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I. INTRODUCTION

Small fluctuations of systems at equilibrium or weakly
driven near equilibrium satisfy a universal relation
known as the fluctuation-dissipation �FD� theorem
�Callen and Welton, 1951; Kubo, 1957; de Groot and
Mazur, 1984; Stratonovich, 1992; Kubo et al., 1998;
Zwanzig, 2001�. This relation that connects spontaneous
fluctuations to the linear response holds for classical and
quantum systems alike. The search for similar relations
for systems driven far from equilibrium has been an ac-
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tive area of research for many decades. A major break-
through in this regard had taken place over the past 15
years with the discovery of exact fluctuation relations,
which hold for classical systems far from equilibrium.
These are collectively referred to as fluctuation theo-
rems �FTs�. In order to introduce these theorems we
adopt the following terminology. A system that follows a
Hamiltonian dynamics is called isolated. By default, we
assume that the Hamiltonian is time independent. Oth-
erwise, it means that some work is performed on the
system and we denote it driven isolated system. A sys-
tem that can only exchange energy with a reservoir will
be denoted closed. If particles are exchanged as well, we
say that the system is open.

The first class of FTs, and the earliest discovered, deal
with irreversible work fluctuations in isolated driven sys-
tems described by a Hamiltonian dynamics where the
Hamiltonian is time dependent �Bochkov and Kuzovlev,
1977, 1979, 1981a, 1981b; Stratonovich, 1994; Jarzynski,
1997a, 1997b; Cohen and Mauzerall, 2004; Jarzynski,
2004; Cleuren et al., 2006; Horowitz and Jarzynski, 2007;
Jarzynski, 2007; Kawai et al., 2007; Gomez-Marin et al.,
2008�. An example is the Crooks relation which states
that the nonequilibrium probability p�W�, that a certain
work w=W is performed by an external time-dependent
driving force acting on a system initially at equilibrium
with temperature �−1, divided by the probability p̃�−W�,
that a work w=−W is performed by the time-reversed
external driving force acting on the system which is
again initially at equilibrium, satisfies p�W� / p̃�−W�
=exp���W−�F��, where �F is the free-energy difference
between the initial �no driving force� and final �finite
driving force� equilibrium state. The Jarzynski relation
�exp�−�W��=exp�−��F� follows immediately from
�dWp̃�−W�=1. A second class of FTs is concerned with
entropy fluctuations in closed systems described by de-
terministic thermostatted equations of motions �Evans et
al., 1993; Evans and Searles, 1994, 1995, 1996; Gallavotti
and Cohen, 1995a, 1995b; Cohen and Gallavotti, 1999;
Schöll-Paschinger and Dellago, 2006� and a third class
treats the fluctuations of entropy �or related quantities
such as irreversible work, heat, and matter currents� in
closed or open systems described by a stochastic dynam-
ics �Ross et al., 1988; Crooks, 1998, 1999, 2000; Kurchan,
1998; Lebowitz and Spohn, 1999; Searles and Evans,
1999; Hatano and Sasa, 2001; Seifert, 2005; Chernyak et
al., 2006; Andrieux and Gaspard, 2007b; Esposito et al.,
2007a; Taniguchi and Cohen, 2007; Chetrite and
Gawȩdzki, 2008�. As an example for the last two classes,
we give the steady-state FT for the entropy production.
We consider a trajectory quantity s whose ensemble av-
erage �s� can be associated with an entropy production
�the specific form of s depends on the underlying dynam-
ics�. If p�S� denotes the probability that s=S when the
system is in a nonequilibrium steady state, then for long
times the FT reads p�S� /p�−S�=exp�S�. FTs valid at any
time such as the work FTs are called transient FTs while
those who require a long-time limit are called steady-
state FTs.

The FTs are all intimately connected to time-reversal
symmetry and the relations between probabilities of for-
ward and backward classical trajectories. Close to equi-
librium the FTs reduce to the known fluctuation-
dissipation relations such as the Green-Kubo relation
for transport coefficients �Gallavotti, 1996a, 1996b; Leb-
owitz and Spohn, 1999; Andrieux and Gaspard, 2004,
2007a�. These classical fluctuation relations have been
reviewed by Maes �2003�; Gaspard �2006�; Gallavotti
�2007, 2008�; and Harris and Schutz �2007�. Some of
these relations were verified experimentally in mesos-
copic systems where fluctuations are sufficiently large to
be measurable. Work fluctuations have been studied in
macromolecule pulling experiments �Liphardt et al.,
2002; Collin et al., 2005� and in optically driven micro-
spheres �Trepagnier et al., 2004�, entropy fluctuations
have also been measured in a similar system �Wang et
al., 2005� and in spectroscopic experiments on a defect
center in diamond �Schuler et al., 2005; Tietz et al., 2006�.
When decreasing system sizes, quantum effects may be-
come significant. Applying the standard trajectory-based
derivations of FTs to quantum regime is complicated by
the lack of a classical trajectory picture when coherences
are taken into account and by the essential role of mea-
surements, which can be safely ignored in ideal classical
systems. We show that the FTs follow from fundamental
dynamical symmetries that apply equally to classical and
quantum systems.

Earlier derivations of the Jarzynski relation for quan-
tum systems defined a work operator �Bochkov and Ku-
zovlev, 1977, 1979, 1981a, 1981b; Stratonovich, 1994;
Yukawa, 2000; Monnai and Tasaki, 2003; Chernyak and
Mukamel, 2004; Allahverdyan and Nieuwenhuizen,
2005; Engel and Nolte, 2006; Gelin and Kosov, 2008�.
Since work is not in general an ordinary quantum “ob-
servable” �the final Hamiltonian does not commute with
the initial Hamiltonian� �Talkner et al., 2007�, attempts
to define such an operator had led to quantum correc-
tions to the classical Jarzynski result. However, the
Jarzynski relation in a closed driven quantum system
may be derived without quantum corrections by intro-
ducing an initial and a final projective measurment of
the system energy in accordance with the quantum me-
chanical measurement postulate. This has been done,
not always in a explicit way by Kurchan �2000�, Tasaki
�2000�, Mukamel �2003b�, Monnai �2005�, Talkner and
Hänggi �2007�, Talkner et al. �2007�, and Talkner,
Hänggi, and Morillo �2008�. The work is then a two-
point quantity obtained by calculating the difference be-
tween the initial and final energy of the system. When
the reservoir is explicitly taken into account, the Jarzyn-
ski relation has often been derived using a master equa-
tion approach �De Roeck and Mass, 2004; Esposito and
Mukamel, 2006; Crooks, 2008a, 2008b�. Alternative deri-
vations can be found in Monnai �2005� and Talkner et al.
�2009�.

The derivation of a steady-state FT for quantum sys-
tems has been considered as well �Jarzynski and Wojcik,
2004; Tobiska and Nazarov, 2005; Andrieux and Gas-
pard, 2006; Esposito and Mukamel, 2006; De Roeck and
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Maes, 2006; Cleuren and den Broeck, 2007; Esposito et
al., 2007b; Harbola et al., 2007; De Roeck, 2007; Saito
and Dhar, 2007; Derezinski et al., 2008; Saito and Ut-
sumi, 2008; Andrieux et al., 2009�. Because of the need
to describe nonequilibrium fluctuations in closed or
open quantum systems exchanging energy or matter
with their reservoir, many similarities exist with the rap-
idly developing field of electron counting statistics �Levi-
tov and Lesovik, 1993; Levitov et al., 1996; Gurvitz,
1997; Nazarov, 1999; Belzig and Nazarov, 2001a, 2001b;
Bagrets and Nazarov, 2003; Belzig, 2003; Kindermann
and Nazarov, 2003; Nazarov and Kindermann, 2003; Pil-
gram et al., 2003, 2006; Shelankov and Rammer, 2003;
Kindermann and Pilgram, 2004; Levitov and Reznikov,
2004; Rammer et al., 2004; Flindt et al., 2005, 2008; Wab-
nig et al., 2005; Braggio et al., 2006; Kiesslich et al., 2006;
Utsumi et al., 2006; Emary et al., 2007; Nazarov, 2007;
Schönhammer, 2007; Bednorz and Belzig, 2008; Snyman
and Nazarov, 2008; Welack et al., 2008�, where small
nanoscale electronic devices exchange electrons. Fluc-
tuations in such systems can nowadays be experimen-
tally resolved at the single electron level �Lu et al., 2003;
Fujisawa et al., 2004, 2006; Bylander et al., 2005;
Gustavsson et al., 2006�. Similarities also exist with the
more established field of photon counting statistics,
where photons emitted by a molecule or an atom driven
out of equilibrium by a laser are individually detected
�Glauber, 1963; Kelley and Kleiner, 1964; Mandel, 1982;
Mandel and Wolf, 1995; Gardiner and Zoller, 2000;
Mukamel, 2003a; Zheng and Brown, 2003a, 2003b; Bar-
kai et al., 2004; Kulzer and Orrit, 2004; Sanda and Muka-
mel, 2005�.

Different types of approaches have been used to de-
rive these FTs and describe these counting experiments.
The first is based on the quantum master equation
�QME� �Gurvitz, 1997; Rammer et al., 2004; Flindt et al.
2005, 2008; Wabnig et al., 2005; Braggio et al., 2006; Es-
posito and Mukamel, 2006; Kiesslich et al., 2006; De Ro-
eck and Maes, 2006; Emary et al., 2007; Esposito et al.,
2007b; Harbola et al., 2007; Welack et al., 2008�. Here
one starts with an isolated total system containing the
system and the reservoir in weak interaction. By tracing
the reservoir degrees of freedom, taking the infinite res-
ervoir limit and using perturbation theory, one can de-
rive a closed evolution equation for the reduced density
matrix of the system. The information about the reser-
voir evolution is discarded. However, the evolution of a
quantum system described by a QME can be seen as
resulting from a continuous projective measurement on
the reservoir, leading to a continuous positive operator-
valued measurement on the system. Such interpretation
allows one to construct a trajectory picture of the system
dynamics, where each realization of the continuous mea-
surement leads to a given system trajectory �Brun, 2000,
2002; Gardiner and Zoller, 2000; Nielsen and Chuang,
2000; Breuer and Petruccione, 2002�. The QME is recov-
ered by ensemble averaging over all possible trajecto-
ries. This unraveling of the QME into trajectories has
been originally developed in the description of photon
counting statistics �Wiseman and Milburn, 1993a, 1993b;

Plenio and Knight, 1998; Gardiner and Zoller, 2000;
Breuer and Petruccione, 2002�. Another approach is
based on a modified propagator defined on a Keldysh
loop which, under certain circumstances, can be inter-
preted as the generating function of the electron count-
ing probability distribution �Nazarov, 1999, 2007; Belzig
and Nazarov, 2001a, 2001b; Belzig, 2003; Kindermann
and Nazarov, 2003; Nazarov and Kindermann, 2003;
Kindermann and Pilgram, 2004�. Using a path integral
formalism, the propagator of the density matrix of a
“detector” with Hamiltonian p2 /2m interacting with a
system can be expressed in terms of the influence func-
tional that only depends on the system degrees of free-
dom �Feynman and Vernon, 1963�. The modified propa-
gator is the influence functional when the system is
linearly coupled to the detector �with coupling term xA,
where x is the position of the detector and A is a system
observable� in the limit of very large detector inertia
m→�. It is only under some specific assumptions �such
as a classical detector where the detector density matrix
is assumed diagonal� that the modified propagator be-
comes the generating function associated with the prob-
ability distribution that the detector momentum changes
from a given amount, which can be interpreted as the
probability to measure the time average of the system
observable A: �0

t d�A���. If A is an electric current, then
the integral gives the number of electrons transfered. An
early quantum FT for electronic junctions has been de-
rived in this context by Tobiska and Nazarov �2005�
based on the time-reversal invariance of the Hamil-
tonian quantum dynamics. Different derivations of
quantum FTs relying on this approach have been consid-
ered by Saito and Dhar �2007� and Saito and Utsumi
�2008�. A third semiclassical scattering approach is often
used in electron counting statistics �Pilgram et al., 2003,
2004; Jordan et al., 2004; Nagaev et al., 2004; Pilgram,
2004�. This can be recovered from the modified propa-
gator approach as recently shown by Snyman and Naz-
arov �2008�, but will not be addressed here.

We consider fluctuations in the output of a two-point
projective measurement �of energy, particle, charge,
etc.�. This allows us to avoid the detailed modeling of
detectors and their dynamics. The projective measure-
ment can be viewed as an effective modeling of the ef-
fect of the system-detector interaction on the system or
as resulting in a fundamental way from the quantum
measurement postulate. The three other approaches
�unraveling of the QME, modified propagator on
Keldysh loop, and the scattering approach� can be re-
covered in some limits of the two-point measurement
approach. This provides a unified framework from
which the different types of FTs previously derived for
quantum systems can be obtained.

In Sec. II, we give the general expression for the prob-
ability of the output of a two-point measurement at dif-
ferent times on a quantum system described by the
quantum Liouville equation. The calculation is repeated
for a system described by the time-reversed dynamics. In
Sec. III, we start by discussing the basic ingredients re-
quired for FTs to hold. We use these results to derive
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three transient FTs, the Jarzynski and Crooks relation in
isolated and closed driven systems and a FT for matter
and heat exchange between two systems in direct con-
tact. We also show that a steady-state FT can be derived
for matter and heat exchange between two reservoirs
through an embedded system. In Sec. IV, we consider a
small quantum system weakly interacting with multiple
reservoirs. We develop a projection superoperator for-
malism to derive equations of motion for the generating
function associated with the system reduced density ma-
trix conditional of the output of a two-point measure-
ment of the energy or number of particles in the reser-
voirs. We apply this generalized quantum master
equation �GQME� formalism to calculate the statistics
of particles or heat transfer in different models of gen-
eral interest in nanosciences in order to verify the valid-
ity of the steady-state FT. In Sec. V, we present a non-
equilibrium Green’s function formalism in Liouville
space, which provides a powerful tool to calculate the
particle statistics of many- body quantum systems. In
Sec. VI, we show that the FTs can be used to derive
generalized fluctuation-dissipation relations. Conclu-
sions and perspectives are drawn in Sec. VII.

II. TWO-POINT MEASUREMENT STATISTICS

We consider an isolated, possibly driven, quantum sys-
tem described by a density matrix �̂�t�, which obeys the
von Neumann �quantum Liouville� equation

d

dt
�̂�t� = −

i

�
�Ĥ�t�, �̂�t�� . �1�

Its formal solution reads

�̂�t� = Û�t,0��̂0Û†�t,0� . �2�

The propagator

Û�t,0� = exp+�−
i

�
	

0

t

d�Ĥ���

� 1 + �

n=1

� 
−
i

�
�n	

0

t

dt1	
0

t1
dt2 ¯

�	
0

tn−1

dtnĤ�t1�Ĥ�t2� ¯ Ĥ�tn� �3�

is unitary Û†�t ,0�=Û−1�t ,0� and satisfies Û†�t ,0�=Û�0, t�
and Û�t , t1�Û�t1 ,0�=Û�t ,0�. We use the subscript 	 ���
to denote an antichronological �chronological� time or-
dering from left to right. We call Eq. �2� the forward
evolution to distinguish it from the the time-reversed
evolution that will be defined below.

A. The forward probability

We consider an observable Â�t� in the Schrödinger
picture whose explicit time dependence solely comes

from an external driving. For nondriven systems Â�t�

=Â. In the applications considered Â�t� will be either an

energy operator Ĥ or a particle number operator N̂. The

eigenvalues �eigenvectors� of Â�t� are denoted by at

��at��: Â�t�=�at
�at�at�at�.

The basic quantity in the following will be the joint
probability to measure a0 at time 0 and at at time t,

P�at,a0� � Tr�P̂at
Û�t,0�P̂a0

�̂0P̂a0
Û†�t,0�P̂at

�

= P*�at,a0� , �4�

where the projection operators are given by

P̂at
= �at��at� . �5�

Using the properties P̂at
= P̂at

2 and �at
P̂at

=1̂, we can verify
the normalization �ata0

P�at ,a0�=1. Consider two com-
plete Hilbert space basis sets ��i ,a0�� and ��j ,at��, where i
�j� are used to differentiate between the states with same
a0 �at�. The basis ��i ,a0�� is chosen such that it diagonal-
izes �̂0 �this is always possible since �̂0 is Hermitian�. We
can also write Eq. �4� as

P�at,a0� = �
i,j

P�j,at;i,a0� , �6�

where

P�j,at;i,a0� � ��j,at�Û�t,0��i,a0��2�i,a0��̂0�i,a0� . �7�

The probability distribution for the difference �a=at
−a0 between the output of the two measurements is
given by

p��a� = �
ata0


„�a − �at − a0�…P�at,a0� , �8�

where 
�a� denotes the Dirac distribution. It is often
more convenient to calculate the generating function
�GF� associated with this probability

G��� � 	
−�

�

d�aei��ap��a� = G*�− ��

= �
ata0

ei��at−a0�P�at,a0� . �9�

The nth moment ��an� of p��a� is obtained by taking
nth derivative of the GF with respect to � evaluated at
�=0:

��an� = �− i�n� �n

��nG����
�=0

. �10�

We further define the cumulant GF

Z��� = ln G��� . �11�

The nth cumulant Kn of p��a� is obtained by taking nth
derivative of the cumulant GF with respect to � evalu-
ated at �=0:
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Kn = �− i�n� �n

��nZ����
�=0

. �12�

The first cumulant coincides with the first moment which
gives the average K1= ��a�. Higher order cumulants can
be expressed in term of the moments. The variance K2
= ��a2�− ��a�2 gives the fluctuations around the average,
and the skewness K3=Š��a− ��a��3

‹ gives the leading or-
der deviation of p��a� from a Gaussian. When measur-
ing the statistics of quantities associated to nonequilib-
rium fluxes, in most cases �but not always �Esposito and
Lindenberg, 2008�� the cumulants grow linearly with
time and it becomes convenient to define the long-time
limit of the cumulant GF

S��� = lim
t→�

1

t
Z��� , �13�

which measures the deviations from the central limit
theorem �Sornette, 2006�.

