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This review covers the latest developments in continuous-variable quantum-state tomography of
optical fields and photons, placing a special emphasis on its practical aspects and applications in
quantum-information technology. Optical homodyne tomography is reviewed as a method of
reconstructing the state of light in a given optical mode. A range of relevant practical topics is
discussed, such as state-reconstruction algorithms �with emphasis on the maximum-likelihood
technique�, the technology of time-domain homodyne detection, mode-matching issues, and
engineering of complex quantum states of light. The paper also surveys quantum-state tomography for
the transverse spatial state �spatial mode� of the field in the special case of fields containing precisely
one photon.
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I. INTRODUCTION

A. The concept of quantum tomography

A quantum state is what one knows about a physical
system. The known information is codified in a state vec-
tor ���, or in a density operator �̂, in a way that enables
the observer to make the best possible statistical predic-
tions about any future interactions �including measure-
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ments� involving the system. Such a definition has a
comfortable interpretation within information theory,
and so it appears natural in the context of research in
quantum information �QI�.

Imagine that an experimentalist, Alice, uses a well-
characterized procedure to prepare an individual par-
ticle in a particular physical state. Since Alice possesses
the information about the procedure, she can make defi-
nite predictions about the particle’s behavior under vari-
ous conditions, and is thus fully aware of the particle’s
state.

Now suppose Alice sends the prepared particle to an-
other party, Bob, who is not aware of the preparation
procedure, but wishes to determine the state of the par-
ticle. By making observations on the particle, Bob can
obtain information about the physical state prepared by
Alice by observing how it interacts with other well-
characterized systems, such as a measurement
apparatus.1 The amount and nature of this information
depend strongly on whether the particle is macroscopic
or microscopic. In the macroscopic, classical case, Bob
can observe the individual particle’s trajectory without
disturbing it, and determine its state.

In quantum mechanics, on the contrary, it is impos-
sible to learn the quantum state of any individual physi-
cal system. Each observation, no matter how subtle, will
disturb its state just enough to prevent further observa-
tions from yielding enough information for a state deter-
mination �D’Ariano and Yuen, 1996�. This is the basis of
quantum key distribution for cryptography �Bennett and
Brassard, 1984�.

If Alice provides Bob with an ensemble of identically
prepared systems, then he can measure the same vari-
able for each system, and build up a histogram of out-
comes, from which a probability density can be esti-
mated. According to the Born rule of quantum theory,
this measured probability density will equal the square
modulus of the state-vector coefficients, represented in
the state-space basis corresponding to the measuring ap-
paratus. This by itself will not yet yield the full state
information since the phase of the complex state-vector
coefficients will be lost.

As an example, measure the position x of each of
100 000 identically prepared electrons, which can move
only in one dimension. This yields an estimate of the
position probability density, or the square modulus
���x��2 of the Schrödinger wave function. If the wave
function has the form ���x��exp�i��x��, where ��x� is a
spatially dependent phase, then we will need more infor-
mation than simply ���x��2 in order to know the wave
function. If we are able to measure the momentum p of
a second group of identically prepared electrons, then

we can estimate the probability density ��̃�p��2, where

�̃�p� =� ��x�exp�− ixp/��dx �1�

is the Fourier transform of the spatial wave function. If
we know a priori that the ensemble can be described by
a pure state, then we can determine, by numerical meth-
ods, the complex wave function ��x�, up to certain sym-
metry transformations �such as a complex conjugation�
just from these two types of measurement. This is a clas-
sic example of phase retrieval �Gerchberg and Saxton,
1972�.

In the typical case, however, we do not know ahead of
time if the system’s state is pure or mixed. Then we must
make many sets of measurements on many suben-
sembles, each time modifying the apparatus so that sets
of projection statistics associated with a different basis
can be acquired. One can then combine these results to
reconstruct the density matrix of the state �Raymer,
1997a�. The data do not yield the state directly, but
rather indirectly through data analysis �i.e., a logical in-
ference process�. This is the basis of quantum-state to-
mography �QST�. A set of observables whose measure-
ments provide tomographically complete information
about a quantum system is called a quorum �Fano,
1957�.

Niels Bohr �1958� seems to have had an intuitive idea
of QST when he said, “A completeness of description
like that aimed at in classical physics is provided by the
possibility of taking every conceivable arrangement into
account.” A more rigorous concept was developed in
theoretical proposals �Newton and Young, 1968; Band
and Park, 1970, 1971, 1979; Bertrand and Bertrand,
1987; Vogel and Risken, 1989�, followed by the first ex-
periments determining the quantum state of a light field
�Smithey, Beck, Cooper, Raymer, et al., 1993; Smithey,
Beck, Raymer, et al., 1993�. Nowadays, quantum tomog-
raphy has been applied to a variety of quantum systems
and has become a standard tool in QI research �Paris
and Řehá~ek, 2004�.

To continue the example of an electron moving in one
dimension, a quorum of variables can be constructed by
measuring different groups of electrons’ positions x� af-
ter a variable length of time has passed. For example, in
free space this is x�=x+pt /m, where m is the electron
mass. The wave function at time t is

��x�,t� =� G�x�,x ;t���x�dx , �2�

where

G�x�,x ;t� =� m

2�i�t
exp	 im�x − x��2

2�t

 �3�

is the quantum propagator appropriate to the wave
equation for the particle. The experimentally estimated
probability densities pr�x� , t�= ���x� , t��2, for all t �positive
and negative�, provide sufficient information to invert
Eq. �2� and determine the complex state function ��x�
�assuming the functions pr�x� , t� are measured with very
high signal-to-noise ratio�. Note that Eq. �2� can be in-

1We can interpret the quantum state as a belief, or confidence
level, that a person has in his or her knowledge and ability to
predict future outcomes concerning the physical system
�Fuchs, 2002�. No measurements can, generally speaking, pro-
vide full information on Alice’s preparation procedure.
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terpreted as a generalization of Eq. �1�. As such, it cor-
responds to a change of basis.

If the state is not known beforehand to be pure �that
is, the physical system’s state is entangled with some
other system�, then it is described by a density matrix,
��x1� ,x2� ; t�,

��x1�,x2�;t� =� � dx1dx2

� G*�x1�,x1;t�G�x2�,x2;t���x1,x2;0� . �4�

Through inversion of Eq. �4�, the set of the measured
probability functions pr�x� ; t�=��x� ,x� , t� determines the
density matrix ��x1 ,x2 ;0�.

This procedure works in principle for a Schrödinger
equation with an arbitrary, known potential-energy func-
tion. Such a method was proposed �Raymer et al., 1994;
Janicke and Wilkens, 1995; Leonhardt and Raymer,
1996; Raymer, 1997b� and implemented �Kurtsiefer et
al., 1997� for the transverse spatial state of an ensemble
of helium atoms and the classical light beam �McAlister
et al., 1995�.

An important, recently introduced extension to QST
is quantum-process tomography �QPT�. Consider a
quantum “black box,” which subjects each incoming
quantum state to some unknown transformation. The
goal of QPT is to determine this transformation so the
output of the black box can be predicted for an arbitrary
input.

A general quantum process is a trace-preserving, posi-
tive linear map on the linear space L�H� of all density
matrices over Hilbert space H. The process can thus be
characterized by feeding it with each of the �dimH�2 el-
ements of a spanning set of L�H� and performing QST
on the outputs.

Such a direct approach to QPT was first proposed by
Poyatos et al. �1997� as well as Chuang and Nielsen
�1997� and experimentally realized on one-qubit telepor-
tation �Nielsen et al., 1998�, a system formed by the vi-
brational levels of atoms in an optical lattice �Myrskog et
al., 2005� and on a two-qubit controlled-NOT gate �Childs
et al., 2001; O’Brien et al., 2004�. In an alternative ap-
proach, information about the process is recovered by
performing tomography on the output state of a single
maximally entangled bipartite input with the process
acting on one of the two input subspaces �D’Ariano and
Lo Presti, 2001�. Experimental results based on the lat-
ter scheme were obtained for a general single-qubit gate
�Altepeter et al., 2003; De Martini et al., 2003�.

Further study of QPT is beyond the scope of this pa-
per. A comprehensive review on the subject has recently
been given by Mohseni et al. �2008�.

B. Quantum tomography of light

The current interest in QST is motivated by recent
developments in QI processing, which requires inter alia
a technique for detailed characterization of quantum
states involved �Paris and Řehá~ek, 2004�. Additionally,
significant progress has been made in measurement

technologies, which now allow experimenters to mea-
sure a set of observables sufficiently diverse to allow
reliable state reconstruction from the data.

Among many physical systems in which QI processing
can be implemented, light is of particular significance
because it is mobile and thus irreplaceable as an infor-
mation carrier in quantum communication networks. In
this paper, we review the methods for QST of optical
fields.

Even specialized to light, quantum tomography is too
vast a field to be fully covered in a single review paper.
Here we choose to concentrate on optical QST, which
involves measuring continuous degrees of freedom: field
amplitude and/or spatial distribution. We study two
closely related tomographic problems. The first deals
with the case in which the mode of the field is known �or
chosen� a priori, and the state of this mode is to be de-
termined. The second deals with the case in which the
full field is known to contain exactly one photon, but the
manner in which this photon is distributed among spatial
and spectral modes is to be determined.

1. Optical homodyne tomography

The Hamiltonian of an electromagnetic mode is
equivalent to that of the harmonic oscillator. Quantum
states of light in this mode can thus be reconstructed
similarly to motional states of massive particles dis-
cussed in the previous section. This is done by measur-
ing quantum noise statistics of the field amplitudes at
different optical phases �Leonhardt, 1997�. The proce-
dure of this reconstruction is known as optical homo-
dyne tomography �OHT�.

It is interesting, in the context of this paper, that ho-
modyne tomography was the first experimental demon-
stration of optical QST. Using balanced homodyne de-
tection �BHD�, Smithey, Beck, Raymer, et al. �1993�
measured a set of probability densities for the quadra-
ture amplitudes of a squeezed state of light. These his-
tograms were inverted using the inverse Radon trans-
form, familiar from medical tomographic imaging, to
yield a reconstructed Wigner distribution and density
matrix for a squeezed state of light. This 1993 paper
introduced the term “tomography” into quantum optics.

OHT is the subject of the next four sections of this
paper. In Secs. II and III, we discuss the concept of ho-
modyne tomography and the methods of reconstructing
the state’s Wigner function and density matrix from a set
of experimental data. Special attention is paid to the
likelihood-maximization technique, which is now most
commonly used. Section IV is devoted to technical is-
sues arising in experimental OHT. In Sec. V, we discuss
applications of OHT in experiments of engineering and
characterizing specific quantum states of light, such as
photons, qubits, and Schrödinger cat states.

In the context of applications, it is instructive to com-
pare OHT with another technique: determining the
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quantum state of a system of dual-rail optical qubits2 by
measuring relative photon number statistics in each
mode and in their various linear superpositions. Due to
its relative simplicity, this approach has been applied in
many experiments �see Altepeter et al. �2004� for a re-
view�.

A textbook example of the above is the work of
James et al. �2001�. In this experiment, the polarization
state of a pair of entangled photons A and B generated
in type-II parametric down-conversion was analyzed by
measuring photon coincidence count statistics in 16 po-
larization projections. Tomographic analysis has re-
vealed the photons to be almost perfectly in the state

��� =
1
�2

��HAVB� + �VAHB�� , �5�

where H and V indicate horizontal and vertical polariza-
tion. It is tempting to say that such a state has high en-
tanglement.

This analysis does not reveal, however, that the pho-
ton pair is generated not “on demand,” but with some
probability �2, which is usually low. A more complete
representation of the state of the optical modes analyzed
could be

��� = �0AH0AV0BH0BV� + ���1AH0AV1BH0BV�

+ �0AH1AV0BH1BV�� + O��2� , �6�

where, for example, �1�AV indicates a one-photon state
present in the vertical polarization mode of channel A.
The bipartite entanglement is of the order ��2 log����,
which is much less than 1.

Equations �5� and �6� reveal a significant limitation of
the photon-counting approach. This method works well
if it is a priori known that the modes involved are in one
of the qubit basis states or their linear combination. In
practice, however, this is not always the case: photons
can be lost, or multiple photons can be present where we
expect only one. Such events compromise the perfor-
mance of quantum logical gates, but usually go unrecog-
nized by the photon-counting approach; they are simply
eliminated from the analysis.3 As a result, one character-
izes not the true quantum state of the carrier modes, but
its projection onto the qubit subspace of the optical Hil-
bert space. This may lead to a false estimation of gate
performance benchmarks �van Enk et al., 2007�.

OHT, on the contrary, permits complete characteriza-
tion of the field state in a particular spatiotemporal
mode, taking into account the entire Hilbert space of
quantum optical states. It thus provides more reliable

information about the performance and scalability of an
optical QI processor. However, it is also more techni-
cally involved as it requires matched local oscillators,
sophisticated detection electronics, larger positive
operator-valued measures �POVMs�, and measurement
data sets. It is thus less suitable for characterizing mul-
timode states: to date, the largest qubit systems mea-
sured using photon counting contained six qubits �Lu et
al., 2007� while with OHT, only single dual-rail qubits
were reconstructed �Babichev, Appel, and Lvovsky,
2004�.

2. Optical mode tomography

An altogether different use of QST arises when a light
field is known to contain a definite number of photons,
but their distribution over spatial and/or spectral modes
is unknown. If the set of modes is discrete �e.g., in the
case of polarization qubits�, characterization can be
done using the photon-counting method discussed above
�Altepeter et al., 2004�. But if the distribution of light
particles over electromagnetic modes is described by a
continuous degree of freedom, methods of continuous-
variable QST become irreplaceable.

The problem of reconstructing the modal distribution
of a field state is largely analogous to determining the
spatial wave function ��r�� of a massive particle, as de-
scribed by Eq. �2�. It turns out that the procedure out-
lined via Eqs. �1�–�4� also applies to QST for an en-
semble of single photons, and is in fact quite similar to
the method of OHT. This is consistent with the adoption
of a definition for a photon’s spatial wave function �Sipe,
1995; Bialynicki-Birula, 1996; Smith and Raymer, 2007�,
in which the Schrödinger equation is replaced by the
Maxwell equations �since a photon cannot be strictly lo-
calized in space, some subtleties must be taken into ac-
count�. In Sec. VI, we analyze various techniques and
recent experimental progress in reconstructing spatial
optical modes of single photons as well as entangled
pairs.

II. THE PRINCIPLES OF HOMODYNE TOMOGRAPHY

A. Balanced homodyne detection

The technique of balanced homodyne detection
�BHD� and homodyne tomography has been extensively
described in the literature, for example, in the textbook
of Leonhardt �1997� and in recent reviews by Raymer
and Beck �2004�, Zhang �2004�, and Zavatta, Viciani,
and Bellini �2006�. Here we present only a brief intro-
duction with concentration on theoretical aspects of
mode matching between the local oscillator and the sig-
nal field.

Figure 1 illustrates balanced homodyne detection,
which is a means to measure the amplitude of any phase
component of a light mode. In BHD, the weak signal

field E�̂ S�t� �which may be multimode� and a strong co-

herent local oscillator �LO� field E�̂ L�t� are overlapped at

2In the dual-rail qubit, the logical value is assigned to a
single photon being in one of two orthogonal modes A or B:
�0̃�= �1A ,0B�, �1̃�= �0A ,1B�, where the right-hand side is written
in the photon number �Fock� basis for each mode.

3An important exception is the work by Chou et al. �2005�,
where the photon-counting approach is used, but the vacuum
contribution is accounted for when evaluating the entangle-
ment of a dual-rail qubit.
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a 50% reflecting beam splitter, and the two interfered
fields are detected, temporally integrated, and sub-
tracted.

The signal electric field operator is written as a sum of
positive- and negative-frequency parts, which are conju-

gates of one another, E�̂ S=E�̂ S
�+�+E�̂ S

�−�. The positive-
frequency part can be decomposed into plane waves ac-
cording to Dirac’s quantization scheme,

E�̂ S
�+��r�,t� = i�

j
� �	j

2�0V
b̂j
�j exp�ik� j · r� − i	jt� , �7�

where 	j, k� j, and 
�j are, respectively, the mode fre-
quency, wave vector, and the unit polarization vector;
the creation and annihilation operators obey the com-

mutator �b̂j , b̂j�
† �=�jj� and are defined in some large vol-

ume V �which may be taken to infinity later�. It is con-
venient to consider the signal field in the paraxial
approximation with z the propagation axis. In this case
	j�ckjz and the polarization 
�j is along either x or y.

