
molecule coupling �Donley et al., 2002� and the forma-
tion of ultracold 85Rb2 molecules �Thompson et al.,
2005a� were reported based on this Feshbach resonance.

87Rb—Marte et al. �2002� conducted a systematic
search for Feshbach resonances in bosonic 87Rb. For at-
oms polarized in various combinations of magnetic sub-
levels in the f=1 hyperfine manifold, more than 40 reso-
nances were observed between 300 and 1200 G by
monitoring atom loss in an optical dipole trap. These
resonances are induced by s- and d-wave bound states
and are all very narrow. For the s-wave states, the un-
derlying molecular structure is shown in Fig. 14. The
widest and most often used resonance is located at
1007 G and has a width of 0.2 G. In different experi-
ments, Erhard et al. �2004� and Widera et al. �2004� ob-
served a low-field resonance near 9 G in the ae channel.
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Several resonances in 87Rb have been used to form
ultracold Feshbach molecules. They are formed by
ramping the magnetic field through the resonance �Dürr,
Volz, Marte, and Rempe, 2004�; see Sec. V.A.1. The po-
tential of combining Feshbach resonances with optical
lattices has been demonstrated in a series of experi-
ments with 87Rb �Thalhammer et al., 2006; Volz et al.,
2006; Winkler et al., 2006; Syassen et al., 2007� �see Sec.
VI.B�.

5. Cesium

Cesium, for which the isotope 133Cs is the only stable
one, was proposed as the first alkali-metal species in
which Feshbach resonances could be observed �Tiesinga
et al., 1993�. With the limited state of knowledge of the
interaction potentials no quantitative predictions could
be made. The first observation of Feshbach resonances
in cesium collisions was published seven years later �Vu-
letić et al., 1999�.

Vuletić et al. �1999�, Chin et al. �2000�, and Chin, Vu-
letić, et al. �2004� reported on more than 60 Feshbach
resonances of various types using several detection
schemes. These include s-, p-, d-, f-, and g-wave reso-
nances in ten different scattering channels. Vuletić et al.
�1999� used cross-axis thermalization rates to identify
resonances in the lowest aa channel and used trap loss
measurements in the gg channel. Chin et al. �2000� re-
ported many more resonances by preparing the atoms in
other internal states and by monitoring the evaporation
rates to more efficiently measure the elastic cross sec-
tion. The resonances provided Leo et al. �2000� with the
essential information to precisely determine the interac-
tion potentials of ultracold cesium.

Narrow resonances were observed by Chin et al.
�2003� and Chin, Vuletić, et al. �2004� using radiative
Feshbach spectroscopy �see Sec. III.A.4�. In these ex-
periments 133Cs atoms were illuminated by a far blue-
detuned laser beam, whose wavelength was optimized to
only remove atoms near a resonance. These resonances
are induced by g-wave bound states and are only strong
enough to be observed due to the large second-order
spin-orbit coupling of cesium atoms. The observed reso-
nances are at low magnetic fields, which can be under-
stood as a consequence of the large background scatter-
ing length in the aa collision channel �see Sec. II.B.1�. In
addition, l-wave Feshbach molecules have been pro-
duced by Mark, Ferlaino, et al. �2007� and Knoop et al.
�2008�; their coupling to the s-wave continuum is too
weak to lead to observable resonances in collision ex-
periments. Finally, Lee et al. �2007� predicted a broad
s-wave resonance at �800 G in the aa channel. This is a
magnetic field regime that has not been experimentally
explored yet.

Figure 22 shows the scattering length in the aa chan-
nel. It has a zero crossing at 17.1 G �Chin, Vuletić, et al.,
2004; Gustavsson et al., 2008� and multiple narrow reso-
nances below 50 G. The gradual change in a from
−2500a0 to 500a0 across 30 G in the figure is actually the
tail of a broad resonance with B0=−12 G �see the Ap-

pendix�. The negative B0 follows from fitting to Eq. �1�.
Both the narrow and broad resonances have provided
favorable conditions for many exciting experiments.
This included the attainment of BEC with Cs atoms, a
Bose condensate �Weber et al., 2003a�, the formation of
Cs2 �Chin et al., 2003; Herbig et al., 2003�, the observa-
tion of resonances between ultracold molecules �Chin et
al., 2005�, and studies on Efimov physics �see Sec. VI.C�.

C. Heteronuclear and other systems

Most of the experimental and theoretical attention so
far has been focused on locating and using magnetic Fes-
hbach resonances in single-species alkali-metal atom
gases. Over the last five years, however, considerable
progress has also been made in locating Feshbach reso-
nance in other atomic species and in mixtures of alkali-
metal atoms. These systems are investigated for various
reasons. Of particular interest is the promise of more
exotic quantum many-body behavior �Micheli et al.,
2006; Bloch et al., 2008; Menotti et al., 2008�.

Heteronuclear systems provide the path to prepare
mixtures of bosonic and fermionic quantum degenerate
gases. Intriguing applications include the creation of fer-
mionic molecules in an atomic Bose-Fermi mixture �Os-
pelkaus, Ospelkaus, Humbert, Ernst, et al., 2006; Zirbel,
Ni, Ospelkaus, D’Incao, et al., 2008� and novel quantum
phases of fermions with unequal masses �Petrov et al.,
2007�. Feshbach resonances provide means to tune the
interactions between different species in order to ex-
plore quantum phases in various regimes.

Atoms with magnetic moments interact via the long-
range magnetic dipole-dipole interaction Vss in addition
to the van der Waals and more short-range interactions.
For alkali-metal atoms the effect of this dipole-dipole
interaction on collective behavior is small. In atomic
species with much larger magnetic moments, however,
the dipole-dipole interaction can have a significant im-
pact on the many-body behavior of the gas �Goral et al.,
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FIG. 22. �Color online� Scattering length and bound state en-
ergies for cesium atoms in the lowest internal state as a func-
tion of magnetic field. From Chin, Vuletić, et al., 2004.
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2000; Santos et al., 2003; Santos and Pfau, 2006�. In an
atomic species such as chromium �Sec. III.C.1�, magnetic
Feshbach resonances can be used to tune the relative
strength of the short-range interactions and the long-
range dipole-dipole interaction �Yi and You, 2002; La-
haye et al., 2007�.

Another way to create exotic many-body systems is by
pairing different atomic species into Feshbach mol-
ecules, which can then be converted into deeply bound
molecules with a large electric dipole moment. Such a
moment gives rise to large dipolar interactions, orders of
magnitude larger than possible with magnetic dipole
moments. These molecules, which are either bosonic or
fermionic, have many applications in dipolar molecular
quantum gases �Micheli et al., 2006; Büchler et al., 2007�
and quantum computation �DeMille, 2002�.

1. Chromium

In 2005 Griesmaier et al. �2005� announced BEC of
52Cr atoms. This species has a magnetic moment that is
six times larger than that for alkali-metal atoms. Subse-
quently, Stuhler et al. �2005� showed that the expansion
of a cigar-shaped chromium condensate depended on
the relative orientation of the magnetic moment and the
elongated condensate, which for the first time showed
the effects of the dipole-dipole interaction in a quantum-
degenerate gas.

Werner et al. �2005� measured 14 magnetic Feshbach
resonances in 52Cr in the energetically lowest magnetic
sublevel. Feshbach resonances were detected by measur-
ing, after a fixed hold time, the number of remaining
atoms as a function of magnetic field. Atom loss could
only have occurred by enhanced three-body recombina-
tion near the resonance. Figure 23 shows the s-wave
scattering length as a function of magnetic field derived
from the observed locations of the Feshbach resonances
and a multichannel scattering model of the collision.
Most of the resonances are g-wave resonances with the
exception of one of the two nearly degenerate reso-
nances at 29 mT and those at 50 and 59 mT. These three
resonances have d-wave character. Moreover, Werner
et al. �2005� also assigned two resonances as originating
from d-wave collisions and coupling to an s-wave closed
channel, i.e., �=2 and �c=0 according to the notation
discussed in Sec. II.B.4. Note that these resonances do
not show up in the s-wave scattering length as shown in

Fig. 23. One of these unusual resonances was investi-
gated by Beaufils et al. �2009�.

2. Mixed species

K+Rb—The first mixed system to receive a detailed
effort to locate Feshbach resonances was a mixture fer-
mionic 40K and bosonic 87Rb atoms �Simoni et al., 2003�.
Based on experimentally determined inelastic and elas-
tic rate coefficients at zero magnetic field they predicted
the location of 15 Feshbach resonances with an uncer-
tainty ranging from 10 to 100 G.

Inouye et al. �2004� presented the first direct determi-
nation of the magnetic field location of three Feshbach
resonances. The two atomic species, each in their ener-
getically lowest hyperfine state, were optically trapped.
As shown in Fig. 24 the Feshbach resonances were de-
tected by measuring, after a fixed hold time, the number
of remaining atoms as a function of magnetic field. The
atom loss is due to three-body recombination.
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FIG. 23. Scattering length of 52Cr atoms vs magnetic field. The feature near 29 mT is a pair of nearly degenerate Feshbach
resonances. From Werner et al., 2005.

FIG. 24. Observation of Feshbach resonances in 40K+ 87Rb.
The top panel shows in-trap absorption images of 40K atoms
after a fixed hold time of �1 s at various magnetic fields. The
label on each image gives the magnetic field in Gauss. No 40K
atoms could be seen at 542.2 G. The bottom panel shows the
number of remaining 40K atoms after the fixed hold time as a
function of magnetic field. Narrow features are observed at
492, 512, and 543 G. Adapted from Inouye et al., 2004.
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Ferlaino et al. �2006� confirmed the positions of these
three resonances and found nine additional resonances.
Theoretical modeling uniquely assigned each resonance
and determined the scattering lengths of the X 1�+ and
a 3�+ Born-Oppenheimer potentials to about 2%. The
difference between the experimental Feshbach locations
and those of the best-fit theory was less than 1 G for all
resonances. The experimental uncertainty in the reso-
nance locations was 0.2 G.

Ferlaino et al. �2006� also predicted the location of
resonances of several isotopic combinations. For the
bosonic 39K and 87Rb collision with both atoms in their
lowest hyperfine state Roati et al. �2007� confirmed the
location of one such resonance. It was found at 317.9 G
well within the uncertainties quoted by Ferlaino et al.
�2006�. Klempt et al. �2007� observed a number of new
Feshbach resonances, constructed an accurate potential
model, and predicted resonances in other isotopic KRb
combinations. Simoni et al. �2008� presented a refined
near-threshold model for scattering and bound-state cal-
culations for all isotopic combinations of K and Rb.

Feshbach resonances in mixtures of 40K and 87Rb
have been applied to the creation of Feshbach molecules
in optical traps �Zirbel, Ni, Ospelkaus, D’Incao, et al.,
2008; Zirbel, Ni, Ospelkaus, Nicholson, et al., 2008� and
in single sites of an optical lattice �Ospelkaus, Ospel-
kaus, Humbert, Ernst, et al., 2006�; see Sec. VI.B.1. Re-
cently these fermionic molecules have been transferred
to more deeply bound levels �Ospelkaus et al., 2008�; see
Sec. V.B. Furthermore, interspecies interaction tuning
has been exploited to study the collective behavior of a
40K+ 87Rb Bose-Fermi mixture �Ospelkaus, Ospelkaus,
Humbert, Sengstock, and Bongs, 2006� and to realize a
tunable double species BEC in a 41K+ 87Rb Bose-Bose
mixture �Thalhammer et al., 2008�.

Li+Na—Stan et al. �2004� observed three magnetic
Feshbach resonances in the interaction between a de-
generate fermionic 6Li gas and a Bose-Einstein conden-
sate of Na. The resonances were observed by detecting
atom loss when sweeping the magnetic field at constant
rate through the resonances. Atom loss could only have
occurred from three-body recombination or from mol-
ecule formation during the sweep. The observed reso-
nances at 746.0, 759.6, and 795.6 G are s-wave reso-
nances. In a recent theoretical study based on this
experimental input data, Gacesa et al. �2008� derived
precise values of the triplet and singlet scattering lengths
for the 6Li-Na and the 7Li-Na combination. Moreover
they predict a variety of additional Feshbach resonances
within an experimentally attainable field range.

6Li+ 40K—Wille et al. �2008� described the observation
of 13 Feshbach resonances in fermionic 6Li and 40K in
various hyperfine states. Their theoretical analysis,
which relies on the model developed by Stan et al. �2004�
and discussed in Sec. II.C.2, indicated that the reso-
nances were either s- or p-wave resonances. This isoto-
pic combination is a prime candidate for the study of
strongly interacting Fermi-Fermi mixtures.

Na+Rb—Predictions of Feshbach resonance locations
based on analysis of high-resolution Fourier spectros-
copy of the molecular X 1�g

+ and a 3�u
+ states in a 600 K

beam of NaRb molecules are described by Bhattacharya
et al. �2004� and Pashov et al. �2005�. For example, Pa-
shov et al. �2005� predicted for the ultracold collision
between 23Na and 85Rb, both in the energetically lowest
hyperfine state, s-wave Feshbach resonances at 170 and
430 G with an uncertainty of about 50 G. This uncer-
tainty is sufficiently small that the predictions will be
helpful for planning experiments which can accurately
locate the resonances.

Initial experiments on other combinations of mixed
atomic species have been performed. Feshbach reso-
nances have been reported in the 6Li+ 87Rb system by
Deh et al. �2008�, in the 7Li+ 87Rb system by Marzok
et al. �2009�, and in the 87Rb+ 133Cs system by Pilch et al.
�2009�.

3. Isotopic mixtures

A special case of a mixed system is that where differ-
ent isotopes of the same element are combined. In par-
ticular, isotopic mixtures of Rb, K, and Li have been
studied. Isotopic mixtures of K or Li are of particular
interest as both fermionic and bosonic isotopes exist.

Feshbach resonances in isotopic mixtures of rubidium
have recently been observed. Papp and Wieman �2006�
found two s-wave Feshbach resonances in the collision
of 85Rb and 87Rb when both isotopes are in their lowest
hyperfine state. Their magnetic field locations of
265.44�0.15� and 372.4�1.3� G are consistent with the
predictions of Burke et al. �1998�.

van Kempen et al. �2004� predicted the location of
6Li+ 7Li Feshbach resonances. When both isotopes are
in the lowest hyperfine state resonances occur between
200 and 250 G as well as between 550 and 560 G. Four
of these resonances have been observed by Zhang et al.
�2005�.

In predictions for isotopic mixtures “mass scaling” is
often used. As the interatomic potentials are to good
approximation independent of the isotopic composition
of the dimer, the only thing that changes is the �reduced�
mass of the dimer. Corrections are due to the break-
down of the Born-Oppenheimer approximation. Seto
et al. �2000� and van Kempen et al. �2002� showed that
for Rb the experimental data on 85Rb 85Rb, 85Rb 87Rb,
and 87Rb 87Rb are consistent with mass scaling. A new
analysis that includes the 2006 observations of Papp and
Wieman �2006� is needed.

For the lithium system van Kempen et al. �2004�
showed that mass scaling is insufficient to explain the
observed data for the homonuclear 6Li+ 6Li and 7Li
+ 7Li systems. Consequently, van Kempen et al. �2004�
quoted a few Gauss uncertainty for the location of 6Li
+ 7Li Feshbach resonances from the breakdown of mass
scaling.
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IV. CONTROL OF ATOMIC QUANTUM GASES

Tuning two-body interactions via Feshbach reso-
nances is the experimental key to control collective phe-
nomena in degenerate quantum gases. This has found
numerous applications, both with atomic Bose-Einstein
condensates �Cornell and Wieman, 2002; Ketterle, 2002�
and with degenerate Fermi gases �Inguscio et al., 2008�.

