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I. QUANTUM CHROMODYNAMICS AND NUCLEAR
FORCES

Within the standard model of particle physics, the
strong interactions are described by quantum chromody-
namics �QCD�. QCD is a fascinating theory with many
intriguing manifestations. Its structure and interactions
are governed by a local non-Abelian gauge symmetry,
namely, SU�3�color. Its fundamental degrees of freedom,
the quarks �the matter fields� and gluons �the force car-
riers�, have never been observed in isolation �confine-
ment�. The strong coupling constant �S exhibits a very
pronounced running and is of order 1 in the typical en-
ergy scales of nuclear physics. The bound states made
from the basic constituents are the hadrons, the strongly
interacting particles. The particle spectrum shows cer-
tain regularities that can be traced back to the flavor
symmetries related to the fermions building up these
states. More precisely, there are six quark flavors. These
can be grouped into two very different sectors. While
the light quarks �u ,d ,s� are almost massless and thus
have to be treated relativistically, bound states made
from heavy quarks allow for a precise nonrelativistic
treatment. In what follows, we consider only the light
quarks at low energies, where perturbation theory in �S
is inapplicable �this regime is frequently called “strong
QCD”�. A further manifestation of strong QCD is the
appearance of nuclei, shallow bound states composed of
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protons, neutrons, pions, or strange particles such as hy-
perons. The resulting nuclear forces that are responsible
for the nuclear binding are residual color forces, much
like the van der Waals forces between neutral molecules.
It is the aim of this article to provide the link between
QCD and its symmetries, in particular, the spontane-
ously and explicitly broken chiral symmetry, and the
nuclear forces which allow one to put nuclear physics on
firm theoretical grounds and also give rise to an accurate
calculational scheme for nuclear forces and the proper-
ties of nuclei.

This review is organized as follows: in this section, we
discuss some of the concepts underlying the chiral effec-
tive field theory �EFT� of the nuclear forces and make
contact to ab initio lattice simulations of two-baryon sys-
tems as well as to more phenomenological approaches.
Section II deals with the foundations and applications of
nuclear EFT and should be considered the central piece
of this review. In particular, tests of these forces in few-
nucleon systems are discussed. Attempts to tackle
nuclear matter and finite nuclei are considered in Sec.
III. We end with a short summary and outlook.

A. Chiral symmetry

First, we must discuss chiral symmetry in the context
of QCD. Chromodynamics is a non-Abelian SU�3�color
gauge theory with Nf=6 flavors of quarks, three of them
being light �u ,d ,s� and the other three heavy �c ,b , t�.
Here light and heavy refer to a typical hadronic scale of
about 1 GeV. In what follows, we consider light quarks
only �the heavy quarks are to be considered as decou-
pled�. The QCD Lagrangian reads

LQCD = −
1

2g2Tr�G��G
��� + q̄i��D�q − q̄Mq

= LQCD
0 − q̄Mq , �1.1�

where we have absorbed the gauge coupling in the defi-
nition of the gluon field and color indices are sup-
pressed. The three-component vector q collects the
quark fields, qT�x�= „u�s� ,d�x� ,s�x�…. As far as the strong
interactions are concerned, the different quarks u ,d ,s
have identical properties, except for their masses. The
quark masses are free parameters in QCD—the theory
can be formulated for any value of the quark masses. In
fact, light quark QCD can be well approximated by a
fictitious world of massless quarks, denoted LQCD

0 in Eq.
�1.1�. Remarkably, this theory contains no adjustable
parameter—the gauge coupling g merely sets the scale
for the renormalization group invariant scale �QCD. Fur-
thermore, in the massless world left- and right-handed
quarks are completely decoupled. The Lagrangian of
massless QCD is invariant under separate unitary global
transformations of the left- and right-hand quark fields,
the so-called chiral rotations, qI→VIqI ,VI�U�3� ,I
=L ,R, leading to 32=9 conserved left- and 9-conserved
right-handed currents by virtue of Noether’s theorem.

These can be expressed in terms of vector �V=L+R�
and axial-vector �A=L−R� currents,

V0
� = q̄��q, Va

� = q̄��
�a

2
q ,

A0
� = q̄���5q, Aa

� = q̄���5
�a

2
q . �1.2�

Here a=1, . . . ,8, and the �a are Gell-Mann’s SU�3� fla-
vor matrices. The singlet axial current is anomalous and
thus not conserved. The actual symmetry group of mass-
less QCD is generated by the charges of the conserved
currents; it is G0=SU�3�R	SU�3�L	U�1�V. The U�1�V
subgroup of G0 generates conserved baryon number
since the isosinglet vector current counts the number of
quarks minus antiquarks in a hadron. The remaining
group SU�3�R	SU�3�L is often referred to as chiral
SU�3�. Note that one also considers the light u and d
quarks only �with the strange quark mass fixed at its
physical value�; in that case, one speaks of chiral SU�2�
and must replace the generators in Eq. �1.2� by the Pauli
matrices. We note that QCD is also invariant under the
discrete symmetries of parity �P�, charge conjugation
�C�, and time reversal �T�. Although interesting in itself,
we do not consider strong CP violation and the related 

term in what follows �see, e.g., Peccei �2008��.

The chiral symmetry is a symmetry of the Lagrangian
of QCD but not of the ground state or the particle
spectrum—to describe the strong interactions in nature,
it is crucial that chiral symmetry is spontaneously bro-
ken. This can be most easily seen from the fact that
hadrons do not appear in parity doublets. If chiral sym-
metry was exact, from any hadron one could generate by
virtue of an axial transformation another state of exactly
the same quantum numbers except of opposite parity.
The spontaneous symmetry breaking leads to the forma-
tion of a quark condensate in the vacuum �0 � q̄q �0�
= �0 � q̄LqR+ q̄RqL �0�, thus connecting the left- with
the right-handed quarks. In the absence of quark masses
this expectation value is flavor independent: �0 � ūu �0�
= �0 � d̄d �0�= �0 � q̄q �0�. More precisely, the vacuum is only
invariant under the subgroup of vector rotations times
the baryon number current, H0=SU�3�V	U�1�V. This is
the generally accepted picture that is supported by gen-
eral arguments �Vafa and Witten, 1984� as well as lattice
simulations of QCD �for a recent study, see Giusti and
Necco �2007��. In fact, the vacuum expectation value of
the quark condensate is only one of the many possible
order parameters characterizing the spontaneous sym-
metry violation—all operators that share the invariance
properties of the vacuum qualify as order parameters.
The quark condensate nevertheless enjoys a special role;
it can be shown to be related to the density of small
eigenvalues of the QCD Dirac operator �see Banks and
Casher �1980� and discussions in Leutwyler and Smilga
�1992� and Stern �1998��, limM→0�0 � q̄q �0�=−���0�. For
free fields, ������3 near �=0. If the eigenvalues accu-
mulate near zero only then one obtains a nonvanishing
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condensate. This scenario is indeed supported by lattice
simulations and many model studies involving topologi-
cal objects such as instantons or monopoles.

Before discussing the implications of spontaneous
symmetry breaking for QCD, we remind the reader of
Goldstone’s theorem �Goldstone, 1961; Goldstone et al.,
1962�: to every generator of a spontaneously broken
symmetry corresponds a massless excitation of the
vacuum. These states are the Goldstone bosons, collec-
tively denoted as pions ��x� in what follows. Through
the corresponding symmetry current the Goldstone
bosons couple directly to the vacuum,

�0�A0�0���� � 0. �1.3�

In fact, the nonvanishing of this matrix element is a nec-
essary and sufficient condition for spontaneous symme-
try breaking. In QCD, we have eight �three� Goldstone
bosons for SU�3� �SU�2�� with spin 0 and negative
parity—the latter property is a consequence that these
Goldstone bosons are generated by applying the axial
charges on the vacuum. The dimensionful scale associ-
ated with the matrix element �Eq. �1.3�� is the pion de-
cay constant �in the chiral limit�,

�0�A�
a �0���b�p�� = iabFp�, �1.4�

which is a fundamental mass scale of low-energy QCD.
For massless quarks, the value of F differs from the
physical value by terms proportional to the quark
masses, to be introduced later, F�=F�1+O�M��. The
physical value of F� is 92.4 MeV, determined from pion
decay, �→��.

Of course, in QCD the quark masses are not exactly
zero. The quark mass term leads to the so-called explicit
chiral symmetry breaking. Consequently, the vector and
axial-vector currents are no longer conserved �with the
exception of the baryon number current�,

��Va
� = 1

2 iq̄�M,�a�q, ��Aa
� = 1

2 iq̄	M,�a
�5q . �1.5�

However, the consequences of the spontaneous symme-
try violation can still be analyzed systematically because
the quark masses are small. QCD possesses what is
called an approximate chiral symmetry. In that case,
the mass spectrum of the unperturbed Hamiltonian and
the one including the quark masses cannot be signifi-
cantly different. Stated differently, the effects of the ex-
plicit symmetry breaking can be analyzed in perturba-
tion theory. As a consequence, QCD has a remarkable
mass gap—the pions �and, to a lesser extent, the kaons
and the eta� are much lighter than all other hadrons. To
be more specific, consider chiral SU�2�. The second for-
mula of Eq. �1.5� is a Ward identity that relates the axial

current A�= d̄���5u with the pseudoscalar density

P= d̄i�5u,

��A� = �mu + md�P . �1.6�

Taking on-shell pion matrix elements of this Ward iden-
tity, one arrives at

M�
2 = �mu + md�G�/F�, �1.7�

where the coupling G� is given by �0 �P�0� ���p��=G�.
This equation leads to some intriguing consequences:
In the chiral limit, the pion mass is exactly zero, in
accordance with Goldstone’s theorem. More precisely,
the ratio G� /F� is a constant in the chiral limit and the
pion mass grows as �mu+md if the quark masses are
turned on.

There is even further symmetry related to the quark
mass term. It is observed that hadrons appear in isospin
multiplets, characterized by very small splittings of the
order of a few MeV. These are generated by the small
quark mass difference mu−md and also by electromag-
netic effects of the same size �with the notable exception
of the charged to neutral pion mass difference that is
almost entirely of electromagnetic origin�. This can be
made more precise: For mu=md, QCD is invariant under
SU�2� isospin transformations; q→q�=Uq, with U as a
unitary matrix. In this limit, up and down quarks cannot
be disentangled as far as the strong interactions are con-
cerned. Rewriting of the QCD quark mass term allows
one to make the strong isospin violation explicit,

HQCD
SB = muūu + mdd̄d

=
mu + md

2
�ūu + d̄d� +

mu − md

2
�ūu − d̄d� ,

�1.8�

where the first �second� term is an isoscalar �isovector�.
Extending these considerations to SU�3�, one arrives at
the eightfold way of Gell-Mann and Ne’eman that
played a decisive role in our understanding of the quark
structure of the hadrons. The SU�3� flavor symmetry is
also an approximate one, but the breaking is much
stronger than for the isospin case. From this, one can
directly infer that the quark mass difference ms−md
must be much larger than md−mu.

The consequences of these broken symmetries can be
analyzed systematically in a suitably tailored EFT, as dis-
cussed below. At this point, it is important to stress that
the chiral symmetry of QCD plays a crucial role in de-
termining the longest ranged parts of the nuclear force,
which is given by Goldstone boson exchange between
two and more nucleons. This was already stressed long
ago �see, e.g., Brown �1970�, and references therein� but
only with the powerful machinery of chiral effective field
theory this connection could be worked out model inde-
pendently, as we show in what follows.

B. Scales in nuclear physics

To appreciate the complexity related to a theoretical
description of the nuclear forces, it is most instructive to
discuss the pertinent scales arising in this problem. This
can most easily be visualized by looking at the phenom-
enological central potential between two nucleons, as it
appears, e.g., in meson-theoretical approaches to the
nuclear force �see Fig. 1�. The longest range part of the
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interaction is the one-pion exchange �OPE� that is firmly
rooted in QCD’s chiral symmetry. Thus, the correspond-
ing natural scale of the nuclear force problem is the
Compton wavelength of the pion,

�� = 1/M� � 1.5 fm, �1.9�

where M�=139.57 MeV is the charged pion mass. The
central intermediate range attraction is given by 2�
exchange �and shorter ranged physics�. Finally, the wave
functions of two nucleons do not like to overlap, which
is reflected in a short-range repulsion that can, e.g., be
modeled by vector meson exchange. From such consid-
erations, one would naively expect to be able to describe
nuclear binding in terms of energy scales of the order
of the pion mass. However, the true binding energies
of the nuclei are given by much smaller energy scales
between 1 and 9 MeV per nucleon. Another measure
for the shallow nuclear binding is the so-called binding
momentum �. In the deuteron, �=�mBD�45 MeV
�M�, with m=938.2 MeV as the nucleon mass and BD
=2.224 MeV as the deuteron binding energy. The small
value of � signals the appearance of energy-momentum
scales much below the pion mass. The most dramatic
reflection of the complexity of the nuclear force problem
is the values of the S-wave neutron-proton scattering
lengths,

�a�1S0�� = 23.8 fm� 1/M�, a�3S1� = 5.4 fm� 1/M�.

�1.10�

Thus, to properly set up an effective field theory for the
forces between two �or more� nucleons, it is mandatory
to deal with these very different energy scales. If one
was to treat the large S-wave scattering lengths pertur-
batively, the range of the corresponding EFT would be
restricted to momenta below pmax�1/ �a�1S0���8 MeV.
To overcome this barrier, one must generate the small
binding energy scales by a nonperturbative resumma-
tion. This can, e.g., be done in a theory without explicit
pion degrees of freedom, the so-called pionless EFT. In
such an approach, the limiting hard scale is the pion
mass. To go further, one must include the pions explic-
itly, as it is done in the pion-full or chiral nuclear EFT.
The relation between these different approaches is sche-

matically shown in Fig. 2. A different and more formal
argument that shows the breakdown of a perturbative
treatment of the EFT with two or more nucleons is re-
lated to the pinch singularities in the two-pion exchange
diagram in the static limit as discussed later in the con-
text of the explicit construction of the chiral nuclear
EFT.

In addition, if one extends the considerations to
heavier nuclei or even nuclear matter, the many-body
system exhibits yet another scale, the Fermi momentum
kF, with kF�2M� at nuclear matter saturation density.
This new scale must be included in a properly modified
EFT for the nuclear many-body problem which is not a
straightforward exercise as shown below. It is therefore
not astonishing that the theory for heavier nuclei is still
in a much less developed stage than the one for the
few-nucleon problem. These issues will be discussed in
Sec. III.

For more extended discussions of scales in the nuclear
force problem and in nuclei, see Friar et al. �1996�, Friar
�1997�, Delfino et al. �2006�, and Kaiser et al. �2007�.

C. Conventional approaches to the nuclear force
problem

Before discussing the application of the effective field
theory approach to the nuclear force problem, we make
a few comments on the highly successful conventional
approaches. First, we consider the two-nucleon case.
Historically, meson field theory and dispersion relations
have laid the foundations for the construction of a two-
nucleon potential. All these approaches incorporate the
long-range one-pion exchange as proposed by Yukawa
in 1935 �Yukawa, 1935� which nowadays is firmly rooted
in QCD. Dispersion relations can be used to construct
the two-pion exchange contribution to the nuclear force
as pioneered at Paris �Cottingham et al., 1973� and Stony
Brook �Jackson et al., 1975�. For a review, see, e.g.,
Machleidt and Slaus �2001�. In the 1990s, the so-called
high-precision potentials have been developed that fit
the large basis of pp and np elastic scattering data with a
�2 /datum�1. One of these is the so-called CD-Bonn
potential �Machleidt, 2001�. Besides one-pion, � and �

r [fm]

V (r)c

1 2

π

ππ + ...

FIG. 1. �Color online� Schematic plot of the central nucleon-
nucleon potential. The longest range contribution is the one-
pion exchange; the intermediate range attraction is described
by two-pion exchanges and other shorter ranged contributions.
At even shorter distances, the NN interaction is strongly repul-
sive.
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FIG. 2. �Color online� Scales in the two-nucleon problem and
the range of validity of the corresponding EFTs as explained in
the text. Here �� is the hard scale related to spontaneous chi-
ral symmetry breaking, with ���M�, with M�=770 MeV the
mass of the rho meson.
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vector-meson exchanges, it contains two scalar-isoscalar
mesons in each partial wave up to angular momentum
J=5 with the mass and coupling constant of the second �
fine tuned in any partial wave. The hadronic vertices are
regulated with form factors with cutoffs ranging from
1.3 to 1.7 GeV. Similarly, in the Nijmegen I and II po-
tentials one-pion exchange is supplemented by heavy-
boson exchanges with adjustable parameters which are
fitted for all �low� partial waves separately �Stoks et al.,
1994�. The Argonne V18 �AV18� potential starts from a
very general operator structure in coordinate space and
has fit functions for all these various operators �Wiringa
et al., 1995�. While these various potentials give an accu-
rate representation of the nucleon-nucleon phase shifts
and of most deuteron properties, the situation becomes
much less satisfactory when it comes to the much
smaller but necessary three-nucleon forces. Such three-
body forces are needed to describe the nuclear binding
energies and levels, as most systematically shown by the
Urbana-Argonne group �Pieper and Wiringa, 2001�. Sys-
tematic studies of the dynamics and reactions of systems
with three or four nucleons further sharpen the case for
the necessity of including three-nucleon forces �3NFs�
�see, e.g., Glöckle et al. �1996��. The archetype of a 3NF
is due to Fujita and Miyazawa �1957�, who extended
Yukawa’s meson exchange idea by sandwiching the
pion-nucleon scattering amplitude between nucleon
lines, thus generating the 3NF of longest range. In fact,
the work of Fujita and Miyazawa has been the seed for
many meson-theoretical approaches to the three-
nucleon force like the families of Tucson-Melbourne
�McKellar and Rajaraman, 1968; Coon et al., 1975�, Bra-
zilian �Coelho et al., 1983�, or Urbana-Illinois �Pudliner
et al., 1997; Pieper et al., 2001� 3NFs.

While the conventional approach outlined here has
enjoyed many successes and is frequently used in, e.g.,
nuclear structure and reaction calculations, it remains
incomplete as there are certain deficiencies that can only
be overcome based on EFT approaches. These are the
following: �i� it is difficult—if not impossible—to assign a
trustworthy theoretical error, �ii� gauge and chiral sym-
metries are difficult to implement, �iii� none of the three-
nucleon forces is consistent with the underlying nucleon-
nucleon interaction models or approaches, and �iv� the
connection to QCD is not at all obvious. There is still a
very natural connection between these models and the
forces derived from EFT by mapping the complicated
physics of the short-distance part of any interaction at
length scales �1/M� to the tower of multifermion con-
tact interactions that naturally arise in the EFT descrip-
tion �see Sec. II.B�.

D. Brief introduction to effective field theory

EFT is a general approach to calculate the low-energy
behavior of physical systems by exploiting a separation
of scales in the system �for reviews see, e.g., Georgi
�1993�, Manohar �1996�, and Burgess �2007��. Its roots
can be traced to the renormalization group �Wilson,
1983� and the intuitive understanding of ultraviolet di-

vergences in quantum field theory �Lepage, 1989�. A
succinct formulation of the underlying principle was
given in Weinberg �1979�: If one starts from the most
general Lagrangian consistent with all symmetries of the
underlying interaction, one will get the most general S
matrix consistent with these symmetries. Together with a
power counting scheme that specifies which terms are
required at a desired accuracy leads to a predictive para-
digm for a low-energy theory. The expansion is typically
in powers of a low-momentum scale Mlow which can be
the typical external momentum over a high-momentum
scale Mhigh. However, what physical scales Mhigh and
Mlow are identified with depends on the considered sys-
tem. In its most simple setting, consider a theory that is
made of two particle species, the light and the heavy
ones with Mlow�Mhigh. Consider now soft processes in
which the energies and momenta are of the order of the
light particle mass �the so-called soft scale�. Under such
conditions, the short-distance physics related to the
heavy particles can never be resolved. However, it can
be represented by light-particle contact interactions with
increasing dimension �number of derivatives�. Consider,
e.g., heavy-particle exchange between light ones in the
limit that Mhigh→� while keeping the ratio g /Mhigh
fixed, with g the light-heavy coupling constant. As
shown in Fig. 3, one can represent such exchange dia-
grams by a sum of local operators of the light fields with
increasing number of derivatives. In a highly symbolic
notation

g2

Mhigh
2 − t

=
g2

Mhigh
2 +

g2t

Mhigh
4 + ¯ , �1.11�

with t the squared invariant momentum transfer. In
many cases, the corresponding high-energy theory is not
known. The framework of EFT still offers a predictive
and systematic framework for performing calculations in
the light particle sector. Denote by Q a typical energy or
momentum of the order of Mlow and by � the hard scale
where the EFT will break down. In many cases, this
scale is set by the masses of the heavy particles not con-
sidered explicitly. In such a setting, any matrix element
or Green’s function admits an expansion in the small
parameter Q /� �Weinberg, 1979�,

� �
� �

� �= + + ...
highM

FIG. 3. Expansion of a heavy-particle exchange diagram in
terms of local light-particle operators. The solid and dashed
lines denote light and heavy particles, respectively. The filled
circle and square denote insertions with zero and two deriva-
tives in order. The ellipsis stands for operators with more de-
rivatives.
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M = 
�

�Q
�
��F�Q

�
,gi� , �1.12�

where F is a function of order 1 �naturalness�, � a regu-
larization scale �related to the UV divergences appear-
ing in the loop graphs�, and gi denotes a collection of
coupling constants, often called low-energy constants
�LECs�. These parametrize �encode� the unknown high-
energy �short-distance� physics and must be determined
by a fit to data �or can be directly calculated if the cor-
responding high-energy theory is known or can be
solved�. The counting index � in general depends on the
fields in the effective theory, the number of derivatives,
and the number of loops. This defines the so-called
power counting which allows one to categorize all con-
tributions to any matrix element at a given order. It is
important to stress that � must be bounded from below
to define a sensible EFT. In QCD this is a consequence
of the spontaneous breaking of its chiral symmetry. The
contributions with the lowest possible value of � define
the so-called leading-order �LO� contribution, the first
corrections with the second smallest allowed value of �
define the next-to-leading-order �NLO� terms, and so
on. In contrast to more conventional perturbation
theory, the small parameter is not a coupling constant
�such as quantum electrodynamics� but rather one ex-
pands in small energies or momentum, where small re-
fers to the hard scale �. The archetype of such a pertur-
bative EFT is chiral perturbation theory �CHPT� that
exploits the structures of the spontaneous and explicit
chiral symmetry breaking in QCD �Gasser and Leut-
wyler, 1984, 1985�. Here the light degrees of freedom are
the pions, which are generated through the symmetry
violation. Heavier particles, such as, vector mesons, only
appear indirectly as they generate local four-pion inter-
actions with four, six, etc., derivatives. For a recent re-
view, see Bernard and Meißner �2007�. Of course, the
pions also couple to heavy matter fields—such as
nucleons—which can also be included in CHPT, as re-
viewed in Bernard �2008�.

So far, we have made the implicit assumption of natu-
ralness, which implies, that the scattering length a is of
natural size as, e.g., in CHPT, where the scale is set by
1/���1 GeV−1�0.2 fm. This also implies that there are
no bound states close to the scattering thresholds. In
many physical systems and of particular interest here,
especially in the two-nucleon system, this is not the case,
but one rather has to deal with unnaturally large scatter-
ing lengths �and also shallow bound states�. Specifically
we consider nucleon-nucleon scattering at very low en-
ergies in the 1S0 channel �cf. Eq. �1.10��. For such low
energies, even the pions can be considered heavy and
are thus integrated out. To construct an EFT that is ap-
plicable for momenta p�1/a, one must retain all terms
ap�1 in the scattering matrix. This requires a nonper-
turbative resummation and is most elegantly done in the
power divergence scheme of Kaplan, Savage, and Wise
�1998a, 1998b�. This amounts to summing the leading
four-nucleon contact term �C0��†��2 to all orders in C0

and matching the scale-dependent LEC C0 to the scat-
tering length. This leads to the T matrix,

T =
4�

m

1

1/a + ip
�1 + O�p2�� , �1.13�

where the expansion around the large scattering length
is made explicit. Note that a small negative value of a
corresponds to attraction. All other effects, such as ef-
fective range corrections, are treated perturbatively.
This compact and elegant scheme is, however, not suffi-
cient for discussing nuclear processes with momenta p
�M�. We return to this topic when we give the explicit
construction of the chiral nuclear EFT in Sec. II.B. It is
important to stress that such EFTs with unnaturally
large scattering length can exhibit universal phenomena
that can be observed in physical systems which differ in
their typical energy scale by many orders of magnitude
�for a review see Braaten and Hammer �2006��. We note
that there are many subtleties in constructing a proper
EFT, but space forbids to discuss these here. Whenever
appropriate and/or necessary, we mention these in the
following sections and provide explicit references.

E. First results from lattice QCD

Lattice QCD �LQCD� is a promising tool to calculate
hadron properties ab initio from the QCD Lagrangian
on a discretized Euclidean space-time. This requires
state-of-the-art high performance computers and refined
algorithms to analyze the QCD partition function by
Monte Carlo methods. Only recently software and hard-
ware developments have become available that allow for
full QCD simulations at small enough quark masses
�corresponding to pion masses below 300 MeV�, large
enough volumes �corresponding to spatial dimensions
larger than 2.5 fm�, and sufficiently fine lattice spacing
�a�0.05 fm� so that the results are not heavily polluted
by computational artifacts and can really be connected
to the physical quark masses by sensible chiral extrapo-
lations.

For the nuclear force problem, there are two main
developments in LQCD reviewed here. These concern
the extraction of hadron-hadron scattering lengths from
unquenched simulations and the first attempts to con-
struct a nuclear potential. These are groundbreaking
studies, but at present one has not yet achieved an accu-
racy to obtain high-precision predictions for nuclear
properties. We look forward to the development of
these approaches in the future.

The first exploratory study of the nucleon-nucleon
scattering lengths goes back to Fukugita et al. �1994,
1995� in the quenched approximation. They make use of
an elegant formula, frequently called the Lüscher for-
mula, which relates the S-wave scattering length a0 be-
tween two hadrons h1 and h2 to the energy shift E
=Eh1h2

− �m1+m2� of the two-hadron state at zero rela-
tive momentum confined in spatial box of size L3. It is
given by �Hamber et al., 1983; Lüscher, 1986, 1991�,
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E = −
2�a0

�L3 �1 + c1
a0

L
+ c2

a0
2

L2� + O�L−6� , �1.14�

with �=m1m2 / �m1+m2� the reduced mass and c1
=2.837 297 and c2=6.375 183. A generalization of this
formalism was given in Beane et al. �2004� utilizing
methods developed for the so-called pionless nuclear
EFT �EFT with contact interactions; for a review see,
e.g., Bedaque and van Kolck �2002��. It reads

p cot 0�p� =
1

�L
S„�Lp/2��2

… ,

S��� = 
j�

�j 1

�j��2 − �
− 4��j, �1.15�

which gives the location of all energy eigenstates in the
box. Here 0 is the S-wave phase shift. The sum over all
three-vectors of integers j� is such that �j����j and the
limit �j→� is implicit. In the limit L� �a0�, Eq. �1.15�
reduces to the Lüscher formula �Eq. �1.14��. On the
other hand, for large scattering length, ��p cot 0�−1��L,
the energy of the lowest state is given by

E0 =
4�2

�L2 �d1 + d2Lp cot 0 + ¯ � , �1.16�

with d1=0.472 895, d2=0.079 023 4, and p cot 0 is evalu-
ated at the energy E=4�2d1 /�L2. Within this frame-
work, Beane et al. �2006� performed the first fully dy-
namical simulation of the neutron-proton scattering
lengths, with a lowest pion mass of 354 MeV. This mass
is still too high to perform a precise chiral extrapolation
to the physical pion mass, but this calculation demon-
strates the feasibility of this approach �see also Sec.
II.H�. This scheme can also be extended to hyperon-
nucleon interactions �see Beane et al. �2005��. A first sig-
nal for p� and n�− scattering was reported in Beane et
al. �2007�. For a recent review on these activities of the
NPLQCD Collaboration, see Beane et al. �2008�.

