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The progress in our understanding of several aspects of turbulent Rayleigh-Bénard convection is
reviewed. The focus is on the question of how the Nusselt number and the Reynolds number depend
on the Rayleigh number Ra and the Prandtl number Pr, and on how the thicknesses of the thermal and
the kinetic boundary layers scale with Ra and Pr. Non-Oberbeck-Boussinesq effects and the dynamics
of the large scale convection roll are addressed as well. The review ends with a list of challenges for
future research on the turbulent Rayleigh-Bénard system.
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I. INTRODUCTION

Rayleigh-Bénard (RB) convection—the buoyancy
driven flow of a fluid heated from below and cooled
from above—is a classical problem in fluid dynamics. It
played a crucial role in the development of stability
theory in hydrodynamics (Chandrasekhar, 1981; Drazin
and Reid, 1981) and had been paradigmatic in pattern
formation and in the study of spatial-temporal chaos
(Getling, 1998; Bodenschatz et al., 2000). From an ap-
plied viewpoint, thermally driven flows are of utmost
importance. Examples are thermal convection in the at-
mosphere [see, e.g., Hartmann er al. (2001)], in the
oceans [see, e.g., Marshall and Schott (1999)] [including
thermohaline convection; see, e.g., Rahmstorf (2000)], in
buildings [see, e.g., Hunt and Linden (1999)], in process
technology, and in metal-production processes [see, €.g.,
Brent er al. (1988)]. In the geophysical and astrophysical
context, we mention convection in the Earth’s mantle
[see, e.g., McKenzie et al. (1974)], in the Earth’s outer
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core [see, e.g., Cardin and Olson (1994)], and in stars
including our Sun [see, e.g., Cattaneo et al. (2003)]. Con-
vection has been associated with the generation and re-
versal of the Earth’s magnetic field [see, e.g., Glatzmaier
and Roberts (1995)].

Even if one restricts oneself to thermally driven flows
in a closed box, there are so many aspects that not all of
them can be addressed in this single review. We focus on
developed turbulence when spatial coherence through-
out the cell is lost and only on the large scale dynamics
of the flow and aspects intimately connected with it,
such as the boundary layer structures. The scaling of the
spectra of velocity and temperature fluctuations, or of
the corresponding structure functions, will not be ad-
dressed. These issues had been discussed in the review
by Siggia (1994), but meanwhile considerable progress
has been achieved, in particular on the question of
whether and where in the flow to expect Bolgiano-
Obukhov scaling (Bolgiano, 1959; Obukhov, 1959; Mo-
nin and Yaglom, 1975) of the structure functions; see,
e.g., Calzavarini et al. (2002); Sun et al. (2006); Kunnen et
al. (2008). For a very recent review on these issues, we
refer to Lohse and Xia (2010).

The question to be asked about the Rayleigh-Bénard
problem is as follows: For a given fluid in a closed con-
tainer of height L heated from below and cooled from
above, what are the flow properties inside the container
and, in addition, what is the heat transfer from bottom
to top? Here spatially and temporally constant tempera-
tures are assumed at the bottom and top. In Sec. III we
discuss to what degree this assumption can be justified in
reality (Chaumat er al, 2002; Verzicco, 2004; Brown,
Funfschilling, et al., 2005).

The problem is further simplified by the so-called
Oberbeck-Boussinesq (OB) approximation (Oberbeck,
1879; Boussinesq, 1903; Landau and Lifshitz, 1987) in
which the fluid density p is assumed to depend linearly
on the temperature,

p(T) = p(To)[1 - B(T - Ty)], 1)

with B the thermal expansion coefficient. In addition, it
is assumed that the material properties of the fluid such
as B, the viscosity v, and the thermal diffusivity « do not
depend on temperature. The governing equations of the
RB problem are then the Oberbeck-Boussinesq equa-
tions (Landau and Lifshitz, 1987)

(?tu,- + ujﬁju,» = - ﬁlp + V(9]<2u,- + ﬂgaﬁ 0, (2)

3,0+ ;0,0 = K70 3)

for the velocity field u(x,?), the kinematic pressure field
p(x,1), and the temperature field 6(x,7) relative to some
reference temperature. Here and in the following we as-
sume summation over double indices; 9; is the Kro-
necker symbol. The Oberbeck-Boussinesq equations are
assisted by continuity du;=0 and the boundary condi-
tions u=0 for the velocities at all walls, 6(z
=-1./2)=A/2 for the temperature at the bottom plate,
and 6(z=L/2)=—A/2 for the temperature at the top
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plate. At the sidewalls the condition of no lateral heat
flow is imposed. The limitations of the Oberbeck-
Boussinesq approximations are discussed in Sec. VII.

Within the OB approximation and for a given cell ge-
ometry, the system is determined by only two dimen-
sionless control parameters, namely, the Rayleigh num-
ber and the Prandtl number,

L3A
Ra= ,Bg_’ Pr=

KV

X I=

(4)

The cell geometry is described by its symmetry and one
or more aspect ratios I'. For a cylindrical cell '=d/L,
where d is the cell diameter.

The key response of the system to the imposed Ra is
the heat flux H from bottom to top. The dimensionless
heat flux Nu=H/AAL™" is the Nusselt number. Here A
=cppk is the thermal conductivity. Within the Oberbeck-
Boussinesq approximation one obtains for incompress-
ible flow

_ (u,0) 4 — kI O) 4

Nu =
KAL

(5)

Here (), denotes the average over (any) horizontal
plane and over time. Correspondingly, {-);; used below
denotes the volume and time average.

Another key system response is the extent of turbu-
lence, expressed in terms of a characteristic velocity am-
plitude U, nondimensionalized by vL~! to define a Rey-
nolds number

U

Re=—7.
vL

(6)

As we show in Sec. IV, there are various reasonable pos-
sibilities to choose a velocity, e.g., the components or the
magnitude of the velocity field at different positions, lo-
cal or averaged amplitudes, turnover times or frequency
peaks in the thermal spectrum, etc. In some parameter
ranges these amplitudes differ not only in magnitude but
even show different dependences on Ra and Pr (Brown
et al., 2007; Sugiyama et al., 2009). Mostly we restrict
ourselves to that Reynolds number which is associated
with the large scale circulation (LSC), also called the
“wind of turbulence” U (Niemela et al., 2001; Xia et al.,
2003; Sun, Xia, and Tong, 2005). There is discussion in
the literature whether or not the LSC evolves out of the
well-known cellular structures at small Ra. On the one
hand, Krishnamurti and Howard (1981) performed ex-
periments from which they concluded that the LSC is
not a simple reminder and continuation of the roll struc-
ture observed just after the onset of convection. On the
other hand, we are not aware that their observations
have been confirmed. Even an explicit search for such a
mode as Krishnamurti and Howard (1981) reported was
not successful; see the review by Busse (2003) and
Hartlep et al. (2005). They concluded that the LSC at
large Ra indeed is a reminder of the low Ra structures.
The dynamics of the large scale wind, its azimuthal os-
cillation, diffusion, reorientation, cessation, and possible
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(b)
FIG. 1. (Color online) Plumes and flow field. (a) Shadowgraph visualization of rising and falling plumes at Ra=6.8x 10%, Pr
=596 (dipropylene glycol) in a I'=1 cell. From Shang et al., 2003. (b) Streak picture of temperature sensitive liquid crystal spheres
taken near the top cold surface in a I'=1 cell at Ra=2.6 X 10° and Pr=5.4 (water), in order to visualize plume detachment. The view
shows an area of 6.5 cm X4 cm. From Du and Tong, 2000. (c) Time-averaged velocity-vector map in the plane of the LSC at
Ra=7.0%x10%. Adapted from Sun, Xia, and Tong, 2005.

breakdown at very large Ra are discussed in detail in
Sec. VIII.

The key question to ask is: How do Nu and Re de-
pend on Ra and Pr? The experimental situation will be
the subject of Sec. III for Nu(Ra,Pr) and Sec. IV for
Re(Ra,Pr). Results from numerical simulations are re-
ported in Sec. V. However, first (Sec. II) we summarize
older theories (Sec. II.LA) and then (Sec. II.B) the
Grossmann-Lohse (GL) theory (Grossmann and Lohse,
2000, 2001, 2002, 2004). In Sec. I1.C we discuss theories
about a possible asymptotic regime at very large Ra and
strict upper bounds for Nu.

Section VI is devoted to the structure and width of the
thermal and kinetic boundary layers (BLs). The thermal
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BLs play a crucial role in determining the heat transfer,
and the kinetic BLs provide viscous dissipation of the
LSC. Another important feature is the thermal plumes
(Zocchi et al., 1990; Kadanoff, 2001; Funfschilling and
Ahlers, 2004; Xi et al., 2004; Zhou et al., 2007b) that
detach from the thermal boundary layers; they contrib-
ute to the driving of the flow. In order to give an idea of
the importance and organization of these plumes and
their shapes (for large Pr) we show their shadowgraph
visualization in Fig. 1(a), taken from Shang et al. (2003).
Figure 1(b) shows a streak picture of the temperature
distribution close to the upper plate, including a detach-
ing plume for medium Pr. Figure 1(c) is a velocity-vector
map of the LSC.
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TABLE 1. Power-law exponents for Nu and Re as functions of Ra and Pr predicted by theories
developed prior to the review by Siggia (1994). The exponents are defined by Egs. (7) and (8).
Whereas Re is based on the large scale wind velocity, Reg, is based on the velocity fluctuations.

Reference Pr and Ra range YNu aNu YRe YReye QRe
Davis (1922a, 1922b) Ra small 1/4
Malkus (1954) 1/3
Kraichnan (1962) Ra ultimate, 1/2 1/2 1/2 -1/2
Pr<0.15
Ra ultimate, 1/2 -1/4 1/2 -3/4
0.15<Pr=1
Spiegel (1971) Ra ultimate 1/2 1/2 1/2 -1/2
Castaing et al. (1989) 2/7 1/2 3/7
Shraiman and Siggia (1990) Pr>1 2/7 -1/7 3/7 -5/7
Yakhot (1992) 5/19 8/19
Zaleski (1998) 217
Cioni et al. (1997) Pr<1 2/7 217 3/7 —4/7

As mentioned, Sec. VII is devoted to non-Oberbeck-
Boussinesq effects and Sec. VIII deals with the global
wind dynamics. In Sec. IX we outline some major issues
in Rayleigh-Bénard convection for future research.

II. THEORIES OF GLOBAL PROPERTIES: THE NUSSELT
AND REYNOLDS NUMBER

A. Older theories for Nu(Ra,Pr) and Re(Ra,Pr)

For a detailed discussion of the theories developed
prior to the review by Siggia (1994) we refer the reader
to that paper and to Chandrasekhar (1981). These theo-
ries predicted power laws

Nu ~ Ra"™uPrNu, (7)

Re ~ Ra"RePr?Re (8)

for the dependences of Nu and Re on Ra and Pr. A
summary of predicted exponents is given in Table L
Early experiments were of limited precision, and were
consistent with power-law dependences over their lim-
ited ranges of Ra and Pr.

The conceptually easiest early theory is Malkus’
marginal-stability theory of 1954. It assumed that the
thermal BL thickness adjusts itself so as to yield a criti-
cal BL Rayleigh number. This immediately gave yny
=1/3. After the experiments by Chu and Goldstein
(1973), Threlfall (1975) and the later ground-breaking
Chicago experiments in cryogenic helium (Heslot et al.,
1987; Castaing et al., 1989; Wu et al., 1990; Sano et al.,
1989; Procaccia et al., 1991) had suggested a smaller
power-law exponent, the Chicago group developed the
mixing-zone model (Castaing et al., 1989) which later
was extended by Cioni ef al. (1997) to include the
Prandtl-number dependences. The central result was
Ynu=2/7. The same scaling exponent could also be ob-
tained from the BL theory of Shraiman and Siggia
(1990), assuming a turbulent boundary layer. The as-
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sumptions of that theory are, however, very different
from those of the mixing-layer theory, leading to very
different power-law exponents for the dependences on
the Prandtl number; see Table 1.

As we show later, the assumption of a fully developed
turbulent BL is far from being fulfilled in the parameter
regime of the Chicago experiments. That can already be
seen from an estimate of the coherence length € of the
RB flow. Taking the data from Procaccia et al. (1991) for
the scaling of the velocity fluctuations and of the cross-
over frequency to the viscous subrange, Grossmann and
Lohse (1993) obtained ¢/L~50 Ra~"32. For the '=1/2
cell of Procaccia et al. (1991) this implies that only at
Ra=~108 the coherence length becomes about 1/3 of the
lateral cell width and 1/6 of its height, a pre-requisite for
independent fluctuations to develop in the bulk. Esti-
mates based on €~107, where 7 is the (locally or glo-
bally defined) Kolmogorov scale, give similar results.
The transition to turbulence in the BL is correspond-
ingly expected only at much large Ra, namely, at Ra
~10' (at the edge of the achievable regime in the Chi-
cago experiments), as we show in the next section.

In any case, at “large enough” Rayleigh number a
transition should occur towards an ultimate Rayleigh-
number regime. Such a regime was first suggested by
Kraichnan (1962). Spiegel (1971) hypothesized that in
that regime the heat flux and the turbulence intensity
are independent of the kinematic viscosity and the ther-
mal diffusivity, which leads to yy,=1/2 (for more details,
see Sec. II.C). Though in those days (1971 and before)
no measured power-law exponent was even close to that
value, that paper has been extremely influential, perhaps
also because from a mathematical point of view no
lower strict upper bound than yy,=1/2 could be proven
to exist for finite Pr [see Doering and Constantin
(1996)].

As shown in Sec. III and IV, the experiments of the
last decade reveal the limitations of most of these older
theories.
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B. Grossmann-Lohse theory for Nu(Ra,Pr) and Re(Ra,Pr)

Given the increasing richness and precision of experi-
mental and numerical data for Nu(Ra,Pr) (Sec. III) and
Re(Ra,Pr) (Sec. IV), it became clear near the end of the
last decade that none of the theories developed up to
then could offer a unifying view, accounting for all data.
In particular, the predicted Prandtl-number depen-
dences of Nu (Shraiman and Siggia, 1990; Cioni et al.,
1997) are in disagreement with measured and calculated
data. Therefore in a series of papers, Grossmann and
Lohse (2000, 2001, 2002, 2004) tried to develop a unify-
ing theory to account for Nu(Ra,Pr) and Re(Ra,Pr) over
wide parameter ranges.

The backbone of the theory is a set of two exact rela-
tions for the kinetic and thermal energy-dissipation rates
€, and €,, respectively, namely,

€= (au(x.0)P)y = §<Nu- 1RaPr2, ©)

A2
€9= (k[ 3,00x,0)*)y, = KPNU. (10)

These relations can easily be derived from the Bouss-
inesq equations and the corresponding boundary condi-
tions [see, e.g., Shraiman and Siggia (1990)], assuming
only statistical stationarity. The central idea of the
theory now is to split the volume averages of both the
kinetic and the thermal dissipation rate into respective
bulk and boundary layer (or rather boundary-layer-like)
contributions,

€,= €,BL T €, bulks (11)

€)= €9BL T €gpulk- (12)

The motivation for this splitting is that the physics of the
bulk and the BL (or BL-like) contributions to the dissi-
pation rates is fundamentally different and thus the cor-
responding dissipation rate contributions must be mod-
eled in different ways. The phrase “BL-like” indicates
that from a scaling point of view we consider the detach-
ing thermal plumes as parts of the thermal BLs. Thus
instead of BL and bulk we could also use the labels pl
(plume) and bg (background) for the two parts of the
dissipation rates. A sketch of the splitting is shown in
Fig. 2. Rather than Eq. (12) one therefore could also
write

€9= €gpl+ Eggs (13)

signaling the contributions from the BL and the plumes
(pl), on the one hand, and from the background (bg), on
the other hand.

Two further assumptions of the GL theory are indi-
cated as well in Fig. 2, namely, that there exists a large
scale wind with only one typical velocity scale U (defin-
ing a Reynolds number Re=UL/v), and that the kinetic
BLs are (scalingwise) characterized by a single effective
thickness A, regardless of the position along the plates
and walls in the flow. As we show in Sec. IV for the
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=

bulk

(b)

FIG. 2. (Color online) Boundary-bulk partition. Sketch of the
splitting of the kinetic (a) and thermal (b) dissipation rates on
which the GL theory is based. In both figures the large scale
convection roll with typical velocity amplitude U is sketched.
The typical width of the kinetic BL is A, whereas the typical
thermal BL thicknesses and the plume thicknesses are Ay Out-
side the BL/plume region is the background flow (bg).

velocity scales and in Sec. VI for the BL thicknesses,
both assumptions are simplifications. In particular, even
the scaling of the kinetic BL thickness with Ra may be
different at the sidewalls as compared to the top and
bottom plates [see Xin ef al. (1996), Xin and Xia (1997),
Lui and Xia (1998), Qiu and Xia (1998b)]. Nevertheless,
for the sake of simplicity and in view of Occam’s razor—
and consistent with the recent experimental results for
the BLs by Sun et al. (2008)—these simplifications have
been used.

Accepting the splitting (11) and (12) [or Eq. (13)], the
immediate consequence is that there are four main re-
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gimes in parameter space: regime I in which both €, and
€y are dominated by the BL-plume contribution, regime
IT in which €, is dominated by €, ,x and €, by €y,
regime III in which ¢, is dominated by €,p; and €, by
€p.bulk> and finally regime IV in which both €, and ¢, are
dominated by their bulk contributions. It remains to be
determined where in Ra-Pr parameter space the cross-
overs between the different regimes are located.