The different decay properties of Bose and Fermi
gases near Feshbach resonances play a crucial role for
the experiments. For Bose gases, resonant two-body
scattering in general leads to rapid decay via three-body
collisions, as have discussed in context with loss spec-
troscopy on Feshbach resonances in Sec. III.A.2. Three-
body decay limits the practical applicability of Feshbach
tuning to Bose gases, restricting the experiments to the
dilute gas regime where the scattering length is small
compared to typical interparticle separations. In con-
trast, Fermi gases can be remarkably stable near s-wave
Feshbach resonances �Petrov et al., 2004�.

For atomic Bose-Einstein condensates in the dilute
gas regime �Sec. IV.A�, the collective behavior can be
described in a mean-field approach. In strongly interact-
ing Fermi gases �Sec. IV.B�, the role of the scattering
length is much more complex. Here Feshbach tuning can
be used to control the nature of fermionic pairing in
different superfluid regimes.

A. Bose-Einstein condensates

In experiments on atomic BEC, the role of Feshbach
tuning can be divided into two parts. First, the control of
collision properties can be essential for the attainment
of BEC. Second, the possibility to control the mean-field
interaction opens up a variety of interesting applica-
tions.

1. Attainment of BEC

Some atomic species offer favorable collision proper-
ties for the attainment of BEC without any necessity of
interaction tuning; 87Rb and 23Na are the most promi-
nent examples �Cornell and Wieman, 2002; Ketterle,
2002�. In other cases, however, Feshbach tuning is essen-
tial either to produce large condensates �7Li� or to
achieve BEC at all �85Rb, 133Cs, and 39K�.

First consider the general question what is a “good”
scattering length a for making a BEC. To begin, a should
be positive because condensates undergo collapse at
negative scattering length when the number of con-
densed atoms exceeds a relatively small critical value
�Bradley et al., 1997�. Moreover, a should not be too
small because a sufficiently large elastic collision rate is
required for evaporative cooling toward BEC; the cross
section for elastic collisions between identical bosons is
8�a2. Finally, the scattering length should not be too
large to avoid rapid decay by three-body collisions
�Roberts et al., 2000; Weber et al., 2003b� as three-body
decay scales as a4 �Fedichev, Reynolds, et al., 1996;
Braaten and Hammer, 2006�. In practice these condi-

tions result in typical values for a good value of a be-
tween a few ten and a few hundred times the Bohr ra-
dius a0. In detail, the optimum value for a depends on
the confinement properties of the trap and behavior of
inelastic decay.

For 7Li, early magnetic trapping experiments showed
BEC in the internal state f=2, m=2, where the scatter-
ing length a=−27a0 is small and negative �Bradley et al.,
1995, 1997�; here the number of condensate atoms was
limited through collapse to only a few hundred. Later
experiments �Khaykovich et al., 2002; Strecker et al.,
2002� on optically trapped 7Li in the internal state f=1,
m=1 exploited the 737 G Feshbach resonance to tune
the scattering length from its very small background
value �abg�+5a0� to sufficiently large positive values,
typically in a range between +40a0 and +200a0. Evapo-
rative cooling then resulted in condensates with up to
3 105 atoms. More recently, Gross and Khaykovich
�2008� exploited Feshbach tuning in the state f=1, m
=0 for the all-optical production of a BEC. They ob-
tained favorable conditions for efficient evaporative
cooling at 866 G, where the scattering length is about
+300a0.

Bose-Einstein condensation of 85Rb was achieved by
evaporative cooling in a magnetic trap �Cornish et al.,
2000� exploiting the broad resonance at 155 G �Sec.
III.B.4� in the state f=2, m=−2 to tune the scattering
length to positive values. The large negative background
scattering length abg=−443a0 would limit the number of
condensate atoms to less than 100. Two stages of cooling
were performed. The first stage used a magnetic field of
250 G, where the scattering length a is close to its back-
ground value; the second was close to the resonance at
162.3 G, where a=+170a0. This procedure optimized the
ratio of elastic to inelastic collision rates �Roberts et al.,
2000� for the temperatures occurring during these
stages.

Feshbach tuning played a crucial role for the attain-
ment of BEC in 133Cs �Weber et al., 2003a; Kraemer
et al., 2004�. The condensate was produced in an optical
trap in the state f=3, m=3. In this lowest internal state,
two-body decay is energetically forbidden, and the scat-
tering length a�B� shows a large variation at low mag-
netic fields �Fig. 22�, which is due to a broad Feshbach
resonance at −12 G. In a first evaporative cooling stage
a shallow large-volume optical trap was employed, and a
large scattering length of a=+1200a0 at B=73 G pro-
vided a sufficiently large elastic collisions rate at rather
low atomic densities. The second cooling stage em-
ployed a much tighter trap. Here, at much higher densi-
ties, an optimum magnetic field of 21 G was found,
where a=+210a0. Highly efficient evaporation led to the
attainment of BEC. Later experiments revealed a mini-
mum of three-body decay in this magnetic field region
�Kraemer et al., 2006�; see also Sec. VI.C.2.

For the attainment of BEC in 39K, Roati et al. �2007�
employed a mixture with 87Rb atoms with both species
being in their internal ground states. First, an interspe-
cies Feshbach resonance near 318 G was used to opti-
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mize sympathetic cooling; the interspecies scattering
length was tuned to +150a0 by choosing a magnetic field
of 316 G. Then, after the removal of the Rb atoms, final
evaporative cooling toward BEC was performed near
the 402 G resonance of 39K �Sec. III.B.3� with the scat-
tering length tuned to a positive value of +180a0.

2. Condensate mean field

Trapped atomic BECs in the dilute-gas regime are
commonly described �Dalfovo et al., 1999� by the Gross-
Pitaevskii equation for the condensate wave function !,

i�
�

�t
! = �−

�2�2

2m
+ Vext + Vmf�! , �57�

where Vext is the external trapping potential. Interac-
tions are taken into account by the mean-field potential

Vmf = �4��2a/m�n , �58�

where the atomic number density n is related to ! by
n= �!�2. This mean field enters the Gross-Pitaevskii
equation as a nonlinearity and leads to many interesting
phenomena.

In the Thomas-Fermi regime of large condensates
with a	0 one can neglect the kinetic energy term and
obtain the equilibrium density distribution of a BEC,

n =
m

4��2a
�� − Vext� , �59�

which applies for �	Vext; otherwise n=0. For a given
particle number N, the chemical potential � follows
from the normalization condition N=�nd3r.

In many cases of practical relevance, stable conden-
sates with positive a are confined in harmonic traps and
are in the Thomas-Fermi regime. The condensate is then
characterized by the Thomas-Fermi radius rTF given as
the radius at which the external trapping potential
equals the chemical potential and the peak number den-
sity n0. These two quantities follow the scaling laws

rTF a1/5, n0  a−3/5. �60�

Figure 25 shows how the size of a trapped 85Rb conden-
sate increases when the Feshbach resonance at 155 G is
approached. The in situ measurements were used to ex-
perimentally determine a�B� �Cornish et al., 2000�. The
results are in good agreement with later measurements
of the molecular binding energy, which allowed for a
more precise determination of the scattering properties
near the Feshbach resonance �Claussen et al., 2003�.

The mean-field approach is valid for scattering lengths
which are small compared to the typical interparticle
distance. The prospect to observe beyond-mean-field ef-
fects in BECs �Dalfovo et al., 1999� has been an impor-
tant motivation for experiments near Feshbach reso-
nances at large a. In atomic Bose gases, however, the
fast inelastic decay makes it very difficult to observe
such phenomena. Papp et al. �2008� finally demonstrated
beyond-mean-field behavior by Bragg spectroscopy on a
85Rb BEC. In molecular BECs created in atomic Fermi

gases �Sec. IV.B.1�, the collisional stability facilitates the
observation of beyond-mean-field behavior by simpler
means. For example, Altmeyer et al. �2007� observed
beyond-mean-field behavior by studying collective oscil-
lations of a 6Li2 molecular BEC.

3. Controlled collapse and bright solitons

For negative scattering lengths the condensate mean
field is attractive. The resulting nonlinearity can then
lead to a condensate collapse and to the formation of
bright matter-wave solitons. To study phenomena of this
kind by Feshbach tuning, the general experimental strat-
egy is to first produce a stable BEC at positive a. Then,
the attractive interaction is introduced by changing a to
negative values. Experiments of this class have been per-
formed with 85Rb �Donley et al., 2001; Roberts et al.,
2001; Cornish et al., 2006�, 7Li �Khaykovich et al., 2002:
Strecker et al., 2002�, and 133Cs �Weber et al., 2003a; Ry-
chtarik et al., 2004�.

Exploiting the 155 G Feshbach resonance in 85Rb,
Roberts et al. �2001� investigated the stability of a BEC
with attractive interactions. They first produced the con-
densate in a magnetic trap at a moderate positive scat-
tering length. They then slowly changed the atom-atom
interaction from repulsion to attraction by ramping the
magnetic field into the region of negative scattering
length. With increasing attractive interaction they ob-
served an abrupt transition in which atoms were ejected
from the condensate. These measurements of the onset

FIG. 25. �Color online� In situ images and density profiles
showing the variation of the equilibrium size of a magnetically
trapped 85Rb BEC close to a Feshbach resonance. With de-
creasing magnetic field �a�–�e�, the scattering length increases
from a very small positive value at 165.2 G �zero crossing at
165.8 G� to a very large value of a�+6000a0 at 156.4 G �reso-
nance position at 155.0 G�. From Cornish et al., 2000.
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of condensate collapse provided a quantitative test of
the stability criterion for a BEC with attractive interac-
tions.

The controlled collapse in 85Rb following a sudden
change of a led to the spectacular observation of a
“Bosenova,” a condensate implosion with fascinating
and unexpected properties �Donley et al., 2001�. An an-
isotropic burst of atoms was observed that exploded
from the condensate during the early stage of collapse
�Fig. 26�, leaving behind a highly excited long-lived rem-
nant condensate. Strikingly, the number of atoms in the
remnant BEC was significantly larger than the critical
number for a collapse. The surprising fact that the rem-
nant BEC did not undergo further collapse was later
explained by its fragmentation into bright solitons �Cor-
nish et al., 2006�.

Condensate collapse experiments were also used to
detect the presence of a small BEC of Cs atoms in an
optical surface trap �Rychtarik et al., 2004�. While a ther-
mal gas did not show loss when the scattering length was
suddenly switched to negative values, the condensate
showed up in the sudden onset of collapse-induced loss.

Bright solitons were observed in experiments on 7Li
atoms near the broad 737 G Feshbach resonance.
Khaykovich et al. �2002� produced a BEC by evaporative
cooling at a�40a0 in an optical trap. They then released
the BEC into a one-dimensional optical waveguide and
studied the propagation of the resulting matter-wave
packet for an ideal gas �a=0� and a gas with a small
attractive mean-field interaction �a=−4a0�. In the latter
case, they observed the dispersion-free propagation that
is characteristic for a soliton. In a similar experiment
Strecker et al. �2002� created a train of solitons �see Fig.
27� from an optically trapped 7Li BEC by abruptly
switching the scattering length from 200a0 to −3a0. They
also observed the propagation of the solitons in the trap
and their mutual repulsion. These spectacular experi-
ments on bright solitons highlight the analogy between

bright matter-wave solitons and optical solitons in fibers
and thus the intimate connection between atom optics
with BECs and light optics.

4. Noninteracting condensates

The zero crossing of the scattering length near a
Feshbach resonance can be used to realize noninteract-
ing ideal-gas condensates. BECs of 7Li, 39K, 85Rb, and
133Cs are good candidates to reduce �a� to very small
values on the order of a0 or smaller.

To explore noninteracting condensates with 133Cs
Weber et al. �2003a� and Kraemer et al. �2004� exploited
the zero crossing near 17 G and studied expansion after
release from the trap. The scattering length was abruptly
changed to zero when the condensate was released from
the trap. An extremely slow expansion was observed
with a release energy as low as kB 50 pK �see Fig. 28�.
The surprising observation that the release energy is a
factor of 5 below the kinetic energy associated with the
motional ground state of the trap is explained by the fact
that the initial size of the expanding matter-wave packet
is determined by the repulsive condensate self-
interaction before release, which is larger than the bare
ground state of the trap. The momentum spread is thus
significantly smaller. In contrast, a slow change of a to
zero before release would have ideally resulted in a
wave packet with position and momentum spread corre-
sponding to the bare ground state.

Besides the small equilibrium size of the condensate, a
vanishing scattering length has profound consequences
for the collective behavior of a BEC. The sound velocity
�na1/2� is vanishingly small so that all excitations will
become particlelike and not phononlike. Moreover, the
healing length �na−1/2� becomes very large, which may
be applied in experiments on rotating condensates
�Madison et al., 2000� to increase the core size of vorti-
ces.

Noninteracting condensates are promising for the ob-
servation of phenomena that are masked by interacting
effects, as, e.g., phenomena on a lower energy scale. In
atom interferometry the mean-field interaction of a con-
densate is a substantial systematic error source, as

FIG. 26. Striking phenomena have been observed in the con-
trolled collapse of a 85Rb BEC. The images show the forma-
tion of “jets,” where streams of atoms with highly anisotropic
velocities are ejected by the collapsing condensate. From Don-
ley et al., 2001.

FIG. 27. �Color online� A train of matter-wave solitons created
from an optically trapped BEC of 7Li atoms �Strecker et al.,
2002�. The individual solitons contain up to about 5000 atoms.
Courtesy of Randall Hulet.
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Gupta et al. �2002� observed in the context of photon
recoil measurements. Roati et al. �2004� studied Bloch
oscillations in an optical lattice under the influence of
gravity. They showed that, for interacting bosons, the
oscillations lost contrast much faster than for identical
fermions without s-wave interaction. A noninteracting
BEC combines the advantages of an ultralow momen-
tum spread with very long observation times. Two recent
experiments have reported on long-lived Bloch oscilla-
tions with BECs of 133Cs �Gustavsson et al., 2008� and
39K �Fattori, D’Errico, et al., 2008�, which is an impor-
tant advance toward high-precision atom interferometry.
This could, for example, open up new possibilities for
precision measurements of gravitational effects �Caru-
sotto et al., 2005�.

Another intriguing application of the zero crossing of
a Feshbach resonance was demonstrated by Lahaye et
al. �2007� with a BEC of 52Cr atoms. This species exhib-
its a very large magnetic dipole-dipole interaction be-
cause of its magnetic moment of 6�B. When the isotro-
pic contact interaction is reduced by tuning the
scattering length close to zero, the magnetic dipole in-
teraction dominates. In 52Cr this was achieved near the
589 G Feshbach resonance �Fig. 23�. The resulting dipo-
lar quantum gas represents a model system for a “quan-
tum ferrofluid,” the anisotropic properties of which have
been attracting considerable interest �Menotti et al.,
2008�. In further work on 52Cr BEC near the zero of the
scattering length, Lahaye et al. �2008� investigated the
controlled collapse of the system and demonstrated its
complex dynamics and Koch et al. �2008� studied the
stability of the dipolar condensate depending on the trap
geometry. The effect of the magnetic dipole interaction

has also been observed in noninteracting condensates
made of alkali atoms with magnetic moments of the or-
der of 1�B for 39K by Fattori, Roati, et al. �2008� and for
7Li by Pollack et al. �2009�. The recent observation of
Anderson localization of matter waves in a disordered
optical potential by Roati et al. �2008� represents a fur-
ther exiting application of a noninteracting condensate.

