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Evidence for the applicability of random-matrix theory to nuclear spectra is reviewed. In analogy to
systems with few degrees of freedom, one speaks of chaos �more accurately, quantum chaos� in nuclei
whenever random-matrix predictions are fulfilled. An introduction into the basic concepts of
random-matrix theory is followed by a survey over the extant experimental information on spectral
fluctuations, including a discussion of the violation of a symmetry or invariance property. Chaos in
nuclear models is discussed for the spherical shell model, for the deformed shell model, and for the
interacting boson model. Evidence for chaos also comes from random-matrix ensembles patterned
after the shell model such as the embedded two-body ensemble, the two-body random ensemble, and
the constrained ensembles. All this evidence points to the fact that chaos is a generic property of
nuclear spectra, except for the ground-state regions of strongly deformed nuclei.
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I. INTRODUCTION

In the 1970s, chaos became a household word for
physicists. Chaos had been known to mathematicians,
astrophysicists, and other specialists since the early years
of the 20th century. It took the advent of the personal
computer to make chaos generally known: The expo-
nential divergence of the trajectories of a chaotic system
with Hamiltonian dynamics could easily be simulated.
Many Hamiltonian systems, especially those with few
degrees of freedom, have been analyzed since. The sub-
ject has been reviewed, for instance, by Gutzwiller
�1990�.

In the wake of this development, physicists in several
fields became interested in quantum manifestations of
classical chaos �“quantum chaos”�. Again, this caused a
flurry of activity, especially in the study of systems with
few degrees of freedom; see McDonald and Kaufman
�1979�, Casati et al. �1980�, and Berry �1981�. The work
culminated in the Bohigas-Giannoni-Schmit �1984� con-
jecture. The conjecture connects the spectral fluctuation
properties of quantum systems that are chaotic in the
classical limit with predictions of random-matrix theory
�RMT�. A summary of these developments has been
given by Haake �2001�.

Independently of these developments and preceding
them, RMT had been developed in the framework of
nuclear physics by Wigner and Dyson—see Porter
�1965�. Data accumulated in the 1960s and analyzed in
the 1980s provided evidence that nuclear spectra follow
RMT predictions. The wide interest enjoyed by RMT in
the 1980s among practitioners of quantum chaos had re-
percussions on nuclear physics: Nuclei are many-body
systems, and chaos manifests itself here in ways different
from those of few-degrees-of-freedom systems. At the
same time, nuclei are paradigmatic for the applicability
of RMT to fermionic many-body systems and for the
occurrence of chaos in such systems. Thus much work
was done to establish RMT and to analyze and interpret
quantum chaos in nuclei.

The present review is the first part of a two-part series
dealing with RMT and chaos in nuclear physics. It fo-
cuses on spectral properties of nuclei, while the second
part will deal with RMT and chaos in nuclear reactions.
Topics such as compound-nucleus scattering, Ericson
fluctuations, isobaric analog resonances, and parity vio-
lation in epithermal neutron scattering are not dealt
with here. The paper is intended as an introductory re-
view to the field. It is aimed mainly at two groups of
physicists, those who work on quantum chaos in fields
different from nuclear physics, and nuclear physicists
who wish to learn about RMT and chaos in nuclei. We
assume accordingly no prior knowledge of RMT and
chaos nor do we assume any detailed knowledge of
nuclear physics. We aim at giving a comprehensive sur-
vey that is focused on concepts and illustrative examples
while derivations and formulas are kept to a minimum.

The last comprehensive review of the field was given in
Reviews of Modern Physics over 25 years ago by Brody
et al. �1981�; a short review was later published by Bohi-
gas and Weidenmüller �1988�. Wherever possible, we
have avoided giving a large number of references in fa-
vor of citing review articles: Readability of the article
was our primary concern, followed by completeness.

In Sec. II, we motivate RMT and introduce those con-
cepts of RMT that are frequently used in nuclear phys-
ics. We pay particular attention to the Gaussian orthogo-
nal ensemble �GOE� of random matrices. We establish
the connection between RMT and quantum chaos. In
Sec. III, we describe those applications of RMT to
nuclear spectra that do not make use of specific nuclear-
structure concepts. Comparison between RMT predic-
tions and spectroscopic data is used to establish the do-
main of applicability of RMT to nuclear spectra. Special
attention is devoted to the breaking of isospin symmetry,
and to a test of time-reversal invariance. The role of
RMT and chaos in nuclear models is described in Sec.
IV. We focus attention on the two most important
nuclear-structure models, namely, the spherical shell
model and the collective model in two of its versions,
but also mention a number of other applications of
RMT. Nuclei �and other fermionic many-body systems�
are governed by the mean field �in nuclei, the shell
model� and a residual interaction dominated by two-
body forces. In such systems, the structure of the Hamil-
tonian is very different from that of a typical GOE ma-
trix. That difference has given rise to a number of
random-matrix ensembles that are closer in structure to
the mean-field approach than is the GOE. These are
treated in Sec. V. Section VI contains a summary and
conclusions.

II. RANDOM MATRICES

A. Why random matrices?

Random matrices were introduced to nuclear physics
in the 1960s by Wigner �see Wigner’s papers in Porter
�1965��. That step was preceded �and probably moti-
vated� by Bohr’s insight that nuclei are systems of great
complexity. It is useful to recall the arguments that led
Bohr �1936� to this insight.

Experiments in the 1930s, especially by Fermi and his
group in Rome on neutron scattering by light nuclei, had
revealed the existence of numerous narrow resonances
�Fermi et al., 1934, 1935�. We show in Fig. 1 data of a
similar type taken in the 1950s by Rainwater and his
group at Columbia University �Garg et al., 1964�. That
group used time-of-flight spectroscopy of slow neutrons
to measure the total neutron cross section on a number
of heavy even-even nuclei �nuclei with even numbers of
protons and neutrons�. The cross section versus neutron
energy En shown in Fig. 1 for the target nucleus 232Th
displays narrow resonances with widths�1 eV and spac-
ings of about 20 eV. The target nucleus 232Th has spin 0
and positive parity; the incident slow neutrons carry zero
angular momentum and have spin 1

2 . Therefore, the
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resonances all have spin/parity 1/2+. These resonances
correspond to excited states of the “compound nucleus”
233Th with an excitation energy slightly above the neu-
tron separation energy of 4.786 MeV �the “neutron
threshold”�. The number of resonances observed in each
compound nucleus was limited by the resolution of the
spectrometer and was never much larger than 200. Simi-
lar data on proton resonances at the Coulomb barrier in
lighter nuclei were later taken by the Triangle Universi-
ties group �Wilson et al., 1975�. Together these data form
what has been called the “nuclear data ensemble” by
Haq et al. �1982� and Bohigas et al. �1983�.

Bohr argued that the existence of numerous narrowly
spaced and narrow compound-nucleus resonances was
incompatible with independent-particle motion and was
due to strong nucleon-nucleon interactions. Indeed, as-
suming an independent-particle model with a nuclear ra-
dius of about 5 fm and a potential well depth of several
10 MeV, one finds that the single-particle states have a
typical spacing of several hundred keV and widths of the
order of 10 keV or larger, in complete disagreement
with the data. To account qualitatively for the data,
Bohr proposed his compound-nucleus model �Fig. 2�:
The incident nucleon carries kinetic energy �as indicated
by the billiard cue�, collides with the nucleons in the
target, and shares its energy with many nucleons. In
units of the time for passage of the nucleon through the
nuclear interior, it takes the system a long time until one
of its constituent nucleons acquires sufficient energy to
be reemitted from the system.

Bohr’s idea that the nucleus is a complex, strongly in-
teracting system was adopted by the community and
held sway until the discovery of the nuclear shell model
in 1949. Bohr’s idea almost certainly motivated Wigner
to introduce random matrices. To explain the spirit of
the approach, we focus attention on nuclear levels with
the same quantum numbers �total spin J, parity �, and,
at least in light nuclei, total isospin T� and ask the fol-
lowing: Can we identify generic spectral properties of a
system with strong interactions? Figure 3 shows six spec-
tra, all having the same total number of levels, and span-
ning the same total energy interval, and therefore having
the same average level spacing. The spectra differ only
in the way the spacings between neighboring levels are
distributed. For the one-dimensional harmonic oscillator
�the rightmost spectrum�, all spacings are identical. The
spacing distributions differ more and more from a delta
function as we go ever more to the left. The random-
matrix approach characterizes spectra by their fluctua-
tion properties: The distribution of spacings of nearest
neighbors is the first and obvious measure for spectral

FIG. 1. The total neutron cross section on 232Th vs neutron
energy En in eV. From Neutron Cross Section, 1964, as repro-
duced in Bohr and Mottelson, 1969, Vol. 1, p. 178.

FIG. 2. Bohr’s wooden toy model of the compound nucleus.
From Nature, 1936.

FIG. 3. Six spectra with 50 levels each and the same mean
level spacing. From right to left: The one-dimensional har-
monic oscillator, a sequence of zeros of the Riemann zeta func-
tion, a sequence of eigenvalues of the Sinai billiard �see Sec.
II.F�, a sequence of resonances seen in neutron scattering on
166Er, a sequence of prime numbers, and a set of eigenvalues
obeying Poisson statistics �see Sec. II.F�. From Bohigas and
Giannoni, 1984.
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fluctuations. It is referred to as the nearest-neighbor
spacing �NNS� distribution. There are other measures
such as the correlation between nearest spacings, be-
tween next-nearest spacings, etc. Some of these are in-
troduced below.

To implement this approach, we need to develop a
statistical theory of spectra. Random matrices provide
the tool to do so. Instead of considering the actual
nuclear Hamiltonian �which was not known in the
1950s�, we consider an ensemble of Hamiltonians �each
given in matrix form�. The ensemble is defined in terms
of some probability distribution for the matrix elements,
hence the name random matrices. The ensemble is cho-
sen in such a way that the member Hamiltonians incor-
porate generic features. The spectral distribution func-
tions are calculated as averages over the ensemble and
are compared with the actual fluctuation properties of
nuclear spectra.

Canonical random-matrix theory �RMT� as developed
by Wigner and Dyson �see Porter �1965�� classifies sys-
tems by their symmetry properties. Nuclei are invariant
under time reversal. The matrix representation of the
nuclear Hamiltonian can accordingly be chosen real and
symmetric. The random-matrix ensemble, which is con-
sidered almost exclusively in this review, is therefore an
ensemble of real and symmetric matrices.

The random-matrix approach does not aim at calcu-
lating individual spectra and at comparing them with
data. Rather, one determines the joint probability distri-
bution of the eigenvalues and from here calculates cer-
tain spectral fluctuation measures such as the NNS dis-
tribution as averages over the ensemble. RMT contains
one �or, in the general case, a number of� input param-
eter�s�. In the case of spectral fluctuations, that input
parameter is the average nuclear level spacing. The fluc-
tuation measures predicted by RMT are scaled by the
average level spacing and are thus parameter-free. If the
observed spectral fluctuation properties agree with
RMT predictions, and if no further information on the
system is available, one concludes that the system is ge-
neric. This implies that no information beyond the aver-
age nuclear level spacing can be deduced from the avail-
able spectral information. If, on the other hand, the data
do not agree with RMT predictions, this indicates that
the spectrum is not generic and the available spectral
information may be used to deduce further properties of
the system. The harmonic oscillator in one dimension is
a case in point.

The random-matrix approach to spectral fluctuations
�and to other properties of complex systems� has some
similarity to classical thermodynamics. There one is also
interested in a generic description of systems in terms of
a few parameters. These parameters �specific heat, mag-
netic susceptibility, etc.� are system specific, but within
the framework of classical thermodynamics they need
not be determined from the system’s Hamiltonian. In
that sense, classical thermodynamics and random-matrix
theory are phenomenological theories that do not refer
to an underlying system-specific Hamiltonian. The
random-matrix approach differs fundamentally from the

dynamical approach used in most fields of physics where
one integrates the equations of motion and fits a few
parameters of an �otherwise known� Hamiltonian to the
data. Similar to classical thermodynamics, the random-
matrix approach has been applied to many systems be-
yond nuclear physics �Guhr et al., 1998�.

B. The Gaussian orthogonal ensemble

In Secs. II.B and II.C, we define the Gaussian or-
thogonal ensemble �GOE� and collect and interpret a
number of results for this ensemble. We also introduce
the Gaussian unitary ensemble �GUE�. Proofs may be
found in Porter �1965� and Mehta �2004�. For the GOE,
we consider real and symmetric Hamiltonian matrices H
in a Hilbert space of dimension N. With � ,�=1, . . . ,N,
the matrix elements obey H��=H��=H

��
* . For realistic

systems Hilbert space is infinite dimensional, so we con-
sider the limit N→� in what follows. The ensemble is
defined in terms of an integration over matrix elements.
The volume element in matrix space,

d�H� = �
���

dH��, �1�

is the product of the differentials dH�� of the indepen-
dent matrix elements �i.e., of the matrix elements not
connected by symmetry�. The ensemble is defined by the
probability density P�H� of the matrices H,

P�H�d�H� = N0 exp�−
N

4	2Tr�H2��d�H� . �2�

Here N0 is a normalization factor and 	 is a parameter.
This parameter defines the average level density �see
Eq. �14��. In applications of the GOE to data, 	 is deter-
mined by the empirical average level density. The spec-
tral fluctuation properties of the GOE are then pre-
dicted in a parameter-free fashion.

The Gaussian weight factor is a cutoff that ensures
convergence of the ensemble averages of observables
for large values of the integration variables. We use the
symmetry of the matrices to write the trace in the expo-
nent as ����2H��

2 +��H��
2 . Then the probability density

P�H�d�H� = N0�
�

exp�−
N

4	2H��
2 �dH��


 �
���

exp�−
N

2	2H��
2 �dH�� �3�

is a product of terms each of which depends only on a
single matrix element. Therefore, the GOE has the fol-
lowing properties: The independent matrix elements are
uncorrelated Gaussian-distributed random variables
with zero mean value and a second moment given by

H��H�� =
	2

N
����� + ����� . �4�

Here the overbar denotes the ensemble average. Defin-
ing the GOE by these properties is equivalent to the
definition �2�.
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While the form of the probability measure in Eq. �2� is
fixed by symmetry requirements, the Gaussian cutoff in
that equation seems completely arbitrary. However, us-
ing plausible assumptions one can actually derive that
factor. Rosenzweig and Porter �1960� have shown that
the distribution �2� is obtained when one assumes that
the ensemble is orthogonally invariant, and that matrix
elements not connected by symmetry are statistically in-
dependent. Also Balian �1968� has derived the distribu-
tion �2� from a maximum entropy principle.

In the GOE, every state in Hilbert space is connected
to itself and to every other state by a matrix element of
H. Since all nondiagonal matrix elements have the same
first and second moments, every state is coupled to all
other states with equal average strength. This results in
level repulsion between any pair of levels, and in a com-
plete mixing of states in Hilbert space. The importance
of such coupling is seen when we consider a more gen-
eral ensemble with probability density

P��H�d�H� = Ñ0�
�

exp�−
N

4	2H��
2 �dH��


 �
���

exp�−
N

2�	2H��
2 �dH��, �5�

where the positive parameter � ranges from 0 to 1. For
�=0, all nondiagonal elements vanish, and the ensemble
�5� consists of diagonal matrices with independent,
Gaussian-distributed diagonal elements. The shape of
the average spectrum is Gaussian, there is no level re-
pulsion, and the spectral fluctuations are Poissonian �see
Sec. II.F�. For �=1, the ensemble coincides with the
GOE. For values of � between these two limits, the
shape of the spectrum and the spectral fluctuations in-
terpolate between those two limiting cases. Significant
mixing between levels occurs when the mean-square
mixing matrix element H��

2 with ��� is roughly equal
to the square of the mean level spacing. Taking for the
latter the GOE value d=�	 /N at the center of the semi-
circle �see Eq. �14��, we find that significant mixing oc-
curs when � is of order 1/	N. We see that for N→�,
mixing sets in as soon as � differs from zero. These ob-
servations are used in Secs. III.D.1 and III.D.4.

Reality and symmetry of the matrices H�� are pre-
served under orthogonal transformations of the basis.
The ensemble �2� is chosen accordingly in such a way
that it is invariant under such transformations: With
each matrix H belonging to the ensemble, all matrices
obtained from H by orthogonal transformations also be-
long to the ensemble. As a consequence, there does not
exist a preferred direction in Hilbert space, and the en-
semble is generic. Because of that invariance and the
Gaussian cutoff, the ensemble is referred to as the
Gaussian orthogonal ensemble of random matrices.

Instead of the N�N+1� /2 integration variables H��

with ��� used in Eq. �2�, we may use the N eigenvalues
E� of the matrices H and the N�N−1� /2 generators of
the orthogonal transformation O, which diagonalizes H.
Then the volume element dH takes the form

dH = dO �
���


E� − E�
�
�

dE�. �6�

The factor dO represents the Haar measure of the or-
thogonal group in N dimensions. �The Haar measure is
the unique invariant measure that can be assigned to
every compact group and that is used to define integrals
over that group �Conway, 1990�.� The probability density
P�H� takes the form

P�H�d�H� = N0dO exp�−
N

4	2�
�

E�
2�


�
���


E� − E�
�
�

dE�. �7�

The right-hand side of Eq. �7� is the product of two fac-
tors. One factor depends only on the eigenvalues, and
the other only on the diagonalizing matrices. It follows
that the eigenvalues and the eigenvectors of the matrices
H are uncorrelated random variables. In the limit N
→�, the projections of the eigenvectors onto an arbi-
trary direction in Hilbert space have a Gaussian distri-
bution. Some properties of the eigenvalue distribution
can be read off directly from Eq. �7�. The factor
����
E�−E�
 stems from the volume element in matrix
space and reflects the orthogonal invariance of the en-
semble. It causes the probability density for the eigen-
values to go to zero as two eigenvalues approach each
other. This is a manifestation of level repulsion, a basic
feature of quantum mechanics.

Another property of the GOE is displayed when we
write the probability density in the form

P�H�d�H� = N0dO�
�

dE�exp�−
N

4	2�
�

E�
2

+ �
���

ln
E� − E�
� . �8�

For the interpretation of the eigenvalue distribution in
Eq. �8�, we use an analogy to classical statistical mechan-
ics. We consider the eigenvalues E� as position coordi-
nates of N particles in one dimension. The probability
density of the eigenvalues in Eq. �8� then has the form of
the canonical partition function �integrated over the mo-
mentum variables� of a gas of N classical point particles
with repulsive two-body interactions �“Coulomb gas”�
moving in a common harmonic-oscillator potential at in-
verse temperature �=1. The particles will tend to keep
apart as much as is consistent with the overall harmonic-
oscillator potential. This property leads to the “spectral
stiffness” of the GOE discussed below.

Besides the GOE, there exist two more canonical
random-matrix ensembles: The Gaussian unitary en-
semble �GUE� and the Gaussian symplectic ensemble
�GSE�. The GUE is the Gaussian ensemble of Hermit-
ian �but not necessarily real� matrices. This ensemble
plays a role for systems that are not time-reversal invari-
ant. If that invariance does not hold, the Hamiltonian
matrix is Hermitian but cannot in general be chosen real
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and symmetric. In nuclear physics, the GUE is used for
tests of time-reversal invariance. It is also used as a the-
oretical testing ground because the calculation of en-
semble averages over observables is typically simpler for
the GUE than for the GOE. For these reasons, we
briefly introduce the GUE in the next paragraphs. The
GSE applies to systems with half-integer spin that are
invariant under time reversal but not rotationally invari-
ant. The GSE does not apply to nuclei directly �see,
however, Lombardi et al. �1994�� and is not discussed in
this review. In addition to the three canonical ensembles
introduced by Dyson �see Porter �1965�� and often dis-
tinguished by the label � with �=1 for the GUE, �=2
for the GOE, and �=4 for the GSE, there exist seven
more random-matrix ensembles that are defined in
terms of invariance requirements �Altland and Zirn-
bauer, 1997�; their construction is based upon Cartan’s
classification of Lie groups �see Chevalley �1946��. Some
of these ensembles play a role in the low-energy behav-
ior of quantum field theories and find application in lat-
tice QCD, the discretized form of quantum chromody-
namics. Others relate to the scattering of electrons off
the interphase between a normal conductor and a super-
conductor.

For the GUE, the independent variables are the real
and imaginary parts of the complex elements H��

GUE of
the Hamiltonian �a matrix of dimension N�. The invari-
ant measure has the form

d�HGUE� = �
���

d�Re H��
GUE�d�Im H��

GUE��
�

dH��
GUE.

�9�

With this definition, the equation for the probability
density of the GUE is similar to Eq. �2� and reads

P�HGUE�d�HGUE�

= N0 exp�−
N

2	2Tr�HGUE�2�d�HGUE� . �10�

The GUE is invariant under unitary transformations of
Hilbert space. The real and imaginary parts of the ma-
trix elements are uncorrelated random variables with
equal Gaussian probability distributions centered at
zero. The factors in the exponent are chosen in such a
way that the second moments have the values

H��
GUEH��

GUE =
	2

N
����. �11�

Level repulsion in the GOE is linear; see Eqs. �7� and
�19�. This is a consequence of orthogonal invariance. In
the GUE, the transformation to eigenvectors and eigen-
values as new integration variables involves a unitary
transformation U and yields

P�HGUE�d�HGUE� = N0dU exp�−
N

2	2�
�

E�
2�


 �
���

�E� − E��2�
�

dE�. �12�

Here dU denotes the Haar measure of the unitary group
in N dimensions. Instead of the factor 
E�−E�
 occurring
in Eq. �7�, Eq. �12� contains the factor �E�−E��2. As a
result, level repulsion for the GUE is quadratic. That
difference between GOE and GUE is easily understood:
In the GOE, the coupling of any pair of levels is de-
scribed by a single parameter, namely, the real coupling
matrix element. For two levels to have a small spacing,
the value of that parameter must be small. In the GUE,
the coupling is described by two parameters, namely, the
real and imaginary parts of the coupling matrix element.
For two levels to have a small spacing, both parameters
must be small, and the probability of small spacings is
reduced accordingly.

As concerns the GUE analog of Eq. �8�, the form of
the volume element in matrix space leads to a different
inverse temperature �=2, while for the GSE we have
�=4. The “Dyson parameter” � with �=1, 2, and 4 is
often used to label the three canonical random-matrix
ensembles GUE, GOE, and GSE.

C. Properties of the GOE

1. Average level density

A central property of the GOE is the mean level den-
sity ��E�, a function of the energy E. It is defined as

��E� = �
�

�E − E�� �13�

and, for N→�, given by

��E� =
N

�	
	1 − � E

2	
�2

. �14�

The average spectrum extends from −2	 to +2	. This
confinement of the spectrum to a finite stretch of the
energy axis is a consequence of the Gaussian cutoff �or,
for that matter, of any other sufficiently strong cutoff
factor�, and of the factor N in the exponent of Eq. �2�.
When plotted versus E /4	, ��E� has the shape of a semi-
circle. �That shape is specific for the Gaussian cutoff.�
That is why Eq. �14� is often referred to as “Wigner’s
semicircle law.” The factor N on the right-hand side of
Eq. �14� ensures that ��E� is normalized to the total
number of levels. The mean level spacing d�E� is defined
by

d�E� = �−1�E� �15�
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and tends to zero as N→� because we fit a spectrum of
N eigenvalues into a finite energy interval of length 4	.
At the center of the spectrum, we have d�0�=�	 /N.

2. Universality

The form of the spectrum is due to the Gaussian cut-
off factor. That form is obviously totally unrealistic:
Hardly any real physical system possesses such a spec-
trum. While reality and symmetry of the matrices H��

reflect time-reversal invariance and are thus a conse-
quence of quantum theory, the Gaussian cutoff is not,
although the arguments of Rosenzweig and Porter
�1960� and of Balian �1968� lend some plausibility to its
use. The Gaussian cutoff is preferred from a practical
point of view, of course, because of the ease with which
Gaussian integrals can be performed. But the GOE is
physically interesting only if it furnishes information that
is independent of the form of the cutoff factor. That
property is guaranteed by the universality of the GOE.

In using the GOE, we are usually not interested in the
overall shape of the spectrum. Interest focuses rather on
local spectral fluctuation properties such as the NNS dis-
tribution or correlations between level spacings. These
are predicted in a parameter-free fashion. That means
that all local spectral fluctuation properties are functions
of a dimensionless parameter s, which is the ratio of the
actual level spacing and the mean level spacing. Local
spectral fluctuations characterize properties of the spec-
trum on an energy scale that in the limit N→� is negli-
gibly small compared to the length 4	 of the spectrum.
On that scale, the spectral fluctuations are universal: As
functions of the parameter s, they have the same form
for both the GOE and all non-Gaussian cutoff factors,
as long as the latter are orthogonally invariant and con-
fine the spectrum to a finite singly connected piece of
the energy axis �Hackenbroich and Weidenmüller, 1995�.

Non-Gaussian cutoffs that obey that proviso modify
the overall shape of the spectrum. In fact, for any given
form of the spectrum it is always possible to find a cutoff
factor such that the resulting random-matrix ensemble
has an average spectrum of that form. The local fluctua-
tion properties are unaffected by such a choice: In the
limit N→�, the local fluctuation properties separate
from the global spectral properties and become univer-
sal.

3. Ergodicity

Theoretical predictions of the GOE are obtained as
averages over the ensemble. How can we compare such
predictions in a meaningful way with data that, after all,
are taken from a physical system with a single Hamil-
tonian �and not from an ensemble of Hamiltonians�?
That question is answered by the property of ergodicity
of the GOE. Spectral data on a given system can be used
to calculate spectral measures such as the mean level
spacing or the NNS distribution as running averages
over the spectrum. We denote such a running average by

angular brackets. We would like to ascertain that Ō

= O� holds true for all members of the ensemble and for
all observables O that describe local spectral properties.
That equation cannot be proved in general because
there is no way to evaluate O� in the framework of the
GOE. It is possible, however, to prove the slightly
weaker statement �Brody et al., 1981�

�Ō − O��2 = 0. �16�

The proof is made possible because all terms on the
left-hand side are ensemble averages. The statement
says that for almost all members of the ensemble �with
the exception of a set of measure zero and the measure
defined in Eq. �1��, the running average of an observable
O �calculated for a single member of the ensemble� is
equal to the ensemble average of the observable. That
property is referred to as ergodicity. The name derives
from the formal similarity of the statement with ergod-
icity in classical statistical mechanics �equality of phase-
space average and time average along a single trajec-
tory�.

4. Information content of GOE spectra

Equation �3� shows that in the GOE every state in
Hilbert space is coupled to every other one by a
Gaussian-distributed random-matrix element: In the
GOE, all states in Hilbert space are completely mixed
with each other. Choosing the parameters N and 	 and
drawing all independent matrix elements from the re-
sulting Gaussian distribution generates a random GOE
matrix. Diagonalizing that matrix yields a GOE spec-
trum. By construction, that spectrum contains no infor-
mation beyond the input parameters N and 	. In par-
ticular, the spectral fluctuations are void of physical
information. If the spectral fluctuations of an experi-
mental spectrum agree with GOE predictions, and if
there is no further information on that system, then the
spectral data alone cannot be used to extract any physi-
cal information on the system beyond the mean level
density.

That conclusion is also reached when we ask the fol-
lowing: How many pieces of spectral data are needed to
determine the underlying Hamiltonian H? In the case of
a GOE spectrum, counting shows that we need all N
eigenvalues and all N orthonormal eigenfunctions to de-
termine the N�N+1� /2 independent matrix elements of
H. This must be compared with the usual dynamical ap-
proach to physical systems where the Hamiltonian is
given in terms of a few �say n� parameters. Then n pieces
of data suffice to determine the Hamiltonian. Further
data can be used to check the consistency of the under-
lying theory.