The next step is to model the individual contributions
to the dissipation rates. We start with the bulk contribu-
tions. The turbulence in the bulk is driven by the large
scale wind U. The corresponding time scale therefore is
L/U, and from Kolmogorov’s energy-cascade picture
[see, e.g., Frisch (1995)] the bulk energy dissipation rate
scalingwise becomes

v
€ubulk ~ = ER@- (14)
This seems justified because the turbulence in the bulk is
more or less homogeneous and isotropic (Sun et al.,
2006; Zhou, Sun, et al., 2008). The same reasoning can
be applied to the temperature equation; see Frisch
(1995). The bulk thermal dissipation rate then becomes
UA?  A?
€gbulk ™ T = KEPI'R@. (15)
The scaling of the boundary-layer contributions to the
dissipation rates are estimated from their definitions as
BL averages €,p =¥W[dujxeBL,)?)y and eyp;
= k([ 3;6(x € BL,1)]*)y,, namely,

U\,
~p—— 16
€, BL V)\i I (16)
and
A%\,
~K—&5—. 17
€9BL K )\%) I (17)

As detailed by Grossmann and Lohse (2004), the kinetic
and thermal BL thicknesses A\, and \4 are obtained from
the Prandtl-Blasius BL theory (Prandtl, 1905; Blasius,
1908; Meksyn, 1961; Schlichting and Gersten, 2000;
Cowley, 2001):

% =aRe ™', (18)
where a is a dimensionless prefactor of order 1, and

N { Re "?Pr'? forPr<1, (19)

L Re ?Pr 13 for Pr> 1. (20)

Note that scalingwise laminar BL theory is applied
which seems justified because of the low prevailing
boundary Reynolds numbers. Further below it will be
estimated when this assumption breaks down for in-
creasing Re. In the small Pr regimes [Eq. (19)] (label I

'Note that the Bolgiano-Obukhov length scale does not enter
here.
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(b) |Og10 Ra

FIG. 3. (Color online) Phase diagram in Ra-Pr plane. (a) Phase
diagram in the Ra-Pr plane according to Grossmann and
Lohse (2000, 2001, 2002, 2004): The upper solid line means
Re=Re,; the lower nearly parallel solid line corresponds to
€, BL= €y bulk; the curved solid line is €1 =€ pu; and along
the long-dashed line \,=\,, i.e., 2aNu=Re. The dotted line
indicates where the laminar kinetic BL is expected to become
turbulent, based on a critical shear Reynolds number Re;‘
=420 of the kinetic BL; cf. Landau and Lifshitz (1987). Data
points where Nu has been measured or numerically calculated
have been included (for aspect ratios I'~=1/2-1): squares, Cha-
vanne et al. (1997); diamonds, Cioni et al. (1997); circles,
Niemela et al. (2000a); stars, Ahlers and Xu (2001); stars,
Funfschilling er al. (2005), Nikolaenko et al. (2005); triangles
down, Xia er al. (2002); triangles down, Sun, Xi, et al. (2005);
triangles right, du Puits, Resagk, Tilgner, et al. (2007); triangles
up, Verzicco and Camussi (1999) (numerical simulations);
squares, Kerr and Herring (2000) (numerical simulations); tri-
angles up, Amati et al. (2005), Verzicco and Sreenivasan (2008)
(numerical simulations). Note that some of the large Ra data
probably are influenced by NOB effects. (b) An enlargement
of part (a).

stands for lower in Fig. 3) the kinetic BL is nested in the
thermal one, N\, <\, whereas in the large Pr regimes
[Eqg. (20)] (u for upper in Fig. 3) the thermal BL is nested
in the kinetic one, Ay<\,. The transition from one re-
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gime to the other is modeled “by hand” through a cross-
over function f(x,)=(1+x3)~"* of the variable x,=\,/\,
=2aNu/Re'?; see Grossmann and Lohse (2001). Note
that in the crossover function f(\,/\,) the thermal BL
thickness Ay, has been replaced by L/(2Nu). Finally,
when Re becomes very small the expression (18) for the
kinetic BL thickness diverges, while the physical \, is
limited instead by an outer length scale of the order of
the cell height L. This saturation is happening at some
small but a priori unknown Reynolds number Re,.
The transition towards the saturation regime is again
modeled by hand with the crossover function g(x;)
=x;(1+x7)"" with x; =\,(Re)/\,(Re,)=Re./Re [see
Grossmann and Lohse (2001) for details].

When putting the splitting and modeling assumptions
together with the two exact relations (9) and (10), one
finally obtains two implicit equations for Nu(Ra,Pr) and
Re(Ra,Pr) with six free parameters a, Re., and ¢;, i
=1,2,3,4:

Re?
et
g(VRe /Re)

20N Re. 12
Nu-1=c3Re!2Pri] —f’_ug< \/ —e‘)
VRec Re
2a Nu Re,
+cyPrRef]l ——=gl\/—/— |- (22)
VRe, Re

The —1 on the left-hand side of Eq. (22) stems from the
contribution of the molecular transport, which survives
when the Peclet number Pe=RePr=UL/«k tends to
zero, Pe—0; cf. Grossmann and Lohse (2008). This hap-
pens if either the velocity field decreases, u;— 0, or if the
thermal diffusivity becomes large, k—<. In either case
the time-averaged Oberbeck-Boussinesq equation (3)
takes the form 8]20:0, whose solution with the proper
boundary conditions is §=—AL~!z. Inserting this solu-
tion into the Nusselt number definition (5) gives
limp,_,g Nu=1. Of course the —1 does not matter much
in the turbulent regime with large Nu.

The six parameters in Egs. (21) and (22) were adjusted
so as to provide a fit to 155 data points for Nu(Ra,Pr)
from Ahlers and Xu (2001). These data were in the
range 3X 10’<Ra<3x10’ and 4<Pr<34foral=1 cy-
lindrical cell. As elaborated by Grossmann and Lohse
(2002), in order to fix the parameter a one also needs to
know Re for (at least) one pair (Ra,Pr); Grossmann and
Lohse (2002) took that value from Qiu and Tong
(2001b). The final results were a=0.482, ¢;=8.7, ¢,
=1.45, ¢3=0.46, ¢,=0.013, and Re.=1.0. With this set the
data of Ahlers and Xu (2001) were described very well.
Later these data were adjusted for sidewall and plate
corrections. However, the agreement with them as well
as with additional data (Funfschilling et al., 2005) for Ra
up to 310" and Pr=4.38 (see Fig. 4) is still good (see
Sec. II1.C). For the Nu(Ra,Pr) and Re (Ra,Pr) predicted
with these parameters over wide ranges of Ra and Pr we
refer the reader to the figures given by Grossmann and

(Nu-1)RaPr?=c¢ c, Re?, (21)
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FIG. 4. Nusselt number versus Rayleigh number. Reduced Nu
for I'=1, obtained using water (Pr=4.4) and copper plates, as a
function of Ra. Open symbols, uncorrected data. Solid sym-
bols, after correction for the finite plate conductivity. Circles,
Funfschilling et al. (2005). Squares, Sun, Ren, et al. (2005). The
downwards and upwards triangles are upper and lower bounds
on the actual Nusselt number at large Ra; the diamonds origi-
nate from an estimate, see the text for details. The solid line is
the GL prediction (Grossmann and Lohse, 2001).

Lohse (2001, 2002). We mention that in principle one
expects an aspect-ratio dependence of c;, since the rela-
tive contributions of BL and bulk change with aspect
ratio. However, from experiment it is known that the I’
dependence of Nu(Ra,Pr) is very weak in the explored
range of Ra and Pr (see Sec. IIL.E).

After the determination of these six parameters,
Nu(Ra,Pr) and Re(Ra,Pr) are given for all Ra and Pr by
Egs. (21) and (22). In addition, the Ra-Pr parameter-
space structure with all transitions from one regime to
another is also determined. The corresponding phase
diagram is reproduced in Fig. 3; the respective “pure”
power laws for Nu and Re of the various regimes are
given in Table II.

One central assumption of the GL theory is the appli-
cability of the scaling of the Prandtl-Blasius laminar BL
theory. For increasing Ra and thus increasing Re this
assumption will ultimately break down; the BLs are ex-
pected to become turbulent as well. Grossmann and
Lohse (2000, 2002) provided an estimate for the Ray-
leigh number at which the breakdown occurs, based on
the shear Reynolds number Re,=\,U/v=a\Re. For RB
experiments using classical fluids over “typical” Ra and
Pr ranges Re, is not particularly large. This reflects the
relatively low degree of turbulence in the interior, which
also becomes evident from flow visualizations similar to
those by Tilgner et al. (1993), Xia et al. (2003), Funfschill-
ing and Ahlers (2004), and Xi et al. (2004). For example,
with Pr=4 one has Re,=15 when Ra=10% and Re
~900, and Re,=190 for Ra=10'* and Re~140 000. The
dotted line in Fig. 3 is based on the critical value Re;
=420. Beyond Rej the kinetic BLs become fully turbu-
lent and the Prandtl-Blasius scaling is no longer appli-
cable. It is not totally clear what will happen in this ul-
timate regime of thermal convection. That will be
discussed in the next section.
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TABLE II. The pure power laws for Nu and Re in the various regimes. From Grossmann and Lohse,

2001.
Regime Dominance of BLs Nu Re
I, €.BL> €4BL A<\g Ral/4prl/8 Ra!/?pr-3/4
I, N> N Ral/4pr-1/12 Ral2pr-5/6
L. Na=L/4>N, Ral’’ Ra*pr!
1, €.bulks €4BL A<\g Ral/prl/s Ra?PPr—3»
I, > Mg Ral? Ra?PPr-23
111, €.BL» €0bulk > Mg Ra¥7pr1/7 Ra*7Pr-97
1L, N=L14>X\, Ral? Ra??pr-!
v, € bulks €0bulk A<Ng Ra!”2Pr!”? Ra'?pr-172
v, N> Ny Ra'? Ra*?Pr-23

Note that the notion of laminar kinetic BLs in RB
flow should not be confused with time independence or
lack of chaotic behavior. The detaching thermal plumes
introduce time dependences and chaotic behavior into
the kinetic BL; but, as shown by Grossmann and Lohse
(2004), the Prandtl-Blasius scaling laws for the thick-
nesses of the BLs still hold. Assuming a turbulent BL
already for Ra<10'* as done by Shraiman and Siggia
(1990) leads to a dependence of Nu on Pr that disagrees
with experiments and numerical simulations.

A detailed comparison of the GL theory with various
data is given in Secs. III and I'V. Here we stress only that
the theory has predictive power: The determination of
the free parameters was done in the limited parameter
range 3X 10’<Ra<3Xx10° and 4<Pr=34; see stars in
Fig. 3. The predictions of the theory, however, hold over
a much larger domain in the Ra-Pr parameter space.

We further note that due to Eq. (9) knowledge of the
Nusselt number allows for an estimate of the volume
averaged energy dissipation rate and derived quantities.
For example, when taking the conditions of the Oregon
cryogenic helium experiment (Niemela et al., 2000), for
Ra=10'" and Pr=0.7 one obtains either directly from
experiment or from the GL theory a Nusselt number of
120 and with the experimental values L=1 m and v=5
X107 m?/s an energy dissipation rate of ¢,=3
X 107* m?/s’. At Ra=10" and Pr=0.7 one obtains Nu
~2400 and with »=107m?/s a value of ¢,=5
%X 104 m?/s3. Both of these energy dissipation rates are
about three orders of magnitude smaller than in typical
wind tunnel experiments. From the volume-averaged
energy dissipation rate equation (9) one can also obtain
global estimates for the spatial coherence length € which
typically is about ten times the Kolmogorov length scale
n=1"*/€*. For example, for cryogenic helium (Pr
=0.7) at Ra=10" one obtains €/L=107/L
=10Pr'?/[(Nu—-1)"Ra'"*]~=0.08, which is small enough
to allow for the loss of spatial coherence and the onset
of turbulence in the bulk. In contrast, for the same Ra in
water (at Pr=4) one has ¢/L~0.18 and in glycerol (at
Pr=2000) even at Ra=10" one only has €/L=~0.9, so that
there is no developed turbulence. In glycerol, only at
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Ra=10" one obtains ¢/L =<0.2 and thus developed tur-
bulence, according to this GL-model based estimate.

Finally, we note that the GL approach also has been
applied to other geometries and flows: For example,
Eckhardt et al. (2000, 2007a, 2007b) applied it to Taylor-
Couette and pipe flow and Tsai et al. (2003, 2005, 2007)
to turbulent electroconvection.

C. Is there an asymptotic regime for large Ra?, and strict
upper bounds

Kraichnan (1962) later Spiegel (1971) postulated an
“ultimate,” or asymptotic, regime in which heat transfer
and the strength of turbulence become independent
of the kinematic viscosity and the thermal diffusivity.
The physics of this ultimate regime is that the thermal
and kinetic boundary layers, and thus the kinematic vis-
cosity v and the thermal diffusivity x, do not play an
explicit role any more for the heat flux. The flow then
is bulk dominated. With proper nondimensionalization,
and including logarithmic corrections due to viscous
sublayers induced by no-slip boundary conditions,
Kraichnan’s predictions for this regime read

Nu ~ Ra?(In Ra)>?Pr'”2, (23)

Re ~ Ra'?(In Ra)?Pr 12, (24)
for Pr<<0.15, while for 0.15<Pr=1 he suggested

Nu ~ Ra'?(In Ra)~?Pr~4, (25)

Re ~ Ra!?(In Ra)""2pr—34. (26)

The Ra-number dependences agree with the depen-
dences in regimes VI; and VI, of the GL theory (Gross-
mann and Lohse, 2000, 2001, 2002, 2004), except for the
logarithmic corrections. The Pr dependence within the
GL theory in the ultimate regimes VI, and VI, is differ-
ent:

Nu ~ Ra!?Pr'?, (27)
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Re ~ Ra!?pr=12, (28)

Equation (27) was derived first by Spiegel (1971) from a
model for thermal convection in stars.

To illustrate the physical implications of the existence
of the ultimate regime, Acrivos (2008) suggested the fol-
lowing gedanken experiment: Consider RB convection
in a very large aspect ratio sample, with the lateral di-
mension (say, the diameter D of a cylinder) much larger
than the sample height L. Now fix all dimensional pa-
rameters (A, k, v, B, g, and D) and increase the sample
height L, starting from zero, but such that always still
D> L, ie. remain in the large aspect ratio limit. How
does the dimensional heat flux H=NuAA/L behave?
First, H~ L', corresponding to Nu=1. With increasing
L, the decrease will become weaker. The regime Nu
~Ra'”?® corresponds to the dimensional heat flux H be-
ing independent of L. For even further increase of L
(with still D> L), the existence of the ultimate regime
Nu~ Ra'”? would imply that the dimensional heat flux H
would increase again, namely, with L2, This feature
may be considered as counterintuitive. However, our in-
terpretation of the ultimate regime (if it exists) is that,
with fully developed turbulence in the bulk, the increas-
ing sample height L allows for larger and larger eddies
which thus can transport more and more heat from the
bottom to the top plate.

Ever since Kraichnan’s prediction in 1962, researchers
have tried to find evidence for this regime. Various ex-
perimental efforts are discussed in Sec. III.G.

There are also numerical indications of the ultimate
regime: In order to obtain a Nu~ Ra!”? power law, the
classical velocity and temperature boundary conditions
of the RB problem have been modified: Lohse and Tos-
chi (2003) and Calzavarini et al. (2005) performed nu-
merical simulations for so-called “homogeneous” RB
turbulence, in which the top- and bottom-temperature
boundary conditions have been replaced by periodic
ones, with an unstratified temperature gradient imposed.
The idea was to eliminate the BLs in this way. The nu-
merical results of Calzavarini ef al. (2005)—including the
found Prandtl number dependence—are consistent with
the ultimate scaling equations (27) and (28), where the
Reynolds number is that of the velocity fluctuations. As
pointed out by Calzavarini et al. (2006) however, one
should note that the dynamical equations of homoge-
neous RB turbulence allow for exponentially growing
(in time) solutions, i.e., homogeneous RB turbulence
does not have any strict upper bound for Nu.

Such upper bounds do exist for the classical RB prob-
lem. Building on Howard’s seminal variational formula-
tion (Howard, 1963, 1972), Busse (1969) could prove that
Nus=(Ra/1035)"> for any Pr. Later Doering and Con-
stantin (1996) derived a strict upper bound given by
Nu=0.167Ra'>~1. They employed the so-called “back-
ground method” (Doering and Constantin, 1992). The
hitherto absolute best asymptotic upper bound on
Nu(Ra) comes from Plasting and Kerswell (2003), ob-
taining Nu<1+0.026 34Ra'?, which is 20% lower than
Busse’s best estimate. For arbritary Pr no power-law ex-
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ponent of Ra smaller than 1/2 could hitherto be ob-
tained as an upper bound. However, for infinite Pr Con-
stantin and Doering (1999) could prove that Nu< const
x Ra'*[In Ra]?3. This result was improved later to Nu
<0.644 X Ra'’[In Ra]'® by Doering et al. (2006). Otero
et al. (2002) obtained a strict upper bound for Nu for RB
convection with constant heat flux through the plates
(rather than with constant temperatures of the plates),
namely, Nu<const X Ra'? also for this case. We note
that the scaling laws resulting from the GL theory are
compatible with the upper bounds, including those in
the large-Pr limit.

