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I. HISTORICAL INTRODUCTION

This Colloquium article is based on the lectures that
one of us �V.M.Y.� has given during the last nine years,
when econophysics became a popular subject. Econo-
physics is a new interdisciplinary research field applying
methods of statistical physics to problems in economics
and finance. The term “econophysics” was first intro-
duced by the theoretical physicist Eugene Stanley in
1995 at the conference Dynamics of Complex Systems,
which was held in Kolkata as a satellite meeting to the
STATPHYS-19 conference in China �Chakrabarti, 2005;
Carbone et al., 2007�. The term appeared first by Stanley
et al. �1996� in the proceedings of the Kolkata confer-
ence. This work presented a manifesto of the new field,
arguing that “behavior of large numbers of humans �as
measured, e.g., by economic indices� might conform to

analogs of the scaling laws that have proved useful in
describing systems composed of large numbers of inani-
mate objects” �Stanley et al., 1996�. Soon the first econo-
physics conferences were organized: International Work-
shop on Econophysics, Budapest, 1997 and International
Workshop on Econophysics and Statistical Finance, Pal-
ermo, 1998 �Carbone et al., 2007�, and An Introduction
to Econophysics by Mantegna and Stanley �1999� was
published.

The term econophysics was introduced by analogy
with similar terms, such as astrophysics, geophysics, and
biophysics, which describe applications of physics to dif-
ferent fields. Particularly important is the parallel with
biophysics, which studies living organisms, but they still
obey the laws of physics. Econophysics does not literally
apply the laws of physics, such as Newton’s laws or quan-
tum mechanics, to humans. It uses mathematical meth-
ods developed in statistical physics to study statistical
properties of complex economic systems consisting of a
large number of humans. As such, it may be considered
as a branch of applied theory of probabilities. However,
statistical physics is distinctly different from mathemati-
cal statistics in its focus, methods, and results.

Originating from physics as a quantitative science,
econophysics emphasizes quantitative analysis of large
amounts of economic and financial data, which became
increasingly available with the introduction of comput-
ers and the internet. Econophysics distances itself from
the verbose, narrative, and ideological style of political
economy and is closer to econometrics in its focus.
Studying mathematical models of a large number of in-
teracting economic agents, econophysics has much com-
mon ground with the agent-based modeling and simula-
tion. Correspondingly, it distances itself from the
representative-agent approach of traditional economics,
which by definition ignores statistical and heterogeneous
aspects of the economy.

REVIEWS OF MODERN PHYSICS, VOLUME 81, OCTOBER–DECEMBER 2009

0034-6861/2009/81�4�/1703�23� ©2009 The American Physical Society1703

http://dx.doi.org/10.1103/RevModPhys.81.1703


Another direction related to econophysics has been
advocated by Serge Galam since early 1980 under the
name of sociophysics �Galam, 2004�, with the first ap-
pearance of the term by Galam et al. �1982�. It echoes
the term “physique sociale” proposed in the nineteenth
century by Auguste Comte, the founder of sociology.
Unlike econophysics, the term “sociophysics” did not
catch on when first introduced, but it is returning with
the popularity of econophysics and active support from
some physicists �Weidlich, 2000; Schweitzer, 2003;
Stauffer, 2004�. While the principles of both fields have
much in common, econophysics focuses on the narrower
subject of economic behavior of humans, where more
quantitative data are available, whereas sociophysics
studies a broader range of social issues. The boundary
between econophysics and sociophysics is not sharp, and
the two fields enjoy a good rapport �Chakrabarti,
Chakraborti, and Chatterjee, 2006�.

Historically, statistical mechanics was developed in the
second half of the nineteenth century by James Clerk
Maxwell, Ludwig Boltzmann, and Josiah Willard Gibbs.
These physicists believed in the existence of atoms and
developed mathematical methods for describing their
statistical properties. There are interesting connections
between the development of statistical physics and sta-
tistics of social phenomena, which were recently high-
lighted by Philip Ball �2002, 2004�.

Collection and study of “social numbers,” such as the
rates of death, birth, and marriage, has been growing
progressively since the seventeenth century �Ball, 2004�.
The term “statistics” was introduced in the eighteenth
century to denote these studies dealing with the civil
“states,” and its practitioners were called “statists.”
Popularization of social statistics in the nineteenth cen-
tury is particularly accredited to the Belgian astronomer
Adolphe Quetelet. Before the 1850s, statistics was con-
sidered an empirical arm of political economy, but then
it started to transform into a general method of quanti-
tative analysis suitable for all disciplines. It stimulated
physicists to develop statistical mechanics in the second
half of the nineteenth century.

Rudolf Clausius started development of the kinetic
theory of gases, but it was James Clerk Maxwell who
made a decisive step of deriving the probability distribu-
tion of velocities of molecules in a gas. Historical studies
showed �Ball, 2004� that, in developing statistical me-
chanics, Maxwell was strongly influenced and encour-
aged by the widespread popularity of social statistics at
the time �Gillispie, 1963�.1 This approach was further
developed by Ludwig Boltzmann, who was very explicit
about its origins �Ball, 2004, p. 69�:

“The molecules are like individuals, … and the prop-
erties of gases only remain unaltered, because the
number of these molecules, which on the average
have a given state, is constant.”

In his book Populäre Schrifen, Boltzmann �1905� praised
Josiah Willard Gibbs for systematic development of sta-
tistical mechanics. Then, Boltzmann says2

“This opens a broad perspective, if we do not only
think of mechanical objects. Let’s consider to apply
this method to the statistics of living beings, society,
sociology and so forth.”

It is worth noting that many now-famous economists
were originally educated in physics and engineering. Vil-
fredo Pareto earned a degree in mathematical sciences
and a doctorate in engineering. Working as a civil engi-
neer, he collected statistics demonstrating that distribu-
tions of income and wealth in a society follow a power
law �Pareto, 1897�. He later became a professor of eco-
nomics at Lausanne, where he replaced Léon Walras,
also an engineer by education. The influential American
economist Irving Fisher was a student of Gibbs. How-
ever, most of the mathematical apparatus transferred to
economics from physics was that of Newtonian mechan-
ics and classical thermodynamics �Mirowski, 1989; Smith
and Foley, 2008�. It culminated in the neoclassical con-
cept of mechanistic equilibrium where the “forces” of
supply and demand balance each other. The more gen-
eral concept of statistical equilibrium largely eluded
mainstream economics.

With time, both physics and economics became more
formal and rigid in their specializations, and the social
origin of statistical physics was forgotten. The situation
is well summarized by Ball �2004�:

“Today physicists regard the application of statistical
mechanics to social phenomena as a new and risky
venture. Few, it seems, recall how the process origi-
nated the other way around, in the days when physi-
cal science and social science were the twin siblings of
a mechanistic philosophy and when it was not in the
least disreputable to invoke the habits of people to
explain the habits of inanimate particles.”

Some physicists and economists attempted to connect
the two disciplines during the twentieth century. Freder-
ick Soddy �1933�, the Nobel Prize winner in chemistry
for his work on radioactivity, published the book Wealth,
Virtual Wealth and Debt, where he argued that the real
wealth is derived from the energy use in transforming
raw materials into goods and services, and not from
monetary transactions. He also warned about dangers of
excessive debt and related “virtual wealth,” thus antici-
pating the Great Depression. His ideas were largely ig-
nored at the time, but resonate today �Defilla, 2007�.
The theoretical physicist Ettore Majorana �1942� argued
in favor of applying the laws of statistical physics to so-
cial phenomena in a paper published after his mysteri-
ous disappearance. The statistical physicist Elliott Mon-
troll co-authored the book Introduction to Quantitative
Aspects of Social Phenomena �Montroll and Badger,

1V.M.Y. is grateful to Stephen G. Brush for this reference.

2Cited from Boltzmann �2006�. V.M.Y. is grateful to Michael
E. Fisher for this quote.
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1974�. Several economists �Föllmer, 1974; Blume, 1993;
Foley, 1994; Durlauf, 1997� applied statistical physics to
economic problems. The mathematicians Farjoun and
Machover �1983� argued that many paradoxes in classi-
cal political economy can be resolved if one adopts a
probabilistic approach. An early attempt to bring to-
gether the leading theoretical physicists and economists
at the Santa Fe Institute was not entirely successful
�Anderson, Arrow, and Pines, 1988�. However, by the
late 1990s, the attempts to apply statistical physics to
social phenomena finally coalesced into the robust
movements of econophysics and sociophysics.

Current standing of econophysics within the physics
and economics communities is mixed. Although an entry
on econophysics has appeared in the New Palgrave Dic-
tionary of Economics �Rosser, 2008a�, it is fair to say that
econophysics has not yes been accepted by mainstream
economics. Nevertheless, a number of open-minded
nontraditional economists have joined this movement,
and the number is growing. Under these circumstances,
econophysicists have most of their papers published in
physics journals. The journal Physica A: Statistical Me-
chanics and its Applications has emerged as the leader in
econophysics publications and has attracted articles
from some economists. Gradually, reputable economics
journals are also starting to publish econophysics papers
�Lux and Sornette, 2002; Gabaix et al., 2006; Wyart and
Bouchaud, 2007�. The mainstream physics community is
generally sympathetic to econophysics, although it is not
uncommon for econophysics papers to be rejected on
the grounds that “it is not physics.” There are regular
conferences on econophysics, such as Applications of
Physics in Financial Analysis �sponsored by the Euro-
pean Physical Society�, Nikkei Econophysics Sympo-
sium, Econophysics Colloquium, and Econophys-
Kolkata �Chakrabarti, 2005; Chatterjee, Yarlagadda, and
Chakrabarti, 2005�. Econophysics sessions are included
in the annual meetings of physical societies and statisti-
cal physics conferences. The overlap with economists is
the strongest in the field of agent-based simulation. Not
surprisingly, the conference series WEHIA/ESHIA,
which deals with heterogeneous interacting agents, regu-
larly includes sessions on econophysics. More informa-
tion can be found in Farmer, Shubik, and Smith �2005�;
Samanidou et al. �2007�; and on the web portal Econo-
physics Forum, http://www.unifr.ch/econophysics/.

