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Quantum computers can execute algorithms that dramatically outperform classical computation. As
the best-known example, Shor discovered an efficient quantum algorithm for factoring integers,
whereas factoring appears to be difficult for classical computers. Understanding what other
computational problems can be solved significantly faster using quantum algorithms is one of the
major challenges in the theory of quantum computation, and such algorithms motivate the formidable
task of building a large-scale quantum computer. This article reviews the current state of quantum
algorithms, focusing on algorithms with superpolynomial speedup over classical computation and, in
particular, on problems with an algebraic flavor.
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I. INTRODUCTION

In the early 1980s, Manin �1980� and Feynman �1982�
independently observed that computers built from quan-
tum mechanical components would be ideally suited to
simulating quantum mechanics. Whereas brute-force
classical simulation of a system of n quantum particles
�say, two-level atoms� requires storing 2n complex ampli-
tudes and hence exponentially many bits of information,
a quantum computer can naturally represent those am-
plitudes using only n quantum bits. Thus, it is natural to
expect a quantum mechanical computer to outperform a
classical one at quantum simulation.1

The perspective of quantum systems as abstract infor-
mation processing devices subsequently led to the iden-
tification of concrete tasks, apparently unrelated to
quantum mechanics, for which quantum computers have
a quantifiable advantage. Deutsch �1985� gave the first
such example, a black-box problem that requires two
queries to solve on a classical computer but that can be
solved with only one quantum query. A series of related
results �Deutsch and Jozsa, 1992; Bernstein and Vazi-
rani, 1997� gave increasingly dramatic separations be-
tween classical and quantum query complexities, culmi-
nating in an example from Simon �1997� providing an
exponential separation. Building on this work, Shor
�1997� discovered in 1994 that a quantum computer
could efficiently factor integers and calculate discrete
logarithms. Shor’s result drew considerable attention
to the concept of quantum information processing �see
Ekert and Jozsa �1996� for an early review�, and since
then, the design and analysis of quantum algorithms has
become a vibrant research area.

Quantum computers achieve speedup over classical
computation by taking advantage of interference be-
tween quantum amplitudes. Of course, interference oc-
curs in classical wave mechanics as well, but quantum
mechanics is distinguished by the ability to efficiently
represent a large number of amplitudes with only a few

quantum bits.2 In Shor’s algorithm and its predecessors,
the “exponential interference” leading to quantum
speedup is orchestrated using a unitary operation called
the quantum Fourier transform �QFT�, an algebraic op-
eration. In this article, we review the state of the art in
quantum algorithms for algebraic problems, which can
be viewed as continuations of the line of work leading
from Deutsch to Shor. Many, though not all, of these
algorithms make use of the QFT in some capacity.

Before beginning our exploration of quantum algo-
rithms for algebraic problems, we summarize the devel-
opment of quantum algorithms more generally. It has
sometimes been said that there are really only two quan-
tum algorithms: Shor’s and Grover’s. We hope that this
article will, in some small way, help to dispel this perni-
cious myth. While it is difficult to compete with the im-
pact of Shor’s algorithm �a dramatic speedup for a prob-
lem profoundly relevant to modern electronic
commerce� or the broad applicability of Grover’s algo-
rithm �a modest yet surprising speedup for the most ba-
sic of search problems�, recent years have seen a steady
stream of new quantum algorithms both for artificial
problems that shed light on the power of quantum com-
putation and for problems of genuine practical interest.

In 1996, Grover �1997� gave an algorithm achieving
quadratic speedup3 for the unstructured search problem,
the problem of deciding whether a black-box Boolean
function has any input that evaluates to 1. Grover’s al-
gorithm was subsequently generalized to the framework
of amplitude amplification and to counting the number
of solutions by Brassard et al. �2002�. The unstructured
search problem is extremely basic, and Grover’s algo-
rithm has found application to a wide variety of related
problems �see, e.g., Brassard et al. �1997�; Dürr et al.
�2004�; Ambainis and Špalek �2006��.

The concept of quantum walk, developed by analogy
to the classical notion of random walk, has proven to
be another broadly useful tool for quantum algorithms.
Continuous-time quantum walk was introduced by Farhi
and Gutmann �1998� and discrete-time quantum walk
was introduced by Watrous �2001b�. The continuous-
time formulation has been used to demonstrate expo-
nential speedup of quantum over classical computation
�Childs et al., 2003, 2007�, though it remains to be seen
whether these ideas can be applied to a problem of prac-
tical interest. However, both continuous- and discrete-
time quantum walk have been applied to achieve poly-

1In principle, quantum systems evolving according to interac-
tions from a simple initial configuration can be described using
fewer parameters, and classical simulations exploiting this idea
have been developed �see, e.g., Pérez-García et al. �2007��. But
while these ideas are fruitful for simulating some quantum sys-
tems, we do not expect them to be efficient for any physically
reasonable system—in particular, not for systems capable of
performing universal quantum computation. However, we em-
phasize that there is no unconditional proof that classical simu-
lation of quantum systems requires exponential overhead.

2A similar situation occurs for the description of n probabi-
listic bits by 2n real-valued probabilities. However, probabili-
ties do not interfere and, contrary to the quantum case, ran-
domized algorithms are not believed to be more powerful than
deterministic ones �see, e.g., Impagliazzo and Wigderson
�1997��.

3Prior to Grover’s result it was shown by Bennett et al. �1997�
that a quadratic speedup for the unstructured search problem
is optimal. More generally, for any total Boolean function
there can be at most a polynomial separation �in general, at
most degree 6� between classical and quantum query complexi-
ties �Beals et al., 2001�.
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nomial speedup for a variety of search problems.
Following related work on spatial search �Shenvi et al.,
2003; Childs and Goldstone, 2004a, 2004b; Aaronson
and Ambainis, 2005; Ambainis et al., 2005�, Ambainis
�2007� gave an optimal quantum algorithm for the ele-
ment distinctness problem. This approach was subse-
quently generalized �Szegedy, 2007; Magniez, Nayak, et
al., 2007� and applied to other problems in query com-
plexity, namely, triangle finding �Magniez, Santha, and
Szebedy, 2005�, checking matrix multiplication �Buhr-
man and Špalek, 2006�, and testing group commutativity
�Magniez and Nayak, 2007�. Recently, quantum walk has
also been applied to give optimal quantum algorithms
for evaluating balanced binary game trees �Farhi et al.,
2007� and, more generally, Boolean formulas �Ambainis
et al., 2007; Reichardt and Špalek, 2008�.

A related technique for quantum algorithms is the
concept of adiabatic evolution. The quantum adiabatic
theorem guarantees that a quantum system in its ground
state will remain close to its ground state as the Hamil-
tonian is changed, provided the change is sufficiently
slow, depending on spectral properties of the Hamil-
tonian �see, for example, Born and Fock �1928�; Jansen
et al. �2007��. Farhi et al. �2000� proposed using adiabatic
evolution as an approach to optimization problems. Un-
fortunately, analyzing this approach is challenging.
While it is possible to construct specific cost functions
for which specific formulations of adiabatic optimization
fail �Fisher, 1992; van Dam et al., 2001; van Dam and
Vazirani, 2003; Reichardt, 2004�, the performance in
general remains poorly understood. Going beyond the
setting of optimization problems, adiabatic evolution
can simulate a universal quantum computer �Aharonov,
van Dam, et al., 2007�.

Finally, returning to the original motivation for quan-
tum computation, the vision of Manin and Feynman of
quantum computers as quantum simulators has been
considerably developed �see, e.g., Lloyd �1996�; Wiesner
�1996�; Zalka �1998�; Aspuru-Guzik et al. �2005��. How-
ever, it has proven difficult to identify a concrete com-
putational task involving quantum simulation for which
the speedup over classical computers can be understood
precisely. While it is widely expected that quantum simu-
lation will be one of the major applications of quantum
computers, much work remains to be done.

This article is organized as follows. In Sec. II, we give
an introduction to the model of quantum computation
and the complexity of quantum algorithms. In Sec. III,
we introduce the Abelian quantum Fourier transform,
and in Sec. IV, we show how this transform can be ap-
plied to solve the Abelian hidden subgroup problem,
with various applications. In Sec. V, we describe quan-
tum algorithms for problems involving number fields, in-
cluding the efficient quantum algorithm for solving Pell’s
equation. In Sec. VI, we introduce the non-Abelian ver-
sion of the quantum Fourier transform, and in Sec. VII,
we discuss the status of the non-Abelian version of the
hidden subgroup problem. In Secs. VIII and IX, we de-
scribe two approaches to going beyond the hidden sub-
group framework, namely, hidden shift problems and

hidden nonlinear structure problems, respectively. Fi-
nally, in Sec. X, we discuss quantum algorithms for ap-
proximating the Jones polynomial and other #P-
complete problems.

II. COMPLEXITY OF QUANTUM COMPUTATION

In this section we give an introduction to quantum
computers, with particular emphasis on characterizing
computational efficiency. For more detailed background,
see Preskill �1998a�; Nielsen and Chuang �2000�; Kitaev
et al. �2002�; Kaye et al. �2007�.

A. Quantum data

A quantum computer is a device for performing cal-
culations using a quantum mechanical representation of
information. Data are stored using quantum bits or qu-
bits, the states of which can be represented by
�2-normalized vectors in a complex vector space. For
example, we can write the state of n qubits as

��� = �
x��0,1	n

ax�x� , �1�

where the ax�C satisfy �x��0 , 1	n�ax�2=1. We refer to the
basis of states �x� as the computational basis.

Although we can always suppose that our data are
represented using qubits, it is often useful to think of
quantum states as storing data more abstractly. For ex-
ample, given a group G, we write �g� for a computational
basis state corresponding to the group element g�G
and

��� = �
g�G

bg�g� �2�

�where bg�C with �g�G�bg�2=1� for an arbitrary super-
position over the group. We often implicitly assume that
there is some canonical way of concisely representing
group elements using bit strings; it is usually unnecessary
to make this representation explicit. We use the conven-
tion that for any finite set S, the state �S� denotes the
normalized uniform superposition of its elements, i.e.,

�S� ª
1


�S�
�
s�S

�s� . �3�

If a quantum computer stores the state |�� in one reg-
ister and the state |�� in another, the overall state is
given by the tensor product of those two states. This
may variously be denoted |���|��, |��|��, or |�,��.

It can be useful to consider statistical mixtures of pure
quantum states, represented by density matrices. We re-
fer the reader to the references above for further details.

B. Quantum circuits

The allowed operations on pure quantum states are
those that map normalized states to normalized states,
namely, unitary operators U, satisfying UU†=U†U=1.
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When viewed as an N�N matrix, the rows �and col-
umns� of U form an orthonormal basis of the space CN.

To have a sensible notion of efficient computation, we
require that the unitary operators appearing in a quan-
tum computation are realized by quantum circuits
�Deutsch, 1989; Yao, 1993�. We are given a set of gates,
each of which acts on one or two qubits at a time, mean-
ing that it is a tensor product of a nontrivial one- or
two-qubit operator with the identity operator on the re-
maining qubits. A quantum computation begins in the
|0¯0� state, applies a sequence of one- and two-qubit
gates chosen from the set of allowed gates, and finally
reports an outcome obtained by measuring in the com-
putational basis. A circuit is called efficient if it contains
a number of gates that is polynomial in the number of
qubits the circuit acts on.

In principle, any unitary operator on n qubits can be
implemented using only one- and two-qubit gates �Di-
Vincenzo, 1995�. Thus we say that the set of all one- and
two-qubit gates is �exactly� universal. Of course, some
unitary operators take many more one- and two-qubit
gates to realize than others, and, indeed, a simple count-
ing argument shows that most unitary operators on n
qubits can only be realized using an exponentially large
circuit �Knill, 1995�.

In general, we are content with circuits that give good
approximations of our desired unitary transformations.
We say that a circuit with gates U1 ,U2 , . . . ,Ut approxi-
mates U with precision � if �U−Ut¯U2U1���, where
� · � denotes the operator norm, i.e., the largest singular
value. We call a set of elementary gates universal if any
unitary operator on a fixed number of qubits can be
approximated to precision � using poly�log 1

� � elemen-
tary gates. It turns out that there are finite sets of gates
that are universal �Boykin et al., 2000�: for example, the
set �H ,T ,��X�	 with

H ª

1

2

�1 1

1 − 1

, T ª �ei�/8 0

0 e−i�/8 
 , �4�

��X� ª�
1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0
� . �5�

There are situations in which a set of gates is effec-
tively universal even though it cannot actually approxi-
mate any unitary operator on n qubits. For example, the
gate set �H ,T2 ,��X� ,�2�X�	, where �2�X� denotes the
Toffoli gate ��2�X��xyz�= �xyz� for xy� �00,01,10	 and
�2�X��11z�= �11z̄�� is universal �Kitaev, 1997� but only if
we allow the use of ancilla qubits �qubits that start and
end in the |0� state�. Similarly, the gate set �H ,�2�X�	 is
universal in the sense that, with ancillas, it can approxi-
mate any orthogonal transformation �Aharonov, 2003;
Shi, 2003�. It clearly cannot approximate complex uni-
tary matrices since the entries of H and �2�X� are real,
but the effect of arbitrary unitary transformations can be
simulated using orthogonal ones by simulating the real

and imaginary parts separately �Bernstein and Vazirani,
1993; Rudolph and Grover, 2002�.

One might wonder whether some universal gate sets
are better than others. It turns out that the answer is
essentially no: a unitary operator that can be realized
efficiently with one set of one- and two-qubit gates can
also be realized efficiently with another such set. This is
a consequence of the Solovay-Kitaev theorem �Kitaev,
1997; Solovay, 2000; Harrow et al., 2002�.

Theorem 1. Fix two gate sets that allow universal
quantum computation and that are closed under taking
inverses. Then any t-gate circuit using the first gate set
can be implemented with error at most � using a circuit
of t ·poly�log�t /��� gates from the second gate set. Fur-
thermore, there is an efficient classical algorithm for
finding this circuit.

This means we can view a simple finite gate set, such
as �H ,T ,��X�	, as equivalent to an infinite gate set, such
as the set of all two-qubit gates. A finite gate set is
needed both for fault tolerance �Sec. II.E� and for the
concept of uniformly generated circuits �see footnote 4�.

Note that to implement unitary operators exactly, the
notion of efficiency might depend on the allowed gates
�see, e.g., Mosca and Zalka �2004�� so we usually restrict
our attention to quantum computation with bounded er-
ror.

In principle, one can construct quantum circuits adap-
tively, basing the choices of gates on the outcomes of
intermediate measurements. We may also discard quan-
tum data in the course of a circuit. In general, the pos-
sible operations on mixed quantum states correspond to
completely positive, trace preserving maps on density
matrices. Again, we refer the reader to the aforemen-
tioned references for more details.

C. Reversible computation

Unitary matrices are invertible: in particular, U−1

=U†. Thus any unitary transformation is a reversible op-
eration. This may seem at odds with how we often define
classical circuits, using irreversible gates such as AND
and OR. But any classical computation can be made re-
versible by replacing each irreversible gate x�g�x� by
the reversible gate �x ,y�� „x ,y � g�x�…, where � denotes
bitwise addition mod 2. Applying this gate to the input
�x ,0� produces „x ,g�x�…. By storing all intermediate
steps of the computation, we make it reversible �Ben-
nett, 1973�.

On a quantum computer, storing all intermediate
computational steps could present a problem since two
identical results obtained via distinct computational his-
tories would not be able to interfere. However, there is
an easy way to remove the accumulated information.
After performing the classical computation with revers-
ible gates, we simply copy the answer into an ancilla
register and then perform the computation in reverse.
Thus we can implement the map �x ,y�� „x ,y � f�x�…
even when f is a complicated circuit consisting of many
gates.
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Using this trick, any computation that can be per-
formed efficiently on a classical computer can be per-
formed efficiently on a quantum computer even on a
superposition of computational basis states. In other
words, if we can efficiently implement the map x� f�x�
on a classical computer, we can efficiently perform the
transformation

�
x

ax�x,y� � �
x

ax�x,y � f�x�� �6�

on a quantum computer. Note that this does not neces-
sarily mean we can efficiently perform the transforma-
tion

�
x

ax�x� � �
x

ax�f�x�� �7�

even if the function f is bijective.

D. Quantum complexity theory

We say that an algorithm for a problem is efficient if
the circuit describing it uses a number of gates that is
polynomial in the input size, the number of bits needed
to write down the input.4 For example, if the input is an
integer mod N, the input size is �log2 N�.

With a quantum computer, as with a randomized �or
noisy� classical computer, the final result of a computa-
tion may not be correct with certainty. Instead, we are
typically content with an algorithm that can produce the
correct answer with high enough probability. To solve a
decision problem, it suffices to give an algorithm with
success probability bounded above 1/2 �say, at least 2 /3�
since we can repeat the computation many times and
take a majority vote to make the probability of output-
ting an incorrect answer arbitrarily small. Similarly, if we
can check whether a given solution is correct, it suffices
to output the correct answer with probability ��1�.5

It is common practice to characterize the difficulty of

computational problems using complexity classes �see,
e.g., Papadimitriou �1994��. Typically, these classes con-
tain decision problems, problems with a “yes” or “no”
answer. �Such a problem is conventionally formulated as
deciding whether a string over some finite alphabet is in
a given language; formally, a complexity class is a set of
languages.� For example, the problems that can be de-
cided in polynomial time on a deterministic classical
computer belong to the class P, on a probabilistic classi-
cal computer with error at most 1/3 to the class BPP,
and on a quantum computer with error at most 1/3 to
the class BQP. Clearly, P�BPP�BQP. The central prob-
lem of quantum algorithms can be viewed as trying to
understand what problems are in BQP but not in P �or
BPP�.

Whereas the classes P, BPP, and BQP all attempt to
characterize modes of computation that could be carried
out in practice, computational complexity theory is also
concerned with more abstract classes that characterize
other aspects of computation. For example, the class NP
corresponds to those decision problems for which a
“yes” answer can be verified in polynomial time on a
classical computer, given a succinct proof. It is widely
believed that P�NP and, indeed, that NP�/ BQP �though
it is also plausible that BQP�/ NP�, but proving this ap-
pears to be a challenging problem �see, e.g., the survey
of quantum complexity by Watrous �2009��. Indeed, it
seems almost as difficult just to prove P�PSPACE,
where PSPACE denotes the class of problems that can
be decided by a deterministic classical computer running
in polynomial space. Since BQP�PSPACE �Bernstein
and Vazirani, 1997� �i.e., any computation that can be
performed on a quantum computer in polynomial time
can be performed on a classical computer with polyno-
mial memory—indeed, even stronger such results are
known �Adleman et al., 1997; Bernstein and Vazirani,
1997; Fortnow and Rogers, 1998��, we expect it will be
hard to prove P�BQP. Instead, we try to find efficient
quantum algorithms for problems that at least appear to
be hard for classical computers.

While most complexity classes contain decision prob-
lems, some classes describe the complexity of computing
non-Boolean functions. For example, the class #P char-
acterizes the complexity of counting the number of
“yes” solutions to a problem in NP.

Alternatively, instead of considering natural computa-
tional problems �in which the input is a string�, we some-
times work in the setting of query complexity. Here the
input is a black-box transformation �or oracle�—which in
the quantum setting is given as a unitary transformation
as in Eq. �6�—and our goal is to discover some property
of the transformation by querying it as few times as pos-
sible. For example, in Simon’s problem �Simon, 1997�,
we are given a black box for a transformation f : �0,1	n

→S satisfying f�x�= f�y� if and only if y� �x ,x � t	 for
some unknown t� �0,1	n and the goal is to learn t.

The query model facilitates proving lower bounds: it is
often tractable to establish that many queries must be
used to solve a given black-box problem, whereas it is
generally hard to show that many gates are required to

4Strictly speaking, we want the circuits for solving instances
of a problem of different sizes to be simply related to one
another. Given the ability to choose an arbitrary circuit for
each input size, we could have circuits computing uncomput-
able functions �i.e., functions that a Turing machine could not
compute�. Thus we require our circuits to be uniformly gener-
ated: say, that there exists a fixed �classical� Turing machine
that, given a tape containing the symbol “1” n times, outputs a
description of the nth circuit in time poly�n�.

5We use standard big-O notation here, where f=O�g� if there
exist positive constants c ,y such that �f�x���c�g�x�� for all
x	y, f=��g� if g=O�f�, and f=
�g� if both f=O�g� and
f=��g�. The expression ��1� thus represents a function asymp-
totically lower bounded by an unspecified positive constant.
We write f=o�g� to denote that limx→� f�x� /g�x�=0. To convey
that a function f is bounded from above by a polynomial in the
function g, we write f=poly�g�, which could also be written as
f=gO�1�.
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compute some explicit function. Indeed, this article de-
scribes numerous examples of black-box problems that
can be solved in polynomial time on a quantum com-
puter, but that provably require exponentially many
queries on a randomized classical computer. Of course,
if we find an efficient algorithm for a problem in query
complexity, and if we are provided with an explicit effi-
cient circuit realizing the black-box transformation, then
we have an efficient algorithm for a natural computa-
tional problem. We emphasize, however, that lower
bounds in the query model no longer apply when the
black box is thus replaced by a transparent one. For
example, Shor’s factoring algorithm �Sec. IV.E� proceeds
by solving a problem in query complexity which is prov-
ably hard for classical computers. Nevertheless, it is an
open question whether factoring is classically hard since
there might be a fast classical algorithm that does not
work by solving the query problem.

E. Fault tolerance

With any real computer, operations cannot be done
perfectly. Quantum gates and measurements may be
performed imprecisely, and errors may happen even to
stored data that are not being manipulated. Fortunately,
there are protocols for dealing with faults that occur dur-
ing the execution of a quantum computation. Specifi-
cally, the fault-tolerant threshold theorem states that as
long as the noise level is below some threshold �depend-
ing on the noise model and the architecture of the quan-
tum computer but typically in the range of 10−2–10−4�,
an arbitrarily long computation can be performed with
arbitrarily small error �Knill et al., 1996, 1997; Shor,
1996; Kitaev, 1997; Preskill, 1998b; Aharonov and Ben-
Or, 2008�. Throughout we implicitly assume that fault-
tolerant protocols have been applied, so that we effec-
tively have a perfectly functioning quantum computer.

III. ABELIAN QUANTUM FOURIER TRANSFORM

A. Fourier transforms over finite Abelian groups

For the group Z /NZ, the group of integers mod N un-
der addition �see Appendix A�, the quantum Fourier
transform �QFT� is a unitary operation FZ/NZ. Its effect
on a basis state �x� for any x�Z /NZ is

�x� �
1


N
�

y�Z/NZ
�N

xy�y� , �8�

where �Nªe2�i/N denotes a primitive Nth root of unity.
More generally, a finite Abelian group G has �G�

distinct one-dimensional irreducible representations

�or irreducible characters�, ��Ĝ. These are functions
� :G→C with ��a+b�=��a���b� for all a ,b�G, using
additive notation for the group operation of G �see Ap-
pendix B for further details�. The quantum Fourier
transform FG over G acts as

�x� �
1


�G�
�

��Ĝ

��x���� �9�

for each x�G.
For example, the group �Z /NZ�� �Z /NZ� has

N2 irreducible representations defined by
�y1,y2

: �x1 ,x2���N
x1y1+x2y2 for all y1 ,y2�Z /NZ; hence its

quantum Fourier transform F�Z/NZ���Z/NZ� acts as

�x1,x2� �
1

N �
y1,y2�Z/NZ

�N
x1y1+x2y2�y1,y2� �10�

for all x1 ,x2�Z /NZ. In this example, F�Z/NZ���Z/NZ� can be
written as the tensor product FZ/NZ � FZ/NZ. In general,
according to the fundamental theorem of finite Abelian
groups, any finite Abelian group G can be expressed as
a direct product of cyclic subgroups of prime power or-
der G��Z /p1

r1Z�� ¯ � �Z /pk
rkZ�, and the QFT over G

can be written as the tensor product of QFTs FZ/p1
r1Z

� ¯ � FZ/p
k
rkZ.

The Fourier transform FG is useful for exploiting sym-
metry with respect to G. Consider the operator Ps that
adds s�G, defined by Ps�x�= �x+s� for any x�G. This
operator is diagonal in the Fourier basis: we have

FGPsFG
† = �

��Ĝ

��s������� . �11�

Thus, measurements in the Fourier basis produce the
same statistics for a pure state |�� and its shift Ps���.
Equivalently, a G-invariant mixed state is diagonalized
by FG.

B. Efficient quantum circuit for the QFT over Z Õ2nZ

To use the Fourier transform over G as part of an
efficient quantum computation, we must implement it by
a quantum circuit of size poly�log�G��. This can be done
for any finite Abelian group �Cleve, 1994; Coppersmith,
1994; Kitaev, 1995; Barenco et al., 1996; Shor, 1997;
Hales and Hallgren, 2000�. In this section we explain a
construction for the case of the group Z /2nZ, following
the presentation of Cleve et al. �1998�.

Transforming from the basis of states ��x� :x�G	 to

the basis ���� :��Ĝ	, the matrix representation of the
Fourier transformation over Z /NZ is

FZ/NZ =
1


N�
1 1 1 ¯ 1

1 �N �N
2

¯ �N
N−1

1 �N
2 �N

4
¯ �N

2N−2

] ] ] � ]

1 �N
N−1 �N

2N−2
¯ �N

�N−1��N−1�
� .

�12�

More succinctly,
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FZ/NZ =
1


N
�

x,y�Z/NZ
�N

xy�y��x� , �13�

where �y� represents the basis state corresponding to the
character �y with �y�x�=�N

xy. It is straightforward to
verify that FZ/NZ is indeed a unitary transformation, i.e.,
that FZ/NZFZ/NZ

† =FZ/NZ
† FZ/NZ=1.

We assume now that N=2n and represent the integer
x�Z /NZ by n bits x0 ,x1 , . . . ,xn−1, where x=�j=0

n−12jxj. The
Fourier transform of �x� can then be written as the ten-
sor product of n qubits since

FZ/2nZ�x� =
1


2n �
y��0,1	n

�2n
x��j=0

n−12jyj��y0, . . . ,yn−1�

=
1


2n
�
j=0

n−1

�
yj��0,1	

e2�ixyj/2
n−j

�yj�

= �
j=0

n−1 �0� + exp�2�i�
k=0

n−1

2j+k−nxk
�1�


2

¬ �
j=0

n−1

�zj� . �14�

Now, because exp�2�i2sxk�=1 for all integers s	0, we
see that the jth output qubit is

�zj� =
1

2

��0� + e2�i�2j−nx0+2j+1−nx1+¯+2−1xn−1−j��1�� �15�

and hence only depends on the n− j input bits
x0 , . . . ,xn−1−j.

To describe a quantum circuit that implements the
Fourier transform, we define the single-qubit phase ro-
tation

i

�16�

and the two-qubit controlled rotation

i

�17�

acting symmetrically on a and b� �0,1	 as ��Rr��a ,b�
=e2�iab/2r

�a ,b�. The circuit shown in Fig. 1 uses � n
2 � of

these gates together with n Hadamard gates to exactly
implement the quantum Fourier transform over Z /2nZ.

In this circuit, there are many rotations by small
angles that do not significantly affect the final result. By
simply omitting the gates ��Rr� with r=��log n�, we ob-
tain a circuit of size O�n log n� �instead of O�n2� for the
original circuit� that implements the QFT with precision
1/poly�n� �Coppersmith, 1994�.

C. Phase estimation and the QFT over any finite Abelian
group

Aside from being directly applicable to quantum algo-
rithms, such as Shor’s algorithm, the QFT over Z /2nZ
provides a useful quantum computing primitive called
phase estimation �Kitaev, 1995; Cleve et al. 1998�. In the
phase estimation problem, we are given a unitary opera-
tor U �either as an explicit circuit or as a black box that
applies a controlled-Ux operation for integer values of
x�. We are also given a state |�� that is an eigenvector of
U, namely, U ���=ei� ��� for some ��R. The goal is to
output an estimate of � to some desired precision. �Of
course, we can also apply the procedure to a general
state |��; by linearity, we obtain each value � with prob-
ability ��� ����2.�

The procedure for phase estimation is straightfor-
ward:

Algorithm 1 (Phase estimation).
Input: Eigenstate |�� �with eigenvalue ei�� of a given

unitary operator U.
Problem: Produce an n-bit estimate of �.
�1� Prepare the quantum computer in the state

1

2n �

x�Z/2nZ

�x� � ��� . �18�

�2� Apply the unitary operator

|x0〉 · · · • · · · • · · · • H |zn−1〉

|x1〉 · · · • · · · • · · · H �� ���� ��R2 |zn−2〉
...

...
...

