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Recent progress in the field of a versatile and common system in soft matter physics, namely,
star-shaped polyelectrolytes, is reviewed. These charged macromolecules combine in their properties
aspects of polymer physics, colloidal science, and the rich physics of charged matter, rendering them
into versatile building blocks for new materials as well as prototypes for studying the effects of
softness in the behavior of colloidal suspensions. The approaches to the problem are manifold.
Theoretical methods typically involve scaling theory, self-consistent field theory, and variational
free-energy calculations, while computer simulations play an important role in enhancing our
understanding of the physics involved. Experiments, based mostly on scattering, offer insights from a
different point of view. Finally, the flexibility in the synthesis of novel types of macromolecules has
added to the richness and the increased activity in the field in the last few years. This review puts
emphasis on theory and simulation but takes into account the key experimental findings in critically
discussing the merits and shortcomings of the former. The perspectives opened for the future, with
emphasis on the possibilities to steer the behavior of novel materials, are also discussed.
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I. INTRODUCTION

Linear polyelectrolytes are polymer chains that carry
ionizable groups along their backbones, which dissociate

in aqueous solvents, leaving behind a charged polymer
�a polyelectrolyte �PE�� and free counterions in solution.
PEs are important macromolecules due to their rich
physics and their relevance in applications. When f such
PEs are anchored at one common end on a fixed center,
star-branched PEs or, for brevity, polyelectrolyte stars
�PE stars� are obtained. Star-shaped polymer aggregates
in general constitute a particular class of macromol-
ecules with high relevance in soft matter physics, chem-
istry, and materials science. Their common property is
that they serve as hybrid systems between linear poly-
mers and spherical soft colloids. Indeed, the presence of
the penetrable polymer corona gives them properties
that are unique since they are considerably more stiff
than single chains but at the same time much softer than
hard colloidal particles, such as the common �poly�-
methyl-methacrylate hard spheres. The polymer corona
endows star-shaped macromolecules with a potential en-
ergy barrier that acts as a mechanism against coagula-
tion of the central colloids on which the chains are
grafted. They also bear close resemblance to self-
organized block-copolymer micelles and they can be
considered as strongly curved polymer brushes. The lo-
cal monomer profile within the corona of star-shaped
polymers and their overall size, as well as their effective
interactions and the ensuing correlations in concen-
trated solutions, depend on a number of parameters. For
neutral polymers, the number of attached chains �func-
tionality� f as well as the solvent quality are the key
factors; for the case of self-organized starlike micelles
the former can be externally tuned via solvent selectivity
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�Stellbrink et al., 2004�, whereas the latter is usually in-
fluenced by changing the temperature �Kapnistos et al.,
2000�. For PE stars, the degree of charging � �fraction of
monomers that carry charge�, the salt concentration cs,
and the valency of counterions and coions, as well as the
temperature and pH of the solution, are additional and
relevant physical parameters that have an impact on all
properties mentioned above. It follows that PE stars are
therefore a physical system with rich physics and with
correspondingly high relevance for the construction of
novel materials, whose properties can be externally
tuned. For the latter, application of external, electric
fields are one more possibility since the charged macro-
molecules respond to them by conformational changes
and transport.

Neutral star polymers, at least in athermal solvents,
are nowadays well understood as a result of intensive
research in the last three decades �see Grest et al. �1996�
and Likos �2006� for reviews on the experimental and
theoretical sides, respectively�. Relatively less is known
about PE stars, although by now a significant number of
complementary approaches from experiment, theory,
and simulation have accumulated, so that a coherent pic-
ture has emerged. From the materials point of view, the
most common polyelectrolytes employed in chemically
synthesized PE stars are sodium-sulphonated polys-
terene �Heinrich et al., 2001� and polyacrylic acid �Fu-
rukawa and Ishizu, 2005; Plamper et al., 2005�. Often, PE
stars are obtained by self-association of micelle-forming
block copolymers �Muller et al., 2000; Korobko et al.,
2004, 2005�. Their overall charge and the ensuing con-
formations can be influenced by changing the pH of the
solution �Gorodyska et al., 2003; Kiryi et al., 2003�.

Closely related to PE stars are spherical polyelectro-
lyte brushes �SPBs�, for which the size of the central
colloid on which the PEs are grafted is at least compa-
rable if not larger than the brush height. Here recent
advances in synthesis have led to the construction of
SPBs by employing colloids on which stiff double-
stranded DNA molecules �Kegler et al., 2007, 2008� or
semiflexible filamentous viruses �Huang et al., 2008� are
grafted. As the relative colloid-to-brush extension and
the grafting density of the chains are now two more ad-
ditional parameters influencing the brush properties, the
problem becomes even richer than that of PE stars. In
this review, we focus on PE stars, mentioning spherical
polyelectrolyte brushes only tangentially and for those
aspects of their experimentally determined properties
that are relevant to PE stars. Recent reviews on brushes
in general and on SPBs in specific can be found in Rühe
et al. �2004� and Ballauff �2007�, respectively.

This work is focused on recent progress from theory,
simulations, and experiments pertaining to polyelectro-
lyte stars, for which the height of the polymer corona
vastly exceeds the size of the central particle on which
the polyelectrolytes are grafted, so that the latter can be
effectively ignored. The emphasis of the review lies on
the efforts to achieve a bridging of the length scales of
the system. Accordingly, we commence with a micro-
scopic description, in which the monomers, neutral and

charged, as well as the counterions, are resolved as indi-
vidual dynamical entities of the problem, and we de-
scribe the various approaches employed toward replac-
ing those with their average values �density profiles�
around the PE-star centers. Apart from the monomer
profiles, the degree of adsorption and condensation of
counterions are here the physically most relevant quan-
tities and complementary approaches to this first step of
coarse graining of the length scales are presented in Sec.
II. The information gained is then employed to replace
the whole PE star, with its surrounding halo of mono-
mers and cloud of ions, with a single effective particle,
i.e., its center, which interacts with other centers via a
monomer- and a counterion-mediated effective interac-
tion. Once more, different approaches to this end have
been put forward. These distinct methods converge,
however, toward a common picture, namely, that the
counterion entropy plays the dominant role in determin-
ing the sought-for effective interaction. This second step
in the coarse-graining procedure, which brings the de-
scription to a mesoscopic length scale, is presented in
Sec. III. The last step proceeds naturally from the meso-
scopic scale toward the macroscopic one, aiming at pre-
dictions pertaining to the phase behavior of the system
as a whole and resting on information regarding the cor-
relations between the effective particles in concentrated
solutions. This aspect is presented in Sec. IV. Finally, in
Sec. V we summarize and discuss the perspectives for
future work in this field.

II. CONFORMATIONS OF MOLECULES IN DILUTE
SOLUTIONS

A. Scaling theory for neutral stars

Daoud and Cotton investigated the different scaling
regimes of neutral star polymers in good solvents
�Daoud and Cotton, 1982�. They adapted the so-called
blob picture, originally introduced by de Gennes for lin-
ear polymer solutions �de Gennes, 1979� and applied this
concept on star-shaped polymer systems. Many scaling
approaches for polyelectrolyte stars are based on those
ideas, as shown below. We first review the general con-
cept of the blob picture of neutral star polymers.

In contrast to a solution of a homogeneous linear
polymer solution, the polymer chains in a star-shaped
architecture exhibit a strongly inhomogeneous density
profile �see Fig. 1�. This inhomogeneity is also reflected
in different blob sizes expressed by the correlation
length ��r�, which grows with increasing distance from
the core region r. Assuming that the blobs are closely
packed, one obtains for a star of f arms on purely geo-
metrical grounds,

��r� = rf−1/2. �1�

Daoud and Cotton distinguished now three different ar-
eas for the degree of swelling: the swollen region for
monomer-center distances r�r1, the unswollen region
r2�r�r1, and the core region for r�r2 �see Fig. 1�. For
each of those regions there are different scaling laws for
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the correlation length ��r�, the number of monomers per
blob n�r�, and the local monomer density within a blob
��r�=n�r� /�3�r�. In the following, we focus only on the
density. In the swollen region �r�r1� the blob size ��r�
exceeds the distance over which the behavior of the
chain is ideal. On such longer scales the chain is self-
avoiding, which is expressed by the excluded volume pa-
rameter v. In this case, the size of the polymer segment
scales with ��v1/5n3/5 �Flory, 1953; de Gennes, 1979�.
Using this relation and the geometrical condition �Eq.
�1��, one readily obtains the monomer profile in the
swollen region,

��r� � r−4/3f2/3v−1/3. �2�

In the unswollen regime, r2�r�r1, the blob size is
smaller, reaching the ideal chain limit. Here ��r�=�0
=an1/2, where a is the monomer size, and the monomer
density scales as

��r� � r−1f1/2. �3�

Finally, in the core regime, r�r2, the blob size coincides
with the monomer size and the local concentration
��r�a3 reaches unity.

The center-to-end distance results from the integral of
the monomer concentration over the whole star of func-
tionality f and degree of polymerization of each chain N,

4��
0

Rc

��r�r2dr = Nf . �4�

By accounting for the three different scaling regimes of
��r�, Eq. �4� yields a scaling behavior for the star radius,
namely,

Rc � �Nf +
f3/2a6

10v2 +
f3/2

6 �3/5

v1/5	a

f

2/5

. �5�

For long chains, i.e., N� f1/2v−2, the swollen chain con-
tribution dominates, yielding

Rc�N,f� � N3/5f1/5v̄1/5a , �6�

with v̄=va−3. In this case, the unswollen and core parts
can be ignored. As can be seen, the spatial extension of
the star is larger than that of an isolated chain with same
degree of polymerization N due to the stretching of the
chains caused by the star architecture.