II. STATISTICAL MECHANICS OF MONEY
DISTRIBUTION

When modern econophysics started in the middle of
1990s, its attention was primarily focused on analysis of
financial markets. Soon after, another direction, closer to
economics than finance, has emerged. It studies the
probability distributions of money, wealth, and income
in a society and overlaps with the long-standing line of

research in economics studying inequality in a society.3

Many papers in the economic literature �Gibrat, 1931;
Kalecki, 1945; Champernowne, 1953� use a stochastic
process to describe dynamics of individual wealth or in-
come and to derive their probability distributions. One
might call this a one-body approach because wealth and
income fluctuations are considered independently for
each economic agent. Inspired by Boltzmann’s kinetic
theory of collisions in gases, econophysicists introduced
an alternative two-body approach, where agents per-
form pairwise economic transactions and transfer money
from one agent to another. Actually, this approach was
pioneered by the sociologist John Angle �1986, 1992,
1993, 1996, 2002� in the 1980s. However, his work was
largely unknown to econophysicts until it was brought to
their attention by the economist Thomas Lux �2005�.
Now, Angle’s work is widely cited in econophysics litera-
ture �Angle, 2006�. Meanwhile, the physicists Ispolatov,
Krapivsky, and Redner �1998� independently introduced
a statistical model of pairwise money transfer between
economic agents, which is equivalent to the model of
Angle. Soon, three influential papers by Bouchaud and
Mézard �2000�; Chakraborti and Chakrabarti �2000�; and
Dregulescu and Yakovenko �2000� appeared and gener-
ated an expanding wave of follow-up publications. For
pedagogical reasons, we start reviewing this subject with
the simplest version of the pairwise money transfer
models presented in Dregulescu and Yakovenko �2000�.
This model is the most closely related to the traditional
statistical mechanics, which we review first. Then we dis-
cuss the other models mentioned above, as well as nu-
merous follow-up papers.

Interestingly, the study of pairwise money transfer and
the resulting statistical distribution of money has virtu-
ally no counterpart in modern economics, so econo-
physicists initiated a new direction here. Only the search
theory of money �Kiyotaki and Wright, 1993� is some-
what related to it. This theory was an inspiration for the
early econophysics paper by Bak, Nørrelykke, and Shu-
bik �1999� studying dynamics of money. However, a
probability distribution of money among the agents was
only recently obtained within the search-theoretical ap-
proach by the economist Miguel Molico �2006�. His dis-
tribution is qualitatively similar to the distributions
found by Angle �1986, 1992, 1993, 1996, 2002, 2006� and
by Ispolatov, Krapivsky, and Redner �1998�, but its func-
tional form is unknown because it was obtained only
numerically.

A. The Boltzmann-Gibbs distribution of energy

The fundamental law of equilibrium statistical me-
chanics is the Boltzmann-Gibbs distribution. It states
that the probability P��� of finding a physical system or

3See, for example, Pareto �1897�; Gibrat �1931�; Kalecki
�1945�; Champernowne �1953�; Kakwani �1980�; Champer-
nowne and Cowell �1998�; Atkinson and Bourguignon �2000�;
Piketty and Saez �2003�; Atkinson and Piketty �2007�.
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subsystem in a state with the energy � is given by the
exponential function

P��� = ce−�/T, �1�

where T is the temperature and c is a normalizing con-
stant �Wannier, 1987�. Here we set the Boltzmann con-
stant kB to unity by choosing the energy units for mea-
suring the physical temperature T. Then, the expectation
value of any physical variable x can be obtained as

�x� =

�
k

xke−�k/T

�
k

e−�k/T
, �2�

where the sum is taken over all states of the system.
Temperature is equal to the average energy per particle
T����, up to a numerical coefficient of the order of 1.

Equation �1� can be derived in different ways �Wan-
nier, 1987�. All derivations involve the two main ingre-
dients: statistical character of the system and conserva-
tion of energy �. One of the shortest derivations can be
summarized as follows. We divide the system into two
�generally unequal� parts. Then, the total energy is the
sum of the parts �=�1+�2, whereas the probability is the
product of probabilities P���=P��1�P��2�. The only solu-
tion of these two equations is the exponential function
�1�.

A more sophisticated derivation, proposed by Boltz-
mann, uses the concept of entropy. We consider N par-
ticles with the total energy E. Let us divide the energy
axis into small intervals �bins� of width �� and count the
number of particles Nk having the energies from �k to
�k+��. The ratio Nk /N=Pk gives the probability for a
particle to have the energy �k. We now calculate the
multiplicity W, which is the number of permutations of
the particles between different energy bins such that the
occupation numbers of the bins do not change. This
quantity is given by the combinatorial formula in terms
of the factorials

W =
N!

N1!N2!N3!. . .
. �3�

The logarithm of multiplicity is called the entropy S
=ln W. In the limit of large numbers, the entropy per
particle can be written in the following form using the
Stirling approximation for the factorials

S

N
= − �

k

Nk

N
ln�Nk

N
� = − �

k
Pk ln Pk. �4�

Now we want to find what distribution of particles
among different energy states has the highest entropy,
i.e., the highest multiplicity, provided the total energy of
the system E=�kNk�k has a fixed value. Solution of this
problem can be easily obtained using the method of
Lagrange multipliers �Wannier, 1987�, and the answer is
given by the exponential distribution �1�.

The same result can be also derived from the ergodic
theory, which says that the many-body system occupies

all possible states of a given total energy with equal
probabilities. Then it is straightforward to show �López-
Ruiz et al., 2008� that the probability distribution of the
energy of an individual particle is given by Eq. �1�.

B. Conservation of money

The derivations outlined in Sec. II.A are very general
and only use the statistical character of the system and
the conservation of energy. As a result, one may expect
that the exponential Boltzmann-Gibbs distribution �1�
would apply to other statistical systems with a conserved
quantity.

The economy is a big statistical system with millions
of participating agents, so it is a promising target for
applications of statistical mechanics. Is there a con-
served quantity in the economy? Dregulescu and Yak-
ovenko �2000� argued that such a conserved quantity is
money m. Indeed, the ordinary economic agents can
only receive money from and give money to other
agents. They are not permitted to “manufacture” money,
e.g., to print dollar bills. Consider an economic transac-
tion between agents i and j. When the agent i pays
money �m to the agent j for some goods or services, the
money balances of the agents change as follows:

mi → mi� = mi − �m ,

mj → mj� = mj + �m . �5�

The total amount of money of the two agents before and
after transaction remains the same,

mi + mj = mi� + mj�, �6�

i.e., there is a local conservation law for money. The rule
�5� for the transfer of money is analogous to the transfer
of energy from one molecule to another in molecular
collisions in a gas, and Eq. �6� is analogous to conserva-
tion of energy in such collisions. Conservative models of
this kind are also studied in the economic literature
�Kiyotaki and Wright, 1993; Molico, 2006�.

We emphasize that, in the model of Dregulescu and
Yakovenko �2000� 	as in the economic models of Kiyo-
taki and Wright �1993�; Molico �2006�
, the transfer of
money from one agent to another represents payment
for goods and services in a market economy. However,
the model of Dregulescu and Yakovenko �2000� only
keeps track of money flow, and does not keep track of
what goods and service are delivered. One reason for
this is that many goods, e.g., food and other supplies,
and most services, e.g., getting a haircut or going to a
movie, are not tangible and disappear after consump-
tion. Because they are not conserved, and also because
they are measured in different physical units, it is not
very practical to keep track of them. In contrast, money
is measured in the same unit �within a given country
with a single currency� and is conserved in local transac-
tions �6�, so it is straightforward to keep track of money
flow. It is also important to realize that an increase in
material production does not produce an automatic in-
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crease in money supply. The agents can grow apples on
trees, but cannot grow money on trees. Only a central
bank has the monopoly of changing the monetary base
Mb �McConnell and Brue, 1996�. �Debt and credit issues
are discussed separately in Sec. II.D.�

Unlike ordinary economic agents, a central bank or a
central government can inject money into the economy,
thus changing the total amount of money in the system.
This process is analogous to an influx of energy into a
system from external sources, e.g., the Earth receives
energy from the Sun. Dealing with these situations,
physicists start with an idealization of a closed system in
thermal equilibrium and then generalize to an open sys-
tem subject to an energy flux. As long as the rate of
money influx from central sources is slow compared with
relaxation processes in the economy and does not cause
hyperinflation, the system is in quasistationary statistical
equilibrium with slowly changing parameters. This situ-
ation is analogous to heating a kettle on a gas stove
slowly, where the kettle has a well-defined, but slowly
increasing, temperature at any moment of time. A flux
of money may be also produced by international trans-
fers across the boundaries of a country. This process in-
volves complicated issues of multiple currencies in the
world and their exchange rates �McCauley, 2008�. Here
we use an idealization of a closed economy for a single
country with a single currency. Such an idealization is
common in economic literature. For example, in the
Handbook of Monetary Economics �Friedman and
Hahn, 1990�, only the last chapter out of 23 chapters
deals with an open economy.

Another potential problem with conservation of
money is debt. This issue will be discussed in Sec. II.D.
As a starting point, Dregulescu and Yakovenko �2000�
considered simple models, where debt is not permitted,
which is also a common idealization in some economic
literature �Kiyotaki and Wright, 1993; Molico, 2006�.
This means that money balances of the agents cannot go
below zero: mi�0 for all i. Transaction �5� takes place
only when an agent has enough money to pay the price:
mi��m, otherwise the transaction does not take place.
If an agent spends all the money, the balance drops to
zero mi=0, so the agent cannot buy any goods from
other agents. However, this agent can still receive money
from other agents for delivering goods or services to
them. In real life, money balance dropping to zero is not
at all unusual for people who live from paycheck to pay-
check.

Enforcement of the local conservation law �6� is the
key feature for successful functioning of money. If the
agents were permitted to “manufacture” money, they
would be printing money and buying all goods for noth-
ing, which would be a disaster. The physical medium of
money is not essential here, as long as the local conser-
vation law is enforced. The days of gold standard are
long gone, so money today is truly the fiat money, de-
clared to be money by the central bank. Money may be
in the form of paper currency, but today it is more often
represented by digits on computerized bank accounts.
The local conservation law �6� is consistent with the fun-

damental principles of accounting, whether in the single-
entry or the double-entry form. More discussion of
banks, debt, and credit will be given in Sec. II.D. How-
ever, the macroeconomic monetary policy issues, such as
money supply and money demand �Friedman and Hahn,
1990�, are outside of the scope of this paper. Our goal is
to investigate the probability distribution of money
among economic agents. For this purpose, it is appropri-
ate to make the simplifying macroeconomic idealiza-
tions, as described above, in order to ensure overall sta-
bility of the system and existence of statistical
equilibrium in the model. The concept of “equilibrium”
is a very common idealization in economic literature,
even though the real economies might never be in equi-
librium. Here we extend this concept to a statistical
equilibrium, which is characterized by a stationary prob-
ability distribution of money P�m�, as opposed to a me-
chanical equilibrium, where the “forces” of demand and
supply match.