III. EXPERIMENTAL MEASUREMENTS OF THE
NUSSELT NUMBER

A. Overview

During the last two or three decades measurements of
Nu(Ra) as a function of such parameters as I', the extent
of departures from the OB approximation, the deliber-
ate suppression of the large scale circulation (LSC) by
internal obstructions, the roughness of the confining
solid surfaces, or deliberate misalignment relative to
gravity have revealed various aspects of the heat-
transport mechanisms involved in this system. These ef-
forts received a significant boost when it was appreci-
ated that liquid or gaseous helium at low temperatures
offered experimental opportunities not available at am-
bient temperatures (Ahlers, 1974, 1975; Threlfall, 1975;
Behringer, 1985; Niemela and Sreenivasan, 2006b). Ex-
tensive low-temperature measurements of Nu(Ra) were
initiated by the Chicago group (Heslot et al, 1987,
Castaing et al., 1989; Sano et al., 1989), followed by the
Grenoble group (Chavanne et al, 1996, 1997, 2001;
Roche, Castaing, Chabaud, and Hebral, 2001, 2002,
2004) and the Oregon-Trieste group (Niemela, Skrbek,
Swanson, et al., 2000; Niemela et al., 2000a, 2000b, 2001;
Niemela and Sreenivasan, 2003a, 2006a, 2006b). Among
the advantages of the low-temperature environment is
the exceptionally small shear viscosity of helium gas
which, at sufficiently high density, permits the attain-
ment of extremely large Ra. Further enhancements of
the achievable Ra have be attained near the critical
points of several fluids, including helium, where the ther-
mal expansion coefficient diverges and the thermal dif-
fusivity vanishes, yielding a diverging Ra at constant A.
Here, however, it must be noted that on average the
increase of Ra is accompanied by an increase of Pr (see
Fig. 6, bottom) because Pr diverges as well at the critical
point. This makes it difficult to disentangle any influence
of Ra, on the one hand, and of Pr, on the other hand, on
this system. Another unique property of materials at low
temperatures is the extremely small heat capacity and
large thermal diffusivity of the confining top and bottom
plates which permit the study of temperature fluctua-
tions at the fluid-solid interface when the heat current is
held constant and led to the observation of chaos in a
system governed by continuum equations (Ahlers, 1974,
1975). Additional advances in recent times have been
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due to the application of precision measurements, using
classical liquids and gases at ever increasing Ra (Xu ef
al., 2000; Fleischer and Goldstein, 2002; Roche et al.,
2002; Funfschilling et al., 2005; Nikolaenko et al., 2005;
Sun, Ren, et al. 2005) and over a wide range of Pr
(Ahlers and Xu, 2001; Xia et al., 2002).

B. Sidewall and top- and bottom-plate-conductivity effects on
Nu

A serious problem for quantitative measurements of
Nu is the influence of the sidewall (Ahlers, 2000; Roche,
Castaing, Chabaud, Hebral, and Sommeria, 2001; Ver-
zicco, 2002; Niemela and Sreenivasan, 2003a). The wall
is in thermal contact with the convecting fluid and shares
with it, by virtue of the thermal BLs, a large vertical
temperature gradient near the top and bottom and a
much smaller gradient away from the plates. Thus the
current entering and leaving the wall is larger for the
filled sample than it is for the empty one. In the wall
near the top and bottom ends there is also a lateral gra-
dient that will cause a part of the wall current to enter
the fluid in the bottom half of the sample, and to leave it
again in the top half. This will influence the detailed
nature of the LSC (Niemela and Sreenivasan, 2003a).
However, the global heat current is determined prima-
rily by processes within the top and bottom BLs. Thus it
is insensitive to the detailed structure and intensity of
the LSC and is not influenced much by this complicated
lateral heat flow out of and into the wall. Therefore the
problem reduces primarily to determining the current
that actually enters the fluid. Approximate models that
provide a correction for this wall effect have been pro-
posed (Ahlers, 2000; Roche, Castaing, Chabaud, Hebral,
and Sommeria, 2001), but these are of limited reliability
when the effect is large. The cryogenic measurements
have a disadvantage because the sample usually is con-
tained by steel sidewalls that have a relatively large con-
ductivity A,,=0.2 W/m K, while the fluid itself has an
exceptionally small conductivity of order 0.01 W/m K,
giving A,,/A=20. In this case the models suggest that
the correction is about 10% of Nu when Nu=100 (Ra
=4x10°) and of course larger for smaller Nu. Even for
Ra=10"" where Nu=280 a correction of about 6% is
suggested. The net result is that the measured effective
exponent of Nu(Ra) is reduced below its true value by
about 0.02 or 0.03 (Ahlers, 2000). For gases near ambi-
ent temperatures with typical thermal conductivities
near 0.03 W/m K, such as sulfur hexafluoride (SF4) and
ethane (C,Hg), confined by a high-strength-steel side-
wall with a conductivity of 66 W/m K (Ahlers et al.,
2007), one approaches the case of perfectly conducting
lateral boundaries where subtraction of the current mea-
sured for the empty cell actually becomes a good ap-
proximation. Nonetheless, results for Nu, although very
precise, cannot be expected to be very accurate. An ex-
ceptionally favorable case is that of water confined by
relatively thin plastic walls (Ahlers, 2000), where A,,/A
=(0.3. In that case the sidewall correction can be as small
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as a fraction of a percent and may safely be ignored for
most purposes. An intermediate case, for which reason-
ably reliable corrections can be made, is that of organic
fluids confined by various plastic walls which typically
have A,,/A=0O(1) (Ahlers and Xu, 2001). In the case of
liquid metals, which are of interest because they have
very small Prandtl numbers of order 1072 or less, A,,/A
is small (=2 for Hg and =0.2 for Na as examples) and
again the wall corrections are small or negligible.

A second problem involves the finite conductivity A,
of the top and bottom plates (Chaumat et al., 2002; Ver-
zicco, 2004). One would like X=A,L/eANu to be very
large (here e is the thickness of one plate). Else the emis-
sion of a plume from the top (bottom) boundary will
leave an excess (deficiency) of enthalpy in its former lo-
cation, generating a relatively warm (cold) spot near the
plate where the probability of the emission of the next
plume is diminished until this thermal “hole” has dif-
fused away by virtue of the plate conductivity. This issue
was explored experimentally by Brown, Funfschilling,
et al. (2005) by measuring Nu(Ra) with high precision
using water (A=0.6 W/mK) as the fluid and first
Al and then Cu top and bottom plates of identical
shape and size (see Fig. 4). The conductivities A, ¢,
=400 W/m K of Cu and A, ,;=170 W/m K of Al differ
by a factor of about 2.3 and thus yield different reduc-
tions of Nu(Ra) below the ideal value Nu,, for isother-
mal boundary conditions. The results permitted the ex-
trapolation of Nu to Nu, by the use of the empirical
formula

Nu=f(X)Nu,, f(X)=1-exp[-(aX)"]. (29)

The parameters were a=0.275 and b=0.39 for L
=0.50 m, and f(X) was closer to unity for smaller L. At
fixed L both a and b [and thus f(X)] were independent
of I'. This plate-conductivity effect is expected to be
relatively small for the cryogenic and room-temperature
compressed-gas experiments because typically A,/A
=0(10% and larger and thus X is very large unless Nu
becomes extremely large. At modest Ra, say Ra=<3
% 10°, it is small also for Cu plates and organic fluids
where A,/ A=0(10%. The plate correction is a serious
problem for measurements with liquid metals where for
instance, A,/A=50 for Hg and =5 for Na. It has been
suggested that this problem might be overcome using a
composite plate containing a volume partially filled with
a liquid of high vapor pressure. In that case the conden-
sation and vaporization of this fluid inside the plate can
yield an effective plate conductivity much larger than
that of the metal alone. To our knowledge this idea has
not yet been implemented.

The influence of the boundary conditions at the top
and bottom plates was recently addressed through nu-
merical simulations by Amati et al. (2005) and Verzicco
and Sreenivasan (2008). Results for Nu(Ra) obtained
with constant heat-flux boundary conditions (BCs) at the
lower plate and constant-temperature BCs at the upper
plate were compared with Nu(Ra) for constant-
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temperature BCs at both plates. The results for both
BCs agreed reasonably well with each other and with
experiment up to Ra=~10°. This is also found by com-
paring two-dimensional (2D) numerical simulations with
constant temperature and constant flux BCs [Johnston
and Doering (2007, 2009)]. Beyond Ra=10°, early 3D
numerical simulations (Amati et al., 2005; Verzicco and
Sreenivasan, 2008) had suggested differences in the Nus-
selt numbers between constant-temperature and
constant-flux BCs, with the former up to 30% larger
than the latter and the experimental results. However,
later numerical simulations with greater resolution re-
vealed that the Nusselt numbers obtained from the nu-
merical simulations with constant-temperature BCs are
consistent with the constant-flux results and with the
experimental data (Stevens, Verzicco, and Lohse, 2009).
The conclusion is that constant-temperature and
constant-flux boundary conditions within the present nu-
merical accuracy lead to the same Nu.

C. The Nusselt number for Pr=4.38 obtained using water as
the fluid

For Pr=4.4 and I'=1.00 high-accuracy measurements
of Nu (Funfschilling et al., 2005) for 10’ <Ra= 10" using
water and copper plates are shown in Fig. 4 as circles.
We focus on these data because for them the sidewall
corrections are negligible and top- and bottom-plate cor-
rections based on experiments with plates of different
conductivities were made (see Sec. II1.B). The wide Ra
range was achieved using three samples with different L.
The data before the plate correction are given as open
circles. Corrected data are presented as solid circles.

For I'=1 and Pr=4 the experiment reaching the larg-
est Ra was conducted using Cu plates and a water
sample with L=100 cm and reached Ra=10' (Sun,
Ren, et al., 2005). These data are shown as open squares
in the figure. It is gratifying that they are remarkably
consistent with the open circles. However, they used an
empirical plate correction with ¢=0.987 and b=0.30
which yielded the solid squares in the figure. In an at-
tempt to develop an estimate of the uncertainty, we ap-
plied a correction using Eq. (29) and the parameters a
=0.275 and b=0.39 obtained from the L=0.5 m sample.
This yielded the up-pointing triangles. This correction is
too small because measurements with a L=0.25m
sample and the L=0.50 m sample by Brown, Funfschill-
ing, et al. (2005) revealed that the correction increases
with L. Arbitrarily assuming a power-law dependence
a=aygL* and b=byL*, an extrapolation to L=1m
yielded a=0.221 and b=0.264, and via Eq. (29) led to the
down-pointing triangles. We consider the up-pointing
and down-pointing triangles to be estimates of lower
and upper bounds on the actual Nu,.. Arbitrarily adjust-
ing a and b to the intermediate values 0.25 and 0.32,
respectively, yielded the solid diamonds which are con-
sistent with the data from the L =0.5 m sample. New
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measurements in this very large cell with Al plates,
which together with the Cu-plate data will yield better
values of a and b, are anxiously awaited.

The solid line in Fig. 4 is the GL prediction (Gross-
mann and Lohse, 2001). It gives the shape of the experi-
mentally found Nu(Ra) very well for Ra<10'". For
larger Ra the data suggest vy.;=1/3 whereas the model
only reaches such a value for y.; as Ra—o where the
model is no longer expected to be applicable.

A detailed discussion of a number of other measure-
ments for Pr=0O(1) and I'=0.5 or 1 (Niemela er al.,
2000a; Xu et al., 2000; Ahlers and Xu, 2001; Chavanne et
al., 2001; Fleischer and Goldstein, 2002; Roche et al.,
2002, 2004; Niemela and Sreenivasan, 2003a; Ni-
kolaenko and Ahlers, 2003; Nikolaenko et al., 2005; Sun,
Ren, er al, 2005) is beyond the scope of this review,
although we re-visit a few of them in Sec. II1.G. We refer
the reader to publications by Niemela and Sreenivasan
(2003a) and Nikolaenko et al. (2005) where many data
sets have been compared. There is excellent agreement
between several of them; however, in the range Ra
=<10'? there are differences of up to 20% or so between
some of them. It is not clear whether the origin of these
differences is to be found in experimental uncertainties,
perhaps associated with wall or plate corrections or
other experimental effects, or, as suggested by Niemela
and Sreenivasan (2003a), in genuine differences of the
fluid dynamics of the various samples. We find the latter
explanation somewhat unlikely because, as discussed in
Sec. IILF, the heat transport is determined primarily by
boundary layer instabilities and is relatively insensitive
to the structure of the LSC.

D. The Prandtl-number dependence of the Nusselt number

Fluids with Pr>1 are plentiful in the form of various
liquids, although accurate determinations of Nu(Ra) are
in many cases problematic because the required physical
properties are not known well enough. Typical gases not
too close to the critical point have Pr=0O(1). The range
Pr=0.7 is difficult to access because most ordinary fluids
have Pr greater than or close to the hard-sphere-gas
value 2/3 [see, for instance, Hirschfelder et al. (1964)].
Liquid metals, by virtue of the electronic contribution to
the thermal conductivity, have Pr=0(107%) or smaller,
leaving a wide gap in the range from 1072 to 0.7. For the
liquid metals it is difficult to obtain very large values of
Ra because the large thermal conductivity requires large
heat currents and tends to yield small Rayleigh numbers
unless very large samples are constructed. Another
problem for liquid metals (see Sec. III.B) is the uncer-
tainty introduced by a large plate correction; however,
sidewall corrections should be negligible.

In spite of these difficulties, several researchers at-
tempted low-Pr measurements of Nu, in order to study
the Pr dependence. Measurements with mercury (Pr
=0.025) were done by Rossby (1969) (2x10*<Ra<5
% 10%), by Takeshita et al. (1996) and Naert et al. (1997)
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FIG. 5. (Color online) Nusselt number versus Prandtl number.
(a) Nu(Pr) for Ra=6x10° and I'=1 from numerical simula-
tions by Verzicco and Camussi (1999) (circles), from experi-
ments with mercury by Rossby (1969) (diamond), and from the
experiments with sodium by Horanyi et al. (1999) (square). The
straight solid line is a fit to the numerical data with Pr<1
(Verzicco and Camussi, 1999), giving Nu=_8.1Pr014+0.02 The ex-
ponent is in agreement with the low-Pr expectation 1/8 of the
GL theory. The upper triangles are the numerical data for
Ra=107 by Kerr and Herring (2000), the dark circle results
from the experimental data of Cioni et al. (1997) for the same
Ra=107, and the diamonds are numerical results for Ra=10°
by Breuer et al. (2004). The three solid lines are the results
from the GL theory equations (21) and (22) for the three Ray-
leigh numbers of the numerical data sets, namely, Ra=6 X 10°,
Ra=10° and Ra=107, bottom to top. (b) The reduced Nusselt
number NuRa~!# as a function of the Prandtl number for the
two Rayleigh numbers 1.78X10° (upper set) and 1.78x 107
(lower set) in the large-Pr regime. Open circles, Ahlers and Xu
(2001). Solid symbols, Xia et al. (2002). Various organic fluids
were used. From Xia et al., 2002.

(10°<Ra=<10%), by Cioni et al. (1995, 1996, 1997) (5
X 10°<Ra<2Xx10°%), and by Glazier et al (1999) (2
X 10°<Ra<8x10'"). Horanyi et al. (1999) made mea-
surements with liquid sodium (Pr=0.005, Ra<10°). To-
gether with the results for helium gas, air (Pr=0.7), and
water (4<Pr<7), these low-Pr data imply a strong in-
crease of Nu with Pr at constant Ra, as shown in Fig.
5(a). For Pr larger than about 1 a saturation sets in and
Nu becomes Pr independent for some Pr range. Recent
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results using helium gas at low temperatures (Roche et
al., 2002) and covering the range 0.7=<Pr=21 suggest a
very mild, if any, increase with Pr. Results obtained with
various organic fluids (Ahlers and Xu, 2001; Xia et al.,
2002) for Ra=1.78 X 10° and 1.78 X 107 are shown in Fig.
5, bottom, and indicate a maximum in Nu(Pr) near Pr
=3, followed by a very gradual decrease of Nu with Pr
that can be described by Nue«Pr=%% over the Pr range of
the experiments.

One of the successes of the GL model is that it con-
tains most of the features of Nu(Pr) observed in experi-
ment. When Ra is not too large, it predicts Nu~ Pr!/® at
constant Ra for Pr=1, a maximum near Pr=3, and the
very gradual decline for larger Pr. For large Pr the GL
prediction is shown by the solid lines in Fig. 5(b). Al-
though the parameters of the model had been adjusted
using data for Pr up to about 30 (including the open
circles in the figure), the model agrees with the measure-
ments up to Pr=2000. The large Pr behavior resulting
from the GL theory has been discussed by Grossmann
and Lohse (2001) and the small Pr behavior by Gross-
mann and Lohse (2008).

E. The aspect-ratio dependence of the Nusselt number

Several experiments (Wu and Libchaber, 1992; Xu et
al., 2000; Ahlers and Xu, 2001; Fleischer and Goldstein,
2002; Funfschilling et al., 2005; Nikolaenko et al., 2005;
Sun, Ren, ef al., 2005; Niemela and Sreenivasan, 2006a)
have probed the dependence of Nu at constant Ra and
Pr on I'. Using water with Pr=4, it is found for I'<5
that Nu increases, albeit only very slightly, with decreas-
ing I'. For larger I' the measurements up to I'=20 sug-
gest no further change, indicating that a large-I" regime
may have been reached. The weak I' dependence sug-
gests an insensitivity to the nature of the LSC (see also
Sec. II1.F), which surely changes as I' increases well be-
yond 1, and is consistent with the determination of Nu
by instabilities of the thermal BLs. Theoretical efforts to
understand the influence of I"' on Nu have been quite
limited; see, e.g., Grossmann and Lohse (2003) and
Ching and Tam (2006).