D. GOE fluctuation measures

1. Porter-Thomas distribution

We recall that in the GOE eigenvalues and eigenfunc-
tions are uncorrelated random variables. For N→�, the
projections of the eigenfunctions onto an arbitrary vec-
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tor in Hilbert space have a Gaussian distribution cen-
tered at zero. Therefore, the squares �2 of such projec-
tions have a �2 distribution with one degree of freedom.
We introduce the variable

y = �2/�2. �17�

The resulting distribution is also known as the Porter-
Thomas distribution and has the form

P�y� =
1

	2�y
exp�− y/2� . �18�

The function P�y� is given in terms of the mean value
�=�2. That parameter is an input parameter that is not
predicted by random-matrix theory. The distribution can
be checked experimentally: Transition probabilities of
nuclear levels to a fixed final state and decay widths to a
fixed channel are proportional to squares of matrix ele-
ments containing the nuclear wave functions. These ma-
trix elements can be read as projections of the wave
functions onto a particular vector in Hilbert space.

It may happen that the mean value � undergoes a
secular variation. This is the case, for instance, for door-
way states. Then it is necessary to “unfold” the fluctua-
tions by scaling the intensities properly; see Sec. II.G.

2. Nearest-neighbor-spacing distribution and �3 statistic

It takes substantial theoretical effort to work out the
spectral fluctuation measures in the GOE. That is not
described here. We confine ourselves to introducing two
fluctuation measures that have found wide application in
the analysis of experimental data: The nearest-neighbor-
spacing �NNS� distribution P�s� and the �3 statistic due
to Dyson and Mehta. These are obtained in the limit
N→�. Prior to using these measures for data analysis, it
is necessary to unfold the experimental spectra; see Sec.
II.D.3.

The NNS distribution P�s� depends on s, which is the
ratio of the actual level spacing and the mean level spac-
ing d. It cannot be given in closed form. An excellent
approximation due to Wigner is known as the Wigner
surmise,

P�s� =
�

2
s exp�− �s2/4� . �19�

The linear increase with s for small s is due to GOE
level repulsion as displayed in Eq. �7�. Universality
shows that the Gaussian falloff is not related to the
Gaussian cutoff factor defining the GOE and simply ac-
counts for the fact that very large spacings are unlikely
to occur. The exact expression for P�s� was first derived
by Gaudin �1961�. P�s� is displayed in Fig. 4.

The NNS distribution describes the distribution of
level spacings but does not contain information about
their correlations. Such information is contained in an-
other fluctuation measure, the �3 statistic. The number
staircase function

N�E� = �
−�

E

dE��
�

�E� − E�� �20�

counts the number of eigenvalues below energy E. With
increasing energy, it increases by unity as E passes a
�nondegenerate� eigenvalue and is otherwise constant.
The number of eigenvalues in the energy interval
�E0 ,E0+L� is given by n�E0 ,L�=N�E0+L�−N�E0�. By
definition of the mean level spacing d�E�, we have
n�E0 ,L�=L /d�E0�. �We use that, for N→�, d�E� is con-
stant �independent of E� in any energy interval contain-
ing a finite number of levels.� The number variance
��

2�L�=n2�E0 ,L�− „n�E0 ,L�…2 is a fluctuation measure
that contains information about correlations between
level spacings. Suppose, for instance, that actual GOE
spectra can be constructed by drawing spacings at ran-
dom from the NNS distribution. In this case, ��

2�L�
would grow linearly with L. In fact ��

2�L� is, for large L,
proportional to ln L. The slow growth indicates that
large spacings and small spacings do not follow each
other at random but almost alternate, and reflects the
“stiffness” of GOE spectra; see the text below Eq. �8�.
For the three canonical ensembles, the number variance
is shown in Fig. 5. The number variance is seldom used
in nuclear physics because it fluctuates too strongly; one
uses the �3 statistic by Dyson and Mehta instead. The
latter is defined by

�3�L� = mina,b
1

L��E0

E0+L

dE��N�E�� − a − bE��2�
E0

.

�21�

We integrate the ensemble average of the square of the
difference between the number staircase function and
the straight line �a+bE�� over an energy interval, divide
by the length L of that interval, and minimize the result
with respect to the parameters a and b of the straight
line. The angular brackets denote an average over the
initial point E0. It can be shown that �3�L� can be writ-
ten as an integral over the number variance ��

2�L�.
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FIG. 4. The nearest-neighbor-spacing �NNS� distribution of
the GOE �solid line� vs s, the ratio of the actual level spacing
and the mean level spacing. For comparison, we also show the
NNS distributions for the GUE �dashed line� and the GSE
�dotted line�. The parameter � is the Dyson index with �=1, 2,
and 4 for GUE, GOE, and GSE, respectively.
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Therefore, �3 is much smoother than ��
2�L� and is better

suited for data analysis. Similar to ��
2�L�, �3�L� grows

logarithmically with L. For large L,

�3�L� �
1

�2 �ln L − 0.0687� . �22�

Similar to �2, the �3 statistic reflects the stiffness of
GOE spectra and is often referred to as spectral stiff-
ness. Figure 6 shows �3�L� vs L for the GOE.

3. Unfolding of spectra: Purity and completeness

In the limit N→�, the average level density ��E� of
the GOE in Eq. �14� is constant in every energy interval
containing a finite number of levels, and the same is true
of the average level spacing d. In nuclei, the situation
differs: The level density grows nearly exponentially
with energy. In many cases, even a fairly short stretch of
levels displays this fact: The spacings of the lowest-lying
levels are consistently larger than those of the highest-

lying ones. That fact distorts the spectral fluctuation
measures and must be taken into account prior to com-
paring data with GOE predictions. This is done by un-
folding the spectra: The actual spectrum is modified such
that the average level spacing is constant. GOE predic-
tions relate to spectra consisting of levels with identical
quantum numbers. Spectra obtained experimentally
may be incomplete �i.e., miss levels �especially those
with small or very large widths��, or not be pure �i.e.,
may contain levels with uncertain or incorrect quantum
number assignments�. It is important to know how lack
of completeness and/or purity affects the comparison of
data with GOE predictions.

Unfolding requires knowledge of the average level
density ��E� for the data at hand. The situation is easy if
a theoretical prediction for the average level density is
available. This is the case, for instance, in billiards
�where a point particle moving in two dimensions is scat-
tered elastically on some surface�. Here the Weyl for-
mula �see Baltes and Hilf �1976�� gives the average level
density in closed form in terms of the area enclosed by
the surface and the length of the boundaries of that sur-
face. Given ��E�, the spectrum �or the spectra� is subse-
quently unfolded by mapping the eigenvalues E� onto
new eigenvalues �� by the prescription

�� = �
−�

E�
dE��E� . �23�

By construction, the new eigenvalues are dimensionless
and have an average level spacing equal to unity. The ��
can be used to construct the NNS distribution and the �3
statistic. We observe that the right-hand side of Eq. �23�
is the average of the staircase function defined in Eq.
�20�. The unfolded eigenvalues �� are the values of that
function taken at E�. Usually, however, the exact form
of the average level density is not known. If the data are
obtained by numerical simulation of an ensemble �di-
agonalization of many matrices�, the average level den-
sity is best found by numerically averaging over the en-
semble. If we deal with an empirical spectrum of, say,
several tens of levels, it is advantegeous to use the data
to construct the staircase function rather than the level
density �the representation of the latter in the form of a
histogram depends on the bin width chosen�, and to fit a
low-order polynomial to that function. The unfolded ei-
genvalues are again given by the values of the fitted
staircase function taken at the original eigenvalues E�.

How does the omission of levels affect spectral fluc-
tuation properties? If a fraction f of levels is removed at
random from a complete sequence �no missing levels, no
levels with wrong quantum numbers�, then the resulting
correlation functions can easily be related to the corre-
lation functions of the complete sequence �Bohigas and
Pato, 2004�. As a consequence, in the limit of large level
numbers the information on spectral correlations is fully
preserved provided f is known. In nuclei, levels with
small widths are hard to detect and easily missed. But
widths are theoretically predicted to be uncorrelated
with the positions of eigenvalues. The removal of levels

FIG. 5. The number variance vs the length L of the interval �L
is in units of the mean level spacing� for the three canonical
ensembles. Top curve, GOE; middle curve, GUE; bottom
curve, GSE. The parameter � is the Dyson index; see Fig. 4.
From Guhr et al., 1998.

FIG. 6. The �3 statistic for the Sinai billiard �open circles�, the
GOE prediction �solid line�, and the Poisson result �dashed
line�. From Bohigas et al., 1984.
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with small widths is thus a random process, and the
analysis of Bohigas and Pato �2004� applies. The fraction
f can be estimated using the Porter-Thomas distribution
and the experimental detection efficiency. The admix-
ture to a complete sequence of levels with wrong quan-
tum numbers can be treated similarly �Bohigas and Pato,
2004�.

E. Discussion

The random-matrix approach described above is
based on a few general principles: invariance of the sys-
tem under time reversal �which leads to an ensemble of
real and symmetric matrices�, absence of a preferred di-
rection in Hilbert space �which makes the ensemble ge-
neric and implies orthogonal invariance�, and confine-
ment of the spectrum to a singly connected finite stretch
of the energy axis �which is realized for the Gaussian
cutoff as well as for many other cutoff factors�.

The GOE is universal: Cutoff factors different from
the Gaussian cutoff but subject to the conditions formu-
lated in Sec. II.C.2 lead to different forms of the average
spectrum but to identical predictions for the local spec-
tral fluctuation measures. GOE predictions of local
spectral fluctuation measures are useful for the analysis
of data because the ensemble is ergodic: For almost all
members of the ensemble, the fluctuation measure cal-
culated as an average over the ensemble equals the re-
sult obtained by taking a running average over the spec-
trum of that member.

It is rather amazing that the few principles just men-
tioned lead to parameter-free quantitative predictions
for the local spectral fluctuation measures. Equation �18�
gives the distribution law relevant for transition matrix
elements and decay widths. Equations �19� and �22�
present the two measures that are most frequently used
for the analysis of spectral data. Needless to say, other
fluctuation measures have also been worked out �see
Brody et al. 1981�.

Random-matrix theory predicts fluctuation properties
in terms of mean values. In the examples treated so far,
the input mean value has been the average of the
squares of the projected wave functions as in Eq. �18�, or
the local average level density ��E� �or the average level
spacing d� as in Eqs. �19� and �22�. Both parameters
must be determined from the data. Then the theory pre-
dicts the distribution of the relevant observables. In case
the level density changes significantly over the length of
the given spectrum, an unfolding of the spectrum must
precede the comparison with GOE predictions.

F. Random matrices and chaos

There exists a close connection between random ma-
trices and quantum chaos. The latter term refers to
quantum systems that are chaotic in the classical limit.
In classical mechanics, chaos is a dynamical property
characterized by the exponential divergence in time of
trajectories starting in close-lying points of phase space.
The phase space of a fully chaotic system is filled with

such chaotic trajectories and is void of islands with regu-
lar dynamics. The analysis of chaos in classical conserva-
tive systems uses the existence of periodic orbits and was
pioneered by Gutzwiller. The results are summarized in
his book �Gutzwiller, 1990�. Periodic-orbit theory has
been successfully applied to many systems with few de-
grees of freedom �including systems that are not fully
chaotic�. To the best of our knowledge, a similarly com-
plete understanding of chaos in classical many-body sys-
tems with their high-dimensional phase space does not
exist. Atomic nuclei pose the additional difficulty that
the matter density is very high. Even in the classical
limit, it is not possible to neglect the fact that neutrons
and protons are fermions. This fact leads to complica-
tions regarding periodic-orbit theory �see, for instance,
Sommermann and Weidenmüller �1993�, Weidenmüller
�1993�, and Sakhr and Whelan �2003��.

Since the late 1970s, much effort has been devoted to
identifying the dynamical properties of quantum systems
that are fully chaotic in the classical limit �see Gutzwiller
�1990� and Haake �2001��. There were two lines of de-
velopment: Some looked for signals of classical chaos in
the time evolution of wave packets, others focused at-
tention on the fluctuation properties of eigenvalues and
eigenfunctions of closed systems �which possess a dis-
crete spectrum�. Here we confine ourselves to the latter
development, which has had repercussions in nuclear
physics. Mounting numerical evidence from classically
chaotic few-degrees-of-freedom systems due to Mc-
Donald and Kaufman �1979�, Casati �1980�, Berry
�1981�, and others culminated in the work of the Orsay
group �Bohigas et al., 1984� on the Sinai billiard: A point
particle moving in two dimensions is scattered elastically
by the interior surface of a square and by the exterior
surface of a circle inscribed into the square. That system
is fully chaotic and invariant under time reversal. Solv-
ing the Schrödinger equation for the Sinai billiard nu-
merically, the Orsay group accumulated a sequence of
about 1000 consecutive eigenvalues belonging to eigen-
functions of the same symmetry class. For a meaningful
evaluation of the spectral fluctuation measures, their nu-
merical accuracy had to be much better than the average
level spacing. It was also important to make sure that no
eigenvalue was missed. The Weyl formula �see Baltes
and Hilf �1976�� was used to unfold the spectrum. The
number of eigenvalues was large enough to evaluate for
the first time the �3 statistic �in addition to the NNS
distribution, which had been used before�. The results
are shown in Figs. 6 and 7.

In the figures, the data on the Sinai billiard are com-
pared with GOE predictions and with the Poisson distri-
bution. The latter has an exponential form, is typical for
regular �or integrable� systems �Berry and Tabor, 1977�,
and is explained below. The figures show excellent
agreement between the results for the Sinai billiard and
the GOE predictions. This agreement led Bohigas et al.
�1984� to formulate the following conjecture �the
Bohigas-Giannoni-Schmit �BGS� conjecture�: The spec-
tral fluctuation properties of a quantum system that is
fully chaotic in the classical limit coincide with those of
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the canonical random-matrix ensemble having the same
symmetry. Massive numerical evidence on other few-
degrees-of-freedom systems has given extensive support
to the conjecture. Attempts to prove the conjecture ana-
lytically have been based partly on periodic-orbit theory
�which has been important all along in the understand-
ing of classical chaos� and the semiclassical approxima-
tion. Berry �1985� established a connection between
classical chaos and the �3 statistic. More recently and for
a special fluctuation measure �the two-point function, a
quantity intimately related to the �3 statistic�, the con-
jecture was proved, or, to use a mathematically less de-
manding term, demonstrated by Heusler et al. �2007�.
The argument uses generic properties of periodic orbits
in classically chaotic systems with few degrees of free-
dom.

The semiclassical arguments used by Heusler et al.
�2007� do not apply directly to chaos in classical or quan-
tum many-body systems. This point was made at the be-
ginning of this section and is discussed again in Sec.
III.C.1. For the time being, we also adopt the BGS con-
jecture for many-body systems. Thus we speak of quan-
tum chaos �or of chaos� whenever in a many-body sys-
tem such as the nucleus the spectral fluctuation
measures introduced above agree with GOE predic-
tions. We have to keep in mind that the NNS distribu-
tion is a less safe indicator of quantum chaos than the �3
statistic. To see this, we consider �Rosenzweig and Por-
ter, 1960� a real symmetric matrix with diagonal entries
that are eigenvalues of a regular system with average
level spacing d and with nondiagonal elements of typical
strength v �see the example in Eq. �5��. The parameter
that rules the regular-to-chaos transition is v /d. As we
increase that parameter from very small values, neigh-
boring levels begin to repel, and the NNS distribution of
the GOE is approached. This happens before the long-

range stiffness of the spectrum as manifest in the �3 sta-
tistic is attained.

In classical mechanics, the case of complete chaos is a
limiting one. Another limiting case is that of completely
regular motion. In quantum mechanics, regular motion
corresponds to the existence of a complete set of quan-
tum numbers that label every state. There is no level
repulsion, and no correlation between levels. As shown
by Berry and Tabor �1977�, this case generically yields a
spectrum where the spacings have an exponential distri-
bution �“Poisson spectrum”�; see Fig. 7. The general
case in classical mechanics is the one in which phase
space consists of islands of regular trajectories separated
by domains filled with chaotic trajectories. There does
not seem to exist a generic description of the distribu-
tion of level spacings for that case. The Brody distribu-
tion defined in Eq. �28� below is a purely heuristic �and
not the only� interpolation formula between the Poisson
distribution and the Wigner surmise.

G. Doorway states

As explained in Sec. II.B, the GOE yields the generic
description of spectra of bound quantum systems. It of-
fers the best first guess of spectral properties if we have
no specific knowledge of the system except for the fact
that it is invariant under time reversal. There are cases,
however, where we possess some limited additional dy-
namical information. We may then look for a theoretical
description that takes that information fully into account
but is otherwise generic. Doorway states are a case in
point. Other examples for this type of approach are de-
scribed in Sec. III.D.

We consider a particular mode of excitation of the
system. To be specific, we take the electric dipole opera-
tor D acting on the ground state 
g� of an even-even
nucleus in the long-wavelength limit. With H the Hamil-
tonian, we shift for simplicity the energy such that the
ground state has energy zero, H
g�=0. We choose the
normalization of the dipole mode 
0�=D
g� such that
0 
0�=1. Then the expectation value E0= 0
H
0� gives
the mean excitation energy of the dipole mode. In gen-
eral, the dipole mode is not an eigenstate of H. There-
fore, the variance of H with respect to the dipole mode,
i.e., �H2= 0
H2
0�−E0

2=���1�H0��2, does not vanish.
�Here � labels states with the same quantum numbers
as, but orthogonal to, the dipole mode.� As a conse-
quence, the cross section for dipole absorption possesses
a large number of sharp lines, each occurring at an
eigenstate of H. �Here we disregard the fact that for
most nuclei E0 is greater than the threshold for particle
emission, so that the sharp lines actually become more
or less broad resonances.� We observe that �1/N��H2

= �1/N����1�H0��2 represents the mean coupling
strength of the dipole mode with the other states of the
system. The ratio of that expression and the mean level
spacing �taken at E0� is a measure of the length of the
energy interval over which the dipole mode is strongly
mixed with other states. Within that interval, the peak

FIG. 7. The NNS distribution for the Sinai billiard �histogram�,
the GOE prediction �solid line�, and the Poisson result �dashed
line�. While the theoretical literature commonly uses the label
s for the actual level spacing in units of the mean level spacing,
that quantity is usually referred to as x when RMT predictions
are compared with data. We follow that usage here. Inset: The
eigenvalues must be selected according to the symmetries of
the eigenfunctions. From Bohigas et al., 1984.
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heights of the dipole absorption lines are enhanced, and
an average of the cross section for dipole excitation
�taken with a Lorentzian weight function whose width is
larger than the mean level spacing� displays a resonance
at or near the energy E0. This is the giant dipole reso-
nance. Dipole absorption may be viewed as a two-step
process. First the dipole mode is formed. The ground
states of even-even nuclei have spin 0 and positive par-
ity, and the dipole operator is the z component of a
vector. Therefore, in these nuclei the dipole mode has
spin 1 and negative parity. Subsequently, that mode de-
cays into the eigenstates of H with the same quantum
numbers. It is obvious that that same picture applies to
many other nuclear reactions: neutrons impinging on a
nucleus give rise to a single-particle mode, protons gen-
erate isobaric analog modes, etc. The picture can like-
wise be used to describe the distribution of simple con-
figurations such as one-particle one-hole states over the
eigenstates of the system. Early summaries of the door-
way state idea may be found in Bohr and Mottelson
�1969� and Mahaux and Weidenmüller �1969�. For a re-
cent discussion that goes beyond the standard model de-
scribed next, see Zelevinsky et al. �1996� and De Pace et
al. �2007�.

We turn to the standard description of a doorway
state within random-matrix theory. To this end, we de-
fine the following extension of the GOE. With E0 the
mean excitation energy of the doorway state, and with
H0� �where �=1, . . . ,N� the coupling matrix elements of
the doorway state with the other states of the system,
the Hamiltonian matrix H for the doorway-state model
takes the form

H = � E0 H0�

H�0 H��
� . �24�

Here H�� is a GOE matrix of dimension N. With 
0� the
doorway state, we have 0
H
0�=E0 and �1/N��H2

= �1/N����H0��2. Because of the distinct role of the
doorway state, the doorway model of Eq. �24� is not
orthogonally invariant. It does possess that invariance,
however, in the subspace of states carrying labels ��1.
That statement implies that ensemble averages of ob-
servables cannot depend on the individual coupling ma-
trix elements H0� but depend only on the orthogonal
invariant �1/N����H0��2, the mean-square coupling ma-
trix element.

Every random-matrix model that incorporates addi-
tional dynamical information does so at the expense of
complete orthogonal invariance. That invariance is ex-
tremely helpful in working out the spectral properties of
the GOE. Therefore, noninvariant extensions of the
GOE are often difficult to handle. This is not the case
for the model of Eq. �24� because we add only a single
state to the GOE. As a consequence, in the limit N
→� both the spectral statistics and the Porter-Thomas
distribution of the Hamiltonian �24� coincide with those
of the GOE. The only distinct feature of the model is
the strength function for the doorway state. It is defined
as the ensemble average of ���0 
���2�E−E�� and gives

the probability per unit energy interval to find the door-
way state admixed to the eigenstates 
�� of H with eigen-
values E�. Stated differently, the strength function is the
average value of the level density weighted with the
square of the overlap matrix element. In form, the
strength function is closely related to the local density of
states used in condensed-matter physics. Because of the
ensemble average, the strength function is a smooth
function of energy E and has the form

�
�

�0
���2�E − E�� =
1

2�
�↓

�E − E0�2 + �1/4���↓�2 . �25�

Here

�↓ = 2���1/N��
�

�H0��2���E� �26�

is the spreading width of the doorway state, with ��E�
=1/d the average level spacing of the GOE at energy E.
Since �1/N��H2 /d=�↓ /2�, the spreading width mea-
sures the length of the energy interval within which the
eigenstates of H carry significant admixtures of the door
way state. The notation for the spreading width with a
down arrow is a reminder of the fact that the spreading
width does not account for a decay process into some
open channel �with the ensuing probability flux of par-
ticles at large distance�, but for the mixing of a particular
mode with other bound states.

The Lorentzian form of the strength function applies
approximately for �↓�	, where 2	 is the radius of the
semicircle. For small coupling, Eq. �26� has the form of
Fermi’s Golden Rule. In the framework of random-
matrix theory, the result �26� is valid beyond the pertur-
bative regime, however, and holds even if �↓��E��1.
Integrating the left-hand side of Eq. �25� and using com-
pleteness, we obtain unity. That same statement applies
to the right-hand side, and the strength function is prop-
erly normalized. The Lorentzian form �25� does not ap-
ply when the energy E0 of the doorway state is close to
one of the end points of the semicircle, or when the
spreading width becomes very large �i.e., comparable
with the radius of the semicircle�; see Kota �2001�, De
Pace et al. �2007�, and numerical examples given, for in-
stance, in Zelevinsky et al. �1996�.

The spreading width �↓ has a remarkable property
that makes it a useful measure for the spreading of a
doorway state. We ask the following: How does the
mean-square matrix element �1/N����H0��2 change with
the average level density of the GOE states? That ques-
tion arises in the nuclear context because doorway phe-
nomena are encountered at various excitation energies
and in nuclei with widely different mass numbers for
which the nuclear level density differs markedly. An in-
tuitive answer is obtained by noting that a significant
increase of the level density implies a significant increase
in the complexity of the wave functions making up the
GOE states. Therefore, each of the matrix elements H0�
connecting the doorway state with the GOE states is
strongly reduced, and so is the mean square matrix ele-
ment. But in the expression �26� for the spreading width,
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this strong reduction of the mean-square matrix element
is essentially compensated by the increase of the average
level density. That compensation is exact in simple mod-
els �Brody et al., 1981� and is expected to hold to a good
degree of approximation in realistic cases. An experi-
mental verification of this expectation comes from inves-
tigations of the spreading width for isospin mixing �Har-
ney et al., 1986� not discussed in this review. We
conclude that, in contrast to the exponential dependence
of the average level density on excitation energy and
mass number, the spreading width is expected to be a
slowly varying function of these parameters and is thus a
useful measure for the spreading of a doorway state.

If the model �24� applies in reality, a doorway state has
hardly any influence on spectral properties of the sys-
tem: The average level density of the states that carry
the same quantum numbers as the doorway state is un-
changed, their spectral fluctuation properties are the
same as for the GOE, and their partial widths for decays
different from electric dipole decay to the ground state
have the same Porter-Thomas distribution as for the
GOE. The only difference to the pure GOE case is the
Lorentzian enhancement �25� of the strength function
for dipole absorption. This is the only trace left of the
doorway state after we take account of its mixing with
the complicated states. Dividing the partial widths for
dipole absorption of the eigenstates of H by the value of
the strength function �taken at the corresponding eigen-
value� removes that trace and should yield quantities
that have a pure Porter-Thomas distribution.

III. APPLICATION OF RMT TO NUCLEAR SPECTRA

A. General remarks

Nuclear energy levels are characterized by quantum
numbers that reflect the symmetries of the nuclear
Hamiltonian: total spin �J� reflects rotational symmetry,
parity ��� reflects invariance under mirror reflection,
and isospin �T� reflects proton-neutron symmetry. We
exhibit the consequences of such symmetries for the ap-
plication of RMT to nuclear spectra.

The total Hilbert space is spanned by many-body
wave functions that carry the quantum numbers J ,� ,T.
These can be arranged in such a way that the matrix
representation of the nuclear Hamiltonian has block
structure,

H = �HJ1�1T1 0 0 ¯

0 HJ2�2T2 0 ¯

] ] � ¯

� . �27�

Here �J1�1T1�� �J2�2T2��¯, and each of the matrices
HJ�T couples only many-body states that carry the same
quantum numbers. If in addition the nuclear dynamics is
chaotic, then the BGS conjecture �see Sec. II.F� implies
that each of the matrices HJ�T is a member of a random-
matrix ensemble. Since nuclei obey time-reversal invari-
ance, the suitable ensemble is the GOE. In the frame-
work of RMT, Hamiltonian matrices referring to

different sets of quantum numbers are assumed to be
uncorrelated.

To compare RMT predictions on spectral fluctuations
with data on nuclear energy levels, sequences of levels
carrying the same quantum numbers are needed. The
data are subject to three requirements: �i� the se-
quence�s� should be as long as possible, �ii� the se-
quence�s� should be pure �i.e., should not contain levels
carrying quantum numbers that differ from those of the
rest�, and �iii� the sequence�s� should be complete �i.e.,
there should not be any levels that were not detected�.
The first requirement is needed to ensure that the run-
ning average over the actual spectrum is as close as pos-
sible to the running average over the complete spec-
trum, the latter by ergodicity �Sec. II.C.3� being equal to
the GOE ensemble average. The two other require-
ments guarantee that the statistical predictions of RMT
can meaningfully be applied to the data; see Sec. II.D.3
and the discussion in Sec. III.D. Unfortunately, the num-
ber of nuclear data sets of sufficient quality to provide
detailed tests of RMT is fairly limited. This is primarily
due to the requirements of purity and completeness im-
posed by the sensitivity of the standard fluctuation mea-
sures.

In many cases, nuclear levels are observed as narrow
particle-unstable resonances; see Fig. 1. Then a multi-
level R-matrix fit �Lane and Thomas, 1958� is used to
determine the positions the levels would have if they
were stable under particle decay. These positions are
used to calculate level spacings and to test GOE predic-
tions. �In R-matrix theory, the nucleus is thought to be
enclosed by a ficticious boundary that lies some distance
beyond the nuclear radius. Boundary conditions on that
surface and the nuclear Hamiltonian jointly define a set
of discrete states within the boundary. These states ap-
pear as resonances in the scattering matrix S. Approxi-
mations to the resulting formal expression for S serve as
the basis of the fits to data.�

In comparing nuclear data with GOE predictions for
the NNS distribution and/or the �3 statistic, one faces
the following difficulty: Both distributions are parameter
free, and it is difficult to assess the significance of the
usual tests for goodness of fit such as the �2 test when
one is far from these limiting cases. Therefore, one uses
measures that interpolate between the GOE prediction
and the case of a totally regular system. These do have
free parameters, and the goodness-of-fit tests are easily
interpreted. The NNS distribution has the form of the
Wigner surmise �19� for the GOE and is proportional to
exp�−s� �Poisson distribution� for regular systems �Berry
and Tabor, 1977�. An expression that interpolates be-
tween both is the Brody distribution �Brody et al., 1981�.
It depends on a single parameter � and is given by

P��s� = �1 + ���s� exp�− �s1+�� , �28�

where s is the actual level spacing in units of the mean
level spacing, and the constant �= ����2+�� / �1+����1+�

is fixed by normalization. For �=0��=1�, the Brody dis-
tribution equals the Poisson distribution �the Wigner dis-
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tribution�, respectively. For all ��0, the Brody distribu-
tion vanishes at s=0. The Brody formula is only one of
several formulas that interpolate between the Poisson
and the Wigner distribution. Another example is the
Berry-Robnik distribution �Berry and Robnik, 1984�.

