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All our former experience with application of quantum theory seems to say that what is predicted by
quantum formalism must occur in the laboratory. But the essence of quantum formalism—
entanglement, recognized by Einstein, Podolsky, Rosen, and Schrödinger—waited over 70 years to
enter laboratories as a new resource as real as energy. This holistic property of compound quantum
systems, which involves nonclassical correlations between subsystems, has potential for many
quantum processes, including canonical ones: quantum cryptography, quantum teleportation, and
dense coding. However, it appears that this new resource is complex and difficult to detect. Although
it is usually fragile to the environment, it is robust against conceptual and mathematical tools, the task
of which is to decipher its rich structure. This article reviews basic aspects of entanglement including
its characterization, detection, distillation, and quantification. In particular, various manifestations of
entanglement via Bell inequalities, entropic inequalities, entanglement witnesses, and quantum
cryptography are discussed, and some interrelations are pointed out. The basic role of entanglement
in quantum communication within a distant laboratory paradigm is stressed, and some peculiarities
such as the irreversibility of entanglement manipulations are also discussed including its extremal
form—the bound entanglement phenomenon. The basic role of entanglement witnesses in detection
of entanglement is emphasized.
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I. INTRODUCTION

Although in 1932 von Neumann had completed the
basic elements of a nonrelativistic quantum description
of the world, it was Einstein, Podolsky, and Rosen
�EPR� and Schrödinger who first recognized a “spooky”
feature of quantum machinery which lies at the center of
interest of physics of the 21st century �von Neumann,
1932; Einstein et al., 1935�. This feature implies the ex-
istence of global states of a composite system which can-
not be written as a product of the states of individual
subsystems. This phenomenon, known as “entangle-
ment,” was originally called by Schrödinger “Ver-
schränkung,” which underlines the intrinsic order of sta-
tistical relations between subsystems of a compound
quantum system �Schrödinger, 1935�.

Paradoxically, entanglement, which is considered to
be the most nonclassical manifestation of quantum for-
malism, was used by Einstein, Podolsky, and Rosen in
their attempt to ascribe values to physical quantities
prior to measurement. It was Bell who showed the op-
posite: it is just entanglement which irrevocably rules
out such a possibility.

In 1964 Bell accepted the EPR conclusion—that the
quantum description of physical reality is not
complete—as a working hypothesis and formalized the
EPR idea of deterministic world in terms of the local
hidden variable model �LHVM� �Bell, 1964�. The latter
assumes that �i� measurement results are determined by
properties the particles carry prior to, and independent
of, the measurement �“realism”�; �ii� results obtained at
one location are independent of any actions performed
at spacelike separation �“locality”�; and �iii� the setting
of local apparatus is independent of the hidden variables
which determine the local results �“free will”�.1 Bell
proved that the above assumptions impose constraints in
the form of the Bell inequalities on statistical correla-
tions in experiments involving bipartite systems. He
then showed that the probabilities for the outcomes ob-
tained when some entangled quantum state is suitably
measured violate the Bell inequality. In this way en-
tanglement is that feature of quantum formalism which
makes it impossible to simulate quantum correlations
within any classical formalism.

Greenberger, Horne, and Zeilinger �GHZ� went be-

yond Bell inequalities showing that entanglement of
more than two particles leads to a contradiction with
the LHVM for nonstatistical predictions of quantum for-
malism �Greenberger et al., 1989�. Surprisingly, only at
the beginning of the 1990s were general theoretical re-
sults concerning violation of Bell inequalities obtained
�Gisin, 1991; Popescu and Rohrlich, 1992�.

The transition of entanglement from gedanken ex-
periments to laboratory began in the mid-1960s �Kocher
and Commins, 1967; Freedman and Clauser, 1972�.
However it was Aspect et al. who first performed a con-
vincing test of violation of the Bell inequalities �Aspect
et al., 1981, 1982�. Since then many experimental tests of
quantum formalism against the LHVM have been per-
formed �Ou and Mandel, 1988; Kwiat et al., 1995; Tittel
et al., 1998, 1999; Weihs et al., 1998; Rowe et al., 2001;
Hasegawa et al., 2004; Bovino, Castagnoli, et al., 2006;
Ursin et al., 2007�. These experiments strongly con-
firmed the predictions of the quantum description.2

In fact, a fundamental nonclassical aspect of entangle-
ment was recognized in 1935. Inspired by the EPR pa-
per, Schrödinger analyzed some physical consequences
of quantum formalism and he noticed that the two-
particle EPR state does not allow individual states to be
ascribed to the subsystems, implying “entanglement of
predictions” for the subsystems. Then he concluded:
“Thus one disposes provisionally �until the entangle-
ment is resolved by actual observation� of only a com-
mon description of the two in that space of higher di-
mension. This is the reason that knowledge of the
individual systems can decline to the scantiest, even to
zero, while that of the combined system remains con-
tinually maximal. The best possible knowledge of a
whole does not include the best possible knowledge of
its parts—and this is what keeps coming back to haunt
us” �Schrödinger, 1935�.3

This curious aspect of entanglement was long unintel-
ligible, as it was related to the notion of “knowledge” in
the quantum context. Only in the second half of the
1990s was it formalized in terms of entropic inequalities
based on the von Neumann entropy �Horodecki and
Horodecki, 1994; R. Horodecki et al., 1996; Cerf and
Adami, 1997�.4 Violation of these inequalities by en-
tangled states is a signature of entanglement of quantum
states; however, the physical meaning of this was un-
clear. An interesting attempt to solve this puzzle in
terms of conditional entropy is due to Cerf and Adami
�1997�. Soon afterward it turned out that the latter, with
a minus sign, called coherent information, is a fundamen-
tal quantity responsible the for capability of transmis-
sion of quantum information �Schumacher and Nielsen,
1996; Lloyd, 1997�. Transmission is possible exactly in

1See, however, Norsen �2007� for derivation of the Bell theo-
rem without involving the notion of “realism” �we thank Gi-
ancarlo Ghirardi for pointing out this problem�.

2However so far, the above experiments suffer from a loop-
hole; see Gill �2003�, Brunner et al. �2007�.

3An English translation appears in Quantum Theory and
Measurement, edited by J. A. Wheeler and W. H. Zurek,
Princeton University Press, Princeton, 1983, p. 167.

4The other formalization was proposed in terms of majoriza-
tion relations �Nielsen and Kempe, 2001�.
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those situations in which “Schrödinger’s demon” is
“coming to haunt us,” i.e., when the entropy of the out-
put system exceeds the entropy of the total system. We
mention that this story was given a new twist in terms of
a quantum counterpart of the Slepian-Wolf theorem in
classical communication �Horodecki, Oppenheiyn, et al.,
2005, 2007�. In this approach the violation of entropic
inequalities implies the existence of negative quantum
information, which is an “extra” resource for quantum
communication. Interestingly, only recently was a direct
violation of the entropic inequalities experimentally
demonstrated, confirming the breaking of classical statis-
tical order in compound quantum systems �Bovino et al.,
2005�.

The present-day entanglement theory has its roots in
some key discoveries: quantum cryptography with the
Bell theorem �Ekert, 1991�, quantum dense coding �Ben-
nett and Wiesner, 1992�, and quantum teleportation
�Bennett et al., 1993�,5 including teleportation of en-
tanglement of EPR pairs �so-called entanglement swap-
ping� �Yurke and Stoler, 1992a, 1992b; Żukowski et al.,
1993; Bose et al., 1998�. All such effects are based on
entanglement and all have been demonstrated in experi-
ments �see Mattle et al., 1996; Bouwmeester et al., 1997;
Boschi et al., 1998; Furusawa et al., 1998; Pan et al., 1998;
Jennewein et al., 2000; Naik et al., 2000; Tittel et al.,
2000�. In fact, the above results including the paper on
quantum cryptography �BB84� �Bennett and Brassard,
1984� and the idea of quantum computation �Feynman,
1982; Deutsch, 1985; Shor, 1995; Steane, 1996b� were the
basis for a new interdisciplinary domain called quantum
information �Lo et al., 1999; Bouwmeester et al., 2000;
Nielsen and Chuang, 2000; Alber, Beth, et al., 2001;
Braunstein and Pati, 2003; Bruß and Leuchs, 2007�,
which incorporates entanglement as a central notion.

It has become clear that entanglement is not only the
subject of philosophical debates, but a new quantum re-
source for tasks that cannot be performed by means of
classical resources �Bennett, 1998�. It can be manipu-
lated �Popescu, 1995; Bennett, Brassard, et al., 1996;
Bennett, DiVincenzo, Smolin, et al., 1996; Gisin, 1996;
Raimond et al., 2001�, broadcast �Buzek et al., 1997�,
controlled, and distributed �Beige et al., 2000; Cirac and
Zoller, 2004; Mandilara et al., 2007�.

Remarkably, entanglement is a resource which,
though it does not carry information itself, can help in
such tasks as the reduction of classical communication
complexity �Cleve and Buhrman, 1997; Buhrman et al.,
2001; Brukner et al., 2004�, entanglement-assisted orien-
tation in space �Brukner et al., 2005; Bovino, Giardina, et
al., 2006b�, quantum estimation of a damping constant
�Venzl and Freyberger, 2007�, frequency standards im-
provement �Wineland et al., 1992; Huelga et al., 1997;
Giovannetti et al., 2004� �see in this context Boto et al.,
2000�, and clock synchronization �Jozsa et al., 2000�. En-

tanglement plays a fundamental role in quantum com-
munication between parties separated by macroscopic
distances �Bennett, DiVincenzo, Smolin, et al., 1996�.

Although the role of entanglement in quantum com-
putational speedup is not clear �Kendon and Munro,
2006�, it has played an important role in the develop-
ment of quantum computing, including measurement-
based schemes, one-way quantum computing �Raussen-
dorf and Briegel, 2001�,6 and linear optics quantum
computing �Knill et al., 2001�.7 Entanglement has also
given new insights for understanding many physical
phenomena including super-radiance �Lambert et al.,
2004�, superconductivity �Vedral, 2004�, disordered sys-
tems �Dür et al., 2005�, and the emergence of classicality
�Zurek, 2003�. In particular, understanding the role of
entanglement in existing methods of simulations of
quantum spin systems allowed for significant improve-
ment of the methods, as well as comprehension of their
limitations �Vidal, 2003, 2004; Verstraete, Porras, and
Cirac, 2004; Anders, Plenig, et al., 2006�. The role of
entanglement in quantum phase transitions �Osborne
and Nielsen, 2002; Osterloh et al., 2002; Vidal et al., 2003;
Latorre et al., 2004; Verstraete, Popp, and Cirac, 2004;
Larsson and Johannesson, 2006� has been studied.
Divergence of correlations at critical points is always
accompanied by divergence of a suitably defined en-
tanglement length �Verstraete, Popp, and Cirac, 2004�.
The concept of entanglement length originates from
Aharonov, who studied a critical phenomenon in the
context of fault-tolerant quantum computing �Aharonov,
1999�. Last but not least, entanglement was also used on
a more deep conceptual level to derive Born’s rule with
the help of the symmetry entanglement under local uni-
tary operations, the property called “entanglement as-
sisted invariance” or “envariance” �Zurek, 2005; see also
Zurek, 2009�.

Unfortunately, quantum entanglement has three dis-
agreeable but interesting features: It has in general a
very complex structure, it is fragile with respect to envi-
ronment, and it cannot be increased on average when
systems are not in direct contact but distributed in spa-
tially separated regions. The theory of entanglement
tries to give answers to fundamental questions such as �i�
how to optimally detect entanglement theoretically and
in the laboratory; �ii� how to reverse the inevitable pro-
cess of degradation of entanglement; and �iii� how to
characterize, control, and quantify entanglement.

The history of questions �i� and �ii� has its origin in the
seminal papers of Werner and Popescu �Werner, 1989;
Popescu, 1994�. Werner not only gave an accurate defi-
nition of separable states �those mixed states that, are
not entangled�, but also noted that there exist entangled
states that, like separable states, admit the LHV model,
and hence do not violate Bell inequalities. Popescu

5Quantum teleportation with continuous variables in an infi-
nite dimensional Hilbert space was first proposed by Vaidman
�1994� and investigated by Braunstein and Kimble �1998�.

6For a comprehensive review, see Browne and Briegel, 2006.
7It has been shown that linear optics quantum computing can

be viewed as a measurement based on one-way computing
�Popescu, 2006�.
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�1995� showed that, with the system in such a state, by
means of local operations and postselection one can get
a new state whose entanglement can be detected by Bell
inequalities. This idea was developed by Gisin, who used
so-called filters to enhance the violation of Bell inequali-
ties �Gisin, 1996�. In fact, this idea turned out to be a
trigger for a theory of entanglement manipulations
�Bennett, Brassard, et al., 1996�.

Soon afterwards, Peres showed that if, a state is
separable,8 then after partial transpose9 of the density
matrix on one subsystem of a compound bipartite sys-
tem, it is still a legitimate state �Peres, 1996a�. Surpris-
ingly, the Peres condition appeared to be a good test for
entanglement.10 As the partial transpose is a positive
map, it was realized that positive maps can serve as good
detectors of entanglement. However, they cannot be
implemented directly in the laboratory, because they are
unphysical.11 Fortunately there is a “footbridge” �Jami-
ołkowski �1972� isomorphism� which allows us to go to
physical measurable quantities, Hermitians operators.
This constitutes a necessary and sufficient condition for
separability on both the physical level of observables
and the nonphysical one engaging positive maps �M.
Horodecki et al., 1996�. This characterization of en-
tanglement, although nonoperational, provides a basis
for the general theory of detection of entanglement. A
historical note is in order here. That is, it turned out that
both the general link between separability and positive
maps as well as the Peres-Horodecki theorem were first
known and expressed in a slightly different language in
the 1970s �Choi, 1972� �see also Størmer, 1963;
Woronowicz, 1976; Osaka, 1991�. The rediscovery by
Peres and Horodecki brought powerful methods to en-
tanglement theory as well as caused a revival of research
on positive maps, especially the so-called nondecompos-
able ones.

Terhal first constructed a family of nondecomposable
positive linear maps based on entangled quantum states
�Terhal, 2001�. She also pointed out that a violation of a
Bell inequality can be expressed as a witness for en-
tanglement �Terhal, 2000�.12 Since then the theory of en-
tanglement witnesses has been developed �Lewenstein et
al., 2000; Bruß et al., 2002; Gühne et al., 2003; Brandão,
2005; Kiesel et al., 2005; Tóth and Gühne, 2005; Brandão
and Vianna, 2006�, including a nonlinear generalization
�Gühne and Lewenstein, 2004b; Gühne and Lütkenhaus,
2006� and the study of indistinguishable systems �Schlie-
mann et al., 2001; Eckert et al., 2003�. The general meth-
ods for constructing entanglement witnesses for detect-

ing genuine multipartite entanglement in experiments
were presented by Tóth et al. �2009�.

The concept of entanglement witness has been ap-
plied to different problems in statistical systems
�Wieśniak et al., 2005; Wu et al., 2005; Brukner et al.,
2006; Cavalcanti et al., 2006�, quantum cryptography
�Curty et al., 2005�, quantum optics �Stobińska and Wód-
kiewicz, 2005, 2006�, condensed-matter nanophysics
�Blaauboer and DiVincenzo, 2005�, bound entanglement
�Hyllus et al., 2004�, experimental realization of cluster
states �Vallone et al., 2007�, and hidden nonlocality
�Masanes et al., 2007�. At this time, in precision experi-
ments multipartite entanglement was detected using en-
tanglement witness operators �Barbieri et al., 2003;
Bourennane et al., 2004; Roos et al., 2004; Altepeter et
al., 2005; Häffner, Hänsel, et al., 2005; Leibfried et al.,
2005; Mikami et al., 2005; Resch et al., 2005; Lu et al.,
2007�.

As one knows, the main virtue of entanglement wit-
nesses is that they provide an economic method of de-
tection of entanglement that does not need full �tomog-
raphic� information about the state. A a natural question
arises: How does one estimate optimally the amount of
entanglement of a compound system in an unknown
state if only incomplete data in the form of average val-
ues of some operators detecting entanglement are acces-
sible? This question led to the new inference scheme for
all processes where entanglement is measured. It in-
volves a principle of minimization of entanglement un-
der a chosen measure of entanglement with constraints
in the form of an incomplete set of data from experi-
ment �R. Horodecki et al., 1999�. In particular, minimi-
zation of entanglement measures �entanglement of for-
mation and relative entropy of entanglement� under a
fixed Bell-type witness constraint was obtained. Subse-
quently, the inference scheme based on the minimization
of entanglement was successfully applied �Audenaert
and Plenio, 2006; Eisert and Gross, 2007; Gühne,
Reimpell, et al., 2007; Wunderlich and Plenio, 2009� to
estimate entanglement measures from recent experi-
ments measuring entanglement witnesses. This result
shows that the entanglement witnesses are not only eco-
nomic indicators of entanglement but are also helpful in
estimating the entanglement content.

In parallel to entanglement witnesses, the theory of
positive maps was developed which provides, in particu-
lar, tools for the detection of entanglement �Cerf et al.,
1999; Horodecki and Horodecki, 1999; Terhal, 2001;
Kossakowski, 2003; Benatti et al., 2004; Majewski, 2004;
Yu and le Liu, 2005; Breuer, 2006a; Chruściński and
Kossakowski, 2006; Datta et al., 2006; Hall, 2006; Piani,
2006; Piani and Mora, 2007�. Strong inseparability crite-
ria beyond the positive map approach were also found
�Rudolph, 2000; Chen and Wu, 2003; Hofmann and
Takeuchi, 2003; Gühne et al., 2004; Mintert, Kus, et al.,
2005; Clarisse and Wocjan, 2006; Horodecki, Horodecki,
et al., 2006; Devi et al., 2007; Gühne, Hyllus, et al., 2007�.

Separability criteria for continuous variables have also
been proposed �see Sec. XVII.D�. The necessary and
sufficient condition for separability of Gaussian states of

8More formal definitions of entangled and separable states
are given in the next section.

9The positive partial transpose condition is called the Peres
criterion of separability.

10For low-dimensional systems it turned out to be a necessary
and sufficient condition of separability called the Peres-
Horodecki criterion �H. Horodecki et al., 1996�.

11See, however, Horodecki and Ekert, 2002.
12The term “entanglement witness” for operators detecting

entanglement was introduced by Terhal, 2000.
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a bipartite system of two harmonic oscillators was found
independently by Simon and Duan et al. �Duan et al.,
2000; Simon, 2000�. The two approaches are equivalent.
Simon’s criterion is a direct generalization of the partial
transpose to continuous variable �CV� systems, while
Duan et al. started with local uncertainty principles.

Soon afterward Werner and Wolf �2001c� found bound
entangled Gaussian states. Since then the theory of en-
tanglement for continuous variables has been developed
in many directions, especially for Gaussian states, which
are accessible in the current stage of technology �see
Braunstein and Pati, 2003, and references therein�. For
the latter states the problem of entanglement versus
separability was solved completely: operational neces-
sary and sufficient conditions were provided by Giedke,
Kraus, et al. �2001�. This criterion therefore detects all
bipartite bound entangled Gaussian states. Interestingly,
McHugh et al. constructed a large class of non-Gaussian
two-mode continuous variable states for which the sepa-
rability criterion for Gaussian states can be employed
�McHugh, Buzek, et al., 2006�.

Various criteria for continuous variables have been
obtained �Mancini et al., 2002; Raymer et al., 2003; Agar-
wal and Biswas, 2005; Hillery and Zubairy, 2006�. A
powerful separability criterion of bipartite harmonic
quantum states based on the partial transpose was de-
rived which includes the above criteria as special cases
�Shchukin and Vogel, 2005b; Miranowicz and Piani,
2006�.

Undoubtedly, current entanglement theory owes its
form to the discovery of entanglement manipulation
�Popescu, 1995; Bennett, Brassard, et al., 1996�. It was
realized �Bennett, Brassard, et al., 1996� that a natural
class of operations suitable for manipulating entangle-
ment is that of local operations and classical communi-
cation �LOCC�, neither of which can bring in entangle-
ment for free. So the established distant laboratory �or
LOCC� paradigm plays a fundamental role in entangle-
ment theory. Within the paradigm many important re-
sults have been obtained. In particular, the framework
for pure state manipulations has been established, in-
cluding reversibility in asymptotic transitions of pure bi-
partite states �Bennett, Bernstein, et al., 1996�, connec-
tion between LOCC pure state transitions and
majorization theory �Nielsen, 1999�, as well as the effect
of catalysis �Jonathan and Plenio, 1999; Vidal and Cirac,
2001, 2002�. Moreover, inequivalent types of multipartite
entanglement have been identified �Bennett et al., 2000;
Dür, Vidal, et al., 2000�.

Since in the laboratory one usually meets mixed states
representing noisy entanglement, not very useful for
quantum information processing, there was a big chal-
lenge: to reverse the process of degradation of entangle-
ment by means of some active manipulation. Remark-
ably, Bennett, Brassard, et al. �1996� showed that it is
possible to distill pure from noisy entanglement in an
asymptotic regime. It should be noted that, in parallel,
there was intense research aiming at protection of quan-
tum information in quantum computers against decoher-
ence. As a result, error-correcting codes were discovered

�Shor, 1995; Steane, 1996�. Soon it was realized that
quantum error correction and distillation of entangle-
ment are in fact inherently interrelated �Bennett, DiVin-
cenzo, et al., 1996�.

A question fundamental for quantum information
processing then immediately arose: Can noisy entangle-
ment always be purified? A promising result was ob-
tained by Horodecki et al. �1997�, where all two-qubit
noisy entanglement was shown to be distillable. How-
ever, soon afterward a no-go type result �M. Horodecki
et al., 1998� revealed a dramatic difference between pure
and noisy entanglement: namely, there exists bound en-
tanglement. This destroyed the hope that noisy entangle-
ment can have a more or less uniform structure: instead
we encounter peculiarity in the structure of entangle-
ment. Namely, there is free entanglement, which can be
distilled, and bound entanglement—a very weak form of
entanglement. The passivity of the latter provoked re-
search toward identifying any tasks that would reveal its
quantum features. Existence of bound entangled states
follows from the fact that a state with a so-called positive
partial transpose cannot be distilled. The first explicit ex-
amples of such states were provided by Horodecki
�1997�. Further examples �called bound entangled states�
were found by Bennett, DiVincenzo, Mor, et al. �1999�,
Bruß and Peres �2000�, Werner and Wolf �2001c�; see
also Clarisse �2006�, Bruß and Leuchs �2007�, and refer-
ences therein. Interestingly, it was shown recently that
thermal states of some many-body systems can be bound
entangled �Toth et al., 2007�.

The existence of bound entanglement has provoked
many questions, including its relations to the local vari-
able model as well as the long-standing and still open
question of the existence of bound entangled states vio-
lating the positive portial transpose criterion, which
would have severe consequences for communication
theory.

Because of the existence of bound entanglement, the
question “can every entanglement be used for some use-
ful quantum task?” stayed open for a long time. Only
recently was a positive answer for both bipartite and
multipartite states given by Masanes �2005, 2006a� in
terms of so-called activation �P. Horodecki et al., 1999�.
This result allows us to define entanglement not only in
the negative terms of Werner’s definition �a state is en-
tangled if it is not a mixture of product states� but also in
positive terms �a state is entangled if it is a resource for
a nonclassical task�.

One most difficult and fundamental question in en-
tanglement theory concerns the quantification of en-
tanglement. Remarkably, two fundamental measures,
entanglement distillation �Bennett, Bernstein, et al., 1996;
Bennett, Brassard, et al., 1996; Bennett, DiVincenzo, et
al., 1996� and what is now called entanglement cost �Ben-
nett, DiVincenzo, et al., 1996; Hayden et al., 2001�, ap-
peared in the context of manipulating entanglement,
and have an operational meaning. Their definitions
bring to mind a thermodynamical analogy �Popescu and
Rohrlich, 1997; Horodecki et al., 1998b; Vedral and Ple-
nio, 1998�, since they describe two opposite processes—
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creation and distillation, which ideally should be the re-
verse of each other. Indeed, reversibility holds for pure
bipartite states, but fails for noisy as well as for multi-
partite entanglement. The generic gap between these
two measures shows a fundamental irreversibility �M.
Horodecki et al., 1998; Vidal and Cirac, 2001; Yang,
Horodecki, et al., 2005�. This phenomenon has its origin
in the nature of noisy entanglement, and its immediate
consequence is the nonexistence of a unique measure of
entanglement.

Vedral and co-workers �Vedral, Plenio, Rippin, et al.,
1997; Vedral and Plenio, 1998� proposed an axiomatic
approach to quantifying entanglement, in which a
“good” measure of entanglement is any function that
satisfies some postulates. The leading idea �Bennett, Di-
Vincenzo, et al., 1996� is that entanglement should not
increase under local operations and classical communi-
cation, the so-called monotonicity condition. They pro-
posed a scheme to obtain measures satisfying this condi-
tion based on the concept of distance from separable
states, and introduced one of the most important mea-
sures of entanglement, the so-called relative entropy of
entanglement �Vedral, Plenio, Rippin, et al., 1997; Vedral
and Plenio, 1998� �for a more comprehensive review, see
Vedral, 2002�. Subsequently, a general mathematical
framework for entanglement measures was worked out
by Vidal �2000�, who concentrated on the axiom of
monotonicity �hence the term “entanglement mono-
tone”�.

At first sight it could seem that measures of entangle-
ment do not exhibit any ordered behavior. Eisert and
Plenio showed numerically that entanglement measures
do not necessarily imply the same ordering of states �Ei-
sert and Plenio, 1999�. It was further shown analytically
by Miranowicz and Grudka �2004�. However, it turns out
that there are constraints for measures that satisfy suit-
able postulates relevant in an asymptotic regime.
Namely, any such measure must lie between two ex-
treme measures that are two basic operational measures:
distillable entanglement ED and entanglement cost EC
�Horodecki et al., 2000b�. This can be seen as a reflection
of the more general fact that abstractly defined mea-
sures provide bounds for operational measures, which
are of interest as they quantify how well some specific
tasks can be performed.

The world of entanglement measures, even for bipar-
tite states, still exhibits puzzles. One example may is the
phenomenon of locking of entanglement �Horodecki et
al., 2005c�. For most known bipartite measures we ob-
serve a kind of collapse: after removing a single qubit,
for some states, entanglement dramatically decrease.

Concerning multipartite states, some bipartite en-
tanglement measures such as the relative entropy of en-
tanglement or robustness of entanglement �Vidal and
Tarrach, 1999� easily generalize to multipartite states.
See Barnum and Linden �2001� and Eisert and Briegel
�2001� for early candidates for multipartite entangle-
ment measures. In the multipartite case a new ingredient
comes in: namely, one tries to single out and quantify
“truly multipartite” entanglement. The first measure

that reports genuinely multipartite properties is the “re-
sidual tangle” of Coffman et al. �2000�. It is clear that in
the multipartite case even the quantification of entangle-
ment of pure states is a challenge. Interesting new
schemes to construct measures for pure states have been
proposed �Miyake, 2003; Verstraete et al., 2003�.

Entanglement measures allow for the analysis of dy-
namical aspects of entanglement,13 including entangle-
ment decay under interaction with the environment �Yi
and Sun, 1999; Kim et al., 2002; Życzkowski et al., 2002;
Dodd and Halliwell, 2004; Jakóbczyk and Jamróz, 2004;
Miranowicz, 2004a; Montangero, 2004; Yu and Eberly,
2004; Carvalho et al., 2005; Mintert, Carvalho, et al.,
2005; Shresta et al., 2005; Ban, 2006; Ficek and Tanaś,
2006; Wang et al., 2006; Maloyer and Kendon, 2007� and
entanglement production, in the course of quantum
computation �Parker and Plenio, 2002; Kendon and
Munro, 2006� or due to interaction between subsystems.
The latter problem gave rise to the notion of the “entan-
gling power” �Zanardi et al., 2000; Linden et al., 2005� of
a unitary transformation, which can be seen as a higher-
level entanglement theory dealing with entanglement of
operations, rather than entanglement of states �Eisert,
Jacobs, et al., 2000; Collins et al., 2001; Harrow and Shor,
2005; Linden et al., 2005�.

Interestingly, even two-qubit systems can reveal non-
trivial features of entanglement decay. That is, the state
of two entangled qubits, treated with unitary dynamics
and subjected to weak noise, can reach a set of separable
states �see Sec. II� in finite time, while coherence van-
ishes asymptotically �Rajagopal and Rendell, 2001;
Życzkowski et al., 2002; Diósi, 2003�. This effect was in-
vestigated in more realistic scenarios �Dodd and Halli-
well, 2004; Jakóbczyk and Jamróz, 2004; Yu and Eberly,
2004, 2007b, 2009; Tolkunov et al., 2005; Ficek and Ta-
naś, 2006; Wang et al., 2006; Lastra et al., 2007; Vaglica
and Vetri, 2007� �see also Jordan et al., 2007�. It was
called “sudden death of entanglement” �Yu and Eberly,
2006� and demonstrated by Almeida et al. �2007� �see
Santos et al., 2006�.

Note that, apart from entanglement decay, positive ef-
fects of the environment have been investigated: en-
tanglement generated by interference in the measure-
ment process �Bose et al., 1999; Cabrillo et al., 1999�
cavity-loss-induced generation of entangled atoms �Ple-
nio et al., 1999�, atom-photon entanglement conditioned
by photon detection �Horodecki, 2001b�, generation of
entanglement from white noise �Plenio and Huelga,
2002�, entanglement generated by interaction with a
common heat bath �Braun, 2002�, noise-assisted prepa-
ration of entangled atoms inside a cavity �Yi et al., 2003�,
environment-induced entanglement in Markovian dissi-
pative dynamics �Benatti et al., 2003�, and entanglement
induced by a spin chain �Yi et al., 2006�. It has been
demonstrated �Lamata et al., 2007� that it is possible to
achieve an arbitrary amount of entanglement between

13See Amico et al. �2008�, Yu and Eberly �2009�, and refer-
ences therein.
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two atoms using spontaneously emitted photons, linear
optics, and projective measurements.

One pillar of the theory of entanglement is, discov-
ered by Ekert � 1991�, its connection with quantum cryp-
tography �strictly speaking, with its subdomain—
quantum key distribution� as well as with classical
cryptography scenario called secure key agreement
�Gisin and Wolf, 1999, 2000; Collins and Popescu, 2002�.
It seems that the most successful application of quantum
entanglement is that it provides a basic framework for
quantum key distribution �despite the fact that the basic
key distribution protocol BB84 does not use entangle-
ment directly�. This is not just a coincidence. It appears
that entanglement is the quantum equivalent of what is
meant by privacy. Indeed, the main resource for privacy
is a secret cryptographic key: correlations shared by in-
terested persons but not known by any other person.
Now, in the single notion of entanglement, two funda-
mental features of privacy are encompassed in an inge-
nious way. If systems are in a pure entangled state then
at the same time �i� the systems are correlated and �ii� no
other system is correlated with them. The interrelations
between entanglement and privacy theory are so strong
that in many cases cryptographic terminology seems to
be the most accurate language to describe entanglement
�see, e.g., Devetak and Winter, 2005�. An example of a
backreaction—from entanglement to privacy—is the
question of existence of bound information as a counter-
part of bound entanglement �Gisin and Wolf, 2000�. In
fact, the existence of such a phenomenon, conjectured
by Gisin and Wolf, was found by Acín, Ciric, et al. �2004�
for multipartite systems. There is a strong connection
between quantum key distribution and distillation of en-
tanglement. Protocols of entanglement distillation are
based on techniques used in quantum key distribu-
tion, and vice versa �Bennett, DiVincenzo, et al., 1996;
Deutsch et al., 1996; Lo and Chau, 1999; Shor and
Preskill, 2000�. However, quantum key distribution
�QKD� is not equivalent just to distillation of singlets:
one can obtain a secure key even from bound entangled
states �Horodecki et al., 2005d�. This has fundamental
implications: security can be obtained via channels that
cannot faithfully transmit qubits �Horodecki et al., 2008�.

The fact that entanglement represents correlations
that cannot be shared by third parties is deeply con-
nected with monogamy—the basic feature of entangle-
ment. In 1999 Coffman, Kundu, and Wootters first for-
malized monogamy in quantitative terms, observing that
there is inevitable trade-off between the amount of en-
tanglement that qubit A can share with qubit B1 and the
entanglement which the same qubit A shares with some
other qubit B2 �Coffman et al., 2000�. In fact, in 1996 the
issue of monogamy was already touched on by Bennett,
DiVincenzo, et al. �1996�, where it was pointed out that
no system can be EPR correlated with two systems at
the same time; this has direct consequences for entangle-
ment distillation. Monogamy expresses the nonshare-
ability of entanglement �Terhal, 2004�; it is not only cen-
tral to cryptographic applications, but also allows us to
shed new light on physical phenomena in many body

systems such as frustration effects leading to a highly
correlated ground state �see, e.g., Dawson and Nielsen,
2004�.

Entanglement was also investigated within the frame-
work of special relativity and quantum field theory
�Summers and Werner, 1985; Czachor, 1997; Alsing and
Milburn, 2002; Terno, 2004; Caban and Rembieliński,
2005; Peres et al., 2005; Jordan et al., 2006� �see the com-
prehensive review and references therein �Peres and
Terno, 2004��. In particular, entanglement for indistin-
guishable many-body systems was investigated in two
complementary directions. The first �canonical� ap-
proach is based on the tensor product structure �Li et al.,
2001; Paskauskas and You, 2001; Schliemann et al., 2001;
Eckert et al., 2002�, while the second one is based on the
occupation-number representation �Zanardi, 2002; Za-
nardi and Wang, 2002�. Moreover, Verstraete and Cirac
�2003� considered the notion of entanglement in the con-
text of superselection rules more generally. However, it
seems that there is still controversy concerning the
meaning of entanglement for indistinguishable particles
�Wiseman and Vaccaro, 2003�. Recently, the group-
theory approach to entanglement was developed by
Korbicz and Lewenstein �2006� and its connection with
noncommutativity was found.

In general, the structure of quantum entanglement ap-
pears to be complex and many different parameters,
measures, and inequalities are needed to characterize its
different aspects �see Alber, Beth, et al., 2001; Bruß,
2002; Bruß et al., 2002; Gurvits and Barnum, 2002; Ter-
hal, 2002; Eckert et al., 2003; Bengtsson and Życzkowski,
2006; Bruß and Leuchs, 2007�.

Finally, the list of experiments dealing with
entanglement14 is growing quickly: entanglement over
long distances �Tittel et al., 1998, 1999; Weihs et al., 1998;
Marcikic et al., 2004; Peng et al., 2005�, entanglement
between many photons �Zhao et al., 2004� and many ions
�Häffner, Schmidt-Kaler, et al., 2005�, entanglement of
an ion and a photon �Blinov et al., 2004; Volz et al.,
2006�, entanglement of mesoscopic systems �more pre-
cisely, entanglement between a few collective modes car-
ried by many particles� �Altewischer et al., 2002; Juls-
gaard et al., 2004; Fasel et al., 2005�, entanglement
swapping �Pan et al., 1998; Jennewein et al., 2001�, and
the transfer of entanglement between different carriers
�Tanzilli et al., 2005�, etc. �Gisin, 2005�. We now add a
few recent experiments: multiphoton path entanglement
�Eisenberg et al., 2005�, photon entanglement from semi-
conductor quantum dots �Akopian et al., 2006�15 telepor-
tation between a photonic pulse and an atomic ensemble
�Sherson et al., 2006�, violation of the Clauser-Horne-
Shimony-Holt �CHSH� inequality measured by two ob-

14Historically the first experimental realization of a two-qubit
entangling quantum gate �controlled NOT� is due to Monroe et
al. �1995�.

15There was a controversy as to whether in the previous ex-
periment of Stevenson et al. �2006� entanglement was actually
detected �Lindner et al., 2006�.
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servers separated by 144 km �Ursin et al., 2007�, purifi-
cation of two-atom entanglement �Reichle et al., 2006�,
increasing entanglement between Gaussian states �Our-
joumtsev et al., 2007�, and creation of entangled six-
photon graph states �Lu et al., 2007�, generation and
characterization of multipartite Dicke states �Prevendel
et al., 2009; Wieczorek et al., 2009� and the invariance
test of experimental correlation of photonic six-qubit
singlet state �Radmark et al., 2009�.

II. ENTANGLEMENT AS A QUANTUM PROPERTY OF
COMPOUND SYSTEMS

We are accustomed to the statement that on the fun-
damental level nature required a quantum rather than a
classical description. However, the full meaning of this
and all its possible experimental and theoretical implica-
tions are far from trivial �Jozsa, 1999�. In particular, the
“effect” of the replacement of the classical concept of
phase space by the abstract Hilbert space makes a gap in
the description of composite systems. To see this, con-
sider a multipartite system consisting of n subsystems.
According to the classical description the total �pure�
state space of the system is the Cartesian product of the
n subsystem spaces, implying that the total state is al-
ways a product state of the n separate systems. In con-
trast, according to the quantum formalism, the total Hil-
bert space H is a tensor product of the subsystem spaces
H= � l=1

n Hl. Then the superposition principle allows us to
write the total state of the system in the form

��� = �
i1,. . .,in

ci1,. . .,in
�i1� � �i2� � ¯ � �in� , �1�

which cannot in general be described as a product of
states of individual subsystems16 ���� ��1� � ��2� � ¯

� ��n�.
This means that it is in general not possible to assign a

single state vector to any one of n subsystems. It ex-
presses formally the phenomenon of entanglement,
which, in contrast to classical superposition, allows us to
construct an exponentially large superposition with only
a linear amount of physical resources. This is just what
allows us to perform nonclassical tasks. The states on
the left-hand side �LHS� of Eq. �1� appear usually as a
result of direct physical interactions. However, entangle-
ment can also be generated indirectly by application of
the projection postulate �entanglement swapping�.

In practice we encounter mixed rather than pure
states. Entanglement of mixed states is no longer
equivalent to being nonproduct states, as in the case of
pure states. Instead, one calls a mixed state of n systems
entangled if it cannot be written as a convex combina-
tion of product states17 �Werner, 1989b�:

�� �
i

pi�1
i

� ¯ � �n
i . �2�

The states that are not entangled in the light of the
above definition are called separable. In practice, it is
hard to decide if a given state is separable or entangled
base on the definition itself. This so-called separability
problem �see Secs. VI–X� is one of the fundamental
problems concerning entanglement.

The above definition is negative, since a state is en-
tangled if it cannot be written in the form �2�. It should
be noted in the above context that a positive definition
of entangled states was proposed recently, namely, en-
tangled states are those that cannot be simulated by clas-
sical correlations �Masanes et al., 2007�. This interpreta-
tion defines entanglement in terms of the behavior of
the states rather than in terms of their preparation.

Example. For bipartite systems the Hilbert space H
=H1 � H2 with dim H1=dim H2=2 is spanned by the
four-Bell-state entangled basis

��±� =
1

�2
��0��1� ± �1��0��, ��±� =

1
�2

��0��0� ± �1��1�� .

�3�

These states �called sometimes EPR states� have re-
markable properties, namely, if one measures only at
one of the subsystems one finds it with equal probability
in state �0� or state �1�. Thus the states give no knowl-
edge about the subsystems. However, as a whole, the
states are pure, hence they give maximal knowledge
about the total system. This is just the feature which was
first recognized by Schrödinger �see Sec. V�. There is
another holistic feature, that unitary operation applied
to only one of the two subsystems suffices to transform
from any Bell state to any one of the other three states.
Moreover, Braunstein et al. showed that the Bell states
are eigenstates of the Bell operator �16� and they maxi-
mally violate the Bell-CHSH inequality �17� �see Sec.
IV� �Braunstein et al., 1992�.

The Bell states are special cases of bipartite maxi-
mally entangled states on the Hilbert space Cd � Cd,
given by

��� = UA � UB��d
+�AB, �4�

where

��d
+� =

1
�d

�
i=1

d

�i��i� �5�

is the “canonical” maximally entangled state. Here a
maximally entangled state will also be called an EPR
state or a singlet state, since it is equivalent to the true
singlet state up to local unitary transformations �for d
=2 we call it also an e-bit�. We will also often drop the
index d.

The question of whether a mixture of Bell states is
still entangled is quite nontrivial. Actually this is the

16Sometimes instead of the notation ��� � ��� we use ������
and for �i� � �j� the even shorter �ij�.

17Note that classical probability distrubutions can always be
written as mixtures of product distributions.
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case if and only if one of the eigenvalues is greater than
1
2 �see Sec. VI�.

