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The trivalent alkali fulleride solids of generic composition A3Cg, where Cgy is the fullerene molecule
and A=K, Rb, and Cs, are a well-established family of molecular superconductors. The
superconductive electron pairing is of regular s-wave symmetry and is accounted for by conventional
coupling of electrons to phonons, in particular by well-understood Jahn-Teller intramolecular Cg
vibrations. A source of renewed interest in these systems is the surprising indication of strong
electron-electron repulsion phenomena, which has emerged in compounds where the Cg-Cg distance
is expanded, by either a large cation size or other chemical or physical means. Several examples are
now known where this kind of expansion, while leading to a high superconducting temperature at first,
gradually or suddenly causes a decline of superconductivity and its eventual disappearance in favor of
a Mott insulating state. This type of insulating state is the hallmark of strong electron correlations in
cuprate and organic superconductors, and its appearance suggests that fullerides might also be
members of that family. Our approach to fullerides is theoretical, and based on the solution of a
Hubbard-type model, where electrons hop between molecular sites. In a Hubbard model of fullerides,
unlike models for the strongly correlated cuprates, all important electron correlations occur within the
molecular site, so it is efficiently soluble in the dynamical mean-field theory (DMFT) approximation.
DMEFT solutions confirm that superconductivity in this model fulleride, although of s-wave symmetry
rather than d-wave, shares many of the properties that are characteristic of high-7, cuprates. The
calculations are heavy, and while the working model used is several years old, the new results
presented pertain to the interesting case of three electrons per Cgy molecule, appropriate to A3Cgp,
and have become possible only recently due to a stronger computational effort. The zero-temperature
phase diagram is calculated as a function of the ratio of intramolecular repulsion parameter U to the
electron bandwidth W, the increase of U/W representing the main effect of lattice expansion. The
phase diagram is close to that of actual materials, with a dome-shaped superconducting order
parameter region preceding the Mott transition for increasing cell volume. Unconventional properties
of expanded fulleride superconductors predicted by this model include (i) an energy pseudogap in the
normal phase; (ii) a gain of electron kinetic energy and of conducting Drude weight at the onset of
superconductivity, as in high-7. cuprates; (iii) a spin susceptibility and a specific-heat behavior that are
not drastically different from those of a regular phonon superconductor, despite strong correlations;
and (iv) the emergence of more than one energy scale governing the renormalized single-particle
dispersion, electronic entropy, and specific-heat jump. These predictions, which if confirmed should
establish fullerides as members of the wider family of strongly correlated superconductors, are
discussed in light of existing and foreseeable experiments.
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I. INTRODUCTION

Superconductivity, discovered by Kamerlingh Onnes
nearly a century ago (Onnes, 1911) and first explained
microscopically back in 1957 in terms of electron pairing
by Bardeen, Cooper, and Schrieffer (BCS) (Bardeen
et al., 1957a, 1957D) is still a surprisingly lively topic. On
the one hand, superconductivity is being constantly dis-
covered in an ever-increasing variety of solid-state com-
pounds. On the other hand, it appears more and more
difficult to use basically the same standard theory, essen-
tially BCS theory and its extensions (e.g., see, Parks,
1969) to account for all of them. In this standard conven-
tional theory, superconductivity arises from the conden-
sation of electron pairs, the two electrons usually bound
in a pair state of s-wave symmetry and held together by
exchange of lattice phonons. The Coulomb repulsion be-
tween the two electrons opposes pair formation, but it
does not suppress superconductivity because screening
makes it sufficiently weak.

The surprisingly favorable effect of repulsive electron
correlations on superconductivity found in some sys-
tems, particularly in high-7, superconducting cuprates,
where electron-electron repulsion is dominant, remains
unresolved. An immense amount of experimental and
theoretical work has accumulated over the past two de-
cades in the attempt to understand these phenomena;
see, e.g., Bennemann and Ketterson (2008). Actually, cu-
prates are the most spectacular members of a wider class
of strongly correlated superconductors including heavy-
fermion and organic molecular compounds (Bennemann
and Ketterson, 2008), systems for which there is no truly
comprehensive theory either. Among other factors, the-
oretical efforts have been hampered by the general in-
tersite nature of electron interactions and correlations in
many of these systems, a fact that poses great technical
difficulties. In this light, identification of a supercon-
ductor family in which correlations are at the same time
strong, simple, and on site is welcome.

A more crucial element is one of perspective. It has
been a widespread prejudice to distinguish between
those superconductors for which (as in BCS theory) pair-
ing of electrons takes place in the s-wave channel and is
mediated by phonons and those for which the mecha-
nism may be electronic and not phononic, and where
pairing instead takes place in the d-wave channel
Whereas it is widely held that strong repulsive correla-
tions are essential to superconductivity in the latter
(Anderson, 1987), they are not considered crucial in the
former. The conventional BCS scenario and its exten-
sions, namely, the Migdal-Eliashberg theory (Migdal,
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1958; Eliashberg, 1960a, 1960b; Parks, 1969)—a con-
trolled approximation valid when the typical phonon
frequency is much smaller than the Fermi energy—are
more or less automatically accepted, and used to ac-
count for the superconducting properties. In this theory,
electron-electron repulsion renormalizes the electron—
phonon parameters, lowering the critical temperature 7.
rather than enhancing it.

The trivalent alkali-metal fulleride superconductors,
reviewed by Ramirez (1994) and Gunnarsson (1997,
2004), are among the systems in which this conventional
logic seemingly applies. Fullerides are solid-state com-
pounds of generic composition A;Cg), Where Cg is the
fullerene molecule (Gunnarsson, 2004) and A=K, Rb,
and Cs are alkali-metal cations. The three alkalis metals
donate a total of n=3 electrons to each fullerene, half
filling its threefold-degenerate ¢;, molecular level. Elec-
tron hopping between first-neighboring fullerenes gives
rise to a metal, where conduction is restricted to the
three narrow fy,-derived bands, with a total energy
bandwidth of no more than 0.6 eV (Satpathy et al., 1992;
Erwin, 1993). Metallic fullerides are generally supercon-
ducting, with critical temperatures 7, reaching ~40 K,
depending on various factors. An empirically important
factor appears to be the cell volume. When the fulleride
lattice is chemically expanded, by increasing cation size,
insertion of neutral molecules, or else physically ex-
panded by removing pressure, 7, undergoes a definite
and systematic change. It rises initially with a good cor-
relation with the Cgy-Cg distance (Yildirim et al., 1995;
Gunnarsson, 1997). Further expansion, however, causes
T, to drop, coming eventually through a first-order tran-
sition to an insulating state, as discussed later.

A wealth of evidence indicates that superconducting
pairing in fullerides is phononic and that the relevant
phonons are the stiff intramolecular H, vibrations of the
Cgo molecule, Jahn-Teller coupled to the ¢;, conduction
electrons (Gunnarsson, 1997). Further support for the
apparently BCS nature of superconductivity in fullerides
comes from specific-heat jumps that scale linearly with
T,, in agreement with BCS theory (Kortan et al., 1992;
Ramirez, 1994; Burkhart and Meingast, 1996), as well as
a regular (i.e., not exceedingly high) normal-phase mag-
netic susceptibility (Kortan et al., 1992; Robert et al.,
1998). Superconducting energy gaps are less clearly de-
fined (Gunnarsson, 1997); the gap ratio 2A/T,=3.4-4.2
in K5Cy, and Rb;C¢ (Ramirez, 1994; Gunnarsson, 1997),
but are not far from the BCS value of 3.53. These ele-
ments suggest viewing the A;Cq, compounds as weakly
correlated Fermi-liquid conductors (Ramirez, 1994),
though with unusually narrow electron bands, with a
large effective mass roughly three free-electron masses
(Robert et al., 1998). Even the observed decrease of T,
under applied pressure in K;Cqy and Rb;Cg is in quali-
tative agreement with an increasing bandwidth and de-
creasing density of states at the Fermi level, which fur-
ther supports a standard BCS picture.