We next turn to computing the GF. The initial density
matrix can be expressed as

�̂0 = �̄̂0 + �̂�0, �14�

where

�̄̂0 = �
a0

P̂a0
�̂0P̂a0

, �̂�0 = �
a0�a0�

P̂a0
�̂0P̂a0�

. �15�

�̄̂0 commutes with Â�0�. Using the fact that f�Â�
=�aP̂af�a�, where f is an arbitrary function, and using
also

�
a0

e−i�a0P̂a0
�̂0P̂a0

= e−i��/2�Â�0��̄̂0e−i��/2�Â�0�, �16�

we find, by substituting Eq. �4� into Eq. �9�, that

G��� = Tr �̂��,t� , �17�

where we have defined

�̂��,t� � Û�/2�t,0��̄̂0Û−�/2
† �t,0� �18�

and the modified evolution operator

Û��t,0� � ei�Â�t�Û�t,0�e−i�Â�0�. �19�

For �=0, �̂�� , t� reduces to the system density matrix

and Û��t ,0� to the standard evolution operator. Defining
the modified Hamiltonian

Ĥ��t� � ei�Â�t�Ĥ�t�e−i�Â�t� − ���tÂ�t� , �20�

we find that Û��t ,0� satisfies the equation of motion

d

dt
Û��t,0� = −

i

�
Ĥ��t�Û��t,0� . �21�

Since Û��0,0�=1̂, we get

Û�/2�t,0� = exp+�−
i

�
	

0

t

d�Ĥ�/2���
 , �22�

Û−�/2
† �t,0� = exp−� i

�
	

0

t

d�Ĥ−�/2���
 . �23�

Equations �17� and �18� together with Eqs. �22� and �23�
provide an exact formal expression for the statistics of

changes in Â�t� derived from the two-point measure-
ments.

We note that if and only if the eigenvalues of Â are
integers �as in electron counting where one considers the
number operator�, using the integral representation of
the Kronecker delta


K�a − a�� = 	
0

2� d


2�
e−i
�a−a��, �24�

Eq. �18� can be written as

�̂��,t� = 	
0

2� d


2�
�̂��,
,t� , �25�

where

�̂��,
,t� � Û
+��/2��t,0��̂0Û
−��/2�
† �t,0� . �26�

We see that by introducing an additional 
 dependence,
we were able to keep the initial density matrix �̂0 in Eq.
�26� instead of �̂0 as in Eq. �18�.

The current operator associated with Â�t� is given by

Î�t� �
i

�
�Ĥ�t�,Â�t�� + �tÂ�t� . �27�

As a result,

Î�h��t� =
d

dt
Â�h��t� , �28�

where the superscript �h� denotes the Heisenberg repre-

sentation Â�h��t��Û†�t ,0�Â�t�Û�t ,0�. We can write Eq.
�20� as

Ĥ��t� = Ĥ�t� − ��Î�t� + O��2�2� . �29�

In the semiclassical approximation where terms
O��2�2� are disregarded, the GF �17� �with Eqs. �18�,
�22�, and �23��, after going to the interaction representa-
tion, becomes

G��� = Tr�exp−�i
�

2	0

t

d�Î�h����� �̄̂0

�exp−�i
�

2	0

t

d�Î�h�����
 . �30�

This form is commonly found in the modified propaga-
tor approach, described in the introduction, to counting
statistics �Kindermann and Nazarov, 2003; Nazarov and
Kindermann, 2003; Kindermann and Pilgram, 2004�.
Note that in these publications the full initial density
matrix �̂0 is used in Eq. �30� instead of �̂0.
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In most applications discussed in this review, we con-
sider initial density matrices with no initial coherences in

Â�0� space

�Â�0�, �̂0� = 0. �31�

This is equivalent to say that �P̂a0
, �̂0�=0 or that �̂0= �̂0.

In this case, Eq. �4� can be written as

P�at,a0� = Tr�Û†�t,0�P̂at
Û�t,0�P̂a0

�̂0� , �32�

and using Eq. �32� in Eq. �9�, the GF simplifies to

G��� = Tr�ei�Û†�t,0�Â�t�Û�t,0�e−i�Â�0��̂0� . �33�

B. The time-reversed probability

The time-reversed evolution brings the final density
matrix of the forward quantum evolution �2� back to its
initial density matrix. This means that if the initial con-
dition of the time-reversed evolution is �̂0

tr= �̂�t�
=Û�t ,0��̂0Û†�t ,0�, the time-reversed evolution must be

defined as �̂tr�t�=Û†�t ,0��̂0
trÛ�t ,0�, so that �̂tr�t�= �̂0. The

time-reversed expression of the two-point probability �4�
is therefore

Ptr�a0,at� � Tr�P̂a0
Û†�t,0�P̂at

�̂0
trP̂at

Û�t,0�P̂a0
� . �34�

A more systematic discussion on time-reversal operation
in quantum mechanics and its relation to the definition
�34� is given in Appendix A. Without loss of generality,
we choose a basis set ��j ,at�� that diagonalizes �̂0

tr, to
show that Eq. �34� can be rewritten as

Ptr�a0,at� = �
i,j

Ptr�i,a0;j,at� , �35�

where

Ptr�i,a0;j,at� � ��j,at�Û�t,0��i,a0��2�j,at��̂0
tr�j,at� . �36�

The probability to measure the difference �a=a0−at
between the two measurements is given by

ptr��a� � �
ata0


„�a − �a0 − at�…Ptr�a0,at� . �37�

The associated GF reads

Gtr��� � 	
−�

�

d�aei��aptr��a�

= �
at,a0

e−i��at−a0�Ptr�a0,at� . �38�

We note that for a nondriven system with �̂0
tr= �̂0, using

Eqs. �4� and �34�, we find that P�at ,a0�=Ptr�at ,a0�. This
means, using Eqs. �6� and �35�, that

ptr��a� = p��a� �39�

and

Gtr��� = G��� . �40�

Using again the partitioning

�̂0
tr = �̄̂0

tr + �̂�0
tr, �41�

where

�̄̂0
tr = �

at

P̂at
�̂0

trP̂at
, �̂�0

tr = �
at�at�

P̂at
�̂0

trP̂at�
�42�

and following the same procedure as for the forward GF,
we obtain

Gtr��� = Tr �̂tr��,t� , �43�

where

�̂tr��,t� � Û�/2
† �t,0��̄̂0

trÛ−�/2�t,0� . �44�

As for Eq. �30�, in the semiclassical limit we find

Gtr��� = Tr�exp−�i
�

2	0

t

d�Î�h����� �̄̂0
tr

�exp−�i
�

2	0

t

d�Î�h�����
 . �45�

We again note that if the initial density matrix of the
time-reversed evolution contains no initial coherences in

Â�t� space

�Â�t�, �̂0
tr� = 0, �46�

or equivalently if �P̂at
, �̂0

tr�=0 or �̂0
tr= �̂0

tr, Eq. �34� be-
comes

Ptr�a0,at� = Tr�Û�t,0�P̂a0
Û†�t,0�P̂at

�̂0
tr� , �47�

and

Gtr��� = Tr�ei�Û�t,0�Â�0�Û†�t,0�e−i�Â�t��̂0
tr� . �48�

III. THE FLUCTUATION THEOREM

A. General derivation and connection to entropy

We now define the logarithm of the ratio of the for-
ward and time-reversed probabilities defined in Sec. II,
which in the classical theory of FTs is associated with the
irreversible contribution to an entropy change

R�j,at;i,a0� � ln
P�j,at;i,a0�

Ptr�i,a0;j,at�
. �49�

It follows from Eqs. �7� and �36� that

R�j,at;i,a0� = ln
�i,a0��̂0�i,a0�
�j,at��̂0

tr�j,at�
. �50�

An integral FT immediately follows from the normaliza-
tion of Ptr�i ,a0 ; j ,at�,
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�e−R� � �
j,at,i,a0

P�j,at;i,a0�e−R�j,at;i,a0�

= �
j,at,i,a0

Ptr�i,a0;j,at� = 1. �51�

Using Jensen’s inequality �eX��e�X�, Eq. �51� implies

�R� = �
j,at,i,a0

P�j,at;i,a0�R�j,at;i,a0� � 0. �52�

Using Eq. �49�, we see that �R� resembles a Kullback-
Leibler �or relative� entropy �Kullback and Leibler,
1951; Nielsen and Chuang, 2000�.

We define the probability distributions

p�R� � �
j,at,i,a0

P�j,at;i,a0�
�R − R�j,at;i,a0�� , �53�

ptr�R� � �
j,at,i,a0

Ptr�i,a0;j,at�
�R − Rtr�i,a0;j,at�� , �54�

where

Rtr�i,a0;j,at� � ln
Ptr�i,a0;j,at�
P�j,at;i,a0�

. �55�

Using Eqs. �50� and �55�, we see that

Rtr�i,a0;j,at� = − R�j,at;i,a0� . �56�

It then follows that

p�R� = �
j,at,i,a0

eR�j,at;i,a0�Ptr�i,a0;j,at�
�R − R�j,at;i,a0��

= eR �
j,at,i,a0

Ptr�i,a0;j,at�
�R − R�j,at;i,a0��

= eR �
j,at,i,a0

Ptr�i,a0;j,at�
�R + Rtr�i,a0;j,at��

= eRptr�− R� , �57�

which gives the detailed FT

ln
p�R�

ptr�− R�
= R . �58�

The FTs �51� and �58� are completely general but only
useful when R can be exclusively expressed in terms of
physical and measurable quantities �the eigenvalues of

Â�0� and Â�t��. In Secs. III.B and III.C, we show that the
i and j dependence of R, which labels states which can-
not be differentiated by a projective measurement of the

physical observable Â�t�, can be eliminated by making
specific choices of �̂ and �̂tr.

If assumptions �31� and �46� are satisfied �this will be
the case in most of the following applications�, Eq. �52�
can be expressed in term of quantum entropies. Using
Eq. �50�, the general property

�
j,at

P�j,at;i,a0� = �i,a0��̂0�i,a0� , �59�

and the fact that �using assumption �31��

�
i,a0

P�j,at;i,a0� = �j,at��̂�t��j,at� , �60�

Eq. �52� can be rewritten as a quantum relative entropy
�Nielsen and Chuang, 2000; Breuer and Petruccione,
2002� between �̂�t� and �̂0

tr:

�R� = S̄ − S = Tr �̂�t��ln �̂�t� − ln �̂0
tr� � 0, �61�

where

S � − Tr �̂�t�ln �̂�t� = − Tr �̂0 ln �̂0

= − �
i,a0

�i,a0��̂0�i,a0�ln�i,a0��̂0�i,a0� �62�

and

S̄ � − Tr �̂�t�ln �̂0
tr = − Tr �̂0 ln �̂tr�t�

= − �
j,at

�j,at��̂�t��j,at�ln�j,at��̂0
tr�j,at� . �63�

The second line of Eq. �62� �Eq. �63�� is obtained using
assumption �31� �assumption �46��. S is a von Neumann

entropy but S̄ is not. It can be compared to the von
Neumann entropy

Str � − Tr �̂tr�t�ln �̂tr�t� = − Tr �̂0
tr ln �̂0

tr

= − �
j,at

�j,at��̂0
tr�j,at�ln�j,at��̂0

tr�j,at� , �64�

which is obtained using the general property

�
i,a0

Ptr�i,a0;j,at� = �j,at��̂0
tr�j,at� �65�

together with �using assumption �46��

�
j,at

Ptr�i,a0;j,at� = �i,a0��̂tr�t��i,a0� . �66�

In the following applications we show that �R� is always
associated to the irreversible contribution of an entropy
change. Equation �61� is therefore the quantum analog
of the classical relation derived by Kawai et al. �2007�
and Gomez-Marin et al. �2008� and of the stochastic re-
lation by Gaspard �2004b� and Andrieux et al. �2007�.

In Appendix B, following the work of Callens et al.
�2004� and Yacobas and Maes �2005�, we show that if
one allows for a coarse graining of �̂0 and �̂0

tr in their
measured subspaces, one can derive FTs for R’s which
can be expressed exclusively in terms of measurable
probabilities �no i and j index� and such that �R� is the
difference between the Gibbs–von Neumann entropy as-
sociated to the coarse-grained �̂0

tr and �̂0.
We now examine the detailed FT from the GF per-

spective. We define the GFs associated with p�R� and
ptr�R�:

G��� � 	
−�

�

dRei�Rp�R� ,
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Gtr��� � 	
−�

�

dRei�Rptr�R� . �67�

By combining Eq. �58� with Eq. �67�, we get

G��� = Gtr�i − �� . �68�

For a nondriven system with �̂0
tr= �̂0, we have seen that

Eq. �40� is satisfied. Combining this with Eq. �68�, the
detailed FT �58� implies the fundamental symmetry
G���=G�i−�� on the GF. This type of symmetry is used
in Sec. VI to derive generalized fluctuation-dissipation
relations.

B. Transient fluctuation theorems

In this section, we show that the FT �58� can be used
to derive the Crooks �Crooks, 1999, 2000; Horowitz and
Jarzynski, 2007� and Jarzynski relations �Jarzynski,
1997a, 1997b, 2004� in either isolated or closed driven
quantum systems as well as a FT for heat and particle
exchange between two finite systems.

1. Work fluctuation theorem for isolated driven systems

We consider an isolated system initially described by

the Hamiltonian Ĥ�0� and at equilibrium e−�Ĥ�0� /Z�0�,
where Z�0�=Tr e−�Ĥ�0� is the partition function. We can
imagine that the system was in contact with a reservoir
at temperature �−1 for t�0. At t=0 the reservoir is re-
moved and the system energy is measured for the first
time. After the first measurement, the system is then
subjected to an external and arbitrary driving �the
Hamiltonian is time dependent�. The second energy
measurement occurs at time t, where the Hamiltonian is

Ĥ�t�. From the two measurements of this forward pro-
cess we can calculate P�Et ,E0�.

In the backward process, the isolated system is ini-

tially described by the Hamiltonian Ĥ�t� and at equilib-

rium e−�Ĥ�t� /Z�t�, where Z�t�=Tr e−�Ĥ�t�. We can imagine
that at the end of the forward process, the system de-

scribed by the Hamiltonian Ĥ�t� is put in contact with a
reservoir at temperature �−1 until it thermalizes, and
that the reservoir is then removed at time zero when the
energy of the system is measured for the first time in the
backward process. After this first measurement, an ex-
ternal driving, which is the time-reversed driving of the
forward process, is applied. The second energy measure-

ment occurs at time t, where the Hamiltonian is Ĥ�0�.
In Appendix A, we show that the time-reversed evo-

lution �as defined in Sec. II.B� of an isolated system
driven externally according to a given protocol corre-
sponds to the forward evolution of the isolated system
externally driven according to the time-reversed proto-
col. This means that the backward process just described
is identical to the time reversal of our forward process,
so that the two measurements occurring during the
backward process can be used to calculate Ptr�E0 ,Et�.

To make the connection with the results of Sec. II, we
define the initial density matrices for the forward and
backward processes

�̂0 =
e−�Ĥ�0�

Z�0�
, �̂0

tr =
e−�Ĥ�t�

Z�t�
. �69�

We further set at=Et �a0=E0�, where Ĥ�t��Et , j�
=Et�Et , j� �Ĥ�0��E0 , i�=E0�E0 , i��. The index j �i� distin-
guishes between degenerate eigenstates so that ��Et , j��
���E0 , i��� constitutes a complete basis in Hilbert space.
We also define the free-energy difference �F�t�=F�t�
−F�0� between the initial and final state, where F�t�
=−�−1 ln Z�t�. Since the system is isolated, no heat ex-
change occurs and the change in the system energy can
be interpreted as the work done by the driving force on
the system

w = �a = Et − E0. �70�

Equations �7� and �36� become

P�j,Et;i,E0� = ��j,Et�Û�t,0��i,E0��2e−��E0−F�0��,

Ptr�i,E0;j,Et� = ��j,Et�Û�t,0��i,E0��2e−��Et−F�t��,

so that Eq. �50� becomes

R�j,Et;i,E0� = ��w − �F�t�� = R�Et,E0� . �71�

The essential property that R is independent of i and j
and only expressed in terms of observable quantities is
therefore satisfied.

Equations �62� and �63� become

S̄ = ��Tr Ĥ�t��̂�t� − F�t�� ,

S = ��Tr Ĥ�0��̂0 − F�0�� , �72�

and

�R� = S̄ − S = ���w� − �F� � 0, �73�

where

�w� = Tr Ĥ�t��̂�t� − Tr Ĥ�0��̂0. �74�

�w� is the average work so that �−1�R� is the irreversible
work �the irreversible contribution to the entropy
change�. Using Eq. �58�, we get the Crooks relation

p�w�
ptr�− w�

= e��w−�F�. �75�

The Jarzynski relation follows immediately from Eq.
�75� �by integrating ptr�−w� over w which is equal to 1
because of normalization�,

�e−�w� = e−��F. �76�

Equations �76� and �75� have been first derived by
Kurchan �2000� for a periodic driving �where �F=0� and
by Tasaki �2000� for finite �F. Further studies of Eq. �76�
have been done by Mukamel �2003b�, Talkner et al.
�2007�, and Talkner, Burada, and Hänggi �2008a� and of

1672 Esposito, Harbola, and Mukamel: Nonequilibrium fluctuations, fluctuation …

Rev. Mod. Phys., Vol. 81, No. 4, October–December 2009



Eq. �75� by Talker and Hänggi �2007�. It was generalized
to the microcanonical ensemble by Campisi �2008� and
Talkner, Hänggi, and Morillo �2008�.

2. Work fluctuation theorem for closed driven systems

We consider the same forward and backward pro-
cesses as described above, except that during the driving
the system now remains in weak contact with a reservoir
at equilibrium. The total Hamiltonian is therefore of the

form Ĥ�t�=ĤS�t�+ĤB+ V̂, where ĤS�t� �ĤB� is the sys-

tem �reservoir� Hamiltonian and V̂ is the weak interac-
tion between the two. The work done by the driving
force on the system is now given by the difference be-
tween the system and the reservoir energy change �this
last one represents heat� according to the first law of
thermodynamics.