For the GOE, the �3 statistic has the logarithmic de-
pendence on the length L of the energy interval shown
in Eq. �22�, while for a regular system it is linear in L. A
parameter-dependent measure for deviations from the
GOE is obtained by considering a spectrum that is a
superposition of k independent GOE spectra. For k�1,
the �3 statistic approaches the linear dependence of the
regular case. �Apparently this was first noticed by
Gurevich and Pevsner �1957�.� The deviation from the
GOE prediction is significant already for k=2; see Fig.
16.

The predictions of RMT on fluctuation properties of
nuclear wave functions can only be tested in terms of the
distribution of matrix elements �either for decay into
open channels or for electromagnetic transitions, weak
interaction matrix elements not being numerous enough
for such a test�. Here the size of the sample again is
important. In addition, there is usually an experimental
cutoff for small matrix elements so that only part of the
Porter-Thomas distribution can be tested.

Two properties of nuclei are central for tests of RMT.
�i� In every nucleus, the average level density increases
roughly exponentially with excitation energy. Thus,
while typical level spacings near the ground state are
several hundred keV, spacings of levels having the same
spin and parity �a subset of all levels� at neutron thresh-
old in heavy nuclei are typically 10 eV; see Fig. 1. For
fixed excitation energy, the level density increases like-
wise with mass number A �save for corrections due to
nuclear shell structure; see Sec. IV.A.1�. The require-
ments on experimental energy resolution increase with
increasing level density and, in general, limit nuclear
spectroscopy except for fortuitous situations such as
those leading to the data in Fig. 1. �ii� Levels below the
threshold for particle emission have only small widths
�in comparison with the mean level spacing� due to beta
or gamma decay. Above particle threshold, the total
widths of the nuclear resonances increase rapidly with
increasing excitation energy. This is because the number
of open channels for particle decay increases rapidly
�the number of states available for decay in the daughter
nuclei increases roughly exponentially with excitation
energy in these nuclei�. As a consequence, isolated reso-
nances as shown in Fig. 1 are observed only just above
the lowest particle threshold. A few hundred keV above
that threshold, resonances begin to overlap �the mean
level spacing decreases, the average total width in-
creases�, and it is no longer possible to investigate spec-
tral fluctuations. Rather, this is the domain of statistical
nuclear reaction theory. Thus tests of GOE predictions
in nuclear spectra are limited to the energy interval be-
tween the ground state and an energy somewhat above
the first particle threshold.

In describing the application of RMT to nuclear data,
we first discuss the experimental methods that have

been used to obtain the relevant spectral information
�Sec. III.B�. We then review the results of comparing the
data with GOE predictions on spectral fluctuations �Sec.
III.C�. RMT can be extended to deal with violations of
symmetry or invariance. This is described in Sec. III.D.

B. Experimental methods

1. Neutron resonances

The early tests of RMT involved neutron resonances,
as shown in Fig. 1. The scattering of slow neutrons en-
ables the study of individual resonances in a narrow win-
dow of energies at high excitation energy in the com-
pound nucleus—typically 5–7 MeV. At these energies,
the level density in medium-weight and heavy nuclei is
very large. However, the angular momentum barrier for
the incident neutron severely restricts the neutron’s or-
bital angular momentum and thus the spins J of the
compound nuclear resonances that contribute to the
scattering. For slow neutrons, only s- and p-wave reso-
nances are usually observed.

The experimental method of choice is a time-of-flight
measurement. Longer flight paths allow for better en-
ergy resolution �essential to resolve the resonances�, but
reduce the counting rate because of the smaller detector
solid angle. Thus high-intensity neutron sources are re-
quired. Today the most intense neutron beams are pro-
duced at spallation sources.

The most common experiment is a transmission mea-
surement. The transmission of the neutron beam
through a target with nuclei of mass number A deter-
mines the total cross section for the n+A reaction. Neu-
tron capture followed by � emission is also helpful in
determining the resonance parameters. Analysis of the
resonance data is normally performed with the Lane and
Thomas version of the Wigner-Eisenbud R-matrix for-
malism �Lane and Thomas, 1958�. The classic mono-
graph on neutron resonance reactions has been given by
Lynn �1968�.

For a comparison with RMT predictions, the levels in
a sequence must have the same quantum numbers. Thus
one key issue is to determine the spin J and parity � of
each resonance. This is done using the angular momen-
tum � of the scattered neutron. For spin-0 targets, all
s-wave resonances have J�=1/2+. For slow neutrons, the
difference in penetrabilities for �=0 and �=1 is so large
that at first sight � can be assigned by inspection—strong
resonances are s wave and weak resonances are p wave.
One normally formalizes this with a Bayesian analysis
�Bollinger and Thomas, 1968, 1970�, but this approach is
not reliable in the gray area between weak s-wave and
strong p-wave resonances. Of course other experiments
can be used to improve the spin and parity assignments.
We mention neutron capture with high-resolution �-ray
spectroscopy or with calorimeters �where for each cap-
ture reaction the total number and individual energies of
the emitted gamma rays are registered�. However, these
are very time consuming.
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In addition to the issue of spurious resonances �incor-
rect spin or parity assignments�, the other major prob-
lem is missing levels. The missing levels are expected to
be the weakest levels, hence the focus on signal-to-noise
ratios and energy resolution in resonance measure-
ments. The Porter-Thomas distribution predicts many
weak resonances. Assuming that distribution, one can
estimate the fraction of missing levels. Unfortunately
this nearly universally used correction method can be
misleading if nonstatistical effects are present. An alter-
native approach utilizing the NNS distribution was de-
veloped only recently �Agvaanluvsan et al., 2003�. Bohi-
gas and Pato �2004� extended the investigation of the
effects of missing levels to other level fluctuation mea-
sures.

Almost all of the neutron resonance data suitable for
detailed comparison with RMT are obtained for spin-0
targets. Most of the neutron resonance data used in the
early evaluation of RMT were obtained by Rainwater’s
group at Columbia �Liou, Camarda, Wynchank, et al.,
1972; Liou, Camarda, and Rahn, 1972� for a number of
nuclei with mass numbers A�110. Due to experimental
limitations, the number of resonances in each nucleus
was never significantly larger than 200.

2. Proton resonances

Due to the Coulomb barrier, proton resonances can-
not be studied near zero bombarding energy as neutron
resonances are. High-resolution proton resonance mea-
surements are typically taken at bombarding energies
corresponding to 60–70 % of the Coulomb barrier. This
has two major advantages. First, the Coulomb barrier
penetrability serves to narrow the proton widths and
makes possible the resolution of individual resonances
in rather dense spectra. Second, the addition of Cou-
lomb and nuclear resonance scattering amplitudes leads
to striking interference patterns that are used to identify
the spin and parity of each resonance. The parity assign-
ment is normally apparent by inspection, since the inter-
ference patterns for even and odd orbital angular mo-
menta are quite different. This is important because the
proton penetration factors for different orbital angular
momenta do not differ as much as for the neutron reso-
nances. As a result, one usually observes s-, p-, and
d-wave and sometimes even f- and g-wave resonances.
The primary difficulty consists in determining the J
value of the proton resonances. Additional experiments
�inelastic scattering or capture� can resolve this problem,
but as in the neutron case these experiments are very
time consuming and therefore are rarely performed. Al-
though most of the high-quality proton resonance data
are also for s-wave sequences, there are �in contrast to
the neutron case� a few p-wave sequences that are con-
sidered pure and complete. With very few exceptions,
the level density becomes too great for this method to
work much beyond mass number A=60. Here the typi-
cal number of resonances of the same spin and parity is
50 or so. Thus the proton resonance data complement
the neutron resonance data; the best results for each set

are obtained in quite different mass regions. Almost all
of the data used to compare with RMT are for spin-0
targets and from the Triangle Universities Nuclear
Laboratory �TUNL� �Wilson et al., 1975; Watson et al.,
1981�.

In order to observe �nearly� all of the resonances, one
needs good beam-energy resolution and high beam in-
tensity. These requirements seem contradictory. One ap-
proach is to accept the time-dependent energy fluctua-
tions intrinsic to the accelerator and make a correction
later. The most successful correction method solves the
resolution-intensity impasse using two beams. One
�high-intensity� beam is used to perform the experiment;
the other beam is used to generate a feedback signal
that follows the beam energy fluctuations; this signal
generates a voltage difference that is applied to the tar-
get. Thus the time-dependent energy fluctuations are
canceled. The method works well for a Van de Graaff
accelerator where most of the fluctuations have low fre-
quency. The details have been given by Bilpuch et al.
�1976�.

3. Low-lying levels

The spectroscopy of low-lying levels �excitation ener-
gies below 2 MeV or so� has always been a primary ob-
ject of study in nuclear physics. Many different ap-
proaches have been used: various nuclear reactions
including inelastic scattering, pickup, and transfer reac-
tions; �-ray spectroscopy following � or � decay; etc.
Almost all of these processes are quite selective. There-
fore, one needs to use many different approaches to en-
sure that all levels �in some energy interval� are ob-
served. One powerful technique uses the neutron
capture reaction. Neutron capture on nucleus A is fol-
lowed by sequences of � transitions that finally populate
the ground state of nucleus A+1. The average neutron
resonance capture technique �Bollinger and Thomas,
1968� effectively averages over many neutron reso-
nances and is nonselective; it also averages over Porter-
Thomas fluctuations, increasing the probability of ob-
serving weak transitions. Every low-lying state within
some spin range is expected to be populated. The com-
bination of neutron capture and direct reactions has led
to a number of complete level schemes at low energies
�von Egidy et al., 1986, 1988�.

4. High-spin states

The ground states of even-even nuclei have spin 0;
those of even-odd, odd-even, and odd-odd nuclei have
small spin values. The excitation energy E�J� of the low-
est state with given spin J generically increases with J;
the function E�J� defines the “yrast line”; see Fig. 8.
High-spin states located near the yrast line are typically
investigated via the collision of two heavy nuclei
�“heavy-ion collisions”�. At nonzero impact parameter,
the two colliding nuclei with mass numbers A1 and A2
typically carry a large angular momentum of relative
motion. The high-spin intermediate complex formed by
the collision �with spin values as large as 60� or so� may
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decay by a sequence of � transitions �perhaps with inter-
mittent neutron evaporation� to the ground state of a
nucleus whose mass number is smaller than but close to
A1+A2. The � rays emitted in this process are analyzed
using large-scale �-ray detection arrays. This approach
has generated a very large amount of data. These com-
prise many rotational bands �with many states in each�
for a range of heavy nuclei. �Rotational bands are typi-
cal for deformed nuclei and are dealt with in Sec.
IV.B.1.� The observed states have relatively high spin
and rather large excitation energies, but are not far
above the yrast line. Some aspects of the method of
analysis have been summarized by Døssing et al. �1996�,
where further references may be found.

Unfortunately, the difficulties in obtaining suitable
data sets for comparison with RMT are many. One often
sees many rotational bands, but of course each band has
only one state of a specific spin and parity. Thus one is
forced to combine results from many bands and nuclei.
Another serious issue is the problem of quantum num-
ber assignments. Within a given band with a well-known
bandhead, the assignments are reliable; assignments
based on interband transitions are more problematic.
Until now, levels up to a few 100 keV above the yrast
line have been analyzed �Garrett et al., 1997�; higher-
lying rotational bands cannot be individually resolved.
The evidence here points to regular motion; see Sec.
III.C.3. Theoretical expectations are that at around
800 keV above the yrast line the spectral fluctuations
become chaotic; see Sec. IV.B.2. It is to be hoped that
with improved resolution �perhaps attainable with the
next generation of large-scale detectors�, spectroscopic
data in that interesting energy region will become avail-
able.

5. Complete level schemes

The ideal is a complete scheme that begins at the
ground state and extends into the neutron or proton

resonance region, with perfect quantum number assign-
ments to each level. Obtaining such a complete level
scheme is exceptionally difficult at best, and impossible
in medium-weight to heavy nuclei. The level densities
are simply too great. For very light nuclei, on the other
hand, the level density is small and the total number of
states is not sufficient for a detailed statistical analysis.
Only for nuclei in the mass range between 20 and 40 or
so does the level density have suitable values. These are
essentially the nuclei belonging to the 2s1d-shell; see
Sec. IV.A.1.

It might seem that complete spectra might best be
measured using a variety of reactions as done for the
spectroscopy of low-lying states. However, this approach
meets practical difficulties. Most reactions are not only
selective, but also provide information only in a limited
energy range. In the approach that was successfully used
for two nuclei—26Al and 30P—the properties �quantum
numbers, positions, and widths� of a number of proton
resonances were determined. The proton capture reac-
tion was then measured for these resonances, which had
different quantum numbers. The method essentially
guarantees that all levels below the proton separation
energy are observed. Quantum numbers are assigned to
the observed levels using high-resolution �-ray spectros-
copy, including angular distributions of primary and sec-
ondary � rays. The experimental procedure for 30P has
been described by Grossmann et al. �2000�. The general
approach has been summarized by Mitchell and Shriner
�2001�. With the help of the neutron capture reaction, a
“nearly complete” level scheme below 4.3 MeV excita-
tion energy was measured in 116Sn �Raman et al., 1991�.

The analysis of the complete spectra must allow for
isospin-symmetry breaking and is dealt with in Sec.
III.D.1.

6. Low-lying modes of excitation

The emphasis here is not on complete level schemes
in a restricted energy range �as in Sec. III.B.3�, but
rather on phenomena that relate to levels of fixed spin
and parity and seem linked to the concept of a doorway
state; see Sec. II.G. The primary example of a doorway
state is the giant electric dipole resonance, which mani-
fests itself in a large resonancelike structure in the ab-
sorption cross section for � rays. The isobaric analog
resonances provide another classic example of a
doorway-state phenomenon. The analysis of both types
of resonances involves nuclear reaction theory and is not
part of this review.

There are several other interesting excitation modes
at lower energy—including the low-lying isovector mag-
netic orbital dipole or scissors mode with J�=1+ �Bohle
et al., 1984; Richter, 1995� and the electric pygmy dipole
resonance with J�=1− �both spin assignments applying
to even-even nuclei�. Nuclear resonance fluorescence
measurements have been used to generate extensive
data sets of 1+ and 1− states; the method provides a
unique J value of 1 and a probable parity assignment,
while measurements with a polarized photon beam pro-

FIG. 8. The yrast line, i.e., the excitation energy E�J� of the
lowest state with spin J vs J for an even-even nucleus with
mass number around 160 �schematic�. The shaded area indi-
cates the domain where spectroscopic information is available;
see Døssing et al. �1996�. The letter S denotes the particle
threshold. Depending on A, S typically lies between 5 and
8 MeV.
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vide a definitive parity assignment. Work at Darmstadt
has been focused on both the scissors mode �Enders et
al., 2000� and the electric pygmy dipole resonance �End-
ers et al., 2004�.

7. Summary

Figure 9 summarizes in a qualitative fashion the do-
mains of excitation energy Ex and mass number A where
spectral fluctuations have been investigated. The figure
is largely self-explanatory; suffice it to say that the pro-
ton resonances around A=50 are measured above
threshold but below the Coulomb barrier. The figure
shows that high-spin states are measured at compara-
tively high excitation energies. This statement has to be
taken with a grain of salt, however. For an even-even
nucleus with mass number A around 160 or so, Fig. 8
shows schematically the excitation energy of the lowest
state with spin J vs J �the yrast line�. The high-spin states
that were analyzed so far lie up to a few 100 keV above
the yrast line and, for that value of J, represent low-lying
excited states. Sequential decay of a rotational band
close to the yrast line by repeated emission of � rays
reduces both J and the overall excitation energy, while
the distance to the yrast line remains essentially the
same.

C. Tests of fluctuation measures

The fluctuation measures described in Sec. II.D have
been applied to nuclear data obtained with the experi-
mental methods summarized in Sec. III.B. We empha-
size again that, due to the sensitivity of these measures,
the quality of the data sequence �the degree of purity
and completeness� is of paramount importance; only a
small fraction of all nuclear data can be used for such
tests.

We mention in passing another measure, the “correla-
tion hole.” As a test for spectral fluctuations of the GOE
type, it has been applied much more widely in molecular
physics �Leviandier et al., 1986; Guhr and Weidenmüller,
1990b; Lombardi et al., 1994� than in nuclear physics
�Alhassid and Whelan, 1993�. Let 1−Y2�b� denote the
probability of finding two levels at a distance b. For
completely uncorrelated �Poissonian� spectra one has
Y2�b�=0 for all b, while GOE level repulsion implies
Y2�0�=1. The Fourier transform of the spectral autocor-
relation function �a function of time t� depends on the
Fourier transform of Y2 and is sensitive to the difference
between regular and chaotic motion. For chaotic mo-
tion, it displays a correlation hole at t=0.

1. Neutron and proton resonances

Although the fluctuation measures described in Sec.
II.D were proposed to describe neutron resonances in
the 1950s, even in the early 1960s there were no neutron
data of sufficient quality to provide an adequate test of
RMT. For example, Dyson and Mehta �1963� considered
the best available neutron resonance data and concluded
the data were such that the RMT “model” was neither
proved nor disproved. They exhorted experimentalists
to improve the data quality.

By the early 1970s, the high-quality neutron reso-
nance data from the Columbia group �Liou, Camarda,
and Rahn, 1972, Liou, Camarda, Wynchank, et al., 1972�
were available and seemed to confirm the predictions of
the GOE version of RMT. However, due to the limited
number of resonances �of order 100� for each nucleus,
these results were considered suggestive but not defini-
tive. Haq et al. �1982� and Bohigas et al. �1983� combined
neutron resonance data sets from a number of nuclei.
This was made possible by scaling level spacings in units
of the mean level spacing �the GOE fluctuation mea-
sures depend on that scaled parameter only�. They also
included some of the proton resonance data in their
analysis. A complication �relative to the neutron data�
here was the much larger energy range needed in order
to obtain a reasonable sample size. This larger energy
range required a correction �unfolding� of the experi-
mental data in order to transform to a new set of levels
with constant mean level spacing; see Sec. II.D.3. The
analysis also included suitable spectra for other than
s-wave proton resonances. Using all these data, they ob-
tained a set of 1407 levels that they labeled the nuclear
data ensemble �NDE�. The analysis of the NDE is done
by combining an energy average �for every nucleus� with
an ensemble average �over all nuclei that are included in
the NDE�. Both the NNS and the �3 statistic for the
NDE agreed well with the GOE predictions; see Figs. 10
and 11. A number of later tests with other measures also
agreed well with GOE predictions �see, for instance,
Lombardi et al. �1994�� even though the presence of non-
statistical effects can never be excluded �Koehler et al.,
2007�.

The analyses by Haq et al. �1982� and Bohigas et al.
�1983� and some of the subsequent papers mark a turn-

FIG. 9. The domains of excitation energy Ex and mass number
A where spectral fluctuations have been investigated are
shown for four classes of states �resonances, low-lying states,
high-spin states, and states that belong to a complete spec-
trum�. Complete spectra are known for three nuclei only, 26Al,
30P, and 116Sn. The letter S denotes the particle threshold.
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ing point in the history of applications of RMT to
nuclear spectra. As a result of these analyses, it became
generally accepted that proton and neutron resonances
in medium-weight and heavy nuclei agree with GOE
predictions. With the later recognition of the connection
between spectral RMT fluctuations and quantum chaos
�see Sec. II.F�, the term “chaos” began to be used by
nuclear physicists.

As mentioned in Sec. II.F, chaos in classical many-
body systems has not been investigated as thoroughly in
terms of periodic-orbit theory as in classical few-
degrees-of-freedom systems, not to mention complica-
tions due to the exclusion principle. Therefore, the con-
nection between classical chaos and RMT is less well
established and the use of the term “chaos” is somewhat
more tentative in nuclei. By the same token, the use of
semiclassical periodic-orbit theory in nuclei has been ba-
sically limited to independent-particle motion. In that

domain, it has been very successful. We mention early
applications by Strutinsky �1966, 1967, 1968�, whose
“shell-correction method” is reviewed in Sec. IV.C.1, by
Balian and Bloch �1970�, and recent work by Bohigas
and Leboeuf �2002�, Leboeuf and Roccia �2006�, and
Roccia and Leboeuf �2007�.

According to RMT, the eigenvalues and eigenvectors
are uncorrelated random variables; see Eq. �6�. In nu-
clei, this prediction was tested by Bohigas et al. �1983�.
The correlation coefficient was found to be 0.017±0.029,
the error reflecting the finite number of data points. In
microwave billiards, the test yields 0.02±0.05 �Alt et al.,
1995�. Another test �also giving agreement with the
GOE� has been reported in molecules by Lombardi and
Seligman �1993�.

2. Low-lying levels

After the success of RMT in describing the fluctuation
properties of highly excited �resonance� states, it was
natural to attempt to extend such analyses to low-lying
states. Although there is an enormous amount of experi-
mental information available for states near the ground
state, for most nuclides the quantum numbers are
known for only a very limited number of low-lying
states. In particular, complete and pure sequences of lev-
els with the same spin and parity are typically very short.
Therefore, data from several or many nuclei must be
combined to generate a sufficiently large ensemble.
Moreover, the shortness of the available sequences pre-
cludes the study of fluctuation measures other than the
NNS distribution. An extensive data set was compiled
by von Egidy et al. �1986, 1988�. An initial analysis of a
subset of these data was performed by Abul-Magd and
Weidenmüller �1985�. A more extensive analysis of this
same data set was performed by Shriner et al. �1991�.
The spacing distributions and their cumulative sums are
shown in Fig. 12. The nuclei are grouped into classes
according to mass number A. The size of each class was
determined by the data available. The cumulative sums
have smaller fluctuations. While the agreement with the
Wigner distribution looks satisfactory in most cases,
clear deviations occur for 150�A�180 �rare-earth nu-
clei� and for 230�A �very heavy nuclei�. In both ranges
of mass numbers, sizable nuclear deformations occur
and cause rotational motion; see Sec. IV.B.1. The rota-
tional model is integrable and the motion is therefore
regular. The same statement holds for other forms of
so-called collective motion; see Sec. IV.B.

The spacing distributions were fit with the Brody dis-
tribution �Brody et al., 1981�. The overall trend of the
Brody parameter � was to decrease with increasing mass
number A—for the lightest region �A=25–50� the aver-
age value of � was about 0.7, while for the heaviest mass
region �A=225–250� the value of � was 0.2. Various the-
oretical works have attempted to explain this behavior,
including Bae et al. �1992� and Yoshinaga et al. �1993�. To
exhibit the connection of the NNS distributions with the
degree of collectivity, attention was focused on the be-
havior of the 2+ and 4+ states because these states play a

FIG. 10. The NNS distribution for the nuclear data ensemble
vs s as in Fig. 4 �histogram� and the GOE prediction �solid
line�. From Bohigas et al., 1983. �By the time that paper was
published, the nuclear data ensemble had grown to 1726 spac-
ings.�

FIG. 11. The �3 statistic for the nuclear data ensemble �data
points� and the GOE and GUE predictions �solid lines�. The
dashed lines estimate the finite-range-of-data errors. From
Haq et al., 1982.
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prominent role in collective rotations and vibrations of
the nucleus. Two types of nuclei were considered: nuclei
with approximately spherical ground states and nuclei
with strongly deformed ground states; see Sec. IV.B. The
transition between both classes was studied. Depending
on the model chosen, the motion is chaotic or regular in
one but not in the other limit. Figure 13 shows that the
experimental results are striking. 2+ and 4+ states in
strongly deformed nuclei have NNS distributions that
agree with the Poisson distribution, while the corre-
sponding states in spherical nuclei have spacing distribu-
tions that agree with the Wigner distribution. Unfortu-

nately, the limited amount of data and the corresponding
large uncertainties preclude a more detailed assessment
of the effects of collectivity.

Another approach by Abul-Magd et al. �2004� focused
on specific states �the lowest 2+ states in even-even nu-
clei� and collected all complete sequences of low-lying
2+ states from the nuclear data tables. The sequences are
short in most cases. Nuclei are classified by the ratio R4/2
of the excitation energy of the lowest 4+ state over that
of the lowest 2+ state. That ratio is a well-known mea-
sure of collectivity. The size of each class is chosen such
that it contains a sufficient number of sequences for a
meaningful statistical analysis. The NNS distributions
are analyzed using a measure different from the Brody
distribution and obtained by superposing a number of
uncorrelated GOE sequences, each of mean fractional
level density f. The parameter f serves as a fit parameter
and is referred to as the “chaoticity parameter.” In its
dependence on R4/2, this parameter displays deep
minima when R4/2=2.0, 2.5, and 3.3. These values corre-
spond to the dynamical symmetries of a specific collec-
tive model, the interacting boson model described in
Sec. IV.B.1. Whenever one of these symmetries prevails,
the motion of the nucleus is integrable and thus regular.

In summary, there is evidence that the nuclear dynam-
ics in the ground-state region is partly chaotic and partly
regular. The regular features are dominant whenever
collective motion with a high degree of symmetry ap-
plies.

3. High-spin states

The only extensive analysis of the statistical properties
of high-spin states was performed by Garrett et al.
�1997�. The data set comprised energy levels in de-
formed nuclei in the range of proton numbers Z
=62–75 and mass numbers A=155–185. The spin values
ranged up to J=40. The levels were at high excitation
energies, but only up to several hundred keV above the
yrast line; see Fig. 8. They found that the NNS distribu-
tion agreed best with the Poisson distribution. This is
consistent with the results for low-lying states in de-
formed nuclei; see Sec. IV.B.2.

An observed deficiency of small spacings is not well
understood. It is possible that right above the yrast line a
symmetry related to the K quantum number is partly
broken. This quantum number measures the projection
of the nuclear spin onto the body-fixed symmetry axis;
see Sec. IV.B.1. This might lead to level repulsion at
small distances. Hopefully the analysis of similar data
will shed more light on that question. We return to the
general issue of symmetry breaking and its influence on
spectral fluctuation properties in Sec. III.D.1.

4. Analysis of low-lying modes of excitation

At low excitation energies, one observes several
modes of excitation. Statistical measures have been used
in order to identify the character of the mode in the case

FIG. 12. Level spacing distributions for six different regions.
Upper panels: NNS distributions �histograms� are compared
with the Wigner distribution �solid lines� and the Poisson dis-
tribution �dashed lines� for several ranges of mass numbers.
Lower panels: Same for the cumulative distributions �number
of spacings smaller than x� �cf. the caption of Fig. 7�. The ap-
proximate number of levels in each region is as follows: A
=0–50 �N=150�, A=50–100 �N=50�, A=100–150 �N=270�,
A=150–180 �N=450�, A=180–210 �N=60�, A�230 �N=190�.
From Shriner et al., 1991.

FIG. 13. Comparison of the NNS distributions vs x, the level
spacing in units of the mean level spacing, for 2+ and 4+ states
in strongly deformed �left panel� and in spherical nuclei �right
panel�. Adapted from Shriner et al., 1991.
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of the scissors mode �Enders et al., 2000� and of the
pygmy dipole resonance �Enders et al., 2004�.

For the scissors mode �a low-lying isovector magnetic
dipole mode�, data were generated by nuclear resonance
fluorescence measurements �Enders et al., 2000�. The
spectra of 13 heavy deformed even-even nuclei with
neutron numbers in the 82–126 range �corresponding to
a major shell� were used to generate an ensemble of 152
scissors-mode states with spin/parity 1+, all in a range of
excitation energy between 2.5 and 4.0 MeV. In each
nucleus, the sequence of states used in the analysis was
required to contain a minimum number of eight states.
After unfolding, the ensemble was analyzed with the
standard RMT fluctuation measures. The data agreed
well with Poisson statistics. They examined the effects of
missing levels on the spacing and width distributions and
concluded that missing levels can be ruled out as a cause
of this behavior. They concluded that the levels of the
scissors mode are excited by a common mechanism. The
levels are collective but it is not possible to identify a
common doorway. It seems that the underlying micro-
scopic mechanism is not yet fully understood.