These reassuring, conventional-looking facts are, how-
ever, contrasted by a number of conflicting elements that
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are strong enough to cast serious doubts on the general
applicability of the BCS scenario to superconductors in
this family. These elements are especially apparent in
the more expanded fullerides including (NHj3),NaK,Cg,
(Riccé et al., 2003) and Li;Cgy (Durand et al., 2003), and
in the alloys Cs;_,K,C¢, and Cs;_,Rb,Cq, (Dahlke et al.,
2000). For these expanded compounds 7. decreases
upon expansion, in contrast to BCS theory. The electron
density of states extracted from the NMR Knight shift is
at the same time an increasing function of the lattice
parameter, smoothly connecting with that of the unal-
loyed compounds under pressure (Dahlke et al., 2000).
Within BCS theory, that increase should lead to a rise of
T. and not a drop, as observed. The same unconven-
tional behavior is observed in Cs;Cg, the fulleride com-
pound with the highest 7.~40 K attained under pres-
sure (Palstra et al., 1995). A novel A15 superconducting
phase of Cs;Cgq, with expanded structure has recently
been synthesized (Ganin et al., 2008), corresponding to a
body-centered-cubic arrangement of fullerenes. Super-
conductivity emerges under pressure through a first-
order nonstructural transition at 4 kbar. The critical
temperature 7 first increases with pressure, reaching a
dome-shaped maximum of 38 K around 7 kbar, above
which 7. drops. Since no structural changes are ob-
served under pressure, the appearance of superconduc-
tivity as well as the dome-shaped 7, versus pressure be-
havior must be ascribed solely to the volume contraction
(Ganin et al., 2008). This nonmonotonic behavior of T,
with pressure finds no apparent explanation within the
conventional theory.

The basic and striking anomaly of expanded fullerides
occurs in compounds with the largest intermolecule dis-
tances. In these materials, a relatively modest additional
lattice expansion (and minor change of symmetry due to
intercalated ammonia) is enough to turn them dramati-
cally from metallic and superconducting to antiferro-
magnetic and insulating (Durand et al., 2003; Iwasa and
Takenobu, 2003)." With temperature, antiferromagnetic
order in the ammoniated compound NH;K;Cyq, (see Fig.
1) changes to paramagnetic disorder at a Néel tempera-
ture slightly above ~40 K (Prassides et al., 1999). Even
above the Néel temperature, the microwave conductiv-
ity in NH3K5Cq, remains several orders of magnitude
below that of K;Cq, (Kitano et al., 2002), testifying to the
Mott insulator (correlation-driven) nature of the insulat-
ing phase. Electrons in a lattice give rise to a Mott insu-
lating state when electron-electron repulsion stops their
free propagation and the lattice appears as a collection
of molecular ions. Correlations lead to an energy gap in
their spectrum, even if their number density per cell is
odd instead of even as in regular band insulators (Mott,
1990). The proximity of a Mott insulator phase in ful-
lerides had long been advocated in different contexts

"we expect that, below the superconducting pressure of
4 kbar, the new compound A15 Cs;Cqy (Ganin et al., 2008), yet
to be characterized in this respect, should also be an insulating
antiferromagnet.
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FIG. 1. (Color online) Schematic representation of a planar
projection of the crystal structure of NH3K5Cgy. Dots are po-
tassium atoms, other dots surrounded by three gray dots are
NH; molecules, and Cgy molecules are shown according to
their actual spatial orientation. Courtesy of Kosmas Prassides.

(Baskaran and Tosatti, 1991; Chakravarty et al., 1991;
Lof et al., 1992; Chakravarty and Kivelson, 2001) but was
not taken seriously by the community prior to these
data. Superconductivity next to a Mott insulating phase
as a function of doping or volume change is the hallmark
of strong correlations in high-temperature supercon-
ducting cuprates and organics. One is thus naturally led
to inquire whether superconductivity in expanded ful-
lerides might, despite the obvious differences, and de-
spite the phononic mechanism, be somehow related to
strong correlations. Our contention is that it is indeed
closely related, as outlined in the following.

II. ELECTRON INTERACTIONS IN FULLERIDES

The electrons donated by the alkali metals to the Cg
molecule enter the threefold-degenerate ¢, former low-
est unoccupied molecular orbital (LUMO). In a degen-
erate molecular orbital, electrons interact through a va-
riety of mechanisms. The first is overall Coulomb
repulsion, which we associate later with the Hubbard
parameter U. The second is Coulomb exchange energy,
minimized when the molecular state has the highest to-
tal spin and the highest total orbital angular momentum
compatible with it (Hund’s rules) (Landau and Lifshitz,
1958). The third is the Jahn-Teller (JT) interaction,
caused by coupling of the electron levels to symmetry-
lowering molecular distortions (Landau and Lifshitz,
1958). Contrary to Hund’s rules, in a JT-distorted mol-
ecule the ground state maximizes double occupancy of
levels, thus favoring low total spin instead of high spin in
the isolated molecular ion. In molecular Cg’", the
strength of these interactions has been evaluated in the
past, and the JT strength has been estimated to prevail
narrowly over Hund’s rule exchange (Liiders et al., 2002)
This narrow balance favors a low-spin ground state, with
a relatively small “spin gap”—the energy between the
low-spin ground state and the lowest high-spin excited
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state, expected to be of the order of 0.1 eV (Capone
et al., 2001; Liders et al., 2002). In agreement with this
expectation, local moments indicate that, in antiferro-
magnetic Mott insulating NH;K;Cq, the C603* sites are
in a low-spin state, S=1/2 (Prassides et al., 1999), their
high-spin state S=3/2 lying about 100 meV higher in en-
ergy. A low spin qualifies the overexpanded fullerides as
Mott-Jahn-Teller insulators—that is, Mott insulators
whose sites are in a JT-stabilized low-spin state (as op-
posed to a Hund’s rule stabilized high-spin state) (Fab-
rizio and Tosatti, 1997). Under hydrostatic pressure,
NH;K;C¢, undergoes a transition to a metallic state
where superconductivity reemerges with a rather large
T, (Prassides et al., 1999). It is important to note that this
superconducting phase still belongs to the “expanded”
family, as signaled by the fact the 7. here increases fur-
ther with increasing pressure [reaching 28 K at 14.8 kbar
(Zhou et al., 1995)] at variance with nonexpanded ful-
lerides, where T, drops under pressure.

A lateral but relevant additional element comes from
tetravalent compounds A,4Cgy, which are insulators or
near insulators. By comparison with the trivalent ful-
lerides, the slight reduction of band-energy gain per par-
ticle caused by adding one more electron per molecule
and by slightly changing the crystal structure is sufficient
to turn the trivalent metals into tetravalent insulators
even in nonexpanded materials. Careful density-
functional electronic-structure calculations indicated
that it is not possible to describe the tetravalent com-
pounds such as K,;Cg, as statically distorted Jahn-Teller
band insulators (Capone et al., 2000). A static JT distor-
tion and the associated orthorhombic state is actually
present only in Cs,Cg, (Dahlke and Rosseinsky, 2002),
and in Rb,Cq, above a critical pressure (Huq and
Stephens, 2006), while it never shows up in K,Cg, (Huq
and Stephens, 2006) [with the exception of monolayers;
see Wachowiak er al. (2005)]. The persistence of insulat-
ing or near-insulating behavior and the recovery of mo-
lecular symmetry observed in the high-temperature
phase of tetravalent fullerides suggests that these com-
pounds too are Mott-Jahn-Teller insulators (Knupfer
and Fink, 1997; Capone et al., 2000; Klupp et al., 2006),
like the overexpanded trivalent materials. The dynamic
JT effect in each C,,'~ ion associated with Mott localiza-
tion of carriers is crucial in explaining the low-spin
ground state and the spin gap of A,Cq, exactly as for the
expanded trivalent compounds.

From the above discussion, one might be tempted to
conclude that strong correlations play a role only in tet-
ravalent and expanded trivalent compounds, while face-
centered-cubic (fcc) K5Cqy and Rb;Cg, where supercon-
ductivity was originally discovered, could still be viewed
as weakly correlated systems, and as BCS-type super-
conductors. We do not believe in this conclusion. A final,
independent, and strongly unconventional signal is pro-
vided by NMR. In fact, NMR data show direct evidence
of a spin gap of order 0.1 eV, appearing as an anomalous
activated increase of inverse relaxation time. Most likely
this gap between a low-spin ground state and a high-spin
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excited state reflects the multiplet behavior of the local-
ized Cg,"~ molecular ion. It shows up ubiquitously in all
alkali-metal-doped fullerides, including superconducting
fcc compounds (Thier et al., 1995; Brouet et al., 2002a,
2002b). The existence of the spin gap signifies that the
magnetic response of fullerides is very far from Fermi-
liquid behavior, which has no such feature. Magnetically
the fullerides behave as if localized molecular multiplet
excitations coexisted with delocalized propagating qua-
siparticles. As discussed, the recovery of molecular phys-
ics is characteristic of Mott insulators, suggesting that
the fingerprint of Mott physics is strongly present al-
ready in the nonexpanded superconducting fcc com-
pounds. This suggests that the fcc compounds are some-
how the analogs of the overdoped cuprates, whereas the
expanded trivalent materials are analogous to the under-
doped cuprates. The conclusion is that both are crucially,
even if differently, influenced by electron correlations.
We believe that the above elements are strong enough
to call for a new physical picture for the whole family of
A3Cq superconductors. The proximity of the Mott insu-
lator strongly suggests that the anomalies of expanded
fullerene superconductors most likely originate from
strong repulsive electron correlation in the narrow ¢y,
bands. The prevalence in the Mott-localized state of mo-
lecular physics, with its orbital degeneracy, JT effect, and
intramolecular exchange, must be taken into account
along with itinerant-electron band physics. Upon ex-
panding the cell volume, the intermolecular hopping of
electrons weakens, whereas all the on-site correlation
terms—Coulomb and exchange electron-electron inter-
actions as well as the molecular JT effect—are likely to
become increasingly relevant. We are led to a picture in
which the Mott insulator physics of weakly coupled mo-
lecular ions prevails progressively over band physics for
increasing lattice expansion. In particular, superconduct-
ors that operate in this regime are bound to deviate
from the standard Migdal-Eliashberg scenario, the more
so as the lattice spacing increases. To investigate that
regime, we need to start with a broader theoretical
scheme for trivalent fullerides, capable of describing
their behavior under lattice expansion and near the
Mott transition. While that has been the scope of our
past work, previous work was limited for practical tech-
nical reasons to tetravalent systems (Capone et al., 2000,
2001, 2002). The study of A3;Cgy systems, computation-
ally much heavier due to the simultaneous relevance of
magnetic and orbital ordering, has only now been com-
pleted, and we offer here an outline of the main results.