So far the most widely used source of entanglement is
entangled-photon states produced by a nonlinear pro-
cess of parametric down-conversion of type I or II cor-
responding to whether the entangled photons of the
down-conversion pair are generated with the same po-
larization or orthogonal polarization, respectively. In
particular, using parametric down-conversion one can
produce a Bell-state entangled basis �3�. There are also
many other sources of entangled quantum systems, for
instance, entangled photon pairs from calcium atoms
�Kocher and Commins, 1967�, entangled ions prepared
in electromagnetic Paul traps �Meekhof et al., 1996�, en-
tangled atoms in quantum electrodynamic cavities �Rai-
mond et al., 2001�, long-living entanglement between
macroscopic atomic ensembles �Hald et al., 1999; Juls-
gaard et al., 2001�, entangled microwave photons from
quantum dots �Emary et al., 2005�, entanglement be-
tween nuclear spins within a single molecule �Chen, He,
et al., 2006�, and entanglement between light and atomic
ensembles �Sherson et al., 2006�.

Next we present pioneering entanglement-based com-
munication schemes using Bell entangled states.

III. PIONEERING EFFECTS BASED ON ENTANGLEMENT

A. Quantum key distribution based on entanglement

The first discovery within quantum information
theory, which involves entanglement, is due to Ekert
�1991�. There were two well known facts: the existence
of a highly correlated state,18

��−� =
1

�2
��0��1� − �1��0�� , �6�

and the Bell inequalities �violated by these states�. Ekert
showed that, if put together, they become useful in pro-
ducing a private cryptographic key. In this way he dis-
covered entanglement-based quantum key distribution,
as opposed to the original BB84 scheme which directly
uses quantum communication. The essence of the proto-
col is as follows: Alice and Bob can obtain from a source
the EPR pairs. Measuring them in the basis 	�0�, �1�
,
Alice and Bob obtain a string of perfectly �anti�corre-
lated bits, i.e., the key. To verify whether it is secure,
they check Bell inequalities on a selected portion of the
pairs. Roughly speaking, if Eve knew the values that
Alice and Bob obtained in their measurement, this
would mean that the values existed before the measure-
ment, hence Bell’s inequalities would not be violated.
Therefore, if the Bell inequalities are violated, the val-
ues do not exist before the Alice and Bob measurement,

so it looks as if like nobody can know them.19 The first
implementations of Ekert’s cryptography protocol were
performed using polarization-entangled photons from
spontaneous parametric down-conversion �Naik et al.,
2000� and photons entangled in energy-time �Tittel et al.,
2000�.

After Ekert’s idea, the research in quantum cryptog-
raphy could have taken two paths. One is to treat the
violation of the Bell inequality merely as a confirmation
that Alice and Bob share good EPR states, as put for-
ward by Bennett et al. �1992�, because this is sufficient
for privacy: if Alice and Bob have a true EPR state, then
nobody can know the results of their measurements.
This is what actually happened; for a long time only this
approach was developed. In this case the eavesdropper,
Eve, obeys the rules of quantum mechanics. We discuss
this approach in Sec. XIX. The second path is to treat
the EPR state as the source of strange correlations that
violate the Bell inequality �see Sec. IV�. This leads to a
new definition of security: against the eavesdropper who
does not have to obey the rules of quantum mechanics,
but just the no-faster-than-light communication prin-
ciple. The main task of this approach, which is an uncon-
ditionally secure protocol, has been achieved only re-
cently �Barrett et al., 2005; Masanes et al., 2006; Masanes
and Winter, 2006�.

B. Quantum dense coding

In quantum communication there exists a reasonable
bound on the possible miracles stemming from quantum
formalism. This is the �Holevo bound� �Holevo, 1973�.
Roughly speaking it states that one qubit can carry at
most only one bit of classical information. In 1992, Ben-
nett and Wiesner discovered a fundamental primitive,
called dense coding, which can evade the Holevo bound.
Dense coding allows us to communicate two classical
bits by sending one a priori entangled qubit.

Suppose Alice wants to send one of four messages to
Bob, and can send only one qubit. To communicate two
bits sending one qubit she needs to send a qubit in one
of 22=4 states. Moreover, the states need to be mutually
orthogonal, as otherwise Bob will have problems with
discriminating them, and hence the optimal bound 2 will
not be reached. But there are only two orthogonal states
of one qubit. Can entanglement help here? Let Alice
and Bob instead share an EPR state. Now the clever
idea comes: it is not the qubit that is sent that should be
in one of four orthogonal states, but the pair of en-

18This state is also referred to as the singlet, EPR state, or
EPR pair. If not explicitly stated, we use these names below to
denote any maximally entangled state in higher dimensions;
also see Sec. VI.B.3.

19In fact, the argument is more subtle. This is because in prin-
ciple values that did not preexist could come to exist in a way
that is immediately available to a third party—Eve, i.e., the
values that were not known to anybody could happen to be
known to everybody when they come to exist. To cope with
this problem, Ekert used the fact that the singlet state cannot
be correlated with any environment. Recently it turned out
that one can argue based solely on Bell inequalities by means
of so-called monogamy of nonlocal correlations �Barrett et al.,
2005, 2006; Acín et al., 2006; Masanes and Winter, 2006�.
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tangled qubits together. We now check how it works.
Suppose Alice and Bob share a singlet state �6�. If Alice
wants to tell Bob one of the four events k� 	0,1 ,2 ,3
,
she rotates her qubit �entangled with Bob� with a corre-
sponding transformation �k:

�0 = �1 0

0 1
�, �1 = �0 1

1 0
� ,

�2 = �1 0

0 − 1
�, − i�3 = �0 − 1

1 0
� . �7�

The singlet state �6� rotated by �k on Alice’s qubit be-
comes the corresponding ��k� Bell state.20 Hence ��k�
= ��k�A � IB��0� is orthogonal to ��k�� = ��k��A � IB��0� for
k�k� because Bell states are mutually orthogonal. Now
if Bob gets Alice’s half of the entangled state, after ro-
tation he can discriminate between four Bell states, and
infer k. In this way Alice sending one qubit has given
Bob log2 4=2 bits of information.

Why does this not contradict the Holevo bound? This
is because the communicated qubit was a priori en-
tangled with Bob’s qubit. This case is not covered by the
Holevo bound, leaving a place for this strange phenom-
enon. Note also that as a whole two qubits have been
sent: one was needed to share the EPR state. One can
also interpret this in the following way: sending the first
half of the singlet state �say it is during the night, when
the channel is cheaper� corresponds to sending one bit
of potential communication. It is thus creating the possi-
bility of communicating one bit in the future: at this time
Alice may not know what she will say to Bob in the
future. During the day, she knows what to say, but can
send only one qubit �the channel is expensive�. That is,
she sent only one bit of actual communication. However,
at the same time, the potential communication gets ac-
tual; hence two bits in total are communicated. This ex-
planation assumes that Alice and Bob have a good
quantum memory for storing EPR states, which is still
out of reach of current technology. In the original dense
coding protocol, Alice and Bob share the pure maxi-
mally entangled state. The possibility of dense coding
based on partially entangled pure and mixed states in
multiparty settings was considered by Barenco and Ek-
ert �1995�; Hausladen et al. �1996�; Bose et al. �2000�;
Hiroshima �2001�; Ziman and Buzek �2003�; Bruß et al.
�2005�; Mozes et al. �2005�. The first experimental imple-
mentation of quantum dense coding was performed in
Innsbruck �Mattle et al., 1996�, using a source of
polarization-entangled photons �see experiments using
nuclear magnetic resonance �Fang et al., 2000�, a two-
mode squeezed vacuum state �Mizuno et al., 2005�, and
controlled dense coding with an EPR state for a continu-
ous variable �Jing et al., 2003��.

C. Quantum teleportation

Suppose Alice wants to communicate to Bob an un-
known quantum bit. Suppose, further, that they have at
their disposal only a classical telephone, and one pair of
entangled qubits. One way would be for Alice to mea-
sure the qubit, guess the state based on the outcomes of
measurement, and describe it to Bob via telephone.
However, in this way the state will be transferred with
very poor fidelity. In general an unknown qubit cannot
be described by classical means, as it would become
clonable, which would violate the main principle of
quantum information theory: a qubit in an unknown
quantum state cannot be cloned �Dieks, 1982; Wootters
and Zurek, 1982�.

However, Alice can send the qubit to Bob at the price
of simultaneously erasing it at her site. This is the es-
sence of teleportation: a quantum state is transferred
from one place to another; not copied to the other place,
but moved to that place. But how can this be performed
with a pair of maximally entangled qubits? Bennett,
Brassard, Crćpeau, Jozsa, Peres, and Wootters found the
answer to this question in 1993 �Bennett et al., 1993�.

To perform teleportation, Alice needs to measure her
qubit and part of a maximally entangled state. Interest-
ingly, this measurement is itself entangling: it is projec-
tion onto the basis of four Bell states �3�. Follow the
situation in which she wants to communicate a qubit in
state �q� =a�0� +b�1� on system A with the use of a singlet
state residing on her system A� and Bob’s system B. The
total initial state, which is

��AA�B� = �q�A �
1

�2
��0��0� + �1��1��A�B, �8�

can be written using the Bell basis �3� on the system AA�
in the following way:

��AA�B� = 1
2 ���+�AA��a�0�B + b�1�B� + ��−�AA��a�0�B

− b�1�B� + ��+�AA��a�1�B + b�0�B�

+ ��−�AA��a�1�B − b�0�B�� . �9�

Now when Alice measures her systems AA� in this basis,
she induces equiprobably the four corresponding states
in Bob’s system. The resulting states in system B are
similar to the state of qubit �q� that Alice wanted to send
him. Their mixture is, however, equal to the initial state
of system B. Thus Bob does not get any information
instantaneously. Yet, the output structure revealed in the
above equation can be used: now Alice tells Bob her
result via telephone. According to those two bits of in-
formation �which of the Bell states occurred on AA��
Bob rotates his qubit by one of the four Pauli transfor-
mations �7�. This is almost the end. After each rotation,
Bob gets �q� at his site. At the same time, Alice has just
one of the Bell states: the systems A and A� become
entangled after measurement, and no information about
the state �q� is left with her. That is, the no-cloning prin-
ciple is observed, while the state �q� was transferred to
Bob.

20In correspondence with the Bell basis defined in Eq. �3�
here ��0� = ��−�, ��1� = ��−�, ��2� = ��+�, ��3� = ��+�.
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There is a much simpler way to send a qubit to Bob:
Alice could just send it directly. Then, however, she has
to use a quantum channel, just at the time she wants to
transmit the qubit. With teleportation, she might have to
send half of the EPR pair at an earlier time, so that only
classical communication is needed later.

This is how quantum teleportation works in theory.
This idea was also developed for other communication
scenarios �see Murao et al., 1999; Dür and Cirac, 2000c�.
It became immediately an essential ingredient of many
quantum communication protocols. After pioneering ex-
periments �Bouwmeester et al., 1997; Boschi et al., 1998;
Furusawa et al., 1998�, there were experiments perform-
ing teleportation in different scenarios during the last
decade �see, e.g., Nielsen et al., 1998; Barrett et al., 2004;
Marcikic et al., 2004; Riebe et al., 2004; Ursin et al.,
2004�. For the most recent one with mesoscopic objects,
see Sherson et al. �2006�.

D. Entanglement swapping

Usually quantum entanglement originates in a certain
direct interaction between two particles placed close to-
gether. Is it possible to get entanglement �quantum cor-
relation� between two particles which have never inter-
acted in the past? The answer is positive �Yurke and
Stoler, 1992b; Bennett et al., 1993; Żukowski et al., 1993�.

Let Alice share a maximally entangled state ��+�
= �1/�2���00� + �11��AC with Clare, and Bob share the
same state with David:

��+�AC � ��+�BD. �10�

Such a state can obviously be designed in such a way
that particles A and D have never seen each other. Now,
Clare and Bob perform a joint measurement in the Bell
basis. It turns out that for any outcome the particles A
and D collapse to some Bell state. If Alice and Bob will
get to know the outcome, they can perform local rota-
tion, to obtain the entangled state �AD

+ . In this way the
particles of Alice and David are entangled although they
never interacted directly with each other, as they origi-
nated from different sources.

One sees that this is equivalent to teleporting one
member of the EPR pair through the second one; any of
the pairs can be chosen to be either the channel or the
teleported pair.

This idea has been adopted in order to perform quan-
tum repeaters �Dür, Briegel, et al., 1999�, to allow for
distributing entanglement in principle between arbi-
trarily distant parties. It was generalized to a multipar-
tite scenario by Bose et al. �1998�. Swapping can be used
as a tool in multipartite state distribution, which is, for
example, useful in quantum cryptography.

The conditions that should be met in optical imple-
mentation of entanglement swapping �as well as telepor-
tation� have been derived by Żukowski et al. �1993�.
Along those lines entanglement swapping was realized
in the laboratory �Pan et al., 1998�.

E. Beating classical communication complexity bounds with
entanglement

Yao �1979� asked the following question: How much
communication is needed in order to solve a given prob-
lem distributed among specially separated computers?
To be more concrete, one can imagine Alice having the
n-bit string x and Bob having the n-bit string y. Their
task is to infer the value of some a priori given function
f�x ,y� taking the value in 	0, 1
, so that finally both par-
ties know the value. The minimal number of bits needed
in order to achieve this task is called the communication
complexity of the function f.

Again, one can ask if entanglement can help in this
case. This question was first asked by Cleve and Buhr-
man �1997� and independently by Grover �1997�, who
showed the advantage of entanglement-assisted over
classical distributed computation.

Consider the following example, which is a three-
party version of the same problem �Buhrman et al.,
2001�. Alice, Bob, and Clare get two bits each, �a1 ,a0�,
�b1 ,b0�, and �c1 ,c0�, representing binary two-digit num-
bers a=a1a0, b=b1b0, and c=c1c0. They are promised to
have

a0 � b0 � c0 = 0. �11�

The function that they are to compute is given by

f�a,b,c� = a1 � b1 � c1 � �a0 ∨ b0 ∨ c0� . �12�

It is easy to see that the announcement of four bits is
sufficient for all three parties to compute f. One party
announces both bits �say it is Alice� a1a0. Now, if a0=1,
then the other parties announce their first bits b1 and c1.
If a0=0, then one of the other parties �say Bob� an-
nounces b1 � b0 while Clare announces c1. In both cases
all parties compute the function by adding the an-
nounced bits modulo 2. Thus four bits are enough. It is a
bit more tricky to show that four bits are necessary, so
that the classical communication complexity of the
above function equals 4 �Buhrman et al. 2001�.

Suppose now that at the beginning of the protocol
Alice, Bob, and Clare share a quantum three-partite en-
tangled state:

��ABC� = 1
2 ��000� − �011� − �101� − �110��ABC, �13�

such that each party holds a corresponding qubit. It is
enough to consider the action of Alice as the other par-
ties will do the same with their classical and quantum
data, respectively.

Alice checks her second bit. If a0=1 she does a Had-
amard transformation21 on her qubit. Then she measures
it in the 	�0�,�1�
 basis, obtaining the result rA. She then
announces a bit a1 � rA.

21The Hadamard transformation is a unitary transformation
of basis which changes �0� into 1/�2��0� + �1�� and �1� into
1/�2��0� − �1��.
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One can check that, if all three parties do the same,
the bits rA ,rB ,rC, i.e., those with “quantum origin” sat-
isfy rA � rB � rC=a0∨b0∨c0. This gives in turn

�a1 � rA� � �b1 � rB� � �c1 � rC�

= a1 � b1 � c1 � �rA � rB � rC�

= a1 � b1 � c1 � �a0 ∨ b0 ∨ c0� = f�a,b,c� . �14�

Thus three bits are enough. The fourth, controlled by
common quantum entanglement, was hidden in the
three others and hence need not be announced.

Interestingly, although the effect is of practical impor-
tance, at its roots it is a purely philosophical question of
the type, Is the Moon there, if nobody looks? �Mermin,
1985�. Namely, if the outcomes of the Alice, Bob, and
Clare measurements existed prior to measurement, then
they could not lead to reduction of complexity, because
the parties could have these results written on paper and
they would offer a three-bit strategy, which is not pos-
sible. As a matter of fact, the discoveries of reduction of
communication complexity used the GHZ paradox in
the Mermin version, which says that the outcomes of the
four possible measurements given by the values of a0, b0,
and c0 �recall the constraint a0 � b0 � c0� performed on
the state �13� cannot preexist.

Brukner et al. �2004� showed that this is quite generic:
for any correlation Bell inequality for n systems, a state
violating the inequality allows us to reduce the commu-
nication complexity of some problem. For a recent ex-
periment see Trojek et al. �2005�.

IV. CORRELATION MANIFESTATIONS OF
ENTANGLEMENT: BELL INEQUALITIES

A. Bell theorem: CHSH inequality

The physical consequences of the existence of en-
tangled �inseparable� states are continuously the subject
of intensive investigations in the context of both the
EPR paradox and quantum information theory. They
are manifest, in particular, in correlation experiments via
the Bell theorem, which states that the probabilities for
the outcomes obtained when some quantum states are
suitably measured cannot be generated from classical
correlations. As a matter of fact, Bell in his proof as-
sumed perfect correlations exhibited by the singlet state.
However, in real experiments such correlations are prac-
tically impossible. Inspired by Bell’s paper, Clauser,
Horne, Shimony, and Holt �CHSH� �Clauser et al., 1969�
derived a correlation inequality, which provides a way of
experimentally testing the local hidden variable model
�LHVM� as an independent hypothesis separated from
the quantum formalism. Consider a correlation experi-
ment in which the variables �A1 ,A2� are measured on
one subsystem of the whole system and �B1 ,B2� on the
other system, and that the subsystems are spatially sepa-
rated. Then the LHVM imposes the following con-

straints on the statistics of the measurements on the suf-
ficiently large ensemble of systems22

�E�A1,B1� + E�A1,B2� + E�A2,B1� − E�A2,B2�� � 2,

�15�

where E�Ai ,Bj� is the expectation value of the correla-
tion experiment AiBj.

This is the CHSH inequality, which gives a bound on
any LHVM. It involves only a bipartite correlation func-
tion for two alternative dichotomic measurements and it
is complete in the sense that if a full set of such inequali-
ties �obtained by putting the minus in each of four pos-
sible positions� is satisfied there exists a joint probability
distribution for the outcomes of the four observables,
which returns the measured correlation probabilities as
marginals �Fine, 1982�.23

In the quantum case the variables convert into opera-
tors and one can introduce the CHSH operator

BCHSH = A1 � �B1 + B2� + A2 � �B1 − B2� , �16�

where A1=a1 ·�, A2=a2 ·� �similarly for B1 and B2�, �
= ��x ,�y ,�z� is the vector of Pauli operators, a
= �ax ,ay ,az�, etc., are unit vectors describing the mea-
surements that the parties A �Alice� and B �Bob� per-
form. Then the CHSH inequality requires that the con-
dition

�Tr�BCHSH��� � 2 �17�

is satisfied for all states � admitting a LHVM.
Quantum formalism predicts the Cirel’son inequality

�Cirel’son, 1980�,

�BCHSH�QM� = �Tr�BCHSH��� � 2�2, �18�

for all states � and all observables A1 ,A2 ,B1 ,B2.
Clearly, the CHSH inequality can be violated for some
choices of observables, implying nonexistence of
LHVM. For the singlet state �= ��−��−�, there is maxi-
mal violation �Tr�BCHSH��� =2�2 which saturates the
Cirel’son bound.

B. The optimal CHSH inequality for 2Ã2 systems

At the beginning of the 1990s there were two basic
questions: First, it was hard to say whether a given state
violates the CHSH inequality, because one has to con-
struct a corresponding Bell observable for it. In addi-
tion, given a mixed state, there was no way to ensure
whether it satisfies the CHSH inequality for each Bell

22It is assumed here that the variables Ai and Bi for i=1,2 are
dichotomic, i.e., have values ±1.

23Braunstein and Caves �1988� have considered modified
CHSH inequalities based on Shannon entropies rather than on
correlation functions. By the Fine result, they cannot be stron-
ger than CHSH ones, but they are interesting in themselves in
the information-theoretic context. This approach differs from
the one we shall present in Sec. III, where von Neumann en-
tropies are used.
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observable. This problem was solved completely for an
arbitrary quantum state � of two qubits using the
Hilbert-Schmidt space approach �Horodecki et al., 1995�.
That is, an n-qubit state can be written as

� =
1

2n �
i1¯in=0

3

ti1¯in
�i1

1
� ¯ � �in

n , �19�

where �0
k is the identity operator in the Hilbert space of

qubit k, and �ik
k correspond to the Pauli operators for

three orthogonal directions ik=1,2 ,3. The set of real co-
efficients ti1¯in

=Tr����i1
� ¯ ��in

�� forms a correlation
tensor T�. In particular, for the two-qubit system the
�3�3�-dimensional tensor is given by tijªTr����i ��j��
for i , j=1,2 ,3.

In this case one can compute the mean value of an
arbitrary BCHSH in an arbitrary fixed state � and then
maximize it with respect to all BCHSH observables.
As a result we have maxBCHSH

�Tr�BCHSH��� =2�M���
=2�t11

2 + t22
2 , where t11

2 and t22
2 are the two largest eigen-

values of T�
TT�, and T�

T is the transpose of T�.
It follows that for 2�2 systems the necessary and suf-

ficient criterion for the violation of the CHSH inequality
can be written as

M��� 	 1. �20�

The quantity M��� depends only on the state parameters
and contains all information that is needed to decide
whether a state violates a CHSH inequality. The above
inequality provides a practical tool for the investigation
of nonlocality of the arbitrary two-qubit mixed states in
different quantum information contexts �see, e.g., Sca-
rani and Gisin, 2001a; Hyllus et al., 2005; Walther et al.,
2005�.

C. Violation of Bell inequalities by quantum states

1. Pure states

The second more fundamental question was “Are
there many quantum states, that do not admit the LHV
model?” More precisely, “Which quantum states do not
admit the LHV model?” Even for pure states the prob-
lem is not completely solved.

Gisin proved that for the standard �i.e., nonsequen-
tial� projective measurements the only pure two-partite
states which do not violate the correlation CHSH in-
equality �15� are product states and they are obviously
local �Gisin, 1991; Gisin and Peres, 1992�. Then Popescu
and Rohrlich showed that any n-partite pure entangled
state can always be projected onto a two-partite pure
entangled state by projecting n−2 parties onto appropri-
ate local pure states �Popescu and Rohrlich, 1992�.
Clearly, it needs an additional manipulation �postselec-
tion�. Still the problem of whether the Gisin theorem
can be generalized without postselection for an arbitrary
n-partite pure entangled state remains open. In the case
of three parties there are generalized GHZ states
�Scarani and Gisin, 2001b; Żukowski et al., 2002� that
do not violate the Mermin-Ardehali-Belinskii-Klyshko

�MABK� inequalities �Mermin, 1990a; Ardehali, 1992;
Belinskii and Klyshko, 1993� �see the next section�.
More generally, it has been shown �Żukowski et al.,
2002� that these states do not violate any Bell inequality
for n-partite correlation functions for experiments in-
volving two dichotomic observables per site. Acin et al.
and Chen et al. considered a Bell inequality that shows
numerical evidence that all three-partite pure entangled
states violate it �Acín, Chen, et al., 2004; Chen et al.,
2004�. Recently, a stronger Bell inequality with more
measurement settings was presented �Wu and Zong,
2003; Laskowski et al., 2004�, which can be violated by a
wide class of states, including the generalized GHZ
states �see also Chen, Albeverio, et al., 2006�.

2. Mixed states

In the case of noisy entangled states the problem ap-
peared to be much more complex. A natural conjecture
was that only separable mixed states of the form �34�
admit a LHV model. Surprisingly, Werner constructed a
one-parameter family of U � U invariant states �see Sec.
VI.B.9� in d�d dimensions, where U is a unitary opera-
tor, and showed that some can be simulated by such a
model �Werner, 1989b�. In particular, two-qubit �d=2�
Werner states are mixtures of the singlet ��−� with white
noise of the form

� = p��−��−� + �1 − p�I/4. �21�

Using the criterion �20�, one finds that the CHSH in-
equality is violated when 2−1/2
p�1.

However, Popescu noticed that Werner’s model ac-
counts only for correlations obtained for a reduced class
of local experiments involving projective measurements,
and found that some Werner mixtures if subjected to a
sequence of local generalized measurements, including
postselection, can violate the CHSH inequality �Pope-
scu, 1995�. Gisin then demonstrated that even for the
case of two qubits the “hidden nonlocality” can be re-
vealed using local filters in the first stage of the process
�a procedure of this kind can be treated as a preprocess-
ing consisting of stochastic LOCC� �Gisin, 1996�. In the
same year, Peres discovered that some states admitting a
LHVM for a single copy violate Bell inequalities when
more than one copy is jointly measured with the postse-
lection procedure �Peres, 1996b�. The merging of these
two tests leads to a stronger detection of hidden nonlo-
cality �Masanes, 2006b�.

The above results allow us to understand the deep
nature of noisy entanglement not just in the context of
the LHV model. Clearly, the CHSH inequality can be
used as a tool for two nonequivalent tasks: testing the
quantum formalism against the LHV model �nonlocality
witness� and testing for entanglement within the quan-
tum formalism �entanglement witness�. On the other
hand, the idea of hidden nonlocality leads to the concept
of distillation of entanglement—an important notion in
quantum information theory �see Sec. XII�. Finally, it
turned out that hidden nonlocality allows us to reveal
nonclassical features of arbitrary entangled state;
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namely, Masanes et al. considered specific entanglement
witnesses characterizing the states that violate the
CHSH inequality after local filtering operators �Masanes
et al., 2007�. Then they proved that any bipartite en-
tangled state � exhibits a hidden nonlocality which can
be “activated” in the sense that there exists another
state � not violating the CHSH inequality such that the
state ��� does violate it �see Sec. XII.I�.

D. All nÃ2Ã2 Bell inequalities for correlation functions

The CHSH inequality is one elementary inequality
that can be viewed as a special case of an infinite hier-
archy of Bell inequalities related to the type of correla-
tion measurements with n-partite systems, where each of
the parties can measure m observables, each being
l-valued. For the CHSH inequality n=m= l=2.

As early as 1990 several generalizations of the latter
were derived for the case n ,2 ,2 �MABK inequalities�.
The complete set of such inequalities was constructed by
Werner and Wolf �2001a� and independently by
Żukowski and Brukner �2002�; see also Weinfurter and
Żukowski �2001�. The WWZB inequalities are given by
linear combinations of the correlation expectation val-
ues

�
k

f�k�E�k� � 2n, �22�

where coefficients are given by f�k� = �sS�s��−1�k,s�, S�s�
is an arbitrary function of s=s1¯sn� 	−1,1
n, such that
S�s1¯sn� = ±1; k ,s� = �j=1

n kjsj, and E�k� = �j=1
n Aj�kj��av is

the correlation function �average over many runs of ex-
periment� labeled by a bit string k=k1¯kn, and the bi-
nary variables kj�0,1 indicate the choice of the
±1-valued observable Aj�kj� at site j.

There are 22n
different functions S�s�, and correspond-

ingly 22n
inequalities. In particular, putting S�s1¯sn�

=�2cos�−� /4+ �s1+ ¯+sn−n�� /4� one recovers the
Mermin-type inequalities, and for n=2 the CHSH in-
equality �15� follows.

Fortunately, the set of linear inequalities �22� is
equivalent to a single nonlinear inequality

�
s

��
k

�− 1�k,s�E�k�� � 2n, �23�

which characterizes the structure of the accessible clas-
sical region for the correlation function for n-partite sys-
tems, a hyperoctahedron in 2n dimensions, as the unit
sphere of the Banach space l1 �Werner and Wolf, 2001a�.

The WWZB inequalities are an important tool for the
investigation of possible connections among quantum
nonlocality, distillability, and entanglement for n-qubit
systems. In particular, it has been shown that violation of
the WWZB inequality by a multiqubit state implies that
pure entanglement can be distilled from it. But the pro-
tocol may require that some of the parties join into sev-
eral groups �Acín, 2001; Acin et al., 2003�. This result

was generalized to the asymptotic scenario �Masanes,
2006b�. For further development, see Horodecki et al.,
�2007�.

E. Logical versions of Bell’s theorem

The violation of Bell inequalities as a paradigmatic
test of quantum formalism has some unsatisfactory fea-
tures as it applies only to a statistical measurement pro-
cedure. It is intriguing that the quantum formalism via
quantum entanglement offers an even stronger depar-
ture from classical intuition based on the logical argu-
ment which discusses only perfectly correlated states.
This kind of argument was discovered by Greenberger,
Horne, and Zeilinger and applies for individual systems
that are in the GHZ state, i.e., ���ABC= �1/�2���000�
+ �111��ABC. They showed that any deterministic LHVM
predicts that a certain outcome always happens while
quantum formalism predicts it never happens.

The original GHZ argument for qubits has been sub-
sequently developed �Mermin, 1990b; Hardy, 1993; Ca-
bello, 2001a, 2001b; Cerf, Massar, and Pironio 2002;
Chen et al., 2003; Greenberger et al., 2005a, 2005b� and
extended to continuous variables �Clifton, 2000; Massar
and Pironio, 2001; Chen and Zhang, 2002� and it is
known as the “all-versus-nothing” proof of the Bell
theorem or “the Bell theorem without inequalities.” The
proofs are purely logical. An important step was the re-
duction of the GHZ proof to two-particle nonmaximally
�Hardy, 1993� and maximally entangled systems of high
dimensionality �Torgerson et al., 1995; Kaszlikowski et
al., 2000; Durt et al., 2001; Pan et al., 2001; Chen, Chen,
et al., 2005�.

However, in real experiments ideal measurements and
perfect correlations are practically impossible. To over-
come the problem of a “null experiment” Bell-type in-
equalities are needed. Recently two-particle all-versus-
nothing nonlocality tests were performed using two-
photon so-called hyperentanglement �Cinelli et al., 2005;
Yang, Zhang, et al., 2005�. A novel nonlocality test, the
“stronger two observer all versus nothing” test �Cabello,
2005�, has been performed using a four-qubit linear clus-
ter state via two photons entangled in both polarization
and linear momentum �Vallone et al., 2007�.

F. Violation of Bell inequalities: General remarks

There is much literature concerning interpretation of
the “Bell effect.” The most evident conclusion from
those experiments is that it is not possible to construct a
LHVM simulating all correlations observed for quantum
states of composite systems. But such a conclusion is not
surprising. What is crucial in the context of the Bell
theorem is just a gap between the quantum and classical
descriptions of the correlations, which gets out of hand.

Nature on its fundamental level offers us a new kind
of statistical non-message-bearing correlation, which is
encoded in the quantum description of states of com-
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pound systems via entanglement. They are “nonlocal”24

in the sense that they cannot be described by a LHVM;
but they are nonsignaling, as local measurements per-
formed on spatially separated systems cannot be used to
transmit messages.

Generally speaking, quantum compound systems can
reveal holistic nonsignaling effects even if their sub-
systems are spatially separated by macroscopic dis-
tances. In this sense quantum formalism offers a holistic
description of nature �Primas, 1983�, where in a non-
trivial way the system is more than a combination of its
subsystems.

It is intriguing that entanglement does not exhaust the
full potential of nonlocality under the constraints of no
signaling. Indeed, it does not violate Cirel’son’s bound
�18� for CHSH inequalities. On the other hand, one can
design a family of probability distributions �see Gisin,
2005, and references therein�, which would violate this
bound but still do not allow for signaling. They are
called Popescu-Rohrlich nonlocal boxes, and represent
extremal nonlocality admissible without signaling �Pope-
scu and Rohrlich, 1994�. We see therefore that quantum
entanglement is situated at an intermediate level be-
tween locality and maximal non-signaling nonlocality.
Needless to say, the Bell inequalities still involve many
fascinating open problems interesting for both philoso-
phers and physicists �see Gisin, 2007�.

V. ENTROPIC MANIFESTATIONS OF ENTANGLEMENT

A. Entropic inequalities: Classical versus quantum
order

As mentioned in the Introduction Schrödinger first
pointed out that entanglement does not manifest itself
only as correlations of outputs of local measurements. In
fact, he recognized another aspect of entanglement,
which involves a profoundly nonclassical relation be-
tween the information that an entangled state gives us
about the whole system and the information that it gives
us about subsystems.

This new “nonintuitive” property of compound quan-
tum systems, intimately connected with entanglement,
was a long-standing puzzle from both a physical and a
mathematical point of view. The main difficulty was that,
in contrast the concept of correlation, which has a clear
operational meaning, the concept of information in
quantum theory was obscure until 1995, when Schuma-
cher showed that the von Neumann entropy

S��� = − Tr � log � �24�

has the operational interpretation of the number of qu-
bits needed to transmit quantum states emitted by a sta-
tistical source �Schumacher, 1995�. The von Neumann
entropy can be viewed as the quantum counterpart of
the Shannon entropy H�X� =−�ipi log pi, �ipi=1, which
is defined operationally as the minimum number of bits
needed to communicate a message produced by a clas-
sical statistical source associated to a random variable X.

In 1994 Schrödinger’s observation that an entangled
state provides more information about the total system
than about subsystems was quantified by means of the
von Neumann entropy. It was shown that the entropy of
a subsystem can be greater than the entropy of the total
system only when the state is entangled �Horodecki and
Horodecki, 1994�. In other words, the subsystems of the
entangled system may exhibit more disorder than the
system as a whole. In the classical world this never hap-
pens. Indeed, the Shannon entropy H�X� of a single ran-
dom variable is never larger than the entropy of two
variables,

H�X,Y�  H�X�, H�X,Y�  H�Y� . �25�

It has been proven �Horodecki and Horodecki, 1996; R.
Horodecki et al., 1996; Terhal, 2002; Vollbrecht and
Wolf, 2002b�, that analogous � entropy inequalities hold
for separable states,

S���AB�  S���A�, S���AB�  S���B� , �26�

where S���� = �1−��−1 log Tr�� is the � Renyi entropy
for �0; here �A=TrB��AB� and similarly for �B. If �
tends to 1, one obtains the von Neumann entropy
S1��� � S��� as the limiting case.

B. Entropic inequalities and negativity of information

Entropic inequalities �26� involve a nonlinear func-
tional of a state �, so they can be interpreted as scalar
separability criteria based on a nonlinear entanglement
witness �see Sec. VI�. This role is analogous to that of
Bell inequalities as entanglement witnesses. In this con-
text a natural question arises: Is this all we should expect
from violation of entropic inequalities? Surprisingly
enough, entropic inequalities are only the tip of the ice-
berg which reveals dramatic differences between classi-
cal and quantum communication due to quantum en-
tanglement. To see this, consider again the entropic
inequalities based on the von Neumann entropy ��=1�
which hold for separable states. They may be equiva-
lently expressed as

S��AB� − S��B�  0, S��AB� − S��A�  0 �27�

and interpreted as the constraints imposed on the corre-
lations of the bipartite system by positivity of some func-
tion

S�A�B� = S��AB� − S��B� , �28�

and similarly for S�B � A�. Clearly, the entropy of the sub-
system S��A� can be greater than the total entropy

24The term nonlocality is somewhat misleading. In fact there
is a breaking of the conjunction of locality and counterfactual-
ity. Recently, responsibility for breaking this conjunction has
been shifted toward violation of counterfactuality itself.
Namely, there are nonlocal hidden variable models �Leggett,
2003� with more or less reasonable nonlocal influences, which
imply inequalities violated by quantum mechanics. Groe-
blacher et al. �2007� performed an experiment verifying this
violation.
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S��AB� of the system only when the state is entangled.
However, there are entangled states which do not ex-
hibit this exotic property, i.e., they satisfy the constraints.
Thus the physical meaning of the function S�A � B�
�S�B � A�� and its peculiar behavior were an enigma for
physicists. It can be viewed as an analog of classical con-
ditional entropy �Werhl, 1978�

H�X�Y� = H�X,Y� − H�X� . �29�

What is intriguing is that this classical function is always
positive, while, as we have seen, its quantum version can
be negative. Remarkably, just this negative part, if taken
with the minus sign, is known under the name of “coher-
ent information”25 �Schumacher and Nielsen, 1996�,
and it determines quantum channel capacity �see Sec.
XIV.B�.

An early attempt to understand the negativity was
due to Cerf and Adami �1997�. Recently, the solution of
the problem was presented within the quantum counter-
part of the classical Slepian-Wolf theorem called “quan-
tum state merging” �Horodecki, Oppenheim, et al., 2005;
Horodecki et al., 2007�. In 1971, Slepian and Wolf con-
sidered the following problem: How many bits does the
sender �Alice� need to send to transmit a message from
the source, provided the receiver �Bob� already has
some prior information about the source? The number
of bits is called the partial information. Slepian and Wolf
�1971� proved that the partial information is equal to the
conditional entropy �29�, which is always positive:
H�X � Y�0.

In the quantum state merging scenario, an unknown
quantum state is distributed to spatially separated ob-
servers Alice and Bob. The question is: How much
quantum communication is needed to transfer Alice’s
part of the state to Bob in such a way that finally Bob
has the total state �Fig. 1�? This communication mea-
sures the partial information that Bob needs conditioned
on its prior information S�B�. Surprisingly, Horodecki et
al. proved that a necessary and sufficient number of qu-
bits is given by �28�, even if this quantity is negative.

Remarkably, there are two regimes, classical and
quantum, depending on the sign of the partial informa-
tion S�A � B�: �i� Partial information S�A � B� is positive
�the inequalities �27� are not violated�: the optimal state
merging protocol requires sending r � S�A � B� qubits. �ii�

Partial information S�A � B� is negative �the inequalities
�27� are violated�: optimal state merging does require
the sending of qubits; in addition Alice and Bob gain r
� −S�A � B� pairs of qubits in a maximally entangled
state. The quantum and classical regimes are determined
by the relations between knowledge about the system as
a whole and that about its subsystems, as considered by
Schrödinger.

Finally, we note that early manifestations of entangle-
ment �nonlocality �EPR, Bell� and what we can call in-
subordination �Schrödinger�� were seemingly academic
issues, of merely philosophical relevance. What is per-
haps the most surprising twist is that both the above
features qualify entanglement as a resource for perform-
ing some concrete tasks.

Indeed, the violation of the Bell inequalities deter-
mines the usefulness of quantum states for specific non-
classical tasks, such as, for example reduction of commu-
nication complexity, or quantum cryptography �see Sec.
III�. Similarly, the violation of the entropic inequalities
based on the von Neumann entropy �27� determines the
usefulness of states as a potential for quantum commu-
nication. It is in agreement with the earlier results that
the negative value of the function S�A � B� is connected
with the ability of the system to perform teleportation
�Horodecki and Horodecki, 1996; Cerf and Adami,
1997� as well as with a nonzero capacity of a quantum
channel �Schumacher and Nielsen 1996; Lloyd, 1997;
Devetak, 2003�.

C. Majorization relations

In 2001 Nielsen and Kempe discovered a stronger ver-
sion of the classical versus quantum order �Nielsen and
Kempe, 2001�, which connects the majorization concept
and entanglement; namely, they proved that if a state is
separable then the inequalities

���� � ���A�, ���� � ���B� �30�

have to be satisfied. Here ���� is a vector of eigenvalues
of �; ���A� and ���B� are defined similarly. The relation
x�y between d-dimensional vectors x and y �x is ma-
jorized by y� means that �i=1

k xi
↓��i=1

k yi
↓, 1�k�d, and

the equality holds for k=d, xi
↓�1� i�d� are components

of vector x rearranged in decreasing order; yi
↓ �1� i

�d� are defined similarly. Zeros are appended to the
vectors ���A� and ���B� in Eq. �30�, in order to make
their dimension equal to that of ����.

The above inequalities constitute a necessary condi-
tion for separability of bipartite states in arbitrary di-
mensions in terms of the local and global spectra of a
state. This criterion is stronger than entropic criterion
�26� and it again supports the view that separable states
are more disordered globally than locally �Nielsen and
Kempe, 2001�. An alternative proof of this result has
been given �Gurvits and Barnum, 2005�.

25The term “coherent information” was originally defined to
be a function of a state of a single system and a channel, but,
further, its use has been extended to apply to a bipartite state.

state merging

|Ψ〉

A B

R

|Ψ〉

A B′ B

R

EPR pairs

FIG. 1. The concept of state merging: before and after.
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VI. BIPARTITE ENTANGLEMENT

A. Definition and basic properties

The fundamental question in quantum entanglement
theory is which states are entangled and which are not.
Only in a few cases does this question have a simple
answer. The simplest is the case of pure bipartite states.
In accordance with the definition of multipartite en-
tangled states �Sec. II�, any bipartite pure state ��AB�
�HAB=HA � HB is called separable �entangled� if and
only if it can �cannot� be written as a product of two
vectors corresponding to Hilbert spaces of subsystems:

��AB� = ��A���B� . �31�

In general, if the vector �AB is written in any ortho-
normal product basis 	�eA

i � � �eB
j �
 as follows:26

��AB� = �
i=0

dA−1

�
j=0

dB−1

Aij
��eA

i � � �eB
j � , �32�

then it is a product if and only if the matrix of coeffi-
cients A�= 	Aij

�
 is of rank 1. In general, the rank r���
�k � min�dA ,dB� of this matrix is called the Schmidt
rank of vector � and it is equal to either of the ranks of
the reduced density matrices �A

�=TrB��AB��AB�, �B
�

=TrA��AB��AB� „which satisfy �A
�=A��A��† and �A

�

= ��A��†A��T, respectively27
…. In particular, there always

exists such a product basis 	�ẽA
i � � �ẽB

j �
 in which the vec-
tor takes the Schmidt decomposition

��AB� = �
i=0

r���

ai�ẽA
i � � �ẽB

i � , �33�

where the strictly positive numbers ai= 	�pi
 correspond
to the nonzero singular eigenvalues �Nielsen and
Chuang, 2000� of A�, and pi are the nonzero elements of
the spectrum of either reduced density matrix.