The LO field is treated classically, and at each photo-
diode face �z=0� is assumed to be a strong coherent
pulse propagating along the z axis,

E� L
�+��r�,t� = i� �	L

2�0V
�L
�LvL�x,y�gL�t�

�exp�ikLz − i	Lt� , �8�

where the coherent-state amplitude is �L= ��L�ei
, and
vL�x ,y�gL�t� is the normalized spatiotemporal mode.

The local oscillator and the signal fields meet at a
beam splitter, where they undergo the transformation

�E� L,E�̂ S� → 	E� L + E�̂ S

�2
,
E� L − E�̂ S

�2

 . �9�

The difference of the numbers of photoelectrons re-
corded in the two beam splitter outputs is then, assum-
ing a perfect detection efficiency �see Raymer et al.
�1995� and Raymer and Beck �2004� for details and more
general considerations�,

N̂− = �
det
�

�t

�0V

c�	
�2E� LE�̂ s�dtdxdy = ��L��âe−i
 + â†ei
� ,

�10�

where the integration is over the detector sensitive area
and the measurement time �t. Assuming that the above

fully accommodate the local oscillator pulse, all integra-
tion limits in Eq. �10� can be assumed infinite. The pho-
ton creation operator â† associated with the detected
spatiotemporal mode is given by

â† = �
j

Cjb̂j
†, �11�

where the Cj’s equal the Fourier coefficients for the LO
pulse,

Cj = 
�L
* 
�j� � vL

* �x,y�gL
* �t�

� exp�ikjxx + ikjyy − ic�kjz − kL�t�dtdxdy . �12�

When using a pulsed LO field EL�t�, the concept of a
light mode needs to be generalized beyond the common
conception as a monochromatic wave. As first discussed
by Titulaer and Glauber �1966�, and extended by Smith
and Raymer �2007�, a polychromatic light wave packet
can be considered a mode with a well defined spatial-
temporal shape, whose quantum state is described in the
usual way using photon creation and annihilation opera-
tors. For example, a one-photon wave-packet state is
created by �1â�= â†�vac� �more on this in Sec. VI.A�. The
meaning of Eqs. �11� and �12� is that the BHD detects
the state of the electromagnetic field in the spatial-
temporal mode defined by the LO pulse �Smithey, Beck,
Raymer, et al., 1993; Raymer et al., 1995; Raymer and
Beck, 2004�. This allows temporal and spatial selectivity,
or gating, of the signal field �not the signal intensity�.
This gating technique �linear-optical sampling� has appli-
cation in ultrafast signal characterization �Dorrer et al.,
2003; Raymer and Beck, 2004�.

As usual, the mode’s annihilation operator can be

expressed as a sum of Hermitian operators â=ei
�Q̂


+ iP̂
� /�2, called quadrature amplitudes, with4 �Q̂
 , P̂
�
= i. For zero phase, Q̂
 , P̂
 are denoted Q̂ , P̂, respectively

�so Q̂
=Q̂ cos 
+ P̂ sin 
�, and are analogous to position
and momentum variables for a massive harmonic oscil-
lator. For the LO phase equal to 
, BHD measures the
quadrature amplitude

N̂− /���L��2� = �âe−i
 + â†ei
�/�2 = Q̂
. �13�

According to quantum mechanics, the probability den-
sity for observing the quadrature equal to Q
 for the
field in the signal mode given by the density operator �̂
is

4This convention, in which �=1, is consistent with the stan-
dard quantum-mechanical commutator between the position
and momentum. Some use �Q̂
 , P̂
�= i /2 or �Q̂
 , P̂
�=2i. The
advantage of the former convention is that the annihilation
operator becomes â=ei
�Q̂
+ iP̂
�. The latter convention pro-
vides that the vacuum state noise 
0�Q̂


2�0�= 
0�P̂

2�0�=1. All

quadrature-dependent plots used have been �re�scaled to com-
ply with the convention �Q̂
 , P̂
�= i.

FIG. 1. Balanced homodyne detection.
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pr�Q
,
� = 
Q
,
��̂�Q
,
� , �14�

where �Q
 ,
� is the quadrature eigenstate with eigen-
value Q
. These probability densities, also known as
marginal distributions, are histograms of the field ampli-
tude noise samples measured with the homodyne detec-
tor. The optical phase plays the role of time in Eqs.
�1�–�4�. When it is varied over one complete cycle,
quadrature amplitudes Q
 form a quorum for QST �Vo-
gel and Risken, 1989�.

In a practical experiment, the photodiodes in the ho-
modyne detector are not 100% efficient, i.e., they do not
transform every incident photon into a photoelectron.
This leads to a distortion of the quadrature noise behav-
ior which needs to be compensated for in the recon-
structed state. We present, without derivation, a gener-
alization of the above expression for detectors with a
nonunitary quantum efficiency � �Raymer et al., 1995;
Raymer and Beck, 2004�,

pr�Q
,
� =�:
exp�− �Q
 /� − Q̂
�2/2�2�

�2��2
:� , �15�

where 2�2=1/� and the angular brackets indicate a
quantum expectation value. The double dots indicate
normal operator ordering �annihilation operators to the
right of creation operators�.

B. Wigner function

Because the optical state reconstructed using tomog-
raphy is generally nonpure, its canonical representation
is in the form of a density matrix, either in the quadra-
ture basis or in the photon-number �Fock� basis. In the
case of homodyne tomography, it is convenient to rep-
resent the reconstructed state in the form of the phase-
space quasiprobability density, the Wigner function
�Wigner, 1932�,

W�̂�Q,P� =
1

2�
�

−�

�


Q + 1
2Q���̂�Q − 1

2Q��e−iPQ�dQ�.

�16�

This object uniquely defines the state and, at the same
time, is directly related to the quadrature histograms
�14� and �15� measured experimentally �Raymer et al.,
1995; Raymer and Beck, 2004� via the integral

pr�Q
,
� = �
−�

+� �
−�

+�

��Q
 − Q cos 


− P sin 
�Wdet�Q,P�dQdP

= �
−�

�

Wdet�Q
 cos 
 − P
 sin 
,Q
 sin 


+ P
 cos 
�dP
. �17�

In other words, the histogram pr�Q
 ,
� is the integral
projection of the Wigner function onto a vertical plane
oriented at angle 
 to the Q axis �Fig. 2�. The “detected”
Wigner function Wdet corresponds to the ideal Wigner

function �16� for a loss-free detector, and for a detector
with quantum efficiency � it is obtained from the latter
via a convolution �Leonhardt and Paul, 1993; Kuhn et
al., 1994; Raymer et al., 1995; Leonhardt, 1997�,

Wdet�Q,P� =
1

��1 − ���−�

+� �
−�

+�

W�Q�,P��

� exp�−
�Q − Q����2 + �P − P����2

1 − �
�

�dQ�dP�. �18�

III. RECONSTRUCTION ALGORITHMS

A homodyne tomography experiment yields a set of
pairs �Qm ,
m�, which can be binned up to form marginal
distributions pr�Q ,
� for several local oscillator phases.
Our next task is to develop mathematical methods that
can be used to convert the experimental data into the
state’s density matrix and/or Wigner function. This is the
subject of the current section.

Mathematical methods of OHT can be divided into
two categories. The so-called inverse linear transform
techniques �Sec. III.A� use the fact that the experimen-
tally measured marginal distributions are integral pro-
jections of the Wigner function. Because integration is a
linear operation, one can reverse it and reconstruct the
Wigner function from the set of marginals in a proce-
dure that somewhat resembles solving a system of linear
equations of the form �17�. We discuss this and related
methods in Sec. III.A; they have been reviewed in more
detail by D’Ariano �1997�, Leonhardt �1997�, Welsch et
al. �1999�, Paris and Řehá~ek �2004�, and Raymer and
Beck �2004�.

For reasons discussed later �Sec. III.B�, inverse linear
transform methods are rarely used in modern OHT.
More frequently, we employ methods of statistical infer-
ence, whose classical versions have been developed in
traditional statistics and data analysis �Paris and Ře-
há~ek, 2004, Chaps. 2, 3, 6, and 10�. A popular method is
likelihood maximization �MaxLik�, which looks for the
most probable density matrix that will generate the ob-
served data. It is discussed in detail in Sec. III.B. An-
other statistical inference method, entropy maximiza-
tion, is reviewed in Sec. III.C.

W ,P( )Q

�

Q
P

pr( )Q ,
�

�

Q
�

FIG. 2. �Color online� The Wigner function. The experimen-
tally measured field quadrature probability density pr�Q
 ,
� is
the integral projection of the Wigner function W�Q ,P� onto a
vertical plane defined by the phase of the local oscillator.
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A. State reconstruction via inverse linear transformation

1. Inverse Radon transformation

The projection integral �17�, known as the Radon
transform �Herman, 1980�, can be inverted numerically
using the back-projection algorithm, familiar from medi-
cal imaging �Herman, 1980; Leonhardt, 1997� to recon-
struct the phase-space density Wdet�Q ,P�,

Wdet�Q,P� =
1

2�2�
0

� �
−�

+�

pr�Q
,
�

� K�Q cos 
 + P sin 
 − Q
�dQ
d
 ,

�19�

with the integration kernel

K�x� =
1
2�−�

+�

���exp�i�x�d� = − P
1

x2 , �20�

where P denotes a principal value integration.
The kernel is infinite at x=0, so in numerical imple-

mentations of the inverse Radon transformation it is
subjected to low pass filtering: the infinite integration
limits in Eq. �20� are replaced by ±kc, with kc chosen so
as to reduce the numerical artifacts associated with the
reconstruction while keeping the main features of the
Wigner function �see, e.g., Fig. 3�a��. This method is
known as the filtered back-projection algorithm.

This strategy was used in the first QST experiments
�Smithey, Beck, Raymer, et al., 1993; Dunn et al., 1995�.
In later implementations of this algorithm �Lvovsky and
Babichev, 2002�, the intermediate step of binning the

data and calculating individual marginal distributions as-
sociated with each phase was bypassed: the summation
of Eq. �19� was applied directly to acquired pairs
�
m ,Qm�,

Wdet�Q,P� �
1

2�2N �
m=1

N

K�Q cos 
m + P sin 
m − Qm� ,

�21�

with phases 
m uniformly spread over the 2� interval.
A nonclassical state of light,5 after undergoing an op-

tical loss, becomes nonpure. Therefore, typically, the re-
constructed state is not pure, that is, Tr��̂det

2 ��1. A spe-
cial case is that of a coherent state, which remains pure
under losses. For such a state, one can reconstruct the
Schrödinger wave function or a state vector, as shown by
Smithey, Beck, Cooper, Raymer, et al. �1993�.

A more general method for reconstructing the Wigner
function of a state that has undergone optical losses has
been proposed by Butucea et al. �2007�, where Eqs. �19�
and �20� are modified so as to incorporate the effect of
nonunitary efficiency. This paper, as well as Gut

’
e and

Artiles �2007�, also perform a minimax analysis of the
error in the evaluation of the Wigner function via the
inverse Radon transformation.

Given the experimentally reconstructed Wigner func-
tion, we can inverse Fourier transform Eq. �16� to com-
pute the density operator in the quadrature basis, and,
subsequently, in any other basis. This scheme was ap-
plied to reconstruct photon-number statistics 
n��̂�n�, as
well as quantum-phase statistics for squeezed and coher-
ent light �Beck et al., 1993; Smithey, Beck, Cooper, and
Raymer, 1993; Smithey, Beck, Cooper, Raymer, et al.,
1993�. This calculation can, however, be significantly
simplified, as discussed below.

2. Pattern functions

If the goal is to reconstruct the density operator of the
ensemble, we can exploit the overlap formula

Tr��̂Â� = 2��
−�

+� �
−�

+�

W�̂�Q,P�WÂ�Q,P�dQdP �22�

valid for any operator Â and the associated density ma-
trix WÂ�Q ,P� as defined by Eq. �16� with �̂ replaced by

Â. For example, given Âmn= �m�
n� with �m� and �n� the
Fock states, we write �mn=Tr��m�
n��̂� and use Eq. �22�
to determine, one by one, the elements of the density
matrix in the Fock basis.

The intermediate step of reconstructing the Wigner
function can, however, be sidestepped using an im-
proved inverse linear transform scheme introduced by
D’Ariano et al. �1994�, and refined several times to the

5See, for example, Lvovsky and Shapiro �2002� as well as
Zavatta et al. �2007� for a review of definitions and measurable
criteria of a nonclassical nature of a state of light.
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FIG. 3. �Color online� Quantum optical state estimation from
a set of 14 152 experimental homodyne measurements
�Lvovsky and Mlynek, 2002� by means of �a� the inverse Ra-
don transformation and the pattern-function method and �b�
the likelihood maximization algorithm. The Wigner function
and the diagonal elements of the reconstructed density matrix
are shown. The inverse Radon transformation in �a� was per-
formed by means of the filtered back-projection algorithm.
The statistical uncertainties in �b� were determined by means
of a Monte Carlo simulation �see text�. From Lvovsky, 2004.
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present optimal form �Leonhardt et al. 1996; Leonhardt,
1997; D’Ariano et al., 2004�. We combine Eqs. �19� and
�22� to write

Tr��̂Â� = �
0

� �
−�

+�

pr�Q
,
�FÂ�Q
,
�dQ
d


= 
FÂ�Q
,
��Q
,
, �23�

where averaging is meant in the statistical sense over all
acquired values of �Q
 ,
�, and

FÂ�Q
,
� =
1

�
� �

−�

+�

K�Q cos 
 + P sin 
 − Q
�

�WÂ�Q,P�dQdP �24�

is the sampling function. Given a specific operator Â, the
function FÂ does not depend on the experimental histo-
gram pr�Q
 ,
�, but only on the operator itself. It thus
needs to be calculated only once, prior to the experi-
ment, and substituted into Eq. �23� once the data be-
come available.

Specializing to the Fock basis Fmn�Q ,
�
= �1/��ei�m−n�
Mmn�Q�, with Mmn�Q� the so-called pat-
tern functions �D’Ariano et al., 1994; Paul et al., 1995;
Leonhardt and Raymer, 1996�,

Mmn�Q� = − P�
−�

+� �m�x��n�x�
�Q − x�2 dx , �25�

where

�n�x� = 
n�x� = 	 1

�

1/4Hn�x�

�2nn!
exp	−

x2

2

 �26�

are the Fock state wave functions—that is, wave func-
tions of energy eigenstates of a harmonic oscillator. Hn
denote the Hermite polynomials. Figure 3�a� shows an
example of calculating the density matrix using the pat-
tern function method.

Efficient numerical algorithms for computing the pat-
tern functions were given by Leonhardt et al. �1996� and
Leonhardt �1997�. In our experience, the most practical
algorithm involves the irregular wave functions �n�x�,
which are alternative, non-normalizable solutions of the
time-independent Schrödinger equation for the har-
monic oscillator. These functions obey a recursion

�n+1�x� =
1

�2n + 2
�x�n�x� − �n��x�� �27�

with

�0�x� = �3/4 exp	−
x2

2

erfi�x� �28�

and are all readily expressed through the error function
erfi�x�. Once the desired number of irregular wave func-
tions have been calculated, the pattern functions are ob-
tained using

Mmn�x� = ����m�x��n�x��/�x for n � m

���n�x��m�x��/�x for n � m .
� �29�

The pattern function method can be extended to di-
rect sampling, or quantum estimation �Munroe et al.,
1995; Paul et al., 1995�, of the expectation value of any
operator directly without first reconstructing the state.
In many cases, this requires fewer probability functions
to be measured, since less complete information is being
asked for. Indeed, since Wigner functions are linear with
respect to their generating operators, we conclude from

Eq. �24� that for any operator Â=�Amn�m�
n�,

FÂ�Q
,
� = �
m,n

Fmn�Q,
�Âmn

=
1

�
�
m,n


n�Â�m�Mmn�q�exp�i�m − n�
� . �30�

The expectation value 
Â�=Tr��̂Â� can then be calcu-
lated according to Eq. �23�.

For example, if we desire the photon-number prob-

ability pr�j�, we choose Âj= �j�
j�. Then FÂj
�Q ,
�

= �1/��Mjj�Q�, which is independent of phase 
, and Eq.
�23� becomes �Munroe et al., 1995�

pr�j� = Tr��̂�j�
j�� = �
−�

�

dQMjj�Q�
pr�Q,
��
. �31�

This is a convenient result, since only a single probabil-
ity function needs to be measured, while sweeping or
randomizing the phase. Demonstrations of this tech-
nique have been given by Munroe et al. �1995�, Schiller
et al. �1996�, as well as Raymer and Beck �2004�.

