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ac impedance measurements of ion-conducting glasses provide considerable insight into the nature of
the ionic motions in disordered solids. However, interpreting the ac impedance has been a matter of
considerable debate, particularly in regards to how best to represent the relaxation process that is the
result of a transition from correlated to uncorrelated ion hopping. Although interpretations based
upon the electric modulus have featured prominently in the earlier literature, direct analysis of the
complex conductivity in the frequency domain is gaining popularity as it provides direct �via Fourier
transform� information regarding the microscopic mean-squared displacement of ions. Here many
recent findings are summarized that emphasize the scaling features present in the impedance spectra
to demonstrate how the casual researcher might interpret ac impedance results without elaborate
curve fitting.
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I. INTRODUCTION

Most students are familiar with the major advances in
understanding electron conduction in crystals as are con-
veyed in a typical course on Solid State Physics �Kittel,
2005�. There one finds that the crystal structure is key to
the various electron conduction phenomena in both
metals and semiconductors. But, of course, not all solids
are crystalline and not all conductors are electronic.
There are many disordered solids such as polymers and
oxide glasses wherein the conduction of mobile ions is of
considerable interest. Today, interest in the dynamics in
disordered materials is driven by the multitude of novel
applications these materials find in such devices as high-
energy, environmentally safe batteries and electronic
sensors. So profound is the interest in devices based

upon ion transport in both ordered and disordered ma-
terials that this expanding field of research has come to
be known as solid-state ionics �Kudo and Fueki, 1990�.

Like solid-state physicists, those working in the solid-
state ionics field are keen to understand the conduction
phenomena, not of electrons in crystals but of ions in a
disordered �nonperiodic� host matrix. We begin by com-
paring and contrasting the conduction of electrons in a
metal to that of ions in a glass. In a metal, the matrix is
comprised of an ordered three-dimensional �3D� array
of ion cores whose excess valence electrons have disso-
ciated to form a continuous sea of reasonably free elec-
trons. This sea of electrons provides the electrostatic
“glue” that maintains the crystal structure. Because the
electron has a small mass, its de Broglie wavelength is
rather large and quantum-mechanical considerations be-
come noticeable in its movement within the matrix. In-
deed much of the conduction phenomena in metals and
semiconductors result from diffraction of the electron
wave from the periodic lattice of ion cores.

In ion-conducting polymers and oxide glasses, the 3D
matrix is nonperiodic and generally held together by
stronger covalent bonds. As many are aware, glasses
typically shatter on impact while metals just become
dented. In many disordered ion conductors, the valence
electrons are completely taken up in the formation of
the covalent bonds that form the matrix, and no excess is
available for electronic conduction. Instead, mobile ions
are introduced into the disordered matrix by various
chemical additions. Often salts are added to a polymer
matrix and become dissociated into cation and anion
pairs that can diffuse about. In oxide glasses, the addi-
tion of an alkali oxide �like Li2O added to SiO2� often
ruptures a bridging oxygen connection between two Si
resulting in two nonbridging oxygens with negative
charge to which two Li cations are ionically bonded.
This is shown in Fig. 1. Here the ions are far more mas-
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sive than the electron, and quantum-mechanical consid-
erations are far less relevant to discussion of how these
ions move about.

II. BASIC CONCEPTS

Although there are a variety of ion-conducting solids,
we take as an example the lithium silicate glass pre-
sented in Fig. 1, whose key elements are much the same:
the system consists of a rigid, disordered matrix through
which the ions travel together with charge-compensating
sites �in this case, the nonbridging oxygens �NBOs��
fixed to the matrix about which the ions are loosely teth-
ered by weaker-than-covalent ionic bonds. Because of
the weakness of these ionic bonds, often thermal energy
in the solid can provide the energy needed for the ion to
dissociate from its site. An additional energy �strain en-
ergy� is needed for the ion to squeeze through passage-
ways in the matrix �Anderson and Stuart, 1954� in order
to “hop” to an adjacent site. Together these two energies
form a so-called activation energy, the energy associated
with the hop of an ion between adjacent sites. The rate
of hopping is then controlled by the temperature and for
most materials is given by the Boltzmann factor �or
Arrhenius law� fH=� exp�−E /kT�.

A typical ion-conducting solid contains some 1022 ions
per cubic centimeter. Because the charge-compensating
sites are more or less randomly positioned in the matrix,
they should have an average separation ��N−1/3, where
N is the number density of ions. So for N�1022 cm−3,
the average ion separation is ��5 Å. Molecular-
dynamics simulations may be able to track the position
of some of these over time, but otherwise we may need
to satisfy ourselves with ensemble-averaged quantities
such as the mean-squared displacement �r2�t��, a key

quantity of interest in many theoretical approaches
�Scher and Lax, 1973a, 1973b; Funke, 1993; Funke and
Wilmer, 1999�, to describe the motion.

III. OBSERVING ION MOTION BY IMPEDANCE
SPECTROSCOPY

There are many techniques that indirectly probe the
motion of ions in the solid. But here we restrict our
attention to ac impedance techniques that track ion mo-
tion through the electrical response of the material re-
sulting from the movement of mobile ions. Suppose we
form our solid sample into a thin disk of thickness d and
apply two metallic electrodes of area A onto the oppo-
site faces. The two electrodes form a parallel-plate ca-
pacitor with the sample as an unknown dielectric filling
�Jain, 1993; ASTM designation, 1995�. Without the fill-
ing, the empty capacitance is given by C=�0A /d. If we
connect a source of alternating current, we form a par-
allel RC circuit where both the resistance R��� and ca-
pacitance C��� are frequency dependent due to the
time-dependent motion of the ions as well as other at-
oms in the material. Ohm’s law allows the current and
voltage measured in our circuit to be reduced to a com-
plex impedance Z* ���, whose inverse is given by �Ti-
pler, 1999�

�Z*����−1 = �1/R���� − i��C����

=
A

d
����� − i��0����	 . �1�

The geometry of the electrodes �A /d� can be factored
out to obtain the conductivity ���� and dielectric con-
stant ���� inherent in the material itself. These can be
thought of as real and imaginary parts of a complex con-
ductivity �*��� and permittivity �*���,

�*��� = ���� + i��0���� = i��0�*���

= i��0����� − i������ . �2�

But what insight does �*��� provide with regard to the
ion motions? The answer lies in linear-response theory
�Kubo, 1957; Sidebottom et al., 2000; Roling et al., 2001�
where the contribution of ion motions to the frequency-
dependent conductivity arising from ion motions is given
by a Fourier transform of the mean-squared displace-
ment �Roling et al., 2001�,

�ion
* ��� = − �2 Nq2

6kT
lim

�→+0



0

�

�r2�t��exp�− i�t − �t�dt .