Another interesting development was initiated and
carried out in Aoki, Hatsuda, and Ishii �2007b�. They
generalized the two-center Bethe-Salpeter wave-
function approach of the CP-PACS Collaboration �Aoki
et al., 2005�, which offers an alternative to Lüscher’s for-
mula, to the NN system. Given an interpolating field for
the neutron and for the proton, the NN potential can be
defined from the properly reduced six-quark Bethe-
Salpeter amplitude ��r��. The resulting Lippmann-
Schwinger equation defines a nonlocal potential for a
given fixed separation r= �r��. Performing a derivative ex-
pansion, the central potential Vc�r� at a given energy E
is extracted from

Vc�r� = E +
1

m

�� 2��r�
��r�

. �1.17�

Monte Carlo simulations are then performed to gener-
ate the six-quark Bethe-Salpeter amplitude in a given
spin and isospin state of the two-nucleon system on a

large lattice, V= �4.4 fm�4 in the quenched approxima-
tion for pion masses between 380 and 730 MeV. Despite
these approximations, the resulting effective potential
extracted using Eq. �1.17� shares the features of the phe-
nomenological NN potentials—a hard core �repulsion�
at small separation surrounded by an attractive well at
intermediate and larger distances �see Fig. 4�. Further-
more, the asymptotic form of this potential has exactly
the form of the OPE, provided one rescales

Vc
OPE�r� =

g�N
2

4�
�1 · �2

�� 1 · �� 2

3
�M�

2m
�2e−M�r

r
�1.18�

with the pion and nucleon masses used in the simula-
tions but keeping the pion-nucleon coupling at its physi-
cal value g�N

2 / �4���14.0. These interesting results have
led to some enthusiastic appraisal �see, e.g., Wilczek
�2007��. However, it is important to note that the so-
calculated potential is not unique, especially its proper-
ties at short distances, since it depends on the definition
of the interpolating nucleon fields. Furthermore, the
quenched approximation is known to have uncontrolled
systematic uncertainties as it does not even define a
quantum field theory. In this context, Aoki et al. �2005�
reported on the numerical absence of the large-distance-
dominating � exchange from the flavor-singlet hair-pin
diagram. One would still like to see this promising cal-
culation repeated with dynamical quarks of sufficiently
small masses. Nemura et al. �2008� used this framework
to study the �N interaction. Interestingly, the central
potential of the p�0 interaction looks very similar to the
central np potential. It would be interesting to extend
these calculations to other hyperon-nucleon channels
and also study the effects of SU�3� symmetry breaking.
We return to these issues in the context of a three-flavor
chiral EFT in Sec. II.F. For recent developments in this
scheme concerning the calculation of the tensor force,
the energy dependence of the NN potential, and pre-
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r [fm]

-50
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50

100

V
C
(r

)
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]
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Mπ = 529 MeV
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FIG. 4. �Color online� Effective potential in the 1S0 channel
for three different quark masses in quenched LQCD. The
dashed line is the asymptotic OPE for M�=380 MeV,
m=1.2 GeV, and g�N

2 / �4��=14.0. From Ishii et al., 2007a.
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liminary results for full QCD �2+1 flavors�, see Aoki,
Ishii, and Nemura �2008�.

F. Observables and not-so observable quantities

There is an extensive literature, primarily from the
1960s and 1970s, on the role of off-shell physics in
nuclear phenomena �see, e.g., Srivastava and Sprung
�1975�, and references therein�. This includes not only
few-body systems �e.g., the triton� and nuclear matter
but also interactions of two-body systems with external
probes, such as nucleon-nucleon bremsstrahlung and the
electromagnetic form factors of the deuteron. The im-
plicit premise was that there is a true underlying poten-
tial governing the nucleon-nucleon force, so that its off-
shell properties can be determined. Indeed, the nuclear
many-body problem has traditionally been posed as
finding approximate solutions to the many-particle
Schrödinger equation, given a fundamental two-body in-
teraction that reproduces two-nucleon observables.

In contrast, effective field theories are determined
completely by on-energy-shell information up to a well-
defined truncation error. In writing down the most gen-
eral Lagrangian consistent with the symmetries of the
underlying theory, many-body forces arise naturally.
Even though they are usually suppressed at low ener-
gies, they enter at some order in the EFT expansion.
These many-body forces have to be determined from
many-body data. The key point is, however, that no off-
energy-shell information is needed or experimentally ac-
cessible. A fundamental theorem of quantum field
theory states that physical observables �or more pre-
cisely S-matrix elements� are independent of the choice
of interpolating fields that appear in a Lagrangian
�Haag, 1958; Coleman et al., 1969�. Equivalently, observ-
ables are invariant under a change in field variables in a
field theory Lagrangian �or Hamiltonian�,

��x� → ��x� + �P��� , �1.19�

where P��� is a local polynomial of the field � and its
derivatives and � is an arbitrary counting parameter.
Newly generated contributions to observables have to
cancel separately at each order in �. This “equivalence
theorem” holds for renormalized field theories. In an
EFT, one exploits the invariance under field redefini-
tions to eliminate redundant terms in the effective La-
grangian and to choose the most convenient or efficient
form for practical calculations �Politzer, 1980; Georgi,
1991; Kilian and Ohl, 1994; Arzt, 1995; Scherer and
Fearing, 1995b�. Since off-shell Green’s functions and
the corresponding off-shell amplitudes do change under
field redefinitions, one must conclude that off-shell
properties are unobservable.

Several recent works have emphasized from a field
theory point of view the impossibility of observing off-
shell effects. Fearing �1998� and Fearing and Scherer
�2000� used model calculations to illustrate how appar-
ent determinations of the two-nucleon off-shell T matrix
in nucleon-nucleon bremsstrahlung are illusory since
field redefinitions shift contributions between off-shell

contributions and contact interactions. Similarly, it was
shown in Scherer and Fearing �1995a� that Compton
scattering on a pion cannot be used to extract informa-
tion on the off-shell behavior of the pion form factor.
Cohen et al. �1996� and Friar et al. �1999� emphasized the
nonuniqueness of chiral Lagrangians for three-nucleon
forces and pion production. Field redefinitions lead to
different off-shell forms that yield the same observables
within a consistent power counting. Kaplan et al. �1999�
showed that an interaction proportional to the equation
of motion has no observable consequence for the deu-
teron electromagnetic form factor even though it con-
tributes to the off-shell T matrix.

In systems with more than two nucleons, one can
trade off-shell two-body interactions for many-body
forces. This explains how two-body interactions related
by unitary transformations can predict different binding
energies for the triton �Afnan and Serduke, 1973� if
many-body forces are not consistently included. These
issues were discussed from the viewpoint of unitary
transformations in Polyzou and Glöckle �1990� and
Amghar and Desplanques �1995�. The extension to
many-fermion systems in the thermodynamic limit was
considered in Furnstahl et al. �2001�. The effects of field
redefinitions were illustrated using the EFT for the di-
lute Fermi gas �Hammer and Furnstahl, 2000�. For a re-
lated discussion, see Krippa et al. �2003�. If many-body
interactions generated by the field redefinitions are ne-
glected, a Coester line similar to the one observed for
nuclear matter �Coester et al., 1970� is generated. More-
over, the connection to more traditional treatments us-
ing unitary transformations was elucidated. The ques-
tion of whether occupation numbers and momentum
distributions of nucleons in nuclei are observables was
investigated by Furnstahl and Hammer �2002�. Field re-
definitions lead to variations in the occupation numbers
and momentum distributions that imply the answer is
negative. The natural size of the inherent ambiguity �or
scheme dependence� in these quantities is determined
by the applicability of the impulse approximation. If the
impulse approximation is well justified, the ambiguity is
small and these quantities are approximately scheme in-
dependent. This has important implications for the inter-
pretation of �e ,e�p� experiments with nuclei. Whether
the stark difference in occupation numbers between
nonrelativistic and relativistic Brueckner calculations
can be explained by this ambiguity is another interesting
question �Jaminon and Mahaux, 1990�.

II. EFT FOR FEW-NUCLEON SYSTEMS: FOUNDATIONS
AND APPLICATIONS

A. EFT with contact interactions and universal aspects

In nuclear physics, there are a number of EFTs which
are all useful for a certain range of systems �cf. Fig. 2�.
The simplest theories include only short-range interac-
tions and even integrate out the pions. At extremely low
energies, Mhigh is given by the inverse of the NN scatter-
ing lengths and one can formulate a perturbative EFT in
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powers of the typical momentum k divided by Mhigh.
Since the NN scattering lengths are large this theory has
a very limited range of applicability. It is therefore useful
to construct another EFT with short-range interactions
that resums the interactions generating the large scatter-
ing length. This so-called pionless EFT can be under-
stood as an expansion around the limit of infinite scat-
tering length or equivalently around threshold bound
states. Its breakdown scale is set by one-pion exchange,
Mhigh�M�, while Mlow�1/a�k. For momenta k of the
order of the pion mass M�, pion exchange becomes a
long-range interaction and has to be treated explicitly.
This leads to the chiral EFT whose breakdown scale
Mhigh is set by the chiral symmetry breaking scale �� and
will be discussed in detail below.

The pionless theory relies only on the large scattering
length and is independent of the mechanism responsible
for it. It is very general and can be applied in systems
ranging from ultracold atoms to nuclear and particle
physics. It is therefore ideally suited to unravel universal
phenomena driven by the large scattering length such as
limit cycle physics �Braaten and Hammer, 2003; Mohr et
al., 2006� and the Efimov effect �Efimov, 1970�. For re-
cent reviews of applications to the physics of ultracold
atoms, see Braaten and Hammer �2006, 2007�. Here we
consider applications of this theory in nuclear physics.

The pionless EFT is designed to reproduce the well
known effective range expansion. The leading-order La-
grangian can be written as

L = N†�i�0 +
�� 2

2m
�N − C0

t �NT�2�i�2N�†�NT�2�i�2N�

− C0
s�NT�2�a�2N�†�NT�2�a�2N� + ¯ , �2.1�

where the dots represent higher-order terms suppressed
by derivatives and more nucleon fields. The Pauli matri-
ces �i ��a� operate in spin �isospin� space. The contact
terms proportional to C0

t �C0
s� correspond to two-

nucleon interactions in the 3S1 �1S0� NN channels. Their
renormalized values are related to the corresponding
large scattering lengths at and as in the spin-triplet and
spin-singlet channels, respectively. The exact relation, of
course, depends on the renormalization scheme. Various
schemes can be used, such as a momentum cutoff or
dimensional regularization. Convenient schemes that
have a manifest power counting at the level of individual
diagrams are dimensional regularization with power di-
vergence subtraction �PDS�, where poles in two and
three spatial dimensions are subtracted �Kaplan et al.,
1998b�, or momentum subtraction schemes as in Gegelia
�1998�. However, a simple momentum cutoff can be used
as well.

Since the scattering lengths are set by the low-
momentum scale a�1/Mlow, the leading contact interac-
tions have to be resummed to all orders �Kaplan et al.,
1998b; van Kolck, 1999�. The nucleon-nucleon scattering
amplitude in the 3S1 �1S0� channels is obtained by sum-
ming the so-called bubble diagrams with the C0

t �C0
s� in-

teractions shown in Fig. 5. This summation gives the ex-
act solution of the Lippmann-Schwinger equation for
the C0

t or C0
s interactions. Higher-order derivative terms

which are not shown explicitly in Eq. �2.1� reproduce
higher-order terms in the effective range expansion.
Since these terms are natural and their size is set by
Mhigh, their contribution at low energies is suppressed by
powers of Mlow/Mhigh and can be treated in perturbation
theory. The subleading correction is given by the effec-
tive range r0�1/Mhigh and the corresponding diagrams
are illustrated in Fig. 6. The renormalized S-wave scat-
tering amplitude to next-to-leading-order in a given
channel then takes the form

T2�k� =
4�

m

1

− 1/a − ik
�1 −

r0k2/2

− 1/a − ik
+ ¯ � , �2.2�

where k is the relative momentum of the nucleons and
the dots indicate corrections of order �Mlow/Mhigh�2 for
typical momenta k�Mlow. The pionless EFT becomes
very useful in the two-nucleon sector when external cur-
rents are considered and has been applied to a variety
of electroweak processes. These calculations are re-
viewed in detail in Beane et al. �2000� and Bedaque and
van Kolck �2002�. More recently Christlmeier and
Grießhammer calculated low-energy deuteron electro-
disintegration in the framework of the pionless EFT
�Christlmeier and Grießhammer, 2008�. For the double-
differential cross sections of the d�e ,e�� reaction at 

=180° excellent agreement was found with a recent ex-
periment at S-DALINAC �Ryezayeva et al., 2008�.1 The
double-differential cross section for an incident electron
energy E0=27.8 MeV and 
=180° is shown in Fig. 7.
The data were used to precisely map the M1 response
which governs the reaction np→d� relevant to big-bang
nucleosynthesis. Finally, the reaction pp→pp�0 near
threshold was studied in Ando �2007�.

We now proceed to the three-nucleon system. Here it
is convenient to rewrite the theory using so-called
“dimeron” auxiliary fields �Kaplan, 1997�. We need two
dimeron fields, one for each S-wave channel: �i� a field ti
with spin �isospin� 1 �0� representing two nucleons inter-
acting in the 3S1 channel �the deuteron� and �ii� a field sa
with spin �isospin� 0 �1� representing two nucleons inter-
acting in the 1S0 channel �Bedaque et al., 2000�,

1However, there is a disagreement between theory and data
for the small longitudinal-transverse interference contribution
�LT reported in von Neumann-Cosel et al. �2002� that is cur-
rently not understood �Christlmeier and Grießhammer, 2008�.

FIG. 5. The bubble diagrams with the contact interaction C0
t or

C0
s contributing to the two-nucleon scattering amplitude.
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L = N†�i�t +
�� 2

2m
�N − ti

†�i�t −
�� 2

4m
− �t�ti

− sa
†�i�t −

�� 2

4m
− �s�sa −

gt

2
�ti

†NT�2�i�2N + H.c.�

−
gs

2
�sa

†NT�2�a�2N + H.c.� − G3N†�gt
2�ti�i�†�tj�j�

+
gtgs

3
��ti�i�†�sa�a� + H.c.� + gs

2�sa�a�†�sb�b��N

+ ¯ , �2.3�

where i , j are spin and a ,b are isospin indices while gt, gs,
�t, �s, and G3 are the bare coupling constants. This La-
grangian goes beyond leading order and already in-
cludes the effective range terms. The coupling constants
gt, �t, gs, �s are matched to the scattering lengths a� and
effective ranges r0� in the two channels ��=s , t�. Alter-
natively, one can match to the position of the bound
state or virtual state pole �� in the T matrix instead of
the scattering length which often improves convergence
�Phillips, Rupak, and Savage, 2000�. The two quantities
are related through

�� =
1

r0�
�1 − �1 − 2r0�/a�� , �2.4�

where �=s , t. The term proportional to G3 constitutes a
Wigner-SU�4� symmetric three-body interaction. It only
contributes in the spin-doublet S-wave channel. When
the auxiliary dimeron fields ti and sa are integrated out,
an equivalent form containing only nucleon fields is ob-
tained. At leading order when the effective range cor-
rections are neglected, the spatial and time derivatives
acting on the dimeron fields are omitted and the field is
static. The coupling constants g� and ��, �=s , t are not
independent then and only the combination g�

2 /�� en-
ters in observables. This combination can then be

matched to the scattering length or pole position.
The simplest three-body process to consider is

neutron-deuteron scattering below the breakup thresh-
old. In order to focus on the main aspects of renormal-
ization, we suppress all spin-isospin indices and compli-
cations from coupled channels in the three-nucleon
problem. This corresponds to a system of three spinless
bosons with large scattering length. If the scattering
length is positive, the bosons form a two-body bound
state analog to the deuteron which we call dimeron. The
leading-order integral equation for boson-dimeron scat-
tering is shown schematically in Fig. 8. For total orbital
angular momentum L=0, it takes the following form:

T3�k,p ;E� =
16

3a
M�k,p ;E� +

4

�
�

0

�

dqq2T3�k,q ;E�

	
M�q,p ;E�

− 1/a + �3q2/4 − mE − i�
, �2.5�

where the inhomogeneous term reads

M�k,p ;E� =
1

2kp
ln�k2 + kp + p2 − mE

k2 − kp + p2 − mE
� +

H���
�2 .

�2.6�

Here H determines the strength of the three-body force
G3���=2mH��� /�2 which enters already at leading
order and � is a UV cutoff introduced to regularize
the integral equation. The magnitude of the incoming
�outgoing� relative momenta is k �p� and E=3k2 / �4m�
−1/ �ma2�. The on-shell point corresponds to k=p
and the phase shift can be obtained via k cot 
=1/T3�k ,k ;E�+ ik. For H=0 and �→�, Eq. �2.5� re-
duces to the integral equation first derived by Skornia-
kov and Ter-Martirosian �1957�. It is well known that
this equation has no unique solution �Danilov, 1961�.
The regularized equation has a unique solution for any
given �finite� value of the ultraviolet cutoff �, but the
amplitude in the absence of the three-body force shows
an oscillatory behavior on ln �. Cutoff independence of
the amplitude is restored by an appropriate “running” of
H��� which turns out to be a limit cycle �Bedaque et al.,
1999a, 1999b�
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FIG. 6. Diagrams for the inclusion of higher-
order contact interactions.

FIG. 7. �Color online� Double-differential cross sections of the
2H�e ,e�� reaction with errors �hatched bands� extracted from
the experiment. The gray bands and dashed lines are calcula-
tions in pionless EFT and a potential model �Ryezayeva et al.,
2008�. Figure is courtesy of H. W. Grießhammer.
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FIG. 8. The integral equation for the boson-dimeron scattering
amplitude. The single �double� line indicates the boson
�dimeron� propagator.
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H��� =
cos�s0 ln��/�

*
� + arctan s0�

cos�s0 ln��/�
*
� − arctan s0�

, �2.7�

where �
*

is a dimensionful three-body parameter gener-
ated by dimensional transmutation. Adjusting �

*
to a

single three-body observable allows us to determine all
other low-energy properties of the three-body system.
Note that the choice of the three-body parameter �

*
is

not unique and there are other definitions more directly
related to experiment �Braaten and Hammer, 2006�. Be-
cause H��� in Eq. �2.7� vanishes for certain values of the
cutoff � it is possible to eliminate the explicit three-body
force from the equations by working with a fixed cutoff
that encodes the dependence on �

*
. This justifies tuning

the cutoff � in the STM equation to reproduce a three-
body datum and using the same cutoff to calculate other
observables as suggested by Kharchenko �1973�. Equiva-
lently, a subtraction can be performed in the integral
equation �Hammer and Mehen, 2001; Afnan and Phil-
lips, 2004�. In any case, one three-body input parameter
is needed for the calculation of observables. A compre-
hensive study of the range corrections to the three-
boson spectrum was carried out in Platter et al. �2008�.
They showed that all range corrections vanish in the uni-
tary limit due to the discrete scale invariance. While the
corrections proportional to r0 /a vanish trivially, this in-
cludes also the corrections proportional to �

*
r0, where

�
*
=�mB3

* is the binding momentum of the Efimov state
fixed by the chosen renormalization condition. More-
over, they have calculated the corrections to the Efimov
spectrum for finite scattering length. The range correc-
tions are negligible for the shallow states but become
important for the deeper bound states.

The integral equations for the three-nucleon problem
derived from the Lagrangian �2.3� are a generalization of
Eq. �2.5�. �For their explicit form and derivation, see,
e.g., Bedaque, Rupak, et al. �2003�.� For S-wave nucleon-
deuteron scattering in the spin-quartet channel only the
spin-1 dimeron field contributes. This integral equation
has a unique solution for �→� and there is no three-
body force in the first few orders. The spin-quartet scat-
tering phases can therefore be predicted to high preci-
sion from two-body data �Bedaque and van Kolck 1998;
Bedaque et al., 1998�. In the spin-doublet channel both
dimeron fields as well as the three-body force in the
Lagrangian �2.3� contribute �Bedaque et al., 2000�. This
leads to a pair of coupled integral equations for the T
matrix. Thus, one needs a new parameter which is not
determined in the NN system in order to fix the �lead-
ing� low-energy behavior of the 3N system in this chan-
nel. The three-body parameter gives a natural explana-
tion of universal correlations between different three-
body observables such as the Phillips line, a correlation
between the triton binding energy and the spin-doublet
neutron-deuteron scattering length �Phillips, 1968�.
These correlations are purely driven by the large scatter-
ing length independent of the mechanism responsible
for it. As a consequence, they occur in atomic systems
such as 4He atoms as well �Braaten and Hammer, 2006�.

Higher-order corrections to the amplitude including
the ones due to NN effective range terms can be in-
cluded perturbatively. This was first done at NLO for the
scattering length and triton binding energy by Efimov
�1991� and for the energy dependence of the phase shifts
by Hammer and Mehen �2001�. Bedaque, Rupak, et al.
�2003� and Grießhammer �2004� demonstrated that it is
convenient to iterate certain higher-order range terms in
order to extend the calculation to N2LO. Here a sub-
leading three-body force was also included as required
by dimensional analysis. More recently, Platter and Phil-
lips showed using the subtractive renormalization that
the leading three-body force is sufficient to achieve cut-
off independence up to N2LO in the expansion in
Mlow/Mhigh �Platter and Phillips, 2006�. Whether the sub-
leading three-body force is required for consistent renor-
malization at N2LO or not is still an open question. The
results for the spin-doublet neutron-deuteron scattering
phase shift at LO �Bedaque et al., 2000�, NLO �Hammer
and Mehen, 2001�, and N2LO �Platter, 2006� are shown
in Fig. 9. There is excellent agreement with the available
phase shift analysis and a calculation using a phenom-
enological NN interaction. Whether there is a suppres-
sion of the subleading three-body force or simply a cor-
relation between the leading and subleading
contributions is not fully understood. The extension to
3N channels with higher orbital angular momentum is
straightforward �Gabbiani et al., 2000� and three-body
forces do not appear until very high orders. A general
counting scheme for three-body forces based on the
asymptotic behavior of the solutions of the leading order
STM equation was proposed in Grießhammer �2005�. A
complementary approach to the few-nucleon problem is
given by the renormalization group where the power
counting is determined from the scaling of operators un-
der the renormalization group transformation �Wilson,
1983�. This method leads to consistent results for the
power counting �Barford and Birse, 2005; Ando and
Birse, 2008; Birse, 2008�. Universal low-energy proper-
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FIG. 9. �Color online� Phase shifts for neutron-deuteron scat-
tering below the deuteron breakup at LO �dash-dotted line�,
NLO �dashed line�, and next-to-next-to-leading order N2LO
�solid line�. The filled squares and circles give the results of a
phase shift analysis and a calculation using AV18 and the Ur-
bana IX three-body force, respectively. Figure is courtesy of L.
Platter.
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ties of few-body systems with short-range interactions
and large two-body scattering length were reviewed in
Braaten and Hammer �2006�. �See also Efimov �1981�
for an early work on this subject.� Three-body calcula-
tions with external currents are still in their infancy.
However, a few exploratory calculations have been car-
ried out. Universal properties of the triton charge form
factor were investigated in Platter and Hammer �2006�
and neutron-deuteron radiative capture was calculated
in Sadeghi and Bayegan �2005� and Sadeghi et al. �2006�.
This opens the possibility to carry out accurate calcula-
tions of electroweak reactions at very low energies for
astrophysical processes.

The pionless approach has also been extended to the
four-body sector �Platter et al., 2004, 2005�. In order to
be able to apply the Yakubovsky equations, an equiva-
lent effective quantum mechanics formulation was used.
The study of the cutoff dependence of the four-body
binding energies revealed that no four-body parameter
is required for renormalization at leading order. As a
consequence, there are universal correlations in the
four-body sector which are also driven by the large scat-
tering length. The best known example is the Tjon line:
a correlation between the triton and alpha particle bind-
ing energies Bt and B�, respectively. Of course, higher-
order corrections break the exact correlation and gener-
ate a band. Fig. 10, we show this band together with
some calculations using phenomenological potentials
�Nogga et al., 2000� and a chiral EFT potential with ex-
plicit pions �Epelbaum et al., 2001; Epelbaum, Nogga,
Glöckle, Kamada, Meißner, and Witała, 2002�. All calcu-
lations with interactions that give a large scattering
length must lie within the band. Different short-distance
physics and/or cutoff dependence should only move the
results along the band. This can, for example be ob-
served in the NLO results with the chiral potential indi-
cated by the squares in Fig. 10 or in the few-body calcu-
lations with the low-momentum NN potential Vlow k

carried out in Nogga et al. �2004�. The Vlow k potential is
obtained from phenomenological NN interactions by in-
tegrating out high-momentum modes above a cutoff �
but leaving two-body observables �such as the large scat-
tering lengths� unchanged. The results of few-body cal-
culations with Vlow k are not independent of � but lie all
close to the Tjon line �cf. Fig. 2 in Nogga et al., 2004�.
The studies of the four-body system in the pionless
theory were extended further in Hammer and Platter
�2007�. Here the dependence of the four-body bound
state spectrum on the two-body scattering length was
investigated in detail and summarized in a generalized
Efimov plot for the four-body spectrum.

The question of whether a four-body parameter has to
enter at leading order was reanalyzed in Yamashita et al.
�2006�. Within the renormalized zero-range model, they
found a strong sensitivity of the deepest four-body en-
ergy to a four-body subtraction constant in their equa-
tions. They motivated this observation from a general
model-space reduction in a realistic two-body interac-
tion close to a Feshbach resonance. The results of Plat-
ter et al. �2004� for the 4He tetramer that include a four-
body parameter were also reproduced. Yamashita et al.
concluded that a four-body parameter should generally
enter at leading order. They argued that four-body sys-
tems of 4He atoms and nucleons �where this sensitivity is
absent �Nogga et al., 2004; Platter et al., 2004, 2005�� are
special because repulsive interactions strongly reduce
the probability to have four particles close together.
However, the renormalization of the four-body problem
was not explicitly verified in their calculation. Another
drawback of their analysis is the focus on the deepest
four-body state only. Therefore, their findings could be
an artifact of their particular regularization scheme. An-
other recent study by von Stecher et al. �2009� confirmed
the absence of a four-body parameter for shallow states,
while some sensitivity was found for the deepest four-
body state.

