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Ultrarelativistic electron-positron plasmas can be produced in high-intensity laser fields and play a
role in various astrophysical situations. Their properties can be calculated using QED at finite
temperature. Here perturbative QED at finite temperature is used for calculating various important
properties, such as the equation of state, dispersion relations of collective plasma modes of photons
and electrons, Debye screening, damping rates, mean free paths, collision times, transport coefficients,
and particle production rates, of ultrarelativistic electron-positron plasmas. In particular, the focus is
on electron-positron plasmas produced with ultrastrong lasers.

DOI: 10.1103/RevModPhys.81.959 PACS number�s�: 52.27.Ny, 11.10.Wx

CONTENTS

I. Introduction 959
II. Equation of State 961

III. Collective Phenomena 961
IV. Transport Properties 963
V. Particle Production Rates 965

VI. Nonequilibrium and Finite Chemical Potential 965
VII. Conclusions 967

Acknowledgments 967
References 967

I. INTRODUCTION

Ultrarelativistic plasmas, in which the thermal energy
of the particles is much larger than their rest mass en-
ergy, were discussed first in the 1950s in the context of
astrophysics. They occur in the early Universe as well as
stellar and galactic high-energy processes �Zel’dovich
and Novikov, 1971, 1983; Raffelt, 1996�. For example,
ultrarelativistic electron-positron plasmas �EPPs� can be
created either by high temperatures in supernovae ex-
plosions �see, e.g., Hardy and Thoma �2001�� or by
strong magnetic fields in so-called magnetars �Beskin et
al., 1993�. The theoretical description of ultrarelativistic
plasmas is based on transport theory �Silin, 1960� or
thermal field theory �Tsytovich, 1961�. The latter is an
extension of quantum field theory, such as QED or
QCD, in vacuum to finite temperature �or chemical po-
tential� describing high-energy particle interactions in
matter. For this purpose, two different approaches were
developed: the imaginary time formalism �Matsubara,
1955; Kapusta, 1989� and the real time formalism
�Landsmann and van Weert, 1987�.

In the 1980s a new type of ultrarelativistic plasma be-
came of interest: the quark-gluon plasma �QGP�
�Müller, 1985�. It corresponds to a new state of matter of
deconfined quarks and gluons at extremely high tem-
peratures above kBT=150 MeV. The early Universe

should have been in this state for the first few microsec-
onds after the Big Bang. Furthermore, the QGP is ex-
pected to be created in relativistic heavy-ion collisions,
in particular within the accelerator experiments at the
Relativistic Heavy Ion Collider �RHIC� �Gyulassy and
McLerran, 2005�. There, a hot and dense fireball �“little
bang”� of the size of an atomic nucleus is produced,
which could be in the QGP phase for less than 10−22 s.
Therefore the QGP in those experiments cannot be ob-
served directly, its discovery relies on the comparison of
theoretically predicted signatures with experimental
data �circumstantial evidence�. QCD at finite tempera-
ture has been applied for understanding the properties
of the QGP and for calculating signatures for its forma-
tion. In addition to a nonperturbative method based on
a numerical solution of the QCD equations �lattice
QCD�, perturbation theory at finite temperature has
been used widely �Thoma, 1995a; Le Bellac, 1996�. Lat-
tice QCD allows the calculation of only static quantities,
and hence not of most of the proposed signatures fol-
lowing from particle production. Perturbative QCD, on
the other hand, has been used for computing both static
and dynamic quantities. However, its predictions are
limited by the fact that the QGP is a strongly coupled
plasma at temperatures achievable in experiments. �At
extremely high temperatures, far above the transition
temperature, perturbative QCD should be reliable due
to the asymptotic freedom of QCD.� Nonetheless, a
wide variety of properties and quantities of the QGP
have been considered in this way. Use of QCD started
with the calculation of self-energies and dispersion rela-
tions in the high-temperature limit �Klimov, 1982; Wel-
don, 1982a, 1982b�. In the high-temperature limit the
results differ from the QED results only by trivial fac-
tors containing the QCD degrees of freedom �color and
flavor�. In addition, it can be shown that the gluon self-
energy or polarization tensor, which is directly related to
the dielectric function �see, e.g., Elze and Heinz �1989��,
can also be derived within the transport �Vlasov� ap-
proach �Silin, 1960�, since the high-temperature limit
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corresponds to the classical limit. Other quantities, how-
ever, such as damping or production rates and transport
coefficients, require a quantum field theoretic treatment.
In particular, a resummation of certain diagrams, the
hard thermal loops �HTLs�, is needed for a consistent
description, i.e., to obtain gauge-invariant, infrared-
finite �or improved� results complete to leading order in
the coupling constant �Braaten and Pisarski, 1990�. De-
tails about quantum field theoretic methods and their
application to the physics of the QGP can be found in
the review article by Thoma �1995a�.