Quantum entanglement is in general both quantita-
tively and qualitatively considered to be a property in-
variant under product unitary operations UA � UB. Since
in the case of a pure vector and the corresponding pure
state �projector� ��AB��AB� the coefficients 	ai
 are the
only parameters that are invariant under such opera-
tions, they completely determine the entanglement of
the bipartite pure state.

As already mentioned, the pure state �projector�
��AB��AB� is separable if and only if the vector �AB is
a product. Equivalently, the rank of either of the re-
duced density matrices �A, �B is equal to 1, or there is a
single nonzero Schmidt coefficient. Thus for bipartite
pure states it is elementary to decide whether the state
is separable or not by diagonalizing its reduced density
matrix.

So far we have considered entanglement of pure
states. Due to the decoherence phenomenon, in labora-
tories we unavoidably deal with mixed states rather than
pure ones. However, a mixed state still can contain some
entanglement. In accordance with the general definition
for the n-partite state �Sec. II� any bipartite state �AB
defined on Hilbert space HAB=HA � HB is separable
�see Werner, 1989b� if and only if it can neither be rep-
resented nor approximated by states of the following
form:

�AB = �
i=1

k

pi�A
i

� �B
i , �34�

where �A
i , �B

i are defined on local Hilbert spaces HA,
HB. In the case of finite-dimensional systems, i.e., when
dim HAB
�, the states �A

i , �B
i can be chosen to be pure.

Then, from the Caratheodory theorem, it follows �see
Horodecki, 1997; Vedral and Plenio, 1998� that the num-
ber k in the convex combination can be bounded by the
square of the dimension of the global Hilbert space: k
�dAB

2 = �dAdB�2, where dAB=dim HAB, etc., It happens
that for two qubits the number of states �sometimes
called the cardinality� needed in the separable decompo-
sition is always 4, which corresponds to the dimension of
the Hilbert space itself �see Sanpera et al., 1998; Woot-
ters, 1998�. There are, however, d � d states that for d
3 have cardinality of order of d4 /2 �see DiVincenzo,
Terhal, et al., 2000�. We restrict subsequent analysis to
the case of finite dimensions unless stated otherwise.

The set SAB of all separable states defined in this way
is convex, compact, and invariant under the product uni-
tary operations UA � UB. Moreover, the separability
property is preserved under so-called �stochastic� sepa-
rable operations �see Sec. XI.B�.

The problem is that, given any state �AB, it is hard to
check whether it is separable or not. In particular, its
separable decomposition may have nothing in common
with the eigendecomposition, i.e., there are many sepa-
rable states that have their eigenvectors entangled or
nonproduct.

It is important to repeat what the term entanglement
means on the level of mixed states: all states that do not
belong to S, i.e., are not separable �in terms of the above
definition�, are called entangled. In general, the problem
of characterization of the set of separable mixed states
appears to be extremely complex, as we show next.
However, the operational criteria are known which par-
tially describe the set.

B. Main separability criteria in the bipartite case

1. Positive partial transpose criterion

A very strong necessary condition for separability has
been provided by Peres �1996b�, called the positive par-
tial transpose �PPT� criterion. It says that if �AB is sepa-
rable then the new matrix �AB

TB with matrix elements de-
fined in some fixed product basis as

26Here the orthonormal basis 	�eX
i �
 spans subspace HX,

X=A ,B.
27T denotes transposition.
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m����AB
TB �n���� � m����AB�n���� �35�

is a density operator �i.e., has a non-negative spectrum�,
which means that �AB

TB is also a quantum state �it also
guarantees the positivity of �AB

TA defined in an analogous
way�. The operation TB, called a partial transpose,28 cor-
responds to transposition of indices corresponding to the
second subsystem and has an interpretation as a partial
time reversal �Sanpera et al., 1998�.

The PPT condition is known to be stronger than all
entropic criteria based on Renyi � entropy �Sec. V� for
�� �0,�� �Vollbrecht and Wolf, 2002b�. A fundamental
fact is �M. Horodecki et al., 1996� that the PPT condition
is not only a necessary but also a sufficient condition for
separability of the 2 � 2 and 2 � 3 cases. Thus it gives a
complete characterization of separability in those cases
�for more details and further improvements see Sec.
VI.B.2�.

2. Separability via positive, but not completely positive, maps

The Peres PPT condition initiated a general analysis
of the problem of separable �equivalently entangled�
states in terms of linear positive maps �M. Horodecki et
al., 1996�; namely, it can be seen that the PPT condition
is equivalent to demanding the positivity29 of the opera-
tor �IA � TB���AB�, where TB is the transposition map
acting on the second subsystem. The transposition map
is a positive map �i.e., it maps any positive operator on
HB into a positive one�, but it is not completely
positive.30 In fact, IA � TB is not a positive map and this
is the source of success of the Peres criterion.

It has been recognized that any positive �P� but not
completely positive �CP� map � :B�HB�→B�HA�� with a
codomain related to some new Hilbert space HA� pro-
vides a nontrivial necessary separability criterion in the
form

�IA � �B���AB�  0. �36�

This corresponds to non-negativity of the spectrum of
the following matrix:

�IA � �B���AB� = �
���00� ¯ ���0dA−1�

���10� ¯ ���1�dA−1��

¯ ¯ ¯

���dA−10� ¯ ���dA−1dA−1�
�
�37�

with �ij � i � � I ��AB � j� � I.
It happens that using the above technique one can

provide a necessary and sufficient condition for separa-
bility �see M. Horodecki et al., 1996�: the state �AB is

separable if and only if the condition �36� is satisfied for
all P but not CP maps � :B�HB�→B�HA� where HA and
HB describe the left and right subsystems of the system
AB.

Note that the set of maps can be further restricted to
all P but not CP maps that are identity preserving
�Horodecki, 2001a� �the set of witnesses can then also be
restricted via the isomorphism�. One could also restrict
the maps to trace preserving ones, but then one has to
enlarge the codomain �M. Horodecki et al., 2006�.

Given the characterization in terms of maps and wit-
nesses it was natural to ask about a more practical char-
acterization of separability and entanglement. The prob-
lem is that in general the set of P but not CP maps is not
characterized and it involves a hard problem in contem-
porary linear algebra �for progress in this direction, see
Kossakowski, 2003, and references therein�.

However, for very low-dimensional systems there is a
surprisingly useful solution �M. Horodecki et al., 1996a�:
the states of dA � dB with dAdB�6 �two-qubit or qubit-
qutrit systems� are separable if and only if they are PPT.
For two qubits �and only for them� there is an even sim-
pler condition �see Slater, 2005b; Augusiak et al., 2008�
important for physical detection �see Sec. VIII.B.2�: the
two-qubit state �AB is separable if and only if

det��AB
� �  0. �38�

This is the simplest two-qubit separability condition. It is
a direct consequence of two facts known earlier: the par-
tial transpose of any entangled two-qubit state is of full
rank and has only one negative eigenvalue �Sanpera et
al., 1998; Verstraete, Audenaert, Dehane, et al., 2001�.
Note that some generalizations of Eq. �38� for other
maps and dimensions are also possible �Augusiak et al.,
2008�.

The sufficiency of the PPT condition for separability
in low dimensions follows from the fact �Størmer, 1963;
Woronowicz, 1976� that all positive maps � :B�Cd�
→B�Cd�� where d=2, d�=2, and d=2, d�=3 are decom-
posable, i.e., are of the form

�dec = �CP
�1� + �CP

�2� � T , �39�

where �CP
�i� stand for some CP maps and T stands for

transposition. It can be shown �M. Horodecki et al.,
1996� that among all decomposable maps the transposi-
tion map T is the “strongest” map, i.e., there is no de-
composable map that can reveal entanglement which is
not detected by transposition.

3. Separability via entanglement witnesses

Entanglement witnesses �M. Horodecki et al., 1996;
Terhal, 2000� are fundamental tools in quantum en-
tanglement theory. They are observables that completely
characterize separable states and allow us to detect en-
tanglement physically. Their origin stems from geom-
etry: the convex sets can be described by hyperplanes.
This translates into the statement �see M. Horodecki et

28Following Rains �1998� instead of �AB
TB we write �AB

� �as � is
the right “part” of the letter T�.

29The operator is called positive and only if it is Hermitian
and has a non-negative spectrum.

30The map � is completely positive if and only if I �� is
positive for identity map I on any finite-dimensional system.
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al., 1996; Terhal, 2000� that the state �AB belongs to the
set of separable states if it has a non-negative mean
value

Tr�W�AB�  0 �40�

for all observables W that �i� have at least one negative
eigenvalue and �ii� have a non-negative mean value on
product states or equivalently satisfy the non-negativity
condition

�A��B�W��A���B�  0 �41�

for all pure product states ��A���B�. The observables W
satisfying conditions �i� and �ii� above31 have been
named entanglement witnesses by Terhal �2000� who
stressed their physical importance as entanglement de-
tectors; in particular, one says that entanglement of � is
detected by witness W if and only if Tr�W��
0; see Fig.
2. �We discuss physical aspects of entanglement detec-
tion in more detail subsequently.� An example of the
entanglement witness for the d � d case is �Werner,
1989b� the Hermitian swap operator

V = �
i,j=0

d−1

�i�j� � �j�i� . �42�

To see that V is an entanglement witness note that we
have �A��B�V��A���B� = ��A ��B��20 which ensures
property �ii� above. At the same time V=P�+� −P�−�

where P�+� = 1
2 �I+V� and P�−� = 1

2 �I−V� correspond to
projectors onto the symmetric and antisymmetric sub-
spaces of the Hilbert space Cd � Cd, respectively. Hence
V also satisfies �i� since it has some eigenvalues equal to
−1. It is interesting to note that V is an example of the
so-called decomposable entanglement witness �see Eq.
�39� and analysis below�.

The P but not CP maps and entanglement witnesses
are linked by the so-called Choi-Jamiołkowski isomor-
phism �Jamiołkowski, 1972; Choi, 1982�:

W� = �I � ���Pd
+� �43�

with pure projector

Pd
+ = ��d

+��d
+� , �44�

where the state vector �d
+�HA � HA is defined as

��d
+� =

1
�d

�
i=0

d−1

�i� � �i�, d = dim HA. �45�

The pure projector Pd
+ is an example of a maximally

entangled state32 on the space HA � HA.
An important observation is that while the condition

�40� as a whole is equivalent to Eq. �36�, a particular
witness is not equivalent to a positive map associated via
isomorphism: the map provides a stronger condition �see
later discussion�.

As we have already said, a special class of decompos-
able P but not CP maps �i.e., of the form �39�� which
provide no stronger criterion than the PPT one, is dis-
tinguished. Consequently, all corresponding entangle-
ment witnesses are called decomposable and are of the
form �see Lewenstein et al., 2000�

Wdec = P + Q�, �46�

where P ,Q are some positive operators. It can be shown
that decomposable witnesses �equivalently, decompos-
able maps� describe the set SPPT of all states that satisfy
the PPT criterion. Like the set S of separable states this
set is also convex, compact, and invariant under product
unitary operations. It has also been found that stochastic
separable operations preserve the PPT property �M.
Horodecki et al., 1998�. In general, we have S�SPPT. As
described previously the two sets are equal for dAdB
�6. In all other cases, they differ �Horodecki, 1997� �see
Sec. VI.B.7 for examples�, i.e., there are entangled states
that are PPT. The latter states give rise to the so-called
bound entanglement phenomenon �see Sec. XI�.

To describe SPPT it is enough to consider only a subset
of decomposable witnesses where P=0 and Q is a pure
projector corresponding to entangled vector ���. This
gives a minimal set of entanglement witnesses that de-
scribe the set of PPT states. The required witnesses are
thus of the form

W = ������ �47�

with an entangled vector ���. The swap V is propor-
tional to a witness of this kind. Indeed, we have V
=dP+

� �hence the swap is a decomposable witness�.
For d � d systems there is one distinguished decom-

posable witness which is not of the form �47� but is use-
ful and looks simple. This is the operator

31The witnesses can be shown to be isomorphic to P but not
CP maps; see Eq. �43�.

32For simplicity we drop the dimension denoting the projec-
tor onto �+ ��d

+ as P+ � Pd
+ provided it does not lead to

ambiguity.

�sep

�ent

W

Tr(W�sep) ≥ 0

Tr(W�ent) < 0

FIG. 2. The line represents a hyperplane corresponding to the
entanglement witness W. All states located to the left of the
hyperplane or belonging to it �in particular, all separable
states� provide non-negative mean value of the witness, i.e.,
Tr�W�sep�0 while those located to the right are entangled
states detected by the witness.
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W�P+� = d−1I − P+. �48�

One can prove that the condition W�P+���PPT
0 pro-

vides immediately the restriction on the parameter
called fidelity or singlet fraction:33

F��� = Tr�P+��; �49�

namely �see Rains, 2001�,

F��PPT� � 1/d . �50�

In particular, this inequality was found first for separable
states and its violation was shown to be sufficient for
entanglement distillation �Horodecki and Horodecki,
1999�.

As already mentioned, the set of map conditions �36�
is equivalent to the set of witness conditions �40�. Nev-
ertheless, any single witness W� condition is much
weaker than the condition given by the map �. This is
because the first is of scalar type, while the second rep-
resents an operator inequality condition. To see this dif-
ference it is enough to consider the two-qubit case and
compare the transposition map T �which detects all en-
tanglement in the sense of the PPT test� with the en-
tanglement witness isomorphic to it, which is the swap
operation V, that does not detect entanglement of any
symmetric pure state. Indeed it is not difficult to see �see
Horodecki and Ekert, 2002� that the condition based on
one map � is equivalent to a continuous set of condi-
tions defined by all witnesses of the form W�,A � A
� IW�A† � I where A are operators on Cd of rank more
than 1. It implies, in particular, that the PPT condition
associated with a single map �transposition T� is equiva-
lent to the set of all the conditions provided by the wit-
nesses of the form �47�.

On the other hand, one must stress that the condition
based on a witness is naturally directly measurable �Ter-
hal, 2000� while physical implementation of the separa-
bility condition based on �unphysical� P but not CP
maps is much more complicated, though still possible
�see Sec. VIII.B.1�.

The important question one can ask about entangle-
ment witnesses regards their optimality �Lewenstein et
al., 2000, 2001�. We say that an entanglement witness W1
is finer than W2 if and only if the entanglement of any �
detected by W2 is also detected by W1. A given witness
W is called optimal if and only if there is no witness finer
than it. The useful sufficient condition of optimality �Le-
wenstein et al., 2000� is expressed in terms of the Hilbert
subspace PW= 	������ : ����W������ =0
; namely, if PW
spans the whole Hilbert space then the witness is opti-
mal. In a sense it is then fully “tangent” to the set of
separable states. The systematic method of optimization
of a given entanglement witness was worked out first by
Lewenstein et al. �2000, 2001� �for an alternative optimi-
zation procedure, see Eisert et al. �2004�; cf. the optimi-
zation of witnesses for continuous variables �Hyllus and
Eisert, 2006��.

In some analogy to the pure bipartite case, we can
define the Schmidt rank for density matrices �Terhal and
Horodecki, 2000� as rS��� =min	maxi�rS��i��
 where the
minimum is over all decompositions �= �ipi��i��i� and
rS��i� are the Schmidt ranks of the corresponding pure
states �see Sec. VI.A�. One can easily prove that sepa-
rable operations34 cannot increase it.

Now, for any k in the range 	1, . . . ,rmax
 with rmax
=min�dA ,dB�, we have a set Sk of states with a Schmidt
number not greater than k. For each such set we can
build a theory similar to that of separable/entangled
states, with Schmidt-number witnesses in place of usual
witnesses. The family of sets Sk satisfies inclusion rela-
tions S1�S2� ¯ �Srmax

. Note here that S1 corresponds
to the set of separable states, while Srmax

corresponds to
the set of all states. Each set is compact, convex, and
again closed under separable operations. Moreover,
each such set is described by k-positive maps �Terhal
and Horodecki, 2000� or by Schmidt rank k witnesses
�Sanpera et al., 2001�. A Schmidt rank k witness is an
observable Wk that satisfies the following two condi-
tions: �i� it must have at least one negative eigenvalue,
and �ii� it must satisfy

�k�Wk��k�  0, �51�

for all Schmidt rank k vectors �k�HAB. As in the case
of the separability problem the k-positive maps are re-
lated via Choi-Jamiołkowski isomorphism to special
maps that are called k positive „i.e., such that �Ik ��k� is
positive for Ik being identity on B�Ck�… but not com-
pletely positive. The isomorphism is virtually the same
as the one that links entanglement witnesses W=W1
with 1-positive �i.e., just positive� maps �1. Many tech-
niques have been generalized from separability to mixed
state Schmidt rank analysis �see Sanpera et al., 2001�.
For a general review of the separability problem includ-
ing especially entanglement witnesses, see Bruß �2002�,
Bruß et al. �2002�, Terhal �2002�. The Schmidt number
witnesses and maps description has been reviewed by
Bruß et al. �2002�.

4. Estimating entanglement from incomplete data

As mentioned, entanglement witnesses have been
found important in experimental detection of entangle-
ment: for any entangled state �ent there are witnesses
that are signatures of entanglement in a sense that they
are negative on this state Tr�W�ent�
0. Here we de-
scribe applications of entanglement witnesses for evalu-
ation of entanglement based on incomplete experimen-
tal data, or macroscopic parameters.

The first issue concerns the following question �R.
Horodecki et al., 1999�: Given experimental mean values
of an incomplete set of observables Ai� =ai what infor-
mation about entanglement should be concluded based
on those data? The idea was that if entanglement is fi-
nally needed as a resource then the observer should con-

33One has 0�F����1 and F��� =1 if and only if �=P+. 34Separable operations are described in Sec. XIII.
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sider the worst case scenario, i.e., should minimize en-
tanglement under experimental constraints. In other
words, experimental entanglement should be of the
form

E�a1, . . . ,ak� = inf	Ai�� = ai
i=1
k E��� . �52�

Such minimization of the entanglement of formation
and relative entropy of entanglement was performed for
a given mean of the Bell observable on an unknown
two-qubit state.

Recently the idea of minimization of entanglement
under experimental constraints was applied with the
help of entanglement witnesses �Eisert et al., 2007;
Gühne, Reimpell, et al., 2007�. Gühne, Reimpell, et al.
�2007� using convex analysis performed a minimization
of convex entanglement measures for given mean values
of entanglement witnesses based on approximation of
convex function by affine functions from below. Specific
estimates have been performed for existing experimen-
tal data. Independently a similar analysis of lower
bounds for many entanglement measures was performed
by Eisert et al. �2007�, where the emphasis was on ana-
lytical formulas for specific examples. The derived for-
mulas �Eisert et al., 2007; Gühne, Reimpell, et al., 2007�
provide a direct quantitative role for results of entangle-
ment witnesses measurements. Note that a more refined
analysis was focused on correlations obtained in the ex-
periment, identifying which types of correlations mea-
sured in incomplete experiments may be already a sig-
nature of entanglement �Audenaert and Plenio, 2006�.

Another issue, where entanglement witnesses have
been applied, is the problem of macroscopic entangle-
ment at finite temperature. A threshold temperature for
existence of entanglement can be identified. The rela-
tion between the thermal equilibrium state and en-
tanglement was hidden in a two-qubit analysis of the
Jaynes principle and entanglement �R. Horodecki et al.,
1999�. The first explicit analysis of entanglement in the
thermal state was provided by Nielsen �1998� where first
calculation of temperatures for which entanglement is
present in the two-qubit Gibbs state was performed. A
fundamental observation is that entanglement witness
theory can be exploited to detect entanglement in gen-
eral �multipartite� thermal states including systems with
a large number of particles �Brukner and Vedral, 2004;
Toth, 2005�. In the most elegant approach, for any ob-
servable O one defines an entanglement witness as fol-
lows �see Toth, 2005�

WO = O − inf
��prod�

�prod�O��prod� , �53�

where the infimum is taken over all product pure states
�prod �note that the method can be extended to take into
account partial separability35 as well�. Now if WO has a
negative eigenvalue it becomes immediately an en-
tanglement witness by construction. In the case of spin
lattices one takes O=H where H is a Hamiltonian of the

system and calculates WH�� for quantum Gibbs state
�Gibbs=exp�−H /kT� /Tr�exp�−H /kT��. It can be seen
that for H with a discrete spectrum the observable WH
has a negative eigenvalue if the lowest-energy state is
entangled and then the observable becomes an entangle-
ment witness by construction �see Eq. �53��. In this way
one can estimate the range of temperatures for which
the mean value WH��Gibbs

is negative �Toth, 2005�. Fur-
ther improvements involve uncertainty based entangle-
ment witnesses �Anders, Kaszlikowski, et al., 2006� and
applications of entanglement measures like robustness
of entanglement �Markham et al., 2006� to thermal en-
tanglement.

5. Entanglement witnesses and Bell inequalities

Entanglement witnesses �see Sec. VI� are Hermitian
operators that are designed directly for detection of en-
tanglement. In 2000 Terhal first considered a possible
connection between entanglement witnesses and Bell in-
equalities �Terhal, 2000�. From a “quantum” point of
view, Bell inequalities are just nonoptimal entanglement
witnesses. For example, one can define a CHSH-type
witness which is positive on all states that admit the
LHVM,

WCHSH = 2I − BCHSH, �54�

where BCHSH is the CHSH operator �16�.
In 1999 Peres conjectured �Peres, 1999� that PPT

states do not violate Bell inequalities:

LHVM ⇔ PPT. �55�

The answer to this question will give important insight
into our understanding of classical versus quantum be-
havior of states of composite systems.

In the multipartite case, Bell inequalities can even de-
tect so-called bound entanglement �Kaszlikowski et al.,
2000; Werner and Wolf, 2000, 2001b; Dür, 2001; Sen�De�
et al., 2002; Augusiak and Horodecki, 2006�.

In general, the problem of the relation between Bell
inequalities and entanglement witnesses is very complex.
It follows from the very large number of “degrees of
freedom” of the Bell inequalities. Nevertheless, it is a
basic problem, as the Bell observable is a double wit-
ness. It detects not only entanglement but also nonlocal-
ity.

6. Distinguished map criteria: Reduction criterion and its
extensions

There are two important separability criteria provided
by P but not CP maps. The first one is the so-called
reduction criterion �Cerf et al., 1999; Horodecki and
Horodecki, 1999� defined by Eq. �36� with the reduction
map: �red��� =I Tr��� −�. This map is decomposable
but, as we show subsequently, plays an important role in
entanglement distillation theory �Horodecki and Horo-
decki, 1999�. Only in the case of a two-dimensional
Hilbert space does the map represent a reflection in
the Bloch sphere representation �Bengtsson and Życz-
kowski, 2006�, and it can be easily shown to be equal35See Sec. VII.
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to the transpose map T followed by �y, i.e., �yT����y.
As such it provides a separability condition completely
equivalent to PPT in this special �two-qubit� case.
In general, the reduction separability criterion �IA

��B
red���AB�0 generated by �red can be written as

�A � I − �AB  0 �56�

and since �red is decomposable �Horodecki and Horo-
decki, 1999� the corresponding separability criterion is
weaker than the PPT one �see Sec. VI.B.2�. On the other
hand, it is interesting that this criterion is stronger �Hi-
roshima, 2003� than majorization separability criteria
�Nielsen and Kempe, 2001� as well as some entropic
criteria with �� �0,1� and �=� �for the proofs see Voll-
brecht and Wolf, 2002b, and Horodecki and Horodecki,
1999, respectively�.

Another important criterion is the one based on
the map due to Breuer and, independently, Hall
�Breuer, 2006a; Hall, 2006� which is a modification
of the reduction map on the even-dimensional Hilbert
space d=2k. On this subspace there exist antisym-
metric unitary operations UT=−U „for instance, U
=antidiag�1,−1,1 ,−1, . . . ,1 ,−1� �Breuer, 2006a�…. The
corresponding antiunitary map U� · �TU maps any pure
state to some state that is orthogonal to it. This leads to
the conclusion that the map which acts on the state � as

���� = �red��� − U���TU† �57�

is positive for any antisymmetric U. This map is not de-
composable and the entanglement witness W� corre-
sponding to it has an optimality property since the cor-
responding space PW�

�see Sec. VI.B.3� is the full
Hilbert space �Breuer, 2006b�. This nondecomposability
property allows the map to detect a special class of very
weak entanglement, namely, the PPT entanglement
mentioned before.

7. Range criterion and its applications; PPT entanglement

The existence of nondecomposable maps �witnesses�
with dA dB	6 implies that there are states that are en-
tangled but PPT in all those cases. Thus the PPT test is
no longer a sufficient test of separability in those cases.
This has striking consequences for quantum communica-
tion theory, including entanglement distillation �where
PPT entanglement represents so-called bound entangle-
ment phenomenon, Sec. XII� and quantum key distribu-
tion �Sec. XIX.B� discused later. The existence of PPT
entangled states was known already in terms of cones in
the mathematical literature �see, e.g., Choi �1982��,
sometimes expressed in direct sum language.

On physical grounds, the first examples of entangled
states that are PPT were provided by Horodecki �1997�,
following the Woronowicz construction �Woronowicz,
1976�. Their entanglement was found by a criterion that
is independent of the PPT one. As mentioned, this might
be done with a properly chosen P but not CP nondecom-
posable map �see Sec. VI.B.2�. Horodecki �1997� formu-
lated another criterion for this purpose, which is useful
for other applications �see below�. This is the range cri-

terion: if �AB is separable, then there exists a set of
product vectors 	�A

i
��B

i 
 that spans the range of �AB

while 	�A
i

� ��B
i �*
 spans the range of �AB

TB , where the
complex conjugate is taken in the same basis in which
the PPT operation on �AB has been performed. In par-
ticular, an example of the 3 � 3 PPT entangled state re-
vealed by the range criterion �written in a standard ba-
sis� was provided:

�a =
1

8a + 1�
a 0 0 0 a 0 0 0 a

0 a 0 0 0 0 0 0 0

0 0 a 0 0 0 0 0 0

0 0 0 a 0 0 0 0 0

a 0 0 0 a 0 0 0 a

0 0 0 0 0 a 0 0 0

0 0 0 0 0 0 1+a
2 0

�1−a2

2

0 0 0 0 0 0 0 a 0

a 0 0 0 a 0
�1−a2

2
0 1+a

2

� , �58�

where 0
a
1. Further examples of PPT states that are
entangled can be found in Alber, Beth, et al. �2001�.

An interesting application of the range criterion to
finding PPT states is the unextendible product basis
�UPB� method by Bennett, DiVincenzo, Mor, et al.
�1999� and DiVincenzo et al. �2003� �for further develop-
ment see, e.g., Pittenger, 2003; Bandyopadhyay, Ghosh,
et al., 2005�. The UPB is a set SUPB of orthonormal prod-
uct vectors in HAB=HA � HB such that there is no prod-
uct vector that is orthogonal to all of them.

Example. An example in the 3 � 3 case is �Bennett,
DiVincenzo, Mor, et al., 1999� SUPB � 	�0���0� + �1�� ,
��0� + �1���2� , �2���1� + �2����1� + �2���0� , ��0� − �1� + �2����0� − �1�
+ �2��
.

Since there is no product vector orthogonal to the
subspace HUPB spanned by elements of SUPB, any vector
from the orthogonal subspace HUPB

� �spanned by vectors
orthogonal to HUPB� is entangled. Consequently, by the
above range criterion, any mixed state with support con-
tained in HUPB

� is entangled. In particular, a special class
of states proportional to the projector PHUPB

� =I−PHUPB
�here PH stands for the projection onto the subspace H�
is also entangled, but it can be shown to be PPT because
of the special way in which the projector PHUPB

was con-
structed. In this way the notion of the UPB leads to the
construction of PPT entangled states. This result was
further exploited to provide new nondecomposable
maps �Terhal, 2001�. The idea was to take a projector on
UPB space PHUPB

and observe that the following quan-
tity �=min�sep

�sep�PHUPB
��sep� is strictly positive be-

cause of the unextendibility property. Then consider the
operator on d � d space:

WUPB = PHUPB
− d���max��max� , �59�

where �max is a maximally entangled state such that
��max� �HUPB �one can always show that such a vector
exists�. Any entanglement witness of the above form de-
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tects PPT entanglement of �UPB= �1/N��I−PHUPB
� since

the mean value Tr�WUPB�UPB� will gain only the �nega-
tive� contribution from the second term of the Eq. �59�.
At the same time, the optimization of the � above guar-
antees that the WUPB has nonnegative mean value on
any product state; hence it is indeed a legitimate witness.
Terhal calculated explicitly the lower bounds for the pa-
rameter � for a few examples of UPBs.

This idea was further generalized to the case of edge
states �Lewenstein et al., 2000� �see also Lewenstein and
Sanpera, 1998; Horodecki et al., 2000; Kraus et al., 2000�.
A state is called an “edge” and denoted as �edge if it
satisfies the following properties: �i� the PPT property
and �ii� extremal violation of the range criterion �i.e.,
there should be no ��� ��� �R��� such that ��� ��*�
�R�����. It can be seen that entanglement of any PPT
entangled state is due to some “nonvanishing” admix-
ture of the edge state. In particular, convex null of sepa-
rable and edge states is equal to PPT states. An example
of an edge state is any state based on the UPB construc-
tion, �UPB. Another edge state is the 2 � 4 PPT en-
tangled state from Horodecki �1997�.

Now the generalization of the Terhal construction
leads to a method that in fact detects any PPT entangle-
ment �Lewenstein et al., 2001�:

W = P + Q� − �C/c , �60�

with P, Q positive operators supported on kernels of
�edge and �edge

� respectively, while �=min�sep
�sep�P

+Q���sep� can be shown to be strictly positive �by ex-
tremal violation of the range criterion by the �edge state�
while C is an arbitrary positive operator with
Tr�C�edge�	0 and c=max�sep

�sep�C��sep�. All the
above witnesses are nondecomposable, and it is interest-
ing that entanglement of all PPT entangled states can be
detected even by a restricted subclass of the above,
when P, Q are projectors on the kernels of �edge, while C
is the identity operator �then c=1�. Of course all maps
isomorphic to the above witnesses are also nondecom-
posable.

Returning to the range criterion introduced above,
there is an interesting application: the so-called
Lewenstein-Sanpera decomposition; namely, any bipar-
tite state � can be uniquely decomposed �see Karnas
and Lewenstein, 2000� in the following way �Lewenstein
and Sanpera, 1998�:

� = �1 − p��sep + p� , �61�

where �sep �called the best separable approximation
�BSA�� is a separable state, and p is a minimal probabil-
ity p� �0,1�, such that � is still a legitimate state.
Clearly, � is separable if and only if p=1. Otherwise, � is
entangled and so is �. For two qubits the entangled part
� is always pure �Lewenstein and Sanpera, 1998�. More-
over, the decomposition can then be found in a fully
algebraic way without an optimization procedure
�Wellens and Kuś, 2001�; in particular, if �sep is of full
rank, then � is maximally entangled and p* is equal to

the so-called Wootters concurrence �see Wellens and
Kuś, 2001, for the proof�.

The range criterion takes into account vectors from
the range. A significant step further is to take into ac-
count the ensemble of—in general, nonorthogonal—
vectors vi, which reproduce the state �= �i �vi�vi�. The
possibility to make them all product at once defines
separability. This leads to necessary and sufficient sepa-
rabilty criteria via biconcurrence �Badziag et al., 2002,
2007� and is related to the entanglement measure called
concurrence �see Sec. XV.C.2.a�. Recently this type of
approach �i.e., basing directly on analysis of ensemble�
resulted in the useful characterization of bipartite sepa-
rability in terms of families of commuting normal matri-
ces �Samsonowicz et al., 2007�.

8. Matrix realignment criterion and linear contraction criteria

There is yet another class of strong criteria based on
linear contractions on product states. They stem from
the new criterion discovered by Chen and Wu �2003� and
Rudolph �2003� called the computable cross-norm
�CCN� criterion or the matrix realignment criterion
which is operational and independent the PPT test
�Peres, 1996b�. In terms of matrix elements it can be
stated as follows: If the state �AB is separable then the
matrix R��� with elements

m���R��AB��n���� � m�n�������� �62�

has a trace norm not greater than 1 �there are many
other variants; see Horodecki, Horodecki, et al., 2006�.

It can be formally generalized as follows: if � satisfies

�����A��A� � ��B��B���1 � 1 �63�

for all pure product states ��A��A� � ��B��B� then for
any separable state �AB one has ����AB��1�1.36 The
matrix realignment map R which permutes matrix ele-
ments satisfies the above contraction condition on prod-
ucts �63�. To find other interesting contractions of that
type that are not equivalent to realignment is an open
problem.

Quite remarkably, the realignment criterion has been
found to detect some of the PPT entanglement �Chen
and Wu, 2003� �see also Rudolph, 2003� and to be useful
for construction of some nondecomposable maps. It also
provides a lower bound on an entanglement measure—
concurrence �see Chen et al., 2005b�. On the other hand,
it happens that for any state that violates the realign-
ment criterion there is a local uncertainty relation
�LUR� �see Sec. VIII.A� that is violated, but the con-
verse statement is not always true �Gühne et al., 2006�.
On the other hand, finding LURs �like finding original
entanglement witnesses� is not easy in general and there
is no practical characterization of LURs known so far,
while the realignment criterion is elementary, fast in ap-
plication, and still powerful enough to detect PPT en-
tanglement.

36Here �X�1=Tr�XX† denote the trace norm.
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9. Some important classes of quantum states

In this section we recall classes of states for which the
PPT property is equivalent to separability. We start from
Werner states that are linked to one intriguing problem
of entanglement theory,namely, the NPT bound en-
tanglement problem �DiVincenzo, Shor, et al., 2000; Dür,
Cirac, et al., 2001� �see Sec. XII�.

Werner d � d states (Werner, 1989b). Define projectors
P�+� = �I+V� /2, P�−� = �I−V� /2 with identity I, and “flip”
operation V �42�. The d � d state

W�p� = �1 − p�
2

d2 + d
P�+� + p

2

d2 − d
P�−�, 0 � p � 1,

�64�

is invariant under any U � U operation for any unitary
U. W�p� is separable if and only if it is PPT, which holds
for 0�p� 1

2 .
Isotropic states (Horodecki and Horodecki, 1999).

They are U � U* invariant �for any unitary U� d � d
states. They are of the form

�F =
1 − F

d2 − 1
�I − P+� +

Fd2 − 1

d2 − 1
P+, 0 � F � 1 �65�

�with P+ defined by Eq. �44��. An isotropic state is sepa-
rable if and only if it is a PPT, which holds for 0�F
�

1
d .
Low global rank class (Horodecki, Lewenstein, et al.,

2000). The general class of the dA � dB states which have
global rank not greater than the local ones: r��AB�

�max�r��A� ,r��B��. Here again the PPT condition is
equivalent to separability. If r��AB�
max�r��A� ,r��B��
�which corresponds to a violation of the entropic crite-
rion for �=�� then the PPT test is violated, because the
reduction criterion �weaker than PPT� is stronger than
the S� entropy criterion �Horodecki, Smolin, et al.,
2003�.

VII. MULTIPARTITE ENTANGLEMENT—SIMILARITIES
AND DIFFERENCES

In the multipartite case the qualitative definition of
separability and entanglement is much richer than in bi-
partite case. There is so-called full separability, which is
the direct generalization of bipartite separability. More-
over, there are many types of partial separability. Below
we discuss the separability criteria in this more compli-
cated situation.

A. Notion of full (m-partite) separability

The definition of full multipartite separability �or m
separability� of m systems A1¯Am with Hilbert space
HA1¯An

=HA1
� ¯ � HAm

is analogous to that in the bi-
partite case: �AB= �i=1

k pi�A1

i
� ¯ � �Am

i . The Carath-
eodory bound is kept, k�dim HA1¯Am

2 . Such a defined
set of m-separable states is again �i� convex and �ii�
closed �with respect to the trace norm�. Moreover, sepa-
rability is preserved under m-separable operations �see
Sec. XIII�, which are an immediate generalization of the
bipartite separable ones,

�A1,. . .,Am
→

�
i

Ai
1

� ¯ � Ai
n�A1,. . .,Am

�Ai
1

� ¯ � Ai
n�†

Tr��
i

Ai
1

� ¯ � Ai
n�A1,. . .,Am

�Ai
1

� ¯ � Ai
n�†� . �66�

The separability characterization in terms of positive,
but not completely positive, maps and witnesses gener-
alizes in a natural way �M. Horodecki et al., 2001�. There
is a condition analogous to Eq. �36� with I acting on one
first subsystem HA1

and the map �A2¯Am
: B�HA2,. . .,Am

�
→B�HA1

�. Namely, in Eq. �36� we take maps �A2¯Am
:

B�HA2,. . .,Am
�→B�HA1

� that are positive on product
states, i.e., �A2¯Am

���A2
��A2

� � ¯ � ��Am
��Am

��0
�with arbitrary states �Ai

�HAi
� but not completely posi-

tive. The corresponding entanglement witness must have
again �i� at least one negative eigenvalue and also satisfy
�ii�

�A1
� ¯ �Am

�W��A1
� ¯ ��Am

�  0. �67�

Maps and witnesses are again related by the isomor-
phism �43� with the maximally entangled state P+ on the
bipartite system A1A1.

The above description provides a full characterization
of m separability of the m partite system. An example of
maps positive on product states is a product of positive
maps. Of course there exist maps that are positive on
product states, but are not of the latter form �those are
in particular maps �M. Horodecki et al., 2001� detecting
entanglement of some semiseparable states constructed
in Bennett, DiVincenzo, Mor, et al. �1999�; see one of the
examples below�. Multipartite witnesses and related
maps were investigated by Jafarizadeh et al. �2006� by
means of linear programming.

Example. An elementary example of a fully separable
three-qubit state is
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� = p�0�0��3 + �1 − p��1�1��3. �68�

We now consider the case of pure states in more de-
tail. A pure m-partite state is fully separable if and only
if it is a product of pure states describing m elementary
subsystems. To check it, it is enough to compute the
reduced density matrices of elementary subsystems and
check whether they are pure. However, if one asks about
the possible ways this simple separability condition is
violated then the situation becomes more complicated.

The first problem is that in the multipartite case �in
comparison to the bipartite one� only rarely do pure
states admit the generalized Schmidt decomposition
��A1,. . .,Am

� = �i=1
min�dA1

,. . .,dAm
�ai�ẽA1

i � � ¯ � �ẽAm

i � �see Peres,
1995; Thapliyal, 1999�. An example of state admitting
Schmidt decomposition in the d�m case is the general-
ized Greenberger-Horne-Zeilinger state

�GHZ�d
�m� =

1
�d

�
i=0

d−1

��i��m� , �69�

which is a generalization of the original GHZ state
�Greenberger et al., 1989� that is a three-qubit vector
�GHZ� =1/�2��0��0��0� + �1��1��1��. To give an example of
a state which does not admit Schmidt decomposition,
note that the latter implies that if we trace out any sub-
system, the rest is in a fully separable state. One easily
finds that the state

�W� =
1

�3
��0��0��1� + �0��1��0� + �1��0��0�� �70�

has an entangled two-qubit subsystem, and hence does
not admit Schmidt decomposition �Dür, Vidal, et al.,
2000�.

Thus in general the entanglement of a pure state is
described by the spectra of reduced density matrices
produced by all bipartite partitions. As implied by the
full separability definition it is said to be fully m-partite
separable if and if only

��A1,. . .,Am
� = ��A1

� � ¯ � ��Am
� . �71�

However, violation of this condition does not automati-
cally guarantee what can be intuitively considered as
“truly” m-partite entanglement �to understand this, see,
for instance, the four-system state �A1A2A3A4

= ��A1A2
�

� ��A3A4
� where at least one vector �A1A2

, �A3A4
is en-

tangled�.
One says that an m-partite state is m-partite entangled

if and only if all bipartite partitions produce mixed re-
duced density matrices �note that both reduced states
produced in this way have the same nonzero eigenval-
ues�. This means that there does not exist a cut, against
which the state is a product. To this class belong all those
pure states that satisfy the generalized Schmidt decom-
position �like the GHZ state above�. But there are many
others, for example, the mentioned W state. In Sec. XIII
we discuss how one can introduce a classification within
the set of m-partite entangled states. One can introduce
a further classification by means of stochastic LOCC

�SLOCC� �see Sec. XIII�, according to which for three
qubits there are two classes of truly three-partite en-
tangled states, represented by the GHZ and W states.
There are, furthermore, three classes of pure states
which are partially entangled and partially separable:
this is the state ��+��0�, where �+= �1/�2���0��0� + �1��1��
and its twins produced by two cyclic permutations of
subsystems. We see that in the latter case only two-qubit
entanglement is present and explicitly “partial” separa-
bility can be seen. This leads us to the various notions of
partial separability described in the next section. Here
we present an important family of pure entangled states.