...

|xn−3〉 • · · · • · · · · · · |z2〉
|xn−2〉 • · · · H �� ���� ��R2 · · · 	
 ��
� ��Rn−2 	
 ��
� ��Rn−1 · · · |z1〉

|xn−1〉 H �� ���� ��R2 	
 ��
� ��R3 · · · 	
 ��
� ��Rn−1 	
 ��
� ��Rn · · · · · · |z0〉

FIG. 1. An efficient �size O�n2�� quantum circuit for the quantum Fourier transform over Z /2nZ. Note that the order of the n
output bits z0 , . . . ,zn−1 is reversed, as compared with the order of the n input bits x0 , . . . ,xn−1.
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�
x�Z/2nZ

�x��x� � Ux, �19�

giving the state

1

2n �

x�Z/2nZ

ei�x�x� � ��� . �20�

�3� Apply an inverse Fourier transform on the first reg-
ister, giving

1

2n �
x,y�Z/2nZ

�2n
x��2n/2���−y��y� � ��� . �21�

�4� Measure the first register of the resulting state in the
computational basis.

If the binary expansion of � /2� terminates after at
most n bits, then the result is guaranteed to be the bi-
nary expansion of � /2�. In general, we obtain a good
approximation with high probability �Cleve et al., 1998�.
�The relevant calculation appears in Sec. IV.D for the
case where ��Q; that same calculation works for any
��R.� The optimal way of estimating the unknown
phase has been analyzed by van Dam et al. �2007�, but
the above method is sufficient for our purposes.

The complexity of Algorithm 1 can depend on the
form of the unitary operator U. If we are only given a
black box for the controlled-U gate, then there may be
no better way to implement the controlled-Ux operation
than by performing a controlled-U gate x times, so that
the running time is 
�2n� �i.e., approximately the inverse
of the desired precision�. On the other hand, if it is pos-
sible to implement Eq. �19� in poly�n� time �say, using
repeated squaring� then phase estimation can be per-
formed in poly�n� time.

One useful application of phase estimation is to
implement the QFT �Eq. �13�� over an arbitrary cyclic
group Z /NZ �Kitaev, 1995�. The circuit presented in the
previous section only works when N is a power of 2 �or,
with a slight generalization, a power of some other fixed
integer�. But the following simple technique can be used
to realize FZ/NZ �approximately� using phase estimation.
�While this approach is conceptually simple, it is possible
to implement the QFT over a cyclic group more effi-
ciently; see Hales and Hallgren �2000�.�

Our goal is to perform the transformation that maps
�x�� �x̂�, where �x̂�ªFZ/NZ �x� denotes a Fourier basis
state. By linearity, if the transformation acts correctly
on a basis, it acts correctly on all states. It is straight-
forward to perform the transformation �x ,0�� �x , x̂�
�create a uniform superposition �y�Z/NZ �y� /
N in the
second register and apply the controlled phase shift
�x ,y���N

xy �x ,y��, but it remains to erase the first regis-
ter.

Consider the unitary operator P1 that adds 1 mod N,
i.e., P1 �x�= �x+1� for any x�Z /NZ. According to
Eq. �11�, the eigenstates of this operator are precisely
the Fourier basis states �x̂�, with eigenvalues �N

x . Thus,
using phase estimation on P1 �with n=O�log N� bits
of precision�, we can approximate the transformation

�x̂ ,0�� �x̂ ,x�. Reversing this operation, we can erase �x�,
giving the desired QFT. Note that we can perform P1

x in
poly�log N� steps even when x is exponentially large in
log N, so the resulting procedure is indeed efficient.

Given the Fourier transform over Z /NZ, it is straight-
forward to implement the QFT over an arbitrary finite
Abelian group using the decomposition of the group
into cyclic factors, as discussed in Sec. III.A.

If gates can be performed in parallel, it is possible
to perform the QFT much more quickly, using only
O�log log N� time steps �Cleve and Watrous, 2000;
Hales, 2002�.

D. The QFT over a finite field

The elements of the finite field Fq, where q=pm is a
power of a prime number p, form an Abelian group
under addition �see Appendix A�, and the QFT over this
group has many applications. If q is prime, then Fq
=Z /qZ, so the QFT over Fq is straightforward. More
generally, as an additive group Fq��Z /pZ�m, so in prin-
ciple the QFT over Fq could be defined using an explicit
isomorphism to �Z /pZ�m. However, it is often more con-
venient to define FFq

in terms of the �absolute� trace, the
linear function Tr:Fq→Fp defined by

Tr�x� ª x + xp + xp2
+ ¯ + xpm−1

. �22�

One can show that the functions �y :Fq→C defined by

�y�x� = �p
Tr�xy� �23�

for each y�Fq form a complete set of additive charac-
ters of Fq. Thus, the QFT over Fq can be written

FFq
=

1

q

�
x,y�Fq

�p
Tr�xy��y��x� . �24�

This definition is preferred over other possible choices
because it commutes with the permutation �z�� �zp�
implementing the Frobenius automorphism and hence
respects the multiplicative structure of Fq.

IV. ABELIAN HIDDEN SUBGROUP PROBLEM

A. Period finding over Z ÕNZ

Suppose we are given a function over the integers
0 ,1 , . . . ,N−1 that is periodic with period r. Further, sup-
pose that this function never takes the same value twice
within the fundamental period �i.e., it is injective within
each period�. In other words, the function f :Z /NZ→S
satisfies

f�x� = f�y� if and only if �x − y�/r � Z �25�

for all x ,y�Z /NZ. Notice that this can only be the case
if r divides N, so that f can have exactly N /r periods.

If we know N, then we can find the period r efficiently
using the quantum Fourier transform over the additive
group Z /NZ. We represent each element x�Z /NZ
uniquely as an integer x� �0, . . . ,N−1	. Similarly, the ir-
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reducible representations � :Z /NZ→C can be labeled by
integers y� �0, . . . ,N−1	, namely, with �y�x�=e2�ixy/N.
The following algorithm solves the period-finding prob-
lem.

Algorithm 2 �Period finding over Z /NZ�.
Input: A black box f :Z /NZ→S satisfying Eq. �28� for

some unknown r�Z /NZ, where r divides N.
Problem: Determine r.
�1� Create the uniform superposition

�Z/NZ� =
1


N
�

x�Z/NZ
�x� �26�

of all elements of Z /NZ �recall the notation Eq. �3��. For
example, this can be done by applying the Fourier trans-
form over Z /NZ to the state |0�.

�2� Query the function f in an ancilla register, giving

1

N

�
x�Z/NZ

�x,f�x�� . �27�

�3� At this point, if we were to measure the ancilla
register, the first register would be left in a superposition
of those x�Z /NZ consistent with the observed function
value. By the periodicity of f, this state would be of the
form


 r

N �
j=0

N/r−1

�s + jr� �28�

for some unknown offset s� �0, . . . ,r−1	 occurring uni-
formly at random, corresponding to the uniformly ran-
dom observed function value f�s�. Since we will not use
this function value, there is no need to explicitly mea-
sure the ancilla; ignoring the second register results in
the same statistical description. Thus, we may simply
discard the ancilla, giving a mixed quantum state or,
equivalently, a random pure state.

�4� Apply the Fourier transform over Z /NZ, giving


 r

N �
y�Z/NZ

�
j=0

N/r−1

�N
�s+jr�y�y� . �29�

By the identity

�
j=0

M−1

�M
jy = M
j,y mod M �30�

�applied with M=N /r, so �N
jry=�M

jy �, only the values y
� �0,N /r ,2N /r , . . . , �r−1�N /r	 experience constructive
interference, and Eq. �29� equals

1

r

�
k=0

r−1

�r
sk�kN/r� . �31�

�5� Measure this state in the computational basis, giv-
ing some integer multiple kN /r of N /r. Dividing this
integer by N gives the fraction k /r, which, when reduced
to lowest terms, has r /gcd�r ,k� as its denominator.

�6� Repeating the above gives a second denominator
r /gcd�r ,k��. If k and k� are relatively prime, the least

common multiple of r /gcd�r ,k� and r /gcd�r ,k�� is r. The
probability of this happening is at least �p prime�1
−1/p2�=6/�2�0.61, so the algorithm succeeds with con-
stant probability.

B. Computing discrete logarithms

Let C= �g� be a cyclic group generated by an element
g, with the group operation written multiplicatively.
Given an element x�C, the discrete logarithm of x in C
with respect to g, denoted logg x, is the smallest non-
negative integer � such that g�=x. The discrete loga-
rithm problem is the problem of calculating logg x given
g and x. �Notice that for additive groups such as G
=Z /pZ, the discrete logarithm represents division:
logg x=x /g mod p.�

1. Discrete logarithms and cryptography

Classically, the discrete logarithm seems like a good
candidate for a one-way function. We can efficiently
compute g�, even if � is exponentially large �in log �C��,
by repeated squaring. But given x, it is not immediately
clear how to compute logg x without checking exponen-
tially many possibilities.

The apparent hardness of the discrete logarithm prob-
lem is the basis of the Diffie-Hellman key exchange pro-
tocol �Diffie and Hellman, 1976�, the earliest published
public-key cryptographic protocol. The goal of key ex-
change is for two distant parties, Alice and Bob, to agree
on a secret key using only an insecure public channel.
The Diffie-Hellman protocol works as follows:

�1� Alice and Bob publicly agree on a large prime p
and an integer g of high order. For simplicity, sup-
pose they choose a g for which �g�= �Z /pZ�� �i.e., a
primitive root mod p�. �In general, finding such a g
might be hard, but it can be done efficiently given
certain restrictions on p.�

�2a� Alice chooses some a�Z / �p−1�Z uniformly at
random. She computes A :=ga mod p and sends
the result to Bob �keeping a secret�.

�2b� Bob chooses some b�Z / �p−1�Z uniformly at
random. He computes B :=gb mod p and sends
the result to Alice �keeping b secret�.

�3a� Alice computes K :=Ba=gab mod p.
�3b� Bob computes K=Ab=gab mod p.
At the end of the protocol, Alice and Bob share a key

K, and an eavesdropper Eve has only seen p, g, A, and
B.

The security of the Diffie-Hellman protocol relies on
the assumption that discrete logarithms are hard to com-
pute. Clearly, if Eve can compute discrete logarithms,
she can recover a and b and hence the key. But it is
widely believed that the discrete logarithm problem is
difficult for classical computers. The best known algo-
rithms for general groups, such as Pollard’s rho algo-
rithm and the baby-step giant-step algorithm, run in
time O�
�C��. For particular groups, it may be possible
to do better: for example, over �Z /pZ�� with p prime,
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the number field sieve is conjectured to compute dis-
crete logarithms in time 2O„�log p�1/3�log log p�2/3

… �Gordon,
1993� �whereas the best known, rigorously analyzed, al-
gorithms run in time 2O�
log plog log p� �Pomerance, 1987��;
but this is still superpolynomial in log p. It is suspected
that breaking the Diffie-Hellman protocol is essentially
as hard as computing the discrete logarithm.6

This protocol by itself only provides a means of ex-
changing a secret key, not of sending private messages.
However, Alice and Bob can subsequently use their
shared key in a symmetric encryption protocol to com-
municate securely. The ideas behind the Diffie-Hellman
protocol can also be used to directly create public-key
cryptosystems �similar in spirit to the widely used RSA
cryptosystem�, such as the ElGamal protocol; see, e.g.,
Menezes et al. �1996�, Buchmann �2004�.

2. Shor’s algorithm for computing discrete logarithms

Although the problem appears to be difficult for clas-
sical computers, quantum computers can calculate dis-
crete logarithms efficiently. Recall that we are given
some element x of a cyclic group C= �g� and we want to
calculate logg x, the smallest non-negative integer � such
that g�=x.

For simplicity, assume that the order of the group,
N := �C�, is known. For example, if C= �Z /pZ��, then we
know N=p−1. If we do not know N, we can determine it
efficiently using Shor’s algorithm for period finding over
Z, discussed in Sec. IV.D. We also assume that x�g �i.e.,
logg x�1� since it is easy to check this.

Shor’s �1997� algorithm for computing discrete loga-
rithms works as follows.

Algorithm 3 �Discrete logarithm�.
Input: A cyclic group C= �g� and an element x�C.
Problem: Calculate logg x.
�1� If necessary, using the period-finding algorithm of

Sec. IV.D, determine the order N= �C�.
�2� Create the uniform superposition

�Z/NZ � Z/NZ� =
1

N �
�,��Z/NZ

��,�� �32�

over all elements of the additive Abelian group Z /NZ
�Z /NZ.

�3� Define a function f :Z /NZ�Z /NZ→C as follows:

f��,�� = x�g�. �33�

Compute this function in an ancilla register, giving

1

N �
�,��Z/NZ

��,�,f��,��� . �34�

�4� Discard the ancilla register.7 Since f�� ,��
=g� logg x+�, where f is constant on the lines

L� ª ���,�� � �Z/NZ�2:� logg x + � = �	 , �35�

so the remaining state is a uniform superposition over
group elements consistent with a uniformly random un-
known ��Z /NZ, namely,

�L�� =
1


N
�

��Z/NZ
��,� − � logg x� . �36�

�5� Now we can exploit the symmetry of the quantum
state by performing a QFT over Z /NZ�Z /NZ, giving

1

N3/2 �
�,�,��Z/NZ

�N
��+���−� logg x���,��

=
1


N
�

��Z/NZ
�N

���� logg x,�� , �37�

where we used identity �30�.
�6� Measure this state in the computational basis. We

obtain some pair �� logg x ,�� for a uniformly random �
�Z /NZ.

�7� Repeating the above gives a second pair
��� logg x ,��� with a uniformly random ���Z /NZ, inde-
pendent of �. With constant probability �at least 6 /�2

�0.61�, � and �� are coprime, in which case we can find
integers � and �� such that ��+����=1. Thus we can
determine �� logg x+���� logg x=logg x.

This algorithm can be carried out for any cyclic group
C, given a unique representation of its elements and the
ability to efficiently compute products and inverses in C.
To efficiently compute f�� ,��, we must compute high
powers of a group element, which can be done quickly
by repeated squaring.

In particular, Shor’s algorithm for computing discrete
logarithms breaks the Diffie-Hellman key exchange pro-
tocol described above, in which C= �Z /pZ��. In Sec. IV.F
we discuss further applications to cryptography, in which
C is the group corresponding to an elliptic curve.

C. Hidden subgroup problem for finite Abelian groups

Algorithms 2 and 3 solve particular instances of a
more general problem, the Abelian hidden subgroup
problem �or Abelian HSP�. We now describe this prob-
lem and show how it can be solved efficiently on a quan-
tum computer.

Let G be a finite Abelian group with group operations
written additively and consider a function f :G→S,

6It is nevertheless an open question whether, given the ability
to break the protocol, Eve can calculate discrete logarithms.
Some partial results on this question are known �den Boer,
1990; Maurer and Wolf, 1999�.

7Note that if we were to measure the ancilla register instead
of discarding it, the outcome would be unhelpful: each possible
value g� occurs with equal probability, and we cannot obtain �
from g� unless we know how to compute discrete logarithms.
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where S is some finite set. We say that f hides the sub-
group H�G if

f�x� = f�y� if and only if x − y � H �38�

for all x ,y�G. In the Abelian hidden subgroup prob-
lem, we are asked to find a generating set for H given
the ability to query the function f.

It is clear that H can in principle be reconstructed
from the entire truth table of f. Notice in particular that
f�0�= f�x� if and only if x�H: the hiding function is con-
stant on the hidden subgroup and does not take that
value anywhere else. Furthermore, fixing any y�G, we
see that f�y�= f�x� if and only if x�y+Hª �y+h :h�H	,
a coset of H in G with coset representative y. So f is
constant on the cosets of H in G and distinct on differ-
ent cosets.

The simplest example of the Abelian hidden subgroup
problem is Simon’s problem, in which G= �Z /2Z�n and
H= �0,x	 for some unknown x� �Z /2Z�n. Simon’s effi-
cient quantum algorithm for this problem �Simon, 1997�
led the way to Shor’s algorithms for other instances of
the Abelian HSP.

The period-finding problem discussed in Sec. IV.A is
the Abelian HSP with G=Z /NZ. The subgroups of G
are of the form H= �0,r ,2r , . . . ,N−r	 �of order �H�
=N /r�, where r is a divisor of N. Thus a function hides H
according to Eq. �38� precisely when it is r periodic, as in
Eq. �25�. We have already seen that such a subgroup can
be found efficiently.

The quantum algorithm for computing discrete loga-
rithms, as discussed in Sec IV.B, solves an Abelian hid-
den subgroup problem in the group Z /NZ�Z /NZ. The
function defined in Eq. �33� hides the subgroup

H = ���,� logg x�:� � Z/NZ	 . �39�

Shor’s algorithm computes logg x by finding this hidden
subgroup.

More generally, there is an efficient quantum algo-
rithm to identify any hidden subgroup H�G of a known
finite Abelian group G. �In Sec. VII.C we relax the com-
mutativity restriction to the requirement that H is a nor-
mal subgroup of G, which is always the case if G is
Abelian.� The algorithm for the general Abelian hidden
subgroup problem is as follows.

Algorithm 4 �Abelian hidden subgroup problem�.
Input: A black-box function f :G→S hiding some

H�G.
Problem: Find a generating set for H.
�1� Create a uniform superposition �G� over the ele-

ments of the group.
�2� Query the function f in an ancilla register, giving

the state

1

�G�

�
x�G

�x,f�x�� . �40�

�3� Discard the ancilla register, giving the coset state

�s + H� =
1


�H�
�

y�H
�s + y� �41�

for some unknown uniformly random s�G. Equiva-
lently, the state can be described by the density matrix

�H ª

1

�G� �s�G
�s + H��s + H� . �42�

�4� Apply the QFT over G to this state. According to
the definition of the QFT in Eq. �9�, the result is

1

�H� · �G�

�
��Ĝ

�
y�H

��s + y����

=
�H�
�G� �

��Ĝ

��s���H���� , �43�

where

��H� ª
1

�H� �
y�H

��y� . �44�

If ��y�=1 for all y�H, then ��H�=1. On the other
hand, if there is any y�H with ��y��1 �i.e., if the re-
striction of � to H is not the trivial character of H�, then
by the orthogonality of distinct irreducible characters
�Theorem 6 in Appendix B� ��H�=0. Thus we have the
state

�s + Ĥ� ª
�H�
�G� �

��Ĝ,ResH
G�=1

��s���� �45�

or, equivalently, the mixed quantum state

�̂H ª

�H�
�G� �

��Ĝ,ResH
G�=1

������ , �46�

where ResH
G�=1 means that ��h�=1 for all h�H.

�5� Measure in the computational basis. We obtain

one of the �G� / �H� characters ��Ĝ that is trivial on the
hidden subgroup H, with every such character occurring
with equal probability �H� / �G�. Letting ker �ª �g
�G :��g�=1	 denote the kernel of the character �
�which is a subgroup of G�, we learn that H�ker �.

�6� Repeat the entire process T times, obtaining char-
acters �1 , . . . ,�T, and output a generating set for KT,
where Ktª�j=1

t ker �j. We are guaranteed that H�Kt
for any t. A simple calculation shows that if Kt�H, then
�Kt+1� / �Kt��1/2 with probability at least 1 /2. Thus, we
can choose T=O�log�G�� such that KT=H with high
probability.

In summary, given a black-box function f hiding a sub-
group H of a known finite Abelian group G, a quantum
computer can determine H in time poly�log�G�� and, in
particular, using only poly�log�G�� queries to the func-
tion f. Of course, this assumes that we can efficiently
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implement group operations in G using some unique
representation of its elements.

In contrast, the Abelian hidden subgroup problem is
typically hard for classical computers. For example, an
argument based on the birthday problem shows that
even the simple case of Simon’s problem �where G
= �Z /2Z�n� has classical query complexity ��
2n� �Simon,
1997�. While certain special cases are easy �for example,
since the only subgroups of Z /pZ with p prime are itself
and the trivial subgroup, period finding over Z /pZ is
trivial� the classical query complexity of the Abelian
HSP is usually exponential. In particular, one can show
that if G has a set of N subgroups with trivial pairwise
intersection, then the classical query complexity of the
HSP in G is ��
N�. �For a proof in the case where G
=Fq�Fq, see de Beaudrap et al. �2002�.�

D. Period finding over Z

In the previous section, we showed that the Abelian
HSP can be solved efficiently over any known finite
Abelian group. In this section we consider the HSP over
an infinite Abelian group, namely, Z �Shor, 1997�. Similar
ideas can be used to solve the HSP over any finitely
generated Abelian group �Mosca and Ekert, 1999�. �For
an Abelian group that is not finitely generated, new
ideas are required, as discussed in Sec. V.D.�

The HSP in Z is of interest when we are faced with a
periodic function f over an unknown domain. For ex-
ample, Shor’s factoring algorithm �Sec. IV.E� works by
finding the period of a function defined over Z. Without
knowing the factorization, it is unclear how to choose a
finite domain whose size is a multiple of the unknown
period, so we cannot immediately apply the period-
finding algorithm from Sec. IV.A.

Of course, we cannot represent arbitrary integers on a
computer with finitely many bits. Instead, we can restrict
the function to the inputs �0,1 , . . . ,N−1	 for some cho-
sen N and perform Fourier sampling over Z /NZ. This
can work even when the function is not precisely peri-
odic over Z /NZ, provided N is sufficiently large. To sim-
plify the implementation of the QFT, we can choose N
to be a power of 2.

This approach can only work if the period is suffi-
ciently small since otherwise we could miss the period
entirely. We show how to choose N if given an a priori
upper bound on the period. If we do not initially have
such a bound, we can simply start with N=2 and repeat-
edly double N until the period-finding algorithm suc-
ceeds. The overhead incurred by this procedure is only
poly�log r�.

Algorithm 5 �Period finding over Z�.
Input: A black box f :Z /NZ→S satisfying Eq. �25� for

some r�Z with r2�N, where r does not necessarily di-
vide N.

Problem: Determine r.
�1� Prepare the uniform superposition �Z /NZ�.
�2� Query the function in an ancilla register, giving

1

N

�
x�Z/NZ

�x,f�x�� . �47�

�3� Discard the ancilla register, leaving the first regis-
ter in a uniform superposition over those x�Z /NZ
consistent with some particular function value. Since f
is periodic with minimum period r, we obtain a super-
position over points separated by r. The number of
such points n depends on where the first point x0
� �0,1 , . . . ,r−1	 appears. When restricted to Z /NZ, the
function has �N /r� full periods and N−r �N /r� remaining
points, as shown in Fig. 2. Thus

n = ��N/r� + 1 for x0 � N − r �N/r �
�N/r� otherwise. � �48�

In other words, we are left with the quantum state

1

n

�
j=0

n−1

�x0 + jr� , �49�

where x0 occurs nearly uniformly at random �specifically,
it appears with probability n /N� and is unknown.

�4� Apply the Fourier transform over Z /NZ, giving

1

nN

�
k�Z/NZ

�N
kx0�

j=0

n−1

�N
jkr�k� . �50�

If we were lucky enough to choose a value of N for
which r �N, then n=N /r regardless of the value of x0, and
the sum over j gives n
k mod n,0 by Eq. �30�, so this state is
identical to Eq. �31�. But more generally, the sum over j
in Eq. �50� is the geometric series

�
j=0

n−1

�N
jkr =

�N
krn − 1

�N
kr − 1

= �N
�n−1�kr/2 sin��krn/N�

sin��kr/N�
. �51�

�5� Measure in the computational basis. The probabil-
ity of seeing a particular value k is

Pr�k� =
sin2��krn/N�

nN sin2��kr/N�
. �52�

From the case where n=N /r, we expect this distribution
to be strongly peaked around values of k that are close
to integer multiples of N /r. The probability of seeing k

N
︷ ︸︸ ︷

•x0 · · ·
︸ ︷︷ ︸

r
︸ ︷︷ ︸

r
︸ ︷︷ ︸

r
︸ ︷︷ ︸

N−r�N/r�

FIG. 2. Sampling a Z-periodic
function over Z /NZ.
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= �jN /r�= jN /r+� for some j�Z, where �x� denotes the
nearest integer to x, is

Pr�k = �jN/r�� =
sin2��jn + ��rn/N�
nN sin2��j + ��r/N�

=
sin2���rn/N�

nN sin2���r/N�
. �53�

Using the inequalities 4x2 /�2�sin2 x�x2 �where the
lower bound holds for �x��� /2 and can be applied since
����1/2�, we find

Pr�k = �jN/r�� 	
4

�2r
. �54�

This bound shows that Fourier sampling produces a
value of k that is the closest integer to one of the r
integer multiples of N /r with probability ��1�.

�6� To discover r given one of the values �N /r�, divide
by N to obtain a rational approximation to j /r that de-
viates by at most 1/2N and compute the positive inte-
gers ai in the continued fraction expansion �CFE�,

�jN/r�
N

=
1

a1 +
1

a2 +
1

a3 + ¯

. �55�

This expansion gives a sequence of successively better
approximations to �N /r� by fractions, called the conver-
gents of the CFE. Any fraction p /q with �p /q
− �jN /r� /N��1/2q2 will appear as one of the convergents
�Hardy and Wright �1979�, Theorem 184�.

Since j /r differs by at most 1/2N from �N /r�, the frac-
tion j /r will appear as a convergent provided r2�N.
Thus, we carry out the CFE until we obtain the closest
convergent to �N /r� whose denominator is smaller than
our a priori upper bound on the period; this denomina-
tor must be equal to to r. These calculations can be done
in polynomial time using standard techniques �see, e.g.,
Hardy and Wright �1979��.

Notice that period finding can efficiently determine
the order of a given group element g�G, the smallest
r� �1,2 , . . . 	 such that gr=1. This follows because the
function f :Z→G defined by f�j�=gj is periodic, with pe-
riod equal to the order of g in G. In particular, this al-
lows us to find the order of a cyclic group C= �g�, as
needed in Algorithm 3. In contrast, the classical query
complexity of computing the order of a permutation of
2n elements is ��2n/3 /
n� �Cleve, 2004�.

E. Factoring integers

Perhaps the best-known application of quantum com-
puters is to the problem of factoring integers �Shor,
1997�. At present, the mostly widely used public-key
cryptosystem, RSA �Rivest et al., 1978�, is based on

the presumed difficulty of this problem.8 The fastest rig-
orously analyzed classical algorithm for factoring an
integer N has running time 2O�
log Nlog log N� �see, e.g., Po-
merance �1987�� and the best known classical algorithm
is believed to be the number field sieve �Buhler
et al., 1993�, which is conjectured to run in time
2O„�log N�1/3�log log N�2/3

…. Both of these running times are su-
perpolynomial in log N. In contrast, a quantum com-
puter can factor N in time O�log3 N�. Thus, the develop-
ment of a large-scale quantum computer could have
dramatic implications for the practice of cryptography.

We have already discussed the core of Shor’s quantum
factoring algorithm, the ability to perform period finding
over the integers. It remains to see how factoring can be
reduced to a particular instance of period finding.

To efficiently factor a given integer N, it suffices to
efficiently produce some nontrivial factor of N �i.e., a
factor other than 1 or N� with constant probability. The
repeated use of such a subroutine, combined with an
efficient primality testing algorithm �Miller, 1976; Rabin
1980; Agrawal et al., 2004�, can be used to find all the
prime factors of N. It is easy to check whether 2 divides
N, so we can focus on the case of N odd without loss of
generality. Furthermore, it is straightforward to check
whether N is a prime power or whether it is the kth
power of any integer simply by computing 
kN for k
=2,3 , . . . , log2 N, so we can assume that N has at least
two distinct prime factors.

The reduction from finding some nontrivial factor of
an odd N to order finding in the multiplicative group
�Z /NZ�� is due to Miller �1976�. Suppose we choose a
� �2,3 , . . . ,N−1	 uniformly at random from those values
that are coprime to N. Furthermore, assume that the
order r of a is even. Then since ar=1 mod N, we have
�ar/2�2−1=0 mod N or, equivalently,

�ar/2 − 1��ar/2 + 1� = 0 mod N . �56�

Since N divides the product �ar/2−1��ar/2+1�, we might
hope for gcd�ar/2−1 ,N� to be a nontrivial factor of N.
Notice that gcd�ar/2−1 ,N��N since if it were, the order
of a would be at most r /2. Thus it suffices to ensure that
gcd�ar/2−1 ,N��1, which holds if ar/2�−1 mod N. In
Lemma 2 below, we show that a random value of a sat-
isfies these properties with probability at least 1 /2, pro-
vided N has at least two distinct prime factors. Thus the
following quantum algorithm can be used to factor N.

