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The dynamics and stability of thin liquid films have fascinated scientists over many decades: the
observations of regular wave patterns in film flows down a windowpane or along guttering, the
patterning of dewetting droplets, and the fingering of viscous flows down a slope are all examples that
are familiar in daily life. Thin film flows occur over a wide range of length scales and are central to
numerous areas of engineering, geophysics, and biophysics; these include nanofluidics and
microfluidics, coating flows, intensive processing, lava flows, dynamics of continental ice sheets,
tear-film rupture, and surfactant replacement therapy. These flows have attracted considerable
attention in the literature, which have resulted in many significant developments in experimental,
analytical, and numerical research in this area. These include advances in understanding dewetting,
thermocapillary- and surfactant-driven films, falling films and films flowing over structured, compliant,
and rapidly rotating substrates, and evaporating films as well as those manipulated via use of electric
fields to produce nanoscale patterns. These developments are reviewed in this paper and open
problems and exciting research avenues in this thriving area of fluid mechanics are also highlighted.
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even something as trivial as the blink of an eye involves
motion over a thin corneal fluid film. It is initially sur-
prising that the same mathematical philosophy can be
used to model flows on different length scales such as
the corneal fluid film in the eye and, at the other ex-
treme, large scale lava or continental ice sheet flows.
Thin fluid films can generate a host of intriguing and
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fascinating behaviors including complex dynamics fea-
turing the formation of regular or chaotic structures, pe-
riodic waves, shocks and fronts, and “fingering” phe-
nomena; this pattern formation has attracted many
physicists, mathematicians, and engineers toward the
field of thin films.

Importantly the modern and emerging areas of mi-
crofluidics and nanofluidics naturally call upon tech-
niques associated with thin fluid films. Thus the entire
area is currently thriving with new discoveries and appli-
cations occurring almost daily. Almost every issue of
journals in the fields of physics, applied mathematics,
and engineering will contain at least one article featur-
ing thin films. In parallel with technologically important
applications, the techniques available to tackle the non-
linear equations that arise have dramatically improved.
These involve approaches based on asymptotic expan-
sions and perturbation theory complemented by accu-
rate and efficient numerical schemes capable of repro-
ducing experiments often both quantitatively as well as
qualitatively.

Flows of thin fluid layers spreading on solid surfaces
have a distinguished history having been studied since
the days of Reynolds, who was among the first to exam-
ine lubrication flows (Reynolds, 1886). Careful experi-
ments by Beauchamp Towers in 1883 and 1884
prompted Reynolds to create what we now call “lubri-
cation theory,” which, subsequently, has been widely
used to study thin film flows. This early interplay be-
tween theorists and experimentalists has remained a vi-
tal theme in the development of the subject with many
instances of modeling advances motivated by careful ex-
perimentation. It is interesting to note that the great suc-
cesses of lubrication theory and the technological ad-
vances that it would create were not foreseen at that
time and indeed were partially dismissed. In fact, the
whole approach did not meet with a universal welcome:
the short letter to the editor of “The Engineer,” Febru-
ary 1884 (see Appendix A), gives one a flavor of the
time; little did that letter writer know to what ends that
experiment and the ensuing theory would be put.

A flavor of the range of applications for which thin
film flows are of importance can be gleaned from the
many targeted reviews in which they feature. Notable
applications and reviews are for complex coating flows,
where a thin film adheres to a moving substrate (Wein-
stein and Ruschak, 2004), in engineering applications
such as distillation units, condensers and heat exchang-
ers, microfluidics as covered by Stone et al. (2004) and
Squires and Quake (2005), and microelectromechanical
devices, as well as nanotechnological settings (Eijkel and
van den Berg, 2005). Other important applications of
thin film theories are in geophysical settings, for in-
stance, in gravity currents (Huppert, 2006), mud, granu-
lar and debris flows, snow avalanches (Ancey, 2007), ice
sheet models (Baral et al., 2001), and lava flows (Grif-
fiths, 2000). Biological and biophysical scenarios, for in-
stance, in lung airways and linings (Grotberg, 1994,
2001), in flexible tubes (Grotberg and Jensen, 2004),
tear-film flows (Shyy et al, 2001), and bioadhesion
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FIG. 1. Wave formation in thin film flows over spinning disks.
The left panel shows well-defined regular spiral waves, which,
at higher rotation rates, break down into an assembly of wave-
lets, as shown in the right panel. From Aoune and Ramshaw,
1999.

(Gallez and Coakley, 1996) also abound with thin films.
There is also considerable mathematical interest in the
analysis of thin film equations themselves as discussed
by Myers (1998). Then, of course, there are connections
with the area of wettability and the spreading of fluid
over substrates by de Gennes (1985) and more recently
by Bonn et al. (2008).

Over the past two decades, work has focused prima-
rily on the dynamics of films driven to flow by various
forces such as gravity, centrifugation, capillarity, ther-
mocapillarity, and intermolecular forces over smooth or
structured and impermeable or porous surfaces possibly
in the presence of evaporation or condensation. These
studies which have included flowing liquid sheets and
flows involving so-called “moving contact lines” use
modeling, asymptotic methods, numerical simulations,
and direct experimentation to elucidate the variety of
traveling-wave, rupture, dewetting, and fingering insta-
bilities that the film can exhibit in these situations. The
effect of having localized heating and chemically hetero-
geneous substrates to manipulate and control the flow of
the film and to overcome limitations in the pattern
length scale, which are set by instabilities inherent to the
flow, has also been studied.

Much of the material up to the mid-1990s was re-
viewed by Oron et al. (1997); since then, progress in thin
film research has been rapid. In the present review, we
look back at the most prominent developments in the
thin film area since the work of Oron et al. (1997). We
delineate our review into how the films are driven and
we structure our discussion accordingly. Films subjected
to body forces such as centrifugation and gravity often
exhibit interesting dynamics. In these cases, which are
reviewed in Sec. III, film destabilization is often dra-
matic and may, in certain instances, be inertially driven.
In Fig. 1, one sees that the flow of thin films over rapidly
rotating disks at high rotational speeds is accompanied
by the formation of large-amplitude waves. These waves
are essentially axisymmetric near the disk inlet but be-
come unstable to azimuthal disturbances with increasing
radial distance, leading to the formation of a region of
apparently disordered ripples further downstream. The
large-amplitude waves engender an intense mixing envi-
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FIG. 2. Experiments of a water-ethanol mixture flowing down
an inclined plate with increasing inertial influence; the Rey-
nolds numbers are 16 and 45 in the left and right panels, re-
spectively. These results demonstrate the development of
noise-driven large-amplitude three-dimensional waves in fall-
ing films. From Alekseenko et al., 1994.

ronment on the surface of the disk. This has technologi-
cal implications and has been exploited by Matar et al.
(2006) for a class of novel chemical reactors. Related to
this is the commonly observed “windscreen flow,” which
involves a thin film flowing down an incline at moderate
Reynolds number, as shown in Fig. 2. Inertia is, once
again, important here and experiments demonstrate
strongly coherent structures developing during the flow
and ultimately three-dimensional waves. Despite the
highly complex flow structures, recent advances and im-
provements in both theoretical and numerical tech-
niques now allow one to capture this complex behavior
within the context of a thin film model (Scheid et al.,
2006).

Inertia, however, is not necessary in order to create
patterns and interesting dynamics. In fact, thin film in-
stabilities occur even in regimes where inertia is irrel-
evant. These may be driven by body forces, which may
be electrostatic in nature, for instance, and may feature
multilayers as shown in Fig. 3. Here pattern formation
occurs in a polymeric bilayer sandwiched between two
electrodes and subjected to a voltage difference. The in-
terface separating the two immiscible layers is suscep-
tible to a linear electrohydrodynamic instability which
leads to the creation of ridges in the nonlinear regime.
The size of the remarkably periodic structures obtained
is controllable and is in the range of 100 nm; this has
applications in the manufacturing of semiconductors and
microelectronics (Rockford et al., 1999; Schaffer et al.,
2000, 2001; Lin et al., 2001; Morariu et al., 2003).

Interesting thin film dynamics are also brought about
by surface forces, wherein surface tension and forces
arising due to its variations play a key role. An example
of this is the motion of a film driven by thermocapillar-
ity: as surface tension is temperature dependent one
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FIG. 3. (Color online) Electrohydrodynamically induced pat-
tern formation in a polystyrene/polylmethylmethacrylate sys-
tem using a topographically structured electrode showing an
atomic force microscopy image of five replicated lines and a
scanning electron microscopy image of the PMMA structure
left behind after the polystyrene phase has been removed us-
ing cyclohexane. From Morariu et al., 2003.

finds that thermal gradients drive flow. In certain cases,
such films are driven to climb, by differential heating,
against the action of gravity and exhibit the formation of
“Lax” and undercompressive shocks (Miinch and Ber-
tozzi, 1999; Schneemilch and Cazabat, 2000a), as shown
in Fig. 4. In cases wherein the thermocapillary-driven
interfacial stress greatly exceeds gravitational forces, the
shock located at the advancing contact line is vulnerable
to perturbations in the spanwise direction that grow to
form fingerlike structures, also shown in Fig. 4. The
emergence of a detailed understanding of these shock
mechanisms and finger development provides a good il-
lustration of the positive effects that interaction between
experimentalists and theorists can have. We review this
topic in Sec. IV.

Despite the presence of small inertial contributions,
even very thin films are vulnerable to a wide range of
instabilities and exhibit rich and interesting dynamics
and pattern formation; these cases will be reviewed in
Sec. V. As shown in Fig. 5, sufficiently thin films
bounded from below by a solid substrate of relatively
low wettability undergo a dewetting instability (Becker
et al., 2003). At film thicknesses of order 1000 A, long-
range intermolecular forces become operative and drive
film rupture that is stabilized at length scales of order
10-100 A by short-range repulsive forces. This leads to
the development of the pattern shown in Fig. 5 consist-
ing of “holes” and discrete droplets connected by ultra-
thin films in which a balance exists between the short-
and long-range forces. Careful numerical simulations by
Becker et al. (2003) generated patterning that gives both
qualitative and quantitative agreement.

A degree of complexity arises due to the presence of
chemicals in the liquid layers. A paradigm is provided by
the spreading of surface-active agents, “surfactants,”
present either as contaminants or by design as additives,
on thin liquid films. In these cases, the driving “force”
for motion and the concentration gradients evolve and
are strongly coupled to the flow field through the depen-
dence of the surface tension on the level of contamina-
tion. These flows are also accompanied by complex pat-
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contact line

FIG. 4. Pattern formation in thermally driven thin climbing
films. Top: An experimental image of the developing double
shock structure showing a rising film driven by a thermal gra-
dient. The leading “shock” is located at the leading contact
line and, behind it, a Lax shock is developing. From
Schneemilch and Cazabat, 2000a. Bottom: An image from the
experiments using PDMS showing a fingering instability at the
rising capillary ridge. The film is of the order of a micron thick
and the rings represent interference patterns, utilized to give
the film height; the peaks in thickness at the finger tips are also
notable. From Cazabat et al., 1992.

tern formation. Over the past decade, such flows have
become of interest in connection with biomedical appli-
cations such as surfactant replacement therapy as a
method of treatment for prematurely born neonates suf-
fering from respiratory distress syndrome (Grotberg,
1994). Surfactant concentration gradients give rise to
surface tension gradients and, in turn, to Marangoni
stresses (Edwards et al., 1991), which drive the formation
of fingering structures. Examples of these patterns are
shown in Fig. 6 depicting the phenomena that accom-
pany the spreading of drops of surfactant solution
(C;,E p in this case) of different concentrations em-
placed on clean thin films. The characteristics of the fin-
gering phenomena depend critically on the thickness of
the film upon which the drop is deposited and on
whether the concentration of the surfactant solution is
above or below the critical micelle value. Recent mod-
eling provides qualitative trends in line with the ob-
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FIG. 5. (Color online) Dewetting of ultrathin films: AFM im-
age of holes in a 4.9 nm polystyrene film (left) and the result of
a numerical simulation of a dewetting film (right); the maximal
height is 12 nm above the hole ground. From Becker et al.,
2003.

served patterns and unmasks the mechanism for finger-
ing (Edmonstone, Craster, and Matar, 2006); this is
covered in Sec. VI.

The depictions of the complex dynamics presented in
Figs. 1-6 cover complex interfacial waves, patterning,
dewetting, and fingering and give one a flavor of the
range of possible behaviors. The presence of the de-
formable interface that bounds the film (and which, in
cases involving multilayers, separates several layers of
immiscible fluids) complicates the direct modeling of in-
terfacial flows since the solution of the equations gov-
erning the flow must also include the precise location of
the interface. Fortunately, as we shall see in the follow-
ing section, it is possible to exploit disparities in the
length scales arising naturally in thin film flows: the lat-

droplet

thinned region

FIG. 6. Experimental photographs of surfactant-induced
spreading using C,E (. The film thickness is held fixed at ap-
proximately 120 nm and the surfactant concentrations are 0.1,
0.25,0.5, 1.5, 5, and 10 cmc in panels (a)—(f), respectively. Here
cmc stands for the critical micelle concentration as discussed in
Sec. VI.C. The thinned region, which straddles the surfactant
leading edge and the droplet region is shown in (d). From
Cachile, Schneemilch, et al., 2002, and Hamraoui et al., 2004.
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eral length scales are much larger than the vertical ones
giving rise to small aspect ratios that provide the small
parameters for perturbation expansions. This, in turn,
forms the basis of lubrication theory, which has been
used extensively in the modeling of thin film flows.
Lubrication-based theories involve the reduction in the
Navier-Stokes equations through a rational asymptotic
approach to more tractable yet highly nonlinear partial
differential equations, still capable of capturing the
dominant physics. Although a majority of work over the
past decades has focused on the analysis of a single evo-
lution equation, in recent years the field has moved to-
ward the study of thin film flows governed by a system of
coupled evolution equations for the film thickness and
other scalar fields.

As mentioned above, we take our motivation from the
examples shown in Figs. 1-6 and construct our review on
the basis of the driving forces. In Sec. II, we provide a
brief overview of the formulation of typical evolution
equations and a discussion of scalings. In Sec. III, we
turn to flows that are driven by body forces in the pres-
ence and absence of inertia. These involve both the dy-
namic wave motion of Figs. 1 and 2 and the patterning
of Fig. 3. Body forces can be complemented, or re-
placed, by driving forces due to surface effects, be they
at the fluid interface, surface tension, or at the substrate,
and wettability effects, as reviewed in Secs. IV and V,
respectively. Section VI covers surfactant-driven flows,
while Sec. VII covers studies that have investigated the
effect of the bounding walls’ properties, such as topog-
raphy, porosity, and flexibility, on thin film dynamics.
Section VIII provides concluding remarks and a look at
future work in thin film research.

The present work will not contain a review of moving
contact lines; this topic and associated extensive body of
literature will be the subject of another review by Bonn
et al. (2009). Issues to do with the necessary relief of
singularities at moving contact lines, such as the use of
“slip” models (Miinch and Wagner, 1999; Fetzer et al.,
2005; Blossey et al., 2006) and precursor layers, for in-
stance, will be discussed as they arise within the context
of model formulation and instabilities in flows down in-
clined planes and in differentially heated films (Spaid
and Homsy, 1996; Kondic and Diez, 2001). Dewetting of
films is related to the presence of contact lines, however,
the review in Sec. V will deal with situations in which
the dynamics are driven by antagonistic forces so that
dewetting fronts leave behind an ultrathin film rather
than a bare substrate. Other topics that will not receive
an in-depth review here are flows involving viscoelastic
fluids (Spaid and Homsy, 1996; Herminghaus et al., 1998;
Zhang et al., 2002, 2003a; Blossey et al., 2006) viscoplas-
tic media (Balmforth er al, 2006), related thixotropic
flows (Huynh et al., 2005), and recent work on particle-
laden thin films (Zhou et al., 2005), films consisting of
binary mixtures (Geoghegan and Krausch, 2003; Clarke,
2004, 2005) or thin films overlain by wrinkled skins
(Huang and Suo, 2002b), complex materials such as lig-
uid crystals (Ben Amar and Cummings, 2001;
Schlagowski et al., 2002; Cummings, 2004; Poulard and
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Cazabat, 2005; Carou et al., 2006, 2007), and gels
(Daniels et al., 2005). We shall return to these topics
when discussing future research directions in Sec. VIII.

II. FORMULATION

The dynamics of a flowing liquid film are potentially
difficult to model. (Below we use the terms “liquid” and
“fluid” interchangeably even though the review deals
with liquids only and not gases.) In principle, one has to
track the interfacial position while simultaneously solv-
ing the full governing fluid equations and any other rel-
evant equations to do with, say, electrostatic forces, tem-
perature, or chemical concentration. This is arduous
with numerical schemes and unnecessary provided the
flow falls into the class of problems treatable using thin
film, lubrication-based models. The essential idea of
these models is to “filter out” the explicit dependence on
the depth coordinate and yet distill all essential physics
into an evolution equation for the interfacial position
coupled to temperature, chemical, or other fields. To il-
lustrate the application of lubrication theory, we con-
sider a canonical example: flow downslope.

Many of the most up-to-date models involve bilayer
systems potentially coupled to evolving interfacial fields.
With this in mind, we provide a concise description of
the methodologies underlying the formulation for a sys-
tem comprising two, superposed thin liquid layers. The
relevant governing equations and boundary conditions
presented below allow for the modeling of thin film dy-
namics taking into account a wide range of effects. This
section provides, therefore, an exposition of the math-
ematical foundations underpinning the remainder of the
review, which generalizes the analogous derivation by
Oron et al. (1997).

We restrict ourselves to the derivation of relatively
simple models in this section, which serve as illustrative
examples. More complicated models, involving effects
related to phase changes, electrostatic fields, and surfac-
tant, for instance, are dealt with “locally” in each section
where these effects appear, with appropriate cross refer-
encing to the evolution equations derived in this section.

A. Governing equations

As shown in Fig. 7, the fluid bilayer is bounded from
below by a solid substrate that may be potentially flex-
ible, rough, and permeable and from above by a free
surface; the mean position of this substrate is inclined at
an angle 6 to the horizontal. An essentially inviscid gas
overlies the upper free surface of the bilayer. The fluids
considered are incompressible but may be potentially
non-Newtonian materials with a finite yield stress (al-
though we make references below to “liquid-liquid” and
“gas-liquid” interfaces and not consider non-Newtonian
effects). The upper (lower) layer is characterized by a
characteristic viscosity wu; (u,) and density p; (p,), and
the gas-liquid interface and liquid-liquid interface are
endowed with interfacial tensions o; and o, respec-
tively. We note that both oy and o, can depend on the
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7=h 2(X,t) +B(x) z=h I(x,t) +B(x)

FIG. 7. A schematic of bilayer flow down an incline. The dot-
ted lines represent the locations of the unperturbed interfaces.

interfacial concentration of surfactants, if present,
and/or temperature through equations of state. As a re-
sult, the thin film dynamics will be coupled to a surfac-
tant transport equation and/or an energy equation. The
formulation discussed below will account for the pres-
ence of surfactant in preparation for the surfactant-
induced effects that will be considered in detail in Sec.
VI; thermal effects will be reviewed in Sec. I'V.

The two-dimensional dynamics of the bilayer are
modeled using a rectangular coordinate system (x,z),
where x and z denote the downslope and normal coor-
dinates, as shown in Fig. 7, respectively. The solid sub-
strate is located at z=B(x), the liquid-liquid interface is
at z=h,(x,t)+B(x), and the gas-liquid interface is lo-
cated at z=h(x,t)+ B(x), where B(x) is a function de-
scribing the topography of the solid substrate. The un-
disturbed thickness of the lower layer is H,.

The hydrodynamics of the bilayer are governed by the
equations of momentum and mass conservation, which
are expressed by

pi(u;+u;-Vu) =—-pg-V(p;+ ¢) + V- T, (1)

Vow,=0 (i=1,2), (2)

as shown in many texts on fluid mechanics (Batchelor,
1967; Bird et al., 1987). There is no summation implied
by the repeated indices either here, or later, in this pa-
per. We assume the fluids to be incompressible as most
thin film applications are in this limit. The 1 and 2 des-
ignate quantities associated with the upper and lower
fluid layers, respectively. We will use 0 to designate a
quantity associated with the overlying gas. The ¢ sub-
script, and later, the x and z subscripts represent partial
differentiation with respect to time and x and z, respec-
tively, unless stated otherwise.

In these equations, p; denote the (constant) densities
of the two fluids and g is the gravitational acceleration
vector; w;=(u;,0,w;) (i=1,2) are the two-dimensional ve-
locity fields, wherein u; and w; denote their downslope
and normal components, respectively; p; represent the
fluid pressures; ¢; are conjoining pressure functions,
which take the form of energy per unit volume terms in
the momentum conservation equations to account for
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the presence of intermolecular interactions between the
various interfaces; and T, is the stress tensor

Ti:Tl"i‘Ml‘,

where 7; is the deviatoric part of the total fluid stress
tensor, which is related to the rate of strain tensor &;
=(Vu;+ VuiT )/2 through a constitutive relation, 7;=7,(&;).
M, are stress tensors related to an externally applied
body force, which in the present review will be that due
an electric field; hence the M; are defined in Sec. III.C as
Maxwell stress tensors (Saville, 1997).

Solutions of Egs. (1) and (2) must be obtained subject
to the following boundary conditions. At the lower
boundary, z=B(x), we have the following conditions for
the case of a rigid, yet potentially permeable, solid sup-
port:

bnw' Vll2=0, w-n, =W, 3)

where n,, and t, denote the outward pointing normal
and tangential vectors orientated relative to the solid
substrate. Here the first condition represents a Navier
slip model (Dussan V and Davis, 1974; Greenspan,
1978), which accounts for the possibility of slip along the
substrate wherein b is the slip coefficient. In the current
context, the use of slip models or, alternatively, postulat-
ing the existence of a so-called “precursor” layer (de
Gennes, 1985) (due, for instance, to vapor condensation
or the action of intermolecular forces) is a device to re-
lieve the singularity that arises at a moving contact line.
These issues will receive limited attention in the review
(see, for instance, Sec. V.E) since an up-to-date and com-
prehensive discussion has been provided by Bonn et al.
(2009). W is the average speed in the normal direction to
the substrate of the flow in the potentially permeable
solid beneath z=B(x). Note that the no-slip and no-
penetration conditions, u,=w,=0, for a smooth flat im-
permeable substrate are recovered by setting b=W=0
and B(x)=0.

At each interface, z=h;(x,t)+ B(x), we have the kine-
matic condition

llz‘tw—

D
E[z —(h;+B)]=0, 4)

where D/Dt represents a material derivative. The fol-
lowing stress conditions are taken at interface i:

Jielue)i+ ([pJA = [T]) -m;= kjom; = Vio;, i=1,2. (5)

These equations describe the traction at each interface
and by taking the dot product with the normal or tan-
gential direction gives the normal and shear stress bal-
ances, respectively, at each interface. Interfacial quanti-
ties with subscript 1 (2) are taken to be at the gas-liquid
(liquid-liquid) interfaces. The notation [ ]; corresponds
to a jump in a quantity across interface i (e.g., [ql,=q>
—qi, where q is an arbitrary vector quantity). In Eq. (5),
Jie 1s the mass flux normal to the interface and for evapo-
ration or condensation we would also require coupling
to an energy equation [see Eq. (C2) of Appendix C (Bu-
relbach et al., 1988)]. The terms involving the surface
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tension o; are readily interpreted. The first term on the
left-hand side of Eq. (5) kom; is the surface tension
force acting in the normal direction due to the curvature
k;. The surface tension along the interface can, of
course, be variable, and the surface stress generated by
such variations appears within the equation as Vo;. The
surface gradient operator is V,=(I-mn;n;)-V in which I is
the identity tensor, and this operator denotes differen-
tiation along the interface. The term [u,];=(u;—uy)
—(uy—uy;) represents differences between the relative
velocities at the gas-liquid interface and [u,],=(u,—u,,)
—(u;—uy,) is the analogous term for the liquid-liquid in-
terface; here u,; and uy, denote the velocities of the gas-
liquid and liquid-liquid interfaces, respectively. Thus the
velocities are not, in general, continuous across the in-
terface due, for instance, to evaporation or condensa-
tion, which will be considered in Sec. IV.A. The outward
pointing unit normal and the tangent are given by m;
=(~[h;+B],, 1)/ (1+[h;+B1)"? and t;=(1,[h;+B])/(1
+[h;+B]*)'2, respectively, and the total curvature is ex-
pressed by k;=—V,-n,.

As mentioned above, the surface and interfacial ten-
sions of liquids depend on temperature, and this is im-
portant in Sec. IV and/or the concentration of surfactant
at the interface. In this section, we consider the interfa-
cial concentrations of surface active species at the rel-
evant interface I'; (i=1,2), which satisfy the following
transport equations:

T+ V- (ul) + (w;-m)T(Vy-m) =DV +J;,  (6)

with i=1,2. Here wu;;=(I-n;n;)-u; is the velocity along
interface i, D; denotes the surface diffusion coefficients,
and J; are “sorptive” fluxes, which describe adsorption
and desorption at or from the interface i. A derivation
of this equation has been provided by Stone (1990) and
some recent clarification of this derivation was provided
by Wong et al. (1996), Cermelli et al. (2005), and Pereira
et al. (2007). In particular, the time derivative in Eq. (6)
should be interpreted as that which follows the interface
in a direction normal to it. Equation (6) is a classical
advection-diffusion equation in which the third term on
its left-hand side (u;-mn;)I";(V,-n;) accounts for transport
associated with the stretching of the interface. As shown
below, in the case of thin films, this term does not enter
the problem at leading order. A cursory impression is
that Eq. (6) is passively enslaved to the hydrodynamics.
However, the surfactant concentration I'; is not decou-
pled from the flow field and its influence is felt through
the surface tension o;, which is a function of I';, and thus
affects the interfacial shear of the fluid layer through the
surface tension gradient term V,o; in Eq. (5).

Several equations of state o;(I";) are used in the litera-
ture: the nonlinear equation of state by Sheludko (1967)
or those of Frumkin and Langmuir, as detailed by Ed-
wards et al. (1991). In practice, many modeling studies,
for simplicity, adopt a dilute assumption with the surface
tension being linearly dependent on surfactant concen-
tration (Jensen and Grotberg, 1992; Warner et al.,
2004a).
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B. Scaling

To progress it is essential to condense the equations
by identifying nondimensional groupings. It is also es-
sential to quantify the long-thin nature of the flow. Often
in experiments, for instance, those of Fig. 6, natural
length scales will present themselves: the droplet being
of the order of millimeters across and the film being
micrometers thick. These then give a characteristic
length scale £ along the film which is much greater than
the characteristic thickness H. The absolute scale of the
flow itself is immaterial: instead of the spreading surfac-
tant droplet we could have chosen the example of the
spreading lava dome at Mt. St. Helens which ca. 1980
had a length of the order of 300 m and a height of 30 m.
Although not so disparate as the surfactant droplet, the
discrepancy of scales still allows one to introduce a small
parameter € as the aspect ratio e=H/L. Since this is
small we can use this knowledge to identify those terms
that vary slowly across and along the fluid layer and thus
can be discarded. This then gives a quantifiable and le-
gitimate way of reducing the equations to a simpler
form; it also then becomes clear when the theory will
breakdown.