B. Scaling theory for charged stars

For chargeable chains, the ion dissociation of the
polymers increases the complexity of the system in many
ways. On the one hand, the electrostatic interactions
have a strong influence on the conformational behavior
and, on the other hand, the role of the dissociated coun-
terions needs to be addressed as well. These two physi-
cal aspects entail more parameters and length scales.
They are, in particular, the Bjerrum length 	B=e2 /
kT
=0.71 nm for water at room temperature and the elec-
trostatic screening length �−1= �8�	Bcs�−1/2, with e the
elementary charge, 
 the dielectric constant, kT the ther-
mal energy, and cs the total ion �electrolyte� concentra-
tion in the PE solution. Because of these two additional
parameters, various cases need to be distinguished. We
explore one limit at which electrostatic effects dominate
and one where they can be neglected. Those two limits
are important and were analyzed by Pincus �1991� and in
more detail by Borisov et al. �Borisov et al., 1991, 1997;
Zhulina et al., 1991; Borisov, 1996; Klein Wolterink et al.,
1999�. Recently, a comprehensive scaling analysis was
used to calculate the conformational phase diagram of
PE stars �Shusharina and Rubinstein, 2008�.

In the following, we review the scaling approach of
Borisov �1996�, which is an extension of scaling analysis
by Alexander �1977� and de Gennes �1987�, originally
put forward for planar brushes. For weakly charged
polyelectrolyte stars in dilute solution, it is assumed that
the counterions are released and homogeneously distrib-
uted in solution. In such cases, counterion entropy can
be ignored and the electrostatic contributions are domi-
nant. In a mean-field approach, the free energy of the
star consists only of a Coulomb contribution UCoul and

of elastic chain contributions F̃el. The Coulomb repul-
sion between the chains within the star is given by

UCoul

kT
�

	B��fN�2

R
, �7�

where � is the fraction of charged monomers per chain
and R is the equilibrium size of the star. This repulsion is
compensated by the elasticity of f self-avoiding stretched
chains, given by �Pincus, 1977; de Gennes, 1979�

F̃el

kT
� f	 R

Rc�N,1�

5/2

, �8�

where Rc�N ,1� is taken from Eq. �6�. Equation �8� is
based on a scaling relation for the relative size ratio
R /Rc�N ,1� as a response to a tension force that is caused
here by electrostatics �Pincus, 1977�.

Minimization of the sum of both energy contributions
yields

R � Na�4/7v̄1/7f2/7u2/7, �9�

with u�	B /a. Compared to the scaling behavior of a
neutral star �Eq. �6��, the radius scales stronger with the
degree of polymerization N and the functionality f; this
points to a stronger stretching of the chains. The scaling

(b)(a)
�0

r0 R

�(r)

core region

r2

r1

FIG. 1. Blob picture of a linear polymer chain �a� and of poly-
mer chains in starlike architecture �b�. The blob sizes are char-
acterized by the correlation length of the monomers �0 in the
undisturbed polymer case and ��r� for the polymer segments in
the starlike architecture.
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result in Eq. �9� is only valid if the star is weakly
charged, i.e., the average distance between neighboring
chains is smaller than the Bjerrum length 	B. For
stronger-charged PE stars, counterions are attracted and
absorbed within the stars’ coronae. Those counterions
screen the Coulomb potential between the chains and
the Coulomb energy can be ignored. Now, however, the
entropy or the osmotic pressure of trapped counterions
becomes important. For highly charged PE stars, the

elastic energy of the chains, F̃el from Eq. �8�, is then
compensated by free-energy contribution of the counter-
ion entropy,

Sosm = − k�fN�ln	3�fN

4�R3
 − 1� . �10�

Minimization of the total free energy F̃el−TSosm with
respect to R leads to the determination of the size of the
so-called osmotic star as

R � Na�2/5v̄1/5. �11�

R turns out to be independent of f in this case because
both the elastic contribution �Eq. �8�� and the entropic
one �Eq. �10�� yield upon differentiation with respect to
R a common f factor that drops out of the minimization
requirement. In contrast, the size of neutral star poly-
mers and that of unscreened PE stars feature a depen-
dence on f �see Eqs. �6� and �9�, respectively�.

The crossover between a Coulomb star and an os-
motic star has been estimated using scaling arguments. If
�fN	B /R�f��1, counterion absorption can be neglected,
and Coulomb repulsion between chains is important.
From this criterion, one can estimate a crossover func-
tionality f=�−3/5u−1v−1/5. Above this limit, the stars are
osmotic and the scaling ratio �Eq. �11�� is valid �Borisov,
1996�. The results are based on the assumption that
counterion condensation on the chains can be neglected;
we, nevertheless, show below that this effect is very im-
portant at least as far as the interaction between two
stars is concerned. In fact, Shusharina and Rubinstein
�2008� recently incorporated counterion condensation

into the scaling analysis by replacing �fN→ �̃�fN with �̃
the fraction of noncondensed ions. This fraction is esti-
mated through the Manning condition �Manning, 1969�
for condensation �̃�1/u2� for u2��1. Using the coun-
terion condensation, more scaling regimes are found,
leading to an expanded blob picture of PE stars �Shusha-
rina and Rubinstein, 2008�.

C. Variational free-energy approach

Apart from the scaling analysis of PE stars, there are
mean-field approaches for predicting conformational
properties. In the aforementioned scaling model, it was
assumed that either the counterions are completely dis-
sociated into the solution or they are completely trapped
inside the PE star. In reality, there are fractions of free
and confined counterions. Consequently, the PE star
bears a net charge that interacts with its environment.

Furthermore, the entropic contribution of the confined
counterions Sosm is modified due to the changed number
of counterions that are located inside the star. In Eq.
�10�, it is assumed that all counterions are absorbed. The
number of confined ions is, in addition to the radius of
the PE star, an important quantity for the conforma-
tional behavior of PE stars.

For dilute PE star solutions, the Wigner-Seitz cell
model is a convenient framework within which the free
energy can be estimated. In this approach, it is assumed
that interactions between PE stars in solution can be
neglected; at the cell boundary the electric field induced
by the charged PE star vanishes. Consider a single star
in a spherical cell of radius RW, whose size depends on
the density �=Ns /V of Ns stars in the macroscopic vol-
ume V. In particular, RW= �4�� /3�−1/3. In Fig. 2�a�, a five
arm star within a Wigner-Seitz cell is sketched, whereas
in Fig. 2�b� a simulation snapshot of a five arm PE star
with all of its monomers being charged is shown to dem-
onstrate the stretching of the arms and justify the theo-
retical modeling of the latter as rigid rods. At sufficiently
high bare valency of the star, Qb=�fN, counterions are
trapped inside the star, similar to the above scaling
analysis of the osmotic star. As a result, the net valency
of the star is Q*�Qb. Due to overall charge neutrality,
the outside environment must have a net charge of mag-
nitude Q* e, which stems from the free counterions. In-
side the star, electrostatic interactions between neigh-
boring chains are neglected again, which is true as long
as Qb	B /R�1.

The model is an extension of that introduced by Klein
Wolterink et al. �1999�. It accounts for two important
aspects: first, counterion condensation has been taken
into account, and second, the trapped noncondensed
counterions possess an inhomogeneous distribution that

N2,V2
R

RW

N3,V3

�B

N1,V1

(b)(a)

FIG. 2. �Color online� Conformations of polyelectrolyte stars.
�a� Sketch of a PE star consisting of f=5 stretched arms and
radius R inside a spherical Wigner-Seitz cell of radius RW.
There are three different states i=1,2 ,3 for the counterions,
with populations Ni. In particular, N1 are condensed within
tubes of total volume V1, N2 are trapped in the volume V2
inside the star, and N3 counterions are free in the outside vol-
ume V3 �Jusufi et al., 2002a, 2002b�. �b� Simulation snapshot of
a f=5 PE star with N=50 monomers per arm and a charge
fraction �=1. Connected spheres denote charged monomers,
whereas the star counterions are shown as disconnected
spheres.
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decays as �r−2 from the star center �see Fig. 3�. The first
aspect gives rise to an additional counterion state, thus
we call this the three-state model, to distinguish it from
the two-state model of Klein Wolterink et al. for which
the counterions are either trapped within the star or
free in the solution. This multistate model for the coun-
terions has been already introduced for solutions of lin-
ear polyelectrolytes �Kramarenko et al., 2000�. As can
be seen from the sketch in Fig. 2�a�, there are N1 coun-
terions localized in cylinders around each stretched arm,
N2 noncondensed counterions inside the star in a vol-
ume V2, and finally N3 free counterions outside the star
in the shell volume V3. It has been confirmed via exten-
sive molecular dynamics �MD� simulations �see Fig. 3�,
which the confined counterion density decays as �1/r2

with the distance r from the star center, similar to the
monomer density profile. The oscillations of the mono-
mer profile are caused by packing effects around the
core. The measured profile decays with ��r��r�, ��−2
due to stretching, which is stronger than the neutral star
��=−1.33� compared with Eq. �2�. The asymptotic limit
for fully stretched chains is indeed �=−2 �Pincus, 1991;
Borisov and Zhulina, 1997�. The 1/r2 decay of the den-
sity profile has been confirmed by several studies, en-
compassing computer simulations �Jusufi et al., 2002a,
2002b; Roger et al., 2002; Jusufi, 2006� and experiments
�Groenewegen, Egelhaaf, et al., 2000; Groenewegen,
Lapp, et al., 2000; Dingenouts et al., 2004�. It is evident
that one can tune the density profile, going from coiled
chains �neutral star polymers� to fully stretched ones, by
gradual increase of the charge ratio � �Borisov and
Zhulina, 1997�.

In what follows, we review the main steps for the de-
termination of the equilibrium values of Ni �i=1,2 ,3�
and the star radius R �Jusufi et al., 2002a, 2002b�. Those
quantities are obtained from minimization of a varia-
tional free energy, which is comprised of electrostatic
contributions, entropic terms of the counterions, and

Flory-like chain contributions. The electrostatic energies
account for the interaction between the stars of net
charge Q*e with its counterion environment that carries
the opposite charge eN3 to fulfill the electroneutrality
requirement. Note that �i=1

3 Ni=�fN= Qb. Using a
Hartree-type mean-field approximation, the electrostatic
term is calculated through

UH =
1

2

� � d3rd3r�

��r���r��
r − r�

, �12�

where ��r� is the local charge density. Accounting for
the 1/r2 decay inside the star and assuming a homoge-
neous distribution of charges outside the star, the total
charge density is given by

��r�
eQ

*

=
��R − r�
4�Rr2 −

��r − R���RW − r�
V3

,

with the Heaviside step function ��x�. Recent self-
consistent field calculations justify the use of a homoge-
neous profile of counterions outside the star �Leermak-
ers et al., 2008�. The calculation of Eq. �12� can be
expressed in closed form �Jusufi et al., 2002b� as a series
of analytical functions and has been reported by Jusufi et
al. �2002b�.