The pionless theory has also been extended to more
than four particles using it within the no-core shell
model approach. Here the expansion in a truncated har-
monic oscillator basis is used as the ultraviolet regulator
of the EFT. The effective interaction is determined di-
rectly in the model space, where an exact diagonaliza-
tion in a complete many-body basis is performed. Stetcu,
Barrett, and van Kolck �2007� calculated the 0+ excited
state of 4He and the 6Li ground state using the deuteron,
triton, and alpha particle ground states as input. The first
�0+;0� excited state in 4He is calculated within 10%
of the experimental value, while the 6Li ground state
comes out at about 70% of the experimental value in
agreement with the 30% error expected for the leading-
order approximation. These results are promising and
should be improved if range corrections are included.
Finally, the spectrum of trapped three- and four-fermion
systems was calculated using the same method �Stetcu,
Barrett, van Kolck, and Vary, 2007�. In this case the har-
monic potential is physical and not simply used as an
ultraviolet regulator.
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FIG. 10. �Color online� The Tjon line correlation as predicted
by the pionless theory. The gray circles and triangles show vari-
ous calculations using phenomenological potentials �Nogga et
al., 2000�. The squares show the results of chiral EFT at NLO
for different cutoffs, while the diamond gives the N2LO result
�Epelbaum et al., 2001; Epelbaum, Nogga, Glöckle, Kamada,
Meißner, and Witała, 2002�. The cross shows the experimental
point.
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B. Chiral EFT for few nucleons: Foundations

The extension of the previously discussed EFT with
contact interactions to higher energies requires the in-
clusion of pions as explicit degrees of freedom. The in-
teraction between pions and nucleons can be described
in a systematic way using chiral perturbation theory. In
contrast, the interaction between the nucleons is strong
and leads to nonperturbative phenomena at low energy
such as, e.g., shallow-lying bound states. This breakdown
of perturbation theory can be linked to the fact that the
interaction between the nucleons is not suppressed in
the chiral limit contrary to the pion and pion-nucleon
interactions. Moreover, an additional enhancement oc-
curs for Feynman diagrams involving two and more
nucleons due to the appearance of the so-called pinch
singularities in the limit of the infinite nucleon mass.
Although such infrared singularities disappear if one
keeps the nucleon mass at its physical value, they do
generate large enhancement factors which destroy the
chiral power counting. This can be more easily under-
stood utilizing the language of time-ordered perturba-
tion theory. Consider, for example, the two-pion ex-
change box diagram shown in Fig. 11. While all
intermediate states in the first two time-ordered graphs,
often referred to as irreducible, involve at least one vir-
tual pion and thus lead to energy denominators of the
expected size, E−Ei�M�, the remaining reducible dia-
grams involve an intermediate state with nucleons only
which produces unnaturally small energy denominators
of the order E−Ei�M�

2 /m�M�. Clearly, the enhanced
reducible time-ordered diagrams are nothing but the it-
erations of the Lippmann-Schwinger equation with the
kernel which contains all possible irreducible diagrams
and defines the nuclear Hamiltonian. It is free from in-
frared enhancement factors and can be worked out sys-
tematically using the machinery of chiral perturbation
theory as suggested in Weinberg’s seminal work �Wein-
berg, 1990, 1991�.2 This natural reduction to the quan-
tum mechanical A-body problem is a welcome feature
for practical calculations as it allows one to apply vari-

ous existing few-body techniques such as, e.g., the
Faddeev-Yakubovsky scheme, the no-core shell model,
Green’s function Monte Carlo method, and hyperspheri-
cal harmonics method. On the other hand, the frame-
work offers a systematic and perturbative scheme to de-
rive nuclear forces and current operators in harmony
with the chiral symmetry of QCD. The expansion pa-
rameter is given by the ratio Q /�, where Q is the soft
scale associated with the pion mass and/or external
nucleon momenta and � is the pertinent hard scale. For
a given connected irreducible diagram with N nucleons,
L pion loops, and Vi vertices of type i, the power � of
the soft scale Q which determines its importance can be
obtained based on naive dimensional analysis �i.e., as-
suming classical scaling dimensions for various operators
in the effective Lagrangian�,

� = − 4 + 2N + 2L + 
i

Vi�i, �i = di + 1
2ni − 2. �2.8�

Here ni is the number of nucleon field operators and di
is the number of derivatives and/or insertions of M�.
The spontaneously broken chiral symmetry of QCD
guarantees �i�0. As a consequence, the chiral dimen-
sion � is bounded from below and only a finite number
of diagrams contribute at a given order. In addition, Eq.
�2.8� provides a natural explanation to the dominance of
the two-nucleon interactions and the hierarchy of
nuclear forces observed in nuclear physics. In particular,
it implies that two-, three-, and four-nucleon forces start
to contribute at orders �=0, 2, and 4, respectively. Note
that as argued in Weinberg �1991�, the nucleon mass m
should be counted as Q /m�Q2 /�2 �which implies that
m��� in order to maintain consistency with the appear-
ance of shallow-lying bound states.3 Note further that
according to this counting rule the momentum scale as-
sociated with the real pion production is treated as the
hard scale, �mM���, and needs not be explicitly kept
track of �see also Mondejar and Soto �2007� and Sec.
II.E for a related discussion�. Clearly, such a framework
is only applicable at energies well below the pion pro-
duction threshold. We also emphasize that the validity of
the naive dimensional scaling rules for few-nucleon con-
tact operators has been questioned in Nogga et al. �2005�
and Birse �2006�. We return to this issue in Sec. II.C.

Before discussing the chiral expansion of the nuclear
forces it is important to clarify the relation between the
underlying chiral Lagrangian for pions and nucleons and

2An alternative framework based on the perturbative treat-
ment of the pion exchange contributions has been introduced
in Kaplan et al. �1998a, 1998b� �see Beane et al. �2000� and
Bedaque and van Kolck �2002��. As shown in Cohen and
Hansen �1999a, 1999b� and Fleming et al. �2000�, the perturba-
tive inclusion of pions does not allow to significantly increase
the applicability range of the theory as compared to pionless
EFT. For yet different proposals to include pions in EFT for
the nucleon-nucleon system see Lutz �2000�, Oller �2008�, and
Soto and Tarrus �2008�.

3This statement only applies for the power counting based on
naive dimensional analysis.

FIG. 11. Representation of the two-pion exchange Feynman diagram in terms of time-ordered graphs. Solid and dashed lines
represent nucleons and pions, respectively.
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the nuclear Hamiltonian we are finally interested in. The
derivation of the nuclear potentials from field theory is
an old and extensively studied problem in nuclear phys-
ics. Different approaches have been developed in the
1950s of the last century in the context of the so-called
meson theory of nuclear forces �see, e.g., Phillips �1959��.
In the modern framework of chiral EFT, the most fre-
quently used methods besides the already mentioned
time-ordered perturbation theory are the ones based on
S matrix and the unitary transformation. In the former
scheme, the nuclear potential is defined through match-
ing the amplitude to the iterated Lippmann-Schwinger
equation �Kaiser et al., 1997�. In the second approach,
the potential is obtained by applying an appropriately
chosen unitary transformation to the underlying pion-
nucleon Hamiltonian which eliminates the coupling be-
tween the purely nucleonic Fock space states and the
ones which contain pions �see Epelbaum et al. �1998b�
for more details�. We stress that both methods lead to
energy-independent interactions as opposed by the ones
obtained in time-ordered perturbation theory. The en-
ergy independence of the potential is a welcome feature
which enables applications to three- and more-nucleon
systems.

We are now in the position to discuss the structure of
the nuclear force at lowest orders of the chiral expan-
sion. The leading-order �LO� contribution results, ac-
cording to Eq. �2.8�, from two-nucleon tree diagrams
constructed from the Lagrangian of lowest dimension
�i=0, L�0�, which has the following form in the heavy-
baryon formulation �Jenkins and Manohar, 1991; Ber-
nard et al., 1992�:

L�
�0� =

F2

4
���U��U† + �+� ,

L�N
�0� = N̄�iv · D + g̊Au · S�N ,

LNN
�0� = − 1

2CS�N̄N��N̄N� + 2CT�N̄SN� · �N̄SN� , �2.9�

where N, v�, and S���1/2�i�5���v� denote the large
component of the nucleon field, the nucleon four-
velocity, and the covariant spin vector, respectively. The
brackets �¯� denote traces in the flavor space while F
and g�A refer to the chiral-limit values of the pion decay
and the nucleon axial vector coupling constants. The
low-energy constants �LECs� CS and CT determine the
strength of the leading NN short-range interaction. Fur-
ther, the unitary 2	2 matrix U���=u2��� in the flavor
space collects the pion fields,

U��� = 1 +
i

F
� · � −

1

2F2�2 + O��3� , �2.10�

where �i denotes the isospin Pauli matrix. The covariant
derivatives of the nucleon and pion fields are defined via
D�=��+ �u† ,��u� /2 and u�= i�u†��u−u��u†�. The quan-
tity �+=u†�u†+u�†u with �=2BM involves the explicit
chiral symmetry breaking due to the finite light quark
masses, M=diag�mu ,md�. The constant B is related to

the value of the scalar quark condensate in the chiral
limit, �0 � ūu �0�=−F2B, and relates the pion mass M� to
the quark mass mq via M�

2 =2Bmq+O�mq
2�. For more de-

tails on the notation and the complete expressions for
the pion-nucleon Lagrangian including up to four
derivatives/M� insertions see Fettes et al. �2000�. Ex-
panding the effective Lagrangian in Eqs. �2.9� in powers
of the pion fields one can easily verify that the only pos-
sible connected two-nucleon tree diagrams are the one-
pion exchange and the contact one �see the first line in
Fig. 12�, yielding the following potential in the two-
nucleon center-of-mass system �CMS�:

VNN
�0� = −

gA
2

4F�
2

�� 1 · q��� 2 · q�

q�2 + M�
2 �1 · �2 + CS + CT�� 1 · �� 2,

�2.11�

where the superscript of VNN denotes the chiral order �,
�i are the Pauli spin matrices, q� =p� −p� is the nucleon
momentum transfer, and p� �p��� refers to initial �final�
nucleon momenta in the CMS. Further, F�=92.4 MeV
and gA=1.267 denote the pion decay and the nucleon
axial coupling constants, respectively.

The first corrections to the LO result are suppressed
by two powers of the low-momentum scale. The absence
of the contributions at order �=1 can be traced back to

Leading order

Next−to−next−to−next−to−leading order

Next−to−leading order

Next−to−next−to−leading order

FIG. 12. Chiral expansion of the two-nucleon force up to next-
to-next-to-next-to-leading order �N3LO�. Solid dots, filled
circles, squares, and diamonds denote vertices with �i=0, 1, 2,
and 3, respectively. Only irreducible contributions of the dia-
grams are taken in to account as explained in the text.
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parity conservation which forbids �N̄N��N̄N� vertices
with one spatial derivative and �NN vertices with two
derivatives �i.e., �i=1�. The next-to-leading-order
�NLO� contributions to the 2NF therefore result from
tree diagrams with one insertion of the �i=2 interaction
and one-loop diagrams constructed from the lowest-
order vertices �see Fig. 12�. The relevant terms in the
effective Lagrangian read �Gasser et al., 1988�

L�
�2� =

l3

16
��+�2 +

l4

16
�2���U��U†���+�

+ 2��†U�†U + �U†�U†� − 4��†�� − ��−�2�

+ ¯ ,

L�N
�2� = N̄� 1

2m̊
�v · D�2 −

1

2m̊
D · D + d16S · u��+�

+ id18S
��D�,�−� + ¯ �N ,

LNN
�2� = − C̃1	�N̄DN� · �N̄DN� + ��DN̄�N� · ��DN̄�N�


− 2�C̃1 + C̃2��N̄DN� · ��DN̄�N�

− C̃2�N̄N� · ��D2N̄�N + N̄D2N� + ¯ , �2.12�

where li, di, and C̃i denote further LECs and m̊ is
the nucleon mass in the chiral limit. The ellipses in
the pion and pion-nucleon Lagrangians refer to terms
which do not contribute to the nuclear force at NLO.
In the case of the nucleon-nucleon Lagrangian LNN

�2�

only a few terms are given explicitly. The complete
reparametrization-invariant set of terms can be found in
Epelbaum �2000�. The NLO contributions to the two-
nucleon potential have been first considered in Ordonez
et al. �1994, 1996� utilizing the framework of time-
ordered perturbation theory. The corresponding energy-
independent expressions have been worked out in Friar
and Coon �1994� using the method described in Friar
�1977� and then rederived in Kaiser et al. �1997� using an
S-matrix-based approach and, independently, in Epel-
baum et al. �1998b, 2000� based on the method of unitary
transformation. The one-pion �1�� exchange diagrams
at NLO do not produce any new momentum depen-
dence. Apart from renormalization of various LECs in
Eq. �2.11�, one obtains the leading contribution to the
Goldberger-Treiman discrepancy �Epelbaum et al.,
2003�,

g�N

m
=

gA

F�
−

2M�
2

F�
d18 + ¯ , �2.13�

where the ellipsis refers to higher-order terms. Similarly,
loop diagrams involving NN short-range interactions
only lead to �M�-dependent� shifts in the LO contact
terms. The remaining contributions to the 2NF due to
higher-order contact interactions and two-pion exchange
have the form

VNN
�2� = −

�1 · �2

384�2F�
4 L�̃�q��4M�

2 �5gA
4 − 4gA

2 − 1�

+ q�2�23gA
4 − 10gA

2 − 1� +
48gA

4 M�
4

4M�
2 + q�2�

−
3gA

4

64�2F�
4 L�̃�q���� 1 · q��� 2 · q� − �� 1 · �� 2q�2�

+ C1q�2 + C2k�2 + �C3q�2 + C4k�2��� 1 · �� 2

+ iC5
1
2

��� 1 + �� 2� · q� 	 k� + C6q� · �� 1q� · �� 2

+ C7k� · �� 1k� · �� 2, �2.14�

where q��q� � and the LECs Ci can be written as linear

combinations of C̃i in Eq. �2.12�. The loop function

L�̃�q� is defined in the spectral function regularization
�Epelbaum et al., 2004a, 2004b� as

L�̃�q� = 
��̃ − 2M��
�

2q
ln
�̃2�2 + q2s2 + 2�̃q�s

4M�
2 ��̃2 + q2�

,

�2.15�

where we have introduced the following abbreviations:

�=�4M�
2 +q�2 and s=��̃2−4M�

2 . Here �̃ denotes the ul-
traviolet cutoff in the mass spectrum of the two-pion-
exchange potential. If dimensional regularization �DR�
is employed, the expression for the loop function simpli-
fies to

L�q� = lim
�̃→�

L�̃�q� =
�

q
ln
� + q

2M�

. �2.16�

In addition to the two-nucleon contributions, at NLO
one also needs to consider three-nucleon diagrams
shown in the first line of Fig. 13. The first diagram does
not involve reducible topologies and, therefore, can be
dealt with using the Feynman graph technique. It is then
easy to verify that its contribution is shifted to higher
orders due to the additional suppression by the factor of
1/m caused by the appearance of time derivative at the

leading-order ��N̄N vertex, the so-called Weinberg-
Tomozawa vertex. The two remaining diagrams have
been considered in Weinberg �1990, 1991� and later in
Ordonez and van Kolck �1992� using the energy-
dependent formulation based on time-ordered perturba-
tion theory. In this approach, it was shown that the re-
sulting 3NF cancels exactly �at the order one is working�
against the recoil correction to the 2NF when the latter
is iterated in the dynamical equation. In energy-
independent approaches—such as, e.g., the method of
unitary transformation—which are employed in most of
the existing few-nucleon calculations one observes that
the irreducible contributions from the last two diagrams
in the first line of Fig. 13 are suppressed by the factor
1/m and thus occur at higher orders �Epelbaum, 2000�
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�see also Coon and Friar �1986� and Eden and Gari
�1996��. Consequently, there is no 3NF at NLO in the
chiral expansion.

The contributions at N2LO involve one-loop diagrams
with one insertion of the subleading vertices of dimen-
sion �i=1 �see Fig. 12�. The corresponding Lagrangians
read

L�N
�1� = N̄	c1��+� + c2�v · u�2 + c3u · u

+ c4�S�,S��u�u� + c5��̂+�
N ,

L�NN
�1� =

D

2
�N̄N��N̄S · uN� , �2.17�

where �̂+��+− ��+� /2 and D, ci are the LECs. The
1�-exchange loop diagram again only lead to renormal-
ization of the corresponding LECs. Similarly, the contri-
bution from the last diagram which involves the two-
nucleon contact interaction can be absorbed into a
redefinition of the LECs CS,T and Ci in Eqs. �2.11� and
�2.14� �provided one is not interested in the quark mass
dependence of the nuclear force�. Further, the football
diagram yields vanishing contribution due to the anti-

symmetric �with respect to pion isospin quantum num-
bers� nature of the Weinberg-Tomozawa vertex. Thus,
the only nonvanishing contribution at this order results
from the 2�-exchange triangle diagram,

VNN
�3� = −

3gA
2

16�F�
4 �2M�

2 �2c1 − c3� − c3q�2�

	�2M�
2 + q�2�A�̃�q� −

gA
2 c4

32�F�
4 �1 · �2�4M�

2

+ q2�A�̃�q���� 1 · q��� 2 · q� − q�2�� 1 · �� 2� , �2.18�

where the loop function A�̃�q� is given by

A�̃�q� = 
��̃ − 2M��
1

2q
arctan

q��̃ − 2M��

q2 + 2�̃M�

. �2.19�

In DR, the expression for A�q� takes the following
simple form:

A�q� � lim
�̃→�

A�̃�q� =
1

2q
arctan

q

2M�

. �2.20�

Notice that the triangle diagram also generates short-
range contributions which may be absorbed into redefi-
nition of contact interactions. The isoscalar central con-
tribution proportional to the LEC c3 is attractive and
very strong. It is by far the strongest two-pion exchange
contribution and reaches a few tens of MeV �depending
on the choice of regularization� at internucleon distances
of the order ��M�

−1. The origin of the unnaturally
strong subleading 2�-exchange contributions can be
traced back to the �numerically� large values of the
LECs c3,4 and is well understood in terms of resonance
exchange related to � excitation �Bernard et al., 1997�.
We return to this issue in Sec. II.D where the chiral EFT
formulation with explicit � degrees of freedom will be
discussed. The central 2�-exchange potential was also
calculated in Robilotta �2001� using the infrared-
regularized version of chiral EFT which enables one to
sum up a certain class of relativistic corrections �Becher
and Leutwyler, 1999�. He found that the results in the
heavy-baryon limit overestimate the ones obtained using
infrared regularization by about 25% �see also Epel-
baum �2006a� for a related discussion�. Last but not
least, the chiral 2�-exchange potential up to N2LO has
been tested in the Nijmegen partial wave analysis
�PWA� of both proton-proton and neutron-proton data
�Rentmeester et al., 1999, 2003� where also an attempt
has been done to determine the values of the LECs c3,4.
As demonstrated in these studies, the representation of
the �strong� long-range interaction based on the combi-
nation of the 1�- and the chiral 2�-exchange potentials
rather than on the pure 1�-exchange potential allows
one to considerably reduce the number of phenomeno-
logical parameters entering the energy-dependent
boundary conditions which are needed to parametrize
the missing short- and medium-range interactions. Also
the extracted values of the LECs c3,4 agree reasonably
well with various determinations in the pion-nucleon

Next−to−leading order

Next−to−next−to−leading order

Next−to−next−to−next−to−leading order

FIG. 13. �Color online� Chiral expansion of the three-nucleon
force up to N3LO. Diagrams in the first line �NLO� yield van-
ishing contributions to the 3NF if one uses energy-independent
formulations as explained in the text. The five topologies at
N3LO involve the two-pion exchange, one-pion-two-pion-
exchange, ring, contact-one-pion exchange, and contact-two-
pion-exchange diagrams in order. Shaded blobs represent the
corresponding amplitudes. For remaining notation see Fig. 12.
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system. These studies provide confirmation of the im-
portant role of the 2�-exchange potential in nucleon-
nucleon scattering observables �see, however, Entem
and Machleidt �2003b� for a criticism�. For a similar
work utilizing the distorted-wave methods see Birse and
McGovern �2004� and Birse �2007�.

The first nonvanishing contributions to the 3NF also
show up at N2LO and arise from tree diagrams shown in
Fig. 13 which involve a single insertion of the subleading
vertices L�1� in Eq. �2.17� and

LNNN
�1� = −

E

2
�N̄N��N̄�N� · �N̄�N� , �2.21�

where E is a low-energy constant. The corresponding
3NF expression reads

V3N
�3� =

gA
2

8F�
4

�� 1 · q�1�� 3 · q�3

�q1
2 + M�

2 ��q3
2 + M�

2 �
��1 · �3�− 4c1M�

2

+ 2c3q�1 · q�3� + c4�1 	 �3 · �2q�1 	 q�3 · �� 2�

−
gAD

8F�
2

�� 3 · q�3

q3
2 + M�

2 �1 · �3�� 1 · q�3 +
1
2

E�2 · �3, �2.22�

where the subscripts refer to the nucleon labels and q� i

=p� i�−p� i, with p� i� and p� i the final and initial momenta of
the nucleon i. The expressions in Eq. �2.22� correspond
to a particular choice of nucleon labels. The full expres-
sion for the 3NF results by taking into account all pos-
sible permutations of the nucleons �for three nucleons
there are altogether six permutations�, i.e.,

V3N
full = V3N + all permutations. �2.23�

We further emphasize that the expressions for the 3NF
given in Ordonez and van Kolck �1992� and van Kolck
�1994� contain one redundant 1�-exchange and two re-
dundant contact interactions. As shown in Epelbaum,
Nogga, Glöckle, Kamada, Meißner, and Witała �2002�,
only one independent linear combination contributes in
each case if one considers matrix elements between an-
tisymmetrized few-nucleon states �see also Bedaque et
al. �2000� for a related discussion�.

We now turn to N3LO and discuss first the corrections
to the 2NF. As follows from Eq. �2.8�, one has to account
for contributions from tree diagrams with one insertion
from L�4� or two insertions from L�2�, one-loop diagrams
with one insertion from L�2� or two insertions from L�1�

as well as two-loop graphs constructed from the lowest-
order vertices �see Fig. 12�. Apart from renormalization
of various LECs, the 1�-exchange potential receives at
this order �in the scheme based on the counting m
�O��2 /M��� the first relativistic corrections propor-
tional to m−2. These are scheme-dependent and have to
be chosen consistently with the 1/m corrections to the
2�-exchange potential and the relativistic extension of
the dynamical equation �see Friar �1999� for a compre-
hensive discussion.� The two-pion exchange contribu-
tions at N3LO were worked out in Kaiser �2001a� based

on the one-loop representation of the �N scattering am-
plitude. We refrain from giving here the rather involved
expressions for the subsubleading 2�-exchange potential
and refer to the original work �Kaiser, 2001a� where the
results are given in terms of the corresponding spectral
functions. For certain classes of contributions, the inte-
grals over the two-pion exchange spectrum could be per-
formed analytically and are given in Entem and
Machleidt �2002�. Notice further that the subleading
�i.e., the ones proportional to m−2� relativistic correc-
tions of the 2�-exchange range have also been worked
out in Kaiser �2002a�. In the counting scheme with m
�O��2 /M��, these terms, however, would only appear
at next-to-next-to-next-to-next-to-next leading order
�N5LO�. It should also be emphasized that the N3LO
contributions to the 2�-exchange potential were worked
out in the covariant version of chiral EFT �more pre-
cisely, using the formulation in Becher and Leutwyler
�1999�� by Higa et al. �Higa and Robilotta 2003; Higa et
al., 2004, 2005�.

3�-exchange contributions also appear at this order in
the chiral expansion and have been worked out in Kai-
ser �2000a, 2000b� �see also Pupin and Robilotta �1999�
for a related work�. The resulting potentials turn out to
be rather weak. For example, the strongest contribution
is of the isoscalar spin-spin type �i.e., proportional to
�� 1 ·�� 2� and about ten times weaker than the correspond-
ing 2�-exchange contribution at the same order at rela-
tive distances r�M�

−1. It should, however, be empha-
sized that the subleading 3�-exchange contributions at
next-to-next-to-next-to-next leading order �N4LO� are
larger in size �Kaiser, 2001b� which, again, can be traced
back to the large values of the LECs ci. Finally, the last
type of the 2NF corrections at this order results from
diagrams involving contact interactions. The most gen-
eral polynomial �in momenta� representation of the
short-range part of the potential involves, apart from the
two leading and seven subleading terms given in Eqs.
�2.11� and �2.14�, 15 new contact interactions �in the iso-
spin invariant sector� yielding in total 24 LECs to be
determined from nucleon-nucleon data.

The 3NF contributions at N3LO feed into five differ-
ent topologies �see Fig. 13� and are currently being
worked out. Presently, the expressions for the first three
topologies which do not involve short-range contact in-
teractions are available. The one-loop corrections to the
2�-exchange diagrams can, to a large extent, be ac-
counted for by a finite shift ci→ c̄i=ci+ci of the LECs ci
�Ishikawa and Robilotta, 2007; Bernard et al., 2008�,

c1 = − gA
2 M�/64�F�

2 , c3 = − c4 = gA
4 M�/16�F�

2 .

�2.24�

Numerically, these corrections are of the order of 20%
of the corresponding LECs and are consistent with the
difference in values of ci between the order-Q2 and Q3
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determinations from the pion-nucleon system �see Ber-
nard et al. �1995, 1997�, Fettes et al. �1998�, and Buettiker
and Meißner �2000��. The only 2�-exchange contribu-
tion that cannot be cast into redefinition of the LECs ci
arises from the diagram which involves pions interacting
in flight �see Ishikawa and Robilotta �2007� and Bernard
et al. �2008� for the explicit expression�. We also empha-
size that there are no 2�-exchange contributions from
tree diagrams with one insertion from L�N

�2� in Eq. �2.12�
�except for the relativistic corrections�. This is because
diagrams involving subleading �NN interaction do not
yield any irreducible contributions while the ones with
the ��NN vertices of dimension �=2 involve at least
one time derivative and are, therefore, suppressed by a
factor of 1/m. This observation is consistent with the
absence of logarithmic ultraviolet divergences in the
loop diagrams. In this context, it should be emphasized
that the requirement of renormalizability at N3LO �and,
presumably, also at higher orders� was found to impose
strong constraints on the unitary ambiguity in the form
of the resulting nuclear potentials. This issue is discussed
in Epelbaum �2007� and may remind one of the recent
findings in the context of large-Nc QCD �Belitsky and
Cohen, 2002; Cohen, 2002; Cohen and Gelman, 2002�
where it was shown that the multiple-meson-exchange
potential derived in the energy-dependent formulation
is inconsistent with large-Nc counting rules. The consis-
tency could be maintained using a different �but equiva-
lent up to the considered order� form of the potential
based on the energy-independent formalism �see Cohen
�2002� for more details�. The contributions from the two-
pion-one-pion exchange and ring diagrams are given ex-
plicitly in Bernard et al. �2008� where expressions are
shown in both momentum and coordinate spaces. Espe-
cially in the case of ring diagrams where loop integrals
involve two independent external momenta and, there-
fore, yield rather involved expressions in momentum
space, it is advantageous to switch to coordinate space
where a much more compact representation emerges.
Notice further that ring diagrams were already studied
in the pioneering work of Fujita et al. �1962�. The calcu-
lation of the last two topologies involving the leading
contact interactions is in progress. Last but not least, one
should also take into account the leading relativistic 1 /m
corrections to the NLO three-nucleon diagrams �see the
first line in Fig. 13�. Again, these contributions are
scheme dependent and should be chosen consistently
with the relativistic corrections to the 2NF and the form
of the dynamical equation. The 1/m corrections to the
2�-exchange 3NF have already been worked out long
time ago by Coon and Friar and are given in the most
general form in Coon and Friar �1986�. Notice further
that at this order one needs to account for the depen-

dence of the 2NF on the total momentum of the NN
system �effects due to drift of the CMS of a two-body
subsystem�. Such boosted NN operators may, in fact,
also be viewed as 3N operators. In the context of chiral
EFT, this kind of corrections is discussed in Robilotta
�2006�.

