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In addition to the striking beauty inherent in their complex nature, fractals have become a
fundamental ingredient of nonlinear dynamics and chaos theory since they were defined in the 1970s.
Moreover, fractals have been detected in nature and in most fields of science, with even a certain
influence in the arts. Fractal structures appear naturally in dynamical systems, in particular associated
with the phase space. The analysis of these structures is especially useful for obtaining information
about the future behavior of complex systems, since they provide fundamental knowledge about the
relation between these systems and uncertainty and indeterminism. Dynamical systems are divided
into two main groups: Hamiltonian and dissipative systems. The concepts of the attractor and basin of
attraction are related to dissipative systems. In the case of open Hamiltonian systems, there are no
attractors, but the analogous concepts of the exit and exit basin exist. Therefore basins formed by
initial conditions can be computed in both Hamiltonian and dissipative systems, some of them being
smooth and some fractal. This fact has fundamental consequences for predicting the future of the
system. The existence of this deterministic unpredictability, usually known as final state sensitivity, is
typical of chaotic systems, and makes deterministic systems become, in practice, random processes
where only a probabilistic approach is possible. The main types of fractal basin, their nature, and the
numerical and experimental techniques used to obtain them from both mathematical models and real
phenomena are described here, with special attention to their ubiquity in different fields of physics.
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I. INTRODUCTION

Fractal structures appear naturally in nonlinear dy-
namics, in such a way that the two concepts are deeply
related. The impact of the ideas of chaos and fractals in
physics and other scientific disciplines in recent years
has been enormous. In particular, the analysis of fracta-
lity is especially useful to obtain information about the
evolution of many dynamical systems modeling physical
phenomena, since it provides fundamental information
about the intrinsic uncertainty in predicting their future
behavior.

Since the relation between fractality and nonlinear dy-
namics was established, it has been observed that frac-
tality is ubiquitous in nature. All fields of science present
complex systems in which prediction is a challenge be-
cause of the exponential separation of infinitely close
initial conditions. In the context of dissipative systems,
examples of fractal behavior are numerous. We note the
appearance of fractal basins in a wide variety of nonlin-
ear oscillators such as the Duffing oscillator (Aguirre
and Sanjudn, 2002) or the forced damped pendulum
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(Kennedy and Yorke, 1991), multispecies competition
(Huisman and Weissing, 2001) and predator-prey models
(Vandermeer et al., 2001), the modeling of electrical sys-
tems (Marcos et al., 2003) or brain dynamics (Gong and
Xu, 2001).

Fractal basins are equally frequent among open
Hamiltonian systems (Poon et al., 1996; Aguirre et al.,
2001). One basic characteristic of these Hamiltonian sys-
tems is that orbits can escape toward infinity from a
bounded region through one of several exits. Some ap-
plications are the analysis of the escape of stars from
galaxies (Contopoulos et al., 1993), the evolution of hy-
drodynamical flows around obstacles (Sanjudn,
Kennedy, Grebogi, ef al., 1997; Sanjudn, Kennedy, Ott, et
al., 1997; Kennedy et al., 1999), the dynamics of ions in
electromagnetic traps (Horvath et al., 1998), planar Cou-
lomb classical scattering (Varvoglis et al., 2001), the in-
teraction between the Earth’s magnetotail and the solar
wind (Chen et al., 1990), plasma physics (da Silva et al.,
2002), and the study of geodesics in gravitational waves
(Vesely and Podolsky, 2000), to cite just a few.

The plot of the fractal basins associated with a dy-
namical system provides a qualitative idea of the com-
plications in the prediction of its future evolution. For
this reason, we make a critical analysis of the existing
graphical techniques, not only for computing fractal ba-
sins but also for calculation of the fractal invariant sets
in Hamiltonian systems. Furthermore, in order to mea-
sure the fractality of a system quantitatively, we analyze
the fundamental concept of the fractal dimension and
the main algorithms used to calculate it. The main body
of this review, though, is focused on the coherent pre-
sentation of the different types of fractal basin, such as
Wada or riddled basins. The goal is to pay special atten-
tion to the nature, properties, and examples of the wide
variety of fractal basins in the different fields of physics.

A. Historical background: The history of determinism

The notions of chaos and fractals have played a very
important role in the idea of uncertainty in physics.
Benoit Mandelbrot coined the term fractal in 1975
(Mandelbrot, 1975), taken from the Latin fractus mean-
ing “broken” or “fractured,” and the subsequent study
of all manifestations of this beautiful mathematical
structure of noninteger dimension has been fruitful in
obtaining information about the behavior of many dy-
namical systems. Nonlinear dynamics and chaos theory,
by introducing the challenging concept of final state sen-
sitivity (Grebogi, McDonald, et al., 1983), revolutionized
the classical concept of determinism, which affirms that
every event or action is the inevitable result of preceding
events and actions.

The ideas of determinism and its consequences are
obviously much older than the concept of fractality, and
are deeply related to the history of physics and philoso-
phy. Ilya Prigogine (1917-2003), in his book The End of
Certainties (Prigogine, 1996), affirms that 2500 years ago
the pre-Socratic philosophers already dedicated long
discussions to this subject. In particular, Epicurus (341
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B.C—270 B.C.), who followed Democritus’s ideas about
nature and was convinced that the whole Universe was
made out of small atoms, was especially puzzled by the
meaning of human freedom in the deterministic world.

Most Western thinkers, such as Immanuel Kant
(1724-1804), Alfred North Whitehead (1861-1947), or
Martin Heidegger (1889-1976), defended the existence
of freedom against an objective description of the world.
But none of them found a convincing answer to what
was named the dilemma of determinism by William
James (1842-1910).

The development of science during the 16th and 17th
centuries provided fundamental new information to this
old debate. In particular, we must remark on Newton’s
second law relating force and acceleration, which is de-
terministic and reversible in time. If we know the initial
conditions of a system and we know all the forces that
are acting on it, we can obtain its future and past behav-
ior without any ambiguity. Fascinated by this result,
Pierre Simon de Laplace (1749-1827) wrote the follow-
ing almost 200 years ago (de Laplace, 1814): “We may
regard the present state of the universe as the effect of
its past and the cause of its future. An intellect which at
any given moment knew all of the forces that animate
nature and the mutual positions of the beings that com-
pose it, if this intellect were vast enough to submit the
data to analysis, could condense into a single formula
the movement of the greatest bodies of the universe and
that of the lightest atom; for such an intellect nothing
could be uncertain and the future just like the past
would be present before its eyes.”

During the 19th century, it was clear that conceptually
the application of the laws of physics to predict the fu-
ture was no longer considered a problem. The remaining
challenge was based on two different limitations. First,
deep knowledge of the initial conditions was necessary,
and, second, the system could become extremely diffi-
cult to solve when many particles were involved. The
latter difficulty pushed scientists to introduce concepts
related to probability in the applicability of the physical
laws. This gave rise to the new field of statistical me-
chanics. Among the founding fathers of this discipline
are Ludwig Boltzmann (1844-1906), Josiah Willard
Gibbs (1839-1903), and James Clerk Maxwell (1831-
1879). It is known that the last was already aware of the
problems associated with the uncertainty of fixing the
initial conditions for a given dynamical system (Hunt
and Yorke, 1993). Finally, during the 20th century and in
recent years, much work has been done in order to pro-
vide a dynamical foundation to statistical mechanics,
where chaos theory has played an important role
(Dorfman, 1999; Gaspard, 2005; Pine et al., 2005; Gollub
and Pine, 2006).

From a different perspective, the appearance of quan-
tum mechanics had important consequences for deter-
minism in physics. The Heisenberg uncertainty principle
shows the impossibility of applying totally deterministic
equations to the dynamics of the microscopic world, as it
is not possible to know at the same time two conjugate
variables of a particle (such as the position and velocity,
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for example). In this way, the deterministic laws become
statistical laws. The interpretation of the wave function
as a solution of the Schrodinger equation is incompat-
ible with the deterministic concept of predicting the fu-
ture position and velocity of the particle. As a conse-
quence, the idea of indeterminism has been directly
related to quantum mechanics, while most scientists
have always analyzed classical mechanics as a totally de-
terministic subject. However, this is not so. In fact, the
idea of the sensitive dependence on initial conditions
was analyzed by Max Born (1882-1970) in a paper called
“Is classical mechanics in fact deterministic?” (Born,
1955). He presented a study of the two-dimensional Lor-
entz gas, first proposed by Hendrik A. Lorentz (1853—
1928) as a model for the electrical conductivity in metals
(Lorentz, 1905a, 1905b, 1905c¢). In this model, a particle
moves in a plane full of hard spheres, hitting them in
such a way that a small change in the initial conditions
will considerably alter the trajectory of the particle.
Born concluded that the determinism traditionally re-
lated to classical mechanics is not real, as it is impossible
to know with infinite precision the initial conditions of a
physical experiment. Similar reflections were made by
Erwin Schrodinger (1887-1961), and Richard Feynman
(1918-1988) explained in his well-known book The Feyn-
man Lectures on Physics (Feynman et al., 1963) that in-
determinism does not belong exclusively to quantum
mechanics, but is a basic property of many classical sys-
tems.

The debate has reached our times. Prigogine (1996)
proposed solving the dilemma of determinism via the
new fields of physics that confront indeterminism be-
cause of their basic nature: quantum theory at the mi-
croscopic level and chaos theory in the macroscopic
world.

B. Historical background: The birth of fractality and chaos
theory

There were several scientists in the 19th century who
were aware of the idea of a sensitive dependence on
initial conditions; however, the French mathematician
Henri Poincaré (1854-1912) is universally recognized as
the founding father of the idea of chaos in nonlinear
systems. In a quite well-known citation (Poincaré, 1908),
he wrote the following: “It may happen that small dif-
ferences in the initial conditions produce very large dif-
ferences in the final phenomena. A small error in the
former produces an enormous error in the latter. Predic-
tion becomes impossible, and we are faced with a phe-
nomenon of chance.”

The contributions of Poincaré to the theory of dy-
namical systems are immense. He coined the term bifur-
cation (Poincaré, 1885), and introduced fundamental
concepts such as asymptotic solution, limit cycle, saddle
node, focus, homoclinic point, and Poincaré map, apart
from several important theorems such as the Poincaré-
Bendixon theorem. There was a long lapse of time be-
tween the work of Poincaré and the development of
chaos theory as we know it today. The general opinion
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of many scientists is that the appearance of the Planck
hypothesis in 1900 and relativity theory in 1905 meant
that many physicists dedicated their research efforts to
these new and promising disciplines. Uncertainty ap-
pears naturally in quantum mechanics, and so there was
no need to introduce chance in classical mechanics via
sensitivity to initial conditions. On the other hand, it is
believed that some of the ideas of Poincaré arrived too
early, when there were almost no tools to exploit them in
detail. We had to wait until the appearance of computers
and numerical simulations, and in fact the impact of the
ideas of Poincaré in physics was not fully understood
until the meteorologist Edward Lorenz (1917-2008)
published his famous results in the paper “Deterministic
Nonperiodic Flow” (Lorenz, 1963). This paper soon be-
came a milestone in the study of chaotic behavior in
deterministic nonlinear dynamical systems.

The term chaos was introduced to the scientific com-
munity in the 1970s, when Tien-Yien Li and James A.
Yorke published the famous paper “Period Three Im-
plies Chaos” (Li and Yorke, 1975). The term had imme-
diate success among the general public also, and many
newspaper articles and books were written about the
subject. At the same time, Benoit Mandelbrot coined
the term fractal (Mandelbrot, 1975). Mathematical struc-
tures such as chaotic attractors or fractal basin bound-
aries have fractal dimensions, but fractals have turned
out to be ubiquitous in nature. His books Fractals, Form,
Chance, and Dimension (Mandelbrot, 1977) and The
Fractal Geometry of Nature (Mandelbrot, 1982) soon be-
came popular, stimulating much research. Since then,
much work has been developed analyzing the relation
between chaos and fractality, and this review points in
this direction.

II. BASIC CONCEPTS

The basins of attraction in dissipative systems and the
exit basins in Hamiltonian systems are two basic tools
used to analyze the uncertainty associated with dynami-
cal phenomena. The review will deal with these two con-
cepts and the fractal structures associated with them.
For this reason, this section, dedicated to clarifying sev-
eral basic concepts, will define what basins of attraction
and exit basins are, how they can be analyzed by making
use of the concept of the Poincaré map, and the main
graphical methods currently available to plot basins
computationally.

A. Basins of attraction and exit basins

Unlike Hamiltonian systems that preserve volume,
dissipative systems have one or more attractors. For an
exhaustive analysis of the term, we refer the reader to
Ott (1981), Guckenheimer and Holmes (1983), Eckmann
and Ruelle (1985), and Milnor (1985). In the present re-
view we use diverse definitions of an attractor, depend-
ing on the case, but as an introduction to the concept,
and following in part Strogatz (1994), we say an attractor
is a set A with the following properties
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(1) A is a closed and bounded set that is invariant; that
is, any trajectory that starts in A remains in A for all
time, both positive and negative.

(2) A attracts an open neighborhood of initial condi-
tions: there is an open set U containing A such that if
x(0) e U, then the distance from x(¢) to A tends to
zero as t— . The largest set U that satisfies this
condition is called the basin of attraction of the at-
tractor A.

(3) A is minimal; that is, there is no proper subset of A
that satisfies conditions 1 and 2.

(4) Ais (Lyapunov) stable; that is, A has a nested family
of closed neighborhoods U; that are positively in-
variant and their intersection is A.

The basin of attraction associated with attractor A is
the closure of the set of points that, taken as initial con-
ditions, converge to A when time is increased.

For a given Hamiltonian system, an open Hamil-
tonian, or a Hamiltonian with escapes, represents the
case for which a particle can escape toward infinity from
a certain bounded region. Since there are no attractors
for Hamiltonian systems, we cannot define basins of at-
traction. However, we can define an exit basin in an
analogous way to the basins of attraction in a dissipative
system. The exit basin associated with the exit i of an
open Hamiltonian system is the set of initial conditions
that escape from the bounded region through exit i.

B. Poincaré maps and stroboscopic maps

To visualize basins of attraction, they must be plotted
in one or two dimensions. But only two-dimensional
maps and one-dimensional autonomous flows (where
the variables are x and x and do not depend explicitly on
time ) have two-dimensional phase spaces. Since most
dynamical systems are defined in a phase space with di-
mension higher than 2, it is not possible to plot the to-
tality of their basins. While studying the three-body
problem, Poincaré discovered that it is convenient to di-
minish the complexity of the analysis of a flow by study-
ing the intersections (in a certain direction) of the trajec-
tories with a fixed surface (Poincaré, 1897), and these
surfaces are known as Poincaré surfaces of section. With
this technique, a continuous k-dimensional flow be-
comes a (k—1)-dimensional map, commonly known as a
Poincaré map [see Hénon and Heiles (1964)].

Sometimes, when we are working with nonautono-
mous flows that are time periodic (as happens with pe-
riodically forced oscillators, for example), it is more con-
venient to plot the orbits and basins of attraction after
every period T. This is called a stroboscopic map.

C. Graphical methods to plot basins

Several computational methods have been developed
to plot the basins of attraction of a system. All we have
to do in the simplest method is first find the attractors



Aguirre, Viana, and Sanjuan: Fractal structures in nonlinear dynamics 337

associated with the system, and then iterate a fine grid of
initial conditions and plot them with different colors de-
pending on the attractor they lead to. Consequently,
there will be as many basins as attractors. Although
some systems might have an arbitrarily high number of
attractors, as reported by Feudel et al. (1996), most dy-
namical systems have a low number of attractors that
can be easily found by using a trial and error method
with a high number of random initial conditions. The
same technique can be used for plotting the exit basins
of an open Hamiltonian system. The only difference is
that the computation of each trajectory must be paused
when the trajectory has left the system through one of
the exits, but in any case its initial condition will be plot-
ted with a different color depending on the exit through
which it escapes.

Advanced numerical methods have been developed to
plot basins of attraction in a much faster and precise
way, and in fact there exists a quite extensive variety of
software dedicated to dealing with dynamical systems.
In particular, the software DYNAMICS (Nusse and Yorke,
1997) has implemented two methods for the computa-
tion of basins of attraction; one called the basins and
attractors method (BA) and the other called the basin
method (BAS). They are explained in detail by Nusse
and Yorke (1997). Although these methods are fairly
complex, most typical dynamical systems are imple-
mented in the software and, moreover, it can be modi-
fied sufficiently to analyze a wide range of new systems.
The BA method plots both attractors and basins, and
automatically finds the attractors. It is easy to use with
the software, but the BA method works only for two-
dimensional maps and two-dimensional Poincaré return
maps. Furthermore, it presents several uncertainties, but
its improved version, the modified BA method (BAP),
overcomes some of them. The BAS method is more dif-
ficult to use than the BA and the BAP methods, because
the user must introduce some information about the ba-
sin to be plotted. Moreover, it finds basins but does not
plot the attractors.

III. FRACTALS

Benoit Mandelbrot popularized a class of sets whose
dimension is not an integer by introducing the term frac-
tal in the 1970s (Mandelbrot, 1967, 1975, 1977, 1982).
Broadly speaking, fractals are complex sets with a non-
integer dimension. Furthermore, they present a statisti-
cal self-similarity at a wide range of different scales.
Fractals soon became very popular among both the sci-
entific community and the general public, not only be-
cause of their fascinating beauty, but also because they
happen to be ubiquitous in nature. In one of his first
works on the subject, Mandelbrot (1967) gives a fractal
dimension of 1.25 for the coast of Britain, 1.15 for the
border of Germany, and 1.14 for the border between
Spain and Portugal. In particular, fractals are every-
where in biology, from cell colonies (Losa et al., 1992;
Cross et al., 1995; Losa, 1995) or tumor surfaces (Bru et
al., 1998, 2003) to many environmental data (Burrough,

Rev. Mod. Phys., Vol. 81, No. 1, January—March 2009

1981). Even soil structures (Katz and Thompson, 1985)
and the distribution of galaxies exhibit a specific kind of
fractal-like behavior (Gaite et al., 1999; Gaite and Man-
rubia, 2002; Jones et al., 2004). This general interest has
given rise to the appearance of an extensive literature on
the subject [see Peitgen and Richter (1986); Peitgen et al.
(1992); Barnsley (1993); Bunde and Havlin (1994);
Frame and Mandelbrot (2002); to cite just a few].

Several fractals can be built by following very simple
rules. We sketch in this section a few of them, paying
special attention to Cantor sets because of the funda-
mental role they play in nonlinear dynamics.

A. The Cantor set

There is a whole family of fractals, the Cantor sets,
that appears frequently in nonlinear dynamics. The set is
named after the 19th century mathematician Georg
Cantor (1845-1918) (Cantor, 1881). Nonetheless, it was a
19th century geometry professor from Oxford Univer-
sity, Henry Smith (1826-1883), who created it. A Cantor
set is closed and consists of an uncountable number of
points, each of which is a limit point. Furthermore, there
are no connected subsets, except, trivially points. Any
Cantor set in the real line can be constructed as follows.
Start with a closed bounded interval /;. Remove an open
interval O; from inside it. Whenever an open interval is
removed from another interval, we require that it must
divide that interval into two subintervals, each of which
contains more than one point. Iteratively, remove an
open interval from each remaining interval in such a way
that the length of the largest interval remaining at any
step shrinks to zero as the process proceeds. The limit-
ing set (consisting of the points that have not been re-
moved) is a Cantor set. A special case is often men-
tioned. At each step, remove the middle third of every
interval. The resulting Cantor set is called the middle-
third Cantor set. Before reviewing its main properties,
we must introduce the following concept that will be
used throughout: A set of points in a line has zero Le-
besgue measure if it can be covered with open intervals
the sum of whose lengths is arbitrarily small.

The middle-third Cantor set has a noninteger dimen-
sion of In2/In3=0.631. Furthermore, it has zero Le-
besgue measure, and the proof is that the total length of
the remaining interval is (2/3)" after n steps of construc-
tion, and this quantity tends to zero as n grows. Obvi-
ously, all end points of each interval that is removed
belong to the Cantor set, but there are many other
points in the unit interval that belong to the Cantor set.
In fact, it is an uncountable set; this can be proved by
showing that it consists of all numbers in the interval [0,
1] that can be represented in base 3 using only the digits
0 and 2 (Kennedy and Yorke, 1991; Alligood et al., 2000).
Furthermore, there is a one-to-one correspondence be-
tween this Cantor set and all points in the unit interval,
although the measure of the Cantor set is zero and the
measure of the unit interval is 1 (see Alligood et al.,
2000, and Ott, 2002, for more details).
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The middle-third Cantor set and other similar sets are
common in nonlinear dynamics. We will return to them
throughout the review. For example, the appearance of
Cantor sets is typical in one-dimensional maps where
the orbit can escape to infinity. We define the tent map
as follows:

T(x)=m(1 - |x]) - 1. (1)

For m>2, almost all initial points x yield trajectories
of x,,.1=T(x,) that go to —« as n—o. If x;<-1, then x,
decreases monotonically and tends to —. If x,>1, then
x1<-1 so x,,——o0. Therefore we focus our attention on
the interval J=[-1,1]. Any trajectory that leaves J must
go to —w. The orbits that never escape from this
bounded region constitute a Cantor set of zero Le-
besgue measure. In fact, it is easy to see that, when the
slope m=3, this fractal set coincides with the middle-
third set just presented.

There is a special kind of Cantor set that does not
have zero Lebesgue measure. These are the sets in
which the Lebesgue measure of the union of the infinite
subintervals removed from the unit interval to construct
them is not equal to 1. As a simple example, start with
the unit interval, and remove in each iteration k the
middle subinterval of length 1/4* from every remaining
interval. The limiting set after infinite iterations is a frac-
tal set of length 1/2. Farmer (1985) coined the term far
fractals for this kind of Cantor set, and Grebogi, Mc-
donald, et al. (1985) defined these fat fractals as sets that
lie in an N-dimensional Euclidean space that, for every
point in the set and every €>0, an € ball centered at that
point contains a nonzero Lebesgue measure of points in
the set, as well as a nonzero volume of points outside the
set. Other important contributions to fat fractals are by
Umberger and Farmer (1985); Gwinn and Westervelt
(1986); Hanson (1987); Eykholt and Umberger (1988).

B. The Koch curve

This is a good example of how simple rules can give
rise to self-similar fractal structures. The Koch curve is
probably the best-known fractal curve. To construct it,
start with a horizontal segment. Now, place on its middle
third the base of a triangle whose side is one-third of the
original segment, and erase its lower side. Repeat the
action, placing one triangle of side one-third of the ex-
isting segments on the middle third of each segment of
the structure, erasing the base of every triangle placed.
If this algorithm is taken to the limit, the structure be-
comes a fractal curve. Its dimension lies between 1 and 2
(d=In4/In 3=1.262), so that between any two points of
the curve there is an infinite distance, but the curve oc-
cupies zero area (Sander, 1986).

C. The Sierpinski gasket

Finally, we show an example of a fractal surface. Start
with a triangle, and remove the inverted triangle whose
vertices are the midpoints of each side of the original
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triangle. Repeat this action ad infinitum with the remain-
ing triangles. The limiting structure is a fractal surface of
dimension In 3/In 2=1.585.

The middle-third Cantor set, the Koch curve, and the
Sierpinski gasket are absolutely self-similar, as smaller
pieces of them reproduce the original set when they are
magnified. However, in most fractals that appear in the
context of dynamical systems, the self-similarity will not
be so obvious. In these situations this term has a looser
meaning, and it is used to express the idea that any mag-
nification of a neighborhood around any point of the set
never results in a smooth structure such as a single point
or an isolated curve. That is, the same complex structure
is maintained on all scales.

IV. FRACTAL BASIN BOUNDARIES

When there is more than one attractor in phase space,
or more than one exit in the case of an open Hamil-
tonian system, the basins associated with them will be
separated by a basin boundary. This basin boundary can
be a smooth curve or can be instead a fractal curve. A
point x belongs to the boundary, and is a boundary
point, when every open set surrounding x intersects
more than one basin. Thus the basin boundary is defined
by the set of boundary points. Furthermore, it is an in-
variant set, i.e., if x belongs to the basin boundary, every
subsequent image of x will belong to the basin boundary.

Fractal basin boundaries have essential consequences
in the lack of predictability associated with a dynamical
system (Grebogi, McDonald, ef al., 1983). Furthermore,
they are responsible for various nonlinear phenomena,
such as the destruction of chaotic attractors when they
reach the fractal boundary (in what are usually named
crises) (Grebogi et al., 1982, 1983a), and the appearance
of long chaotic transients for values of the parameter
beyond the crisis point (Grebogi et al., 1983b).

We start this section by analyzing the original classifi-
cation of fractal basin boundaries exposed by McDonald
et al. (1985), where these structures were divided into
three main groups: locally disconnected, locally con-
nected but not quasicircles, and quasicircles. Locally dis-
connected fractal basin boundaries have turned out to
be much more common in physical systems, and for that
reason we briefly describe the main properties of the
three main types of basins that show these boundaries:
intertwined, Wada, and riddled basins. (Wada and
riddled basins appear so frequently in recent literature
that we have dedicated Secs. VI-VIII to study them in
detail.) A special type of basin with a locally connected
boundary will also be addressed: the sporadically fractal
basin (as is typical in the literature, we call fractal basins
those basins whose boundaries are fractal). The funda-
mental concept of final state sensitivity and how we can
measure it by making use of the fractal dimension will
be addressed afterward. The section concludes by pre-
senting the idea of nonattracting chaotic motion and a
thorough analysis of the three fractal invariant sets re-
lated to it: the chaotic saddle and its invariant manifolds.
Special attention will be paid to the graphical computa-
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tion and fractal dimension of these important invariant
sets.

A. Original classification of fractal basin boundaries

Several types of fractal basins appear in nonlinear dy-
namics. Some fractal basin boundaries are continuous
curves (although nondifferentiable at an uncountable
number of points), but most that have been studied in
the literature are discontinuous curves. A detailed pro-
toanalysis of the classification of fractal basin boundaries
and their main properties has been given by McDonald
et al. (1985), where they are classified in three main
groups: locally disconnected, locally connected but not
quasicircles, and quasicircles.