Equation �12� is, evidently, a mean-field approxima-
tion that ignores all correlation effects. The strongest
charge-charge correlations appear between the charged
monomers along the chains and the counterions that are
cylindrically condensed along the PE arms. This coun-
terion condensation inside tubes around the chains of
length R and radius 	B is accounted for by an electro-
static correlation term, which expresses the gain of elec-
trostatic energy if counterions are condensed close to
the chains �Jusufi et al., 2002b�,

Uc = − kTN1
	B

zm
, �13�

with zm= �1/2��	B
2 +ym

2 the average chain-counterion
separation. This contribution is proportional to the num-
ber of cylindrically condensed counterions along the
rods N1 and its strength is further determined by the
typical counterion-chain separation zm �Jusufi, 2002b�.
Here ym is the average distance between charged mono-
mers along each chain, i.e., ym=R /N�.

For each of the three counterion states the corre-
sponding entropic contributions are given by

Si = − k�
Vi

d3r�i�r�ln �i�r� , �14�

with i=1,2 ,3 and �i�r� the ion density distributions.
The condensed and free counterion distributions are
homogeneous inside their volumes, i.e., �1=N1 /V1 and
�3=N3 /V3. The confined noncondensed counterions
exhibit a r−2 decay, their density normalized by the
condition �V2

d3r�2�r�=N2. The corresponding volumes
are V1= f�R�	B

2 −a2�, accounting for the hollow tubes
around each chain, V2= �4� /3�R3− f4�R	B

2 for the

1.5 2 2.5 3 3.5
ln(r/a)

-10

-9

-8

-7

-6

-5

-4

-3

-2

-1

0

ln
[ρ

(r
)a

3 ]

slope: γ = -1.8

counterions

monomers

FIG. 3. �Color online� Double logarithmic plot of density pro-
files of monomers �black line� and counterions �red �gray� line�
��r� as a function of the distance r from the central monomer.
The results stem from MD simulations of a star which consists
of f=10 arms with degree of polymerization, N=50, and a
charge fraction �=1/3. The slope indicates strong stretching of
the arms, close to the full stretching limit, in which ��r��r−2

�Jusufi et al., 2002a, 2002b�.
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residual volume of the interior of the star, and
V3= �4� /3��RW

3 −R3� the outer shell volume.
Finally, the chain contributions are comprised of an

elastic term

Fel

kT
=

3fR2

2Na2 �15�

and a self-avoidance Flory term

FFl

kT
=

3v�fN�2

8�R3 . �16�

These are added to Eqs. �12� and �13� and −T�i=1
3 Si

of Eq. �14� to obtain the total variational free energy
F�R ; �Ni��, which has to be minimized with respect to
the star radius R and the counterion populations Ni,
i=1,2 ,3 under the neutrality constraint �i=1

3 Ni=�fN.
Note that the chain contributions �Eqs. �15� and �16��
are now incorporated in the minimization procedure,
in contrast to the scaling analysis in Sec. II.B, where
the scaling relation �Eq. �8�� has been used from the
outset.

In Fig. 4 results for a star with �=1/3 �Fig. 4�a��
and �=1/2 �Fig. 4�b�� are shown for the f dependence of
the fraction of trapped and condensed counterions �N1
+N2� /Qb and N1 /Qb, respectively. Both fractions in-
crease with arm number f and converge at high function-
ality; the star is almost completely neutralized in this
limit. In the intermediate regime, the three-state model
overestimates MD simulation results �Jusufi et al., 2002a,
2002b� �cf. solid lines with symbols in Fig. 4�. A better
description is achieved by the simpler two-state model
�dashed line� although the latter does not account for
counterion condensation �Klein Wolterink et al., 1999�.
The fraction of condensed counterions increases as well
�dashed-dotted line and squares in Fig. 4�. The simula-
tion results seem to converge to the Manning limit,
1−1/ �u2��, while the theoretical curve from the three-
state model increases further and overestimates the
simulation results. Keeping in mind that it is challenging
to capture condensation effects over a broad f regime,
the curves demonstrate the nonconstant characteristic of
condensation on chains inside the star.

In Fig. 5 we show the calculated radius R as a function
of the degree of polymerization N. The theoretical curve
is compared with the variational free-energy calculation
of the two-state model, which assumes a homogeneous
counterion density profile inside the stars and no coun-
terion condensation �Klein Wolterink et al., 1999�. The N
dependence of both theories is almost identical. A
power-law fit of the MD results yields R�N0.98�N, in
excellent agreement with the scaling prediction for an
osmotic star �Eq. �11��. The f dependence of R is plotted
in Fig. 6 for a star with �=1/3 �Fig. 6�a�� and �=1/2
�Fig. 6�b��. The latter shows a nonmonotonic behavior
above f�5: at f�20 the three-state model predicts a
minimum, which is confirmed by simulation results
�Jusufi, 2006�. The nonmonotonic behavior of R�f� stems
from the pronounced nonmonotonic behavior of the ra-

tio of condensed to noncondensed counterions inside
the star, as can be read off from the gap between the
solid and dashed-dotted lines in Fig. 4�b�. This behavior
is not pronounced for the weaker charged star shown
in Fig. 4�a�. The two-state counterion model overesti-
mates R�f�, which demonstrates the importance of ac-
counting for counterion condensation in the three-state
model, despite its nonconstant characteristic. Here one
should note that the condensed counterions are still os-
motically active. In reality, only a small fraction of coun-
terions are strictly condensed, so that they can be
viewed as osmotically deactivated. Accounting for this
“strict condensation” would further reduce the f depen-
dence of the radius R, however, at the expense of intro-
ducing additional fit parameters or further states of
counterions, which would complicate the theory. In Fig.
6, power-law fits of the simulation results are shown as
well. The fits yield R� f0.04�1 �Fig. 6�a�� and R� f0.02

�1 �Fig. 6�b�� and are in excellent agreement with the
scaling prediction for an osmotic star �Eq. �11��. The in-
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FIG. 4. �Color online� The fraction of trapped counterions
Nin /Qb �where Nin=N1+N2� plotted vs the star functionality f.
The simulation results, denoted by the circles, are compared
with variational free-energy calculations of the three-state
model, black solid line �Jusufi et al., 2002a, 2002b�, and of the
two-state model, black dashed line �Klein Wolterink et al.,
1999�. The fraction of condensed counterions N1 /Qb calcu-
lated from simulations �squares� and that from the three-state
model �dash-dotted line� are shown as well. The Manning con-
dition for the fraction of condensed counterions is 1−1/ �u2��
and is denoted by the horizontal line. �a� Star with degree of
polymerization per arm N=50, �=1/3, and cell radius RW
=55.83a, simulation results from �Jusufi et al., 2002a, 2002b�.
�b� Star with N=60, �=1/2, and RW=99.26a.
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crease for small chain numbers, f�10, shows the nonos-
motic behavior of the star; beyond that limit the star
radius is practically f independent. This result reflects
the dominant effect of the counterion entropy at high f.
The osmotic pressure in the star interior induces
stretched arms �Borisov et al., 1991; Pincus, 1991�. The
Coulomb interactions are essentially screened due to
pronounced counterion condensation. Using the above
theory, which is valid particularly for osmotic stars, good
agreement with MD results is achieved for stars with
f�10 and ��1/4 �Jusufi et al., 2002b�.

Comparing the quality of the three-state model with
that of the two-state counterion model, we conclude that
both models give a reasonable description of the simu-
lation data. The latter is better suited to predict the ef-
fective charge, while the former predicts the size well.
Note, however, that the results for the relative effective
charges Q* /Qb from the three-state and from the two-
state theory converge to each other at high functionality
f �see Fig. 4�. In contrast, the disparity in the predictions
of the two models for the radii persists in this limit �see
Fig. 6�. This is important for spherical polyelectrolyte
brushes, where a brush consists of thousands of chains.
For these systems, the three-state model is expected to
give reasonable results for both the effective charge and
the radius. Another important aspect is the relevance of
the models for the effective interaction between stars.
The use of a homogeneous counterion profile leads to a
erroneous force between the objects. The three-state
counterion model, on the other hand, yields an increas-
ingly repulsive force upon pressing two stars together at
the right scale. This force would be much too strong if
counterion condensations were not taken into consider-
ation. We discuss this point in Sec. III.

D. Influence of salt

The addition of salt has a significant impact on the
conformational behavior of PE stars. In the osmotic re-

gime, the electrostatic interaction between the chains is
already screened by the star’s own counterions. The os-
motic pressure induced by trapped counterions inside
the star is not balanced by the exterior osmotic pressure
from ions outside the star. The corresponding force im-
balance is mainly canceled by elastic chain forces com-
pare the corresponding free-energy contributions �Eqs.
�15� and �10��. Upon addition of salt, the osmotic pres-
sure difference between the interior and exterior of the
star decreases. Therefore, the required elastic chain
force Fel is smaller, which, in turn, reduces the star size.
However, the deswelling is expected to be only pro-
nounced when the added-salt concentration cs exceeds
the counterion concentration of the interior of the star.