If no obvious length scales appear in the problem
(e.g., in a case in which the dynamics of an initially uni-
form film are considered) then one can use the wave-
length of typical interfacial disturbances to define £. The
lubrication-based theories wherein the wavelength is
large relative to the thickness lead to the generation of
so-called “long-wave” models; it is useful to remember
that this is the origin of that phrase and that the predic-
tions of these models should be treated with caution for
short waves.

We render x and z, 4 dimensionless using the charac-
teristic length scale £ and height scale H=H,, respec-
tively,

(z,h;) = H(fﬁi), (7)

where the tilde denotes dimensionless quantities. These
scales are used, together with a typical velocity scale U,
which emerges from the analysis and depends on the
nature of the flow. We will demonstrate how this is done
in Sec. II.C.2; for now it remains undetermined,

x=Lx,

U= Uﬁi, (w;, W) = GU(WI',WL‘)- (8)

This follows from balancing terms in the mass conserva-
tion equations u;+w;,=0 (i=1,2). From the velocity
scale, a typical time scale also emerges: 1=(L/U)L.

The pressure and stresses must also be nondimension-
alized and we scale the pressure on P,

(Pis ) = P(pi, bi), )
where P may reflect a balance between the pressure gra-
dient and viscous shear P=u,U/L/H?, which is appropri-
ate in situations wherein inertia is negligible. For flows
involving significant inertial contributions, the scale P
=p,U? is more relevant, as discussed in Sec. IL.D. In Egs.
(13) and (14), we therefore leave the pressure scaling as
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P temporarily. The dimensionless stresses are given by

(7, M) = (Ul H) (7, M)).

Similarly one must nondimensionalize any auxiliary or
interfacial equations. In order to nondimensionalize the
surfactant transport equation, given in Eq. (6), the natu-
ral characteristic quantity is the concentration I',,, which
represents the interfacial concentration of surface active
species at saturation, for which the interfacial tensions
attain their (constant) minimal values oy, (i=1,2); the
spreading coefficients S;= o;)— 0;,, denote the difference
between the maximal and minimal values of the interfa-
cial tensions gy, and o;,,. Thus the surface tensions and
concentrations are scaled on these characteristic spread-
ing pressures S; and concentrations, I',,, respectively,

0= O+ 865, Ti=T,[;, (10)

o= &i(f‘ ;). There are also the mass and surfactant fluxes
for which the natural scalings are

Jie= (ol H)fiy,  Ji= (T, UIL)T,. (11)

In cases where evaporation or condensation effects are
important, discussed in Sec. IV and Appendixes B and
C, the mass flux will feature quite prominently. One then
nondimensionalizes j;, using thermal properties, defined
in Appendix C: u, in Eq. (11) is replaced by N\, AT/ La;
here Ay, AT, and La denote the film thermal conductiv-
ity, an appropriate temperature difference, and the la-
tent heat of vaporization, respectively.

These scalings and nondimensionalizations must then
be substituted into the mass and momentum conserva-
tion equations to yield the following dimensionless
equations (after suppressing the tilde of the flow vari-
ables which can now be discarded):

uix+wiz:0’ (12)
2
Pi Pi
e— Re(u; + uy +wit;,) = —G - ( )(Pi + i)y
P2 P2 L polh
+ €Tixx,x + Tizx,z> (13)
Pi
g_ Re(Wl't + Lliwl'x + Wl'Wiz)
%)
PLG cot(6) ( il )(p &)
=—€e—Gco - it o
I Lpld )
+ ezﬁxz,x + €Tjzz 25 (14)

with i=1,2. Here 7, T;,, Tj;,, and 7;,, denote the com-
ponents of the tensors 7; (i=1,2). Two fundamental non-
dimensional groupings emerge: Re=p,U{H/u, is the
Reynolds number and G= p,gH* sin(6)/ u,4 is a dimen-
sionless parameter which reflects the relative signifi-
cance of gravitational to viscous forces (its product with
the Reynolds number produces a “Galileo” number).
Note that we have implicitly made all assumptions asso-
ciated with the “leaky dielectric” model (Saville, 1997)
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and assumed further that the dielectric constants in both
fluids are constant. As a result of these assumptions, the
electric field effects enter the problem in the interfacial
conditions; this is discussed again in Sec. III.C. As a re-
sult, the components of the tensors M; do not appear in
Egs. (13) and (14).

The dimensionless boundary conditions at z=B5(x)
=B(x)/H [Eq. (3)], to leading order in €, are

U — :8u2z = Os Wy = W? (15)

where B=b/H. The dimensionless kinematic boundary
condition at each interface z=h;(x,t)+B(x), from Eq.
(4), is given by

hig+ wis(h; + B) = wis, (16)

where (u;,w;,) is the interfacial velocity at interface i.
The advent of mass loss from an interface due to, say,
evaporation, as in Appendix C [see Eq. (C9)], results in
an additional term in the kinematic condition involving
the mass flux j,.

The dimensionless tangential and normal components
of the stress condition at the interfaces are found by
taking the dot product of Eq. (5) with t; and n;, respec-
tively; the exact expressions are rather cumbersome and
have therefore been relegated to Appendix B. In Eqgs.
(B1) and (B2), two nondimensional groups appear: a
Marangoni number M;=S/H/u,UUL, representing the
relative magnitude of surface-tension-gradient-driven
Marangoni stresses to viscous drag, and an inverse cap-
illary number C;= w,U/ oy, representing a dimensionless
measure of viscous to capillary forces. Note that in the
absence of surface tension gradients (for, say, zero ther-
mal and/or surfactant concentration gradients), ;9=
=o0;, then S;=M;=0 and no Marangoni stresses are
present. In this limiting case, C;= u,U/ oy

The dimensionless transport equations for the surfac-
tant interfacial concentrations I'; (i=1,2), when nondi-
mensionalized also yield a dimensionless group, Pe;
=UL/D;, which denotes a Péclet number that reflects
the relative significance of convective to diffusive trans-
port. These equations are lengthy and have also been
relegated to Appendix B. Next, we show how the small
value of € can be exploited in order to derive models for
the interfacial dynamics using appropriate perturbation
theory.

C. Negligible inertia: Lubrication theory

Here we focus on situations wherein inertia does not
play a crucial role. The key parameter e="H/L, the film
aspect ratio, is often referred to as the “lubrication pa-
rameter” and is taken asymptotically small so as to form
the basis of perturbation expansions. We employ this
lubrication theory to derive the reduced set of equations
encapsulating the dominant physics. We take advantage
of the small parameter e<1 and expand the variables in
powers of € as follows,
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u;=up+euy+ - (i=1,2), (17)
and similarly for w;, p;, ¢,, 7;, etc. It is therefore implicit
in the lubrication approximation that topographic varia-
tions and free surface slopes are of order ¢, although this
can be relaxed and we return to this in Sec. VILA. It is
worth noting that in several places within this review,
notably in Fig. 3, one sees dramatic and sharp changes in
the free surface profile or in the base when discussing
topographic changes with sharp steps as in Sec. VII. Sev-
eral computations using lubrication theory also show
sharp height changes such as the shock formation in Sec.
VI. These features may appear to violate the small-slope
assumption implicit in lubrication theory but this may
not be the case when the solutions are viewed in dimen-
sional coordinates. Additionally, comparisons between
the predictions of the lubrication equations and those of
the Stokes flow equations and experimental data (Ma-
zouchi and Homsy, 2001; Gaskell et al., 2004) show that
lubrication theory is in error by 15% in the most ex-
treme case when the fluid film is as thick as the sharp
step topography over which the fluid is moving.

Assuming that the Reynolds number Re is O(1), at
most, then the inertial terms enter the problem at O(e)
and so can be discarded. However, in Secs. III.A.2 and
II1.B, we consider thin films falling under gravity and
flowing over spinning disks in which inertia becomes im-
portant. In those cases, a combination of boundary-layer
theory and integral methods are used to derive evolu-
tion equations to describe the flow. We outline that ap-
proach in Sec. II.D.

To leading order in €, the governing equations are ex-
pressed by (following the suppression of the 0 sub-
scripts)

uix+w,~z=0, i:1,2, (18)

pi
—g- (pi+ &)+ Tizx,z = 0,
P2

egg cot(6) + (p; + ¢, =0. (19)
2

A number of research articles begin from this point or
even with these equations in dimensional form, presup-
posing that the reader is aware of the assumptions and
balances that lead to them. The dimensionless stress
boundary conditions at z=#h;(x,f)+B(x) [Egs. (B1) and
(B2)] simplify as a result of the perturbation expansion
and, at leading order, are given by

Jiueli =7 )i — My Ji = — Moy + [ + Bloy,).
(20)
It is important to emphasize that oy, is evaluated at the
interfaces and so, as it appears later, it will not reintro-
duce explicit z dependence into the evolution equations.

Also the normal stress jump across the interfaces is
given by
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[pli=- (62/\41'01' + g)(hi + By

L

- ezjie([w]i - (hl + B)x[u]i)’ i= 1’2 (21)

It might appear completely inconsistent to retain terms
premultiplied by €G cot(6),eM,,e/C; in equations
claimed to be valid at O(1). The €j;, term in Eq. (21)
also looks incongruous but needs to be retained as
evaporative terms enter through this term. Similarly, the
magnitude of G, M, and C may be such that these factors
are O(1) and it is therefore important to retain associ-
ated terms at this stage; depending on the nature of the
flow, the appropriate decision can then be made as to
whether or not to discard these terms.

The surfactant transport equation [Eq. (B3)] also sim-
plifies and at leading order is given by

1
_Fixx +Ji

i+ (uily), = Pe.
1

i=1.2. (22)
The conditions at z=8B(x) and the kinematic boundary
conditions at z=h;+B(x) remain unchanged from Egs.
(15) and (16). Next, we generate the evolution equations
for the case of a bilayer. We then demonstrate how a
variety of evolution equations used in the literature to
model thin film flow can be obtained from the bilayer
equations as limiting cases.

1. Two-layer systems

We assume the bilayer to be Newtonian, and we re-
strict the derivation to cases wherein electrostatic and
phase change effects are absent M;=j;,=0, and to imper-
meable substrates W=0. Several derivations of the bi-
layer evolution equations are in the literature, the most
relevant being that of Danov, Paunov, Alleburn, et al.
(1998) who treated a bilayer evaporative system and
those by Bandyopadhyay er al. (2005), Fisher and
Golovin (2005), and Pototsky et al. (2005) who included
effects of long- and short-range intermolecular forces.

The Newtonian constitutive relation leads to

Ui, + EZWix>
B

2ew;,

< 2eu;,

i = Ui, + GZWDC

and so to leading order
Tixz = Tizx = MUz + 0(62), i:1,2, (23)

where (my,my) = (u1/ uy,1).

Integration of the second equation in Eq. (19) and
application of the normal stress boundary conditions at
z=h;+B (i=1,2) yield the following expression for the
pressure in fluid 1:

p1t d)] = fﬂg COt(G)(h] + B_ Z) - (62M]Ul + é)
P2 Cy

X(hl + B)xx + ¢1|z:h1+B7 (24)

together with a similar expression for p,,
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P2+ ¢y =€G cot(0)(h, + B—z) + e%g cot(8)(hy — hy)
2

e
— (Gle(Tl + C_>(l’l1 + B)xx
1

e
- (62/\/120'2 + C_z)(hz +B)ee+ $oleonyi

(25)

The fluid pressure comprises hydrostatic terms, which
are proportional to G and capillary terms arising from
interfacial curvature proportional to (4;+B),,. The pres-
sure in the gas has been set to zero without loss of gen-
erality.

The downslope components of the velocity field in flu-
ids 1 and 2, u; and u,, are obtained via integration of the
first equation in Eq. (19). Here the Newtonian constitu-
tive relation and the tangential stress conditions at z
=h;+B are required as are the conditions at z=25, given
by Egs. (23), (20), and (15). The expressions for «; and u,
thus obtained are lengthy and can be found in Appendix
B. Finally, integration of the continuity equations u;,
+w;,=0 for fluids 1 and 2 between h,+ 5 and h;+13 and
B and h,+ B, respectively, and application of continuity
of velocity and the kinematic boundary conditions [Egs.
(16)] at z=h;+ B yield the bilayer evolution equations,

hy+ Q1+ Qo =0, hy+ Oy, =0. (26)

Here Q, and Q, represent the volumetric flow rates per
unit width in fluids 1 and 2, respectively,

2
O (g h) )+ P
ny

hy—hy
X([p1+ ¢1)e — mG) — 3hy (2B + hy)
1
X([pa+ dli—9) + Sy @2my(hy+ B)
ny

+ hl _hZ)Ml(le + [hl + B]xa'lz)

+ (B + hy)) Mooy + [y + Blo,), (27)
hy+B
Q2=f uydz
B
== 31538+ h)([p2 + boli = G) + 3h22B + hy)

X |:M1(O'1X + [l’ll + B]XO'lz)

+ Mz(a'zx + [h2 + B]XUZZ) - (l’ll — hz)

X([P1+¢1]x—&g>]- (28)

P2

Evaluation of u; and u,, given by Egs. (B4) and (B5), at
the relevant interfaces yields u;; and u,,, which, upon
substitution into Eq. (22), yields evolution equations for
I'; that are fully coupled to Eq. (26). In Egs. (27) and
(28), the functions ¢, are ¢(hy,hy) and ¢,(hy,h,) and
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represent conjoining pressures at the gas-liquid and
liquid-liquid interfaces, respectively, and will be dis-
cussed in detail in Sec. V.

The relevant physics contained in the full Navier-
Stokes equations and interfacial and wall boundary con-
ditions, for thin fluid films, are now contained in Egs.
(26)—(28), which are highly nonlinear, fourth-order,
coupled partial differential equations for /; and #,. So-
lution of these equations yields the leading order dy-
namics and accounts for gravity, capillarity, Marangoni
stresses (due to solutal capillarity and thermocapillarity),
intermolecular forces, viscosity and density stratification,
wall topography, and slip.

2. Single-layer systems

A number of evolution equations in the literature can
now be obtained from Eq. (26). By taking appropriate
limits, we show how this can be done resulting in equa-
tions that describe the dynamics of single thin films in a
variety of different settings. We also discuss how the ve-
locity scale U is deduced using dominant balances be-
tween the relevant forces.

In order to obtain an evolution equation for a single
thin film, one takes the limit #,— A and all subscripted
fluid 1 parameters and variables are set to zero, i.e.,
Q;—0. By dropping the subscript on all remaining pa-
rameters and variables so that h,=h,u,=pu, etc., the
following equation for % is obtained:

h,+ %(3/\4(2/3 +h)(o,+[h + Blo,)

-2h(3B+h)(p + ¢]x—g))} =0. (29)

The bracketed term encapsulates the relevant physics:
the Marangoni stresses are all encompassed in the term
multiplied by M, with surface tension gradients driving
changes in 4; the final term involving G gives the gravi-
tational driving term while the pressure p is given by

p=€Gcot(O)(h+B-z) - <62M0'+ ?)(k + B) -
(30)

The terms on the right-hand side of Eq. (30) represent
hydrostatic pressure, linear in z, and the restoring capil-
lary force due to surface curvature. The conjoining pres-
sure term ¢ in Eq. (29) due to intermolecular forces will
be described further in Sec. V.

Notably, the capillary terms involve high derivatives in
h and this complicates analysis and the numerical solu-
tion of Eq. (29) which, although markedly simpler than
the full Navier-Stokes equations, is a highly nonlinear
partial differential equation containing fourth-order de-
rivatives of 4. It is also worth noting that evolution equa-
tions such as Eq. (29) can be recast in an energy formu-
lation (Mitlin, 1993) with
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d 6F
h=|h——
! [ ox 5hL’

where F is the free energy of the film, given as an inte-
gral over x, and the term &F/h being its functional de-
rivative. This representation is extensively used by Po-
totsky et al. (2005) for two-layer systems.

Once the one-dimensional equations have been de-
duced, it is straightforward to repeat the analysis with
the transverse (cross-slope) direction y added in; alter-
natively, one can recognize that all partial derivatives
with respect to x are replaced by V=(d,,d,) unless a term
is being driven by gravity, say, purely in the x direction
and B(x) — B(x,y), etc. In either case, Eq. (29) can be
recast in the following form:

ho+ g[hz(’jﬁ +h)]+ V- {2(3M(2ﬁ+ WV

+cer(h+B)]—2h(3/3+h)V(p+d)))] =0,

(31)
in which p is given by

p=eGcot(6)(h+B-z)— (é/vu” g)Vz(h +B).

(32)

Equations (31) and (32) represent the starting point for
many analyses involving a single Newtonian fluid layer
in the literature and includes the effects of gravity, cap-
illarity, solutal capillarity and thermocapillarity, short-
and long-range intermolecular forces, slip, and substrate
topography.

At this point, we note that the velocity scale is deter-
mined by the dominant balance that exists between the
driving and retarding forces, which depends on the situ-
ation at hand. There are three cases that are particularly
pertinent for this review: gravitationally-, surface-
tension-gradient-, and capillary-dominated flows, each
with their own characteristic velocity scale.

Gravitationally-dominated flows. Here G in Eq. (31) is
set to unity, which yields the velocity scale U=U,
= pg'H?sin(6)/ p, reflecting a dominant physical balance
between gravity and viscous drag; as a result, Eq. (31)
becomes

2
e SPGB~V | BBV (p+ )| 0.

(33)

with p=e€ cot(8)(h+B-2z)—(€/C,)V*(h+B) (ignoring Ma-
rangoni forces so that M=0 and o=0p) and C,
= pgH? sin(6)/ oy, which is a Bond number reflecting the
relative significance of gravitational to surface tension
forces. This set of scalings is most relevant to Secs. IIL.A
and VIL

Surface-tension-gradient-dominated flows. Marangoni
effects dominate and so M is set to unity giving U=U,,
=SH/uL, reflecting a physical balance between Ma-
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rangoni stresses and viscous drag; here S=o0y-0,, the
maximal difference in surface tension that exists in the
problem. The velocity scaling is most relevant to the
flows discussed in Secs. IV and VI. Equation (31) now
becomes

h+ %[h2(3,8+ ], +V- {2(3(2,3 +h)[Vo+o,V(h

+B)]—2h(3ﬁ+h)V(p+d)))] =0, (34)

in which p=¢G,, cot()(h+B-z)-€(o+0,,/S)V>(h+B),
where G,,=pgHL sin(6)/S. In Secs. IV and VI and Ap-
pendix C, we will use C,, where €/C,,=€0,,/S. Note
that the effects of surface tension variations on capillar-
ity, the final term in p, are often neglected but those of
mean surface tension are kept (as o,/ S>|0| in practice),
so that p=eG,, cot(8)(h+B-z)-€(0,,/S)V*(h+B)
(Jensen and Grotberg, 1992).

The surface tension o depends on temperature and/or
the concentration of surface active species present in the
film through equations of state. In the former case, an
additional energy transport equation must be solved
subject to appropriate boundary conditions; this will be
considered in Sec. IV. In the latter case, Eq. (34) is
coupled to an evolution equation for the surfactant in-
terfacial concentration. The surface velocity u,=u(z=h)
is required,

ug=(h—B+Po,+ 5B ~h2B+h)([p + ¢l ~ G-
(35)

Using this, and generalizing to two dimensions, yields
the following transport equation for I':

r,+V- {F((h—B+,B)VU+%(BZ—h(2ﬂ+h))V(p

+ ¢)>] - %[F(B2 —-h(2B+h))], = PieVZF +J.

(36)

For weak surfactant solubility J, which is a flux of sur-
factant to the interface from the fluid layer, is zero. The
case of soluble surfactants will be considered in Sec. VI.

Capillary-dominated flows. In the absence of surface
tension gradients, the Marangoni number is zero M =0,
and U is obtained by setting €/C=€0/uld to unity: U
=U.=o0H>/ uL3, reflecting the dominant physical bal-
ance between capillary and viscous forces, relevant to
small-scale flows such as those in Sec. V. Here o and u
denote the constant gas-liquid surface tension and the
viscosity of the liquid. Now, Eq. (31) becomes

Ge. K2
hﬁ;[h Bp+n].-V- §(3/3+h)V(p+¢) =0,
(37)

with p=e€G, cot(6)(h+B-z)-V*(h+B) in which G,
= pgH? sin(#)/ € o corresponds to a modified Bond num-
ber, equal to C,/ €, which was defined above.
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TABLE 1. Typical values of physical quantities taken from two vastly differing applications: the flow
of lava domes and the spreading of thin films containing surfactants. The data are from a variety of
sources detailed in Balmforth er al. (2000) and Craster and Matar (2000) and one can obtain slip
length estimates from Fetzer and Jacobs (2007) of 400—600 nm.

Viscosity Density Spreading Height Length Aspect
Parameter (Pas) (kg/m’)  pressure  Diffusivity  scale scale ratio
Silicic lava 10° 2600 160m 400 m 0.4
Surfactant spreading  1072-10? 1000 10 dyn/em 107 cm?/s 10%cem 102cem  0.01

For illustrative purposes, typical material values for
the flow of lava domes and surfactant spreading on a
horizontal flat substrate are given in Table I and the
resulting dimensionless groupings are in Table II. From
these tables, one gets an idea of the typical size and
importance of the different physical processes in these
flows. The effect of hydrostatics in surfactant-driven
spreading case is clearly minimal, as is that of inertia,
justifying the omission of inertial effects in the theory
developed in this section. Surfactant diffusion and capil-
lary effects are also small and a discussion of the impli-
cations of this is presented in Sec. VI.

D. Significant inertia: Integral theory

We have thus far omitted inertia which, according to
Table II, is clearly negligible in many applications. How-
ever, there are other situations where inertia plays a sig-
nificant role, such as falling films and flows over spinning
disks reviewed in Secs. III.A.2 and III.B, examples of
which are shown in Figs. 1 and 2. There are a few nu-
ances versus the inertialess theory which we illustrate
here and demonstrate how integral theory and the von
Karman-Pohlhausen approximation can be used in con-
junction to derive evolution equations that can describe
the dynamics.

We focus on a single Newtonian layer (and drop all
distinguishing subscripts), falling under the action of
gravity as an example of such a system, in the absence of
surface tension gradients, phase changes, electrostatic
and intermolecular forces, and slip. Substrate topogra-
phy is accounted for but the solid is assumed to be im-
permeable; this is reflected by

j=M=¢=B=W=M=0. (33)

We directly use the scalings of Sec. II.LB and Egs.
(12)—(14). The rapid inertial flows are primarily gravity
driven and so, as in the gravitationally driven flows of
Sec. I1.C.2, we set the velocity scale through G=1 hence

U=pgH? sin(A)/ u. The first change from the inertialess
case is that the pressure scaling employed in Sec. I1.C is
inappropriate in the presence of appreciable inertia and
it is replaced by P=plf%; this reflects a balance between
pressure gradients and inertial forces. This change in the
pressure scaling leads to the following rescaling: p
=eRep; as a result Egs. (12)-(14) become the following
boundary layerlike equations:

U +w,=0, (39)
eRe(u;+uu, +wu,)=1-€Rep +u, + 0(€), (40)

€ Re(w, + uw, + ww_) = — ecot(6) — e Re p, + O(€).
(41)

At this stage, one recalls that the Reynolds number is
actually large so a scaled Reynolds number Re is intro-

duced as Re=¢€Re. The leading order momentum equa-
tions are now

I/{E(ut+uux+wuz) =1 —I/l?:ﬁx+uzz+ o(&), (42)

Re p, + ecot() = O(E). (43)

Notably, these are not easily integrated up and the pro-
cedure followed in Sec. I1.C fails.

The boundary conditions follow from Egs. (16), (20),
and (21),

h+uth+B),=w, uzzO(e2),

—~ 1

Rep=——(h+B), +0() atz=h+B. (44)
C

Here we have set C=€C to allow capillarity to play a
role at leading order. Equation (39) and the conditions at
z=B, u=w=0, remain unchanged.

TABLE II. Order of magnitude estimates for the dimensionless parameters relevant to the spreading
of surfactants on thin films based on the values listed in Table I.

€ Re €G,, cot(0) Pe eI,
Form HIL pUH 1 pgH?IS ULID &0,/
Estimate 1072 1079-10"" 10°° 1-10° 1074-102
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Integration of Eq. (43) and application of the normal
stress balance [Eq. (44)] yield

1
p=— cot(@)(h+B-z2)— —=—(h+B),.. (45)
Re Re(C

which is a rescaled version of Eq. (24).

Integration of Egs. (39) and (42) between z=8 and z
=h+DB yields the following equation after making use of
the kinematic boundary condition:

| ([ )

. (h+B
=h-Re Pedz + w55 (46)

B

One progresses by adopting a von Karman—Pohlhausen
approach, which postulates a closure relation for u. In
the simplest case, a semiparabolic relation for the de-
pendence of u on z is assumed, which satisfies the inter-
facial and wall boundary conditions (Shkadov, 1967). As
we discuss in Sec. III.A.2, weighted residual methods
represent a refinement of this approach. Here we use
the following closure for u, which satisfies no slip at
z=B and the tangential stress condition at z=h+B,

e %[Zz ~2(h+ B)z + B(B+2h)], (47)

where Q= ’[;’Budz is the film volumetric flow rate. Sub-
stitution of Eq. (47) into Eq. (46) yields the following
coupled pair of evolution equations for # and Q:

ht+Qx207

- 2
Re(Qt + g[%L) =h- 3}1—? —ecot(@h(h+ B),
+ }—f(h + B) - (48)

C

Note that by taking the limit Re—0 and setting C
=€/C,=1/G,, one recovers

3
Q: %(1—62C0t(0)(h+3)x+gl(h"'B)xxx)’ (49)

c

and so one rederives Eq. (33) for gravity-driven thin
films with negligible inertia. The approach outlined in
this section was used by Shkadov (1967) in order to
model falling film dynamics on smooth substrates (55
=0) and will be discussed further in Sec. II1.A.2.

II1. FILMS DRIVEN BY BODY FORCES
In this section, we review the developments in the

study of thin films driven by body forces, such as gravity,
centrifugation, and electric fields.
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FIG. 8. The developing triangular shape of the leading edge of
fluid (20Cst silicone oil) flowing down an incline. From Hock-
ing et al., 1999.