Several concepts should be presented now, before de-
fining these three types of fractal basin boundary.

e A closed set A is disconnected if it can be written as
the union of two disjoint, nonempty closed sets. It
will be connected if this is not possible.

e A set is locally connected if, given any point 7 in the
set and any sufficiently small ¢, then there exists a
d(e, ) <e with the following property P: For every
point £ in the set satisfying |- £&| < &(e, 7), there is a
connected subset of the original set containing 7 and
& and lying wholly in the ¢ ball centered at the point
7. A set is locally disconnected if the property P is
not satisfied for every point 7 in the set.

e A setis a quasicircle if the property P is satisfied with
6=ke for some constant x independent of the point
n.

From these definitions we can see that boundaries
that are continuous curves or surfaces will be locally
connected. On the other hand, Cantor sets are locally
disconnected, because their largest connected subset is a
single point, but there are infinite points in any neigh-
borhood of any of its points.

1. Locally connected fractal basins

The locally connected fractal basins studied by Mc-
Donald et al. (1985) are continuous curves, although
they are nondifferentiable at any point of the boundary.
[1t was shown in 1999 that continuous boundaries can be
differentiable everywhere but in a zero Lebesgue mea-
sure set of points (Hunt et al., 1999). These basins were
named sporadically fractal, and will be studied in detail
later in this section.]

The main properties of locally connected basin
boundaries of analytic maps with a single complex vari-
able were studied early in the 20th century (Julia, 1918;
Fatou, 1919, 1920). However, the problem had chal-
lenged the scientific community even earlier, as Cayley
(1879) had already worked on determining the basins of
attraction of the cubic roots of unity. [The solution came
when computer work was applied to the problem one
century later Curry et al., 1983; Eckmann, 1983; Blan-
chard, 1984; Peitgen et al., 1984; Peitgen and Richter,
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1986). See Nauenberg and Schellnhuber (1989) for a
complete analytical study of this problem and its physi-
cal applications.] More recent theoretical contributions
to the subject are by Brolin (1966); Jakobson (1968);
Sullivan (1982); Mané et al. (1983), and pioneering com-
putational work was done by Mandelbrot (1980) and
Curry et al. (1983). Analytic maps with a simple complex
variable are defined as z,,,=F(z,), where z=x+iy, x,,;
=ReF(x,+iy,), and y,.=ImF(x,+iy,). These two-
dimensional maps give rise to quasicircle basin bound-
aries that are known as Julia sets, and are the most regu-
lar types of fractal basin boundary. They are easily
recognizable for their snowflake appearance, which is re-
peated on all scales. Mandelbrot studied the best-known
type of Julia set, the ones defined as z,, +1:1,12— M, Where
M is a complex parameter. The Mandelbrot set, pre-
sented by Mandelbrot (1980), is defined as the set of
values of w such that the iterates of z,=0 do not diverge
to infinity. Some people claim that the Mandelbrot set is
both the most complex and the most beautiful object
that can be obtained from mathematics (Peitgen et al.,
1992). Finally, several early key works on the under-
standing of Mandelbrot’s bifurcation diagram should be
noted (Douady and Hubbard, 1982; Douady, 1983).

However, complex analytic map are a very particular
type of map, showing properties that are not generaliz-
able to other maps or flows (for example, they do not
show chaotic attractors). In this sense, they are not likely
to be found in real systems, although they are relevant in
the analysis of several physical phenomena, such as the
study of electron motion in quasiperiodic potentials
(Kohmoto et al., 1983; Ostlund et al., 1983) or the analy-
sis of the spectral and localization properties of quantum
states in hierarchical tight-binding models (Rammal,
1984).

There are other two-dimensional maps that give rise
to locally connected fractal basins, but which do not sat-
isfy the property of quasicircles. They were first pre-
sented by Grebogi et al. (1983b) and McDonald et al.
(1985). Their structure is striated, and is very different
from the snowflake structure of quasicircles. Further-
more, they are more likely to appear in typical dynami-
cal systems. Grebogi et al. (1983b), Grebogi, Ott, et al.
(1985), and McDonald et al. (1985) obtained analytically
the continuous but nowhere-differentiable basin bound-
ary of a two-dimensional map. The system is the follow-
ing:

X1 = NeX, (mod 1), ()

Va1 = )\yyn + COS(Z’JT)C"), (3)

where \, is an integer, \,>\,>1, and x is restricted
to the unit interval. There are two attractors, one in
y=+ and the other in y=-o. The fractal basin bound-
ary is in fact a Weierstrass curve whose equation is

[}

y=- 2\, cos(2mN] 'x) (4)
j=1

and its fractal dimension is
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FIG. 1. Two types of locally connected fractal basin: (a) quasicircle; (b) nonquasicircle. From McDonald et al., 1985.
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Figure 1 shows two examples of the locally connected
fractal basins. Figure 1(a) is the basins of attraction for
the analytic function z,,,,=z%+0.9z, exp(27iQ)), where Q
is the golden mean. These basins satisfy the conditions
of quasicircles. On the other hand, Fig. 1(b) is the stri-
ated basins of attraction of the system defined by Egs.
(2) and (3) for A,=3 and A, =1.5, which are totally differ-
ent from the snowflake nature of quasicircles.

All types of locally connected fractal basin boundary
presented so far are very special cases of two-dimen-
sional maps. Most dynamical systems are neither mod-
eled by complex analytic maps nor so simple that the
basin boundary can be obtained analytically. For this
reason, McDonald et al. (1985) extended their analysis to
more general two-dimensional maps, and found that lo-
cally connected fractal basin boundaries are indeed typi-
cal structures in dissipative systems. In particular, they
obtained this result by working with nonanalytic nonin-
vertible quadratic maps, which have been used to study
a large number of physical systems, and whose proper-
ties are also present in systems of higher dimensions.
They obtained two main results. First, this broad family
of dynamical systems might show coexistence of attrac-
tors (and these attractors might be periodic or chaotic).
Second, the basins associated with these attractors can
have smooth or fractal striated boundaries.

2. Locally disconnected fractal basins

Before presenting the most common type of fractal
basin boundary, we need to give first some important
concepts.

e An equilibrium point S is a saddle point if there are
initial conditions whose trajectories approach S
when ¢t — o0 and there are initial conditions whose tra-
jectories approach S when t— —oo.
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e The stable manifold of a saddle point S is the set U*
of initial conditions x, such that xy(f)—S when ¢
— oo, It is an invariant set.

e The unstable manifold of a saddle point S is the set
U* of initial conditions x, such that x,(f) —S when
t— —oo, It is an invariant set.

One main finding of Poincaré related to dynamical
systems theory is that the stable and unstable manifolds
of a saddle point may cross at points other than the
saddle. These crossings are called homoclinic points.
Poincaré discovered the existence of homoclinic points
related to the three-body problem, and therefore he
could show the extreme complexity of this system
(Poincaré, 1897). Now, we know that every small disk
centered at a homoclinic point includes infinitely many
homoclinic points. Furthermore, if there is one ho-
moclinic point, then we can find infinitely many of them.
In practice, a single crossing of the stable and unstable
manifolds of a saddle point necessarily means that there
are infinitely many other crossings somewhere in phase
space.

The basin boundary that separates two basins of at-
traction consists of the stable manifold of an invariant
set that also belongs to the boundary (Moon and Li,
1985). This invariant set can be a saddle point x or a
more complex structure. If the unstable manifold does
not cross the boundary, then we say that the boundary is
nonfractal. However, if the unstable manifold crosses
the boundary once, there are infinitely many other cross-
ings. Each crossing will be a homoclinic point, and will
have infinitely many periodic orbits of different periods
in every neighborhood of the homoclinic point. This
complex situation results in a locally disconnected frac-
tal basin boundary.

But, what is the relation between the explanation of
fractal basins as a consequence of infinite intersections
between stable and unstable manifolds and the one
based on Cantor sets embedded in the boundary? Smale
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FIG. 2. (Color online) Sketch of the creation of a fractal basin
boundary.

(1967) studied this problem from a geometrical point of
view and proved that a homoclinic intersection in a map
implies that its dynamics will be similar to that of the
horseshoe map, as long as enough iterations are done.
The following simple example proposed by McDonald et
al. (1985) and simplified by Alligood et al. (2000) and Ott
(2002) shows the natural appearance of Cantor-type
fractal basins when the map (or the Poincaré section of a
flow) follows dynamics similar to that of the horseshoe
map.

Imagine that we have a system with two attractors L
and R. We also have a rectangle M of initial conditions
as shown in Fig. 2. Every orbit that leaves the rectangle
and is mapped to the left of M will fall to the left attrac-
tor, and every orbit that leaves the rectangle toward the
right side will end up in the right attractor. Now suppose
that the typical stretching and folding of nonlinear dy-
namics transforms the rectangle M of initial conditions
into the S-shaped structure M’ as shown in Fig. 2. These
simple conditions are sufficient to guarantee fractal ba-
sin boundaries. It is easy to see that four vertical stripes
of M will leave the rectangle after one iteration (num-
bers 1, 3, 5, and 7, which iterate into regions 1’, 3', 5',
and 7', respectively), while three will remain in M trans-
formed into horizontal stripes (numbers 2, 4, and 6).
Stripes 1 and 5 will end up to the left of M and therefore
belong to the L basin of attraction, while stripes 3 and 7
will end up to the right of M and therefore belong to the
R basin of attraction. We now iterate the rectangle for a
second time. The dynamics of stretching and folding in
the S shape will again convert each remaining vertical
stripe (numbers 2, 4, and 6) in seven thinner stripes, four
of them escaping and three of them remaining inside M.
If this algorithm is repeated ad infinitum, we obtain a
very complex structure of alternating vertical stripes that
belong to one or the other basin and which are mixed on
all scales. The remaining set of vertical stripes is a zero
Lebesgue measure set, and coincides with the fractal ba-
sin boundary of the system. As in the horseshoe, the
invariant set of orbits that do not escape for all times is
a Cantor set.

Since the work by Smale on horseshoe maps (Smale,
1967), numerous dynamical systems that contain fractal
basins have been proved to present horseshoe-type dy-
namics. Therefore the two ways of focusing on fractality
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that have just been described are equivalent. On the one
hand, we can say that the infinite crossings of stable and
unstable manifolds of the unstable invariant sets embed-
ded in the boundary give rise to the nonattracting invari-
ant set that is the core of fractality. On the other hand,
this invariant set has indeed the nature of a Cantor set,
and can be explained geometrically, since the orbits re-
main in a bounded region for all iterations under a
horseshoe-type map.

B. Special kinds of fractal basin boundary

Since the seminal classification of fractal basin bound-
aries given by McDonald et al. (1985), many other types
have appeared in the literature. In the context of locally
disconnected fractal basins, apart from the nominal frac-
tal basins, a varied group of special subtypes has ap-
peared. Despite the peculiar topology of some of them,
all have been proven to be common in physical systems.
The most prominent subtypes are intertwined, Wada,
and riddled basins. Sporadically fractal basins are a new
type of locally connected basin. We present them all in
this section, from a historical point of view, and we pay
special attention to their differences from nominal frac-
tal basins. Figure 3 shows an example of each type.

1. Intertwined basins

Grebogi and co-workers (Grebogi, Kostelich, et al.,
1987; Grebogi et al., 1988) discovered in 1987 that it is
common to find basin boundaries that show different
dimensions in different regions. These peculiar struc-
tures were named intertwined basins, describing situa-
tions in which every fractal region of the boundary has
subregions inside where the boundary is smooth. In
some sense, fractality and smoothness are intertwined
on arbitrarily small scales. Their existence was shown in
the paradigmatic case of the kicked double rotor (see
Sec. V.A.1 for information on this high-dimensional
map). In the kicked double rotor, all regions that contain
fractal boundaries have a fractal dimension of 1.9, but
we can always find smooth subregions of dimension 1.
(Note that the dimension of the union of two sets is
equal to the higher value of the two dimensions.)

2. Wada basins

Later on, in 1991, it was shown that some dynamical
systems have three or more basins sharing the same
boundary (Kennedy and Yorke, 1991). These basins
were named Wada basins. Typical fractal basins might
have three or more basins, but they usually present a
different boundary separating each pair of basins. How-
ever, a basin B satisfies the Wada property if any initial
condition that is on the boundary of one basin is also
simultaneously on the boundary of another two or more
basins. The first example of a system with this property
was given by Kunizo Yoneyama (1877-1968) (Yon-
eyama, 1917), who attributed it to Takeo Wada (1882-
1944), from whom it took the name. Both of them con-
tributed to the early development of topology in Japan.
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FIG. 3. (Color online) Four types of fractal basin. (a) Intertwined basins. From Grebogi, Kostelich, et al., 1987. (b) Wada basins
Adapted from Aguirre and Sanjudn, 2003. (c) Riddled basins. From Sommerer, 1995. (d) Sporadically fractal basins. From Hunt et

al., 1999.

The introduction of these topological ideas into nonlin-
ear dynamics is due to Judy Kennedy and James A.
Yorke (Kennedy and Yorke, 1991).

3. Riddled basins

Even though the Wada property shows that fractal
boundaries can possess surprising topological properties,
when riddled basins were presented in 1992 (Alexander
et al., 1992) the scientific community received the discov-
ery with suspicion [see Sommerer (1995) for a technical
and historical introduction to the subject]. The reason is
that riddled basins show that totally deterministic sys-
tems might present in practice an absolute lack of pre-
dictability. In fact, the uncertainty associated with a
riddled basin is much stronger than if it were only frac-
tal. Nowadays, this particular property related to some
fractal basins has been shown in many dissipative sys-
tems. In some situations, with a special symmetry, there
is an attractor whose basin of attraction has the property
that every point in the basin has pieces of another at-
tractor’s basin arbitrarily nearby. Thus the entire basin is
a boundary topologically, and a consequence of this defi-
nition is that riddled basins do not have any open sets
inside, as is usual in other fractal basins. This type of
basin is called a riddled basin, because it is “riddled”

Rev. Mod. Phys., Vol. 81, No. 1, January—March 2009

with holes of another basin. When all basins in phase
space are riddled by the rest, the basins are said to be
intermingled (Lai and Grebogi, 1995; Ding and Yang,
1996). This remarkable result opened the possibility of
finding a degree of uncertainty unknown at the moment,
leading to extensive studies, both theoretical and experi-
mental (Ott et al., 1993; Sommerer and Ott, 1993b;
Heagy et al., 1994b).

4. Sporadically fractal basins

Different kinds of fractal basin keep appearing in the
literature, even of the locally connected type. For ex-
ample, sporadically fractal basins (Hunt et al, 1999),
which were qualitatively discussed by Rosa et al. (1998)
and Rosa and Ott (1999) were introduced in 1999. These
boundaries are continuous, smooth, and differentiable
(that is, have an integer fractal dimension) at all points
but a set of zero Lebesgue measure. What is striking is
that, although the boundary is smooth almost every-
where, its fractal dimension is not an integer, and there-
fore it has limitations when trying to predict the final
state of the system. This type of basin boundary needs at
least dimension 2 for noninvertible maps, dimension 3
for invertible maps, and dimension 4 for flows. Further-
more, it also satisfies the intertwined property, that is,
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every fractal region of the boundary has subregions in-
side which the boundary is smooth.

C. Final state sensitivity and fractal dimension

One consequence of a dynamical system possessing
fractal basins is the difficulty of making predictions, such
as to which attractor the system goes, for a chosen initial
condition. This is in stark contrast to the naive idea of
classical determinism, where once the initial condition is
fixed the evolution of the orbit is known. While every
initial condition has a unique orbit in a deterministic
dynamical system, the phase space might be so fractal-
ized that serious difficulties in prediction arise if there
are small uncertainties in the initial condition.

All numerical or real experiments have an unavoid-
able finite precision associated with the choice of initial
conditions. New techniques or more developed instru-
ments might increase this precision, but will never make
an initial condition infinitely accurate (Schmick et al.,
2000; Woltering and Markus, 2000b). The following ex-
planation of the relation between uncertainty and fractal
basin boundaries, adapted from Ott (2002), will help one
understand the key concept of the fractal dimension.
Suppose that there are several final situations for a sys-
tem, and the accuracy of the technical device fixes the
initial conditions with error e. Then there is no problem
when we try to predict the future behavior of every ini-
tial condition that is further than e from the basin
boundary. For this reason, these initial conditions are
labeled as certain. On the other hand, nothing can be
predicted about the final state of initial conditions that
are closer than e to the boundary, and therefore they are
labeled as uncertain. The fraction of uncertain initial
conditions f(e) for a simple smooth (i.e., integer-
dimensional) boundary is linearly proportional to the er-
ror associated with the initial conditions, f(€) o e. That is,
if the precision of the experiment is increased by a factor
k (i.e., €yew=€o1a! k), the fraction of uncertain initial con-
ditions is reduced by the same factor k [i.e., f(€,ew)
=f(€ya)/ k]. We can say that in a nonfractal experiment
the certainty is proportional to the accuracy of the mea-
surements. However, if the boundary is fractal (i.e., it
has a noninteger dimension), there exists a power-law
relation between f(€) and e, f(€) * €%, where « is known
as the uncertainty exponent and is defined between 0
(total fractality) and 1 (smooth curve). The uncertainty
dimension D of the fractal set embedded in the initial
conditions is obtained from D=N-a, where N is the
dimension of the phase space [see Ott er al. (1985) and
Ott (2002) for a proof of this statement]. Therefore the
uncertainty dimension is defined in the range D €[N
—1,N]. In summary, if there are fractal basins, a substan-
tial increase in the precision of the experiment might
lead to a very small increase in the ability to make pre-
dictions. This fact is known as final state sensitivity [see
Grebogi, McDonald, et al. (1983) and McDonald et al.
(1985) for a thorough study of this topic].
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The fractal dimension is a common way to measure
the complexity of a fractal basin boundary. As already
mentioned, if it is an integer number, then the boundary
is said to be nonfractal (or smooth), while if it is not an
integer, the boundary is fractal. There are several defi-
nitions of the fractal dimension, all of which can give
slightly different results. Some, like the correlation di-
mension and Kaplan-Yorke dimension, are applied to an
orbit of a dynamical system. However, other definitions
like the box-counting dimension and uncertainty dimen-
sion are used for general sets in the context of fractal
basin boundaries. The uncertainty dimension (Grebogi,
McDonald, et al., 1983; McDonald et al., 1985) has be-
come the typical way to measure the fractality of a sys-
tem, since the box-counting dimension usually requires a
large number of trajectory iterates to make the error e
very small (Lau et al., 1991). It can be shown that the
uncertainty dimension is less than or equal to the box-
counting dimension, and it has been conjectured that
they coincide in typical dynamical systems (Grebogi et
al., 1988). Furthermore, several classes of systems for
which rigorous results have been obtained satisfy this
equality between the two dimensions (Pelikan, 1985). Fi-
nally, the box-counting dimension is useless when work-
ing with fat fractals (i.e., fractal sets of positive Lebesgue
measure), because the box-counting dimension of any
positive measure set coincides with the total dimension
of phase space, and therefore gives no information
about its complex nature. In order to overcome this dif-
ficulty, the exterior dimension was proposed (Grebogi,
McDonald, et al., 1985).

1. The uncertainty method

The typical way to compute the uncertainty dimension
of a fractal set was first presented by Grebogi, Mc-
Donald, et al. (1983), and is known as the uncertainty
method. The goal is to analyze how the fraction of un-
certain initial conditions f(€) varies with the error e
Typically, there are two main methods to label initial
conditions as “certain” or “uncertain”:

(1) The original method is based on computing the final
state of the orbits. Calculate the attractor (or exit)
for certain initial condition x,. Then, compute the
attractor (or exit) for the initial conditions (x,+ €)
and (x,—€) for a small ¢, and if all of them coincide,
then this point is labeled as certain. If they do not,
the point will be labeled as uncertain.

(2) The second method is based on the use of the time-
delay function (Lau et al, 1991). In particular, for a
fixed value of the uncertainty €, compute |T(x,)
~T(xy+€)|, where T(x,) is the time-delay function
defined as the time (or the number of iterations) that
an orbit x, takes to reach an attractor in closed dis-
sipative systems, or to escape a certain phase-space
region in open Hamiltonian systems. If |T(x,)
—~T(xy+€)| >h, where h is a positive number, we say
that x, is uncertain with respect to € (the results are
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independent of the value of A, as long as 4 is not too
small). Otherwise, x; is certain.

Many initial conditions x,,, chosen randomly or from a
fine grid, must be used to obtain a sufficiently precise
estimate of the fraction of the uncertain initial condi-
tions f(e) for each e. If this procedure is repeated for a
wide range of values of the error €, we obtain the depen-
dence of f(€) on €, which is believed to be of a power-law
type. Therefore, if we plot In f(€) vs In €, the slope will
be equal to N—D (with D the uncertainty dimension and
N the dimension of the phase space). D is obtained from
this value, as follows:

fle) x €= f(e) x ¥ P =1Infle) = (N-D)ln e+ b.
(6)

It is not necessary to use a fine N-dimensional grid of
values to calculate the uncertainty dimension. Since this
can make the algorithm very slow, especially for high
values of N, very often the computation of the uncer-
tainty dimension can be done using a set of initial con-
ditions of dimension N, (where Ny<N). A two-
dimensional Poincaré map (Ny=2) or even a one-
dimensional slice (Ny=1) of initial conditions might be
enough, as the loss of precision is usually small. If we do
this simplification, the fractal dimension of the basin
boundary D becomes

D:D0+N—N0, (7)

where D, is the uncertainty dimension obtained with
Eq. (6), that is, the fractal dimension of the intersection
between the fractal boundary and an N, surface (Lai et
al., 2000).

2. The output function evaluation method

The uncertainty dimension computed with the uncer-
tainty method is especially efficient for strongly fractal
basins, that is, for basins with fractal dimensions close to
the phase-space dimension. However, when fractal
boundaries are almost smooth, this method converges
slowly, as there are few uncertain initial conditions and
most computation time is wasted. In order to overcome
this difficulty, the output function evaluation (OFE)
method was presented by de Moura and Grebogi (2001).
The OFE method can be several orders of magnitude
more efficient (i.e., faster) than the uncertainty method
for boundaries with very low fractality. The fairly tech-
nical algorithm is explained in the paper, and we only
comment here on its main features. It is based on com-
puting precisely suitable output functions of the system
(such as the deflection angle or the time delay). When
the system shows fractal basin boundaries, the output
functions also have a fractal set of singularities, and its
fractal dimension is that of the basin boundary. Using a
variable-sized grid, these fractal points embedded in the
output function are resolved with high precision, requir-
ing short computation time. The step size must be cho-
sen so that the variation of the output function is kept
approximately constant from one point to the next.
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Once the set of fractal points has been found with a
certain precision, the fractal dimension can be calculated
with several methods, although the one explained by
Grassberger (1986), Tél et al. (1989), and Jung and Tél
(1991) is very powerful.

The OFE method is especially useful when the fracta-
lity is low, since it focuses calculations in the neighbor-
hood of the fractal boundary. In these cases, when using
the uncertainty method, the fraction of uncertain initial
conditions f(e) would be low unless the smallest step € is
very small, and in this case the computation time would
be extremely long. The relation between the number of
integrations Nopg and N,,. that must be calculated to
obtain the fractal dimension of a system is

NOFE/Nunc ~ EZ(NiD)il P (8)

where N is the dimension of phase space and D €[N
—1,N] is the fractal dimension. It is clear that when the
step € tends to zero, Nopg/ Ny, tends to © if D>N
—0.5 making the uncertainty method much more effi-
cient in strongly fractal systems, while it tends to zero if
D <N-0.5, showing that the OFE method is clearly bet-
ter in systems with low fractality.

D. Nonattracting chaotic motion and invariant sets
1. The chaotic saddle and its invariant manifolds

Nonattracting chaotic motion due to chaotic saddles
embedded in the dynamics is very common, in both con-
servative and dissipative systems. A chaotic saddle is a
closed, bounded, and nonattracting invariant set having
a dense orbit (Grebogi et al., 1982, 1983a). It possesses a
chaotic trajectory that never leaves the phase-space re-
gion containing the set, while almost every trajectory
leaves the region after some transient time (by almost all
we mean all initial conditions except for a set of Le-
besgue measure zero). The dynamics on a chaotic saddle
is similar to that exhibited by the two-dimensional
horseshoe map possessing a hyperbolic invariant set
(Wiggins, 1990).

In systems with nonattracting chaotic motion, the par-
ticles spend some time wandering erratically in a
bounded region, usually named the scattering region,
and after a certain time they escape toward an attractor,
an exit, or infinity. The nonattracting chaotic set respon-
sible for this chaotic motion, also known as a chaotic
saddle or strange saddle, is formed by a set of orbits of
zero Lebesgue measure that will never escape from the
scattering region for both t—o or t——o (Alligood et
al., 2000). Its stable manifold contains the orbits that will
never escape if t—oo, while the unstable manifold is
formed by the orbits that will never escape if t— —o.
The orbits that constitute the chaotic set are unstable
periodic orbits, of any period, or aperiodic, plus all the
intersections of their stable and unstable manifolds. In
fact, the number of these periodic orbits increases expo-
nentially with their period. As the stable and unstable
manifolds are invariant sets, their intersection is invari-
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ant, and therefore all orbits that start at one point be-
longing to the chaotic set will never leave the set.

Typically, the fractal basin boundary coincides with
the stable manifold of the chaotic set embedded in the
system, and consequently consists of orbits that never
escape from the scattering region. If an initial point lies
close to the boundary, the trajectory advances following
the stable manifold towards an unstable orbit of the cha-
otic set, spends a long time in its vicinity, and escapes
following the unstable manifold. For that reason, the
trajectories that lie close to the fractal boundary are the
ones that spend a longer time in the scattering region.

In hyperbolic Hamiltonian dynamical systems, the
stable and unstable manifolds can intersect but are
never tangent to each other. The chaotic set is the clo-
sure of intersections of a stable and an unstable mani-
fold. Every saddle point is hyperbolic. There are no
Kolmogorov-Arnold-Moser (KAM) surfaces of quasip-
eriodic orbits, and all the periodic orbits are unstable.
Nonetheless, in nonhyperbolic Hamiltonian systems,
some intersections of the stable and unstable manifolds
are tangent, and KAM surfaces are mixed with chaotic
regions in the phase space. The quasiperiodic orbits that
belong to a KAM torus never escape from the scattering
region. Therefore the KAM tori take part of the chaotic
saddle, as their orbits remain inside the scattering region
for both t— o0 and t— —. The existence or nonexistence
of these surfaces brings important consequences to the
dynamics of the system. In a hyperbolic system, the sur-
vival probability of a test particle in the vicinity of the
chaotic saddle decays exponentially with time,

P(0) ~e, )

where 7 is the average decay time or average transient
lifetime, while stickiness to KAM surfaces should make
this decay algebraic,

P(t) ~ 17, (10)

in nonhyperbolic systems [see Lau et al. (1991), and ref-
erences therein]. The average decay time is related to
the dimension of the invariant sets (Hsu et al., 1988).