F. The insensitivity of the Nusselt number to the LSC

Several experiments suggest that the Nusselt number
in the Ra range below the transition to the ultimate
regime is insensitive to the strength and structure of
the LSC. Cioni et al. (1996) measured Nu(Ra) with a
sample of water with Pr=23 in a container of rectangular
cross section in which the azimuthal LSC orientation
was more or less fixed. They determined the heat flux
both of the original water samples and of the same
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samples after several vertically positioned screens had
been installed within them. In the absence of screens
shadowgraph visualizations showed that plumes gener-
ated at the bottom boundary layer were swept laterally
just above the boundary layer by a LSC. The plumes
rose vertically in the presence of screens, suggesting a
dramatically altered and much weaker LSC. For both
cases the heat current was the same within a few per-
cent. This experiment suggests that the heat current is
determined primarily by the conductance and instability
of the thermal boundary layers which are not influenced
significantly by the LSC, and that the plumes with their
excess enthalpy will find their way to the top one way or
another regardless of any LSC. Cioni et al. (1996) also
found that tilting their cells relative to gravity by an
angle « as large as 0.06 rad, which enhances the Rey-
nolds number of the LSC, had no influence on the heat
transport within their resolution of a few percent.

More recently Ahlers, Brown, and Nikolaenko (2006)
measured Nu(Ra) for a cylindrical water sample with I"
=1 and Pr=4.4 as a function of the tilt angle « with a
precision of 0.1%. They found, for example, a very small
reduction, by about 0.4%, for a tilt angle «=0.12 rad. In
the same experiment the LSC Reynolds number was de-
termined and found to increase by about 25% for Ra
=10° and by about 12% for Ra=10'!. If the Reynolds
number had any direct influence on Nu, one would have
expected an increase of Nu with Re. Again one is led to
conclude that the heat transport is independent of the
vigor of the LSC and thus presumably determined by
LSC-independent boundary layer properties. This find-
ing seems to be in conflict with the final GL results equa-
tions (21) and (22), in which Nu and Re are intimately
coupled to each other.

For a I'=0.5 water sample Chilla e al. (2004a) mea-
sured a reduction of Nu by about 5% when they tilted
their system by about 0.03 rad. Samples of this aspect
ratio are more complex because the LSC can consist
either of a single convection roll or of a more complex
structure approximated by two rolls stacked one above
the other (Verzicco and Camussi, 2003; Xi and Xia,
2008b). They conjectured that the tilt stabilizes the
single-roll structure, and that this structure gives a
smaller heat transport than the two-roll structure, thus
accounting for the reduction of Nu. However, it seems
surprising to us that for I'=0.5 the Nusselt number
should be more sensitive to the LSC than it is for the
I'=1 system.

More evidence for the insensitivity of Nu to changes
in the LSC has been given by Xia and Lui (1997), who
altered the LSC into an oscillating four-roll flow pattern
by placing staggered fingers on the sidewall and found
that Nu changed very little. Xia and Qiu (1999) made an
even stronger perturbation to the system by placing a
baffle at the cell’s mid-height, again finding insensitivity
of Nu.

In addition to the evidence of the insensitivity of
Nu(Ra) to changes in the LSC, there is good evidence
for the sensitivity of Nu(Ra) to the structure of the ther-
mal BLs. This is provided by an experiment of Du and
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Tong (2000, 2001) who covered the top and bottom
plates with triangular grooves that were much deeper
than the BL thickness. They found an enhancement of
Nu(Ra) by as much as 76%, with no significant change in
the dependence on Ra [see also Ciliberto and Laroche
(1999)]. Flow visualization revealed an increase of plume
shedding by the protrusions as the mechanism of the Nu
enhancement. Similar results were found by Stringano
and Verzicco (2006) in their numerical simulations of RB
convection over grooved plates.

G. The dependence of Nu on Ra at very large Ra

Below the transition to the ultimate regime the Nus-
selt number is determined essentially by properties of
the top and bottom thermal boundary layers (see Sec.
IILF). As discussed in Secs. IL.B and II.C, this is ex-
pected to change dramatically in a critical range around
some Ra*, defined by the condition that the shear across
the laminar (albeit fluctuating) kinetic BL due to the
LSC becomes so large that a transition to turbulence is
induced within it. Note that the exact value of Ra* de-
pends on the strength and type of the turbulent noise
that perturbs the BLs, but the transition is expected
to happen once the shear Reynolds number Reg, based
on the kinetic BL thickness, exceeds Re;=0(400). For
I'=1 estimates of Ra* based on the GL theory (Gross-
mann and Lohse, 2002) and corresponding to Re =440
and 220 are shown in Fig. 6(b) as dotted and dashed
lines, respectively (since the parameters of the GL
theory have been determined only for I'=1, an equiva-
lent prediction of Ra* for general I' unfortunately is not
available). These estimates are based on the assumption
that a LSC continues to exist at these very large Ray-
leigh numbers. If it does not, then the transition should
eventually be triggered by a destruction of the kinetic
BL by turbulent fluctuations rather than by a laminar
(albeit fluctuating) flow across the plates. Understanding
the regime above Ra* is of particular importance be-
cause it is believed by many to be the asymptotic regime
that permits, in principle, an extrapolation to arbitrarily
large values of Ra, including those of astrophysical and
geophysical interest.

Experimentally it should be possible to observe the
predicted transition by a dramatic change in the magni-
tude and/or the Rayleigh-number dependence of the
Nusselt number. For Nu(Ra) one expects a change from
an effective power law with vy,;=0.32 as observed below
Ra* to y.4=0.4, which due to the logarithmic correc-
tions is somewhat below the predicted asymptotic value
v=1/2 (see Sec. II.C). Another dramatic change, accord-
ing to the theory, should be the dependence on Pr. For
Ra<Ra* the Nusselt number is essentially independent
of Pr for Pr=1. For Ra>Ra* the Kraichnan prediction
is Nu~Pr~"* [see Eq. (25)], at least for Pr near 1. How-
ever, the GL theory predicts Nu~Pr'? [see Eq. (27)], so
there remains some uncertainty on this issue. Nonethe-
less, any significant Pr dependence would lead to a
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(b) Ra

FIG. 6. (Color online) High-precision data comparison of Nus-
selt versus Rayleigh numbers. (a) Nu/Raff with y.;=0.323 as
a function of Ra. Solid circles, I'=0.5 (Niemela et al., 2000a)
after a correction for plate and sidewall effects (Niemela and
Sreenivasan, 2006b). Open circles, I'=0.5 (Chavanne et al.,
2001). Solid squares, I'=1 (Niemela and Sreenivasan, 2003a).
Solid diamonds, I'=0.67 and 0.43 (Nikolaenko et al., 2005).
Open squares, 1=<I'=3, Pr=0.7 (Fleischer and Goldstein,
2002). Stars in circles, numerical results for I'=1/2, Pr=0.7
(Stevens et al., 2009) for constant-temperature boundary con-
ditions at the plates. Solid (dotted) line, the GL prediction for
Pr=0.8 (Pr=29). (b) The Prandtl numbers corresponding to the
data in (a). In addition, Pr for the measurements for I'=1 with
water in Fig. 4 are shown as diamonds. The dashed and dotted
lines in the bottom figure are estimates of the location of the
transition to the Kraichnan regime for I'=1, assuming critical
boundary layer Reynolds numbers Rej:220 and 440, respec-
tively (since the parameters of the GL theory have been deter-
mined only for I'=1, a prediction of Ra* for smaller I" is not
available).

discontinuity of Nu(Ra) of a size that would depend on
Pr.

From Fig. 6(b), one sees that the measurements with
water at Pr=4.4 and I'=1, 0.67, and 0.43 have not
reached the regime above Ra* predicted for I'=1. As
expected, the measurements for I'=0.67 and 0.43 shown
in Fig. 6(a), as well as those for I'=1 shown in Fig. 4, give
no indication of the BL-turbulence transition. Neither
do other measurements for Pr=4, I' between 0.67 and
20, and Ra up to 5x10'? (Sun, Ren, et al., 2005).

Measurements using cryogenic helium by Niemela et
al. (2000a) for I'=0.5 are shown in Fig. 6, top, as solid
circles. The data were corrected recently by some of the
original authors (Niemela and Sreenivasan, 2006a) for
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sidewall and plate effects (see Sec. IIL.B).? The data are
for Rayleigh numbers as large as 10'7, and for Ra up to
about 10'? they are for Pr=0.7. In the Ra range of over-
lap, they are in excellent agreement with the water mea-
surements for Pr=4.4 and I'=0.67 and 0.43, and with the
results for compressed gases (Fleischer and Goldstein,
2002) with Pr=0.7, 1<I'=3, and 1 X 10°<sRa=<2x10'?,
demonstrating again the insensitivity of Nu to Pr and I’
in this Ra range, as well as a consistency between the
cryogenic and room-temperature experiments. At large
Ra the values of Pr for the Niemela er al. (2000a) data
increased because of the proximity to the critical point.
As shown in Fig. 6(b), the '=0.5 data might have been
expected to cross Ra* somewhere near Ra=10" or 10,
but apparently did not do so since they reveal no change
of the dependence of Nu on Ra. Two possible explana-
tions come to mind. Perhaps the LSC was less vigorous
in this experiment than it was for I'=1. In that case the
expected Re =400 would only be reached at even
higher Ra. Alternatively, at the very high Ra the LSC
may have deteriorated into an unrecognizable entity
consisting essentially only of vigorous fluctuations as
suggested by Sreenivasan et al. (2002). In that case the
GL estimate for Ra* would no longer be quantitatively
applicable.

Within their experimental uncertainty and over the
very wide range 10’<Ra=5Xx 10" the data of Niemela
et al. (2000a) can be described by a single power law
Nu=N, Raff with an effective exponent vy,;=0.323 and
Ny=0.0783. This power law agrees well with a fit to the
data of Fleischer and Goldstein (2002) which (over their
much more narrow range of Ra) yielded Ny=0.0714 and
Yor;=0.327. Both sets of measurements are inconsistent
with an exponent of 1/3. However, they are remarkably
consistent with the prediction of GL, which is shown by
the solid line in the figure. The drop below the power
law for Ra=5 X% 10" is unexplained. One might have at-
tributed it to non-Boussinesq effects, but for gases near
the critical point these would cause an increase of Nu
and not a decrease; see Ahlers et al. (2008) and Sec. VII.
Alternatively, one might look at the variation of Pr as an
explanation, but in the GL model Nu is essentially inde-
pendent of Pr at these large Ra; cf. regime IV, in Sec.
IL.B.

An earlier set of data using helium at low tempera-
tures and I'=0.5 was obtained by Chavanne et al. (1996,
1997, 2001). It extends up to Ra=10", and the results
listed by Chavanne et al. (2001) are shown as open
circles in Fig. 6. In the range 10'’<Ra<10" they agree
very well with the other data shown in the figure. For
smaller Ra they are higher than the Niemela et al

“Interestingly, this sidewall correction, which was based on
the model of Roche, Castaing, Chabaud, Hebral, ef al. (2001),
yielded corrected data that are nearly identical to those that
had been obtained using model 1 of Ahlers (2000) and shown
in Fig. 5 of that reference. The plate-effect corrections are
quite small for the cryogenic data and have little influence on
the interpretation of the data.
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(2000a) data. A possible reason might be found in a dif-
ference of the sidewall correction that was applied.’
More interesting is the difference between the two data
sets that evolves as Ra grows beyond 10'!. In that re-
gime the open circles in the figure can be described
within their scatter by a power law with y.;=0.38. Cha-
vanne et al. (1997) interpret this result as corresponding
to the expected y=1/2 in the Kraichnan regime, modi-
fied by the logarithmic corrections that are attributable
to a viscous sublayer. Thus they claim to have entered
the “ultimate,” or asymptotic, regime of turbulent RB
convection (Chavanne et al., 1997). However, the transi-
tion at Ra* just above 10 is lower than the theoretical
estimates for the shear-flow boundary layer instability.
For Pr=1 and Ra=3x 10" the GL model yields (in the
I'=1 case) Re,=100, which is too low for a shear-
induced transition to turbulence in the boundary layer.
An explanation in terms of a shear-induced BL transi-
tion would require a more vigorous LSC for the I'=0.5
case than was measured (see Sec. IV) for the I'=1.0
case.* In any case, the data of Chavanne et al. (2001), and
the interpretation in terms of a transition to the Kraich-
nan regime, differ dramatically from the measurements
of Niemela et al. (2000a) who did not find this transition
even though their data extend to higher values of Ra,
and were done at somewhat lower Pr where the shear
transition should occur at even smaller Ra. The reason
for this difference remains unresolved at this time, and
the resolution of this apparent conflict between the two
data sets is one of the major challenges in this field of
research.

Yet another set of data, shown as solid squares in Fig.
6(a), was obtained with low-temperature helium by Ni-
emela and Sreenivasan (2003a), using the original appa-
ratus of the I'=0.5 measurements by Niemela ef al
(2000a), but with a sample of reduced height that had
I'=1.0. Unfortunately these results do not help to clarify
the situation. They are consistent with other data in the
Ra range near 10'!. At smaller Ra they agree fairly well
with the Chavanne et al. (2001) data, but differ from the
sidewall-corrected Niemela et al. (2000a) data. Here
again one would be tempted to invoke the sidewall ef-
fect as a possible explanation. More difficult to disregard
are the data for Ra=10'2, where sidewall corrections are

*In fact, for Ra<10? the data from Niemela et al. (2000a)
before their sidewall correction were much closer to the data
from Chavanne et al. (2001) than after this correction was
made.

*Chavanne et al. (2001) measured the vertical LSC velocity
component v,(r,z, ) in the horizontal midplane (z=0) and at a
radial position r=L/4 halfway between the center line and
sidewall. The significant size found for v, suggests the exis-
tence of well developed upflow and/or downflow in the mid-
plane, implying that the LSC consisted of a single convection
roll rather than of two rolls one above the other. The measure-
ment yielded a Reynolds number that is not very different
from that for the I'=1 case (see Sec. IV), but it is difficult to
know precisely the corresponding shear across the viscous BLs
at the top and bottom plates.
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negligible. There the data fall between the two I'=0.5
cryogenic data sets, thus adding to the complexity of
experimental information about a possible Kraichnan
transition.

The Grenoble-Lyon group undertook several investi-
gations in an attempt to find an explanation for the dif-
ferences between the various data sets for Ra=10'2. For
instance, Chilla er al. (2004b) developed a model that
attempted to explain the difference in terms of a finite
plate-conductivity effect (see Sec. III.B); but measure-
ments with relatively low-conductivity brass plates by
Roche et al. (2005) yielded results comparable to the
high-conductivity copper-plate results. In a separate ex-
periment Roche, Castaing, Chabaud, and Hebral (2001)
made measurements using helium in a sample cell with
I'=0.5 with walls and plates that were covered com-
pletely by grooves. The depth of the grooves was stated
to be less than the thermal boundary layer thickness.
Such a geometry is asserted to remove the influence of
the sublayer which is responsible for the logarithmic cor-
rections. For Ra=10'? this experiment yielded an expo-
nent quite close to 0.5, consistent with the expected
Kraichnan value of 1/2. However, Niemela and Sreeni-
vasan (2006a) pointed out that the BL thickness de-
creases with increasing Ra and becomes comparable to
the groove depth in the Ra range of the measurements.
In such a case the measurements of Du and Tong (2000)
using a sample with grooves in the plates that were
deeper than the BL thickness indicate that the prefactor
of an effective power law describing Nu(Ra) increases
by as much as 76% for deep grooves. Thus it was sug-
gested by Niemela and Sreenivasan (2006a) that the re-
sults of Roche, Castaing, Chabaud, and Hebral (2001)
might possibly be due to a crossover between rough sur-
faces with a groove depth less than the BL thickness to a
regime where the groove depth is larger than the BL
thickness. More work is needed to resolve this issue.

An interesting experiment related to the Kraichnan
regime was by Gibert et al. (2006), taking up earlier ex-
periments by Perrier ef al. (2002) and experimentally re-
alizing the theoretically suggested homogeneous RB tur-
bulence (Lohse and Toschi, 2003; Calzavarini et al.,
2006). Gibert et al. (2006) used a vertical channel with
wide entrance and exit sections that avoided the influ-
ence of the thermal BLs on Nu. They found relation-
ships for Nu and Re (based on the velocity fluctuations)
consistent with Egs. (27) and (28) when they redefined
Ra in terms of an intrinsic A-dependent length scale
proportional to the ratio of temperature-fluctuation am-
plitudes and the vertical thermal gradient, instead of us-
ing a sample-geometry-dependent and A-independent
length. The same scaling was also obtained by
Cholemari and Arakeri (2005, 2009) for buoyancy driven
turbulent exchange flow in a vertical pipe. The flow was
driven by an unstable density difference across the ends
of the pipe, created using brine and distilled water.
Away from either end, a fully developed region of tur-
bulence existed with a linear density gradient. With a
Rayleigh number based on the local density gradient re-
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lations consistent with Eqgs. (27) and (28) were found
experimentally.

