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Complex (dusty) plasmas are composed of a weakly ionized gas and charged microparticles and
represent the plasma state of soft matter. Complex plasmas have several remarkable features:
Dynamical time scales associated with microparticles are “stretched” to tens of milliseconds, yet the
microparticles themselves can be easily visualized individually. Furthermore, since the background gas
is dilute, the particle dynamics in strongly coupled complex plasmas is virtually undamped, which
provides a direct analogy to regular liquids and solids in terms of the atomistic dynamics. Finally,
complex plasmas can be easily manipulated in different ways—also at the level of individual particles.
Altogether, this gives us a unique opportunity to go beyond the limits of continuous media and
study—at the kinetic level—various generic processes occurring in liquids or solids, in regimes ranging
from the onset of cooperative phenomena to large strongly coupled systems. In the first part of the
review some of the basic and new physics are highlighted which complex plasmas enable us to study,
and in the second (major) part strong coupling phenomena in an interdisciplinary context are
examined. The connections with complex fluids are emphasized and a number of generic liquid and

solid-state issues are addressed. In summary, application oriented research is discussed.
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(Greenberg and Brahic, 1984), atmospheric lightning
(Betz et al., 2008), and plasma technology (Bouchoule,
1999) as prominent examples—the field of “complex
plasmas” is relatively new and received its initial boost
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in 1994 when liquid and crystalline plasmas were discov-
ered (Chu and I, 1994; Hayashi and Tachibana, 1994,
Thomas et al., 1994). Since then this field has grown dra-
matically, so that now about 500 publications are re-
corded annually. This growth in interest rests on three
main pillars.

A. Complex plasmas as a new state of soft matter

Complex plasmas are composed of a weakly ionized
gas and charged microparticles. The name was originally
chosen in analogy to “complex liquids,” which defines
the class of soft matter systems that exist in the liquid
form. The important point (which incidentally also
marks the difference with respect to most naturally oc-
curring dusty plasmas) is that the microparticles are the
dominant component as regards energy and momentum
transport so that these systems can be “engineered” as
practically single-species media. Naturally the detailed
physics of interaction between the components deter-
mines the “material” properties of complex plasmas—
they are thermodynamically open non-Hamiltonian sys-
tems and can exist in gaseous, liquid, and solid forms.

Since the discovery of plasma crystals in 1994, there
has been much discussion whether these special plasmas
may be regarded as a new “state of matter.” The domi-
nant component (the microparticles) is clearly supramo-
lecular, so the question quickly reduces to: Are complex
plasmas the new (plasma) state of soft matter?

According to Pierre-Gilles de Gennes, who intro-
duced the term “soft matter,” this describes a class of
materials that are “supramolecular, exhibit macroscopic
softness, and have metastable states and a sensitivity of
their equilibrium to external conditions.” Such materials
typically have energies of about room temperature, i.e.,
they are far above quantum states.

Complex plasmas satisfy all these criteria: The princi-
pal supramolecular component (microparticles) natu-
rally obeys classical mechanics. As shown in this review,
complex plasmas exhibit macroscopic softness (e.g., sur-
face wave modes), have metastable states (e.g., crystal-
line or glassy domains), and the equilibrium structure
depends on external conditions (such as boundaries and
forces applied).

Interestingly, the discovery of the liquid and crystal-
line states of complex plasmas has therefore substan-
tially extended our picture of the hierarchy of soft mat-
ter states, as shown in Fig. 1: If we view soft matter in
the simplest way as a mixture of “supramolecular” and
“molecular” components, then complex plasmas repre-
sent that state where the molecular component is gas-
eous or ionized, whereas the supramolecular component
can exist in solid, liquid, and gaseous or plasma forms, in
an analogous way to regular matter.

The increased complexity of soft matter provides
enormous richness in possible forms that these materials
can attain. Here, of course, lies a large part of the inter-
est in studying such systems—both from the fundamen-
tal physics or chemistry point of view and from the many
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FIG. 1. (Color online) Hierarchy of soft matter states.

possible applications. Complex plasmas are the latest
addition to this large and productive field. Because of its
special properties, summarized below, this plasma state
of soft matter is ideal for fundamental research of strong
coupling phenomena at the most elementary—the ki-
netic (individual particle) level.

Consequently, in the last dozen years a large amount
of research has been invested to determine the physics
of complex plasmas, starting with the elementary pro-
cesses such as charging and binary interactions, and con-
tinuing with the more complex collective effects, strong
coupling phenomena, etc. Remarkable progress has
been made, which is documented in recent books and
review articles (Tsytovich, 1997; Shukla and Mamun,
2001; Fortov et al., 2005; Vladimirov et al., 2005; Fortov,
lakubov, and Khrapak, 2007; Tsytovich et al, 2008;
Shukla and Eliasson, 2009). For this reason we will not
discuss the elementary processes in great depth; rather
we present a concise review of the current status, and
also include advances in new physical phenomena, such
as new classes of non-Hamiltonian systems and new re-
gimes of runaway coagulation. The main focus of this
“prospective review” will be on the second pillar.

B. Complex plasmas as a model system to study generic strong
coupling phenomena

Here we make use of the following unique properties
of strongly coupled complex plasmas:

¢ The microparticles (the principal component) are in-
dividually observable.

e The characteristic length scales (e.g., the interaction
or coupling length and mean particle separation) are
a few 100’s of um so that complex plasmas are opti-
cally thin up to a few 10’ of cm in size—allowing
complete three-dimensional diagnostics.

e The characteristic dynamical time scales associated
with microparticles (e.g., the inverse Einstein fre-
quency) are in the range of tens of milliseconds, al-
lowing studies of fully resolved individual particle
dynamics.
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e The rate of momentum or energy exchange between
microparticles can substantially exceed the damping
rate due to neutral gas friction (i.e., the dynamics of
individual particles is virtually undamped), providing
a direct analogy to regular liquids and solids in terms
of the internal atomistic dynamics.

e The complex plasma systems are very versatile, as
might be suspected given the four components (elec-
trons, ions, neutral atoms, and charged micropar-
ticles), allowing research into a vast range of struc-
tural and temporal self-organization processes.

e Complex plasmas can be manipulated in different
ways (e.g., using electrostatic and/or magnetic forces,
thermal gradients, light pressure, etc).

These properties of complex plasmas allow us to study
a large range of linear, nonlinear, critical, etc. processes
(at the fully resolved kinetic level) experimentally for
the first time. This provides researchers with a unique
opportunity to go beyond the limits of continuous media
down to the smallest length scale (the interparticle dis-
tance) and thus to explore physical processes from the
onset of cooperative phenomena to large strongly
coupled systems. In this review we focus on generic pro-
cesses and emphasize the links to other fields in physics
(interdisciplinarity). We discuss recent advances in the
atomistic dynamics of liquids and solids, kinetics of
stable shear flows, hydrodynamic instabilities at the dis-
creteness limit and the transition to turbulence, nanoflu-
idics, fundamental stability principles of condensed mat-
ter, crystallization and melting in two-dimensional (2D)
and three-dimensional (3D) systems, “electorheological”
phase transitions, etc.

C. Complex plasma applications

In many important industrial processes (e.g., plasma
vapor deposition, chip production, and etching) dust par-
ticles are produced as a matter of course during the pro-
duction process in the plasma reactors (Bouchoule,
1999). Control and removal remains a key issue in future
technology (Roca i Cabarrocas et al., 2002). Similar con-
cerns exist in plasma fusion, where the possibility of pro-
ducing radioactive and toxic dust in plasma-wall interac-
tions is an important design issue that needs to be solved
(Federici et al., 2001; Castaldo et al., 2007; Smirnov et al.,
2007). There are many other topics that could be dis-
cussed, such as plasma medicine (Stoffels et al, 2002;
Laroussi and Lu, 2005), plasma biology (e.g., for segre-
gation and size sorting of biological large molecules),
plasma nanofluidics (e.g., for functionalizing surfaces so
that they become hydrophilic), which may develop into
major future technologies. These are some of the emerg-
ing topics that will occupy many researchers in the years
to come, and which no doubt will all benefit from com-
plex plasma research—be it through straightforward
technology transfer or joint application projects.

While in this review we concentrate on topics related
to basic science, in our summary we also discuss these
emerging applications.
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I1. BASIC PROPERTIES OF COMPLEX PLASMAS
A. Charging of particles

The particle charge is one of the most important pa-
rameters of complex plasmas. It determines the particle
interactions with plasma electrons and ions, with elec-
tromagnetic fields, between the particles themselves, etc.
Hence all studies of complex plasmas necessarily begin
with a model describing the particle charging. We mostly
focus on gas-discharge plasmas, where the charging is
due to the collection of electrons and ions from the
plasma, so that the charge is determined by the compe-
tition between the electron and ion fluxes on the particle
surface. Other processes which can also affect charging
(e.g., secondary, thermionic and photoelectric emission
of electrons from the particle surface) are discussed only
briefly. We address problems such as stationary particle
charge, kinetics of the charging, the effect of ion-neutral
collisions, the self-consistent effect of the presence of
dust, and charge fluctuations.

1. Isotropic plasmas

In the absence of emission processes, the charge of a
dust particle immersed in a plasma of electrons and ions
is negative. This is because initially, when the particle is
uncharged, the electron thermal flux on the particle sur-
face is much larger than the ion flux (the electrons have
much higher thermal velocity). The resulting negative
charge on the particle leads to repulsion of the electrons
and attraction of the ions. The absolute magnitude of
the charge grows until the electron and ion fluxes on the
particle surface are balanced. On longer time scales, the
charge is practically constant and experiences only small
fluctuations around its equilibrium value. The stationary
surface potential of the dust particle ¢, is determined by
the electron temperature 7,, viz., —¢;~ T,/e. The pro-
portionality coefficient depends on the particular regime
which is realized for the electron and ion fluxes to the
particle surface.

One of the most frequently used approaches to de-
scribe the electron and ion fluxes collected by the par-
ticle is the the orbital-motion-limited (OML) approxi-
mation (Chung et al., 1975; Allen, 1992; Goree, 1994). In
the OML approach three major assumptions are em-
ployed: (i) The dust grain is isolated in the sense that
other grains do not affect the motion of electrons (ions)
in its vicinity, (ii) electrons (ions) do not experience col-
lisions during their approach to the grain, and (iii) there
are no barriers in the effective potential. Then the cross
section for electron (ion) collection is determined from
the laws of conservation of energy and angular momen-
tum, and is given by o(v)=ma*(1-2eq@,/mv?) for eg
< %mv2 and zero otherwise. Here m and e are the elec-
tron (ion) mass and charge (with the appropriate sign)
and v denotes the velocity relative to the dust particle of
radius a. The electron (ion) current to the particle sur-
face is determined by the integral over the correspond-
ing velocity distribution function I=enfvo(v)f(v)d’v,
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where n is the electron (ion) number density. Using the
Maxwellian velocity distribution of plasma particles, we
get after the integration

l,= \*"87mzenevTee‘Z, I;= v@mzenivrl_(l +7z). (1)

Here we introduced the following dimensionless param-
eters: z=|Q|e/aT,, which is the normalized magnitude of
the particle charge Q, and 7=T7,/T;, which is the
electron-to-ion temperature ratio. Typically, in low-
pressure gas discharge plasmas used in experiments the
ionization fraction is very low (~107°-1077); electrons
have a temperature about a few eV, whereas ions are
effectively cooled to room temperature by collisions
with neutralions, so that 7;=7, and hence 7~10-100;
the particle size a usually ranges from ~1 to ~10 pm. It
is assumed that the particle charge and surface potential
are related to each other via Q =a¢g,. This “vacuum” re-
lation is usually a good approximation for small particles
(viz., when a is much smaller than the relevant screening
length \, see next section), which is typical for experi-
mental conditions.

The evolution of the dust grain charge is governed by

Q=1I,-1, so that the stationary charge Q, is determined
from the current balance, /,=1;. We define the charging
frequency (), (inverse charging time) as the relaxation
frequency for small deviations of the charge from the
stationary value: Q= —d(Ii—Ie)/dQ|QO. Using Eq. (1),
we obtain

Q 1+z a Q
ch= 5 i»
V2mAp; ¥

)

where \p;=\T;/4me’n; is the ion Debye radius and Q,;
=vr,/Np; is the ion plasma frequency. In deriving Eq. (2)
the limit 7>1 is assumed. Note that the charging fre-
quencies for the thermionic and photoelectric mecha-
nisms are derived by Khrapak et al. (1999) and Khrapak
and Morfill (2001).

In the framework of the OML approximation, the di-
mensionless surface potential z depends on two param-
eters: the electron-to-ion temperature ratio and the gas
type (electron-to-ion mass ratio). In Fig. 2, values of z
are presented for different gases (H, He, Ne, Ar, Kr, and
Xe) as functions of 7 (Fortov et al., 2005). The particle
potential decreases with 7 and increases with the gas
atomic mass. For typical values of 7~10-100, the di-
mensionless charge is in the range z ~2-4. For a particle
with a~1 pum and 7,~1 eV, the characteristic charge is
|O|~ (1-3) X 10%.

Analysis of charge fluctuations due to the discrete na-
ture of charging was performed by Cui and Goree (1994)
and Matsoukas and Russell (1997). The fluctuations can
be described as a stationary, Gaussian, and Markovian
process [the so-called Ornstein-Uhlenbeck process,
which was originally adopted to describe the stochastic
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FIG. 2. Charge of a microparticle in low-pressure gas-
discharge plasmas. Dimensionless charge z=|Q|e/aT, of an
isolated spherical particle is shown as a function of electron-
to-ion temperature ratio 7=T7,/T; for isotropic plasmas of dif-
ferent gases. From Fortov et al., 2005.

behavior of the velocity of a Brownian particle (Uhlen-
beck and Ornstein, 1930)]. We derive the main proper-
ties of charge fluctuations in the framework of the OML
approximation (generalization to other charging mecha-
nisms is trivial). The deviation of the particle charge
from its equilibrium value, Q,(1)=Q(t)—Q,, obeys the
Langevin equation Q+Q4,0;=¢(1), where ¢(r) is the
stochastic term describing random acts of electron or ion
collections (Matsoukas and Russell, 1997). The function
q(1) satisfies the following properties: (q(f))=0 and
(q(t)q(t"))=21y8(t—1t"), where I, is the equilibrium cur-
rent of electrons and ions [i.e., I,(Qy)=1,(Qy)=1,, see
Eq. (1)]. The charge autocorrelation function decays ex-
ponentially,

(Q1(001(t)) = (QDyexp(= Qeplt - 1/

), 3)

where the relative charge dispersion is %E(Q%)/Q%
=(1+z)7'e/Qy| (assuming 7> 1).

A remarkable advantage of the OML approximation
is that the cross sections are independent of the poten-
tial distribution around the grain. This is, however, only
true when the potential satisfies certain conditions.

The first condition is associated with finite dust den-
sity in experiments and is known as the effect of “closely
packed” grains. When the interparticle separation A is
smaller than the characteristic length of interaction be-
tween ions (electrons) and the dust grain, then the ion
(electron) trajectories are affected by the presence of
neighboring particles, thus influencing grain charging
(Barkan et al., 1994).

The second condition is because the OML theory pre-
sumes the absence of a barrier in the effective potential
energy of electrons (ions), U.y=U(r)+(b/r)*E. Here U
and E are the electrostatic and kinetic energy of the
electron (ion), respectively, and b is the impact param-
eter with respect to the grain. The barrier is absent for
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repulsive interaction, i.e., for electrons, but it can
emerge for ions: The (negative) electrostatic energy
scales as Ux1/r close to the grain, and approaches zero
rapidly (exponentially) at large distances (Al’pert et al.,
1965; Lampe et al., 2000), so that the (positive) centrifu-
gal part dominates in these limits. However, at interme-
diate distances an interplay between the electrostatic
and centrifugal parts can create a barrier in the effective
potential. This barrier could cause reflection of some
(low-energy) ions approaching a grain, which would lead
to a decrease in the ion current compared to OML
theory and, hence, to an increase in |Q|. If the fraction of
the reflected ions is small then the corrections to OML
are also small. For the Yukawa interaction potential (see
Sec. I1.B) we can write the condition of the OML appli-
cability in the form \2zm(a/\)<In[z7(a/\)] (Khrapak et
al., 2004). For typical complex plasma parameters z ~ 1
and 7~ 100 we get that OML is applicable for a/\x<0.2.
This corresponds to grains smaller than ~10 wm, which
is typical for most laboratory experiments.

The third condition is due to ion-neutral collisions. In
the OML approach collisions of electrons and ions with
neutrals are neglected on the basis that their mean-free
paths are large compared to the plasma screening length
(Goree, 1994). However, theory, numerical simulations,
and experiments showed that ion-neutral charge-
exchange collisions in the vicinity of a small probe or
dust grain can lead to a substantial increase in the ion
current to the surface even when the ion mean-free path
€, is larger than \ (Zobnin et al., 2000; Lampe, Gavrish-
chaka, et al., 2001; Khrapak et al., 2005; Hutchinson and
Patacchini, 2007). An increase in the ion current can
considerably suppress the grain charge. In the weakly
collisional regime for ions, characterized by ¢;,,=R,
[where R is determined by U(R,) = T}], the net ion cur-
rent on the grain is

i= \e”gmzenivTi[l +Z7+ Ol()\/gln)zz’?'z]

For typical dusty plasma parameters z~1 and 7~100
collisions can affect particle charging even when the
mean-free path is an order of magnitude larger than the
screening length. Thus, ion-neutral collisions can be the
main process affecting particle charging in the bulk of
gas discharges.

2. Anisotropic plasmas

Complex plasmas are often subject to electric fields.
For example, in ground-based experiments with rf dis-
charges the particles can levitate in the (pre)sheath
above the lower electrode. The electric field causes the
plasma to drift relative to the dust component. This in
turn can affect the particle charge by changing the col-
lection cross sections and velocity distribution functions
of ions and electrons. Usually, the drift of electrons is
negligible (relative to their thermal velocity) while the
ion drift is large. In this case the electron current to the
particle surface is given by Eq. (1), while for ions the
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current can be calculated by integrating the OML col-
lection cross section over the appropriate velocity distri-
bution. Calculations showed (Whipple, 1981; Uglov and
Gnedovets, 1991) that the charge is practically constant
when the ion drift velocity u; is smaller than the thermal
velocity, u;/vr, =1, then the charge increases by a factor
of 2-2.5 and attains a maximum at u;/ vTi:(2—3)\«“‘;, and
decreases at larger u;.

3. Other charging mechanisms

Note that the collection of ions and electrons from the
plasma is not the only possible charging mechanism.
Electrons can also be emitted from the particle surface
due to thermionic, photoelectric, and secondary electron
emission processes. The secondary emission could be
due to energetic electrons with an energy of a few hun-
dred eV or higher, or because of metastable neutrals.
Field emission might also be important for submicron
particles. All these processes are of importance for dust
charging in some laboratory experiments, for instance,
in thermal plasmas (Fortov ef al., 1996; Nefedov et al.,
1997, 1999; Khodataev et al., 1998; Samaryan et al., 2000)
or in plasmas induced by UV irradiation (Fortov et al.,
1998), with photoelectric charging of dust particles
(Sickafoose et al, 2000), charging by electron beams
(Walch et al., 1995), etc. Under certain conditions, the
particles can reach a positive charge, in contrast to the
situation discussed previously.

B. Pair interaction between particles

The interaction between charged microparticles in
complex plasmas can be affected, e.g., by the plasma
absorption on the particle surface, by the variability of
the particle charges, polarization, etc. Usually, the inter-
particle interaction (as well as screening and charging)
can be calculated in the approximation of “isolated” par-
ticles. In this case, the electrostatic force acting on a
particle with a charge Q and located at a distance r from
another particle is —Qd¢/dr, where ¢(r) is the distribu-
tion of the electrostatic potential around the particle.

1. Isotropic plasmas

The potential ¢(r) around an isolated spherical par-
ticle in an isotropic plasma satisfies the Poisson equation
with the boundary conditions ¢()=0 and ¢(a)=¢,. The
relation between the surface potential and the particle
charge is given by de¢/dr|,_,=—Q/a*. For Boltzmann
electrons and ions their distributions can be linearized
provided the condition e|¢ |/ T<1 is satisfied. The sur-
face potential is ¢,=(Q/a)(1+a/\p)~", and for small par-
ticles, a<<Ap, we have

@(r) = (Q/r)exp(-r/\p), (4)



1358 Gregor E. Morfill and Alexei V. Ivlev: Complex plasmas: An interdisciplinary ...

where A7=\.+\j; is the linearized Debye length.
Equation (4) is the Debye-Hiickel (Yukawa) potential
which is often used in complex plasmas. If the surface
potential is not small compared to the temperatures of
electrons and/or ions, then one can still use Eq. (4) at
sufficiently large distances from the particle. In this case,
QO should be replaced by some effective value (smaller
than the actual particle charge).

Numerical calculations (Kennedy and Allen, 2003) of
the particle potential in a plasma with Maxwellian ions
show that there is a vacuumlike region near the particle
surface where the potential scales as ¢(r)=r~!. Then
there is a transition region where the potential profile
can be well approximated by the Yukawa form (4) with
an appropriately chosen screening length (although no
strong physical arguments have been given to justify this
approximation). At longer distances, typically more than
several screening lengths, the long-range asymptote op-
erates and the electrostatic potential can be written as
o(r)=Qa/2r* [assuming, as usual, 7>1 and z~1
(Al’pert et al., 1965)]. This asymptote is due to the fact
that plasma is absorbed at the grain surface, which
causes weak violation of the Boltzmann distribution (it
holds for distances not exceeding the mean-free path of
ions). Note that if the gas pressure is sufficiently high
and hence the ion-neutral collisions are sufficiently fre-
quent, the long-range asymptote (at distances about a
few mean-free paths) can change to ¢(r)«r~! (Khrapak
et al., 2008).

One also should mention a specific “shadowing” force
which can be exerted between neighboring micropar-
ticles. The mutual distortion of the ion and/or neutral
fluxes caused by the microparticles can lead to addi-
tional repulsion or attraction between them, with the
corresponding potential scaling as «r~! (Tsytovich, 1997;
Lampe et al., 2000). Strictly speaking, the shadowing
forces are not pairwise since the interaction between
(more than two) particles depends on their mutual ar-
rangement. The shadowing force appears to be similar
to the depletion force in colloids [see, e.g., Meijer and
Frenkel (1994)], although the physical mechanisms re-
sponsible for them are completely different.

2. Anisotropic plasmas

As mentioned in the previous section, strong electric
fields are often present in laboratory conditions (e.g., in
rf sheaths or dc striations). This induces an ion drift and,
hence, creates a perturbed region of plasma density
around the particle, caused by downstream focusing of
ions—the so-called “plasma wake.” One can apply the
linear dielectric response formalism [see, e.g., Aleksan-
drov et al. (1984)] to calculate the potential distribution
in the wake. This approach is applicable provided ions
are weakly coupled to the particle (i.e., the region of
nonlinear electrostatic interaction around the particle is
small compared to the plasma screening length). Note
that larger ion drift velocities imply better applicability
of the linear theory. The electrostatic potential created
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by a pointlike charge at rest is defined in this approxi-
mation as

lk rdk
ow=57 f 2e(0.k)’ ©)

where &(w,k) is the anisotropic plasma permittivity. Us-
ing a certain model for the permittivity, one can calcu-
late the anisotropic potential distribution (Nambu et al.,
1995; Ishihara and Vladimirov, 1997; Xie et al., 1999; La-
penta 2000; Lemons et al., 2000). The potential profile
can also be obtained from numerical modeling (Me-
landsg and Goree, 1995; Lampe et al., 2000; Winske,
2001; Lapenta, 2002; Vladimirov et al., 2003).

Physically, the generation of plasma wakes in aniso-
tropic dusty plasmas is similar to the generation of elec-
tromagnetic waves by a particle which is placed in a
moving medium (Ginzburg, 1996), and the analogy with
the Vavilov-Cherenkov effect can be useful. The poten-
tial is no longer monotonic within a certain solid angle
downstream from the particle, but has a well pro-
nounced extremum (maximum for a negatively charged
particle). Numerical modeling shows that the shape of
the wake potential is sensitive to the ion-neutral colli-
sions (Hou ef al., 2003) and the electron-to-ion tempera-
ture ratio which governs Landau damping (Lampe,
Joyce, and Ganguli, 2001). In typical situations, these
mechanisms can effectively “smear out” the oscillatory
wake structure, leaving a single maximum.

We illustrate how the wake potential depends on the
plasma flow. The ion drift velocity is conveniently char-
acterized by the value of the “thermal” Mach number
My=u;l v, The pronounced anisotropic wake structure
appears in 'both subthermal and superthermal regimes of
the drift (both regimes are ubiquitous for typical experi-
mental conditions). In this context, we mention the work
of Lampe et al. (2000) where some examples of the wake
structures, calculated numerically for different plasma
conditions, are presented (see Fig. 3).

First we consider subthermal ion drift, M;=<1. The
potential profile in this case can be calculated from Eq.
(5) analytically within the Bhatnagar-Gross-Krook
(BGK) approach for the ion-neutral collision integral
(Schweigert, 2001; Ivlev, Zhdanov, Khrapak, and Morfill,
2005). The far-field potential has a well-known o7
asymptote (Montgomery et al., 1968). By combining this
with the near-field Yukawa core, in the case of small
collisionality (viz., small ratio of the ion-neutral collision
frequency to the ion plasma frequency), we can approxi-
mate the potential by the following expression
(Kompaneets, 2007):

—rI\p M )\2
(p(r»ﬁ):Q[e —2\/: T3Dcosﬁ
r T

2 2
-(2-2)MT D(3cos? 0- 1)]+0(M ),

(6)
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FIG. 3. Plasma wake. The complex structure of the wake po-
tential ¢(r) (plasma flows to the right). Calculations are for
collisionless ions with a shifted Maxwellian distribution (drift
velocity u;=7.5vr) and for Boltzmann electrons (temperature
T,=25T;). The (negatively charged) grain is at the center of the
left-most node, solid and dashed curves indicate contour lines
for negative and positive potentials, respectively, distance is in
units of \p,. From Lampe et al., 2000.

where 6 is the angle between r and uw; Equation (6)
shows that microparticles attract each other in a certain
solid angle along the flow, and repel in the transverse
direction. Such behavior is usually observed in ground-
based experiments—particles levitating in, e.g.,
(pre)sheaths of rf discharges (Melzer, Schweigert, et al.,
1996) form stable vertical “strings.” This result high-
lights the importance of the self-consistent consideration
of the ion kinetics where the ion-neutral collisions are
properly taken into account. Indeed, the (somewhat ar-
bitrary) use of, e.g., a shifted Maxwellian distribution
(Wang et al., 1981) to model a flowing plasma yields at-
traction between particles in the transverse direction,
which contradicts observations.