Recently, a third possibility for studying ultrarelativis-
tic plasmas has been suggested: in extremely strong laser
fields the creation of an ultrarelativistic EPP with tem-
perature around 10 MeV could soon be realized �Liang
et al., 1998�. For example, two opposite, circulary polar-
ized laser pulses with a duration of 330 fs and an inten-
sity of 7�1021 W/cm2 can be made to impinge on a thin
gold foil. In this way the target electrons can be heated
up to about 10 MeV producing an ultrarelativistic EPP
by pair creation. The positron density could reach about
5�1022 cm−3 �Shen and Meyer-ter-Vehn, 2001�. This will
allow the study of an ultrarelativistic EPP in the labora-
tory for the first time. Therefore predictions of the
physical properties of such a system are needed.

The interaction of relativistic electrons and positrons
is described by QED. In the presence of a thermal
plasma background �heat bath� QED at finite tempera-
ture has to be considered. As discussed above, perturba-
tive methods based on the imaginary �Matsubara� or
real time formalism have been developed and applied to
the physics of a QGP. Here we transfer the methods and
results for properties of a QGP to the case of an EPP,
where a perturbative treatment is more reliable than in
the case of a strongly coupled QGP. Some applications
of thermal field theory to astrophysical plasmas have
been discussed �see, e.g., Altherr and Kraemmer �1992�,
and Thoma �2002�, and references therein�.

An important difference from nonrelativistic ion-
electron plasmas �Lifshitz and Pitaevskii, 1981� is the rel-
evant scales. In the nonrelativistic case, they are given
by the masses of the plasma particles and the tempera-
ture T. For example, the electron plasma frequency
reads

�pl =�4�e2�e

me
, �1�

and the Debye screening length due to the electrons in
the plasma is

�D =� kBTe

4�e2�e
, �2�

where �e is the electron number density, Te is the tem-
perature of the electron component, and me is the elec-
tron mass.

In an ultrarelativistic plasma with T�m the masses
can be neglected, and the important scales are the tem-
perature T, called the hard scale, and the soft scale eT,
which determines the collective phenomena as we will

see below. Here we use natural units, i.e., �=c=kB=1, as
usual in quantum field theory. In these units e=0.3, cor-
responding to a fine structure constant �=e2 / �4��
=1/137. For converting to Système International �SI�
units we use 1 MeV�1.60�10−13 J�5.08�1012 m−1

�1.52�1021 s−1.
In the next section we discuss the equation of state of

an equilibrated ultrarelativistic EPP. Then collective
phenomena will be considered. Afterward, transport
properties and particle production will be discussed. Fi-
nally, we describe properties of an EPP that is not in
chemical equilibrium, as in the case of laser-induced
plasmas. We will not consider here the formation pro-
cess and equilibration of an EPP.

Many results presented here can be found in the lit-
erature for the case of a QGP �Thoma, 1995a� differing
only by numerical factors, e.g., number of degrees of
freedom. The purpose of this Colloquium is to summa-
rize these results and to extend them to laser-induced
EPPs as a reference for future experiments. As an ex-
ample we consider a temperature of 10 MeV as it can be
typically realized in laser-produced and supernovae
EPPs.

Laser produced QED plasmas have also been dis-
cussed recently in two review articles �Marklund and
Shukla, 2006; Mourou et al., 2006� with emphasis on the
production mechanism and nonlinear effects. Here,
however, we want to focus on the properties of an equili-
brated EPP as they can be calculated from perturbative
QED. Such an EPP in thermal and chemical equlibrium
might be the outcome of future laser experiments if the
intensity can be increased further. As an example, we
have chosen the predictions of Shen and Meyer-ter-Vehn
�2001� based on a numerical simulation �particle in cell
�PIC��, and cross sections for electron-positron produc-
tion, in which two opposite laser beams are focused on a
thin gold foil leading to a chemically nonequilibrated
plasma �see Sec. VI�. However, this proposal still awaits
experimental confirmation. Other production mecha-
nisms, based on the Schwinger pair production effect in
strong fields �Schwinger, 1951�, have shown that pair
production can be efficient already far below the
Schwinger critical field strength, requiring laser intensi-
ties of 5�1029 W/cm2, in the case of time dependent
and inhomogeneous fields, e.g., two oppositely directed
pulsed laser beams in vacuum �see, e.g., Avetissian et al.,
2002; Di Piazza, 2004; Narozhny et al., 2004; Dunne and
Schubert, 2005; Gies and Klingmuller, 2005; Blaschke,
Prozorkevich, Roberts, and Tarakanov, 2006; Blaschke,
Prozorkevich, Smolyansky, et al., 2006; Schützhold et al.,
2008�. Furthermore, the pair production in an x-ray free
electron laser �XFEL� has been discussed �Alkofer et al.,
2001; Ringwald, 2001; Roberts et al., 2002�. QED plas-
mas in strong magnetic fields have been considered by
Danielsson and Grasso �1995� and more general in
strong electromagnetic fields by Morozov et al. �2002a,
2002b�. QED plasmas have also been studied by Mel-
rose �2008�.
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II. EQUATION OF STATE

In this section we consider the equation of state of an
EPP under the following assumptions: �1� ultrarelativis-
tic EPP, i.e., T�m; �2� thermal and chemical equilib-
rium; �3� equal electron and positron density, i.e., van-
ishing chemical potential; �4� ideal gas, i.e., no
interactions in the plasma; �5� infinitely extended, homo-
geneous, and isotropic EPP.