Algorithm 6 �Integer factorization�.
Input: An odd integer N with at least two distinct

prime factors.
Problem: Determine some nontrivial factor of N.
�1� Choose a random a� �2,3 , . . . ,N−1	.

8The RSA protocol uses similar ideas to the Diffie-Hellman
protocol �Sec. IV.B� but relies on a different assumption and
achieves secure communication instead of key exchange. Note
that breaking RSA might be easier than factoring. For elemen-
tary discussions of the details of RSA and related protocols,
see �Menezes et al., 1996; Buchmann, 2004�.
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�2� Compute gcd�a ,N� using the Euclidean algorithm.
If the result is different from 1, then it is a nontrivial
factor of N, and we are done. More likely, gcd�a ,N�=1,
and we continue.

�3� Using Algorithm 5, determine the order of
a mod N. If r is odd, the algorithm has failed, and we
return to step 6. If r is even, we continue.

�4� Compute gcd�ar/2−1 ,N�. If the result is different
from 1, then it is a nontrivial factor of N. Otherwise,
return to step 1.

Lemma 2. Suppose a is chosen uniformly at random
from �Z /NZ��, where N is an odd integer with at least
two distinct prime factors. Then with probability at least
1 /2, the multiplicative order r of a mod N is even and
ar/2�−1 mod N.

Proof. Suppose N=p1
m1
¯pk

mk is the factorization of N
into powers of k	2 distinct odd primes. By the Chinese
remainder theorem, there are unique values ai�Z /pi

miZ
such that a=ai mod pi

mi. Let ri be the multiplicative or-
der of ai mod pi

mi and let 2ci be the largest power of 2
that divides ri. We claim that if r is odd or if ar/2

=−1 mod N, then c1= ¯ =ck. Since r=lcm�r1 ,… ,rk�, we
have c1= ¯ =ck=0 when r is odd. On the other hand, if
r is even and ar/2=−1modN, then for each i we have
ar/2=−1 mod pi

mi, so ri does not divide r /2; but we know
that r /ri is an integer, so it must be odd, which implies
that each ri has the same number of powers of 2 in its
prime factorization.

Now we claim that the probability of any given ci tak-
ing on any particular value is at most 1/2, which implies
that Pr�c1=c2��1/2, and the desired conclusion follows.
To see this, consider a chosen uniformly at random from
�Z /NZ�� or, equivalently, each ai chosen uniformly at
random from �Z /pi

miZ��. The order of the latter group is
��pi

mi�= �pi−1�pi
mi =2diqi for some positive integer di and

some odd integer qi. The number of ai� �Z /pi
miZ�� of

odd order is qi and the number of ai’s with any particular
ci� �1, . . . ,di	 is 2ci−1qi. In particular, the highest-
probability event is ci=di, which happens with probabil-
ity only 1/2. �

F. Breaking elliptic curve cryptography

As discussed in Sec. IV.B, Shor’s algorithm allows
quantum computers to break cryptographic protocols
based on the presumed hardness of the discrete loga-
rithm problem in �Z /NZ��, such as the Diffie-Hellman
key exchange protocol. However, Shor’s algorithm
works equally well for calculating discrete logarithms in
any finite group, provided only that group elements can
be represented uniquely and operated on efficiently. In
particular, quantum computers can also efficiently calcu-
late discrete logarithms over the group corresponding to
an elliptic curve, thereby breaking elliptic curve cryptog-
raphy.

An elliptic curve is a cubic, nonsingular, planar curve
over some field. �The terminology has to do with a con-
nection to elliptic functions.� For simplicity, suppose we

choose a field with characteristic not equal to 2 or 3.
�Cryptographic applications often use the field F2n of
characteristic 2, but the definition of an elliptic curve is
slightly more complicated in this case.� Then, by suitable
linear transformations, any elliptic curve can be rewrit-
ten in the form of the Weierstraß equation

y2 = x3 + ax + b , �57�

where a ,b are parameters. The set of points �x ,y� satis-
fying this equation forms an elliptic curve. To be non-
singular, the discriminant �ª−16�4a3+27b2� must be
nonzero. Typically, one considers elliptic curves in the
projective plane P2 rather than the affine plane, which
means that one point at infinity must be included in the
set of solutions. �For further details on the concepts of
projective curves, points at infinity, and nonsingularity,
see Appendix C.�

An example of an elliptic curve over the field R
�namely, the curve y2=x3−x+1� is shown in Fig. 3. Al-
though such pictures are helpful for developing intuition
about elliptic curves, it is useful in cryptographic appli-
cations to have a curve whose points can be represented
exactly with a finite number of bits, so we use curves
over finite fields. For simplicity, we only consider the
field Fp, where p is a prime larger than 3.

Example. Consider the curve

E = ��x,y� � F7
2 : y2 = x3 − x + 1	 �58�

over F7. It has 4a3+27b2=2 mod 7, so it is nonsingular. It
is straightforward to check that the points on this curve
are

E = �O,�0,1�,�0,6�,�1,1�,�1,6�,�2,0�,�3,2�,

�3,5�,�5,3�,�5,4�,�6,1�,�6,6�	 , �59�

where O denotes the point at infinity.

FIG. 3. The group law for an elliptic curve: P+Q=−R. The
points P and Q sum to the point −R, where R is the intersec-
tion between the elliptic curve and the line through P and Q
and −R is obtained by the reflection of R about the x axis.
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In general, the number of points on an elliptic curve
depends on the parameters a and b. However, Hasse’s
theorem says that �E �−�p+1� � �2
p, so for large p the
number of points is close to p.

An elliptic curve can be used to define an Abelian
group by designating one point of the curve as the addi-
tive identity. Here we use the common convention that
O, the point at infinity, is this special element �although
in principle, it is possible to let any point play this role�.
It remains to define a binary operation � that maps a
pair of points on the curve to a new point on the curve in
a way that satisfies the group axioms. To motivate the
definition, consider the case of the field R. Given two
points P ,Q�E, their sum P+Q is defined geometrically
as follows. First assume that neither point is O. Draw a
line through the points P and Q �or, if P=Q draw the
tangent to the curve at P� and let R denote the third
point of intersection, defined to be O if the line is verti-
cal. Then P+Q is the reflection of R about the x axis,
where the reflection of O is O. If one of P or Q is O, we
draw a vertical line through the other point, so that P
+O=P as desired. Since O is the additive identity, we
define O+O=O. Reflection about the x axis corre-
sponds to negation, so we can think of the rule as saying
that the three points of intersection of a line with the
curve sum to O, as shown in Fig. 3.

It can be shown that �E ,+� is an Abelian group, where
the inverse of P= �x ,y� is −P= �x ,−y�. From the geomet-
ric definition, it is clear that this group is Abelian �the
line through P and Q does not depend on which point is
chosen first� and closed �we always choose P+Q to be
some point on the curve�. The only remaining group
axiom to check is associativity: we must show that �P
+Q�+T=P+ �Q+T�.

To define the group operation for a general field, it is
useful to have an algebraic description of elliptic curve
point addition. Let P= �xP ,yP� and Q= �xQ ,yQ�. Pro-
vided xP�xQ, the slope of the line through P and Q is

� = �yQ − yP�/�xQ − xP� . �60�

Computing the intersection of this line with Eq. �57�, we
find

xP+Q = �2 − xP − xQ, �61�

yP+Q = ��xP − xP+Q� − yP. �62�

If xP=xQ, there are two possibilities for Q: either Q
= �xQ ,yQ�= �xP ,yP�=P or Q= �xQ ,yQ�= �xP ,−yP�=−P. If
Q=−P, then P+Q=O. On the other hand, if P=Q �i.e.,
if we are computing 2P�, then Eqs. �61� and �62� hold
with � replaced by the slope of the tangent to the curve
at P, namely,

� = �3xP
2 + a�/2yP �63�

�unless yP=0, in which case the slope is infinite, so 2P
=O�.

While the geometric picture does not necessarily
make sense for the case of a finite field, we can take its

algebraic description as a definition of the group opera-
tion. It is again obvious that addition of points, defined
by these algebraic expressions, is commutative and
closed. Associativity of the group operation can be veri-
fied by a direct calculation. This shows that �E ,+� is in-
deed an Abelian group.

Suppose we fix an elliptic curve group �E ,+� and
choose a point g�E. Then we can consider the sub-
group �g�, which is possibly the entire group if it happens
to be cyclic. Using exponentiation in this group �which is
multiplication in our additive notation�, we can define
analogs of Diffie-Hellman key exchange and related
cryptosystems such as ElGamal. The security of these
cryptosystems then relies on the assumption that it is
hard to compute discrete logarithms in �g�.

In practice, there are many details to consider when
choosing an elliptic curve group for cryptographic pur-
poses �Menezes et al., 1996; Buchmann, 2004�. Algo-
rithms are known for calculating discrete logarithms on
“supersingular” and “anomolous” curves that run faster
than algorithms for the general case, so such curves
should be avoided. At the same time, g should be chosen
to be a point of high order. Curves with the desired
hardness properties can be found efficiently, and in the
general case it is not known how to solve the discrete
logarithm problem over an elliptic curve group classi-
cally any faster than by general methods �see Sec. IV.B�,
which run in time O�
p�.

However, using Shor’s algorithm, a quantum com-
puter can solve the discrete logarithm problem for an
elliptic curve group over Fp in time poly�log p�. Points
on the curve can be represented uniquely by their coor-
dinates, with a special symbol used to denote O. Addi-
tion of points on the curve can be computed using Eqs.
�61� and �62�, which involve only elementary arithmetic
operations in the field. The most complex of these op-
erations is the calculation of modular inverses, which
can easily be done using Euclid’s algorithm. For more
details on the implementation of Shor’s algorithm over
elliptic curves, see Proos and Zalka �2003�; Kaye �2005�;
and Cheung et al. �2008�.

Elliptic curve cryptosystems are commonly viewed as
being more secure than RSA for a given key size since
the best classical algorithms for factoring run faster than
the best classical algorithms for calculating discrete loga-
rithms in elliptic curve groups. Thus in practice, much
smaller key sizes are used in elliptic curve cryptography
than in factoring-based cryptography. Ironically, Shor’s
algorithm takes a comparable number of steps for both
factoring and computing discrete logarithms,9 so it could
actually be easier for quantum computers to break

9Naively, computing the group operations for an elliptic curve
using Eqs. �61� and �62� requires slightly more operations than
performing ordinary integer multiplication. However, there are
ways to improve the running time of Shor’s algorithm for com-
puting discrete logarithms over elliptic curve groups, at least in
certain cases �Cheung et al., 2008�.
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present-day elliptic curve cryptosystems than to break
RSA.

One can also define an Abelian group corresponding
to a hyperelliptic curve, a curve of the form y2= f�x� for
some suitable polynomial f of degree higher than 3.
These groups are also candidates for cryptographic ap-
plications �see, e.g., Koblitz �1998��. In general, such a
group is referred to as the Jacobian of the curve; it is no
longer isomorphic to the curve itself in the nonelliptic
case. The elements of a general Jacobian can be repre-
sented uniquely and added efficiently, so that Shor’s al-
gorithm can also efficiently compute discrete logarithms
over the Jacobian of a hyperelliptic curve.

G. Decomposing Abelian and solvable groups

Recall from Sec. IV.D that Shor’s period-finding algo-
rithm can be used to compute the order of a cyclic group
C= �g�, given the ability to efficiently represent and mul-
tiply elements of the group. More generally, given a
black-box representation of some group, it would be
useful to have a way of identifying the structure of that
group. For certain kinds of groups, such decompositions
can be obtained efficiently by a quantum computer.

These algorithms operate in the framework of black-
box groups �Babai and Szemerédi, 1984�. In this frame-
work, the elements of a group G are represented
uniquely by strings of length poly�log�G��, and we are
given a black box that can compute products or inverses
in G as desired. Of course, any algorithm that works in
the black-box setting also works when the group is rep-
resented explicitly, say as a matrix group or as some
known group. Note that computing the order of G in the
black-box group setting is hard even when G is promised
to be Abelian �Babai and Szemerédi, 1984�.

Suppose we are given a generating set for a finite
Abelian black-box group. Recall that by the fundamen-
tal theorem of finite Abelian groups any such group can
be decomposed as a direct product G�Z /p1

r1Z� ¯

�Z /pk
rkZ of cyclic subgroups of prime power order. By

combining the solution of the Abelian HSP with classi-
cal techniques from computational group theory, there is
an efficient quantum algorithm for determining the
structure of the group �i.e., the values pi

ri�, and, further-
more, for obtaining generators for each of the cyclic fac-
tors �Mosca, 1999; Cheung and Mosca, 2001�. Note that
this provides an alternative approach to factoring an in-
teger N: by decomposing the multiplicative group
�Z /NZ��, we learn its size ��N�, which is sufficient to
determine the factors of N �Miller, 1976; Shoup, 2005�.

More generally, a similar decomposition can be ob-
tained for any solvable group �Watrous, 2001a�. A finite
group G is called solvable if there exist elements
g1 , . . . ,gm�G such that

�1	 = H0 � H1 � ¯ � Hm = G , �64�

where Hjª �g1 , . . . ,gj� for each j=0,1 , . . . ,m and where
the notation Hj�Hj+1 indicates that Hj is a normal sub-
group of Hj+1, i.e., that xHj=Hjx for every x�Hj+1.

�Equivalently, G is solvable if its derived series contains
the trivial subgroup.� Every Abelian group is solvable,
but the converse does not hold; for example, S3�D3 is
non-Abelian but solvable. Given a generating set for a
black-box solvable group, there is an efficient probabi-
listic classical algorithm to find g1 , . . . ,gm satisfying Eq.
�64� for some m=poly�log �G � � �Babai et al., 1995�. To
compute the order of G, it suffices to compute the or-
ders of the quotient groups Hj /Hj−1 for j=1, . . . ,m,
which are necessarily cyclic. We cannot directly compute
the orders of these groups using Shor’s algorithm since
we do not have unique encodings of their elements.
However, Watrous showed that if we are given the uni-
form superposition �Hj−1�, we can �probabilistically�
compute �Hj /Hj−1� using a modified version of Shor’s al-
gorithm and also �probabilistically� prepare the state
�Hj�. By recursing this procedure along the normal series
given by Eq. �64� �starting with enough copies of �H0�
and maintaining enough copies of the intermediate
states �Hj� to handle the cases where the algorithm fails�,
a quantum computer can calculate �G� in polynomial
time. By straightforward reductions, this also gives effi-
cient quantum algorithms for testing membership in
solvable groups and for deciding whether a subgroup of
a solvable group is normal. Similar ideas give a method
for determining the structure of any Abelian factor
group G /H, where H�G �Watrous, 2001a�; see also
Ivanyos et al. �2003� for related work.

H. Counting points on curves

Suppose we are given a polynomial f�Fq�x1 , . . . ,xn� in
n variables over the finite field Fq. The set Hfª �x
�Fq

n : f�x�=0	 of solutions to the equation f�x�=0 is
called a hypersurface. Counting the number of solutions
�Hf� of this equation is a fundamental computational
problem. More generally, given m polynomials
f1 , . . . , fm�Fq�x1 , . . . ,xn�, we may be interested in the
number of solutions to the system of equations f1�x�
= ¯ = fm�x�=0. The complexity of such counting prob-
lems can be characterized in terms of at least five param-
eters: the number m of polynomials, the number n of
variables, the degrees deg�fi� of the polynomials, the size
q of the finite field Fq, and the characteristic p of the
field, where q=pr and p is prime.

The complexity class #P characterizes the difficulty of
counting the number of values x such that f�x�=0, where
f is an efficiently computable function. One can show
that for quadratic polynomials over F2, with no restric-
tions on the number n of variables and the number m of
polynomials, the corresponding counting problem is #P-
complete. As #P problems are at least as hard as NP
problems �see Sec. II.D�, we do not expect quantum
computers to solve such counting problems in time
poly�n ,m�. In fact, the counting problem is #P-hard even
for a single polynomial in two variables �von zur Gathen
et al., 1997� provided we use a sparse representation that
only lists the nonzero coefficients of the polynomial,
which allows its degree to be exponential in the size of
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its representation. Using a nonsparse representation, so
that we aim for a running time polynomial in the degree,
the computational complexity of such counting prob-
lems is a more subtle issue.

Here we are concerned with the counting problem for
planar curves, meaning that we have m=1 polynomial in
n=2 variables. �Appendix C contains some background
information about curves over finite fields for readers
unfamiliar with this topic.� A key parameter character-
izing the complexity of this counting problem is the
genus g of the curve. For a nonsingular, projective,
planar curve f, the genus is g= 1 / 2 �d−1��d−2�, where
d=deg�f�.

Schoof �1985� gave an algorithm to count the number
of points on an elliptic curve �for which g=1� over Fq in
time poly�log q�. Following results by Pila �1990�, Adle-
man and Huang �2001� generalized this result to hyper-
elliptic curves, giving an algorithm with running time
�log q�O�g2 log g�, where g is the genus of the curve. For
fields Fpr with characteristic p, Lauder and Wan �2008�
showed the existence of a deterministic algorithm for
counting points with time complexity poly�p ,r ,deg f�.
While the former algorithm is efficient for g=O�1� and
the latter is efficient for p=poly�log q�, neither is effi-
cient without some restriction on the genus or the field
characteristic.

On the other hand, Kedlaya �2006� explained how the
quantum algorithm for determining the structure of an
unknown finite Abelian group �Sec. IV.G� can be used to
count the number of points on a planar curve of genus g
over Fq in time poly�g , log q�. It is probably fair to say
that this constitutes not so much a new quantum algo-
rithm but rather a novel application of known quantum
algorithms to algebraic geometry.

In brief, Kedlaya’s algorithm counts the solutions of
a smooth projective curve Cf of genus g by determining
the 2g nontrivial roots of the corresponding zeta func-
tion Zf �T�, which are determined from the orders of
the class groups Cls�Cf� over the different base fields
Fps for s=1, . . . ,16g. As the class groups are all finite
Abelian groups, �Cls�Cf�� can be computed in time
poly�g ,s , log p� by a quantum computer, thus giving an
efficient quantum algorithm for the point counting prob-
lem. We explain some of the details below. For further
information, see Hulek �2003�; Lorenzini �1996�; and the
original article by Kedlaya.

The zeta function of a curve. Let the polynomial f
�Fp�X ,Y� define a smooth, planar, projective curve Cf.
To count the number of points on this curve in the pro-
jective plane P2�Fp�, it is useful to consider extensions of
the base field. For any positive integer r, we define

Nr ª �Cf �Fpr�� , �65�

where

Cf�Fpr� ª �x � P2�Fpr� : f�x� = 0	 �66�

denotes the projective curve defined by f when viewed
as a polynomial over Fpr.

In terms of these values, we can define the zeta func-
tion Zf �T� of the curve Cf, namely,

Zf�T� ª exp��
r=1

�
Nr

r
Tr
 , �67�

with T a formal variable and the exponential function
defined by the Taylor series exp�x�=�j=0

� xj / j!. Whereas
the Riemann zeta function is used to study the elements
and primes of the ring Z, the zeta function of a curve
captures the ideals and prime ideals of the ring
Fp�X ,Y� / �f�, where �f� denotes the ideal generated by f.

From the proof of Weil’s Riemann hypothesis for
curves �see, e.g., Lorenzini �1996��, the zeta function of a
smooth projective curve Cf of genus g has the form

Zf �T� =
Qf �T�

�1 − pT��1 − T�
, �68�

where Qf �T� is a polynomial of degree 2g with integer
coefficients. Moreover, Qf�T� has the factorization

Qf �T� = �
j=1

2g

�1 − �jT� �69�

with �g+j=�
j
* and ��j � =
p for all j. By considering the

rth derivative of Zf �T� at T=0, it is easy to see that the
values �j determine the numbers N1 ,N2 , . . ., and in par-
ticular

Nr = pr + 1 − �
j=1

2g

�j
r �70�

for all r. Thus, if we know the integer coefficients of the
degree 2g polynomial Qf �T�, we can infer the number of
points on the curve f�x�=0 over P2�Fpr�. Kedlaya’s algo-
rithm calculates Zf �T� and hence Qf �T� by relating it to
the class group of the curve, a finite Abelian group.

The class group of a function field. A divisor D on a
curve C over Fp is a finite formal sum over points on the

curve extended to the algebraic closure F̄p of Fp, namely,

D = �
P�C�F̄p�

cP · P . �71�

To be a divisor, D must satisfy three conditions: �1� cP
�Z for all P, �2� �P �cP� is finite, and �3� D is invariant
under the Frobenius automorphism � :x�xp, i.e., cP
=c��P� for all P. The degree of D is the integer deg�D�
=�PcP. Under pointwise addition of the coefficients cP,
the divisors of degree 0 form the group

Div�C� ª �D : deg �D� = 0	 . �72�

As explained in Appendix C, for any curve Cf one can
define the function field Fp�Cf�, the field of rational func-
tions �g=g1 /g2 :g2�0	, where g1 and g2 are homoge-
neous polynomials of equal degree modulo �f�, such that

g is a function on the projective curve Cf �F̄p�. For each
such nonzero rational function g�Fp

��Cf� we define the
corresponding principal divisor
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div�g� ª �
P�Cf�F̄p�

ordP�g� · P

= �
P�Cf�F̄p�

ordP�g1� · P − �
P�Cf�F̄p�

ordP�g2� · P ,

�73�

where the non-negative integer ordP�gi� is the multiplic-
ity of P as a solution to gi=0. In particular, ordP�gi�	1 if
and only if gi�P�=0 and ordP�gi�=0 when gi�P��0.

For each principal divisor we have deg�div�g��=0. For
a rational curve such as the straight line C=P1, the con-
verse holds as well: the only divisors of degree 0 are the
principal divisors of the curve. But it is an important fact
that for general curves the converse does not hold. For
curves that are not rational, i.e., curves of positive genus
such as elliptic curves, the class group captures the rela-
tionship between the group Div�Cf� and its subgroup of
principal divisors.

There is a crucial equivalence relation � among divi-
sors defined by

D1 � D2 if and only if D1 − D2

is a principal divisor. �74�

Finally, the �divisor� class group Cl�C� of curve C is de-
fined as the group of degree 0 divisors modulo this
equivalence relation,

Cl�C� ª Div�C�/ � . �75�

Returning to the theory of zeta functions, it is known
that the order of Cl�Cf� can be expressed in terms of the
roots �j of Zf�T� as

�Cl�Cf�� = �
j=1

2g

�1 − �j� . �76�

This fact establishes a close connection between the
number of points N1= �Cf �Fp�� on a curve and the size
�Cl�Cf�� of its class group.

All of the above can repeated while interpreting the
polynomial f as an element of the extended ring
Fps�X ,Y�. Indicating this change of the base field from
Fp to its degree s extension Fps with a parenthesized su-
perscript, the zeta function Zf

�s��T� has 2g nontrivial
roots �j

�s�=�j
s for j=1, . . . ,2g and the class group Cl�s��Cf�

has order

�Cl�s��Cf�� = �
j=1

2g

�1 − �j
s� . �77�

Observe that the change of base field affects the class
group since the new divisors must be invariant under the
Frobenius automorphism �s :x�xps

�which is a weaker
restriction than the corresponding condition over Fp,
making Div�s��Cf� larger than Div�Cf��, while the group
of principal divisors now allows all rational functions g
�Fps�Cf�.

To illustrate the above definitions, we present the fol-
lowing example of the class group of an elliptic curve.

Example �Point counting and the class group of an
elliptic curve�. Consider the elliptic curve E over F2 de-
fined by the equation Y2+XY+X3+1=0. The projective
version of E is defined by the homogeneous equation
Y2Z+XYZ+X3+Z3=0. We want to consider the num-
ber of points Nr in the projective space P2�F2r� for vari-
ous r.

It is not hard to see that N1=4 with the following four
solutions:

P0 P1 P2 P3

�X:Y:Z� �0:1:0� �1:0:1� �0:1:1� �1:1:1�
.

For the first extension field, there are N2=8 elements
in E�F4�: in addition to the previous four points, we now
also have the solutions

P4 P5 P6 P7

�X:Y:Z� ��:0:1� ��:�:1� ��2:0:1� ��2:�2:1�
,

with � an element of the field F4 satisfying �2=�+1.
In general, it can be shown that the number of points

on E�F2r� is

Nr = 2r + 1r − �r − �̄r �78�

for any r, where �ª− 1
2 + 1

2

−7.

To explore the class group Cl�E� of this curve, we start
by considering some principal divisors. For the linear
functions in X ,Y ,Z we find the following �degree 3� di-
visors:

ordP�f� P0 P1 P2 P3 P4 P5 P6 P7

X 1 2

Y 1 1 1

Z 3

X + Y 1 1 1

X + Z 1 1 1

Y + Z 1 2

X + Y + Z 2 1

From this table we see, for example, that the
principal divisor of X /Z equals −2P0+2P2 and that
div��X+Y+Z� / �X+Z��=−P0+P1+P2−P3. �Note also
that in this function field we have equalities such
as X2+YZ= �X+Z�2�Y+Z� / �X+Y+Z�, which confirms
that div�X2+YZ�=2 div�X+Z�+div�Y+Z�−div�X+Y
+Z�=2P0+4P3.�

One can also show that P0−P1 is not a principal divi-
sor and hence that Cl�E� is nontrivial. In fact, there are
four different elements Cj of the class group, which we
can indicate by the representatives

C0 C1 C2 C3

0 P0 − P1 P0 − P2 P0 − P3
.

„Note, however, that these representatives are far from
unique as, for example, 0�−P0+P1+P2−P3=div��X
+Y+Z� / �X+Z��.… One can verify that the elements of
Cl�E� act as the group Z /4Z, with Cx+Cy�Cx+y for any
x ,y�Z /4Z.
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Performing similar calculations over the extension
field F2s, one can show that in general

�Cl�s��E�� = �1 − �s��1 − �̄s� = 2s + 1 − �s − �̄s, �79�

where � is as in Eq. �78�. This concludes our example.
While for elliptic curves the number of points on the

curve equals the number of elements of the correspond-
ing class group, this coincidence does not persist for gen-
eral curves with genus different from 1. However, the
class group is nevertheless always a finite Abelian group,
which can be explored using the quantum algorithm of
Sec. IV.G.

Kedlaya’s algorithm. Finally, we describe the quantum
algorithm of Kedlaya �2006� for counting the points on a
curve over a finite field.

Algorithm 7 (Point counting).
Input: A nonsingular, planar, projective curve Cf de-

fined by a polynomial f�Fq�X ,Y�.
Problem: Determine the number of solutions �Cf �Fqr��

of the equation f=0 in the projective plane P2�Fqr�.
�1� Let g= 1

2 �d−1��d−2� be the genus of the curve,
where d=deg�f�.

�2� For s=1,2 , . . . ,16g, �a� construct the class group
Cl�s��Cf� and �b� using the algorithm of Sec. IV.G, deter-
mine �Cl�s��Cf��.

�3� Using the calculated group sizes and the equalities

�Cl�s��Cf�� = �
j=1

2g

�1 − �j
s� �80�

for s=1,2 , . . . ,16g, determine the roots �j.
�4� Compute Nr= �Cf �Fqr��=qr+1−�j=1

2g �j
r.

Several aspects of this algorithm are beyond the scope
of this article, most notably the issue of uniquely repre-
senting and manipulating the elements of the class group
Cl�Cf� in such a way that they can be sampled �nearly�
uniformly, facilitating finding a set of generators. For an
explanation of this and other issues, see the original ar-
ticle by Kedlaya, and references therein.

In conclusion, the above quantum algorithm has run-
ning time polynomial in the parameters log pr and g,
whereas the best known classical algorithms are either
exponential in g �Adleman and Huang, 2001� or expo-
nential in log p �Lauder and Wan, 2008�. Whether it is
possible to generalize Kedlaya’s algorithm for curves to
more general surfaces, i.e., to polynomials f with more
than two variables, remains an open question. The best
known classical result for this problem is that of Lauder
and Wan �2008�, who described an algorithm with run-
ning time poly„pn ,rn ,deg�f�n2

….

V. QUANTUM ALGORITHMS FOR NUMBER FIELDS

A. Pell’s equation

Given a squarefree integer d �i.e., an integer not divis-
ible by any perfect square�, the Diophantine equation

x2 − dy2 = 1 �81�

is known as Pell’s equation. This appellation provides an
example of Stigler’s law of eponymy �Stigler, 1980� in
action, as Pell had nothing whatsoever to do with the
equation. The misattribution is apparently due to Euler,
who confused Pell with a contemporary, Brouncker, who
had actually worked on the equation. In fact, Pell’s equa-
tion was studied in ancient India, where �inefficient�
methods for solving it were developed hundreds of years
before Pell �Lenstra, 2002�. �Indeed, Lenstra has sug-
gested that most likely Pell was named after the equa-
tion.�

The left hand side of Pell’s equation can be factored as

x2 − dy2 = �x + y
d��x − y
d� . �82�

Note that a solution of the equation �x ,y��Z2 can be
encoded uniquely as the real number x+y
d: since 
d is
irrational, x+y
d=w+z
d if and only if �x ,y�= �w ,z�.
Thus we can also refer to the number x+y
d as a solu-
tion of Pell’s equation.