Borisov and Zhulina incorporated these consider-
ations into a scaling model for the added-salt case
�Borisov and Zhulina, 1998�. The ion concentrations in-
side and outside the star are governed by the Donnan
equilibrium,

cin
−

cout
− =

cout
+

cin
+ , �17�

with cx
j the concentrations of coions �j=−� and counter-

ions j=+, distinguished by being inside �x=in� or outside
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FIG. 6. Sizes of polyelectrolyte stars. The star radius R vs
functionality f. The simulation results, denoted by the circles,
along with a power-law fit of the same �dash-dotted line�, com-
pared with variational free-energy calculations of the three-
state model �solid line� �Jusufi et al., 2002a, 2002b�, and the
two-state model �dashed line� �Klein Wolterink et al., 1999�. �a�
Star with degree of polymerization per arm N=50, �=1/3, and
cell radius RW=55.83a, simulation results from Jusufi et al.
�2002a, 2002b� �b� Star with N=60, �=1/2, and RW=99.26a,
simulation results from Jusufi, 2006.
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FIG. 5. The star radius R vs the degree of polymerization N
for a star with functionality f=10, �=1/3, and cell radius RW
=136.48a. The simulation results, denoted by the circles �Jusufi
et al., 2002a, 2002b�, along with a power-law fit of the same
�dash-dotted line�, are compared with variational free-energy
calculations of the three-state model �solid line� �Jusufi et al.,
2002a, 2002b� and the two-state model �dashed line� �Klein
Wolterink et al., 1999�.
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�x=out� the star. Without loss of generality, we assume
that the bare charge of the PE star is negative. Further,
we concentrate on the case in which the added-salt ions
dominate over the stars’ own counterions, for which case
we expect the star to be electrically neutral. Accordingly,
electroneutrality conditions are applied separately in the
interior and the exterior of the star, yielding �cm+cin

−

=cin
+ , with the monomer density cm=3fN /4�R3, and

cout
− =cout

+ . Assuming that the ion concentration outside
the star is equal to the bulk salt concentration cs, all cx

j

are readily obtained. In particular, for the highly salted
solution, cs��cm, the result reads cin

± �cs± ��cm� /2
+ ��cm�2 /8cs.

It is convenient to consider directly the ideal osmotic
pressure of each ion species in its corresponding space,
instead of the entropy, in order to eliminate the volumes.
The pressure difference between the star interior and
exterior is then

��

kT
= �

j=−,+
�cin

j − cout
j � . �18�

Introducing the expressions for cin
± quoted above and us-

ing cout
± =cs, we see that the leading and linear terms in

the expansion cancel, leaving a quadratic dependence of
the pressure difference on the quantity �cm, namely,
�� /kT���cm�2 /4cs. This is the same result already ob-
tained for planar polyelectrolyte brushes �Witten and
Pincus, 1987�; note that cm=cm�R� by definition. The cor-
responding osmotic pressure force 4���R2 is balanced
by the elastic chain force −�Fel /�R as given by Eq. �15�.
Under the assumption that the salt concentration ex-
ceeds the counterion concentration inside the star �cs
��cm�, we obtain a scaling result for the size of the star,

R � N3/5f1/5��2cs
−1a−3�1/5a . �19�

The osmotic star size shrinks with increasing salt con-
centration cs. Note the similarity to the neutral star scal-
ing results �Eq. �6��. By direct comparison, we can iden-
tify an effective excluded volume veff given by veff
=�2 /cs, which explicitly depends on the salt concentra-
tion cs. It is physically intuitive that veff decreases with cs
�screening� and increases with the charging fraction �.
Alternatively, one can define the effective excluded vol-
ume through the Debye screening parameter as veff

=8�	B /�2 �de Gennes, 1979�, where �=�8�	Bcs and �
=1. Using the Witten-Pincus form for the osmotic pres-
sure �Witten and Pincus, 1987�, the scaling form �Eq.
�19�� is readily obtained �see Pincus �1991� for further
details�.

Within this scaling approach, a series of simplifications
has been made. Again, counterion condensation has
been neglected and the assumption of homogeneous
profiles inside the star is only valid for cs��cm�R0�. Fur-
thermore, we showed that the effective charge of the
star is small for larger stars f�1 but in the intermediate
regime this charge is still significant �see Fig. 4�. It can be
expected that the effective charge Q* will gradually de-
crease upon addition of salt. This quantity is important

for the determination of the effective interaction be-
tween stars both for overlapping and for nonoverlapping
interstar separations, as demonstrated in Sec. III. The
three-state model, described in Sec. II.C, has to be ex-
tended to the case cs�0, allowing for the calculation of
the effective charge and the radius as functions of salt
concentration cs �Jusufi et al., 2002b�. In the following we
focus on the salt dependence of the star size. Addition of
salt ions results in the appearance of further entropic
terms and modifications of Eq. �14�. The entropic con-
tributions to the free-energy must be modified by replac-
ing the trapped noncondensed ion number N2→Nin

+

+Nin
− −N1 and the free ion number N3→2Ns+�fN

− �Nin
+ +Nin

− �, where Nin
j =cin

j V2 and Nout
j =cout

j V3 �j=+,−�.
Instead of using the Donnan equilibrium �Eq. �17��, we
minimize the corresponding total free-energy with re-
spect to R, Nin

+ , Nin
− , and N1 �number of condensed coun-

terions�. The numerical minimization yields Nin
− =0. The

almost complete exclusion of coions from the star inte-
rior has been confirmed by MD simulations, in which it
was found that less than 5% of the salt coions penetrate
the star �Jusufi et al., 2002b�.

In Fig. 7 the salt dependence of the star radius R is
shown for a PE star with f=10, N=50, and �=1/3. Com-
pared are predictions from variational free-energy calcu-
lations with simulation results �Jusufi et al., 2002b�.
Apart from the value at cs�0.15 mol/L, the simulation
results confirm the decrease of R with salt concentration.
The comparison proves that the onset of the deswelling
is reached before the theoretical threshold cs��cm�R0�,
indicated by a dashed arrow. Above that limit, a power-
law fit of the theoretical curve yields R�cs

−0.16, which
marks a slightly weaker decay than the scaling relation
R�cs

−0.2 of Eq. �19�.
We finally turn to the case of added multivalent salt

ions. In recent years, interest in these systems has sig-
nificantly increased due to the ions’ strong impact on
conformational and phase behavior of PE brushes and
PE stars. Various theoretical approaches, such as scaling
concepts �Zhulina et al., 1999� or Poisson-Boltzmann
theory �Santangelo and Lau, 2004�, have been applied to
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FIG. 7. Theoretical prediction, solid line, of the salt depen-
dence of a ten arm star with N=50, �=1/3, compared with
simulation results, circles �Jusufi et al., 2002b�. Above the
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−0.16.
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investigate specifically the conformational behavior of
such systems in the presence of multivalent counterions.
Experimental studies �Mei et al., 2006; Plamper et al.,
2007� demonstrated that minute concentrations of mul-
tivalent ions induce a collapse of the stars in particular
for trivalent counterions �valency q=3�. The collapse has
two origins: first, adding multivalent ions to a solution
leads to an ion exchange. In the osmotic regime, the
exchange can be well described by a Donnan equilib-
rium �Zhulina et al., 1999; Mei et al., 2006�: the ion den-
sity in the star is reduced by a factor of q, leading to a
decrease of the osmotic pressure inside the star. This
reduction is not sufficient to describe the complete col-
lapse observed in experiments or simulations. A further
reduction is induced by strong ion correlations on the
PE chains, which is the second origin of the collapse.
Compared to monovalent ions, multivalent ones are vir-
tually deactivated, i.e., their contribution to the osmotic
pressure is negligible.

A good description of the collapse of the star in the
presence of multivalent counterions is offered by the fol-
lowing model. Here we focus on the salt-free case �Mei
et al., 2008� although the model is also suitable for the
added-salt case for which it has been demonstrated that
the model describes quantitatively experimental results
�Mei et al., 2006�. We consider again the chain forces Fch
obtained from the derivatives of Eqs. �15� and �16� with
respect to the radius R,

Fch = −
3kTfR

Na2 + vkT�fN�2 9

8�R4 . �20�

These forces balance the osmotic pressure force origi-
nating from the counterions, i.e., monovalent and multi-
valent ones,

Fp
i = kT��+cin

+ + �q+cin
q+�4�R2, �21�

where cin
+ and cin

q+ are concentrations of monovalent and
multivalent counterions �valency q�, respectively. We
introduce two parameters �+ and �q+, which account for
osmotic activity inside the star, hence 0��i�1 with
i=+,q+. In the following, �i are used as fit parameters,
resulting from fitting the radius of a PE-star system
where only one type of counterion is present. We as-
sume that all counterions are trapped �there are no
coions in the absence of salt� as in the scaling analysis
above, i.e., cout

+ =cout
q+ �0. The radius R is obtained by

requiring that the total force, expressed as the sum of
Eqs. �20� and �21�, vanishes. In a recent study, this ap-
proach was applied on spherical polyelectrolyte brushes
�SPBs�, which are very similar to PE stars, but with a
core of nonvanishing size. Here the effect of the core
radius rc needs to be implemented into Eqs. �20� and
�21� �see Mei et al. �2008� for details�. In Fig. 8, the rela-
tive brush thickness per monomer �R−rc� /Na is plotted
as a function of the ratio of the overall ion concentration
cq+/c+ for a spherical brush with rc=6a, f=40, N=30,
and �=1. The values of the fit parameters are �+=0.8,
�2+=0.3, and �q+=0 for q�3. They were obtained from
fitting the cases where only one ion component is

present, i.e., at c+=0 and cq+=0 and kept constant for all
ratios cq+/c+. The agreement of the theory with MD
data is good and describes the collapse of the brush
quantitatively. The theory is also in quantitative agree-
ment with experiments of SPBs that carry bare charges
of the order of 105–106 elementary charges �Mei et al.,
2006�. The parameter values are the same as presented
here. It should be noted that �+=0.8 is much larger than

the Manning estimate �̃=1/u2��0.1 �see Sec. II.B�,
which means that more monovalent ions are osmotically
active. The higher value supports the condensation pic-
ture schematically shown in Fig. 2, where the ions are
condensed within tubes around the chains �see Sec.
II.C�. The term “chain localization” is therefore more
suitable for monovalent ions. Those ions are, despite
their localization, still osmotically active. Upon valency
increase, the osmotic degree, expressed in �i, decays to
0.3 for q=2 and to 0 for q�3. Thus, at high valencies,
the ions are strictly condensed and virtually “switched
off.” This picture has been confirmed by MD simula-
tions in which ion-chain correlations were measured
�Mei et al., 2008�.