2. Graphical computation of the invariant sets

In order to compute the chaotic invariant set of a sys-
tem and its stable and unstable manifolds, the easiest
way is to use the sprinkler algorithm or the sprinkle al-
gorithm, which was first introduced by Kantz and Grass-
berger (1985). The main idea consists of sprinkling a
large number of initial conditions from a region that
contains the strange saddle. Then, every point is iterated
for ¢ iterations. To pick ¢, it is sufficient to find a time
when most orbits have already escaped from the vicinity
of the chaotic saddle. The closer an initial point is to the
stable manifold, the longer it will take to escape from
the chaotic saddle, and it will follow the unstable mani-
fold to do so. Therefore the initial points that remain in
the neighborhood for a certain iteration ¢ form the stable
manifold. Their ¢ iterations form the unstable manifold,
and the iterations that are more or less in the middle
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between the first (stable manifold) and the last (unstable
manifold) form the chaotic set. Furthermore, the chaotic
set does not depend critically on the iteration chosen to
draw it.

The sprinkler algorithm is the easiest way to compute
the chaotic saddle and its invariant manifolds, but has a
limited applicability. It works fine for two-dimensional
systems, but not in higher dimensions. In fact, according
to Sweet, Nusse, et al. (2001), this method finds points
within 1073 of the chaotic saddle, and cannot be used to
calculate the Lyapunov exponents. The proper interior
maxium (PIM) —triple method (Nusse and Yorke, 1989)
is a much more accurate algorithm to compute the cha-
otic set, and shows an error of around 1078. It is also
very general, as it is applicable in high-dimensional sys-
tems and calculates the Lyapunov exponents. During the
1990s, it was generally applied to all kinds of systems
with chaotic saddles, such as chaotic scattering, fluid dy-
namics, lasers, chaotic communications, etc. (Bleher et
al., 1990; Breymann et al., 1994; Kévacs and Wiesenfeld,
1995; Péntek, Toroczkay, et al., 1995; Bollt et al., 1997,
Schwartz and Carr, 1999). A modification of the PIM-
triple method used with experimental time series was
presented by Janosi and Tél (1994), where it was applied
to a laser experiment. The main disadvantage of the
PIM-triple method is that the chaotic set can only be
one-dimensionally unstable, and many real systems [for
example, the transition to turbulence in shear flows, as
mentioned by Sweet, Nusse, et al. (2001)] show chaotic
saddles that are k-dimensionally unstable, with k>1.
The PIM-simplex method, presented by Moresco and
Dowson (1999), tried to solve this question, but its ap-
plicability is limited. Finally, the first general (and
simple) method to numerically calculate chaotic trajec-
tories on chaotic saddles was presented by Sweet, Nusse,
et al. (2001). It is known as the stagger-and-step method.
It can be applied to maps and flows, and is applicable no
matter how many unstable dimensions the system has.
Furthermore, the Lyapunov exponents and thus the
fractal dimension of the chaotic saddle can be calculated
straightforwardly.

As an example of a typical system with nonattracting
chaotic dynamics, Fig. 4 shows the invariant sets and exit
basins related to the Hénon-Heiles system, a well-
known model for an axisymmetrical galaxy. It is a two-
dimensional dynamical system and it has three different
exits for orbits over a certain threshold value of the en-
ergy of the system, called the escape energy. Due to its
2/3 rotation symmetry, the exits are separated by
an angle 2m/3 rad, and we call them the upper exit
(y— +), the left exit (y——o,x——), and the right
exit (y——o,x— +). For a conservative Hamiltonian
system, we can study its associated exit basins, which will
be frequently fractal as shown by Bleher et al. (1988).
(This will be studied in detail in Sec. V.B.1.) The Hénon-
Heiles system was first studied by the astronomers
Hénon and Heiles (1964), when analyzing if two or three
constants of motion exist in the galactic dynamics. Their
result was that a third isolating integral can be found for
only a few initial conditions. It is one of the first ex-
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FIG. 4. (Color online) Fractal structures associated with the
Hénon-Heiles system when E=0.25 and the system shows
three exits: (a) exit basin diagram; (b) stable manifold of the
chaotic invariant set; (c) unstable manifold of the chaotic in-
variant set; (d) chaotic invariant set. In the (y,y) phase space,
the upper exit is (y—, y—), and the right and left exits
coincide (y — -, y— —0),

amples used to show that very simple systems might pos-
sess highly complicated dynamics, and since then it has
been extensively studied as a paradigm for two-
dimensional time-independent Hamiltonians.

The Hénon-Heiles Hamiltonian is written as

H:%(x2+y2)+%(x2+y2)+x2y—%y3. (11)

Figure 4 shows the exit basins of the system and the
invariant sets of the Hénon-Heiles system for an energy
of E=0.25 (the escape energy for this system is FE,
=1/6=0.1666...). The sprinkler algorithm was used, with
a grid of 2000 X 2000 initial conditions, for the plot of the
three invariant sets. As the system is defined in a three-
dimensional phase space, one can plot only the intersec-
tion of all these fractal sets with a Poincaré surface of
section. It is clear that the stable and unstable manifolds
of the chaotic set are symmetric to each other. This is
reasonable, as the Hénon-Heiles potential is conserva-
tive and invariant under time-reversal transformations
(t——t,v——v). Typically, it is better to change the sign
of every differential equation and draw the stable mani-
fold of the new dynamical system in order to obtain the
unstable manifold, because the sprinkler algorithm gives
good results for the stable manifold and the strange
saddle, but a very fine grid of initial conditions is needed
to obtain a sufficiently dense plot of the unstable mani-
fold. If one compares the stable manifold plotted in Fig.
4(b) with the exit basin diagram plotted in Fig. 4(a), it is
clear that the stable manifold coincides with the fractal
basin boundary. For this value of the energy, the chaotic
set is the intersection of a stable and an unstable mani-
fold that are never tangent, and therefore every saddle
point is hyperbolic. However, the Hénon-Heiles system
is nonhyperbolic for E e (1/6,0.21) and hyperbolic for
E>0.21, and in the nonhyperbolic regime the exit basins
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show sets of initial conditions that give rise to quasiperi-
odic orbits that do not escape from the system (although
they have the energy to do so). These orbits belong to
the chaotic invariant set (Aguirre et al, 2001, 2003;
Aguirre and Sanjuan, 2003).

3. Fractal dimension of the invariant sets

Some methods for computing the chaotic invariant set
are also useful to calculate its fractal dimension (Sweet,
Nusse, et al., 2001). If this is not the case, the easiest way
to measure the fractality of the invariant sets is to com-
pute the uncertainty dimension (Grebogi, McDonald,
et al., 1983; McDonald et al., 1985), as explained in Sec.
IV.C. As the stable manifold of the chaotic set coincides
with the fractal basin boundary, the stable manifold and
the system share the same fractal dimension, and there-
fore Dg=D=Dy+N-N, [see Egs. (6) and (7) for more
detail]. In Hamiltonian systems, usually the stable and
unstable manifolds are symmetric, and therefore their
fractal dimension is the same,

DS:DU' (12)

Since the invariant chaotic set is the intersection of its
stable and unstable manifolds, its dimension satisfies
D<Dgy=Dy and is expressed by

Dc=Dg+Dy—N=2D-N=2Dy+N-2N,. (13)

Furthermore, and as mentioned in Sec. V.B.1, the di-
mensions of the three invariant sets of an open system
tend to the full dimension of the phase space N, when
the exits become arbitrarily small (de Moura and Lete-
lier, 1999; Motter and Letelier, 2001a, 2001b; Aguirre
and Sanjuan, 2003).

Finally, it is worth mentioning that the information
given here on the fractal dimension of dynamical sys-
tems is true only when the K-dimensional phase-space
region containing the chaotic set (K being an integer
number) is the whole phase space (that is, K=N). If this
is not the case, the invariant manifolds have dimension
Ds=Dy<K<N, the stable manifold is not able to di-
vide the whole phase space, and therefore we cannot
talk about the existence of real fractal basin boundaries
in the system.

V. FRACTAL BASINS IN PHYSICAL SYSTEMS

Fractality associated with nonlinear dynamics has
been thoroughly studied during the last 20 years. So
many systems have shown complex behavior that it is
impossible to be exhaustive in the recollection of ex-
amples of fractal basin boundaries, especially in the con-
text of dissipative systems [see Gumowsky and Mira
(1980) for the first analyses of the subject]. For this rea-
son, here we focus our attention on physical systems that
can be observed in nature, although we also present a
small number of mathematical systems that are espe-
cially relevant for their simplicity and clarity or for his-
torical reasons. Furthermore, we restrict the examples to
locally disconnected basin boundaries, as they are much
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more common in real systems than are locally connected
ones. Examples of Wada and riddled basins are ex-
cluded, as these two subtypes will be studied later.

In particular, we divide the section into two parts: a
first part dedicated to dissipative systems, and a second
part dedicated to conservative systems (that is, open
Hamiltonian systems). We start by studying several ex-
amples of dissipative maps, showing that even one-
dimensional maps might have fractal basin boundaries.
In the context of dissipative flows, we pay special atten-
tion to nonlinear oscillators as examples of physical ap-
plications, and ecological models as examples of biologi-
cal phenomena. Finally, chaotic scattering systems and
open hydrodynamical flows are studied from the view-
point of conservative systems.

A. Dissipative systems

1. Maps

a. One-dimensional maps

Many one-dimensional maps show complex dynamics
and chaos, although in this context the systems are so
simple that they usually do not represent real physical
phenomena. However, it is not difficult to find a map
x,.1=T(x,) where several attractors coexist and whose
basins are separated by a fractal boundary. For example,
Ott (2002) studied a continuous and differentiable map
T with two periodic attractors and gave a detailed expla-
nation of how the boundary that separates both compli-
cated basins is a Cantor set.

Nevertheless, there is a straightforward way to create
fractal basin boundaries in one-dimensional maps. The
logistic map [T(x)=Ax(x—1)] and the tent map [T(x)
=m(1-|x|)-1] are typical examples. Depending on the
parameters, they can show a wide variety of behaviors,
such as periodic and chaotic attractors, or even nonat-
tracting invariant sets. We have to find the correct value
of the parameter for which there is only one period-n
attractor, where n>1. Then, the basins of the map T(x)
applied n times [that is, T"(x)] are separated by fractal
basins (McDonald et al., 1985; Napiérowsky, 1986; Park
et al., 1989). As an example, we can take the T3(x) map,
where T(x) is the logistic map in the period-3 regime
1.75=\=<1.79 (Mcdonald et al., 1985). The fractal di-
mension for A=1.75 is 0.97, which suggests the extreme
complexity of the boundary.

b. Two-dimensional maps

The first example in the literature of two-dimensional
maps that show fractal boundaries is the following (Gre-
bogi, McDonald, et al., 1983; McDonald et al., 1985):

0,.1=06,+asin(26,) — bsin(46,) — x,sin(6,), (14)

Xpe1=—Jocos(6,), (15)

in the regime in which there are only two fixed points as
attractors (for example, a=1.32, b=0.9, and J,=0.3, for
which the fractal dimension is 1.8).
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However, the Hénon map is the most famous two-
dimensional map. Many of the fundamental discoveries
developed in the context of nonlinear dynamics have
been made with the Hénon map before being general-
ized to continuous systems or experimental verification.
Its mathematical expression is the following:

Xpi1=a—x2+by,, (16)

Yn+1 =Xy (17)

This case was first studied by Hénon (1976), and since
then it has become a paradigmatic example. According
to the values of the parameters a and b, this system
shows various types of fractal basin.

c. Higher-dimensional maps

Several complex dynamical systems can be trans-
formed into high-dimensional maps, to be studied more
easily. A typical example is the kicked double rotor. The
experimental setup is the following. One end of a solid
bar is attached to a fixed pivot, and the other end to the
middle of a second solid bar. Both bars can spin around
the pivots with some friction. Furthermore, a vertical
and periodic impulse is applied to one end of the second
bar. Grebogi, Kostelich, et al. (1987) proved that this
very complex system can be analytically transformed
into a four-dimensional map, where the variables are the
angular positions of each bar and their angular velocities
just after each kick. For certain values of the param-
eters, a chaotic attractor coexists with the stable fixed
point that represents the situation in which both bars are
vertical for all times. In this case, the basins are not only
fractal, but also intertwined. This means that some parts
of the basins are separated by smooth boundaries (of
dimension 3), while other parts are separated by fractal
basins (of dimension 3.9 in this particular case). Figure
3(a) shows the intertwined basins associated with this
system.

2. Flows

While maps can show fractal structures even if they
are one dimensional, flows need three-dimensional
phase spaces to show chaos and complex dynamics.

Since the beginning of the study of nonlinear systems,
many oscillators have turned out to show chaotic behav-
ior and fractal basin boundaries for some values of their
parameters. In this context, it is important to remark on
the extensive work developed by J. M. T. Thompson [see
Chilver (2006) for a review of his contributions to non-
linear dynamics]. For more than 20 years, Thompson
analyzed the complex interplay that typically arises be-
tween chaotic transients, fractal basin boundaries, and
unpredictability related to nonlinear oscillators, paying
special attention to their consequences on designing
technical applications [see Thompson (1992) and
Thompson and Stewart (2002), and references therein].

Three nonlinear oscillators are especially ubiquitous
in the literature of dynamical systems: the forced van
der Pol oscillator, the forced damped pendulum, and the
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FIG. 5. Basins of attraction of the forced damped pendulum.
For parameters ¢=0.1, F=2.1, and w=1 there are two different
periodic attractors. From Grebogi, Ott, et al., 1987.

Duffing oscillator. The first system to be studied in the
context of nonlinear dynamics is the van der Pol oscilla-
tor (van der Pol, 1920, 1927). The van der Pol oscillator
was introduced in the 1920s as an example of a simple
vacuum tube oscillator circuit. If we force this oscillator
with a periodic signal, we obtain the forced van der Pol
oscillator, which is expressed by

i+ (x2=1)x +x = F cos(wt). (18)

Cartwright and Littlewood (1945, 1951) discovered the
existence of nonattracting chaotic and periodic orbits in
its dynamics, while Levinson (1949) studied the nature of
some chaotic orbits of the system [later works showed
that the orbits studied by Levinson belong to the basin
boundary (Flaherty and Hoppensteadt, 1978)]. In fact,
these early works on the van der Pol oscillator inspired
Smale to introduce the keystone idea of the horseshoe
map when developing his geometric theory of dynamical
systems (Smale, 1967). But it was not until 1981 that the
basin boundaries of the system were shown to have the
nature of a Cantor set (Levi, 1981).

The forced damped pendulum, which is expressed
mathematically as

X+ cx + sin(x) = F cos(wt), (19)

plays a somewhat paradigmatic role for continuous dy-
namical systems, and for this reason appears often in all
kinds of analysis in nonlinear dynamics. It represents the
motion of a bob, which can oscillate or rotate, in the
presence of a certain amount of friction, while it is ex-
ternally forced with a periodic sinusoidal signal. It was
shown to have fractal basins by Gwinn and Westervelt
(1985, 1986), and it has been used frequently as a test
system to check new results appearing in nonlinear dy-
namics. For example, it was the model chosen to present
Wada basins by Kennedy and Yorke (1991). Figure 5
shows the numerically computed fractal basin diagram
for the forced damped pendulum. For these values of
the parameters, there are two periodic attractors, and
therefore there are two different basins of attraction,
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which have been colored black and white. As the forcing
of most nonlinear oscillators is 27 periodic, in order to
observe their basin diagrams it is usually more conve-
nient to use stroboscopic maps instead of the typical
Poincaré maps.

Finally, it is worth analyzing the fractal nature of the
Duffing oscillator, as a paradigm of a dissipative system
with applications in many fields of applied sciences and
engineering (Aguirre and Sanjuan, 2002). For this rea-
son, it has been studied by many authors [see Virgin
(2000), Breban et al. (2003), and references therein]. The
Duffing oscillator may be understood as a model of the
one-dimensional motion of a particle of unit mass in a
double-well potential, with dissipation and external pe-
riodic forcing. It is a very common physical system. An
example of this kind of oscillator is a magnetoelastic
mechanical system. This system consists of a beam posi-
tioned vertically between two magnets, with the top end
fixed and the bottom end free to swing. In the absence
of external forcing, the beam will be attracted to one of
the two magnets, and will oscillate about that magnet
until friction stops it. Each of the magnets creates a fixed
point where the beam may come to rest and remain
there in equilibrium. However, when this whole system
is shaken by a periodic forcing term, the beam may jump
back and forth from one magnet to the other in an ap-
parently random manner. Depending on the intensity of
the shaking term, a broad range of behaviors will be
shown, from totally regular to chaotic. It was shown by
Moon and Holmes (1979) that this system can be math-
ematically described by the Duffing equation

i+ & — ax + Bx° = ycos(wt). (20)

Although most work has been done on nonlinear os-
cillators because of the obvious technical applications,
fractal basin boundaries have been found in many other
fields, from economical dynamical systems (Lorenz and
Nusse, 2002) to the predictability of a tossed coin (Vu-
lovi¢ and Prange, 1986). For instance, McDonald er al.
(1985) did a thorough study of the fractal basin bound-
aries associated with the Lorenz system (Lorenz, 1963).
Although in their work McDonald et al. did not plot its
basin boundaries, they used a qualitative explanation
based on the concept of the broken horseshoe, pre-
sented by Kaplan and Yorke (1979), to show that for a
certain value of the parameters the boundary that sepa-
rates the two existing basins is created following a stan-
dard horseshoe construction, and therefore is a Cantor
set. The existence of extremely long chaotic transients in
the Lorenz system, which is a typical effect of fractal
basins, was studied by Yorke and Yorke (1979).

Finally, it is worth remarking that extensive work has
been done in the context of ecological dynamics, where
the uncertainty associated with fractal basin boundaries
usually represents the typical unpredictability associated
with knowing the future of very sensitive ecological en-
vironments. The possibility of finding chaotic behavior
associated with species competition models was already
observed in the 1970s (Gilpin, 1975; May and Leonard,
1975; Smale, 1976), but several papers have focused re-
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FIG. 6. (Color online) Basins of attraction of a resource com-
petition model between eight different species, where only
three are potential winners and coexistence is not possible. It is
clear that the final survivor of the competition depends criti-
cally on the initial abundances of two of these species. From
Huisman and Weissing, 2001.

cently on the hard-to-predict outcome of multispecies
competition in ecosystems of high biodiversity. In par-
ticular, several explanations have been proposed for the
observed coexistence of dozens of species of phy-
toplankton in aquatic ecosystems, using both dissipative
systems (Huisman and Weissing, 1999) and chaotic ad-
vection systems (Karolyi er al, 2000; Scheuring et al.,
2000); see Sec. V.B.2 for more information on the latter.
This fact is usually called the paradox of the plankton,
since by the introduction of nonequilibrium conditions
and oscillatory behaviors it circumvents the principle of
competitive exclusion, which predicts that at equilibrium
the number of coexisting species cannot exceed the
number of limiting resources. The general result is that,
when the problem is analyzed using the tools of nonlin-
ear dynamics, we observe that competition is not neces-
sarily destructive, as competitive interactions that lead
to oscillatory and chaotic behavior may support high
biodiversity even with only a few limiting resources.
Despite all this literature, the appearance of fractal
basin boundaries in attempts to predict the outcome of
standard resource competition models is relatively re-
cent (Huisman and Weissing, 2001; Vandermeer et al.,
2001). Huisman and Weissing (2001) studied a widely
used resource competition model for plankton ecology
and plant ecology, and Fig. 6 shows the basin boundaries
associated with the outcome—the final winner—in a
competition between several species fighting for abiotic
resources. The result shows a strong uncertainty associ-
ated with this type of phenomenon. The impact of these
ideas in the field has been enormous, as they have
opened a promising new perspective for competition
models: the unpredictability associated with species in-
teractions should not be looked for only in stochastic
phenomena, as was typically accepted during the 1990s.
These results explain in part the limited success of pre-
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dictive models of, for example, the occurrence of toxic
phytoplankton species [which might be very harmful for
fish and humans (Burkholder et al., 1992; Codd, 1995;
Anderson and Garrison, 1997)], and suggest the devel-
opment of a probabilistic focus for these systems that
seem to be so unapproachable using deterministic analy-
sis. Right now, scientists in the field are starting to as-
similate the idea that “the winners of multispecies com-
petition can be as unpredictable as a throw of a die”
(Huisman and Weissing, 2001).

B. Conservative systems

1. Chaotic scattering

The phenomenon of chaotic scattering is associated
with the dynamics of an open Hamiltonian system pos-
sessing a chaotic invariant set embedded in it; see Sec.
IV.D for more information about this set and its invari-
ant manifolds. One basic attribute of these Hamiltonian
systems is the possibility of an orbit to escape from the
attraction of the potential, or from a bounded region
with hard walls and exits in it. Typically, a particle
bounces back and forth for a certain time in a bounded
area called the scattering region (in the vicinity of the
chaotic invariant set), and eventually leaves it through
one of the exits, escaping toward infinity (following the
unstable manifold of the chaotic set). From a broad per-
spective, chaotic scattering consists mainly of the inter-
action of a particle with a system that scatters it, in such
a way that the final conditions of speed and direction
depend on the initial conditions [see Eckhardt (1988),
Smilansky (1992), and Ott and Tél (1993) for detailed
reviews of this phenomenon].

It was first shown by Bleher et al. (1988) that, when
two or more escapes are possible in Hamiltonian sys-
tems, fractal boundaries typically appear. In the context
of chaotic scattering, there are typically two types of sys-
tem: billiards (i.e., varied configurations with hard walls)
and systems defined by potentials. For this reason, Ble-
her et al. studied both an open chaotic billiard and a
two-dimensional potential. For the first example, they
chose the well-studied Sinai billiard, consisting of a two-
dimensional box with a central circular barrier, in which
they had opened two exits in one of the walls of the
external box. See Fig. 7 for a description of the billiard
and the associated fractal basins. As this billiard is a
two-dimensional system and the energy is conserved, the
phase space is three dimensional. Therefore it is neces-
sary to use a Poincaré surface of section to plot the exit
basins. When the initial conditions that lead to each exit
are plotted in different colors, the basin boundary
clearly shows a fractal structure and has fractal dimen-
sion. Furthermore, these basins were one of the first ex-
amples to show the intertwined property, introduced by
Grebogi, Kostelich, et al. (1987) one year before: the
basin diagram shows both fractal and smooth bound-
aries mixed on all scales. The intertwined property has
turned out to be typical of closed systems that are arti-
ficially opened in a similar way to the action of Bleher
et al. with the Sinai billiard.
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FIG. 7. The Sinai billiard was the first system to show fractal basins in the context of Hamiltonian dynamics: (a) Diagram of the
system; (b) fractal exit basins associated with it. From Bleher et al., 1988.

The potential well used by Bleher et al. has two exits,
and when the particle crosses them, it cannot come back
into the bounded region and tends monotonically to-
ward either +% or —o. In this case, the whole boundary
is fractal, and therefore does not satisfy the intertwined
property. Two-dimensional potentials also have three-
dimensional phase spaces, so it is again necessary to use
Poincaré sections to plot the exit basins. Many recent
studies have focused on the analysis of these Hamilto-
nians in two dimensions, and the main reason for this
interest is that they are used to model a wide range of
phenomena in very different fields. Many of these appli-
cations are devoted to astrophysics, cosmology, and gen-
eral relativity. For instance, much work has been dedi-
cated to the analysis of the escape of stars from galaxies,
the galaxies being idealized as two-dimensional conser-
vative systems with an associated Hamiltonian (Conto-
poulos, 1990; Contopoulos and Kaufmann, 1992; Conto-
poulos et al., 1993) [and a review in Siopis et al. (1997)].
This work can be of great use to astronomers who need
to know the decrease rate of galaxies or clusters. Fur-
thermore, different phenomena in the solar system have
received special attention: the interaction between the
Earth’s magnetotail and the solar wind has been ana-
lyzed by Chen et al. (1990), and in Koon et al. (2000)
applied techniques taken from dynamical systems to the
analysis of heteroclinic connections and resonance tran-
sitions in a planar circular restricted three-body prob-
lem. The results of the latter can be used for the design
of trajectories for space missions, and cast some light on
the temporal capture of Jupiter comets and asteroids
[see Holmes (1990) and Simé (1999) for general reviews
of the three-body problem]. In fact, in their seminal pa-
per, Bleher et al. predicted that the existence of unpre-
dictability due to fractal basins would be a typical fea-
ture of astrophysical systems, and they presented the
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orbits of some asteroids and the structure of the rings of
Saturn as possible applications.

Diverse phenomena associated with general relativity
can also be studied from this point of view. For instance,
Steklain and Letelier (2006) applied general relativistic
effects to the three-body problem formed by the Moon,
the Earth, and the Sun, or the Milky Way, the M2 clus-
ter, and a single star. Furthermore, much attention has
been paid to the dynamics of light rays around black
holes, where the final possible outcomes are the fall of
the particle into one of the existing black holes, or its
escape from the system after bouncing around the cha-
otic set embedded in the system (Aguirregabiria, 1997,
de Moura and Letelier, 2000a, 2000c). Other works study
the chaoticity of cosmological models (Motter and Lete-
lier, 2001c), the motion of test particles in gravitational
wave spacetimes (Vesely and Podolsky, 2000), or the es-
cape from multipole gravitational fields modeling galac-
tic halos from both a Newtonian and a relativistic point
of view (de Moura and Letelier, 2000b).