�3�

This relationship provides the important bridge between
experimental impedance measurements and the theoret-
ical description of microscopic ion motions. In principle
�and even in practice �Roling, 1999; Roling et al., 2001��,
this expression can be inverted to obtain the time-
dependent mean-squared displacement of mobile ions
directly from measurements of the ac conductivity. But
even more importantly, the relation implies that the
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FIG. 1. Covalent network of pure SiO2. �b� Formation of non-
bridging oxygen sites on addition of Li2O.
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frequency-dependent properties of �ion
* ��� are directly

related �via Fourier analysis� to time-dependent motions
of the ions.

Now we consider some experimental data. What one
typically observes for ion-conducting glasses like our
lithium silicate is a frequency-dependent conductivity
and dielectric constant like that shown in Fig. 2. Here we
see a considerable dependence of both quantities on the
frequency of the applied electric field. Starting at low
frequencies, we find a large increase with decreasing fre-
quency of the dielectric constant which, in the limit of a
dc field, attains a plateau value. This phenomenon re-
sults from the presence of metallic, or so-called blocking
electrodes, that do not permit transfer of mobile ions
into the external measuring circuit. As a result, the ions
“pile up” near one electrode leaving a depletion layer
near the opposite electrode that produces a drop off of
the conduction and a large bulk polarization of the
specimen. Although this “electrode polarization”
�Macedo et al., 1972� is a direct result of the ion motion,
it is a nonequilibrium, extrinsic feature that depends
both upon the nature of the electrode interface and the
thickness of the specimen �Hyde et al., 1987�.

As we move to higher frequencies, we observe a short
plateau in the conductivity �0. In terms of the mean-
squared displacement, this so-called dc conductivity rep-
resents the long-range diffusion of ions as they hop from
site to site through the matrix. In the dielectric constant,
we observe a shoulder that suggests an incipient polar-
ization occurring in this same frequency range. We can
understand this polarization to be associated with the
growth and shrinkage of a dipole moment with a maxi-
mum magnitude p�q� /2 that occurs during the hop.
This growth and shrinkage is in many respects similar to
the rotational relaxation that occurs for a collection of
noninteracting permanent dipoles of dipole moment p
for which �Jonscher, 1983�

	� =
Np2

3�0kT
, �4�

where N is the density of dipoles, k is the Boltzmann
constant �k=1.38
10−23 J /K�, and T is the temperature.

Making this analogy, we can estimate �Sidebottom,
1999a� a size for the stepwise increase in ���� due to an
ion hop to be

	� =
Nq2�2

12�0kT
. �5�

For a typical alkali oxide glass with N�1028 m−3, the
increase in dielectric constant is 	��10 and at room
temperature one obtains from Eq. �5� a value of �
�1.3 Å, which is comparable to the mean spacing be-
tween the charge-compensating sites.

As we move still further up in frequency, we see in
Fig. 2 a dramatic increase in ���� and a leveling off in
����. The leveling off of the dielectric constant occurs
because, in addition to the mean-squared displacement
of mobile ions, our matrix contains atoms that have be-
come elastically polarized under the influence of the ap-
plied field. These atomic and electronic polarizations oc-
cur at frequencies well above 1 GHz �Jonscher, 1983�
leaving behind a plateau ��, atop which the contribution
due to �nonelastic� ion motion rests.

The conductivity increases with increasing frequency
in a roughly power-law manner, and in the high-
frequency limit the data appear to approach a linear �or
superlinear �Cramer et al., 1995�� dependence on fre-
quency. From Eq. �2�, the linear frequency dependence
would imply a regime where the dielectric loss is fre-
quency independent—a regime often referred to as the
“nearly constant loss” �NCL� regime. The NCL is a fea-
ture that is currently much debated �Ngai, 1999; Rivera
et al., 2002; Murugavel and Roling, 2003; Sidebottom,
2005� and has created much recent research interest.

Putting all this together, we can approximate the fre-
quency dependence of the ac conductivity, aside from
the portion affected by electrode polarization �Mac-
donald, 1994�, with the following empirical function:

���f� � �0�1 + �f/f0�n� + Af . �6�

This sort of power-law description of the ac conductivity
has been advocated by several authors �Jonscher, 1977;
Almond and West, 1983a, 1983b; Almond et al., 1983;
Elliott, 1994a; Nowick et al., 1998�. Values for the expo-
nent n range from 0.5 to 0.7 with a concentration of
results near n= 2

3 �Sidebottom et al., 1995a; Macdonald,
2005�. The second, linear, term in the expression repre-
sents the NCL. It should be noted that the separation in
Eq. �6� of a fractal power law and a linear term is en-
tirely empirical as experimental data generally exhibit a
continuous increase in the logarthmic slope of the ac
conductivity with increasing frequency. Nevertheless,
some studies �Sidebottom et al., 1995b; Ngai, 1999� do
suggest the NCL regime involves distinctly different
kinds of ion movement.

What does this frequency dependence tell us about
ion motions? At low frequencies, the dc conductivity im-
plies that the mean-squared displacement is linear,
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FIG. 2. Schematic representation of how the ac conductivity
and dielectric constant typically depend upon frequency for an
ionic material. Several of the limiting features are labeled.
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�r2�t��dc � Dt . �7�

This linear time dependence is just a reflection of the
random diffusion of the ions as they migrate from site to
site through the disordered matrix. Such a time-
dependent mean-squared displacement is found in the
classical random walk model of diffusion and is a hall-
mark of uncorrelated motions �Gefen et al., 1983�. The
diffusion coefficient for this walk would be D=�2 /6�
=�2fH /6, where � is the mean hopping distance and �
=1/ fH is the average time taken to complete a single
hop. Applying the Fourier transformation �Eq. �3�� to
Eq. �7�, one obtains the Nernst-Einstein relationship be-
tween the dc conductivity and the hopping rate,

�0 = �Nq2�2/6kT�fH. �8�

At higher frequencies it follows that the mean-squared
displacement becomes nonlinear and must be described
�at least for f� fH� by

�r2�t��ac � �2�t/��1−n, t  � . �9�

In contrast to the dc regime, this sort of mean-squared
displacement is subdiffusive and indicates an ion motion
that is nonrandom or temporally correlated.

