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During the past decade the interaction of light with multiatom ensembles has attracted much attention
as a basic building block for quantum information processing and quantum state engineering. The field
started with the realization that optically thick free space ensembles can be efficiently interfaced with
quantum optical fields. By now the atomic ensemble-light interfaces have become a powerful
alternative to the cavity-enhanced interaction of light with single atoms. Various mechanisms used for
the quantum interface are discussed, including quantum nondemolition or Faraday interaction,
quantum measurement and feedback, Raman interaction, photon echo, and electromagnetically
induced transparency. This review provides a common theoretical frame for these processes, describes
basic experimental techniques and media used for quantum interfaces, and reviews several key
experiments on quantum memory for light, quantum entanglement between atomic ensembles and
light, and quantum teleportation with atomic ensembles. The two types of quantum measurements
which are most important for the interface are discussed: homodyne detection and photon counting.
This review concludes with an outlook on the future of atomic ensembles as an enabling technology
in quantum information processing.
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I. INTRODUCTION

A. History and motivation

Quantum features of atom-light interaction have been
among the central issues in physics since the early days
of quantum mechanics. Starting in the 1960s with the
development of quantum optics—the field where second
quantization of light is central—quantum electrodynam-
ics �QED� became part of optical and atomic physics.
For decades after that the inherently quantum features
of atom-light interaction have been studied primarily
within the framework of cavity QED where light can be
efficiently coupled to a few atoms or even to a single
atom. Despite the spectacular progress achieved in this
direction, the complexity and technical challenges asso-
ciated with an atom strongly coupled to a high-finesse
cavity were calling for alternative approaches.

A new approach to the matter-light quantum interface
came with the realization of the fact that a large collec-
tion of atoms, an atomic ensemble, can be efficiently
coupled to quantum light if a collective superposition
state of many atoms can be utilized for the coupling. The
simplest example of such coupling is shown in Fig. 1�a�.
A collection of atoms in the ground state is illuminated
with two modes of light a+ and a−. As shown by
Kuzmich et al. �1997�, if the modes possess quantum cor-
relations �entanglement� and light is absorbed by the
atomic ensemble, the quantum correlations can be
mapped on the collective superposition of the two final
states of the atoms. The strong coupling condition in this
case amounts to the requirement of large resonant opti-
cal depth d of the atomic ensemble. It later turned out
that the requirement d�1 is the most significant re-
quirement for all types of the quantum interface be-
tween atomic ensembles and light known up to now. The
experiment demonstrating that a quantum feature of ra-
diation �squeezing� can be transferred onto atoms via
the process shown in Fig. 1�a� was performed by Hald et
al. �1999�. This approach has been further developed us-
ing photon echo ideas �Moiseev, 2003�.

A natural next step was to utilize long-lived atomic
ground states for the interface via a Raman interaction
in a � scheme, as proposed by Kozhekin et al. �2000� for
storage of squeezed states. The Raman process together
with electromagnetically induced transparency �EIT�
�Boller et al., 1991; Lukin, 2003; Fleischhauer et al., 2005�

have soon become important routines for quantum in-
terfaces. After Hau et al. �1999� demonstrated that EIT
allows for very slow propagation of light through an
atomic ensemble, it was quickly realized that reducing
the group velocity to zero would enable an atomic
memory for light �Fleischhauer and Lukin, 2000; Lukin
et al., 2000� and the first experimental demonstrations of
this for classical pulses have been presented by Liu et al.
�2001� and Phillips et al. �2001�.

Quantum nondemolition �QND� measurement �Bra-
ginsky and Khalili, 1996� based on light-matter interac-
tion has emerged as a powerful tool for quantum state
engineering, first in the cavity QED setting and then in
the atomic ensemble context as an efficient method for
generation of spin squeezing �Kuzmich et al., 1998�.
Shortly thereafter QND interaction with atomic en-
sembles has become one of the main instruments for the
quantum interface.

The process shown in Fig. 1�a� is a rudimentary ex-
ample of one of the main routines for atoms-light quan-
tum interface: the quantum state transfer from light to
atoms, or the quantum memory for light. The ability for
mapping, storing, and retrieving quantum states of
light—the natural long-distance carrier of information—
onto the material storage medium is one of the major
enabling procedures in quantum information processing.
In this review we cover various approaches to the quan-
tum memory, including the Raman process, EIT, photon
echo, and the QND measurement and feedback. We re-
view methods which provide a long-term quantum
memory with the fidelity better than any classical proce-
dure can achieve, as well as approaches which allow one
to preserve entanglement in the process of storage and
retrieval. The interface can be implemented either via
interaction only or by the teleportationlike procedure
involving generation of entanglement, Bell measure-
ment on light, and quantum feedback onto atoms. In this
article we discuss both approaches.

FIG. 1. �Color online� Elementary level schemes: �a� A simple
absorption scheme with the quantum fields a± mapped onto
the atomic states aA. �b� Beam-splitter-type interaction—basis
for Raman and EIT memory schemes. �c� Parametric-gain-type
interaction—basis for entanglement schemes. �d� Quantum
nondemolition �or Faraday� interaction—basis for entangle-
ment, memory, and teleportation schemes.
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The second most important routine for the quantum
interface is generation of entanglement between light
and atoms. The light-atom entanglement in turn enables
generation of entanglement between remote atomic en-
sembles, as well as atomic teleportation and entangle-
ment swapping protocols. Furthermore the light-atom
entanglement also allows for quantum memory through
light-atom teleportation.

The quantum interface can be formulated either in
the Schrödinger or in the Heisenberg picture. For ex-
ample, the transformation of a quantum state of light
into a quantum state of atoms in the Schrödinger picture

Û��L0A�→ �0L�A� corresponds to the operator transfor-

mation Û†âAÛ=aL in the Heisenberg picture. The two
pictures are equivalent, and we mostly use the Heisen-
berg picture throughout this review.

In this review we discuss protocols based on both ho-
modyning of light and photon counting. The most dra-
matic difference between the two approaches is that a
single homodyne measurement does not necessarily dis-
tinguish between a vacuum and a nonvacuum state,
whereas an ideal photon counter does. This makes ideal
photon counting insensitive to losses if the protocol is
conditioned on a click of the detector. This feature is
important as an elementary purification mechanism, but
it also makes protocols which use it probabilistic. On the
other hand, homodyning always yields a measurement
result and is thus deterministic. Another difference be-
tween the two measurements is that photon counting
yields a discrete variable result, whereas homodyning
yields a continuous variable outcome. From a practical
perspective detectors used for homodyning are almost
perfect in their quantum efficiency and dark current,
whereas photon counters usually are less than perfect
�although the progress in their development driven by
quantum information applications is remarkable�. The
distinction between the two approaches is, however, not
strict. For example, photon counting can be used as a
deterministic characterization of a protocol if the ab-
sence of a photon count �the vacuum contribution� is
included in the analysis. Continuous variable outcome of
a homodyne measurement can be “digitized” if suitable
superposition states are employed. Various figures of
merit are used for characterization of quantum inter-
faces, as discussed in Sec. V.A.

Probabilistic protocols based on generation of a single
collective atomic excitation of an atomic ensemble fol-
lowing detection of a photon emitted by the ensemble
have been actively developed in recent years �Kuzmich
et al., 2003; van der Wal et al., 2003; Chou et al., 2004,
2007; Matsukevich and Kuzmich, 2004; Chen et al., 2006;
Matsukevich et al., 2006; Chaneliere et al., 2007�. This
approach has been motivated by a proposal for a quan-
tum repeater with atomic ensembles �Duan et al., 2001�.
The research on quantum repeaters deserves a separate
review paper and will only be briefly discussed here.

The requirements for the atomic memory may differ
depending on the particular application. A distributed
quantum computer network requires the complete set of

memory capabilities: mapping of the light state onto
memory, storage and operations on the memory state,
and retrieval of the memory state back onto light for
further processing. Applications in quantum communi-
cations, which involve local operations on stored states
and classical communications between partners, often
only require a measurement of the memory state in a
specific basis, i.e., no full retrieval of the quantum state
of the memory back onto light is necessary. Yet other
proposals, such as linear optics quantum computing
which uses offline entanglement resources, require only
the retrieval of the atomic state onto light but it has to
be rather efficient and with high fidelity �Menicucci et
al., 2006�.

B. Elementary level schemes

Naturally, the atomic levels used for storage of a
quantum state should be long lived, with particular re-
quirements for the lifetime depending on applications.
For example, for a memory used in a long-distance com-
munication protocol, the memory lifetime usually should
be longer than the time required for classical communi-
cation over this distance. For a few hundred kilometers
this time is of the order of 10−3 sec. Short-distance ap-
plications may require shorter memory time but one
should keep in mind that a low-loss fiber loop can be a
strong competitor for a short term atomic quantum
memory for light �Pittman and Franson, 2002�. A 5 km
fiber loop can, in principle, store a photon for 25 �sec
with only 20% losses at the telecom wavelength. How-
ever, even for short storage times atoms have the impor-
tant advantage of being able to provide on-demand re-
trieval and may in addition be advantageous if a
nontrivial operation has to be performed on the stored
quantum states.

The optical atomic transitions used for coupling light
to the storage ground states of the atoms should be pref-
erably strong in order to have a large bandwidth of the
memory. Therefore strong dipole allowed transitions are
typically used for the interaction, but some experiments,
in particular in solid-state systems, compensate for weak
optical transition by having a large number of atoms.
Figures 1�b�–1�d� present the atomic level schemes typi-
cally used for the interface. Figures 1�b� and 1�c� present
the � scheme used in the Raman and EIT memory
schemes as well for entanglement generation. Figure
1�d� shows the so-called Faraday interaction which is
sometimes also referred to as QND interaction for rea-
sons discussed below.

In Fig. 1�b� the atoms are prepared in the ground state
coupled to the quantum field âL �thin line�, with the bold
line showing a strong coupling field. With a large detun-
ing from the optically excited states, the interaction
Hamiltonian for such a system, after adiabatic elimina-

tion of the excited state, can be cast in the form Ĥ
=�BSâLâA

† +H.c. In quantum optics this Hamiltonian is
often referred to as the beam-splitter Hamiltonian Le-
onhardt �2003�. The interface mixes the input atom and
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light states as a “beam splitter” and the “reflection coef-
ficient” of unity corresponds to a perfect state swapping
between light and atoms. The detailed derivation of this
Hamiltonian for the light-atom interaction is given later,
but the intuitive picture is obvious—if a single photonic
excitation is removed �annihilated� from the field âL, a
single collective atomic excitation âA

† is created. If this
process is efficient, it works as the Raman-type quantum
memory for light introduced for atomic ensembles by
Kozhekin et al. �2000� and described in Sec. V.D. The
same level scheme can be used for the EIT-based
memory where the fields are resonant with the optical
transition �Fleischhauer and Lukin, 2000; Lukin et al.,
2000�, although in this limit it is essential to account for
spontaneous emission and the effective beam-splitter
Hamiltonian is less applicable �see Secs. II�. EIT-based
quantum memory experiments are also described in Sec.
V.D.

Figure 1�c� shows the same atomic structure but now
the fields are arranged in a way which can be used for
the atom-light entangling interaction with the Hamil-

tonian Ĥ=�PâLâA+H.c. The Hamiltonian is formally
identical to the parametric-gain interaction Hamiltonian
Leonhardt �2003�, which has been a workhorse for stud-
ies of entangled and nonclassical states of light since the
1960s. The important new feature in the present case is
that two entangled operators belong to a light mode and
an atomic mode, respectively. This kind of entanglement
has been used for unconditional light-to-atom teleporta-
tion experiment described in Sec. VI and its probabilistic
version discussed in Sec. IV.C is the basis for the re-
peater protocol of Duan et al. �2001�.

To complete the discussion of elementary level
schemes used for basic interface routines, we consider
the four-level scheme shown in Fig. 1�d�. The Hamil-
tonian for this interaction can be obtained by combining
the beam-splitter Hamiltonian �Fig. 1�b�� and the para-
metric entangling Hamiltonian with equal coupling con-
stants, �BS=�P �Fig. 1�c�� provided that the two quantum

fields �thin lines� belong to the same mode: Ĥ��P̂LP̂A,
where the canonical operators for light and atoms which

obey the canonical commutation relation �X̂ , P̂�= i have
been introduced. This interaction allows for a QND
measurement of the atomic operator PA by means of
detection of the light operator XL. As discussed in Secs.
IV.A and IV.B, the QND measurement projects atoms
into an entangled state. The same interaction is often
called the quantum Faraday interaction because in the
case of magnetic levels it leads to polarization rotation
of light. The QND-Faraday interaction of atoms and
light followed by the measurement on the light and the
feedback conditioned on the measurement applied onto
atoms was used to demonstrate quantum memory for
light as described in Sec. V. As shown theoretically and
experimentally by Wasilewski et al. �2009�, a more gen-
eral combination of the beam-splitter Hamiltonian and
the parametric entangling Hamiltonian with unequal
weights performs both those operations simultaneously.

To summarize, the basic features of most quantum in-
terface protocols to date can be understood by analyzing
simple three- or four-level atoms. Besides the condition
d�1 mentioned above, another unifying feature for all
approaches which use multiatom ensembles is the possi-
bility to initialize the ensemble, e.g., by optical pumping,
in one of the ground substates. Choosing suitable atomic
transitions, and polarizations and frequencies of the
quantum and classical coupling fields, one can choose
between various routines, such as memory, entangle-
ment, and Faraday interaction, as shown in Fig. 1. In the
following theoretical description we provide a unified
approach to all these types of interfaces.

In the literature the interface protocols are often di-
vided into those for states of continuous variables and
those for discrete variables, or qubits. The former are
usually based on the Faraday interaction and are de-
scribed most conveniently in terms of X ,P operators
measured by homodyne detection, while the latter are
commonly based on the �-type interactions in combina-
tion with counting of single photons and are most easily
described in terms of a ,a† representations. One of the
goals of this review is to show that continuous and dis-
crete variable protocols can in many aspects be treated
on equal footing, and that the choice of variables is de-
fined by the convenience of description and the type of
measurements involved, e.g., in the ideal limit a memory
protocol which is most conveniently described by X ,P
operators could be used to store a single photon with
perfect fidelity. On the other hand, the state of the
atomic memory in protocols which use a ,a† representa-
tion can be conveniently analyzed by atomic tomogra-
phy in the X ,P basis �Sherson, Julsgaard, and Polzik,
2006; Fernholz et al., 2008� �for a review on quantum
tomography see Lvovsky and Raymer �2009��. The type
of errors which appear under nonideal conditions is of
course different for different protocols, but irrespec-
tively of the specific protocol the condition d�1 leads to
fewer errors. Which protocol to use, for a given optical
density, therefore depends on the specific application
and a detailed analysis of the imperfections should be
made in each situation.

This review provides a coherent picture of the work
on the quantum interface between light and atomic en-
sembles using various approaches, atomic media, and
protocols. It includes the discussion of major experimen-
tal achievements to date and concludes with the analysis
of the current limitations and future goals.

II. THEORETICAL BACKGROUND

A. Description of light and atoms

1. Harmonic oscillators

Throughout this review we deal with single modes of
the electromagnetic field and collective spin excitations
of atomic ensembles, which can be well approximated by
harmonic oscillators with canonical position and mo-
mentum operators Xn and Pn, where n refers to the
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mode number. In most cases we shall omit the hats on
the operators in what follows. These canonical operators
are dimensionless with the standard commutator

�Xn,Pm� = i�mn. �1�

The harmonic oscillators can also be described in terms
of the annihilation operators

an = �1/�2��Xn + iPn� , �2�

which have commutation relation �an ,am
† �=�nm.

Instead of labeling by a discrete number n the modes
can be denoted by a continuous parameter, e.g., the po-
sition vector r� with the commutation relations

�X�r��,P�r���� = i��r� − r��� , �3�

�a�r��,a†�r���� = ��r� − r��� . �4�

In some cases we deal with the storage or transfer of a
set of n modes. Such discrete modes can be constructed
from the continuous modes by introducing a complete
orthogonal set of mode functions 	um�r��
 satisfying

� dr� um
* �r��un�r�� = �mn, �5�

�
m

um
* �r��um�r��� = ��r� − r��� . �6�

If we now define the discrete annihilation operators

am =� dr� um
* �r��a�r�� , �7�

they have the appropriate commutator �an ,am
† �=�mn.

2. Light

Light beams traveling in the z direction can be de-
scribed �in c.g.s. units� in the paraxial approximation by
a quantized electric field

E� �r�� = �
m,�,k

�2�	0

l
e��um�r��;z�eikzaL,m�k + H.c. �8�

Throughout this review we set 
=1. l is the length of the
quantization volume, and the sum is over the polariza-
tion � and the transverse mode number m, as well as the
longitudinal wave vector k. The mode functions
um�r�� ;z�, where r��= �x ,y� describes the transverse pro-
file of the beam, form a complete orthogonal set in the
plane transverse to the propagation direction

� d2r��um
* �r��;z�um��r��;z� = �m,m�. �9�

In the above we have assumed that the fields belong to a
narrow frequency band such that for all modes the fre-
quency under the square root is 	0. Second, the field
should in general be expanded into a complete set of
modes u�k�r��, but in the paraxial approximation we have
assumed that we can factor out a polarization vector e��
as well as ignore the k dependence of the transverse
mode function um�r�� ;z�.

Instead of using longitudinal wave vectors we use a
slowly varying position space annihilation operator de-
fined by

aL,m��z� =�c

l �k
ei�k−k0�z+i	0taL,m�k, �10�

where c is the speed of light and k0=	0 /c. In the con-
tinuum limit l→� this operator has the commutation
relation

�aL,m��z�,aL,m���
† �z��� = c�m,m���,����z − z�� . �11�

Note that we have chosen here a normalization with c
appearing in the commutator. With this normalization �i�
the traveling fields aL,m��z , t�=aL,m��z−ct� considered
below have the commutation relation appropriate
for operators, which are a function of t
„�aL,m��z , t� ,aL,m���

† �z , t���=�m,m���,����t− t��…, and �ii�
with this normalization aL,m��z�†aL,m��z� describes the
flux of photons in mode m with polarization � at posi-
tion z.

In terms of this operator the electric field is given by

E� �r�� =�2�	0

c �
m,�

e��um�r��;z�ei�k0z−	0t�aL,m��z� + H.c.

�12�

We mainly deal with a single transverse field mode and a
single polarization, so that the sum in the expression
above can be omitted. For an introductory textbook to
continuous mode quantum optics see Loudon �2004�.

3. Atoms

We first discuss the theory for atoms with two stable
ground states |0� and |1�. In Sec. II.D we show how one
can in many cases reduce the description for multilevel
atoms to two state atoms. The two ground states are
conveniently described in terms of angular momentum
operators. We use here the x as the quantization axis for
consistency with Julsgaard et al. �2001�, Julsgaard, Sher-
son, Rensen, and Polzik �2004�, and Sherson, Krauter, et
al. �2006�. The angular momentum operators describing
the mth atom are

jx,m = 1
2 ��0�m0� − �1�m1�� , �13�

j+,m = jy,m + ijz,m = �0�m1� , �14�

where j+,m is the operator which raises jx,m by unity.
We are interested here in collective variables for an

ensemble containing many atoms. In the simplest case
such collective operators are given by the total angular
momentum operators Jl=�mjl,m �with l=x ,y ,z�, which
fulfill the standard angular momentum commutation re-
lation

�Jy,Jz� = iJx. �15�

The collective state with all atoms in state |0�, then cor-
responds to the state �J=NA /2 ,Mx=NA /2� with total an-
gular momentum quantum number J=NA /2 and an ei-
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genvalue of Jx equal to NA /2, where NA is the number of
atoms. If we consider a large number of atoms and only
weakly perturb the system �only change the state of a
few atoms�, we can approximate the Jx operator by its
expectation value Jx�Jx�. For those who feel uneasy
about replacing an operator by its mean value, a more
rigorous formulation can be made using the so-called
Holstein-Primakoff transformation �Holstein and Prima-
koff, 1940; Kittel, 1987� or in terms of a Wigner group
contraction �Arecchi et al., 1972�. Without loss of gener-
ality we can assume the expectation value Jx� to be
positive and we can then introduce new canonical posi-
tion and momentum operators by

XA = Jy ��Jx�, PA = Jz ��Jx� . �16�

From Eq. �15� we immediately see that these operators
satisfy the standard commutation relation for position
and momentum �1�. The collective annihilation operator
is then

aA =
XA + iPA

�2
=

�
m

j+,m

�2Jx�
=

�
m

�0�m1�

�2Jx�
. �17�

To get a feeling for this operator, consider the action
of the creation operator aA

† . If we apply this operator to
the initial state, where all atoms are in state |0�, we cre-
ate a symmetric superposition of one atom being flipped

aA
† �0,0,0, . . . ,0� =

1
�NA

�
m

�0,0, . . . ,0,1m,0, . . . ,0� .

�18�

Here �0,0 ,… ,0 ,1m ,0 , . . . ,0� is the state where all atoms
except the mth atom are in state |0�.

The collective operators introduced above are conve-
nient for describing the entire ensemble. We, however,
also be dealing with situations where we need to con-
sider collective operators which do not involve all atoms
with an equal weight �Kuzmich and Kennedy, 2004�. In
the literature such situations are often described by di-
viding the ensemble into small boxes and constructing
collective operators for each box �Raymer and Mos-
towski, 1981; Fleischhauer and Richter, 1995�.

Here we use a slightly different formalism �Sørensen
and Sørensen, 2008�. For a collection of atoms at posi-
tions r�1 ,r�2 ,… . ,r�NA

we define the density distribution
function

n�r�� = �
m
��r� − r�m� . �19�

In condensed matter physics this density distribution
function may be used to describe scattering from struc-
tures �Chaikin and Lubensky, 1995�: averaging this den-
sity distribution over the random positions of the atoms
gives the average number density of the atoms n̄�r��
= n�r���, whereas higher-order correlations like n�r��n�r���
describe the correlation responsible for Bragg scattering
�in this context the classical function �19� is sometimes
referred to as the density operator �Chaikin and Luben-

sky, 1995�, but to avoid confusion with quantum me-
chanical operators we avoid this terminology�. Similarly
we may introduce continuous atomic spin operators by

jk�r�� = �
m
��r� − r�m�jk,m, �20�

where k=x ,y ,z ,+ ,−. A position dependent atomic an-
nihilation operator can then be introduced by

aA�r�� = j+�r�� ��2jx�r��� , �21�

where the average spin density jx�r���, which we assume
to be positive, is the quantum mechanical expectation
value with respect to the internal state averaged over the
random �classical� position of the atoms. The annihila-
tion operator has the commutation relation

�aA�r��,aA
† �r���� = ��r� − r���jx�r�� � jx�r��� � ��r� − r��� , �22�

where we in the last step have assumed that the fluctua-
tions in the mean spin are much smaller than its average.
We use this approximation throughout this article.

The operators �21� will be convenient for describing
the spatial dependence of various operators. To relate
them to single mode operators such as Eq. �17�, we can
introduce a normalized set of mode functions un�r�� ful-
filling the orthogonality and completeness relations in
Eq. �6�.

We can then construct single mode operators as in Eq.
�7�. In particular, consider the normalized mode usym�r��
=�jx�r��� / Jx�. If we use this mode to construct a collec-
tive operator, we see from Eq. �21� that this produces the
symmetric operator defined in Eq. �17�.

The jx�r�� operator will appear in the Hamiltonians be-
low; although sometimes it is more convenient to have
expressions which only involve the annihilation operator
aA�r��. To find the equations of motion we need to take
the commutator of aA�r�� with the Hamiltonian, but from
the commutation relation

�aA�r��,jx�r���� = −
��r� − r���
�2jx�r���

�
m
��r� − r�m�j+,m

= − ��r� − r���aA�r�� , �23�

we see that we get the same result if we make the re-
placement

jx�r�� → n �2 − aA
† �r��aA�r�� �24�

and use the commutation relation in Eq. �22� �the first
term is included to ensure that jx has the right value in
the vacuum state of aA, where all atoms are in state |0��.
This replacement holds even as an exact operator iden-
tity in the framework of the Holstein-Primakoff trans-
formation �Holstein and Primakoff, 1940�.

B. Interaction of light with model atoms

We consider atoms with stable ground states denoted
by �gm� and excited states denoted by �em�. The Hamil-
tonian H=HL+HA+Hint describing this system is the
sum of the field energy HL, the atomic energy HA, and
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the interaction Hamiltonian Hint. We first consider the
atomic and interaction parts of the Hamiltonian and de-
rive an effective interaction Hamiltonian involving only
the ground states of the atoms. We then include the
Hamiltonian HL responsible for the propagation of the
light field, and derive coupled equations of motion for
the light and atomic operators.

1. Interaction with a single atom

To describe the atomic part and the interaction let us
first consider only a single atom at location r�. In a rotat-
ing frame with respect to the laser frequency the atomic
Hamiltonian is given by HA=�mm�em�em�, where m is
the detuning of the mth excited state with respect to the
laser frequency.

In the dipole approximation the interaction between
light and atoms is described by the Hamiltonian Hint

=−E� ·D� , where D� is the electric dipole operator for the
atom. In Appendix A we describe the adiabatic elimina-
tion of the excited state and derive an effective ground-
state Hamiltonian

Hint� = �
m,m�

Vm�,m�r���gm��gm� , �25�

where the coupling matrix Vm�,m is given by

Vm�,m�r�� = − �
m�

�E� �−��r�� · D� m�,m�
�+� ��D� m�,m

�−� · E� �+��r���

m�
.

�26�

Here superscripts ��� and ��� refer to the positive and
negative frequency components of the electric field and
dipole operators �the positive frequency part is the part
of the operators which removes an excitation, e.g.,
D� m�,m

�+� = gm��D� �em�� �Loudon, 2004�. �Note that Hint� is not

the same as Hint=−E� ·D� , since Hint� contains a contribu-
tion from HA as discussed in Appendix A.�

2. Interaction with many atoms

Now consider the situation where we have many at-
oms. We are mainly interested in describing the interac-
tion of a weak quantum field with an ensemble driven by
a strong classical field. In this section we describe only
the interaction between the atoms and the forward
propagating quantum fields and ignore the spontaneous
emission due the coupling to all other electromagnetic
modes. We include the decoherence caused by sponta-
neous emission in Sec. II.C. To simplify the theory we
derive only equations of motion for the initially fully
polarized ensemble Jx�r� , t���n�r�� /2 �we ignore the dif-
ference between the density distribution n�r�� and its av-
erage value n̄�r���. The atomic operators defined in Eq.
�21� are, however, well-behaved annihilation operators
even for an ensemble which is not fully polarized pro-
vided that the fluctuations of the mean spin are small.

This will, for instance, be the case if an ensemble con-
taining many atoms is prepared with imperfect optical
pumping.

The interaction Hamiltonian can be obtained by sum-
ming the single-atom Hamiltonian �25� over all atoms.
This sum may be replaced by an integral by introducing
the continuous atomic annihilation operator defined in
Eq. �21�:

H =� d3r�	��n�r��aA�r��V01�r�� + H.c.� + n�r��V00

+ aA
† �r��aA�r���V11 − V00�
 , �27�

where we have used the replacement �24� for the spin
operator jx�r��. In Appendix B we use this general Hamil-
tonian to derive Hamiltonians for the three different
model systems in Figs. 1�b� and 1�b�–1�d�.

For some situations the three-dimensional �3D�
Hamiltonians derived in Appendix B can be reduced to
one dimension. We perform this reduction for the beam-
splitter interaction Hamiltonian in Eq. �B1�, correspond-
ing to the level configuration as shown in Fig. 2�a�,
where both classical and quantum field is traveling in the
z direction. Now assume that the density is independent
of the transverse coordinate n�r��=n�z�, and that the clas-
sical laser field is also constant transverse to the propa-
gation direction. Since the mode functions um�r�� ;z�
form a complete set in the plane, we can expand the
atomic operator aA�r�� in the same set

(a)

(b)

(c)

FIG. 2. �Color online� � configuration with dominant popula-
tion of level |0�: �a� Beam-splitter interaction with the quantum
field of the single photon Rabi frequency g on the �0�→ �e� and
the strong light with the Rabi frequency � on the �e�→ �1�
transition. The two fields are in two-photon resonance with a
detuning  from the excited state �e�. Decay due to spontane-
ous emission goes back to one of the ground states at the rates
�0�1� or to other levels �not shown� summing up to a total rate
�. �b� Parametric-gain interaction. �c� Faraday interaction: At-
oms are polarized to |0�, the strong field is linearly polarized
along x and drives the up transitions with the Rabi frequency
�, and the quantum field in y polarization couples to the cross
transitions with the single photon Rabi frequency g. The fields
are in two photon resonance with a detuning  from the ex-
cited states. Decay due to spontaneous emission goes back to
one of the ground states at the rates �x�y� or to other levels �not
shown� at the rate �.
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aA�r�� = �
m

um�r��;z�aA,m�z� , �28�

where

aA,m�z� =� d2r��um
* �r��;z�aA�r�� . �29�

These new operators will then have the appropriate
commutation relation �aA,m�z� ,aA,m�

† �z���=��z−z���m,m�.
We insert this expansion into the Hamiltonian �B1�, and
then use the orthogonality relation �9� integrate over the
transverse coordinate to obtain the one-dimensional
�1D� Hamiltonian

HBS =� dz�− ���z,t��2

4 �
m

aA,m
† �z�aA,m�z�

−
�g�z��2


�
m

aL,m
† �z�aL,m�z�

− �g*�z���z,t�
2 �

m
aL,m

† �z�aA,m�z� + H.c.�� ,

�30�

where the the coupling constant g�z� and slowly varying
resonant Rabi frequency ��z , t� are given by

g�z� = �2�	n�z� � cD0,

��z,t� = 2D� e,1
�−� · E� �+��exp�− i�k0z − 	0t�� , �31�

and the dipole element for the �0� - �e� transition with the
polarization of the quantum field e�q is given by D0

=D� e,0
�−� ·e�q. The Hamiltonian above consists of three

terms: the first line is the ac-Stark shift of the atomic
ground state, the second is the index of refraction of the
gas, and the last line, which is the most important for our
discussion here, describes the exchange of excitations
between atoms and light.

Note that each of the transverse modes of the light
field in Eq. �30� talks to a single transverse mode of the
atoms, which then couples back to the same transverse
light mode. Since the dynamics is actually the same for
all involved transverse modes, the atomic ensembles
may in fact be used as a memory for for multiple trans-
verse modes �Camacho et al., 2007; Shuker et al., 2008;
Vasilyev et al., 2008; Vudyasetu et al., 2008�. A similar
description of the reduction from three to one dimen-
sion is also presented in André �2005�.

We have used here the same central frequency 	0 for
both the quantum and classical fields, which is true for
degenerate |0� and |1� states. If they are not degenerate,
the energy difference between the two states can be ac-
counted for by changing the frequency 	0� of the classical
field. In this case, however, an additional phase factor
exp�i�k0�−k0�z� associated with the difference of the k
vectors appears. We discuss the effect of this phase fac-
tor in Secs. II.G and VII.

For the parametric-gain Hamiltonian �B2� �cf. Fig.
2�b��, the reduction from three to one dimension can be

achieved using the same procedure as above. The only
difference is that instead of Eq. �29� we should now de-
fine the discrete atomic operator by

aA,m�z� =� d2r��um�r��;z�aA�r�� . �32�

Although the omission of the complex conjugate in this
expression compared to Eq. �29� may seem of minor im-
portance, it actually does play a role for several experi-
ments as discussed in Sec. IV.C. Omitting the sum over
multiple modes, we arrive at the Hamiltonian

HG =� dz� ���z,t��2

4
aA

† �z�aA�z�

− �g*�z���z,t�
2

aL
† �z�aA

† �z� + H.c.�� . �33�

Finally we derive the one dimensional Hamiltonian
for the QND �Faraday� interaction as shown in Fig. 2�c�,
where the x-polarized classical field couples the vertical
transitions and a quantum field in y polarization couples
diagonal transitions. From the figure we see that the Far-
aday interaction is essentially a combination of the
beam-splitter and the parametric-gain interaction taken
with the same coupling strength. In fact, as discussed in
Appendix B the three-dimensional Hamiltonian for the
Faraday interaction is simply HF= �HBS−HG� /�2. To re-
duce the problem to one dimension we introduce atomic
operators similar to Eqs. �29� and �32�, but now there is
an ambiguity as to which of the two forms one should
use. To avoid this ambiguity we assume that the mode
functions um�r�� ;z� are real �for Hermite-Gaussian
modes �Milonni and Eberly, 1988�, this condition can
only be satisfied if the Fresnel number is much greater
than unity F=w0

2 /�L�1, where w0 is the beam waist, L
is the length of the medium, and � is the wavelength of
light �Müller et al., 2005; Sørensen and Sørensen, 2008��,
and that g*�r����r� , t� has a constant phase, which we take
to be zero. With these assumptions the Hamiltonian can
be reduced to the simple form

HF = −� dz
g*�z���z,t�

�2
pL�z�pA�z� . �34�

We have omitted here the index of refraction of the gas
for the reasons discussed in Appendix B.