The last type of N3LO contributions arises from four-
nucleon tree diagrams constructed from the lowest-
order vertices �see Fig. 14�, which have been evaluated
recently using the method of unitary transformation
�Epelbaum, 2006b, 2007�.

Notice that the first two diagrams in the second
line were already discussed long ago �see, e.g., McManus
and Riska �1980� and Robilotta �1985��. Further-
more, it should be emphasized that disconnected dia-
grams calculated, e.g., in van Kolck �1994�, using time-
ordered perturbation theory do not contribute to the
nuclear force in the method of unitary transformation.
It has been conjectured by Robilotta �1985� that 4N dia-
grams which involve reducible topologies do not gener-
ate irreducible pieces in the amplitude and thus lead to
vanishing 4NFs. While this is indeed the case for the
leading 3N diagrams at NLO, it is explicitly shown in
Epelbaum �2006b, 2007� that many of the reduciblelike
diagrams in Fig. 14 do generate nonvanishing 4NFs
which are not suppressed by inverse powers of the
nucleon mass. As a representative example, we give
here the gA

6 contribution which results entirely from the
first diagram in Fig. 14 �the second graph appears to be
truly reducible and does not produce any contribution
to the 4NF�,

V4N
�4� = −

2gA
6

�2F��6

�� 1 · q�1�� 4 · q�4

�q�1
2 + M�

2 ��q�12
2 + M�

2 �2�q�4
2 + M�

2 �
���1 · �4�2 · �3 − �1 · �3�2 · �4�q�1 · q�12q�4 · q�12 + �1 	 �2 · �4q�1 · q�12q�12

	 q�4 · �� 3 + �1 	 �3 · �4q�4 · q�12q�1 	 q�12 · �� 2 + �1 · �4q�12	 q�1 · �� 2q�12	 q�4 · �� 3� + all permutations, �2.25�

FIG. 14. Diagrams contributing to the four-nucleon force at
N2LO. For notation see Fig. 12.
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where q�12=q�1+q�2=−q�3−q�4=−q�34 is the momentum
transfer between the nucleon pairs 12 and 34. The com-
plete expression for the leading 4NF in both momentum
and coordinate space can be found in Epelbaum �2007�.
A rough estimation of the 4NF contributions to, e.g., the
�-particle binding energy is provided by the strength of
the corresponding r-space potentials expressed in terms
of dimensionless variables rijM�. One then finds, e.g., for
the gA

6 terms gA
6 M�

7 �16�F�
2 �−3�50 keV. This agrees

qualitatively with a more accurate numerical estimation
carried out in Rozpedzik et al. �2006� which, however,
still involved severe approximations to simplify the cal-
culations.

So far we only discussed isospin-invariant contribu-
tions to the nuclear forces. It is well established that
nuclear forces are charge dependent �for reviews see,
e.g., Miller et al. �1990� and Miller and Van Oers �1994��.
For example, in the nucleon-nucleon 1S0 channel one
has for the scattering lengths a and the effective ranges r
�after removing electromagnetic effects�,

aCIB = 1
2 �ann + app� − anp = 5.64 ± 0.40 fm,

rCIB = 1
2 �rnn + rpp� − rnp = 0.03 ± 0.06 fm. �2.26�

These numbers for charge independence breaking �CIB�
are taken from the recent compilation of Machleidt
�2001�. The charge independence breaking in the scatter-
ing lengths is large, of the order of 25%, since anp
=−23.740±0.020 fm. Of course, it is magnified at thresh-
old due to kinematic factors �as witnessed by the disap-
pearance of the effect in the effective range�. In addi-
tion, there are charge symmetry breaking �CSB� effects
leading to different values for the pp and nn phase shifts
and threshold parameters,

aCSB = app − ann = 1.6 ± 0.6 fm,

rCSB = rpp − rnn = 0.10 ± 0.12 fm. �2.27�

Combining these numbers gives as central values ann
=−18.9 fm and app=−17.3 fm. Notice that this value
for ann is in agreement with the recent experimental
determinations from the reaction �−d→nn�, ann
=−18.5±0.5 fm �Howell et al., 1998�, and the kinemati-
cally complete deuteron breakup reaction nd→nnp
at Elab=13 MeV, ann=−18.7±0.6 fm �Gonzalez Trotter
et al., 1999�. However, another recent experiment also
based on the deuteron breakup reaction at Elab
=25.2 MeV yielded a considerably smaller value, ann
=−16.3±0.4 fm �Huhn et al., 2000�. For a review of indi-
rect methods to measure the 1S0 nn scattering length
and the current experimental status for this observable
see Howell �2008�.

Within the standard model, isospin violation has its
origin in the different masses of the up and down quarks
and the electromagnetic interactions. Chiral EFT is well
suited to explore the consequences of these two effects
for low-energy dynamics of few- and many-nucleon sys-

tems. Consider first the strong isospin-violating effects.
The QCD quark mass term can be written in the two-
flavor case as

Lmass
QCD = − 1

2 q̄�mu + md��1 + ��3�q , �2.28�

where the superscript of the Pauli isospin matrix denotes
the corresponding Cartesian component and

��
mu − md

mu + md
� −

1
3

. �2.29�

Here the numerical estimation corresponds to the modi-
fied subtraction MS scheme at a renormalization scale of
1 GeV �Leutwyler, 1996�. In Eq. �2.28�, the isoscalar
term breaks chiral but preserves isospin symmetry. It is
responsible, e.g., for the nonvanishing pion mass M2

= �mu+md�B, M�
2 =M2+O�mu,d

2 � and generates a string of
chiral-symmetry-breaking terms in the effective had-
ronic Lagrangian proportional to M2n with n=1,2 , . . ..
The isovector term gives rise to the strong isospin break-
ing and leads to hadronic effective interactions  ��M2�n.
Consequently, the typical size of the strong isospin vio-
lation in hadronic observables is given by �M�

2 /�2

�1% if one takes �=M� �this, however, does not apply,
e.g., to the pion masses�. The leading and subleading
strong isospin-violating contributions are already incor-
porated in the Lagrangians L�

�2� and L�N
�1,2� in Eqs. �2.9�,

�2.12�, and �2.17� and correspond to terms involving �,
�±. Notice that the strong isospin violation is addition-
ally suppressed in the meson sector �due to G parity�. In
particular, the charged-to-neutral pion mass difference is
almost entirely of electromagnetic origin. Electromag-
netic terms in the effective Lagrangian resulting from
exchange of hard virtual photons can be generated using
the method of external sources �Gasser and Leutwyler,
1984�. All such terms are proportional to positive pow-
ers of the nucleon charge matrix Q=e�1+�3� /2, where e
denotes the electric charge. In addition, soft photons
have to be included explicitly. For more details on the
inclusion of virtual photons in chiral EFT see Urech
�1995�, Neufeld and Rupertsberger �1996�, Meißner et al.
�1997�, Knecht and Urech �1998�, Meißner and Stein-
inger �1998�, Müller and Meißner �1999�, and Gasser et
al. �2002�.

To explore isospin-breaking �IB� effects in nuclear
forces and few-nucleon observables it is useful to relate
the corresponding small parameters � and e to the chiral
expansion parameter M� /�. Clearly, this can be done in
various ways. For example, in Walzl et al. �2001�, Epel-
baum and Meißner �2005�, and Epelbaum, Meißner, and
Palomar �2005� the following rules have been adopted:

�� e �
M�

�
,

e2

�4��2 �
M�

4

�4 . �2.30�

Note that the factor 1/ �4��2 arises from the integration
of hard virtual photons. Similar counting rules were also
used in van Kolck �1993�, van Kolck et al. �1996�, Friar
and van Kolck �1999�, and Friar et al. �2003, 2004, 2005�.
Notice, however, that in the meson and single-baryon
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sectors one usually counts ��1 but e�M� /�. Utilizing
the counting rules in Eq. �2.30�, the leading and sublead-
ing IB contributions from the hard virtual photons have
the forms �Müller and Meißner, 1999�

L�,em
�2� = C�QUQU†� ,

L�N,em
�3� = F2N̄�f1�Q̃+

2 − Q̃−
2� + f2�Q+�Q̃+

+ f3�Q̃+
2 + Q̃−

2��N , �2.31�

where Q̃±�Q±−1/2�Q±� and fi refer to the correspond-
ing LECs. The leading Lagrangians for the strong and
electromagnetic IB contact interactions LNN,str

�3� and
LNN,em

�4� are given explicitly in Walzl et al. �2001�.
We first discuss IB contributions to the pion and

nucleon masses. As already pointed out, the leading
contribution to the charged-to-neutral pion mass differ-
ence is entirely of electromagnetic origin,

M�
2 � M�±

2 − M�0
2 �

2

F2e2C . �2.32�

The experimentally known pion mass difference M�±

−M�0 =4.6 MeV allows us to fix the value of the LEC C,
C=5.9	10−5 GeV4. Notice that the natural scale for this
LEC is F�

2�2 / �4��2�3	10−5 GeV4 if one adopts �
�M�. Writing the nucleon mass m as

m � diag�mp,mn� = m + 1
2m�3, �2.33�

one obtains for the proton-to-neutron mass difference
m,

m = − 4c5�M�
2 − f2e2F�

2 + ¯ , �2.34�

where the ellipsis refers to higher-order corrections. No-
tice that the f3 term in Eq. �2.31� is isospin invariant. On
the other hand, the f1 term does produce IB vertices
with two and more pions but does not contribute to the
leading electromagnetic nucleon mass shift. The LECs c5
and f2 can be determined from the strong and electro-
magnetic nucleon mass shifts,

�mp − mn�str = �m�str = − 2.05 ± 0.3 MeV,

�mp − mn�em = �m�em = 0.76 ± 0.3 MeV, �2.35�

which lead to �Meißner and Steininger, 1998�

c5 = − 0.09 ± 0.01 GeV−1, f2 = − 0.45 ± 0.19 GeV−1.

The values for the strong and electromagnetic nucleon
mass shifts are taken from Gasser and Leutwyler �1982�.
Notice that the recent lattice QCD result �Beane,
Orginos, and Savage, 2007� for the strong nucleon mass
shift �m�str

=−2.26±0.57±0.42±0.10 MeV is in agreement with the
one of Gasser and Leutwyler �1982�. We further empha-
size that according to the counting rules in Eq. �2.30� the
electromagnetic contribution to the nucleon mass shift is
formally of higher order than the strong one. Based on
naive dimensional analysis, these contributions are ex-

pected to be of the size ��m�str���M�
2 /M��8 MeV and

��m�em��e2M� / �4��2�0.5 MeV.
We are now in the position to overview the structure

of the IB nuclear forces. The general isospin structure of
the two-nucleon force feeds, according to the classifica-
tion of Henley and Miller �1979�, into the four classes:
VNN

I =�+!�1 ·�2 �isospin invariant�, VNN
II =��1

3�2
3 �charge-

independence breaking�, VNN
III =���1

3+�2
3� �charge-

symmetry breaking�, and VNN
IV =���1

3−�2
3�+!��1	�2�3

�isospin mixing�. Here � and ! denote the corresponding
space and spin operators. Notice that for the class-IV
terms, ! has to be odd under a time-reversal transfor-
mation. The most general isospin structure of the 3NF
is worked out in Epelbaum et al. �2005b�. While
the distinction between the class-I, -II, and -III
forces based on the conservation of the total isospin
operator T= �i�i� /2 and charge-symmetry operator
Pcs=exp�i�T2� can be straightforwardly generalized to
any number of nucleons, the conservation of the opera-
tor T2 responsible for the distinction between the class-
III and -IV 2NFs depends, in general, on the number of
nucleons. In particular, the class-II and -III 2NFs com-
mute with the operator TNN

2 �i.e., do not mix isospin in
the NN system� but do not commute with T�NN

2 . For this
reason, the general isospin structure of the 3NF was
classified by Epelbaum, Meißner, and Palomar �2005b�
in terms of class-I, -II, and -III contributions.

The dominant IB contribution to the 2NF occurs at
NLO” �the slash indicates that we now use the power
counting rules extended as in Eq. �2.30�� due to the
charge-to-neutral pion mass difference in the
1�-exchange potential. It can be accounted for by taking
the proper pion masses in the 1�-exchange potential for
various physical channels,

V1�
pp = V1�

nn = V1��M�0� ,

V1�
np = − V1��M�0� + 2�− 1�I+1V1��M�±� , �2.36�

where I denotes the total isospin of the two-nucleon sys-
tem and

V1��M�� = −
gA

2

4F�
2

�� 1 · q��� 2 · q�

q�2 + M�
2 . �2.37�

Notice that the resulting IB interaction conserves charge
symmetry �i.e., class II� and reaches about M�

2 /M�
2

�7% of the strength of the isospin-invariant
1�-exchange potential. It is known to yield a sizable
contribution to the CIB in the 1S0 NN scattering length
�see, e.g., Walzl et al. �2001��. Another IB effect at the
same order comes from the Coulomb interaction be-
tween the protons �classes II and III�. We emphasize
that effects of the purely electromagnetic interactions in
two-nucleon scattering observables get enhanced under
certain kinematical conditions �low energies and/or for-
ward angles� due to the long-range nature of these inter-
actions. Clearly, such an enhancement goes beyond the
simple power counting rules in Eq. �2.30�. Consequently,
despite the fact that the first corrections to the pointlike
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static one-photon exchange �Coulomb interaction� due
to recoil and two-photon exchange �Austen and de
Swart, 1983�, pion loop contributions to the nucleon
form factors �Kaiser, 2006c�, vacuum polarization �Uel-
ing, 1935; Durand, 1957�, and magnetic moment interac-
tion �Stoks, 1990� are suppressed by the factor 1/m2 and,
according to the power counting, contribute at rather
high orders, sizable effects may show up in certain ob-
servables. For example, the magnetic moment interac-
tion strongly affects the nucleon analyzing power Ay at
low energy and forward angles. Effects of subleading
electromagnetic interactions were also investigated in
3N continuum using phenomenological nuclear forces
�Witała et al., 2003; Kievsky et al., 2004� �see Rupak and
Kong �2003� for a formulation based on pionless EFT�.

The corrections to the IB 2NF at N2LO” are CSB and
arise from charge dependence of the pion-nucleon cou-
pling constant in the 1�-exchange potential and the de-
rivativeless NN contact interaction  mu−md �van Kolck
et al., 1996; Epelbaum and Meißner, 2005�. Notice, how-
ever, that the energy-dependent Nijmegen PWA does
not yield any evidence for charge dependence of the
pion-nucleon coupling constant �de Swart et al., 1997�.
The leading CIB contact interactions are of electromag-
netic origin and �formally� start to contribute at N3LO” .
At this order, one also has to take into account further
IB contributions to the 1�-exchange potential at the
one-loop level which, to a large extent, can be accounted
for by a further �charge-dependent� renormalization of
the �N coupling constants in Eq. �2.36�. The only con-
tributions which have a different momentum depen-
dence and, therefore, cannot be cast into the form of Eq.
�2.36� are the ones  �M��2 and the proton-to-neutron
mass difference which involve class-IV operators �Friar
et al., 2004; Epelbaum and Meißner, 2005� �see Cheung
et al. �1980� for a much earlier derivation of these terms�.
Notice that the power counting rules in Eq. �2.30� sug-
gest the following hierarchy of the 2NF �van Kolck,
1993�: VNN

I �VNN
II �VNN

III �VNN
IV which is consistent with

the observations. Next, �� exchange also contributes at
this order. The resulting CIB potential has been worked
out in van Kolck et al. �1998� and rederived recently in
Kaiser �2006c�. It can be written in a rather compact way
and leads to negligibly small effects in NN scattering.
Kaiser also calculated subleading contributions to the
��-exchange potential proportional to the large isovec-
tor magnetic moment �v=4.7 of the nucleon and found
that the resulting potentials, which are also CIB, have a
similar strength as the leading-order one �Kaiser,
2006c�.4 IB 2�-exchange also starts to contribute at
N3LO” and is driven by the neutral-to-charged pion mass
difference �CIB� �Friar and van Kolck, 1999� and the
strong contribution to the nucleon mass shift �CSB�
�Coon and Niskanen, 1996; Niskanen, 2002; Friar et al.,
2003; Epelbaum and Meißner, 2005� �see Walzl et al.

�2001� for the application to NN phase shifts�. Finally,
there are also the first IB 3NFs. While the dominant CIB
2�-exchange 2NF is generated by the pion mass differ-
ence, the 3N diagrams with one insertion of M�

2 at
N3LO” are additionally suppressed by the factor 1/m if
one uses an energy-independent formulation, �see the
discussion about the 3NFs at NLO earlier in the text�.
The nonvanishing 3NFs at N3LO” result from 1�- and
2�-exchange 3N diagrams constructed with the leading-
order isospin-invariant vertices and a single insertion of
m as well as 2�-exchange diagram with the leading IB
��NN interactions  f1,2 �Epelbaum, Meißner, and Palo-
mar, 2005; Friar et al., 2005�. One finds that all these
contributions are CSB except the one which is propor-
tional to LEC f1 and is CIB. We further emphasize that
while the value of the LEC f2 is determined by the elec-
tromagnetic nucleon mass shift, the value of the LEC f1
is unknown. However, see Gasser et al. �2002� for an
estimation of f1 based on dimensional analysis and
Meißner et al. �2006� for an attempt to determine f1 from
data.

Remarkably, even the N4LO” contributions to the two-
and three-nucleon forces have been worked out. At this
order, no new structures appear in the 1�-exchange po-
tentials. The corrections to the leading IB 2�-exchange
potential result from a single insertion of either the sub-
leading isospin-conserving ��NN vertices proportional
to the LECs ci �see Eq. �2.17��, the leading electromag-
netic vertex proportional to the LEC f2 �see Eq. �2.31��,5

or the �poorly known� leading charge dependence of the
pion-nucleon coupling constant �Epelbaum and
Meißner, 2005�. The resulting IB potentials involve the
class-II and -III central, tensor, and spin-spin compo-
nents. The CIB potentials typically have the strength of
a few tens of keV at relative distances r�M�

−1. The CSB
tensor and spin-spin potentials are weaker ��10 keV�,
while the CSB central potential is comparable in size to
the CIB contributions. Similarly to the isospin-
conserving 2�-exchange potential, the subleading con-
tributions turn out to be numerically large in compa-
rison to the leading-order ones. In particular, for the
class-III central 2�-exchange potential one obtains
VNN

2�,�5� /VNN
2�,�4��3 for r�M�

−1. The main reason for this
unpleasant convergence pattern is the same as in the
isospin-conserving case and can be traced back to the
�large� �-isobar contributions to the LECs c3,4. We dis-
cuss this issue in more detail in Sec. II.D. Last but not
least, there are also numerous IB contact interactions
with up to two derivatives involving class-II, -III, and
-IV terms �see also Friar et al. �2004��. The corrections to
the 3NF at N4LO” are worked out in Epelbaum,
Meißner, and Palomar �2005� and Friar et al. �2005�. At
this order, the first IB but charge symmetry conserving
3NFs show up which result from the neutral-to-charged
pion mass difference in the N2LO 2�- and 1�-exchange

4Notice, however, that these corrections are suppressed by
the factor 1/m relative to the leading-order contributions and,
therefore, appear formally at N5LO” .

5The two other LECs f1,3 do not contribute to the
2�-exchange 2NF at this order.
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diagrams in the second line of Fig. 13 and the
2�-exchange diagram involving the ��NN vertex  f1.
In addition, there are CSB 3NFs of the 2�- and
1�-exchange types driven by the electromagnetic
nucleon mass shift. Again, the strongest 3NFs turn out
to be the ones which are proportional to the LECs c3,4.
They are charge-symmetry conserving and arise from
a single insertion of M�

2 into the pion propagators of
the 2�-exchange 3N graph. The expected strength of
such IB potentials is �2M�

2 /M�
2 �13% as compared

to the isospin-invariant ones given in Eq. �2.22� which
are known to yield about �500–1000 keV to the
triton binding energy �the precise numbers are renor-
malization scheme dependent�. Also the strength
of the corresponding coordinate-space potentials, e.g.,
�gA

2 M�
2 M�

4 c3 / �64�2F�
4 ���70 keV �here we picked out

one particular term�, indicates that the resulting IB ef-
fects in few-nucleon observables might be sizable. The
CSB 3NFs, on the other hand, do show a more natural
convergence pattern and are considerably weaker. Their
contribution to, e.g., the 3H-3He binding energy differ-
ence is expected to be of the order of �10 keV.

Recently, certain classes of even higher-order contri-
butions have been worked out by Kaiser. In particular,
he calculated the subleading ���-exchange potentials
proportional to the LECs c3,4 at the two-loop level
which �formally� contribute at order N6LO” �Kaiser,
2006a, 2006b�. The contributions driven by the LEC c3
were espacially found to generate astonishingly strong
CSB and CIB potentials which amount to �1% of the
strongly attractive isoscalar central potential at N2LO
and reach a few hundreds of keV at r�M�

−1. Notice,
however, that effects of these very strong potentials in S,
P, and D waves may, to some extent, be compensated by
the corresponding IB contact interactions. The effects in
higher partial waves are presumably suppressed due to
the shorter range of the 2�-exchange potential com-
pared with the 1�-exchange one.

C. Chiral EFT for few nucleons: Applications

We now turn our attention to applications. As dis-
cussed in the previous section, the two-nucleon chiral
potential involves the long-range contributions due to
the multiple pion exchanges and short-range ones pa-
rametrized by contact interactions. Both kinds of terms
typically grow with increasing nucleon momenta and
become meaningless in the large-momentum region
as follows from the very nature of EFT being the
low-momentum expansion. As a consequence, the
Schrödinger equation is ultraviolet divergent and needs
to be regularized �and renormalized�. The problem of
renormalization in the nonperturbative regime in the
context of both pionless �Beane et al., 1998; Phillips et
al., 1998, 1999; Birse et al., 1999; Gegelia, 1999; Yang and
Huang, 2005; Braaten and Hammer, 2006; Harada and
Kubo, 2006; Harada et al., 2009� and pion-full �Lepage,
1997, 2000; Cohen and Hansen, 1998; Frederico et al.,
1999; Phillips et al., 2000; Gegelia and Japaridze, 2001;

Pavón Valderrama and Ruiz Arriola, 2004a, 2004b,
2006a, 2006b; Nogga et al., 2005; Birse, 2006, 2007; Epel-
baum and Meißner, 2006; Gegelia and Scherer, 2006;
Pavón Valderrama and Ruiz Arriola, 2006a; Djukanovic
et al., 2007; Entem et al., 2008; Higa, Pavón Valderrama,
and Ruiz Arriola, 2008; Long and van Kolck, 2008;
Shukla et al., 2008; Valderrama and Arriola, 2008; Yang
et al., 2008� EFTs has attracted a lot of interest in the
past years. The standard procedure to renormalize the
Lippmann-Schwinger �LS� equation is based on Wilson’s
method and implies the following two steps: �Lepage,
1997�. First, one solves the LS equation regularized with
the finite momentum �or coordinate-space� cutoff and
using the potential truncated at a given order in the chi-
ral expansion as the kernel. Second, the LECs accompa-
nying the contact terms in the potential are determined
by matching the resulting phase shifts to experimental
data which, in this framework, can be viewed as renor-
malization. Notice that iterating the truncated expression
for the chiral potential in the LS equation necessarily
generates ultraviolet divergencies in the Neumann series
which require counterterms beyond the given approxi-
mation for the potential. As a consequence, taking the
limit of the infinite cutoff in such a manifestly nonrenor-
malizable �in the above mentioned sense� approach
might result, e.g., in impossibility to resolve the �nonlin-
ear� matching conditions for the corresponding LECs. A
detailed discussion on the choice of ultraviolet cutoff
and its role in renormalization of the Schrödinger equa-
tion is given in Lepage �1997, 2000�. He argued that the
coordinate-space �momentum-space� cutoff should not
be decreased �increased� beyond the separation scale af-
ter which the description of the data stops to improve.
Taking the cutoff near this separation scale is the most
efficient choice. This strategy has been followed by the
currently most advanced N3LO analyses of the NN sys-
tem of Entem and Machleidt �2003a� and Epelbaum,
Glöckle, and Meißner �2005� where the cutoffs �
=450–600 MeV have been employed. These studies
were criticized in Nogga et al. �2005� who considered low
NN partial waves based on the 1�-exchange potential
and contact interactions using a much bigger cutoff
variation with ��4 GeV. They found that higher-order
counterterms have to be promoted to LO in the 3P0,
3P2-3F2, and possibly 3D2 channels in order to stabilize
the amplitude. On the other hand, the efficiency of such
a modified power counting framework was questioned
in Epelbaum and Meißner �2006�, where it has been
demonstrated that increasing the cutoff and promoting
counterterms as suggested in Nogga et al. �2005� do not
improve the overall description of the scattering observ-
ables. For more discussions on the conceptual issues re-
lated to the power counting in the NN system see Lep-
age �1997, 2000�, Nogga et al. �2005�, Birse �2006, 2007�,
Epelbaum and Meißner �2006�, Gegelia and Scherer
�2006�, Long and van Kolck �2008�. More work is needed
in the future in order to clarify the relation between the
well-established chiral expansion of the nuclear poten-
tial and the scattering amplitude.

We further emphasize that it is possible to nonpertur-
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batively renormalize the partial-wave-projected LS
equation with singular 1/rn potentials �Beane et al.,
2001; Bawin and Coon, 2003; Braaten and Phillips, 2004;
Barford and Birse, 2005; Hammer and Swingle, 2006;
Long and van Kolck, 2008�. This program was applied to
different NN channels based on the 1�- and
2�-exchange potentials at various orders in the chiral
expansion by the Granada group �Pavón Valderrama
and Ruiz Arriola, 2004a, 2004b, 2005, 2006b; Pavón
Valderrama and Ruiz Arriola, 2006a; Entem et al., 2008;
Higa, Pavón Valderrama, and Ruiz Arriola, 2008;
Valderrama and Arriola, 2008�. In these studies, the
short-range counterterms are replaced by adjustable pa-
rameters entering the short-distance boundary condi-
tions. The number of such parameters in each channel is
uniquely determined by the sign �attractive versus repul-
sive� of the strongest singularity which raises concerns
about a systematic improvability �in the EFT sense� of
such a framework. Nevertheless, the findings of these
studies in attractive channels provide an impressive
demonstration of the existence of the long-range corre-
lations in the NN scattering observables.