In some ground-based experiments particles levitate
in regions where the electric field is so strong that the
thermal Mach number can be significantly larger than
unity; also, the collisionality can be rather high. Then
Eq. (6) is no longer applicable. Recent calculations
[based on the constant-cross-section model for the ion-
neutral collision integral; Kompaneets ef al. (2007)] take
both effects into account, and the resulting interaction
potential is in excellent agreement with the direct mea-
surements (performed for M;~10).

C. Momentum exchange and other forces acting on particles

The forces acting on microparticles in complex plas-
mas can be conditionally divided into “internal” forces
due to mutual interactions between microparticles, and
“external” forces due to interactions with other plasma
species (i.e., neutrals, ions, and electrons), as well as
other electric, magnetic, and thermal forces.
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1. Momentum exchange

We consider interactions between species i and j
which are characterized in terms of the corresponding
momentum exchange rate v;;. The momentum exchange
between microparticles and other species plays an im-
portant role in complex plasmas. For example, the mo-
mentum transfer in collisions with the neutral gas “cools
down” the system of microparticles, introducing some
damping. The forces due to the momentum transfer
from electrons and ions to the charged grains (the elec-
tron and ion drag forces) often determine static and dy-
namical properties of microparticles, affect wave phe-
nomena, etc. And, the most important, the momentum
exchange in grain-grain collisions and its competition
with the momentum transfer in grain-neutral collisions
governs transport, fluid properties, phase transitions,
etc. As pointed out in the introduction, complex plasmas
can be engineered as essentially a “single-species par-
ticle fluid” (when the interactions between the grains
dominate), or as a “particle laden gas” (when the inter-
actions with the background medium are of similar or
greater importance).

For the grain-neutral collisions the momentum ex-
change (neutral damping) rate is (Epstein, 1924)

Vg, = 08 \27/3) (m,/my)a*n,v T, (7)

The value of the numerical factor § depends on the ex-
act process of neutral scattering from the particle sur-
face. For example, 6=1 for the cases of complete ab-
sorption and specular reflection, while 6=1+m/8 for
diffuse scattering with full accommodation. The latter
value is more consistent with recent experimental results
(Liu et al., 2003). Since the notation for the neutral
damping rate is used throughout, for the sake of con-
venience below we omit the subscript and simply em-
ploy v.

As regards the grain-grain collisions as well as ion-
grain collisions, the regimes of the momentum exchange
are determined by the scattering parameter 8, which is
the ratio of the bare Coulomb interaction energy at the
screening length scale N to the mean kinetic energy
(temperature). Assuming typical experimental condi-
tions, for ion-grain collisions B;=|Q|/\NT;~zmal/\)
~0.1-30, and for grain-grain collisions B;,=Q%*/\T,
~|Q/e|(T;/ T,;) By~ 10*~10° (Hahn et al., 1971; Khrapak
et al., 2002). The weak scattering regime, =1, is similar
to the Coulomb scattering occurring in conventional
plasmas (Barnes et al., 1992), where the momentum ex-
change rate does not depend on the sign of the interac-
tion. For the strong scattering, 8> 1, the repulsive inter-
action is similar to that between hard spheres of radius
=\ In 28 (Baroody, 1962; Khrapak et al., 2004), whereas
for the attractive interaction the potential barrier ap-
pears (see Sec. II.A) and then scattering is determined
by the position of the barrier.
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For grain-grain collisions the regime B,,>1 is typical
so that the analogy with hard-sphere collisions can be
used (Khrapak et al, 2004). The momentum exchange
rate is then

Vaa = (W2a13)n0 7 N> 10 2B,.

The binary collision approach for the interparticle inter-
actions is naturally valid as long as the system is suffi-
ciently dilute. As the number density of microparticles
grows the coupling with increasing number of neighbors
becomes important, so that eventually the collective
modes take over and the momentum exchange rate
scales proportional to the Einstein frequency ~Qf (see
Sec. I1.D). The crossover from the binary to the collec-
tive momentum exchange regime is determined by the
condition that the radius of the effective hard-sphere
interaction =\ In 23, is comparable to the interparticle
distance =A, which naturally has the leading scaling co-
inciding with the strong-coupling condition I'¢~1 (see
Sec. ILE).

The ion drag force—the momentum transfer from the
flowing ions to charged microparticles—is an inevitable
and exceptionally important factor in complex plasmas.
Ion flows are usually induced due to “global” large-scale
electric fields that can be either caused by natural inho-
mogeneities in a discharge plasma (ambipolar fields) or
induced by external sources to manipulate micropar-
ticles (see Sec. I11.D). For typical experimental conditions
the ion drag is pointed in the direction opposite to the
electric force, and their competition usually determines
global structures in complex plasmas (Goree et al., 1999;
Morfill et al., 1999; Samsonov and Goree, 1999). For sub-
thermal flows (M;<1), the ion drag force F;; is reduced
to a particularly simple expressions in the regimes of
weak and strong collisional coupling. For the weak cou-
pling we directly employ results valid for B;=<5 (Khra-
pak et al., 2002; Khrapak, Ivlev, et al., 2003),

Fiq = \2/97(T/e)*AB M7, (8)

where A(By;)=—eP4?Ei(-B,/2) is the modified Cou-
lomb logarithm integrated over the Maxwellian distribu-
tion function. Equation (8) yields the scaling Fjy
«(Q/N\)%. In the linear regime B,;<1 the logarithm is
reduced to A=In 8!, which is identical to the results of
the Coulomb scattering theory (Barnes et al., 1992). In
the opposite regime of strong coupling, B,> B.,=13,
one should replace AB%; with 2 In? 8;; in Eq. (8). In this
case the force depends logarithmically on Q and \. Note
that for M;<1 the screening length is determined by
ions, A= N\p;, since the electron temperature is typically
two orders of magnitude higher than the ion (neutral)
temperature.
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2. Other forces

If a temperature gradient is present in a neutral gas,
then the particle experiences a thermophoretic force.
This force is due to the asymmetry in the momentum
transfer from neutrals and is directed towards lower gas
temperatures. In the case of full accommodation of neu-
tral ions colliding with the particle surface the thermo-
phoretic force is given Fy,=-3.3(a*/0,,)VT, (Rother-
mel et al, 2002). Thus, the thermophoretic force is
proportional to the temperature gradient, depends on
particle radius and gas type (through the cross section of
neutral-neutral collisions, o,,), but does not depend on
the gas pressure. For particles of about 1 um radius and
mass density ~1 g/cm® in argon gas, Fy, is comparable
to the force of gravity at |[VT,|~10 K/cm.

The neutral drag force can be also important when gas
is flowing relative to the particles. The Knudsen number
Kn=(o,,n,a)"" in complex plasmas is typically quite
large and the gas flow velocity u,, is small compared to
the thermal velocity of neutrals vy . Then F,=m,vu,,
where the momentum exchange rate v is given by Eq.
(7). The neutral drag force can be employed to exert
controllable stresses and induce shear flows in complex
plasmas (see Sec. III.C).

D. Waves

The charged dust grains embedded in plasmas not
only change the electron-ion composition and thus affect
conventional plasma wave modes (e.g., ion-acoustic
waves), but also introduce new low-frequency modes as-
sociated with the microparticle motion, alter dissipation
rates, give rise to instabilities, etc. Moreover, the particle
charges vary in time and space, which highlights impor-
tant qualitative differences between complex plasmas
and usual multicomponent plasmas. Depending on the
magnitude of the electrostatic coupling between micro-
particles, complex plasmas can be in weakly coupled
(gaseouslike) or strongly coupled (liquidlike) states, and
they can self-organize to spontaneously form crystalline
structures (see Sec. ILE).

Complex plasmas observed in laboratory or space ex-
periments usually form strongly coupled liquid or crys-
talline states. At the same time, for weakly coupled plas-
mas the theoretical analysis of the wave modes and
major instabilities can be performed in the most simple
form. Therefore we first consider major wave properties
of gaseous complex plasmas, and then discuss features
peculiar to the waves in strongly coupled regimes.

1. Major wave modes

The role of charged microparticles in the (quasineu-
tral) plasma composition is characterized in terms of the
ion-to-electron density ratio which, in turn, can be con-
veniently measured by the Havnes parameter P (Havnes
et al., 1987),
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1 mm

FIG. 4. Spontaneous excitation of dust waves observed in
laboratory experiments. The experiments were carried out in a
argon rf discharge at a pressure of 23 Pa with particles of
1.28 um diameter. From Schwabe et al., 2007.

nin,—1=|Qlelnyn,=P. 9)

In the gaseous regime only longitudinal acoustic waves
are sustained—the so-called dust-acoustic (DA) mode.
The phase velocity does not depend on the dust tem-
perature, and in the long-wavelength regime k\p<<1
and the limit 7>1 it can be written as (Rao et al., 1990)

|Qle|P T,
Cpa = .
1+P my

The dust waves, either self-sustained or excited exter-
nally, have been seen in numerous experiments under
quite different conditions (Merlino et al., 1998; Zobnin et
al., 2002; Fortov et al., 2003; Khrapak, Samsonov, et al.,
2003; Piel et al., 2006; Annibaldi et al., 2007; Schwabe et
al., 2007; Thomas et al., 2007). Figure 4 shows an ex-
ample of self-excited DA waves in a rf discharge plasma.
A peculiarity of the DA waves is that the charge-to-mass
ratio of the dust grains is typically 108-10'° times
smaller than that of the ions and, therefore, the dust
waves have relatively low frequencies, ~10-100 Hz.

Wave properties of strongly coupled plasmas signifi-
cantly deviate from those of ideal gaseous plasmas.
There are a number of different theoretical approaches
to study waves in strongly coupled systems: These are,
e.g., the quasilocalized-charge approximation (Kalman
and Golden, 1990) employed for complex plasmas by
Rosenberg and Kalman (1997) and Kalman et al. (2000),
the multicomponent kinetic approach by Murillo (1998,
2000), and the generalized hydrodynamic (viscoelastic)
approach applied by Kaw and Sen (1998), Xie and Yu
(2000), and Kaw (2001). The latter is probably the most
physically “transparent” approach which allows us to
track the evolution of the dispersion properties of com-
plex plasmas in a broad range of electrostatic coupling,
from the ideal gaseous state up to the strongly coupled
state—when the system crystallizes. There have also
been molecular dynamics (MD) simulations of the wave
modes in strongly coupled complex plasmas (Winske et
al., 1999; Ohta and Hamaguchi, 2000a), which are in rea-
sonably good agreement with the results of the above
mentioned theoretical approaches.
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In the framework of the viscoelastic model, param-
eters of the stress operator, i.e., shear viscosity # and
Maxwell relaxation time 7y, (see Sec. II1.B), are deter-
mined by the correlation part of the electrostatic inter-
action energy [which is a function of the coupling and
screening parameters I' and «, see Eq. (11)]. For the
liquid phase in the range 1=<I"<200 the correlation en-
ergy (normalized by T,) can be well approximated by
the scaling wu=al'+bI'"*4+c+dl'""* (Farouki and
Hamaguchi, 1994), where the coefficients a, b, ¢, and d
are some functions of the screening parameter «. In the
one-component plasma (OCP) limit, k=0, the Monte
Carlo (MC) simulations (Slattery et al., 1980) yield a
=-0.89, b=0.94, ¢c=-0.80, and d=0.18. The depen-
dence of the coefficients on the screening parameter is
rather weak (Farouki and Hamaguchi, 1994), e.g., a(x)
=-0.89-0.10k>+0.0025«*+---, which means that the
OCP results are quite applicable for moderate «. The
relation between the viscosity and the relaxation time is
given by n:—z—l()(u+%Fau/o"I‘)vadrM (Ichimaru et al.,
1987). The viscosity itself can be deduced from the re-
sults of numerical simulations and experiments (Saigo
and Hamaguchi, 2002; Salin and Caillol, 2002, 2003;
Nosenko and Goree, 2004).

In addition to longitudinal DA waves, strongly
coupled media may also sustain transverse shear waves
(Kaw and Sen, 1998; Kaw, 2001). In the hydrodynamic
regime w7y, <1 we obtain an ordinary damped shear
mode in viscous liquids, w= —%inkz. In the opposite elas-
tic regime w7y, >1 we obtain a nondispersive acoustic
mode, w/k= \J’% n/ 7y, which is analogous to elastic shear
waves in solids. The self-excited shear waves in liquid
complex plasmas have been observed experimentally
(Pramanik et al., 2002).

We now consider waves in plasma crystals. In this case
they are referred to as dust-lattice (DL) modes, and
their phase velocities C;,=lim;_o(w;,/k) can be written
as (Peeters and Wu, 1987; Wang et al., 2001; Zhdanoyv,
Quinn, et al., 2003) C;,=CpF;(k), where subscripts [
and ¢ denote the longitudinal and transverse polariza-
tion, respectively, and

1/2—
CpL=VO/m \p,

is the DL velocity scale. The magnitude of Cpy is of the
order of a few cm/s for typical experimental conditions
(Nunomura et al., 2000, 2002). The exact formulas for
the functions F;(«) are rather complicated. However,
for a practical range of « the functions can be well ap-
proximated by simple polynomial expansions: For a 2D
hexagonal lattice, the leading « terms give F;=2.69x7!
and F,=0.51x""? (Peeters and Wu, 1987; Zhdanov,
Quinn, et al., 2003); for the 3D case, the longitudinal
function depends on the lattice type, F;=5.0(7.0)x~? for
a bece (fec) lattice, whereas the transverse function F,
=0.1947"2 is the same for both lattices (Wang et al.,
2001). For arbitrary « one can obtain the phase veloci-
ties of all modes in the long-wavelength regime using the
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results for the elastic constants of Yukawa crystals [see,
e.g., Robbins et al. (1988)].

Depending on the phase state—(liquid or solid)—one
can choose different time scales to characterize collec-
tive dynamics of microparticles. For liquid and amor-
phous solid complex plasmas the dust plasma frequency
Q4= V47Q%n,4/m, can be used as the measure, whereas
for crystals the modes depend on a particular lattice
structure so that the Einstein frequency € is the more
appropriate scale. The ratio 25/}, is a (monotonously
decreasing) function of the screening parameter «, and
for different lattices it typically varies between a few and
a few tenths (Robbins er al., 1988). To avoid confusion,
we use ;' as the characteristic dynamical time scale for
both liquids and solids.

2. Nonlinear waves

Nonlinear phenomena in complex plasmas are very
diverse, due to the large number of different wave
modes which can be sustained. Waves can become non-
linear as a result of different processes, which are not
necessarily external forcing or wave instabilities—these
can also be regular collective processes of nonlinear
wave steepening. In the absence of dissipation (or when
the dissipation is small enough), nonlinear steepening
can be balanced by wave dispersion which, in turn, can
result in the formation of solitons. When the dissipation
is large, it can overcome the role of dispersion and then
the balance of nonlinearity and dissipation can generate
shock waves. In many cases the lowest-order nonlinear
terms are quadratic, and then the weakly nonlinear soli-
ton dynamics is governed by the Korteweg—de Vries
(KdV) equation (Karpman, 1975). For solitons of arbi-
trary amplitude, the Sagdeev pseudopotential method is
convenient (Sagdeev, 1966): In particular, this method
allows us to determine the upper value of the Mach
number beyond which the dispersion is no longer suffi-
cient to balance the nonlinearity and, thus, a collision-
less shock is formed due to “collective” dissipation. The
“conventional” dissipation is often determined by vis-
cosity, and then the shock waves can be described by the
KdV-Burgers equation (Karpman, 1975; Shukla, 2003).

There is a rich variety of mechanisms which deter-
mine nonlinear and dispersive properties of strongly
coupled complex plasmas. A comprehensive investiga-
tion of nonlinear particle dynamics can give us an oppor-
tunity to study fundamental wave phenomena (mode in-
teraction, umklapp processes, phonon scattering on
defects, etc.) at the kinetic level. We discuss several ex-
periments on nonlinear waves in complex plasmas.

Longitudinal dust solitary waves of moderate ampli-
tude were observed in experiments by Nosenko, Nuno-
mura, and Goree (2002); Samsonov et al. (2002) per-
formed in rf discharges at low pressures (p=1.8-2 Pa).
The solitons were excited in crystalline monolayers by
electrical pulses or by laser beams. The equation for the
nonlinear wave dynamics is (Samsonov ef al., 2002;
Zhdanov et al., 2002)
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Pu 9 e Fu 1
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(10)

Here u=3dér/ox=-én,/n, is the particle density modu-
lation expressed via the longitudinal derivative of the
(in-plane) displacement, C is the long-wavelength (iso-
tropic) DL phase velocity, £ is the dispersion coefficient
which generally can have either sign (it has the dimen-
sion of squared length), and A is the nonlinearity coeffi-
cient. Without the frictional dissipation, Eq. (10) is
readily reduced to the KdV equation by employing the
stretched coordinates. The soliton can only exist when €2
and A have opposite signs so that the following relations
can be fulfilled: —%AA=4€2/L2=M2—1, where A and L
are the soliton amplitude and width, respectively, and
M=V/C is the Mach number for the soliton velocity
(Samsonov et al., 2002). The Mach number is a conve-
nient control parameter which defines the soliton pro-
file, —u=A cosh™2(¢/L), with é=x—Vt.

In 2D hexagonal lattices (Zhdanov et al, 2002),
¢? is always positive and has a weak dependence
on the direction of propagation, and A is always
negative and can depend on the direction substantially,
especially at k=1. Such a combination of signs implies
that only compressive (A >0) supersonic (M>1) soli-
tons can propagate in crystalline monolayers, as ob-
served in experiments. For =1, one can calculate
the parameters of Eq. (10) using the results for a 1D
string (Samsonov et al, 2002): C?=Ch, k[G(x)/k]",
= 1—127\]23K2[G"(K) Ik]"IG(k)/K]", and A
=k[G(k)/k]""I[G(k)/k]", where G(k)=-In(eX-1). This
relatively simple theoretical model provides good agree-
ment with experiments. If the neutral gas pressure is low
enough, the friction does not destroy the soliton (Sam-
sonov et al., 2002). The perturbation simply slows down,
approaching the asymptote V=C, and the form of the
soliton changes in accordance with the analytical solu-
tion (i.e., the amplitude decreases and the width in-
creases, keeping the soliton relation AL?=const). Thus,
one can speak about a weakly dissipative soliton when
the dissipation time scale ~v~! exceeds the time scale of
the wave itself ~Q7'.

For the theoretical description of dust shock waves,
the generalized hydrodynamic approach has been pro-
posed (Kaw and Sen, 1998; Shukla, 2003). This approach
suggested that in a strongly coupled regime weak shocks
cannot be (generally) described by the KdV-Burgers
equation (Kaw and Sen, 1998). In experiments, “pure”
shocks were only observed so far in 2D crystals (Sam-
sonov et al., 2004). (Here the term “pure” implies that
the momentum exchange in dust-dust collisions prevails
over the momentum loss due to neutral gas friction,
Qr, vy, v, so that again complex plasmas have proper-
ties of single-species fluids.) These shocks caused melt-
ing of the crystal behind the front, as shown in Fig. 5. As
the shock propagated and weakened it was seen that the
melting ceased. Further propagation of the pulse was in
the form of a soliton, as described above.
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FIG. 5. Dust shock wave propagating in a monolayer hexago-
nal lattice. Experiments were performed in argon rf discharge
at pressure of 1-2 Pa, with particles of 8.9um diameter. Par-
ticles were illuminated by a horizontal laser sheet of
200-300 pm thickness. Initially undisturbed particles (a) were
swept from left to right (by applying an electric pulse), forming
a shock with a sharp front (b), (c). The lattice melted behind
the front. At later times (d) the shock weakened due to the
neutral drag and a soliton was formed. From Samsonov et al.,
2004.

Dispersion relations of dust modes in complex plas-
mas suggest that irrespective of the plasma state the
phase velocity attains the maximal value in the long-
wavelength limit. For acoustic modes this velocity (the
“sound speed” C) is finite and therefore, similar to con-
ventional media, the supersonic perturbations (i.e., with
Mach number M=V/C>1) are always localized behind
the object which produces these perturbations (this can
be a rapidly moving charged particle or a bunch of par-
ticles, biased probe, etc.). The perturbation front has a
conical form in the 3D case and therefore it is called a
“Mach cone.” In the 2D case the same name is adopted,
although the front is a planar V-shaped perturbation.
The opening angle w of the front at large distances from
the object (where the nonlinearity should not play an
important role) is determined by the well-known rela-
tion sin u=C/V=M",

In laboratory complex plasmas the Mach cones were
generated in 2D plasma crystals by single particles spon-
taneously moving beneath the monolayer along straight
trajectories (Samsonov et al., 1999, 2000) or by the radia-
tion pressure of a focused laser beam (Melzer et al.,
2000). The wake reveals a multiple cone structure be-
hind the front, as shown in Fig. 6. Generally, the wake
structure is determined by the dispersion and nonlinear
properties of particular wave modes excited behind the
front (Dubin, 2000; Zhdanov et al., 2002; Nosenko et al.,
2003). The formation of the second cone (with smaller
opening angle) behind the first one can be ascribed to
the shear (transverse) wave front (Nosenko et al., 2003;
Nosenko, Goree, et al., 2002) because the (longitudinal)
sound speed is larger than the shear phase velocity. It
was suggested that the Mach cones (wakes) can be ex-
cited in space dusty plasmas—e.g., in planetary rings by
big boulders (Havnes et al., 1995, 1996) moving through

Rev. Mod. Phys., Vol. 81, No. 4, October—December 2009

w A
o o

noow
o o
velocity (mm/s)

o
o

= =
o

FIG. 6. Mach cone observed in a monolayer hexagonal lattice.
Experiments were performed in krypton rf discharge at pres-
sure 1.2 Pa, with particles of 8.9 um diameter. The cone was
excited by a supersonic particle which moved spontaneously
beneath the monolayer. (a) Particle velocity vector map, (b)
gray-scale speed map, and (c) gray-scale number density map.
From Samsonov et al., 2000.

the dust at a velocity that is somewhat higher than the
local sound speed. The observation of such Mach cones
could be used for “long-distance diagnostics” of the con-
ditions inside the rings.

E. Phase diagram

One fundamental characteristic of an interacting
many-particle system is the coupling strength between
particles. The coupling strength is measured in units of
the potential energy of interaction between neighboring
particles normalized by their mean kinetic energy. For a
screened (short-range) Coulomb interaction the cou-
pling strength is characterized by two parameters since
the interaction has a length scale. These are the coupling
parameter I" determined by the magnitude of the bare
Coulomb interaction and the screening parameter «

I'=Q%T,A, k=A/I\, (11)

where T, characterizes mean kinetic energy (tempera-
ture) of the particles and \ is the appropriate screening
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solid (fcc)

FIG. 7. Phase diagram of Debye-Hiickel systems, obtained
from numerical modeling. Open circles correspond to the bce-
fcc phase boundary (Hamaguchi er al., 1997). The fluid-solid
phase boundary (melting line) is marked by squares (Stevens
and Robbins, 1993), solid circles (Hamaguchi et al., 1997), and
triangles (Meijer and Frenkel, 1991). The crosses correspond to
jumps in the diffusion constant, observed in the simulations of
dissipative Debye-Hiickel systems (Vaulina and Khrapak,
2001; Vaulina et al., 2002). The solid line represents the ana-
lytic approximation of the melting line, the dashed line is the
fit to the numerical data judged by eye.

length (e.g., in isotropic plasmas A=A\p). The coupling
strength is characterized by the screened coupling pa-
rameter ['¢=I" exp(—«), and the system is usually called
strongly coupled when I'¢=1. Note that the coupling
parameter is related to the grain-grain scattering param-
eter By, introduced in Sec. I1.C via B;,=T'«.

Most theories developed so far to describe the prop-
erties of complex plasmas employ the following model:
negatively charged particles are trapped within the
plasma volume due to some confining force (usually of
electrostatic character) and interact with each other via
the isotropic Debye-Hiickel (Yukawa) repulsive poten-
tial, with the screening determined by the plasma elec-
trons and ions. This model gives a simplified picture of
complex plasma behavior and is not applicable to some
experiments, especially when the plasma anisotropy
plays an important role (see Sec. II.B). Moreover, this
model does not take into account variations of particle
charges, long-range interactions, the exact form of the
confining potential, etc. However, the model was shown
to be useful in providing qualitative results which are
confirmed by experiments, and hence it should be con-
sidered as a reasonable basis from which more sophisti-
cated models might be constructed in future.

Besides complex plasmas, particles interacting with a
Debye-Hiickel potential have been extensively studied
in different physical systems ranging from elementary
particles to colloidal suspensions. Not surprisingly, their
phase diagrams have received considerable attention.
Various numerical methods (usually, MC or MD simula-
tions) have been employed (Kremer et al., 1986; Robbins
et al., 1988; Meijer and Frenkel, 1991; Stevens and Rob-
bins, 1993; Hamaguchi et al., 1997; Vaulina and Khrapak,
2001; Vaulina et al., 2002). Figure 7 shows the phase dia-
gram of the Debye-Hiickel system in the (I',x) plane,
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summarizing available numerical results. For sufficiently
strong coupling, I'>T",,, where I'j;(x) denotes the melt-
ing curve, there are solid fcc and bce phases, whereas for
I'<T’y, the system is in a fluid state. The bcc phase is
stable at small «, while fcc is stable at larger «. The triple
point is at '=3.47 X 10? and x=6.90 (Hamaguchi et al.,
1997). The melting curve is given by FME_K(1+K+%K2)
=106 (Vaulina and Khrapak, 2000), which yields good
agreement with the results of numerical simulations at
k=10 (see Fig. 7).