We emphasize that the above 3D to 1D reduction pro-
vides a highly simplified treatment of the propagation of
light through an atomic gas. In particular a more general
treatment should include the spontaneous emission, the
density-density correlation of the atoms, and the opti-
cally induced dipole-dipole interaction of the atoms. For
the Faraday interaction a detailed study of the reduction
from three to one dimension is presented by Sørensen
and Sørensen �2008�. In essence this study confirms the
treatment presented here provided that the gas is ideal
and that the mode functions um�r�� ;z� are solutions to
the propagation equation including the index of refrac-
tion. Little work has been done so far on the optically
induced dipole interactions.
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3. Equations of motion

The addition of the Hamiltonian for light HL to the
atomic part of the Hamiltonian HA and the interaction
Hint discussed above allows describing the propagation
of light through the ensemble. As shown in Appendix C
the equation of motion is derived by introducing a res-
caled time �= t−z /c and becomes a differential equation
in space �z� instead of time t.

For the beam-splitter interaction, we find the equa-
tions of motion by calculating the commutator with HBS

�

�z
aL�z,t� = i

�g�z��2


aL�z,t� + i

g*�z���t�
2

aA�z,t� ,

�35�
�

�t
aA�z,t� = i

���t��2

4
aA�z,t� + i

g�z��*�t�
2

aL�z,t� .

The above equations can be solved analytically
�Kozhekin et al., 2000; Kupriyanov et al., 2005; Gorshkov
et al., 2007b; Mishina et al., 2007; Nunn et al., 2007�. We
will defer a discussion of the solutions until Sec. II.C
where the spontaneous emission is included.

Similarly we can find the equations of motion for the
parametric gain:

�

�z
aL�z,t� = i

g*�z���z,t�
2

aA
† �z,t� ,

�36�
�

�t
aA�z,t� = − i

���z,t��2

4
aA�z,t� + i

g*�z���z,t�
2

aL
† �z,t� .

Again these equations have an analytical solution �Car-
man et al., 1970; Raymer and Mostowski, 1981�.

For the Faraday interaction the equations of motion
are much simpler when expressed in terms of x and p
and read

�

�z
xL�z,t� = −

g*�z���t�
�2

pA�z,t� ,

�

�z
pL�z,t� = 0,

�37�
�

�t
xA�z,t� = −

g*�z���t�
�2

pL�z,t� ,

�

�t
pA�z,t� = 0.

Because the two momentum operators are conserved
quantities these equations describe a QND interaction,
where one can, make a measurement of the position op-
erator xL after the interaction and thereby obtain a
QND measurement of the atomic momentum operator
pA, as will be further explained in Sec. IV.A.

The presence of the conserved quantities pA and pL
makes it straightforward to solve the equations of mo-
tion. The only z dependence in the above expressions

comes from the z dependence of the density n�z�. We
can then define the symmetric operators by

XA =
� dz�n�z�xA�z�

�� dzn�z�

,

�38�

PA =
� dz�n�z�pA�z�

�� dzn�z�

.

If the transverse mode function includes all atoms in the
ensemble, these operators are equivalent to the symmet-
ric operators defined in Eq. �16�. Similar integrated op-
erators for the light field are

XL =
� dt��t�xL�t�

�� dt�2�t�

,

�39�

PL =
� dt��t�pL�t�

�� dt�2�t�

,

where we assume that � is real. Expressed in terms of
these variable the equations of motions have the simple
solutions

XL,out = XL,in + �PA,in,

PL,out = PL,in,
�40�

XA,out = XA,in + �PL,in,

PA,out = PA,in.

The subscripts in and out mean input and output vari-
ables, e.g., XL,in=XL�z=0� and XL,out=XL�z=L� for
light and XA,in=XA�t=0� and XA,out=XA�t=T� for at-
oms. The coupling constant � is given by

�2 =� dt
���t��2

22 � dz�g�z��2

=
�	D−

2

c
� dt

���t��2

2 � dzn�z� . �41�

In the last line we have inserted the expression for the
coupling constant g�z� Eq. �31� and have denoted the
dipole matrix element by D− to indicate that it is the
coupling constant for �-polarized light.

The coupling constant � �and the generalization of it�
plays an important role for characterizing the strength of
the interaction regardless of the level scheme being
used. Note that � only depends on the total integrated
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density. This property can be shown to also apply to the
� schemes by a simple rescaling of the z coordinate
�Gorshkov et al., 2007b�. We therefore for simplicity
only consider a constant density below.

C. Theory including spontaneous emission

In Sec. II.B the spontaneous emission was omitted. In
this section we give the theory including the spontane-
ous emission and discuss solutions to the equations.

Instead of repeating the calculations in Sec. II.B now
with a nonzero decay, we note that if the spontaneous
emission from each atom is independent, it can be ac-
counted for by making the substitution

m → m ± i�m/2 �42�

all calculations. The choice of the sign is discussed in
Appendix D and the results are stated below. It is also
important to note that the quantity jx�r��� used to define
the operator aA�r� , t� in Eq. �21� is not necessarily a con-
stant. To ensure that the operator aA�r� , t� has the right
normalization we should always normalize by the time-
dependent expectation value jx�r� , t��. The time deriva-
tive of jx�r� , t�� will introduce extra terms as discussed in
Appendix D.

1. Beam-splitter interaction

As discussed in Appendix D for the beam-splitter in-
teraction we should use the minus sign in the substitu-
tion �42�, and the time derivative of jx�r��� can be ne-
glected because the strong classical field talks to an
almost empty level. For a constant atomic density the
equations of motion then become

�

�z
aL�z,t� =

i�g�2

 − i
�

2

aL�z,t� +
ig*��t�
2 − i�

aA�z,t� ,

�43�
�

�t
aA�z,t� =

i���t��2

4� − i
�

2
�aA�z,t� +

ig�*�t�
2 − i�

aL�z,t� ,

where � is the total decay rate of the excited state and
we have omitted the noise operators given in Eq. �D6�.
The admixed noise is vacuum in both equations of mo-
tion, and since the equations only couple annihilation
operators to annihilation operators we can ignore the
noise for the calculation of any normally ordered prod-
ucts. In the above equations the imaginary part of the
first terms on the right-hand side of each line refers to
the phase shift caused by the index of refraction of the
medium and the ac-Stark shift of the atoms, and the real
part of these terms represent damping by spontaneous
emission. The last term on each line represents the cou-
pling of light and atoms which is our main interest here.

Solving these equation for a resonant field =0 with
no classical field �=0, we find that the intensity is re-
duced by a factor of exp�−d�, with the optical depth d
given by

d = L4�g�2/� = �3�2�0/2���nL = n�0L , �44�

where we have used the expression for the coupling con-
stant g Eq. �31� and have introduced the spontaneous
decay rate �0=4	3�D0�2 /3c3 from the excited state �e�
into the ground state |0� �Milonni and Eberly, 1988� and
the absorption cross section for an atom �0
=3�2�0 /2�� �Jackson, 1975�.

It is sufficient in our case to solve the operator equa-
tions of motion �43� as “classical equations” with the
operators replaced by complex functions �Raymer and
Mostowski, 1981; Gorshkov et al., 2007a�. The reason is
that the equations are linear in the operators. The solu-
tions to the operator equations will therefore be of the
form

âL,out�t� = �
0

L

dzm„��t�� ;t,L − z…âA,in�z� + ¯ , �45�

where the operators are identified with hats for clarity,
and the argument ��t�� indicates that the solution de-
pends on the driving field at all times. The remaining
terms denoted by dots in Eq. �45� are similar linear com-
binations of the input light and noise operators. If we for
instance solve the equations of motion with a complex
function aA,in�z� as the initial condition, we get the same
solution only without the hats due to the linearity of the
equations

aL,out�t� = �
0

L

dzm„��t�,t,L − z…aA,in�z� . �46�

We can thus obtain most of the solution �45� by simply
inserting hats in the solution. Because we have ignored
some input operators, however, the resulting operators
will not necessarily have the right commutation relation.
If there is no incident light all of these other modes will
be in vacuum, and one can obtain the right commutation
relation by adding a suitable amount of vacuum noise
�Gorshkov et al., 2007a�. Another way to see why the
complex number equations are sufficient to obtain full
information about the dynamics is to note that if all in-
put modes are in classical coherent states, we can take
expectation values of the equations of motion �43� and
obtain the same equations of motion for the mean val-
ues. These classical equations of motion are thus identi-
cal to the quantum equations of motion �Raymer and
Mostowski, 1981�. The equations of motion correspond
to a general beam-splitter relation, so that with coherent
states as input states the output quantum states will also
be a set of coherent states with amplitudes given by the
mean values. Since any initial state can be expanded on
the set of coherent states, knowledge about the evolu-
tion of the coherent states obtained by solving the equa-
tions of motion for the mean values gives complete in-
formation about the evolution for any quantum state.

The equations of motion can in fact be solved analyti-
cally �Gorshkov et al., 2007b�. If we consider the situa-
tion where the only nonvanishing initial value is aA, we
find the solution for the output light in Eq. �46� with
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m„��t�� ;t,z… =��d

L

�− i���z,t�

4� − i
�

2
�

�exp�i�2 + i�

2�

h�0,t�
d

+
d�z

4L� − i�/2���
�I0�− iei��h�0,t�

z

L
� , �47�

where I0�x� denotes the zeroth-order Bessel function of
the first kind. Here we have assumed that the coupling
constant is real, which can always be done by absorbing
any phase into the definition of �, and we have replaced
the coupling constant by the optical depth through Eq.
�44�. The function h�t , t�� is defined by

h�t,t�� = �
t

t�
dt�

d����t���2

42 + �2 , �48�

and this is also the function characterizing the strength
of the Faraday interaction. Finally the phase � is defined
by

tan��� = � �2 . �49�

Similarly we find for the output atomic variables

aA,out�z� = �
0

T

dtm„�*�T − t� ;T − t,z…aL,in�t� . �50�

The fact that the kernel m„�*�T− t� ;T− t ,z… is similar to
the kernel in Eq. �46� is a direct consequence of time
reversal symmetry �Gorshkov et al., 2007b�.

While the above solutions for the equations of motion
are exact, they are sufficiently complicated and it is hard
to gain any physical intuition from them. More insight
can be gained by applying to the equations the Laplace
transform in space using

aA�u,t� =
1

�L
�

0

�

dze−uz/LaA�z,t� , �51�

where we have chosen the normalization so that u is a
dimensionless number of order unity. We can then de-
rive the equations of motion for the Laplace trans-
formed variables, which only couple operators with the
same parameter u. „Note, however that because the
atomic operators only have support on z� �0,L� and not
�0,�� different Laplace components are not orthogonal
and care should be taken when applying these formulas
�Gorshkov et al., 2007b�…. Since the Laplace transformed
equation for the light field does not involve derivatives,
we can then eliminate the light field and obtain a single
equation for the atomic operator

�

�t
aA�u,t� =

i���t��2

4� − i��/2��1 + d/2u��
aA�u,t�

+
ig�L�*�t�

2u� − i��/2��1 + d/2u��
aL,in�t� . �52�

This equation now has a simple interpretation. Suppose

that the incident light field is in vacuum so that we can
ignore the last line in Eq. �52�. The initial atomic state
can then decay through two different mechanisms: ei-
ther through spontaneous emission or through coherent
interaction with the forward light mode. Consider now
the fraction in the first line of Eq. �52�. The imaginary
part of the first term, proportional to the detuning  will
give rise to an unimportant phase, while the real part
describes decay of the atomic excitation at an effective
rate �proportional to� ��1+d /2u�. Here the decay rate �
is due to spontaneous emission whereas the second term
�d /2u is due to the coherent interaction with the for-
ward light mode. The optical depth d has been intro-
duced in Eq. �52� through its relation with the coupling
constant g in Eq. �44�, and thus characterizes the
strength of the coherent interaction with the forward
light mode. For a sufficiently high optical depth d�1
and sufficiently smooth atomic excitations u�1 the co-
herent interaction will dominate the spontaneous emis-
sion �d /u�� and we can obtain an efficient interface
between atoms and light.

2. Parametric gain-interaction

In case of the parametric-gain interaction we need to
use the plus sign in one of the substitutions as well as
include some terms associated with the time derivative
of jx�r� , t�� as discussed in Appendix D. We then find

�

�z
aL�z,t� = i

g*�z���z,t�
2 − i�

aA
† �z,t� ,

�53�
�

�t
aA�z,t� = − i

���z,t��2
42 + �2 aA�z,t� + i

g*�z���z,t�
2 − i�

aL
† �z,t� ,

where the z dependence of the Rabi frequency is given
by the exp�i�dz��g�z���2 / �− i� /2�� dependence associ-
ated with the change in the propagation of the classical
field caused by the index of refraction and scattering of
the medium. To arrive at these equations, we have as-
sumed that the decay from the excited state goes into
some states �am� different from |0� and |1�, cf. Fig. 2�b�.
This model for the decay is not always best for real sys-
tems used for parametric-type interaction, for example,
in DLCZ �Duan-Lukin-Cirac-Zoller� -type applications
�Duan et al., 2001� a much stronger decay to auxiliary
states would decrease the effective optical depth, and a
large optical depth is crucial for the interface. The
model used here is, however, the simplest possible
model, and we therefore restrict ourself to this situation.
The interpretation of the above equation is similar to
the interpretation of the equation of motion for the
beam-splitter interaction �43�, only in these equations
there is no coupling of the light to itself because the light
talks to an almost empty transition. The reason why
there is no decoherence term in the atomic equation is
that spontaneous emission drives atoms from state |0�
into some other state �a�, where they are lost from the
system. Collective states like the one in Eq. �18� are,
however, immune to removing one of the atoms in state
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|0� and this source of decoherence has therefore no ef-
fect within the approximations we are using here; see
Mewes and Fleischhauer �2005� for detailed discussion
of the robustness of collective atomic states.

These equations of motion can also be solved analyti-
cally �Carman et al., 1970; Raymer and Mostowski,
1981�. The solution is similar to the solution for the
beam-splitter interaction and we shall not go further
into it here. Again it can be shown that it is possible to
obtain a large coherent coupling with a large optical
depth, by Laplace transforming the equations. By doing
so one finds a strong gain term for the Laplace compo-
nent with argument u, which is �d /u times the single
atom scattering rate. For a large optical depth d we are
thus dominated by the coherent interaction, regardless
of the assumption about the final state after the decay,
which we made above. Unlike the beam-splitter interac-
tion, where one can work at any detuning, this strong
coherent interaction only works in the far off-resonant
regime, because the classical beam would be completely
depleted if one works on resonance in a medium with
large optical depth.

3. Faraday interaction

The Faraday interaction is a combination of the
beam-splitter interaction and the parametric gain with
equal weights, and the easiest way to obtain the equa-
tions of motion is therefore to combine the results ob-
tained previously. As discussed in Appendix D the re-
sulting equations of motion are then �assuming � and g
to be real�

�

�z
xL�z,t� = −

2�2g�z���t�
42 + �2 pA�z� −

�g2

42 + �2xL�z� ,

�

�z
pL�z,t� =

�2�g�z���t�
42 + �2 pA�z� −

�g2

42 + �2pL�z� ,

�54�
�

�t
xA�z,t� = −

2�2g�z���t�
42 + �2 pL�z� −

��2

2�42 + �2�
xA�z� ,

�

�t
pA�z,t� =

�2�g�z���t�
42 + �2 pL�z� −

��2

2�42 + �2�
pA�z� ,

where we have omitted the noise operators, which are
given in Eq. �D9�. Again these equation are derived un-
der the assumption that the decay goes to some auxiliary
state �am�. For a treatment with decay back to the inter-
face levels, see, for instance, Duan, Cirac, et al. �2000�,
Madsen and Mølmer �2004�, and Hammerer �2006�.

Now consider the solution of Eq. �54� in the limit of a
small damping. The Faraday interaction is only used
with far off-resonant light ��d� since the classical
field would be completely absorbed if we were working
close to resonance. We therefore ignore the first term in
the evolution of the momentum operators pL and pA,
which is much smaller than the similar term in the evo-
lution of xL and xA. Furthermore, a time-dependent

driving ��t� can be accounted for by a simple rescaling
�see Appendix E�, so we only consider a constant driving
field �. Because the quantities pL and pA appearing in
the coupling to the operators xA and xL are conserved
quantities apart from the small decays, the dynamics ef-
fectively only involve the integrated operators

XL =
1

�T
�

0

T

dtxL�t� ,

PL =
1

�T
�

0

T

dtpL�t� ,

�55�

XA =
1

�L
�

0

L

dzxA�z� ,

PA =
1

�L
�

0

L

dzpA�z� ,

where the normalization is chosen as for single mode
operators �X ,P�= i. In the limit of small scattering the
resulting dynamics are then given by

XL,out � e−�L/2XL,in + �PA,in,

PL,out � e−�L/2PL,in,
�56�

XA,out � e−�A/2XA,in + �PL,in,

PA,out � e−�A/2PA,in.

Apart from the decay, this solution is the same as the
results derived in Eq. �40� with a minor modification of
the coupling constant �41�, which is now given by

�2 = h�0,t�42/�42 + �2� , �57�

where the function h�0, t� is the same as the function
introduced for the beam-splitter interaction in Eq. �48�.
In the limit of large detuning  the coupling constant
here is the same as the one derived in Eq. �41�.

In the solutions above, the light and atomic operators
are damped by factors of exp�−�L /2� and exp�−�A /2�,
respectively. The damping factor for the light is given by

�L =
��g�2L

4�2 + �2/4�
=

d

2
�2

42 + �2 . �58�

Note that the optical depth used here is for linear polar-
ization. The definition of d therefore differs by a factor
of 2 from Eq. �44� because we have taken g to be the
coupling constant for circular polarized light and not for
linear polarization. From the expression above it is clear
that we can ignore the decay of the light field if we use a
sufficiently large detuning ��d�. A large detuning
also reduces the coupling constant but this can be com-
pensated by using stronger laser fields.

The atomic decoherence can be related to the cou-
pling constant through
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d�A =

�d� dt���2

42 + �2 = �2. �59�

This relation between d, �A, and � is valid regardless of
which assumption one makes about the final state after a
decay. But different decay channels will have different
effects in the equations of motion, and Eq. �54� is only
directly applicable for the particular model considered
here. Nevertheless, with a fixed interaction strength �2

we can always obtain negligible decoherence with a suf-
ficiently large optical depth d. Conversely, for a given
optical depth d there is always an optimal damping fac-
tor �L balancing the losses against the gains in some
figure of merit �such as, e.g., state transfer efficiency,
light-matter entanglement, etc.� which depends on the
coupling strength �, see, e.g., Hammerer et al. �2004�.

4. Scaling with atom and photon number

Further insight into the connection between the cou-
pling constant, atomic decoherence, and dissipation of
light can be obtained by expressing these parameters
through the number of atoms NA and photons NP of the
classical field. Assume that the classical beam has a
square profile with a cross section of area A. Using the
definitions of the electric field �12� and Rabi frequency
�31� we find

� dt���2 = �c�3�2/2�A�NP, �60�

where �c ��q� is the decay rate between the two states
coupled by the classical �quantum� field with an emitted
photon of the same polarization as the classical �quan-
tum� field. The function h�0,T� characterizing the
strength of the interaction in the far off-resonant limit
can be then expressed as

h�0,T� = � 3�2

2�A
�2 �c�q

42 + �2NANP

=
�c�q

A2

�2

42 + �2NANP, �61�

where in the last line we have introduced the resonant
cross sections for the scattering of the quantum and clas-
sical fields ��m=3�2�m /2���. The atomic and light deco-
herence can then be related by

NA�A = NP�L, �62�

which simply reflects the fact that the number of scat-
tered photons is the same as the number of atoms which
have scattered a photon. If the number of input classical
photons is much larger than the number of atoms NP
�NA the decay of light is much smaller than the atomic
decoherence and can be neglected.

The function h�0, t�=�2 characterizes the solution of
all three model systems considered here. Further insight

into the reason for this can be gained by rewriting the
equations in terms of rescaled dimensionless variables
�Appendix E�.

D. Realistic multilevel atoms

In the previous section we derived the main equations
describing three types of light-matter interactions, the
beam splitter, the parametric gain, and the Faraday-
QND type, Eqs. �30�, �33�, and �34�, respectively, for
simple few-level model atoms. In this section we give
examples of how these interactions are commonly real-
ized with real atoms.

1. Faraday interaction

Applying the Faraday interaction �34� to a full hyper-
fine level with many nearly degenerate Zeeman states
would at first sight seem to violate the simple two-level
approximation that we have used in the theoretical deri-
vation. For alkali atoms, however, the full theory actu-
ally reduces to what we have derived previously if the
detuning is much larger than the hyperfine splitting in
the excited state. Consider the S1/2→P3/2 transition in
alkali atoms as shown in Fig. 3. If atoms are optically
pumped into one of their hyperfine ground-state levels
F, an off-resonant probe will couple in general to three
dipole allowed transitions F→F�=F−1,F ,F+1. Each of
these transitions will contribute to the effective Hamil-
tonian in Eq. �25� describing the interaction of a single
atom with off-resonant light. It will be convenient to
rewrite this Hamiltonian as

Hint = E� �−��r���JE� �+��r�� ,

where we introduced the atomic polarizability tensor
operator �Happer and Mathur, 1967; Happer, 1972;
Deutsch and Jessen, 1998�

FIG. 3. �Color online� Coefficients a0, a1, a2 for, respectively,
scalar, vector, and tensor polarizability vs detuning  of probe
light driving the 6S1/2→6P3/2 transition in 133Cs. The inset
shows the relevant levels and energy scales.
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�J = �
m,m�

�
F�

�
m�=−F�

F� D� m�,m�
�+� ∧ D� m�,m

�−�

F�
�gm��gm�

and D� m�,m�
�+� ∧D� m�,m

�−� denotes the dyadic vector product.
The polarizability operator is a rank-2 spherical tensor
�Edmonds, 1964; Zare, 1988� and can therefore be de-
composed into irreducible tensor components,

�J = �4D0
2/��a0��TJ�0� + a1��TJ�1� + a2��TJ�2�� ,

where the tensor operators TJ�k� transform under rota-
tions as a scalar, vector, and matrix for k=0,1 ,2, respec-
tively. In this expression =F�=F+1 is the laser detuning
from the uppermost level and 2D0= J��D� �J� is the re-
duced dipole matrix element for the S1/2→P3/2 transi-
tion. It relates to the spontaneous decay rate introduced
in Sec. II.C as �0=4	3�D0�2 /3c3.

The real coefficients ak�� follow from elementary
calculations �Julsgaard, 2003; Kupriyanov et al., 2005;
Geremia et al., 2006; Hammerer, 2006� and are given in
Appendix F. The essential feature of these coefficients,
which is proven in the Appendix F, is that for a laser
detuning, which is large compared to the hyperfine split-
ting of excited states, ��� �F+1−F��, the rank-2 tensor
component vanishes, a2��→0. For the case of 133Cs the
coefficients ak�� are shown in Fig. 3.

In the asymptotic limit the interaction Hamiltonian is
thus given by

H =
D0

2


�a0E� �−��r�� · E� �+��r�� +

i

2
a1E� �−��r�� · �j�� E� �+��r���� .

For an atomic ensemble, the first term will give rise to
an index of refraction, while the second term accounts
for the Faraday effect. For light propagating along z and
the classical light polarized along x the Faraday Hamil-
tonian �34� can be easily derived.

When the detuning is larger than the hyperfine split-
ting, the interaction is thus essentially the same as for a
spin 1/2 ground state, where a2 vanishes exactly for all
detunings. This can be understood by looking at how the
energy levels of an alkali atom appear. The full Hamil-
tonian can be written H=H0+HFS+HHFS+Hint, where
the four Hamiltonians represents the Coulomb, fine
structure, hyperfine structure, and interaction with light.
Normally one just considers the first three terms as an
atomic Hamiltonian and does perturbation theory in the
interaction Hamiltonian. When the detuning is larger
than the hyperfine structure it is, however, more appro-
priate to do the adiabatic elimination before treating the
hyperfine interaction. Without the hyperfine interaction
the optical fields only talk to the electron spin, where
there cannot be a rank-2 tensor, since the spin cannot be
changed by two, and a2 therefore only appears as a per-
turbation in HHFS/.

The Faraday interaction of light with a true spin 1/2
ground-state atom, which therefore has only scalar and

vector polarizability, can be achieved with the ytterbium
isotope 171Yb, as explored by Takeuchi et al. �2006,
2007�.

2. � Systems

Although for the beam-splitter and the parametric-
gain interaction, which require a � configuration, mag-
netic sublevels are sometimes used �Novikova et al.,
2007�, the most common implementation makes use of
S1/2�F=I±1/2� hyperfine levels as ground states |0� and
|1� and one of the P states as an excited state �e� �Chou et
al., 2004, 2005, 2007; Matsukevich and Kuzmich, 2004;
Chaneliere et al., 2005, 2007; Chen, Zhao, et al., 2007;
Chen et al., 2008; Choi et al., 2008�. This approach gives
excellent results in zero magnetic field even if atoms are
not optically pumped initially to one Zeeman substate.
It has also been suggested by Kupriyanov et al. �2005�,
Mishina et al. �2007� , and de Echaniz et al. �2008� to
make use of the second-rank tensor polarizability to en-
gineer effective � schemes for the beam-splitter and
parametric-gain interactions using two degenerate Zee-
man states and polarized light.

E. Ensemble in magnetic field

Our theory for light matter interaction so far assumed
degenerate ground-state levels. For pure three-level �
schemes nondegenerate ground states do not make any
difference, as the level splitting can be compensated for
by choosing appropriate frequencies for light. In this
section we deal mainly with the Faraday interaction for
atoms in an external magnetic field along the axis of
atomic polarization �Fig. 4�. The Zeeman splitting
caused by this field can be advantageous in several re-
spects. On the one hand, combined with the homodyne
detection typically used in connection with the Faraday
interaction, this results in low-noise ac signals, as de-
tailed in Sec. II.F. On the other hand, it can also simplify
and enhance protocols aiming for an efficient creation of

FIG. 4. �Color online� A magnetic field along the axis of po-
larization causes Zeeman splitting 	L of ground-state levels.
Photons will be scattered from the classical light, driving the �
transitions, to the quantum field, coupling to the cross � tran-
sitions, at sideband frequencies 	0±	L from the carrier fre-
quency 	0.
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entanglement of two ensembles �Sec. IV� or between an
ensemble and light �Sec. VI�.

The free Hamiltonian for an ensemble of atoms in a
uniform magnetic field �Eq. �24�� oriented along the x
axis is

H0 =
	L

2
� dz�xA

2 �z� + pA
2 �z�� , �63�

where 	L is the Larmor frequency. This Hamiltonian
generates Larmor precession of the transverse spin den-
sity components xA�z� and pA�z� about the x axis. The
full Hamiltonian describing Faraday interaction in a
magnetic field is H=H0+HF, where HF is given in Eq.
�34�. In an interaction picture with respect to H0 this
Hamiltonian is

HF
I = −� dz

g*�z���z,t�
�2

pL�z�

� �cos�	Lt�pA�z� + sin�	Lt�xA�z�� . �64�

Operators xA and pA refer now to spin components in a
frame rotating at 	L about the x axis. For simplicity we
use in the following the same symbols for canonical op-
erators in both frames, as it will be clear from the con-
text, to which one we are referring. In the rotating frame
the canonical operators for transverse spin components
are related to the spin components in the laboratory
frame via

jy�z�/�n�z� = cos�	Lt�xA − sin�	Lt�pA,

jz�z�/�n�z� = cos�	Lt�pA + sin�	Lt�xA,

with the number density of atoms n�z�.
The Maxwell-Bloch equations in the rotating frame

are accordingly

�

�z
xL�z,t� = −

g*�z���t�
�2

�cos�	Lt�pA�z�

+ sin�	Lt�xA�z�� ,

�

�z
pL�z,t� = 0,

�65�
�

�t
xA�z,t� = −

g*�z���t�
�2

cos�	Lt�pL�z,t� ,

�

�t
pA�z,t� =

g*�z���t�
�2

sin�	Lt�pL�z,t� .

Now the atomic momentum operator, i.e., the spin pro-
jection along the axis of light propagation, is not con-
served anymore and the overall interaction is not of
QND character. Integration of these equations becomes
somewhat more involved than before. We resort to this
problem in Secs. IV and VI.

F. Quantum measurement and feedback

In this section we deal with measurements which can
be done on light and then fed back onto atoms. We focus
on homodyne detection of light, which is of importance
for experiments using Faraday interaction and EIT but
also describe photon counting, which is used in combi-
nation with parametric-gain and beam-splitter interac-
tions.

1. Homodyne detection of light

The discussion of the quantum interface in the lan-
guage of canonical variables for light is most fruitful be-
cause these variables can be measured with almost per-
fect efficiency by the balanced homodyne technique. We
concentrate here on the polarization homodyne version,
which is relevant for several protocols described here. In
particular, in the context of the Faraday interaction the
polarimetric measurement of light is an important tool.
Balanced homodyning employs overlapping the quan-
tum field of interest with a strong coherent field, a local
oscillator, on a 50/50 beam splitter and measurement of
the difference of the power in the two outputs. In its
polarization version as shown in Fig. 5, the local oscilla-
tor field and the quantum field are overlapped on a po-
larizing cube so that they have orthogonal polarizations
and the role of the beam splitter is played by a polariz-
ing beam splitter which splits the light into 45° and −45°
modes. The measurement of the differential power of
these two modes corresponds to the measurement of the
Sy Stokes operator, whereas with an extra � /4 plate in
front of the beam slitter the Sz Stokes operator is mea-
sured

Sx�t� = �aL,x
† aL,x − aL,y

† aL,y�/2,

Sy�t� = �aL,+45°
† aL,+45° − aL,−45°

† aL,−45°�/2

= �aL,x
† aL,y + aL,y

† aL,x�/2,

Sz�t� = �aL,�+
† aL,�+ − aL,�−

† aL,�−�/2

= − i�aL,x
† aL,y − aL,y

† aL,x�/2.

FIG. 5. �Color online� Polarimetric measurement of light.
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The third Stokes operator Sx is equal to the total pho-
ton number of the strong field for the case of the strong
coherent field ��� in linear x polarization, such that
Sx�t��= ���2 /2. In this case the measurement of the two
other Stokes operators amounts to a homodyne detec-
tion of y-polarized light with the coherent field in x serv-
ing as the local oscillator,

Sy�t�
�Sx�

�
1
�2

�aL,y�t� + aL,y
† �t�� = xL�t� ,

Sz�t�
�Sx�

� −
i

�2
�aL,y�t� − aL,y

† �t�� = pL�t� .

The homodyne detection can also provide suppression
of the technical �classical� noise if the frequency of the
local oscillator and the quantum field differ by 	L lying
in the radio-frequency domain, see Fig. 4. In this case
the relevant canonical variables are encoded in sideband
modulation modes of y-polarized light, which are read in
the cos�	Lt� and sin�	Lt� components of the photodetec-
tor output,

XLc
=� 2

T
� dt cos�	Lt�xL�t� ,

PLc
=� 2

T
� dt cos�	Lt�pL�t� ,

�66�

XLs
=� 2

T
� dt sin�	Lt�xL�t� ,

PLs
=� 2

T
� dt sin�	Lt�pL�t� .

These components of the photocurrent can be measured
by lock-in amplifiers. The bandwidth of this measure-
ment can be adjusted to BW��−1, where � is the optical
pulse duration. In this way fluctuations at all frequencies
outside this bandwidth are effectively irrelevant. In the
case where atomic ground-state levels are nondegener-
ate, e.g., are split by the Larmor frequency 	L as dis-
cussed in Sec. II.E and shown in Fig. 4, the atoms couple
to the sidebands of light and the entire measurement
and interaction can be encoded at sideband frequencies
±	L, as in several experiments described later.

2. Feedback

Another important tool in many quantum information
protocols is the feedback of results of measurement of
light onto atoms. The theory of quantum feedback is a
wide field on its own, especially in the case of continuous
measurement and feedback �Thomsen et al., 2002a�.
Here we deal with a relatively simple measurement and
feedback scheme, where light observables of the type
�66� are measured by integrating a photocurrent over
the whole pulse duration and the measurement result, a
single number, is fed onto the atoms. The operations
which need to be done on the collective spins are small

rotations about the y or z axis, i.e., small tilts of the
collective spin. In the language of canonical operators
XA, PA this amounts to displacements in the phase plane
�Arecchi et al., 1972�.