Exit basins do not necessarily represent escape modes
of a particle from a bounded region. They can also be
plotted in physical phenomena in which there are sev-
eral final states. An example of this is the planar Cou-
lomb three-body problem, in which a proton interacts
with a hydrogen atom, and the final states are the exci-
tation of the electron, the charge transfer from the hy-
drogen atom to the proton, and the ionization of the
hydrogen atom (Varvoglis et al, 2001). Other similar
cases are the classic and quantum models of the helium
atom studied by Yamamoto and Kaneko (1998). Also, it
is worthwhile to note the work done by Bruhn and Koch
(1993) on a classical triatomic molecular configuration,
since it is one of the few analytical studies of a chaotic
scattering system.
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In the context of reaction dynamics, the study of the
transition states during chemical reactions has led to in-
teresting applications of chaotic scattering theory to
high-dimensional systems [see Keck (1967) and Truhlar
et al. (1996) for reviews on transition-state theory]. One
of the main open problems in this field is the study of
the complex barriers that exist between reacting and
nonreacting trajectories (Wiggins et al., 2001). For in-
stance, Waalkens et al. (2004a) used the three-
dimensional HCN isomerization problem to present a
general theory for computing and analyzing the phase-
space structures that appear in chemical systems with an
arbitrary number of degrees of freedom. In particular,
Waalkens et al. analyzed the influence of the stable and
unstable manifolds of a normally hyperbolic invariant
manifold (Wiggins, 1994) when studying the dividing sur-
face in phase space that separates reactants and prod-
ucts. By using the computational method presented by
Waalkens et al. (2004b), they showed the existence of a
new type of high-dimensional chaotic saddle that might
be the keystone of chaos in chemical reactions. A more
mathematical analysis of the geometrical structures that
regulate transition states during chemical reactions was
developed by Uzer et al. (2002).

Finally, the fractal properties of Hamiltonians with
more than two degrees of freedom in the context of
three-dimensional billiards have been studied by Sweet
and Ott (2000a, 2000b) and Sweet and Zeff (2001); see
Sec. IX.B.2 for more information on the experimental
realization of these systems. Continuous but nowhere-
differentiable fractal basin boundaries may appear in
these systems. Although this peculiar kind of basin
boundary was found previously in dissipative systems
(Grebogi et al., 1983b; Grebogi, Ott, and Yorke, 1985),
its appearance in the context of chaotic scattering proves
that it should be typical of higher-dimensional systems.
On the other hand, the topological properties of the ba-
sins and invariant sets embedded in high-dimensional
systems defined by potentials have been studied by Lai
et al. (2000) and Kévacs and Wiesenfeld (2001). In par-
ticular, Kévacs and Wiesenfeld analyzed a planar atom-
diatom collision with zero total angular momentum, in a
regime where the scattering consists of an exchange re-
action, while Lai et al. modeled a particle scattering by
nonrotating diatomic molecules. Both works show that
fractal and Wada basins should be typical of high-
dimensional systems.

a. Artificial creation of exits in closed systems

Exit basins can also be created artificially in conserva-
tive closed systems, and this strategy has proved to pro-
vide much information about the dynamical properties
of the original closed system. The typical way to do this
is to fix several regions in the phase space, and define
the basins of each region as the set of orbits that even-
tually reach them. If the closed system shows chaotic
behavior, fractal basins will appear associated with the
open system, showing very often the coexistence of frac-
tal and smooth basins, that is, the intertwined property
[as shown by Bleher et al. (1988)]. Motter and Letelier
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(2001b) presented a fractal method to locate and quan-
tify chaos in multidimensional conservative closed sys-
tems, based on the creation of artificial exits. They stud-
ied the dependence of the fractal dimension of the exit
basins on the definition of the basins and the size of the
exits in Motter and Letelier (2001a). They based their
work on the Moura-Letelier conjecture, presented by
de Moura and Letelier (1999) and qualitatively proved
by Aguirre and Sanjudn (2003). This conjecture affirms
that chaotic nonexit systems present invariant sets with a
fractal dimension when small exits are defined, and the
fractal dimension of these invariant sets tends to the
phase-space dimension when the exits are arbitrarily re-
duced. On the other hand, if the closed system is non-
chaotic, the dimension will jump discontinuously to the
phase-space dimension, avoiding noninteger values
when the exits are removed. [It is worthwhile to note
that there are atypical examples of nonchaotic systems
which exhibit fractal properties when exits are created
(Troll, 1996).]

In summary, the artificial creation of exits links chaos
in closed systems with fractality in open systems. Orbits
wander chaotically in the scattering region of open sys-
tems before they escape from the system, while they
continue their erratic evolution ad infinitum if the sys-
tems are closed.

Recently, the appearance of fractal basins when artifi-
cial exits were created in closed Hamiltonian maps has
been studied by Schneider ef al. (2002) and in Sanjudn
et al. (2003). This tool has been shown to be fruitful in
the context of plasma physics, casting some light on
problems that have been unsolved for a long time, such
as the control of plasma contamination due to localized
heat and particle loadings on the inner tokamak wall
(Engelhardt and Fenenberg, 1978), or particle anoma-
lous diffusion in the presence of chaotic magnetic field
lines (Wooton et al., 1990; Wagner and Stroh, 1993). In
particular, the evolution of particles inside a tokamak
before they collide with the wall can be understood as a
chaotic scattering process. While the numerical integra-
tion of field line equations is always available, the use of
field line mappings has proved to be very efficient
(Balescu et al., 1998). Thanks to magnetic flux conserva-
tion, a field line map must be area preserving, such that
the field line equations can be cast in a Hamiltonian
form. In this context, da Silva et al. (2002) studied the
action of a set of ergodic magnetic limiters in tokamaks
in detail, with special attention to fractal structures and
invariant sets. Three artificial exits were defined by di-
viding the tokamak wall into three different regions, and
the associated basins clearly showed intertwined fractal
basins. Furthermore, the fractal component of the exit
basin boundary is responsible for the nonuniformity of
the heat and particle loadings on the tokamak wall,
proving again the direct influence of fractality in many
physical phenomena. Finally, the general appearance of
fractal (and also Wada) basins in the study of magnetic
footprints of chaotic magnetic field lines on the tokamak
wall (or in general on any obstacle placed in the chaotic
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FIG. 8. (Color online) Two types of potential are responsible for the appearance of chaotic scattering via an abrupt bifurcation: (a)
type A, potential with peaks studied by Bleher et al. (1990) that gives rise to fully developed chaos; (b) type B, potential analyzed
by Aguirre et al. (2001) and de Moura and Letelier (1999) that gives rise to three exits when the energy is over a critical value.

region of the tokamak) was analyzed by Portela et al.
(2007).

b. Generic routes to chaotic scattering

The two generic routes to chaotic scattering when a
parameter is varied were studied by Bleher ef al. (1990)
and Ding et al. (1990). In the first case, chaotic scattering
is created via a saddle-center bifurcation. The ho-
moclinic intersection of the stable and unstable mani-
folds of the new saddle created after the bifurcation is
responsible for the chaotic behavior. The stable center is
surrounded by periodic, quasiperiodic, and chaotic or-
bits. The second route was shown by Bleher et al. (1990),
and is based on a type of bifurcation that had not been
studied before, the abrupt bifurcation to chaotic scatter-
ing. This bifurcation gives rise to fractal basins in the
context of scattering situations defined by potentials,
and appears in two different ways.

(1) Type-A potentials: When a certain value of the en-
ergy is crossed in the decreasing direction, some
open Hamiltonian systems suffer an abrupt transi-
tion from regular to chaotic behavior. This behavior
is typical of potentials with peaks (Eckhardt and
Jung, 1986; Jung and Scholz, 1987; Bleher et al.,
1990), and the critical energy is usually the maxi-
mum value of the potential [see Fig. 8(a) for an ex-
ample]. Furthermore, this route to chaotic scattering
creates fully developed chaos, which means that the
dynamics is hyperbolic (that is, there are no KAM
tori of quasiperiodic orbits and all periodic orbits
are unstable).

(2) Type-B potentials: In this case, for energies below a
certain threshold value, which is commonly called
the escape energy, the orbits are bounded and the
test particles cannot leave the scattering region.
However, if the energy is above this threshold value,
several exits appear and the orbits may escape to-
wards infinity through any one of them (de Moura
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and Letelier, 1999; Aguirre et al., 2001) [see Fig. 8(b)
for an example of this type of potential, the Hénon-
Heiles system, where three exits are possible]. The
fractality is maximum just over the escape energy,
when the size of the exits is extremely small. When
the energy increases, the exits become wider and
wider and the fractal dimension decreases. In some
systems, when the energy grows, the fractal dimen-
sion tends to a fixed noninteger value and therefore
fractality exists for all energies, while in other sys-
tems the fractal dimension eventually reaches an in-
teger value for a certain value of the energy and
therefore the basins are smooth for all energies over
this critical value. Most type-B potentials show hy-
perbolic and nonhyperbolic behavior depending on
the value of the energy.

The chaoticity associated with both types of potential
is seen when a variable of the outcoming particle (for
example, the deflection angle or the escape time) is plot-
ted versus a variable of the incoming particle (for ex-
ample, the incoming angle). If the system is in the regu-
lar regime, these curves are continuous and smooth, and
all orbits escape eventually from the scattering region.
However, in the chaotic regime a zero Lebesgue mea-
sure set of orbits stays forever inside the bounded re-
gion, and a fractal set of singularities appears in the plot-
tings. These orbits that never escape from the system
belong to the fractal basin boundary, and coincide with
the stable manifold of the invariant chaotic set embed-
ded in the system.

2. Open hydrodynamical flows

Chaotic advection has recently attracted the interest
of numerous scientists, and a wide variety of papers and
books studying transport and mixing in two-dimensional
open flows has been published (Ottino, 1989, 1990;
Crisanti et al., 1991; Wiggins, 1992; Toroczkai et al., 1998;
Budyansky et al., 2004; Tel et al., 2005). Coloring with
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dye certain regions of the flow and analyzing the evolu-
tion of their boundaries has turned out be a fruitful tool
for understanding the dynamics of these systems (Aref
et al., 1989; Kennedy and Yorke, 1997; Péntek et al.,
1995a, 1995b, 1996; Péntek, Toroczkay, et al., 1995). A
particle in this context is a light and small granule, and if
we suppose that inertial effects are negligible, the phe-
nomenon is called passive advection, and we name each
particle a passive tracer.

Suppose that the fluid is incompressible. The basic
idea of chaotic advection is that it might be possible to
simplify and accelerate the computation of the evolution
of a two-dimensional fluid around obstacles or vortices
using two ordinary differential equations instead of solv-
ing the Navier-Stokes equations. The equations of mo-
tion of a passively advected dye particle become

v, = dp(x,y,t)/dy, 21)

vy =~ d(x,y,1)/ox, (22)

where ¢(x,y,1) is the stream function (which depends on
the point and the time), and v, and v, are the compo-
nents of the velocity field. What we need is an approxi-
mate form of the velocity field, or an approximate
stream function ¢ that verifies that the computations are
similar to what is seen when we numerically solve the
Navier-Stokes equation. It is clear that the mathematical
formulation of the problem becomes similar to the
Hamilton equations, where the stream function ¢ plays
the role of the Hamiltonian. In order to simplify the
results, it is usually supposed that the flows are time
periodic, and therefore the results can be shown in stro-
boscopic maps after integer multiples of the period T.

In the beginning of the 1990s, several difficulties ap-
peared in the literature in attempts to interpret the cha-
otic orbits associated with advection. It was not until
1993 (Jung et al., 1993) that the problem was first ana-
lyzed from the point of view of chaotic scattering and
transient chaos. In the context of the dynamics of a flow
around a cylinder, this work paid special attention to the
time-delay function, the decay statistics, and the exis-
tence and nature of periodic orbits. As a new step in the
same direction, and studying a similar model, Péntek et
al. (1995a) addressed the importance of the chaotic in-
variant set embedded in the dynamics of the system, as
well as its stable and unstable manifolds. The chaotic
invariant set was shown to be the closure of an infinitely
high number of unstable periodic orbits, and their het-
eroclinic and homoclinic connections, like the ones stud-
ied in other open systems.

Nowadays, it is widely accepted that the phenomenon
of chaotic advection in open two-dimensional flows is
identical to that of chaotic scattering in an open system.
The flow is very simple and homogeneous if we go up-
stream or downstream (although a smooth stationary
flow field would be enough), while the time dependence
is restricted to a finite area called the mixing region,
such as the surroundings of a rock in a river. In fact, the
fluid might be either compressible or not, as long as it
shows a chaotic saddle.
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FIG. 9. Fractal basins are typical in open hydrodynamical
flows. (a) Sketch of the outflow experiment for an open hydro-
dynamical flow around an obstacle. The diagram for the inflow
experiment would place the vertical line upstream instead of
downstream. (b) Fractal basins of a flow around a cylinder.
Black points cross the vertical line placed at x=6 with positive
v, while white points cross that line with negative y. The cyl-
inder is plotted in white, too. The fractal structure is repeated
after every period T. (b) from Péntek, Toroczkai, et al., 1995.

A serious difficulty must be faced when trying to plot
the basin diagrams of hydrodynamical systems. The
problem, of course, is that in general there are not sev-
eral escapes in a flow, but a single upstream direction
and a single downstream direction. How then can we
define the exit basins in order to study their fractality?
Péntek, Toroczkai, et al. (1995) solved the situation by
presenting two possible methods: the outflow experi-
ment and the inflow experiment.

(1) The outflow experiment is similar to what has been
typically done in chaotic scattering systems where
several exit modes are possible. In this case, a verti-
cal line placed downstream (that is, after the ob-
stacle) is divided into two segments [y<y. and y
>y, y. being a preselected value; see Fig. 9(a) for a
schematic diagram]. In this way, two artificial exits
are created, and the basin diagram is found by plot-
ting in different colors the initial conditions that give
rise to orbits that cross each segment. The boundary
that separates the two existing basins is placed in the
inflow region and the mixing region, and is typically
fractal. Furthermore, it coincides with the stable
manifold of the chaotic set embedded in the system.
Figure 9(b) shows a snapshot of the numerically
computed fractal basins for the movement of a fluid
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around a cylinder. Take into account that for open
hydrodynamical flows the fractal basins evolve with
time, being repeated in every period of the dynam-
ics.

(2) The inflow experiment shows the opposite point of
view to what has been typically seen in chaotic scat-
tering. However, it is especially interesting because
it gives rise to fractal basins that can be “physically
observed” in any experiment. In some sense, it is
one of the few simple real manifestations of the ex-
istence of fractal basins; see Sec. IX.B.1 for more on
this subject. The key idea is to place the vertical
segment in the inflow region, and divide it again into
two vertical segments. Then each segment is dyed
with a different color. When the system evolves with
time, the colored regions approach the mixing re-
gion and start to get distorted with the typical
stretching and folding phenomenon of nonlinear
systems. After a long time, a stationary pattern is
reached, and the stroboscopic map shows an ex-
traordinarily complex mixture of colors. The bound-
aries that separated the original bands have fractal-
ized, and can be found in the mixing region and
further downstream, but not in the inflow region.
Péntek, Toroczkai, et al. (1995) showed that the
boundary is transported to the downstream region
in a way that asymptotically accumulates on the un-
stable manifold of the chaotic saddle. The only nec-
essary condition for this accumulation, though, is
that the original boundaries cross the stable mani-
fold that is placed in the inflow region.

Finally, it is important to remark that advection is of
capital importance from the point of view of environ-
mental science. In fact, dyes in liquids and pollutants in
the air are spread mainly due to chaotic advection, while
diffusion has a small influence in this phenomenon [see
Tél and Gruiz (2006) for an analysis of the environmen-
tal significance of chaotic advection].

In summary, the chaotic behavior of passive particles
inside an open flow is due to the existence of an invari-
ant chaotic set embedded in the system, and it is known
that passive tracers exhibit chaotic trajectories even for
simple time-periodic cases, as long as flows are time de-
pendent (Ottino, 1989). The particles approach the mix-
ing region following the stable manifold of the chaotic
saddle, spend some time in the vicinity of the chaotic
saddle, and finally escape from the system following its
unstable manifold. It is worth noting that in two-
dimensional flows the boundaries become a fractal of
dimension between 1 and 2 (Péntek et al., 1995a, 1995b,
1996; Péntek, Toroczkai, et al., 1995), while they fill up
the whole phase space if the system is completely closed
(Aref and Balachandar, 1986; Chaiken, 1986; Muzzio et
al., 1992).

Active chaotic advection. The results obtained for pas-
sive chaotic advection have motivated recent studies on
particles that are transported by the fluid and at the
same time suffer chemical or biological interactions. The
growing interest of the scientific community on environ-
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mental challenges is making this subject one of the most
promising meeting points between physics and biology.
In fact, numerous ecological and industrial problems can
be understood using these ideas (Metcalfe and Ottino,
1994; Ottino, Souvaliotis, and Metcalfe, 1995). While
passive particles follow the fluid without any interaction
between them, active particles are tracers that undergo
certain changes during the evolution of the flow, al-
though they do not affect the nature of the fluid that
transports them. The goal is to cast light onto chemical
or biological processes of fundamental importance, such
as the population of microorganisms in the sea (Gibson
and Thomas, 1995; Thomas et al., 1997), the physics of
species coexistence (Karolyi et al., 2000), or ozone reac-
tions (Edouard, Legras, Lefvre, et al., 1996; Edouard,
Legras, and Zeitlin, 1996) [see Tél et al. (2005) for a
review on chemical and biological activity in open
flows].

Many studies have concentrated on the advection of a
flow around a cylinder (Sanjudn, Kennedy, Grebogi, et
al., 1997; Toroczkai et al., 1998; Kennedy et al., 1999), as
this system is similar to many real situations of environ-
mental flows, such as the motion of air around a moun-
tain or the water in a river around a rock. The key is the
long time that the tracers spend around the chaotic
saddle and its unstable manifold, moving around the
bounded orbits that never leave the mixing region. The
particles follow the fractal structure in a way that they
improve the interaction with each other for a long time.
We say that the unstable manifold acts as a catalyst for
the active process [see Toroczkai et al. (1998) for a study
of this phenomenon].

In order to clarify the importance of chaotic advection
in ecological and environmental contexts, we pay special
attention to a model of phytoplankton competition ana-
lyzed by Kaérolyi ef al. (2000) and Scheuring et al. (2000),
and based on a simple kinetic model proposed by
Toroczkai et al. (1998) and Kérolyi et al. (1999). The
work presented in these papers is especially relevant, as
it has become a satisfying explanation for the so-called
paradox of the plankton; see Sec. V.A.2 for more on this
subject. The system consists of a cylinder that is sur-
rounded by an open flow full of a background material
A. The resource material A is constantly introduced in
the system, and two phytoplankton species B and C
compete for it. Both species reproduce at time intervals
7, but only if their centers are closer than ¢ to material
A. Furthermore, their reproductive rates y are propor-
tional to o/, and they disappear with mortality rate &.
The reproduction process and the competition are de-
scribed by

78 % ¥c 2
A+B—2B, B—Aand A+C—2C, C—A.

The computation starts when the whole free space
around the cylinder is full of material A, and small drop-
lets of species B and C are placed just in front of the
cylinder. As A is the only existing resource for both spe-
cies B and C, traditional theory affirms that in a situa-
tion of total and homogeneous mixture the species with
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higher y/ § eliminates the rest of competitors (Gause and
Witt, 1935; Hardin, 1960). However, the result of the
computation is totally different, as both species grow,
spread around the cylinder following very thin filaments,
and coexist for all times. As we have seen earlier, there
is a chaotic set formed by infinite bounded orbits around
the cylinder, and the species after a certain time tend to
accumulate on the fractal unstable manifold of this cha-
otic set.

These results are in agreement with several experi-
mental measurements, both in field observations and us-
ing remote sensing images. For example, Aristegui et al.
(1997) studied the influence of eddies generated by the
Canary Islands on chlorophyll distribution, making use
of both hydrographic and biological observations from
three different cruises. In this work, the experimental
results are compared with computer simulations, and
their remote sensing images show a fractal distribution
of chlorophyll in the wake of the islands. Furthermore,
field work developed also around the Canary Islands
and presented by Barton et al. (1998) analyzed the exis-
tence of an upwelling filament, which is a consequence
of the interaction of a topographically trapped cyclonic
eddy with the outer edge of the coastal upwelling zone.
They studied in detail the role of this filament and the
cyclonic and anticyclonic eddies downstream of the is-
lands in the transport and exchange of biogenic material,
such as phytoplankton or fish larvae, and their influence
on the increase of chlorophyll concentrations.

As can be imagined, it is in the field of ecological and
environmental phenomena where we can obtain the
most beautiful photographs of fractal structures in na-
ture. For instance, Tél and Gruiz (2006) show a high-
quality collection of NASA photographs of natural cha-
otic advection phenomena. Wind vortices just after a
high mountain in a Chilean island, plankton distribution
around the Shetland Islands, and sea ice advected by the
ocean around Kamchatka are only a few of the examples
in which we can enjoy real cases of unstable manifolds
associated with chaotic advection.

VI. WADA BASINS

Although it is hard to imagine, it is possible to have
three or more regions sharing the same boundary. Usu-
ally, three connected regions in two dimensions, for ex-
ample, three countries, can coincide only at two points,
but topologically this is not necessarily true for open
sets. If we talk about basins, a basin B satisfies the Wada
property if any initial condition which is on the bound-
ary of one basin is also simultaneously on the boundary
of two other (or more) basins. In other words, every
open neighborhood of a point x belonging to a Wada
basin boundary has a nonempty intersection with at
least three different basins. The first example of a sys-
tem with this property was given by Yoneyama (1917),
and another early reference to this phenomenon is due
to Kuratowski (1924).

Therefore if a dynamical system satisfies the Wada
property, the unpredictability is even stronger than if it
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only had fractal basin boundaries. If a trajectory starts
close to any point in the boundary, it will not be possible
to predict its future behavior, since its initial conditions
could belong to any of the three basins.

The section is organized as follows. It starts with a
topological approach to the Wada property, since it is
not at all a trivial concept. Then, the key ideas of acces-
sible periodic orbit and basin cell are defined. The sec-
tion ends with a schematic presentation of the computa-
tional conditions that must be verified to assure that a
basin is Wada.

A. Topology of Wada basins

From a topological point of view, a Wada basin
boundary is an indecomposable continuum, a peculiar
topological object that has been studied since the begin-
ning of the 20th century. For an introductory approxima-
tion to the nature and history of indecomposable con-
tinua see Kennedy (1995). To define indecomposable
continua precisely we first need the following defini-
tions:

e A compact set A is any subset of R” such that all its
open covers have a finite subcover. This is the defi-
nition most commonly used, but the easiest to satisfy
is to say that A is a compact set if it is closed and
bounded.

e A continuum A defined in R” is a compact, con-
nected subset of R”; see Sec. IV.A for the definition
of connected set.

e If two sets A and B are continua, and A C B, then A
is a subcontinuum of B. If A# B, then A is a proper
subcontinuum of B.

e A continuum A is decomposable if it can be written
as the union of two overlapping proper subcontinua
B and C.

Most continua are decomposable. However, it is pos-
sible to find indecomposable continua, that is, continua
that cannot be written as the union of two overlapping
proper subcontinua.

In summary, such indecomposable sets are compact,
metric, and connected sets with the strange property
that when one attempts to divide them into two pieces,
they split up into infinitely many pieces.

The first indecomposable continuum was discovered
by Brouwer (1910), as a counterexample to the conjec-
ture of Schoenflies that affirmed that the common
boundary between two open, connected, and disjoint
sets in the plane had to be decomposable (that is, the
union of two proper, closed, and connected sets). It is
remarkable that Brouwer affirmed that his construction
could be modified so that the indecomposable con-
tinuum would become the boundary for any finite or
countable number of disjoint, connected, simply con-
nected sets in the plane. This can be recognized as the
first reference to the Wada property. However, it is prob-
ably the remarkable curve of Birkhoff (1932) that is the
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FIG. 10. (Color online) First steps to build the lakes of Wada. (a) The island has a green lake and a red lake. It is surrounded by
the blue ocean. (b) Creation of the blue canal. (c) Creation of the red canal. (d) Creation of the green canal.

first example of an indecomposable continuum in a dy-
namical system. During the 1940s, Cartwright and Little-
wood (1945, 1951) analyzed the forced van der Pol oscil-
lator. They found that, under certain parameter values, a
Poincaré map of this oscillator admits an invariant
plane-separating continuum. They conjectured that this
continuum contains an indecomposable continuum, but
it was not until 1991 that Barge and Gillette (1991)
proved rigorously that this continuum was an indecom-
posable continuum.

In order to cast some light on the work of Cartwright
and Littlewood on the van der Pol oscillator, Smale
(1967) presented the horseshoe maps that nowadays
take his name. These peculiar structures were proved to
contain an indecomposable continuum, and it is widely
known that they are almost ubiquitous in nonlinear dy-
namics.

During the 1970s, Williams (1967, 1974, 1979) contin-
ued the work on indecomposable continua, but instead
of working with Cantor sets, he presented the concepts
of branched manifolds and inverse limits, nowadays im-
portant mathematical tools to analyze nonlinear dynam-
ics. Solenoids are fundamental examples of inverse lim-
its on branched manifolds, and they are commonly
indecomposable continua. Solenoids appear in differen-
tial equations and they are the limiting invariant set that
occurs as a parameter is varied through a cascade of
period doublings. In some sense, solenoids are to con-
tinuous systems what Cantor sets are to maps.

Finally, theorists have changed their view on indecom-
posable continua, and they no longer consider them
“monstrous things created by set theoretic topologists
for some evil (but purely mathematical) purpose” (Wal-
lace, 1955). For example, strange attractors, fractal basin
boundaries, and stable and unstable manifolds of chaotic
saddles are known to be indecomposable continua (San-
juan, Kennedy, Ott, et al., 1997). Furthermore, some au-
thors affirm that they should be “expected” in a wide
variety of dynamical systems, and they have appeared in
many contexts [see Kennedy (1995), Sanjudn, Kennedy,
Grebogi, et al. (1997), Sanjuan, Kennedy, Ott, et al.
(1997) and Kennedy et al. (1999) for a detailed list of
these applications].

The “lakes of Wada” are a useful example of how to
construct three regions that satisfy the Wada property.
The following explanation is due to Hocking and Young
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(1961); see Fig. 10 for a schematic sketch of the first
steps of the algorithm. In a blue ocean an island has a
green lake and a red lake. From ¢=0 to 1/2, a canal is
dug from the ocean so that every piece of land on the
island is within 1 mile of ocean water [see Fig. 10(b)].
From t=1/2 to 3/4, another canal is dug from the red
lake so that every piece of land on the island is within
1/2 mile of red lake water [see Fig. 10(c)]. From ¢=3/4
to 7/8, a third canal is dug from the green lake so that
every piece of land on the island is within 1/4 mile of
green lake water [see Fig. 10(d)]. From t=7/8 to 15/16,
the first canal (the one filled with ocean water) is ex-
tended in such a way that every piece of land on the
island is within 1/8 mile of ocean water, and so on. After
all the canals are dug, in the limit of =1, the remaining
land (L from now on) is the boundary of all canals. Ev-
ery point of the island is a boundary point of both lakes
and the ocean, and therefore is a Wada point.