In this case, the connection with the results of Sec. II
is done with

�̂0 =
e−�ĤS�0�

ZS�0�
e−�ĤB

ZB
, �̂0

tr =
e−�ĤS�t�

ZS�t�
e−�ĤB

ZB
, �77�

as well as a0=Es�0�+Eb and at=Es��t�+Eb�, where Es�0�
�Es�t�� are the eigenvalues of ĤS�0� �ĤS�t�� and Eb are

the eigenvalues of ĤB. We define i= �is , ib� and j= �js , jb�,
where is and js are used to distinguish between degener-

ate eigenstates of ĤS�0� and ĤS�t� and ib and jb between

degenerate eigenstates of ĤB. The work is therefore

w = �a = Us�s + Qb�b, �78�

where Us�s=Es��t�−Es�0� is the change in the system en-
ergy and Qb�b=Eb�−Eb is the heat transferred from the
system to the reservoir. Since the eigenstates of the
Hamiltonian constitute a complete basis set, Eqs. �7� and
�36� become

P�j,Es��t� + Eb�;i,Es�0� + Eb�

= ��js�b��Û�t,0��isb��2�sb��̂0�sb� , �79�

Ptr�i,Es�0� + Eb;j,Es��t� + Eb��

= ��js�b��Û�t,0��isb��2�s�b���̂0
tr�s�b�� . �80�

Equation �50� therefore gives

R�j,Es��t� + Eb�;i,Es�0� + Eb�

= ��w − �F� = R�Es��t� + Eb�,Es�0� + Eb� , �81�

where �F�t�=F�t�−F�0� is the free-energy difference be-
tween the initial and final system state �F�t�
=−�−1 ln ZS�t��. The essential property that R is inde-
pendent of i and j and expressed solely in terms of ob-
servable quantities is therefore again satisfied. Using Eq.
�58�, we get the same Crooks �75� and Jarzynski �76�
relation as in the isolated case. The two relations were
derived for quantum open driven systems in many dif-
ferent ways by Kurchan �2000�, De Roeck and Maes
�2004�, Monnai �2005�, Esposito and Mukamel �2006�,

Crooks �2008a, 2008b�, and Talkner et al. �2009�. Using
Eqs. �62� and �63�, we also find that Eq. �73� still holds
with

�w� = Tr„ĤS�t� + ĤB…�̂�t� − Tr„ĤS�0� + ĤB…�̂0. �82�

3. Fluctuation theorem for direct heat and matter exchange
between two systems

We consider two finite systems A and B with Hamil-

tonians ĤA and ĤB, each initially at equilibrium with its
own temperature and chemical potential. The two sys-
tems are weakly interacting, allowing heat and matter
exchange between them. The total Hamiltonian is of the

form Ĥtot=ĤA+ĤB+ V̂, where V̂ is the coupling term
between A and B. The joint Hilbert space is HA�HB.
The energy EA and the number of particles nA of system
A is measured at time zero and again at time t. We as-
sume

�̂0 = �̂0
tr = �̂A

eq��A,�A��̂B
eq��B,�B� , �83�

where

�̂X
eq��X,�X� = e−�X�ĤX−�XN̂X�/�X �84�

and X=A ,B. �X is the grand canonical partition func-
tion. The index iX is used to distinguish between eigen-

states of ĤX with same energy EX and number of par-
ticles nX. We define i= �iA , iB� and �= �EA ,nA ,EB ,nB�.
Using Eqs. �7� and �36�, we find

P�i�,��;i,�� = ��i�,���Ût�i,���2����̂0��� , �85�

Ptr�i,� ;i�,��� = ��i�,���Ût�i,���2�����̂0���� . �86�

Equations �50� with �83� give

R���,�� = − �A��EA − EA� � − �A�nA − nA� ��

− �B��EB − EB� � − �B�nB − nB� �� . �87�

Conservation laws imply that changes in matter and en-
ergy in one system are accompanied by the opposite
changes in the other system so that

EA − EA� � − �EB − EB� � , �88�

nA − nA� = nB − nB� . �89�

The weak-interaction assumption is required for Eq.
�88� to hold. Using Eqs. �88� and �89� and defining the
heat and matter nonequilibrium constraints

Ah � − �A + �B,

Am � �A�A − �B�B, �90�

we find that Eq. �87� can be expressed exclusively in
terms of measured quantities EA and nA:

R�EA� ,nA� ;EA,nA� � − Ah�EA� − EA� − Am�nA� − nA� .

�91�

Using Eqs. �62� and �63�, we find
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S = − �
X=A,B

�X�Tr ĤX�̂0 − �X Tr N̂X�̂0� , �92�

S̄ = − �
X=A,B

�X�Tr ĤX�̂�t� − �X Tr N̂X�̂�t�� . �93�

From Eq. �61�, the ensemble average of Eq. �91� is the
time-integrated entropy production which has the famil-
iar force-flux form of nonequilibrium thermodynamics
�de Groot and Mazur, 1984; Kondepudi and Prigogine,
1998; Mehta and Andrei, 2008�

�R� � − Ah�Tr ĤA�̂�t� − Tr ĤA�̂�0��

− Am�Tr N̂A�̂�t� − Tr N̂A�̂�0�� . �94�

The detailed FT follows from Eqs. �58� and �91�

p��EA,�nA�
p�− �EA,− �nA�

� e−�Ah�EA+Am�nA�. �95�

Positive Ah �Am� means that TA�TB ��A�A��B�B� so
that the probability for an energy transfer �EA �of a
particle transfer �nA� from A to B is exponentially more
likely than from B to A.

Such a FT for heat has been derived by Jarzynski and
Wojcik �2004�. A similar FT for exchange of bosons has
been derived by Kawai et al. �2007�. This FT for particles
can also be derived from the GF of Shelankov and Ram-
mer �2003� and Levitov and Reznikov �2004�. Deriva-
tions of this detailed FT for specific models are pre-
sented in Secs. IV.B.4 and V.B.2.

C. Steady-state fluctuation theorems

We give simple qualitative and general arguments to
show that the FT �58� can be used to obtain a quantum
steady-state FT for heat and matter exchange between
two reservoirs through an embedded system.

We consider two reservoirs A and B, with Hamilto-

nians ĤA and ĤB, each initially at equilibrium with its
own temperature and chemical potential. A heat and
matter exchange occurs between the two reservoirs
through a weakly coupled embedded system �e.g., a mol-

ecule or a quantum dot�. The total Hamiltonian is Ĥtot

=ĤA+ĤB+ V̂, where V̂=ĤS+ V̂AS+ V̂BS contains the free

Hamiltonian of the system ĤS and the coupling term

between each of the reservoirs and the system V̂AS and

V̂BS. The total Hilbert space is HA�HB�HS. We use

the index iX to distinguish between eigenstates of ĤX
with same energy EX and number of particles nX, where
X=A ,B ,S. We define the abbreviated notation i
= �iA , iB , iS� and �= �EA ,nA ,EB ,nB ,ES ,nS�. The energy
EA and the number of particles nA is measured in reser-
voirs A at time zero and again at time t. We assume

�̂0 = �̂0
tr = �̂A

eq��A,�A��̂B
eq��B,�B��̂S

eq��S,�S� , �96�

where �̂S
eq is the equilibrium system reduced density ma-

trix. Since

P�i�,��;i,�� = ��i�,���Ût�i,���2�i,���̂0�i,�� , �97�

Ptr�i,� ;i�,��� = ��i�,���Ût�i,���2�i�,����̂0�i�,��� , �98�

Eq. �50� reads

R���,�� = − �A��EA − EA� � − �A�nA − nA� ��

− �B��EB − EB� � − �B�nB − nB� ��

− �S��ES − ES�� − �S�nS − nS��� . �99�

Since the system-reservoir couplings are weak, conserva-

tion laws of the total unperturbed system �Ĥtot with

V̂AS+ V̂BS=0� imply that

EB − EB� � − �EA − EA� � − �ES − ES�� , �100�

nB − nB� = nA� − nA + nS� − nS. �101�

This means that Eq. �99� is equal to

R�EA� ,nA� ;EA,nA� � − Ah�EA� − EA� − Am�nA� − nA�

+ O�ES� − ES� + O�nS� − nS� .

�102�

Since A and B are assumed macroscopic �i.e., reser-
voirs�, the change in energy EA� −EA and matter nA−nA�
in reservoir A is not bounded. However, because system
S is assumed small and finite, ES�−ES and nS�−nS are
always bounded and finite. This means that in the long-
time limit these contribution to R will become negligible
in Eq. �102�. For long times, the FT �58� with Eq. �102�
becomes a universal �independent of system quantities�
steady-state FT for the heat and matter currents,

lim
t→�

1

t
ln

p��EA,�NA�
p�− �EA,− �NA�

= AhIh + AmIm, �103�

where Ih=�EA / t and Im=�NA / t are the heat and matter
current between the system and the reservoir A. The
right-hand side of Eq. �103� can thus be interpreted as an
entropy production. A rigorous proof of Eq. �103� has
been recently given by Andrieux et al. �2009�. In the
long-time limit, the steady-state FT �103� is similar to the
detailed FT �95�. We note that the long-time limit is re-
lated to the existence of a large deviation function �see
Appendix C�. We also note that when the system S is not
finite, O�ES�−ES� and O�nS�−nS� terms in Eq. �102� may
not be negligible in the long-time limit, as observed by
van Zon and Cohen �2003, 2004�. Similar problems are
expected if A and B are not “good” reservoirs. A good
reservoir should allow the system to reach a steady state.
Since it is known that such reservoirs cannot be properly
described within the Hamiltonian formalism, it should
be no surprise that more systematic derivations of quan-
tum steady-state FT �103� require to use some effective
�and irreversible� description of the embedded system
dynamics. A common way to do this is the quantum
master equation approach, which consists in deriving an
approximate equation of motion for the system reduced
density matrix containing the effects of reservoir
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through its correlation functions. As required for a
“true” reservoir, the back action of the system on the
reservoir is neglected �Born approximation�. Such a
derivation of the steady-state FTs is presented in Sec. IV
�see Eq. �141� and �149��. Another approach is based on
a system Green’s function description. Here the effect of
the reservoirs appear through the self-energies. These
derivations will be presented in Sec. V.C. It has been
recently suggested that finite thermostats �commonly
used to model thermostatted classical dynamics� could
also be used to describe thermostatted quantum dynam-
ics �Gallavotti, 2008�.

IV. HEAT AND MATTER TRANSFER STATISTICS IN
WEAKLY COUPLED OPEN SYSTEMS

We now consider a small quantum system weakly in-
teracting with a reservoir. Heat and matter exchanges
are measured by a projective measurement in the reser-
voir. We derive a generalized quantum master equation
�GQME� for the GF associated to the system density
matrix conditional to a given transfer with the reservoir.
The statistics is therefore obtained from the solution of
the GQME. When summing the GQME over all pos-
sible transfer processes, one recovers the standard quan-
tum master equation �QME�.

A. Generalized quantum master equation

We consider a single reservoir, but the extension to
multiple reservoirs is straightforward. The total Hamil-

tonian is the sum of the system S Hamiltonian ĤS, the

reservoir R Hamiltonian ĤR, and the weak interaction

between the two V̂:

Ĥ = Ĥ0 + V̂ = ĤS + ĤR + V̂ . �104�

We use the index s �r� to label the eigenstates of the
Hamiltonian of system S �R�. The reservoir is initially

assumed to be at equilibrium �̂R
eq=e−��ĤR−�N̂R� /�R. The

measured observable is the energy ĤR and number of

particle N̂R in the reservoir. Since the measured observ-
ables commutes with the initial density matrix �̂0

= �̂S�0��̂R
eq, using Eq. �17� we obtain

G��,t� = Tr �̂��,t� , �105�

where �= ��h ,�m�,

�̂��,t� � e−�i/��Ĥ�t�̂0e�i/��Ĥ−�t �106�

and

Ĥ� = e�i/2���hĤR+�mN̂R�Ĥe−�i/2���hĤR+�mN̂R� = Ĥ0 + V̂�.

�107�

Obviously, �̂�t�= �̂��=0, t�.
We define the system GF

�̂S��,t� � TrR �̂��,t� , �108�

which is an operator in the system space. Since �̂S�t�
= �̂S��=0, t� is the reduced density matrix of the system,
�̂S�� , t� is a reduced density matrix of the system condi-
tional to a certain energy and matter transfer between S
and R. We can now rewrite Eq. �105� as

G��,t� = TrS �̂S��,t� . �109�

We derive a closed evolution equation for �̂S�� , t� using
the projection operator technique and second-order per-

turbation theory in V̂ on �̂�� , t�. By solving this equation
one can obtain G�� , t�. Details are given in Appendix D.
The final result reads

�̇̂S��,t� = −
i

�
�ĤS, �̂S��,t��

+
1

�2 �
���
	

0

t

d��− TrR�V̂�
�V̂�

���− ���̂R
eq�̂S��,t��

− TrR��̂R
eq�̂S��,t�V̂−�

� �− ��V̂−�
�� �

+ TrR�V̂�
��̂R

eq�̂S��,t�V̂−�
�� �− ���

+ TrR�V̂�
��− ���̂R

eq�̂S��,t�V̂−�
�� �� , �110�

where

V̂�
��t� = e�i/��Ĥ0tV̂�

�e−�i/��Ĥ0t. �111�

1. Generalized reservoir correlation functions

We now consider an interaction of the form

V̂ = �
�

Ŝ�R̂�, �112�

where Ŝ� �R̂�� is a coupling operator of system S �B�. It

follows from Eq. �107� that V̂����Ŝ�R̂�
�, where

R̂�
� � e�i/2���hĤR+�mN̂R�R̂�e−�i/2���hĤR+�mN̂R�. �113�

For such an interaction, Eq. �110� becomes
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�̇̂S��,t� = −
i

�
�ĤS, �̂S��,t��

+
1

�2 �
���
	

0

t

d��− �������Ŝ�Ŝ���− ���̂S��,t�

− �����− ���̂S��,t�Ŝ��− ��Ŝ��

+ �����− �,− ��Ŝ��̂S��,t�Ŝ���− ��

+ �����− �,��Ŝ��− ���̂S��,t�Ŝ��� . �114�

Here we have defined the generalized reservoir correla-
tion functions

������,t� � TrR �̂eqR̂2�
� �t�R̂��

= �
rr�

e−��Er−�Nr�

ZG
e�i/���Er−Er��t

�ei��h�Er−Er��+�m�Nr−Nr���Rrr�
� Rr�r

�� , �115�

where R̂�
��t�=e�i/��ĤRtR̂�

�e−�i/��ĤRt. The reservoir correla-
tion functions are given by �����t��������=0, t�. For �
=0, Eq. �114� therefore reduces to the non-Markovian
Redfield QME of Gaspard and Nagaoka �1999b�.

The ordinary reservoir correlation functions satisfy
the standard Kubo-Martin-Schwinger �KMS� condition
�Kubo et al., 1998�

�����t� = �����− t − i��� . �116�

In the frequency domain

�̃�����,�� = 	
−�

� dt

2�
ei�t������,t� , �117�

the KMS relation reads

�̃������ = e����̃����− �� . �118�

The generalized reservoir correlation functions satisfy
the symmetry

�������h,�m�,t� = ������− �h − i�,− �m + i���,− t� .

�119�

We note also that if R̂� and Ŝ� are Hermitian, we further
have

������,t� = �
���
* �− �,− t� . �120�

2. The Markovian and the rotating wave approximation

Two approximations commonly used to simplify the
QME may also be used on the GQME. The Markovian
approximation consist of setting the upper bound of the
time integral in Eq. �114� to infinity. The rotating wave
approximation �RWA� �Gardiner and Zoller, 2000;
Breuer and Petruccione, 2002� �also known as secular
approximation �Cohen-Tannoudji et al., 1996; Schaller
and Brandes, 2008� or Davis procedure �Spohn, 1980;
van Kampen, 1997� is often used to impose a Lindblad

form �Lindblad, 1976; Spohn, 1980; Breuer and Petruc-
cione, 2002� to the Markovian QME generator in order
to guarantee the complete positivity of the subsystem
density matrix time evolution. Without RWA, the Mar-
kovian QME generator can lead to a positivity break-
down for certain set of initial conditions due to small
errors introduced on the initial short-time dynamics by
the Markovian approximation �Suarez et al., 1992; Pe-
chukas, 1994; Kohen et al., 1997; Gaspard and Nagaoka,
1999b; Cheng and Silbey, 2005; Jordan et al., 2008�. One
has to note, however, that the use of the RWA is not
always physically justified and might miss important ef-
fects �Suarez et al., 1992; Kohen et al., 1997; Gaspard and
Nagaoka, 1999b; Cheng and Silbey, 2005�. The RWA is
equivalent to define a coarse-grained time derivative of
the system density matrix on times long compared to the
free system evolution �Cohen-Tannoudji et al., 1996;
Schaller and Brandes, 2008�. One easy way to perform
the RWA consists in time averaging limT→��1/2T��−T

T dt
the generator of the QME in the interaction picture and
in the system eigenbasis, using

	
0

�

d�e±i�� = �
��� ± iP
1

�
= lim

�→0+

1

� � i�
. �121�

Using these two approximations on the GQME �114�,
we find that coherences �ss��t���s��̂S�t��s��, with s�s�,
follow the dynamics

�̇ss���,t� = �− �ss� − i�ss���ss���,t� , �122�

where the relaxation rates are given by

�ss� =
1

�2 �
���

�− 2��̃����0�Sss
��Ss�s�

�

+ ��
s̄

��̃�����ss̄�Sss̄
� Ss̄s

�� + �̃�����s�s̄�Ss�s̄
�� Ss̄s�

� �

�123�

and the modified system frequencies are

�ss� = �ss� −
1

�2 �
���

�
s̄
�	

−�

�

d�P
�̃������

� + �s̄s
Sss̄

� Ss̄s
��

− 	
−�

�

d�P
�̃������

� + �s̄s�
Ss�s̄

� Ss̄s�
��� . �124�

The coherences evolve independently from the popula-
tions �diagonal elements �ss�t�� and also independently
from of each other. They simply undergo exponentially
damped oscillations which are independent of �. Popu-
lations, on the other hand, evolve according to the equa-
tion

�̇ss��,t� =
1

�2 �
���

�
s̄

�− 2��̃����− �s̄s�Sss̄
� Ss̄s

���ss��,t�

+ 2��̃�����,�s̄s�Sss̄
� Ss̄s

���s̄s̄��,t�� . �125�

The population dynamics depends on �.
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B. Applications to particle counting statistics

We now calculate the particle statistics for different
models and derive various steady-state FTs using the
GQME.

1. Fermion transport

We consider a many electron quantum system at-
tached to two metal leads which act as particle reser-
voirs. We denote the singe-particle eigenstates of the
system and leads by indices s and i, respectively. The

total Hamiltonian is Ĥ=ĤA+ĤB+ĤS+ V̂, where

ĤX = �
i�X=A,B

�iĉi
†ĉi, ĤS = �

s
�sĉs

†ĉs. �126�

The coupling between the lead X=A ,B and the system

is V̂X= ĴX+ ĴX
† , where ĴX=�s,i�XJsi

Xĉs
†ĉi and Jsi

X are the
coupling elements between the system and the leads X.
The total coupling is then

V̂ = ĴA + ĴB + ĴA
† + ĴB

† . �127�

There is no direct coupling between the two leads, and
an electron transfer is only possible by charging or dis-

charging the quantum system. The operators ĉ �ĉ†� rep-
resent the annihilation �creation� operators which satisfy
the Fermi anticommutation relations

ĉsĉs�
† + ĉs�

† ĉs = 
ss�,

ĉs
†ĉs�

† + ĉs�
† ĉs

† = ĉsĉs� + ĉs�ĉs = 0. �128�

To connect with the notation of the Hamiltonian �104�,
we have ĤR=ĤA+ĤB and V̂= V̂A+ V̂B. Apart from the
difference in chemical potentials �A and �B with eV
=�A−�B, the two leads are assumed be identical.