It is remarkable that the above theory, despite its sim-
plicity, can describe more complex systems. Computer
simulations of spherical polyelectrolyte brushes that are
mixed with oppositely charged linear polyelectrolytes of
same chain length N as the ones grafted on the core
show a collapse due to absorption of linear polyions �Ni
et al., 2008�. The mechanism is the same: once the poly-
ions are absorbed by the brush, the osmotic pressure
decreases and the brush collapses. The theory describes
the collapse in a similarly quantitative manner as for the
simple system shown in Fig. 8. However, upon further
addition of polyions �qcq+�c+�, a reswelling occurs, ac-
companied by a charge inversion �Grosberg et al., 2002�.
Those effects are naturally not captured by the simple
model above; it remains an open task to incorporate lo-
cal correlation effects in a theoretical model.
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FIG. 8. �Color online� Relative brush thickness for a spherical
polyelectrolyte brush with core size rc=6a, f=40, N=30, and
�=1. The concentration ratio of multivalent to monovalent
ions cq+/c+ is varied. Compared are theoretical results �lines�
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Mei et al., 2008.
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III. EFFECTIVE INTERACTIONS BETWEEN PE STARS

In the preceding section we identified the dominant
physical mechanisms that determine the conformational
behavior of a single star. Here we turn our attention to
the effective interaction between the centers of two PE
stars, defined as the constrained free energy of the two,
obtained by averaging over all other degrees of freedom
involved but keeping the centers fixed at separation D
�Likos, 2001�. In the osmotic regime, which is already
reached for f�10 and ��1/4, the entropic contribution
of the confined counterions to the free energy is the key
quantity both for the star conformation and for interstar
interactions. Indeed, we showed quantitatively that con-
densation or chain localization of counterions within the
star and a 1/r2-density profile of the remaining ions in-
side the star is important for the conformation; we now
take advantage of this fact to describe theoretically the
aforementioned effective interaction Veff�D� between
two such stars. A quantitative understanding of the in-
teraction enables us to make the decisive coarse-graining
step from a microscopic �monomer and ion resolved� to
a coarse-grained �mesoscopic� description of PE stars.
The latter is perfectly suited to be treated by means of
liquid-state theories, leading to the determination of
structural and phase behavior, which is the subject of
Sec. IV.

A. The role of osmotic pressure forces

Since the osmotic pressure of confined counterions
determines the conformational properties of the stars, it
must also play an important role when two stars are
brought together within a separation D that is smaller
than their diameter �=2R. This is mainly due to the
changes in the star volume available to the trapped
counterions �see Fig. 9�. In this interaction model, the
chains retract from each other avoiding interdigitation.
This picture has been confirmed by simulations �Jusufi et

al., 2002a, 2002b; Wang and Denton, 2005� �see Fig. 10�,
and experiments �Korobko et al., 2004; Wittemann et al.,
2005�. Pincus estimated the interaction force using scal-
ing arguments �Pincus, 1991�. He argued that the local
osmotic pressure of the trapped counterions in the inte-
rior of a star is ��r�=kTcin�r�, with cin�r�=A /r2 the
counterion density profile inside the star, which follows
the same 1/r2 decay as the monomer profile due to the
tendency of the system to achieve local charge neutral-
ity. The constant A is received by the normalization con-
dition,

�
�

A

r2 d3r = �fN , �22�

where � is the volume of a single star. Evidently, �
=��D� since the spherical star is “chopped” at the bi-
secting plane if a second one is held fixed at a separation
D�� from it. For simplicity, all counterions are as-
sumed to be confined inside the star volume �; counter-
ion condensation is not considered at this point.

The force F acting on the surface of the bisecting
plane by a single star is perpendicular to it and its mag-
nitude F�F is obtained from the normal component of
the osmotic pressure ��r� as

F�D� � �
S

��r�cos � dS , �23�

where S is the cross-section surface on the bisecting
plane and cos � takes into account the projection normal
to it. A simulation snapshot of two interacting PE stars
is shown in Fig. 10, explicitly showing the arm retraction,

R
D

RW

Vin

Vout

�0

FIG. 9. Two stars of radius R at center-to-center distance D.
At the bisecting plane the chains retract from each other. The
surface section S where the two stars meet is indicated by a
solid black line in the bisecting plane �dashed line�. The two
stars are within a cell of a fused double-sphere shape of radius
RW. The volume of the two fused stars is Vin�D�=2��D� and
that of the shell outside the stars is Vout�D�. FIG. 10. �Color online� Simulation snapshot of two PE stars

with f=18 arms and N=50 monomers per arm each at a center-
to-center separation D�0.2R. The light-colored, connected
spheres denote neutral monomers, whereas the dark, con-
nected ones denote charged monomers on each star. Discon-
nected spheres are the star counterions. Note the retraction of
the arms of each star toward the half-space on which the star
lies.
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also referred to as “no interdigitation condition” �Pin-
cus, 1991� and the corresponding modeling in Fig. 9. In
the limit R�D, the force is given by �Pincus, 1991�

F�D� = kT
�fN�1 − D̃�

2R
, �24�

where D̃=D / �2R�. Pincus further uses D̃�1 to obtain a
constant force,

F�D� � kT
�fN

2R
. �25�

However, in most relevant cases D is comparable to R,
and the force decays, according to Eq. �24�, linearly with
D. Simulations �Jusufi et al., 2002a, 2002b; Wang and
Denton, 2005� prove a nonlinear decay of the force, a
feature not captured by Eq. �24�. The above analysis
neglects one important aspect, i.e., the fact that the pref-
actor A of the counterion density profile cin�r�=A /r2 de-
pends on the distance D between the stars. In the above
argument, the volume of an isolated star has been used
to obtain A from Eq. �22�. However, replacing � by a
chopped sphere volume ��D�, as sketched in Fig. 9, we
obtain a distance dependent prefactor A=A�D�. The re-
sulting corrected Pincus force between two stars is then
given by

�RF�D� �
�fN�1 − D̃�

1 + D̃�1 − ln D̃�
, �26�

where �= �kT�−1. Indeed, the interaction force between
two stars is now a distance-dependent nonlinear func-
tion �see Fig. 11�. The force is repulsive and decays
monotonically with the distance. The forces expressed
by Eqs. �25� and �26� all share common properties: First,
the forces are repulsive and typically strong enough to
stabilize PE-star solutions from precipitation. Second,
the strength can be controlled through the functionality
f, as for neutral stars, for which F� f3/2 �Witten and Pin-
cus, 1986�. Both features are illustrated in Fig. 11. We
emphasize, however, that the use of a homogeneous
counterion profile results in a quantitatively erroneous

force. In Sec. III.B we present a variational free-energy
approach that also accounts for electrostatic effects and
counterion condensation. We compare the contributions
and confirm that Pincus’ assumption, despite its quanti-
tative drawbacks, is essentially and physically correct:
the most dominant contribution for the interaction re-
sults from the entropic changes of confined counterions.

B. Variational free-energy approach

We extend the three-state cell model of a single star,
as described in Sec. II.C, and apply it to the case of two
interacting stars. The two-star cell model is sketched in
Fig. 9, where both PE stars are represented by two fused
spheres of volume Vin�D� inside a cell consisting of two
fused spherical cells of radius RW. Beyond overlap D
�2R the interaction can be well described by a Yukawa-
type �Debye-Hückel� potential that accounts for Cou-
lomb screening through the remaining free counterions.
Note that the effective charge of a single star is small,
which leads to low surface potential energy ��kT�, for
which the Debye-Hückel approach is justified. This is in
line with the theory of charged colloids �Hansen and
Löwen, 2000� and has been confirmed through the appli-
cation of linear response theory to PE stars �Denton,
2003� �see Sec. III.D�. In what follows, therefore, we fo-
cus on the interaction for overlapping distances.

The effective interaction energy between two stars is
defined as

Veff�D� = F2�D� − F2�D → �� , �27�

where F2�D� is the Helmholtz free energy of two PE
stars at separation D. Note that F2�D→��=2F, i.e., the
free energy of two isolated stars. In principle, the Helm-
holtz free energy of the system is a sum of all contribu-
tions that are listed in Eqs. �12�–�16�. The distance de-
pendence enters through the volumes Vin�D� and
Vout�D� and needs to be considered in Eqs. �12� and �14�.
Some contributions drop out in Eq. �27� since they do
not depend on the distance D, e.g., Ffl�D�=2Ffl. The
remaining free-energy contributions are UH�D� and
−T�i=1

3 Si�D�, i=1,2 ,3. The entropic terms can be calcu-
lated analytically. We account for counterion condensa-
tion, i.e., Manning-condensed counterions around the
chains still exist despite the chain retraction. For S2�D�,
the entropic contribution of noncondensed counterions
inside the star and for UH�D� the 1/r2 decay of the den-
sity profile has been employed: ��r��cin�r��A�D� /r2,
where A�D� has been used in Eq. �26�. For the geometry
sketched in Fig. 9 the electrostatic energy UH�D� cannot
be expressed in a closed form; it takes rather the form of
a series of analytical functions and it has to be solved
numerically at each given distance D. Details of the cal-
culations can be found in Jusufi et al. �2002b�, where it
was shown that the electrostatic energy UH�D� and the
entropy of confined noncondensed counterions S2�D�
exhibit the strongest D dependence. The other contribu-
tions vary modestly with D and therefore hardly contrib-
ute to the effective force F�D�=−dVeff /dD. Note that
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FIG. 11. The Pincus force between two stars vs distance D.
Compared are the Pincus force resulting for a D-independent
normalization coefficient A �Eq. �24��, solid lines, with the cor-
rected Pincus force �Eq. �26��, dashed lines.
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the entropic contribution S2�D� scales with N2=Nin−N1,
the number of noncondensed counterions inside the
stars, similar to Eq. �10�. This underlines the importance
of counterion condensation since N2 sets the strength of
the interaction. This feature corresponds to a renormal-
ization of the effective entropic energy inside the star
since without condensation the effective potential would
be much higher.