There is clearly no loss of generality in restricting our
attention to positive solutions of the equation, namely,
those for which x�0 and y�0. It is straightforward to
show that if x1+y1
d is a positive solution, then �x1

+y1
d�n is also a positive solution for any n�N. In fact,
with x1+y1
d the smallest positive solution of the equa-
tion, called the fundamental solution, one can show that
all positive solutions equal �x1+y1
d�n for some n�N.
Thus, even though Pell’s equation has an infinite number
of solutions, we can in a sense find them all by finding
the fundamental solution.

Some examples of fundamental solutions for various
values of d are shown in Table I. Notice that while the
size of the fundamental solution generally increases with
increasing d, the behavior is far from monotonic: for
example, x1 has 44 decimal digits when d=6009, but only
11 decimal digits when d=6013. In general, though, it is
possible for the solutions to be very large: the size of

TABLE I. Some examples of fundamental solutions of Pell’s
equation x2−dy2=1 for different input values d �Jozsa, 2003�.

d x1 y1

2 3 2
3 2 1
5 9 4
] ] ]

13 649 180
14 15 4
] ] ]

6009 1316340106327253158 1698114661157803451
9259446951059947388 6889492378831465766
4013975�1.3�1044 81644�1.6�1042

6013 40929908599 527831340
] ] ]
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x1+y1
d is only upper bounded by 2O�
d log d�. Thus it is
not even possible to write down the fundamental solu-
tion with poly�log d� bits.

To get around this difficulty, we define the regulator of
the fundamental solution,

R ª log�x1 + y1

d� . �83�

Since R=O�
dlog d�, we can write down �R�, the nearest
integer to R, using O�log d� bits. Since R is an irrational
number, determining only its integer part may seem un-
satisfactory, but in fact given �R� there is a classical algo-
rithm to compute n digits of R in time poly�log d ,n�.
Thus we will be satisfied with an algorithm that finds the
integer part of R in time poly�log d�. The best known
classical algorithm for this problem runs in superpolyno-
mial time �for more details, see Sec. V.E�. In contrast,
Hallgren �2007� gave a polynomial-time quantum algo-
rithm for computing �R� . For a self-contained review of
Hallgren’s algorithm, see Jozsa �2003�.

B. From Pell’s equation to the unit group

Given a squarefree positive integer d, the quadratic
number field Q�
d� is defined as

Q�
d� ª �x + y
d : x,y � Q	 . �84�

It is easy to check that Q�
d� is a field with the usual
addition and multiplication operations. We also define
an operation called conjugation as

x + y
d ª x − y
d . �85�

One can easily check that conjugation of elements of
Q�
d� has many of the same properties as complex con-
jugation, and indeed Q�
d� behaves in many respects
like C, with 
d taking the place of the imaginary unit i
=
−1. Defining the ring Z�
d��Q�
d� as

Z�
d� ª �x + y
d : x,y � Z	 , �86�

we see that solutions of Pell’s equation correspond to

those ��Z�
d� satisfying ��̄=1.
Notice that any solution of Pell’s equation, ��Z�
d�,

has the property that its multiplicative inverse over

Q�
d�, �−1= �̄ /��̄= �̄, is also an element of Z�
d�. In gen-
eral, an element of a ring with an inverse that is also an
element of the ring is called a unit. In Z, the only units
are �1, but in other rings it is possible to have more
units.

It should not be a surprise that the units of Z�
d� are
closely related to the solutions of Pell’s equation. In par-

ticular, �=x+y
d is a unit in Z�
d� if and only if ��̄=x2

−dy2= ±1. To see this, we note that

�−1 = �̄/��̄ = �x − y
d�/�x2 − dy2� �87�

and if x2−dy2= ±1, then �−1= ± �̄�Z�
d�. Conversely, if
�−1�Z�
d�, then so is

�−1�−1 =
�x − y
d��x + y
d�

�x2 − dy2�2 =
1

x2 − dy2 , �88�

which shows that x2−dy2= ±1.
The set of units in Z�
d� forms a group under multi-

plication called the unit group. This group is given by
�±�1

n :n�Z	, where �1 is the fundamental unit, the small-
est unit greater than 1. The proof of this fact is essen-
tially the same as the proof that all solutions of Pell’s
equation are powers of the fundamental solution.

If we can find �1, then it is straightforward to find
all the solutions of Pell’s equation. If �1=x+y
d has x2

−dy2=+1, then the units are precisely the solutions of
Pell’s equation. On the other hand, if x2−dy2=−1, then
�2ª�1

2 satisfies �2�̄2=�1
2�̄1

2= �−1�2=1; in this case the solu-
tions of Pell’s equation are �±�1

2n :n�Z	. Thus our goal is
to find �1. Just as in our discussion of the solutions to
Pell’s equation, �1 is too large to write down, so instead
we compute the regulator of the fundamental unit,
Rª log �1.

Example. Consider the quadratic number field Q�
5�
and the corresponding ring Z�
5�. The unit group of
Z�
5� has the fundamental unit �1=2+
5, whose regula-
tor is R=log�2+
5��1.44. Here �1�̄1=−1, so the funda-
mental solution of Pell’s equation is x1+y1
5=�1

2=9
+4
5. Thus the set of positive solutions to Pell’s equa-
tion x2−5y2=1 is

��xk,yk� : xk + yk

5 = �9 + 4
5�k,k � N	 . �89�

C. Periodic function for Pell’s equation

To define a periodic function that encodes R, we need
to introduce the concept of an ideal of a ring �and more
specifically a principal ideal�. For any ring R, we say that
I�R is an ideal if it is closed under integer linear com-
binations and under multiplication by arbitrary elements
of R. For example, 2Z is an ideal of Z. We say that an
ideal is principal if it is generated by a single element of
the ring, i.e., if it is of the form �R for some ��R; thus
2Z is a principal ideal.

Principal ideals are useful because the function map-
ping the ring element ��Z�
d� to the principal ideal �R
is periodic and its periodicity corresponds to the units of
Z�
d�. Specifically, �Z�
d�=�Z�
d� if and only if � � ��,
where � is a unit in Z�
d�. To see this, note that if � is a
unit, then �Z�
d�=��Z�
d�=�Z�
d� since �Z�
d�=Z�
d�
by the definition of a unit. Conversely, suppose that
�Z�
d�=�Z�
d�; then, since 1�Z�
d�, we have �

��Z�
d�=�Z�
d�, so there is some ��Z�
d� satisfying �

� ��. Similarly, ���Z�
d�=�Z�
d�, so there is some �

�Z�
d� satisfying � � ��. Thus we have � � �� � ���.
This shows that �� � 1, so � and � are units �indeed,
�=�−1�.

As a result, the function g���=�Z�
d� is �multiplica-
tively� periodic with period �1. In other words, letting �
=ez, the function
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h�z� = ezZ�
d� �90�

is �additively� periodic with period R. However, we can-
not simply use this function since it is not possible to
succinctly represent the values it takes.

To define a more suitable periodic function, one can
use the concept of a reduced ideal. We will not describe
the details here. However, one can show that there are
only finitely many reduced principal ideals and indeed
only O�d� of them, so that we can represent a reduced
principal ideal using poly�log d� bits.

It is also helpful to have a way of measuring the dis-
tance 
 of any principal ideal from the unit ideal,
1Z�
d�=Z�
d�. Such a function can be defined by


��Z�
d�� ª log��/�̄�mod R . �91�

Notice that the unit ideal has distance 
�1Z�
d��
=log�1/1�mod R=0, as desired. Furthermore, the dis-
tance function does not depend on which generator we
choose to represent an ideal since two equivalent ideals
have generators that differ by some unit �=�1

n and


��Z�
d�� = 2 log���mod R = 0. �92�

With this definition of distance, one can show that there
is a reduced ideal close to any nonreduced ideal.

The periodic function f�z� used in Hallgren’s algo-
rithm is defined as the reduced principal ideal whose
distance from the unit ideal is maximal among all re-
duced principal ideals of distance at most z �together
with the distance from z to ensure that the function is
injective within each period�. In other words, we select
the reduced principal ideal “to the left of or at z.”

This function f is periodic with period R, and one can
show that it can be computed in time poly�log d�. How-
ever, since R is in general irrational, it remains to see
how to perform period finding for such a function.

D. Period finding over R

Suppose we are given a function f :R→S satisfying

f�x� = f�y� if and only if �x − y�/r � Z �93�

for some r�R for all x ,y�R. Here we consider how
Shor’s period-finding algorithm �Sec. IV.D� can be
adapted to find an approximation to r even if it happens
to be irrational �Hallgren, 2007�.

Of course, to perform period finding on a digital com-
puter, we must discretize the function. We must be care-
ful about how we perform this discretization. For ex-
ample, suppose that S=R. If we simply evaluate f at
equally spaced points and round the resulting values to
obtain integers, there is no reason for the function val-
ues corresponding to inputs separated by an amount
close to the period to be related in any way whatsoever.
It could be that the discretized function is injective, car-
rying absolutely no information about the period.

Instead we discretize in such a way that the resulting
function is pseudoperiodic. We say that f :Z→S is

pseudoperiodic at k�Z with period r�R if for each
��Z, either f�k�= f�k+ ��r�� or f�k�= f�k+ ��r��. We say
that f is �-pseudoperiodic if it is pseudoperiodic for at
least an � fraction of the values k=0,1 , . . . , �r�. We re-
quire that the discretized function is �-pseudoperiodic
for some constant � and that it is injective on the subset
of inputs where it is pseudoperiodic. The periodic func-
tion encoding the regulator of Pell’s equation can be
constructed so that it satisfies these conditions.

The algorithm for period finding over R closely fol-
lows Algorithm 5. Again the basic approach is Fourier
sampling over Z /NZ, with N depending on some a priori
upper bound on the period.

Algorithm 8 �Period finding for a pseudoperiodic func-
tion�.

Input: Black box f :Z→S that is �-pseudoperiodic �for
some � � ��1�� with period r�R.

Problem: Approximate r.
�1� Prepare the uniform superposition �Z /NZ�.
�2� Query the pseudoperiodic function in an ancilla

register, giving

1

N

�
x�Z/NZ

�x,f�x�� . �94�

�3� Discard the ancilla register, so that the first register
is left in a uniform superposition over those x for which
f�x� takes some particular value. With constant probabil-
ity, this is a value at which f is pseudoperiodic. Suppose
that this value is f�x0�, where 0�x0�r. As in step 3 of
Algorithm 5, the first register is a superposition over n
�N /r points, with the rounding depending on the par-
ticular value of x0. We write ��� to denote an integer that
could be either ��� or ���. With this notation, we obtain
the state

1

n

�
j=0

n−1

�x0 + �jr�� . �95�

�4� Perform the Fourier transform over Z /NZ, giving

1

nN

�
k�Z/NZ

�N
kx0�

j=0

n−1

�N
k�jr��k� . �96�

We have �jr�= jr+
j, where −1�
j�1, so the sum over j
above is

�
j=0

n−1

�N
k�jr� = �

j=0

n−1

�N
kjr�N

k
j. �97�

When the offsets 
j are zero, this is simply Eq. �51�,
which we have already shown is strongly peaked around
values of k close to integer multiples of N /r. To compare
with this case, we compute the deviation
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��
j=0

n−1

�N
kjr�N

k
j − �
j=0

n−1

�N
kjr� � �

j=0

n−1

��N
k
j − 1�

�
1
2 �

j=0

n−1 ��k
j

N
� �

�kn

2N
. �98�

This bound does not show that the amplitudes are close
for all values of k. However, suppose we restrict our
attention to those values of k less than N / log r. �We
obtain such a k with probability about 1/ log r, so we can
condition on such a value with only a polynomial in-
crease in the overall running time.� Then if k= �jN /r� for
some j�Z, we find �using Eq. �54��

� 1

nN

�
j=0

n−1

�N
k�jr�� = �� 1


r

 . �99�

�5� Measure the state of Eq. �96� in the computational
basis. As in step 5 of Algorithm 5, we sample from a
distribution in which some value k= �jN /r� �with j�Z�
appears with reasonably large probability �now
�„1/poly�log r�… instead of ��1��.

�6� Finally, we must obtain an approximation to r us-
ing these samples. Since r is not an integer, the proce-
dure from step 6 of Algorithm 5 does not suffice. How-
ever, we can perform Fourier sampling sufficiently many
times that we obtain two values �jN /r�, �j�N /r�, where j
and j� are relatively prime, again with only polynomial
overhead. It can be shown that if N	3r2, then j / j� is
guaranteed to be one of the convergents in the contin-
ued fraction expansion of �jN /r� / �j�N /r�. Thus we can
learn j and hence compute jN / �jN /r�, which gives a good
approximation to r: in particular, �r− �jN / �jN /r����1.

E. The principal ideal problem and number field cryptography

Pell’s equation is closely related to another problem in
algebraic number theory called the principal ideal prob-
lem. Fix a quadratic number field Q�
d� and suppose we
are given an invertible ideal I, an ideal for which there
exists some J�Q�
d� with IJ=Z�
d�. In the principal
ideal problem, we are asked to decide whether there is
some ��Z�
d� such that I=�Z�
d� �i.e., whether I is
principal� and, if so, to find that � �or more precisely
�log ���. Notice that computing � can be viewed as an
analog of the discrete logarithm problem in Z�
d�. Using
similar ideas as in the algorithm for solving Pell’s equa-
tion and proceeding along similar lines to Algorithm 3,
Hallgren �2007� also gave an efficient quantum algo-
rithm for the principal ideal problem.

The integer factoring problem reduces to solving Pell’s
equation and Pell’s equation reduces to the principal
ideal problem �Buchmann and Williams, 1989�; but no
reductions in the other direction are known. Indeed,
whereas factoring is conjectured to be possible with a
classical computer in time 2O„�log d�1/3�log log d�1/3

…, the best
known classical algorithms for Pell’s equation and the
principal ideal problem both take time 2O�
log d log log d�

assuming the generalized Riemann hypothesis or time
O„d1/4poly�log d�… with no such assumption �Buchmann,
1990; Vollmer, 2000�. Motivated by the possibility that
the principal ideal problem is indeed harder than factor-
ing, Buchmann and Williams proposed a key exchange
protocol based on it �Buchmann and Williams, 1989�.
This system is analogous to the Diffie-Hellman protocol
discussed in Sec. IV.B.1, but instead of exchanging inte-
gers, Alice and Bob exchange reduced ideals. Hallgren’s
algorithm shows that quantum computers can efficiently
break the Buchmann-Williams cryptosystem.

F. Computing the unit group of a general number field

Recall from Sec. V.B that the quantum algorithm for
solving Pell’s equation proceeds by computing the fun-
damental unit of the unit group of Z�
d�. More gener-
ally, there is an efficient quantum algorithm to compute
the unit group of an arbitrary number field of fixed de-
gree �Hallgren, 2005; Schmidt and Vollmer, 2005�, which
we summarize.

In general, an algebraic number field �or simply num-
ber field� K=Q��� is a finite extension of the field Q of
rational numbers. Here � is a root of some monic irre-
ducible polynomial over Q called the minimal polyno-
mial. If the minimal polynomial has degree n, we say
that K is a number field of degree n. For example, the
quadratic number field Q�
d� has the minimal polyno-
mial x2−d and hence is of degree 2.

For a general number field, the units are defined as
the algebraic integers of that field whose inverses are
also algebraic integers. In general, the units form a
group under multiplication. Just as the units of a qua-
dratic number field are powers of some fundamental
unit, it can be shown that the unit group U�K� of any
number field K consists of elements of the form
��1

n1
¯�r

nr for n1 , . . . ,nr�Z, where � is a root of unity and
�1 , . . . ,�r are called the fundamental units �with r defined
below�. Given a number field of constant degree �say, in
terms of its minimal polynomial�, � can be computed
efficiently by a classical computer. The unit group prob-
lem asks us to compute �the regulators of� the funda-
mental units �1 , . . . ,�r.

As in the quantum algorithm for solving Pell’s equa-
tion, we can reduce this computation to a period-finding
problem. To see how the periodic function is defined,
suppose the minimal polynomial of K has s real roots
and t pairs of complex roots; then the number of funda-
mental units is r=s+ t−1. Let �1 , . . . ,�s be the s real roots
and let �s+1 , . . . ,�s+t be t complex roots that, together
with their complex conjugates �

s+1
* , . . . ,�

s+t
* , constitute all

2t complex roots. For each j=1, . . . ,s+ t, we can embed
K in C with the map  j :K→C that replaces � by �j. Then
we define a function L :K�→Rs+t as

L�x� ª �log� 1�x��, . . . , log� s�x��,

2 log� s+1�x��, . . . ,2 log� s+t�x��� . �100�
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By Dirichlet’s theorem, L„U�K�… is an r-dimensional lat-
tice in Rr+1 whose coordinates �y1 , . . . ,yr+1� obey �jyj=0
�Cohen, 1993, Theorem 4.9.7�. The unit group problem
is essentially equivalent to finding a basis for this lattice,
i.e., determining the periodicity of L�x�. Note that since
the lattice has dimension r, we can restrict our attention
to any r components of L�x�, thereby giving a period-
finding problem over Rr.

There are two main parts to the quantum algorithm
for computing the unit group, again paralleling the algo-
rithm for Pell’s equation. First, one must show how to
efficiently compute the function L�x� or, more precisely,
a related function that hides the same lattice, analogous
to the function discussed in Sec. V.C �and again based on
the concept of a reduced ideal�. Second, one must gen-
eralize period finding over R �Sec. V.D� to period finding
over Rr. All relevant computations can be performed
efficiently provided the degree of K is constant, giving
an efficient quantum algorithm for the unit group prob-
lem in this case.

G. The principal ideal problem and the class group

We conclude our discussion of quantum algorithms
for number fields by mentioning two additional prob-
lems with efficient quantum algorithms.

In Sec. V.E, we showed that the efficient quantum al-
gorithm for Pell’s equation can be adapted to decide
whether a given ideal is principal and, if so, to compute
�the regulator of� its generator. More generally, the prin-
cipal ideal problem can be defined for any number field,
and the techniques discussed in Sec. V.F can be applied
to give an efficient quantum algorithm for it whenever
the number field has constant degree �Hallgren, 2005�.

A related problem is the task of computing the class
group Cl�K� of a number field K. The class group is
defined as the set of ideals of K modulo the set of prin-
cipal ideals of K; it is a finite Abelian group. The class
group problem asks us to decompose Cl�K� as done in
Sec. IV.G. Assuming the generalized Riemann hypoth-
esis �GRH�, there is a polynomial-time algorithm to find
generators of Cl�K� �Thiel, 1995�. If K=Q�
−d� is an
imaginary quadratic number field, then its elements
have unique representatives that can be computed effi-
ciently, and Cl�K� can be decomposed using the proce-
dure of Mosca �1999� and Cheung and Mosca �2001�.
More generally, it is not known how to uniquely repre-
sent the elements of Cl�K� in an efficiently computable
way. However, we can take advantage of the technique
introduced by Watrous �2001a� for computing over quo-
tient groups, namely, to represent a coset by the uniform
superposition of its elements. Using this idea, it can be
shown that there is an efficient quantum algorithm for
decomposing Cl�K�, provided K has constant degree and
assuming the GRH �Hallgren, 2005� �see Hallgren �2007�
for the special case of a real quadratic number field�. In
particular, we can compute �Cl�K��, the class number of
the number field, K just as Kedlaya’s algorithm does for
curves �Sec. IV.H�.

VI. NON-ABELIAN QUANTUM FOURIER TRANSFORM

In Sec. IV, we showed that the Abelian Fourier trans-
form can be used to exploit the symmetry of an Abelian
HSP and that this essentially gave a complete solution.
In the non-Abelian version of the HSP, a non-Abelian
version of the Fourier transform can similarly be used to
exploit the symmetry of the problem. However, in gen-
eral, this will only take us part of the way to a solution of
the non-Abelian HSP.

A. The Fourier transform over a non-Abelian group

We begin by discussing the definition of the non-
Abelian Fourier transform. For a more extensive review
of Fourier analysis on finite groups, see Serre �1977�,
Diaconis �1988�, and Terras �1999�. Here we assume
knowledge of group representation theory �see Appen-
dix B for a summary of the requisite background�.

The Fourier transform of the state �x� corresponding
to the group element x�G is a weighted superposition

over a complete set of irreducible representations Ĝ,
namely,

�x̂� ª
1


�G�
�

 �Ĝ

d � , �x�� , �101�

where d is the dimension of the representation  , | �
is a state that labels the irreducible representation
�or irrep�, and � �x�� is a normalized, d 

2-dimensional
state whose amplitudes are given by the entries of the
d �d matrix  �x� /
d ,

� �x�� ª � �x� � 1d 
��

j=1

d �j,j�

d 

= �
j,k=1

d  �x�j,k


d 

�j,k� . �102�

Here  �x� is a unitary matrix representing the group el-
ement x�G; we have  �x� �y�= �xy� for all x ,y�G. �If
 is one dimensional, then � �x�� is simply a phase factor
 �x��C with � �x��=1.� In other words, the Fourier
transform over G is the unitary matrix

FG ª �
x�G

�x̂��x� = �
x�G

�
 �Ĝ


 d 

�G� �
j,k=1

d 

 �x�j,k� ,j,k��x� .

�103�

Note that the Fourier transform over a non-Abelian G is
not uniquely defined but rather depends on a choice of
basis for each irrep of dimension greater than 1.

It is straightforward to check that FG is indeed a uni-
tary transformation. Using the identity

� �y�� �x�� = Tr� †�y� �x��/d = ! �y−1x�/d , �104�

we have

�ŷ�x̂� = �
 �Ĝ

d 
2

�G�
� �y�� �x�� = �

 �Ĝ

d 

�G�
! �y−1x� . �105�

Hence by Eqs. �B5� and �B6� in Appendix B, we find
that �ŷ � x̂�=
x,y.
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As noted in Appendix B, FG is precisely the transfor-
mation that simultaneously block-diagonalizes the ac-
tions of left multiplication and right multiplication or,
equivalently, that decomposes both the left and right
regular representations of G into their irreducible com-
ponents. We check this explicitly for the left regular rep-
resentation L of G. This representation satisfies
L�x��y�= �xy� for all x ,y�G, so

L̂�x� ª FGL�x�FG
† = �

y�G
�xŷ��ŷ�

= �
y�G

�
 , ��Ĝ

�
j,k=1

d 

�
j�,k�=1

d � 
d d �

�G�

�  �xy�j,k ��y�
j�,k�
* � ,j,k�� �,j�,k��

= �
y�G

�
 , ��Ĝ

�
j,k,�=1

d 

�
j�,k�=1

d � 
d d �

�G�

�  �x�j,� �y��,k ��y�
j�,k�
* � ,j,k�� �,j�,k��

= �
 �Ĝ

�
j,k,�=1

d 

 �x�j,�� ,j,k�� ,�,k�

= �
 �Ĝ

� �x� � 1d 
� , �106�

where in the third line we have used the orthogonality
relation for irreps �Theorem 5 in Appendix B�.

A similar calculation can be done for the right regular
representation defined by R�x��y�= �yx−1�, giving

R̂�x� ª FGR�x�FG
† = �

 �Ĝ

�1d 
�  �x�*� . �107�

This identity will be useful when analyzing the applica-
tion of the quantum Fourier transform to the hidden
subgroup problem in Sec. VII.

B. Efficient quantum circuits

In Sec. III.B, we described efficient quantum circuits
for implementing the quantum Fourier transform over
any finite Abelian group. Analogous circuits are known
for many, but not all, non-Abelian groups. Just as the
circuit for the QFT over a cyclic group parallels the
usual classical fast Fourier transform �FFT�, many of
these circuits build on classical implementations of FFTs
over non-Abelian groups �Beth, 1987; Clausen, 1989;
Diaconis and Rockmore, 1990; Rockmore, 1990; Maslen
and Rockmore, 1995�. Here we summarize the groups
for which efficient QFTs are known.

Høyer �1997� gave efficient circuits for the quantum
Fourier transform over metacyclic groups �i.e., semi-
direct products of cyclic groups�, including the dihedral
group, and over the Pauli group on n qubits. An alter-
native construction for certain metacyclic two-groups
has been given by Püschel et al. �1999�. Beals �1997� gave
an efficient implementation of the QFT over the sym-

metric group. Finally, Moore et al. �2006� gave a general
construction of QFTs, systematically quantizing classical
FFTs. For example, this approach yields polynomial-
time quantum circuits for Clifford groups, the symmetric
group, the wreath product of a polynomial-sized group,
and metabelian groups.

There are a few important groups for which efficient
quantum Fourier transforms are not known. These in-
clude the classical groups, such as the group GLn�Fq� of
n�n invertible matrices over a finite field with q ele-
ments. However, it is possible to implement these trans-
forms in subexponential time �Moore et al., 2006�.

VII. NON-ABELIAN HIDDEN SUBGROUP PROBLEM

We now turn to the general non-Abelian version of
the hidden subgroup problem. We begin by stating the
problem and describing some of its potential applica-
tions. We describe the standard way of approaching the
problem on a quantum computer and explain how the
non-Abelian Fourier transform can be used to simplify
the resulting hidden subgroup states. This leads to the
notions of weak Fourier sampling and strong Fourier
sampling; we describe some of their applications and
limitations. Then we discuss how multiregister measure-
ments on hidden subgroup states can potentially avoid
some of those limitations. Finally, we describe two spe-
cific algorithmic techniques for hidden subgroup prob-
lems: the Kuperberg sieve and the pretty good measure-
ment. Note that some of the results presented in Sec.
VIII, on the hidden shift problem, also give algorithms
for the non-Abelian HSP.

A. The problem and its applications

The non-Abelian hidden subgroup problem naturally
generalizes the Abelian HSP considered in Sec. IV. In
the hidden subgroup problem for a group G, we are
given a black-box function f :G→S, where S is a finite
set. We say that f hides a subgroup H�G provided

f�x� = f�y� if and only if x−1y � H �108�

�where we use multiplicative notation for non-Abelian
groups�. In other words, f is constant on left cosets
H ,g1H ,g2H , . . . of H in G and distinct on different left
cosets. We say that an algorithm for the HSP in G is
efficient if it runs in time poly�log�G��.

The choice of left cosets is an arbitrary one; we could
just as well define the HSP in terms of right cosets
H ,Hg1� ,Hg2� , . . . by promising that f�x�= f�y� if and only if
xy−1�H. But here we use the definition in terms of left
cosets.

The non-Abelian HSP is of interest not only because
it generalizes the Abelian case in a natural way but be-
cause a solution of certain non-Abelian HSPs would
have particularly useful applications. The most well
known �and also the most straightforward� applications
are to the graph automorphism problem and the graph
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isomorphism problem �Boneh and Lipton, 1995; Beals,
1997; Høyer, 1997; Ettinger and Høyer, 1999�.

In the graph automorphism problem, we are given a
graph " on n vertices, and our goal is to determine its
automorphism group. We say that ��Sn is an automor-
phism of " if ��"��". The automorphisms of " form a
group Aut"�Sn; if Aut" is trivial then we say " is rigid.
We may cast the graph automorphism problem as an
HSP over Sn by considering the function f���ª��"�,
which hides Aut".

In the graph isomorphism problem, we are given two
connected graphs " ,"� each on n vertices, and our goal
is to determine whether there is any permutation �
�Sn such that ��"�="�, in which case we say that " and
"� are isomorphic. We can cast graph isomorphism as an
HSP in the wreath product Sn �S2�S2n. �The wreath
product group G �T, where T�Sm, is the semidirect
product Gm

’T, where T acts to permute the elements
of Gm.� Writing the elements of Sn �S2 in the form
� ,# ,b� where  ,#�Sn represent permutations of " ,"�,
respectively, and b� �0,1	 denotes whether to swap the
two graphs, we define

f� ,#,b� ª �„ �"�,#�"��… , b = 0,

„ �"��,#�"�… , b = 1.
� �109�

The function f hides the automorphism group of the dis-
joint union of " and "�. This group contains an element
that swaps the two graphs and hence is at least twice as
large as �Aut"� · �Aut"�� if and only if the graphs are iso-
morphic. In particular, if " and "� are rigid �which seems
to be a hard case for the HSP approach to graph isomor-
phism and in fact is equivalent to the problem of decid-
ing rigidity �Hoffmann, 1982��, the hidden subgroup is
trivial when " ,"� are nonisomorphic and has order 2,
with its nontrivial element the involution �� ,�−1 ,1�,
when "=��"��.