C. The Boltzmann-Gibbs distribution of money

Having recognized the principle of local money con-
servation, Dregulescu and Yakovenko �2000� argued
that the stationary distribution of money P�m� should be
given by the exponential Boltzmann-Gibbs function
analogous to Eq. �1�,

P�m� = ce−m/Tm. �7�

Here c is a normalizing constant and Tm is the “money
temperature,” which is equal to the average amount of
money per agent T= �m�=M /N, where M is the total
money and N is the number of agents.4

To verify this conjecture, Dregulescu and Yakovenko
�2000� performed agent-based computer simulations of
money transfers between agents. Initially all agents were
given the same amount of money, say, $1000. Then, a
pair of agents �i , j� was randomly selected, the amount
�m was transferred from one agent to another, and the
process was repeated many times. Time evolution of the
probability distribution of money P�m� have been given
by Chen and Yakovenko �2007� and Wright �2007�. After
a transitory period, money distribution converges to the
stationary form shown in Fig. 1. As expected, the distri-
bution is well fitted by the exponential function �7�.

Several different rules for �m were considered by
Dregulescu and Yakovenko �2000�. In one model, the
transferred amount was fixed to a constant �m= $1.
Economically, it means that all agents were selling their
products for the same price �m= $1. Computer anima-
tion �Chen and Yakovenko, 2007� showed that the initial
distribution of money first broadens to a symmetric
Gaussian curve, characteristic for a diffusion process.
Then, the distribution starts to pile up around the m=0
state, which acts as the impenetrable boundary because

4Because debt is not permitted in this model, we have M
=Mb, where Mb is the monetary base �McConnell and Brue,
1996�.
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of the imposed condition m�0. As a result, P�m� be-
comes skewed �asymmetric� and eventually reaches the
stationary exponential shape, as shown in Fig. 1. The
boundary at m=0 is analogous to the ground-state en-
ergy in statistical physics. Without this boundary condi-
tion, the probability distribution of money would not
reach a stationary state. Computer animations �Chen
and Yakovenko, 2007; Wright, 2007� also showed how
the entropy of money distribution, defined as S /N
=−�kP�mk�ln P�mk�, grows from the initial value S=0,
where all agents have the same money, to the maximal
value at the statistical equilibrium.

While the model with �m=1 is very simple and in-
structive, it is not realistic, because all prices are taken
to be the same. In another model considered by Dre-
gulescu and Yakovenko �2000�, �m in each transaction is
taken to be a random fraction of the average amount of
money per agent, i.e., �m=��M /N�, where � is a uni-
formly distributed random number between 0 and 1.
The random distribution of �m is supposed to represent
the wide variety of prices for different products in the
real economy. It reflects the fact that agents buy and
consume many different types of products, some of them
simple and cheap, some sophisticated and expensive.
Moreover, different agents like to consume these prod-
ucts in different quantities, so there is a variation in the
paid amounts �m, even when the unit price of the same
product is constant. Computer simulation of this model
produces exactly the same stationary distribution �7�, as
in the first model. Computer animation for this model is
also given by Chen and Yakovenko �2007�.

The final distribution is universal despite different
rules for �m. To amplify this point further, Dregulescu
and Yakovenko �2000� also considered a toy model,
where �m was taken to be a random fraction of the

average amount of money of the two agents: �m=��mi

+mj� /2. This model produced the same stationary distri-
bution �7� as the two other models.

The models of pairwise money transfer are attractive
in their simplicity, but they represent a rather primitive
market. Modern economy is dominated by big firms,
which consist of many agents, so Dregulescu and Yak-
ovenko �2000� also studied a model with firms. One
agent at a time is appointed to become a “firm.” The
firm borrows capital K from another agent and returns it
with interest hK, hires L agents and pays them wages �,
manufactures Q items of a product, sells them to Q
agents at a price p, and receives profit F=pQ−�L−hK.
All of these agents are randomly selected. The param-
eters of the model are optimized following a procedure
from economics textbooks �McConnell and Brue, 1996�.
The aggregate demand-supply curve for the product is
given by p�Q�=v /Q�, where Q is the quantity consum-
ers would buy at the price p and � and v are some pa-
rameters. The production function of the firm has the
traditional Cobb-Douglas form Q�L ,K�=L�K1−�, where
� is a parameter. Then the profit of the firm F is maxi-
mized with respect to K and L. The net result of the firm
activity is a many-body transfer of money, which still
satisfies the conservation law. Computer simulation of
this model generates the same exponential distribution
�7�, independently of the model parameters. The reasons
for the universality of the Boltzmann-Gibbs distribution
and its limitations are discussed in Sec. II.F.

After the paper by Dregulescu and Yakovenko �2000�
appeared, the Italian econophysicists Patriarca et al.
�2005� found that similar ideas had been published ear-
lier in obscure Italian journals by Eleonora Bennati
�1988, 1993�. It was proposed to call these models the
Bennati-Dregulescu-Yakovenko game �Scalas et al.,
2006; Garibaldi et al., 2007�. The Boltzmann distribution
was independently applied to social sciences by the
physicist Jürgen Mimkes �2000� and by Mimkes and Wil-
lis �2005� using the Lagrange principle of maximization
with constraints. The exponential distribution of money
was also found by the economist Martin Shubik �1999�
using a Markov chain approach to strategic market
games. A long time ago, Benoit Mandelbrot �1960� ob-
served

“There is a great temptation to consider the ex-
changes of money which occur in economic interac-
tion as analogous to the exchanges of energy which
occur in physical shocks between gas molecules.”

He realized that this process should result in the expo-
nential distribution, by analogy with the barometric dis-
tribution of density in the atmosphere. However, he dis-
carded this idea, because it does not produce the Pareto
power law, and proceeded to study the stable Lévy dis-
tributions. Ironically, the actual economic data, dis-
cussed in Secs. III.C and IV.A, do show the exponential
distribution for the majority of the population. More-
over, the data have a finite variance, so the stable Lévy
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FIG. 1. �Color online� Histogram and points: Stationary prob-
ability distribution of money P�m� obtained in agent-based
computer simulations. Solid curves: Fits to the Boltzmann-
Gibbs law �7�. Vertical line: The initial distribution of money.
From Dregulescu and Yakovenko, 2000.
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distributions are not applicable because of their infinite
variance.

D. Models with debt

We now discuss how the results change when debt is
permitted.5 From the standpoint of individual economic
agents, debt may be considered as negative money.
When an agent borrows money from a bank �considered
here as a big reservoir of money�,6 the cash balance of
the agent �positive money� increases, but the agent also
acquires a debt obligation �negative money�, so the total
balance �net worth� of the agent remains the same. Thus,
the act of borrowing money still satisfies a generalized
conservation law of the total money �net worth�, which
is now defined as the algebraic sum of positive �cash M�
and negative �debt D� contributions: M−D=Mb. After
spending some cash in binary transactions �5�, the agent
still has the debt obligation �negative money�, so the to-
tal money balance mi of the agent �net worth� becomes
negative. We see that the boundary condition mi�0, dis-
cussed in Sec. II.B, does not apply when debt is permit-
ted, so m=0 is not the ground state any more. The con-
sequence of permitting debt is not a violation of the
conservation law �which is still preserved in the general-
ized form for net worth�, but a modification of the
boundary condition by permitting agents to have nega-
tive balances mi	0 of net worth. A more detailed dis-
cussion of positive and negative money and the book-
keeping accounting from the econophysics point of view
was given by the physicist Dieter Braun �2001� and Fis-
cher and Braun �2003a, 2003b�.

Now we can repeat the simulation described in Sec.
II.C without the boundary condition m�0 by allowing
agents to go into debt. When an agent needs to buy a
product at a price �m exceeding his money balance mi,
the agent is now permitted to borrow the difference
from a bank and, thus, to buy the product. As a result of
this transaction, the new balance of the agent becomes
negative: mi�=mi−�m	0. Notice that the local conser-
vation laws �5� and �6� are still satisfied, but they involve
negative values of m. If the simulation is continued fur-
ther without any restrictions on the debt of the agents,
the probability distribution of money P�m� never stabi-
lizes, and the system never reaches a stationary state. As
time goes on, P�m� keeps spreading in a Gaussian man-
ner unlimitedly toward m=+
 and m=−
. Because of
the generalized conservation law discussed above, the
first moment �m�=Mb /N of the algebraically defined
money m remains constant. It means that some agents

become richer with positive balances m�0 at the ex-
pense of other agents going further into debt with nega-
tive balances m	0, so that M=Mb+D.

Common sense, as well as the experience with the cur-
rent financial crisis, tells us that an economic system can-
not be stable if unlimited debt is permitted.7 In this case,
agents can buy any goods without producing anything in
exchange by simply going into unlimited debt. Arguably,
the current financial crisis was caused by the enormous
debt accumulation in the system, triggered by subprime
mortgages and financial derivatives based on them. A
widely expressed opinion is that the current crisis is not
the problem of liquidity, i.e., a temporary difficulty in
cash flow, but the problem of insolvency, i.e., the inher-
ent inability of many participants pay back their debts.

Detailed discussion of the current economic situation
is not a subject of this paper. Returning to the idealized
model of money transfers, one would need to impose
some sort of modified boundary conditions in order to
prevent unlimited growth of debt and to ensure overall
stability of the system. Dregulescu and Yakovenko
�2000� considered a simple model where the maximal
debt of each agent is limited to a certain amount md.
This means that the boundary condition mi�0 is now
replaced by the condition mi�−md for all agents i. Set-
ting interest rates on borrowed money to be zero for
simplicity, Dregulescu and Yakovenko �2000� performed
computer simulations of the models described in Sec.
II.C with the new boundary condition. The results are
shown in Fig. 2. Not surprisingly, the stationary money
distribution again has an exponential shape, but now
with the new boundary condition at m=−md and the
higher money temperature Td=md+Mb /N. By allowing
agents to go into debt up to md, we effectively increase

5The ideas presented here are similar to Soddy �1933�.
6Here we treat the bank as being outside of the system con-

sisting of ordinary agents, because we are interested in money
distribution among these agents. The debt of agents is an asset
for the bank, and deposits of cash into the bank are liabilities
of the bank �McConnell and Brue, 1996�. We do not go into
these details in order to keep our presentation simple. For
further discussion, see Keen �2008�.