What is the source for this correlated motion? Such a
subdiffusive mean-squared displacement is well known
in the anomalous diffusion of a random walk limited to a
fractal geometry �Gefen et al., 1983�. Hence one could
envision a fractal network of conducting trails that per-
colate through the glassy matrix along which ions prefer
to travel �Greaves et al., 1991�. These trails would ap-
pear self-similar over length scales smaller than � and
�r2�t�� would exhibit a time dependence similar to that in
Eq. �9�. Motion on length scales greater than � would
appear uncorrelated and fully diffusive, behaving in ac-
cordance with Eq. �7�. While this picture of the ion mo-
tion could in principle account for the observed ac con-
ductivity �Sidebottom et al., 1995c�, and may very well
be the correct interpretation for certain conducting ma-
terials that possess well-established fractal pathways
�Jund et al., 2001�, it does not appear to offer the correct
interpretation for ac conductivity of the sort of alkali
oxide glasses presently discussed. The simple reason is
that this anomalous diffusion model—as applied to ����
like that typical of Fig. 2—would necessitate a correla-
tion length of only about 2–5 Å. The existence of a self-
similar fractal network operative inside this length scale
is highly improbable �Sidebottom et al., 1995c�. Instead,
the correlated motion is better pictured as motion in
which the ions perform numerous “unsuccessful” back-
and-forth hops �Funke, 1993� before any “successful”
diffusive motion occurs.

As we increase further in frequency, we encounter the
NCL regime. What does this sort of ac conductivity im-
ply about the mean-squared displacement of ions? One
might naively assume that the mean-squared displace-
ment is given by Eq. �9� above with n=1 meaning that it
is a time-independent constant. But this is incorrect. In-

stead, the NCL of the ac conductivity implies a logarith-
mic time dependence �Nowick et al., 1998� for the mean-
squared displacement of the form

�r2�t��NCL � ln�t� . �10�

Since each of the three distinct regions of mean-
squared displacement are well separated in time, we
could model the entire time-dependent mean-squared
displacement by a sum of the form

�r2�t��net � r0
2 ln�t/tN� + �2�t/��1−n + �2�t/�� , �11�

where r0 and tN are some appropriately short length and
time scale, respectively, pertaining to the first regime of
ion motion. This approximation also assumes that t / tN

�1, tN��, r0
2�2, and 0n1. An example of the re-

sulting �r2�t��net is shown in Fig. 3. The benefit of mod-
eling the net mean-squared displacement by the sum
above is that one can analytically obtain �through Fou-
rier transform in Eq. �3�� the corresponding real and
imaginary parts of the ac conductivity,

�ion� ��� = Re �*���

=
Nq2r0

2

6kT

�

2
� +

Nq2�2

6kT

1

�
�1 + ��2 − n�cos�n�/2�


����n	 , �12�

�ion� ��� =
1

��0
Im �*���

=
Nq2r0

2

6kT�0
�ln��N/�� − ��

+
Nq2�2

6kT�0
��2 − n�sin�n�/2�����n−1, �13�

where �N=1/ tN and � ��0.5772. . . � is Euler’s constant.
Although based on an approximate, asymptotic form for
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FIG. 3. Schematic representation of the time dependence for
mean-squared displacement of ions corresponding to the ac
conductivity in Eq. �6�. Dashed line A corresponds to approxi-
mation used in Eq. �6�. Dashed line B shows a more appropri-
ate approach to a constant at long times as indicated by Eq.
�14�.
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the overall mean-squared displacement, these two ex-
pressions capture the essence of the experimentally ob-
served ac conductivity. Unfortunately, Eq. �13� incor-
rectly predicts a continuous increase in ���� with
decreasing frequency instead of the approach to a pla-
teau value ��0� �see Fig. 2�. This is only a consequence of
how the expression for �r2�t��ac in Eq. �9� fails at t��,
where, in analogy to a rotating dipole, the mean-square
displacement associated with this ac contribution would
approach a limiting constant. A more accurate represen-
tation for the ac contribution would then be

�r2�t��ac � ��2�t/��1−n, t  �

�2, t � � ,
� �14�

which would remove the erroneous low-frequency diver-
gence of ��.

Experimentally, the length scale that corresponds to
the crossover between diffusive and correlated motion is
around ��2 Å. But what is the typical value of r0 in Eq.
�12�? Combining Eq. �12� with Eq. �6�, we find

A =
Nq2r0

2

6kT
�2. �15�

In a survey of the NCL, Ngai and Moynihan �1998� re-
ported values of the parameter A in Eq. �6� for a diverse
number of ion-conducting glasses. Of these, about 80%
exhibited a value for A in a range from 0.8

10−12 to 20
10−12 S/m with an average of about 4

10−12 S/m. Using this average value together with the
typical parameters employed previously �N�1028 m−3,
q=e, T=300 K�, we obtain a length scale r0�0.06 Å.
Such a small length scale is clearly inconsistent with
mass transport processes but might be a reflection of the
quasivibrational, anharmonic motion of the ion at very
short times. Indeed, such an interpretation for the origin
of the NCL has been advanced �Ngai, 1999�.

IV. ALTERNATIVE INTERPRETATIONS AND
REPRESENTATIONS

At this point we acknowledge that the study of ionic
relaxation has a long history and that, while the ac con-
ductivity affords direct contact with the mean-squared
displacement of ions, several other alternative interpre-
tations of the frequency dependence have been ad-
vanced �Moynihan, 1994; Ngai and Leon, 1999; Dyre
and Schroder, 2000; Schroder and Dyre, 2000; Hodge et
al., 2005�. Dyre �Dyre and Schroder, 2000; Schroder and
Dyre, 2000� has obtained similar frequency-dependent
conductivity and permittivity using effective medium ap-
proximation models that examine how the dielectric re-
sponse of the entire system �ions and matrix� is affected
by the applied field without reference to �r2�t��ac. Along
with these alternate interpretations have arisen other
representations of the raw experimental data �i.e., C���
and R����. Most popular among these is the electric
modulus M* formally defined as the inverse of the com-
plex permittivity,

M*��� 
1

�*���
= M� + iM� =

��

��2 + ��2 + i
��

��2 + ��2 .

�16�

The electric modulus was originally introduced by Mc-
Crum, Read, and Williams �1967� and was extensively
developed by Macedo and co-workers �Macedo et al.,
1972; Provenzano et al., 1972�. The interested reader is
directed to more recent articles regarding the electric
modulus formalism �Macedo et al., 1972; Ngai and
Moynihan 1998; Ngai and Leon, 1999; Hodge et al.,
2005�. Features of this data representation are displayed
in Fig. 4, where both the real and imaginary parts of the
modulus are plotted against frequency for a lithium
metaphosphate glass near room temperature �Sidebot-
tom et al., 1995c�. The features of the modulus shown in
the figure are very typical: the real part of the modulus
exhibits a steplike increase with increasing frequency
and the imaginary part displays a peaked function that is
usually broader than a Gaussian and considerably more
asymmetric.