Also local measurements of the heat flux can result in
the 1/2 exponent predicted by Kraichnan (1962). Shang
et al. (2008), based on their earlier measurements (Shang
et al., 2003, 2004), determined a time-averaged local
Nusselt number at fixed positions x and given by

Nu(x) = (us(x,1) 0(x, 1)), /I kKAL™! (30)

in a I'=1 cylindrical cell filled with water, in the range
108<Ra=2x10'°. At half height they found Nu(x)
=1.5Ra%?*%03 when x was close to the sidewall where
the heat was primarily transported by plumes, and
Nu(x)=3.5 X 10~*Ra’**0% when x was close to the cell
center where the plume density was much less.” These
two different local scaling laws had been predicted
by Grossmann and Lohse (2004); they correspond
to the two independent scaling contributions e
= kA?L*Nugg, and €y, =KA2L NUgep, to the thermal
dissipation rate e,= kA?L~>Nu [see Eq. (13)]. The theory
predicts that for Ra=<10'* the heat transport via the flow
close to the sidewall dominates, but around Ra=~10!*
the heat flux through the center and thus the back-
ground fluctuations take over. Interestingly, when ex-
trapolating the measured power laws for the local Nus-
selt number in the center and close to the sidewall
towards larger Ra, Shang et al (2008) also obtain a
crossover around Ra~10'*. The spatial inhomogeneity
of the local heat flux also has been confirmed by the
numerical simulations of Shishkina and Wagner (2007).

IV. EXPERIMENTAL MEASUREMENTS OF THE
REYNOLDS NUMBERS

A. Reynolds numbers based on the large scale convection roll

The geometrical features and dynamics of the large
scale circulation (LSC) depend on the symmetry and as-
pect ratio of the sample. Here we focus on cylindrical
samples with I'=1 because for them the flow geometry
is relatively simple, the dynamics is very rich, and the
experimental studies are most extensive. Then the flow
occurs in a near-vertical plane and yields near-elliptical
stream lines, with the long axis of the ellipse slightly
tilted relative to gravity [see, for instance, Verzicco and
Camussi (1999), Qiu et al. (2004), Sun, Xia, et al. (2005)],
as shown in the time-average velocity map Fig. 1(c). De-
pending on Ra, two small counter-rotating vortices posi-
tioned near the corners close to the minor axis

Note that in earlier work by Ching et al. (2004) a less steep
scaling of Nu(x) with Ra was derived at the center of the con-
vection cell. One possible source of discrepancy is that the
association of the length scale resulting from balancing buoy-
ancy and viscous forces with the thermal boundary layer thick-
ness done in that work does not generally hold.
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of the ellipse may be more or less prominent. In the 2D
numerical simulations of Sugiyama et al. (2009) they can
be very pronounced, depending on Ra.

Often it is said that the large scale convection roll is
driven by the localized volumes of hot or cold fluid
known as plumes that are emitted from the top and bot-
tom thermal BLs as a result of a BL instability, and no
doubt these plumes play an important role. But in addi-
tion some of the heat current is conducted across the
BLs, warming or cooling the fluid adjacent to them. This
in itself, without the presence of the plume inhomoge-
neities, would drive the flow as it does closer to the on-
set of convection where there are no plumes. Thus pre-
sumably the LSC derives its existence from a
combination of these two heat-transport mechanisms
with the relative importance of each depending on Pr
and Ra, and indeed it seems difficult to separate one
from the other. For Pr=4 it is known that, away from
the BLs, this heat current leads to a destabilizing time-
averaged vertical gradient of the azimuthal average of
the temperature which is strongest near the sidewall
while the interior is more nearly isothermal (Brown and
Abhlers, 2007b). Superimposed upon this azimuthally av-
eraged gradient is the warm upwelling and cold down-
welling current of the LSC which, when time averaged,
leads to a near-sinusoidal azimuthal temperature varia-
tion with period 27 and amplitude 6 at the side wall
(Brown and Ahlers, 2007b), and a near-linear tempera-
ture variation along a diameter (Qiu and Tong, 2001b).

Although the speed of the flow shown in Fig. 7(a) var-
ies considerably with position, one might expect that the
large central roll can be described by a unique turnover
time 7. Using L as a relevant length scale, one can de-
fine a Reynolds number

217
ReSC=—. 31
e T (31)

We would not expect Re"SC to describe all aspects of the
flow field; for instance, the small counter-rotating vorti-
ces might require a different Reynolds number which
might even have a different dependence on Ra; but the
main features, for instance, those predicted by the GL
model, might be related to ReSC. Further, it has been
suggested that the actual path length of the LSC circu-
lation varies with Ra because the shape of the flow field
changes; this feature would introduce an additional Ra
dependence of ReSC because the length scale, set equal
to 2L in Eq. (31), would no longer be a constant (Ni-
emela and Sreenivasan, 2003b; Sun and Xia, 2005).

To our knowledge there are no direct measurements
of 7. However, 7 was inferred from local measurements
of various velocity components [see Fig. 7(a) for an ex-
ample] and the assumption of a constant circulation path
length proportional to L. The time-averaged maximum
vertical velocity component v ,,, (Qiu and Tong, 2001a;
Lam et al., 2002) near the region between the viscous
boundary layers and the bulk of the system [sometimes
known as the “mixing zone” (Castaing et al., 1989)] gave
ReVmaxocy . L/v. Alternatively, the slope v, in the
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FIG. 7. Profile and scaling of velocity. (a) Normalized horizon-
tal velocity u/uy,, as a function of the vertical position p,
=z/L. The measurements were made at Ra=3.08x107
(circles), 9.14 X 107 (triangles), and 3.7 X 10° (diamonds). From
Qiu and Tong, 2001b. Note that the data extend only up to
p,=0.85; thus the minimum near the sample top is not shown.
(b) Reduced Reynolds numbers Re*/Ral’? (circles) and
Re®/Ra'”? (solid triangles), defined in the text, as functions of
Ra. The measurements were done in water at Pr~5.5. From
Qiu and Tong, 2002.

sample interior away from the mixing zone of the time-
averaged horizontal component u of the LSC velocity as
a function of the vertical position along the sample axis
[see Fig. 7(a)] was used to define and determine Re"
=v,L*/v (Qiu and Tong, 2001a, 2002) [open circles in
Fig. 7(b)].

An interesting property of the LSC is a torsional
azimuthal oscillation mode with frequency fy=wy/27
(Funfschilling and Ahlers, 2004; Funfschilling et al.,
2008) that can be used to define Re®=2L>f,/v. Well be-
fore the spatial nature of this mode was known, its fre-
quency was measured in numerous single-point determi-
nations of the temperature or the velocity (Heslot et al.,
1987; Castaing et al, 1989; Ciliberto et al, 1996;
Takeshita et al., 1996; Xin et al., 1996; Cioni et al., 1997,
Xin and Xia, 1997; Qiu et al., 2000, 2004; Qiu and Tong,
2001a, 2001b, 2002; Lam et al., 2002), both of which have
an oscillatory contribution provided the probe is not lo-
cated in the horizontal midplane of the sample where
the amplitude of this mode vanishes (Funfschilling et al.,
2008). Some of the single-point measurements yielded
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results for Re® that were equal to Re* within experimen-
tal resolution (Qiu and Tong, 2002), as shown in Fig.
7(b). The reason for this equality is not known at this
time. Some other experimental investigations indicated
that there is a distinct difference between the Ra depen-
dence of Re!"max and Re® (Lam et al., 2002) and that
these Ra dependences change with Pr. Clearly there re-
main some unresolved issues.®

B. Reynolds numbers based on plume motion

An estimate of another Re was based on the motion
of plumes. When a cold or warm plume passes a local
temperature probe, it produces a positive or negative
deviation of the local temperature from the mean. The
local time-averaged vertical plume speed v, =1/t, was
thus determined from the peak location #, of time cross-
correlation functions between two temperatures mea-
sured with probes separated vertically by a small dis-
tance / (Castaing et al., 1989; Sano et al., 1989; Takeshita
et al., 1996; Chavanne et al., 1997, 2001; Niemela et al.,
2001). The measurements yielded Re“rlocv L/ v. A simi-
lar technique used thermometers mounted in the side-
wall at the horizontal midplane. A single temperature
sensor yielded a time autocorrelation (AC) function with
a broad peak at a delay time corresponding to the plume
turnover time 7, (Ahlers, Brown, and Nikolaenko, 2006;
Brown et al., 2007). Similarly, two sensors on opposite
sides of the sample yielded time cross-correlation (CC)
functions with broad peaks corresponding to half the
plume turnover time 7,/2. These measurements gave
Reynolds numbers RGPIE(ZL/%I)L/V. Quite remark-
ably, measurements indicate over a wide parameter
range that Re’max=Re"=ReP'=Re’! within fairly small
experimental errors. This can be interpreted to mean
that the plume circulation is slaved to the LSC, or vice
versa, and that all of these quantities (where they agree
with each other) yield a reliable representation of ReS¢.

The cross-correlation functions for two thermometers
at the midplane but on opposite sides had extrema that
were negative, indicting a correlation between the warm
rising plumes on one side and the cold falling plumes on
the other side. This tends to support the ideas of Viller-
maux (1995), who suggested that a plume impinging on
the BL causes an instability and an associated emission
of a new plume of the opposite type. However, the width
of the cross-correlation function extremum, which was
not very different from 7, indicates that this is not a
periodic process as originally suggested. The periodic
signal, when observed in some experiments, presumably

SEvaluation of experiments is complicated by experimental-
ists that often slightly tilt their samples so as to obtain a domi-
nant LSC orientation for their measurements. Measurements
of Re are sensitive to the sample alignment relative to gravity
(Ahlers, Brown, and Nikolaenko, 2006), and in a tilted sample
fo can be observed even at the horizontal midplane.
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FIG. 8. Parameter dependences of Reynolds number. (a), (b)
Reduced Reynolds numbers Re/Ra'?. (a) ReP! for Pr=4.38
(circles), Pr=5.55 (up-pointing triangles), and Pr=3.32 (down-
pointing triangles), from Brown et al., 2007. Stars, Re® for Pr
=28.9, from Brown et al., 2007. Pluses, Re", from Qiu and
Tong, 2002, Pr=>5.4. Dashed lines (from top to bottom), GL
predictions for Pr=3.32, 4.38, 5.55, and 28.9. (b) ReP' (solid
symbols) and Re® (open symbols) for Pr=4.38 (circles), Pr
=5.68 (up-pointing triangles), and Pr=3.26 (down-pointing tri-
angles). Dashed lines (from top to bottom), GL predictions for
Pr=3.26, 4.38, and 5.68. (c) The ratio of Re to the GL predic-
tion as a function of Pr for Ra<3x10°. Open circles, ReP!,
Pr=4.38. Stars, Re®, Pr=29.8. Squares, Re®, from Lam et al.,
2002, 5.6<Pr=1206.

is due to the torsional oscillation discussed above and in
Sec. VIIL'

For modest Ra, say Ra<3x 10’ when Pr=4, the GL
prediction (Grossmann and Lohse, 2002) is in good
agreement with experimental results (Qiu and Tong,
2002; Brown et al., 2007) for Re“(Ra,Pr), Re“(Ra,Pr),
and ReP!(Ra,Pr) (see Fig. 8). In that parameter range all
three measured quantities, so far as they have been de-

"Very recently Xi er al. (2009) observed that the dynamics
of the LSC, in addition to the twisting mode discovered by
Funfschiling and Ahlers (2004), involves also a “sloshing
mode,” see Sec. VIIL.A. A theoretical explanation of the origin
of both modes was given recently by Brown and Ahlers (2009).
Rather than coherent plume motion, it is possible that the
sloshing mode is responsible for the signal corresponding to
RePl. In that case the remarks about plume correlation would
be inapplicable.
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termined, agree with each other. In that regime both the
prediction and the experiment can be well described by
a power law ReoxRa’ff with a very slightly Ra-
dependent effective exponent 7y.;=0.44 [there also are
some notable differences between the predictions and
some other measurements (Lam et al., 2002)]. However,
for Ra=3Xx10° the measurements reveal a relatively
sudden transition to a new state of the system, with a
ReP! that is larger than Re®, which in turn is larger than
the GL prediction. These results agree well with recent
experimental results for ReP' obtained by Sun and Xia
(2005) in the range 7 X 10°<Ra=<2x10'% If the GL
model still correctly predicts the Ra dependence of
ReSC in this parameter range, then the experimental
results for ReP' and Re® suggest the existence of a new
LSC state in which the plumes and the LSC are no
longer slaved to each other and where the twist oscilla-
tion of the LSC is no longer synchronous with the LSC
turnover time [see also Xi et al. (2006)]. The observation
that ReP'>ReC would then indicate that the plumes
rise and fall more rapidly than the background flow of
the LSC. However, Niemela and Sreenivasan (2003a)
and Sun and Xia (2005) suggested that it is more likely
that the LSC evolves into a more complex flow structure
where its dynamics can no longer be described quantita-
tively by a uniquely defined Reynolds number. It is un-
clear at present whether the difference between this
state and the one at smaller Ra will be found in the
geometry of the flow, in the nature of the viscous bound-
ary layers that interact with it, or in the nature and fre-
quency of plume shedding by the thermal boundary lay-
ers adjacent to the top and bottom plates.

The dependence of Re® on Pr has been investigated
over a wide range of Pr by Lam et al. (2002). The data
for Ra=<3x10° are shown as squares in Fig. 8(c). Their
agreement with the GL prediction is not as good as one
might wish. However, at Pr=4, they also differ from the
measurements of ReP' by Brown et al. (2007). More work
over a wide Pr range is desirable.

V. Nu(Ra,Pr) AND Re(Ra,Pr) IN DIRECT NUMERICAL
SIMULATIONS

Direct numerical simulations (DNS) of Rayleigh-
Bénard flow have several advantages in comparison to
experiments: (i) Any local or global quantity can be
“measured” without interfering with the probe or having
restricted accessibility. (ii) The boundary conditions can
be chosen as in the idealized RB case, i.e., with exactly
zero heat flux through the sidewalls and constant tem-
peratures at the top and bottom plates. Therefore a
modeling of sidewall and plate corrections (see Sec.
IIL.B) is not necessary. (iii) The material properties of
the fluid can be chosen at will. One can study fluids, for
example, which exactly obey the Boussinesq approxima-
tion, or fluids which show temperature dependence of
one material property only. By doing simulations with
such fluids, theoretically suggested mechanisms can be
tested.
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However, obviously there are also major disadvan-
tages of DNS, the main one being the limitations in the
obtainable sizes of Ra and Pr. For fixed Pr=1 the re-
quired CPU time increases roughly as Ra*?In Ra. The
spatial resolution requirements for thermal convection
have been defined by Grotzbach (1982, 1983). In some
simulations good small scale resolution, which is particu-
larly crucial in the BLs, is sacrified for higher Ra.

In this DNS part of the review we focus on global
properties such as Nu and Re and the dynamics of the
wind, omitting DNS results for the small scales.

The RB simulations by DeLuca et al. (1990), Werne et
al. (1991), and Werne (1993) were restricted to two di-
mensions and employed free-slip (but impermeable) ve-
locity boundary conditions at the sidewalls, to make ef-
ficient use of pseudospectral methods. Note that free-
slip sidewall BCs lead to a different large scale
circulation (LSC) pattern than no-slip sidewall BCs. In
particular, the counter rolls in the corners of the cell are
suppressed. With this method, DeLuca et al. (1990) car-
ried out simulations up to Ra=1.6x10® for Pr=1, find-
ing an effective Nu vs Ra power-law exponent consistent
with 2/7 at the largest Ra. Werne (1993) extended these
2D simulations to Pr=7.

3D simulations in the early 1990s—also employing
spectral methods—could only achieve relatively small
Ra, e.g., Ra=6.5x10° in the work by Balachandar et al.
(1989) and Sirovich et al. (1989) or Ra=6.3x10° in the
work by Christie and Domaradzki (1992); both are too
small to make statements on exponents for power-law
dependences on Ra, and also because there are still co-
herent flow structures.

One of the first 3D RB simulations from which such
exponents could be extracted was that by Kerr (1996).
He employed lateral periodic BCs and achieved Ra=2
X107 on a 288 X288 96 grid. For Pr=0.7 he found an
effective power law Nu~ Ra’?®. Later, Kerr and Herring
(2000) extended these simulations to Prandtl numbers in
the range 0.07 <Pr<7, finding Nu~ Ra"? for the small-
est Pr and effective exponents consistent with 2/7 for
Pr=0.7. For the Prandtl dependence of Nu at fixed Ra
=107 and Pr=0.7 (see Fig. 5, top), Kerr and Herring
(2000) give an effective exponent of 0.12. A more recent
example of a spectral RB code is the work of Hartlep et
al. (2003), achieving Ra=10". In that work the focus was
on the flow organization in RB convection with sidewise
periodic boundary conditions.

A second class of DNS for RB convection is that of
lattice-Boltzmann (LB) simulations (Benzi et al., 1994).
In one of the first large LB RB simulations Benzi et al.
(1998) achieved Ra=3.5x107 and found 7y,
=0.283+0.003 for the effective Nu vs Ra power-law ex-
ponent (they used Pr=1 and free slip on vertical walls).