There are different phenomenological criteria for the
crystallization (melting), which are often practically in-
dependent of the exact form of the interparticle interac-
tion, and therefore many of them are applicable to com-
plex plasmas. Best known is the Lindemann criterion
(Lindemann, 1910), according to which melting of the
crystalline structure occurs when the ratio of the root-
mean-square particle displacement to the mean interpar-
ticle distance reaches a value of =0.1-0.2 for 3D sys-
tems and =0.16-0.2 for 2D systems (Zheng and
Earnshaw, 1998; Nunomura et al., 2006; Saija et al.,
2006). Another criterion was suggested by Hansen and
Verlet (1969) who observed that in 3D hard-sphere sys-
tems the first maximum of the static structure factor is
=2.85 at the melting curve [for inverse-power-law inter-
action potentials «r™" this value varies in the range from
=2.6 for n=1 to =3.0 for n=12 (Hansen and Schiff,
1973)]. For 2D systems, to our knowledge, this criterion
has not been systematically tested so far. There also ex-
ists a crystallization criterion for the pair correlation
function proposed by Raveche et al. (1974): For inverse-
power-law interactions, the critical ratio of the first (non-
zero) minimum to the first maximum lies in the range
from =0.1 (for n=1) to =0.26 (for hard spheres). A
simple dynamic crystallization criterion, similar to some
extent to the Lindemann criterion, was proposed by Lo-
wen et al. (1993). According to this criterion, crystalliza-
tion occurs when the diffusion constant (normalized to
QxA?) reduces below a certain value. This critical value
depends on the dissipation ratio v/{}g, and in the single-
species (nondissipative) regime it has a distinct asymp-
tote of =0.0032 (Ohta and Hamaguchi, 2000b; Vaulina et
al., 2002). This dynamical criterion holds for both 2D
and 3D systems (Lowen, 1996).

F. New physics: Examples

1. Novel classes of non-Hamiltonian systems

So-called “open” systems are systems that may ex-
change energy and matter. These can be systems in con-
tact with reservoirs, driven and constrained systems, etc.
(Hoover, 1985; Evans and Morriss, 1990; Tuckerman et
al., 2001; Chakrabarti et al., 2004). At the microscopic
level, interactions between particles in such systems do
not conserve the symmetry (invariants) peculiar to
“closed” systems, and the use of Hamiltonian equations
is not always useful to describe them. Since real systems
should always be regarded, in some sense, as open, at
both the microscopic and macroscopic levels, it may be
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that non-Hamiltonian equations may provide a more re-
alistic description of their behavior. One should note,
however, that despite their ubiquity and importance, a
fully consistent formulation of the statistical mechanics
of non-Hamiltonian systems has never been presented.

A remarkable property of nonlinear open systems is
the self-organization (Prigogine, 1980; Hasegawa,
1985)—a spontancous emergence of stable spatial (or
temporal) structures, which are often referred to as “dis-
sipative structures,” since dissipation plays a construc-
tive role in their formation. Dissipative structures are
the manifestation of nonequilibrium phase transitions,
with well-known examples being, the formation of con-
vection (Bénard) or turbulent (Taylor) vortices (Cross
and Hohenberg, 1993), or lane formation (Chakrabarti et
al., 2004) (see also Figs. 19 and 20). In order for such
transitions to occur, three following basic requirements
have to be satisfied: (i) Dissipation is necessary, to bal-
ance the external influx of energy. (ii) The structures
may emerge only in systems described by nonlinear
equations. (iii) There must be a relevant control param-
eter entering particular solutions of the equations, which
ensures breaking of symmetry (viz., transition) above a
certain threshold.

Complex plasmas are non-Hamiltonian systems, not
only because of conventional friction of grains against
the background neutral gas, but also due to specific
plasma interactions that give rise to new classes of non-
Hamiltonian dynamics. Under certain conditions these
interactions result in spontaneous excitation of indi-
vidual and collective particle motion (Zhakhovski et al.,
1997; Morfill et al., 1999; Vaulina et al., 1999; Ivlev et al.,
2003; Morfill, Rubin-Zuzic, et al., 2004). Next we con-
sider a few examples of such dynamics.

a. Examples of non-Hamiltonian dynamics

i. Variable charges. Generally, the individual particle
charges in complex plasmas fluctuate randomly with
time around some equilibrium value which, in turn, is
some function of the spatial coordinates (Fortov et al.,
2005).

The simplest class of non-Hamiltonian dynamics is re-
alized when the charge is a function of the coordinates
(Zhakhovski et al., 1997), Q=Q(r): The force QE acting
on a particle in a potential electric field E(r)=—Vg(r)
cannot be expressed in terms of a gradient of a scalar
function because VX (QV¢)=VQO X Ve is not equal to
zero in the general case. The dynamics is Hamiltonian
only when the charge gradient is collinear with the elec-
tric field (in this case, the force depends on a single lon-
gitudinal coordinate and therefore it can always be writ-
ten as a derivative of some scalar function over the
coordinate). It is noteworthy that the nonpotential elec-
trostatic force QE is similar to the buoyancy force Tg
entering the Boussinesq equations, which drives free
convection in conventional fluids [see Eq. (25)]: The lo-
cal charge Q(r) plays the role of the local fluid tempera-
ture 7(r), and the electric field the role of gravity g. The
experimentally observed vortices are well recovered in
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numerical simulations (Vaulina et al., 2000).

Another example is the so-called “delayed charging”
effect (Nunomura et al., 1999; Ivlev et al., 2000; Pustylnik
et al., 2006), which stems from the fact that the charging
frequency Q, [see Eq. (2)] of a particle is finite. There-
fore, the charge of a moving particle experiences some
delay with respect to its equilibrium local value Q(r) so
that the dynamics is also non-Hamiltonian for 1D mo-
tion. Moreover, if |Q(r)| increases along E (which is al-
ways the case for particles levitating in ground-based
experiments), then the absolute value of the momentary
charge is smaller than |Q(r)| when the particle moves
along E, and larger when the particle moves back. Thus,
the work done over the oscillation period is always
positive—the particle acquires energy from the electric
field. The oscillations grow exponentially provided the
energy gain is higher than the friction dissipation, which
requires 2vy, < (€z/€,)Q?/Qy. Here €z=|E|/|VE| and
€,=|Z|/|VZ| are the spatial scales of the field and
charge inhomogeneity, respectively (usually €;<€,) and
Q, is the eigenfrequency of the confined particle.

Now we consider random charge variations (fluctua-
tions) assuming a constant equilibrium value Q (Vaulina
et al., 1999; Ivlev et al., 2000). In experiments, the verti-
cal particle confinement is usually determined by the
balance of electrostatic and gravity forces m,g=QF, and
the equation of the vertical motion is determined by the
charge fluctuation Q(?),

X+ i+ Q1+ Q,(0)/Q)x = g0 (1)/ Q. (12)

Using the stochastic properties of the charge fluctuations
[see Eq. (3)], it can be easily shown (Vaulina et al., 1999)
that for typical conditions v<(), <), the mean energy
of vertical oscillations associated with the random force
at the right-hand side of Eq. (12) saturates at
~ap|Qlelm,g?/2v0y,, as it follows from the
fluctuation-dissipation theorem (here on is the relative
dispersion of charge fluctuations, see Sec. II.A). In addi-
tion to this heating, the charge variations can trigger the
parametric instability of the oscillations (Ivlev e al,
2000), due to the random variations in the oscillation
frequency in Eq. (12). Then the mean energy grows ex-
ponentially with time, similar to that in the case of de-
layed charges discussed above.

Spontaneous vertical oscillations of particles that can
be caused by these mechanisms are ubiquitous in com-
plex plasmas. For example, a drastic increase in vertical
oscillations has been observed in the sheath of rf and dc
discharges upon pressure decrease (Nunomura et al.,
1999; Misawa et al., 2001; Pustylnik et al., 2006). In some
cases the energy of these oscillations exceeds room tem-
perature by a few orders of magnitude.

For a set of particles, we have to define the mutual
interactions. We again consider the role of spatial varia-
tions. The electrostatic potential created at r by a charge
located at r; is @i(r)zQ(ri)@unit(|r_ri|)a where (Punit(r) is
the (isotropic) potential of a unit charge. The resulting
electric field is E;(r)=—0(r;)(d/dr) pumi([r—r,). Hence,
particles i and j interact via the force
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Fij =- Q(l'i)Q(l‘j)(ﬂ/al‘i)QDumtﬂl'i - l','|)- (13)

Note that the mutual interactions are reciprocal, F;
=-F};, so that the total momentum of the system is
conserved.

Principal features of non-Hamiltonian dynamics with
interactions (13) can be understood by considering a 1D
system of two charged grains which can move along the
x axis (Zhdanov et al., 2005). The repulsing particles
have to be confined externally. Generally, the confine-
ment is electrostatic and, hence, charge dependent.
However, since electrostatic forces are potential in the
1D case, we can always write the confinement force on a
particle as Foy,;=—dUone/dx. We now introduce a 2D
space x=(xy,x,), with x;, the particle coordinates, and
define the external confinement potential as Ugy(x)
= Uoni(x1) + Uconi(x2). Then the equations of two particle
motion can be written in the following vector form:

m(X + vX) = — JU /X — Q10 (I@ypit/ IX) , (14)

where @i = @uni(|X2—x1|) and Q1 ,= O(x; ). In addition
to the confinement and interaction forces, we introduced
a friction force with the damping rate v. One can see
from Eq. (14) that the 1D dynamics of two particles is
mathematically identical to 2D dynamics of a single par-
ticle. The dynamics is nonconservative because work
Wioop done (due to mutual interactions) over a closed
path (loop) € in plane x is not equal to zero. Using
Stokes theorem, the work can be expressed via the inte-
gral over the surface S, bounded by the path

Wigop = (010; + 0107) yyidxidx,,
Se

where the prime denotes the derivative with respect to
the argument.

The sign of Wy, is determined by the direction of
motion along ¢, i.e., the charge variations can serve as
either a sink (W)o,,<0) or a source (W,,,>0) of the
energy. In the latter case the motion of interacting par-
ticles can be unstable. In dissipative systems one can
expect that at the nonlinear stage motion converges
asymptotically to a limit cycle, with the balance between
the energy gain and frictional loss, Wiy,—2v~(K)=0,
where 7 is the oscillation period and (K) is the mean
kinetic energy averaged over 7. We see that the magni-
tude of the work done over path ¢ is determined by the
area S,. This implies that when v—0 the contour € of
periodic motion (if such motion is possible at all) should
degenerate into some line, so that S, tends to zero as
well.

The non-Hamiltonian dynamics of many particles
with variable charges can be investigated using numeri-
cal MD simulations (Zhdanov et al., 2005). The simplest
case is the 2+2 particle system, where two outer par-
ticles are fixed and two inner particles are movable. Par-
ticles interact via the Yukawa potential ¢, (x)=e/x
with the screening length \, and the spatial dependence
of the charge is given by a stepwise function o tanh[(x
~Xjump)/ Tjump] varying along the x axis by the magnitude
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FIG. 8. “Mutual” phase portraits of self-excited particle oscil-
lations triggered by spatially varying charges. Two particles
perform a 1D motion, their coordinates (x;,x,) form periodic
trajectories that are shown for several values of damping rate,
the highest values are chosen in the vicinity of the self-
excitation cutoff. By varying initial momentums of the par-
ticles, one can obtain attractors of type I (a) or II (b). Coordi-
nates are measured in units of the screening length A and the
damping rate is normalized by the frequency scale \Q?/m\>.
Adapted from Zhdanov et al., 2005.

AQ, where xjyp, is the position of the charge “jump” and
Tjump <Xjump 18 the width of the jump. The initial inter-
particle distance A is determined from the equilibrium
condition. It was found that spontaneous oscillations set
in when the magnitude of the charge gradient exceeds a
certain threshold: When the initial (equilibrium) coordi-
nates of the particles are relatively far from xj,y, (a few
Tjump), Which implies relatively weak charge variations,
the oscillations decay and the mean kinetic energy falls
off as xe™?". When the initial position of one of the
particles is sufficiently close to Xjym, (about gy, or less),
so that the charge variations are strong enough, the ki-
netic energy does not decay. On the contrary, (K) even-
tually saturates at a constant level and the oscillations
become periodic, converging asymptotically to the at-
tractors shown in Fig. 8. Varying initial conditions it was
found that two different types of attractor are possible,
either type I [Fig. 8(a)] or type II [Fig. 8(b)], with no
regular correspondence to the initial conditions (e.g., ini-
tial particle momenta). One can see that the oscillation
contours become narrower and have a tendency to de-
generate into a single line as the damping rate v de-
creases. On the other hand, there exists a critical friction
beyond which self-sustaining oscillations are no longer
possible. The width and length of the oscillation con-
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tours at the critical v are roughly the same, indicating
that the area S, of the contour is about to achieve its
maximum.

ii. Plasma wakes. Another class of non-Hamiltonian dy-
namics occurs when charged grains (we assume for sim-
plicity that the charges are constant) are embedded in a
flowing plasma, with ions moving relative to grains due
to, e.g., ambipolar diffusion. The screening cloud around
a charged grain is no longer spherically symmetric,
which gives rise to higher (dipole, quadruple, etc.) mo-
ments in the mutual interaction. As discussed in Sec.
I1.B, the screening cloud in this case is usually referred
to as a “plasma wake,” instead of the “Debye sphere” in
the isotropic case. One should point out the fact that in
some cases the mathematical description of wakes is
identical to the equations describing, e.g., hydrodynamic
interactions of bubbles in conventional fluid flows (Bea-
tus et al., 2006).

In order to understand the dynamics of such systems,
one should note that complete ensembles of elementary
charges in complex plasmas can be conveniently subdi-
vided into two distinct categories: a subsystem of bound
charges at the grain surface and a subsystem of free
plasma charges in the surrounding wakes. Plasma wakes
play the role of a “third body” in the mutual grain-grain
interaction and, hence, make the pair interaction nonre-
ciprocal (Melzer et al., 1999): The force exerted by a
wake of grain 1 on grain 2 is generally not equal to the
force of wake 2 acting on grain 1. Thus, in contrast to
the case of variable charges, the total particle momen-
tum is no longer conserved. The center-of-mass motion
is governed by (Kompaneets, 2007)

ik + k) = QI P 1)~ ol0)] +Fo. (15)

Here rcz%(rl+r2) and r,=r,—r; are the center-of-mass
and relative coordinates, respectively, and o(r,)
[ # ¢(-r,)] is an anisotropic wake potential [see Eq. (6)].
In addition to the mutual interactions, in Eq. (15) we
introduced a force F,, which describes the interaction of
grains with a (constant) external electric field (assuming
constant charges, this field may be presented as a gradi-
ent of some scalar function). Equation (15) shows that
one can easily construct such a loop ¢ for the motion of
the center of mass that the work W),,, done by the non-
reciprocal interaction over the loop is not equal to zero,

Wloop * (a/&rc) X ((9/(91})[(,0(— rr) - (,D(l'r)]ng-

S¢

This occurs when r, and r, are correlated (e.g., due to
resonances) so that (9/dr.) X (d/dr,) # 0 and the dynamics
of interacting particles is not conserved.

Such nonconservative dynamics results in spontane-
ous heating of complex plasmas. As an example, we con-
sider recent experiments on melting of a crystalline
monolayer (Ivlev et al., 2003). The microparticles were
levitated in the strong vertical electric field of the sheath
above a planar rf electrode and confined horizontally by
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FIG. 9. Melting of 2D crystal. (a) Top view of the particle
monolayer in the experiment with 8.9 um particles in argon at
pressure of 2.8 Pa. The particles are in the crystalline state,
until the density exceeds a certain threshold and the mono-
layer melts. Trajectories over 3.1 s after the melting starts. (b)
Top view of the particle monolayer in the MD simulation with
parameters similar to the experiment. In both cases, the aver-
age kinetic energy of particles in the center saturated at
~30 eV. From Ivlev et al., 2003.

a weak radial field. When the number of particles in the
monolayer exceeded a certain threshold (correspond-
ingly, the interparticle distance decreased, with the
smallest distance in the center due to the radial confine-
ment) the monolayer started melting, from the center to
the periphery. The horizontal particle trajectories during
the melting process are shown in Fig. 9(a). Simulta-
neously, oscillations in vertical direction were triggered.
It was possible to stop the melting by increasing the
pressure—the system always returned to a stable crystal-
line monolayer.

The experiment was simulated using a MD code
which contains a first-principles representation of the
short-range shielded Coulomb forces and the wake
forces due to the streaming ions. In the numerical simu-
lations the basic findings of the experiment could be re-
produced: When the number of particles in the simula-
tion exceeded a certain threshold, the monolayer
melted. In such unstable cases the interparticle distance
in the center of the monolayer was close to the experi-
mentally measured values. The melting developed in a
manner similar to the experiment [see Fig. 9(b)]. With
increasing pressure (neutral friction) the system became
stable. Finally, when the particle interaction was reduced
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to a spherically symmetric potential (without wakes) the
system was always stable, indicating that the wakes play
the decisive role in the melting.

Quantitative conditions for the melting onset can be
derived from the following simple model (Ivlev and
Morfill, 2001): Negatively charged particles of charge Q
and mass m are separated horizontally by a distance A
and interact via a (spherically symmetric) screened po-
tential. The excess positive charge of the wake ¢ is ap-
proximated by a pointlike charge located at distance &
downstream from the particle. Vertically, the particles
are confined in a potential well with their eigenfre-
quency (). It is known that in a crystalline monolayer, in
addition to conventional in-plane acoustic modes (dust-
lattice waves, see Sec. I1.D), there also exists an out-of-
plane optical mode associated with vertical particle os-
cillations (Samsonov et al., 2005). The in-plane (l) and
out-of-plane (1) modes are coupled due to the particle-
wake interaction. The coupling is weak when the
branches w|(k) and w, (k) are far away from each other,
but becomes strong at the resonance, when they inter-
sect. This happens when the number density of particles
exceeds a threshold. Then the branches are modified
and form a hybrid branch in the vicinity around the in-
tersection point, where the resonance coupling can drive
an instability with the growth rate

Im o = g8/ QA|(QY/Q,) - v, (16)

where Q=VQ?*/mA*=(,,. One can see from Eq. (16)
that the coupling part is proportional to the dipole mo-
ment of the wake ¢ and the instability is suppressed
when the damping is sufficiently high. It is remarkable
that such a simple model not only recovers all qualita-
tive features seen in the experiment, but also gives good
(within =5%) quantitative agreement.

An additional mechanism contributing to the mode
coupling can be due to spatial charge variations and/or
variations in the screening, and this effect might signifi-
cantly affect the instability (Kompaneets et al., 2005;
Yarovshenko et al, 2005). Note that the non-
Hamiltonian dynamics of dust grains due to nonreci-
procity of the particle-wake interactions (and/or charge-
screening variations) can also cause melting of 3D
crystals (Melzer, Schweigert, et al., 1996).

To conclude, it is worth mentioning yet another type
of collective instability triggered by charge variations
(Fortov et al., 2000, 2003; Zobnin et al., 2002). According
to Eq. (9), charged microparticles in 3D complex plas-
mas affect the volume charge composition, so that the
electron-to-ion density ratio varies with the dust density
ng. This, in turn, disturbs the balance between electron
and ion fluxes to the grain and hence Q becomes a func-
tion of n, This effect can cause instability of the DA
wave (see Sec. I1.D) propagating in a plasma with an
external electric field: The wave-correlated charge varia-
tions result in nonzero (average) work done by the elec-
tric force, and the sign of this work is determined by the
orientation of the wave vector with the respect to the
electric field. Such an instability is triggered when the
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density of dust particles exceeds a critical value.

b. Kinetics of particles with variable charges

Since ensembles of particles with variable charges are
generally non-Hamiltonian systems, the use of thermo-
dynamic potentials to describe them is not really justi-
fied. An appropriate way to investigate the evolution of
such systems is to use the kinetic approach (Ivlev et al.,
2004; Ivlev, Zhdanov, Klumov, and Morfill, 2004). As
long as properties of the charge variations are known,
one can consider the dynamics and kinetics of the grains
independently from the plasma kinetics.

i. Kinetic equation. In the absence of external fields, the
kinetics of charged grains is governed by the mutual col-
lisions and collisions with neutrals, so that the kinetic
equation is

dfldt = St f + St,f. (17)

The grain-neutral collision integral does not depend on
particle charges and can be written in the usual Fokker-
Planck form (equivalent to the Langevin equation).

As regards the grain-grain collisions (here we investi-
gate dilute gaseous ensembles and hence focus on the
binary interactions only), one should note one important
point (Ivlev, Zhdanov, Klumov, and Morfill, 2005): Gen-
erally, we cannot use the collision integral in the classical
Boltzmann form, because its derivation employs the uni-
tarity relation (Lifshitz and Pitaevskii, 1981). This rela-
tion is not necessarily satisfied for ensembles with vari-
able charges: Naturally, the grain-grain collision integral
applies only for those transitions occurring (between dif-
ferent kinetic states) in the subsystem of charged grains.
Due to the exchange of energy with free plasma charges,
the subsystem of grains is not conservative—the mo-
mentum exchange during a collision is affected by the
charging processes. Therefore the unitarity relation can
be fulfilled only after the summation over the complete
set of states, including those corresponding to the sub-
system of the plasma charges. Thus, we have to write the
collision integral in the most general form,

Stdf(p)=f[W(P’,Pi;P,Pﬂf(P’)f(P{)

- w(p,p1;:p".p)f(p)f(p)]dp,dp’dp;.  (18)

Here w(p,p;p’,p;) is a probability function for a pair
of colliding particles with momenta p and p; to acquire
momenta p’ and pj, respectively, after the scattering.
Equation (18) accounts for all possible transitions
(p'.py)— (p,p1) (sources) and (p,py)—(p’,p;) (sinks),
and then is averaged over p;. The function w can be
determined by solving the mechanical problem of the
binary scattering with a given interaction between
particles.

The mechanics of binary grain collisions can be con-
veniently considered in terms of the center-of-mass and
relative coordinates. (Below we consider grains of the
same mass, although all results can be straightforwardly
generalized for an arbitrary mass ratio.) For a pair of
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particles with momenta p and py, the center-of-mass and
relative momenta are p.= %(p+p1) and p,=p;—p, respec-
tively. In the absence of external forces, the center-of-
mass momentum is conserved, and the relative momen-
tum is changed during the collision,

Pi=Pe: Pr=Pr+Q. (19)
For constant charges, the absolute value of the relative
momentum, p,=|p,|, is conserved, and only the direction
changes (elastic scattering) (Landau and Lifshitz, 1976).
Charge variations also cause p, variations (Ivlev,
Zhdanov, Klumov, and Morfill, 2005). Hence, the ex-
change of the relative momentum can be divided into
elastic and inelastic parts, q=qg+ 6q: The elastic part
keeps the magnitude of the relative momentum con-
stant, |p,+qo|=p,. The vector of inelastic momentum ex-
change dq is parallel to p;, and its magnitude is g=p,
—Pr:

The kinetics of particles with variable charges has an
important hierarchy of time scales (Ivlev, Zhdanov, Klu-
mov, and Morfill, 2005): Each interparticle collision is
accompanied by (i) elastic momentum exchange gy,
which provides the relaxation of the distribution func-
tion to the Maxwellian equilibrium (Lifshitz and Pita-
evskii, 1981) while keeping the mean kinetic energy of
the particles E constant: and (ii) inelastic momentum ex-
change dq, which causes variation in E. Due to the rela-
tive smallness of the charge variations, the resulting in-
elastic momentum exchange is small as well, dg<<q,.
This implies that process (ii) is much slower than process
(i). Therefore, the velocity distribution remains close to
the Maxwellian form, f(p) = f),(p), with the temperature
T=3E (Landau and Lifshitz, 1978).

Thus the temperature is the only parameter that de-
termines the evolution of the ensemble. This implies
that the system can be treated with fluid equations: The
momentum equation [with the friction force —vv added,
see Eq. (25)] remains unaffected since the charge varia-
tions conserve the net momentum. The equation for
temperature T=[(p?/3m)fdp acquires a new source
term due to charge variations, in addition to the sink
term due to friction. In accordance with Eq. (17), these
terms are determined by

T= f (p*/3m)(St,f + St,Hdp. (20)

For the grain-neutral collisions the integral is —2u(T
—T,). For the grain-grain collisions, one can expand the
integrand into a series over dq. Retaining the linear and
quadratic terms and integrating in parts, we obtain (Iv-
lev, Zhdanov, Klumov, and Morfill, 2005)

1
f p*Styfdp = 5 f (P A+ B)fu(pe)fu(p)dpedp;,
(21)
where A(p..p,)=[8gWddq and B(p..p,)=3 [ (8q)*wddq

are the Fokker-Planck coefficients (van Kampen,
1981; Lifshitz and Pitaevskii, 1981), w(p,,pc;dq)
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=w(p,pi;p’,p;), and the momenta are related by Eq.
(19). The smallness of coefficients A and B is ensured by
the smallness of the charge variations (for constant par-
ticle charges, the inelastic momentum exchange is equal
to zero and hence A=B=0).

ii. Heating. Irrespective of which type of charge varia-
tions plays the major role (charge inhomogeneity or
fluctuations) the interparticle interaction can be distin-
guished in terms of the interaction strength: For par-
ticles interacting via a short-range screened electrostatic
potential (with the screening length \), the measure of
the interaction strength is the scattering parameter B,
=Q?/\T (see Sec. I1.C). When B, is large enough, the
interaction is of the hard-spheres type. In the opposite
case, when the ratio is small, the interaction is of the
Coulomb type, similar to that between electrons and
ions in usual plasmas. Below these two limits are refer-
eed to as the low-temperature and high-temperature re-
gimes, respectively, with the transition temperature
given by T\,=Q?/\. Equations (20) and (21) result in the
following equation for the particle temperature (Ivlev,
Zhdanov, Klumov, and Morfill, 2005):

T~aT"-2u(T-T,). (22)

The coefficient @ and exponent 7y in the source term
depend on the temperature regime. In the case of inho-
mogeneous charges, the exponent is y=3/2 for T<T,
and y=1/2 for T> Ty, respectively. We see that in the
low-temperature regime the temperature exhibits an ex-
plosionlike growth provided the friction rate v is low
enough. At higher temperatures, however, the growth is
always saturated [see Fig. 10(a)]. For the fluctuating
charges we have y=2 and y=1 for the low- and high-
temperature regimes, respectively. This means that, un-
like the case of inhomogeneous charges, the tempera-
ture does not saturate but can grow exponentially at 7
> T, [see Fig. 10(b)]. Numerical MD simulations fully
support the theoretically predicted scalings.