Although the techniques of OHT have been general-
ized to fields involving more than one optical mode �spa-
tial, polarization, or temporal� �Opatrný et al., 1996;
Raymer et al., 1996; D’Ariano et al., 2000�, their practical
application is challenging. This is a particular case in
which direct sampling is handy. We can apply it if our
task is to determine the expectation values of certain
observables, but full reconstruction of the multimode
state is not necessary. An example is the acquisition of
correlated photon-number statistics of two-mode fields
�McAlister and Raymer, 1997b; Vasilyev et al., 2000;
Blansett et al., 2001, 2005; Voss et al., 2002�.

B. Maximum-likelihood reconstruction

1. Why maximum likelihood?

Quantum-state reconstruction can never be perfect,
due to statistical and systematic uncertainties in the es-
timation of the measured statistical distributions. In
both discrete- and continuous-variable domains, inverse
linear transformation methods work well only when
these uncertainties are negligible, i.e., in the limit of a
very large number of data and very precise measure-
ments. Otherwise, the errors in the “right-hand side” of
the system of linear equations we are trying to solve can
lead to inaccurate, even seemingly unphysical, features
in the reconstructed state. For example, negative values
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may be found on the diagonal of the reconstructed den-
sity matrix and its trace is not guaranteed to equal 1
�Fig. 3�a��.

In the case of continuous-variable tomography, there
is an additional complication: a harmonic oscillator is a
quantum system of infinite dimension, and no finite
amount of measurement data will constitute a quorum.
In order to achieve reconstruction, one needs to make
certain assumptions that limit the number of free param-
eters defining the state in question. For example, the
filtered back-projection imposes low pass filtering onto
the Fourier image of the Wigner function, i.e., assumes
the ensemble to possess a certain amount of “classical-
ity” �Vogel, 2000�. Such smoothing reduces the accuracy
of the reconstruction �Herman, 1980; Leonhardt, 1997�
and introduces characteristic ripples �Breitenbach et al.,
1997� on the reconstructed phase-space density �Fig.
3�a��.

Although errors cannot be eliminated completely, we
would like a reconstruction method that guarantees a
physically plausible ensemble and minimizes artifacts.
This requirement is satisfied by the maximum likelihood
�MaxLik� approach, which aims to find, among the vari-
ety of all possible density matrices, the one that maxi-
mizes the probability of obtaining the given experimen-
tal data set and is physically plausible. Because this
method is relatively new, but is rapidly gaining popular-
ity, we present here its relatively detailed description.
An even more comprehensive review on quantum Max-
Lik �limited to the discrete domain� has been given by
Hradil et al. �2004�.

2. Classical algorithm

We begin with a discussion of the classical
expectation-maximization method. Consider a certain
system characterized by a set of parameters r� �such that
ri�0 and �iri=1�, which we need to determine. We are
allowed to subject the system to a measurement with a
random outcome. The probability of each possible result
�indexed by j� is related to r� linearly,

prr��j� = �
i

rihij, �32�

where all hij are known positive numbers. The measure-
ment is repeated N times, of which each outcome occurs
fj times. The goal is to infer the parameter set r� from the

set of measurement results f�.
The ideal inference is the one that satisfies the system

of linear equations

fj/N = �
i

rihij. �33�

However, a solution to this system exists only if the
number of parameters is larger than the number of
equations. Otherwise, we have to settle for less: find the
distribution r� which would maximize the probability
�likelihood�

L�r�� = �
j

�prr��j��fj �34�

of the observed measurement result. This approach has
a very large variety of applications ranging from image
deblurring to investment portfolio optimization.

The maximum-likelihood parameter set is determined
by the so-called expectation-maximization �EM� algo-
rithm, which consists of sequential iterations �Dempster
et al., 1977; Vardi and Lee, 1993�

ri
�n+1� = ri

�n��
j

hijrj
�n�

prr��n��j�
, �35�

initialized with some positive vector r. Each single itera-
tion step is known to increase the likelihood. Further-
more, because the likelihood is a convex function, i.e.,
for any two distributions r�1 and r�2 holds

L	 r�1 + r�2

2

 �

L�r�1� + L�r�2�
2

,

the iterations will approach the global likelihood maxi-
mum.

3. The discrete quantum case

A quantum tomographic procedure can be associated
with a positive operator-valued measure �POVM�, with
each possible measurement result described by a posi-

tive operator �̂j, which occurs with a probability

pr�̂�j� = Tr��̂j�̂� . �36�

Here, again, we are dealing with a linear inversion prob-
lem, because the probabilities are proportional to the
density-matrix elements. However, the latter are not
necessarily positive �not even real� and their sum is not
equal to 1, so the EM algorithm in its original form has
only limited application to the quantum case.

In order to reconstruct a quantum state, we introduce
the non-negative operator

R̂��̂� =
1

N�
j

fj

pr�̂�j�
�̂j. �37�

As shown by Hradil �1997�, the state that maximizes the
likelihood �34� obeys the extremal equation

R̂��̂0��̂0 = �̂0R̂��̂0� = �̂0 �38�

as well as

R̂��̂0��̂0R̂��̂0� = �̂0. �39�

One can intuitively understand these equations as fol-
lows: when �̂ is the maximum-likelihood state, we have

fj /N�prj, so the operator R̂ becomes �j�̂j, which is nor-
mally unity.

The analogy to the classical scheme would suggest an

iterative procedure �̂�k+1�= R̂��̂�k���̂�k� based on Eq. �38�.
However, unfortunately, such iteration does not pre-
serve positivity of the density matrix �unless it is guaran-
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teed to be diagonal in some constant basis, in which case
the iteration reduces to Eq. �35�—such as in Banaszek
�1998a, 1998b��. A possible solution is to apply the
expectation-maximization iteration to the diagonalized
density matrix followed by rediagonalization �Řehá~ek
et al., 2001; Artiles et al., 2005�.

A more common approach to constructing the itera-
tive algorithm relies on Eq. �39� �Hradil et al., 2004�. We

choose some initial density matrix as, e.g., �̂�0�=N�1̂�,
and apply repetitive iterations

�̂�k+1� = N�R̂��̂�k���̂�k�R̂��̂�k��� , �40�

where N denotes normalization to a unitary trace. Here-
after, we refer to this scheme as the R�R algorithm.

This iteration ensures positivity of the density matrix
and has shown fast convergence in a variety of experi-
ments. However, there is no guarantee of a monotonic
increase of the likelihood in every iteration; on the con-
trary, there exists a counterexample �Řehá~ek et al.,
2007�. There remains a risk that the algorithm could fail
for a particular experiment.

The remedy against this risk has been proposed by
Hradil et al. �2004� and further elaborated by Řehá~ek et
al. �2007�. These authors present a “diluted” linear itera-
tion

�̂�k+1� = N� Î + 
R̂

1 + 

�̂�k� Î + 
R̂

1 + 

� , �41�

which depends on a single parameter 
 that determines
the “length” of the step in the parameter space associ-
ated with one iteration. For 
→�, the iteration becomes
R�R. On the other hand, in the limit of 
→0, there is
proof that the likelihood will monotonically increase and
the iterations will converge to the maximum-likelihood
state. We thus obtain a reserve algorithm for the case in
which the likelihood fails to increase in the R�R itera-
tion. In practice, however, this situation is not likely.

In some tomography schemes, one or more possible
measurement results may not be accessible and, conse-

quently, Ĝ��j�̂j is not equal to the unity operator.
Then the extremal map �39� should be replaced by

Ĝ−1R̂��̂0��̂0R̂��0�Ĝ−1 = �̂0 �42�

to avoid biased results �Řehá~ek et al., 2001; Hradil et al.
2006; Mogilevtsev et al., 2007�. This issue may become
significant in homodyne tomography reconstruction
which we discuss next.

4. Iterative scheme for homodyne tomography

The applications of MaxLik to homodyne tomography
have been pioneered by Banaszek �1998a, 1998b�, who
reconstructed the photon-number distribution �the diag-
onal density-matrix elements that correspond to a
phase-randomized optical ensemble� from a Monte
Carlo simulated data set by means of the classical EM
algorithm. This idea was then extended to reconstruct-
ing the Wigner function point by point �Banaszek, 1999�

by applying phase-dependent shifts to the experimental
data. In a subsequent publication, Banaszek et al. �1999�
discussed direct MaxLik estimation of the density ma-
trix, but presented no specific algorithm. More recently,
the R�R iterative algorithm was adapted to OHT
�Lvovsky, 2004� and has since been frequently used in
experiments on homodyne reconstruction. We describe
this adaptation below.

For a given local oscillator phase 
, the probability to
detect a particular quadrature value Q
 is proportional
to

pr�̂�Q
,
� � Tr��̂�Q
,
��̂� , �43�

where �̂�Q
 ,
� is the projector onto this quadrature
eigenstate, expressed in the Fock basis as


m��̂�Q
,
��n� = 
m�Q
,
�
Q
,
�n� , �44�

where the wave function 
m �Q
 ,
�=eim
�m�Q
� is given
by Eq. �26�.

Because a homodyne measurement generates a num-
ber from a continuous range, one cannot apply the itera-
tive scheme �40� directly to the experimental data. One
way to deal with this difficulty is to discretize the data by
binning it up according to 
 and Q
 and counting the
number of events fQ
,
 belonging to each bin. In this way,
a number of histograms, which represent the marginal
distributions of the desired Wigner function, can be con-
structed. They can then be used to implement the itera-
tive reconstruction procedure.

However, discretization of continuous experimental
data will inevitably lead to a loss of precision.6 To lower
this loss, one needs to reduce the size of each bin and
increase the number of bins. In the limiting case of infi-
nitely small bins, fQ
,
 takes on the values of either 0 or
1, so the likelihood of a data set ��Qi ,
i�� is given by

L = �
i

pr�̂�Qi,
i� , �45�

and the iteration operator �37� becomes

R̂��̂� = �
i

�̂�Qi,
i�
pr�̂�Qi,
i�

, �46�

where i=1, . . . ,N enumerates individual measurements.
The iterative scheme �40� can now be applied to find the
density matrix which maximizes the likelihood �45�.

In practice, the iteration algorithm is executed with
the density matrix in the photon-number representation.
In order to limit the number of unknown parameters, we
truncate the Hilbert space by excluding Fock terms
above a certain threshold. This is equivalent to assuming
that the signal field intensity is limited. In many experi-

6In fact, recent research shows the precision loss due to
binning to be insignificant. On the other hand, binning
greatly reduces the number of data and thus expedites the
iterative reconstruction algorithm �Mogilevtsev �2007��.
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mental situations, application of this assumption is bet-
ter justified than the low-pass filtering used in the fil-
tered back-projection algorithm.

Figure 3 compares the inverse linear transform and
MaxLik reconstruction methods in application to the ex-
perimental data from Lvovsky and Mlynek �2002�. The
data set consists of 14 152 quadrature samples of an en-
semble approximating a coherent superposition of the
single-photon and vacuum states. We see that the Max-
Lik method eliminates unphysical features and artefacts
that are present in the inverse Radon reconstruction.

5. Error handling

A homodyne detector of nonunitary efficiency � can
be modeled by a perfect detector preceded by an ab-
sorber. In transmission through this absorber, photons
can be lost, and the optical state undergoes a so-called
generalized Bernoulli transformation �Leonhardt, 1997�.
If � is known, the Bernoulli transformation can be in-
corporated into the matrices of the POVM elements

�̂�Q
 ,
� �Banaszek et al., 1999; Lvovsky, 2004�. These

operators can then be used to construct the matrix R̂, so
the iterative algorithm will automatically yield the den-
sity matrix corrected for detector inefficiencies.

Theoretically, it is also possible to correct for the de-
tector inefficiencies by applying the inverted Bernoulli
transformation after an efficiency-uncorrected density
matrix has been reconstructed �Kiss et al., 1995�. How-
ever, this may give rise to unphysically large density-
matrix elements associated with high photon numbers.
Similar concerns about possible numerical instability
arise when the detector inefficiency is being accounted
for in the pattern-function reconstruction �Kiss et al.,
1995�. With the inefficiency correction incorporated, as
described above, into the MaxLik reconstruction proce-
dure, this issue does not arise �Banaszek, 1998b�.

Another source of error in OHT MaxLik estimation
can be the incomplete character of the homodyne mea-

surements: the sum of the projection operators Ĝ

=�i�̂�Qi ,
i� is not an identity operator �even in the
truncated Fock space�. Mogilevtsev et al. �2007� found
that the deviation can be quite significant. This issue can
be resolved by employing the iteration based on the bi-
ased extremal equation �42� instead of Eq. �39�, such as
in the experimental work by Fernholz et al. �2008�.

Finally, we discuss statistical uncertainties of the re-
constructed density matrix. In generic MaxLik algo-
rithms, they are typically estimated as an inverse of the
Fisher information matrix �Rao et al., 1945; Cramér,
1946�. This method can be generalized to the quantum
case �Usami et al., 2003; Hradil et al., 2004�. In applica-
tion to OHT, calculating the Fisher information appears
quite complicated due to a large number of independent
measurements involved.

A sensible alternative is offered by a clumsy, yet
simple and robust bootstrap method. One simulates the
quadrature data that would be associated with the esti-
mated density matrix �̂ML if it were the true state. One

then generates a large number of random sets of homo-
dyne data according to Eq. �43�, then applies the
MaxLik reconstruction scheme to each set, and obtains a
series of density matrices �̂k�, each of which approxi-
mates the original matrix �̂ML. The average difference

��̂ML− �̂k���k evaluates the statistical uncertainty associ-
ated with the reconstructed density matrix. Řehá~ek
et al. �2008� argue that the bootstrap method of error
estimation is less precise than that based on the Fisher
information.

C. Maximum-entropy reconstruction

The maximum-entropy �MaxEnt� method is applied in
the situation opposite to that of the MaxLik approach,
namely, when the number of equations in system �33�
�i.e., the number of available data� is smaller than the
number of unknown parameters. In this case, the solu-
tion is not unique, and MaxEnt looks for the least biased
solution, i.e., the one that maximizes the von Neumann
entropy S=−Tr��̂ log �̂�. Because in OHT one usually
collects a large �104−106� number of data points, the
MaxEnt method is not commonly used. Here we give its
brief overview; more details can be found in Bužek
�2004�.

Consider an OHT experiment, where the acquired
quadrature-phase data ��Qi ,
i�� are binned into a rect-
angular array of dimension NQ�N
. As discussed above
�Sec. III.B.3�, the number of occurrences Gmn in each
bin �m ,n�, associated with the quadrature value Q�n� and
phase 
m, is proportional to the expectation value of the

observable �̂mn= �Q
m

�n��
Q
m

�n��.
We seek the state �̂ that satisfies the MaxEnt principle

while fulfilling the conditions

Tr�̂ = 1, Tr��̂�̂mn� = Gmn. �47�

This state is given by

�̂ME = N�exp	− �0n̂ − �
n=1

NQ

�
m=1

N


�mn�̂mn
� , �48�

where n̂ is the photon-number operator and �’s are the
Lagrange multipliers that are introduced to fulfill the
constraints �47�. Note that the state �48� is guaranteed to
be positive and have trace 1.

The Lagrange multipliers can be found by minimizing
the deviation function

�Q = �
n� − Tr��̂MEn̂��2

+ �
n=1

NQ

�
m=1

N


�Gmn − Tr��̂ME�̂mn��2. �49�

Here 
n� is the mean photon number �which can be de-
termined, for example, from the phase-averaged quadra-
ture variance�. Similarly to the MaxLik case, all calcula-
tions are performed in the Hilbert space truncated by a
certain maximum photon number. Because there are no
restrictions imposed on the Lagrange multipliers, the
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minimum of �Q can be found by means of a generic
optimization algorithm.

Bužek et al. �1996�, as well as Bužek and Drobný
�2000�, have elaborated application of this method to
homodyne tomography and performed reconstruction of
various simulated data sets. They found the results to be
significantly better than those obtained by inverse linear
transform, particularly in situations of incomplete to-
mographic data �marginal distributions available for a
small number of phases or measured on short intervals�.