A. Flows driven by gravity

Here we consider thin films driven by gravitational
forces, focusing first on negligible inertial contributions;
falling film flows, in which significant inertial contribu-
tions are present, are reviewed next.

1. Negligible inertia

We consider situations where a film is driven by body
forces at relatively small speeds, that is, in the absence
of inertial contributions. Importantly, the cases consid-
ered in this section feature moving contact lines,
whereas those reviewed in Sec. III.A.2, in which inertial
effects are significant, will not.

The flow of a thin film down an inclined plane has
received considerable attention. Here the contact line is
unstable to transverse perturbations that develop into
fingers or rivulets. As shown by Huppert (1982a) the
shape of the rivulets can be of a triangular sawtooth
shape or can be straight-sided constant-width fingertype
rivulets. The velocity at the roots of the fingers is differ-
ent for the sawtooth and fingerlike rivulets with the lat-
ter being stationary for finite volume release of fluid and
the former gradually moving downstream. The transi-
tion from sawtooth to finger rivulets is a result of the
angle of inclination of the plate being increased as
shown experimentally by Johnson et al. (1999), theoreti-
cally and numerically (Bertozzi and Brenner, 1997,
Miinch and Wagner, 1999; Diez and Kondic, 2001; Kon-
dic and Diez, 2001); typical triangular sawtooth fingers
are shown developing in Fig. 8. There have been several
detailed experimental studies on this fingering instability
(Huppert, 1982a; Silvi and Dussan V, 1985; De Bruyn,
1992; Jerrett and De Bruyn, 1992; Hocking et al., 1999)
for fixed volume experiments and for constant flux
(Johnson ef al., 1999) in this latter case, the finger roots
always move suggesting that surface coverage is unaf-
fected by the finger type.

The experiments by Hocking et al. (1999) focused on
whether the fingers are triangular or straight edged and
on how the time exponents of the finger tips and roots
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compare to theory ignoring surface tension. They con-
cluded that they are not inconsistent with the similarity
solutions of Huppert (1982a). Notably, the finger type is
also affected by the wettability and prewetting of the
substrate (Veretennikov et al., 1998). Related experi-
ments involving the spin coating of drops on solid sub-
strates have been performed by Melo er al. (1989),
Frayse and Homsy (1994), and Spaid and Homsy (1997)
for both Newtonian and non-Newtonian fluids. In the
case of these spin-coated drops, the driving force is no
longer gravity and it is replaced by centrifugal forces
that play an analogous role; the effect of viscoelasticity
is to have a stabilizing influence (Spaid and Homsy,
1997).

There have also been numerous theoretical investiga-
tions of the problem (Troian, Herbolzheimer, et al., 1989;
Lépez et al., 1996, 1997; Spaid and Homsy, 1996; Ber-
tozzi and Brenner, 1997), which have focused on an
analysis of Eq. (33) with ¢=B=0; the singularity at the
moving contact line is relieved either by assuming the
existence of a precursor layer ahead of the moving con-
tact line (Troian, Wu, and Safran, 1989) and/or by adopt-
ing a slip model (Spaid and Homsy, 1996), who compare
the two approaches quantitatively when the precursor
thickness and their slip parameter are equal. A linear
stability analysis (Troian, Herbolzheimer, et al., 1989) for
flow down a vertical plane or down an incline (Bertozzi
and Brenner, 1997) provides a band of unstable modes
with a predicted wavelength for maximal growth, the
“most dangerous mode,” which agrees well with experi-
mental observations and shows that this wavelength is
approximately three times the width of the capillary
ridge. This analysis also shows that short wavelengths
are stabilized by capillarity, and decreasing the inclina-
tion angle shifts the most dangerous mode to longer
wavelengths and decreases its growth rate. Spaid and
Homsy (1996) also showed that the stability characteris-
tics of the flow are weakly dependent on whether a pre-
cursor layer or a slip model is used. More recent analysis
(Thiele and Knobloch, 2003) has investigated the stabil-
ity of a fluid ridge moving down an inclined plane: the
rear of the ridge recedes and that also induces an insta-
bility (Samid-Merzel et al., 1998). Thiele and Knobloch
(2003) investigated how this instability interacts with
that at the front and their mutual dependence upon
angle and the Rayleigh instability observed for a fluid
ridge on a horizontal substrate.

One major step forward in thin film modeling is that
two-dimensional computations of the evolution equa-
tions are now reliable and simulations of the fingering
instability have been undertaken by many researchers
(Schwartz, 1989; Eres et al., 1999; Moyle et al., 1999;
Diez and Kondic, 2001; Kondic and Diez, 2001). More-
over, these are compared with the observed experimen-
tal patterns qualitatively reproducing trends (Eres et al.,
1999; Diez and Kondic, 2001) and furthermore allowing
quantitative comparisons (Diez and Kondic, 2001). In
particular, these studies demonstrate the importance of
inclination upon finger shape (Kondic and Diez, 2001);
see Fig. 9.
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e

FIG. 9. Numerical solutions for the film thickness for flow
down an inclined plane, showing the effect of decreasing the
inclination angles from 90° to 13.9° in the left and right panels,
respectively, plotted when the fluid traveled the same distance
downslope. Quantitative comparisons of the calculated finger
widths and wavelength with the experiments of Johnson et al.
(1999) are provided in Kondic and Diez (2001); for the right-
hand panel the widths are 3.2+0.2 and 3.0+0.3 cm, respec-
tively, with similar agreement for the other cases they consid-
ered. From Kondic and Diez, 2001.

As pointed out by Spaid and Homsy (1996) through
an energy analysis, small-amplitude perturbations in
height at the capillary ridge grow as thicker regions ex-
perience less viscous drag relative to neighboring thin-
ner regions and thus travel faster under the action of the
body force; this mechanism leads to instability and finger
formation. For small inclination angles, Bertozzi and
Brenner (1997) [see also Ye and Chang (1999)] argued
that linear stability theory is inadequate to explain the
fingering observed (De Bruyn, 1992) and that these are
brought about by transient growth1 of perturbations at
the contact line, which acts as an amplifier of initially
infinitesimal disturbances. At larger inclination angles, a
study of the nonlinear instability through a weakly non-
linear expansion (Kalliadasis, 2000) leads to a

1So-called “transient growth” (Trefethen et al., 1993; Schmid
and Henningson, 2001) describes the growth of perturabations
on relatively short time scales due to the non-normality of the
operators governing the evolution of linear disturbances; this
may mask the response from an eigenvalue analysis, which
dominates at long times.
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Kuramoto-Sivashinsky style equation that gives a saw-
tooth pattern.

A more recent study by Grigoriev (2005) investigated
carefully the relationship between transient growth and
conventional linear theory and concludes that some of
the discrepancies observed are due to the exact defini-
tion of transient growth and the form the perturbation
takes; broadly speaking, the conclusion is that linear
theory yields a good indication of the stability of the
nonlinear system.

The foregoing focused on the time evolution of the
fingering of a planar front of fluid flowing down a plane;
other downslope flows, however, are of interest such as
the flow of a single rivulet or the flow from a source on
an incline. In the latter case, one envisages a flow with
an edge, separating dry and wet regions. Here fluid is-
sues from a point source and spreads outward, eventu-
ally reaching a stationary profile. This steady state is ap-
proachable with thin layer theory (Smith, 1973) where
one assumes that the variations in the downslope direc-
tion x are much smaller than those in the y direction so
that d,<d,. The edge of the flow is then defined by y
= +yu(x). This example illustrates that one advantage of
the evolution equations is that they can then be further
approximated or approached themselves in further
asymptotic limits. Equation (33) with B,8 zero and 6
~ €, 1.€., a shallow incline, then becomes the much sim-
pler time-independent equation,

(h3)x+<h3{§hyy—h} ) =0, (50)
yry

g
to be solved subject to the constraint that

YMm
f hidy = C, (51)

YM

where C is a constant; this constraint follows from as-
suming the flux to be constant. In the absence of surface
tension, Smith (1973) used similarity variables to show
that width of the rivulet increases as x*7; these scalings
are compared with experiments (Smith, 1973) and agree
with numerical simulations (Schwartz and Michaelides,
1988). More recently, generalizations of this analysis
have been pursued with surface tension-dominated flow
(Duffy and Moffatt, 1997), for which the powers change
to 3/13 and —1/13 for the width and height, respectively,
in the case of a source. Subsequent studies by Wilson et
al. (2001, 2002) also allow for surface shear to drive the
flow, account for the effect of a (constant) contact angle,
and consider a slender dry patch draining under gravity
all of which are relevant to realistic flows. This is an
interesting limit that deserves scrutiny.

A very closely related issue is that of a steady thin
draining rivulet, with prescribed constant volume flux,
and of constant but unknown width. If the cross section
is thin then lubrication theory can be applied and the
shape of the rivulet deduced (Allen and Biggin, 1974;
Duffy and Moffatt, 1995). This is relevant not only to
flow down a flat plane but to flows around cylinders and
along slowly varying topographies (Wilson and Duffy

Rev. Mod. Phys., Vol. 81, No. 3, July—September 2009

1998); other related work involves modifications due to
thermal effects on viscosity (Duffy and Wilson, 2003;
Wilson and Duffy, 2003) and to the wettability of the
substrate (Wilson and Duffy, 2005a) which, interestingly,
alters the results if perfectly wetting. The stability of a
flowing rivulet is also of interest (Young and Davis, 1987,
Wilson and Duffy, 2005b) and current attention has been
moving toward the even more difficult question of how
inertia, capillary, and hysteretic effects due to wetting
govern its meandering form as the flow rate increases
(Kim et al., 2004; Mertens et al., 2005; Le Grand-Piteira
et al., 2006).

Moving on from the work of Smith (1973) and Hup-
pert (1982b), Lister (1992) considered the time depen-
dent behavior of extrusions from a point source (line
sources were also considered) placed upon a slope,
whose flux varies as %, and this includes the release of a
fixed volume of material. In the absence of surface ten-
sion, the film evolution equation [Eq. (33)] becomes

ht == (h3)x + (hth)x + (hShy)y (52)

[absorbing the factor of 3 into the time and setting e
=tan(#)]. This is valid provided the Bond number G>1
and capillarity is negligible. To fix on a specific problem,
one can define how the volume of fluid varies and then
Eq. (52) is solved subject to the constraint

f hdxdy = Qt°f (53)
A

for a point source issuing fluid such that the volume in-
creases as t* and the area covered by fluid is A. This
formulation ignores the precise detail of the vent. Nota-
bly one can employ similarity variables, i.e., for long
times set é=xt™, p=ytr*, h=¢p(&, n)t?, thus the down-
slope length, the width, and the height scale as , t*, and
17, respectively (the exponents u, \, and y are constants
to be determined). This approach of adopting similarity
variables is very powerful and commonplace in the study
of evolution equations. Inserting these into the evolu-
tion equation (52) and constraint (53) leads to

Yb— N — e, =127 M)+ 137N ()
+1152 (), (54)
with

J ¢dédn=0Q (55)
A

if N\+u+7y=ap One can now balance terms within the
equations to deduce how the downslope length, width,
and height vary with time; one can also utilize these vari-
ables within numerical schemes. Initially, the flow is axi-
symmetric and the downslope component of gravity
plays no role, so it is very similar to flow on a horizontal
plane. The last two terms on the right-hand side of the
equation balance with that on the left-hand side so that
pm=\ and 2x=1+3y. At long times, however, the first
term on the right-hand side of Eq. (54) term grows until
the dominant balance is now between the first and third
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TABLE III. The power-law scalings expected from the simi-
larity solutions (Lister, 1992), for constant mass flux extrusions
(ap=1) and fixed volume droplets (ay=0), for the down-
slope length X .., the upslope length X,;,, the half-width Y,
and the maximal height 4,,.

Downslope  Half-width, Maximal
Regime length X .« Y height 4,
Early times (ay=1) 172 (12 I
Late times (ay=1) (7" 13 1
Early times (ay=0) 18 (8 V4

Late times (a;=0) 3 0 13

right-hand side terms so that A\=1+2v, 2u=1+37. The
crossover between these two regimes can also be pre-
dicted using these similarity scalings which is a powerful
check on their application to, experiments or to inter-
preting field observations in geophysics. A summary of
these scalings for ay=1, i.e., a constant mass flux, and
a;=0, i.e., a fixed volume release is shown in Table III;
the general scalings and further details are in Lister
(1992) and generalizations to power law and other fluids
in Balmforth et al. (2002). If one simply wants the scaling
exponents, rather than reducing the evolution equations
to simpler form, then one can balance forces as in Grif-
fiths and Fink (1993); see also Sec. IV.D.

More recent work has involved extending these New-
tonian results to viscoplastic extrusions thereby provid-
ing models of mud flows and silicic lava domes (Blake,
1990; Griffiths, 2000; Balmforth et al., 2002, 2006), and to
nonisothermal extrusions as models of lava flows (Fink
and Griffiths, 1990, 1998; Balmforth et al., 2004); this is
described later in Sec. IV.D for which these scalings then
are altered. In any event, scaling analyses like this are
commonly used to extract useful practical information
from thin layer equations; in this case, one can use them
to “diagnose” whether a particular fluid is acting in a
“Newtonian way” and to estimate areas of coverage ver-
sus time for lava flows and, of course, as a nontrivial
check on numerical schemes.

We now ignore the contact line, and the transverse
direction y is suppressed, and consider bilayer or
multilayer flows down an incline, as in Fig. 7. The flow is
relevant to various coating flows (Weinstein and Rus-
chak, 2004) and to geophysical flows where the super-
posed layers can model rock glaciers (Loewenherz and
Lawrence, 1989). These flows are unstable even at zero
Reynolds number. In the absence of any thin layer ap-
proximation, the stability of a bilayer interface, the vis-
cous counterpart of the Kelvin-Helmholtz problem, has
been considered by Hooper and Boyd (1983), Hinch
(1984), and more recently by Charru and Hinch (2000).
In the latter article, a detailed explanation of the long-
wave instability is presented together with an explana-
tion for the “thin layer effect,” often seen in multilayer
flows for which the flow is stable if the thinner layer is
the less viscous and unstable otherwise. The instability
occurs as there is now an additional degree of freedom
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associated with the motions of the interfaces within the
fluid layered system. For thin layer flows, early work by
Loewenhertz et al. (1989), Chen (1993), and Kilakhan-
dler and Silvashinsky (1997) showed that a bilayer sys-
tem is indeed unstable, as is the three layer system
(Weinstein, 1999), and nonlinear solutions in the New-
tonian and non-Newtonian systems confirm the bilayer
scenario (Balmforth et al., 2003). A review of the
multilayer instability has been provided by Pozrikidis
(2004) and more recently by Jiang, Helenbrook, and Lin
(2005); Jiang and Lin (2005) elucidated the mechanism
for the instability for bilayer and three layer systems
(Jiang, Helenbrook, Lin, and Weinstein, 2005). Interest-
ingly the growth rates of the instabilities can be orders
of magnitude larger than those of the bilayer system and
a careful study of the various terms shows that interfa-
cial and Reynolds stresses drive the instability and
theory compares reasonably with experiments. Incorpo-
rating surfactants (Frenkel and Halpern, 2002; Halpern
and Frenkel, 2003; Gao and Lu, 2007) is also possible
and, even in the absence of gravity, surfactants cause
destabilization.

2. Significant inertia

Here we review the work on falling films as examples
of thin gravitationally driven films with significant iner-
tia. Falling films (Chang, 1994; Chang and Demekhin,
2002) have received considerable attention since the
early studies of Kapitza (1948) and Kapitza and Kapitza
(1949), who carried out experimental work on fluid films
in tubes. This early work demonstrated the wide range
of behavior and rich wave dynamics that can be exhib-
ited by the flows of these films. So-called “natural”
waves are driven by disturbances originating from noise
at the inlet, which grow in the downstream direction.
With increasing wave amplitude, nonlinearities lead to
growth saturation, deviations from a sinusoidal shape,
and deceleration to an essentially constant wave speed.
Typically, two types of waves are observed with rather
distinct shapes: one type corresponds to waves of short
wavelength, of nearly sinusoidal shape and wide peaks;
the other corresponds to pulselike solitary structures
with tall widely separated narrow peaks preceded by
small-amplitude capillary waves. These waves belong to
the so-called y; and 7y, wave “families” (Chang et al.,
1993). The 7y, waves travel on a thin film whose average
thickness is smaller than that of a fully developed flat
waveless film, commonly referred to in the falling film
literature as the Nusselt film or thickness. These two-
dimensional waves undergo transitions to three-
dimensional structures, whose rate depends on the film
Reynolds number Re.

More recent experimental work on falling films has
been reported by Alekseenko et al. (1994) [see also Ale-
kseenko et al. (1985)] and by Liu and Gollub (1993,
1994), Lui et al. (1995), Nosoko et al. (1996), Vlachogian-
nis and Bontozoglou (2001), Park and Nosoko (2003),
Argyriadi et al. (2004), and Nosoko and Miyara (2004).
Alekseenko et al. (1985), Liu et al. (1993, 1995), and
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Nosoko et al. (1996). [see also Yoshimura et al. (1996) on
mass transfer enhancement by wavy falling films] dem-
onstrated that the application of periodic inlet forcing of
constant frequency can control the structure of the
waves downstream: high-frequency forcing results in
slower waves with wide crests, while low-frequency forc-
ing leads to the formation of large-amplitude solitary
waves, corresponding to the wave types mentioned
above. Vlachogiannis and Bontozoglou (2001) and Argy-
riadi et al. (2004) presented evidence to show that the
breakup of regular wave trains due to the formation of
waves on flat films separating two waves is not due to an
inherent instability but to the development of pulses
from a depressed region that originates from the tail of a
large wave. All these studies provided measurements of
wave speeds and wavelengths as a function of Re, which
are of tremendous value in achieving fundamental un-
derstanding of these complex flows.

Liu et al. (1995) also showed the existence of second-
ary instabilities following the initial bifurcation from a
flat film steady state; these instabilities are responsible
for transitions from two- to three-dimensional wave pat-
terns. Examples of such transitions include the forma-
tion of a so-called “herringbone” pattern from two-
dimensional waves due to a subharmonic instability and
a “synchronous” three-dimensional mode arising from a
side-band instability; these correspond to situations
wherein spanwise deformations of adjacent waves are
out of phase and in phase, respectively. Park and
Nosoko (2003) showed that the rate of spanwise varia-
tions in two-dimensional waves is slow at low Re and
saturates at Re approximately near 40. Above this value,
two-dimensional waves are unstable to three-
dimensional disturbances through a mechanism that
these authors attribute to a capillary instability. Nosoko
and Miyara (2004) carried out similar work and investi-
gated in detail the spatiotemporal evolution of the
waves from inception near the inlet to the appearance of
three-dimensional structures downstream, demonstrat-
ing differences between “natural” and “forced” waves in
terms of wave shape and kinematics.

Modeling studies of thin falling films were conducted
by Yih (1955, 1963) and Benjamin (1957) who performed
linear stability analyses of the following base state:

g sin(0)< z2>

h= ho, M(Z) hoz -5

2

p(2) = pg cos(6)(h, - z). (56)

Equation (56) is derived from uu,,=pgsin(6) and p,
=—pg cos(h), with (u,,p)=(0,0) at z=h, and u=0 at z
=(0. These equations correspond to a falling film of uni-
form thickness /2, whose motion is driven by the stream-
wise gravitational component and retarded by gravity;
the pressure is purely hydrostatic (with the pressure of
the overlying gas set to zero without loss of generality)
and surface tension effects are neglected. Their results
indicated that this base state is unstable to long-
wavelength disturbances. Benney (1966) extended the
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analysis of falling films into the nonlinear regime by de-
riving an evolution equation for the film thickness,
which accounts for inertia, hydrostatic pressure, capil-
lary, and viscous effects,

16 R 2 1
Choh, - £ cot(ORPh, + —hhy,
15 3 30

2
h,+ §(h3)x + e(

X

=0. (57)

Here C=C/ €, where C is the capillary number defined in
Sec. IL.B. Inspection of Eq. (57) reveals that the leading
order terms simply give rise to wave steepening. The
inclusion of inertia at order €, however, leads to unstable
flow which is mitigated by the hydrostatic pressure and
capillary terms.

The dynamics of falling films in the nonlinear regime
have also been studied by a number of researchers who
have built on the approach adopted by Benney (Lin,
1969; Gjevik, 1970; Roskes, 1970; Atherton and Homsy,
1976; Pumir et al., 1983; Nakaya, 1989; Joo and Davis,
1992; Oron and Gottlieb, 2004; Saprykin et al., 2005).
These studies involve the derivation of a single evolu-
tion equation for the interfacial position, in which the
velocity is, essentially, enslaved to the film thickness.
However, due to the fact that inertial contributions arise
to order € in Eq. (57), the single-equation approach to
modeling falling films at moderate to large Reynolds
numbers is ultimately doomed (Pumir et al., 1983; Joo et
al., 1991; Rosenau and Oron, 1992; Ruyer-Quil and
Manneville, 1998, 2000; Ooshida, 1999; Scheid, Ruyer-
Quil, Thiele, et al., 2005; Scheid et al., 2006) invariably
leading to finite-time “blowup” of solutions. Further-
more, a comparison of the linear stability characteristics
of the Benney equation with those of the linearized
Navier-Stokes equations and the Orr-Sommerfeld equa-
tion revealed poor agreement; this deteriorates rapidly
with increasing Reynolds number. Thus, the Benney
equation cannot be used for modeling thin films flows, at
moderate or high Reynolds numbers, accurately in prac-
tically relevant settings.

It is possible to further reduce Eq. (57) in order to
obtain a weakly nonlinear evolution equation for A,
which following suitable rescalings reads

hy+hh,+h, +h.,=0. (58)

This is known as the Kuramoto-Sivashinsky equation
and has been derived (and rederived) by a number of
researchers (Homsy, 1974; Nepomnyashchy, 1974; Kura-
moto and Tsuzuki, 1975, 1976; Sivashinsky 1977) in dif-
ferent physical situations. These include falling films and
annular flows (Sivashinsky and Michelson, 1980; Shlang
and Sivashinsky, 1982; Hooper and Grimshaw, 1985;
Papageorgiou et al., 1990; Coward et al., 1995; Tseluiko
and Papageorgiou, 2006), which arise in chemical engi-
neering applications, flame propagation and combustion
(Sivashinsky, 1977), plasma physics (Cohen et al., 1976),
and the propagation of concentration waves (Kuramoto
and Tsuzuki, 1975, 1976; Kuramoto, 1978).
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Equation (58) looks deceptively simple. This apparent
simplicity, however, masks truly complex behavior,
which manifests itself via the appearance of periodic,
quasiperiodic and chaotic solutions that remain
bounded, as shown by a large number of analytical
(Goodman, 1994; Jolly et al., 2000); and computational
studies (Sivashinsky and Michelson, 1980; Hyman and
Nikolaenko, 1986; Kevrekidis ef al., 1990; Demekhin et
al., 1991; Papageorgiou and Smyrlis, 1991; Smyrlis and
Papageorgiou, 1991, 1996); solutions for coupled
Kuramoto-Sivashinsky equation in multilayers have also
been obtained (Kliakhandler, 1999). Within the context
of transition to chaos, computational work (Papageor-
giou and Smyrlis, 1991; Smyrlis and Papageorgiou, 1991,
1996) has shown that this occurs through period dou-
bling through a Feigenbaum-type scenario.

The discrepancies between the predictions of the Ben-
ney equation and those of the Orr-Sommerfeld equation
could be alleviated by accounting for the neglected
second-order streamwise dissipative term (Panga and
Balakotaiah, 2003); this approach, however, does not
remedy the blow-up issue. A method that employs a
Padé approximant-type approach (Ooshida, 1999) seems
to cure this issue but yields poor agreement with the
speeds and amplitudes of solitary waves. This method
was then applied to the development of an evolution
equation for the flow rate (Panga et al., 2005) which must
be solved along with an equation for the film thickness
that arises from integration of the continuity equation.
This is a marked improvement over the single equation
model and highlights the importance of having another
degree of freedom in addition to the film thickness, such
as the flow rate, when attempting to model falling film
dynamics for Reynolds numbers far above the critical
value Re, for which the film first becomes unstable.

Methods that alleviate the blow-up problem with the
Benney equation involve direct numerical simulations of
the Navier-Stokes free-surface problem (Nagasaki and
Hijikata, 1989; Salamon et al., 1994; Ramaswamy et al.,
1996; Malamataris et al., 2002; Argyriadi et al., 2004;
Nosoko and Miyara, 2004) or the numerical solution of
the boundary-layer equations (Chang et al., 1993, 1994,
1996; Chang, 1994); Fig. 10 shows an example of this
approach. Other methods are those based on an ap-
proach that combines boundary-layer theory with the
Karman-Pohlhausen averaging method (Kapitza, 1948;
Shkadov, 1967); here the pressure is due to capillarity.
These methods, whose application was briefly outlined
in Sec. II.D, require closure relations for the film veloc-
ity distribution and lead to the derivation of coupled
equations for the film thickness and volumetric flow
rate. Shkadov (1967) used a semiparabolic velocity pro-
file, which satisfies no slip and zero stress at the solid
wall and gas-liquid interface, respectively, to derive

hl+Qx:O9
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FIG. 10. Numerical simulations of noise-driven wave dynamics
on a falling film obtained via the solution of the boundary-
layer equations with pressure due to capillarity. The inertial
effects become progressively stronger with increasing &, where
6= (pH''g*/3)"3/451 as in Eq. (59). From Chang e al., 2002.

S(5) =Sl
QI+5<h x_55 h(hxxx+1)_h2 . (59)

Here g denotes the film volumetric flow rate and the
parameter 8= (pH!'g*/0)"3/451%, in which H, corre-
sponds to the film thickness in the absence of waves
(also known as the Nusselt solution), was introduced by
Shkadov (1977). Equations (59) represent an example of
two-field or two degrees of freedom models, where the
velocity or the flow rate are not simply enslaved to the
film thickness. Note that Eq. (59) can be obtained from
Eq. (48) via the following transformations:

375959\ /11 3653 53\ 111
QH( ) q, hﬂ( ) h,

G Re ¢ Re>
3R’ m 3255\ V11
t— t, x— — X. (60)
55C28° C*Re

Equations such as the ones given in Eq. (59) are highly
nonlinear partial differential equations and exhibit mul-
tiple steady solutions for the same set of parameter val-
ues, which complicates comparisons between the model-
ing predictions and experimental data. That is, for fixed
flow rate and liquid physical properties, several smooth
sets of traveling-wave families of solutions can exist for a
given wave frequency, characterized by different maxi-
mal film thickness or velocity. Shkadov (1967) and
Bunov et al. (1984) calculated the first two wave families
for falling films, while Sisoev and Shkadov (1999) suc-
ceeded in constructing waves belonging to all falling film
wave families. Extensive numerical experiments (Sisoev
and Shkadov, 1997a, 1997b) have demonstrated the
emergence of attracting wave regimes, the so-called
“dominating waves,” which are realized independently
of initial conditions. These waves, which have the great-
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est wave velocity and largest peak height for a given set
of system parameters, provided a natural point of com-
parison between theory and experiment. Indeed, the
agreement with the predictions of the Shkadov model
and the experiments of Alekseenko et al. (1994) was
found to be relatively good particularly for the case of
relatively fast-moving waves in terms of wave speed and
amplitude [see, for instance, Fig. 22(b) in Shkadov and
Sisoev (2004)]. The comparisons required the experi-
mental observations to be parametrized by at least two
parameters such as the wave velocity and wavelength.