The most advanced analyses of the two-nucleon sys-
tem based on the Weinberg power counting take into
account the 2NF contributions up to N3LO �Entem and
Machleidt, 2003a; Epelbaum, Glöckle, and Meißner,
2005�. Most of the LECs ci, di entering the long-range
part of the potential are sufficiently well determined in

the pion-nucleon system �Fettes et al., 1998�.6 The 24
unknown LECs7 entering the short-range part of the
2NF at N3LO have been extracted from the low-energy
NN data for several choices of the cutoff in the
Schrödinger equation. Both N3LO potentials of �Entem
and Machleidt �EM� �2003a� and Epelbaum, Glöckle,
and Meißner �EGM� �2005�� yield accurate results for
the neutron-proton phase shifts up to Elab�200 MeV
and the deuteron observables. This is exemplified in
Figs. 15 and 16 where the EGM and EM results for the
neutron-proton S, P, and D waves and the correspond-
ing mixing angles are shown in comparison with PWA
results from Stoks et al. �1993�, Rentmeester et al. �1994�,
and Arndt et al. �2009�. The bands in the EGM analysis
result from the variation in the cutoff in the LS equation
�spectral function regularization� in the range �

=450–600 MeV ��̃=500–700 MeV�. It is comforting to
see that in most cases the results of both analyses agree
with each other within the estimated theoretical uncer-
tainty. Notice, however, that the EM and EGM analyses
differ from each other in several important aspects. For
example, the so-called spectral function regularization
�Epelbaum et al., 2004a, 2004b� of the 2�-exchange con-
tributions has been adopted by EGM while the analysis
by EM is based on dimensionally regularized expres-
sions. Further differences can be attributed to the imple-

6Notice, however, that the value of the LEC c4 adopted in
Entem and Machleidt �2003a�, c4=5.4 GeV−1, is not compat-
ible with pion-nucleon scattering where one finds at order Q3

�Buettiker and Meißner, 2000�: c4=3.40±0.04 GeV−1.
7This number refers to isospin-invariant contact interactions.
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mentation of the momentum-space cutoff in the
Schrödinger equation and the treatment of relativistic
effects. More precisely, the work by EGM is based on
the “relativistic” Schrödinger and Lippmann-Schwinger
equation, a natural extension of the usual nonrelativistic
equations utilizing the relativistic relation between the
CMS energy and momentum �see Friar �1999� for more
details�. This equation can be straightforwardly general-
ized to the case of several nucleons �see Witała et al.
�2005�; Lin, Elster, Polyzou, and Glöckle �2008�; and Lin,
Elster, Polyzou, Witała, and Glöckle �2008� for recent
studies of relativistic effects in 3N observables� and can
also be cast into equivalent nonrelativisticlike forms
�Kamada and Glöckle, 1998; Friar, 1999� �provided the
potential is appropriately modified�. On the other hand,
the analysis of Entem and Machleidt �2003a� uses the
static 1�-exchange potential and the 1/m and 1/m2 cor-
rections to the 2�-exchange potential from Kaiser et al.
�1997� and Kaiser �2000a�, where no particular dynami-
cal equation is specified. Further differences between
the EGM and EM analyses result from the fitting proce-
dure: the LECs accompanying the contact interactions
were determined by EM and EGM by fitting directly to
the scattering data and to the Nijmegen PWA �Stoks et
al., 1993; Rentmeester et al., 1994�. For this reason,
EGM adopted the same treatment of IB effects as fol-
lowed by the Nijmegen group and did not include, e.g.,
the leading IB contributions to the 2�-exchange poten-
tial. Perhaps, the most important difference between the
two studies is related to the estimation of the theoretical
uncertainty. In the work by EGM, the theoretical uncer-
tainty was estimated by varying the cutoffs in the
Schrödinger equation and the spectral function repre-
sentation for the 2�-exchange potential restricted by the
condition that the resulting LECs are of a natural size
which might be viewed as a self-consistency check for
calculations carried out within the power counting
scheme based on naive dimensional analysis �see Beane
et al. �2000� and Epelbaum �2006a��. Notice further that
at NLO and N2LO the strengths of various contact in-
teractions are well understood in terms of resonance
saturation on the basis of phenomenological one-boson
exchange models �Epelbaum, Meißner, Glöckle, and El-
ster, 2002�. No serious attempt to provide a realistic er-
ror estimation was done in the analysis of EM. On the
other hand, their work clearly demonstrates that for a
particularly chosen regularization prescription it is even
possible to accurately describe two-nucleon scattering
data for Elab�200 MeV. For further technical details,
results for various scattering observables and the prop-
erties of the deuteron, see the original publications �En-
tem and Machleidt, 2003a; Epelbaum, Glöckle, and
Meißner, 2005� and the review article �Epelbaum,
2006a�.

To illustrate the convergence of the chiral expansion
for NN phase shifts, we show in Fig. 17 the results for
the 1S0 partial wave at NLO, N2LO �Epelbaum et al.,
2004b�, and N3LO �Epelbaum, Glöckle, and Meißner,
2005�. We emphasize that the variation in the cutoff at

both NLO and N2LO only shows the effects of missing
N3LO contact interactions. It, therefore, does not pro-
vide a realistic estimation of the theoretical uncertainty
at NLO �see Epelbaum �2006a� for an extended discus-
sion�.

Applications to the three-nucleon system have so far
been carried out up to N2LO. At NLO, no 3NF needs to
be taken into account. This allowed for a parameter-free
predictions of various 3N scattering observables at low
energies as well as for the triton and �-particle binding
energies �Epelbaum et al., 2001�. Using the most recent
version of the NLO potential based on the spectral func-
tion regularization, one finds at NLO �Epelbaum, 2006a�
B3H=7.71–8.46 MeV and B4He=24.38–28.77 MeV to
be compared with the experimental values B3H

=8.482 MeV and B4He=28.30 MeV. These numbers are
similar to the ones obtained in Epelbaum et al. �2001�
within the framework based on dimensional regulariza-
tion.

At N2LO one, for the first time, has to take into ac-
count the corresponding 3NFs. The two LECs D and E
entering the expressions for the 3NF in Eq. �2.22� have
been determined by fitting the 3H binding energy and
either the nd doublet scattering length �Epelbaum,
Nogga, Glöckle, Kamada, Meißner, and Witała, 2002�,
the 4He binding energy �Nogga et al., 2006�, or the prop-
erties of light nuclei �Navratil et al., 2007�. Notice that
the �NNNN vertex entering the 1�-exchange-contact
3NF also plays an important role in processes with a
completely different kinematics such as, e.g., the pion
production in the NN collisions �Hanhart et al., 2000�
�see Sec. II.E or weak reactions such as pp→de+�e and
Nakamura �2008�, and references therein�. This offers
the possibility to extract the corresponding LEC from
these processes �see Nakamura �2008�, for a recent at-
tempt�. With the LECs being determined as described
above, the resulting nuclear Hamiltonian can be used to
describe the dynamics of few-nucleon systems. In par-
ticular, 3N continuum observables offer a natural and
rich testing ground for the chiral forces. In Epelbaum et
al. �2001�, Epelbaum, Nogga, Glöckle, Kamada, and
Meißner �2002�, Epelbaum, Nogga, Glöckle, Kamada,
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FIG. 17. �Color online� Neutron-proton 1S0 partial wave at
NLO �dashed band�, N2LO �light-shaded band�, and N3LO
�dark-shaded band� in comparison with the Nijmegen �Stoks et
al., 1993; Rentmeester et al., 1994� �filled circles� and Virginia
Tech �Arndt et al., 2009� �open triangles� PWA.
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Meißner, and Witała �2002�, Ermisch et al. �2003, 2005�,
Duweke et al. �2005�, Kistryn et al. �2005�, Biegun et al.
�2006�, Ley et al. �2006�, Witała et al. �2006�, and Stephan
et al. �2007� various 3N scattering observables have been
explored by solving the momentum-space Faddeev
equations with chiral two and three-nuclein forces as in-
put. In the formulation of Glöckle et al. �1996�, one first
computes the T matrix by solving the Faddeev-like inte-
gral equation,

T = tP� + �1 + tG0�V3N
1 �1 + P�� + tPG0T

+ �1 + tG0�V3N
1 �1 + P�G0T , �2.38�

where the initial state � is composed of a deuteron and
a momentum eigenstate of the projectile nucleon. Here
V3N

i is that part of the 3N force which singles out the
particle i and which is symmetric under the interchange
of the two other particles. The complete 3NF is decom-
posed as V3N=V3N

1 +V3N
2 +V3N

3 . Further, G0=1/ �E−H0�
is the free propagator of the nucleons, P is a sum of a
cyclical and an anticyclical permutation of the three par-
ticles, and t denotes the two-body t matrix. Once T is
calculated, the transition operators Uel and Ubr for the
elastic and break-up channels can be obtained via

Uel = PG0
−1 + PT + V3N

1 �1 + P��1 + G0T� ,

Ubr = �1 + P�T . �2.39�

For details on solving these equations in momentum
space using a partial wave decomposition see Hüber et
al. �1997�. The partial wave decomposition of the 1� ex-
change and contact 3NF at N2LO and the one-pion-two-
pion-exchange topology at N3LO is detailed by Epel-
baum, Nogga, Glöckle, Kamada, Meißner, and Witała
�2002� and Epelbaum et al. �2008�, respectively. The ex-
pressions for various observables in terms of the transi-
tion operators are given by Glöckle et al. �1996�. The
inclusion of the long-range electromagnetic interaction
requires a nontrivial generalization of the formalism �see
Deltuva et al. �2005a, 2005b� for recent progress along
this line�.

The results for the differential cross section in elastic
nd scattering are in a good agreement with the data �see
Fig. 18 for two representative examples�. Notice, how-
ever, that the theoretical uncertainty becomes significant
already at intermediate energies. Qualitatively, this be-
havior is consistent with the one observed in the two-
nucleon system �Epelbaum, Glöckle, and Meißner,
2005�. Notice further that the description of the data
improves significantly when going from NLO to N2LO.
The situation is similar for vector and tensor analyzing
powers �see Epelbaum �2006a� for a recent review ar-
ticle�. More complicated spin observables have also
been studied. As a representative example, we show in
Fig. 19 a selection of the proton-to-proton and proton-
to-deuteron polarization transfer coefficients measured
in d�p� ,p� �d and d�p� ,d� �p reactions at Ep

lab=22.7 MeV
�Glombik et al., 1995; Kretschmer, 1995�. The results at
N2LO are in a reasonable agreement with the data �see

Witała et al. �1993� for more examples�. One further ob-
serves that the theoretical uncertainty obtained by the
cutoff variation is underestimated at NLO �see Epel-
baum, Glöckle, and Meißner �2005��. It is, however,
comforting to see that the description of the data im-
proves significantly when going from NLO to N2LO.

The nucleon-deuteron breakup reaction offers even
more possibilities than the elastic channel due to the
much richer kinematics corresponding to three nucleons
in the final state. It has also been studied extensively
over the last years, both theoretically and experimen-
tally, leaving one with mixed conclusions. While the dif-
ferential cross section in some configurations such as,
e.g., the recently measured np final-state interaction,
coplanar star, and an intermediate-star geometries at
low energies are in a very good agreement with the data
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FIG. 18. �Color online� Differential cross section for elastic nd
scattering at Elab=10 MeV �left panel� and 65 MeV �right
panel�. Light �dark� shaded bands depict the results at NLO
�N2LO�. The neutron-deuteron data at 10 MeV are from How-
ell et al., 1987. The remaining data at 10 MeV are the Coulomb
and IB-corrected proton-deuteron data from Sperisen et al.,
1984, Rauprich et al., 1988, and Sagara et al., 1994. The data at
65 MeV are proton-deuteron data from Witała et al., 1993.

(b)(a)

FIG. 19. �Color online� The proton-to-proton �left panel� and
proton-to-deuteron �right panel� polarization transfer coeffi-
cients in d�p� ,p� �d and d�p� ,d� �p reactions at Ep

lab=22.7. Light
�dark� shaded bands depict the results at NLO �N2LO�. Data
are from Glombik et al., 1995; Kretschmer et al., 1995.
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�Duweke et al., 2005�, large deviations are observed
in certain other configurations. In particular, the so-
called symmetric space-star configuration �SST� appears
rather puzzling. In this configuration, the plane in the
CMS spanned by the outgoing nucleons is perpendicular
to the beam axis, and the angles between the nucleons
are 120°. At Elab=13 MeV, the proton-deuteron and
neutron-deuteron �nd� cross section data deviate signifi-
cantly from each other. Theoretical calculations based
on both phenomenological and chiral nuclear forces
have been carried out for the nd case and are unable to
describe the data �see Fig. 20�. Moreover, the Coulomb
effect was found to be far too small to explain the dif-
ference between the pd and nd data sets �Deltuva et al.,
2005a�. Recently, proton-deuteron data for a similar
SCRE configuration have been measured in Cologne
�Ley et al., 2006�. This geometry is characterized by the
angle � between the beam axis and the plane in the
CMS spanned by the outgoing nucleons. Similar to the
SST geometry, one observes large deviations between
the theory and the data, in particular for �=56° �see Fig.
20�. The included 3NFs have little effect on the cross
section while the effect of the Coulomb interaction is
significant and removes a part of the discrepancy. Notice
that all above cases correspond to rather low energies
where one expects good convergence of the chiral ex-
pansion. Furthermore, contrary to the Ay puzzle, the
cross sections discussed above are mainly sensitive to
the two-nucleon S waves without any known fine tuning
between partial waves. First attempts have been made in
the past few years to perform deuteron breakup experi-
ments at intermediate energies, in particular at EN
=65 MeV �Kistryn et al., 2005�, in which a large part of
the phase space is covered at once. Chiral EFT results at
N2LO for more than 155 data points were shown to be

of a comparable quality to the ones based on modern
phenomenological nuclear forces.

Recently, first results for the 4N continuum based on
both phenomenological and chiral nuclear forces and in-
cluding the Coulomb interactions have become available
�see Fisher et al. �2006� and Deltuva and Fonseca
�2007b� for p-3He scattering, Deltuva and Fonseca
�2007a� for the n-3He, p-3H, and d-d scattering, and
Lazauskas et al. �2005� for the related earlier work�.
These studies do not yet include effects of 3NFs but
clearly indicate that at least some of the puzzles ob-
served in the 3N continuum also persist in the 4N con-
tinuum �such as, e.g., the Ay puzzle in p-3He scattering
�Deltuva and Fonseca, 2007b��. For a promising new ap-
proach to describe scattering states in even heavier sys-
tems see Quaglioni and Navratil �2008�.

The properties of certain S-shell and P-shell nuclei
with A"13 have been analyzed recently based on the
no-core shell model �NCSM� �see Nogga et al. �2006�,
Navratil et al. �2007�, and Navratil et al. �2008� for an
overview�. In Fig. 21 we show some results from Navratil
et al. �2007� for the spectra of 10B, 11B, 12C, and 13C. We
emphasize that the LECs D and E entering the N2LO
3NF were determined in these calculations by the triton
binding energy and a global fit to selected properties of
6Li, 10B, and 12C. These studies clearly demonstrate that
the chiral 3NF plays an important role in the description
of spectra and other properties of light nuclei. The in-
clusion of the 3NF allows one to considerably improve
the agreement with the data. Further results for light
nuclei and the dilute neutron matter based on the lattice
formulation of chiral EFT are given in Secs. II.G and
III.E.

D. The role of the � isobar

The chiral expansion for the long-range part of
the nuclear force discussed in the previous section ex-
hibits a somewhat unnatural convergence pattern in
certain cases such as, e.g., for the central part of the
2�-exchange potential. The origin of the unnaturally
strong subleading contribution in this case can be traced
back to the large values of the dimension-two low-
energy constants �LECs� c3,4 which are also responsible
for the numerical dominance of the subleading 3� ex-
change �Kaiser, 2001b� and charge-symmetry breaking
2�-exchange 2NF �Epelbaum and Meißner, 2005� over
the corresponding leading contributions. The large val-
ues of these LECs are well understood in terms of reso-
nance saturation �Bernard et al., 1997�. In particular, the
��1232� provides the dominant �significant� contribution
to c3 �c4�. Given its low excitation energy, ��m�−m
=293 MeV, and strong coupling to the �N system, the �
isobar is known to play an important role in nuclear
physics. One can, therefore, expect that the explicit in-
clusion of � in EFT will allow us to resum a certain class
of important contributions and improve the convergence
as compared to the deltaless theory, provided a proper
power counting scheme such as the small scale expan-
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FIG. 20. �Color online� Chiral EFT predictions for neutron-
deuteron breakup cross section �in mb MeV−1 sr−2� along the
kinematical locus S. Light shaded �dark shaded� bands refer to
the results at NLO �N2LO�. Left panel: The SST at EN
=13 MeV. Neutron-deuteron data �open triangles� are from
Setze et al., 1996; Strate et al., 1989; proton-deuteron data
�filled circles� are from Rauprich et al., 1991. Right panel: The
symmetric constant relative-energy �SCRE� configuration with
�=56° at EN=19 MeV �Ley et al., 2006�. Dashed and dash-
dotted lines are results based on the CD Bonn 2000 2NF
�Machleidt, 2001� combined with the TM99 3NF �Coon and
Han, 2001� and the coupled channel calculation including the
explicit � and the Coulomb interaction �Deltuva et al., 2005b�,
respectively.
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sion �SSE� �Hemmert et al., 1998� is employed �see also
Jenkins and Manohar �1992��. The SSE is a phenomeno-
logical extension of chiral perturbation theory in which
the small expansion parameter includes external mo-
menta, pion masses, and nucleon-delta mass splitting,

Q/�� 	p/�,M�/�,�/�
 , �2.40�

i.e., the delta-nucleon mass splitting is treated as �
�m�−m�M� rather than ����M�. The improved
convergence has been explicitly demonstrated for pion-
nucleon scattering where the description of the phase
shifts at third order in the SSE comes out superior �in-
ferior� to the third- �fourth-� order chiral expansion in
the deltaless theory �Fettes and Meißner, 2001�. In the
following, we provide an overview of the additional con-
tributions to the nuclear force which arise in the �-full
theory as compared to the �-less theory and discuss the
implications for the convergence of the low-momentum
expansion. Notice that in such a setting we do not need
to consider the NN→N�, NN→��, and N�→�� tran-
sitions which would correspond to the coupled-channel
approach. The adopted counting rules for the nucleon
mass and the delta-nucleon mass difference imply for
the momentum scale associated with real delta produc-
tion �m���mM���. For typical external momenta
�energies� of the nucleons of the order �p� ��M� �Ekin

�M�
2 /m� we are interested in, the momenta associated

with real delta production can be safely integrated out.
We, therefore, only need to consider the contributions to
the nuclear force arising due to virtual delta excitations.

The effective Lagrangian can be straightforwardly ex-
tended to include the � degrees of freedom. To work out
� contributions up to N2LO, the following additional
terms in the heavy-baryon Lagrangian have to be taken
into account,

L��
�0� = − T̄�

i �iv · Dij − �ij�g��T�
j + ¯ ,

L�N�
�0� = hAT̄�

i P����
i N + H.c.,

L�N�
�1� = �b3 + b8�T̄�

i iP�����
i v�N + H.c. + ¯ , �2.41�

where T�
i with � �i� the Lorentz �isospin� index denotes

the large component of the delta field. Further, D�
ij re-

fers to the chiral covariant derivative for the delta fields
and P�� is the standard projector on the 3/2 compo-
nents, P��=g��−v�v�−4S�S� / �1−d�, with d the number
of space-time dimensions. We also have w�

i = ��iu�� /2
and w�!

i = ��i��� ,u!�� /2. The only relevant LEC in the
lowest-order Lagrangian is the �N� axial coupling hA.
At subleading order, the combination of �N� LECs b3
+b8 contributes. For more details on the notation, see
Hemmert et al. �1998� and Fettes and Meißner �2001�
�see also Bernard �2008� for a recent review article and
Pascalutsa �1998� and Hacker et al. �2005� for different
formulations�. Finally, it should also be emphasized that
the only possible derivativeless NNN� contact interac-
tion,

LN�
�0�  �T̄i

�NN̄S��
iN + H.c.� , �2.42�

vanishes due to the Pauli principle �Epelbaum et al.,
2008a�.

The values of the LECs in the �N Lagrangian are,
clearly, different in the �-less and �-full theories and can
be naturally extracted from �N scattering �see Fettes
and Meißner �2001� for such a determination at the lead-
ing one-loop level �i.e., order Q3��. At subleading order,
which is sufficient for our purpose, the determination of
ci from the �N S- and P-wave threshold coefficients
yields in the deltaless theory �Krebs et al., 2007�,
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FIG. 21. �Color online� States dominated by P-shell configurations for 10B, 11B, 12C, and 13C. The excitation energy scales are in
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c1 = − 0.57, c2 = 2.84, c3 = − 3.87, c4 = 2.89,

�2.43�

where only central values are given and the units are
GeV−1. The above values are somewhat smaller in mag-
nitude than the ones obtained at higher orders �see, e.g.,
Fettes et al. �1998��. Including the contributions form the
�, one finds

c1 = − 0.57, c2 = − 0.25, c3 = − 0.79, c4 = 1.33,

b3 + b8 = 1.40. �2.44�

Notice that the LECs c2,3,4 are strongly reduced in mag-
nitude when the � isobar is included. It should also be
emphasized that the values of these LECs depend sen-
sitively on the choice of hA, which in the above case was
set to hA=3gA / �2�2� from SU�4� �or large Nc�. The re-
sults for the threshold coefficients and the 2�-exchange
potential are, however, rather stable �Krebs et al., 2007�.
We also emphasize that the description of the P-wave
threshold parameters improves significantly upon inclu-
sion of the delta isobar.

We are now in the position to discuss the leading and
subleading contributions of the � isobar to the nuclear
force. Since the appearance of a virtual � isobar requires
at least one loop, the corresponding contributions first
appear at NLO ��=2�. The relevant NN and 3N dia-
grams can be obtained from the ones of Figs. 12 and 13
by replacing the nucleon propagators by the ones of the
� fields in all intermediate states. We first discuss the
2NF. Similarly to the �-less theory, the additional contri-
butions to the 1�-exchange potential and contact inter-
actions at both NLO and N2LO only lead to renormal-
ization of various LECs. The 2�-exchange diagrams
were first discussed in Ordonez et al. �1996� using time-
ordered perturbation theory. These contributions were
then calculated in Kaiser et al. �1998� using the Feynman
graph technique. The corrections at N2LO have been
worked out recently �Krebs et al., 2007�. We refrain from
showing here the resulting expressions which are rather
involved and only give the results for the isovector ten-
sor 2�-exchange potential WT, defined according to
VNN=�1 ·�2�� 1 ·q��2 ·q�WT, which may serve as a represen-
tative example,

WT
�2� = −

hA
2

1296�2F�
4�

	9�gA
2 �2A�̃�q� + hA

2 �2L�̃�q�

+ �4�2 + �2�D�̃�q��
 ,

WT
�3� = −

hA
2 �

648�2F�
4 	�2�b3 + b8�gA��2 − 12�2�

− 9c4��2 − 4�2��D�̃�q�

+ 6�3c4 − 2�b3 + b8�hA�L�̃�q�
 . �2.45�

Here the new loop function D�̃�q� is defined via

D�̃�q� =
1

�
�

2M�

�̃ d�

�2 + q2 arctan
��2 − 4M�

2

2�
. �2.46�

The complete results for the � contributions can be
found in Kaiser et al. �1998� and Krebs et al. �2007�. It is
instructive to verify the consistency between the �-full
and �-less theories which requires that the contributions
due to intermediate � excitations, expanded in powers
of 1/�, can be absorbed into a redefinition of the LECs
in the �-less theory. This is only possible if the nonpoly-
nomial �in momenta� terms up to N2LO resulting from
such an expansion have the same form as expressions in
Eqs. �2.14� and �2.18�. This indeed turns out to be the
case: all expanded nonpolynomial terms up to N2LO are
exactly reproduced by the shift in the LECs c3,4,

c3 = − 2c4 = − 4hA
2 /9� , �2.47�

in Eqs. �2.14� and �2.18�.
To get more insight into the strength of various

2�-exchange contributions in the �-full and �-less theo-
ries, it is useful to switch to coordinate space. The
2�-exchange potential can then be written as

Ṽ�r� = ṼC + �1 · �2W̃C + �ṼS + �1 · �2W̃S��� 1 · �� 2

+ �ṼT + �1 · �2W̃T�S12, �2.48�

where S12=3�� 1 · r̂�� 2 · r̂−�� 1 ·�� 2 is the tensor operator. The

scalar functions Ṽi�r� and W̃i�r� are plotted in Fig. 22
using the values for the LECs specified in Eqs. �2.43�
and �2.44�. As expected, one observes a more natural
convergence pattern in the theory with explicit deltas
with the N2LO contributions yielding typically only
modest corrections to the NLO result. This is, clearly,
not the case in the deltaless theory where the entire con-
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FIG. 22. �Color online� Isoscalar �left panel� and isovector
�right panel� components of the 2�-exchange potential in co-
ordinate space for �̃=700 MeV. Dashed and solid �dotted and
dash-dotted� lines refer to the NLO and N2LO results in the
deltafull �deltaless� theory, respectively. There are no contribu-
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tributions to ṼC and W̃T,S are generated at N2LO. On
the other hand, the N2LO 2�-exchange potential in the
deltaless theory provides a very good approximation to
the potential resulting at the same order in the deltafull
theory. This indicates that the saturation of the LECs
c3,4 is the most important effect of the � isobar at the
considered order. The results for NN F and other pe-
ripheral waves calculated using the Born approximation
also clearly demonstrate the improved convergence in
the theory with explicit � �see Fig. 23�.

As explained in Sec. II.B, the first nonvanishing con-
tributions to the 3NF appear in the �-less theory at
N2LO. The situation is different in the �-full theory
where the first 3NF contribution is generated at NLO by
the second graph in the first line of Fig. 13 with the
intermediate nucleon propagator being replaced by the
one of the � field. In fact, the importance of the �N P33
partial wave corresponding to the excitation of the �
resonance in the 3NF has been realized already 50 years
in Fujita and Miyazawa �1957�. The resulting expression
for the � contribution to the 2�-exchange 3NF is exactly
reproduced by the first term in Eq. �2.22� if one uses the
�-saturation values for the LECs ci from Eq. �2.47�.
This, in fact, follows from the decoupling theorem and
the fact that the static � propagator is proportional to
�−1. Notice that there are no short-range 3NFs with in-
termediate � excitation since the corresponding NNN�
interaction is Pauli forbidden. Stated differently, the
LECs D and E are not saturated by the � isobar. Sur-
prisingly, one finds that there are also no � contributions
to the 3NF at N2LO �Epelbaum et al., 2008a�. The
2�-exchange diagrams with one insertion of the sublead-
ing �N� vertex  b3+b8 generate 1/m-suppressed terms
due to the time derivative entering this vertex. Despite
the fact that both the �-full and �-less theories yield the

same expressions for the 2�-exchange 3NF at N2LO,
one should keep in mind that the strengths of various
terms are different. The extrapolation of the �N ampli-
tude from threshold, where the LECs are determined, to
the kinematical region relevant for the 3NF is discussed
in Pandharipande et al. �2005� who claimed that both
theories might yield sizably different results if the ex-
pansion is truncated at low orders. Using the values of
the LECs from Eqs. �2.43� and �2.44� one, however, finds
that the strengths of various terms differ from each
other at most by �7% at N2LO �Epelbaum et al.,
2008a�. To conclude, the only effect of including the �
isobar as an explicit degree of freedom in the 3NF up to
N2LO is the shift of the major part of the 2�-exchange
contribution in Eq. �2.22� from N2LO to NLO and some
minor changes in the strengths of various terms in this
expression.