We relax some of these assumptions in the following
sections. According to these assumptions the distribu-
tion function of the electrons and positrons is given by
the Fermi-Dirac distribution

nF�p� =
1

ep/T + 1
�3�

and of the photons by the Bose-Einstein distribution

nF�p� =
1

ep/T − 1
, �4�

where the momentum p is identical to the energy E of
the particles in the ultrarelativistic case. It should be
noted that the photons are in equilibrium with electrons
and positrons under the above assumptions, i.e., the sys-
tem is actually an electron-positron-photon gas.

The particle and energy density can be calculated by
integrating over the distribution functions. In the case of
a QGP the results can be found in Müller �1985�. The
particle number density of the electrons and positrons
follows from integration over the Fermi-Dirac distribu-
tion as

�e
eq = gF� d3p

�2��3nF�p� =
3

�2	�3�T3 = 0.37T3, �5�

where gF=4 is the number of degrees of freedom corre-
sponding to the electrons and positrons in the two spin
states. Assuming a temperature of T=10 MeV, we find
�e

eq=370 MeV3=4.9�1040 m−3.
The photon density follows accordingly by integrating

over the Bose-Einstein distribution with gB=2 degrees
of freedom corresponding to the two polarization states
as �ph

eq = �2/�2�	�3�T3=0.24T3. The energy density of the
electron-positron-photon gas is obtained from


eq = gF� d3p

�2��3pnF�p� + gB� d3p

�2��3pnB�p�

=
11�2

60
T4 = 1.81T4, �6�

where the photons contribute 36% to the energy density.
Here the Boltzmann law, 
eq�T4, holds also for the fer-
mions because we neglected their masses.

For T=10 MeV we find 
eq=3.8�1029 J m−3. In a vol-
ume of 1012 m3 �corresponding to the size of a neutron
star� the total thermal energy of the EPP is 3.8�1041 J,
which corresponds to about 10% of the entire energy

�without neutrinos� released in a supernova type II ex-
plosion. A volume of 1 �m3 still contains an energy of
3.8�1011 J.

The Coulomb coupling parameter of the EPP, which is
a measure for the nonideal behavior of a plasma �Ichi-
maru, 1982�, is given by �=e2 /dT, where d���e

eq�−1/3

=2.7�10−14 m is the interparticle distance. For T
=10 MeV we find �=5.3�10−3 which shows that the
EPP is a weakly coupled plasma in contrast to the QGP
where �=O�1� �Thoma, 2005a, 2005b�. Therefore the
ideal gas results for the equation of state derived above
are a good approximation. After all, interactions in the
EPP play an important role, for example, in the collec-
tive behavior of the plasma, as discussed in the next sec-
tion, and in equilibration of the plasma. Obviously, the
interaction can be treated by perturbation theory.

III. COLLECTIVE PHENOMENA

Interactions between particles can be separated into
two classes: individual collisions between the particles
and long-range interactions of particles with the medium
�Lifshitz and Pitaevskii, 1981�. The latter lead to collec-
tive effects, which are characteristic of plasmas. The cru-
cial quantity from which the collective phenomena are
derived is the dielectric tensor relating the macroscopic
electric field Di in the medium to the external field Ei
�i=x ,y ,z�, i.e., in momentum space

Di��,k� = 	
j


ij��,k�Ej��,k� . �7�

In the case of an isotropic medium it depends only on
k= 
k
 and has two independent components,


ij��,k� = 
T��,k��ij −
kikj

k2 � + 
L��,k�
kikj

k2 . �8�

The dielectric tensor is closely related to the polariza-
tion tensor or photon self-energy by �see, e.g., Elze and
Heinz �1989��


L��,k� = 1 −
�L��,k�

k2 ,


T��,k� = 1 −
�T��,k�

�2 , �9�

where �L and �T are the longitudinal and transverse
components of the polarization tensor, respectively.

The lowest-order diagram for the polarization tensor
is shown in Fig. 1. Assuming the external momentum to
be soft, i.e., � and k to be much smaller than T, and the

K

FIG. 1. One-loop polarization tensor.
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internal loop momenta to be hard �HTL approxima-
tion�, an analytic result can be found using the real or
imaginary time formalism �Klimov, 1982; Weldon,
1982a�,

�L��,k� = − 3mph
2 �1 −

�

2k
ln

� + k

� − k
� ,

�T��,k� =
3
2

mph
2 �2

k21 − �1 −
k2

�2� �

2k
ln

� + k

� − k
� , �10�

where mph=eT /3 is the effective photon mass. For T
=10 MeV, we get mph=1 MeV.