2. Charge-induced runaway coagulation

Coagulation (or aggregation, clustering) is important
for various processes in different branches of physics
and chemistry, for instance polymerization (Flory, 1953),
transitions in colloidal systems (Jullien and Botet, 1987),
plasma etching (Boufendi and Bouchoule, 1994), planet
formation (Lissauer, 1993), etc. In many cases coagula-
tion can be considered as an irreversible process of clus-
ter merging due to the pair interaction of smaller clus-
ters (Meakin, 1991). Different aspects of the aggregation
theory for uncharged systems were studied in detail in
the last two decades (see, e.g., Ernst, 1986; Meakin,
1991; Kempf et al., 1999, and references therein).

Experimental study of coagulation in a cloud of
micron-size particles embedded in a rarefied neutral gas
is important for understanding the nature of the coagu-
lation process (Blum et al., 2000). During a recent series
of the PKE-Nefedov experiments (Nefedov et al., 2003)
performed onboard the International Space Station
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FIG. 10. Self-heating in a system of particles with variable
charges. Asymptotic behavior of the particle kinetic tempera-
ture is shown for (a) inhomogeneous charges and (b) fluctuat-
ing charges. The transition temperature T}, separates the hard-
sphere (low-temperature, 7<T,) and Coulomb (high-
temperature, 7>T,) collisional regimes. Solid lines
correspond to the source (charge variation) term in Eq. (22),
ays and a¢ denote coefficients for the hard-spheres and Cou-
lomb regimes, respectively. Dashed line correspond to the fric-
tion term. From Ivlev, Zhdanov, Klumov, and Morfill, 2005.

(ISS), the coagulation of micron-size monodisperse par-
ticles was investigated in a neutral gas under micrograv-
ity (Ivlev et al., 2002; Konopka et al., 2005). In several
experimental runs up to ~10° microparticles were in-
jected into the chamber filled with neutral gas. The mass
spectrum of the resulting particle clusters (number of
clusters n and accumulating mass m) was measured.
When the number density of injected particles was small
n(m) had a cutoff, as shown in Fig. 11(b) and particles
coagulated homogeneously throughout the chamber vol-
ume. The results changed dramatically when the number
density exceeded a certain threshold: In this case, n(m)
had no apparent cutoff at large m but exhibited a power-
law tail [see Fig. 11(a)]. Simultaneously, the growth of a
single large agglomerate occurred, accumulating
~10*-10° particles in a few seconds. The coagulation
process developed many orders of magnitude faster than
was expected. A large agglomerate was formed while
the aggregation among smaller clusters was still going
on.

It is well known that in some systems of particles with
ongoing coagulation a special kind of phase transition
called “gelation” is possible (see, e.g., Ernst, 1986; Lee,
2000, and references therein). At a certain gelation mo-
ment, 7, the ensemble becomes unstable against the
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FIG. 11. Spectra of coagulated clusters. Intensity spectrum of
clusters deduced from images taken shortly after the injection
of (a) large and (b) small number of microparticles (3.4 um
diameter). The reflected light intensity I, of coagulated clusters
reveals a power-law intensity distribution function. Consider-
ing clusters as fractal aggregates, the high-mass part of the
mass spectrum can be retrieved from the intensity distribution
(I«m?P1, where Dy is the fractal dimension). The “runaway”
aggregates that are formed (a) are detached from the shown
smooth spectrum and contain up to ~10° microparticles. From
Konopka et al., 2005.

formation of a single cluster of infinite mass. This pro-
cess is also called “runaway growth.” The gelation de-
velops if the coagulation rate increases sufficiently
steeply with the mass. Mathematically, this is because at
=ty the distribution function for such kernels is no
longer bounded exponentially at the high-mass end, but
scales as n(m,tgel) oom~" with 2<7<3. The total mass of
the finite size clusters is not conserved in this case, but
there is a nonzero mass flux at m — o, which causes the
formation of the infinite gel particle. The gel particle
therefore accumulates a mass comparable with the total
mass of the system so that the mass dispersion diverges.
One can see that the essential features peculiar to the
gelation transition were observed in coagulation experi-
ments with charged particles (Konopka et al., 2005).

Further investigation of the experimental data
(Konopka et al., 2005) showed that the clusters were
charged, positively or negatively, with no detectable
overall charge preponderance. The charge magnitude of
individual clusters was at least a few thousand electron
charges. The charging processes in neutral gases are very
different from those in plasmas, where the charging is
due to the absorption of electrons and ions and the
charge of the cluster is a certain function of the size (see
Sec. II.LA). In a neutral gas, by contrast, the external
sources of charging are absent and the total (initial)
charge of the system is conserved.

The role of charge-induced interactions in the coagu-
lation process was analyzed by Ivlev et al. (2002), who
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proposed a theory of pair clustering in conservative
charged systems. The simplest mean-field approach to
describe the aggregation process is to generalize the
Smoluchowski coagulation equation (Smoluchowski,

1917) for the case of two independent variables: the clus-
ter mass m and the charge Q. Then the kinetic (coagu-
lation) equation for the distribution function of clusters
n(m,Q,t) can be written in the following form:

gtn(m,Q,t) - %Jm dm'f dQ'K(m’,Q"sm —m",Q — Q"n(m — m",Q - Q" .On(m’, Q" 1
0 —o0

—n(m,Q,t)Joo dm'foc dQ'K(m',Q";m,Q)n(m',Q',1), (23)
0 —o0

where K(m',Q';m,Q) is the coagulation rate coefficient
(kernel) or the probability for a pair of clusters, (m',Q")
and (m,Q), to merge. The kernel is obviously symmetric
with respect to the pair exchange, K(m',Q';m,Q)
=K(m,Q;m',Q’"), and at large m and |Q| it has
algebraic asymptotics. The kernel is averaged
over the velocity distribution K(m',Q';m,Q)
=(v,o(a’,Q";a,Q;v,)), where v,=|v—v’'| is the relative
velocity of the clusters. When clusters are in thermal
equilibrium with an ambient gas we have the equiparti-

tion velocity dispersion (v,)xm "2, with m_ =mm'/(m

+m’) the reduced mass of the pair. The merger cross
section o is a function of the effective aggregate radius
a. The explicit relation between a and m is given by the
appropriate scaling law with fractal dimension Dy, i.e.,
mxaPs (Meakin, 1991). For different aggregation pro-
cesses the fractal dimension can vary from D=3 (dense
or compact clusters) down to =1.4-1.5 [fluffy aggre-
gates, see Meakin (1991) and Kempf et al. (1999)]. Note
that the coagulation equation can be written in a dis-
crete form as well [Ernst (1986), for instance, to resolve
the low-mass and low-charge distribution], and then the
summation should be used in Eq. (23). However, the
continuous form (23) is more convenient and quite suf-
ficient because at large m (and |Q|) the summation can
be replaced by the integration.

Obtaining exact solutions of the coagulation equation
is not a simple task even in the charge-independent case.
The solutions with arbitrary initial conditions are known
only for a few types of the kernel (e.g., K=const, «xm
+m’, and «cmm’) (Ernst, 1986). The asymptotic solutions
for the high mass tail are also known for Kocm#*m'”
(with max{u, v} <1). No analytic solutions are known for
the charge-dependent kernels. However, the major fea-
tures of the aggregation process can be understood by
analyzing moments of the distribution function, M, (1)
=[dm [dOm'Q'n(m,Q,1) (e.g., My and M, are the to-
tal mass and charge, respectively). Equations for M, (1)
are derived by multiplying Eq. (23) with m'Q’ and inte-
grating over m and Q.

A major contribution to the charge-induced interpar-
ticle interaction and hence to the merger cross section is
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provided by the charge-charge and charge-dipole (in-
duced) interactions, Ug,*r~! and Ugxr~, respectively
(Ivlev et al., 2002). The long-range charge-charge inter-
action works selectively—it enhances coagulation when
clusters are oppositely charged and inhibits it otherwise.
The analysis performed for U, shows that, although the
resulting coagulation rate is enhanced by a factor of
~(Q?a')/ T, (which can be as large as ~10° at the initial
stage of the coagulation), the mean cluster mass does
not grow with time faster than linearly and therefore Uy,
alone cannot trigger the observed anomalously rapid ag-
gregation. On the other hand, the charge dispersion (Q?)
decreases with time due to the charge-charge enhanced
coagulation (we assume (Q)=0, as observed in experi-
ments), while the average cluster size (a) increases.
Therefore, eventually (Q%a~') becomes smaller than T,
and the induced charge-dipole interaction prevails. Since
U, is attractive irrespective of the charge sign, the result-
ing coagulation is always enhanced. The corresponding
coagulation rate can be expressed as K(m',Q';m,Q)
=m*m'”|Q'|f+m'*m"|Q|f, where 1<e<2 is the charge
exponent and the values of mass exponents u and v (u
+v=\) can be obtained from the asymptotic behavior of
the general expression for K in the limit a/a’>1 (Ernst,
1986). Analysis shows that the charge-dipole interaction
can relax the condition for gelation dramatically. The
resulting equations for M, (¢) yields the following gela-
tion condition (Ivlev et al., 2002):

1
e, (24)

in contrast to A >1 for the charge-free case (Ernst, 1986;
Lee, 2000).

We compare the gelation conditions for the charge-
dipole and pure geometrical coagulation. Equation (24)
shows that in the presence of charge-induced interac-
tions the kernel need not necessarily be a steep function
of mass—for the charge exponent e=2 the mass expo-
nent \ is sufficient to be just positive. Smaller N implies
higher values of the fractal dimension Dy of clusters. Us-
ing Eq. (24) we get the critical Dy which are necessary to
start the gelation: For charge-dipole coagulation with &
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=2 we have )\:DJZI—%, and the gelation condition is Dy
<2; with e=1 we have )\:%Dj?l—%, and Df<%. In con-
trast, for geometrical coagulation we have )\zZD,?l—%,
and the gelation is possible for Dy< % '

Clusters produced due to Brownian motion are very
fragile and fluffy, with an average value of the fractal
dimension of =1.8-2 (Kempf et al., 1999). Therefore the
charge-induced gelation of thermal clusters is quite
likely, whereas the occurrence of gelation due to geo-
metrical coagulation is practically impossible because
too low values of Dy are necessary for that.

III. KINETIC STUDIES OF LIQUIDS AND SOLIDS WITH
COMPLEX PLASMAS

As a starting point, we consider the following ques-
tion: How relevant are liquid or solid plasmas to study
classic phenomena in conventional condensed media?
The implication is clear—if they are relevant, we have
opened up a completely new kinetic approach, which
will then have a major impact in a field of great future
potential. As pointed out in the introduction, one inter-
esting aspect of strongly coupled complex plasmas is
that although they are intrinsically multispecies systems,
the rate of momentum exchange through mutual (elec-
trostatic) interactions between microparticles can exceed
that of interactions with the background neutral gas
significantly—thus providing an essentially single-
species system for kinetic studies. Moreover, comparison
in terms of similarity parameters (e.g., Reynolds, Ray-
leigh, or Weber numbers for fluids) suggests that liquid
complex plasmas can be like conventional liquids (e.g.,
water)—but observed at the atomistic level.

Because of these unique properties, complex plasmas
can indeed serve as a powerful new tool for investigating
fluid flows on (effectively) nanoscales, including the all-
important mesoscopic transition from collective hydro-
dynamic behavior to the dynamics of individual par-
ticles, as well as nonlinear processes on scales that have
not been accessible for studies so far. Of particular inter-
est could be kinetic investigations of the onset and non-
linear development of hydrodynamic instabilities. Indi-
vidual particle observations can provide crucial new
insights—e.g., whether the coarse-grained concept of ba-
sic hydrodynamical instabilities (Kelvin-Helmholtz,
Rayleigh-Taylor, Richtmyer-Meshkov, etc.) is still ad-
equate on interparticle distance scales, whether there
are any microscopic origins of instabilities (in particular,
what are the trajectories that can trigger instabilities),
etc. Another important issue is the atomistic structure
and dynamics of fluids—in particular, what are the criti-
cal changes that occur in the (atomic) structure of solids
that give them the ability to flow, are there any charac-
teristic patterns in microscopic dynamics associated with
that transition, what are the conditions to form super-
cooled liquids and glassy states, etc.

Regarding the solid phases, the current interest where
highly resolved dynamical measurements in complex
plasmas may bring significant advances lies in domain
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boundaries and defects—associated with excited crystal
lattice states and even grain boundary melting and the
premelting phenomenon (Gleiter, 1989; Phillpot and
Wolf, 1990; Alsayed et al., 2005; Pusey, 2005). This is of
relevance in understanding possible kinetic scenarios of
both crystal-crystal phase transitions (in particular, in the
context of externally constrained systems) and crystal-
liquid transitions (especially in 2D). Other areas of inter-
est are annealing, phonons, shock melting, and various
nonlinear phenomena.

A. Relevance to conventional fluids

The obvious necessary conditions for fluid complex
plasmas to be an appropriate medium to study the kinet-
ics of conventional fluids are (i) transport coefficients are
not affected by friction, which requires the time scale of
individual particle dynamics ~Q' (see Sec. ILD) to be
much shorter than the friction time scale »~!; and (ii) all
relevant length scales should be much larger than the
discreteness scale A, so that the model of continuous
media can be well applied. Another essential assump-
tion is that the background gas remains at rest—this al-
lows us to consider complex plasmas as a single-species
fluid with a weak background friction proportional to
the local velocity (Ivlev, Zhdanov, and Morfill, 2007):
Collisions with microparticles do not affect diffusive mo-
tion of neutrals as long as the diffusion length at time
scales ~¢,,,/ v, exceeds the complex plasma size L,
which yields ¢,,,¢,,= L*. The mean-free path of neutral
particles due to collisions with micron-size particles,
€,q=(ma’ny)~", is usually about a few meters, whereas
the mean free path of neutral-neutral collisions (say, at
pressures ~3 Pa) is ¢,,,~0.3-1 cm. Thus, the assump-
tion that neutral particles remain unaffected is well sat-
isfied for typical system sizes L <10 cm.

To demonstrate the relevance of complex plasmas to
conventional fluids, we consider an example of free ther-
mal convection. This phenomenon occurring in fluids
outside equilibrium combines “typical fingerprints” of
conventional hydrodynamics, such as shear flows and
the associated dissipation, heat conduction, etc. As
pointed out, the neutral gas friction in complex plasmas
does not usually play a role in atomistic processes of the
interparticle interaction, but certainly is important at
much longer time scales related to the overall hydrody-
namic flows. Therefore, the appropriate question here is:
How (if at all) the friction changes the flow patterns and
the onset of the convection in comparison to the
friction-free (i.e., conventional fluid) case?

The onset of free thermal convection in fluid complex
plasmas was analyzed by Ivlev, Zhdanov, and Morfill
(2007) using the Oberbeck-Boussinesq equations modi-
fied due to background friction. The deviation of the
particle velocity and kinetic temperature from the hy-
drostatic equilibrium (i.e., constant temperature and
zero velocity, with pressure changing as pg-r and p
=const) is given by (Cross and Hohenberg, 1993)

v+ (v-V)v+vv=—V(plp) + (n/p)V?v - BeT,
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,T+v-VT+2vT=V’T (25)

[here B=p~'(dp/dT), is the thermal expansion]. Equa-
tions (25) are complemented with the continuity equa-
tion V-v=0. For the Rayleigh problem, when a tempera-
ture difference ® is maintained between two infinite
parallel plates separated in the z direction by a distance
L, the unperturbed temperature profile (without convec-
tion) is determined by d’Ty/dz’=a’T,. This yields
Ty(z)=0 sinh(az/L)/sinh a, where

a=L/L; (26)

is the ratio of the geometrical scale L to the length L,
= \W» of the temperature decay due to friction. In the
frictionless limit we have a=0 and retrieve the linear
profile, Ty(z)—(z/L)®. Using standard normalization
one derives the governing equation that depends not
only on the Rayleigh number R=gpBOL>/ 7y but also
on the Prandtl number P=7/py [not to be confused with
the Havnes parameter P introduced in Eq. (9)]. The lat-
ter dependence occurs here because the decay of veloc-
ity happens at the scale length VPL;.

One can distinguish two limiting cases of weak («
<1) and strong (a>1) friction. These limits are referred
to as the quasiclassical and friction-dominating
Rayleigh-Bénard convection, respectively. The solution
of Eq. (25) in the former limit yields the critical Rayleigh
number with the corresponding critical wave number
(normalized by L),

R = 1708 + &?(22.2P~' + 136),

kT =3.12 + &?(0.002P! + 0.05). (27)

From Eq. (27) one can conclude that for =<1 the onset
of convective instability remains practically unaffected
by friction and hence the classical criterion can still be
applied. This is a remarkable result because it shows
that in fact the friction can be neglected even though the
scale of the frictional dissipation is of similar magnitude
as the hydrodynamic scale of the problem.

Even more striking is that in the friction-dominated
case, irrespective of the value of «, the convection is not
eliminated—it is just rescaled. Indeed, in this limit the
problem does not depend on the geometrical scale
L—the only remaining length scale is L. Then the con-
ventional Rayleigh number R and the wave number k
are renormalized as R.=a >R and k.,.=a 'k. The criti-
cal values also depend on the Prandtl number and in the
range 0.1 <P <10 can be given by

kcr ~ 0.62P_0'13+0'011 In P‘

(28)

cr__ —0.35+0.068 In P
R =49P ,

In comparison with the classical case with R =1708 and
k=312, now R has a rather strong dependence on P
and is smaller by a factor of 10-100. Figure 12 shows an
example of the convection cell [for different P the shape
of the cell remains practically the same and the actual
size scaling is proportional to k2 (P)]. Compared with
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FIG. 12. Convection cell of the most unstable mode in the
renormalized Rayleigh (friction-dominating) limit. Streamlines
with the indicated vorticity magnitudes are drawn for the
Prandtl number P=0.2. Coordinates are normalized by the cor-
responding critical wave number k2, Eq. (28). For comparison,
the inset shows the convection cell in the classic Rayleigh (fric-
tionless) regime. From Ivlev, Zhdanov, and Morfill, 2007.

the almost square cell of the classical convection, the cell
is asymmetric and somewhat stretched in the z direction
since the temperature gradient is inhomogeneous and
the upper boundary is at infinity.

The problem discussed highlights one remarkable
property of complex plasmas: They provide us with a
unique bridge that links colloidal systems (characterized
by fully damped motion of microparticles) with virtually
undamped systems, where weak friction does not affect
atomistic dynamics but is revealed at much longer hy-
drodynamic time scales. By varying the gas pressure we
can control the damping ratio »/{; and thus observe
how the crossover from the colloidal to conventional
single-species fluid regimes affects the hydrodynamic be-
havior. Later we address this property several times,
when discussing different hydrodynamic phenomena oc-
curring in complex plasmas and their relevance to con-
ventional hydrodynamics.

B. Atomistic dynamics in fluids

Depending on the particle density and/or kinetic tem-
perature, the dynamics of fluids at the atomistic level
may exhibit very different behavior. At sufficiently high
temperatures (low densities), fluids are known to be dy-
namically homogeneous in the sense that fluctuations at
all relevant spatial and temporal scales (say, down to
about the interparticle distance and the inverse Einstein
frequency) are independent and statistically identical.
Relaxation processes in such liquids obey the well-
known Debye exponential law.

The situation changes dramatically when the tempera-
ture decreases [see, e.g., March and Tosi (2002)]. As the
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freezing point approaches, particles become less mobile
because their motion is stronger coupled to the neigh-
bors and, therefore, fluctuations in neighboring regions
become more correlated. The “caging effect” sets in,
when at shorter time scales particles exhibit prolonged
oscillatory motion in potential traps (cages) created by
their neighbors. In the supercooled fluid regime, dy-
namical heterogeneity becomes the dominant feature:
Particles move in increasingly cooperative manner cre-
ating dynamically correlated mesoscopic domains (Fis-
cher, 1993; Sillescu, 1999; Reichman et al., 2005; Saltz-
man and Schweizer, 2006). Decoupling of slow (the so-
called alpha and beta) relaxation from rapid (molecular)
relaxation occurs, with the former being related to the
mesoscopic cooperative restructuring and the latter to
the local in-cage motion (G6tze and Sjogren, 1992; Still-
inger, 1995; Gotze, 1999). Different relaxation regimes
have essentially different scaling laws. The beta regime
(manifested by a plateau in the evolution of the relax-
ation function close to the glass transition) usually fol-
lows a power-law scaling whereas the ultimate alpha re-
laxation (which determines overall transport properties)
typically exhibits a stretched-exponential decay

(oce~t7” the so-called Kohlrausch-Williams-Watts law
with 0<B<1). Eventually, below the glass transition
point, the long-time alpha relaxation is frozen, accompa-
nied by complete arrest of structural relaxations and
only local in-cage motions remain.

Understanding the properties of supercooled fluids,
especially in the vicinity of the glass transition, is one of
the most controversial issues in contemporary physics of
fluids (Jickle, 1986; March and Tosi, 2002), with a num-
ber of mutually exclusive interpretations of various as-
pects of the complex supercooled fluids behavior cur-
rently being discussed.

For instance, there are at least two different scenarios
of the dynamical heterogeneity resulting in the
stretched-exponential relaxation at long times (Sillescu,
1999; Reichman et al., 2005; Saltzman and Schweizer,
2006): One scenario relates this to the spatial heteroge-
neity, where relaxation occurs exponentially in each spa-
tial domain and the relaxation time is different in each
domain. Another scenario relates the heterogeneity to
fluctuations in the stochastic activation processes (occur-
ring in a spatially homogeneous medium), where cage
escape that results in the long-term relaxation is induced
by random thermal noise, so that the exponential decay
is averaged over some distribution of the relaxation time
scales.

Another major issue is the temperature dependence
of the alpha-relaxation time scale 7, (and related trans-
port coefficients, e.g., viscosity). For numerous liquids it
has been shown (Gotze and Sjogren, 1992; Fischer, 1993)
that the dependence is of the Arrhenius type (7,%ef'7,
where E may be viewed as an activation energy), but
below a certain temperature (which is usually higher
than the glass transition temperature T, but lower than
the melting temperature) a crossover to the super-

Arrhenius type occurs (7,%e"(T-T0) the so-called Vogel-
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Fulcher-Tammann law, where T is somewhat lower than
Tg). There are, however, many examples (Fischer, 1993;
March and Tosi, 2002) when the temperature depen-
dence in the crossover region is better approximated by
a diverging power law [7,%(T—-T,) " with typically 2
=< y=2.5, where the critical temperature 7 is somewhat
higher than or almost coincides (e.g., in colloids) with
the calorimetric value of T,]. Such dependence is in ex-
cellent agreement with the mode-coupling theory of the
glass transition (Gotze and Sjogren, 1992; Gotze, 1999).
There is a long ongoing discussion whether 7)) has any
physical meaning, or “it appears as a mere artifact of the
data fitting” and “7, marks the only physically signifi-
cant crossover from liquid to glass behavior.”

Another important question is: What is the depen-
dence of the structural glass transition on the spatial di-
mensionality? In particular, what is the role of geometri-
cal frustration that is essential for the glass transition
[see, e.g., Shintani and Tanaka (2006)]. Although geo-
metrical frustration is impossible in 2D, the glass forma-
tion nevertheless has been observed in many numerical
simulations of 2D polydisperse systems of hard disks as
well as some systems with soft interaction potentials
(Perera and Harrowell, 1999; Santen and Krauth, 2000;
Bayer et al., 2007).

Most of these features characterizing supercooled flu-
ids (especially dynamical heterogeneity) are quite gen-
eral. The particular form of the binary interaction poten-
tial plays only a minor role-the described properties
have been reported for many model atomic systems,
e.g., colloids, viscous silica, network-forming liquids
(Reichman et al., 2005). This gives us grounds to expect
the behavior of supercooled fluids to be fairly universal.

Liquid complex plasmas can be considered as one of
the best candidates to investigate the kinetics of 2D and
3D fluids in general and of supercooled fluids. Weak
neutral damping plays a constructive role here, allowing
us to control the cooling rate and therefore to bring the
fluid to a desirable degree of overcooling [and vary the
glass transition temperature, see, e.g., March and Tosi
(2002)]. Along with the controversies mentioned above,
kinetic investigations of supercooled fluids with complex
plasmas may help us get a deeper insight into other ma-
jor issues, e.g., which elementary mechanisms determine
the stability of supercooled fluids against crystallization
(Jackle, 1986), what is the kinetics of the glass transition
and how do the relevant processes such as arrest of the
structural relaxation and loss of ergodicity evolve (Fis-
cher, 1993; Sillescu, 1999), what microscopically deter-
mines the variation in the transport properties (espe-
cially self-diffusion) in the supercooled state (Saltzman
and Schweizer, 2006), etc. Particularly interesting would
be the investigation of the rapid relaxation regime
where, e.g., the so-called “boson peaks” may appear as
an excess contribution to the usual Debye density of
states [see, e.g., Schirmacher ef al (1998) and Zorn
(2003)]. Liquid complex plasmas (where the atomistic
dynamics is practically undamped) are apparently the
only available model system where the rapid relaxation
can be studied at the kinetic level.
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FIG. 13. Dynamical heterogeneity seen in quasi-2D liquid
complex plasmas. (a) Trajectories of 7 um diameter particles
with 15 and 30 s exposure times for the laser-free liquid state.
Shown below are the pair correlation functions of particle po-
sitions g(r) and bond orientations g¢(r). Particle trajectories in
the laser-enhanced vortex motion under (b) 45 and (c) 90 mW
laser power. The arrows indicate the position and direction of
the laser beam. Adapted from Juan et al., 2001.