B. Degenerate Fermi gases

In experiments on ultracold Fermi gases �Inguscio et
al., 2008�, Feshbach resonances serve as a key to explore
many-body physics in the strongly interacting regime
�Bloch et al., 2008�. This regime is realized when the
scattering length exceeds the interparticle spacing and
connects the field of ultracold atoms to fundamental
questions in various fields of physics, such as high Tc
superconductors, nuclear matter, neutron stars, and the
quark-gluon plasma. The first Feshbach resonance in a
Fermi gas was observed by Loftus et al. �2002�. O’Hara,
Hemmer, Gehm, et al. �2002� produced the first strongly
interacting Fermi gas. Since then the research field has
undergone rapid developments with many exciting
achievements �Inguscio et al., 2008�.

The decay properties of ultracold Fermi gases are
strongly influenced by Pauli’s exclusion principle �Esry
et al., 2001; Petrov, 2003; Suno et al., 2003; Petrov et al.,
2004�. Three-body recombination processes in one-
and two-component Fermi gases necessarily involve
identical particles. This generally leads to a suppression
of loss as compared to Bose gases or systems with
three nonidentical particles. The majority of recent ex-
periments on Fermi gases �Inguscio et al., 2008� has
focused on two-component spin mixtures of 6Li or 40K
with resonant s-wave interactions, realized near broad
entrance-channel dominated resonances. In such sys-
tems, it is possible to realize a resonant s-wave interac-
tion �a→ ±�� practically without any decay. Neverthe-
less, these resonances are accompanied by subtle loss
features �Dieckmann et al., 2002�, which do not appear
at the resonance center but at the side where the scat-
tering length is positive. In contrast to the remarkable
stability near this special s-wave scenario, three-body
collisions near a p-wave Feshbach resonance usually
lead to significant loss �Regal et al., 2003b; Zhang et al.,
2004; Schunck et al., 2005�.

Here, as prominent examples for the application of
Feshbach tuning, we review the attainment of BEC of
molecules �Sec. IV.B.1� and studies of the BEC Bardeen-
Cooper-Schrieffer �BCS� crossover and the observation
of fermion superfluidity �Sec. IV.B.2�.

1. BEC of molecules

Bose-Einstein condensation of molecules was created
in atomic Fermi gases of 6Li �Jochim et al., 2003b;
Zwierlein et al., 2003; Bourdel et al., 2004� and 40K
�Greiner et al., 2003�. The molecules are weakly bound
dimers at the side of an entrance channel dominated
s-wave Feshbach resonance where the scattering length
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FIG. 28. Density profiles of a Cs BEC after 100 ms of expan-
sion at �a� a=210a0 and �b� a=0. The expansion energy of the
noninteracting condensate is as low as kB 50 pK. From Krae-
mer et al., 2004.
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is positive and very large. These dimers are formed in a
halo state �Sec. V.B.2�, which is stable against inelastic
decay in atom-dimer and dimer-dimer collisions �Petrov
et al., 2004�. This stability originates from basically the
same Pauli suppression effect that also affects three-
body decay in an atomic Fermi gas. Such weakly bound
molecules can be detected by converting them back to
atoms or by direct absorption imaging �see Sec. V.B.1�.

In a spin mixture of 6Li in the lowest two internal
states, the route to molecular BEC is particularly simple
�Jochim et al., 2003b�. Evaporative cooling toward
BEC can be performed in an optical dipole trap at a
constant magnetic field of about 764 G near the broad
834 G Feshbach resonance; here a=+4500a0 and Eb
=kB 1.5 �K. In the initial stage of evaporative cooling
the gas is purely atomic and a is the relevant scattering
length for elastic collisions between the atoms in differ-
ent spin states. With decreasing temperature the atom-
molecule equilibrium �Sec. V.A.3� favors the formation
of molecules and, in the final evaporation stage, a purely
molecular sample is cooled down to BEC. The large
atom-dimer and dimer-dimer scattering lengths of 1.2a
and 0.6a along with strongly suppressed loss �Sec. V.B.3�
facilitate an efficient evaporation process. In this way,
molecular BECs are achieved with a condensate fraction
exceeding 90%.

The experiments in 40K followed a different approach
to achieve molecular BEC �Greiner et al., 2003�. For 40K
the weakly bound dimers are less stable because of less
favorable short-range three-body interaction properties.
Therefore the sample is first cooled above the 202 G
Feshbach resonance, where a is large and negative, to
achieve a deeply degenerate atomic Fermi gas. A sweep
across the Feshbach resonance then converts the sample
into a partially condensed cloud of molecules. Figure 29
shows the emergence of the molecular BEC in 40K.

The molecular BEC can be described in the mean-
field approach outlined in Sec. IV.A.2 by simply re-
placing the atomic with the molecular mass �m→2m�
and the atomic with the molecular scattering length
�a→0.6a�. The mean field of the molecular condensate
was experimentally studied by Bartenstein et al. �2004b�
and Bourdel et al. �2004�. However, because of the large
scattering length, molecular BECs show considerable
beyond-mean-field effects �Altmeyer et al., 2007�.

2. BEC-BCS crossover and fermion superfluidity

At a Feshbach resonance in a two-component Fermi
gas, different regimes of fermion pairing and superfluid-
ity can be experimentally realized. Pairing on the side
with a	0 can be understood in terms of molecule for-
mation, and superfluidity results from molecular Bose-
Einstein condensation. On the other side of the reso-
nance �a
0�, pairing is a many-body effect and the
ground state of the system at zero temperature is a fer-
mionic superfluid. In the limit of weak interactions, this
regime can be understood in the framework of the well-
established BCS theory, developed in the 1950s to de-
scribe superconductivity. Both limits, BEC and BCS, are

smoothly connected by a crossover through a regime
where the gas is strongly interacting. This BEC-BCS
crossover has attracted considerable attention in many-
body quantum physics for more than two decades and
has recently been reviewed by Chen et al. �2005�,
Giorgini et al. �2008�, and Inguscio et al. �2008�. A theo-
retical description of this challenging problem is very
difficult and various approaches have been developed.
With tunable Fermi gases, a unique testing ground has
become available to quantitatively investigate the cross-
over problem.

The interaction regime can be characterized by a di-
mensionless parameter 1/kFa, where kF is the Fermi
wave number of a noninteracting gas, related to the
Fermi energy by EF=�2kF

2 / �2m�. For 1/kFa�1, the mo-
lecular BEC regime is realized. For 1/kFa�−1, the sys-
tem is in the BCS regime. In between �1/ �kFa�"1�, the
Fermi gas is strongly interacting. In the experiments,
EF /kB=1 �K gives a typical value for the Fermi energy
and 1/kF�4000a0 sets the typical length scale. The real-
ization of a strongly interacting gas thus requires �a�
�4000a0. which for the particularly broad 6Li resonance
�Fig. 10� is obtained over a more than 100-G-wide mag-
netic field range.

A particularly interesting situation is the exact reso-
nance case, where 1/kFa=0. Here a is no longer a rel-
evant quantity to describe the problem and scattering is

FIG. 29. �Color online� Emergence of a molecular BEC in an
ultracold Fermi gas of 40K atoms, observed in time-of-flight
absorption images. The density distribution on the left-hand
side �upper graph, two-dimensional �2D� surface plot; lower
graph, one-dimensional �1D� cross section� was taken for a
weakly interacting Fermi gas which was cooled down to 19%
of the Fermi temperature. After ramping across the Feshbach
resonance no BEC was observed as the sample was too hot.
The density distribution on the right-hand side was observed
for a colder sample at 6% of the Fermi temperature. Here the
ramp across the Feshbach resonance resulted in a bimodal dis-
tribution, revealing the presence of a molecular BEC with a
condensate fraction of 12%. From Greiner et al., 2003.
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only limited by unitarity �Sec. II.A.2�. Consequently, kF
−1

and EF define the relevant scales for length and energy,
and the Fermi gas acquires universal properties
�Giorgini et al., 2008; Inguscio et al., 2008�. For example,
the size and shape of a harmonically trapped “universal
Fermi gas” can be obtained as a rescaled version of a
noninteracting Fermi gas.

Experimentally, various properties of strongly inter-
acting Fermi gases have been explored in the BEC-BCS
crossover �Inguscio et al., 2008�. All these experiments
have been performed on two-component spin mixtures
of 6Li near the 834 G resonance or of 40K near the
202 G resonance. In both cases, the resonances have
entrance-channel dominated character, where the two-
body interaction can be modeled in terms of a single
scattering channel and universality applies �Sec. II.B.2�.
This condition is particularly well fulfilled for the 6Li
resonance, where the resonance is exceptionally strong.

Regal et al. �2004� introduced fast magnetic-field
sweeps to observe the condensed fraction of pairs in the
crossover. Starting with an ultracold 40K Fermi gas in the
strongly interacting regime, they performed fast Fesh-
bach ramps into the BEC regime. The ramps were fast
compared to the time scale of establishing a thermal
atom-molecule equilibrium by collisions �see Sec.
V.A.3�. However, the Feshbach ramps were slow enough
to adiabatically convert fermion pairs formed in the
strongly interacting regime into molecules. After the
ramp, the observed molecular condensate reflected the
fermion condensate before the ramp. The fast-ramp
method was applied by Zwierlein et al. �2004� to observe
fermion condensates in 6Li.

For 6Li Bartenstein et al. �2004b� showed that slow
Feshbach ramps allow conversion of the gas in a revers-
ible way from the molecular BEC to the BCS regime.
Here the gas adiabatically follows and stays in thermal
equilibrium. They also observed in situ profiles of the
trapped strongly interacting gas and measured its chang-
ing size for variable interaction strength.

Collective modes in the BEC-BCS crossover were
studied in 6Li gases. Kinast et al. �2004� reported on ul-
traslow damping in a universal Fermi gas with resonant
interactions, providing evidence for superfluidity. Bar-
tenstein et al. �2004a� measured how the frequencies of
collective modes in the crossover changed with variable
interaction parameter 1/kFa. They also observed a
breakdown of hydrodynamic behavior on the BCS side
of the resonance, which marks a transition from the su-
perfluid to the normal phase. Precision measurements of
collective modes also revealed beyond-mean-field ef-
fects in the molecular BEC regime �Altmeyer et al.,
2007�.

Chin, Bartenstein, et al. �2004� performed spectros-
copy on fermion pairs by using a radio-frequency tech-
nique. They measured the binding energy of the pairs in
the crossover. They showed how an effective pairing gap
continuously evolved from the molecular regime, where
it simply reflects the dimer binding energy, into a many-
body regime of pairing �Schunck et al., 2008�.

Partridge et al. �2005� used an optical molecular-probe
technique based on photoassociation to measure the
closed channel contribution of pairs in the crossover.
Their results, shown in Fig. 30, show that this fraction is
very small in the strongly interacting regime. These ob-
servations strongly support single-channel descriptions
for the crossover along with the concept of universality.
The results also demonstrate that fermionic pairing
reaches from the strongly interacting regime well into
the weakly interacting BCS regime.

Superfluidity of a 6Li Fermi gas in the BEC-BCS
crossover was observed by Zwierlein et al. �2005�. They
produced a rotating Fermi gas and observed the forma-
tion of vortex arrays. Here Feshbach tuning was applied
not only to explore different regimes in the crossover
but also to increase the vortex cores in the expanding
Fermi gas after release from the trap; the latter was es-
sential to observe the vortices by optical imaging.

Currently, there is considerable interest in exploring
novel regimes of pairing and superfluidity. Partridge et
al. �2006� and Zwierlein et al. �2006� performed experi-
ments with unbalanced mixtures of two spin states, i.e.,
polarized Fermi gases. This led to deeper insight into
phenomena such as phase separation �Partridge et al.,
2006; Shin et al., 2008�. Ultracold Fermi-Fermi mixtures
of different species, such as 6Li and 40K, have recently
become available �Taglieber et al., 2008; Voigt et al.,
2008; Wille et al., 2008�, adding the mass ratio and inde-
pendent control of the trapping potentials for both com-
ponents to our tool box to explore the broad physics of
strongly interacting fermions.
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FIG. 30. Measurements of the closed channel fraction Z for
pairs in the BEC-BCS crossover. The experiment uses the
834 G resonance in 6Li and a photoassociation probe that only
couples to closed channel singlet component. The vertical
dashed lines indicate the boundaries of the strongly interacting
regime, kF�a�	1. The dotted line shows the result of a
coupled-channel calculation for molecules �see Sec. II.C.5 and
Fig. 16�. Comparison with the experimental data shows that
two-body physics describes the situation well up to close to the
834 G resonance. For higher fields, Z shows strong many-body
effects. Above the resonance, where two-body pairs cannot
exist, the many-body system shows the closed channel admix-
ture of the many-body pairs. From Partridge et al., 2005.
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V. ULTRACOLD FESHBACH MOLECULES

Cold molecules are at the center of a rapidly develop-
ing research field �Doyle et al., 2004; Hutson and Soldán,
2006�, offering many new opportunities for cold chemis-
try, precision measurements, many-body physics, and
quantum information. The coldest attainable molecules,
at temperatures in the nanokelvin range, are created by
Feshbach association in ultracold atomic gases. Here
Feshbach resonances serve as the experimental key to
couple pairs of colliding atoms into molecules.

In 2002, Donley et al. �2002� observed coherent oscil-
lations between atom pairs and Feshbach molecules in a
BEC of 85Rb atoms. The oscillation frequency reflected
the small binding energy of the dimer in a weakly bound
state and provided indirect evidence for the creation of
molecules. In 2003, several groups reported on more di-
rect observations of Feshbach molecules in Fermi gases
of 40K �Regal et al., 2003a� and 6Li �Cubizolles et al.,
2003; Jochim et al., 2003a; Strecker et al., 2003� and
BECs of Cs �Herbig et al., 2003�, 87Rb �Dürr, Volz,
Marte, and Rempe, 2004�, and Na �Xu et al., 2003�. This
rapid development culminated in the attainment of mo-
lecular BEC at the end of 2003 �Sec. IV.B.1� and has
paved the way for numerous applications.

A comprehensive review of Feshbach molecules and
their theoretical background has been given by Köhler
et al. �2006�. We do not consider optical methods of mak-
ing molecules since this was recently reviewed by Jones
et al. �2006�. Here we discuss various formation methods
based on magnetic Feshbach resonances �Sec. V.A� and
the main properties of Feshbach molecules �Sec. V.B�.

A. Formation

Various schemes to create ultracold molecules near
Feshbach resonances have been developed in the last
few years, most of them relying on the application of
time-varying magnetic fields. Section V.A.1 describes the
use of magnetic field ramps, while Sec. V.A.2 discusses
the application of oscillatory fields. These schemes have
been applied to a variety of bosonic and fermionic atom
gases. Section V.A.3 describes the formation of collision-
ally stable molecules of fermionic atoms through three-
body recombination and thermalization.

Here we restrict our discussion to ultracold gases con-
fined in macroscopic traps. The microscopic trapping
sites of an optical lattice, where atom pairs can be tightly
confined, constitute a special environment for molecule
formation. This will be reviewed separately in Sec. VI.B.

