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Guiding-center theory provides the reduced dynamical equations for the motion of charged particles
in slowly varying electromagnetic fields, when the fields have weak variations over a gyration radius
�or gyroradius� in space and a gyration period �or gyroperiod� in time. Canonical and noncanonical
Hamiltonian formulations of guiding-center motion offer improvements over non-Hamiltonian
formulations: Hamiltonian formulations possess Noether’s theorem �hence invariants follow from
symmetries�, and they preserve the Poincaré invariants �so that spurious attractors are prevented from
appearing in simulations of guiding-center dynamics�. Hamiltonian guiding-center theory is
guaranteed to have an energy conservation law for time-independent fields—something that is not
true of non-Hamiltonian guiding-center theories. The use of the phase-space Lagrangian approach
facilitates this development, as there is no need to transform a priori to canonical coordinates, such as
flux coordinates, which have less physical meaning. The theory of Hamiltonian dynamics is reviewed,
and is used to derive the noncanonical Hamiltonian theory of guiding-center motion. This theory is
further explored within the context of magnetic flux coordinates, including the generic form along with
those applicable to systems in which the magnetic fields lie on nested tori. It is shown how to return
to canonical coordinates to arbitrary accuracy by the Hazeltine-Meiss method and by a perturbation
theory applied to the phase-space Lagrangian. This noncanonical Hamiltonian theory is used to derive
the higher-order corrections to the magnetic moment adiabatic invariant and to compute the
longitudinal adiabatic invariant. Noncanonical guiding-center theory is also developed for relativistic
dynamics, where covariant and noncovariant results are presented. The latter is important for
computations in which it is convenient to use the ordinary time as the independent variable rather
than the proper time. The final section uses noncanonical guiding-center theory to discuss the
dynamics of particles in systems in which the magnetic-field lines lie on nested toroidal flux surfaces.
A hierarchy in the extent to which particles move off of flux surfaces is established. This hierarchy
extends from no motion off flux surfaces for any particle to no average motion off flux surfaces for
particular types of particles. Future work in magnetically confined plasmas may make use of this
hierarchy in designing systems that minimize transport losses.
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I. INTRODUCTION

A charged particle in a constant magnetic field B

=Bb̂ moves along a helix, while conserving its kinetic
energy and, therefore, its speed v= �v�. In addition, the
motion parallel to the magnetic field is uniform, i.e., the

velocity v�=v · b̂ parallel to the magnetic field is constant,
and so the perpendicular speed v���v��= �v2−v�

2�1/2 is
also constant. The perpendicular motion �or gyromo-
tion� is confined to a circle, whose gyration center re-
mains on the same magnetic-field line. The gyration fre-
quency �or gyrofrequency� is given by ��eB /mc and

the gyration radius �or gyroradius� vector ��v� ,��� b̂
�v� /� depends explicitly on the gyration angle �or gy-
roangle� �.

Guiding-center theory gives the modifications to these
results for motion in a magnetic field that is slowly vary-
ing rather than constant. Slowly varying means that the
scale length L of the magnetic field is large compared
with the gyroradius �=v� /� and the distance v� /� trav-
eled by the particle in one gyroperiod. In this case, the
field is approximately constant, and so the results of the
constant-field theory should be approximately correct:
Drifts across field lines should be small, and some con-
stant of motion in the constant magnetic-field case
should be an adiabatic invariant �Kulsrud, 1957; Gard-
ner, 1959� in the case of a slowly varying magnetic field.

Alfvén �1940� showed that the magnetic moment

��
e

mc � d�

2�
�mv +

e

c
A�X + ��� · ��

��
=

mv�
2

2B
�1.1�

is the adiabatic invariant associated with the fast gyro-
motion of a charged particle �with mass m and charge e�
in a slowly varying magnetic field B=��A and the gy-
roaction J��mc /e�� is canonically conjugate to the ig-
norable gyrophase angle �. From this adiabatic invari-
ance and energy conservation, it follows that there must
be a parallel force due to the gradient of �B �the per-
pendicular kinetic energy�, taken with � held constant.
Alfvén �1940� also calculated the cross-field drifts due to
the gradient of B and the magnetic-field-line curvature.
His results showed that the cross-field drifts are smaller
than v� by the ratio � /L��. These results and other
early works are reviewed by Northrop �1963�.

A. History

In the past two decades, researchers began to face the
shortcomings of standard guiding-center theory
�Northrop, 1963�: it does not have an energy conserva-
tion law �for time-independent systems�, it fails to pro-
vide equations of motion consistent with Liouville’s
theorem �Goldstein et al., 2002�, and it does not derive
from a variational principle. These shortcomings had be-
come increasingly important as applications of guiding-
center theory were taken to their limits, especially in
numerical studies of particle motion in complex mag-
netic geometries. A small amount of energy nonconser-
vation is not critical for short-time integration, but over
long times it can accumulate and cause numerical analy-
ses to give unphysical results. Liouville’s theorem is im-
portant for particle-in-cell simulation techniques �Bird-
sall and Langdon, 1985�, in which each particle is
advecting a part of phase space, and so the equations of
motion need to conserve phase-space volume. Integra-
tion of guiding-center equations of motion having no
Liouville property may yield unphysical attractors or re-
pellers giving spurious loss. Further, without a varia-
tional form of the equations of motion, Noether’s theo-
rem may not be applicable, which would otherwise
provide constants of motion for systems that exhibit
symmetries.

All of these problems would ultimately be solved by
the development of a Hamiltonian theory of guiding-
center motion 	Boozer �1980� showed that the guiding-
center equations could be modified to have the Liouville
property without necessarily being Hamiltonian
.
Hamiltonian theories naturally have the Liouville prop-
erty, possess a variational structure, and have an energy
conservation law for time-independent systems. More-
over, having a Hamiltonian theory of guiding-center mo-
tion guarantees that further reductions, such as the in-
troduction of the longitudinal invariant, are possible to
all orders �Kruskal, 1962�. Efforts were made in at least
three separate directions to obtain a Hamiltonian theory
of guiding-center motion.

694 John R. Cary and Alain J. Brizard: Hamiltonian theory of guiding-center motion

Rev. Mod. Phys., Vol. 81, No. 2, April–June 2009



Canonical perturbation theory was used to obtain
guiding-center equations of motion by Gardner �1959�
and Wong �1982�. In these analyses, one begins by intro-
ducing flux coordinates � and 	 �Stern, 1970� for the
magnetic field B=����	. With this �Euler-Clebsch�
representation for the magnetic field, canonical coordi-
nates are found. Wong �1982� proceeded perturbatively
to introduce a transformation to new coordinates such
that one canonical pair represents the fast gyromotion,
while the remaining four coordinates evolve on slow
time scales. Being canonical, these coordinates have a
unit phase-space Jacobian. Moreover, the equations of
motion are simply described by a Hamiltonian function
and a canonical Poisson bracket. However, one must use
nonphysical coordinates in this theory.

Boozer �1980� showed that, for magnetic fields consis-
tent with scalar pressure magnetohydrodynamic �MHD�
equilibrium, the guiding-center equations of motion can
be modified to have the Liouville property and, further,
if the fields are curl-free ���B=0�, these equations can
be derived from a Hamiltonian. This work yielded
guiding-center equations of motion similar or identical
to those that had been obtained previously �Morozov
and Solov’ev, 1966; Rutherford, 1970; Dobrott and Frie-
man, 1971�. Subsequently, White et al. �1982� showed
that, for non-curl-free magnetic fields ���B�0� consis-
tent with scalar pressure MHD equilibrium, the guiding-
center equations of Boozer �1980� can be derived from a
Hamiltonian. In fact, their results were somewhat more
general, in that the magnetic field could be composed of
two terms, one that has nested flux surfaces and another
that corresponds to the primary terms for breaking
those flux surfaces in perturbation theory. Later, White
and Chance �1984� showed that, for systems with nested
flux surfaces, one could introduce new variables uni-
formly close to the toroidal and poloidal angles, such
that with the neglect of higher-order terms in guiding-
center theory the guiding-center equations of motion are
canonical. Indeed, White and Chance �1984� used these
coordinates for analyzing the complicated guiding-
center orbits in helical configurations. At nearly the
same time, Boozer �1984� pointed out that these canoni-
cal equations of motion arise by neglecting a term im-
portant only for toroidal configurations with significant
plasma pressure.

This review will be based on the results of Littlejohn,
who, in a series of papers �Littlejohn, 1979, 1981, 1982a�
culminating in the work of Littlejohn �1983�, used non-
canonical Hamiltonian mechanics to derive the guiding-
center phase-space Lagrangian from first principles. The
approach is to use Lie-transform perturbation theory
�Cary, 1981a, 1981b� for noncanonical Hamiltonian me-
chanics �Cary and Littlejohn, 1983�. The noncanonical
formulation of mechanics follows from noting that the
canonical equations of motion derive from requiring sta-
tionarity of the action integral

A	x
 � � L�x, ẋ ;t�dt , �1.2�

where L�p�x , ẋ , t� · ẋ−H�x , ẋ , t�, with respect to virtual
displacements 
x in configuration space. Since this for-
mulation is variational, arbitrary coordinates can be in-
troduced. In particular, physical variables, such as Car-
tesian guiding-center coordinates, can be used without
sacrificing the formal results of Hamiltonian theories:
noncanonical Hamiltonian mechanics is variational �and
is, therefore, amenable to the derivation of dynamical
invariants from Noether symmetries�, possesses the
Liouville property, and possesses all Poincaré integral
invariants �thereby preserving the structure of phase
space�. Furthermore, one is guaranteed the existence of
an adiabatic invariant to all orders for systems with well-
separated time scales.

Littlejohn �1983� introduced a perturbative transfor-
mation to new guiding-center coordinates. The rapid
motion is contained in the gyrophase �, the magnetic
moment �1.1� is an adiabatic invariant, and the remain-
ing variables, the three spatial coordinates of the guiding
center and the parallel �kinetic� momentum, are slowly
varying. At each order at which the phase-space La-
grangian is calculated, there is an exact Liouville prop-
erty and a Noether derivation of exact conservation
laws. Moreover, this formulation, like other Hamiltonian
formulations, can be the starting point for the derivation
of other adiabatic invariants such as the longitudinal in-
variant and the drift invariant or the parallel invariant
for motion in toroidal magnetic fields with ripple �Cary
et al., 1988�. Additionally, when canonical variables are
available, symplectic integration techniques �Forest and
Ruth, 1990; Candy and Rozmus, 1991�, with their en-
hanced numerical stability, may be used. Finally, because
the transformation is known, one can show how to cal-
culate the currents and densities from the guiding-center
distribution �Brizard, 1989, 1992�.

Our calculations proceed through first order in the
ratio of the gyroradius to scale length. However, unlike
previous work �Littlejohn, 1983�, we do not have an or-
dering in which the electric field is small. Thus, the E
�B drift velocity occurs at lowest order in the analysis.
With this subsidiary ordering, we are able to obtain the
polarization drift at the same order as the magnetic drift
velocities.

B. Notation

The latin indices i, j, and k are used to denote com-
ponents of covariant, contravariant, or mixed tensors in
configuration space or momentum space and take values
from 1 to N �N is the number of degrees of freedom�.
The greek indices � and 	 are used to denote phase-
space components and take values from 1 to 2N, while
the greek indices � and � are used to denote space-time
components of four-vectors or four-by-four tensors and
take values from 0 to 3. The sans-serif latin indices a and
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b are used to denote components in eight-dimensional
extended phase space.

C. Organization

We begin, in Sec. II, with a discussion of the phase-
space Lagrangian formulation of mechanics. As we have
noted, the phase-space Lagrangian formalism has the
benefits of the Hamiltonian formalism �i.e., Liouville
and Noether properties� without the drawback of having
to use canonical coordinates. We show how the phase-
space Lagrangian formalism possesses the Hamiltonian
properties.

In Sec. III, we introduce the guiding-center phase-
space Lagrangian. From the guiding-center phase-space
Lagrangian, and the general formalism of phase-space
Lagrangians, we immediately obtain the Hamiltonian
guiding-center equations of motion. At this point we
turn our attention to the derivation of the guiding-center
Lagrangian in our more general ordering of large elec-
tric fields. Next we show how the transformation can be
used to obtain the particle currents and densities in con-
figuration space from the guiding-center distribution.
Last, we consider two applications. We show how to ob-
tain the canonical angular momentum conserved for sys-
tems with azimuthal symmetry, and we show how the
Hamiltonian formulation of magnetic-field line flow can
be obtained from the guiding-center Lagrangian. In this
and all sections, we develop results only through first
order in the ratios of gyroradius to scale length and char-
acteristic frequencies to gyrofrequency, even though
there has been a large amount of development of higher-
order guiding-center equations �Northrop and Rome,
1978� and the problems of gyrogauge invariance �Little-
john, 1984, 1988� that arise in this context.

In Sec. IV, we turn to the problem of finding canonical
coordinates for the guiding-center Lagrangian. We ap-
proach this problem from the question of how one ob-
tains canonical coordinates from a general phase-space
Lagrangian. With this basis, we are able to show how the
various canonical coordinates can be obtained by apply-
ing transformations to the guiding-center variables and
Lagrangian of Sec. III. In particular, we show how flux
coordinates are modified to obtain canonical variables.

In Sec. V, we discuss the longitudinal and drift adia-
batic invariants of Hamiltonian guiding-center theory.
First, we calculate these invariants to lowest order, as is
valid for the guiding-center calculation developed here,
and show how to obtain appropriate canonical action-
angle coordinates. However, our calculation illustrates
that the longitudinal adiabatic invariant exists to all or-
ders for a guiding-center phase-space Lagrangian calcu-
lated only to finite order. This property is important for
numerical analyses. Because an invariant corresponding
to the longitudinal adiabatic invariant exists for a rea-
sonably small ratio of gyroradius to scale length, one
would like guiding-center dynamics also to have an in-
variant, so that numerical integrations yield long-time
results consistent with such an invariant, e.g., the motion
stays close to some surface in phase space. Truncated

Hamiltonian guiding-center dynamics possesses an adia-
batic invariant to all orders, while truncated non-
Hamiltonian theories in general do not. For accurate,
long-time results, it is therefore important to integrate
Hamiltonian guiding-center equations of motion. First-
order corrections for the magnetic moment �first adia-
batic invariant� and the bounce action �second adiabatic
invariant� are systematically derived by Lie-transform
perturbation theory.

In Sec. VI, we discuss the covariant and noncovariant
formulations of relativistic guiding-center Hamiltonian
dynamics. While the covariant formulation is elegant, it
is based on a covariant Hamiltonian that is not energy-
like �since it is a Lorentz invariant�, which makes it dif-
ficult to apply. The noncovariant formulation, on the
other hand, treats time separately from spatial coordi-
nates and uses an energylike relativistic Hamiltonian.

In Sec. VII, we use Hamiltonian guiding-center theory
to discuss properties of configurations having reduced
collisional transport. These concepts, isodynamism,
guiding-center integrability, omnigeneity, and specific
omnigeneity, are more easily discussed using the phase-
space Lagrangian of Hamiltonian guiding-center dynam-
ics, as it is easily transformed to the flux coordinates in
which the properties of the equilibrium are naturally
stated. Nührenberg and Zille �1988� relied crucially on
the developments of Hamiltonian guiding-center dy-
namics to find their improved confinement configura-
tions. Our discussion reviews the results in this area and
shows how the concepts of specific omnigeneity, omni-
geneity, guiding-center integrability, and isodynamism
are successively more restrictive.

In Sec. VIII, we summarize our work and indicate
possible areas of new research. In Appendix A, we show
how the original guiding-center equations of motion of
Northrop �1963�, which lack Hamiltonian properties, can
be modified to become the Northrop Hamiltonian
guiding-center equations. The primary difference be-
tween the Northrop Hamiltonian guiding-center equa-
tions and the Hamiltonian guiding-center equations pre-
sented in Sec. III is that the polarization drift velocity is
included in Northrop’s guiding-center velocity while it is
absent in the standard guiding-center velocity presented
in Sec. III. In Appendix B, we review the derivation of
several sets of coordinates for toroidal magnetic fields
with nested flux surfaces. Last, in Appendix C, we
present an introduction to the derivation of a Fokker-
Planck collision operator in guiding-center phase space.
Through the guiding-center phase-space transformation,
the classical transport coefficients for spatial diffusion in
a strongly magnetized plasma are recovered.

II. PHASE-SPACE LAGRANGIAN FORMULATION OF
MECHANICS

Our analysis uses the phase-space Lagrangian formu-
lation of mechanics. This formulation allows one to use
arbitrary �noncanonical� coordinates in phase space,
while retaining features of Hamiltonian mechanics, such
as Noether’s theorem and the Poincaré invariants. We
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begin this section with a review of Lagrangian and
Hamiltonian mechanics. The phase-space Lagrangian
follows immediately. Finally, we discuss how Noether’s
theorem and the Poincaré invariants appear in this for-
mulation.

A. Lagrangian and Hamiltonian formulation

The Lagrangian formalism �Saletan and Cromer, 1971;
Landau and Lifshitz, 1976; Arnold, 1989; Goldstein et
al., 2002� allows one to use arbitrary coordinates in con-
figuration space. The Lagrangian for a set of coordinates
q= �q1 ,q2 , . . . ,qN�, where N denotes the number of de-
grees of freedom, is a function L�q , q̇ , t� of the coordi-
nates and their time derivatives. The equations of mo-
tion follow from requiring a trajectory’s action �1.2� to
be stationary with respect to variations of the trajectory
q�t� in configuration space. This requirement yields the
Euler-Lagrange equations

d

dt
� �L

�q̇i
 = �L

�qi �2.1�

for the trajectory. For charged-particle motion in an
electromagnetic field, for example, the Lagrangian in
Cartesian coordinates �for a particle of mass m and
charge e� is

L�x, ẋ,t� =
m

2
�ẋ�2 +

e

c
ẋ · A�x,t� − e��x,t� , �2.2�

in terms of the scalar potential � and the vector poten-
tial A, which give the electromagnetic field via E
=−��−c−1�A /�t and B=��A.

The Lagrangian formalism is said to be coordinate in-
dependent. That is, the action integral �1.2� may be cal-
culated in any coordinate system, and the statement

A=0 that determines the trajectories may be stated
without reference to any particular set of coordinates. In
practice, this means that, as long as the time variable is
not changed, the Lagrangian is a scalar. Hence, to trans-
form the Lagrangian �2.2� to generalized coordinates q,
one substitutes x�q , t� and ẋ=�x /�t+�q̇i�x /�qi into the
Lagrangian �2.2�, and one has the Lagrangian appropri-
ate for the new variables. This property of the Lagrang-
ian formalism allows one to find easily the dynamical
equations �2.1� in new, more convenient coordinates,
such as polar coordinates for the central force problem.

The Hamiltonian formalism �Arnold, 1989; Goldstein
et al., 2002� is one step more general than the Lagrang-
ian formalism in that it places q and q̇ on an equal foot-
ing and allows more general transformations. We define
the canonical momentum p with components

pi =
�L

�q̇i �q,q̇,t� . �2.3�

The Hamiltonian formalism may be used whenever Eq.
�2.3� may be inverted to find the velocities as functions
of the canonical momenta, q̇i�q ,p , t�. In this case, a point
in phase space is determined by q and p, rather than q

and q̇. The equations of motion are Hamilton’s equa-
tions,

q̇i =
�H

�pi
and ṗi = −

�H

�qi , �2.4�

where

H�q,p,t� = p · q̇�q,p,t� − L	q,q̇�q,p,t�,t
 �2.5�

defines the Hamiltonian through the Legendre transfor-
mation �2.5�. In Cartesian coordinates, the Hamiltonian
corresponding to a charged particle moving in an elec-
tromagnetic field, from Eqs. �2.2� and �2.3�, is

H�x,p,t� =
1

2m
�p −

e

c
A�x,t��2 + e��x,t� . �2.6�

Here the canonical momenta �2.3� are

pi =
�L

�ẋi = mẋi +
e

c
Ai.

The first term represents the kinetic momentum while
the second term represents the magnetic part of the ca-
nonical momentum for a charged particle moving in a
magnetic field.

While Hamiltonian mechanics treats the coordinates
and momenta on equal footing and allows for a broader
class of transformations, the set of transformations is yet
restricted to canonical transformations. To define these
transformations, it is convenient to denote the phase-
space point by the 2N-dimensional vector z
= �q1 , . . . ,qN ,p1 , . . . ,pN�. The transformation to another
set of coordinates Z�z , t� is canonical if the Jacobian ma-
trix

D�
	 =

�Z	

�z�
�2.7�

is symplectic, i.e., it satisfies D ·
 ·D†=
, where 
 is the
fundamental symplectic N�N matrix

� = � 0 
ij

− 
ij 0

 , �2.8�

and D† denotes the transpose of D.
The fundamental symplectic form �2.8� defines the

Poisson brackets �denoted �,�� of the coordinates and the
canonical-momenta among themselves,

�z�,z	� = 
�	 or �qi,pj� = 
j
i. �2.9�

For any two functions f and g in phase space, the canoni-
cal Poisson bracket �,� is a bilinear antisymmetric differ-
ential operator defined as

�f,g� =
�f

�z�

�	

�g

�z	
=

�f

�q
·

�g

�p
−

�f

�p
·

�g

�q
. �2.10�

�Here and throughout summation over repeated indices
is implied.� When expressed in terms of the canonical
Poisson bracket �2.10�, Hamilton’s equations of motion
can be written as
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dz�

dt
= 
�	

�H

�z	
. �2.11�

Canonical transformations are defined as those for
which the Poisson bracket �2.10� remains form invariant,
i.e., one could have used any set of canonical coordi-
nates Z in place of z in Eq. �2.10�. This and other prop-
erties of canonical transformations are discussed in stan-
dard textbooks on classical mechanics �Goldstein et al.,
2002�.

Canonical transformations have the property of pre-
serving the form of Hamilton’s equations. That is, for
any Hamiltonian H�q ,p , t� and any canonical transfor-
mation �q ,p�→ �Q ,P� to new coordinates Q�q ,p , t� and
momenta P�q ,p , t�, there exists a new Hamiltonian
K�Q ,P , t� giving the evolution of the new variables by

Hamilton’s equations Q̇i��K /�Pi and Ṗi�−�K /�Qi.
Furthermore, the set of canonical transformations is the
largest set such that a new Hamiltonian is guaranteed
for any Hamiltonian H in the original variables.

B. Phase-space Lagrangian

A valuable feature of a Lagrangian formalism is that
one can make arbitrary coordinate transformations. A
phase-space Lagrangian �a Lagrangian that yields the
correct equations of motion in phase space when all the
phase-space coordinates are varied� should be easily
transformed to an arbitrary �e.g., noncanonical� set of
phase-space coordinates. In fact, the phase-space La-
grangian L is well known and equals the configuration-
space Lagrangian L in value,

L�q,p,q̇,ṗ,t� � p · q̇ − H�q,p,t� . �2.12�

Hamilton’s equations follow from the phase-space
Euler-Lagrange equations

d

dt
� �L

�q̇i
 = �L
�qi → ṗi = −

�H

�qi

and

d

dt
� �L

�ṗi

 = �L

�pi
→ 0 = q̇i −

�H

�pi
.

The phase-space Lagrangian �2.12� that gives Hamilton’s
equations �2.11� has a very special form. The time de-
rivatives of only half �q1 , . . . ,qN� of the phase-space vari-
ables �q1 , . . . ,qN; p1 , . . . ,pN� are present. Further, these
time derivatives are multiplied by the other half of the
variables �p1 , . . . ,pN�. We say that this phase-space La-
grangian is in canonical form. In the next section, we
consider more general forms of the phase-space La-
grangian.

To illustrate the use of this formalism, we consider the
motion of a particle in an electromagnetic field. Equa-
tions �2.6� and �2.12� together imply that the phase-space
Lagrangian for this system is

L = p · ẋ −
1

2m
�p −

e

c
A�x,t��2 − e��x,t� . �2.13�

We may now choose to use the particle velocity

v�
1

m
�p −

e

c
A
 �2.14�

as a variable in place of the canonical momentum p. The
phase-space Lagrangian for the noncanonical variables
�x ,v� is

L = �mv +
e

c
A
 · ẋ − �e� +

m

2
�v�2
 . �2.15�

The phase-space Euler-Lagrange equations for the ve-
locity variables v yield �L /�v=0 �since �L /�v̇=0�, or

ẋ = v , �2.16�

while for the coordinates x we obtain

d

dt
�mv +

e

c
A�x,t�� = �� e

c
A�x,t� · ẋ − e��x,t�� ,

which, when evaluated explicitly, yields

mv̇ = eE +
e

c
ẋ� B . �2.17�

This expression becomes the Lorentz force on a charged
particle after the identification �2.16� is made.

C. Equations of motion for the phase-space Lagrangian

With a Lagrangian for the canonical phase-space vari-
ables �q ,p�, we may transform to any 2N coordinates z�

��=1, . . . ,2N� that parametrize the phase space by mak-
ing the appropriate substitutions into the phase-space
Lagrangian. In general, upon doing so, we no longer
have the canonical form �2.12� for the phase-space La-
grangian, so we no longer have Hamilton’s canonical
equations. We now investigate the structure of the equa-
tions given by the general phase-space Lagrangian.