Example: Quantum graph states. The general form of
graph states has been introduced by Raussendorf et al.
�2003� as a generalization of cluster states �Briegel and
Raussendorf, 2001� that have been shown to be a re-
source for a one-way quantum computer �Raussendorf
and Briegel, 2001�. The universality of quantum comput-
ers based on graph states is an important application of
quantum entanglement in the theory of quantum com-
putation �see Hein et al., 2005�. In general, any graph
state is a pure m-qubit state �G� corresponding to a
graph G�V ,E�. The graph is described by the set V of
vertices with cardinality �V� =m �corresponding to qubits
of �G�� and the set E of edges, i.e., pairs of vertices �cor-
responding to pairs of qubits of �G��.37 Now, the mecha-
nism of creating �G� is simple. One takes as the initial
state �+��m with �+� = �1/�2���0� + �1��. Then, according to
the graph G�V ,E�, to any of pairs of qubits correspond-
ing to vertices connected by an edge from E one applies
a controlled phase gate: UC phase= �0�0� � I+ �1�1� ��3.
Note that since all such operations commute even if per-
formed according to the edges with a common vertex,
the order of applying the operations is arbitrary. Re-
markably, the set of graph states is described by a poly-
nomial number m�m−1� /2 of discrete parameters, while
in general the set of all states in the m-qubit Hilbert
space is described by an exponential 2m number of con-
tinuous parameters. Moreover, local unitary intercon-
vertibility under � i=1

m Ui of two graphs states is equiva-
lent to their interconvertibility under stochastic local
operations and classical communications.

B. Partial separability

Here we consider two other important notions of par-
tial separability. The first one is separability with respect
to partitions. In this case, the state of A1 , . . . ,Am elemen-
tary subsystems is separable with respect to a given par-
tition 	I1 , . . . ,Ik
, where Ii are disjoint subsets of the set
of indices I= 	1, . . . ,m
 ��l=1

k Il=I� if and only if �

= �i=1
N pi�1

i
� ¯ � �k

i , where any state �l
i is defined on the

tensor product of all elementary Hilbert spaces corre-

37Usually E is represented by a symmetric adjacency matrix
with elements Auv=Avu=1 if and only if u�v are connected by
the edge and Auv=0 otherwise. Note that there are no more
than m�m−1� /2 edges or pairs of vertices.
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sponding to indices belonging to set Ii. Now, one may
combine several separability conditions with respect to
several different partitions. This gives many possible
choices for partial separability.

We show an interesting example of partial separability
which requires an even number of qubits in general.

Example. Consider four-qubit Smolin states �Smolin,
2001�

�ABCD
unlock =

1
4 �

i=1

4

��AB
i ��AB

i � � ��CD
i ��CD

i � , �72�

where ��i� are four Bell states. It happens that it is sym-
metrically invariant under any permutations �to see it
one can use the symmetric Hilbert-Schmidt representa-
tion �ABCD

unlock = 1
4 �I�4+ �i=1

3 �i
�4��. Thus the state is separable

under any partition into two two-qubit parts. Still, it is
entangled under any partition 1 vs 3 qubits since it vio-
lates the PPT criterion with respect to this partition, i.e.,
��ABCD

unlock �TA�0. This state has been shown to have appli-
cations in remote concentration of quantum information
�Murao and Vedral, 2001�. The Smolin state has also
been shown to be useful in reduction of communication
complexity via violation of Bell inequalities �Augusiak
and Horodecki, 2006�.

Particularly interesting from the point of view of
low-partite case systems is a special class of partially
separable states called semiseparable. They are sepa-
rable under all 1 versus m−1 partitions: ˆI1= 	k
 ,I2
= 	1, . . . ,k−1,k+1, . . . ,m
‰, 1�k�m. It allows us to
show a new type of entanglement: there are semisepa-
rable three-qubit states which are still entangled as seen
in the example below. There is also another notion of
separability/entanglement which is related to the con-
cept of being “at most n-partite entangled” �Vedral, Ple-
nio, Jacobs, and Knight, 1997�. For instance, the state
�=p�AB � �CDE+ �1−p��ACDE � �B is at most bipartite
entangled. One may also define the notions of “at most
�at least� k-subsystem entanglement” and then the above
state may contain at most 4-subsystem �at least
2-subsystem� entanglement. Finally, one can consider
mixtures of type “clusters” like, for instance, mixtures of
states product under �arbitrary� k versus m-k-type parti-
tions �see Seevinck and Svetlichny �2002� for k=1�.
However, criteria for this type of entanglement have not
been well developed yet.

Examples. Consider the following product states
�DiVincenzo et al., 2003�: a 2 � 2 � 2 state composed
on three parts ABC generated by a set defined as
Sshift= ��0��0��0� , �+��1��−� , �1��−��+� , �−��+��1�
, with � ± �
= �1/�2���0� ± �1��. This set can be proven to define the
multipartite unextendible product basis in full analogy
to the bipartite case discussed in Sec. VI.B.7: there is no
product state orthogonal to the subspace spanned by
Sshift. Thus in analogy to bipartite construction, the state
�shift= �I−Pshift� /4 where Pshift projects onto the subspace
spanned by Sshift can be easily shown to be entangled as
a whole �i.e., not fully separable� but PPT under all bi-
partite cuts �i.e., A � BC, AB � C, B � AC�. However, it hap-

pens that it is not only PPT but also separable under all
bipartite cuts �i.e., semiseparable�. This means that
semiseparability is not equivalent to full separability
even in the most simple multipartite case like the three-
qubit one.

Another interesting class is the set of U � U � U in-
variant d � d � d states which comprises semiseparable
and fully three-separable subclasses of states in one five-
parameter family of states �see Eggeling and Werner,
2001�.

The moral of the story is that checking bipartite sepa-
rability with respect to all possible cuts is not enough to
guarantee full separability. However, separability with
respect to some partial splittings still gives an important
generalization of separability and has interesting appli-
cations �see Dür, Cirac, et al., 1999; Dür and Cirac,
2000a, 2000b; Smolin, 2001� �see Sec. XII�. In this con-
text we describe below a useful family of states.

Example. The separability of the family of states pre-
sented below �Dür, Cirac, et al., 1999a; Dür and Cirac,
2000b� is determined by checking the PPT criterion un-
der any possible partitions. To be more specific, the PPT
condition with respect to some partition guarantees
separability along that partition. The states found some
important applications in the activation of bound en-
tanglement �Dür and Cirac, 2000a�, nonadditivity of
multipartite quantum channels �Dür et al., 2004�, and the
multipartite bound information phenomenon �Acín,
Cirac, et al., 2004�. This is the following m-qubit family
�Dür, Cirac, et al., 1999�:

��m� = �
a=±

�0
a��0

a��0
a� + �

k�0
�k���k

+��k
+� + ��k

−��k
−�� ,

�73�

where ��k
±� = �1/�2���k1���k2�¯ �km−1��0� ± �k̄1��k̄2�¯

��k̄m−1��1� with ki=0,1, k̄i=ki � 1 � �ki+1�mod 2, and k
one of 2m−1 real numbers defined by the binary sequence
k1 , . . . ,km−1.

We put �=�0
+−�0

−0 and define bipartite splitting
into two disjoint parts, A�k� = 	subset with the last
�mth� qubit
, B�k� = 	subset without the last qubit
, with
the help a of binary sequence k such that the ith qubit
belongs to A�k� �and not to B�k�� if and only if the se-
quence k1 , . . . ,km−1 contains ki=0. Then one can prove
�Dür, Cirac, et al., 1999� that �i� ��m� is separable with
respect to the partition 	A�k�, B�k�
 if and only if �k
� /2, which happens to be equivalent to the PPT con-
dition with respect to that partition �i.e., �TB0�; �ii� if
the PPT condition is satisfied for all bipartite splittings
then ��m� is fully separable. Note that condition �ii�
above does not hold in general for other mixed states,
which can be seen easily on the three-qubit semisepa-
rable state �shift recalled in this section. That state is
entangled but clearly satisfies the PPT condition under
all bipartite splittings.
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VIII. FURTHER IMPROVEMENTS OF ENTANGLEMENT
TESTS: NONLINEAR SEPARABILITY CRITERIA

The nonlinear separability criteria fall into two differ-
ent classes. The first class is based on nonlinear functions
of results of a few different measurements performed in
the usual, noncollective manner �on one copy of �AB at a
time�. To this class belong all separability conditions for-
mulated in terms of uncertainty relations which were
first developed for continuous variables but then also
strongly pursued for finite dimensions, for example, in
terms of spin-sqeezing inequalities.38 Such conditions
will be described in Sec. VIII.A.39

The second class of nonlinear separability conditions
is based on collective measurements on several copies
and has attracted more and more attention recently. We
present them in Sec. VIII.B.

A. Uncertainty-relation-based separability tests

Separability tests based on uncertainty relations have
first been developed for continuous variables and ap-
plied to Gaussian states �Duan et al., 2000; Simon, 2000;
see also Mancini et al., 2002�. For the bipartite case non-
linear inequalities for approximations of finite-
dimensional Hilbert spaces in the limit of high dimen-
sions have been exploited in terms of global angular-
momentum-like uncertainties by Kuzmich and Polzik
�2000� with further experimental application �Julsgaard
et al., 2001�.40

General separability criteria based on an uncertainty
relation and valid for both discrete and continuous vari-
ables �CVs� were introduced by Giovannetti et al. �2003�
and Hofmann and Takeuchi �2003� �the second one was
introduced for discrete variables but its general formu-
lation is valid also for the CV case�. Further, it was
shown �Hofmann, 2003� that PPT entanglement can be
detected by means of the uncertainty relation intro-
duced by Hofmann and Takeuchi �2003�. This approach
was further developed and simplified by Gühne �2004�
and developed also in entropic terms �Gühne and Le-
wenstein, 2004a�. Another separability criterion in two-
mode continuous systems based on uncertainty relations
with the particle number and the destruction operators
has been presented �Tóth et al., 2003�, which may be
used to detect entanglement of light modes or in Bose-
Einstein condensates.

We recall briefly the key of the approach of local un-
certainty relations �Hofmann and Takeuchi, 2003� which
has found application in the idea of macroscopic en-
tanglement detection via magnetic susceptibility

�Wieśniak et al., 2005�. Consider the set of local observ-
ables 	Ai
i=1

N , 	Bi
i=1
N on Hilbert spaces HA, HB, respec-

tively. Suppose that one has bounds on the sum of local
variances, i.e., �i��Ai�2ca , �i��Bi�2cb with some non-
negative values ca, cb and the variance definition ��M��

2

� M2��− M��
2 . Then for any separable state �AB the fol-

lowing inequality holds �Hofmann and Takeuchi, 2003�:

�
i
��Ai � I + I � Bi��AB

2  cA + cB. �74�

Note that by induction the above inequality can be ex-
tended to the multipartite case. Quite remarkably, if the
observables Ai and Bi are chosen in a special asymmetric
way, the above inequality can be shown �Hofmann,
2003� to detect entanglement of the family of PPT states
�58�. The LUR approach was generalized by Gühne
�2004� to separability criteria via nonlocal uncertainty
relations. That approach is based on the observation
that, for any S �here we choose it to be a set of product
states�, any set of observables Mi, and the state �
= �ipi�i, �i�S, the following inequality holds:

�
i
��Mi��

2  �
k

pk�
i
��Mi��k

2 . �75�

It happens that in many cases it is easy to show that
right-hand side �RHS� is separated from zero for sepa-
rable �, while at the same time the LHS vanishes for
some entangled states.41

B. Detecting entanglement with collective measurements

1. Physical implementations of entanglement criteria with
collective measurements

The idea of direct measurement of pure state en-
tanglement was first considered by Sancho and Huelga
�2000� and involved the explicit application of collective
measurements to entanglement detection �Acín et al.
2000�. In general, the question here is how to detect
entanglement physically by means of a small number of
collective measurements that do not lead to complete
tomography of the state. Here we focus on the number
of estimated parameters �means of observables� and try
to diminish it. The fact that the mean of an observable
may be interpreted as a single binary estimated param-
eter �equivalent to one-qubit polarization� has been
proven by Horodecki �2003c�, and Paz and Roncaglia
�2003�, cf. Brun �2004�.

The power of positive map separability criteria and
entanglement measures has motivated work on imple-
mentations of separability criteria via collective mea-
surements, introduced by Horodecki and Ekert �2002�

38We stress here that we do not consider entanglement mea-
sures which are also nonlinear functions of the state, but be-
long to a special class that has, in a sense, its own philosophy.

39There are also nonlinear criteria which do not belong to this
class, see, e.g., Badziag et al., 2008.

40The first use of an uncertainty relation to detect entangle-
ment �theoretically and experimentally� can be found in Hald
et al. �1999� for spins of atomic ensembles.

41There is also a separability criterion in terms of covariance
matrices, which is equivalent to all LUR criteria �Gühne, Hyl-
lus, et al., 2007� �see also Abascal and Björk, 2007, in this con-
text�. Other criteria for symmetric n-qubit states have been
presented in the form of a hierarchy of inseparability condi-
tions on the intergroup covariance matrices of even order
�Devi et al., 2007�.
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and Horodecki �2003d� and improved by Carteret
�2005�, and Horodecki, Augusiak, et al. �2006�. On the
other hand, the entropic separability criteria have led to
the separate notion of collective entanglement witnesses
�Horodecki, 2003b� described next.

The evaluation of nonlinear state functions via collec-
tive measurement �Ekert, Alves, et al., 2002; Filip, 2002�
�see also Fiurásek, 2002b; Horodecki, 2003b� was imple-
mented experimentally in the distant laboratory para-
digm �Bovino et al., 2005�. The method takes an espe-
cially striking form in the two-qubit case, when not only
unambiguous entanglement detection �Horodecki and
Ekert, 2002� but also estimation of such complicated en-
tanglement measures as entanglement of formation and
Wootters concurrence can be achieved by measuring
only four collective observables �Horodecki, 2003d�,
much smaller than the 15 required by state estimation.
The key idea of the latter scheme is to measure four
collective observables A�2k� on 2k copies of the state that
previously have been subjected to physical action of
some maps.42 The mean values of these observables re-
produce all four moments A�2k�� = �i�i

k of spectrum 	�k

of the square of the Wootters concurrence matrix Ĉ���
=����2 ��2�*�2 ��2��. Note that, due to the link
�Wootters, 1998� between Wootters concurrence and en-
tanglement of formation, the latter can be also inferred
in such an experiment. Recently, a collective observable
acting on two copies of quantum state which detect two-
qubit concurrence has been constructed and imple-
mented �Walborn et al., 2006�. The observable is much
simpler, however, the method works under the promise
that the state is pure. This approach can be also gener-
alized to the multiparty case using a suitable factorizable
observable corresponding to the concurrence �see Aolita
and Mintert, 2006�.

In methods involving positive map criteria the un-
physical character of given map L �equal to, say, partial
transpose� has been overcome first with the help of af-
fine rescaling �referred to as so-called structural physical
approximation �SPA�� which allows us to measure the
spectrum L��� with d2 collective observables instead of
the d4−1 required if one checks the map condition with
prior tomography. The approach easily generalizes to
multipartite map criteria like realignment or linear con-
tractions �Horodecki, 2003a�. The implementation with
the help of local measurements has also been developed
�see Alves et al., 2003�.

However, as pointed out by Carteret �2005�, the dis-
advantage of the method is that SPA involved here re-
quires in general a significant amount of noise added to
the system. The improved method of noiseless detection
of PPT criterion, concurrence, and tangle has been
worked out �Carteret, 2003, 2005� with the help of the
polynomial invariants technique which allows for very
simple and elegant quantum network designing. Later,

general noiseless networks working for arbitrary posi-
tive �or contraction� maps have been solved where gen-
eral noiseless networks have been designed �Horodecki,
Augusiak, et al., 2006�.

Finally we note that the above techniques have been
also developed on the ground of continuous variables
�Fiurásek and Cerf, 2004; Stobińska and Wódkiewicz,
2005; Pregnell, 2006�.

2. Collective entanglement witnesses

There is yet another technique �Horodecki, 2003b�
that seems to be more important in the context of ex-
perimental implementations. This is the notion of the
collective entanglement witness. Consider a bipartite
system AB on the space HAB=HA � HB. One introduces
here the notion of collective observable A�n� with respect
to the single system Hilbert space H as an observable
defined on H�n and measured on n copies ��n of given
state �. Also one defines the notion of the mean of col-
lective observable in a single copy of state ��n as
A�n���ªTr�A�n���n�. Now any observable W�n� defined
on �HAB��n that satisfies the condition

W�n����sep
ª Tr�W�n��sep

�n�  0 �76�

when there exists an entangled state �ent such that

W�n����ent

 0 �77�

is called a collective n-copy entanglement witness.
Recently it has been observed that there is a single

four-copy collective entanglement witness that detects
all �unknown� two-qubit entanglement �Augusiak et al.,
2008�. On this basis a corresponding universal quantum
device, that can be interpreted as a quantum computing
device, has been designed.

It is very interesting that the following collective en-
tanglement witness �Mintert and Buchleitner, 2006�:

W̃AA�BB�
�2� = 2PAA�

�+�
� PBB�

�−� + 2PAA�
�−�

� PBB�
�−�

− 4PAA�
�−�

� PBB�
�−� , �78�

with P�+� and P�−� projectors onto symmetric and anti-
symmetric subspace, respectively �see Sec. VI.B.3�, has
been shown to provide a lower bound on bipartite con-
currence C��AB� �Mintert et al., 2004�,

C��AB�  − W̃AA�BB�
�2� ���AB

. �79�

IX. CLASSICAL ALGORITHMS DETECTING
ENTANGLEMENT

The first systematic methods of checking entangle-
ment of a given state was worked out in terms of finding
the decomposition onto separable and entangled parts
of the state �see Lewenstein and Sanpera, 1998� and gen-
eralizations to the case of PPT states �Kraus et al., 2000;
Lewenstein et al., 2001�. The methods were based on the
systematic application of the range criterion involving,
however, the difficult analytical part of finding product

42They are so-called physical structural approximations, de-
scribed further in this section.
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states in the range of a matrix. A further attempt to
provide an algorithm deciding entanglement was based
on checking the variational problem based on a concur-
rence vector �Audenaert, Verstraeter, et al., 2001�. The
problem of the existence of a classical algorithm that
unavoidably identifies entanglement has been analyzed
by Doherty et al. �2002, 2004� both theoretically and nu-
merically and implemented by semidefinite program-
ming methods. This approach is based on a theorem
concerning the symmetric extensions of a bipartite quan-
tum state �Fannes et al., 1988; Raggio and Werner, 1989�.
It has the following interpretation. For a given bipartite
state �AB one asks about the existence of a hierarchy of
symmetric extensions, i.e., whether there exists a family
of states �AB1¯Bn

�with n arbitrary high� such that �ABi
=�AB for all i=1, . . . ,n. It happens that the state �AB is
separable if and only if such a hierarchy exists for each
natural n �see Sec. XVI�. However, for any fixed n
checking the existence of such a symmetric extension is
equivalent to an instance of semidefinite programming.
This leads to an algorithm consisting of checking the
above extendability for increasing n, which always stops
if the initial state �AB is entangled. However, the algo-
rithm never stops if the state is separable. Further, an-
other hierarchy has been provided together with the cor-
responding algorithm in Eisert et al. �2004�, extended to
involve higher order polynomial constraints and to ad-
dress the multipartite entanglement question.

The idea of the dual algorithm was provided by
Hulpke and Bruß �2005�, based on the observation that
in checking the separability of a given state it is enough
to consider a countable set of product vectors spanning
the range of the state. The constructed algorithm is dual
to that described above, in the sense that its termination
is guaranteed if the state is separable, otherwise it will
not stop. It has been further realized that running both
the algorithms �i.e., the one that always stops if the state
is entangled with the one that stops if the state is sepa-
rable� in parallel gives an algorithm that always stops
and decides entanglement definitely �Hulpke and Bruß,
2005�.

The complexity of both algorithms is exponential in
the size of the problem. It seems that it must be so. The
milestone result that has been proven in a meantime was
that solving separability is a so-called NP hard problem
�Gurvits, 2002, 2003, 2004�. Namely, it is known �Yudin
and Nemirovskii, 1976� that if a largest ball contained in
the convex set scales properly, and moreover there exists
an efficient algorithm for deciding membership, then
one can efficiently minimize linear functionals over the
convex set. Now, Gurvits has shown that for some en-
tanglement witness �corresponding to linear functional�
the optimization problem was intractable. This, together
with the results on the radius of the ball contained
within separable states �see Sec. X�, shows that the prob-
lem of separability cannot be efficiently solved.

Recently the new algorithm via the analysis of a weak
membership problem has been developed together with
analysis of NP hardness �Ioannou et al., 2004; Ioannou
and Travaglione, 2006; Ioannou, 2007�. The goal of the

algorithm is to solve the “witness” problem. This is ei-
ther �i� to write a separable decomposition up to the
given precision � or �ii� to find an �according to a slightly
modified definition� entanglement witness that separates
the state from a set of separable states by more than �
�the notion of the separation is precisely defined�. The
analysis shows that one can find more precisely a likely
entanglement witness that detects the entanglement of
the state �or find that it is impossible� reducing the set of
“good” �i.e., possibly detecting the state entanglement�
witnesses by each step of the algorithm. The algorithm
singles out a subroutine which can be, to some extent,
interpreted as an oracle calculating a “distance” of the
given witness to the set of separable states.

Finally, note that there are also other proposals of al-
gorithms deciding separability like Zapatrin �2005� �for a
review, see Ioannou, 2007, and references therein�.

X. QUANTUM ENTANGLEMENT AND GEOMETRY

The geometry of entangled and separable states is a
wide branch of entanglement theory �Bengtsson and
Życzkowski, 2006�. The most simple and elementary ex-
ample of geometrical representation of separable and
entangled states in three dimensions is a representation
of a two-qubit state with maximally mixed subsystems
�Horodecki and Horodecki, 1996�; namely, any two-
qubit state can be represented in the Hilbert-Schmidt
basis 	�i ��j
 where �0=I, and in this case the correla-
tion matrix T with elements tij=Tr���i ��j�, i , j=1,2 ,3
can be transformed by local unitary operations to the
diagonal form. This matrix completely characterizes the
state if local density matrices are maximally mixed
�which corresponds to the vanishing of the parameters
ri=Tr��i � I��, sj=Tr�I ��j��, for i , j=1,2 ,3�. It happens
that after diagonalizing,43 T is always a convex com-
bination of four matrices T0=diag�1,−1,1�, T1
=diag�−1,1 ,1�, T2=diag�1,1 ,−1�, T3=diag�−1,−1,−1�
which corresponds to the maximally mixed Bell basis.
This has a simple interpretation in three-dimensional
real space: a tetrahedron T with four vertices and their
coordinates corresponding to the diagonals above
��1,1 ,−1�, etc.�. The subset of separable states is an oc-
tahedron that comes out from intersection of T with its
reflection by the map �x ,y ,z�→ �−x ,−y ,−z�. It is re-
markable that all states with maximally mixed sub-
systems are equivalent �up to product unitary operations
UA � UB� to Bell diagonal states �a mixture of four Bell
states �3��. Moreover, for all states �not only those with
maximally mixed subsystems� the singular values of the
correlation matrix T are invariants under such product
unitary transformations. The Euclidean lengths of the
real three-dimensional vectors with coordinates ri, sj de-
fined above are also similarly invariant.

Note that an analog of the tetrahedron T in the state
space for entangled two qudits was defined and investi-

43The diagonalizing matrix T corresponds to applying the
product UA � UB unitary operation to the state.
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gated in the context of geometry of separability �Baum-
gartner et al., 2006�. It turns out that the analog of the
octahedron is no longer a polytope.

One can naturally ask about a reasonable set of the
parameters or in general functions of the state that are
invariants of product unitary operations. Properly cho-
sen invariants allow for characterization of local orbits,
i.e., classes of states that are equivalent under local uni-
taries. �Note that any given orbit contains either only
separable or only entangled states since entanglement
property is preserved under local unitary product trans-
formations.� The problem of characterizing local orbits
was analyzed in general in terms of polynomial invari-
ants by Grassl et al. �1998�, and Schlienz and Mahler
�1995�. In the case of two qubits this task was completed
explicitly with 18 invariants in which 9 are functionally
independent �Makhlin, 2002; cf. Grassl et al., 1998�. Fur-
ther, this result has been generalized up to four qubits
�Briand et al., 2003, Luque and Thibon, 2003�. Another
way of characterizing entanglement in terms of local in-
variants was initiated by Linden and Popescu �1998�, and
Linden, Popescu, and Sudbery �1999� by analysis of di-
mensionality of the local orbit. The full solution of this
problem for mixed two-qubit states and general bipartite
pure states has been provided by Kuś and Życzkowski
�2001� and Sinołȩcka et al. �2002�, respectively. For fur-
ther development in this direction see Grabowski et al.
�2005�, and references therein. There are many other
results concerning geometry or multiqubit states; we
mention only Miyake �2003�; Heydari �2006�; Levay
�2006�.

There is another way to ask about geometrical prop-
erties of entanglement; namely, to ask about the volume
of a set of separable states, its shape, and the boundary
of this set. The question about the volume of separable
states was first considered by Życzkowski et al. �1998�
and extended by Życzkowski �1999�. Życzkowski et al.
�1998� proved with the help of entanglement witnesses
theory that for any finite dimensional system �bipartite
or multipartite� the volume of separable states is non-
zero. In particular there always exists a ball of separable
states around the maximally mixed state.44 An explicit
bound on the ratio of volumes of the set of all states S
and that of the separable states Ssep,

vol�S�/vol�Ssep�  �1/�1 + d/2���d−1��N−1�, �80�

for N-partite systems each of dimension d was provided
by Vidal and Tarrach �1999�. This has inspired further
discussion which has shown that experiments in NMR
quantum computing may not correspond to real quan-
tum computing since they are performed on pseudopure
states which are in fact separable �Braunstein et al.,
1999�. Interestingly, one can show �Życzkowski et al.,
1998; Kendon et al., 2002� that for any quantum system

on some Hilbert space H a maximal ball inscribed into a
set of mixed states is located around maximally mixed
states and is given by Tr��2�� �dim H2−1�−1. Since this
condition guarantees also the positivity of any unit trace
operator, and since for bipartite states Tr��AB

2 �
=Tr���AB

� �2� this means that the maximal ball contains
only PPT states �the same argument works also for mul-
tipartite states �Kendon et al., 2002��. In the case of 2
� 2 or 2 � 3 this implies also separability giving a way to
estimate the volume of separable states from below.

These estimates have been generalized to multipartite
states �Braunstein et al., 1999� and further improved pro-
viding strong upper and lower bounds with the help of a
subtle technique exploiting among others entanglement
witnesses theory �Gurvits and Barnum, 2002, 2003,
2005�. In particular for bipartite states the exact size of
the largest separable ball around maximally mixed states
was found. One of the applications of the largest sepa-
rable ball results is the proof of NP hardness in deciding
whether or not a state is separable �Gurvits, 2003� �see
Sec. IX�.

There is yet another related question: one can define
the state �bipartite or multipartite� � that remains sepa-
rable under the action of any unitary operation U. Such
states are called absolutely separable �Kuś and Życz-
kowski, 2001�. In full analogy one can define what we
call here absolute PPT property �i.e., PPT property that
is preserved under any unitary transformation�. The
question of which states are absolutely PPT has been
fully solved �Hildebrand, 2005�. For example, for 2 � n
systems those are all states satisfying �1��2n−1

+��2n−2�2n where 	�i
i=1
2n are eigenvalues of � in decreas-

ing order. This provides the characterization of abso-
lutely separable states in dA � dB systems with dAdB�6
since PPT is equivalent to separability in those cases.
Note that for 2 � 2 states this characterization was
proven much earlier by different methods �Verstraete,
Audenaert, and De Moor, 2001�. In particular it follows
that for those low dimensional cases the set of absolutely
separable states is strictly larger than that of the maxi-
mal ball inscribed into the set of all states. Whether it is
true in higher dimensions remains an open problem.

Speaking about the geometry of separable states one
can not avoid a question about what is the boundary �S
of the set of states. This not easy in general, question,
can be answered analytically in the case of the two qubit
where it can be shown to be smooth �Djokovic, 2006�
relative to the set of all two-qubit states which is closely
related to the separability characterization �Horodecki,
Augusiak, et al., 2006� det��AB

� �0. Interestingly, it has
been shown that the set of separable states is not a poly-
tope �Ioannou and Travaglione, 2006�; it has no faces
�Gühne and Lütkenhaus, 2007�.

There are many other interesting geometrical issues
that can be addressed in the case of separable states.
One of them is how the probability of finding a sepa-
rable state �when the probability is measured with an a
priori probability measure �� is related to the probabil-
ity �calculated by an induced measure� of finding a ran-

44The radius of the ball provides a sufficient condition for
separability. A different sufficient condition which is not based
solely on eigenvalues was provided by Pittenger and Rubin
�2002, 2002�.

895Horodecki et al.: Quantum entanglement

Rev. Mod. Phys., Vol. 81, No. 2, April–June 2009



dom boundary state to be separable. The answer, of
course, will depend on a choice of the probability mea-
sure, which is by no means unique. Numerical analysis
suggested �Slater, 2005a, 2005b� that in the two-qubit
case the ratio of those two probabilities is equal to 2 if
one assumes a measure based on the Hilbert-Schmidt
distance. Recently it has been proven that for any dA
� dB system this rate is indeed 2 if we ask about the set
of PPT states rather than the separable ones �Szarek et
al., 2006�. For the 2 � 2 and 2 � 3 cases this reproduces
the previous conjecture since the PPT condition charac-
terizes separability there �see Sec. VI.B.2�.

XI. THE PARADIGM OF LOCAL OPERATIONS AND
CLASSICAL COMMUNCIATION (LOCC)

A. Quantum channel: The main notion

Here we recall that the most general quantum opera-
tion that transforms one quantum state into the other is
a probabilistic or stochastic physical operation of the
type

� → ����/Tr������ , �81�

with a trace-nonincreasing CP map, i.e., a map satisfying
Tr�������1 for any state �, which can be expressed in
the form

���� = �
i

Vi���Vi
†, �82�

with �iVi
†Vi�I �domain and codomain of operators Vi

called Kraus operators �Kraus, 1983� are in general dif-
ferent�. The operation above takes place with the prob-
ability Tr������ which depends on the argument �. The
probability is equal to 1 if an only if the CP map � is
trace preserving, which corresponds to �iVi

†Vi=I in Eq.
�82�; in such a case � is called deterministic or a quan-
tum channel.

B. LOCC operations

We already know that in the quantum teleportation
process Alice performs a local measurement with maxi-
mally entangled projectors PAA�

i on her particles AA�
and then sends classical information to Bob �see Sec.
III.C�. Bob performs accordingly a local operation UB

i

on his particle B. Note that the total operation acts on �

as �AA�B��� = �iPAA�
i

� UB
i ���PAA�

i
� �UB

i �†. This opera-
tion belongs to the so-called one-way LOCC class which
is important in quantum communication theory. The
general LOCC paradigm was formulated by Bennett, Di
Vincenzo, et al. �1996�.

In this paradigm all that the distant parties �Alice and
Bob� are allowed is to perform arbitrary local quantum
operations and sending classical information. No trans-
fer of quantum systems between the labs is allowed. It is
a natural class for considering entanglement processing
because classical bits cannot convey quantum informa-
tion and cannot create entanglement so that entangle-

ment remains a resource that can be only manipulated.
Moreover, one can easily imagine that sending classical
bits is much cheaper than sending quantum bits, because
it is easy to amplify classical information. Sometimes it is
convenient to put some restrictions also onto classical
information. One then distinguishes in general the fol-
lowing subclasses of operations described below. Below
we define classes of trace preserving, i.e., deterministic
�channel-type� maps. The analogous list �except for C1
below� of trace nonincreasing, i.e., stochastic, maps can
be defined �see description of Eq. �81��.

C1: class of local operations. In this case no communi-
cation between Alice and Bob is allowed. The math-
ematical structure of the map is elementary �AB

� =�A
��B with �A, �B being both quantum channels. As al-
ready stated this operation is always deterministic.

C2a: class of “one-way” forward LOCC operations.
Here classical communication from Alice to Bob is al-
lowed. The form of the map is �AB

→ ��� = �iVA
i

� IB��IA

��B
i ������VA

i �† � IB with deterministic maps �B
i which

reflect the fact that Bob is not allowed to perform a
“truly stochastic” operation since he cannot tell Alice
whether it has taken place or not �which would happen
only with some probability in general�.

C2b: class of one-way backward LOCC operations.
Here one has �AB

← ��� = �iIA � VB
i ��A

i
� IB����IA � �VB

i �†.
The situation is the same as in class C2a but with the
roles of Alice and Bob interchanged.

C3: class of “two-way” LOCC operations. Here both
parties are allowed to send classical communication to
each other. Mathematically, these are all, in general,
complicated operations that can be composed out of lo-
cal operations �class C1� and the following maps:

�1��AB� = �
i

�Ai � I�ABAi
†

� I� � �i�i�B�,

�2��AB� = �
i

�I � Bi�ABI � Bi
†� � �i�i�A�, �83�

where �iAi
†Ai=IA, �iBi

†Bi=IB; cf. Grudka et al. �2007�.
Fortunately, there are two other larger �in a sense of
inclusion� classes, that are much easier to deal with: the
classes of separable and PPT operations.

C4: class of separable operations. This class was con-
sidered by Rains �1997� and Vedral and Plenio �1998�.
These are operations with product Kraus operators:

�AB
sep��� = �

i
Ai � Bi�Ai

†
� Bi

†, �84�

which satisfy �iAi
†Ai � Bi

†Bi=I � I.
C5: PPT operations. These are operations �Rains,

1999, 2000� �PPT such that „�PPT�� · ���…� is completely
positive. We show that the simplest example of such
an operation is �→� � �PPT, i.e., the process of adding
some PPT state.

There is an order of inclusions C1�C2a ,
C2b�C3�C4�C5, where all inclusions are strict, i.e.,
are not equalities. �The stochastic analogs of C3 and C4
are equivalent up to probability of transformation �81�,
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the analogs of C4 and C5 are still not since only the
latter can create �PPT-type� entanglement.� The most in-
triguing is nonequivalence C3�C4 which follows from
the so-called nonlocality without entanglement �Ben-
nett, DiVinenzo, Fuchs, et al., 1999�: there is an example
of product basis which is orthonormal �and hence per-
fectly distinguishable by suitable von Neumann mea-
surement� but is not a product of two orthonormal local
ones which represent vectors that cannot be perfectly
distinguished by parties that are far apart and can use
only LOCC operations. The inclusion C3�C4 is exten-
sively used in the context of LOCC operations. This is
because they are hard to deal with, as characterized in a
difficult way. If instead one deals with separable or PPT
operations, thanks to the inclusion, one can still draw
conclusions about the LOCC ones.

Subsequently, if it is not specified, the term LOCC will
refer to the most general class of operations with the
help of local operations and classical communication,
namely, the class C3 above.

Below we provide examples of some LOCC opera-
tions.

Example. The �deterministic� U � U, U � U* twirling
operations:

���� = � dUU � U��U � U�†,

����� = � dUU � U*��U � U*�†. �85�

Here dU is a uniform probabilistic distribution on a set
of unitary matrices. They are of one-way type and can
be performed in the following manner: Alice picks up
randomly the operation U, rotates her subsystem with it,
and sends the information to Bob which U she had cho-
sen. Bob performs on his side either U or U* �depending
on which of the two operations they wanted to perform�.
The integration above can be made discrete �see Gross
et al., 2007� which follows from Caratheodory’s theorem.

An important issue is that any state can be depolar-
ized with the help of �, �� to Werner �Eq. �64�� and iso-
tropic �Eq. �65�� states respectively. This element is cru-
cial for the entanglement distillation recurrence protocol
�Bennett, Brassard, et al., 1996� �see Sec. XII.B�.

XII. DISTILLATION AND BOUND ENTANGLEMENT

Many basic effects in quantum information theory ex-
ploit the pure maximally entangled state ��+�. However,
in laboratories we usually have mixed states due to im-
perfection of operations and decoherence. A natural
question arises: How should one deal with a noise so
that one can take advantage of the interesting features
of pure entangled states. This problem was first consid-
ered by Bennett, Brassard, Popescu, Schumacher, Smo-
lin, and Wootters in 1996 �Bennett, Brassard, et al. 1996�.
In their seminal paper, they established a paradigm for
purification �or distillation� of entanglement. When two
distant parties share n copies of a bipartite mixed state

�, which contain noisy entanglement, they can perform
some LOCC and obtain in turn some �less� number of k
copies of systems in a state close to a singlet state which
contains pure entanglement. A sequence of LOCC op-
erations achieving this task is called entanglement puri-
fication or entanglement distillation protocol. We are in-
terested in optimal entanglement distillation protocols,
i.e., those which result in a maximal ratio k /n in limit of
a large number n of input copies. This optimal ratio is
called distillable entanglement and denoted as ED �see
Sec. XV for the formal definition�. Having performed
entanglement distillation, the parties can use the ob-
tained nearly singlet states to perform quantum telepor-
tation, entanglement-based quantum cryptography, and
other useful pure entanglement-based protocols. There-
fore entanglement distillation is one of the fundamental
concepts in dealing with quantum information and en-
tanglement in general. Here we present important en-
tanglement distillation protocols. We then discuss the
possibility of entanglement distillation in general and re-
port the bound entangled states which being entangled
cannot be distilled.

A. One-way hashing distillation protocol

If only one party can tell the other party her or his
result during the protocol of distillation, the protocol is
called one-way, and two-way otherwise. One-way proto-
cols are closely connected to error correction, as shown
below. Bennett, DiVincenzo, et al. �1996� �see also Ben-
nett, Brassard, et al. 1996� presented a protocol for two-
qubit states which originates from the cryptographic pri-
vacy amplification protocol, called hashing. Following
this work we consider here the so-called Bell diagonal
states which are mixtures of two-qubit Bell basis states
�3�. Bell diagonal states �Bdiag are naturally parametrized
by the probability distribution of mixing 	p
. For these
states, the one-way hashing protocol yields singlets at a
rate 1−H�	p
�, thus proving45 ED��Bdiag�1−H�	p
�,
where H�	p
� is Shannon entropy of 	p
. In the two-
qubit case there are four Bell states �3�. The n copies of
the two-qubit Bell diagonal state �Bdiag can be viewed as
a classical mixture of strings of n Bell states. Typically,
there are only about 2nH�	p
� such strings that are likely
to occur �Cover and Thomas, 1991�. Since the distillation
procedure yields some �shorter� string of singlets solely,
there is a straightforward “classical” idea, that to distill
one needs to know what string of Bell states occurred.
This knowledge is sufficient as one can then rotate each
nonsinglet Bell state into a singlet state easily as in a
dense coding protocol �see Sec III�.

We note that sharing �− instead of �+ can be viewed
as sharing �+ with a phase error. Similarly �+ means bit
error and �−-both bit and phase error. Identification of

45It is known that if there are only two Bell states in a mix-
ture, then one-way hashing is optimal so that distillable en-
tanglement is equal to 1−H�	p
� in this case.
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the string of all Bell states that have occurred is then
equivalent to learning which types of errors occurred in
which places. Thus the above method can be viewed as
an error correction procedure.46

Now, as is well known, to distinguish between 2nH�	p
�

strings one needs log2 2nH�	p
� =nH�	p
� binary questions.
Such a binary question can be the following: What is the
sum of the bit values of the string at certain i1 , . . . , ik
positions, taken modulo 2? In other words: What is the
parity of the given subset of positions in the string?
From probabilistic considerations it follows that after r
such questions about a random subset of positions �i.e.,
taking each time random k with 1�k�2n� the probabil-
ity of distinguishing two distinct strings is no less than
1−2−r, hence the procedure is efficient.

The trick of the “hashing” protocol is that it can be
done in a quantum setting. There are certain local uni-
tary operations for the two parties, so that they are able
to collect the parity of the subset of Bell states onto a
single Bell state and then get to know it locally measur-
ing this Bell state and comparing the results. Each an-
swer to the binary question consumes one Bell state, and
there are nH�	p
� questions to be asked. Therefore, if
H�	p
�
1, then, after the protocol, there are n
−nH�	p
� unmeasured Bell states in a known state. The
parties can then rotate them all to a singlet form �that is,
correct the bit and phase errors�, and hence distill sin-
glets at an announced rate 1−H�	p
�.