We now analyze the nature of the lakes of Wada,
which gives us an intuitive idea of what the Wada prop-
erty means for a set. From a topological point of view,
the remaining land L after the construction of the canals
is in fact a continuum because it is the intersection of a
nested collection of continua. Furthermore, L satisfies a
property that is equivalent to being indecomposable:
For every closed set T that does not contain all of L, but
contains a closed disk S whose interior intersects L,
TNL consists of an uncountable collection of compo-
nents. In the case of the lakes of Wada, for every small
closed disk whose interior intersects L, the intersection
between this small set and the remaining land consists of
an uncountable number of arcs, plus several points in
the boundary of the small closed disk.

The topology of the red lake, the green lake, and the
oceanic region has not changed from the beginning of
the construction (¢=0) to the end (r=1). On the other
hand, the land of the island has drastically changed its
properties, as after the construction all closed sets whose
interiors are intersected by the remaining land L have
infinite pieces of red, green, and ocean water, separated
by infinitely thin pieces of land. No disk shows water of
exactly two colors, no matter how small this disk is. If we
zoom in on any region of the remaining land, we always
have water of all three colors. If we zoom in on a point
of water, we see only single-color water. In summary, the
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UM

FIG. 11. (Color online) Accessible orbits and basin cells are key concepts for the verification of the Wada property: (a) Black point
1 is accessible from the blue basin, because it is the first boundary point that a curve hits, starting from the interior of the blue
basin; (b) a basin cell is a trapping region formed by n pieces of the stable and unstable manifolds of a boundary n-periodic orbit.

From Aguirre and Sanjuén, 2002.

closure of any of the water sets coincides with the clo-
sure of the remaining land.

B. Accessible periodic orbits and basin cells

There are two concepts strongly related to the exis-
tence of Wada basins: the accessible orbits and basin
cells. Both of them will be useful for the numerical veri-
fication of Wada basins.

1. Accessible orbits

A point P in the boundary of a basin B is accessible
from that basin if a curve can be drawn, starting in the
interior of the basin, in a way that this point P is the first
boundary point of the basin that the curve hits (Grebogi,
Ott, et al., 1987; Alligood and Sauer, 1988; Hammel and
Jones, 1989; Alligood and Yorke, 1992); see Fig. 11(a)
for a schematic explanation of this concept. If the basin
B is fractal, there is typically a small subset of the
boundary that is composed of accessible points, and due
to the extreme complexity of the boundary they will not
be accessible from any other basin.

2. Basin cells

Several definitions are necessary to understand what a
basin cell is.

e A compact region is a simply connected, compact set
with nonempty interior which consists of finitely
many connected components.

e A trapping region is a compact region T such that
F(T)CT and F(T)#T.

Therefore, if the particle enters the trapping region, it
will never be able to escape from it. However, points
that belong to the boundary of the trapping region T

Rev. Mod. Phys., Vol. 81, No. 1, January—March 2009

need not enter T after iterations. The definition of the
trapping region allows us to present an alternative and
useful definition for the basin of attraction:

e A set B is the basin of attraction of T if B is the set of
points that eventually map into the interior of T,
where T is a trapping region.

This alternative definition avoids the problem of veri-
fying that we have found all the attractors of a system.
Now we are prepared to define a basin cell:

e A basin cell is a trapping region constructed in such a
way that its boundary is made out of n pieces of
stable and unstable manifolds of an n-periodic orbit
that also lies on the boundary of the trapping region.

Basin cells were first introduced by Nusse and Yorke
(1996). They deepened this concept and its influence on
the geometry of mixing chaotic flows in Nusse and
Yorke (2000). Figure 11(b) shows a clarifying diagram of
a typical basin cell.

Basin cells provide much information about the basins
they are associated with. First of all, they can be found
only in dissipative systems. Furthermore, the corre-
sponding basin can be seen as a central body formed by
the basin cell plus several arms that connect to it. [The
basin cell in Fig. 11(a) has only one associated arm, the
wide channel that goes upwards.] There will be as many
arms as the period of the periodic orbit that gives rise to
the basin cell. The arms created in the basin cell are
infinitely long and are stretched and folded in a very
complicated manner, without crossing each other.

A diverging curve is a curve that starts inside a basin
cell, chooses one of its arms, and follows it infinitely.
Every diverging curve comes arbitrarily close to every
point in the boundary of the basin. That is, the limit set
of a diverging curve is the entire basin boundary. In fact,
the fractal basin boundary of a basin that has a basin cell



358 Aguirre, Viana, and Sanjudn: Fractal structures in nonlinear dynamics

is invariant, and is equal to the closure of the stable
manifold of the n-periodic saddle orbit that generates
the basin cell. It is important to note that most basins do
not have basin cells associated, although the existence of
basin cells assures the fractality of the boundary. We end
this summary of the properties of basin cells presenting
the main result by Nusse and Yorke (2000), applicable
for two-dimensional dissipative systems:

A basin B has a basin cell if and only if every diverg-
ing curve has the entire basin boundary of B as its limit
set.

C. Computational conditions to verify the Wada property

It is easy to visualize from an intuitive point of view
whether or not a dynamical system satisfies the Wada
property. First, three or more basins must be defined.
Then, we must zoom in on a region that contains part of
the fractal basin boundary as many times as possible,
and check that all three basins are present in the bound-
ary no matter how small the region is. However, if our
goal is to verify the Wada property with some rigor, the
numerical verification presents several difficulties that
must be solved, as the topology behind this property is
not trivial. A thorough analysis of this subject was done
by Kennedy and Yorke (1991) and Nusse and Yorke
(1996), and some computational conditions were found
to assure that a basin is Wada. While there are several
equivalent secondary conditions that might be fulfilled,
the main condition is the same for all cases.

Condition 1 (main condition). Let P be an unstable
periodic orbit, accessible from a basin B. Its unstable
manifold must intersect every basin.

The following argument from Kennedy and Yorke
(1991) and Poon et al. (1996) explains qualitatively why
the main condition is fundamental for verifying the
Wada property. Figure 12 shows a schematic diagram of
what happens when the unstable manifold of a periodic
orbit P crosses three different basins. Suppose that By,
B,, and B; are small disks that belong to basins 1, 2, and
3. The unstable manifold of P crosses all basins, and
therefore the main condition is fulfilled. If we calculate
the preimages of By, B,, and Bs, that is, their images
when the time ¢ goes backward, we find that they suc-
cessively approach the stable manifold of P. The reason
is that the distance between points of an unstable mani-
fold contracts when time evolves backward. Further-
more, the preimages of By, B,, and B; become exponen-
tially stretched in the direction of the stable manifold,
and get arbitrarily close to it. In the limit, all points on
the stable manifold of the periodic orbit P are boundary
points, that is, there are points that belong to all three
basins arbitrarily close to them. Therefore they are on
the boundary of basins 1, 2, and 3, and all points on the
stable manifold of P are Wada points.

The verification of condition 1 is a necessary but not a
sufficient condition to verify that a system possesses the
Wada property; one of the three alternatives for condi-
tion 2 must also be satisfied. Otherwise, there could be
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FIG. 12. (Color online) Three small sets belonging to three
different basins and intersected by the unstable manifold of
the accessible orbit P. Their preimages are exponentially
stretched and successively approach the stable manifold of P.

unknown accessible orbits. Condition 1 only assures that
the boundary created by the stable manifold of one ac-
cessible periodic orbit satisfies the Wada property. Other
parts of the boundary could be non-Wada fractal or even
smooth. For systems that show coexistence of Wada
points and non-Wada points in the same boundary we
propose the name of partially Wada basin boundaries.

Condition 2.A. If there is a periodic orbit P that satis-
fies condition 1, the basin B satisfies the Wada property
if the stable manifold of such saddle point is dense in the
boundary of all basins.

If we try to apply this secondary condition, we face
two practical problems. First, it is hard to be sure that
we have found all basins, and, second, it is even harder
to prove rigorously that the stable manifold of the
saddle point P is indeed dense in the boundaries. For
these reasons, Nusse and Yorke (1996) presented two
theorems guaranteeing the existence of Wada basins, us-
ing easily verifiable numerical conditions. These two
theorems provide conditions 2.B and 2.C.

Condition 2.B. If there is a periodic orbit P that satis-
fies condition 1 the basin B satisfies the Wada property if
such saddle point is the only accessible orbit from basin
B. In case that there is more than one accessible periodic
orbit; every unstable manifold must intersect all basins
[Theorem 1 of Nusse and Yorke (1996)].

Condition 2.C. If there is a periodic orbit P that satis-
fies condition 1 the basin B satisfies the Wada property if
such saddle point generates a basin cell [Theorem 2 of
Nusse and Yorke (1996)].

Computational steps to follow when verifying the Wada
property. According to the theorems just presented, sev-
eral numerical conditions must be satisfied. For many
dissipative systems this should be an easy task, and in
particular the software DYNAMICS (Nusse and Yorke,
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1997) has implemented the numerical methods that are
needed for this purpose. In any case, the following steps
are general enough to be applied to all those systems
that are not analyzable by any particular software pack-
age, such as complicated dissipative systems or even
Hamiltonian systems.

(1) Compute the attractors and graphically plot the cor-
responding basins. If we are working with an open
Hamiltonian system, the role of the attractors and
their basins is played by the exit modes and exit
basins, respectively.

(2) Find as many accessible periodic orbits as possible.
A powerful numerical method to do this is the ac-
cessible basin boundary straddle trajectory (ABST)
method (Nusse and Yorke, 1991, 1997).

(3) Plot the unstable manifolds of every accessible peri-
odic orbit and verify that they intersect all basins.
The calculation of the unstable manifold of a peri-
odic orbit can be implemented with the unstable
manifold (UM) method (You et al., 1991; Nusse and
Yorke, 1997).

(4) One of the following conditions must be checked:

(a) Verify the density of the stable manifold of the
accessible orbit. This is always an open possibility,
but in practice it is hard to do it rigorously. There
are no implemented numerical methods to do
this, and at the end the results are only approxi-
mate and must be checked with the naked eye.

(b) Verify that all accessible orbits have been
found. In this case, we have the difficult goal of
verifying that we have not missed any accessible
periodic orbit. The randomly finding periodic or-
bit (RP) method (Nusse and Yorke, 1997) is an
accurate method to find periodic orbits of a cer-
tain specified period (assuming the period is not
too high). If the system is dissipative, the periods
of all accessible periodic orbits must be the same,
which obviously facilitates the task (Alligood and
Yorke, 1992). While we never have the total cer-
tainty that there is not a slippery orbit that re-
mains hidden, most systems only have one or very
few accessible orbits, and in practice this is not a
real problem.

(c) Construct a basin cell. Plot the stable and un-
stable manifolds of the accessible orbit, and con-
struct a trapping region [using, for example, stable
manifold (SM) and UM methods]. Remark that
basin cells are only present in dissipative systems.
The existence of a basin cell assures that there is
only one accessible periodic orbit.

In summary, the main advantage of the concept of
basin cell is that, in order to verify the existence of Wada
basins in a system, condition 2.C is the only tool that
does not need to make sure that all accessible orbits
have been found. In this sense, the first step should be to
try to find a basin cell associated with the basin that is
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being studied, and only if this method does not work
should we try to make use of condition 2.B. When these
methods are insufficient, we can try to verify that the
stable manifold of the accessible orbit is dense in the
boundary of all basins (condition 2.A), but, as already
mentioned, it is extremely difficult to do this rigorously.
(Unfortunately, in the context of Hamiltonian dynamics
there is not a concept that is analogous to basin cells in
dissipative systems. Therefore when we work with
Hamiltonian systems, we are obliged to check either
condition 2.A or 2.B.)

Finally, even if we make use of the condition related
to basin cells, we are not proving rigorously that the
basins are Wada. To do this, one should do the hard
work of computing the accuracy of the calculations of
the stable and unstable manifolds (Nusse and Yorke,
1996).

VII. WADA BASINS IN PHYSICAL SYSTEMS

Although typical fractal basin boundaries have been
shown to be very common in the context of nonlinear
dynamics, the number of examples already studied of
systems displaying the Wada property is still quite lim-
ited. However, they appear in numerical models and in
experiments, as long as there are three or more different
final states. Just as with fractal basins, Wada basins can
be found in maps of any dimension, while three-
dimensional flows are needed to satisfy this peculiar
property.

One interesting consequence of the Wada property is
the existence of a high number of possible final states
and the difficulty of predicting to which of them a cer-
tain initial condition leads. In fact, for many trajectories
that start by the fractal boundary, a probabilistic ap-
proach is needed in order to predict the future behavior.
Having Wada basin boundaries represents an intermedi-
ate situation between the softer case of having fractal
basin boundaries and the stronger situation of riddled
basins, where all deterministic prediction is lost.

This section has a similar structure to that of Sec. V,
where examples of fractal basins were addressed. In fact,
many typical fractal systems show Wada basins for cer-
tain values of the parameters. The first part is dedicated
to dissipative systems, both maps and flows, and the sec-
ond part is dedicated to conservative systems divided
into chaotic scattering systems and open hydrodynami-
cal flows. In particular, special attention is paid to the
applicability of the computational conditions to verify
the Wada property, and several cases are shown in detail
for the sake of clarity.

A. Dissipative systems

1. Maps

a. One-dimensional maps

Very little work has been done on Wada basins related
to one-dimensional maps. Vandermeer (2004) detected
Wada basins in a circle map that models a predator-prey
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FIG. 13. Verification of the Wada property in the Hénon map with a=0.7 and b=0.9. (a) Fractal basin diagram. The gray basin is
Wada, but not the black or white basins. (b) The unstable manifold of the only periodic orbit accessible from the gray basin
intersects all basins. (c) The stable manifold of the only accessible orbit (marked with an arrow) coincides with the Wada basin

boundary. From Nusse and Yorke, 1996.

ecological system, questioning the capability of these
model systems to make precise predictions.

Breban and Nusse (2005) presented a sufficient and
necessary condition that guarantees that three Wada ba-
sins emerge in one-dimensional maps. It is applicable for
basins that appear in a tangent bifurcation for certain
one-dimensional maps with negative Schwarzian deriva-
tive and at least two, but at most three, fixed point at-
tractors. This condition, proved rigorously, is applied to
check that several examples indeed satisfy the Wada
property. For example, suppose that T(x) is the logistic
map in the regime where the parameter \ allows the
existence of a period-m attractor which has been created
by a periodic point creating tangent bifurcation. The
T"(x) map defined by the logistic map T(x) applied m
times has m basins (each of them associated with a
period-1 attractor). McDonald et al. (1985) showed that
these basins are fractal; see Sec. V.A.1 for more details.
However, they also satisfy the Wada property. At the
end of their work, Breban and Nusse apply the condi-
tion to more complex one-dimensional maps to show the
generality of the analytic result.

b. Two-dimensional maps

The Hénon map [see Egs. (16) and (17) for the math-
ematical expression] shows a varied typology of fractal
basins, depending on the values of its two parameters a
and b. In some cases we can find situations in which the
basins are only fractal. In some others all basins are
Wada, while it is also possible to observe Wada basins
and simple fractal basins coexisting (Nusse and Yorke,
1996). This wide variety of behaviors makes the Hénon
map an especially interesting model to present as an ex-
ample of the application of existing tools to verify the
Wada property.

e Coexistence of Wada basins and non-Wada fractal
basins. Following Nusse and Yorke (1996), we choose
the parameters a=0.7 and b=0.9. According to the
steps explained in Sec. VI.C, the basins of attraction
are plotted. For these values of the parameters, there
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are three different basins of attraction, which are
plotted in Fig. 13(a). Basin 1 is plotted in black and
consists of the orbits that tend to a period-2 attractor.
Basin 2 is plotted in gray and is formed by the points
whose orbits diverge to infinity, while basin 3 is plot-
ted in white and its orbits tend to a period-6 attrac-
tor. The second step is to find as many accessible
periodic orbits as possible. If we start by studying the
gray basin, two fixed points are found, but only one
is accessible from that basin. To do this, they used
the ABST method. Figure 13(b) shows how the un-
stable manifold of the only periodic orbit that is ac-
cessible from the gray basin indeed intersects all
three basins (condition 1). They used the UM
method to paint the whole unstable manifold, al-
though we would only need a small piece of what is
plotted to show that it intersects the three basins.
Condition 2.B assures then that the gray basin is a
Wada basin. Every point on the closure of the stable
manifold is a Wada point. Figure 13(c) shows this set
of Wada points. Looking at Fig. 13(a), it is clear that
white and black basins share a smooth boundary in
which no gray points are found. Therefore they do
not satisfy the Wada property. Following the same
steps this fact can be explained rigorously. Applying
the ABST method one finds that there is only one
accessible period-6 orbit from the black basin, which
is also the only accessible orbit from the white basin.
However, its unstable manifold intersects only the
black and white basins, but not the gray basin, and
therefore condition 2.B tells us that these basins are
not Wada.

Wada basins in the Hénon map. Changing the pa-
rameter a from 0.7 to 0.71, the system still has three
attractors, two of them periodic (period-1 and
period-6) and one at infinity. The basins are almost
the same, but they show a fundamental difference:
the smooth boundary that in the former case sepa-
rated the black and white basins now is totally frac-
talized. In fact, now we find an accessible periodic
orbit of period 1 from the gray basin, one of period 6



Aguirre, Viana, and Sanjuan: Fractal structures in nonlinear dynamics 361
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FIG. 14. (Color online) Verification of the Wada property in the Duffing oscillator. (a) Basins of attraction associated with two
period-1 attractors (A and B) and one period-3 attractor (C). There are some regions where the likelihood of going to a certain
attractor is bigger, but it is clearly observable that for most parts of the phase space the situation is very complicated. (b) Basin cell
associated with a period-1 attractor and its black basin. It is generated by the saddle marked with a cross. When the basin cell is
compared with the figure of the basin diagram, it is observed that the branch of the unstable manifold intersects the three basins
of attraction, which gives evidence that this basin is Wada. From Aguirre and Sanjuan, 2002.

from the black basin, and one of period 18 from the
white basin, and their unstable manifolds indeed in-
tersect all three basins. Therefore, following condi-
tions 1 and 2.B, we know that gray, black, and white
basins shear the same boundary and satisfy the Wada

property.

2. Flows

Most oscillators defined in a phase space of dimension
3 or more, and in the regimes where there are three or
more basins, have turned out to show Wada basins for
certain values of their parameters. The first example in
the literature is the forced damped pendulum (Kennedy
and Yorke, 1991). In this work it was shown numerically
that the unstable manifold of an accessible saddle point
intersects three basins (condition 1). Furthermore, a
fairly technical proof was given for the density of the
stable manifold in the boundary of the three regions
(condition 2.A). The difficulty of this proof is a clear
evidence of the unsuitability of applying condition 2.A
to verify the Wada property. On the other hand, Nusse
and Yorke (1996), studied the same case, but this time
making use of the new concept of basin cell. In fact, the
fractal basins associated with nonlinear oscillators typi-
cally show basin cells, and therefore it is possible to ap-
ply condition 2.C [Theorem 2 of Nusse and Yorke
(1996)], which is by far the easiest and most robust way
to check that a dissipative system satisfies the Wada
property.

Recently, the Duffing oscillator has also been shown
to satisfy the Wada property (Aguirre and Sanjuén,
2002; Aguirre et al., 2003). Figure 14(a) shows its numeri-
cally computed basin diagram, where 6=0.15, a=8=w
=1, and y=0.245; see Eq. (20) for the mathematical ex-
pression of the Duffing oscillator. For these values of the
parameters, there are three attractors (two fixed points
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and a period-3 orbit), and the corresponding basins of
attraction have been colored black, blue, and white. The
fractality calculated as the uncertainty dimension is D
=1.98+0.01 (where D=1 means nonfractality and D=2
means total fractality), which indicates a highly fractal
structure. It is verified that there are three basin cells,
and the basin cell associated with the period-3 attractor
is formed by three disconnected basin cells. A picture
with the basin cell for the black basin is shown in Fig.
14(b). This basin cell is formed by two stable manifolds
and one unstable manifold of the accessible unstable pe-
riodic orbit marked with a cross in the plot. Comparison
of this picture with Fig. 14(a) shows that the unstable
manifold crosses all three basins. They obtain the same
results for the other two basins, giving evidence that, for
these values of the parameters, the Duffing oscillator
satisfies the Wada property.

The existence of fractal and Wada basins is starting to
be taken into account in the development of mechanical
devices. For instance, Bellido and Ramirez-Malo (2006)
studied the mechanical problem concerning a sliding
rigid body, periodically forced and subjected to dry fric-
tion, which is a simple model for an articulated sliding
vehicle undergoing lateral oscillations. This system
shows a rich variety of nonlinear phenomena such as
periodic and chaotic states, different bifurcations, and
fractal and Wada basins, and all this should be consid-
ered when building a real device.

B. Conservative examples

The rigorous verification of the Wada property is in
general much harder when working with conservative
systems than when dealing with dissipative systems. The
main reason is that we cannot make use of the existence
of basin cells, but it is also important that the available
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FIG. 15. (Color online) Verification of the Wada property in open Hamiltonian systems: (a) Wada basins associated with the
three-hard-disk triangular configuration. From Poon et al., 1996. (b) Wada basins associated with the Hénon-Heiles system. From
Aguirre et al., 2001. In both cases the unstable manifold of the only accessible periodic orbit [placed in (1/3, 0) in (a) and marked

with an arrow in (b)] intersects all three basins.

software and the numerical methods therein were
mainly developed for dissipative systems. In most cases
found in the literature of Wada basins in conservative
systems, the main condition, which affirms that the un-
stable manifold of an accessible periodic orbit must in-
tersect three basins, is always numerically fulfilled with-
out any problem, but the situation is completely
different with the secondary conditions. As condition
2.C is reserved for dissipative systems, one must either
find all accessible periodic orbits or show that the stable
manifold of the accessible orbit is dense in the boundary
of all basins. In practice, neither of the two targets can
be achieved rigorously, so different methods have been
tried, some numerical and some qualitative, to obtain at
least a sufficient certainty. In many cases, actually, only
the main condition is satisfied, ignoring the secondary
conditions. It is important to note that in these cases it
may happen that there are accessible orbits that have
not been found, and therefore one is only assuring that
part of the boundary (the boundary that coincides with
the stable manifold of the known accessible orbit) has
Wada points. Other parts of the boundary, however,
could be only fractal or even smooth.

1. Chaotic scattering

As already mentioned, Bleher er al. (1988) showed
that it is typical of chaotic scattering systems to present
fractal basin boundaries separating the initial conditions
that make the particle escape from the system through
different exits. Poon et al. (1996) went further in this line
of research and showed in a simple two-dimensional bil-
liard that these basins are not only fractal, but also sat-
isfy the property of Wada (as long as there are three or
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more exits, obviously). This was the first time the con-
cept of Wada basins was related to a conservative sys-
tem. Furthermore, Poon et al. claimed that Wada basins
would be generally found in open systems.

The model used by Poon et al. is a two-dimensional
billiard consisting of three hard disks of radius R, whose
centers are on the vertices of a triangle of side L>2R.
This configuration defines its scattering region as the
bounded area between the disks and the triangle formed
by their centers, and it has three exits of size w=L-2R.
A typical test particle moves at constant speed in the
scattering region, suffering elastic collisions with all
three disks, until it crosses one of the three exits of size
w and escapes to infinity. This system was first studied by
Eckhardt (1987), extensively analyzed in the classical,
semiclassical, and quantum regimes by Gaspard and
Rice (1989a, 1989b, 1989¢) and examined in the context
of microscopic deterministic diffusion by Nobbe (1995),
and Klages and Dellago (2000). A review of the proper-
ties of its dynamics can be found in Cvitanovic ef al.
(2005). The three hard disk configuration is one of the
simplest and most general open Hamiltonian systems,
and is a paradigm for low-dimensional chaotic scatter-
ing. For these reasons and for the sake of universality we
present it here with some detail.

Figure 15(a) shows a part of the exit basin diagram for
the system. The color code to plot this exit basin dia-
gram is red, green, and blue, depending on the exit the
particle chooses to escape from the system. The vari-
ables are (s,z), where s represents the arclength of each
collision with the hard disks normalized from 0 to 1, and
z satisfies z=cosf, where 6 is the angle the trajectory
makes with respect to the forward tangent after each
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collision [see Poon et al. (1996) for more details]. It is
clear that variables s and z are defined only while the
particle is inside the scattering region. It has been shown
that this mapping is area preserving (Birkhoff, 1927,
Berry, 1981). Furthermore, a segment of the unstable
manifold of one accessible periodic orbit is plotted, and
it clearly intersects all basins. For open systems, the
most suitable accessible periodic orbits are extremely
unstable periodic orbits, which act as frontiers of the
scattering region. They are known as Lyapunov orbits
(Contopoulos, 1990), and when any orbit crosses one of
them in the outer direction, that is, its velocity compo-
nents pointing outward, the particle is forced to escape
to infinity and never returns. Every system shows as
many Lyapunov orbits as exits. Furthermore, the
Lyapunov orbits are accessible by construction.

In addition to verifying that the stable manifold of the
Lyapunov orbit is dense in the boundary, Poon et al.
used a qualitative explanation of the existence of Wada
basins, based on the one presented when discussing con-
dition 1 in Sec. VI.C. The basic idea can be explained as
follows. We choose a boundary point 8 and a small disk
D (B) of radius ¢, centered at B. The goal is to show that
there are points of all three basins inside D (), no mat-
ter how small € is. Now we consider a horizontal line
segment L (B) through B contained in D (B). As we are
working with an open system, there is a chaotic saddle
formed by the set of Lebesgue measure zero of orbits
that will never escape from the scattering region for
both t—oo and ¢t— —o. Furthermore, the fractal basin
boundary coincides with the stable manifold of the cha-
otic set, and consequently is constituted by the orbits
that do not escape from the scattering region, no matter
how long we wait. From Fig. 15(a) we see that the slope
dz/ds of the stable manifold of the chaotic set is nega-
tive, while the slope of the unstable manifold is positive,
as both manifolds are symmetric. Taking all this into
account, L (B) is transverse to the stable manifold, and
when we iterate the orbit B it will approach the chaotic
set. As the system is hyperbolic (Bunimovich and Sinai,
1980) (that is, there are no tangent crossings between the
stable and the unstable manifolds of the invariant set),
the image of LB) will expand in the direction of the
unstable manifold, until it is so long that crosses all three
basins, assuring that inside D () there are points of all
basins. Therefore the point B8 is a Wada point. As B
might be any point of the stable manifold, that is, the
fractal boundary, the whole boundary is Wada.