The resulting contributions are added up and mini-
mized with respect to R and the number of counterions
in their three distinct states Ni. The effective interaction
Veff�D� is then given by

Veff�D� = min
�R,�Ni��

�UH�D� − T�
i=1

3

Si�D�� . �28�

In Fig. 12, the results for the effective force F�D�
=−dVeff /dD between two PE stars with different param-
eters are shown and compared with MD simulation re-
sults �Jusufi et al., 2002a, 2002b�. The agreement is good
over a wide range of overlapping distances D�2R. Note
that the simulation model possesses a microscopic core
of sizes rc=0.04R and 0.05R for f=10 and 18, respec-
tively, which need to be subtracted from the separation
D for comparison reasons. The repulsion decays weakly
with D. Its scale can be tuned by the parameters � and f.
In fact, the repulsion is mainly governed by the entropic
terms of confined counterions. In order to check the
dominance of this term, we reformulate the effective in-
teraction potential in Eq. �28� via

Veff�D� � − T�Sin�D� − Sin�D → ��� , �29�

where we neglected electrostatic terms and the entropic
contributions of condensed and free counterions since
they do not vary much if the distance D is changed. We
subtract the condensed counterions from the confined
ones, i.e., N2=Nin−N1, and assume N3=0 �no counter-
ions outside the stars�. With those simplifications, the

result for the effective interaction potential becomes
analytical, namely,

Veff�D� � 2N2�ln	 2

K

 +

D

2RK
ln2	 D

2R

� , �30�

where

K�D� = 1 +
D

2R
�1 − ln	 D

2R

� . �31�

An analogous form has been reported for PE brushes
with a finite colloidal core radius in Jusufi et al. �2004�.
Note that N2=�fN−N1 since there are no free counteri-
ons in this approximation.

For simplicity, we estimate N1= �1−1/�u2��fN, yield-
ing N2=53 for the 10 arm star and N2=96 for the 18 arm
star, for which force results are shown in Fig. 13. The
agreement with MD results is again reasonable over a
wide distance region D despite the simplifications made.
Only at strong overlap the discrepancies become larger.
The maximum of the entropic terms at small distances
arises from the 1/r2 increase of the local counterion den-
sity as r→0. In reality, the density at the inner core is
finite and steric repulsions would increase the entropic
term further as D→0. In the same figure we also show
results from the corrected Pincus force, which is also
analytically available �Eq. �26��. At large separations,
the force agrees well with simulation results but it un-
derestimates the same at the small separation regime
D�R. Note that in the Pincus force the complete num-
ber of ions contribute to the force, which is physically
correct: even Manning-condensed counterions can freely
move along the axial direction of the rodlike PE arms
and thus do contribute to the osmotic pressure exerted
on the bisecting plane, in agreement with Pincus’ ap-
proach. For this case, then, no further “renormalization”
due to the condensed counterions is necessary.

The agreement of both the approximated effective po-
tential from Eq. �30� and Pincus’ results with MD calcu-
lations demonstrates the dominant role of the counter-
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FIG. 12. Effective force F�D�=−dVeff /dD between two PE
stars versus distance D. Shown are results for 10 arm stars
�solid line� and 18 arm stars �dashed line� with �=1/3 and N
=50. For comparison, the effective core diameter 2rc, which is
implemented in the simulation model �results represented by
symbols�, needs to be subtracted �Jusufi et al., 2002a, 2002b�.
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FIG. 13. �Color online� Approximated effective force F�D�
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the same as in Fig. 12. Also shown is the corrected Pincus force
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ion entropy for the effective interaction potential, as
already recognized by Pincus �1991�. Electrostatic effects
are of minor importance since the strong counterion
absorption in the star interior renders the stars quasi-
neutral. The degree of neutralization is, of course, con-
centration dependent and above the stars’ overlap den-
sity in a concentrated solution these are fully electrically
neutral. Condensation is relevant for setting the scale of
the potential, whereas the 1/r2 decay in the counterion
density and the retraction of the chains lead to a nonlin-
ear decay of the force. Note that the approximate
expression �Eq. �30��, applied on spherical polyelectro-
lyte brushes with a finite core �Jusufi et al., 2004� has
been recently confirmed by direct force measurements,
including salted solutions of PE-brush systems
�Dominguez-Espinosa et al., 2008; Huang et al., 2009�.

C. Effects of salt

In Sec. II.D it was shown that added salt induces a
shrinkage of a single star in particular if the salt concen-
tration exceeds the counterion concentration inside the
star. The shrinkage was attributed to the salt-dependent
osmotic pressure balance of the ions inside and outside
the stars. Within the variational free-energy approach,
the entropic term S3 changes significantly now since one
needs to replace the number of free ions N3=�fN−Nin
→�fN+2Ns−Nin, with Ns the number of salt ion pairs.
For the effective interaction �Eq. �28��, the D depen-
dence of S3�D� becomes important as well due to
Vout�D�. The analytical expression �Eq. �30�� is no longer
valid unless the star density is very dilute, i.e., Vout
�Vin. In such cases, changes in the entropy of ions in the
outer volume are negligible and the approximate solu-
tion �Eq. �30�� still holds, as was recently confirmed by
direct force measurements �Dominguez-Espinosa et al.,
2008�.

In general, however, when Vout�Vin �both volumes
are in the same order of magnitude�, the change of the
outer volume Vout�D� is crucial since it grows as the star
distance D decreases �see Fig. 9�. Accounting for these
changes in the full variational free-energy approach, we
obtain the effective interaction force between two stars
in the presence of added salt. In Fig. 14, the salt effect is
demonstrated for two ten arm stars with and without
added salt �Jusufi et al., 2002b�. The repulsion becomes
weaker when salt is present. The mechanism is similar to
depletion effects �Likos, 2001� known from classical case
of colloid-polymer mixture �Dijkstra, Brader, and Evans,
1999�. The two overlapping stars are “hit” by the en-
hanced number of ions outside the stars, which induce
an attractive depletion force. This attraction is, however,
overbalanced by the strong repulsive forces stemming
form the confined ions since the stars are penetrable.
The net force is a reduced repulsion compared to the
salt-free case, as shown in Fig. 14, already for a modest
salt concentration of cs=0.036M.

A different approach to the calculation of the effec-
tive forces was given by Wang and Denton �2005�. Here,

instead of dealing with the bare Coulomb interactions of
the charged monomers, the counterions, and possible
coions �in the case of added salt�, one resorts to the
employment of a screened-Coulomb �Yukawa� interac-
tion between the charged monomers of the chains from
the outset. In particular, Wang and Denton modeled the
PE-star arms as rigid freely rotating rods anchored on a
common central point and consisting of Nb beads, each
interacting with the other via a Yukawa potential. The
bead-bead separation is denoted a �monomer size�, and
the orientation of the arm is given by the unit vector û,
as sketched in Fig. 15. In this approach, the screened
electrostatic interaction between any two arms, oriented
along û and û� and anchored in two stars separated by
the vector D, is expressed as

varm�û,û�;D� =
z2e2



�
i=1

Nb

�
j=1

Nb exp�− �D + iaû − jaû��
D + iaû − jaû�

,

�32�

where z is the valency of each bead �charged monomer�
and �=�4�e2�z2fNb�+2q2cs� /
kT is the inverse Debye
screening length in a PE-star solution of density �, con-
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û
_

_

_

_

_
_ _

_

_

_

_
_

_
_

_
_

_

_

_

_

_
_

_

_

_
_

_

_

__

_

_

__
_

_

_

_

_
_

_

_
_

_

_

_

_

_

_

_

_

FIG. 15. �Color online� Sketch of the Wang-Denton model for
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is modeled by a Yukawa potential to take into account the
screening by counterions and salt �see Eq. �32��. From Wang
and Denton, 2005.
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taining in addition a concentration cs of q-valent salt
counter and coions. They performed Monte Carlo �MC�
simulations supplemented by density-functional theory
�DFT� calculations for the effective force F�D� between
the PE-star centers. In the former, they fully confirmed
the picture of arm retraction �no interdigitation� upon
approach of the stars, which was explicitly implemented
in the DFT calculations as well. The resulting effective
force from the MC simulations is in good agreement
with the MD results of Jusufi et al. �2002a, 2002b�, as
shown in Fig. 16. We note that Wang and Denton had to
renormalize the bare charge Qbe of the PE stars by tak-
ing into account the Manning-condensed counterions,
which do not contribute to screening; it is rewarding that
the numbers N1 of condensed counterions employed in
Wang and Denton �2005� are in close agreement with
the ones found by the free-energy minimization ap-
proach in Jusufi et al. �2002b�. These features demon-
strate independently both the validity of the modeling of
the interacting PE stars and the insensitivity of the phys-
ics on the level of description of the electrostatic inter-
actions: fully microscopic �Jusufi et al., 2002b� versus ef-
fectively screened from the counterions and salt �Wang
and Denton, 2005�.

A final note should be made on the case of multiva-
lent salt ions. We showed in Sec. II.D that multivalent
ions dramatically alter the conformation of the star, i.e.,
they induce a collapse. The resulting star is a globular
object with a mixture of monomers and multivalent ions
strongly correlated with each other. In experiments, co-
agulation effects are observed at minute concentrations
�Mei et al., 2008�. This coagulation is caused by short-
ranged attractions between stars �Schneider et al., 2008�,
which are attributed to ion-bridging effects. There are
also ongoing discussions about charge reversal of the
stars due to condensed multivalent counterions �Gros-
berg et al., 2002�, which might play a further role for the
interactions. These correlation effects are difficult to
employ in a variational free-energy approach and it re-
mains an open task for quantifying those effects within a
suitable theoretical framework.

D. Linear response theory

An alternative approach to the theory of effective PE-
star interactions has been developed by Denton �2003�.
This approach also yields simultaneously information on
single star characteristics �e.g., counterion adsorption
and profiles� as well as on interactions. Since there are
close connections with the variational free-energy ap-
proach presented in Secs. II.C and III.B, we discuss the
main points of Denton’s approach here, referring the in-
terested reader to Denton �2003�, for details.