To calculate the new phase-space Lagrangian, we
need the functions qi�z , t� and pi�z , t�, which define the
new parametrization of phase space. The total deriva-
tives of the q coordinates become

q̇i =
�qi

�t
+ ż�

�qi

�z�
. �2.18�

Insertion of Eq. �2.18� into Eq. �2.12� yields the general
form for a phase-space Lagrangian,

L� ��ż� − H , �2.19�

where

��� p ·
�q
�z�

and H = H − p ·
�q
�t

. �2.20�

The general phase-space Lagrangian �2.19� is written in
terms of a symplectic part ���ż��, where time derivatives
ż� appear at first order only, and a Hamiltonian part
�−H�. The notation �2.19� emphasizes that � is a covari-
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ant vector �or one-form� in the 2N-dimensional phase
space and the symplectic part is said to be canonical if
the 2N-dimensional covector � has N nonvanishing
components. Note that, while the phase-space Lagrang-
ian �2.19� represents a scalar field, it is sometimes useful
to refer to its 2N+1 components ��� ,−H�. The action
integral �1.2�, therefore, becomes a path integral in
phase-space-time �z , t�,

A =� ���dz� − Hdt� . �2.21�

This formalism allows one to express trajectories as oc-
curring in the �2N+1�-dimensional geometry of phase-
space-time. However, since we are not transforming
time itself, it is sufficient to consider the 2N-dimensional
phase space with time-dependent transformations in
what follows.

The addition of a total time derivative to the Lagrang-
ian �2.19� does not affect the equations of motion, as its
integral depends only on the end points, not the path.
Addition of the total time derivative of a phase-space
function F�z , t� to the Lagrangian L→L+dF /dt intro-
duces the transformation

��→ �� +
�F

�z�
and H → H −

�F

�t
. �2.22�

This is a type of gauge transformation and, hence, F is
called a gauge function.

Variation of the Lagrangian �2.19� yields the phase-
space Euler-Lagrange equations

d

dt
� �L

�ż�

 = �L

�z�
. �2.23�

Upon using Eq. �2.19�, we find

�L
�ż�

= ��,

�L
�z�

=
��	
�z�

ż	 −
�H
�z�

,

so that Eq. �2.23� becomes

d��
dt
�

���
�t

+ ż	
���
�z	

=
��	
�z�

ż	 −
�H
�z�

.

Next, upon rearranging terms, we finally obtain

��	
dz	

dt
�

�H
�z�

+
���
�t

, �2.24�

where the Lagrange-bracket two-form � is the exterior
derivative of the one-form � �Arnold, 1989�,

��	�
��	
�z�

−
���
�z	

=
�p
�z�

·
�q
�z	

−
�p
�z	

·
�q
�z�

. �2.25�

The components of the two-form � can be used to con-
struct a 2N�2N matrix known as the Lagrange matrix
�Goldstein et al., 2002�. We note that the Lagrange ma-
trix �2.25� and the right-hand side of Eq. �2.24� are both

invariant with respect to the gauge transformation �2.22�
and, thus, the equations of motion �2.24� are also gauge
invariant.

Under the assumption of a regular Lagrangian �for
which det ��0�, we define the Poisson matrix � to be
the inverse of the Lagrange matrix � �i.e., ��	�	�=
�

��.
The equations of motion �2.24� can then be inverted to
give

dz�

dt
=��	� �H

�z	
+

��	
�t



=��	� �H

�z	
+ � �p

�t
·

�q
�z	

−
�p
�z	

·
�q
�t

� . �2.26�

Thus, the �2N+1�-dimensional phase-space Lagrangian
�2.19� is associated with Hamilton’s equations �2.26� as
follows: the Poisson matrix ��	 is obtained from the
2N-dimensional symplectic covector � and the Hamil-
tonian H is obtained from its Hamiltonian part. Hamil-
ton’s equations �2.26� can be used to derive the energy
equation

dH
dt

=
�H
�t

+
�H
�z�

dz�

dt

=
�H
�t

+
�H
�z�
��	� �H

�z	
+

��	
�t



=
�H
�t

−
dz	

dt

��	
�t

, �2.27�

where we used the antisymmetry of the Poisson matrix.
The energy equation �2.27� clearly shows that energy is
conserved in time-independent �� /�t�0� Hamiltonian
systems. Note that a general Hamiltonian system based
on general 2N-dimensional phase-space coordinates z is
determined by a Hamiltonian function H�z , t� and a
Poisson-bracket structure based on the Poisson tensor
��	�z , t�.

We now calculate the Jacobian matrix for the time-
dependent transformation Z→z�Z , t� from canonical co-
ordinates Z= �q ,p� to noncanonical coordinates z. From
Eq. �2.7�, we find D�

	=�z	 /�Z�. Thus, the inverse trans-
formation z→Z�z , t� has the Jacobian matrix �D−1�	

�

=�Z� /�z	. In matrix notation, the Lagrange tensor �2.25�
can be written as

� = − �D−1�† · � · D−1, �2.28�

and, therefore, its inverse is given by

� = D · � · D†. �2.29�

Hence, ��	= �z� ,z	� is the Poisson bracket of z� with z	;
it equals � for canonical coordinates. �Often the Poisson
tensor is denoted by J, but we reserve this symbol for
the action of the action-angle variables.�

For the case of time-independent transformations to
noncanonical coordinates �H=H�, the noncanonical
equations of motion �2.26� become
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dz�

dt
=��	

�H

�z	
� �z�,H� . �2.30�

The last form shows that the evolution can still be ex-
pressed in terms of a Poisson bracket, here generalized
to

�f,g� �
�f

�z�
��	

�g

�z	
�2.31�

for noncanonical coordinates. The noncanonical Poisson
bracket �2.31� satisfies the Jacobi identity ˆf , �g ,h�‰
+ ˆg , �h , f�‰+ ˆh , �f ,g�‰=0 for three arbitrary functions f,
g, and h, which can also be expressed as

������
	� +�	����

�� +������
�	 = 0. �2.32�

That the Poisson bracket �2.31� satisfies the Jacobi iden-
tity �2.32� follows from the fact that � is the inverse of
the exterior derivative of a one-form �i.e., �����	=
�

	�.
Indeed, the Jacobi identity �2.32� may be expressed in
terms of components of the Lagrange tensor ��	 as

�
��	 + ���	
 + �	�
� = 0,

which is identically satisfied from the definition �2.25� of
��	. We note that in the canonical case, the Jacobi iden-
tity �2.32� is identically satisfied since the components of
the Poisson tensor �=� are constants �i.e., the compo-
nents are either 0, +1, or −1�. In the noncanonical case,
however, the components ��	�z , t� of the Poisson tensor
depend on phase-space-time coordinates and, therefore,
the fact that our Poisson tensor is guaranteed to satisfied
the Jacobi identity is a great advantage.

It is illustrative to evaluate these tensors for the
phase-space Lagrangian �2.15�, which uses the nonca-
nonical coordinates �x ,v�. We express these tensors in
3�3 block form as

� = m��ijk�
k − 
ij


ij 0

 �2.33�

for the Lagrange tensor �here, i, j, and k take values
from 1 to 3 and �k=eBk /mc�. Inverting this matrix
yields the Poisson tensor

� = m−1� 0 
ij

− 
ij �ijk�k

 . �2.34�

The noncanonical Poisson bracket for charged particle
motion in an electromagnetic field is therefore

�f,g� =
1

m
��f ·

�g

�v
−

�f

�v
· �g
 + eB

m2c
·

�f

�v
�

�g

�v
. �2.35�

Here we see that, up to a factor of mass m, the first two
terms possess the canonical form. The last term, on the
other hand, involves the magnetic field B=��A explic-
itly, while the noncanonical Hamiltonian

H�x,v,t� =
m

2
�v�2 + e��x,t� �2.36�

now involves only the scalar potential. Last, note that
the energy equation �2.27� becomes

dH

dt
= e

��

�t
−

e

c

�A
�t

· ẋ , �2.37�

which vanishes for time-independent potentials.

D. Noether’s theorem

Noether’s theorem states in general that where there
is a continuous family of transformations for which the
Lagrangian is invariant �i.e., the transformations corre-
spond to a symmetry of the Lagrangian�, then there ex-
ists a corresponding constant of motion. Such a symme-
try exists when one of the coordinates is ignorable �i.e.,
only derivatives of the ignorable coordinate appear in
the Lagrangian, not the coordinate itself�. Then the sym-
metry is represented by the family of translations in the
ignorable coordinate.

For the present case, we assume that one of the coor-
dinates �say, z	� does not appear in the Lagrangian, i.e.,
none of the one-form components �� depend on z	 and
�	=�L /�ż	�0. The phase-space Euler-Lagrange equa-
tion �2.23� for �=	 yields

d�	
dt

=
�L
�z	

= 0, �2.38�

which shows that �	 is an invariant �Cary, 1977�. For the
case in which the Lagrangian does not depend on time,
the same argument can be made to show that the Hamil-
tonian H is an invariant.

E. Liouville’s theorem

The transformation Jacobian J=det�D−1� may not be
constant when the phase-space transformation is nonca-
nonical. In fact, for a time-dependent transformation,
the Jacobian J�z , t� satisfies the divergence equation

�J
�t

+
�

�z�
�Jdz�

dt

 = 0. �2.39�

This equation implies that the equations of motion �2.26�
satisfy the Liouville theorem, i.e., the Hamiltonian flow
conserves the phase-space volume d3qd3p=Jd6z.

For a time-independent transformation, the Liouville
theorem �2.39� becomes

0 =
�

�z�
�J��	 �H

�z	

 = �

�z�
�J��	�

�H

�z	
, �2.40�

which, for an arbitrary Hamiltonian H, yields the Liou-
ville identities

�

�z�
�J��	� = 0. �2.41�

These Liouville identities imply that we may write the
noncanonical Poisson bracket �2.31� as a phase-space di-
vergence,
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�f,g� =
1
J

�

�z�
�fJ��	 �g

�z	

 , �2.42�

so that ��f ,g�Jd6z�0.
We note that the phase-space Lagrangian �2.19� con-

tains within it the information needed to calculate the
Jacobian J. Using Eq. �2.28�, we find det���=J2, so that
det��� is positive and, with the convention that J is
positive,

J = �det��� . �2.43�

Hence, the Jacobian can be calculated directly from the
�phase-space� Lagrangian matrix �2.25� rather than the
Jacobian matrix �2.28�. For example, from the Lagrange
matrix �2.33�, we find J=m3 and, thus, d3qd3p
=m3d3xd3v. In addition, the Liouville identities associ-
ated with the noncanonical Poisson bracket �2.35� are

�

�vj� em

c
Bi�

ijk
 = 0.

III. NONCANONICAL HAMILTONIAN GUIDING-CENTER
THEORY

In the present section, we start by giving the guiding-
center phase-space Lagrangian and show how the equa-
tions of motion are derived from it. From there, and the
results of Sec. II, it is straightforward to derive the drift-
kinetic equation, which determines the evolution of a
distribution of guiding centers. From the Hamiltonian
guiding-center theory, we are able to obtain the con-
served volume and Hamiltonian drift-kinetic equation
directly, in Sec. II.E, without reference to the transfor-
mation, as the volume element is contained in the phase-
space Lagrangian. Only then do we step back and show
how the guiding-center Lagrangian is derived �in Sec.
III.C�. This derivation is needed to understand the trans-
formation from the usual variables to guiding-center
variables as is needed and used in Sec. III.D to derive
the currents due to a given guiding-center distribution.
As an application of noncanonical Hamiltonian guiding-
center theory, we show how to derive the guiding-center
angular momentum conserved for axisymmetric systems
in Sec. III.E. Finally, in Sec. III.F, we show how the
Hamiltonian formulation of field line flow follows di-
rectly from noncanonical Hamiltonian guiding-center
theory.

A. Guiding-center Lagrangian

The guiding-center phase space consists of the
guiding-center position X, essentially the center of the
helix; the guiding-center parallel velocity variable u

� b̂ ·Ẋ; the �lowest-order� magnetic moment,

��
m�w�2

2B�X,t�
, �3.1�

where w�v�−vE is the perpendicular velocity in the
local frame moving with the E�B drift velocity vE�E

�cb̂ /B; and the ignorable gyrophase �, which gives the
location of the particle on the circle about the guiding
center. As there are still six variables parametrizing
phase space, there is no loss of information in making
the guiding-center transformation �x ,v�→ �X ,u ,� ,��.
For the sake of simplicity of notation, we occasionally
use the gyroaction variable J��mc /e�� instead of the
magnetic moment � whenever we need to refer to the
action-angle coordinates �J ,�� associated with gyromo-
tion.

The equations of motion for these variables are given
by the guiding-center phase-space Lagrangian,

Lgc�X,u,�,� ;t� = � e
c

A�X,t� + mub̂�X,t�� · Ẋ

+ J�̇ − Hgc, �3.2�

in which the guiding-center Hamiltonian is given by

Hgc�X,u,� ;t� =
m

2
u2 + �B�X,t� + e��X,t�

−
m

2
�vE�X,t��2. �3.3�

The arguments are shown here to emphasize that, for
example, the magnetic-field strength B�X , t� is evaluated
at the guiding-center position X, not at the particle po-
sition x. Here and throughout, the effects of a gravita-
tional field may by found by adding the gravitational
m�G to the electrostatic potential energy e�. In addi-
tion, we now drop the adjective phase space, as the
guiding-center Lagrangian is always henceforth a phase-
space Lagrangian.

The guiding-center Lagrangian �3.2� comes not simply
from gyrophase averaging, but from a transformation
from the physical �particle� variables �x ,v� to the
guiding-center variables �X ,u ,� ,��. The details of the
gyrophase � definition will be presented later �Sec.
III.C�. The definitions of the parallel velocity u and mag-
netic moment � have already been given. To complete
the picture, we must give the relation

x�X + � �3.4�

between the physical location x and the guiding-center
position X, where � denotes the �gyroradius� displace-
ment vector in the frame drifting with the E�B velocity
vE. Here we simply note that the displacement vector
�� �̃+ �̄ has a part �denoted �̃� that is explicitly gy-
rophase dependent and a part �denoted �̄� that is gy-
rophase independent. In what follows, we show that the
latter part
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�̄ =
b̂

�
� vE =

cE�

�B
�3.5�

denotes the guiding-center polarization displacement
�Kaufman, 1986�. The guiding-center Lagrangian �3.2�
has the noncanonical form �2.19� and the guiding-center
Hamiltonian �3.3� is given as the sum of the guiding-
center kinetic energy �m /2�u2+�B plus the effective
electric potential energy e�− �m /2��vE�2, which is ob-
tained as a result of the finite-Larmor-radius �FLR� ex-
pansion of the sum e��X+ �̄�+ �m /2��vE�2. An alternate
choice for the guiding-center Lagrangian and Hamil-
tonian associated with the choice �̄�0 is discussed in
Appendix A.

Our guiding-center Lagrangian �3.2� is obtained from
an ordering in which the scalar potential � is one order
lower than the particle kinetic energy, unlike previous
derivations of the Hamiltonian theory of guiding-center
motion. In this ordering, the electric drift vE is of the
same order as the perpendicular velocity w, as in some
non-Hamiltonian calculations �Northrop, 1963�. As we
will see, this ordering allows us to obtain the polariza-
tion drift in the same order as the curvature and �B
drifts, although it appears differently in the theory. How-

ever, for consistency the parallel electric field E�=E · b̂
must be smaller �by one order� than the perpendicular
field E�.

The variables �J ,�� appear in canonical form in the
symplectic part of the guiding-center Lagrangian �3.2� as

J�̇ while the guiding-center Hamiltonian Hgc depends on
J �or �� alone. The Hamilton equations for �J ,�� are

J̇ = −
�Hgc

��
� 0, �3.6�

�̇ =
�Hgc

�J
�� . �3.7�

Equation �3.6� shows that the gyroaction �or magnetic
moment� is conserved by the guiding-center equations of
motion. This also follows from Noether’s theorem �Sec.
II.D� since the gyrophase � is an ignorable coordinate,
i.e., only its time derivative appears in the guiding-center
Lagrangian �3.2�.

If one is concerned with only the motion of the guid-
ing center and not the evolution of the gyrophase, the

term linear in �̇ can be dropped from the guiding-center
Lagrangian, as it does not affect the equations of motion
of the other variables, X and u. In the evolution equa-
tions for X and u, the adiabatic invariant � �or J� does
appear but only as a guiding-center dynamical param-
eter.

Variation of the guiding-center Lagrangian �3.2� with
respect to the variable u gives the Euler-Lagrange equa-
tion

0 =
�L
�u

= mb̂ · Ẋ −
�Hgc

�u
,

which yields

u� b̂�X,t� · Ẋ . �3.8�

Thus, the guiding-center Lagrangian �3.2� dictates that u
is the velocity of the guiding center in the direction of
the magnetic field at the guiding center. 	In the present
theory, we have not included the parallel drift of Baños
�1967� and Hazeltine �1973�, which is discussed by
Northrop and Rome �1978�. In the derivation in Sec.
III.D, we discuss how these terms are obtained.


Last, we vary the Lagrangian �3.2� with respect to the
guiding-center position X. With manipulations similar to
those used to derive the Lorentz force from the La-
grangian �2.15�, we obtain the Euler-Lagrange equation

mu̇b̂ = eE − � � B +
m

2
� �vE�2 − mu

�b̂

�t

+ Ẋ� � e
c

B + mu � � b̂

� e�E* +

1

c
Ẋ� B*
 , �3.9�

where the effective electromagnetic fields

E*� − ��* −
1

c

�A*

�t
and B*� ��A* �3.10�

are defined in terms of the effective electromagnetic po-
tentials

e�*� e� + �B − �m/2��vE�2,

A*�A + �mc/e�ub̂ . �3.11�

The guiding-center canonical momentum is now simply
expressed as eA* /c and the guiding-center Hamiltonian
is e�*+mu2 /2.

We obtain the rate of change of the variable u by
taking the scalar product of Eq. �3.9� with the effective
magnetic field B*,

u̇ = −
B*

mB
�
*

· ��Hgc +
e

c

�A*

�t

 � e

m

B*

B
�
*

· E*, �3.12�

with B
�
*� b̂ ·B* the effective magnetic field in the parallel

direction �see Sec. III.B for more details concerning B
�
*�.

The time derivative �3.12� contains terms that are higher
order �in gyroradius� compared with the dominant
terms, which are all that is usually kept. These higher-
order terms, however, are needed for energy conserva-
tion.

The guiding-center velocity Ẋ comes from the vector

product of Eq. �3.9� with b̂ which, using Eq. �3.8�, yields
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Ẋ =
B*

mB
�
*

�Hgc

�u
+

cb̂

eB
�
*
� ��Hgc +

e

c

�A*

�t



= u
B*

B
�
*

+ E*�
cb̂

B
�
*

. �3.13�

If the effective fields �3.10� were replaced by the stan-
dard fields �E ,B�, Eqs. �3.12� and �3.13� would be the
equations of motion for a particle in straight, constant
electric, and magnetic fields.

The guiding-center equations of motion �3.12� and
�3.13� can be used to derive the guiding-center energy
equation

dHgc

dt
=

�Hgc

�t
+ Ẋ · �Hgc + u̇

�Hgc

�u
= e

��*

�t
−

e

c

�A*

�t
· Ẋ ,

�3.14�

which implies that the guiding-center energy Egc

� 1
2mu2+e�* is a constant of the motion for time-

independent fields.
Taylor �1964� obtained the following Lagrangian for

guiding-center motion:

LT =
m

2
ṡ2 +

e

c
�	̇ − e� − �B , �3.15�

where the magnetic coordinates �� ,	 ,s� are used to de-
scribe the magnetic field B=����	=B�x /�s, and the
kinetic energy associated with the drift motion has been
omitted. The Euler-Lagrange equations obtained from
the Taylor Lagrangian �3.15� are

�e/c��̇ = − e�	� − ��	B ,

�e/c�	̇ = e��� + ���B ,

ms̈ = − e�s� − ��sB . �3.16�

It is immediately clear that Taylor’s Lagrangian �3.15� is
not a phase-space Lagrangian 	see Eq. �2.19�
 since the
parallel velocity ṡ appears quadratically. As a result, the
Poisson-bracket structure of Taylor’s Lagrangian and the
Liouville properties of Eqs. �3.16� are unclear. 	See Eq.
�4.30� for the correct phase-space Lagrangian form for
the Taylor Lagrangian.
 In contrast, the guiding-center
Lagrangian �3.2� fits naturally into the general formalism
of phase-space Lagrangians presented in the previous
section. Hence, the Hamiltonian �conserved for autono-
mous systems� is known, the volume element can be de-
rived from the phase-space Lagrangian via Eq. �2.43�,
and for ignorable coordinates z� the conjugate compo-
nent �� is a constant of motion.

An important remark must be made here concerning
the polarization drift, which is absent from the guiding-
center velocity �3.13�. This drift, however, is critical for
obtaining the dielectric response of a low-frequency
plasma. Instead, it appears in the transformation �3.4�
itself, i.e., the derivative of this relation gives

ẋ = Ẋ + �̇̃ + vpol, �3.17�

with

vpol�
d�̄

dt
�3.18�

representing the polarization drift �Sosenko et al., 2001;

Brizard, 2008�, and where �̇̃= �̇��̃ /��+¯ consists of
terms that oscillate on the gyroperiod time scale. The
polarization drift is a pure derivative and, hence, can
always be integrated.1

An alternate set of guiding-center equations of mo-
tion may be derived in which the polarization drift ap-

pears explicitly in the guiding-center velocity Ẋ by
choosing �̄�0 instead of Eq. �3.5�. This alternate set is
presented in Appendix A.

B. Guiding-center phase-space volume conservation law

We calculate the Jacobian Jgc from the Lagrange ten-
sor �2.33� via Eq. �2.43�, thereby avoiding the transfor-
mation, which we have not introduced at this point. It
follows from Eq. �2.33� that the antisymmetric guiding-
center Lagrange tensor for the variables �X ,u ,� ,�� is in
block-diagonal form,

�gc =�
�̂gc 0

0 � 0 − �mc/e�
�mc/e� 0


 � , �3.19�

where �̂gc is the 4�4 �X ,u� part of the guiding-center
Lagrange tensor. The components of �̂gc are found from
the guiding-center Lagrangian �3.2� by exterior differen-
tiation of its phase-space part as in Eq. �2.25�. For the
X-u and u-X parts, we find

�̂ui = �̂iu = mbi. �3.20�

For the X-X part, we obtain

�̂ij =
�

�Xi� ecAj + mubj
 − �

�Xj� ecAi + mubi

= �ijk

e

c
B*k, �3.21�

where �ijk is the Levi-Civita symbol. From these expres-
sions it follows that the 4�4 guiding-center Lagrange
tensor is

1This implies, in particular, that the polarization drift cannot
lead to diffusion even in a turbulent field. This is important, as
the difference between the guiding center and the average lo-
cation 	found by dropping the second, oscillating term in Eq.
�3.4�
 is the polarization, the integral of the polarization drift.
This difference must remain small or else the theory, which
assumes that the particle remains close to X, would break
down.
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�̂gc = m�
0 �3

* −�2
* − b1

−�3
* 0 �1

* − b2

�2
* −�1

* 0 − b3

b1 b2 b3 0
� , �3.22�

where

�i
*�

eBi
*

mc
, �3.23�

and so

Jgc = �det��gc� = m2�
�
*� �me/c�B

�
* �3.24�

is the Jacobian, where

B
�
*� b̂ · B* = B + �mc/e�ub̂ · �� b̂ . �3.25�

An important Hamiltonian property of the guiding-
center equations of motion �3.12� and �3.13� is that they
satisfy the guiding-center phase-space volume conserva-
tion law

�B
�
*

�t
+ � · �B

�
*Ẋ� +

�

�u
�B
�
*u̇� = 0. �3.26�

The explicit proof of this important Hamiltonian conser-
vation law is presented in Appendix A.

For later reference, we also provide the guiding-
center Poisson tensor associated with Eq. �3.2�. It has
the block diagonal form

�gc = ��̂gc 0

0 � 0 �e/mc�
− �e/mc� 0


 � , �3.27�

where �̂gc is the 4�4 �X ,u� part of the guiding-center
Poisson tensor,

�̂gc =
1

m�
�
*�

0 − b3 − b2 �1
*

b3 0 − b1 �2
*

− b2 b1 0 �3
*

−�1
* −�2

* −�3
* 0
� . �3.28�

With the guiding-center Poisson tensor �3.27�, the
guiding-center equations of motion �3.12� and �3.13�
clearly have the form �2.26�. The guiding-center Poisson
bracket is thus expressed as

�f,g�gc = �−1�

B
� �f

��

�g

��
−

�f

��

�g

��

 + B*

mB
�
*

· ��f
�g

�u

−
�f

�u
� g
 − � cb̂

eB
�
* · �f� �g , �3.29�

where the � scaling of each term is shown explicitly. The
first term �with �−1 ordering� represents the fast gyromo-
tion dynamics, the second term �with �0 ordering� repre-
sents the intermediate bounce-motion dynamics along
magnetic-field lines, and the third term �with � ordering�
represents the slow drift-motion dynamics across
magnetic-field lines.

C. Derivation of the guiding-center Lagrangian

To obtain the guiding-center Lagrangian �3.2�, we
seek a transformation to alternative phase-space vari-
ables in which the new, guiding-center Lagrangian has a
simple form. The simple form is one in which the degree
of freedom corresponding to gyromotion is absent from
the equations of motion. This means that one of the
variables, in the present case the gyrophase �, is ignor-
able: it appears in the symplectic part of the Lagrangian
only linearly through its first derivative, as in Eq. �3.2�.
As a consequence, � does not appear in the equations of
motion of the remaining variables, and its conjugate
�i.e., its factor in the Lagrangian� is a constant of motion
	see Eq. �2.38�
. Thus, the equations of motion have only
two degrees of freedom.