In this case—feedback of integrated measurement re-
sults via displacement operations—a simple rule can be
applied for describing the overall effect on a state of the
atoms. Assume that the state of the system is described
by certain input-output relations of the type �40�. If a
quadrature of light, say XL, is measured and the corre-
sponding measurement result � is used to displace the
atomic state, i.e., to tilt the collective atomic spin, in
such a way that the mean of, say PA, is transformed as
PA�→ PA�+g�, then the statistics of PA after the feed-
back operation can be calculated from

PA,final = PA + gXL, �67�

that is, one simply needs to add the measured observ-
able multiplied by the gain to the operator which is sub-
ject to the feedback. This rule for describing the feed-
back holds strictly as an operator identity, irrespectively
of the state of the system being Gaussian or non-
Gaussian.

The proof is most easy in the Schrödinger picture. As-
sume the state of some bipartite system is �̂AL, where
the indices refer, to atoms and light respectively. A mea-
surement of XL gives a result � with probability p�
= ��trA	�AL
���, where XL���=����, and the state of the
system A collapses to

�A
�1� = p�

−1���AL��� .

The feedback affecting the desired displacement is de-
scribed by a unitary transformation of the state of the
system A,

�A
�2� = eig�XA�A

�1�e−ig�XA,

which gives in the ensemble average over all possible
measurement results the final state

�A
�3� =� d�p��A

�2� =� d�eig�XA���AL���e−ig�XA

=� d���eigXLXA�ALe−igXLXA���

= trL	eigXLXA�ALe−igXLXA
 .

From this equation all the moments of PA can be calcu-
lated as

PA
n � = trA	PA

n �A
�3�
 = trAL	�PA + gXL�n�AL
 ,

where the cyclic property of the trace was used in the
second equality. This justifies the rule given above.

Note that for Gaussian states, for which it is enough to
keep track only of the first and the second moments in
order to have the full knowledge of the state, the simple
linear transformation of operators as above is exactly
equivalent to a full description in the Schrödinger pic-
ture, e.g., on the basis of the Wigner function. The mea-
surement of and the feedback on more than one mode
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can be described by an immediate generalization of Eq.
�67� as shown by Hammerer, Polzik, and Cirac �2005�
and Sherson, Krauter, et al. �2006�, provided the mea-
surement involves commuting observables only.

3. Photon counting

In some cases measurements in the Fock state basis,
i.e., photon counting, are convenient for characteriza-
tion of the interface performance. As discussed in Sec.
V, storage and retrieval of some nonclassical states can
be characterized by the measurement of the second-
order correlation function g2�1,2�, which is a normalized
probability of photon counts at two points in space-time
�Loudon, 2004�. Atoms typically used for the interface
are rubidium and caesium and the corresponding spec-
tral lines are around 780 and 850 nm, respectively. In
this spectral domain commercial avalanche photodiodes
typically have quantum efficiency around 40–50 % and
the dark count rate of a few hundred per second. Such
parameters are sufficient to determine nonclassical cor-
relations via g2�1,2�, which are insensitive to losses if
dark counts are neglected.

G. Other strategies

In the discussion so far we have focused on what we
consider to be the main protocols in this field. There are,
however, numerous variations of all of these protocols,
some of which we discuss here.

1. Noncopropagating beams

In the derivation we have only considered the situa-
tion where the quantum and classical light fields are co-
propagating. For many applications of the beam-splitter
and parametric-gain interaction this assumption is, how-
ever, not necessary �Braje et al., 2004; Balić et al., 2005;
Chaneliere et al., 2005�. For instance, an incoming pho-
ton which is absorbed in an atomic ensemble using a
copropagating classical field generates an excitation of
the form of Eq. �18�. The reason why one can later re-
trieve this quantum state is constructive interference.
During readout all atoms will radiate in phase in the
direction of the classical laser and this is the effect,
which allows for efficient interfaces between atoms and
light in the limit of a large number of atoms �high d�. If
the photon which is absorbed has a different direction
than the classical drive field, the generated atomic exci-
tation will still have the form of Eq. �18�. The only dif-
ference is that the state will have a phase factor
exp�ik� ·r�i� on the component, where the ith atom is in
state |1�, with k� the difference between the k vectors
for the two fields. In order to have constructive interfer-
ence in the readout process the difference in the k vec-
tors of the outgoing photon and the classical field in the
readout process should cancel the phase factor im-
printed on the atoms in the first step of the protocol �see
also Sec. V.D for a discussion of the effect of difference
in the k vectors�.

Expressed in different terms, the initial atomic state
|000….0� has a homogeneous phase corresponding to a
zero momentum state. The initial process involving the
absorption of a photon from one beam and the emission
of a photon into a different beam imprints the difference
momentum k� onto the atomic spin wave. Constructive
interference is achieved for processes returning the at-
oms to the initial zero-momentum spin wave |000….0�
and the differential momentum in the readout process
must therefore carry away the momentum in the spin
wave. To achieve momentum conservation �or equiva-
lently phase matching� the total momentum of all ab-
sorbed photons should thus match the total momentum
of all emitted photons.

A disadvantage of using noncopropagating beams is
that the storage into nonsymmetric modes limits the
storage to the time it takes atoms to move a distance
�1/ �k� �. In particular for room-temperature gasses �see
Sec. III.A� this, as well as the differential Doppler shift,
makes it undesirable to use geometries, where the
beams are not nearly copropagating. Even for cold
atomic ensembles this effect limits the storage time, as
observed experimentally by Zhao et al. �2009�. On the
other hand, it is often a major experimental advantage
not to have the classical and quantum beams copropa-
gating since this makes it much easier to count photons
in the quantum beam.

2. Interaction based on phase shift

It is instructive to have a look at the Faraday interac-
tion from another perspective. Consider first Fig. 6�a�
where, as before, the quantization axis is taken along x,
the direction of polarization of both atoms and light.
Selection rules for dipole transitions dictate that strong
classical x-polarized light with amplitude ax�� drives
the �± �x→ �± �x transitions, while the �± �x→ �� �x cross
transitions are coupled to the weak quantum field ay in y
polarization. In this picture it is evident that the Faraday
interaction is the sum of the beam-splitter and
parametric-gain interactions, cf. Fig. 2. The same level
configuration can also be looked at by taking the axis of

(a) (b)

FIG. 6. �Color online� Level scheme for Faraday interaction.
�a� For the quantization axis along x: Atoms are polarized to
�+�x, laser light is linear polarized along x and drives the up
transitions, while the quantum field in y polarization couples to
the cross transitions. �b� The same interaction with the axis of
quantization taken along z: Circular light components of equal
intensity cause ac-Stark shifts of equally populated states �± �z.
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quantization along the z direction, as shown in Fig. 6�b�,
where �± �z= ��+�x± �−�x� /�2. Light propagating along this
direction naturally couples with its circular components
a�± = �ax± iay� /�2���± iay� /�2 to the cross transitions
�± �z→ �� �z only. The off-resonant coupling will thus
give rise to ac-Stark shifts on atomic levels �± �z depend-
ing on light intensities of �±-polarization components.
Light polarization is thus rotated according to the differ-
ence in level populations �± �z.

From this observation it is clear that all that is re-
quired for a Faraday interaction is a mechanism of non-
destructive measurement of level populations via phase
shifts of light. Making use of the vector polarizability for
probing the collective hyperfine spin-angular momen-
tum as described above is therefore one way to achieve
a Faraday or QND interaction. In addition, several pro-
posals and experiments pursue the idea to probe coher-
ences of the pseudospin consisting of the two S1/2�F
=I±1/2� hyperfine levels �Oblak et al., 2005; Chaudhury
et al., 2006; Petrov et al., 2007; Windpassinger et al.,
2008�. As shown in Fig. 7 at a certain detuning the phase
shift of the probe light due to F=I±1/2→F� transitions
exactly cancels for equal populations of F=I±1/2 levels.
Any imbalance of populations will yield an interfero-
metrically detectable phase shift.

3. Other Hamiltonians and level structures

There are several possibilities involving more compli-
cated atomic level structures than the ones shown in Fig.
2. A particular example is the so-called double � sys-
tems, with two excited states. An interesting feature of
this system is its potential application for four wave mix-
ing; see Fleischhauer et al. �2005� for a review.

In the derivation of the theory we adiabatically elimi-
nated the excited state to arrive at the effective ground-

state Hamiltonian. As discussed in Sec. II.D this adia-
batic elimination in general leads to a Hamiltonian
involving spherical tensors of rank zero, one, and two
with strength characterized by the three coefficients a0,
a1, and a2. The three protocols that we have considered
correspond to suitable initial states and particular com-
binations of these spherical tensors. By adjusting the de-
tuning as well as laser polarizations and atomic initial
state there is, however, much freedom in varying the
relative strength and effect of the different tensors,
which allow for a richer dynamics. Kupriyanov et al.
�2005� and Mishina et al. �2007� considered how the
higher-order tensor operators modify the equations of
motion and in particular how the Faraday interaction is
influenced by the rank two tensor. For instance, Mishina
et al. �2007� showed that a particular choice of detuning
removes the ac-Stark for a detuned beam-splitter inter-
action and thus removes the need to adjust the fre-
quency of the classical driving field in order to keep the
field in two photon resonance with the ac-Stark shifted
transition.

To arrive at the Faraday interaction we combined the
beam-splitter and parametric-gain interaction with the
same strength, but Mishina et al. �2006� showed that an
arbitrary combination of the parametric-gain and beam-
splitter interaction can be obtained by choosing suitable
initial conditions, detunings, and combinations of the el-
ements of the spherical tensor.

An example of a protocol where the light-atom inter-
face involves excited states without adiabatic elimina-
tion is shown in Fig. 1�a� �Kuzmich et al., 1997; Hald et
al., 1999�. Another protocol of this type is considered in
Sec. V.E, where we discuss spin echo techniques. A dis-
advantage of such protocols is, however, that the storage
time is limited by the coherence time of the optically
excited state, which is often shorter than the coherence
time of ground states.

4. Optical cavities

The key parameter in characterizing the applicability
of an atomic ensemble for a light matter quantum inter-
face is its optical depth, which for a free space ensemble
is limited by the size and atomic interaction. An alterna-
tive strategy is to use multiple passes of the light through
the atomic ensemble by enclosing the ensemble in an
optical cavity �Josse et al., 2004; Black et al., 2005; Dan-
tan et al., 2005; Thompson et al., 2006; Simon, de Ried-
matte, et al., 2007; Simon, Tanji, et al., 2007�. In this case
the parameter characterizing the usefulness of the sys-
tem is the cooperativity parameter C=NAgc

2 /�c�, where
gc is the coupling constant for a single atom to the cavity
mode and �c is the cavity decay rate. The cooperativity
can also be expressed as C�Fd, where F is the finesse
of the cavity which roughly equals the number of passes
that the photon makes through the cavity �Gorshkov et
al., 2007a�. The gain achieved by using a cavity thus
equals the number of round trips.

(a)

(b)

FIG. 7. �Color online� QND interaction for measurement of
pseudospin composed of hyperfine ground states of Cs. �a�
Level scheme for 133Cs with probe light tuned in between hy-
perfine levels F=3,4 of the 62S1/2 ground state. �b� Differential
phase shift � due to the F=3→F�=2,3 ,4 and the F=4→F�
=3,4 ,5. At magic frequencies the phase shift vanishes.
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5. Non-Gaussian operations

In this review we consider the quantized light fields
which are much weaker than classical control and driv-
ing light, and the quantum fluctuations of the atomic
ensemble which are much smaller than the mean spin. In
this limit we only include the lowest-order terms in the
atomic and light field operators aA and aL. Because
there are no first-order terms the effective Hamiltonian
will be quadratic in the harmonic oscillator operators.
The operations which may be performed thus fall into
the class of Gaussian operations and the solution of the
equations will in general be a Bogoliubov transforma-
tion of the incident mode operators �Braunstein and van
Loock, 2005�. For any input state with a Gaussian
Wigner function the output Wigner function will also be
Gaussian. The main advantage of using atomic en-
sembles is that the dynamics resulting from these Gauss-
ian operation are collectively enhanced so that a perfect
operation is achieved in the limit of large optical depth.
While the resulting dynamics allow for a variety of quan-
tum information protocols to be performed, such as
quantum teleportation and quantum memory �Secs. V
and VI�, the fact that higher-order terms are not collec-
tively enhanced limits the applications for quantum in-
formation processing. In particular it is known that
Gaussian operations alone do not allow for distillation
of entanglement from Gaussian states �Eisert et al., 2002;
Fiurasek, 2002; Giedke and Cirac, 2002� and that algo-
rithms for efficient classical simulation of any evolution
involving only Gaussian operation and Gaussian initial
states exist �Lloyd and Braunstein, 1999; Bartlett et al.,
2002�. These limitations may, however, be avoided by
combining the Gaussian operation with photon counting
�Genes and Berman, 2006; Neergaard-Nielsen et al.,
2006; Ourjoumtsev et al., 2006�. Duan et al. �2001� pro-
posed such photon counting techniques as a means for
quantum communication over long distances using the
probabilistic entanglement protocols discussed in Sec
IV.C. Such techniques could in principle also allow for
even more advanced quantum information protocols to
be implemented.

The fundamental obstacle for directly achieving non-
Gaussian operations is that they rely on an interaction
between individual excitations. Such interactions be-
tween the excitations can for instance be achieved if two
photons interact with the same atom. But since this is
essentially a single-atom effect it is not enhanced by a
large optical depth. An approach which allows for an
enhancement of this nonlinear effect by optically im-
printing a Bragg mirror which localizes excitation similar
to an optical cavity is explored by André and Lukin
�2002� and Bajcsy et al. �2003�. An alternative approach
to non-Gaussian operations is to engineer a strong inter-
action between excitations stored in different atoms. In-
teresting proposals in this direction are to use the colli-
sional interactions of atoms in optical lattices �Muschik
et al., 2008� or the so-called Rydberg blockade, where
the excitation of a single atom to a Rydberg level blocks
the excitation of other atoms, and therefore creates a

uniform long-distance interaction �Lukin et al., 2001�.
Alternatively one can exploit the fact that atomic en-
sembles are particularly well suited for “catching” trav-
eling photons and then afterwards transfer the excitation
to some other system for processing the information. A
proposal along these lines is presented by Rabl et al.
�2006� based on a transfer of excitations from an en-
semble of dipolar molecules to a solid state system. A
review of techniques for achieving other types of opera-
tions, e.g., Kerr interactions, is given by Fleischhauer et
al. �2005�.

H. Summary of the theory

We have presented a detailed theory for the quantum
interfaces between light and atomic ensembles. In par-
ticular we have presented a unified theory for the three
model systems shown in Figs. 2�a�–2�c�, the beam-
splitter, the parametric gain, and the QND �Faraday� in-
teraction. The three systems have distinct features, but
are also interconnected, e.g., the Faraday interaction is
just a combination of the beam-splitter and parametric-
gain interaction with equal weights. Most importantly all
three systems achieve ideal operation in the limit of high
optical depth d. This feature can be understood as con-
structive interference or collective enhancement of the
coupling: the coupling between the state where all atoms
are in the ground state and the collective state �18�
scales as �NA, whereas spontaneous emission is a single-
atom effect, which is independent of the atom number.
We emphasize, however, that the theory is derived with-
out the optical broadening present in many experimen-
tal realization. One therefore cannot directly replace the
optical depth d appearing in the equations of this section
with the actual measured optical depth in the presence
of inhomogeneous broadening. Neverthless, the optical
depth in one version or the other remains the key pa-
rameter for characterizing the usefulness of an atomic
ensemble �see Sec. VII for a discussion of inhomoge-
neous broadening�.

For all three types of interaction, in the far off-
resonant limit �d�, the strength of the coupling is pa-
rametrized by exactly the same function h�0,T���2, cf.
Eqs. �46�–�48�, �56�, and �57�, which is most easily seen
by rewriting the equations in the dimensionless form as
in Appendix E. In this limit the decay and phase shift of
the light can be ignored and the coupling constant can
be related to �A, the spontaneous emission probability
per atom, through �2=�Ad, which we explicitly derived
for the Faraday interaction, but which also applies to the
other systems. From this expression one thus directly
sees that the spontaneous emission can be eliminated for
high optical depth. In a special case of the beam-splitter
interaction, the resonant EIT setting, these arguments
are not directly applicable, but the ratio between the
desired evolution and spontaneous emission, i.e., the
constructive interference discussed above, is completely
independent of detuning �Gorshkov, André, Fleisch-
hauer, et al., 2007; Gorshkov et al., 2007b�.
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It is instructive to discuss the bandwidth of the quan-
tum interface, i.e., how fast an operation such as a stor-
age or a read process can be performed. In the theory
we have adiabatically eliminated the excited state, which
means that the shortest time � on which an operation
can be performed is limited by the low saturation pa-
rameter condition s�1 and the condition on the value of
the coupling constant � necessary for a particular pro-
cess. Bearing in mind that �A=��s, �= �BW�−1, we can
draw some general conclusions on the Fourier limited
bandwidth of the process. For protocols where �2�1 the
low saturation condition yields the limitation on the
bandwidth of the light pulse, BW��d �again the argu-
ments given here only directly apply in the far off-
resonant limit, but the conclusion is also valid for EIT�.
Going beyond the low saturation regime s�1 allows us
to increase the bandwidth somewhat �Gorshkov et al.,
2008�, but it remains limited by BW��d. For a typical
alkali atomic ensemble the bandwidth of the order of
10 MHz can be achieved. This scaling of the bandwidth
provides an upper limit, e.g., for an atomic EPR en-
tanglement protocol discussed later where the condi-
tions �2�1,��1/�d has to be met, BW���d. Note,
however, that the term bandwidth is also often used in
connection with the number of different modes which
can, e.g., be stored in an atomic ensemble. This is a dif-
ferent question, which we return to in Sec. V.E.

III. ATOMIC MEDIA FOR QUANTUM INTERFACE

A few common requirements can be formulated for
all ensemble-based interfaces described previously. A
long-lived �ground� state of atoms is commonly used.
This could, e.g., be Zeeman levels or hyperfine levels.
The ensemble should be initialized to a polarized state
�coherent spin state�, that is, one of the ground substates
should be populated by optical pumping or other means.
Most importantly, the sample should have a large reso-
nant optical depth d. Current, experimental realizations
of the ensemble-based interfaces utilize alkali atom
gases at room temperature, alkali atoms cooled and
trapped at temperatures of a few tens or hundreds of
microkelvin, or impurity centers in solid state. Below we
describe these and other media used for quantum inter-
faces.

A. Room-temperature gases

A gas sample of alkali atoms is one of the simplest
atomic ensembles to have in the laboratory. Surprisingly
enough such an object can also work very well as a
quantum memory, if proper care of decoherence is
taken. The thermal motion and Doppler broadening as-
sociated with it are not necessarily a problem. For the
Faraday interaction, the Doppler broadening plays a
small role if the detuning is much greater than the Dop-
pler width �200–300 MHz for cesium or rubidium�. For
other protocols such as the beam-splitter interaction the

Doppler broadening has a detrimental but still tolerable
effect as discussed in Sec. VII.

In addition to the Doppler broadening, the atomic
motion also leads to changes in the atomic positions. A
quick glance at the solution to the beam-splitter interac-
tions �47� and �50� reveals that the atomic operators with
different longitudinal coordinates experience different
dynamics. The atomic motion in the process of interac-
tion leads to washing out of these spatial modes which is
a much more pronounced problem for the beam-splitter
interaction, as compared to the Faraday interaction.

In order to reduce the deleterious effect of atomic
motion a buffer gas is usually used in the experiments
which utilize the beam-splitter interaction in gas cells at
room temperature �Eisaman et al., 2005; Novikova et al.,
2007�. Adding a few torr of a noble gas allows one to
sufficiently localize the diffusive motion of alkali atoms.
An extra benefit of this approach is that it prevents al-
kali atoms from depolarizing collisions with the walls of
the cell which otherwise could lead to a rapid decoher-
ence. The lifetime of the atomic memory in cells with a
buffer gas can reach milliseconds �Novikova et al., 2007�.
Note that for some protocols collisions of atoms in the
excited state with the buffer gas lead to an energy redis-
tribution of scattered photons, which may lead to large
errors in the absence of careful spectral filtering �Manz
et al., 2007�. Despite the difficulties, alkali atom cells
with a buffer gas has been successfully used for experi-
ments on quantum memory using EIT �Eisaman et al.,
2005�.

The effect of atomic motion for the Faraday interac-
tion can be almost completely eliminated. As follows
from the propagations equations �40� the Faraday inter-
action couples light to a symmetric atomic mode defined
in Eq. �16�. In this case atoms with different coordinates
z along the direction of light propagation couple to light
in the same way. Hence the atomic motion along z does
not affect the interaction. The transverse motion of at-
oms along x and y axes will affect the performance if the
spatial profile of the light beam is inhomogeneous,
which is almost always the case. This effect can be re-
duced in two extreme cases: either for times short com-
pared to the motion time or in case when the duration of
the light pulse is so long that atoms have a chance to
cross the beam many times during the interaction and
the effect of motion averages out. The latter was the
case of the experiments by Julsgaard et al. �2001, 2004�
and Sherson, Fiurasek, et al. �2006�, where pulses of
about 1 msec duration have been used.

The possibility to eliminate the effect of atomic mo-
tion on the efficiency of the interface based on the Far-
aday interaction has allowed one to conduct high-fidelity
experiments with room-temperature cesium atoms �Juls-
gaard et al., 2001, 2004; Sherson, Fiurasek, et al., 2006�.
Atoms were contained in cells with a paraffin coating of
the internal walls �Fig. 8�. Such coating has been used in
precision magnetometers for the past three decades �Al-
exandrov, 2003; Groeger et al., 2006�, and ground-state
coherence times of up to a second have been demon-
strated. In paraffin coated cells atoms can withstand tens
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of thousands collisions with the cell walls before signifi-
cant spin depolarization occurs. Since it is the number of
collisions with walls that matters, the larger is the cell,
the longer is the quantum memory lifetime. As discussed
in Secs. IV–VI, quantum memory time of the order of
several milliseconds has been achieved in cells with di-
mensions 25�25�25 mm3.

Room-temperature ensembles of cesium atoms of a
few cubic cm size contain about 1011−1012 atoms. For
off-resonant Faraday-type interfaces the Doppler broad-
ening does not affect the ensemble effective resonant
optical depth �see Sec. VII�, which is the same as for
atoms at rest reaching the values of the order 50 or even
higher. The experimental challenge lies with the fact that
the quantum spin noise of such an ensemble is �NA

−1

�10−6. In order to reach the level of the spin quantum
noise, all types of technical spin fluctuations, such as
driven by stray magnetic fields or fluctuations of the la-
sers used for optical pumping, have to be reduced below
this level. The solution to this problem used in Julsgaard
et al. �2001, 2004� and Sherson, Fiurasek, et al. �2006� has
been to apply a bias magnetic field along the direction of
the collective atomic spin. A field of the order of 1 G
provides the Zeeman splitting of the ground state 	L of
a few hundred kHz. As discussed in Sec. II.E this means
that the collective transverse components of the spin
which correspond to the atomic canonical variables ro-
tate at the Zeeman frequency. At the same time, as de-
scribed in Sec. II.F, canonical variables of light which
couple to the rotating atomic spin can be measured via
homodyne detection also at the Zeeman frequency.
Thus all relevant variables for light and atoms are now
encoded at a frequency of a few hundred kHz. At these
frequencies technical noise can be reduced below the
10−6 level, so that both spin and light fluctuations are
dominated by quantum noise. In practice the photocur-
rent detected in the homodyning process is measured
with lock-in amplifiers which allow access to the light
variables �66� encoded at the frequency 	L. In the ex-
periments by Julsgaard et al. �2001, 2004� and Sherson,

Fiurasek, et al. �2006�, the bandwidth of the memory has
been reduced to around 1 kHz as discussed in Sec. II.H.

B. Cold and trapped atoms

Cold and trapped ensembles of alkali atoms have
been among the first atomic objects to be used for quan-
tum interfaces with light. The first experiment mapping
quantum properties of light onto atoms was performed
with cesium atoms in a MOT, a magneto-optical trap
�Hald et al., 1999�. A MOT provides a relatively simple
way to achieve a cold atom sample suitable for the quan-
tum interface however, it also has its limitations. A typi-
cal resonant optical depth in a MOT lies in the range
between 2 and 10 which is not very high. Another con-
sideration concerns the transverse cross section of the
light beam which couples to the atoms. In most of the
experiments on interfaces which use a MOT, light is fo-
cused down to a few tens of microns, which is much less
than a typical MOT crossection of a millimeter �Chou et
al., 2004; Chaneliere et al., 2005; Dantan et al., 2005; Si-
mon et al., 2007; Chen et al., 2008�. Such geometry limits
the atomic memory lifetime to the transient time it takes
the atoms to leave the probe volume. For a typical MOT
temperature of 100 �K this time is around hundreds of
microseconds, as demonstrated by Zhao et al. �2009�. If,
on the other hand, the beam cross section is such that
the light couples to the entire MOT the transient effects
become irrelevant. However, in this case the number of
photons in the strong driving field NP grows proportion-
ally to the cross section A, as evident from Eq. �61�.
When a photon number of the strong field is too high it
becomes more difficult to implement protocols based on
separating and photon counting of the quantum mode.
Protocols based on homodyne detection also place limits
on the maximal number of photons in the driving field.
In most cases the driving field is also used as the local
oscillator for homodyne detection. This implies that in
order for the detection to be shot noise limited the clas-
sical fluctuations of the strong field should be suppressed
to better than NP

−1/2. In practice this places the limit NP
�1010. For higher values of NP modulation techniques
similar to those used with thermal ensembles allow one
to get down to shot noise limited detection.

Another difficulty of working with a MOT is due to
the presence of gradient magnetic fields and the associ-
ated difficulty of optical pumping and magnetic state de-
coherence. This problem can be overcome by switching
off the MOT fields, which in turn limits the lifetime of
the interface, and using a clock transition as done by
Zhao et al. �2009� where the memory lifetime up to
1 msec was achieved. An advantage of using a small sub-
ensemble of a large MOT is that a single MOT can then
serve as a source of two or more atomic ensembles
�Matsukevich and Kuzmich, 2004; Chen, Chen, et al.,
2007; Choi et al., 2008�.

Using a far-detuned dipole trap allows one to over-
come a number of problems associated with the MOT. A
dipole trap forms an atomic ensemble with a typical

FIG. 8. �Color online� Paraffin coated cesium cell.
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transverse size of around 10–50 �m, which is a good
size for the interface. The resonant optical depth can
reach 20 or more. Dipole trapped atomic ensembles
demonstrate coherence times exceeding 10 msec �Wind-
passinger et al., 2008� and storage times for single exci-
tations exceeding 100 �s �Chuu et al., 2008� or even a
few msec �Zhao et al., 2009�. Dipole trapping can also be
insensitive to the magnetic quantum number and, in
some cases, to the hyperfine quantum number. A de-
tailed investigation of dipole trapped atoms as the me-
dium for the spin squeezing and the interface is given by
Oblak et al. �2005� and Windpassinger et al. �2008�.

A Bose-Einstein condensate �BEC� is an attractive
medium for the quantum interface due to its very high
resonant optical depth. Indeed, BEC has been the me-
dium where classical coherent storage of light, the so-
called stopped light has first been first demonstrated
�Liu et al., 2001�. It is important to note that it is not only
the on-axis optical depth that defines the strength of the
interface coupling. For example, a “one-dimensional”
sample will not couple efficiently to a focused Gaussian
beam because the diffraction of the beam means that it
will not be overlapping with the ensemble if the Fresnel
number is less than unity �Müller et al., 2005�.

One problem with a BEC-based quantum interface is
the low rate at which experiments can be performed. A
typical BEC requires tens of seconds to be created.
Then the sample can be used for interface experiments a
few times, after which a new sample should be created.
BEC on a chip �Hansel et al., 2001; Schneider et al.,
2003� offers an attractive alternative where much faster
loading times can be combined with efficient optical
coupling.

C. Solid state

An optically dense collection of atomlike impurities in
a solid state host is an excellent candidate for the quan-
tum interface. Both � schemes as well as the photon
echo-based memory �see Sec. V.E� have been investi-
gated. The absence of motion in solid state means that
complex spatial structures can be generated by light and
stored. Recently substantial progress has been achieved
with crystals or glasses doped with rare-earth elements,
such as erbium �Er�, thulium �Tm�, praseodymium �Pr�,
neodymium �Nd�, and europium �Eu�. The rare-earth
ions doped into glass and crystal materials �REIC� dis-
play up to a second coherence times of the ground state
at liquid helium temperatures. The ions experience
strong inhomogeneous broadening up to 100 GHz due
to local lattice fields. The technique of spectral hole
burning �Nilsson et al., 2004� followed by spectrally se-
lective antihole populating allows to create a suben-
semble of ions with nearly natural optical transition
bandwidth. A substantial optical depth can be created,
although its value is usually limited by the ion-ion inter-
action at high density of doping. Note, however, that one
cannot directly compare the measured optical depth in
the presence of inhomogeneous broadening with the op-
tical depth introduced in the theoretical derivation in

Sec. II; see Sec. VII. EIT- and Raman-based memory
�Longdell et al., 2005� have been explored in REIC ma-
terials as well as a photon echo approach based on con-
trolled reversible inhomogeneous broadening �CRIB�
�Moiseev and Kröll, 2001; Kraus et al., 2006; Staudt et al.,
2007; de Riedmatten et al., 2008; Hétet et al., 2008�.

The optical Raman coupling to the nuclear spin coher-
ence has been investigated for the past decades in
REIC, mostly in praseodymium- or europium-doped
crystals. These materials seem particularly suitable for
the EIT- and Raman-based quantum memory protocols
since they exhibit a hyperfine structure where a � sys-
tem can be found, together with long optical coherence
lifetimes, and also long hyperfine coherence lifetimes
�15 msec for Eu:YSO and 550 �sec, that can be ex-
tended up to 30 sec by dynamic decoherence control
techniques, for Pr:YSO �Fraval et al., 2005��. The ab-
sorption wavelength of these materials is in the domain
of dye lasers �606 nm for Pr and 580 nm for Eu�. In or-
der to take advantage of their long optical coherence
lifetimes, the dye laser sources must be stabilized down
to less than 1 kHz. The absorption wavelength of Tm
lies in the convenient range of diode lasers �793 nm�. It
also exhibits long optical coherence lifetimes, similar to
that of Pr. It has recently been shown that it is possible
to build a � system in thulium by applying a magnetic
field in a very specific orientation �Louchet et al., 2008�.
In rare-earth ion-doped crystals, the transitions are not
polarization selective, so the only way to address them
separately is to use a source whose bandwidth is smaller
than the ground-state sublevel splitting. In Pr and Eu
the splittings are fixed �10 and 17 MHz for Pr:YSO, 75
and 102 MHz for Eu:YSO�, whereas in Tm they can be
adjusted with magnetic field �36 MHz/T in Tm;YAG�.
The hyperfine coherence lifetime of up to 300 �sec has
been measured in Tm:YAG.

Er-doped materials are studied with photon echo
techniques �Staudt et al., 2007�. The prime interest in
this ion is due to the optical wavelength in the telecom
band 1.5 �m. The optical coherence lifetime of this ma-
terial is very short �a few �sec at most�, but can be dra-
matically increased by applying an intense magnetic
field. The most promising results up to date have been
achieved in Pr-doped crystals �Longdell et al., 2005;
Hétet, Longdell et al., 2008�.

Materials containing a high concentration of quantum
dots may be interesting candidates for the ensemble-
based interface. Experiments with spin polarized dots
show sufficient ground state coherence times and possi-
bility of optical pumping and quantum nondemolition
coupling �Atature et al., 2007�. However, up to now the
work with ensembles of dots has not reached quantum
limits probably due to an insufficient optical depth. A
different solid state medium which can be used for a
quantum interface is nitrogen vacancies in diamond,
where EIT has been observed by Hemmer et al. �2001�.
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D. Other possible media

Optical lattices have attracted much attention lately
due to the exciting possibilities for generation of en-
tanglement by controlled atom-atom interaction �Man-
del et al., 2003�. The lattices can also display high optical
depth since structures of up to 100�100�100 atoms
spaced by half a micron can be created. In the recent
experiment by �Zhao et al., 2009� long memory lifetimes
exceeding 6 msec were achieved in a one-dimensional
optical lattice. A quantum interface with such a lattice
would offer an exciting possibility to transfer entangle-
ment from atoms to light and to combine the quantum
information processing capabilities of lattices with the
quantum networking provided by the quantum inter-
face. Theoretical studies of quantum interfacing of light
with lattices have recently appeared �Eckert et al., 2008;
Muschik et al., 2008� and the first EIT-based storage of
classical light with the coherence time of 240 msec has
been demonstrated �Schnorrberger et al., 2009�.