The Shkadov equations also exhibit discrepancies
with the Orr-Sommerfeld predictions. These can be
eliminated by applying the method of weighted residuals
(Ruyer-Quil and Manneville, 1998, 2000; Scheid et al.,
2006), which results in a modification of the evolution
equation for ¢. Numerical solutions of the two-
dimensional versions of these equations were carried out
by Scheid et al. (2006) on doubly periodic domains and
yield predictions of the three-dimensional spatiotempo-
ral evolution of a film flowing down an incline (see Fig.
12). In order to account for the fact that the film thins
beneath the waves due to its acceleration (see the third
panel of Fig. 10), computations were conducted for av-
erage thickness less than the Nusselt value; this is appar-
ently necessary in order to ensure good correspondence
between the numerical solutions and experimental ob-
servations. Numerical solutions were obtained starting
from small-amplitude white noise imposed on two-
dimensional waves that resemble the herringbone and
synchronous structures observed by Liu et al. (1995) for
the relatively slow y; waves at low wall inclinations; the
agreement with the experimental data is qualitative and,
in certain cases, also quantitative (see, for instance, Fig.
15 in Scheid et al., 2006). Their results also indicate that
direct computation of the synchronous mode is sensitive
to initial conditions, depending on the balance between
two-dimensional  oscillatory modes and three-
dimensional modes; they also demonstrate that the in-
clusion of second order dissipation terms, normally ne-
glected by models based on long-wave and integral
theory, is essential in order to capture experimental ob-
servations.

The simulations of Scheid et al. (2006) also yielded
qualitative agreement with the experimental results of
Park and Nosoko (2003) for y, waves. For Re less than
approximately 40, spanwise disturbances imposed at the
inlet decay rapidly, while an increase in Re to 40 and
above leads to the development of three-dimensional
waves that exhibit remarkably rounded fronts. Increas-
ing Re further to Re=60 gives rise to the “horseshoe”
shaped structures shown in Fig. 11, which are in very
good qualitative agreement with experimental observa-
tions (Scheid er al., 2006); similar structures were also
observed by Alekseenko et al. (2005). Similar agreement
was also found with the noise-driven natural waves stud-
ied experimentally by Alekseenko et al. (1994).

Films falling down curved supports, such as fibers, for
instance, have also been examined. This flow has an im-
portant distinguishing feature: the azimuthal curvature
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FIG. 11. Comparison of experimentally observed “horseshoe”
structures reproduced. From Park and Nosoko, 2003. (a) With
computations (Scheid er al., 2006) and (b) showing the evolu-
tion of wave structure with time, at moderate Reynolds num-
ber (Re=59.3), for a flow down an incline. The lowest panel in
(b) should be compared with the experiments in (a). From
Scheid et al., 2006.

of the interface can, for sufficiently large film thickness
to cylinder radius ratio, give rise to a Rayleigh instabil-
ity, which, in the case of jets or threads, can lead to
breakup (Eggers, 1997). Surface tension can therefore
play both a stabilizing and, crucially, a destabilizing role
due to the axial and azimuthal film curvatures, respec-
tively. Trifonov (1992) used a von Karméan—Pohlhausen
averaging method, similar to that employed to derive
the Shkadov equations, with a velocity profile that com-
prised parabolic and logarithmic terms for closure; these
reflect gravitational forcing and the importance of cylin-
drical geometry with increasing film thickness to cylin-
der radius ratios. This work has recently been revisited
(Sisoev et al., 2006; Ruyer-Quil et al., 2008) and reformu-
lated as an extension of the falling film problem. Sisoev
et al. (2006) showed through a bifurcation analysis and
time dependent numerical simulations that the solutions
resemble those obtained in the falling film case at low
thickness to radius ratios; these solutions become more
beadlike for relatively large ratios. Flows down fibers
will be revisited in Sec. VII.C.

Falling films in the presence of chemical reactions
have also been studied using the long-wave method and
approaches leading to coupled 4 and g evolution equa-
tions (Trevelyan et al., 2002; Trevelyan and Kalliadasis,
2004a, 2004b); these studies accounted for the heat re-
leased (absorbed) by exothermic (endothermic) reac-
tions and the associated Marangoni effects arising from
the resultant interfacial heating (cooling). Several stud-
ies have also considered the effect of wall heating and
evaporation on the falling film dynamics. Joo et al
(1991) examined the flow of uniformly heated falling
films in the presence of evaporation as well as attractive
van der Waals forces using a long-wave approach. More
recently, Miladinova and Lebon (2005) modeled the dy-
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namics of a thin evaporating falling film on uniformly
and nonuniformly heated solid substrates also using
long-wave theory. Their solutions revealed the influence
of evaporation and thermocapillarity on the film dynam-
ics leading to the formation of multihumped waves; in
the presence of nonuniform heating leads to large defor-
mations in the film and enhancement of the heat transfer
rates.

Investigations at relatively large flow rates, where
long-wave models are no longer valid, have also been
conducted. Kalliadasis et al (2003a) applied the
weighted residual method to study falling films bounded
by uniformly heated walls. A linear test function was
used for the temperature in order to derive a model
comprising evolution equations for the film thickness,
volumetric flow rate, and interfacial temperature. This
model was, in fact, derived by Kalliadasis et al. (2003b)
as part of their modeling of the experiments carried out
by Kabov et al. on locally heated falling films (Kabov,
1998; Kabov et al, 2000). Kalliadasis et al. (2003b)
showed that a steady state is established due to compe-
tition between gravity and Marangoni stresses (due to
local heating), which is unstable to spanwise perturba-
tions. This analysis yielded predictions for a critical Ma-
rangoni number for the onset of fingering and for finger
wavelengths (as a function of the thermal Péclet num-
ber), which were of the same order of magnitude as ex-
perimental observations; the instability was enhanced at
small Péclet numbers. Detailed quantitative compari-
sons with experiments, however, were complicated by
the fact that a constant temperature boundary condition
was specified at the wall in the model, whereas a con-
stant wall heat flux was maintained in the experiments;
even if a constant heat flux condition had been used in
the model, the heat transfer coefficient at the wall re-
mained an unknown quantity (Kalliadasis et al., 2003b).

The models of Kalliadasis et al. (2003a, 2003b) were
extended to include effects of viscous dissipation in both
the momentum and energy equations, which arise at sec-
ond order (Ruyer-Quil et al., 2005; Scheid, Ruyer-Quil,
Kalliadasis, et al., 2005) so that they can predict critical
conditions in agreement with the Orr-Sommerfeld equa-
tion. Heated falling films were also examined recently by
Trevelyan et al. (2007) who used a heat flux condition at
the liquid-solid interface, as opposed to the constant
temperature condition at this interface employed previ-
ously (Ruyer-Quil et al., 2005; Scheid, Ruyer-Quil, Kal-
liadasis et al., 2005). The condition imposed by Treve-
lyan et al. (2007) included contributions from the heat
flux provided by the heater placed in the wall and that
associated with heat losses from the solid-gas interface;
the latter is characterized by a heat transfer coefficient.
As a further refinement, the test functions employed by
these authors in their weighted residual method satisfied
all boundary conditions; in the previous work, this was
done as part of the averaging process through the
boundary terms. Using both bifurcation theory and time
dependent numerical simulations Trevelyan et al. (2007)
showed the existence of solitary waves exhibiting “nega-
tive humps” for certain parameter values only when
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heat flux conditions are imposed; this is in contrast to
the typical (positively humped) waves observed in iso-
thermal films, shown in Fig. 10.

Closely related to the falling film literature is that of
roll waves which are readily observed in guttering after
heavy rainfall. These waves which visually appear to be
hydraulic jumps traveling with the flow are no longer
influenced by capillarity and an adjustment of the analy-
sis in Sec. IL.D leads to coupled evolution equations.
These are commonly called a “St-Venant model,” which
is another application of the von Karmén-Pohlhausen
approach and is developed using the depth-averaged ve-
locity #(x,?), so g=hii in Sec. I1.D, and mass conserva-
tion is 4,+ (hit),=0. One then has to decide on an appro-
priate closure for the velocity field u. Popular choices
are a semiparabolic profile for laminar flows as in Sec.
IL.D or plug flow for turbulent regimes. In the latter
case, a typical St-Venant model is expressed by

i, + titiy + Ghy = 1 — @°/h* + (vIh)id,,, (61)

where G is a dimensionless group that incorporates ad
hoc basal drag. The models often include artificial vis-
cosity to avoid shock formation (Needham and Merkin,
1984), which leads to the i, term (Chang et al., 2000;
Balmforth and Mandre, 2004). The strongly coupled and
highly nonlinear equations give rise to interesting coars-
ening dynamics and the models have been compared
with experiments both qualitatively and quantitatively
by Chang et al. (2000). Roll waves are also observed on
related thin-film flows such as in multiphase fluids (En-
gelund and Wan, 1984; Huang and Garcia, 1998; Woods
et al., 2000), mudflow (Balmforth and Liu, 2004), and
even in granular layers (Forterre and Pouliquen, 2003).

B. Flows driven by centrifugal forces

Here we review the work on thin films driven by cen-
trifugation. We consider flows over rapidly rotating disks
as examples of flows with significant inertial contribu-
tions. “Spin-coating” flows, which involve a fixed quan-
tity of liquid with time-dependent average flow proper-
ties (Lawrence, 1990; Reisfeld et al., 1991; Dandapat and
Ray, 1994; Spaid and Homsy, 1996; McKinley et al., 1999;
Kitamura et al., 2002; Usha et al., 2005), will not be re-
viewed here.

The flow of a thin film over a rapidly rotating disk is
accompanied by the formation of large amplitude waves,
just like films falling under the action of gravity dis-
cussed in the previous section. Interest in this flow has
experienced a recent resurgence due to the fact that they
can be exploited for engineering and commercial appli-
cations: the film thickness can be made quite thin at high
disk rotational speeds and the waves give rise to an in-
tense mixing environment. These features lead to very
high rates of heat and mass transfer that have led to the
recent construction and use of so-called “spinning disk
reactors” (SDRs), which are compact devices based on
the flow of thin films over spinning disks used for the
manufacturing of fine chemicals and pharmaceuticals
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(Aoune and Ramshaw, 1999; Boodhoo et al., 2004, 2006;
Matar and Lawrence, 2006a). In fact, continuously oper-
ated SDRs have been used to perform fast gas-liquid
reactions (Trippa et al., 2002; Burns and Jachuck, 2005),
crystallization (Trippa et al., 2002), heterogeneous ca-
talysis (Vicevic et al., 2004) with high conversions and
selectivities, and polymerization with narrow molecular
weight distributions (Boodhoo et al., 2006; Matar and
Lawrence, 2006a).

The experimental work carried out in this area has
identified different flow regimes depending on the flow
rate: with increasing flow rate, a smooth film surface
gives way to axisymmetric waves, with helical waves ap-
pearing at higher flow rates (Espig and Hoyle, 1965).
Also, four distinct regions along the disk radius have
been identified: a region near the disk inlet, a “first
laminar-wave” region populated by axisymmetric waves,
a “turbulent” region covered with disordered ripples,
which is then followed by “second laminar-wave” region
(Butuzov and Puhovoi, 1976; Rifert et al., 1982; Thomas
et al., 1991). Woods (1995) used an optical technique to
record detailed wave profiles along the disk and the
emergence of three-dimensional flow structures from
axisymmetric waves.

Due to the formation of waves, the time-averaged film
thickness was found to be less than the waveless Nusselt
value (Charwat et al., 1972; Leneweit et al., 1999); this is
similar to the observations made for falling films in the
previous section, particularly for the 7y, waves (Chang
and Demekhin, 2002). Burns et al. (2003) also carried out
film thickness and film velocity measurements using an
electrical conductivity technique and showed that iner-
tial and viscous forces are important near the disk inlet
and periphery, respectively. They also showed the estab-
lishment of an “injection” zone near the disk inlet in
which the liquid experiences significant torque following
its injection onto the surface of the disk; this is then
followed by an “acceleration” zone in which the liquid is
accelerated by centrifugation leading to an increase in
radial velocity; this zone gives way to a “synchroniza-
tion” region, which is dominated by viscous effects with
a small angular slip velocity. The combination of the in-
jection and acceleration zones was referred to as the
“spin-up” zone by Burns et al. (2003) who demonstrated
that its radial extent depends on liquid distributor diam-
eter, flow rate, kinematic viscosity, and disk rotational
speed.

The wave-induced enhancement in the rates of heat
and mass transfer has given rise to a number of model-
ing studies. Steady axisymmetric waveless solutions have
been obtained in the limit of large Ekman number
E=v/QH?, where v, Q, and H denote the kinematic
viscosity, rotational speed, and a characteristic film
thickness, respectively (Rauscher et al., 1973; Shkadov,
1973; Woods, 1995). Steady solutions were also obtained
for finite E (Dorfman, 1967; Miyasaka, 1974; Lepekhin
et al., 1981; Sisoev et al., 1986; Shvets et al., 1992) using
boundary layer theory and the von Karman—Pohlhausen
method. Other studies have used lubrication theory to
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analyze the steady flow characteristics (Emslie et al.,
1958; Needham and Merkin, 1987).

Stability analyses of this flow also showed that axisym-
metric perturbations are dominant and Coriolis forces
are stabilizing in the long-wave and large E limits (Char-
wat et al., 1972). The stability characteristics were also
shown to approach those of falling films in the limit of
large disk radii (Eliseev, 1983). The stability of locally
uniform flow on the surface of the disk was examined
using an Orr-Sommerfeld analysis for large E and axi-
symmetric disturbances (Sisoev and Shkadov, 1987), as
well as for finite £ and nonaxisymmetric perturbations
(Sisoev and Shkadov, 1990). Needham and Merkin
(1987) provided a criterion for instability using lubrica-
tion theory QQ?/2mgv>5/6 in which Q is the volumet-
ric flow rate in the large E limit but neglected surface
tension effects; consequently, they could not predict a
large wave-number cutoff. Woods (1995) who also used
lubrication theory accounted for surface tension effects
but not for Coriolis forces, which enter the problem at
the same order as other inertial terms and are therefore
negligible in the lubrication approximation (Myers and
Charpin, 2001).

In order to account for the presence of interfacial
waves, Sisoev et al. (2003a, 2003b), Matar, Sisoev, and
Lawrence (2004), Matar, Lawrence, and Sisoev (2005),
and Matar and Lawrence (2006a) extended the work of
Shkadov (1967, 1973). This work mirrors that in Sec.
II.LD and employs boundary-layer theory together with
the von Kéarméan-Pohlhausen approximation, which re-
quires a closure relation for the film velocity profile;
typically, a semiparabolic radial velocity profile is
adopted which satisfies the no-slip and no-penetration
conditions at the underlying solid wall and continuity of
stress at the gas-liquid interface. This approach, which,
as shown in Sec. III.A.2, has been successfully used to
model falling films, gives rise to strongly coupled evolu-
tion equations for the film thickness and volumetric flow
rate. In the case of flow over a spinning disk, this ap-

proach yields three evolution equations (Matar,
Lawrence, and Sisoev, 2005),
1
h.+—f,=0,
r
6f2> 155 ¢ {1 } f
—\= | —m—=5-=N\hr| —(rh -35 +7%h
ff+5<rh Taen Nhr| RO =3
+2g,
171 fg) 5g
——\| = =-—5-2f. 62
gt+14r<h T (62

Here f=r[ gudz is the radial volumetric flow rate and g
=r[fvdz denotes the angular momentum in which u and
v are the radial and azimuthal components of the veloc-
ity  field, respectively; the parameter N
=(a/p)"?2w/ Q)(v/Q)¥* is a modified Weber number.
These equations, which account for inertial, centrifugal,
Coriolis, capillary, and viscous forces, are very similar to
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FIG. 12. Spatiotemporal evolution of surface waves in thin
film flows over a spinning disk. The panels depict the develop-
ment of small-amplitude waves at early times (a)—(c) into large-
amplitude nonlinear waves (h); evidence of wave interaction
and coalescence is shown in (d)—(g). The initial condition for
the simulation giving rise to these results is shown as a dotted
line in (a). From Matar, Lawrence, and Sisoev, 2005.

those derived by Sisoev et al. (2003b) and Matar, Sisoev,
and Lawrence (2004) except for rescalings.

Sisoev et al. (2003a) showed through a linear stability
analysis that Coriolis forces stabilize long-wave distur-
bances. They also demonstrated the fact that Eq. (62)
exhibits multiple solutions for fixed parameters in a
similar manner to Eq. (59) describing falling film dynam-
ics, as discussed in Sec. III.A.2. They used continuation
techniques to determine families of axisymmetric, peri-
odic, or so-called “regular” waves. Using the concept of
“dominating waves” (Sisoev and Shkadov, 1997a, 1997b,
1999; Shkadov and Sisoev, 2004) to circumvent difficul-
ties associated with solution multiplicity, Sisoev et al.
(2003a) carried out detailed comparisons with the ex-
perimental data of Woods (1995) with excellent quanti-
tative agreement, as shown by Sisoev et al. (2003a). Ma-
tar et al. conducted numerical simulations of the flow on
a spinning disk and showed the development of interfa-
cial waves, which, through coarsening driven by wave
interactions, become large-amplitude long regular waves
that are separated by flat film regions (see bottom panel
of Fig. 12) (Matar, Sisoev, and Lawrence, 2004; Matar,
Lawrence, and Sisoev, 2005); these waves bear strong
resemblance to those observed in falling films (Chang
and Demekhin, 2002).

Models for the mass transfer of chemicals absorbed at
the gas-liquid interface have also been derived (Matar,
Lawrence, and Sisoev, 2005; Sisoev et al., 2005) and these
solutions, which are in reasonably good agreement with
the experimental measurements of Aoune and Ram-
shaw (1999) in terms of spatially averaged mass transfer
rates (see, for instance, Fig. 16 of Matar, Lawrence, and
Sisoev, 2005), highlight the effect of the nonlinear wave
dynamics on the mass transfer. Results by Sisoev et al.
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(2005) indicated that the potentially substantial intensi-
fication of the mass transfer rates over those associated
with the waveless flow regime depends strongly on the
structure of the dominating waves which, for a given set
of “global” parameters, such as the flow rate and physi-
cal properties, depends on the wave frequency. They
also demonstrated that the mechanism for intensifica-
tion is dependent on the degree of deformation of the
diffusion boundary layer beneath the gas-liquid inter-
face by the waves that accompany the flow. These results
further suggest that the intensification may be maxi-
mized using frequency forcing at the inlet to select ap-
propriate wave regimes for given global parameters.
More recently, these studies have been extended to
show that Marangoni stresses brought about by the pres-
ence of insoluble surfactant retard the flow by rigidifying
the interface leading to wave suppression (Matar and
Lawrence, 2006a). Also, externally applied electric fields
have been shown to promote the formation of even
more complex wave dynamics than can be obtained in
the absence of electric fields; this is accompanied by sus-
tained wave formation and an associated increase in
process intensification (Matar and Lawrence, 2006b).

C. Electrified films

The interaction of an externally applied electric field
with a thin liquid film can give rise to interesting flow
instabilities and pattern formation. As shown below,
these instabilities can be exploited in practical engineer-
ing applications. We review studies which feature thin
liquid films in the presence and absence of inertia. Ex-
amples of the former involve examining the behavior of
falling films at moderate flow rates; examples of the lat-
ter involve patterning of thin single and multilayers at
the microscale and nanoscale. Note that despite the fact
that this topic is reviewed under “films driven by body
forces,” the starting point for all of the modeling cases
discussed below is the so-called “leaky dielectric” model
(Saville, 1997) in which electric forces enter the problem
in the interfacial boundary conditions, i.e., as surface ef-
fects.

The framework developed in Sec. II is used to derive
an evolution equation for the interface separating two
incompressible Newtonian fluids, sandwiched between
two horizontal, smooth, rigid, and impermeable elec-
trodes subjected to a solenoidal and irrotational electric
field. We neglect inertia and effects related to gravity,
surface tension gradients, phase changes, and intermo-
lecular forces and set 6=G=B=j;,=¢;=M;=0 (i=1,2) in
Secs. IILA-II.C. In this example, the extra stress tensor
M, is now of vital importance as it corresponds to the
Maxwell stresses exerted by the electric field. The upper
and lower electrodes are located at z=h;=a (=const)
and z=0, respectively; the liquid-liquid interface is lo-
cated at h,=h(x,t), as in Fig. 7, but horizontal and with
the upper interface fixed to be constant.

The electric field strengths, E; (i=1,2), satisfy V-E;
=0,V XE;=0 in the electrostatic limit and so potentials
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in each fluid ¢; are conveniently introduced as E;

=-Vi; so that
V=0, i=1,2. (63)

The tensors M; in Sec. II.A correspond to the Maxwell
stress tensors and are identified explicitly as

E,
Mi:808i EiEi_ TI 5 (64)

in which gy and ¢; denote the permittivity of free space
and the dielectric constant for fluid i. Allowing for an
interfacial charge density g to be present at the interface
leads to boundary conditions for the electric equations,

=4y atz=0, (65)
go(e,E, —g1Ey) my=—¢q,

El'tlez't2 atZ:h(x,[), (66)

1ﬁ1=0 at z=a, (67)

where i is the mean potential at the bottom electrode.
Importantly, as g is the interfacial charge density at z
=h(x,t) it can evolve and so satisfies a transport equa-
tion, nicely described in a related context (Mestel, 1994),
which is naturally similar to the surfactant transport
equation of Eq. (6),
g+ ;- Vg — (ug-m)gVy -y = (E) - kK E) - my.
(68)
Here k; denote the electrical conductivity of fluid i and
we have taken all the assumptions underlying the leaky-

dielectric model to be valid (Saville, 1997).
Introduction of the same scaling as in Sec. II.B along

with ¢= o (i=1,2), Ei=(/H)E; and g=(eoihy/ H) Gy
into Egs. (63)—(68) yields the following in the lubrication
approximation:

wizz =0, i=1,2, (69)

which satisfies ¢, =0 and ¢,=1 at z=«a and z=0, respec-
tively, and

=1, q=- (g1, —e20n;) (70)

at z=h(x,r). Continuity of the normal and tangential
stress at z=h(x,t) requires that

& &
P1 _p2+52'r//%z_51¢/%z:hxxv (71)

M
M_lulz - u2z = Q(djlx + lrlflzhx)» (72)
2

and q satisfies

g+ (ug|nq)y = Ky, — Koo, at z=h(x,1), (73)

where K;=Lk;/Ug, (i=1,2) are the ratios of the charge
relaxation to flow time scales. The velocity scale is cho-
sen so that electric field effects are dominant, the pres-
sure and Maxwell stresses balance in Eq. (71), with
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U=solf/ moL and L=(oH>/eyif)"%; here o the surface
tension, is assumed to be independent of the electric
field.
The hydrodynamics are governed by
ui)( + Wiz = 0,

—Pictmu;; =0, —pyot+uy, =0,

(74)

with p;,=0 (i=1,2), these follow from Egs. (18), (19),
and (23) of Sec. II.C; no-slip and no-penetration condi-
tions, u;=w;=0, are applied at z=0 and z=a. There is a
further nuance; due to the confinement, u#; and u, must

also satisfy the following constraint (Craster and Matar,
2005):

h h
f uldz:f udz. (75)
a 0

This comes from integrating the continuity equation in
fluids 1 and 2 over the depth, making use of the Leibnitz
rule and demanding continuity of the normal and tan-
gential velocity components at the interface.

Solution of Egs. (69) and (74) subject to the above
boundary conditions leads to explicit solutions for ;, u;,
w;, and p; in terms of i and ¢. Using the kinematic
boundary condition [Eq. (22)] evolution equations for &
and g can be derived after some lengthy algebra,

hZ
h,+ {613} =0, q,+[cq(h—a)],=Kc; - Kycy,
(76)

where ¢;=c;(h,q;&;,8,,\); these are rather cumbersome
and will not be reproduced here as they have been given
by Shankar and Sharma (2004) and Craster and Matar
(2005). One can now use these evolution equations that
incorporate the essential dominant physics, and Eq. (76)
has been used to study the instabilities shown in Fig. 3
and drop manipulation using electric fields (Yeo et al,
2007).

It is also possible to derive an evolution equation for
the case of a single layer either overlying or overhanging
a solid horizontal substrate, which corresponds to a
grounded infinitely long electrode. One can also incor-
porate inertial effects as in Sec. IL.D. Consider a film
sandwiched between this electrode and another suffi-
ciently far from the position of the interface such that, at
infinity, the electric field lines are normal to the interface
and its strength approaches a constant value E,. This
would coincide with Fig. 7 at =0, h,—0, and h;=h.
The film is either between 0<z=<h or —h=<z=<0 corre-
sponding to the overlying and overhanging cases, re-
spectively; the other electrode would be at infinity from
the interface z=h(x,t). Tseluiko and Papageorgiou
(2006, 2007) considered such situations and solved
Laplace’s equation for the potential in the gas phase
with appropriate boundary conditions at infinity and at
the interface; when coupled to the hydrodynamics gov-
erned by lubrication theory, the following equation for £
is obtained (Tseluiko and Papageorgiou, 2007):
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B+ 5[h3 (e — Gohy + 2WeH [, )], =0, (77)

where G,=pgH?>/ 6()(//20 and G,>0 (G,<0) for overlying
(overhanging) films. An “electric” Weber number
We=(e&yf/oH)"? also arises which provides a measure
of electrical to fluid pressures and premultiplies an op-

erator H,; this corresponds to a Hilbert transform, which
is an integral involving 4, over all x and a crucial point
here is that the electric stresses enter the problem as a
nonlocal contribution.