Atomistic behavior in liquid states has been observed
in numerous experiments with 2D and quasi-2D strongly
coupled complex plasmas (Juan et al., 2001; Lai and I,
2002; Woon and I, 2004; Nunomura et al., 2006; Ratyn-
skaia et al., 2006; Huang and I, 2007; Liu and Goree,
2007, 2008). As an example, we consider one particular
experiment performed by Juan et al. (2001). Figure 13(a)
shows a snapshot where most particles are mutually con-
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fined by (quasiordered) neighbors, and exhibit caged
motion with small amplitude oscillations. However,
there is a certain fraction of particles that are in a rear-
rangement state. Spatially, one can observe coherent
cage-escape events—strings or vortices surrounding
crystallites (ordered domains) with the size of a few A.
Usually, a local rearrangement ceases after the involved
particles jump a distance of =A and then reenter the
new caged state. Particles may start coherent rearrange-
ment only after accumulation of sufficient “construc-
tive” perturbations, and then transfer the excess energy
to the neighbors through mutual interactions. The co-
herent motion is rapidly smeared out unless further con-
structive perturbation occurs at a time scale smaller than
the momentum relaxation time.

Introducing external stress greatly enhances the for-
mation of microvortices. Figures 13(b) and 13(c) show an
experiment by Juan et al. (2001), where external stress in
liquid complex plasmas was introduced by a laser. One
can see that the intensity of microvortices gradually de-
cays with distance from the shear source to the remoter
regions. The observations can be reasonably explained
by the following phenomenology: Even in a stress-free
cool liquid, thermal agitation can distort the caging po-
tential of neighboring particles through changing the
particle’s relative positions, transfer energy to particles,
and induce vortexlike escape over caging barriers. But
introducing an external stress breaks the symmetry and
further promotes forward jumping. In the low stress re-
gime, when any rearrangement occurs at a low rate, the
motion is still strongly constrained by caging. Increasing
the stress level further usually promotes the rearrange-
ment, although the advection can sometimes be jammed,
forming local solidlike regions. Assisted by thermal fluc-
tuations, the stressed particles will find the easiest “per-
colation” paths for rearrangement and branch off the
stressed zone. The vacancy left behind can be filled up
by the trailing particles or particles in the neighborhood
of the laser beam, thus forming the vortices originated
from the laser zone. Under the strong mutual particle
interaction, these vortices quickly relax through cas-
caded excitations of new vortices with decaying strength
in remote regions.

As mentioned above, observation at the individual
particle level may shed light on what elementary pro-
cesses determine the rich variety of unusual properties
peculiar to supercooled fluids. In addition, knowledge of
the fully resolved particle kinetics would allow us to cal-
culate basic transport properties of the system from first
statistical principles and compare the results with exist-
ing models (Hansen and McDonald, 1986). The common
approach is to employ the Green-Kubo formalism that
yields transport coefficients expressed in terms of time
integrals over the relevant microscopic autocorrelation
functions (such as velocity, shear stress, and energy flux
for self-diffusion, shear viscosity, and heat conduction,
respectively). This standard theory, however, is based on
the assumption that the time integrals converge and
therefore excludes an important class of processes called
fractional Gaussian noises, which lead to particle trajec-
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FIG. 14. Mean squared displacement of particles in quasi-2D
strongly coupled complex plasmas. Curves A and B indicate
experiments performed at different temperatures with par-
ticles of 7 um diameter. One can see a transition from subdif-
fusive behavior (dominated by in-cage motion) to the long-
time normal diffusion, mediated by a short superdiffusive stage
(associated with cage-escape events). Adapted from Lai and 1,
2002.

tories described in terms of the fractional Fokker-Planck
dynamics. For these processes the mean square displace-
ment (MSD) scales as «?f, where H is the Hausdorff
exponent: For H=1/2 we have standard diffusion, for
H<1/2 the resulting motion is subdiffusive, and for H
>1/2 the motion is superdiffusive. Standard diffusion
theory also fails if the velocity probability distribution
function is non-Gaussian but has algebraic tails, so that
the velocity variance diverges.

Statistical analysis of individual particle trajectories in
complex plasmas at sufficiently low temperatures (high
densities) usually reveals subdiffusion at short and inter-
mediate time scales (which are at the same time much
longer than the “in-cage” oscillation time ~le), with
the crossover to normal diffusion at much longer times
(Lai and I, 2002; Nunomura et al., 2006), as shown in Fig.
14. (The crossover can be mediated by a relatively short
superdiffusive stage.) On the other hand, several experi-
ments (Ratynskaia et al., 2006; Liu and Goree, 2007,
2008) demonstrated persisting superdiffusive long-time
behavior. Figure 15 shows examples of such a system,
where this anomaly was attributed to a combination of
spatial (Levi flights) and temporal (long-range memory)
nonlocalities (Ratynskaia et al., 2006). One should bear
in mind that the long-time superdiffusion in complex
plasmas has been observed either in relatively small and
inhomogeneous systems [see, e.g., experiment by Ratyn-
skaia et al. (2006), where superdiffusion might be trig-
gered by boundary or confinement effects], or in systems
with noticeable large-scale flow [which enhances trans-
port and therefore increases asymptotical long-time
value of H; see, e.g., experiment by Liu and Goree
(2008)]. One should also mention that in other systems
(e.g., colloids) superdiffusive behavior apparently has
never received reliable confirmation (Reichman et al.,
2005).

It is generally accepted that above the glass transition
fluids have properties of a viscoelastic medium (Jackle,
1986; Fischer, 1993; March and Tosi, 2002). The simplest
model that can be employed to describe diffusion in
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FIG. 15. (Color online) Example of nonequilibrium (anoma-
lous) dynamical heterogeneity. Particles of 7.2 um diameter
formed an inhomogeneous disk-shaped monolayer. Color-
coded trajectories over about 10 s are shown, distance is in
units of mean interparticle spacing. From Ratynskaia et al.,
2006.

such media is based on a linear viscoelastic Langevin
equation with a single relaxation time, Vv
+(w/ D[ e (") dt' =£(7), where f is a random force
(per particle) that satisfies the fluctuation-dissipation
theorem and 7 is the memory relaxation time (Hansen
and McDonald, 1986; van Zanten and Rufener, 2000).
Assuming long-range memory, v7> 1, the qualitative be-
havior of the MSD derived from this simple approach
has the distinct features observed in experiments: short
ballistic motion, MSD :3vat2, for t= \s’m with cross-
over to a plateau, MSD =const, and eventual transition
to normal diffusion, MSD :6v27v‘1t, at t= 7. Of course,
quantitative agreement can only be received with more
sophisticated models, e.g., by employing the nonlinear
Langevin equation based on the formalism of the dy-
namic density functional theory (Saltzman and
Schweizer, 2006). Such an approach, in particular, pro-
vides a treatment of activated barrier hopping—the pro-
cess which can restore ergodicity close to the glass tran-
sition (Sillescu, 1999). Employing similar approaches to
describe self-diffusion in fluid complex plasmas one can
directly retrieve the alpha-relaxation time scale 7, as a
function of temperature and density.

A similar approach can also be employed to describe
the flow of supercooled fluids under external stress. The
essential feature of a viscoelastic flow is that it displays
elastic deformation on short temporal and spatial scales
but looks more like a viscous flow on larger scales. In
the framework of the linear Maxwell model [see, e.g.,
Landau and Lifschitz (1986)], the strain 7y is a superpo-
sition of two components: the elastic contribution re-
sponds to the stress through Hooke’s law, =Gy, and
the viscous contribution through Newton’s relation, o
=7y, where G and 7 are the high-frequency Young’s
modulus and static shear viscosity, respectively. From
these limiting relations follows the differential equation
G~ '+ 77 'o= 7. The general solution expresses the stress
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as a linear response on the time history of the strain rate
with an exponentially decaying response function with
the Maxwell time scale 73,=%/G. This classical model
implies a separation between the elastic and hydrody-
namic responses controlled by the Deborah number
vry: The response is viscous at time scales > 7, and
elastic for <<y, at intermediate time scales we have a
complex Young’s modulus (or viscosity). By measuring
the response to external stresses at different frequencies
one can obtain the complex Young’s modulus, derive 7,
and compare it with the results retrieved from the diffu-
sion measurements.

To conclude, one should note that the Maxwell rheo-
logical model is only applicable for fluids which are suf-
ficiently far from the glass transition. The model usually
breaks down at the crossover from the Arrhenius to
super-Arrhenius scaling (Fischer, 1993), and then more
sophisticated nonlinear models based on the mode-
coupling theory should be implemented (Fuchs and Bal-
lauff, 2005; Holmes et al., 2005). Depending on a particu-
lar form of the memory function, one can obtain
acceleration of the relaxation processes resulting in ei-
ther shear thinning or, in contrast, significant shear
thickening. In extreme cases, the flow curve o vs y may
become S shaped, indicating discontinuous shear thick-
ening and stress-induced transition from a fluid to a
jammed glassy state (Holmes et al., 2005).

C. Kinetics of stable flows

We now take a closer look at the individual particle
trajectories in a fluid that exhibits a macroscopic flow. In
complex plasmas, one can easily induce various types of
flows with controllable characteristics by applying laser
beams or creating flows in the neutral gas (Fortov et al.,
2005). A clear advantage of such methods of particle
manipulations is that the background plasma, and hence
parameters of the interparticle interaction, remain un-
changed, yet the characteristics of the particle flow (es-
pecially the flow shear rate) can be varied over an ex-
ceptionally broad range.

In fact, shear flows appear as an almost inevitable in-
gredient of more complicated flows. Even in the simplest
case of laminar shear flows, many fundamental ques-
tions immediately arise: What is the kinetic structure of
the flow (e.g., how does the transverse momentum relax-
ation occur)? What is the kinetics of non-Newtonian flu-
ids (e.g., what determines the relevant time scales in the
viscoelastic fluids)? What happens at shear fluid bound-
aries (e.g., how good is the Navier ansatz for the slip
velocity and what is the corresponding slip length)? In
the case of multiphase flows, many more fundamental
problems turn up, especially those related to the shear
boundaries. Probably, the most obvious one is the
contact-line singularity problem: a movable intersection
of the fluid-fluid interface with the solid wall is incom-
patible with the no-slip boundary condition (Qian et al.,
2006).

The simplest experimental configuration that allows
us to encompass most of the issues mentioned above is a
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2D monolayer of particles, and the easiest way to create
shear flows in this case is to use laser manipulation. Fig-
ure 16 shows an example of such an experiment by
Nosenko and Goree (2004), when particles formed an
(almost perfect) hexagonal crystalline monolayer, and
the shear flow was created by applying two counter-
propagating laser sheets. Increasing the laser power and,
hence, the level of shear stress, they observed that the
particle suspension passed through four distinct stages:
elastic deformation, defect generation while in a solid
state, onset of plastic flow, and fully developed shear
flow. Figure 16 presents data for the latter two stages. At
the onset of plastic flow, Fig. 16(a), the particles hopped
between equilibrium lattice sites. Domain walls devel-
oped, and they moved continuously. The crystalline or-
der of the lattice in the shearing region deteriorated,
broadening the peaks in the static structure factor (not
shown here). At still higher levels of shear stress, the
lattice fully melted everywhere, and a shear flow devel-
oped, Fig. 16(b).

In terms of the applied laser power (and hence the
resulting stress), the onset of the plastic flow is a rather
distinct phenomenon with well-defined yield stress, sug-
gesting that simplest rheological models [e.g., modifica-
tions of the Bingham plastic model, see Meyers and
Chawla (1998)] are quite appropriate to describe the
shear-induced melting. On the other hand, the individual
trajectories of “percolating” particles that identify the
onset of the plastic flow are quite peculiar: They have a
zigzaglike shape, jumping along the local principal vec-
tor of the hexagonal lattice, i.e., in the direction where
the macroscopic lattice has the least yield stress.

At the stage of fully developed shear flow, the particle
motion is highly irregular on a small scale compared to
the interparticle spacing, but on a larger scale, it is like a
laminar flow in a fluid. In this case, the liquidlike order
of the particle suspension can be clearly identified from
the diffusiveness of the structure factor. Particles are
confined so that after flowing out of the field of view on
one side, they circulate around the suspension’s perim-
eter and reenter on the opposite side. Within the field of
view, more than 95% of the time-averaged flow velocity
is directed in the x direction, with less than 5% of the
flow velocity diverted in the y direction. It is worth not-
ing that for all values of the laser power used in the
experiment the local velocity distribution of particles is
(with very good accuracy) a Maxwellian one, although at
the highest shear rates the mismatch between the longi-
tudinal and transverse temperatures is as high as ~30%.
This means that the internal momentum and energy
equilibration in the particle ensemble is fast enough to
balance the heat released due to the shear flow and,
hence, the concept of equilibrium viscosity (as a function
of self-consistent temperature corresponding to a given
flow regime) is well justified.

Numerical simulations (Saigo and Hamaguchi, 2002;
Salin and Caillol, 2002) predict that the shear viscosity of
complex plasmas depends on the concentration of mi-
croparticles, which is an essential feature of complex flu-
ids. Moreover, recent experiments and simulations
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FIG. 16. Planar Couette flow in a 2D complex plasma. Initially crystalline microparticles of 8.09 um diameter are sheared by two
counterpropagating laser sheets. (a) At the onset of plastic flow, the particles hop between equilibrium lattice sites. (b) In a fully
developed shear flow, the particle motion is highly irregular on smaller scales comparable with the interparticle spacing, but on
larger scales it is like a laminar flow in a fluid. Trajectories over =1.7 s are shown. Adapted from Nosenko and Goree, 2004.

(Nosenko and Goree, 2004; Gavrikov et al., 2005; Donko
et al., 2006; Ivlev, Steinberg, et al., 2007) verified that the
viscosity can exhibit significant shear thinning and/or
thickening. This non-Newtonian behavior of complex
plasmas occurs because the viscosity # is a function of
the kinetic particle temperature which, in turn, is deter-
mined by the local viscous heat released due to shear
flow and is proportional to 77?. Based on this simple
rheological model (Ivlev, Steinberg, et al., 2007), one can
identify three distinct regimes for a qualitative depen-
dence of the viscosity and the shear stress o= 7y on the
shear rate y: (i) At sufficiently low 7y the viscosity re-
mains constant and stress grows linearly with y, which
corresponds to Newtonian fluids. (ii) Above a certain
critical value of y shear thinning is observed, which can
be quite significant—the viscosity can decrease by an
order of magnitude. (iii) At even higher y the crossover
to the shear thickening occurs. A remarkable rheologi-
cal feature is that the viscosity decrease in the second
regime can be so rapid that the o(y) dependence may
have an anomalous N-shaped profile. In this case the
part of the curve with do/dy<0 becomes unstable and
the flow is accompanied by a discontinuity in . This
causes the formation of shear bands—a phenomenon of-
ten observed in complex fluids (Salmon et al., 2003).
Thus, liquid complex plasmas can exhibit essential rheo-
logical features peculiar to classic non-Newtonian fluids.

Moreover, by combining different methods to induce
shear flows (e.g., inhomogeneous gas flows and laser
beams) one can directly measure the shear viscosity in
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the entire range of shear rates—all the way to the limit
where the discreteness enters and a fluid cannot be for-
mally considered as a continuous medium. Probably, the
most surprising result of such an investigation was that
at extreme shear rates (up to ¥y~ U/A, where U is the
magnitude of the flow velocity and A is the interparticle
distance), the formal hydrodynamic description with the
Navier-Stokes equation still provides fairly good agree-
ment with the experiment (Ivlev, Steinberg, et al., 2007).

It is worth mentioning that the transport coefficients
of fluid complex plasmas, including the viscosity, could
be calculated numerically for an arbitrary rate of the
frictional dissipation (Vaulina et al., 2002; Vaulina and
Dranzhevskii, 2007). However, in contrast to steady-
state structural properties (see Sec. II.E), the kinetics of
individual particles in strongly dissipative systems (say,
when v/Qg=1) would inevitably be different from that
in conventional single-species fluids. Therefore, such
systems would probably not be relevant for investigating
the kinetics of the momentum transfer in shear flows.
Next, where we focus on the kinetics of the energy trans-
port, the importance of weak frictional dissipation be-
comes particularly clear.

D. Kinetics of heat transport

Thermal conductivity is an important property of mat-
ter that is essential in many engineering applications. At
the same time, the behavior of thermal conductivity in
various situations is governed by diverse fundamental
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processes that occur at the atomistic (kinetic) level. Mea-
surements of the thermal conductivity in regular matter
are only possible at a macroscopic scale and therefore
cannot resolve the details of the heat transfer processes
at their atomistic level. The obvious reason for this is the
lack of experimental techniques to study the motion of
individual atoms. Therefore, liquid or solid complex
plasmas also occupy an invaluable position of an experi-
mental model system where the motion of individual at-
oms can be observed in real time.

Analysis of the heat transport, especially in 2D crys-
talline systems, is a controversial problem that has a
long history: Some claim that the thermal conductivity
of such systems diverges in the thermodynamic limit.
Liquid systems are far less studied—one can mention a
simulation of frictionless hard disks by Shimada et al,
2000), where the thermal conductivity slowly diverged as
well, and a theoretical study by Ernst et al. (1970), where
the lack of a valid thermal conductivity was conjectured.
Systems undergoing a phase transition, were not studied
at all.

Recently, kinetics of the heat transport in liquid and
solid complex plasmas was experimentally investigated
(Fortov, Vulina, et al., 2007; Nosenko et al., 2008). Below
we discuss on the experiment by Nosenko et al. (2008) in
a 2D complex plasma that is undergoing a phase transi-
tion and therefore constitutes a mixture of crystalline
and liquid phases. To melt the lattice locally and to con-
trol the temperature of the resulting liquid complex
plasma, the laser-heating method has been employed so
that particles were pushed randomly by the radiation
pressure force. To produce a quasi-1D temperature gra-
dient, with temperature varying mostly in the y direc-
tion, a narrow area which extended fully across the par-
ticle suspension in the x direction was heated, as shown
in Fig. 17(a). Under these conditions, heat was mainly
transferred by thermal conductivity in the region where
the temperature gradient was high.

Figure 17(b) shows the resulting profiles of the kinetic
particle temperature 7(y) measured for different values
of the laser power. The particle suspension was melted
in this temperature range, as can be seen from the analy-
sis of the pair correlation function g(r): Far from the
laser-heated area, g(r) has the characteristic appearance
of the solid phase with notably many peaks, whereas
inside the laser-heated area, g(r) is typical for a liquid
phase with a few peaks. (Note that the background tem-
perature of the crystal 7} was naturally increasing with
the applied laser power Pj..) Also, according to the
KTHNY theory (see Sec. III.1.2), a 2D solid melts via
two second-order phase transitions: Estimates show that
the two temperatures corresponding to the transitions
lay well within the temperature range achieved in the
experiment. Irrespective of the applied heating power
Py, the measured temperature profiles are well fitted
by the exponential function T(y)ocexp(y/Lye,), Where
the heat transport length L, turned out to be practi-
cally constant. In the framework of the continuous ap-
proach to the heat transport, such scaling implies that
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FIG. 17. (Color online) Heat transport in 2D complex plasmas.
(a) Example of the particle trajectories (8.09 um diameter, du-
ration =1.7 s) in a 2D plasma crystal heated by a laser at
power of Pj,..,=16 W (heated region y>13.6 mm). (b) Profiles
of the kinetic particle temperature as a function of the trans-
verse coordinate y, for different values of Pj,,;. The inset
shows the background particle temperature 7. (c) Pair corre-
lation function g(r) far from the heated region (left) and inside
the heated region (right), suggesting crystalline and liquid
states, respectively. Adapted from Nosenko et al., 2008.

Lycq 1s 1dentical to the friction length Ly= \Wz [see
Eq. (26)], and hence the thermal diffusivity y is indepen-
dent of 7.

Thus, the heat transport in a 2D system that under-
goes a phase transition turns out to be quite interesting:
On the one hand, the experiment yielded the expected
result that the thermal conductivity y does not exhibit
any major discontinuity at the liquid-solid phase
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boundary—such behavior is well known in regular mat-
ter (March and Tosi, 2002). On the other hand, the val-
ues of y obtained for different particle temperatures are
almost the same. This result is not trivial, since indi-
vidual phases, solid and liquid, are expected to have a
temperature-dependent thermal conductivity. Nosenko
et al. (2008) suggested that the dominant mechanism of
thermal conduction in such systems is phonon scattering
on heterogeneous fluctuations that occur in the melting
region.

It is important to emphasize that although the mea-
sured temperature profile (viz., the value of L, is de-
termined by friction, the thermal conductivity itself is
solely determined by internal generic properties of the
medium (the Yukawa system in our case) and does not
depend on the damping: It was shown that the effective
phonon scattering length €, that actually determines
the heat conduction (y= %Cﬂph) is at least an order of
magnitude smaller than the frictional phonon decay
length (=C,/v), where C; is the measured longitudinal
acoustic velocity (see Sec. I1.D). This allows us to ex-
trapolate knowledge about the kinetics of heat transport
(gained with weakly damped complex plasmas) to regu-
lar condensed matter and, thus, to understand more
about generic atomistic processes governing the thermal
conductivity.

E. Hydrodynamics at the discreteness limit

The discreteness issue of continuous media can be for-
mulated as follows: What is the smallest scale at which
the conventional hydrodynamic description breaks
down? Apparently, the answer depends on the particular
problem under consideration: It is determined by the
similarity variables (and hence the related physical pa-
rameters) that play the major role in the description of
the macroscopic problem. For instance, for a planar
shear flow this is, primarily, the Reynolds and Mach
numbers, whereas for a flow past an obstacle or a drop-
let breakup this can be the Weber number. (Of course,
one should remember that the basic parameters entering
hydrodynamics such as viscosity or surface tension are
quantities which are well defined only for sufficiently
large systems.)

1. Basic hydrodynamic instabilities

To get the quantitative characteristics of hydrody-
namic instabilities at the discreteness limit, we discuss
the progress achieved recently in simulating large sys-
tems of discrete particles forming an interface. In par-
ticular, the microscopic origin of the Rayleigh-Taylor
(RT) instability was explored in MD simulations.

Kadau et al. (2004) simulated the initial stage of the
RT instability with a few million particles interacting via
the Lennard-Jones potential and obeying undamped
(Newtonian) dynamics. The appearance of the mixing
layer as well as major scalings obtained from the simu-
lations were shown to be in good agreement with classic
hydrodynamic results.
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FIG. 18. MD simulation snapshots for an interface with exter-
nally driven colloids. Distances are measured in units of the
particle hard-core radius, the starting configuration was an
equilibrated horizontal interface at zero height. Particles in the
upper fluid phase are driven downwards, whereas in the lower
phase they are driven upwards (all forces are of the same mag-
nitude). Examples of (a) high and (b) low surface tension are
shown, with the lane formation onset seen in the latter case.
Adapted from Wysocki and Lowen, 2004.

Wysocki and Lowen (2004) performed the comple-
mentary MD simulations of the RT instability in the
fully damped (Brownian) regime peculiar to colloidal
suspensions. In these simulations, two different sce-
narios were observed that occur for either high or low
surface tension, as shown in Fig. 18.

The high-surface-tension scenario [Fig. 18(a)] is char-
acterized by interfacial instability which is similar to the
classical Rayleigh-Taylor instability (Chandrasekhar,
1961). As in the undamped case, the classical threshold
value for the wavelength of unstable interface perturba-
tions is confirmed. Development of the mixing layer at
the initial stage has similar appearance to that seen in
undamped Newtonian liquids (Kadau et al., 2004), al-
though at the later stage the interpenetrating bubbles
and spikes do not develop into “mushrooms” but keep
growing further aperiodically. The thickness of the mix-
ing layer also increases as «t with time instead of the
classic «#? scaling. Phenomenologically, such a difference
is because the governing equation for the Brownian dy-
namics does not contain the time derivative of the veloc-
ity. Therefore, in analogy with the classic case when spa-
tial perturbations driven by a uniform external field
exhibit “free” kinematic growth of>, the RT develop-
ment in overdamped systems should reveal the linear
temporal scaling.

When the interfacial surface tension is low enough
[Fig. 18(b)], a completely different development is ob-
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FIG. 19. (Color) Lane formation in experiments with driven
colloidal suspensions. Steady-state self-organized flow of posi-
tively (green) and negatively (red) charged microparticles of
=1 pum diameter is created by an external electric field in the
vertical direction. Scale bar is 10 um. From Leunissen et al.,
2005.

served: The particles penetrate the interface easily as a
result of the driving field and form microscopic lanes.
The structure of these lanes is very similar to that seen
in numerical simulations (Chakrabarti et al., 2004) and
experiments (Leunissen et al., 2005) with driven colloidal
suspensions, as shown in Fig. 19. These results are ob-
tained in the regime when the classical RT threshold for
the unstable wavelength (calculated for given values of
the surface tension and driving force) is smaller than the
interparticle distance and hence a breakdown of hydro-
dynamics is expected. Therefore, the microscopic ap-
pearance of the RT instability might be completely dif-
ferent as the discreteness enters, and this conclusion is
rather intuitive: The surface tension is the only stabiliz-
ing mechanism of the instability, and once this mecha-
nism becomes negligible and hence allows growth at hy-
drodynamic scales smaller than the discreteness limit,
the hydrodynamics itself becomes meaningless. On the
other hand, the instability should develop in some form
anyway, and the only imaginable picture for that are the
interpenetrating strings, as observed in the simulations
as well as in experiments.