Early in its development, workers recognized that the
simplest model for the conductor involving only a
frequency-independent dc conductivity and a frequency-
independent dielectric constant would generate moduli
curves that were symmetric and only 1.14 decades wide
�full width at half maximum �FWHM��. This
corresponds to a Debye relaxation E�t�=E�0���t�
=E�0�exp�−t /�� of the electric field �inside the material�
when a constant displacement field is maintained
�Macedo et al., 1972�. Experimentally, the electric modu-
lus is rarely ever this narrow nor this symmetric, and it
was suggested �Macedo et al., 1972� that the exponential
decay be replaced by a nonexponential decay function
��t�=exp�−�t /����. In analogy to mechanical relaxation,
the frequency-dependent electric modulus is

M*��� =
1

��
�1 − 


0

�

dt exp�− i�t��−
d�

dt
�� . �17�

Although analytic solutions of the Laplace transform are
not possible for the decay function above, numerical

0

0.01

0.02

0.03

0

0.04

0.08

0.12

10
-1

10
0

10
1

10
2

10
3

10
4

10
5

10
6

M˝ M´

Frequency (Hz)

LiPO
3

24°C

ββββ = 0.60

FIG. 4. Real and imaginary parts of the electric modulus for
LiPO3 glass near room temperature. The solid lines are a fit to
Eqs. �12� and �13�. The dashed line shows a fit to the KWW
relaxation function with �=0.6.

1003D. L. Sidebottom: Colloquium: Understanding ion motion in …

Rev. Mod. Phys., Vol. 81, No. 3, July–September 2009



tables of the normalized curves for a variety of stretch-
ing exponents are available �Moynihan et al., 1973�. An
example of using this stretched exponential decay func-
tion to fit the modulus data is shown in Fig. 4. Also
shown for comparison is a fit using Eqs. �12� and �13�
�but omitting the NCL terms in these expressions�. A
recurrent failure of the stretched exponential is that it
almost always underestimates the high-frequency data
�usually starting some 1.5 decades beyond the peak fre-
quency �Moynihan, 1994; Nowick and Lim, 1994��.

V. SCALING PROPERTIES OF THE IMPEDANCE
MEASUREMENTS

Now the stage is set. We have spectra of raw data
represented either as ac conductivity or as moduli and
seek to understand what they convey about ion motion.
We could at this stage collect our measurements and
proceed with curve-fitting approaches such as the
stretched exponential for the modulus or fits of Eqs. �12�
and �13� or others �Macdonald, 2007� to the conductivity
to obtain relevant parameters that characterize the ion
motion. However, our purpose is to explore the mini-
malist approach of comparing spectra against one an-
other to see what can be learned first.

Returning to the frequency dependence of the ac con-
ductivity and dielectric constant shown in Fig. 2 �or its
Fourier transform counterpart shown in Fig. 3�, we ask
how is the corresponding pattern of �r2�t�� affected by a
change in the temperature? Stated another way, if the
approximate form represented by Eq. �11� provided a
valid representation for �r2�t��, does changing tempera-
ture affect the length scales, time scales, or both? Many
dynamical processes in disordered materials exhibit
what is often referred to as “thermorheological simplic-
ity” �TRS�, also known as “time-temperature superposi-
tioning.” This means that although the characteristic fre-
quency �or time� scale governing the process may vary
with temperature, the inherent spectral features of the
relaxation remain in their same proportion. Conse-
quently, the frequency-dependent shape of the relax-
ation is undistorted by changing temperature and is only
shifted in frequency �or time� by virtue of the tempera-
ture dependence of the characteristic frequency �or
time�.

The scaling of the ac conductivity requires both divi-
sion by the dc conductivity ��0� and shifting by some
characteristic frequency f0�,

�

�0
= F�f/f0�� . �18�

Here the characteristic frequency f0� refers to any arbi-
trary frequency that coincides with a specific marker on
the ���� curve. A common choice �Kahnt, 1991� is the
frequency f0 defined in Eq. �6� for which

��f0� = 2�0. �19�

An example of scaling the data for a sodium germanate
glass at a series of different temperatures is shown in

Fig. 5. In this scaled representation, the data collapse to
a common curve, a so-called master curve, whose shape
is given by the function F�x� in Eq. �18�.

The scaling of the ac conductivity requires both a
horizontal shift �f0�� and a vertical shift ��0�. As it hap-
pens, these two scales are generally related by the
Nernst-Einstein relation as

�0T = �Nq2�2/6k�fH = K�N,q,��fH. �20�

Provided the quantity in parentheses K�N ,q ,�� remains
constant, then the product �0T will be proportional to
the hopping frequency and, in kind, proportional to the
horizontal scale f0�. We refer to this sort of situation as
the canonical case. Specifically, we refer to canonical
scaling as that in which �i� the shape of the master curve
is preserved �also implying that any measure of the
shape like the exponent n in Eq. �6� remains fixed� and
�ii� the vertical and horizontal scales are related by

�0T � f0�. �21�

This sort of scaling is also referred to as “Sommerfield
scaling” by Roling �Murugavel and Roling, 2002� and is
merely a consequence of the constancy of the variable
K�N ,q ,�� in the Nernst-Einstein result above. This type
of scaling is most often observed in temperature-
dependent measurements of a sample of fixed ion con-
centration provided the disordered matrix remains iso-
structural. That is, the change in temperature, at most,
results in a slight expansion of the material �causing
counterpropagating changes to N and � in the variable
K�N ,q ,��� without causing any drastic alteration of the
local environment of the ion. The proportionality be-
tween �0T and f0� for our data in Fig. 5 is demonstrated
in the inset.

At this time we also establish a nomenclature for two
other related scenarios we will discuss. The first we refer
to as semicanonical scaling. We define this sort of scaling
to pertain to those situations in which �i� the shape of
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the master curve is preserved, but �ii� the vertical and
horizontal scales are not proportional. This scaling situ-
ation arises in instances where either the ion concentra-
tion or hopping distance �the quantities N and � in the
variable K�N ,q ,��� is changing. The last situation we re-
fer to as anomalous. This pertains to those rarer situa-
tions in which the shape of the ac conductivity curve is
changing and so a collapse to a common master curve
cannot obtained. These situations are typically associ-
ated with changes occurring in the glass structure in the
vicinity of the ion.

Before we discuss specific examples of semicanonical
scaling and the anomalous cases, we first tidy up a re-
maining thread associated with the scaling of the ac con-
ductivity. Since the ac conductivity is a complex quantity,
its imaginary part �the real part of the dielectric permit-
tivity� should also exhibit TRS. This part of the imped-
ance response also includes the nonionic contribution ��

due to faster polarization processes, so we would only
anticipate TRS to be seen for the ionic-only quantity
�����−��. A scaling ansatz of the form

�� − ��

	�
= G�f/f0�� �22�

was seen to work well �Sidebottom and Zhang, 2000�,
and an example of this scaling is included in Fig. 5 for
the sodium germanate glass. As it turns out, this second
scaling function G�x� is related to F�x� via the Kramers-
Kronig relations �Jackson, 1975�. Without going into the
details, one can show that these relations require

f0� =
�0

2��0	�
. �23�

Again, f0� and f0 are fundamentally the same representa-
tion of a characteristic frequency scale, each propor-
tional to the ionic hopping rate fH.