We have seen that electrostatic effects are negligible
for interacting stars within overlapping distances. It was
shown that the entropic terms of confined counterions
predominantly determine the repulsive force between
the stars. These effects can also be discussed in an ap-
proach that starts with a given charge distribution in the
interior of a macroion ���r��1/r2 in the PE-star case�
and considers the response of the counterion cloud to it.
This is inspired from similar approaches to charged hard
colloids �Hansen and Löwen, 2000� but in contrast to the
latter, PE stars are penetrable: the counterions can wan-
der in their interior. Accordingly, the PE stars are mod-
eled as penetrable macroions in the presence of counte-
rions in solution. The specific character of a PE star
enters through the conformational property of macro-
ions, defined below. The mixture of macroions and coun-
terions is treated by taking a one-component plasma as a
reference state, in which the macroions are seen as an
external perturbation. To account for the reaction of the
counterions on this field, linear response theory �LRT� is
employed. Within the LRT framework, the response of
the counterions to the external field is expressed
through a linear relationship between the Fourier trans-
forms of the counterion distribution c�r� and the
macroion-counterion interaction Vmc�r� at separation r,
namely,

ĉ�k� = ��k�V̂mc�k��̂�k� , �33�

with ĉ�k� and �̂�k� being the Fourier transforms of the
counterion and monomer density distributions c�r� and

��r�, respectively. Further, V̂mc�k� is the Fourier trans-
form of Vmc�r�, where k is the wave number. For weakly
coupled ion systems, the linear response function ��k� is
expressed as �Canessa et al., 1988; Grimson and Silbert,
1991; Denton, 1999, 2000�

��k� = −
nc

kT�1 + �2/k2�
, �34�

with �=�4�ncq
2	B the inverse Debye screening length

and nc the counterion number density; in the presence of
salt, one replaces nc→nc+2cs, with cs the number den-
sity of salt ion pairs. Notice that by virtue of Eqs. �33�
and �34�, one can immediately calculate the response
profile c�r� of the counterions to a macroion fixed at the
origin for a given macroion-counterion �electrostatic� in-
teraction potential Vmc�r�. Accordingly, the fraction of
counterions fin adsorbed within the PE star can also be
evaluated analytically within the LRT and is expressed
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FIG. 16. Comparison of forces F�D� between two PE stars of
radius R as a function of their center-to-center separation D
from the Yukawa-segment MC simulations of Wang and Den-
ton �2005� and the fully microscopic Coulomb MD simulations
of Jusufi et al. �2002b�. Courtesy of A. R. Denton.
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as 4��0
Rr2c�r�dr divided by the total counterion number

released by a single star. For the potential Vmc�r� corre-
sponding to PE stars, the result is given by �Denton,
2003�

fin = 1 − 	1 +
1

�R

exp�− �R�sinhc��R� , �35�

where

sinhc�x� � �
0

x

du
sinh�u�

u
= �

n=0

�
x2n+1

�2n + 1��2n + 1�!
. �36�

The result of Eq. �35� is in agreement with the findings
in Sec. II.C �variational free-energy approach�, confirm-
ing the strong absorption of counterions in the star inte-
rior as the star concentration grows. In particular, fin
→0 as �R→0 and fin→1 as �R→�.

Within LRT, the effective interaction between two
macroions at separation D is expressed as the sum of the
bare macroion-macroion contribution Vmm�D� and the
counterion-induced interaction Vind�D�, namely,

Veff�D� = Vmm�D� + Vind�D� . �37�

This expression emphasizes the meaning of Veff�D� as a
“dressed” or renormalized interaction between the PE
stars caused by the presence of the mobile counterions.
The form of Vmm�D� depends on the macroion confor-
mation. Denton assumed, for simplicity, that it can be
given as an “overlap integral” between the undisturbed
macroion �charge� densities, weighted with the
Coulomb-interaction kernel, i.e., the no-interdigitation
condition and the chain retraction are ignored at this
level of description and the result is given by �Denton,
2003�

Vmm�D� =
e2



� d3r� d3r�

��r���r��
r − r� − D

. �38�

In Eq. �38� a key ingredient is the r dependence of ��r�,
for which the form ��r�= fN /4�Rr2 has been chosen.
Similarly to the variational free-energy approach, there-
fore, the physical picture of stretched arms has been
adopted. By virtue of Gauss’ law, Vmm�D� reduces to the
bare Coulomb interaction Vmm�D�= �Qbe�2 / �
D� for D
�2R �spherically symmetric macroions�, where Qb is the
PE-star valency. The solution of Eq. �38� for D�2R can
again be expressed in closed form, but it is lengthy; it
features two different mathematical expressions, one for
D�R and one for R�D�2R, and can be found in the
Appendix of Denton �2003�.

The counterion-induced interaction Vind�D� takes a
particularly simple form in Fourier space, namely,

V̂ind�k� = ��k��V̂mc�k��2. �39�

Therefore, the key remaining quantity is the �bare� elec-
trostatic interaction potential Vmc�r� acting between a
macroion held fixed at the origin and a microion at a
distance r from its center. For the determination of
Vmc�r�, we begin with the radial electric field E�r� of a

star-branched macroion using the 1/r2 dependence of
the charge density and Gauss’ law to obtain

E�r� = �−
Qbq


Rr
, r � R

−
Qbq


r2 , r � R .� �40�

Equation �40� readily yields the electrostatic potential
energy Vmc�r� through integration over r as

Vmc�r� = �−
Qbq


R
�1 − ln	 r

R

� , r � R

−
Qbq


r
, r � R .� �41�

Using the Fourier transform of Eqs. �41� and �34�, we

obtain V̂ind�k� �Eq. �39�� from which via an inverse Fou-
rier transform Vind�D� can be gained in the form

Vind�D� = −
�4�Qb�R�2


D
�

0

�

dx
sin�xD/R�

x3�x2 + �2R2�
sinc2 x ,

�42�

with sinc�x���0
xdu sin�u� /u.

The effective potential Veff�D� is now obtained from
Eq. �37� and the results for Vmm�D� and Vind�D� summa-
rized above. For nonoverlapping stars �D�2R�, Veff�D�
has a simple analytical form

Veff�D� =
Qb

2



� sinhc��R�

�R
�2exp�− �D�

D
, D � 2R .

�43�

The result of Eq. �43� is indeed a Yukawa screening elec-
trostatic potential of the same form as that for charged
colloidal suspensions, albeit with a different prefactor,
reflecting the penetrability of the stars. In this way, the
anticipations in the beginning of Sec. III.B are con-
firmed. For overlapping distances D�2R, Veff�D� can-
not be cast in a closed form. However, the numerical
result shown in Fig. 17 confirms the qualitative similarity
with the results of the variational-approach method: in
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FIG. 17. The LRT result for the effective interaction potential
between two PE stars of diameter 2R=100 nm and bare
charge Qb=100 �Denton, 2003�. The results pertain to a system
with packing fraction ���3 /6=0.01 at room temperature, 	B
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both cases, a soft, penetrable, and nondiverging interac-
tion is obtained for overlapping distances, smoothly
crossing over to a Yukawa repulsion for nonoverlapping
ones.

The LRT approach has also been generalized to
spherical polyelectrolyte brushes �SPBs� possessing a fi-
nite core by Wang and Denton �2004�. The modification
made with respect to PE stars was to introduce an im-
penetrable core region, r�b, within which ��r�=c�r�=0,
leaving ��r��1/r2 unchanged for b�r�R, where R is
the overall brush radius. It was shown in a systematic
way that SPBs interpolate between stars �b→0� and
charge-stabilized hard colloids �b→R� regarding all as-
pects: counterion penetration, counterion profiles, and
effective interactions. These facts bring about an impor-
tant advantage of the LRT approach, namely, that with a
change in the functional form of the macroion internal
density distribution ��r�, it can be readily applied to any
penetrable polyelectrolyte-based macromolecule. In this
spirit, Denton also applied LRT to loosely cross-linked
ionic microgels, for which a homogeneous profile, ��r�
= �3Q /4�R3���R−r�, has been assumed. For this case,
the effective interaction Veff�D� obtained can even be
cast in a closed form �Denton, 2003�, which is similar to
the one for PE stars. This results in concomitant simi-
larities in the phase behavior of the two systems, dis-
cussed in the following section.

IV. THE MANY-BODY SYSTEM: CORRELATIONS AND
PHASE BEHAVIOR

The effective interaction potential Veff�D� allows now
for the next step in the coarse-graining procedure: a con-
centrated solution of PE stars can be considered as a
collection of “point particles” �the PE-star centers� that
interact via Veff�D�. Accordingly, a complex fluid has
been effectively reduced to a simple one and the stan-
dard procedures for calculating structure and thermody-
namics �Hansen and McDonald, 2005� can also be em-
ployed to this system. This should be done with care,
nevertheless, because there are some caveats involved,
which have to do with the procedure of coarse graining
that leads to the derivation of the effective interaction
potential Veff�D�. These have to do with the density de-
pendence of the latter, with the unavoidable presence of
many-body forces and with the appearance of volume
terms in the system’s Hamiltonian. We discuss these be-
low.

In Fig. 18 we show typical shapes of the effective in-
teraction Veff�D�, obtained by the variational free-
energy method outlined in Sec. III.B for different values
of the PE-star density �, while T is kept fixed at room
temperature. The effective potential is density dependent
as long as � lies below its overlap value �*, the latter
defined via �� /6��*�3=1. The origin of this density de-
pendence lies in the existence of free interstar space for
���*, which allows the counterions to adjust their popu-
lation between the adsorbed and free states according to
� and, thus, the available free volume parametrized by

the radius of the Wigner-Seitz cell �see Secs. II.C and
III.B�. This has a double effect: on the one hand, it in-
fluences the screening length �, which enters the
Yukawa form of the interaction Veff�D� for D�� and,
on the other hand, it affects the number of adsorbed
counterions that sets the scale of the same for D��. At
the overlap density RW=R the free volume disappears
and, from then on, all counterions are adsorbed. Hence,
Veff�D� becomes density independent. For more details
on the form of Veff�D� and the “matching” of its forms
for D�� and D��, see Hoffmann et al. �2004�. Apart
from the density dependence, the interaction is also soft,
corresponding to the penetrable character of the PE
stars.

On the basis of Veff�D�, typical pair correlation func-
tions of the fluid, such as the radial distribution function
g�r� or its Fourier-space analog, the structure factor
S�k�=1+��d3r exp�−ik ·r�h�r�, where h�r�=g�r�−1, can
be calculated by, e.g., liquid integral equation theories.
Representative results from Hoffmann et al. �2004�, ob-
tained by closing the Ornstein-Zernike relation �Hansen
and McDonald, 2005� with the Rogers-Young closure
�Rogers and Young, 1984�, are shown in Fig. 19. A first
feature that can be discerned there is that the height of
the maximum of S�k� never exceeds the Hansen-Verlet
value of 2.85, which sets an empirical threshold for the
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onset of crystallization �Hansen and Verlet, 1969�. In-
deed, as confirmed by free-energy calculations, the soft
repulsion between PE stars with f=15 and �=1/3 is too
weak to support crystallization, so that the system re-
mains fluid at all concentrations �Hoffmann et al., 2004�.
Further, above the overlap density, the wave number k

*
at which the maximum occurs does not scale anymore
with the power law k

*
��1/3 but it becomes rather insen-

sitive to the density. This feature has been experimen-
tally observed in small-angle x-ray scattering experi-
ments from concentrated solutions of star-branched
polyelectrolytes in particular in ten arm poly�styrene-co-
sodium styrene sulphonate� systems �Heinrich et al.,
2001�. In addition, the height of the maximum starts de-
creasing with �. All these characteristics are signatures
of the soft nature of the repulsion and have also been
observed in the cases of two related systems: neutral star
polymers �Likos et al., 1998; Watzlawek et al., 1998� as
well as ionic microgels �Gottwald et al., 2004, 2005� show
similar behavior in the density dependence of their pair
correlation functions.