To accomplish this transformation, one relies on the
small-gyroradius, slowly-varying-field approximation.
We introduce this transformation by inserting an order-
ing parameter � into the Lagrangian �2.15�. Simulta-
neously, we carry out this derivation with units such that
c=1 and e /m��−1=� /B �we restore units at the end of
the calculation�. The resulting Lagrangian is

L�x,v ;t� = 	�−1A�x,t� + v
 · ẋ − 	 1
2 �v�

2 + �−1��x,t�
 .

�3.30�

This parameter � is only an ordering device that allows
us to collect terms of similar size. The relative orders of
the terms in the Lagrangian were chosen by noting that
in the limit of small � the electromagnetic field should
dominate while the remaining terms, essentially kinetic
energy, should be of the same order. This ordering �sum-
marized in Table I� assures that the gyroradius is rela-
tively small, but it allows for the electric field and the
electric drift to be of order unity.

TABLE I. Guiding-center ordering required for the existence of the magnetic-moment invariant.

Order Dimensionless Fields Distances Rates Velocities

�−1 B, E� �

1 E� L v /L, vE /L, �−1 v, vE

� � /L, ����−1 � v� /L, vpol /L, v� /L v�, v�, vpol
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In fact, the ordering specification implied by Eq. �3.30�
is not sufficient for completing the calculation. In gen-
eral, ordering in Lagrangian theory is difficult, as one
must know at the outset the relative sizes of the time
derivatives of the variables. Furthermore, a given term
will contain parts of various orders. For example, the
time derivative of the gyroradius vector �̃ contains the
convective time derivative of the gyroradius �v ·��̃�,
which is small, and the time derivative of the gyrophase

��̇��̃ /���, which is large. With this in mind, we will have
to further discuss the ordering in reference to Table I as
we proceed with the derivation.

The lowest-order motion is found by keeping the
O��−1� terms in the Lagrangian �3.30�: L−1�A · ẋ−�.
The resulting Euler-Lagrange equation for x is

dA
dt

=
�A
�t

+ ẋ · �A = �A · ẋ − �� , �3.31�

which becomes

ẋ� B + E = 0 . �3.32�

Thus, the Lagrangian L−1 does not determine the paral-

lel velocity �b̂ · ẋ�. It determines only that the perpen-
dicular velocity is the electric drift,

ẋ� = vE. �3.33�

Indeed, Eq. �3.32� implies that, to lowest order in �, the

parallel electric field �E�� b̂ ·E� must vanish for our per-
turbation analysis to be consistent.

The lowest-order Lagrangian L−1 is said to be singu-
lar. Indeed Eq. �3.32� cannot be solved for the rates of
change of all variables, which implies that the Lagrange
tensor cannot be inverted �see Sec. II.C� since there is
no equation for the parallel velocity. The Lagrange ten-
sor will be invertible when we obtain its O�1� correc-
tions. In fact, because the Lagrange tensor consists of an
O��−1� part that is singular with an additional O�1� part
that allows inversion, the Poisson tensor �the inverse of
the Lagrange tensor� will be O�1�. This, indeed, is what
motivates having the Lagrangian start with O��−1� terms.

To obtain the guiding-center Lagrangian to higher or-
der, we must introduce a coordinate system. Following
Littlejohn �1983�, we introduce the fixed-frame unit vec-

tors 1̂ and 2̂, which, together with the magnetic unit vec-

tor b̂, form a local right-handed set, 1̂� 2̂= b̂. We write
the particle velocity as a sum of its parallel, electric drift,
and perpendicular parts,

v = v�b̂ + vE + wĉ , �3.34�

with the rotating perpendicular velocity unit vector ĉ
expressed in terms of the fixed-frame unit vectors by

ĉ = − sin���1̂ − cos���2̂ . �3.35�

In these equations, we make explicit the point that the
unit vectors are evaluated at the guiding-center location.
Correspondingly, we introduce the orthogonal unit vec-
tor perpendicular to the magnetic field,

â = b̂� ĉ = cos���1̂ − sin���2̂� −
�ĉ

��
. �3.36�

This vector will prove to be the direction of the gyrora-
dius. These vectors are sketched in Fig. 1.

As we have stated, our goal is to introduce a transfor-
mation, such that the Lagrangian for the guiding-center
variables �X ,u ,w ,�� has the gyrophase � ignorable. We
expect that a transformation of the form

x = X + �� �3.37�

will work on the basis of knowing the solution for the
case of constant magnetic field. To use the form �3.37� in
the Lagrangian �2.15�, we must know the derivatives,
which we write in the form

ẋ = Ẋ + �̇ , �3.38�

with

�̇ = �̇
��̃

��
+ ��v · ��̃ + �̇̄� =

w
B
�̇ + O��� , �3.39�

where we note that the rate of variation of the gyrora-

dius is O��−1� according to Table I �i.e., �̇=��.
We now expand the field quantities using Eq. �3.37�.

Through zeroth order we obtain

L = �−1	A · �Ẋ + �̇� −�
 + � · 	�A · �Ẋ + �̇� − ��


+ v · �Ẋ + �̇� −
�v�2

2
+ O��� , �3.40�

where �� ,A� now denote potentials evaluated at the
guiding-center position X in what follows and � denotes
a gradient with respect to X.

The second term �−1A · �̇ in the Lagrangian �3.40�
should be pushed to higher order so that the guiding-
center Lagrangian to lowest order has no gyrophase-
dependent terms. To accomplish this, we write

1
^

2
^

b
^

â

ĉ

�

FIG. 1. Fixed-frame unit vectors �1̂ , 2̂ , b̂� and rotating-frame
unit vectors �â , b̂ , ĉ�.
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�−1A · �̇ =
d

dt
�A · �� − � �A

�t
+ Ẋ · �A
 · � �3.41�

so that, excluding the exact time derivative, Eq. �3.40�
becomes

L = �−1�A · Ẋ −�� + � · �E + Ẋ� B� + � · �A · �̇

+ v · �Ẋ + �̇� −
�v�2

2
, �3.42�

where we henceforth exclude terms of order O���. Next,
we use the exact derivative

�

2
d

dt
�� · �A · �� =

1
2
��̇ · �A · � + � · �A · �̇�

+
�

2
� · �d � A

dt

 · � ,

so that we may write

� · �A · �̇ = 1
2 �� · �A · �̇ − �̇ · �A · �� + 1

2 �� · �A · �̇

+ �̇ · �A · �� = 1
2�� �̇ · B + O���

and the Lagrangian �3.42� is now written as

L = �−1�A · Ẋ −�� + � · �E + Ẋ� B� +
1
2

�� �̇ · B

+ v · �Ẋ + �̇� −
�v�2

2
. �3.43�

Note that the terms � · �E+Ẋ�B� represent the electric-
dipole and moving electric-dipole contributions to the
guiding-center polarization and magnetization, respec-
tively, while 1

2�� �̇ ·B represents the intrinsic magnetic-
dipole contribution to the guiding-center magnetization.

To make further progress, we introduce the particular
form of the transformation term �,

�� �̃ + �̄ = b̂�
w
B

+ �̄ , �3.44�

with the quantity �̄ �to be determined below� indepen-
dent of the gyrophase. Putting this into Eq. �3.43�, with
Eq. �3.34�, gives the Lagrangian

L = ��−1A + ub̂� · Ẋ + � �w�2
2B

+ vE ·
w
B

−
1
2

�̄ · �̃
�̇
+ Ẋ · �vE − �̄� B� + ��̄ · E −

�vE�2

2



− ��−1� +
u2

2
+
�w�2

2

 , �3.45�

where we used �̃ ·E=w ·vE and u�v�+O���. We see that
Eq. �3.45� will be simplified with the choice

�̄ = B�
vE

B2 =
E�

B2 , �3.46�

which is the guiding-center polarization displacement
�3.5�, where �̄ ·E= �vE�2. Thus we arrive at

L = ��−1A + ub̂� · Ẋ + � �w�2
2B

+ vE ·
w

2B

�̇

− ��−1� +
u2

2
+
�w�2

2
−
�vE�2

2

 . �3.47�

An alternate choice for �̄ is provided by �̄=0 and is
discussed in Appendix A; this alternate choice leads to
guiding-center equations of motion from which the stan-
dard equations of Northrop �1963� are obtained.

The last stage in this derivation is to eliminate the last

O�1�, gyrophase-dependent term vE · �w /2B��̇. This is
done by subtracting the total time derivative

�

2
d

dt
�vE · �̃� = �vE ·

w
2B

�̇ +

�

2

dvE

dt
· �̃

from the Lagrangian �3.47� and omitting terms of order
�. We obtain, finally, the dimensionless form of the
guiding-center Lagrangian,

L = ��−1A + ub̂� · Ẋ + J�̇ − Hgc� Lgc�X,u,�,� ;t� ,

�3.48�

where J�w2 /2B denotes the gyroaction and the
guiding-center Hamiltonian is

Hgc�X,u,� ;t� = �−1� + J� +
u2

2
−
�vE�2

2
. �3.49�

There are no terms in â or ĉ in this equation and, thus,
there is no gyrophase dependence in these equations, so
that the quantity J conjugate to � is a constant of motion.

To understand the accuracy of our calculation, it is
useful to consider the orders appearing in the �dimen-
sionless� equations of motion from the Lagrangian
�3.48�. Equation �3.12� gives a parallel velocity change
that is O��−1� in the absence of any relative ordering of
E� and E�. Thus, the energy change of a particle in a
gyroperiod would be order unity, and, hence, one could
not assume that u is slowly changing on a gyroperiod.
The resolution of this problem is to assume that the par-
allel electric field is O�1�, not O��−1� as is the perpen-
dicular electric field.

Equation �3.13� for the rate of change of the guiding-
center location simply states that this quantity is O�1�,
with Ẋ� being O���. Closer examination shows that the
perpendicular guiding-center velocity has an O�1� piece
due to the perpendicular electric field and an O��� piece
due to the magnetic drifts. This raises the question of
whether the calculation has been carried to sufficiently
high order to allow one to keep these magnetic drifts, as
they are O���, while the Hamiltonian is accurate only
through O�1�.

To answer this question, we must consider how the
equations of motion would change due to the addition of
O��� terms in the Hamiltonian or other terms of the
one-form. Such changes affect the time derivative of the
coordinates only after multiplication by the Poisson ten-
sor, as in Eq. �2.26�. Inspection of the Poisson tensor
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�3.27� shows that the part that leads to Ẋ� is O���.
Hence, O��� changes to the Hamiltonian �3.49� 	or the

one-form �3.48�
 that are O��� will change Ẋ� only by
O��2�, and it is legitimate to keep the magnetic drifts. In
contrast, the O��� terms in the parallel velocity and the
parallel acceleration, while necessary for keeping the
Hamiltonian structure, are not complete. Other O���
terms, such as the parallel drift �Baños, 1967; Hazeltine,
1973�, would arise if the Hamiltonian and/or the one-
form were calculated to O���, as the part of the Poisson
tensor leading to these terms is O�1�.

D. Guiding-center currents

For finding the self-consistent electromagnetic fields
driven by charged particles and for determining observ-
ables, we need to know the density and current in physi-
cal space. As we shall see, the magnetic gradient drifts
do not appear in the formulas for the physical density
and current.

We begin with the general moment integral of the par-
ticle phase-space function �,

n	�
 � � d3p�f

=� d6z�
3�x − r�f

=� d6ZgcTgc
−1�
3�X + � − r�g , �3.50�

where n is the particle density and 	�
 denotes the par-
ticle velocity-space average of � with respect to the Vla-
sov distribution f. In the last line of Eq. �3.50�, Tgc

−1�
represents the guiding-center transformation of the
function �, the guiding center distribution is g�X ,u ,��,
the guiding-center volume element is d6Zgc

�m2B
�
*�X�d3Xdud�d�, and we have inserted the rela-

tion �3.4� between the particle position x�r and the
guiding-center position X. By expanding the delta func-
tion and integrating by parts, we obtain the multipole
expansion

n	�
 = N	Tgc
−1�
gc − � · �N	�Tgc

−1�
gc�

+ ��:�N���

2
Tgc

−1��
gc

 + ¯ , �3.51�

where N is the guiding-center density and 	¯
gc denotes
the guiding-center velocity-space average with respect to
the guiding-center distribution g.

For the case �=1, the relation between the particle
density n and the guiding-center density N is

n = N − � · �N
e

�gc + ¯ 
 , �3.52�

where the guiding-center dipole moment �gc�e�̄ is the
guiding-center average of the gyrophase-independent
�polarization� part �3.46�, which survives the gyrophase

integration in 	¯
gc. The particle density n is thus ex-
pressed as the sum of the guiding-center density N and a
polarization density that includes a dipole contribution
�shown� as well as higher-order multipole contributions
�not shown�.

For the case �=v, where Tgc
−1v=Ẋgc+ �̇gc is expressed

as the sum of the guiding-center velocity Ẋgc and the
guiding-center displacement velocity �̇gc �Brizard and
Hahm, 2007; Brizard, 2008�, the relation between the
particle flux n	v
�nu and the guiding-center flux

N	Ẋgc
gc�NUgc is

nu = NUgc +
�

�t
�N

e
�gc
 + �� � cN

e
�gc
 , �3.53�

where the guiding-center magnetic moment

�gc� − b̂	�
gc +
1

c
�gc�Ugc �3.54�

is expressed as the sum of the intrinsic magnetic-dipole
moment and the moving electric-dipole moment contri-
butions.

We note that the guiding-center continuity equation
�N /�t+� · �NUgc�=0 is consistent with the particle conti-
nuity equation �n /�t+� · �nu�=0 since

0 =
�n

�t
+ � · �nu� =

�

�t
�N − � · �N

e
�gc
� + � · �NUgc�

+ � · � �
�t
�N

e
�gc
�

=
�N

�t
+ � · �NUgc� , �3.55�

where � ·�� �N�gc��0. Hence, while the particle flux
nu is not equal to the guiding-center flux NUgc, the two
fluid formulations are consistent with each other. We
also note that the addition of the intrinsic guiding-center
magnetization flux �with N	�
gc�p� /B� to the perpen-
dicular guiding-center flux

NU�gc =
cb̂

eB
� �p� � ln B + p�b̂ · �b̂�

yields the perpendicular particle flux nu���cb̂ /eB�
�� ·P, which is the lowest-order solution to the fluid
equation of motion

mn�du
dt

−�u� b̂
 � − mn�u� b̂ = − � · P ,

where P��p�−p��b̂b̂+p�I denotes the Chew-
Goldberger-Low pressure tensor.

By defining the guiding-center polarization and mag-
netization vectors

�Pgc

Mgc

 ��N��gc

�gc

 , �3.56�

the guiding-center Maxwell’s equations for the macro-
scopic electromagnetic fields
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�Dgc

Hgc

 � �E + 4�Pgc

B = 4�Mgc

 �3.57�

are expressed as

� · Dgc = 4��gc �3.58�

and

��Hgc −
1

c

�Dgc

�t
=

4�

c
Jgc, �3.59�

where the guiding-center charge and current densities
are, respectively, �gc=�eN and Jgc=�eNUgc.

E. Guiding-center angular momentum for azimuthally
symmetric systems

As an example of the use of Noether’s theorem for
finding invariants of the guiding-center Lagrangian, we
consider the case of a magnetized plasma with azimuthal
symmetry. That is, we consider cylindrical coordinates
Xi��R ,� ,Z� and assume that no quantities depend on
toroidal angle �. Hence the guiding-center Lagrangian
�3.2� takes the form

Lgc = � e
c

Ai + mubi
dXi + J�̇ − Hgc, �3.60�

in which Ai�A ·�X /�Xi are the covariant components

of the vector potential A, bi� b̂ ·�X /�Xi are the covari-

ant components of the unit magnetic field b̂�B /B, and
the Hamiltonian �3.3� has the form

Hgc =
m

2
	u2 − �vE�2�R,Z,t�
 + �B�R,Z,t� + e��R,Z,t� .

�3.61�

In this Lagrangian, there is no explicit dependence on
the toroidal angle �. Hence, its canonically conjugate
momentum

p��
e

c
A� + mub� �3.62�

is a constant of motion. This derivation does not require
one to have nested flux surfaces or flux variables for the
toroidal magnetic field or for the system to be time in-
dependent.

F. Hamiltonian formulation of field line flow

As noted in the derivation of the guiding-center La-
grangian, keeping only the lowest-order terms results in
a singular Lagrangian; the parallel velocity cannot be
determined, and, hence, one cannot determine the tra-
jectory. However, if the electrostatic field is ignored, so
that only the vector potential remains, and the vector
potential is static, the Lagrangian does determine the
spatial trajectories of the field lines. In this section, we
develop this Hamiltonian formalism, and obtain canoni-

cal equations of motion for the field lines �Boozer, 1983;
Cary and Littlejohn, 1983; Littlejohn, 1985�.

According to our discussion, the action for magnetic-
field line flow is

AB =� A · dx . �3.63�

Variation of this equation gives dx�B=0, which states
that the trajectories follow magnetic-field lines. The con-
figuration space in which the field lines flow is three-
dimensional. Hence, one can think of a trajectory in
terms of two of the variables being given as functions of
the third, at least locally. Specifically, we consider cylin-
drical coordinates �R ,� ,Z� and take � to be the inde-
pendent coordinate. Thus, we write the Lagrangian as

AB =� �AR
dR

d�
+ AZ

dZ

d�
+ A�
d� . �3.64�

Variation of this action gives the rates of change dR /d�
and dZ /d�.

This system can be put into Hamiltonian form by a
gauge transformation. We introduce the function

��R,�,Z,t� � �
0

Z

dZ�AZ�R,�,Z�,t� , �3.65�

whose gradient we subtract from the vector potential:
A→A−��. This is equivalent to adding a total deriva-
tive to the Lagrangian. The resulting action is

AB =� ��AR −
��

�R

dR

d�
+ �A� −

��

��

�d� , �3.66�

in which the Lagrangian has the form of pq̇−H. Hence,
we have found the canonical form for magnetic-field line
flow. More explicitly, we define the magnetic momentum

P� �AR −
��

�R

 , �3.67�

and the magnetic Hamiltonian,

HM� − A� +
��

��
. �3.68�

Then, because the Lagrangian is in canonical form,
Hamilton’s equations

�dP

d�
,
dR

d�

 = �− �HM

�R
,
�HM

�P

 �3.69�

give the field lines.

IV. CANONICAL GUIDING-CENTER THEORY

The noncanonical, Hamiltonian guiding-center for-
malism developed in Sec. III has formal advantages,
such as having a conserved phase-space volume and
Noether’s theorem. However, there are times when it is
advantageous to use canonical coordinates. For ex-
ample, analytical progress can be eased by having the
dynamics encapsulated in a single function, the Hamil-
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tonian, rather than spread through the 2N+1 compo-
nents �symplectic plus Hamiltonian� of the phase-space
Lagrangian �2.19�. Symplectic integration algorithms are
known for the integration of trajectories �Kang, 1986;
Forest and Ruth, 1990; Yoshida, 1990; Candy and Roz-
mus, 1991; Qin and Guan, 2008� and for particle simula-
tions of plasma �Cary and Doxas, 1993�. The goal of this
section is to show how canonical coordinates are ob-
tained in a number of cases.

The guiding-center Lagrangian �3.2� is linear in the
three spatial time derivatives as well as the time deriva-
tive of the gyrophase. Thus, the four-dimensional
guiding-center position and parallel velocity part con-
tains three time derivatives, while to be in canonical
form, as is the phase-space Lagrangian �2.13�, there
should be only two time derivatives. To eliminate the
third time derivative, either one seeks purely spatial co-
ordinates �Meiss and Hazeltine, 1992� such that both
magnetic fields A and B have only the same two non-
zero covariant components or one introduces coordi-
nates mixing the guiding-center coordinates with the
parallel velocity such that only two time derivatives ap-
pear in the guiding-center Lagrangian. These methods
give different canonical coordinates. This should not be
surprising, as given one set of canonical coordinates,
there are arbitrary other sets, all related by canonical
transforms.

We begin with the general case, and start this analysis
from the framework of flux coordinates �Stern, 1970�.
General flux coordinates are defined such that two of
the coordinates are constant along the magnetic-field
lines, and so that the differential flux is simply the prod-
uct of the differentials of the two coordinates. We also
choose these coordinates so that the third variable mea-
sures the distance from some reference surface along the
field line. To illustrate the two methods for finding ca-
nonical coordinates, we apply both to this case. We ap-
ply the method of Meiss and Hazeltine �1992� to find
coordinates in which the vector potential and magnetic
field have only the same two covariant components non-
zero. We then show that, by adding terms linear in the
parallel velocity to the flux variables, we obtain guiding-
center canonical coordinates to relevant order. The lat-
ter method of obtaining canonical coordinates general-
izes to the case of toroidally nested flux surface easily
without the need for patches, as we show in the last part
of this section, and will be discussed in Appendix B.

A. General magnetic coordinates

1. Magnetic-flux coordinates

A general magnetic field can be expressed either in
terms of covariant components Bi,

B = Bi � �i, �4.1�

or contravariant components Bi,

B = Bi �x
��i , �4.2�

where �i denote general curvilinear coordinates. Using
the orthogonality relations

��i ·
�x
��j = 
j

i, �4.3�

we see that the covariant and contravariant components
of B are, respectively, defined as

Bi� B ·
�x
��i and Bi� B · ��i. �4.4�

Because of its relationship with the magnetic field B
=��A, the vector potential A is preferably written in
terms of its covariant components �up to a gauge term�

A = Ai � �i, �4.5�

and, hence, we find the contravariant representation

B = �Ai� ��i. �4.6�

If we now introduce the Jacobian V of the transforma-
tion x→�i�x�, defined by

�x
��i ·

�x
��j �

�x
��k = �ijkV �4.7�

or

��i · ��j� ��k = V−1�ijk, �4.8�

we obtain the contravariant components

Bi = ��i · ��A =
�ijk

V
�Ak

��j . �4.9�

The covariant representation �4.1� is useful to calculate
the current density J=�� �cB /4��=��cBi /4�����i,
while the contravariant representation �4.6� is manifestly
divergenceless.

Last, the differential equation for the magnetic-field
lines is expressed as

dx
ds

=
B
B

, �4.10�

where s represents the position along a given magnetic-
field line. Using

dx
ds

=
d�i

ds

�x
��i

in Eq. �4.10� and substituting the identity �4.3� and Eq.
�4.9�, we find the magnetic differential equations

d�i

ds
=

Bi

B
=
�ijk

VB

�Ak

��j . �4.11�

These equations express how the curvilinear coordinates
�i vary along a magnetic-field line.
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2. Simple magnetic coordinates

One of the simplest representations for the magnetic
field is in terms of the magnetic coordinates �� ,	 ,s�,

A = � � 	 , �4.12�

B = �� � �	 = B��,	,s�
�x
�s

, �4.13�

where the Jacobian V has the simple form

V−1 = �� � �	 · �s� B . �4.14�

The magnetic-field line labels � and 	 are known as Eu-
ler �or Clebsch� potentials �with B ·��=0=B ·�	� and
the third flux coordinate s is the parallel coordinate mea-
suring position along a single magnetic-field line �Fig. 2
illustrates these flux coordinates�. In this representation,
the contravariant components of B are simply

B� = 0 = B	 and Bs = B �4.15�

while the covariant components Bi=Bbi can be ex-

pressed with b�= b̂ ·�x /��, b	= b̂ ·�x /�	, and bs=1.
The values of the coordinates � and 	 throughout

space are determined by requiring them to be constant
on field lines. Conservation of flux by the flow of
magnetic-field lines then assures that the relation �4.13�
holds throughout space. From this construction it fol-
lows that magnetic flux coordinates must be patched be-
tween regions not connected by the magnetic field, and
that they are singular where the magnetic field vanishes.
They can also be multivalued when the magnetic field
returns through the original, defining surface.

Regardless, we can now write the guiding-center La-
grangian �3.48� in terms of the magnetic flux coordinates
�� ,	 ,s�,

L��,	,s,u,� ;t� =
e

c
�	̇ + mu�b��̇ + b		̇ + ṡ�

− H��,	,s,u,� ;t� , �4.16�

where H denotes the standard guiding-center Hamil-

tonian �3.49� and we omitted the term J�̇ in the symplec-
tic part of Eq. �4.16� since it does not enter into the

guiding-center equations for �� ,	 ,s� and u. The guiding-
center Lagrangian �4.16� describes guiding-center mo-
tion in a four-dimensional phase space with coordinates
�� ,	 ,s ,u�, where the magnetic moment � appears as a
dynamically invariant label. We note, however, that
since the symplectic part of Eq. �4.16� exhibits all three

velocities ��̇ , 	̇ , ṡ�, the Lagrangian �4.16� does not have
the canonical form. In the next two sections, we discuss
the methods used to reduce the number of independent
velocities to two and, thus, obtain a canonical guiding-
center phase-space Lagrangian.