The graph automorphism and graph isomorphism
problems are closely related. The decision version of
graph isomorphism is polynomial-time equivalent to the
problems of finding an isomorphism between two graphs
provided one exists, counting the number of such iso-
morphisms, finding the automorphism group of a single
graph, and computing the size of this automorphsim
group �Hoffmann, 1982�. Deciding whether a graph is
rigid �i.e., whether the automorphsim group is trivial�
can be reduced to general graph isomorphism, but the
other direction is unknown, so deciding rigidity could be
an easier problem �Köbler et al., 1993�.

We point out the possibility that graph isomorphism is
not a hard problem even for classical computers. There
are polynomial-time classical algorithms for many spe-
cial cases of graph isomorphism, such as when the maxi-
mum degree is bounded �Luks, 1982�, the genus is
bounded �Filotti and Mayer, 1980; Miller, 1980�, or the
eigenvalue multiplicity is bounded �Babai et al., 1982�.
Furthermore, there are classical algorithms that run in
time 2O�
n log n� for general graphs �Babai et al., 1983� and
in time 2O�
3n� for strongly regular graphs �Spielman,

1996�, which are suspected to be some of the hardest
graphs for the problem. Even if there is a polynomial-
time quantum algorithm for graph isomorphism, it is
plausible that the HSP in the symmetric group might be
substantially harder since the graph structure is lost in
the reduction to the HSP. Indeed, solving the HSP in the
symmetric group would equally well solve other isomor-
phism problems, such as the problem of code equiva-
lence �Ettinger and Høyer, 1999�, which is at least as
hard as graph isomorphism and possibly harder �Petrank
and Roth, 1997�.

The second major potential application of the
hidden subgroup problem is to lattice problems. An
n-dimensional lattice is the set of all integer linear com-
binations of n linearly independent vectors in Rn �a basis
for the lattice�. In the shortest vector problem, we are
asked to find a shortest nonzero vector in the lattice
�see, e.g., Micciancio and Goldwasser �2002��. In particu-
lar, in the g�n�-unique shortest vector problem, we are
promised that the shortest nonzero vector is unique �up
to its sign� and is shorter than any other nonparallel
vector by a factor g�n�. This problem can be solved
in polynomial time on a classical computer if g�n�
= �1+����n� �Lenstra et al., 1982� and even if g�n�
=2��n log log n/log n� �Schnorr, 1987; Ajtai et al., 2001�. The
problem is NP-hard if g�n�=O�1� �van Emde Boas, 1981;
Ajtai, 1998; Micciancio, 2001�; in fact, even stronger
hardness results are known �Khot, 2005�. For g�n�
=poly�n�, the problem is suspected to be hard, at least
for a classical computer. In particular, the presumed
hardness of the O�n8�-unique shortest vector problem is
the basis for a cryptosystem proposed by Ajtai �1996�,
Ajtai and Dwork �1997�, and Micciancio and Gold-
wasser �2002�, and a subsequent improvement by Regev
�2004a� requires quantum hardness of the O�n1.5�-unique
shortest vector problem.

Regev showed that an efficient quantum algorithm for
the dihedral hidden subgroup problem based on the
standard method �described below� could be used to
solve the poly�n�-unique shortest vector problem �Re-
gev, 2004b�. Such an algorithm would be significant since
it would break these lattice cryptosystems, which are
some of the few proposed cryptosystems that are not
compromised by Shor’s algorithm.

So far, only the symmetric and dihedral hidden sub-
group problems are known to have applications to natu-
ral problems. Nevertheless, there has been considerable
interest in understanding the complexity of the HSP for
general groups. There are at least three reasons for this.
First, the problem is simply of fundamental interest: it
appears to be a natural setting for exploring the extent
of the advantage of quantum computers over classical
ones. Second, techniques developed for other HSPs may
eventually find application to the symmetric or dihedral
groups. Finally, exploring the limitations of quantum
computers for HSPs may suggest cryptosystems that
could be robust even to quantum attacks �Okamoto et
al., 2000; Regev, 2004b; Kawachi et al., 2005; Moore,
Russell, and Vazirani, 2007; Hayashi et al., 2008�.
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B. The standard method

Nearly all known algorithms for the non-Abelian hid-
den subgroup problem use the black box for f in essen-
tially the same way as in the Abelian HSP �Sec. IV.C�.
This approach has therefore come to be known as the
standard method.

In the standard method, we begin by preparing a uni-
form superposition over group elements,

�G� ª
1


�G�
�

x�G
�x� . �110�

We then compute the value f�x� in an ancilla register,
giving

1

�G�

�
x�G

�x,f�x�� . �111�

Finally, we discard the second register. If we were to
measure the second register, obtaining the outcome y
�S, then the state would be projected onto the uniform
superposition of those x�G such that f�x�=y, which is
simply some left coset of H. Since every coset contains
the same number of elements, each left coset occurs
with equal probability. Thus discarding the second reg-
ister yields the coset state

�xH� ª
1


�H�
�

h�H
�xh� with x � G uniformly

random and unknown. �112�

Depending on context, it may be more convenient to
view the outcome either as a random pure state or,
equivalently, as the mixed quantum state

�H ª

1

�G� �
x�G

�xH��xH� , �113�

which we refer to as a hidden subgroup state. In the
standard approach to the hidden subgroup problem, we
attempt to determine H using samples of this hidden
subgroup state.

Historically, work on the hidden subgroup problem
has focused almost exclusively on the standard method.
However, while this method seems quite natural, there is
no general proof that it is necessarily the best way to
approach the HSP. Koiran et al. �2007� showed that the
quantum query complexity of Simon’s problem is linear,
so that Simon’s algorithm �using the standard method� is
within a constant factor of optimal. This immediately
implies an ��n� lower bound for the HSP in any group
that contains the subgroup �Z /2Z�n. It would be interest-
ing to prove similar results for more general groups or to
find other ways of evaluating the effectiveness of the
standard method as compared with more general strate-
gies.

C. Weak Fourier sampling

The symmetry of a coset state �Eq. �112�� and, equiva-
lently, a hidden subgroup state �Eq. �113�� can be ex-
ploited using the quantum Fourier transform. In particu-
lar, we have

�xH� =
1


�H�
�

h�H
R�h��x� , �114�

where R is the right regular representation of G. Thus
the hidden subgroup state can be written as

�H =
1

�G� · �H� �
x�G

�
h,h��H

R�h��x��x�R�h��†

=
1

�G� · �H� �
h,h��H

R�hh�−1� =
1

�G� �
h�H

R�h� . �115�

Since the right regular representation is block-diagonal
in the Fourier basis, the same is true of �H. In particular,
using Eq. �126�, we have

�̂H ª FG�HFG
† =

1

�G�
�
 �Ĝ

�Id 
�  �H�*� , �116�

where

 �H� ª �
h�H

 �h� . �117�

Since �̂H is block-diagonal, with blocks labeled by ir-
reducible representations, we may now measure the ir-
rep label without loss of information. This procedure is
referred to as weak Fourier sampling. The probability of

observing representation  �Ĝ under weak Fourier
sampling is

Pr� � =
1

�G�
Tr�Id 

�  �H�*� =
d 

�G� �
h�H

! �h�*, �118�

which is precisely d �H� / �G� times the number of times
the trivial representation appears in ResH

G , the restric-
tion of  to H �Hallgren et al., 2003, Theorem 1.2�. We
may now ask whether polynomially many samples from
this distribution are sufficient to determine H, and if so
whether H can be reconstructed from this information
efficiently.

If G is Abelian, then all of its representations are one
dimensional, so weak Fourier sampling reveals all of the
available information about �H. This information can in-
deed be used to efficiently determine H, as discussed in
Sec. IV.C.

Weak Fourier sampling succeeds for a similar reason
whenever H is a normal subgroup of G �denoted H�G�,
i.e., whenever gHg−1=H for all g�G �Hallgren et al.,
2003�. In this case, the hidden subgroup state within the

irrep  �Ĝ is proportional to
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 �H�* =
1

�G� �
g�G,h�H

 �ghg−1�*, �119�

and this commutes with  �x�* for all x�G, so by Schur’s
Lemma �Theorem 4� it is a multiple of the identity. Thus
�̂H is proportional to the identity within each block, and
again weak Fourier sampling reveals all available infor-
mation about H. Indeed, the distribution under weak
Fourier sampling is particularly simple: we have

Pr� � = �d 
2 �H�/�G� if H � ker  

0 otherwise
� �120�

�a straightforward generalization of the distribution seen
in step 5 of Algorithm 4�, where ker  ª �g�G : �g�
=1	 denotes the kernel of the representation  . To see
this, note that if H�ker  , then there is some h��H
with  �h���1; but then  �h�� �H�=�h�H �h�h�= �H�,
and since  �h�� is unitary and  �H� is a scalar multiple of
the identity, this can only be satisfied if in fact  �H�=0.
On the other hand, if H�ker  , then ! �h�=d for all
h�H, and the result is immediate.

To find H, we can simply proceed as in the Abelian
case.

Algorithm 9 �Finding a normal hidden subgroup�.
Input: Black-box function hiding H�G.
Problem: Determine H.
�1� Let K0ªG. For t=1, . . . ,T, where T=O�log�G��,

�a� perform weak Fourier sampling, obtaining an ir-

rep  t�Ĝ;
�b� let KtªKt−1�ker  t.

�2� Output KT.
To see that this works, suppose that at the tth step the

intersection of the kernels is Kt−1�G with Kt−1�H �so
that, in particular, �Kt−1�	2�H��; then the probability of
obtaining an irrep  for which Kt−1�ker  is �cf. step 6
of Algorithm 4�

�H�
�G� �

 :Kt−1�ker  

d 
2 =

�H�
�Kt−1�

�
1
2

, �121�

where we have used the fact that the distribution in Eq.
�120� remains normalized if H is replaced by any normal
subgroup of G. Each repetition of weak Fourier sam-
pling has a probability of at least 1 /2 of cutting the in-
tersection of the kernels at least in half, so we converge
to H in O�log�G�� steps. In fact, applying the same ap-
proach when H is not necessarily normal in G gives an
algorithm to find the normal core of H, the largest sub-
group of H that is normal in G �Hallgren et al., 2003�.

This algorithm can be applied to find hidden sub-
groups in groups that are “close to Abelian” a certain
sense. In particular, Grigni et al. �2004� showed that
if $�G�, the intersection of the normalizers of
all subgroups of G, is sufficiently large—speci-
fically, if �G� / �$�G��=2O�log1/2 n�, such as when G
=Z /3Z’Z /2nZ—then the HSP in G can be solved in
polynomial time. The idea is simply to apply the algo-
rithm for normal subgroups to all subgroups containing

$�G�; the union of all subgroups obtained in this way
gives the hidden subgroup with high probability. This
result was subsequently improved to give a polynomial-
time quantum algorithm whenever �G� / �$�G��
=poly�log�G�� �Gavinsky, 2004�.

D. Strong Fourier sampling

Despite the examples given in the previous section,
weak Fourier sampling does not provide sufficient infor-
mation to recover the hidden subgroup in the majority
of non-Abelian hidden subgroup problems. For ex-
ample, weak Fourier sampling fails to solve the HSP in
the symmetric group �Hallgren et al., 2003; Grigni et al.,
2004� and the dihedral group.

To obtain more information about the hidden sub-
group, we can perform a measurement on the
d 

2-dimensional state that results when weak Fourier
sampling returns the outcome  . Such an approach is
referred to as strong Fourier sampling. From Eq. �116�,
this d 

2-dimensional state is the tensor product of a
d -dimensional maximally mixed state for the row re-
gister �as a consequence of the fact that the left and
right regular representations commute� with some
d -dimensional state �̂H, for the column register. Since
the row register does not depend on H, we may discard
this register without loss of information. In other words,
strong Fourier sampling is effectively faced with the
state

�̂H, =
 �H�*

�
h�H

! �h�*
. �122�

This state is proportional to a projector whose rank is
simply the number of times the trivial representation
appears in ResH

G *. This follows because

 �H�2 = �
h,h��H

 �hh�� = �H� �H� , �123�

which gives

�̂H, 
2 =

�H�

�
h�H

! �h�*
�̂H, , �124�

so that �̂H, is proportional to a projector with
rank��̂H, �=�h�H! �h�* / �H�.

It is not immediately clear how to choose a good basis
for strong Fourier sampling, so a natural first approach
is to consider the effect of measuring in a random basis
�i.e., a basis chosen uniformly with respect to the Haar
measure over Cd �. There are a few cases in which such
random strong Fourier sampling is fruitful. For example,
Radhakrishnan et al. �2009� showed that measuring in a
random basis provides sufficient information to solve the
HSP in the Heisenberg group. Subsequently, Sen �2006�
generalized this result to show that random strong Fou-
rier sampling is information-theoretically sufficient

whenever rank��̂H, �=poly�log�G�� for all  �Ĝ �for
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example, when G is the dihedral group�, as a conse-
quence of a more general result on the distinguishability
of quantum states using random measurements.

In some cases random strong Fourier sampling is un-
helpful. For example, Grigni et al. �2004� showed that if
H is sufficiently small and G is sufficiently non-Abelian
�in a certain precise sense�, then random strong Fourier
sampling is not very informative. In particular, they
showed this for the problem of finding hidden involu-
tions in the symmetric group. Another example was pro-
vided by Moore, Rockmore, et al. �2007�, who showed
that random strong Fourier sampling fails in the meta-
cyclic groups Z /pZ’Z /qZ �subgroups of the affine group
Z /pZ’ �Z /pZ��� when q�p1−� for some � � 0.

Even when measuring in a random basis is
information-theoretically sufficient, it does not give an
efficient quantum algorithm; we must consider both the
implementation of the measurement and the interpreta-
tion of its outcomes. We cannot measure in a random
basis, but we can instead try to find explicit bases in
which strong Fourier sampling can be performed effi-
ciently, and for which the results solve the HSP. The first
such algorithm was provided by Moore, Rockmore, et al.
�2007� for the metacyclic groups Z /pZ’Z /qZ with q
=p /poly�log p�. Note that for these values of p ,q, unlike
the case q�p1−� mentioned above, measurement in a
random basis is information-theoretically sufficient. In-
deed, we do not know of any example of an HSP for
which strong Fourier sampling gives an efficient algo-
rithm yet random strong Fourier sampling fails informa-
tion theoretically; it would be interesting to find any
such example �or to prove that none exists�.

Of course, simply finding an informative basis is not
sufficient; it is also important that the measurement re-
sults can be efficiently postprocessed. This issue arises
not only in the context of measurement in a pseudoran-
dom basis but also in the context of certain explicit
bases. For example, Ettinger and Høyer �2000� gave a
basis for the dihedral HSP in which a measurement gives
sufficient classical information to infer the hidden sub-
group, but no efficient means of postprocessing this in-
formation is known �see Sec. VIII.A�.

For some groups, it turns out that strong Fourier sam-
pling simply fails. Moore et al. �2008� showed that, re-
gardless of what basis is chosen, strong Fourier sampling
provides insufficient information to solve the HSP in the
symmetric group. Specifically, they showed that for any
measurement basis �indeed, for any generalized mea-
surement on the hidden subgroup states�, the distribu-
tions of outcomes in the cases where the hidden sub-
group is trivial and where the hidden subgroup is a
random involution are exponentially close.

E. Multiregister measurements and query complexity

Even if we restrict our attention to the standard
method, the failure of strong Fourier sampling does not
necessarily mean that the HSP cannot be solved. In gen-
eral, we need not restrict ourselves to measurements act-

ing on a single hidden subgroup state �H at a time;
rather, it may be advantageous to measure joint observ-
ables on �H

�k for k�1. Such an approach could conceiv-
ably be efficient provided k=poly�log�G��.

By considering joint measurements of many hidden
subgroup states at a time, Ettinger et al. �1999, 2004�
showed that the query complexity of the HSP is polyno-
mial. In other words, poly�log�G�� queries of the black-
box function f suffice to determine H. Unfortunately,
this does not necessarily mean that the �quantum� com-
putational complexity of the HSP is polynomial since it is
not clear in general how to perform the quantum post-
processing of �H

�poly�log�G�� efficiently. Nevertheless, this is
an important observation since it already shows a differ-
ence between quantum and classical computation: recall
that the classical query complexity of even the Abelian
HSP is typically exponential. Furthermore, it offers
some clues as to how we might design efficient algo-
rithms.

To show that the query complexity of the HSP is poly-
nomial, it is sufficient to show that the �single-copy� hid-
den subgroup states are pairwise statistically distinguish-
able, as measured by the quantum fidelity,

F��,��� ª Tr�
�
��� . �125�

This follows from a result of Barnum and Knill �2002�,
who showed the following.

Theorem 3. Suppose � is drawn from an ensemble
��1 , . . . ,�N	, where each �i occurs with some fixed prior
probability pi. Then there exists a quantum measure-
ment �the pretty good measurement10� that identifies �
with probability at least

1 − N
max
i�j

F��i,�j� . �126�

In fact, by the minimax theorem, this holds even without
assuming a prior distribution for the ensemble �Harrow
and Winter, 2006�.

Given only one copy of the hidden subgroup state,
Eq. �126� will typically give a trivial bound. However, by
taking multiple copies of the hidden subgroup states, we
can ensure that the overall states are nearly orthogonal
and hence distinguishable. In particular, since
F���k ,���k�=F�� ,���k, arbitrarily small error probability
� � 0 can be achieved using

k 	 � 2�log N − log ��
log„1/maxi�j F��i,�j�…

� �127�

copies of �.
Provided that G does not have too many subgroups

and that the fidelity between two distinct hidden sub-
group states is not too close to 1, this shows that poly-
nomially many copies of �H suffice to solve the HSP. The

10To distinguish the states �i with prior probabilities pi, the
pretty good measurement �PGM� uses the measurement op-
erators Eiªpi�

−1/2�i�
−1/2, where �ª�ipi�i �see, e.g., Haus-

laden and Wootters �1994��.
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total number of subgroups of G is 2O�log2�G��, which can
be seen as follows. Any group K can be specified in
terms of at most log2�K� generators since every addi-
tional �nonredundant� generator increases the size of the
group by at least a factor of 2. Since every subgroup of
G can be specified by a subset of at most log2�G� ele-
ments of G, the number of subgroups of G is upper
bounded by �G�log2�G�=2�log2�G��2

. Thus k=poly�log�G��
copies of �H suffice to solve the HSP provided the maxi-
mum fidelity is bounded away from 1 by at least
1 /poly�log�G��.

To upper bound the fidelity between two states � and
��, let %� denote the projector onto the support of �. By
considering the projective measurement with elements
%� and 1−%� and noting that the classical fidelity of the
resulting distribution is an upper bound on the quantum
fidelity, we have

F��,��� � 
Tr %���. �128�

Now consider the fidelity between �H and �H� for two
distinct subgroups H ,H��G. Let �H�	 �H�� without loss
of generality. We can write Eq. �113� as

�H =
�H�
�G� �

x�TH

�xH��xH� , �129�

where TH is a left transversal of H �i.e., a complete set of
unique representatives for the left cosets of H in G�.
Since Eq. �129� is a spectral decomposition of �H, we
have

%�H
= �

x�TH

�xH��xH� =
1

�H� �
x�G

�xH��xH� . �130�

Then we have

F��H,�H��
2 � Tr %�H

�H�

=
1

�H� · �G� �
x,x��G

��xH�x�H���2

=
1

�H� · �G� �
x,x��G

�xH � x�H��2

�H� · �H��

=
�H � H��

�H�
�

1
2 , �131�

where we have used the fact that

�xH � x�H�� = ��H � H�� if x−1x� � HH�

0 otherwise
� �132�

to evaluate

�
x,x��G

�xH � xH��2 = �G� · �H � H��2 · �HH��

= �G� · �H� · �H�� · �H � H�� . �133�

This shows that F��H ,�H���1/
2, thereby establishing
that the query complexity of the HSP is poly�log�G��.

It is possible to obtain tighter bounds on the num-
ber of hidden subgroup states needed to solve the
HSP. For example, Bacon et al. �2006� showed that
„1+o�1�…log2 N hidden subgroup states are necessary
and sufficient to find a hidden reflection in the dihedral
group of order 2N. In a similar vein, Hayashi et al. �2008�
gave asymptotically tight bounds on the number of hid-
den subgroup states needed to solve the HSP in general
groups, taking into account both the number of candi-
date subgroups and their sizes.

The measurements described here are highly multi-
register: they observe correlated properties of all of
poly�log�G�� hidden subgroup states at once. Thus they
are quite far from strong Fourier sampling, in which
measurements are made on only one hidden subgroup
state at a time. It is natural to ask whether some less
entangled measurement might also be sufficient for gen-
eral groups, perhaps measuring a smaller number of hid-
den subgroup states at a time and adaptively using those
measurement results to decide what measurements to
make on successive hidden subgroup states. However,
Hallgren et al. �2006� showed that this is not always the
case: in the symmetric group �as well as a few other
groups such as the general linear group�, entangled mea-
surements on ��log�G�� registers at a time are required
to solve the HSP.

F. The Kuperberg sieve

In this section, we describe an approach developed by
Kuperberg �2005� that gives a subexponential �though
not polynomial� time algorithm for the dihedral hidden
subgroup problem—specifically, it runs in time 2O�
log�G��.

The dihedral group of order 2N, denoted DN, is the
group of symmetries of a regular N-gon. It has the pre-
sentation

DN = �r,s�r2 = sN = 1,rsr = s−1� . �134�

Here r can be viewed as a reflection about some fixed
axis and s can be viewed as a rotation by an angle 2� /N.

Using the defining relations, we can write any group
element in the form sxra, where x�Z /NZ and a�Z /2Z.
Thus we can equivalently think of the group as consist-
ing of elements �x ,a��Z /NZ�Z /2Z. Since

�sxra��syrb� = sxrasyrara+b = sxs�− 1�ayra+b = sx+�− 1�ayra+b,

�135�

the group operation for such elements can be expressed
as

�x,a� · �y,b� = „x + �− 1�ay,a + b… . �136�
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�In particular, this shows that the dihedral group is
the semidirect product Z /NZ’�Z /2Z, where � :Z /2Z
→Aut�Z /NZ� is defined by ��a��y�= �−1�ay.� It is also
easy to see that the group inverse is

�x,a�−1 = „− �− 1�ax,a… . �137�

The subgroups of DN are either cyclic or dihedral. The
subgroups that are cyclic are of the form ��x ,0��, where
x�Z /NZ is some divisor of N �including x=N�. The sub-
groups that are dihedral are of the form ��x ,0� , �y ,1��,
where x�Z /NZ is some divisor of N and y�Z /xZ; in
particular, there are subgroups of the form ��y ,1��,
where y�Z /NZ. A result of Ettinger and Høyer �2000�
reduces the general dihedral HSP, in which the hidden
subgroup could be any of these possibilities, to the dihe-
dral HSP with the promise that the hidden subgroup is
of the form ��y ,1��= ��0,0� , �y ,1�	, i.e., a subgroup of or-
der 2 generated by the reflection �y ,1�.11 Thus, from now
on we assume that the hidden subgroup is of the form
��y ,1�� for some y�Z /NZ without loss of generality.

When the hidden subgroup is H= ��y ,1��, one particu-
lar left transversal of H in G consists of the left coset
representatives �z ,0� for all z�Z /NZ. The coset state
�Eq. �112�� corresponding to the coset �z ,0�H is

��z,0�H� =
1

2

��z,0� + �y + z,1�� . �138�

We showed in Sec. VII.C that to distinguish coset
states, in general, one should start with weak Fourier
sampling: apply a Fourier transform over G and then
measure the irrep label. Equivalently, we can simply
Fourier transform the first register over Z /NZ, leaving
the second register alone. When the resulting measure-
ment outcome k is not 0 or N /2, this procedure is effec-
tively the same as performing weak Fourier sampling,
obtaining a two-dimensional irrep labeled by either k
�for k� �1, . . . , �N /2�−1	� or −k �for k� ��N /2�+1, . . . ,N
−1	�, with the uniformly random sign of k corresponding
to the maximally mixed row index and the remaining
qubit state corresponding to the column index. For k
=0 or N /2, the representation is reducible, correspond-
ing to a pair of one-dimensional representations.

Fourier transforming the first register over Z /NZ, we
obtain

�FZ/NZ � I2���z,0�H� =
1


2N
�

k�Z/NZ
��N

kz�k,0�

+ �N
k�y+z��k,1��

=
1


N
�

k�Z/NZ
�N

kz�k�

�
1

2

��0� + �N
ky�1�� . �139�

If we then measure the first register, we obtain one of
the N values of k uniformly at random, and we are left
with the postmeasurement state

��k� ª
1

2

��0� + �N
yk�1�� �140�

�dropping an irrelevant global phase that depends on z�.
Thus we are left with the problem of determining y
given the ability to produce single-qubit states ��k� of
this form �where k is known�. Since this procedure is
equivalent to dihedral weak Fourier sampling, there is
no loss of information in processing the state to produce
Eq. �140�.

It would be useful if we could prepare states ��k� with
particular values of k. For example, given the state
��N/2�= „�0�+ �−1�y�1�… /
2, we can learn the parity of y
�i.e., its least significant bit� by measuring in the basis of
states �± �ª ��0�± �1�� /
2. The main idea of Kuperberg’s
algorithm is to combine states of the form Eq. �140� to
produce new states of the same form but with more de-
sirable values of k.

To combine states, we can use the following proce-
dure. Given two states ��p� and ��q�, perform a
controlled-not gate from the former to the latter, giving

��p,�q� = 1
2 ��0,0� + �N

yp�1,0� + �N
yq�0,1� + �N

y�p+q��1,1��

� 1
2 ��0,0� + �N

yp�1,1� + �N
yq�0,1� + �N

y�p+q��1,0��

=
1

2

���p+q,0� + �N
yq��p−q,1�� . �141�

Then a measurement on the second qubit leaves the first
qubit in the state ��p±q� �up to an irrelevant global
phase�, with the � sign occurring when the outcome is 0
and the & sign occurring when the outcome is 1, each
outcome occurring with probability 1/2.

Note that this combination procedure can be viewed
as implementing the Clebsch-Gordan decomposition, the
decomposition of a tensor product of representations
into its irreducible constituents. The state indices p and
q can be interpreted as labels of irreps of DN, and the
extraction of ��p±q� can be seen as transforming their
tensor product �a reducible representation of DN� into
one of two irreducible components.

Now we are ready to describe the algorithm of Kuper-
berg �2005�. For simplicity, we assume that N=2n is a
power of 2. For such a dihedral group, it is actually suf-
ficient to be able to determine the least significant bit of
y since such an algorithm could be used recursively to

11The basic idea of the Ettinger-Høyer reduction is as follows.
Suppose that f :DN→S hides a subgroup H= ��x ,0� , �y ,1��.
Then we can consider the function f restricted to elements
from the Abelian group Z /NZ� �0	�DN. This restricted
function hides the subgroup ��x ,0��, and since the restricted
group is Abelian, we can find x efficiently using Algorithm
4. Now ��x ,0���DN �since �z ,a��x ,0��z ,a�−1= „z+ �−1�ax ,a…
�„−�−1�az ,a…= „�−1�ax ,0…�Z /NZ� �0	�, so we can define the
quotient group DN / ��x ,0��. But this is simply a dihedral group
�of order N /x�, and if we now define a function f� as f evalu-
ated on some coset representative, it hides the subgroup
��y ,1��.
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determine all the bits of y.12 Our strategy for doing this
is to start with a large number of states and collect them
into pairs ��p�, ��q� that share many of their least signifi-
cant bits, such that ��p−q� is likely to have many of its
least significant bits equal to 0. Trying to zero out all but
the most significant bit in one shot would take exponen-
tially long, so instead we proceed in stages, only trying
to zero some of the least significant bits in each stage;
this turns out to be an improvement. �This approach is
similar to previous classical sieve algorithms for learning
�Blum et al., 2003� and lattice �Ajtai et al., 2001� prob-
lems, as well as a subsequent classical algorithm for av-
erage case instances of subset sum �Flaxman and Przy-
datek, 2005�.�

Algorithm 10 �Kuperberg sieve�.
Input: Black-box function f :D2n→S hiding ��y ,1��

�D2n for some y�Z /2nZ.
Problem: Determine the least significant bit of y.
�1� Prepare 
�16
n� coset states of form �140�, where

each copy has k�Z /2nZ chosen independently and uni-
formly at random.