7In qualitatively agreement with the conclusions by McCau-
ley �2008�.
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FIG. 2. �Color online� Histograms: Stationary distributions of
money with and without debt. The debt is limited to md=800.
Solid curves: Fits to the Boltzmann-Gibbs laws with the
“money temperatures” Tm=1800 and 1000. From Dregulescu
and Yakovenko, 2000.
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the amount of money available to each agent by md.
Money temperature, which is equal to the average
amount of effectively available money per agent, in-
creases correspondingly.

Xi, Ding, and Wang �2005� considered another, more
realistic boundary condition, where a constraint is im-
posed not on the individual debt of each agent, but on
the total debt of all agents in the system. This is accom-
plished via the required reserve ratio R, which is ex-
plained below �McConnell and Brue, 1996�. Banks are
required by law to set aside a fraction R of the money
deposited into bank accounts, whereas the remaining
fraction 1−R can be loaned further. If the initial amount
of money in the system �the money base� is Mb, then
with repeated loans and borrowing the total amount of
positive money available to the agents increases to M
=Mb /R, where the factor 1/R is the money multiplier
�McConnell and Brue, 1996�. This is how “banks create
money.” Where does this extra money come from? It
comes from the increase in the total debt in the system.
The maximal total debt is given by D=Mb /R−Mb and is
limited by the factor R. When the debt is maximal, the
total amounts of positive, Mb /R, and negative, Mb�1
−R� /R, money circulate among the agents in the system,
so there are two constraints in the model considered by
Xi, Ding, and Wang �2005�. Thus, we expect to see the
exponential distributions of positive and negative money
characterized by two different temperatures: T+
=Mb /RN and T−=Mb�1−R� /RN. This is exactly what
was found in computer simulations by Xi, Ding, and
Wang �2005�, as shown in Fig. 3. Similar two-sided dis-
tributions were also found by Fischer and Braun �2003a�.

However, in reality, the reserve requirement is not ef-
fective in stabilizing total debt in the system, because it
applies only to deposits from general public, but not
from corporations �O’Brien, 2007�.8 Moreover, there are
alternative instruments of debt, including derivatives
and various unregulated “financial innovations.” As a

result, the total debt is not limited in practice and some-
times can reach catastrophic proportions. Here we dis-
cuss several models with nonstationary debt. Thus far
we did not consider the interest rates. Dregulescu and
Yakovenko �2000� studied a simple model with different
interest rates for deposits into and loans from a bank.
Computer simulations found that money distribution
among the agents is still exponential, but the money
temperature slowly changes in time. Depending on the
choice of parameters, the total amount of money in cir-
culation either increases or decreases in time. A more
sophisticated macroeconomic model was studied by the
economist Steve Keen �1995, 2000�. He found that one
of the regimes is the debt-induced breakdown, where all
economic activity stops under the burden of heavy debt
and cannot be restarted without a “debt moratorium.”
The interest rates were fixed in these models and not
adjusted self-consistently. Cockshott and Cottrell �2008�
proposed a mechanism, where the interest rates are set
to cover probabilistic withdrawals of deposits from a
bank. In an agent-based simulation of the model, Cock-
shott and Cottrell �2008� found that money supply first
increases up to a certain limit, and then the economy
experiences a spectacular crash under the weight of ac-
cumulated debt. Further studies along these lines would
be very interesting. In the rest of the paper, we review
various models without debt proposed in literature.

E. Proportional money transfers and saving propensity

In the models of money transfer discussed in Sec. II.C,
the transferred amount �m is typically independent of
the money balances of the agents involved. A different
model was introduced in physics literature earlier by
Ispolatov, Krapivsky, and Redner �1998� and called the
multiplicative asset exchange model. This model also
satisfies the conservation law, but the transferred
amount of money is a fixed fraction � of the payer’s
money in Eq. �5�,

�m = �mi. �8�

The stationary distribution of money in this model, com-
pared in Fig. 4 with an exponential function, is similar,
but not exactly equal, to the Gamma distribution,

P�m� = cm
e−m/T. �9�

Equation �9� differs from Eq. �7� by the power-law pref-
actor m
. From the Boltzmann kinetic equation �dis-
cussed in Sec. II.F�, Ispolatov, Krapivsky, and Redner
�1998� derived a formula relating the parameters � and 

in Eqs. �8� and �9�,


 = − 1 − ln 2/ln�1 − �� . �10�

When payers spend a relatively small fraction of their
money �	1/2, Eq. �10� gives 
�0. In this case, the
population with low money balances is reduced, and
P�0�=0, as shown in Fig. 4.

The economist Thomas Lux �2005� brought to the at-
tention of physicists that essentially the same model,

8Australia does not have reserve requirements, but China ac-
tively uses reserve requirements as a tool of monetary policy.

FIG. 3. The stationary distribution of money for the required
reserve ratio R=0.8. The distribution is exponential for posi-
tive and negative money with different “temperatures” T+ and
T−, as illustrated by the inset on log-linear scale. From Xi,
Ding, and Wang, 2005.
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called the inequality process, had been introduced and
studied much earlier by the sociologist John Angle
�1986, 1992, 1993, 1996, 2002�, see also Angle �2006� for
additional references. While Ispolatov, Krapivsky, and
Redner �1998� did not give much justification for the
proportionality law �8�, Angle �1986� connected this rule
with the surplus theory of social stratification �Engels,
1972�, which argued that inequality in human society de-
velops when people can produce more than necessary
for minimal subsistence. This additional wealth �surplus�
can be transferred from original producers to other
people, thus generating inequality. In the first paper by
Angle �1986�, the parameter � was randomly distributed,
and another parameter � gave a higher probability of
winning to the agent with the higher money balance in
Eq. �5�. However, in the following papers, he simplified
the model to a fixed � �denoted as � by Angle� and
equal probabilities of winning for higher- and lower-
balance agents, which makes it completely equivalent to
the model of Ispolatov, Krapivsky, and Redner �1998�.
Angle �2002, 2006� also considered a model where
groups of agents have different values of �, simulating
the effect of education and other “human capital.” All
of these models generate a Gamma-like distribution,
well approximated by Eq. �9�.

Another model with an element of proportionality
was proposed by Chakraborti and Chakrabarti �2000�.9

In this model, the agents set aside �save� some fraction
of their money �mi, whereas the rest of their money
balance �1−��mi becomes available for random ex-
changes. Thus, the rule of exchange �5� becomes

mi� = �mi + ��1 − ���mi + mj� ,

mj� = �mj + �1 − ���1 − ���mi + mj� . �11�

Here the coefficient � is called the saving propensity and
the random variable � is uniformly distributed between 0
and 1. It was pointed out by Angle �2006� that, by the
change in notation �→ �1−��, Eq. �11� can be trans-
formed to the same form as Eq. �8�, if the random vari-
able � takes only discrete values 0 and 1. Computer
simulations by Chakraborti and Chakrabarti �2000� of
the model �11� found a stationary distribution close to
the Gamma distribution �9�. It was shown that the pa-
rameter 
 is related to the saving propensity � by 

=3� / �1−�� �Patriarca, Chakraborti, and Kaski, 2004a,
2004b; Patriarca et al., 2005; Repetowicz, Hutzler, and
Richmond, 2005�. For ��0, agents always keep some
money, so their balances never drop to zero, and P�0�
=0, whereas for �=0 the distribution becomes exponen-
tial.

In the subsequent papers by the Kolkata school
�Chakrabarti, 2005� and related papers, the case of ran-
dom saving propensity was studied. In these models, the
agents are assigned random parameters � drawn from a
uniform distribution between 0 and 1 �Chatterjee,
Chakrabarti, and Manna, 2004�. It was found that this
model produces a power-law tail P�m��1/m2 at high m.
The reasons for stability of this law were understood
using the Boltzmann kinetic equation �Chatterjee,
Chakrabarti, and Stinchcombe, 2005; Das and Yarla-
gadda, 2005; Repetowicz, Hutzler, and Richmond, 2005�,
but most elegantly in the mean-field theory �Mohanty,
2006; Bhattacharyya, Chatterjee, and Chakrabarti, 2007;
Chatterjee and Chakrabarti, 2007�. The fat tail origi-
nates from the agents whose saving propensity is close to
1, who hoard money and do not give it back �Patriarca et
al., 2005; Patriarca, Chakraborti, and Germano, 2006�. A
more rigorous mathematical treatment of the problem
was given by Düring and Toscani �2007�; Düring, Mat-
thes, and Toscani �2008�; Matthes and Toscani �2008�.
An interesting matrix formulation of the problem was
given by Gupta �2006�. Relaxation rate in the money
transfer models was studied by Patriarca et al. �2007�;
Düring, Matthes, and Toscani �2008�; Gupta �2008�. Dre-
gulescu and Yakovenko �2000� considered a model with
taxation, which also has an element of proportionality.
The Gamma distribution was also studied for conserva-
tive models within a simple Boltzmann approach by Fer-
rero �2004� and, using more complicated rules of ex-
change motivated by political economy, by Scafetta,
Picozzi, and West �2004a, 2004b�. Independently, the
economist Miguel Molico �2006� studied conservative
exchange models where agents bargain over prices in
their transactions. He found stationary Gamma-like dis-
tributions of money in numerical simulations of these
models.

9This paper originally appeared as a follow-up e-print cond-
mat/0004256 on the e-print cond-mat/0001432 by Dregulescu
and Yakovenko �2000�.
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FIG. 4. �Color online� Histogram: Stationary probability dis-
tribution of money in the multiplicative random exchange
model �8� for �=1/3. Solid curve: The exponential Boltzmann-
Gibbs law. From Dregulescu and Yakovenko, 2000.
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F. Additive versus multiplicative models

The stationary distribution of money �9� for the mod-
els of Sec. II.E is different from the simple exponential
formula �7� found for the models of Sec. II.C. The origin
of this difference can be understood from the Boltz-
mann kinetic equation �Lifshitz and Pitaevskii, 1981;
Wannier, 1987�. This equation describes time evolution
of the distribution function P�m� due to pairwise inter-
actions,

dP�m�
dt

=� � �− f	m,m�
→	m−�,m�+�
P�m�P�m��

+ f	m−�,m�+�
→	m,m�


�P�m − ��P�m� + ��
dm�d� . �12�

Here f	m,m�
→	m−�,m�+�
 is the probability of transferring
money � from an agent with money m to an agent with
money m� per unit time. This probability, multiplied by
the occupation numbers P�m� and P�m��, gives the rate
of transitions from the state 	m ,m�
 to the state 	m
−� ,m�+�
. The first term in Eq. �12� gives the depopu-
lation rate of the state m. The second term in Eq. �12�
describes the reversed process, where the occupation
number P�m� increases. When the two terms are equal,
the direct and reversed transitions cancel each other sta-
tistically, and the probability distribution is stationary:
dP�m� /dt=0. This is the principle of detailed balance.