In addition to colloidal suspensions (Leunissen et al.,
2005) and pedestrian zones (Helbing et al., 2000) lane
formation can be easily triggered in complex plasmas
(Morfill et al., 2006; Siitterlin, 2009). As we already dis-
cussed, complex plasmas provide an important interme-
diate dynamical regime that is between classic un-
damped fluids and fully damped colloidal suspensions:
In complex plasmas, the internal dynamics associated
with the interparticle interaction is undamped whereas
the large-scale hydrodynamics can be strongly affected
by friction. Nevertheless, the mesoscopic appearance of
lane formation in colloids and in complex plasmas is
similar, which gives us grounds to believe that this phe-
nomenon constitutes an ultimate generic form of the RT
instability in any driven (strongly coupled) fluid.

Figure 20 shows an example of lane formation ob-
served in complex plasmas with particles of different
sizes (Siitterlin, 2009). The net force acting on particles
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FIG. 20. (Color online) Lane formation in complex plasmas. A
short burst of small (3.4 wm) particles injected into a cloud of
large (9.2 um) background particles are driven from left to
right. Stages shown for (a) initial lane formation, (b) merging
of lanes into larger streams, and (c) eventual droplet forma-
tion. Each panel is a superposition of two consecutive color-
coded images (1/50 s apart) entire sequence is about 2.5s
long. From M. Rubin-Zuzic.

in a discharge plasma (a combination of the electric and
ion drag forces, see Sec. II.C) depends on the diameter
and plays the role of an effective gravity pointed to the
right (the force is relatively strong at the left edge and
almost vanishing at the right edge of the figure). Initially,
the large particles formed a background fluid in hydro-
static equilibrium. When a small fraction of individual
small particles entered the system from the left, their
sedimentation towards the right edge of the figure was
accompanied by a remarkable self-organization se-
quence: First, the particles form strings flowing along the
force field (a); then, as the field decreases, strings orga-
nize themselves into larger mesoscopic streams (b); and
at the later stage, when the field almost vanishes,
streams merge to form a spheroidal droplet with well-
defined surface (c), indicating the transition to the re-
gime when the effective surface tension should play the
primary role (Ivlev et al., 2009).

In order to investigate the RT instability in further
detail, we consider examples of highly resolved shear
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FIG. 21. (Color online) Two examples of highly resolved com-
plex plasma flows. (a) Shear flow over a flat-surface plasma
crystal and (b) flow over a curved-surface plasma crystal. Note
the small angle perturbations in the particle trajectories in (a),
and the considerably larger scattering in the curved flow in (b).
Particles are of 6.8 um diameter, the flow velocity is ~1 mm/s.
From Morfill, Khrapak, et al., 2004.

flows observed in complex plasmas (Morfill, Khrapak, et
al., 2004) and shown in Fig. 21. Different flow topologies
were observed, with the (average) flow lines either
straight (a) or curved with a radius of curvature of about
80—100A (b). The lower part of the microparticle cloud
is at rest. Observations suggest that the width and the
structure of the transition (mixing) layer strongly de-
pends on the geometry. For the planar flow the interface
is quite smooth, with the flow along a particular mono-
layer. The trajectories of individual flowing particles ex-
perience only weak deflections and the overall flow ap-
pears to be stable and laminar. In contrast, the curved
flow interface has a curious rough structure, the flow is
not laminar, a mixing layer is formed. It is also apparent
that the mixing layer becomes unstable at the individual
particle level. The microscopic behavior may be inter-
preted as the centrifugally driven Rayleigh-Taylor insta-
bility. Analyzing a whole sequence of such images, one
can quantify elementary (discrete) perturbations in two
ways: the fraction of interpenetrating (say, =A) particles
and the fraction of particles undergoing large-angle (say,
=30°) collisions in the surface layer. For instance, for
straight flow the quantities are (almost) 0% and ~3%,
for the curved flow ~3% and ~30%. The latter can be
understood kinetically in terms of the higher collision
frequency with smaller impact parameter due to particle
inertia at a curved surface. This has also been confirmed
by numerical simulations conducted for similar geom-
etry and flow conditions as in experiments. The topology
of the mixing layer found in the simulations corresponds
closely to the measurements, which supports the kinetic
interpretation.

Following these considerations, on can argue that the
Kelvin-Helmholtz (KH) instability at the discreteness
limit also has a different appearance. In order to illus-
trate this point, we consider another example of the hy-
drodynamic behavior of liquid complex plasmas (Morfill,
Rubin-Zuzic, et al., 2004) shown in Fig. 22. Particles
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FIG. 22. Flow past an obstacle in fluid complex plasmas. (a)
Overall topology of the 3.7 um particle flow, the system is ap-
proximately symmetric around the vertical axis (exposure time
1 s). The flow leads to a compressed laminar layer, which be-
comes detached at the outer perimeter of the wake. The steady
vortex flow patterns in the wake are illustrated. The boundary
between the laminar flow and wake becomes unstable; a mix-
ing layer is formed, which grows in width with distance down-
stream. (b) An example of the mixing layer (an enlargement of
the left side, exposure time 0.05 s). The points (lines) represent
traces of slow (fast) moving microparticles. The inset shows
trajectories of individual particles in the mixing layer. From
Morfill, Rubin-Zuzic, et al., 2004.

were flowing around an “obstacle”—the void of size
~100A. One can see stable laminar shear flow around
the obstacle, the development of a downstream “wake”
exhibiting stable vortex flows, and a mixing layer be-
tween the flow and the wake. The enlargement of the
mixing layer [Fig. 22(b)] shows that the flow is quite un-
stable at the kinetic level, with instabilities becoming
rapidly nonlinear. The width of the mixing layer grows
monotonically with distance from the border where the
laminar flow becomes detached from the obstacle. The
growth length scale is of the order of a few A, i.e., much
smaller than the hydrodynamic scales n(dn/dx)™' or
u(du/dx)~!, which would be expected macroscopically in
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fluids and which refer to the RT or KH instability, re-
spectively. This rapid onset of surface instabilities fol-
lowed by mixing and momentum exchange at scales ~A,
i.e., the smallest interaction length scale available, is not
consistent with conventional macroscopic fluid instabil-
ity theories. While this could not be expected at the ki-
netic level, it points to new physics and, possibly, a hier-
archy of processes that is necessary to describe
interacting fluid flows: first, binary collision processes
provide particle and momentum exchange on discrete-
ness scales (a few A), then collective effects (due to the
correlations defining fluid flows) take over and propel
this discrete instability to macroscopic scales, creating
cascades of growing clumps characterized by increased
vorticity.

Although the onset of the instability shown in Fig. 22
occurs at scales ~A, its further development is in good
agreement with the simplest conceptual picture of the
continuous jet turbulence: It is well known that the mix-
ing between a jet and its surroundings occurs in two
stages [see, e.g., Tennekes and Lumley (1972)]. During
the first stage (which is a distinct peculiarity of jets), a
shear layer is formed immediately downstream of the jet
source, between jet stream and surroundings. As one
moves downstream, there is an early linear-instability re-
gime, involving exponential growth of small perturba-
tions introduced at the jet source. Beyond this develop-
ment stage, in the nonlinear KH instability regime, the
dynamics of large-scale vortex formation and merging
become the defining feature of the transitional shear
flow. Apparently, the observed clump cascading fully
mimics this scenario, which suggests again that the simi-
larity of the coarse-grained hydrodynamics is preserved
down to the physical discreteness limit.

Unfortunately, so far in experiments with complex
plasmas it was impossible to observe the second stage
typical to any developed turbulence—when vortices
(clumps) break down, leading to a more disorganized
flow regime characterized by smaller-scale vortices. The
spectral energy content at this stage should be consistent
with the Kolmogorov’s inverse cascade theory of turbu-
lence. These processes develop at much longer time
scales, when the neutral friction plays an important role
and simply “freezes out” free hydrodynamic motion. In
order to observe this turbulent stage in experiments, one
needs to decrease the neutral gas pressure substantially
and to increase the size of the complex plasmas.

These examples suggest a naive microscopic picture of
the hydrodynamic instabilities: It is not unreasonable to
conclude that many instabilities have a kinetic analog or
trigger and that the most effective trigger mechanism is
provided by binary large angle scattering in localized
structures and/or inhomogeneities of scales comparable
to the particle correlation length. However, the math-
ematical techniques required to quantify the kinetic be-
havior and to transfer this to macroscopic scales still
need to be developed.
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2. Viscosity-modulation instability

Flows of complex fluids in long tubes at rather low
Reynolds numbers show various instabilities that are ab-
sent in the case of Newtonian one-phase fluids (Gold-
smith and Mason, 1967; Cox and Mason, 1971; Koch and
Hill, 2001). Numerous ideas and theories were suggested
to explain part of these phenomena [see, e.g., de Gennes
(1979); Nozieres and Quemada (1986); Papoular (1987)]
but most of them still remain unexplained. In this con-
text, it is noteworthy to mention a novel type of hydro-
dynamic instability that can develop in fluids with
density-dependent viscosity (Steinberg et al., 2008). Com-
plex plasmas are not the only example of such fluids—in
fact, there exists a broad class of complex fluids (suspen-
sions, emulsions, colloids, or other dispersed fluids) that
have a rather strong dependence of the viscosity on den-
sity, governed by Einstein’s law (Batchelor, 1953; Landau
and Lifschitz, 1987). This suggests that the instability
mechanism might be quite general.

According to Steinberg et al. (2008), essential ingredi-
ents that may result in this instability are density-
dependent viscosity, two (or three) dimensionality of the
flow, and compressibility: Due to mass conservation,
small perturbations that cause increase (decrease) in a
flow velocity result in a density decrease (increase).
These variations in the density lead to the viscosity
modulation and via the momentum equation provide a
feedback for the velocity. At some conditions the feed-
back becomes positive and triggers the instability. The
only factor stabilizing the instability is the fluid elasticity.

A rigorous linear stability analysis can be performed
by solving the corresponding boundary-value problem.
We consider a plane Couette flow between two parallel
plates separated by a distance L moving in opposite di-
rections with the velocity U. For fluids of constant vis-
cosity, this situation is known to be absolutely stable
against linear subsonic perturbations. However, when
the variation in the dynamic viscosity # with density p is
characterized by the exponent e=dIn n/dInp, the
analysis shows (Steinberg et al., 2008) that an instability
is possible for e>4/3, and then it is triggered if the flow
shear rate y=U/L exceeds a certain threshold. For suf-
ficiently large values of e—4/3, the threshold is given by
€¥m=pC?/ 7, where C is the sound velocity in the fluid.
The most dangerous density perturbations are those at
=q/4 with respect to the flow direction. Such an insta-
bility develops for sufficiently large wave numbers, k
>pC/n, i.e., also when the spatial scale of density per-
turbations approaches the discreteness limit A, unless
there are new physical effects that may come into play.

Such an instability may develop in very viscous fluids
[e.g., low molecular weight polystyrene or a-D-glucose
(Archer et al., 1997)] with viscosity ~3x10° P and e
~100. For the sound velocity C~10° cm/s, one then
gets 9, ~ 10 s7! a value that is achievable at L ~1 cm.
In this case we find the Reynolds number Re
=p¥ul?/ n~10"% and the Mach number M=1v,L/C
~1072. In complex plasmas, where the scaling exponent
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€ is usually well above the critical value of 4/3, the in-
stability should be observed, e.g., for the shear flow
shown in Fig. 22 (with ¥~ 10% s7!), where the instability
condition is well satisfied.

F. Confined fluids

As fluid systems are engineered to smaller scales,
down to the atomic size, the special effects associated
with the confinement of fluids become increasingly im-
portant. The behavior of such systems is a fundamental
problem in technology (areas such as lubrication, adhe-
sion, nanofluidics, microchannel spectrometry, surface
functionalization, etc.). The general consensus is that the
smaller the system, the more important the confinement
even for intrinsic properties (Hummer et al. 2001; de
Mello, 2006; Heller et al., 2006; Whitby and Quirke,
2007). It is inevitable that there will be new physics as-
sociated with finite size effects, due to surface interac-
tions and reduced dimensionality. From the application
point of view, understanding the functionalization of
nanoflow surfaces to achieve the desired form of hydro-
phobic or hygroscopic behavior (for a given fluid) in the
absence or presence of external fields (which would give
rise to nano-electrorheology or electro-osmotic flows) is
clearly one of the aims—and no doubt there are many
others (Miller et al., 2001; Vaitheeswaran et al., 2004).

There have now been many studies of confined flow
systems, e.g., nanoporous materials (ordered or disor-
dered), thin fluid films, microchannels, etc. Amongst the
areas of interest are topics such as demixing (segrega-
tion) of biological fluid components, flows in nanocapil-
laries, the effects of confinement on the fluid structure
and on freezing and melting [for a recent review, see
Alba-Simionesco et al. (2006) and Whitby and Quirke
(2007), and references therein]. The optimum way to
study the basic (generic) physics is to employ a system
where kinetic measurements are possible at all relevant
length and time scales. Currently the only systems ca-
pable of satisfying all these requirements are complex
plasmas. In Sec. III.G complex plasmas are shown to
have electrorheological properties under certain condi-
tions and that it is possible to “design” the binary inter-
action potential between the particles using external
fields (Ivlev et al., 2008; Kompaneets et al., 2009). This
will provide great opportunities for future basic and ap-
plied research in a number of fields in condensed matter
physics and beyond, and in particular for confined
(nano)systems.

In this section we concentrate specifically on the first
studies involving liquid complex plasmas, their “kinetic
structure” in confined channel flows, and the depen-
dence on the confinement potential. All confined flow
experiments with complex plasmas have so far been con-
ducted on the ground, i.e., the microparticles are sus-
pended against gravity in the sheath region above the
lower electrode. Horizontal confinement is affected by
nonconducting glass walls (which then attain floating po-
tential), by conducting segmented electrodes (that can
be actively powered and can be used to transport the
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FIG. 23. Liquid complex plasmas in narrow channels. The
typical snapshots of the 7 um particle configurations and the
transverse particle density distributions n, for different experi-
ments with decreasing number of layers N (width measured in
units of the interparticle spacing), from 11 to 3. From Teng et
al., 2003.

particles), or by conducting metal channels placed on the
lower electrode.

Teng et al. (2003) reported on the microscopic obser-
vation of the confinement-induced layering in quasi-2D
complex plasma liquids. Two parallel vertical plates
were put on a horizontal rf electrode surface to laterally
confine particles and, hence, to form mesoscopic chan-
nels down to a few interparticle spacings in width. Mi-
croscopically, the particle mutual interaction tends to
generate ordered triangular lattice-type domains with
small amplitude position oscillations, which can be reor-
ganized through string-or vortex-type hopping activated
by thermal noise. However, the boundaries suppress the
nearby transverse hopping. Figure 23 shows some snap-
shots of particle configurations and the corresponding
transverse density distribution for different number of
layers, N. Basically, at larger N, the density profiles with
their decaying oscillation from both boundaries manifest
the confinement-induced (two to three) almost frozen
outer layers near each boundary, which sandwich the
more disordered isotropic liquid with a flat density pro-
file in the center region. The transition to the layered
structure up to the center at N<7 is evidenced by the
appearance of sharp peaks of the density profile. Similar
structure was observed in a series of experiments with
the so-called “dusty balls”—3D spheroidal clusters con-
sisting of a few thousand particles, which have a shell
structure (of three to four layers) near the surface and a
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liquid (amorphous) state in the central bulk (Arp et al.,
2004).

Investigations of shear flows generated in sheared
glassy materials (such as foams, micelles, dense colloids,
and dense granular systems) inside mesoscopic channels
show shear banding—the flow tends to separate into
bands with different shear rates through local stress re-
laxation [see, e.g., Weaire and Hutzler (2000)]. The flow
it causes the formation of the outer shear bands in which
the mean shear rate, the velocity fluctuations, and the
structural rearrangement rate are all enhanced, and
leaves a weakly perturbed center band. Such behavior is
in contrast to the mean velocity profile with a uniform
shear rate for a bulk Newtonian flow between two op-
positely moving parallel plates. The velocity profile de-
pends on the rheology of the system [e.g., in foams as
well as complex plasmas there is a significant shear thin-
ning; see, e.g., Janiaud et al. (2006) and Sec. III.C].

Using the same experimental setup as in Teng et al.
(2003), the atomistic dynamics of the shear flow in a
quasi-2D mesoscopic complex plasma liquid has been
studied by Chan et al. (2004). Due to the formation of
the nearby layered structure shown in Fig. 23, the per-
sistent and directional slow drive from the external
stress along the boundary enhances cage-escape struc-
tural rearrangements which cascade into the liquid
through a many-body interaction. It was found that the
flow consists of two outer shear bands, about three in-
terparticle distances in width, adjacent to the boundaries
and a central small-shear zone. The former has higher
levels of both longitudinal and transverse velocity fluc-
tuations. The shear banding phenomenon originates
from the local stress release through the local rearrange-
ment events adjacent to the boundary.

In a different experiment, converging and diverging
(“nano”)flows were investigated by Fink (2005). One of
the interests here was the determination of possible “se-
lection rules” for the flow—e.g., how in detail the system
evolves kinetically from N flow lines to N—1 flow lines
when N becomes small. A second interest was to find
out if there was a preferred instantaneous “structure” of
the fluid particles during the flow line transitions. An
example is shown in Fig. 24(a). The flow converges by
one interparticle spacing A over a distance of typically
six A (i.e., reduction in one flow line), so that the con-
vergence angle is about 10 deg. The figure shows the
following features: (i) The typical structure of the fluid is
hexagonal—i.e., the same as the 2D crystalline ground
state. (ii) The transition from four to three flow lines
goes via a localized 5/7 dislocation. (iii) The transition
from three to two flow lines goes via alternating jumps
(“zipping”) of particles from the “central” flow line
(which disappears) to the two outer ones. The character-
istic structures observed are shown schematically in Fig.
24(b).

The results by Fink (2005) confirmed the observations
shown in Fig. 23 for a plane nonconverging channel. As
the system becomes smaller (in terms of flow lines) it
begins to look instantaneously like a solid. This is, of
course a consequence of the channel surface, which in
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FIG. 24. (Color online) Converging 2D complex plasma flow
in the limit of very few flow lines. (a) The convergence of
particles of 3.4 um diameter goes from four to two lines. The
experiment was designed to investigate fluid structure and dy-
namical selection rules during the (discrete) flow line reduc-
tion. (b) Characteristic fluid structures observed in different
regimes of the converging flow. From Fink, 2005.

these experiments is a “slip surface” (i.e., the complex
plasma does not have any “wetting” properties). Experi-
ments with rough surfaces (on the scale of the interpar-
ticle separation) have not been performed yet. In such a
case we would expect surface friction to play a role with
associated modification of the flow structure and dynam-
ics.

G. Electrorheological fluids

In this section we focus on an interesting class of so-
called electrorheological (ER) fluids which have ac-
quired significant attention in the last decade. Conven-
tional ER fluids consist of suspensions of microparticles
in usually nonconducting fluids with a different dielectric
constant (Chen et al., 1992; Dassanayake et al., 2000).
The interparticle interaction, and hence the rheology of
ER fluids, is determined by an external electric field,
which polarizes microspheres and thus induces addi-
tional dipole-dipole coupling. The electric field plays the
role of a new degree of freedom that allows us to “tune”
the interaction between particles. This makes the phase
diagram of ER fluids remarkably diversified (Yethiraj
and van Blaaderen, 2003; Hynninen and Dijkstra, 2005).

The term electrorheological fluid is self-explainatory
(Stangroom, 1983; Carlson et al., 1990): At low electric
fields microparticles may be fully disordered and then
(provided their concentration is low as well) ER fluids
may be just normal Newtonian fluids. At larger fields,
however, the situation can change dramatically—due to
the increased dipole-dipole attraction particles arrange
themselves into strongly coupled chains (“strings,” or
even “sheets”) along the field. This naturally changes the
rheology—e.g., at low shear stresses ER fluids can be-
have such as elastic solids, while at stresses greater than
a certain yield stress they are viscous liquids again. ER
fluids have a significant industrial application
potential—they can be used in hydraulics, photonics,
display production, etc. (Stangroom, 1983; Carlson et al.,
1990; Yethiraj et al., 2004).
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In contrast to conventional ER fluids (e.g., colloids)
where the induced dipoles are due to polarization of the
microparticles themselves, in complex plasmas the pri-
mary role is played by clouds of compensating plasma
charges (mostly excess ions) surrounding negatively
charged microparticles (see Sec. I1.B). Without an exter-
nal field the cloud is spherical (Debye sphere), when a
field is applied the cloud (which then acquires a fairly
complicated shape and is called plasma wake) is shifted
downstream from the particle, along the field-induced
ion drift. In this case the pair interaction between
charged microparticles is generally nonreciprocal (i.e.,
non-Hamiltonian, see Sec. II.F.1). The nonreciprocity of
the interaction could only be eliminated if the wake po-
tential were an even function of coordinates, i.e., ¢(r)
=¢(-r). A simple recipe to create such a reciprocal wake
potential is as follows (Ivlev et al., 2008): One has to
apply an ac field of a frequency that is (i) much lower
than the inverse time scale of the ion response (ion
plasma frequency, typically ~107 s™!) and, at the same
time, (i) much higher than the inverse dust response
time (dust plasma frequency typically ~10? s7! or less).
Then the ions react instantaneously to the field whereas
the microparticles do not react at all. The effective in-
terparticle interaction in this case is determined by the
time-averaged wake potential. The resulting interaction
is rigorously reciprocal (Hamiltonian) so that one can
directly apply the formalisms of statistical physics to de-
scribe ER plasmas.

Quantitatively, the field-induced interparticle interac-
tion in ER plasmas can be determined from the linear-
ized dielectric response formalism (see Sec. I11.B). For
subthermal ion drift the interaction potential is given by
Eq. (6), which represents the far-field asymptotics for the
potential expanded into a series over small u; (with the
angular dependence of the first three coefficients pro-
portional to that of the corresponding multipoles, i.e.,
charge, dipole, and quadrupole). Furthermore, all odd
terms (<u) with odd j) are proportional to linear combi-
nations of the odd-order Legendre polynomials whereas
even terms are combinations of the even-order polyno-
mials. Thus, for an ac field E(¢) with (E),=0, all odd-
order terms disappear in the time-averaged potential
(¢),;, which becomes an even function of coordinates.
The effective energy O(¢), of the time-averaged pair in-
teraction is (Ivlev et al., 2008)

—rIN MZ 2

A
W(r.0) = 02 er ~043 ;

(3cos?6-1)|. (29)

Thus, the effective interaction consists of two principal
contributions: The first core term represents the spheri-
cally symmetric Debye-Hiickel (Yukawa) part, whereas
the second term is due to the interaction between the
charge of one particle and the quadrupole part of the
wake produced by another particle. The charge-
quadrupole interaction is identical to the interaction be-
tween two equal and parallel dipoles of magnitude
=0.65M7QN\. This implies that for small M; the interac-

Rev. Mod. Phys., Vol. 81, No. 4, October—December 2009

tions in ER plasmas are equivalent to dipolar interac-
tions in conventional ER fluids.

One can compare ER colloids and ER plasmas in
terms of the dipole-dipole coupling (Tao, 1993; Gulley
and Tao, 1997; Hynninen and Dijkstra, 2005). Since the
magnitude of the induced dipole is proportional to the
volume of the polarizable sphere, the field necessary to
achieve a given coupling in ER colloids will be much
larger than that in ER plasmas. In colloids, micropar-
ticles of radius a acquire dipoles ~a’E,; and are sepa-
rated by distance ~a, whereas the interaction in plasmas
is determined by Eq. (29) with typical separation ~A\.
The equivalent field for colloids is then E
~M(a/\)"?Q/a?. For typical experimental conditions,
the electric field E~3 V/cm in plasmas (which corre-
sponds to My~ 1) is equivalent to E.,;~3 kV/cm in col-
loids.

The recently investigated phase diagram of ER col-
loids reveals a variety of crystalline states (Chen et al.,
1992; Yethiraj and van Blaaderen 2003; Hynnien and
Dijkstra, 2005; Brandt et al., 2009). In addition to isotro-
pic bce and fec lattices, the hcp structure can be a
ground state in a fairly broad range of phase variables.
Moreover, unusual anisotropic crystalline states become
possible, like body-centered orthorhombic and body-
centered tetragonal (bco and bct, the phase transition
between them is of the second order). On the other
hand, relatively little research has been done on the fluid
phase. In particular, the dynamics and details of the
phase transition between isotropic and string fluids is
practically unexplored (Tao, 1993; Gulley and Tao,
1997).

The isotropic-to-string phase transition in ER plasmas
was recently investigated in experiments under micro-
gravity conditions (Ivlev et al., 2008). Particles remained
in a disordered fluid state as long as the amplitude of the
applied ac field was below a certain threshold. Increas-
ing the field further triggered rearrangement of par-
ticles: They became more ordered, until eventually well-
defined particle strings were formed along the direction
of the field. The transition between isotropic and string
fluid states was fully reversible—decreasing the field
brought the particles back into their initial isotropic
state. The trend to form strings increased with particle
size. The MD simulations performed with similar pa-
rameters gave remarkable agreement with the experi-
ment.

In order to quantify the isotropic-to-string phase tran-
sition, a suitable order parameter has to be employed
that is sensitive to the changing particle structures (Ivlev
et al., 2008). Conventional approaches, e.g., binary cor-
relation or bond orientation functions, Legendre poly-
nomials, etc., turned out to be too insensitive. Much
more satisfactory results were obtained by implementing
the anisotropic scaling index « [see, e.g., Rith et al
(2002)]—a local nonlinear measure for structure charac-
terization, with which any symmetry changes can be
quantified using the longitudinal and transverse distribu-
tions Pj(«) and P («). For the onset of the isotropic-to-
string transition, the difference between the transverse
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FIG. 25. (Color online) Formation of strings in ER plasmas.
First row: Microgravity experiments (6.8 um particles, raw
data), microparticles are illuminated by a thin (less than mean
interparticle distance) laser sheet parallel to the applied ac
electric field. Examples of low (first column), intermediate
(second column), and high (third column) fields are shown, the
peak-to-peak voltage of the ac signal (applied to two parallel
horizontal electrodes) is indicated. Second row: MD simula-
tions, the same configuration as in the experimental setup, the
field is measured in units of the thermal Mach number M
(scale bars correspond to 2 mm). Third and forth rows: Histo-
grams for longitudinal and transverse distributions of the scal-
ing indices Pj(a) and P () calculated for the experiment and
simulation, respectively. (Note that at higher densities the par-
ticle positions in neighboring strings became highly corre-
lated.) From Ivlev et al., 2008.

and longitudinal scaling indices averaged over the en-
semble, Aa=[aP da-[aPda, was used as a scalar or-
der parameter, whereas Mt played the role of the con-
trol parameter. The data obtained were well
approximated with a two-parametric fit Aacx(M;
-M%)Y for My>M%5 and Aa=0 for My<M?, which
might suggest a second-order or a weak first-order phase
transition between isotropic and string fluids (Tao, 1993).
Note that for a weakly coupled ER plasma, which im-
plies gaseouslike ensembles of particles where triple in-
teractions play a minor role, a simple analytical criterion
for the isotropic-to-string phase transition can be de-
rived from the analysis of the second virial coefficient,
B=w[5'(1-e"Ta)r? drdx (Landau and Lifshitz,
1978), where x=cos 6 and W(r,x) is given by Eq. (29).