The hard thermal loop approximation, which is iden-
tical to the high-temperature limit, consistently produces
the lowest-order result in finite temperature QED
�Braaten and Pisarski, 1990�. The dielectric functions
following from Eqs. �9� and �10� can also be derived
from the classical Vlasov equation together with the
Maxwell equations �Silin, 1960�, since the high-
temperature limit corresponds to the classical limit.

The dispersion relations of collective plasma modes,
i.e., propagation of electromagnetic waves in the plasma,
can be found using the Maxwell equation, leading to
�see, e.g., Carrington et al. �2004��


L��,k� = 0,


T��,k� =
k2

�2 . �11�

Combining Eqs. �9�–�11� gives the dispersion relations
�L,T�k� of the transverse and longitudinal plasma waves
as shown in Fig. 2. The longitudinal branch, which does
not exist in vacuum, is called a plasmon, as in the case of
nonrelativistic plasmas. The transverse branch does not
play a role in nonrelativistic plasmas but is equally im-
portant as the longitudinal one in relativistic plasmas.
Both branches start at the plasma frequency �pl
=�L,T�k=0�=mph �Kajantie and Kapusta, 1985�. Conse-

quently, the collective plasma waves have soft momenta
of the order eT. At high momenta k�mph, the trans-
verse mode approaches the free dispersion �T=k, corre-
sponding to a real photon in vacuum, whereas the lon-
gitudinal mode disappears, i.e., its spectral strength is
exponentially suppressed �Pisarski, 1989�. For T
=10 MeV we find �pl=1.5�1021 s−1.

Electromagnetic plasma waves in an ultrarelativistic
EPP have also been discussed by Medvedev �1999�. For
the plasma frequency the same dependence on the tem-
perature and coupling constant was found �see Eq. �3� in
Medvedev �1999�� if an equilibrium number density for
the photons proportional to T3 was used �see above�
there. However, the numerical prefactor there is wrong
and only one branch of plasma waves was discussed.

Another important quantity that can be derived from
the polarization or dielectric tensor is the Debye screen-
ing length, entering the Yukawa potential of a heavy,
nonrelativistic test charge in the EPP. The Debye screen-
ing length is given by the static limit of the longitudinal
component of the polarization tensor 1/�L��=0� �Ka-
jantie and Kapusta, 1985�, leading to �D=1/�3mph,
which is 1.1�10−13 m for T=10 MeV.

Finally from Eq. �10� we see that the polarization ten-
sor and the dielectric function become imaginary for
�2�k2, i.e., below the light cone �=k, corresponding to
Landau damping �Pisarski, 1988�. We also observe that
the plasma waves calculated at the lowest order of per-
turbation theory are undamped since they are located at
��k. This changes, however, at higher orders where the
dispersion relation can intersect the light cone �Car-
rington et al., 2004�. It is interesting to note that these
results are apart from some numerical color and flavor
factors also valid for collective gluon modes in the QGP
in the high-temperature limit �Thoma, 1995a�.

A completely new phenomenon that does not appear
in nonrelativistic plasmas is the existence of fermionic
plasma waves, because all fermion masses are much too
large in the nonrelativistic case. Their dispersion rela-
tions follow from the pole of the electron propagator
containing the electron self-energy. Using again the hard
thermal loop approximation, the electron self-energy
reads �P= �p0 ,p�, p= 
p
� �Klimov, 1982; Weldon, 1982b�

��P� = − a�p0,p�P��� − b�p0,p��0, �12�

with

a�p0,p� =
1

4p2 �tr�P����� − p0tr��0��� ,

b�p0,p� =
1

4p2 �P2tr��0�� − p0tr�P������ , �13�

where the traces over the � matrices are given by

tr�P����� = 4mF
2 ,

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0.0

0.5

1.0

1.5

2.0

2.5

�L

�T

�
/m

p
h

k/m
ph

FIG. 2. Photon dispersion relation.
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tr��0�� = 2mF
2 1

p
ln

p0 + p

p0 − p
�14�

with the effective electron mass mF=eT /�8 �Klimov,
1982; Weldon, 1982b�, which is 1.1 MeV at T=10 MeV.

The full electron propagator in the helicity represen-
tation is given by �Braaten et al., 1990�

S��P� =
1

2D+�P�
��0 − p̂ · �� +

1

2D−�P�
��0 + p̂ · �� , �15�

where

D±�P� = − p0 ± p +
1

4p
� ± tr�P����� − � ± p0 − p�tr��0��� .

�16�

Again these results agree with those for quarks in the
QGP apart from numerical pre-factors.