This protocol can be applied even if Alice and Bob
share a non-Bell-diagonal state, as they can twirl the
state by applying at random one of the four operations
�x ��x, �y ��y, �z ��z, I � I. The resulting state is a Bell
diagonal state. Of course, this operation often will kill
entanglement. We show how to improve this in Secs.
XII.B and XII.D.

The above idea has been further generalized, leading
to the general one-way hashing protocol which is dis-
cussed in Sec. XII.F.

B. Two-way recurrence distillation protocol

The hashing protocol cannot distill all entangled Bell
diagonal states �one easily find this, knowing that those
states are entangled if and only if some eigenvalue is
greater than 1/2�. To cover all entangled Bell diagonal
states one can first launch a two-way distillation protocol
to enter the regime where the one-way hashing protocol
works. The first such protocol, called recurrence, was
announced already in the first paper on distillation �Ben-
nett, Brassard, et al. 1996�, and developed by Bennett,
DiVincenzo, et al. �1996�. It works for two-qubit states
satisfying F=Tr ���+��+�	 1

2 with ��+� = 1
�2 ��00� + �11��.

The protocol is based on iteration of the following
two-step procedure. In the first step Alice and Bob take

two pairs, and apply locally a controlled NOT �CNOT�
gate. Then they measure the target pair in a bit basis. If
the outcomes are different they discard the source pair
�failure�, otherwise they keep it. In the latter case, a sec-
ond step can be applied: they twirl the source pair to the
Werner state. In the two-qubit case, Werner states are
equivalent to isotropic states and hence are param-
etrized only by the singlet fraction F �see Sec. VI.B.9�. If
Alice and Bob succeed, the parameter improves with
respect to the preceding one according to the rule

F��F� =
F2 +

1
9

�1 − F�2

F2 +
2
3

F�1 − F� +
5
9

�1 − F�2

. �86�

Now, if only F	 1
2 , then the above recursive map con-

verges to 1 for a sufficiently large initial number of cop-
ies.

The idea behind the protocol is the following. The
first step decreases the bit error �i.e., in the mixture the
weight of correlated states ��±� increases�. At the same
time, the phase error increases, i.e., the bias between
states of type � and those of type � gets smaller. Then
there is a twirling step, which equalizes bit and phase
error. Provided that the bit error went down more than
the phase error went up, the net effect is positive. The
protocol consumes a lot of resources �as it is probabilis-
tic, and each iteration decreases the number of pairs by
half�, one usually applies it until F is so high that the
hashing protocol is applicable. Instead of twirling one
can apply a deterministic transformation �Deutsch et al.,
1996�, switching between phase and bit errors, which is
much more efficient.

C. Development of distillation protocols: Bipartite and
multipartite cases

The idea of recurrence protocol was developed in dif-
ferent ways. The CNOT operation, which is done in the
first step of the above original protocol, can be viewed as
a permutation of standard basis. If one applies some
other permutation acting locally on k2 qubits and per-
forms measurement on a group of m of these pairs one
obtains a natural generalization of this scheme, devel-
oped by Dehaene et al. �2003� for the case of two-qubit
states. It follows that in the case of k=4, m=1, and a
special permutation of this protocol yields a higher dis-
tillation rate. This paradigm has been further analyzed
in the context of so-called code based entanglement dis-
tillation protocols �Matsumoto, 2003; Ambainis and
Gottesman, 2006� by Hostens et al. �2004�. The original
idea of Bennett, Brassard, et al. �1996� linking entangle-
ment distillation protocols and error correction proce-
dures �Gottesman, 1997� have been also developed in
the context of quantum key distribution; see Ambainis et
al. �2002�, Gottesman and Lo �2003�, and the discussion
in Sec. XIX.A.

The original recurrence protocol was generalized to
higher-dimensional systems in two ways by Horodecki

46Actually this reflects a remarkable relation developed by
Bennett, DiVincenzo, et al. �1996� between entanglement dis-
tillation and the large domain of quantum error correction de-
signed for quantum computation in the presence of noise.
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and Horodecki �1999� and Alber, Delgado, et al. �2001�.
An interesting improvement of distillation techniques is
due to Vollbrecht and Verstraete �2005�, where a proto-
col that interpolates between the hashing and recurrence
one was provided. This idea has been developed by Hos-
tens et al. �2006a�. Also, distillation was considered in
the context of topological quantum memory �Bombin
and Martin-Delgado, 2006�.

The above protocols for distillation of bipartite en-
tanglement can be used for distillation of a multipartite
entanglement, when n parties are provided many copies
of a multipartite state; namely, any pair of the parties
can distill some EPR pairs and then, using teleportation,
the whole group can distribute a desired multipartite
state. An advantage of such an approach is that it is
independent from the target state. Dür, Cirac, et al.
�1999� and Dür and Cirac �2000b� provided a sufficient
condition for the distillability of an arbitrary entangled
state from an n-qubit multipartite state, based on this
idea.

However, as found by Murao et al. �1998� in the first
paper on multipartite entanglement distillation, the effi-
ciency of a protocol which uses bipartite entanglement
distillation is in general less than that of direct distilla-
tion. The direct procedure is presented there which is a
generalization of the bipartite recurrence protocol of the
n-partite GHZ state from its “noisy” version �mixed
with identity�. Maneva and Smolin �2002� generalized
the bipartite hashing protocol for distillation of the
n-partite GHZ state.

In the multipartite scenario, there is no distinguished
state like a singlet state that can be a universal target
state in entanglement distillation procedures. There are,
however, some natural classes of interesting target
states, including the commonly studied GHZ state. An
example is the class of the graph states �see Sec. VII.A�,
related to the one-way quantum computation model. A
class of multiparticle entanglement purification proto-
cols that allow for distillation of these states was first
studied by Dür et al. �2003� where it was shown again to
outperform bipartite entanglement purification proto-
cols. It was further developed by Aschauer et al. �2005�
for the subclass of graph states called two-colorable
graph states. The recurrence and breeding protocol
which distills all graph states has also been found
�Kruszyńska et al., 2006� �for a distillation of graph states
subject to local noise see Kay et al. �2006��.

The class of two-colorable graph states is locally
equivalent to the class of so-called Calderbank-Shor-
Steane states �CSS states� that stems from quantum er-
ror correction �Calderbank and Shor, 1996; Steane,
1996a, 1996b�. The distillation of CSS states has been
studied in the context of multipartite quantum crypto-
graphic protocols by Chen and Lo �2004�. Recently, the
protocol which is a direct generalization of the original
hashing method �see Sec. XII.A� has been found that
distills CSS states �Hostens et al., 2006b�. This protocol
outperforms all previous versions of hashing of CSS
states �or their subclasses such as Bell diagonal states�
�Maneva and Smolin, 2002; Dür et al., 2003; Chen and

Lo, 2004; Aschauer et al., 2005�. Distillation of the state
W which is not a CSS state has been studied by Miyake
and Briegel �2005�. Glancy et al. �2006� proposed a pro-
tocol of distillation of all stabilizer states �a class which
includes CSS states� based on stabilizer codes �Gottes-
man, 1997; Nielsen and Chuang, 2000�. Based on this, a
breeding protocol for stabilizer states was provided by
Hostens et al. �2006c�.

D. All two-qubit entangled states are distillable

The recurrence protocol followed by hashing can dis-
till entanglement only from states satisfying F	 1

2 . One
can then ask what is known in the general case. Here we
present a protocol which allows us to overcome this limi-
tation in the case of two qubits. The idea is that with
certain �perhaps small� probability, one can conclusively
transform a given state into a more desired one �i.e., so
that one knows if the transformation succeeded�. This
step can increase the parameter F, so that one can then
perform the recurrence and hashing protocol. Selecting
successful cases in the probabilistic transformation is
called local filtering �Gisin, 1996�, which gives the name
of the protocol. The composition of filtering, recurrence,
and hashing proves the following result �Horodecki et
al., 1997�: Any two-qubit state is distillable if and only if it
is entangled.

There is a generalization of two-qubit distillability to
the case of NPT states acting on C2 � CN Hilbert space
�Dür and Cirac, 2000a; Dür, Cirac, et al., 2000�. It follows
also that for N=3 all states are distillable if and only if
they are entangled �since any state on C2 � C3 is en-
tangled if and only if it is NPT�. The same equivalence
has been shown for all rank two bipartite states �Horo-
decki, Smolin, et al., 2003�.

E. Reduction criterion and distillability

It has been shown that any state that violates reduc-
tion criterion of separability �see Sec. VI� is distillable
�Horodecki and Horodecki, 1999�. Namely, for states
which violate this criterion, there exists a filter such that
the output state has fidelity F	 1

d , where F is the overlap
with a maximally entangled state ��+� = �1/�d��i=0

d−1�ii�.
Such states are distillable, similarly, as for two-qubit
states with F	 1

2 . The simplest protocol �Braunstein et
al., 1999� is the following: one projects such a state using
local rank 2 projectors P= �0�0� + �1�1�, and finds that
the obtained two-qubit state has F	 1

2 hence is distill-
able.

The importance of this property of reduction criterion
lies in the fact that its generalization to continuous vari-
ables allowed one to show that all two-mode Gaussian
states which violate the PPT criterion are distillable
�Giedke, et al., 2000�.
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F. General one-way hashing

In Sec. XII.A we learned a protocol called one-way
hashing which for Bell diagonal states with a spectrum
given by distribution 	p
 gives 1−H�	p
� of distillable
entanglement. Since in the case of these states the von
Neumann entropy of the subsystem reads S��B diag

B � =1
and the total entropy of the state S��B diag

AB � is equal to
H�	p
�, there has been a common belief that in general
there should be a one-way protocol that yields the rate
S��B� −S��AB� so that

ED��AB�  S��B� − S��AB� . �87�

The above inequality, called the hashing inequality,
states that distillable entanglement is lower bounded
by coherent information defined as IA	B

coh =S��B�
−S��AB� � −S�A � B�. This conjecture has been proven by
Devetak and Winter �2005�. The proof was based on
cryptographic techniques, where one first performs an
error correction �corresponding to the correcting bit�
and then privacy amplification �corresponding to the
correcting phase�, both procedures by means of random
codes �discussed in Sec. XIX�.

Another protocol that distills the amount IA	B
coh of sin-

glets from a given state is the following �Horodecki, Op-
penheim, et al., 2005, 2007�: given many copies of the
state, Alice projects her system onto so-called typical
subspace �Schumacher, 1995� �the probability of failure
is exponentially small with the number of copies�. Sub-
sequently, she performs incomplete measurement 	Pi

where the projectors Pi project onto blocks of size
2n�SB−SAB�. If the measurement is chosen at random ac-
cording to uniform measure �Haar measure�, it turns out
that for any given outcome Alice and Bob share almost
a maximally entangled state, hence equivalent to n�SB
−SAB� e-bits. Of course, for each particular outcome i
the state is different, therefore one-way communication
is needed �Bob has to know the outcome i�.

The above bound is often too rough �because one can
distill states with negative coherent information using
the recurrence protocol�. Coherent information IA	B

coh is
not an entanglement monotone. It is then known that in
general the optimal protocol of distillation of entangle-
ment is some two-way protocol which increases Icoh, fol-
lowed by the general hashing protocol; that is, we have
�Horodecki et al., 2000c�

ED��� = sup
��LOCC

Icoh
„����… . �88�

It is, however, not known how to attain the highest co-
herent information via the two-way distillation protocol.
Interestingly, the rate �87� can be improved even by one-
way protocol �Shor and Smolin, 1996�.

G. Bound entanglement: When distillability fails

Since the seminal paper on distillation �Bennett, Bras-
sard, et al., 1996�, there was a common expectation that
all entangled bipartite states are distillable. Surprisingly

it is not the case. It was shown by M. Horodecki et al.
�1998� that the PPT states cannot be distilled. It is rather
obvious that one cannot distill from separable states. In-
terestingly, the first example of the entangled PPT state
had been already known from Horodecki �1997�. Gener-
ally the states that are entangled yet not distillable are
called bound entangled. It is not known if there are
other bound entangled states than PPT entangled states.
There are many quite interesting formal approaches al-
lowing us to obtain families of the PPT entangled state.
There is, however, no operational, intuitive “reason” for
the existence of this mysterious type of entanglement.

We first comment on the nondistillability of separable
states. The intuition for this is straightforward: separable
states can be created via LOCC from scratch. If one
could distill singlets from them, it would be creating
something out of nothing. This reasoning of course does
not hold for entangled PPT states. However, one can
look from a different angle to find relevant formal simi-
larities between PPT and separable states. Namely, con-
cerning separable states one can observe that the fidelity
F=Tr �sep��+��+� is no greater than 1/d for �sep acting
on Cd � Cd. Since LOCC operations can only transform a
separable state into another separable state �i.e., the set
of separable states is closed under LOCC operations�,
one cannot distill singlet from separable states since one
cannot increase the singlet fraction.

It turns out that also PPT states do not admit a
higher fidelity than 1/d as well as are closed under
LOCC operations �Rains, 1999, 2000�. Indeed we have
Tr �AB��+��+� = �1/d�Tr �AB

� V which can not exceed 1/d
�here V is the swap operator �42��. This is because �AB

�

0, so that Tr �AB
� V can be viewed as an average value

of a random variable which cannot exceed 1 since V has
eigenvalues ±1. To see the second feature, note that any
LOCC operation � acts on a state �AB as follows:

�out = ���AB� = �
i

Ai � Bi��AB�Ai
†

� Bi
†, �89�

which after partial transpose on subsystem B gives

�out
� = �

i
Ai � �Bi

†�T��AB
� �Ai

†
� Bi

T. �90�

The resulting operator is positive, only if �AB
� was posi-

tive.
Since the discovery of the first bound entangled states

many further examples of such states were found, only a
few of which we have discussed �see Sec. VI.B.7�. The
comprehensive list of achievements in this field, as well
as the introduction to the subject, can be found in Clar-
isse �2006b�. There has been also an extensive research
devoted to multipartite bound entanglement; see Horo-
decki et al. �2007�.

H. The problem of NPT bound entanglement

Although it is already known that there exist en-
tangled nondistillable states, still we do not have a char-
acterization of the set of such states. The question which
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remains open since the discovery of bound entangle-
ment properties of PPT states is, are all NPT states dis-
tillable? For two main attempts47 to solve the problem
see DiVincenzo, Shor, et al., �2000� and Dür, Cirac,
�2000�. Horodecki and Horodecki �1999� showed that
this holds if and only if all NPT Werner states �64�
�equivalently entangled Werner states� are distillable. It
simply follows from the fact that as in the case of two
qubits any entangled state can be filtered, to such a
state, that after proper twirling one obtains an entangled
Werner state. The question is hard to answer because of
its asymptotic nature. A necessary and sufficient condi-
tion for entanglement distillation �M. Horodecki et al.,
1998� can be stated as follows: The bipartite state � is
distillable if and only if there exists n such that � is
n-copy distillable �i.e., ��n can be filtered to a two-qubit
entangled state�48 for some n. It is, however, known that
there are states that are not n-copy distillable but are
�n+1�-copy distillable �Watrous, 2004� �see also Bandyo-
padhyay and Roychowdhury, 2003�; for this reason, the
numerical search concerning distillability based on a few
copies may be misleading. There is an interesting char-
acterization of n-copy distillable states in terms of en-
tanglement witnesses found in Kraus et al. �2002�.
Namely, a state is distillable if the operator

Wn = PA�B�
+

� ��AB
�n �� �91�

is not an entanglement witness �here A�B� is a two-qubit
system, P+ is a maximally entangled state�.

One may also think that the problem could be solved
by the use of a simpler class of maps, namely, PPT op-
erations. However, Eggeling et al. �2001� showed that
any NPT state can be distilled by PPT operations. Re-
cently the problem was attacked by means of positive
maps, and associated “distillability witnesses” by Clar-
isse �2005� �see also Clarisse, 2006a�.

The problem of the existence of NPT bound en-
tangled �BE� states has important consequences. If they
indeed exist, then distillable entanglement is nonaddi-
tive and nonconvex �Shor, Smolin, and Terhal, 2001�.
Two states of zero ED will together give nonzero ED.
The set of bipartite BE states will not be closed under
tensor product, and under mixing. For an extensive re-
view of the problem of existence of NPT BE states see
Clarisse �2006b�.

Schematic representation of the set of all states in-
cluding hypothetical set of NPT bound entangled states
is shown in Fig. 3.

I. Activation of bound entanglement

Entanglement is always considered as a resource use-
ful for a certain task. It is clear that pure entanglement

can be useful for many tasks, as considered in Sec. III.
Since the discovery of bound entanglement much effort
was devoted to find some nontrivial tasks that this type
of entanglement allows us to achieve.

The first phenomenon which proves the usefulness of
bound entanglement, called activation of bound en-
tanglement, was discovered by R. Horodecki et al.
�1999�. A parameter which is improved after activation
is the so-called probabilistic maximal singlet fraction,
that is, Fmax

�p� ��� =max�Tr�������+��+��Tr������ for
� acting on Cd � Cd, where � are local filtering
operations.49

Consider a state � with Fmax
�p� bounded away from 1,

such that no LOCC protocol can go beyond this bound.
Then a protocol was found, involving k pairs of some
BE state �be, which takes as an input a state �, and
outputs a state �� with singlet fraction arbitrarily close
to 1 �which depends on k�. That is,

�be
�k

� �→ ��, lim
k

Fmax
�p� ���� = 1. �92�

The protocol is actually closely related to the recurrence
distillation protocol �see Sec. XII.B�, generalized to
higher dimension and with the twirling step removed. In
the above scenario the state �be is an activator for a state
�. The probability of success in this protocol decreases
as the output fidelity increases. To understand the acti-
vation, recall that the probabilistic maximal singlet frac-
tion of every bound entangled state is by definition
bounded by 1/d, as discussed in Sec. XII.G. It implies
that �be

�k also have Fmax
�p� bounded away from 1. We have

then two states with probabilistic maximal fidelity
bounded away from 1, which, however, changes if they
are put together. For this reason, the effect of activation
demonstrates a sort of nonadditivity of maximal singlet
fraction.

The effect of activation was further developed in vari-
ous directions. It was shown by Vollbrecht and Wolf
�2002a� that any NPT state can be made one-copy

47Two recent attempts are unfortunately incorrect �Chatto-
padhyay and Sarkar, 2006; Simon, 2006�.

48Equivalently, there exists a pure state ��� of Schmidt rank 2
such that �����n�����
0 �DiVincenzo, Shor, et al., 2000; Dür,
Cirac, et al., 2000�.

49The superscript �p� emphasizes a “probabilistic” nature of
this maximal singlet fraction so that it would not be confused
with a different parameter defined analogously as Fmax���
=max�Tr�������+��+�� with � a trace preserving LOCC op-
eration, that is called a maximal singlet fraction.

Separable

PPT
undistillable NPT?

distillable

optimal
witness

nonoptimal
witness

FIG. 3. Schematic representation of the set of all states with an
example of entanglement witness and its optimization.
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distillable50 by use of BE states. Moreover, to this end
one can use BE states which are arbitrarily close to
separable states.

A remarkable result showing the power of LOCC op-
erations supported with an arbitrarily small amount of
BE states was established by Ishizaka �2004�. Namely,
the interconversion of pure bipartite states is ruled by
entanglement measures. In particular, a pure state with a
smaller measure called Schmidt rank �see Sec. XV� can-
not be turned by LOCC, even probabilistically, into a
state with higher Schmidt rank. However, any transition
between pure states is possible with some probability, if
assisted by arbitrarily weakly bound entangled states.
This works also for multipartite states. Interestingly, the
fact that one can increase Schmidt rank by PPT opera-
tions �i.e., also with some probability by assistance of a
PPT state� was implicit already by Audenaert et al.
�2003�.

Although specific examples of activators has been
found, the general question if any �bound� entangled
state can be an activator has waited until the discovery
of Masanes �2005, 2006a�. He showed that every en-
tangled state �even a bound entangled one� can enhance
a maximal singlet fraction and in turn a fidelity of tele-
portation of some other entangled state, i.e., for any
state � there exists state � such that

Fmax
�p� ��� 
 Fmax

�p� �� � �� . �93�

This result51 for the first time shows that every entangled
state can be used to some nonclassical task. Masanes
provides an existence proof via reductio ad absurdum. It
is then still a challenge to construct for a given state
some activator, even though one has a promise that it
can be found. This result indicates the first useful task
that can be performed by all bound entangled states.

The idea of activation for the bipartite case was devel-
oped in the multipartite case by Dür and Cirac �2000a�
and Bandyopadhyay, Chattopadhyay, et al. �2005� where
specific families of multipartite bound entangled states
were found. Interestingly, those states were then used to
find an analogous phenomenon in the classical key
agreement scenario �see Sec. XIX�. It was recently gen-
eralized by Masanes �2005�.

The activation considered above is a result which con-
cerns one copy of the state. An analogous result which
holds in the asymptotic regime, called superactivation,
was found by Shor et al. �2003�; namely, there are four-
partite states constructed by Smolin �2001�, such that no
two parties even with the help of other parties can distill
pure entanglement from them:

�ABCD
BE = 1

4 �
i=1

4

��AB
i ��AB

i � � ��CD
i ��CD

i � . �94�

However, the following state, consisting of five copies of
the same state, but each distributed into different par-
ties, is no longer bound entangled,

�free = �ABCD
BE

� �ABCE
BE

� �ABDE
BE

� �ACDE
BE

� �BCDE
BE .

�95�

This result is stronger than activation in two ways. First,
it turns two totally nonuseful states �bound entangled
ones� into a useful state �distillable one�, and second, the
result does not concern one copy but it has an asymp-
totically nonvanishing rate. In other words, it shows that
there are states �1 and �2 such that E��1 � �2�	E��1�
+E��2�, despite the fact that E��1� =E��2� =0 where E is
a suitable measure describing the effect of distillation
�see Sec. XV�.

Apart from superactivation, the Smolin states �94�
have another interesting application, namely, remote
quantum information concentration �Murao and Vedral,
2001�. This works as follows: consider the three-qubit
state �ABC��� being an output of a quantum cloning ma-
chine that is shared by three parties Alice, Bob, and
Charlie. Suppose that they want to recreate the initial �
in some other distant place. This is clearly impossible by
LOCC. If, however, each of them is given in addition
one particle of the four-particles in a Smolin state �ABCD

unlock

�Eq. �72�� with the remaining fourth D particle handed
to another party �David� then a simple LOCC action of
the three parties can “concentrate” the state � back re-
motely at David’s site.

XIII. MANIPULATIONS OF ENTANGLEMENT AND
IRREVERSIBILITY

A. LOCC manipulations on pure entangled states: Exact case

The study of exact transformations between pure
states by LOCC was initiated by Lo and Popescu �2001�.
A seminal result in this area is due to Nielsen �1999�. It
turns out that the possible transitions can be classified in
terms of squares of Schmidt coefficients �i �i.e., eigenval-
ues of a local density matrix�. That is, a pure state ���
= �j=1

d ��j
����jj� can be transformed into another pure state

��� = �j=1
d ��j

����jj� if and only if for each k� 	1, . . . ,d
,
holds that

�
j=1

k

�j
���↓ � �

j=1

k

�j
���↓, �96�

where �j
��,��↓ are eigenvalues of a subsystem of � ��� in

descending order. The above condition states that � ma-
jorizes � �see also Sec. V.C�. Thus one can transform �
into � only when subsystems of � are more mixed than
those of �. This is compatible with the Schrödinger ap-
proach: the more mixed the subsystem, the more en-
tangled the state �see Sec. V�.

50A state � is called one-copy distillable if there exist projec-
tors P ,Q of rank 2 such that P � Q�P � Q is NPT. In other
words, from � one can then obtain by LOCC a two-qubit state
with F greater than 1/2.

51Actually, the result is even stronger: it holds also for Fmax
�i.e., a singlet fraction achievable with probability 1�.
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Since majorization constitutes a partial order, revers-
ible conversion �↔� is possible if and only if the
Schmidt coefficients of both states are equal. Moreover,
there exist states either of which cannot be converted
into each other. Thus generically, LOCC transforma-
tions between pure states are irreversible. However, as
shown it can be lifted in the asymptotic limit �see Sec.
XIII.B.1�.

Further results in this area have been provided by
Vidal �2003� who obtained the optimal probability of
success for transitions between pure states �see Sec.
XV.D.1�, and Jonathan and Plenio �1999�, who consid-
ered transitions state→ensemble.

1. Entanglement catalysis

The most surprising consequence of Nielsen’s laws of
pure state transitions have been discovered by Jonathan
and Plenio �1999�; namely, for some states �1 and �2 for
which the transition �1→�2 is impossible, the following
process is possible:

�1 � �→ �2 � � . �97�

Thus we borrow state �, run the transition, and obtain
the untouched � back. The latter state plays exactly the
role of a catalyst which though not used up in the reac-
tion, its presence is necessary to run it. Interestingly, it is
not hard to see that the catalyst cannot be maximally
entangled. The catalysis effect was extended to the case
of mixed states by Eisert and Wilkens �2000�.

2. SLOCC classification

For multipartite pure states Schmidt decomposition
does not exist. Therefore the Nielsen result cannot be
easily generalized. Moreover, analysis of LOCC manipu-
lations does not allow us to classify states into some
coarse grained classes, that would give a rough, but
more transparent picture. Indeed, two pure states can be
transformed into each other by LOCC if and only if they
can be transformed by local unitary transformations so
that to parametrize classes one needs continuous labels,
even in the bipartite case.

To obtain a simpler, “coarse grained” classification,
which would be helpful to grasp important qualitative
features of entanglement, it was proposed �Dür, Vidal, et
al., 2000� to treat states as equivalent, if with some non-
zero probability they can be transformed into each other
by LOCC. This is called stochastic LOCC �SLOCC�. It is
equivalent to say that there exist reversible operators Ai
such that

��� = A1 � ¯ � AN��� . �98�

For bipartite pure states of a d � d system we obtain d
entangled classes of states, determined by a number of
nonzero Schmidt coefficients �the so-called Schmidt
rank�. Here is an example of SLOCC equivalence: the
state

��� = a�00� + b�11� �99�

with a	b	0 can be converted �up to an irrelevant
phase� into ��+� by the filter A � I, with

A = �b

a
0

0 1
�

with probability p=2b2. So we have two classes: that of
��+� and that of �00�.

A surprising result is due to Ishizaka �2004� who con-
sidered SLOCC assisted by bound entangled PPT states.
He then showed that every state can be converted into
any other �see Sec. XII.I�. This works for both bipartite
and multipartite pure states. For multipartite states
SLOCC classification was done in the case of three �Dür,
Vidal, et al., 2001� and four qubits �Verstraete et al.,
2002�, and also two qubits and a qudit �Miyake and Ver-
straete, 2004�. For three qubits there are five classes plus
a fully product state, three of them being Bell states
between two qubits �i.e., states of type EPRAB � �0�C�.
Two others are the GHZ state,

�GHZ� = �1/�2���000� + �111�� , �100�

and the so-called W state,

�W� = �1/�3���100� + �010� + �001�� . �101�

They are inequivalent, in a sense, that none of them can
be converted into the other one with nonzero probabil-
ity �unlike in bipartite state case, where one can go from
any class to any lower class, i.e., having lower Schmidt
rank�.

In the 2 � 2 � d case �Miyake, 2004; Miyake and Ver-
straete, 2004�, there is still a discrete family of inequiva-
lent classes, where there is a maximally entangled
state—two EPR states �AB1

+
��B2C

+ �where the system B
is four dimensional�. Any state can be produced from it
simply via teleportation �Bob prepares the needed state,
and teleports its parts to Alice and to Charlie�.

In the four-qubit case the situation is not so simple:
the inequivalent classes constitute a continuous family,
which one can divide into nine qualitatively different
subfamilies.

The SLOCC classification is a quite elegant generali-
zation of local unitary classification. In the latter case
the basic role is played by invariants of group SUd1
� ¯ � SUdN

for the d1 � ¯ � dN system, while in
SLOCC, the relevant group is SLd1,C � ¯ � SLdN,C �one
restricts to filters of determinant 1, because the normal-
ization of states does not play a role in the SLOCC ap-
proach�.

Finally, the SLOCC classification of pure states can be
used to obtain some classification of mixed states �see
Acín et al., 2001; Miyake and Verstraete, 2004�.

B. Asymptotic entanglement manipulations and irreversibility

Classifications based on exact transformations suffer
from some lack of continuity: for example, in the
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SLOCC approach � with squares of Schmidt coefficients
�0.5,0.49,0.01� is in the same class as the state �1/3, 1 /3,
1 /3�, but in a different class than �0.5,0.5,0�, while we
clearly see that the first and the last have much more in
common than the middle one. In order to neglect small
differences, one can employ some asymptotic limit. This
is in the spirit of Shannon’s communication theory,
where one allows for some inaccuracies of information
transmission, provided they vanish in the asymptotic
limit of the many uses of the channel. Interestingly, the
first results on the quantitative approach to entangle-
ment �Bennett, Bernstein, et al., 1996; Bennett, Bras-
sard, et al., 1996, Bennett, DiVincenzo, et al., 1996� were
just based on LOCC transformations in the asymptotic
limit.

In asymptotic manipulations, the main question is
what is the rate of transition between two states � and
�? One defines the rate as follows. We assume that Alice
and Bob have initially n copies in state �. They apply
LOCC operations, and obtain m pairs52 in some joint
state �m. If for large n the latter state approaches state
��m, i.e.,

��m − ��m�1 → 0, �102�

and the ratio m /n does not vanish, then we say that �
can be transformed into � with rate R=lim m /n. The
largest rate of transition we denote by R��→��. In par-
ticular, distillation of entanglement described in Sec. XII
is the rate of transition to the EPR state,

ED��� = R��→ �+� . �103�

The cost of creating a state out of EPR states is given by

EC��� = 1/R��+ → �� �104�

and it is the other basic important measure �see Sec.
XV.A for a description of those measures�.

1. Unit of bipartite entanglement

The fundamental result in the asymptotic regime is
that any bipartite pure state can be transformed into a
two-qubit singlet with a rate given by the entropy of
entanglement SA=SB, i.e., the entropy of the subsystem
�either A or B, since for pure states they are equal�.
And, to create any state from a two-qubit singlet, one
needs an SA singlets pair two-qubit state. Thus any pure
bipartite state can be reversibly transformed into any
other state. As a result, in the asymptotic limit entangle-
ment of these states can be described by a single
parameter—the von Neumann entropy of a subsystem.
This simplification is due to the fact, that many transi-

tions that are not allowed in an exact regime become
possible in an asymptotic limit. Thus the irreversibility
implied by the Nielsen result is lifted in this regime, and
the EPR state becomes a universal unit of entanglement.

2. Bound entanglement and irreversibility

However, even in the asymptotic limit one cannot get
rid of irreversibility for bipartite states, due to the exis-
tence of bound entangled states; namely, to create such a
state from pure states by LOCC one needs entangled
states, while no pure entanglement can be drawn back
from it. Thus the bound entangled state can be viewed
as a sort of black hole of entanglement theory �Terhal et
al., 2003�. One can also use a thermodynamical analogy
�P. Horodecki et al., 1998; Horodecki et al., 2002�.
Namely, a bound entangled state is like a single heat
bath: to create the heat bath, one needs to dissipate en-
ergy, but no energy useful to perform mechanical work
can be drawn in a cyclic process �the counterpart of the
work is quantum communication via teleportation�. We
note here that the interrelations between entanglement
and energy were considered also in different contexts
�see, e.g., R. Horodecki et al., 2001; Osborne and
Nielsen, 2002; McHugh, Zuman, et al., 2006�.

It was a formidable task to determine if we have irre-
versibility in an asymptotic setting, as it was related to
the fundamental problem of whether the entanglement
cost is equal to the entanglement of formation �see Sec.
XV�. The first example of states with asymptotic irre-
versibility was provided by Vidal and Cirac �2001�. Sub-
sequently more examples have been revealed. Voll-
brecht et al. �2004� analyzed mixtures of maximally en-
tangled states by use of the uncertainty principle. It
turns out that irreversibility for this class of states is ge-
neric: the reversible states happen to be those which
minimize the uncertainty principle, and they all turn out
to be so-called pseudopure states �see P. Horodecki et
al., 1998�, for which reversibility holds for trivial reasons.
An example of such a state is

1
2 ��AB

+ ��AB
+ � � �0�A�0� + 1

2 ��AB
− ��AB

− � � �1�A�1� .

�105�

The states �0�, �1� are local orthogonal “flags,” which
allow us to return to the pure state �+ on system AB.
This shows that, within mixtures of maximally entangled
states, irreversibility is a generic phenomenon.

In the above cases, the states were not bound en-
tangled. The irreversibility was quantitative: more pure
entanglement was needed to create states than can be
obtained from them. For bound entangled states, one
might hope to regain reversibility as follows: perhaps for
many copies of bound entangled state, a sublinear �in
number of copies� amount of pure entanglement would
be enough to create them. In other words, it might be
that for bound entangled states EC vanishes. This would
mean, that asymptotically, the irreversibility is lifted.
However, it was shown that irreversibility is exhibited

52Here m depends on n, which we do note write explicitly for
brevity.
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by all bound entangled states �Yang, Horodecki, et al.,
2005�.

An open general question is the following: for what
mixed states we have reversibility, so that distillable en-
tanglement is equal to entanglement cost. Already in the
original papers on entanglement distillation �Bennett,
Brassard, et al., 1996; Bennett, DiVincenzo, et al., 1996�
there was an indication that generically we would have a
gap between those quantities,53 even though for some
trivial cases we can have EC=ED for mixed states �P.
Horodecki et al., 1998�. Continuing the thermodynami-
cal analogy, a generic mixed state would be like a system
of two heat baths of different temperature, from which
part of the energy but not the whole can be transferred
into a mechanical work.

Surprisingly, Brandão and Plenio �2008� showed that
irreversibility is lifted when one applies a larger class of
operations than LOCC—namely, the ones that preserve
separability �supplemented by a sublinear amount of en-
tanglement�. Under this new class, entanglement of dis-
tillation and entanglement cost coincide with being
equal to the relative entropy of entanglement. It can be
interpreted as follows �cf. M. Horodecki, 2008�: as said,
physically, the second law forbids changing full energy
into work in the cyclic process. However, a hypothetical
process, which obeys only energy conservation, but not
the second law, can do this, hence it removes the differ-
ence between heat and useful energy. Now, the sepa-
rable maps—ones that cannot be done in a distant lab
without quantum communication—would then corre-
spond to this latter process, and they remove the differ-
ence between bound entanglement and the pure one.

3. Asymptotic transition rates in multipartite states

In the multipartite case there is no such universal unit
of entanglement as the singlet state. Even for three par-
ticles, we can have three different types of EPR states:
the one shared by Alice and Bob, by Alice and Charlie,
and by Bob and Charlie. By LOCC it is impossible to
create any of them from the others.

It turns out, however, that not only are EPR states
“independent” units, but also GHZ state cannot be
�even asymptotically� created from them, for any num-
ber of parties, hence it constitutes another independent
unit �Linden, Popescu, Schumacher, et al., 1999�. This
shows that there is true N-partite entanglement in the
asymptotic limit.

The general open problem is to find a minimal revers-
ible entanglement generating set �Bennett et al., 2000�,
i.e., a minimal set of states from which any other state
can be reversibly obtained by LOCC. For a more de-
tailed discussion, see Horodecki et al. �2007�.

XIV. ENTANGLEMENT AND QUANTUM
COMMUNICATION

In classical communication theory, the most important
notion is that of correlations. To send a message means
in fact to correlate the sender and the receiver. Also the
famous Shannon formula for channel capacity involves
mutual information, a function describing correlations.
Thus the ability to faithfully transmit a bit is equivalent
to the ability to faithfully share maximally correlated
bits. It was early recognized that in quantum communi-
cation theory it is entanglement which will play the role
of correlations. For this reason entanglement is the cor-
nerstone of quantum communication theory.

In classical communication theory, a central task is to
send some signals. For a fixed distribution of signals
emitted by a source, there is only one ensemble of mes-
sages. In the quantum case, a source is represented by a
density matrix �, and there are many ensembles realizing
the same density matrix. What does it then mean to send
quantum information? According to Bennett et al.
�1993� it is the ability of transmitting an unknown quan-
tum state. For a fixed source, this would mean that all
possible ensembles are properly transmitted. For ex-
ample, consider a density matrix �= �1/d��i�i�i�. Sup-
pose that a channel decoheres its input in basis 	�i�
. We
see that the set of states 	�i�
 goes through the channel
without any disturbance. However, a complementary set
consisting of states U�i�, where U is the discrete Fourier
transform, is completely destroyed by a channel, be-
cause the channel destroys superpositions. �For d=2, an
example of such a complementary ensemble is ���, ���
where � ± � = 1

2 ��0� ± �1���. As a matter of fact, each mem-
ber of the complementary ensemble is turned into maxi-
mally mixed state.

How does one recognize whether all ensembles can
go through? Schumacher �1995� noted that instead of
checking all ensembles we can check whether an en-
tangled state �AB is preserved, if we send half of it �the
system B� down the channel. The state should be chosen
to be a purification of �, i.e., TrA������AB� =�. Thus
sending an unknown state is equivalent to faithfully
sending entanglement.

Coming back to our example, the state can be chosen
as ��+� = �1/�d��i�i��i�. One can see that after applying
our channel to one subsystem, the state becomes a clas-
sical �incoherent� mixture of states �i��i�. This shows that
the channel cannot convey quantum information at all.
It is a reflection of a mathematical fact that if we send
half of the purification of a full rank density matrix
down the channel, then the resulting state will encode all
the parameters of the channel. This heuristic statement
has its mathematical form in terms of Choi-
Jamiołkowski isomorphism between states and channels.
Its most standard form links the channel � with a state
�AB
� having maximally mixed left subsystem TrB��AB

� �
=I /dA as follows:

53Although in their operational approach the authors meant
what we now call entanglement cost, to quantify it they used
nonregularized measure entanglement of formation.
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�AB
� = �IA � �A�→B�PAA�

+ , �106�

where the projector onto maximally entangled state
PAA�

+ is defined on a product Hilbert space HA � HA�,
with HA �HA�.

54

A. Capacity of quantum channel and entanglement

The idea of quantum capacity Q��� of quantum chan-
nel � was introduced by Bennett, DiVincenzo, et al.
�1996� where milestone achievements connecting quan-
tum entanglement and quantum data transfer were pro-
vided. The capacity Q measures the largest rate of quan-
tum information sent asymptotically faithfully down the
channel:

Q = sup
no. transmitted faithful qubits

no. uses of channel
, �107�

where the fidelity of the transmission is measured by
minimal subspace fidelity f��� =min��������������
�Bennett et al., 1997�. Also, the average fidelity transmis-
sion can be used, which is a direct analog of the average

fidelity in the quantum teleportation process f̄���
= ��������������d� with uniform measure d� on the
unit sphere. We may have different scenarios: �i� a quan-
tum channel without the help of a classical channel �ca-
pacity denoted by Q��, �ii� with the help of a classical
channel: one-way forward55 �Q→�, backward �Q←�, and
two-way �Q↔�. There is also entanglement assisted ca-
pacity Qass originating from a dense coding scheme,
where entanglement is a free supplementary resource
�Bennett, Shor, et al., 1999�.

An other approach based on the idea described above
was formalized in terms of entanglement transmission.
In particular, the quality of transmission was quantified
by entanglement fidelity,

F��,�AB� = �AB��IA � �B����AB��AB����AB� ,

�108�

with respect to a given state �AB.56 The alternative defi-
nition of quantum capacity �which has been worked out
by Schumacher �1996�, Schumacher and Nielsen �1996�,
and Barnum et al. �1998� and shown to be equivalent to

Bennett et al. �Bennett, DiVincenzo, et al., 1996; Bennett
et al., 1997� in Barnum et al. �2000�� was based on count-
ing the optimal pure entanglement transmission under
the condition of high entanglement fidelity defined
above.

A variation of the entanglement fidelity �Reimpell
and Werner, 2005� is when the input is equal to the out-
put dA=dB=d and we send half of the maximally en-
tangled state �d

+ down the channel. It is measured by the
maximal entanglement fidelity of the channel:

F��� ª F��,�d
+� , �109�

which is equal to the overlap of the state �� with a
maximally entangled state, namely, F��� =F����
ªTr���d

+��d
+����. It is interesting that one has �M.

Horodecki et al., 1999; Nielsen, 2002�

f̄��� = �dF��� + 1�/�d + 1� . �110�

This formula says that the possibility of sending on av-
erage faithfully quantum information happens if and
only if it is possible to create maximal entanglement of
�d

+ with the help of the channel. The above relation is
used in the proof that the definition of zero-way �or,
alternatively, one-way forward� version of quantum ca-
pacity Q �see below� remains the same if we apply any of
the fidelities recalled above �for details of the proof, see
Kretschmann and Werner �2004��.