1. Feshbach ramps

Ramping an external magnetic field across a Feshbach
resonance is the most commonly adopted scheme to
form Feshbach molecules. This scheme, usually referred
to as a Feshbach ramp, was proposed by Timmermans et
al. �1999�, van Abeelen and Verhaar �1999b�, and Mies et
al. �2000�. In a simplified picture, shown in Fig. 31�a�, the
resonant coupling between the scattering state and the
molecular state opens up a way to adiabatically convert
interacting atom pairs into molecules. The atomic gas is
prepared at a field B away from resonance where the
two atoms do not have a weakly bound state. In Fig.
31�a�, this corresponds to B	B0. The field is then
ramped to a final B
B0 to make a Feshbach molecule.

Regal et al. �2003a� created ultracold molecules in a
degenerate Fermi gas of 40K, exploiting the resonance at
224 G in the ac channel. In the 10 G ramp across the
resonance with a ramp speed of 25 G/ms, about 50% of
the atoms were converted to molecules. The experimen-
tal signatures, shown in Fig. 32�a�, were a disappearance
of atoms when the field was ramped below 224 G and a
recovery of the atoms when the field was ramped back.
Since the Feshbach bound state exists below 224 G,
their observation strongly suggests formation and disso-
ciation of Feshbach molecules below and above 224 G,
respectively. For the 202 G resonance in the ab channel
of 40K, Hodby et al. �2005� reported conversion efficien-
cies of up to 80%. This resonance was also used for the
formation of a molecular BEC �see Sec. IV.B.1�.

Feshbach ramps were also applied to degenerate
Fermi gases of 6Li in the lowest two spin states �ab chan-
nel� using both the narrow resonance at 543 G �Strecker
et al., 2003� and the broad resonance at 834 G �Cubi-
zolles et al., 2003�. These two resonances in 6Li are dis-
cussed in Sec. II.B.5. Both experiments revealed a re-
markable collisional stability of the molecules �see Sec.
V.B.3�.

In bosonic gases, an efficient atom-molecule conver-
sion by a Feshbach ramp has to overcome inelastic col-
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FIG. 31. �Color online� Illustration of experimental schemes to create ultracold molecules. The solid line marks the weakly bound
molecular state �m�, which dissociates into the continuum �indicated by the dotted line� at resonance B=B0. In �a�, the magnetic
field is ramped across the resonance, which adiabatically converts two interacting atoms into one molecule; in �b�, an oscillatory
magnetic field drives the transition from the scattering state to the molecular state; and in �c�, three-body recombination results in
molecule formation.
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lision loss during the ramp process �see Sec. V.B.3�. In
general, ramps applied to bosonic atom samples do not
only create weakly bound Feshbach molecules, but they
also lead to atom loss that cannot be recovered by a
reverse field ramp. These atoms are lost presumably to
deeply bound molecular states as a result of atom-
molecule inelastic collisions. To optimize the Feshbach
molecule fraction, which corresponds to the recoverable
fraction, it is crucial to optimize the ramp speed. Fur-
thermore, a fast separation of the molecules from the
remaining atoms is essential. The latter can, for ex-
ample, be achieved by Stern-Gerlach or optical meth-
ods.

Herbig et al. �2003� created a pure sample of about
3000 g-wave molecules from a BEC of 133Cs atoms by a
Feshbach ramp across the narrow resonance at 20 G.
The presence of an inhomogeneous magnetic field dur-
ing the ramp facilitated an immediate Stern-Gerlach
separation of the molecules from the atomic cloud. The
Feshbach ramp removed about 60% of the atoms from
the BEC, but only 20% were found in the weakly bound
molecular state and thus could be recovered by a reverse
field ramp. Expansion measurements on the Cs2 cloud
showed temperatures below 5 nK and suggested phase-
space densities close to or exceeding unity. In later ex-
periments on 133Cs, Chin et al. �2005�, Mark, Kraemer,
et al. �2007�, and Knoop et al. �2008� produced Feshbach
molecules in a variety of different internal states and
partial waves including s-to l-wave ��=8� states.

Dürr, Volz, Marte, and Rempe �2004� applied a similar
scheme to a 87Rb BEC and formed 7000 s-wave mol-
ecules near the 1007 G resonance with a 7% conversion
efficiency. A magnetic gradient was applied right after
the Feshbach ramp to separate atoms and molecules.
The experiments showed remarkable oscillations of the
molecular cloud in the gradient field �Fig. 33�, which ap-
pear as a result of the changing magnetic moment near
an avoided crossing between two molecular states. The
creation of 87Rb Feshbach molecules has led to fascinat-
ing applications in optical lattices �see Sec. VI.B.1�.

Xu et al. �2003� demonstrated molecule formation
with a 4% conversion efficiency in a large BEC of 23Na
atoms by a Feshbach ramp across the 907 G resonance.
A large number of more than 105 Feshbach molecules
were observed. Expansion measurements on the Na2
cloud showed that it was in the quantum-degenerate re-
gime. By diffraction off an optical standing wave, Abo-
Shaeer et al. �2005� demonstrated the matter-wave co-
herence of Na2 molecules.

Hodby et al. �2005� presented a model of the atom-
molecule conversion efficiency that is valid for both
near-degenerate fermionic and bosonic atoms. Figure 34
shows a comparison of this model with data from experi-
ments on 40K and 85Rb. The atom-molecule conversion
efficiency follows a Landau-Zener-like behavior

P

Pmax
= 1 − exp�− �n

�

m��abg

Ḃ
�� , �61�

where Pmax is the maximum conversion efficiency, solely
determined by the phase-space density of the atomic
cloud. This expression reveals a simple dependence on
the resonance parameters � and abg, the atomic number

density n, and the ramp speed Ḃ; the dimensionless pref-
actor � is discussed by Köhler et al. �2006�.

Improved conversion techniques have been reported
for atomic BECs. For the case of the narrow 20 G
g-wave resonance of 133Cs, Mark et al. �2005� success-
fully converted 30% of the atoms into Feshbach mol-

FIG. 32. Molecule formation in a 40K gas near the 224 G
Feshbach resonance. �a� The number of atoms measured after
a ramp across the resonance as a function of the final magnetic
field shows the disappearance of atoms having formed mol-
ecules. �b� For comparison shows the magnetic field depen-
dence of the s-wave scattering length in units of the Bohr ra-
dius, as measured by radio-frequency spectroscopy. From
Regal et al., 2003a.

FIG. 33. �Color online� Motion of 87Rb2 molecules in a mag-
netic field gradient. Right after the Feshbach ramp, the mol-
ecules are separated from the atoms because of the different
magnetic moments. While the atom cloud leaves the observa-
tion region �see first four images� the molecules undergo an
oscillatory motion, which is due to a changing magnetic mo-
ment caused by an avoiding level crossing in the molecular
states. The images correspond to steps of 1 ms, and the field of
view of each image is 0.24 1.7 mm. From Dürr, Volz, Marte,
and Rempe, 2004.
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ecules. Their scheme relied on fast switching of the mag-
netic field from 21 G right on the resonance, followed by
a hold time of �10 ms and a further switch to 18 G. This
scheme was found to be superior to using an optimized
linear ramp.

Feshbach ramps have also been applied to create
p-wave molecules in ultracold Fermi gases. Formation of
p-wave molecules in a 6Li gas was reported by Zhang
et al. �2004� based on the 185 G resonance in the ab
channel. Fuchs et al. �2008� measured the binding ener-
gies of such p-wave Feshbach molecules in three chan-
nels �aa, ab, and bb� using an oscillating magnetic field
�see Sec. III.A.5�. Inada et al. �2008� studied the colli-
sional properties of these molecules in all three chan-
nels. Gaebler et al. �2007� created p-wave molecules in a
40K gas by fast switching of the magnetic field to the
p-wave Feshbach resonances at 198.4 and 198.8 G �both
in the bb channel� and studied the lifetimes of the mol-
ecules.

Similarly, Feshbach ramps have also been applied to
ultracold atomic mixtures to create heteronuclear mol-
ecules, such as 40K 87Rb �Ni et al., 2008� and 6Li 40K
�Voigt et al., 2008�. An isotopic rubidium mixture was
used to associate 85Rb 87Rb molecules by Papp and Wi-
eman �2006�. A variety of other heteronuclear molecule
systems is currently under investigation in different
laboratories. Feshbach ramps have become a standard
approach to create ultracold molecules and serve as a
starting point to investigate the dynamics and the inter-
action properties of Feshbach molecules.

2. Oscillatory fields

Another powerful method to produce ultracold Fesh-
bach molecules is based on a modulation of the mag-
netic field strength �Thompson et al., 2005b; Hanna et al.,
2007�. The oscillating field induces a stimulated transi-
tion of two colliding atoms into a bound molecular state
�see Fig. 31�b��. Heating and atom loss are reduced since
association occurs at a bias field B away from the reso-

nance position B0. For a 85Rb BEC near the 155 G reso-
nance, Thompson et al. �2005b� reported on high conver-
sion efficiencies for molecules with binding energies on
the order of 10 kHz; the molecule formation was in-
ferred from the observation of a resonant loss signal.
Lange et al. �2009� used the same method to explore
weakly bound molecular states of Cs atoms in the aa
channel in an energy range of up to 300 kHz.

In a 40K spin mixture, p-wave molecules were pro-
duced with an oscillating magnetic field near the 198 G
resonance doublet in the bb channel �Gaebler et al.,
2007�. The method was also applied to produce hetero-
nuclear s-wave molecules in mixtures of the two Rb iso-
topes �Papp and Wieman, 2006� and of 41K and 87Rb
atoms �Weber et al., 2008�.

In contrast to the magnetic field modulation method,
radio-frequency transitions in the range of tens of MHz
that involve a change of spin channel can also be used to
associate two atoms to make a Feshbach molecule. This
is the inverse of the dissociation process described in
Sec. III.A.5. In this way Klempt et al. �2008� and Zirbel,
Ni, Ospelkaus, Nicholson, et al. �2008� achieved associa-
tion of 87Rb and 40K in a dipole trap. Similar association
experiments in an optical lattice are described in Sec.
VI.B.1.

3. Atom-molecule thermalization

A particular situation for molecule formation arises in
a spin mixture of 6Li near the 834 G Feshbach reso-
nance. At the low-field side of the resonance there is a
broad field range, where the s-wave scattering length is
large and positive. Here a weakly bound state exists with
a pronounced halo character. The molecular state shows
an extraordinary stability against inelastic decay, which
opened the way to efficiently create molecular BECs by
straightforward evaporative cooling at a constant mag-
netic field near 764 G �Jochim et al., 2003b; Zwierlein
et al., 2003�.

The formation of molecules in this region can be un-
derstood in terms of a chemical atom-molecule equilib-
rium �Chin and Grimm, 2004; Kokkelmans et al., 2004�,
where exoergic three-body recombination events com-
pete with endoergic two-body dissociation processes.
From a balance of these processes one can intuitively
understand that molecule formation is favored at low
temperatures and high number densities, i.e., at high
phase-space densities. Indeed, for a nondegenerate gas,
the atom-molecule equilibrium follows a simple relation
�Chin and Grimm, 2004�

�mol = �at
2 exp�Eb/kBT� , �62�

where �mol and �at denote the molecular and atomic
phase-space densities, respectively. The Boltzmann fac-
tor, determined by the ratio of the molecular binding
energy Eb and the thermal energy kBT, enhances the
fraction of molecules and can partially compensate for a
low atomic phase-space density.

The thermal atom-molecule equilibrium was experi-
mentally investigated by Jochim et al. �2003a� in a non-

FIG. 34. Illustration of the dependence of the atom-molecule
conversion efficiency on the atomic phase-space density. The
main figure shows the results obtained in a near-degenerate
bosonic gas of 85Rb atoms, while the inset shows correspond-
ing results on a fermionic gas of 40K atoms. The lines refer to
a theoretical model that is based on the phase-space overlap of
atom pairs in the trapped gases. From Hodby et al., 2005.

1262 Chin et al.: Feshbach resonances in ultracold gases

Rev. Mod. Phys., Vol. 82, No. 2, April–June 2010



degenerate gas of 6Li atoms. Figure 35 shows how the
initially pure atomic gas tends to an atom-molecule
equilibrium. The observation that more than 50% of the
atoms form molecules at a phase-space density of 0.04
highlights the role of the Boltzmann factor. The chemi-
cal atom-molecule equilibrium also played an essential
role in the experiment by Cubizolles et al. �2003�, where
a slow Feshbach ramp, which kept the sample in thermal
equilibrium, led to a conversion efficiency of 85%.

B. Properties

1. Dissociation and detection

A general way to detect Feshbach molecules is their
controlled dissociation through reverse magnetic field
sweeps, followed by imaging of the resulting cloud of
atoms. If the image is taken immediately after the forced
dissociation, it reflects the spatial distribution of the
molecules before the onset of dissociation. However, if
the image is taken after a certain time of flight, it will be
strongly affected by a release of kinetic energy. The im-
age then contains additional information on the dissocia-
tion process.

A reverse Feshbach ramp brings the molecule into a
quasibound state above the dissociation threshold, from
which it decays into two atoms in the continuum. The
decay rate ��E� /� depends on the energy E above
threshold and can be calculated from Eqs. �14�, �17�, and
�22�,

��E� = 2kabg��� = 2kāĒsres. �63�

Mukaiyama et al. �2004� gave the energy spectrum of hot
atoms using this Fermi’s golden rule expression for a
linear ramp and showed that it agreed well with mea-
surements with 23Na2 Feshbach molecules. Góral et al.

�2004� verified the golden rule theory with a full quan-
tum dynamics calculation of Feshbach molecule disso-
ciation.

The mean kinetic energy released in a reverse Fesh-
bach ramp corresponds to the typical energy that the
molecules can reach in the quasibound level before the
dissociative decay takes place. In experiments on 87Rb2,
Dürr, Volz, and Rempe �2004� studied the dependence
of the energy release on the ramp rate and on the reso-
nance width. They demonstrated kinetic energy mea-
surements after reverse Feshbach ramps as a powerful
indirect tool to determine the widths of weak resonances
with � in the mG range, where direct methods are im-
practical. They also demonstrated the production of a
monoenergetic spherical wave of atoms by rapidly
switching the magnetic field instead of ramping it.

The dissociation properties of Feshbach molecules
can provide additional spectroscopic information. Volz
et al. �2005� observed interesting dissociation patterns of
87Rb2 when the molecular state was brought high above
the threshold with fast jumps of the magnetic field. The
patterns, shown in Fig. 36, reveal a d-wave shape reso-
nance. The dissociation of 133Cs2 molecules in l-wave
states was observed by Mark, Kraemer, et al. �2007�. The
dissociation pattern showed a strikingly different behav-
ior from molecules in a g-wave state and allowed to
clearly distinguish between these two types of mol-
ecules.

We note that direct imaging of Feshbach molecules is
not feasible in most situations because of the absence of
cycling optical transitions. An exception, however, is the
direct imaging of atoms in halo states as demonstrated
for 6Li �Zwierlein et al., 2003; Bartenstein et al., 2004b�.
In this special case, the extremely weakly bound dimer
absorbs resonant light essentially like free atoms.

FIG. 35. An ultracold 6Li gas approaches a chemical atom-
molecule equilibrium on the molecular side of the 834 G
Feshbach resonance. The experiment starts with a nondegen-
erate purely atomic gas at a temperature of 2.5 �K and a peak
atomic phase-space density of 0.04. The magnetic field is set to
690 G, where the molecular binding energy corresponds to
15 �K. Nat and Nmol denote the number of unbound atoms and
the number of molecules, respectively. The total number of
unbound and bound atoms 2Nmol+Nat slowly decreases be-
cause inelastic loss is not fully suppressed. From Jochim et al.,
2003a.