The dispersion relations following from the pole of
this propagator are shown in Fig. 3. Two branches show
up, one with a positive ratio of the helicity to the chiral-
ity ��+� following from D+=0, and the other with a nega-
tive ratio ��−� following from D−=0; called a plasmino
�Braaten et al., 1990�. The plasmino branch �−, which
does not exist in vacuum, shows an interesting behavior,
namely a minimum at k=0.41mF. The same behavior of
the quark dispersion in the QGP has been found. In this
case sharp peaks in the dilepton production rate can ap-
pear due to the minimum in the plasmino branch, which
leads to van Hove singularities �Braaten et al., 1990;
Peshier and Thoma, 2000�. Whether something similar
could be observed in the EPP, e.g., in the electron spec-
trum, is an interesting question which should be investi-
gated in detail. It could open the exciting possibility of
observing a new collective plasma wave, the plasmino,
experimentally in a laser-induced EPP.

The collective quantities derived here perturbatively
from the dielectric functions are linear phenomena.
Nonlinear collective effects in electron-positron plasmas
have been considered in, e.g., soliton formation �Lon-
tano et al., 2001�, nonlinear Alfvén waves �Zhao et al.,
1994�, nonlinear photon interactions �Tajima and
Taniuti, 1990�, plasma-enhanced photon splitting �Bro-
din et al., 2007�, and nonlinear self-modulation of radio
pulses �Chian and Kennel, 1983�.

IV. TRANSPORT PROPERTIES

Now we consider the interaction and properties of
particles in the plasma with hard momenta, i.e., of the
order of T or larger. In particular, we are interested in
damping and transport rates, mean free paths, collision
times, energy losses of these particles, and other trans-
port properties such as the shear viscosity of the EPP.
These quantities have been calculated perturbatively in
high-temperature QCD �Thoma, 1995a�. As in the case
of the collective phenomena, the results can be taken
almost directly from the QCD calculations.

It was shown by Braaten and Pisarski �1990� that a
consistent treatment of gauge theories such as QED at
finite temperature, i.e., for obtaining results that are
gauge independent, infrared finite, and complete to
leading order, require the use of an effective perturba-
tion theory using resummed Green’s functions based on
the HTL approximation �the HTL resummation tech-
nique�. The HTL method relies on the assumption that
one can distinguish between soft and hard momenta, i.e.,
eT�T. This is approximately satisfied for QED, where
e=0.3, but not in QCD, where the corresponding cou-
pling constant g�1.

The damping rate of an electron or positron in the
EPP is defined as the imaginary part of the dispersion
relation �L,T�p�. To lowest order it follows from the elas-
tic scattering diagram of Fig. 4. In the case of a hard
electron or positron with momentum of the order of T
or higher, it exhibits a quadratic infrared �ir� divergence
which can be reduced to a logarithmic one using a HTL
resummed photon propagator. This logarithmic singular-
ity is expected to be cut off by higher-order contribu-
tions, leading to �Thoma, 1995a�

�e =
e2T

4�
ln

1

e
�17�

within logarithmic accuracy, i.e., the constant under the
logarithm is not determined. For T=10 MeV we obtain

0.0 0.5 1.0 1.5 2.0

0.0

0.5

1.0

1.5

2.0

2.5

�
-

��
+

�
/

p/m
F

m
F

FIG. 3. Electron dispersion relation.

P

K

FIG. 4. Lowest order diagram for electron-electron scattering.
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�e=86 keV, which is much smaller than �pl=1 MeV,
showing that the EPP is not overdamped.

Physically more important are the transport rates �,
which are related to the mean free path and collision
time of electrons and positrons in the EPP. They differ
from the damping rate in cutting off the long-range in-
teractions with small scattering angles � by a factor
�1−cos �� under the integral defining the rate �Lifshitz
and Pitaevskii, 1981�. This leads to an improvement of
the ir behavior �logarithmic instead of quadratic singu-
larity in perturbation theory� and a finite result using the
HTL method. Logarithmic divergent quantities can be
treated consistently by splitting them into a soft part and
a hard part, where the soft part is calculated using the
HTL resummation technique �Braaten and Yuan, 1991�.
For the transport rate we find to logarithmic accuracy,
by extending the QCD results of Thoma �1994� to QED,

�e =
e4T3

3�s
ln

1

e
, �18�

where the Mandelstam variable s= �P+K�2 is the square
of the sum of the four momenta of the incoming par-
ticles in the scattering diagram of Fig. 4. For deriving the
above result we replaced CAg2 by e2 and mg by mph in
Eq. �15� of Thoma �1994�. To go beyond the logarithmic
approximation, which is valid within about a factor of 2,
one has to calculate explicitly the hard contribution
from the QED scattering diagrams, as done by Thoma
�1994� for the QCD case. For thermal particles we re-
place s by its thermal average �s�=2�p�e�k�e�19.3T2

�Thoma, 1994�, where �p�e= �k�e=
e
eq /�e

eq=3.11T. Assum-
ing again T=10 MeV, we get �e=0.54 keV.