The electric pygmy dipole resonance is so named be-
cause of its small strength relative to the giant electric
dipole resonance. In heavy nuclei, the pygmy resonance
is located at excitation energies around 5–7 MeV. End-
ers et al. �2004� studied the statistical properties of this
mode in four isotones, all with neutron number 82. They
created an ensemble of 184 1− states in the excitation
energy range of 4–8 MeV, along with their dipole tran-
sition strengths to the ground state. After unfolding, the
spectral fluctuations �strength and spacing distributions�
are close to Poissonian. Because of a significant number
of missing levels, the analysis is rather involved in this
case, however, and they concluded that the weak corre-
lations found point to GOE behavior of the complete
spectra. That conclusion is reinforced by an extensive
comparison with spectra calculated using a particular
nuclear model, the quasiparticle phonon model. These
agree with the data but yield GOE behavior for the full
spectra �including the levels missing in the data�. The
fundamental mode of excitation is collective. Many
other states exist at the excitation energy where it oc-
curs. These fragment the doorway state and produce a
correlated spectrum of GOE type.

In comparing their results for these two modes, they
concluded that the key reason for the apparently differ-
ent statistical behavior is the difference in excitation en-
ergy. The higher-energy mode �electric pygmy dipole� is
in a region of greater level density. This results in corre-
lated spectra.

5. Eigenvector distribution

The GOE predicts a Gaussian distribution for the
projections of the eigenvectors and the Porter-Thomas
distribution for their squares; see Sec. II.D.1. While both
the NNS distribution and the �3 statistic are strongly
affected by missing levels and/or impure sequences, the
Porter-Thomas distribution �a probability density and

not a correlation function� is expected to be less sensi-
tive to missing or wrongly assigned levels. The experi-
mental data normally used are the reduced widths �for
resonances� or the reduced transition strengths �for elec-
tromagnetic transitions�. Early neutron resonance data
appeared to agree with the Porter-Thomas distribution;
a frequently quoted example is for neutron resonances
on 232Th measured by Rainwater’s group at Columbia
University �see Garg et al. �1964��. The analysis by the
Orsay group of the nuclear data ensemble included a
test of the Porter-Thomas distribution for the widths
�see Bohigas et al. �1983��, and used a total of 1182 mea-
sured widths. In addition to a direct comparison with the
Porter-Thomas distribution, a search for the best �2 dis-
tribution was also done. Very good agreement with the
GOE prediction was found.

Further and more detailed attempts to confirm the
Porter-Thomas distribution have run into the following
difficulty. For a set of Gaussian-distributed amplitudes
��i�, the second and fourth moments are related by
�4�=3 �2�2, where the angular brackets denote the run-
ning average. According to Harney �1984�, the error
�square root of the variance� of the ratio R= �4� /3�2�2

is 	8/3k, where k is the number of data points. This is a
rather large value. For the often quoted 232Th data, for
example, k=171, and the error of R is 0.125. Thus this
excellent data set only confirms the Gaussian nature of
the amplitude distribution at the 12% level.

To overcome this problem, a larger data set seemed
useful. An ensemble of 1117 reduced widths was formed
with TUNL data �Shriner et al., 1987�. With y=�2 / �2�
and P�y� the Porter-Thomas distribution, the result for
	yP�y� is shown in Fig. 14. The visual agreement with
the GOE prediction is striking. However, the value of R
for this ensemble turned out to be 1.26. The problem is
that a relatively small number of nonstatistical large
widths has a major impact on R because R depends on
the fourth moment of the amplitudes.

To overcome that difficulty, a different measure that is
less sensitive to a few nonstatistical amplitudes was
needed. The normalized linear correlation coefficient

FIG. 14. The distribution 	yP�y� for y=�2 /�2 for 1117 reduced
widths. From Shriner et al., 1987.
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��x,x�� =

�
i

�xi − x���xi� − x���

��i
�xi − x��2�

i
�xi� − x���2�1/2 �29�

for two data sets �xi� and �xi�� is expected to be a sensi-
tive measure of correlations, as it combines information
on both the magnitudes and phases of the data points.
To test whether two sets of amplitudes �ai� and �ai�� fol-
low the Gaussian distribution, one calculates the ampli-
tude correlation coefficient ��a ,a�� and the width corre-
lation coefficient ��w ,w��, where w represents the
square of the amplitude. �Since it is impossible to mea-
sure the absolute sign of an amplitude, ��a ,a�� is calcu-
lated with the assumption that a�=0= a��.� The Gauss-
ian distribution predicts �2�a ,a��=��w ,w�� and this is the
relation that is tested.

To work out the correlation coefficients, it is necessary
to measure partial width amplitudes including their rela-
tive phases. That was done using the inelastic decay of
proton resonances. For example, for a spin-0 target with
mass number A and a 2+ first excited state, a proton
resonance in the nucleus with mass number A+1 and
spin/parity 3/2− can decay to the 2+ state by emitting the
proton with angular momentum/spin p1/2 or p3/2. The
relative phase of the two decay amplitudes is deter-
mined by measuring the angular distribution of the in-
elastically scattered protons and the subsequent deexci-
tation � rays. Application of this approach has been
described by Mitchell et al. �1985�.

The relation �2�a ,a��=��w ,w�� can be checked for
each data set. However, the sample size for each spin
value in each nuclide was small, and it was necessary to
combine the data sets. To this end, an ambiguity in the
definition of the correlation coefficient was used. Instead
of writing the amplitudes in terms of the decay channels
p1/2 and p3/2, any two linear combinations of amplitudes
obtained by orthogonal transformations from the origi-
nal set can be used. The correlation coefficient depends
on the chosen representation. There is always a repre-
sentation in which the amplitude correlation coefficient
is zero. Each of the data sets was individually trans-
formed to that representation. The resulting width cor-
relations and their uncertainties were combined for all
of the data sets in order to obtain a final value for the
width correlation. The result was ��w ,w��=−0.01±0.03
�Shriner et al., 1987, 1989�, in agreement with the predic-
tion based on the Gaussian distribution. This is the most
sensitive test of the Gaussian assumption.

D. Violation of symmetry or invariance

Two of the symmetries mentioned in Sec. III.A hold
only approximately: Isospin symmetry is broken by
charge effects, and parity conservation is violated by the
weak interaction. Is it possible to extend RMT so as to
account for such symmetry breaking? And how do the
resulting statistical measures compare with data? We an-
swer these questions for the case of isospin symmetry

breaking. We apply the results to the complete spectra
of 26Al and 30P. Parity violation is a very weak effect
that has so far received a statistical analysis only in the
framework of nuclear reaction theory.

We have also assumed that nuclei obey time-reversal
invariance. One of the most precise tests in nuclei of that
assumption applies RMT. We describe how a measure
for violation of time-reversal invariance is derived in the
framework of RMT and applied to data.

1. Model for isospin violation

Isospin symmetry is violated in nuclei by charge-
dependent effects such as the Coulomb interaction be-
tween protons, the neutron-proton mass difference, or
the mass differences between charged and neutral pions.
Needless to say, the isospin-violating interaction is small
compared to the strong force. The breaking of isospin
symmetry manifests itself differently in different ranges
of mass numbers. In nuclei with mass numbers around
40 or more, it leads to the occurrence of fragmented
isobaric analog resonances. The typical features of this
phenomenon relate to nuclear reaction theory and are
not dealt with here. In some light nuclei with mass num-
bers smaller than 40 or so, the ground state has isospin
T=0 but the density of states with T=1 in the ground-
state region is roughly the same as that of states with
T=0. The charge-dependent forces mix states with T
=0 and T=1. It is for these nuclei that the following
random-matrix model applies.

In order to account for isospin violation �and for sym-
metry breaking in general�, the Hamiltonian �27� must
be modified. The matrix elements of the isospin-
violating interaction couple states with different
T-quantum numbers. For simplicity, we consider two di-
agonal blocks only. The isospin-breaking interaction
conserves parity and total spin so these two blocks carry
the same quantum numbers J and � �which we omit� but
different isospin quantum numbers T1 and T2. The
Hamiltonian has the form

H = �H��
T1 V��

V�� H��
T2
� . �30�

With N1 �N2� the dimensions of the two block-diagonal
matrices, the running indices in the first �second� block
are � ,�=1, . . . ,N1 �� ,�=N1+1, . . . ,N1+N2�, respec-
tively. We deviate from our earlier systematic notation
and denote the coupling matrix elements connecting the
two blocks by V.

We use Eq. �30� to define a random-matrix model for
symmetry breaking �Rosenzweig and Porter, 1960�. We
assume that the matrices HT1 and HT2 are each members
of a GOE and are uncorrelated. For simplicity, we as-
sume that the two GOEs have identical semicircle radii
2	1=2	2=2	 and equal dimensions N1=N2=N, although
in practice it is necessary to take N1�N2 in order to
account for the fact that the level densities for states
with different isospins differ. The �real� matrix elements
of V are assumed to be Gaussian-distributed random
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variables with zero mean value and a common second
moment V2. They are not correlated with each other or
with the elements of either of the two GOEs. Strictly
speaking, the symmetry-breaking interaction also con-
tributes to the diagonal blocks HT1 and HT2. However,
such contributions can be incorporated in the random-
matrix description of these blocks and therefore do not
appear explicitly in the model.

To define the strength of V2, we recall Eq. �4�. That
equation seems to suggest that we put V2=�2	2 /N, with
�2�1 to account for the weakness of the symmetry-
breaking interaction. That is not correct, however, and
we must choose V2=�2	2 /N2, with � a strength param-
eter that is independent of N in the limit N→�. Indeed,
without symmetry breaking, the spectra of HT1 and HT2

are uncorrelated. A weak symmetry-breaking interac-
tion induces level repulsion and stiffness among levels
with different isospin. That happens when the matrix
elements of V are of the order of the mean level spacing
d=�	 /N, or when V2 is of the order of 	2 /N2. Hence the
ratio of the strength of the symmetry-breaking interac-
tion �average of the square of the matrix elements� over
that of the symmetry-conserving interaction vanishes as-
ymptotically as 1/N for N→�, since the mean level
spacing likewise vanishes in that limit. Conversely, sym-
metry violation becomes detectable in spectral fluctua-
tion measures when the matrix elements of the
symmetry-breaking interaction are of the order of the
mean level spacing. This condition was already men-
tioned below Eq. �5� and is met by the isospin-violating
matrix elements in light nuclei; see Sec. III.D.2. The
same conclusion is reached when we consider the viola-
tion of time-reversal invariance in Sec. III.D.4. Appar-
ently Pandey �1981� was the first to note the relevance of
such small parameters for violations of symmetry and/or
invariance.

The parameter V2 suffers from the same shortcoming
as discussed in Sec. II.G for the mean-square-matrix el-
ement of a doorway state: V2 changes strongly with ex-
citation energy and/or mass number. A much smoother
measure of symmetry breaking is the spreading width;
see Eq. �26�. There are two possible definitions for �↓,

�↓T1 = 2�V2�T2, �↓T2 = 2�V2�T1, �31�

where �T is the level density for the states with isospin T.
It is largely a matter of convenience which of these defi-
nitions is used. To interpret the spreading widths, we
consider without loss of generality the first of Eqs. �31�.
We use a basis in which both HT1 and HT2 are diagonal.
We first assume that the mean level spacing 1/�T1 of
states with isospin T1 is significantly larger than �↓T1 and
that �↓T1 is significantly larger than 1/�T2. Then the ar-
guments of Sec. II.G apply, each state with isospin T1
acts as an isolated doorway state, and �↓ is the average
width of the probability distribution for finding the door-
way state mixed into the eigenstates of the full system.
We expect that that interpretation remains qualitatively
valid also when the inequalities 1 /�T1��↓�1/�T2 are
violated. In other words, �↓T1 ��↓T2� is a measure of the

width in energy with which every eigenstate of HT1 �of
HT2, respectively� is spread over the eigenstates of the
full system.

The random-matrix ensemble �30� lacks the overall
orthogonal symmetry of the GOE. By construction, the
ensemble is invariant, of course, under orthogonal trans-
formations of the first N1 �the last N2� states, respec-
tively. Nonetheless, the analytical treatment of symme-
try violation in RMT is much more difficult than treating
a single GOE. While analytical results for the ensemble
�30� are not available, replacing each of the two block-
diagonal GOEs in Eq. �30� by a GUE, and considering
the complex matrix elements in the nondiagonal blocks
as uncorrelated Gaussian-distributed random variables
with zero mean value and common variance V2, one ar-
rives at a tractable problem �Guhr and Weidenmüller,
1990a�. Although belonging to a different symmetry
class, the resulting ensemble is expected to possess fea-
tures that are qualitatively similar to those of the en-
semble �30�. Additional information is generated by a
numerical analysis of the ensemble �30�.

As V2 /d2��2 increases from zero, the spectral fluc-
tuations change from those of two uncorrelated GUEs
to those of a single GUE. From V2 /d2=0 to V2 /d2�0,
the change is discontinuous: Level repulsion among
states with different T sets in suddenly. For the local
spectral fluctuation measures considered by Guhr and
Weidenmüller �1990a�, the case of a single GUE is at-
tained when V2 /d2�1. We expect this statement to ap-
ply likewise to other fluctuation measures, and to hold
similarly for the ensemble in Eq. �30�. The expectation is
confirmed by numerical simulations.

2. Complete level schemes

As described in Sec. III.B.5, complete level schemes
were determined for the nuclides 26Al and 30P. These
odd-odd N=Z nuclei are particularly interesting because
here the densities of states with T=0 and with T=1 are
almost equal, starting from the ground state, while in
most nuclei the states with higher T are shifted toward
higher excitation energies. Thus these nuclei are ideal to
study the effect of isospin-symmetry breaking.

A qualitative test for a conserved symmetry is to con-
sider what happens when that symmetry is neglected. As
an example, in Fig. 15 the �3 statistic is shown for the
states in 26Al. Only the quantum numbers shown at the
top of each panel are taken into account in evaluating
�3. We note that ignoring the good quantum number J
leads to a major increase in �3. Ignoring T, on the other
hand, leads to a very small change of �3. This seems to
suggest that isospin is not a good quantum number, in
apparent contradiction to other evidence that isospin is
only slightly broken �at about the 3% level� in this nu-
clide.

The point is that �as discussed in Sec. III.D.1� the im-
pact of symmetry breaking on �3 depends on the ratio of
the symmetry-breaking matrix element to the mean
level spacing d and is thus enhanced by small spacings.
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Hence, a small degree of symmetry breaking can have a
large effect on the statistical measures. Somewhat fortu-
itously, the strength of symmetry breaking in 26Al is such
that the �3 statistic lies between the values for a single
GOE and for two GOEs; see Fig. 16. More precisely, the
root-mean-square value of the symmetry-breaking Cou-
lomb matrix elements in 26Al is a little smaller than, but

of the order of, the mean level spacing �Guhr and
Weidenmüller, 1990a�. The results were consistent with
other experimental determinations. Experimental re-
sults on isospin violation for 30P were almost identical
with the 26Al results �Shriner et al., 2000�.

Although these results were consistent with theoreti-
cal expectations, they were not considered definitive due
to the small sample sizes. Definitive results on symmetry
breaking were provided by measurements of acoustic
resonances in quartz blocks �Ellegaard et al., 1996� and
of electromagnetic resonances in coupled microwave bil-
liards �Alt et al., 1998�. In these measurements, the
strength of the symmetry breaking force could be effec-
tively varied and much larger sample sizes were ob-
tained. The agreement with the RMT model of Eq. �30�
was excellent.

The third nucleus with a “nearly complete” level
scheme �for excitation energies below 4.3 MeV� is 116Sn.
In that nucleus, the NNS distribution was studied �Ra-
man et al., 1991�. Only sequences with a minimum of five
levels with the same spin and parity assignments were
included in the analysis; there were six such sequences.
The histogram for the NNS distribution was fit with the
Brody parametrization �28�. The fit gave �=0.51±0.19,
similar to the best fit in 26Al, which gave �=0.47±0.14.
In 26Al, the deviation from GOE predictions is due to
isospin symmetry breaking. The cause for the same phe-
nomenon in 116Sn is not clear. The nucleus 116Sn is men-
tioned in the present section only because of its nearly
complete level scheme.

3. Transition strengths

After the studies of isospin symmetry breaking in the
complete spectra of 26Al and 30P �see Sec. III.D.2�, the
effect of symmetry breaking on the eigenvectors in the
same systems was also explored. Although there was no
formal proof, heuristic arguments predicted that the
Porter-Thomas distribution would not be changed by
symmetry breaking. The central point of the argument
was the complexity of the wave functions of initial and
final states of the transitions.

The TUNL group �Adams et al., 1998; Shriner et al.,
2000� used the reduced electromagnetic transition prob-
abilities B in these nuclei as the data set. To eliminate
issues of scale, subgroups of the transitions were consid-
ered. The transition probabilities were classified accord-
ing to multipolariy �electric dipole E1, electric quadru-
pole E2, and magnetic dipole M1� and to the isospin
difference �T=0 or 1 between initial and final states.

The parameter y=B / B̄ turns out to have a very large
dynamic range. Therefore, it is convenient to use z
=log10 y. In terms of that variable, the upper panels of
Fig. 17 show the Porter-Thomas distribution as solid
lines. The lower panels give the integrated distributions.
The histograms show the data for 30P. Details of the
analysis have been given by Adams et al. �1998� and
Shriner et al. �2000�. Similar results were obtained for

FIG. 15. The �3 statistic shown for the states in 26Al obtained
by taking into account only the quantum numbers indicated at
the top of each panel.

FIG. 16. The spectral rigidity �3 vs L for 75 levels with T=0
and 25 levels with T=1 measured in 26Al �dots with error bars�.
The excitation energies lie between 0 and 8 MeV. The lower
�upper� dashed line is the prediction for a single GOE �for two
uncorrelated GOEs with fractional densities 3 /4 and 1/4, re-
spectively�. The solid line is the result of a numerical simula-
tion incorporating symmetry breaking. The strength of the
symmetry-breaking interaction was fitted to the data. From
Guhr et al., 1998.
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26Al. It is obvious that the data do not agree with the
Porter-Thomas distribution.

It was some years before this somewhat unexpected
result was formally analyzed and explained. Barbosa et
al. �2000� used basically the same approach as for the
description of symmetry breaking on the level statistics;
see Sec. III.D.1. We only sketch the central point. We
consider electromagnetic transitions of a given multipo-
larity �typically M1 or E2�. The model �30� has to be
extended because the electromagnetic transition opera-
tor does not, in general, conserve either T or J and con-
nects states with different spins as well as different isos-
pins. For V2=0, the eigenfunctions of H are
eigenfunctions either of HJ1T1 or of HJ2T2. For fixed
J1 ,J2, the transition matrix elements belong to one of
three classes: �i� those coupling two states with isospin
T1, �ii� those coupling two states with isospin T2, and �iii�
those coupling two states with different isospins. The
distribution of matrix elements within each class is ex-
pected to be approximately Gaussian, but the three
Gaussian distributions may have different heights and
widths. Moreover, transitions with different multipolari-
ties behave differently. Therefore, the squares of the
transition matrix elements in Fig. 17 cannot have a
simple Porter-Thomas distribution even for V2=0. As V2

increases from zero, the Gaussian distributions get
mixed. Details are only accessible numerically. With a
somewhat different approach, Hussein and Pato �2000�
also predicted a deviation from the Porter-Thomas dis-
tribution. Neither group attempted to fit the experimen-
tal data in detail. Such an analysis is still missing. We
conclude that while the effect of isospin symmetry
breaking on the level statistics is a generic phenomenon
that can be accounted for completely by a simple exten-
sion of RMT in terms of a single parameter �the spread-
ing width�, the effect of symmetry breaking on the elec-
tromagnetic transition strengths involves additional

dynamic elements �classification of the transition matrix
elements�.

While the size of the data set in 26Al and 30P is lim-
ited, experiments using coupled microwave billiards
�Dembowski et al., 2005� yielded data with much better
statistics. The distribution of transition strengths devi-
ates from the Porter-Thomas distribution. The theory of
Barbosa et al. �2000� was extended to this case by Dietz
et al. �2006�.

4. Test of time-reversal invariance

Because of the antiunitarity of the time-reversal op-
erator, the modeling of a violation of time-reversal in-
variance in RMT is fundamentally different from that of
a broken symmetry, as discussed in Sec. III.D.1. As ex-
plained in Sec. II.A, time-reversal invariance allows us
to choose the Hamiltonian matrix as a real and symmet-
ric matrix. The matrix ensemble that models such sys-
tems is the GOE. If time-reversal invariance does not
hold, the Hamiltonian matrix is Hermitian but cannot, in
general, be chosen real and symmetric. The matrix en-
semble that models such systems is the GUE; see Sec.
II.B. To describe the violation of time-reversal invari-
ance in RMT, we need to construct an ensemble that
interpolates between the GOE and the GUE. This is
done as follows. Every Hermitian matrix can be written
as the sum of a real symmetric matrix and of i times a
real antisymmetric matrix. A stochastic model for a
Hamiltonian with some violation of time-reversal sym-
metry is then

H =
1

	1 + �1/N��2
�HGOE + N−1/2�iA� . �32�

Here HGOE represents the GOE, and the elements of
the real antisymmetric matrix A are Gaussian-
distributed random variables with zero mean value and
a second moment given by

A��A�� =
	2

N
����� − ����� . �33�

The elements of A and HGOE are uncorrelated. The real
dimensionless parameter � describes the strength of the
violation of time-reversal invariance. For �=0 we deal
with the GOE, and for �=N1/2 we deal with the GUE.

For tests of the violation of time-reversal invariance in
nuclei, the central feature of the GUE is level repulsion
at small distances �scaled spacing s�1�. In the case of
the GOE, level repulsion leads to a linear dependence
of the NNS distribution for small s; see the Wigner sur-
mise �19�. In contradistinction, the NNS distribution for
the GUE increases quadratically with s for small s. A
test for a violation of time-reversal invariance in nuclei
is, therefore, based on a detailed examination of the
NNS distribution at small spacings �French et al., 1985�.
As explained below Eq. �5� and, in a different context, in
Sec. III.D.1, the mixing of levels �and, thus, the spacing
distribution� is sensitive to very small mixing matrix el-
ements that are of the order of the GOE mean level

FIG. 17. Comparison between the Porter-Thomas distribution
�written in terms of the variable z=log10 y� �solid lines� and the
data �histograms� for several multipole transitions and isospin
differences in 30P. From Shriner et al., 2000.
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spacing d=�	 /N. For the perturbation N−1/2�iA in Eqs.
�32� and �33�, the root-mean-square matrix element has
the value �	 /N. This is comparable to d for ��1, which
explains the choice of factors N1/2 in Eq. �32�. As in Sec.
III.D.1, the mixing parameter N−1/2� vanishes asymp-
totically as 1/	N. The analysis was done �French et al.,
1985� for the nuclear data ensemble �see Sec. III.C.1�,
where typical spacings d are of the order of 10 keV, and
yielded an upper bound of about d /10 for the time-
reversal noninvariant matrix element of the nuclear
Hamiltonian. From this result, French et al. �1985� in-
ferred an upper bound of about 1% for the time-reversal
noninvariant part of the nucleon-nucleon interaction.

IV. CHAOS IN NUCLEAR MODELS

Sections II and III were based almost entirely on con-
cepts of RMT and made little use of the wealth of infor-
mation on the dynamical behavior of nuclei. We fill this
gap in the present section. We discuss the two leading
nuclear-structure models which describe phenomeno-
logically the dynamics of nuclei: the shell model �which
mostly applies to spherical nuclei� and the collective
model �which mostly applies to nuclei with surface de-
formations�. We give an introduction to both models
which, in their simplest form, are fully integrable and
thus give rise to regular motion. We present evidence
that both models also allow for chaotic motion. We then
turn to a number of specific applications of RMT that
incorporate dynamical aspects.

A. Spherical shell model

1. The nuclear shell model

In the elementary version of the nuclear shell model,
nucleons move independently under the influence of a
common mean field. Attempts to introduce a mean field
into nuclear theory date back to the 1930s. These at-
tempts were unsuccessful at the time, partly because
they lacked an essential ingredient �the strong spin-orbit
coupling� and partly because of the success of Bohr’s
idea of the compound nucleus, which depicted nuclei as
systems of strongly interacting particles. The introduc-
tion in 1949 of a central single-particle potential with
strong spin-orbit coupling by Haxel et al. �1949� and
Mayer �1949� changed that situation. That model was
successful in the description of nuclear properties in the
ground-state domain and shifted attention away from
the compound-nucleus picture. It gave rise to a burst of
spectroscopic activity that lasted for many years and
thoroughly validated the model.

The sequence of single-particle levels of the nuclear
shell model is shown in Fig. 18. The scheme is funda-
mentally that of the harmonic oscillator in three dimen-
sions with excitation energies n�� and n=0,1 ,2 , . . .. The

integer n defines the major shells. Individual levels are
denoted by n+1, by the single-particle angular momen-
tum � in spectroscopic notation, and by the single-
particle total spin j obtained by vector-coupling the an-

gular momentum operator �� and the spin s�. �Here we do
not distinguish neutrons and protons and take isospin as
a good quantum number. The picture requires some
modification for medium-weight and heavy nuclei, which
we do not address.� The degeneracy of the single-
particle states in each major shell, which is characteristic
of the harmonic oscillator, is lifted because the single-
particle potential does not have the shape of a harmonic
oscillator, and because of the presence of a strong spin-
orbit coupling that pushes the states with highest spin in
each major shell down into the next-lower major shell
�except for the lowest shells, where the spin-orbit inter-
action is not strong enough�. Thus each major shell con-
tains a number of subshells, each of which is character-
ized by the quantum numbers �n+1,� , j�. Within a given
major shell, the index n is redundant and will often be
omitted.

For a nucleus with mass number A, the A nucleons fill
the lowest shells in accord with the exclusion principle.
The completely filled shells are considered as inert, and

FIG. 18. Level sequence in the nuclear shell model. From
Mayer and Jensen, 1955.
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the spectroscopic properties of the low-lying states result
from the m “valence nucleons,” which partly fill the last
shell �the “valence shell”�. This scheme accounts for the
strong binding energies of nuclei with closed shells, and
for the ground-state properties of nuclei differing from
closed-shell ones by the addition or removal of a single
nucleon. For nuclei with more than one valence nucleon
�or more than one hole in the valence shell�, an exten-
sion of the model is called for because in such cases
strong degeneracies occur in the model which are not
observed in reality. For instance, two valence nucleons
in the 1d5/2 subshell of the 2s1d shell can be coupled to
total isospin T=0 or 1. For T=0 �T=1�, the possible
states have odd �even� total spin values J ranging from
J=0 to 5. All of these states are degenerate in the el-
ementary shell model.

To remedy that situation, the elementary shell model
is viewed as a mean-field theory that takes account of
most �but not all� of the nucleon-nucleon interaction.
The remaining “residual interaction” must be included
to obtain quantitative agreement with data. From the
point of view of many-body theory, the residual interac-
tion is an effective interaction. The residual interaction
is usually assumed to be a two-body interaction �al-
though there is evidence �Pieper and Wiringa, 2001� that
three-body forces are needed in some cases to obtain
good fits to the data�, to be time-reversal invariant, and
to conserve spin and parity. In the spirit of the shell
model, it is also assumed that the residual interaction is
weak �it does not significantly mix the many-body states
belonging to different major shells�, so that it effectively
acts only among the m valence nucleons in the valence
shell.