III. MODEL AND INTERACTIONS

Our theoretical model of trivalent fullerides assumes a
lattice of molecular sites, each representing a Cqy mol-
ecule. The Cg t;, threefold-degenerate LUMO can for
all purposes be treated as an atomic p level. An average
of three electrons per molecule are donated by alkali-
metal atoms and partially fill these orbitals, which can
host up to six electrons. The electrons hop from site to
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site, giving rise to half-filled bands of width W~0.6 eV.
On each site, the electrons experience a Hubbard repul-
sion U~1 eV (corresponding to the Slater integral F,
*U),

Hy=(U2)(n-3), 1)

together with a weaker interorbital Hund’s rule ex-
change coupling term Jy, proportional to the Slater in-
tegral F,. Under the sole assumption of full rotational
orbital symmetry, this exchange term takes the form
(Capone et al., 2001, 2002)

H;=J(2S-S+ 1L L)+ 2J(n-3), (2)

where J=-J; <0, while n, S, and L are the density, spin,
and orbital angular momentum operators, defined as for
p orbitals, on the given site. This exchange term favors
high S and L molecular multiplets, and has been over-
looked or neglected in most treatments so far. The next
interaction is the JT intramolecular coupling of electrons
in the #;, orbital to H, intramolecular vibrations. This
interaction, on the contrary, has been discussed widely
[see, e.g., Lannoo et al. (1991), Varma et al. (1991), Auer-
bach et al. (1994), Gunnarsson et al. (1995), and refer-
ences therein], and we will not dwell too much on its
details here. It acts to split the ¢, orbital degeneracy and
thus favors low-spin states, effectively playing the oppo-
site role to intramolecular exchange. A proper treat-
ment of the JT coupling involves the dynamics of carbon
nuclei in Cy,"" ions, including retardation, and has been
developed by Gunnarsson et al. (1995). However, for ex-
panded fullerides close enough to the Mott transition,
retardation is not essential and can be omitted. In fact,
in this regime the intersite motion of quasiparticles is
severely slowed down and the coherent bandwidth will
eventually drop from W to ZW (Z<1). When ZW falls
enough to approach the relatively high H, vibration fre-
quencies of fullerene, iw~90 meV (Capone et al., 2000,
2001, 2002), quasiparticles begin to move on a compa-
rable time scale with the vibrating carbon atoms, and
nonadiabatic effects become important (Cappelluti et al.,
2000). Even closer to the Mott transition, the phonon
dynamics becomes eventually faster than intermolecular
quasiparticle hopping. In this antiadiabatic limit, mo-
lecular vibrations can be integrated away, and the result-
ing unretarded effective JT interaction recovers identi-
cally the same form as Hund’s rule exchange (2) except
for the sign of J, namely, J;r>0 (Capone et al., 2001). In
this limit, the Hund and JT intramolecular interorbital
interaction terms can be directly combined in the form
(2) with J:_]H+JJT' In C60’ JH2003—01 eV (Martin
and Ritchie, 1993; Liders et al., 2002), whereas J;t
=(.06-0.12 eV (Lannoo et al., 1991; Varma et al., 1991;
Auerbach et al., 1994; Gunnarsson et al., 1995; Liiders et
al., 2002). The total result—and the only one compatible
with s-wave superconductivity, a spin-1/2 Mott insulator,
and a moderate spin gap near 0.1 eV—is a relatively
weak unretarded attraction that has the form of an in-
verted Hund’s rule coupling (Capone et al, 2002;
Granath and Ostlund, 2003). This is the approximation
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we adopt, keeping in mind that it is strictly valid only
when ZW <fw, that is, close enough to the Mott transi-
tion.

The lattice expansion characterizing the expanded ful-
lerides is believed to have little effect on either J or Jyr.
On the other hand, expansion will surely decrease W
and increase U, so it can be modeled as a gradual in-
crease of U/W, reflecting both the band narrowing due
to smaller overlap between molecular wave functions
and a decreased screening strength. As discussed above,
this Hamiltonian model, even if not really simple, has
many-body interactions that are strictly on site, an ideal
situation for dynamical mean-field theory (DMFT)
(Georges et al., 1996), one popular and powerful tool in
the field of strongly correlated electron systems; we de-
scribe it in the next section.

A. Dynamical mean-field theory

DMFT is a quantum version of classical mean-field
theory, which provides an exact description of the local
dynamics, at the price of freezing away all spatial fluc-
tuations. The mean-field scheme is formulated by a map-
ping of the lattice model onto an Anderson impurity
model (AIM) embedded in a free-electron Fermi “bath”
subject to a self-consistency condition (Georges et al.,
1996). In our model, the effective AIM is threefold or-
bitally degenerate, with p-like levels representing the ¢y,
orbitals, each hybridized with a bath. The Hamiltonian
is

— il
H= HU + HJ + E €kaCkaoCkao

kao

+ 2 Vka(CchwPanr H.c.), (3)

kao

where H; and H; are Egs. (1) and (2) for fermions on
the impurity orbitals, ¢, are the bath energy levels la-
beled by the index k and an orbital index a=x, y, z, and
Vi, are the hybridization parameters between the bath
fermions, created by ¢}, and the impurity fermions,
created by p! . The mean-field scheme implies a self-
consistency condition that depends on the impurity
Green’s function and on the bare density of states of the
original lattice. Throughout our calculations, we use an
infinite-coordination Bethe lattice, whose density of
states is semicircular. This is a reasonable description of
a realistic three-dimensional density of states devoid of
accidental features such as van Hove singularities. It is,
moreover, particularly convenient since it leads to a very
simple and transparent form of the self-consistency con-
dition. The Bethe lattice is the z—o0 limit of a Cayley
tree of coordination z, scaling the nearest-neighbor hop-
ping in each of the z directions as ¢/ \z. The resulting
semicircular density of states has a bandwidth of 4¢.

The self-consistency condition requires the so-called
Weiss field (i.e., the noninteracting Green’s function of
the AIM),
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V2
gal(iwn)a:(iwn+ﬂ)_2 #7 (4)

k 1Wp = Epq

to be related to the local interacting Green’s function
G,(iw,) not only through the Dyson equation for the
AIM,

G o\ (iw,)= G, (iw,) + 3 (iw,),

which requires the full solution of the impurity model,
but also by the additional self-consistency equation

g 6;(1'(0,7) = (iwn + M) - ZG(iwn)a' (5)

DMFT for a given model thus amounts to solving the
AIM iteratively until the impurity Green’s function sat-
isfies Eq. (5). In this work, we solved the threefold-
degenerate AIM by exact diagonalization. That requires
truncating the sum over k in Egs. (3) and (5) to a finite
and relatively small number of baths N,, so that the
Hamiltonian can be diagonalized in the finite resulting
Hilbert space. We generally used N,=4 for each orbital.
Most of the results we present are at zero temperature,
where we can use the Lanczos algorithm to calculate the
Green’s function without fully diagonalizing the Hamil-
tonian. The finite-temperature results for the specific
heat and its jump at 7. reported in Sec. V are the excep-
tion. They are obtained by means of the finite-
temperature extension of Lanczos (Capone et al., 2007),
where the thermal Green’s function is expressed as a
sum over the low-lying eigenvectors |n) and eigenvalues
E, of the impurity model,

1
Golio,) = EE e PEnG " iw,), (6)

with

5 lolpudmP < Koo mP

E,-E,—iw, < E,—E,-iw,
(7)

The Boltzmann factor in Eq. (6) guarantees that the
lower the temperature, the smaller the number of ex-
cited states that actually contribute to the Green’s func-
tion. Therefore, for sufficiently low temperature, we can
still use the Lanczos algorithm to find the lowest-energy
eigenstates. In practice, only a limited number of states,
20-25, can be calculated in a reasonable time. Unfortu-
nately, this number is insufficient to make the truncation
error in Eq. (6) negligible for the present model in the
relevant correlated regime. We estimate the systematic
error on the Green’s function to be of order of a few
percent, a level of accuracy that does not allow us to
determine fully such thermodynamic properties as the
critical temperature. Luckily, this error affects the abso-
lute specific-heat value much more than its relative
changes, including the superconducting jump in units of
T,, discussed further below (see Sec. V). We underline
that this limitation does not affect by any means the T
=0 calculations.