The work of Poon et al. (1996) was done on an open
billiard, one of the two types of open Hamiltonian sys-
tem. Aguirre et al. (2001) extended the verification of the
existence of Wada basins to the other type, that is, open
two-dimensional potentials. Using as a model the
Hénon-Heiles system (see Secs. IV.D.2 and V.B.1 for
more information on this system), they verified that the
unstable manifold of the Lyapunov orbit associated with
each of the three basins indeed intersects all three ba-
sins, as shown in Fig. 15(b). Following condition 2.B,
they verified that each Lyapunov orbit is the only un-
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stable periodic orbit that is also accessible from its cor-
responding basin. For this purpose, they used an argu-
ment based on the work of Alligood and Yorke (1992),
where it is proved that, if all the periodic points in the
boundary of a basin are hyperbolic, and there exists an
accessible periodic point of minimum period ¢, then ev-
ery accessible point in the basin boundary either is a
periodic point of minimum period g or is in the stable
manifold of such a periodic point. From here, one can
assume that in the basin boundaries of the Hénon-
Heiles, only period-1 orbits can be found. This theorem
provides us with a powerful tool to verify condition 2.B,
as it is easy to find period-1 orbits in a basin. After
searching for period-1 orbits, a few periodic orbits were
found, although none of them were in the boundary.
Therefore enough numerical evidence is obtained to af-
firm that the three basins of the Hénon-Heiles system
satisfy the Wada property. This strategy is applicable to
any other two-dimensional potential with escapes.

Furthermore, it is worth referring to the possible ap-
pearance of Wada basins in closed systems that are arti-
ficially opened with three or more exits. As we know, in
most of these cases fractal basins coexist with smooth
basins, in what are usually known as intertwined basins.
For these situations, it is usually possible to verify the
main condition and check that the unstable manifold of
an accessible periodic orbit intersects all basins, as done
by Sanjuén et al. (2003) for a Hamiltonian map or by da
Silva et al. (2002) and Portela et al. (2007) for maps re-
lated to plasma dynamics in tokamaks. However, if the
basins are intertwined, there are necessarily parts of the
boundary that are not fractal (and obviously not Wada
either), and the secondary conditions must fail. These
are examples of what we have named partially Wada
basins; see Sec. VI.C for more details.

The notion of dissipative chaotic scattering caused by
introducing a weak dissipation in a map was introduced
by Motter and Lai (2001), and its consequences for the
fractal dimension were analyzed by Seoane et al. (2007).
This idea was applied to the Hénon-Heiles system by
Seoane et al. (2006), showing that Wada basins survive
the addition of weak dissipation in a typical open Hamil-
tonian system. Finally, note also that a study of chaotic
scattering problems in a noisy environment was carried
out by Seoane and Sanjudn (2008), where they showed
that Wada basins are destroyed when a small amount of
noise is introduced into the system.

2. Open hydrodynamic flows

While studying fractal basin boundaries associated
with chaotic advection, Toroczkai et al. (1997) soon real-
ized that, if Poon et al. (1996) had shown that Wada
basins are a ubiquitous phenomenon in chaotic scatter-
ing systems, they should also appear naturally in the en-
vironment of open hydrodynamic flows. The problem of
the existence of more than one basin when there is only
one upstream and one downstream direction had al-
ready been solved by coloring the upstream region (the
so-called inflow experiment) or the downstream region
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FIG. 16. (Color online) Verification of the Wada property in open hydrodynamic flows. (a) Sketch of an open flow around an
obstacle, where the upstream region has been dyed with n=3 vertical stripes. The mixing region is also plotted. The fluid satisfies
the Wada property if the stable manifold of the chaotic saddle crosses all vertical bands. (b) A small droplet D is placed in the
downstream region, just on the unstable manifold. The preimage D~ of the droplet as m grows indefinitely, tends to the chaotic
set inside the mixing region, and shows a branch toward « in the inflow region following the stable manifold. (c) Wada basins due
to four different colors in a von Karman vortex street problem around a cylinder. (c) from Toroczkai et al., 1997.

(the so-called outflow experiment) with several different
dyes; see Sec. V.B.2 for more details.

Taking all this into account, and making use of the
inflow experiment point of view, it is easy to show that
for a time-dependent open hydrodynamic flow that
shows a chaotic saddle, where n=3 vertical bands in the
far upstream direction have been colored with n differ-
ent dyes as sketched in Fig. 16(a), the fluid shows Wada
basins if the stable manifold of the chaotic saddle crosses
all vertical bands (Toroczkai ef al., 1997). Take a droplet
D (B) of radius ¢, centered at B3, where B is a point of the
unstable manifold of the chaotic set associated with the
system [Fig. 16(b) shows a basic diagram of this situa-
tion]. If one calculates its preimages D_"(B8) when m
— o0, one finds that the circular set will get longer and
longer, showing a very complicated structure inside the
mixing region, as well as a branch towards % in the in-
flow direction. This is due to two facts. First, the center
of the droplet will tend to the chaotic set, because 8 was
taken exactly on the unstable manifold. Second, the pre-
images of the points of the droplet that were close to but
not exactly on the unstable manifold, enter the mixing
region, and finally escape toward infinity in the inflow
direction following the stable manifold. For this reason,
there is a finite m such that the m preimage of the origi-
nal droplet will be so long that it will cross all the origi-
nal transverse bands, assuring that it is formed of points
of all colors. Obviously, if D_"'(B) consists of points that
belong to all colors, its image after m iterations, that is,
the original droplet D (), will also be formed of points
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of all colors. As the only prerequisite for D, is that it is
centered on the unstable manifold, but its radius € can
be as small as desired, it is proved that all points on the
unstable manifold (that is, on the basin boundary) are
Wada points and therefore the system indeed satisfies
the Wada property. As an example, Fig. 16(c) plots the
Wada mixture of four different basins in a von Karman
vortex street problem around a cylinder.

There are certain differences between this result and
the numerical conditions presented to verify the exis-
tence of Wada basins in Sec. VI.C. First, the fractal
boundary between the colored sets coincides with the
unstable manifold of the chaotic saddle instead of coin-
ciding with the stable manifold. Second, the Wada con-
dition is that the stable (and not the unstable) manifold
crosses all original basins. The reason is that we have
defined income regions (the inflow experiment) instead
of exits in the outcome regions, as is usual in chaotic
scattering problems (the outflow experiment). As ex-
plained in Sec. V.B.2, the point of view of the inflow
experiment is especially useful because it provides us
with a nice tool to visualize Wada basins experimentally,
just by dying the upstream region with several different
colors. Obviously, if the vertical bands are chosen in the
far downstream direction, as if they were the different
exits that the tracers can choose to escape from the mix-
ing region, we recover the typical results: the fractal ba-
sin boundary will coincide with the stable manifold of
the chaotic set, and will be Wada if the unstable mani-
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fold crosses all the vertical bands located in the far
downstream region.

VIII. RIDDLED BASINS

In the previous sections we have considered chiefly
fractal basins, for which the problems with final state
sensitivity are more severe than for smooth basins, in
the sense that our ability to predict the asymptotic dy-
namical state is diminished for fractal basins, when com-
pared to smooth ones. However, it turns out that an
even more challenging situation takes place for the so-
called riddled basins, since they virtually defy any at-
tempt to improve the final state predictability. In other
words, while for fractal basins a large reduction of initial
state uncertainty is necessary to yield a better predict-
ability, for riddled basins no improvement at all would
be achieved by means of this procedure. This occurs be-
cause of the conspicuous mathematical structure of
riddled basins, which is the subject of this section. We
begin by reviewing the conceptual and historical back-
ground of this matter, with an outline of the basic topo-
logical and metric definitions needed to characterize
mathematically riddled basins. We first analyze, as a
simple example, a low-dimensional dynamical system for
which the occurrence of riddled basins can be more eas-
ily shown. Next we consider a number of physical ex-
amples for which riddled basins have been theoretically
and even experimentally described, in particular with re-
spect to the basin structure of coupled dynamical sys-
tems. To conclude, we also review some alternative con-
cepts related to riddled basins, but with different
conceptual and mathematical frameworks (riddledlike
basins).

A. Introduction and historical aspects

Chaotic systems having certain symmetries and quite
general properties may present basins of attraction ex-
tremely interwoven in a more severe sense than we have
dealt with in the preceding sections. This phenomenon
has been called riddling, and the effect it causes in the
dynamical system is the production of riddled basins. A
dynamical system may have a chaotic attractor A whose
basin of attraction is riddled with “holes” (in a measure-
theoretical sense) belonging to the basin of another (not
necessarily chaotic) attractor B. In brief, riddling means
that every point in the basin of attraction of attractor A
has pieces of the basin of attraction of attractor B arbi-
trarily nearby. These latter pieces represent the
measure-theoretical holes we are referring to.

The physical consequences of riddling may be quite
serious in terms of our ability of predicting what attrac-
tor the trajectory originating from a given initial condi-
tion asymptotes to. Let P be an arbitrary point belong-
ing to the basin of the chaotic attractor A. If the basin of
A is riddled by the basin of the other attractor B, then a
small ball of radius e centered at P has a nonzero frac-
tion of its volume belonging to the basin of B, irrespec-
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tive of how small the radius € might be. Hence if we
regard this e ball as an uncertainty neighborhood related
to the (numerical or experimental) determination of the
initial condition, the resulting trajectory always has a
positive probability of falling into the basin of the other
attractor. In other words, the probability of escaping
from the basin of attractor A is nonzero for every uncer-
tainty e. Consequently, predicting what will be the final
state of the system becomes more difficult than in the
previously described cases of fractal basins.

Basin riddling was named and described by Alexander
et al. (1992), who also presented a variety of illustrative
examples chosen from discrete maps. Independently,
riddling was also noticed by Pikovsky and Grassberger
(1991) in a study of coupled maps. Several authors (Som-
merer and Ott, 1993b; Ott et al., 1993, 1994; Hayli and
Vidovic, 1994) presented a physical example for which
riddling may occur, namely, a particle moving under the
influence of three forces: friction, an external periodic
force, and a force due to a scalar potential. Moreover,
locally riddled basins were found to occur in coupled
dynamical systems exhibiting synchronization of chaos
(Fujisaka and Yamada, 1983; Pecora and Carroll, 1990),
leading to the so-called attractor bubbling and on-off
intermittency (Ott and Sommerer, 1994). In the latter
context, the occurrence of riddling for coupled nonlinear
electronic circuits was experimentally demonstrated
(Ashwin et al., 1994; Heagy et al., 1994b; Parmenter and
Yu, 1994). Moreover, riddling may occur also in the pa-
rameter space (Lai and Winslow, 1994).

The mathematical properties of the transition from
fractal to riddled basins were explored (Ashwin et al.,
1996, 2002; Ashwin and Breakspear, 2001). The transi-
tion to riddling has been proved to occur due to a vari-
ety of bifurcations (Lai et al., 1996; Kapitaniak et al.,
1998; Yang and Pikovsky, 1999), mainly related to the
transition to synchronization of chaos (Kapitaniak and
Maistrenko, 1998, 1999; Maistrenko et al., 1998, 1999a;
Manscher et al., 1998); while the influence of noise in
riddled basins was investigated (Lai and Grebogi, 1996;
Lai, 2000). The basins are called intermingled when each
basin is riddled with holes belonging to other basins (Al-
exander et al., 1992; Kan, 1994; Hofbauer et al., 2004,
Pereira et al., 2008).

There is a large number of examples of riddling in
dynamical systems of physical and biological interest.
Riddled basins have been described in mechanical sys-
tems, like coupled elastic arches (Woltering and Markus,
1999), and were generally found to occur in spatially ex-
tended dynamical systems, like coupled map lattices
(Ashwin, 2005). Other applications include ecological
population models (Cazelles, 2001a, 2001b; Hofbauer et
al., 2004), learning dynamical systems (Nakajima and
Ueda, 1996), chemical reactions of the Belouzov-
Zhabotinsky type (Woltering and Markus, 2000a), and
models of interdependent open economies (Yousefi et
al., 2000).

Since the mathematical requirements for riddling are
rather restrictive, ensuing works dealt with situations in
which the formal definition is not strictly applicable, but
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with physical consequences similar to riddling. These
situations can be collectively called riddledlike basins. In
this category we can include the influence of symmetry
breaking, or catastrophe of riddling (Lai, 2000; Viana
and Grebogi, 2001); pseudoriddling, or the riddling in
periodic windows (Lai and Grebogi, 1999, 2000; Terry
and Ashwin, 2000; Lai, 2001), riddledlike basins of tran-
sient regime (Woltering and Markus, 2000b), practical
riddling (Blazejczyk-Okolewska et al., 2000; Kapitaniak,
2001), and uncertain basins created by open Hamil-
tonian systems when the exits shrink (Aguirre and San-
juén, 2003); see Sec. IX.B.2 for more information on the
nature and the experimental verification of uncertain ba-
sins.

B. Basic definitions

For many applications it suffices to define an attractor
as a volume-zero subset of the phase space to which all
trajectories originating in a given region (called its basin
of attraction) asymptote (see Sec. II.A). However, the
possibility of exotic sets like riddled basins to occur in
physically relevant dynamical systems requires a more
comprehensive definition of attractor, as that proposed
by Milnor (1985): let H be the phase space in which the
dynamical system F is defined. At first we may think of F
as a discrete-time map, but continuous-time flows can be
also described by F, if Poincaré sections are taken. A
closed subset A e H is said to be an attractor of F if it
satisfies the following conditions:

* A has a basin of attraction, denoted B(A), of positive
Lebesgue measure (volume) in the phase space H.

e A is a compact set with a dense orbit. In the Milnor
definition of attractor, the basin of attraction does
not need to include the whole neighborhood of the
attractor.

If the basin of attraction of A has positive Lebesgue
measure, we call A a weak Milnor attractor (Hasler and
Maistrenko, 1997).

The basin of a chaotic attractor A is riddled if its
complement intersects every disk of the phase space H
in a set of positive Lebesgue measure (Alexander et al.,
1992). Roughly speaking, the term “disk” has the mean-
ing of phase-space volumes of all sizes. When the basin
of attraction of A is riddled with holes belonging to the
basin of another attractor B, we can say that, if a ran-
domly chosen point has a positive probability of being in
B(A), then it also has positive probability of not being in
B(A). In the latter case, the point belongs to the other
basin of attraction B(B).

This measure-theoretical definition implies the follow-
ing set of conditions under which riddled basins occur in
a dynamical system (Ott ef al., 1993):

(1) There is an invariant subspace M € H whose dimen-
sion d,, is less than that of the phase space dp.

(2) The dynamics on the invariant subspace M has a
chaotic attractor A.
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(3) There is another attractor B, chaotic or not, and not
belonging to the invariant subspace M.

(4) The attractor A is transversely stable in the phase
space H, i.e., for typical orbits on the attractor the
Lyapunov exponents for infinitesimal perturbations
along the directions transverse to the invariant sub-
space M are all negative.

(5) A set of unstable periodic orbits embedded in the
chaotic attractor A is transversely unstable. As a
consequence, at least one of the Lyapunov expo-
nents along directions transverse to M, although
negative for almost any orbit of A, experiences posi-
tive finite-time fluctuations.

Condition 1 is a consequence of the system having
some symmetry which enables it to display an invariant
subspace M, in the sense that, once an initial condition is
exactly placed on M, the resulting trajectory cannot es-
cape from M for further times. To have riddling, it is
necessary to have a dense set of points with zero Le-
besgue measure in the attractor lying in the invariant
subspace which are transversely unstable, thus it is nec-
essary that this attractor be chaotic (condition 2). The
existence of another attractor (condition 3) is necessary
for the basin of an attractor to be riddled with holes
belonging to the basin of this second attractor. In the
special case of intermingled basins, there must be at
least two attractors lying in different invariant sub-
spaces, and the basin of each attractor is pierced with
holes containing initial conditions belonging to the basin
of the other attractor (Alexander et al., 1992; Kan, 1994;
Hofbauer et al., 2004; Pereira et al., 2008).

If the transverse Lyapunov exponents of typical orbits
lying in the invariant subspace M are all negative (con-
dition 4), then A is an attractor in the weak Milnor sense,
and its basin has positive Lebesgue measure. Condition
5 states that, while the invariant subspace M is still trans-
versely stable, there will be trajectories on the attractor
A that are transversely unstable. Condition 4 can be
quantitatively checked by computing the maximal
Lyapunov exponent along a transversal direction to M.
Verifying condition 5, on the other hand, would require
the determination of transversely unstable periodic or-
bits embedded in the attractor A. This is feasible only for
a few dynamical systems (Lai et al., 1996; Viana and Gre-
bogi, 2001; Pereira et al, 2007). In most situations we
resort to other ways to verify the existence of finite-time
fluctuations by computing the finite-time Lyapunov ex-
ponents.

In order to discuss conditions 4 and 5 in a quantitative
setting, it is useful to define the finite-time Lyapunov
exponents for a dy-dimensional map F. Let n be a posi-
tive integer and DF"(x,) be the Jacobian matrix of the
n-times iterated map, with entries evaluated at an initial
condition xye A. Suppose that the singular values of
DF"(x) are ordered: &(xg,n) = &(xg,n) =
BgdH(xo,n). Then, the kth time-n Lyapunov exponent
for the point x;, is defined as (Viana and Grebogi, 2001)
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~ 1
Me(xg3n) = ; In||DF"(xo) - v, (23)

where k=1,2,...,dy and v, is the singular vector related
to &(xg,n). The infinite-time limit of the above expres-
sion is the usual Lyapunov exponent \j

Although the

\i(x,n) generally takes on a different value, depending
on the chosen point, its infinite-time limit takes on the
same value for almost all x, with respect to the natural
ergodic measure of the invariant set A.

If the attractor in A is chaotic (or hyperchaotic, in
general), there are d,; infinite-time Lyapunov exponents
related to directions in the invariant subspace M, of
which many can be positive; and dy—d,, Lyapunov ex-
ponents along directions transverse to M. For the sake of
determining the transverse stability of M it suffices to
consider the largest one, A ;. Hence condition 4 implies
that A | takes on a negative value:

=1im,, ..\, (Xg, 7). time-n  exponent

A, = lim X, (xo,n) < 0. (24)

n—o

The possible existence of an infinite number of trans-
versely unstable orbits embedded in a transversely
stable attractor implies the fluctuation of the finite-time

largest transverse exponent, \,(xg,n). Consider the

probability distribution P(\ 1 (xg,n)), from which we can
obtain the average value of this exponent (assuming
proper normalization):

(Ny(n) = f N (M)P(NL(m)dN _(n). (25)

When n is large enough the form of this distribution
can be written as (Kostelich et al., 1997)

P(\_(n),n) = \/%Ef”e*"‘?@, (26)

where the function G(\) has the following convexity
properties:
GA)=G'(N)=0, G"(\;)>0. (27)

Expanding G(\) in the vicinity of \ |, the first nonvan-

ishing term is the quadratic one, such that P(\ , (n)) re-
duces to a Gaussian distribution for n>1:

P~ /M exp(— M[Xl(m _ )\i]2> ,
2 2

such that, on substituting into Eq. (25) the result is

(28)

(NL(x0.n)) =N . (29)

Since the standard deviation in the Gaussian approxima-
tion approaches zero with n~'2, when n>1, we can write
the corresponding variance as
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o? ={[\,(n) = (N )PP) =2DIn, (30)

such that the diffusion coefficient D=1/2G"(\ |) is inde-
pendent of n.

In terms of the distribution of finite-time transversal
exponents, condition 5 for riddling implies that there is a

positive fraction of positive values of X, (n) for initial
conditions x, randomly chosen in the attractor A, i.e.,

B(n) = f ’ P(\ (n))dx, (n) > 0. (31)

0
Using Eq. (26), we find (Viana and Grebogi, 2001)

¢(n)=%+%erf(xﬂ/%). (32)

If the distribution of finite-time exponents has half of
their values with positive sign, i.e., ¢(n)=1/2, then the
infinite-time exponent N\, vanishes, and the invariant
subspace M loses transverse stability (a blowout bifurca-
tion) (Ott and Sommerer, 1994; Yang, 2000).

C. A simple example

In order to illustrate the concept of a riddled basin, we
begin with a simple example which is paradigmatic, for it
exhibits the general aspects involved in the mathemati-
cal definition of riddling. We consider a noninvertible
two-dimensional map F (Lai et al., 1996),

Xn+1 = 4xn(1 - xn) 5 (33)

_ )2
Ve =pe =Xy 4 y3 (34)

where x €[0,1], —o<y<+o, and p, y are positive pa-
rameters.

Since there are only odd powers of y in Eq. (34) we
have a y——y symmetry, such that the condition y=0
defines an invariant subspace M (condition 1) embedded
in the two-dimensional phase space. In this case y is the
only transverse direction to M. The x dynamics is known
to be chaotic, presenting a countable infinite number of
unstable periodic orbits and a dense orbit on the attrac-
tor A (condition 2), from which we select y=3/4 as an
unstable fixed point. The cubic term in the transverse
dynamics implies that, if |y, | >1, then |y,,;| >|y,|>1 for
all further iterations of Eq. (34) such that once a trajec-
tory reaches the line |y|=1 its y values asymptote to in-
finity. We regard |y|= as the second attractor B outside
the invariant subspace (condition 3).

The map (33) and (34) is simple enough to make pos-
sible an analysis of the onset of riddling in terms of a
bifurcation of the unstable fixed point xp:(x=3/4,y=0)
of the attractor A, as p is varied through a critical value
p. (Lai et al., 1996). The eigenvalues of the Jacobian
matrix, evaluated at xp, are §=-2 and ¢, =p, corre-
sponding to eigendirections parallel and transverse to
the invariant subspace y=0, respectively. It follows that
Xp, while always unstable along the invariant subspace,
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FIG. 17. Riddling bifurcation in the map of Egs. (33) and (34).
(a) Basic structure; (b) bifurcation diagram. From Viana and
Grebogi, 2001.

is transversely stable (unstable) for p <1 (p>1). In other
words, Xp can be a saddle or a repeller, if p is, respec-
tively, less than or greater than p=p, =1.

In addition, the y dynamics has also, for p <1, a pair
of fixed points r,=(x=3/4,y,=+ \Jﬁ), and located off
the invariant subspace [Fig. 17(a)]. The eigenvalues of
the Jacobian matrix of the map when evaluated at these
points are §=-2 and &, =3-2p; they are always repel-
lers. As a consequence, there is a saddle-repeller bifur-
cation at p.=1: for p approaching p. from below, the
saddle xp and the pair of repellers r, coalesce and, for p
greater than p., there remains only a repeller in the in-
variant subspace [Fig. 17(b)].
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FIG. 18. Schematic showing the formation of tongues an-
chored at the invariant subspace when p>1. From Viana,
Pinto, et al., 2003.

However, since the x dynamics is noninvertible, not
only the point xp but all its infinite preimages become
transversely unstable at the bifurcation p=p., forming
an open and dense set of periodic points with Lebesgue
measure zero (condition 5). The complement of this set
is a Cantor-like closed and dense set of points which
remain transversely stable, and carrying the whole Le-
besgue measure of the [0,1] interval. Since there is a
dense chaotic orbit in A, a randomly chosen trajectory
point will be transversely stable with unit probability
(condition 4). The fixed points r, belong to the boundary
separating the basins of the attractor in the invariant
subspace M=[0,1] and the basin of the attractor at in-
finity. The boundary is a fractal curve for p<p. and
there is no riddling at all. At the bifurcation point, how-
ever, this basin boundary collides with the attractor, the
same occurring with all the countable infinite number of
preimages of xp. The net result is the creation of an
open dense set of extremely narrow tongues anchored at
those preimages (Fig. 18).

To understand why these tongues are formed, we can
consider the open set |y|>1 intersecting the transverse
unstable subspace of xp. One of its preimages ap-
proaches xp asymptotically, and these preimages form a
subset of the tongue anchored at xp. Once a trajectory
enters such a tongue it rapidly escapes to infinity, such
that the open dense set of tongues belongs to the basin
of the attractor at infinity. Hence the basin of A is
riddled with the tongues belonging to the basin of the
infinity for p=p.=1.

This can be inferred from Fig. 19(a), obtained for p
=1.40, and where the basin of infinity is represented by
the black dots, which give a stalactitelike structure
(Dronov and Ott, 2000). The basin of the chaotic attrac-
tor is densely filled with tongues of the other basin, but
they are so narrow that they are barely seen due to finite
graphic resolution. Figure 19(b) is a magnification near
the fixed point xp, showing the self-similarity of the ba-
sin structure. The shape of the tongues is ultimately de-
termined by the nonlinearity of the y dynamics. (Lai et
al., 1996) determined the boundaries of the main tongue
at y=3/4 using a continuous-time approximation of the
map equations near Xp and obtaining
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FIG. 19. Phase portraits for the map of Eqs. (33) and (34) for
p=1.40. (a) Gray (black) dots belong to the basin of the chaotic
(infinity) attractor. (b) Magnification of a region near the fixed
point Xp.

y (p-1)
x—x=| —m— 35

X (\'(p—1)+y2) ’ )
as long as p=p.=1. In this case, the invariant chaotic set
A can be considered an attractor only in the weak Mil-
nor sense, since any neighborhood of A intersects, with
positive Lebesgue measure, both its own basin and the
basin of the infinity attractor.

It is also possible to verify the conditions 4 and 5 for
riddling by analyzing the Lyapunov exponents along the
directions parallel and transverse to the invariant sub-
space. Using Eq. (23) it follows that the time-n expo-
nents along the parallel and perpendicular directions
are, respectively,

n-1

~ 1
Ni(xg,y0=0,n) = . > Inj4(1 -2x,,)
m=0

; (36)

Sn—l 3 2
)\L(xo,yO:O,n):lnp—;E (xm—Z) =Inp-Z(n).
m=0

(37)

On the other hand, for typical chaotic trajectories in the
attractor the natural invariant density on the attractor is
p(x)=1/ayx(1-x), and the infinite-time counterparts of
Egs. (36) and (37) do not depend on the initial condition
and thus can be obtained from Birkhoff’s ergodic theo-
rem as

)\H = lim ):H(X(],yo = 0,11) =In 2, (38)
n—o

Ny = lim X, (xg.y9=0,n) =Inp - {3, (39)
n—oo

such that the chaotic attractor A loses transverse stabil-
ity when N\, crosses zero, which occurs for p=p*
=exp(15/16)=2.553 58....