The mean free path �e
mfp and collision time �e of the

plasma particles �electrons and positrons� are given by
the inverse of the transport rate 1/�e, leading to �e

mfp

=0.37 nm and �e=1.2�10−18 s at T=10 MeV.
In a nonrelativistic plasma the shear viscosity can be

estimated from elementary kinetic theory as �Reif, 1965�

�i =
1
3	

i
�i�pi��i

mfp, �19�

where the sum is performed over the various compo-
nents of the system. In a relativistic plasma the coeffi-
cient 1/3 should be replaced by 4/15 �de Groot et al.,
1980�. Using the mean free path following from Eq. �18�,
the density of Eq. �5�, and the thermal momentum �p�e
=3.11T, the shear viscosity is given by �within logarith-
mic accuracy�

�e =
55.8T3

e4 ln�1/e�
. �20�

At T=10 MeV the shear viscosity coefficient is �e=7.9
�1010 Pa s.

Another quantity of interest in a plasma is its stopping
power, or the energy loss of an energetic particle in the
plasma. There are two contributions, namely the energy
loss by collisions and the radiative loss by bremsstrah-
lung. In a relativistic plasma the latter becomes impor-

tant. The relevance of these contributions in the QGP
has been the subject of controversy �Mustafa and
Thoma, 2005�. The collisional energy loss is given by the
mean energy transfer divided by the mean free path
leading to �Braaten and Thoma, 1991�

dE

dx
=

1

v
� d�� , �21�

where v is the particle velocity, �, the damping or inter-
action rate proportional to the plasma density and the
collision cross section, and �, the energy transfer from
the energetic particle to the plasma particle in the colli-
sion. Using for the collision cross section the lowest-
order diagrams in Fig. 5, the collisional energy of a
muon with mass M in an EPP has been calculated by
Braaten and Thoma �1991�, applying the HTL resumma-
tion technique,

dE

dx
=

e4T2

24�
�1

v
−

1 − v2

2v2 ln
1 + v
1 − v

��ln
E

M
+ ln

1

e
+ A�v�� ,

�22�

where A�v� is a slowly varying function of the muon
velocity v between 1.3 and 1.5.

The collisional energy loss of an electron with energy
E�T is given by �Braaten and Thoma, 1991�

dE

dx
=

e4T2

48�
ln

15.3E

e2T
. �23�

In Braaten and Thoma �1991� the factor 15.3 was re-
placed by 7.6 due to a numerical error, which was cor-
rected by Thoma �1995a�. This leads to an energy loss of
200 MeV/nm for an electron or positron with an energy
of E=100 MeV at T=10 MeV, showing that such an
electron is stopped �thermalized� within a fraction of a
nanometer. �Note that the plasma density, proportional
to T3, on which the energy loss depends via the mean
free path is hidden in the temperature dependence of
the energy loss.� Recently it has been shown that this
calculation can be improved by taking into account ad-
ditional diagrams, changing this result slightly �Peigne
and Peshier, 2008�. So far no calculations of the radiative
energy loss in an EPP have been performed to our
knowledge.

The damping rate of a photon in an EPP follows from
the diagram in Fig. 6, where a HTL resummed electron
propagator has to be used in the case of soft momenta of
the exchanged electron �positron�. In contrast to the
electron damping rate, the photon rate is found to be
infrared finite using the HTL method, due to the pres-
ence of an electron propagator in Fig. 6 instead of the
photon propagator in Fig. 4. Hence there is no need to

FIG. 5. Diagrams defining the collisional energy loss.
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cut off the long-range interaction and introduce a trans-
port cross section. The result for a photon with energy
E=p reads �Thoma, 1995b�

�ph =
e4T2

64�E
ln

3.88E

e2T
. �24�

The mean free path and the collision time of photons in
an EPP are given by 1/�ph. For a thermal photon with
the mean momentum �p�ph=
ph

eq /�ph
eq =2.75T at T

=10 MeV the mean free path �ph
mfp=0.28 nm and the col-

lision time �ph=9.4�10−19 s follow. Actually the damp-
ing rate given in Eq. �24� is a lower limit, as higher-order
effects will enlarge it. As a matter of fact, the photon
production rate in a QGP, which is the inverse process of
the damping rate �Thoma, 1995b�, was shown to be
about a factor of 2 larger when bremsstrahlung is taken
into account �Arnold et al., 2001�.

For the viscosity of the photon component, using the
above mean free path, the photon density �see above�,
and the mean photon energy �p�ph=2.75T, we find

�ph =
48.7T3

e4 ln�3.27/e�
, �25�

corresponding to 3.5�1010 Pa s at T=10 MeV. Hence
the viscosity of the EPP �=�e+�ph has similar contribu-
tions from the electrons and photons.

A more advanced calculation of the total viscosity of
the EPP based on the Kubo formula yields within loga-
rithmic accuracy �Arnold et al., 2000�

� =
188T3

e4 ln�1/e�
. �26�

This result is about a factor of 1.5 larger than the one
presented here based on the elementary kinetic theory,
which is typically valid within a factor of 2 �Reif, 1965�.