In physics, the fundamental microscopic equations of
motion obey the time-reversal symmetry. This means
that the probabilities of the direct and reversed pro-
cesses are exactly equal,

f	m,m�
→	m−�,m�+�
 = f	m−�,m�+�
→	m,m�
. �13�

When Eq. �13� is satisfied, the detailed balance condition
for Eq. �12� reduces to P�m�P�m��=P�m−��P�m�+��,
because the factors f cancels out. The only solution
of this equation is the exponential function P�m�
=c exp�−m /Tm�, so the Boltzmann-Gibbs distribution is
the stationary solution of the Boltzmann kinetic equa-
tion �12�. Notice that the transition probabilities �13� are
determined by the dynamical rules of the model, but the
equilibrium Boltzmann-Gibbs distribution does not de-
pend on the dynamical rules at all. This is the origin of
the universality of the Boltzmann-Gibbs distribution.
We see that it is possible to find the stationary distribu-
tion without knowing details of the dynamical rules
�which are rarely known very well�, as long as the sym-
metry condition �13� is satisfied.

The models considered in Sec. II.C have the time-
reversal symmetry. The model with the fixed money
transfer � has equal probabilities �13� of transferring
money from an agent with the balance m to an agent
with the balance m� and vice versa. This is also true
when � is random, as long as the probability distribution
of � is independent of m and m�. Thus, the stationary
distribution P�m� is always exponential in these models.

There is no fundamental reason however, to expect
the time-reversal symmetry in economics, where Eq.

�13� may be not valid. In this case, the system may have
a nonexponential stationary distribution or no stationary
distribution at all. In the model �8�, the time-reversal
symmetry is broken. Indeed, when an agent i gives a
fixed fraction � of his money mi to an agent with balance
mj, their balances become �1−��mi and mj+�mi. If we
try to reverse this process and appoint the agent j to be
the payer and to give the fraction � of her money,
��mj+�mi�, to the agent i, the system does not return to
the original configuration 	mi ,mj
. As emphasized by
Angle �2006�, the payer pays a deterministic fraction of
his money, but the receiver receives a random amount
from a random agent, so their roles are not interchange-
able. Because the proportional rule typically violates the
time-reversal symmetry, the stationary distribution P�m�
in multiplicative models is typically not exponential.10

Making the transfer dependent on the money balance of
the payer effectively introduces Maxwell’s demon into
the model. Another view on the time-reversal symmetry
in economic dynamics was presented by Ao �2007�.

These examples showed that the Boltzmann-Gibbs
distribution does not necessarily hold for any conserva-
tive model. However, it is universal in a limited sense.
For a broad class of models that have time-reversal sym-
metry, the stationary distribution is exponential and
does not depend on details of a model. Conversely, when
the time-reversal symmetry is broken, the distribution
may depend on details of a model. The difference be-
tween these two classes of models may be rather subtle.
Deviations from the Boltzmann-Gibbs law may occur
only if the transition rates f in Eq. �13� explicitly depend
on the agents’ money m or m� in an asymmetric manner.
Dregulescu and Yakovenko �2000� performed a com-
puter simulation where the direction of payment was
randomly fixed in advance for every pair of agents �i , j�.
In this case, money flows along directed links between
the agents: i→ j→k, and the time-reversal symmetry is
strongly violated. This model is closer to the real
economy, where one typically receives money from an
employer and pays it to a grocery store. Nevertheless,
the Boltzmann-Gibbs distribution was still found in this
model because the transition rates f do not explicitly
depend on m and m� and do not violate Eq. �13�. A
more general study of money exchange models on di-
rected networks was given by Chatterjee �2009�.

In the absence of detailed knowledge of real micro-
scopic dynamics of economic exchanges, the semiuniver-
sal Boltzmann-Gibbs distribution �7� is a natural starting
point. Moreover, the assumption of Dregulescu and Ya-
kovenko �2000� that agents pay the same prices �m for
the same products, independent of their money balances
m, seems appropriate for the modern anonymous
economy, especially for purchases over the Internet.
There is no particular empirical evidence for the propor-
tional rules �8� and �11�. However, the difference be-

10When �m is a fraction of the total money mi+mj of the two
agents, the model is time reversible and has the exponential
distribution, as discussed in Sec. II.C.
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tween the additive �7� and multiplicative �9� distributions
may be not so crucial after all. From a mathematical
point of view, the difference is in the implementation of
the boundary condition at m=0. In the additive models
of Sec. II.C, there is a sharp cutoff for P�m��0 at m
=0. In the multiplicative models of Sec. II.E, the balance
of an agent never reaches m=0, so P�m� vanishes at m
→0 in a power-law manner. But for large m, P�m� de-
creases exponentially in both models.

By further modifying the rules of money transfer and
introducing more parameters in the models, one can ob-
tain even more complicated distributions �Saif and
Gade, 2007; Scafetta and West, 2007�. However, one can
argue that parsimony is the virtue of a good mathemati-
cal model, not the abundance of additional assumptions
and parameters, whose correspondence to reality is hard
to verify.

III. STATISTICAL MECHANICS OF WEALTH
DISTRIBUTION

In the econophysics literature on exchange models,
the terms “money” and “wealth” are often used inter-
changeably. However, economists emphasize the differ-
ence between these two concepts. In this section, we
review the models of wealth distribution, as opposed to
money distribution.

A. Models with a conserved commodity

What is the difference between money and wealth?
Dregulescu and Yakovenko �2000� argued that wealth wi
is equal to money mi plus the other property that an
agent i has. The latter may include durable material
property, such as houses and cars, and financial instru-
ments, such as stocks, bonds, and options. Money �paper
cash, bank accounts� is generally liquid and countable.
However, the other property is not immediately liquid
and has to be sold first �converted into money� to be
used for other purchases. In order to estimate the mon-
etary value of property, one needs to know its price p. In
the simplest model, consider just one type of property,
say, stocks s. Then the wealth of an agent i is given by

wi = mi + psi. �14�

It is assumed that the price p is common for all agents
and is established by some kind of market process, such
as an auction, and may change in time.

It is reasonable to start with a model where both the
total money M=�imi and the total stock S=�isi are con-
served �Chakraborti, Pradhan, and Chakrabarti, 2001;
Chatterjee and Chakrabarti, 2006; Ausloos and Pekalski,
2007�. The agents pay money to buy stock and sell stock
to get money, and so on. Although M and S are con-
served, the total wealth W=�iwi is generally not con-
served �Chatterjee and Chakrabarti, 2006� because of
price fluctuation in Eq. �14�. This is an important differ-
ence from the money transfers models of Sec. II. The
wealth wi of an agent i, not participating in any transac-

tions, may change when transactions between other
agents establish a new price p. Moreover, the wealth wi

of an agent i does not change after a transaction with an
agent j. Indeed, in exchange for paying money �m, the
agent i receives the stock �s=�m /p, so the agent’s total
wealth �14� remains the same. Theoretically, the agent
can instantaneously sell the stock back at the same price
and recover the money paid. If the price p never
changes, then the wealth wi of each agent remains con-
stant, despite transfers of money and stock between
agents.

We see that redistribution of wealth in this model is
directly related to price fluctuations. A mathematical
model of this process was studied by Silver, Slud, and
Takamoto �2002�. In this model, the agents randomly
change preferences for the fraction of their wealth in-
vested in stocks. As a result, some agents offer stock for
sale and some want to buy it. The price p is determined
from the market-clearing auction matching supply and
demand. Silver, Slud, and Takamoto �2002� demon-
strated in computer simulations and proved analytically
using the theory of Markov processes that the stationary
distribution P�w� of wealth w in this model is given by
the Gamma distribution, as in Eq. �9�. Various modifica-
tions of this model considered by Lux �2005�, such as
introducing monopolistic coalitions, do not change this
result significantly, which shows robustness of the
Gamma distribution. For models with a conserved com-
modity, Chatterjee and Chakrabarti �2006� found the
Gamma distribution for a fixed saving propensity and a
power-law tail for a distributed saving propensity.

Another model with conserved money and stock was
studied by Raberto et al. �2003� for an artificial stock
market, where traders follow different investment strat-
egies: random, momentum, contrarian, and fundamen-
talist. Wealth distribution in the model with random
traders was found to have a power-law tail P�w��1/w2

for large w. However, unlike in other simulations, where
all agents initially have equal balances, here the initial
money and stock balances of the agents were randomly
populated according to a power law with the same ex-
ponent. This raises the question whether the observed
power-law distribution of wealth is an artifact of the ini-
tial conditions, because equilibration of the upper tail
may take a long simulation time.

B. Models with stochastic growth of wealth

Although the total wealth W is not exactly conserved
in the models considered in Sec. III.A, nevertheless W
remains constant on average, because the total money M
and stock S are conserved. A different model for wealth
distribution was proposed by Bouchaud and Mézard
�2000�. In this model, the time evolution of the wealth wi

of an agent i is given by the stochastic differential equa-
tion
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dwi

dt
= �i�t�wi + �

j��i�
Jijwj − �

j��i�
Jjiwi, �15�

where �i�t� is a Gaussian random variable with the mean
��� and the variance 2�2. This variable represents
growth or loss of wealth of an agent due to investment in
stock market. The last two terms describe transfer of
wealth between different agents, which is taken to be
proportional to the wealth of the payers with the coeffi-
cients Jij. As a result, the model �15� is multiplicative and
invariant under the scale transformation wi→Zwi. For
simplicity, the exchange fractions are taken to be the
same for all agents: Jij=J /N for all i� j, where N is the
total number of agents. In this case, the last two terms in
Eq. �15� can be written as J��w�−wi�, where �w�
=�iwi /N is the average wealth per agent. This case rep-
resents a “mean-field” model, where all agents feel the
same environment. It can be easily shown that the aver-
age wealth increases in time as �w�t= �w�0e����+�2�t. Then
it makes more sense to consider the relative wealth w̃i
=wi / �w�t. Equation �15� for this variable becomes

dw̃i

dt
= 	�i�t� − ��� − �2
w̃i + J�1 − w̃i� . �16�

The probability distribution P�w̃ , t� for the stochastic dif-
ferential equation �16� is governed by the Fokker-Planck
equation,

�P

�t
=

�	J�w̃ − 1� + �2w̃
P
�w̃

+ �2 �

�w̃
�w̃

��w̃P�
�w̃

� . �17�

The stationary solution ��P /�t=0� of this equation is
given by

P�w̃� = ce−J/�2w̃/w̃2+J/�2
. �18�

The distribution �18� is quite different from the
Boltzmann-Gibbs �7� and Gamma �9� distributions.
Equation �18� has a power-law tail at large w̃ and a sharp
cutoff at small w̃. Equation �15� is a version of the gen-
eralized Lotka-Volterra model, and the stationary distri-
bution �18� was also obtained by Solomon and Rich-
mond �2001, 2002�. The model was generalized to
include negative wealth by Huang �2004�.