Giw,) =

o
n
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The above DMFT equations refer to a paramagnetic
phase in which no symmetry breaking occurs. However,
in this work we are interested in s-wave superconducting
and in antiferromagnetic solutions, where symmetry is
broken. Superconductivity is conveniently studied in the
Nambu-Gor’kov representation by introducing spinors

Pxa
= ( ¥ ! )»
P ka|
and defining accordingly the Green’s function Gy,(7)
=—(T [ th.(7) zp;ia(O)]) in imaginary time as a 2 X2 matrix

that satisfies the Dyson equation in Matsubara frequen-
cies,

Gialio) = Gy, (io) + Gy (iw)3(i0) Gy,(iw), (8)

with Gy, (iw) the noninteracting value. The single-
particle self-energy X(iw) is also a 2 X2 matrix whose
off-diagonal element A(iw), when finite, signals a super-
conducting phase. The DMFT self-consistency can be
written now as

le(lwn) :ia)n70+/.LT3—tzT3G(ia)n)T3, (9)

where 75 and 73 are Pauli matrices.
Analogously, antiferromagnetism in a bipartite lattice
is conveniently described using the spinor

Pxac
wkazr = ( ) )

k+Qao

with k in the magnetic Brillouin zone and Q the modu-
lation vector. This leads once more to a 2X2 Green’s
function and self-energy matrices related by the Dyson
equation (8). Here too, a finite off-diagonal element sig-
nals an antiferromagnetically ordered phase. The self-
consistency equation for antiferromagnetism exploits
the bipartite property of the lattice. Indicating one sub-
lattice by A and the other by B, the general self-
consistency condition is

g (_)1 (iwn)O'A = (iwn + l’l’) - tzG(iwn)a'Bv (10)

which becomes Eq. (5) if G 4, =G 3, i.c., if the system is
nonmagnetic. When the system is antiferromagnetic,
then G,4=G_,p. Thus we can eliminate the sublattice B
from Eq. (10), and obtain the following result for the
self-consistency equation:

G o (iw) pp = (i, + 1) = P Gliw,) g4 (11)

This equation is valid for a Bethe lattice with nearest-
neighbor hopping, a case with perfect nesting that is
rather exceptional in realistic antiferromagnets. A way
to simulate imperfect nesting typical of more realistic
situations, while still taking advantage of the Bethe-
lattice simplifications, is to add next-nearest—neighbor
hopping #'/z in the Cayley tree (this is merely a device
to eliminate nesting, not meant to suggest next-nearest-
neighbor hopping, small in fullerides). In the limit z
— of the Bethe lattice, the self-consistency equation
becomes
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g 61(iwn)a'A = (lwn + /-L) - tzG(iwn)U'B - IIZG(iwn)trA
= (iwn + /'L) - tzG(iwn)—a'A - IIZG(iwn)O'A'
(12)

For both broken-symmetry phases, if the diagonal ele-
ments of the self-energy matrix at low Matsubara fre-
quencies follow the conventional Fermi-liquid behavior
(which we always find to be the case),

Ediagonal(iwn) = (1 - 1/Z)iwns (13)

the actual value of the spectral gap in the single-particle
spectrum is given by ZA(0), the zero-frequency anoma-
lous (superconducting or antiferromagnetic) self-energy
multiplied by the so-called quasiparticle weight Z.

We conclude by noting that, within DMFT, one can
search for solutions with different symmetries by simply
allowing or preventing symmetry-breaking order param-
eters, even in regions where the chosen phase is not the
most stable. When two or more solutions coexist, the
stable one is determined by an explicit energy calcula-
tion. As we discuss, for a wide range of U/W values we
do find coexisting superconducting and antiferromag-
netic solutions, the former prevailing at smaller U, the
latter at larger U. The physical phase diagram thus ex-
hibits a first-order transition between these two
symmetry-broken phases—a nonmagnetic s-wave super-
conductor and an insulating spin-1/2 antiferromagnet—
taking place when the respective energy curves intersect.

B. T=0 phase diagram

Modeling lattice expansion of fullerides as a gradual
increase of U/W, we can proceed to analyze the theo-
retical zero-temperature “phase diagram” of our model
obtained by DMFT as a function of U/W. Starting with
the uncorrelated system with U=0, the model initially
exhibits straight BCS superconductivity driven by JT
phonons (i.e., the attractive J we introduced above) with
an s-wave (S=L=0) order parame‘[er2

1
PSC = NZ 2 <ptTa p;ral>’ (14)

i a=x,y,z

where N is the number of molecules and p], , creates an
electron on molecule i, with spin ¢ and in orbital a
=x,y,z. The Fermi-liquid scattering amplitude in the
Cooper channel, measuring the strength of the effective
attraction, is A=-10J/3. We note that, owing to fairly
strong JT interactions (Auerbach et al., 1994; Gunnars-
son et al., 1995), if Hund’s exchange J, were neglected,
the dimensionless JT coupling constant of fullerenes
controlling superconductivity would be numerically very
large, N=py|A|=0.6-1.0, where p, (=2.4 eV~') is the
bare density of states per spin and orbital. Turning on a
weak Coulomb repulsion U on top of that will reduce

“Since gauge symmetry is broken, we are allowed to assume
Pgc real.
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the pairing attraction in this regime. Perturbatively one
obtains for small U that A=-10J/3+ U. Since J is insen-
sitive to expansion while U/W increases, this implies
that in this picture, where Hund’s rule exchange is ne-
glected, T, should always decrease upon expansion, a
prediction that is at odds with experiments.

In fact, as anticipated, Hund’s rule exchange is not
negligible, and its effect is to introduce a substantial can-
cellation in J, leading to a greatly reduced effective cou-
pling A g = %(J yr—J 1) po- Should we interpret the ubiqui-
tous spin gap of 0.1 eV (Thier et al., 1995; Brouet et al.,
2002a, 2002b) as the Cg"~ molecular excitation energy
between its low-spin ground state with S=1/2 and 0 for
n=3 and 4, respectively, and its high-spin excited state
with §=3/2 and 1 for n=3 and 4, respectively, we would
conclude that, to be consistent with our model where
both gaps are equal to 5J (Capone et al., 2004), the total
effective inverted exchange J, comprehensive of both JT
and Hund’s rule exchange, should be /=0.02 eV. In re-
ality, the qualitative scenario we describe is relatively
independent of the precise value of J provided it is in-
verted, i.e., negative and small.

Once exchange is included, the resulting A ;=0.16 is
now much smaller—in fact, it is much too small to ex-
plain within conventional BCS or Migdal—Eliashberg
theory any of the observed values of T, in fullerides [let
alone the nonmonotonic behavior of 7. versus the den-
sity of states for expanded fullerides (Dahlke et al., 2000,
Ganin et al., 2008)]. Things get worse when we increase
the on-site Coulomb repulsion U closer to realistic val-
ues, U~ W and beyond. In the conventional weakly cor-
related picture, U would provide in the electron pairing
problem a repulsive Coulomb pseudopotential whose
bare value is u,=Upy=3 (Parks, 1969). Simply compar-
ing these bare values of A and u,, we should conclude
that s-wave BCS superconductivity in fullerenes is sim-
ply impossible (with the obvious proviso that for small U
an unretarded treatment of JT phonon interactions is
not really justified).

The full DMFT solution of the model for /J=0.05W
and increasing U/W yields the phase diagram in Fig. 2.
While confirming the above expectations for moderate
U, it has a surprise in reserve at larger U values, where
the Mott transition is approached.