To count the change in the number of electrons in the
lead A, the projection is done on A. Therefore Eq. �111�
for this model reads

V̂� = e�i/2��N̂A�ĴA + ĴA
† �e−�i/2��N̂A + V̂B

= e−�i/2��ĴA + e�i/2��ĴA
† + V̂B. �129�

To obtain the second line, we used the relation

ĴAN̂A= �N̂A+1�ĴA. Substituting Eq. �129� into Eq. �110�,
the GQME becomes

�̇̂S��,t� = −
i

�
�ĤS, �̂S��,t�� +

1

�2�
ss�
	

0

t

d���ei��ss�
A �− �� + �ss�

B �− ���ĉs��̂S��,t�ĉs
†�− �� + �ei��ss�

A ��� + �ss�
B ����

�ĉs��− ���̂S��,t�ĉs
† + �e−i��ss�

A �− �� + �ss�
B �− ���ĉs

†�̂S��,t�ĉs��− �� + �e−i��ss�
A ��� + �ss�

B ����ĉs
†�− ���̂S��,t�ĉs�

− �ss����ĉs
†ĉs��− ���̂S��,t� − �ss����ĉs�ĉs

†�− ���̂S��,t� − �ss��− ���̂S��,t�ĉs
†�− ��ĉs� − �ss��− ���̂S��,t�ĉs��− ��ĉs

†� ,

�130�

where

�ss�
X ��� = �

ii��X

Jsi
X�Js�i�

X �* Tr�ĉi���ĉi�
†

�̂B� ,

�ss�
X ��� = �

ii��X

Jsi
X�Js�i�

X �* Tr�ĉi
†���ĉi�̂B� �131�

are the equilibrium correlation functions for leads
X and where �ss����=�ss�

A ���+�ss�
B ��� and �ss����=�ss�

A ���
+�ss�

B ���.
For �=0, Eq. �130� reduces to the QME derived by

Harbola et al. �2006�. After applying the Markovian ap-
proximation described in Sec. IV.A.2 �the upper limit of
the time integral in Eq. �130� is extended to infinity�, we
perform the RWA approximation which is equivalent to
assume that the lead correlation functions are diagonal
in s �Harbola et al., 2006�. Equation �130� then becomes

�̇̂S��,t� = −
i

�
�ĤS, �̂S��,t�� + �

s
��e−i��ss

A

+ �ss
B�ĉs

†�̂S��,t�ĉs + �ei��ss
A + �ss

B�ĉs�̂S��,t�ĉs
†

− �ssĉsĉs
†�̂S��,t� − �ssĉs

†ĉs�̂S��,t�� . �132�

The rates �ss
X and �ss

X are calculated by assuming a con-
stant density of states � for the leads over the energy
range around the Fermi level

�ss
X =

2�

�2 ��Js
X�2�1 − fX��s�� ,

�ss
X =

2�

�2 ��Js
X�2fX��s� , �133�

where fX���= �1+e−���−�X��−1 is the Fermi function of
lead X and �=1/kBT. These rates satisfy the relation
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�ss
A�ss

B

�ss
B�ss

A = e�eV. �134�

The solution of Eq. �132� allows one to compute the
time-dependent electron statistics between lead A and
the system at any time. For �=0, Eq. �132� is the Lind-
blad QME derived by Harbola et al. �2006�. Equation
�132� was first derived by Esposito et al. �2007b� by un-
raveling this QME. This derivation used that the QME
is interpreted as resulting from a continuous positive
operator-valued measurement �Nielsen and Chuang,
2000; Breuer and Petruccione, 2002� on the system by
the leads. This allows one to construct probabilities for
histories of electron transfers, and to use them to derive
equations of motion for the GF associated with the
probability distribution of a net transfer of electrons
during a given time interval, which are identical to Eq.
�132�. We thus find that the two-point projection method
and the positive operator-valued measurement lead to
the same electron statistics result in the weak coupling
regime �with Markovian and RWA�. A similar conclu-
sion was reached by De Roeck �2007� and Derezinski et
al. �2008�.

In Eq. �132�, the GF factorizes in terms of single or-
bital GF of the system �̂S�� , t�=�s=1

M �̂s�� , t�, where M is
the total number of orbital and �̂s�� , t� is the single or-
bital GF, so that

�̇̂s��,t� = −
i

�
�s�ĉs

†ĉs, �̂s� + ��e−i��ss
A + �ss

B�ĉs
†�̂s��,t�ĉs

+ �ei��ss
A + �ss

B�ĉs�̂s��,t�ĉs
† − �ssĉsĉs

†�̂s��,t�

− �ssĉs
†ĉs�̂s��,t�� . �135�

As discussed in Sec. IV.A.2, the GQME �132�, when ex-
pressed in the eigenbasis of the system, describes an in-
dependent dynamics for coherences and populations.
The coherences simply decay in time following damped
oscillations while populations follow a classical rate
equation. If the eigenstates of each orbital are denoted
by �ns�, where ns=0,1, the vector made of the population
of �̂s�� , t� in this basis denoted by �̃s�� , t�
���0��̂s�� , t��0� , �1��̂s�� , t��1�� evolves according to

�̇̃s��,t� = �s����̃s��,t� , �136�

where �s��� is a 2 � 2 matrix

�s��� = 
 − �ss ei��ss
A + �ss

B

e−i��ss
A + �ss

B − �ss
� . �137�

The eigenvalues of this matrix are given by

�s±��� = −
�ss + �ss

2
± �f��� , �138�

where

f��� = �ei��ss
A + �ss

B��e−i��ss
A + �ss

B� + 1
4 ��ss − �ss�2.

Since G�� , t�=�sGs�� , t�, where Gs�� , t�= �0��̂s�� , t��0�
+ �1��̂s�� , t��1�, the long-time limit of the cumulant GF is
given by the dominant eigenvalue

S��� = lim
t→�

1

t
ln G��,t� = �

s
�s+��� . �139�

Using Eqs. �134� and �138�, we find that �s±���
=�s±�−i�eV−��, which implies that

S��� = S�− i�eV − �� . �140�

In Appendix C, we show that this symmetry implies the
steady-state fluctuation theorem

lim
t→�

p�k,t�
p�− k,t�

= e�eVk, �141�

where p�k , t� is the probability of transferring a net num-
ber k of electrons in time t from lead A to the system.
Similar FTs have been derived by Tobiska and Nazarov
�2005�, Andrieux and Gaspard �2006�, Esposito et al.
�2007�, and Saito and Utsumi �2008�.

2. Boson transport

We consider a single oscillator mode at frequency

�0 /�ĤS=�0â0
†â0 coupled to two baths X=A ,B at differ-

ent temperatures �A
−1 and �B

−1 �kB=1� that consist in a

collection of noninteracting bosons �e.g., phonons� ĤR

=ĤA+ĤB, where ĤX=�i�X�iâi
†âi. The coupling is as-

sumed to take the form V̂= V̂A+ V̂B, where V̂X

=�i�XJi0
X�â0+ â0

†��âi
†+ âi�. The subscript 0 denotes the sys-

tem oscillator and i is for the ith oscillator in the bath. Ji0
X

is the coupling between the system and the ith bath os-
cillator from X. All operators satisfy the boson commu-
tation relations

âsâs�
† − âs�

† âs = 
ss�,

âs
†âs�

† − âs�
† âs

† = âsâs� − âs�âs = 0. �142�

The system eigenstates have an energy NS�0, where NS
=1,2 , . . .. We are interested in the statistics of the energy
transfers between the system and the A reservoir, so that
the two energy measurements are performed on system
A. It can be shown that performing the RWA on the
GQME is equivalent to assume from the beginning that

the coupling term is of the simplified form V̂X

=�i�XJi0
X�âi

†â0+ â0
†âi�. We thus have

V̂� = e�i/2��ĤA�V̂A + V̂B�e−�i/2��ĤA = ĴA��� + ĴA
† ��� + V̂B,

�143�

where

ĴA��� = �
i

Ji0
Aâ0

†âie
�i/2���i. �144�

We have used âiĤA= ��i+ĤA�âi. Note that unlike fermi-
ons, Eq. �129�, in this case we have a factor �i in the
exponential in the coupling because we now measure
energy. However, in the present model the energy
change is directly proportional to particle change, i.e.,
their statistics is the same.
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Substituting Eq. �143� into Eq. �110�, we get

�̇̂S��,t� = −
i

�
�ĤS, �̂S��,t�� − �dâ0â0

†�̂S��,t�

− �uâ0
†â0�̂S��,t� + ��u

Aei��0 + �u
B�â0�̂S��,t�â0

†

+ ��d
Ae−i��0 + �d

B�â0
†�̂S��,t�â0, �145�

where the rates �u and �d correspond to the “up” and
“down” jumps between the system states

�u
X =

2��

�2 �J0
X�2�1 + nX��0�� ,

�d
X =

2��

�2 �J0
X�2nX��0� . �146�

nX��0�= �e�X�0 −1�−1 is the Bose distribution function and
�d�u�=�d�u�

A +�d�u�
B . The rates satisfy

�u
A�d

B

�d
A�u

B = e�0��A−�B�. �147�

For �=0, Eq. �145� is the Lindblad form QME derived
by Segal and Nitzan �2005� and Harbola et al. �2007�. In
the system eigenbasis ��NS��, Eq. �145� describes a popu-
lations dynamics which follows as

�̇NS
��,t� = ��u

Aei��0 + �u
B��NS + 1��NS+1��,t�

− ��d�NS + 1� + �uNS��NS
��,t�

+ ��d
Ae−i��0 + �d

B�NS�NS−1��,t� , �148�

where �NS
�� , t���NS � �̂S�� , t� �NS�. Like Eq. �136�, Eq.

�148� may also be recast into a matrix form. However,
unlike fermions, in this case since the matrix is infinite. �̃
is an infinite dimensional vector and ���� is a tridiagonal
infinite dimensional matrix. The determinant of a tridi-
agonal matrix can be expressed as a sum of terms where
the nondiagonal terms always appear in pair with its
symmetric nondiagonal term with respect to the diago-
nal. With the help of Eq. �147�, this pair is symmetric
with respect to �→−i�0��A−�B�−�, so that det������
=det��„−i�0��A−�B�−�…�. This implies that the eigen-

values have the same symmetry and therefore that the
following steady-state FT hold:

lim
t→�

p�k,t�
p�− k,t�

= e�0��A−�B�k. �149�

p�k , t� is the probability that a net number of bosons are
transferred from the reservoir A to the system in a time
t. Similar FTs have been derived by Harbola et al. �2007�,
Saito and Dhar �2007�, and Derezinski et al. �2008�. The
transport statistics of bosons and fermions is different
and was compared by Harbola et al. �2007�. However,
both satisfy the same type of FT �Eqs. �141� and �149��.

3. Modulated tunneling

In the above discussion, fermion and bosons are trans-
ferred from one lead to another by charging or discharg-
ing an embedded system. We now consider electron tun-
neling between two coupled leads, where the tunneling
elements are modulated by the state of an embedded
system. Contrary to the model of Sec. IV.B.1, the system
never gets charged; however, it affects the electron tun-
neling between the leads. This can happen, for example,
if an impurity at the leads interface interacts with the
spin of the tunneling electrons. The effect of this inter-
action is to modulate the tunneling elements between
the two leads. This model of electron transfer was pro-
posed by Rammer et al. �2004�. Here we treat this model
using the GQME approach.

The Hamiltonian of the junction is of the form �104�,
where ĤS is the system Hamiltonian and ĤR=ĤA+ĤB

with ĤX=�i�X�iĉi
†ĉi �X=A ,B� are the two leads Hamil-

tonian. The coupling between the two leads is of the

form V̂= Ĵ+ Ĵ†, where Ĵ=�i�A,j�BĴijĉi
†ĉj. The tunneling el-

ements between the leads Ĵij
† = Ĵji are now operators in

the system space. We measure the number of particles in
the lead A. We then have

V̂� = e�i/2��N̂AV̂e�−i/2��N̂A = e�i/2��Ĵ + e−�i/2��Ĵ†. �150�

Substituting this into Eq. �110�, we obtain

�̇̂S��,t� = −
i

�
�ĤS, �̂S��,t�� − �

i�A,j�B
†fA��i��1 − fB��j���Ĵij�Ĵij

†�t���̂S��,t� + H.c.� + fB��j��1 − fA��i���Ĵij
†�Ĵij�t���̂S��,t�

+ H.c.� − fB��j��1 − fA��i��ei�
„Ĵij�̂S��,t��Ĵij

†�t�� + H.c.… − fA��i��1 − fB��j��e−i�
„�Ĵij

†�t���̂S��,t�Ĵij + H.c.…‡ , �151�

where

�Ĵij�t�� =
1

�2	
0

t

d�ei�ij�e−iĤS�Ĵije
iĤS�. �152�

For �=0, Eq. �151� reduces to a Redfield equation for
the reduced density matrix of the system. A QME for

the charge specific reduced density matrix of the system
was derived by Rammer et al. �2004�. Equation �151� is
the evolution equation for the GF associated to it.

When applying the Markovian approximation and the
RWA to Eq. �151� in the system eigenbasis ��s��, the
populations �ss�� , t�= �s � �̂S�� , t� �s� evolve independently
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from the exponentially damped coherences according to

�̇ss��,t� = �
s�

��s�s����s�s���,t� − �s�s�� = 0��ss��,t�� .

�153�

The rates are given by

�ss���� = e−i��s�s + ei�e��Ess�−eV��ss�, �154�

where

�ss� =
2�

�2 �
ij

fA��i��1 − fB��j����s�Ĵij�s���2
��ij − Ess�� .

�155�

They satisfy the symmetry

�s�s�− � − i�eV� = e�Es�s�ss���� . �156�

We define ���� as the matrix generating the dynamics
�153�. Using the Leibniz formula, the determinant reads

det������ = �
�

sgn����
s

N

�s��s���� , �157�

where N is the order of matrix � and the sum is com-
puted over all permutations � of the numbers
�1,2 , . . . ,N�. sgn��� denotes the sign of the permutation,
sgn���=+1 if � is an even permutation and sgn���=−1 if
it is odd. Using Eq. �156�, it can be shown that

det������ = �
�

sgn����
s=1

N

e�Es��s����s�s�− � − i�eV�

= �
�

sgn����
s=1

N

���s�s�− � − i�eV�

= �
�

sgn����
s=1

N

�s��s��− � − i�eV�

= det���− � − i�eV�� . �158�

In going from the first to second line, we used the fact
that �s=1

N e�Es��s� =1 due to �s=1
N Es��s�=0. This property fol-

lows from the bijective nature of permutations, which
implies that for a given Es��s� in the sum such that ��s�
=s� there will always be a Es���s�� in the sum that cancels
the Es�. Since the eigenvalues of ���� satisfy the same
symmetry property as the determinant, we get the same
steady-state FT as Eq. �141�, where p�k , t� is the prob-
ability for a net number k of electron transfer from the
lead A to the lead B. This shows that the FT �141� is not
model specific but rather a generic property of the non-
equilibrium distribution of electron transfers between
the two leads.

4. Direct-tunneling limit

When the system is decoupled from the junction, the
tunneling elements between the two leads are given by

Ĵij=Jij1̂. Using the Markov approximation, t→� in Eq.
�152�, we get

�Ĵij� =
Jij1̂

�2 
�
��i − �j� − iP
1

�i − �j
� , �159�

where P 1
x is the principal part of x which we neglect.

Under these approximations, it is possible to obtain the
explicit form of the GF for the particle transfer statistics
between the two leads. Substituting Eq. �159� into Eq.
�151� and tracing over the system degrees of freedom
�Eq. �109��, we obtain

Ġ��,t� =
2�

�2 �
ij

�Jij�2
��i − �j���fA��i� + fB��j�

− fA��i�fB��j���cos � − 1� + i�fB��i�

− fA��j��sin ��G��,t� . �160�

The solution of this equation with the initial condition
G�� ,0�=1 is

G��,t� = exp�t�1�ei� − 1� + t�2�e−i� − 1�� , �161�

where

�1 =
2�

�2 �
ij

�Jij�2
��i − �j�fB��j��1 − fA��i�� ,

�2 =
2�

�2 �
ij

�Jij�2
��i − �j�fA��i��1 − fB��j�� . �162�

We show in Appendix E that the probability distribution
associated to the GF �161� is a bidirectional Poisson pro-
cess: the difference of two Poisson processes with mo-
ments �1 and �2. Since the moments �1 and �2 satisfy
�1=e−�eV�2, the GF has the symmetry �see Appendix E�

G��,t� = G�− � − i�eV,t� . �163�

This immediately implies the FT

p�k,t�
p�− k,t�

= e�eVk, �164�

which is satisfied at all times �transient FT� unlike Eq.
�141�, which only hold at long times �steady-state FT�.
The entire distribution p�k , t� is calculated in Appendix
E.

V. MANY-BODY APPROACH TO PARTICLE COUNTING
STATISTICS

In previous sections, we formulated the counting sta-
tistics using a kinetic equation approach. This simple
and intuitive approach makes some key assumptions. It
assumes an initially factorized density matrix of the in-
teracting systems so that initial Fock space coherences
are ignored. Moreover, the approach is valid only in the
weak coupling limit and it is not obvious how to include
many-body interactions such as electron-electron and
electron-phonon. In this section, we present a formula-
tion of counting statistics based on superoperator non-
equilibrium Green’s functions �SNGF� �Harbola and
Mukamel, 2008� which allows us to relax these approxi-
mations.
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A. Liouville space formulation of particle counting statistics

We consider particle transfer between two coupled
systems A and B described by the Hamiltonian

Ĥ = ĤA + ĤB + V̂ , �165�

where the coupling is V̂= Ĵ+ Ĵ†. By choosing a suitable

form for Ĵ, we can recover the different models studied
in Sec. IV.B. For the present discussion, we do not need

to specify the explicit form of Ĵ.
The measurement of the net number of particles

transferred from A to B is performed using a two-point
measurement as described in Sec. II. Here the measured
observable is the number of particles in A. A measure-
ment is done at time t=0. If right before this measure-
ment the system is described by a density matrix ���0���,
the measurement destroys all Fock space coherences
and immediately after the measurement the density ma-
trix becomes diagonal in the Fock basis. A second mea-
surement is performed at time t. A difference of the two
measurements gives the net number of particles trans-
ferred between A and B. However, if the particle trans-
fer between A and B occurs though an embedded sys-
tem, the two-point measurement of particle numbers in
A measures the net particle transfer between A and the
embedded system rather than between A and B.