FIG. 36. �Color online� Dissociation patterns of 87Rb2 mol-
ecules, showing the interference of s- and d-partial waves. At
small magnetic field offsets B−B0 �values given in the upper
left corners�, the s-wave pattern dominates; at large offsets, d
waves are strongly enhanced due to a d-wave shape resonance.
From Volz et al., 2005.
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2. Halo dimers

Broad entrance-channel dominated s-wave reso-
nances feature a considerable region where Feshbach
molecules acquire universal properties �see Sec. II and
Köhler et al. �2006��. “Universality” means that details
of the interaction become irrelevant and that all proper-
ties of the dimer are characterized by a single parameter,
the s-wave scattering length a or alternatively the bind-
ing energy Eb=�2 /ma2. The reason for this simplifica-
tion is the fact that the wave function extends far out of
the classical interaction range of the potential. States of
this kind have been coined “quantum halos.” They have
attracted considerable attention in nuclear physics and,
more recently, in molecular physics and have been re-
viewed by Jensen et al. �2004�. An early example is the
deuteron, where the neutron and proton are likely to be
found outside of the classically allowed region. Before
the advent of Feshbach molecules, the most extended
halo system experimentally accessible was the helium
dimer �4He2�, which is about ten times larger than typi-
cal diatomic molecules. An extreme example is given by
Bose-condensed 6Li2 Feshbach dimers with a size of
a /2�2000a0, which exceeds the van der Waals length
RvdW�30a0 by almost two orders of magnitude.

First experiments on halo dimers have been con-
ducted with bosonic 85Rb �Donley et al., 2002� and 133Cs
�Mark, Ferlaino, et al., 2007� and fermionic 40K and 6Li
�see Sec. IV.B.1�. For 85Rb, the dimers are not formed
from atoms in the lowest internal states and thus have
open decay channels. This leads to spontaneous disso-
ciation without the presence of other atoms or mol-
ecules. Thompson et al. �2005a� observed an a−3 scaling
of the dissociation rate, which can be understood as a
direct consequence of universality through wave-
function overlap arguments �Köhler et al., 2005�. For
halo dimers of 133Cs2 created from atoms in their lowest
internal states there are no open dissociation channels.
These molecules cannot decay spontaneously but decay
through collisions with other atoms or molecules �Fer-
laino et al., 2008; Knoop et al., 2009�.

A future promising direction with Feshbach molecules
in halo states is the experimental investigation of univer-
sal few-body physics �see Sec. VI.C�.

3. Collision properties

Fast collisional loss is usually observed in trapped
samples of ultracold molecules. This has been seen in
experiments with bosonic 23Na2 �Mukaiyama et al.,
2004�, 87Rb2 �Wynar et al., 2000; Syassen et al., 2006�, and
133Cs2 �Chin et al., 2005�. Zirbel, Ni, Ospelkaus, Nichol-
son, et al. �2008� measured large rate coefficients for fer-
mionic 40K 87Rb Feshbach molecules due to collisions
with 87Rb or 40K. Both atom-dimer and dimer-dimer col-
lisions are generally found to cause strong inelastic loss,
as shown by the example in Fig. 37. Vibrational relax-
ation is the dominant mechanism, which leads to large
loss rate coefficients of the order of 10−10 cm3/s. Rate
coefficients of such magnitude result in molecular life-

times on the order of a few ms or less for density char-
acteristic of ultracold gases. Rearrangement reactions,
such as trimer formation, may also play a significant role
in limiting molecular lifetimes.

Inelastic collision rates of Feshbach molecules in the
very highest bound state, when they are not universal
halo states, are not significantly different from rates for
more deeply bound states, for which fast inelastic loss
has been observed �Staanum et al., 2006; Zahzam et al.,
2006� and predicted �Quéméner et al., 2005; Cvitas et al.,
2007�. Hudson et al. �2008� measured large inelastic col-
lision rate coefficients for vibrationally excited triplet
87Rb 133Cs molecules colliding with 133Cs or 87Rb atoms.
They also used a simple model to help understand why
such large rate constants are typical for atom-molecule
vibrational relaxation. Assuming a probability near
unity for inelastic loss when the collision partners ap-
proach one another in the short-range region of chemi-
cal bonding, the overall collision rate coefficient is then
determined from the threshold scattering of the long-
range van der Waals potential. In effect, the rate con-
stant is given by Eq. �10�, where the length b turns out to
be similar in magnitude to the van der Waals length
RvdW. Such a simple model gives the typical order of
magnitude of 10−10 cm3/s for the vibrational relaxation
rate constant, nearly independent of the vibrational
level, found for the 87Rb or 133Cs system.
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FIG. 37. Fast collisional decay of 23Na2 Feshbach molecules.
The molecules are trapped �a� alone or �b� together with at-
oms. From Mukaiyama et al., 2004.
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Halo molecules comprised of two unlike fermions
bound in an s-wave state offer an exception to the rule
of fast inelastic dimer-dimer and atom-dimer collisions.
This has allowed stable molecular samples and even mo-
lecular Bose-Einstein condensation �see Sec. IV.B�.
Petrov et al. �2004� showed that a combination of two
effects explains this stability. The first effect is a small
wave-function overlap of a halo dimer with more deeply
bound dimer states, and the second one is Pauli suppres-
sion in the few-body process. For inelastic dimer-dimer
collisions, Petrov et al. �2004� predicted the rate coeffi-
cient for inelastic loss to scale as �a /RvdW�−2.55 whereas
for the elastic part they obtained a dimer-dimer scatter-
ing length of 0.6a. For the atom-dimer interaction, the
predicted scaling of inelastic loss is �a /RvdW�−3.33 and the
scattering length is 1.2a.

An interesting case is the observation of stable 6Li2
molecules created near the closed-channel dominated
resonance at 543 G �Strecker et al., 2003�. These are not
halo molecules and would be expected to have a large
collisional loss rate coefficient similar to molecules com-
prised of bosons. The collision properties of these mol-
ecules await detailed investigation.

A possible way to overcome harmful inelastic colli-
sional loss is the application of an optical lattice �Thal-
hammer et al., 2006�. Here a pair of atoms or a single
molecule can be trapped in an individual lattice site,
which offers shielding from collisions with other mol-
ecules or atoms. Many experiments on ultracold mol-
ecules are now performed with Feshbach resonances
and molecules in an optical lattice �see discussion in Sec.
VI.B�. Another way to prevent inelastic collisions of ul-
tracold molecules is to transfer them to their lowest en-
ergy ground state, where they do not undergo vibra-
tional, rotational, or spin relaxation. However, reactive
collisions may still be possible.

4. Internal state transfer

A Feshbach resonance can serve as an “entrance
gate” into the rich variety of molecular states below
threshold, allowing preservation of the ultralow tem-
perature of the atomic gas that is used as a starting
point. The magnetic association technique �Sec. V.A.1�
produces a molecule in a specific weakly bound molecu-
lar state, i.e., the particular molecular state that repre-
sents the closed scattering channel of the resonance.
This leads to the question how a Feshbach molecule can
be transferred to other states with specific properties of
interest or, ultimately, to the absolute rovibrational
ground state. Various methods have been developed for
a controlled internal state transfer based on magnetic
field ramps, radio-frequency or microwave radiation, or
optical Raman excitations.

When a Feshbach ramp after initially associating the
molecules is continued over a wider magnetic field
range, the molecule will perform a passage through
many level crossings �see, e.g., Fig. 14�. The ramp speed
controls whether crossings are traversed diabatically
�fast ramp� or whether they are followed adiabatically

�slow ramp�. Mark, Ferlaino, et al. �2007� demonstrated
the controlled transfer of 133Cs2 molecules into different
states by elaborate magnetic field ramps. In this way,
they could populate various states from s up to l waves
with binding energies of up to �10 MHz. In practice,
finite ramp speeds limit this method to rather weak
crossings with energy splittings of up to typically
200 kHz. Lang, van der Straten, et al. �2008� showed how
this problem can be overcome with the help of radio-
frequency excitation. They demonstrated the transfer of
87Rb2 molecules over nine level crossings when the mag-
netic field was ramped down from the 1007 G resonance
to zero field in 100 ms. This produced molecules having
a binding energy Eb=h 3.6 GHz with a total transfer
efficiency of about 50%.

More deeply bound states can be reached by two-
photon Raman transitions, as implemented in a very
efficient way by stimulated Raman adiabatic passage
�STIRAP� �Bergmann et al., 1998�. Figure 38 shows
STIRAP between the two highest vibrational levels in
87Rb2 with binding energies corresponding to 24 and

FIG. 38. �Color online� STIRAP with Feshbach molecules. �a�
After creation of Feshbach molecules in a weakly bound state
�a�, a two-photon transition is used to transfer the molecules
into a more deeply bound state �g�. In the counterintuitive
pulse sequence of STIRAP, laser field 2 is switched on before
laser field 1, and the molecule is always kept in a dark super-
position state of �a� and �g� during the transfer sequence. This
suppresses the unwanted electronic excitation of state �b� and
leads to a very high transfer efficiency. The measurements
shown in �b� refer to an experiment in 87Rb2, where �a� and �g�
correspond to the last and second-to-last bound vibrational
levels. The data show the measured population in �a� during a
0.2 ms transfer sequence and a reverse transfer sequence after
a 5 s hold time in state �g�. The observed efficiency of 75% for
a double passage corresponds to single-passage transfer effi-
ciency of 87%. Adapted from Winkler et al., 2007.
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637 MHz, as demonstrated in a proof-of-principle ex-
periment by Winkler et al. �2007�. The experiment also
highlighted the potential of the approach to combine
Feshbach association with stimulated Raman optical
transitions, as originally suggested by Kokkelmans et al.,
�2001� to create deeply bound molecules.

In 2008 experimental progress was made in applica-
tions of STIRAP to transfer both homonuclear and het-
eronuclear Feshbach molecules into deeply bound
states. Danzl et al. �2008� explored 133Cs2 molecules and
demonstrated large binding energies corresponding to
31.8 THz. Lang, Winkler, et al. �2008� reached the rovi-
brational ground state in the triplet potential of 87Rb2,
the binding energy of which corresponds to 7.0 THz.
The heteronuclear case was successfully explored with
40K87Rb. Initial experiments by Ospelkaus et al. �2008�
demonstrated the transfer to states with a binding en-
ergy corresponding to 10.5 GHz. Only shortly afterward,
the same group �Ni et al., 2008� demonstrated polar mol-
ecules in both the triplet and singlet rovibrational
ground states, where the binding energies correspond to
7.2 and 125 THz, respectively. These experiments
opened up a promising new research field related to the
exciting interaction properties of ground-state molecular
quantum gases.

All the above methods for controlled state transfer
rely on coherent processes. Therefore they can also be
applied to produce coherent superpositions of molecular
states. This can, for example, be used for precise inter-
ferometric measurements of the molecular structure.
Mark, Kraemer, et al. �2007� and Lang, van der Straten,
et al. �2008� investigated molecular level crossings in this
way. Using STIRAP, Winkler et al. �2007� created quan-
tum superpositions between neighboring vibrational
states and tested their coherence interferometrically.

VI. RELATED TOPICS

A. Optical Feshbach resonances

Magnetic fields have proven to be a powerful tool to
change the interaction strength or scattering length be-
tween ultracold atoms. As discussed in this review this
has been made possible by the presence of a molecular
bound state that is resonantly coupled to the colliding
atom pair. The width of the resonance �� in Eq. �1��,
however, is governed by the interatomic forces between
the two atoms. Optical Feshbach resonances promise
control of both the resonance location and its width.

1. Analogies

Figure 39 shows a schematic diagram of an optical
Feshbach resonance. As first proposed by Fedichev, Ka-
gan, et al. �1996� laser light nearly resonant with a tran-
sition from a colliding atom pair and a rovibrational
level of an excited electronic state induces a Feshbach
resonance and modifies the scattering length of the two
atoms. Excited electronic states dissociate to one ground
and one electronically excited atom for large interatomic

separations. For many kinds of atoms the photon
needed to reach such states is in the visible or optical
domain and, hence, the term optical Feshbach resonance
has been adopted.

The location and strength of an optical Feshbach reso-
nance are determined by the laser frequency � and in-
tensity I, respectively. Both can be controlled experi-
mentally. There is, however, a crucial difference between
magnetic and optical Feshbach resonances. For optical
Feshbach resonances the resonant state has a finite en-
ergy width � and thus lifetime � /� due to spontaneous
emission. Hence the scattering length becomes a com-
plex number.

Note that by changing the laser frequency and simul-
taneously detecting the population in the excited elec-
tronic potentials the rovibrational level structure of
these potentials can be studied. This is called ultracold
photoassociative spectroscopy and has been reviewed by
Jones et al. �2006�.

Bohn and Julienne �1996, 1999� obtained expressions
for the complex scattering length in Eqs. �24� and �25�.
Resonances are characterized by a width ��E� and shift
h��c, where E0=h�c−h�−h��c. The width is

��E� = 2��	C�d� · E� �E��2, �64�

where E� is the electric field of the laser and d� is the
molecular electronic transition dipole moment. Both the
width and the shift of the resonance are proportional to
I. As in magnetic resonances �E� is the scattering wave
function at collision energy E in the entrance channel.

Figure 6 in Sec. II.A.3 shows the real and imaginary
parts of the scattering length a− ib for an optical Fesh-
bach resonance. The numbers are based on an analysis
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FIG. 39. �Color online� Schematic of an optical Feshbach reso-
nance. �a� Two colliding ground-state atoms �g� are coupled
through a laser at frequency � to a vibrational level ��c� of an
excited electronic state that dissociates to one excited-state �e�
and one ground-state �g� atom. The energy h�c is the energy of
the vibrational level relative to two colliding atoms at zero
collision energy. The excited bound state ��c� irreversibly de-
cays with an �energy� width �. �b� The dressed state picture
corresponding to �a�. The initial state is an atom pair with n
photons and the closed channel state �C� represents ��c� with
n−1 photons. The atom pair has a relative kinetic energy E
and Ec=h�c−h�. In the dressed state picture the ground and
excited interatomic potentials cross at a point called the Con-
don point.
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of the strength and lifetime of an experimentally ob-
served optical Feshbach resonance in 87Rb �Theis et al.,
2004�. For the intensity used in the figure the optical
length ares defined by Eq. �26� is 5.47 nm and �0 /h
=21 MHz. That is, ares�abg and �0��. Since kabg�1,
the width ��E��� so that there is negligible power
broadening. Unlike for a magnetic Feshbach resonance,
the real part of the scattering length is now finite for any
detuning with a peak to peak variation of 2ares. The
length b peaks at zero detuning. The maximum value is
2ares and the full width at half maximum is �.

In order for an optical Feshbach resonance to be prac-
tical it is necessary that the change in the real part of the
scattering length a−abg is large compared to b. This re-
quires that the detuning h�−h�c is large compared to �.
On the other hand, we would also like to ensure that a
−abg is at least on the order of abg at such a detuning. In
order to satisfy these requirements simultaneously we
need ares�abg or equivalently �0��. For the parameters
used in Fig. 6 this is not true. Section VI.A.3 discusses
how for alkaline-earth atoms it is possible to satisfy
ares�abg.