Figure 3 shows the zero-frequency anomalous single-
particle self—energies calculated within DMFT for the
superconducting and the antiferromagnetic solutions. At
U=0, the model is an s-wave BCS superconductor, with
an exponentially small superconducting A(0). This is too
small to be visible in the figure, since, as mentioned, the
effective exchange reduced A~0.2 is very weak. Begin-
ning from zero, the increase of U first rapidly destroys
the weak BCS superconductivity. The superconducting
A(0) vanishes at roughly the mean-field value U=10/3J,
and above this value of U the ground state becomes a
normal metal, as expected. Upon further increase in
U/W, the model remains a normal metal—no supercon-
ductivity, no antiferromagnetism. However, the impor-
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FIG. 2. (Color online) Superconducting solution (triangles)
and antiferromagnetic solution (squares) zero-frequency
anomalous self-energies A(0) as a function of U/W. Solid sym-
bols are used when the corresponding symmetry-broken phase
is stable, while open symbols are used when it is metastable,
i.e., has higher energy than the other phase. The first-order
transition between the two phases is indicated by a vertical line
separating the superconductor from the antiferromagnetic
Mott insulator. The case in the presence of a frustrating next-
nearest-neighbor hopping ¢’ =0.3¢, absent in (a).

tance of electron correlations increases with U, as sig-
naled, for example, in the DMFT spectral function (not
shown) by the gradual formation of incoherent Hubbard
bands on both sides of the Fermi level. The metallic
character persists until a hypothetically continuous Mott
transition is eventually reached near U/W~1.5, where
Z=0 and the metallic character is extinguished.

Before this happens, however, s-wave superconductiv-
ity reenters from the normal-metal state. The anomalous
self-energy A(0), proportional to the superconducting
order parameter, has, as a function of U, a bell-shaped
behavior—a “superconducting dome” as it is called in
cuprates—hitting a large maximum before dropping
again. The reentrant superconductive behavior is a clear
realization of phonon-induced strongly correlated super-

AFM

0.4

0.3

SC AFM

0.2

0.1

0 0.4 0.8 12
u/w

FIG. 3. (Color online) Superconducting solution (SC, left) and
antiferromagnetic solution (AFM, right) anomalous self-
energies (top) and order parameters (bottom) as functions of
U/W. The top panels also show (diamonds) the spectral gaps
obtained on multiplying A by the quasiparticle weight Z of
each solution. The gaps are in units of the bandwidth W (the
order parameters are by definition dimensionless).
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conductivity (SCS) (Capone et al., 2002). The sharply ris-
ing order-parameter edge with increasing U/W can in
our view explain the strong rise of 7. upon lattice expan-
sion in nonexpanded compounds, previously attributed
to a BCS-like increase of density of states upon band
narrowing. Past the dome maximum, and upon increas-
ing expansion, the SCS superconducting order param-
eter declines, and would eventually drop to zero at the
continuous metal-insulator transition near U/W~1.5.
This continuous decline of superconductivity is pre-
empted by a first-order transition to a lower-energy an-
tiferromagnetic Mott insulating phase, with order pa-
rameter

Parv=(UN) 2 (= 1)(ny = ny), (15)

where n;,= Eazx’y’zp};ﬂpiw is the full occupation number
with spin o at molecule i. The exact location of the
superconductor-insulator transition depends on details.
For strong nesting (¢'=0), it takes place even before the
superconducting dome maximum. In Fig. 3, we show
A(0) of Fig. 2 in comparison with the spectral gaps
ZA(0), as well as the order parameters Pgc and Papy.
Notice that Z for the superconductor is smaller and van-
ishes at the continuous metal-insulator transition, while
Z for the antiferromagnet is of order 1. In both cases,
the dimensionless order parameter essentially follows
the behavior of the spectral gap.

When we add a next-nearest-neighbor hopping ¢’ to
mimic imperfect nesting (which we expect to find generi-
cally for realistic band structures, in particular in the
face-centered-cubic A3;Cqy materials), we find that the
superconducting phase is only weakly affected but anti-
ferromagnetism is strongly frustrated. As a result, the
superconducting region expands at the expense of the
magnetic insulator, and the superconducting dome may
emerge in full [Fig. 2(b)]. We propose that the gradual
drop in the superconducting order parameter past the
dome maximum now naturally explains the decline of 7
of expanded fullerides (Dahlke and Rosseinsky, 2002;
Durand et al., 2003; Ganin et al., 2008).

Finally, past the first-order Mott transition, we find
that the antiferromagnetic insulator is formed mainly by
spin-1/2 local configurations, which is in agreement with
experiments in NH;K;Cg, (Iwasa and Takenobu, 2003).
We also predict that ambient-pressure A15 Cs3Cg, yet
to be characterized, should similarly be a spin-1/2 anti-
ferromagnetic insulator. Besides spin rotational symme-
try, this kind of state also breaks orbital rotational sym-
metry, signaling that spin ordering must be generally
accompanied by orbital ordering. In ammoniated ful-
lerides, that again is consistent with experiment (Iwasa
and Takenobu, 2003). We conclude that, in spite of
strong simplifying assumptions, our model seems able to
reproduce important features of the phase diagram of
expanded fullerides. In the following, we discuss the
strongly correlated superconducting phase near the
Mott transition, and also propose experiments that
might distinguish it from a standard BCS state.



Capone et al.: Colloguium: Modeling the unconventional ... 951

IV. UNDERSTANDING STRONGLY CORRELATED
SUPERCONDUCTIVITY FROM DMFT AND
THE IMPURITY MODEL

The reemergence of phonon-driven superconductivity
close to the Mott transition [strongly correlated super-
conductivity (SCS)] was discussed by Capone et al.
(2002) in terms of Fermi-liquid theory. A key point of
that phenomenon is the renormalization of the effective
bandwidth and thus of the effective mass, both con-
trolled (in a Bethe lattice) by the quasiparticle weight Z,
Eq. (13). Z(U) decreases as a function of U/W and van-
ishes at the continuous metal-insulator transition point
U=U,, where the effective mass m*/m=1/Z(U) diverges
and the effective quasiparticle bandwidth W_=ZW van-
ishes. An estimate of the interaction between charged
quasiparticles requires the evolution of fluctuations that
take place in charge space. Because charge fluctuations
are gradually frozen away near the Mott transition, the
effective repulsion between quasiparticles is also renor-
malized down to some smaller value U, <U. In particu-
lar, the Fermi-liquid description provided by the
Gutzwiller variational approach (Gutzwiller, 1963) and
supported by the DMFT behavior of the average charge
fluctuations ((n—3)?), suggests that U,=UIyZ(U)?
~UZ(U), where I'; includes all the so-called vertex cor-
rections (Abrikosov et al., 1965). This implies that the
vertex function I';; diverges close to the Mott transition,
but does not compensate the vanishing of Z (Capone
et al., 2002). The pairwise Jahn-Teller and exchange-
based attraction J between quasiparticles, even if small,
is restricted here to spin and orbital space, and has noth-
ing to do with charge fluctuations. In other words,
Hund’s rule exchange and the JT coupling influence only
the internal splitting of each molecular multiplet without
affecting its center of gravity. As a result, this attraction
should remain unrenormalized, J, =JT;Z(U)*>~J, close
to the metal-insulator transition, thus implying a
strongly divergent vertex correction I'; which cancels the
vanishing Z. Therefore, the electron pair scattering am-
plitude A, in the Cooper channel should renormalize as
A=U-3J—A,=Z(U)U-%J. When U/W is small, Z
=1, the main effect of U is to suppress superconductiv-
ity, as noted earlier. However, if U is close to the critical
metal-insulator value U,, then Z~(U.-U)/U.<1 and
the scattering amplitude turns negative in spite of a large
U. This is qualitatively the reason for the SCS reen-
trance of superconductivity [though in this region, of
course, the actual pair scattering amplitude might devi-
ate from this simple formula (Capone et al., 2002)].

In addition, the Fermi-liquid argument suggests an ex-
planation for the large value of the superconducting or-
der parameter, implying a large 7. in the SCS regime
(see Fig. 2) compared to the U=0 BCS values. In fact,
when A, =ZW, and Z is dropping sharply, the quasipar-
ticle attraction A, will at some point (U=U,) equal the
coherent quasiparticle bandwidth ZW. That very un-
common situation of metallic quasiparticles with a pair
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FIG. 4. (Color online) Quasiparticle superconducting energy
gap in units of the bandwidth W=0.6 eV and on a larger scale
than Fig. 3, computed through the anomalous self-energy [Fig.
2(a)] multiplied by the quasiparticle residue Z(U). Note that,
above U/W=1.1, the superconducting solution is metastable
since the antiferromagnetic one has lower energy; see Fig. 2.
We note that the maximum gap ZA,=0.045W =27 meV.

attraction equal to their energy bandwidth is known to
yield maximum superconductivity for a given attraction.
As shown by studies of purely attractive models (Micnas
et al., 1990), the maximum superconducting temperature
kpT,. attainable in that case is about 7% of the pair at-
traction energy itself. In our model of trivalent ful-
lerides, this estimate yields kz7.~0.07A,~0.2|J|, which
has the correct magnitude of roughly 40 K for J
~20 meV—a value in turn fully consistent with the ob-
served spin gap 0.1 eV~5J. While this coincidence of
numbers is probably fortuitous, it does indicate that or-
ders of magnitude implied by our model with realistic
parameters are quite consistent with experimental facts.
At face value, it also suggests that 0.07|J]=0.07(J;0—Jp)
could be the maximum attainable kT, in fullerides. We
conclude that strong correlations play a crucial role in
bringing the superconducting gap magnitude to the right
range of values as compared with the experimental ones;
see Fig. 4. Such values and large critical temperatures
would never be attained within conventional BCS
theory using A=0.16-0.2, including as it should the
large cancellation of JT interaction by exchange. They
could in point of fact be attained if the cancellation due
to exchange were (incorrectly) neglected, but then a lat-
tice expansion should always lead to a decrease of T,
contrary to experiment.