The calculation of the phase diagram requires the
evaluation of the �Helmholtz� free energies of candidate
phases and the comparison among those. Here one has
to be careful how to carry out this task since Veff�D� is
an effective and not a microscopic potential; stated dif-
ferently, Veff�D� is itself a partial Helmholtz free energy
�see Eq. �27��. As pointed out �Louis, 2002�, effective
interaction potentials have to be used in the context of
the procedure in which they have been derived when
one aims at calculating thermodynamic quantities on
their basis. Whereas various thermodynamics routes �en-
ergy, pressure, compressibility, etc.� to the free energy
should all lead to the same result when microscopic
state-independent interactions are employed, this is not
the case for effective state-dependent potentials. Hoff-
mann et al. �2004� demonstrated that for the way in
which Veff�D� of PE stars has been derived, the correct
way to proceed with the thermodynamics of the fluid
system is based on the functional relationship �Evans,
1979�

�Fex�Veff�
�Veff�r − r��

=
1
2

�2g�r − r�� , �44�

in which the excess Helmholtz free energy of the system
Fex is viewed as a functional of Veff�D�. This relationship
then leads to the so-called 	-integration route to the ex-
cess free energy per volume fex���. Here one introduces
a scaled version of the effective interaction Veff

�	��D�
�	Veff�D� at fixed density �, where 0�	�1. For each 	
value, the corresponding radial distribution function
g�	��D� is calculated and fex��� is expressed as �Hoffmann
et al., 2004�

fex��� =
1
2

�2� d3DVeff�D��
0

1

d	g�	��D� . �45�

To obtain the full free-energy density ffl��� of the fluid
state, the ideal term fid���=kBT��ln���3�−1� as well as a

volume term fvol��� has to be added to fex��� above.
Whereas the former arises, evidently, from the integra-
tion of the PE-star momenta in the partition function of
the system, the latter has its origin at the integrated-out
counterion degrees of freedom. Accordingly, it includes
not only the counterions’ kinetic contributions to the
free energy but also those from their binding to the mac-
roions. Volume terms obtain their name from the fact
that they arise from a configuration-independent term in
the effective Hamiltonian and they have, therefore, no
effect on the correlation functions of the PE stars but
they do influence the thermodynamics. Their existence
is ubiquitous in charged systems, in particular, both in
the classical �van Roij et al., 1999; Harreis et al., 2002,
2003� and in the quantal �Ashcroft and Stroud, 1987�
regimes. Since the process leading to Veff�D� for PE
stars has been one that commences at the microscopic
level, one can keep track of the volume term, which
turns out to be given by fvol���=�f1���; here f1��� is the
free energy of a single star and its dependence on �
comes through the freedom of counterions to partition
themselves between its interior and its exterior. Similarly
to Veff�D�, the density dependence of f1��� disappears
for ���* and the volume term becomes an irrelevant
linear function of the density that does not affect pos-
sible phase boundaries.

The Helmholtz free energy of the fluid is then com-
pared with that of several candidate solid phases fsol���.
Hoffmann et al. obtained the latter by employing an ap-
proximate Einstein model for the crystals, supplement-
ing of course the free energies of the latter with the
volume terms �Hoffmann et al., 2004�. The resulting
phase diagram is shown in Fig. 20. The diagram displays
the features that are characteristic for ultrasoft interac-
tion potentials: absence of freezing below a minimum
functionality fmin, as well as the stability of a multitude
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calculated phase boundaries at the points shown. From Hoff-
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of exotic structures at high concentrations, although the
interaction is a simple spherically symmetric one. Some
powerful and elegant geometric arguments for the latter
characteristic have been suggested by Ziherl and Ka-
mien �2000, 2001�, making an analogy between soft par-
ticles and soap froths. All of these features have also
been seen in the phase diagrams of other similar soft
systems, such as neutral star polymers �Watzlawek et al.,
1999� and ionic microgels �Gottwald et al., 2004, 2005�.
The simplest model in which re-entrant melting, accom-
panied by a maximum freezing temperature Tmax �the
analog of the minimum freezing functionality fmin for
stars�, is the Gaussian core model of Stillinger �1976�
�Lang et al., 2000�.

Self-organization of poly�acrylic acid� PE stars with f
=30 and 97 arms into bcc crystals at the overlap concen-
tration has been experimentally seen in the SAXS study
of Furukawa and Ishizu �2005�, in agreement with the
theoretical predictions in Fig. 20. The occurrence of fcc
crystals at lower densities predicted by Hoffmann et al.
�2004� has not been reported however. On the other
hand, recent experimental work by Mohanty and Rich-
tering �2008� on ionic microgels confirmed the sequence
of transitions: fluid→ fcc→bcc→amorphous with in-
creasing concentration � shown in Fig. 21. The last in
this cascade of phases is an amorphous glassy state in
the experiment, whereas an ergodic fluid is predicted by
theory; it remains to be seen whether this glass could be,
in fact, a very viscous fluid or a metastable state with
some other crystal as the true equilibrium.

Finally, we discuss the magnitude and effects of many-
body forces, i.e., terms in the potential energy of the
effective Hamiltonian that depend on n-particle coordi-
nates, n�3, which are ubiquitous as a result of the
coarse-graining procedure �Dijkstra, van Roij, and
Evans, 1999�. At concentrations considerably higher
than �*, higher-order effective interactions that go be-
yond the pair potential approximation begin, of course,
to also play a role. For PE stars, which interact mainly

through the mechanism of mutual reduction of the vol-
ume in their interior available to counterions, one ex-
pects that the strength of n-body forces will scale
roughly with the volume of regions in which n spheres of
radius R mutually overlap. These contributions are den-
sity and geometry dependent and thus require much
more effort in being parametrized than pair interactions.
For hard colloids, silica particle with diameter of 990 nm
carrying a few thousand elementary charges, the n=3
body forces have been measured with optical tweezers
and analyzed theoretically via Poisson-Boltzmann
theory �Brunner et al., 2004; Dobnikar et al., 2004�. It
was found that when three particles are arranged in an
isosceles triangle configuration, the three-body potential
is comparable to the pair interaction for typical triangle
sizes of a few nanometers and attractive in nature. On
the other hand, if two of the particles are farther than
�5 �m apart, three-body forces can be neglected. The
mechanism leading to many-body forces for PE stars is
the same as that for hard colloids, i.e., the rearrange-
ment of the counterion cloud, with the important differ-
ence that counterions penetrate inside the stars. An es-
timate can be made, leading to the result that n-body
forces scale roughly- as the n-body volume overlaps be-
tween penetrable spheres at a given density �. In this
sense, preliminary calculations show that two-body po-
tentials are still dominant for concentrations up to �
�2�*, similar to the case of neutral star polymers �von
Ferber et al., 2000�.

V. CONCLUSIONS AND OUTLOOK

We have presented a review of recent work on star-
shaped polyelectrolytes, with emphasis on the process of
coarse graining, which allows a full bridging of the gap
from the microscopic to the macroscopic length scales.
For osmotic PE stars, which feature strong stretching of
their arms and adsorb the majority of the counterions
within their coronae, the osmostic pressure of these
counterions is the key quantity that determines both
their sizes and their effective interactions. Charged star
polymers combine in their physics aspects of star poly-
mers �softness, penetrability, and hybrid character be-
tween chains and hard spheres� and charged colloids
�mobile counterion clouds, Yukawa screening at large
separations, and dependence of properties on added
salt�. For salt-free cases, PE stars are quasineutral due to
the strong adsorption of the counterions in their interior.

At the microscopic level, PE stars are quite different
than their neutral counterparts due to the presence of
charged monomers along their backbones. Nevertheless,
the effective interaction between PE stars has some
striking similarities with that of the neutral ones in the
sense that they are both soft and entropic in origin; con-
comitantly, one obtains also similar mesoscopic correla-
tions and macroscopic phase behavior for both systems.
For neutral athermal star polymers, it is the entropy of
the self-avoiding chains that leads to an effective repul-
sion whereas for charged ones it is the entropy of the
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trapped counterions. Furthermore, other penetrable
polymer-based colloids, such as microgels and dendrim-
ers, also show similarities to star-shaped systems, the ori-
gin of which can be traced in the ultrasoft character of
the effective interaction. This allows us to consider this
large variety of systems as members of a novel family of
ultrasoft colloids, which indeed have attracted consider-
able attention in the literature in the last decade.

Notwithstanding these similarities, the microscopic
differences between the soft systems can express them-
selves strongly when suitable external fields that couple
to the relevant degrees of freedom are introduced.
Athermal star polymers, for instance, do not adsorb on
flat hard surfaces since they experience a fully repulsive
interaction with the walls. As all charged systems, how-
ever, PE stars respond strongly to external electric fields.
In fact, by applying sufficiently strong �but still through-
out realistic� electric fields, one can separate the PE star
from its own counterions and bring about various types
of adsorption of PE stars on oppositely charged walls
�Konieczny and Likos, 2007�. The complexation of PE
stars with oppositely charged spherical colloids is an-
other topic of current interest, where one can tune the
relative charges and sizes of the colloid and the star to
bring about supercomplexes that can serve as novel
patchy colloids �Likos et al., 2008�. Finally, recent
progresses in constructing DNA- or viral-based sparse
polyelectrolyte brushes with stiff or semiflexible arms
�Kegler et al., 2007, 2008; Huang et al., 2009� seems to be
another direction of interest since little is known about
the properties and interaction of these novel colloidal
particles in the nanometer to micrometer domains.
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