Bouchaud and Mézard �2000� used the mean-field ap-
proach. A similar result was found for a model with pair-
wise interaction between agents by Slanina �2004�. In his
model, wealth is transferred between the agents follow-
ing the proportional rule �8�, but, in addition, the wealth
of the agents increases by the factor 1+� in each trans-
action. This factor is supposed to reflect creation of
wealth in economic interactions. Because the total
wealth in the system increases, it makes sense to con-
sider the distribution of relative wealth P�w̃�. In the limit
of continuous trading, Slanina �2004� found the same
stationary distribution �18�. This result was reproduced
using a mathematically more involved treatment of this
model by Cordier, Pareschi, and Toscani �2005�; Pareschi
and Toscani �2006�. Numerical simulations of the models
with stochastic noise � by Scafetta, Picozzi, and West

�2004a, 2004b� also found a power-law tail for large w.
Equivalence between the models with pairwise ex-
change and exchange with a reservoir was discussed by
Basu and Mohanty �2008�.

We now contrast the models discussed in Secs. III.A
and III.B. In the former case, where money and com-
modity are conserved, and wealth does not grow, the
distribution of wealth is given by the Gamma distribu-
tion with the exponential tail for large w. In the latter
models, wealth grows in time exponentially, and the dis-
tribution of relative wealth has a power-law tail for large
w̃. These results suggest that the presence of a power-
law tail is a nonequilibrium effect that requires constant
growth or inflation of the economy, but disappears for a
closed system with conservation laws.

The discussed models were reviewed by Richmond,
Hutzler, Coelho, and Repetowicz �2006�; Richmond,
Repetowicz, Hutzler, and Coelho �2006�; Chatterjee and
Chakrabarti �2007�; Yakovenko �2009�; and by Hayes
�2002�. Because of lack of space, we omit discussion of
models with wealth condensation �Ispolatov, Krapivsky,
and Redner, 1998; Bouchaud and Mézard, 2000; Burda
et al., 2002; Pianegonda et al., 2003; Braun, 2006�, where
a few agents accumulate a finite fraction of the total
wealth, and studies of wealth distribution on complex
networks �Iglesias et al., 2003; Di Matteo, Aste, and
Hyde, 2004; Coelho et al., 2005; Hu et al., 2006, 2007�. So
far, we discussed the models with long-range interaction,
where any agent can exchange money and wealth with
any other agent. A local model, where agents trade only
with the nearest neighbors, was studied by Bak, Nørre-
lykke, and Shubik �1999�.

C. Empirical data on money and wealth distributions

It would be interesting to compare theoretical results
for money and wealth distributions in various models
with empirical data. Unfortunately, such empirical data
are difficult to find. Unlike income, discussed in Sec.
IV, wealth is not routinely reported by the majority of
individuals to the government. However, in some coun-
tries, when a person dies, all assets must be reported for
the purpose of inheritance tax. So, in principle, there
exist good statistics of wealth distribution among the de-
ceased, which, of course, is different from the wealth
distribution among the living. Using an adjustment pro-
cedure based on the age, gender, and other character-
istics of the deceased, the UK tax agency, the Inland
Revenue, reconstructed the wealth distribution of the
whole population of the UK �Her Majesty Revenue and
Customs, 2003�. Figure 5 shows the UK data for 1996
reproduced from Dregulescu and Yakovenko �2001b�.
The figure shows the cumulative probability C�w�
=�w


P�w��dw� as a function of the personal net wealth w,
which is composed of assets �cash, stocks, property,
household goods, etc.� and liabilities �mortgages and
other debts�. Because statistical data are usually re-
ported at nonuniform intervals of w, it is more practical
to plot the cumulative probability distribution C�w�
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rather than its derivative, the probability density P�w�.
Fortunately, when P�w� is an exponential or a power-law
function, then C�w� is also an exponential or a power-
law function.

The main panel in Fig. 5 shows a plot of C�w� on the
log-log scale, where a straight line represents a power-
law dependence. The figure shows that the distribution
follows a power law C�w��1/w� with the exponent
�=1.9 for the wealth greater than about 100 k£. The
inset in Fig. 5 shows the same data on the log-linear
scale, where a straight line represents an exponential
dependence. We observe that, below 100 k£, the data
are well fitted by the exponential distribution C�w�
�exp�−w /Tw� with the effective wealth temperature
Tw=60 k£ �which corresponds to the median wealth of
41 k£�. The distribution of wealth is characterized by the
Pareto power law in the upper tail of the distribution
and the exponential Boltzmann-Gibbs law in the lower
part of the distribution for the great majority �about
90%� of the population. Similar results are found for the
distribution of income, as discussed in Sec. IV. One may
speculate that wealth distribution in the lower part is
dominated by distribution of money, because the corre-
sponding people do not have other significant assets
�Levy and Levy, 2003�, so the results of Sec. II give the
Boltzmann-Gibbs law. On the other hand, the upper tail
of wealth distribution is dominated by investment assess
�Levy and Levy, 2003�, where the results of Sec. III.B
give the Pareto law. The power law was studied by many
researchers �Levy, 2003; Levy and Levy, 2003; Sinha,
2006; Klass et al., 2007� for the upper-tail data, such as
the Forbes list of 400 richest people. On the other hand,
statistical surveys of the population, such as the Survey
of Consumer Finance �Diaz-Giménez et al., 1997� and
the Panel Study of Income Dynamics, give more infor-

mation about the lower part of the wealth distribution.
Curiously, Abul-Magd �2002� found that the wealth dis-
tribution in the ancient Egypt was consistent with Eq.
�18�. Hegyi et al. �2007� found a power-law tail for the
wealth distribution of aristocratic families in medieval
Hungary.

For direct comparison with the results of Sec. II, it
would be interesting to find data on the distribution of
money, as opposed to the distribution of wealth. Making
a reasonable assumption that a majority of people keep
most of their money in banks, one can approximate the
distribution of money by the distribution of balances on
bank accounts. �Balances on all types of bank accounts,
such as checking, saving, and money manager, associated
with the same person should be added up.� Despite im-
perfections �people may have accounts in different
banks or not keep all their money in banks�, the distri-
bution of balances on bank accounts would give valu-
able information about the distribution of money. The
data for a large enough bank would be representative of
the distribution in the whole economy. Unfortunately, it
has not been possible to obtain such data to date.

The data on the distribution of bank accounts bal-
ances would be useful, e.g., to the Federal Deposits In-
surance Company �FDIC� of the USA. This government
agency insures bank deposits of customers up to a cer-
tain maximal balance. In order to estimate its exposure
and the change in exposure due to a possible increase in
the limit, FDIC would need to know the probability dis-
tribution of balances on bank accounts. It is quite pos-
sible FDIC may already have such data.

Measuring the probability distribution of money
would be also useful for determining how much people
can, in principle, spend on purchases �without going into
debt�. This is different from the distribution of wealth,
where the property component, such as a house, a car, or
retirement investment, is effectively locked up and, in
most cases, is not easily available for consumer spend-
ing. Thus, although wealth distribution may reflect the
distribution of economic power, the distribution of
money is more relevant for immediate consumption.

IV. DATA AND MODELS FOR INCOME
DISTRIBUTION

In contrast to money and wealth distributions, more
empirical data are available for the distribution of in-
come r from tax agencies and population surveys. In this
section, we first present empirical data on income distri-
bution and then discuss theoretical models.

A. Empirical data on income distribution

Empirical studies of income distribution have a long
history in the economic literature.11 Many articles on

11See, e.g., Kakwani �1980�; Champernowne and Cowell
�1998�; Atkinson and Bourguignon �2000�; Piketty and Saez
�2003�; Atkinson and Piketty �2007�.
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FIG. 5. �Color online� Cumulative probability distribution of
net wealth in the UK shown on log-log �main panel� and log-
linear �inset� scales. Points represent the data from the Inland
Revenue, and solid lines are fits to the exponential
�Boltzmann-Gibbs� and power �Pareto� laws. From Dregulescu
and Yakovenko, 2001b.
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this subject have appeared in Review of Income and
Wealth, published on behalf of the International Asso-
ciation for Research in Income and Wealth. Following
the work by Pareto �1897�, much attention was focused
on the power-law upper tail of income distribution and
less on the lower part. In contrast to more complicated
functions discussed in the economic literature �Kakwani,
1980; Champernowne and Cowell, 1998; Atkinson and
Bourguignon, 2000�, Dregulescu and Yakovenko �2001a�
demonstrated that the lower part of income distribution
can be well fitted with the simple exponential function
P�r�=c exp�−r /Tr�, which is characterized by just one
parameter, the “income temperature” Tr. Dregulescu
and Yakovenko �2001b, 2003� then showed that the
whole income distribution can be fitted by an exponen-
tial function in the lower part and a power-law function
in the upper part, as shown in Fig. 6. The straight line on
the log-linear scale in the inset of Fig. 6 demonstrates
the exponential Boltzmann-Gibbs law, and the straight
line on the log-log scale in the main panel illustrates the
Pareto power law. The fact that income distribution con-
sists of two distinct parts reveals the two-class structure
of the American society �Silva and Yakovenko, 2005;
Yakovenko and Silva, 2005�. Coexistence of the expo-
nential and power-law distributions is also known in
plasma physics and astrophysics, where they are called
the “thermal” and “superthermal” parts �Hasegawa et
al., 1985; Desai et al., 2003; Collier, 2004�. The boundary
between the lower and upper classes can be defined as
the intersection point of the exponential and power-law
fits in Fig. 6. For 1997, the annual income separating the
two classes was about 120 k$. About 3% of the popula-
tion belonged to the upper class, and 97% belonged to
the lower class.