To appreciate further the effect of exchange-JT can-
cellation, it is instructive to consider [as was done for a
simplified model by Capone et al. (2004)] the behavior
with U/W of the superconducting self-energy A(0) (pro-
portional to the 7=0 gap, and roughly speaking to T)
starting with pure JT and without exchange, and then
proceeding to turn on exchange and gradual cancella-
tion; see Fig. 5. For the bare JT interaction, A=1 (a
strong-coupling value), the superconducting self-energy
decreases monotonically with increasing U, in agree-
ment with the Migdal-Eliashberg prediction of an in-
creasing Coulomb pseudopotential. Above a critical
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FIG. 5. (Color online) Anomalous self-energy A(0) (related to
the superconducting gap by a factor Z~!) for the superconduct-
ing solution and different values of the coupling parameter J
=0.02, 0.05, 0.1, and 0.2, which correspond to A=0.09, 0.21,
0.42, and 0.85, respectively. Note that for large J, correspond-
ing to a case in which the Jahn-Teller coupling is not canceled
by Hund’s rule exchange, superconductivity is strongest at U
=0. For increasing cancellation (decreasing J), two separate
superconducting pockets emerge: a BCS pocket near U=0 and
a SCS pocket near the Mott insulator. When the cancellation is
nearly complete, the SCS pocket is many orders of magnitude
stronger than the BCS. This is the situation we propose in our
model of fullerides. Similar physics was described for a simpler
model by Capone et al. (2004).

value, the system turns directly, via a second-order or
weakly first-order phase transition, to a Mott insulating
phase. This result is fully consistent with previous calcu-
lations by Han et al. (2003), where the same type of Hub-
bard model was studied within DMFT at finite tempera-
ture. Treating explicitly the electron-phonon coupling
(including the full phonon dynamics) with A=0.6 and ne-
glecting exchange, they obtained a superconductor with
monotonically decreasing gap.

Through a progressive reduction of N\ (mimicking JT
cancellation by exchange), we find that a nonmonotonic
superconducting behavior makes its appearance as a
function of U. Initially there is still a single supercon-
ducting phase for all U/W values, but two different re-
gions near zero and near U, begin to materialize. (Note
that U, simultaneously shifts to higher U as A decreases.)
When the cancellation is so strong that A is still positive
but small, the two superconducting regions break apart
to form two separate pockets, leaving a normal-metal
phase in between. In the leftmost pocket near U/W=0,
the anomalous self-energy has a BCS-like exponential
dependence on A, and indeed superconductivity in this
corner is of BCS type. Superconductivity in the right-
most pocket near the metal-insulator transition behaves
quite differently. Here the N\ dependence of supercon-
ductivity is much weaker, and the superconductive gap
much stronger, than in the BCS pocket. Superconductiv-
ity in this pocket can in fact be characterized as SCS
(Capone et al., 2002), due to narrow quasiparticle pairing
as described above. A similar behavior to Fig. 5, with
two separate BCS and SCS regimes emerging from a
single initial one when the effective pairing attraction is
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progressively weakened by exchange, was derived and
illustrated in a simpler twofold-degenerate model by Ca-
pone et al. (2004).

The SCS superconducting pocket near the Mott tran-
sition is expected to differ from the BCS pocket even in
its normal-state properties. The normal state underlying
a BCS superconductor is Fermi-liquid-like. On the other
hand, previous analyses suggest that the Fermi-liquid
picture is likely to break down in our model when the
Mott transition is approached. The key reason for the
breakdown of the Fermi liquid is precisely that, when
Z —0, the attraction between quasiparticles must even-
tually reach and exceed in magnitude the quasiparticle
bandwidth ZW, a situation difficult to sustain.’ Possible
deviations from the Fermi-liquid paradigm were in fact
overlooked by Capone et al. (2002) as they are related to
the very-low-energy behavior of the normal phase close
to the Mott transition, which was not explored in that
work. Later, the non-Fermi-liquid behavior was discov-
ered in the two-orbital model where the physics is very
similar (Capone et al., 2004).

A. Anderson impurity with a rigid bath

The DMFT calculations described above involved two
steps, one solving the Anderson impurity model and the
other making that self-consistent with the bath. Follow-
ing reasoning proposed by Fabrizio ef al (2003), one
may start off with the first step alone, namely, analyzing
the bare AIM without imposing any self-consistency
constraint. The conduction bath can be assumed to have
a flat density of states, and the bath-impurity hybridiza-
tion to be structureless, a situation that avoids numerical
uncertainties and yields accurate low-energy properties.
This kind of analysis applied to the AIM (3) shows (De
Leo and Fabrizio, 2005) that two different impurity
phases are stabilized according to the ratio between the
attraction J and the Kondo temperature T (Hewson,
1997). Below this temperature and when J=0, the spin of
an impurity coupled to a Fermi sea is screened out and
absorbed in the conduction sea (Hewson, 1997). In the
lattice context within DMFT, the Kondo scale measures
metallic coherence and corresponds to the renormalized
quasiparticle bandwidth ZW. For finite J # 0 but smaller
than T, Kondo screening remains, thus still implying a
Fermi-liquid behavior in DMFT. In fullerides, the impu-
rity represents the C,,>~ ion, carrying three orbitals and
three spins. In the Kondo phase, each of the three spins
is separately screened by the bath and thus incorporated
in the Fermi sea. Conversely, when J> Ty the Kondo
screening is lost, and that was shown to imply a non-

*Note that the high-energy Hubbard bands are unaffected by
the small attraction J; superconductivity is just a matter of qua-
siparticles (Capone et al., 2002). Therefore, a quasiparticle at-
traction exceeding their bandwidth cannot correspond to an
instability toward a Mott insulator, which must involve also the
Hubbard bands, but at most toward a breakdown of a
quasiparticle-based Fermi liquid.
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FIG. 6. (Color online) Impurity spectral function with a rigid
bath characterized by a flat density of states (no DMFT self-
consistency) across the critical point: the curves from top to
bottom correspond to the evolution from the Kondo screened
regime toward the pseudogap regime. The dotted line is the
spectral function deep inside the non-Fermi-liquid phase J
> Tk. Inset: The same curves plotted on a larger energy range,
where the pseudogap of the dotted line is visible. The Fermi-
liquid behavior corresponds to the normal state of the SCS
superconducting phase for J <J, (analogous to the overdoped
regime of cuprates), whereas the pseudogap behavior corre-
sponds to the SCS normal state for J>J, (analogous to the
underdoped cuprates). From De Leo and Fabrizio, 2005.

Fermi-liquid phase characterized by a pseudogap in the
single-particle spectrum and by several other singular
properties (De Leo and Fabrizio, 2005). A very qualita-
tive description of this phase is that, unlike the Kondo
phase, two spins out of three pair off antiferromagneti-
cally at any given time, leaving out a single spin 1/2
available for Kondo screening. Since orbital degeneracy
is unbroken, this residual spin $=1/2 also carries orbital
momentum L =1, which corresponds to an overscreened
non-Fermi-liquid situation (De Leo and Fabrizio, 2005).
In this regime, it was predicted that the impurity contri-
butions to the specific-heat coefficient and the pair sus-
ceptibility in the s-wave channel (14) diverge as 7-'" at
low temperature 7. In addition, the conduction electron
scattering rate has a nonanalytic temperature behavior
T?5. The local response functions to either a quadrupo-
lar field, which splits the orbital degeneracy, or a mag-
netic field, which polarizes both spins and orbitals, also
diverge as T-'°. The two phases, the Kondo screened
phase and the pseudogap phase, are separated by a criti-
cal point at J=J,=Tg. It is endowed with a finite en-
tropy (1/2)In3, and with a divergent superconducting
susceptibility with an exponent 1/3. As shown in Fig. 6,
the single-particle spectral function displays strong de-
viations from a normal metal in the pseudogap phase
and at the critical point.