Another system where a collection of atoms can be
efficiently interfaced with light is a large ion crystal in an
ion trap. Very clean and large ion crystals have been
created and first attempts towards achieving quantum
coupling to light have been undertaken �Herskind et al.,
2008�.

IV. ENTANGLEMENT OF ATOMIC ENSEMBLES

In this section we describe generation of entangled
states of two distant macroscopic objects. The first
method, which is based on QND interaction, measure-
ment, and feedback, generates an EPR �two-mode
squeezed� state of atomic spins. The second method,
which relies on parametric-gain and beam-splitter inter-
actions and single photon counting, creates Bell states in
two collective spins.

van Enk et al. �2007� gave a useful classification of the
various types of entanglement, which are generated in
experiments. They distinguish a priori entanglement,
which can be deterministically generated, a posteriori
entanglement, which is generated probabilistically and
destroyed when measured, and finally heralded en-
tanglement, which is as well probabilistically generated,
but success can be testified by measuring an auxiliary
system, such that the entangled state is still available for
use. Using postselection of successful cases, all types of
entanglement are in principle equally useful. When com-
bining a large number of entangled states, e.g., via en-
tanglement swapping in a quantum network, the overall
success probability will be dramatically different for a
posteriori entanglement as compared to heralded or a
priori entanglement. This observation lies at the heart of
the original quantum repeater protocol �Duan et al.,
2001�, which is based on entanglement of atomic en-
sembles heralded by detection of single photons, as will
be described in Sec. IV.C. Our main focus in Sec. IV.B
will be on the a priori entanglement achieved via a
QND-Bell measurement and feedback on two en-
sembles. To introduce this method, we first explain how

a single atomic ensemble can be prepared in a spin
squeezed state by means of a QND interaction, homo-
dyne detection of light, and feedback on atoms. Note
that in Sec. 5.4 we describe the memory experiment
�Choi et al., 2008�, which involves a heralded entangle-
ment as an intermediate step.

A. Spin squeezing in a single ensemble

Spin-squeezed states of atomic ensembles were intro-
duced by Kitagawa and Ueda �1993� in analogy to
squeezed states of the radiation field and suggested by
Wineland et al. �1992, 1994� to be of use for enhancing
the sensitivity in atomic spectroscopy, Ramsey interfer-
ometry, and atomic clocks. Accordingly, Kitagawa and
Ueda �1993� defined the state of a collective spin J to be
squeezed if the variance of one spin component J�

transverse to its mean polarization is smaller than the
transverse variance corresponding to an atomic coherent
�Bloch� state �Arecchi et al., 1972�, which is a product
state of fully polarized atoms. With this definition, a
state is squeezed if �S=J� /�J /2 1 and necessarily
consists of correlated atoms. Wineland et al. �1992,
1994�, on the other hand, showed that the figure of merit
for the suppression of quantum fluctuations, which ulti-
mately limit the sensitivity of atomic Ramsey interfer-
ometry, is �R= �2J�1/2J� / �J��� 1 and provides an alter-
native, stronger definition of spin squeezing.

We follow here yet another definition and refer to a
spin state as squeezed if �=J� / ��J��� /2�1/2 1, which is
stronger than the definition due to Kitagawa and Ueda
but weaker than the one due to Wineland et al., because
�R!�!�S as can be easily seen. The conditions are the
same for nearly fully polarized states J���J. If we take
the mean polarization along x, and assume that the
transverse component with minimal variance is along z,
the definition of spin squeezing adopted here is

PA
2  

1
2 , �68�

where we use the Gaussian approximation �16�. We use
this definition because it immediately translates into the
entanglement criterion for a bipartite state of two en-
sembles in Sec. IV.B.

Various ways to create squeezed states in ensembles
of two-level systems were proposed. They involve direct
interaction of spins �Sørensen and Mølmer, 1999; Pu and
Meystre, 2000; Sørensen et al., 2001; Andre et al., 2002�,
mapping of squeezed light onto atoms �Kuzmich et al.,
1997; Hald et al., 1999; Dantan, Cviklinski, Giacobino, et
al., 2006; Appel et al., 2008; Honda et al., 2008�, multiple
passes of light through atoms �Hammerer et al., 2004;
Takeuchi et al., 2005�, or a projective, Faraday interac-
tion based QND measurement �Braginsky and Khalili,
1996�, as used by Kuzmich et al. �1998, 2000�. The main
idea in the last method is that light correlated with a
collective atomic spin via a Faraday interaction can be
used as a meter system, reading out one of the spin com-
ponents. Homodyne measurement of light, as discussed
in Sec. II.F, then provides information about this spin
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component, projecting the collective spin into a state
with reduced fluctuations in this component.

Mean values and variances of transverse spin compo-
nents conditioned on a homodyne measurement of light
can be easily evaluated by means of the following clas-
sical formulas for the mean value and variance of a
Gaussian random variable � conditioned on the mea-
surement of another �possibly correlated� Gaussian ran-
dom variable " with an outcome z,

����"=z = �� − �"�z/"2�, ��2�"=z = �2 − �"�2/"2� .

If we assume that both light and atoms are initially pre-
pared in their vacuum states, i.e., atoms are completely
polarized along x, then the states of atoms and light after
the Faraday interaction still have Gaussian statistics, as
given by Eq. �40�, and the above formulas apply. Sup-
pose that XL is measured on the state after the interac-
tion with an outcome xL. According to the formulas
above, the conditional variances of atomic spin compo-
nents are then given by

�XA
2 �XL=xL

=
1 + �2

2
, �PA

2 �XL=xL
=

1

1 + �2

1
2

, �69�

and exhibit spin squeezing.
Conditioned on the measurement outcome xL, PA is

squeezed with the mean value given by

�PA��XL=xL
= �xL/�1 + �2� .

If we ignore the measurement outcome the evolution is
given by Eq. �40� and there is no squeezing since PA is
conserved. If a feedback operation is applied to the at-
oms, e.g., by applying a pulse of magnetic field, the
atomic spin can be tilted such that PA is displaced by
−�xL / �1+�2�, and the mean value is zero PA�=0. The
variances �69� for the �anti�squeezed variances then hold
also in the ensemble average.

In Sec. II.F we introduced another method for de-
scribing the linear feedback and it is instructive to apply
it here. The result xL is fed back on atoms by displacing
PA by an amount gxL, where g is a suitable gain factor.
Using Eq. �67� and �40�, the PA component after feed-
back is in the ensemble average given by

PA,final = PA,out + gXL,out = �1 + g��PA,in + gXL,in.

�70�

Minimizing the variance of PA,final with respect to the
gain g, yields an optimal feedback gain g=−� / �1+�2�
and the reduced variance of Eq. �69�, in agreement with
the discussion above. An experiment along these lines
has been reported by Kuzmich et al. �2000�. Spin squeez-
ing of 1.8 dB in the collective spin of a cold ensemble of
ytterbium atoms was reported by Takano et al. �2009�.
Recently spin squeezing on atomic clock transitions has
been demonstrated for cesium by Appel et al. �2009�,
with �=−4.5 dB and �R=−3.4 dB, and for rubidium in
Schleier-Smith et al. �2010�, with �R=−3.2 dB.

The discussion so far ignores the impairing effects of
spontaneous emission and light absorption. In order to

take it into account we have to resort to using Eq. �56�.
For the relevant case of small atomic decay, �A�1, and
dominant light losses due to reflection at glass cells and
detector inefficiency parametrized by # �1�#��L� these
equations read

XA,out = �1 − �A�XA,in + �PA,in� + ��AfXA
,

PA,out = �1 − �APA,in + ��AfPA
,

XL,out = �1 − #�XL,in + �PA,in� + �#fXL
,

PL,out = �1 − #PL,in + �#fPL
,

where we explicitly included Langevin noise operators
for atoms fXA�PA� and light fXL�PL�. For both systems one
can to a good approximation assume vacuum properties
f�f$�=��,$ /2. Using these expressions and minimizing
the variance with respect to the gain g yields a minimal
variance

PA,final
2 =

1 + �A�1 − #��2

1 + �1 − #��2

1
2
!
�A

2
. �71�

The bound on the achievable squeezing is not so surpris-
ing, given that the state of atoms suffered essentially a
decay by a fraction �A. Due to the relation �2=d�A, cf.
Eq. �59�, there is always an optimal choice for the decay
�A given a certain optical depth d �Hammerer et al.,
2004�. For the decoherence model adopted here the
limit to spin squeezing by QND measurement and feed-
back is PA,final

2 ! �1+�1+d�−1�d−1/2, for large optical
density. For a detailed discussion on the limits of spin
squeezing by means of Faraday interaction and QND
measurement see Bouchoule and Mølmer �2002�. The
limits strongly depend on the particulars of the QND
scheme. For example, for the so-called two-color prob-
ing �Windpassinger et al., 2008� the 1/d scaling of the
squeezing limit is achievable.

Our description here covers only feedback where the
integrated photocurrent of the homodyne detection is
taken as the measurement result and used to correct the
atomic state after the probe pulse has passed. It is of
course possible to perform a continuous feedback of the
photocurrent while the probe pulse is still on. An ex-
haustive theory for this procedure giving a description in
terms of the stochastic Schrödinger equation can be
found in Thomsen et al. �2002a, 2002b�.

It is interesting to note that, beyond atomic interfer-
ometry, spin-squeezed states received renewed interest
in the theory of many particle entanglement. Sørensen et
al. �2001� showed that spectroscopic squeezing �R 1 is a
sufficient condition for bipartite entanglement within
each pair of spins in the atomic ensemble, see also Wang
and Sanders �2003�. More general spin-squeezing in-
equalities were fruitfully studied in the context of ex-
perimental verification of multipartite entanglement
�Sørensen and Mølmer, 2001; Korbicz et al., 2005a,
2005b; Tóth et al., 2007�.
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B. Deterministic entanglement

The procedure discussed in the previously can be ap-
plied to deterministically create entanglement between
two spatially separated atomic ensembles, as proposed
by Duan, Cirac, et al. �2000�. A precursor to this pro-
posal involving entangled light resource has been put
forward by Kuzmich and Polzik �2000�. Each of the en-
sembles is described by a collective spin J�i �i=1,2�, or,
taking polarizations along x for both systems and adopt-
ing the Gaussian approximation, by a pair of canonical
operators �xAi

,pAj
�= i�i,j. Consider a probe pulse under-

going Faraday interaction with both ensembles, first
with ensemble 1 and then, after propagating some dis-
tance, with ensemble 2. By linearity, the state of light is
desribed by

XL,out = XL,in + ��PA1,in + PA2,in� ,

PL,out = PL,in,

cf. Eq. �40�. Note that for both ensembles PAi,out=PAi,in
is a conserved quantity in the Faraday interaction. Just
as for the single ensemble, a measurement of XL,out will
then give a reduced variance of the nonlocal observable
PA1

+PA2
,

�PA1
+ PA2

�2 = 1/�1 + �2� 1,

where the bound corresponds to uncorrelated ensembles
in coherent states. Using feedback this nonlocal squeez-
ing can be achieved unconditionally. In a second step,
the spins of both ensembles are rotated by an angle of
� /2 about the x axis in such a way that

PA1
→ XA1

, XA1
→ − PA1

,

PA2
→ − XA2

, XA2
→ PA2

.

A second light pulse interacting with both ensembles as
before will then read out the observable XA1,in−XA2,in,
i.e.,

XL,out = XL,in + ��XA1,in − XA2,in� ,

such that a measurement and feedback procedure will
produce a squeezed variance of XA1

−XA2
, as before.

Note that simultaneous squeezing of these two observ-
ables is possible only, because we are dealing with here
commuting observables, �PA1

+PA2
,XA1

−XA2
�=0. The

counterwise rotation of the two spins about x is there-
fore crucial. Overall, this will produce a state which ful-
fills the inequality

�PA1
+ PA2

�2 + �XA1
− XA2

�2 2. �72�

Losses and decoherence will affect this result similarly
as the single ensemble spin squeezing in Eq. �71�. The
significance of this inequality is that it constitutes a nec-
essary and sufficient entanglement condition for sym-
metric �with respect to 1↔2� Gaussian states of two sys-
tems �Duan, Giedke, et al., 2000; Simon, 2000�.

In the limit of large squeezing, where the variances of
both nonlocal observables vanish, the corresponding
state approaches the �unphysical� ideally correlated state
with Wigner function W���XA1

−XA2
���PA1

+PA2
�,

which was considered by Einstein, Podolsky, and Rosen
�EPR� in their famous gedanken experiment �Einstein et
al., 1935�, speculating about the incompleteness of quan-
tum mechanics; see Keyl et al. �2003� for comments on
whether and how this limit can be understood in a more
rigorous mathematical sense. Because of this connec-
tion, the quantity on the left-hand side of Eq. �72� is
sometimes termed EPR-Variance and denoted by EPR.
Its importance is supported by the fact that for symmet-
ric Gaussian states the quantity provides an entangle-
ment measure and uniquely determines the entangle-
ment of formation of the state �Wootters, 1998;
Giedke et al., 2003; Wolf et al., 2004� via EoF
=cosh2�r�log2�cosh2 r�−sinh2�r�log2�sinh2 r�. As follows
from the discussion of losses and decoherences, we have
to assume a lower limit on the EPR variance EPR
%2d−1/2and thus an upper bound on the bipartite en-
tanglement between the two ensembles of, EoF
�1.15 ebits �EoF�2.77 ebits� for an optical density of
d=10 �d=100�. A useful and comprehensive review of
the theory of entanglement in systems of continuous
variables was given by Adesso and Illuminati �2007�, for
a concise introduction to the basic facts on the same
topic see Eisert and Plenio �2003�.

1. Protocol with counter-rotating spins

As explained in Sec. II.E, for ensembles at room tem-
perature containing a very large number of atoms a con-
stant magnetic field helps to reduce technical noise, be-
cause scattered light can be detected at sideband
Zeeman frequencies. In the following we show that ap-
plication of an external magnetic field provides in fact an
elegant and efficient way to achieve entanglement of
two atomic ensembles with a single probe pulse, as dem-
onstrated by Julsgaard et al. �2001�.

In order to show this, we have to resort to the
Maxwell-Bloch equations �65�. It is straightforward to
generalize these equations to the case of two atomic en-
sembles and to include Larmor precession of the two
spins. We assume that the two collective spins precess in
opposite directions, which can be achieved by either us-
ing oppositely oriented fields or by using parallel fields
with atoms prepared in opposite Zeeman substates. Re-
placing 	L→−	L for the second ensemble when using
Eqs. �65�, the equations of motion for light quadratures
are

�

�z
xL�z,t� = −

g*�z���t�
�2

	cos�	Lt��pA1
�z,t� + pA1

�z,t��

+ sin�	Lt��xA1
�z,t� − xA2

�z,t��
 ,

�73�
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�

�z
pL�z,t� = 0.

Obviously light reads out sums of momenta and differ-
ences of positions, which are commuting observables for
oppositely rotating spins. It will be instructive to study
directly the evolution of these global observables. One
finds

�

�t
�xA1

�z,t� + xA2
�z,t�� = −

g*�z���t�
�2

cos�	Lt�pL�z,t� ,

�

�t
�pA1

�z,t� + pA2
�z,t�� = 0,

�74�
�

�t
�xA1

�z,t� − xA2
�z,t�� = 0,

�

�t
�pA1

�z,t� − pA2
�z,t�� = −

g*�z���t�
�2

sin�	Lt�pL�z,t� .

The solutions fall into two groups,

XLc,out = XLc,in + �PA+,in, XLs,out = XLs,in
− �XA−,in,

PLc,out = PLc,in, PLs,out = PLs,in
,

�75�
XA+,out = XA+,in + �PLc,in, XA−,out = XA−,in,

PA+,out = PA+,in, PA−,out = PA−,in + �PLs,in
,

which involve nonlocal atomic variables

XA±
=

1
�2L

� dz�xA1
�z� ± xA2

�z�� ,

PA±
=

1
�2L

� dz�pA1
�z� ± pA2

�z�� ,

and cosine and sine modulation modes, XLc
,PLc

and
XLs

,PLs
, which were introduced in Eq. �66� in Sec. II.F.

From the discussion of squeezing in a single ensemble it
is evident that a measurement of the sine and cosine
component of the XL quadrature will produce a two
mode squeezed state with reduced EPR variance �72�.

2. Implementation

Experimental demonstration of deterministic en-
tanglement of two atomic ensembles has first been re-
ported by Julsgaard et al. �2001�, with further develop-
ments reported by Polzik et al. �2003� and Sherson,
Julsgaard, and Polzik �2006�. The experiments have been
performed with cesium vapor at temperatures in the
range 15–50 °C. Atoms are contained in glass cells
coated from inside with a transparent layer of paraffin
�Alexandrov, 2003�, as discussed in Sec. III.A. The tem-
perature stabilized cells are placed inside cylindrical
magnetic shields, see Fig. 9. Windows made in the
shields allow for optical axis in two directions—one

along the axis of the shield used for optical pumping and
another in the radial direction used for the probe light.
A solenoid produces a homogeneous axial magnetic
field inside each shield. Typical cells have the near-cubic
shape with the size of 25−30 mm. The magnetic field
inhomogeneity is of the order of 10−3. This rather mod-
est homogeneity is sufficient since the duration of the
light-atom interaction of 1 msec is sufficiently long so
that the atomic motion leads to the effective time aver-
aging of the spatially dependent Zeeman shifts. As a
result the magnetic field inhomogeneity has only a qua-
dratic effect on decoherence.

The experimental sequence begins with a few msec
pulse of optical pumping along the direction of the axial
magnetic field, see Fig. 9. The level scheme and frequen-
cies of light pulses are shown in Figs. 3 and 4. The two
cells are pumped with the same lasers with opposite cir-
cular polarization of optical pumping in the first and sec-
ond cell. 99% or more of the atoms in F=4 state are
pumped into the mF=4 magnetic substate in one cell and
into mF=−4 in the other cell, as verified by the magneto-
optical resonance method �Julsgaard et al., 2004; Sher-
son, Julsgaard, and Polzik, 2006�. The total angular mo-
mentum Jx of F=4 state is calibrated by measuring the
Faraday rotation angle of a weak linearly polarized light
pulse propagating in the direction of the optical pump-
ing. After optical pumping a probe pulse linearly polar-
ized in x -y plane is fired and its polarization rotation,
i.e., the value of the operator Sy, is measured by two
detectors via a balanced polarization measurement, see
Fig. 5. The detected photocurrent pulse is sent into the
lock-in amplifier which detects the cos�	Lt� and sin�	Lt�
components XLc

and XLs
introduced in Sec. II.F.

The critical condition for the implementation of the
deterministic interface based on homodyne mesaure-
ments is quantum noise limited measurement of light
and atoms. This is made possible by employing light and
atomic detection at high frequency, typically around
	L=320 kHz. Homodyne detectors utilize silicon photo-
diodes with quantum efficiency more than 98–99 % and
low noise photoamplifiers with the response peaked
around 	L. The photodetectors have dark noise equal to
shot noise of light for the light power as low as 100 �W.
This means that with a few mW probe pulse, the detec-
tion can be almost perfectly shot noise limited. Light
losses have been dominated by reflection off the inner
surfaces of the cell windows �the outside surfaces are
antireflection coated�, amounting to 15% and propaga-
tion losses from cells to detectors of about 8%.

The duration of the interaction is chosen to fulfill the
condition of optimal entanglement which, analogous to
the case of spin squeezing, is �opt

2 =�d obtained with �A

=1/�d �cf. Eq. �59��. In the experiment the detuning has
been chosen within the range 800–1000 MHz to be
larger than the Doppler width and the hyperfine split-
ting of the excited state. Together with the optimal value
of the optical power set by the detectors around a few
mW, the above conditions lead to the minimal pulse du-
ration of the order of a msec and the corresponding
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bandwidth in the kHz range. This value can be in prin-
ciple increased by reducing the transverse size of the
sample and/or using different detectors.

The first experimental run in the presence of atoms
aims at the establishment of the projection noise level of
the atomic ensembles. As seen from Eq. �75� the sum
variables XA−

, PA+
can be measured in a QND way using

a single probe pulse. In the experiment the sequence of
the optical pumping followed by the QND measurement
is repeated several thousand times and the variance of
the measured photocurrent pulses is calculated. The
variance is then plotted as a function of the macroscopic
spin of the sample, see Fig. 9�c�. The linear dependence
along with the almost perfect spin polarization proves
that the spin noise is at the projection noise level. The
projection noise level has been also independently cal-
culated from the macroscopic collective angular momen-
tum of the sample measured via Faraday rotation of the
auxiliary probe pulse �Sherson, Julsgaard, and Polzik,
2006�. The calculated value agreed with the measured
projection noise to within 10% which is well within the
uncertainty of this calculation. The projection noise
level defines the right hand side in Eq. �72�. When nor-
malized to the shot noise of the probe the projection

noise value is equal to the total �2 of the two samples
according to Eq. �75�.

After the projection noise level is established the ex-
periment proceeds with generation and verification of
the entangled state. In the original paper �Julsgaard et
al., 2001� no feedback was applied to atoms and hence a
conditional entangled state was demonstrated, that is a
nonlocal state with reduced variance but with a nonde-
terministic mean value. For possible applications, e.g.,
teleportation this entanglement is as good as the uncon-
ditional one because the knowledge gained with the
measurement on the first entangling pulse can be ap-
plied to achieve teleportation. The creation of a deter-
ministically and unconditional entangled state has been
achieved subsequently �Polzik et al., 2003�. The experi-
mental sequence which realizes such entanglement
�Sherson, Julsgaard, and Polzik, 2006� involves a feed-
back applied to the atoms in between the two probes
�Fig. 9�b��. The feedback pulse of 320 kHz magnetic field
with the cosine and sine components proportional to
XLc,out and XLc,out, respectively, is applied to the rf mag-
netic coils surrounding the cells. An appropriate elec-
tronic gain must be chosen so that the feedback pulse
rotates the atomic collective spins such as to generate
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FIG. 9. �Color online� Deterministic entanglement of two atomic ensembles via QND measurement. �a� Experimental setup.
Dashed lines, optical pumping; solid arrow, entangling light direction. �b� Pulse sequence and the layout of the experiment. �1�
optical pumping pulse, �2� entangling pulse, �3� verifying pulse. �c� Projection noise of atoms. �d� EPR variance of the entangled
state normalized to the projection noise level, i.e., to the variance for a separable coherent state of two ensembles.

1067Hammerer, Sørensen, and Polzik: Quantum interface between light and atomic …

Rev. Mod. Phys., Vol. 82, No. 2, April–June 2010



the minimal EPR variance that is the minimal variance
of the angle between the spins. The choice of the gain
g=−� / �1+�2� minimizes the EPR variance in the ab-
sence of decoherence. In the experiment the optimal
gain has been chosen operationally by minimizing the
EPR variance �see Sherson, Julsgaard, and Polzik �2006�
for details�. The results for the EPR entangled state of
two atomic ensembles are shown in Fig. 9. The variance
of the entangled state obtained after applying the feed-
back pulse is measured by the verifying pulse. Figure 9
shows this variance normalized to the projection noise
variance as a function of the number of atoms. A higher
number of atoms leads to a higher value of � and hence
to a higher degree of entanglement. The mimimal EPR
variance observed in these experiments was EPR=1.3.
This variance corresponds to an entanglement of forma-
tion of EoF=0.28 ebits.

C. Probabilistic entanglement

One of the main motivations for studies of atom light
quantum interfaces is an application for quantum re-
peaters, which would enable long distance quantum
communication �Briegel et al., 1998�. A protocol �also
known as the DLCZ protocol� for such a repeater based
on atomic ensembles and linear optics was first pre-
sented by Duan et al. �2001�. Several improvements of
the protocol have been suggested �Chen, Zhao, et al.,
2007; Jiang et al., 2007; Sangouard et al., 2007, 2008; Si-
mon et al., 2007; Zhao et al., 2007�. We leave the detailed
discussion of the DLCZ protocol and quantum repeaters
for a dedicated review. In this section we provide a basic
discussion of the probabilistic entanglement generation.

The entanglement generation in the DLCZ protocol
uses the parametric-gain interaction Eq. �E3� between
the light and atoms as shown in Fig. 10�a�. In principle
this interaction could be used in the strong coupling re-
gime ���1 in the notation below� to generate continu-
ous variable entanglement along the lines of the en-
tanglement generation protocol used for quantum
teleportation in Sec. VI. Instead the DLCZ protocol
works in the weak coupling limit ���1� and generates
probabilistic entanglement. The first term in Eq. �E3� for
aA is the ac-Stark shift of the ground state, which can be
removed by a simple rescaling, and the phase � vanishes
for a large detuning. In the limit of weak coupling the
dynamics involves only collective operators analogous to
the ones defined in Eq. �55� and is equivalent to the
evolution with the ideal two mode parametric-gain evo-
lution operator exp�i��aL

† aA
† +H.c.� /2�. For ��1 the

joint state of the collective atomic and light harmonic
oscillator degrees of freedom is then

�00�AL +
�

2
�11�AL + O��2� , �76�

where �mn�AL describes the state with m �n� excitations
in the atomic �light� harmonic oscillator. This result can
be understood rather intuitively from the level scheme
in Fig. 10�a�, which shows that the interaction generates

simultaneous excitations of the atoms and the light as
described by Eq. �76�.

The state in Eq. �76� is in itself an entangled state, but
in the DLCZ protocol it is used to probabilistically gen-
erate an entangled stated of two atomic ensembles. The
outgoing light modes from two different ensembles are
combined on a beam splitter as shown in Fig. 10. Con-
ditioned on a click in one of the two photodetectors the
ensembles are prepared in the state ��01�± �10�� /�2, be-
cause one cannot know from which ensemble the pho-
ton was emitted �the sign in the superposition depends
on which detector detected the photon�. If two pairs of
ensembles are independently entangled in this fashion,
as shown in Fig. 10�b�, the entanglement can be ex-
tended to a larger distance. Towards this end the atomic
states from the two closest atomic ensembles, each be-
longing to a different entangled pair, must be read out
onto light modes which are mixed on another beam
splitter. Detection of a photon after the beam splitter
extends the entanglement to twice the distance by en-
tanglement swapping. This read out process can for in-
stance be done using the beam-splitter interaction as dis-
cussed in Sec. V.D. Note, however, that the atomic mode
functions �29� and �32� suitable for the parametric-gain
and beam-splitter interactions are different, leading to a
mode mismatch if the excitations are read out in the
same direction as the entanglement generation. This
problem can be avoided by reading out in the backward
direction �André, 2005� �this analysis assumes that the
atoms retain their positions throughout the experiment;
see also Duan et al. �2002� for a discussion of the limit,
where the motion of the atoms leads to an averaging
over the atomic position�.

a)

b)

0
1

0
1

FIG. 10. �Color online� DLCZ protocol. �a� Entanglement be-
tween light and atoms is generated by a parametric gain inter-
action in two distant ensembles. Detection of a photon by one
of the two photodetectors after the optical beam splitter
probabilistically generates entanglement between the two en-
sembles. �b� The atomic excitation in one-half of an entangled
pair of atomic ensembles �dashed line� is read out onto light
with the light-atom beam-splitter interaction and mixed on an
optical beam splitter with its counterpart from another en-
tangled pair of ensembles. Photodetection swaps the entangle-
ment so that now the outmost ensembles become entangled.
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Following the initial DLCZ protocol several experi-
ments have been performed, which demonstrate a num-
ber of important ingredients of the repeater, of which
here we only mention a few. The first experiments
�Kuzmich et al., 2003; van der Wal et al., 2003; Chou et
al., 2004; Matsukevich and Kuzmich, 2004� demon-
strated quantum correlations in pairs of photons gener-
ated via the creation of pairs of atomic excitations and
photons in Raman scattering, followed by a beam-
splitter interaction converting the atomic excitations
into another photon after a programmable delay. Chane-
liere et al. �2005� and Eisaman et al. �2005� reported the
storage and controlled release of single photons, which
are deterministically created from a first atomic en-
semble, in a second one via electromagnetically induced
transparency. Chou et al. �2005�, Felinto et al. �2006�,
Chaneliere et al. �2007�, and Yuan et al. �2007� demon-
strated the quantum interference of photons emitted
from two independent atomic ensembles in Raman scat-
tering, with Chou et al. �2005� proving entanglement of
the two atomic ensembles. Chou et al. �2007� imple-
mented an elementary link for a DLCZ-type quantum
repeater as shown in Fig. 10. Other steps towards the
DLCZ quantum repeater were performed by Chen et al.
�2008�, where the teleportation of photonic to atomic
qubits held in an atomic ensemble has been demon-
strated, and by Choi et al. �2008� where storage and re-
lease of photonic entanglement from two atomic en-
sembles has been reported.

V. QUANTUM MEMORY FOR LIGHT

Atomic quantum memory for light is an important in-
gredient for a number of quantum information routines.
It is implicit in many quantum communication protocols,
in particular in those which require local operations on
more than just a single optical pulse, so that storage is
necessary. It is required for linear optics quantum com-
puting and for scalable cluster state quantum computing
with photons. Quantum memory is a necessary ingredi-
ent of a quantum repeater. Different applications de-
mand quantum memories fulfilling different require-
ments. Some applications, such as those which include
local operations and classical communication, benefit
from a high-fidelity deterministic write-in operation into
the memory. By deterministic we mean a protocol which
works with probability 1, so that the fidelity is calculated
for every try. Others can tolerate lower probability of
write in and read out, provided the success is heralded.
Nonetheless, the latter protocols, such as a quantum re-
peater, would also benefit from deterministic write in
which would lead to a higher efficiency, higher rate, and
eventually to longer distances.

In this section we review several main approaches to
the quantum memory for light. We first discuss a figure
of merit and a classical benchmark for determining the
quality of a quantum memory. We present the protocol
based on a QND interaction and feedback, which dem-
onstrates a quantum memory channel with the fidelity
higher than the classical benchmark. We then discuss the

memory based on the � scheme, concentrating on the
recent achievement of the EIT-based memory experi-
ments. We conclude with a discussion of memories
based on various types of the photon echo.

A. Figure of merit

From a fundamental perspective a quantum memory
can be analyzed as a quantum channel, acting in time. A
perfect quantum memory is nothing but the identity
map taking arbitrary states as input and returning them
unchanged, some time later. A realistic memory will be
imperfect and the question arises what figure of merit to
use in order to evaluate its performance. One sensible
measure characterizing the performance of a memory is
the fidelity, i.e. the average state overlap �Nielsen and
Chuang, 2000�, which can be achieved between an input
state drawn from a predefined set of states according to
a predefined probability distribution and the state which
is finally read out of the memory. The fidelity is of fun-
damental relevance if it exceeds the best classical fidel-
ity, in which case the channel is thus outperforming the
best classical channel. The classical fidelity relies on the
simple strategy of measuring the given quantum state,
storing the resulting classical data and on demand recon-
structing the quantum state as good as possible.

For example, in a special case where both input and
output states are Gaussian states with amplitudes
Xin�out��, Pin�out�� and variances Xin�out�

2 , Pin�out�
2 the

fidelity is given by

F = ��Xin
2 + Xout

2 ��Pin
2 + Pout

2 ��−1/2

� exp�−
�Xin� − Xout��2

2�Xin
2 + Xout

2 �
−

�Pin� − Pout��2

2�Pin
2 + Pout

2 �� .

�77�

In experiments the average of this fidelity can be taken
with respect to a Gaussian distribution of coherent
states centered at vacuum with a mean occupation num-
ber n̄. If the average fidelity for a flat �infinitely broad�
distribution of coherent input states equals unity, the
memory is ideal and would also store any non-Gaussian
state perfectly. This follows from the fact that coherent
states provide an �overcomplete� basis for the Hilbert
space.

It is worth emphasizing that the performance of a
quantum memory can be, in principle, tested with coher-
ent states only. Knowing the performance of the
memory �a quantum channel� for all coherent states,
which is performing a quantum tomography of the
memory process with coherent states, one can predict
the fidelity of the memory channel for an arbitrary class
belonging to a single mode. In this sense the often used
division between continuous variable memory and dis-
crete variable memory is not quite justifiable. It is more
appropriate to speak about the protocols which are
based on continuous variable measurements �homodyn-
ing� and discrete variable measurements �photon count-
ing�.
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The question then remains what exactly a measured
average fidelity smaller than unity guarantees. The
benchmark maximum fidelity of a classical channel Fclass
is known for a limited number of quantum states includ-
ing qubit states and coherent states with a Gaussian dis-
tribution in phase space of width n̄. For the latter case
Braunstein et al. �2000� conjectured and Hammerer,
Wolf et al. �2005� proved that

Fclass =
1 + n̄

1 + 2n̄
→

1
2

, n̄ → � . �78�

In the former case, for a class of arbitrary qubit states
the maximum classical fidelity is Fclass=2/3 �Massar and
Popescu, 1995�. Recently a classical benchmark fidelity
for a third class of states, namely, the displaced squeezed
states, has been found �Adesso and Chiribella, 2008;
Owari et al., 2008�. For a class of pure squeezed states
with the variance s in vacuum units, arbitrary orienta-
tion, and arbitrary displacements, the classical bench-
mark approaches zero for large s as Fclass=�s / �1+s�.
Quantum memory which exceeds these classical bench-
mark fidelities thus shows performance which is classi-
cally impossible. For similar fidelity benchmarks for
finite-dimensional systems see Keyl and Werner �1999�.