3. Application of the Meiss-Hazeltine method

Meiss and Hazeltine �1992� noted that a further coor-
dinate transformation, to replace the variable s, can
eliminate one covariant component of the magnetic field
and so lead to a Lagrangian with only two time deriva-
tives. Thus one obtains canonical variables. To find the
Meiss-Hazeltine coordinates, we introduce a new vari-
able 
 in place of the field line variable s via the function


 = 
̂��,	,s� , �4.17�

which has for its inverse

s = ŝ��,	,
� . �4.18�

With this transformation, the covariant representation of
the magnetic field becomes

B = B� � � + B	 � 	 + B � s

= �B� + B
�ŝ

��

 � �

+ �B	 + B
�ŝ

�	

 � 	 + B

�ŝ

�

� 
 . �4.19�

The covariant components of the vector potential are
unchanged by this transformation as the vector potential
has no s component. Thus, the vector potential and the
magnetic field will have only 	 and 
 covariant compo-
nents provided one can find a function ŝ such that

B� + B
�ŝ

��
= 0. �4.20�

To better understand the requirements on the transfor-
mation, we seek instead the function 
̂. In terms of this
function, Eq. �4.20� becomes

�
̂

�s
B� − B

�
̂

��
= 0. �4.21�

This equation says that the variable 
 is constant along
trajectories defined by

ds

d�
= b�. �4.22�

Hence, for each value of 	 and for every initial condition
in the �-s plane for that value of 	, one can integrate
Eq. �4.22� to obtain trajectories. These trajectories can-
not cross as long as the flow �4.22� is nonsingular. To

FIG. 2. Magnetic flux coordinates �� ,	 ,s� for general mag-
netic fields.
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complete the definition of the new coordinates, a value
of 
, such as the value of s where this trajectory crosses
the s axis, is assigned to each trajectory.

In these coordinates neither the vector potential nor
the magnetic field has an � covariant component, and so
�̇ does not appear in the guiding-center Lagrangian,

L = � e�
c

+ mu�b	 +
�ŝ

�	

�	̇ + mu

�ŝ

�


̇ − H . �4.23�

Hence, the two coordinates are 	 and 
 with their con-
jugates p	 and p
 being the factors of their time deriva-

tives in the Lagrangian �4.23�: L�p		̇+p

̇−H.
These variables, while canonical, no longer have the

simple interpretation of one of them being the distance
along a field line. Moreover, the deviation of the new
variable 
 from the original variable s increases arbi-
trarily as one moves away from some reference value of
�, according to Eq. �4.20�. Additionally, according to Eq.
�4.22�, ŝ��� has local extrema where b� vanishes. Near
these points 
 is multivalued, and so patches will be
needed. Last, White and Zakharov �2003� pointed out
that, while the Meiss-Hazeltine method can be rigor-
ously applied to construct a canonical guiding-center La-
grangian, it suffers from serious difficulties in its numeri-
cal implementation for many magnetic equilibria.

4. Canonical flux-based coordinates

Another way to obtain canonical, flux-based coordi-
nates is to remove one of the temporal derivatives
through appropriate addition of total time derivatives to
the Lagrangian. In this section, we use dimensionless
units �c=1 and e /m=�−1� since this simplifies the algebra
and allows us to see easily how to drop higher-order
terms �we reinsert the units and remove the formal adia-
batic ordering parameter in appropriate summary equa-
tions�. Now the guiding-center Lagrangian �4.16� takes
the form

L = �−1�	̇ + u�b��̇ + b		̇ + ṡ� − H , �4.24�

where H denotes the standard guiding-center Hamil-
tonian �3.49�.

The reduced guiding-center phase space associated
with the phase-space Lagrangian �4.24� is described in
terms of four coordinates �� ,	 ,s ,u�. Since the symplec-
tic covector in Eq. �4.24� has three nonvanishing compo-
nents, the phase-space Lagrangian �4.24� is noncanoni-
cal. To obtain canonical variables, we must transform
Eq. �4.24� into one in which time derivatives of only two
coordinates appear, and then the corresponding multi-
pliers are the canonical variables. For example, one can
group the coefficients of the time derivative of 	 to ob-
tain

L = �−1�� + �ub	�	̇ + uṡ + ub��̇ − H , �4.25�

but there remains the problematic term proportional to
�̇. However, we can move this problem to higher order
by subtracting the total time derivative,

d

dt
�ub��� = �ub���̇ + �

d�ub��
dt

,

to obtain the Lagrangian

L = �−1��1�	̇�1� + uṡ + ��ub	
d

dt
�ub��� − H , �4.26�

where the first-order corrected �denoted by the super-
script� canonical flux variables are

��1� � � + �ub	,

	�1� � 	 − �ub�. �4.27�

Thus, neglecting �-order terms, we obtain the desired
canonical form

L = �−1��1�	̇�1� + uṡ − H . �4.28�

From this form we see that the flux variables ���1� ,	�1��
are canonically conjugate, and that the parallel velocity
is conjugate to the distance along a field line.

For reference, we restore ordinary units, and we
eliminate the formal ordering parameter. We find the
canonical coordinates

��1� � � + �uB/��b	,

	�1� � 	 − �uB/��b� �4.29�

and we note that B*=���1���	�1�=B+ �uB /��b̂ ·�� b̂
+¯. The Lagrangian for these variables is

L =
e

c
��1�	̇�1� + muṡ − H , �4.30�

and the equations of motion are simply Hamilton’s
equations

� ṡ
u̇

 = m−1� �H/�u

− �H/�s

 �4.31�

and

��̇�1�
	̇�1�

 = �c/e��− �H/�	�1�

�H/���1�

 . �4.32�

In these �essentially canonical� coordinates
���1� ,	�1� ,s ,u�, the phase-space Jacobian, found from
Eq. �2.43�, is constant: J=em /c.

One can compute these coordinates to higher order as
well. The basic idea is that, in each step, one eliminates
the time derivatives of the parallel velocity by adding a
total time derivative to the Lagrangian, and then one
proceeds much as in first order, collecting the derivatives
of the flux coordinates with the addition of other total
time derivatives. In brief, subtraction of the total time
derivative

�
d

dt
�u2b�b	� �4.33�

gives the new Lagrangian
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L = �−1��1�	̇�1� + uṡ +
�

2
u2�b	�b�

��
− b�

�b	
��

�̇

+
�

2
u2�b	�b�

�	
− b�

�b	
�	

	̇

+
�

2
u2�b	�b�

�s
− b�

�b	
�s

ṡ − H . �4.34�

At this point, the Lagrangian is similar to Eq. �4.24� and
so a procedure similar to that leading to Eq. �4.28� can
be used. The two new terms in the time derivatives of
the flux variables can be replaced by the corrected vari-
ables to lowest order, and the terms in ṡ can be collected.
The result is the canonical Lagrangian

L = �−1��2�	̇�2� + u�1�ṡ − H + O��2� , �4.35�

where

��2� = ��1� +
�2

2
u2�b	�b�

�	
− b�

�b	
�	

 , �4.36�

	�2� = 	�1� −
�2

2
u2�b	�b�

��
− b�

�b	
��

 , �4.37�

u�1� = u +
�

2
u2�b	�b�

�s
− b�

�b	
�s

 . �4.38�

One can continue this procedure to higher order, but
doing so might not be useful, as the guiding-center La-
grangian is valid only through the lowest order. Thus, at
best, it would seem appropriate to use only the first-
order corrected canonical variables �4.29�.

B. Toroidal magnetic fields with nested flux surfaces

For magnetic fields that lie on toroidal, nested flux
surfaces, there are many sets of convenient coordinates
having the convenient property that two of the coordi-
nates are proper angles, i.e., they increase by 2� for cir-
culation around the torus in the appropriate way. In this
section, we concentrate on flux coordinates and canoni-
cal coordinates that can be obtained by allowing the
angles to depend on the parallel velocity. In flux coordi-
nates, the vector potential has a particularly simple
form, and in which field lines are straight, while in ca-
nonical coordinates, the equations of evolution have the
usual canonical form.

1. Toroidal flux coordinates

For magnetic fields that lie on nested tori, one coordi-
nate T is chosen to label the tori �see Fig. 3�. Two other
coordinates, a poloidal angle �0 and a toroidal angle �0,
then specify a point on the torus. Then, because the
magnetic lines lie in surfaces of constant T, the magnetic
field can be written in Clebsch representation,

B = BT�0
�T,�0,�0� � T� ��0

+ B�0T�T,�0,�0� � �0� �T . �4.39�

Flux coordinates �� ,�F ,�F� are chosen so that the
magnetic field has a particularly simple representation

B = ��� ��F + ���� � �F� �� . �4.40�

These coordinates have the convenient property that in
them the magnetic-field lines are straight,

d�F

d�F
=

B · ��F

B · ��F
= ���� . �4.41�

This quantity � is known as the rotational transform. The
vector potential has the particularly simple form

A =� � �F + A���� � �F, �4.42�

in which its covariant components are functions of the
surface alone. Here

dA�

d�
= ���� . �4.43�

In these coordinates the differential toroidal flux,

B · � �r
��
�

�r
��F

 = 1, �4.44�

is unity. Hence, 2���2−�1� is the toroidal flux between
toroidal surfaces of label�1 and�2. This is shown as the
gray area �annulus at constant �F� in Fig. 4. Similarly, by
integrating A ·dx around a loop in �F at constant �F and

T

�0

�0

FIG. 3. Coordinates for magnetic fields lying on nested toroi-
dal surfaces.

�
F

�
F

�
1
�
2

FIG. 4. Toroidal flux coordinates for magnetic fields lying on
nested toroidal surfaces showing the toroidal and poloidal flux
between surfaces.
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�, one can show that 2�	A���1�−A���2�
 is minus the
flux in the poloidal direction between toroidal surfaces
of label �1 and �2. This is shown as the cross-hatched
area of Fig. 4.

To find flux coordinates, we begin by supposing that
they exist, then use the relation between the two repre-
sentations, Eqs. �4.39� and �4.40�, to determine the trans-
formation between the original variables �T ,�0 ,�0� and
the flux variables �� ,�F ,�F�. We assume that this trans-
formation leaves the toroidal angle unchanged, �F=�0,
and that the new flux variable ��T� is independent of
the angles and, hence, still a flux function, so that the
poloidal angle is changed only by the addition of a func-
tion periodic in the angles,

�F = �0 + �̂F�T,�0,�0� . �4.45�

With these assumptions, the magnetic field �4.40� can be
put into the basis of Eq. �4.39�. Equating the compo-
nents gives

��

�T
�1 +

��̂F

��0

 = BT�0

�4.46�

and

��

�T
�� +

��̂F

��0

 = B�0T. �4.47�

The first step in solving these equations is to deter-
mine the conditions imposed by averaging over the
angles �0 and �0. The resulting equations imply

d�

dT
= B̄T�0

�4.48�

and

� = −
B̄�0T

B̄T�0

, �4.49�

where the overbar denotes the average over the original
angles. The first equation determines the transformation
from original toroidal surface label T to the new label �.
It is conventional to take the value of the flux � to
vanish on the magnetic axis, the degenerate single field
going the long way around the torus at the center of the
torus. We denote the value of the flux at the edge of the
plasma by �edge. The second equation determines the
rotational transform.

The transformation function �̂F must then satisfy the
following two equations:

��̂F

��0
=

BT�0

B̄T�0

− 1 �4.50�

and

��̂F

��0
= � −

B�0T

B̄�0T

. �4.51�

That these equations can be solved locally follows from
showing that the mixed second partial derivatives are
equal. This follows from the vanishing of the divergence
of the magnetic field,

� · B =
�BT�0

��0
+

�B�0T

��0
= 0. �4.52�

In fact, it is relatively straightforward to show by Fourier
transforming in the angles that Eqs. �4.50� and �4.51� can
be solved globally. Hence, we can always find flux vari-
ables when magnetic fields lie in nested toroidal sur-
faces.

At this point, the toroidal angle is arbitrary. To deter-
mine the extent of arbitrariness in the flux coordinates,
we analyze the restrictions placed on a transformation to
other variables. The flux variable must remain invariant
for it to equal the toroidal flux enclosed by a surface
divided by 2�. Hence, we consider a transformation to
new angles q1 and q2,

�F = q1 + f��,q1,q2� �4.53�

and

�F = q2 + g��,q1,q2� , �4.54�

where f and g are period functions of the new poloidal
angle q1 and the new toroidal angle q2.

Inserting these transformations into the magnetic-field
representation �4.39� gives

B = �1 +
�f

�q1
− �

�g

�q1

 ��� �q1

+ �� +
�f

�q2
− �

�g

�q2

 � q2� �� . �4.55�

Hence, provided the ratio of f, up to a function h of �
alone, and g is the rotational transform

f = �g + f̄��� , �4.56�

any transformation of the form �4.53� and �4.54� is a
transformation from one set of flux variables to another.

2. Canonical toroidal flux coordinates

The above flux coordinates �including the variations
described in Sec. IV.B.1� are convenient for calculations
because they reflect the dynamics �parallel motion is
within a flux surface�, and because they have the usual
angular periodicity �i.e., 0���2� and 0���2��. In
this section, we show how the associated canonical coor-
dinates arise in guiding-center Lagrangian theory. For
this analysis, there remains significant arbitrariness, as
no preliminary transformations are needed. Hence, one
need not transform to Boozer coordinates as a prelimi-
nary step �White and Chance, 1984; White and Zak-
harov, 2003�.
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For this analysis, we return to dimensionless units m
=c=1 and e=�−1 such that the adiabatic ordering param-
eter � is shown explicitly in the Lagrangian. The guiding-
center Lagrangian is

L = ��−1� + ub�F
��̇F + ��−1A� + ub�F

��̇F

+ �ub���̇ − H �4.57�

with the Hamiltonian H given by Eq. �3.49�. In its cur-
rent form, the guiding-center Lagrangian �4.57� is non-

canonical because all three time derivatives ��̇ , �̇F , �̇F�
appear explicitly. The derivation of a canonical guiding-

center Lagrangian, which focuses on the term �ub�� �̇ in
the symplectic part of Eq. �4.57�, can proceed by either a
redefinition of the poloidal angle �F→�c �White and
Chance, 1984�, a redefinition of the toroidal angle �F
→�c �White and Zakharov, 2003�, or a redefinition of
the parallel velocity �White, 1990�. We now show how a
redefinition of the poloidal angle leads to a canonical
guiding-center Lagrangian.

Subtracting the total derivative

d

dt
�ub��� = ub��̇ +�

d�ub��
dt

�4.58�

from the guiding-center Lagrangian �4.57� gives the La-
grangian

L = ��−1� + ub�F
��̇c + ��−1A� + ub�F

��̇F − H + O��� ,

�4.59�

where the new canonical poloidal angle �White, 1990,
2008�

�c� �F − �ub� �4.60�

differs from the old by a bounded term that is O���.
From the symplectic part of the Lagrangian �4.59�, it is
clear that the canonical coordinates are �c and �F with
conjugate momenta given by their factors in the La-
grangian �4.59�. White �2008� pointed out that the omis-
sion of the b� term in the guiding-center Lagrangian
�4.57� amounts to a simple redefinition of the guiding-
center position, which allows the retention of the angle
coordinates ��F ,�F� as canonical variables.

We now summarize our results in standard units. The
canonical toroidal angle is any flux-variable consistent
toroidal angle, and its conjugate momentum is

p� =
e

c
A� + mub�F

. �4.61�

The canonical poloidal angle is

�c� �F −
u

�
B� �4.62�

and its canonical momentum is

p� =
e

c
� + mub�F

. �4.63�

The guiding-center Lagrangian �4.57� is given by

L = p��̇c + p��̇F − H , �4.64�

for which the Hamiltonian is given by Eq. �3.49�.
This definition of the canonical variables does mix in

the parallel velocity with the poloidal angle, but it re-
tains the desired periodicity. For any fixed value of u, the
increase of �c for one poloidal circuit is 2� because the
increase in �F was 2�, and the difference �u /�� B� is a
periodic function of �F, and so has no change in a poloi-
dal transit. As discussed in Appendix B, this continues
to be true for any of the specialized coordinates, such as
Hamada coordinates and Boozer coordinates.

To obtain an explicit form for the Hamiltonian, Eqs.
�4.62� and �4.63� must be solved for � and u as functions
of canonical momenta. This is not usually done. Instead,
one of two methods is followed. If a nonsymplectic inte-
grator is used, it is applied directly to the equations of
motion in convenient variables. If a symplectic integra-
tor is used, the implicit equations to be solved are set up
also as functions of the convenient variables.

V. HIGHER-ORDER ADIABATIC INVARIANTS

The magnetic confinement of charged particles im-
plies the existence of orbits enclosed within a compact
volume in space, which in turn generically allows the
existence of three orbital frequencies �Northrop, 1963�.
The first of these orbital frequencies, called the gyrofre-
quency �denoted �g���, exists even in uniform �uncon-
fining� magnetic fields and describes the gyration of a
charged particle about a single magnetic-field line. The
second orbital frequency, called the bounce frequency
�denoted �b�, requires longitudinal confinement along
magnetic-field lines �due to nonuniformity parallel to the
field lines� and describes oscillations in the parallel com-
ponent of the particle’s velocity which vanishes at turn-
ing points along the trapped-particle orbit. Although
certain magnetic geometries, e.g., axisymmetric tokamak
geometry allow for the existence of confined, untrapped
�or circulating� charged particles whose parallel velocity
exhibits oscillatory behavior about a nonvanishing value,
we focus our attention only on trapped-particle orbits in
the present section. The third orbital frequency, called
the drift-precession frequency �denoted �d�, describes
the periodic drift motion across magnetic-field lines
�e.g., due to magnetic curvature�. In general, these three
orbital frequencies are widely separated �for a single
particle species�, with �g��b��d,

�x,v ;w,t�→g ��X,p� ;W,t�→b ���,	 ;k,t�→d ��K,t�

�Jd,�d�
�

�Jb,�b�
�

�Jg,�g�

.

�5.1�

Equation �5.1� shows the hierarchy of adiabatic invari-
ants associated with the guiding-center �g�, bounce-
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center �b�, and drift-center �d� dynamical reductions
�Tao et al., 2007�. Each reduction, which is carried out by
a transformation on extended phase space �which in-
cludes the time-energy canonical pair�, involves the
elimination of a fast orbital angle �j= ��g ,�b ,�d� and the
construction of a corresponding adiabatic invariant Jj
= �Jg ,Jb ,Jd�.

When the characteristic time scale of interest � is
much longer than the gyroperiod �i.e., when the particle
has executed many gyration cycles during time ��, the
fast gyration angle �g can be asymptotically removed
from the particle’s orbital dynamics and a corresponding
adiabatic invariant Jg= �mc /e�� �the magnetic moment
�� can be constructed �Northrop, 1963�. The resulting
guiding-center dynamics takes place in a reduced six-
dimensional phase space with noncanonical coordinates
�X ,p� ;W , t�, where X denotes the particle’s guiding-
center position, p��mu denotes its parallel kinetic mo-
mentum, and �W , t� denotes the guiding-center energy-
time canonical coordinates. Guiding-center dynamics
has been shown to possess a noncanonical Hamiltonian

structure �Littlejohn, 1981, 1983�, i.e., Ẋ��X ,Hgc�gc

�with u� b̂ ·Ẋ�, ṗ���p� ,Hgc�gc, and Ẇ��Hgc/�t are ex-
pressed in terms of a guiding-center Hamiltonian func-
tion Hgc and a noncanonical guiding-center Poisson
bracket �,�gc.

When the characteristic time scale � is also much
longer than the bounce period �i.e., when the particle
has executed many bounce cycles during time ��, the fast
bounce angle �b can be asymptotically removed from the
particle’s orbital dynamics and a corresponding adiabatic
invariant �the longitudinal invariant or bounce action Jb�
can be constructed. The resulting bounce-averaged
guiding-center �or bounce-center� dynamics takes place
in a reduced four-dimensional phase space with spatial
coordinates �� ,	� and the energy-time canonical coordi-
nates �k , t�. Bounce-center dynamics in static magnetic
fields has also been shown to possess a canonical Hamil-
tonian structure �Littlejohn, 1982b�.

Last, when the characteristic time scale � is much
longer than the drift period �i.e., when the particle has
executed many bounce-averaged drift-precession cycles
during time ��, the fast drift angle �d can be asymptoti-
cally removed from the particle’s orbital dynamics and a
corresponding adiabatic invariant �the drift action Jd�
can be constructed. The resulting drift-averaged bounce-
center �or drift-center� dynamics takes place in a re-
duced two-dimensional phase space with energy-time
coordinates �K , t�.

A. Second and third adiabatic invariants

1. Longitudinal adiabatic invariant Jb

In the derivation of Sec. III, it was assumed that the
velocity and the electric drift were of the same order,
and that the rate of change of the fields was O�1�. When
the electric drift is of the same order as the magnetic
drifts, and the fields change more slowly 	O���
, particles
execute a bounce oscillation, moving back and forth
along a field line, with direction reversed by the effective
potential �3.11�, before drifting to a significantly differ-
ent field line and before the dynamics on the field line
changes significantly. In this case, the longitudinal adia-
batic invariant for the motion along the field line is
nearly a constant of the motion.

In this section, we show how to obtain the longitudi-
nal adiabatic invariant, and we derive the reduced equa-
tions of motion. This modified ordering is often valid in
plasmas. For example, in toroidal equilibria �Kovrizh-
nykh, 1984�, the outflows of the ions and electrons are in
balance only if there is an electrostatic potential of the
order of the particle energy, and the plasma evolves
slowly, on the diffusion time.

The mathematical description of trapped-particle or-
bits in magnetized plasmas is facilitated using the mag-
netic coordinates �� ,	 ,s� introduced in Sec. IV.A. The
modified ordering implies that the Lagrangian �4.16� be
modified to

Lb = �−1�	̇ + u�b��̇ + b		̇ + ṡ� − Hb, �5.2�

where the Hamiltonian is Hb=u2 /2+�B�� ,	 ,s ,�t�
+��� ,	 ,s ,�t� for the study of the longitudinal adiabatic
invariant. The b subscript on the Lagrangian �5.2� and
the Hamiltonian signifies that these quantities are ap-
propriate for the ordering described above. The removal
of the factor �−1 for the potential � and the slow tem-
poral variation follow from the above discussion; this is
the original ordering of Littlejohn �1983�. Relatively
slow temporal variation is also required for gauge invari-
ance; the electric field coming from the vector potential
must be of the same order as the electric field coming
from the electrostatic potential. In addition, this slow
temporal variation is needed for adiabatic theory to ap-
ply. These orderings are summarized in Table II. We
note that in this ordering the polarization drift appears
only in order �2.

It was noted in Sec. IV.A that flux coordinates suffer
from being multivalued, and that this is a problem when
a field line revisits a region repeatedly. However, this is
not a problem in the present case, where we will be

TABLE II. Bounce ordering required for the existence of the longitudinal adiabatic invariant.

Order Dimensionless Fields Distances Rates Velocities

1 /� B �

1 E�, E� L v /L v
� � /L, ����−1 � �−1, vE /L, v� /L, v� vE, v�, v�
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analyzing particles reflected by the effective potential
and, so, confined to a portion of the field line.

The goal in the present calculation is analogous to
that of guiding-center theory. We seek a transformation
order by order in � such that the Lagrangian has an
ignorable coordinate. In guiding-center theory, we began
by transforming to variables �perpendicular velocity and
gyrophase� appropriate to the gyromotion one would
find in a constant magnetic field. Here we begin by
transforming to variables appropriate to the bounce mo-
tion that one would find if the field did not vary with
time �constant ���t� and the particle remained on its
initial field line �constant � and 	�, i.e., the motion to
lowest order in �. These variables are the action-angle
variables of the parallel motion.

For constant magnetic labels yk��� ,	�, the Lagrang-
ian �5.2� reduces to

L� � uṡ − Hb. �5.3�

Hence, the motion is given by

ṡ =
�Hb

�u
= u and u̇ = −

�Hb

�s
. �5.4�

For time-independent fields, the energy E=Hb is a con-
stant of motion. Hence, to this order, the particle moves
along a field line until it reflects �mirrors� due to its in-
teraction with the effective potential Vb=�B+�. This
occurs at the reflection �or mirroring� points defined by

E = Vb�y,s±,�� , �5.5�

where s+ and s− are the upper and lower turning points.
If either reflection point does not exist, then there is no
adiabatic invariant. The maximum parallel velocity oc-
curs at the point of minimum effective potential. To sim-
plify the calculations, we define the variable s such that
its origin occurs at the minimum,

�Vb

�s
�y,s = 0,�� = 0. �5.6�

The longitudinal adiabatic invariant is, to lowest or-
der, the bounce action defined as the loop integral of the
phase-space part of the action around a loop of constant
energy and constant slowly varying variables. In prepa-
ration for calculating this loop integral, we introduce the
function

û�y,s,E,�� = ± �2�E − �B −�� , �5.7�

found by solving for the parallel velocity along a field
line. The sign depends on the direction of the particle
motion along a field line. Thus, the lowest-order action
is given by

Jb0 =
1

2� � û�y,s�;E,��ds�. �5.8�

This loop integral equals twice the integral between the
turning points of �û�. Equation �5.8� can be inverted to
obtain the Hamiltonian

Hb = E = H0�y,Jb0,�� . �5.9�

To complete the transformation to �lowest-order� lon-
gitudinal action-angle coordinates �Jb0 ,�0�, we must find
an appropriate angle coordinate �0. To do this, we in-
troduce the gauge function

F = �
0

s

ûds� − Jb0�0, �5.10�

whose derivative is to be subtracted from the Lagrang-
ian �5.2�. Equation �5.10� was chosen so that the first
term of its derivative,

Ḟ = uṡ − Jb0�̇0 + ẏk�
0

s

ds�� �û

�yk +
�û

�E

�H0

�yk 

+ ��

0

s

ds�� �û

��
+

�û

�E

�H0

��



+ J̇b0� �H0

�Jb0
�

0

s

ds�
�û

�E
−�0
 , �5.11�

cancels the phase-space part of the Lagrangian �5.2� cor-
responding to parallel motion. The last term of Eq.
�5.11� vanishes with the choice of angle

�0 =
�H0

�Jb0
�

0

s

ds�
�û

�E
=

2�

�b
�

0

s ds�

û
, �5.12�

where �H0 /�I0=�b�2� /�b defines the bounce fre-
quency, with the bounce period defined as �b�� û−1ds.
This equation shows that the angle is proportional to the
transit time to the point in question. Moreover, it follows
from Eqs. �5.8� and �5.12� that �0 increases by 2� for
one circuit of the constant-Hb contour in phase space.
Thus, upon subtracting the derivative �5.11� from the
Lagrangian �5.2�, we obtain the Lagrangian

Lb = �−1�	̇ + Jb0�̇0 − Hb

+ ẏk�ubk − �
0

s

ds�� �û

�yk +
�û

�E

�H0

�yk 
� , �5.13�

where

Hb�H0�y,Jb0,�� + ��
0

s

ds�� �û

��
+

�û

�E

�H0

��

 . �5.14�

Additional corrections are derived by Littlejohn �1982b�.
Bounce-angle dependence remains in the Lagrangian

�5.13� through explicit dependence on u and s. However,
these terms can be removed by transforming to the co-
ordinates

y0
k� yk − ��k��ub� − �

0

s

ds�� �û

�y� +
�û

�E

�H0

�y� 
� ,
�5.15�

where �k� is antisymmetric �with �12=−1�. These coordi-
nates are single valued since the integrals in Eq. �5.15�
vanish upon making a complete circuit in phase space, as
follows from the fact that the action and the flux vari-
ables are independent, so that derivatives of Eq. �5.8�
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with respect to � and 	 vanish. Inserting these coordi-
nates into the Lagrangian �5.13� and keeping terms only
through zeroth order in the expansion parameter gives
the bounce-center Lagrangian

Lb = �−1�0	̇0 + Jb0�̇0 − Hb + O��� , �5.16�

where

Hb�H0�y0,Jb0,�� + O��� . �5.17�

The lowest-order equations for the bounce action-angle
coordinates �Jb0 ,�0� are

J̇b0 = −
�H0

��0
� 0 and �̇0 =

�H0

�Jb0
= �b, �5.18�

which implies that the lowest-order longitudinal
�bounce� action Jb0 is an �adiabatic� invariant.