Near this critical point, it has been found that the low-
energy dynamics around the impurity is controlled by
two separate energy scales (De Leo and Fabrizio, 2005),
T. and T_, whose behavior is very different as a function
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of increasing U/W. A higher energy scale 7 is set by
the critical J.,~ Tk and represents the width of a broad
incoherent resonance; it evolves smoothly and unevent-
fully as the critical point is crossed (see Fig. 6). A lower
energy scale T_o|J-Tg|> measures instead the distance
from the critical point, and leads simultaneously to a
narrow resonance in the Fermi-liquid region and to an
equally narrow spectral density dip (the “pseudogap”) in
the pseudogap phase (De Leo and Fabrizio, 2005). Since
in this phase the impurity still carries a residual spin 1/2,
there remains a finite value of the spectral function at
the chemical potential, and the gap is not complete. The
pseudogap widens if J is increased, and the cusplike dip
in the impurity spectral function smoothly turns into a
cusplike peak, the value at the chemical potential stay-
ing fixed and constant. This behavior is shown by the
dotted curve in Fig. 6 corresponding to a very large
pseudogap (see inset), possessing a very small peak at
the chemical potential. This indicates the existence of
yet another energy scale besides 7., and 7_ that sets the
width of the cusp peak.

B. Anderson impurity with a self-consistent bath
in DMFT

The rigid bath AIM behavior and its critical point re-
viewed above provide a guide to the DMFT results once
the impurity-bath coupling is self-consistently deter-
mined. First, since Tk coincides within DMFT with the
renormalized ZW, which in turn vanishes when the con-
tinuous Mott transition is approached, the impurity criti-
cal point is inevitably met before the metal-insulator
transition as U/W is increased, at some U, =< U,. This
entails several important consequences:

e The normal state may be a Fermi liquid only far be-
low the continuous metal-insulator transition, as may
be the case in nonexpanded fullerides. Expanded
compounds, on the other hand, are expected to have
a non-Fermi-liquid normal state, and eventually a
pseudogap, possibly developing before the first-order
transition to the antiferromagnetic insulator.

e The SCS superconducting pocket near the Mott tran-
sition reflects the leading instability of the impurity
critical point. In other words, SCS superconductivity
is the way in which the lattice model responds to
impurity criticality and avoids it.

e The lower-energy scale vanishes right at the critical
point, 7_=0. Here 7, =J thus remains as the only
energy scale controlling the magnitude of the super-
conducting energy gap. Away from U=U, T_#0,

and the amplitude of the superconducting gap should

decrease monotonically with increasing (T,-T_)/T,

(Capone et al., 2004) since T_ cuts offs the local pair-

ing instability. Therefore, the gap should be maxi-

mum right at the impurity critical point (the top of
the dome).

e Even though the normal phase is non-Fermi-liquid,
well-defined Bogoliubov quasiparticles should exist
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FIG. 7. (Color online) Calculated weights of the zero-

frequency delta-function contribution to the optical conductiv-
ity for the superconducting phase (superfluid stiffness, squares)
and the normal phase (Drude weight, circles). The zero-
frequency anomalous self-energy is also plotted. Note the
higher values in the SCS superconductor relative to the non-
superconducting metal phase.

inside the SCS superconducting pocket.

The last statement comes from the fact that, at the
impurity critical point, superconductivity provides a new
screening channel that helps the system get rid of the
finite residual entropy at the critical point, thus eliminat-
ing non-Fermi-liquid singularities (De Leo and Fabrizio,
2005; Schiro et al., 2008).

The role of superconductivity as a novel screening
channel close to the impurity model critical point should
be reflected, in the lattice model, into a gain of band
energy (the tight-binding “kinetic energy”) at the onset
of superconductivity. Owing to a sum rule connecting
kinetic energy and zero-frequency optical conductivity
(sometimes referred to as the Drude weight) (Scalapino
et al., 1993), the onset of SCS superconductivity close to
the Mott transition should lead to a Drude weight in-
crease. This prediction is borne out by the full DMFT
solution of our Hamiltonian. In Fig. 7, we plot the w
=0 (dc) optical conductivity of our model supercon-
ductor (where it coincides with the superfluid stiffness),
defined by (Toschi et al., 2005)

DSZ—Ekin'f‘Xj]'(q*)O,Q:O), (16)

where E\j, is the kinetic energy and yj; is the static limit
of the paramagnetic part of the electromagnetic kernel,

2
6= g2 [ aenaviercies)c e

+ F(e,w,)F(e,w,)], (17)

where V(e)=(42—€)/3 is the current vertex in the Be-
the lattice while G(e,w,) and F(e,w,) are the normal
and anomalous lattice Green’s functions, respectively. In
the same figure, we also plot the zero-frequency dc con-
ductivity (the Drude weight) of the underlying meta-
stable solution where superconductivity is inhibited; this
state is meant to provide a sketch of the real normal
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FIG. 8. (Color online) Energetic balance underlying supercon-
ductivity. AEpoFEgm—Eﬁn is the difference between the po-
tential energies of the superconducting and normal solutions,
while AE,=E3; — EN, is the same difference between the ki-

netic energies of the two solutions.

phase above T.. The Drude weight is given by Egs. (16)
and (17) with F(e,w,)=0. Upon entering the SCS dome
from the low-U/W side, the superconducting phase ini-
tially loses kinetic energy compared to the normal state
as in ordinary BCS theory. However, as U/W increases
to and beyond the dome maximum, the loss changes to a
gain, and indeed most of the SCS superconducting
pocket is predicted to have a larger weight of the zero-
frequency optical absorption than the nonsuperconduct-
ing state. The same behavior is displayed (Fig. 8) by the
energy balance between the two solutions. Only far be-
low the Mott transition is the superconductor stabilized
by a potential energy gain, as is the case in BCS theory.
In the pseudogap regime, corresponding to the ex-
panded fullerides near the Mott transition, the stabiliza-
tion is associated with a kinetic energy gain.

A similar phenomenon is well known in the optical
conductivity of high-T. copper oxides (Carbone et al.,
2006). Our calculations show that an increase in the
zero-frequency optical conductivity or a kinetic energy
gain does not actually exclude an electron-phonon pair-
ing mechanism, but rather demonstrates the key impor-
tance of strong electronic correlations. Thanks to pair-
ing, the motion of carriers in the superconducting phase
is facilitated with respect to the pseudogap nonsuper-
conducting metal. In that anomalous metal (a non-
Fermi-liquid) the interaction constraints jam the free
propagation of quasiparticles, causing a kinetic energy
cost, partly released with the onset of superconductivity.
It would be of interest if the optical conductivity in-
crease demonstrated in cuprates could be investigated in
fullerides, both regular and expanded, since that would
help discriminate between conventional BCS supercon-
ductivity and SCS.

V. DISCUSSION OF EXPERIMENTAL PROBES

In the following, we discuss whether and how the
dominance of strong correlation we propose for the su-
perconducting fullerides can be reconciled with the list
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FIG. 9. (Color online) Specific-heat jump, in units of T,y,, as a
function of U/W. For comparison we also show the behavior
of 1/Z(U), which should correspond to the same quantity if
Fermi-liquid theory is valid.

of experimental facts given earlier, supporting a conven-
tional BCS behavior. The first quantity we discuss is the
specific-heat jump at 7,.. Within BCS theory, the specific-
heat jump ACy at T, is

ACyIT, =152y, (18)

where v, is the specific-heat coefficient of the metallic
phase (Cy=v,T), proportional to the mass enhancement
m*/m, in our case 1/Z. The measured specific-heat jump
leads, through Eq. (18), to an estimate of y, = 3,. This is
indeed a rather low and regular value that has been
commonly advocated as evidence of weak correlations
in fullerenes. However, the standard argument holds
only if the normal phase is of Fermi-liquid type, which is
not applicable close to a Mott transition, independent of
any model.

In Fig. 9 we plot the jump in Cy at T, for increasing
U/W, compared with the Fermi-liquid estimate 1/Z.*
After a region where the calculated quantity closely fol-
lows 1/Z, ACy/T. flattens out and stays roughly con-
stant around 4y, up to the Mott transition, despite a
diverging 1/Z (see Fig. 9). This shows that the energy
scale that controls the superconducting instability is con-
stant near the Mott transition, consistent with the single-
impurity prediction that this scale should be identified
by T,, a quantity of order J. The conclusion here is that
a normally sized specific-heat jump does not imply BCS
superconductivity in fullerides.