The third class of simulations contains DNS based on
finite difference or finite volume. Verzicco and Camussi
(1999), building on their earlier work (Verzicco and Ca-
mussi, 1997; Camussi and Verzicco, 1999), employed
such finite-difference simulations to obtain effective
power-law exponents for both Nu and Re vs Ra for sev-
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eral Pr for Ra up to 2% 107 [see Fig. 5(a)]. The advan-
tage of this method is that the correct no-slip BCs at the
sidewall can easily be implemented and that simulations
can also be performed efficiently in the cylindrical ge-
ometry as used in many experiments, so that a direct
comparison with the experimental results is possible.
A further advantage of finite-difference or finite-
volume methods is that the spatial resolution can easily
be refined at will in the BLs, using a coarser grid in the
bulk. For the small Prandtl number Pr=0.025 and I'=1
the effective power law Nu=0.119Ra%> was found in
the regime 5X10*<Ra=10°. For Pr=0.7 Verzicco and
Camussi (1999) obtained the effective power law Nu
~Ra%?®5, They also explored the Pr dependence of
Nu over the range 0.0022<Pr=15 at fixed Ra=6Xx 10,
finding Nu=~8.5Pr!* as an effective power law. For the
Reynolds number they found Re~Pr 73 for Pr<1
and Re~Pr %% for Pr>1. Similarly, Breuer et al
(2004) performed finite volume integrations of the
Boussinesq equations, finding Nu~ Pr0182£0012 and Re
~ Pr0607=0012 for 103 <Pr=<1 and Nu~ Pr00320.003 apq
Re ~ Pr-09%0014 for 1 <Pr<10% for no-slip boundary
conditions and Ra=10°.

Verzicco and Camussi (2003) and Stringano and Ver-
zicco (2006) extended the earlier simulations to the re-
markably high Ra=2x 10! for a slender I'=1/2 cell and
Pr=0.7. Beyond Ra=10’ the numerical data are consis-
tent with Nu~Ra'’3. The focus of those papers is on the
flow organization in the I'=1/2 cell: beyond 10'° and for
Pr=0.7 the single convection roll can break up into two
smaller counter-rotating rolls, each approximately of as-
pect ratio 1. Stringano and Verzicco (2006) in addition
showed that the thermal properties of the sidewalls can
stabilize the large-scale convection roll.

At present the largest-Ra DNS of RB flow are the
ones by Amati et al (2005) and Verzicco and
Sreenivasan (2008), achieving Ra=2X 10" for I'=1/2
and Pr=0.7, though, as recently shown by Stevens et al.
(2009), at the prize of under-resolving the fine structures
of the flow, which leads to Nusselt numbers that are too
large. Sidewall corrections (Verzicco, 2002) and plate
corrections (Verzicco, 2004) have been studied, which
were discussed in Sec. II1.B.

Another advantage of finite-difference simulations is
that complicated geometries like those with rough walls
can be treated; see Stringano et al. (2006). The
results—an enhanced heat flux consistent with Nu
~Ra%¥ over the range 2x10°<Ra<2X10"—are in
reasonable agreement with the experimental results of
Qiu et al. (2005), who found a power-law exponent of
0.35 in the range 103<Ra<10'°, but in conflict with the
earlier mentioned results by Du and Tong (2000), who
found unchanged effective power-law exponents for the
rough wall case, but a larger prefactor. Similarly, Ver-
zicco (2003) found that by manipulating the velocity BC
at the plates the viscous BL could be affected and also
the absolute value of Nu, but its power-law exponent
was rather robust against such manipulations. Clearly,
more research is necessary to clarify this matter.
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The numerical simulations of Shishkina and Wagner
(2006, 2007, 2008) also are based on a finite volume
scheme; they focus on the role of plumes and the flow
organization in RB flow with Pr=0.7 and Pr=5.4 and Ra
up to 2x10°. For Ra=2x10'" large-eddy simulations
(LESs) were done. In this subgrid modeling the length
scales in the dissipative and diffusive regime are under-
resolved.

Finally, when full spatial resolution of the turbulence
field was abandoned even further, obviously much larger
Ra could be achieved. An example for such a calculation
is the so-called transient Reynolds averaged Navier-
Stokes (RANS) method, which Kenjeres and Hanjalic
(2002) applied to RB convection. They found Nu
~Ra%?! between Ra=10° and 10'°. For the last two Ra
decades some reorganization of the plumes and a
slightly enhanced Nusselt number were observed, but
given the progressively decreasing spatial resolution of
the numerical scheme at these high Ra the implications
of this finding are presently unclear and a detailed dis-
cussion of RANS simulations and LES of RB flow is
beyond the scope of this review.

Given the enormous CPU power needed to achieve
large Ra, one may wonder whether two-dimensional
simulations would not be sufficient to reflect at least
some aspects of the dynamics of the three-dimensional
RB problem. This point has been analyzed by Schmalzl
et al. (2002, 2004) whose conclusion is that for Pr=1
various properties observed in numerical 3D convection
(and thus also in experiment) are indeed well reflected in
2D simulations. This in particular holds for the BL pro-
files and for the Nusselt number. Also Ahlers et al
(2008) and Sugiyama et al. (2007, 2009) employed 2D
numerics to study the non-Oberbeck-Boussinesq devia-
tions of the Nusselt number and of the bulk (central)
temperature from that in the Oberbeck-Boussinesq
cases; see Sec. VII.

VI. BOUNDARY LAYERS
A. Relevance of boundary layers and challenges

Boundary layers describe the temperatures and flow
fields in the vicinity of the plates and walls. They are
characterized by their time-averaged profiles in the di-
rection perpendicular to the respective solid boundary,
i.e., in the z direction off the bottom and top plates or in
the x direction off the sidewalls. As the top and bottom
boundary layers contribute the main resistance for the
heat transfer through the cell and thus dominantly de-
termine the Nusselt number, they deserve special atten-
tion. Indeed, nearly all theories of Nu(Ra,Pr) in RB con-
vection are in essence boundary-layer theories: This
holds for the now classical mixing-layer theory of Cas-
taing et al. (1989), the turbulent-BL based scaling theory
of Shraiman and Siggia (1990) and extensions thereof
[e.g., Ching (1997)], the turbulent BL type theories of
Dubrulle (2001, 2002) and Holling and Herwig (2005,
2006), and the theory of Grossmann and Lohse (2000,
2001, 2002, 2004) which scalingwise builds heavily on the
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laminar, though time-dependent Prandtl-Blasius BL
theory as elaborated in Sec. II.B. It is therefore of prime
importance to directly study the BLs, to see whether the
assumptions on which these theories are based are ful-
filled at least to a reasonable approximation.

Unfortunately, directly studying the BLs in the
large-Ra regime is equally challenging experimentally,
numerically, and theoretically. Experimentally, the re-
quired spatial resolution is very difficult to achieve.
Even for the L=6.5 m high Ilmenau RB barrel both the
thermal and the kinetic BL thicknesses are only a few
millimeters when, e.g., Ra=~10'%; see du Puits, Resagk,
and Thess (2007) and du Puits, Resagk, Tilgner, et al.
(2007). In addition, both laser-Doppler velocimetry and
hot-wire anemometry are difficult to employ in regions
with large temperature fluctuations and a small mean-
flow velocity; both complications occur in the BLs. Nu-
merically, large Rayleigh numbers are hard to reach, in
particular with sufficient spatial resolution; see Sec. V.
Even state-of-the-art DNS such as those of Verzicco and
Sreenivasan (2008) have only a few grid points in the
BLs. Theoretically, no generally accepted BL theory for
flow over a strongly heated surface exists. Even in the
truly laminar case an analytic theory for the two-way
coupling of the temperature to the velocity field is miss-
ing (i.e., taking the temperature as an active scalar); see,
e.g., Schlichting and Gersten (2000). And even if the
two-way coupling is suppressed as done by Ching and
Lo (2001) and Ching and Pang (2002), no exact analyti-
cal results exist for the thermal BL thickness and thus
for the heat transfer through the shear flow over the
heated plate.

The analysis of the BLs is further complicated by their
extreme complexity, not only in time, where there is
plume detachment (see Fig. 1), but also in space. Recent
experimental studies such as those by Lui and Xia
(1998), Wang and Xia (2003), Maystrenko et al. (2006),
and Sun et al. (2008) and numerical studies such as those
by Sugiyama et al. (2009) give increasing evidence that
the BL thicknesses as well as the profiles of the mean
quantities and of the fluctuations depend on the position
along and above the plate(s), not only relative to the
walls, but also relative to the fluctuating large convec-
tion roll (see Sec. IV). It is this main convection roll
which creates the viscous BL because of the no-slip con-
dition at the top and bottom plates.

The aim of this section is to give an overview of what
has been found experimentally, theoretically, and nu-
merically about the BL thicknesses.

B. Thermal boundary layers

The thermal boundary layer thickness can be defined
in several ways. From an experimental point of view, it is
easiest to time average the temperature profile at fixed
lateral positions (x,y)=3* for various z and to extract a
thermal boundary layer thickness \4(*) from the result-
ing local profile. From the theoretical viewpoint area av-
erages on x,y (in addition to the time averaging) are of
main interest. Indeed, it is the thickness A\, of the area-
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averaged temperature profile in the z direction which
enters theory while comparison with experiment so far
refers to locally measured BL thicknesses \4(*). Note
that strictly speaking the global thickness A\, is not equal
to (\y(*)),4 in general; the reason is that the thickness is
a (nonlinearly defined) property of a given profile. Then
Ny in particular is a property of the area-averaged profile
and not the average of properties \4(*) of the respective
local profiles. Along large plates the local BL width may
well represent the area-averaged global one; but for RB
samples with I' of order 1 one has to expect significant
differences, even different scaling of the global and local
thicknesses, since the area-averaged profiles comprise all
inhomogeneities of the temperature and flow fields
along the plates, including backflows, the regions be-
tween them, and the near wall ranges. These all will
locally have quite different profiles. The more homoge-
neous the flow, the more similar the global width will be
to the average of the local widths. Experimental analysis
of these detalils is still a big challenge.

The (global) thermal BL thickness A, can be defined
in several ways. The most popular way is to define A\,
through the slope of the area-averaged time-mean tem-
perature profile at the plates: Take the tangent of the
area-averaged mean temperature 6(z) at the plate. That
distance between the plate and the vertical position
where this tangent crosses the bulk (or center) tempera-
ture T, is then called \. The center temperature T, is
equal to the mean temperature 7,,=(T,+7T,)/2 if the
Oberbeck-Boussinesq approximation holds because of
up-down symmetry. The very notion of T, already refers
to an area-averaged profile.

Locally, i.e., for fixed (x,y) =+, the slope of the time-
averaged profile, as well as the temperature for z—
and thus the local width )\501(*), will depend on the hori-
zontal position * where the local time-mean temperature
profile is taken.

One of the first measurements of temperature and
also velocity profiles in RB cells was by Tilgner et al.
(1993), namely, in water (Pr=6.6) at fixed Ra=1.1x10°
and at a fixed lateral position *. Belmonte et al. (1993)
extended these measurements to the Ra range 5x10°
<Ra=<10'"! in compressed gas (air) at room temperature
(Pr=0.7), but still at fixed lateral position. Lui and Xia
(1998) measured the lateral dependence of )\301(*) on the
positions x (in the mean LSC direction) and y (perpen-
dicular to the preferred LSC direction) in a cylindrical
water filled RB cell with I'=1 in the regime Ra=2
%X 108-2x 10, They reported variations of the BL
width by nearly a factor of 2, depending on the lateral
location where the profile was measured. Wang and Xia
(2003) found similar results for a cubic cell. Even the
scaling exponent of )\SHI(*) with Ra depends on the posi-
tion and varies between -0.35 and -0.28. Lui and
Xia (1998) found the thermal BL to be thinnest
close to the center of the plates; there 27\501(0,0)/ L
=(0.23+0.02)Ra 02850004 ho]ds.

One cannot draw conclusions about the dependence
of Nu on Ra from such measurements of local \§j(*) at a
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particular lateral location. It is the length scale resulting
from the laterally averaged BL temperature profile
which is connected with the Nusselt number through the
following exact relation:

10460,y z=00r z=L))s| L

N
" ALT 2\

(32)

which follows from Eq. (5).

A different definition for a thermal boundary-layer
thickness is the one employed by classical (laterally ho-
mogeneous) laminar BL theories (Prandtl, 1905; Blasius,
1908; see also Meksyn, 1961; Schlichting and Gersten,
2000; Cowley, 2001). This thickness, known as A *, is
defined as the vertical distance from the plate to the
point where 99% of the temperature difference between
plate and mean center temperature is achieved. For the
bottom plate )\39% is the distance where the temperature
reaches T=T,—-0.99A,. This definition is in analogy to
the common definition of the thickness & of the kinetic
BL, defined by the distance where, say, 99% of the maxi-
mum bulk velocity is achieved. The profile-based thick-
ness \j © can be calculated within the truly laminar
Prandtl-Blasius BL theory, which implies lateral homo-
geneity and thus yields local and area-averaged widths
that are the same. One obtains

Ny C(Pr)

L - Re]/ZPr1/3 ’

(33)

with a function C(Pr) given by Meksyn (1961). For large
Prandtl numbers C(Pr) becomes constant, whereas for
small Pr one finds C(Pr)>=Pr~"°. We note that A} can
display different scaling behavior than )\501, as a function
both of Ra and of Pr, depending on the parameter-space
regime. To our knowledge this issue has not yet been
explored systematically, neither for )\39% nor for its local
counterpart )\909%(*) which depends on the lateral posi-
tion * and refers to the local, only time-averaged, pro-
files.

A third way to define a thermal BL thickness, sug-
gested by Belmonte ef al. (1994), is to take the position
of the maximal temperature fluctuations at the edge of
the thermal BL. We call the respective BL thicknesses
defined in this way N\j and Nj(*). du Puits, Resagk,
Tilgner, et al. (2007) showed that thermal BL thicknesses
defined in this way and measured in the barrel of II-
menau using air at one atmosphere as the fluid behave
differently from \. However, since BL thicknesses are
determined largely by diffusive processes, it cannot be
ruled out that a mixture like air (where both mass diffu-
sion and heat diffusion play a role and where marginal
stability depends on both concentration and tempera-
ture gradients) might in this respect behave differently
from a pure fluid.

Profile measurements, and thus the determination of
BL thicknesses, are obviously less difficult if the abso-
lute length scale L is larger. That is why the about 6.5 m
high barrel of Ilmenau is particularly suited for these
purposes. du Puits, Resagk, Tilgner, et al. (2007) mea-
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FIG. 9. (Color online) Temperature and velocity profiles. (a)
Local, only time-averaged, temperature, and temperature-
fluctuation profiles at Ra=7.7x 10! and I'=1.13 as functions
of the height z (normalized by )\501), measured below the center
of the top plate. The fluid is air at atmospheric pressure, the
cell height is 6.3 m. From du Puits, Resagk, Tilgner, et al., 2007.
(b) Rescaled mean velocity profiles U(z) above the center of
the plate for Ra=1.25x10° (shortest data set) up to Ra=2.02
x 1010 (longest data set) for RB flow in water. u is normalized
by U and z by the kinetic BL thickness )\‘;l(*). From Sun et
al., 2008.

sured local time-averaged temperature profiles up to
Ra=7.7x10"; for an example see Fig. 9(a). Outside a
small linear regime near the plate they obtain a power
law 6(z) ~ z® with a=0.5, only weakly dependent on Ra
and I'. For even larger z the temperature saturated at its
bulk value. The 1/2 power law for intermediate heights
supports neither the logarithmic scaling laws for turbu-
lent BL theories nor the temperature profile for a one-
way coupled temperature field (i.e., taking the tempera-
ture as a passive scalar) predicted by the (laminar)
Prandtl-Blasius approach. However, the power law
\(#)/ L <Ra~°2%* found by du Puits, Resagk, Tilgner, et
al. (2007) below the center of the top plate is not incon-
sistent with what follows from the scalingwise laminar
Prandtl-Blasius approach. Sun et al. (2008) obtained
\(#)/ L < Ra~033=005 from temperature-profile measure-
ments above the center of the plate in water with Ra up
to 2x10'°.

Rev. Mod. Phys., Vol. 81, No. 2, April-June 2009

Thermal BL thicknesses also have been determined
from DNS. For a I'=1 RB cell Verzicco and Camussi
(1999) obtained for the area-averaged width )\%
=3.1Ra"? for Pr=0.7 over the range 5X10°<Ra<2
%107 and \=2.8Ra="? for Pr=0.022 in the regime 5
X 10*<Ra=<10° When going towards the larger Ra re-
gime 2 X 10°<Ra=<2 X 10" Verzicco and Camussi (2003)
found \j~Ra™%3! for Pr=0.7 and I'=1/2. For even
larger Ra up to 2 X 10 Verzicco and Sreenivasan (2008)
reported \§~Ra~173.

The profiles of the rms temperature fluctuations are
much less settled; see, e.g., Lui and Xia (1998),
Fernandes and Adrian (2002), Wang and Xia (2003), du
Puits, Resagk, Tilgner, ef al. (2007), Sun et al. (2008). This
issue will not be discussed in the present review.

As stated in Sec. II.B, thermal plumes can be viewed
as detached pieces of the thermal BL. Since their discov-
ery in RB convection by Zocchi et al. (1990) they have
been studied intensively—experimentally, numerically,
and theoretically—that a review of its own on this sub-
ject would be justified. A number of recent papers were
devoted to them (Theerthan and Arakeri, 1998, 2000;
Zhou and Xia, 2002; Breuer et al., 2004; Funfschilling
and Ahlers, 2004; Haramina and Tilgner, 2004; Xi et al.,
2004; Puthenveettil and Arakeri, 2005, 2008; Puthen-
veettil et al., 2005; Shishkina and Wagner, 2006, 2008;
Zhou et al., 2007b) Their nature was discussed most re-
cently by Funfschilling ef al. (2008). Here we only make
a few remarks. They seem to originate as one-
dimensional excitations of the marginally stable BL. As
they are borne out of the BL, they become oriented by
the LSC with their long axis in the direction of the flow,
and then are swept by the LSC toward the sidewall.
Along their way they separate from the BL and progress
vertically near the wall, developing their famous mush-
room top (Zocchi et al., 1990; Xi et al., 2004; Puthenveet-
til and Arakeri, 2005; Zhou et al., 2007b) in this process.
Although they are often referred to as “sheetlike,” im-
plying an extension in two spatial dimensions, the term
“linelike” would more appropriately describe their
length scale of order L in one dimension and of order
the thermal boundary-layer thickness in the other two.