Figure 25 summarizes the experimental results and
comparison with the MD simulations (Ivlev et al., 2008).
The structural order of the well-developed strings is evi-
dent in both experimental and simulation data shown in
the first two rows. The lower two rows show the corre-
sponding distributions Pj(«) and P («).
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To date colloidal suspensions have been the major fo-
cus for ER studies, providing a wealth of information
(Chen et al., 1992; Dassanayake et al., 2000; Yethiraj and
van Blaaderen, 2003; Hynninen and Dijkstra, 2005). The
discovery that complex plasmas also have electrorheo-
logical properties adds a new dimension to such
research—in terms of time-space scales and for studying
new phenomena: An essentially single-species system of
microparticles in complex plasmas enables us to investi-
gate previously inaccessible rapid elementary processes
that govern the dynamical behavior of ER fluids—at the
level of individual particles. In particular, such investiga-
tions may allow us to study critical phenomena accom-
panying second-order phase transitions (Khrapak et al.,
2006; Kompaneets et al., 2009).

H. Fundamental stability principles of condensed matter

A great deal of research has been devoted to mea-
surements and analysis of the atomic or molecular struc-
ture of liquids—experimentally using diffraction meth-
ods (as in solids), and theoretically using MD
simulations [see Reichert et al. (2000), Reichert (2002),
and references therein]. There are also studies using
other model systems, such as colloids, cold atoms in
traps, and storage rings (Drewsen et al., 1998; Schitz et
al., 2001; Anderson and Lekkerkerker, 2002). In Fig.
26(a) we show the measured distribution of Pb atoms in
a melt (in 2D) including the trajectories (Reichert et al.,
2000; Reichert, 2002). It seems clear that instantaneously
the particle structure in coordinate space is well ordered,
whereas in reduced phase space it is much less ordered
and becomes less so as the time between subsequent
measurements is increased. This result is, of course, in
accord with the reduced correlation as the distance is
increased. Figure 26(b) shows a different example—a
small 2D plasma crystal cluster at different couplings
(Melzer, 2003; Melzer et al., 2007). Here, too, we note
that while instantaneously the system seems well or-
dered, in reduced phase space this order disappears as
time increases. This phenomenon is also illustrated well
in Figs. 13, 15, and 29(a) where the particle cage-escape
events gradually smear out the instantaneous crystalline
structure.

Figure 27 shows the measured 3D structure of lead
atoms in a fluid state, also inferred from scattering ex-
periments (Reichert et al., 2000; Reichert, 2002). The
pentagonal structure is quite striking (note that in the
solid state Pb is bec). There is a simple argument, due to
Frank (1952), that explains this observation. First, the
premise is that due to rotation the binary interaction
potential between molecules in a fluid tends to average
out and becomes isotropic (even for, e.g., dipolar or
more complicated molecules). Next, if one considers the
possible different ways in which 12 hard spheres can be
arranged in simultaneous contact, counting as different
only those arrangements which cannot be transformed
into each other without breaking contact with the cen-
tral ball, one arrives at the solution: three. The first is
the well-known bcc arrangement, the second is hep, both
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FIG. 26. (Color online) Evolution of liquid structures. (a) In-
stantaneous position of atoms in liquid lead. The distribution
of points in the two rings around the central atom (at rest)
shows the meandering of neighbors in time. From Reichert,
2002. (b) Melting of a 2D cluster in complex plasmas. The
melting occurs at around 1.2 eV, a snapshot—even in the mol-
ten state—would essentially look like the structure of the crys-
tal state. From Melzer et al., 2007.

ubiquitous crystal structures, and the third is the icosa-
hedron. This packing has fivefold axes and the binding
energy for, e.g., a Lennard-Jones-type interaction is
8.4% greater than for the two crystalline states. On the
other hand, the system is not periodic, i.e., it cannot pro-
duce large-scale translational or orientational order. It
appears logical, therefore, to assume that liquid 3D

e

FIG. 27. (Color online) Local fivefold symmetry structures ob-
served in a liquid lead. Such measurements show that crystals
and liquids do not share similar structural properties—an im-
portant finding for understanding the fundamental stability
principles of condensed matter. From Reichert, 2002.

Rev. Mod. Phys., Vol. 81, No. 4, October—December 2009

structure is dominated by this pentagonal local order (at
least when the repulsive part of the binary interaction is
sufficiently short ranged). This line of argument implies
that the fundamental stability principle governing in-
stantaneous local structure of fluids is simply geometri-
cal, and that this is possibly due to the isotropization of
the molecular interaction potential as a consequence of
the rotational degrees of freedom (which does not occur
in rigid crystals, of course).

It is noteworthy that in undercooled fluids with purely
repulsive interactions the self-organization of molecules
into icosahedral “clusters” also cannot be excluded
(Wette et al, 2009): Based on entropy considerations
(Frenkel, 1999), one can argue that when the average
packing fraction of molecules is high enough (but still
below the glassy limit), the free volume for such a com-
pact cluster should be larger than the free volume for
individual molecules in a disordered phase. The total
entropy of fluids with the icosahedral local order then
might be larger as well, thus making them thermody-
namically preferred.

Observations of complex plasmas contribute to the
understanding of the kinetics of liquids and to the fun-
damental stability principles in at least three ways: (i) by
investigating liquids in six-dimensional (6D) phase space
f(x,p,t), (ii) by investigating constrained systems (2D
and nanoflow situations), and (iii) by investigating sys-
tems with externally tuned anisotropic interaction po-
tentials. So far, little work has been done in this field,
however, in spite of the fact that complex plasmas are
possibly the best suited candidates for an in-depth study.

The main results obtained so far have come as a by-
product of other investigations, in particular 2D studies.
The remarkable feature of such constrained systems is
that there is no distinct local fluid structure. This is seen
in the investigations into self-organization and scaling in
2D crystallization (see Sec. 111.1.2), where the prevailing
local structure is always hexagonal—and, as the system
is less coupled, the only effect on the local structure is an
increase of 5/7 dislocation pairs. It is also seen in con-
fined flows, in particular when the flow channel is only a
few flow lines (or mean particle spacings) wide, as shown
in Sec. IILF.

Now, in the context of Frank’s argument mentioned
above, this is easy to understand. In 2D the arrangement
of “billiard balls” around one central ball, all of them
touching, happens to be 6—not 5, not 7, nor any other
number. Therefore, the tentative conclusion for particles
with isotropic interaction potentials is that the funda-
mental stability criterion is purely topological, defined
by the geometry of the system and not by the properties
of the system itself. This is an important generic hypoth-
esis, which should be investigated further in particular
using anisotropic systems (e.g., electrorheological ef-
fects, see Sec. II1.G). Further, by investigating the sys-
tems in 6D phase space, one can determine whether
higher order effects may play a role, and if so how they
would manifest themselves.
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FIG. 28. (Color) Dynamics of particles in a lattice of a 2D crystal. (a) Distribution of velocities v, (red dots) and v, (blue dots) with
Maxwellian fits (solid lines). (b) Distribution of displacements x (red dots) and y (blue dots) of particles in their nearest-neighbor
cage, solid lines are Gaussian fits. (c) Particle trajectories in their respective nearest-neighbor cells during the measurement time
of =12.3 s (colors-correspond to the progression of time). Particles are of 9.19 um diameter. From Knapek, Ivlev, et al., 2007.

1. 2D crystals

Next we concentrate on the kinetic description of the
crystalline state in complex plasmas, with the focus on
various dynamical aspects that may have generic nature
and therefore play an important role in regular solids.
We start with the kinetic characterization of crystals—
the approach which, in principle, is equally appropriate
for 2D and 3D cases. Then we proceed with different
crystallization scenarios peculiar to 2D and 3D (Sec.
IT1.J) systems. We also discuss creation and dynamics of
dislocations—the process that is absolutely relevant for
3D crystals as well, but has been properly investigated
so far only in 2D plasma crystals.

1. Kinetic characterization of crystals

Transitions between solid and fluid phases as well as
between different crystalline states, rheological and
transport properties of the fluid phase, energy relax-
ation, and hierarchy of metastable states are determined
by the magnitude of the coupling parameter I" [see Eq.
(11)], which can be also considered as the measure of
(inverse) temperature. In turn, I' depends sensitively on
local variations in crystal structure, and provides infor-
mation about the occurrence of localized excited states
and nonstationary processes.

The value of I' can be determined experimentally
(Knapek, Ivlev, et al., 2007), by linking the individual
particle dynamics with the local density and crystal
structure using the Einstein frequency Qjy (see Sec.
11.D), which refers to linear oscillations of individual
particles (atoms) in a lattice. In local equilibrium, the
dynamics of individual particles in each lattice cell is
statistically equivalent and can be described by, e.g., a
Langevin equation (van Kampen, 1981). Therefore, cells
represent a canonical ensemble with the Maxwell-
Boltzmann distribution, «exp[-m (v*+Q35r%)/2T,], as
shown in Fig. 28. Then one can deduce thermodynamic
characteristics locally, from the independent Gaussian fit
of the velocity and displacement distribution: The veloc-
ity dispersion is T,;/m, and the displacement dispersion

is T,/m05=A?/T, where T'=(Qz/Q,,)T is the effec-
tive coupling parameter modified by the screening (the
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ratio of the Einstein to the dust-plasma frequency is a
function of the screening parameter « only, see Sec.
I1.D). For such a linear description to hold, it is essential
that particles in the lattice perform sufficiently small os-
cillations. The role of anharmonic effects can then be
neglected so that the oscillations of the neighboring par-
ticles are uncoupled and can be treated independently.

An exemplary map of I' measured in a 2D plasma
crystal is shown in Fig. 29(a). This map can be used to
probe correlations with various local processes occurring
in a crystal. For instance, there is a 5/7 dislocation just
outside the regime analyzed (the position is marked by a
circle), and there is some indication that the coupling
strength in the vicinity of a nonstationary cage-escape
event is substantially decreased. At the same time, com-
parison with the density map [see Fig. 29(b)] shows no
correlation.

The interparticle spacing shown in Fig. 29(b) varies by
about 0.5% per cell so that the 2D density inhomogene-
ities are about 1% per cell. Performing independent
measurements of the longitudinal and transverse acous-
tic modes (viz., acoustic velocities C, ; see Sec. I1.D) that
are very sensitive to the screening parameter « (Fortov
et al., 2005, one can obtain a map of the coupling param-
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FIG. 29. (Color) 2D maps of local crystal parameters. Distri-

bution of (a) effective coupling parameter I' and (b) interpar-
ticle distance A is shown, the Voronoi cell around each particle
is color coded according to the value of the measured quantity.
Circles indicate the position of a sevenfold-fivefold pair defect,
blue cells seen at the upper edge of (a) are due to the particle
cage-escape event (see Sec. II.B). From Knapek, Ivlev, et al.,
2007.
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eter I' (rather than I') and thus define the state of the
crystal within the phase diagram (see Fig. 7).

A straightforward application of the method de-
scribed above could determine the local Lindemann cri-
terion of crystal melting, viz., what is the critical magni-
tude of the mean squared displacement, what are the
characteristic patterns of the caged particle motion in
the vicinity of the melting transition, what is the role of
dynamical heterogeneity, etc.

2. Scalings in 2D crystallization

Characterization of solid, supercooled (glassy), and
liquid states is, in general, not straightforward. Different
models for the solid-liquid phase transition have been
put forward. For 2D systems, models of particular rel-
evance are the dislocation theory of melting—the
Kosterlitz-Thouless-Halperin-Nelson-Young (KTHNY)
theory [which involves two phase transitions—with an
intermediate, so-called hexatic phase in between—one
associated with the unbinding of dislocation pairs and
the other with the unbinding of disclination pairs, Ko-
sterlitz and Thouless (1973); Halperin and Nelson (1978);
Nelson and Halperin (1979); Young (1979); Nelson
(2002)], and the theory of grain-boundary-induced melt-
ing (Chui, 1982, 1983).

Apparently, one of the central questions in under-
standing phase transitions in 2D strongly coupled sys-
tems is what are the critical parameters that determine
which melting scenario will be realized in a particular
experiment (i.e., whether the melting occurs in accor-
dance with the KTHNY scenario, or the transition is
preempted by grain-boundary-induced melting). The ac-
companying questions are whether the correlation func-
tions associated with the crystal and hexatic phases have
the appropriate scaling behavior, and what the order is
of the observed phase transitions in the thermodynamic
limit. These issues have been discussed extensively [see,
e.g., reviews by Strandburg (1988) and by Alba-
Simionesco et al. (2006)].

It is generally believed that the value of the defect
core energy plays a critical role in the realization of the
melting scenario (Strandburg, 1988). The KTHNY
mechanism should operate when the core energy ex-
ceeds =2.8Ty; (where Ty is the temperature of un-
binding of dislocation pairs), otherwise grain-boundary-
induced melting should occur. Below we focus on two
experiments that illustrate the kinetics accompanying
these melting mechanisms.

The experiments by Zahn and Maret (2000) per-
formed with colloidal particles are an example of the
KTHNY scenario [for other examples, see, e.g., Murray
and Winkle (1987); Marcus and Rice (1997)]. Supermag-
netic spherical colloids were confined by gravity to a
horizontal flat water/air interface and their interaction
potential was controlled via a vertical magnetic field B,
which induced a magnetic moment B, with x the effec-
tive magnetic susceptibility. This repulsive dipole-dipole
potential dominated the interaction and the coupling pa-
rameter is I'=(yB)*(wn)*?/T,, where n is the surface
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FIG. 30. Melting in 2D colloids. (a) Dynamic Lindemann pa-
rameter vy, (¢) for different values of the temperature I'"!. In
the crystalline phase the long-time limit of y;(f) is bounded
while it diverges in the liquid phase. The inset shows the data
in a linear plot to illustrate the change in the behavior of 7y, (¢).
(b) The bond-order correlation function in time gg(z). Particles
are of 4.7 um diameter. From Zahn and Maret, 2000.

fraction of the particles. Thus changing the magnetic
field strength allows external tuning of the coupling pa-
rameter and the study of phase transitions in a con-
trolled way. The data obtained with video microscopy
(about 2000 particles) were analyzed in terms of dis-
placements and correlation functions. Figure 30(a)
shows the temporal evolution of the 2D modified Linde-
mann parameter y; <{[dr.(t)]?), calculated using the
relative neighbor-neighbor displacement 6r,.;. The crys-
talline regime at '=62.5 has bounded values for the
mean square displacement (normalized to the lattice
constant) whereas the liquid phase diverges as r— .

Figure 30(b) shows the bond order correlation func-
tion gq()=(e®™)) as a function of time, where 6(¢) de-
notes the angle fluctuation of a fixed bond. Three re-
gimes can be identified: The crystalline regime at I’
=62.5, where gg=const, the isotropic liquid regime at I’
<54.6, where ge(t) decays exponentially, and an interme-
diate regime at 56.8<I'<59.5, where gq(r) decays as a
power law, indicating the hexatic phase. These findings
are in good agreement with the KTHNY theory, sup-
porting the two-stage melting for systems with a 7~ in-
teraction potential (the core energy occurs above the
critical value of 2.8Tyy).

Melting via grain boundaries was seen in several ex-
periments with complex plasmas (Melzer, Homann, and
Piel, 1996; Quinn et al., 1996; Knapek, Samsonov, et al.,
2007; Nosenko et al., 2009). We consider the recent ex-
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FIG. 31. (Color) Recrystallization in 2D complex plasmas. (a) Snapshot of the intermediate structure of 9.19 um particles during
the recrystallization. (b), (c) Color-coded 2D maps for two consecutive stages of recrystallization [about 10 s apart, map (b)
corresponds to snapshot (a)]. The background gray scale corresponds to the local value of the bond-orientational function |i|, the
arrows represent the vector field of ¢ on the complex plane, defects are marked by red (fivefold) and blue (sevenfold) dots.

Adapted from Knapek, Samsonov, et al., 2007.

periment by Knapek, Samsonov, et al. (2007), where a
2D monolayer of about 3400 particles was first allowed
to crystallize, and then it was perturbed and melted by
an electric impulse. The subsequent re-crystallization
was recorded with high spatial and temporal resolution
(see Fig. 31). To compare with the KTHNY theory, the
local variation in orientational ordering was investigated
by calculating the bond-orientational function
=13.¢% over the n nearest neighbors for each particle,
with 6¢; the angle between the nearest-neighbor bond
and a reference axis. The modulus || of this complex
quantity yields the bond order parameter, which is unity
for an ideal hexagonal structure, and the argument
arg(y) is a measure for cell orientations with respect to
the reference axis. The kinetic temperature of the sys-
tem was defined from the velocity distribution of the
particles (by fitting with a Maxwell-Boltzmann distribu-
tion, see Fig. 28).

Figures 31(b) and 31(c) shows color-coded maps of ||
for two consecutive stages of recrystallization. The loca-
tion of jumps in bond orientation is correlated with the
lines of (fivefold or sevenfold) defect locations. After
melting, as the system cools down, the crystalline do-
mains grow and merge with neighboring regions, as
shown in Fig. 31(b), causing the bonds to tilt to the
(single) orientation of the growing region. Eventually, a
metastable state shown in Fig. 31(c) is reached which is
characterized by highly ordered adjoined crystalline do-
mains.

The dynamic evolution of the lattice defects can be
summarized as follows: (i) The instantaneous 2D struc-
ture revealed mainly hexagons, pentagons, and septa-
gons at all temperatures sampled. (ii) The fraction of
pentagons and septagons was identical within the statis-
tical uncertainties—they always appear in pairs. (iii) The
hexagonal ground state (also the lowest energy state)
dominated at all temperatures sampled. (iv) The local
disorder, identified as the fraction of pentagons or sep-
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tagons, was approximated by a power-law dependence
on temperature, as shown in Fig. 32.

These facts indicate that unlike 3D liquids, which may
have their own distinct local order (pentagonlike, see
Fig. 27)—quite different from the crystalline state—2D
liquids do not exhibit a special local order. They can
appear as a crystal with different amounts of lattice dis-
locations, which depend on the temperature. As the
temperature decreases, these dislocations may partially
annihilate (anneal) and also have a tendency to form
strings, which act as domain boundaries separating ho-
mogeneous ordered regions.

The implications of these experimental findings are as
follows:

e They show that the fundamental stability principles
of condensed matter depend on the external
constraints—in such a way that for 2D systems the
self-organization favors mixtures of the ground state
and the next most excited states.
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FIG. 32. (Color online) Fraction of the fivefold and sevenfold
defects Ns7/N during the recrystallization. As temperature de-
creases, the number of defects in a hexagonal lattice obeys a
power-law dependence, N5 ;% 72'4 (solid line), revealing a clas-
sic scale-free behavior. Different colors represent three differ-
ent experiments. Adapted from Knapek, Samsonov, et al.,
2007.
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e Furthermore, the power-law behavior with respect to
the order parameter temperature shows that there is
no characteristic scale.

e If these findings are generic (perhaps for a certain
class of materials) then they are significant for char-
acterizing physical properties and ultimately for
monolayer, membrane, and nanoengineering.

¢ To understand whether the findings have generic im-
plications, we need to develop a kinetic theory that
has a sufficiently general character to allow extrapo-
lation to other systems.

a. Temperature scaling for domain boundaries

Given the above findings one can develop a simple
theory that describes this process of self-organization.
This theory is based on the early work of Frenkel (1955).

At a given temperature, a 2D system of N particles is

divided into z=N/N, homogeneous domains, each con-

taining N, particles on average, with boundaries made
up of pairs of pentagons and septagons. We assume that
the structural order in the individual domains is uncor-
related. While it is clear that there will be a spectrum of
domain sizes, for the moment we only consider averages
(the justification for this approach will become apparent
later).

If the mean separation between the particles is A, then
the mean domain radius is determined by i

=m(A/2)%(N/z), i.e., F=5(N/z)"?A. The interfaces have

an additional amount of line energy E=2m7zo, where o
is the line tension (the interaction between domains is

neglected). Substituting for 7 gives E=mA(Nz)"?0. As a
result of the domain structure, the system entropy in-
creases. The measure of disorder is characterized by the
number of different ways in which the particles may be
organized (assuming homogeneity inside each domain),
P=N!/[(N/z)!]?. If N and N/z are sufficiently large,
then using Stirling’s approximation yields P=z". The
entropy is S=In P and the mean free Helmholtz energy

is accordingly F=mA(Nz)"20—NT,In z. Assuming that
during recrystallization the system always remains in

thermodynamic equilibrium, from dF/dz=0 we have
z=Q2T,/mAo)’N.

Remarkably, z does not depend on Ny, the mean particle
population of a domain. We have now established a re-
lationship between z and 7;. At this stage we can intro-
duce the fractal nature of the domains as a hypothesis.
This hypothesis is also intended to account for the size
distribution of the domains, which we have not explicitly

discussed. We write N,A2=const X (N,A)*® where N, is
the average number of particles in a domain wall. (Note
that with the above definition we have a=1 if the do-
main was circular, whereas for long narrow strip do-
mains a— 0, which suggests that 0<a<1.) Substituting
this scaling yields finally the total number of particles in
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all domain boundaries N, (=Ns+N;)=zN,, which
obeys the scaling N, /Nx Ti“/ (+@) From the measure-
ments we have 2a/(1+a)=0.4, which gives a=0.25 if o
is temperature independent (obviously, if o is tempera-
ture dependent then « becomes larger than 0.25). The
obtained fractal exponent lies in the expected range 0
<a<1, but no physical argument has been obtained so
far regarding its specific value. This could imply that «
may be material dependent.

Thus, it is possible to explain observing the recrystal-
lization of a 2D plasma crystal with simple thermody-
namic arguments, provided the following major assump-
tions are satisfied: (i) The system is instantaneously in
thermodynamic equilibrium. (ii) The evolution takes the
form of uncorrelated domains with size and number de-
pending on temperature. (iii) Domain boundaries are al-
ways of the same type (here 5/7 dislocations). (iv) The
domain lines satisfy on average a constant fractal rela-
tionship, independent of temperature. (v) The line ten-
sion of the domain boundaries is temperature indepen-
dent (or has a power law dependence on 7). (vi) The
free energy of the domain walls dominates the system
evolution.

3. Dynamics of dislocations

Even far above the melting line, dislocations are ubiq-
uitous in both 2D and 3D crystals. Dislocations are es-
sential for understanding such properties as plasticity,
yield stress, susceptibility to fatigue, fracture, etc. Their
generation and motion is of interest in materials science
(Kittel, 1961), the study of earthquakes and snow ava-
lanches (Kirchner et al., 2002), colloidal crystals (Schall
et al., 2004), 2D foams (Abd el Kader and Earnshaw,
1999), and various types of shear cracks (Rosakis et al.,
1999; Abraham and Gao, 2000).

In elastic theory, a dislocation’s core is treated as a
singularity in an otherwise continuous elastic material.
Such a simplified approach is often too crude to capture
essential quantitative characteristics of dislocations,
whose scales are usually of the order of the lattice con-
stant. In regular solids dislocation dynamics is almost
impossible to study experimentally at an atomistic level
(Murayama et al., 2002) because of the small distances
between the atoms (or molecules), high characteristic
frequencies, and the lack of experimental techniques of
visualizing the motion of individual atoms.

In contrast to regular solids, complex plasmas turned
out to be an exceptionally suitable model system for ex-
perimental study of the discrete structure and dynamics
of dislocations. In the experiment by Nosenko et al
(2007) a 2D plasma crystal was heavily stressed due to
inhomogeneous (parabolic) radial confinement. That
was the reason for the strong variation in the number
density across the crystal and, as a consequence, for the
appearance of topological defects [shown in Fig. 33(a)].
Most of the defects formed linear chains that constitute
domain boundaries in the crystal. During the course of
the experiment, dislocations (i.e., isolated pairs of five-
fold and sevenfold defects) were continuously generated
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FIG. 33. (Color online) Generation and dynamics of dislocation pairs in a 2D plasma crystal. Maps of (a) triangulation of the
particle positions, (b) bond-orientational function |¢|, and (c) vorticity (V X v) are shown for four different instants of time: (1)
0.33, (2) 0.57, (3) 0.70, and (4) 1.00 s. A pair of dislocations is indicated by arrows, (a) fivefold and (b) sevenfold defects are shown

Particles are of 8.09 um diameter. From Nosenko et al., 2007.

due to the shear introduced by a slow rotation of the
crystal. The dislocations then moved around and finally
annihilated with each other or with domain boundaries.

In order to characterize dislocations at the discrete-
ness limit, one has to relate discrete and continuous
measures of shear deformation. The most appropriate
discrete measure (which is, at the same time, insensitive
to uniform compressions, rotations, translations, etc.) is
the modulus of the bond-orientational function ||
shown in Fig. 33(b). In the limit of weak simple shear,
the following relation can be used (Nosenko et al., 2007):
|fs| =1-992, where vy is the shear strain. For weak pure
shear, || =1-2.25¢%, where e is the elongation, which is
the measure of pure shear deformation. The dislocation
dynamics can be conveniently characterized in terms of
2D vorticity VX v shown in Fig. 33(c) (where v is the
particle velocity).