We now discuss the role of the � for IB nuclear forces.
The observed unnatural convergence pattern for the
CSB 2�-exchange 2NF and CIB 3NF in the �-less
theory �see the discussion in Sec. II.B� is very similar to
the one for isospin-conserving 2�-exchange 2NF �in all
cases the large contributions are proportional to the
LECs c3,4� and provides a strong motivation to explore
the role of the � isobar in this case.

The leading IB � contributions to the 2�-exchange
2NF result from the corresponding triangle, box, and
crossed-box diagrams with one insertion of isospin-
breaking pion, nucleon, and delta mass shifts. The latter
can be deduced from the corresponding leading strong
and electromagnetic Lagrangians �Epelbaum et al.,
2008a�,

L��,IB
�2� = − T̄i

�c5
���+ − ��+��ijg��Tj

�,

L��,IB
�3� = − T̄i

�F�
2 �f1

�ij�Q+
2 − Q−

2� + f2
�ij�Q+�Q+

+ f3
�ij�Q+�2 + f4

���iQ+���jQ+�

+ f5
���iQ−���jQ−��g��Tj

� + ¯ , �2.49�

where c5
� and fi

� are the LECs and the ellipsis in the last
line refers to strong terms which involve at least one
pion field and are irrelevant for the following discussion.
The masses of the physical delta fields ��++ ,�+ ,�0 ,�−�
can be written as

m�++ = m̃� +
m�

1

2
, m�+ = m̃� +

m�
1

6
+
m�

2

2
,

m�0 = m̃� −
m�

1

6
+
m�

2

2
, m�− = m̃� −

m�
1

2
,

where m�
1 /m�

2 denote the equidistant/nonequidistant
splittings and the mass m̃� contains an isospin-invariant

shift m� defined as m̃�=m° �+m�, with m° � the delta
mass in the chiral limit. The leading strong and electro-
magnetic contributions to the splittings m�

1,2 can be
read off from the Lagrangians in Eq. �2.49�. While both
strong and electromagnetic terms contribute to the equi-
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FIG. 23. �Color online� F-wave NN phase shifts for �̃
=700 MeV. The dotted curve is the LO prediction, long-
dashed �short-dashed� and solid �dashed-dotted� lines show the
NLO and N2LO results with �without� the explicit � contribu-
tions. The filled circles depict the results from the Nijmegen
PWA �Stoks et al. 1993�.
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distant splitting m�
1 , the nonequidistant one at this or-

der of pure electromagnetic origin. Epelbaum et al.
�2008a� determined the values for m̃� and m�

1,2 from the
most recent particle data group values for m�++

=1230.80±0.30 MeV and m�0 =1233.45±0.35 MeV
�Amsler et al., 2008� together with the average mass
m���m�++ +m�+ +m�0 +m�−� /4=1233 MeV from Arndt
et al. �2006� which leads to

m�
1 = − 5.3 ± 2.0 MeV, m�

2 = − 1.7 ± 2.7 MeV.

�2.50�

If the quark model relation �Rubinstein et al., 1967�
m�+ −m�0 =mp−mn is employed instead of using the av-
erage delta mass, the results change as follows:

m�
1 = − 3.9 MeV, m�

2 = − 0.3 ± 0.3 MeV, �2.51�

which is consistent with Eq. �2.50�. Notice that the val-
ues for m�

1,2 are of natural size. Indeed, based on naive
dimensional analysis one expects �m�

1 � ��M�
2 /M�

�8 MeV and �m�
2 � �e2M� / �4��2�0.5 MeV. For a re-

lated discussion on the delta mass splittings in chiral
EFT with a particular emphasis on their quark mass de-
pendence see Tiburzi and Walker-Loud �2006�.

Having determined the values for the delta mass split-
tings, it is a straightforward �but tedious� exercise to
work out the leading � contributions to the IB
2�-exchange potential. Notice that the � contributions
to the 1�-exchange and contact potentials can be taken
into account by a redefinition of various LECs and will,
therefore, not be discussed. The explicit expressions for
the 2�-exchange contributions can be found in Epel-
baum et al. �2008b�. In Fig. 24 we show the CIB and CSB
central, tensor, and spin-spin potentials in coordinate
space at N3LO” in the �-full theory in comparison with
the N3LO” and N4LO” results in the �-less theory. While
in the �-less theory, the leading and subleading class-II
2�-exchange potential arises entirely from the pion mass
difference M�

2 ��see the discussion in Sec. II.B�, in the
�-full theory one also finds contributions proportional to
m�

2 �. Although these contributions are numerically
small, they provide a clear manifestation of effects which
go beyond the subleading order in the �-less theory. Fur-
thermore, it is evident from Fig. 24 that the large portion
of the N4LO” CIB 2�-exchange potential in the �-less
theory is shifted to N3LO” in the theory with explicit �
degrees of freedom leading to a more natural conver-
gence pattern. Similarly, a comparison of the corre-
sponding CSB �i.e., class III� potentials in two theories
also indicates toward a more natural convergence in the
�-full with the main part of the unnaturally large sub-
leading contribution in the �-less theory being shifted to
the lower order. Notice that the CSB 2�-exchange po-
tential at N3LO” in the �-full theory also receives contri-
butions from the delta splitting m�

1 which are still ab-
sent at N4LO” in the �-less theory. For the central value,
m�

1 =−5.3 MeV, these contributions are numerically
large and tend to cancel the ones driven by the nucleon
mass difference leading to a significantly weaker result-

ing class-III 2�-exchange potentials as compared to the
ones at subleading order in the �-less theory. This can
be viewed as an indication that certain higher-order IB
contributions still missing at subleading order in the
�-less theory are unnaturally large in the theory without
explicit delta degrees of freedom. Last but not least, ef-
fects from virtual �-isobar excitation in the subleading
��- and 2�-exchange potentials induced by additional
one-photon exchange are considered in Kaiser �2006c�.

Inclusion of the � as an explicit degree of freedom has
also important implications for the IB 3NF �Epelbaum et
al., 2008a�. As discussed in the previous section, the
strongest IB 3NF arises from taking into account the
charge-to-neutral pion mass difference in the
2�-exchange 3N diagrams. In the �-less theory, the re-
sulting charge-symmetry conserving 3NF, being formally
subleading �N3LO” �, is enhanced by the large values of
the LECs c4,4. In the �-full theory, the main part of this
strong 2�-exchange contribution appears already at
leading order �N3LO” � indicating a more natural conver-
gence pattern. In addition to this obvious effect, one
obtains further 2�-exchange contributions at N3LO”
driven by the delta and nucleon mass splittings m�

2

�charge-symmetry conserving� and m�
1 , m �charge-

symmetry breaking�. A close inspection of the resulting
expressions, which are all proportional to �−2, reveals
that they are exactly reproduced in the �-less theory by
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FIG. 24. �Color online� Class-II �left panel� and class-III �right
panel� 2�-exchange potentials at N3LO” in the �-full theory
�shaded bands� compared to the results in the �-less theory at
N3LO” �dashed lines� and N4LO” �dash-dotted lines�. The bands
arise from the variation in m�

1 and m�
2 according to Eq.

�2.50�. Notice further that the leading �i.e., N3LO” � contribu-
tions to ṼT,S

II �r� and subleading �i.e., N4LO” � contributions to
ṼC

II�r� vanish in the �-less theory. In all cases, the spectral func-
tion cutoff �̃=700 MeV is used.
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the saturation of the sub-subleading isospin-conserving
�di terms in L�N

�2� � and IB ��NN vertices. Numerically,
the strengths of these CSB 3NFs due to intermediate
delta excitation turn out to be rather small, �m�

1

−3mN �gA
2 hA

2 M�
6 / �432�2F�

4�2��3keV, which, however,
is comparable to the typical size of the remaining lead-
ing CSB 3NF �Epelbaum, Meißner, and Palomar, 2005�.
gA

4 M�
4 / �256�2F�

4 ��7 keV.

E. Few-nucleon reactions involving pions

Few-nucleon reactions involving pions such as, e.g.,
�d→�d �Beane et al., 2003�, �d→�0d �Beane et al.,
1997; Krebs et al., 2004�. � 3He→� 3He �Baru et al.,
2003�, �−d→�nn �Gardestig and Phillips 2006�, �d
→�+nn �Lensky et al., 2007b�, and NN→NN� �Baru et
al., 2007�, where only some of the most recent references
are given, provide another fascinating testing ground for
the chiral EFT framework. The calculations typically
utilize the distorted-wave Born approximation using
transition operators derived in chiral EFT and employ-
ing either phenomenological or chiral-EFT-based wave
functions for the few-nucleon states following Wein-
berg’s original proposal �Weinberg, 1992�. An important
new ingredient in these applications is the appearance of
the momentum scale p=�mM� associated with real pion
production which has to be explicitly taken into account
and requires an appropriate modification of the power
counting �Cohen et al., 1996; Bernard et al., 1999; da
Rocha et al., 2000�. Such a modified ordering scheme
was proposed in Hanhart et al. �2000� and applied in
Hanhart and Kaiser �2002� to calculate the pion produc-
tion operator in NN collisions at threshold at NLO. No-
tice that the rather high energies and momenta of the
nucleons in the initial state require the inclusion of the �
isobar as an explicit degree of freedom. As a character-
istic feature of the modified power counting scheme, one
observes the appearance of half-integer powers of the
small parameter �=M� /m in the expansion of the tran-
sition operators. One also finds that some pion loop con-
tributions are promoted to significantly lower orders
compared to what is expected from Weinberg’s original
power counting. An application of the modified power
counting to P-wave pion production in NN collisions up
to N2LO is carried out in Hanhart et al. �2000�. At this
order, only tree diagrams have to be considered. The
calculations showed a satisfactory agreement with the
data and also demonstrated the feasibility to extract the
LEC D which enters the leading 3NF �see Eq. �2.22��
from this reaction. Notice, however, that concerns have
been raised in Nakamura �2008� regarding the conver-
gence of the chiral expansion in this reaction. For
S-wave pion production, one-loop diagrams already start
to contribute at NLO. As pointed out in Lensky et al.
�2006�, it is important to properly separate the truly ir-
reducible contributions in the loop diagrams from the
reducible ones in order for the resulting pion production
operator to be renormalizable. Numerically, the NLO
loop diagrams were found to provide an important con-

tribution to the cross section for pp→d�+. Parametriz-
ing the near-threshold cross section for this reaction as
�=��+O��3�, where � denotes the outgoing pion mo-
mentum in units of its mass, the pion S-wave contribu-
tion at LO and NLO was found to be �LO=131 �b and
�NLO=220 �b, respectively �Lensky et al., 2006�. The re-
sult at NLO agrees nicely with various existing data sets
�see Fig. 25�. A comprehensive review of meson produc-
tion reactions in nucleon-nucleon collisions can be found
in Hanhart �2004�.

Pion production reactions in few-nucleon systems also
proved useful to study isospin-violating effects. Recent
measurements of the forward-backward asymmetry in
the process pn→d�0 �Opper et al., 2003� and the total
cross section in the reaction dd→��0 �Stephenson et al.,
2003� yielded a clear evidence of charge-symmetry
breaking and serve as excellent testing ground to study
isospin violation in the nuclear force and the corre-
sponding transition operators. The first steps toward the
theoretical understanding of these reactions have been
taken in van Kolck et al. �2000� and Gardestig et al.
�2004�; and Nogga et al. �2006�, respectively. Notice that
the appearance of the four-nucleon continuum states
makes the theoretical analysis of the process dd→��0

particularly challenging. We further emphasize that new
data on this reaction will be provided by WASA at
COSY �Adam et al., 2004�. Further details on these stud-
ies and related issues can be found in a recent review
article �Miller et al., 2006�.

The role of the momentum scale p=�mM� and the
related issue of the nucleon recoil effects in reactions
such as, e.g., �d scattering and pion photoproduction
and electroproduction off the deuteron was investigated
in the context of chiral EFT in Baru et al. �2004� and
Lensky et al. �2005, 2007a�. In particular, it was realized
that the importance of the recoil effects in a given pro-
cess is directly connected to the Pauli principle for the
nucleons in the intermediate states. Notice further that
the reaction �d→nn�+ �Lensky et al., 2007b� and the
similar process �−d→�nn �Gardestig and Phillips, 2006�
were proposed as a tool to extract the value of the
neutron-neutron S-wave scattering length. For more de-
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FIG. 25. �Color online� LO �dashed line� and NLO �solid line�
results for the total cross section for the reaction pp→d�+ in
comparison with the data from Hutcheon et al., 1991 �open
circles�, Heimberg et al., 1996 �filled circles�, and Drochner et
al., 1998 �filled squares�. The hatched area gives the estimated
uncertainty at NLO. Figure is courtesy of C. Hanhart.
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tails on these and related reactions see Hanhart �2007�.

F. Hyperon-nucleon and hyperon-hyperon interactions

The effects of strange quarks in nuclear matter can,
e.g., be tested through the determination of the proper-
ties of so-called hypernuclei, in which one �or two�
nucleon�s� is �are� substituted by a hyperon �hyperons�.
Such hypernuclei are produced by strangeness-exchange
reactions, by associated strangeness production, or by
electroproduction reactions at many laboratories world-
wide, such as CERN, BNL, KEK, DA#NE, JLab,
MAMI, and GSI �see, e.g., Alberico and Garbarino
�2002��. More generally, nuclear physics with strange
quarks has a broad impact on contemporary physics
since it lies at the intersection of nuclear and elementary
particle physics. Moreover, it has significant implications
to the astrophysics of compact objects. Recent progress
in the field is reviewed in Bydzovsky et al. �2007�.

The hyperon-nucleon �YN� interaction is at the heart
of the hypernuclear binding and thus a precise determi-
nation of its various components is of utmost impor-
tance. Here the situation is quite different compared to
the two-nucleon case. The data based on YN scattering
are quite poor, thus a partial wave analysis is not avail-
able and in any theoretical approach one must directly
compare to data. The poor status of our information
on the YN interaction is most clearly reflected in
the present knowledge of the �N scattering lengths.
For example, Alexander et al. �1968� gave for the
singlet �s� and triplet �t� scattering lengths as

=−1.8−4.2
+2.3 fm, at=−1.8−0.8

+1.1 fm, whereas in the six variants
of the Nijmegen soft-core potential model as varies in
the range −2.5, . . . ,−0.7 fm and at in the range
−2.2, . . . ,−1.8 fm �Rijken et al. 1999�. In the most mod-
ern version of the Jülich meson-exchange model one
finds as�−2.6 fm and at�−1.7 fm �Haidenbauer and
Meißner, 2005�. However, for the EFT approach it is
important to note that all these values are of natural
size. For a proposal to extract these scattering lengths
with high precision from production data, see Gas-
paryan et al. �2004�. Furthermore, since the masses of
the � and the � hyperons are only about 75 MeV apart,

the coupling between the �N and �N channels needs to
be taken into account. Moreover, for a sensible compari-
son with experimental data, it is preferable to solve the
scattering equation in the particle basis because then the
Coulomb interaction in the charged channels can be in-
corporated.

The hyperon-nucleon YN interaction has not been in-
vestigated using EFT as extensively as the NN interac-
tion. Hyperon and nucleon mass shifts in nuclear matter,
using chiral perturbation theory, have been studied in
Savage and Wise �1996�. They used a chiral interaction
containing four-baryon contact terms and pseudoscalar-
meson exchanges. The hypertriton �a bound state of a
proton, a neutron, and a �� and �d scattering were in-
vestigated in the framework of an EFT with contact in-
teractions �Hammer, 2002�. Korpa et al. �2002� per-
formed a next-to-leading-order �NLO� EFT analysis of
YN scattering and hyperon mass shifts in nuclear matter.
Three tree-level amplitude contains four-baryon contact
terms; pseudoscalar-meson exchanges were not consid-
ered explicitly, but SU�3� breaking by meson masses was
modeled by incorporating dimension two terms coming
from one-pion exchange. The full scattering amplitude
was calculated using the Kaplan-Savage-Wise resumma-
tion scheme. The hyperon-nucleon scattering data were
described successfully for laboratory momenta below
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for the hyperon-nucleon interaction.
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FIG. 27. �Color online� Total cross sections as a function of
plab for �p→�p and �±p→�±p. The shaded band is the LO
EFT result for �=550, . . .700 ,MeV, the dashed curve is the
Jülich 04 model �Haidenbauer and Meißner, 2005�, and the
solid curve is the Nijmegen NSC97f model �Rijken et al. 1999�.
Note that the total cross sections for �±p→�±p are obtained
by integrating the differential data in a limited angular range
�see Eisele et al., 1971�.

1804 Epelbaum, Hammer, and Meißner: Modern theory of nuclear forces

Rev. Mod. Phys., Vol. 81, No. 4, October–December 2009



200 MeV using 12 free parameters. Some aspects of
strong �N scattering in effective field theory and its re-
lation to various formulations of lattice QCD are dis-
cussed in Beane et al. �2005�.

Within the Weinberg counting scheme, a detailed in-
vestigation of the YN interaction at LO was presented in
Polinder et al. �2006�. At LO, the YN potential is given
by one-pseudoscalar-Goldstone-boson exchange dia-
grams �cf. Fig. 26� and contact interactions without de-
rivatives. The spin-space part of the one-pseudoscalar-
meson-exchange potential resulting from the LO SU�3�
effective chiral meson-baryon Lagrangian is

VB1B2→B1�B2� = − fB1B1�PfB2B2�P
�� 1 · k��� 2 · k�

k�2 + mP
2

, �2.52�

where k� is the momentum transfer, P=� ,K ,�, and the
fB1B1�P, fB2B2�P are the appropriate coupling constants,

fNN� = f, fNN�8
=

1
�3

�4� − 1�f ,

f�NK = −
1
�3

�1 + 2��f, f��� = − �1 − 2��f ,

f���8
= −

1
�3

�1 + 2��f, f��K =
1
�3

�4� − 1�f ,

f��� =
2
�3

�1 − ��f, f���8
=

2
�3

�1 − ��f ,

f�NK = �1 − 2��f, f��� = 2�f ,

f���8
= −

2
�3

�1 − ��f, f��K = − f . �2.53�

in terms of the coupling constant f�gA /2F� and the
F / �F+D� ratio � �de Swart, 1963�. The corresponding
isospin factors for the various channels multiplying the
spin-space part of the potential in Eq. �2.52� are tabu-
lated in Table I.

It is important to stress that while the interaction po-
tential at LO is SU�3� symmetric, the kinematics of the
various channels and the masses of the exchanged me-
sons are to be taken at their physical values. The LO
contact terms for the octet baryon-baryon interactions,
which are Hermitian and invariant under Lorentz trans-
formations, are given by the SU�3� invariants,

L1 = Ci
1�B̄aB̄b�$iB�b�$iB�a� ,

L2 = Ci
2�B̄a�$iB�aB̄b�$iB�b� ,

L3 = Ci
3�B̄a�$iB�a��B̄b�$iB�b� . �2.54�

Here a and b denote the Dirac indices of the particles, B
is the usual irreducible octet representation of SU�3�
given by

B =�
�0

�2
+
�

�6
�+ p

�−
− �0

�2
+
�

�6
n

−�− �0 −
2�
�6

� , �2.55�

and the brackets denote taking the trace in the three-
dimensional flavor space. As an example, we display the
resulting partial wave potentials for �N→�N,

V1S0

�� = 4�� 1
6 �CS

1 − 3CT
1 � + 5

3 �CS
2 − 3CT

2 � + 2�CS
3 − 3CT

3 ��

V3S1

�� = 4�� 3
2 �CS

1 + CT
1 � + �CS

2 + CT
2 � + 2�CS

3 + CT
3 �� .

�2.56�

Similar expression for the isospin-1 /2 and -3/2 �N
→�N and the �N→�N potentials are given in Polinder
et al. �2006�. Note that only five of the 	8
	 	8
= 	27

+ 	10
+ 	10*
+ 	8
s+ 	8
a+ 	1
 representations are relevant
for NN and YN interactions since the 	1
 occurs only in
the ��, �N, and �� channels. Equivalently, the six con-
tact terms, CS

1, CT
1 , CS

2, CT
2 , CS

3, CT
3 , enter the NN and YN

potentials in only five different combinations. These five
contact terms need to be determined by a fit to the ex-
perimental data. The resulting chiral potential VLO

=VOBE+Vcont in the Lippmann-Schwinger equation is
regulated with a regulator function f��p ,p��=exp�−�p4

+p�4� /�4�, where the cutoff � is varied between 550 and
700 MeV. A fit to 35 low-energy data �total cross sec-
tions from Engelmann et al. �1966�, Alexander et al.
�1968�, Sechi-Zorn et al. �1968�, and Eisele et al. �1971�
for �p→�p, �−p→�n, �±p→�±p, and �−p→�0n with
hyperon laboratory momenta between 110 and 300 MeV
and the inelastic capture ratio at rest �de Swart and
Dullemond, 1962�� gives a good description of the data
�see Fig. 27�, with contact interactions of natural size.

Note the strong cusp effect in �p scattering at the
opening of the �+n threshold at plab�600 MeV �Fig.
27�b��. The chiral EFT also yields a correctly bound hy-

TABLE I. The isospin factors for the various one-
pseudoscalar-meson exchanges contributing to the hyperon-
nucleon interaction.

Channel Isospin � K �

0 −3 0 1
NN→NN 1 1 0 1

�N→�N 1
2

0 1 1

�N→�N 1
2 −�3 −�3 0

1
2

−2 −1 1

�N→�N 3
2

1 2 1
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pertriton �Haidenbauer et al., 2007� if one fixes the rela-
tive strength of the singlet and triplet S waves accord-
ingly. A �p singlet scattering length of −1.9 fm leads to
the correct binding energy. The corresponding triplet
scattering length is at

�p=−1.2 fm and in the �+p system,
one finds as=−2.3 and at=−0.7 fm. It is quite astonishing
that with only six parameters �five LECs and the cutoff
�� one achieves a quite satisfactory description of the
admittedly not very precise YN scattering data. Clearly,
a NLO calculation should be performed and fits should
be done simultaneously to YN. and NN data. For a more
detailed discussion of these results and a comparison to
more conventional approaches to the YN interaction,
see Polinder et al. �2006� and Haidenbauer et al. �2007�.

The experimental situation on baryon-baryon scatter-
ing with S=−2, i.e., in the YY and the �N, channels, is
even poorer. Only recently doubly strange baryon-
baryon scattering data at lower energies, below plab
=0.8 GeV, were deduced for the first time �Tamagawa et
al., 2001; Ahn et al., 2006�. An upper limit of 24 mb at
90% confidence level was provided for elastic �−p scat-
tering, and for the �−p→�� cross section at plab

=500 MeV a value of 4.3−2.7
+6.3 mb was reported �Ahn et

al., 2006�. Within LO chiral EFT, baryon-baryon scatter-
ing was analyzed in Polinder et al. �2007�. The contact
terms and the couplings of the pseudoscalar mesons to
the baryons are related via SU�3� symmetry to the S=
−1 hyperon-nucleon channels. There is one additional
contact interaction whose strength was varied within
natural bounds in the ��→�� channel. This fixes its
contribution in all other S=−2 baryon-baryon channels
because of SU�3� symmetry. As a constraint, the infor-
mation deduced from the recent candidate for ��

6 He
with a low binding energy �Takahashi et al. 2001�, the
so-called Nagara event, which suggests that the �� in-
teraction should be only moderately attractive, was im-
posed. For a fixed cutoff, the prediction of the �−p
→�−p and the �−p→�� total cross section in compari-
son to the available data is shown in Fig. 28. The re-
sulting �� scattering length in the 1S0 channel is as
=−1.83, . . . ,−1.38 fm. For comparison, in the Nijmegen

ESC04 model one finds in this channel as=−1.32 fm
�Rijken and Yamamoto, 2006� and in the constituent
quark model of Fujiwara et al. �2007�, one has as
=−0.81 fm. Note also that this contact interaction does
not contribute to certain channels, so that at LO one can
make parameter-free predictions for �+�+→�+�+, �0p
→�0p, and �0p→�+�. It is expected that in the future
better-quality data on the fundamental �N and YY in-
teractions as well as much more information about the
physics of hypernuclei will become available at the new
facilities J-PARC �Japan� and FAIR �Germany�. The
chiral EFT developed by Polinder et al. �2007� can then
be used to analyze these upcoming data in a model-
independent way.

G. Nuclear lattice simulations

Once the chiral nuclear forces are determined and the
low-energy constants appearing in the nuclear forces are
fitted �in the two- and three-nucleon sectors� one can
make predictions in the four- and more-nucleon sectors
based on chiral EFT. However, the explicit numerical
treatment of, e.g., the Yakubowsky equations for more
than four nucleons is a very difficult task. One possible
scheme to solve the many-body problem is to put the
chiral effective potential on the lattice and apply power-
ful Monte Carlo techniques which are already developed
to high degree in lattice QCD. One unique feature of
the lattice effective field theory approach is the ability to
study in one formalism both few- and many-body sys-
tems as well as zero- and nonzero-temperature phenom-
ena. A large portion of the nuclear phase diagram can
be studied using exactly the same lattice action with ex-
actly the same operator coefficients. A second feature is
the computational advantage of many efficient Euclid-
ean lattice methods developed for lattice QCD and con-
densed matter applications. This includes the use of
Markov chain Monte Carlo techniques, Hubbard-
Stratonovich transformations, and nonlocal updating
schemes such as a hybrid Monte Carlo technique. A
third feature is the close theoretical link between
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FIG. 28. �Color online� Total cross sections as a function of plab for �−p→�−p �left panel� and �−p→�� �right panel�. The
shaded band is the LO EFT result for �=600 MeV and varying the LEC C1S0

�� of the additional singlet contact term within natural

bounds given a mildly attractive interaction in the 1S0 channel of the �� interaction.
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nuclear lattice simulations and chiral effective field
theory. One can write down the lattice Feynman rules
and calculate lattice Feynman diagrams using precisely
the same action used in the nonperturbative simulation.
Since the lattice formalism is based on chiral effective
field theory, we have a systematic power counting expan-
sion, an a priori estimate of errors for low-energy scat-
tering, and a clear theoretical connection to the under-
lying symmetries of QCD. The first studies combining
lattice methods with effective field theory for low-energy
nuclear physics looked at infinite nuclear and neutron
matter at nonzero density and temperature �see Sec.
III.E�. Most of the formalism for chiral EFT on the lat-
tice was developed by Lee et al. �2004�. Nuclear lattice
simulations were used to study the triton at leading or-
der in pionless effective field theory with three-nucleon
interactions �Borasoy et al., 2006�.