�2� For each j=0,1 , . . . ,m−1, where mª �
n�, assume
the current coset states have indices k with at least mj of
the least significant bits equal to 0. Collect them into
pairs ��p�, ��q� that share at least m of the next least
significant bits, discarding any qubits that cannot be
paired. Create a state ��p±q� from each pair and discard
it if the � sign occurs. Notice that the resulting states
have at least m�j+1� significant bits equal to 0.

�3� The remaining states are of the form ��0� and
��2n−1�. Measure one of the latter states in the |�� basis
to determine the least significant bit of y.

Since this algorithm requires 2O�
n� initial queries and
proceeds through O�
n� stages, each of which takes at
most 2O�
n� steps, the overall running time is 2O�
n�.

To show that the algorithm works, we need to prove
that some qubits survive to the final stage of the process
with non-negligible probability. We analyze a more gen-
eral version of the algorithm to see why we should try to
zero out 
n bits at a time, starting with 2O�
n� states.

Suppose we try to cancel m bits in each stage, so that
there are n /m stages �not yet assuming any relationship
between m and n�, starting with 2� states. Each combi-
nation operation succeeds with probability 1/2 and turns

two states into one, so at each step we retain only about
1/4 of the states that can be paired. Now when we pair
states that allow us to cancel m bits, there can be at most
2m unpaired states since that is the number of values of
the m bits to be canceled. Thus if we ensure that there
are at least 2�2m states at each stage, we expect to re-
tain at least a 1/8 fraction of the states for the next
stage. Since we begin with 2� states, we expect to have at
least 2�−3j states left after the jth stage. Thus, to have
2�2m states remaining at the last stage of the algorithm,
we require that 2�−3n/m�2m+1 or ��m+3n /m+1. This is
minimized by choosing m�
n, so ��4
n suffices.

This analysis is not quite correct because we do not
obtain precisely a 1/8 fraction of the paired states for
use in the next stage. For most of the stages, we have
many more than 2�2m states, so nearly all of them can
be paired, and the expected fraction remaining for the
next stage is close to 1/4. Of course, the precise fraction
will experience statistical fluctuations. Since we are
working with a large number of states, the deviations
from the expected values are very small, and a more
careful analysis �using the Chernoff bound� shows that
the procedure succeeds with high probability. For a de-
tailed argument, see Kuperberg �2005�. Kuperberg also
gives an improved algorithm that runs faster and that
works for general N.

Note that this algorithm uses not only superpolyno-
mial time but also superpolynomial space since all 2
�
n�

coset states are present at the start. However, by creat-
ing a smaller number of coset states at a time and com-
bining them according to the solution of a subset sum
problem, Regev �2004c� showed how to make the space
requirement polynomial in n with only a slight increase
in the running time.

Although Kuperberg’s algorithm acts on pairs of coset
states at a time, the overall algorithm effectively imple-
ments a highly entangled measurement on all 2
�
n� reg-
isters since the procedure for producing ��p±q� entangles
the coset states ��p� and ��q�. The same is true of Regev’s
polynomial-space variant.

It is natural to ask whether a similar sieve could be
applied to other HSPs, such as in the symmetric group,
for which highly entangled measurements are necessary.
Alagic et al. �2007� adapted Kuperberg’s approach to
give a subexponential-time algorithm for the HSP in Gn,
where G is a fixed non-Abelian group. �Note that the
HSP in Gn can be much harder than solving n instances
of the HSP in G since Gn has many subgroups that are
not direct products of subgroups of G.� Bacon �2008�
also showed that an algorithm for the Heisenberg HSP,
similar to the one described in Sec. VII.G, can be de-
rived using the Clebsch-Gordan transform over the
Heisenberg group. It would be interesting to find further
applications of the approach, especially ones that give
new polynomial-time algorithms.

Unfortunately, this kind of sieve does not seem well
suited to the symmetric group. In particular, Moore,
Russell, and Sniady �2007� gave the following negative

12To see this, note that the group DN contains two subgroups
isomorphic to DN/2, namely, ��2x ,0� , �2x ,1� :x�Z / �N /2�Z	 and
��2x ,0� , �2x+1,1� :x�Z / �N /2�Z	. The hidden subgroup is a
subgroup of the former if y has even parity and of the latter if
y has odd parity. Thus, once we learn the parity of y, we re-
strict our attention to the appropriate DN/2 subgroup. The el-
ements of either DN/2 subgroup can be represented using only
n−1 bits and finding the least significant bit of the hidden re-
flection within this group corresponds to finding the second
least significant bit of y in DN. Continuing in this way, we learn
all the bits of y with only n iterations of an algorithm for find-
ing the least significant bit of the hidden reflection.
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result for the HSP in Sn �S2, where the hidden subgroup
is promised to be either trivial or an involution. Con-
sider any algorithm that works by combining pairs of
hidden subgroup states to produce a new state in their
Clebsch-Gordan decomposition and uses the sequence
of measurement results to guess whether the hidden
subgroup is trivial or nontrivial. Any such algorithm
must use 2��
n� queries. Note that this lower bound is
only slightly smaller than the best known classical algo-
rithm for graph isomorphism, as discussed in Sec. VII.A.

G. Pretty good measurement

Another recent technique for the HSP is based on
implementing the PGM on the hidden subgroup states.
Recall from Sec. VII.E that for any group G the PGM
applied to poly�log�G�� copies of �H identifies H with
high probability. Thus if we can efficiently implement
the PGM on sufficiently many copies, we will have
found an efficient algorithm for the HSP.

This approach was considered by Bacon et al. �2005,
2006� for certain semidirect product groups A’Z /pZ,
where A is an Abelian group and p is prime. For these
groups, the general HSP can be reduced to the HSP
assuming that the hidden subgroup is chosen from a cer-
tain subset. Furthermore, the PGM turns out to be the
optimal measurement for distinguishing the resulting
hidden subgroup states in the sense that it maximizes the
probability of correctly identifying the hidden subgroup
assuming a uniform distribution over the subgroups un-
der consideration �as can be proven using the character-
ization of optimal measurement by Holevo �1973� and
Yuen et al. �1975��. This generalizes the result of Ip
�2003� that Shor’s algorithm implements the optimal
measurement for the Abelian HSP and suggests that, in
general, optimal measurements may be good candidates
for efficient quantum algorithms.

For general groups of the form A’Z /pZ, the PGM
approach reveals a connection between the original
hidden subgroup problem and a related average-case
algebraic problem. Specifically, the PGM succeeds in
distinguishing the hidden subgroup states exactly when
the average-case problem is likely to have solutions and
the PGM can be implemented efficiently by giving an
efficient algorithm for solving the average-case problem
�or more precisely for approximately quantum sampling
from the set of solutions to the problem�. Different
HSPs correspond to different average-case problems of
varying difficulty. For example, the dihedral HSP corre-
sponds to the average-case subset sum problem �Bacon
et al., 2006�, which appears to be hard to solve. But other
average-case problems appearing in the approach are
easier, leading to efficient algorithms. Certain instances
of the Abelian HSP give rise to systems of linear equa-
tions. For the metacyclic HSPs solved by Moore, Rock-
more, et al. �2007� �and indeed for some additional
cases�, the average-case problem is a discrete logarithm
problem, which can be solved using Shor’s algorithm as
described in Sec. IV.B. And for the HSP in the Heisen-

berg group13 �Z /pZ�2
’Z /pZ, and more generally in any

semidirect product �Z /pZ�r
’Z /pZ, the average-case

problem is a problem of solving polynomial equations,
which can be done efficiently using Gröbner basis tech-
niques provided r=O�1� �Bacon et al., 2005�.

Here we summarize the algorithm that results from
applying the PGM to the HSP in the Heisenberg group
since this case exemplifies the general approach. The
Heisenberg group can be viewed as the semidirect prod-
uct �Z /pZ�2

’�Z /pZ, where � :Z /pZ→Aut„�Z /pZ�2
… is de-

fined by ��c��a ,b�= �a+bc ,b�. Equivalently, it is the
group of lower triangular 3 � 3 matrices

��1 0 0

b 1 0

a c 1
� : a,b,c � Fp� �142�

over Fp or, alternatively, the group generated by gener-
alized Pauli operators X ,Z�Cp�p satisfying X�x�= �x
+1 mod p� and Z�x�=�p

x�x�, with elements �p
aXbZc. With

any of these descriptions, the group elements are of the
form �a ,b ,c� with a ,b ,c�Z /pZ, and the group law is

�a,b,c� · �a�,b�,c�� = �a + a� + b�c,b + b�,c + c�� .

�143�

Just as the dihedral HSP can be reduced to the prob-
lem of finding a hidden reflection �footnote 11� one can
show that to solve the general HSP in the Heisenberg
group, it is sufficient to be able to distinguish the follow-
ing cyclic subgroups of order p:

Ha,b ª ��a,b,1�� = ��a,b,1�j : j � Z/pZ	 , �144�

where a ,b�Z /pZ. A simple calculation shows that

�a,b,1�x = „xa + � x
2 �b,xb,x… . �145�

Furthermore, the cosets of any such subgroup can be
represented by the p2 elements �� ,m ,0� for � ,m
�Z /pZ. Thus the coset state �Eq. �112�� can be written
as

���,m,0�Ha,b� =
1

p

�
x�Z/pZ

�xa + � x
2 �b + �,xb + m,j� .

�146�

Our goal is to determine the parameters a ,b�Z /pZ us-
ing copies of this state with � ,m�Z /pZ occurring uni-
formly at random.

At this point, we could perform weak Fourier sam-
pling over the Heisenberg group without discarding any
information. However, as for the dihedral group �Sec.
VII.F�, it is simpler to consider an Abelian Fourier
transform instead of the full non-Abelian Fourier trans-

13The Heisenberg group is an example of an extraspecial
group. Ivanyos et al. �2007� gave an efficient quantum algo-
rithm for the HSP in any extraspecial group �see Sec. VIII.C
for more details�. This subsequent algorithm also makes use of
the solution of a system of polynomial equations to implement
an entangled measurement.

32 Andrew M. Childs and Wim van Dam: Quantum algorithms for algebraic problems

Rev. Mod. Phys., Vol. 82, No. 1, January–March 2010



form. Using the representation theory of the Heisenberg
group �see, e.g., Terras �1999��, one can show that this
procedure is essentially equivalent to non-Abelian Fou-
rier sampling.

Fourier transforming the first two registers over
�Z /pZ�2, we obtain the state

1

p3/2 �
x,s,t�Z/pZ

�p
s��+xa+� x

2 �b�+t�m+xb��s,t,x� . �147�

Now suppose we measure the values s , t appearing in the
first two registers. In fact this can be done without loss
of information since the density matrix of the state
�mixed over the uniformly random values of � ,m� is
block-diagonal, with blocks labeled by s , t. Collecting the
coefficients of the unknown parameters a ,b, the result-
ing p-dimensional quantum state is

�Ha,b;s,t
̂� ª

1

p

�
x�Z/pZ

�p
a�sx�+b�s� x

2 �+tx��x� , �148�

where the values s , t�Z /pZ are known and are obtained
uniformly at random. We want to use samples of this
state to determine a ,b�Z /pZ.

With only one copy of this state, there is insufficient
information to recover the hidden subgroup: Holevo’s
theorem �see, e.g., Nielsen and Chuang �2000�, Sec. 12.1�
guarantees that a measurement on a p-dimensional
quantum state can reliably communicate at most p dif-
ferent outcomes, yet there are p2 possible values of
�a ,b�� �Z /pZ�2. Thus we must use at least two copies.

By making a joint measurement on two copies of the
state, we can recover the information about a ,b that is
encoded in a quadratic function in the phase. To see this,
consider the state

�Ha,b;s,t
̂� � �Ha,b;u,v

̂� =
1

p �
x,y�Z/pZ

�p
�a+�b�x,y� , �149�

where

� ª sx + uy , �150�

� ª s�x

2

 + tx + u�y

2

 + vy , �151�

and where we suppress the dependence of �, � on
s , t ,u ,v ,x ,y for clarity. If we could replace �x ,y� by |�,
��, then the resulting state would be simply the Fourier
transform of �a ,b�, and an inverse Fourier transform
would reveal the solution. To work toward this situation
we compute the values of �,� in ancilla registers, giving
the state

1

p �
x,y�Z/pZ

�p
�a+�b�x,y,�,�� , �152�

and attempt to uncompute the first two registers.
For fixed values of � ,� ,s , t ,u ,v�Z /pZ, these two

quadratic equations �Eqs. �150� and �151�� could have
zero, one, or two solutions x ,y�Z /pZ. Thus we cannot
hope to erase the first and second registers by a classical

procedure conditioned on the values in the third and
fourth registers �and the known values of s , t ,u ,v�. How-
ever, it is possible to implement a quantum procedure to
erase the first two registers by considering the full set of
solutions,

S�,�
s,t,u,v

ª ��x,y� � �Z/pZ�2 : sx + uy = � and

s�x
2 � + tx + u�y

2 � + vy = �	 . �153�

The state Eq. �152� can be rewritten as

1

p �
x,y�Z/pZ

�p
�a+�b
�S�,�

s,t,u,v��S�,�
s,t,u,v,�,�� . �154�

Thus, if we could perform a unitary transformation sat-
isfying

�S�,�
s,t,u,v� � ��,�� for �S�,�

s,t,u,v� � 0 �155�

�and defined in any way consistent with unitarity for
other values of �,��, we could erase the first two regis-
ters of Eq. �152�,14 producing the state

1

p �
�,��Z/pZ

�p
�a+�b
�S�,�

s,t,u,v���,�� . �156�

The inverse of the transformation Eq. �155� is called
quantum sampling because it produces a uniform super-
position over the set of solutions, a natural quantum
analog of random sampling from the solutions.

Since the system of Eqs. �150� and �151� consists of a
pair of quadratic equations in two variables over Fp, it
has either zero, one, or two solutions x ,y�Fp. For about
half the cases, there are zero solutions; for about half the
cases, there are two solutions; and for a vanishing frac-
tion of the cases, there is only one solution. More explic-
itly, by a straightforward calculation, the solutions can
be expressed in closed form as

x =
�s + sv − tu ± 
�

s�s + u�
, �157�

y =
�u + tu − sv ' 
�

u�s + u�
, �158�

where

� ª �2�s + �s − �2 − 2�t��s + u�u + ��u + tu − sv�2.

�159�

Provided su�s+u��0, the number of solutions is com-
pletely determined by the value of �. If � is a nonzero
square in Fp, then there are two distinct solutions; if �
�0 then there is only one solution; and if � is a non-
square then there are no solutions. In any event, since
we can efficiently compute an explicit list of solutions in
each of these cases, we can efficiently perform the trans-
formation �Eq. �155��.

14Note that we can apply the transformation �Eq. �155�� di-
rectly to the state �Eq. �149��; there is no need to explicitly
compute the values �,� in an ancilla register.
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It remains to show that the state Eq. �156� can be used
to recover a ,b. This state is close to the Fourier trans-
form of �a ,b� provided the solutions are nearly uni-
formly distributed. Since the values of s , t ,u ,v are uni-
formly distributed over Fp, it is easy to see that � is
uniformly distributed over Fp. This means that � is a
square about half the time and is a nonsquare about half
the time �with ��0 occurring only with probability 1/p�.
Thus there are two solutions about half the time and no
solutions about half the time. This distribution of solu-
tions is uniform enough for the procedure to work.

Applying the inverse quantum Fourier transform over
Z /pZ�Z /pZ, we obtain the state

1

p2 �
�,�,k,��Z/pZ

�p
��a−k�+��b−��
�S�,�

s,t,u,v��k,�� . �160�

Measuring this state, the probability of obtaining the
outcome k=a and �=b for any particular values of
s , t ,u ,v is

1

p4� �
�,��Z/pZ


�S�,�
s,t,u,v�
2

. �161�

Since those values occur uniformly at random, the over-
all success probability of the algorithm is

1

p8 �
s,t,u,v�Z/pZ

� �
�,��Z/pZ


�S�,�
s,t,u,v�
2

	
1

p12� �
s,t,u,v�Z/pZ

�
�,��Z/pZ


�S�,�
s,t,u,v�
2

	
1

p12� �
�,��Z/pZ

p4

2 + o�1�

2
2

=
1
2

− o�1� , �162�

which shows that the algorithm succeeds with probabil-
ity close to 1/2.

In summary, the efficient quantum algorithm for the
HSP in the Heisenberg group is as follows.

Algorithm 11 (Heisenberg HSP).
Input: Black-box function hiding Ha,b.
Problem: Determine the parameters a ,b.
�1� Prepare two coset states, as in Eq. �146�.
�2� Perform the QFT FZ/pZ�Z/pZ on the first two regis-

ters of each coset state and measure those registers in
the computational basis, giving Eq. �149�.

�3� Perform the inverse quantum sampling transfor-
mation Eq. �155�, giving Eq. �156�.

�4� Perform the inverse QFT FZ/pZ�Z/pZ
† , giving Eq.

�160�.
�5� Measure the resulting state in the computational

basis, giving �a ,b� with probability 1/2−o�1�.
Because the transformation Eq. �155� acts jointly on

the two registers, the algorithm described above effec-
tively makes an entangled measurement on two copies
of the hidden subgroup state. However, we do not know
whether this is the only way to give an efficient algo-
rithm for the HSP in the Heisenberg group. In particu-
lar, recall from Sec. VII.D that Fourier sampling in a
random basis provides sufficient information to recon-

struct the hidden subgroup �Radhakrishnan et al., 2009�.
It would be interesting to know whether there is an
efficient quantum algorithm using only the statistics of
single-register measurements or if no such algorithm ex-
ists. It would also be interesting to find any group for
which Fourier sampling does not suffice, even informa-
tion theoretically, but for which there is an efficient
quantum algorithm based on multiregister measure-
ments.

The PGM approach outlined above can also be ap-
plied to certain state distinguishability problems that do
not arise from HSPs. In particular, it can be applied to
the generalized Abelian hidden shift problem discussed
in Sec. VIII �for which the average-case problem is an
integer program� �Childs and van Dam, 2007� and to
hidden polynomial problems of the form �191�, as dis-
cussed in Sec. IX �for which the average-case problem is
again a system of polynomial equations� �Decker et al.,
2009�.

VIII. HIDDEN SHIFT PROBLEM

The hidden shift problem �also known as the hidden
translation problem� is a natural variant of the hidden
subgroup problem. Its study has shed light on and, in-
deed, led to new algorithms for, the HSP. Furthermore,
the hidden shift problem has applications that are of
interest in their own right.

In the hidden shift problem, we are given two injec-
tive functions f0 :G→S and f1 :G→S, with the promise
that

f0�g� = f1�sg� for some s � G . �163�

The goal of the problem is to find s, the hidden shift. In
the non-Abelian hidden shift problem, as in the non-
Abelian HSP, there is an arbitrary choice of left or right
multiplication; here we again make the choice of left
multiplication.

When G is Abelian, this problem is equivalent to the
HSP in G’�Z /2Z �sometimes called the G-dihedral
group�, where the homomorphism � :Z /2Z→Aut�G� is
defined by ��0��x�=x and ��1��x�=x−1. In particular, the
hidden shift problem in Z /NZ is equivalent to the dihe-
dral HSP. To see this, consider the function f :G’Z /2Z
→S defined by f�x ,b�ª fb�x�. This function hides the in-
volution ��s ,1��, so a solution of the HSP gives a solution
of the hidden shift problem. Conversely, solving the HSP
in G’Z /2Z with the promise that H is an involution is
sufficient to solve the HSP in general �footnote 11� so a
solution of the hidden shift problem gives a solution of
the HSP. While no polynomial-time quantum algorithm
is known for the general Abelian hidden shift problem,
Kuperberg’s sieve �Algorithm 10� solves the problem in
time 2O�
log�G��, whereas a brute force approach takes
2��log�G�� steps.

When G is non-Abelian, the inversion map x�x−1

is not a group automorphism, so we cannot even define
a group G’�Z /2Z. However, the hidden shift problem
in G is closely connected to an HSP, namely, in the
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wreath product group G �Z /2Z= �G�G�’�̃Z /2Z, where
�̃�0��x ,y�= �x ,y� and �̃�1��x ,y�= �y ,x�. The hidden shift
problem in G reduces to the HSP in G �Z /2Z with the
hidden subgroup ��s ,s−1 ,1��. Furthermore, the HSP in
G �Z /2Z with hidden subgroups of this form reduces to
the hidden shift problem in G�G. Thus, for families of
groups in which G�G is contained in a larger group G�
from the same family �such as for the symmetric group,
where Sn�Sn�S2n� the hidden shift and hidden sub-
group problems are essentially equivalent �Hallgren et
al., 2006�. Moreover, by a similar argument to the one in
Sec. VII.E, the quantum query complexity of the hidden
shift problem in G is poly�log|G|� even when G is non-
Abelian.

Testing isomorphism of rigid graphs can be cast as a
hidden shift problem in the symmetric group. If we let
f�� ,0�=��"� and f�� ,1�=��"��, then the hidden shift is
 , where "= �"��. Despite the equivalence between
hidden shift and hidden subgroup problems, the hidden
shift problem in Sn is arguably a more natural setting for
rigid graph isomorphism than the HSP since every pos-
sible hidden shift corresponds to a possible isomorphism
between graphs, whereas the HSP must be restricted to
certain subgroups �Childs and Wocjan, 2007�.

In this section we describe quantum algorithms for
various hidden shift problems. We begin by presenting a
single-register measurement for the cyclic hidden shift
problem �i.e., the dihedral HSP� that provides sufficient
information to encode the hidden shift. While no effi-
cient way of postprocessing this information is known,
we explain how a similar approach leads to an efficient
quantum algorithm for the hidden shift problem over
�Z /pZ�n with p a fixed prime. Since both of these prob-
lems are Abelian hidden shift problems, they could
equally well be viewed as HSPs, but we discuss them
here because the latter is an important ingredient of the
orbit coset approach, which uses self-reducibility of a
quantum version of the hidden shift problem to give ef-
ficient quantum algorithms for certain hidden subgroup
and hidden shift problems. Then we describe an algo-
rithm for the shifted Legendre symbol problem, a non-
injective variant of the dihedral HSP that can be solved
efficiently and that also leads to an efficient quantum
algorithm for estimating Gauss sums. Finally, we de-
scribe a generalization of the hidden shift problem that
interpolates to an Abelian HSP and that can be solved
efficiently in some cases even when the original hidden
shift problem cannot.

A. Abelian Fourier sampling for the dihedral HSP

Consider the HSP in the dihedral group Z /NZ’Z /2Z
with hidden subgroup ��s ,1�� or, equivalently, the hidden
shift problem in the cyclic group Z /NZ with hidden shift
s. Recall from Sec. VII.F �specifically Eq. �140�� that
the standard method, followed by a measurement of
the first register in the Fourier basis �over Z /NZ�, pro-
duces the state ��0�+�N

sk�1�� /
2 for some uniformly ran-
dom measurement outcome k�Z /NZ. Now suppose we

measure this qubit in the basis of states �± �
ª ��0�± �1�� /
2 �i.e., the Fourier basis over Z /2Z�; then
the outcome “�” occurs with probability cos2��sk /N�.
Thus, if we keep only those measured values of k for
which the outcome of the second measurement is ‘‘�’’,
we effectively sample from a distribution over k
�Z /NZ with Pr�k�=2 cos2��sk /N� /N.

This procedure was proposed by Ettinger and Høyer
�2000�, who showed that O�log N� samples of the result-
ing distribution provide sufficient information to deter-
mine k with high probability. This single-register mea-
surement is a much simpler procedure than either the
Kuperberg sieve �Kuperberg, 2005� or the optimal mea-
surement described by Bacon et al. �2006�, both of which
correspond to highly entangled measurements. How-
ever, we are left with the problem of postprocessing the
measurement results to infer the value of s, for which no
efficient procedure is known.

B. Finding hidden shifts in (Z ÕpZ)n

A similar approach can be applied to the hidden shift
problem in the elementary Abelian p-group �Z /pZ�n

with p a fixed prime, but in this case the postprocessing
can be carried out efficiently. This result is an important
building block in an efficient quantum algorithm for the
hidden shift and hidden subgroup problems in certain
families of solvable groups �Friedl et al., 2003�, as dis-
cussed in the next section.

Consider the hidden shift problem in �Z /pZ�n with
hidden shift s. Applying the standard method, we obtain
the hidden shift state

1

2

��z,0� + �z + s,1�� �164�

for some unknown z� �Z /pZ�n chosen uniformly at ran-
dom. Now suppose that, as in the measurement for the
dihedral group described above, we perform Abelian
Fourier sampling on this state. In other words, we Fou-
rier transform the first register over �Z /pZ�n and the sec-
ond over Z /2Z; this gives

1

2
pn �
y��Z/pZ�n

�
b�Z/2Z

��p
y·z + �p

y·�z+s��− 1�b��y,b� . �165�

Finally, suppose we measure this state in the com-
putational basis. A straightforward calculation shows
that we obtain the outcome �y ,0� with probability
cos2��y ·s /p� /pn and the outcome �y ,1� with probability
sin2��y ·s /p� /pn. Thus, conditioned on observing 1 in the
second register, we see y in the first register with prob-
ability

Pr�y� =
2

pnsin2 �y · s

p
. �166�

In particular, note that there is zero probability of seeing
any y� �Z /pZ�n such that y ·s=0 mod p: we see only
points that are not orthogonal to the hidden shift. �This
may be contrasted with the HSP in �Z /pZ�n with hidden
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subgroup �s�, in which Fourier sampling only gives
points x� �Z /pZ�n with x ·s=0.�

We now argue that O�n� samples from this distribu-
tion are information-theoretically sufficient to determine
the hidden shift s. Since we only observe points y that
are not orthogonal to s, the observation of y allows us to
eliminate the hyperplane y ·s=0 of possible values of s.
With enough samples, we can eliminate all possible can-
didate values of s except the true value �and scalar mul-
tiples thereof�.

For simplicity, suppose we sample uniformly from all
y� �Z /pZ�n satisfying y ·s�0 for the unknown s. While
the true distribution Eq. �166� is not uniform, it is not far
from uniform, so the argument given here can easily be
modified to work for the true distribution. Consider
some fixed candidate value s� with s���s for any �

�Z /pZ. If y were sampled uniformly at random, then s�
would be eliminated with probability 1/p. Sampling uni-
formly from the subset of points y satisfying y ·s�0 only
raises the probability of eliminating s�, so a randomly
sampled y eliminates s� with probability at least 1 /p.
Thus after O�n� samples, the probability of not eliminat-
ing s� is exponentially small and, by a union bound, the
probability of any such s� not being eliminated is upper
bounded by a constant.

Unfortunately, given k=
�n� samples y1 , . . . ,yk, we do
not know how to efficiently determine s. We want to
solve the system of inequations y1 ·s�0, . . . ,yk ·s�0 for
s� �Z /pZ�n. Using Fermat’s little theorem, which says
that ap−1=1 for any a�Z /pZ with a�0, we can rewrite
these inequations as a system of polynomial equations
�y1 ·s�p−1= ¯ = �yk ·s�p−1=1. However, the problem of
solving polynomial equations over a finite field is NP-
hard, so we cannot hope to solve for s quickly using
generic methods.

This problem has been circumvented by Friedl et al.
�2003� and Ivanyos �2008� using the idea of lineariza-
tion. If we treat each product of p−1 components of
s� �Z /pZ�n as a separate variable, then we can view
�y ·s�p−1=1 as a linear equation over a vector space of
dimension � p−1

n+p−2� �the number of ways of choosing p
−1 items from n items, with replacement and without
regard for ordering�. Since this method treats variables
as independent that are in fact highly dependent, it re-
quires more samples to obtain a unique solution. Never-
theless, Friedl et al. �2003� showed that O�np−1� samples
suffice. Since this method only involves linear equations
and the number of equations remains poly�n� �recall the
assumption that p=O�1��, the resulting algorithm is effi-
cient.

A similar approach works for the hidden shift prob-
lem in �Z /pkZ�n, where pk is any fixed prime power
�Friedl et al., 2003; Ivanyos, 2008�. However, no efficient
algorithm is known for the case of �Z /mZ�n with m not a
prime power, even in the smallest case, m=6.

C. Self-reducibility, quantum hiding, and the orbit coset
problem

By combining the result of the previous section with a
self-reducible variant of the hidden shift problem, Friedl
et al. �2003� also gave an efficient quantum algorithm for
the HSP and hidden shift problem in a large family of
solvable groups. The idea of self-reducibility is as fol-
lows. Suppose we could reduce the HSP in G to the HSP
in subgroups of G and apply such a reduction recursively
until the remaining groups are either simple enough that
the HSP can be solved by some known method or small
enough that it can be solved by brute force. For ex-
ample, it would be useful if we could reduce the HSP in
G to the HSP in N and G /N, where N�G is a proper
normal subgroup of G. No approach of this kind has
been directly applied to the HSP or the hidden shift
problem, but this self-reducibility concept has proved
fruitful for a quantum generalization of the hidden shift
problem called the orbit coset problem.