It will be convenient to work with superoperators in
Liouville space �Fano, 1963; B.-Reuven, 1975; Mukamel,
1995; Harbola and Mukamel, 2006, 2008�. These are de-
fined in Appendix F. We denote Liouville space super-
operators by a breve and Hilbert space operators by a

hat: H̆�, V̆�, and H̆0�, where �=L ,R, are the left and

right superoperators corresponding to Ĥ, V̂ and Ĥ0

=ĤA+ĤB. The probability of the net transfer of k elec-
trons from A to B during the time interval t is �see Eq.
�G6��

p�k,t� = �
n

��I�P̆n−kŬ�t,0�P̆n���0��� , �166�

where Ŭ�t ,0�=e−i�2H̆−t is the time evolution operator in

Liouville space and P̆n is the projection operator associ-
ated with the measurement of n electrons in A. ���0��� is
the interacting density matrix when the counting starts
and contains coherences in the number operator basis. It

is constructed by switching on the interaction V̂ from the
infinite past, where the density matrix ���−���� is given
by a direct product of the density matrices of systems A
and B, to t=0,

���0��� = ŬI�0,− �����− ���� , �167�

where

ŬI�0,− �� = exp+�−
i

�
	

−�

0

d��2V̆−���
 , �168�

with �2V̆−���= V̆L���− V̆R��� �see Eq. �F8�� and

V̆���� = Ŭ0
†��,0�V̆�Ŭ0��,0�, � = L,R , �169�

where

Ŭ0��,0� = ����e−�i/���2H̆0−�. �170�

The GF associated to p�k , t� is defined by

G��,t� = �
k

ei�kp�k,t� . �171�

Substituting Eq. �171� into Eq. �166�, we obtain �see Ap-
pendix G�

G��,t� = 	
0

2� d


�2��3G��,
,t� , �172�

with

G��,
,t� = ��I�e−�i/���2H̆0−t

�exp+�− �i/��	
−�

t

d��2V̆−�����,��

����− ���� , �173�

where V̆−„��t�…= V̆L„�L�t�…− V̆R„�R�t�… with �L�t�=��t��

+� /2� and �R�t�=��t��
−� /2�. The GF �173� includes
the initial t=0 correlations between systems A and B in
the density matrix. These correlations are built through

the switching of the coupling V̂ from t=−� to t=0. In the
absence of such correlations, the initial density matrix is
diagonal in the number basis and G�� , t�=G�� ,
=0, t�
�i.e., ��0� commutes with N̂A�. Next we show how
G�� ,
 , t� can be computed.

B. Electron counting statistics for direct tunneling between
two systems

We next apply Eq. �173� to calculate the electron cur-
rent statistics for the direct tunneling model of Sec.
IV.B.4. The Hamiltonian is given by Eq. �165�, where

Ĵ = �
i�A,j�B

Jijĉi
†ĉj, �174�

with J
ij
* =Jji. The Hamiltonians ĤA and ĤB are general

and can include many-body interactions. The exact form

for ĤA and ĤB is not necessary in the present discussion.
A noninteracting electron model, as studied in Sec.
IV.B.4, will be considered next.

We now define the superoperators J̆, J̆†, and N̆ corre-

sponding to the operators Ĵ, Ĵ†, and the number operator
NA for the system A. These satisfy the commutation re-
lations

�J̆L,N̆L� = − J̆L, �J̆L
† ,N̆L� = J̆L

† ,

�J̆R,N̆R� = J̆R, �J̆R
† ,N̆R� = − J̆R

† . �175�

Using these commutation relations in Eq. �G14�, we can
write
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V̆�„���t�… = exp�− i���t��J̆� + exp�i���t��J̆�
† . �176�

We define

Z��,
,t� � ln G��,
,t� . �177�

Expanding the time-ordered exponential in Eq. �173� we
can compute the GF and the cumulant GF perturba-

tively in the coupling Jab. Since ��I�V̆−���−����=0, to sec-
ond order we obtain

Z��,
,t� = −
1

2�2	
−�

t

d�1	
−�

t

d�2

���I�T̆V̆−����1�,�1�V̆−����2�,�2����− ���� .

�178�

Substituting Eq. �176� into Eq. �178� we obtain

Z��,
,t� = Z�0���,t� + Z�1���,
,t� , �179�

where

Z�1���,
,t� = 2�ei�/2 − e−i�/2�Re�ei
W�t�� , �180�

and

Z�0���,t� = �e−i� − 1�WBA
�0� �t� + �ei� − 1�WAB

�0� �t� �181�

are the contributions coming from time evolution from
t=−� to t=0 and from t=0 to time t, respectively, and
W�t��WBA

�1� �t�−WAB
�1� �t� with

WAB
�0� �t� =

1

�2	
0

t

dt1	
0

t

dt2��I�J̆R�t1�J̆L
† �t2����− ���� ,

WBA
�0� �t� =

1

�2	
0

t

dt1	
0

t

dt2��I�J̆L�t1�J̆R
† �t2����− ���� ,

WAB
�1� �t� =

1

�2	
−�

0

dt1	
0

t

dt2��I�J̆R�t1�J̆L
† �t2����− ���� ,

WBA
�1� �t� =

1

�2	
−�

0

dt1	
0

t

dt2��I�J̆L�t1�J̆R
† �t2����− ���� .

�182�

From Eq. �177� and �179� we obtain

G��,
,t� = eZ�0���,t�eZ�1���,
,t�. �183�

Substituting this into Eq. �172� the GF is obtained as

G��,t� = G�0���,t�G�1���,t� , �184�

where

G�0���,t� = exp�Z�0���,t�� , �185�

G�1���,t� = 	
0

2� d


2�
exp�Z�1���,
,t�� . �186�

The cumulant GF is finally obtained as

Z��,t� = Z�0���,t� + ln 	
0

2� d


2�
exp�Z�1���,
,t�� .

�187�

The second term on the rhs of Eq. �187� is the contribu-
tion due to the initial correlations that exist between
systems A and B right before the first measurement.
When these initial correlations are ignored, i.e., initial
density matrix is a direct product of the density matrix

of A and B „or equivalently �N̂A , �̂�0��=0…, Z�1�=0.

1. Effects of initial correlations

Here we discuss the corrections to the electron statis-
tics due to correlations between A and B in the initial
density matrix. We show that these contributions do not
affect the first moment �the current� but only higher mo-
ments.

Using Eq. �180� and expanding in �, we find that

exp�Z�1���,
,t�� = �
n=0

�
�2i�n

n!
sinn
�

2
�

��e−i
W�t� + ei
W*�t��n

= �
n��k�,k=0

�
�2i�n

k!�n − k�!
sinn
�

2
�

� Wn−k�t�Wk*�t�e−i
�n−2k�. �188�

Integrating over 
, Eq. �186� becomes

G�1���,t� = 1 + �
n=1

�
�− 4�n

�n!�2 �W�t��2n sin2n
�

2
� . �189�

By differentiating Eq. �184� with respect to �, we can
factorize the moments in two parts, �kn�0 which does not
depend on the initial correlations and ��n� which does,

�kn�t�� = �kn�t��0 + ��n��t� , �190�

where

�kn�t��0 = �− i�n� �n

��nG�0���,t��
�=0

,

��n��t� = �
k=1

n

�
l=1

�

�
m=0

2l

i2l−m+k�− 1�k 2lCm
nCk

��kn−k�t��0�W�t��2l. �191�
nCk=n! /k!�n−k�! are the binomial coefficients.

We find that ��1��t�=0, i.e., initial correlations do not
contribute to the first moment, which is the net current
from A→B. However, they do contribute to higher mo-
ments. The correction to the second moment is

��2��t� = − 32�W�t��2. �192�

We see that initial correlations always tend to decrease
the second moment.
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2. The thermodynamic limit

We consider now the limit where A and B can be
assumed to have continuous spectra. We treat them as
noninteracting electron leads and show that initial cor-
relations do not contribute to the long-time statistics.

This corresponds to the model discussed in Sec.
IV.B.4. In this limit, the rates WAB and WBA given in Eq.
�182� can be calculated explicitly. The Hamiltonian for
two systems �X=A ,B� is

ĤX = �
i�X

�iĉi
†ĉi. �193�

Using the fact that the density matrix at t=−� is a direct
product ���−����= ��A

eq�� � ��B
eq��, we get

��I�J̆R��1�J̆L
† ��2����− ���� = �

ij
�Jij�2fA��i��1 − fB��j��

�ei�ij��1−�2�, �194�

��I�J̆L��1�J̆R
† ��2����− ���� = �

ij
��Jij�2fB��j��1 − fA��i��

�ei�ij��1−�2�� , �195�

where �ij=�i−�j and fX���= �exp����−�X��+1�−1 is the
Fermi function for the system A �B� with �A and �B
denoting the chemical potential of systems A and B.

Remembering that

	
0

t

d�1	
0

t

d�2e±i�ij��1−�2� = 
 sin��ijt/2�
�ij/2

�2

=
t→�

2�
��ij�t

�196�

and that

	
−�

0

d�1	
0

t

d�2e±i�ij��1−�2� = −
�e�i��ij�i�+�t − 1�

��+ � i�ij�2 ,

using Eq. �181� we find that

Z�0���,t� = �e−i� − 1��2t + �ei� − 1��1t , �197�

where �1 and �2 are given by Eq. �162�. G�0���� is there-
fore identical to the GF for a bidirectional Poisson pro-
cess obtained in Eq. �161� within the GQME.

The rate W�t� which appears in the expression for Z�1�

in Eq. �180� is given by

W�t� = �
ij

�Jij�2��fA��j� − fB��i��
e−i��ij−i�+�t − 1

��ij − i�+�2 � .

�198�

Taking the continuous limit of the leads’ density of
states, we find that for long times W�t� becomes time
independent �Shelankov and Rammer, 2003�. Therefore

S��� = lim
t→�

1

t
Z��,t� = lim

t→�

1

t
Z�0���,t� , �199�

which shows that the long-time statistics is not affected
by the initial correlations between A and B.

C. Electron counting statistics for transport through a
quantum junction

We next apply Eq. �172� to calculate the current sta-
tistics in the transport model of Sec. IV.B.1 where a
quantum system �e.g., a molecule, chain of atoms, or
quantum dots� is embedded between two much larger
systems A and B. Note that here the two-point measure-
ment of the particle number in A does not measure the
net particle transfer between A and B as in Sec. V.A but
rather the net particle transfer between A and the em-
bedded system. The particle transfer statistics for this
model was studied in Sec. IV.B.1 using the GQME ap-
proach. Here we express the transfer statistics in terms
of the SNGF �Harbola and Mukamel, 2006, 2008� of the
quantum system. By connecting this powerful many-
body formalism with the two-point measurement, we
can study more complicated models. The effect of eigen-
basis coherences in the quantum system �which requires
to go beyond the RWA in the GQME approach� and the
effect of many-body interactions in the quantum system
can be easily incorporated into the SNGF approach via
the self-energy matrix. In presence of many-body inter-
actions, the SNGF theory involves a self-consistent cal-
culation for the Green’s functions together with their
self-energies. This goes beyond the weak coupling limit
of the GQME. The simple form for the lead-system in-
teractions �127� allows us to obtain analytical results for
the corresponding self-energy and hence the GF.
Electron-electron interactions will provide an extra �ad-
ditive� self-energy matrix computed by Harbola and
Mukamel �2006�.

The Hamiltonian of the model is given by Eq. �126�
and �127�. The superoperators H̆0� and V̆� correspond-

ing to Ĥ0=ĤA+ĤB+ĤS and V̂A�B� can be obtained using
Eqs. �F11� in Eqs. �126� and �127�. We get

H̆0L = �
x�A,B,S

�xc̆xL
† c̆xL,

H̆0R = �
x�A,B,S

�xc̆xRc̆xR
† , �200�

and

V̆� = J̆A,� + J̆A,�
† + J̆B,� + J̆B,�

† , �201�

where

J̆X,L = �
s,i�X

Jsic̆iL
† c̆sL,

J̆X,R = �
s,i�X

Jsic̆sRc̆iR
† . �202�

The superoperators J̆X,L and J̆X,L
† satisfy the commuta-

tion relations �Harbola and Mukamel, 2008�

�J̆A,L,N̆L� = − J̆A,L, �J̆A,R,N̆R� = J̆A,R, �203�
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�J̆A,L
† ,N̆L� = J̆A,L

† , �J̆A,R
† ,N̆R� = − J̆A,R

† , �204�

and �N̆� , J̆B,��= �N̆� , J̆B,�
† �=0. Using these in Eq. �G14�,

we obtain

V̂�„���t�,t… = exp�− i���t��J̆A,��t� + exp�i���t��J̆A,�
† �t�

+ J̆B,� + J̆B,�
† , �205�

where J̆X,�= J̆X,����=0�. Note that in Eq. �205� the expo-
nential factors are associated only with superoperators
of the lead A since the measurement �projection� is done
only on A.

We can now use Eq. �205� in Eq. �173� to compute the
GF. ���−���� in Eq. �173� is given by the direct product of
equilibrium density matrices of the system and the leads,

���− ���� = ��S�� � ��A�� � ��B�� , �206�

��x�� =
1

�x
�e−�Ĥx−�xN̂x�� , �207�

where �x and �x are the chemical potential and the par-
tition function for system x, respectively.

Using Grassmann variables and a path-integral for-
mulation, the GF �172� can be expressed in terms of the
Green’s functions of the quantum system. In Appendix
H, we present a derivation in terms of Liouville space
superoperators. For a Hilbert space derivation see Ka-
menev �2002�. Some useful properties of Grassmann
variables used in the derivation are summarized in Ap-
pendix I. The final result for the GF, Eq. �173�, is

G��,
,t� = eZ��,
,t�, �208�

with

Z��,
,t� = 	
−�

t

d� ln Det�g−1�� = 0� − �„�,�,����…� ,

�209�

where g�t− t�� and ��t , t�� are Green’s function and self-
energy �due to system-lead interaction� matrices in
� ,��=+,− representation. The Green’s function matrix
satisfies


i�
�

�t
− �s�gss�

����t − t�� = 
�t − t��
���
ss�, �210�

and the self-energy matrix is

�ss�
���

„t,t�,��t�,��t��… = �
X

�
ii��X

Jsi
��1

„��t�…gii�
�1�2�t − t��

�Ji�s�
�2��

„��t��… , �211�

where

Jis
++��� = Jis

−−��� = Jis�ei�L + ei�R�/2,

Jis
+−��� = Jis

−+��� = Jis�ei�L − ei�R�/2 �212�

for i�A and

Jis
++��� = Jis

−−��� = Jis,

Jis
+−��� = Jis

−+��� = 0 �213�

for i�B. One important point to note is that while
g+−�t , t�� �zeroth-order system Green’s function without
interactions with leads� is causal and g−+�t , t��=0 �Har-
bola and Mukamel, 2006, 2008�, this is no longer the case
for �+− and �−+ which depend on �. This is due to the
fact that when �L��R, the ket and the bra evolve with a
different Hamiltonian. The cumulant GF is then given
by

Z��,t� = ln 	
0

2� d


2�
G��,
,t� . �214�

Equation �214� with Eqs. �208� and �209� give the statis-
tics for the net particle transfer between lead A and the
quantum system embedded between A and B.

1. Long-time statistics

At steady state the two-time functions, such as g�t , t��
and ��t , t��, depend only on the difference of their time
arguments. We factorize the time integration in Eq.
�209� in two regions, one from −� to 0 and the other
from 0 to t. Since ��t�=0 for negative times, Eq. �G15�,
we obtain

Z��,
,t� = G0 + 	
0

t

d� ln Det�g−1�� = 0�

− �„�,�,����…� . �215�

The term G0, which is independent on time and �,
comes from integration t=−� to t=0 and contains all
initial correlations between the system and the leads.
Substituting for the self-energy �211�, we note that since

the matrix elements Jis
��� and Jsi

��� appear at the same
time the 
 dependence drops out. We can recast Eq.
�209� for long times as

Z��,t� = t	 d�

2�
ln Det�g−1��� − ���,��� + G0. �216�

At long times the first term in Eq. �216� dominates, and
the current GF is given solely by the first term in Eq.
�216�:

S��� = lim
t→�

1

t
Z��,t� =	 d�

2�
ln Det�g−1��� − ���,���

� 	 d�

2�
ln Det� −1���� . �217�

Thus, as in Sec. V.B.2, we conclude that contributions
coming from the initial correlations between the system
and the leads do not effect the long-time statistics.

We now compute the self-energy in the frequency do-
main. Since the leads are made of noninteracting elec-
trons, their zeroth-order Green’s functions in the fre-
quency domain are
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gii�
−−��� =


ii�

�� − �i + i�
, gii�

++��� = �g−−�ii�
† ��� ,

gii�
−+��� = − 2�i
ii��2fi��� − 1�
��� − �i� . �218�

Substituting this into Eq. �211�, the self-energy matrix in
the wide-band approximation is obtained as

�ss�
++��,�� =

i

2
�ss�

B +
i

2
�ss�

A �ei�
„1 − fA���… + e−i�fA���� ,

�219�

�ss�
−−��,�� = −

i

2
�ss�

B −
i

2
�ss�

A �ei�
„1 − fA���… + e−i�fA���� ,

�220�

�ss�
+−��,�� = −

i

2
�ss�

A ��ei� − 1��1 − fA���

− �e−i� − 1�fA����� , �221�

�ss�
−+��,�� = − i�ss�

B
„2fB��� − 1… +

i

2
�ss�

A

���ei� + 1��1 − fA���� − �e−i� + 1�fA���� ,

�222�

where �ss�
X =2��i�XJisJs�i
��−�i�.