Another physical quantity that seemingly pointed to-
ward weak correlations in fullerides is the magnetic sus-
ceptibility measured in the normal phase, consistent

*As mentioned in Sec. IIL.A, for the present three-orbital
model it has not been practical to include in Eq. (6) a number
of excited states sufficient to make the truncation error in the
Green’s function negligible. For the data reported in Fig. 9 we
have an average error of 3-4 %, which does not allow us to
determine 7. with sufficient accuracy. Yet the jump of the spe-
cific heat relative to 7, turns out to be almost independent of
the truncation error and the details of the calculations.
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FIG. 10. (Color online) Normal-phase uniform magnetic sus-
ceptibility y normalized to the noninteracting value y,. For
U=0, x= o, the difference being extremely small since J<W.
The plateau between U/W=0.5 and 1 signals the effective

crossover from a Fermi liquid with §=3/2 per site to a non-
Fermi-liquid with S=1/2 per site.

with a weakly correlated Fermi liquid and a Stoner en-
hancement of about a factor 2-3. This argument again
becomes inconclusive once the Fermi-liquid scenario is
abandoned. In Fig. 10 we plot as a function of U/W the
uniform magnetic susceptibility in the normal phase cal-
culated by DMFT. After an initial Stoner enhancement
at small U/ W, the susceptibility flattens out and remains
almost constant before a rapid growth, which takes place
close to the Mott transition. In the plateau region, the
susceptibility enhancement is a factor between 2 and 3
with respect to the value at U=0, surprisingly close to
the experimental enhancement, covering the whole su-
perconducting domain. Physically, the origin of this sus-
ceptibility plateau for increasing U is quite instructive. It
corresponds to the gradual crossover of the maximum
spin available at each site from §=3/2 in the Fermi lig-
uid at small U<U,, (Kondo screened AIM) to §=1/2
near Mott and large U> U,,,, where Fermi-liquid behav-
ior is lost. In essence, at large U, each molecule is effec-
tively in a (dynamically) JT-distorted state, where two
out of three electrons are spin paired (Auerbach et al.,
1994). We are thus led to conclude that the relatively
weak observed enhancement of susceptibility does not
correspond to a Stoner-enhanced, weakly correlated
Fermi liquid—in fact, quasiparticles do not even exist in
most of the plateau region.

Finally, we address signatures of the strongly corre-
lated scenario that we expect will show up in spec-
troscopies including the tunneling I-V characteristics
and angle-resolved photoemission  spectroscopy
(ARPES). This is initially embarrassing on two accounts.
First, ARPES spectroscopies are k-vector resolved,
whereas in DMFT we do not have access to any spatial
structure. Second, tunneling spectroscopies are ex-
tremely well resolved near zero voltage, whereas our
Lanczos method yields a much poorer spectral function
resolution in this region.

We address tunneling first. Although Fig. 6 refers to
the impurity Cq,*~ molecule, we believe that similar fea-
tures would remain after imposing full DMFT self-
consistency in the normal phase—if we had a better low-
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frequency numerical resolution than we presently have.
Hence, we suggest that tunneling /-V spectra of ex-
panded fullerides be measured and examined, in order
to bring out the expected rich structure of the type
sketched in Fig. 6.

Next, we consider photoelectron spectroscopy. Again,
according to the single-impurity analysis (De Leo and
Fabrizio, 2005), the imaginary part of the single-particle
self-energy should be finite and of order 7T, almost ev-
erywhere in the non-Fermi-liquid normal phase above
T,.. This has the following implications for ARPES:

e The fulleride photoemission spectrum should show
t,, bands dispersing in the Brillouin zone with non-
zero bandwidth, governed by the energy scale T,.
The value of T, decreases with increasing U/W (in-
creasing expansion), from W at U=0 to (larger than)
J at the Mott transition.

e There should be a spectral peak broadening of the
same order of magnitude 7, as the apparent
k-resolved band dispersion. In particular, the broad-
ening should remain constant on approaching the
Fermi surface—unlike a Fermi-liquid phase where
quasi-particle peaks become narrower and narrower.

The momentum independence of the DMFT self-
energy implies that, in this approximation, the k modu-
lation of the electronic dispersion is assumed to remain
unaffected by interactions. Within this assumption and
without requiring too high accuracy in frequency, we can
compute a toy k-resolved spectral function according to

1

W= &k — 2DMFT(LO) ’

Ak,w)=- 717 Im (19)

where gy is the noninteracting dispersion and 2 pypr(w)
is the DMFT self-energy calculated with a finite number
of baths. The effect of the local self-energy will be to
change the effective bandwidth and give rise to finite-
lifetime effects, even if the k modulation of the disper-
sion is unrenormalized. For our Bethe lattice, there is no
straightforward definition of momentum, and we rem-
edy that by computing A (e, ), which corresponds to Eq.
(19) with g, —e.

In Fig. 11 we show theoretical ARPES results for
some choices of ¢ obtained using the DMFT self-energy
for temperatures above 7., both for a value of U/W
=1.1, which lies close to the maximum of the supercon-
ducting dome but still on the less correlated side, corre-
sponding to unexpanded (or moderately expanded) ful-
lerides, and for a value that lies in the downward branch
of the dome (U/W=1.3), corresponding to a highly ex-
panded fulleride. We note in both cases the existence of
an incoherent low-energy feature dispersing with a re-
duced but nonzero electron bandwidth of 0.1W. In the
expanded case, the pseudogap feature is clearly present.

Recent photoemission spectra of K;Cqy (Goldoni,
2007) indicate an overall dispersion bandwidth of about
160 meV, about a quarter of the bare calculated band-
width in the local-density approximation. The experi-
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FIG. 11. (Color online) Simulated photoemission spectra
elaborated from the DMFT result in the normal phase. The
left panel refers to U/W=1.1 (corresponding to unexpanded
fullerides), while the right panel is for U/W=1.3 (correspond-
ing to expanded fullerides).

mental spectral peak does not show the usual Fermi-
liquid-like narrowing on approaching the Fermi level, a
fact that is in agreement with our expectation for a non-
Fermi-liquid (although a nonexpanded fulleride like
K;3Cqy probably lies at the beginning of the SCS dome,
where deviations from Fermi-liquid behavior are not
large). Experimentally the peak does not appear to cross
the Fermi level, and the intensity instead drops, sugges-
tive of a pseudogap. Unfortunately, the spectrum shows
very strong vibronic effects, reflecting the retarded
strong electron Jahn-Teller coupling. This aspect is not
covered by our unretarded approximation, but it heavily
affects the line shape and hampers the extraction of
purely electronic features. Treatment of the vibronic ef-
fects, and a quantitative description of dispersion, will
require abandoning in the future our approximation of
infinitely fast phonon dynamics, as well as a possible ex-
tension to cluster extensions of DMFT that allow for
different renormalizations of different momenta (Het-
tler et al., 2000; Kotliar et al., 2001).

VI. CONCLUSIONS

Summarizing, we addressed the contradictory proper-
ties of expanded trivalent fulleride superconductors and
insulators—and to some extent of the whole family of
fullerides—and presented a theoretical scenario empha-
sizing the role of strong electron correlations. The sce-
nario is especially designed and appropriate for the
more expanded members of the family, such as
(NH3),NaK;Cqp, LizCeo, Cs3_,K,Cgp, and Cs;_Rb,Cqy,
and the recently discovered A15 Cs;Cg, which are near
or past the Mott transition.

Our model explains the dome-shaped increase and
subsequent decrease of T, upon expansion of the lattice
spacing in fullerides, the coexistence of metallic behav-
ior and of Mott insulator features such as the large
NMR spin gap in all fullerides, and the S=1/2 spin in
the insulating state (identified as a Mott-Jahn-Teller in-
sulator). It explains why the s-wave T can be as high as
40 K even though the Coulomb interaction strength is
prohibitive, and why 7. does not automatically decrease
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upon increase of U/W. It also accounts for more stan-
dard observations, such as regular specific-heat jumps
and moderately high spin susceptibilities, facts that were
previously construed as evidence for conventional BCS
superconductivity.

In addition to those listed in the previous section, one
can anticipate a number of additional experiments that
could provide incontrovertible evidence for strongly cor-
related superconductivity in fullerides. The tunneling
I-V characteristics observable, e.g., by a scanning tunnel-
ing spectroscopy tip, should, in an expanded fulleride,
develop the low-energy features typical of the Kondo
impurity spectral function. The isotope effect upon car-
bon substitution should also behave very unconvention-
ally, and eventually get smaller as the superconducting
dome is passed and the Mott transition is approached
upon expansion. In this regime, as the quasiparticle
bandwidth ZW gradually falls below the typical energy
fiw of an increasing fraction of the eight H, Jahn-Teller
modes, the associated retardation effect should in fact
disappear. The expanded fullerides and related materi-
als, clearly not investigated sufficiently so far, deserve in
our view the highest experimental attention. They com-
bine elements that make them members of an expanded
high-temperature superconductor family. They combine
the neighborhood of the Mott transition and the pre-
dominance of strong electron correlations with conven-
tional elements such as electron-phonon s-wave pairing,
which are typical of BCS systems. Our study identifies a
pseudogap and other features in the /-V tunneling spec-
trum, an increase of zero-frequency optical weight in the
optical response of the superconducting phase, and the
emergence of two separate energy scales in ARPES as
the most urgent experimental undertakings that could
confirm or falsify our claims.
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