An interesting feature of the scaling that emerges
from the Kramers-Kronig analysis is how the two verti-
cal scales ��0 in Eq. �18� and 	� in Eq. �22�� are con-
strained by the common horizontal scale �f0�. This rela-
tionship is not entirely new but was seen experimentally
in earlier work. There it is referred to as the Barton-
Nakajima-Namikawa relationship �Tomozawa, 1977�.
The relationship is also predicted by certain theoretical
models �Dyre, 1986, 1993�.

This Barton-Nakajima-Namikawa relation can also be
combined with the Nernst-Einstein relation �Eq. �20�� to
obtain an expression for the step increase occurring in
the dielectric constant 	�. To within some factor of or-
der unity,

fH �
�0

�0	�
. �24�

Upon substituting this into Eq. �20�, one obtains

	�T � Nq2�2/6�0k = K�N,q,��/�0, �25�

a result that is essentially equivalent to our earlier ap-
proximation �see Eq. �5�� based upon the analogy of ion

hopping to the rotational motion of dipoles with mo-
ment p=q�.

VI. EXAMPLES OF SEMICANONICAL SCALING

A. Alkali thioborates

In 1992, Patel and Martin �1992a, 1992b� studied the
ionic relaxation of sodium thioborate glasses,
�Na2S�x�B2S3�1-x, in which the concentration of ions var-
ied from x=0.001 to 0.15. Additional measurements on a
similar series of potassium thioborate glasses can be
found in Patel �1993�. What is particularly unique about
the study is the extreme variation in ion concentration
that spans over two orders of magnitude. An obvious
question is: How does such a large change in the ion
concentration affect the correlated motion?

In Fig. 6 we show the scaling of the both the conduc-
tivity �Eq. �18�� and dielectric constant �Eq. �22�� that
can be obtained for the series of potassium thioborate
glasses ranging from x=0.0005 to 0.05 mole fraction.
Hidden in this figure is a twofold level of scaling. First,
for each composition there is a canonical scaling of the
spectra obtained at different temperatures onto a master
curve. Second, these master curves for each composition
are then superimposed to produce yet another master
curve—a “master” master curve. An especially signifi-
cant outcome of the scaling is that it clearly demon-
strates how the shape of the curve �i.e., the nature of the
correlated ion motion� is not influenced by even a two
orders of magnitude change in the ion density. This find-
ing proves conclusively that the correlated motion is not
a consequence of any interaction between mobile ions.

Figure 7 shows plots of �0T vs f0 for the glasses scaled
in Fig. 6. The slope of each curve is linear �indicating the
canonical scaling for each composition alone� but the
curves are individually shifted such that the proportion-
ality constant between these two quantities K�N ,q ,�� is
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clearly dependent on the ion concentration. As the inset
to Fig. 6 reveals, this proportionality constant �here rep-
resented by the quantity 	�T; see Eq. �25�� increases
with increasing ion concentration as xa, where a
�0.4±0.1. At first sight, this nonlinear variation of
K�N ,q ,�� is not expected since in Eq. �25� K�N ,q ,�� is
only proportional to N. However, a simple interpreta-
tion for this particular concentration dependence is that
the thioborate glasses behave in an isostructural manner
such that the ion hopping length is uniformly increased
by decreasing N. In other words, the lattice of charge-
compensating sites experiences a spatial expansion caus-
ing an increase in the distance ���N1/3� an ion must hop
to reach an adjacent charge-compensating site in the
network. When this N dependence for � is included, one
anticipates K�N ,q ,���xa, with a�0.33. This predicted
value is quite close to that seen above for the potassium
thioborates �Sidebottom, 1999a� and was also reported
by Roling �1998� for a series of sodium germanate
glasses at low ion concentrations.

The scaling behavior of the ac conductivity and the
permittivity shown in Fig. 6 must be contrasted with the
behavior of the electric modulus as shown in Fig. 8. In
this plot, the imaginary part of the electric modulus for
the thioborate glasses has been normalized by the high-
frequency permittivity ���� and the frequency scaled by
the same characteristic frequency f0 used in Fig. 6.
Clearly evident in the figure is a systematic evolution in
the shape of the high-frequency wing of the modulus
which is caused by changes in the ion concentration. In
short, the modulus fails to display thermorheological
simplicity. In the inset are the values of the stretching
exponent ��� obtained by fitting �Eq. �17�� with the
stretched exponential relaxation. Many advocates of the
electric modulus formalism consider the shape changes
in the electric modulus to be evidence that the corre-
lated ion motion is a result of coupling between mobile
ions. Naturally, such a coupling between ions would de-

crease with decreasing ion concentration, and it has
been proposed in certain empirical models �Ngai, 1979;
Ngai and Rendell, 1991; Ngai and Kanert, 1992� that the
absence of such coupling would result in exponential re-
laxation. Nevertheless, this interpretation is in direct
conflict with that obtained above from consideration of
the ac conductivity.

B. CKN

We consider another semicanonical situation. This
one involves the ionic melt composed of two nitrate
salts: 0.4Ca�NO3�2-0.6KNO3 �CKN�. This glass-forming
material has been a favorite of glass researchers �Howell
et al., 1974; Pimenov et al., 1996; Sidebottom and Zhang,
2000� and because of its nonrefractory glass transition
temperature, impedance measurements can be readily
obtained for CKN both in the glass and in the super-
cooled liquid state. Once again an obvious question
would be: To what extent does the transition from liquid
to solid affect the correlated motion of ions?

Figure 9 shows the ac conductivity and permittivity of
CKN scaled to master curves in the same fashion as for
the previous examples. What is particularly significant is
that the individual spectra span a range of temperatures
from below the glass transition �open symbols� to well
above the glass transition �filled symbols�. With the ex-
ception of the region dominated by the electrode polar-
ization, the curves superimpose to form a master curve
both above and below Tg. Hence the transition from
glass to liquid does not affect the nature of the corre-
lated ion motion.