Note that when �=0, �+−=0 as it should be �causality�
�Harbola and Mukamel, 2006�, and �−−, �++, and �−+

reduce to usual retarded, advanced, and correlation
�Keldysh� self-energies, respectively,

�ss�
−−��� = −

i

2
�ss�, �ss�

++��� =
i

2
�ss�,

�ss�
−+��� = i�ss� − 2��ss�

A fA��� + �ss�
B fB���� , �223�

where �=�A+�B.
The retarded Green’s function for the molecule is

then given by

Rss�
−−��� = ���� − ��1̂ − i

�

2
�

ss�

−1

, �224�

where 1̂ is the identity matrix and R++= �R−−�† is the
advanced Green’s function.

Finally, we transform the self-energy matrix from the

	,� ��� to the L, R ��̃� representation. This can be

achieved by the matrix transformation �̃=Q−1�Q �Har-
bola and Mukamel, 2006�, where

Q =
1
�2


− 1 − 1

1 − 1
� . �225�

This gives the matrix �̃���� ,�� with elements

�̃RR
ss� ��� =

i

2
�ss� − i��ss�

A fA��� + �ss�
B fB���� , �226�

�̃LL
ss� ��� = −

i

2
�ss� + i��ss�

A fA��� + �ss�
B fB���� , �227�

�̃LR
ss� ��,�� = i�ss�

B fB��� + i�ss�
A fA���e−i�, �228�

�̃RL
ss� ��,�� = − i�ss�

B
„fB��� − 1… − i�ss�

A
„fA��� − 1…ei�,

�229�

where the � dependence occurs only in �̃LR and �̃RL.
Equation �217� together with Eqs. �218�–�222� gives

the long-time current statistics within the two-point
measurement approach. This approach contains the full
information about the coherences in the system eigenba-
sis through the self-energy matrix � and can therefore
be used to study effects of coherences on the current
statistics.

2. Recovering the generalized quantum master equation

The GF �217� is different from the GF obtained using
the GQME approach �139�. We now show in what limit
Eq. �217� reduces to Eq. �139�.

Assuming that the � matrix is diagonal, �ss�=
ss��ss,
the determinant � −1�= �g−1−�� in Eq. �217� factorizes
into a product of determinants corresponding to each
orbital s, � −1�=�s� ss

−1�, and Z�� , t�=�sZs�� , t� becomes
the sum of GF for individual orbitals. We note that the
assumption of a diagonal � matrix amounts to ignoring
the coherences in the quantum system eigenbasis and is
therefore the analog of the RWA in the GQME ap-
proach. In the following we compute Zs. For clarity, we
omit the orbital index s in the self-energies. Since from

Eq. �226�–�229� �̃LL= ��̃RR�*, we can write

� ss
−1� = �� − �s�2 − ��̃LL�2 − �̃LR�̃RL. �230�

Substituting this into Eq. �217�, we get for the long-
time cumulant GF

Ss��� =	 d�

2�
ln��� − �s�2 + ��̃LL�2 − �̃LR�̃RL� . �231�

In order to compute the frequency integral we first ob-
tain the �-dependent current by taking the derivative
with respect to �,

Is��� = −	 d�

2�

����̃LR�̃RL�

�� − �s�2 + ��̃LL�2 − �̃LR�̃RL

. �232�

Using Eqs. �226�–�229�, we get
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Is��� = i�A�B	 d�

2�

fB����1 − fA����ei� − fA����1 − fB����e−i�

�� − �s�2 + M��,��
, �233�

where

M��,�� = 1
4�2 + �A�B�fB����1 − fA�����ei� − 1�

+ fA����1 − fB�����e−i� − 1�� . �234�

Assuming that the couplings with the leads are weak
kBT!�X so that resulting broadening is small compared
to �s, the contribution to the integral comes mainly from
the center of the Lorentzian. This allows us to replace
�=�s in the Fermi functions inside the integrand. We
therefore need to consider the poles �=�s± i�M�� ,�s�.
Computing the residues at the poles, we obtain

Is��� =
− i�A�B

2�M��,�s�
�fB��s��1 − fA��s��ei�

− fA��s��1 − fB��s��e−i�� . �235�

Since Zs���=�0
�I����, we finally obtain

Ss��� = −
�

2
+ �M��,�s� , �236�

which coincides with the GF obtained from the GQME,
Eq. �139�.

3. The Levitov-Lesovik formula

Equation �217� with Eqs. �218�–�222� is the most gen-
eral formula for the transport statistics at long times for
a system of noninteracting electrons. It includes the ef-
fects of coherences between the various tunneling chan-
nels �system orbitals� available to an electron tunneling
between the two leads. This is due to the nondiagonal
structure of the self-energy in the Hilbert space of the
system, Eqs. �219�–�222�. Here we recover the Levitov-
Lesovik formula �Levitov and Lesovik, 1993; Levitov et
al., 1996� for the counting statistics and again assume
diagonal self-energies. As discussed in Sec. V.C.2, the
cumulant GF in this case is simply the product of the
GFs for each orbital. Thus all orbitals contribute inde-
pendently to the electron transport.

Using self-energy expressions �226�–�229�, the GF
�231� can be expressed as

Ss��� =	 d�

2�
ln��� − �s�2 +

�2

4

+ �A�B�fB����fA��� − 1��1 − ei��

+ fA����fB��� − 1��1 − e−i���� . �237�

Using Eq. �224�, we can write for orbital s

�Rss
−−����−2 = �� − �s�2 +

�2

4
. �238�

Substituting Eq. �238� into Eq. �237�, we obtain

Ss��� = − 2	 d�

2�
ln�Rss

−−����

+	 d�

2�
ln„1 + T����fB����fA��� − 1��1 − ei��

+ fA����fB��� − 1��1 − e−i���… , �239�

where T���=�A�B�Rss
−−����2 is the transmission coeffi-

cient for the tunneling region. The first term on the
right-hand side of Eq. �239� can be ignored since it does
not contribute to the average current or its fluctuations
�independent on ��. Therefore

Ss��� =	 d�

2�
ln„1 + T����fB����fA��� − 1��1 − ei��

+ fA����fB��� − 1��1 − e−i���… �240�

which is the Levitov-Lesovik formula �Levitov and
Lesovik, 1993; Levitov et al., 1996; Levitov and Rezni-
kov, 2004�. This formula has been recently generalized
to a multiterminal model for a noninteracting tight-
binding model �Schönhammer, 2007�. Equation �240� is
valid to all orders of the coupling. The only approxima-
tion required to obtain the Levitov-Lesovik expression
�240� is to ignore the coherence effects between differ-
ent orbitals in the tunneling junction. Note that if T��� is
small, we can expand the logarithm in Eq. �240�. This is

equivalent to making a perturbation in the coupling V̂.
The leading order in the expansion gives Eq. �197� with
Eq. �162�.

Since fA����1− fB����=e�eVfB����1− fA����, it is
straightforward to see that the GF �240� satisfy S���
=S�−�−i�eV� and the FT �141� follows.

Taking the derivative with respect to � of the GF �240�
at �=0, the average current is

I =	 d�

2�
T����fB��� − fA���� , �241�

which is the Landauer-Buttiker expression for the aver-
age current through a tunneling junction with transmis-
sion coefficient T��� �Blanter and Büttiker, 2000�.

VI. NONLINEAR COEFFICIENTS

As we have seen, the FT implies a specific symmetry
of the GF which depends on the nonequilibrium con-
straints imposed on the system. For weak constraints,
i.e., close to equilibrium, this symmetry can be used to
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derive fluctuation-dissipation relation as well as Onsager
symmetry relations �Gallavotti, 1996a, 1996b; Lebowitz
and Spohn, 1999; Andrieus and Gaspard, 2004�. A sys-
tematic expansion of the GF in the nonequilibrium con-
strains allows one to derive similar fundamental rela-
tions further away from equilibrium. This has been done
for stochastic systems �Andrieux and Gaspard, 2007a�,
for counting statistics �Tobiska and Nazarov, 2005;
Förster and Büttiker, 2008; Saito and Utsumi, 2008; Ut-
sumi and Saito, 2009�, and for the work FT �Andrieux
and Gaspard, 2008�. FTs therefore provide a systematic
approach for studying generalized fluctuation-
dissipation relations such as those considered by Chou et
al. �1985�, Stratonovich �1992�, and Wang and Heinz
�2002�.

A. Single nonequilibrium constraint

We assume that a FT of the form p�k ,A�
=eAkp�−k ,A� holds in a system maintained in a nonequi-
librium steady state by a single nonequilibrium con-
straint A, where p�k ,A� is the probability distribution
that a net amount of energy or matter k crossed the
system during a given time. The cumulant GF defined as

Z��,A� = ln
�
k

ei�kp�k,A�� , �242�

then possesses the symmetry

Z��,A� = Z�iA − �,A� . �243�

Taking the derivative with respect to A of both sides and
using Eq. �242�, we find that in the A→0 limit

�

�A
�Z��,0� − Z�− �,0�� = − i

�

��
Z��,0� . �244�

The cumulant GF is expressed in terms of cumulants as

Z��,A� = �
m=1

�
�i��m

m!
Km�A� . �245�

Using Eq. �245� in Eq. �244�, we find at each order in �
that

�1 − �− 1�m�
�

�A
Km�0� = Km+1�0� . �246�

Equation �246� implies that at equilibrium odd cumu-
lants are zero and event cumulants are related to the
derivative with respect to the nonequilibrium constraints
of the nonequilibrium odd cumulants when approaching
equilibrium,

K2m−1�0� = 0, �247�

K2m�0� = 2
�

�A
K2m−1�0� . �248�

Below we show that this leads to the well-known
fluctuation-dissipation relations.

We next consider the second derivative with respect to
A of both sides of Eq. �243�. Using Eqs. �243� and �246�
and after some algebra, we find in the A→0 limit that

�2

�A2 �Z��,0� − Z�− �,0�� = − i
�2

���A
�Z��,0�

+ Z�− �,0�� . �249�

Using Eq. �245�, we find at each order in � that

�1 − �− 1�m�
�2

�A2Km�0� = �1 + �− 1�m+1�
�

�A
Km+1�0� .

�250�

This relation is only useful for odd m and implies

�2

�A2K2m−1�0� =
�

�A
K2m�0� . �251�

This procedure can be continued for higher derivative of
Z�iA−� ,A� with respect to A.

We can always expand the average process in term of
the nonequilibrium constrain as

K1�A� = K1�0� + L�1�A + L�2�A2 + O�A3� . �252�

L�1� is the Onsager coefficient. Using Eqs. �247�, �248�,
and �251� for m=1, we find that K1�0�=0 and

L�1� =
�

�A
K1�0� =

K2�0�
2

, �253�

L�2� =
1
2

�2

�A2K1�0� =
1
2

�

�A
K2�0� . �254�

Equation �253� is a fluctuation-dissipation relation. As
an illustration, we consider a biased quantum junction
such as in Sec. IV.B.1. k represents the number of elec-
tron crossing the junction and the nonequilibrium con-
straint is given by A=�eV, where V is the potential bias
across the junction. In this case, close to equilibrium
�I�=�e2VL�1� is the average electrical current through
the junction and e2K2�0� is the Fourier transform of the
equilibrium current correlation functions at zero fre-
quency. Equation �253� indicates that the resistance of
the junction, which characterize the dissipation, is re-
lated to the current fluctuation at equilibrium by R
=�V�I�=�e2L�1�=�e2K2�0� /2.

B. Multiple nonequilibrium constraints

When multiple nonequilibrium constrains are applied
to the system, the FT can be used to find important sym-
metries of the response coefficients �Andrieux and Gas-
pard, 2004, 2007a�. In case of N nonequilibrium con-
straints, the cumulant GF is given by

Z�����,�A��� = ln
�
�k��

ei�̄·k̄p��k��,�A���� , �255�

where �̄ · k̄=��=1
N k���. We assume that it satisfies the FT

symmetry
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Z�����,�A��� = Z��iA� − ���,�A��� . �256�

Proceeding as in Sec. VI.A, we find that Eq. �244� gen-
eralizes to

�

�A�

�Z�����,�0�� − Z��− ���,�0��� = − i
�

���

Z�����,�0�� .

�257�

The cumulant GF can be expressed as

Z�����,�A��� = �
�m��=1

� 
�
�=1

N
�i���m�

m�! �K�m����A��� , �258�

where the cumulants are given by

K�m����A��� = 
�
j=1

�

�− i�mj
�mj

��j
mj
�Z��0�,�A��� . �259�

The generalization of Eq. �246� is found using Eq. �258�
in Eq. �257� so that at a given order in the �’s


1 − �
�=1

N

�− 1�m�� �K�m����0��

�A�

= K�m�+
�����0�� . �260�

If we choose �m��= �
���, we obtain

�K�
�����0��

�A�

= K�
��+
�����0�� . �261�

Close to equilibrium, the average processes can be ex-
panded in term of the nonequilibrium constraints as

K�
�����A��� = �
�

L��A� + �
�,��

L����A�A�� + ¯ .

�262�

Since the Onsager linear response coefficients are given
by

L�� =
�K�
�����0��

�A�

, �263�

using Eq. �261� we find the Onsager reciprocity relation

L�� = L��. �264�

The generalization of Eq. �250� to multiple nonequilib-
rium constraints is given by

�2

�A��A�

�Z�����,�0�� − Z��− ���,�0���

= − i� �2

����A�

Z�����,�0��

+
�2

����A�

Z��− ���,�0��� . �265�

This implies that


1 − �
�=1

N

�− 1�m�� �2K�m����0��

�A��A�

= − i� �K�m�+
�����0��

�A�

+ 
1 − �
�=1

N

�− 1�m�+
��� �K�m�+
�����0��

�A�
� . �266�

For �m��= �
���, we obtain

L��� =
�2K�
�����0��

�A��A�

− i
 �K�
��+
�����0��

�A�

+
�K�
��+
�����0��

�A�
� , �267�

which implies the expected symmetry L���=L���.

VII. CONCLUSIONS AND PERSPECTIVES

The approach to quantum statistics adopted in this
review is based on a two-point projective measurement.
This, together with considerations about the symmetry
between the forward and the time-reversed quantum dy-
namics, allow us to recover from a simple and unified
perspective all previously derived fluctuation theorems
�FTs� for quantum systems �transient as well as steady-
state FTs�. This was the object of Secs. II and III.

A generalized quantum master equation �GQME� is
presented in Sec. IV for a quantum system weakly
coupled to reservoirs. The equation describes the evolu-
tion of the generating function �GF� associated with the
system density matrix conditional to the outcome from a
two-point measurement �of energy or number of par-
ticles� on the reservoir. When summed over all possible
outcomes, the quantum master equation �QME� for the
system reduced density matrix is recovered. This formal-
ism has been applied to various model systems and used
to directly demonstrate the validity of steady-state FTs.

The GQME formalism circumvents the unraveling of
the QME, used to calculate the quantum statistics of
particles or energy, and originally developed in quantum
optics �Wiseman and Milburn, 1993a, 1993b; Plenio and
Knight, 1998; Brun, 2000, 2002; Gardiner and Zoller,
2000; Breuer and Petruccione, 2002�. Since the unravel-
ing of a QME is not unique, a continuous time measure-
ment on the reservoir is assumed in order to connect the
resulting quantum trajectories to measurable quantities.
This procedure is only possible for Markovian QME
which preserve complete positivity �in the rotating wave
approximation �RWA��. In this regime, the GQME for-
malism predicts the same statistics as the unraveling for-
malism. This equivalence between the two types of mea-
surements in the weak coupling limit was first found by
De Roeck �2007� and Derezinski et al. �2008� and results
from the fact that the reservoirs are assumed to always
remain described by the same canonical or grand ca-
nonical equilibrium density matrix �Esposito and Gas-
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pard, 2003, 2007� and are therefore not affected by the
measurement. The net number of particles or the net
amount of energy transferred during a given time inter-
val is then the same if the reservoir is continuously
monitored or only measured twice at the beginning and
at the end. The unraveling of non-Markovian QME has
been an active field of research this last decade �Strunz,
1996; Diósi et al., 1998; Gaspard and Nagaoka, 1999a;
Strunz et al., 1999�, but the connection between the re-
sulting quantum trajectories and measurable quantities
is not straightforward �Gambetta and Wiseman, 2002,
2003; Warszawski and Wiseman, 2003a, 2003b; Breuer,
2004; Diósi, 2008�. In the GQME formalism, the connec-
tion to measurable quantities in the non-Markovian re-
gime is unambiguous. Exploring non-Markovian effects
on the particle or energy statistics could be an important
future application.

In order to go beyond the approximations used in the
GQME formalism �i.e., initially factorized density ma-
trix, weak coupling�, we presented an alternative ap-
proach based on superoperator nonequilibrium Green’s
functions �SNGF� in Sec. V. This Liouville space formal-
ism provides a powerful tool for calculating the particle
statistics in many-body quantum systems. Using this for-
malism, we showed that initial coherences in the basis of
the measured observable do not affect the steady-state
counting statistics and the FT. This is to be expected
since at steady state, the long-time limit destroys the
information about the initial condition. Using a nonin-
teracting electron model we showed for both direct and
indirect �transport� tunneling between two reservoirs.
However, for transient FTs such as the Crooks relation,
the assumption that the system density matrix is initially
diagonal in the basis of the measured observable seems
unavoidable for the FT to be satisfied. We applied the
SNGF formalism to compute the counting statistics in
some simple models and discussed the limit in which the
statistics predicted by the QME is recovered. The
Levitov-Lesovik formula for electron tunneling between
two reservoirs, which goes beyond the weak coupling
limit of the QME, was also recovered. We discussed the
approximations required to recover the Levitov-Lesovik
expression from a more general result expressed in
terms of the SNGF for the tunneling region. In particu-
lar, we showed that when several energy channels are
available to tunneling electrons, the Levitov-Lesovik ap-
proach does not capture the quantum coherence be-
tween different channels. This amounts to ignoring the
off-diagonal elements of the self-energy in the eigenba-
sis of the system.

Transient FTs, valid for arbitrary time, were presented
in Sec. III.B. The work FT derived for an isolated driven
system in Sec. III.B.1 is always valid since, besides an
initial canonical density matrix, no assumptions have
been made. The work FT for open driven system de-
rived in Sec. III.B.2 assumes an initially factorized ca-
nonical density matrix between the system and the res-
ervoir and a definition of work which is only consistent
for a weak system-reservoir interaction. The transient
FT for direct heat and matter transfer between two finite

systems and derived in Sec. III.B.3 assumes that the sys-
tems are each initially at equilibrium and weakly inter-
acting. The steady-state FTs, only valid for long time,
presented in Sec. III.C and derived more systematically
in Sec. IV assume a weak system-reservoir coupling and
the RWA. However, the FT has been recently shown
numerically to hold for QME without RWA �Welack et
al., 2008� and the Levitov-Lesovik formula presented in
Sec. V.C.3 is obtained nonperturbatively and satisfies the
FT. FTs seem therefore to characterize universal fea-
tures of nonequilibrium fluctuations in quantum as well
as in classical systems.