At this point we restore the units in our equations so
that they can be more easily used. The velocity function
becomes

û��,	,s,E,�� = ±� 2

m
�E − �B − e�� , �5.19�

while the action becomes

Jb0 =
m

2� � û�y,s�,E,��ds�. �5.20�

This equation is inverted, as before, to obtain the Hamil-
tonian �5.9� as a function of the new variables. The
modified flux variables are

y0
k� yk −

mc

e
�k��ub� − �

0

s

ds�� �û

�y� +
�û

�E

�H0

�y� 
� .
�5.21�

Finally, the new Lagrangian becomes

Lb =
e

c
�0	̇0 + Jb0�̇0 − H0. �5.22�

The adiabatic longitudinal theory is used to find the
particle motion as follows. First, the function H0 is found
by integrating Eq. �5.8� and inverting it. This gives the
functional form for the new variables ��0 ,	0 ,�0 ,Jb0�,
which obey the equations of motion

ẏ0
k =

e

c
�k��H0

�y�
. �5.23�

These equations are then integrated for constant Jb0,
and Eqs. �5.18� are integrated by a direct integration, as
the time dependence is then known explicitly. At any
point in time one may find the values of the original
variables by inverting Eq. �5.15� to find the original flux
variables, and by inverting Eq. �5.12� to find the position
along the field line as a function of the adiabatic phase.
Indeed, the first step is facilitated using the fact that the
differences between �0 and � and between 	0 and 	 are
small. Hence, Eq. �5.15� can be inverted as follows:

yk� y0
k +

mc

e
�k��ub� − �

0

s

ds�� �û

�y� +
�û

�E

�H0

�y� 
�
y0

,

�5.24�

where by this notation we mean that the integrals are
evaluated with the values of �0 and 	0.

2. Drift adiabatic invariant Jd

Bounce-averaged drift-center motion �to lowest or-
der� forms a closed curve on the space of bounce-
averaged magnetic labels �� ,	� parametrized by the
drift angle �. Note that the time-scale ordering consis-
tent with the drift-center Hamiltonian dynamics involves
time dependence at order �2, where the lowest-order
drift-center Lagrangian is

Ld = �−2��e

c
�	̇ − K̄
 � �−1Jd�̇ − �−2K̄ ,

where a dot now represents a derivative with respect to
the drift time scale ���2t. Here the third �drift� adia-

batic invariant Jd= �e /c����̄ is defined in terms of the
magnetic flux � enclosed by the bounce-averaged drift-
ing guiding-center orbit

��K̄,t� �
1

2� � �� �	

��
− 	

��

��

d� , �5.25�

where the magnetic labels ��� ;K̄ , t� and 	�� ;K̄ , t� are

also functions of the lowest-order drift Hamiltonian K̄
and time. In the case of an axisymmetric magnetic field
B������, for example, where the azimuthal angle
	�� is an exact ignorable angle, the magnetic-flux in-
variant is simply ���. The drift-precession frequency
�d��d� /dt�b for this case is expressed in terms of the
toroidal guiding-center angular frequency

d�

dt
� �� · Ẋ =

c�

e
� �B

��
− a

�B

�s

 + mu2�a

�s
,

where b̂=�s+a��. In general, the operation of drift-
angle averaging is defined as �¯�d��d

−1��¯�d� / �̇,
where �d�2� /�d defines the drift-precession period.

The time derivative of the lowest-order drift invariant
�5.25� is

d�̄

dt
�

��̄

�t
+ K̇̄

��̄

�K̄
=

1

�d
�K̇̄ − �K̇̄�d� ,

where ��̄ /�K̄��d
−1 defines the drift-precession fre-

quency and ��̄ /�t�−�d
−1�K̇̄�d is expressed in terms of

the drift-angle average �K̇̄�d. It turns out that, while

d�̄ /dt�0, its drift-angle average �d�̄ /dt�d�0 as is re-
quired by the general formulation of adiabatic invari-
ance �Northrop and Teller, 1960; Northrop, 1963; Tao et
al., 2007� discussed next in Sec. V.B.
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B. Higher-order adiabatic invariance

The three adiabatic invariants Ja= �Jg ,Jb ,Jd� have so
far been derived only to zeroth order in magnetic-field
nonuniformity. The formal definitions of these approxi-
mate invariants are given in terms of asymptotic expan-
sions in powers of �a��a /LB 1, where LB represents
the magnetic-field nonuniformity length scale and �a de-
notes the cross-field displacement associated with the
fast orbital motion involving the fast angle �a. Hence,
the asymptotic expansions for the first two adiabatic in-
variants are

Ja� Ja0 + �aJa1 + ¯ , �5.26�

where Ja1 represents the first-order correction that ex-
plicitly involves the nonuniformity of the magnetic field.
The first-order correction can be explicitly constructed
from the invariance condition

dJa

dt
=

dJa0

dt
+ �a

dJa1

dt
+ ¯ � 0, �5.27�

where dJa0 /dt=O��a� and dJa1 /dt=�a�Ja1 /��a+O��a�.
Note that the fast-angle average of the lowest-order ac-
tion dynamics

�dJa0

dt
�

a
� 0 �5.28�

vanishes identically �for time-independent fields�, where
the fast-angle average is

�¯�a�
1

2� � �¯�d�a.

From Eqs. �5.27� and �5.28�, we easily solve for the fast-
angle-dependent part

Ja1 = − �a
−1� dJa0

dt
d�a + �Ja1�a, �5.29�

where the fast-angle-independent part �Ja1�a is deter-
mined at higher order and

�a��d�a

dt
�

a

is the fast-angle-averaged frequency. Since the lowest-
order fast dynamics is represented by d /dt=�a� /��a
+O��a�, we can easily verify that

d

dt
�Ja0 + �aJa1 + ¯ � =

dJa0

dt
+ �a

�Ja1

��a
+ ¯ = O��a

2� ,

which vanishes �to order �a� when Eq. �5.29� is inserted.
Hence, we have constructed an adiabatic invariant that
is conserved up to order �a. We now proceed with deri-
vations of these first-order corrections. More details can
be found in Tao et al. �2007�, where the derivation of
first-order corrections to the three relativistic adiabatic
invariants was performed.

1. First-order magnetic moment

It has long been known that, while the lowest-order
magnetic moment �0=m�v��2 /2B is a suitable adiabatic
invariant for most of a particle’s orbit, corrections are
needed to correctly describe the gyrophase-averaged
motion of magnetically trapped particles �Belova et al.,
2003�.

We first consider the derivation of the first-order cor-
rection �1 to the magnetic moment �=�0+��1+¯,
where the expression for �1 explicitly involves the non-
uniformity of the background magnetic field. The exact
time derivative of the lowest-order magnetic moment
�0=m�v��2 /2B��e /mc�J0 yields

d�0

dt
= −

�0

B

dB

dt
+

m

B

dv�

dt
· v�

= − �0v · � ln B + �eE − mv�v · �b̂� ·
v�

B
, �5.30�

where we assume time-independent fields; for time-
dependent fields, see Qin and Davidson �2006�. Note
that �̇0 is explicitly gyrophase dependent since the gy-
rophase average of Eq. �5.31� yields

��̇0� = − �0v��b̂ · � ln B + � · b̂� � 0,

which vanishes as a result of � ·B=0. Hence, according
to Eqs. �5.28� and �5.29�, the first-order gyrophase-
dependent correction to the magnetic moment is

�̃1 = −
mv�

B
· vD +

�0v�
2�
�âĉ + ĉâ�:�b̂ , �5.31�

where the drift velocity is

vD�
cb̂

eB
� �e �� + �0 � B + mv�

2b̂ · �b̂� .

The gyroangle-independent part ��1� is found to be
�Kruskal, 1965�

��1� = − �0
v�
�

b̂ · �� b̂ . �5.32�

This gyrophase-independent first-order correction is in-
timately connected to the first-order correction to the

parallel guiding-center velocity u� b̂ ·Ẋ=u0+�u1+¯,
where u0�v� and

u1� − �b̂ ·
d�

dt
� = �v · �b̂ · �� =

�B

m�
�b̂ · �� b̂�

represents the so-called Baños drift �Baños, 1967;
Northrop and Rome, 1978�. These results have been re-
covered using Lie-transform perturbation methods dis-
cussed later.

2. First-order longitudinal invariant

The derivation of the first-order correction Jb1 to the
bounce action Jb=Jb0+�Jb1+¯ is, first, performed for
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the case of a time-independent magnetic field B=��
��	 �Northrop et al., 1966� and then generalized to
time-dependent electromagnetic fields.

We begin with the guiding-center time derivative of
the lowest-order bounce action,

Jb0��,	,�,W� = � �2m	W − e� − �B

ds

2�
, �5.33�

where �=�0+��1+¯ denotes the exact magnetic mo-
ment, ��� ,	 ,s� and B�� ,	 ,s� denote the scalar poten-
tial and magnetic strength, respectively, and W denotes
the total guiding-center energy. For time-independent
fields, W=E is a constant of the guiding-center motion
and the bounce frequency �b is defined through

�b
−1�

�Jb0

�E
=

1

2� � ds

û
.

Next, we find

dJb0

dt
=

d�

dt

�Jb0

��
+

d	

dt

�Jb0

�	
, �5.34�

where the partial derivation of Jb0 with respect to yk

= �� ,	�,

�Jb0

�yk = −
1

2� � ds

û
�e ��

�yk + �
�B

�yk

� − �b

−1�e ��

�yk + �
�B

�yk�
b
, �5.35�

is expressed in terms of the bounce-angle average

�¯�b�
1

�b
� �¯�ds

û
�5.36�

and �b is the bounce period. The guiding-center equa-

tion dyk /dt=Ẋ ·�yk can be written as

dyk

dt
=

c

e
�k��e ��

�y� + �
�B

�y� +
d

dt
�mub��� . �5.37�

Here the last term is obtained as follows. First, we note
that �yk=�k�B��X /�y� so that

dyk

dt
=

cb̂

eB
� �e �� + � � B + mu2�b̂

�s

 · �yk

=
c

e
�k���e ��

�y� + �
�B

�y� + mu2�b̂

�s
·

�X
�y�


− �e��

�s
+ �

�B

�s

b�� .

Next, we note that to lowest order in bounce dynamics,

u2�b̂

�s
·

�X
�y� = u2�b�

�s
= u

db�

dt
,

and using

m
du

dt
= − �e��

�s
+ �

�B

�s

 ,

we combine these expressions to obtain

mu2�b̂

�s
·

�X
�y� − �e��

�s
+ �

�B

�s

b� =

d

dt
�mub�� .

Using Eq. �5.37� and the identity �d�¯� /dt�b=0 �to low-
est order in the bounce dynamics�, the final expression
for Eq. �5.34� is

dJb0

dt
=

e

c�b
���̇�b	̇ − �̇�	̇�b� , �5.38�

which explicitly satisfies the condition �dJb0 /dt�b�0.
Hence, the bounce-center phase-dependent first-order
correction is

J̃b1� −
e

c�b
2 � ���̇�b	̇ − �̇�	̇�b�d��.

The general case of time-dependent electromagnetic
fields is treated with the electric field written as

E = − ��� +�� −
1

c
� ��

�t
� 	 −

�	

�t
� �
 ,

where ���� /c��	 /�t is defined so that E��−���
+�� /�s. We replace Eq. �5.34� with

dJb0

dt
=

d�

dt

�Jb0

��
+

d	

dt

�Jb0

�	
+

dW

dt

�Jb0

�W
+

�Jb0

�t
,

where

�Jb0

�W
= �b

−1 and
�Jb0

�t
= − �b

−1�Ẇ�b,

and we replace � with �+� in Eqs. �5.35� and �5.37�.
Last, we obtain

dJb0

dt
=

e

c�b
���̇�b	̇ − �̇�	̇�b� +

1

�b
�Ẇ − �Ẇ�b� , �5.39�

so that the first-order correction to the longitudinal adia-
batic invariant is

Jb1 = −
1

�b
� dJb0

dt
d� + �Jb1�b, �5.40�

where the bounce-averaged contribution is discussed
later. Similar expressions were derived by Dubin and
Krommes �1982�; Littlejohn �1982b�; and Brizard �1990�
using Lie-transform perturbation methods.

C. Adiabatic invariance to arbitrary order

The derivation of adiabatic invariants expressed as
asymptotic power series in terms of a small ordering pa-
rameter � must be placed in the wider context of a near-
identity transformation T� :Z0→Z�T�Z0 between the
lowest-order phase-space coordinates Z0

�= �x ,u0 ,�0 ,�0�
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and the guiding-center phase-space coordinates Z�

= �X ,u ,� ,��, where the guiding-center phase-space coor-
dinates

Z� = Z0
� + �G1

� + �2�G2
� + G1

	�G1
�

�Z0
	 
 + ¯ �5.41�

are expressed in terms of the generating vector fields
�G1 ,G2 , . . . �. Since the near-identity transformation is in-
vertible, we define the inverse near-identity transforma-
tion T�−1 :Z→Z0�T−1Z in terms of the generating vector
fields �G1 ,G2 , . . . � as

Z0
� = Z� − �G1

� − �2�G2
� −

1
2

G1
	�G1

�

�Z0
	 
 + ¯ . �5.42�

Note that the Jacobian J0 associated with the lowest-
order coordinates Z0 transforms to the new Jacobian J
associated with the guiding-center coordinates Z accord-
ing to

J = J0 − �
�

�Z�
�J0G1

�� + ¯ , �5.43�

which guarantees that J0d6Z0�Jd6Z.
In the remainder of this section, we present the ex-

plicit expressions for the guiding-center and bounce-
center phase-space transformations and refer the reader
to Tao et al. �2007� for the details of the drift-center
phase-space transformation.

1. Guiding-center transformation

Using Lie-transform perturbation methods, the
guiding-center transformation has been carried out to
first-order in magnetic-field nonuniformity and is ex-
pressed in terms of the relation between the particle po-
sition x and the guiding-center position X,

x�X + ��, �5.44�

where the generalized gyroradius vector is defined as

��� − �G1
x − �2�G2

x −
1
2

G1
��G1

x

�Z�

 + ¯ , �5.45�

where �0�−G1
x denotes the lowest-order gyroradius

vector, while the velocity-space components of the first-
order generating field are

G1
u = − u�0 · �b̂ · �b̂� +

�B

m�
�b̂ · �� b̂ + a1:�b̂� ,

G1
� = −

mv�

B
· vD − �

u

�
�b̂ · �� b̂ + a1:�b̂�

=
�

B

�S3

��
+ ���0

3
· � ln B −

u

�
b̂ · �� b̂
 ,

G1
� = − �0 · R −

�

B

�S3

��
,

where the gyrophase-dependent scalar field

S3� − �0 ·
b̂

�
� �2�

3
� B + mu2b̂ · �b̂


−
�B

�
� u
�

a2:�b̂

is derived at third order in the perturbation analysis
�Littlejohn, 1983� and the dyadic tensors a1��a2 /�� and
a2 are

a1 = − 1
2 �âĉ + ĉâ� and a2 = 1

4 �ĉĉ − ââ� .

The spatial component G2
x of the second-order vector

field is expressed as

G2
x = �0� u

�
b̂ · �� b̂
 − �S3

�u

b̂

m
+

1
2
�g1
���0

��
+ g1

� ��0

��

 ,

where g1
��G1

�−���0 ·�ln B� and g1
��G1

�+�0 ·R, and the

gyrogauge vector field is defined as R��ĉ · â=�1̂ · 2̂.
Note that the guiding-center Jacobian is constructed

from the first-order generating field G1 as

B
�
*� B −

�

�Z�
�BG1

�� + ¯

= � · �B�0� + B�1 −
�G1

u

�u
−

�G1
�

��
−

�G1
�

��



= B�1 +
u

�
b̂ · �� b̂
 .

Note also that the kinetic energy is invariant to first or-
der under the guiding—center transformation since

G1
E� BG1

� + muG1
u − ��0 · �B� 0.

Hence, the guiding-center and particle kinetic energies
are identical to first order.

2. Bounce-center transformation

We first introduce the symplectic part of the parallel
guiding-center phase-space Lagrangian

ub̂ · Ẋ = u�bkẏk +
�s

�Jb
J̇b +

�s

��
�̇ + b��̇� � ���Ż�,

expressed in terms of the coordinates Z�
= �y1 ,y2 ,Jb ,� ,w ,��. Next, we construct the Lagrange
matrix components

���	�
���	
�Z�

−
����
�Z	

,

and express the guiding-center equations as

ẏk = ��k�� �H

�y� − �b����
 ,
J̇b = ������ +���k�

−1ẏk� ,

�̇ = �b + �����J + �−1ẏk��kJ� ,
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ẇ = �� �H

��
+ �b����
 ,

where first-order corrections are retained and the com-
ponents ���� depend explicitly on the bounce angle �.
By defining the bounce-center phase-dependent func-
tions

F�� �
0

�

����d��,

we express the components of the first-order generating
vector field for the bounce-center transformation as

G1
k = − �k�F�,

G1
J =

�S2

��
+

1
2
�k�Fk

�F�

��
,

G1
� = −

�S2

�Jb
−

1
2
�k�Fk��I�,

G1
w = F�,

with G1
��0 and the scalar field S2 is a solution to the

differential equation

�b
�S2

��
= −

�b

2
�k��Fk

�F�

��
− �Fk

�F�

��
�

b



+ �k� �H

�ykF� − F�.

Note that since

�ẏk�b = �k��Hb

�y�
and �ẇ�b =

�Hb

��
,

then

��k�����

����

 = �b

−1�ẏk − �ẏk�b
ẇ − �ẇ�b



and

G1
J =

1

�b
��k� �H

�ykF� − F�
 + 1
2
�k��Fk

�F�

��
�

b

= − �b
−1dJb0

dt
,

where �Fk�F� /����0 �because the functions Fk are odd
in �� and

��k�F�

F�

 = 1

�b
� �ẏk − �ẏk�b

ẇ − �ẇ�b

d� .

The bounce-center transformation presented here was
also presented by Tao et al. �2007� in the relativistic limit.
In the next section, we present the details of the deriva-
tion of relativistic Hamiltonian guiding-center equations
of motion.

VI. RELATIVISTIC GUIDING-CENTER THEORY

The relativistic motion of a particle of rest mass m and
charge e is described in eight-dimensional phase space in
terms of the space-time coordinates x�= �x0=ct ,x� and
the four-momentum p�=mu�, with the four-velocity de-
fined as

u� =
dx�

d�
= �u0 = �c,u = �v� , �6.1�

where �= �1− �v�2 /c2�−1/2= �1+ �u�2 /c2�1/2 is the relativistic
factor and dx� /d�=�ẋ� is the derivative with respect to
proper time �. Once again, we use the Minkowski space-
time metric g��=diag�−1, +1, +1, +1� so that u�u�=−c2.

The equation of motion for the four-momentum p� is

dp�

d�
=

e

c
F��u�, �6.2�

where

F�� = ��A� − ��A� �6.3�

denotes the Faraday tensor. Here the space-time contra-
variant derivative is

�� = g���� = �− �/�x0,�� ,

where A�= �A0=� ,A� is the electromagnetic four-
potential.

A. Relativistic Hamiltonian formulations

We begin by introducing two Hamiltonian formula-
tions for the relativistic equations of motion for a
charged particle moving in an electromagnetic field.
Each formulation is defined in terms of a Hamiltonian
function H and a Poisson bracket �,� derived from a
phase-space Lagrangian.

The first formulation is based on a covariant descrip-
tion expressed in terms of the phase-space coordinates
Za= �x� ,p��. The covariant formulation treats space and
time as well as momentum and energy on equal footings.
The second formulation, on the other hand, treats time
and space separately and makes use of the extended
phase-space coordinates za= �x ,p ; t ,w�, where the en-
ergy coordinate w is canonically conjugate to time t.

1. Covariant formulation

We begin our task of finding a suitable covariant �c�
Hamiltonian formulation for Eqs. �6.1� and �6.2� in terms
of a covariant Hamiltonian Hc and a covariant Poisson
bracket �,�c,

dZa

d�
� �Za,Hc�c.

First, we start with the covariant relativistic phase-space
Lagrangian
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Lc� �p� +
e

c
A�
ẋ�, �6.4�

where ẋ��dx� /d�. From this Lagrangian, we obtain the
covariant �8�8� Lagrange matrix

�c = ��e/c�F�� − g��

g�� 0

 , �6.5�

whose inverse yields the covariant Poisson matrix

�c = � 0 g��

− g�� �e/c�F��

 . �6.6�

The Poisson bracket �A ,B�c of two functions A and B on
eight-dimensional phase space is thus

�A,B�c� g��� �A
�x�

�B
�p�

−
�A
�p�

�B
�x�

 + e

c
F��

�A
�p�

�B
�p�

.

�6.7�

Substituting A=x� or p� and B=Hc into Eq. �6.7�, we
find, respectively,

�x�,Hc�c = g��
�Hc

�p�
, �6.8�

�p�,Hc�c = − g��
�Hc

�x�
+

eF��

c

�Hc

�p�
. �6.9�

We recover the equations of motion relativistic particle
dynamics �6.1� and �6.2� from Eqs. �6.8� and �6.9� if

�Hc

�x�
� 0 and

�Hc

�p�
� u�,

which implies that the covariant relativistic Hamiltonian
must be of the form

Hc� g��
p�p�

2m
. �6.10�

Note that covariant relativistic particle motion takes
place on the surface Hc�Z��−mc2 /2 and, hence, Hc is a
Lorentz scalar �i.e., it is not energylike�. Furthermore,
the covariant relativistic Hamiltonian �6.10� does not
have a well-defined nonrelativistic limit �Jackson, 1975�,
which can make it impractical for some applications.

2. Noncovariant formulation

Because of the problems associated with a covariant
Hamiltonian formulation, we turn our attention to a
noncovariant Hamiltonian formulation of relativistic
particle dynamics �Brizard and Chan, 1999�. Here the
time variable is to be treated differently from the spatial
coordinates and we look for a noncovariant �energylike�
Hamiltonian H and a noncovariant Poisson bracket �,�:
dza /dt��za ,H�, where za��x ,p ; t ,E� are eight-
dimensional extended phase-space coordinates. The ex-
tended relativistic Hamiltonian is

H� �mc2 + e� − E , �6.11�

where

� = �1 + �p/mc�2

is the relativistic factor expressed in terms of the relativ-
istic kinetic momentum. Note that the Hamiltonian
�6.11� has a well-defined classical limit and is an energy-
like quantity. To complete this Hamiltonian formulation,
we turn our attention to deriving a suitable expression
for the extended phase-space Poisson bracket �,�.

The extended phase-space Lagrangian is

L = �p +
q

c
A
 · dx

d

− E dt

d

− H� !a

dza

d

− H , �6.12�

where 
 represents a Hamiltonian orbit parameter in
extended phase space and the physical particle motion
in eight-dimensional extended phase space takes place
on the surface H=0, or E=�mc2+e�. By inverting the
extended phase-space Lagrange matrix obtained from
the symplectic part �!a�, we construct the extended
phase-space Poisson bracket

�F,G� � � �F

�E
�G

�t
−

�F

�t

�G

�E 
 + ��F ·
�G

�p
−

�F

�p
· �G


+
e

c

�A
�t

· � �F

�p
�G

�E
−

�F

�E
�G

�p

 + eB

c
·
�F

�p
�

�G

�p
.

�6.13�

Hence, using Eqs. �6.11� and �6.13�, we find

dx
d


= �x,H� =
p
�m

,

dp
d


= �p,H� = eE +
p
�m

�
eB
c

,

dE
d


= �E,H� = e
��

�t
−

e

c
ẋ ·

�A
�t

,

dt

d

= �t,H� = + 1.