The fidelity is not necessarily the one and only figure
of merit for a quantum memory protocol. A relatively
high fidelity may still be compatible with errors which
are hard to correct. On the other hand, a lower fidelity
protocol with particular kinds of errors may be more
appropriate for a specific application. For instance,
Brask and Sørensen �2008� showed that different types
of errors can have a different effect on the repeater pro-
tocol of Duan et al. �2001�, and Surmacz et al. �2006�
argued that in certain applications it might be more im-
portant to preserve entanglement, when one partner of
an entangled pair is stored, than to conserve the quan-
tum state itself.

For an important class of protocols discussed in Secs.
V.D and V.E, the performance is theoretically described
by a simple beam-splitter relation between the input and
output operators âout=��âin+�1−�v̂, where � is the ef-
ficiency, e.g., for mapping the input light intensity to the
output light intensity, and v̂ is a vacuum operator. The
memory performance is then completely characterized
by the single parameter �, and quantities such as the
fidelity for a given distribution of states may later be
derived from it. The performance is therefore often dis-
cussed in terms of the single parameter � and we use this
characterization in Secs. V.D and V.E. In an assessment
of a given experiment one should, however, verify that
the simple beam-splitter relation is indeed applicable for
this experiment.

It is possible to define other figures of merit and also
to consider different benchmarks than the one given by
a classical measure and prepare strategy, in order to
quantify the quality of storage—in quantum memories—
but also of transmission of quantum states—as in quan-
tum teleportation; cf. Sec. VI. For experiments with
single photons, it is common to consider the conditional

fidelity, which characterizes the fidelity conditioned on
the detection of a photon after the interface. Since this
conditioning suppresses the effect of losses, the condi-
tional fidelity is often much higher than the uncondi-
tional fidelity discussed above. When a conditional fidel-
ity is used, another parameter often called efficiency is
introduced which describes the probability of success of
the protocol. In the context of teleportation of coherent
states, the question of the “right” figure of merit was
subject to considerable debate; see Ralph and Lam
�1998�, Braunstein et al. �2001�, Grosshans and Grangier
�2001�, and Bowen et al. �2003�, and references therein.
In particular, Grosshans and Grangier �2001� empha-
sized the importance of a benchmark F1→2 given by the
maximal fidelity achievable in a 1 to 2 cloning machine.
For F&F1→2 the memory output is guaranteed to be the
best possible copy of the input state. For coherent input
F1→2�0.68, as shown by Cerf et al. �2005�, and is thus
more demanding than the classical fidelity benchmark
Fclass, which can also be interpreted as the maximal fi-
delity of a 1 to � cloning machine �Hammerer, Wolf, et
al., 2005�. Figures of merit different from fidelity were
used in Ralph and Lam �1998�, Bowen et al. �2003a,
2003b�, and Hétet et al. �2008�, to characterize both
quantum storage and teleportation. There is, however, a
consensus that the most sensible figure of merit ulti-
mately depends on the specific application of the quan-
tum memory or teleportation link within a quantum net-
work for, e.g., quantum cryptography or optical
quantum computation.

B. QND and feedback protocol

The first demonstration of a quantum memory �Juls-
gaard et al., 2004� beating a classical benchmark �Ham-
merer, Wolf, et al., 2005� was based on the QND-
Faraday interaction of a pulse of light, carrying the
quantum state to be stored, with two collective spins
counter-rotating in an external magnetic field. The basic
input-output equations describing the interaction are
given by Eq. �75�. Each of these constitutes a realization
of the simpler input-output relations �40� for a pulse in-
teracting with a single atomic ensemble without the
magnetic field. For simplicity, we base the theoretical
discussion of the main idea on this single ensemble
setup, and return to the actual implementation based on
the setup involving two atomic ensembles in the experi-
mental part.

The input light is described by canonical operators
XL,in and PL,in while the collective spin is prepared in
the fully polarized state XA,in�= PA,in�=0 and XA,in

2

=PA,in
2 =1/2. With a choice of �=1 in Eq. �40� the en-

tangled state of atoms and light after the interaction is
described by

XL,out = XL,in + PA,in, PL,out = PL,in,
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XA,out = XA,in + PL,in, PA,out = PA,in.

Following the interaction the light quadrature XL,out is
measured and the corresponding measurement result �
is fed back displacing the atomic state such that PA,out
→PA,out−�. As shown in Sec. II.F, the final transforma-
tion of the collective atomic spin in the ensemble aver-
age is given by

XA,out = XA,in + PL,in,
�79�

PA,out = PA,in − XL,out = − XL,in.

This concludes the mapping of the quantum state of
light onto atoms: the mean values are transmitted faith-
fully �apart from an unimportant phase change� as
XA,out�= PL,in� and PA,out�=−XL,in�. The operator
XL,in is mapped perfectly onto the atomic collective spin,
while the operator PL,in is mapped with the addition of
one unit of vacuum operator which comes from the ini-
tial coherent state of the atomic ensemble. This latter
imperfection can be remedied if the initial atomic spin
state is squeezed before the memory operation, such
that XA,in

2 →0. If such squeezing operation is per-
formed by, for example, an additional QND measure-
ment, the fidelity of the quantum memory operation
can, in principle, approach 100%.

In the experiment the quantum memory performance
has been tested with a set of coherent states of light
taken from a Gaussian distribution of coherent states
centered at vacuum with a mean photon number n̄.
Given the measured gains and the measured variances,
XA,out and PA,out of the state of the memory, the fi-
delity can be calculated as

F = �n̄�1 − ��2 + 1/2 + XA,out
2 �−1/2

��n̄�1 − g�2 + 1/2 + PA,out
2 �−1/2.

As discussed above, if the protocol starts with the
atomic ensemble in a coherent state XA,out

2 =1,
PA,out

2 =1/2, and hence F=�2/3�82% with the choice
of �=g=1 which is optimal for the class of arbitrary co-
herent states. For an unknown qubit state ���0�
+$�1� /�2 the same protocol yields the fidelity of 80% for
optimal values of g and �.

The experimental setup and the sequence of opera-
tion for writing into the quantum memory are similar to
the sequence described in the section on deterministic
entanglement. The quantum light mode which corre-
sponds to the 	L sidebands in the polarization orthogo-
nal to the strong field now carries the quantum state of
light to be mapped. The state is generated by an electro-
optical modulator �EOM� as shown in Fig. 11. The quan-
tum sidebands together with the strong pulse propagate
through the atomic cells and are analyzed with the po-
larization homodyning technique �Fig. 5�. The strong
pulse thus serves a dual purpose, first as a strong driving
pulse for the interaction with atoms, and second as a
local oscillator for the homodyne measurement.

In the experiment two cells in a magnetic field play
the role of one quantum memory unit. As discussed
above this approach allows one to achieve quantum lim-
ited noise for ensembles of trillions of atoms because
quantum information is encoded and processed at 	L
=320 kHz sidebands where classical noise can be
strongly suppressed. For two cells with magnetic field
according to Eq. �75� the light variable XLc
=�2/T�dt cos�	Lt�xL�t� should be measured and the re-
sult fed back to the atomic variable PA+,out. The method
for measuring XLc

by the homodyne measurement of the
Stokes parameter Sz of the light and the subsequent pro-
cessing of the photocurrent by the lock-in amplifier
shown in Fig. 11 is discussed in Sec. II.F, Eq. �66�.
Note that at the same time the variable XLs
=�2/T�dt sin�	Lt�xL�t� can be measured and fed back
into the XA−,out variable of atoms. The memory could
hence be used as a two-mode memory, although this di-
rection has not been pursued.

After the projection noise level of atoms is estab-
lished, as described in the section on entanglement, the
optimal feedback gain must be determined. The gain is
chosen to optimize the fidelity for the class of states to
be stored in the memory. An example corresponding to
the class of coherent states distributed around vacuum
with n̄=8 is shown in Fig. 12. The optimal values for this
class of states are �=0.8,g=0.8. After the memory se-
quence �cf. Fig. 11� is over the atomic variable PA+,out is
measured with a strong QND verifying pulse. The quan-
tum sideband modes of this pulse are initially in the
vacuum state. After propagating through the memory
the quantum sideband modes contain the atomic
memory variable PA+,out according to Eq. �75�. Figure 12
shows that the mean values of this variable for various
light input states are proportional to the mean values of
the input light canonical variables. As also shown in the
figure the same is true for the other canonical variable of

FIG. 11. �Color online� QND+feedback memory experimen-
tal setup and pulse sequence. The state of light is encoded by
the EOM in the sidebands of the strong pulse �n�t�. Two cells
serve as the quantum memory unit. The feedback pulse pro-
portional to the photodetector signal is applied to the rf mag-
netic coils. Inset: �1� optical pumping, �2� input pulse, �3� feed-
back rf pulse, �4� rf pulse rotating atomic P into X used for half
of verification pulses, �5� verifying pulse. From Julsgaard, Sher-
son, Fiurek, et al., 2004.
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light PLc
stored in the memory variable XA+,out. XA+,out

has been measured in another experimental sequence,
where an rf pulse rotating the collective atomic spins by
� /2 and thus converting PA+,out into XA+,out has been
applied before the verifying pulse �Fig. 11�. The memory
is thus shown to work very well as a classical memory for
light since the mean amplitude and phase of the input
light pulse and the retrieved light pulse are equal to
within a chosen factor. Note that as a classical coherent
memory this Faraday+feedback memory can have unity
retrieval efficiency because the gain is adjustable,
whereas for the Raman, EIT, and photon echo-based
memories discussed below the efficiency is less than
unity in the presence of losses.

The decisive demonstration of the quantum character
of the memory follows from the analysis of the variances
of the stored quantum state. Figure 13 shows the experi-
mental variances of the state of the atomic memory for
input light states with the mean photon number between
zero and eight. From these values the experimental fi-
delity of 64% has been calculated, which is higher than
the benchmark classical fidelity 52% for this class of
states.

C. Multipass approaches

The Faraday+feedback quantum memory and the
protocols for entanglement and spin squeezing in Sec.
IV rely on a pulse of light �or two pulses in the case of
Duan, Cirac, et al. �2000�� interacting with the medium
once. It is of course possible to have a pulse of light
interacting several times with one �or more� atomic en-
sembles, as suggested in several theoretical studies. This
section provides an overview over proposals relying on
multiple passes of light through atoms.

Common to all these proposals is that they take ad-
vantage of the possibility to perform phase shifts on light
and to rotate atomic spins in between the passes. A rela-
tive phase shift � between the classical field and the

quantum field, in x and y polarization, respectively, will
give rise to a rotation of field quadratures,

XL → cos �XL + sin �PL,
�80�

PL → cos �PL − sin �XL.

Rotation of atomic spins about the axis of polarization,
via, e.g., fast rf pulses, allows for an analogous rotation
of XA and PA. Alternatively light can be sent through
atoms from a different direction. As light is sensitive to
the projection of the collective atomic spin along the
axis of propagation, this is equivalent to a rotation of the
atoms. Especially for room-temperature atoms in a cell,
optical access from two orthogonal directions can be af-
forded trivially, while light impinging from different
sides still talks to the same symmetric mode of atoms
due to thermal averaging.

The first proposal along this line is due to Kuzmich
and Polzik �2003� and presents a protocol for atomic
state read out, i.e., mapping of the atomic spin state onto
the polarization of light. As shown in Fig. 14, in a first
pass a pulse of light propagating along x interacts with
atoms in a QND fashion, generating a state described by
�40�. A phase shift of �=� /2 then changes XL,in� =PL,out

and PL,in� =−XL,out, where primed variables refer to the
second pass of light. The pulse is redirected to the en-
semble along the negative y direction, such that the in-
put output relations become, taking �=1,

FIG. 12. �Color online� Atomic coherent memory results. The
mean values for both quadratures of the input light, atomic
memory, and the output light are identical to within a chosen
factor �here 0.8�. From Julsgaard, Sherson, Fiurasek, et al.,
2004.

FIG. 13. �Color online� Variance of the atomic memory state
for input coherent states with n�8. The variance of 1/2 cor-
responds to the memory variance equal to the input light vari-
ance, that is, to a perfect memory. Above the 3/2 level is the
classical memory performance for arbitrary coherent states.
The dashed line is the best classical performance for the states
within the n�8 class. Diamonds and squares are experimental
results from Julsgaard, Sherson, Fiurasek, et al. �2004�.
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XL,out = XL,in − XA,in

= PL,in − �XA,in + PL,in�

= − XA,in,
�81�

PL,out = PL,in = − XL,in − PA,in.

Aside from an unimportant phase change, the state of
atoms is mapped on light. The spurious effect of light
noise XL,in in the second line can be removed by using
squeezed light. The overall input-output relations are
similar to the ones for quantum memory for light in Eq.
�79�, but require neither measurement nor feedback.

The previous protocol naturally raises the question
whether in principle a perfect state transfer, or state
swapping, could be achieved in several passes and spe-
cific rotations on atoms and light without using squeezed
light. Kraus et al. �2003� addressed this question in full
generality and gave necessary and sufficient conditions
for what types of quadratic Hamiltonians can be
achieved in two modes, given a specific interaction—
such as the Faraday interaction �PLPA—when com-
bined with “local” operations of the type �80�. They
found that the Faraday, or QND, interaction is most ca-
pable for simulating, in this sense, other interactions,
while the beam-splitter and parametric-gain interactions
have no potential to emulate any other interaction. Fur-
thermore, optimal strategies for generation of squeezing
and entanglement were devised in the same paper. Fi-
urasek �2003� extended these results asking what types
of unitary transformations �instead of Hamiltonian inter-
actions� can be achieved and showed in particular that a
perfect state swap can be performed with three passages
of light, and not for less; see also Takano et al. �2008�.
Hammerer et al. �2004� applied these general results to
the specific situation of a light-matter quantum inter-
face, showing that atomic decay and light losses can be
tolerated. See also Kurucz and Fleischhauer �2008� for a
discussion of memory conditions and a comparison of
these multipass approaches to Raman and EIT-based
memories.

These protocols all assume a QND interaction in light
and matter, which is practical for large cells with room-

temperature atoms only when two cells and counter-
rotating spins are used, as discussed in Sec. IV.B. This
makes multiple passes with different directions of propa-
gation a difficult issue. Another complication is due to
the fact that room-temperature ensembles require msec
pulses, implying an unreasonable long delay line in the
loop of Fig. 14 in order to prevent the pulse meeting
itself in the atomic medium. These problems were over-
come by Fiurasek et al. �2006�, Muschik et al. �2006�, and
Sherson, Fiurasek, et al. �2006�, who showed that proto-
cols for quantum memory and entanglement generation
involving multiple passes of one or more pulses can be
matched to Larmor precessing ensembles and that light
traversing atoms simultaneously from different direc-
tions can in fact be advantageous. In particular, Muschik
et al. �2006� considered a single-cell Larmor precessing
in a magnetic field oriented along x in a setup as shown
in Fig. 14, assuming a loop length much smaller than the
pulse length, such that the pulse “meets” itself in the
medium. For atoms rotating in the sense of the light
propagating along the loop, solution of the correspond-
ing Maxwell-Bloch equations, taking care of propaga-
tion effects, yields input-output relations for atomic vari-
ables,

XA,out = e−�2/2XA,in + �1 − e−�2
XL,in

+ ,

PA,out = e−�2/2PA,in + �1 − e−�2
PL,in

+ ,

where XL,in
+ , PL,in

+ refer to a light mode centered at the
upper side band frequency 	0+	L �	0 is the carrier fre-
quency of the classical driving pulse and 	L is the Lar-
mor frequency� with a weakly exponentially decaying
mode function. � is again given by Eq. �41�. An analo-
gous input-output relation holds for light, such that this
scheme realizes an exponentially efficient state exchange
of atoms and light.

The Faraday interaction was achieved as a sum of the
beam-splitter and parametric-gain interactions, cf. Fig. 2.
What we effectively achieve by having multiple passes is
that we add two Faraday interactions with different rela-
tive phases between the beam-splitter and parametric
gain interactions in Fig. 2�c�. A suitable choice of geom-
etry and phase shifts leads to cancelation of the
parametric-gain interactions after the two passes, and
we are left with the beam-splitter interaction making an
ideal memory transformation. With other configurations
it is the beam-splitter interaction which cancels and the
parametric gain interaction takes effect, generating an
entangled state of light and atoms, whose EPR variance
�cf. Sec. IV.B�, scales asymptotically as EPR�exp�−�2�
�Muschik et al., 2006�.

D. Raman and EIT approach

The beam-splitter interaction is a quite natural choice
for a quantum memory since the interaction maps exci-
tations from light to atoms and back. The beam-splitter
interaction was proposed for a quantum memory by
Kozhekin et al. �2000� who considered the far-detuned

x

y

z

XA

PA

(a) (b)

FIG. 14. �Color online� Protocols for state swapping. �a� Setup
for two-pass protocol for read-out of atomic states as sug-
gested by Kuzmich and Polzik �2003� and, with an additional
magnetic field applied along x, for full state exchange or cre-
ation of entanglement between light and atoms as suggested by
Muschik et al. �2006�. �b� State swap between two ensembles
coupled to a common cavity mode based on adiabatic passage
as demonstrated by �Simon, Tanji, Ghosh, et al., 2007�. The
classical pulses �i are applied in a counterintuitive sequence.
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Raman limit �d�. The same Raman limit was also
considered by Nunn et al. �2007�. Most of the attention
to the beam-splitter interaction, however, came with the
realization that on resonance with the atomic transition,
electromagnetically induced transparency �EIT� can be
used for quantum memory for light. The principles of
EIT and its applications for coherent memory for light
have been reviewed �Lukin, 2003; Fleischhauer et al.,
2005�; hence we concentrate here mostly on the recent
advances on quantum memory. The EIT is achieved
when a strong control optical pulse renders the � system
transparent for the signal pulse, see Fig. 1�b�. This trans-
parency is accompanied by a strong reduction in the
group velocity of the signal pulse. The result is that the
signal pulse entering the atomic ensemble is spatially
compressed. If the compression is sufficient to make the
signal pulse fit inside the sample, the control field can be
turned off at this point and the signal pulse is “frozen”
into the atomic ground state coherence—the dark state
polariton wave. The process can be inverted by turning
on the control field after some delay, which leads to the
generation of a signal pulse which “remembers” the
classical and quantum properties of the input signal
pulse.

To see what happens in this situation now consider the
→0 limit of the solution in Eqs. �46�, �47�, and �50�. If
we assume a sufficiently large incident classical driving
field so that h�0, t�z /L�1, we may use the asymptotic
form of the Bessel function and write the integral kernel
�47� as

m�� ;t,z� � �vg� d

L

1

2�2��4 vgtz
e−d��vgt − �z�2/L, �82�

where we have for simplicity assumed that the classical
driving field is time independent and have introduced
the group velocity

vg =�2L/�d . �83�

For a large optical depth this kernel is centered around
z=vgt. If the spin wave mode is slowly varying on a
length scale L /�d, or if the incoming field is slowly vary-
ing on a time scale L /�dvg, i.e., the input field is inside
the EIT-transparency window �Fleischhauer et al., 2005�,
the expression above can be approximated by a delta
function m=�vg��z−vgt�. The solutions of Eqs. �46� and
�50� then become

aA,out�z� =
1

�vg

aL,in�T − z/vg� ,

�84�
aL,out�t� = �vgaA,in�L − vgt� .

The first line describes the writing of the input field into
the atomic memory, whereas the second one describes
the read out of the atomic memory back into light. To
accomplish the writing �storage� process the control field
must be turned off when the entire input pulse is inside
the medium, which requires Tsignal L /vg. This prompts
the reduction of vg to zero and hence “stopping” of light.

The process of the read out or the retrieval is accom-
plished according to the second line by turning the con-
trol field on again which leads to the mapping of the
atomic memory operator back onto the light operator.

Recently several experimental implementations of the
EIT atomic memory �Kuzmich et al., 2003; Chaneliere et
al., 2005; Eisaman et al., 2005; Choi et al., 2008� have
demonstrated that such quantum features of light as vio-
lation of a Cauchy-Schwarz inequality and entanglement
can be preserved by the memory. The EIT-based
memory for quantum fluctuations has also been demon-
strated using squeezed vacuum light in Appel et al.
�2008� and Honda et al. �2008�. As mentioned by Honda
et al. �2008� a fidelity calculation along the lines of the
discussion in Sec. V.A would be misleading for the case
studied in these two papers since only one particular
state has been used and, in addition, the overlap of this
weakly squeezed state with vacuum is not far from unity.
An overall efficiency of storage and retrieval of around
10–15 % has been achieved, and weakly squeezed light
�around −0.2 dB� has been retrieved from the memory.

The experiments �Kuzmich et al., 2003; Chaneliere et
al., 2005; Eisaman et al., 2005; Choi et al., 2008� have had
a relatively low overall efficiency of the storage-retrieval
process; however it did not preclude observation of the
storage of nonclassical light. The reason is that the vio-
lation of the Cauchy-Schwarz inequality is based on the
measurement of the normally ordered second-order cor-
relation function g2�1,2�� : n̂1n̂2 : � / n̂1�n̂2� where n̂1,2
denote photon number operators measured at space-
time points 1,2. g2�1,2�, which describes the normalized
probability of detecting a photon at point 2 conditioned
on the detection at point 1, is insensitive to losses be-
cause they affect the numerator and the denominator in
the same proportion. For an ideal single-photon state
g2�1,2�=0, whereas any g2�1,2� 1 is a signature of the
nonclassical character of the field which for the case of a
stationary photon flux is referred to as photon anti-
bunching.

The source of the nonclassical field used by Chane-
liere et al. �2005�, Eisaman et al. �2005�, Matsukevich et
al. �2006�, Yuan et al. �2007�, and Choi et al. �2008� has
been an atomic ensemble prepared in an approximate
atomic single excitation state by a weak parametric-gain
interaction �see Sec. IV.C�, which was then retrieved
onto light by a beam-splitter process. Nonclassical states
prepared in this way have been reported by Kuzmich et
al. �2003�, van der Wal et al. �2003�, Chou et al. �2004�,
Matsukevich and Kuzmich �2004�, Balić et al. �2005�,
Chaneliere et al. �2005�, Eisaman et al. �2005�, and Du et
al. �2008�. The sequence is similar to that described in
Sec. IV.C except that only one atomic ensemble is in-
volved at this stage. The layout of the experimental
setup of Eisaman et al. �2005� is shown in Fig. 15. The
weak parametric-gain interaction driven by the “write”
classical field so that ��1 creates a single atomic exci-
tation in the “source” ensemble conditioned on the de-
tection of a photon in a particular spatial “Stokes”
mode. The requirement of low gain ��1 is necessary so
that multiphoton pulses are suppressed, which is a typi-
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cal situation for the parametric-type interaction. The
“retrieve” strong pulse converts the atomic excitation
into an “anti-Stokes” light pulse. The nonclassical char-
acter of this field is manifested by the correlation func-
tion conditional on the detection of one Stokes photon
g2�AS �nS=1� 1. This condition means that if a Stokes
photon has been detected and if there is a photon in the
anti-Stokes pulse, then the probability of having a sec-
ond photon in the anti-Stokes pulse is less than that for
a random process. In the ideal case this probability is
zero and the anti-Stokes pulse contains either no pho-
tons or just a single one.

The nonclassical light pulses produced by the source
ensemble are then directed towards the memory en-
semble. There they are stored and retrieved using the
EIT pulse sequence as shown in Fig. 16 from Choi et al.
�2008�. The figure shows the probability of detecting a
photon after the storage medium. The strong “storage”
driving EIT field has a constant amplitude until the
quantum input pulse appears at �=0. Then the driving
field is turned off leading to the storage of the light in
the medium. For ideal storage there should be no counts
corresponding to the input pulse. The counts around �
=0 hence correspond to the “leakage” of light through
the memory ensemble. After a delay time of 1 �sec the
strong “read” control field is applied and the atomic ex-
citation is read out generating a light pulse as prescribed
by Eq. �50�. An overall storage-retrieval probability of
17% has been shown by Choi et al. �2008�. This experi-
ment and the one by Chaneliere et al. �2005� used, Cs
and Rb atoms cooled and trapped in a magneto-optical
trap �MOT�, respectively, whereas Eisaman et al. �2005�

used Rb atoms in a neon buffer gas cell at room tem-
perature. In the two former experiments a small suben-
semble of atoms contained within the volume of the fo-
cused optical beam inside the sample served as the
memory. The storage time in these experiment was re-
stricted by the motion of atoms and/or by magnetic field
inhomogeneity to about 1 �sec. The two lower levels of
the � system were the two ground-state S1/2 hyperfine
levels and the upper level was the P3/2 level.

The experiment by Choi et al. �2008� has taken the
EIT approach one step further by demonstrating it for
an entangled state, more precisely for a superposition
state of a photon being in one of two possible pathways
�Fig. 17�. In this experiment a conditional nonclassical
state with g2�AS �nS=1� 1, an approximate single pho-
ton state, was split on a beam splitter in two parts. Con-
ditioned on the registration of the Stokes photon in the
source ensemble �not shown in Fig. 17� the input con-
sisted of a single photon with 15% probability. The rest
was mostly vacuum with a small addition of a two-
photon component with the probability of 9% of that for
a Poisson source with the same average photon number.
The input state with these properties has the concur-
rence of 0.10 corresponding to an entanglement of for-
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FIG. 15. �Color online� EIT-based memory setup. �a� Level
scheme and sequence of control pulses. Left, parametric inter-
action for a probabilistic generation of an excitation in the
source ensemble; center and right, EIT-based beam-splitter in-
teractions for storage and retrieval. �b� Setup showing the
source ensemble of the nonclassical photon flux and the
memory ensemble �target atoms�. A count in detector S1 or S2
is a condition for starting the process. Detectors AS1 and AS2
analyze the statistics of the input and output memory photons.
From Eisaman et al., 2005.

FIG. 16. �Color online� EIT-based memory. Probability of de-
tecting a photon downstream the memory ensemble �left axis�.
The points around �=0, the moment when the input pulse is
launched are due to the imperfect memory leading to the leak-
age of photons through it. The strong field �right axis� is turned
off around �=0 and turned on again at �=1 �sec leading to the
retrieved pulses with the overall storage retrieval probability
of 17%. From Choi et al., 2008.

FIG. 17. �Color online� Two memory ensembles store two
components of an entangled state which are later retrieved and
analyzed by two pairs of coincidence detectors D1,2.
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mation of EoF=0.025 ebits. �A concurrence of unity cor-
responds to EoF=1 ebits, i.e., to a maximally entangled
Bell state.� The input state was linearly polarized at 45°
with respect to the polarizing beam splitter �Fig. 17�. The
photonic state of the two outputs of the beam splitter
conditioned on the successful preparation of the single
photon state is �in= ��0L��1R�+ei'�1L��0R�� /�2. The two
components of this state have been directed into two
atomic ensembles. The two ensembles were two groups
of atoms within a MOT. Rb atoms were optically
pumped into a particular magnetic sublevel of the
ground state F=4, mF=0 which contributed to a better
performance of the memory.

After the EIT storage and retrieval steps similar to
those described earlier the two retrieved components
were combined on a polarizing beam splitter. With a
suitable choice of the phase the state recreated from an
ideal memory would make the single linearly polarized
photon, just like the input one. Changing the phase be-
tween the two components of the state stored in the two
ensembles by adjusting the � /2 wave plate Choi et al.
�2008� performed tomography of the entangled state and
obtained the density matrix of it. The results of this pro-
cedure are shown in Fig. 18. From these results the con-
currence of the retrieved state of 0.017 �EoF
=0.001 ebit� has been inferred demonstrating that the
retrieved state has retained entanglement after the stor-
age process.

The overall efficiency of the storage and retrieval of
entanglement measured by the ratio of the concurrence
of the output to the concurrence of the input is 20%
after the storage time of 1.1 �sec. It is limited by the
finite optical depth of the sample and can be improved
by optimization of the pulse shapes.

These experiments represent exciting experimental
progress; however, a higher efficiency is still desirable
for future applications. Higher efficiency can be
achieved with an increased optical depth, but also by
optimizing the shape of the classical driving field ��t�.
This optimization problem is discussed by Gorshkov,
André, Fleischhauer, et al. �2007�, Gorshkov et al.
�2007a, 2007b, 2007c, 2008� �see also Dantan and Pinard
�2004�, Dantan et al. �2005�, Dantan, Cviklinski, Pinard,
and Grangier �2006�, and Nunn et al. �2007��. These stud-
ies showed that for any slowly varying pulse of duration

T such that Td��1 �bandwidth BW�d�� the optimal
storage and retrieval efficiency is the same and is inde-
pendent of the detuning from the excited atomic state.
Furthermore, the optimized inefficiency depends only
on the optical depth d and scales as 1/d. These results
can be understood from a new “universal” physical pic-
ture of the storage and retrieval process: First, for a
given stored spin wave, the retrieval process is essen-
tially a constructive interference effect similar to super
radiance, where the radiated fields from all atoms inter-
fere constructively in a certain direction. As a result
there is a fixed branching ratio between the decay into
the desired quantum field mode and the decay into all
other modes, which is independent of the control field
shape as long as sufficient optical power is used. Second,
the optimal storage procedure is the time reversal of the
retrieval procedure, and, by time reversal symmetry, the
optimal storage efficiency is identical to the retrieval ef-
ficiency.

The retrieval efficiency does, however, depend on the
spin wave mode, and for optimal storage the classical
drive field ��t� has to be chosen so that it maps an in-
coming field mode into the optimal spin wave. This op-
timal field shape ��t� can be found by a direct calcula-
tion but an alternative experimental procedure for
finding optimal shapes is demonstrated by Novikova et
al. �2007�. In this experiment which worked in the clas-
sical regime with many photons in the signal beam, the
shape of the pulse to be stored was optimized for a given
classical drive field. Novikova et al. �2007� first stored a
given pulse and recorded the shape of the retrieved
pulse. Then the time reverse of the recorded pulse was
used as an input for the next round of storage, retrieval,
and measurement. This procedure rapidly converges and
yields the optimal efficiency �Gorshkov et al., 2007b�,
which in the experiment was in the range 42–45 %. No-
vikova et al. �2008�, on the other hand, used the full
theoretical optimization of the classical field shape ��t�
to store arbitrary field shapes and retrieve them into a
possibly differently shaped mode with a similar effi-
ciency.

Because the optimal strategy for storage and retrieval
is based on time reversal, higher efficiency can actually
be achieved if the excitation is read out in the backward
direction compared to the direction of storage �Gorsh-
kov et al., 2007b�. This change of direction, however,
requires a redefinition of the atomic operators �29�. The
mode functions um�z ;r��� in Eq. �29� are solutions to the
3D Maxwell equation in the forward direction but may
not be so in the backward direction. This will complicate
the dynamics unless the mode function can be chosen
real, which requires a Fresnel number much larger than
unity �for a discussion of a related problem see André
�2005��. Furthermore a finite energy difference 	01 be-
tween the two ground states introduces a momentum
difference k=	01/c which reduces the achievable
memory efficiency unless kL�1 �Gorshkov et al.,
2007b�. A way to cope with this problem is presented by
Surmacz et al. �2008�.

(a) (b)

FIG. 18. �Color online� Characterization of the retrieved en-
tangled state. The reconstructed density matrices of the input
�a� and the output �b� states of the light. From Choi et al., 2008.
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For applications in a quantum network, stored excita-
tions will have to be processed in the quantum memory.
A first step in this direction was performed in recent
experiments by Simon, Tanji, Ghosh, et al. �2007� and
Simon, Tanj, Thompson, et al. �2007�. The latter experi-
ment involved two atomic ensembles in a medium fi-
nesse �F=240� cavity. It demonstrated adiabatic transfer
of a single excitation stored in one ensemble to the other
ensemble with the cavity mode serving as a quantum
bus, as well entanglement of the two ensembles by a
partial transfer. First, a single excitation is generated in
one ensemble by driving a weak parametic-gain interac-
tion with subsequent detection of a Stokes photon, as
described above. Conditioned on the successful genera-
tion of a single excitation in ensemble 1, beam-splitter
interactions are switched on and couple both ensembles
to a common cavity mode, as shown in Fig. 14�b�. This is
done adiabatically, first for the “empty” ensemble 2 and
then for ensemble 1, in a counterintuitive sequence gen-
erating an adiabatic dark state passage �1�1�0�2→ �0�1�1�2.
After the transfer, the single excitation was read out
from ensemble 2, demonstrating a transfer efficiency be-
tween 10% and 25%, depending on the optical depth.
Simon, Tanji, Ghosh, et al. �2007� also demonstrated a
partial swap of the excitation, generating in the ideal
case an entangled state of the ensembles, �1�1�0�2
→cos (�1�1�0�2+exp�i��sin (�0�1�1�2, where ( is con-
trolled via the intensities and � by the relative phase of
the laser fields �i in Fig. 14�b�. Reading out the collec-
tive excitations and measuring photon correlation func-
tions, similar to what was done by Chou et al. �2005�, a
lower bound on the entanglement of the ensembles was
determined, giving a concurrence larger than 0.0046 cor-
responding to an entanglement of formation of Eof
!0.0001 ebit �Wootters, 1998�.