We now discuss some future perspectives.
We mentioned in the Introduction and in Sec. II that

an alternative approach to counting statistics, where the
GF used is an influence functional following from a path
integral description of the system-detector interaction,
has been developed during the last decade. It is only in a
semiclassical limit that the two-point measurement ap-
proach predicts the same statistics as this approach. De-
termining the region in which to apply both prescrip-
tions is an open problem that could lead to a better
understanding of quantum measurements.

Various numerical methods have been developed for
using the Jarzynski relation to efficiently calculate equi-
librium free energies of classical systems �Lechner et al.,
2006; Lechner and Dellago, 2007; Vaikuntanathan and
Jarzynski, 2008�. Extending these methods to quantum
systems will be of future interest.

Finally, we note that in this review we have focused on
systems maintained in a steady-state distribution by a
single nonequilibrium constraint. Investigating systems
subjected to multiple nonequilibrium constraints could
reveal interesting features.
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APPENDIX A: TIME-REVERSED EVOLUTION

Here we explain why Eq. �34� corresponds to the
time-reversed expression of the two-point probability �4�
and discuss how to physically implement a time-reversed
evolution. The effect of a static magnetic field is also
discussed.

In order to implement the time-reversal operation in
quantum mechanics, it is necessary to introduce the an-
tilinear operator " �"i=−i"�, which satisfies "2=1 �i.e.,
"−1="� �Wigner, 1960; Merzbacher, 1970�. An arbitrary

observable Â can be even or odd with respect to the
time-reversal operation, i.e.,
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"Â" = �AÂ , �A1�

where �A= ±1. For example, the position operator R̂ is

even ��R=1� while the momentum P̂ or angular momen-

tum L̂ is odd ��P,L=−1�. It can be verified that the
Heisenberg commutation relations are preserved under
the time-reversal operation. When acting on a time-

dependent Hamiltonian Ĥ�t ;B� that depends on a static
magnetic field B, we obtain

"Ĥ�t ;B�" = Ĥ�t ;− B� . �A2�

If a forward evolution operator �as in Eq. �2� but with a
static magnetic field� evolves according to

d

dt
Û�t,0;B� = −

i

�
Ĥ�t ;B�Û�t,0;B� , �A3�

with the initial condition Û�0,0 ;B�=1̂, then the time-
reversed evolution operator is defined by �Andrieux and
Gaspard, 2008�

Ûtr�t,0;− B� � "Û�T − t,0;B�Û†�T,0;B�"

= "Û�T − t,T ;B�" �A4�

and its evolution is given by

d

dt
Ûtr�t,0;− B� = −

i

�
Ĥ�T − t ;− B�Ûtr�t,0;− B� , �A5�

with the initial condition Ûtr�0,0 ;B�=1̂. This can be veri-
fied using the change of variable t→T− t in Eq. �A3�,
multiplying the resulting equation by " from the left and

by Û†�T ,0 ;B�" from the right, and then using Eqs. �A2�
and �A4�

From now on we choose t=T �the time at which the
time reversal operation is performed is t�, and define

�̂�t� � Û�t,0;B��̂0Û†�t,0;B� , �A6�

"�̂tr�t�" � Ûtr�t,0;− B�"�̂0
tr"Ûtr

† �t,0;− B� . �A7�

We note that by multiplying Eq. �A7� by " from the left
and from the right, we obtain

�̂tr�t� = Û†�t,0;B��̂0
trÛ�t,0;B� . �A8�

We verify that if �̂0
tr= �̂�t�, then �̂tr�t�= �̂0. This means

that, as for classical systems, if a system initially de-
scribed by �̂0 evolves according to the forward evolution
between 0 and t, then the time-reversal operation is ap-
plied and the resulting density matrix is evolved accord-
ing to the backward evolution during a time t and finally
the time-reversal operation is again applied, the result-
ing density matrix is the initial condition �̂0. It follows
from this discussion that if the two-point probability �4�
�with a static magnetic field B� is defined as

P�at,a0� � Tr�P̂at
Û�t,0;B�P̂a0

�̂0P̂a0
Û†�t,0;B�P̂at

� ,

�A9�

the time-reversed expression of this two-point probabil-
ity must to be defined as

Ptr�a0,at� � Tr�P̂a0
Ûtr�t,0;− B�

�P̂at
"�̂0

tr"P̂at
Ûtr

† �t,0;− B�P̂a0
� . �A10�

We note that we could have included the final time-
reversal operation in the definition, but it has no effect
anyway due to the trace invariance. By inserting "2 in
between all the operators in Eq. �A10�, and using Eq.
�A4� with T= t, we find that

Ptr�a0,at� � Tr�P̂a0
Û†�t,0;B�P̂at

�̂0
trP̂at

Û�t,0;B�P̂a0
� ,

�A11�

which is identical to the definition used in Eq. �34�. It is
convenient to use Eq. �A11� as a starting point because
it allows one to avoid discussing the presence of a static
magnetic field. However, it is important to keep in mind
that the physical evolution corresponding to the time-
reversed dynamics associated to a forward dynamics

with an Hamiltonian Ĥ�t ;B� is an evolution with an
Hamiltonian where the driving protocol is time re-
versed, where the sign of the static magnetic field is

changed Ĥ�T− t ;−B�, and where the initial condition is
"�̂0

tr".

APPENDIX B: FLUCTUATION THEOREM FOR COARSE-
GRAINED DYNAMICS

Here we show that using a coarse graining of the ini-
tial density matrices, R defined in Sec. III.A becomes a
measurable quantity and �R� a difference of Gibbs–von
Neumann entropy. We follow closely the work of Cal-
lens et al. �2004� and Yacobs and Maes �2005�.

We define

R�at,a0� � ln
P�at,a0�

Ptr�a0,at�
� − Rtr�a0,at� , �B1�

and

p�R� � �
at,a0

P�at,a0�
�R − R�at,a0�� ,

ptr�R� � �
at,a0

Ptr�a0,at�
�R − Rtr�a0,at�� . �B2�

Note that Eq. �B1�, in contrast to Eq. �50�, is expressed
exclusively in terms of measurable quantities �eigenval-
ues of A�t��. An integral FT follows

�e−R� � �
at,a0

P�at,a0�e−R�at,a0� = 1, �B3�

which implies �R��0, as well as a detailed FT
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p�R�
ptr�− R�

= eR. �B4�

The coarse graining of a density matrix �̂ within its non-
measured part is given by

�̃̂ = �
a

pa

da
P̂a, �B5�

where pa=Tr �̂P̂a is the probability to measures a and da
is the number of states with the value a. When, such a
procedure is applied to �̂0

tr and �̂0 �see De Roeck and
Maes, 2006�, �R� can be related to an entropy change. In
this case

P�at,a0� = Tr�Û†�t,0�P̂at
Û�t,0�P̂a0

�
pa0

da0

,

Ptr�a0,at� = Tr�Û†�t,0�P̂at
Û�t,0�P̂a0

�
pat

tr

dat

. �B6�

Therefore, using Eq. �B6� in Eq. �B1�, we obtain

R�at,a0� = sat

tr − sa0
, �B7�

where

sat

tr � − ln
pat

tr

dat

, sa0
� − ln

pa0

da0

. �B8�

The average of R is given by

�R� = �
at,a0

R�at,a0�P�at,a0� = Str − S , �B9�

where

Str � �
at

sat

trpat

tr, S � �
a0

sa0
pa0

�B10�

are the Gibbs–von Neumann entropies associated to the
coarse-grained density matrix �̂0

tr and �̂0. Indeed, if the
coarse-grained density matrix �̃̂ is used in the expression
for the Gibbs–von Neumann entropy S=Tr �̃̂ ln �̃̂, we
obtain S=�asapa.

APPENDIX C: LARGE DEVIATION AND FLUCTUATION
THEOREM

Here we describe large deviation theory and show
that a symmetry of the long-time limit of the cumulant
GF such as Eq. �140� or �158� translates into a steady-
state FT for the probabilities.

We consider a probability distribution p�t ,k�, where k
is a counting variable associated to a continuous time
random walk �we assume that the waiting time distribu-
tions have a finite first and second moment�. For fixed
time, the central limit theorem is only valid up to a given
accuracy in a central region of the probability distribu-
tion, whose width does not converge uniformly with
time. Large deviation goes beyond the central limit
theorem and allows one to describe the behavior of the

tail of the distribution �Sornette, 2006; Touchette, 2009�.
It relies on the assumption that the probability p̃�t ,#�
that #=k / t takes a value in the interval �# ,#+d#� be-
haves as

p̃�t,#� = C�#,t�eR�#�t, �C1�

where the large deviation function �LDF� is defined by

R�#� � lim
t→�

1

t
ln p̃�t,#� �C2�

and

lim
t→�

1

t
ln C�#,t� = 0. �C3�

We show that the LDF is determined by the long-time
limit of the cumulant GF given by

S��� � lim
t→�

1

t
ln G�t,�� , �C4�

where the moment GF is defined as

G�t,�� � �
k

p�t,k�e−�k. �C5�

Note that for convenience we have absorbed a factor −i
in the definition of � compared to the standard defini-
tion of the moment GF used in the main text. The GF
can be rewritten in terms of p̃�t ,#� as

G�t,�� =	 d# p̃�t,#�e−�#t. �C6�

We can then rewrite Eq, �C6� as

G�t,�� =	 d# C�#,t�e�R�#�−�#�t. �C7�

At long times, the main contribution to this integral
comes from the value of #, #*, which maximizes the ar-
gument of the exponential. #* is therefore the value of #
such that �=dR /d#�#=#*. At long times, using steepest
descent integration, Eq. �C7� becomes

G�t,�� � e�R�#*�−�#*�t	 d# C�#,t�

�e−�1/2����d2R�#�/d#2��#=#*��# − #*�2t

� e�R�#*�−�#*�tC�#*,t�
��d2R�#�
d#2 �

#=#*
� t

2��−1/2

.

�C8�

We assumed R�#� concave to have a maximum. Substi-
tuting Eq. �C8� into Eq. �C4� gives

S��� = R�#� − �# , �C9�

where
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� =
dR�#�

d#
. �C10�

This shows that S��� is the inverse Legendre transform
of the LDF. By taking the derivative of Eq. �C9� with
respect to �, we get

dS���
d�

=
dR�#�

d#

d#

d�
− �

d#

d�
− # , �C11�

which using Eq. �C10� leads to

# = −
dS���

d�
. �C12�

This shows that the LDF is given by the Legendre trans-
form of S���

R�#� = S��� + �# . �C13�

By taking the derivative of Eq. �C12� with respect to �
and using the derivative of Eq. �C10� with respect to #,
we can confirm that R�#� is concave because S��� is con-
vex.

We now assume that the cumulant GF satisfies the
symmetry

S��� = S�A − �� . �C14�

We note that the symmetry �C14� with the standard defi-
nition of the moment GF is given by S���=S�iA−��. Us-
ing the symmetry �C14�, Eq. �C13� implies that R�−#�
=S�A−��− �A−��# so that

R�#� − R�− #� = A# . �C15�

Using Eq. �C1�, we obtain

ln
p̃�t,#�

p̃�t,− #�
= A#t + ln

C�#,t�
C�− #,t�

. �C16�

Using Eq. �C3�, this gives the steady-state FT

lim
t→�

1

t
ln

p�t,k�
p�t,− k�

= A# , �C17�

which is often written as

p�t,k�
p�t,− k�

=
t→�

eAk. �C18�

Equations �141� and �149� are of this form.

APPENDIX D: DERIVATION OF THE GENERALIZED
QUANTUM MASTER EQUATION

Equation �106� satisfies the equation of motion

�̇̂��,t� = L̆��̂��,t�

= −
i

�
�Ĥ��̂��,t� − �̂��,t�Ĥ−��

= �L̆0 + vL̆����̂��,t�

= −
i

�
�Ĥ0, �̂��,t�� − v

i

�
�V̂��̂��,t� − �̂��,t�V̂−�� ,

�D1�

where we multiplied V̂ by a scalar v to keep track of the
order in the perturbation expansion below. Superopera-
tors are denoted by a breve �see Appendix F�. In the
interaction representation where

�̂I��,t� = e−L̆0t�̂��,t� = e�i/��Ĥ0t�̂��,t�e−�i/��Ĥ0t, �D2�

L̆���t� = e−L̆0tL̆��eL̆0t, �D3�

Eq. �D1� takes the simple form

�̇̂I��,t� = vL̆���t��̂I��,t� . �D4�

By integrating Eq. �D4� and truncating it to order v2, we
get the perturbative expansion

�̂I��,t� = W̆��,t��̂�0� = e−L̆0teL̆�t�̂�0�

= �W̆0��,t� + vW̆1��,t� + v2W̆2��,t�

+ O�v3���̂�0� , �D5�

where

W̆0��,t� = 1̆,

W̆1��,t� = 	
0

t

dTL̆���T� ,

W̆2��,t� = 	
0

t

dT	
0

T

d�L̆���T�L̆���T − �� . �D6�

The inverse of W̆�t� reads

W̆−1��,t� = W̆0��,t� − vW̆1��,t� + v2�W̆1
2��,t�

− W̆2��,t�� + O�v3� . �D7�

Indeed, one can check that W̆�� , t�W̆−1�� , t�=1̆+O�v3�.
For later use, we also note that

Ẇ̆��,t�ĂW̆−1��,t� = vẆ̆1��,t�Ă + v2�Ẇ̆2��,t�Ă

− Ẇ̆1��,t�ĂW̆1��,t�� + O�v3� .

�D8�

We define the projection superoperator �acting in reser-
voir space�

P̆ = �
r

��R
eq����rr� , �D9�

where �̂R
eq is the equilibrium density matrix of the reser-

voir. We used the Liouville space notation �see Appen-

dix F�. P̆ satisfies the usual properties of projection su-

peroperators P̆+Q̆=1̆, P̆2= P̆, Q̆2=Q̆, and P̆Q̆=Q̆P̆=0.
When acting on the density matrix �̂�t�, the projection
operator is given by
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P̆����,t��� = ��S��,t��� � ��R
eq�� . �D10�

We now let P̆ and Q̆ act on the density matrix of the
total system in the interaction picture �D5� and find

P̆��I��,t��� = P̆W̆�t��P̆ + Q̆���I�0��� , �D11�

Q̆��I��,t��� = Q̆W̆�t��P̆ + Q̆���I�0��� . �D12�

Hereafter, we consider initial conditions such that

Q̆ ���0���=0. This means that the reservoir part of the
initial condition is diagonal in the reservoir eigenbasis
and is thus invariant under the evolution when v=0.
Taking the time derivative of Eqs. �D11� and �D12� and

using ��I�0���=W̆−1�� , t� ��I�� , t���, we obtain

P̆��̇I��,t��� = P̆Ẇ̆��,t�P̆W̆−1��,t�P̆��I��,t���

+ P̆Ẇ̆��,t�P̆W̆−1��,t�Q̆��I��,t��� , �D13�

Q̆��̇I��,t��� = Q̆Ẇ̆��,t�P̆W̆−1��,t�P̆��I��,t���

+ Q̆Ẇ̆��,t�P̆W̆−1��,t�Q̆��I��,t��� . �D14�

So far these equations are exact. If we restrict ourselves
to second-order perturbation theory in v, we can obtain

the result that the P̆ projected density matrix evolution

is decoupled from the Q̆ projected part. Indeed, with the
help of Eq. �D8�, we obtain

P̆Ẇ̆��,t�P̆W̆−1��,t�Q̆ = vP̆Ẇ̆1��,t�P̆Q̆

+ v2P̆Ẇ̆2��,t�P̆Q̆

− v2P̆Ẇ̆1��,t�P̆W̆1��,t�Q̆

+ O�v3� . �D15�

The first two terms of the right-hand side are zero be-

cause P̆Q̆=0 and the third one also because

P̆Ẇ̆1��,t�P̆ = �
r,r�

��R
eq����rr�L̆I���,t���R

eq����r�r�� �D16�

vanishes since �̂R
eq commutes with ĤR.

Having shown that the relevant projected density ma-
trix evolves in an autonomous way, we now evaluate the
generator of its evolution using second-order perturba-
tion theory. Again using Eq. �D8�, we find that

P̆Ẇ̆��,t�P̆W̆−1��,t�P̆ = vP̆Ẇ̆1��,t�P̆ + v2P̆Ẇ̆2��,t�P̆

− v2P̆Ẇ̆1��,t�P̆W̆1��,t�P̆

+ O�v3� . �D17�

The only term of right-hand side which is not zero is the
second one �see Eq. �D16��, whereupon we get

P̆��̇I��,t��� = v2P̆	
0

t

d�L̆���t�L̆���t − ��P̆��I��,t���

+ O�v3� . �D18�

Now leaving the interaction representation and using

the fact that P̆e−L̆0t=e−L̆StP̆, we obtain

P̆��̇��,t��� = L̆SP̆����,t���

+ v2eL̆StP̆	
0

t

d�L̆���t�L̆���t − ��

�e−L̆StP̆����,t��� . �D19�

By taking the trace of Eq. �D19� we obtain

�̇̂S��,t� = L̆S�̂S��,t� + v2�
r
	

0

t

d� eL̆St��rr�L̆���t�L̆���t − ��

���R
eq��e−L̆St�̂S��,t� . �D20�

Explicit evaluation leads to Eq. �I10�.

APPENDIX E: BIDIRECTIONAL POISSON STATISTICS

The GF of Sec. IV.B.4 corresponds to a bidirectional
Poisson process. We give here some basic properties of
this process.

The GF of the probability distribution p�k� can be
expanded in terms of moments �kn� as

G��� = �
k

ei�kp�k� = �
n=1

�

�kn�
�i��n

n!
. �E1�

The Poisson distribution and its GF are given by

p�k� =
�ke−�

k!
, G��� = exp���ei� − 1�� . �E2�

Note that �= �k�. If k=k1−k2 where p�k1 ,k2�
=p1�k1�p1�k2� and p1�k� and p2�k� are Poissonian, we ob-
tain

G��� = G1��1 = ��G2��2 = − ��

= exp��1�ei� − 1� + �2�e−i� − 1�� . �E3�

If the average of the positive process is related to the
average of the negative one by �1=�2 exp�−A�, we find
that the GF displays the FT symmetry G���=G�A−��.
By inverting Eq. �E3�, we obtain

p�k� = e−��1+�2�eAk/2Ik
−
�1 − �2

sinh�A/2�� , �E4�

where Ik is the modified Bessel function of order k.