Silva and Yakovenko �2005� studied the time evolu-
tion of income distribution in the USA during 1983–

2001 using the data from the Internal Revenue Service
�IRS�, the government tax agency. The structure of in-
come distribution was found to be qualitatively the same
for all years, as shown in Fig. 7. The average income in
nominal dollars has approximately doubled during this
time interval. The horizontal axis in Fig. 7 shows the
normalized income r /Tr, where the income temperature
Tr was obtained by fitting the exponential part of the
distribution for each year. The values of Tr are shown in
Fig. 7. The plots for the 1980s and 1990s are shifted
vertically for clarity. We observe that the data points in
the lower-income part of the distribution collapse on the
same exponential curve for all years. This demonstrates
that the shape of the income distribution for the lower
class is extremely stable and does not change in time,
despite gradual increase in the average income in nomi-
nal dollars. This observation suggests that the lower-
class distribution is in statistical “thermal” equilibrium.

On the other hand, as Fig. 7 shows, income distribu-
tion of the upper class does not rescale and significantly
changes in time. Silva and Yakovenko �2005� found that
the exponent � of the power law C�r��1/r� decreased
from 1.8 in 1983 to 1.4 in 2000. This means that the
upper tail became “fatter.” Another useful parameter is
the total income of the upper class as the fraction f of
the total income in the system. The fraction f increased
from 4% in 1983 to 20% in 2000 �Silva and Yakovenko,
2005�. However, in year 2001, � increased and f de-
creased, indicating that the upper tail was reduced after
the stock market crash at that time. These results indi-
cate that the upper tail is highly dynamical and not sta-
tionary. It tends to swell during the stock market boom
and shrink during the bust. Similar results were found
for Japan �Souma, 2001, 2002; Aoyama et al., 2003; Fuji-
wara et al., 2003�.
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power-law functions. From Dregulescu and Yakovenko, 2003.
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Although relative income inequality within the lower
class remains stable, the overall income inequality in the
USA has increased significantly as a result of the tre-
mendous growth of the income of the upper class. This is
illustrated by the Lorenz curve and the Gini coefficient
shown in Fig. 8. The Lorenz curve �Kakwani, 1980� is a
standard way of representing income distribution in the
economic literature. It is defined in terms of two coordi-
nates x�r� and y�r� depending on a parameter r,

x�r� = �
0

r

P�r��dr�, y�r� =

�
0

r

r�P�r��dr�

�
0




r�P�r��dr�

. �19�

The horizontal coordinate x�r� is the fraction of the
population with income below r, and the vertical coor-
dinate y�r� is the fraction of the income this population
accounts for. As r changes from 0 to 
, x and y change
from 0 to 1 and parametrically define a curve in the
�x ,y� plane.

Figure 8 shows the data points for the Lorenz curves
in 1983 and 2000, as computed by the IRS �Strudler,
Petska, and Petska, 2003�. Dregulescu and Yakovenko
�2001a� analytically derived the Lorenz curve formula
y=x+ �1−x�ln�1−x� for a purely exponential distribution
P�r�=c exp�−r /Tr�. This formula is shown by the upper
curve in Fig. 8 and describes the 1983 data reasonably
well. However, for year 2000, it is essential to take into

account the fraction f of income in the upper tail, which
modifies for the Lorenz formula as follows �Dregulescu
and Yakovenko, 2003; Silva and Yakovenko, 2005; Yak-
ovenko and Silva, 2005�:

y = �1 − f�	x + �1 − x�ln�1 − x�
 + f��x − 1� . �20�

The last term in Eq. �20� represent the vertical jump of
the Lorenz curve at x=1, where a small percentage of
population in the upper class accounts for a substantial
fraction f of the total income. The lower curve in Fig. 8
shows that Eq. �20� fits the 2000 data very well.

The deviation of the Lorenz curve from the straight
diagonal line in Fig. 8 is a certain measure of income
inequality. Indeed, if everybody had the same income,
the Lorenz curve would be the diagonal line, because
the fraction of income would be proportional to the frac-
tion of the population. The standard measure of income
inequality is the Gini coefficient 0�G�1, which is de-
fined as the area between the Lorenz curve and the di-
agonal line, divided by the area of the triangle beneath
the diagonal line �Kakwani, 1980�. The time evolution of
the Gini coefficient, as computed by the IRS �Strudler,
Petska, and Petska, 2003�, is shown in the inset of Fig. 8.
Dregulescu and Yakovenko �2001a� derived analytically
the result that G=1/2 for a purely exponential distribu-
tion. In the first approximation, the values of G shown in
the inset of Fig. 8 are indeed close to the theoretical
value 1/2. If we take into account the upper tail using
Eq. �20�, the formula for the Gini coefficient becomes
G= �1+ f� /2 �Silva and Yakovenko, 2005�. The inset in
Fig. 8 shows that this formula gives a very good fit to the
IRS data for the 1990s using the values of f deduced
from Fig. 7. The values G	1/2 in the 1980s cannot be
captured by this formula, because the Lorenz data
points are slightly above the theoretical curve for 1983 in
Fig. 8. Overall, we observe that income inequality has
been increasing for the last 20 years, because of swelling
of the Pareto tail, but decreased in 2001 after the stock
market crash.

It is easy to show that the parameter f in Eq. �20� and
in Fig. 8 is given by

f =
�r� − Tr

�r�
, �21�

where �r� is the average income of the whole population,
and the temperature Tr is the average income in the
exponential part of the distribution. Equation �21� gives
a well-defined measure of the deviation of the actual
income distribution from the exponential one and, thus,
of the fatness of the upper tail. Figure 9 shows the his-
torical evolution of the parameters �r�, Tr, and f given by
Eq. �21�.12 We observe that Tr has been increasing, es-
sentially, monotonously �most of this increase is infla-
tion�. In contrast, �r� had sharp peaks in 2000 and 2006
coinciding with the speculative bubbles in financial mar-

12A similar plot was constructed by Silva and Yakovenko
�2005� for an earlier historical dataset.
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FIG. 8. �Color online� Main panel: Lorenz plots for income
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kets. The fraction f, which characterizes income inequal-
ity, has been increasing for the last 20 years and reached
maxima of 20% in the years 2000 and 2006 with a sharp
drop in between. We conclude that the speculative
bubbles greatly increase the fraction of income going to
the upper tail, but do not change income distribution of
the lower class. When the bubbles inevitably collapse,
income inequality reduces.

Thus far we discussed the distribution of individual
income. An interesting related question is the distribu-
tion P2�r� of family income r=r1+r2, where r1 and r2 are
the incomes of spouses. If the individual incomes are
distributed exponentially P�r��exp�−r /Tr�, then

P2�r� = �
0

r

dr�P�r��P�r − r�� = cr exp�− r/Tr� , �22�

where c is a normalization constant. Figure 10 shows
that Eq. �22� is in good agreement with the family in-
come distribution data from the US Census Bureau
�Dregulescu and Yakovenko, 2001a�. In Eq. �22�, we as-

sumed that incomes of spouses are uncorrelated. This
simple approximation is indeed supported by the scatter
plot of incomes of spouses shown in Fig. 11. Each family
is represented in this plot by two points �r1 ,r2� and
�r2 ,r1� for symmetry. We observe that the density of
points is approximately constant along the lines of con-
stant family income r1+r2=const, which indicates that
incomes of spouses are approximately uncorrelated.
There is no significant clustering of points along the di-
agonal r1=r2, i.e., no strong positive correlation of
spouses’ incomes.

The Gini coefficient for the family income distribution
�22� was analytically calculated by Dregulescu and Yak-
ovenko �2001a� as G=3/8=37.5%. Figure 12 shows the
Lorenz quintiles and the Gini coefficient for 1947–1994
plotted from the US Census Bureau data �Dregulescu
and Yakovenko, 2001a�. The solid line, representing the
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FIG. 12. �Color online� Main panel: Lorenz plot for family
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coefficient for families, compared with the theoretically calcu-
lated value 3/8=37.5%. From Dregulescu and Yakovenko,
2001a.
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Lorenz curve calculated from Eq. �22�, is in good agree-
ment with the data. The systematic deviation for the top
5% of earners results from the upper tail, which has a
less pronounced effect on family income than on indi-
vidual income, because of income averaging in the fam-
ily. The Gini coefficient, shown in the inset of Fig. 12, is
close to the calculated value of 37.5%. Notice that in-
come distribution is very stable for a long period of time,
which was also recognized by economists �Levy, 1987�.
Moreover, the average G for the developed capitalist
countries of North America and western Europe, as de-
termined by the World Bank, is also close to the calcu-
lated value 37.5% �Dregulescu and Yakovenko, 2003�.
However, within this average, nations or groups of na-
tions may have quite different Gini coefficients that per-
sist over time due to specific historical, political, or social
circumstances �Rosser and Rosser, 2004�. The Nordic
economies, with their famously redistributive welfare
states, tend to have G in the mid-20%, while many of
the Latin American countries have G over 50%, reflect-
ing entrenched social patterns inherited from the colo-
nial era.

Income distribution has been examined in econophys-
ics papers for different countries: Japan �Souma, 2001,
2002; Aoyama et al., 2003; Fujiwara et al., 2003; Ferrero,
2004, 2005; Souma and Nirei, 2005; Nirei and Souma,
2007� Germany �Clementi and Gallegati, 2005a; Clem-
enti, Gallegati, and Kaniadakis, 2007�, the UK �Ferrero,
2004, 2005; Clementi and Gallegati, 2005a; Richmond,
Hutzler, Coelho, and Repetowicz, 2006; Clementi, Gal-
legati, and Kaniadakis, 2007�, Italy �Clementi and Galle-
gati, 2005b; Clementi, Di Matteo, and Gallegati, 2006;
Clementi, Gallegati, and Kaniadakis, 2007�, the USA
�Rawlings et al., 2004; Clementi and Gallegati, 2005a�,
India �Sinha, 2006�, Australia �Di Matteo, Aste, and
Hyde, 2004; Banerjee, Yakovenko, and Di Matteo, 2006;
Clementi, Di Matteo, and Gallegati, 2006�, and New
Zealand �Ferrero, 2004, 2005�. The distributions are
qualitatively similar to the results presented in this sec-
tion. The upper tail follows a power law and comprises a
small fraction of population. To fit the lower part of the
distribution, different papers used the exponential,
Gamma, and log-normal distributions. Unfortunately,
income distribution is often reported by statistical agen-
cies for households, so it is difficult to differentiate be-
tween one-earner and two-earner income distributions.
Some papers used interpolating functions with different
asymptotic behavior for low and high incomes, such as
the Tsallis function �Ferrero, 2005� and the Kaniadakis
function �Clementi, Gallegati, and Kaniadakis, 2007�.
However, the transition between the lower and upper
classes is not smooth for the US data shown in Figs. 6
and 7, so such functions would not be useful in this case.
The special case is income distribution in Argentina dur-
ing the economic crisis, which shows a time-dependent
bimodal shape with two peaks �Ferrero, 2005�.