For a thin film an important consideration is its stabil-
ity. The effect of electric fields on fluid-fluid interfacial
stability has been well studied since the early work of
Taylor and McEwan (1965) and Melcher and Smith
(1969). Related recent applications have included utiliz-
ing an electrokinetic instability as a micromixer (Oddy et
al., 2001) or considering how electrical charges could be
used with surfactants to create patterning (Warner et al.,
2003a). A review by Saville (1997) summarizes the effect
of electric fields in engendering electrohydrodynamic in-
stabilities in systems featuring fluid-fluid interfaces. The
majority of the work described therein involves situa-
tions where gravity is important and a critical voltage is
required to destabilize disturbances of intermediate
wave number; long and short wavelength disturbances
are stabilized by gravity and capillarity, respectively.
These studies have focused primarily on determining the
dependence of the critical voltage on whether they are
“perfect” or “leaky” dielectrics, which is whether or not
there exists the possibility of free charge conduction and
charge accumulation and lateral transport on the inter-
face. It was shown by Melcher and Smith (1969) that the
presence of even the slightest amount of surface charge
is sufficient to destabilize the interface at significantly
lower voltages than in systems of perfectly dielectric flu-
ids.

Recent interest has been generated by the wish to ma-
nipulate films and droplets on a small scale. Kim et al.
(1992, 1994), Bankoff et al. (1994), Bankoff et al. (2002),
and Griffing er al. (2006) indicated the possibility that
thin films on electrostatic film radiators in space could
be controlled using electric fields. Kim et al. (1992) de-
rived evolution equations for low and moderate Rey-
nolds numbers, which describe the film dynamics of a
perfect dielectric material in the presence of electric ef-
fects. In the low Reynolds number case, this equation is
similar to the Benney equation (57) and includes a term
related to Maxwell stresses. Solutions of these equations
suggest that the Maxwell stresses reduce the pressure at
the gas-liquid interface sufficiently so as to substantially
reduce the rate of fluid leakage from holes which may
develop in cooling equipment used in space applications.

Equations of the Benney type were also derived by
Gonzalez and Castellanos (1996) to model the dynamics
of a film falling down a grounded inclined electrode with
the other electrode at infinity. The equation they derived
contains a nonlocal term, which owes its existence to the
electric contributions. Similar equations were also de-
rived by Tilley et al (2001) and Papageorgiou and
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Vanden-Broeck (2004a, 2004b) in the case of electrified
thin, planar, and free liquid sheets; here the nonlocal
electrostatic term takes the form of a Hilbert transform.
Gonzalez and Castellanos (1996) showed, through a lin-
ear stability analysis and a subsequent weakly nonlinear
analysis, that the electrically induced transition to insta-
bility is via a supercritical bifurcation at a critical value
of the electric field strength; this is done at small Rey-
nolds numbers for which the evolution equation reduces
to a generalized Kuramoto-Sivashinsky equation. This
equation, expressed by

ht + hhx + hxx + hxxxx + '}/Ht[hxxx] =0, (78)

was studied numerically by Tseluiko and Papageorgiou
(2006). Here 1y is proportional to an electric Weber num-
ber We and multiplies a Hilbert transform operator in
which 4 is a scaled interfacial amplitude; the plus sign
premultiplying the #4,, term is taken in situations
wherein the critical Reynolds number, required to ren-
der the flow down an inclined plane unstable in the ab-
sence of an electric field, is exceeded. With We—0, Eq.
(78) reduces to the Kuramoto-Sivashinsky equation [Eq.
(58)].

Tseluiko and Papageorgiou (2006) cataloged the vari-
ous types of behavior exhibited by Eq. (78) as a function
of y and the dimensionless size of the system; these in-
cluded the formation of spatially nonuniform as well as
time-periodic traveling waves and chaotic dynamics. In
particular, they showed that for sufficiently large values
of the electric Weber number electric stresses can give
rise to chaotic solutions at Reynolds numbers for which
the film is linearly stable in the absence of an electric
field. Thus the influence of an electric field could have
an impact upon issues such as mixing which is enhanced
by the presence of surface deformations and waves. In
any event, electrically driven thin films with inertia are
of interest and much remains to be discovered.

Another topic of interest is in generating well-defined
and controllable patterns at small scales and in the ab-
sence of inertia. Contrasts in electric properties, such as
dielectric constants and conductivities, are also found to
give rise to electrohydrodynamic interfacial instabilities
that manifest themselves via the formation of columnar
structures in two-layer immiscible systems (Dong et al.,
2001). In the presence of shear, however, Bankoff et al.
(2002) and Griffing et al. (2006) demonstrated that the
disturbance amplitude saturates in the nonlinear regime.
These electrohydrodynamic instabilities have also been
used in order to form well-controlled patterns at the mi-
croscale and nanoscale. This is exemplified by Schaffer
et al. (2000, 2001), Lin et al. (2001), and Morariu et al.
(2003) who demonstrated the appearance of columnar
structures in an initially flat polymer-air or polymer-
polymer interface, as shown in Fig. 3. In these experi-
ments, the initial film thickness is in the range of
100-1000 nm and the pattern wavelength is of order
100 nm. Lin ef al. (2002) performed an experimental
study of electrohydrodynamically induced patterns in
air-polystyrene (PS)-polymethylmethacrylate (PMMA)
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FIG. 13. (Color online) Electrohydrodynamically induced patterns in thin films of polymer melts under patterned masks: concen-
tric rings, triangular, hexagonal, and square arrays. The right and left figures correspond to experimental observations (Chen et al.,
2005) and the results of numerical simulations, respectively. From Wu et al., 2005.

thin films; these were confined between two electrodes
across which a voltage is applied. They demonstrated
that for sufficiently low voltages the PS phase dewets the
underlying PMMA phase. For larger voltages, the for-
mation of columns, which span from the PMMA phase
to the upper electrode, was observed.

The linear stability characteristics of thin films of per-
fect dielectric (Herminghaus, 1999; Lin et al, 2001;
Schaffer et al., 2001) and leaky-dielectric liquids (Pease
and Russel, 2002; Shankar and Sharma, 2004; Craster
and Matar, 2005), were examined in a number of studies.
Herminghaus (1999) showed that the pattern wavelength
is proportional to /i;*, where hy is the thickness of the
dielectric film which underlies a conducting fluid of
much larger thickness. Schaffer et al. (2001) used the
lubrication approximation to determine the dependence
of the fastest growing linear mode on system parameters
for a polymer-air interface. Lin et al. (2001) conducted
an experimental study using optical and atomic force
microscopy and modeling work to study the dependence
of pattern wavelength on the viscosity ratio in two-layer
polymeric systems. Their modeling study predicts the
wavelength to be independent of the viscosity ratio. The
linear stability analyses of Pease and Russel (2002) and
Shankar and Sharma (2004) and the numerical simula-
tions of Craster and Matar (2005) of single-layer and
two-layer leaky-dielectric films carried out using lubrica-
tion theory (as developed earlier in this section) showed
that the presence of conductivity exerts a destabilizing
influence. These studies also showed that, in contrast to
perfect dielectric films, in the case of leaky dielectrics
variation in the viscosity ratio has a significant effect on
the pattern wavelength.

Weakly nonlinear analyses and two-dimensional nu-
merical simulations have elucidated the interfacial evo-
lution and the role of the initial thickness ratio on the
observed three-dimensional patterns (Merkt et al., 2005;
Verma et al., 2005; Wu et al., 2005). These simulations
have also yielded much insight into the design of the
patterned “masks,” which are used to induce pattern for-
mation, so as to maximize the area of highly ordered
patterns (Wu et al., 2005). In Fig. 13, numerical and ex-
perimental patterns are compared and show strong
qualitative similarities.
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Electric fields have also recently been used in the ma-
nipulation and actuation of small liquid volumes, which
are of interest in the area of microfluidics and the devel-
opment of “lab-on-a-chip” type of devices (Prins ef al.,
2001; Mugele and Baret, 2005). So-called “drop surgery”
is an example of this and involves the splitting or trans-
lation of drops (Pollack et al., 2002; Cho et al., 2003) with
fine precision at the microscale and nanoscale; simula-
tions of drop surgery have been carried out recently by
Yeo et al. (2007) using lubrication theory. There are also
interesting effects when the wettability is altered by the
electric field leading to a ratchetlike fluid motion (John
and Thiele, 2007) and this joint electrical and dewetting
flow connects with Sec. V.

IV. FILMS DRIVEN BY THERMAL EFFECTS

In this section, we review the work on thin films
driven by surface stresses due to thermocapillarity and
discuss the instabilities associated with these flows. We
also review the work on films in the presence of phase
changes such as evaporation or condensation.

A. Uniform heating and evaporating films

Evaporatively driven interfacial flows have a long and
distinguished history going back to the work of Thom-
son (1855) and Marangoni (1865) after whom the driving
forces due to surface tension gradients are now named.
Oron et al. (1997) summarized the work carried out on
thin films in the presence of evaporation and condensa-
tion processes until the mid-1990s and provided a clear
exposition of the relevant equations that describe these
systems in the limit where the vapor phase dynamics are
neglected. In Sec. IV.A.1, we review more recent work
that extends these so-called “one-sided” models to ac-
count for the dynamics in the vapor phase (Sultan et al.,
2004, 2005). We then summarized in Sec. IV.A.2 the
work done on uniformly heated films with no phase
changes and evaporatively driven thin films since the re-
view of Oron et al. (1997).
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1. Modeling of thin films with evaporation

The theory underlying the development of long-scale
models for evaporative thin films has been reviewed by
Oron et al. (1997) [see also Burelbach er al. (1988) for a
comprehensive exposition of the derivation of the rel-
evant equations]. The assumption that the ratios of the
gas density, viscosity, and thermal conductivity and their
liquid counterparts are very small, results in consider-
able simplification and in the formulation of so-called
one-sided models (Burelbach et al., 1988; Shklyaev and
Fried, 2007). A brief derivation of these models is pro-
vided in Appendix C, giving an evolution equation for a
single surfactant-free layer of fluid on a horizonal rigid
and impermeable substrate bounded from above by an

E,

inviscid gas,
nwi e R
SN O
h+K | 3\ ¢C, (h+K)"/,

K Myh*h,
2 (h+K)* ],

(79)

This equation is discussed further in Appendix C and is
closely related to Eq. (34). Notably, the first term of the
right-hand side corresponds to height changes caused by
mass loss, while the term involving R corresponds to
vapor “recoil.” The final term is related to the presence
of surface tension gradients that arise due to interfacial
temperature variations, which can be determined explic-
itly in terms of 4 (see Appendix C). In this equation,

_ (T - To) _ Am
" pU,HLa " joHLa’
oo | {)\ (TO— Tw>}2
e LU, ™ La ’
(Ty-T.) do
e 80

are dimensionless groups that correspond to an evapo-
ration number E,, a measure of the departure from
equilibrium K, and a vapor recoil number R giving a
measure of the importance of the pressure imparted by
vapor thrust on the interface. There is also a group My,
that relates the coefficient of the linear equation of state
to the maximal temperature and surface tension
changes; notably it is positive for most fluids. In Eq. (80),
jo is a parameter in the constitutive equation for the
evaporative flux j,; T, and T, denote the temperatures
of the solid substrate and at saturation, respectively; and
oy and o, represent the surface tensions at these tem-
peratures, respectively. The characteristic velocity is U,
=SH/uL, where in S=o0,—0,, is the maximal surface
tension difference in the problem. The dimensional lin-
ear equation of state used in Appendix C to generate
Eq. (79) is 0=0,+do/dT(T;—T.), where do/dT is the
(constant) surface tension variation with temperature.
Typical parameter values for the physical quantities and
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dimensionless groups appearing in Egs. (79) and (80) can
be found in Burelbach et al. (1988).

Motivated by the observation that some evaporative
processes are diffusion limited and so the vapor phase is
relevant, recently the one-sided formulation has been
extended to account for the influence of the vapor phase
in so-called “two-sided” models (Sultan et al., 2004,
2005). If JgH/pD,<1, where J; is a characteristic evapo-
ration rate, D, is the vapor diffusion coefficient, H and p
denote a characteristic film thickness and density, re-
spectively, then diffusion in this phase is assumed to be
quasistatic. Consequently, the vapor density p, is ob-
tained via solution of Laplace’s equation

V2p, =0, (81)
subject to the following boundary conditions:
Jo
sz"‘—D_ as g — >,

8

Je=-— Dgn ’ Vpg = Uth(pg,eq(Ts) - pg) atz=h. (82)

Here T; is the interfacial temperature and vy, is a veloc-
ity scale that depends on the interfacial temperature, va-
por molecular weight, and the accommodation coeffi-
cient (Sultan et al., 2005). This a parameter-rich problem
and sample values of all parameters are listed in Sultan
et al. (2005) for water, nonane, octane, heptane, and hex-
ane and for water and ethanol in Burelbach et al. (1988)
together with estimates of the magnitudes of the nondi-
mensional groups. The density of the vapor in equilib-
rium with the liquid phase p, .4 is given by a linear equa-
tion of state pg .q(7T)=p, eq(TO)Jr(Tp_%d T, where T is the
’ ’ 0 o .
substrate temperature. The first condition in Eq. (82)
specifies the density gradient far from the interface,
while the interfacial condition reflects the continuity of
the normal evaporative flux and the vapor mass flux,
which is related to the departure from equilibrium at the
interface.

The temperature is governed by the same equations
and boundary conditions as in the one-sided model,
whose derivation is summarized in Appendix C. Ex-
pressing the dimensional solution for the temperature in
Eq. (C10) in terms of j,, we obtain T,—Ty=-Laj /Ny
=LaD,(n-Vp,) h/\y, which can be used to re-express
the density equation of state; this is then used to recast
the interfacial condition in Eq. (82) as follows:

dpg oqLa
- Dg<1 + Uth_u_h)n ) Vpg = Uth[pg,eq(TO) - pg]’
dT )\'tl’l
(83)

where La is the latent heat of vaporization.

In order to render Egs. (81)—(83) dimensionless, one
needs to introduce separate characteristic horizontal and
vertical length scales in the regions O0<z=<#h and z>h.
In the former region, x=£x and z=Hz, which are
lubrication-type scalings, and, in the latter, (x,z)
=H(X,Z2); the vapor density is scaled as p,=(Jo/D,)p,
and the following transformation is introduced: p,=p,
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+pgeq(T=1). These scalings result in the following di-
mensionless Laplace equation for the vapor density (af-
ter suppressing the tildes):

ﬁgxx + ﬁgzz =0, (84)
and the following boundary conditions:

Pg:~—1 asz—co,

je(1+ xh) =—Peyp, atz=h. (85)

Here Pey,=vyH/D, is a Péclet number that character-
izes the importance of diffusion in the vapor phase and
the need to have a two-sided model, and y
=Huvw(dpgeq/dT)Lal\y, is a dimensionless measure of
thermal expansion.
Equation (79) can be recast in terms of j,, as shown in
Appendix C,
) Wi ée ) h*
hy==E,j.+ |:?<_ ahxx + R]z)x - Mth;(h]e)x x'
(86)

In this case, it is not possible to write down a closed
form formula for j,; this has to be obtained numerically
via solution of Eq. (84) subject to Eq. (85). Note that the
one-sided model equations can be recovered by letting
pe— p,Pew/x and taking the limit Pey—0; this then
yields j,=1/(h+K) and p,=const.

In the absence of evaporation or condensation, that is,
with E,=R =0, it is still possible to have thermocapillary
forces through a cooling boundary condition at the gas-
liquid interface, usually Newton cooling is assumed,

Mo VT -n=ay(T-T,), (87)

where ay, is a heat transfer coefficient; the dimensionless
version of this equation is

T.=- BT, (88)

where By,=agH/ Ny, is an interfacial Biot number. The
remaining equations and boundary conditions for the
hydrodynamics, the temperature field, and the tempera-
ture dependence of the surface tension remain unaltered
from those presented in Appendix C. The temperature
T is then given by

1+ Bth(h - Z)
=—0 = 89
1+ Byh ®9)
which yields
en’ By, Myh’h
ho+ | ——h, +——02 | 0 90
e, 3T 2 (T Byh)? ©0)

using the same procedure as outlined in Appendix C.
Note that the second term on the left-hand side of Eq.
(90) is structurally similar to the fourth term on the right
hand side of Eq. (79); they both owe their existence to
the presence of thermocapillary, Marangoni stresses.
For By, <1, with T,,=0 as in Eq. (C7), T=const, and,
in the presence of a spatially varying basal temperature,
Ty(x), T=T,(x). From the shear stress boundary condi-
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FIG. 14. The film interface at rupture for a uniformly heated
film, showing the secondary droplet formation in the thinned
regions. This was computed using a long-wave evolution equa-
tion [Eq. (90) with an additional gravity term] and is virtually
indistinguishable from a finite element calculation in Krish-
namoorthy ef al. (1995). From Oron, 2000a.

tion at z=h in Eq. (C8), u,=o,=—My,T,,= 7y, Whence
u=1nz—(z%/12-zh)h,€1C,. Using the kinematic
boundary condition, the following evolution equation
for h can be obtained:

e h?
h,+ {Efﬁhxm + Tth? ) =0. 91)
Normally, the imposed basal temperature is assumed lin-
ear in x and so 7, is constant. Equation (91) will be
discussed later within the context of “climbing films” in
Sec. IV.B.

2. Experimental and numerical studies

For thin films with a free surface and uniform heating
from below, a long-wave Marangoni instability emerges.
As noted by Oron (2000a), the film must be sufficiently
thin in order that buoyancy effects are not dominant.
Experiments by VanHook et al. (1995, 1997) on heated
silicone oil layers of thicknesses 70-270 um demon-
strate, at the very lowest thicknesses, that a long-wave
instability occurs with a dry spot forming and that for
these very thin layers this replaces the usual short-wave
convective instability; these two competing instabilities
have been discussed by Golovin et al. (1994). Initially,
one-dimensional numerical modeling using either
boundary integral formulations for the full Stokes equa-
tions (Boos and Thess, 1999) or thin-layer evolution
equations in two dimensions (Oron, 2000a) was per-
formed. The work by Oron (2000a) utilizes a two-
dimensional version of Eq. (90) with an additional grav-
ity term that is retained in the pressure as in Eq. (34).
Both studies found no steady state and that thinning
followed by rupture occurs via a sequence of fingering
events leading to the emergence of secondary drops, as
shown in Fig. 14. It is worth noting that earlier work by
Krishnamoorthy et al. (1995) compares long-wave theory
with finite element solutions of the full Navier-Stokes
equations for this problem; the two numerical schemes
deliver quantitative agreement except very close to rup-
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t= 469670

FIG. 15. (Color online) Two-dimensional computations for a
uniformly heated thin film. In this long-time simulation, the
lighter and darker areas represent thin and thick or droplet
regions, respectively. These computations are complementary
to those shown in Fig. 17 and demonstrate the development of
small droplets forming within the larger holes. From Beste-
horn et al., 2003.

ture. Both schemes demonstrate the formation of sec-
ondary droplets and thus, as noted by Oron (2000a), this
is not an artifact of thin-layer, or long-wave, theory.
Once rupture occurs and a dry spot forms, within a nu-
merical scheme it must necessarily halt unless a conjoin-
ing pressure containing a repulsive term is introduced [ ¢
in Eq. (34)] into the two-dimensional version of Eq. (90);
this leads to stabilization of the thin film at thicknesses
of the orders of tens of nanometers. Recently, Bestehorn
et al. (2003) used exactly this approach allowing the long
time evolution of the instability to be followed. A host
of different instabilities occur leading to holes, drop, or
labyrinthine mazes depending on the parameters, as
shown in Fig. 15.

Nonuniform heating as considered by Yeo et al. (2003)
complicates matters by driving a thermocapillary flow
with a thinned region upstream and a thickened region
downstream of the applied thermal gradient. The
thinned region becomes unstable to a streamwise ruptur-
ing instability and near the rupture point a cascade of
fingering structures and secondary droplet formation is
seen, which is similar to the phenomena observed in the
computations of Boos and Thess (1999) and Oron
(2000a).

The studies reviewed above have all involved a single
thin film. Multilayer flows allow for even more interest-
ing and diverse behavior. Kats-Demyanets et al. (1997)
and Nepomnyashchy and Simanovskii (1997) considered
linear stability for the long-wave limit in a horizontal
trilayer system albeit enclosed by rigid walls from above
and below. This system has two internal free interfaces
and so additional long-wave instabilities are identified.
Kliakhandler et al. (1998) took the analysis one step fur-
ther into the weakly nonlinear regime and showed that,
when one fluid layer is thin relative to the others, this
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instability is governed by a Cahn-Hilliard equation
modified by coupling to a linear equation. It is therefore
worth noting that even the uniformly heated thin fluid
layer exhibits rich and interesting dynamics.

Some of the studies featuring evaporating films have
been motivated by “the coffee ring” left by an evaporat-
ing drop of coffee (Deegan et al., 2000), the explanation
of which is that the hydrodynamics generated by evapo-
ration lead to preferential particulate concentrations at
the edge. Many authors have also considered evapora-
tive effects coupled to other effects such as those asso-
ciated with substrate wettability. As one might naturally
expect, evaporation causes the fluid film to thin until
eventually dewetting phenomena occur and some over-
lap with Sec. V occurs.

The dewetting dynamics and formation of “holes” in
an evaporating thin film of low wettability were experi-
mentally investigated by Thiele et al. (1998) who ob-
served the “heterogeneous nucleation” of holes for rela-
tively “thick” films, which give way to “spinodal
dewetting” (see Secs. V.C and V.D for a discussion of
these mechanisms) once the mean film thickness has
been reduced to approximately 10 nm by evaporation;
destabilizing polar interactions were shown to be re-
sponsible for this mode of dewetting. Sharma (1998) also
studied thin evaporating-condensing films and presented
a theory showing that the Ilocal evaporation-
condensation rates are strong functions of the local film
curvature and conjoining pressure. He also demon-
strated that the dewetting of thin evaporating water
films on partially wettable solid substrates is driven by
hydrophobic attraction and mitigated by van der Waals
interactions. Increasing the relative significance of the
hydrophobic attraction destabilizes the film at increas-
ingly larger thicknesses, leading to an overall decrease in
the number density of the holes formed.

Complementary to these studies is that of Padmakar
et al. (1999) who performed time-dependent simulations
of the thin film behavior by obtaining numerical solu-
tions of an evolution equation [a reduced form of Eq.
(79)] for the interfacial position derived using lubrication
theory. This equation accounted for capillarity, evapora-
tion, conjoining pressure, and viscous drag. Their nu-
merical results confirmed previous findings (Sharma,
1998) and also showed that the evaporation rate has a
profound influence on the length scale of the patterns
accompanying the film dynamics.

Oron and Bankoff (1999) also studied evaporating
films in the presence of intermolecular forces using an
evolution equation, essentially Eq. (79) enhanced with a
conjoining pressure term, and showed that, in the ab-
sence of evaporation, static liquid ridges emerged con-
nected by very thin films; these resulted from a balance
of the long-range attractive and short-range repulsive
intermolecular forces. In the presence of evaporation,
the ridges flattened and eventually disappeared.

Kargupta et al. (2001) examined the pattern formation
accompanying the dewetting of evaporating films on ho-
mogeneous and chemically heterogeneous substrates us-
ing time-dependent numerical simulations. Their nu-
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merical solutions of the thin film lubrication equation
showed that the rate of dewetting and the number of
holes formed in the film increase substantially with
evaporation rate on homogeneous substrates. In the
case of chemically heterogeneous substrates, a combina-
tion of the evaporation rate and gradients of the inter-
action potential controls the dewetting dynamics and
hole size distribution. Lyushnin et al. (2002) studied an
instability that accompanies the growth of dry regions in
evaporating thin films of polar liquids on chemically het-
erogeneous solid substrates. The instability manifests it-
self in the form of fingering patterns between thin dry
regions and thick wet ones. The numerical study ac-
counted for the effect of varying the evaporation rate,
polar forces, and the substrate chemical heterogeneity.

Fluids, such as paints, for instance, can also be com-
posed of volatile and nonvolatile components, and the
relative concentrations are important in chemical drying
processes. In this case, gradients in the chemical concen-
tration lead to surface tension variations. In order to
elucidate the mechanics of paint drying, Eres et al.
(1999) used lubrication theory to study the three-
dimensional dynamics of an evaporating thin film of a
multicomponent fluid. The “paint” is taken to be com-
posed of a “solvent” and a “resin,” which correspond to
the volatile and nonvolatile components, respectively.
The model of Eres et al. (1999) accounts for gravity, cap-
illarity, and thermal Marangoni effects, as well as evapo-
ration, and for the dependence of the diffusion coeffi-
cient, film viscosity, and evaporation rate on the resin
concentration. Thus there are now two coupled evolu-
tion equations, one for the height and another for the
soluble chemical. This then results in a system akin to
the surfactant chemical equations [Egs. (117) and (119)],
to be discussed in Sec. VI, complemented by evapora-
tion. Their numerical simulations demonstrate the pro-
found effect of Marangoni stresses, which are brought
about by the evaporation-induced compositional
changes.

Pattern formation in evaporating thin films of mix-
tures of volatile fluids, such as alcohols, has also been
studied of which the so-called “tears of wine” are an
example (Thomson, 1855); see Fig. 16. Here evaporation
causes the alcohol concentration (surface tension) in the
thin film above the meniscus to decrease (increase) driv-
ing a Marangoni flow that draws the wine upward into a
thickened rim that ultimately becomes unstable due to
gravity and falls back toward the meniscus as a “tear.”
These have been examined by Fanton and Cazabat
(1998) and Hosoi and Bush (2001). The latter authors
developed a thin film equation using lubrication theory
capable of reproducing the ridgelike features shown in
Fig. 16.

The evaporation of droplets has attracted much inter-
est. As the fluid evaporates the droplet is either pinned
(Deegan et al., 2000) due to a rough substrate or recedes
on a wetting substrate (Cachile, Benichou, ef al., 2002).
In the latter case, provided the evaporation is limited by
diffusion of vapor in the air the droplet radius R(¢) scales
as \f.nq—1t, where f.,4 is the time the droplet vanishes.
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FIG. 16. The formation of tears and ridges in thin evaporating
climbing films of a methanol and water mixture. Schematic of
the flow (a) and of the tears and ridges (b); (c) a photograph
showing descending tears (right in photo) and ridge-formation
upstream. From Hosoi and Bush, 2001, and courtesy of John
Bush and Anette Hosoi, MIT.

This follows from simple scaling arguments (Deegan et
al., 1997; Shahidzadeh-Bonn et al., 2006), provided ther-
mal and Marangoni effects are negligible the majority of
the evaporation occurs at the edge: dV/dt
o —27R, where the volume Vo« R?h, and further assum-
ing that the contact angle is constant so h/R~ const
leads to the scale above. This is reliant upon the
thermal- and Marangoni-related assumptions mentioned
above but is nonetheless accurate for many fluids
(Cachile, Benichou, and Cazabat, 2002). Interestingly,
for water the exponent changes from 1/2 to about 0.6
(Shahidzadeh-Bonn et al., 2006) which is hypothesized to
be due to water vapor being lighter than air and thus
convection becomes important.