Recall that in the standard method for the HSP, we
prepare the uniform superposition �G�, query a black-
box function f :G→S satisfying Eq. �108�, and discard
the resulting function value, producing a uniformly ran-
dom coset state �xH�. More generally, suppose we have
some black-box isometry F satisfying

F�x� = �x� � ��x� �167�

for some set of quantum states ���x� :x�G	 satisfying

��x��y� = �1 for x−1y � H

0 otherwise. � �168�

By analogy to Eq. �108�, we say that F is a quantum
hiding function for H in G. Querying the quantum black
box F on the uniform superposition �G� and discarding
the second register has the same effect as the standard
method: the result is a uniformly random coset state
�xH�. But the possibility of using quantum superposi-
tions for the states ��x� offers more freedom when con-
structing reductions.

One way to produce quantum hiding states ���x� :x
�G	 is as follows. Let ( be an orthonormal set of quan-
tum states and let � :G�(→( be a �left� action of G on
(. For some fixed |�� � (, define ��x�ª��x������. Then
the isometry Eq. �167� is a quantum hiding function for
the stabilizer of |��, the subgroup stab�����ª �x
�G :��x������= ���	�G. Fixing G, (, and �, the stabi-
lizer problem15 asks us to find a generating set for
stab�|��� given �some number of copies of� the state |��.

In the same sense that the stabilizer problem can be
viewed as an HSP with a quantum hiding function, the
orbit coset problem is analogous to the hidden shift
problem. The orbit coset of ��0� , ��1��( is the set
�x�G :��x����1��= ��0�	; it is either empty or a left coset

15Kitaev �1995� gave an efficient algorithm for the stabilizer
problem in the case where G is Abelian and the hiding func-
tion is classical, prefiguring the hidden subgroup framework.
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of stab���1�� �or, equivalently, a right coset of ��0��. In
the orbit coset problem �OCP�, we are given �some num-
ber of copies of� ��0� , ��1��(. The goal is to decide
whether their orbit coset is nonempty and, if so, to find
both a generating set for stab���1�� and an element x
�G such that ��x����0��= ��1�.

It can be shown that for any group G and any solvable
normal subgroup N�G, the OCP in G reduces to the
OCP in G /N and subgroups of N �Friedl et al., 2003�.
While the details are beyond the scope of this article, the
reduction is based on a method for creating a uniform
superposition over the orbit of a state |�� under the ac-
tion �, building on a technique introduced by Watrous in
his algorithms for solvable groups �Sec. IV.G�. By com-
bining this with the efficient quantum algorithm for the
hidden shift problem in �Z /pZ�n discussed in Sec. VIII.B
�which can be straightforwardly adapted to an efficient
algorithm for orbit coset in �Z /pZ�n�, Friedl et al. �2003�
obtained an efficient quantum algorithm for the hidden
shift problem in smoothly solvable groups and for the
HSP in solvable groups with a smoothly solvable com-
mutator subgroup.

Recently, Ivanyos, Sanselme, and Santha have given
algorithms for the HSP in extraspecial groups �Ivanyos
et al., 2007� and groups of nilpotency class at most 2
�Ivanyos et al., 2008�. These algorithms use the concept
of a quantum hiding function introduced above to re-
duce the problem to an Abelian HSP. It would be inter-
esting to develop further applications of quantum hiding
functions to the HSP, hidden shift, and related problems.

D. Shifted Legendre symbol and Gauss sums

While no efficient quantum algorithm is known for
the cyclic hidden shift problem �i.e., the dihedral HSP�
for a general function f0 :Z /NZ→S, the problem can be
more tractable given a hiding function of a particular
form. As a simple example, the hidden shift problem
with the identity function f0�x�=x is trivial; but this case
is uninteresting as the problem can be solved equally
well with a classical or quantum computer. However,
more interesting examples can be constructed if we drop
the requirement that f0 be injective.16 For example, the
Legendre symbol ! provides an example of a function
with an efficient quantum algorithm but no known effi-
cient classical algorithm.

1. Shifted Legendre symbol problem

For a finite field Fp with p an odd prime, the value
!�x� of the Legendre symbol ! :Fp→ �−1,0 ,+1	 depends
on whether x is zero, a nonzero square �i.e., a quadratic

residue�, or a nonsquare �i.e., a quadratic nonresidue� in
Fp. It is defined by

!�x� = �0 if x = 0

+ 1 if ∃ y � 0, x = y2

− 1 otherwise.
� �169�

For example, in F5 we have the values

x 0 1 2 3 4

!�x� 0 + 1 − 1 − 1 + 1
.

The Legendre symbol is a multiplicative character, as it
is easy to verify that !�xy�=!�x�!�y� for all x ,y�Fp.
This fact can be used to show that �x�Fp

!�x�=0. The
identity

!�x� = x�p−1�/2 mod p �170�

shows that repeated squaring mod p can be used to com-
pute the value !�x� in time poly�log p�.

In the shifted Legendre symbol problem over Fp, we
define the functions f0�x�ª!�x� and f1�x�ª!�x+s� for
all s�Fp; the task is to determine the hidden shift s
given a black-box implementation of the function f1. We
emphasize that although the functions f0 , f1 are not in-
jective, this can nevertheless be viewed as �a relaxed ver-
sion of� a hidden shift problem. The ability to efficiently
solve this particular hidden shift problem quantum me-
chanically stems from properties of multiplicative func-
tions under the �additive� Fourier transform.

No efficient classical algorithm for the shifted Leg-
endre symbol problem is known. Although one can
show that O�log p� random queries to the function !�x
+s� are sufficient to obtain enough information to deter-
mine s �van Dam, 2002�, it is not clear how to do so
efficiently. In fact, the Legendre sequence !�x� ,!�x
+1� , . . . has been proposed as a pseudorandom function
with potential cryptographic applications �Damgård,
1990�.

The following quantum algorithm efficiently solves
the shifted Legendre symbol problem �van Dam et al.,
2006�.

Algorithm 12 (Shifted Legendre symbol).
Input: Black-box function !�x+s� for some unknown

s�Fp.
Problem: Determine the hidden shift s.
�1� Prepare the uniform superposition �Fp� and query

the function in an ancilla register, giving the state

1

p

�
x�Fp

�x,!�x + s�� . �171�

�2� Measure whether the second register is in the state
|0�. If it is, the first register is left in the state �−s�, and
measuring it determines s. Otherwise, we are left with
the state

1

p − 1

�
x�Fp\�−s	

�x,!�x + s�� , �172�

and we continue.

16Dropping this restriction, the quantum query complexity of
the hidden shift problem may no longer be polynomial; for
example, the hidden shift problem with f0�x�=
x,0 is equivalent
to unstructured search, which has quantum query complexity
��
N� �Bennett et al., 1997�.
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�3� Apply the unitary operation �x ,b�� �−1�b�x ,b� and
uncompute the shifted Legendre symbol, giving the state

1

p − 1

�
x�Fp

!�x + s��x� . �173�

�4� Apply the Fourier transform over Fp, yielding

1

p − 1

�
y�Fp

!̂�y��p
−sy�y� , �174�

where !̂ :Fp→C is the normalized Fourier transform of !
�a normalized Gauss sum; cf. Eq. �180��, namely,

!̂�y� ª
1

p

�
x�Fp

!�x��p
xy. �175�

Note that !̂�0�=0 and �!̂�y��=1 for y�Fp
�.

�5� The equality

!̂�y� =
1

p

�
x�Fp

!�xy−1��p
x = !�y�!̂�1� �176�

shows that the state �Eq. �174�� is in fact a uniformly
weighted superposition of the elements of Fp, where the
state �y� has a phase proportional to !�y��p

−sy. Thus we
correct the relative phases by the operation �y��!�y��y�
for all y�Fp

�, giving the state

!̂�1�

p − 1

�
y�Fp

�

�p
−sy�y� . �177�

�6� Perform the Fourier transform over Fp and mea-
sure in the computational basis, giving s with probability
1−O�1/p�.

It is easy to see that the above algorithm solves the
shifted Legendre symbol problem not only over a prime
field Fp but over any finite field Fq. To verify this, we
need only compute the Fourier transform of the qua-
dratic character ! :Fq→ �−1,0 ,+1	, namely,

!̂�y� ª
1

q

�
x�Fq

!�x��p
Tr�xy� =

1

q

�
x�Fq

!�xy−1��p
Tr�x�

= !�y�!̂�1� �178�

�recall the definition of the Fourier transform over Fq in
Sec. III.D�. Indeed, the solution can be generalized to
any shifted multiplicative character of Fq �van Dam et
al., 2006� and to any function over Fp that hides a mul-
tiplicative subgroup of polylogarithmic index �Moore,
Rockmore, et al., 2007�.

For the ring Z /NZ with N=p1
r1 � ¯ �pk

rk odd, the gen-
eralization of the Legendre symbol is called the Jacobi
symbol � · /N� :Z /NZ→ �−1,0 ,+1	. It is defined as the
product

� x

N

 = � x

p1

r1

¯ � x

pk

rk

, �179�

where �x /p�ª!�x� is an alternative notation for the Leg-
endre symbol that makes the field size explicit. This
is again a multiplicative character, although its values

need not indicate squares mod N �for example, �2/15�
= �2/3��2/5�= �−1�2=1, while 2 is not a square mod 15�.
Analogous to the shifted Legendre symbol problem, one
can define a shifted Jacobi symbol problem over Z /NZ,
which also has an efficient quantum algorithm �van Dam
et al., 2006�.

2. Estimating Gauss sums

In the above solution to the shifted Legendre symbol
problem, we encountered the Fourier transform of the
multiplicative character !, which is a Gauss sum. This
naturally leads to a quantum algorithm for approximat-
ing Gauss sums �van Dam and Seroussi, 2002�.

For a finite field Fq, a nontrivial multiplicative charac-
ter ! :Fq→C, and a nontrivial additive character � :Fq
→C, the Gauss sum is defined as the inner product be-
tween these two characters:

G�!,�� ª �
x�Fq

!�x���x� . �180�

It is not hard to show that any Gauss sum has norm
�G�! ,���=
q, so to learn the value of a Gauss sum it
suffices to determine the phase ���0,2�� of G�! ,��
=
q ·ei�.

There are q−1 distinct multiplicative characters
!a :Fq→C indexed by a�Z / �q−1�Z. For a fixed multipli-
cative generator g of Fq

�, we have !a�gj�ª�q−1
aj for all

j�Z and !a�0�ª0. The q−2 nontrivial characters are
those with a�0. As the discrete logarithm logg�gj�
= j mod q−1 can be calculated efficiently with a quantum
computer �Sec. IV.B�, we can efficiently induce the phase
!a�gj� by subtracting the value aj mod q−1 from the

state �1̂�, giving

�gj� � �1̂� = �gj� �
1


q − 1
�

y�Z/�q−1�Z
�q−1

y �y�

� �gj� �
1


q − 1
�

y�Z/�q−1�Z
�q−1

y �y − aj�

= �gj� �
�q−1

aj


q − 1
�

y�Z/�q−1�Z
�q−1

y �y�

= !a�gj��gj� � �1̂�; �181�

this is sometimes referred to as the phase kickback trick.
The q additive characters �b :Fq→C indexed by b

�Fq are defined as �b�x�ª�p
Tr�bx� for all x�Fq. The

character �0 is trivial and all b�0 give nontrivial char-
acters.

With these definitions in place, the Gauss sum estima-
tion algorithm is as follows.

Algorithm 13 �Gauss sum estimation�.
Input: A finite field Fq, a nontrivial multiplicative

character !a �where a� „Z / �q−1�Z…�� and a nontrivial
additive character �b �where b�Fq

��.
Problem: Approximate within precision 
 � 0 the

angle � � �0,2�� such that G�!a ,�b�=
q ·ei�.
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Perform phase estimation �Sec. III.C� with precision 

on the following single-qubit unitary operation �which
requires applying the operation O�1/
� times�, inputting
its eigenstate |1� of eigenvalue ei�.

�1� For an arbitrary input state �|0���|1�, prepare the
state �Fq

�� in an ancilla register.
�2� Using the phase kickback trick described in Eq.

�181�, transform the state to

1

q − 1���0� � �

x�Fq

!a
*�x��x� + ��1� � �

x�Fq

!a�x��x�
 .

�182�

�3� Conditional on the qubit being in the state |1�, mul-
tiply the ancilla register by b and apply the Fourier
transform over Fq, yielding the state

���0� + !̂a�b���1�� �
1


q − 1
�

x�Fq

!a
*�x��x� , �183�

where

!̂a�b� ª
G�!a,�b�


q
= ei�. �184�

�4� Apply the phase rotation �x��!a�x��x� to the an-
cilla register, returning it to its original state and giving

„��0� + !̂a�b���1�… � �Fq
�� . �185�

Discarding the ancilla register, notice that the above
steps effectively implement the conditional phase shift
|0� � |0�, �1��ei��1�.

The above quantum algorithm has running time poly-
nomial in log q and 1/
, whereas classical sampling over
the q values !a�x��b�x� requires poly�
q /
� samples to
achieve the same quality of approximation.

Both additive and multiplicative characters can be de-
fined over the ring Z /NZ, and there are corresponding
Gauss sums

G�!a,�b� = �
x�Z/NZ

!a�x��b�x� , �186�

with !a�xy�=!a�x�!a�y� and �b�x�=�Nbx for all x ,y
�Z /NZ �see Berndt et al. �1998��. Such Gauss sums over
finite rings can be approximated by a quantum computer
as well, using the above algorithm in a relatively
straightforward way.

As Gauss sums occur frequently in the calculation of
the number of points on hypersurfaces over finite fields
�see, e.g., Ireland and Rosen �1990�� these same quan-
tum algorithms can be used to approximately count such
points with an accuracy that does not seem achievable
classically �van Dam, 2004�.

E. Generalized hidden shift problem

Pólya has advised that “if there is a problem you can’t
solve, then there is an easier problem you can solve: find
it” �Pólya, 1945�. In that spirit, we conclude our discus-
sion of the hidden shift problem by describing a gener-

alization that offers more ways to obtain information
about the hidden shift. At least in the case of cyclic
groups, this problem indeed turns out to be easier than
the original hidden shift problem.

In the M-generalized hidden shift problem for the
group G, we are given a hiding function f : �0, . . . ,M−1	
�G→S satisfying two conditions: for any fixed j
� �0, . . . ,M−1	, f�j ,x� is an injective function of x�G
and for each j� �0, . . . ,M−2	, f�j+1,x�= f�j ,sx�. For M
=2, this problem is equivalent to the usual hidden shift
problem, since the hiding functions f0 , f1 can be obtained
as fj�x�= f�j ,x�. However, the M-generalized hidden shift
problem appears to become easier for larger M; it trivi-
ally reduces to the M�-generalized hidden shift problem
with M��M, but larger values of M provide new ways
to query the hiding function. Note that if sM=1, then the
M-generalized hidden shift problem is equivalent to the
HSP in Z /MZ�G with the cyclic hidden subgroup
��1,s��. In general, the M-generalized hidden shift prob-
lem in G reduces to the HSP in G �Z /MZ �Fenner and
Zhang, 2008�, but note that this reduction is only effi-
cient for M=poly�log�G��.

The Abelian generalized hidden shift problem could
potentially be applied to solve lattice problems. Recall
from Sec. VII.A that the poly�n�-unique shortest lattice
vector problem efficiently reduces to the standard ap-
proach to the dihedral HSP. In fact the same holds for
the M-generalized hidden shift problem in Z /NZ, pro-
vided M=poly�log N�.

While no efficient algorithm is known for the case
where M=poly�log N�, efficient algorithms do exist for
larger values of M. Note that the N-generalized hidden
shift problem in Z /NZ is an HSP in Z /NZ�Z /NZ, which
can be solved by Abelian Fourier sampling. Essentially
the same strategy works provided M=��N�, but fails for
sublinear values of M. However, there is another quan-
tum algorithm that is efficient provided M	N� for some
fixed � � 0 �Childs and van Dam, 2007� based on the
pretty good measurement techniques discussed in Sec.
VII.G. For the M-generalized hidden shift problem in
Z /NZ, implementing the PGM reduces to an integer
programming problem in d=log N / log M dimensions,
which can be solved efficiently for d=O�1� �Lenstra,
1983�.

It would also be interesting to consider the general-
ized hidden shift problem in non-Abelian groups. For
example, a solution of this problem for the symmetric
group could be used to solve the M-generalized graph
isomorphism problem, in which we are given M rigid
n-vertex graphs "0 ,"1 , . . . ,"M−1 that are all either noni-
somorphic or sequentially isomorphic with a fixed iso-
morphism ��Sn, namely, "j+1=��"j� for j=0,1 , . . . ,M
−2. For large M, this problem might seem considerably
easier than graph isomorphism, yet no efficient algo-
rithms for the corresponding generalized hidden shift
problem are known. Indeed, very little is known about
the non-Abelian generalized hidden shift problem in
general.
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IX. HIDDEN NONLINEAR STRUCTURES

The non-Abelian hidden subgroup problem �Sec. VII�
was originally introduced with the hope of generalizing
the success of Shor’s algorithm. As we have seen, these
efforts have so far met with only limited success: while
polynomial-time quantum algorithms are known for the
HSP in some non-Abelian groups, the cases with signifi-
cant applications �namely, the dihedral and symmetric
groups� remain largely unresolved. Thus there have
been several attempts to generalize the Abelian HSP in
other ways. The hidden shift problem �Sec. VIII� repre-
sents one such attempt. In this section we discuss a more
radical departure from the HSP, a class of problems
aimed at finding hidden nonlinear structures.

We return our attention to the Abelian HSP and,
more specifically, to the hidden subgroup problem in the
additive group of the d-dimensional vector space Fq

d

�where Fq denotes the finite field with q elements�. Then
we can view the HSP as a problem of identifying a hid-
den linear structure: the subgroups of the additive group
Fq

d are precisely its linear subspaces, and their cosets are
parallel affine subspaces or flats �cf. step �4� of Algo-
rithm 3�. Thus in this HSP we are given a function that is
constant on sets of points specified by linear equations,
and the goal is to recover certain parameters of those
equations. It is natural to consider replacing the linear
function by a polynomial of higher degree. Here we de-
scribe three such hidden nonlinear structure problems:
the hidden polynomial problem, shifted subset prob-
lems, and polynomial Legendre symbol problems.

A. The hidden polynomial problem

Perhaps the most straightforward nonlinear generali-
zation of the Abelian HSP is the hidden polynomial
problem �Childs et al., 2007�. In this problem, the hidden
object is a polynomial h�x��Fq�x1 , . . . ,xd�. Generalizing
Eq. �38�, we say that a black-box function f :Fq

d→S �for
some finite set S� hides the polynomial h�x� if

f�x� = f�x�� if and only if h�x� = h�x�� �187�

for all x ,x��Fq
d. In other words, the function f is con-

stant on the level sets

Ly
h
ª h−1�y� = �x � Fq

d : h�x� = y	 �188�

and distinct on different level sets. The hidden polyno-
mial problem is to determine h�x� up to differences that
do not affect its level sets �i.e., up to an overall additive
or multiplicative constant�.

Note that the polynomial h�x� trivially hides itself. But
just as there is no a priori relationship between function
values and cosets in the general HSP, we prefer to as-
sume that the association of function values to level sets
is arbitrary. Indeed, if we were promised that f�x�=h�x�,
even a classical computer could solve the hidden poly-
nomial problem efficiently. But with no promise on how
the level sets are mapped to function values, it is not
hard to show that the classical randomized query com-

plexity of the hidden polynomial problem is exponential
in d log q �Childs et al., 2007� by a similar argument as
for the Abelian HSP �Simon, 1997�.

With a quantum computer, we can approach the hid-
den polynomial problem by closely following the stan-
dard method for the HSP �Sec. VII.B�. Querying the
function f on the uniform superposition �Fq

d� and discard-
ing the resulting function value, one is left with the state
�Ly

h� with probability �Ly
h� /qd. Equivalently, the result is

the hidden polynomial state

�h ª �
y�Fq

d

�Ly
h�

qd �Ly
h��Ly

h� . �189�

Notice that these states are quite similar to the hidden
subgroup states �Eq. �113��, modulo the fact that level
sets of a polynomial can have different sizes unlike the
cosets of a subgroup. Just as we upper bounded the
query complexity of the HSP by analyzing the statistical
distinguishability of the states �Eq. �113��, so we can up-
per bound the query complexity of the hidden polyno-
mial problem by doing the same for the states �Eq.
�189��. Following a similar argument as in Sec. VII.E,
one can show that

F��h,�h��
2 �

1

qd �
y,y��Fq

�Ly
h � Ly�

h �2

�Ly
h�

�190�

�cf. Eq. �131��. Thus, the hidden polynomial states are
pairwise distinguishable provided their level sets do not
intersect too much. Since almost all polynomials are ab-
solutely irreducible �i.e., they do not have any nontrivial
factors even over an extension of the base field�, this
suffices to show that if the dimension d and the maxi-
mum degree of the polynomials are fixed, then the query
complexity of the hidden polynomial problem is
poly�log q� for almost all polynomials �Childs et al.,
2007�.

Moving beyond query complexity, we would like to
know whether there is an efficient quantum algorithm—
i.e., one with running time poly�log q�—for the hidden
polynomial problem. Just as for the HSP, the most gen-
eral version of this question is currently open. However,
suppose we are promised that the hidden polynomial
has the form

h�x1, . . . ,xd� = g�x1, . . . ,xd−1� − xd �191�

for some �d−1�-variate polynomial g�x1 , . . . ,xd−1�
�Fq�x1 , . . . ,xd−1�. �A simple example is the hidden pa-
rabola problem, in which h�x ,y�=�x2+�x−y for some
unknown � ,��Fq that we would like to determine.�
For such a hidden polynomial, the level sets are simply
translates of each other, namely, Ly

h=L0
h+ �0, . . . ,0 ,y�.

Provided the maximum degree of the polynomial is at
most some fixed constant, there is a quantum algorithm
that determines h �up to an additive offset� in time
poly�d log q� �Decker et al., 2009�. This algorithm is
based on the pretty good measurement approach de-
scribed in Sec. VII.G. Recall that the implementation of
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the PGM relies on quantum sampling from the solutions
of an average-case algebraic problem. For the hidden
polynomial problem with a polynomial of the form in
Eq. �191�, this problem is a system of polynomial equa-
tions, much like the pair of quadratic equations �Eqs.
�150� and �151�� that arises in the algorithm for the HSP
in the Heisenberg group.

B. Shifted subset problems and exponential sums

Other families of hidden nonlinear structure problems
arise in the setting of shifted subset problems. Such prob-
lems are most naturally stated directly in terms of quan-
tum state distinguishability.17 Suppose that for fixed sub-
sets S, T�Fq

d, we are given the quantum state �S+ t� �a
uniform superposition over the elements of S+ t�, where
t is chosen uniformly at random from T. In other words,
we are given the mixed quantum state

�S,T =
1

�T� �t�T
�S + t��S + t� . �192�

In the shifted subset problem, the goal is to determine
some property of S or T or both using samples of �S,T.

Childs et al. �2007� considered two examples of shifted
subset problems in which the set S is a d-dimensional
sphere, i.e., the set of points

Sr ª Lr
�i=1

d xi
2

= �x � Fq
d:�

i=1

d

xi
2 = r� �193�

for some r�Fq. In the hidden radius problem, T=Fq
d,

and the goal is to learn r. In the hidden flat of centers
problem, we are promised that r=1 and T is some un-
known flat in Fq

d; the goal is to determine this flat.
In general, when T=Fq

d, symmetry ensures that �S,T is
diagonal in the Fourier basis. Then the goal is to learn S
from samples of a distribution given by its Fourier trans-
form �recall Sec. III.D�, namely,

Pr�k� =
1

qd�S� � �x�S
�p

Tr�kx��2
, �194�

where p is the characteristic of Fq and Tr:Fq→Fp de-
notes the trace map. In particular, when S=Sr is a
d-dimensional sphere, the distribution is proportional to
an exponential sum known as a Kloosterman sum for d
even or a Salié sum �a kind of twisted Kloosterman sum�
for d odd. In either case, these distributions are
information-theoretically distinguishable for different
values of r. Moreover, a closed-form expression for Salié
sums gives an efficient quantum algorithm for determin-
ing whether r is a quadratic residue, provided d is odd.

Suppose S is fixed and T is an unknown flat or, more
generally, some low-degree surface. If we could perform
the transformation �S+ t�� �t�, then we could sample
from points on the flat and thereby reconstruct it. Un-
fortunately, this transformation is generally not unitary
since S could intersect with its translates. However, we
can attempt to approximate such a transformation using
the continuous-time quantum walk on the Cayley graph
of Fq

d generated by S. When S=S1, this Cayley graph is
known as the Winnie Li graph. Its eigenvalues are given
by Kloosterman or Salié sums, depending on whether d
is even or odd. For d odd, the explicit expression for
Salié sums provides an efficient implementation of the
quantum walk, which in turn gives an efficient quantum
algorithm for the hidden flat of centers problem.

Of course, it is possible to make many other choices
for S and T, so the above examples just begin to explore
potential quantum algorithms for shifted subset prob-
lems. However, these simple examples already reveal a
connection between the calculation of exponential
sums18 and the implementation of quantum walk that
could perhaps be developed further. It would also be
interesting to find concrete algorithmic applications of
shifted subset problems.

C. Polynomial reconstruction by Legendre symbol evaluation

The quantum algorithm for the shifted Legendre sym-
bol problem �Sec. VIII.D� recovers the constant term s
of a linear function f�x�=x+s hidden in the black-box
function !„f�x�…=!�x+s�, where ! is the Legendre sym-
bol. As a precursor to the efficient quantum algorithm, it
was shown that the quantum query complexity is O�1�,
while the classical query complexity is ��log p� �van
Dam, 2002�. Here we discuss the generalization to a
nonlinear function f�x� hidden in the black-box function
!„f�x�…. Russell and Shparlinski �2004� showed that the
quantum query complexity is significantly lower than the
classical query complexity even in this more general
case. Whether there exists an efficient quantum algo-
rithm to reconstruct the polynomial remains open.

Let f�Fp�x� be an unknown polynomial. Given a
black box for !„f�x�…, with ! the Legendre symbol over
Fp, we want to reconstruct f using as few queries as pos-
sible. Note that for any c�Fp

�, !„c2f�x�…=!„f�x�…, making
it impossible to tell the difference between f�x� and
c2f�x� on the basis of the black box !„f�x�…. Moreover, if
the factorization of f�x� contains a square, i.e., if f�x�
=g2�x� ·h�x�, then !„f�x�…=!„g2�x�…!„h�x�…, which is iden-
tical to !„h�x�… �except possibly at the zeros of g�. Thus
we restrict our attention to polynomials that are monic
and squarefree.

17Although the construction is technical, it is possible to for-
mulate shifted subset problems in terms of a black box from
which the state �S,T can be efficiently prepared on a quantum
computer, but that typically must be queried exponentially
many times to determine S, T on a classical computer �Childs
et al., 2007�.

18Computing exponential sums is also closely related to
counting the solutions of finite field equations. Kedlaya’s algo-
rithm �Sec. IV.H� can be used to efficiently approximate Kloos-
terman sums when the field characteristic is small �see Childs et
al. �2007��.
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In the case where f�x�=x+s, the reason that O�1�
quantum queries suffice is that the states �x!�x+s� �x�
are nearly orthogonal for different values of s�Fp. This
follows from the identity

�
x�Fp

!�x + r�!�x + s� = �p − 1, s = r

− 1, s � r .
� �195�

For polynomials f ,g of degree d that are monic and
squarefree, the generalization of this fact is provided by
the Weil bound �Lidl and Niederreiter, 1997�, which im-
plies that

�
x�Fp

!„f�x�…2 	 p − d , �196�

�
x�Fp

!„f�x�…!„g�x�… � 2d
p if f � g . �197�

Note that for d	
p /2, Eq. �197� is trivial. However, for
d�p1/2−� with � � 0, we find the following.