We now discuss the principles underlying such nuclear
lattice simulations �for a detailed discussion, see Lee et
al. �2004� and Borasoy et al. �2007a��. In this framework,
nucleons are represented as pointlike Grassman fields
and pions as pointlike instantaneous pseudoscalar fields.
The lattice is defined by a volume L3	Lt, with L �Lt� as
the spatial �temporal� size. The corresponding lattice
spacings are called a and at, respectively. Typically,
calculations are carried out using a lattice length L
�20 fm and the lattice spacing a�2 fm which corre-
sponds to the cutoff �=� /a� 300 MeV. At present,
computational resources prevent one from using smaller
lattice sizes �larger UV cutoffs�. Still, the use of various
forms of improved actions allows one to access the sys-
tematic errors inherent in such simulations.

The basic quantity in nuclear lattice simulations is the
correlation function. For A nucleons in Euclidean space
it is defined by

ZA�t� = �%A�exp�− �H��%A� , �2.57�

where �%A� refers to a Slater determinants for A free
nucleons, H is the Hamiltonian of the system, and � is
the Euclidean time. The ground state energy of the
A-nucleon system can be derived from the asymptotic
behavior of the correlation function for large �,

EA
0 = − lim

�→�

d

d�
ln ZA��� . �2.58�

The expectation value of any normal-ordered operator
O can be derived in a similar way by

�%A
0 �O�%A

0 � = lim
�←�

ZA
O���

ZA���
,

ZA
O�t� = �%A�exp�− �H/2�O exp�− �H/2��%A� , �2.59�

where �%A
0 � denotes the ground state of the A-nucleon

system. It is convenient to describe NN contact interac-
tions by standard bilinear nucleon density operators us-
ing the Hubbard-Stratonovich transformation. Using
exp��2 /2���ds exp�−s2 /2−s�� one can express terms
quadratic in the nucleon density operator � as terms lin-

ear in � in the presence of auxiliary background fields
�collectively denoted by s�. In this representation, the
full correlation function is related to the path integral
over pions and auxiliary fields,

ZA�t� = N� Ds �
I=1,2,3

D�IDsI exp�− S�� − Sss�

	�%A�M�Lt−1���I,s,sI� ¯ M�0���I,s,sI��%A� .

�2.60�

Here S�� and Sss are free actions for pions and auxiliary
fields s ,sI �where s /sI couples to the isospin-
independent/-dependent nucleon bilinear�, I denotes
isospin indices and N is an �irrelevant� normalization
constant. M�n� is a transfer matrix defined as an n’th step
in the temporal direction. We note that the amplitude
�%A �M�Lt−1���I ,si�¯M�0���I ,si� �%A� is just a Slater de-
terminant of single nucleon matrix elements Mi,j, with
i , j=1, . . . ,A.

To be specific, we give here the leading order action
starting with the free theory. The presentation here is
somewhat sketchy. For an extensive discussion see Bo-
rasoy et al. �2007a�. The free actions for the auxiliary
fields and the pions are

Sss�s,sI� =
1
2

n�
s�n� �2 +

1
2

I=1

3


n�

sI�n� �2,

S����I� =
�t

2 
I=1

3


n�
�I�n� ��− � + M�

2 ��I�n� � , �2.61�

where M� is the physical pion mass and �t=at /a. For
nucleons one may use an O�a4� improved free lattice
Hamiltonian defined by

Hfree =
1

m 
k=0

3


n� s,l̂s,i,j

fk	ai,j
† �n� s��ai,j�n� s + kl̂s�

+ ai,j�n� s − kl̂s��
 , �2.62�

where the operators ai,j
† �n� s� and ai,j�n� s� are the nucleon

creation and annihilation operators, n� s are spatial coor-

dinates, l̂s are spatial unit vectors, the indices i and j
represent spin and isospin indices, respectively, and the
coefficients fk are f0,1,2,3=49/2 ,−3/4 ,3 /40,−1/180. To
define the interactions one introduces nucleon-density
operators with different spin or isospin polarizations,

�a†,a�n� s� = 
i,j

ai,j
† �n� s�ai,j�n� s� ,

�I
a†,a�n� s� = 

i,j,j�

ai,j�
† �n� s���I�j�,jai,j�n� s� ,

�I,S
a†,a�n� s� = 

i,i�,j,j�

ai�,j�
† �n� s���S�i�,i��I�j�,jai,j�n� s� . �2.63�

The transfer matrix for ntth step has, besides the free
part, two important contributions,
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M�nt� =: exp�− Hfree�t

−
gA�t

2F�

S,I


n� s

�S�I�n� s,nt��S,I
a†,a�n� s�

+ �− C�t
n� s
�s�n� s,nt��a†,a�n� s�

+ i�CI�t
I

sI�n� s,nt��I
a†,a�n� s���: . �2.64�

Here � denotes normal ordering. The first long-range
contribution �gA includes the instantaneous pion-
nucleon interaction and describes the one-pion ex-
change in the leading-order effective potential. The sec-
ond short-range contribution corresponds to the NN
contact interactions. The low-energy constants C=CS
−2CT and CI=−CT �cf. Sec. II.B� have different signs,
C�0,CI�0. With these signs the pionless theory can be
shown to have no sign oscillations if the number of pro-
tons and neutrons are equal and they stay pairwise in
isospin-singlet states. In this case the multiplication with
�2 of the single-nucleon matrix elements M from left
and right is well defined and gives �2M�2=M*. For this
reason, the determinant of M is real, det M*=det M.
Since �2 is antisymmetric, the eigenvalues of M are dou-
bly degenerate. This leads to a positive Slater determi-
nant �Chen and Kaplan, 2004; Lee, 2004�,

det M� 0. �2.65�

The introduction of pions causes small sign oscillations
which, however, are not severe and appear to be sup-
pressed.

To perform simulations in a most efficient way one
exploits the approximate SU�4�-Wigner �Wigner, 1937�
symmetry in the NN system. The symmetry transforma-
tion is given by independent rotations of the spin and
isospin degrees of freedom,

N = ����
���N with �� = �1,�� �, �� = �1,��� .

�2.66�

One can show that in the limit where the NN S-wave
scattering lengths approach infinity the two-nucleon sys-
tem becomes invariant under the SU�4� transformation
�Mehen et al., 1999�. The SU�4�-breaking corrections
come from the finite scattering lengths and higher order
terms in the chiral expansion; these are of order
O„�1/a�3S1�−1/a�1S0�� ,q /��…. Since the NN scattering

lengths are very large, the SU�4�-breaking corrections
appear to be small. This fact can be used to improve the
performance of the lattice simulations. The SU�4� sym-
metric transfer matrix is given by

M�nt� = :exp�− Hfree�t + �− C�t
n� s

s�n� s,nt��a†,a�n� s��: .

�2.67�

In this case there are no sign oscillations for an even
number of nucleons �Chen et al., 2004� and one has only
one auxiliary field such that the simulations become
much cheaper. Although there is no positivity theorem
for odd numbers of nucleons, sign oscillations seem to
be suppressed also in systems with odd number of nucle-
ons because it is only one particle away from an even
system with no sign oscillations. Since the final result is
close to the one produced by a SU�4�-symmetric simula-
tion, it pays to divide a simulations into three parts. To
simulate the expectation value of some observable one
uses SU�4�-symmetric transfer matrices in the first and
the last Lt0

steps in order to filter the low-energy signal.
After this filtering, one starts the simulation with the
complete �realistic� transfer matrices. A schematic over-
view of the transfer matrix calculation is shown in Fig.
29. Having set up the transfer matrix, one utilizes the
hybrid Monte Carlo �HMC� method �Duane et al., 1987�
to update the field configurations. More specifically, one
introduces the conjugate fields p�I

, ps, psI
and uses mo-

lecular dynamics trajectories to generate new configura-
tions for the fields p�I

, ps, psI
, �I, s, sI which keep the

HMC Hamiltonian

HHMC =
1
2

n�
�

I
�p�I

2 �n� � + psI

2 �n� �� + ps
2�n� ��

+ V��I,s,sI� �2.68�

constant, where the HMC potential is defined by

V��I,s,sI� = S�� + Sss − log�det M� . �2.69�

Upon completion of each molecular dynamics trajectory,
a Metropolis accept or reject step for the new configu-
ration according to the probability distribution
exp�−HHMC� is applied. This process of molecular dy-
namics trajectory and Metropolis step is repeated many
times.

Already at LO promising results for binding energies,
radii, and density correlations for the deuteron, triton,
and 4He are obtained �Borasoy et al., 2007a�. On a 53

lattice, the triton binding energy agrees with experiment

OΨ free Ψ free

02Lto+ Lti

SU(4) π

Lto+ Lti/2 LtoLto+ Lti

full LO full LO SU(4) π

operator insertion for
expectation value

Z,N Z,N FIG. 29. Overview of the vari-
ous pieces of the transfer ma-
trix calculation.
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within 5% and the triton root-mean-square radius is ac-
curate to 30%. The binding energy for 4He is within
25% of the experimental value, while the root-mean-
square radius agrees within 10%. Note, however, that
one has to overcome a zero-range clustering instability
that appears for 4 �or more particles� which is mostly a
combinatorial effect when more than two particles oc-
cupy the same lattice site �for studies of this in other
systems, see Lee �2006�, and references therein�. To
overcome this problem, one can, e.g., smear out the con-
tact interactions with a Gaussian. Such terms improve
the lattice action and are formally of higher order �for
more details, see, e.g., Borasoy et al. �2007a��. At LO,
one can also study the feasibility of simulations for light
nuclei with more than four nucleons. It was observed
that for A"10 the CPU time scales approximately lin-
early with the nucleon number A.

At NLO there appear nine LECs which can be fitted
to the Nijmegen NN scattering data and deuteron prop-
erties. Elastic scattering phase shifts on the lattice are
related by Lüscher’s formula to the energy levels of two-
body states in a finite large volume cubic box with peri-
odic boundary conditions �see Sec. I.E�. While this
method is useful at low momenta, it is not so useful for
determining phase shifts on the lattice at higher energies
and higher orbital angular momenta. Furthermore, spin-
orbit coupling and partial wave mixing are difficult to
measure accurately using Lüscher’s method due to
multiple-scattering artifacts produced by the periodic
cubic boundary conditions. Borasoy et al. �2007b� pro-
posed a more robust approach to measure phase shifts
for two nonrelativistic point particles on the lattice using
a spherical wall boundary. The basic idea is to impose a
hard spherical wall boundary on the relative separation
between the two interacting particles at some chosen
radius. The reason for this spherical wall is to remove
copies of the two-particle interactions due to the peri-
odic boundaries on the lattice. This additional boundary
condition allows for a direct extraction of the phase
shifts and mixing angles from the finite-volume spec-
trum. For more details, see Borasoy et al. �2007b�. Using
the spherical wall method the values of nine LECs were
determined by matching three S-wave and four P-wave
scattering data points, as well as deuteron binding en-
ergy and quadrupole moment. In Fig. 30 the NN S-wave
phase shifts and the 3S1-3D1 mixing angle �1 for two dif-
ferent actions, called LO1 and LO2, are displayed. The
action LO1 is the one given in Eq. �2.64�. In the action
LO2 the contact interactions are smeared by a Gaussian.
The two actions are identical at leading order and differ
only by higher-order terms, thus given an estimate of the
higher-order corrections. As can be seen from Fig. 30,
the results of the lattice simulations are in a good agree-
ment with the partial wave results for momenta smaller
than �100 MeV. Deviations between the two results for
different actions appear merely at larger momenta and

are consistent with the expected higher-order effects. In
the mean time, a novel action with spin-isospin pro-
jected smearing has been developed that gives a good
description of the partial waves up to momenta of the
order of the pion mass.

At N2LO three-body forces start to show up which
depend on two constants. These LECs can be deter-
mined from a fit to neutron-deuteron scattering data in
the spin-1 /2 doublet channel and the triton binding en-
ergy. These simulations show a very natural convergence
pattern with increasing chiral order. For a box length of
�15 fm the volume dependence already becomes very
small and the binding energy approaches its physical
value. This is consistent with our expectation that the
volume dependence in nuclear lattice EFT simulations
should become weak for L�20 fm. In Fig. 31 the
S-wave phase shifts in the spin-3 /2 quartet channel ver-
sus the square of relative momentum are shown. This
channel was not taken into account in the fit procedure.
Again one observes a nice convergence with increasing
chiral order. The predictions are located between the
experimental data for proton-deuteron and neutron-
deuteron scattering data. Since isospin breaking was not
taken into account in the simulations, the results are
very satisfactory. At the same order, the �Coulomb-
corrected� binding energy for 4He is overpredicted by
5%, which is consistent with the expected theoretical
accuracy of these simulations.
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FIG. 30. �Color online� NN S-wave phase shifts and mixing
angles vs center-of-mass momentum with actions LO1 and
LO2.
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The results of these studies demonstrate that lattice
EFT is a promising tool for a quantitative description of
light nuclei. In the future, it is planned to perform N2LO
Monte Carlo simulations of light nuclei and probe neu-
tron matter with larger number of neutrons in a box �see
also Sec. III.E�. In addition, more detailed studies of
finite size effects and further improvements of the lattice
action are called for.

H. Quark mass dependence of nuclear forces and IR limit
cycle in QCD

The quark mass dependence of the chiral NN in-
teraction was calculated at NLO in the chiral counting
in �Beane and Savage �2003� and Epelbaum et al.
�2003�. At this order, the quark mass dependence
is synonymous to the pion mass dependence because
of the Gell-Mann-Oakes-Renner relation: M�

2 =−�mu

+md��0�ūu�0� /F�
2 , where �0�ūu�0���−290 MeV�3 is the

quark condensate. In the following, we therefore refer
only to the pion mass dependence which is more conve-
nient for nuclear applications and treat the pion mass as
a parameter that can be varied by adjusting the values of
the quark masses. In the work of Beane et al. �2002�,
Beane and Savage �2003�, and Epelbaum et al. �2003� the
pion mass dependence of the nucleon-nucleon scattering
lengths in the 3S1-3D1 and 1S0 channels as well as the
deuteron binding energy, is calculated. To NLO in the
chiral power counting, the NN potential can be written
as

VNLO = VOPE + VTPE + Vcont, �2.70�

where VOPE, VTPE, and Vcont refer to the one-pion ex-
change, two-pion exchange, and contact potentials, re-
spectively. Explicit expressions can be found in Epel-
baum et al. �2003� and Sec. II.B.

In principle, the pion mass dependence of the chiral
NN potential is determined uniquely. However, the ex-
trapolation away from the physical pion mass generates

errors. The dominating sources are the constants C̄S,T

and D̄S,T in Vcont which give the corrections to the LO
contact terms  M�

2 and cannot be determined indepen-
dently from fits to data at the physical pion mass. A

smaller effect is due to the error in the LEC d̄16, which
governs the pion mass dependence of gA, from the chiral
pion-nucleon Lagrangian which is enhanced as one
moves away from the physical pion mass. Both effects
generate increasing uncertainties as one extrapolates
away from the physical point.

In the calculation of Epelbaum et al. �2003�, the cen-

tral value d̄16=−1.23 GeV−2 was used which is the aver-
age of three values given by Fettes �2000�. In addition, a

variation in the LEC d̄16 in the range of d̄16=−0.91,. . . ,
−1.76 GeV−2 as given in Fettes �2000� was employed.

The size of the two constants D̄S and D̄T was con-
strained from naturalness arguments. It was argued that

the corresponding dimensionless constants F�
2��

2D̄S,T
can be expected to satisfy the bounds,

− 3" F�
2��

2D̄S,T " 3, �2.71�

where ���1 GeV is the chiral symmetry breaking scale.
A more conservative error estimation was given in Epel-
baum, Meißner, and Glöckle �2002�. We note that Beane
et al. �2002� and Beane and Savage �2003� allowed for a
larger variation in these LECs. However, the bounds
�2.71� are in agreement with resonance saturation esti-
mates and similar relations are obeyed by the LECs
whose values are known �Epelbaum, Nogga, Glöckle,
Kamada, Meißner, and Witała, 2002�. For the constants
CS,T, this leads to CS=−120.8 GeV−2 and CT
=1.8 GeV−2 corresponding to the dimensionless coeffi-
cients F�

2 CS=−1.03 and F�
2 CT=0.02, respectively. The

unnaturally small value of F�
2 CT is a consequence of the

approximate Wigner SU�4� symmetry.
The ranges from Eq. �2.71� were used to estimate the

extrapolation errors of two-nucleon observables such as
the deuteron binding energy and the spin-singlet and
spin-triplet scattering lengths in Epelbaum et al. �2003�.
The resulting pion mass dependence of the deuteron
binding energy is shown in Fig. 32. In the chiral limit the
binding energy is of natural size, BD�F�

2 /m�10 MeV.
Note, however, that in the calculation of Beane et al.
�2002� and Beane and Savage �2003� the assumed larger
uncertainties in the LECs prevent one from making a
definite statement about the binding of the deuteron in
the chiral limit. For pion masses above the physical
value the differences between the two calculations are
considerably smaller. The recent study of Mondejar and
Soto seems to indicate that two-loop diagrams generate
a peculiar quark mass dependence of the contact inter-
actions which are parametrically large �Mondejar and
Soto, 2007�. The influence of these effects on the quark
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FIG. 31. �Color online� Neutron-deuteron scattering S-wave
phase shifts in the spin-3 /2 quartet channel vs the square of
relative momentum. The data for proton-deuteron and
neutron-deuteron scatterings are taken from van Oers and
Seagrave, 1967.
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mass dependence of, e.g., the deuteron binding energy
remains to be worked out in detail. In Fig. 33, we show
the inverse scattering lengths in the spin-triplet and spin-
singlet channels from Epelbaum et al. �2003� together
with some recent lattice results �Beane et al., 2006�.
However, the errors and pion masses are still too large
to draw any conclusions about the physical point.

Figure 33 also shows that a scenario where both in-
verse scattering lengths vanish simultaneously at a criti-
cal pion mass of about 200 MeV is possible. For pion
masses below the critical value, the spin-triplet scatter-
ing length would be positive and the deuteron would be
bound. As the inverse spin-triplet scattering length de-
creases, the deuteron would becomes more and more
shallow and finally would become unbound at the criti-
cal mass. Above the critical pion mass the deuteron
would exist as a shallow virtual state. In the spin-singlet
channel, the situation is reversed: the “spin-singlet

deuteron” would be a virtual state below the critical
pion mass and would become bound above. It is unlikely
that this scenario of both inverse scattering lengths van-
ishing simultaneously is realized in QCD at the physical
values of the quark masses. However, based on this be-
havior it was conjectured that one should be able to
reach the critical point by varying the up- and down-
quark masses mu and md independently because the
spin-triplet and spin-singlet channels have different iso-
spin �Braaten and Hammer, 2003�. In this case, the triton
would display the Efimov effect which corresponds to
the occurrence of an infrared limit cycle in QCD. It is
evident that a complete investigation of this issue re-
quires the inclusion of isospin breaking corrections and
therefore higher orders in the chiral EFT. However, a
number of studies have investigated the universal prop-
erties of the limit cycle by considering specific values of

D̄S and D̄T.
In an exploratory study of the three-nucleon system

�Braaten and Hammer, 2003�, the mean values of the
error bands from Epelbaum et al. �2003� were used as
input for the three-body calculations in the pionless
EFT. Even though both scattering lengths were large for
the mean values, they did not become infinite at the
same value of the pion mass and there was no exact limit
cycle for this choice of parameters. However, different

sets of values for D̄S and D̄T that lie within the bound
given by Eq. �2.71� and cause the spin-singlet and spin-
triplet scattering lengths to become infinite at the same
value of the pion mass can be found.

Epelbaum et al. �2006� studied the properties of the
triton around the critical pion mass for one particular
solution with a critical pion mass M�

crit=197.8577 MeV.
From the solution of the Faddeev equations, the binding
energies of the triton and the first two excited states in
the vicinity of the limit cycle were calculated for this
scenario in chiral EFT. The binding energies are given in
Fig. 34 by the circles �ground state�, squares �first excited
state�, and diamonds �second excited state�. The dashed
lines indicate the neutron-deuteron �M�"M�

crit� and
neutron-spin-singlet-deuteron �M��M�

crit� thresholds
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FIG. 32. �Color online� Deuteron binding energy as a function
of the pion mass M�. The shaded areas correspond to the al-
lowed values. The light shaded band gives the uncertainty due
to the unknown value of the LECs D̄S,T using the central value
d̄16−1.23 GeV−2. The dark shaded band gives the uncertainty
if, in addition to the variation in D̄S,T, the LEC d̄16 is varied in
the range from d̄16−0.91 GeV−2 to d̄16−1.76 GeV−2 given in
Fettes, 2000. The heavy dot shows the binding energy for the
physical value of the pion mass.
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FIG. 33. �Color online� Inverse of the S-wave scattering
lengths in the spin-triplet and spin-singlet nucleon-nucleon
channels as a function of the pion mass M�. Filled triangles
and rectangles show the lattice calculations from Fukugita et
al., 1994, 1995 and Beane et al., 2006, respectively. For remain-
ing notation see Fig. 32.
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FIG. 34. �Color online� Binding energies B3 of the triton
ground and first two excited states as a function of M�. The
circles, squares, and diamonds give the chiral EFT result, while
the solid lines are calculations in the pionless theory. The ver-
tical dotted line indicates the critical pion mass M�

crit and the
dashed lines are the bound state thresholds.
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where the three-body states become unstable. Directly
at the critical mass, these thresholds coincide with the
three-body threshold and the triton has infinitely many
excited states. The solid lines are leading-order calcula-
tions in the pionless theory using the pion mass depen-
dence of the nucleon-nucleon scattering lengths and one
triton state from chiral EFT as input. The chiral EFT
results for the other triton states in the critical region are
reproduced very well. The binding energy of the triton
ground state varies only weakly over the whole range of
pion masses and is about one-half of the physical value
at the critical point. The excited states are influenced by
the thresholds and vary much more strongly.

These studies were extended to N2LO in the pionless
EFT and neutron-deuteron scattering observables in
Hammer et al. �2007�. It was demonstrated that the
higher-order corrections in the vicinity of the critical
pion mass are small. This is illustrated in Fig. 35, where
we show the doublet scattering length and

1/2 in the critical
region. The solid line gives the LO result, while the
crosses and circles show the NLO and N2LO results. The
dotted lines indicate the pion masses at which and

1/2 di-
verges because the second and third excited states of the
triton appear at the neutron-deuteron threshold. These
singularities in and

1/2�M�� are a clear signature that the
limit cycle is approached in the critical region. Consid-
ering the specific case of the doublet scattering length at
M�=190 MeV, we have

and
1/2�M� = 190 MeV� = 93.18 + 0.80 + 0.14 fm. �2.72�

At this pion mass we are fairly far away from any singu-
lar points in the function and

1/2�M��. Consequently, the pi-
onless results follow a natural convergence pattern with
the expansion parameter �r0, which is �0.08 at this
value of M�. For three-body scattering observables in
the critical region no calculation in chiral EFT is avail-
able. The above example shows that both approaches
complement each other. If the pion mass dependence of
one three-body observable is known, the pionless theory
can be used to predict all other observables with high
precision and less computational effort. Figure 35 dem-

onstrates clearly that the pionless theory converges rap-
idly in the critical region.

A final answer on the question of whether an infrared
limit cycle can be realized in QCD can only be given by
solving QCD directly. In particular, it would be interest-
ing to know whether this can be achieved by appropri-
ately tuning the quark masses in a lattice QCD simula-
tion �Wilson, 2005�. As a first step, the finite volume
dependence of Efimov energies in the pionless theory
was studied in Kreuzer and Hammer �2009�. Finally, we
note that the dependence of nuclear binding on had-
ronic mass variation has also been studied based on the
Argonne potential �Flambaum and Wiringa, 2007�.

III. TOWARD A MANY-BODY EFT FOR NUCLEI

The EFT approach to the nuclear many-body problem
is much less established than the one for the forces and
few-nucleon systems. This is, on the one hand, related to
the appearance of new scales such as the Fermi momen-
tum or induced by collective excitations and, on the
other hand, to the computational problems related to
solve the many-body problem. Thus, a variety of path-
ways is being explored and here we can only give an
overview about the existing attempts and their status.
For a pedagogical review on the application of EFTs to
finite density systems, see Furnstahl et al. �2008�.

A. In-medium chiral perturbation theory

Early attempts to formulate in-medium chiral pertur-
bation theory were mostly triggered by the pioneering
paper of Kaplan and Nelson on kaon condensation �Nel-
son and Kaplan, 1987�. Most of these calculations were
based on chiral Lagrangians at most bilinear in the
nucleon fields and performed in the mean-field approxi-

mation, N̄DN→�p Tr D11+�n Tr D22 with �p ��n� the
proton �neutron� density, D represents a generic differ-
ential operator including the coupling to pions and ex-
ternal sources, the trace runs over spinor indices, and
the subscripts run in flavor space. Proceeding in this way,
one keeps track about the vacuum CHPT Lagrangians,
but the chiral counting in the medium is lost, as, e.g.,
nucleon correlations are not considered. The most el-
egant formulation of this approach based on the path-
integral formulation is due to Wirzba and collaborators
�see, e.g., Thorsson and Wirzba �1995� and Kirchbach
and Wirzba �1996, 1997��.