The input for this model �the full shell model or, in
brief, the shell model� consists of the single-particle en-
ergies ��j in the valence shell, and of the matrix elements
of the residual interaction in that shell. The residual
two-body interaction Vres is completely characterized by
a finite number of two-body matrix elements. The two-
body states 
j1j2st��� are obtained by coupling any two
single-particle states ��1j1� and ��2j2� in the valence shell
to total spin s and total isospin t with z components �
and �. The antisymmetrized two-body matrix elements
of Vres have the form j3j4st
Vres
j1j2st�. Our notation im-
plies conservation of spin and isospin and takes account
of the fact that the values of the matrix elements do not
depend on � and �. Conservation of parity imposes an
additional constraint not explicitly displayed in our no-
tation. For brevity, we refer to these matrix elements by
the symbol v�. The index � enumerates all allowed and
distinct �i.e., not connected by symmetry� two-body ma-
trix elements in the valence shell. For the 2s1d shell, the
range of � is 63, while for the 2p1f shell it is 195.

In second quantization, the shell-model Hamiltonian
governing the m valence nucleons is then given by

H = �
�j
��j�

��

aj���
† aj��� +

1
4 �

j1j2j3j4st
j3j4st
Vres
j1j2st�


�
��

Aj3j4st��
† Aj1j2st��. �34�

Here aj���
† creates a nucleon in a state ��j� with spin z

component � and isospin z component � while Aj3j4st��
†

creates a pair of nucleons in the state 
j1j2st���. The op-
erators A† are obtained straightforwardly by vector-
coupling products of two operators aj���

† and are not
given explicitly.

The eigenvalues and eigenfunctions of H are identi-
fied with the low-lying states of nuclei. For instance, nu-
clei pertaining to the 2s1d shell �the “sd-shell nuclei”�
have mass numbers 17�A�39, and the number of va-
lence nucleons has the range 1�m�23. Mass numbers
A=16 and A=40 correspond to the closed-shell nuclei
16O �the 1s and 1p shells are filled� and 40Ca �the 2s1d
shell is filled, too�. Likewise there are 2f1p shell nuclei,
etc. �We disregard the 1p-shell nuclei as they yield too
few spectroscopic data for a meaningful statistical analy-
sis.� According to the shell model, the Hamiltonian H
determines the spectral properties of the low-lying states
of all nuclei pertaining to the same shell, at least in prin-
ciple. This claim is subject to a number of provisos. �i�
To get good fits to the spectra of all nuclei in a major
shell, it may be necessary to allow for a weak depen-
dence of the parameters ��j and v� on the number m of
valence nucleons. �ii� Non-valence-shell states may be
pushed down by the residual interaction into the domain
of low excitation energies �“intruder states”� and require
special treatment. Such states are obtained, for instance,
by lifting one or several nucleons from the valence shell
into the next higher major shell, or from the inert core
into the valence shell, or both. �iii� In its upper part, the
spectrum of H cannot be expected to correspond to re-
ality because the much more numerous non-valence-
shell states dominate the actual spectrum and mix with
the states in the valence shell. In the studies of chaos
reported below, one disregards this fact and confines at-
tention to the valence shell. This is done in order to
obtain a manageable numerical problem. There are
strong reasons to believe that the results are universal
and, thus, also hold when the mixing between major
shells is taken into account �see, for instance, Ormand
and Broglia �1992��. �iv� In the form of Eq. �34�, the shell
model applies to spherical nuclei �although it can be ex-
tended to weakly deformed nuclei�. Chaos in deformed
nuclei is treated in Sec. IV.B.

For purposes of orientation, we cite a few numbers
taken from Bohr and Mottelson �1969� and Zelevinsky
et al. �1996�. The spacing between major shells is ap-
proximately given by the harmonic-oscillator energy
���40A−1/3 MeV. The spin-orbit interaction is

�−20�l�·s��A−2/3 MeV. The spacings of adjacent single-
particle energies may be as large as a couple of MeV. In
the sd shell, for instance, the empirical values in 17O are
�d5/2=−4.15 MeV, �s1/2=−3.28 MeV, and �d3/2
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=0.93 MeV. With these values and for m=12 valence
nucleons, the range of the elementary sd-shell spectrum
would be about 42 MeV. �These values are not com-
pletely representative since the ��js themselves are actu-
ally used as fit parameters.� The diagonal matrix ele-
ments of the residual interaction may be as large as 1 or
2 MeV in magnitude. This removes some of the degen-
eracies of the elementary shell model referred to above
and stretches the spectrum further. The nondiagonal el-
ements typically amount to several hundred keV in mag-
nitude. These numbers suggest that the residual interac-
tion is able to mix the states in different subshells of the
valence shell, while the spectral properties at low exci-
tation energy are essentially determined by valence-shell
states �the admixtures of non-valence-shell states are
negligible�.

Not all parameters of the shell model can be deter-
mined equally well by a fit to spectroscopic data. That
topic is discussed further in Secs. IV.A.2 and V.B.3. To
overcome that difficulty, one uses nuclear many-body
theory �i.e., variants of the Bethe-Brueckner-Goldstone
expansion� to calculate the two-body matrix elements of
Vres. The results serve as starting values for a fit to the
data. In the fit, the two-body matrix elements them-
selves, or some parameters on which they depend, are
varied �Brown and Wildenthal, 1988; Honma et al.,
2002�. There is evidence that the necessary corrections
account mainly for three-body forces �Caurier et al.,
2005�.

Since H conserves spin, isospin, and parity, the eigen-
functions of H are simultaneously eigenfunctions of to-
tal spin J, total isospin T, and parity �. One way to
obtain the eigenfunctions of H with given J ,T ,� for m
valence nucleons consists in constructing the matrix of H
in a basis of m-body states carrying these quantum num-
bers and in diagonalizing that matrix. �This is not always
the most efficient procedure numerically, but is used
here for the sake of argument.� The m-body states
needed for this procedure are obtained from the el-
ementary shell model by constructing all Slater determi-
nants of m valence nucleons in the valence shell. These
determinants form classes, each class defined by the set
�m�j� where m�j is the number of nucleons occupying the
subshell ��j�. The set �m�j� obviously forms a partition of
m so that ��jm�j=m, where the sum runs over the sub-
shells of the valence shell. The Slater determinants are
antisymmetric by construction, but typically are not
eigenstates of J and T. The m-body states with good J,
T, and � and fixed �m�j� are found as linear combina-
tions of the determinants in class �m�j� and are denoted
by 
JT���. �We suppress the magnetic quantum num-
bers and the class index m�j.� The states 
JT��� span a
Hilbert space of finite dimension D�J ,T ,��, which de-
fines the range of the running index �. In the 2s1d shell
and depending on the quantum numbers �J ,T�, D ranges
from a few to about 7000 in the middle of the shell �m
=12�, while D attains considerably larger maximum val-
ues already in the 2p1f shell. This is why the 2s1d shell
has been the preferred object for theoretical studies of

chaos in nuclei. The actual construction of the states

JT��� is cumbersome, involves angular-momentum al-
gebra, and is not given here �De Shalit and Talmi, 1963�.
In that basis, the matrix elements of H have the form

H���JT�� =
def

JT��
H
JT���

= ���
�j
��jm�j + �

�

v�C���� ;JT�� . �35�

The first term on the right-hand side of the last of Eqs.
�35� is obvious. The form of the second term follows
from Eq. �34� except that we have grouped together all
matrix elements that are connected by symmetry. Save
for this operation, the coefficients C���� ;JT�� are ma-
trix elements of the operator �m�Aj3j4stm�

† Aj1j2stm� taken
between states 
JT��� and 
JT���. By construction, the
matrix H�� is real and symmetric.

The form �35� displays explicitly the dependence of
the matrix H���JT�� on the input parameters ��j and v�
of the shell model. We emphasize that the coefficients
C���� ;JT�� �which for fixed �, J, T, and � form a real
and symmetric matrix in Hilbert space� are determined
entirely by the valence shell in which we are working, by
the coupling scheme we have used to construct the states

JT���, and by the two-body operator labeled � of
which the matrix elements are taken. Except for a set of
unitary transformations connecting the coupling scheme
we have chosen with any other one, the matrices C�����
are uniquely determined. These matrices reflect the
symmetries and invariances of the elementary shell
model and are independent of the residual interaction
actually considered. In other words, going from one re-
sidual interaction with matrix elements v� to another
one with matrix elements v�� , all we need to do is to
replace the coefficients v� in Eq. �35� by the coefficients
v�� , the matrices C����� remaining the same. We empha-
size this simple fact because some properties of the
shell-model Hamiltonian H���JT�� are determined by
the matrices C����� alone and are thus generic �i.e.,
largely independent of the choice of the residual inter-
action�.

It was mentioned before and we emphasize again that
the shell model accounts successfully for a vast amount
of spectroscopic data in the ground-state domain of
spherical nuclei. This is not the place to go into any
details. Suffice it to say that some basic features of Vres
are well established: Pairs of nucleons coupled to isospin
T=1 have a strong and attractive interaction �“pairing
force”�. That force leads to spin-0 ground states in even-
even nuclei and favors the seniority coupling scheme
�De Shalit and Talmi, 1963�. In the particle-hole channel,
the diagonal elements of Vres for pairs of nucleons with
isospin T=0 �neutron-proton pairs� also show strong
attraction, especially for large angular momenta
�“quadrupole-quadrupole interaction”� and favor
nuclear deformations, especially for nuclei far �in mass
number� from closed-shell nuclei �see Bohr and Mottel-
son, 1969�. For the sd shell, Wildenthal �1984� and
Brown and Wildenthal �1988� have established the stan-
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dard parameters of the residual interaction �“Brown-
Wildenthal interaction”� by fitting the 66 parameters �63
two-body matrix elements and 3 single-particle energies�
to more than 400 pieces of data. The Brown-Wildenthal
interaction may optionally include the Coulomb interac-
tion between protons.

2. Chaos in the shell model

Ever since the shell model was established, a strange
dichotomy pervaded nuclear-structure theory. On the
one hand, the shell model was extremely successful in
describing the properties of low-lying states in many nu-
clei, and the collective models in their various forms af-
forded a description of those nuclei that were not acces-
sible to the shell model. Fits to data revealed the basic
properties of the residual interaction. Ever more sophis-
ticated measurements widened the data basis. Theoreti-
cal efforts were directed both at the determination of
Vres from the interaction between free nucleons via
many-body theory and at the technology to calculate
nuclear properties from the shell-model Hamiltonian,
including those of deformed nuclei, and thus at under-
standing collective models. The hope seemed justified
that one day one would arrive at a complete understand-
ing of the structure of atomic nuclei. In the 1970s and
1980s, most work in nuclear-structure theory was de-
voted to that vision.

On the other hand, during the same period the evi-
dence for the applicability of RMT to neutron and pro-
ton resonance data grew and was definitively established
by 1982; see Sec. III.C.1. But aside from fundamental
symmetries, RMT lacks any dynamical structure whatso-
ever. What did the success of RMT imply for the shell
model? Is there an excitation energy �somewhere below
neutron threshold but above the energies where shell-
model calculations were so successful� beyond which the
shell model fails to work and chaos takes over? Or is
chaos possible �and perhaps even generic� in the frame-
work of the shell model itself?

In spite of a strong growth of chaos-related research
in other fields of physics in the 1980s and early 1990s,
these questions did not receive much attention at the
time by the nuclear-structure community. The main rea-
son was probably the lack of statistically significant ex-
perimental data. In addition, a strong commitment on
the part of the community to understand nuclei on a
fundamental level perhaps deflected attention away
from the issue of chaos. Only a few theoretical papers
addressed that issue. Early work by Whitehead et al.
�1978�, Verbaarschot and Brussard �1979�, Brown and
Bertsch �1984�, and Dias et al. �1989� addressed the va-
lidity of the Porter-Thomas distribution for shell-model
eigenfunctions; see comments below. The relation be-
tween spectral fluctuations and the shell model was ad-
dressed by Weidenmüller �1985�. Meredith et al. �1988�
and Meredith �1993� studied the Lipkin-Meshkov-Glick
model: M fermions occupy a system with three nonde-
generate subshells each containing M degenerate
single-particle states. In each subshell, the single-particle

states do not carry any further quantum numbers. The
two-body interaction acts only between particles in dif-
ferent subshells. All nonzero matrix elements are iden-
tical. The Hilbert space has finite dimension. Symme-
tries reduce the problem to manageable size even when
M is large. The system possesses a classical limit that is
attained for coherent states when M→�. Classical
chaos can thus be studied in its dependence on the
strength of the two-body interaction. As that strength is
varied, a close correspondence is numerically estab-
lished between the transition from regular to chaotic
motion and that from Poisson to GOE statistics for the
spectral fluctuation measures of the quantum system.
The Bohigas-Giannoni-Schmit conjecture was first veri-
fied for an interacting many-body system �albeit in the
framework of a toy model without characteristic ingre-
dients of the shell model such as conserved quantum
numbers�. In the 1990s, several �Åberg, 1990; Alhassid et
al., 1990; Alhassid and Whelan, 1991; Martinez-Pinedo
et al., 1997� addressed chaos in the collective model. This
topic is reviewed in Sec. IV.B.

Ormand and Broglia �1992� reported a study of quan-
tum chaos in the shell model for the sd shell. That work
displayed several features that were also discussed by
Zelevinsky et al. �1996�. We focus on that later, much
more extensive paper. They undertook a thorough and
systematic theoretical study of chaos in the sd shell.
They used the well-established Brown-Wildenthal �1988�
form of the residual interaction, which is free of random
elements. In most of their calculations, Coulomb effects
were neglected. They focused attention mainly on nuclei
in the middle of the shell �m=12� where the dimensions
D�J ,T� of the shell-model matrices are manageable and
yet sufficiently large for a statistical analysis. �We drop
the label � since all states in the sd shell have positive
parity.� They calculated spectra and eigenfunctions of
the shell-model Hamiltonian numerically and compared
the results both with GOE predictions and with thermal
averages. The latter were considered because chaos was
suspected by Percival �1973� to cause the many-body
eigenfunctions all “to look the same,” so that concepts
such as mean occupation numbers for single-particle
states and the Fermi-Dirac distribution may make sense
for observables averaged locally over energy.

They used ergodicity �Sec. II.C.3� to compare GOE
ensemble averages with running averages over the cal-
culated spectra. To obtain statistically significant results,
they used all eigenvalues and/or eigenfunctions pertain-
ing to fixed m and to a pair �J ,T� of quantum numbers.
As pointed out earlier �Sec. IV.A.1�, calculations using
only states from the valence shell yield results that are
unrealistic in the upper part of the spectrum where non-
valence-shell states actually dominate. Therefore, the
work of Zelevinsky et al. �1996� must be considered a
case study of quantum chaos within the shell model in a
restricted Hilbert space, rather than a realistic calcula-
tion of nuclear properties. While we summarize the re-
sults of this work in the present section, we defer a de-
tailed analysis of how chaos is generated in the shell
model to Sec. V.B.
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The average level density �calculated from the actual
spectrum by smoothing� differs from that of the GOE
and has approximately Gaussian shape. That result was
anticipated years ago by Mon and French �1975�; see
also Sec. V.A. The nearly Gaussian shape is an artifact,
of course, and due to the restriction to a single major
shell; the actual nuclear level density grows nearly expo-
nentially with excitation energy. Results of primary in-
terest in the present context relate to quantum chaos
and concern the local spectral fluctuation measures. Af-
ter unfolding of the spectra, the NNS distribution and
the �3 statistic were found to agree well with GOE pre-
dictions in the middle of the shell and for sufficiently
large values of the matrix dimension D�J ,T�. For m
=12 and the states with J=2, T=0 �D�2,0�=3276�, this is
shown in Figs. 19 and 20. It is of interest to follow the
onset of chaos as the strength of Vres is varied. For
Vres=0, the NNS distribution is found to be close to
Poissonian, as expected. As the strength is increased, the
distribution approaches the Wigner distribution and,
within statistics, becomes indistinguishable from that
distribution already for strength values amounting to
20% of the actual one. For smaller values of m �24Mg
with m=8�, the NNS distribution at full strength value is
still intermediate between the Poisson and the Wigner
distribution, even for sizable values of D�J ,T� �D�0,0�
=1161�. Here inclusion of the Coulomb interaction re-
duces the probability of very small spacings. The �3 sta-
tistic in Fig. 20 agrees with the GOE prediction except
for large values of L, where it rises above that predic-
tion. That seems to be a systematic trend and is not fully
understood at present. It perhaps signals a weakening of
GOE-type correlations between eigenvalues with spac-
ings of more than 7 MeV or so and might suggest that
strong mixing is restricted to unperturbed shell-model
configurations with energies within an energy interval of
10–20 MeV. We return to this point later. �A later

evaluation of �3�L� for the 3− states showed good agree-
ment with the GOE prediction up to L�3000; however,
see Zelevinsky �2007�.�

Extensive shell-model calculations have also been
done for nuclei in the 2p1f shell, especially by the
Strasbourg-Madrid collaboration �Caurier et al., 2005�.
We are not aware, however, of an equally thorough
analysis of the results with respect to spectral fluctuation
measures and other indicators for quantum chaos as
done for the sd shell by Zelevinsky et al. �1996�. Kota
�2001� analyzed the calculated spectrum of 4+ states in
48Ca �Martinez-Pinedo et al., 1997; Caurier et al., 1999�.
Using the 1355 states located in the middle of the spec-
trum �out of a total of 1755 levels�, he found good agree-
ment with the Wigner surmise for the NNS distribution,
and with the GOE prediction for the �3 statistic. The
latter is reported only for L�60. Electromagnetic tran-
sition intensities and moments for A�60 nuclei as cal-
culated by Hamoudi et al. �2002� showed good agree-
ment with the Porter-Thomas distribution.

Investigation of the distribution of eigenfunctions of-
fers additional insight and shows the limitations of spec-
tral fluctuation measures in establishing chaos. Here the
Porter-Thomas distribution is the standard measure. In
early calculations �Whitehead et al., 1978; Verbaarschot
and Brussard, 1979; Brown and Bertsch, 1984� for the sd
shell, it was found that the actual distribution of widths
differed from the Porter-Thomas form: There was an
overabundance of the largest and smallest widths at the
expense of those with values closer to the median. This
was ascribed to incomplete mixing of the configurations,
especially in the wings of the unperturbed spectrum: Too
little mixing leads to admixtures with too small ampli-
tudes and leaves the original states too pure. The issue
was followed up by Zelevinsky et al. �1996�. We denote
by Wk� the square of the amplitude with which an un-
perturbed shell-model configuration labeled � is ad-

FIG. 19. NNS distribution �histogram� and Wigner surmise
�solid line� for the states with m=12 and J=2, T=0 in the sd
shell. From Zelevinsky et al., 1996.

FIG. 20. The �3 statistic �dots� and the GOE prediction �solid
line� for states with m=12 and J=2, T=0 in the sd shell. From
Zelevinsky et al., 1996.
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mixed into an eigenstate of the shell-model Hamil-
tonian. The index k labels the eigenstates such that the
associated eigenvalues Ek increase monotonically with
k. The measure used was the “information entropy” Sk,
which is defined as

Sk = − �
�

Wk� ln Wk�. �36�

For complete mixing and large matrix dimension D�1,
wave-function normalization makes us expect Wk�
�1/D independently of k and �: On average, all con-
figurations are equally mixed into every eigenstate. This
corresponds to a maximum value of Sk=ln D. That naive
estimate does not take into account the Porter-Thomas
distribution for the Wk�s. Doing so yields Sk=ln�0.48D�
for the maximum value of Sk �Zelevinsky et al., 1996�.
We refer to that value as to the GOE limit. Incomplete
mixing is bound to reduce that value.

The measure �36� has the advantage that it allows for
a detailed study of configurational mixing versus the
eigenfunction index k and thus offers more insight than
afforded by the Porter-Thomas distribution. This advan-
tage has to be weighed against the shortcoming that the
measure depends on the representation chosen for cal-
culating the Wk�’s. �Indeed, Sk is not invariant under
orthogonal transformations of the basis of states ���,
while the Porter-Thomas distribution applies to every
projection of the eigenvectors of the GOE onto a fixed
vector in Hilbert space.� The “natural” representation
chosen by Zelevinsky et al. �1996� for Sk is defined by the
unperturbed shell-model configurations. The implica-
tions and limitations of that choice have been discussed
by Zelevinsky et al. �1996�.

Figure 21 shows the exponential of Sk versus k for the
same 3276 J=2, T=0 states as used in Figs. 19 and 20.
The GOE limit �1578� is almost reached in the middle of
the spectrum. In the wings, the mixing of states is fairly
incomplete. That pattern is generic and reinforces ear-

lier findings �Whitehead et al., 1978; Verbaarschot and
Brussard, 1979; Brown and Bertsch, 1984; Dias et al.,
1989�.

The eigenfunctions of the shell-model Hamiltonian
are orthogonal and normalized. In the GOE, these con-
ditions impose weak correlations among the expansion
coefficients of the eigenfunctions in an arbitrary basis
that disappear for N→�. The correlations for the ex-
pansion coefficients of the shell-model Hamiltonian in
the basis of unperturbed shell-model configurations are
found to be somewhat larger than those of a GOE with
the same dimension, especially in the tails of the spec-
trum and for the 10 or 20 nearest eigenstates.

In Sec. II.G, we introduced the concept of the
strength function for a doorway state. In analogy to Eq.
�25�, the strength function for an unperturbed shell-
model configuration � with respect to the exact eigen-
states of the shell-model Hamiltonian is defined by
�kWk��E−Ek�. Since no ensemble averaging is in-
volved in that definition, it is useful to average over a
group of neighboring �in energy� shell-model configura-
tions to get a smooth function. If the eigenstates were
complete mixtures of shell-model configurations, the
smoothed strength function would be constant �indepen-
dent of energy E�. In fact, the strength functions are
peaked with a full width at half maximum of about
20 MeV even for shell-model configurations k in the
middle of the unperturbed spectrum. The shape of the
strength function is Gaussian near its peak, but only falls
off with an exponential tail in the wings. Such exponen-
tial decay has been studied by Lewenkopf and
Zelevinsky �1994� and Frazier et al. �1996�.

Another measure, which shows that the eigenfunc-
tions of the shell-model Hamiltonian are not perfect
mixtures of the unperturbed shell-model configurations,
is provided by the pairing force, an attractive interaction
between like nucleons. That force corresponds to a par-
ticular linear combination of the interaction operators
���Aj3j4st��

† Aj1j2st�� appearing in Eq. �34�. For a com-
pletely mixed system, a plot of the expectation values of
that linear combination �taken with respect to the eigen-
states of the shell-model Hamiltonian� versus � is ex-
pected to fluctuate about a constant mean value. In fact,
the plot shows a systematic enhancement �with respect
to the mean value� of about 70% in the ground-state
domain at the expense of a corresponding suppression at
the upper end of the spectrum, with small fluctuations.

The complete mixing of the eigenfunctions due to
chaos may be similar to thermalization. As a test,
Zelevinsky et al. �1996� calculated the occupation num-
bers of the three single-particle states d5/2, s1/2, and d3/2
in the exact eigenstates, and plotted the result versus �.
The data have small fluctuations. With the help of a
properly defined temperature, the results can be well
fitted with the Fermi distribution. The fit parameters are
“effective” single-particle energies. These differ by only
a few 100 keV from the input parameters �the single-
particle energies ��j of the shell model�. This corrobo-
rates the picture of thermalization.

FIG. 21. The exponential of the information entropy �36� vs
the energy of the state for the states with m=12, J=2, and T
=0 in the sd shell �dots�. The GOE limit of 1578 is indicated by
the horizontal line. From Zelevinsky et al., 1996.
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In summary, if chaos is measured in terms of the usual
spectral fluctuation measures �NNS distribution and �3
statistic�, there is evidence that the residual interaction
mixes the unperturbed shell-model configurations suffi-
ciently strongly to produce chaos. This is true for nuclei
with sufficiently many valence nucleons and in the
middle of the spectrum. Chaos is diminished for nuclei
with a smaller number of valence nucleons �or of holes
in the valence shell�. Closer inspection of the eigenvec-
tors offers a more subtle picture. Even for nuclei in the
middle of the shell, the mixing of the unperturbed shell-
model configurations is not complete, especially in the
tails of the spectrum. Small correlations between eigen-
vector components exist beyond the ones imposed by
orthogonality and normalization. The strength functions
of the unperturbed shell-model configurations are not
constant, but are peaked with a width of 20 MeV or so.
The expectation values of the operator of the pairing
force are enhanced in the ground-state domain. These
deviations from GOE properties may be related to the
fact that the �3 statistic shows an upward bend for large
values of L. All this shows that within a single major
shell chaos is not fully attained for realistic strengths of
the interaction, although it would be difficult to detect
such deviations experimentally �except for the behavior
of �3�. In spite of the deviations, thermodynamic con-
cepts apply, and the single-particle occupation numbers
follow the Fermi distribution function.

We return to the questions posed at the beginning of
this section. From the evidence presented, it seems
likely that calculations that would allow for the presence
of non-valence-shell states would show that as the exci-
tation energy increases, nuclear levels attain an ever
greater similarity to GOE eigenstates. The approach to
the GOE limit is probably somewhat faster for nuclei in
the middle between two closed shells than for nuclei
near closed shells. Chaos thus seems a natural ingredient
of the shell model, and not an exclusive alternative to
regular motion as seen in the ground-state domain. The
results on the strength function for the unperturbed
shell-model configurations and on the �3 statistic suggest
that at excitation energy E the strong mixing �which is
characteristic of quantum chaos� involves only those un-
perturbed shell-model configurations that are located in
an energy interval centered at E and 10–20 MeV wide.

The very success of the shell model, i.e., the ability of
the model to account for many basic features of nuclei,
implies that many-body states pertaining to different
major shells are mixed only weakly. In that sense the
residual interaction is weak: It removes the numerous
degeneracies of the single-particle model in a manner
that causes nearly complete mixing of states within a
major shell. However, the residual interaction is not
strong enough to destroy the overall shell structure de-
fined by the existence of major shells. In that sense, nu-
clei are not fully chaotic systems. This point of view has
been emphasized by Bunakov �1999�.

Chaos does not preclude the existence of regular fea-
tures. These are seen in the ground-state domain where
the mixing of unperturbed shell-model configurations is

incomplete, and in the presence of collective modes of
excitation which act as doorway states and are seen as
giant resonances. Chaos is helpful because it allows for
the description of average properties of excited nuclei in
terms of concepts of equilibrium statistical mechanics. It
remains to show by which mechanism chaos originates
in the shell model, and to clarify whether chaos is a ge-
neric feature of the shell model or depends upon specific
properties of the residual interaction. We return to these
questions in Sec. V.B.

An analysis similar to the one in sd-shell nuclei de-
scribed above was carried out for the Ce atom by Flam-
baum et al. �1994� with similar results. This supports the
view that chaos is a generic property of self-bound
many-body systems.

3. Limits of validity of RMT in nuclei

No real physical system can be expected to possess
spectral fluctuation properties that coincide exactly with
RMT predictions. Indeed, RMT is based upon a purely
stochastic approach, and we must expect that at some
point system-specific features dominate spectral proper-
ties. Which then are the limitations of RMT in nuclei?

The answer to that type of question is known in sys-
tems with few degrees of freedom �Berry, 1985� and in
disordered systems �Imry, 2002�. For chaotic systems
with few degrees of freedom, the limitations of RMT are
connected to the shortest periodic orbit in the system.
With �min the period of the shortest periodic orbit, �E
=� /�min defines the maximum energy interval within
which RMT predictions can be expected to hold. In dis-
ordered systems, the period �min is replaced by the dif-
fusion time �diff, and the characteristic energy interval is
given by the Thouless energy Ec=� /�diff. The dimension-
less Thouless conductance g is the ratio of either of
these intervals and the average level spacing and gives
the number of levels over which RMT predictions are
expected to hold.

In nuclei, the situation is not completely clear, and
two different schools of thought exist. Bohigas and Le-
boeuf �2002� used a mean-field approach. It is argued
that the mean-field motion is partly chaotic. The shortest
periodic orbit at the Fermi energy is used to estimate the
characteristic energy interval as �E=77.5A−1/3 MeV.
The approach was worked out further by Olofsson et al.
�2006�. However, the mean-field approach addresses
single-particle properties only. It is relevant for one-
body chaos but is not clearly related to chaos in a many-
body system: Without two- or many-body interaction,
the eigenvalues of the many-body system are sums of
single-particle energies and have a Poisson distribution
irrespective of whether the single-particle motion is
regular or chaotic.