V. PARTICLE PRODUCTION RATES

At high temperatures above 10 MeV other particle
species will also be produced, e.g., muons with a mass of
m�=106 MeV. Their rate follows to lowest order from
the diagram in Fig. 7 �Born term�. We assume that me
�T�m� holds. The first inequality implies that the elec-
tron mass can be set to zero and the second inequality
implies that muons are not equilibrated. Then the muon
production rate to lowest order �e−e+→�*→�−�+� is
given by

dN

d4xd4p
=

�2

24�4�1 +
2m�

2

M2 ��1 −
4m�

2

M2 �1/2T

p

�
1

exp�E/T� − 1
ln

1 + exp�− �E + p�/�2T��
1 + exp�− �E − p�/�2T��

,

�27�

where M2=E2−p2 is the invariant mass of the virtual
photon �*, E its energy, and p= 
p
 its momentum. This
formula was derived by combining the cross section for
the process in Berends et al. �1973� with the production
rate in Cleymans et al. �1987�, where the quark-
antiquark annihilation process qq̄→�−�+ was consid-
ered. Here we assumed the chemical potential �=0. The
only difference from the process considered here come
from the fractional charge of the quarks, i.e., we use
here 	iei

2=1, and from the number of colors in the dis-
tribution functions in Eqs. �6a� and �6b� of Cleymans et
al. �1987�, i.e., the QGP rate is divided by a factor of 9.
In addition, a factor 3/2 appears in the electron-positron
annihilation cross section—see Eq. �6� of Berends et al.
�1973� after integration over the angle—compared to the
quark-antiquark annihilation cross section in Eq. �5� of
Cleymans et al. �1987�, using the relative velocity of the
ultrarelativistic particles vqq̄=1. Because of M2=E2−p2

�4m�
2 the rate is suppressed exponentially for tempera-

tures below 2m�.
In order to obtain the spectrum from Eq. �27� one has

to integrate over the space-time volume, taking into ac-
count the space-time evolution by using, for example, a
hydrodynamical model. The total muon yield then fol-
lows from integration of the spectrum over the energy
and momentum of the virtual photon.

At temperatures above 10 MeV hadron production
also becomes important, in particular pion production
�Kuznetsova et al., 2008�.

VI. NONEQUILIBRIUM AND FINITE CHEMICAL
POTENTIAL

EPPs produced in strong laser fields are probably not
in complete equilibrium. For example, it has been pre-
dicted by Shen and Meyer-ter-Vehn �2001� that a posi-
tron density of about 5�1028 m−3 at a temperature of
10 MeV can be reached. This density deviates from the
equilibrium density �5� by 12 orders of magnitude. In the
following we therefore assume that the EPP produced
by lasers is in thermal but not in chemical equilibrium.

FIG. 6. Diagrams defining the photon damping rate.

e

e

�

�

+ +
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FIG. 7. Lowest order contribution of the muon production.
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Then we can replace the distribution functions for the
electrons by Fermi-Dirac distributions multiplied by a
fugacity factor � describing the deviation from chemical
equilibrium, fF�p�=�nF�p�. This assumption has been
used, for example, for describing the chemical equilibra-
tion of the QGP in ultrarelativistic heavy-ion collisions
�Biró et al., 1993�. The fugacity is given by the ratio of
the experimental to equilibrium particle density, since
the experimental density follows from integrating over
the nonequilibrium distribution, i.e.,

�expt = gF� d3p

�2��3�nF�p� = ��eq ⇒ � = 10−12. �28�

Using the real time formalism, QED perturbation
theory and the HTL method can also be extended to
nonequilibrium situations like the one discussed above
�Carrington et al., 1999�. For example, the effective pho-
ton mass is given now by

mph
2 =

4e2

3�2�
0

�

dppfF�p� . �29�

For T=10 MeV we then find for the nonequilibrium
photon mass mph

noneq=��mph=1 eV and the plasma fre-
quency �pl

noneq=1.5�1015 Hz. The Debye screening
length in such an EPP is �D=0.1 �m. In order to speak

of a plasma with collective behavior, its dimension L
should be much larger than �D, i.e., at least of the order
of 1 �m.

Furthermore, an anisotropic EPP can also be de-
scribed by quantum field theoretic methods �Mrówczyń-
ski and Thoma, 2000�. In this case instabilities can occur
�Mrówczyński and Thoma, 2007�.

Finally a possible difference between the positron and
electron density can be treated by introducing a finite
chemical potential �, i.e., using the distribution

nF�p� =
1

e�p±��/T + 1
�30�

for the electrons �negative sign� and positrons �positive
sign�. This difference comes from the fact that the laser-
produced EPP is embedded in the hot electron and cold
ion background of the target. Therefore there will be an
excess of electrons over positrons in the hot, relativistic
EPP. The methods described above, such as the HTL
resummation, can be generalized easily to this case �Vija
and Thoma, 1995�. For example, the energy density is
given by


eq =
11�2

60
T4 +

1
2

T2�2 +
1

4�2�4 �31�

or the effective photon energy by

TABLE I. Properties of an EPP.