Figure 33(b) shows that the shear strain had a nonuni-
form distribution. It was higher (i.e., |¢| lower) in two
kinds of locations. First, it was high in domain
boundaries—the two nearly parallel bright stripes in Fig.
33(b) [or equivalently the chains of fivefold and seven-
fold defects in Fig. 33(a)]. Second, a diffuse background
of shear strain appeared between the domain bound-
aries. The diffuse shear strain increased with time. When
it locally exceeded a certain threshold, a pair of edge
dislocations was created in that location, as one can see
in the second row of Fig. 33; these dislocations appear as
bright spots in (b) or as pairs of fivefold and sevenfold
defects in (a), all indicated by arrows. Once a pair of
dislocations was created, they moved rapidly apart (third
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and fourth rows). The Burgers vectors in such a pair
were oppositely directed and equal in magnitude so that
the total Burgers vector was naturally conserved.

Creation of dislocation pairs is characterized by sev-
eral distinct stages in the evolution of the shear strain:
First, the shear strain builds up gradually in a certain
location. Second, when the shear strain in this location
exceeds a threshold, a pair of dislocations is created.
Third, the shear stress is rapidly relaxed when the dislo-
cations separate, and gradually drops to the background
level. This cycle then starts over again, perhaps in a dif-
ferent location.

Dislocations that move supersonically create clear
signatures—Mach cones that can be seen in Fig. 33(c),
fourth row (see also Fig. 6). The Mach cones were com-
posed of shear waves and not of compressional waves
because they were excited by dislocations moving faster
than the transverse acoustic velocity C, but slower than
the longitudinal one C;. The average speed of supersonic
dislocations in the experiment was about 2C,. In fact,
linear elastic theory predicts that a gliding edge disloca-
tion cannot overcome the sound speed of shear waves C,
because the energy radiated by a moving dislocation be-
comes infinite at this speed. However, gliding edge dis-
locations moving at the speed of 1.3C,—1.6C, were ob-
served in atomistic computer simulations (Gumbsch and
Gao, 1999). The results reported by Nosenko et al.
(2007) provide the first experimental evidence that dis-
locations can indeed move faster than C,.
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J. 3D crystals

Measuring the steady-state 3D crystal structure in
conventional solids is well established and relatively
easy. It can be done using x-ray diffraction, scanning
probe microscopy, coherent electron diffraction, etc. The
advantage of crystals is their stability and order, which
compensates to some extent for the small (atomic) size
resolution. From the crystal structure it is already pos-
sible to classify material properties and the main inter-
actions that lead to self-organization. Consequently, de-
termination of the bulk crystal structure, crystal surfaces
(important for many chemical properties), and lately
with increasing interest nanocrystal structures (which
gives important clues about possible size-dependent new
properties) is an important area of physics, linking ma-
terial (mechanical) properties, electrical properties, su-
perconductivity, and chemical properties (Zhu et al.,
1987; Gleiter, 1989, 2000; Yokoyama et al., 2005; Tak-
agiwa et al., 2006).

Another important area, where crystal structures play
a role, is the self-assembly of colloids. This feature is
interesting because colloidal crystals can be used for,
e.g., photonics, optical sensors, waveguides, chemical
sensing, and lithography (Holtz and Asher, 1997; Wijn-
hoven and Vos, 1998; Xia et al., 2000). But colloidal sys-
tems are also used to model generic properties of solids
and liquids, melting, freezing, and glass transitions (Ha-
chisu et al., 1973; Pusey and van Megen, 1986; Kegel and
van Blaaderen, 2000; Pham et al., 2002; Leunissen et al.,
2005). The fact that their phase behavior is similar to
that of some simple atoms or molecules make them in-
valuable tools for studies at the individual particle
level—with the associated transfer of new insights into
natural atomic (molecular) systems that cannot be re-
solved in such detail.

Of course, in the last ten years or so there have been
tremendous advances in the experimental investigation
of dynamical effects in natural crystals too. Here the
fundamental processes on the atomic or molecular level,
such as vibrations and rotations in molecules or bond
breaking occur on time scales of femtoseconds to pico-
seconds, and ultrafast optical spectroscopic techniques
are needed for their resolution (Rose-Petruck et al.,
1999). Similarly, associated structural rearrangements of
particles in perturbed crystal lattices (e.g., due to pho-
non propagation) can be resolved using subpicosecond
x-ray diffraction (Yazaki et al., 2002)—truly remarkable
achievements.

These developments now open up the possibility to
directly compare (and re-scale) measurements made at
dynamical frequencies using plasma crystals and natural
systems. In particular, one can investigate induced per-
turbations (e.g., phonons, solitons, and shocks; see Sec.
II.D)—at least in principle, and compare the scaling re-
lations (in terms of the natural frequencies of the sys-
tems). Such work has not been carried out so far, but
technologically this is an exciting field for the future. For
instance, if we wish to investigate non-Hamiltonian ef-
fects in plasma crystals (see Sec. IL.F.1), it is important to
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FIG. 34. (Color) Domain structure of 3D crystals. (a) Structure
of a plasma crystal. Particles are of 3.38 um diameter, three
consecutive lattice planes are shown, each particle in the
middle plane is color coded in accordance with the local order,
(red corresponds to the fcc lattice cell and green to hcep), (par-
ticle in two adjacent planes are indicated by crosses and stars.
From Zuzic et al., 2000. (b) Domain interface in a crystalline
colloid. Near such interfaces (grain boundaries) the crystal is
premelted—the particles move rapidly and show liquidlike dif-
fusion (red-represents the most-movements, violet is for the
least). From A. Alsayed and A. Yodh.

make suitable comparisons with Hamiltonian natural
crystals—to mention only one topic of interest.

To illustrate the possibilities for such research, we
show two analyses of plasma crystal experiments. The
first [Fig. 34(a)] corresponds to a lattice structure deter-
mination of a 3D plasma crystal, color coded onto a
single lattice plane. The colors indicate different lattice
structures found locally, in a single cell around each par-
ticle. We see the coexistence of the (presumable) ground
state (fcc) and a metastable state (hcp), which seems to
mark the domain borders (Zuzic et al., 2000). Such bor-
ders are also seen between domains of the same struc-
ture but different lattice orientation—they appear to be
similar to those observed in colloids [Fig. 34(b)]. Figure
35 shows an overview 3D image of a plasma crystal,
where the particles are also color coded according to the
local lattice structure.

1. Kinetics of 3D liquid-solid phase transitions

Crystal growth is an important branch of industry,
with numerous applications ranging including semicon-
ductors, substrates for high-temperature superconduct-
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FIG. 35. (Color) 3D image of a plasma crystal. Individual par-
ticles of =1.3 um diameter are shown from the experiment
performed under microgravity conditions. Each particle is
color coded in accordance with the local order (deduced with
the bond-orientational invariants): red corresponds to the fcc
lattice, green—to the (metastable) hcp, and blue—to the par-
ticles without apparent crystalline order (fluid, domain bound-
aries, defects, etc.). From P. Huber.

ors, piezo sensors, ferroelectric memories, optical ele-
ments to nanostructures, quantum dots, and organic
systems. There are different facets to crystal growth, ho-
mogeneous nucleation, heterogeneous nucleation, epi-
taxial growth, molecular beam epitaxy, chemical vapor
deposition, etc. While techniques for visualization (and
quality control) of crystal growth have greatly improved,
the detailed kinetic understanding of dynamical growth
processes is still far from complete. The same holds for
nanopartice and microparticle contamination in produc-
tion processes.

For a deeper understanding of the kinetics of crystal
growth, use of model systems that allow visualization in
real space and time at the individual particle level are
desirable. It is no surprise, therefore, that colloidal sus-
pensions have been widely studied in the past in order to
learn more about the generic properties of self-
organization [see, e.g., Vlasov et al. (2001); Alsayed et al.
(2005), and references therein]. The only essential limi-
tation of colloids for this purpose is the damping by the
suspension fluid, which makes it practically impossible
to investigate atomistic dynamics.

With the discovery of plasma crystals, a new system
became available for studying the fully resolved dynam-
ics of self-organization processes. Research into 3D crys-
tallization may benefit from this, and consequently a
number of studies have been conducted, beginning with
the investigation of basic crystal properties [3D crystal
structure, acoustic modes, etc.; see Zuzic et al. (2000);
Zhdanov, Nunomura, et al. (2003)] and the liquid-solid
phase transitions (Thomas and Morfill, 1996; Rubin-
Zuzic et al., 2006).

Based on available experimental data one can claim
that there are two distinct macroscopic scenarios of crys-
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tallization in 3D complex plasmas. These can be referred
to as “uniform nucleation” and “crystallization front,”
and which pathway is realized in the experiment de-
pends heavily on the boundary conditions. If the (ini-
tially) liquid complex plasma is brought into the regime
corresponding to a solid phase in Fig. 7 (say, by increas-
ing the particle number density) then in the bulk region,
where boundaries play no role, the system usually devel-
ops towards the uniform nucleation (although some-
times particles form a visibly amorphous solid; whether
this is a 3D glassy state or not, still needs to be clarified).
In this case, one normally observes coexistence of meso-
scopic crystalline domains of different structure and ori-
entation, similar to nanostructured regular solids
(Gleiter, 1989, 2000). A typical example of such domains
is shown in Fig. 34. However, closer to the complex
plasma boundaries, when a steep potential well exists
(e.g., plasma sheaths close to rf electrodes) the crystalli-
zation often develops in the form of a front propagating
from boundaries inwards into the particle cloud. Appar-
ently, a steep boundary in this case facilitates formation
of a hexagonal substrate which then triggers the propa-
gating layer-by-layer crystallization process (Rubin-
Zuzic et al., 2006).

Below we review recent measurements of the dynami-
cal evolution and kinetic structure of a 3D crystallization
front (Rubin-Zuzic et al., 2006) and relate this to theo-
retical models. The first two images of Fig. 36 show a
slice through a 3D complex plasma crystallization front.
One can see a number of features, such as the detailed
(kinetic) structure of the front and different crystal do-
mains with different structure and/or orientation.

We focus on two particular features, which could be
generic for a certain class of substances—in both the
liquid and solid phases. These are the discovery of a
distribution of small droplets in the crystal phase and
small crystallites in the fluid phase (henceforth called
phaselets) that are seen in the last image of Fig. 36, and
a narrow (few lattice distance extent) premelted region
in the crystalline regime (perpendicular to the front)
where particles exhibit enhanced mobility signifying in-
terfacial melting.

a. Phaselets

Figure 37 summarizes the measured characteristics of
phaselets. Due to the special kinetic observations pos-
sible with complex plasmas, these features could be re-
solved down to sizes of a few particles. There are two
general features worth noting: (i) The size spectra of
both droplets and crystallites are compatible with power
laws (Fig. 37, right column). This suggests that within the
observable parameter range (~10to ~10% particles)
there is no characteristic length scale that determines
either formation or dissolution. (ii) The larger crystal-
lites and droplets tend to live longer (Fig. 37, left col-
umn). By lifetime we mean the growth+dissolution
phases so that this result is not too surprising. There is,
however, a substantial spread in the individual lifetimes.

At first sight, the development of the crystallites can
be explained in terms of the thermodynamics: If we
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FIG. 36. (Color) Crystallization front in a 3D complex plasma.
(a), (b) The front propagating upwards (images are about 16 s
apart from each other). Each panel is a superposition of 10
consecutive video frames (about 0.7 s), particle positions are
color coded from green to red, i.e., caged particles appear red-
der, “fluid” are multicolored. (c) The local order for (b), where
red implies high crystalline order, black denotes the fluid
phase, and yellow indicates transitional regions. Along with
the crystallization front, droplets and crystallites are seen that
may grow and then dissolve again. Particles are of 1.28 um
diameter. Adapted from Rubin-Zuzic et al., 2006.

naturally assume the temperature (in both the liquid and
crystalline regimes) below the melting point T}, then
the evolution of seed crystallites (which always form due
to random fluctuations) is determined by the competi-
tion between a decrease in the bulk free energy and an
increase in the surface energy. If the seed crystallite is
large enough, the bulk contribution overcomes the sur-
face part and it can grow further.

As for the droplets observed in the crystal regime, the
mechanism responsible for their formation should be
quite different because thermodynamically both the
bulk and surface contributions cause the free energy to
increase. It is possible that after the initial solidification,
a gradual relaxation from a metastable to a ground state
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(e.g., from hcp to bec or fec structure, as one can see in
Fig. 34) occurs downstream from the crystallization
front. This is naturally accompanied by a release of la-
tent heat. The droplets could then be a local manifesta-
tion of this relaxation. The larger the droplet, the longer
it takes to dissipate the released heat, and the longer its
lifetime. The existence of interfacial melting between
two large domains seen in Fig. 36 supports this.

In order to verify whether the thermodynamic argu-
ments can indeed be employed to explain the observed
findings, we have to distinguish two possibilities: (i) Het-
erophase transition—the crystallites are smaller than the
critical size N, at which they may grow continuously
(Lifshitz and Pitaevskii, 1981); (ii) homogeneous
nucleation—the crystallites are larger than the critical
size N, and grow continuously until they merge with
one another or with the propagating crystallization
front. Correspondingly, below we use two different ap-
proaches each referring to the respective physical pic-
ture.

We start with the the heterophase transition model,
which is applicable for droplets of any size and for crys-
tallites below the nucleation threshold N,. This experi-
mentally suggested approach is similar to the general-
ized statistical treatment of Born (1937), Mayer (1937),
Kahn and Uhlenbeck (1938), Frenkel (1955), and others.
As seen in Fig. 36 the liquid and solid phases are sepa-
rated into two spatial regimes (as would be the case for
the classical approach to describing condensation or ep-
itaxial growth) but each phase is statistically inter-
mingled with phaselets. Their distributions, expressed in
terms of the numbers of particles N which they contain,
can be determined from first principles. Following the
ideas of Frenkel (1955), one can derive the size distribu-
tion of crystallites embedded in a melt f-(N) as well as
the distribution of droplets in the crystalline regime

Ip(N),
fep(N) = o2 ue—upN+IN*PYT 0

Here u. s denotes the chemical potential (per particle) in
the crystalline and fluid bulk phases, respectively, and ¢
is the proportionality coefficient in the term that repre-
sents the surface free energy of the phaselet. Near the
crystallization condition T, it is easy to show that wu.
—p=L(T/Ty~1) [see, e.g., Frenkel (1955)], where L
>0 is the latent heat of liquefaction per particle. At T
<Ty the threshold N, for crystallites is determined
from the extremum of the exponent in Eq. (30). This
theoretical model is somewhat different from the crys-
tallization experiment shown in Fig. 36, inasmuch as it
describes a homogenous system, whereas the experi-
ment refers to a propagating crystallization front. Nev-
ertheless, regarding the two regimes (crystal and fluid)
separately, it is apparent that these measurements may
still be taken to represent a snapshot of the heterophase
fluctuations on either side. (Note that if the temperature
is different in the two regimes, say, 7>T,, above the
front and 7T<T), below the front, then N, is infinite for
both crystallites and droplets.)
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FIG. 37. (Color online) Characteristics of crystallites and droplets. (a) Area of crystallites and (b) droplets measured in units of a
single particle cell (squared interparticle distance A?) vs their lifetimes, and histograms showing number of (c) crystallites and (d)
droplets vs their areas. Adapted from Rubin-Zuzic et al., 2006.

One can see that the complex plasma data shown in
(Fig. 37 right column) appear to be more compatible
with a power law, whereas Eq. (30) yields an exponential
decay. Furthermore, the theoretical derivation is simpli-
fied. MD studies of small liquid drops (Thompson et al.,
1984; Townsend and Rice, 1991; Hawa and Zachariah,
2006) have shown that the problem is quite complex,
involving the detailed radius dependence of the surface
tension on the internal density and pressure variation in
the droplet, the surface structure, etc. While experimen-
tal evidence is still in short supply, and since there ap-
pears to be a consensus that the statistical mechanics
approach is reasonably valid for small droplets, we have
used the above simplified approach based on Frenkel’s
work and that of his contemporaries.

Now we consider the regime of homogeneous nucle-
ation, which is applicable for crystallites only. Following
Zeldovich [see, e.g., Frenkel (1955); Lifshitz and
Pitaevskii (1981)], we obtain the steady-state distribution
of crystallites from the Fokker-Planck approach, which
yields Dfy(d/ IN)(fc/fy) =const=J,. Here D(N) plays the
role of a diffusion in crystallite size space, J, is deter-
mined by an appropriate loss mechanism at the high-
mass end (e.g., due to absorption of crystallites by the
advancing crystallization front), and fy(N) is the equilib-
rium distribution [Eq. (30)] to which the solution f(V)
tends at N=<N,,. Integrating for N> N, gives

Ninax dN’
felN) = JafyV) fN AL

where N> N, is the maximum size in the distribution
(which generally depends on the loss mechanism). Since

(31)
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fo(N) must have a pronounced peak at N=N_, we write it
formally as a Gaussian distribution with maximum at N,
Assuming that D(N)« N? we can evaluate the integral in
Eq. (31) in a straightforward way and obtain f:(N)
« N"Y(N-N,)!. Hence, for sufficiently large N> N, we
obtain a power law «N-"*D_ Note that when N ap-
proaches N, there is an abrupt cutoff.

It is interesting that for this situation we obtain a
power law in the distribution of crystallite sizes for N,
<N<N_. This is compatible, in principle, with the
measurements shown in Fig. 37. However, since the
measured power law continues all the way down to what
is practically the smallest possible crystallite size Ny, of
the order 15 particles, and since it is unreasonable to
propose that N, = N;,, we have a dilemma. While the
above description applies to crystallites, it is not also
applicable to the droplets which were observed to have a
power-law size distribution, albeit with a different expo-
nent.

All this suggests that there must be some new and
unusual physics at work here, presumably not thermo-
dynamic equilibrium and presumably not describable
with a simple Fokker-Planck approach either.

b. Interfacial melting

Regular solids usually exhibit domains of locally or-
dered regimes (grains), which are separated by domain
(grain) boundaries (Gleiter, 2000). Thermodynamically,
these grain boundaries are different (in both energy and
entropy) from the homogeneous crystal regimes within.
When such a grainy crystal is heated and approaches its
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melting point, the grain boundaries may play a special
role—they can act as seeds of premelting regions. In a
number of experiments using different colloidal suspen-
sions, the effect of grain boundary melting has been
demonstrated (Pusey and van Megen, 1986; Gasser ef al.,
2001; Alsayed et al., 2005). A particular example is
shown in Fig. 34(b).

A kinetic, first-principle, theory of melting faces sev-
eral obstacles—there are long-range many-body interac-
tions to contend with, there is the structural symmetry,
and periodicity and universality classes are not known.
Experimentally it has been possible to conduct studies
with hard sphere colloids, and recently using special
temperature-dependent colloidal systems [which contain
microgel particles where diameters depend on tempera-
ture and therefore allow controlled tuning of the volume
packing fraction, see Pusey and van Megen (1986); Al-
sayed et al. (2005)].

As a result of these experiments (and particularly also
studies of ice water) it has become established that crys-
tal surfaces may form melted layers and that similar pre-
melting occurs at defects in crystals too. This suggests
that the less perfect crystal structure and the associated
interfacial free energy is the parameter that determines
grain boundary melting.

Figure 36 shows that in the dynamical 3D crystalliza-
tion front studies using complex plasmas interfacial
melting can be also observed. This is significant for the
following three reasons:

e The measurement slice shown in Fig. 36 was ob-
tained in a large (10° particles) complex plasma as-
sembly, many interparticle spacings away from the
boundaries. Hence the measurements confirm that
interfacial melting is not necessarily an effect con-
fined to narrow surface regions.

e The strongly coupled complex plasma system is al-
most undamped. This implies that energy transport is
to a large extent governed by phonons in the crystal-
line phase and dust-acoustic (sound) waves in the
fluid regime (see Sec. 11.D).

e The particle interaction is primarily electrostatic.
This implies that the same process—interfacial
melting—occurs in different systems with different
forms of binary particle interactions. In other words,
the process can be generic and is not dependent on
peculiarities or special features of the system.

For these reasons we conclude that the complementa-
rity of research between atomic, molecular, colloidal,
and complex plasma studies promises to yield much
more than just the sum of its parts. A ubiquitous and
still poorly understood process—such as melting—needs
different inputs, different constraints, generalization
from different sources, and new approaches so that the
principal mechanisms can be identified and combined to
a fundamental kinetic theory.

Rev. Mod. Phys., Vol. 81, No. 4, October—December 2009

IV. SUMMARY AND OUTLOOK

We mentioned in the Introduction that modern re-
search in complex plasma physics is composed of three
(mutually supporting) major directions: the investigation
of the properties of this new state of soft matter, the
study of generic processes in strong coupling physics,
and application oriented research. In the first part of this
review we highlighted some of the basic and new physics
which complex plasmas enable us to study at an hitherto
unprecedented resolution with respect to natural length
scales (e.g., particle separation) and natural time scales
(e.g., inverse Einstein or plasma frequency) for 2D as
well as 3D systems—because of the optical transparency
up to many thousands of interparticle distances.

Starting with the basic binary interactions we discused
processes such as wave propagation, solitons, and shocks
as well as the classical phase diagram for Debye-Hiickel
systems. Next, we developed examples that show new
physics, such as non-Hamiltonian behavior due to sto-
chastic and systemic variations in the interaction poten-
tial and charge-induced runaway coagulation, a form of
gelation phase transition.

In the second part of the review we concentrated on
strong coupling phenomena in an interdisciplinary con-
text, i.e., we highlighted those aspects of the research
that would appear to have a general relevance in differ-
ent areas of physics. Naturally, this emphasized the con-
nections with another soft matter state—complex
liquids—but we also addressed generic liquid and solid-
state issues. The point here is, of course, that complex
plasmas are the closest mesoscopic strongly coupled sys-
tem known to resemble regular physical systems. In par-
ticular, the special features of complex plasmas allow for
a visualization of the fully resolved atomistic dynamics
in real time and space—which was not possible before.

In the fluid section, we discussed nonequilibrium dy-
namical heterogeneity of atoms, the kinetics of heat
transport, and laminar shear flows; we focused on the
development of hydrodynamic instabilities, including in-
ertial effects in curved flows and the growth of nonlinear
structures at the kinetic level—a first step towards inves-
tigating the kinetic onset of turbulence (according to Ri-
chard Feynman, “the greatest unsolved puzzle in hydro-
dynamics”); we summarized new physical effects
observed in confined fluids and considered the elec-
trorheological rearrangement in liquid systems. This
naturally led to a discourse on the fundamental stability
principles of condensed matter, the differences between
solids and liquids—and, in particular, the role of 2D fluid
systems.

In the study of crystals, we first focussed on 2D
systems—in particular, the possibility for a local, indi-
vidual particle, characterization of the coupling strength,
which allows a detailed quantitative study of the devel-
opment of fracture lines, dislocation dynamics, anneal-
ing, etc. We furthermore investigated the 2D melting
phase transition—in the context of the different (one or
two stage) theories—and concluded that 2D Yukawa-
type systems are more compatible with grain-boundary-
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melting scenarios, whereas dipolelike 7= potentials ap-
pear to follow the KTHNY theory. This was followed by
an analysis of the dislocation dynamics. Regarding 3D
systems we discussed the large-scale structures, illustrat-
ing the possibilities to determine the local dynamics, the
structural changes associated with domain boundaries,
and interfacial melting. Finally, we investigated the ki-
netic structure of propagating crystallization fronts in-
cluding the discovery of tiny “phaselets”—crystallites
embedded in the melt and droplets in the crystalline re-
gime.

This leaves the third direction—the present and future
applications. Since we decided to concentrate on the
more fundamental physics issues and the interdiscipli-
nary aspects of complex plasma research, we only com-
ment on this briefly here in the summary.

A field of growing importance in technology is par-
ticle control. While in most cases (e.g., plasma vapor
deposition, lithography, and manufacture of computer
chips) dust produced in the plasma devices is an un-
wanted but also unavoidable by-product of the manufac-
turing process, which probably accounts for billions of
dollars per year in losses, there are other applications,
e.g., polymorphous solar cell manufacture (Roca i
Cabarrocas et al., 2002), where controlled growth of
nanocrystals followed by controlled deposition is a ben-
efit. Consequently, the expertise acquired in micropar-
ticle manipulation technology (using lasers, electromag-
netic fields, thermophoresis, and photophoresis) can
develop into an important part of next generation
plasma processing technology [see, e.g., Bouchoule
(1999)].

Another topic of growing interest—on the border be-
tween basic research and applications—is plasma fusion.
It has been known for a long time that tokamaks pro-
duce fine dust particles in the plasma-surface interac-
tions (Winter, 1998). In fusion reactors, this dust will be
toxic and radioactive, it can clog the gaps between the
tiles on the walls and introduce thermomechanical fail-
ure, it can affect the tritium levels, etc. These are all
serious considerations and it is not surprising, therefore,
that increasing attention is given to dust hazard in fusion
devices [see, e.g., Smirnov et al. (2008), and references
therein]. Of particular concern—although currently not
understood—is the evidence of hypervelocity dust im-
pacts obtained from probe surface analysis in the Fras-
cati Tokamak Upgrade, which could present a particular
hazard because impacts of such particles produce more
ejecta mass than that of the impactor (Castaldo et al.,
2007). Here research into dust production, transport,
and control is also an important present and future
topic.

As mentioned in the Introduction, there are other po-
tential topics and spin-offs, ranging from plasma medi-
cine [e.g., the sterilization, disinfection, and treatment of
skin diseases—see Fridman et al. (2008)] and plasma bi-
ology to plasma nanofluidics (a topic partly addressed in
the context of confined fluid flows in this review, but
which could have technological impacts, e.g., in the de-
sign of microchannel and nanochannel systems), surface
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interactions and tribology as well as pharmacy (the
design and surface treatment of nano-applied
medicine)—to name but a few obvious directions.

In summary, the field of complex plasmas has shown a
surprising amount of new and interdisciplinary funda-
mental physics already. We hope that this review will
provide further impetus and direction to a young and
growing field and that the full potential, both for further
cross-disciplinary research and for applications, will be
exploited in the years to come.
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