A different view was taken, for instance, by Bunakov
�1999� and Molinari and Weidenmüller �2006�, who ar-
gued that the independent-particle model gives rise to
regular motion, while the residual interaction causes
mixing of shell-model configurations and, thus, chaos.
The characteristic energy interval over which configura-

569H. A. Weidenmüller and G. E. Mitchell: Random matrices and chaos in nuclear physics: …

Rev. Mod. Phys., Vol. 81, No. 2, April–June 2009



tions are strongly mixed �and the range of energies over
which RMT predictions apply� is then given by the
spreading width. In Sec. IV.A.2 it was shown that in
shell-model calculations the spreading width is found to
be of the order of 10 MeV. While that number is not
substantially different from the estimate obtained within
the chaotic mean-field scenario, the origins of both esti-
mates are clearly very different. A test of these predic-
tions is not possible using experimental data. As pointed
out, sufficiently long sequences of levels with identical
quantum numbers are not known. The shell-model cal-
culations reported on in Sec. IV.A.2 seem to lend sub-
stance to the second view.

B. Collective models

1. The collective model of Bohr and Mottelson

Nuclei can undergo shape deformations. This fact be-
came obvious with the discovery of nuclear fission in
1939: A very heavy nucleus splits spontaneously into two
fragments of about equal mass. The energy liberated in
that process could be roughly understood on the basis of
the liquid-drop model. In that model, nuclei are de-
scribed as charged droplets of an incompressible fluid
held together by surface tension. The latter mimics the
attractive nuclear force.

A dynamical theory of surface deformations was de-
veloped by Bohr �1951, 1952� and Bohr and Mottelson
�1952� in the early 1950s. In an expansion of the shape of
the nuclear surface in terms of spherical harmonics Y��,
attention is focused on the lowest �in �� nontrivial terms.
These are the quadrupole terms Y2� �the term with
�=0 is ruled out because of volume conservation and the
terms with �=1 describe the motion of the center of
mass�. For small values of the five expansion parameters
�2� with �=−2,−1,0 , +1, +2, the surface has the shape
of an ellipsoid. The principal axes of that ellipsoid define
an intrinsic �“body-fixed”� coordinate system. The five
expansion parameters �2� can be transformed into the
three Euler angles which specify the location of the
body-fixed system with respect to the laboratory system,
and two parameters �commonly called � and �� which
specify the nuclear shape in the body-fixed system. The
potential energy V�� ,�� defines the static energy of qua-
drupolar nuclear shape deformations. A dynamical
theory is obtained by considering the parameters �2� �or
their transforms� as dynamical variables that obey
bosonic commutation relations. The resulting Hamil-
tonian �“Bohr Hamiltonian”� has a number of param-
eters �the “masses” connected with the kinetic energy
terms and the parameters specifying the potential en-
ergy V�� ,���. Depending on the values of these param-
eters, the theory predicts inter alias rotational motion
and vibrational motion of nuclei. In even-even nuclei,
rotational motion manifests itself in the occurrence of
rotational bands �sequences of levels with spins
J=0,2 ,4 , . . .�. The excitation energies �above the band-
head� of the states with spin J in the band are propor-
tional to J�J+1�. The eigenfunctions are obtained by

projecting the deformed intrinsic state onto fixed angu-
lar momentum J. This is done using the Wigner D func-
tions and integrating over Euler angles. The electromag-
netic transitions within the band are electric quadrupole
�E2� and are strongly enhanced over simple single-
particle �i.e., shell-model� estimates. The transition ma-
trix elements are proportional to the static quadrupole
moment of the intrinsic deformed state. In Fig. 22, two
such rotational bands are displayed. Vibrational motion
manifests itself in �nearly� harmonic vibrations of the
surface about its equilibrium shape and is characterized
by a harmonic-oscillator-like spectrum. The electromag-
netic transition matrix elements are also enhanced over
single-particle estimates but not as much as in the rota-
tional case. This “collective model” �so named because
many nucleons partake in an orderly way in the motion�
of Bohr and Mottelson has been extremely successful in
accounting for many spectroscopic data �Bohr and Mot-
telson, 1969�. In cases of pure rotational and pure vibra-
tional motion we expect, of course, a predominance of
regular features. This view is supported by the empirical
evidence reviewed in Secs. III.C.2 and III.C.3.

2. Onset of chaos in rapidly rotating nuclei

Studies of chaos in the collective model �Åberg, 1990;
Matsuo et al., 1997� have addressed the onset of chaos
above the yrast line for states of high spin. �The yrast
line is defined in Sec. III.C. As a function of J, it is given
by the energy of the lowest level with spin J.� We review
first the later, more extensive paper by Matsuo et al.
�1997� and then the earlier work by Åberg �1990�. In
both papers, similar techniques were used and similar
results were obtained. The starting point is a generalized
shell model. Chaos in these approaches is due to the

FIG. 22. Two rotational bands in 174Hf. Adapted from Bohr
and Mottelson, 1969.
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residual interaction which mixes the basic shell-model
configurations. The approach is thus similar to that of
Sec. IV.A.1. However, the shell model used differs from
the spherical shell model of Sec. IV.A.1. This “Nilsson
model” takes into account the fact that rotational mo-
tion in medium-weight and heavy nuclei is due to defor-
mations of the nuclear shape. Thus the single-particle
Hamiltonian HNilsson of the Nilsson model contains, in
addition to the kinetic energy and a spin-orbit coupling
term, a nonspherical, elliptically deformed single-
particle potential. The parameters of that potential are
obtained by fits to the data. �We mention that deformed
single-particle potentials with a pure quadrupole defor-
mation do not give rise to chaotic single-particle motion.
An additional octupole deformation is needed. Even
then, chaos arises only in the oblate case �Arvieu et al.,
1987; Heiss et al., 1994�.�

The difficulty with this approach is that by construc-
tion HNilsson is not rotationally invariant. This is not a
problem in principle. We recall that according to the
collective model �see Sec. IV.B.1� each rotational band is
due to a deformed “intrinsic state.” The wave function
of each band member �which has definite spin J� is ob-
tained by projecting the intrinsic state onto spin J. In the
same sense, the many-body eigenstates of HNilsson �Slater
determinants� are viewed as microscopic realizations of
intrinsic states. Projection onto states of good total spin
will generate from each such Slater determinant the
members of a rotational band.

However, in practice projection of Slater determinants
is cumbersome, and an approximation �the “cranking
model”� is used. It is postulated that in the laboratory
system the deformed single-particle potential rotates �is
“cranked”� about some axis with fixed frequency �. That
axis must be perpendicular to the symmetry axis of the
potential �since in quantum mechanics rotation about a
symmetry axis is not possible�. Under a coordinate
transformation from the laboratory to the body-fixed
frame of reference, the rotating deformed single-particle
potential becomes a static deformed potential. As in
classical mechanics, that coordinate transformation in-
duces an additional term in the Hamiltonian, and the
single-particle Hamiltonian of the cranking model is

Hcranking = HNilsson − �� · j�. �37�

Here �� points in the direction of the axis of rotation,
and j� is the total spin of the nucleon. The z direction of
the body-fixed system is commonly assumed to coincide
with the symmetry axis, and the direction of �� is as-
sumed to coincide with the x axis, so that the last term in
Eq. �37� �comprising both Coriolis and centrifugal
forces� takes the form �jx.

The many-body solutions of the cranking Hamiltonian
are Slater determinants. Let 
0� be the vacuum state, and
let ai

† be the creation operator for the cranked single-
particle state labeled 
i����. Then, 
��=�iai

†
0� is a Slater
determinant of cranked states �all taken at the same fre-
quency ��. The label � represents a set of occupied or-
bitals. Different choices of � correspond to the ground

state and to the excited states of the cranking model. It
is assumed that the deformed potential is the same for
all of these states. This assumption is realistic up to ex-
citation energies of several MeV for nuclei for which the
potential energy of deformation displays a deep and
stable minimum. The states 
�� depend on the cranking
frequency �. Taken as functions of �, the single-particle
energies of the cranking model display avoided cross-
ings. At such crossings, the adiabatic single-particle
wave functions change abruptly. To obtain states 
�� that
depend smoothly on �, a diabatic single-particle basis
has been used by Åberg �1990� and Matsuo et al. �1997�.

To generate states of �approximate� total spin J from a
given state 
��, the consistency condition Jx����=J is
used to determine �. Here Jx is the x component of the
total spin operator �the sum of the spins of all nucleons�.
In other words, the cranking frequency � is adjusted so
that the system rotates on average with the desired spin
J. Matsuo et al. �1997� took the thermal average Jx� over
all cranked single-particle states with a temperature
T=0.4 MeV. This temperature corresponds to the exci-
tation energies of interest �about 2 MeV above yrast�.
States with different spins generated in this way form a
rotational band, with the state 
�� playing the role of the
intrinsic state. This is seen using a Taylor expansion of
the expectation value � 
Hcranking 
�� in powers of �.
That same expansion is used to transform the intrinsic
energies back to the laboratory system.

The states of fixed J generated in this fashion are or-
thogonal. They are mixed by the residual interaction.
Matsuo et al. �1997� used a two-body interaction of the
surface delta type �the interaction is confined to an infi-
nitely thin layer of the nuclear surface�. The interaction
strength was determined by previous studies of rota-
tional nuclei. The resulting Hamiltonian contains the ei-
genvalues of the cranking model in the laboratory sys-
tem as diagonal elements and the matrix elements of the
residual interaction. To obtain a manageable problem,
only the lowest 1000 states 
�� were used. The resulting
lowest 300 eigenstates of the total Hamiltonian were
found to be rather stable against that truncation. These
are used in the statistical analysis. They cover a region of
excitation energy up to about 2.4 MeV above yrast.

After unfolding, the spectra were binned. The NNS
distribution and the �3 statistic show a gradual transition
from near Poissonian behavior in the lowest bin to near
GOE behavior in the highest one. For the NNS distribu-
tion, this is indicated by the Brody parameter �see Sec.
III.A�, which increases monotonically with excitation
energy U and reaches values close to unity at the upper
end of the spectrum. The dependence of the Brody pa-
rameter on U is the same for all spin values studied. The
�3 statistic agrees with the GOE value only up to a
maximum value of L. That value increases with increas-
ing U. Even for the bin containing the 50 states with
highest excitation energies, however, this maximum
value is as small as 6. This shows that in the cranking
model spectral stiffness is a local phenomenon. We re-
call that similar features �although for much larger val-
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ues of L� are found in the spherical shell model; see Sec.
IV.A.2.

Essentially the same model was used by Åberg �1990�.
However, rather than studying the mixing of rotational
bands at fixed interaction strength as a function of exci-
tation energy, the excitation energy was held fixed and
the strength � of the interaction was varied. This proce-
dure simulates the increase of level density with increas-
ing excitation energy. The results for the �3 statistic
were analyzed by writing �3 as the sum of the GOE
expression �22� �taken at a scaled length qL with 0�q
�1� and of a term linear in L �as for the Poisson distri-
bution� with relative weight 1−q. The fit parameter q
was determined as a function of the strength � of the
two-body interaction. The result is shown in Fig. 23. The
fragmentation of collective strength was also investi-
gated. The cranking frequency depends upon J and so
do, therefore, the single-particle energies of the cranking
model. As a result, states with different values of J are
mixed differently by the residual interaction. This im-
plies that the collective E2 transition strength �which for
unmixed rotational bands only connects states within the
same band� becomes fragmented. As a measure of the
distribution of the reduced matrix elements for E2 decay
connecting a mother state with spin J and the daughter
states with spin J−2, the standard deviation is used. An
average value �̄E2 for the standard deviation is obtained
by averaging over 50 mother states. Figure 23 also shows
�̄E2 versus �, the strength of the two-body interaction.
Also shown is 1/2�rot �Åberg, 1990; Matsuo et al., 1997�,
the half-width of the average distribution function of the
matrix elements. That function changes from Gaussian
to Breit-Wigner form as � increases. This fact explains
why as a function of �, 1

2�rot displays a maximum. We
observe that as functions of �, q and �̄E2 behave very
similarly. This shows that the fragmentation of the E2
transition strength is an indirect measure of chaos.

The theoretical ideas of Åberg �1990� and Matsuo et
al. �1997� were applied to data by Stephens et al. �2005�.
A beam of 48Ca ions of 215 MeV hit a target of 124Sn.
The resulting isotopes of Yb decay by gamma emission.
Pairs of gamma quanta were measured in coincidence.
Numerical simulations along the lines described above
were compared with the measured spectra. The fits were
used to determine the ratio of the strength � of the
nucleon-nucleon interaction versus the mean level spac-
ing. The ratio covers the range from 0.15 �nearly fully
ordered� to 1.5 �nearly fully chaotic�, in an energy inter-
val that is consistent with the theoretical work.

Some have proposed �Åberg, 1992; Mottelson, 1992�
that at excitation energies of a few MeV above the yrast
line, the Coriolis term in Eq. �37� may be rather weak.
Then rotational bands would exist with completely
mixed wave functions of the GOE type. Nevertheless,
the collective E2 decay would take place entirely within
each band.

On the basis of a representation using both quasipar-
ticles and phonons, order, chaos, and the order-to-chaos
transition have been discussed by Soloviev �1995�.

3. Chaos in the interacting boson model

The shell model is generally considered the funda-
mental phenomenological nuclear-structure model �Cau-
rier et al., 2005�. However, applications of the model
have been restricted in practice to nuclei for which the
number of valence nucleons is not too large. This is the
case for all nuclei in the 1p shell and the 2s1d shell and,
more recently, for most nuclei in the 2p1f-shell. For yet
heavier nuclei �and thus shells beyond the 2p1f shell�,
the number of valence nucleons for nuclei near the
middle of the shells is simply too large, and a shell-
model calculation is prohibitively difficult. At the same
time, it is in these mass regions that the collective model
finds its most successful application. This fact has
prompted many to look for a derivation of the collective
model from the shell model by introducing suitable col-
lective variables. We mention, in particular, the idea of
using a boson expansion within the shell model to obtain
a simplified description with built-in collective features.
In this approach, pairs of nucleons form bosonlike enti-
ties. None of these approaches was truly successful in
providing a derivation of the Bohr Hamiltonian from
the shell model within controlled approximations. How-
ever, in the midst of these efforts, a phenomenological
approach emerged that has become eminently success-
ful, namely, the interacting boson model �IBM� of Arima
and Iachello �1975�. The IBM postulates the existence of
s bosons and d bosons. These bosons may be thought of
as representing pairs of nucleons coupled to spin 0 and
2, respectively. Alternatively, the d bosons may be
viewed as the five quanta of quadrupole surface defor-
mations. The s boson is then an artifice that is used to
simplify the mathematics. For each nucleus, the total
number N of bosons is fixed in the IBM. In the limit N
→�, the solutions of the boson Hamiltonian approach
those of the collective model �Dieperinck et al., 1980�.

FIG. 23. Mixing parameter q for the �3 statistic �see text� �left-
hand scale�, average standard deviation �̄E2 of the distribution
of reduced E2 matrix elements �right-hand scale�, and half-
width at half maximum 1

2�rot �right-hand scale� for the same
distribution, all vs �, the strength of the two-body interaction
which mixes the rotational bands. From Åberg, 1990.
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The connection between the IBM and the shell model
has been discussed by Iachello and Talmi �1987�. The
IBM at large has been reviewed by Iachello and Arima
�1987�.

In the original form of the IBM �often referred to as
IBM 1�, no distinction is made between nucleon pairs
formed of protons and pairs formed of neutrons. This is
the form of the IBM for which an analysis with regard to
chaotic properties has been performed �Alhassid et al.,
1990; Alhassid and Whelan, 1991�. To introduce the
model, we defined s† and d�

† as the creation operators
for the s boson and the five d bosons, respectively. While
s† is a scalar, d�

† transform under rotations as the com-
ponents of an irreducible tensor of rank 2. The modified

annihilation operators s̃=s and d̃�= �−��d� have the

same transformation properties. The symbol �d†
 d̃��
�k�

denotes the irreducible tensor of rank k with spherical

components � obtained by vector coupling d† and d̃, and
likewise for s† and s̃. A quadrupole operator Q��� is

defined by Q���= �d†
 s̃+s†
 d̃��2�+��d†
 d̃��2�, where �
is a real parameter. Coupling Q��� with itself to an irre-
ducible tensor of rank zero generates the scalar
Q��� ·Q���. In the spherical representation, the three

components of the angular-momentum operator L� are

defined by 	10�d†
 d̃��
�1�, with �=−1,0 , +1. With n̂d the

number operator for d bosons, the IBM Hamiltonian
studied by Alhassid and Whelan �1991� is

H = E0 + c0n̂d + c2Q��� · Q��� + c1L� 2. �38�

The Hamiltonian conserves the total number N of
bosons and depends on the four parameters c0 ,c1 ,c2,
and �. �The energy E0 is irrelevant as it only shifts the
overall spectrum.� Except for an overall multiplicative
scaling factor, only three parameters are relevant for the
structure of the spectrum. Aside from the energy of the
s boson �which is set equal to zero� and the energy of the
d bosons �given by c0 with c0�0 because the energy of
the d bosons is generically found not to be below that of
the s boson�, H contains two scalar boson-boson inter-
action terms. The parameter � appearing in Q is empiri-
cally restricted by the limiting symmetries described be-
low. Moreover, there is an isomorphism that maps �
onto −�. Therefore, � has the range −	7/2���0. The
parameters c0 and c2 have opposite signs �the
quadrupole-quadrupole is attractive�. The total angular
momentum is a good quantum number; the value of the
parameter c1 only defines the positions of states with
different angular momenta with respect to one another
and is irrelevant when chaos is investigated. Within the
model, quadrupole transition matrix elements are calcu-
lated with the help of the same quadrupole operator
Q��� that also appears in the Hamiltonian.

The IBM is an algebraic model and therefore easy to
solve. Fitting data is also easy because of the small num-
ber of parameters in Eq. �38� and in other versions of
the model. The fits obtained are very good and cover a
wide range of nuclei within a major shell. The param-

eters change slowly with mass number. The connection
between the IBM and the shell model is understood rea-
sonably well, although it has not been possible yet to
derive the IBM parameters from the shell model. All
this suggests that the IBM encapsulates real properties
of nuclei and explains the success and popularity of the
model. Studies of chaos have been restricted to the form
�38� of the model which applies to even-even nuclei. It is
possible, however, to extend both the Bohr-Mottelson
model and the interacting boson model to nuclei with an
odd number of protons and/or neutrons.

Tests of chaos in the IBM face the same difficulty as
do tests of chaos in the nuclear shell model using only a
single major shell: The IBM is well established as a tool
to describe low-lying states. At higher excitation ener-
gies, we expect to find states that cannot be modeled by
the IBM. In tests of GOE predictions, one needs large
data sets and typically uses the entire spectrum of states
of the IBM pertaining to fixed quantum numbers,
thereby exceeding the domain of applicability of the
IBM to real nuclei.

The IBM has the advantage that domains �in the
space of parameters� of full integrability coincide with
symmetries of the Hamiltonian. Three such symmetries
exist. They are found using group-theoretical arguments.
Let 
0� denote the vacuum state. The six single-boson
states s†
0� and d�

† 
0� span a six-dimensional space. Un-
der the general unitary transformations in six dimen-
sions, i.e., under the group U�6�, that space transforms
onto itself. The generators of the Lie algebra of U�6� are
the operators bi

†bj, where bi stands for one of the boson
operators s or d�. Since H is constructed from scalar
quantities involving these operators, H has nonvanishing
matrix elements only between pairs of states that belong
to the same irreducible representation of U�6�. Equiva-
lently, the eigenstates of H form bases of irreducible rep-
resentations of U�6�. We deal with bosons and thus re-
quire totally symmetric eigenstates. These belong to the
fully symmetric irreducible representations which are
characterized by the integer N, the total boson number.
The three symmetries of the Hamiltonian correspond to
the three chains of subgroups of U�6� given by

U�6� � U�5� � O�5� � O�3� �case I� ,

U�6� � SU�3� � O�3� �case II� ,

U�6� � O�6� � O�5� � O�3� �case III� . �39�

Case I is realized for c2=0, case II for c0=0 and �

=−	7/2, and case III for c0=0 and �=0. Each of the
three cases corresponds to a simple dynamical situation.
In case I we deal with vibrational nuclei, in case II with
rotational nuclei, and in case III with �-unstable nuclei
�instability with respect to the equilibrium value of ��.
Full integrability of the Hamiltonian suggests classical
regularity and, in the quantum regime, Poisson statistics
for the eigenvalues.

Alhassid et al. �1990� and Alhassid and Whelan �1991�
checked these expectations. Using coherent states and
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the limit N→�, one reaches the classical limit �similarly
as by Meredith et al. �1988��. The behavior of the trajec-
tories in phase space was studied for several values of

the total angular momentum. For fixed L� 2 the parameter
c1 is redundant. Moreover, the Hamiltonian can be res-
caled. This leaves two parameters: � �defined in terms of
the negative ratio of c0 and Nc2, with the factor N origi-
nating in the classical limit of the quantum Hamiltonian
�38�� with 0���1 and � with −	7/2���0. The results
are shown in Fig. 24. The three symmetries in relation
�39� correspond to the three corners of the triangles
shown: Case I corresponds to �=1, case II to �=0 and
�=−	7/2, and case III to �=0 and �=0. The three cor-
ners are surrounded by regions of no or weak chaos as
expected. Chaos is strongest for small angular momenta
and in the center and lower part of the triangle. They
emphasized the existence of a narrow strip of nearly
regular motion connecting the upper and left-hand cor-
ners of the triangle.

The quantum spectra were analyzed with the help of
the NNS distribution and the �3 statistic. The Porter-

Thomas distribution was checked using E2 transition
probabilities. As a result, the Bohigas-Giannoni-Schmit
conjecture �see Sec. II.F� was confirmed again, this time
for a system of interacting bosons. More specifically, all
three fluctuation measures are close to the GOE values
in the domains of parameter space where the classical
motion is close to fully chaotic, and show significant de-
viations and a tendency toward Poissonian behavior in
the domains where the classical motion is almost regular.
To obtain good statistics, the results shown were for N
=25 bosons and J=2 states. This is close to the angular
momentum value �=0.1 shown in the upper part of Fig.
24. They stressed that for smaller, more realistic values
of N, similar effects are seen. These IBM studies of
chaos were extended to higher energies and spins by
including broken-pair degrees of freedom �Alhassid and
Vretenar, 1992�. The regular behavior predicted for nu-
clei in the “arc of regularity,” which separates vibra-
tional and rotational motion �see Fig. 24�, was recently
confirmed experimentally �Jolie et al., 2004�.

In summary, collective models also display quantum
chaos. Regular features dominate near the yrast line and
at and near symmetries of the Hamiltonian. Chaos is
strongest in regions of parameter space that are far re-
moved from such symmetries. This is consistent with the
analyses of data reviewed in Secs. III.C.2 and III.C.3.

C. Special issues

In Secs. IV.A.2, IV.B.2, and IV.B.3 we have shown that
the dynamics of nuclei often produce spectral fluctua-
tions of the GOE type and thus quantum chaos. In the
present section, the emphasis is different. We address a
number of complex situations in which we cannot test
whether RMT applies. Rather, we postulate that it does
and use RMT as a tool to model the physical system.
This leads to results that are used in analyzing data.

1. Decay out of a superdeformed band

The potential energy of deformation V�� ,�� intro-
duced in Sec. IV.B.1 differs from the deformation energy
of the liquid-drop model. The difference is due to the
shell structure of nuclei. Nuclei with a completely filled
major shell for neutrons and/or protons �see Fig. 18� are
particularly stable. But major shells well separated from
each other in energy exist not only for spherical nuclei.
As the nucleus is being deformed, the energies of the
single-particle states change, and new major shells
emerge for certain values of the deformation param-
eters. This statement applies quite generally for single-
particle potentials including those with a spin-orbit
force. More generally, at fixed excitation energy the den-
sity of single-particle states of the shell model shows
considerable fluctuations as a function of deformation.
The same is true of the sum of the energies of all occu-
pied single-particle states and, thus, of the deformation
potential V�� ,��. Beyond the smooth dependence on
deformation parameters due to the liquid-drop model,
V�� ,�� therefore displays maxima and minima that re-

FIG. 24. Domains of regular or chaotic motion in the �-�
plane for two values of �, the angular momentum per boson.
The accessible parameter space has the shape of a triangle.
Three domains in parameter space are separated by solid lines:
Domains with nearly regular motion �fraction of chaotic phase-
space volume�0.3; white areas�; domains with nearly chaotic
motion �fraction of chaotic phase-space volume�0.7; dotted
areas�; and the regions in between. From Alhassid and
Whelan, 1991.
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flect the deformation dependence of the filled single-
particle states of the shell model. For those values of the
deformation parameters and for those mass numbers
where a major shell is filled, the nuclear binding energy
is expected to have a maximum and, consequently, the
potential energy of deformation V�� ,�� is expected to
have a minimum.

Strutinsky �1966, 1967, 1968� realized that shell clo-
sures and, more generally, maxima and minima of
V�� ,�� are generic phenomena that are not limited to
small deformations. His “shell-correction method” is
based on the semiclassical periodic-orbit theory for
independent-particle motion and allows the calculation
of a correction to the deformation energy of the liquid-
drop model. The correction is the difference between
the ground-state energy calculated from the actual
single-particle level density �with states filled up to the
Fermi energy�, and that obtained from a smoothed level
density. The method of calculation and many of its re-
sults have been summarized by Brack et al. �1972� and
by Brack and Bhaduri �1997�. A particular prediction
was that in certain nuclei and as a function of deforma-
tion, V�� ,�� would display a second pronounced mini-
mum �in addition to the absolute minimum defining the
nuclear ground state�. This is schematically shown in
Fig. 25.

Following earlier evidence, the discovery of “superde-
formed” rotational bands in 152Dy �Twin et al., 1986� and
other medium-weight nuclei confirmed the existence of
the second minimum. The moment of inertia of a very
strongly deformed nucleus is larger than usual. A rota-
tional band corresponding to an intrinsic state located in
the second minimum can therefore be identified by its
particularly large moment of inertia and the resulting
narrow spacings of its members. The intensities of the
E2 gamma transitions within a SD band show a remark-
able feature: The intraband E2 transitions follow the
band down with practically constant intensity. At some
point, the intraband transition intensity starts to drop
sharply. It either disappears abruptly or is much reduced
in the next intraband transition�s� and then disappears.

This phenomenon is referred to as the decay out of a SD
band �Ragnarsson and Åberg, 1986; Herskind et al.,
1987�. It is attributed to the mixing of the SD state�s�
and the normally deformed �ND� states of the same spin
and parity located in the first minimum; see Fig. 25. Cal-
culations using the shell-correction method show that
the barrier separating the first and the second minimum
of the deformation potential depends on and decreases
with decreasing spin J. Decay out of the SD band sets in
at a spin value J0 for which penetration through the bar-
rier is competitive with the intraband E2 decay. Theo-
retical efforts aim at a quantitaive description of that
process. We describe here one of the theoretical ap-
proaches, which is based on the use of random-matrix
theory.

The first minimum of the deformation potential is
typically a few MeV deeper than the second minimum.
Therefore, the ND states populated by decay out of the
SD band have a typical excitation energy of 3–4 MeV
above yrast. These states are believed to decay largely
via statistical emission of E1 gamma quanta. Such decay
would only contribute to the background in the coinci-
dence spectrometer used to detect the rotational bands.
This view is consistent with the fact that no signal for the
decay of the ND states has been found. In view of the
total lack of spectral information on the ND states, a
statistical model is used in the analysis of the data. It is
assumed that the spectral fluctuation properties of the
ND states can be modeled by the GOE. This is the view
taken by Vigezzi et al. �1990a, 1990b� and Shimizu et al.
�1992�, and in most subsequent work on the subject; see,
however, Døssing et al. �2004�. It is the aim of these
works to gain information on the barrier separating the
first and the second minimum through the analysis of the
decay data.