Evaporating droplets also demonstrate interesting
both instabilities at the contact lines (Rendon et al.,
1992; Poulard et al., 2003; Gotkis et al., 2006) and, for
volatile liquids, instabilities occur in the bulk (Hegseth et
al., 1996; Kavehpour et al., 2002) driven by Marangoni
forces. In the experiments of Poulard et al. (2003) (see
also Benichou et al., 2003) the dynamics were found to
be controlled by the film properties and fluid volatility.
The presence of contact line instabilities and nonmono-
tonic receding contact angle behavior was also demon-
strated; an example of this is shown in Fig. 17. The be-
havior at the contact line is further accentuated if the
substrate dissolves [Gonuguntla and Sharma (2004) who
considered a solvent droplet] and its dissolution is a
function of the solvent concentration; there is a delicate
interplay between dissolution and evaporation leading
to intricate patterning near the contact line.
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silicon wafer

water drop

FIG. 17. The formation of festoonlike patterns at the contact
line of an evaporating water droplet. From Poulard et al., 2003.

In terms of theory, the diffusion-limited model allows
for analogy with electrostatics (Deegan et al., 2000;
Cachile, Benichou, et al., 2002) that gives the mass flux
explicitly. The one-sided theory (Burelbach et al., 1988),
where the vapor plays virtually no role, has also been
used to investigate the evaporation of droplets (Ander-
son and Davis, 1995), assuming that the contact angle is
only affected weakly by evaporation. More recently,
Ajaev (2005b) used a conjoining pressure in the mass
flux to create a stable adsorbed film on the substrate
ahead of the droplet. Numerical solutions of this model
were found to be consistent with experimental observa-
tions of pattern formation in thin film drying. The model
of Ajaev (2005b) is also discussed in Appendix C. Beste-
horn and Merkt (2006) studied numerically the interplay
between evaporation and the Rayleigh-Taylor instability
in a thin liquid film on the underside of a solid substrate.
In the presence of evaporation, Bestehorn and Merkt
(2006) demonstrated the development of long-wave hex-
agonal patterns (see Fig. 18), which replace coarsening
to large drops in the absence of evaporation.

A number of studies have also considered the effect of
surface-active additives on the behavior of evaporating-
condensing thin films. For instance, Danov, Alleborn, et

@) (b) ©

FIG. 18. Dynamics of a thin liquid film on the underside of a
horizontal wall heated from below (or cooled from above):
Rayleigh-Taylor-driven rupture stabilized by evaporation. Top:
The formation of hexagonal stationary structures. Bottom:
“Mazes” and coarsening drops are calculated in the absence of
evaporation, shown in (a) and (c), and stripes and hexagons are
shown in (b) and (d) with evaporation From Bestehorn and
Merkt, 2006.
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al. (1998) used lubrication theory to study the dynamics
of evaporating films in the presence of surfactants, inter-
facial viscosity, solutal and thermal Marangoni effects, as
well as disjoining pressure. They carried out a linear sta-
bility analysis which revealed the competition that exists
between the various destabilizing mechanisms. Paunov
et al. (1998) extended this work to examine the stability
of an evaporating two-layer surfactant-laden system in
the nonlinear regime. Their numerical results revealed
that the film exhibits both solutal and thermal Ma-
rangoni instabilities and that sufficiently large surfactant
concentrations stabilize waves of intermediate and high
wave numbers. These results also showed that the differ-
ence between estimates of the film rupture time based
on the predictions of linear and nonlinear theories de-
creases with increasing surfactant concentration. Drying
techniques, which are based on the deposition of
surface-active vapor on wet wafers, have been devel-
oped in the semiconductors and microelectronics indus-
try (Marra and Huethorst, 1991). These processes have
also been modeled by Matar and Craster (2001) using
lubrication theory, who demonstrated that the ultrathin
film left behind during the drying process depends
strongly on the nonlinearity of the surfactant equation
of state and the rate of its desorption from the interface
to the bulk.

Hu and Larson (2005a 2005b) carried out a numerical
study of an evaporating droplet resting on a solid sup-
port with a pinned contact line; the finite element
method was used to solve the Stokes flow equations,
coupled with Laplace equations for the thermal field
within the droplet and the vapor concentration above
the droplet in the slow evaporation limit. This study re-
vealed good agreement with the predictions of lubrica-
tion theory at low capillary and Reynolds numbers. In
the presence of Marangoni stresses, similarly good
agreement was demonstrated; in this case, the lubrica-
tion solution was found to be accurate for relatively
large contact angles (as high as 40°) [see Fig. 5 of Hu and
Larson (2005b)]. The recent work by Sultan ez al. (2005),
reviewed in Sec. IV.A.1, has been aimed at developing
two-sided models that connect the diffusion-limited and
one-sided models. Their equations in the diffusion-
controlled limit are parametrized by capillary and Ma-
rangoni numbers and linear stability results indicate that
Marangoni stresses are destabilizing while capillarity
and evaporation are stabilizing.

A number of studies have also been devoted to exam-
ining how evaporation of thin films and slender droplets
can be utilized in self-assembly of particles and the de-
velopment of surface patterning; for particulate flows
this is akin to the coffee ring problem of Deegan (2000)
and Deegan et al. (2000). Govor, Reiter, Bauer, and Pa-
risi (2004), Govor, Reiter, Parisi, and Bauer (2004), and
Govor et al (2005) reported the formation of
micrometer-sized rings of nanoparticles in thin evaporat-
ing films of binary mixtures of nitrocellulose in amyl ac-
etate and hexadecylamine in hexane. Phase separation
of the mixture into a bilayer is followed by dewetting of
the hexadecylamine-rich top layer into droplets.
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FIG. 19. Results of atomic force microscopy measurements
showing the formation of treelike structures during the evapo-
ration of polyisobutylmethacrylate and nitrocellulose bilayers
in (a). (b) A magnified image of the box in (a). (c) A three-
dimensional image of a branch highlighted in (b). From Govor
et al., 2006.

Evaporation-induced retraction of the three-phase con-
tact line drives the self-assembly of the nanoparticles
located there to form rings. More recently, Govor et al.
(2006) also demonstrated the formation of treelike struc-
tures during the evaporation of the solvent, such as the
ones shown in Fig. 19. Other primarily experimental
groups (Weh, 1999, 2005; Weh and Venthur, 2004; Bor-
mashenko et al., 2005a 2005b) have also been exploring
the formation of surface patterning driven by evapora-
tion and this is an area that requires modeling.

Motivated by the results of O’Hara and Gelbart
(1998), who observed the formation of annular rings of
particles during the dewetting of particles-laden thin
films, Warner et al. (2003b) used lubrication theory to
model the evolution of an evaporating ultrathin film
containing potentially surface-active nanoparticles (a
combination of the modeling of this section and of Sec.
VI.A); the film was considered sufficiently thin so as to
undergo “spinodal dewetting.” The results of Warner et
al. (2003a) demonstrated the evolution of an initially
uniform distribution of particles into bands or rings; the
dependence of the pattern spacing on the initial packing
concentration, evaporation rate, particle surface activity,
and the nature of the intermolecular forces present was
elucidated. Thus patterning and self-emplacement of
nanoparticles can be approached by these theories.
There has also been work by Rabani et al. (2003) that
reproduces many patterns seen experimentally using
Monte Carlo simulations, valid when the fluid film is
extremely thin and the hydrodynamics play less of a
role. Here one topic of interest is how one could incor-
porate this into a lubrication-style analysis for thicker
films.
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FIG. 20. The height profiles for a climbing film. (a) Schematic
of a thin film climbing against gravity under the action of Ma-
rangoni stress 7; this is induced by a temperature gradient im-
posed along the underlying substrate. (b) The base state, a
traveling wave solution (solid line), is vulnerable to transverse
perturbations (dashed line) that localize near the contact line.
A typical dispersion curve, depicting the dependence of the
growth rate \ on the disturbance wave number k is also shown
as an inset in (b), which demonstrates the existence of a linear
instability for a range of k values. The “most dangerous
mode,” having maximal growth rate and wave number k,, and
the “cutoff” mode, with A=0 are highlighted by a circle and a
cross, respectively. A precursor layer thickness /,=0.1 was
used to generate these results.

B. Climbing films

The surface tension of the majority of fluids is a de-
creasing function of temperature. Thus, it is possible to
induce a film to climb out of a reservoir and spread
along a vertical or inclined solid wall via the imposition
of a temperature gradient. This gives rise to a surface
tension gradient and thermocapillary-driven Marangoni
stresses, which induce flow from the warm low surface
tension region near the reservoir to the cooler regions of
higher surface tension up the wall. This relatively simple
flow, shown in Fig. 20, has generated considerable inter-
est. Early experiments by Ludviksson and Lightfoot
(1971) showed that fluid is drawn out of the reservoir
and at its leading edge, a capillary ridge is seen. This
ridge is also vulnerable to finger formation in a similar
way to the gravity-driven case described in Sec. III.A.1
(Troian, Wu, and Safran, 1989; Cazabat et al., 1990, 1992;
Brzoska et al., 1992; Carles and Cazabat, 1993). As the
film thickens and gravity, which, in this case counteracts
the Marangoni-driven upward flow becomes more im-
portant; later experiments (Bertozzi et al, 1998;
Schneemilch and Cazabat, 2000a, 2000b) showed that
the capillary ridge widens into an undercompressive
shock.

As indicated in Sec. IV.A, for sufficiently thin fluid
layers and small Biot numbers the surface temperature
can be taken to be equal to that of the substrate. For the
case of a linear dependence of the surface tension on
temperature and a basal temperature linear in the
streamwise direction x, the surface shear stress reduces
to a constant 7. This is modeled by Eq. (91), which
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following the introduction of the rescalings x
— €/(C,py7n)x and t— €/(C,,7) ¢, and a generalization
to account for the transverse direction, reduces to

ho+ 52+ 3V - (KPV V2h) = 0. (92)

Note that as the constant temperature gradient is solely
in the x direction, the Marangoni term involves a deriva-
tive in x only. Modeling proceeds as in the gravitation-
ally driven case by considering the linear stability of the
ridge (Kataoka and Troian, 1997) and via numerical
simulations of Eq. (92) (Eres et al., 2000). The contact
line singularity is relieved by postulating the presence of
a precursor layer, of thickness £, ahead of the contact
line (Kataoka and Troian, 1997) and that the upstream
condition is ~#=1. A traveling wave solution of the base
state is then obtained via numerical solution of the fol-
lowing equation (Moriarty et al, 1991; Kataoka and
Troian, 1997):

2’ 5
3 hege+ 12y = (y + DR =0, (93)

where é=x-—ct, and now h(x,H)=h(§), in which c¢=(1
+h,)/2 is the traveling wave speed that depends on the
precursor film thickness 4,. The solutions obtained are
subject to h—1 as {— - and h—h, as {—. A useful
review of the treatment of the ordinary differential
equations that arise in this type of analysis has been
provided by Tuck and Schwartz (1990).

The base state hy(¢)=h(£) from Eq. (93) is now per-
turbed in the transverse direction and its linear stability
is investigated using normal modes by substituting
h(x,y,t)=ho(é)+h(§exp(iky+\t) into the nonlinear
two-dimensional evolution equation [Eq. (92)] and lin-
earizing. Here k and \ correspond to the (real) distur-
bance wave number and (complex) growth rate, respec-
tively, and A, satisfies the following ordinary differential
eigenvalue equation:

1 1
)\l/ll = E(hp + 1)h1§— (h0h1)§_ 5[3h%h1h0§§§

k2
+hihigge— Ko Je+ 5 (ilhg = K*mD) - (94)

with (h;,h,,) —0 as é— +o. A typical base state profile,
an eigenfunction A; for k=0, and a dispersion curve
showing \(k;h,=0.1) are depicted in Fig. 20. The growth
rate A=0 for 0=<k=<k_, indicating the presence of a lin-
ear instability, with well-defined cutoff wave number k&,
and a most dangerous mode with wave number k,,
which maximizes the growth rate. Provided the pertur-
bation to the flow is small, linear theory predicts that
this is the mode observed in experiments. The distur-
bances are localized at the capillary ridge; varying the
wave number k gives very minor changes in the form of
the eigenfunction and its location.

The dimensionless precursor layer h, is relatively
large in Fig. 20; decreasing it steepens the front and in-
creases the height of the capillary ridge, which also leads
to an increase in the maximal growth rate (Kataoka and
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Troian, 1997). The physical mechanism for the observed
instability is similar to that at work in the gravity-driven
case (see Sec. III.A): locally thick regions flow faster
than those which are relatively thinner since they feel
less drag induced by the wall. These initially small per-
turbations are amplified and lead to finger formation for
sufficiently small values of 4,,; streamwise capillarity pro-
vides the mechanism for high-wave number cutoff.

We now consider situations in which thermocapillar-
ity, which drives the film to climb up the plate, is op-
posed by gravity. The generalization of Eq. (92) to this
case is

L L )_
h,+<2—3) +v.<3(vw—gvm =0. (95

X

Equation (95) follows from Eq. (34) after omitting con-
joining pressure, topography, and slip and rescaling x, y,
and f to remove the parameters; a concise derivation has
been given in Haskett er al. (2005). Equation (95) also
involves an additional (A*/3), term, which is the gravita-
tional term premultiplied by G,, in Eq. (34). Note there is
a sign change as the x axis is, for this problem, conven-
tionally taken to be orientated up the incline, that is, in
the direction of the Marangoni driving with gravity act-
ing in opposition. In Eq. (95) we have included a term
multiplied by G [proportional to €G,, cot(6)]. This term is
only required for the nearly horizontal flows considered
by Miinch and Wagner (1999), and Miinch and Evans
(2005) when 6~ O(e) and G becomes order 1, and it is
otherwise O(e) and thus usually omitted.

Early experiments by Ludviksson and Lightfoot
(1971) demonstrated that fluid can be drawn up the in-
clined substrate by the temperature gradient and the
front is often unstable and fingering occurs, but intrigu-
ingly the contact line can also be surprisingly stable. In-
terest in this flow was reignited when several authors
(Fanton et al., 1996; Bertozzi et al., 1998; Schneemilch
and Cazabat, 2000a, 2000b) also demonstrated that these
contact line instabilities were suppressed in some cases.
For very thin films, they observed the single traveling
wave shown in Fig. 20 and the contact line is unstable
and fingers eventually form. But as the thickness of the
film increases by increasing, say, the thermal gradient,
the contact line becomes stable, and the capillary bump
widens over time (Bertozzi et al., 1998), and it also
propagates more slowly than the steady prediction. One
no longer observes a steady solution, but an unsteady
one that consists of a leading and a trailing shock that
propagate at different speeds, which then separate over
time. As also shown by Bertozzi et al. (1998, 2001), the
leading undercompressive shock is stable to transverse
perturbations, which could be useful when uniform coat-
ing is required. The trailing Lax (compressive) shock is,
however, unstable albeit with a longer wavelength than
that found when the Lax shock, for very thin films, is the
leading shock. It is also possible to incorporate conjoin-
ing pressure effects to mimic the effect of van der Waals
forces, Sec. V into this analysis (Golovin et al., 2001),
and their effect is stabilizing.
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FIG. 21. Comparison of the experimentally observed height
with a perturbation traveling into a trailing compressive shock
(top panels) with the results of a numerical simulation (bottom
panels), showing remarkable resemblance between theory and
experiment. From Bowen et al., 2005.

The term “shock wave” comes from an interpretation
in the absence of the higher order derivatives (Bertozzi
et al., 1999) when the equations are hyperbolic

h* K

B [0 =0. fh) == 2, %)
and the shock structure can be explicitly extracted: it is a
clear physical example of a nonclassical undercompres-
sive shock which might otherwise be thought of as a
mathematical abstraction. A good summary of the dif-
ference between compressive and undercompressive
shocks in the context of this problem has been given by
Bowen et al. (2005). They have absorbed the factors of
1/2 and 1/3 into the nondimensional groups at the out-
set, but for consistency with earlier sections we have not
done so.

Careful experiments by Schneemilch and Cazabat
(2000a) confirmed the theory, at least qualitatively, and
further theoretical work (Bertozzi and Shearer, 2000;
Miinch, 2000; Miinch and Evans, 2005; Evans and
Miinch, 2006) expands its range further by, for instance,
coupling the advancing fronts to the behavior at the me-
niscus (Evans and Miinch, 2006) and discussing how the
threshold thickness is determined whereby the double-
shock structure forms (Levy and Shearer, 2005). It is also
often the case that the heat source is localized in space
rather than just being perfectly linear, nonetheless the
theory can be adjusted. Small oscillations in the menis-
cus can affect the behavior of the propagating thin film
and localized heating can be used to isolate the meniscus
region (Haskett et al., 2005). Similarly one might be in-
terested in how a perturbation to the stable leading
shock affects the trailing one and in fully two-
dimensional simulations, this has been undertaken by
Bowen et al. (2005). In Fig. 21, from Bowen et al. (2005),
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we show a comparison of their simulations with experi-
ment demonstrating remarkable resemblance between
the two. In the experiments, the perturbation is gener-
ated precisely using a laser to create a local heat source
and this is then mimicked in the numerics with a Gauss-
ian source. The agreement shown in Fig. 21 is typical of
the capability of modern numerical simulations to quali-
tatively reproduce experimental observations. Other re-
cent work (Miinch, 2003; Sur et al., 2003) showed that
the single compressive shock and the separating shocks
are also complemented by other shock structures for a
draining film competing with gravity.

C. Flow patterning

Accurate, efficient, and reliable manipulation of small
volumes of liquid is of tremendous importance to nu-
merous micromechanical and microfluidic devices.
These involve the transport of fluids in channels driven
by a variety of mechanisms, which include electrowet-
ting, electro-osmosis, electrohydrodynamic pumping,
and thermocapillary pumping. The presence of a finger-
ing instability at the contact lines of thin films, either
flowing down an inclined plane or climbing under the
action of thermocapillarity, which leads to patterns of
well-defined wavelengths, can potentially be exploited
for channeling small volumes of fluid. The presence of
contamination and surface defects, however, can give
rise to large variations in the pattern wavelength. In the
case of spreading over homogeneous substrates, the pre-
cise location along the thickened front from which the
fingers emerge is not reproducible. In order to counter-
act these difficulties, Kataoka and Troian (1999) allowed
a thermally driven climbing film to flow over a patterned
silicon wafer, which had regularly spaced stripes of
bared and coated SiO,. The combination of this periodic
surface energy pattern, which corresponds to alternating
regions of high and low wettabilities, was shown to be
highly effective in channeling the flow; it was also shown
to be robust to the presence of contamination and sur-
face irregularities (Kataoka and Troian, 1999; Darhuber
et al., 2000).

An important issue is related to the minimal width of
a stripe in the substrate pattern, which can give rise to
reproducible channeling. The experiments of Kataoka
and Troian (1999) showed that, above a critical value of
the stripe width, the channel spacing corresponds to the
substrate pattern rather than the wavelength predicted
by linear theory (see Fig. 22). Numerical simulations of
this system were also carried out (Kondic and Diez,
2002), using an evolution equation similar to Eq. (33)
with a spatially varying conjoining pressure to mimic the
contrast between the high- and low-wettability regions
on the substrate. The experimental results of Kataoka
and Troian (1999) and the numerical predictions of Kon-
dic and Diez (2002) (an example of these is depicted in
Fig. 23) showed that the critical width of the wettable
stripes is fixed by the marginal stability wavelength, as
predicted by the linear stability analysis.
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FIG. 22. Interferograms of thin silicone-oil films (left) climbing
over silicon wafers patterned with alternating stripes of OTS

and SiO, (right). From Kataoka and Troian, 1999.

D. Flow with solidification and thermally varying viscosity

Many spreading scenarios involve fluids whose prop-
erties depend strongly on temperature. Indeed, a
common-day experience, spreading honey on hot toast,
is that heating a fluid decreases the viscosity significantly.
This is also observed in a number of settings that range
from lava flows (Griffiths, 2000), solid-state mantle
plume heads (Bercovici and Lin, 1996), glaciers (Hutter,
1983), and ice sheets (Baral et al., 2001) in geological
settings to the flow of molten films in chemical engineer-
ing (Braun et al., 1995) and nuclear coolants (Dinh et al.,
2000). Ice is included here as temperature (pressure and
water content) affects the viscosity and so in geophysical
applications a fully coupled thermal-hydrodynamic
problem must be solved (Greve, 1997).

In order to model such situations, the mass and mo-
mentum conservation equations must then be solved in
conjunction with an energy conservation equation [Eq.
(C3)] for the temperature. The viscous heating term is
commonly ignored as the nondimensional group that
characterizes its importance, and the Brinkman number
defined as uLlU/ 'HzpCSpAT, is very small; here Cg is the
specific heat capacity of the fluid and AT is the typical
temperature change from ambient. For lava and experi-
mental flows typical values are O(10™*) and have been
given by Balmforth and Craster (2000) together with
material properties. Solutions are obtained subject to
Eq. (87) at z=h and a condition on the temperature
and/or its gradient at z=0. For fluids such as lavas, for
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FIG. 23. Numerical simulations of thin films spreading over
patterned substrates. Top: Initial conditions. Bottom: Fully de-
veloped fingering patterns. From Kondic and Diez, 2002.

instance, radiative cooling is more appropriate and the
right-hand side of Eq. (87) is replaced by ay,(T*-T%) or
ag(T—-T.)*? (Griffiths and Fink, 1997; Balmforth and
Craster, 2000); here T., represents the ambient tempera-
ture. The temperature is coupled to the flow through the
viscosity whose dependence on the temperature is given
by

(D) = p,e” O, (97)

where u, is the viscosity evaluated at the ambient tem-

perature T, and G are prescribed constants. Such expo-
nential forms for the temperature dependence are com-
monly used for lavas (Shaw, 1969; McBirney and
Murase, 1984; Pinkerton and Norton, 1995) and their
laboratory analogs (Fink and Griffiths, 1990; Stasiuk et
al., 1993); they are also used for ice sheets (Hutter, 1983).
These relations are often justified theoretically because
the Arrhenius reaction rate has exponential form in the
Frank-Kamenetskii approximation.

In the case of rapid vertical conduction, the dynamics
are described by coupled evolution equations for the
thickness and the vertically isothermal temperature
(Bercovici and Lin, 1996; Balmforth and Craster, 2000;
King et al., 2000). The procedure used to derive these
equations is similar to that which will be described in
Sec. VL.A in the case of rapid vertical diffusion of sur-
factant molecules across a thin film. There is thus a simi-
larity with Egs. (117) and (119) with bulk concentration
replaced by temperature: both correspond to diffusing
and advecting fields and are treated identically in the
lubrication limit. Several features such as the formation
of fingers or lobes at the edge of a cooling spreading
droplet of hot fluid [often observed in the field and in



R. V. Craster and O. K. Matar: Dynamics and stability of thin liquid films 1165

experiments (Griffiths and Fink, 1997)] can be inter-
preted using this model: locally thinner areas cool faster
and thus have higher viscosities and advance less rap-
idly; conversely, thicker areas remain hotter and less vis-
cous.

The flow of metals and many lavas, however, is char-
acterized by large thermal Péclet numbers, the develop-
ment of thermal boundary layers, and the formation of a
highly viscous “skin” near the free surface; the approach
discussed above leading to the development of a “re-
duced” model is therefore inappropriate in this case. In
order to model this situation, the von Karman-
Pohlhausen approach has been used for the temperature
field by Balmforth et al. (2004). Typical isotherms for an
evolving fluid dome (an extrusion of hot fluid from a
vent) showed that in the rapid conduction limit, the flow
becomes vertically isothermal and the reduced model
works well. However, in the opposite limit, the depen-
dence of the temperature on the vertical direction be-
comes pronounced and cool fluid is gradually advected
along the surface, accumulates at the edge, and is even-
tually over-ridden.

Another approach involves balancing various driving
and restraining forces to deduce similarity scalings (Grif-
fiths and Fink, 1993; Stasiuk et al., 1993; Lister and Kerr,
1994). If one considers an axisymmetric dome of hot
fluid supplied from a vent at a constant rate, then one
set of variables of interest (nondimensional ones are
used here for convenience) is the radius R(f) and maxi-
mal height /,,.(f). These can be estimated as follows.
For a constant-flux extrusion, the radius and height are
connected by h,,, R>~t; moreover, radial pressure gra-
dients p,=h,~ h,/R drive expansion and must be bal-
anced by fluid stresses. On equating the volume-
averaged driving force [[p,rdrdz~Rh2, with the
volume average of the dominant resistive stress, one can
then extract the scaling exponent of the power law that
characterizes the temporal behavior of the maximum
dome height and radius. For instance, if the fluid is all at
the eruption temperature and the viscosity is fixed then
the radial velocity u~ R/t and 7,,=u,~ R/h,¢ and the
resistive stress [[d,7,,rdrdz ~ R*/ hy,t. The dimensional
scaling results obtained in this way can be found by Grif-
fiths and Fink (1993) who showed that the power-law
exponents for R and A,,,, depend strongly on the nature
of the retarding mechanism. These exponents are ex-
pected to vary during the course of the flow as the domi-
nant physics changes to promote one resistive stress
over the others. The simple method outlined above can
be used to great effect in generating theoretically power-
law scalings that signify the balance between certain
driving and retarding forces; these scalings can be used
to provide qualitative explanations of experimental data
and will be utilized again in Sec. VI.A.

Thin film flow in the presence of solidification has not
received much attention presumably due to the associ-
ated complication of rigid crust formation, possible frac-
turing, and buckling; these require a level of modeling
that has not been developed fully. However, there have
been attempts to perform numerical simulations (Bunk,
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1999) and derive similarity solutions for basal solidifica-
tion (Bunk and King, 2003). There is also interest in ice
accretion and solidification with respect to aircraft icing
and evolution equations, as extensions of Eq. (37), have
been developed with that application in mind (Myers et
al.,2002) incorporating accretion, solidification, and gen-
eral topography. Also Zadrazil et al. (2006) performed
numerical simulations and presented experimental data
for solidifying droplets atop a porous medium; this work
is for small droplets for which capillarity is important.
Nonetheless much of the complicated physics behind
surface cooling creating a surface skin remains to be in-
corporated within the lubrication model. It is worth not-
ing that chemically inert and constant thickness skins
have been incorporated via nonlinear skin models into
providing surface boundary conditions for skins (Sridhar
et al., 2001; Huang and Suo, 2002a, 2002b) leading to
surface patterning and morphology but await coupling
to thermal or other fields.

V. FILMS DRIVEN BY INTERMOLECULAR FORCES

In this section, we focus on thin films driven by inter-
molecular forces; a seminal review by de Gennes (1985)
provides a detailed background to this area. A consider-
able amount of progress has been made since then and
since the last major review by Oron et al. (1997) with a
number of theoretical, numerical, and experimental
studies focusing on the rupture and subsequent dewet-
ting of ultrathin single films and bilayers. We begin by
reviewing preliminary fundamental concepts and, for
completeness and where appropriate, provide a link
back to classical results despite the fact that they may
have been reviewed by Oron ef al. (1997).