E. Photon echo

It has long been known that the photon echo tech-
nique �Kurnit et al., 1964� could be used to store classical
light pulses. Recently it has been realized that one can
extend these techniques into the quantum interface do-
main �Moiseev and Kröll, 2001; Kraus et al., 2006�. If a
light pulse is absorbed by an ensemble of two-level at-
oms, the quantum properties of light will be stored in
atoms as shown in the early experiment by Hald et al.
�1999�. The problem is that for a meaningful memory
the coherence time of the optical transition should be
longer than the duration of the pulse. However, this
means that the bandwidth of the interaction which is set
by the inverse coherence time is narrower than the
bandwidth of the light set by its inverse duration, so that
the entire pulse cannot be stored. A solution of this
problem is to use a medium with inhomogeneous broad-
ening. Then different frequency components of the light
pulse will be effectively stored in different subgroups of
atoms. To avoid the dephasing of the stored state caused
by the broadening a photon echo technique is used
which also allows one to control the release of the stored
excitation.

The essence of the photon echo approach is to have
an inhomogeneously broadened line which is then re-
versed. In the original approach an incoming light field
is absorbed by a two-level system with a broadened op-
tical transition. Due to the inhomogeneous broadening
the optical coherence from each atom precesses at dif-
ferent frequencies exp�−i	it�. These different precession
frequencies dephase the optical polarization such that it
does not radiate because the radiation from different
atoms interfere destructively. In the simplest version of
the photon echo, a strong � pulse, which interchanges
the ground and excited states, is applied after a time
T /2. This strong � pulse effectively reverses the phase
acquired by each atom such that the subsequent time
evolution causes a rephasing of the optical coherence.
At time T the atomic polarizations are again in phase
causing an echo signal to be emitted.

A modification of the photon echo technique called
controlled reversible inhomogeneous broadening
�CRIB� which in principle allows an ideal memory effi-
ciency was introduced by Moiseev and Kröll �2001� and
Nilsson and Kröll �2005� and further developed by
Kraus et al. �2006�. Moiseev and Kröll �2001� considered
a � system similar to Fig. 1�b�. The photon is absorbed
while an applied electric field broadens the �0�-�e� ab-
sorption line. A � pulse traveling in the same �forward�
direction is applied, which takes the population from the
excited state to the initially empty state |1� for long term
storage. Later on another � pulse traveling in the oppo-
site �backward� direction is applied, which releases the
excitation. During the retrieval process the broadening
with the applied electric field is reversed, which reverses
the time evolution resulting in an ideal retrieved signal
in the backward direction, provided that the excited-
state decoherence is negligible. Experimentally this
scheme was realized by Alexander et al. �2006�. Staudt et
al. �2007� demonstrated that similar photon echo tech-
niques can preserve the coherence of time bin qubits
conditioned on having an outgoing photon. There are by
now many versions of this CRIB approach, differing,
e.g., by whether the broadening arises from differences
in the response of the atoms to a homogeneous field
�transverse broadening� or from spatially dependent
broadening �longitudinal broadening�. A full account of
all different types is beyond the scope of this review
�see, e.g., Longdell et al. �2008� for theoretical discussion
of several different schemes�.

In a recent experiment �Hétet, Longdell, et al., 2008�
CRIB has been implemented in a particularly elegant
and simple way. A similar technique was also considered
theoretically by Sangouard et al. �2007�. In contrast to
most other techniques considered here, no strong classi-
cal control pulse is required in this scheme. Hétet,
Longdell, et al. �2008� applied a gradient electric field to
the crystal used for the memory. Light interacted with
Pr3+ ions which were doped into a Y2SiO5 host. Due to
the gradient field the resonance frequencies of the ions
at different parts of the crystal were distributed by the
Stark effect within the 2 MHz bandwidth. The homoge-
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neous linewidth of the ions is 100 kHz. Hence the ions
should have been in principle capable of storing a pulse
of light for this time, which is 20 times longer than the
pulse duration. The stored light has been released by
reversing the sign of the electric field gradient. In the
experiment a classical pulse of 2 �sec duration was
stored for 2 �sec. An overall efficiency of the storage
and retrieval of 15% has been achieved. The results for
the echo memory for classical pulses are shown in Fig.
19. The figure shows the transmitted part of the input
pulses �centered around zero� and stored and retrieved
pulses for different storage times. All pulses are normal-
ized to the amplitude of the input pulse.

An important question is to which extent the addition
and reversal of broadening improves the memory per-
formance compared to the other approaches considered
here. For the approaches of Sangouard et al. �2007� and
Hétet, Longdell, et al. �2008� a major practical advantage
is that it does not rely on any classical laser fields. This,
however, limits the attainable storage time to the coher-
ence time of the optical transition, which is typically
shorter than for the ground states. The advantage of re-
versible broadening for the storage of a single mode in
the ground-state coherence was investigated by Gorsh-
kov et al. �2007c, 2008� where it was found that little was
gained. The situation is, however, different for the stor-
age of multiple modes. In particular, it was found by
Simon, Tanji, Ghosh, et al. �2007� and Nunn et al. �2008�
that CRIB changes the scaling of the number of modes
which can be stored from �d to d, thus significantly in-
creasing the multimode capacity. Furthermore a novel
type photon echo approach using atomic frequency
combs was proposed �Afzelius et al., 2009�. This pro-
posal takes advantage of a large inhomogeneous broad-
ening in a solid state system. By exploiting atoms with

different resonance frequencies one can increase the ef-
fective number of atoms participating in the memory
and thereby achieve an efficient quantum memory with
high multimode capacity. Using this approach de Ried-
matten et al. �2008� demonstrated the coherent mapping
of light at the single photon level onto a neodymium ion
doped crystal, and collective release of the stored light
at a predetermined time. Moreover, this experiment
demonstrated the storage of pulses in different temporal
modes, proving the multimode capacity of this approach.

VI. QUANTUM TELEPORTATION BETWEEN LIGHT
AND ATOMS

A. Quantum teleportation

Quantum teleportation is a means for sending quan-
tum states from A to B in a disembodied fashion using
two separate channels: a quantum channel connecting A
and B and a classical one. It makes use of entanglement
shared via the quantum channel and classical communi-
cation. Apart from being one of the most surprising and
mind-boggling discoveries in quantum information
theory, quantum teleportation has become an essential
primitive in quantum computation and quantum com-
munication.

Shortly after the first theoretical layout for quantum
teleportation of states of a qubit �Bennett et al., 1993�
the protocol was extended to states of continuous vari-
ables �Vaidman, 1994; Braunstein and Kimble, 1998�.
Both sorts of protocols were first demonstrated with
light, utilizing either probabilistically generated Bell
states of photon pairs �Bouwmeester et al., 1997� or de-
terministically generated EPR beams �Furusawa et al.,
1998�, both obtained from parametric down conversion.
The first teleportation involving massive particles was
performed recently in the ion trap experiments at Inns-
bruck �Riebe et al., 2004� and NIST �Barrett et al., 2004�.
For a recent review on teleportation of states of continu-
ous variables see Furusawa and Takei �2007�.

Our focus here is on teleportation protocols involving
both matter and light. In such a scenario, quantum states
carried by traveling pulses of light are teleported onto a
stationary quantum memory, for example, an ensemble
of neutral atoms, using the quantum interface. The first
realization of teleportation involving matter and light
utilized the entangled state created via the quantum
Faraday-QND interaction of a pulse of light with the
collective spin of an atomic ensemble �Sherson, Krauter,
et al., 2006�. In this experiment deterministic teleporta-
tion with the fidelity higher than any classical state trans-
fer can achieve has been demonstrated. Recently proba-
bilistic teleportation between light and matter has also
been demonstrated using parametic-gain and �-type in-
teractions �Chen et al., 2008� and has been extended to
entanglement swapping, which is the teleportation of en-
tanglement �Yuan et al., 2008�.

In a nutshell, a teleportation protocol involves three
steps: First, an entangled state is created and shared as a
resource between two stations �usually termed “Alice”
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FIG. 19. �Color online� Transmitted and retrieved pulses for
different storage times for an echo based memory �private
communication from Hétet, Longdell, et al. �2008��. The small
peak at t�0 represents a small leakage �nonstored compo-
nent� of the incoming field, whereas the later peaks are the
retrieved field. The emission time of these light pulses is con-
trolled by reversing the sign of an applied electric field halfway
during the storage period.
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and “Bob”�. In the cases considered below, the entangle-
ment between atoms �Bob� and light is generated by
sending a strong driving pulse through atoms. As a re-
sult of this interaction the forward scattered photons of
the orthogonal polarization sent to Alice become en-
tangled with atoms kept by Bob as shown in Fig. 20. The
ideal continuous variable EPR entanglement corre-
sponds to �XA+XL�2=�PA−PL�2→0. Alice also re-
ceives another unknown quantum state described by ca-
nonical variables Y ,Q sent by a hypothetical sender
“Victor,” which is to be teleported to Bob. For this, Al-
ice performs a joint measurement of XL+Y and PL−Q,
called a Bell measurement, on the photonic part of the
entangled state that she has received and the unknown
quantum state of light to be teleported. This measure-
ment is performed by mixing two light pulses on a beam
splitter as in Fig. 20. The results of this measurement are
communicated to Bob. Bob uses this classical informa-
tion to perform a correcting operation on his quantum
system, atoms, by shifting XA,fin=XA+ �XL+Y�→Y and
PA,fin=PA− �PL−Q�→Q, thereby recovering the origi-
nal unknown state.

We see that in the hypothetical case of vanishing EPR
variances, first and second moments and thus any Gauss-
ian state �i.e., a state with Gaussian wave function or
Wigner function� are transmitted perfectly. This in turn
implies that any �non-Gaussian� state, including a qubit
of the form ��0�+$�1��L2�R�, would be teleported
faithfully, as the set of coherent states is a subset of all
Gaussian states and provides a basis for the full Hilbert
space L2�R� �for the proof of this in the Schrödinger
picture and for the Wigner function, see Braunstein and
van Loock �2005��. In this sense the distinction between
teleportation protocols for qubits and continuous vari-
ables is superficial. For realistic cases of imperfect tele-
portation where fidelity is not perfect, performance of
each teleportation protocol should be evaluated in detail
having in mind a particular application.

If EPR variances do not vanish, as is necessarily the
case due to energy restrictions, teleportation will not be
perfect, and it is necessary to evaluate the performance
of the teleportation. The teleportation is essentially a
protocol mapping the state of one system to another. We
can therefore use the fidelity as the figure of merit as
discussed in Sec. V.A, i.e., find out when the perfor-
mance of the protocol becomes better than that of the
best classical protocol for a given class of input states.

B. Teleportation based on Faraday interaction in magnetic
field

Sherson, Krauter, et al. �2006� obtained the entangled
state of light and atoms for teleportation via the Faraday
interaction of light with a single collective atomic spin,
precessing in an external magnetic field. The relevant
level scheme is shown in Fig. 4 and in the inset to Fig.
20. The situation is described by the Hamiltonian and
Maxwell-Bloch equations given in Sec. II.E. In this case,
the Hamiltonian does not fulfil the QND criteria �Hol-
land et al., 1990; Poizat et al., 1994� because the Faraday
interaction HF �cf. Eq. �34�� does not commute with the
free Hamiltonian �63� describing the Zeeman splitting of
ground states. In fact, as seen from the inset in Fig. 20,
the interaction resembles the Raman process. The
Maxwell-Bloch equations �65� were integrated by Ham-
merer et al. �2005, 2006� and the solutions are again con-
veniently expressed in terms of experimentally measur-
able cosine and sine modulation modes �66�,

XA,out = XA,in +
�

�2
PLc,in,

PA,out = PA,in +
�

�2
PLs,in

,

PLc,out = PLc,in,

XLc,out = XLc,in +
�

�2
PA,in + ��

2
�2

PLs,in

+
1
�3

��
2
�2

PLs,back,in,

PLs,out = PLs,in
,

XLs,out = XLs,in
−
�

�2
XA,in − ��

2
�2

PLc,in

−
1
�3

��
2
�2

PLc,back,in.

The terms proportional to �2 are a new feature, specific
for this setup, and represent atom-mediated backaction
of light onto itself. This effect involves the previously
defined cosine and sine modes as well as yet another
pair of canonical independent “back-action modes”
PLc�s�,back,in, which can be treated as vacuum noise opera-

SQ�

CQ� SY�
CY�

ˆˆ,Y Q

BS

∆ = 800 MHz

ωL = 0.3 MHz
6S1/2

6P3/2

ˆ ˆ,out outX P

FIG. 20. �Color online� Experimental setup for the teleporta-
tion of light to atoms. Strong y-polarized pulse interacts with
atoms and generates an entangled x-polarized mode at the up-
per sideband frequency �inset�. This entangled light is over-
lapped with the pulse to be teleported on a 50/50 beam splitter
BS after which the Bell measurements are performed. The re-
sults of the Bell measurements are fed back onto atoms via rf
magnetic coils. From Sherson, Krauter, et al., 2006.
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tors. To see that this interaction can be used for telepor-
tation we inspect the EPR-type correlations between the
atomic mode XA,out, PA,out and the light mode of the
upper sideband X+, P+ with the frequency 	+	L:

XL+,out =
1
�2

�XLs,out − PLc,out� ,

PL+,out = �1/�2��XLc,out + PLs,out� .

One easily finds an EPR variance of

EPR = �XA,out + XL+,out�2 + �PA,out − PL+,out�2

=
1
2�1 + �1 −

�

2
�2�2

+
1
3
��

2
�4

% 0.66, �85�

where the lower bound is achieved for ��1.48. Hence
the modes of light and atoms are in an entangled state
which can be used for teleportation.

The state to be teleported is encoded in the lower
sideband 	−	L with respect to the carrier frequency
�Fig. 20�, expressed in terms of measurable cosine and
sine modulation modes as

Y = �1/�2��Ys + Qc�, Q = − �1/�2��Yc − Qs� , �86�

where �Y ,Q�= i. The Bell measurement of the commut-
ing observables after combining the entangled and the
to-be-teleported states yields

X̃c =
1
�2

�XLc,out + Yc�, X̃s =
1
�2

�XLs,out + Ys� ,

�87�

Q̃c =
1
�2

�PLc,out − Qc�, Q̃s =
1
�2

�PLs,out − Qs� .

Conditioned on these results the atomic state is then
displaced in order to get in the ensemble average the
final state

XA,fin = XA,out + X̃s − Q̃c = �XA,out + XL+,out� + Y ,

PA,fin = PA,out − X̃c − Q̃s = �PA,out − PL+,out� + Q .

In the hypothetical case of vanishing EPR variances of
XA,out+XL−,out and PA,out−PL−,out atoms would correctly
display the statistics of the Y ,Q mode, reproducing any
input state �coherent, Fock, etc.� as desired. For the
given minimal EPR variances of 0.66, that is for a vari-
ance of 0.33 in each EPR variable XA,out+XL+,out and
PA,out−PL+,out, teleportation will not be perfect, but still
below the classical limit corresponding to the total EPR
variance of 2. This discussion ignores atomic decay and
light absorption which can be included as described in
Sec. II.C.

The experimental implementation of this teleporta-
tion protocol by Sherson, Krauter, et al. �2006� was per-
formed with a new generation of paraffin coated cells
filled with cesium similar to those shown in Fig. 8. At-
oms are initially prepared in a coherent spin state by a
4 msec circularly polarized optical pumping pulse propa-

gating along the direction of the magnetic field, into the
sublevel F=4, mF=4 of the ground state �inset in Fig.
20�. Then an entangled light-atom state is generated by
sending a strong pulse polarized along the y axis �Fig.
20�. The initially vacuum state of the x polarization of
this pulse is populated after the interaction with the field
XL,out, PL,out which is entangled with the atomic vari-
ables XA,out, PA,out according to Eq. �85�. �Compared to
the theoretical derivation of the Faraday interaction in
Sec. II the polarizations of the classical and quantum
fields are interchanged. This is of minor importance
since it merely swaps the vertical and diagonal transi-
tions in Fig. 2.�

The nearly optimal value of the coupling constant �
�1 was achieved with 4�1013 photons in the strong
pulse with the duration of 1 msec and a cross section of
4.4 cm2 detuned by 825 MHz and a number of atoms on
the order of 1012 corresponding to the Cs temperature of
25 °C. At Alice’s location the mode of light entangled
with atoms is combined with the input pulse to be tele-
ported on a 50/50 beam splitter �Fig. 20�. The strong
y-polarized pulse which travels along with the entangled
quantum field conveniently serves as the local oscillator
for the polarization homodyne measurements of the
Stokes operators Sy and Sz performed at two outputs of
BS. The output cos�	Lt� and sin�	Lt� components of the
photocurrent are processed by the lock-in amplifiers to

produce the feedback signals Q̃c,s, Ỹc,s. The two feed-
back signals at 	L=322 kHz phase shifted by � /2 with
respect to each other are fed into the rf magnetic coils
surrounding the atoms with a variable electronic gain.
The gain is chosen so that the atomic variables are
shifted by one vacuum unit if the input light mode con-
tains one vacuum unit of excitation. This condition cor-
responds to the “unity gain” teleportation.

To prove the success of the teleportation protocol a
strong verifying pulse reads out the atomic operators
�collective spin projections�. The same homodyne polar-
ization measurement setup is used. An example of the
atomic state read out is shown in Fig. 21. A gain of 0.95
is found from the slope of the linear fit to the data,
whereas variances of the final atomic state after telepor-
tation XA,out=PA,out=1.2 are found from the variance
of the distribution of the data. These variances are be-
low the classical teleportation limit corresponding to
three units of vacuum noise, that is to 3/2. Accordingly
the fidelity of the teleportation calculated as

F = �n̄�1 − g�2 + 1/2 + XA,out
2 �−1/2�n̄�1 − g�2 + 1/2

+ PA,out
2 �−1/2 �88�

for a distribution of coherent states with a width of n̄ is
greater than the best classical fidelity. Indeed the fideli-
ties of, F=0.60±0.02 and 0.58±0.02 have been obtained
for sets of input states with n̄=5 and 20, respectively,
whereas best classical fidelities for these cases are 0.54
and 0.51.

As shown in the supplementary notes to Sherson,
Krauter, et al. �2006� and in Hammerer �2006� the knowl-
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edge of XA,out, PA,out for the teleportation of the co-
herent states corresponds to the complete knowledge of
the teleportation map and allows one to calculate the
fidelity of the qubit teleportation as

Fq = �6 + 16s2 + 24s4 + 4�g − 1��1 − 2s2�

+ �g − 1�2�1 − 6s2��/6�1 + 2s2�3, �89�

where s2=2XA,out
2 −1. The quality of mapping for the

two canonical operators is assumed to be equal
XA,out=PA,out. Direct demonstration of the qubit tele-
portation under the conditions of Sherson, Krauter, et al.
�2006� has not been possible due to the absence of a light
qubit source with the pulse duration of 1 msec. As
shown theoretically by Sherson, Krauter, et al. �2006�, a
qubit fidelity of Fq=0.74 is achievable for �=1.

The protocol can in principle be improved by properly
taking backaction modes, treated here simply as noise
terms, into account. This is to a large extent a question
of detector bandwidth and improved postprocessing of
photocurrents. Hammerer, Polzik, and Cirac �2005�
showed that in this way the fidelity can be increased up
to 80% corresponding to half a unit of added vacuum
noise. This noise stems from the initial vacuum fluctua-
tions of light before the light-atom interaction which can
in turn be reduced using a squeezed light for entangle-
ment with atoms. One ends up with a similar situation as
in the standard protocol �Vaidman, 1994; Braunstein and
Kimble, 1998�: the quality of teleportation is in the end
limited by the amount of available squeezing, which
emerges here again to be an irreducible resource
�Braunstein, 2005�.

A number of alternative proposals for deterministic
teleportation involving light and atomic ensembles have
been suggested. Horoshko and Kilin �2000� and Mišta

and Filip �2005� studied the application of the state of
light and atoms created in a QND interaction �cf. Eq.
�40�� as a resource for teleportation and showed that the
use of squeezing of light and atoms as well as unbal-
anced beam splitters in the Bell measurement can im-
prove the fidelity. Teleporation of states of light to at-
oms, based on entanglement between motional degrees
of freedom of a Bose-Einstein condensate and light, has
been suggested by Paris et al. �2003� and Cola et al.
�2004�.

VII. ERRORS AND FIDELITY FOR DIFFERENT
INTERFACES

Despite impressive successes the unconditional fidel-
ity and/or efficiency of the quantum interfaces demon-
strated so far does not exceed 70% and in many cases is
at the level of 20%. Several factors, some more funda-
mental and some more technical, contribute to this.

A. Scaling with optical depth

In the theory section we showed that spontaneous
emission can be avoided for large optical depth d�1.
Here we discuss the errors due to a finite d for different
approaches. In the entanglement section we showed that
the single ensemble squeezing PA

2 or the two ensemble
correlation EPR is �1/�d. This limit, however, depends
on the exact decay mechanism, and a better scaling of
single ensemble squeezing 1/d can be achieved if the
QND interaction through phase shift measurements us-
ing two closed transitions �Sec. II.G� is used, since in this
case spontaneous emission does not add noise to PA.

For a quantum memory the inefficiency of storage
with the beam-splitter interaction �Raman or EIT� scales
as 1/d if suitably shaped spatial mode functions are
used. If storing or reading out the spatially symmetric
mode is preferable, as in the repeater case where the
probabilistic entanglement is generated in this mode
�Sec. IV.C�, the scaling is again weak, 1 /�d �Gorshkov,
André, Fleischhauer, et al., 2007; Gorshkov et al., 2007b�.
However, a better performance can be achieved with
ensembles in optical cavities �Gorshkov et al., 2007a�,
where the scaling is 1 /Fd �F is the cavity finesse�, see in
particular the experiments by Simon et al. �2007b,
2007c�. The protocols based on the Faraday interaction
naturally couple to the symmetric modes and may be
better suited for this mode than the beam-splitter inter-
action. These memory protocols have a coupling con-
stant �2�1, which yields �1/d or �ln�d� /d �Sherson,
Fiurasek, et al., 2006� error due to spontaneous emission.

Different protocols are also characterized by different
kinds of errors. The protocols based on the single-pass
QND-Faraday interaction have variable gain, faithfully
reproduce mean values of the input states, and thus give
good fidelity over a large phase space. The error in the
beam-splitter protocols corresponds to a loss on a beam
splitter and thus gives bad fidelity for states with a large
amplitude. On the other hand the low fidelity beam

FIG. 21. �Color online� Teleportation results. �a�, �b� Two ca-
nonical operators of the verifying pulse plotted as a function of
the corresponding canonical operators of the input pulse for
2�103 realizations �vacuum units�. The slope which is close to
1/2 should be multiplied by 2 to account for the attenuation of
the verifying pulse on the beam splitter. From the variances of
the distributions along the vertical axis the atomic state vari-
ances and the fidelity are obtained. �c� A set of input states
with n�=5 and random phases. From Sherson, Krauter, et al.,
2006.

1081Hammerer, Sørensen, and Polzik: Quantum interface between light and atomic …

Rev. Mod. Phys., Vol. 82, No. 2, April–June 2010



splitter �Raman and EIT� protocols usually add only
vacuum noise, whereas single pass QND-based proto-
cols add multiphoton errors. Which kind of error is less
harmful depends on a particular application. For in-
stance, Brask and Sørensen �2008� showed that memo-
ries based on the single pass QND-Faraday interaction
are not well suited for the DLCZ-repeater protocol
�Duan et al., 2001�, because the repeater protocol is spe-
cifically designed to correct only for the photon loss er-
rors. A full evaluation of the performance thus depends
on the particular application one has in mind.

B. Optical losses

Losses of photons affect the performance of memory,
and different memories are affected to a different ex-
tent. Clearly in the protocols insensitive to the vacuum
component optical losses only lead to lower efficiency,
that is to a lower probability of success. On the contrary,
if the goal of a protocol is an unconditionally high fidel-
ity, as in the case of protocols based on homodyning,
optical losses directly affect the fidelity. Beside usual
losses due to reflection on windows of cells and cham-
bers which can be reduced by coating, there are losses
due to absorption of light by atoms of the memory.
These losses were included in our theoretical discussion
in Sec. II.C, where we found that the decoherence of the
quantum fields and the atoms vanished in the limit of
large d. In addition one should also account for the
damping of the classical fields. In Sec. II.C we also dis-
cussed that the probability of photon absorption �L is
linked to the probability of spontaneous emission of an
atom �A by �L=�ANA /NL, where NL, NA are the num-
ber of photons of the driving field and the number of
atoms, respectively. If NL�NA can be satisfied then the
photon absorption can be made very small.

C. Inhomogeneous broadening

Another source of possible errors is inhomogeneous
broadening of the optical transitions. Solid state systems
have a strong inhomogeneous broadening because each
of the emitters sits in a slightly different environment,
while inhomogeneous broadening in room-temperature
atomic ensembles is due to the Doppler broadening of
the atomic lines. In the theoretical derivation we as-
sumed only a homogeneous broadening of the optical
transitions �the photon echo approach discussed in Sec.
V.E is a notable exception�. One therefore cannot just
replace the optical depth d appearing in the formulas
derived in the theory section by the measured optical
depth in the presence of inhomogeneous broadening.

A detailed study of the effect of inhomogeneous
broadening for a quantum memory using the beam-
splitter interaction is presented by Gorshkov et al.
�2007c� who showed that even far off resonance the in-
homogeneous broadening of the line still plays a role.
The reason is that the strong field leads to a consider-
able ac-Stark shift of the ground state |1� even far off

resonance. The inhomogeneous broadening introduces
energy shifts which are different for each atom and thus
causes decoherence of the collective states. As a result
the effect of inhomogeneous broadening is as severe off
resonance as it is on resonance. Hence the total ineffi-
ciency of the memory protocol has two contributions.
The first is the spontaneous emission which scales as
1/dhom, where dhom is the optical depth of the ensemble
without the broadening. The second contribution is from
the inhomogeneous broadening and scales as 1/dinhom

2 ,
where dinhom is the actual optical depth in the presence
of broadening �this scaling assumes that the broadened
lines fall off sufficiently fast; for other profiles, e.g.,
Lorentzian, the scaling is 1 /dinhom�. If one increases the
length of the sample the system will eventually be domi-
nated by the 1/dhom contribution and thus behaves as if
it were homogeneously broadened.

The imperfections induced by inhomogeneous broad-
ening discussed above can to some degree be reduced by
taking a more active approach where one tries to engi-
neer the broadening. In essence the photon echo ap-
proaches discussed in Sec. V.E provide examples of such
engineering of inhomogeneous broadening, where the
externally imposed inhomogeneous broadening be-
comes a useful resource. An interesting example of en-
gineering of inhomogeneous broadening is presented by
Afzelius et al. �2009�, who considered engineering a fre-
quency comb in the atomic line shape, using the hole-
burning techniques discussed in Sec. III.C Essentially
this allows for exploiting atoms in a solid state medium
which have their resonance frequency shifted far away
by inhomogeneous broadening �thus reducing the
1/dhom error discussed above�, while avoiding the detri-
mental effects of inhomogeneous broadening �thus re-
ducing the 1/dinhom

2 error�.
For the Faraday interaction the situation is different

than for the beam-splitter interaction. The Faraday in-
teraction is only employed far off resonance, and unlike
the case of the beam-splitter interaction the ac-Stark
shift does not cause decoherence. The strong classical
light couples to both ground states and shifts them by
the same amount. As a result the spin dynamics is not
affected by a difference in the level shifts, and the Far-
aday interaction becomes insensitive to the inhomoge-
neous broadening for detunings much larger than the
hyperfine structure of the excited state and the Doppler
width.

In addition to broadening of the optical transitions,
inhomogeneous broadening also affects the ground
states, due to magnetic field gradients. This broadening
is particularly bad because it leads to decoherence dur-
ing the period when information is stored in the ground
states of the ensemble, and is a major limitation for the
coherence time in many experiments.

D. Atomic motion

As discussed in Sec. III the atomic motion in and out
of the optical beam can severely affect the performance
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of the interface. For the Faraday interaction a strong
suppression of this effect is achieved in the experiments
�Julsgaard et al., 2001, 2004; Sherson, Krauter, et al.,
2006� because the light beams cover most of the atomic
volume and the interaction time is much longer than the
atomic transient time of flight. This suppression is, how-
ever, not perfect. As analyzed by Sherson, Krauter, et al.
�2006� the fact that atoms move accros the interaction
volume leads to extra spin noise which should be ac-
counted for when the projection noise level is being es-
tablished.

For experiments with cold atoms the atomic motion
can still be of a problem, in particular when spin waves
with very short wavelength are created in the memory.

E. Atomic collisions

For atomic gasses it is important also to consider the
effect of atomic collisions. For experiments with paraffin
coated cells atom-atom collisions contribute up to
20–40 Hz to the ground-state decoherence �Sherson,
Julsgaard, and Polzik, 2006�. In experiments where a
buffer gas is used to suppress atomic motion, the alkali
atom–buffer gas collisions often have little effect on the
ground-state coherence of the atoms and the memory
time. The buffer gas does, however, change the dynam-
ics during the interaction with the light. The homoge-
neous broadening due to collisions with the buffer gas
can be included in the theory by modifying the homog-
enous linewidth � �Erhard and Helm, 2001�. At the same
time collisions change the velocity of the atoms and
thereby their Doppler shift. The collisions thus change
the phase spreading which causes decoherence of the
collective states from being ballistic to diffusive, and this
reduces the inefficiency from the inhomogeneous broad-
ening.

For the write stage of the probabilistic entanglement
protocol a different effect related to the collisional
broadening has been observed by Manz et al. �2007� and
discussed theoretically in a different context �Childress
et al., 2005�. The collisions with buffer gas atoms cause
the alkali atoms to emit photons at the resonance fre-
quency of the atoms rather than at the anti-Stokes fre-
quency. To observe the entanglement it is thus necessary
to filter out these incoherent photons with a frequency
filter. This effect, however, has little consequences for
other protocols.

F. Geometry of the ensemble

In most cases the two ground states of the ensemble
are nondegenerate, so there is an additional phase factor
exp�i�k0�−k0�z� associated with the difference of the k
vectors for the classical and quantum fields. This phase
can be absorbed into the definition of the mode func-
tions um�r� , t� in Eqs. �29� and �32�, and does not play a
role for the beam-splitter and parametric-gain interac-
tions applied separately. However, if one reads out the
memory in the backward direction, which is sometimes
advantageous, or combines the two protocols, the

atomic operators should be redefined and this phase can
have a detrimental effect �Duan et al., 2002; André,
2005; Gorshkov et al., 2007b; Surmacz et al., 2008�, see
also Sec. V.D. For the Faraday interaction on the other
hand, the mode functions must have a constant phase
and this means that the atomic ensemble must be much
smaller than the wavelength corresponding to the
ground-state splitting. In practice this wavelength varies
from �100 m in case of Zeeman splitting with B�1 G
to �3 cm in case of hyperfine splitting. In addition the
Fresnel number corresponding to the shape of the
atomic ensemble must be large in order to stay within a
single transverse spatial mode approximation for the
Faraday interaction.

G. Deviation from a two-level ground-state model

When the ground-state level used for the interface is
magnetically degenerate with more than two states and
the detuning of the strong field is not sufficiently larger
than the hyperfine splitting of the excited state, the in-
teraction of the Faraday type �a1 vector term in Sec.
II.D� is modified with the Raman interaction �a2 tensor

term�. The Hamiltonian becomes Ĥ=�BSâLâA
† +�PâLâA

+H.c. Various aspects of this effect have been consid-
ered by Julsgaard �2003�, Kupriyanov et al. �2005�, and
Sherson, Julsgaard, and Polzik �2006�, as well as by Ger-
emia et al. �2006�. Whereas in early work this effect was
considered as a source of imperfections, lately it became
a subject of intensive studies as a new resource for inter-
faces �Wasilewski et al., 2009�.