IV. TECHNICAL ASPECTS

A. Time-domain homodyne detection

When homodyne detection was first introduced to
quantum optical measurements in the mid-1980s, it was
used for evaluating field quadrature noise rather than
full state tomography. Such measurements are conve-
nient to perform in the frequency domain, observing a
certain spectral component �usually around 1–10 MHz,
where technical noise is minimized� of the photocurrent
difference signal using an electronic spectral analyzer.
Frequency-domain detection was used, for example, to
observe quadrature squeezing �Slusher et al., 1985; Wu et
al., 1986�.

Quantum-information applications require measure-
ment of optical modes that are localized in time. Homo-
dyning has to be performed in the time domain: differ-
ence photocurrent is observed in real time and
integrated over the desired temporal mode to obtain a
single value of a field quadrature. Repeated measure-
ments produce a quantum probability distribution asso-
ciated with this quadrature.

In this section, we discuss the design of time-domain
balanced detectors that operate with pulsed local oscil-
lators. The first such detector was implemented by
Smithey et al. �1992� and Smithey, Beck, Raymer, et al.
�1993� in their original quantum tomography experi-
ments. Among subsequent schemes we note that of
Hansen et al. �2001�, which features a higher bandwidth
and a signal-to-noise ratio, as well as that of Zavatta et
al. �2002�, exhibiting a further significant bandwidth in-
crease at a cost of somewhat poorer noise characteris-
tics.

Figure 4�a� shows the main elements of the circuit of
Hansen et al. �2001�, which are typical for today’s pulsed,
time-domain HDs. A pair of high-efficiency photodiodes
are wired in series to subtract their output currents, and
this difference signal is amplified by a charge-sensitive
transimpedance amplifier, followed by a pulse-forming
network. The optics in front of the photodiodes permits
variable attenuation of the input to each photodiode �al-
ternatively, a setting with two polarizing beam splitters
and a half-wave plate between them can be used for
combining the local oscillator and the signal�. Thorough
balancing of the photodiodes’ photocurrents is essential
for the proper operation of the BHD.

With each LO pulse, the detector produces a burst of
amplified subtraction photocurrent �Fig. 4�b��. Because

the response time of the detector is much slower than
the width of the laser pulse, the generated signal is pro-
portional to the time integral of the photocurrent over
the pulse duration. This is a single sample of the field
quadrature noise in the spatiotemporal optical mode of
the local oscillator pulse.

To prove that the pulsed noise generated by the ho-
modyne detector with a vacuum signal input is indeed
the shot noise, one needs to verify that the output rms
noise scales as the square root of the LO power7 �Fig.
4�c��. This is a signature distinguishing the shot noise
from the classical noise �proportional to the local oscil-
lator intensity� and the electronic noise �which is con-
stant� �Bachor and Ralph, 2004�.

Design of time-domain BHD is more technically chal-
lenging than its frequency-domain counterpart. First, the
electronics must ensure time separation of responses to
individual laser pulses. The shot-noise difference charge
must be low-noise amplified within a bandwidth exceed-
ing the local oscillator pulse repetition rate. Second, pre-
cise subtraction of photocurrent is necessary in order to
eliminate the classical noise of the local oscillator. There
is a competition between this requirement, which is
easier satisfied at lower LO energies, and that of a suf-
ficiently strong subtraction signal N−, which increases
with the LO power. The compromise is reached on the
scale of N−�103–106 photoelectons. Finally, the mea-

7This follows from Eq. �13�, because ��L�=�NLO and Q
 vary
on the scale of 1.

FIG. 4. �Color online� Balanced detector for time domain ho-
modyne tomography. �a� Electro-optical scheme. �b� A super-
position of multiple oscilloscope traces of the detector output.
Each pulse produces a time-resolved quantum noise sample.
�c� rms peak amplitude of the noise pulses as a function of the
LO power showing the expected square root power depen-
dence up to the LO intensities of 3�108 photons per local
oscillator pulse. Filled squares show the measured noise vari-
ances, open squares have the electronic noise background cor-
responding to 730 electrons/pulse subtracted. From Hansen et
al., 2001.
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sured quadrature values must not be influenced by low-
frequency noises. The detector must thus provide ul-
tralow noise, high subtraction, and flat amplification
profile in the entire frequency range from �almost� dc to
at least the LO pulse repetition rate.

A typical dilemma faced by a BHD designer is a
tradeoff between the signal-to-noise �more precisely,
shot-to-electronic noise� ratio and the bandwidth
�Raymer and Beck, 2004�. An amplifier with a higher
bandwidth usually exhibits poorer noise characteristics
�Nicholson, 1974; Radeka, 1988�. An additional band-
width limitation arises from the intrinsic capacitance of
photodiodes, which may cause instability in the amplifi-
cation circuit. Technologically, this capacitance is deter-
mined by the thickness of the photodiode p-i-n junction;
reducing this thickness compromises the quantum effi-
ciency. A homodyne detector with a time resolution ca-
pable of accommodating a typical repetition rate of a
mode-locked, pulsed Ti:sapphire laser �around 80 MHz�
was demonstrated by Zavatta et al. �2002� and Zavatta,
Viciani, and Bellini �2006�.

Suppression of homodyne detector electronic noise is
important for quantum-state reconstruction. As shown
by Appel et al. �2007�, the presence of the noise leads to
an equivalent optical loss of 1/S, where S is the detec-
tor’s shot-to-electronic noise ratio at the particular local
oscillator power.

We note that time-domain homodyne detection finds
its applications not only in quantum tomography, but
also in other fields of quantum and classical technology.
One example is shot-noise-limited absorption measure-
ments at subnanowatt power levels achievable thanks to
the very low technical noise �Hood et al., 2000�. Another
is ultrafast, ultrasensetive linear optical sampling for
characterizing fiber optical systems �Dorrer et al., 2003�.
Time-domain homodyning is also an essential element of
continuous-variable quantum cryptography �Grosshans
and Grander, 2002; Silberhorn et al., 2002; Funk, 2004;
Lodewyck et al., 2007�.

B. Matching the mode of the local oscillator

1. The advanced wave

In homodyne detection, the spatiotemporal optical
mode to be measured is determined by that of the local
oscillator. In this way, OHT provides indirect informa-
tion on the modal structure of the signal field. This is
useful for evaluating quantum optical information pro-
cessing systems, which require that interacting optical
qubits be prepared in identical, pure optical modes. On
the other hand, achieving the mode matching between
the local oscillator and the signal, or even preparing the
signal state in a well-defined, pure spatiotemporal mode,
can be challenging. In this section, we discuss the mode-
matching techniques, specializing to a particular case of
the signal state being a heralded single photon.

In order to prepare a heralded photon, a parametric
down-conversion �PDC� setup is pumped relatively
weakly so it generates, on average, much less than a

single photon pair per laser pulse �or the inverse PDC
bandwidth�. The two generated photons are separated
into two emission channels according to their propaga-
tion direction, wavelength, and/or polarization. Detec-
tion of a photon in one of the emission channels �labeled
trigger or idler� causes the state of the photon pair to
collapse, projecting the quantum state in the remaining
�signal� channel into a single-photon state �Fig. 5�a��.
Proposed and tested experimentally by Hong and Man-
del �1986� as well as Grangier et al. �1986�, this technique
has become a workhorse for many quantum optics ex-
periments.

The biphoton is a complex entangled state with many
parameters �spectrum, direction, polarization, etc.� of
the two photons highly correlated,

��st� =� ��	s,	t,k� s,k� t��1	s,k
�

s
��1	t,k

�
t
�d	sd	tdk� sdk� t,

�50�

where 	 and k� denote the frequencies and wave vectors
of the signal and trigger photons. If the trigger photon is
measured with any uncertainty in one of these param-
eters, the signal photon will be prepared in a nonpure
state,

�s = TrtT�	t,k� t���si�
�si� , �51�

where T�	t ,k� t� is the transmission function of the filters
in the trigger channel defining the measurement uncer-
tainty.

Formation of the heralded mode has been illustrated
by the heuristic concept of advanced waves proposed by
Klyshko �1988a, 1988b, 1988c� and further advanced by
Aichele et al. �2002�. According to this concept, the trig-
ger photon detector is replaced with a fictitious light
source, which, at the moment of detection, produces a
classical incoherent electromagnetic wave traveling

FIG. 5. Parametric down-conversion and the advanced wave
model. �a� Preparation of single photons by conditional mea-
surements on a biphoton state. �b� The Klyshko advanced
wave model. The trigger detector is replaced with an incoher-
ent light source, which generates an incoherent advanced wave
propagating backwards in space and time. Nonlinear interac-
tion of this wave with the pump produces a difference-
frequency pulse that mimics that of the conditionally prepared
photon. �c� In an experiment, a laser beam, aligned for maxi-
mum transmission through all the filters, can model the ad-
vanced wave. From Aichele et al., 2002.
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backwards in space and time �see Fig. 5�b��. When
propagating through the trigger channel filters, the ad-
vanced wave acquires some degree of spatiotemporal
coherence, quantified by the filters’ width. It then enters
the down-conversion crystal and undergoes nonlinear
interaction with the pump pulse, generating a
difference-frequency pulse. This pulse turns out to be
completely identical, in its modal characteristics, to the
optical mode of the conditionally prepared single pho-
ton �Aichele et al., 2002�, and is thus helpful for visual-
izing many of its properties.

Suppose, for example, that the pump is pulsed �fem-
tosecond or picosecond�. Because the timing jitter of the
photon counter event is typically on the order of a nano-
second, the exact moment when the photon pair has
been emitted is uncertain, so the advanced wave can be
assumed continuous in time. The nonlinear interaction
between the advanced wave and the pump is, however,
restricted by the spatiotemporal window determined by
the coherent pump pulse. If the latter is much narrower
than the coherence time and coherence width of the ad-
vanced wave, the difference-frequency pulse will be al-
most transform limited, in both the spatial and temporal
dimensions.

We conclude that narrow spatial and spectral filtering
of the trigger photon can be used to obtain the signal
photon in a pure spatiotemporal mode. To the best of
our knowledge, for the first time this fact was stated by
Zukowski et al. �1995�, independently by Rarity �1995�,
and later confirmed in a more detailed study by Ou
�1997�. Specifically in the context of OHT, theoretical
treatment was given by Grosshans and Grangier �2001�
as well as by Aichele et al. �2002�.

Mode purity of the signal photon does not by itself
guarantee its matching to the local oscillator. The ad-
vanced wave model suggests the following experimental
procedure for achieving this matching. Although the ad-
vanced wave propagates backwards in space and time
and is thus a purely imaginary object, it can be modeled
by a forward-going alignment beam inserted into the
trigger channel so that it overlaps spatially and tempo-
rally with the pump beam inside the crystal and passes
through the optical filters �Fig. 5�c��. Nonlinear interac-
tion of such an alignment beam with the pump wave will
produce difference frequency generation into a spa-
tiotemporal mode similar �albeit no longer completely
identical� to that of the conditionally prepared single
photon. If one observes and optimizes the interference
pattern between this wave and the local oscillator, one
can be sure that, after blocking the alignment beam, the
mode of the signal photon will be matched to that of the
local oscillator �Aichele et al., 2002�.

Controlling the spatial mode of the signal photon is
simplified if a single-mode optical fiber is used as an
optical filter instead of a pinhole arrangement. Such a
filter automatically selects a pure spatial mode in the
trigger channel, which transforms to a spatially pure sig-
nal photon. It is also advantageous in terms of the pair
production rate �Ourjoumtsev, Tualle-Brouri, Laurat, et
al. �2006�, supporting material�. Unfortunately, there is

no similar arrangement possible for the spectral �tempo-
ral� mode matching.

2. Decorrelating photons

Reducing the spectral linewidth of the trigger filter
will improve the mode purity of the heralded photons,
but also reduce their production rate. This compromise
would be avoided if we could arrange the PDC setup in
such a way that the trigger and signal photons in the
output of the down-converter are uncorrelated: the
function � in Eq. �50� could be written as

��	s,	t� = �s�	s� � �t�	t� . �52�

In this case, detection of any photon in the trigger chan-
nel signifies that the signal photon has been emitted into
a pure spatiotemporal mode defined by the function �s.

The first detailed theoretical inquiry into preparation
of uncorrelated down-conversion spectra was made by
Grice et al. �2001�, based on general theoretical analysis
of Keller and Rubin �1997�. This theory was further
elaborated by U’Ren et al. �2005, 2007�. The configura-
tion of the correlation function � depends primarily on
the energy-conservation condition

	s + 	t = 	p �53�

and the phase-matching condition

k� s + k� t � k�p. �54�

For any generated pair of photons with parameters
�	s ,k� s ,	t ,k� t�, there must exist a pump photon �	p ,k�p�
for which the above equations are satisfied.

Suppose the PDC occurs in an almost collinear con-
figuration and the crystal is aligned so that Eqs. �53� and
�54� hold simultaneously for the central pump frequency
	p0 and some signal and idler frequencies 	s0 and 	t0,
respectively. The frequency and wave vector are con-
nected through dispersion relations d	=vgrd�k� �, where
vgr is the wave’s group velocity. Neglecting dispersion
orders higher than 1 �analysis beyond this approxima-
tion has been made by U’Ren et al. �2005��, we cast Eq.
�54� into the form

	s − 	s0

vgr,s
+

	t − 	t0

vgr,t
=

	p − 	p0

vgr,p
. �55�

Equations �53� and �55�, plotted in the �	s ,	t� plane with
	p=	p0, form straight lines crossing at �	s0 ,	t0�.

Considered more accurately, the lines defined by these
equations are not infinitely narrow. This is because the
pump is pulsed, so it contains photons not only at 	p0,
but in a finite frequency range �	p−	p0��� /�p deter-
mined by the inverse pump pulse width �p. The phase-
matching condition also has a tolerance �k� s+k� t−k�p�
�� /Lc, where Lc is the crystal length that limits the
region of nonlinear optical interaction. The down-
conversion spectrum is thus determined by the overlap
of two band-shaped areas in the �	s ,	t� plane �Figs. 6�a�
and 6�b��.
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As can be seen, the spectrum does not automatically
uphold Eq. �52�. However, by choosing the crystal length
and other parameters of PDC, one can engineer the tilt
angle and width of the spectral region in which phase
matching is satisfied, such that the overlap area can be
expressed in the product form �52�, implying uncorre-
lated photon spectra. The condition that has to be ful-
filled takes the form �Grice et al., 2001�

1

�2 = − 0.048L2	 1

vgr,p
−

1

vgr,s

	 1

vgr,p
−

1

vgr,t

 , �56�

where L is the crystal length and � is the pump spectrum
width.

There exist several theoretical proposals on shaping
the phase-matching region. Grice et al. �2001� found that
Eq. �56� is satisfied in a BBO crystal for degenerate col-
linear type-II down-conversion if the pump wavelength
is set to 800 nm �Figs. 6�c� and 6�d��. They calculated a
number of alternative down-conversion configurations
with decorrelated spectra. U’Ren et al. �2003� proposed
to implement PDC in a slightly noncollinear configura-
tion and imposed additional restrictions onto the signal-
idler spectrum by collecting only the photons emitted at
certain angles. In theoretical works by Walton et al.
�2003, 2004�, down-conversion occurs in a nonlinear
waveguide, pumped almost orthogonally to the guided
direction. This also allows restricting the transverse

components of the signal and idler photon momenta, but
without compromising the pair production rate and with
the possibility to choose the central wavelength of each
photon. Torres et al. �2005� proposed to engineer the
down-conversion spectrum by employing a chirped,
tilted pump and utilizing the Poynting vector walk-off
effect. Raymer et al. �2005� put forward the idea of plac-
ing the down-conversion crystal into a microcavity,
whose linewidth is much narrower than that allowed by
the energy conservation and phase-matching conditions.
This leads to a spectrally uncorrelated biphoton in a spa-
tial mode defined by the cavity. U’Ren et al. �2006, 2007�
theoretically showed that the group delays can be con-
trolled by means of a periodic assembly �superlattice� of
nonlinear crystals and birefringent spacers, and per-
formed a proof-of-principle experiment to this effect, al-
beit without actually achieving an uncorrelated spec-
trum.

The only experimental demonstration of a virtually
uncorrelated down-conversion spectrum to date has
been offered by Mosley et al. �2008�. They used a rela-
tively long potassium-dihydrogen-phosphate �KDP�
crystal and a pump wavelength of 415 nm. Under these
conditions, the pump will propagate with the same
group velocity as the idler photon. Then the region al-
lowed by the phase-matching condition �Fig. 6�b�� be-
comes vertical and narrow, so the overlap region exhib-
its almost no correlation. This was confirmed by
observing high-visibility Hong-Ou-Mandel interference
of heralded signal photons from separate crystals.