The LHS of the above equality can be interpreted as
an average teleportation fidelity of the channel that re-
sults from teleporting a given state through the mixed
bipartite state ��.

An impressive connection between entanglement and
quantum channel theory has been worked out by Ben-
nett, Brassard, et al. �1996� and Bennett, DiVincenzo, et
al. �1996� using teleportation. They have shown how to
achieve a nonzero transmission rate by combining three
elements: �i� creating many copies of �� by sending
halves of singlets down the channel �, �ii� distilling
maximal entanglement from many copies of the created
state, and �iii� teleporting quantum information down
the �distilled� maximal entanglement. Since the last pro-
cess corresponds to ideal transmission the rate of the
quantum information transmission is equal to the distil-
lation rate in step �ii�. In this way one can prove the
inequality linking entanglement distillation ED with
quantum channel capacity Q↔ as �Bennett, DiVincenzo,
et al., 1996�

ED���� � Q↔��� , �111�

where �� is given by Eq. �106�. The inequality holds for
one-way forward and two-way scenarios of distillation
�respectively, coding�. The above inequality is one of the
central links between quantum channels and quantum

54Note that this isomorphism has an operational meaning, in
general, only one way: given the channel, Alice and Bob can
obtain a bipartite state, but usually not vice versa. However,
sometimes if Alice and Bob share a mixed bipartite state, then
by use of classical communication they can simulate the chan-
nel. An example is the maximally entangled state, which allows
us to regain the corresponding channel via teleportation. This
was first pointed out by Bennett, DiVincenzo, et al. �1996�.

55Remarkably, we have Q�=Q→. It was argued by Bennett,
DiVincenzo, et al. �1996� and the proof was completed by Bar-
num et al. �2000�.

56For a typical source all three types of fidelity; average, mini-
mum, and entanglement, are equivalent �Barnum et al., 2000�.
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entanglement theory �see below�. It is not known
whether there is a lower bound like cQ����ED���� for
some constant c. However, there is at least qualitative
equivalence shown by �Horodecki �2003e�

ED���� = 0 ⇒ Q↔��� = 0. �112�

An alternative simple proof which also works for multi-
partite generalization of this problem has been given by
Dür et al. �2004�. It uses teleportation and Choi-
Jamiołkowski isomorphism to collective channels �Cirac
et al., 2001�.

B. Formulas for capacities

For the capacity Q�, the formula is given by the so-
called LSD theorem �Lloyd, 1997; Shor, 2002; Devetak,
2003�; namely, one maximizes coherent information over
all bipartite states resulting from a pure state, half of it
sent down the channel �see Sec. XII.F�. However, one
should optimize this quantity over many uses of the
channel, so that the capacity reads

Q���� = lim�1/n�sup
�

I�A	B
coh ��I � ��n������� . �113�

The fact that the formula is not “single letter,” in the
sense that it involves many uses of the channel, was es-
tablished by �Shor and Smolin, 1996; see also DiVin-
cenzo et al., 1998�.

Coherent information can be nonzero only for en-
tangled states. Indeed, only entangled states can have
greater entropy of the subsystem than that of the total
system �Horodecki and Horodecki, 1994�. In this con-
text, an additional interesting qualitative link between
entanglement and channel capacity formula is the hash-
ing inequality stating that ED

→IA	B
coh �see Sec. XII�.

Quite remarkably we may have ED
→��AB�	0 even

though IA	B
coh ��AB� =0 which is related to the above

mentioned Shor-Smolin result. Quite surprisingly,
Smith and Yard �2008� discovered that two channels
with zero capacity, if used jointly, can have nonzero ca-
pacity: Q���1� =0, Q���2� =0, but Q���1 ��2�. This is a
highly nonclassical effect.

Another type of capacity for which the formula is
known is entangled assisted capacity. It is given by the
following single letter expression �Bennett, Shor, et al.,
1999, 2002�:

Qass = 1
2 sup�AB

IA:B��IA � �B�����AB���� , �114�

where I is the quantum mutual information �for details,
see Horodecki et al., 2007�.

C. Entanglement breaking and entanglement binding channels

Equations �111� and �112� naturally provoke the ques-
tion which channels have capacity zero?

If the state �� is separable, then the corresponding
channel is called entanglement breaking �Horodecki,
Shor, et al., 2003� and one cannot create entanglement at

all by means of such a channel.57 Now since it is impos-
sible to distill entanglement from a separable state we
see from Eq. �112� that the capacity of the entanglement
breaking channel is zero, i.e., no quantum faithful quan-
tum transmission is possible with the entanglement
breaking channel. However, the converse is not true: the
possibility to create entanglement with the help of the
channel is not equivalent to quantum communication
and it is the bound entanglement phenomenon which is
responsible for that. To see it we observe that if the
corresponding state �� is bound entangled, then the
channel �, called in this case the binding entanglement
channel �introduced by P. Horodecki, M. Horodecki,
et al., 2000; DiVincenzo et al., 2003�, allows for creation
of entanglement. However, it cannot convey quantum
information at all—it has capacity zero �Horodecki,
2003e�.

Note that binding entanglement channels are not
completely useless from a general communication point
of view. First of all, some of them can be used to gener-
ate a secure cryptographic key; see Sec. XIX. Second,
just these channels if composed with erasure channels
�Bennett et al., 1997�, give rise the “0�0�1” effect dis-
covered by Smith and Yard, described in the previous
subsection.

D. Additivity questions

There is one type of capacity, where we do not send
half of the entangled state, but restrict ourselves just to
separable states. This is the classical capacity of the
quantum channel, C��� �without any further support
such as shared entanglement or so�. However, even here
entanglement comes in. Namely, it is still not resolved
whether the sending of signals entangled between dis-
tinct uses of a channel can increase the transmission
rate. A closely related problem is the following: Can we
decrease the production of entropy by operations �1
and �2 by sending a joint state through the combined
operation ���, i.e.,

inf
�

S��1���� + inf
�

S��2���� 	 inf
�

S���1 � �2����� .

�115�

One finds that this sharp equality can hold only via en-
tangled input state �. Interestingly, this problem has fur-
ther connection with entanglement. It is equivalent to
additivity of important measure of entanglement, the so-
called entanglement of formation EF �Shor �2003�, see
also Audenaert and Braunstein �2004�, Koashi and Win-
ter �2004�, Matsumoto �2005�, and references therein�.

57Simply, its Kraus operators �in some decomposition� are of
rank 1. Impossibility of creating entanglement follows from the
fact that action of any channel of that kind can be simulated by
a classical channel: for any input state, one measures it via
some positive-operator-valued measure �POVM�, and sends
the classical outcome to the receiver. Based on this, the re-
ceiver prepares some state.
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We have the following equivalent statements: additivity
of entanglement of formation, superadditivity of en-
tanglement of formation, additivity of minimum output
entropy, additivity of so-called Holevo capacity, and ad-
ditivity of Henderson-Vedral classical correlation mea-
sure CHV �see Secs. XV and XIII for definitions of EF

and CHV�. To prove or disprove them for a long time was
one of the fundamental problems of quantum informa-
tion theory. The breakthrough has been done by Hast-
ings �2008� �who built upon Hayden and Winter, 2008�.
He showed existence of two channels which satisfy in-
equality �115�. Thus all the above quantities are nonad-
ditive. Moreover, by Fukuda and Wolf �2007�,58 this im-
plies that there is nonadditivity also if the channels are
the same, which, in turn, implies, e.g., that entanglement
of formation is not equal to the so-called entanglement
cost �see Sec. XV�. Another question which remains
open is additivity classical capacity C���. A step forward
was made by Czekaj and Horodecki �2008� who showed
nonadditivity of classical capacity for multiply access
channels, the effect impossible for classical channels.
One of their channels is based on dense coding.

In discussing the links between entanglement and
communication, one has to mention one more additivity
problem inspired by entanglement behavior. This is the
problem of the additivity of quantum capacities Q
touched on already by Bennett, Divincenzo, et al. �1996�.
Due to a nonadditivity phenomenon called activation of
bound entanglement �see Sec. XII.I� it has even been
conjectured �P. Horodecki et al. �1999� that for some
channels Q↔��1 ��2�	0, even if both channels have
vanishing capacities, i.e., Q↔��1� =Q↔��2� =0. Here
again, as in the question of additivity of the classical
capacity C���, a possible role of entanglement in inputs
of the channel �1 ��2 comes into play. Though we know
that such strange nonadditivity can hold for Q� �Smith
and Yard, 2008�, the question is open for Q↔.

Though this problem is still open, there is a multipar-
tite version where nonadditivity was found �Dür et al.,
2004�. In fact, the multiparty communication scenario
can be formulated and the analog of Eqs. �111� and �112�
can be proven �Dür et al., 2004�, together with the notion
and construction of binding entanglement channels. Re-
markably, in this case the application of multipartite BE
channels isomorphic to multipartite bound entangled
states and application of the multipartite activation ef-
fect leads to nonadditivity of two-way capacity regions
for a quantum broadcast �equivalently multiply access�
channel �Dür et al., 2004�. A tensor product of three
binding channels �i which automatically have zero ca-
pacity leads to the channel � : � i=1

3 �i with nonzero ca-
pacity. In this case bound entanglement activation �see
the section on activation� leads to the proof of nonaddi-
tivity effect in quantum information transmission.

XV. QUANTIFYING ENTANGLEMENT

A. Distillable entanglement and entanglement cost

The initial idea to quantify entanglement was con-
nected with its usefulness in terms of communication
�Bennett, Brassard, et al., 1996; Bennett, DiVincenzo, et
al., 1996�. As one knows via a two-qubit maximally en-
tangled state ��+� = 1

�2 ��00� − �11�� one can teleport one
qubit. If a state is not maximally entangled, then it does
not allow for faithful teleportation. However, in analogy
to Shannon communication theory, it turns out that
when having many copies in such a state, one can obtain
asymptotically faithful teleportation at some rate �see
Sec. XII�. To find how many qubits per copy we can
teleport it is enough to determine how many e-bits we
can obtain per copy, since every ��+� can then be used
for teleportation. In this way we arrive at transition rates
as described in Sec. XIII, and two basic measures of
entanglement ED and EC.

Distillable entanglement. Alice and Bob start from n
copies of state �, and apply an LOCC operation, that
ends up with a state �n. We now require that for large n
the final state approaches the desired state ��+��mn. If it
is impossible, then ED=0. Otherwise we say that the
LOCC operations constitute a distillation protocol P
and the rate of distillation is RP=limn mn /n. The distill-
able entanglement is the supremum of such rates over
all possible distillation protocols. It can be defined con-
cisely �cf. Plenio and Virmani, 2006� as follows:

ED��� = sup	r: lim
n→�

�inf
�

�����n� − �2rn
+ �1� = 0
 , �116�

where �2rn
+ = ���+��+���rn and � · �1 is the trace norm �see

Rains �1998� for showing that other possible definitions
are equivalent�.59

Entanglement cost. It is a measure dual to ED, and it
reports how many qubits we have to communicate in
order to create a state. This, again, can be translated to
e-bits, so that EC��� is the number of e-bits one can ob-
tain from � per input copy by LOCC operations. The
definition is

EC��� = inf	r: lim
n→�

�inf
�

���n − ���2rn
+ ��1� = 0
 . �117�

Hayden et al. �2001� showed that EC is equal to regu-
larized entanglement of formation EF—a prototype of
entanglement cost; see Sec. XV.C.2. The two quantities
are, in general, not equal �see Sec. XIV.D�. As men-
tioned, for pure states ED=EC.

Distillable key. There is yet another distinguished op-
erational measure of entanglement for bipartite states,
designed in similar spirit as ED and EC. It is distillable

58We are grateful to Francesco Buscemi for pointing out this
reference.

59In place of the trace norm one can use Uhlmann fidelity

F�� ,�� = �Tr�������2, thanks to the inequality proven by

Fuchs and van de Graaf �1997�, 1−�F�� ,��� 1
2 ��−��1

��1−F�� ,��.
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private key KD: The maximum rate of a bits of private
key that Alice and Bob can obtain by LOCC from state
�AB where it is assumed that the rest E of the total pure
state �ABE is given to adversary Eve. The distillable key
satisfies obviously ED�KD: indeed, a possible protocol
of the distilling key is to distill EPR states and then from
each pair obtain one bit of key by measuring in the stan-
dard basis. A crucial property of KD is that it is equal to
the rate of transition to a special class of states: so-called
private states, which are a generalization of EPR states.
We elaborate more on the distillable key and the struc-
ture of private states in Sec. XIX.

B. Entanglement measures: Axiomatic approach

The measures such as ED or EC are built to describe
entanglement in terms of some tasks. Thus they arise
from optimization of some protocols performed on
quantum states. However, one can apply an axiomatic
point of view, by allowing any function of state to be a
measure, provided it satisfies some postulates. We now
go through basic postulates.

1. Monotonicity axiom

The most important postulate for entanglement mea-
sures was proposed by Bennett, DiVincenzo, et al. �1996�
still in the context of operationally defined measures.

Monotonicity under LOCC: Entanglement cannot in-
crease under local operations and classical communica-
tion.

Vedral, Plenio, Rippin, et al. �1997� introduced the
idea of axiomatic definition of entanglement measures
and proposed that an entanglement measure is any func-
tion that satisfies the above condition plus some other
postulates. Then Vidal �2000� proposed that monotonic-
ity under LOCC should be the only postulate necessarily
required from entanglement measures. Other postulates
would then either follow from this basic axiom or should
be treated as optional �see Popescu and Rohrlich
�1997��. The montonicity axiom can be written as fol-
lows. For any LOCC operation � we have

E„����…� E��� . �118�

Note that the output state ���� may include some regis-
ters with stored results of measurements of Alice and
Bob �or more parties, in a multipartite setting�, per-
formed in the course of the LOCC operation �. The
mathematical form of � is in general quite ugly �see,
e.g., Donald et al., 2002�. A better mathematical expres-
sion is known as the so-called “separable operations”
�Vedral, Plenio, Rippin, et al., 1997; Rains, 2001�

���� = �
i

Ai � Bi���Ai
†

� Bi
†, �119�

with obvious generalization to a multipartite setting. Ev-
ery LOCC operation can be written in the above form,
but not vice versa, as proved by Bennett, DiVincenzo,
Fuch, et al. �1999�. �For a more extensive treatment of
various classes of operations, see Sec. XI.B.�

The known entanglement measures usually satisfy a
stronger condition, namely, they do not increase on av-
erage,

�
i

piE��i� � E��� , �120�

where 	pi ,�i
 is ensemble obtained from the state � by
means of LOCC operations. This condition was earlier
considered as mandatory, see, e.g., M. Horodecki �2001�;
Plenio �2005�, but there is now common agreement that
the condition �118� should be considered as the only nec-
essary requirement.60 However, it is often easier to
prove the stronger condition. In patricular, for convex
measures, it can be expressed in terms of several simple
conditions Vidal �2000� �see Horodecki et al., 2007 for
more details�.

Interestingly, for bipartite measures monotonicity also
implies that there is maximal entanglement in bipartite
systems. More precisely, if we fix the Hilbert space Cd

� Cd�, then there exist states from which any other state
can be created: these are states UA � UB equivalent to a
singlet. Indeed, by teleportation, Alice and Bob can cre-
ate from a singlet any pure bipartite state. Namely, Alice
prepares locally two systems in a joint state �, and one
of the systems teleports through a singlet. In this way
Alice and Bob share the state �. Then they can also
prepare any mixed state. Thus E must take the greatest
value to the state �+.

Sometimes, one considers monotonicity under LOCC
operations for which the output system has the same
local dimension as the input system. For example, for
n-qubit states, we may be interested only in output
n-qubit states. Measures that satisfy such monotonicity
can be useful in many contexts, and sometimes it is
easier to prove such monotonicity �Verstraete et al.,
2003� �see Sec. XV.H.1�.

2. Vanishing on separable states

If a function E satisfies the monotonicity axiom, it
turns out that it is constant on separable states. It fol-
lows from the fact that every separable state can be con-
verted to any other separable state by LOCC �Vidal,
2000�. Even more, E must be minimal on separable
states, because any separable state can be obtained by
LOCC from any other state. It is reasonable to set this
constant to zero. In this way we arrive at an even more
basic axiom, which can be formulated already on the
qualitative level: Entanglement vanishes on separable
states.

60Indeed, the condition �118� is more fundamental, as it tells
about entanglement of state, while Eq. �120� tells about aver-
age entanglement of an ensemble �family 	pi ,�i
�, which is a
less operational notion than the notion of state. Indeed it is not
clear what it does mean to “have an ensemble.” An ensemble
can always be treated as a state, �ipi�i�i� � �i, where �i� are
local orthogonal flags. However, it is not clear at all why one
should require a priori that E��ipi�i�i� � �i� = �ipiE��i�.
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It is interesting that the LOCC monotonicity axiom
almost imposes the latter axiom. Note also that those
two axioms impose E to be a non-negative function.

3. Other possible postulates

The above two axioms are essentially the only ones
that should be necessarily required from entanglement
measures. However, there are other properties that may
be useful and are natural in some contexts.

Normalization. One can require that the entangle-
ment measure behaves in an “information theoretic
way” on maximally entangled states, i.e., it counts e-bits:

E„��2
+��n

… = n . �121�

A slightly stronger condition would be E��d
+� =log2 d.

For multipartite entanglement, there is no such natural
condition, due to the nonexistence of a maximally en-
tangled state.

Asymptotic continuity. One can also require some type
of continuity. The asymptotic manipulations paradigm
suggests continuity of the form �Donald et al., 2000;
Horodecki et al., 2000; Vidal, 2002�

��n − �n�1 → 0 ⇒ �E��n� − E��n��/log2 dn → 0, �122�

for states �n, �n acting on Hilbert space Hn of dimension
dn. This is called asymptotic continuity. Measures which
satisfy this postulate are useful in estimating ED, and
other transition rates, via inequality �146� �Sec. XV.E.2�.
The most prominent example of the importance of
asymptotic continuity is that together with the above
normalization an additivity is enough to obtain a unique
measure of entanglement for pure states �see Sec.
XV.E.1�.

Convexity. Finally, entanglement measures are often
convex. Convexity used to be considered a mandatory
ingredient of the mathematical formulation of monoto-
nicity. At present we consider convexity as merely a con-
venient mathematical property. Most known measures
are convex, including relative entropy of entanglement,
entanglement of formation, robustness of entanglement,
negativity, and all measures constructed by means of a
convex roof �see Sec. XV.C�. It is an open question
whether distillable entanglement is convex �Shor et al.,
2001�. In the multipartite setting it is known that a ver-
sion of distillable entanglement61 is not convex �Shor et
al., 2003�.

C. Axiomatic measures: A survey

Here we review bipartite entanglement measures built
on an axiomatic basis. Some of them immediately gen-
eralize to the multipartite case. Multipartite entangle-
ment measures will be presented in Sec. XV.H.

1. Entanglement measures based on distance

A class of entanglement measures �Vedral, Plenio,
Rippin, and Knight, 1997; Vedral and Plenio, 1998� are
based on the natural intuition, that the closer the state is
to the set of separable states, the less entangled it is. The
measure is minimum distance, D,62 between the given
state and the states in S:

ED,S��� = inf
��S

D��,�� . �123�

The set S is chosen to be closed under LOCC opera-
tions. Originally it was just the set of separable states S.
It turns out that such a function is monotonous under
LOCC, if the distance measure is monotonous under all
operations. It is then possible to use known, but so far
unrelated, results on monotonicity under completely
positive maps. Moreover, it proves that it is not only a
technical assumption to generate entanglement mea-
sures: monotonicity is a condition for a distance to be a
measure of distinguishability of quantum states �Fuchs
and van de Graaf, 1997; Vedral, Plenio, Jacobs, et al.,
1997�.

We thus require that

D��,�� D„����,����… �124�

and obviously D�� ,�� =0 for �=�. This implies non-
negativity of D �similarly as it was in the case of the
vanishing of entanglement on separable states�. More
importantly, the above condition immediately implies
monotonicity �118� of the measure ED,S. To obtain stron-
ger monotonicity, one requires �ipiD��i ,�i��D�� ,�� for
ensembles 	pi ,�i
 and 	qi ,�i
 obtained from � and � by
applying an operation.

Once a good distance was chosen, one can consider
different measures by changing the sets closed under
LOCC operations. In this way we obtain ED,PPT �Rains,
2001� or ED,ND �the distance from nondistillable states�.
The measure involving set PPT is much easier to evalu-
ate. The greater the set �see Fig. 3�, the smaller the mea-
sure is, so that if we consider the set of separable states,
those with positive partial transpose and the set of non-
distillable states, we have

ED,ND � ED,PPT � ED,S. �125�

Vedral and Plenio �1998� showed two distances to satisfy
Eq. �124� and convexity: the square of Bures metric B2

=2−2�F�� ,�� where F�� ,�� = �Tr�������1/2�2 is fidelity
�Uhlmann, 1976; Jozsa, 1994� and relative entropy
S�� ��� =Tr ��log2 �−log2 ��. Originally, the set of sepa-
rable states was used and the resulting measure

ER = inf
��SEP

Tr��log2 � − log2 �� �126�

is called the relative entropy of entanglement. It is a
fundamental entanglement measure, as the relative en-
tropy is an important function in quantum information
theory �see Schumacher and Westmoreland, 2000; Ve-

61For example a maximal amount of EPR pairs between two
chosen parties, that can be distilled with the help of all parties. 62We do not require the distance to be a metric.
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dral, 2002�. Its other versions—the relative entropy dis-
tance from PPT states �Rains, 2001� and from nondistill-
able states �Vedral, 1999�—will be denoted as ER

PPT and
ER

ND respectively. Relative entropy of entanglement
turned out to be a powerful upper bound for entangle-
ment of distillation �Rains, 2001�. Plenio and Brandão
�2008� have recently shown that it uniquely describes
entanglement �both in a bipartite as well as a multipar-
tite state� in a paradigm, where LOCC operations are
replaced with nonentangling operations �strictly speak-
ing, operations, that create an amount of entanglement
vanishing in the appropriate limit�. The distance based
on fidelity received interpretation in terms of the Grover
algorithm �Shapira et al., 2006�.

2. Convex roof measures

Here we consider the following method of obtaining
entanglement measures: one starts by imposing a mea-
sure E on pure states, and then extends it to mixed ones
by convex roof �Uhlmann, 1998�,

E��� = inf �
i

piE��i�, �
i

pi = 1, pi  0, �127�

where the infimum is taken over all ensembles 	pi ,�i
 for
which �= �ipi��i��i�. The infimum is reached on a par-
ticular ensemble �Uhlmann, 1998�. We call such an en-
semble optimal. Thus E is equal to the average under
the optimal ensemble.

The first entanglement measure built in this way was
entanglement of formation EF introduced by Bennett,
DiVincenzo, et al. �1996�, where E��� is the von Neu-
mann entropy of the reduced density matrix of �. It con-
stituted the first upper bound for distillable entangle-
ment. Bennett, DiVincenzo, et al. �1996� showed the
monotonicity of EF. Vidal �2000� exhibited a general
proof for monotonicity of all possible convex-roof mea-
sures. We consider measures for pure bipartite states in
more detail in Sec. XV.D, and multipartite states in Sec.
XV.H.1.

a. Schmidt number

The Schmidt rank can be extended to mixed states by
means of a convex roof. A different extension was con-
sidered by Terhal and Horodecki �2000� and Sanpera et
al. �2001� �called the Schmidt number� as follows:

rS��� = min	max
i

�rS��i��
 , �128�

where the minimum is taken over all decompositions �
= �ipi��i��i� and rS��i� are the Schmidt ranks of the cor-
responding pure states. Thus instead of the average
Schmidt rank, the supremum is taken. An interesting
feature of this measure is that its logarithm is strongly
nonadditive. Namely, there exists a state � such that
rS��� =rS��� ��.

b. Concurrence

For two qubits the measure called concurrence was
introduced for pure states by Hill and Wootters �1997�.
Wootters �1998� provided a closed expression for its con-
vex roof extension and based on it derived a computable
formula for EF in the two-qubit case. For pure states
concurrence is C=�2�1−Tr�2�, where � is a reduced
state. For two qubits this gives C��� =2a1a2, where a1, a2
are Schmidt coefficients. Another way of representing C
for two qubits is the following:

C = ������ , �129�

where � is the antiunitary transformation ��=�y ��y�*,
with * being the complex conjugation in the standard
basis, and �y is the Pauli matrix. It turns out that the
latter expression for C is useful in the context of mixed
states, for which the convex roof of C can be then com-
puted as follows. We denote �̃=���, and consider the
operator

� = ����̃ . �130�

Let �1 , . . . ,�4 be singular values of � in decreasing order.
Then we have

C��� = max	0,�1 − �2 − �3 − �4
 . �131�

Interestingly, Uhlmann �2000� has shown that for any
conjugation �, i.e., antiunitary operator satisfying �
=�−1, the convex roof of the function � concurrence
C���� = � ����� is given by the generalization of Woot-
ters’ formula:

C���� = max�0,�1 − �
i=2

d

�i� , �132�

where �i are eigenvalues of operator ������ in de-
creasing order.

The importance of the measure stems from the fact
that it allows us to compute entanglement of formation
for two qubits according to �Wootters, 1998�

EF��� = H�1 + �1 − C2���
2

� , �133�

where H is the binary entropy H�x� =−x log2 x− �1
−x�log2�1−x�. One can extend concurrence to higher di-
mensions �Audenaert, Verstraete, et al., 2001; Rungta et
al., 2001; see also Badziag et al., 2002� as follows:

C��� = ��
�

C����2 = ����� − Tr �2, �134�

where � is the density matrix of the subsystem. A strong
algebraic lower bound for its convex roof was obtained
by Mintert et al. �2004� allowing us to detect states which
are bound entangled �see also Mintert, Carvalha, et al.,
2005; Bae et al., 2009�.

There are other interesting measures introduced by
Sinołȩcka et al. �2002� and Fan et al. �2003� and devel-
oped by Gour �2005�, which are built by means of poly-
nomials of the squares of the Schmidt coefficients �’s:
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�1 = �
i=1

d

�i = 1, �2 = �
i	j

d

�i�j, �3 = �
i	j	k

d

�i�j�k, etc.

The above measures �p are well defined if the dimension
of the Hilbert space d is no smaller than the degree p.
For convenience, one can also set �p=0 for p
d, so that
each of the above measures is well defined for all pure
states. The functions are generalizations of concurrence
and can be thought of as higher rank concurrences. In
particular �2 is the square of concurrence. The measures
are Schur concave �i.e., they preserve majorization or-
der�, so that by the Nielsen theorem �see Sec. XIII.A�
they satisfy monotonicity.

3. Other entanglement measures

a. Robustness measures

Robustness of entanglement was introduced by Vidal
and Tarrach �1999�. For a state � consider a separable
state �sep. Then R�� ��sep� is defined as minimal t such
that the state

�� + t�sep�
�1 + t�

�135�

is separable. Now robustness of entanglement is defined
as

R��� = inf
�sep

R����sep� . �136�

It is related to the quantity P��� given by minimal p such
that the state

�1 − p�� + p�sep �137�

is separable. We then have P=R / �1+R�. Though P is
more intuitive, it turns out that R has better mathemati-
cal properties, being convex. R satisfies monotonicity
�120�. Harrow and Nielsen �2003� and Steiner �2003�
considered generalized robustness Rg, where the infi-
mum is taken over all states rather than just the sepa-
rable ones. Interestingly, it was shown that for pure
states it does not make a difference. Rg is a monotone
too. Brandão �2005� showed that the generalized robust-
ness Rg has operational interpretation: it is equal to the
measure E�d� quantifying the activation power.

b. Negativity

A simple computable measure was introduced by
Życzkowski et al. �1998� and then shown by Vidal and
Werner �2002� to be a LOCC monotone. It is negativity,

N = �
�
0

� , �138�

where � are eigenvalues of �� �where � is a partial trans-
pose�. A version of the measure called logarithmic nega-
tivity given by

EN��� = log2����1 �139�

is the upper bound for distillable entanglement �Vidal
and Werner, 2002�. It can be also written as EN���

=log2 �2N��� +1� /2. The measure EN��� is easily seen to
satisfy monotonicity �118�, because N��� does satisfy it,
and the logarithm is a monotonic function. However, the
logarithm it is not convex, and as such might be ex-
pected not to satisfy the stronger monotonicity condition
�120�. Yet, it was recently shown that it does satisfy it
�Plenio, 2005�. The measure is, moreover, additive. For
states with positive �����, EN has operational
interpretation—it is equal to the exact entanglement
cost of creating a state by PPT operations from singlets
�Audenaert et al., 2003�.

It turns out that negativity and robustness can be also
obtained from one scheme originating from the base
norm �Vidal and Werner, 2002; Plenio and Virmani,
2006�.

c. Squashed entanglement

Squashed entanglement was introduced by Tucci
�2002� and then independently by Christandl and Winter
�2004�, who showed that it is a monotone, and proved its
additivity. It is the first additive measure with good
asymptotic properties. In the latter paper, the definition
of squashed entanglement Esq has been inspired by re-
lations between cryptography and entanglement.
Namely, Esq was designed on the basis of a quantity
called intrinsic information �Maurer and Wolf, 1997; Gi-
sin and Wolf, 2000; Renner and Wolf, 2003�, which was
monotonic under local operations and public communi-
cation. The squashed entanglement is given by

Esq��AB� = inf
�ABE

1
2I�A:B�E� , �140�

where I�A :B � E� =SAE+SBE−SE−SABE and infimum is
taken over all density matrices �ABE satisfying TrE�ABE
=�AB. The measure is additive on the tensor product and
superadditive in general, i.e.,

Esq��AB � �A�B�� = Esq��AB� + Esq��A�B�� ,

Esq��AA�BB��  Esq��AB� + Esq��A�B�� . �141�

It is not known whether it vanishes if and only if the
state is separable. �It would be true, if infimum could
be turned into minimum; this is, however, unknown.�
The measure is asymptotically continuous �Alicki and
Fannes, 2004�, and therefore lies between ED and EC.
Even though it was computed for just two families of
states, a clever guess for �ABE can give good estimates
for ED in some cases. There was a question if the opti-
mization in the definition of Esq can be restricted to the
subsystem E being a classical register �Tucci, 2002�.
Brandão �2008� showed that the answer is negative.

D. All measures for pure bipartite states

Vidal �2000� showed that measures for pure states sat-
isfying strong monotonicity �120� are in one-to-one cor-
respondence to functions f of density matrices satisfying
�i� f is symmetric, expansible function of eigenvalues of
�; �ii� f is concave function of � �by expansibility we
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mean f�x1 , . . . ,xk ,0� = f�x1 , . . . ,xk��. In this way all pos-
sible entanglement measures for pure states were char-
acterized.

More precisely, let Ep, defined for pure states, satisfy
Ep��� = f��A�, where �A is a reduction of �, and f satisfies
�i� and �ii�. Then there exists an entanglement measure
E satisfying LOCC monotonicity coinciding with Ep on
pure states �E is convex-roof extension of Ep�. Also con-
versely, if we have arbitrary measure E satisfying Eq.
�120�, then E��� = f��A� for some f satisfying �i� and �ii�.

We recall the proof of the direct part; namely, we
show that convex-roof extension E of Ep satisfies Eq.
�120�. As Vidal showed, it suffices to show it for pure
states. Consider then any operation on, say, Alice’s side
�for Bob’s side, the proof is the same� which produces
ensemble 	pi ,�i
 out of state �. We show that the final

average entanglement Ē= �ipiE��i� does not exceed the
initial entanglement E���. In other words, we show that
�ipif��A

�i��� f��A�, where �A
�i� are reductions of �i on Al-

ice’s side. We note that due to the Schmidt decomposi-
tion of �, reductions �A and �B have the same nonzero
eigenvalues. Thus f��A� = f��B�, due to �i�. Similarly
f��A

�i�� = f��B
�i��. Thus it remains to show that �ipif��B

�i��
� f��B�. However, �B= �ipi�B

�i� �which is an algebraic
fact, but can be understood as a no-superluminal-
signaling condition—no action on Alice’s side can influ-
ence the statistics on Bob’s side, provided no message
was transmitted from Alice to Bob�. Thus our question
reduces to the inequality �ipif��B

�i��� f��ipi�B
�i��. This is,

however, true, due to the concavity of f.
As mentioned, examples of entanglement measures

for pure states are quantum Renyi entropies of the sub-
system for 0���1. Interestingly, the Renyi entropies
for �	1 are not concave, but are Schur concave. Thus
they satisfy monotonicity �118� for pure states, but do
not satisfy the strong one �120�. It is not known whether
the convex roof construction will work, therefore it is an
open question how to extend such measure to mixed
states.

Historically the first measure was the von Neumann
entropy of the subsystem �i.e., �=1� which has opera-
tional interpretation—it is equal to distillable entangle-
ment and entanglement cost. It is the unique measure
for pure states, if we require some additional postulates,
especially asymptotic continuity �see Sec. XV.E�.

1. Entanglement measures and transition between states: Exact
case

Another family of entanglement measures is the fol-
lowing. Consider squares of Schmidt coefficients of a
pure state �k in decreasing order so that �1�2¯

�d, �i=1
d �i=1. Then the sum of the d−k smallest �’s,

Ek��� = �
i=k

d

�i, �142�

is an entanglement monotone �Vidal, 1999�. Thus for a
state with n nonzero Schmidt coefficients we obtain n

−1 nontrivial entanglement measures. It turns out that
these measures constitute a complete set of entangle-
ment measures for bipartite pure states.

Vidal proved the following inequality relating prob-
ability p��→�� of obtaining state � from � by LOCC
with entanglement measures:

p��→ �� � E���/E��� . �143�

�If we fix an entangled state �0, then p��→�0� is itself a
measure of entanglement, as a function of �.� It turns
out that the measures Ek constitute a full set of con-
straints. Namely �Vidal, 1999�, the optimal probability of
transition from state � to � is given by

p��→ �� = min
k

Ek���/Ek��� . �144�

This returns, in particular, Nielsen’s result �Nielsen,
1999� stating that p=1 if for all k, Ek���Ek���, which
is precisely the majorization condition �96�.

Thus the considered set of abstractly defined mea-
sures determines possible transformations between
states, as well as optimal probabilities of such transfor-
mations. We further show the generalization of such a
result to the asymptotic regime, where nonexact transi-
tions are investigated.

E. Entanglement measures and transition between states:
Asymptotic case

In the asymptotic regime, where we tolerate small in-
accuracies, which disappear in the limit of a large num-
ber of copies, the landscape of entanglement looks more
“smooth.” Of many measures for bipartite pure states
only one becomes relevant: entropy of entanglement,
i.e., any measure significant for this regime reduces to
entropy of entanglement for pure states.63 Moreover,
only the measures with some properties, such as
asymptotic continuity, can be related to operational
quantities such as ED, or, more generally, to asymptotic
transitions rates. We refer to such measures as good
asymptotic measures.

1. ED and EC as extremal measures: Unique measure for pure
bipartite states

If measures satisfy some properties, it turns out that
their regularizations are bounded by ED from one side
and by EC from the other side. By regularization of any
function f we mean f���� =limn�1/n�f���n� if such a limit
exists. It turns out that if a function E is monotonic un-
der LOCC, asymptotically continuous, and satisfies
E��d

+� =log2 d, then we have

63One can consider the half asymptotic regime, where one
takes the limit of many copies, but does not allow for inaccu-
racies. Then other measures can still be of use, such as loga-
rithmic negativity, which is related to the PPT cost of entangle-
ment �Audenaert et al., 2003� in such a regime.
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ED � E� � EC. �145�

In particular, this implies that for pure states there is a
unique entanglement measure in the sense that regular-
ization of any possible entanglement measure is equal to
the entropy of a subsystem.64 An exemplary measure
that fits this scheme is the relative entropy of entangle-
ment �related either to the set of separable states or to
PPT states�. Thus whenever we have reversibility, then
the transition rate is determined by relative entropy of
entanglement. Some versions of the theorem are useful
to find upper bounds for ED—one of the central quanti-
ties in entanglement theory. We have, for example, that
any function E satisfying the conditions: �i� E is weakly
subadditive, i.e., E���n��nE���, �ii� for isotropic states
E��F

d� / log d→1 for F→1, d→�, �iii� E is monotonic un-
der LOCC �i.e., it satisfies Eq. �118�� is an upper bound
for distillable entanglement. This theorem covers all
known bounds for ED.

There are not many measures which fit the asymptotic
regime. Apart from operational measures such as EC,
ED, and KD only entanglement of formation, relative
entropy of entanglement �together with its PPT version�,
and squashed entanglement belong here. For a review of
properties of those measures see Christandl �2006�.

2. Transition rates

One can consider transitions between any two states
�Bennett, DiVincenzo, et al., 1996� by means of LOCC:
R��→�� defined analogously to ED, but with � in place
of a maximally entangled state. Thus we consider n cop-
ies of � and want to obtain a state �n

out that will converge
m copies of � for large n. R��→�� is then defined as the
maximum asymptotic rate m /n that can be achieved by
LOCC operations. One then can generalize the theorem
about extreme measures as follows:

R��→ �� � E����/E���� �146�

for any E satisfying �i� E is nonincreasing under LOCC,
�ii� regularizations exist for states � and � and E����
	0, �iii� E is asymptotically continuous �see Sec.
XV.B.3�. This result is an asymptotic counterpart of
Vidal’s relation between optimal probability of success
and entanglement measures �143�.

F. Evaluation of measures

It is usually not easy to evaluate measures. The only
measure that is easily computable for any state is EN
�logarithmic negativity�. Entanglement of formation is
efficiently computable for two qubits �Wootters, 1998�.
Other measures are usually computable for states with
high symmetries, such as Werner states, isotropic states,

or the family of “iso-Werner” states �see Bennett, Di-
Vincenzo, et al., 1996; Rains, 1999; Terhal and Voll-
brecht, 2000; Vollbrecht and Werner, 2001�.

An analytical lower bound for concurrence for all
states was provided by Mintert et al. �2004� �see also
Audenaert, Verstraete, et al., 2001�. The bound consti-
tutes also a new criterion of separability. A way to
bound a convex-roof measure is to provide a comput-
able convex function, that is, greater than or equal to the
measure on the pure states. For example, we have

����������1 = �R��������1 = ��
i

�pi�2
, �147�

where pi are squares of Schmidt coefficients of � and R
is the realignment map �see Sec. VI.B.8�. Comparing this
with concurrence one gets a bound obtained by Chen et
al. �2005a�,

C��� � 2

m�m − 1�
�max„����1,�R����1… − 1� . �148�

As far as entanglement of formation is concerned,
Terhal and Vollbrecht �2000� introduced a method for
which it is enough to optimize over some restricted set
rather than the set of pure states. This was further suc-
cessfully developed by Chen et al. �2005b�, Fei and Li-
Jost �2006�, and Datta et al. �2007� where lower bounds
for EF were obtained based on known separability crite-
ria such as PPT, realignment, or the recent Breuer’s map
�see Secs. VI.B.8 and VI.B.6�.

Vollbrecht and Werner �2001� obtained a surprising
result concerning possible additivity of ER. They showed
that ER is nonadditive for Werner asymmetric states,
and, moreover, for large d, ER of two copies is almost
the same as for one copy. Thus the relative entropy of
entanglement can be strongly nonadditive. Therefore
regularization of ER is not equal to ER. Audenaert, Ei-
sert, et al. �2001� computed for the first time ER

� for some
states. Namely, for Werner states we have

ER,S
� = �1 − H�p�

1
2

 p �

1
2

+
1

d

log2�d − 2

d
� + p log2�d + 2

d − 2
� 1

2
+

1

d

 p � 1.�

�149�

Concerning the operational measures, we know that
EC=EF

�� limn→� EF���n� �Hayden et al., 2001�. If EF
were additive �which is still an open problem, see Sec.
XIV.D� then it would be equal to EC. ED is bounded
from above by EF �Bennett, DiVincenzo, et al., 1996�.
For pure states ED=EF=EC=ER=S��A�, where �A is
the reduced density matrix of the given pure state �Ben-
nett, Bernstein, et al., 1996; Vedral and Plenio, 1998�.
Vidal and Cirac �2001� found that for some bound en-
tangled state �i.e., with ED=0� EC	0. In Yang �2006� it
was shown that EC	0 for all entangled states. It seems
that we can have ED=EC only for states of the form

64The uniqueness of the entanglement measure for pure
states was put forward by Popescu and Rohrlich �1997�. The
postulates that lead to uniqueness were further worked out by
Vidal �2000�, Horodecki et al. �2000b�, Donald et al. �2002�.
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�
i

pi��i��i�AB � �i�i�A�B�, �150�

where �i�A�B� are product states distinguishable by Alice
and Bob �P. Horodecki et al., 1998� �or some generaliza-
tions in a similar spirit, that Alice and Bob can distin-
guish states, which satisfy ED=EC trivially�.