To go beyond the mean-field approximation, the in-
medium generating functional for pions coupled to
nucleons and external sources was developed in
Meißner et al. �2002� and Oller �2002�. Leaving out
multinucleon interactions a systematic in-medium
CHPT can be developed by expanding around the
nuclear matter ground state at asymptotic times and in-
tegrating out the nucleon fields in the path integral rep-
resentation, giving rise to the in-medium generating
functional �for the detailed derivation, we refer to Oller
�2002��,
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FIG. 35. �Color online� Doublet neutron-deuteron scattering
length and

1/2 in the critical region computed in the pionless EFT.
The solid line gives the LO result, while the crosses and circles
show the NLO and N2LO results. The dotted lines indicate the
pion masses at which and

1/2 diverges.
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eiZ̃�v,a,s,p� =� �dU�exp�i� dxL�� − i� dp�
�2��32E�p� � dxdyeip�x−y� Tr„A��I4 − D0

−1A�−1��x,y��p” + m�n�p�…

+
1
2 � dp�

�2��32E�p� � dq�
�2��32E�q� � dxdx�dydy�eip�x−y�

	e−iq�x�−y�� Tr„A��I4 − D0
−1A�−1��x,x���q” + m�n�q�A��I4 − D0

−1A�−1��y�,y��p” + m�n�p�… + ¯ �
�� �dU�exp�i� dxL̃���U ;v,a,s,p�� , �3.1�

where the operator A is defined as the difference be-
tween the full and the free Dirac operators,

L�̄� = �̄�x�D�x���x� = �̄�x��D0�x� − A�x����x� , �3.2�

with D0= i����−m, while the diagonal flavor matrix
n�p�=diag�
�kF

�p�− �p� � �,
�kF
�n�− �p� � �� parametrizes the up-

per cutoff of the three-momentum integrations in terms
of the proton and neutron Fermi momenta, respectively.
Furthermore I4 is the unit operator in four dimensions,
E�p� is the on-shell energy of a nucleon with mass m,
and v ,a ,s ,p are vector, axial-vector, scalar, and pseudo-
scalar sources. The resulting in-medium effective La-

grangian L̃ is given in terms of pions and external
sources only and thus the problem is reduced to that of

vacuum CHPT, with the important difference that the L̃
is noncovariant as well as nonlocal �for a general analysis
of the structure of nonrelativistic but local EFTs, see
Leutwyler �1994��. In particular, we note the appearance
of the nonlocal vacuum vertex $=−iA�I4−D0

−1A�−1 that
generates a geometric series in terms of the local inter-
action operator A and the free Dirac propagator, with A
itself being subject to the standard chiral expansion, A
=A�1�+A�2�+¯ �see Bernard et al. �1992��. The general-
ized in-medium vertices �cf Fig. 36� consist of several
nonlocal vacuum vertices $ connected through the ex-
change of on-shell Fermi-sea states. These are the build-
ing blocks for the systematic expansion in small mo-
menta, counting the Fermi momentum kF�2M� at
nuclear saturation as O�p�. The in-medium chiral count-
ing including the contributions from nucleon propaga-
tors can now be given. The choice of the counting
scheme depends on the energy flowing through the
nucleon lines, inducing a separate consideration of the
so-called standard and nonstandard cases. We consider
first the former. Here the energy flow is of order M�

�O�p� and thus the nucleon propagator counts as D0
−1

�O�p−1�. The chiral dimension for a many-particle dia-
gram with L� pion loops and VT vacuum and/or in-
medium vertices of dimension i is

� = 2L� + 2 + 
j=1

VT

�j − 2� . �3.3�

Consequently, the lowest-order in-medium contributions
arise at O�p4� since the lowest order in-medium vertices
have dimension four due to the four-momentum Dirac
delta function attached to any $ vertex. The first correc-
tions at NLO arise at O�p5�, which should be contrasted
to the vacuum case where LO �NLO� is O�p2� �O�p4��. In
the absence of multinucleon interactions, the breakdown
scale is �=�6�F��700 MeV for S waves and �

=�6�F� /gA�560 MeV for P waves. However, there is
one subtlety with this power counting. Quite similar to
what happens in case of the TPE NN interaction, the
energy flowing into a nucleon line can vanish, so that the
nucleon propagator scales as O�p−2�. To deal with this
nonstandard case, one has to separately count the num-
ber of nucleon lines with energy E"kF

2 /2m and the nor-
mal lines with E�M�. The explicit expression for the
modified counting index � can be found in Meißner et al.
�2002�. In this case, the breakdown scale is 6�2F�

2 /2m
�270 MeV for S waves and further reduced by a factor
of 1/gA

2 for P-wave interactions. Note that the so-
defined in-medium CHPT not only encompasses but
also transcends the so-called low-energy theorems of
Drukarev and Levin �1990�, Furnstahl et al. �1992�, and
Birse �1994�.

We now discuss some results obtained in this scheme.
The density dependence of the light quark condensates
is given at NLO by

�&�ūu�&� = �ūu�vac�1 −
2�

F�
2 M�

2 �̂ +
4c5

F�
2 �̄� ,

Γ Γ Γ

FIG. 36. �Color online� Generalized in-medium vertices of
lowest order. The thick solid lines correspond to insertions of a
Fermi sea and each circle to the insertion of the operator $ as
defined in the text.
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�&�d̄d�&� = �d̄d�vac�1 −
2�

F�
2 M�

2 �̂ −
4c5

F�
2 �̄� , �3.4�

with �&� the nuclear matter background, �̂= ��p+�n� /2,
�̄= ��p−�n� /2 are the isospin symmetric and asymmetric
combinations of the proton and the neutron densities,
while � is the pion-nucleon sigma term, �=−4c1M�

2 at
O�p2�. The small isospin-breaking contribution is given
in terms of the LEC c5=−�0.09±0.01� GeV. Further-
more, the subscript vac refers to the vacuum value of the
corresponding quantity. Higher-order corrections in the
density will be discussed in the next section.

The propagation of pions in the medium can be ana-
lyzed by calculating the spectral relations between the
energy � and the three-momentum q� for on-shell neu-
tral and charged pions. For symmetric nuclear matter
�with density �̂� and in the chiral limit one obtains the
dispersion law

�2 = q�2�1 −
4�̂

F�
2 c2� . �3.5�

Since the in-medium pion velocity ṽ=d� /d �q� � =1
−2�̂c2 /F�

2 must be smaller than the velocity of light
�Leutwyler, 1994; Pisarski and Tytgat, 1996�, this imposes
the constraint c2�0, which is satisfied by the actual
value of this LEC. It was also established in Meißner et
al. �2002� that for standard values of the LEC c3, chiral
symmetry can account for the observed mass shift of the
negatively charged pion in deeply bound pionic states in
207Pb �Gilg et al., 2000; Itahashi et al., 2000�. At NLO,
one obtains �M�=18±5 MeV which is compatible with
the experimental result, �M�=23–27 MeV. Of interest
is also splitting of the temporal like and spacelike com-
ponents of the pion decay constant, which read at NLO
in symmetric nuclear matter,

Ft = F��1 −
�̂

�0
�0.26 ± 0.04�� ,

Fs = F��1 −
�̂

�0
�1.23 ± 0.07�� , �3.6�

with �0 the nuclear matter density. The ratio Fs /Ft= ṽ2

�1 is consistent with the discussion about the in-
medium pion velocity. One can also show that the cor-
rections at O�p5� do not spoil the validity of the Gell-
Mann–Oakes–Renner relation �see also Thorsson and
Wirzba �1995��, in particular both Ft and the quark con-
densate decrease with increasing density. For a more de-
tailed discussion of two-, three-, and four point functions
in the medium, see Meißner et al. �2002�.

The missing ingredients in these calculations are the
effects of multinucleon interactions. It has recently been
shown how these can be included in the path integral
formulation �Oller 2008; Oller et al. 2009�. For that,
one introduces heavy fields H that couple to nucleon
bilinears in appropriate spin-isospin combinations,

L̃�U ;v ,a ,s ,p�→L̃�U ;H ;v ,a ,s ,p�, and letting the mass

of the H fields tends to infinity �cf. Fig. 3�. In that way,
one can formally integrate out the multifermion interac-
tions from the generating functional.

Further progress has been made in Girlanda et al.
�2004�. They developed a generalization of in-medium
CHPT for finite systems. This provides a framework to
study pion-nuclear bound states, for which the finite vol-
ume and the surface of the nucleus are important ingre-
dients. The corresponding chiral counting is applied to
the underlying pion-nucleon interactions and also to the
relevant nuclear matrix elements. The central object of
this approach is the Green’s function in the presence of a
nucleus, GA�X→Y�, which describes the general process
A+X→A+Y, where X ,Y represent some number of ex-
ternal pions and photons and A is a nucleus made of A
nucleons. The presence of the nucleus is parametrized in
terms of proton and neutron distribution functions that
are taken from phenomenology. In the limit of uniform
density, this approach reduce to the in-medium CHPT
described above. As an example, the pion-nucleus opti-
cal potential is calculated at NLO,

U�E ;q��,q� � =� d3x�e−i�q�−q� �·x��Ũ�E ;q��,q� ,x�� + O�p6�� ,

Ũ�E ;q��,q� ,x�� = −� d3r�
e2E

4��x� − r��
2�p�r�� + ¯ , �3.7�

where E is the pion energy, q� ,q� are the outgoing and the
incoming three-momenta, in order, and �p is the proton
charge density. The ellipsis in Eq. �3.7� stands for the
contributions from the hard virtual photons and from
the strong interaction �for details see Girlanda et al.
�2004��. As stressed by Girlanda et al. �2005� this ap-
proach allows one to identify unambiguously the nuclear
finite size effects and to disentangle the S-, P-, and
D-wave contributions to the optical potential without
invoking the local density approximation. For a more
detailed discussion concerning also the comparison with
more traditional approaches to pion-nucleus physics, see
Girlanda et al. �2004�.

B. Perturbative chiral nuclear dynamics

A somewhat different path, which has turned out to
be successful phenomenologically, has been taken by the
Munich group �Kaiser et al., 2002a, 2002b; Fritsch et al.
2005� �for a related work, see Lutz et al. �2000��. Its key
element is the separation of long- and short-distance dy-
namics. The ordering scheme counts pion masses and
momentum, the Fermi momentum, and the nucleon-
delta mass splitting as small quantities,8 motivated by
the fact that at nuclear matter density kF�2M�. There-
fore, pions must be included and propagation effects of
the delta will be resolved. The long-distance physics is
calculated perturbatively including one- and two-pion

8We unify here the two formulations with and without explicit
deltas presented by this group.
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exchange Hartree and Fock graphs �see Fig. 37 for some
typical diagrams contributing to the energy per particle
in nuclear matter�. The short-distance dynamics is also
treated perturbatively by either fine tuning of an UV
cutoff or adjusting the parameters that appear at a given
observable at a given order. This differs from the treat-
ment of the contact interactions in free NN scattering.
Within this scheme, one can reproduce the empirical
saturation point of nuclear matter by adjusting �fine tun-
ing� one parameter related to the short-distance dynam-
ics. This corresponds to a novel mechanism for nuclear
matter saturation due to the repulsive contribution to
the energy per particle generated by Pauli blocking in
second-order �iterated� one-pion exchange. This can be
better understood by considering the realistic parametri-
zation of the energy per particle in isospin symmetric
nuclear matter,

Ē�kF� = 3kF
2/10m − �kF

3/m2 + !kF
4/m3, �3.8�

where � ,! are dimensionless parameters. If � ,!�0, a
saturation minimum will be obtained. In the deltaless
theory, one obtains exactly such a form in the chiral limit
and the parameters can be given in closed form. In fact,
the expression for ! is parameter-free. Fine tuning the
short-distance contribution to �, one obtains the proper
binding energy of nuclear matter. Qualitatively, this pic-
ture is not changed when the effects related to the finite
pion mass and the delta excitation are included. Further-
more, one obtains as a by-product a realistic value of the
nuclear matter compressibility.

This approach has been applied and extended in vari-
ous ways. Spin-orbit interactions in nuclei and hypernu-
clei were considered in Kaiser �2002b, 2003� and Kaiser
and Weise �2005, 2008�. This led to a nice explanation of
the very strong spin-orbit interactions in ordinary nuclei
contrasted to the remarkably weak spin-orbit splitting in
� hypernuclei. Corrections to the in-medium chiral con-
densate beyond the linear density approximation were
calculated in Kaiser et al. �2008� and Kaiser and Weise

�2009�. Further, a systematic analysis of the nuclear en-
ergy density functional based on a unification of chiral
pion nuclear dynamics with strong scalar and vector
mean fields was performed and applied to the properties
of nuclear matter and finite nuclei �see Finelli et al.
�2003, 2004, 2007� and Kaiser et al. �2003��. For more
details on these interesting calculations, the interested
reader is referred to the original articles.

C. EFT for halo nuclei

A special class of nuclear systems exhibiting universal
behavior are halo nuclei. A halo nucleus consists of a
tightly bound core surrounded by one or more loosely
bound valence nucleons. The valence nucleons are char-
acterized by a very low separation energy compared to
those in the core. As a consequence, the radius of the
halo nucleus is large compared to the radius of the core.
A trivial example is the deuteron, which can be consid-
ered a two-body halo nucleus. The root-mean-square ra-
dius of the deuteron �r2�1/2�2 fm is about three times
larger than the size of the constituent nucleons. Halo
nuclei with two valence nucleons are particularly inter-
esting examples of three-body systems. If none of the
two-body subsystems are bound, they are called Bor-
romean halo nuclei. This name is derived from the he-
raldic symbol of the Borromeo family of Italy, which
consists of three rings interlocked in such way that if any
one of the rings is removed the other two separate. The
most carefully studied Borromean halo nuclei are 6He
and 11Li, which have two weakly bound valence neu-
trons �Zhukov et al., 1993; Jensen et al., 2004�. In the
case of 6He, the core is a 4He nucleus, which is also
known as the � particle. The two-neutron separation en-
ergy for 6He is about 1 MeV, small compared to the
binding energy of the � particle which is about 28 MeV.
The neutron-� �n�� system has no bound states and the
6He nucleus is therefore Borromean. There is, however,
a strong P-wave resonance in the J=3/2 channel of n�
scattering which is sometimes referred to as 5He. This
resonance is responsible for the binding of 6He. Thus
6He can be interpreted as a bound state of an � particle
and two neutrons, both of which are in P3/2 configura-
tions.

Because of the separation of scales in halo nuclei, they
can be described by extensions of the pionless EFT. One
can assume the core to be structureless and treat the
nucleus as a few-body system of the core and the va-
lence nucleons. Corrections from the structure of the
core appear in higher orders and can be included in per-
turbation theory. Cluster models of halo nuclei then ap-
pear as leading-order approximations in the EFT. A new
facet is the appearance of resonances as in the neutron-
alpha system which leads to a more complicated singu-
larity structure and renormalization compared to the
few-nucleon system discussed above �Bertulani et al.,
2002�.

The first application of effective field theory methods
to halo nuclei was carried out in Bertulani et al. �2002�

�

(b)

(a)

FIG. 37. Diagrams contributing to E /N in nuclear matter. Up-
per panel: One- and two-pion exchange diagrams contributing
to the energy per particle at two and three loops. Solid and
dashed lines denote nucleons and pions, respectively. Lower
panel: Three-body diagrams related to 2� exchange with single
delta excitations �double lines�. These represent interactions
between three nucleons in the Fermi sea.
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and Bedaque, Hammer, and van Kolck �2003�, where the
n� system �5He� was considered. It was found that for
resonant P-wave interactions both the scattering length
and effective range have to be resummed at leading or-
der. At threshold, however, only one combination of
coupling constants is fine tuned and the EFT becomes
perturbative. More recent studies have focused on the
consistent inclusion of the Coulomb interaction in two-
body halo nuclei such as the p� and �� systems �Higa,
2008; Higa, Hammer, and van Kolck, 2008�. In particu-
lar, the �� system shows a surprising amount of fine
tuning between the strong and electromagnetic interac-
tion. It can be understood in an expansion around the
limit where, when electromagnetic interactions are
turned off, the 8Be ground state is exactly at threshold
and exhibits conformal invariance. In this scenario, the
Hoyle state in 12C would appear as a remnant of an
excited Efimov state �Efimov, 1981�. In order to better
understand the modification of the Efimov spectrum and
limit cycles by long-range interactions such as the Cou-
lomb interaction, a one-dimensional inverse square po-
tential supplemented with a Coulomb interaction was
investigated in Hammer and Higa �2008�. The results
indicate that the counterterm required to renormalize
the inverse square potential alone is sufficient to renor-
malize the full problem. However, the breaking of the
discrete scale invariance through the Coulomb interac-
tion leads to a modified bound state spectrum. The shal-
low bound states are strongly influenced by the Cou-
lomb interaction while the deep bound states are
dominated by the inverse square potential.

Three-body halo nuclei composed of a core and two
valence neutrons are of particular interest due to the
possibility of these systems to display the Efimov effect
�Efimov, 1970�. Since the scattering length cannot easily
be varied in halo nuclei, one has to look for excited
states. Such studies have previously been carried out in
cluster models and the renormalized zero-range model
�Fedorov et al., 1994; Amorim et al., 1997; Mazumdar et
al., 2000�. A comprehensive study of S-wave halo nuclei
in EFT including structure calculations with error esti-
mates was recently carried out by Canham and Hammer
�2008�. Currently, the only possible candidate for an ex-
cited Efimov state is 20C, which consists of a core
nucleus with spin and parity quantum numbers JP=0+

and two valence neutrons. The nucleus 19C is expected
to have a 1

2
+ state near threshold, implying a shallow

neutron-core bound state and therefore a large neutron-
core scattering length. The value of the 19C energy, how-
ever, is not known well enough to make a definite state-
ment about the appearance of an excited state in 20C.
The matter form factors of halo nuclei can also be cal-
culated in the halo EFT. As an example, we show the
various one- and two-body matter density form factors
with leading-order error bands for the ground state of
20C at low momentum transfers in Fig. 38: Fnn�k2�,
Fnc�k2�, Fn�k2�, and Fc�k2�. A definition of the form fac-
tors can be found in Canham and Hammer �2008�. The
theory breaks down for momentum transfers of the or-

der of the pion-mass squared �k2�0.5 fm−2� where the
one-pion exchange interaction cannot be approximated
by short-range contact interactions anymore. From the
slope of the matter form factors one can extract the cor-
responding radii,

F�k2� = 1 − 1
6k2�r2� + ¯ . �3.9�

Information on these radii has been extracted from ex-
periment for some halo nuclei. For the neutron-neutron
radius of the Borromean halo nucleus 14Be, for example,
the leading-order halo EFT result is ��rnn

2 �=4.1±0.5 fm.
The value ��rnn

2 �exp=5.4±1.0 fm was obtained from
three-body correlations in the dissociation of 14Be using
a technique based on intensity interferometry and Dalitz
plots �Marques et al., 2001�. Within the errors there is
good agreement between both values. However, one
should also keep in mind that there is some model de-
pendence in the experimental result. Results for further
halo nuclei are given by Canham and Hammer �2008�. A
few recent studies have also investigated scattering ob-
servables. In particular, in Mazumdar et al. �2006� and
Yamashita et al. �2008� extended the trajectory of the
possible 20C excited state into the scattering region in
order to find a resonance in n-19C scattering.

The simplest strange halo nucleus is the hypertriton, a
three-body bound state of a proton, a neutron, and the
�. The total binding energy is only about 2.4 MeV. The
hypertriton is not Borromean because the proton-
neutron subsystem has a bound state, the deuteron. The
separation energy for the �, E�=0.13±0.05 MeV, is
small compared to the binding energy BD=2.224 MeV
of the deuteron. The hypertriton can therefore also be
considered a two-body halo nucleus. It has been studied
in both two- and three-body approaches �Congleton,
1992; Cobis et al., 1997; Fedorov and Jensen, 2002�. A
study of the hypertriton in the halo EFT was carried out
by Hammer �2002�. An important feature of the halo
EFT is the possibility to quantify theoretical errors
through error bands. Calculations can be improved sys-
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FIG. 38. �Color online� The various one- and two-body matter
density form factors with leading-order error bands for the
ground state of 20C in the low-energy region: Fnn�k2�, solid
line; Fnc�k2�, dotted line; Fn�k2�, lighter dashed line; and
Fc�k2�, lighter dot-dashed line.
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tematically through the inclusion of higher-order terms.
Another interesting application of this effective

theory will be the study of Coulomb excitation data
from existing and future facilities with exotic beams
�such as FAIR and FRIB�. In these experiments a
nuclear beam scatters off the Coulomb field of a heavy
nucleus. Such processes can populate excited states of
the projectile which subsequently decay, leading to its
“Coulomb dissociation” �Bertulani and Baur, 1988�. Ef-
fective theories offer a systematic framework for a full
quantum-mechanical treatment of these reactions. In
summary, with new improved experimental data for
these weakly bound nuclei, much more knowledge can
be obtained about the structure of these interesting sys-
tems as well as discovering whether they show universal
behavior and excited Efimov states.

D. Vlow k potentials: Construction and applications

Nuclear interactions, like all interactions, depend on
the resolution scale. For a momentum cutoff �, only
details of the interactions at distances larger than 1/�
can be resolved. The interaction potential V consists of
two-, three-, and higher-body terms and can be written
as

V��� = V2��� + V3��� + V4��� + ¯ . �3.10�

While V depends on �, observables are independent of
�. This property can be used to construct so-called low-
momentum potentials with a cutoff ���� that describe
low-energy physics in terms of low-energy degrees of
freedom only. Various methods for constructing such
low-momentum potentials are known �see, e.g., Bogner
et al. �2003� for a review�. The first construction of a
low-momentum potential was carried out by Epelbaum
et al. �1998a, 1999� based on the Okubo method �Fukuda
et al., 1954; Okubo, 1954�. Bogner and collaborators

have pushed this idea further and constructed low-
momentum potentials for various realistic nucleon-
nucleon interactions using renormalization group �RG�
techniques. They showed that these potentials all con-
verge to the same universal Vlow k if the cutoff is lowered
to low enough values ��'2 fm−1�. This is illustrated in
Fig. 39 for the 1S0 partial wave. The left panel shows the
chiral nucleon-nucleon potentials at N3LO by EGM
�Epelbaum, Glöckle, and Meißner, 2005� and EM �En-
tem and Machleidt, 2003a� for various cutoffs. The right
panel shows the same potentials evolved down to a cut-
off �=2.2 fm−1. At this cutoff all potentials have col-
lapsed to the same universal curve.

As the resolution scale is lowered the physics previ-
ously present in high-momentum modes now appears in
many-body forces that are generated through the RG
transformation. The low-momentum potential con-
structed this way is phase equivalent by construction. In
most early calculations, the many-body forces generated
by the RG have been neglected for simplicity. In this
case phase equivalence only holds in the two-body sub-
space. Recent advances based on similarity RG tech-
niques, however, suggest that these limitations can be
overcome soon �Bogner et al., 2007; Jurgenson and
Furnstahl, 2009�. Low-momentum potentials have also
been constructed for hyperon-nucleon interactions
�Schaefer et al., 2006; Dapo et al., 2008�. Here the vari-
ous realistic potentials are less constrained by data and
the Vlow k interactions show only convergence in some
channels.

Nogga et al. �2004� studied the three- and four-nucleon
systems using the Vlow k potential supplemented by the
leading-order chiral 3N forces. This procedure was mo-
tivated by the expectation that the many-body forces
have to reduce to the leading-order chiral forces at low
enough momentum. The free parameters in the chiral
3N force were then fitted to experiment for each value
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of the cutoff. If the chiral 3N force is left out, the cutoff
variation generates the Tjon line. Since the RG evolu-
tion leaves the two-body observables unchanged by con-
struction, the variation can only go along the Tjon line.
This is in agreement with the findings in the pionless
EFT �Platter et al., 2005�. For a study of potential prob-
lems arising when using NN low-momentum potentials
without the corresponding 3N potentials in few-nucleon
systems, see Fujii et al. �2004�.

Because of the low cutoff, the low-momentum poten-
tial has advantages in nuclear structure calculations
where smaller model spaces are desirable because of the
computational effort involved. For a summary of recent
applications, see Schwenk and Holt �2008�. As the RG
evolution shifts contributions between the potential and
the integrals over intermediate states in loop integrals
which are restricted by �, the RG transformation can
eliminate sources of nonperturbative behavior such as
strong short-range repulsion or tensor forces �Bogner et
al., 2005, 2006�. This suggests that perturbative nuclear
matter calculations are possible. At these low resolution
scales, nuclear matter saturation would be largely driven
by three-body forces. Moreover, perturbative nuclear
matter calculations would also provide a solid basis for
the construction of a universal density functional for
nuclei with controlled errors �Bertsch et al., 2007; Furn-
stahl, 2007�. A first step toward such a universal energy
density functional based on low-momentum interactions
was taken in Bogner et al. �2008� using the density ma-
trix expansion of Negele and Vautherin.

E. Lattice simulations of many-nucleon systems

Nuclear matter studies utilizing lattice simulations
were pioneered by Brockmann and Frank �1992�, who
calculated the quantum corrections to the Walecka
model �Serot and Walecka, 1986� and by Muller et al.
�2000�, who investigated nuclear matter properties utiliz-
ing a Hamiltonian that accommodates on-site and next-
to-neighbor parts of the central spin- and isospin-
exchange nucleon-nucleon interactions. The first
connection between chiral EFT and the properties of
nucleon and neutron matter using Monte Carlo methods
was done in the work of Borasoy, Lee, and Schäfer �Lee
et al., 2004�. They laid out the framework for nuclear
lattice simulations with chiral EFT and presented
leading-order results for hot neutron matter at tempera-
tures T=20–40 K and densities below twice the nuclear
matter density. Neutron matter in a periodic box based
on the lattice representation of the chiral NLO potential
�see Sec. II.G� was performed in Borasoy et al. �2008�,
probing the density range from 2% to 8% of normal
nuclear matter density. Dilute neutron matter is a par-
ticularly good testing ground for chiral EFT applied to
many-nucleon systems because of the Pauli suppression
of three-body forces. Furthermore, neutron matter at
kF�80 MeV, with kF= �3�2N�1/3 /L �for N neutrons in a
box of volume L3�, is close to the so-called unitary limit.
In this limit, the scattering length is infinite and the
range of the interaction is zero, so that the scattering

amplitude takes its largest possible value �as given by
unitarity�. In this limit, the only dimensionful parameter
describing the ground state of the many-fermion system
is the particle density. Thus, the ground state energy E0
of the system obeys the simple relation

E0 = (E0
free, �3.11�

where ( is a dimensionless measurable constant and E0
free

is the ground state energy of a free Fermi gas. Due to its
universal nature, the unitary limit can be studied in ul-
tracold atomic systems such as 6Li or 40K a utilizing
Feshbach-resonance techniques. Recently measured val-
ues for ( scatter considerably and have sizable error bars
�for a review, see Giorgini et al. �2008��. There also have
been numerous calculations of ( employing very differ-
ent many-body techniques �see Furnstahl et al. �2008� for
a recent review�.

Recent EFT simulations at LO and NLO with an im-
proved action for 8, 12, and 16 neutron boxes of length
L=10, 12, and 14 fm are shown in Fig. 40 �Epelbaum et
al., 2009�. The chiral EFT results are consistent with
most earlier calculations based on different methods. A
good fit to the lattice data is obtained by �the structure
of the correction terms is discussed in Borasoy et al.
�2008��

E0

E0
free � ( −

(1

kFa
+ 0.16kFr0 − �0.51 fm3�kF

3 , �3.12�

with (�0.31 and (1�0.81. This is consistent with the
Monte Carlo studies of many-fermion systems in Lee
�2008� but smaller than the value for ( obtained in fixed-
node Green’s function Monte Carlo calculations �see,
e.g., Carlson et al. �2003��. This suggests that the upper
bound on the ground state energy in that type of ap-
proach might be lowered further by a more optimal fer-
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mionic nodal surface. Clearly, such numerical simula-
tions of many-nucleon systems have become a valuable
tool to further constrain the nuclear equation of state at
moderate densities and lead to further insight into the
physics of strongly coupled many-body systems. In par-
ticular, they provide another link between nuclear and
atomic physics as discussed in Sec. II.A.

IV. SUMMARY AND PERSPECTIVES

In this review, we have described the theory that has
emerged by applying effective field theory methods to
the nuclear force problem. This method allows for a sys-
tematic derivation of nuclear forces with a direct con-
nection to QCD via its symmetries. The review focused
on the derivation of the forces and their application in
the few-nucleon problem where most work has been car-
ried out so far. However, there are many frontiers where
future work is required. These include a better under-
standing of nonperturbative renormalization and im-
proved renormalization schemes, the consistent inclu-
sion of electroweak currents, and the development of a
consistent EFT for the nuclear many-body problem. The
application of new techniques and advanced calcula-
tional methods for the many-body problem will be deci-
sive to achieve the latter. Promising approaches include
the renormalization group, nuclear lattice calculations,
coupled cluster approaches, the no-core shell model, and
density functional theory. For very low-energy pro-
cesses, these approaches can be complemented by the
pionless or halo EFT which is an ideal tool to unravel
universal properties and establish connections to other
fields of physics.
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