The quantity of central interest is the probability Iout
for decay out of the SD band. A plausible formula for
Iout was obtained by Vigezzi et al. �1990a, 1990b� and
Shimizu et al. �1992� as follows. When one disregards the
coupling of both the SD and ND states to the electro-
magnetic field, the resulting model for the Hamiltonian
has the form of Eq. �24�, with H0� the matrix elements
for penetration of the barrier separating the SD state 
0�
and the N ND states 
�� with �=1, . . . ,N. This is in fact
a doorway model for the SD state. The difference from
the usual doorway situation is that because of the bar-
rier, the spreading width �↓ is small compared to or at
best of the order of the mean level spacing d of the ND
states. Let 
m� with m=1,2 , . . . ,N+1 denote the eigen-
states of H and cm= 0 
m� the amplitudes with which the
SD state 
0� is admixed into the eigenstates 
m�. It is
assumed that E2 decay out of the next-higher state in
the SD band populates the state 
m� with probability

cm
2, and that the widths for decay of the state 
m� back
into the SD band or by statistical emission of E1 gamma
rays are given by 
cm
2�S and by �1− 
cm
2��N, respec-
tively. Here �S is the width for electromagnetic decay
within the SD band, and �N is the common total decay
width for E1 emission of the ND states �it has the same

FIG. 25. The deformation energy V�� ,�� for fixed total spin J0
vs deformation �schematic�. In some nuclei, V�� ,�� may dis-
play a second minimum at large deformation. The level shown
in the second minimum, a member of the SD band with spin J0,
may decay either via gamma emission to the next lower level
in the SD band �not shown� or, via tunneling, mix with the ND
states with spin J0 located in the first minimum. The latter
decay dominantly by statistical E1 emission.
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value for every state 
���. We then have �Vigezzi et al.,
1990a, 1990b; Shimizu et al., 1992�

Iout = �
m


cm
2
�1 − 
cm
2��N

�1 − 
cm
2��N + 
cm
2�S
. �40�

To compare with the measured decay probability out of
a SD band, the ensemble average of this expression was
numerically simulated by putting E0 in the middle of the
GOE spectrum, diagonalizing a large number of random
matrices of the form �24�, and using the eigenfunctions
to calculate the coefficients cm. Repeating the procedure
for different strengths of the barrier penetration matrix
elements, one determines the actual strength by a fit to
the data.

The arguments used to write down Eq. �40� imply a
perturbative treatment of the coupling to the electro-
magnetic field. As a result, Iout depends on two dimen-
sionless parameters, the ratio �N /�S and the ratio �↓ /d
which determines the coefficients cm. Thus, Iout is inde-
pendent of the fine-structure constant. This is physically
implausible because once the SD state is populated, the
competition is between the intraband decay and the
population of the ND states and thus between the elec-
tromagnetic and the strong interaction. More impor-
tantly, the analyses of data using the approach of Vigezzi
et al. �1990a, 1990b� and Shimizu et al. �1992� yielded
values of �↓ that were about two orders of magnitude
smaller than �N, putting a perturbative treatment of �N
into question. Weidenmüller et al. �1998� and Gu and
Weidenmüller �1999� used the same statistical model
�24� in a nonperturbative way. The amplitudes for intra-
band decay of the SD state and for E1 decay of the ND
states were added as diagonal terms on the right-hand
side of Eq. �24�. An expression for the amplitude for
decay out of the SD band was derived using that modi-
fied Hamiltonian. The ensemble average of that ampli-
tude was calculated analytically. The resulting expres-
sion for the average probability for decay out of the SD
band involves a threefold integral and depends on the
dimensionless parameters �N /d and �S /�↓. The result
was compared with that of Vigezzi et al. �1990a, 1990b�
and Shimizu et al. �1992�, and the limits of validity of the
latter approach were determined. Analytical approxima-
tion formulas to the exact result were given to simplify
the data analysis. Many data have been analyzed using
either approach; see, for instance, Krücken et al. �2001�,
and references therein. A simplified treatment was de-
veloped by Stafford and Barrett �1999�.

A few figures taken from Krücken et al. �2001� may
serve as examples for the results obtained. Superde-
formed bands occur not only for mass numbers around
150 �where they were first discovered� but also, for in-
stance, in the lead region �A�200�. A case in point is
the first SD band in 194Hg. For spin J=12�, one finds
�S=0.097 meV, �N=4.8 meV, and d=16.3 eV. The
analysis using the results of Vigezzi �1990a, 1990b� yields
�↓=37 meV and that using Gu and Weidenmüller �1999�
yields �↓=25 meV. Calculating the rms barrier penetra-
tion matrix element v from �↓ and using results for sev-

eral values of J, one obtains a dependence on J roughly
in agreement with the theoretical expectation v
�exp�−�J�.

Decay out of a SD band continues to receive consid-
erable attention; see, for instance, Sargeant et al. �2005�,
and references therein. Our aim here was to show how
RMT is basically used in analyzing data.

2. Double giant dipole resonance

We recall the discussion of the giant dipole resonance
�GDR� at the beginning of Sec. II.G. Action of the di-
pole operator on the nuclear ground state induces the
dipole mode. That mode can be viewed as an oscillation
of the center of mass of protons against that of neutrons.
This simple intuitive picture is exact in the framework of
two extremely opposite models of nuclear structure,
namely, the harmonic-oscillator independent-particle
model and a collective model using neutron and proton
fluids. Therefore, the picture is expected to have general
validity. If the oscillation is approximately harmonic, a
repeated E1 excitation of the GDR should be possible
and should lead to the double giant dipole resonance
�DGDR�. The DGDR does indeed exist and was first
observed in a number of nuclei in the 1990s. For a re-
view, see Bertulani and Ponomarev �1999�. Compared to
predictions of the harmonic picture, the measured cross
sections for excitation of the DGDR were found to be
larger by factors ranging from 1.3 to 2. The widths of the
DGDR were found to be about 1.4 times larger than
those of the GDR. This last fact is in keeping with some
but not all theoretical estimates. These findings have at-
tracted much theoretical attention. Anharmonicities of
the Hamiltonian and nonlinearities of the external field
were studied as possible causes for the discrepancies.

Here we focus on an explanation originally due to
Carlson, Canto, Cruz-Barrios, et al. �1999�, and Carlson,
Hussein, de Toledo Piza, et al. �1999�, which uses the
Brink-Axel hypothesis. The Brink-Axel hypothesis pos-
tulates the existence of a giant dipole resonance built
not only on the nuclear ground state, but also on every
excited nuclear state as well �Brink, 1955; Axel, 1962�.
With the above picture for the GDR as an oscillation of
the center of mass of protons against that of neutrons,
the hypothesis is plausible. The hypothesis suggests an
enhancement of the excitation cross section of the
DGDR by the following mechanism. The GDR is a
doorway state and mixes with the background states
having the same spins and parities as the GDR. The
mixing time is simply estimated as � /�↓. If that mixing
time is small or at most of the order of the time it takes
to excite the DGDR from the GDR, then each of the
background states admixed to the GDR mode may get
excited into its own GDR. The contributions from the
excitation of the background states would add to that of
the GDR and lead to an enhancement of the cross sec-
tion. With a GOE model for the background states as in
Eq. �24�, the average intensity for excitation of the
DGDR in a collision between two heavy ions can be
worked out using controlled approximations �Gu and
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Weidenmüller, 2001�. For realistic values of the param-
eters, it is found that the contribution of the background
states is significant, and that the results of the calcula-
tions agree well with data on the reaction 208Pb+ 208Pb at
640 MeV/nucleon. The DGDR is, thus, another case in
which RMT is successfully used to understand data. The
use of RMT vindicates the Brink-Axel hypothesis.

3. Damping of collective modes and friction

Collective motion is due to the coherent motion of
many nucleons. Examples are the rotational or vibra-
tional motion of nuclei �Sec. IV.B.1� or the giant dipole
resonance, an oscillation of the center of mass of neu-
trons against that of protons �Secs. II.G and IV.C.2�.
Other examples are encountered in heavy-ion collisions
and induced nuclear fission. In the first case, the grazing
collision of two heavy nuclei at energies of a few MeV
per nucleon �at the Coulomb barrier� leads to a process
known as deep inelastic scattering �Nörenberg and
Weidenmüller, 1980; Weidenmüller, 1980�: The kinetic
energy of relative motion and the associated angular
momentum are partly transformed into intrinsic excita-
tion energy and spin of both fragments. At the same
time, nucleons are transferred between the two reaction
partners. As a result, the reaction mainly produces pairs
of fragments in highly excited states with masses similar
to those of the incident nuclei, but with considerably
smaller kinetic energies. Similar processes occur at
higher incident energies �Cassing and Nörenberg, 1985�.
The excitation energies of either fragment cannot be
measured precisely. A phenomenological description of
the process focuses attention on the collective degrees of
freedom, i.e., on the relative coordinates of both frag-
ments. These move under the influence of a conservative
potential �due to the Coulomb force and the overlap of
both nuclei� and of dissipative forces. The latter account
for the transfer of energy and angular momentum into
intrinsic degrees of freedom as well as for nucleon trans-
fer between both reaction partners. In the simplest ap-
proximation, the relative motion is described classically
and the dissipative forces are represented by a friction
constant �Wilczynski, 1973�. Induced fission is a some-
what similar process: Here the shape deformation lead-
ing to fission is identified as the collective degree of free-
dom. For fission to happen, that degree of freedom must
overcome the fission barrier. Between the top of the fis-
sion barrier and the scission point, the fission degree of
freedom gains kinetic energy. That energy is partly
transformed into intrinsic excitation energy of the fis-
sioning system. The process can again be described phe-
nomenologically as involving dissipative forces acting on
the fission degree of freedom �Grangé and Weiden-
müller, 1980�. The number of neutrons emitted prior to
fission serves as a measure of the strength of that dissi-
pation �Gavron et al., 1986�. In nuclear physics, dissipa-
tive processes typically arise in the context of nuclear
reactions. On the other hand, the theoretical treatment
usually does not refer to scattering processes.

The description of dissipative forces due to the inter-
action of a quantum system with its environment is a
standard topic in nonequilibrium statistical mechanics.
If the f collective degree�s� of freedom q� with �
=1,2 , . . . , f can be treated classically, the phenomeno-
logical description of the collective motion may use an
equation of the type

d

dt

�L
�q̇�

−
�L
�q�

= F��q,q̇� . �41�

Here L�q� , q̇�� is the classical Lagrangian, t is the time,
and F� are the friction forces. To get the most general
description, stochastic Langevin forces must be added to
the friction forces. An equivalent description is in terms
of a Fokker-Planck equation. If the classical approxima-
tion is not justified, Eq. �41� must be replaced by its
quantum analog which typically involves the density ma-
trix. Often it is justified to characterize the friction
forces by a friction constant and the Langevin forces by
a diffusion constant. We refer to these constants as
transport coefficients. Calculating transport coefficients
is the aim of a microscopic approach to these processes.

The canonical approach is that of Caldeira and Leg-
gett �1983�, who described the environment �the “heat
bath”� as an infinite set of harmonic oscillators. The
nuclear case differs from the standard situation in statis-
tical mechanics in several respects. First, the intrinsic
degrees of freedom cannot be viewed as an infinitely
extended heat bath. The total energy of the system �in-
trinsic plus collective degrees of freedom� is conserved,
and the energy content of either subsystem is roughly
the same. In other words, the nucleus is a mesoscopic
system for which the thermodynamic limit is not appro-
priate �although some statistical description may still ap-
ply�. Second, the coupling between the collective and
the intrinsic degrees of freedom is typically very strong.
The energy content of the interaction part of the Hamil-
tonian is not small compared to that of either subsystem.
As a consequence, the usual Markov approximation of-
ten does not apply �Brink et al., 1979�. These facts must
be taken into account as one works out the transport
coefficients appearing in Eq. �41� or in the quantum ana-
log of that equation from a microscopic approach.

The microscopic approach itself also encounters some
difficulties. First, the definition of the collective de-
gree�s� of freedom in terms of the coordinates of partici-
pating nucleons poses problems. Second, in nuclei dissi-
pative processes typically involve the transfer of several
MeV or even several ten MeV from the collective to the
intrinsic degrees of freedom, perhaps together with the
transfer of several ten units of angular momentum. The
level densities in the fragments at the resulting excita-
tion energies are very high. A detailed microscopic de-
scription of the intrinsic degrees of freedom is therefore
not possible. Rather, one employs stochastic models of
the random-matrix type. In such models, the coupling
matrix elements between collective and intrinsic degrees
of freedom are Gaussian-distributed random variables
�in accord with the Porter-Thomas distribution in Eq.
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�18��. The mean coupling strength and the density of
intrinsic states are estimated using simple nuclear mod-
els. As a result, the force acting on the collective de-
gree�s� of freedom is random, and the transport coeffi-
cients are defined as ensemble averages involving that
random force.

Calculating the transport coefficients as ensemble av-
erages poses physical questions and technical difficulties
quite different from those encountered in calculating the
average of the strength function ���0 
���2�E−E�� in
Sec. II.G. That calculation leads to Eq. �25�. In a time-
dependent picture, Eq. �25� shows that the amplitude of
the collective mode decays exponentially due to mixing
with the background states. The decay width is given by
the spreading width of Eq. �26�. �To see that it is the
amplitude of the collective mode that undergoes expo-
nential decay, we note that the strength function can be
expressed identically in terms of the Green’s function as
−�1/��Im0
�E+−H�−1
0�.� In the case of transport coef-
ficients, it is necessary to average probabilities �squares
of amplitudes�. Quantum mechanics implies that the
sum of all occupation probabilities is conserved in time.
Therefore, transport coefficients describe the redistribu-
tion in time of occupation probabilities caused by dissi-
pative forces. Friction, for instance, implies that collec-
tive states at lower energy become occupied at the
expense of states at higher energy. Averaging expres-
sions that depend on squares of amplitudes is technically
harder than averaging amplitudes.

The description of dissipative processes in heavy-ion
reactions and of fission in terms of RMT has received
much theoretical attention. Aside from reviews �Nören-
berg and Weidenmüller, 1980; Weidenmüller, 1980� and
the papers cited above, we mention the work of Agassi
et al. �1977� and of Hofmann and Siemens �1977� and
Hofmann et al. �2001�. In general, the interaction of col-
lective and microscopic degrees of freedom has been
studied by Bulgac, Kusnezov, and collaborators �see Bul-
gac and Kusnezov �1996�, and references therein�. There
are other approaches to nuclear dissipation that do not
use RMT but emphasize the chaotic aspects of single-
particle motion; see Blocki et al. �1995�, and references
therein.

4. Fluctuations of binding energies

The masses of atomic nuclei are the keys to under-
standing many physical and astrophysical processes. For
this reason, it is important to construct reliable theoret-
ical models for the values of the nuclear masses or,
equivalently, for the binding energy B�A� as function of
mass number A. �We suppress for simplicity the addi-
tional dependence of B on neutron number N or proton
number Z.� This function is also needed to predict the
masses of �as yet� unknown nuclei.

The standard approach to a global modeling of the
function B�A� starts from the liquid-drop model of the
nucleus and considers in addition shell corrections �see
Sec. IV.C.1�, as well as corrections due to the pairing
force �see Sec. IV.A.2�. The latter lead to an odd-even

staggering of B�A�. The resulting “semiempirical mass
formula” contains about 30 parameters and is fitted to a
large number of data. Years of painstaking work have
culminated in a best fit �Möller et al., 1995� that repro-
duces the data points very well but not exactly. The over-
all difference �root-mean-square value taken in a limited
window of mass values� is of the order of 0.5 MeV and
decreases with increasing A. Other approaches �Duflo
and Zuker, 1995; Samyn et al., 2004� have led to similar
differences. The value of 0.5 MeV is obviously very
small and of the order of 5
10−4 in comparison with the
total binding energy, which for medium-weight and
heavy nuclei is of the order of GeV. Nevertheless, that
small value has attracted considerable attention.

Bohigas and Leboeuf �2002� suggested that there are
two types of contributions to the shell correction for the
nuclear binding energy. The first is due to the regular
motion of nucleons in the mean field and is taken into
account in terms of the Strutinsky shell correction
method or, in the fits just mentioned, in terms of the
semiempirical mass formula. The second is due to the
�partly� chaotic motion of nucleons within the nucleus.
Bohigas and LeBoeuf �2002� also evaluated that part
within the mean-field approximation. They argued, how-
ever, that their final result for the fluctuations of the
chaotic part is of much more general validity, and may
be interpreted as arising from the residual interactions.

With ��E� the density of single-particle states, the
shell correction to the binding energy has the form
�dEE��E�. Fluctuations of the binding energy are char-
acterized by the variance of that expression, the average
taken over a window of mass numbers and indicated by
angular brackets. That variance can be expressed iden-
tically in terms of the form factor K��� as B2�A��
− �B�A���2= ��2 / �2�2���0

�d�K��� /�4. The form factor is
essentially the Fourier transform of the density-density
autocorrelation function. For the chaotic contribution to
the variance, K��� is approximated by the random-
matrix result K���=2�. This expression applies for values
of � below the Heisenberg time, and for ���min, where
�min is the period of the shortest periodic orbit in the
system while K���=0 for ���min. The value of �min
is estimated using free motion at the Fermi velocity over
a distance typically given by the nuclear radius. This
yields a result for the root-mean-square value of the
fluctuation ��A� of the binding energy of ��A�
=2.78 A−1/3 MeV. That result is in reasonable agreement
with the deviations of the data from the semiempirical
mass formula.

The interpretation proposed by Bohigas and Leboeuf
�2002� of the deviations of measured binding energies
from the semiempirical mass formula as due to chaotic
motion has caused much debate that will not be re-
viewed here. It implies that throughout the valley of sta-
bility the binding energies of all nuclei are correlated
�Molinari and Weidenmüller, 2006; Olofsson et al., 2006�.
Such correlations, while expected on dynamical grounds,
are surprising from a statistical viewpoint.
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V. RANDOM-MATRIX MODELS INSPIRED
BY NUCLEAR-STRUCTURE CONCEPTS

In Sec. IV it was shown that, in the framework of
standard nuclear models such as the shell model or the
cranking model, chaos is a generic property of nuclei.
However, these models differ from the GOE, the stan-
dard ensemble to model chaotic systems. To motivate
the study of the random-matrix ensembles treated in the
present section, we elucidate the difference between
these nuclear models and the GOE, more precisely, be-
tween these models and a generic realization of the
GOE. In doing so, we focus attention on the shell-model
Hamiltonian �34�; what will be said applies mutatis
mutandis likewise to the Hamiltonian of the cranking
model in Sec. IV.B.2. For simplicity, we disregard total
spin and isospin. A more complete discussion for the sd
shell including these quantum numbers may be found in
Sec. V.B.

Without spin and isospin, the many-body eigenstates
of the single-particle part of the shell-model Hamil-
tonian �34� are Slater determinants. These are multiply
degenerate. The degeneracies are lifted by the residual
interaction Vres. The way this happens depends on the
rank k of Vres. If Vres is a pure two-body interaction �k
=2�, then Vres has nonvanishing matrix elements only
between those pairs of Slater determinants that differ in
the occupation numbers of at most two single-particle
states. In the Hilbert space spanned by Slater determi-
nants, the matrix of Vres then has many zeros. If Vres also
contains three-body forces �k=3�, the number of zeros is
reduced because Vres now connects all Slater determi-
nants that differ in the occupation numbers of at most
three single-particle states. The systematic appearance
of zeros in the matrix representation of Vres is com-
pletely removed only when Vres contains m-body inter-
actions, where m is the number of valence nucleons. For
a generic realization of the GOE, on the other hand,
zeros do not appear systematically. This is why it is
sometimes said that the GOE contains interactions of
arbitrary rank.

When the first evidence for the validity of a RMT
approach to nuclei became available in the 1960s, the
question arose how that difference between the GOE
and a realistic residual interaction would affect nuclear
properties. Would the spectral statistics be the same?
Later, other nuclear properties �such as the average level
density� came into the focus of RMT. How would these
depend on the rank of Vres? To answer these questions,
several noncanonical random-matrix ensembles were in-
troduced. French and Wong �1970� and Bohigas and
Flores �1971� defined and studied what became known
as the two-body random ensemble �see Sec. V.B�. Later
Mon and French �1975� defined the embedded k-body
random ensembles where the rank of the residual inter-
action is a free parameter �see Sec. V.A�. Recently, con-
strained ensembles �where certain matrix elements of
the GOE are suppressed� were introduced by Papen-
brock et al. �2006� �see Sec. V.C�. The present section is
devoted to a review of these ensembles. The analytical

treatment of the first two ensembles is much more diffi-
cult than that of the canonical ensembles of RMT be-
cause they lack the orthogonal invariance of the GOE.
Therefore, a complete analytical theory of these en-
sembles does not exist. The analytical treatment of the
constrained ensembles is still in its infancy.

A. Embedded ensembles

For the k-body embedded ensembles of random ma-
trices �introduced by Mon and French �1975��, we con-
fine ourselves to a brief account of the main features of
the orthogonal case and refer the reader to several re-
views �Brody et al., 1981; Kota, 2001; Benet and Weiden-
müller, 2003� for further details.

The embedded ensembles dispose of all the complexi-
ties due to the couplings of angular momentum and spin
but retain the symmetries imposed by the exclusion
principle. One considers m fermions in l�m degenerate
single-particle states �which carry no further quantum
numbers� that interact via a random k-body interaction
with k�m. To obtain an understanding of the transition
from the two-body ensemble to the GOE, the parameter
k is allowed to range from k=1 to k=m, although k=2 is
the most interesting �i.e., realistic� case. The case k=1 is
integrable and, therefore, somewhat exceptional.

Labeling the single-particle states with a running in-
dex j=1, . . . , l, we introduce the usual fermionic creation
operators aj

† and define the creation operators for k fer-
mions by

�k,�
† = �

s=1

k

ajs
† , �42�

where � stands for the set j1� j2�¯� jk. The corre-
sponding annihilation operators are defined by �k,�

= ��k,�
† �†. The random k-body interaction is

Vk = �
�,�

vk;���k,�
† �k,�. �43�

The matrix elements vk;�� are real and symmetric
Gaussian-distributed random variables with zero mean
values and a common second moment vk;��vk;����
=v2�������+�������. The Kronecker deltas represent
the string j1j1�

j2j2�
¯jkjk�

, etc. The interaction Vk lifts the
degeneracy of the many-body states; the parameter v2

sets the scale for the spectrum. Without loss of general-
ity, we may put v2=1.

The k-body embedded ensembles are then defined in
terms of the three parameters k , l ,m with k�m� l. The
ensembles are jointly referred to as EGOE�k�. In ca-
nonical RMT, universal results are obtained in the limit
of infinite matrix dimension. For EGE�k�, the same limit
is obtained by taking l→�. For fixed k, this can be done
by imposing constraints on the ratio m / l. Brody et al.
�1981� defined the dilute limit as l→�, m→�, m / l→0.

Central questions in the theory of the embedded en-
sembles are as follows: �i� What is the shape of the spec-
tral density? �ii� What are the spectral fluctuation prop-
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erties? �iii� Are these properties universal �i.e.,
independent of the assumed Gaussian distribution�? �iv�
Are the spectra ergodic? �v� Can the embedded en-
sembles be usefully applied to real nuclei? If so, what
are their predictions? Ideally, questions �i�–�iv� should
be answered in the limit l→�.

Partial answers to these questions have been obtained
with a variety of methods. The moments method �Mon
and French, 1975� evaluates moments of Vk in the limit
l→�. The distribution of Hamiltonian matrix elements
being Gaussian, products of Hamiltonian matrices are
averaged by Wick contraction involving all pairs of ma-
trices. In the dilute limit k�m� l, m / l→0 for l→�,
only pairs of neighboring matrices are taken into ac-
count �“binary correlation approximation”�. Numerical
methods give some insight, although the extrapolation
to large matrix dimension may pose problems. The study
of the second moments of the many-body matrix ele-
ments of Vk reveals a duality symmetry between
EGOE�k� and EGOE�m−k�.

For the spectral density, there is a gradual transition
from the semicircular shape �which is attained for k=m�
to the Gaussian shape �which applies for k�m�. The
transition sets in at 2k=m. Less is known for the level
statistics. It is clear that for k=m the spectral fluctua-
tions are Wigner-Dyson-like, and that for k=1 they are
Poissonian. The cases 1�k�m have been much de-
bated without firm analytical conclusion. Numerical evi-
dence points toward Wigner-Dyson statistics for k�2.
Universality has not been addressed. Ergodicity has
been proved for some observables in the limit l→�, but
the nonergodic contributions disappear very slowly with
increasing l.

We turn to the applications of EGOE�2� to nuclei.
These are based upon the binary correlation approxima-
tion �Kota, 2001�. Moreover, it is stipulated that the sup-
pression of spin and isospin quantum numbers does not
limit the predictive power of EGOE�k� in nuclei. With
that assumption, the EGOE�2� result for the spectral
density explains why shell-model calculations with a
large number of valence nucleons yield approximately
Gaussian spectra. But a Gaussian spectrum results also
for k=1 irrespective of m, so that spectra of approxi-
mately Gaussian shape are generically expected.
EGOE�k� also predicts the distribution of transition
strengths. For an operator O causing a transition from
energy Ei to energy Ef, the transition strength distribu-
tion is defined as the ensemble average of the trace of
O†�V2−Ef�O�V2−Ei�. This expression equals the
square of the transition matrix element multiplied with
the densities of the initial and final states. The average
can be worked out and yields a bivariate Gaussian dis-
tribution. Comparison with shell-model calculations by
Kota �2001� shows good agreement. Similarly, transition
strength sums can be worked out in closed form. The
same is true for the average occupation numbers of
single-particle states, which were referred to in Sec.
IV.A.2 and which also agree well with results of the shell
model. The method can be extended to cases in which

the Hamiltonian is the sum of a single-particle operator
and V2. It is then possible, for instance, to predict the
onset of chaos versus the strength of V2, again in good
agreement with numerical calculations.

In summary, we see that EGOE�2� yields a number of
results that are in good agreement with the shell model.
That means, in turn, EGOE�2� is capable of making pre-
dictions that can reliably be used when shell-model cal-
culations are not available. All this is in stark contrast to
the GOE and is possible only because EGOE�2� takes
account of an essential aspect of the shell model. On the
other hand, it is difficult to obtain analytical results for
EGOE�k� that are not based upon the binary correla-
tion approximation. Perhaps most importantly, there still
is no definitive analytical result on the spectral fluctua-
tion properties of EGOE�k�.

The embedded ensembles have recently been general-
ized to cover particles with spin �see Kota �2007��.

B. Two-body random ensemble

The two-body random ensemble �TBRE� addresses
the following questions: Which nuclear properties ob-
tained by diagonalizing the shell-model Hamiltonian
�35� are generic �i.e., hold for most two-body interac-
tions�, and which are specific properties of a given inter-
action? And how does the residual interaction mix the
states so as to produce chaos in nuclear spectra? To this
end, the TBRE uses the actual form �35� of the shell-
model Hamiltonian but replaces the matrix elements v�
of the actual two-body interaction by Gaussian-
distributed real random variables with zero mean value
and a common second moment �multiplied by the factor
of 2 for the diagonal elements; see Eq. �45��. In contrast
to the embedded two-body random ensemble �see Sec.
V.A�, the TBRE obviously does take into account spin
and isospin quantum numbers. It is time-reversal invari-
ant. Moreover, the TBRE explores the properties of the
residual two-body interaction uniformly in the space
spanned by the variables v�. Statements derived for the
TBRE apply to almost all two-body interactions with
the exception of a set of measure zero.

The TBRE was introduced by French and Wong
�1970� and Bohigas and Flores �1971�. They were mainly
interested in the spectral fluctuation properties of the
TBRE. The numerical results reported by French and
Wong �1970� and Bohigas and Flores �1971� showed that
the NNS distribution and the �3 statistic of the TBRE
agree with those of the GOE. These results were con-
firmed by later numerical studies and showed that chaos
is a generic property of the TBRE. Interest in the TBRE
was revived in 1998 by the work of Johnson et al. �1998,
1999�. They showed that in even-even nuclei the TBRE
predicted ground states with spin 0 and positive parity
much more frequently than corresponds to their statisti-
cal weight, in spite of the fact that the matrix elements
v� are random. That finding caused substantial theoret-
ical activity �see Zelevinsky and Volya �2004� and Zhao,
Arima, and Yoshinaga �2004��, including studies of
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bosonic systems interacting via a random two-body in-
teraction. Here we confine ourselves to the nuclear-
physics aspects of the TBRE. Papenbrock and Weiden-
müller �2004, 2005, 2006, 2007� investigated the
mechanism by which the TBRE mixes the shell-model
configurations.