Apart from the above trivial case of locally orthogo-
nal mixtures the value of the measure ED is known only
for maximally correlated states �ijaij�ii�jj� for which
ED=SA−SAB. It is the upper bound, since it is equal to
ER �Rains, 1999�. That it can be achieved follows from
the general result of Devetak and Winter �2005� stating
that EDSA−SAB. An example is a mixture of two
maximally entangled two qubit states where

ED��� = 1 − S��� . �151�

For higher dimension powerful tools for evaluating
ED were provided by Rains �2001�. One knows several
upper bounds for ED �Bennett, DiVincenzo, et al., 1996;
Vedral and Plenio, 1998; Rains, 1999; Horodecki et al.,
2000a; Vidal and Werner, 2002�. The best known bound
is ER+N=inf��S�� ��� + ����Tr� provided by Rains �2001�.
For Werner states it is equal to regularization of ER,S
�this is true for the more general class of symmetric
states �Audenaert et al., 2002��.

G. Entanglement imposes different orderings

One can ask whether different entanglement mea-
sures impose the same ordering in the set of all states.
The question was first posed by Virmani and Plenio
�2000�. Namely, suppose that E���E���. Is it also the
case that E����E����? That it is not the case, we can
see just on pure states. There exist incomparable states,
i.e., such states �, �, that neither �→� nor �→� is
possible by LOCC. Since LOCC transitions are gov-
erned by entanglement measures �see Sec. XV.D� we see
that there are two measures which give opposite order-
ing on those states.

In the asymptotic regime there is a unique measure
for pure states. However, again it is easy to see �Virmani
and Plenio, 2000�, that a unique order would imply ED
=EC for all states, while we know that it is not the case.

One can interpret this lack of single ordering as fol-
lows: there are many different types of entanglement,
and in one state we have more entanglement of one
type, while in the other state there is more entanglement
of some other type �see Miranowicz �2004b� and Verstra-
ete, Porras, and Cirac �2004��.

H. Multipartite entanglement measures

Many axiomatic measures are immediately extended
to the multipartite case. For example, relative entropy of
entanglement is generalized by taking a suitable set in
place of bipartite separable states. One can take the set
of fully separable states �then the measure will not dis-
tinguish between “truly multipartite” entanglement and

several instances of bipartite entanglement such as �AB
+

��CD
+ �.65 To analyze truly multipartite entanglement,

one has to consider as done by Vedral, Plenio, Rippin, et
al. �1997� the set of all states containing no more than
k-particle entanglement �see Sec. VII�. Similarly one can
proceed with robustness of entanglement. It is not easy,
however to compute such measures even for pure states
�see, e.g., Plenio and Vedral, 2001�. Moreover, for mul-
tipartite states many more parameters to describe en-
tanglement are needed, therefore many new entangle-
ment measures have been designed, especially for pure
states. Then they can be extended to all states by convex
roof �which is, however, also hard to compute�.

1. Multipartite entanglement measures for pure states

There are measures that are simple functions of sums
of bipartite entanglement measures. An example is the
“global entanglement” of Meyer and Wallach �2001�
which is the sum of concurrences between a single qubit
and all other qubits. Their monotonicity under LOCC is
simply inherited from bipartite measures.

The first measure that is neither a sum of bipartite
measures nor an obvious generalization of such a mea-
sure is three-tangle �or residual tangle� introduced by
Coffman et al. �2000�. It is defined as follows:

��A:B:C� = ��A:BC� − ��AB� − ��AC� , �152�

where two-tangles on the right-hand side are squares of
concurrence �131�. The three-tangle is permutationally
invariant, even though the definition does not suggest it.
It may be zero for pure states that are three-entangled
�i.e., that are not a product with respect to any cut�. An
example is the so-called W state. The tangle vanishes on
any states that are separable under any cut, and is non-
zero, for example, on the GHZ state.66 There are at-
tempts to define a good generalization of tangle for mul-
tiqubit systems by means of a hyperdeterminant
�Miyake, 2003� �see below�. Lohmayer et al. �2006� com-
puted a convex roof of the three-tangle for a mixture of
a GHZ state and W-type states orthogonal to it.

Shortly after introducing the tangle, a concept of an-
other measure for tripartite states was introduced in the
context of the asymptotic rate of transitions �Linden,
Popescu, Schumacher, et al., 1999�:

E��� = ER��AB� + S��C� , �153�

where �AB ,�C are reductions of �ABC. The measure al-
lowed one to detect truly tripartite entanglement in the
GHZ state in the asymptotic regime �see Horodecki et
al., 2007�.

65Some inequalities between the so-chosen version of ER and
bipartite entanglement were provided by Plenio and Vedral
�2001�.

66In turns out that if tangles in Eq. �152� are replaced by
squares of negativities the obtained quantity �after symmetriz-
ing over system permutation� gives also rise to an entangle-
ment monotone �Ou and Fan, 2007�.
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One of the first measures designed specifically for
multipartite states was the Schmidt measure �Eisert and
Briegel, 2001�. This is the minimum of log r where r is
the number of terms in an expansion of the state in the
product basis. For GHZ this measure is 1, because there
are just two terms: �000� and �111�. One can show that for
the W state it is impossible to write it by means of less
than three terms �otherwise it would belong either to the
GHZ class or to the EPR class�. The measure is zero if
and only if the state is a full product. Therefore it cannot
distinguish true multipartite entanglement from bipar-
tite entanglement. However, it may be useful in many
contexts; see, e.g., Mora and Briegel �2005�.

An interesting general class of multipartite entangle-
ment measures was obtained in the context of classifica-
tion of states via the so-called normal forms �Verstraete
et al., 2003�. Namely, consider any homogeneous func-
tion of the state. Now if it is invariant under determinant
one SLOCC, i.e., it satisfies

f�A1 � ¯ � An�� = f��� �154�

for Ai square matrices satisfying det Ai=1, then it is an
entanglement monotone in a strong sense, Eq. �120�, but
under the restriction that the LOCC operation produces
output states on the Hilbert space of the same dimen-
sion. The three-tangle is an example of such a measure.
Many measures designed for pure multipartite states
like those obtained by Wong and Christensen �2001�,
Miyake �2003�, Akhtarshenas �2005�, and Osterloh and
Siewert �2005�, are originally defined only for a fixed
dimension, hence it is simply not possible to check the
standard monotonicity �118�. However, concurrence,
though initially defined for qubits, can be written in
terms of linear entropy of subsystems, being thus well
defined for all systems. Therefore there is hope that one
can arrive at a definition independent of dimension for
other measures. Then to obtain full monotonicity, one
will need to also prove that the measure does not
change, if the state is embedded into larger Hilbert
spaces of subsystems �equivalently, that the measure
does not change under adding local ancilla�. However,
for four-qubit concurrence of Wong and Christensen
�2001� �*��y

4��� its natural generalization was shown to
be not monotonous �Demkowicz-Dobrzański et al.,
2006� �see below�. Of course, even the functions that are
only monotonous for fixed dimension are useful quanti-
ties in many contexts.

Measures based on hyperdeterminant. Miyake noticed
that measures of entanglement such as concurrence and
tangle are special cases of a hyperdeterminant �Miyake,
2003�. Consider, for example, qubits. For two qubits con-
currence is simply modulus of a determinant, which is a
hyperdeterminant of first order. The tangle is hyperde-
terminant of second order—a function of tensor with
three indices. Though computing hyperdeterminants of
higher order than the tangle is rather complex, based on
properties of the hyperdeterminant Miyake proved that
hyperdeterminants of a higher degree are also entangle-
ment monotones �Miyake, 2004�. They describe truly
multipartite entanglement �in a sense, that states such as

a product of EPR’s have zero entanglement�. The proof
of monotonicity is based on a geometric-arithmetic
mean, and is closely related to the construction of en-
tanglement measures based on homogeneous functions
described above. An explicit formula for a hyperdeter-
minant for four qubits has been given by Levay �2006�.

Geometric measure. A family of measures have been
defined by Barnum and Linden �2001�. In particular, the
so-called geometric measure is defined as

Eg
�k���� = 1 − �k��� , �155�

where �k��� =sup��Sk
�� ����2, with Sk a set of

k-separable states. This is a generalization of a Shimony
measure �Shimony, 1995�, which for bipartite states was
related to Renyi entropy with �=�. For relations with
robustness of entanglement, see Cavalcanti �2006�. The
measure was also investigated by Wei and Goldbart
�2003� and Wei et al. �2004� where it was in particular
computed for Smolin four-qubit bound entangled states
�72�.

Concurrence-type measures. There were other at-
tempts to generalize concurrence. Wong and Chris-
tensen �2001� obtained a measure for an even number of
qubits by exploiting conjugation that appeared in the
original definition of concurrence for two qubits. Their
concurrence works for an even number of qubits and is
given by �*��y

n���. The measure is nonzero for four-
partite states containing two pairs of EPR states. This
approach was generalized by Osterloh and Siewert
�2005, 2006� who analyzed systematically possible quan-
tities built out of antilinear operations, also of higher
order in � than concurrence. For example, they obtained
the following representation for a three-tangle:

� = ���� � �y � �y��*����� � �y � �y��*� , �156�

where �=0,1 ,2 ,3 and the contraction is described by
the tensor g�,�=diag�−1,1 ,0 ,1�. They have also de-
signed measures that distinguish between three different
SLOCC classes of states �see Sec. XIII.A.2�:

��1� = 1
�2

��0000� + �1111�� ,

��2� = 1
�6

��2�1111� + �1000� + �0100� + �0010� + �0001�� ,

��3� = 1
2 ��1111� + �1100� + �0010� + �0001�� . �157�

An interesting proposal is by Akhtarshenas �2005�,
which, however, is not proved to be a monotone. Mint-
ert, Kus, et al. �2005� and Demkowicz-Dobrzański et al.
�2006� introduced a family of functions of the form

CA����� = 2��� � ��A��� � ��� , �158�

where A= �s1¯sn
ps1¯sn

Ps1
� ¯ � Psn

, with si= ±1, P�±1�

is a projector onto symmetric �antisymmetric� subspace
�see Sec. VI.B.3�, and the coefficients ps1¯sn

are
non-negative. They have given sufficient conditions that
must be satisfied by the coefficients to ensure monoto-
nicity of C �now without the restriction of fixed di-
mension�. On the other hand, they have shown that if
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A=P�−� � P�−� � P�−� � P�−� then the function returns con-
currence �*��y

4���, and it is not monotonic. The main
tool was the following condition for monotonicity
derived on the basis of the conditions of Horodecki
�2005�; namely, a function C that is real, non-negative,
and invariant under local unitaries, satisfies C�a����
= �a�2C�����, and is defined for mixed states as
a convex roof is an entanglement monotone if and only
if C�a��� � � 1� +b��� � � 2��� �a�2C���� � � 1�� + �b�2C����
� � 2�� with equality for a=0 or b=0, where � and � are
arbitrary multipartite pure states, and  1,  2 are local
orthogonal flags.

I. How much can entanglement increase under communication
of one qubit?

Lo and Popescu �1999� postulated that when n qubits
are sent entanglement should not increase by more than
n. Chen and Yang �2000� showed this for entanglement
of formation. Due to teleportation, the sending of qubits
is equivalent to bringing in a singlet. The question can
then be recast as follows: Which entanglement measures
satisfy

E�� � ��+��+�� � E��� + 1? �159�

�Of course it is meaningful to ask such questions only for
those entanglement measures that exhibit a sort of ex-
tensive behavior.� If a measure is subadditive, i.e., E��
����E��� +E���, then the condition is satisfied. This is
the case for such measures as ER, EF, EC, EN, Esq. More
problematic are ED and KD. As far as ED is concerned,
it is easy to see that Eq. �159� is satisfied for distillable
states. Simply, if by adding a singlet, we can increase ED,
then we could design a protocol that would produce
more singlets than ED, using singlets obtained from dis-
tilling a first bunch of copies to distillation of the next
bunch.67 A more rigorous argument includes continuity
of ED on isotropic states �singlets with admixture of ran-
dom noise�. It is also not hard to see that for PPT states
the condition holds too, by exploiting relation ED�EN.
It was later shown68 for all states, by exploiting results of
DiVincenzo et al. �2003�. The question is still open for
KD.

XVI. MONOGAMY OF ENTANGLEMENT

One of the most fundamental properties of entangle-
ment is monogamy �Coffman et al., 2000; Terhal, 2001�.
In its extremal form it can be expressed as follows: If
two qubits A and B are maximally quantumly corre-
lated, they cannot be correlated, at all with third qubit C
�Bennett et al., 1996�. In general, there is trade-off be-
tween the amount of entanglement between qubits A
and B and the same qubit A and qubit C. This property
is purely quantum: in the classical world if A and B bits

are perfectly correlated, then there are no constraints on
correlations between bits A and C. For three qubits the
trade-off is described by the Coffman-Kundu-Wootters
monogamy inequality,

CA:B
2 + CA:C

2 � CA:BC
2 , �160�

where CA:B is the concurrence between A and B, CA:C is
between A and C, while CA:BC is between system A and
BC. There was a conjecture that the above inequality
can be extended to n qubits. The conjecture has been
proved true only recently �Osborne and Verstraete,
2006�. Analog of this is also satisfied for Gaussian states
�Adesso and Illuminati, 2006; Hiroshima et al., 2007�; see
Sec. XVII.E. However, it does not hold anymore in
higher dimension �Ou, 2006�.

More generally, in terms of entanglement measures
monogamy takes the following form: For any tripartite
state of systems A, B, C,

E�A:B� + E�A:C� � E�A:BC� . �161�

Note that if the above inequality holds in general �i.e.,
not only for qubits�, then it already itself implies �by
induction� the inequality

E�A:B1� + E�A:B2� + ¯ + E�A:BN�

� E�A:B1 ¯ BN� . �162�

Koashi and Winter �2004� showed that squashed en-
tanglement satisfies this general monogamy,

Esq�A:B� + Esq�A:C� � Esq�A:BC� . �163�

This is the only known entanglement measure having
this property for all states. EF and EC are not monoga-
mous �Coffman et al., 2000; Koashi and Winter, 2004�.

A beautiful monogamy was found for Bell inequali-
ties. Namely, based on the earlier results concerning a
link between the security of quantum communication
protocols and violation of Bell’s inequalities �Scarani
and Gisin, 2001a� and theory of nonlocal games �Cleve
et al., 2004�, Toner proved that the CHSH inequality is
monogamous �Toner, 2006�.

There is a qualitative aspect of monogamy, recognized
quite early �Werner, 1989a; Doherty et al., 2005�; namely,
a state �AB is separable if and only if for any N there
exists its N+1 partite symmetric extension, i.e., state
�AB1¯BN

, such that �ABi
=�AB. D. Yang �2006� recently

provided an elegant proof of this result and gave an ex-
plicit bound on the number N.

XVII. ENTANGLEMENT IN CONTINUOUS VARIABLE
SYSTEMS

A. Pure states

Many properties of entanglement �separability�
change when passing to continuous variables since the
infinite-dimensional Hilbert space is not compact. The
term continuous variables comes from the fact that any
infinite-dimensional Hilbert space with countable basis
is isomorphic to any of the two spaces: �i� l2�C� which is

67See Gottesman, 2005.
68See Harrow, Leung, and Shor, 2007.
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space of sequences �= 	ci
 with �i=1
� �ci�2
� and scalar

product � ��� = �i=1
� a

i
*bi; and �ii� space L2�R� of all func-

tions � :R→C with �R���x��2�x�dx
� and scalar prod-
uct defined as �R��x�*��x�dx. The variable x is a con-
tinuous variable �CV� here.

An example of entangled state from such a space is a
two-mode squeezed state which has its l2 � l2-like repre-
sentation �in the so-called Fock basis considered to be a
standard one�:

���� = �1 − �2�
n=0

�

�n�n��n� , �164�

where the index goes from zero for physical reasons �n
represents the photon number�. Here coefficients an
ª �1−�2��n are just Schmidt coefficients.

Alternatively the state has its L2 � L2 representation:

���q1,q2� = � 2

�
exp�− e−2r�q1 + q2�2/2

− e2r�q1 − q2�2/2� , �165�

related to the previous representation by

� = tanh�r� . �166�

In the case of infinite squeezing r→� the ��q1 ,q2� be-
comes more similar to the delta function ��q1−q2� while
its Fourier transform representation �changing “posi-
tions” qi into “momenta” pi� becomes almost ��p1+p2�.
This limiting case was originally discussed in the famous
EPR paper �Einstein et al., 1935�, and perfect correla-
tions in positions as well as momenta resemble perfect
correlations of local measurements �x and �z on the
sides of the two-qubit state �+= 1

�2 ��0��0� + �1��1�� �Bohm,
1951�.

The characterization of bipartite CV pure states sepa-
rability is the same as in the discrete case, namely,

separability ⇔ PPT ⇔ reduced state pure

⇔Schmidt rank 1. �167�

The entropy of entanglement of pure states remains a
good measure of entanglement, exhibiting, however,
some oddities. In the case of the state �164� it is given by
�Barnett and Phoenix, 1989; Giedke et al., 2003; Wolf et
al., 2004�

EF���� = cosh2�r�log2�cosh2�r��

− sinh2�r�log2�sinh2�r�� . �168�

However, in the bipartite case with both subsystems of
CV type typically the entropy of entanglement is infinite.
This is a consequence of the fact that generically quan-
tum states on CV spaces have the entropy infinite
�Wehrl, 1978� �or alternatively the set of density matrices
with finite entropy is nowhere dense, i.e., contains no
ball�.

As an example of such a state take �AB

= �n
�pn�n�A�n�B, with pn proportional �up to the normal-

ization factor� to 1/ �n+2�log2�n+2�4. Then the entropy
of entanglement is infinite, since the series �npn log2 pn
is not convergent.

As one can expect the very important fact connected
to it is that there is no maximally entangled state in such
spaces. Simply, the state with all Schmidt coefficients
equal does not mathematically exist �it would have an
infinite norm�.

A natural question arises here: What about the use-
fulness of infinite entanglement which is so common a
phenomenon in CV? For example, is it possible to distill
an infinite amount of two-qubit entanglement from a
single copy of bipartite CV quantum states with infinite
entanglement? The answer to this is negative and can be
proven formally �Keyl et al., 2002�.

B. Mixed states

The definition of mixed separable states has to be
changed slightly if compared to discrete variables: the
state is separable if it is a limit �in trace norm� of a finite
convex combination of, in general mixed and not pure
product states:69

 �AB
sep − �

i
pi

�n��A
�n�,i

� �B
�n�,i 

1

→ 0. �169�

The characterization of entanglement in terms of posi-
tive maps and entanglement witnesses is again true since
the corresponding proofs are valid for general Banach
spaces �see M. Horodecki et al., 1996�.

There is a small difference here: Since there is no
maximally entangled state, one has to use the original
version of the Jamiołkowski isomorphism between posi-
tive maps and entanglement witnesses:

WAB
� = �I � ���VAA�� , �170�

with dAdB �remember that it may happen that only
one of the subspaces is infinite� where VAA� is a swap
operator on HAA�=HA � HA� �HA� a copy of HA� and
the map acting from system A� to B. This is because
there is no maximally entangled state in infinite dimen-
sional space.

The PPT criterion is well defined and serves as a sepa-
rability criterion as it was in finite dimension. It has a
very nice representation in terms of moments �Shchukin
and Vogel, 2005a�.

There exist nontrivial PPT states �Horodecki and Le-
wenstein, 2000� that cannot be constructed as a naive,
direct sum of finite dimensional structures. It seems that
such states are generic, though the definition of a ge-
neric CV state in the case of mixed state is not so natural
similarly to the case of a pure state where the infinite
Schmidt rank �or the rank of the reduced density matrix�
is a natural signature defining the CV property �for dis-
cussion on the generic property see Horodecki, Cirac, et
al. �2003��.

69This is actually the original definition of separable states
�Werner, 1989b�.
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The first important observation concerning CV sepa-
rability is �Clifton and Halvorson, 1999� that in the bi-
partite case the set of separable states is nowhere dense
or, equivalently, any state on this space is a limit �in trace
norm� of the sequence of the entangled state. Thus the
set of separable states contains no ball of finite radius
and in that sense is “of zero volume” unlike it was in
finite dimensions �Życzkowski et al., 1998�. This result
can be extended �Horodecki, Cirac, et al., 2003� to the
set of all nondistillable states �in a sense of definition
inherited from discrete variables, i.e., equivalent to the
impossibility of producing two-qubit singlets� and is also
nowhere dense in the set of all states. Thus CV bound
entanglement like CV separability is a rare phenom-
enon.

We now turn to quantitative issues involving entangle-
ment measures. If one tries to extend the definition of
entanglement of the formation to mixed states �Eisert,
Simon, et al., 2002� then the set of states with finite EF
has the same property as the set of separable states—it
is again nowhere dense.70 Also, EF is not continuous �as
already seen in the case of pure states�.

The question was how to avoid, at least partially, the
above problems with entanglement that occur when
both dimensions are infinite? Eisert, Simon, et al. �2002�
proposed then to consider the subset SM�H� �S �of the
set S of all bipartite states, defined as SM�H�
ª 	� :Tr��H�
M
 for some fixed constant M and
Hamiltonian H� �some chosen Hermitian operator with
spectrum bounded from below�. The set is nowhere
dense but it is defined by a natural physical requirement
of bounded mean energy in a physical system. Remark-
ably for fixed M and all states from SM, the entangle-
ment of formation EF and the relative entropy of en-
tanglement ER are continuous in trace norm on pure
states. Moreover, those measures are asymptotically
continuous on pure states of the form ��n with finite-
dimensional support of �.

C. Gaussian entanglement

There is a class of CV states that are well character-
ized with respect to separability. This is the class of
Gaussian states. Formally a Gaussian state of m modes
�oscillators� is a mixed state on Hilbert space L2�R��m

�of functions of position variables �q1 , . . . ,qm�� which is
completely characterized by the vector of its first mo-
ments di=Tr��Ri� �called displacement vector� and sec-
ond moments covariance matrix !ij=Tr��	Ri−diI� , �Rj
−djI
+�, where we use anticommutator 	 , 
+ and the ob-
servables Ri are canonical position Qk=R2k−1 and mo-
mentum Pk=R2k operators of the kth oscillator which
satisfy the usual Heisenberg commutation relations

i�Rk ,Rk�� =Jkk� where J= � i=1
m Ji, with one mode symplec-

tic matrices

Ji = �0 − 1

1 0
� .

A given matrix S is called symplectic if it satisfies SJST

=J. Such matrices represent all canonical transforma-
tions S :"→"�=S" where "= �q1 ,p1 ;q2 ,p2 ; . . . ;qm ,pm�T is
a vector of canonical variables. The corresponding ac-
tion on the Hilbert space is unitary. There is also a
broader set of unitary operations called quasifree or lin-
ear Bogoliubov transformations "→S"+d where S is
symplectic and d is the displacement vector.

The canonical operators Qi ,Pi are Hermitian and
anti-Hermitian parts of the creation ak

† and annihilation
ak operators that provide a natural link to �l2��m repre-
sentation since they define a special L2�R� Fock basis
	�n�
 of each mode �ak

† = �n=0
� �n+1�n+1�kkn� and ak

= �ak
†�†� via number operator N=ak

†ak= �n=0
� n � n�n� which

is diagonal in that basis.
Since the displacement d can be easily removed by

quasifree local �i.e., on each mode separately� unitary
operations �Duan et al., 2000�, only the properties of
variance matrix are relevant for entanglement tests. Be-
fore recalling them we provide conditions for ! to be
physical. We recall that via Williamson theorem ! can be
diagonalized with some symplectic matrix !diag=S!!S!

T

=diag�#1 ,#1 ; . . . ;#m ,#m�, with #i real. The physical char-
acter of the covariance matrix ! is guaranteed by the
condition

! – iJ  0⇔ �171�

!  JT!–1J⇔ �172�

!  STS for some symplectic S⇔ �173�

#i  1, i = 1, . . . ,m . �174�

There is the following fact �Simon, 2000�: a Gaussian
state is pure if and only if its variance matrix is of the
form

! = STS , �175�

for some symplectic matrix S. Generally, m modes can
be divided into k groups containing m1 , . . . ,mk modes
�m= �imi�, belonging to different local observers
A1 , . . . ,Ak. We say that the state is a k-partite Gaussian
state of m1�m2�¯�mk type. For instance, the bipar-
tite state is of m1�m2 type if the first m1 modes are on
Alice’s side, and the rest m2 on Bob’s side. All reduced
states of the systems Ai are Gaussian. With each site we
associate the symplectic matrix JAk

as before. There is a
general necessary and sufficient separability condition
that can resemble to some extent the range criterion �see
Werner and Wolf, 2001c�:

��Gaussian separable�⇔ �176�

70This problem does not occur when one of the local Hilbert
spaces HA, HB is finite, i.e., min�dA ,dB�
� then entanglement
of formation is well defined and restricted by the logarithm of
the finite space dimension �Majewski, 2002�.
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!AB���  !A � !B �177�

for some variance matrices !A ,!B �which, as shown �Si-
mon, 2003�, can be chosen to be pure, i.e., of the form
�175��. Quite remarkably, the above criterion can be gen-
eralized to an arbitrary number of parties �see Eisert
and Gross, 2007�. In general, if the state is not Gaussian
the criterion becomes only a necessary condition of
separability. The criterion is rather hard to use �see,
however, Werner and Wolf �2001c� and the discussion
below�.

There is a very important separability characteriza-
tion: the PPT criterion has been shown to be both nec-
essary and sufficient for 1�1 �Duan et al., 2000; Simon,
2000� and subsequently generalized to 1�n Gaussians
�Werner and Wolf, 2001c�. Further the same result has
been proven for m�n “bisymmetric” �Serafini et al.,
2005; Serafini, 2006� �i.e., symmetric under permutations
of Alice and Bob modes, respectively� Gaussian states.
The equivalence of the PPT condition to separability is
not true, in general, if both Alice and Bob have more
than one mode.

Operational necessary and sufficient condition.
Giedke, Kraus, et al. �2001� presented an operational
necessary and sufficient condition for the separability for
all bipartite Gaussian states. It is so far the only opera-
tional criterion of separability that detects all PPT en-
tangled states within such a broad class of states. En-
tanglement is detected via a finite algorithm that
transforms the initial covariance matrix into a sequence
of matrices which after a finite number of steps either �i�
becomes not physical �does not represent a covariance
matrix� and then the algorithm detects entanglement �ii�
or its special affine transformation becomes physical and
then the initial state is recognized to be separable.

D. General separability criteria for continuous variables

First, it must be stressed that any Gaussian separabil-
ity criterion that refers only to well defined variances,
and does not use the fact that the variance matrix com-
pletely describes the state, is also a separability criterion
for general CV states. It follows from the fact that from
a large number of copies of a given state, one can obtain
by LOCC a state arbitrarily close in trace norm to a
Gaussian state with the same covariance matrix �Wolf,
Giedke, and Cirac, 2006�.

One of the natural separability criteria is local projec-
tion or, in general, LOCC transformation of a CV state
onto the product of finite dimensional Hilbert spaces
and then application of one of the separability criteria
for discrete variables. This method was used by Horo-
decki and Lewenstein �2000� where finally discrete vari-
ables range criterion was applied.

Separability criteria that do not refer to discrete quan-
tum states usually are based on some uncertainty type
relations. As an example of such a relation, consider the
position and momenta operators QA1

, QA2
, PA1

, PA2
for

a bipartite system A1A2, which satisfy the commutation
relations �QAi

,PAj
� = i�ij and define U= �a�QA1

+ �1/a�QA2
, V= �a�PA1

+ �1/a�PA2
for arbitrary nonzero

real number a. Then any separable bipartite CV state �
satisfies �Duan et al., 2000�

��U�2�� + ��V�2�� 
1
2 �a2 + 1/a2� . �178�

The practical implementation of the PPT criterion in
terms of all moments that goes beyond variance proper-
ties of CV states is the Shchukin-Vogel criterion
�Shchukin and Vogel, 2005a; Miranowicz and Piani,
2006�. It turned out that their criterion covers many
known separability criteria. The idea is that with any
state of two modes one can associate the following ma-
trix of moments:

Mij = Tr�â†qâpâ†nâm
� b̂†lb̂kb̂†rb̂s�AB� , �179�

where i= �pqrs� and j= �nmkl�. The operators a ,b act on
systems A ,B, respectively. It turns out that the above
matrix is positive if and only if the state is PPT.71 Posi-
tivity of the matrix can be expressed in terms of non-
negativity of subdeterminants. It then turns out that
many known separability criteria are obtained by impos-
ing non-negativity of a suitably chosen subdeterminant.

E. Distillability and entanglement measures of Gaussian
states

The question of distillability of Gaussian states has
attracted much attention. In analogy to the two-qubit
distillability of quantum states in finite dimensions, it
was first shown that all two-mode entangled Gaussian
states are distillable �Giedke et al., 2000�. Subsequently
it was shown that all NPT entangled Gaussian states are
distillable �Giedke, Duan, et al., 2001�. In other words,
there is no NPT bound entanglement in Gaussian con-
tinuous variables: any NPT Gaussian state can be trans-
formed by LOCC into a NPT two-mode one, and then
distilled as described by Giedke et al. �2000�. However,
the protocol which achieves this task involves operations
which are not easy to implement nowadays. The opera-
tions feasible for present linear-optic based technology
are the so-called Gaussian operations. The natural ques-
tion was raised then whether entangled Gaussian states
are distillable by means of this restricted class of opera-
tions. Unfortunately, it is not the case: one cannot obtain
pure entanglement from Gaussian states using only
Gaussian operations �Giedke and Cirac, 2002� �see Eis-
ert, Scheel, et al. �2002� and Fiurásek �2002a��. Although
these operations are restrictive enough to effectively
“bind” entanglement, they are still useful for processing
entanglement: by means of them, one can distill a key
from entangled NPT Gaussian states �Navascues et al.,
2005�. Interestingly, no PPT Gaussian state from which a
key can be distilled is known so far �Navascués and
Acin, 2005�.

Apart from the question of distillability and key dis-
tillability of Gaussian states, entanglement measures

71See Verch and Werner �2005�.

920 Horodecki et al.: Quantum entanglement

Rev. Mod. Phys., Vol. 81, No. 2, April–June 2009



such as entanglement of formation and negativity have
been studied. It also led to new measures of entangle-
ment called Gaussian entanglement measures.

Giedke et al. �2003� calculated entanglement of forma-
tion for symmetric Gaussian states. Interestingly, the op-
timal ensemble realizing EF consists solely from Gauss-
ian states. The same was proven for all two-mode
Gaussian states allowing one to compute their EF ex-
actly �Marian and Marian, 2008�. It is not known to hold
in general. One can, however, consider the so-called
Gaussian entanglement of formation EG where infimum
is taken over decompositions into Gaussian states only.
Gaussian entanglement of formation was introduced
and studied by Giedke et al. �2003�. It is shown there
that EG is monotonous under Gaussian LOCC opera-
tions. For two-mode Gaussian states its value can be
found analytically. If additionally the state is symmetric
with respect to sites, this measure is additive and equal
to EF on a single copy.

The idea of Gaussian entanglement of formation has
been extended to other convex-roof based entanglement
measures by Adesso and Illuminati �2005�. The log nega-
tivity of Gaussian states defined already by Vidal and
Werner �2002� has also been studied by Adesso and Il-
luminati �2005�. In this case the analytic formula has
been found, in terms of symplectic spectrum #i of the
partially transposed covariance matrix:

EN = − �
i=1

n

log2�min�1,#i�� . �180�

The continuous variable analog of tangle �squared
concurrence; see Sec. XV�, called contangle was intro-
duced by Adesso and Illuminati �2006� as the Gaussian
convex roof of the squared negativity. It is shown that
for three-mode Gaussian states, contangle exhibits
Coffman-Kundu-Wootters monogamy. Recently the
general monogamy inequality for all N-mode Gaussian
states was established �Hiroshima et al., 2007� �in full
analogy with the qubit case �Osborne and Verstraete,
2006��. For three modes, the three-contangle, the analog
of the Coffman-Kundu-Wooters three-tangle, is a mono-
tone under Gaussian operations.

Surprisingly, there is a symmetric Gaussian state
which is a counterpart of both the GHZ and the W state
�Adesso and Illuminati, 2006�. Namely, in finite dimen-
sion, when maximizing entanglement of subsystems, one
obtains the W state, while maximization of tangle leads
to the GHZ state. For Gaussian states, such optimiza-
tions �performed for a fixed value of mixedness or of
squeezing of subsystems� leads to a single family of pure
states called the GHZ/W class. Thus to maximize tripar-
tite entanglement one has to also maximize the bipartite
one.

An exemplary practical use of Gaussian states apart
from the quantum key distribution �see, e.g., Gottesman
and Preskill, 2001; Navascués et al., 2005� is the applica-
tion for continuous quantum Byzantine agreement pro-
tocol �Neigovzen and Sanpera, 2005�. There are many
other theoretical and experimental issues concerning

Gaussian states and their entanglement properties that
we do not discuss. For a recent review on this topic, see
Ferraro et al. �2005� and Adesso and Illuminati �2007�.

XVIII. MISCELLANEOUS FACTS ABOUT
ENTANGLEMENT

A. Entanglement under information loss: Locking
entanglement

Manipulation of a quantum state with local operations
and classical communication in a nonunitary way usually
decreases its entanglement content. Given a quantum
bipartite system of 2� log2 d qubits in state � one can
ask how much entanglement can decrease if one traces
out a single qubit. Surprisingly, many entanglement mea-
sures can decrease by an arbitrary large amount, i.e.,
from O�log2 d� to zero. Generally, if some quantity of �
can decrease by an arbitrarily large amount �as a func-
tion of the number of qubits� after LOCC operation on
few qubits, then it is called lockable. This is because a
large amount of quantity can be controlled by a person
who possesses only a small dimensional system which
plays a role of a “key” to this quantity.

The following related question was asked earlier by
Eisert, Felbinger, et al. �2000�: How does entanglement
behave under classical information loss? It was quanti-
fied by means of entropies and for convex entanglement
measures takes the form

�E ��S , �181�

where �E= �ipiE��i� −E��ipi�i� and �S=S��� − �ipiS��i�.
The inequality holds for relative entropy of entangle-
ment �Linden, Popescu, Schumacher, et al., 1999� �see
also Synak-Radtke and Horodecki, 2006�. It turns out,
however, that for other measures this inequality can be
drastically violated, due to the above locking effect.72

The phenomenon of drastic change after tracing out
one qubit was recognized by DiVincenzo et al. �2004� for
classical correlations of quantum states �maximal mutual
information of outcomes of local measurements� �see
Koenig et al. �2005�, Buhrman et al. �2006�, Smolin and
Oppenheim �2006�, Ballester and Wehner �2007��. An-
other effect of this sort was found in a classical key
agreement �Renner and Wolf, 2003� �a theory bearing
some analogy to entanglement theory; see Sec. XIX.F�.

Various entanglement measures have been shown to
be lockable. In paricular, entanglement cost, log negativ-
ity, squashed entanglement and measures based on con-
vex roof methods �see Sec. XV.C.2� are shown to be
lockable �Christandl and Winter, 2005; Horodecki et al.,
2005c�. Possible consequences of locking for multipartite
entanglement measures have been given by Groisman et
al. �2005�.

72Using the fact that a loss of one qubit can be simulated by
applying one of four random Pauli matrices to the qubit one
arrives at the connection between locking and violation of the
inequality �181�.

921Horodecki et al.: Quantum entanglement

Rev. Mod. Phys., Vol. 81, No. 2, April–June 2009



It is an open question whether distillable entangle-
ment can be locked, although it is known that its one-
way version is lockable, which follows from monogamy
of entanglement. In the case of a distillable key, one can
consider two versions of locking: the one after tracing
out a qubit from Eve �E locking�, and the one after the
qubit of Alice’s and Bob’s system is traced out �AB lock-
ing�. It has been shown that the distillable key both in
classical �see Sec. XIX.F� and quantum setting is not E
lockable �Renner and Wolf, 2003; Christandl et al.,
2007�. It is, however, not known if a distillable key can
be AB lockable, i.e., if erasing a qubit from Alice’s and
Bob’s systems may diminish by far their ability to obtain
secure correlations.

B. Entanglement and distinguishing states by LOCC

Early fundamental results in distinguishing states by
LOCC are the following: there exist sets of orthogonal
product states that are not perfectly distinguishable by
LOCC �Bennett, DiVincenzo, Fuchs, et al., 1999; see
also Walgate and Hardy, 2002� and every two orthogonal
states �even multipartite� are distinguishable by LOCC
�Walgate et al., 2000�. In a qualitative way, entanglement
was used in the problem of distinguishability by Terhal
et al. �2001�. To show that a given set of states cannot be
distinguished by LOCC, they considered all measure-
ments capable to distinguish them, and applied the mea-
surements to the AB part of the system in state �AA�
��BB� where the components are maximally entangled
states. If the state after measurement is entangled across
the AA� :BB� cut, then one concludes that the measure-
ment cannot be done by use of LOCC because the state
was initially produced across this cut.

An interesting twist was given by Ghosh et al. �2001�
where distillable entanglement was used. We show
how they argued that four Bell states �i �3� cannot be
distinguished. Consider the four-partite state �ABA�B�
= 1

4 �i��i��i�AB � ��i��i�A�B�. Suppose that it is possible to
distinguish Bell states by LOCC. Then Alice and Bob
will distinguish Bell states of system AB �perhaps de-
stroying them�. Then they will know which of the Bell
states they share on system A�B�, obtaining then one
e-bit of pure entanglement �hence ED1�. However,
one can check that the initial state �ABA�B� is separable
in the cut AA� :BB� �Smolin, 2001�, so that ED=0 and
we get a contradiction. This shows that entanglement
measures can be used to prove the impossibility of dis-
tinguishing some states. For further development, in-
cluding the “entanglement correction” to the Holevo
bound �Badziag et al., 2003�, see Horodecki et al. �2007�
and Xin and Duan �2007�.

XIX. ENTANGLEMENT AND SECURE CORRELATIONS

A fundamental difference between the classical and
quantum formalisms is that the quantum formalism al-
lows for states of composite systems to be both pure and

correlated. While in the classical world those two fea-
tures never meet in one state, entangled states can ex-
hibit both of them at the same time.

For this reason, entanglement in an astonishing way
incorporates the basic ingredients of the theory of se-
cure communication. Indeed, to achieve the latter, the
interested persons �Alice and Bob� need a private key: a
string of bits which is �i� perfectly correlated �correla-
tions� and �ii� unknown to any other person �security or
privacy� �then they can use it to perform a private con-
versation by use of the so-called Vernam cipher �Ver-
nam, 1926��. Now, it is purity which enforces the second
condition, because an eavesdropper who wants to gain
knowledge about a quantum system will unavoidably
disturb it, randomizing phase via quantum backreaction.
In modern terminology we would say that if Eve applies
a CNOT gate, to gain knowledge about a bit, at the same
time she introduces a phase error into the system, which
destroys purity; see Zurek �1981�.

We note that all we have said can be phrased in terms
of monogamy of entanglement in its strong version: If
two quantum systems are maximally quantumly corre-
lated, then they are not correlated with any other system
at all �neither quantumly nor classically� �see Koashi and
Winter �2004��. In this section we explore the mutual
interaction between entanglement theory and the con-
cept of private correlations.

A. Quantum key distribution schemes and security proofs
based on distillation of pure entanglement

Interestingly, the first protocol to obtain a private
key,73 the famous BB84 protocol �Bennett and Brassard,
1984�, did not use the concept of entanglement at all.
Neither do the other protocols �B92� proposed by Ben-
nett in 1992 �Bennett, 1992� and many variations of
BB84 like the six-state protocol �Bruß, 1998� use en-
tanglement. Indeed, these QKD protocols are based on
sending randomly chosen nonorthogonal quantum
states. Alice prepares a random signal state, measures it,
and sends it to Bob who also measures it immediately
after reception. Such protocols are called a prepare and
measure protocol �P&M�.

The first entanglement based protocol was discovered
by Ekert �see Sec. III�. Interestingly, even Ekert’s proto-
col, though using explicitly entanglement, was still not
based solely on the “purity and correlations” concept
outlined above. He did exploit correlations, but along
with the purity argument used violation of Bell inequali-
ties. It seems that it was Bennett, Brassard, and Mermin
�BBM� �Bennett et al., 1992� who tilted the later history
of entanglement-based QKD from the “Bell inequali-
ties” direction to “disturbance of entanglement”: upon
attack of Eve, the initially pure entangled state becomes
mixed, and this can be detected by Alice and Bob.