3. The continuous-wave case

A completely different approach to producing her-
alded photons must be taken if the pump is monochro-
matic �continuous� and down-conversion occurs in an
optical cavity, such as in Neergaard-Nielsen et al. �2007�.
Spatial mode matching is simplified in this configuration
because both photons are prepared in the spatial mode
of the cavity. The biphoton spectrum is determined by
the cavity transmission spectrum: it consists of narrow �a
few MHz� equidistant modes separated by the cavity
free spectral range �FSR�.8 If the down-converter is
pumped at a frequency 2	0 �where 	0 coincides with one
of the cavity resonances�, down-converted photons will
be generated at frequencies 	0±n�FSR �Fig. 7�.

Because the cavity itself acts as a spectral filter, addi-
tional narrow filtering of the trigger channel is not nec-
essary to generate a spectrally pure heralded photon. It
is sufficient to apply a spectral filter that would transmit
one of the cavity modes �e.g., 	t=	0−FSR�. In order to
determine the temporal mode of the heralded photon,
we again resort to the advanced wave model. In contrast
to the pulsed laser case, the timing uncertainty of the
trigger photon detection event is much smaller than the
inverse spectral width of the biphoton �determined by
the inverse cavity line width�. The advanced wave can

8The free spectral range of a cavity equals the inverse
roundtrip time of a photon inside the cavity.

FIG. 6. Shape of the biphoton correlation spectrum deter-
mined by �a� the energy conservation condition �53�, �b� ge-
neric phase matching �55� in the case of collinear type II PDC
in a BBO crystal pumped at 400 nm, �c� engineered phase
matching �collinear type II PDC in a BBO crystal pumped at
800 nm�, and �d� cumulative effect of conditions �a� and �c�.
The inset in �d� shows the Schmidt decomposition of the bi-
photon spectrum ��	s ,	i�=�m

��mum�	s�vm�	i�; with a proper
combination of geometrical parameters of the experiment, the
Schmidt decomposition contains only one term, i.e., the spec-
trum �d� is uncorrelated. From Grice et al., 2001.
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thus be considered to be an infinitely short pulse. This
pulse enters the cavity and interacts with the pump, pro-
ducing a difference-frequency pulse at 	s=	0+FSR
which, in turn, gets filtered by the cavity. Because the
cavity spectrum is approximately Lorentzian, the tempo-
ral shape of the conditionally prepared mode is given by
the Fourier transform of the cavity line:

f�t,tc� = e��t−tc�, �57�

where tc is the moment of the trigger event and � is the
half-width at half-maximum �HWHM� of the cavity line-
width �Fig. 8�a��.9

Homodyne detection of the field in this mode requires
a local oscillator pulse with the temporal shape �gL�t�
in Eq. �8�� identical to f�t , tc�. Such a pulse can be
“tailored” from a continuous laser field by means of
acousto- or electro-optical amplitude modulation. An al-
ternative, more practical, procedure consists of using a
continuous local oscillator �gL�t�=1� and continuously
acquiring the difference photocurrent I�t� as a function
of time. The acquired photocurrent is then post-
processed according to N−��I�t�f�t , tc�dt . As evidenced
by Eq. �10�, the integrated difference charge is the same
as that obtained with a pulsed LO. This idea was first
utilized by Neersgaard-Nielsen et al. �2006� and subse-
quently by Neersgaard-Nielsen et al. �2007� and Wakui et
al. �2007�.

4. Strong pumping mode

We now discuss the regime of strong-pump PDC, such
that the number of pairs generated within the time pe-
riod corresponding to the inverse down-conversion
bandwidth is not negligible. This case is complicated and
largely uninvestigated for the following reason: if there
exists any correlation in the joint time or spectral distri-
butions of the signal and trigger photons, narrow filter-
ing of the trigger channel does not guarantee purity of
the signal state. For example, in the monochromatic-
pump case, a trigger event at time tc heralds the pres-
ence of a photon in the mode f�t , tc� but does not ensure
that no incoherent contributions are present from pho-

tons in “nearby” modes f�t , tc�� �Fig. 8�b��. In order to
prepare a high-purity state, one needs to have a high-
efficiency detector, which will not only trigger a pair pro-
duction event, but will also ensure there are no more
events nearby. If the state to be prepared is more com-
plex than a Fock state, such as a Schrödinger kitten
state, the situation is even more complicated.

The strong pumping case in the context of preparing
single and multiple heralded photons was investigated
by Mølmer �2006� as well as Nielsen and Mølmer �2007a,
2007b� and Rohde et al. �2007�. Sasaki and Suzuki �2006�
reported a comprehensive theoretical study employing
mode expansion in the basis of prolate spherical func-
tions, and they obtained analytical expressions for a few
limiting cases.

Experimental handling of the mode mismatch in the
strong pumping case is, on the other hand, relatively
straightforward �Ourjoumtsev, Tualle-Brouri, and
Grangier, 2006; Ourjoumtsev, Tualle-Brouri, Laurat, et
al., 2006; Ourjoumtsev et al., 2007�. One introduces an
empiric probability � that the state heralded by a click in
the trigger detector belongs to the mode analyzed by the
homodyne detector. With probability 1−�, the heralded
state belongs to an orthogonal mode, which is equivalent
to a dark count event. The actual value of � can be found
from the experimental data statistics.

V. APPLICATIONS IN QUANTUM TECHNOLOGY

Implementation of light for the purposes of QI tech-
nology relies on our ability to synthesize, manipulate,
and characterize various quantum states of the electro-
magnetic field. OHT is used in optical quantum informa-
tion as a way to solve the last of the above tasks. In this
section, we discuss applications of OHT to “discrete-
variable” quantum-optical information and quantum-
optical technology in general. We review the new states
of light that have been created in the past few years,
methods of their preparation, and their tomographic re-
construction.

It is convenient to restrict this review by the temporal
boundaries of the present century. The only nonclassical
state of light investigated by OHT prior to 2001 was the
squeezed state �Smithey, Beck, Cooper, et al., 1993;

9Equation �57� has to be modified if the weak pumping limit
is not applicable �Mølmer, 2006; Sasaki and Suzuki, 2006�.
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FIG. 8. Temporal modes of the trigger �1� and signal �2� pho-
tons. Assuming that the time resolution of the trigger detector
is very high, the signal mode is defined by Eq. �57�. Cases �a�
and �b� correspond to the weak and strong pumping regimes,
respectively. From Mølmer, 2006.
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FIG. 7. �Color online� Spectrum of the Fabry-Perot parametric
cavity. If one of the spectral modes �	t� is selected in the trig-
ger channel, a click of the trigger detector heralds production
of the signal photon in a pure cavity mode at 	s=2	0−	t.

314 A. I. Lvovsky and M. G. Raymer: Continuous-variable optical quantum-state …

Rev. Mod. Phys., Vol. 81, No. 1, January–March 2009



Breitenbach et al., 1997�. The past few years, on the con-
trary, have shown a technology boom, resulting in a
plethora of new quantum optical states �Table I�, some
of which are significant not only to QI technology, but to
the basic concepts of quantum physics.

A. Two-mode squeezed vacuum

1. Description of the state

Consider an idealized nondegenerate parametric
amplifier in which photons are emitted into two well-

defined optical modes â and b̂ �Barnett and Knight,
1985; Gerry and Knight, 2005�. Parametric down-
conversion in this setting is governed by the Hamil-

tonian Ĥ= i��â†b̂†− âb̂�, where � is proportional to the
second-order nonlinear susceptibility and the pump

field. Assuming the initial state of modes â and b̂ is
double vacuum �0, 0�, the evolution for time t will result
in the two-mode squeezed vacuum �twin-beam� state

��� =
1

cosh r �
n=0

�

�tanh r�n�n,n� , �58�

where r=�t. In the absence of absorption, the numbers
of photons in the two modes are perfectly correlated.

Amplitudes of n-pair states obey thermal statistics.
The entangled state �58� has the following wave func-

tion:


Q1,Q2��� =
1

��
exp�−

1
4

e2r�Q1 − Q2�2

−
1
4

e−2r�Q1 + Q2�2� �59�

in the position basis and


P1,P2��� =
1

��
exp�−

1
4

e2r�P1 + P2�2

−
1
4

e−2r�P1 − P2�2� �60�

in the momentum basis. As evidenced by these equa-
tions, although the individual variances of the quadra-
ture observables in each mode are above that of the
vacuum state, the positions associated with the two
modes are correlated, and the momenta are anticorre-
lated in a highly nonclassical manner. In the limit r→�,
state ��� approaches that described by Einstein et al.
�1935�. This state has many applications in quantum-

TABLE I. Quantum states recently characterized by OHT.

Reference State

Vasilyev et al. �2000� Two-mode squeezed vacuum
Wenger et al. �2005�
D’Auria et al. �2009�

Lvovsky et al. �2001� Single-photon Fock state
Zavatta et al. �2004b� �1�
Neergaard-Nielsen et al. �2007�

Lvovsky and Babichev �2002� Displaced single photon

Lvovsky and Mlynek �2002� Single-rail qubit
Babichev et al. �2003� ��0�+��1�
Babichev, Brezger, and Lvovsky �2004�
Zavatta, D’Angelo, Parigi, et al. �2006�

Babichev, Appel, and Lvovsky �2004� Dual-rail qubit
D’Angelo et al. �2006� ��0,1�+��1,0�

Zavatta et al. �2004a� Photon-added coherent state
Zavatta et al. �2005� â†���

Zavatta et al. �2007� Photon-added thermal state
Parigi et al. �2007�

Ourjoumtsev, Tualle-Brouri, and Grangier �2006� Two-photon Fock state �2�

Wenger et al. �2004b� Photon-subtracted squeezed
Neergaard-Nielsen et al. �2006� state �Schrödinger kitten�
Ourjoumtsev, Tualle-Brouri, Laurat, et al. �2006� �1�+��3�, where �� � �1
Wakui et al. �2007�

Ourjoumtsev et al. �2007� Squeezed Schrödinger cat
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information technology, for example, as a primary re-
source for complete quantum teleportation �Furusawa et
al., 1998�, quantum communication �van Loock, 2002�,
imaging �Lugiato et al., 2002�, and process tomography
�D’Ariano and Lo Presti, 2001�.

Optical losses and spurious nonlinearities degrade the
twin-beam state, making the bipartite photon number
correlation imperfect and removing the minimum-
uncertainty character of quadrature variances. A natu-
rally arising question in this context is whether, and to
which extent, this degraded state can still be used as an
entangled resource in quantum-information technology.
This question can be answered analytically if the two-
mode state remains Gaussian.10 Bipartite Gaussian
states have been investigated extensively and their nec-
essary and sufficient entanglement criteria have been
elaborated on �Reid, 1989; Duan et al., 2000; Simon,
2000�.

Importantly, a Gaussian state is fully described by the
first and second moments of its quadrature operators. In
most practical cases, the first moments �mean coherent
amplitudes� vanish. If a bipartite state is known to be
Gaussian, determining the 4�4 covariance matrix


X̂iX̂j�, where �X̂i�= �Q̂1 , P̂1 ,Q̂2 , P̂2�, is sufficient for its
complete characterization and evaluation of its en-
tanglement.

2. Homodyne characterization

As any bipartite state, the two-mode squeezed
vacuum can be fully characterized by subjecting both
modes to homodyne detection and measuring two-
dimensional quadrature histograms for all phases of
both local oscillators �Fig. 9�a��. To the best of our
knowledge, such a complete experiment has not yet
been performed, but has been approached in different
ways.

The first homodyne measurement of the twin-beam
state was performed in a landmark work by Ou et al.
�1992�. The experiment used a continuous-wave para-
metric amplifier as the source and proceeded along the
scheme of Fig. 9�a�. Quadrature correlations measured
in the two modes satisfied the Einstein-Podolsky-Rosen
nonlocality criterion introduced by Reid �1989�.

This experiment, as well as many subsequent works
�e.g., Zhang et al., 2000; Schori et al., 2002; Bowen et al.,
2004; Laurat et al., 2005�, did not aim to fully character-
ize the state, but only to demonstrate and quantify its
entanglement. For this purpose, it was sufficient to mea-
sure quadrature noise correlations in the frequency do-
main.

The first measurement on the twin-beam state that
can be classified as OHT was performed by Vasilyev et
al. �2000�. The experiment, again, used the scheme of
Fig. 9�a�, but employed a pulsed laser and featured time-

domain homodyne measurements, allowing direct sam-
pling of the quadrature noise. The local oscillator phases
were allowed to vary randomly, so no phase-sensitive
information was recovered, but photon number correla-
tions between the two modes were determined �Fig.
9�c��. Due to losses and complex modal structure of the
down-conversion output, this correlation was not perfect
as predicted by Eq. �58�. However, the observed statis-
tics were clearly nonclassical.

More recently, two experiments exploited a simplified
setup with only one homodyne detector �Fig. 9�b�� to
characterize the twin-beam state, along the lines of pro-
posals by McAlister and Raymer �1997a�, Richter �1997�,
Raymer and Funk �1999�, and D’Auria et al. �2005�. In
Wenger et al. �2005�, the “mode mixer” consisted of a
phase shift applied to one of the twin beams and a sym-
metric beam splitter. Homodyne detection was then ap-

10A Gaussian state is a state whose Wigner function is Gauss-
ian. Linear losses, second-order nonlinearities and phase-space
displacements preserve the Gaussian character of a state.
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FIG. 9. �Color online� Homodyne characterization of the
twin-beam state. �a� Scheme of the experimental setup for di-
rect OHT. NOPA denotes nondegenerate optical parametric
amplifier. �b� A simplified setup with one homodyne detec-
tor; “mode mixer” is a linear-optical device �see text�. �c� Left:
joint photon-number probability distribution. Right: difference
photon-number distributions corresponding to the graph on
the left �filled circles, experimental data; solid lines, theoretical
predictions; dashed lines, difference photon-number distribu-
tions for two independent coherent states with the same total
mean number of photons�. From Vasilyev et al., 2000. �d� Re-
constructed Wigner functions for modes ĉ= �â+ b̂� /�2 and d̂

= �â− b̂� /�2 show squeezing in position and momentum, re-
spectively. From D’Auria et al., 2009.
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plied to the beam splitter outputs, whose mode operator

can be written as �â+ei
b̂� /�2 �where the phase 
 is de-
termined by the phase shifter�. Additionally, single-
mode quadrature distributions were measured by block-
ing one of the PDC output modes. By measuring
quadrature distributions at different values of 
 and dif-
ferent local oscillator phases, the symmetric and Gauss-
ian character of the bipartite state has been verified,
nonvanishing elements of the covariance matrix deter-
mined, and entanglement quantified.

In an experiment by D’Auria et al. �2009�, PDC took
place in a periodically poled KTiOPO4 crystal, with the
produced photons being identical in terms of both fre-
quency and spatial mode, but having orthogonal polar-
ization. In this way, the modes could be mixed by means
of a half- and/or quarter-wave plate, followed by a po-
larizer. Quadrature noise statistics were measured for

modes â, b̂, ĉ= �â+ b̂� /�2, d̂= �â− b̂� /�2, ê= �iâ+ b̂� /�2, f̂

= �iâ− b̂� /�2, which was sufficient to assess the Gaussian
nature of the state and to fully determine the covariance
matrix �Fig. 9�d��. From the latter, photon-number sta-
tistics �similarly to the work of Vasilyev et al. �2000� dis-
cussed earlier� were evaluated.

B. Fock state tomography

The first non-Gaussian state to be studied by OHT
�Lvovsky et al., 2001� is the single photon. This is not
surprising, given the role this state plays in basic and
applied quantum optics. Another important motivation
for this experiment was to demonstrate reconstruction
of an optical state whose Wigner function takes on nega-
tive values.

The schematic and results of the experiment are
shown in Fig. 10. The experiment employed a picosec-
ond Ti:sapphire laser at a 790-nm wavelength. Pulsed
single photons were prepared by conditional measure-
ments on a biphoton state generated via parametric
down-conversion �in the weak pumping regime�. Narrow
spatiotemporal filtering of the trigger photon was used
as outlined in Sec. IV.B. The field state in the signal
channel was characterized by means of optical homo-
dyne tomography.