The beam-splitter interaction �EIT� experiments
mostly use two ground hyperfine levels. Magnetic de-
generacy leads to imperfections which can be reduced
by careful optical pumping and polarization filtering
�Choi et al., 2008�.

VIII. OUTLOOK

The light-matter quantum interface, a term coined in
the end of 1990s, is one of the pillars of the field of
quantum information processing and communication
�Zoller et al., 2005�. In less than a decade since the first
demonstrations of a quantum interface between light
and an atomic ensemble the ensemble approach has be-
come one of the most active areas of research in the
field. The interactions which seem most promising for
interfaces at the moment are discussed in this review:
the QND-Faraday and Raman interactions, EIT, and
photon echo.

Both fundamental and application driven aspects are
obvious within this approach. One of the interesting fun-
damental issues concerns the multiparticle entanglement
necessarily present in the ensemble-based approach. At
the same time the interface is a kind of a quantum chan-
nel, hence its relation to the theory of quantum channel
capacity should be explored in the future. This issue is
connected to the fidelity of the interface since it is
known that a quantum channel with F&2/3 for coher-
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ent states has a nonzero quantum capacity �Grosshans
and Grangier, 2001; Wolf et al., 2007�. Quantum inter-
face also allows for storing optimal quantum clones of a
state of light as proposed by Fiurasek et al. �2004�. An-
other feature which is intrinsic for the ensembles of at-
oms is their multimode capacity. This multimode capac-
ity comes in the form of different temporal light shapes
which are mapped into different longitudinal or spectral
atomic modes �Fleischhauer and Lukin, 2002; Simon, de
Riedmatten, et al., 2007; Nunn et al., 2008; Afzelius et al.,
2009� as well as different transverse modes or “quantum
holograms” �Surmacz et al., 2008; Vasilyev et al., 2008�,
see also Tordrup et al. �2008�. Along the lines of the
latter the first experiments demonstrating storage of
classical images via the EIT approach have recently ap-
peared �Shuker et al., 2008; Vudyasetu et al., 2008�.

Long-distance quantum communication is one of the
most actively pursued applications of the interface at the
moment. It is based on the combination of probabilistic
entanglement generation and deterministic entangle-
ment swapping—a quantum repeater with atomic en-
sembles �Duan et al., 2001�—which may serve as the ba-
sis for a “quantum internet” �Kimble, 2008�. New
applications for quantum memories and interfaces, such
as, e.g., quantum voting and surveying �Hillery et al.,
2006; Vaccaro et al., 2007�, should be explored.

Advanced architectures for quantum computing may
be enabled by highly efficient photon-based connections
between small scale atomic processing nodes �Jiang et
al., 2007�. An interesting direction in this respect is the
combination of photon counting and QND-Faraday con-
tinuous variable measurement techniques. It allows one
to combine the high efficiency of the homodyne mea-
surement and the non-Gaussian states, such as
Schrödinger cat states which can be generated by pho-
ton counting �Massar and Polzik, 2003; Genes and Ber-
man, 2006�. Progress along these lines depends critically
on the development of highly efficient photon counters
and photon number resolving detectors �Achilles et al.,
2004; Waks et al., 2006�.

For new applications of quantum interfaces a major
challenge for experimentalists will be to improve the fi-
delity and efficiency of the interface, and for theorists to
find protocols where atomic memories with the fidelity
and efficiency at the level of 90–95 %—the likely levels
to be achieved within the next few years—can help to
achieve goals impossible with classical interfaces.

Besides the fiducial write and read processes and long
storage times, a quantum interface between light and
matter will likely have to show yet another key element:
the possibility to process stored quantum information
and to allow for quantum logical gate operations for ac-
tive entanglement purification and error correction �Dür
and Briegel, 2007�. Theoretical studies of the require-
ments on gate operations in quantum repeater architec-
tures have been performed in great detail by Briegel et
al. �1998�, Dür et al. �1999�, Klein et al. �2006�. Hartmann
et al. �2007�, and Dorner et al. �2008�, recently investi-
gated the usage of decoherence free subspaces in quan-
tum communication. Proposals for ensemble-based

implementations unifying an efficient light matter inter-
face, stable quantum memory and reliable small scale
quantum processors are rare. A number of theoretical
studies suggest gate operations on stored collective exci-
tations via a Rydberg blockade mechanism �Lukin et al.,
2001; Brion et al., 2007; Petrosyan and Fleischhauer,
2008; Pedersen and Mølmer, 2009�, via an EIT enhanced
optical nonlinearity �Lukin and Imamoglu, 2001; Ottavi-
ani et al., 2003; André et al., 2005; Wang et al., 2006�, or
in hybrid systems, such as in Rabl et al. �2006�, where a
Cooper pair box serves as a saturable, nonlinear ele-
ment. Initial experiments along those lines are in
progress.

Efficient ensemble-based quantum memories and
matter-light interfaces—small scale quantum processors
for error correction, repeaters, possibly satellite-based
quantum communication �Aspelmeyer et al., 2003; Pfen-
nigbauer et al., 2005�, and even hybrid systems �Ham-
merer et al., 2009�—are the goals of today. The research
performed towards this end is both of fundamental in-
terest for our understanding of quantum physics and of
technological importance. Its highly interdisciplinary
character encompasses a broad spectrum of fields in
physics as well as in computer science and information
theory.
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APPENDIX A: ADIABATIC ELIMINATION

The effective ground-state Hamiltonian can be ob-
tained by adiabatic elimination. We start with the dipole
Hamiltonian Hint=−E� ·D� . For magnetic sublevels 	�gm�

all matrix elements of the ground-state dipole operator
vanish gm�D� �gm��=0, and similarly for the excited state
em�D� �em��=0. Introducing positively and negatively os-
cillating components D� =D� �+�+D� �−� and E� =E� �+�+E� �−� we
obtain in the rotating wave approximation
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Hint = − �E� �−� · D� �+� + D� �−� · E� �+�� , �A1�

where the first �second� term describe down �up� transi-
tions. Expanding the Hamiltonian we obtain

Hint = − �
m,m�

E� �−� · D� mm�
�+� �gm�em�� + H.c. �A2�

Using the Hamiltonian HA+Hint we obtain

d

dt
�gm�em��

= − im��gm�em��

+ iE� �+��
m�

�D� m�,m�
�−� �gm�gm�� − D� m�,m

�−� �em��em��� .

�A3�

For weak excitation �far below saturation� we can ne-
glect the excited-state operator �em��em��. Next, assum-
ing the dynamics is slow compared to the detuning , we
ignore the left-hand side compared to the first term on
the right-hand side. These approximations are valid pro-
vided that E� �+� ·D� m,m�

�−�
�m�. In this limit we obtain

�gm�em�� � + �
m�

E� �+� · D� m�,m�
�−�

m�
�gm�gm�� . �A4�

To obtain an effective ground-state Hamiltonian we
substitute Eq. �A4� into the Hamiltonian HA+Hint. Note
that we have to choose normal ordering of the operators
in Eq. �A2� when we insert Eq. �A3�. A detailed discus-
sion may be found in Barnett and Radmore �1997�. Sec-
ond, since the terms in HA involve the excited-state
population one could be tempted to ignore it since the
population is proportional to 1/m

2 . On the other hand,
there is also a factor m in front of this term, so that in
total this is on the order of 1/m and we have to include
it. To treat this term we introduce any intermediate state
�g0�

�em��em�� = �em��g0� · �g0�em�� �A5�

and substitute the result �A4� for �g0�em��. By doing this
we arrive at the effective Hamiltonian in Eq. �25�.

APPENDIX B: THREE-DIMENSIONAL HAMILTONIANS

We present the general Eq. �27� for the full three-
dimensional Hamiltonian. In this appendix we discuss
the 3D Hamiltonians for the three-model system,
beams-splitter, parametic-gain, and Faraday interaction.

First we consider the atomic beam-splitter interaction
in Fig. 2�a�. We assume that the state |1� is coupled to an
excited state by a classical field, so that E� �r��= E� �r���. In-
serting the expression for the quantized electric field
into Eq. �12� we obtain

HBS =� d3r��− ���r�,t��2

4
aA

† �r��aA�r��

−
�g�r���2


�
m

�um�r��;z��2aL,m
† �z�aL,m�z�

− �
m
�g*�r����r�,t�

2
um

* �r��;z�aL,m
† �z�aA�r�� + H.c.�� ,

�B1�

where the coupling constant g�r�� and resonant Rabi fre-
quency are defined as in Eq. �31� except with z replaced
by r�. The first term in this Hamiltonian is the ac Stark of
the ground state caused by the classical field, the second
term is the change in the index of refraction that the
quantum field experiences, and the last term represents
the exchange of excitation between the light and
ground-state coherence. We have here ignored the small
ac-Stark shift caused by the weak quantum field.

In case of the parametic-gain interaction shown in Fig.
2�b�, the fields interact to the transitions which are
flipped compared to the case of the beam-splitter inter-
action. The emission of a photon is therefore coupled to
an atomic transition in the opposite direction and we
obtain the parametric Hamiltonian by making the re-
placement aA�r��↔aA

† �r�� in the coupling between atoms
and light. In addition, the effective ac-Stark shift has the
opposite sign. The Hamiltonian thus reads

HG =� d3r�� ���r�,t��2

4
aA

† �r��aA�r��

− �
m
�g*�r����r�,t�

2
um

* �r��;z�aL,m
† �z�aA

† �r�� + H.c.�� .

�B2�

There is no index of refraction here since now the quan-
tum field couples to the almost empty transition. On the
other hand, the classical field now sees the atomic popu-
lation, and we should include the index of refraction in
the propagation of the classical light, which enters
through the phase of �.

For the Faraday interaction we assume a strong
x-polarized classical field, and consider the quantum
field in the y polarization as shown in Fig. 2�c�. There are
now two paths which lead to creation of a photon: pho-
ton creation �or absorption� can appear both through
the creation and annihilation of an atomic excitation. As
discussed in the main text the Faraday interaction is a
combination of the two Hamiltonians in Eqs. �B1� and
�B2� with equal weights. For the 1/2-1 /2 transition
shown in Fig. 2, however, the two paths leading to the
creation of a photon have opposite signs due to the
Clebsch-Gordon coefficients. The coupling constant g is
defined for circularly polarized light, so we should in-
clude a factor of �2 coming from the expansion of the
y-polarized quantum field in the circular polarization ba-
sis. The Hamiltonian is then given by HF= �HBS

−HG� /�2.
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For the spin 1/2 system classical and quantum fields
experience the same index of refraction, so we can re-
move the index of refraction from HBS if we also ignore
it for the classical field. An important result for this
Hamiltonian is that the ac-Stark shift of the ground state
disappears, because the classical field shifts the two
atomic states by the same amount.

APPENDIX C: PROPAGATION EQUATIONS FOR LIGHT

The light Hamiltonian �for a single transverse mode�
is given by

HL = �
k

�k�cak
†ak, �C1�

where the sum is over all longitudinal wave vectors. We
now derive the time evolution of the operator aL�z� de-
fined in Eq. �10�. If we assume that the modes contrib-
uting to the slowly varying operator aL�z� are centered
around a large positive value k0, we can ignore the ab-
solute value of the wave vector. Combining the time de-
rivative caused by the explicit time dependence intro-
duced in Eq. �10� with the time evolution caused by HL
we find the Heisenberg equation of motion

�aL

�t
= i	0aL − i�aL,�HL + Hint��

= − c
�

�z
aL − i�aL,Hint� . �C2�

To simplify the equations we introduce a rescaled time
variable by defining new operators ãL�z ,��=aL�z , t=�
+z /c� and ãA�z ,��=aA�z , t=�+z /c�. The propagation
equation for the light can then be simplified by using

� �

�t
+ c

�

�z
�aL�z,t = � + z/c� = c

�

�z
ãL�z,�� . �C3�

We also take the classical field to be moving in the posi-
tive z direction, in which case the Rabi frequency is
��z , t�=��t−z /c�=����. The equations of motion al-
ways use this rescaled time and we omit the tilde on the
operators and simply denote the rescaled time � by t.

For the parametic-gain the z dependence of the Rabi
frequency does not disappear completely from the
equations of motion since we should include the
exp�i�dz��g�z���2 /� dependence associated with the in-
dex of refraction for the classical field. For the Faraday
interaction the same factor appears in the propagation
of the quantum field and both factors can be omitted.

APPENDIX D: INCLUSION OF SPONTANEOUS
EMISSION

In Sec. II.B we derived equations of motion ignoring
spontaneous emission. To include spontaneous emission
we should modify Eq. �A3� such that it contains a decay
as well as the Langevin noise operators associated with
the decay. The general treatment of the Langevin noise
operators is quite complicated because they depend on

details of the decay mechanism. In particular, the equa-
tions for the parametic-gain and Faraday interaction de-
pend on whether the atoms end up in the states |0� and
|1� or some auxiliary states �am� �Fig. 2�. For the beam-
splitter interaction, on the other hand, the precise state
that the atoms decay to is less important �Gorshkov et
al., 2007a, 2007b�. Here for simplicity we only consider
the decay to some auxiliary states �am�.

To describe spontaneous emission we assume that
each of the excited states �em�j of the jth atom couples to
some state �am�j via a continuum of modes described by
the annihilation operators bj�	�. We assume that each
atom couples to its own continuum. By doing so we ig-
nore collective scattering effects such as superradiance
and Bragg scattering, and we also ignore dipole-dipole
interactions mediated by other than forward modes.
Whether this is a suitable approximation should be
evaluated for each particular realization, but to our
knowledge little work has been done on this subject.
The decay of the jth atom may then be described as

Hdecay
j =� d	�bj

†�	�bj�	�

+ ��	��
m

�gm�	��em�jam�bj�	� + H.c.�� ,

�D1�

where gm�	� is the coupling constant of the mth excited
state and ��	� is the density of states of the continuum.
To arrive at the equations of motion for the atomic op-
erators we first derive the equations of motion for bj�	�
using the Hamiltonian �D1�. We then formally solve this
equation by integrating over time and substitute the re-
sult into the equation for �gm�jem�. In the Markov ap-
proximation �Barnett and Radmore, 1997� Eq. �A3� ac-
quires the additional terms

d

dt
�gm�jem�� = ¯ −

�m�

2
�gm�jem�� + ��mFgm,em�

j �t� ,

�D2�

where we have ignored the Lamb shift. The decay and
noise operators are given by

�m = 2��gm�	m��2��	m� �D3�

and

Fgm,em�
j �t� =

− i�gm�jam��
��m�

�� d	gm��	�bj�	,t = 0�e−i�	−	m��t �D4�

with 	m being the transition frequency for the �em� to
�am� transition. Note that if there is a difference between
the population decay rate and twice the decay rate of
the polarization, e.g., due to collisional broadening, the
decay rate �m /2 appearing here should be the polariza-
tion decay rate. The correlation functions within the
Markov approximation are
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Fgm,em�
j† Fgm�,em�

j� � � 0,

�D5�
Fgm,em�

j Fgm�,em�
j�† � � ��t − t���m�,m��j,j��gm�gm��� .

Since most of the atoms are always in the state |0� the
only important noise operators are Fg0,em.

The equations of motion derived in Sec. II.B are due
to the time evolution of aL and the time evolution of
j+�r�� used in the definition of aA in Eq. �21�. Because the
decay simply adds a term in Eq. �D2� which is similar to
the detuning term in Eq. �A3� we can obtain the equa-
tions of motion for these operators using the replace-
ment in Eq. �42�. Note that for operators �gm�em�� the
detuning and decay appears in the combination 
− i� /2 so that for the ground-state operators �gm�gm��
coupling to �gm�em�� one should use the minus sign in
the substitution. On the other hand, if the coupling is to
operators �em��gm��, one should use the plus sign. In or-
der to conserve the commutation relation for the opera-
tors aA and aL one should also include the Langevin
noise operators and the time derivative of jx�r��� used in
the definition of aA �21�.

For the beam-splitter interaction the time derivative
of jx�r��� can be ignored because the strong classical field
couples to an almost empty transition. The equation of
motion can therefore be obtained simply by making the
substitution �42�. The equation of motion for the light
�35� arises from the commutator of aL with the Hamil-
tonian �A1�. In the resulting equation of motion aL
couples to �0�e� and we should therefore use the minus
sign in Eq. �42�. The atomic annihilation operator is pro-
portional to �0�1�, which couples to �0�e� and �e�1�. The
contribution from �e�1� is, however, small and has been
neglected in Eq. �35�, and we should once again use the
minus sign in the substitution �42�. Ignoring the noise
operators we arrive at the equations of motion �43�. In-
cluding the noise operators gives the additional terms

�

�z
aL�z,t� = ¯ +

��g*

 − i
�

2

F�z,t� ,

�D6�
�

�t
aA�z,t� = ¯ −

���*

2 − i�
F�z,t� .

The noise F�z , t� appearing here is defined by first defin-
ing with the rescaling

F�r�,t� =
1

�n�r�,t�
�

j
Fg0,e

j �t���r� − r�j� . �D7�

Integrating the equations of motion over the transverse
coordinates we define F�z , t� in analogy with Eq. �29�
�ignoring the mode index m for a single mode�. The re-
sulting operator has the standard expectation value of
vacuum noise F†�z , t�F�z� , t���=0, F�z , t�F†�z� , t���=��z
−z����t− t��. The addition of these noise operators en-
sures that the atom and light operators retain the correct
commutation relations.

For the parametic-gain the situation is a little differ-
ent. The light operator aL couples to the coherence �1�e�
and we should still use the substitution �42� with the
minus sign. The atomic coherence |0�1| again couples to
�0�e� and �e�1�, but now we can no longer neglect �e�1�,
which gives rise to the ac-Stark shift �the first term in the
spin equation in Eq. �36��. We should therefore use the
plus sign in the substitution �42� for this term.

To include the change of the mean spin jx�r� , t�� we
include the decay of the densities n0 and n1 of atoms in
states |0� and |1� given by

d

dt
n0�r�,t� � −

����r�,t��2

42 + �2 n0�r�,t� ,

�D8�
d

dt
n1�r�,t� � 0.

Since we also assume that the decay takes the atoms to
some auxiliary state �am�, an initially fully polarized state
will remain fully polarized so that jx�r� , t���n0�r� , t� /2 as
long as the interaction with the quantum field is weak
�note, however, that we are describing a situation lead-
ing to superradiant scattering so that this approximation
may break down quickly�. The contribution from the
time derivative of the mean spin then exactly cancels the
decay of aA�z , t� arising from the substitution �42�. Since
there is no longer any decay, one also finds that the re-
sulting equations of motion �53� do not contain any
noise.

Finally for the Faraday interaction the easiest way to
proceed is to combine again the results for the beam-
splitter interaction and the parametic-gain. Similar to
the discussion in Appendix B the equations of motion
for the Faraday interaction can therefore be obtained by
subtracting the right-hand side of Eq. �53� from the
right-hand side of Eq. �43� and dividing by �2. Further-
more, we again ignore the change of the propagation
caused by the index of refraction because this is accom-
panied by a similar change in the propagation of the
classical light. The resulting equations in terms of the x
and p operators are given in Eq. �54� without the noise
operators. The noise operators give the additional terms

�

�z
xL�z,t� = ¯ +

g�2�
�42 + �2

Fx�z,t� ,

�

�z
pL�z,t� = ¯ +

g�2�
�42 + �2

Fp�z,t� ,

�D9�
�

�t
xA�z,t� = ¯ −

���
�42 + �2

Fx�z,t� ,

�

�t
pA�z,t� = ¯ −

���
�42 + �2

Fp�z,t� .

Here for simplicity we have assumed � and g to be real
and have defined new noise operators
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Fx�z,t� =
1
�2

�ei�F�z,t� + e−i�F†�z,t�� ,

�D10�

Fp�z,t� =
1

�2i
�ei�F�z,t� − e−i�F†�z,t�� ,

which have the standard commutation relation
�Fx�z , t� ,Fp�z� , t���= i��z−z����t− t��.

APPENDIX E: DIMENSIONLESS EQUATIONS OF
MOTION

Casting the equations of motion for all three basic
interactions in a dimensionless form allows to see that
the constant �, Eq. �56�, naturally plays the role of the
coupling constant for all protocols. We introduce the di-
mensionless position and time coordinates s=z /L and
v=h�0, t� /h�0,T� running from 0 to 1. The rescaled time
variable simplifies the equations because it is propor-
tional to the total integrated intensity of the field. In the
weak saturation limit the dynamics is completely con-
trolled by the incident number of photons in the classical
field. Changing the intensity will thus influence the tem-
poral dynamics of the system, but the final state depends
primarily on the total number of incident photons.
When using such rescaled coordinates it is desirable to
also change the field operators such that an incident
light field operator which is normalized in time
�aL�t� ,aL

† �t���=��t− t�� is now normalized relative to the
new time variable �aL�v� ,aL

† �v���=��v−v��. This normal-
ization is achieved with the rescaling

ãA�s = z/L� = �LaA�z� ,
�E1�

ãL„v�t�… = −
��42 + �2

�d���t�
aL�t� ,

where we have used the dimensionless coupling constant
�=�h�0,T�, which appeared in the solution for the Far-
aday interaction �cf. Eq. �57�� in the far off-resonant
limit ��. Below we omit the tilde on the operators on
the left-hand side. In these new rescaled variables the
equations of motion for the beam-splitter interaction
�43� become

�

�s
aL�s,v� = i

�d

2�2 − i��
aL�s,v� − i�

ei�

2
aA�s,v� ,

�E2�

�

�v
aA�s,v� = i�2

 + i
�

2

�d
aA�s,v� − i�

ei�

2
aL�s,v� .

With the same rescaling for the parametic-gain inter-
action �53� we find

�

�s
aL�s,v� = − i�

ei�

2
aA

† �s,v� ,

�E3�

�

�v
aA�s,v� = − i

�2

�d
aA�s,v� − i�

ei�

2
aL

† �s,v� ,

where we have again assumed that g is real.
For the Faraday interaction the equations of motion

�54� become

�

�s
xL�s,v� = �pA�s,v� −

�2

42 + �2

d

2
xL�s,v� ,

�

�s
pL�s,v� = −

�2

42 + �2

d

2
pL�s,v� ,

�E4�
�

�v
xA�s,v� = �pL�s,v� −

�2

2d
xA�s,v� ,

�

�v
pA�s,v� = −

�2

2d
pA�s,v� ,

where we have ignored small corrections which vanish in
the far-detuned limit.

APPENDIX F: TENSOR DECOMPOSITION

The coefficients determining the strength of the irre-
ducible tensor components are

ak�� = �− �1+Fck�2k + 1��2F + 1
3

� ��
F�

�− �F�

1 − �F�/
�2F� + 1�

��J� F� I

F J 1�2�F k F

1 F� 1 �� ,

where the expressions in curly brackets are 6j symbols,
=F+1, �F�=F+1−F� and

c0 = 1, c1 =� 2

F�F + 1�
,

c2 = −
3

�10F�F + 1��2F − 1��2F + 3�
.

The last line is valid for F&1/2, that is nuclear spin I
�0, and has to be replaced by c2=0 for I=0.

In the asymptotic limit of large �blue� detuning, −
��F�, the sum in square brackets can be simplified by
means of

�
F�=F−1

F+1

�− �F��2F� + 1��J� F� I

F J 1�2�F k F

1 F� 1 �
= �− ��2J+2F+J�+I+k�� J I F

F k J
��J J k

1 1 J�
�

to get
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ak = lim
→−�

ak�� = �− �2J+F+J�+I+k+1ck�2k + 1�

��2F + 1
3 � J I F

F k J
�

��J J k

1 1 J�
� .

From this expression it is evident that a2 has to vanish
because the triple 	J ,J ,k
= 	1/2 ,1 /2 ,2
 does not satisfy
the triangle inequality. For the particular case of the ce-
sium �I=7/2� D2 line at F=4→F�=3,4 ,5 the asymptotic
values of the nonvanishing coefficients are a0=1/6 ,
a1=1/24.
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Braje, D. A., V. Balić, S. Goda, G. Y. Yin, and S. E. Harris,

2004, Phys. Rev. Lett. 93, 183601.
Brask, J. B., and A. S. Sørensen, 2008, Phys. Rev. A 78, 012350.
Braunstein, S., and H. Kimble, 1998, Phys. Rev. Lett. 80, 869.
Braunstein, S. L., 2005, Phys. Rev. A 71, 055801.
Braunstein, S. L., C. A. Fuchs, and H. J. Kimble, 2000, J. Mod.

Opt. 47, 267.
Braunstein, S. L., C. A. Fuchs, H. J. Kimble, and P. van Loock,

2001, Phys. Rev. A 64, 022321.
Braunstein, S. L., and P. van Loock, 2005, Rev. Mod. Phys. 77,

513.
Briegel, H.-J., W. Dür, J. I. Cirac, and P. Zoller, 1998, Phys.

Rev. Lett. 81, 5932.
Brion, E., K. Mølmer, and M. Saffman, 2007, Phys. Rev. Lett.

99, 260501.
Camacho, R. M., C. J. Broadbent, I. Ali-Khan, and J. C. How-

ell, 2007, Phys. Rev. Lett. 98, 043902.
Carman, R. L., F. Shimizu, C. S. Wang, and N. Bloembergen,

1970, Phys. Rev. A 2, 60.
Cerf, N. J., O. Krüger, P. Navez, R. F. Werner, and M. M. Wolf,

2005, Phys. Rev. Lett. 95, 070501.
Chaikin, P. M., and T. C. Lubensky, 1995, Principles of Con-

densed Matter Physics �Cambridge University Press, Cam-
bridge, U.K.�.

Chaneliere, T., D. Matsukevich, S. Jenkins, S.-Y. Lan, T. A. B.
Kennedy, and A. Kuzmich, 2005, Nature �London� 438, 833.

Chaneliere, T., D. N. Matsukevich, S. D. Jenkins, S.-Y. Lan, R.
Zhao, T. A. B. Kennedy, and A. Kuzmich, 2007, Phys. Rev.
Lett. 98, 113602.

Chaudhury, S., G. A. Smith, K. Schulz, and P. S. Jessen, 2006,
Phys. Rev. Lett. 96, 043001.

Chen, S., Y.-A. Chen, T. Strassel, Z.-S. Yuan, B. Zhao, J.
Schmiedmayer, and J.-W. Pan, 2006, Phys. Rev. Lett. 97,
173004.

Chen, S., Y.-A. Chen, B. Zhao, Z.-S. Yuan, J. Schmiedmayer,
and J.-W. Pan, 2007, Phys. Rev. Lett. 99, 180505.

Chen, Y.-A., S. Chen, Z.-S. Yuan, B. Zhao, C.-S. Chuu, J.
Schmiedmayer, and J.-W. Pan, 2008, Nat. Phys. 4, 103.

Chen, Z.-B., B. Zhao, Y.-A. Chen, J. Schmiedmayer, and J.-W.
Pan, 2007, Phys. Rev. A 76, 022329.

Childress, L., J. M. Taylor, A. S. Sørensen, and M. D. Lukin,
2005, Phys. Rev. A 72, 052330.

Choi, K. S., H. Deng, J. Laurat, and H. J. Kimble, 2008, Nature
�London� 452, 67.

Chou, C., S. Polyakov, A. Kuzmich, and H. Kimble, 2004,
Appl. Phys. Lett. 92, 213601.

Chou, C. W., H. de Riedmatten, D. Felinto, S. V. Polyakov, S.
J. van Enk, and H. J. Kimble, 2005, Nature �London� 438,
828.

Chou, C.-W., J. Laurat, H. Deng, K. S. Choi, H. de Riedmat-

1089Hammerer, Sørensen, and Polzik: Quantum interface between light and atomic …

Rev. Mod. Phys., Vol. 82, No. 2, April–June 2010

http://dx.doi.org/10.1080/09500340410001670875
http://dx.doi.org/10.1103/PhysRevLett.100.170503
http://dx.doi.org/10.1103/PhysRevLett.100.170503
http://dx.doi.org/10.1088/1751-8113/40/28/S01
http://dx.doi.org/10.1103/PhysRevA.79.052329
http://dx.doi.org/10.1103/PhysRevLett.96.043602
http://dx.doi.org/10.1238/Physica.Topical.105a00027
http://dx.doi.org/10.1103/PhysRevLett.94.063902
http://dx.doi.org/10.1103/PhysRevLett.88.243602
http://dx.doi.org/10.1103/PhysRevLett.88.243602
http://dx.doi.org/10.1103/PhysRevLett.89.143602
http://dx.doi.org/10.1103/PhysRevLett.100.093602
http://dx.doi.org/10.1073/pnas.0901550106
http://dx.doi.org/10.1073/pnas.0901550106
http://dx.doi.org/10.1103/PhysRevA.6.2211
http://dx.doi.org/10.1109/JSTQE.2003.820918
http://dx.doi.org/10.1109/JSTQE.2003.820918
http://dx.doi.org/10.1038/nphys521
http://dx.doi.org/10.1038/nature02176
http://dx.doi.org/10.1038/nature02176
http://dx.doi.org/10.1103/PhysRevLett.94.183601
http://dx.doi.org/10.1038/nature02608
http://dx.doi.org/10.1103/PhysRevLett.88.097904
http://dx.doi.org/10.1103/PhysRevLett.70.1895
http://dx.doi.org/10.1103/PhysRevLett.95.133601
http://dx.doi.org/10.1103/PhysRevLett.95.133601
http://dx.doi.org/10.1103/PhysRevLett.66.2593
http://dx.doi.org/10.1103/PhysRevLett.66.2593
http://dx.doi.org/10.1103/PhysRevA.66.043811
http://dx.doi.org/10.1038/37539
http://dx.doi.org/10.1103/PhysRevA.67.032302
http://dx.doi.org/10.1103/PhysRevA.67.032302
http://dx.doi.org/10.1109/JSTQE.2003.820908
http://dx.doi.org/10.1109/JSTQE.2003.820908
http://dx.doi.org/10.1103/RevModPhys.68.1
http://dx.doi.org/10.1103/PhysRevLett.93.183601
http://dx.doi.org/10.1103/PhysRevA.78.012350
http://dx.doi.org/10.1103/PhysRevLett.80.869
http://dx.doi.org/10.1103/PhysRevA.71.055801
http://dx.doi.org/10.1080/09500340008244041
http://dx.doi.org/10.1080/09500340008244041
http://dx.doi.org/10.1103/PhysRevA.64.022321
http://dx.doi.org/10.1103/RevModPhys.77.513
http://dx.doi.org/10.1103/RevModPhys.77.513
http://dx.doi.org/10.1103/PhysRevLett.81.5932
http://dx.doi.org/10.1103/PhysRevLett.81.5932
http://dx.doi.org/10.1103/PhysRevLett.99.260501
http://dx.doi.org/10.1103/PhysRevLett.99.260501
http://dx.doi.org/10.1103/PhysRevLett.98.043902
http://dx.doi.org/10.1103/PhysRevA.2.60
http://dx.doi.org/10.1103/PhysRevLett.95.070501
http://dx.doi.org/10.1038/nature04315
http://dx.doi.org/10.1103/PhysRevLett.98.113602
http://dx.doi.org/10.1103/PhysRevLett.98.113602
http://dx.doi.org/10.1103/PhysRevLett.96.043001
http://dx.doi.org/10.1103/PhysRevLett.97.173004
http://dx.doi.org/10.1103/PhysRevLett.97.173004
http://dx.doi.org/10.1103/PhysRevLett.99.180505
http://dx.doi.org/10.1038/nphys832
http://dx.doi.org/10.1103/PhysRevA.76.022329
http://dx.doi.org/10.1103/PhysRevA.72.052330
http://dx.doi.org/10.1038/nature06670
http://dx.doi.org/10.1038/nature06670
http://dx.doi.org/10.1103/PhysRevLett.92.213601
http://dx.doi.org/10.1038/nature04353
http://dx.doi.org/10.1038/nature04353


ten, D. Felinto, and H. J. Kimble, 2007, Science 316, 1316.
Chuu, C.-S., T. Strassel, B. Zhao, M. Koch, Y.-A. Chen, S.

Chen, Z.-S. Yuan, J. Schmiedmayer, and J.-W. Pan, 2008,
Phys. Rev. Lett. 101, 120501.

Cola, M., M. Paris, N. Piovella, and R. Bonifacio, 2004, J. Phys.
B 37, S187.

Dantan, A., A. Bramati, and M. Pinard, 2005, Phys. Rev. A 71,
043801.

Dantan, A., J. Cviklinski, E. Giacobino, and M. Pinard, 2006,
Phys. Rev. Lett. 97, 023605.

Dantan, A., J. Cviklinski, M. Pinard, and P. Grangier, 2006,
Phys. Rev. A 73, 032338.