By adding extra laser fields at different frequencies
the scattering length can be further manipulated. Of par-
ticular interest is the case where a second field is nearly
resonant with the excited bound state ��c� and a second
molecular bound state. If this second bound state is in
the electronic ground state, then the situation corre-
sponds to a Raman transition. The analytic expression
for the scattering length �Bohn and Julienne, 1999; Thal-
hammer et al., 2005� is

a − ib = abg +
1

2k

��E�
h� − h�0 +#2/�2 + i��/2�

, �65�

where abg, �, and � are defined as before and h�0=h�c
+h��c. The two-photon detuning �2 is zero when the
absolute value of the frequency difference of the two
lasers equals the absolute value of binding energy of the
ground bound state relative to two free atoms at rest. It
is positive when the absolute value of the frequency dif-
ference is larger than the absolute value of the binding
energy. The quantity # is the coupling matrix element
between the bound levels in the ground and excited
states and is proportional to the square root of the in-
tensity of the second laser.

2. Observations in alkali systems

In a magneto-optical trap filled with cold �
1 mK�
atomic sodium Fatemi et al. �2000� confirmed the predic-
tions of Fedichev, Kagan, et al. �1996�. They observed
the changing scattering length by detecting the corre-
sponding change in the scattering wave function. Weak
detection lasers, with frequencies that differ from those
used for the optical Feshbach resonance, induce a mo-
lecular ion signal that probes the change in the scatter-
ing wave function. For the molecular level used in the
experiment Fatemi et al. �2000� were able to deduce the
strength of the resonance as well as the light shift �vc.

They found an ares of around 2 nm and �0 /h of around
20 MHz for the maximum reported laser intensity of I
=100 W/cm2. For Na the background scattering length
is abg=2.8 nm.

Theis et al. �2004� tuned the scattering length by opti-
cal means in a Bose-Einstein condensate. In a 87Rb con-
densate they were able to change the scattering length
over one order of magnitude from 0.5 to 10 nm. The pa-
rameters of the optical resonance are given in the cap-
tion of Fig. 6. The scattering length was measured using
Bragg spectroscopy, where a change in condensate
mean-field energy proportional to the scattering length
is measured by a change in the frequency that deter-
mines the Bragg condition.

Thalhammer et al. �2005� modified the scattering
length by a two-color Raman transition. As from Theis
et al. �2004� the change in scattering length was observed
in an 87Rb condensate and detected by Bragg spectros-
copy. In fitting to Eq. �65� a complication arose. Thal-
hammer et al. �2005� could only explain their observa-
tions if they assumed that the target ground state had a
finite linewidth. It turned out that, even though this state
cannot be lost by spontaneous emission, it can absorb a
photon from the �strong� laser that photoassociates the
scattering atom pair. This process gave rise to a line-
width of 2 MHz. The results are shown in Fig. 40.
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FIG. 40. Optical Feshbach resonance using a two-color Raman
transition in an 87Rb BEC. �a� The measured atom number
after a 100 �s Raman pulse as a function of the two-photon
detuning �2. �b� The measured Bragg resonance frequency. �c�
The scattering length, as determined from �a� and �b�. The
open and filled circles correspond to the data. As indicated by
the error bar in �b� the frequency uncertainty in the Bragg
spectroscopy is smaller than 100 Hz. The solid lines have been
obtained from a fit to Eq. �65� adapted to include the finite
linewidth of the ground-bound state. The dashed line in �b�
shows the expected signal if there was only loss in atom num-
ber but no change in scattering length. The vertical line indi-
cates the location of maximal loss in �a� and helps us to com-
pare the relative positions of the three curves. From
Thalhammer et al. �2005�.
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3. Prospects in alkaline-earth systems

The scattering length so far has been experimentally
modified by optical means in ultracold alkali-metal atom
collisions. In these experiments the optical length ares
was of the same order of magnitude as the background
scattering length abg so that changes in scattering length
were accompanied by large atom losses. Ciuryło et al.
�2005� showed that optical Feshbach resonances in ultra-
cold alkaline-earth atom collisions can have ares�abg.
The presence of intercombination lines in alkaline-earth
systems make this possible. Atomic intercombination
lines are transitions between the ground 1S0 state and
the excited 3P1 state. The transition is only weakly al-
lowed by virtue of relativistic mixing with the 1P1 state.
For example, for Sr isotopes � /h=7.5 kHz is much
smaller than for alkali atoms.

When � is small, it is possible to use excited bound
levels that are very close to the excited-state dissociation
threshold while simultaneously maintaining the large de-
tunings that are necessary to suppress losses. Using lev-
els close to threshold allows a very large value of the
ratio �0 /�, and consequently ares can be orders of mag-
nitude larger than abg. Ciuryło et al. �2005� illustrated
this by model calculations of optical lengths of ultracold
calcium, for which � /h=0.7 kHz. Using a model that as-
sumes a level with a binding energy on the order of
100 MHz, they predicted that ares could be as large as
100 nm at the relatively low intensity of I=1 W/cm2.

Zelevinsky et al. �2006� obtained photoassociation
spectra near the intercombination line of 88Sr and mea-
sured the strength of various transitions. They found
that the last bound state of the excited potential had an
optical length ares=24 �m at I=1 W/cm2. The very large
value of ares implies that practical changes in the scatter-
ing length should be feasible in this species. Similar pho-
toassociation spectra have been observed for two differ-
ent isotopes of ytterbium �Tojo et al., 2006�, which has an
electronic structure like that of the alkaline earth atoms.
Optical control of both bosonic and fermionic isotopic
species may become possible with alkaline earth or Yb
atoms. Enomoto et al. �2008� demonstrated optically
induced changes in scattering length for 172Yb and
176Yb.

B. Feshbach resonances in optical lattices

Ultracold atoms in optical lattices are of great interest
because of the exciting prospects to simulate a variety of
condensed matter phenomena, to realize large scale
quantum information processing �Bloch, 2005�, and to
form ultracold molecules in individual lattice sites to
avoid detrimental collision instability. In all these re-
search directions, Feshbach resonances provide excel-
lent tools to control the interaction of the constituent
atoms and to explore the transition between different
quantum regimes and quantum phases. In the following
sections we review atom-atom scattering in optical lat-

tices and describe the role of Feshbach resonances
therein.

Optical lattices are realized by standing-wave laser
fields, which result in spatially periodic potentials for the
atoms. The atoms are confined in the individual poten-
tial minima or sites of the lattice potential. One-, two-,
and three-dimensional lattices can be created in this way.
In experiments with three-dimensional configurations
the optical lattice can be filled with only one or two
atoms per site.

SectionVI.B.1 discusses that when two atoms are held
in a single lattice site a Feshbach resonance can be used
to efficiently produce stable molecules. One advantage
of lattice confinement is that such molecules are pro-
tected from harmful collisional losses with a third body.
Section VI.B.2 discusses the possibility that confinement
in one spatial direction can induce resonant behavior in
scattering along the remaining directions. Finally, Sec.
VI.B.3 describes uses of Feshbach resonances in optical
lattices where tunneling between lattices sites is impor-
tant.

1. Atom pairs and molecules

When an atom pair is trapped in a single site of a
three-dimensional optical lattice the motion is fully
quantized. For deep optical lattices the confining poten-
tial is harmonic, and the center of mass and relative mo-
tion of the atom pair separate. In other words the six-
dimensional wave function of the two atoms becomes a
product of a center of mass and relative wave function.
The center-of-mass motion is harmonic and is solved
trivially. The relative motion is determined by a poten-
tial that is the sum of the atom-atom interaction poten-
tials and a harmonic potential.

The atom-atom interactions between alkali-metal at-
oms are independent of the relative orientation of the
atoms when very weak spin-dependent interactions Vss
are ignored. Consequently, for a spherically symmetric
harmonic trapping potential the three-dimensional rela-
tive motion can be further simplified. The angular mo-
tion can be solved analytically and only a radial
Schrödinger equation for the atom-atom interaction po-
tential plus ��2R2 /2 needs to be solved. Here � is the
reduced mass and � is the oscillation frequency in the
trap.

Figure 41 shows eigenenergies for two Na atoms
with zero relative orbital angular momentum ��=0�
in a spherically symmetric harmonic trap as a func-
tion of magnetic field �Tiesinga et al., 2000�. The
atoms are in their lowest hyperfine state and the
energies are obtained from coupled-channel calcula-
tions. For these atomic states there is a Feshbach reso-
nance near 910 G �91 mT�. The zero of the vertical axis
corresponds to zero relative kinetic energy in the ab-
sence of a trapping potential. Hence, positive energies
correspond to atoms in the trap and negative energies
correspond to molecules bound in the atom-atom inter-
action potential. Avoided crossings between the closed
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channel Feshbach state and the trap levels are clearly
visible.

An analytic solution for two interacting atoms
trapped in a harmonic trap was found by Busch et al.
�1998�. The atom-atom interaction was modeled by
a so-called regularized delta-function potential
�4��2 /2��a��R� ��d /dR�R, where a is the scattering
length. This approximation of the actual interaction po-
tential is valid in the Wigner threshold regime. In par-
ticular, they showed that the eigenenergies for the rela-
tive motion are given by

a

�
=
��− E/2 + 1/4�

2��− E/2 + 3/4�
, �66�

where � is the gamma function, the energy E is in units
of ��, and �=
� /�� is the harmonic oscillator length
for the relative motion.

Near a magnetic Feshbach resonance the scattering
length is a rapidly changing function of B as, for ex-
ample, shown in the inset of Fig. 41. The dotted lines in
Fig. 41 are the eigenenergies found from combining Eq.
�66� and the a�B� for the resonance. The exact and
model calculations do not agree where the scattering
length is large. As shown by Blume and Greene �2002�
and Bolda et al. �2003� this is due to the breakdown of
the Wigner threshold regime at the finite zero-point en-
ergy of the atoms near the resonance. Blume and
Greene �2002� introduced an energy-dependent scatter-

ing length based on the effective range theory. Bolda et
al. �2002� found that an energy-dependent regularized
delta-function potential reproduces well the exact re-
sults in Fig. 41.

Dickerscheid et al. �2005� and Gubbels et al. �2006�
developed an analytic approach extending the theory of
Busch et al. �1998� to the states of two trapped atoms in
a single lattice site that interact strongly through a Fes-
hbach resonance. They applied their two-body theory to
the broad 6Li resonance near 834 G. They also showed
how to incorporate this theory into a many-body Hub-
bard model that treats the tunneling of atoms between
lattice sites.

Mies et al. �2000� theoretically showed that by varying
the magnetic field in time two atoms in a single lattice
site can be converted into a molecule with near 100%
efficiency. The idea is to prepare the atoms in the lowest
trap level at a magnetic field where the Feshbach state
has a higher energy. In Fig. 41 this corresponds to the
nominally n=0 state at, for example, B=912 G. The
magnetic field is then varied. If the ramp is sufficiently
slow, the atom pair will be adiabatically converted into a
molecule. Mies et al. �2000� also showed that this process
can be described by a Landau-Zener curve crossing
model. A more recent derivation is given by Julienne
et al. �2004�.

Widera et al. �2004� used a magnetic Feshbach reso-
nance to entangle two 87Rb atoms in a site of an optical
lattice. In a Ramsey-type interferometer a sequence of
microwave pulses manipulates and controls the superpo-
sition between the �0���F=1,mF=1� and �1���F=2,mF

=−1� hyperfine states of each 87Rb atom. Initially the
atoms are in state |0�. The population in the two hyper-
fine states after the pulses will depend on the atom-atom
interaction, which entangles the two atoms. By control-
ling the scattering length with the magnetic field and the
hold time between the pulses, Widera et al. �2004� were
able to create maximally entangled Bell states.

Stöferle et al. �2006� spectroscopically mapped the
avoided crossing between the Feshbach and the low-
est harmonic oscillator state as a function a magnetic
field. They prepared fermionic 40K atoms in a three-
dimensional optical lattice configured such that the bot-
tom of the lattice sites is spherically symmetric. The two
atoms in each lattice site are in different hyperfine
states. They confirmed that the model of trapped atoms
interacting via an energy-dependent delta-function po-
tential agrees with the experimental observations.

Thalhammer et al. �2006� showed in an experiment
with 87Rb in its lowest hyperfine state that the Landau-
Zener model for a time-dependent sweep of the mag-
netic field through the Feshbach resonance, as devel-
oped by Mies et al. �2000� and Julienne et al. �2004� is
valid. The Feshbach resonance near 1007 G was used. In
the experiment the ramp speed dB /dt was varied over
four orders of magnitude and for the slowest ramp speed
of 2 103 G/s a 95% conversion efficiency was ob-
served. The experiment demonstrated a dramatic in-
crease in the lifetime of the trapped molecules, where
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FIG. 41. The energy in the relative motion of two trapped
interacting Na atoms in their lowest hyperfine state �a� as a
function of magnetic field. The trapping frequency �=� /2�
is 1 MHz. The full lines correspond to energies obtained
from exact numerical calculations. The dotted lines corres-
pond to eigenenergies for trapped Na atoms interacting via
a regularized delta-function potential with a magnetic field
dependent scattering length given by the inset. This inset
shows the exact scattering length for two freely scattering
�a� states near a Feshbach resonance. In the theoretical model
B0=90.985 mT, whereas experimentally B0=90.7 mT �see
Sec. III.B.2�. The long-dashed lines correspond to energies of
the �=0, n=0, 1, 2, and 3 harmonic oscillator states. From
Tiesinga et al., 2000.
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the lattice protected them from harmful collisions. Mo-
lecular lifetimes up to 700 ms were observed.

Ospelkaus, Ospelkaus, Humbert, Ernst, et al. �2006�
were able to make heteronuclear molecules by associat-
ing atoms of two different species, 40K and 87Rb,
trapped on the same lattice site. They used a rf associa-
tion technique both to form the molecule and to mea-
sure its binding energy. Figure 42 shows the energy of
the near-threshold states of the atom pair as a function
of B and illustrates an avoided crossing similar to that
shown in Fig. 41. Deuretzbacher et al. �2008� developed
a theoretical model to account for anharmonic correc-
tions, which couple center-of-mass and relative motion
of the atoms in the trap.

2. Reduced dimensional scattering

Optical lattices that confine atoms in only one or two
directions in combination with magnetic Feshbach reso-
nances lead to controllable quasi-2D or quasi-1D scat-
tering, respectively. Yurovsky et al. �2008� recently re-
viewed such reduced dimensional scattering. By
integrating out the confined spatial direction, effective
one- and two-dimensional atom-atom potentials can be
derived. Their strength is related to the magnetic-field
dependent scattering length for free scattering.

Olshanii �1998� and Bergeman et al. �2003� derived the
effective atom-atom potential for quasi-one-dimensional
scattering. As for Busch et al. �1998� the starting point is
a regularized three-dimensional delta-function potential
for the atom-atom interaction potential. The trapping
potential along the two confined dimensions is the same
and harmonic with frequency ��. They found that for an
atom pair in the lowest harmonic oscillator state of the
confined directions the atoms interact via a one-
dimensional delta-function potential g1D��z�, with cou-
pling constant

g1D = 2
�2

�

a

��
2

1

1 − Ca/��

,

where C=1.4602. . . and ��=
� /���. The coupling con-
stant is singular when a=�� /C and approaches the
negative finite value g�=−2�2 /�C�� for a→ ±�. Olsha-
nii �1998� called the singularity a confinement-induced
resonance. In practice, the resonance condition can be
fulfilled by changing a with a magnetic Feshbach reso-
nance. For fermionic atoms in quasi-one-dimensional
confinement the effective atom-atom potential has been
derived by Granger and Blume �2004�.