Quantity Formula Value at T=10 MeV

Electron-positron density �e
eq=3/�2	�3�T3 4.9�1040 m−3

Photon density �ph
eq =2/�2	�3�T3 3.2�1040 m−3

Electron-positron energy density 
e
eq=7�2 /60T4 2.4�1029 J m−3

Photon energy density 
ph
eq =�2 /15T4 1.4�1029 J m−3

Total energy density 
eq=11�2 /60T4 3.8�1029 J m−3

Thermal electron momentum �p�e=
e
eq /�e

eq=3.11T 31 MeV

Thermal photon momentum �p�ph=
ph
eq /�ph

eq =2.75T 28 MeV

Interparticle distance d��e
eq−1/3 2.7�10−14 m

Coulomb coupling parameter �=e2 / �dT� 5.3�10−3

Effective photon mass mph=eT /3 1 MeV
Plasma frequency �pl=mph 1.5�1021 s−1

Debye screening length �D=1/�3mph 1.1�10−13 m

Effective electron mass mF=eT / �2�2� 1.1 MeV

Electron damping rate �e= �e2T /4�� ln�1/e� 86 keV
Electron transport rate �e= �e4T3 /3�s� ln�1/e� 0.54 keV for s=19.3T2

Photon damping rate �ph= �e4T2 /64�E� ln�3.88E /e2T� 0.70 keV for E=2.75T

Electron mean free path �e
mfp=1/�e 0.37 nm

Photon mean free path �ph
mfp=1/�ph 0.28 nm

Electron collision time �e=1/�e 1.2�10−18 s
Photon collision time �ph=1/�ph 9.4�10−19 s
Electron viscosity �e=55.8T3 / �e4 ln�1/e�� 7.9�1010 Pa s
Photon viscosity �ph=48.7T3 / �e4 ln�3.27/e�� 3.5�1010 Pa s
Total viscosity �=�e+�ph �1.1−1.6��1011 Pa s
Electron energy loss dE /dx= �e4T2 /48��ln�15.3E /e2T� 200 MeV/nm for E=100 MeV
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mph
2 =

e2T2

9
�1 +

3�2

�2T2� . �32�

The muon production rate for finite chemical potential
can be found by replacing the last three factors in Eq.
�27� by Eq. �13� of Cleymans et al. �1987�.

VII. CONCLUSIONS

The properties of ultrarelativistic EPPs can be treated
by QED perturbation theory at finite temperature
analogously to the treatment of the QGP by QCD, using
the imaginary or real time formalism. A consistent treat-
ment requires the use of the HTL resummation tech-
nique for many quantities under consideration. Many re-
sults can be more or less directly taken from the
corresponding QGP calculation. The examples discussed
here are the equation of state, the dielectric tensor, the
dispersion relations of photons and electrons, the Debye
screening length, damping and transport rates, mean
free paths, collision times, shear viscosity, stopping
power, and the muon production rate. In particular, col-
lective phenomena, such as plasma waves, are of inter-
est. In an EPP completely new phenomena appear,
namely, collective fermion modes associated with the
possibility of observation of van Hove singularities.

EPPs produced by strong lasers open the unique pos-
sibility to investigate the properties of these plasmas,
which also exist in astrophysical systems, e.g., supernova
explosions. However, current predictions indicate that
laser-induced EPPs are not in chemical equilibrium.
Their properties therefore require an extension of per-
turbative QED and the HTL resummation technique to
nonequilibrium situations, which is possible within the
real time formalism. As a first application, we discussed
the Debye screening length in such an EPP, demonstrat-
ing that the EPP should have a spatial extension of at
least 1 �m to exhibit characteristic plasma behavior.

Here we have considered a number of relevant prop-
erties of an ultrarelativistic, equilibrated EPP as a refer-
ence for future laboratory experiments and astrophysi-
cal EPPs, and we gave numbers for a plasma
temperature of 10 MeV. The results are summarized in
Table I.

New results, which have not been published so far, are
the electron transport rate �18�, the electron viscosity
�22�, and the photon viscosity �27�. Also new is the ap-
plication of the results, derived here or compiled from
the literature, to relativistic laser plasmas as presented in
the third row of Table I and in the discussion of non-
equilibrium effects.

Further quantities, e.g., the radiative energy loss, or
higher-order corrections beyond the leading logarithm
approximation, to the quantities considered above could
be evaluated in a way similar to that discussed above.
An extension of the properties discussed in Secs. II–V to
the case of a chemical nonequilibrated EPP would also
be of interest. Finally, we did not consider here the for-
mation of an EPP in a strong laser field, e.g., by the
Schwinger mechanism, and its equilibration.
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