A. Fundamental considerations

In situations whereby the local film thickness achieves
values in the range of 1000 A or lower, intermolecular
forces become operative (de Gennes, 1985; Sharma and
Ruckenstein, 1986; Israelachvili, 1992; Reiter, 1992;
Sharma and Jameel, 1993; Elbaum and Lipson, 1994;
Stange et al., 1997) and often have a dramatic influence
on the dynamics. If the underlying support corresponds
to a low-energy solid substrate, which is only partially
wetted by the fluid, or if the film contains low-surface
energy particles, then intermolecular forces play a desta-
bilizing role, amplifying perturbations, which may lead
to film rupture in finite time, followed by dewetting.
These processes are manifested via the appearance of
holes and discrete droplets in the initially uniform coat-
ing, connected by ultrathin films, as shown in Fig. 5
(Becker et al., 2003).

Coating nonuniformities in the automotive industry
can lead to surface “mottling” and oxidization, wear, or
corrosion (Viens et al., 1996). In gravure printing and
photofinishing applications, film deformations may lead
to rupture, which is undesirable, leading to so-called “re-
ticulation” (Schwartz and Roy, 2001). Recently, however,
pattern formation in thin liquid films resting on homo-



1166 R. V. Craster and O. K. Matar: Dynamics and stability of thin liquid films

geneous and heterogeneous solid substrates has
emerged as a potentially positive effect and has received
considerable attention (Jacobs, Herminghaus, and
Mecke, 1998; Sferrazza et al., 1998; Reiter et al., 1999;
Konnur et al., 2000; Seemann et al., 2001a, 2005; Kar-
gupta and Sharma, 2002; Neto et al., 2003; Reiter, 2003;
Kalliadasis and Thiele, 2007) as a method which can be
used for the templating films in microelectronics. Under-
standing thin film stability in the presence of complex
intermolecular interactions is vital to both model and
control and, in some cases, prevents pattern formation
phenomena in thin films.

B. Free energy of interaction

In order to describe additive interactions between
molecules and flat surfaces, one performs a triple inte-
gration provided the separation between a molecule and
the surface is much larger than a molecular diameter.
For purely attractive pair potentials of the form ¢(r)
=-C/r", where C and r denote the interaction strength
and the separation distance between two molecules, re-
spectively, the net energy of interaction for a molecule
with a distance r from a surface is ®(r),,,=27Cp/(n
—2)(n-3)r"3; here p is the number density of the mol-
ecules in the solid and the dependence on r has been
modified as a result of the triple integration. Similarly,
the energy of interaction between two surfaces
is ®(r),,=27Cp?/(n-2)(n-3)(n—4)r"~* (Israelachvili,
1992). Unretarded Lifshitz—van der Waals (LW) induced
dipole-dipole interactions between molecules, due to po-
larization fluctuations, scale as r®, and in the presence
of retardation effects, which become effective for dis-
tances exceeding 100 nm, these interactions scale as r~’.
In the former cases, for two planar surfaces, the interac-
tion energy per unit area is described by

O(r) = - Al127r°. (98)

Here A=1p,p,C is the Hamaker constant where p; and
p> correspond to the number densities of the surfaces.
The values of A are in the range of 1072-1071 J (Is-
raelachvili, 1992) and can be determined from dielectric
constants of the interacting media. The van der Waals
interactions are relatively long range and can be signifi-
cant over distances of order 100 nm since ®(r)~r2. If
A >0 then energy is gained by decreasing the separation
of the two surfaces r and vice versa.

The effective excess free energy of per unit area ®(h)
dictates the possibility of dewetting in thin films, where
we have replaced r by &, which corresponds to the dis-
tance between the interacting “surfaces,” the gas-liquid
and liquid-solid interfaces. Following Seemann et al.
(2001a), if the global minimum of ®(4) is at a finite value
of h, hyi,, Where hy;, represents the equilibrium film
thickness then dewetting will occur; this is readily satis-
fied for curves 2 and 3 in Fig. 24 but not for curve 1.
Provided the second derivative of ®(A), often referred
to as the “spinodal parameter,” is negative ®,;, <0, then
an initial perturbation of wave number k can undergo
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FIG. 24. Schematic of ®(h) where 1, 2, and 3 represent ® for
which the films are stable, unstable, and metastable, respec-
tively (see text). From Seemann et al., 2001a.

exponential growth, with a growth rate that depends on
k, and a most dangerous mode associated with an inter-
mediate value of k, k., for which the growth rate is
maximized. This mode dominates the initial stages of the
ensuing pattern formation before nonlinearities become
significant. This mechanism has been termed “spinodal”
dewetting due to its similarity to spinodal decomposition
of mixtures, an analogy identified and explored by Mit-
lin (1993), which occurs when the second derivative of
the free energy with respect to composition becomes
negative (Cahn, 1965; Vrij, 1966; Vrij and Overbeek,
1968; Brochard-Wyart and Daillant, 1990; Mitlin, 1993).

For metastable films, characterized by curve 3 in Fig.
24, ®,, <0 for a sufficiently small film thickness but for
larger film thickness ®,;,>0. For these thicker films,
dewetting can also arise, which, in this case, occurs
through the nucleation of holes in the film due to the
presence of so-called “defects.” This, in turn, may be
brought about by the presence of substrate heterogene-
ities that may occur either accidentally, via chemical pat-
terning of the substrate, or from the presence of dust
particles on the surface of the liquid. This is due to local
gradients in chemical potential or wettability and is of-
ten referred to as “heterogeneous nucleation” (Mitlin,
1993, 1994). If the value of 4 is such that the sign of @,
is close to being reversed, the dewetting mechanism is
termed homogeneous nucleation; in this case, energy
barriers for dewetting are overcome via thermal fluctua-
tions (Blossey, 1995). Both thicker and thinner films that
dewet could undergo a long wave instability (Becker et
al., 2003), the difference is that in the thicker film dew-
etting by nucleation occurs first. An informative discus-
sion of these issues and of stable, unstable, and meta-
stable states, which is slightly different from that
advanced in Seemann et al. (2001a), has been given by
Thiele (2003). It is arguable that assigning terms such as
“metastable” to a specific form of the disjoining pressure
could be misleading. One could, for instance, consider
whether, for a particular disjoining pressure, a film of a
certain thickness is linearly stable, unstable, or meta-
stable. An informative review of this topic and of the
experimental issues has been given by Jacobs ef al
(2008).
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The free energies of interaction per unit area dis-
cussed so far have featured a long-range apolar compo-
nent only. However, short-range repulsion forces are
also present and act over distances typically equal to
10 nm. These forces may be due to electrostatic interac-
tions (de Gennes, 1985; Teletzke et al., 1988; Israelach-
vili, 1992) arising from the overlap of diffuse electric
double layers, which form near interfaces involving po-
lar fluids (Derjaguin and Landau, 1941; Verwey and
Overbeck, 1948). The free energy per unit volume
¢$=d,;, given by Sharma and Jameel (1993),

A S h

¢= e 1 exp{ﬁ,(l hmin>]’ (99)
is also known as the “conjoining” pressure (the “disjoin-
ing” pressure is [I=-¢) and enters the evolution equa-
tions of Sec. II, where 4, and / denote an equilibrium
distance due to short-range repulsion and a correlation
length, respectively; note that ¢(hy,;,)=0 and typically
hopin~1.58 A and [~0.6 nm so that §=/h,y;,/[<1. In the
presence of long-range forces only, that is, with $”=0, an
initially uniform film is unstable (stable) if A>0 (A
<0).

The function ¢ comprises long-range apolar LW and
short-range polar (P) forces, represented by the first and
second terms on the right-hand side of Eq. (99), respec-
tively. In Eq. (99) A=-127h2, SV and S"V and S* de-
note the LW and P components of the spreading coeffi-
cient, S=S*WV+SP. Here S=0,-(0;,+0) with S*V and S?
defined with the same functional dependence on the sur-
face tensions except that each o acquires superscripts of
LW and P, respectively. The surface tensions of the gas-
liquid, liquid-solid, and gas-solid interfaces are o, oy,
and o, and have been decomposed into their LW and P
components. Note that the LW components of the inter-
facial tensions can be evaluated using the Good-
Girifalco-Fowkes combining rule (Good and Girifalco,
1960) while the P components can be determined from
“acid-base” interactions obtained from contact angle
measurements (van Oss et al., 1987; Janczuk et al., 1989).
The second term in Eq. (99) demonstrates that the polar
component of the excess free energy per unit volume
decays exponentially in space (Sharma, 1993).

Polar forces can be considered negligible provided the
film and at least one of the bounding media are apolar
(Sharma, 1993). In this case, the following expression for
¢ is used (Mitlin, 1995; Seemann et al., 2001a):

o-sael e -
C6mh, L\ h h ’

where m>n>1 and the second term represents short-
range Born repulsion, with (n,m)=(3,9), ¢ corresponds
to a so-called 6-12 Lennard-Jones potential (Mitlin,
1993, 1994). If both Born and electrostatic repulsion
forces are operative then a combination of Egs. (99) and
(100) can be used (Mitlin, 1995). As will be discussed in
Sec. V.D, the inclusion of repulsion forces in ¢ is neces-
sary in order to simulate dewetting dynamics past the
stage where the film ruptures. We shall return to Eq.

(100)
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(100) in Sec. V.E to show how this equation can be used
in the simulation of films involving contact lines.

An alternative form for the disjoining pressure was
recently proposed by Pismen and Pomeau (2000). This
approach was derived starting from the generalized
equations for hydrodynamics for nonequilibrium sys-
tems comprising diffuse interfaces (Anderson et al.,
1998); the density is treated as an additional dynamic
“phase” variable. A contact line was considered and the
interaction between the gas-liquid and liquid-solid inter-
faces was determined. The form of the disjoining pres-
sure obtained recovers that in the sharp interface limit
(Pismen, 2001, 2002); this form also does not give rise to
singularities as #— 0 since the disjoining pressure exhib-
its a minimum with /4 ensuring that the solid substrate is
recovered by a precursor layer. In the context of moving
contact lines, this diffuse interface approach has been
reviewed by Bonn et al. (2008).

C. Experiments

A large number of dewetting experiments have made
use of polystyrene films, which are weakly volatile, non-
polar, and inert chemically. Thin layers of polystyrene
dissolved in suitable solvent (e.g., toluene) are deposited
on a solid substrate (e.g., silicon wafers or cleaved mica
sheets) using spin or dip coating. Evaporation of the sol-
vent leads to the formation of a layer of polystyrene at a
temperature below the glass transition value T,. The
thickness of this glassy polymer layer can range from
several nanometers to micrometers and the wettability
of the substrate can be altered by silanation. Ellipsom-
etry and atomic force microscopy (AFM) are used to
measure the film thickness and its topography (Seemann
et al., 2005). Upon heating the layers above T, the dew-
etting commences. This process starts due to film rup-
ture and hole formation, which is followed by hole wid-
ening and coalescence. This is then followed by breakup
of the ridges separating holes into drops via a Rayleigh
instability.

Distinguishing between nucleation-driven and spinod-
ally driven ruptures is often done by measuring the av-
erage hole wavelength. However, this is rather difficult
particularly for relatively thick films for which spinodal
growth rates are slow (they vary as A~ as will be shown
in Sec. V.D); the invariable presence of chemical hetero-
geneities which lead to local gradients in ® also compli-
cates matters (Herminghaus et al., 1998; Jacobs, Her-
minghaus, and Mecke, 1998; Konnur et al., 2000). So-
called “Minkowski functionals” are used in order to
determine the statistics of the distribution of holes par-
ticularly in situations wherein radial correlation func-
tions or Fourier transforms cannot be used to demon-
strate correlations between the location of the holes
(Jacobs et al., 2000). The existence of these spatial cor-
relations is a signature of spinodal dewetting scenarios;
their absence is often indicative of dewetting driven by
heterogeneous nucleation (Reiter, 1992, 1993; Jacobs,
Herminghaus, and Mecke, 1998; Jacobs et al., 2000) al-
though the origin of the nucleated holes remains some-
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FIG. 25. Atomic force microscopy images of dewetting pat-
terns in polystyrene (molecular weight 2.05 kg/kmol) films of
initially uniform thickness / on silicon wafers covered with
layer of silicon oxide d. In (a)—(b) and (c), (h,d)=(3.9,191),
(4.1,2.4), and (6.6,1.7) nm, and the patterns observed are rep-
resentative of spinodal dewetting, homogeneous thermal
nucleation, and heterogeneous nucleation, respectively. In
each panel, the bar indicates 5 um and the elevation ranges
from 0 to 20 nm represented by black and white regions, re-
spectively. (d) The dependence on & of the pattern wavelength
predicted for a spinodally driven dewetting process A\, for two
different silicon oxide thicknesses: 2.4 nm (open circles) and
191 nm (filled squares). (e) Reconstructed ®,,, as a function of
h for various d values using Eq. (101). From Seemann et al.,
2001a.

what unclear (Seemann et al., 2005). Thus Minkowski
functionals can be used to distinguish between the
mechanisms underlying dewetting.

Experiments involving polystyrene films on silicon
wafers covered with silicon oxide of known thickness d
have been carried out in order to study spinodal and
nucleation-driven dewetting. Variation in d over a typi-
cal range of 0-200 nm (Seemann et al., 2005) allows the
alteration of ®: increasing d leads to negative values of
the long-range component of ® at sufficiently small
thicknesses (less than 10 nm). Figure 25 (Seemann et al.,
2001a, 2005) shows the dependence of dewetting pat-
terns observed using AFM on the value of d. Also
shown in this figure are variations in \; and &, with &
plotted parametrically as a function of & where A, is
given by (Vrij, 1966; Ruckenstein and Jain, 1974)

}\S: (— 87T20'/(I)hh)1/2. (101)

This formula illustrates the fact that \;>0 if and only if
®,,, <0 and that \;— » as ¥, —0. Furthermore, knowl-
edge of o and direct measurement of \; for varying h
allow one to determine ®,;,, which, in turn, can be used
to construct ®(4). This is done by first using the Ha-
maker constant as a fitting parameter, then by fixing the
value of ®(hy;, through the use of D(h,;,) =0l
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FIG. 26. Stability diagram showing the regions in the space of
the polystyrene film thickness and the thickness of the under-
lying silicon oxide layer where spinodal, thermal nucleation,
and heterogeneous nucleation-driven dewetting occurs. From
Seemann et al., 2001b.

—cos(#)], where 6 is the macroscopic angle (which
should not be confused with the angle of inclination to
the horizontal in Sec. IT) subtended at the contact line by
the film (Frumkin, 1938); this is followed by fixing the
location of ®(h,,;,) via measurement of A, directly us-
ing, for instance, x-ray reflectivity (Seemann et al., 2001a,
2001b, 2005).

Inspection of panels (a)-(c) of Fig. 25 reveals that the
patterns observed are subtly different: for relatively
small # and large d, the patterns are characterized by a
reasonably well-defined wavelength, as demonstrated by
panel (a) [and the filled squares in panel (d)]; for the
case of relatively large 4 and small d shown in (c), there
appears to be no such wavelength and virtually no cor-
relations between the locations of the holes, which, in
this case, result from nucleation events (Jacobs, Her-
minghaus, and Mecke, 1998). It is possible to construct a
diagram describing the stability of the film and the type
of patterns one observes as a function of d and 4 (See-
mann et al., 2001b); an example of such a diagram is
shown in Fig. 26.

The holes become deeper via expulsion of the mate-
rial beneath a depression and its accumulation into
“rims” or capillary “ridges”; these correspond to the
white regions in Fig. 25(c). During retraction of the rim,
the majority of the energy dissipation occurs at the con-
tact line between the film and the underlying substrate.
Depending on the nature of the material, whether a
simple Newtonian fluid or a non-Newtonian polymer
melt, the behavior at the contact line will be different
and this impacts the variation in the hole radius R with
time (Brochard-Wyart et al., 1987, 1992, 1994; Redon et
al., 1994). For relatively thick films for which the film
thickness greatly exceeds the slip length viscous dissipa-
tion dominates and R ~¢; in the opposite case, slip domi-
nates resulting in R ~¢* (Brochard-Wyart et al., 1994).
Expressions for R(¢) have been developed (Jacobs, See-
mann, et al., 1998; Neto and Jacobs, 2004) that combine
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FIG. 27. Radial cross section of a hole (a) scanned via AFM (see inset) for a 6.6 nm thick polystyrene (PS) film on a 191 nm silicon
oxide layer resting on a silicon wafer. (b) The ratio of the depression depth W to the rim height V as a function of V for a 11 nm
thick PS film on a similar substrate to that in (a). Here the dots represent experimental data, while the dotted and dashed lines
represent the predictions of lubrication theory at early and late times (Herminghaus ez al., 2001, 2003) respectively. From Seemann

et al., 2005.

both mechanisms, which appear to capture the dynamics
throughout the lifetime of a hole. Specifically, at early
times R~ ¢ and at later times R~1.

AFM measurements also show that during hole
growth and rim retraction the contact angle remains es-
sentially constant with time as well as temperature. A
typical AFM scan of a hole is shown in Fig. 27, which
exhibits the salient features: the interfacial slope is high
near the contact line and comparatively lower upstream
of the rim. The degree of asymmetry seen in Fig. 27
becomes accentuated with polymer chain length. For
short chains, the hole profile is oscillatory in space and
exhibits a “trough” upstream of the rim, as shown in Fig.
27(a) (Ghatak et al., 1999; Seemann et al., 2001a). More
recent work has examined the influence of the film rhe-
ology on the interfacial shape (Jacobs, Herminghaus,
and Mecke, 1998; Reiter, 2001; Seemann et al., 2001a;
Herminghaus et al., 2002) which has demonstrated that
the shape of dewetting fronts can be influenced by elas-
tic effects.

In certain cases, the rim shown in Fig. 27 can be vul-
nerable to azimuthal or transverse disturbances and un-
dergoes a fingering instability, which leads to a more ef-
ficient dewetting process (Brochard-Wyart and Redon,
1992; Reiter, 1992; Sharma and Reiter, 1996; Xie ef al.,
1998; Sharma and Khanna, 1999; Ghatak et al., 2000;
Reiter and Sharma, 2001). The fingers may eventually
pinch off into droplets an example of which is provided
in Fig. 28 (Reiter and Sharma, 2001). In the experiments
of Reiter and Sharma (2001), films of polydimethylsilox-
ane (PDMS) dewetting over silicon wafers coated with
grafted polymer brushes of end-functionalized PDMS
molecules exhibited fingering; in contrast, PDMS films
on adsorbed PDMS layers exhibited stable dewetting
fronts. Furthermore, whereas the velocity of the mean
position of the dewetting fronts was essentially constant
on adsorbed layers, in the case of dewetting on grafted
PDMS layers, this velocity decreased with time during
the early stages of the dewetting process before achiev-
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ing an approximately constant value. For the grafted
PDMS layers, the slip length was estimated to be ap-
proximately 10 um whereas in the adsorbed PDMS
layer case it was negligibly small, which illustrates the
important role of slip as a key “ingredient” for the fin-
gering observed in dewetting (Reiter and Sharma, 2001).
The fingering phenomena, the spatially oscillatory na-
ture of the hole profile, and the need to simulate the
collective three-dimensional dewetting dynamics pro-
vided challenging problems for theorists. A review of
modeling and simulations studies in this area is provided
next.

D. Modeling and simulations

Numerical simulations of rupture and dewetting pro-
cesses have been carried out using lubrication theory by
including ¢ as an extra pressure or energy per unit vol-
ume in the momentum conservation equations, as dem-
onstrated in Sec. II. By setting G=B=0, U=€eA/6muH?,
L=H1?/(A/6mo)"?, and scaling ¢ on A/67H?>, the evolu-
tion equation (37) then becomes

{ E FEER

FIG. 28. A sequence of optical micrographs showing the onset
and evolution of a fingering instability during the retraction of
a 50 nm PDMS film on a silicon wafer coated with a grafted
PDMS layer of 6 nm thickness. The area shown in I-N corre-
sponds to the box depicted in H. The bar length corresponds to
10 pm in I-N and 25 um in E-H. From Reiter and Sharma,
2001.
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2
h,—V-{};—(3,8+h)V(p+¢)]:0, (102)

with p=-V?h in which ¢ is given by either Eq. (99) or
(100) whose dimensionless versions are given by

1 h
¢=F—Sexp|:5l(1—a>:|, (103)
1 Nepin \" [ B\
— mun | min 104
¢hﬁﬁn{<h><h>]’ (104)
where  S=(SP/l)/(A/6mwH?). Note that L/U

=ouH’/(A/6m)?, which shows that the time scales for
dewetting process scale as H>, as mentioned in Sec. V.C
and that pattern length scales vary as H?. This depen-
dence of the spatial and temporal scales on the film
thickness is typical of situations wherein ®,,<0 (see
curve 2 in Fig. 24) and spinodal dewetting is prevalent
(Sharma, 2003; Thiele, 2003).

Equation (102) has been used to investigate rupture
by employing Eq. (104) in the absence of short-range
repulsion in Cartesian coordinates (Ruckenstein and
Jain, 1974; Williams and Davis, 1982; Sharma and Ruck-
enstein, 1986) and axisymmetry (Witelski and Bernoff,
1999; Zhang and Lister, 1999; Vaynblat et al., 2001) and
with surfactant (Jensen and Grotberg, 1992; Lin et al.,
2000; Warner et al., 2002). These studies have shown that
van der Waals forces grow under depressions, driving
fluid away from these regions, which strengthens these
forces further and drives a rupture instability. The work
of Zhang and Lister (1999) demonstrated that rupture
occurs in a self-similar manner, with the scaling /&~ (¢
~t,)7", where t, is the rupture time, by balancing van
der Waals and capillary forces; this scaling holds even
with the presence of surfactant (Warner et al., 2002) as
the height and surfactant equations locally decouple
close to rupture.

In order to simulate dewetting dynamics using Eq.
(102), however, Eq. (103) or (104) with short-range re-
pulsion has been used; this provides the necessary stabi-
lization against rupture that may bring about nonphysi-
cal singularities as 4 — 0. Studies based on the numerical
solution of these equations in one dimension, starting
from initially pseudorandom small-amplitude perturba-
tions, for parameter values where spinodal dewetting is
expected to dominate, have yielded detailed information
about the short- and long-time dynamics of dewetting.
The agreement with the predictions of linear theory in
terms of preferred wavelengths and time scales is also
very good [see, for instance, Sharma (1993, 2003);
Sharma and Jameel (1993); Ghatak et al. (1999), and ref-
erences therein]. These one-dimensional studies were
extended to account for the interplay between dewetting
and evaporation-condensation effects (Oron and
Bankoff, 1999, 2001) and time-dependent substrate wet-
tability (Suman and Kumar, 2006) using an equation
similar to Eq. (79), in which ¢ [with Eq. (104) and
(n,m)=(3,4)] was added to the pressure.
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Thiele et al. (2001) using Eq. (103) showed that the
existence of parameter ranges within the spinodal re-
gime for which nucleation is the dominant mechanism
for dewetting; here the dependence on the initial finite-
amplitude disturbances is significant. In the spinodal re-
gime, however, the early-time dewetting dynamics are
dominated by the fastest growing linear mode. These
findings are important since they demonstrate that spin-
odal dewetting is not always dominant for linearly un-
stable film thickness ranges and provide an explanation
of the results of Jacobs, Herminghaus, and Mecke (1998)
who observed nucleation-driven patterns when spinodal
dewetting was expected. Glasner and Witelski (2003)
studied the process by which morphological changes are
engendered in thin films as a result of dewetting and the
“coarsening” process by which droplets connected by ul-
trathin films move on very long time scales. This was
done via reduction in Eq. (102) [with ¢ given by Eq.
(104) and (n,m)=(3,4)] to a system of ordinary differen-
tial equations for the locations and pressures of N drop-
lets. This work showed that N~ %", which provides a
scaling law for the droplet number and an indication of
the rate of coarsening in dewetting processes.

Lubrication theory has also been used to investigate
some of the features discussed in the previous section
such as the spatially oscillatory interfacial profile, the
fingering phenomena, and the effects of slip and vis-
coelasticity on the dynamics. Lubrication-based models
have been developed for significant slip (Kargupta et al.,
2004; Miinch et al., 2005), which comprise two coupled
evolution equations, one for # and another for the
streamwise velocity component u,,, which, in this limit, is
independent of the vertical coordinate (the so-called
“plug flow” limit),

ht + (uoh)x = 09

4 u
Re(ug+ thiton) = 3 (hotto + (o= 8=

(105)
In the limit, B—<, Eq. (105) reduces to those used to
study “free” films (films of one fluid sandwiched be-
tween layers of other fluids) (Erneux and Davis, 1993). It
is also straightforward to show that Eq. (105) also re-
duces to Eq. (102) as B—0 (Miinch et al., 2005), the
latter being appropriate in situations wherein the effects
of slip are relatively weak but non-negligible. Models for
intermediate slips have also been derived using lubrica-
tion theory (King and Bowen, 2001; Fetzer et al., 2005;
Miinch and Wagner, 2005; Miinch et al., 2005). The use
of linear stability theory, matched asymptotic expansions
and numerical techniques in these models provided an
explanation of the fingering phenomena (Miinch and
Wagner, 2005; King et al., 2006) and the change in the
interfacial profile of a hole from a damped oscillation
[see Fig. 27(b)] to monotonic decay from the rim toward
the unperturbed film by increasing the slip length
(Fetzer et al., 2005; Miinch et al., 2005); the latter feature
had been attributed to elastic effects (Herminghaus et
al., 2002, 2003; Saulnier et al., 2002; Shenoy and Sharma,
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2002). The location of the dewetting front was found to
vary in time as ¢ in the weak- and strong-slip limits and
as 3 in the intermediate-slip limit (Miinch et al., 2005).
Furthermore, increasing the relative significance of slip
in these Newtonian models leads to more asymmetric
rim profiles (Miinch et al., 2005), which had also been
attributed to the presence of viscoelasticity. Blossey et al.
(2006) showed further that in the weak- and strong-slip
limits linear viscoelastic effects do not affect rupture and
that strong slip influences the preferred pattern wave-
length \,. This calls into question the use of Eq. (101) for
the reconstruction of ®(/) via measurement of \, in the
presence of strong slip.