C. Kinetic boundary layers

The kinetic BL thicknesses A, are determined from
the velocity profiles or the velocity-fluctuation profiles.
Also N\, can be defined in various ways, starting from
either time- and area-averaged quantities or only locally
time-averaged ones. An additional alternative here is to
average the velocity vectors themselves or to take the
rms velocities, componentwise or the full magnitude.
Given the velocity profile of interest, its thickness may
be defined (i) via the slope of the velocity profile in the z
direction (for the BL above or below the bottom or top
plate) at a given position * on the plate, known as \5!(x),
(i) through the distance A)'(x) to the local maximal
mean velocity, (iii) through the distance \(x) to the
maximal velocity rms fluctuations, etc. Again, all these
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quantities depend on the lateral position == (x,y), unless
area averages are considered.

The first direct systematic measurements of velocity
profiles in RB convection as a function of Ra were by
Xin et al. (1996) and Xin and Xia (1997), using a novel
light-scattering technique in a cylindrical cell. They
found \!(x)/L ~Ra~"'° from the velocity profile above
the center of the lower plate. At the sidewalls at half
height as functions of x instead of z they measured
\(x)/ L ~Ra"%, Qiu and Xia (1998a, 1998b) extended
these measurements to convection in cubic cells,
finding the same scaling exponents as in the cylind-
rical case. Using various organic liquids, Lam et al
(2002) could also explore the Pr dependence over the
range 6<Pr=<1027 and 2x108<Ra<2Xx10! finding
Nl(x)/ L ~Pr®Ra %1 above the center plate position.
The small Ra exponent of the effective power law is
remarkable, as for a Prandtl-Blasius area-averaged BL
profile one would expect an exponent of —0.25, just as
measured at the sidewalls, roughly corresponding to
the Prandtl-Blasius scaling \'/ L ~Re~!? with (approxi-
mately) Re~Ra'”2. We return to this point later. Note
that these measurements were still done above a single
position over the plate.

In 2003, particle image velocimetry (PIV) measure-
ments revolutionarized the experimental analysis of the
velocity field in thermal convection (Xia et al., 2003; Sun,
Xi, and Xia, 2005; Sun, Xia, et al., 2005; Sun et al., 2006),
including the analysis of the kinetic BLs (Sun et al.,
2008). This allowed not only for the direct identification
of various Reynolds numbers, cf. Sec. IV, but also for
that of various kinetic BL thicknesses such as )\Sul(*),
N(x), or No(x), even at different positions * in the cell.

For 10°<Ra<10' and Pr=4.3 in a rectangular cell
with I'=1, Sun ef al. (2008) obtained time-averaged ve-
locity profiles in the center above the bottom plate.
They found that if the vertical lengths are rescaled by
)\il(*) and the velocities by the maximal velocity, then
the shape of the local velocity profile does not depend
on Ra; in this sense it is universal in that regime [see
Fig. 9(b)]. Moreover, Sun et al (2008) found
A(s)/ L ~N"(x)/ L ~Ra~027*001 [see Fig. 10(a)], in con-
trast to the much weaker Ra dependence reported ear-
lier (Xin et al., 1996; Xin and Xia, 1997; Qiu and Xia,
1998a, 1998b). The origin of this discrepancy is not clear
at this point. However, we note that the newly found
scaling A3(x)/ L ~ N7 (x)/ L ~ Ra~?"*001 5 consistent with
the Prandtl-Blasius expectation. As a double check, Sun
et al. (2008) plotted )\Sul(*)/L and N)'(x)/L against the
independently determined Reynolds number, finding the
Prandtl-Blasius scaling \!(x)/ L ~\"(x)/ L ~ Re~0-30+0.03;
see Fig. 10(b). In numerical simulations of RB flow
for Pr=1 and I'=1 Breuer et al. (2004) found )\Sul/L
~Re%###002 but a weaker Re dependence for \'/L.
Numerical simulations by Verzicco and Camussi (1999)
for the same I'=1 and Pr=0.7 gave an area-averaged
profile thickness exponent consistent with the Prandtl-
Blasius BL theory, namely, \*'/ L=0.95Ra~"?, For lower
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FIG. 10. Boundary layer thickness. Scaling of the kinetic BL
thicknesses )\Zl(*) and \'(*) as functions of (a) Ra and (b) Re,
taken above the center of the lower plate. From Sun et al,
2008. In (a) the scaling of the thermal BL thickness )\Sal(*) is
also shown. It has been deduced from the temperature profile
above the center of the lower plate. The lines are power-law
fits.

Pr=0.022 Verzicco and Camussi (1999) obtained )\il/ L
=0.1Ra™"18,

The PIV BL study of Sun et al. (2008) also yielded the
wall shear stress 7, the viscous sublayer length scale
yw=1z=0)/u,, the skin-friction velocity u,=(,/p)"?,
and the skin-friction coefficient c¢/=r,/ pU?,... (These
quantities have been measured above the plate center,
but here for simplicity we suppress the ==(x,y) depen-
dence in the notation.) They found 7,,/(p1?/L?) ~Re!%,
ywl L~Re™' u, /(v/L)~Re®®, and ¢;~Re ™. The
respective Prandtl-Blasius scaling exponents for a lami-
nar BL over a flat plate are 3/2, -1, 3/4, and —-1/2.
Apart from the last one all are in fair agreement with
the measurements. It is hard to judge the importance of
the discrepancy between —0.34 and —0.50 for the scaling
of the skin-friction coefficient, in particular because the
last three data points around Re=~10* show a steeper
dependence than —0.34; see Fig. 22(d) of Sun et al
(2008). Moreover, in the numerical simulations of Ver-
zicco and Camussi (2003) (I'=1/2, Ra up to 2 X 10 the
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friction coefficient ¢; does show a Reynolds-number
scaling exponent consistent with —1/2. (That work did
not find any scaling for A as function of Ra, presumably
because of a reorganization of the flow in the I'=1/2 cell
with increasing Ra.) Also in the hitherto largest numeri-
cal RB simulations of Amati et al. (2005) ¢;~Re™"? is
found; see Fig. 6(b) of that paper. Next, also the experi-
mental analysis of Chavanne et al. (2001) found a —1/2
scaling of a surrogate of the friction factor with Re up to
Ra=10". However, at Ra=10!!, corresponding to Re
=8 10% the data of Chavanne et al. (2001) give evi-
dence for a transition towards a weaker dependence.
Verzicco and Camussi (2003) found the same transition
in this friction factor surrogate, but not in the actual
friction factor cy.

Finally, we mention the interesting numerical study by
Yu et al. (2007), who analyzed the heat transfer and
boundary-layer thicknesses in laminar and steady con-
vection with Ra up to 10%, finding basically the same
Ra-scaling laws for Nu, \,, and A\, as in classical RB
convection. Their conclusion is that turbulence does not
play a decisive role for the heat transfer.

In summary, although some of the various velocity BL
profiles differ from the idealized Prandtl-Blasius truly
laminar profile due to the permanently ongoing plume
emission, the scaling of the kinetic BL thickness with
Ra, Re, and Pr is consistent with the laminar Prandtl-
Blasius theory at least up to Ra=10'!, but presumably
also beyond. There is no indication of any transition to-
wards a different kinetic BL thickness scaling even at
the largest Ra realized up to now. Moreover, for Pr=1
the thermal BL is nested in the kinetic one, whereas for
Pr=1 it is the other way around.

The scaling of the rms velocity fluctuations [see, e.g.,
du Puits, Resagk, and Thess (2007) and Sun et al. (2008)
for recent work on this issue] will not be discussed in this
review.

VII. NON-OBERBECK-BOUSSINESQ EFFECTS

The problem of RB convection is commonly analyzed
within the so-called Oberbeck-Boussinesq (OB) ap-
proximation (Oberbeck, 1879; Boussinesq, 1903), in
which the fluid properties are assumed to be tempera-
ture independent, apart from the density for which the
linear temperature dependence equation (1) is assumed.
Under normal conditions, i.e., “small” temperature dif-
ferences A between the bottom and top plates, this ap-
proximation is rather good. However, in order to
achieve ever larger values of Ra for given L and fluid
properties B, ¢,, k, and v, the temperature difference A
between top and bottom plates quite frequently was in-
creased to such an extent that the OB approximation
had to be expected to fail. Non-Oberbeck-Boussinesq
(NOB) effects, i.e., deviations of various properties in-
cluding Nu and the center temperature 7. from the OB
case, then had to be expected at the largest Ra in several
experiments (Castaing et al., 1989; Chavanne et al., 1997,
Ashkenazi and Steinberg, 1999; Niemela et al., 2000a;
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Niemela and Sreenivasan, 2003a, 2006b). Particularly
problematic were measurements in the vicinity of liquid-
gas critical points, where Re tends to become exception-
ally large but where NOB effects are to be expected at
relatively small A. To be able to interpret these high-Ra
data—in particular, with respect to the question of
whether there is an intrinsic large-Ra transition in the
flow—it is therefore important to understand the physi-
cal nature, the signatures, and the size of the NOB ef-
fects. In addition to this practical consideration, there is
much interesting physics to be learned from their study.

NOB effects in high-Ra convection were measured
and analyzed first using helium gas by Wu and Lib-
chaber (1991), and then using water and glycerol by
Zhang et al. (1997). They confirmed experimentally that
the temperature dependence of the fluid properties
leads to a symmetry breaking between the top and the
bottom of the sample. The temperature drops A, and A,
across the bottom and top boundary layers become dif-
ferent, A, # A,, and so do the thicknesses of the thermal
BLs, )\3,1,7&7\Sel,r Both phenomena are associated with a
corresponding shift of the temperature 7T.=T,—A,=T,
+A, in the center (bulk) of the cell away from the arith-
metic mean temperature 7,,=(7,+7,)/2 of the bottom
and top plate temperatures 7, and T,. Moreover, one
would expect NOB observables to include deviations of
Nu and Re from their OB values if A becomes large.
Surprisingly, Wu and Libchaber (1991) and Zhang et al.
(1997) found that Nu is remarkably insensitive to NOB
effects. To our knowledge, NOB effects on Re have yet
to be observed experimentally.

In order to assess the validity of the OB approxima-
tion, Niemela and Sreenivasan (2003a) suggested that
the following three measures are basically equivalent:
Busse’s weighted sum of fractional deviations (X,
-X,)/ X, for the relevant material properties X, the ra-
tio x=A,/A, [introduced by Wu and Libchaber (1991)] of
the temperature drops across the bottom and top BLs,
and the relative change of the density BA. The last cri-
terion is the simplest, and Niemela and Sreenivasan
(2003a) suggested on empirical grounds that OB condi-
tions can reasonably be expected to prevail when BA is
less than about 0.1-0.2. We show that the situation is
more complicated and that there is a plethora of differ-
ent NOB effects.

NOB effects for RB convection in water were mea-
sured and analyzed systematically by Ahlers, Brown,
Fontenele Araujo, et al. (2006). Of the relevant fluid
properties, the kinematic viscosity v had the largest tem-
perature dependence in this case. They compared Nu for
three samples with different L, but the same Ra, all with
I'=1. The same Ra was realized in different ways by
keeping LA constant while L and A were changed. On
the one hand, NOB effects were negligible in a cell with
large L and sufficiently small A. On the other, a cell with
relatively small L but larger A up to 40 K could have
strong NOB effects. For the largest A the deviation of
the center temperature 7, from the mean temperature
T,, was only about 1.8 K [see Fig. 11(c)], corresponding
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FIG. 11. Deviations from the Oberbeck-Boussinesq approxi-
mation. (a), (b) The ratio Nu/Nugg as a function of A for fixed
T,. (¢), (d) T.—T,, as a function of A, also fixed T,,. (a), (c)
Water at 7,,=40.0 °C, I'=1.0. Solid circles, L=49.7 cm. Open
circles, L=24.8 cm. Solid squares, L=9.2 cm. (b), (d) Ethane
at a pressure of 55.17 bars for I'=0.5. Open symbols, T,
=35.0°C below the critical isochore temperature T,
=38.06 °C at this pressure. Solid symbols, 7,,=41.0 °C, above
T(ls.

to x=0.85. Brown, Fontenele Araujo, Ahlers, et al.
(2006) calculated the increase of T theoretically by de-
veloping an extended Prandtl-Blasius BL theory, which
takes the T dependence of v and « into account.
Surprisingly, for these water measurements the NOB
effects on Nu were small, see Fig. 11(a): less than 1.4%
even for A=40 K. To account for this finding, Ahlers,
Brown, Fontenele Araujo, et al. (2006) derived an exten-
sion of the exact relation (32) for the Nusselt number to
the NOB case, proving the generally valid exact relation

Nu  2Mop Kby + KA,

NuOB )\So},b + )\T’},t KmA

= F\F,. (34)

In each of the two factors F\ and F, the symmetry-
breaking different bottom and top BL properties enter
additively and thus tend to compensate each other, lead-
ing to a cancellation of the linear contributions to their
temperature dependences. Thus the remaining NOB ef-
fects on Nu originate only from the quadratic and
higher-order variations of the material properties with
temperature.

With the help of Eq. (34) Ahlers, Brown, Fontenele
Araujo, et al. (2006) could identify the origins of the
NOB corrections for water: For this fluid it is mainly the
temperature dependence of the thermal diffusivity «
that is responsible for the NOB correction of Nu, while
the NOB correction of the center temperature 7, has its
main origin in the temperature dependence of the kine-
matic viscosity v. Instead in glycerol, which displays an
extreme dependence of v on the temperature, the NOB
corrections for 7. are much larger, both in experiment
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(Zhang et al., 1997) and in the two-dimensional numeri-
cal simulations of Sugiyama et al. (2007).

Theoretical calculations of 7, from the extended
Prandtl-Blasius BL theory of Ahlers, Brown, Fontenele
Araujo, et al. (2006) for various waterlike fluids with hy-
pothetical temperature dependences of the material pa-
rameters were in good agreement with the correspond-
ing numerical results of Sugiyama et al. (2007, 2009).
Abhlers et al. (2007) applied the extended Prandtl-Blasius
theory of Ahlers, Brown, Fontenele Araujo, et al. (2006)
to NOB effects in gases, finding good agreement for 7.
with experiments using pressurized ethane gas, in which
the material properties strongly depend on temperature.
For this case a decrease of 7. relative to 7,, and an
increase of Nu in comparison to the OB case was found.
Note that both effects are in the opposite directions as
compared to the NOB effects in water or glycerol.

In experiments by Ahlers et al. (2008) the measure-
ments using ethane were extended to the region near the
critical point; see Figs. 11(b) and 11(d). On first sight the
results for 7. seem surprising. NOB effects in liquidlike
ethane (p>p. where p, is the critical density) caused an
increase of T, relative to T,,, whereas in gaslike ethane
(p<p.) NOB effects made T, smaller than 7,, The
physical reason for this qualitative difference was found
in the opposite sign of the bottom-top asymmetry of the
buoyancy strength due to the opposite temperature de-
pendence of B(T) for the two cases. In the liquidlike
case the buoyancy, proportional to B(T)=p8(T,,)+(T
-T,)B'(T,), is larger at the bottom and smaller at the
top, supporting the uprising warmer bottom plumes
more than the down-coming colder top plumes. This
brings predominantly hotter material into the bulk, lead-
ing to T,> T,,. For gaslike ethane the buoyancy is larger
at the cooler top, favoring down-going cold over upris-
ing warm plumes. This in turn brings more cooler mate-
rial into the bulk, resulting in 7.<T,,. It is the sign of
the slope B’ of B at T,, that is the relevant quantity for
this type of NOB correction.

Of course, the extended Prandtl-Blasius BL theory
fails when the thermal expansion coefficient 3, which is
disregarded in that theory by construction as it treats the
temperature as a passive scalar, shows an extreme tem-
perature dependence such as close to a criticial point.
The above explanation in terms of the strong tempera-
ture dependence of B, which leads to broken buoyancy
symmetry, as an additional cause of NOB effects on T,
was verified numerically by Ahlers et al. (2008).

Even though the two cases p<p. and p>p, discussed
above had T, displaced away from 7, in opposite direc-
tions, they both yielded an enhancement of Nu above
the OB value, i.e., in the same direction despite opposite
deviations of T, from T,,. This insensitiveness to the sign
of T.—T,, can be understood from Eq. (34). Physically,
the BLs act as two thermal resistances in series, since
Nusselt number deviations only depend on the sum of
both, and it does not matter much which of them is re-
duced and which one is enhanced.

The flow organization due to NOB effects in water
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FIG. 12. Behavior of LSC. Left: The LSC orientation as a
function of time at z=-L/4 (6, dotted line), z=0 (6,, tri-
angles), and z=L/4 (6, solid line). Right: The probability dis-
tribution p(#'/2) as a function of ¢ /2w Here 6 =6,—6,
(open circles) and 6’ =6, — 6, (solid circles). Solid line, a Gauss-
ian distribution. Adapted from Funfschilling et al., 2008.

and other liquids was studied numerically by Sugiyama
et al. (2009), again with 2D RB simulations. It was con-
firmed that buoyancy, in particular, the temperature
dependence of the thermal expansion coefficient B, is
the main origin of the NOB effects on the center-
roll Reynolds number, which roughly behaves like
Re/Reps=~[B(T,)/B(T,)]">. Reynolds-number mea-
surements using water (Ahlers, Brown, Fontenele
Araujo, et al., 2006) were still unable to resolve NOB
effects within their resolution of 1% or 2% even though
A was as large as 38 K.