Hence for p.=1<p<p* we have A | <0 for almost all
initial conditions belonging to A, verifying condition 4
for riddling. On the other hand, the finite-time trans-
verse exponent Eq. (37) can be positive even if its
infinite-time counterpart is negative, provided Inp
>7(n) >0, which can occur for part of the initial condi-
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FIG. 20. Probability distributions for the transversal time-50
Lyapunov exponent and some values of the parameter p. From
Viana, Pinto, et al., 2003.

tions (xy,y,=0) chosen in the invariant subspace, since,
depending on the value of n, the summation in Z may
assume different values as the trajectory approaches pe-
riodic orbits in A which are transversely stable or un-
stable.

We can obtain a numerical approximation for the
probability distribution of the finite-time transverse ex-

ponents, P(\ , (n)), by considering a large number of tra-
jectories of length n originating from initial conditions
randomly chosen in the chaotic attractor A. In Fig. 20 we
show distributions of time-50 exponents for values of p
before and after the bifurcation. Their shapes are indeed
Gaussian-like, and the distributions drift toward positive
values of \ |, as p increases past its critical value p.=1.
The variance of the average, with respect to a sample of
size n, is a constant value, about 0.035 for all p values,
indicating that the Gaussian nature of the distribution

P(X\,) is not significantly altered as p is varied. Since the
variance of the total population is the variance of the
average multiplied by the sample size, the total variance
of the time-50 exponents is 1.75 for the probability dis-
tributions depicted in Fig. 20, and Eq. (30) gives a diffu-
sion coefficient of D=0.875.

We can also evaluate the fraction (31) of positive
transverse time-n exponents, shown in Fig. 21 as a func-
tion of p. For p>1 it is nonzero (condition 5) and in-
creases monotonically for p>1, saturating at ¢=1 for
large p. At the blowout bifurcation point p* we have ¢
=1/2, for exactly half of the time-n exponents are posi-
tive. After this point the invariant subspace loses trans-
verse stability, and the chaotic invariant set A is no
longer an attractor, even in the weak Milnor sense.
There is no longer riddling, since A becomes a nonat-
tracting chaotic saddle. Trajectories starting off but close
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fraction of positive exponents

FIG. 21. Fraction of positive time-50 transversal Lyapunov ex-
ponents as a function of p, for the same parameters as in the
previous figures. From Viana, Pinto, et al., 2003.

to this chaotic saddle will eventually diverge with time
from the saddle, according to an exponential distribu-
tion of escape times. This fact can be exploited in defin-
ing exit or escape basins (Woltering and Markus, 1999).

D. Scaling relations for riddling

The riddling property can be illustrated by a numeri-
cal experiment (Ott et al., 1993, 1994) Consider a phase
portrait just after the riddling bifurcation (see, e.g., Fig.
19), focusing on a horizontal line at y=¢, and evaluate
the fraction V, of its length that belongs to the basin of
the chaotic attractor A. If the basin of A is riddled with
tongues belonging to the basin of infinity, it follows that
for any distance ¢, no matter how small, there is always
a nonzero value of V. Since the tongues are anchored at
the invariant subspace y=0, this fraction tends to zero as
€—0 (in the limit it is a Lebesgue measure zero set).
Accordingly, the fraction of length belonging to the ba-
sin of the infinity is P,=1-V,, and it is expected to scale
with € as a power law,

P(6) ~ [€]", (40)

where 7>0 is a characteristic scaling exponent. Figure
22 shows the results of Suetani and Horita (2001) for a
parameter value p >p,, showing that such a scaling law
holds for P,. Ott and co-workers have developed a sto-
chastic model for explaining the fluctuations of the
finite-time exponents, which predicts for this scaling ex-
ponent the following value (Ott et al., 1993, 1994):
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FIG. 22. Variation of the fraction 1V, with the distance from
the invariant subspace when p=2.092. The solid line is a linear
fit with slope 7=0.292. From Suetani and Horita, 2001.

n=|\.|/D, (41)

where D is the diffusion coefficient obtained through the
variance of the finite-time transversal Lyapunov expo-
nent fluctuations.

The scaling law (40) conveys information on the mea-
sure of the basins of both attractors, but not about the
arbitrarily fine-scaled riddling (Ott et al., 1993). In fact,
the riddled basin of the chaotic attractor A is a fat frac-
tal, i.e., a fractal set with positive Lebesgue measure,
whose fine-scale structure can be characterized by the
so-called uncertainty exponent (Grebogi, McDonald, et
al., 1983, 1985; McDonald et al., 1985); see Sec. III.A for
more information on fat fractals. Consider again the line
y=¢ and choose randomly an initial condition x, on that
line. Now choose randomly another initial condition x
with uniform probability within an interval of length 2e
and centered at x(. If both points belong to different
basins, they can be referred to as € uncertain.

The fraction of € uncertain points, denoted by (p), is
the probability of making a mistake when attempting to
predict which basin the initial condition (x(,y,)=+¢ is in,
given a measurement uncertainty €, and is expected to
scale with the latter as

(p) ~ €, (42)

where ¢=0 depends on both x and €. It should be men-
tioned that (p) and ¢ are the analogs of the uncertain
fraction f and uncertainty exponent «, respectively, as
defined in Sec. IV.C. The stochastic model of Ott and
co-workers give the following expression in terms of the
infinite-time Lyapunov exponents (Ott ef al., 1993, 1994):

Figure 23 presents the results of Suetani and Horita
(2001) for (p) € for a given ¢ and several points on the
invariant subspace, their results supporting the scaling
relation (42) with an exponent ¢ given by Eq. (43).

E. A physical example

The conditions for occurrence of riddling can be ful-
filled by chaotic dynamical systems of physical interest.



Aguirre, Viana, and Sanjuan: Fractal structures in nonlinear dynamics 371

107

107
107 +

108}

(1 — vz, €))

10710 2% >
o

162 »

10°% 107 10 10° 10* 107 107
€

FIG. 23. Variation of the uncertain fraction (where 1—v, of the
figure is the same as (p) of the text) with e for ¢{=0.01 and
various values of x=sin(w/15), sin(w/31), sin(57/63), and
sin(97/127), corresponding to periodic points with periods 4, 5,
6, and 7, respectively. The dotted lines are linear fits with slope
given by Eq. (42) and #=0.292. From Suetani and Horita, 2001.

One example (Sommerer and Ott, 1993b; Ott et al,
1993, 1994; Sommerer, 1995) is a point particle of unit
mass under the influence of a two-dimensional potential
V(x,y), viscous friction, and a time-periodic external
forcing, whose equation of motion is

P+ v+ VV(r) = f; sin(w0)X, (44)
where
Vix,y)=(1- X2+ (x + )Z)y2 (45)

with v, X, fy, and w, respectively, the dissipation coeffi-
cient, a characteristic scale length, and the amplitude
and frequency of the driving force.

The phase space H of this system is five dimensional,
with coordinates x, vy, y, v, and =t (27), in terms of
which the equation of motion can be written as the au-
tonomous vector field,

X=v,, (46)
U, =— o, +4x(1 —x?) — y> + fy sin 6, (47)
y =0y, (48)
Uy =~ +2y(x +X), (49)
0= . (50)

Due to the symmetry V(x,y)=V(x,—y) the particle
dynamics is invariant with respect to the y—-y and
vy,—-v, transformations in H. Thus the constraints y
=0 and v,=0 define a three-dimensional invariant sub-
space M € H in such a way that a trajectory with an ini-
tial condition [x(0),y(0)=0,v,(0),v,(0)=0, 6(0)] belong-
ing to M will remain there forever (condition 1).
Restricted to this invariant subspace, the system state is
described by the coordinates (x,v,, ), whose dynamics
is governed by the equations of the forced double-well
Duffing oscillator:

X =y, (51)
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FIG. 24. Transverse Lyapunov exponent as a function of the
control parameter X, where &, of the figure is the same as \ |
of the text. From Ott et al., 1993.

vx:—vux+4x(1—x2)+f0 sin 0, (52)

0=w, (53)

which has, for conveniently chosen values of its param-
eters, like v=0.05, f,=2.3, and w=3.5, a chaotic attractor
A in the invariant subspace M (condition 2). There is
another attractor at infinity (jx|=,|v, | =) for the same
set of parameters (condition 3).

The verification of the remaining conditions for rid-
dling demands the computation of Lyapunov exponents
in directions transverse to M. There are two such expo-
nents, the largest one denoted A\, and which is com-
puted by taking a variation of Egs. (48) and (49) and
setting y=v,=0, which results in

Sy =dv,, (54)

v, =—vév, - 2[x(1) + £]dy, (55)

where x(¢) is computed from a trajectory in the invariant
subspace M, obtained by solving Egs. (51)-(53), and
which can be regarded as a driving term for Eq. (55).
The largest finite-time transverse exponent, computed
for the set of initial conditions xy={x(0),y(0)
=0,v,(0),v,(0)=0,60(0)}, is then given by

- 1

N (xg,1) = B ln{%], (56)
where

&) =\[oy() >+ [0, (57)

is the magnitude of a transverse displacement to the in-
variant subspace.

The infinite-time limit of Eq. (56), \ |, determines the
transverse stability of the Duffing attractor belonging to
M. Figure 24 depicts its variation with the system param-
eter x, showing that A, takes on negative values for x
>x,.=1.7887... (condition 4). Moreover, if the basin of
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FIG. 25. Two-dimensional cross section of the phase space for
the mechanical system given by Egs. (46)—(50) and x=1.9>x,.
White (black) dots belong to the basin of the chaotic attractor
(attractor at infinity). From Ott et al., 1993.

the Duffing attractor A is riddled by the basin of the
attractor at infinity, condition 5 implies that there are

negative as well as positive fluctuations of X\, (1), in such
a way that there is a nonzero fraction of positive finite-
time Lyapunov exponents for x>x,.

A glimpse of basin riddling in this system can be ob-
tained from Fig. 25, where a two-dimensional cross sec-
tion v,=6=0 of the invariant subspace M shows points
(represented by black dots) belonging to the basin of the
infinity attractor A, with the blank regions in between
representing points of the basin of the chaotic Duffing
attractor. Both regions appear to be densely interwoven,
which is confirmed by successive magnifications showing
that any small region containing a blank area also con-
tain black dots. The basin of infinity, however, is not
riddled, since magnifications of a number of regions con-
taining black points do not present blank areas (Ott et
al., 1993).

We can perform the same numerical experiment as in
the previous section, considering a horizontal line at y
={ drawn in Fig. 25 and evaluating the fraction P (1
—V,) of the length of that line lying in the basin of in-
finity, and expected to satisfy the scaling (40) with the
distance ¢ to the invariant subspace, which intersects the
plane depicted by Fig. 25 at the line y=0. Figure 26(a)
shows the results of Ott et al. (1993), where the solid line
represents a least squares fit with exponent 7
=0.5996+0.0064, in good agreement with the theoretical
prediction given by Eq. (41); see Fig. 10 of Ott et al.,
(1994).

Figure 26(b) shows the result of the second numerical
experiment, which consisted of picking at random points
on the y=+¢ line, considering points in intervals of length
2€ each and centered at such points, and evaluating the
fraction (p) of points which are e uncertain, i.e., the
points within that interval which asymptote to different
attractors. This fraction is nearly constant even though e
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FIG. 26. Scaling laws for riddled basins. (a) Fraction of the
length of a line y=¢ which belongs to the basin of the infinity
attractor, as a function of €, for x=1.85; where y, of the figure
is the same as ¢ of the text. The solid line is a least squares fit.
(b) Fraction of e uncertain points vs €, for ¥=1.90. From Ott et
al., 1993.

is varied over no less than eight orders of magnitude.
The solid line is a least squares fit with exponent ¢
=0.0175+0.0038, its smallness due to its quadratic de-
pendence on \; which is itself very small near the tran-
sition to a riddled basin (which occurs at x=x,.=1.7887).

The theoretical prediction, Eq. (43), gives for this ex-
ponent the value ¢=0.0093+0.0012, the discrepancy
with the numerical value being due to the use of a value
X¥=1.9 which is far from x.. A nearer value, on the other
hand, would give values for ¢ so small that a least
squares fit would require exceptionally good statistics.
The practical consequence of a near-zero exponent is
that virtually no improvement in the precision of fixing
the initial condition would diminish the probability of
making a mistake when determining to which attractor
that initial condition will asymptote to.

Unlike the simple example presented in the previous
section, however, for this system we do not know in ad-
vance the bifurcation which actually leads to riddling,
but presumably this is due to the loss of transverse sta-
bility of some low-period orbit embedded in the chaotic
attractor. Moreover, this is typical of systems of physical
interest. Therefore we have to use numerical diagnostics
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for characterization of riddling (in particular, the verifi-
cation of condition 5). We have described two of them
here: (i) the existence of the scaling law for the fraction
of the basin of the second attractor B when it riddles the
basin of the chaotic attractor A; (ii) the computation of
the finite-time Lyapunov exponents along the transver-
sal directions in order to verify the existence of positive
values. Both diagnostics, however, have their shortcom-
ings.

As pointed out by Terry and Ashwin (2000), the scal-
ing law (40) does not necessarily imply riddling, since
any map with an unstable fixed point P on an invariant
subspace can display the same scaling if there are trajec-
tories forming separatrices that divide the local unstable
subspace of P into different regions according to
whether points are asymptotic to an attractor inside or
outside the invariant subspace. On the other hand, the

mere existence of positive fluctuations of N0 may also
occur in other contexts, like the proximity of a near tan-
gency of the stable and unstable subspaces of a periodic
saddle orbit (Dawson et al., 1994). We conclude that the
characterization of riddling, in practice, relies on the
combination of a number of numerical diagnostics as
well as some knowledge of the periodic orbit structure
of the system.

F. Riddling and synchronization of chaos

One of the physical situations where riddled basins
play a key role in the understanding of dynamical prop-
erties is the synchronization of chaotic trajectories. For
this reason, this issue deserves a separate discussion,
which nonetheless relies heavily upon that has been de-
veloped so far for general dynamical systems.

1. Synchronization of chaos

Although a chaotic system exhibits extreme sensitivity
to initial conditions, two or more coupled identical sys-
tems can synchronize their trajectories so that they have
the same values of the dynamical variables (Fujisaka and
Yamada, 1983; Pecora and Carroll, 1990). Amplitude
synchronization has been observed both numerically
and experimentally in a variety of systems of physical
and biological interest, such as nonlinear circuits, lasers,
heart cells, etc. (Pecora et al., 1997; Boccaletti et al.,
2002; Pikovsky et al., 2003).

Consider, for example, N identical coupled systems
such as a chain of continuous-time oscillators, each of
them characterized by the D-dimensional state vector
x(s),i=1,2,...,N. They are completely synchronized if

xV(@)=xP() = - =xN(1) = (1), (58)

representing a set of N—1 equations defining a synchro-
nization subspace S, which turns out to be a
D-dimensional subset of the full ND-dimensional phase
space. The existence of the synchronization subspace de-
pends on the coupling properties of the system. The os-
cillator chain can be written in the form
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dxV/dt=F(x?) + X g;H (x"), (59)
J

where F is the vector field representing the uncoupled
and identical oscillators, H, is a coupling function, and
g;j i1s a coupling matrix. Substituting the synchronized
state (58) into Eq. (59), it results that it is a solution of
the dynamical equations provided X;g;=0 for all i

=1,2,...,N. The same condition holds for a discrete-
time coupled map lattice of the form
X = F(x)) + 2 gH(x]). (60)
j

Hence if an initial condition is placed on the synchroni-
zation subspace S, the resulting trajectory always lies on
S for all further times, so that S is also an invariant
subspace. Even if the synchronization subspace S does
exist, this fact does not necessarily imply that the system
will eventually achieve this synchronized state, since S
must also be stable under infinitesimal perturbations in
directions transverse to it.

When a trajectory starts off near the synchronization
subspace it may undergo a variety of behaviors: (i) It can
asymptote to S and remain there forever; (ii) it can stay
for some time in the vicinity of S and suddenly be
pushed away from it, then return after some time to its
vicinity, and so on (intermittent synchronization); (iii) it
can wander through the accessible phase-space region
without approaching S, i.e., permanent nonsynchronized
behavior; or (iv) it can asymptote to another stationary
state like a periodic or chaotic attractor, or even diverge
to infinity. In order to investigate which behavior the
system will follow we pursue first a local approach,
which consists in making a linear stability analysis of the
synchronization subspace. Second, we must go beyond
the linear approximation to discover what the dynamics
can be for large times.

Consider first a simple example from Hasler and
Maistrenko (1997) consisting of N=2 coupled one-
dimensional (D=1) maps,

Xy = Tlx,) + g(yn —x,). (61)

Ys1 = T(yp) + §<xn — ), (62)

where T(x)=1-2|x—1/2| is a tent map, which is a non-
invertible transformation of [0, 1] onto itself, and ¢ is the
coupling strength. A cautionary remark is necessary
here: for ¢ #0 the coupled system does not leave the
unit square [0,1]X[0,1] invariant, hence we have to ex-
tend the domain of Egs. (61) and (62) to the real axis, so
as to omit hereafter the restrictions x=0 and x=<1.
The synchronized state x,,=y, is a possible solution of
Egs. (61) and (62) and thus defines a synchronization
subspace S represented by the 45° diagonal line segment
in the two-dimensional phase space. If we take an initial
condition on the diagonal line x=y but outside the inter-
val defining S, the resulting trajectory will asymptote to
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infinity. Hence although the coupled map leaves the
whole diagonal line invariant, we restrict the meaning of
synchronized trajectories to those inside the interval S.
The uncoupled maps (¢=0) have positive Lyapunov ex-
ponent, namely, A\Y=In2>0. Once a trajectory reaches
the synchronization subspace S, its dynamics is gov-
erned by the tent map, which means that there can exist
synchronized chaotic trajectories in S. Whether or not
an initial condition (x,,y,) will produce a trajectory
which asymptotes to S and eventually becomes synchro-
nized depends on the transversal stability of S.

Thanks to the simplicity of the tent map (its slope is
constant for almost all points of [0, 1], except for a Le-
besgue measure zero set), we can analyze the transversal
stability of the synchronization subspace by explicitly
computing the Jacobian matrix of the coupled map sys-
tem (61) and (62) whose eigenvalues are

2 ifx<1/2, 2-s ifx<1/2,
6= -2 ifx>1/2, €= “2-¢ ifx>12
(63)

corresponding to the directions parallel and transverse
to the synchronization subspace, respectively.

2. Local and global riddling

Now we turn to the relation between synchronization
of chaos and riddled basins. The fact that the synchroni-
zation subspace, if it exists, is invariant under the system
dynamics already fulfills condition 1 for riddling. More-
over, if the coupled identical systems undergo chaotic
motion, their synchronized state is also chaotic, i.e.,
there is a chaotic attractor A embedded in the synchro-
nization subspace S (condition 2). For condition 3 be
satisfied there must exist another attractor B off the syn-
chronized subspace (global riddling). There are many
situations, however, for which there is no such attractor,
but the trajectories off S spend an arbitrarily large time
wandering through the available phase-space region be-
fore returning to S (local riddling). In the latter case we
think of this nonsynchronized transient regime as a sec-
ond possible behavior and assign to it the properties for-
merly possessed by the second attractor B, namely, con-
ditions 4 and 5 of riddling. Local riddling has been
investigated with respect to coupled chaotic systems
(Kapitaniak and Maistrenko, 1998, 1999; Kapitaniak et
al., 1998; Maistrenko et al., 1998, 1999a, 1999b; Man-
scher et al., 1998; Kim and Lim, 2001).

In the case of two coupled tent maps, Egs. (61) and
(62), the transverse stability can be inferred from the
transverse Lyapunov exponent, which using Eq. (63) is
given by

n-1 1
N =lim > Inl¢,|= f p(x)n[&, |dx, (64)

n—=%° m=0 0

where we have used Birkhoff’s ergodic theorem. The
invariant natural density of the skew tent map is uniform
(p=1) so that
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A, =—31Inj4-¢?, (65)

which, being independent of x and y, should also hold
for the finite-time version. Hence in this case the prob-
ability distribution of the finite-time transversal expo-
nents is a singular one,

PNy (n)) = 8N, (n) =\ ). (66)

In order to verify condition 4 for riddling, we investi-
gate which values of the coupling coefficient (€) the
transverse Lyapunov exponent is negative. From Eq.
(65) it follows that this is true provided e belongs to
either one of the two intervals rl(e)E[\s“g,\S] and r,(e€)
= [—\e‘g,—\"@]. Now we turn to condition 5, which implies
that a set of unstable periodic orbits immersed in the
chaotic synchronized state loses transversal stability,
which can be analyzed by considering first the fixed
points of the coupled maps (61) and (62), which are 0
=(0,0) and P=(2/3,2/3). From Eq. (63) the transverse
eigenvalues of the Jacobian matrix evaluated at these
points are ¢, (0)=2-€ and ¢, (P)=-2-€.

The fixed point O will be transversely stable if
|€,(0)| <1, which occurs for 1< e<3, which contains the
interval ri(e) of the previous condition. Similarly, P is
transversely stable if |, (P)|<1, which implies -3<e€
< -1, also containing the second interval r,(e). Regard-
less of e being positive or negative, if condition 4 holds,
at least one of the fixed points is transversely unstable,
and so are all its preimages, since the map is noninvert-
ible. The existence of a denumerable infinite number of
periodic points which are transversely unstable verifies
condition 5 for riddling provided e e {r;(€) Ur,(e)}.

The set of initial conditions in R? that asymptotes to
the chaotic attractor A is called its basin of synchroniza-
tion. Since A | <0 (condition 4), almost all synchronized
trajectories are transversely attracting, and A is a weak
Milnor attractor (Hasler and Maistrenko, 1997; Tan et
al., 2003). The open dense set of transversely unstable
points in A (condition 5) makes the basin of synchroni-
zation at least locally riddled: there is a neighborhood U
of A such that in any neighborhood V of any point in A
there is a set of points in VN U of positive Lebesgue
measure which leave U in a finite time. In other words,
starting from any point near the chaotic synchronized
trajectory in S, there is a nonzero probability that a tra-
jectory is pushed away from S. A schematic picture is
provided by the top panel of Fig. 27, where the unit
square [0,1]x[0,1] is represented with the correspond-
ing synchronization subspace depicted as the bold seg-
ment lying on the dotted line. The sets U and V have a
nonempty intersection, which contains another set with
points generating orbits that eventually leave U, one of
them represented by a curved arrow.

The basic mechanism by which those nonsynchro-
nized trajectories are repelled from S is the same as in
the two-dimensional map previously discussed. Local
riddling in this case implies that there is a neighborhood
U of S and a set V of tongues anchored at the trans-
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FIG. 27. Locally riddled attractor for two coupled tent maps.
Top: Scheme showing the sets involved in the definition of the
local riddling (see text). Bottom: Tonguelike structures ema-
nating from a transversely unstable orbit embedded in the syn-
chronization subspace S. Trajectories close to S are ejected
away from S, after entering such tongues. From Hasler and
Maistrenko, 1997.

versely unstable points in the synchronization subspace
(see the bottom panel in Fig. 27). Any trajectory off but
close to S that falls into V' can leave V only through the
boundary of U (Hasler and Maistrenko, 1997). Since the
preimages of the transversely unstable points are dense
in S, there is always a nonzero probability that the tra-
jectory will be repelled from S through one of these
tongues.

The fate of the trajectories off the synchronization
subspace cannot be told only from a local stability analy-
sis of periodic orbits in S and thus requires a global
analysis of the transverse dynamics. If there are attrac-
tors other than the synchronized one, a trajectory which
starts from an initial condition off but close to S will stay
in its vicinity for a while, yielding a nearly synchronized
trajectory, until it enters a tongue and is repelled from S,
which generates a bursting nonsynchronized trajectory.
If the basin of synchronization is locally riddled, such
trajectories leaving the neighborhood of S eventually re-
turn to it, generating another “laminar” region of syn-
chronization and so on. This intermittent switching be-
tween synchronized and nonsynchronized behavior has
been observed in a variety of other systems (Viana, Gre-
bogi, et al., 2003, 2005).
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By contrast, suppose that in the coupled system there
is a second attractor B, such that the basin of the syn-
chronized attractor is riddled with tongues belonging to
the basin of B, or global riddling. Tan et al. (2003) per-
formed a global analysis of two coupled skew-tent maps,
for which our Egs. (61) and (62) follow as particular
cases [note that the coupling constant in Tan et al. (2003)
differs from ours by an unessential factor of 2]. For the
latter, the results of Tan et al. (2003) imply that the cou-
pling parameter values corresponding to locally riddled
basins are the isolated values e=2 and e=-2. Moreover,
if we consider the attractor at infinity as the attractor B
off the invariant subspace, it is possible to observe glo-
bal riddling. Accordingly, the coupling parameter inter-
val for which global riddling takes place was found to be
(i) e e ri(€) and € #2, and (ii) € € r,(¢) and & # -2, which
is a dense set of values of &, thus structurally stable with
respect to small parameter variations due to noise, for
example.

G. Riddledlike basins

The mathematical conditions for riddling, as intro-
duced in Sec. VIIL.B, are difficult to verify directly in
dynamical systems of physical interest. Conditions 1-3
are the easiest to fulfill, whereas 4 and 5 depend on the
knowledge of the periodic orbit which becomes trans-
versely unstable, while the invariant subspace itself re-
mains transversely stable. This analysis is feasible only in
low-dimensional examples, as we have seen. Normally,
when faced with dynamical systems of higher dimension-
ality, one has to resort to other numerical diagnostics of
riddling, like finite-time transversal Lyapunov exponents
and scaling relations. In general, we can think of any of
the five conditions to be broken in some situation, and
many alternative concepts have appeared in recent
years, which can be gathered together in the general cat-
egory of riddledlike basins.