Petrov et al. �2000� and Petrov and Shlyapnikov �2001�
derived a similar coupling constant for one-dimensional
confinement or two-dimensional scattering. In this case
the resonance location not only depends on a but also
logarithmically on the relative wave number between
the atoms along the two free spatial directions. Naidon
et al. �2007� described how these reduced dimensional
treatments can be extended to much tighter confine-
ments than previously thought and made more accurate
using the energy-dependent scattering length of Blume
and Greene �2002� with the effective range expansion
for the scattering phase.

Moritz et al. �2005� presented experimental evidence
for a confinement-induced bound state in a one-
dimensional system. They confirmed the existence of the
bound state of the one-dimensional Hamiltonian
H1D=−��2 /2��d2 /dz2+g1D��z� by changing both a and
��. The experiment was performed by employing an ar-
ray of 1D tubes, each containing about 300 40K atoms,
equally divided between the �f=9/2 ,m=−9/2� and
�f=9/2 ,m=−7/2� hyperfine states, which were held in a
two-dimensional harmonic trap with frequency
�� / �2��=69 kHz. The scattering length for the collision
between these two hyperfine states was varied using the
magnetic Feshbach resonance at B0=202 G. Figure 43
shows that the measured energy of the tightly confined
atom pair varies as predicted by theory. Confinement-
induced molecules exist in reduced dimension for B
	B0, where they do not exist in free space. Dickerscheid
and Stoof �2005� developed an analytical nonperturba-
tive two-channel theory of the binding energy that is in
excellent agreement with the data.

Günter et al. �2005� prepared fermionic 40K atoms in a
single hyperfine state and held in either a one- or two-
dimensional optical lattice. By virtue of Fermi statistics
the atoms can only collide via odd partial waves, which
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FIG. 42. �Color online� Energy of heteronuclear 40K-87Rb
molecules vs B in an optical lattice for two different lattice
depths Ulat in units of the 87Rb recoil energy Er=�2k2 /2mRb
�Er /h�3.7 kHz�. The center of the Feshbach resonance is lo-
cated at B0=546.8�1� G. The zero of energy corresponds to
two atoms in the lattice cell with B far from B0. Molecules
which are stable in free space are observed for B
B0 where
a	0. Confinement-induced molecules are observed for B
	B0 where a
0 and no threshold bound state exists in free
space. In addition, repulsively interacting pairs are observed
for B
B0. From Ospelkaus, Ospelkaus, Humbert, Ernst, et al.,
2006.
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for ultracold collision energies have very small cross sec-
tions. One might expect the atomic gas to be a noninter-
acting Fermi gas. Nevertheless, Günter et al. �2005�
could observe a Feshbach resonance in the p-wave col-
lision by the losses it induced. The losses were even sen-
sitive to the orientation of the magnetic field relative to
the principal axis of the trap. Moreover, they showed
that the magnetic field location of the resonance is modi-
fied by the confinement.

3. Scattering in shallow lattices

Sections VI.B.1 and VI.B.2 discussed deep optical lat-
tices where the tunneling between lattices sites could
safely be neglected. For weaker optical lattices, atoms
tunnel from site to site and then interact with all other
atoms. This leads to many-body systems that can be de-
scribed by either a mean-field Gross-Pitaevskii equation
or a Bose- or Fermi-Hubbard Hamiltonian �Bloch,
2005�. The presence of Feshbach resonances has added
and continues to add new twists to these kinds of Hamil-
tonians.

We discuss the more simple situation where only two
atoms scatter in an optical lattice. Fedichev et al. �2004�
studied the case of two atoms scattering in a weak three-
dimensional optical lattice of cubic symmetry and
interacting with the regularized delta-function poten-
tial. They predicted the presence of a geometrical reso-
nance in the 3D lattice based on a derivation of an
effective atom-atom interaction between the atoms,
which by virtue of the periodic potential have an ef-
fective mass m* that is much larger than their atomic
mass m. Figure 44 shows the results of their calculation.
The resonance occurs at a scattering length a= l

*
�−�� / �2 ln 2���m /m*��� /d�2�, where � is the atomic
harmonic oscillator length for motion in a single lattice
site and d is the lattice period. Note that, in practice, l

*
��. Orso et al. �2005� presented a similar analysis for a
one-dimensional optical lattice. Grupp et al. �2007� stud-

ied the effect of a very-narrow Feshbach resonance in
scattering in an one-dimensional lattice.

Nygaard et al. �2008a� investigated the effect of tuning
a narrow Feshbach resonance across the Bloch band of a
one-dimensional optical lattice for the case when the
resonance width is small compared to the width of the
band, such as the 414 G 87Rb resonance studied by Syas-
sen et al. �2007�. They investigated the changes in scat-
tering and bound states due to the band structure in the
periodic structure and characterized the time-dependent
dynamics of sweeping the resonance across the band.
Nygaard et al. �2008b� extended this work, developed
the concept of a generalized scattering length at the
band edges, and showed the existence of a “universal”
bound state near the top and bottom band edges at the
field strength where the resonance emerges from the
band.

C. Efimov states and universal few-body physics

Feshbach resonances provide experimental access to
systems with very large values of the scattering length.
Such systems are governed by universal physics; i.e.,
their low-energy observables are independent of details
of the interaction �Braaten and Hammer, 2006�. Univer-
sality appears as a consequence of the quantum halo
character of the wave function carrying its dominant
part far out of the classically allowed region. In this case,
details of the interaction potential become irrelevant
and the system can be described by a few global param-
eters. Halo dimers �Sec. V.B.2� are the most simple ex-
ample. For addressing universal physics with ultracold
gases, Feshbach resonances that are strongly entrance
channel dominated �sres�1� are of particular interest, as
they allow a description in terms of a single-channel
model with a large range of universal behavior �see dis-
cussion in Secs. II.B.2 and II.C.5�.

1. Efimov’s scenario

Efimov quantum states in a system of three identical
bosons �Efimov, 1970, 1971� are a paradigm for universal

FIG. 43. �Color online� Measured molecular bound state bind-
ing energy vs magnetic field B near the 202.1 G resonance
between the two lowest spin states of 40K. The upper curve
labeled 3D is for a free space gas, whereas the lower curve
labeled 1D is for a quasi-1D gas with tight confinement in two
dimensions. The points show measured binding energies and
the lines show theoretical predictions. From Moritz et al., 2005.
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FIG. 44. The dependence of the effective scattering length aeff
on the absolute value of the microscopic scattering length �a�.
The dashed line corresponds to a repulsive interaction poten-
tial �a	0�. The solid line corresponds to an attractive potential
�a
0� with a geometric resonance at �a � = l

*
. From Fedichev et

al., 2004.
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few-body physics. These states have attracted consider-
able interest, fueled by their bizarre and counterintuitive
properties and by the fact that they had been elusive to
experimentalists for more than 35 years. In 2006, Krae-
mer et al. �2006� reported on experimental evidence for
Efimov states in an ultracold gas of cesium atoms. By
Feshbach tuning they could identify a pronounced three-
body resonance, which occurs as a fingerprint of an Efi-
mov state at the three-body scattering threshold. Three
years later, Knoop et al. �2009� presented additional evi-
dence for Efimov-like trimer states, reporting on the ob-
servation of a decay resonance in atom-dimer scattering.

Efimov’s scenario is shown in Fig. 45, showing the en-
ergy spectrum of the three-body system as a function of
the inverse scattering length 1/a. For a
0, the natural
zero of energy is the three-body dissociation threshold
for three atoms at rest. States below are trimer states
and states above are continuum states of three free at-
oms. For a	0, the dissociation threshold is given by
−Eb=−�2 /ma2, where Eb is the universal binding energy
of the weakly bound halo dimer; at this threshold a tri-
mer dissociates into a dimer and an atom. All states be-
low threshold are necessarily three-body bound states.
Efimov predicted that in the limit a→ ±� there would
be an infinite sequence of weakly bound trimer states
with a universal scaling behavior. Each successive Efi-
mov state is larger in size by a universal scaling factor
e�/s0 �22.7 �s0=1.006 24� and has a weaker binding en-
ergy by a factor of �22.7�2�515.

Efimov states exist on both sides of a resonance, and
Fig. 45 shows the adiabatic connection between both
sides. For a	0, an Efimov state near the atom-dimer
dissociation threshold can be regarded as a weakly
bound state of an atom and a dimer with a size set not

by a but by the even larger atom-dimer scattering length
�Braaten and Hammer, 2006�. For a
0, Efimov states
are “Borromean” states �Jensen et al., 2004�, which
means that a weakly bound three-body state exists in the
absence of a weakly bound two-body state. This prop-
erty that three quantum objects stay together without
pairwise binding is part of the bizarre nature of Efimov
states.

Resonant scattering phenomena arise as a natural
consequence of this scenario �Efimov, 1979�, and they
are closely related to the basic idea of a Feshbach reso-
nance. When an Efimov state intersects with the con-
tinuum threshold for a
0, three free atoms resonantly
couple to a trimer. This results in a “triatomic Efimov
resonance.” When an Efimov state intersects with the
atom-dimer threshold for a	0, the result is an “atom-
dimer Efimov resonance” �Nielsen et al., 2002�.

2. Observations in ultracold cesium

In an ultracold atomic gas with resonant interactions,
Efimov physics manifests itself in three-body decay
properties �Esry et al., 1999; Nielsen and Macek, 1999;
Bedaque et al., 2000; Braaten and Hammer, 2001, 2006�.
The three-body loss coefficient L3 �Sec. III.A.2� can be
conveniently expressed in the form L3=3C�a��a4 /m,
which separates an overall a4 scaling from an additional
dependence C�a�. Efimov physics is reflected in a loga-
rithmically periodic behavior C�22.7a�=C�a�, corre-
sponding to the scaling of the infinite series of weakly
bound trimer states. A triatomic Efimov resonance leads
to giant recombination loss �Esry et al., 1999; Braaten
and Hammer, 2001� as the resonant coupling of three
atoms to an Efimov state opens up fast decay channels
into deeply bound dimer states plus a free atom.

Kraemer et al. �2006� observed a triatomic Efimov
resonance in an ultracold thermal gas of Cs atoms. They
made use of the strong variation in the low-field region
�Fig. 22�. This tunability results from a strongly entrance
channel dominated resonance at −12 G with sres=566
�see the Appendix�, which provides a broad range of
universal behavior. By applying magnetic fields between
0 and 150 G, Kraemer et al. �2006� varied the s-wave
scattering length a between −2500a0 and 1600a0, large
enough to study the universal regime, which requires
�a ��RvdW�100a0. The occurrence of one triatomic Efi-
mov resonance could be expected in the accessible
negative-a region. The position, however, could not be
predicted from knowledge of the scattering length alone
as, for a three-body process, a second parameter is re-
quired to characterize the universal properties �Braaten
and Hammer, 2006�.

Figure 46 shows the results of Kraemer et al. �2006�.
The three-body loss resonance was found at a magnetic
field of 7.5 G, corresponding to a scattering length of
−850a0. The behavior of loss at temperatures around
10 nK closely resembles the theoretical predictions of
Esry et al. �1999�, who numerically solved the three-body
Schrödinger equation for a generic two-body model po-
tential. The observed behavior is also well fit with a uni-

1/a < 0 1/a > 0

FIG. 45. Efimov’s scenario: appearance of an infinite series of
weakly bound Efimov trimer �ET� states for resonant two-
body interaction. The binding energy is plotted as a function of
the inverse two-body scattering length 1/a. The shaded region
indicates the scattering continuum for three atoms �a
0� and
for an atom and a dimer �a	0�. The arrow marks the intersec-
tion of the first Efimov trimer with the three-atom threshold.
To illustrate the series of Efimov states, the universal scaling
factor is artificially reduced from 22.7 to 2. For comparison, the
dashed line indicates a more tightly bound non-Efimov trimer
�T� which does not cross the scattering continuum. From Krae-
mer et al., 2006.
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versal analytic expression obtained in the framework of
effective-field theory �Braaten and Hammer, 2006�. Ex-
perimental data taken at higher temperatures demon-
strated the unitarity limitation of three-body loss
�D’Incao et al., 2004� and showed how the Efimov reso-
nance evolved into a triatomic continuum resonance
�Bringas et al., 2004�.

For positive scattering lengths, theory predicts a varia-
tion of C�a� between very small values and a maximum
of about 70 �Esry et al., 1999; Nielsen and Macek, 1999;
Bedaque et al., 2000�. The results in Fig. 46 are consis-
tent with the upper loss limit, represented by the straight
line for a	0. For a below 600a0, the experimentally de-
termined recombination length significantly drops below
this limit, as seen in the inset of the figure. Further mea-
surements by Kraemer et al. �2006� revealed the exis-
tence of a loss minimum at B=21 G, where a=+210a0. It
is interesting to note that earlier experiments by the
same group �Kraemer et al., 2004� had identified 21 G as
an optimum magnetic field for evaporative cooling of
cesium and attainment of BEC �see Sec. IV.A.1�. The
nature of the minimum may be interpreted in the frame-
work of universal physics, following theoretical predic-
tions of an interference effect between two different re-
combination pathways �Esry et al., 1999; Nielsen and
Macek, 1999�. However, as the minimum occurs at a
scattering length which is only a factor of 2 larger than
RvdW�100a0 �Table I� the application of universal
theory to describe this feature is questionable. Massig-
nan and Stoof �2008� presented an alternative theoreti-

cal approach, which reproduced both this minimum and
the maximum observed for negative a on the basis of the
two-body physics of the particular Feshbach resonance.

In a pure sample of trapped atoms, as discussed so far,
three-body recombination is the only probe for Efimov
physics. Mixtures of atoms and dimers can provide
complementary information on Efimov states through
resonances in inelastic atom-dimer collisions �Nielsen
et al., 2002; Braaten and Hammer, 2007�. In a recent
experiment, Knoop et al. �2009� prepared an optically
trapped mixture of Cs atoms and Cs2 halo dimers. Their
measurements revealed an atom-dimer scattering reso-
nance, which is centered at a large value of the two-body
scattering length, a�+390a0, at a magnetic field of 25 G.
This observation provides strong evidence for a trimer
state approaching the atom-dimer threshold. The situa-
tion is close to the atom-dimer resonance in Efimov’s
scenario, but it probably remains a semantic question
whether, at a�4RvdW, the underlying trimer state may
be called an Efimov state.

In the Cs experiments described in this section, the
Efimov state that causes the observed triatomic reso-
nance at 7.5 G does not connect to the state that causes
the atom-dimer resonance at 25 G when the magnetic
field is varied. This is because these two cases are sepa-
rated by a zero crossing in the scattering length �Fig. 22�
and not by the pole as in Efimov’s scenario in Fig. 45. A
universal relation between these regimes may neverthe-
less exist �Kraemer et al., 2006�. Lee et al. �2007� pro-
vided a further interpretation of these observations in
terms of the underlying Cs3 states and pointed out the
analogies to trimer states of helium �Schöllkopf and
Toennies, 1994�.

3. Prospects in few-body physics

Ultracold gases with resonantly tuned interactions of-
fer many opportunities to study universal Efimov-
related few-body physics. Cesium alone has much more
to offer than the experiments could explore so far.
Moreover, several other systems with broad Feshbach
resonances promise new insight into this field.