Note that this noncovariant formulation separates the
components of the electromagnetic four-potential: the
scalar potential � appears explicitly in the Hamiltonian
�6.11� while the vector potential A appears explicitly in
the Poisson bracket �6.13�.

B. Relativistic Hamiltonian guiding-center theory

Derivation of a relativistic Hamiltonian guiding-
center theory follows steps similar to derivation of the
nonrelativistic guiding-center theory. In the present sec-
tion, we only present results of derivations presented
elsewhere. Note that these Hamiltonian guiding-center
formulations possess the same advantages �e.g., energy
conservation� over the relativistic guiding-center equa-
tions presented by Northrop �1963�.
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1. Covariant formulation

The covariant formulation of relativistic Hamiltonian
guiding-center theory was presented by Boghosian
�1987� based on earlier work by Fradkin �1978�. The fast
gyromotion time scale is explicitly introduced by intro-
duction of eigenvalues ±"E and ±i"B of the Faraday ten-
sor �6.13�, where

�"E
2

"B
2 
 � #�1 + ��1

2 + �2
2

are expressed in terms of the Lorentz invariants �1

� 1
2 ��B�

2− �E�2� and �2�E ·B. We then introduce two
projection operators P� and P� defined as

�P���
P�
�� 
 � �"B

2 + "E
2 �−1�±F


�F
� + �"B
2

"E
2 
g��� ,

which satisfy the properties P� ·P�=P�, P� ·P�=P�,
P� ·P�=0=P� ·P�, and P�

��+P�
��=g��. The operators P�

and P� project an arbitrary four-vector V���V0 ,V�
onto the parallel two-flat and the perpendicular two-flat,
respectively. For example, when these operators are ex-
pressed in the preferred frame where E=0, we find

P�
��V� = �V0,V�b̂� ,

P�
��V� = „0,b̂� �V� b̂�… , �6.14�

and, hence, the parallel two-flat combines the time coor-
dinate with the spatial coordinate along the magnetic
field while the perpendicular two-flat combines the two
spatial coordinates that span the plane perpendicular to
the local magnetic field.

These decompositions lead us to the covariant repre-
sentation for the particle’s relativistic four-vector veloc-
ity

u� = q��e0
� cosh 	 + e1

� sinh 	� − q��e2
� sin � + e3

� cos ��

� q�t� + q�c�,

where q�
2�−u�P���u� and q�

2 �u�P�
��u�, so that q�

2−q�
2

=c2, and the orthogonal basis four—vectors
�e0 ,e1 ,e2 ,e3� are used to define the parallel two-flat
�spanned by e0 and e1� and the perpendicular two-flat
�spanned by e2 and e3�, with e� ·e�=g��. We also define
b���t� /�	 and a��−�c� /��.

We now write the covariant relativistic phase-space
Lagrangian �6.4� as

Lc� � ecA� + mq�t� + mq�c�
ẋ�, �6.15�

and the covariant Hamiltonian �6.10� as

Hc�
m

2
�q�

2 − q�
2� . �6.16�

The derivation of a covariant relativistic guiding-center
Lagrangian from Eq. �6.15� proceeds similarly as in Sec.
III.C, with the relativistic gyroradius four-vector defined
as ����q� /�B�a�, where �B�e"B /mc.

Working in the preferred frame where E=0, the cova-
riant relativistic guiding-center �crgc� Lagrangian is ex-
pressed in terms the lowest-order guiding-center coordi-
nates Zcrgc

a = �X��x�−�� ,q� ,	 ,� ,�� as

Lcrgc = � e
c

A� + mq�t�
Ẋ� + ��mc

e

�̇ , �6.17�

while the covariant relativistic guiding-center Hamil-
tonian is

Hcrgc = �"B −
m

2
q�

2. �6.18�

We can now derive covariant relativistic guiding-center
equations of motion expressed in terms of a covariant
relativistic Poisson bracket �,�crgc derived from Eq. �6.17�
and the Hamiltonian �6.18� as Żcrgc

a = �Zcrgc
a ,Hcrgc�crgc,

with �̇= �� ,Hcrgc�crgc�0 and the gyrophase angle � has
become an ignorable angle. Instead of writing explicit
expressions for these covariant relativistic guiding-
center equations of motion, which are found in Bogho-
sian �1987�, we now present the noncovariant relativistic
guiding-center equations of motion, which have greater
applicability.

2. Noncovariant formulation

For weakly time-dependent fields, the relativistic
guiding-center phase-space Lagrangian is expressed in
terms of extended guiding-center phase-space coordi-
nates Za��X ,p� ;� ,� ;w , t� as

Lrgc = � e
c

A�X,t� + p�b̂�X,t�� · Ẋ + ��mc/e��̇

− wṫ − Hrgc, �6.19�

where Ża�dZa /d
. The relativistic guiding-center ex-
tended Hamiltonian is

Hrgc� �mc2 + e��X,t� − w , �6.20�

where �=�1+ �2/mc2��B�X , t�+p�
2 / �mc�2 is the guiding-

center relativistic factor and the relativistic guiding-
center extended Poisson bracket is

�F,G�rgc�
e

mc
� �F

��

�G

��
−

�F

��

�G

��



+
B*

B
�
*

· ��*F
�G

�p�
−

�F

�p�
�*G


−
cb̂

eB
�
*

· �*F� �*G

+ � �F

�w

�G

�t
−

�F

�t

�G

�w

 , �6.21�

where the effective gradient operator �* is
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�*� �−
e

c

�A*

�t

�

�w
,

and we have introduced the effective magnetic field

B*� ��A* = �� 	A + �cp�/e�b̂


= B + �cp�/e� � � b̂ , �6.22�

from which we define

B
�
*� b̂ · B* = B + �cp�/e�b̂ · �� b̂ . �6.23�

The Jacobian for the guiding-center transformation is
mB

�
*, i.e., d8z�mB

�
*d8Z. We make an important remark

here that the noncovariant relativistic guiding-center
Poisson bracket �6.21� has the same form as the nonrel-
ativistic Poisson bracket.

Using the relativistic guiding-center Hamiltonian
�6.20� and Poisson bracket �6.21�, the relativistic guiding-
center Hamilton equations are expressed as dZa /d

= �Za ,Hrgc�rgc, with dt /d
=1. The relativistic guiding-
center velocity is

dX
dt

=
p�

m�

B*

B
�
*

+ E*�
cb̂

B
�
*

, �6.24�

and the relativistic guiding-center parallel force equa-
tion is

dp�
dt

= eE* ·
B*

B
�
*

, �6.25�

where we have introduced the effective electric field

E*� − ��* −
1

c

�A*

�t
= E −

1

e
�mc2 � � − p�

�b̂

�t

 ,
�6.26�

where the effective potentials are

��*

A*

 � ��

A

 + mc

e
� �c

�v�b̂

 . �6.27�

We note that the electromagnetic potentials in Eq. �6.27�
are corrected by the parallel two-flat projection of the
guiding-center four-velocity, defined in Eq. �6.14�. Note
that the relativistic guiding-center equations �6.24� and
�6.25� are identical to those presented by Grebogi and
Littlejohn �1984� if we substitute �*→� and E*→E
− �� /e���B. The relativistic guiding-center equations
for the canonically conjugate coordinates �� ,��, on the
other hand, are

d�

dt
= −

e

mc

�Hrgc

��
= 0, �6.28�

d�

dt
=

e

mc

�Hrgc

��
���−1, �6.29�

which completes the relativistic Hamiltonian formula-
tion of guiding-center motion.

The relativistic guiding-center Hamiltonian equations
�6.24� and �6.25� have the phase-space volume-
preservation property

0�
�B

�
*

�t
+ � · �B

�
*Ẋ� +

�

�p�
�B
�
*ṗ�� , �6.30�

since

�B
�
*

�t
= b̂ ·

�B*

�t
+ B* ·

�b̂

�t
= − cb̂ · �� E* + B* ·

�b̂

�t
,

� · �B
�
*Ẋ� = c�b̂ · �� E* − E* · �� b̂� +

p�
m

B* · ��−1,

�

�p�
�B
�
*ṗ�� = e� �E*

�p�
· B* + E* ·

�B*

�p�



= − B* · �p�
m

� �−1 +
�b̂

�t

 + cE* · �� b̂ .

One final note concerns the validity of the guiding-
center approximation itself when considering applica-
tions of the relativistic guiding-center Hamiltonian
equations �6.24�, �6.25�, �6.28�, and �6.29�. In standard
guiding-center theory �Northrop, 1963�, the small order-
ing parameter � /L�� 1, which scales with the mass of
the guiding-center particle. Hence, since relativistic ef-
fects introduce the �m dependence on inertia, it would
then appear that the relativistic guiding-center ordering
parameter ��0 �where �0 denotes the characteristic rest-
mass gyroradius� is no longer small only at very high
kinetic energies �� �0

−1�1�. One can therefore confi-
dently apply the relativistic guiding-center Hamiltonian
equations �6.24�, �6.25�, �6.28�, and �6.29� for relativistic
charged particles with � �0

−1.

VII. DYNAMICS IN TOROIDAL CONFINEMENT
SYSTEMS

The confinement of pressure in magnetohydrodynam-
ics requires a magnetic configuration in which the field
lines lie on nested toroidal surfaces. But for collisionless
plasmas, the fact that the orbits of particles can be large
leads to large cross-field particle and energy transport
�Hinton and Hazeltine, 1976; Kovrizhnykh, 1984�,
known as neoclassical transport. The large orbits arise
due to the guiding-center drifts, which carry particles to
different flux surfaces. This causes the resulting large
transport—a particle moves far from its initial surface,
then due to a collision its magnetic moment is changed,
and the particle is on a new trajectory unrelated to the
first. The diffusion coefficient for this random walk pro-
cess is D=��$��2, where � is the collision frequency for
the appropriate change of the magnetic moment, and
$� is either the width of the orbit in the flux variable
�for the case of collision frequency small compared with
the orbit frequency� or the typical change of the flux
variable � due to guiding-center drifts in one collision
time �for the opposite case�.
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Here we consider the reduction of only the magnetic
cross-flux-surface drift. 	A recent review �Mynick, 2006�
discussed the calculation and reduction of the cross-field
collisional transport.
 The self-consistently calculated
electrostatic potential is found �Kovrizhnykh, 1984� to
be of the same order as the magnetic potential, and so
the ordering of Sec. V is appropriate, where the guiding-
center Hamiltonian has the form of Eq. �5.2�, in which
the three terms are of the same order, and the term
going as the square of the electric drift is dropped. In
addition, the electrostatic potential is found to be domi-
nantly a flux function. Hence, the electrostatic potential
gives rise to drifts only within the flux surface. That we
need consider only the magnetic cross-flux-surface drifts
is convenient, as only the magnetic field comes from
solving the scalar-pressure equilibrium equation.

In the case in which the magnetic drifts do not carry
particles far from a flux surface, it is possible to develop
a rigorous transport theory in which the distribution on
each flux surface is nearly Maxwellian �Hinton and Ha-
zeltine, 1976� even in the low-collisionality regime,
where the collision time is long compared with the time
needed for a trajectory to experience its maximum
variation of flux variable �. We call this theory omnige-
neous neoclassical theory, as similar scalings of diffusion
and thermal transport coefficients hold.

Palumbo �1968� suggested seeking isodynamic equilib-
ria, those for which the flux surface crossing drift van-
ishes everywhere. This imposes the strict condition that
the magnetic field be constant on a flux surface in the
case in which there is net poloidal current. Hall and Mc-
Namara �1975�, in examining open configurations, im-
posed the less stringent condition of omnigeneity, that
the bounce averaged cross-flux-surface drift vanish.2

Nührenberg and Zille �1988� proposed the condition of
quasihelicity, one way in which to obtain three-
dimensional equilibria that are integrable, with trajecto-
ries that remain close to the flux surfaces. Nuhrenberg
showed numerically generated three-dimensional equi-
libria that approximately satisfied this condition. Cary
and Shasharina �1997a, 1997b, 1997c� analyzed the less
strict requirement of simple omnigeneity and showed a
number of consequences and properties of the resulting
systems. These properties could be sought through nu-
merical means. The least stringent condition is that of
Mynick et al. �1982�, who proposed a class of stellarator
configurations having reduced transport due to omnige-
neous for either deeply or marginally trapped trajecto-
ries. We call such systems specifically omnigeneous.
These systems were later discussed by Mynick �1983�.

Further classifications of the various systems are dis-
cussed by Mynick �2006�.

For each of these types of systems, neoclassical trans-
port is significantly reduced. The greatest reduction is
for the isodynamic systems, which have neither neoclas-
sical transport nor even the enhanced Pfirsch-Schlüter
transport occurring in the collisional regime. Systems
that are guiding-center integrable and those that are om-
nigeneous have the least troublesome neoclassical trans-
port. For these systems, the orbit width is small in the
guiding-center adiabatic parameter, and so the transport
decreases with increasing magnetic field. With neither
omnigeneity nor guiding-center integrability, there are
trajectories whose width does not scale with magnetic
field and is usually of the order of the machine radius in
the absence of a strong electrostatic field. However, for
transition omnigeneity, one is guaranteed the absence of
transition trajectories, which are chaotic due to separa-
trix crossing and, so, cause transport even in the limit of
zero collisionality. Finally, specific omnigeneity guaran-
tees that at least some particles are omnigeneous and,
hence, do not contribute to neoclassical transport.

Not surprisingly, the better the transport properties
and, hence, the more specific the requirements, the more
difficult such systems are to find. Bernardin et al. �1986�,
through expansion about the magnetic axis, showed that
toroidal isodynamic configurations could not have
closed flux surfaces without the magnetic field vanishing
on axis. While Nührenberg and Zille �1988� found ap-
proximately guiding-center integrable configurations for
large aspect ratio, Garren and Boozer �1991� showed
that, in third order in an expansion away from the mag-
netic axis, guiding-center integrability cannot be satis-
fied. Some work by Meyer and Schmidt �1958� indicated
that certain types of specific omnigeneity can be ob-
tained, but little additional work has been done in this
area.

In this section, we use noncanonical Hamiltonian
guiding-center theory to review and add to the literature
on improved confinement configurations. We begin by
deriving the guiding-center equations of motion in flux
variables. The condition for isodynamism follows from
the guiding-center equations of motion. For isodynamic
systems, both angles are ignorable in noncanonical
Hamiltonian guiding-center theory. This implies con-
stancy of the kinetic energy. We next consider the case
of quasihelicity, which we obtain by requiring the phase-
space Lagrangian coordinates to depend on the angles
only through a single linear combination. A special case
of this is when the angles are those of Boozer coordi-
nates. Next we consider omnigeneity �zero bounce aver-
age drift off the flux surfaces�. We first consider the con-
ditions for specific omnigeneity, i.e., omnigeneity of
various classes of particles. Finally, we show that the
condition of omnigeneity is less restrictive than quasihe-
licity. We summarize by noting the hierarchy of condi-
tions for improved confinement. Throughout our discus-
sion, we use units such that e=m=c=1 and without the
adiabatic ordering parameter.

2There is some confusion in the literature on these terms with
isodynamic or isodynamism and omnigeneous or omnigeneity
used interchangeably. Indeed, as noted by Catto and Hazeltine
�1981�, Hall and McNamara �1975� appear to state that by om-
nigeneity they mean that the instantaneous drift is within the
surface. However, their later discussion indicates that by om-
nigeneity they mean that the bounce averaged drift is within
the surface. We take omnigeneity to have the latter meaning.
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A. Guiding-center equations of motion in flux coordinates

The guiding-center Lagrangian �3.2� for bounce order-
ing and in flux coordinates is

Lg = �ub���̇ + �� + ub���̇ + 	A���� + ub�
�̇ − Hg,

�7.1�

for which the Hamiltonian �3.49� becomes

Hg = 1
2u2 + �B��,�,�� +���� , �7.2�

in keeping with our previous comments at the beginning
of this section that the electrostatic potential is domi-
nantly a flux function. �We have dropped the ordering
parameter and the gyrophase term that does not affect
the motion of the guiding center. We have also dropped
the subscript F, as in this section we assume flux coordi-
nates.�

The Lagrange tensor for these coordinates �� ,� ,� ,u�
is found from the exterior derivative of the phase-space
part of the differential action for this Lagrangian as in
Eq. �2.25�. The result is

� = !
0 1 + uc�� − �� + uc��� − b�

− �1 + uc��� 0 uc�� − b�
� + uc�� − uc�� 0 − b�

b� b� b� 0
" ,
�7.3�

where

cji�
�bi

��j −
�bj

��i , �7.4�

with �i= �� ,� ,��. The relation �2.43� implies that the
conserved phase-space Jacobian in these variables is

J = VB
�
* = b�uc�� + b��� + uc��� + b��1 + uc��� , �7.5�

where the spatial volume element V is given by Eqs.
�4.7� and �4.8�. The inverse of the Lagrange tensor, as
noted in Sec. II, is the Poisson tensor,

� =
1
J!

0 − b� b� uc��
b� 0 − b� � + uc��

− b� b� 0 1 + uc��
− uc�� − �� + uc��� − �1 + uc��� 0

" .
�7.6�

The Poisson tensor acting on the gradient of the Hamil-
tonian gives the rate of change of the coordinates, ac-
cording to Eq. �2.30�. Thus, we obtain the equations of
motion

�̇ =
1
J�− b�

�Vg

��
+ b�

�Vg

��
+ u2c��
 , �7.7�

�̇ =
1
J�b��Vg

��
− b�

�Vg

��
+ �u + u2c��
 , �7.8�

�̇ =
1
J�− b�

�Vg

��
+ b�

�Vg

��
+ u + u2c��
 , �7.9�

and

u̇ = −
1
J�uc��

�Vg

��
+ �� + uc���

�Vg

��
+ �1 + uc���

�Vg

��
� ,

�7.10�

where

Vg = �B +� �7.11�

is the effective guiding-center potential.

B. Isodynamism

An equilibrium is isodynamic if the particles do not

drift across flux surfaces, i.e., �̇=0. From the form of the
covariant components of the magnetic field in Boozer
coordinates, we can reduce the cross flux surface drift to
the form

�̇ = ��B + u2��B��B

��
− B�

�B

��

 . �7.12�

Thus, isodynamic equilibria satisfy

B�
�B

��
− B�

�B

��
= 0. �7.13�

Hence, the magnetic field is constant along curves on a
surface having parametric form

� = �0 + B�� �7.14�

and

� = �0 + B�� . �7.15�

Typically, such as in a tokamak, both the net toroidal
current B���� and the net poloidal current −B���� flow-
ing inside a flux surface � vary continuously with �. For
values of � such that the ratio B� /B� is irrational, a
curve defined by Eqs. �7.14� and �7.15� covers a magnetic
surface, and so the magnetic field is constant on a mag-
netic surface. By continuity one can then extend the
constancy of the magnetic-field strength to surfaces for
which B� /B� is rational. This is the case discussed early
in the literature �Palumbo, 1968�.

The constancy of magnetic-field strength implies that
B� vanishes if the magnetic field corresponds to scalar
pressure equilibrium. Expansion of Eq. �B37� in Fourier
series in the angles shows that the amplitude of the har-
monic exp�il�− in�� of B� is nonzero only if either l�
−m is nonzero, or if the Jacobian J also has a nonzero
amplitude for this harmonic. But the Jacobian J has
nonzero amplitudes for only the �0,0� harmonic. Hence,
in the typical case in which the surfaces on which the
rotational transform is irrational are dense, B� is a func-
tion of � alone. Moreover, for our modified Boozer co-
ordinates, the average part of B� was shown to vanish.
Thus, B� vanishes for isodynamical systems in modified
Boozer coordinates.
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For this generic case of nonvanishing and varying net
toroidal and poloidal currents, the Lagrangian for an
isodynamical system is independent of both the poloidal
and toroidal modified Boozer angles. Hence, the conju-
gate momenta,

p��
e

c
A� + mub� �7.16�

and

p��
e

c
A� + mub�, �7.17�

are both conserved. As these are both functions of only
� and u, � and u are constants of motion. 	Had we not
chosen the �modified� Boozer coordinates, we would
have had a hidden symmetry, as � and u, and, therefore,
p� and p� would still have been constants of motion, but
this would not have been apparent from the Lagrangian,
as through B� the Lagrangian would have had a depen-
dence on the angles.


Given that the case of a constant, finite, rational ratio
of B� /B� seems improbable, the two remaining cases to
discuss are those for which either B� or B� vanishes. For
the case of no net poloidal current, B�=0, then B is a
function of only the poloidal angle. This corresponds to
field reversed configurations. In agreement with Bernar-
din et al. �1986�, the magnetic field vanishes on axis. The
lack of � dependence implies that p�=eA���� /c is a
constant of motion, making evident that � is a constant
of motion. In this case, without other considerations, the
quantity B� need not vanish. A similar discussion ap-
plies to the case of no net toroidal current, except that as
noted by Cary and Shasharina �1997b� closure of the
magnetic axis requires some poloidal variation of B near
the axis, and so this case cannot occur.

Finally, we note that open systems, for which the flux
coordinates �Sec. IV.A.2� are appropriate, have been
considered by Catto and Hazeltine �1981� and by Ber-
nardin et al. �1986�. Using a “long-thin” approximation,
Catto and Hazeltine �1981� were able to construct mir-
ror equilibria, while Bernardin et al. �1986� have shown
that the magnetic axis of such systems must be straight.

C. Quasisymmetry

Quasisymmetry �Boozer, 1983� is the condition of hav-
ing the magnitude of the magnetic-field strength depend
on only some linear combination of the angles in Boozer
coordinates. It includes quasipoloidal, in which B is in-
dependent of �, quasitoroidal, in which B is independent
of �, and quasihelical, in which the magnetic-field
strength depends on only a single linear combination,

�� l0� − n0� , �7.18�

of the angles. In each of these cases there is an ignorable
angle, so that the conjugate momentum is an invariant.
Of course, toroidally symmetric systems, like the toka-
mak, are well known. �No example of a member of the
isodynamic subset of these, which would have no net

toroidal current, has come forth.� In contrast, no precise
example of poloidally symmetric systems is available.
This leaves only the possibility of quasihelical systems,
in which the only angular dependence is on the variable
�7.18�, upon imposing the condition of no net toroidal
current. �This latter condition can be relaxed, as one can
obtain systems in which the bootstrap current provides
net toroidal current, if the goal is simply not to have to
drive current inductively.�

One might imagine that it is possible that the symme-
try is manifest in a set of coordinates that are not Boozer
coordinates. In the next section, we show that this is
possible, although in an approximate sense, but to very
high accuracy.

In Boozer coordinates for scalar pressure equilibrium,
one need only demand that B be a function of the angle
combination, and then it follows that B� also has this
property. The argument follows from Eq. �B37�. As be-
fore, expansion of this equation in Fourier series in the
angles shows that the amplitude of the harmonic
exp�il�− in�� in B� is nonzero only either if l�−m is non-
zero or if the Jacobian V also has a nonzero amplitude
for this harmonic. The Jacobian V has nonzero ampli-
tudes only for harmonics satisfying

�l,n� = k�l0,n0� , �7.19�

as V, related to the magnetic-field strength via Eq. �4.61�,
is a function of the angles only through �. Hence, in the
typical case in which the surfaces on which the rotational
transform is irrational are dense, B� also has nonzero
amplitudes only for harmonics satisfying the relation
�7.21�, and so B� and the guiding-center Lagrangian are
functions of only � and �.

The invariant associated with this symmetry is found
using the new variable set �� ,� ,�� for the guiding-
center Lagrangian. With this replacement, Eq. �7.1� be-
comes

Lg = mub��̇ +
1

l
� e

c
� + mub�
�̇

+ � ec�A� +
n

�
�
 + mu�b� +

n

�
b�
��̇ − hg

�7.20�

with

hg = 1
2mu2 + �B��,�� + e���� . �7.21�

�We restore units in the remainder of this section.� As
this Lagrangian is a function of only �� ,� ,u� �and inde-
pendent of ��, the momentum,

Ps�
e

c
As + mubs, �7.22�

conjugate to the ignorable coordinate � is conserved,
where

727John R. Cary and Alain J. Brizard: Hamiltonian theory of guiding-center motion

Rev. Mod. Phys., Vol. 81, No. 2, April–June 2009



e

c
As�

e

c
�A� +

n

l
�
 �7.23�

and

Bs� B� +
n

l
B�. �7.24�

The subscript s denotes that these are the components
associated with the symmetry variable. In the case n=0,
this invariant reduces to the toroidal angular momen-
tum, which is conserved in cases of axisymmetry, as dis-
cussed in Sec. III.F.

This invariant contains one term, eAs /c, depending on
only the flux variable and of one order higher in the
guiding-center ordering that the other term, muBs /B,
which varies as the particle moves through space. Be-
cause the dominant term is a function of only the flux
variable, the existence of this invariant implies that the
flux variable is to lowest order an invariant, and, hence,
the variation of the flux variable is small—first order in
the guiding-center ordering.

Because the flux variable is, to lowest order, a con-
stant of motion, a particle sees a variation of potential
that is periodic, as it is a function of only the variable �.
Conservation of the Hamiltonian �7.21� relates the par-
allel velocity to the magnetic-field value for two differ-
ent points,

1
2mu1

2 + �B1 = 1
2mu2

2 + �B2, �7.25�

along a trajectory. The variation of the flux variable is
related to the variation of the parallel velocity through
Eq. �7.22�. The constancy of the momentum Ps implies

e

c

�As

��
��̄���1 −�2� = mBs� u2

B2
−

u1

B1

 , �7.26�

where all quantities are evaluated at a flux variable

value of �̄, which corresponds to some value of the flux
variable on the trajectory. For maximum accuracy, � is
taken to be the mean value of the flux variable. As the
flux variable scales as � 1

2Br2, Eq. �7.26� shows that
the variation of the flux variable is small in the guiding-
center ordering—it vanishes in large magnetic-field
limit.