Remarkably, all imperfections of the experiment
�losses in transmission of the signal photon, quantum
efficiency of the HD, trigger dark counts, mode match-
ing of the signal photon and the local oscillator, and spa-
tiotemporal coherence of the signal photon� had a simi-
lar effect on the reconstructed state: admixture of the
vacuum �0� to the ideal Fock state �1�,

�meas = ��1�
1� + �1 − ���0�
0� . �61�

The greater the efficiency �, the deeper the “well” in the
Wigner function; classically impossible negative values
are obtained when ��0.5. The original 2001 experiment
showed �=0.55±0.01; later, this value was improved to
0.62.

An interesting feature of the optical single-photon
state reconstruction is that the technique of homodyne

tomography can be fully understood in the framework
of classical physics. This measurement could have been
conducted �and interpreted� by someone who does not
believe in quantum mechanics. Yet the result of negative
quasiprobabilities would appear absurd, incompatible
with classical physics—thus providing strong evidence of
“quantumness” of our world.

A version of the single-photon Fock state tomography
experiment, featuring a fast homodyne detector, allow-
ing measurements at a full repetition rate of the pulsed
laser �82 MHz�, was reported by Zavatta et al. �2004b�.

Tomography of the two-photon Fock state �2� was re-
ported by Ourjoumtsev, Tualle-Briori, and Grangier
�2006�. The experimental arrangement is similar to that
of Fig. 10�a�, but the trigger channel is split and directed
into two single-photon detectors, whose simultaneous
click triggers a homodyne measurement. In order to ob-
tain a sufficient rate of such events, the parametric gain
has to be non-negligible, which significantly complicates
the analysis of the experiment. Ourjoumtsev and co-
workers found that the experimentally observed state
can be fit by a theory taking into account five experi-
mental parameters:

• gain of the down-converter,
• excess gain of a fictitious phase-independent ampli-

fier placed after the �ideal� down-converter,
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FIG. 10. �Color online� The experiment on quantum tomogra-
phy of the single-photon Fock state. �a� Simplified scheme, �b�
45 000 raw quadrature noise samples for the vacuum state and
the Fock state, �c� the density matrix �diagonal elements� re-
constructed using the quantum-state sampling method, and �d�
the reconstructed Wigner function is negative near the origin
point because the measurement efficiency reaches 62%. Side
projections show phase-randomized marginal distributions for
the measured vacuum and Fock states. Partially reproduced
from Lvovsky et al., 2001; Lvovsky and Babichev, 2002.
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• BHD efficiency �including optical losses�,
• BHD electronic noise �whose effect is identical to

optical loss, see Sec. IV.A�,
• probability � that the single-photon detection events

correspond to a heralded mode that matches the local
oscillator �see Sec. IV.B�.

By optimizing these parameters, negative values of
the experimental Wigner function were obtained.

C. The optical qubit

1. The dual-rail qubit

As discussed in Sec. I.B.1, one application of OHT,
where it can be of an advantage compared to other state
characterization methods, is measurement of systems of
dual-rail optical qubits. Tomography of one dual-rail qu-
bit was performed by Babichev, Appel, and Lvovsky,
�2004�.11 A dual-rail qubit, described by the state

��dual-rail� = ��1A,0B� − ��0A,1B� , �62�

is generated when a single photon �1�, incident upon a
beam splitter with transmission �2 and reflectivity �2, en-
tangles itself with the vacuum state �0� present in the
other beam splitter input. To perform tomography mea-
surements, BHDs �associated with fictitious observers
Alice and Bob� were placed into each beam splitter
output channel �Fig. 11�a��. With every incoming pho-
ton, both detectors made measurements of field quadra-
tures Q
A and Q
A with the local oscillators’ phases set
to 
A and 
B, respectively. Figure 11�b� shows histograms
of these measurements, which are the marginal distribu-
tions of the four-dimensional Wigner function of the
dual-rail state. They have been used to determine the
state via the maximum-likelihood technique �Sec. III.B�,
resulting in the density matrix shown in Fig. 11�c�.
As expected, the reconstruction reveals all terms in
the density matrix, including those �e.g., double vacuum
�0,0�
0,0�� usually missed by the photon-counting
method.

Time-encoded dual-rail optical qubits were prepared
and characterized by D’Angelo et al. �2006�. The trigger
channel of the PDC entered a fiber Michaelson interfer-
ometer whose path length difference was equal to the
optical path inside the cavity of the master mode-locked
Ti:sapphire laser. The trigger detector, placed at the out-
put of the interferometer, is then unable to distinguish
between a photon generated by some nth pump pulse
that has traveled the long path of the interferometer and
a photon generated by the �n+1�th pulse that has taken
the shorter path. The conditional state was thus pre-
pared in a coherent superposition

��� =
1
�2

��1�n�,0�n+1�� + e−i��0�n�,1�n+1��� , �63�

where the phase � could be controlled by one of the
interferometer mirrors. For characterizing the above
state, a single homodyne detector suffices, but its signal
has to be acquired at two different moments in time.

2. Nonlocality of the single photon

Whether the state �62� can be considered entangled is
a widely debated issue. This controversy seems to be
related to the wave-particle duality of light. If the pho-
ton is viewed as a state of the electromagnetic oscillator,
the notation �62� is valid and denotes an entangled entity
�van Enk, 2005�. If, on the other hand, a photon is con-
sidered to be a particle, i.e., not a state but a carrier of a
state, e.g., of a polarization state, the dual-rate qubit
should be written as a superposition of two localizations
of one photon, which may not be seen as entangled.
Advocates of the former view proposed experiments us-
ing the split single photon to demonstrate quantum non-
locality �Oliver and Stroud, 1989; Tan et al., 1991; Jacobs
and Knight, 1996; Banaszek and Wodkiewicz, 1999;
Hessmo et al., 2004�; others disputed them �Greenberger
et al., 1995; Vaidman, 1995�.

It is in the inherent nature of OHT to interpret the
photon as a state of a field rather than a particle “in its
own right.” In experiments on homodyne tomography of
the delocalized photon, Babichev, Appel, and Lvovsky,

11A deterministic OHT scheme for two-mode state recon-
struction in the Fock basis was first proposed and tested nu-
merically by Raymer et al. �1996�. A detailed theoretical analy-
sis of different aspects of such an experiment was also made by
Jacobs and Knight �1996� as well as Grice and Walmsley
�1996�.

FIG. 11. �Color online� The experiment on homodyne tomog-
raphy of the dual-rail qubit. �a� Scheme of the experimental
setup. �b� Histograms of the experimental quadrature statistics
pr�
�Q
A ,Q
B� for a symmetric beam splitter. Phase-dependent
quadrature correlations are a consequence of the entangled
nature of the state ��qubit�. Also shown are individual histo-
grams of the data measured by Alice and Bob, which are phase
independent. �c� Density matrix �absolute values� of the mea-
sured ensemble in the photon number representation. From
Babichev, Appel, and Lvovsky, 2004.
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�2004� and D’Angelo et al. �2006� presented different ar-
guments that OHT characterization of the dual-rail qu-
bit �62� can be interpreted to violate Bell-type inequali-
ties, albeit with loopholes. Appel, and Lvovsky,
Babichev �2004� converted quadrature measurements to
a dichotomic format by means of a fictitious discrimina-
tor. Correlations between the discriminator outputs ac-
quired by Alice and Bob exhibited a Bell-like interfer-
ence pattern. For sufficiently high threshold values, its
amplitude exceeds 1/�2 and the Bell inequality is vio-
lated. D’Angelo et al. �2006� determined the Wigner
function of the measured dual-rail state and showed it to
violate the Bell test of Banaszek and Wodkiewicz �1999�.

Further evidence of the entangled nature of the delo-
calized single photon is its applicability as a resource in
quantum communication protocols such as quantum
teleportation and remote state preparation �RSP�.12

3. Remote state preparation using the nonlocal single-photon
state

To implement RSP, Alice performs a measurement on
her share of the entangled resource in a basis chosen in
accordance with the state she wishes to prepare. Depen-
dent on the result of her measurement, the entangled
ensemble collapses either onto the desired state at the
receiver �Bob’s� location or can be converted into it by a
local unitary operation.

The experiment on tomography of the dual-rail qubit
can be interpreted as an implementation of the remote
preparation protocol in the continuous basis �Babichev,
Brezger, and Lvovsky, 2004; Zavatta, D’Angelo, Parigi,
et al., 2006�. By performing a homodyne measurement
on her part of the entangled state �62� and detecting a
particular quadrature value Q
A at the local oscillator
phase 
, Alice projects the entangled resource �62� onto
a quadrature eigenstate 
Q
A�,

��B� = 
Q
A,
A���

= �
Q
A,
A�1�A�0�B − �
Q
A,
A�0�A�1�B, �64�

which is just a coherent superposition of the single-
photon and vacuum states, i.e., a single-rail optical qubit.
By choosing her LO phase 
A and postselecting a par-
ticular value of Q
A, Alice can control the coefficients in
the superposition, i.e., remotely prepare any arbitrary
state within the single-rail qubit subspace.

4. Teleportation using the nonlocal single-photon state

The entanglement contained in the delocalized single-
photon state is between the single-photon and vacuum
states. It allows rudimentary teleportation of single-rail

qubits ��single-rail�=��0�+��1� by means of a modified
Bennett et al. �1993� protocol. Alice performs a Bell-
state measurement on the source state and her share of
��dual-rail� by overlapping them on a beam splitter and
sending both beam splitter outputs to single-photon de-
tectors. If one of these detectors registers the vacuum
state, and the other detects one photon, the input state
of the Bell-state analyzer is projected onto ��dual-rail� and
Bob’s channel obtains a copy of the source state �Pegg et
al., 1998; Özdemir et al., 2002�. If the input state contains
terms outside of the single-rail qubit subspace, these
terms will be removed from the teleported ensemble.
This is known as the “quantum scissors” effect.

Although the implementation of the protocol requires
highly efficient, number-resolving photon detectors, its
conceptual demonstration can be done with standard
commercial units. Babichev et al. �2003� performed this
experiment using a weak pulsed coherent state as the
source. The teleported state was characterized by means
of OHT. The teleportation fidelity approached unity for
low input state amplitudes, but with this parameter in-
creasing, it quickly fell off due to the effect of quantum
scissors.

5. Quantum-optical catalysis

The two sections above demonstrated how a single-
rail optical qubit can be prepared by conditional mea-
surements and linear-optical operations on a single pho-
ton. Another way of achieving the same goal was
reported by Lvovsky and Mlynek �2002�. A single-
photon state �1� and a coherent state ��� were over-
lapped on a high-reflection beam splitter. One of the
beam splitter outputs was subjected to a measurement
via a single-photon detector �Fig. 12�a��. In the event of
a “click,” the other beam splitter output is projected
onto a single-rail qubit t�0�+��1�, t2 the beam splitter
transmission �Figs. 3, 12�b�, and 12�c��.

This result is somewhat counterintuitive: a classical
coherent input state is converted into a nonclassical
single-rail qubit even though the input single photon
emerges “intact” at the output �hence the name
quantum-optical catalysis�. This transformation is an ex-
ample of optical nonlinearity induced by a conditional
optical measurement, the key principle behind linear-
optical quantum computation �Knill et al., 2001; Koashi
et al., 2001; Kok et al., 2007�.

We note that if the signal channel is analyzed without
conditioning on the single-photon detection event, it ap-
proximates another important nonclassical state of light,
the displaced Fock state �see Lvovsky and Babichev
�2002�, and references therein�.

D. “Schrödinger cats” and “kittens”

The Schrödinger cat �Schrödinger, 1935� is a famous
gedanken experiment in quantum physics, in which a
macroscopic object is prepared in a coherent superposi-
tion of two classically distinguishable states. It brightly
illustrates one of the most fundamental questions of

12Both teleportation �Bennett et al., 1993� and RSP �Lo, 2000�
are quantum communication protocols allowing disembodied
transfer of quantum information between two distant parties
by means of a shared entangled resource and a classical chan-
nel. The difference between them is that in teleportation the
sender �Alice� possesses one copy of the source state, while in
RSP she is instead aware of its full classical description.
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quantum mechanics: at which degree of complexity does
a quantum superposition of two states stop being a su-
perposition and probabilistically become one of its
terms?

In quantum optics, the Schrödinger cat usually means
a coherent superposition ���± �−�� of coherent states of
relatively large amplitude and opposite phase �Bužek
and Knight, 1995�. In addition to the above fundamental
aspect, these states are useful for many quantum infor-
mation protocols such as quantum teleportation �van
Enk and Hirota, 2001�, quantum computation �Ralph et
al., 2003�, and error correction �Cochrane et al., 1999�. It
is thus not surprising that experimental synthesis of
Schrödinger cats has been an object of aspiration for
several generations of physicists. Recent years have
marked a breakthrough: invention and experimental re-
alization of two schemes that permit preparation of op-
tical Schrödinger cats of arbitrarily high amplitudes.

1. Preparation by photon subtraction

The first scheme was proposed by Dakna et al. �1997�.
An odd Schrödinger cat state of low amplitude can be
decomposed into the Fock basis as follows:

��� − �− �� � ��1� +
�3

�6
�3� + ¯ . �65�

For ��1, this state is approximated, with very high fi-
delity �Lund et al., 2004�, by the squeezed single-photon

state. Experimentally, this state can be obtained by re-
moving one photon from the squeezed vacuum,

��s� � �0� +
1
�2

 �2� +�3
2

 2�4� + ¯ , �66�

where  is the small squeezing parameter �Dakna et al.,
1997�. The photon removal procedure consists of trans-
mitting the state through a low-reflection beam splitter
and sending the reflected mode to a single-photon detec-
tor �Fig. 13�a��. A click in this detector indicates that at
least one photon has been removed from ��s�. Because
the reflectivity of the beam splitter is small, the probabil-
ity of removing more than one photon is negligible. The
conditional state in the transmitted channel of the beam
splitter is then approximated by

��cond� � â��s� �
1
�2

 �1� + �3 2�3� + ¯ . �67�

Setting �2=6 yields the “Schrödinger kitten” �65�.
The first experiment implementing this protocol was

performed by Wenger et al. �2004b� and later improved
by Ourjoumtsev, Tualle-Brouri, Laurat, et al. �2006�.
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FIG. 12. �Color online� The quantum-optical catalysis experi-
ment. �a� The scheme. Measurements by the HD are condi-
tioned on the single-photon detector registering a photon, �b�
14 153 raw quadrature data, and �c� absolute values of the
density-matrix elements in the Fock representation for �
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Lvovsky and Mlynek, 2002.
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FIG. 13. �Color online� Conditional preparation of the
squeezed single-photon state �“Schrödinger kitten”�. �a� A ge-
neric experimental scheme. �b� The Wigner function and the
density matrix reconstructed from the experimental data. Part
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Parametric deamplification of 150-fs, 40-nJ pulses at
850 nm in a 100 !m noncritically phase matched KNbO3
crystal was used to generate pulsed squeezed vacuum
�Wenger et al., 2004a�. The heralded beam splitter out-
put state was subjected to pulsed OHT, showing prepa-
ration of a Schrödinger kitten of size ��2�=0.79 with a
70% fidelity. Experimental imperfections could be mod-
eled by the same five parameters as done by Ourjoumt-
sev, Tualle-Brouri, and Grangier �2006� �see Sec. V.B�.

In the continuous-wave regime, a similar procedure
has been independently demonstrated by Neergaard-
Nielsen et al. �2006� �the results of this experiment are
shown in Fig. 13�b�� and by Wakui et al. �2007�.

These experiments, which combine for the first time
the techniques of conditional preparation of single pho-
tons and pulsed squeezing, are a significant accomplish-
ment in quantum optical information technology. How-
ever, the photon-subtracted squeezed state resembles a
cat state only for small �’s. An interesting method for
generating Schrödinger cats of larger amplitudes has
been proposed by Lund et al. �2004�. Two small odd cat
states13 �CSS����, which we assume to be of equal ampli-
tudes ��=��, overlap on a symmetric beam splitter BS1
�Fig. 14�, which transforms them into an entangled su-
perposition

�CSS����a�CSS����b → �0�f���2�� + ��2���g

− ���2�� + ��2���f�0�g �68�

of a cat state of amplitude �2� in one of the output
channels and vacuum in the other. Now if we measure
the state in channel g and find it to be not the cat state,
the channel f will be projected onto the cat state. Such
conditional measurement is implemented by overlap-
ping channel g with a coherent state of amplitude �
=�2� on an additional beam splitter BS2. If channel g
contains a cat state, the interference will cause all optical
energy to emerge at only one side of BS2. Therefore,

detecting coincident photons in both outputs of BS2 in-
dicates that channel g contained vacuum, and thus chan-
nel f is prepared in the Schrödinger cat state of ampli-
tude �2�.