Figure 10 shows the variation of �0T with respect to
the scaling frequency f0 for CKN. Far from Tg, these two
quantities appear to be proportional as indicated by the
dashed lines of unit slope shown in Fig. 10. However,
despite the fixed composition of the material, this simple
proportionality is not retained through the transition re-
gion. It stands to reason that the failure of canonical
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scaling in this instance must again be a reflection of
changes in the quantity K�N ,q ,��. As shown in the inset
to Fig. 10, K�N ,q ,�� �here represented again by 	�T�
experiences a roughly fourfold increase across the glass
transition. One explanation offered for this is that
changes are occurring near the glass transition in the
populations of ions that are sufficiently mobile to pro-
duce a significant contribution to the conductivity �Side-
bottom and Zhang, 2000�. It should be realized that the
observed ac conductivity is a composite of all mobile ion
species present in the sample. It just so happens that our
last two examples �sodium germanate and potassium
thioborate� involve network glasses for which the
charge-compensating sites are affixed to the network
and only a single alkali cation species is mobile. Since
the charge-compensating sites do not hop about, they
make no contribution to the ac conductivity �except pos-

sibly in the NCL region where very small displacements
become significant �Sidebottom, 2005��. However, in
CKN all charge entities are, in principle, mobile and
could contribute to the total response. Clearly, for CKN
to be solid below Tg, some atoms will have to be strictly
immobile. However, above Tg, we have a liquid for
which all atoms are mobile over some time frame. Thus
we can associate the shift in Fig. 10 with this necessary
increase in the number of mobile ions.

Again, we contrast this scaling of the conductivity
with the behavior of the electric modulus. For CKN the
shape of the electric modulus changes near the glass
transition, as shown in Fig. 11. Below Tg, the shape is
approximately fixed and its best description using the
stretched exponential yields �=0.72. However, in the
liquid above Tg, this � value decreases with increasing
temperature. The variation of � with temperature is
shown in the inset to Fig. 11 for measurements by
Moynihan �Howell et al., 1974�. Thus once more we find
a stark disagreement between the conductivity and
modulus formalisms over the important issue of ther-
morheological simplicity.

VII. SCALING OF THE ELECTRIC MODULUS

It is evident from our two semicanonical examples
above that the electric modulus and conductivity formal-
isms do not agree as to the presence or absence of TRS.
On the surface of it, the result is quite puzzling as both
data representations are spawned from the same raw
data �R��� and C����. To see how this arises, we must
examine the electric modulus more closely. Because the
modulus is defined in such a way as to include the non-
ionic, high-frequency permittivity ��, in addition to the
ionic contributions, it cannot a priori be expected to
obey TRS, especially in these semicanonical situations.

To demonstrate the truth of this statement, it is a
simple matter to consider how the TRS behavior of Eqs.
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�18� and �22� is afflicted when the modulus is defined
either with or without ��. Without ��, the modulus
would be the “ionic only” modulus

Mion
* ��� 

1

�*��� − ��

. �26�

Using the scaling forms �see Eqs. �18� and �22�� seen to
hold experimentally for ��f� and ��f�, the imaginary part
of this ionic modulus would be

Mion� ��� =
1

	�

F�x�/2�x

�G�x��2 + �F�x�/2�x�2 =
1

	�
H�x� , �27�

where x= f / f0�. Clearly, this ionic modulus can be de-
scribed by a master curve and it does in fact scale for the
two examples discussed earlier �Sidebottom et al., 2000�.

But now consider the electric modulus with �� in-
cluded, as it is conventionally defined. The imaginary
part of this modulus becomes

M���� =
1

	�

F�x�/2�x

�� + G�x��2 + �F�x�/2�x�2 =
1

	�
H��x� ,

�28�

where �=�� /	�. It is clear that when the modulus is
defined to include the ��, it develops a subsequent de-
pendence upon 	� �and hence K�N ,q ,��� as well. The
modulus, as it is defined here, will display TRS only if
the quantity � remains constant. To explore this further,
examples of the shape of the modulus obtained from Eq.
�28� are presented in Fig. 12 for a selection of values for
the parameter �, including the case of �=0 for which Eq.
�28� is seen to reduce to that of Mion

* in Eq. �27�. The
figure reveals a radical change wrought on the ionic
modulus by the inclusion of ��, in which a monotonic
function of frequency folds over to become a peaked
function �Elliott, 1994b�. Also shown in the figure are
the stretched exponents � for fits of Eq. �17�. One sees

that as � increases, the � exponent approaches unity and
for values of � of order unity, ��0.6, a value that has
been commonly observed �Ngai and Martin, 1989; Ngai
et al., 1989, 1998�. Thus the absence of TRS in the modu-
lus �occurring in situations of semicanonical scaling for
conductivity� is traced to its original definition that in-
cludes nonionic polarization.

VIII. ABSENCE OF SCALING

For both the canonical and semicanonical situations,
the reader is reminded that master curves can be ob-
tained and it is only an issue of whether the quantity
K�N ,q ,�� defined earlier remains constant �canonical�
or changes �semicanonical�. We now want to look into
exceptions to the scaling—what we refer to as anoma-
lous scaling—in which a master curve cannot be ob-
tained by any combination of vertical and horizontal
scaling. These cases are of fundamental significance as
they represent situations in which the intrinsic process of
ion motion is being altered in some manner. A study of
the systematic changes in the shape of the conductivity
curve will, in principle, offer insight into the nature of
the correlated ion motion in these disordered conduc-
tors.

Before beginning this discussion, it should be ac-
knowledged that any simple parametrization of the
shape of the conductivity curve will be wanting. The
curve often covers extensive ranges of frequency and
conductivity, and even an empirical fit function such as
Eq. �6� �while able to account for the basic shape over
some 20 square decades to within 5%� commonly fails to
describe the details in the vicinity of f0 where the cross-
over from correlated to diffusive motion occurs �Side-
bottom, 1999b�. Although other schemes for parametriz-
ing the shape have been devised �Roling and Martiny,
2000; Schroder and Dyre, 2000�, the most common pa-
rametrization of the shape of the curve is the exponent n
obtained through curve fitting by Eq. �6�. The main ad-
vantage of this description for the shape is that it pro-
vides a single number that can be tabulated and readily
compared among a wide diversity of materials. An obvi-
ous drawback of this parametrization is that it lacks pre-
cision owing to the fact that the slope of ���� is continu-
ally increasing at high frequencies as the NCL regime is
approached. Nevertheless, if the fitting of ���� is re-
stricted to a regime near the crossover from correlated
to diffusive, say for frequencies below about 103f0, a
good measure of the shape can be reliably obtained.

A. Borate and germanate anomalies

A first example of anomalous scaling arises in the con-
ductivity studies by Roling �Roling and Martiny, 2000� of
alkali borate and alkali germanate glasses of varying ion
content. In the study of borate glasses, the sodium con-
tent varied from 10 to 30 mol % alkali oxide. For every
one of these compositions, the ���� curve at various
temperatures could be scaled �canonically� to an indi-
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vidual master curve. However these master curves, ob-
tained from different compositions, could not be com-
pletely collapsed together onto a master master curve.
Although a collapse could be obtained at both high and
low frequencies, systematic changes in the shape oc-
curred in the crossover region near f0. In the companion
study of sodium germanate glasses �Roling et al., 1999�
for which the alkali oxide content varied from approxi-
mately 1 to 40 mol %, attempts to obtain a master mas-
ter curve were similarly unsuccessful.