For passing particles, the variation of the flux variable
is found by inserting the extreme values u1=umin, B1
=Bmax, u2=umax, and B2=Bmin into Eq. �7.26�. The larg-
est variation is found for the separatrix trajectory, where
u1=0, and so

umax =�2�$B

m
, �7.27�

where

$B� Bmax − Bmin. �7.28�

Inserting this into Eq. �7.26� gives the flux variable varia-
tion,

$� = �2m�$b� e
c

�As

��
Bmin
−1

. �7.29�

For the barely trapped particles just inside the separa-
trix, the variation of the flux variable is twice this value,
as the particle moves in and out from the point where
the parallel velocity vanishes by this amount.

Nührenberg and Zille �1988� were able to obtain nu-
merical scalar pressure equilibria for which the ampli-
tudes of the harmonics not being of the desired helicity
were less than 2% of the value of the �0,0� harmonic.
These results were obtained for an �l=1,m=6� stellar-
ator with rotational transform varying from 1.4 to 1.5
and of aspect ratio roughly 13. One might hope to obtain
lower-aspect-ratio results. However, Garren and Boozer
�1991� showed, by expansion near the magnetic axis, that
it is possibility to satisfy the condition of guiding-center
integrability only through second order in the inverse
aspect ratio. Nevertheless, the results of Nührenberg
and Zille �1988� have been used in the helical advanced
stellarator �HELIAS� design.

D. Omnigeneity

Omnigeneous equilibria are those for which the
bounce-averaged cross-flux-surface guiding-center drift
vanishes. The guiding-center integrable systems just dis-
cussed have this property, as the flux variation is
bounded. However, such systems exist only in the large-
aspect-ratio limit. Hence, it is of interest to see whether
systems with equally good transport properties but
fewer restrictions are available.

In the discussion of such systems, it is useful to con-
sider how the magnetic-field strength varies within the
flux surface. Typical is the two-helicity model, often used
in early discussions, in which the magnetic-field strength
within a surface is of the form

B = %t���cos��� + %h���cos�l� − n�� . �7.30�

As the field line wraps on the surface, it encounters local
maxima, which then form a closed curve on the surface.
Similarly, the local minima form a closed curve.

These considerations show that, in general, there can
exist transitioning particles, particles that change state
from trapped to passing. For example, a particle could
be trapped between two local maxima on one field line,
but then its drift motion could carry it to a new field line
on which the magnetic maxima are smaller; it would
then change to a locally passing particle. This sort of
motion is described by separatrix crossing theory �Cary
et al., 1986; Cary and Skodje, 1988�, which shows such
motion to be chaotic. Cary and Shasharina �1997a,
1997b, 1997c� noted that good transport qualities would
require the elimination of such particles. This leads to
two conditions. The first is that the local maxima must
all have the same value of magnetic-field strength, while
the second is that the bounce action,
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J =
1

2� � dsu =
2

�
��B� + B���

min�B�

max�B�

d�
u

B
, �7.31�

for marginally trapped particles must be a constant for
the field lines within a surface.3 Cary and Shasharina
�1997a, 1997b, 1997c� then proved that this implied that
the curve of maxima had to be straight in Boozer coor-
dinates.

Cary and Shasharina went on to examine the conse-
quences of requiring all trapped particles to be omnige-
neous. They showed that this led to the requirement that
all magnetic minima have the same value 	also consid-
ered by Mynick et al. �1982�
 and to the condition of
isometry. Cary and Shasharina further showed that the
requirement that all trapped particles be omnigeneous
implied that all passing particles were omnigeneous as
well. Isometry, which had been introduced by Skovoroda
and Shafranov �1995�, is the condition that the length
along a field line between two contours of the same
value of magnetic-field strength be constant on a mag-
netic surface. Skovoroda and Shafranov noted that iso-
metric systems had omnigeneous trajectories, while Cary
and Shasharina showed that, in fact, omnigeneity im-
plied isometry.

Thus, in summary, the three Cary-Shasharina integral
conditions for omnigeneity are as follows: �i� The mag-
netic maxima must have the same value. �ii� The curve
of magnetic maxima must be straight in Boozer coordi-
nates. �iii� The magnetic field must be isometric. �Isom-
etry then implies that the magnetic minima all have the
same value on a surface.�

Cary and Shasharina then proved an additional result:
�iv� If the magnetic-field strength is analytic in the flux
variables, then the contours are in fact straight in the
Boozer angles. This then proves that the only choice for
complete, analytic omnigeneity is the existence of quasi-
symmetry, the magnetic-field strength being a function
of a single linear combination of the flux angles in
Boozer coordinates.

One might consider this argument conclusive. How-
ever, the difference between analytic and nonanalytic
functions can be very small. One can construct a
nonanalytic magnetic-field-strength function that satis-
fies the Cary-Shasharina integral conditions and then
truncates its Fourier series at some high mode number.
Because only a small term is dropped, the function is
still far from having a symmetry in Boozer angles, yet it
is now analytic. Because the function remains close to
the original, nonanalytic, exactly omnigeneous form, the
trajectories remain close to being omnigeneous. Such
systems are said to be approximately omnigeneous. They
can be arbitrarily close to omnigeneous yet very far from
quasisymmetric.

E. Specific omnigeneity

While the developments of the previous section indi-
cate that one can obtain equilibria far from quasisym-
metric while retaining near-full omnigeneity, one could
imagine relaxing this even further, such that one re-
quires only specific trajectories to be omnigeneous. My-
nick �1983� considered two cases, one in which the
deeply trapped particles were omnigeneous and one in
which particles were omnigeneous at the local maximum
of the magnetic field. The former condition implies that
the magnetic minima on a flux surface all have the same
value, while the latter condition implies that the mag-
netic maxima on a flux surface all have the same value.
Mynick found the former case to have better transport
properties. However, having the particles be omnige-
neous at the magnetic maximum might not be expected
to help much, as such trajectories are unstable. It is rea-
sonable to expect that improvement comes about only
when particles on the separatrix trajectory are omnige-
neous. This implies the additional condition that the ac-
tion enclosed by the separatrix be constant on a flux
surface. For this case, there are no trajectories that tran-
sition between the locally passing and locally trapped
states. The consequences of imposing this condition re-
main to be explored.

F. Hierarchy of improved confinement systems

To summarize this section, toroidally nested magnetic-
field configurations can have varying degrees of devia-
tion of guiding-center trajectories from the flux surfaces.
For the isodynamic systems, the deviation vanishes. For
quasisymmetry �which include toroidal symmetry�, the
trajectories drift off the flux surface but then return cy-
clically. The same is true for omnigeneous systems.
These latter are known to reduce to quasisymmetric sys-
tems when the fields are analytic. However, very nearly
omnigeneous systems are very far from quasisymmetric.
This opens up a new avenue in the search for toroidal
confinement systems with good orbit properties. Greater
deviations still of the particle trajectories occur when
one demands that only a few specific trajectories be om-
nigeneous. A promising condition is that there exist no
transitioning particles, which follows from the constancy
of the bounce separatrix action on flux surfaces. This
hierarchy is summarized in Table III. As one moves up
the hierarchy, there is more symmetry, and the particles
deviate less from flux surfaces, but such systems are dif-
ficult to obtain or unobtainable altogether. For small-

3Mynick et al. �1982� had previously looked at the conse-
quences of only the first condition of having the magnetic
maxima constant within a surface.

TABLE III. Classification of toroidal confinement systems
from minimal to maximal deviation of trajectory from a flux
surface.

Isodynamism
Quasisymmetry

Approximate omnigeneity
Specific omnigeneity
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aspect-ratio systems, it is likely that one can obtain at
best near omnigeneity—having at best a large class of
particles being omnigeneous.

VIII. SUMMARY AND FUTURE DIRECTIONS

Guiding-center theory has been a powerful theoretical
tool for understanding strongly magnetized plasmas. In
this review, we have summarized the development and
use of the Hamiltonian theory of guiding-center motion.
Hamiltonian theory brings value through applicability of
Liouville’s theorem, which prevents the existence of at-
tractors, and Noether’s theorem, which allows one to
prove the existence of invariants from symmetries.

Our approach has been through the phase-space La-
grangian formulation of mechanics. In this formulation,
there is no restriction on the transformations that one
can use to find coordinates in which the motion is sim-
pler, though this comes at the cost of the dynamics being
determined by multiple phase-space functions rather
than just one, the Hamiltonian, as is the case for canoni-
cal coordinates. While more general, the phase-space
approach retains the Liouville and Noether theorems.

We then applied noncanonical, perturbative coordi-
nate transformations for systems with strong magnetic
fields. Imposing the requirement that the gyrophase be
absent from the new Lagrangian leads to a phase-space
Lagrangian with a Noether theorem, corresponding to
which is the magnetic moment invariant. Further discus-
sion showed how to relate guiding-center currents to
physical currents. Finally, we showed how to reduce the
guiding-center Lagrangian to the Lagrangian that de-
scribes magnetic-field line flow.

To relate this work to the more familiar canonical-
variable Hamiltonian mechanics, we showed multiple
ways to obtain canonical coordinates. Further simplifica-
tions were shown for the case of toroidal magnetic fields
with nested flux surfaces. In this case, the canonical co-
ordinates are closely related to the flux coordinates.

In Secs. V and VI, we discussed various refinements of
the standard Hamiltonian guiding-center theory by in-
troducing higher-order adiabatic invariants and/or rela-
tivistic effects. These refinements greatly extend the ap-
plicability of the guiding-center equations.

In Sec. VII, we reviewed the classification of toroidal
magnetic fields with respect to the off-surface drifts. We
further noted that there is a hierarchy, with isodynamic
systems having no off-surface drifts, quasisymmetric sys-
tems having an explicit symmetry in the Lagrangian, om-
nigeneous systems having no bounce-averaged off-
surface drifts, and specifically omnigeneous systems
having specific classes of particles with no bounce-
averaged off-surface drifts. We noted that bounce-
averaged omnigeneity and analyticity of the fields im-
plies quasisymmetry, but that one could also have
approximately omnigeneous systems with analytic fields
that are very far from quasisymmetric systems.

We end our summary by discussing extensions of
guiding-center Hamiltonian theory that have found ap-
plications in the development of the theoretical founda-

tions of turbulent transport in strongly magnetized plas-
mas. One important application involves the
development of low-frequency nonlinear gyrokinetic
theory, which was recently reviewed by Brizard and
Hahm �2007�. Low-frequency gyrokinetic theory was ini-
tially motivated by the need to describe complex plasma
dynamics over time scales that are long compared to the
short gyromotion time scale. Thus, gyrokinetic theory
was constructed as a generalization of guiding-center
theory �Northrop, 1963; Littlejohn, 1983�. For example,
Taylor �1967� showed that, while the guiding-center
magnetic-moment invariant �denoted �� can be de-
stroyed by low-frequency, short-perpendicular-
wavelength electrostatic fluctuations, a new magnetic-
moment invariant �denoted �̄� can be constructed as an
asymptotic expansion in powers of the amplitude �de-
noted �� of the perturbation field, i.e., �̄= �̄0+��̄1+¯,

where �̄0�� and �̄1�−�−1��̇d�̄ as follows from the
general formalism discussed in Sec. V.B. This early result
indicated that gyrokinetic theory could be built upon an
additional transformation beyond the guiding-center
phase-space coordinates, thereby constructing new gyro-
center phase-space coordinates, which describe
gyroangle-averaged perturbed guiding-center dynamics.

The linear electrostatic and electromagnetic gyroki-
netic equations have been successfully applied to the
low-frequency stability analysis of many magnetized
plasmas in various geometries. The nonlinear electro-
static and electromagnetic gyrokinetic equations, on the
other hand, have been used to study the transport prop-
erties of turbulent magnetized plasmas; see Dimits et al.
�2000�; Batchelor et al. �2007�; Brizard and Hahm �2007�
for details and references.
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APPENDIX A: NORTHROP LAGRANGIAN
FORMULATION

The guiding-center equations of motion presented by
Northrop �1963� can be derived from a guiding-center
Lagrangian different from Eq. �3.2�, with a guiding-
center Hamiltonian different from Eq. �3.3�. These
guiding-center expressions can be constructed by follow-
ing a procedure similar to Sec. III.D, where the choice of
the gyroangle-independent displacement vector �̄ that
leads to Eqs. �A1� and �A2� is �̄�0 in Eq. �3.45�. A
similar set of guiding-center equations for time-
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independent electric and magnetic fields was derived by
Brizard �1995�.

The Northrop guiding-center �Ngc� Lagrangian is

LNgc = � e
c

A + m�ub̂ + vE�� · Ẋ + J�̇ − HNgc, �A1�

where the Northrop guiding-center Hamiltonian is

HNgc =
m

2
�ub̂ + vE�2 + �B + e� . �A2�

1. Northrop Hamiltonian guiding-center dynamics

The Euler-Lagrange equations obtained from the La-

grangian �A1� are u� b̂ ·Ẋ and

mu̇b̂ = eE** +
e

c
Ẋ� B**, �A3�

where the new effective fields E**�−��**−c−1�A** /�t
and B**���A** are expressed in terms of the effective
potentials

e�**� e� + �B + �m/2��vE�2,

A**�A + �mc/e��ub̂ + vE� . �A4�

Note that, in a static magnetic field �where E=−���, the
effective potential �** is related to the effective poten-
tial �* defined in Eq. �3.11� as follows:

e�**�X + �̄� = e��X + �̄� + �B +
m

2
�vE�2

= e�� + �̄ · ��� + �B +
m

2
�vE�2

= e� + �B −
m

2
�vE�2� e�*.

The guiding-center equations of motion for Ẋ and u̇
are, respectively, expressed as

Ẋ = u
B**

B
�
**

+ E**�
cb̂

B
�
**

�A5�

and

u̇ =
eB**

mB
�
**

· E**, �A6�

where

B
�
**� b̂ · B** = B +

mc

e
b̂ · �� �ub̂ + vE� .

The presence of the E�B velocity in A** implies that
the polarization drift velocity now appears explicitly in
the guiding-center velocity �A5�.

2. Guiding-center conservation laws

The Northrop-Lagrangian guiding-center equations of
motion �A5� and �A6� possess an important Hamiltonian
property not shared by the original non-Hamiltonian
equations �A7� and �A8� derived by Northrop �1963�.
This property involves the conservation of guiding-
center phase-space volume, i.e., the guiding-center Liou-
ville theorem

�B
�
**

�t
+ � · �B

�
**Ẋ� +

�

�u
�B
�
**u̇� = 0. �A7�

Here, using Faraday’s law ��B** /�t=−c��E**�, we find

�B
�
**

�t
= b̂ ·

�B**

�t
+ B** ·

�b̂

�t
= − cb̂ · �� E** + B** ·

�b̂

�t
.

�A8�

Next, we find

� · �B
�
**Ẋ� = u � · B** + � · �E**� cb̂�

= c�b̂ · �� E** − E** · �� b̂� , �A9�

where we used � ·B**�0. Last, we find

�

�u
�B
�
**u̇� =

e

m
� �B**

�u
· E** + B** ·

�E**

�u



= cE** · �� b̂ −
�b̂

�t
· B**. �A10�

By combining Eqs. �A8�–�A10�, we easily recover Eq.
�A7�. The conservation of phase-space volume by the
Northrop-Lagrangian guiding-center equations of mo-
tion �A5� and �A6� plays a fundamental role in their
numerical integration over long-time scales. The
guiding-center equations �3.12� and �3.13� presented in
Sec. III obey a similar phase-space volume conservation
law, with �E* ,B*� replacing �E** ,B**� in Eqs.
�A8�–�A10�.

The guiding-center equations of motion �A5� and �A6�
satisfy other conservation laws when space-time symme-
tries exist. First, the time derivative of the Northrop
guiding-center Hamiltonian �A2� is expressed as

dHNgc

dt
= e

��**

�t
−

e

c

�A**

�t
· Ẋ , �A11�

and, hence, the total guiding-center energy E=HNgc is
conserved in the case of time-independent fields. Sec-
ond, the time derivative of the total guiding-center ca-
nonical momentum P��e /c�A** is expressed as

�P
�t

= − e ��** +
e

c
� A** · Ẋ , �A12�

and, hence, the canonical momentum component P�
�P ·�X /��� is a constant of the guiding-center motion if
the magnetic variable �� is an ignorable coordinate,
which follows from Noether’s theorem.
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3. Original Northrop equations

To the same order kept by Northrop �1963�, the
guiding-center equations of motion �A5� and �A6� be-
come

ẊN = U +
cb̂

eB
� �� � B + m

d0U
dt

 , �A13�

u̇N =
b̂

m
· �eE − � � B� + vE ·

d0b̂

dt
, �A14�

where the total time derivative is defined as d0 /dt

�� /�t+U ·� to lowest order with U�ub̂+vE.
The original Northrop equations �A13� and �A14� sat-

isfy the phase-space volume equation

�B

�t
+ � · �BẊN� +

�

�u
�Bu̇N�

= � · 	B�ẊN − U�
 − cE��b̂ · �� b̂� . �A15�

Hence, the original Northrop equations do not conserve

phase-space volume since ẊN�U and b̂ ·�� b̂�0 �in
general�. Last, the original Northrop equations of mo-
tion �A13� and �A14� satisfy the energy equation

dNE

dt
= e

��

�t
−

e

c

�A
�t

· ẊN + �
�B

�t

−
�b̂

�
� �B · �udb̂

dt
+

dvE

dt

 , �A16�

which does not vanish even for time-independent fields.
While energy nonconservation appears at a higher order
�i.e., at �2� than kept in the energy itself, its explicit non-
conservation for time-independent fields presents diffi-
culties when integration over long time scales is contem-
plated, which may result in unphysical results.

APPENDIX B: OTHER COORDINATE SYSTEMS FOR
TOROIDAL MAGNETIC FIELDS WITH NESTED FLUX
SURFACES

Section IV discussed canonical guiding-center theory
starting from flux coordinates. Reviewed were two
methods for obtaining flux coordinates, the second of
which mixed the parallel velocity with the physical coor-
dinates. In this appendix, we note that there are special
flux coordinates for toroidal magnetic fields having
nested flux surfaces, as occurs in MHD equilibria
�Kruskal and Kulsrud, 1958� or can be obtained for
vacuum fields by the Cary-Hanson technique �Cary,
1982, 1984a, 1984b; Hanson and Cary, 1984; Cary and
Hanson, 1986�. These are obtained by imposed addi-
tional restrictions allowed by the freedom of transforma-
tions within flux coordinates. This analysis shows that
previously introduced canonical guiding-center coordi-
nates �White and Chance, 1984� are special cases of what
we found in Sec. IV.A.4.

We begin by reviewing the special toroidal magnetic
coordinates. We start with the Hamada coordinates, in
which the Jacobian is unity. We then discuss Boozer co-
ordinates, in which the covariant angular components of
the magnetic field are constant on flux surfaces.

1. Hamada coordinates

When the magnetic field is one of zero-flow scalar
pressure MHD equilibrium

J� B = c � P , �B1�

the current lines as well lie on magnetic surfaces, and so
in the Clebsch representation only the same two compo-
nents are nonzero as for the magnetic field. In this case,
it is natural to seek coordinates such that in its Clebsch
representation the current

J = J��h
��� ��� ��h + J�h�

��� � �h� �� �B2�

also has components constant on flux surfaces as were
found for the magnetic field. This defines the Hamada
�1959� coordinates, denoted by the subscript h. In this
section, we show how such coordinates can be obtained.
Such coordinates have been known for a longer time
than the Boozer coordinates. Discussing Hamada coor-
dinates here allows for a comparison with the Boozer
coordinates.

In this case of force-free equilibria ��P=0�, flux coor-
dinates already have this property, provided the rota-
tional transform is irrational. The force-free condition
implies

J = "B , �B3�

and the vanishing of the divergence of the current then
implies �V−1=�����F ·��F�

B · �" = 0 =
1
V� �"

��F
+ �

�"

��F

 , �B4�

from which it follows that " is constant on a flux surface
and so too, according to Eq. �B3�, are the Clebsch rep-
resentation components of the current for surfaces with
irrational values of rotational transform. If the rota-
tional transform varies from surface to surface, then
continuity implies that the current has this property on
all surfaces.

For the cases of nonzero pressure gradient, we intro-
duce a transformation defined by

�h = �F + �gh��,�F,�F� �B5�

and

�h = �F + gh��,�F,�F� . �B6�

As noted in Sec. IV.B.1, after any transformation of this
type, one still has flux coordinates. Inserting this trans-
formation into the representation �B2� gives

J��h
+ ��J��h

− J�h�
�
�gh

��F
= J��F

�B7�

and
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J�h�
− ��J��h

− J�h�
�
�gh

��F
= J�F�

. �B8�

Provided the quantity in parentheses does not vanish,
these equations can be solved as were Eqs. �4.46� and
�4.47�. Solvability, as before, is guaranteed by the vanish-
ing of the divergence of the current. Averaging over the
flux coordinates gives

J��h
= J̄��F

�B9�

and

J�h�
= J̄�F�

. �B10�

Hence, all that remains is to determine the quantity in
parentheses. This follows from writing out Eq. �B1� in
flux variables. We find

J� B = V��J��h
− J�h�

� �� =
dP

d�
�� . �B11�

From this equation we find first that the quantity in pa-
rentheses does not vanish provided the pressure gradi-
ent does not vanish. Hence, Hamada coordinates always
exist for MHD equilibria with nonzero pressure gradi-
ent. Second we see that the Jacobian in these coordi-
nates is constant on flux surfaces, i.e., it is a function of
the surface label � only.

In the literature one can find Hamada coordinates de-
fined by the property that the Jacobian is constant on
flux surfaces. In this case, one cannot prove that Ha-
mada coordinates exist for vacuum fields or for force-
free equilibria, as then Eq. �B11� is identically satisfied
regardless of the Jacobian. If instead, as here, Hamada
coordinates are defined as those in which the Clebsch
coordinates of the current are constant, then they do
exist for vacuum and force-free fields, but they are not
unique, as a transformation from any one set of flux
variables to another does not affect this.

In Hamada coordinates, the Clebsch representation
for the current can be integrated once to obtain the co-
variant representation of the magnetic field, up to the
gradient of a scalar. We obtain

B = B̄�h
� �h + B̄�h

� �h + ��M, �B12�

where

�B̄�h

��
= J��h

�B13�

and

�B̄�h

��
= − J�h�

. �B14�

Analogous to the magnetic flux discussed earlier, B�h
gives the toroidal current flux between surfaces of flux
variable values �1 and �2, while B�h

, gives minus the
poloidal current flux between surfaces of flux variable
values �1 and �2.

In fact, Eqs. �B13� and �B14� are uniquely specified by
requiring the potential � to be a single-valued function
in the toroidal domain, which implies that all loop inte-
grals of the form

� dx · �� �B15�

vanish for loops regardless of whether they encircle the
hole of the torus. 	This specification, which we discussed
presently, ensures that the first two terms on the right-
hand side of Eq. �B12� contain the average angular co-
variant components. Hence, we have used the overbars
on these terms.
 As the integral of the magnetic field
around a �h loop at constant � and �h is the toroidal
plasma current through the torus, and this must vanish
at �=0, we have

B̄�h
�� = 0� = 0. �B16�

Similarly, the �h loop integral of the magnetic field at
constant � and �h gives 4� /c times the nonplasma or
coil current I passing through the hole in the torus.
Hence,

B̄�h
��edge� =

2I

c
. �B17�

Because Hamada coordinates are flux coordinates, we
can apply the theory of Sec. IV.A.4 to obtain the canoni-
cal coordinates. As before, the canonical poloidal angle
differs from the flux poloidal angle by a term propor-
tional to the parallel velocity.

Angular dependence within the guiding-center La-
grangian is important for magnetic confinement, as de-

rivatives with respect to the angles lead to nonzero �̇
and off-flux-surface dynamics, which leads to increased
transport, as discussed in Sec. VII. For Hamada coordi-
nates for scalar pressure equilibria, both the magnetic
strength B and the magnetic scalar potential �M are po-
tentially functions of the angles. Consequently, in Ha-
mada coordinates for a symmetry, such as a dependence
on only a single linear combination of the angles, to ex-
ist, it must be present in both of these functions.

2. Boozer coordinates

Boozer coordinates �� ,�b ,�b� are defined such that
the angular covariant components of the magnetic field,

B = B�b
��� � �b + B�b

��� � �b + B���,�b,�b� �� ,

�B18�

are constant on a flux surface, while the remaining cova-
riant component may have arbitrary dependence. This
representation looks similar to the representation �B12�,
but it is significantly different. For Boozer coordinates,
the relation
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V =
1

B2 �B19�

between the Jacobian V and the magnetic-field strength
B can be found by taking the dot product of the Clebsch
and covariant representations of the magnetic field. This
relation shows that, on a flux surface, the variations of
the Jacobian and inverse of the square of the magnetic
field are related by an overall factor.