In cesium, a predicted broad Feshbach resonance near
800 G �Lee et al., 2007� in the aa channel offers similar
properties as the low-field region explored in previous
experiments but overcomes the disadvantage that only
the tail of the resonance is accessible at low fields. The
broad 155 G resonance in 85Rb �Sec. III.B.4� might be
another interesting candidate, but experiments may suf-
fer from strong two-body decay which is absent for the
discussed cesium resonances. A further interesting can-
didate is the 402 G resonance in 39K �Sec. III.B.3�: Zac-
canti et al. �2008� studied three-body decay near this
resonance and found features strongly indicative of Efi-
mov physics.

Many more opportunities for studying Efimov-related
physics in ultracold gases with resonant interactions are
offered by mixtures of different spin states or different
species. In 6Li, all three combinations of the lowest three
spin states �channels ab, ac, and bc� have broad Fesh-
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FIG. 46. �Color online� Observation of an Efimov resonance in
three-body decay of an ultracold gas of cesium atoms. The
data are presented in terms of a recombination length $3
= ��2m /
3��L3�1/4 �Esry et al., 1999�. The general a4 scaling of
L3 corresponds to a linear behavior in $3�a� �straight lines�.
The filled circles represent measurements taken at tempera-
tures around 10 nK, whereas the filled triangles and open dia-
monds refer to measurements in the range of 200–250 nK. The
solid line is a fit to the low-temperature data based on
effective-field theory �Braaten and Hammer, 2006�. The inset
shows an expanded view of the region of positive scattering
lengths up to 600a0. From Kraemer et al., 2006.
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bach resonances �Bartenstein et al., 2005� that overlap
in a magnetic-field range between 650 and 850 G. For
such a three-component fermionic spin mixture Luu and
Schwenk �2007� predicted a novel Borromean three-
body state. Ottenstein et al. �2008� and Huckans et al.
�2009� experimentally investigated the stability of a 6Li
three-component spin mixture and found evidence for a
three-body resonance at 130 G. Its interpretation in
terms of coupling to a three-body bound state is sup-
ported by several theoretical studies �Braaten et al.,
2009; Floerchinger et al., 2009; Naidon and Ueda, 2009�.
A particularly interesting situation arises in mixtures of
atoms with different masses. With increasing mass ratio
the Efimov factor substantially decreases from its value
of 22.7 at equal masses to values as low as 4.9 for the
mass ratio of 133Cs combined with 6Li. D’Incao and Esry
�2006� pointed out that this will substantially enhance
the observability of the Efimov effect in terms of the
logarithmically periodic variation of the three-body loss
coefficient with increasing two-body scattering length.

Four-body processes at large values of the s-wave
scattering length a represent a logical next step in under-
standing universal few-body physics. Theoretical studies
�Hammer and Platter, 2007; von Stecher et al., 2009;
Wang and Esry, 2009� predicted the existence of univer-
sal four-body states and considered the process of
atomic four-body recombination. A first experimental
step into this field was made by Ferlaino et al. �2008�,
who studied collisions of Cs2 halo dimers at large posi-
tive a. They observed a loss minimum in the same region
where atom-dimer scattering shows a maximum �a
�500a0 at 30 G�, which may be related to a universal
connection between four- and three-body physics �Ham-
mer and Platter, 2007; von Stecher et al., 2009�.

Optical lattices have proven a powerful tool for the
manipulation of ultracold Feshbach molecules �see Sec.
VI.B.1� and may also open up new possibilities for the
creation of Efimov trimers and, more generally, for the
controlled production of few-body quantum states �Stoll
and Köhler, 2005; Luu and Schwenk, 2007�.

D. Molecular resonances and cold chemistry

While we have reviewed the formation of cold mol-
ecules from ultracold atoms, parallel progress has been
made by other techniques for preparing samples of cold
molecules that extend the range far beyond alkali-metal
species. These advances have been made possible by
Stark deceleration of molecules such as ND3, OH, and
formaldehyde �van de Meerakker et al., 2006� van de
Meerakker, Vanhaecke, and Meijer or by buffer gas
cooling with liquid helium �DeCarvalho et al., 1999�. In
contrast to the association of cold atoms to make Fesh-
bach molecules, which have a high level of vibrational
excitation, these methods can produce cold molecules in
the rotational and vibrational ground states. See Doyle
et al. �2004�, Krems �2005�, and Hutson and Soldán
�2007� for overviews of the issues involved in trapping,
cooling, and colliding such molecules.

Resonances will play a prominent role in atom-
molecule and molecule-molecule collisions. The com-
plexity of these systems will increase the number of
closed channels and lead to numerous resonances with
diverse properties. Their presence will make it possible
to change molecular scattering properties as well as to
create more complex molecules. Both static magnetic
and electric fields can be used to tune the molecule-
molecule resonance and provide control over collisions,
as many molecules not only have a magnetic moment
but an electric dipole moment as well. Here we review
some of this work.

Forrey et al. �1998� pointed out that Feshbach reso-
nances occur in ultracold atom-diatom scattering, giving
an example from collisions of H2 with He. The effect of
resonance states in chemical reactions has been studied
by Balakrishnan and Dalgarno �2001� for F+H2→FH
+H and by Weck and Balakrishnan �2005� for Li+HF
→H+LiF reactions. Recent coupled-channel models of
Rb+OH �Lara et al., 2007� and He+NH �González-
Martinez and Hutson, 2007� collisions have been devel-
oped to give a realistic assessment of atom-molecule
scattering. The latter study demonstrated the effect of
magnetic tuning of a decaying resonance across a thresh-
old using the resonance length formalism described in
Sec. II.A.3.

Bohn et al. �2002� realized that, unlike for atomic sys-
tems where Feshbach resonances originate from the hy-
perfine structure of the atoms, for molecules the reso-
nances can also be due to rotational states. For many
molecules the rotational spacing for low-lying rotational
levels is of the same order of magnitude as hyperfine
interactions in atoms. Based on the rotational splittings
and a potential energy surface Bohn et al. �2002� esti-
mated the mean spacing and widths of the resonances
and found for collisions between oxygen molecules as
many as 30 resonances for collision energies below
E /kB=1 K.

Chin et al. �2005� observed magnetic Feshbach-like
resonances between two weakly bound 133Cs2 molecules
that temporarily form a tetramer during a collision.
Their data are shown in Fig. 47. The 133Cs2 molecules in
this experiment are bound by no more than E /h
=5 MHz and have a temperature and peak density of
250 nK and 5 1010 cm−3, respectively. As the magnetic
field is varied near B=13 G the lifetime of the molecules
rapidly changes, indicating two resonances.

Heteronuclear molecules can be manipulated by static
electric fields in addition to magnetic fields. The electric
field Stark shifts the rotational levels of the molecule.
These level shifts can then give rise to electric Feshbach
resonances �Avdeenkov and Bohn, 2002�. In atoms the
levels can also be sufficiently Stark shifted to induce col-
lisional resonances but rather large fields are required
�Marinescu and You, 1998�.

Figure 48 shows the results of a calculation on reac-
tion rate coefficients of formaldehyde H2CO reacting
with OH to yield HCO and H2O �Hudson et al., 2006�.
Both H2CO and OH are in their lowest vibrational state
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of their ground electronic configuration. Multiple reso-
nances occur for electric fields up to 2 kV/cm. Recently
Tscherbul and Krems �2008� studied reaction rates of
LiF with H in the presence of electric fields.

We can expect atom-molecule and molecule-molecule
collisions to exhibit a rich variety of resonance phenom-
ena in elastic, inelastic, and reactive collisions. Such phe-
nomena are likely to become progressively more impor-
tant to understand as sources of trap loss and for
coherent control of molecular ensembles.
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APPENDIX: TABLES OF SELECTED RESONANCES

Table IV lists positions and properties of selected
resonances for various species. The data are a combina-
tion of experimentally determined as well as theoreti-
cally derived values. Most of the magnetic field locations
are experimentally determined. Most of the widths �
and background scattering lengths abg are determined
from theoretical calculations. Where unavailable we cal-
culated values based on the best Born-Oppenheimer po-
tentials obtained from the literature. For a complete list
as well as error bars on the resonance locations the
reader is referred to the literature. The notation defined
in Secs. II.A.3 and II.B.4 has been used in the table.

Table IV shows a richness in the kinds of resonances
available for magnetic field values that are relatively
easily created in laboratories. Some of the resonances
are very narrow with � on the order of a mG. Others are
very broad with � larger than 100 G. The background
scattering length can be either negative or positive, its
absolute value ranging from a few tens to several thou-
sands Bohr radii. The magnetic moment of the reso-
nance state is always on the order of the Bohr magne-
ton, which reflects the form of the Zeeman interaction.
The partial wave of the resonance states ranges from
zero to four ��c=0, . . . ,4�. Finally, the resonances are
characterized in terms of their background scattering
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FIG. 48. Calculated chemical reaction cross section of H2CO
+OH→HCO+H2O at a collision energy of E /kB=1 mK as a
function of applied electric field. Strong- �weak-� field seekers
correspond to states of H2CO and OH that can be held in an
electric trap where the center of the trap has the largest �small-
est� electric field strength, respectively. From Hudson et al.,
2006.
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TABLE IV. Properties of selected Feshbach resonances. The first column describes the atomic species and isotope. The next three
columns characterize the scattering and resonance states, which include the incoming scattering channel �ch.�, partial wave �, and
the angular momentum of the resonance state �c. This is followed by the resonance location B0, the width �, the background
scattering length abg, the differential magnetic moment ��, the dimensionless resonance strength sres, the background scattering
length in van der Waals units rbg=abg/ ā, and the bound state parameter � from Eq. �52�. Here a0 is the Bohr radius and �B is the
Bohr magneton. Definitions are given in Sec. II. The last column gives the source. A string “na” indicates that the corresponding
property is not defined. For example abg is not defined for p-wave scattering.

Atom ch. � �c B0 �G� � �G� abg/a0 �� /�B sres rbg � Reference

6Li ab s s 834.1 −300 −1405 2.0 59 −47 1400 Bartenstein et al., 2005
ac s s 690.4 −122.3 −1727 2.0 29 −58 850 Bartenstein et al., 2005
bc s s 811.2 −222.3 −1490 2.0 46 −50 1200 Bartenstein et al., 2005
ab s s 543.25 0.1 60 2.0 0.001 2.0 0.001 Strecker et al., 2003
aa p p 159.14 na na 2.0 na na na Zhang et al., 2004; Schunck et al., 2005
ab p p 185.09 na na 2.0 na na na Zhang et al., 2004; Schunck et al., 2005
bb p p 214.94 na na 2.0 na na na Zhang et al., 2004; Schunck et al., 2005

7Li aa s s 736.8 −192.3 −25 1.93 0.80 −0.79 0.31 Strecker et al., 2002; Pollack et al., 2009a

23Na cc s s 1195 −1.4 62 −0.15 0.0050 1.4 0.004 Inouye et al., 1998; Stenger et al., 1999a

aa s s 907 1 63 3.8 0.09 1.5 0.07 Inouye et al., 1998; Stenger et al., 1999a

aa s s 853 0.0025 63 3.8 0.0002 1.5 0.0002 Inouye et al., 1998; Stenger et al., 1999a

39K aa s s 402.4 −52 −29 1.5 2.1 −0.47 0.49 D’Errico et al., 2007
40K bb p p 198.4 na na 0.134 na na na Regal et al., 2003b; Ticknor et al., 2004a

bb p p 198.8 na na 0.134 na na na Regal et al., 2003b; Ticknor et al., 2004a

ab s s 202.1 8.0 174 1.68 2.2 2.8 3.1 Regal et al., 2004a

ac s s 224.2 9.7 174 1.68 2.7 2.8 3.8 Regal and Jin, 2003a

85Rb ee s s 155.04 10.7 −443 −2.33 28 −5.6 80 Claussen et al., 2003
87Rb aa s s 1007.4 0.21 100 2.79 0.13 1.27 0.08 Volz et al., 2003; Dürr, Volz, and Rempe, 2004a

aa s s 911.7 0.0013 100 2.71 0.001 1.27 0.0006 Marte et al., 2002a

aa s s 685.4 0.006 100 1.34 0.006 1.27 0.004 Marte et al., 2002; Dürr, Volz, and Rempe, 2004a

aa s s 406.2 0.0004 100 2.01 0.0002 1.27 0.0001 Marte et al., 2002a

ae s s 9.13 0.015 99.8 2.00 0.008 1.27 0.005 Widera et al., 2004

133Cs aa s s −11.7 28.7 1720 2.30 560 17.8 5030 Chin, Vuletić, et al., 2004; Lange et al., 2009a

aa s d 47.97 0.12 926 1.21 0.67 9.60 3.2 Chin, Vuletić, et al., 2004; Lange et al., 2009a

aa s g 19.84 0.005 160 0.57 0.002 1.66 0.002 Chin, Vuletić, et al., 2004a

aa s g 53.5 0.0025 995 1.52 0.019 10.3 0.1 Chin, Vuletić, et al., 2004; Lange et al., 2009a

aa s s 547 7.5 2500 1.79 170 26 2200 a

aa s s 800 87.5 1940 1.75 1470 20 15000 a

52Cr aa s d 589.1 1.7 105 2.00 0.31 2.45 0.38 Werner et al., 2005a

aa s d 499.9 0.08 107 4.00 0.03 2.49 0.04 Werner et al., 2005a

6Li 23Na aa s s 746 0.44 14.0 Stan et al., 2004; Gacesa et al., 2008
aa s s 795.6 2.177 13.0 Stan et al., 2004; Gacesa et al., 2008

6Li 40K aa s s 157.6 0.25 Wille et al., 2008
aa s s 168.2 0.15 Wille et al., 2008

6Li 87Rb aa p p 882 na na na na na Deh et al., 2008; Li et al., 2008
aa s s 1067 10.62 Deh et al., 2008; Li et al., 2008

7Li 87Rb aa s s 649 −70 −36 Marzok et al., 2009

39K 87Rb aa s s 317.9 7.6 34 2.0 0.74 0.50 0.18 Simoni et al., 2008
40K 87Rb aa s s 546.9 −3.10 −189 2.30 1.96 −2.75 2.70 Pashov et al., 2007; Simoni et al., 2008
41K 87Rb aa s s 39 37 284 1.65 25.8 4.11 53.0 Simoni et al., 2008; Thalhammer et al., 2008
41K 87Rb aa s s 79 1.2 284 1.59 0.81 4.11 1.66 Simoni et al., 2008; Thalhammer et al., 2008

85Rb 87Rb ec s s 265.4 5.8 213 Papp and Wieman, 2006
85Rb 87Rb ec s s 372 1 213 Papp and Wieman, 2006

aTable entries partially based on unpublished calculations by the authors.
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lengths abg, their strengths sres �Sec. II.B.2�, and the pa-
rameter � �Sec. II.C.5�.

For atomic cesium, a resonance location is given with
a negative magnetic field value. This is not an experi-
mental value. Here B0 is determined from a fit of Eq. �1�
to the slowly varying scattering length as shown in Fig.
22. Vogels et al. �1998� gave the physical interpretation
of a negative B0, namely, taking B
0 corresponds to the
case for B	0 with the spin projections of each atom
reversed in sign. For the case of cesium, a negative mag-
netic field in the aa channel corresponds to a positive
field in the gg channel.

Figure 49 shows the rich variety of Feshbach reso-
nances in terms of their widths � and strengths sres. Both
parameters change over six orders of magnitude. Reso-
nances with �	1 G tend to be entrance channel domi-
nated �sres	1�. A notable exception is the 7Li 737 G
resonance mentioned in Sec. II.B.5.
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