By applying this linear optical protocol repeatedly, we
can “breed” Schrödinger cat states of arbitrarily high
amplitude. A remarkable practical advantage of this
technique is that it requires neither null single-photon
detection nor photon-number discrimination. It does,
however, require a high degree of mode matching
among the interfering optical channels; otherwise, the
fidelity will rapidly decrease �Rohde and Lund, 2007�.

Another interesting approach to generating larger cat
states has been developed �Sasaki et al., 2008� and ex-
perimentally tested �Takahashi et al., 2008� recently. Two
photons have been subtracted in an indistinguishable
way from the signal and ancillary modes, both initially
prepared in the squeezed vacuum state. If the initial
squeezing in the ancillary mode is small �but nonzero�,
the resulting state in the main mode resembles the even
Schrödinger cat state of a relatively large amplitude.

In the experiment �Takahashi et al., 2008�, a
continuous-wave, degenerate optical parametric ampli-
fier was used as a squeezed vacuum source. The roles of
the main and ancilla modes were played, respectively, by
the sum and difference of two temporal modes �57� as-
sociated with detection of photons at two distinct mo-
ments in time. By postselecting on detection events
separated by different time periods, the degree of
squeezing in the ancilla mode could be varied, and thus
the amplitude of the resulting state. In this way, even cat
states with amplitudes up to �2�2.6 have been prepared
and reconstructed with good fidelity.

2. Generating “Schrödinger cats” from Fock states

An alternative way of generating optical cat states was
recently proposed and implemented by Ourjoumtsev et
al. �2007�. This technique employs Fock states, rather
than the squeezed state, as the primary resource. The
procedure is remarkably simple: an n-photon number
state is split on a symmetric beam splitter, and one of the
output channels is subjected to homodyne detection.
Conditioned on this measurement producing approxi-
mately zero, the other beam splitter output mode will
contain an approximation of the squeezed Schrödinger
cat of amplitude ���n �Fig. 15�a��.

To gain some insight into this method, we assume that
the quadrature measured by the preparation homodyne
detector is the momentum P. The wave function of the
initial Fock state is given by

�n�P� = 
n�P� = Hn�P�exp�− P2/2� . �69�

In writing the above equation, we used Eq. �26�, ne-
glected normalization factors, and remembered that the
Fock state is phase independent �i.e., its wave function is
the same for all quadratures�. “Splitting” the state �n�
means entangling it with the vacuum, which has the
wave function �0�P0�=exp�−P0

2 /2�, via transformation
P→ �P−P0� /�2, P0→ �P+P0� /�2. Accordingly, the two-

13Under “even” and “odd” cat states we understand superpo-
sitions ���+ �−�� and ���− �−��, respectively.

FIG. 14. A schematic for amplification of the “Schrödinger
cat” state. The amplified cat emerges in channel g if detectors
A and B click in coincidence. In the text, �=�=� /�2 is as-
sumed. From Lund et al., 2004.
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mode wave function of the beam splitter output is given
by

�̃�P,P0� = �n	P − P0

�2

�0	P + P0

�2



= Hn	P − P0

�2

exp	−

P2 + P0
2

2

 . �70�

Detecting the momentum quadrature value P0=0 in one
of the modes has an effect similar to that discussed in
Sec. V.C.3: it “remotely” prepares the other mode in the

state with wave function �̃cond�P�=Hn��P−P0� /�2�e−P2/2.
This state is easier to analyze in the position quadra-

ture representation. Making a Fourier transform of

�̃cond�P�, we find

�cond�Q� = Qne−Q2/2. �71�

This function has two peaks at Q= ±�n and vanishes at
Q=0 and Q= ±�. The wave function of the coherent
state ���, on the other hand, has a single maximum at
��2. Thus the wave function �cat����Q� of the even
Schrödinger cat momentum squeezed by a factor S has
two peaks located at Q= ±S��2. Good matching be-
tween �cond�Q� and �cat����Q� obtains when their peaks
have the same position and the same width, which hap-
pens when �=�n, S=1/�2. Amazingly, the fidelity of this
matching increases with n, reaching the value of 99%
already at n=3.

Experimental implementation of this protocol with n
=2 is almost identical to tomography of the two-photon
Fock state �Ourjoumtsev, Tualle-Brouri, and Grangier,
2006�, except that two homodyne detectors are required.
Reconstruction of the output state bears a close resem-
blance to the squeezed Schrödinger cat �Fig. 15�b��, with
differences mainly caused by technical limitations, which
are similar to those in previous experiments by this
group.

E. Photon-added states

Photon-added states �Agarwal and Tara, 1991� are
generated when the photon creation operator acts on an
arbitrary state ��� of light: �� ,m�= �â†�m���. These states
are nonclassical due to a vanishing probability of finding
n�m photons �Lee, 1995�. Recently, two important
photon-added states were experimentally generated and
characterized via OHT.

1. Single-photon-added coherent states

These states are of interest because, in the limit of
large �, they approximate highly classical coherent
states ��� while for �→0 they become highly nonclassi-
cal Fock states �m�. Therefore, photon-added coherent
states can be interpreted as a link between the particle
and wave aspect of the electromagnetic field.

Experimentally, photon addition can be implemented
using a procedure opposite to photon subtraction de-
scribed in the previous section. Instead of passing
through a beam splitter, the target state is transmitted
through a signal channel of a parametric down-
conversion setup �Fig. 16�a��. If a photon pair is gener-
ated in the down-converter, a photon is added to the
target state. This event, which is heralded by a single
photon emerging in the trigger channel, can be followed
by an OHT measurement of the signal ensemble.

This scheme was first implemented by Zavatta et al.
�2004a, 2005� and Zavatta, Viciani, and Bellini �2006�.
Thanks to high-bandwidth time-domain homodyne de-
tection �Zavatta et al., 2002�, no pulse picking was nec-
essary so the setup could be made highly compact and
phase stable. Figure 16�b� demonstrates how increasing
amplitude of the input coherent state results in gradual
transition from the Fock state to an approximation of a

FIG. 15. �Color online� Conditional preparation of the
Schrödinger cat state from photon number states. �a� A
scheme of the experiment. �b� The experimental Wigner func-
tion. From Ourjoumtsev et al., 2007.

322 A. I. Lvovsky and M. G. Raymer: Continuous-variable optical quantum-state …

Rev. Mod. Phys., Vol. 81, No. 1, January–March 2009



coherent state. An interesting feature observed in
single-photon-added coherent states of moderate ampli-
tudes is quadrature squeezing �up to 15%� associated
with certain phases.

2. Single-photon-added thermal states

The thermal state is a phase-symmetric ensemble with
Bose-Einstein photon-number statistics. By itself, it is a
classical state, but shows a high degree of nonclassicality
when acted upon by the photon creation operator. This
was shown experimentally by Zavatta et al. �2007�. The
thermal state was simulated by sending a coherent laser
beam through a rotating ground glass disk and collecting
a fraction of the scattered light with a single-mode fiber.
It was then subjected to photon addition as described
above, and subsequently to homodyne tomography. The
measured state was verified to be highly nonclassical ac-
cording to several criteria.

In a related work, Parigi et al. �2007� applied a se-
quence of photon addition and subtraction operators to
the thermal state. They found, contrary to classical intu-
ition, but in full agreement with quantum physics, that
the effects of these operators do not cancel each other,
and, furthermore, depend on the sequence in which they
are applied. This provides direct evidence of noncom-
mutativity of these operators, which is one of the cardi-
nal concepts of quantum mechanics.

VI. SPATIAL QUANTUM-STATE TOMOGRAPHY

A. Spatial mode of the one-photon field

As discussed, homodyne tomography typically is used
to measure the quantum state of light occupying a single
selected optical mode, which is defined by the local os-
cillator pulse. If our goal is to characterize the field state
in multiple modes, homodyne tomography becomes in-
creasingly difficult.

There is a special multimode situation, on the other
hand, that is amenable to full characterization: If it is
known a priori that only one photon �elementary excita-
tion� of the field exists in a certain space-time volume, it
is sensible to ask what is the temporal-spatial wave-
packet mode that describes this photon. This task is
close to that of finding the wave function of the photon
treated as a massless particle. This notion is known to be
controversial �see Smith and Raymer �2007� for a re-
view�. However, if one restricts attention to the photon’s
transverse degrees of freedom in the paraxial approxi-
mation, the subtleties that arise can be circumvented.

Assuming a constant polarization, a single-photon
state of the quantized field can be represented by a su-
perposition �cf. Eq. �11��,14

�1â� = â†�vac� =� d3kC�k� �b̂k�
†�vac� =� d3kC�k� ��1k�� ,

�72�

where

�1k�� � �1k�� � �
k���k�

�vack��� �73�

is a one-photon state occupying a plane-wave mode with
definite momentum p� =�k� . The function C�k� � defines
the spatial mode of the photon in the momentum repre-
sentation. In the position representation for free-space
propagation, the matrix element

E� �r�,t� = 
vac�E�̂ �+��r�,t��1â�

= i
�� d3k� �	k�

�2��3�0
C�k� �exp�ik� · r� − i	k�t� ,

�74�

where the operator E�̂ �+��r� , t� has been introduced in Eq.
�7�, defines the spatial distribution of the photon’s field.
The goal of spatial QST is to reconstruct the state by

determining the function E� �r� , t�.
Suppose a photon is created with a narrowly defined

frequency 	0 and is propagating along the z axis with
wave number k0=	0 /c. In the paraxial approximation,
kz"kx ,ky and

14In the opposite case that one ignores the transverse spatial
degrees of freedom, a method for determining the temporal-
spectral state of single photons has been proposed �Rohde,
2006�.

FIG. 16. �Color online� The single-photon-added coherent
state. �a� Scheme of the experiment. �b� With increasing �, the
Wigner function of the reconstructed single-photon-added co-
herent state gradually evolves from a highly nonclassical to a
highly classical shape. For ���=2.6, the Wigner function of the
unexcited seed coherent state is also shown. From Zavatta et
al., 2004a.
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kz = �k0
2 − kx

2 − ky
2 � k0 −

kx
2

2k0
−

kx
2

2k0
, �75�

so we can rewrite Eq. �74� as

E� �r�,t� = i
���	�k�
2�0

exp�− i�	0t − k0z��u�r�� , �76�

in which we define the spatial mode �with x� ��x ,y�,
k�x��kx ,ky��

u�r�� = u�x� ,z� � � C�k�x�exp�ik�x · x� − i
k�x

2

2k0
z�d2kx.

�77�

We compare the above expression with the
Schrödinger evolution of a free particle of mass m in two
dimensions, initially in a superposition ���0��
=�dk�xC�k�x��kx�,

��x� ,t� � � C�k�x�exp�ik�x · x� − i�
k�x

2

2m
t�d2kx, �78�

where m is the mass of the particle. Equations �77� and
�78� become equivalent if one sets z=ct and m=�k0 /c.

We can utilize this equivalence by applying the pro-
gram set forth in Eqs. �1�–�4� in the Introduction in or-
der to determine the transverse wave function of a pho-
ton. We measure the beam intensity profile I�x� ,z�
= 
�E�x� ,z��2� in different planes along the beam propaga-
tion direction. The transverse degrees of freedom of the
wave evolve during propagation, allowing inversion of
measured intensity �probability� distributions using the
propagator �3�, which now takes the form

G�x��,x� ;t� � exp	 ik0�x� − x���2

2z

 , �79�

to determine the transverse wave function u�x� ,z� of the
photon.

If the transverse state of the photon is not pure, it is
defined by the density matrix

��x�1,x�2� = 
E�x�1�E*�x�2�� , �80�

with the angle brackets implying an ensemble average
over all statistical realizations of the photon wave func-
tion. Here we notice that the above definition is com-
pletely analogous to that of the classical field correlation
function determining the degree of its spatiotemporal
coherence.15 Therefore, the tomography procedure we
have developed for single photons is also applicable to
classical fields, making them a useful “testing ground”
for single-photon QST procedures.

One can also introduce the transverse, two-
dimensional spatial Wigner distribution at a particular
plane in the fashion analogous to Eq. �16�,

W�x� ,k�x� =
1

4�2 � ��x� + 1
2��,x� − 1

2���e−ik�x·��d�2, �81�

where k�x is the transverse-spatial wave-vector compo-
nent. The transverse Wigner function is reconstructed
from a set of beam intensity profiles using the inverse
Radon transform. Such a phase-space-tomography
scheme was proposed by Raymer et al. �1994� for quan-
tum or classical waves and implemented for the trans-
verse spatial mode of a “classical” �coherent-state� light
beam by McAlister et al. �1995�.

B. Noninterferometric reconstruction

The noninterferometric method just described is best
performed with an array detector to image the probabil-
ity distributions at different propagation distances.16 In
addition, for a reliable reconstruction, it is necessary to
ensure that the beam waist �its region of minimum spa-
tial extent� occurs well within the measured zone. If this
is not the case, then only partial state reconstruction is
possible. In the case of a limited scan, the density matrix
in momentum representation can be measured every-
where except for a band around the diagonal, whose
width decreases as a larger range of longitudinal dis-
tances �time of flight� is measured �Raymer, 1997b�. This
was the case in a demonstration of transverse spatial
QST of an ensemble of helium atoms �Janicke and Wilk-
ens, 1995; Kurtsiefer et al., 1997�.

Using lenses �for light or for atoms�, the waist region
can be brought into range for imaging, thus ensuring a
reliable reconstruction �Raymer et al., 1994; McAlister et
al., 1995�. Suppose a beam propagates through a lens at
z=d, with focal length f, to a detection plane at z=D.
The Maxwell-field propagator �79�, in paraxial approxi-
mation, takes the form

G�x��,x� ;t� = C exp�ih�x��� + ik0	x� · x�

L
−

�x� �2

2RC

� , �82�

where L= �D−d��1+d /R0�, RC=R0+d, and R0
−1= �D

−d�−1− f−1. Here C is a constant and h�x� is an unimpor-
tant phase function.

The first measurements of this type were carried out
for macroscopic �“classical”� fields from a laser �McAl-
ister et al., 1995�. Figures 17 and 18 show the setup and
the reconstructed data in the object plane, for the case
of a two-peaked field distribution created by reflecting
the signal beam from a two-sided reflecting glass plate.
The field correlation function 
E�x1�E*�x2�� �which in
this case should not be interpreted as a quantum density
matrix� was reconstructed using the method in Raymer

15In Sec. IV.B, we discussed the identity between the mode of
the conditionally prepared photon and the classical difference-
frequency signal generated by the advanced wave. This iden-
tity is expressed in terms of definition �80� valid for both single
photons and classical fields. 16Scanning a single detector would be prohibitive.
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et al. �1994�—the inverse Radon transform of intensity
distributions measured for different lens and detector
position combinations.

For the data in Fig. 18�a�, the neutral-density �ND�
filter was replaced by a beam block, so two coherent
beams comprised the signal. Four lobes are seen in the
reconstructed field correlation function. Figure 18�c�
shows the reconstructed field and the phase profile. For
the data in Fig. 18�b�, the beam block �BB� was inserted

in the lower beam �as shown� and the second beam com-
ponent was created by reflection from a mirror M3
mounted on a translator driven by a random voltage, so
two mutually incoherent beams comprised the signal. In
this case, the off-diagonal lobes are missing in the recon-
structed field correlation function, as expected. This ex-
periment verified the method of phase-space tomogra-
phy for reconstructing spatial field correlations at the
macroscopic level. Hansen �2000� applied a similar tech-
nique to reconstruct the optical mode emerging from a
two-slit interferometer and obtained a Wigner function
with negative values, similar to that of Kurtsiefer et al.
�1997�. The method has been applied to study light scat-
tering from complex fluids �Anhut et al., 2003�.

Other methods for classical wave-front reconstruction
have since been developed �Iaconis and Walmsley, 1996;
Lee et al., 1999; Cheng et al., 2000� and applied �Cheng
and Raymer, 1999; Lee and Thomas, 2002; Reil and
Thomas, 2005�. A method has been elaborated for char-
acterizing single-photon states in terms of a discrete spa-
tial basis �Sasada and Okamoto, 2003; Langford et al.,
2004� and a proposal has been made for generalizing this
to arbitrary beams �Dragoman, 2004�.