We first consider vacuum fields, for which we have the
Hamada representation �B12�. From the relations,
�B12�, �B16�, and �B17�, the covariant representation of
the magnetic field has the form

B = �2I

c

 � �h + ��M, �B20�

where the potential �M is single valued, and the first
term ensures that the loop integral of the magnetic field
around the toroidal direction gives the total current
through the center of the torus. Hence, the new toroidal
angle

�b = �h +
c

2I
�M �B21�

puts the covariant representation of the magnetic field in
the correct form,

B = �2I

c

 � �b. �B22�

To ensure that our new variables are flux surfaces, the
differences between the new and old poloidal and new
and old toroidal coordinates must satisfy Eqs. �4.53� and
�4.54�. Hence, the relation between the new and old po-
loidal coordinates is

�b = �F +
�c

2I
�M. �B23�

For vacuum magnetic fields, the factor in Eq. �B19� re-
lating the Jacobian and the magnetic-field strength is a
constant.

To analyze MHD equilibria, we introduce a transfor-
mation of the form of Eqs. �4.53� and �4.54�,

�h = �b + �fhb��,�b,�b� �B24�

and

�h = �b + fhb��,�b,�b� , �B25�

that ensures that both sets of coordinates are flux coor-
dinates. Inserting this transformation into the covariant
form �B12� and comparing with Eq. �B18� shows that the
transformation function must satisfy the following two
equations:

B�b
= B̄�h

+ B̄�h
�
�fhb

��b
+ B̄�h

�fhb

��b
+

��M

��b
�B26�

and

B�b
= B̄�h

+ B̄�h
�
�fhb

��b
+ B̄�h

�fhb

��b
+

��M

��b
. �B27�

Thus, any solution of the form

fhb = −
�M

B̄�h
� + B̄�h

+ f̄hb��� �B28�

guarantees that the covariant angular components

B�b
= B̄�h

�B29�

and

B�b
= B̄�h

�B30�

of the magnetic field in Boozer coordinates are functions
of only the flux variable �.

One additional convenient condition can be placed on
these coordinates, namely, that the covariant component
B� have vanishing flux-surface average. This condition

specifies the function f̄hb���. The transformation of Eqs.
�B24� and �B25� applied to the magnetic field �B12� gives

B� = ��B�b
+ B�b

�
�f̄hb

��
+ B�b

��

��
f̄hb

+�M� �B�b
� + B�b

�

�B�b
+ B�b


 . �B31�

Hence, the surface average value of the covariant �
component vanishes provided one chooses

��B�b
+ B�b

�
�f̄hb

��
+ B�b

��

��
f̄hb = − ��M�� �B�b

� + B�b
�

�B�b
+ B�b


 .
�B32�

These modified Boozer coordinates will be useful in our
discussion of isodynamism, where we show that B� van-
ishes for these coordinates.

Canonical coordinates that apply here are exactly like
before, as Boozer coordinates are flux coordinates. The
canonical toroidal angle is simply the Boozer toroidal
angle, and its conjugate momentum is

p� =
e

c
A� + mub�b

. �B33�

The canonical poloidal angle is

�c� �b −
u

�
B�, �B34�

and its canonical momentum is

p� =
e

c
� + mub�b

. �B35�

The guiding-center Lagrangian is Eq. �4.64�, exactly as
before, but with these new variables. These canonical
coordinates were introduced by White and Chance
�1984� and are accurate to through first order in the
guiding-center equations. Boozer �1984� proposed using
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the regular poloidal angle without the correction of Eq.
�B34�. This is accurate when the curvature drift arising
from B� is small. All of these coordinates are special
cases of the canonical coordinates introduced in Sec.
IV.B.2, as there it was shown that for any flux coordi-
nates one can find the associated canonical guiding-
center variables.

For vacuum fields, many of the complications disap-
pear. In this case only the � covariant component is non-
zero. Hence, the canonical poloidal angle is the usual
poloidal angle, its conjugate is � up to a factor, and Eq.
�B33� is easily solved to obtain the parallel velocity. Fur-
thermore, there is only one angle-dependent quantity B
in the guiding-center Lagrangian. The symmetries of this
quantity as a function of the flux variables can imply
invariants. For example, the angular dependence on
only some linear combination of angles, as in the case of
a single helicity, guarantees the invariance of a con-
served momentum that is a linear combination of the
two canonical momenta.

Without further analysis, it appears that for Boozer
coordinates there are two separate functions B and B�
in the Lagrangian having angular dependence. However,
for magnetic fields of scalar pressure equilibria, one can
show that these two quantities are related. To find this
relationship, we first calculate the current from Eq.
�B18�,

4�

c
J = �� B = � �B�

��
−

�B�
��

 � � � ��

+ � �B�
��

−
�B�
��

 � � � �� . �B36�

From this, the representation �4.40�, the scalar pressure
condition �B2�, and Eq. �B19�, it follows that

�
�B�
��

+
�B�
��

=
4�

B2

�P

��
+ �

�B�
��

+
�B�
��

. �B37�

This equation shows that B and B� are related. In par-
ticular, if B depends on only a particular linear combi-
nation of the angles, then the same is true for B�. In-
deed, Fourier expansion of Eq. �B36� can be used to
explicitly relate B and B�.

APPENDIX C: GUIDING-CENTER FOKKER-PLANCK
FORMALISM

Magnetically confined plasmas found in nature and in
laboratory devices are influenced by turbulent and colli-
sional transport processes that play a major role in de-
termining their particle and energy confinement proper-
ties �Balescu, 1988; Yoshikawa et al., 2001�. The study of
the long-time confinement of magnetized plasmas in-
volves the small dimensionless parameter �B�� /LB 1
defined as the ratio of the gyroradius � to the magnetic
length scale LB. Within the context of collisional trans-
port theory in magnetized plasmas �Hinton and Hazel-
tine, 1976�, a second small dimensionless parameter ��
�� /� 1 is defined as the ratio of the characteristic col-

lision frequency � to the gyrofrequency �. These two
ordering parameters, which appear in asymptotic expan-
sions associated with the iterative solution of the colli-
sional �Fokker-Planck� kinetic equation �Hinton et al.,
2003�, also guarantee the existence of the first adiabatic
invariant �i.e., magnetic moment� in a hierarchy of adia-
batic invariants that underlies the long-time confinement
of magnetized plasmas �Northrop, 1963�. The existence
of this first adiabatic invariant implies that the rapid gy-
romotion of a charged particle about a magnetic-field
line is unaffected �to lowest order� by drift motion �as-
sociated with �B� and collisions �associated with ���.

While both parameters �B and �� are small in practice,
it is useful to introduce the collisional parameter

$�
�B

��
=
"�

LB
, �C1�

defined as the ratio of the collisional mean free path
"����� /���� to the magnetic length scale LB, in order
to study collisional transport processes in complex mag-
netic geometries �Hinton and Hazeltine, 1976�. The col-
lisional parameter �C1� can be used to identify three dis-
tinct collisional regimes. In the collisional regime $ 1,
the collisional mean free path is much shorter than the
magnetic length scale, so that the magnetic field may be
treated in the uniform limit �LB→&�. Hence, collisions
are frequent enough to randomize the guiding-center
drift motion and yield an isotropic pressure tensor P
=pI for each particle species. While magnetic spatial-
gradient and curvature effects are ignored in this colli-
sional regime, magnetic topology, however, may enter in
a nontrivial way through magnetic-surface averaging of
the Fokker-Planck collision operator �see, e.g., Pfirsch-
Schlüter transport�.

In the intermediate �drift� regime $�1, collisions are
infrequent enough to allow confined particles to sample
the magnetic-field nonuniformity through their
magnetic-drift motion between collisions �LB�"��. In
the long-mean-free-path �or “collisionless”� regime $
�1, the collisional mean free path is much longer than
the magnetic length scale �"��LB�, and thus particles
can sample the fully nonuniform magnetic field between
collisions. Hence, although collisions are rare, they are
not inconsequential, e.g., this low-collisionality regime
yields an anisotropic Chew-Goldberger-Low pressure

tensor P=p�b̂b̂+p��I− b̂b̂�, and the finite magnetic
length scale LB "� cannot be ignored. Furthermore,
the low-frequency ordering � �B� allows for the con-
struction of a second adiabatic invariant, the bounce
�longitudinal� action for magnetically trapped particles,
which underlies Hamiltonian bounce-averaged guiding-
center �or bounce-center� dynamics in nonuniform mag-
netic fields �Littlejohn, 1982a; Brizard, 2000�. In this re-
gime, collisions are thus insufficient to randomize the
guiding-center drift motion and the resulting neoclassi-
cal transport processes can be dominated by large excur-
sions from magnetic surfaces associated with complex
�e.g., trapped-particle� guiding-center drift orbits �Hin-
ton and Hazeltine, 1976�.
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The investigation of classical and neoclassical trans-
port processes in complex magnetized plasmas is tradi-
tionally based on an iterative solution of the collisional
Fokker-Planck kinetic equation for test-particle species
a �Hinton and Hazeltine, 1976�,

dfa�z,t�
dt

�
�fa�z,t�

�t
+

dz
dt

·
�fa�z,t�

�z
=�

b
Cab	fa;fb�
�z,t� ,

�C2�

which describes the evolution of the distribution fa�z , t�
in particle phase space z as a result of Hamiltonian �or-
bital� dynamics in phase space, represented by dz� /dt
= �z� ,h� �where h and �,� denote the particle Hamil-
tonian and Poisson bracket, respectively�, and particle
collisions in velocity space �between test-particle species
a and field-particle species b� represented by the
Fokker-Planck operator �Hinton and Hazeltine, 1976�

Cab	fa;fb�
�x,p� = −
�

�p
· �Kab fa − Dab ·

�fa

�p

 . �C3�

Here the particle’s kinetic momentum p=mv is used and
the Fokker-Planck collisional drag vector Kab	fb�
 and
diffusion tensor Dab	fb�
 are

Kab	fb�
�z� � !ab
K �Hb�z�

�p
,

Dab	fb�
�z� � !ab
D �2Gb�z�

�p�p
, �C4�

where �!ab
K ,!ab

D �= �ma /mb , 1
2ma

2�!ab, with !ab

=4�ea
2eb

2 ln �, and the Rosenbluth potentials

�Hb�z�

Gb�z�

 �� d6z�
3�x� − x���v� − v�−1

�v� − v�

fb��z�� �C5�

are expressed as functionals over the entire field-particle
phase space z�= �x� ,p�=mbv��, which greatly facilitates
our discussion of the transformation properties induced
by phase-space transformations adopted for the test-
particle and field-particle species. The presence of the
delta function 
3�x�−x� ensures that collisions take place
locally in physical space.

Classical transport coefficients �in the regime $ 1�
can appear explicitly in the Fokker-Planck collision op-
erator �C3� if we formally introduce the transformation
from particle phase-space coordinates z= �x ,p� to the
guiding-center phase-space coordinates Z��X ,E ,� ,��,
where X denotes the guiding-center position, E denotes
the guiding-center kinetic energy, � denotes the guiding-
center magnetic moment, and � denotes the guiding-
center gyrophase. This transformation is expressed in
terms of asymptotic expansions in powers of �B. In the
uniform limit ��B=0�, however, it simplifies to X=x−�0,
E= �p�2 /2m, �= �p��2 / �2mB�, and p�=m���0 /��, where

�0= b̂�p� /m� denotes the gyrophase-dependent gyro-
radius vector. Using this simplest guiding-center trans-

formation, one obtains the guiding-center Fokker-
Planck collision operator �Catto and Tsang, 1977;
Brizard, 2004�

Cgc	F̄
�X,E,�� � �e�0·�C	e−�0·�F̄
� , �C6�

where F̄ denotes the reduced �gyrophase-independent�
distribution of test-particle guiding centers �gyrophase
averaging is denoted by an overbar� and the collision
operator C denotes the original Fokker-Planck operator
�C3� expressed in terms of p�E ,� ,��. The reduced
Fokker-Planck collision operator �C6� describes colli-
sional drag and diffusion in five-dimensional guiding-
center phase space �X ,E ,�� and is, therefore, well suited
to describe classical transport processes in the collisional
regime �$ 1�, for which the magnetic field may be
treated as spatially uniform �Xu and Rosenbluth, 1991;
Dimits and Cohen, 1994�.

The general rules for the transformation of an arbi-
trary bilinear collision operator were presented by
Brizard �2004�. Using Lie-transform methods, we ob-
tained simpler and more compact expressions for trans-
formed collision operators when compared to those ob-
tained by the standard approach �Catto and Tsang, 1977;
Xu and Rosenbluth, 1991; Dimits and Cohen, 1994�,
which could be appropriate for applications in gyroki-
netic theory and gyrokinetic particle simulations.

The guiding-center Fokker-Planck collision operator
presented by Brizard �2004� is written as

Cgc	F̄
 = −
1

Jgc

�

�Z�
�Jgc�Kgc

� F̄ − Dgc
�	 �F̄

�Z	

� , �C7�

where the guiding-center Fokker-Planck coefficients in
guiding-center phase space

Kgc
� � �K� · 	�

�� ,

Dgc
�	� �	�

� · D� · 	�
	� , �C8�

are expressed in terms of 	�
���X+�� ,Z���, and Jgc

�mB
�
* / �v�� is the Jacobian for the guiding-center trans-

formation, where B
�
* /B�1+"gc.

We may simplify our presentation �Brizard, 2004� by
considering an isotropic field-particle distribution, so
that the Rosenbluth potentials �C5� are functions of the
normalized coordinate ���p� /mavTb �where vTb

=�Tb /mb�, so that

Kab = �!ab�Hb�

2mbE

p� − �p , �C9�

Dab =
!abma

4E
	�Gb��I − p̂p̂� + �2Gb�p̂p̂


�D��I − p̂p̂� + D�p̂p̂ , �C10�

where p̂�p / �p� and we, henceforth, omit species labels a
and b.
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In this isotropic case, the guiding-center Fokker-
Planck drag and diffusion coefficients in Eq. �C7� are
thus

�Kgc
X ,Dgc

XE,Dgc
X�� = ��gc,− Dgc

E ,− Dgc
� ��gc, �C11�

where

�gc�
b̂

�
�
*
� vgc �C12�

denotes the averaged guiding-center displacement, DE

�D� /m and D���	�D�−D�� / �p�2
,

�Kgc
E Kgc

�

Dgc
EE Dgc

E�
 = �− 2E�gc − �2 − "gc��gc

2EDgc
E �2 − "gc�Dgc

E 

and

Dgc
�� = �1 − "gc�2��2�1 −

E
�B

Dgc

� +
Dgc

E

B
� ,

Dgc
XX =

I�

m�2�Dgc
E + �1 −

2E
�B

Dgc

�B� �Dgc
X I�.

Here magnetic-field nonuniformity is represented by the
terms "gc and �gc. While the magnetic-nonuniformity
corrections associated with "gc 1 can be ignored for
practical applications, the drag and diffusion coefficients
�C11� depend explicitly on magnetic-field nonuniformity
since the averaged guiding-center displacement �C12� di-
rectly involves the magnetic-field gradient and curva-
ture.

REFERENCES

Alfvén, H., 1940, Ark. Mat., Astron. Fys. 27A, 1.
Arnold, V. I., 1989, Mathematical Methods of Classical Me-

chanics, 2nd ed. �Springer, New York�.
Balescu, R., 1988, Transport Processes in Plasmas: 2. Neoclas-

sical Transport Theory �North-Holland, Amsterdam�.
Baños, A., 1967, Plasma Phys. 1, 305.
Batchelor, D. A., M. Beck, A. Becoulet, R. V. Budny, C. S.

Chang, P. H. Diamond, J. Q. Dong, G. Y. Fu, A. Fukuyama,
T. S. Hahm, D. E. Keyes, Y. Kishimoto, S. Klasky, L. L. Lao,
K. Li, Z. Lin, B. Ludaescher, J. Manickam, N. Nakajima, T.
Ozeki, N. Podhorszki, W. M. Tang, M. A. Vouk, R. E. Waltz,
S. J. Wang, H. R. Wilson, X. Q. Xu, M. Yagi, and F. Zonca,
2007, Plasma Sci. Technol. 9, 312.

Belova, E. V., N. N. Gorelenkov, and C. Z. Cheng, 2003, Phys.
Plasmas 10, 3240.

Bernardin, M. P., R. W. Moses, and J. A. Tataronis, 1986, Phys.
Fluids 29, 2605.

Birdsall, C. K., and A. B. Langdon, 1985, Plasma Physics via
Computer �McGraw-Hill, New York�.

Boghosian, B. M., 1987, Ph.D. thesis, University of California,
Davis; see physics/0307148.

Boozer, A. H., 1980, Phys. Fluids 23, 904.
Boozer, A. H., 1983, Phys. Fluids 26, 1288.
Boozer, A. H., 1984, Phys. Fluids 27, 2441.
Brizard, A. J., 1989, J. Plasma Phys. 41, 541.

Brizard, A. J., 1990, Ph.D. Thesis, Princeton University,
Princeton, NJ.

Brizard, A. J., 1992, Phys. Fluids B 4, 1213.
Brizard, A. J., 1995, Phys. Plasmas 2, 459.
Brizard, A. J., 2000, Phys. Plasmas 7, 3238.
Brizard, A. J., 2004, Phys. Plasmas 11, 4429.
Brizard, A. J., 2008, Commun. Nonlinear Sci. Numer. Simul.

13, 24.
Brizard, A. J., and A. A. Chan, 1999, Phys. Plasmas 6, 4548.
Brizard, A. J., and T. S. Hahm, 2007, Rev. Mod. Phys. 79, 421.
Candy, J., and W. Rozmus, 1991, J. Comput. Phys. 92, 230.
Cary, J. R., 1977, J. Math. Phys. 18, 2432.
Cary, J. R., 1981a, Phys. Rep. 79, 129.
Cary, J. R., 1981b, Phys. Fluids 24, 2239.
Cary, J. R., 1982, Phys. Rev. Lett. 49, 276.
Cary, J. R., 1984a, J. Math. Phys. 18, 2432.
Cary, J. R., 1984b, Phys. Fluids 27, 119.
Cary, J. R., and I. Doxas, 1993, J. Comput. Phys. 107, 98.
Cary, J. R., D. F. Escande, and J. L. Tennyson, 1986, Phys. Rev.

A 34, 4256.
Cary, J. R., and J. D. Hanson, 1986, Phys. Fluids 29, 2464.
Cary, J. R., C. L. Hedrick, and J. S. Tolliver, 1988, Phys. Fluids

31, 1586.
Cary, J. R., and R. G. Littlejohn, 1983, Ann. Phys. �N.Y.� 151,

1.
Cary, J. R., and S. G. Shasharina, 1997a, Phys. Rev. Lett. 78,

674.
Cary, J. R., and S. G. Shasharina, 1997b, Phys. Plasmas 4, 3323.
Cary, J. R., and S. G. Shasharina, 1997c, Plasma Phys. Rep. 23,

509.
Cary, J. R., and R. T. Skodje, 1988, Phys. Rev. Lett. 61, 1795.
Catto, P. J., and R. D. Hazeltine, 1981, Phys. Fluids 24, 1663.
Catto, P. J., and K. T. Tsang, 1977, Phys. Fluids 20, 396.
Dimits, A. M., G. Bateman, M. A. Beer, B. I. Cohen, W. Dor-

land, G. W. Hammett, C. Kim, J. E. Kinsey, M. Kotschen-
reuther, A. H. Kritz, L. L. Lao, J. Mandrekas, W. M. Nevins,
S. E. Parker, A. J. Redd, D. E. Shumaker, R. Sydora, and J.
Weiland, 2000, Phys. Plasmas 7, 969.

Dimits, A. M., and B. I. Cohen, 1994, Phys. Rev. E 49, 709.
Dobrott, D., and E. A. Frieman, 1971, Phys. Fluids 14, 349.
Dubin, D. H. E., and J. A. Krommes, 1982, Long Time Predic-

tion in Dynamics �Wiley, New York�, pp. 251–280.
Forest, E., and R. D. Ruth, 1990, Physica D 43, 105.
Fradkin, D. M., 1978, J. Phys. A 11, 1069.
Gardner, C. S., 1959, Phys. Rev. 115, 791.
Garren, D. A., and A. H. Boozer, 1991, Phys. Fluids B 3, 2822.
Grebogi, C., and R. G. Littlejohn, 1984, Phys. Fluids 27, 1996.
Goldstein, H., C. Poole, and J. Safko, 2002, Classical Mechan-

ics, 3rd ed. �Addison-Wesley, San Francisco�.
Hall, L. S., and B. McNamara, 1975, Phys. Fluids 18, 552.
Hamada, S., 1959, Prog. Theor. Phys. 22, 145.
Hanson, J. D., and J. R. Cary, 1984, Phys. Fluids 27, 767.
Hazeltine, R. D., 1973, Plasma Phys. 15, 77.
Hinton, F. L., and R. D. Hazeltine, 1976, Rev. Mod. Phys. 48,

239.
Hinton, F. L., M. N. Rosenbluth, and R. E. Waltz, 2003, Phys.

Plasmas 10, 168.
Jackson, J. D., 1975, Classical Electrodynamics, 2nd ed. �Wiley,

New York�.
Kang, F., 1986, J. Comput. Math. 4, 279.
Kaufman, A. N., 1986, Phys. Fluids 29, 1736.
Kovrizhnykh, L. M., 1984, Nucl. Fusion 24, 851.
Kruskal, M., 1962, J. Math. Phys. 3, 806.

737John R. Cary and Alain J. Brizard: Hamiltonian theory of guiding-center motion

Rev. Mod. Phys., Vol. 81, No. 2, April–June 2009



Kruskal, M., 1965, Plasma Physics �International Atomic En-
ergy Agency, Vienna�, p. 91.

Kruskal, M., and R. M. Kulsrud, 1958, Phys. Fluids 1, 265.
Kulsrud, R. M., 1957, Phys. Rev. 106, 205.
Landau, L. D., and E. M. Lifshitz, 1976, Mechanics �Pergamon,

New York�.
Littlejohn, R. G., 1979, J. Math. Phys. 20, 2445.
Littlejohn, R. G., 1981, Phys. Fluids 24, 1730.
Littlejohn, R. G., 1982a, J. Math. Phys. 23, 742.
Littlejohn, R. G., 1982b, Phys. Scr., T T2ÕI, 119.
Littlejohn, R. G., 1983, J. Plasma Phys. 29, 111.
Littlejohn, R. G., 1984, in Contemporary Mathematics, edited

by J. E. Marsden �AMS, Providence, RI�.
Littlejohn, R. G., 1985, Phys. Fluids 28, 2015.
Littlejohn, R. G., 1988, Phys. Rev. A 38, 6034.
Meiss, J. D., and R. D. Hazeltine, 1990, Phys. Fluids B 2, 2563.
Meyer, F., and H. U. Schmidt, 1958, Z. Naturforsch. A 13,

10005.
Morozov, A. I., and L. S. Solov’ev, 1966, in Reviews of Plasma

Physics, edited by M. A. Leontovich �Consultants Bureau,
New York�, Vol. 2, p. 201.

Mynick, H. E., 1983, Phys. Fluids 26, 1008.
Mynick, H. E., 2006, Phys. Plasmas 13, 058102.
Mynick, H. E., T. K. Chu, and A. H. Boozer, 1982, Phys. Rev.

Lett. 48, 322.
Northrop, T. G., 1963, Adiabatic Motion of Charged Particles
�Wiley, New York�.

Northrop, T. G., C. S. Liu, and M. D. Kruskal, 1966, Phys.
Fluids 9, 1503.

Northrop, T. G., and J. A. Rome, 1978, Phys. Fluids 21, 384.

Northrop, T. G., and E. Teller, 1960, Phys. Rev. 117, 215.
Nührenberg, J., and R. Zille, 1988, Phys. Lett. A 129, 113.
Palumbo, D., 1968, Nuovo Cimento B 53, 507.
Qin, H., and R. C. Davidson, 2006, Phys. Rev. Lett. 96, 085003.
Qin, H., and X. Guan, 2008, Phys. Rev. Lett. 100, 035006.
Rutherford, P. H., 1970, Phys. Fluids 13, 482.
Saletan, E. J., and A. H. Cromer, 1971, Theoretical Mechanics
�Wiley, New York�.

Skovoroda, A. A., and V. D. Shafranov, 1995, Plasma Phys.
Rep. 21, 886.

Sosenko, P. P., P. Bertrand, and V. K. Decyk, 2001, Phys. Scr.
64, 264.

Stern, D. P., 1970, Am. J. Phys. 38, 494.
Tao, X., A. A. Chan, and A. J. Brizard, 2007, Phys. Plasmas 14,

092107.
Taylor, J. B., 1964, Phys. Fluids 7, 767.
Taylor, J. B., 1967, Phys. Fluids 10, 1357.
White, R. B., 1990, Phys. Fluids B 2, 845.
White, R. B., 2008, Turbulent Transport in Fusion Plasmas,

First ITER International Summer School, AIP Conf. Proc.
No. 1013 �AIP, Melville, NY�, pp. 59 and 127.

White, R. B., A. H. Boozer, and R. Hay, 1982, Phys. Fluids 25,
575.

White, R. B., and M. S. Chance, 1984, Phys. Fluids 27, 2455.
White, R. B., and L. E. Zakharov, 2003, Phys. Plasmas 10, 573.
Wong, H. V., 1982, Phys. Fluids 25, 1811.
Xu, X. Q., and M. N. Rosenbluth, 1991, Phys. Fluids B 3, 627.
Yoshida, H., 1990, Phys. Lett. A 150, 262.
Yoshikawa, A., S. I. Itoh, K. Itoh, and N. Yokoi, 2001, Plasma

Phys. Controlled Fusion 43, R1.

738 John R. Cary and Alain J. Brizard: Hamiltonian theory of guiding-center motion

Rev. Mod. Phys., Vol. 81, No. 2, April–June 2009