A puzzle arises as to why the shape of ���� changes as
the ion concentration of these glasses is altered when no
such shape changes were evident either in the thioborate
study or in a study of sodium germanates at ultralow ion
concentrations �Sidebottom, 1999b�. The resolution
seems to be that the shape of ���� is preserved in all
these systems provided the ion concentration remains
below those levels where well-documented changes in
the network structure of the glass occur. In both the
alkali borate and germanate systems, the addition of al-
kali oxide initially results in increased polymerization of
the oxide network. For B2O3, the initial addition of al-
kali oxide results in conversion of BO3 units to BO4
�Krogh-Moe, 1965; Shelby, 1983�. That is, the added oxy-
gen atom forms a bridging bond that further polymer-
izes the network and hence increases the glass transition
temperature. In a similar way, addition of alkali oxide to
GeO2 results in conversion of four-coordinated Ge to
six-coordinated Ge with a concomitant increase occur-
ring in the glass transition temperature �Huang and Jain,
1995; Jain et al., 1996�. For both the borate and ger-
manate systems, higher levels of alkali addition eventu-
ally lead to the formation of nonbridging oxygens
�NBOs� that depolymerize the structure and lower Tg.

It would appear then that the correlated motion is
sensitive to properties of the charge-compensating site
to which the mobile ion is tethered. At very low ion
concentrations, these sites all appear identical in the bo-
rate and germanate glasses �either BO4 or GeO6 and
little or no NBOs�. Consequently, the initial increase in
the ion concentration produces only simple, isostruc-
tural, changes in N and � that only affect the vertical and
horizontal scaling of the conductivity curve without al-
tering the shape. As the ion content increases to levels
near the borate and germanate anomalies, the environ-
ment of the tethered ion is no longer identical from one
site to the next, but can be either one of high oxygen
coordination or one involving a NBO. It seems that
these changes in the local environment of the mobile ion
produce measurable changes in the correlated motion
and in turn obfuscate the collapse of ���� to a common
master curve.

B. Mixed alkali effect

Another well-documented case of anomalous scaling
involves the so-called mixed alkali effect �MAE�. For
many years researchers have highlighted the dramatic
decrease in the dc conductivity �often by several orders

of magnitude� that results in alkali oxide glasses when
half of the alkali ions are simply replaced by ions of
another species �say Li replaced by Na� �Day, 1976; In-
gram, 1994�. A number of studies of the ac conductivity
clearly show an alteration occurring in the shape of ����
when the mixing ensues �Sidebottom, 1999c; Roling and
Martiny, 2000�. For the unmixed �single alkali� situation,
the exponent n is around 0.67 but decreases to about
0.60 when ions are mixed �Sidebottom, 1999c�.

Could the origin of this shape change also stem from
some nonuniformity of the local environment of the
charge-compensating site like that which occurs near the
borate and germanate anomalies? The best current in-
terpretation of the MAE is based upon the notion that
the local environment of the charge-compensating site is
specifically configured to accommodate a particular mo-
bile ion �ion A or ion B� and that there is an energy
penalty associated with any transition of an A ion into a
B-configured site or vice versa �Greaves, 1989; Bunde et
al., 1991; Maass et al., 1992�. This energy penalty arises
from the need for the lattice to mechanically relax when-
ever the ion enters or leaves an ill-configured site, and it
is the source for the dramatic decrease in the total ion
diffusivity. Here again it seems that changes occurring in
the mobile ion’s local environment impact the nature of
its correlated motion.

C. Constriction effect

One final example of anomalous scaling regards the ac
conductivity of certain alkali metaphosphate and halide-
doped metaphosphate glasses �Sidebottom, 2000�. In the
series of �AgI�x�AgPO3� glasses, the shape of ����
changed systematically from a shape characterized by
n�0.59 at x=0 to n�0.67 at x�0.3. This increase in n
appears to correlate to the spreading apart of the phos-
phate chains that occurs when the iodine atom is incor-
porated �interstitially� into the structure. In the series of
MPO3 �M=Li,Na,K,Rb,Cs� glasses, the exponent was
observed to decrease from n�0.67, seen for both the
LiPO3 and NaPO3 glasses, to about 0.54 for glasses con-
taining larger cations.

For both these metaphosphate systems it was shown
that the changes in n could be directly correlated to
changes occurring in the level of “constriction” of the
mobile ion, defined as a ratio of the size of the mobile
cation to the mean spacing between the phosphate
chains. This correlation is shown in Fig. 13. Unlike the
anomalous scaling for the borate and germanate anoma-
lies discussed above, here there are really no compa-
rable changes occurring in the structure of the charge-
compensating site. For the alkali metaphosphate glasses,
these charge-compensating sites consist of the two ter-
minal oxygens that reside on each P atom. Instead, the
changes in the ion’s local environment involve changes
in the relative number of degrees of freedom available
for local ion motion.

To what extent can we generalize these situations of
anomalous scaling? A common thread that links all
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these examples suggests the anomaly stems from
changes in the local environment as seen by the mobile
ion. In the constriction situation, it seems that the
change in the correlated motion is linked to a change in
the effective dimensionality of the conduction space; the
exponent n decreases as that dimensionality decreases
�Sidebottom, 2000�.

To obtain a wider perspective on this connection, it is
insightful to examine the shape of the ac conductivity
seen in those ion-conducting materials for which the
conduction space is decidedly other than three dimen-
sional. Examples include sodium �-alumina �Almond et
al., 1982� in which conduction of the Na cation occurs in
the two-dimensional space in between the alumina
planes, and hollandite �Bernasconi et al., 1979; Iwauchi
and Ikeda, 1992�, in which conduction is restricted to
one dimension along channels. In Fig. 14 a plot of the
power-law exponent n for these and other ion-
conducting materials is shown as a function of the effec-
tive dimensionality of the conduction space. In the plot,
mixed alkali and halide-doped glasses have been as-
signed an intermediate dimensionality �Sidebottom,
1999d�. Evident from the figure is a trend that supports

the contention that correlated ion motion is largely con-
trolled by the effective dimensionality of the local con-
duction space. It should be emphasized that since the
correlated motion occurs only on length scales of about
2 Å �somewhat larger for glasses of ultralow ion con-
tent�, it is only the effective dimensionality of this local
conduction space in the vicinity of the charge-
compensating site that matters.