C. Interferometric reconstruction by wave-front inversion

An interferometric technique for continuous-spatial-
variable characterization of single-photon fields was pro-
posed by Mukamel et al. �2003�, and recently imple-
mented by Smith et al. �2005�. The method uses a parity-
inverting Sagnac interferometer to measure the
expectation value of the two-dimensional parity opera-

tor �̂,17 which as first shown by Royer �1977� is propor-
tional to the Wigner distribution at the phase-space ori-
gin,

W�0,0� =
1

�
Tr��̂�̂� . �83�

The Wigner function at an arbitrary phase-space point
can be determined by measuring the parity expectation
value of the mode after the latter is displaced in the
phase space in a manner similar to that proposed by
Banaszek �1999� and discussed in Sec. III.B.5 for Wigner
functions in the field quadrature space,

W�x� ,k�x� =
1

�
Tr�D̂−1�x� ,k�x��̂D̂�x� ,k�x��̂� . �84�

Experimentally, the displacement D̂ is implemented by
physically shifting the mode location by x� and tilting its
propagation direction by k�x �see Fig. 19�.

The mode parity is measured as follows. One decom-
poses the signal field into a sum of even and odd terms,
E�x��=Ee�x��+Eo�x��. Then the Wigner distribution �84�
evaluates to

17The parity operator’s eigenstates are those with even and
odd wave functions, which correspond, respectively, to eigen-
values 1 and −1.

FIG. 17. Spatial tomography of the classical laser mode. Re-
flecting glass plate �GP� and cylindrical lenses �CL1,CL2� cre-
ate a one-dimensional field with two amplitude peaks in the
z=0 plane. Cylindrical lens CL3 �oriented 90° from CL1 and
CL2� is varied in position, and intensity profiles in the z=D
plane are imaged and recorded using spherical lens �SL� and
the camera. Profiles are measured for 32 combinations of dis-
tances d and D. The piezoelectric transducer �PZT� introduces
partial coherence between the two peaks. From McAlister et
al., 1995.

FIG. 18. Spatial tomography results for the classical laser
mode. Equal-separation contours showing the magnitude
squared of the reconstructed field correlation function ��� ,���,
for �a� the fully coherent field and �b� the partially coherent
field. �c� The intensity profile �solid curve� and phase profile
�dashed curve� of the reconstructed complex-wave field ob-
tained in the fully coherent case. Axes are scaled transverse
position ��x /x0, where x0 is a characteristic length. From
McAlister et al., 1995.
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W�x� ,k�x� =
1

�
� �
�Ee�x����2� − 
�Eo�x����2��x� ,k�x

d2x�, �85�

the terms in angular brackets the experimentally mea-
surable mean intensities or photon count rates for a
given shift and tilt �x� ,k�x�. This measurement is achieved
by means of a dove-prism �Mukamel et al., 2003� or an
all-reflecting �Smith et al., 2005� Sagnac interferometer
as shown in Fig. 19. The beam is split at beam splitter
�BS�, after which the two beams travel in different direc-
tions around the Sagnac loop. Each beam travels out of
plane to reach the center mirror in the top-mirror con-
figuration, which has the effect of rotating the wave
fronts by ±90°, depending on direction, in the x-y plane.
The net result is the interference of the original field
with its �two-dimensional� parity-inverted image. Any
odd-parity beam �E�−x ,−y�=−E�x ,y�� passes through
to detector D1, while any even-parity beam
�E�−x ,−y�=E�x ,y�� reflects back toward the source, and
is detected by D2. By subtracting the average count
rates integrated over detector faces large enough to cap-
ture all signal light, one measures the Wigner distribu-
tion at a point in phase space, according to Eq. �85�. One
can also use only one detector, in which case the average
counting rate, as a function of x and kx, is proportional
to the Wigner distribution plus a constant, which must
be subtracted.

In order to apply this technique in the photon-
counting regime, one would like to use high quantum-
efficiency avalanche photodiodes �APDs� operating in
Geiger mode. Unfortunately, these typically have a very
small detector area �0.1 mm diameter�, making them un-
suitable for detecting beams with large intrinsic diver-
gence. The experiment by Smith et al. �2005� used a
single large-area photon-counting detector D1. The de-

tector was a photomultiplier tube with a 5 mm diameter,
11% efficient at wavelength 633 nm.

Figure 20 shows results obtained for an expanded la-
ser beam after passing through a single- or double-slit
aperture placed in the beam just before the steering mir-
ror. The beam was attenuated so that only a single pho-
ton was typically present at any given time. Again, these
results are similar to those obtained by Kurtsiefer et al.
�1997� for a beam of helium atoms. Note that although
the Wigner functions shown in Fig. 20 are the “Wigner
functions of the single-photon Fock state,” they repre-
sent quantum objects fundamentally different from that
plotted in Fig. 10. The latter describes the quantum state
of a specific electromagnetic oscillator while the former
describes a set of electromagnetic oscillators in an en-
tangled state sharing a single �collective� excitation.

The ability to measure quantum states or wave func-
tions for ensembles of single-photon states can be gen-
eralized to two-photon states. As pointed out by Muka-
mel et al. �2003� and Smith et al. �2005�, if a photon pair
in a position-entangled state �̂AB can be separated, then
each can be sent into a separate Sagnac interferometer,
and subsequently detected. The rate of coincidence
counts is proportional to a sum of terms, one of which is
the two-photon Wigner distribution,

W�x�A,k�xA,x�B,k�xB� =
1

�2Tr�D−1�̂ABD�̂A�̂B� �86�

�where D�D�x�A ,k�xA ,x�B ,k�xB��, which can be extracted
from the counting data.

��
��

����

�	 �


���


�����

FIG. 19. Top view of all-reflecting Sagnac interferometer. All
mirrors are planar, including the beam splitter �BS�. The beam
travels out of plane to reach the center mirror in the top-
mirror configuration �surrounded by dashed lines�, which is
above the plane of the others. The displacement and tilt of the
external steering mirror select the phase-space point at which
the Wigner distribution is measured. Signals from photon-
counting detectors D1 and D2 are subtracted. OI is an optical
isolator for directing the reflected signal to D2.

FIG. 20. �Color online� Measured Wigner functions for a
slightly diverging beam passed through a single slit �left col-
umn� or double slit �right column�. Each shows a shear associ-
ated with beam divergence. In both cases, the interference
fringes oscillate positive and negative, as expected for a non-
classical momentum state. In the case of two slits, the fringes
can be understood as resulting from a superposition
�Schrödinger-cat-like� state of two well-separated components.
From Smith et al., 2005.
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If the state is pure, this Wigner function can be trans-
formed into the two-photon wave function, defined by
�Smith and Raymer, 2007�18

��xA,xB� = 
vac�Ê�+��xA�Ê�+��xB���AB� . �87�

Measuring the two-photon wave function would provide
a complete characterization of position-entangled states,
which are of interest in the context of Einstein-
Podolsky-Rosen correlations or Bell’s inequalities with
photon position and momentum variables �Howell et al.,
2004; Yarnall et al., 2007�.

VII. SUMMARY AND OUTLOOK

Prior to the beginning of the present century, quantum
physics of light has been developing along two parallel
avenues: discrete- and continuous-variable quantum op-
tics. The continuous-variable community dealt primarily
with the wave aspect of the electromagnetic field, study-
ing quantum field noise, squeezing, and quadrature en-
tanglement. Homodyne detection was the primary tool
for field characterization. The discrete-variable side of
quantum optics concentrated on the particle aspect of
light: single photons, dual-rail qubits, and polarization
entangled states. These objects were usually measured
with single-photon detectors.

These two aspects of quantum optics had little overlap
with each other in terms of methodology, but experi-
enced significant mutual influence. Novel results in the
discrete-variable domain, such as demonstration of en-
tanglement, quantum tomography, quantum teleporta-
tion, etc., were frequently followed by their continuous-
variable analogs and vice versa.

Theoretically, the difference between these two do-
mains boils down to the choice of the basis in which
states of an optical oscillator are represented: either
quadrature or energy eigenstates. From the experimen-
tal point of view, parametric down-conversion, the work-
horse of quantum optical state production, can operate
in either the weak or strong pumping modes. In the first
case, we obtain discrete photon pairs and in the second,
squeezing, or quadrature entanglement.

The division of quantum optics is thus caused not by
fundamental but by pragmatic reasons. It is just that,
until recently, our technology allowed us to generate
only two classes of quantum states, giving us access to
two small islands in the vast ocean of the optical Hilbert
space.

Developments of the past decade allowed us to over-
come this separation. By applying a traditionally
continuous-variable quantum characterization method
�homodyne tomography� to discrete-variable quantum
states �photons and qubits�, researchers have con-
structed the bridge between the two islands, and then

extended it by engineering and characterizing quantum
states that belong to neither domain—such as displaced
and photon-added states, squeezed Fock states, and
Schrödinger cats.

In this review, we covered technological developments
that led quantum optics to this breakthrough, placing a
particular emphasis on continuous-wave tomography.
We discussed new state-reconstruction algorithms, the
technology of time-domain homodyne detection, prepa-
ration of high-purity photons and qubits, and methods of
quantum-state engineering. We also reviewed methods
of characterizing the spatial modal structure of a quan-
tum optical state.

Extrapolating the recent years’ results into the future,
we can isolate certain open problems and future direc-
tions along which the field can be expected to develop.

Reliable state-reconstruction algorithms. We have fo-
cused on maximum-likelihood estimation �MaxLik� be-
cause it is straightforward to implement and offers
improvements over the inverse-linear-transform tech-
niques such as inverse Radon. However, MaxLik is
probably not the last word in QST algorithms. It can
underperform if only a small amount of data is available.
In some cases this technique can yield zero probabilities
for certain state components, which are not justified
�Blume-Kohout, 2006�. We predict that future recon-
struction algorithms will combine maximum-likelihood
with maximum-entropy and Bayesian methods �Fuchs
and Schack, 2004�. One attempt at such integration has
already been reported �Řehá~ek and Hradil, 2004�.

Within MaxLik itself, particularly in application to
OHT, there are a number of open questions. To what
extent does a bias in the tomography scheme �nonunity
sum of the POVM elements, see Sec. III.B.5� influence
the reliability of state reconstruction? What is the opti-
mal point for truncating the Hilbert space that would
allow sufficiently complete but noise-free reconstruc-
tion? Does there exist a simple and reliable method for
evaluating errors in quantum-state estimation?

Faster, low-noise homodyne detectors. As discussed in
Sec. IV.A, there is a compromise between the bandwidth
of the homodyne detector and its signal-to-noise ratio.
Detectors with higher bandwidths can accommodate
higher laser repetition rates, permitting acquisition of
larger data sets and eventually analysis of more complex
states of light. Future study in this area is well deserved,
also given applications of faster homodyne detectors in
continuous-variable quantum cryptography, with a
promise of significant secret key transfer rate enhance-
ment.

Applications of OHT in discrete quantum-information
processing. Most of the optical protocols tested so far
employed dual-rail qubits as quantum-information carri-
ers �Kok et al., 2007�. Accordingly, photon counting has
been the method of choice for state measurement. As
discussed in the Introduction, homodyne tomography
provides much more complete information about a state
of light �and thus performance of a quantum gate�, but it
is not yet commonly employed due to the relative com-
plexity of its implementation. A goal for future research

18A related quantity, the two-photon coincidence-detection
amplitude, has been discussed by Keller and Rubin �1997�,
Scully and Zubairy �1997�, Nogueira et al. �2002�, and Walborn
et al. �2004�.
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would be to simplify basic elements of homodyne
detection—mode matching, local oscillator phase varia-
tion, and data acquisition—to an extent that would
make OHT not much more complicated than photon
counting. Homodyne tomography should then be ap-
plied for characterizing complex discrete-variable quan-
tum states and protocols. Perhaps one of the first steps
would be characterization of an entangled state of two
dual-rail qubits—akin to that in James et al. �2001�, but
using OHT. An example of work in this direction is QST
of optical-mode polarization states, proposed in Raymer
et al. �1998� and implemented in Marquardt et al. �2007�.

Another important QI-related application is testing
protocols on interfacing quantum information between
light and stationary media. Examples are the experi-
ments of Julsgaard et al. �2004� and Appel et al. �2008�,
which utilized homodyne tomography to study quantum
memory for light. Homodyne measurements on light
transmitted through an atomic ensemble permit tomog-
raphic reconstruction of its collective spin state �Fen-
nholz et al., 2008�, which is useful, for example, for char-
acterizing quantum information transfer between light
and atoms �Sherson et al., 2006�.

Continuous-variable process tomography. While mea-
suring superoperators associated with a certain quantum
process has been investigated with discrete variables, the
progress in the continuous-variable domain has been
very slow. This seems to be an important open problem,
whose solution holds a promise to provide much more
complete data about quantum processes than current
methods.

One scheme for QPT in the continuous-variable do-
main has recently been reported �Lobino et al., 2008�.
The idea is based on expanding the process input state
into the basis of coherent states. Although this decom-
position, known as the P function �Glauber, 1963; Sudar-
shan, 1963�, may be highly singular, it can be arbitrarily
closely approximated with a regular P function
�Klauder, 1966�. Therefore, complete characterization of
any quantum-optical process may be possible by study-
ing its effect on a set of coherent states.

Quantum-state engineering, i.e., synthesis of arbitrary
quantum states of light using nonclassical primitives
�squeezed or Fock states�, linear optics, and conditional
measurements. There exist a number of proposals for
tackling this objective �reviewed in detail by Dell’Anno
et al., 2006�, for example, using coherent displacements
and photon subtraction operations �Dakna et al., 1999a,
1999b; Fiurášek et al., 2005�, repeated parametric down-
conversion �Clausen et al., 2001�, and continuous-
variable postselection �Lance et al., 2006�. To date, we
have mastered quantum-state engineering at the single-
photon level: we can create any linear combination of
the vacuum and single-photon Fock state. The next step
is to bring this to the two-photon level. This can be
done, for example, by applying modified photon addi-
tion operations �Sec. V.E� to single-rail qubits.

Quantum optical engineering, as well as any other
complex manipulation of light, requires high quality of
the “raw material,” i.e., initial squeezed and Fock states.

Here we can see two possibilities for progress. On the
one hand, parametric down-conversion sources need to
be improved to generate spectrally and spatially unen-
tangled signal and idler photons, as well as pulsed
squeezing in a single spectral mode �Wasilewski et al.,
2006�. On the other hand, it would be great to eliminate
down-conversion altogether and employ solid-state, on-
demand sources �Grangier et al., 2004�. At present, such
sources compromise between efficiency and spatiotem-
poral purity, and thus cannot be employed in scalable
quantum-optical engineering. We hope that the situation
will change in the near future. Additionally, there may
exist a possibility for improving the efficiency of such
sources by means of linear optics and conditional mea-
surements �Berry et al., 2006, 2007�.

Fundamental tests and new quantum protocols that
are not restricted by either discrete or continuous do-
mains of quantum optics. Examples are loophole-free
nonlocality tests �García-Patrón et al., 2004; Nha and
Carmichael, 2004� and purification of continuous-
variable entanglement �Opatrný et al., 2000; Browne et
al., 2003�. All “building blocks” of these protocols have
already been experimentally demonstrated, but a task to
put them together in operational setups remains on the
agenda.

In summary, more work is needed before we gain full
control over the optical Hilbert space. It is, however,
worth the effort: if we have seen so many wonders
within the boundaries of the two small islands colonized
so far, who can predict what surprises await us in the
vast expanses of the whole ocean?

ACKNOWLEDGMENTS

We acknowledge the numerous essential contributions
of our collaborators listed in the references. The work of
A.I.L. is supported by NSERC, CFI, CIAR, Quantum-
Works, and AIF. The work of M.G.R. was supported by
NSF. We thank Gina Howard and J. Travis Brannan for
assistance in preparing the manuscript.

REFERENCES

Aichele, T., A. I. Lvovsky, and S. Schiller, 2002, Eur. Phys. J. D
18, 237.

Agarwal, G. S., and K. Tara, 1991, Phys. Rev. A 43, 492.
Altepeter, J. B., D. Branning, E. Jeffrey, T. C. Wei, P. G. Kwiat,

R. T. Thew, J. L. O’Brien, M. A. Nielsen, and A. G. White,
2003, Phys. Rev. Lett. 90, 193601.

Altepeter J. B., D. F. V. James, and P. G. Kwiat, 2004, in Quan-
tum State Estimation, edited by M. Paris and J. Řehá~ek, Lec-
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