B. Theoretical models of income distribution

Having examined the empirical data on income distri-
bution, we now discuss theoretical models. Income ri is

the influx of money per unit time to an agent i. If the
money balance mi is analogous to energy, then the in-
come ri would be analogous to power, which is the en-
ergy flux per unit time. One should conceptually distin-
guish between the distributions of money and income.
While money is regularly transferred from one agent to
another in pairwise transactions, it is not typical for
agents to trade portions of their income. Nevertheless,
indirect transfer of income may occur when one em-
ployee is promoted and another demoted while the total
annual budget is fixed, or when one company gets a con-
tract whereas another one loses it, etc. A reasonable
approach, which has a long tradition in the economic
literature �Gibrat, 1931; Kalecki, 1945; Champernowne,
1953�, is to treat individual income r as a stochastic pro-
cess and study its probability distribution. In general,
one can study a Markov process generated by a matrix
of transitions from one income to another. In the case
where the income r changes by a small amount �r over
a time period �t, the Markov process can be treated as
income diffusion. Then one can apply the general
Fokker-Planck equation �Lifshitz and Pitaevskii, 1981�
to describe evolution in time t of the income distribution
function P�r , t� �Silva and Yakovenko, 2005�,

�P

�t
=

�

�r
�AP +

��BP�
�r

�, A = −
��r�
�t

, B =
���r�2�

2�t
.

�23�

The coefficients A and B in Eq. �23� are determined by
the first and second moments of income changes per unit
time. The stationary solution �tP=0 of Eq. �23� obeys
the following equation with the general solution:

��BP�
�r

= − AP, P�r� =
c

B�r�
exp�− �r A�r��

B�r��
dr�� .

�24�

For the lower part of the distribution, it is reasonable
to assume that �r is independent of r, i.e., the changes in
income are independent of income itself. This process is
called the additive diffusion �Silva and Yakovenko,
2005�. In this case, the coefficients in Eq. �23� are the
constants A0 and B0. Then Eq. �24� gives the exponential
distribution P�r��exp�−r /Tr� with the effective income
temperature Tr=B0 /A0.13 The coincidence of this result
with the Boltzmann-Gibbs exponential laws �1� and �7�
is not accidental. Indeed, instead of considering pairwise
interaction between particles, one can derive Eq. �1� by
considering energy transfers between a particle and a
big reservoir, as long as the transfer process is “additive”
and does not involve a Maxwell-demon-like discrimina-
tion �Basu and Mohanty, 2008�. Although money and
income are different concepts, they may have similar
distributions because they are governed by similar math-
ematical principles. It was shown explicitly by Dre-

13Notice that a meaningful stationary solution �24� requires
that A�0, i.e., ��r�	0.
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gulescu and Yakovenko �2000�; Slanina �2004�; Cordier,
Pareschi, and Toscani �2005� that the models of pairwise
money transfer can be described in a certain limit by the
Fokker-Planck equation.

On the other hand, for the upper tail of income distri-
bution, it is reasonable to expect that �r�r, i.e., income
changes are proportional to income itself. This is known
as the proportionality principle of Gibrat �1931�, and the
process is called the multiplicative diffusion �Silva and
Yakovenko, 2005�. In this case, A=ar and B=br2, and
Eq. �24� gives the power-law distribution P�r��1/r�+1

with �=1+a /b.
Generally the lower-class income comes from wages

and salaries, where the additive process is appropriate,
whereas the upper-class income comes from bonuses, in-
vestments, and capital gains, calculated in percentages,
where the multiplicative process applies �Milaković,
2005�. However, the additive and multiplicative pro-
cesses may coexist. An employee may receive a cost-of-
living raise calculated in percentages �the multiplicative
process� and a merit raise calculated in dollars �the ad-
ditive process�. Assuming that these processes are un-
correlated, we have A=A0+ar and B=B0+br2=b�r0

2

+r2�, where r0
2=B0 /b. Substituting these expressions into

Eq. �24�, we find

P�r� = c
e−�r0/Tr�arctan�r/r0�

	1 + �r/r0�2
1+a/2b . �25�

The distribution �25� interpolates between the exponen-
tial law for low r and the power law for high r, because
either the additive or the multiplicative process domi-
nates in the corresponding limit. The crossover between
the two regimes takes place at r=r0, where the additive
and multiplicative contributions to B are equal. The dis-
tribution �25� has three parameters: the income tem-
perature Tr=A0 /B0, the Pareto exponent �=1+a /b, and
the crossover income r0. It is a minimal model that cap-
tures the salient features of the empirical income distri-
bution. Equation �25� was obtained by Yakovenko
�2009�, and a more general formula for correlated addi-
tive and multiplicative processes was derived by Fiaschi
and Marsili �2009� for a sophisticated economic model.
Fits of the IRS data using Eq. �25� are shown in Fig. 13
reproduced from Banerjee �2008�. A mathematically
similar, but more economically oriented, model was pro-
posed by Souma and Nirei �2005�; Nirei and Souma
�2007�, where labor income and assets accumulation are
described by the additive and multiplicative processes
correspondingly. A general stochastic process with addi-
tive and multiplicative noise was studied numerically by
Takayasu et al. �1997�, but the stationary distribution was
not derived analytically. A similar process with discrete
time increments was studied by Kesten �1973�. Besides
economic applications, Eq. �25� may be also useful for
general stochastic processes with additive and multipli-
cative components.

To verify the multiplicative and additive hypotheses
empirically, it is necessary to have data on income mo-
bility, i.e., the income changes �r of the same people

from one year to another. The distribution of income
changes P��r �r� conditional on income r is generally not
available publicly, although it can be reconstructed by
researchers at the tax agencies. Nevertheless, the multi-
plicative hypothesis for the upper class was quantita-
tively verified by Aoyama et al. �2003�; Fujiwara et al.
�2003� for Japan, where such data for the top taxpayers
are publicly available.

The power-law distribution is meaningful only when
it is limited to high enough incomes r�r0. If all in-
comes r from 0 to 
 follow a purely multiplicative pro-
cess �A0=0 and B0=0�, then one can change to a loga-
rithmic variable x=ln�r /r

*
� in Eq. �23� and show that

it gives a Gaussian time-dependent distribution Pt�x�
�exp�−x2 /2�2t� for x, i.e., the log-normal distribution
for r, also known as the Gibrat distribution �Gibrat,
1931�. However, the width of this distribution increases
in time, so the distribution is not stationary. This was
pointed out by Kalecki �1945� a long time ago, but the
log-normal distribution is still widely used for fitting in-
come distribution, despite this fundamental logical flaw
in its justification. In the classic paper, Champernowne
�1953� showed that a multiplicative process gives a sta-
tionary power-law distribution when a boundary condi-
tion is imposed at r0�0. Later this result was rediscov-
ered by econophysicists �Levy and Solomon, 1996;
Sornette and Cont, 1997; Levy, 2003�. In Eq. �25�, the
exponential distribution of the lower class effectively
provides such a boundary condition for the power law of
the upper class. Notice also that Eq. �25� reduces to Eq.
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FIG. 13. �Color online� Fits of the IRS data for income distri-
bution using Eq. �25�. Plots for different years are shifted ver-
tically for clarity. From Banerjee, 2008.
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�18� in the limit r0→0 with B0=0, but A0�0.
There are alternative approaches to income distribu-

tion in economic literature. One of them, proposed by
Lydall �1959�, involves social hierarchy. Groups of
people have leaders, which have leaders of the higher
order, and so on. The number of people decreases geo-
metrically �exponentially� with the increase in the hier-
archical level. If individual income increases by a certain
factor �i.e., multiplicatively� when moving to the next
hierarchical level, then income distribution follows a
power law �Lydall, 1959�. However, this original argu-
ment of Lydall can be easily modified to produce the
exponential distribution. If individual income increases
by a certain amount, i.e., income increases linearly with
the hierarchical level, then income distribution is expo-
nential. The latter process seems to be more realistic for
moderate annual incomes below 100 k$. A similar sce-
nario is the Bernoulli trials �Feller, 1966�, where indi-
viduals have a constant probability of increasing their
income by a fixed amount. We see that the deterministic
hierarchical models and the stochastic models of addi-
tive and multiplicative income mobility represent essen-
tially the same ideas.

V. CONCLUSIONS

The “invasion” of physicists into economics and fi-
nance at the turn of the millennium is a fascinating phe-
nomenon. It generated a lively public debate about the
role and future perspectives of econophysics, covering
both theoretical and empirical issues.14 The econophysi-
cist Joseph McCauley proclaimed that “Econophysics
will displace economics in both the universities and
boardrooms, simply because what is taught in economics
classes doesn’t work” �Ball, 2006�. Although there is
some truth in his arguments �McCauley, 2006�, one may
consider a less radical scenario. Econophysics may be-
come a branch of economics, in the same way as game
theory and psychological economics, and now agent-
based modeling became branches of economics. These
branches have their own interests, methods, philosophy,
and journals. When infusion of new ideas from a differ-
ent field happens, the main contribution often consists
not in answering old questions, but in raising new ques-
tions. Much of the misunderstanding between econo-
mists and physicists happens not because they are get-
ting different answers, but because they are answering
different questions.

The subject of income and wealth distributions and
social inequality was very popular at the turn of another
century and is associated with the names of Pareto, Lo-
renz, Gini, Gibrat, and Champernowne, among others.
Following the work by Pareto, attention of researchers

was primarily focused on the power laws. However,
when physicists took a fresh look at the empirical data,
they found a different exponential law for the lower part
of the distribution. Demonstration of the ubiquitous na-
ture of the exponential distribution for money, wealth,
and income is one of the new contributions produced by
econophysics.15 The motivation, of course, came from
the Boltzmann-Gibbs distribution in physics. Further
studies revealed a more detailed picture of the two-class
distribution in a society. Although social classes have
been known in political economy since Karl Marx, real-
ization that they are described by simple mathematical
distributions is quite new. Interesting work was done by
the computer scientist Ian Wright �2005, 2009�, who
demonstrated emergence of two classes in an agent-
based simulation of initially equal agents. This work has
been further developed by Cottrell, Cockshott, Michael-
son, Wright, and Yakovenko �2009�, integrating econom-
ics, computer science, and physics.

Econophysics may be also useful for teaching of sta-
tistical physics. If nothing else, it helps to clarify the
foundations of statistical physics by applying it to non-
traditional objects. Practitioners of statistical physics
know very well that the major fascinating attraction of
this field is the enormous breadth of its applications.
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