The TBRE contains the nondegenerate single-particle
energies �first term on the right-hand side of Eq. �35�� as
nonrandom parameters. The mixing of shell-model con-
figurations in the TBRE depends on the mean strength
of the two-body matrix elements measured in units of
the spacing of the single-particle levels. Complete mix-
ing occurs only when that ratio is large; see Sec. IV.A.2.
For simplicity and clarity, theoretical studies of the
TBRE focusing on chaos often assume that the single-
particle energies are degenerate �in which case they can
be put equal to zero by a shift of the energy scale�. We
follow that custom here and study the mixing of shell-
model configurations in a “pure” TBRE. It has to be
borne in mind, however, that the nondegeneracy of the
single-particle levels tends to weaken the mixing found
in that model.

1. Comparison GOE-TBRE

Before discussing specific properties of the TBRE, it
is instructive to compare the TBRE with the GOE. In
the GOE and with N�1 the matrix dimension, the num-
ber of independent random variables is N�N+1� /2 and,
thus, large compared to N. In the TBRE, on the other
hand, the number N of independent random variables is
typically small compared to the dimension D�J ,T ,�� of
the Hamiltonian matrix. We recall that in the sd shell,
we have N=63 while typically D�103 in the middle of
the shell and for low values of J. In the pf shell, the
corresponding figures are N=195 and D�104–105. The
complete mixing of the basis states and the ensuing va-
lidity of Wigner-Dyson statistics for the spectrum cannot
be achieved by such a small number of random variables
alone. In an essential way it is also due to the matrices
C���JT� ;�� appearing in Eq. �35�. Therefore, studies of
the TBRE must focus on the structure of these matrices;
see Sec. V.B.2.

The GOE is mathematically accessible and formally
attractive because it is orthogonally invariant, universal,
and ergodic �see Sec. II.C�. By construction, the TBRE
is much more realistic than the GOE �if one includes the
nondegenerate single-particle states of the shell model
in the Hamiltonian� but probably lacks all these proper-
ties. It is not orthogonally invariant because the matrices
C���JT� ;�� are fixed by the shell model. An orthogonal
transformation would change the chosen representation
of these matrices in Hilbert space but would leave every
realization of the TBRE unchanged. It is not clear
whether the TBRE is universal �i.e., yields results that
do not depend on the assumed Gaussian distribution of
the matrix elements v��. We are not aware of any paper
addressing that question. The TBRE is not ergodic be-
cause the limit of infinite matrix dimension cannot be
taken in a meaningful way �except for the case of a

single j shell, where j→� is a meaningful limit that has
not been explored yet�. In spite of these shortcomings,
the TBRE has attractive features; see below. In Sec. II.C
it was pointed out that GOE spectra carry no informa-
tion content. The TBRE produces spectra with Wigner-
Dyson level statistics. At the same time, the TBRE does
carry information content because the number of ran-
dom variables is small compared to typical matrix di-
mensions. Ideally, it takes N data points to completely
determine the values of the random variables in the
TBRE; that number is typically small compared to the
number of eigenvalues pertaining to fixed values of J, T,
and �. Again, this shows the important role played by
the matrices C���JT� ;�� in the TBRE. These matrices
are fixed by the geometry of the shell model itself. At
the same time, they are important for the strong mixing
of the shell-model configurations. The choice of the re-
sidual interaction only determines the particular linear
combination of the C’s that forms the shell-model
Hamiltonian H���JT�� in Eq. �35�.

Properly speaking, the TBRE is not a single ensemble
but a set of ensembles. Indeed, in every shell a given set
of matrix elements �v�� determines for all values of A
pertaining to that shell the Hamiltonian matrices
H���JT�� for all values of J, T, and �. Taking v� as
random variables implies that all these matrices become
Gaussian random-matrix ensembles. Since all these en-
sembles depend upon the same set �v�� of random vari-
ables, they are correlated. Such correlations are the hall-
mark of the TBRE. Correlations of this type do not
occur naturally within the GOE.

2. Structure of the matrices C��(JT� ;�)

The discussion in Sec. V.B.1 has revealed the central
role played by the matrices C���JT� ;�� in the TBRE.
As emphasized in Sec. IV.A.1, these matrices are com-
pletely determined by the coupling scheme chosen to
construct the many-body states 
JT���. They depend
upon vector-coupling coefficients and on coefficients of
fractional parentage and, thus, are given in terms of
group-theoretical concepts. �The coefficients of frac-
tional parentage give the decomposition of a state

JT��� for m nucleons in terms of the same states for
m−1 nucleons.� The matrices C���JT� ;�� are deter-
mined by the intrinsic symmetries of the shell model and
are known completely. At the same time, these matrices
are highly complex, and there is no analytical theory yet
to describe their structure. We are confined to describing
some of their properties and refer the reader for details
to Papenbrock and Weidenmüller �2007�.

To see how the nondiagonal elements of Vres mix the
unperturbed configurations, we use the coupling scheme
described above Eq. �35� and classify the many-body
states in terms of the partitions �m�j� of m. For m=12
there are 41 such partitions in the sd shell. Each parti-
tion consists of a string of three non-negative integers
that give the number of nucleons in each subshell. In
that basis, the matrix elements of Vres attain block struc-
ture. Each block is labeled by a pair of partitions �m�j�.
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The blocks come in four classes: �i� the partition �m�j� is
unchanged �diagonal blocks arising from those two-body
matrix elements that do not change partition although
they may change the actual many-body basis state�, �ii�
the partition �m�j� is changed by adding unity to one of
its elements at the expense of another element �the re-
sidual interaction lifts a single nucleon from one subshell
to another�, �iii� the partition �m�j� is changed by adding
unity to two of its elements or two to one of its elements
at the expense of one or two other elements �the re-
sidual interaction lifts two nucleons into different sub-
shells�, and �iv� the partition �m�j� is changed by moving
more than two nucleons into different subshells. These
blocks are empty because a two-body interaction cannot
move more than two nucleons.

The block structure of the matrices C���JT� ;�� �also
displayed by Zelevinsky et al., 1996� is shown here in
Fig. 26 for m=12 and for the states with J=0, T=0 of the
sd shell. Blocks in classes �i�, �ii�, �iii�, and �iv� are shown
in black, light gray, dark gray, and white �online red,
green, blue, and white�, respectively. It is obvious that
the structure of the matrix is fundamentally different
from that of a typical GOE matrix, where all states are
coupled with each other. That fact implies that complete
mixing of the shell-model configurations can never be
the result of a single matrix C���JT� ;�� alone. A linear
combination of the type appearing in Eq. �35� is defi-
nitely needed. It is also obvious that the block structure
shown in Fig. 26 is not restricted to the sd shell and is a
generic property of the shell model.

The structure of individual matrices C���JT� ;�� is
governed by “geometric chaos” �Zelevinsky et al., 1996�.
The many-body states 
JT��� may be constructed by
coupling first a pair of nucleons to given intermediate
values of spin and isospin, by then vector-coupling a
third nucleon to the resulting pair, etc. There are many
different paths leading to the same total spin J and iso-
spin T; their number determines the dimension
D�J ,T ,�� of the resulting Hilbert space. Each path cor-
responds to a different set of vector-coupling coeffi-
cients. Supposing that the vector-coupling coefficients
are pseudorandom numbers, we expect that the states

JT��� also behave randomly. Several tests �Zelevinsky
et al., 1996; Zelevinsky and Volya, 2004� support this
idea of geometric chaos. It is, therefore, reasonable to
expect that the elements of the matrices C���JT� ;�� be-
have randomly in those blocks where they do not vanish
identically. This view is obviously not restricted to the sd
shell but applies likewise to every major shell. Further
insight into the mixing properties of the matrices
C���JT� ;�� is obtained by counting the number of ma-
trices that yield nonvanishing contributions to a matrix
element of the shell-model Hamiltonian H���JT�� and
by calculating the inverse participation ratios for these
matrices �Papenbrock and Weidenmüller, 2005�. All this
evidence points to strong mixing of shell-model configu-
rations by the matrices C���JT� ;��.

Although we are very far from a complete theory of
the TBRE, the evidence presented makes it plausible
that chaos is a generic property of the shell model. The
matrices C���JT� ;�� are both the fundamental building
blocks of the TBRE and the agents for complete mixing
of the shell-model configurations.

3. Another representation of the shell-model Hamiltonian

Can we gain further insight into the structure of the
matrices C���JT� ;��? Is it possible to define a quanti-
tative measure for the information content of shell-
model spectra? Why are spin-0 ground states
dominant in the TBRE? These questions are answered
by transforming the interaction part of the shell-
model Hamiltonian H���JT�� in Eq. �35�. This is
done �Papenbrock and Weidenmüller, 2004� by diago-
nalizing for each set of quantum numbers �JT�� the
real, symmetric, and positive-semidefinite matrix S��
=D−1�JTr��Tr�C�JT� ,��C�JT� ;���. We denote by s�

2

�0 the eigenvalues of S��, by s��0 the roots of these
eigenvalues, and by O�� the eigenvector belonging to
the eigenvalue s�

2 . We define the new random variables
w�=��O��v� and, for s��0, the matrices B���JT� ;��
= �1/s����O��C���JT� ;��. By construction, the matri-
ces B���JT� ;�� are orthonormal with respect to
the trace, D−1�JT��Tr�B�JT� ,��B�JT� ;���=��. The
shell-model Hamiltonian �35� takes the form

FIG. 26. �Color online� Block structure of the matrix of the
shell-model Hamiltonian for the sd shell. Blocks in black, light
gray, dark gray �online red, green, blue� indicate matrix ele-
ments that change the partition by zero, one, or two units,
respectively, as explained in the text. White areas do not carry
matrix elements. From Papenbrock and Weidenmüller, 2005.
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H���JT�� = ���
�j
��jm�j + �

�

w�s�B���JT� ;�� .

�44�

In the last sum over �, only terms pertaining to nonzero
eigenvalues s�

2 appear.
The form �44� of the shell-model Hamiltonian is in-

structive for several reasons. First, by adding further ma-
trices we could enlarge the set �B�JT� ;��� of orthonor-
mal matrices to a complete set of D�JT���D�JT��
+1� /2 orthonormal real symmetric matrices. The linear
combination of all these matrices with random coeffi-
cients would be equivalent to the GOE. The number of
matrices B�JT�� is much smaller than D�JT���D�JT��
+1� /2, however. This shows once again that the TBRE is
very different from the GOE; it is a constrained en-
semble in the sense of Sec. V.C. Second, being obtained
from the v� by an orthogonal transformation, the new
random variables w� have the same Gaussian distribu-
tion as the former. However, not all w� but only those
pertaining to nonvanishing eigenvalues s�

2 do appear in
the sum in Eq. �44�. At least one �and often several�
eigenvalue s�

2 always vanishes. That implies that one or
several linear combinations of the v� can never be mea-
sured �nor do they affect the shell-model spectrum�.
Third, those w� that do appear in Eq. �44� are multiplied
with the root factors s�. The matrices B�JT�� are ortho-
normal. Therefore, the difficulty of determining the w�
in Eq. �44� from data increases with increasing smallness
of the factors s�. These root factors are derived from the
matrix S�� and reflect intrinsic properties of the shell
model.

Papenbrock and Weidenmüller presented the distribu-
tion of the roots s� for the case of a single j shell and for
two nuclei in the sd shell. In Fig. 27, we show s��J� ver-
sus J for n=6 identical nucleons in the j=19/2 shell.
Similar results have been found in all other cases �differ-
ent nucleon numbers in the same shell and two nuclei in
the sd shell�. All roots are smooth functions of total spin
J. One root is substantially bigger than the rest. The
associated two-body operator is the monopole operator

and essentially determines the centroid of the shell-
model spectrum. These features can be understood
semianalytically �Papenbrock and Weidenmüller, 2004�.
Identically vanishing eigenvalues are related to con-
served quantum numbers. For instance, the matrix rep-

resentation of the two-body operator J�2−J�J+1� �with J�

the total spin operator� can be written as a linear com-
bination of the matrices C�JT� ;��; that linear combina-
tion vanishes identically, and similarly for total isospin T.

4. Preponderance of spin-0 ground states in the TBRE

The discovery by Johnson et al. �1998� of the prepon-
derance of spin-0 ground states used a specific version of
the TBRE. That version favors neither a particle-
particle nor a particle-hole representation, and they re-
fer to it as the random quasiparticle ensemble. Follow-
ing Johnson et al. �1998�, we denote the two-body matrix
elements j3j4st
Vres
j1j2st� appearing in Eq. �34� by V���,
where � and �� label the two-body states 
j1j2st� and

j3j4st�. The V��� have zero mean values and second mo-
ments given by

V���V��� =
v2

�2s + 1��2t + 1�
������� + ������� . �45�

Here v2 is a constant, i.e., independent of all the quan-
tum numbers. The factor 1/ �2s+1��2t+1� guarantees
that this a random quasiparticle ensemble. The single-
particle energies ��j in Eq. �35� are neglected.

Johnson et al. �1998� found that for several nuclei in
the sd shell the probability of finding a ground state with
spin 0 lies between 2/3 and 3/4, although the total frac-
tion of spin-0 states is less than 10%. This result is
known as the preponderance of spin-0 ground states. It
holds for the random interaction �45�. That interaction
does not possess a strong pairing force �the agent usually
held responsible for the preponderance of spin-0 ground
states in actual nuclei�. Other regularities were also ob-
served �Johnson et al., 1998, 1999; Zhao, Arima,
Shimizu, et al., 2004�. We confine ourselves to the pre-
ponderance of spin-0 ground states. A large number of
theoretical papers is devoted to this phenomenon. We
confine ourselves to the two successful explanations that
have been offered for the phenomenon and refer the
reader to Zelevinsky and Volya �2004� and Zhao, Arima
and Yoshinaga �2004� for further references.

The method used by Zhao and Arima �2001� and re-
fined later �Zhao et al. �2002� and Zhao, Arima, and
Yoshinaga �2004�� is based upon a simple counting pro-
cedure. They put one of the N different matrix elements
of the residual interaction equal to �−1� and all others to
zero and calculate the spectrum. The procedure is re-
peated N times, each time with a different nonzero ma-
trix element. Let NJ be the number of times the ground
state is found to have spin J. We have �JNJ=N. The
probability of finding a spin-0 ground state is then esti-
mated as N0 /N. Comparing the results with an average
over many diagonalizations of the TBRE, they found

FIG. 27. �Color online� The square roots of the eigenvalues of
the matrix S���J� �see text� for the j=19/2 shell with six iden-
tical nucleons vs total spin J. From Papenbrock and Weiden-
müller, 2004.
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good agreement for a number of cases �four to six fer-
mions in single j shells and two j shell systems, boson
systems�.

The analysis of Papenbrock and Weidenmüller �2004�
used a two-step argument. �For simplicity, we replace
the quantum numbers J ,T ,� by the single symbol J.�
First, the square of the width �J of the spectrum of levels
with quantum number J is defined as the normalized
variance of the shell-model Hamiltonian. Since shell-
model spectra have approximately Gaussian shape �Mon
and French, 1975�, �J has a direct physical interpreta-
tion. From Eq. �44� we obtain �J

2=��w�
2�J�s�

2�J�. The ar-
gument J on w and s serves as a reminder that both
quantities depend on J. That dependence is weak, how-
ever, at least for the eigenvalues; see Fig. 27. More im-
portantly, the spectral widths depend via w� on the same
random variables v� and are, therefore, strongly corre-
lated: They tend to be all large or all small for a given
realization of v�. The variances are biggest when many
terms contribute almost uniformly to the sum over �;
Fig. 28 shows that this is the case for �0. Altogether the
correlations favor either �0 or the spectral width of the
largest spin. Second, the quantity of interest is RJ, the
largest �or smallest� eigenvalue of the spectrum of levels
with spin J. �There is no distinction between the two
because the v� have random signs.� Numerical calcula-
tions show that the linear relation RJ=rJ�J holds with rJ
practically constant �i.e., independent of the realization
of the v��. For the states with J=0 this is shown for six
identical nucleons in the j=19/2 shell in the inset in Fig.
28. The dependence of rJ on J is largely determined by
D�J�, the dimension of Hilbert space. Typically, D�J� de-
creases with increasing J and shows odd-even staggering.
Both features are present in rJ; see Fig. 28. These ten-
dencies of rJ suppress the competition of the spectral
width belonging to the largest spin and favor R0 over all
other RJ; see Fig. 28. The explanation carries over to
other cases including nuclei with an odd number of
nucleons. In the nuclei 20Ne and 24Mg, it leads to a semi-

quantitative agreement with numerical TBRE calcula-
tions �Papenbrock et al., 2006�.

The method of Papenbrock and Weidenmüller �2004�
was improved by Yoshinaga et al. �2006�. They consid-
ered, for instance, a single j shell with identical nucleons.
The energy E�J� of the lowest state of spin J was E�J�
=D�J�−1 Tr�H�− J�J. This equation differs from that of
Papenbrock and Weidenmüller �2004� by inclusion of
the trace of H and by the fact that an analytical form for
the function  J was proposed. The trace of H vanishes
upon taking the ensemble average but, for each realiza-
tion, fluctuates around zero. Inclusion of the trace in the
equation for E�J� removes the scatter of the points
around the best linear approximation to rJ shown in Fig.
28. The function  J was fitted and given analytically as
 J=	0.99 ln D�J�+0.36. Good agreement is obtained for
m=4 to 6 fermions in several single j shells and systems
with two j shells between TBRE results and the predic-
tions based upon this approach. The method also works
for bosons.

5. Correlations between spectra with different quantum
numbers

As pointed out in Sec. V.B.1, the TBRE causes corre-
lations between spectra carrying different quantum
numbers �A ,J ,T ,�� but belonging to the same major
shell. From the point of view of the shell model, this is
not surprising: Switching from one realization of the
TBRE to another is tantamount to using a different re-
sidual interaction; such a different choice of Vres is
bound to affect the spectra of all nuclei in the shell.
However, the existence of such correlations is surprising
from the point of view of RMT and exceeds the tradi-
tional framework of the theory. Moreover, the statistical
analysis of nuclear data has always assumed the absence
of correlations between observables with different quan-
tum numbers. That assumption is put into question by
the TBRE.

Papenbrock and Weidenmüller �2006� displayed cor-
relations in sd-shell nuclei between states in the same
nucleus carrying different quantum numbers and be-
tween states with identical quantum numbers in differ-
ent nuclei. The normalized cross-correlation functions
had maxima of around 6–10 %. Similar figures result by
calculating correlations in actual shell-model spectra by
averaging over 17 sd-shell nuclei �Papenbrock and
Weidenmüller, 2006�.

6. Summary

The studies of the TBRE reviewed above suggest that
chaos is a generic property of the shell model. The
strong mixing is due to the matrices C���JT� ;�� which,
for every major shell, are determined by the geometry of
that shell, by the number of valence nucleons, and by
the quantum numbers �JT��. A complete theory of the
TBRE would have to be based on the analysis of these
matrices; such an analysis is not available yet. As a con-
sequence, there is no analytical proof yet that TBRE

FIG. 28. �Color online� Six identical fermions in a j=19/2
shell. Inset: Spectral radius R0 vs spectral width �0 �data
points� and the linear fit �line�. Bottom: Scaling factor rJ vs J.
Top: Probability that the ground state has spin J �points�, prob-
ability that spin J has the largest spectral width �solid line�, and
probability that the product rJ�J is maximal �dashed line�.
From Papenbrock and Weidenmüller, 2004.
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spectra do obey Wigner-Dyson statistics. TBRE and
GOE are very different; in the TBRE there exist spec-
tral correlations that are totally absent in the GOE.

C. Constrained ensembles

The spectral fluctuation properties of both the embed-
ded ensembles and the TBRE are known only through
numerical simulations. Such studies are necessarily con-
fined to matrices of small dimensions N. A generic an-
swer �valid for any N� can only be obtained analytically.
A renewed attempt at such an answer was made by Pa-
penbrock et al. �2006�. They introduced and studied con-
strained Gaussian random-matrix ensembles. We review
here the unitary case.

The starting point is a complete basis of N2 orthonor-
mal Hermitian matrices B� in the N-dimensional Hilbert
space. Orthonormality is defined in terms of the trace,

B�
B�� = Tr�B�B�� = ��. �46�

We note that in contrast to Sec. V.B.3 we do not include
the matrix dimension in the definition �46�. Any Hermit-
ian matrix H can be expanded in terms of that basis,

H = �
�=1

N2

h�B�. �47�

Taking the N2 complex coefficients h� in Eq. �47� as un-
correlated Gaussian-distributed random variables with
zero mean value and a common second moment, one
obtains the GUE. A constrained ensemble is obtained
by requiring a subset �hq� of the expansion coefficients
h� in Eq. �47� to vanish identically. �It was shown in Sec.
V.B.3 that the TBRE can be viewed as a constrained
ensemble, and it is easy to see that the same statement
holds for the embedded ensembles.� The resulting en-
semble is not unitarily invariant, however. Unitary in-
variance is restored by integrating the constraining con-
dition �q�Bq 
H�� over the unitary group; see Sec. II.B.
This yields the following probability density of the ma-
trices H:

W�H� � exp�−
N

2	2 H
H��

� dU��

q
�UBqU†
H��� . �48�

The first factor on the right-hand side is the same as in
Eq. �10�. The second factor represents the constraints. It
is unitarily invariant and, therefore, does not affect the
eigenvector distribution. The eigenvalue distribution of
the constrained ensemble differs from that on the right-
hand side of Eq. �12� by the additional factor

F�E1, . . . ,EN� =� dU��
q
�Bq
UEU†��� . �49�

Here E is the diagonal matrix of eigenvalues.
In the GUE, quadratic level repulsion is a conse-

quence of the Vandermonde determinant ����
E�−E�


appearing on the right-hand side of Eq. �12�. Level re-
pulsion is lifted by the constraints if and only if
F�E1 , . . . ,EN� is singular whenever two eigenvalues coin-
cide. Using Fourier transformation, one replaces each of
the delta functions by an integral over a plane wave. The
function F�E1 , . . . ,EN� can then be written as a Harish-
Chandra-Itzykson-Zuber integral �Harish-Chandra,
1957; Itzykson and Zuber, 1980�. Inspection of the result
of the integration yields a sufficient condition for
F�E1 , . . . ,EN� not to be singular. In its simplest form,
that condition reads

NQ�N�N − 1�/2. �50�

Here NQ is the number of constraints. It is quite remark-
able that the sufficient condition depends only on NQ.

The result can be extended to the GOE and GSE.
Moreover, other properties �spectral radius, distribution
of matrix elements� of the constrained ensembles can be
investigated and are seen to differ from those of the
canonical ensembles. Relations can be established be-
tween the ensemble defined by the constraints on the set
�hq� of matrix elements, and the one defined by the
complementary set �all h� but the set �hq� are con-
strained�. Unfortunately, the condition �50� does not
cover the physically interesting cases of the TBRE and
the embedded ensemble with two-body interactions.
The spectral fluctuation properties of these ensembles
remain an open theoretical problem.

VI. SUMMARY AND CONCLUSIONS

Comparison of GOE predictions with data reviewed
in Sec. III shows that there is good agreement on spec-
tral fluctuations not only near neutron threshold but also
in the ground-state domain. This is true also for the
three nuclei with complete level schemes. Extensions of
the GOE are used to successfully describe isospin mix-
ing, and to test time-reversal invariance. Deviations
from GOE predictions are found up to several 100 keV
above yrast and in the case of symmetries. An enlarge-
ment of the data basis would be highly desirable. There
is hope that the next generation of large-scale gamma
detectors will contribute pertinent information on the
interesting energy interval 500 keV to 1 MeV above
yrast.

Studies of the spherical shell model, the Nilsson
model, and the interacting boson model reviewed in Sec.
IV show a joint tendency toward strong mixing of the
unperturbed configurations and toward GOE fluctuation
properties. This resolves the apparent dichotomy be-
tween Bohr’s picture of the compound nucleus described
in Sec. II and the independent-particle model. Typically,
the GOE limit is not fully attained, however. For the sd
shell, mixing is strongest for nuclei in the middle of the
shell, but even here the spreading width of the unper-
turbed shell-model configurations located in the center
of the spectrum is 20 MeV or so and, thus, smaller than
the range of the spectrum.
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Random-matrix ensembles patterned after nuclear-
structure concepts were reviewed in Sec. V. The embed-
ded two-body random ensemble possesses strong predic-
tive power for average properties such as the shape of
the spectrum or the distribution of transition strengths.
This is true even though that ensemble disregards con-
served quantum numbers such as spin or isospin. The
two-body random ensemble is closest in structure to the
shell model. The strong mixing of shell-model configu-
rations is seen to be a generic feature of the shell model.
At the same time, the two-body ensemble possesses fea-
tures that go beyond the GOE such as the correlations
between spectra with different quantum numbers. It
would be intriguing to find such correlations experimen-
tally.

Following the Bohigas-Giannoni-Schmit conjecture,
we have identified chaos in nuclei with the occurrence of
spectral fluctuations of the GOE type. Closer inspection
has shown, however, that chaos in nuclei differs from
that in few-degrees-of-freedom systems. The evidence
presented shows that chaos is caused by the residual
two-body interaction of the shell model. Shell structure
is a typical feature of fermionic many-body systems. The
residual interaction strongly mixes the shell-model con-
figurations within a major shell, but leaves the overall
shell structure largely intact. Evidence for this assertion
comes not only from the success of shell-model calcula-
tions in the ground-state domain, but also from the suc-
cess of the optical model for elastic scattering and from
the existence of distinct maxima in the neutron strength
function. The existence of regular features in nuclei also
attests to the incomplete mixing of the shell-model con-
figurations. We mention the regularities in the ground-
state domain caused by the pairing force, collective mo-
tion, and doorway states.

The evidence presented in this review strongly sup-
ports the view that chaos is a generic property of nuclei.
At the same time, we are far from having a complete
theoretical understanding of chaos in nuclei. We lack an
overall many-body theory that would permit the calcu-
lation of nuclear spectra from the nucleon-nucleon inter-
action within controlled approximations �except for the
lightest nuclei�. In contrast to few-degrees-of-freedom
systems, there is also no theoretical framework such as
the semiclassical approximation that would establish the
connection between classical chaos and spectral fluctua-
tion properties of the RMT type. On a more mundane
level, the evidence presented above for chaos in the
spherical shell model comes mainly from the sd shell.
Although the arguments seem generic, it would be grati-
fying to have similar evidence in other major shells.
Would the sizable correlations between spectra carrying
different quantum numbers found in the two-body ran-
dom ensemble persist with increasing shell size? Like-
wise, it is desirable to attain a deeper analytical under-
standing of how chaos arises within a major shell. Does
the difference between the GOE and the two-body ran-
dom ensemble entail other differences beyond those cor-
relations? Also, the analysis of properties of the matri-
ces C�� in Eq. �35� within a single j shell would be of

substantial interest, coupled, if possible, with the proof
of GOE spectral fluctuation properties for j�1.

Chaos limits the predictability of spectral properties in
nuclei in terms of simple models. For instance, the shell-
model eigenfunctions become mixed ever more strongly
as the excitation energy increases; see Sec. IV.A.2. Such
strong mixing requires the presence of many matrix ele-
ments of the two-body interaction and cannot be mod-
eled in simple terms. We are not aware of any attempts
to formulate and quantify that limitation, however.

The way it is defined in this review, chaos is a statisti-
cal property of levels carrying identical quantum num-
bers. Regular dynamical features in nuclei typically re-
late several states carrying different quantum numbers.
The coexistence of those two aspects of nuclear motion
deserves deeper analysis. Hopefully, it would also shed
light on the dynamical properties of other fermionic
many-body systems.
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