1. Catastrophe of riddling

Condition 1 for riddling requires the existence of an
invariant subspace of the dynamical system. If this sub-
space is a geometrical consequence of a given symmetry
of the system, once this symmetry is broken by some
means—as extrinsic noise, for example—there is no
longer an invariant subspace and we cannot have,
strictly speaking, riddled basins. Lai and Grebogi stud-
ied the loss of the riddling property as the dynamical
system loses its invariant subspace, calling it the catas-
trophe of riddling (Lai and Grebogi, 2000). In this case, a
symmetry-breaking perturbation can replace riddled ba-
sins by fractal ones. The mathematical reason is the
presence of open sets following the shift of the periodic
orbit locations due to the symmetry-breaking perturba-
tion. From the physical point of view, however, many
consequences of riddling can still be observed. For ex-
ample, even though a riddled basin becomes fractal, it
may lead to a similar type of extreme sensitivity of the
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FIG. 28. Schematic of the transversal dynamics for (a) e=0
(riddled basins) and (b) |¢] =0 (fractal basins). From Lai, 2000.

asymptotic attractor on initial conditions to that caused
by riddled basins (Lai and Andrade, 2001).

In order to illustrate these points, we return to the
two-dimensional map used in Sec. VIII.C, adding a
symmetry-breaking parameter € to the y dynamics:

X1 =1x,(1=x,), (67)

Vi1 = €+ pe X%y 4y (68)

where x €[0,1], r=4, x=3/4, and —o<y <+ (Viana
and Grebogi, 2001). If e=0, we have a perfect y——y
symmetry and thus y=0 is an invariant subspace S, on
which there is a chaotic attractor. In this case, we have
seen that there is another attractor at y=+oc. By sym-
metry there is yet another one at y=—x. For p<p.=1
the chaotic attractor is transversely stable and all peri-
odic orbits embedded in it are transversely stable.

After p.=1 (riddling bifurcation) the fixed point (x*
=3/4,y*=0) and all its preimages become transversely
unstable, while the chaotic attractor is still transversely
stable. The periodic points become the roots of a set of
tongues anchored at the invariant subspace. Tongues
with positive or negative values of y belong to the basin
of the attractor at y=z+o, respectively. The roots of
these tongues are dense in S and have Lebesgue mea-
sure zero, its complement assuming the full measure in
S. By continuity, in the vicinity of S the complement of
the set of the tongues, which is the basin of the chaotic
attractor in S, has a positive Lebesgue measure [Fig.
28(a)]. Hence the basin of the chaotic attractor is riddled
with measure-theoretic holes, but with a positive Le-
besgue measure, and contains no open sets.

Now we consider a nonzero value for e, thus destroy-
ing the invariance of the subspace S. If e is small
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enough, we expect that the periodic orbits in S will not
change their stability properties, i.e., if they are trans-
versely stable (or unstable) when =0, they will remain
so for e#0. However, it turns out that the locations of
such orbits shift under this perturbation, but neverthe-
less they will be confined within a strip of width ~¢ cen-
tered at y=0 [Fig. 28(b)]. In particular, all transversely
unstable repellers will be shifted upwards (y>0),
whereas all transversely stable saddles will be shifted
downwards (y<0). As a consequence, a trajectory start-
ing from an initial condition placed in y>0 can move
across the x axis and asymptote to the attractor at y=
—o, Hence the basin of y=—% acquires points with posi-
tive y. There is evidently still an open set with y>0
which asymptotes to y=+%, but it is no longer dense.
The boundary between the basins of +% and —x is a
fractal set, and the formerly riddled basins have changed
into fractal basins, irrespective of how small € may be.

In Sec. VIII.C we have also seen that, for e=0, as the
parameter p is increased beyond a second critical value
p*=2.55358..., the formerly chaotic attractor at the in-
variant subspace S loses transversal stability as a whole,
and it is no longer an attractor. When e# 0, the meta-
morphosis arisen when a riddled basin becomes a fractal
one is followed by the creation of chaotic transients. If
p<p*, the transient lifetimes scale with the parameter
difference as

7~ exp[C(e)(p* —p)lIn €] (p <p*), (69)

where C(e)>0. When p>p*, the transient lifetime is
much shorter than that yielded by this scaling law (Lai
and Grebogi, 2000). Lai and Andrade (2001) worked out
the stochastic model of Ott et al. (see Sec. VIIL.D) and
obtained scaling relations for the symmetry-broken case.

Moreover, the uncertainty dimension d of the fractal
basin boundary which results from the catastrophe of
riddling is close to that of the phase-space dimension D
itself. This is characteristic of an extreme form of final
state sensitivity which has formerly been described in
systems of coupled oscillators (Lai, 1995), and makes
predictability in these systems even harder than if they
showed fractal or Wada basins. In terms of the uncertain
fraction of the phase space, which scales as a power law
with the uncertainty radius as €, where =D —d is the
uncertainty exponent (Grebogi, McDonald, et al., 1983;
McDonald et al., 1985), we thus have D~d and a=0
after the catastrophe of riddling. In practical applica-
tions, we can regard e as coming from the extrinsic (and
unavoidable) noise. Moreover, in coupled oscillator sys-
tems, the invariant subspace can be viewed as the syn-
chronization subspace only if the coupled systems are
identical, which is extremely difficult to ensure. Hence
the catastrophe of riddling is quite common in mechani-
cal systems but, since the observable consequences are
similar to riddled basins, these cases have been treated
as a kind of practical riddling (Blazejczyk-Okolewska et
al., 2000; Kapitaniak, 2001).
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2. Pseudoriddling

Our condition 2 for riddling is that the system pos-
sesses an invariant subspace with a chaotic attractor
therein. The key point on having a chaotic attractor is
the existence of an infinite number of unstable periodic
points embedded on it, such that many of them can be-
come transversely unstable without changing the overall
transversal stability of the chaotic attractor itself. Lai
(2001) argued that such condition is only sufficient but
not necessary, and can be replaced by the weaker re-
quirement that a chaotic invariant set must exist in the
invariant subspace S. In such cases, if the remaining con-
ditions are satisfied, one would have pseudoriddling.

A chaotic attractor is obviously such an invariant set,
but it would also be a nonattracting chaotic set. Such
sets are common in dynamical systems since they may
occur as a result of sudden changes on chaotic attractors
caused by arbitrarily small parameter changes; see Sec.
IV.D for more information. A well-known example is
the existence of an infinite number of periodic windows
embedded into the mainly chaotic region of the bifurca-
tion diagram of a unimodal map like the logistic map
Xy=ax,(1-x,) for a>a,=3.569945672.... (Gulick,
1992). At any given periodic window there is the coex-
istence of an attracting periodic orbit and a nonattract-
ing chaotic set. For the period-3 window starting at a
:a3:1+\e"§:3.828 427..., we have a coexistent nonat-
tracting chaotic set described by Li and Yorke (1975). In
terms of the weakened conditions for riddling intro-
duced by Lai, one can analyze the dynamics where there
is a nonattracting chaotic set in an invariant subspace S
and an attracting periodic orbit off the invariant sub-
space. This may be achieved with the two-dimensional
prototype (67) and (68), provided a be chosen to be
within a period-3 window of the logistic map (a=aj3). It
has been found that pseudoriddling can occur in the
transverse vicinity of a nonattracting chaotic set, with
scaling laws similar to those described for riddled basins
of attraction of chaotic attractors (Lai and Grebogi,
1999; Terry and Ashwin, 2000; Lai and Grebogi, 2000).

IX. EXPERIMENTAL VERIFICATION OF FRACTAL
BASINS

Since the appearance of fractality and uncertainty as-
sociated with nonlinear dynamics, many experimental
verifications of the existence of fractal structures have
been carried out. Most of this work has been focused on
chaotic attractors and their fractal dimension. The rea-
son is that chaotic attractors are invariant attracting
structures, and therefore it is easy to reproduce them in
many real systems.

The literature on the experimental realization of frac-
tal basin boundaries, on the contrary, is surprisingly
short. The reason is the extreme difficulty of developing
in a real system the typical numerical technique, that is,
the division of phase space in a fine grid of initial condi-
tions and their iteration until a final state is reached
(Sweet and Ott, 2000a, 2000b). In general, it is not pos-
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sible to prepare the initial conditions with such precision
or such density that the fine fractal scale is observable.
Furthermore, many experiments are so long that cannot
be repeated the number of times that is needed to plot a
basin diagram, and actually in many cases each repro-
duction of the experiment is influenced by the former
one. This promising field of experimental nonlinear dy-
namics started when Heagy ef al. (1994b) were able to
follow the present methodology and proved experimen-
tally the existence of riddling in an electrical circuit. It is
in some sense ironic that the strangest fractal structure,
and one of the latest to be discovered, was the first one
to be seen in nature. One year later, Cusumano and
Kimble (1995), following the work by Heagy e al., over-
came the disadvantage of needing a fine grid of initial
conditions, and developed a general procedure for dissi-
pative mechanical systems. After these two seminal pa-
pers on the subject, other methods that simplify the ex-
perimental realizations have been developed, and the
search for real fractal basin boundaries has mainly been
focused on fields where fractality can be enjoyed with
the naked eye, such as fluids or optical devices.

In this section, we follow a historical order to present
the different experimental works, as each step in this
difficult task has been deeply influenced by the earlier
ones. We have divided the examples in two main groups,
according to the fields that have shown to be more
promising for the visualization of these structures:
riddled basins in electrical circuits, and fractal and Wada
basins associated with chaotic scattering systems.

A. Riddled basins in electrical circuits

The first laboratory observation of a phenomenon
identified with riddled basins was by Ashwin et al
(1994), who observed attractor bubbling near the syn-
chronization threshold of two coupled chaotic circuits.
However, the first direct experimental evidence of rid-
dling was by Heagy et al. (1994b), who investigated glo-
bal riddling related to the synchronization subspace of a
system composed of four Rossler-like circuits with diffu-
sive coupling. Moreover, they compared their findings
with numerical simulations from the circuit equations,
both approaches giving similar results for the scaling
typical of riddling.

The circuits used are described in Heagy et al. (1994a)
and their equations constitute a modified version of the
Rossler equations, where the quadratic nonlinearity is
replaced by a piecewise linear element. Each circuit was
capable of exhibiting chaotic behavior over a large range
of parameters, so that weak coupling to other circuits
would not immediately destroy the chaotic behavior.
The configuration consisted of four identical such cir-
cuits arranged in a ring, and coupled diffusively to the
nearest neighbors of each other through one of their
variables.

The equations describing the system are, in nondi-
mensional form,

Xi=—fyi— 2= rx+ k(e + x4 = 2x), (70)
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FIG. 29. Projection, in the x-y plane, of the coexisting attrac-
tors (solid line, synchronized chaotic attractor, dashed and dot-
ted lines, nonsynchronized period-1 attractors) of four coupled
Rossler-like systems for k=0.935. From Heagy et al., 1994b.

Yi:xi+ayi, (71)
Zi=—bz;— +cglx), (72)
where i=1,...,4, and g(x) is piecewise linear, given by
@ 0 ifx<d (73)
EY=x—a itx>d,

and periodic boundary conditions are assumed. The pa-
rameters were set as a=0.13, b=1.0, ¢=15.0, d=3.0, f
=0.5, and r=0.05; the control parameter k, can vary from
0.0 to 1.0.

Heagy et al. (1994a) found a stable synchronous cha-
otic state for coupling values 0.031<k<<0.945 in the
model and 0.08 <<k <0.82 in the circuit. In the vicinity of
a bifurcation value k=0.945 there are also two other
period-1 attractors off the synchronization subspace.
This bifurcation corresponded to the onset of a short-
wavelength instability that shows up as bursts taking the
overall system to the periodic attractors. Figure 29
shows a projection of the three coexisting attractors for
k=0.935, which corresponds, in the experimental setting,
to the value kgxp=0.805. The phase space of this system
is 12-dimensional, and the three-dimensional synchroni-
zation subspace is the hyperplane S defined by the con-
ditions x=Xx,=x3=X4=X;, y1=Y2=Y3=Y4=Y;, and z;=2
=7z3=z4=2, The subspace S is defined invariant under
the system dynamics given by Egs. (70)—(72) (condition 1
for riddling) and contains a synchronized chaotic attrac-
tor for reasonably large intervals of the system param-
eters (condition 2), as well as nonchaotic attractors off S
(condition 3).

For ease of visualization, a two-dimensional grid of
initial conditions was conveniently chosen so that the
horizontal coordinate (Ax) stands for the synchroniza-
tion subspace, the vertical one (Ay) in the transverse
direction. All z variables were set to the same value z;
for all initial conditions. The horizontal direction was
chosen to be the deviation Ax of the initial x value from
x, for all oscillators. The vertical direction, however, was
chosen to have a pure transverse Fourier mode by set-
ting y,=y,+(-1)'Ay, where i=0,1,2,3. For each grid
point the circuit variables were evolved through a given
time N; to let transients die out, and the Fourier mode
coefficient S,=yy—y;+y,—y3 was then computed and av-
eraged over a time interval N,. Here N;~1000 and N,
=100 are taken in number of cycles around the Rossler-
like attractor.
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7.0

FIG. 30. Basins of attraction for coupled Rossler-like systems
in the Ax-Ay plane. Black, basin of synchronized chaotic at-
tractor; white, basin of period-1 attractor, obtained by (a) ex-
periment, (c) numerical integration. (b), (d) Magnifications of
regions belonging to (a) and (c), respectively. From Heagy et
al., 1994b.

If the average value of §, falls below some threshold,
it was assumed that the circuit reached the synchronized
state S and a black dot was plotted at the grid point.
Otherwise, no dot was plotted and the system asymp-
totes to one of the two periodic (according to the sign of
(S5)) attractors. Figure 30 shows the results of Heagy et
al. (1994b) for a 200X 200 grid of initial conditions and
only one of the periodic attractors. The basin of the syn-
chronous attractor (black dots) is indeed riddled, a fact
confirmed both experimentally [Fig. 30(a) with a magni-
fication in Fig. 30(b)] and numerically [Figs. 30(c) and
30(d)].

Conditions 4 and 5 for riddling cannot be verified di-
rectly for this example, since the dimensionality of the
phase space is too high Kapitaniak er al. (2003). How-
ever, we can get indirect evidence for riddling by verify-
ing the scaling relations typical of riddled basins. One of
them involves the measure of a line length of a given
transverse distance to the synchronized subspace, which
we denote as P_ (see Sec. VIIL.D), and which turns here
to be the probability of going to the period-1 (nonsyn-
chronized) attractor, as a function of the mode-2 Fourier
amplitude Ay, which plays the role of the transverse dis-
tance [see Figs. 31(a) and 31(b)]. It has been verified that
P, scales with this distance as |Ay|”, in accordance with
Eq. (40), with exponents 7=2.03+0.08 and 2.06+0.08 for
experimental data and numerical simulations, respec-
tively. One of the reasons behind these slightly different
results lies in the behavior of the phase-space trajecto-
ries near the synchronization subspace, for the probabil-
ity of going to the periodic attractor levels off due to
noise effects on the experimental apparatus.

B. Fractal basins in chaotic scattering

1. Hydrodynamical flows

It is of general knowledge that a mixture of different
fluids can give rise to very complex patterns, but what



Aguirre, Viana, and Sanjuan: Fractal structures in nonlinear dynamics 379

1
?' (a)
P
0.1 3 ln eIk 0.08]
f 1yt
¥ o v % v i Ay T T ™—TTTT '1|0
14 guassse
(b)
0.1 4
P
0.01 - lnm=2.06i0.08]
0.001 -}»

0.1 Ay 1

FIG. 31. Probability of going to the period-1 attractor as a
function of the mode-2 Fourier amplitude Ay, obtained by (a)
experiment and (b) numerical integration. From Heagy et al.,
1994b.

most people ignore is that these structures represent ex-
amples of fractality in nature. In fact, these peculiar
shapes were observed in several classical experiments
(Yamada and Matsui, 1978; van Dyke, 1982) but they
were not analyzed from the point of view of nonlinear
dynamics, as the concept of fractality had not been yet
sufficiently developed. When fractality in open hydrody-
namical flows started to be studied from the point of
view of chaotic scattering, that is, as the consequence of
the existence of a chaotic saddle embedded in the sys-
tem, it became clear that it would be a good context to
develop experimental verifications of fractal basin
boundaries. Péntek et al. (1995b) observed that deter-
mining approximately the chaotic saddle and its stable
and unstable manifolds should be possible in a labora-
tory experiment. This was done as follows. Inject a drop-
let in the upstream region, just before the mixing region
where the chaotic saddle is inserted. After several peri-
ods of time, the ink will have traced out the unstable
manifold; [see Sec. V.B.2 and Tél and Gruiz (2006) for
several examples of natural chaotic advection phenom-
ena, where plankton, clouds, ice, etc., spread around dif-
ferent obstacles such as islands or mountains and give
rise to beautiful and real fractal unstable manifolds].
Plotting the stable manifold is more difficult and needs
video techniques (Solomon et al., 1993, 1994; Sommerer
and Ott, 1993a; Sommerer, 1994), as we must find the
points that approach the chaotic saddle and stay in its
neighborhood for a long time. For the chaotic saddle,
one needs to sprinkle a lot of orbits in the mixing region,
keeping the trajectory of those that stay in the system
for a long time. The chaotic saddle is obtained from a
section in the middle of the process. Finally, Péntek et al.
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(1995b) presented a modification of the sprinkler
method (Kantz and Grassberger, 1985; Lai et al., 1993)
for real systems. The main advantage of this method is
that it provides all three invariant sets at the same time.
We fix a critical number n, of periods and follow several
orbits that stay in the mixing region for more than n,
periods. The initial points are the stable manifold, the
final points are the unstable manifold, and the middle
points are the chaotic saddle. The accuracy of the
method increases with n,.

Despite all these methods, very few real experiments
have been done in this direction. An easy-to-read review
of the applicability of chaos theory to the study of two-
dimensional fluid flows was done by Sommerer et al.
(1997). They pay special attention to the different ex-
perimental realizations, and explain the advantages and
disadvantages of approaching such a hard task with the
tools of nonlinear dynamics (that is, chaotic advection).
Furthermore, they explain the way to calculate
Lyapunov exponents [by applying the particle tracking
technique (Diamond, 1994)], the fractal dimension, and
the average decay time of the fractal structures associ-
ated to a fluid experiment. These quantities are specially
important when developing an experiment, as in Kantz
and Grassberger (1985) a simple theoretical relation be-
tween them was obtained, and therefore the verification
of this relation is a proof of the certainty of the experi-
mental results.

Among the real visualizations of fractal structures
shown in Sommerer et al. (1997), it is worth remarking
on the first experimental evidence of chaotic scattering
in a fluid wake [work presented by Sommerer et al
(1996)]. The experiment consisted of a moving hard cyl-
inder in a canal. The results were a demonstration of the
difficulty that experimentalists face when trying to ob-
tain information about fractality in real systems. They
were obliged to verify the existence of chaotic scattering
in an indirect way, as obtaining the plot of a scattering
function with singularities seems in practice impossible
for a real fluid wake. Among other evidences, they ob-
served in the experiment that a fraction of the initial
conditions stay for a long time in the mixing region just
after the cylinder. Furthermore, they created a structure
that resembles fractal, whose dimension is indeed non-
integer and coincides with the theoretically expected
value Kantz and Grassberger (1985). Figure 32 shows
the observed dye lines after the cylinder, and how they
correspond precisely to the computed streak lines ob-
tained using a multigrid domain decomposition ap-
proach incorporating the pseudospectral element
method; see Ku et al. (1989, 1990, 1994) for the details of
this numerical method.

2. Optical systems

In 1999 the first real verification of the existence of
Wada basins was carried out (Sweet et al., 1999). The
experiment was an optical three-dimensional chaotic
scattering billiard, and so simple to build that anyone
can make it at home. Place four mirrored spheres (e.g.,
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FIG. 32. Fractal structures can be detected in nature with the
naked eye: (a) fractal dye lines obtained with a charge-coupled
device camera fixed to a movable cylinder in a fluid wake; (b)
computed streak lines corresponding to a numerical two-
dimensional approach of the same system. From Sommerer
et al., 1996.

four Christmas balls) forming a tetrahedron in such a
way that three of its four exits are covered with white,
red, and blue cardboards. Illuminate each colored exit
from the outside and look at it from the open side, and
what you see is a fractal structure where the boundaries
of all three colors are mixed on all scales, satisfying the
Wada property. This surprising discovery deserved the
cover of Nature magazine (Sweet et al., 1999), as well as
the cover of Ott (2002); Fig. 33 shows an example of this
phenomenon.

The work by Sweet et al. was the proof that the easiest
way to verify the existence of fractal basins associated to
chaotic scattering is the use of mirrored structures in
optical systems. There are two reasons. First, optical
configurations show the fundamental advantage of pre-
senting in only one experiment the totality of the basin
diagram, as each ray of light represents one orbit. Sec-
ond, they are usually cheap and easy to manipulate, as
only mirrors and a digital camera (or a charge-coupled
device camera) are needed.

Sweet and Ott (2000a, 2000b) numerically studied a
system based on a mirrored ellipsoid placed inside a
hard tube of four curved walls. The system was thor-
oughly analyzed, and clear explanations were presented
to build the system. Two exits were possible, as light
could escape from the system in the upward and down-
ward directions. Furthermore, one of the main results
was that the basin boundaries obtained had the structure
of a continuous, nowhere-differentiable surface that
could be appreciated with the naked eye. However, the
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FIG. 33. (Color online) Experimental Wada basins obtained by
placing four Christmas balls forming a tetrahedron and cover-
ing three of its four exits with red, blue, and white cardboard.
Adapted from Ott, 2002.

experiment was not carried out, and we had to wait one
year to see the first real manifestation of these peculiar
basins. The same research group, working with a con-
figuration of four mirrored spheres placed in a way that
each one was in contact only with two other spheres and
there were again two possible exits, showed in Sweet,
Zeff, et al. (2001) real images of continuous but
nowhere-differentiable basin boundaries, and compared
their properties with those of the Wada basins present in
the tetrahedron configuration already studied by Sweet
et al. (1999) (where four exits are possible). The fractal
dimension, as Sommerer et al. (1996) did for photos of
fluids, was obtained from the digital images. The results
matched the numerical predictions well. In order to en-
courage the reader to follow this line of research and
take real images of new fractal basin boundaries in op-
tical configurations, precise details of the experimental
realization were given by Sweet, Zeff, ef al. (2001). Fur-
thermore, several possibilities for future study were pro-
posed, such as placing four spheres in a tetrahedron con-
figuration and lifting the upper one, or placing the
spheres in a tetrahedron configuration in such a way that
they are not in contact. This last possibility is especially
challenging, as there is only one possible exit, and there-
fore there is only one basin defined. The existence of the
stable manifold of the chaotic saddle should be detected
by searching in the digital photograph for fractal regions
where the image is darker (that is, the orbits that remain
inside the system for a longer time, and are more ab-
sorbed by the spheres).

Finally, and as another example of possible future
work, Aguirre and Sanjudn (2003) presented a numerical
analysis of a peculiar phenomenon that takes place
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when the size of the exits of open Hamiltonian systems
tends to zero. These fractal basins were named uncertain
basins because of their dramatic consequences for pre-
dictability. The striking result was that, when the size of
the exits shrinks, the exit basins show a behavior similar
to that of riddled basins in dissipative systems; see Sec.
VIIL.A for more information on riddledlike basins. The
exit basins suffer a total fractalization, tending to be-
come their own boundaries while the dimension of the
invariant sets tends to that of phase space. Furthermore,
these invariant sets tend to fill up the whole phase space
for both hyperbolic and nonhyperbolic systems, and an
experimental verification of this fact seems a promising
task. In the paper, an experimental optical verification of
these results was proposed, based on a simple triangular
configuration of three curved mirrors in which the dis-
tance between mirrors d could be shrunk. If two of its
three exits are covered with different colors (e.g., red
and yellow cardboard) while we look into the system
through the third exit, vertical lines of both colors will
be mixed on all scales in the boundary that separates
them. They believe it would be challenging to verify if in
the limit of very small distance (d—0) the mixture of
both colors (e.g., orange) is recognizable.

In summary, the observation in nature of fractal basin
boundaries is still in its first steps, mainly due to the
difficulty of developing real experiments with nonat-
tracting sets of orbits. There is no doubt that this is one
of the most fruitful open fields in experimental nonlin-
ear dynamics, where so much work still should be done.

X. CONCLUSIONS

The ideas of chaos and fractals developed since the
last half of the 20th century have had a significant im-
pact on a large variety of scientific disciplines, such as
astrophysics, general relativity and cosmology, atomic
and molecular dynamics, fluid dynamics, plasma physics,
optics, etc. They have affected many other fields as well,
which in principle are far away from physics, such as
economy or ecology, which have also turned out to be
fruitful environments where fractal structures appear
naturally. As a consequence of the many different situa-
tions in which fractal structures appear in dynamical sys-
tems, fractal basin boundaries in particular deserved a
unifying review, where theoretical, numerical, and
graphical results as well as experimental setups could
coexist in an organized structure.

The natural way to analyze our ability to predict the
future of a deterministic system is by studying the basin
diagram made out of the initial conditions that lead to
each final state, be it a basin of attraction in the case of
a dissipative system or an exit basin in the case of an
open Hamiltonian system. Therefore our main topic has
been the analysis of the existence and nature of the dif-
ferent kinds of fractal basin, both in models and in real
physical systems. Special attention has been paid to the
broad span of interests that potential readers from all
fields of physics may have.
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e We have presented in a simple and clarifying way the
main properties of a fractal basin boundary, that is,
its nature related to the existence of an invariant cha-
otic set and the typical way to measure its fractality:
the fractal dimension. In parallel to the theoretical
explanations, extensive numerical and graphical
techniques have been presented to obtain from each
system all the information that the tools of nonlinear
dynamics can offer about its future behavior.

e From the pioneering work of McDonald et al. (1985),
where the first classification of fractal basin bound-
aries was presented, many other different types of
fractal basin have appeared in the literature. This
wide variety of examples needed an illustrative pre-
sentation and organization, casting light on the simi-
larities and differences between them. We started out
presenting them in a comparative way, but later we
paid special attention to the two types that have
given rise to more extensive work: Wada and riddled
basins.

e Our main goal is to show that fractal structures not
only are mathematical artifacts appearing in certain
dynamical systems, but can be applied to many dif-
ferent fields, in both physics and other scientific dis-
ciplines. From this point of view, a final analysis of
the experimental verification of fractal structures in
physical and natural systems was convenient. More-
over, this emerging and challenging topic is one of
the open areas in which we believe that other re-
searchers might find a promising subject to work on,
by applying some of the fundamental ideas to their
particular research field.
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