IX. NEARLY CONSTANT LOSS

Presently there is intense effort made to better under-
stand the origins of the last term in Eq. �15�, known as
the nearly constant loss �NCL�. As originally noted by
Jonscher �1977�, the NCL behavior is endemic to most
solids: amorphous and crystalline, ionic and dipolar. In
1994, many researchers �Svare et al., 1993; Kanert,
Kuchler, Dieckhofer, et al. 1994; Kanert, Kuchler, Nagi,
and Jain, 1994� focused attention on this dynamic regime
using both impedance and nuclear spin relaxation tech-
niques. At that time it was suggested that the NCL arose
from some form of low-energy excitation that could be
described by a transition within an asymmetric, double-
well potential �Lu and Jain, 1994�. More recently, Ngai
�1999� conjectured that the NCL may be related to the
short-time dynamics in glassy materials that makes up
the Debye-Waller factor, in turn related to the anharmo-
nicity of the interaction potential.

In any event, while there are examples of the NCL in
materials that are nonionic, there is also clear evidence
that ionic materials exhibit a NCL behavior as a direct
result of the ion motions. Since the purpose of this dis-
cussion is to examine how impedance spectroscopy can
be used as an experimental technique for studying ion
motion, our focus here is toward the issue of how the
NCL due to ion motions can be distinguished from the
NCL due to other, nonionic, polarizations. As we will
see, the scaling properties of the ionic motions discussed
previously feature prominently in our strategy for sepa-
rating ionic from nonionic contributions to the dielectric
loss. In this final section, we review two examples in
which a nonionic contribution could be identified by
considering the scaling properties of the data.

A. Sodium germanates

In a study conducted on a series of sodium germanate
glasses �Na2O�x�GeO2�1−x, in which x ranged from 0.003
to 0.1, the ac conductivity was measured and shown to
exhibit semicanonical scaling �Sidebottom and Murray-
Krezan, 2002�. At temperatures where the first term in
Eq. �6� dominates, the conductivity could be collapsed to
a common master curve, a curve whose slope ap-
proached unity at high frequencies. However, as one
cools further into the NCL regime, the construction of
the master curve becomes increasingly ubiquitous. Un-
like the individual spectra obtained at higher tempera-
tures, which display two distinct frequency dependencies
above and below f0, the spectra obtained at lower tem-
peratures appear as a stretch of linear-frequency-
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dependent conductivity. Thus the requisite vertical and
horizontal shifts needed to position the spectrum onto
the master curve, which were obvious for the high-
temperature spectra, become arbitrary for the low-
temperature spectra as the crossover regime is no longer
visible within the window of the experiment. To circum-
vent this problem, we turn to the dielectric loss �����. If
we rewrite the scaling of the ac conductivity given in Eq.
�18� in terms of the dielectric loss using Eq. �2�, we ob-
tain

�� =
�

��0
=

�0

f0�2��f/f0���0
F�f/f0�� =

�0

�0�0
�F�f/f0��

�f/f0��
�

=
�0

�0�0
F̃�f/f0�� . �29�

This can be tidied up using Eqs. �23� and �25� to replace
the prefactor,

�� = 	�F̃�f/f0�� or ��T = 	�TF̃�f/f0��

=
K�N,q,��

�0
F̃�f/f0�� . �30�

This last form reveals an important feature to scaling the
dielectric loss: in situations of canonical scaling, in which
the quantity K�N ,q ,�� is constant, individual spectra of
��T can be scaled onto a master curve with only a hori-
zontal shift. This removes the ambiguity of the
horizontal-plus-vertical shift required for scaling of ��f�.

This sort of scaling was applied to the sodium ger-
manate glasses. In Fig. 15 we show the temperature de-
pendence of ��T for four glass compositions of varying
ion concentration together with the undoped GeO2
glass. Evident in the GeO2 spectrum are low loss peaks.
These losses from the base glass matrix contribute to the
loss arising from ion motions. On the logarithmic scale
shown, the data tend to compress together at lowest

temperatures for samples containing the lowest ion con-
centrations. If, however, the loss from the GeO2 sample
is subtracted from the measured loss, as shown in Fig.
15, the remainder �the ionic portion� is seen to remain
evenly spaced by an amount proportional to the quan-
tity K�N ,q ,��. This is demonstrated in the inset to Fig.
15. Thus, we are able to use scaling properties of the
ionic motion to discern ionic from nonionic contribu-
tions in the NCL regime.

B. Alkali metaphosphates

Another example in which scaling properties are ex-
ploited to help identify nonionic contributions to the
NCL is found in a recent study of the alkali metaphos-
phate glasses discussed earlier. When measurements of
the dielectric loss of these glasses were extended to cryo-
genic temperatures, the temperature dependence dis-
played two variations depending upon the alkali ion
�Sidebottom, 2005�. For the small alkali, the dielectric
loss decreased monotonically while the larger cations
�K, Rb, Cs� exhibited a weak maximum between 200 and
80 K.

For this study, an ac capacitance bridge was employed
to obtain the higher precision needed for the low loss
exhibited in this temperature range. As a consequence,
only about two decades of frequency were accessible.
For this reason the scaling was conducted using the lin-
ear 1/T scale, which is isomorphic to the logarithmic
frequency scale when thermorheological simplicity holds
�Sidebottom, 2005�. As shown in Fig. 16, the quantity
��T obtained at a series of fixed frequencies could be
scaled by appropriate shift along the 1/T axis so as to
collapse data onto a common curve. The required shift,
shown in the inset, indicates an activation energy iden-
tical with that observed for the scaling of data at higher
temperatures. While the collapse was complete at both
high and low temperatures for all samples, the collapse
was not successful for the larger cations at intermediate
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temperatures. This can be seen in Fig. 16, where the
master curve of KPO3 shows a distinct failure to col-
lapse in the range 41000/T9. In this way, it was re-
vealed that for the large cation metaphosphate glasses
the loss contained a nonionic contribution that could be
separated from the ionic portion. This nonionic portion
was attributed to the local restricted motions of the non-
bridging oxygens in these constricted ion-conducting
glasses.

X. SUMMARY

An understanding of ion motion in materials is clearly
needed for the continuing development of solid state
ionic devices. In so much as it is possible, given the
length constraints, we have tried to emphasize how im-
pedance spectroscopy techniques can best be employed
to further our collective understanding of these ion-
conducting materials. The coverage offered here is by no
means a complete canvas of all the literature on the sub-
ject, and owing to its narrow focus has left out many
important insights gleaned from other experimental
techniques. Throughout, we have emphasized the sig-
nificance of thermal-rheological simplicity and the scal-
ing properties of the ac permittivity arising from ionic
motions over earlier analysis schemes �e.g., the electric
modulus� that dominated the literature prior to about
1994. In summary, we have endeavored here to describe,
through a review of numerous illustrative examples, how
experimental measurements of the ac impedance can be
analyzed in a direct fashion to obtain significant infor-
mation regarding the mean-squared displacement of the
mobile ions.
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