Given a black-box function !„f�x�… where f�Fp�x� is
an unknown monic squarefree polynomial of degree d,
two queries can be used to create the state

�!̃�f�� ª
1

p

�
x�Fp

!̃„f�x�…�x� , �198�

where !̃ is identical to ! except that !̃�0�=1. �This ad-
justment to the Legendre symbol is required to deal with
the otherwise zero amplitudes for the zeros of f.� Using
Eqs. �196� and �197�, it follows that

��!̃�f��!̃�g��� �
2d

p

. �199�

Since there are pd monic polynomials of degree d over
Fp, Theorem 3 �and specifically, Eq. �127�� shows that
there is a measurement on O�d� copies of �!̃�f�� that
determines the d unknown coefficients of f with prob-
ability 1−O�1/p�. The classical query complexity of this
problem can be shown to be ��d log p�, which therefore
gives a separation between classical and quantum query
complexity.

X. APPROXIMATING #P-COMPLETE PROBLEMS

Recently, there has been considerable interest in
quantum algorithms for approximately solving various
#P-complete problems. The first such algorithms were
for approximating the Jones polynomial; more recently,
similar ideas have been used to give approximate solu-
tions to other #P-complete problems. These algorithms
are not as closely related to Shor’s as most of those dis-
cussed here, but they are decidedly algebraic, relying
heavily on group representation theory.

The Jones polynomial is a central object in low-
dimensional topology with surprising connections to
physics. Witten �1989� showed that the Jones polynomial
is closely related to topological quantum field theory
�TQFT�. Freedman et al. �2003� investigated the rela-
tionship between TQFT and topological quantum com-

puting, showing that quantum computers can efficiently
simulate TQFTs �Freedman, Kitaev, and Wang, 2002�
and that in fact TQFTs essentially capture the power of
quantum computation �Freedman, Larsen, and Wang,
2002�. In particular, Freedman, Kitaev, and Wang �2002�
showed that quantum computers can efficiently approxi-
mate the Jones polynomial at a fifth root of unity. Sub-
sequently, Aharonov et al. �2009� described an explicit
quantum algorithm for approximating the Jones polyno-
mial, generalizing to any primitive root of unity �see also
Wocjan and Yard �2008��.

To define the Jones polynomial, we must first intro-
duce the concepts of knots and links. A knot is an em-
bedding of the circle in R3, i.e., a closed loop of string
that may wrap around itself in any way. More generally,
a link is a collection of any number of knots that may be
intertwined. In an oriented link, each loop of string is
directed. It is natural to identify links that are isotopic,
i.e., that can be transformed into one another by con-
tinuous deformation of the strings.

The Jones polynomial of an oriented link L is a Lau-
rent polynomial VL�t� in the variable 
t, i.e., a polyno-
mial in 
t and 1/
t. The polynomial is a link invariant,
meaning that VL�t�=VL��t� if the oriented links L and L�
are isotopic. While it is possible for the Jones polyno-
mial to take the same value on two nonisotopic links, it
can often distinguish links; for example, the Jones poly-
nomials of the two orientations of the trefoil knot are
different.

Given an oriented link L, one way to define its Jones
polynomial is as follows �Kauffman, 1987�. We define the
Kauffman bracket �L�, which does not depend on the
orientation of L. Each crossing in the link diagram can
be opened in one of two ways, and for any given cross-
ing we have

�200�

VL�t� ª �− t−1/4�3w�L��L� . �201�

It is useful to view links as arising from braids. A
braid is a collection of n parallel strands, with adjacent
strands allowed to cross over or under one another. Two
braids on the same number of strands can be composed
by placing them end to end. The braid group Bn on n
strands is an infinite group with generators � 1 , . . . , n−1	,
where  i denotes a twist in which strand i passes over
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strand i+1, interchanging the two strands. More for-
mally, the braid group is defined by the relations
 i i+1 i= i+1 i i+1 and  i j= j i for �i− j � �1.

Braids and links differ in that the ends of a braid are
open, whereas a link consists of closed strands. We can
obtain a link from a braid by connecting the ends of the
strands in some way. One simple way to close a braid is
via the trace closure, in which the ith strand of one end is
connected to the ith strand of the other end for each i
=1, . . . ,n, without crossing the strands. A theorem of Al-
exander �1923� states that any link can be obtained as
the trace closure of some braid.

The Jones polynomial of the trace closure of a braid
can be expressed in terms of the Markov trace �a
weighted variant of the usual trace� of a representation
of the braid group defined over the Temperley-Lieb al-
gebra �Jones, 1985�. When evaluating the Jones polyno-
mial VL�t� at the root of unity t=e2�i/k, this representa-
tion is unitary. This naturally suggests a quantum
algorithm for approximating the Jones polynomial. Sup-
pose that we can implement unitary operations corre-
sponding to twists of adjacent strands on a quantum
computer. By composing such operations, we can imple-
ment a unitary operation corresponding to the entire
braid. It remains to approximate the Markov trace of
this operator.

The trace of a unitary operation U can be approxi-
mated on a quantum computer using the Hadamard test.
If a conditional U operation is applied to the state |��
�|�� and the first qubit is measured in the |�� basis,
where �± �ª ��0�± �1�� /
2, the expectation value of the
outcome is precisely Re����U����. �This is simply the
phase estimation procedure described in Sec. III.C with
n=1, i.e., with a single bit of precision.� Replacing the
states |�� by the states �± i�ª ��0�± i�1�� /
2, we can ap-
proximate Im����U����. Using a maximally mixed state
as input instead of the pure state |�� and sampling suffi-
ciently many times from the resulting distribution, we
can obtain an approximation of Re�Tr U� or Im�Tr U�.
Similarly, we can approximate a weighted trace by sam-
pling from an appropriate distribution over pure states.

Applying this approach to the relevant unitary repre-
sentation of the braid group, one obtains a quantum al-
gorithm for approximating the Jones polynomial of the
trace closure of a braid at a root of unity. In particular,
for a braid on n strands, with m crossings and t=e2�i/k,
there is an algorithm running in time poly�n ,m ,k� that
outputs an approximation differing from the actual
value VL�t� of the Jones polynomial by at most
�2 cos � /k�n−1 /poly�n ,k ,m�, with only exponentially
small probability of failure �Aharonov et al., 2009�.

Given a braid with an even number of strands, an-
other natural way to create a link is called the plat clo-
sure. Here we simply join adjacent pairs of strands at
each end of the braid. The plat closure can be viewed as
the trace closure of a braid on 2n strands together with
2n additional straight strands. Using this fact, we can
express the Jones polynomial of the plat closure of a
braid at t=e2�i/k as the expectation value of a particular

unitary representation of the braid group in a pure
quantum state. Thus the Jones polynomial of the plat
closure can also be approximated using the Hadamard
test, but now using a pure input state instead of a mixed
one. This gives an efficient quantum algorithm for an
additive approximation of the Jones polynomial of the
plat closure of a braid at a root of unity �Aharonov et al.,
2009�.

Note that these algorithms only provide additive ap-
proximations, meaning that the error incurred by the
algorithm is independent of the value being approxi-
mated, which is undesirable when that value is small. �In
fact, note that the additive error increases exponentially
with n, the number of strands in the braid.� It would be
preferable to obtain a multiplicative approximation or,
better still, an exact calculation. However, exactly com-
puting the Jones polynomial is #P-hard �Jaeger et al.,
1990� and hence unlikely to be possible even with a
quantum computer. Furthermore, obtaining the additive
approximation achieved by Aharonov et al. �2009� for
the Jones polynomial of the plat closure of a braid is as
hard as any quantum computation �Freedman, Larsen,
and Wang, 2002; Bordewich et al., 2005; Aharonov and
Arad, 2006; Wocjan and Yard, 2008�.

To implement the quantum algorithm for approximat-
ing the trace closure of a braid, it is only necessary to
have a single pure qubit �the qubit initialized to |�� in
the Hadamard test� and many mixed ones. Thus it can
be carried out in the one clean qubit model introduced
by Knill and Laflamme �1998� to investigate the power
of mixed state quantum computation. In fact, the prob-
lem of estimating the Jones polynomial of the trace clo-
sure of a braid at a fifth root of unity �to the precision
described above� exactly characterizes the power of this
model �Jordan and Wocjan, 2008; Shor and Jordan,
2008�, just as the approximation of the plat closure char-
acterizes general quantum computation.

We conclude by mentioning various extensions of
these results. Wocjan and Yard �2008� showed how to
evaluate the Jones polynomial of a generalized closure
of a braid and how to evaluate a generalization of the
Jones polynomial called the HOMFLYPT polynomial.
Recent work of Aharonov, Arad, et al. �2007� showed
how to approximate the Tutte polynomial of a planar
graph, which in particular gives an approximation of the
partition function of the Potts model on a planar graph;
this problem also characterizes the power of quantum
computation, albeit only for unphysical choices of pa-
rameters. More generally, there are efficient quantum
algorithms to compute additive approximations of ten-
sor networks �Arad and Landau, 2008�.
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APPENDIX A: NUMBER THEORY

1. Arithmetic mod N

When performing calculations with integers mod N
we use the equivalence relation x=y mod N if and only
if x−y�NZ= � . . . ,−N ,0 ,N ,2N , . . . 	. Often we omit the
notation mod N and instead consider x and y as ele-
ments of the ring Z /NZ. Other ways of denoting this ring
are ZN and Z / �N�; throughout we use the notation Z /NZ,
which is conventional in computational number theory.
Although formally the elements of Z /NZ are the sets
� . . . ,−N+x ,x ,x+N ,x+2N , . . . 	, we often simply repre-
sent such an element by the integer x; this representa-
tion is unique if we require x� �0, . . . ,N−1	.

Addition mod N corresponds to the additive group
�Z /NZ ,+�, which has N elements. For example, with
N=2 we have 0�0�0, 1�0�0�1�1, and 1�1�0. If N
has the prime factorization N=p1

r1
¯pk

rk, then the addi-
tive group Z /NZ can be decomposed as �Z /p1

r1Z�� ¯

� �Z /pk
rkZ�.

Multiplication mod N is more complicated than addi-
tion as not all elements of Z /NZ have a multiplicative
inverse. For example, 5�5=1 mod 6, but there is no el-
ement x such that 2x=1 mod 6. In general, there exists a
y such that xy=1 mod N if and only if gcd�x ,N�=1,
where gcd�x ,N� is the greatest common divisor of x and
N. The set of such invertible elements of Z /NZ makes up
the multiplicative group �Z /NZ��. It is easy to check that
in Z /6Z there are only two invertible elements:
�Z /6Z��= �1,5	. The size of the multiplicative group
�Z /NZ�� depends on the prime factorization of N; one
can show that for N=p1

r1
¯pk

rk,

��N� ª ��Z/NZ��� = �p1 − 1�p1
r1−1

¯ �pk − 1�pk
rk−1,

�A1�

where � is called Euler’s totient function. Similarly to the
additive case, one also has the multiplicative group iso-
morphism �Z /NZ����Z /p1

r1Z��� ¯ � �Z /pk
rkZ��.

By combining the isomorphisms for the additive and
multiplicative groups of integers mod N, we obtain the
Chinese remainder theorem. This states that for N
=p1

r1
¯pk

rk, the bijection between the elements of x
�Z /NZ and the k-tuples �x1 , . . . ,xk�� �Z /p1

r1Z�� ¯

� �Z /pk
rkZ� �with xi=x mod pi

ki for all i� respects both ad-
dition and multiplication in the ring Z /NZ. This fact of-
ten allows us to break up algebraic problems in Z /NZ

into k smaller problems in Z /pi
riZ, which can be easier to

deal with.

2. Finite fields and their extensions

For a prime number p we have ��p�=p−1, which
means that all but the zero element of Z /pZ have a mul-
tiplicative inverse mod p. Thus Z /pZ is a finite field,
which we denote by Fp. Just as R is a field that can be
extended to C by including the solutions to polynomial
equations such as �2+1=0, so can the finite field Fp be
extended to Fpr for any positive integer r. Any finite field
has order q=pr with p some prime, and for each prime
power pr there is a finite field of that order. Up to iso-
morphism, this finite field is in fact unique, so we can
refer to the finite field Fq without ambiguity. The addi-
tive group of Fpr is isomorphic to the additive group
�Z /pZ�r, while the multiplicative group Fpr

� is cyclic and is
isomorphic to the additive group Z / �pr−1�Z. Note that
Fpr is very different from Z /prZ for r�1, as �Fpr

��=pr−1
while ��Z /prZ���= �p−1�pr−1.

A standard way of explicitly constructing a finite field
Fpr is by extending Fp with a formal variable � satisfying
T���=0, where T is an irreducible polynomial of degree
r in Fp���. The finite field Fpr is isomorphic to the ring of
polynomials Fp��� modulo the polynomial T���, i.e.,
Fpr �Fp��� /T���.

Example �Construction of F8�. Mod 2, the polynomial
T���=�3+�+1 is irreducible: T��� cannot be written as
the product of two nontrivial polynomials. Hence
F2��� / ��3+�+1� is the finite field F8. The addition in this
field is the straightforward addition of quadratic polyno-
mials mod 2, such that, for example, ��2+��+ ��2+1�
=�+1. Multiplication of the elements is slightly more
involved, but the explicit multiplication table of Table II
confirms that F2��� / ��3+�+1� is indeed a field. Note,
for example, that � has multiplicative inverse �2+1 as
���2+1�=�3+�=1 by the equality �3+�+1=0.

Obviously F8 contains the subfield F2, but less obvi-
ously F8 does not contain F4. In general, Fq1

contains the
finite field Fq2

if and only if q1 is a power of q2, hence if
and only if q1=pr1 and q2=pr2 where r2 divides r1. For a
finite field Fq with q=pr and p prime, we call Fp the base
field of Fq, and we call Fpr the degree r extension of the
field Fp. By taking the limit of arbitrarily high degree r,

we obtain the algebraic closure F̄p of Fp, which is an
infinite field.

Although the construction of an extension field using
an irreducible polynomial makes it easy to explicitly per-
form calculations, the procedure soon becomes cumber-
some, as Table II already shows. Furthermore, the rep-
resentation depends on the specific polynomial being
used, so it introduces a certain arbitrariness. Hence,
whenever possible we talk about finite fields without
specifying a particular representation.
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3. Structure of finite fields

Starting from the infinite field F̄p, the elements of Fpr

can be characterized as the q=pr solutions to the equa-
tion xq=x. This immediately implies the above state-
ment that Fpr1 contains Fpr2 if and only r2 divides r1.

Within the finite field Fpr, the Frobenius automor-
phism � :Fpr→Fpr is the map defined by ��x�=xp. It is a
field automorphism, meaning that ��x+y�=��x�+��y�
and ��xy�=��x���y� for all x ,y�Fpr. Iterating the
Frobenius automorphism gives the r different maps
�j :x�xpj

for j=0,1 , . . . ,r−1, which are all automor-
phisms of Fpr. Because ��a�=a for all base field elements
a�Fp, we see that if x�Fpr is a root of a polynomial
F�X�=adXd+ ¯+a1X+a0�Fp�X� with coefficients in the
base field Fp, then so are its conjugates �j�x� as, assum-
ing F�x�=0, we have F„��x�…=�iai„��x�…i=�i�„aix

i�
=�„F�x�…=0. This result generalizes to multivariate
polynomials F�Fp�X1 , . . . ,Xn� with roots x= �x1 , . . . ,xn�
�Fpr

n : if F�x�=0 then also F„�j�x�…=F„�j�x1� , . . . ,�j�xn�…
=0. Hence the set of solutions �x�Fpr

n :F�x�=0	 is invari-
ant under the Frobenius automorphism.

APPENDIX B: REPRESENTATION THEORY OF FINITE
GROUPS

In this appendix, we review the theory of group rep-
resentations needed to study the non-Abelian HSP.
Here we restrict our attention to finite groups and to
representations over finite-dimensional complex vector
spaces. For a more detailed introduction to representa-
tion theory, see Hamermesh �1989� and Serre �1977�.

1. General theory

A linear representation �or simply representation� of a
finite group G over the vector space Cn is a homomor-
phism  :G→GL�Cn�, i.e., a map from group elements to
nonsingular n�n complex matrices satisfying  �x� �y�
= �xy� for all x ,y�G. Clearly,  �1� � 1 and  �x−1�
= �x�−1. We say that Cn is the representation space of  ,
where n is called its dimension �or degree� and is de-
noted d .

Two representations  and  � with representation

spaces Cn are isomorphic �denoted  � �� if and only if
there is an invertible linear transformation M�Cn�n

such that M �x�= ��x�M for all x�G. �Representations
of different dimensions cannot be isomorphic.� Every
representation is isomorphic to a unitary representation,
i.e., one for which  �x�−1= �x�† for all x�G. Thus we
can restrict our attention to unitary representations
without loss of generality.

The simplest representations are those of dimension
1, such that  �x��C with � �x��=1 for all x�G. Every
group has a one-dimensional representation called the
trivial representation, defined by  �x�=1 for all x�G.

Two particularly useful representations of a group G
are its left regular representation and its right regular rep-
resentation. Both of these representations have dimen-
sion �G�, and their representation space is the group al-
gebra CG, i.e., the �G�-dimensional complex vector space
spanned by basis vectors �x� for x�G. The left regular
representation L satisfies L�x��y�= �xy�, and the right
regular representation R satisfies R�x��y�= �yx−1�. In par-
ticular, both regular representations are permutation
representations as each consists entirely of permutation
matrices.

Given two representations  :G→V and  � :G→V�,
we can define their direct sum, a representation  
�  � :G→V � V� of dimension d � �=d +d �. The rep-
resentation matrices of  �  � are of the form

� �  ���x� = � �x� 0

0  ��x�

 �B1�

for all x�G.
A representation is irreducible if it cannot be decom-

posed as the direct sum of two other representations.
Any representation of a finite group G can be written as
a direct sum of irreducible representations �or irreps� of
G. Up to isomorphism, G has a finite number of irreps.

The symbol Ĝ denotes a complete set of irreps of G, one
for each isomorphism type.

Another way to combine two representations is with
the tensor product. The tensor product of  :G→V and
 � :G→V� is  �  � :G→V � V�, a representation of di-
mension d � �=d d �.

The character of a representation  is the function
! :G→C defined by ! �x�ªTr  �x�. We have ! �1�

TABLE II. The multiplication table of the finite field F8 represented by the elements of F2��� / ��3+�+1�.

� 0 1 � � � 1 �2 �2+1 �2+� �2+�+1

0 0 0 0 0 0 0 0 0
1 0 1 � � � 1 �2 �2+1 �2+� �2+�+1
� 0 � �2 �2+� � � 1 1 �2+�+1 �2+1
� � 1 0 � � 1 �2+� �2+1 �2+�+1 �2 1 �

�2 0 �2 � � 1 �2+�+1 �2+� � �2+1 1
�2+1 0 �2+1 1 �2 � �2+�+1 � � 1 �2+�

�2+� 0 �2+� �2+�+1 1 �2+1 � � 1 � �2

�2+�+1 0 �2+�+1 �2+1 � 1 �2+� �2 � � 1
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=d , !�x−1�=!�x�*, and !�yx�=!�xy� for all x ,y�G. For
two representations  , �, we have ! � �=! +! � and
! � �=! ·! �.

Perhaps the most useful result in representation
theory is Schur’s lemma, which can be stated as follows.

Theorem 4 (Schur’s lemma). Let  and  � be two irre-
ducible representations of G and let M�Cd �d � be a
matrix satisfying  �x�M=M ��x� for all x�G. Then if
 � � we have M=0 and if  = �, then M is a scalar
multiple of the identity matrix.

Schur’s lemma can be used to prove the following or-
thogonality relation for irreducible representations.

Theorem 5. For two irreps  , ��Ĝ, we have

d 

�G� �
x�G

 �x�i,j
*  ��x�i�,j� = 
 , �
i,i�
j,j�, �B2�

where 
 , � is 1 if  = � and 0 otherwise. In particular,
this implies a corresponding orthogonality relation for
the irreducible characters �i.e., the characters of the ir-
reducible representations�:

Theorem 6. For two irreps  , ��Ĝ, we have

�! ,! �� ª
1

�G� �
x�G

! �x�*! ��x� = 
 , �. �B3�

Characters provide a simple test for irreducibility. In
particular, for any representation  , �! ,! � is a positive
integer and equal to 1 if and only if  is irreducible.

Any representation of G can be broken up into its
irreducible components. The regular representations of
G are useful for understanding such decompositions
since they contain every possible irrep of G, each occur-
ring a number of times equal to its dimension. In par-
ticular,

L � �
 �Ĝ

� � 1d 
�, R � �

 �Ĝ
�1d 

�  *� , �B4�

where 1d denotes the d�d identity matrix. In fact, this
holds with the same isomorphism for both L and R since
they are commutants of each other. The isomorphism is
simply the Fourier transform over G. For its precise
definition, as well as a proof that it decomposes the
regular representations, see Sec. VI.

Considering !L�1�=!R�1�= �G� and using this decom-
position, we find the well known identity

�
 �Ĝ

d 
2 = �G� . �B5�

Noting also that !L�x�=!R�x�=0 for any x�G \ �1	, we
see that

�
 �Ĝ

d ! �x� = 0. �B6�

In general, the multiplicity of the irrep  �Ĝ in an
arbitrary representation # of G is given by � 

#
ª �! ,!#�.

Then we have the decomposition

# � �
 �Ĝ

� � 1�
 
# � . �B7�

The projection onto the  -isotypic subspace of # is given
by

% 
#
ª

d 

�G� �
x�G

! �x�*#�x� . �B8�

Any representation  of G can also be viewed as a
representation of any subgroup H�G, simply by re-
stricting its domain to elements of H. We denote the
resulting restricted representation by ResH

G . Even when
 is irreducible over G, it will in general not be irreduc-
ible over H. �It is also possible to extend any represen-
tation  � of H to an induced representation IndH

G � of G,
but we will not need the definition here.�

We conclude with some examples of groups and their
irreducible representations.

2. Abelian groups

The irreducible representations of any finite Abelian
group are all one dimensional. �Conversely, any non-
Abelian group has some irrep of dimension greater than
1.�

For a cyclic group G=Z /nZ, all irreps are of the form
 k :Z /nZ→C with  k�x�ªe2�ikx/n, where k�Z /nZ
uniquely labels the representation. Hence there are in-
deed n inequivalent irreps of Z /nZ, all of dimension 1.

Any finite Abelian group can be written as a direct
product of cyclic factors, and its irreducible representa-
tions are given by products of irreps of those factors. For
example, the irreducible representations of the group
G= �Z /nZ�2 are given by  k�x�ªe2�i�k1x1+k2x2�/n, where k
= �k1 ,k2�� �Z /nZ�2 uniquely labels the irrep.

3. Dihedral group

The dihedral group of order 2n is Dn=Z /nZ’Z /2Z,
with the group law

�x,a� · �y,b� = „x + �− 1�ay,a + b… �B9�

for x ,y�Z /nZ and a ,b�Z /2Z.
For n even, we have the following one-dimensional

representations:

 tt„�x,a�… ª 1, �B10�

 ts„�x,a�… ª �− 1�a, �B11�

 st„�x,a�… ª �− 1�x, �B12�

 ss„�x,a�… ª �− 1�x+a; �B13�

for n odd, we have only  tt and  ts. The two-dimensional
representations are of the form
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 h„�x,0�… ª �e2�ihx/n 0

0 e−2�ihx/n 
 �B14�

and

 h„�x,1�… ª � 0 e−2�ihx/n

e−2�ihx/n 0

 �B15�

for some h� �1,2 , . . . , �n
2 �−1	. It is straightforward to

check that these representations are all irreducible and
that the sum of the dimensions squared gives 2n.

APPENDIX C: CURVES OVER FINITE FIELDS

Kedlaya’s quantum algorithm for counting the num-
ber of points on a curve over a finite field relies on sev-
eral results in algebraic geometry. Here we explain some
of the central concepts that are necessary to understand
the algorithm. For concreteness, we limit ourselves to
the case of planar algebraic curves. Our notation follows
Lorenzini �1996�; see this work for more information on
this topic.

Given a bivariate polynomial f�Fq�X ,Y�, we can con-
sider the solutions to the equation f�x ,y�=0 with x ,y
elements of the base field Fq or of an extension field Fqr.
The set of these solutions is the planar curve denoted by
Cf �Fq� or Cf �Fqr�, respectively. Often we drop the sub-
script f when it is clear from context.

1. Affine and projective spaces

The theory of algebraic equations works more gener-
ally if we allow points at infinity to be possible solutions
as well. We frequently work over the projective plane
P2, which for a given finite field Fqr can be expressed as

P2�Fqr� = �Fqr
3 \ ��0,0,0�	�/ � , �C1�

where two points are equivalent, denoted �x ,y ,z�
��x� ,y� ,z��, if and only if there exists a ��Fqr

� such that
��x ,�y ,�z�= �x� ,y� ,z��. These rays in Fq

3 are denoted by
�x :y :z�, i.e.,

�x:y:z� = ���x,�y,�z� : � � Fqr
�	 � Fqr

3 �C2�

for all �x ,y ,z�� �0,0 ,0�.
One can easily verify that the projective plane P2�Fq�

consists of q2+q+1 points, of which q2 lie in the affine
plane A2�Fq�= ��x ,y ,1� : �x ,y��Fq	; the remaining q+1
points are the line at infinity ��x ,1 ,0� :x�Fq	 and the
point at infinity ��1,0,0�	. This decomposition can be
summarized by P2=A2�P1=A2�A1�A0. For clarity, an
affine space is often indicated by An�Fq� rather than by
the equivalent set Fq

n, as the latter suggests a vector
space with an origin, a concept that plays no role in
affine spaces. In this article we ignore this subtlety.

2. Projective curves

The affine solutions to the polynomial equation
f�X ,Y�=0 over Fq consist of the set ��x ,y��Fq

2 : f�x ,y�
=0	, but for the solutions in the projective plane P2�Fq�
we must make the following adjustment. To define
f�X ,Y� in P2, we introduce a third variable Z that allows
us to translate f into a homogeneous polynomial, such
that if f�x ,y ,z�=0 for �x ,y ,z��Fq

3 \ ��0,0 ,0�	, then
f��x ,�y ,�z�=0 for all ��Fq

�. For example, with
f�X ,Y�=Y2+X3+X+1, we have f�X ,Y ,Z�=Y2Z+X3

+XZ2+Z3.
In other words, an algebraic curve Cf in the projective

plane is defined by a homogeneous polynomial f
�Fq�X ,Y ,Z� and its set of Fqr-rational solutions is given
by

Cf �Fqr� = ��x:y:z� : f�x,y,z� = 0	 � P2�Fqr� . �C3�

Note that for each extension degree r there is a different
set of solutions Cf �Fqr�. Explicit examples of curves are
given in Secs. IV.F and IV.H.

3. Properties of curves

Let f�Fq�X ,Y ,Z� define a planar, projective curve Cf.
A point �x :y :z� �Cf �Fqr� is called nonsingular if and
only if

� �f

�X
,

�f

�Y
,

�f

�Z

�x,y,z� � �0,0,0� , �C4�

where �f /�X denotes the formal derivative of f with re-
spect to X. A projective curve is called smooth if all its
points are nonsingular. In many ways, curves over finite
fields are analogous to compact Riemann surfaces. Most
importantly, one can assign a genus g to a smooth pro-
jective curve Cf, just as one can for a compact Riemann
surface. �This is why we use the projective curve: the
affine curve is not compact.� The projective line P1, de-
fined by a linear equation such as X=0, has genus 0;
elliptic curves, defined by cubic equations, have genus 1
and, in general, a degree d polynomial gives a curve with
genus g= 1

2 �d−1��d−2�. The complexity of algorithms for
curves often depends critically on the genus of the curve
and hence on the degree of the defining polynomial f.

4. Rational functions on curves

Similar to the case of Riemann surfaces, the geometric
properties of a smooth projective curve are closely re-
lated to the behavior of rational functions on the same
surface. For a smooth, projective curve Cf defined by the
homogeneous polynomial f�Fq�X ,Y ,Z�, we define the
function field of rational functions by
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Fq�Cf� = � g�X,Y,Z�
h�X,Y,Z�

: deg�g� = deg�h���� �C5�

with g and h homogenous polynomials in Fq�X ,Y ,Z� of
identical degree and with equivalence between functions
defined by

g

h
�

g�

h�
if and only if hg� − gh� � �f� , �C6�

where �f� is the ideal generated by f. Note that by the
requirement that g and h are of the same degree, we
have

g��x,�y,�z�
h��x,�y,�z�

=
�deg�g�

�deg�h�
g�x,y,z�
h�x,y,z�

=
g�x,y,z�
h�x,y,z�

, �C7�

which shows that g /h is indeed well defined on the
points �x :y :z� in the projective space P2�Fq�.

It is an important fact that each nonconstant rational
function on Cf has both roots �points where g=0� and
poles �h=0� and that the number of roots equals the
number of poles, counting multiplicity �see Sec. IV.H for
an example of the structure of Fq�Cf� for an elliptic
curve over F2�.
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