73We call such protocol quantum key distribution �QKD�.
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Namely, they have proposed the following protocol,
which is also entanglement based, but is not based on
Bell inequality. Simply Alice and Bob, when given some
�untrusted� EPR pairs, check their quality by measuring
correlations in the 	�0�, �1�
 basis, and the conjugated ba-
sis � ± � = 1

�2 ��0� ± �1��. So the simplified Ekert’s protocol is
formally equivalent to the BB84 protocol. Namely, the
total final state between Alice, Bob, and Eve is the same
in both cases.74 Thus entanglement looks here quite su-
perfluous, and, moreover, Bell inequalities appeared
rather accidentally: just as indicators of a possible distur-
bance by Eve, hence in simplified protocol, they are not
needed.

Paradoxically, it turned out recently that the Bell in-
equalities are themselves a good resource for key distri-
bution, and allow us to prove the security of a private
key without assuming quantum formalism but based
solely on the no-signaling assumption �Barrett et al.,
2005; Acín et al., 2006; Masanes and Winter, 2006�.
There is still an analogy with entanglement: nonlocal
correlations are monogamous �Barrett et al., 2006�.

Concerning entanglement, Ekert noticed that the
equivalence of the entanglement-based protocol and
BB84 is not complete:75 the former has an advantage
that Alice and Bob can postpone measuring EPR pairs
until they need the key, so that a burglar breaking into
their labs trying to get some information would disturb
the pairs risking detection, while in BB84, there is no
possibility of storing the key in quantum form. Thus en-
tanglement provides a potential key, in a similar way, as
it provides potential communication in dense coding
�see Sec. III�. However, this is not the only advantage of
entanglement: in fact, its role turned out to be indispens-
able in further development of the theory of secure cor-
relations. Actually, the interaction is bilateral: also the
development of entanglement theory was influenced in
an essential way by the ideas of secure correlations, to
mention only that first protocols of entanglement distil-
lation �fundamental for the whole quantum communica-
tion theory� have been designed using methods of gen-
eration of a secure key �Bennett, Brassard, et al., 1996;
Bennett, DiVincenzo, et al., 1996�.

Another theoretical advantage of the entanglement-
based QKD protocol is that with quantum memory at
disposal, one can apply a dense coding scheme and ob-
tain a protocol which has a higher capacity than usual
QKD as it was applied by Long and Liu �2002�; see also
Cabello �2000�. Moreover, entanglement may help to
carry out quantum cryptography over long distances by
use of quantum repeaters which exploit entanglement
swapping and quantum memory �Dür, Briegel, et al.,
1999�. We should note that all the above potential ad-
vantages of entanglement would need quantum memory.

1. Entanglement-distillation-based quantum key distribution
protocols

Both Ekert’s protocol and its BBM version worked in
the situation where the disturbance comes only from the
eavesdropper, so if only Alice and Bob detect his pres-
ence, they can abort the protocol. Since in reality one
usually deals with imperfect sources, hence also with im-
perfect �noisy� entanglement, it is important to ask if the
secure key can be drawn from noisy EPR pairs. The
purification of EPR pairs appeared to be a crucial idea
in this case. The first scheme of purification �or distilla-
tion� of entanglement has been discovered and devel-
oped in Bennett, Brassard, et al. �1996�, and Bennett,
DiVincenzo, et al. �1996� �see Sec. XII�. In this scheme
Alice and Bob share n copies of some mixed state, and
by means of local quantum operations and classical com-
munication �LOCC� they obtain a smaller amount k

n of states which are very close to the EPR state,

��n ——→
distillation

��+��k. �182�

The highest asymptotic ratio k /n in the above diagram is
called distillable entanglement and is denoted as ED���
�see Sec. XV.A�. This concept was adopted by Deutsch
et al. �1996�, where the distillation process for the cryp-
tographical purpose was named quantum privacy ampli-
fication �QPA�. From n systems in a joint state �n �which
may be in principle supplied by Eve�, Alice and Bob
distill singlets, and finally generate a key via measure-
ment on a computational basis:

�n ——→
QPA

��+��k. �183�

The protocol of QPA assumes that devices used for
distillation are perfect. Moreover, the distillation scheme
of Bennett et al. works if the initial state is in a tensor
product of many copies. The question of verification by
Alice and Bob whether they indeed share such state �or
whether the final state is indeed the desired �+= 1

�2 �00�
+ �11� state� was not solved by Deutsch et al. �1996�.

This problem has been tackled by Lo and Chau �1999�
who provided the first both unconditionally secure and
fully entanglement-based scheme.76 To cope with imper-
fections, Alice and Bob use fault tolerant quantum com-
puting. In order to obtain a secure key, they perform the
entanglement distillation protocol of Bennett, DiVin-
cenzo, et al. �1996� to distill singlets, and check their

74In BB84, the state consists of preparations of Alice, out-
comes of Bob’s measurement, and quantum states of Eve. In
BBM protocol it is the outcomes of Alice’s and Bob’s measure-
ment, and quantum states of Eve.

75See note added in Bennett et al. �1992�.

76The first proof of unconditional security of a quantum key
distribution was provided by Mayers who proved the security
of BB84 �Mayers, 2001�.
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quality.77

The Lo-Chau proposal has a drawback: one needs a
quantum computer to implement it, while the first quan-
tum cryptographic protocol �BB84� does not need a
quantum computer. And the BB84 was already proved
to be secure by Mayers �2001�. Yet, the proof was quite
complicated, and therefore not easy to generalize to
other protocols.

2. Entanglement-based security proofs

A remarkable step was taken by Shor and Preskill
�2000�, who showed that one can prove security of
the BB84 scheme, which is a P&M protocol, by consid-
ering a protocol based on entanglement �a modified Lo-
Chau protocol�. This was something like the Bennett-
Brassard-Mermin consideration, but in a noisy scenario.
Namely, while using BB84 in the presence of noise, Al-
ice and Bob first obtain a so-called raw key—a string of
bits which is not perfectly correlated �there are some
errors�, and also not perfectly secure �Eve has some
knowledge about the key�. By looking at the part of the
raw key, they can estimate the level of error and the
knowledge of Eve. They then classically process it, ap-
plying procedures of error correction and privacy ampli-
fication �the latter aims at diminishing knowledge of
Eve�.

In the related entanglement based scheme, we have
coherent analogs of those procedures. Without going
into details, we can imagine that in an entanglement
based scheme Alice and Bob share pairs in one of four
Bell states �3�, which may be seen as the state �+ with
two kinds of errors: bit and phase error. The error from
the previous scheme translates here into bit error, while
knowledge of Eve’s translates into phase error. Now the
task is simply to correct both errors. Two procedures of
a different kind �error correction and privacy amplifica-
tion� are now both of the same type—they correct er-
rors.

After correcting bit error, Alice and Bob are left with
Bell states which are all correlated,

��−� = 1
�2

��00� − �11��, ��+� = 1
�2

��00� + �11�� . �184�

Then they apply the phase-error-correcting procedure,
i.e., they get to know which systems are in �− and which
are in �+ so that they can rotate each �− into �+ and
finally obtain a sequence of soley �+. What Shor and
Preskill noticed is that these two quantum procedures

are coherent78 versions of classical error correction and
privacy amplification, respectively. Thus Shor-Preskill
proof can be phrased as follows: “The BB84 protocol is
secure because its suitable coherent version distills EPR
states.”

It should be emphasized here that the equivalence be-
tween noisy BB84 protocol and its coherent version
does not continue to the very end. Namely, in distillation
Alice and Bob, after finding which pair is in ��−� and
which is in ��+�, rotate ��−�. The classical procedures
performed coherently cannot perform this very last step
�rotation� as no classical action can act as a phase gate
after embedding into quantum. However, the key is se-
cure, because Alice and Bob could have performed the
rotation, but they do not have to. Indeed, note that if
Alice and Bob measure the pairs in the basis 	�0�, �1�

they obtain the same results, independently of whether
they have rotated ��−� or not. The very possibility of
rotation means that the key will be secure. Thus the
coherent version of BB84 does not actually give ��+�
itself, but it does if supplemented with rotations.

The concept of proving the security of P&M protocols
by showing that at the logical level they are equivalent
to distillation of entanglement has become very fruitful.
In 2003 Tamaki, Koashi, and Imoto �Tamaki et al., 2003�
showed that B92 is unconditionally secure, using the
Shor-Preskill method �see also Tamaki and Lütkenhaus,
2004�. They showed that B92 is equivalent to the special
entanglement distillation protocol known as filtering
�Gisin, 1996; Horodecki et al., 1997� �see Sec. XII.D�.
Ardehali et al. �1998� proposed the efficient version of
BB84, which is still unconditionally secure, though the
number of systems that Alice and Bob use to estimate
the error rate is much smaller than in BB84. Again se-
curity is proved in the Shor-Preskill style. Gottesman
and Lo �2003� found a P&M scheme with a two-way
classical error correction and privacy amplification pro-
tocol. It is shown that a protocol with two-way classical
communication can have a substantially higher key rate
than the one using one-way classical communication
only. Also, security of key distribution using dense cod-
ing �Long and Liu, 2002� was proved using Shor-Preskill

77Using the concept of another entanglement-based commu-
nication scheme, quantum repeaters �Briegel et al., 1998; Dür,
Briegel, et al., 1999�, Lo and Chau established quantum key
distribution over arbitrary long distances.

78It is worthwhile to observe that formally any QKD scheme
can be made “entanglement based,” as according to axioms of
quantum mechanics any operation is unitary and the only
source of randomness is the subsystem of an entangled state.
From this point of view, even when Alice sends to Bob a ran-
domly chosen signal state, as it is in P&M schemes, according
to axioms she sends a part of an entangled system. Moreover,
any operation that Alice and Bob would perform on signal
states in the P&M scheme can be done reversibly, so that the
whole system shared by Alice, Bob, and Eve is in a pure state
at each step of the protocol. This principle of maintaining pu-
rity is usually referred to as coherent processing. We note,
however, that not always must the coherent application of a
protocol that provides a key result in the distillation of �+. In
Sec. XIX.B we show that there is a more general class of states
that gives a private key.
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techniques �Zhang et al., 2005� �see Degiovanni et al.,
2003, 2004; Wójcik, 2005�.

Thus, thanks to the simplicity of the Shor-Preskill ap-
proach, pure entanglement is a very useful tool for prov-
ing unconditional security of QKD protocols �Gisin and
Brunner, 2003�. As we show, this approach can be gen-
eralized by considering mixed entangled states contain-
ing an ideal key.

3. Constraints for security from entanglement

So far we have discussed the role of entanglement
in particular protocols of quantum key distribution.
Aconnection between entanglement and any QKD pro-
tocol has been established by Curty, Lewenstein, and
Lütkenhaus �2004�. They have proved that entanglement
is a necessary precondition of unconditional security.
Namely, in the case of any QKD protocol, Alice and
Bob perform some measurements and are left with some
classical data from which they want to obtain a key.
Based on these data and measurements settings, they
must be able to construct a so called entanglement wit-
ness to ensure that the data could not be generated via
measurement on some separable state �see Sec. VI.B.3�.
We emphasize that this holds not only for entanglement
based but also for prepare and measure protocols. In the
latter case, a kind of “effective” entanglement is wit-
nessed �i.e., the one which is actually never shared by
Alice and Bob�. This idea has been studied in the case of
high dimensional systems �Nikolopoulos and Alber,
2005; Nikolopoulos et al., 2006� and general upper
bounds on key rates for “prepare and measure” schemes
have been found �Moroder et al., 2006a, 2006b�. It is also
connected with optimization of entanglement measures
from incomplete experimental data �see Sec. VI.B.4�.

4. Secure key beyond distillability of pure entanglement:
Prelude

The fact that up to date techniques to prove uncondi-
tional security were based on entanglement purification
i.e., distilling pure entangled states, has supported the
belief that the possibility of distilling pure entanglement
�singlet� is the only reason for unconditional security.
The first interesting step towards this direction was due
to Aschauer and Briegel, who showed that Lo and
Chau’s protocol provides a key even without the fault
tolerant computing, i.e., with realistic noisy apparatuses
�Aschauer and Briegel, 2002�. However, as we show, it
turns out that one can get an unconditionally secure key
even if by means of perfect operations no pure entangle-
ment could be obtained.

B. Drawing a private key from distillable and bound
entangled states of the form �‹n

A strong interrelation between the theory of a secure
key and entanglement can already be seen in the sce-
nario where Alice and Bob share n bipartite systems in
the same state �AB and Eve holds their purification, so
that the joint state of the Alice, Bob, and Eve systems is

a pure state ��ABE�. The task of the honest parties �Alice
and Bob� is to obtain by means of local operations and
classical communication the highest possible amount of
correlated bits that are unknown to Eve �i.e., a secure
key�. The difficulty of this task is due to the fact that Eve
makes a copy of any classical message exchanged by Al-
ice and Bob.

The above paradigm allows us to consider a new mea-
sure of entanglement: distillable key KD, which is similar
in spirit to distillable entanglement as discussed in Secs.
XV.D.1 and XV.A. It is given by the number of secure
bits of a key that can be obtained �per input pair� from a
given state.

We discuss briefly two extreme cases. �i� All distillable
states are key distillable:

KD��AB�  ED��AB� . �185�

�ii� All separable states are key nondistillable:

KD��sep� = 0. �186�

To see the first statement, one applies the idea of
quantum privacy amplification described in Sec. XIX.A.
Simply, Alice and Bob distill singlets and measure them
locally. Due to the purity and correlation principle de-
scribed in the beginning of Sec. XIX, this gives a secure
key.

To see that a key cannot be drawn from separable
states �Gisin and Wolf, 2000; Curty et al., 2004�, note that
by the definition of separability there is a measurement
on Eve’s subsystem such that conditionally upon result
�say i� Alice and Bob share a product state �A

�i�
� �B

�i�. This
means that Alice and Bob conditionally on Eve have
initially no correlations. Of course, any further commu-
nication between Alice and Bob cannot help, because it
is monitored by Eve.

In Sec. XIX.B.3 it will be shown that there are non-
distillable states which are key distillable:

ED��BE� = 0 and KD��BE� 	 0. �187�

1. Devetak-Winter bound

Here we present a result due to Devetak and Winter,
which shows that from any state one can draw at least
the amount of key equal to the coherent information.
This is compatible with the idea that one can draw a key
only from entangled states �states with positive coherent
information are entangled, as shown by Horodecki and
Horodecki �1994��. The coherent version of the protocol
will in turn distill this amount of singlets from the state.
In this way Devetak and Winter have for the first time
proved the hashing inequality �see Sec. XII.F� for distill-
able entanglement. It was also used by Devetak �2003�
to prove rigorously the quantum Shannon theorem stat-
ing that the capacity of a quantum channel is given by
coherent information.

That is, consider a state �AB, so that the total state
including Eve’s system is ��ABE�. As said, we assume that
Alice and Bob have n copies of such a state. Now Alice
performs a complete measurement, which turns the total
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state into �cqq= �ipi�i�i�A � �BE
i where the subscript cqq

reminds us that Alice’s system is classically correlated
with Bob’s and Eve’s subsystems. They considered draw-
ing a key from a general cqq state as a starting point,
and showed that one can draw at least the amount of
key equal to

I�A:B� − I�A:E� , �188�

where I�X :Y� =S�X� +S�Y� −S�XY� is quantum mutual
information. Now, we note that in the present case

I�A:B� = S��B� − �
i

piS��B
i � ,

I�A:E� = S��E� − �
i

piS��E
i � , �189�

where �B
i =TrE�BE

i , �E
i =TrB�BE

i , �B= �ipi�i
B=TrA�AB, and

�E= �ipi�i
E=TrAB�AE.

Since the measurement of Alice was complete, the
states �BE

i are pure, hence S��E
i � =S��B

i �. Also, since the
total initial state was pure, we have S��E� =S��AB� where
�AB is the initial state shared by Alice and Bob. Thus we
obtain that the amount of key gained in the protocol is
actually equal to coherent information. Let us empha-
size that DW protocol can be applied to cqq states which
do not come from complete measurement by Alice, as
we have assumed above. Therefore the protocol can be
used even for bound entangled states, for which coher-
ent information is not positive �see further text�.

2. Distillable key as an operational entanglement measure

The states which contain two qudits—one for Alice,
one for Bob—that, after measurement give perfect key
are called private states �p-dits�. Any p-dit must be of
the form of “twisted” maximally entangled state �Horo-
decki et al., 2005d�

!�d� =
1

d �
i,j=0

d–1

�ii�jj�AB � Ui�A�B�Uj
†,

where Ui are arbitrary unitary transformations acting on
the system A�B�. �One may define a private state in a
slightly different manner, which leads to a form equiva-
lent up to local isometries �Renes and Smith, 2007�.� The
whole state resides on two systems with distinguished
subsystems AA� and BB�, respectively. The concept of
private states allows us to represent KD as a quantity
analogous to entanglement distillation:

�AB
�n ——→

LOCC key

distillation

!ABA�B�
�d� , �190�

where the highest achievable ratio log2 d /n in the
asymptotic limit equals the distillable key denoted as
KD��AB�. Instead of singlets we distill private states.
Since the class of private states is broader than the class
of maximally entangled states, one can expect that a dis-

tillable key can be greater than distillable entanglement.
Indeed, this is the case, and an example is the private
state of Eq. �193� �see Eq. �194��.

Thus a distillable key is an operational measure of
entanglement, which is distinct from ED. It is also dis-
tinct from EC and satisfies

ED � KD � EC. �191�

Moreover, it is upper bounded by relative entropy of
entanglement �Horodecki et al., 2005d� and squashed en-
tanglement �Christandl, 2006�. In general, an entangle-
ment monotone satisfying some natural axioms in the
context of private states is an upper bound on the dis-
tillable key �see Christandl et al., 2007�. There is also a
bound involving the best separable approximation
�Moroder et al., 2006b� which exploits the fact that ad-
mixing a separable state can only decrease KD. Moroder
et al. �2006a� presented a bound for a one-way distillable
key, based on the fact that for a state which has a sym-
metric extension, its one-way distillable key must vanish.
Indeed, then Bob and Eve share with Alice the same
state, so that any final key which Alice shares with Bob
she also share with Eve.

3. Drawing a secure key from bound entanglement

Bound entanglement is a weak resource, especially in
the bipartite case. For a long time the only useful task
that bipartite BE states were known to perform was ac-
tivation, where they acted together with some distillable
state. Obtaining a private key from bound entangle-
ment, a process which we present now, is the first useful
task which bipartite BE states can do themselves.

Since distillable entanglement of some private states
can be low, it was tempting to admix with small prob-
ability some noise in order to obtain a state which is
nondistillable while still entangled:

�total = �1 − p�! + p�noise. �192�

It happens that for certain private states ! the state
�noise can be adjusted in such a way that the state �total is
PPT �hence ED=0�, and despite this, from many copies
of �total one can distill a key of arbitrarily good quality.
That is, one can distill private state !� with an arbitrary
small admixture of noise.

The first examples of states with a positive distillable
key and zero distillable entanglement were found by
Horodecki et al. �2005a, 2005d�. We present here a
simple one which has been given by Horodecki,
Pankowski, et al. �2005�. It is actually a mixture of two
private bits �correlated and anticorrelated�. The total
state has a matrix form

�ABA�B� =
1
2�

p1
�X1X1

† 0 0 p1X1

0 p2
�X2X2

† p2X2 0

0 p2X2
† p2

�X2
†X2 0

p1X1
† 0 0 p1

�X1
†X1

�,

�193�
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with X1= �i,j=0
1 uij�ij�ji�A�B� and X2= �i,j=0

1 uij�ii�jj�A�B�
where uij are the elements of the one-qubit Hadamard
transform and p1=�2/ �1+�2� �p2=1−p1�. This state is
invariant under partial transposition over Bob’s sub-
system. If we, however, project its key part �AB sub-
system� onto a computational basis it turns out that the
joint state of the systems A, B, and Eve system is fully
classical and of simple form: with probability p1 Eve
knows that Alice and Bob are correlated, while with
probability p2 that they are anticorrelated. Thus the mu-
tual information I�A :E� =0, and I�A :B� =1−H�p1�. Thus
applying Devetak-Winter protocol79 �see Eq. �188�� we
obtain a key rate

KD���  1 − h�p1� = 0.021 339 9 	 ED��� = 0. �194�

Based on this example it was argued �Horodecki,
Pankowski, et al., 2005� that the volume of bound en-
tangled key distillable states is nonzero in the set of
states occupying more then four qubits. It is, however, a
nontrivial task to provide new examples. Interestingly,
no previously known bound entangled state has been
shown to be key distillable.

C. Private states: New insight into entanglement theory of
mixed states

Investigations concerning a distillable key were fruit-
ful to the entanglement theory itself. A new operational
measure of entanglement was obtained, and also a new
source of examples of irreversibility in entanglement dis-
tillation was provided. The private states, and some PPT
states with a nonzero key, constitute a new collection of
states which are easy to deal with and have nontrivial
properties, in addition to such canonical classes as
Werner, isotropic, Bell diagonal, or maximally correlated
states. While the simplicity of the latter classes comes
from symmetries �e.g., invariance under twirling�, the
simplicity of the class of private states is based on special
asymmetry between the systems AB and A�B�.

Some private bits, called flower states, are the ones for
which the squashed entanglement has been computed
�Christandl and Winter, 2005�. Moreover, they exhibit
locking of entanglement �see Sec. XVIII.A�. There is
actually a general link between the locking effect and
the problem of drawing a key from bound entanglement.
Last but not least, the description of this class of states
yields a natural generalization of pure maximally en-
tangled states to the case of mixed states with coeffi-
cients becoming operators.

D. Quantum key distribution schemes and security proofs
based on distillation of private states: Private key beyond pure
entanglement

The key distillation described in Sec. XIX.B relies
upon an important assumption. The initial state shared
by Alice and Bob should be a tensor product of the
same state �AB. This assumption is unreal in almost all
security applications, since the eavesdropper can inter-
rupt the communication and entangle copies of the state.
It was then unclear whether one can obtain a gap be-
tween a distillable key and distillable entanglement �as
reported in Sec. XIX.B.2� in the general scenario, where
Alice and Bob do not know a priori anything about their
states. It has not been noticed that a positive answer to
this question follows from the results on the finite quan-
tum de Finetti theorem by Renner, Gisin, and Kraus
�Kraus et al., 2005; Renner et al., 2005� �see especially
Koenig and Renner �2005� and Renner �2005�� and the
results of Horodecki et al. �2005d� on bound entangled
key distillable states. In the meantime, a more
entanglement-based approach has been developed
�Horodecki, Leung, et al., 2006; Horodecki et al., 2008�,
which can be seen as a generalization of the Lo and
Chau entanglement purification based approach to the
private state distillation one. It has been shown there
that an unconditionally secure key can be distributed
even when no pure entanglement can be obtained. This
important result can be rephrased as follows: There are
situations in which one can not send faithfully any qubit,
but one can send arbitrarily many unconditionally se-
cure bits.

Note that security proof of the Shor-Preskill type as
such cannot be used here, as its core from Eve’s point of
view is that the given protocol is indistinguishable from
the one that produces singlets. This cannot work in the
present situation. Instead, the protocol is viewed by Eve
as producing private states, i.e., “twisted” singlets. It
then turns out that one can also suitably “twist” the se-
curity proof �see Horodecki et al. �2007� for more de-
tails�.

A general principle that connects entanglement and
key distribution in an ultimate way, is that a protocol
produces a secure key if and only if its coherent version
produces private states. It was recently applied by Renes
and Smith �2007� who have found an entanglement
based proof of the P&M protocol with the noisy prepro-
cessing of Kraus et al. �2005� and Renner et al. �2005�.
They have demonstrated its coherent version, which dis-
tills private states, and hence must be secure �cf. Renes
and Boileau �2008��.

E. Entanglement in other cryptographic scenarios

There are many other quantum cryptographic sce-
narios than quantum key distribution where entangle-
ment enters. These include, e.g., third man quantum
cryptography �Żukowski et al., 1998� together with inti-
mately related quantum secret sharing �Hillery et al.,
1999�, and conference key agreement �Chen and Lo,

79Since in this particular case the state is fully classical, it
would be enough to use the classical predecessor of the
Devetak-Winter protocol, called the Csiszar-Körner-Maurer
protocol.
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2004; Horodecki and Augusiak, 2006�. Interestingly, en-
tanglement may be important not only because it makes
some protocols possible but because it disallows certain
schemes as it happens in quantum bit commitment.

Historically, it was claimed that quantum information
theory can ensure not only unconditionally secure key
distribution but also an important ingredient of classical
cryptographic protocols—a bit commitment protocol
�Brassard et al., 1993�. If so, Alice could commit some
decision �a bit value� to Bob, so that after committing
she could not change her mind �change the bit value� but
Bob also could not infer her decision before she lets him
open it. Such a protocol would be an important ingredi-
ent in secure transaction protocols. Unfortunately, it is
not the case: Mayers �1996, 1997� and independently Lo
and Chau �1997, 1998� have proved, under assumptions
plausible in cryptographic context, that quantum bit
commitment is not possible. Paradoxically, it is exactly
entanglement that, even though assuring the security of
QKD, is the main reason for which the quantum bit
commitment is not possible. It shows the following im-
portant fact: When the two parties do not trust each
other, entanglement between them may sometimes be-
come the most unwanted property.

There were many attempts to perform quantum bit
commitment; some of them invalid as covered by the
proof given by Lo and Chau and some of them being
approximated versions of impossible quantum bit com-
mitment.

While the proof of Lo and Chau is valid, as pointed
out by Yuen �2005� one could weaken assumptions, so
that the Lo-Chau theorem does not apply. This caveat
was considered by D’Ariano et al. �2007�. The latter
work also provides the most recent and wide review of
this topic.

F. Interrelations between entanglement and classical key
agreement

So far we have discussed the role of entanglement in
quantum cryptography. It is interesting that entangle-
ment, which is originally a quantum concept, corre-
sponds to privacy in general—not only in the context of
quantum protocols. Here the interaction between en-
tanglement theory and the domain of classical cryptog-
raphy, called classical key agreement �CKA�, is pre-
sented.

The problem of distilling a secret key from correla-
tions shared by Alice and Bob with the presence of an
eavesdropper, Eve, was first studied by Wyner �1975�
and Csiszár and Körner �1978�. It was introduced as a
classical key agreement scenario and studied in full gen-
erality by Maurer �1993�. According to this scenario, Al-
ice and Bob have access to n independent realizations of
variables A and B, respectively, while the malicious Eve
holds n independent realizations of a variable E. The
variables under consideration have joint probability dis-
tribution P�A ,B ,E�. The task of Alice and Bob is to
obtain via local �classical� operations and public commu-
nication �LOPC� the longest bit string which is almost

perfectly correlated and about which Eve �who can lis-
ten to the public discussion� knows a negligible amount
of information.80

Here the probability distribution P�A ,B ,E� is a priori
given. That is, it is assumed that Alice and Bob some-
how know how Eve is correlated with their data.

1. Classical key agreement: Analogy to distillable entanglement
scenario

The classical key agreement scenario is an elder sib-
ling of an entanglement-distillation-like scenario. This
relation was first found by Gisin and Wolf �1999, 2000�,
and subsequently developed by Collins and Popescu
�2002�. The analogy has been recently explored and
proved to be fruitful for establishing new phenomena in
classical cryptography, and new links between privacy
and entanglement theory. The connections are quite
beautiful, however, they still remain not fully under-
stood.

The classical key agreement task is described by the
following diagram:

�P�A,B,E���n ——→

classical

distillation of

key

�P�K,K,E����k, �195�

where P�K ,K ,E�� is a perfectly secure distribution sat-
isfying

P�K,K� � 	P�i,j� = 1
2�ij
 ,

P�K,K,E�� = P�K,K�P�E�� , �196�

where Alice and Bob hold variable K and E� is some
Eve’s variable, i.e., Alice and Bob are perfectly corre-
lated and product with Eve. The optimal ratio k /n in the
asymptotic limit is a �classical� distillable key rate de-
noted here as K�A ;B � E� �Maurer, 1993�.

Entanglement between two parties �see Sec. XIX� re-
ports that nobody else is correlated with the parties. In a
similar way the privacy of the distribution P�A ,B ,E�
means that nobody knows about �i.e., is classically cor-
related with� the variables A and B. In other words, any
tripartite joint distribution with marginal P�A ,B� has a
product form P�A ,B�P�E�.

Following along these lines one can see the correspon-
dence between maximally entangled state ��+� = 1

�2 ��00�
+ �11�� and the private distribution �196�, and also the
correspondence between the problem of transformation
of the state �AB

�n into maximally entangled states which is
the entanglement distillation task and the above de-
scribed task of classical key agreement. Actually, the
first entanglement distillation schemes �Bennett, Bras-
sard, et al., 1996; Bennett, DiVincenzo, et al., 1996� have

80We emphasize that on classical ground unlike in quantum
cryptography it is in principle not possible to verify that Eve
possesses only the information described by P�A ,B ,E�. How-
ever, in particular situations, there may be good practical rea-
sons for assuming this.
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been designed on the basis of protocols of classical key
agreement �see Table I�. The feedback from entangle-
ment theory to classical key agreement was initiated by
Gisin and Wolf �2000� who asked the question of
whether there is an analog of bound entanglement, dis-
cussed in the next section. Subsequently, in analogy to
entanglement cost which measures how expensive in
terms of a singlet state is the creation of a given quan-
tum state �AB by means of LOCC operations, Renner
and Wolf �2003� defined information of formation de-
noted as Iform�A ;B � E� �sometimes called “key cost”�.
This function quantifies how many secure key bits �196�
the parties have to share so that they could create given
distribution P�A ,B ,E� by means of LOPC operations.
The axiomatic approach to privacy, resulting in deriving
secrecy monotones �also in the multipartite case�, has
been studied by Cerf, Massa, and Schneider �2002� and
Horodecki et al. �2005b�.

Criteria analogous to those for pure bipartite states
transitions and catalytical transitions known as majoriza-
tion criteria �see Secs. XIII.A and XIII.A.1� can be
found in Collins and Popescu �2002�. Also other quan-
tum communication phenomena such as quantum state
merging �Horodecki, Oppenheim, et al., 2005� and infor-
mation exchange �Oppenheim and Winter, 2003� as well
as the no-cloning principle are found to have counter-
parts in classical setup �Oppenheim et al., 2002�.

A simple and important connection between tripartite
distributions containing privacy and entangled quantum
states was established by Acín and Gisin �2005�. If a
bipartite state �AB is entangled then there exists a mea-
surement on subsystems A and B such that for all mea-
surements on subsystem E of its purification ��ABE� the
resulting probability distribution P�A ,B ,E� has a non-
zero key cost. If a bipartite state �AB is separable, then
for all measurements on subsystems A and B there ex-
ists a measurement on subsystems E of purification
��ABE� such that the resulting probability distribution
P�A ,B ,E� has a zero key cost.

2. Is there a bound information?

In the entanglement distillation scenario there are
bound entangled states which exhibit the highest irre-
versibility in the creation-distillation process, as the dis-
tillable entanglement is zero although the entanglement
cost does not vanish �see Sec. XII�. One can ask then if
the analogous called bound information phenomenon
holds in classical key agreement �Gisin and Wolf, 2000;
Renner and Wolf, 2003�. This question can be stated as
follows: Does there exist a distribution P�A ,B ,E�bound
for which a secure key is needed to create it by LOPC
�Iform�A ;B � E�	0�, but one cannot distill any key back
from it �K�A ;B � E� =0�? Gisin and Wolf �2000� consid-
ered distributions obtained via measurement from
bound entangled states as a possible way of searching
for the hypothetical ones with bound information. To
get Eve’s variable, one has first to purify a bound
entangled state, and then find a clever measurement to
get tripartite distribution. In this way, distributions
P�A ,B ,E� with a nonzero key cost were obtained. How-
ever, the no-key distillability still needs to be proved.

A strong confirmation supporting the hypothesis of
bound information is the result presented by Renner
and Wolf �2003�, where examples of distributions which
asymptotically have bound information were found.
Namely, there is a family of distributions P�An ,Bn ,En�
such that limn→�K�An ;Bn � En� =0 while Iform�An ;
Bn � En�	 1

2 for all n. Another argument in favor of the
existence of bound information in this bipartite scenario
is the fact that the multipartite bound information has
been already proved to exist, and explicit examples have
been constructed �Acín, Cirac, et al., 2004�. The distribu-
tion exhibiting the multipartite bound information was
obtained from the quantum bound entangled state �73�.

XX. ENTANGLEMENT AND QUANTUM COMPUTING

A. Entanglement in quantum algorithms

Fast quantum computation is one of the most desired
properties of quantum information theory. There are
few quantum algorithms which outperform their classi-
cal counterparts. These are the celebrated Deutsch-
Jozsa, Grover and Shor’s algorithm, and their variations.
Since entanglement is a cornerstone of quantum infor-
mation theory it is natural to expect that it should be the
main ingredient of quantum algorithms which are better
than classical. This was first discussed by Jozsa �1997�.
His seminal paper opened a debate on the role of en-
tanglement in quantum computing. Actually, after more
than a decade from the discovery of the first quantum
algorithm, there is no common agreement on the role of
entanglement in quantum computation. We discuss ma-
jor contributions to this debate. It seems that entangle-
ment “assists” quantum speedup, but is not sufficient for
this phenomenon.

If quantum computer is in pure state, then certainly
quantum computation needs some level of entanglement
if it is not to be simulated classically. It was shown by

TABLE I. Relations between basic notions of key agreement
and entanglement theory following Collins and Popescu
�2002�.

Entanglement theory Key agreement

quantum secret classical
entanglement correlations

quantum secret classical
communication communication

classical public classical
communication communication

local actions local actions
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Jozsa and Linden that if a quantum computer’s state at
all times is a product of states involving only a constant
�independent of number of input qubits n� amount of
qubits, then it can be simulated efficiently �Jozsa and
Linden, 2002�.

Next, Vidal showed, that if at all times, under any
bipartite cut, the state of the quantum computer has
Schmidt rank polynomial in n, then the computation can
be efficiently classically simulated. In other words, to
give an exponential speedup the quantum algorithm
needs to achieve Schmidt rank of exponential order in n,
during computation.

This general result was studied by Orús and Latorre
�2004� for different algorithms in terms of entropy of the
entanglement �von Neumann entropy of the subsystem�.
It was shown among others that computation of Shor’s
algorithm generates highly entangled states �with a lin-
ear amount of entropy of entanglement which corre-
sponds to exponential Schmidt rank�. Although it is not
known if Shor’s algorithm provides an exponential
speedup over classical factoring, this analysis suggests
that Shor’s algorithm cannot be simulated classically.

Entanglement in Shor’s algorithm has been studied in
different contexts �Ekert and Jozsa, 1998; Jozsa and Lin-
den, 2002; Parker and Plenio, 2002; Shimoni et al., 2005�.
Interestingly, as the presence of entanglement in quan-
tum algorithm is widely confirmed �see also Datta et al.,
2005; Datta and Vidal, 2007�, its role is still not clear,
since it seems that the amount of it depends on the type
of input number �Kendon and Munro, 2006�.

Note that the above Jozsa-Linden-Vidal “no entangle-
ment implies no quantum advantage on pure states” re-
sult shows the need for the presence of entanglement for
exponential speedup. Without falling into contradiction,
one can then ask if entanglement must be present for
polynomial speedup when only pure states are involved
during computation �see Kenigsberg et al., 2006, and ref-
erences therein�.

Moreover, it was considered possible that a quantum
computer using only mixed, separable states during com-
putation may still outperform classical ones �Jozsa and
Linden, 2002�. It is shown that this phenomenon can
hold �Biham et al., 2004�, but with a small speedup. It
was argued that an isotropic separable state cannot be
entangled by an algorithm, yet it can prove useful in
quantum computing. Answering the general question of
how large the enhancement based on separable states
may be needs a more algorithm-dependent approach.

That the presence of entanglement is only necessary
but not sufficient for exponential quantum speedup fol-
lows from the Knill-Gottesman theorem �Gottesman
and Chuang, 1999; Jozsa and Linden, 2002�. It states that
operations from the so-called Clifford group composed
with Pauli measurement in a computational basis can be
efficiently simulated on a classical computer. This class
of operations can, however, produce highly entangled
states. For this reason, and as indicated by others, the
role of entanglement is still not clear. As it is pointed out
by Jozsa and Linden �2002�, it may be that what is es-
sential for quantum computation is not entanglement

but the fact that the set of states which can occur during
computation cannot be described with a small number
of parameters �see also Knill �2001�, and references
therein�.

B. Entanglement in quantum architecture

Although the role of entanglement in algorithms is
unclear, its role in the architecture of quantum comput-
ers is crucial. First the multipartite cluster states provide
a resource for one-way quantum computation �Raussen-
dorf and Briegel, 2001�. One prepares such a multipar-
tite state, and the computation is based on subsequent
measurements of qubits, which uses up the state.

One can ask what other states can be used to perform
universal one-way quantum computation. Van den Nest
et al. �2006� assumed that universality means the possi-
bility of creating any final state on the part of the lattice
that was not subjected to measurements. It was pointed
out that by the use of entanglement measures one can
rule out some states. Namely, they introduced an en-
tanglement measure, entanglement width, which is de-
fined as the minimization of bipartite entanglement en-
tropy over some specific cuts. It turns out that this
measure is unbounded for cluster states �if we increase
size of the system�. Thus any class of states, for which
this measure is bounded, cannot be a resource for uni-
versal computation, as it cannot create arbitrary large
cluster states. For example, the GHZ state is not univer-
sal, since under any cut the entropy of entanglement is
just 1. One should note here that more natural is the
weaker notion of universality where one requires the
possibility of a computed arbitrary classical function.
Gross and Eisert �2007� showed that entanglement width
is not a necessary condition for this type of universality.

An intermediate quantum computing model, between
circuits based on quantum gates and one-way comput-
ing, is teleportation-based computing �Gottesman and
Chuang, 1999�. There two- and three-qubit gates are
performed by use of teleportation as a basic primitive.
The resource for this model of computation are thus
EPR states and GHZ states. Teleportation based com-
puting is of great importance, as it allows for efficient
computation by use of linear optics �Knill et al., 2001�,
where it is impossible to perform two-qubit gates deter-
ministically. Moreover, using it Knill has significantly
lowered the threshold for fault-tolerant computation
�Knill, 2004�.

An interesting connection between entanglement and
fault-tolerant quantum computation was obtained by
Aharonov �1999�. She has shown that a properly defined
long-range entanglement81 vanishes in the thermody-
namical limit if the noise is too large. Combining this
with the fact that the fault-tolerant scheme allows us to
achieve such entanglement, one obtains a sort of phase

81Another type of long-range entanglement was defined �Ki-
taev and Preskill, 2006; Levin and Wen, 2006� in the context of
topological order.
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transition �the result is obtained within a phenomeno-
logical model of noise�.

The level of noise under which a quantum computer
becomes efficiently simulatable was first studied by Aha-
ronov and Ben-Or �1996�. It was shown that a quantum
computer which operates �globally� on O�log2 n� num-
ber of qubits at a time �i.e., with limited entangling ca-
pabilities� can be efficiently simulated for any nonzero
level of noise. For the circuit model �with local gates�, a
phase transition depending on the noise level is ob-
served �see also Aharonov et al., 1996�.

The same problem was studied further by Harrow and
Nielsen �2003�, but based directly on the entangling ca-
pabilities of the gates used for computation. It was
shown that so-called separable gates �gates which cannot
entangle any product input� are classically simulatable.
The bound on the minimal noise level which allows a
quantum computer to deal only with separable gates was
provided there. This idea has been developed by Vir-
mani et al. �2005�. They considered a larger class of gates
which can be efficiently classically simulated. In particu-
lar, they also allowed gates which break entanglement
between the qubits they act on, and all the other qubits.
As a consequence, a stronger bound on the tolerable
noise level is found.

C. Byzantine agreement: Useful entanglement for quantum
and classical distributed computation

As already discussed, the role of entanglement in
communication networks is uncompromised. We have
already described its role in cryptography �see Sec. XIX�
and communication complexity. Here we comment on
another application—a quantum solution to a famous
problem in classical fault-tolerant distributed computing
called the Byzantine agreement. This problem is known
to have no solution in classical computer science, yet its
slightly modified version can be solved using a quantum
entangled multipartite state �Fitzi et al., 2001�. One goal
in distributed computing is to achieve broadcast in a
situation when some of the stations can send faulty sig-
nals. It has been proved classically that if there are t
n /3 stations which are out of work and can send un-
predictable data, then broadcast cannot be achieved. In
quantum terms, a so-called “detectable broadcast,”
where the stations are allowed to abort, can be achieved
for n=3 by use of the Aharonov state,

� = 1
�6

��012� + �201� + �120� − �021� − �102� − �210�� .

�197�

The subject was further developed, including continuous
variable version �Neigovzen et al., 2008� and an alterna-
tive solution provided and implemented experimentally
by Gaertner et al. �2008�.
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Kruszyńska, C., A. Miyake, H. J. Briegel, and W. Dür, 2006,

Phys. Rev. A 74, 052316.
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Żukowski, M., and C. Brukner, 2002, Phys. Rev. Lett. 88,

210401.
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