VIII. GLOBAL WIND DYNAMICS
A. Experiment

For cylindrical samples with I'=1 the LSC circulation
plane breaks the rotational invariance of the cell. This
leads to interesting dynamics which includes oscillations
of the circulation plane (Heslot et al., 1987; Castaing et
al., 1989; Ciliberto et al., 1996; Takeshita et al., 1996;
Cioni et al., 1997; Qiu et al., 2000, 2004; van Doorn et al.,
2000; Niemela et al., 2001; Qiu and Tong, 2001a, 2001b,
2002; Sreenivasan et al., 2002; Xi et al., 2006; Resagk et
al., 2006; Xi and Xia, 2007). These are caused by a tor-
sional mode in which the orientation of the upper half of
the LSC undergoes azimuthal oscillations (Funfschilling
and Abhlers, 2004; Resagk et al., 2006) that are out of
phase with those of the lower half (Funfschilling and
Ahlers, 2004; Funfschilling et al., 2008). This is shown in
the left part of Fig. 12, which shows the LSC azimuthal
orientations (characterized by the angle) 6, at the verti-
cal position z=-L/4, the azimuthal orientation 6, at z
=0, and the azimuthal orientation 6, at z=+L/4 (the
origin of the z axis is at the cell center). These orienta-
tions were determined by measuring the azimuthal tem-
perature variation of the side wall at the three vertical
positions. Casual inspection shows that 4, and 6, oscil-
late, out of phase with each other and perhaps with ran-
dom amplitudes, about 6,. Quantitative analysis using
correlation functions confirms this qualitative result.
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FIG. 13. Time dependence of LSC orientation. Top: A time
series of 6y(¢) spanning about 11 days. Adapted from Brown
and Ahlers, 2006b. Bottom left: The LSC orientation 6y(7).
Bottom right: The LSC azimuthal temperature amplitude &(¢)
at the sidewall, during a cessation. Adapted from Brown, Ni-
kolaenko, et al., 2005.

Important insight into the origin of the twisting mode
is gained from the probability distribution functions
p(6,,) shown in the right part of Fig. 12. Here p(6; ) is
the probability of the azimuthal displacement 6, =6,
— 6, relative to 6, of 6, or 6, If the mode had its origin
in a Hopf bifurcation, then one would expect it to have a
characteristic finite amplitude A which would lead to
two peaks of p(6,,) at or near #'=+A. In contrast to
this, the experimental result for p(0,’),t) iS a near-
Gaussian distribution with only one maximum centered
at 6/,=0. Such a distribution is characteristic of a
damped oscillator driven by a broad-band noise source
[see, for instance, Gitterman (2005)]. This driving is at-
tributed to the action of the small scale turbulent fluc-
tuations on the large scale flow.

The twisting mode does not influence the LSC orien-
tation 6, at z=0 because there it has a node. However,
the LSC breaks the rotational symmetry of a cylindrical
sample and its circulation plane must somehow choose
an azimuthal orientation. This orientation has been
found to undergo spontaneous diffusive meandering
(Sun, Xi, and Xia, 2005; Brown and Ahlers, 2006a,
2006b; Xi et al., 2006) in the sense that its mean square
azimuthal displacement is proportional to the elapsed
time. This diffusion is shown in the top of Fig. 13 by a
long time series of 6y(¢). It is also attributed to the action
of the small scale fluctuations on the large scale flow.
Measurements of its diffusivity have yielded results for
the intensity of the fluctuating force (Brown and Ahlers,
2006a, 2006b).

Recently Xi et al. (2009) and Zhou, Xi, et al. (2009)
discovered a “sloshing” mode in a I'=1 cylindrical
sample that occurs in addition to the torsional mode and
that was missed by the analysis method employed by
Funfschilling and Ahlers (2004) and Funfschilling et al.
(2008). This mode consists of an in-phase horizontal dis-
placement of the entire LSC. A theoretical explanation
of the origin of both modes was given recently by Brown
and Ahlers (2009). The sloshing mode is responsible for
the oscillations seen in some of the local temperature
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measurements that had been attributed by some to pe-
riodic plume emission from the thermal boundary lay-
ers.

The LSC also undergoes re-orientations both by azi-
muthal rotations (Cioni et al., 1997; Brown and Ahlers,
2006b) and by cessations in which the LSC slows to a
stop and restarts in a random new orientation (Brown,
Nikolaenko, et al., 2005; Brown and Ahlers, 2006b; Xi
and Xia, 2007). A cessation is shown in the lower part of
Fig. 13. The left part reveals a sudden change in orien-
tation. The right one shows that the temperature ampli-
tude &, and thus presumably the LSC itself, vanishes or
comes close to zero at the time of the cessation. The
angular change A6, during a cessation has a nearly uni-
form probability distribution, indicating that once the
flow stops it re-organizes itself in a random new orien-
tation. The angular change A6, of rotations has a power-
law distribution, with small changes more likely then
large ones. The time interval 7; between successive
events for either cessations or rotations is Poisson dis-
tributed, showing that successive events are uncorre-
lated.

On longer time scales, the Earth’s Coriolis force (at a
latitude of 34° in the Northern Hemisphere) was found
to cause a net clockwise (as seen from above) rotation of
the LSC orientation on average once every 3 days, and
to align the LSC in a preferred orientation close to West.
The measured probability distribution p(6,) agreed
quantitatively with a model calculation of the Coriolis-
force interaction that involved no adjustable parameters
(Brown and Ahlers, 2006a). The net clockwise rotation
was also consistent with this model.

The LSC in other geometries and aspect ratios adds to
the richness of this phenomenon but is beyond the scope
of this review. We mention briefly that DNS revealed
two counter-rotating near-circular rolls, stacked verti-
cally one above the other (Verzicco and Camussi, 2003)
as the dominating feature of the LSC in cylindrical
samples with I'=0.5. Recent experimental evidence pro-
vided by Xi and Xia (2008b) for I'=0.5 and 0.33 indicates
random temporal successions of one-roll and two-roll
states, with the two-roll state becoming more prevalent
as I' is decreased. Xi and Xia (2008a) found a strong
aspect ratio dependence when comparing the azimutal
motion, reorientation, cessation, and reversal of the
large scale circulation in cylindrical RB samples with I'
=23, 1, and 0.5. In samples of square or rectangular
cross section the LSC is locked in a predominant orien-
tation along a diagonal (Daya and Ecke, 2001). This is
now understood in terms of the pressure gradients that
arise when the rotational invariance of a cylindrical
sample is broken (Brown and Ahlers, 2008a). Zhou et al.
(2007a) studied temperature and velocity oscillations in
a rectangular cell finding that the temperature oscilla-
tions scale differently with Ra than the velocity oscilla-
tions, which are affected by the cell geometry. Of great
interest, but largely unexplored, is the flow structure
that will be found in large-I" systems where numerous
convection rolls potentially can coexist next to each

Rev. Mod. Phys., Vol. 81, No. 2, April-June 2009

other. Recent papers addressing this issue numerically
include that by Hartlep et al. (2005). Recent experimen-
tal work going in this direction includes the measure-
ments by Niemela and Sreenivasan (2006a).

B. Models

Stochastic models of flow reversal have been pro-
posed by Sreenivasan et al. (2002) and Benzi (2005).
They treated diffusion of the LSC strength in a potential
well, but there was no physical motivation for the shape
of the potential that was used and the model parameters
were chosen phenomenologically. They also did not ad-
dress the azimuthal dynamics of the LSC. Two other
models describe the LSC with deterministic ordinary dif-
ferential equations that have chaotic solutions (Fon-
tenele Araujo et al., 2005; Resagk et al, 2006). They
were derived by retaining some relevant aspects of the
Navier-Stokes equations and making various approxima-
tions. The model of Fontenele Araujo et al. (2005) is
based on assumptions about the lifetimes 7, of plumes.
It is estimated that plumes with a sufficiently large 7,
will be carried over by the LSC to the far side where
their buoyancy tends to act against the prevailing flow.
This physical process can lead to cessations. Since this
model does not contain an azimuthal mode, it cannot
describe the rich azimuthal dynamics of the physical sys-
tem.

Recently a model consisting of two stochastic ordinary
differential equations, one each for the circulation
strength U and the azimuthal circulation-plane orienta-
tion 6, was developed by Brown and Ahlers (2007a,
2008b). Starting with the Navier-Stokes (NS) equation, it
was argued that U is driven by the buoyancy term and
hindered by the dissipation in the viscous boundary lay-
ers near the walls. A phenomenological stochastic driv-
ing term representing the interaction between the small
scale turbulent fluctuations and the large scale circula-
tion is added to the deterministic model. For 6, the only
driving is the turbulent fluctuations, but the component
of the nonlinear term in the NS equation that describes
the rotational inertia of the LSC provides damping and
couples the two equations. Assuming that the experi-
mentally accessible azimuthal temperature amplitude &
is proportional to U near the side wall, the model be-
comes

s 3/2 . 6,0
b= =0, by=- == +fil) (35)
Ts T\ 5(] 7950

with the coefficients
187Ac Re?”? L? o
R " 18vRe” " 2,Re’
(36)

The intensities of the stochastic forces fs(¢) and fy(r) are
obtained from model-independent measurements of the

diffusivities of & and 6.



530 Ahlers, Grossmann, and Lohse: Heat transfer and large scale dynamics in ...

The potential corresponding to the & equation has a
&'? rather than the usual quartic nonlinearity. However,
this does not change its qualitative structure, which has
an unstable fixed point at =0 and a stable one at &
= &. The driving will cause diffusion in the vicinity of the
stable fixed point, with occasional excursions to §=0 cor-
responding to cessations. During a cessation (when & is

small) the damping term on the right hand side of the 6,
equation, and thus the angular momentum of the LSC,
become small, and it becomes easy for the stochastic
driving to cause relatively large angular changes A6,.
The model agrees well with many experimental results
for the LSC dynamics (Brown and Ahlers, 2008b), in-
cluding a time interval between cessations of 1-2 days, a
near-uniform distribution p(A6,) for cessations, and the
dependence of & on Re and Ra expressed by
(8y/A)(Ra/Pr)xRe*?. There is, however, a significant
disagreement between the model and the measured tail
of the probability distribution p(8) at small §, for &
=< §,/2. It has been suggested (Brown and Ahlers, 2008b)
that this is caused by the neglect of thermal conduction
across the thermal BLs which is expected to become
important when § is small.

Recently the above model was extended by Brown
and Ahlers (2008a) by including various perturbations
that break the rotational invariance of the sample. These
include (i) the effect of Earth’s Coriolis force, (ii) an el-
liptic rather than circular horizontal cross section of the
sample, (iii) a tilt of the sample axis relative to gravity,
and (iv) a small horizontal temperature gradient at the
top or bottom plate. It turns out that (i) and (i) only

influence the 6, equation and not the 5 equation. Pertur-
bations of this type, although they introduce a preferred
orientation of the LSC, leave the Reynolds number and
the frequency of cessations largely unchanged. However,

perturbations like (iii) and (iv) which affect 5 influence
Re and suppress cessations. A tilt or elliptic eccentricity
of sufficient magnitude creates a new oscillatory mode
of the LSC which is different from the torsional oscilla-
tion in that the phase of the oscillation is uniform along
the height of the sample. For the tilted sample this mode
was found in recent experiments (Brown and Ahlers,
2008a).

IX. ISSUES FOR FUTURE RESEARCH

As shown in this review, since Siggia’s article (1994)
tremendous progress in the understanding of the turbu-
lent Rayleigh-Bénard system has been achieved by ex-
periment, theory, and numerical simulation. However, it
has also become clear that our understanding is far from
complete. In the following we summarize what we con-
sider as major issues for future research.

Presumably the most important challenge is to clarify
whether and, if so, where in parameter space the ulti-
mate state of convection exists. Estimates suggest that
(for Pr near 1) a transition to such an ultimate state
should occur at Rayleigh numbers around 10'3-10'%. Be-
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yond that transition the Nusselt number should increase
more rapidly with Ra than below it. Though the
Grenoble experiments suggest such a transition near
Ra=10'!, neither the Oregon-Trieste experiments nor
numerical simulations do so. The reason for the discrep-
ancy is unresolved at present. It is important to clarify
this issue in order to allow extrapolations of the heat
transfer to the very large Ra regime of geophysical and
astrophysical interest. Perhaps related to this issue is
whether a coherent LSC continues to exist at very large
Ra, or whether it is totally overwhelmed by fluctuations.
Several experimental efforts are planned to try to an-
swer these questions.

Rather than focusing on global quantities such as the
heat flux, which may be difficult to control in the large-
scale setups necessary in an ultimate regime, a promising
complementary strategy may be to focus on a detailed
analysis of the top and bottom BLs, whose structure
should reflect such a transition. Here the challenge is the
opposite: Extremely small structures must be spatially
resolved. Even for an about 7-m-high sample (such as
the barrel of Ilmenau) the thermal boundary layer is
only about 1 mm thick when Ra=10'. Helpful strate-
gies may be to try to trigger the transition in the BL, by
controlled roughness or even by moving parts.

Also the three-dimensional dynamics of the large
scale convection roll will need further attention and
analysis. As shown in Sec. VIII, it is rather rich, includ-
ing torsional modes, rotation, cessation, and sloshing.
Here the key question is: What features of the LSC can
be described through a deterministic model somehow
based on the Oberbeck-Boussinesq dynamics or some
force balance and what features need stochastic ele-
ments for a description? Routes for further research on
this subject will include experiments and numerical
simulations with modified geometries as, e.g., cylindrical
samples with a horizontal axis.

Another issue for future research is the exploration of
the aspect-ratio dependence of the flow. Though the T’
dependence of Nu is found experimentally to be weak, a
full understanding of the RB system requires further
theoretical efforts also in that direction. For the charac-
terization of the corresponding flow organizations de-
tailed PIV measurements could play a crucial role.
These will also shed light on the Ra and Pr dependences
of the various Reynolds numbers that one can define,
and their connections.

From the theoretical viewpoint, the GL theory has
provided a good guideline for the understanding of
Nu(Ra,Pr) and Re(Ra,Pr) and even allowed various pre-
dictions, but the theory has its limitations

e It builds on the Prandtl-Blasius BL theory for the
temperature as a passive scalar. The buoyancy term
is skipped by construction in the Prandtl BL equa-
tions, but it is of high importance for thermally
driven flow, leading to plume detachment from the
thermal BLs. This detachment mechanism as a time-
dependent BL separation process needs further
study and analysis of its parameter dependences. The
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GL theory only represents the global effect of the
plumes and the resulting self-organizing buoyancy-
driven flow, namely, the large scale wind.

e The three-dimensional (torsional) dynamics of the
large scale wind is not taken into consideration by
the GL theory (or any other model).

e Experiments suggest that Nu and Re are not as inti-
mately related as the relations (21) and (22) of the
GL theory suggest. For instance, by tilting the system
Re can be enhanced considerably whereas Nu
changes very little.

e Figure 4 implies that there are more sudden transi-
tions between the various regimes in reality than
within the GL theory.

e Finally, in the Nu=Ra'”® regime the experimentally
found coexistence of a measured Reynolds number
«Ra'”, achieved in Santa Barbara, and the GL pre-
diction Re«Ra*® for the global wind has to be clari-
fied and resolved.

More theoretical work is necessary to improve on the
GL theory. This unfortunately may only be possible by
sacrificing its conceptual appeal and simplicity.

An important further extension of the present theo-
retical understanding of RB convection, but of course
also of the numerical simulations and the experiments,
is the extension towards rotating RB convection. With
rotation, the (Ra,Pr) parameter space is extended to
(Ra,Pr,Ro), where the Rossby number Ro is defined as
Ro=(2Q)"'VBgA/L, i.e., as the ratio of the time scale
given by the rotation rate ) and the one given by buoy-
ancy. The obvious questions to address are: What is the
dependence of the Nusselt number on the control pa-
rameters Ra, Pr, and Ro, i.e., what is Nu(Ra,Pr,R0)?®
And how do the large scale convection roll and the
Reynolds number react to the rotation, i.e., what is
Re(Ra,Pr,R0)? When will the large scale convection roll
break down? How are the top-bottom, and sidewall ki-
netic and thermal BLs modified through the rotation?
Only a small fraction of the parameter space (Ra,Pr,Ro)
has hitherto been explored. Given that rotating turbu-
lence is known for its counterintuitive features (e.g., the
Taylor-Proudman effect), we expect many surprising re-
sults ahead of us. We do not want to give an extensive
literature review on rotating RB here, but good starting
points are Greenspan (1990) or the classical article by
Rossby (1969) himself.

Future developments undoubtedly will also include
the extension of the current state of the art of RB con-
vection to complex fluids, to fluids containing bubbles or
suspensions of particles, to fluids undergoing phase tran-
sitions, and so on. But these topics are beyond the scope
of the present review.

Fifteen years after Siggia’s article on RB convection
(Siggia, 1994), and inspite of the huge progress achieved

8For a very recent reference on this issue we refer to Zhong et
al. (2009), and references therein.
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during this time, we close with a similar statement as he
did: The current rate of experimental and numerical ad-
vances will again soon antiquate this summary.
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