APPENDIX F: LIOUVILLE SPACE AND
SUPEROPERATOR ALGEBRA

In Liouville space, a N�N Hilbert space operators �̂

is mapped into a N2 vector ���� and a superoperator Ă
�linear map� acting on an operator �̂ becomes a N2
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�N2 matrix acting on the vector ����: Ă�̂↔Ă ���� �Fano,
1963; B.-Reuven, 1975; Zwanzig, 2001; Harbola and
Mukamel, 2006, 2008�. We recall some basic definitions

scalar product: ��A�B�� � Tr Â†B̂ , �F1�

identity: 1̆ � �
n,n�

�nn�����nn�� , �F2�

�nn��� ↔ �n��n��, ��nn�� ↔ �n���n� . �F3�

Useful consequences of these definitions are

��nn��n̄n̄�� = 
nn̄
n�n̄�, �F4�

��nn��A�� = �n�A�n�� , �F5�

��1�A�� = Tr Â . �F6�

We define left and right Liouville space operators as

ĂL�X�� ↔ ÂX̂, ĂR�X�� ↔ X̂Â . �F7�

We also define

Ă+ �
1
�2

�ĂL + ĂR�, Ă− �
1
�2

�ĂL − ĂR� . �F8�

This linear transformation is symmetric. The inverse
transformation can be obtained by simply interchanging
	 and � with L and R, respectively. Thus most of the
expressions in the following are symmetric and the indi-
ces used to represent superoperators can take both 	, �
and L, R values without any other change. The advan-
tage of the 	, � representation is that a single operation
A− in Liouville space represents the commutation with
A in Hilbert space. Thus all the intertwined commuta-
tions, which appear in perturbation expansions in Hil-
bert space, transform to a compact notation that is more
easy to interpret in terms of the double-sided Feynmann
diagrams �Mukamel, 1995�. Similarly a single operation
of A+ in Liouville space corresponds to an anticommu-
tator in Hilbert space:

Ă−�X�� ↔
1
�2

�ÂX̂ − X̂Â� , �F9�

Ă+�X�� ↔
1
�2

�ÂX̂ + X̂Â� . �F10�

For any product of operators in Hilbert space, we can
define corresponding superoperators in Liouville space
using the following identities:

�ÂiÂj ¯ Âk�L = ĂiLĂjL ¯ ĂkL,

�ÂiÂj ¯ Âk�R = ĂkR ¯ ĂjRĂiR. �F11�

Applying this one immediately obtains

�ÂiÂj�− =
1

2�2
��Ăi+,Ăj+� + �Ăi−,Ăj−� + �Ăi+,Ăj−�

+ �Ăi−,Ăj+�� , �F12�

�ÂiÂj�+ =
1

2�2
��Ăi+,Ăj+� + �Ăi−,Ăj−� + �Ăi+,Ăj−�

+ �Ăi−,Ăj+�� . �F13�

Equations �F11�–�F13� are useful for recasting functions
of Hilbert space operators, such as the Hamiltonian, in
terms of the superoperators in Liouville space.

Another useful quantity in Liouville space is the time

ordering operator T̆; when acting on a product of super-
operators �each at different times�, it rearranges them in
increasing order of time from right to left:

T̆Ăi��t�Ăj��t�� =�Ăj��t��Ăi��t� , t � t�

Ăi��t�Ăj��t�� , t� � t ,

 �F14�

where � ,�=L ,R ,+ ,−. Note that, unlike the Hilbert
space where we have two time ordering operators de-
scribing the evolution in opposite �forward and back-

ward� directions, a Liouville space operator T̆ always
acts to its right and therefore all processes are given in
terms of forward time alone. This makes it easier to give
physical interpretation to various algebraic expressions
commonly obtained in perturbation expansions, which
can be converted readily in terms of different Liouville
space diagrams.

We finally note that using Eqs. �F6� and �F7� we ob-
tain for �=L ,R

��I�Ă����� = �Â� = Tr�Â�̂� , �F15�

and using Eqs. �F7�, �F8�, and �F15�, we obtain

��I�Ă−���� = 0, ��I�Ă+���� = �2�Â� . �F16�

APPENDIX G: PROBABILITY DISTRIBUTION FOR
ELECTRON TRANSFERS

In the model considered in Sec. V.A, we consider elec-
tron transfer between system A and B. We measure the
number of electron in system A at time 0 and t. The

number operator for system A is defined as N̂
=�i�Aĉi

†ĉi, where ĉ† �ĉ� are creation �annihilation� opera-

tors. Only the coupling V̂ can induce electron transfer:

�ĤA+ĤB ,N̂�=0.
The total density matrix follows a unitary dynamics in

Liouville space,

���t��� = Ŭ�t,0����0��� = ŬL�t,0�ŬR
† �t,0����0��� , �G1�

where
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Ŭ�t,0� = exp�− i�2H̆−t� , �G2�

with H̆− the superoperator corresponding to the total

Hamiltonian, �2H̆−=H̆L−H̆R, and

Ŭ��t,0� = exp�− i�2H̆�t�, � = L,R . �G3�

By measuring the number of electrons in A, when the
system right before the measurement is described by
���0���, we obtain the outcome n with a probability

��I�P̆n���0��� and the density matrix of the system after

the measurement becomes P̆n ���0���, where the projec-
tion operator in Liouville space is defined as

P̆n = 
K�n − N̆L�
K�n − N̆R�

= 	
0

2� d�d��

�2��2 e−i��n−N̆L�e−i���n−N̆R�. �G4�


K is the Kronecker delta and N̆� are the left and right
superoperators corresponding to the number operator in

A. We have P̆nP̆n�=
K�n−n��P̆n and

exp�i�N̆��P̆n = exp�i�n�P̆n. �G5�

The net number of electrons k transferred between A
and B during time t is a fluctuating quantity. The prob-
ability for measuring k electrons during this time inter-
val is given by

p�k,t� = �
n

��I�P̆n−kŬ�t,0�P̆n���0��� . �G6�

Substituting Eqs. �G1� and �G4� into Eq. �G6� and
using Eq. �G5� with the fact that left and right superop-
erators commute, we obtain

p�k,t� = 	
0

2� d�1d�2

�2��2 ei��1+�2�k

���I�ei�1N̆LŬL�t,0�e−i�1N̆L

�ei�2N̆RŬR
† �t,0�e−i�2N̆R���0��� . �G7�

Making the change of variables, �1=−
−� /2 and �2
=
−� /2, we obtain

p�k,t� = 	
0

2� d�

2�
e−i�kG��,t� , �G8�

where the GF is given by

G��,t� = 	
0

2� d


2�
G��,
,t� , �G9�

and

G��,
,t� = ��I�e−i�
+�X/2�N̆LŬL�t,0�ei�
+�X/2�N̆L

�ei�
−�X/2�N̆RŬR
† �t,0�e−i�
−�X/2�N̆R���0��� .

�G10�

Equation �G9� is identical to the trace of �̂�� , t� defined
in Eq. �25�.

The density matrix right before the first measurement
�t=0� can be constructed by switching the interaction V
adiabatically from the remote past, t→−�. This gives

G��,
,t� = ��I�Ŭ0�t,0�ŬI���t�,t,− �����− ���� , �G11�

where

ŬI���t�,t,− �� = exp+�− i	
−�

t

d��2V̆−�����,��
 ,

Ŭ0�t,0� = ��t�exp�− i�2�H0−t�� . �G12�

We define

�2V̆−„����,�… = V̆L„�L���,�… − V̆R„�R���,�… , �G13�

where

V̆L„�L���,�… = e−i�L���N̆L�V̆L����ei�L���N̆L,

V̆R„�R���,�… = ei�R���N̆R�V̆R����e−i�R���N̆R, �G14�

with V̆�= J̆�+ J̆�
† and

�L�t� = ��t��
 + �/2� ,

�R�t� = ��t��
 − �/2� . �G15�

The time dependence of the operators in Eq. �G12� is in

the interaction picture with respect to Ĥ0.

V̆��t� = ei�2H̆0−tV̆�e−i�2H̆0−t. �G16�

Equation �G11� is the GF used in Eq. �173�.

APPENDIX H: PATH-INTEGRAL EVALUATION OF THE
GENERATING FUNCTION FOR FERMION
TRANSPORT

The fermion coherent states �$� are defined through
the eigenvalue equation for the Fermi destruction op-

erators ĉx�$i�=$xi�$� and �$i�ĉx
†= �$�$̄xi, where $ and $̄

are independent Grassmann variables �see Appendix I�,
which satisfy anticommutation relations similar to the
Fermi operators �Negele and Orland, 1998�.

It is convenient to introduce coherent states in Liou-
ville space corresponding to the superoperator c̆x�, x
=a ,b ,s, as

c̆xL�$�� = $xL�$�� ,

c̆xR
† �$�� = $xR�$�� . �H1�

The state �$�� can be expressed in terms of the vacuum
state
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�$�� = exp��
x

�− $xLc̆xL
† − $xRc̆xR���0�� �H2�

and

��$� = ��0�exp��
x

�$̄xLc̆xL − $̄xRc̆xR
† �� . �H3�

Note that c̆R
† is not the Hermitian conjugate of c̆R �Har-

bola and Mukamel, 2008�. Grassmann variables $� and

$̄� anticommute between themselves and with the cre-
ation and annihilation operators. Note that, unlike usual
fermion case, we now have four generators for the
Grassmann algebra, two corresponding to each index �.
Using Eqs. �H1�–�H3� it can be shown that

��$��c̆L
† c̆R�$�� = $̄R� $̄L� ��$��$�� , �H4�

��$��c̆R
† c̆L�$�� = $R$L��$��$�� , �H5�

��$��c̆L
† c̆L�$�� = $̄L� $L��$��$�� , �H6�

��$��c̆Rc̆R
† �$�� = $R$̄R� ��$��$�� . �H7�

These matrix elements will be useful in the path-integral
formulation below. The scalar product of two coherent
states is

��$��$�� = exp
�
�

$̄��$�� . �H8�

Grassmann variables satisfy the closure relation

1 =	 D�$̄$�exp
− �
�

$̄ix�$ix���$i����$i� , �H9�

where D�$̄$�=%i,x,��d$̄ix���d$ix��.
We next switch to 	, � notation �Harbola and Muka-

mel, 2006�, represented by the index �=+,−. The super-

operators H̆0− and V̆−��� are

�2H̆0− = �
x�

�x�c̆x+
† c̆x+ − c̆x−c̆x−

† � ,

�2V̆−���t�,t� = �
x�x�

�
���

Jxx�
���

„��t�…c̆x�
† �t�c̆x���t� , �H10�

where Jxx�
�������=Jx�x

���†� is 2�2 matrices for � ,��=+,− with
elements

Jxx�
++ ��� = Jxx�

−− ��� = Jxx��e
i�L + ei�R�/2,

Jxx�
+− ��� = Jxx�

−+ ��� = Jxx��e
i�L − ei�R�/2, �H11�

while for x ,x�=b ,s ,Jxx�
++ ���=Jxx�

−− ���=Jxx� and Jxx�
+− ���

=Jxx�
−+ ���=0.
We encounter the matrix element of an exponential

operator of the type

��$��e�2H̆0−�$�� = ��$��eH̆0L−H̆0R�$��

= ��$��e�x�x�c̆xL
† c̆xL−c̆xRc̆xR

† ��$��

= e�x�x�$̄xL� $xL+$̄xR� $xR���$��$�� ,

where in going from second to the third line we used
Eqs. �H6� and �H7�. We now make the linear transfor-
mation from L /R variables to the 	/� variables. In Hil-
bert space this corresponds to the Keldysh rotation �Ka-
menev, 2002�. Using this transformation we can write
above matrix element as

��$��e�2H̆0−�$�� = exp
�
x���

�x
���$̄x�� $x�����$��$�� , �H12�

where �x
++=�x

−−=�x and �x
+−=�x

−+=0. This matrix element
�H12� can also be obtained directly by formally defining
the Grassmann variables corresponding to 	,� opera-

tors, c̆x� and c̆x�
† , by $x� and $̄x�, respectively, and using

Eq. �H10�. We use the 	/� formulation in the remain-
der of the section. The advantage of using this notation
is that we directly work with the retarded and advanced
functions which are naturally linked to the observables
�when �=0�.

We can express the trace in Eq. �G11� in terms of the
coherent states basis,

G��,
,t� =	 D�$̄$�

�e−$̄$��$�Ŭ0�t,0�ŬI„��t�,t,− �…���− ���� .

�H13�

We next divide the time from 0 to t in Eq. �H13� into N
equal segments of length 
t and introduce the closure
relation �H9� after each time interval. We then obtain

G��,
,t� =	 D�$̄$���$0���− ����

���$1�ŬI„��t�,t,− �…�$0��

��
i=2

N

��$i�Ŭ0�
ti��$i−1�� . �H14�

Here the index i on $i carries time index so that $i+1 is at

t time ahead of $i.

ŬI can be formally evaluated by dividing the time in-
terval from the initial time −t0 �at the end we can put
t0→�� to t in N� number of equal time steps. We then
obtain

��$1�ŬI„��t�,t,t0…�$0�� = ��$1�e−i�i
N��2V̆−„��ti�,ti…
ti�$0�� .

�H15�

Here 
t�0 is small enough so that only the linear order
term contributes. The exponential can then be factor-
ized into products of exponentials. By inserting the iden-
tity between exponentials, we obtain �repeated indices
are summed over�
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��$i+1�e−i�2V̆−„i��ti�,ti…
ti�$i��

� e−iVxx�
���

„��ti�…$̄ix�$ix���
ti��$i+1�$i�� . �H16�

The second matrix element of the evolution operator

Ŭ0�t� between two coherent states is

��$i+1�Ŭ0�
ti��$i�� � e−i�x
���$̄ix�$ix��
ti��$i+1�$i�� . �H17�

Using Eqs. �H16� and �H17� in Eq. �H13�, we obtain
for the GF

G��,
,t� =	 D�$̄$���$0���− ����

� �
i=1

M=N+N�

exp�i$̄ix�
i
$ix� − $i−1x�


ti

− �x$ix��
ti

�exp�− i$̄ix�Vxx�

������ti��$ix���
ti� . �H18�

Here ��ti�=0 for i�M−N.
Setting M→�, t0→�, and 
ti→0, we obtain

G��,
,t� =	 D�$̄$�eiS�$̄,$�, �H19�

where in the continuous time notation D�$̄$�
���d$̄���d$��� and the action S�$̄ ,$� is defined as

S�$̄,$� =	 d��$̄x����gxx�
���−1���$x������

− $̄x����Vxx�
���

„����…$x������� . �H20�

gxx�
��� is a 2�2 matrix corresponding to � ,��=+,− which

satisfies


i
�

�t
− �x�gxx�

����t,t�� = 
�t − t��
x,x�
���. �H21�

Using the integral identity for independent Grass-
mann variables �̄, �, �̄, and �,

	 D��̄,��e−�̄iAij�je�̄i�i+�̄i�i = Det�A�e�̄i�A�ij
−1�j, �H22�

we can trace out the leads’ degrees of freedom to obtain

G��,
,t� =	 D�$̄$�eiS�$̄$�, �H23�

with

S�$̄$� =	 d�d��$̄s�����gss�
���−1��,���

− �ss�
�����,��,���$s������� . �H24�

The self-energy ���� is

�ss�
����t,t�,�� = �

xx��A,B
�
�1�2

Vsx
��1

„��t�…gxx�
�1�2�t,t��

�Vx�s�
�2,��

„��t��… , �H25�

where repeated arguments are summed over and gxx�
are the Greens functions for the noninteracting leads.
The counting parameter appears in the self-energy only

through coupling terms Vxs
������. Finally, using Eq. �H22�

we can perform the Gaussian integral in Eq. �H23� to
obtain

G��,
,t� = exp�Z��,
,t�� , �H26�

where

Z��,
,t� = 	
−�

t

d� ln Det�g−1�� = 0� − �„�,�,����…� .

�H27�

Here g�� ,��� and �„� ,�� ,����… are matrices in 	,� su-
peroperator indices and defined in the system space.
This result for the GF was used in Eq. �209�.

APPENDIX I: GRASSMANN ALGEBRA

Here we review some properties of the Grassmann
algebra used in Appendix H. Fermion coherent states
��� are defined in terms of the vacuum state �0� �Negele
and Orland, 1998�

��� = ec†��0� = �0� + c†��0� , �I1�

��� = �0�e�*c = �0� + �0��*c , �I2�

where � and �* are two independent complex numbers.
We consider a single degree of freedom. This can be
generalized easily for several degrees of freedom for
which, ���=exp��iĉi

†�i��0�.
Since coherent states are the eigenstates of the anni-

hilation operator c���=���� from Eq. �I1� we have

���2 = ��*�2 = 0, �I3�

which is a consequence of c2= �c*�2=0. Also since c, c†

anticommute, it can be shown from the eigenvalue equa-
tions

��* + �*� = 0. �I4�

The independent variables � and �* which satisfy Eqs.
�I1� and �I3� are called Grassmann variables. Thus ele-
ments of the Grassmann algebra can be second-order
polynomials at the most

f��,�*� = A + B� + C�* + D��*, �I5�

and the complex conjugate of a product of two elements
is equal to the product of the conjugates written in the
reverse order.

Using Eqs. �I1� and �I3�, we can write the overlap be-
tween the two coherent states as
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����� = 1 + �*� = e�*�. �I6�

Integration of the Grassmann variables is defined by

	 d� =	 d�* = 0, �I7�

	 d�� =	 d�*�* = 1. �I8�

The differential elements d� and d�* anticommute with
each other. Using Eqs. �I1� and �I6�–�I8� it is straightfor-
ward to show that

	 d�d�*e�*������� = 1, �I9�

which is the closure relation for coherent states.
Differentials of the Grassmann variables are defined

as

�

��
f��,�*� = B + D�*,

�

��*
f��,�*� = C − D� . �I10�

This implies that

�

��

�

��*
= −

�

��*

�

��
. �I11�

Taking integral of f�� ,�*� with respect to � or �* and
comparing with Eqs. �I11�, we obtain the operator iden-
tities

	 d� =
�

��
, 	 d�* =

�

��*
. �I12�

Using Eqs. �I7�, �I8�, and �I12�, it is straightforward to
see that for any N�N matrix A,

	 D��*��exp
�
ij

�i
*Aij�j� = Det�A� , �I13�

where D��*��=�id�
i
*d�i.
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