Dantan, A., and M. Pinard, 2004, Phys. Rev. A 69, 043810.
de Echaniz, S. R., M. Koschorreck, M. Napolitano, M.

Kubasik, and M. W. Mitchell, 2008, Phys. Rev. A 77, 032316
de Riedmatten, H., M. Afzelius, M. U. Staudt, C. Simon, and

N. Gisin, 2008, Nature �London� 456, 773.
Deutsch, I. H., and P. S. Jessen, 1998, Phys. Rev. A 57, 1972.
Dorner, U., A. Klein, and D. Jaksch, 2008, Nature �London� 8,

0468.
Du, S., P. Kolchin, C. Belthangady, G. Y. Yin, and S. E. Harris,

2008, Phys. Rev. Lett. 100, 183603.
Duan, L. M., J. I. Cirac, and P. Zoller, 2002, Phys. Rev. A 66,

023818.
Duan, L.-M., J. I. Cirac, P. Zoller, and E. S. Polzik, 2000, Phys.

Rev. Lett. 85, 5643.
Duan, L.-M., G. Giedke, J. I. Cirac, and P. Zoller, 2000, Phys.

Rev. Lett. 84, 2722.
Duan, L.-M., M. D. Lukin, J. I. Cirac, and P. Zoller, 2001,

Nature �London� 414, 413.
Dür, W., and H. J. Briegel, 2007, Rep. Prog. Phys. 70, 1381.
Dür, W., H.-J. Briegel, J. I. Cirac, and P. Zoller, 1999, Phys.

Rev. A 59, 169.
Eckert, K., O. Romero-Isart, M. Rodriguez, M. Lewenstein, E.

S. Polzik, and A. Sanpera, 2008, Nat. Phys. 4, 50.
Edmonds, A., 1964, Drehimpulse in der Quantenmechanik

�Bibliographisches Institut, Mannheim�.
Einstein, A., B. Podolsky, and N. Rosen, 1935, Phys. Rev. 47,

777.
Eisaman, M., A. Aandre, F. Massou, M. Fleischhauer, A. Zi-

brov, and M. Lukin, 2005, Nature �London� 438, 837.
Eisert, J., and M. B. Plenio, 2003, Int. J. Quantum Inf. 1, 479.
Eisert, J., S. Scheel, and M. B. Plenio, 2002, Phys. Rev. Lett. 89,

137903.
Erhard, M., and H. Helm, 2001, Phys. Rev. A 63, 043813.
Felinto, D., C. W. Chou, J. Laurat, E. W. Schomburg, H. de

Riedmatten, and H. J. Kimble, 2006, Nat. Phys. 2, 844.
Fernholz, T., H. Krauter, K. Jensen, J. F. Sherson, A. S. S.

Rensen, and E. S. Polzik, 2008, Phys. Rev. Lett. 101, 073601.
Fiurasek, J., 2002, Phys. Rev. Lett. 89, 137904.
Fiurasek, J., 2003, Phys. Rev. A 68, 022304.
Fiurasek, J., H. J. Cerf, and E. S. Polzik, 2004, Phys. Rev. Lett.

93, 180501.
Fiurasek, J., J. Sherson, T. Opatrny, and E. S. Polzik, 2006,

Phys. Rev. A 73, 022331.
Fleischhauer, M., A. Imamoglu, and J. P. Marangos, 2005, Rev.

Mod. Phys. 77, 633.
Fleischhauer, M., and M. Lukin, 2002, Phys. Rev. A 65, 022314.
Fleischhauer, M., and M. D. Lukin, 2000, Phys. Rev. Lett. 84,

5094.
Fleischhauer, M., and T. Richter, 1995, Phys. Rev. A 51, 2430.
Fraval, E., M. J. Sellars, and J. J. Longdell, 2005, Phys. Rev.

Lett. 95, 030506.

Furusawa, A., J. Sorensen, S. Braunstein, C. Fuchs, H. Kimble,
and E. S. Polzik, 1998, Science 282, 706.

Furusawa, A., and N. Takei, 2007, Phys. Rep. 443, 97.
Genes, C., and P. R. Berman, 2006, Phys. Rev. A 73, 013801.
Geremia, J. M., J. K. Stockton, and H. Mabuchi, 2006, Phys.

Rev. A 73, 042112.
Giedke, G., and J. I. Cirac, 2002, Phys. Rev. A 66, 032316.
Giedke, G., M. M. Wolf, O. Krüger, R. F. Werner, and J. I.

Cirac, 2003, Phys. Rev. Lett. 91, 107901.
Gorshkov, A. V., A. André, M. Fleischhauer, A. S. Sørensen,

and M. D. Lukin, 2007, Phys. Rev. Lett. 98, 123601.
Gorshkov, A. V., A. André, M. D. Lukin, and A. S. Sørensen,

2007a, Phys. Rev. A 76, 033804.
Gorshkov, A. V., A. André, M. D. Lukin, and A. S. Sørensen,

2007b, Phys. Rev. A 76, 033805.
Gorshkov, A. V., A. André, M. D. Lukin, and A. S. Sørensen,

2007c, Phys. Rev. A 76, 033806.
Gorshkov, A. V., T. Calarco, M. D. Lukin, and A. S. Sørensen,

2008, Phys. Rev. A 77, 043806.
Groeger, S., G. Bison, J. Schenker, R. Wynands, and A. Weis,

2006, Eur. Phys. J. D 38, 239.
Grosshans, F., and P. Grangier, 2001, Phys. Rev. A 64, 010301.
Hald, J., J. L. Sørensen, C. Schori, and E. S. Polzik, 1999, Phys.

Rev. Lett. 83, 1319.
Hammerer, K., 2006, Quantum Information Processing with

Atomic Ensembles and Light, Ph.D. thesis, �Technical Uni-
versity Munich�.

Hammerer, K., M. Aspelmeyer, E. S. Polzik, and P. Zoller.,
2009, Phys. Rev. Lett. 102, 020501.

Hammerer, K., K. Mølmer, E. S. Polzik, and J. Cirac, 2004,
Phys. Rev. A 70, 044304.

Hammerer, K., E. S. Polzik, and J. I. Cirac, 2005, Phys. Rev. A
72, 052313.

Hammerer, K., E. S. Polzik, and J. I. Cirac, 2006, Phys. Rev. A
74, 064301.

Hammerer, K., M. M. Wolf, E. S. Polzik, and J. I. Cirac, 2005,
Phys. Rev. Lett. 94, 150503.

Hansel, W., P. Hommelhoff, T. W. Hansch, and J. Reichel,
2001, Nature �London� 413, 498.

Happer, W., 1972, Rev. Mod. Phys. 44, 169.
Happer, W., and B. S. Mathur, 1967, Phys. Rev. 163, 12.
Hartmann, L., B. Kraus, H.-J. Briegel, and W. Dür, 2007, Phys.

Rev. A 75, 032310.
Hau, L. V., S. E. Harris, Z. Dutton, and C. H. Behroozi, 1999,

Nature �London� 397, 594.
Hemmer, P. R., A. V. Turukhin, M. S. Shahriar, and J. A.

Musser, 2001, Opt. Lett. 26, 361.
Herskind, P., A. Dantan, M. B. Langkilde-Lauesen, A.

Mortensen, J. L. Sørensen, and M. Drewsen, 2008, Appl.
Phys. B 93, 373.

Hétet, G., J. J. Longdell, A. L. Alexander, P. K. Lam, and M. J.
Sellars, 2008, Phys. Rev. Lett. 100, 023601.

Hétet, G., A. Peng, M. T. Johnsson, J. J. Hope, and P. K. Lam,
2008, Phys. Rev. A 77, 012323.

Hillery, M., M. Ziman, V. Buzek, and M. Bieliková, 2006, Phys.
Lett. A 349, 75.

Holland, M. J., M. J. Collett, D. F. Walls, and M. D. Levenson,
1990, Phys. Rev. A 42, 2995.

Holstein, T., and H. Primakoff, 1940, Phys. Rev. 58, 1098.
Honda, K., D. Akamatsu, M. Arikawa, Y. Yokoi, K. Akiba, S.

Nagatsuka, T. Tanimura, A. Furusawa, and M. Kozuma, 2008,
Phys. Rev. Lett. 100, 093601.

Horoshko, D. B., and S. Y. Kilin, 2000, Phys. Rev. A 61,

1090 Hammerer, Sørensen, and Polzik: Quantum interface between light and atomic …

Rev. Mod. Phys., Vol. 82, No. 2, April–June 2010

http://dx.doi.org/10.1126/science.1140300
http://dx.doi.org/10.1103/PhysRevLett.101.120501
http://dx.doi.org/10.1088/0953-4075/37/7/064
http://dx.doi.org/10.1088/0953-4075/37/7/064
http://dx.doi.org/10.1103/PhysRevA.71.043801
http://dx.doi.org/10.1103/PhysRevA.71.043801
http://dx.doi.org/10.1103/PhysRevLett.97.023605
http://dx.doi.org/10.1103/PhysRevA.73.032338
http://dx.doi.org/10.1103/PhysRevA.69.043810
http://dx.doi.org/10.1103/PhysRevA.77.032316
http://dx.doi.org/10.1038/nature07607
http://dx.doi.org/10.1103/PhysRevA.57.1972
http://dx.doi.org/10.1103/PhysRevLett.100.183603
http://dx.doi.org/10.1103/PhysRevA.66.023818
http://dx.doi.org/10.1103/PhysRevA.66.023818
http://dx.doi.org/10.1103/PhysRevLett.85.5643
http://dx.doi.org/10.1103/PhysRevLett.85.5643
http://dx.doi.org/10.1103/PhysRevLett.84.2722
http://dx.doi.org/10.1103/PhysRevLett.84.2722
http://dx.doi.org/10.1038/35106500
http://dx.doi.org/10.1088/0034-4885/70/8/R03
http://dx.doi.org/10.1103/PhysRevA.59.169
http://dx.doi.org/10.1103/PhysRevA.59.169
http://dx.doi.org/10.1038/nphys776
http://dx.doi.org/10.1103/PhysRev.47.777
http://dx.doi.org/10.1103/PhysRev.47.777
http://dx.doi.org/10.1038/nature04327
http://dx.doi.org/10.1142/S0219749903000371
http://dx.doi.org/10.1103/PhysRevLett.89.137903
http://dx.doi.org/10.1103/PhysRevLett.89.137903
http://dx.doi.org/10.1103/PhysRevA.63.043813
http://dx.doi.org/10.1038/nphys450
http://dx.doi.org/10.1103/PhysRevLett.101.073601
http://dx.doi.org/10.1103/PhysRevLett.89.137904
http://dx.doi.org/10.1103/PhysRevA.68.022304
http://dx.doi.org/10.1103/PhysRevLett.93.180501
http://dx.doi.org/10.1103/PhysRevLett.93.180501
http://dx.doi.org/10.1103/PhysRevA.73.022331
http://dx.doi.org/10.1103/RevModPhys.77.633
http://dx.doi.org/10.1103/RevModPhys.77.633
http://dx.doi.org/10.1103/PhysRevA.65.022314
http://dx.doi.org/10.1103/PhysRevLett.84.5094
http://dx.doi.org/10.1103/PhysRevLett.84.5094
http://dx.doi.org/10.1103/PhysRevA.51.2430
http://dx.doi.org/10.1103/PhysRevLett.95.030506
http://dx.doi.org/10.1103/PhysRevLett.95.030506
http://dx.doi.org/10.1126/science.282.5389.706
http://dx.doi.org/10.1016/j.physrep.2007.03.001
http://dx.doi.org/10.1103/PhysRevA.73.013801
http://dx.doi.org/10.1103/PhysRevA.73.042112
http://dx.doi.org/10.1103/PhysRevA.73.042112
http://dx.doi.org/10.1103/PhysRevA.66.032316
http://dx.doi.org/10.1103/PhysRevLett.91.107901
http://dx.doi.org/10.1103/PhysRevLett.98.123601
http://dx.doi.org/10.1103/PhysRevA.76.033804
http://dx.doi.org/10.1103/PhysRevA.76.033805
http://dx.doi.org/10.1103/PhysRevA.76.033806
http://dx.doi.org/10.1103/PhysRevA.77.043806
http://dx.doi.org/10.1140/epjd/e2006-00037-y
http://dx.doi.org/10.1103/PhysRevA.64.010301
http://dx.doi.org/10.1103/PhysRevLett.83.1319
http://dx.doi.org/10.1103/PhysRevLett.83.1319
http://dx.doi.org/10.1103/PhysRevLett.102.020501
http://dx.doi.org/10.1103/PhysRevA.70.044304
http://dx.doi.org/10.1103/PhysRevA.72.052313
http://dx.doi.org/10.1103/PhysRevA.72.052313
http://dx.doi.org/10.1103/PhysRevA.74.064301
http://dx.doi.org/10.1103/PhysRevA.74.064301
http://dx.doi.org/10.1103/PhysRevLett.94.150503
http://dx.doi.org/10.1038/35097032
http://dx.doi.org/10.1103/RevModPhys.44.169
http://dx.doi.org/10.1103/PhysRev.163.12
http://dx.doi.org/10.1103/PhysRevA.75.032310
http://dx.doi.org/10.1103/PhysRevA.75.032310
http://dx.doi.org/10.1038/17561
http://dx.doi.org/10.1364/OL.26.000361
http://dx.doi.org/10.1007/s00340-008-3199-8
http://dx.doi.org/10.1007/s00340-008-3199-8
http://dx.doi.org/10.1103/PhysRevLett.100.023601
http://dx.doi.org/10.1103/PhysRevA.77.012323
http://dx.doi.org/10.1016/j.physleta.2005.09.010
http://dx.doi.org/10.1016/j.physleta.2005.09.010
http://dx.doi.org/10.1103/PhysRevA.42.2995
http://dx.doi.org/10.1103/PhysRev.58.1098
http://dx.doi.org/10.1103/PhysRevLett.100.093601
http://dx.doi.org/10.1103/PhysRevA.61.032304


032304.
Jackson, J. D., 1975, Classical Electrodynamics, 2nd ed. �Wiley,

New York�.
Jiang, L., J. M. Taylor, and M. D. Lukin, 2007, Phys. Rev. A 76,

012301.
Josse, V., A. Dantan, A. Bramati, M. Pinard, and E. Gia-

cobino, 2004, Phys. Rev. Lett. 92, 123601.
Julsgaard, B., 2003, Entanglement and Quantum Interactions

with Macroscopic Gas Samples, Ph.D. thesis �University of
Aarhus, Aarhus�.

Julsgaard, B., A. Kozhekin, and E. S. Polzik, 2001, Nature
�London� 413, 400.

Julsgaard, B., J. Sherson, J. Fiurasek, J. Cirac, and E. S. Polzik,
2004, Nature �London� 432, 482.

Julsgaard, B., J. Sherson, J. L. S. Sorenson, and E. S. Polzik,
2004, J. Opt. B: Quantum Semiclassical Opt. 6, 5.

Keyl, M., D. Schlingemann, and R. Werner, 2003, Quantum
Inf. Process. 3, 281.

Keyl, M., and R. Werner, 1999, J. Math. Phys. 40, 3283.
Kimble, H. J., 2008, Nature �London� 453, 1023.
Kitagawa, M., and M. Ueda, 1993, Phys. Rev. A 47, 5138.
Kittel, C., 1987, Quantum Theory of Solids �Wiley, New York�.
Klein, A., U. Dorner, C. M. Alves, and D. Jaksch, 2006, Phys.

Rev. A 73, 012332.
Korbicz, J. K., J. I. Cirac, and M. Lewenstein, 2005a, Phys.

Rev. Lett. 95, 120502.
Korbicz, J. K., J. I. Cirac, and M. Lewenstein, 2005b, Phys.

Rev. Lett. 95, 259901.
Kozhekin, A. E., K. Mølmer, and E. S. Polzik, 2000, Phys. Rev.

A 62, 033809.
Kraus, B., K. Hammerer, G. Giedke, and J. I. Cirac, 2003,

Phys. Rev. A 67, 042314.
Kraus, B., W. Tittel, N. Gisin, M. Nilsson, S. Kröll, and J. I.

Cirac, 2006, Phys. Rev. A 73, 020302.
Kupriyanov, D. V., O. S. Mishina, I. M. Sokolov, B. Julsgaard,

and E. S. Polzik, 2005, Phys. Rev. A 71, 032348.
Kurnit, N. A., I. D. Abella, and S. R. Hartmann, 1964, Phys.

Rev. Lett. 13, 567.
Kurucz, Z., and M. Fleischhauer, 2008, Phys. Rev. A 78,

023805.
Kuzmich, A., N. P. Bigelow, and L. Mandel, 1998, Europhys.

Lett. 42, 481.
Kuzmich, A., W. P. Bowen, A. D. Boozer, A. Boca, C. W.

Chou, L.-M. Duan, and H. J. Kimble, 2003, Nature �London�
423, 731.

Kuzmich, A., and T. A. B. Kennedy, 2004, Phys. Rev. Lett. 92,
030407.

Kuzmich, A., L. Mandel, and N. P. Bigelow, 2000, Phys. Rev.
Lett. 85, 1594.

Kuzmich, A., K. Molmer, and E. S. Polzik, 1997, Phys. Rev.
Lett. 79, 4782.

Kuzmich, A., and E. S. Polzik, 2000, Phys. Rev. Lett. 85, 5639.
Kuzmich, A., and E. S. Polzik, 2003, Quantum Information

with Continuous Variables �Kluwer, Dordrecht�, pp. 231–265.
Leonhardt, U., 2003, Rep. Prog. Phys. 66, 1207.
Liu, C., Z. Dutton, C. H. Behroozi, and L. V. Hau, 2001, Na-

ture �London� 409, 490.
Lloyd, S., and S. L. Braunstein, 1999, Phys. Rev. Lett. 82, 1784.
Longdell, J. J., E. Fraval, M. J. Sellars, and N. B. Manson,

2005, Phys. Rev. Lett. 95, 063601.
Longdell, J. J., G. Hétet, P. K. Lam, and M. J. Sellars, 2008,

Phys. Rev. A 78, 032337.
Louchet, A., Y. L. Du, F. Bretenaker, T. Chaneliére, F. Gold-

farb, I. Lorgeré, J.-L. L. Gouët, O. Guillot-Noël, and P. Gold-
ner, 2008, Phys. Rev. B 77, 195110.

Loudon, R., 2004, The Quantum Theory of Light �Oxford Uni-
versity Press, Oxford�.

Lukin, M. D., 2003, Rev. Mod. Phys. 75, 457.
Lukin, M. D., M. Fleischhauer, R. Cote, L. M. Duan, D.

Jaksch, J. I. Cirac, and P. Zoller, 2001, Phys. Rev. Lett. 87,
037901.

Lukin, M. D., and A. Imamoglu, 2001, Nature �London� 413,
273.

Lukin, M. D., S. F. Yelin, and M. Fleischhauer, 2000, Phys. Rev.
Lett. 84, 4232.

Lvovsky, A. I., and M. G. Raymer, 2009, Rev. Mod. Phys. 81,
299.

Madsen, L. B., and K. Mølmer, 2004, Phys. Rev. A 70, 052324.
Mandel, O., M. Greiner, A. Widera, T. Rom, T. W. Hansch,

and I. Bloch, 2003, Nature �London� 425, 937.
Manz, S., T. Fernholz, J. Schmiedmayer, and J.-W. Pan, 2007,

Phys. Rev. A 75, 040101.
Massar, S., and E. S. Polzik, 2003, Phys. Rev. Lett. 91, 060401.
Massar, S., and S. Popescu, 1995, Phys. Rev. Lett. 74, 1259.
Matsukevich, D. N., T. Chanelière, S. D. Jenkins, S.-Y. Lan, T.

A. B. Kennedy, and A. Kuzmich, 2006, Phys. Rev. Lett. 97,
013601.

Matsukevich, D. N., and A. Kuzmich, 2004, Science 306, 663.
Menicucci, N. C., P. van Loock, M. Gu, C. Weedbrook, T. C.

Ralph, and M. A. Nielsen, 2006, Phys. Rev. Lett. 97, 110501.
Mewes, C., and M. Fleischhauer, 2005, Phys. Rev. A 72,

022327.
Milonni, P. W., and J. H. Eberly, 1988, Lasers �Wiley, New

York�.
Mishina, O., D. Kupriyanov, and E. S. Polzik, 2006, in Quan-

tum Information Processing from Theory to Experiment, Pro-
ceedings of the NATO Advanced Research Workshop �IOS,
Amsterdam�, Vol. 199, pp. 346–352.

Mishina, O. S., D. V. Kupriyanov, J. H. Müller, and E. S.
Polzik, 2007, Phys. Rev. A 75, 042326.

Mišta, L. J., and R. Filip, 2005, Phys. Rev. A 71, 032342.
Moiseev, S., 2003, Opt. Spectrosc. 94 788.
Moiseev, S. A., and S. Kröll, 2001, Phys. Rev. Lett. 87, 173601.
Müller, J. H., P. Petrov, D. Oblak, C. L. G. Alzar, S. R. de

Echaniz, and E. S. Polzik, 2005, Phys. Rev. A 71, 033803.
Muschik, C. A., I. de Vega, D. Porras, and J. I. Cirac, 2008,

Phys. Rev. Lett. 100, 063601.
Muschik, C. A., K. Hammerer, E. S. Polzik, and J. I. Cirac,

2006, Phys. Rev. A 73, 062329.
Neergaard-Nielsen, J. S., B. M. Nielsen, C. Hettich, K.

Mølmer, and E. S. Polzik, 2006, Phys. Rev. Lett. 97, 083604.
Nielsen, M., and I. Chuang, 2000, Quantum Computation and

Qauntum Information �Cambridge University Press, Cam-
bridge�.

Nilsson, M., and S. Kröll, 2005, Opt. Commun. 247, 393.
Nilsson, M., L. Rippe, S. Kroll, R. Klieber, and D. Suter, 2004,

Phys. Rev. B 70, 214116.
Novikova, I., A. V. Gorshkov, D. F. Phillips, A. S. Sørensen, M.

D. Lukin, and R. L. Walsworth, 2007, Phys. Rev. Lett. 98,
243602.

Novikova, I., D. F. Phillips, and R. L. Walsworth, 2007, Phys.
Rev. Lett. 99, 173604.

Novikova, I., N. B. Phillips, and A. V. Gorshkov, 2008, Phys.
Rev. A 78, 021802.

Nunn, J., K. Reim, K. C. Lee, V. O. Lorenz, B. J. Sussman, I.
A. Walmsley, and D. Jaksch, 2008, Phys. Rev. Lett. 101,

1091Hammerer, Sørensen, and Polzik: Quantum interface between light and atomic …

Rev. Mod. Phys., Vol. 82, No. 2, April–June 2010

http://dx.doi.org/10.1103/PhysRevA.61.032304
http://dx.doi.org/10.1103/PhysRevA.76.012301
http://dx.doi.org/10.1103/PhysRevA.76.012301
http://dx.doi.org/10.1103/PhysRevLett.92.123601
http://dx.doi.org/10.1038/35096524
http://dx.doi.org/10.1038/35096524
http://dx.doi.org/10.1038/nature03064
http://dx.doi.org/10.1088/1464-4266/6/1/002
http://dx.doi.org/10.1063/1.532887
http://dx.doi.org/10.1038/nature07127
http://dx.doi.org/10.1103/PhysRevA.47.5138
http://dx.doi.org/10.1103/PhysRevA.73.012332
http://dx.doi.org/10.1103/PhysRevA.73.012332
http://dx.doi.org/10.1103/PhysRevLett.95.120502
http://dx.doi.org/10.1103/PhysRevLett.95.120502
http://dx.doi.org/10.1103/PhysRevLett.95.259901
http://dx.doi.org/10.1103/PhysRevLett.95.259901
http://dx.doi.org/10.1103/PhysRevA.62.033809
http://dx.doi.org/10.1103/PhysRevA.62.033809
http://dx.doi.org/10.1103/PhysRevA.67.042314
http://dx.doi.org/10.1103/PhysRevA.73.020302
http://dx.doi.org/10.1103/PhysRevA.71.032348
http://dx.doi.org/10.1103/PhysRevLett.13.567
http://dx.doi.org/10.1103/PhysRevLett.13.567
http://dx.doi.org/10.1103/PhysRevA.78.023805
http://dx.doi.org/10.1103/PhysRevA.78.023805
http://dx.doi.org/10.1209/epl/i1998-00277-9
http://dx.doi.org/10.1209/epl/i1998-00277-9
http://dx.doi.org/10.1038/nature01714
http://dx.doi.org/10.1038/nature01714
http://dx.doi.org/10.1103/PhysRevLett.92.030407
http://dx.doi.org/10.1103/PhysRevLett.92.030407
http://dx.doi.org/10.1103/PhysRevLett.85.1594
http://dx.doi.org/10.1103/PhysRevLett.85.1594
http://dx.doi.org/10.1103/PhysRevLett.79.4782
http://dx.doi.org/10.1103/PhysRevLett.79.4782
http://dx.doi.org/10.1103/PhysRevLett.85.5639
http://dx.doi.org/10.1088/0034-4885/66/7/203
http://dx.doi.org/10.1038/35054017
http://dx.doi.org/10.1038/35054017
http://dx.doi.org/10.1103/PhysRevLett.82.1784
http://dx.doi.org/10.1103/PhysRevLett.95.063601
http://dx.doi.org/10.1103/PhysRevA.78.032337
http://dx.doi.org/10.1103/PhysRevB.77.195110
http://dx.doi.org/10.1103/RevModPhys.75.457
http://dx.doi.org/10.1103/PhysRevLett.87.037901
http://dx.doi.org/10.1103/PhysRevLett.87.037901
http://dx.doi.org/10.1038/35095000
http://dx.doi.org/10.1038/35095000
http://dx.doi.org/10.1103/PhysRevLett.84.4232
http://dx.doi.org/10.1103/PhysRevLett.84.4232
http://dx.doi.org/10.1103/RevModPhys.81.299
http://dx.doi.org/10.1103/RevModPhys.81.299
http://dx.doi.org/10.1103/PhysRevA.70.052324
http://dx.doi.org/10.1038/nature02008
http://dx.doi.org/10.1103/PhysRevA.75.040101
http://dx.doi.org/10.1103/PhysRevLett.91.060401
http://dx.doi.org/10.1103/PhysRevLett.74.1259
http://dx.doi.org/10.1103/PhysRevLett.97.013601
http://dx.doi.org/10.1103/PhysRevLett.97.013601
http://dx.doi.org/10.1126/science.1103346
http://dx.doi.org/10.1103/PhysRevLett.97.110501
http://dx.doi.org/10.1103/PhysRevA.72.022327
http://dx.doi.org/10.1103/PhysRevA.72.022327
http://dx.doi.org/10.1103/PhysRevA.75.042326
http://dx.doi.org/10.1103/PhysRevA.71.032342
http://dx.doi.org/10.1134/1.1576852
http://dx.doi.org/10.1103/PhysRevLett.87.173601
http://dx.doi.org/10.1103/PhysRevA.71.033803
http://dx.doi.org/10.1103/PhysRevLett.100.063601
http://dx.doi.org/10.1103/PhysRevA.73.062329
http://dx.doi.org/10.1103/PhysRevLett.97.083604
http://dx.doi.org/10.1016/j.optcom.2004.11.077
http://dx.doi.org/10.1103/PhysRevB.70.214116
http://dx.doi.org/10.1103/PhysRevLett.98.243602
http://dx.doi.org/10.1103/PhysRevLett.98.243602
http://dx.doi.org/10.1103/PhysRevLett.99.173604
http://dx.doi.org/10.1103/PhysRevLett.99.173604
http://dx.doi.org/10.1103/PhysRevA.78.021802
http://dx.doi.org/10.1103/PhysRevA.78.021802
http://dx.doi.org/10.1103/PhysRevLett.101.260502


260502.
Nunn, J., I. A. Walmsley, M. G. Raymer, K. Surmacz, F. C.

Waldermann, Z. Wang, and D. Jaksch, 2007, Phys. Rev. A 75,
011401�R�.

Oblak, D., P. G. Petrov, C. L. G. Alzar, W. Tittel, A. K. Ver-
shovski, J. K. Mikkelsen, J. L. Sørensen, and E. S. Polzik,
2005, Phys. Rev. A 71, 043807.

Ottaviani, C., D. Vitali, M. Artoni, F. Cataliotti, and P. Tom-
besi, 2003, Phys. Rev. Lett. 90, 197902.

Ourjoumtsev, A., R. Tualle-Brouri, J. Laurat, and P. Grangier,
2006, Science 312, 83.

Owari, M., M. B. Plenio, E. S. Polzik, A. Serafini, and M. Wolf,
2008, New J. Phys. 10, 113014.

Paris, M., M. Cola, N. Piovella, and R. Bonifacio, 2003, Opt.
Commun. 227, 349.

Pedersen, L. H., and K. Mølmer, 2009, Phys. Rev. A 79,
012320.

Petrosyan, D., and M. Fleischhauer, 2008, Phys. Rev. Lett. 100,
170501.

Petrov, P. G., D. Oblak, C. L. G. Alzar, N. Kjærgaard, and E. S.
Polzik, 2007, Phys. Rev. A 75, 033803.

Pfennigbauer, M., M. Aspelmeyer, W. R. Leeb, G. Baister, T.
Dreischer, T. Jennewein, G. Neckamm, J. M. Perdigues, H.
Weinfurter, and A. Zeilinger, 2005, J. Opt. Netw. 4, 549.

Phillips, D. F., A. Fleischhauer, A. Mair, R. L. Walsworth, and
M. D. Lukin, 2001, Phys. Rev. Lett. 86, 783.

Pittman, T. B., and J. D. Franson, 2002, Phys. Rev. A 66,
062302.

Poizat, J. P., J. F. Roch, and P. Grangier, 1994, Ann. Phys.
�Paris� 19, 265.

Polzik, E. S., B. Julsgaard, J. Sherson, and J. L. Sørensen, 2003,
Philos. Trans. R. Soc. London, Ser. A 361, 1391.

Pu, H., and P. Meystre, 2000, Phys. Rev. Lett. 85, 3987.
Rabl, P., D. DeMille, J. M. Doyle, M. D. Lukin, R. J. Schoel-

kopf, and P. Zoller, 2006, Phys. Rev. Lett. 97, 033003.
Ralph, T. C., and P. K. Lam, 1998, Phys. Rev. Lett. 81, 5668.
Raymer, M. G., and J. Mostowski, 1981, Phys. Rev. A 24, 1980.
Riebe, M., H. Haffner, C. Roos, W. Hansel, J. Benhelm, G.

Lancaster, T. Korber, C. Becher, F. Schmidt-Kaler, D. James,
and R. Blatt, 2004, Nature �London� 429, 734.

Sangouard, N., C. Simon, M. Afzelius, and N. Gisin, 2007,
Phys. Rev. A 75, 032327.

Sangouard, N., C. Simon, J. Minar, H. Zbinden, H. de Ried-
matten, and N. Gisin, 2007, Phys. Rev. A 76, 050301.

Sangouard, N., C. Simon, B. Zhao, Y.-A. Chen, H. de Ried-
matten, J.-W. Pan, and N. Gisin, 2008, Phys. Rev. A 77,
062301.

Schleier-Smith, M. H., I. D. Leroux, and V. Vuletic, 2010, Phys.
Rev. Lett. 104, 073604.

Schneider, S., A. Kasper, C. vom Hagen, M. Bartenstein, B.
Engeser, T. Schumm, I. Bar-Joseph, R. Folman, L. Feenstra,
and J. Schmiedmayer, 2003, Phys. Rev. A 67, 023612.

Schnorrberger, U., J. D. Thompson, S. Trotzky, R. Pugatch, N.
Davidson, S. Kuhr, and I. Bloch, 2009, Phys. Rev. Lett. 103,
033003.

Sherson, J., J. Fiurasek, K. Mølmer, A. Sørensen, and E. S.
Polzik, 2006, Phys. Rev. A 74, 011802.

Sherson, J., B. Julsgaard, and E. S. Polzik, 2006, Adv. At. Mol.
Phys. 54, 81.

Sherson, J. F., H. Krauter, R. K. Olsson, B. Julsgaard, K. Ham-
merer, I. Cirac, and E. S. Polzik, 2006, Nature �London� 443,
557.

Shuker, M., O. Firstenberg, R. Pugatch, A. Ron, and N. David-

son, 2008, Phys. Rev. Lett. 100, 223601.
Simon, C., H. de Riedmatten, M. Afzelius, N. Sangouard, H.

Zbinden, and N. Gisin, 2007, Phys. Rev. Lett. 98, 190503.
Simon, J., H. Tanji, S. Ghosh, and V. Vuletic, 2007, Nat. Phys.

3, 765.
Simon, J., H. Tanji, J. K. Thompson, and V. Vuletić, 2007, Phys.
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