The one-dimensional lubrication models have been
extended to account for two-layer systems as in the evo-
lution equations (26) of Sec. II. In the absence of short-
range repulsion, Danov, Paunov, Alleborn, et al. (1998),
Danov, Paunov, Stoyanov, et al. (1998), and Paunov et al.
(1998) first considered the stability of two-layer films to
van der Waals—driven rupture in the presence of evapo-
ration, thermocapillarity, and soluble surfactants. Their
linear stability analysis showed that both unstable
squeezing and bending linear modes (often referred to
as “varicose” and “sinuous,” or “zigzag” modes, respec-
tively) exist; their numerical simulations demonstrated
that varicose modes eventually lead to rupture for all
but the thinnest films considered. More recent work ex-
amined the effect on the bilayer stability of having a
highly viscous upper layer (Matar et al, 2002) in one
case and a non-Newtonian lower layer (Zhang et al.,
2003a) in another within the context of pulmonary flows
and tear film rupture, respectively. The effect of confine-
ment by an upper wall on the stability of an interface
separating two thin immiscible layers sandwiched be-
tween two plates was also studied using the lubrication
approximation by Joo and Hsieh (2000). They derived a
single evolution equation for the interfacial position
(and deal with the effect of confinement in a similar way
to that outlined in Sec. III.C), accounting for van der
Walls forces and thermocapillary effects. They demon-
strated that rupture occurs in the thinner, less viscous,
and hotter of the two confined layers.

To probe the nonlinear two-layer film dynamics, the
presence of short-range repulsive forces was also added
to the model equations (Fisher and Golovin, 2003; Po-
totsky et al., 2004, 2005; Merkt et al., 2005); these studies
have also taken into account heating from above and
below (Merkt et al., 2005; Pototsky et al., 2005), upper
wall confinement (Merkt et al., 2005), and the presence
of surfactants (Fisher and Golovin, 2005). The equations
underlying these models correspond to those derived in
Sec. 1T [Egs. (26)-(28)], with G=B=0 and the functions
¢1(hy,h,) and ¢,(hy,h,), the conjoining pressures at the
gas-liquid and liquid-liquid interfaces, respectively, given
by the following expressions:

hmin_ hi—h
-5 exp(—fg ! 2)>,
2

-AZIg -Ag123
= 3T 7,3
(hy = hy) hy

¢
(106)
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These formulas represent generalizations of Eq. (103).
Here Ay, Aging, At and Ay, are given by

A = ﬁg— A = _Ag& Ay = Al2s
21g 67TPH3 ) g12s 67TPH3 P 12s 67TPH3 s
(108)

and denote dimensionless Hamaker constants that char-
acterize the magnitude of the dispersive van der Waals
interactions between the gas-liquid and liquid-liquid in-
terfaces, the gas-liquid and liquid-solid interfaces, and
the liquid-liquid and liquid-solid interfaces, respectively.
The dimensional Hamaker constants can be related to
the refractive indices of the media (Israelachvili, 1992;
Pototsky et al., 2005). Here P=uldL/H? with u=pu,, H
=H,, and U=e€Ay,/6mu,H; giving P=Ay,,/67H;. The
parameters Sy and S, are given by

S;=SPIPH, i=1,2, (109)

where S? characterize the short-range interactions be-
tween the liquid-liquid and liquid-solid and gas-liquid
and liquid-liquid interfaces; (€y,€;,¢2)=(,l;,l)/H,
where ([;,/,)~1-10 nm are correlation lengths. Equa-
tions (106) and (107) can be generalized to include short-
range interactions between the gas-liquid and liquid-
solid interfaces.

The two-fluid studies have shown that systems com-
prising two layers are more unstable than an effective
single-layer system with growth rates potentially dra-
matically increased (Pototsky er al, 2004). As noted
(Sec. III.A.2), multilayered systems often demonstrate
enhanced growth of instabilities. Through a linear stabil-
ity analysis, they have also demonstrated the existence
of sinuous and varicose unstable modes, while the re-
sults of time-dependent numerical simulations indicate
the richness of the dynamics. This is exemplified by
switching between the two unstable modes in the non-
linear regime or coarsening in only one mode (Pototsky
et al., 2004, 2005; Merkt et al., 2005); an example of such
a transition is shown in Fig. 29. The main advances here
correspond to re-expressing Egs. (26)—(28) in terms of an
energy functional, which, in the absence of surface ten-
sion gradients, is simply a Lyapunov functional that de-
cays in time (Pototsky et al, 2005). The re-expressed
two-layer equations can be analyzed with tools from the
theory of dynamical systems [e.g., continuation tech-
niques (Doedel et al., 1997)]. Within this framework, a
periodic sequence of drops and flat films corresponds to
periodic orbits and fixed points in phase space, respec-
tively.

Other two-layer studies have included effects of
soluble surfactants but neglected Born repulsion (Fisher
and Golovin, 2005); the Hamaker constants in this case
were also functions of the surfactant concentration. The
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FIG. 29. (Color online) An example of numerical simulations
of dewetting in a S/PMMA/PS/air system, where A\, corre-
sponds to the preferred wavelength from linear theory. These
images show a transition from a varicose to a sinuous (or zig-
zag) mode. From Pototsky et al., 2005.

results of this work showed that rupture is preceded by
an oscillatory (in time) instability and the development
of standing or traveling waves. This instability is absent
from surfactant-free single- and two-layer films and
present in surfactant-laden single layers only if the de-
pendence of the Hamaker constant on surfactant con-
centration is sufficiently strong.

In addition to the above one-dimensional investiga-
tions, there have been a large number of studies that
reported the results of numerical simulations of the
three-dimensional dewetting dynamics. Note that by
“three dimensional” we mean that the solutions of Eq.
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(102) are obtained for h=h(x,y,t): the z coordinate has
been eliminated through the application of lubrication
theory as outlined in Sec. II. In reviewing this work, it
proves helpful to define a “critical” film thickness A,
such that ®;;,(h.)=0; clearly, for initial thicknesses less
(more) than A, one would expect to observe spinodal
(nucleation) dewetting.

The results of numerical simulations have shown that
the morphology of the patterns obtained in the nonlin-
ear regime may be influenced strongly by the perturba-
tion amplitude and wave number depending on the rela-
tive magnitude of the initial thickness to /.. For initial
thicknesses smaller than /., agreement with the predic-
tions of linear theory in terms of hole density is good
[see Sharma and Khanna (1998); Oron (2000b); Beste-
horn and Neuffer (2001); Becker et al. (2003); Bestehorn
et al. (2003); Sharma (2003), and references therein]. An
example of situations where the initial thickness is well
below 4. is illustrated in Fig. 30, which shows a compari-
son between AFM scans of dewetting PS films on oxi-
dized silicon substrates and the results of numerical
simulations of Eq. (102) [with ¢ given by Eq. (104) with
(n,m)=(3,9)] (Becker et al., 2003; Neto et al., 2003). The
agreement in terms of the predicted and measured pat-
tern morphology and time scales is reasonably good. It
can also be seen from Fig. 30(a) that the pattern of holes
is correlated, which is a signature of spinodal dewetting.

As the initial film thickness approaches 4. from below,
the sensitivity of the ensuing dynamics to the presence
of defects increases. Thus, although the agreement with
linear theory predictions remains favorable in terms of
hole density, the patterns observed in both the experi-
ments and simulations are reflective of a combination of
spinodal and nucleation-driven dewetting. An example
of this is shown in Fig. 31(a), wherein the evolution of a

1,880 s

2,530s

32808 4,820 s

FIG. 30. (Color online) Comparison between experiments (a) and simulations (b) for a 3.9 nm PS film dewetting on oxidized

silicon wafers. From Becker et al., 2003.
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FIG. 31. (Color online) Simulations of dewetting in thin films
via numerical solution of Eq. (102) starting from random small-
amplitude perturbations. (a) An example of transition from a
bimodal to a monomodal distribution of hole size in spinodal
dewetting is shown in A-D; E is a Fourier transform of C. (b)
Examples of patterns formed around heterogeneities (Kar-
gupta et al., 2000; Konnur et al., 2000; Zope et al., 2001). From
Sharma, 2003.

dewetting instability in a 5.5 nm film (4.=6.8 nm in this
case) is simulated in a 10\, X 10\, domain (Sharma,
2003). The Fourier transform of panel C of this figure,
shown in E, reveals the isotropy of the patterns formed;
furthermore, the number of holes in C is 93, which is in
excellent agreement with 100, the value predicted from
linear theory. The interface evolution, however, is ac-
companied by the formation of a small number of pri-
mary holes, followed by the development of secondary,
“satellite” holes (Becker et al., 2003; Neto et al., 2003;
Sharma, 2003) in the trough of the primary holes; this is
then followed by the formation of other rows of satellite
holes around the periphery of the primary one in a cas-
cade of spinodal-driven events. This dewetting behavior
is evident in panel B of Fig. 31(a) [Sharma (2003); see
also the more recent work of Verma and Sharma (2007)]
and in the work of Becker et al., 2003 (see Fig. 5, which
is from Fig. 2 of their paper). The coexistence of pat-
terns in the spinodal regime, whose underlying mecha-
nisms are different, has been predicted by Thiele et al.
(2001). The results of the above studies indicate that the
sensitivity of the simulated patterns observed to the ini-
tial conditions used in the simulations increases as the
initial film thickness approaches A.; precise knowledge
of interfacial and substrate heterogeneities is required to
obtain agreement between experiments and simulations
in this case (Reiter 2003; Sharma, 2003).

For film thicknesses greater than /., the heteroge-
neous nucleation of a hole may be brought about by an
interfacial or substrate defect (or a large-amplitude dis-
turbance in a simulation). In this case, numerical work
has shown that this mechanism becomes more dominant
than the spinodal one on the basis of kinetics (Kargupta
et al., 2000; Konnur et al., 2000; Zope et al., 2001); it has
also demonstrated that the time scales associated with
the emergence of patterns in simulations exhibit greater
sensitivity to the heterogeneity than do the length scales
(Kargupta and Sharma, 2001, 2003; Thiele et al., 2003).
The presence of heterogeneities can have an organizing
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influence giving rise to a range of structures that exhibit
local order; examples of these patterns are shown in Fig.
31(b). Chemical heterogeneities, which lead to gradients
in the interaction potential ®@, can be exploited in the
engineering of templated patterns in thin films at the
microscale and nanoscale in the presence (Lenz and Ku-
mar, 2007a) and absence (Karim et al, 1998; Kargupta
and Sharma, 2001, 2003; Thiele et al., 2003) of an upper
wall.

Three-dimensional simulations have also been carried
out for two-layer systems (Pototsky et al., 2006), extend-
ing the earlier studies of Merkt et al. (2005) and Pototsky
et al. (2004, 2005). The results of these simulations, car-
ried out for superposed layers of PS and PMMA sand-
wiched between air and a substrate of either silicon or
silicon oxide, indicate that different transitions in the
interfacial morphology are possible. For silicon sub-
strates a transition occurs from drops to holes at the
gas-liquid interface and vice versa in the case of silicon
oxide.

Given the very small height scales of interest during
dewetting, that is, of the order of nanometers, one could
query whether stochastic effects due to thermal noise
could become important. Recently, this has been probed
by Davidovitch et al. (2005) and Griin et al. (2006) who
generated Langevin lubrication equations. These are the
standard lubrication models augmented by an extra driv-
ing stress fluctuation term (Mecke and Rauscher, 2005)
due to the thermal activity. The solutions, when stochas-
tic terms dominate over surface tension, then modify
Tanner’s law so that a droplet spreads as /% rather than
19 (Davidovitch et al., 2005). It is also shown that the
dewetting process itself can be affected (Griin et al.,
2006) with coarsening occurring on the micrometer scale
(Fetzer et al., 2007) and thus it is potentially important in
practice.

E. Contact line dynamics

We conclude this section by reviewing studies that
have employed practical methods for dealing with thin
film flows involving moving contact lines. We start off by
recalling that perfect and partial wetting situations are
characterized by spreading pressures S such that $>0
and S <0, respectively. In the latter case, a drop of wa-
ter, say, partially wets a hydrophobic substrate and forms
a well-defined equilibrium contact angle 6,. From the
Young-Laplace equation we have S/o+1=cos(6,) which,
for droplets of small aspect ratio, that is 6,<1, reduces
to S~—6@0/2 and this, provided S<0, links S*V and S*
such that the latter can be calculated (Sharma and
Jameel, 1993).

The relation between ¢ and substrate wettability has
been exploited in modeling thin film flows in the pres-
ence of contact lines using lubrication theory (Schwartz
and Eley, 1998). This approach involves postulating the
existence of a precursor layer of thickness A ;,, which is
stabilized by the presence of antagonistic short- and
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long-range intermolecular forces. Here the following
form of ¢ has been used:

B hmin " % "
¢ ’11nm|:<7> _< h ) ]

(Mitlin, 1994; Schwartz and Eley, 1998) whence the dis-
joining pressure is [I=—¢. At equilibrium, one assumes
that the droplet relaxes to a dimensionless equilibrium
shape, given by h=1-x2. The dimensionless slope at the
edge of the drop x=1 is therefore 4,=-2. The tangent of
the apparent equilibrium contact angle tan(6,) is equal
to negative of the interfacial slope at the contact line
—h,=2. In the lubrication approximation, 6, is assumed
to be small so that tan(6,) ~ 6,~2, which, in dimensional
terms, yields 6,=2H/L; in this context, H and L corre-
spond to the central height of the drop and its lateral
extent at equilibrium, respectively.

Schwartz and Eley (1998) defined the energy per unit
area to displace the interface from A, to s, as

hq
E(h)=- J
h

min

(110)

Idh, (111)

where 4, is the value of the thickness at a sufficiently
large distance from the drop edge such that A;,/h,;<<1.
A horizontal force balance is then performed: the force
(per unit length) components responsible for wetting are
o and E(h,,;,); those pulling the drop toward its center,
away from the “contact line” region are o cos(6,) and
E(h,). In the lubrication limit where 6, is small, this
force balance permits the elimination of B in Eq. (110)
(Schwartz and Eley, 1998),

o 2= m=1) 1)[(@) (h_ﬂ
(I’l - m)hmin h h .
As a result, II is characterized by h;,, m, and n only.

This method obviates the need to explicitly track the
edge of droplet and can be used to model the spreading
and dewetting of drops on substrates whose wettability
is either uniform or nonuniform (Schwartz and Eley,
1998; Schwartz et al., 2005). Computations using this ap-
proach (Schwartz and Eley, 1998) recover Tanner’s law
(Tanner, 1979) and capture complex behavior character-
ized by hysteretic drop motion (which can arise despite
the absence of contact angle hysteresis) (Schwartz, 1998)
and “pearling” (Schwartz et al., 2005). The idea is of
quite general use and many computations attest to its
accuracy and utility (Schwartz et al., 2005; Zhao and
Marshall, 2006). Generalizations to bilayers or evolving
“lenses” (Matar and Craster, 2006), which are immiscible
droplets of one fluid above a layer of another and to
droplets in the presence of electric fields (Yeo et al.,
2007), have been carried out.

As noted by Schwartz and Eley (1998), the deficiency
of this approach is that the choice of A, clearly affects
the spreading rates, although the computed values of
these quantities are found to be inversely proportional
to the logarithm of A,;,, in agreement with theoretical
predictions (de Gennes, 1985). One can identify the ac-

(112)
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tual A, for a specific system from experiments and then
use a realistic A, in the numerical simulations. How-
ever, for three-dimensional simulations [i.e., when h
=h(x,y,t)], a compromise is struck between computa-
tional efficiency and achieving agreement with experi-
ments in terms of the spreading rates (Schwartz and
Eley, 1998).

The work of Pismen and Pomeau (2000) also deserves
attention within the context of moving contact lines. As
mentioned in Sec. V.B, their approach, which is based on
diffuse interface theory, yields an evolution equation for
the film thickness within the lubrication approximation
that is similar to Eq. (37) for relatively thick films [see
also Pismen (2001)]. For films sufficiently thin for inter-
molecular forces to become operative, their equation
contains a disjoining pressure term, which is free from
singularities in the limit 7#—0; at steady state, the
Young-Laplace equation is recovered. This approach
can also account for effects of evaporation and conden-
sation at the contact line (Pismen, 2001, 2002; Pismen
and Pomeau, 2002). The review by Bonn et al. (2008)
contains an in-depth discussion of the application of dif-
fuse interface theory to the moving contact line prob-
lem.

VI. SURFACTANT DRIVEN FLOWS

Processes involving the spreading of surfactants on
thin films are of importance to numerous industrial, bio-
medical, and daily life settings; these include coating
flow technology, microfluidics, surfactant replacement
therapy for neonates, film drainage in emulsions and
foams, and drying of semiconductor wafers in microelec-
tronics (Leenaars et al., 1990; DeWitt et al., 1994; Grot-
berg, 1994; Braun et al., 1999; Matar and Craster, 2001;
Afsar-Siddiqui et al., 2003a). The spreading is driven by
the presence of surfactant concentration gradients,
which, due to the dependence of surface tension on sur-
factant concentration, give rise to surface tension gradi-
ents. These, in turn, give rise to Marangoni stresses (Ed-
wards et al, 1991), which drive rapid surfactant
spreading in the direction of the uncontaminated
(surfactant-free) liquid.

The fundamental difference between surfactant-
driven flows and other stress-driven thin film flows such
as those driven by thermal gradients discussed in Sec.
IV.B is that in the latter case the surface stress resulting
from the differential heating of the plate underlying the
film is constant. In contrast, the surfactant concentration
is strongly coupled to the film evolution: the surfactant
molecules are advected along the surface, and, in the
case of soluble surfactant, within the bulk. At suffi-
ciently large concentrations, surfactants form “micellar
aggregates,” and, if volatile, evaporate or adsorb on the
substrate rendering it chemically heterogeneous. This
extra ingredient of dynamic coupling enriches the mod-
els considerably and leads to many interesting dynamics
absent from the relatively simpler case of thermally
driven films. We discuss later the latest developments in
this area.
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A. Monolayer spreading

We begin by considering the spreading of a monolayer
of insoluble surfactant emplaced upon a pre-existing un-
contaminated fluid film of constant depth; this funda-
mental problem was considered by Borgas and Grotberg
(1988), Gaver and Grotberg (1990, 1992), Jensen and
Grotberg (1992), Espinosa et al. (1993), and Jensen
(1994). This work was carried out in connection with
surfactant replacement therapy, used as a method of
treatment for premature neonates suffering from respi-
ratory distress syndrome (RDS), whose lungs cannot
produce adequate quantities of pulmonary surfactant.
As a result, RDS gives rise to lung collapse and oedema
and is responsible for a large fatality rate in neonates
(Grotberg, 1994; Grotberg and Gaver, 1996).

The spreading dynamics are described by a pair of
coupled evolution equations for the film thickness and
surfactant interfacial concentration derived using lubri-
cation theory (Jensen and Grotberg, 1992; Warner et al.,
2004a),

Con 1
hl:—V-(?h3VV2h+5h2Vcr>, (113)
vr Cn 5
[,=—-V-| 2T VVh+hI'Vo|. (114)
Pe; 2

Equations (113) and (114) follow from Egs. (34) and (36)
for a smooth substrate and in the absence of gravita-
tional and intermolecular forces, slip, and surfactant ad-
sorption and desorption: B=G,,=¢=B=J=0; here C,,
=€,/ S corresponds to a capillary parameter. The sur-
face tension o is independent of z and related to the
surfactant interfacial concentration I' via an equation of
state. The simplest such equation, suitable for dilute
concentrations, is the dimensionless linear relation o
=1-TI" (Jensen and Grotberg, 1992; Warner et al., 2004a).
Note that the dependence of o on I enters the problem
only through the surface-tension gradient or Marangoni
term; it does not affect the capillary term.

In Table I, we provide estimates for the physical quan-
tities, which are relevant to the surfactant spreading
problem with biomedical applications. These estimates
are used to determine order of magnitude estimates of
the relevant dimensionless parameters, which are listed
in Table II. Inspection of Table II reveals that, for bio-
medical applications in particular, the Bond number
€G,, cot(0) is sufficiently small so as to render gravita-
tional effects negligible. Within the context of laboratory
experiments, however, where the film thickness can be in
the millimeter range, gravity can play an important role,
leading to flow reversal that counteracts Marangoni-
driven spreading (Gaver and Grotberg, 1990, 1992).

Inertial effects are typically negligible at all but the
earliest times (Jensen and Grotberg, 1992), as character-
ized by the product of the film aspect ratio € and the
Reynolds numbers, which as shown in Table II are neg-
ligibly small. Péclet numbers for these types of flows are
large, which reflects their convective nature. Neverthe-
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less, diffusive effects are retained in the models since
they are important over boundary layers in which the
surfactant concentration undergoes rapid spatial varia-
tions; neglecting diffusive effects also gives rise to a sin-
gular perturbation problem since they are represented
by the highest order concentration derivative in the
problem. Similarly, capillary effects are retained despite
the small value of the capillary parameter, which scales
as €. This parameter also multiplies the highest order
derivative in the film thickness: discarding it will lead to
a singular perturbation problem and its retention pro-
vides a physically justifiable regularization mechanism,
which aids the computations.

These equations are solved starting from a film of ini-
tially uniform thickness /(x,0)=1 and a nonuniform dis-
tribution of surfactant concentration such as I'(x,0)
=exp(~Ayx?) or T'(x,0)=3(1 +tanh(\y[1-x])) with Ay, a
constant, say, 100 (Gaver and Grotberg, 1990; Jensen
and Grotberg, 1992; Warner et al., 2004a). Numerical so-
lutions are found using the method of lines and Gear’s
method in time subject to

(hxshxxxsrx)(ost) =0, (h- lahxxxar)(‘ccst) =0, (115)
where L. is the length of the computational domain. The
results of a typical simulation in planar geometry start-
ing from the above initial conditions are shown in Fig.
32. The spreading process follows a power law, whose
exponent can be determined using a simple scaling
analysis (cf. Sec. IV.D). For a finite mass of surfactant
M=[;Tdx, '~M/L,, where L, is the extent of the
monolayer (or the position of the surfactant leading
edge measured from the flow origin). From the height
evolution equation, we obtain h/t~h’T/ Lf, hence, as-
suming that #~1, L,~t"3 in rectangular geometry. In-
deed these scalings are in agreement with the numerical
solutions shown in Fig. 32. It is straightforward to gen-
eralize this analysis to axisymmetry and to cases wherein
M ~t%: the surfactant leading edge L,~ 1+ or, in cy-
lindrical coordinates, R,~ r'1*%?"* (Borgas and Grotberg,
1988; Espinosa, 1991; Jensen and Grotberg, 1992). It is
also possible to extend this to multilayer configurations
or to non-Newtonian fluids (Jensen, 1994; Craster and
Matar, 2000).

In Fig. 32, it can be seen that the Marangoni-driven
spreading process is accompanied by the formation of a
sharp shocklike front away from the flow origin, in the
direction of low surfactant concentration, with a se-
verely thinned region upstream; the maximal thickness
is almost twice the initial undisturbed height. The thin-
ning, which occurs behind the front, takes place in order
to balance the surface stress caused by the large surfac-
tant concentration gradient in this region. Both the film
thickness and surfactant concentration appear to vary
linearly with distance apart from boundary-layer regions
near the flow origin and the surfactant leading edge, in
which the solutions satisfy the boundary conditions
given by Eq. (115).

The regions away from the boundaries are dominated
by Marangoni stresses with diffusion and capillarity be-
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FIG. 32. Numerical simulation of monolayer spreading on thin films: (a) typical film thickness and (b) concentration evolution for
t=10°-¢=10%in steps of 10%; the arrows indicate the direction of increasing time. (c) and (d) The collapse of these solutions onto
the similarity solutions (see text) shown by dotted lines. The inset to (b) shows the position of the surfactant leading edge versus
time together with the similarity solution prediction (represented by dots) (Jensen and Grotberg, 1992).

ing asymptotically small. These regions can be described
by similarity solutions, which, for the case of fixed sur-
factant mass, i.e. ay=0, are given by Jensen and Grot-
berg (1992):

h(x,)= H(§=2¢, T =g50-9r",  (116)
where é=(x/&)t 3 and £=12! for 0< &< 1. The agree-
ment between the numerical predictions and the similar-
ity solutions is shown in Fig. 32; the position of the sur-
factant leading edge also emerges as L;=(12¢)!"> and this
is shown in the inset in panel (a). The smoothing in the
vicinity of the front and the thinning region is due to
surface diffusion and capillary corrections; in the figure
shown extreme values, Pe,=10° and C, =103, were
taken to show how closely the shock can be captured by
numerics, lower values are taken in Jensen and Grot-
berg (1992), and the shock is then further smoothed. The
similarity analysis has been extended to cover axisym-
metry and situations involving time-dependent surfac-
tant mass (Jensen and Grotberg, 1992) (here similarity
solutions of the second kind have been found), surfac-
tant spreading over power-law fluids and the closing of
an axisymmetric surfactant-bare patch (Jensen, 1994),
and spreading over Herschel-Bulkley bilayers (Craster
and Matar, 2000).

Rev. Mod. Phys., Vol. 81, No. 3, July—September 2009

Numerical solutions of Egs. (113) and (114) have also
shown that increasing the Péclet number and decreasing
the capillary parameter lead to the formation of sharper
fronts and more pronounced thinning upstream (Borgas
and Grotberg, 1988; Gaver and Grotberg, 1990; Jensen
and Grotberg, 1992; Grotberg, 1994; Afsar-Siddiqui et
al., 2003a). In fact, the Marangoni-driven thinning can
be sufficiently severe that the film thickness local to the
thinned region can reach thicknesses of order 1000 A at
which the intermolecular forces discussed in Sec. V be-
come operative. Jensen and Grotberg (1992) showed
that Marangoni stresses promote conditions for van der
Waals forces to give rise to rupture in finite time. van der
Waals—driven thinning then leads to the expulsion of lig-
uid and surfactant from the thinned region, which cre-
ates Marangoni stresses that counteract the thinning
process. This analysis was extended by Matar et al
(2002) to bilayer systems, where the top layer corre-
sponds to a thin highly viscous “skin,” which models the
mucus layer that overlies the PCL in pulmonary airways.
The effects of I'(x,0) and of using a nonlinear equation
of state on the numerical solutions have been explored
(Gaver and Grotberg, 1990; Afsar-Siddiqui et al., 2003a).

Equations (113) and (114) have also been extended to
account for the presence of an “endogenous” surfactant
species, already present on the interface prior to the
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deposition of an exogenous surfactant patch (Espinosa et
al., 1993; Grotberg et al., 1995). In this case, the exog-
enous surfactant-driven front compresses the endog-
enous surfactant downstream, leading to an increase in
its concentration. This drives a Marangoni flow, which
opposes that due to the exogenous surfactant and, as a
result, retards its spreading. This is a situation which
may arise within the context of biomedical applications
such as SRT if the interface has been contaminated by,
for instance, a previous surfactant deposition.

The effects of surfactant solubility on the spreading
process have also been studied (Halpern and Grotberg,
1992; Jensen and Grotberg, 1993; Jensen, 1994). Lubri-
cation theory was used in conjunction with the rapid
bulk diffusion assumption and cross-sectional averaging
in order to derive the following system of evolution
equations for the film thickness /4, surfactant interfacial
concentration I', and bulk concentration c,

Cn 1
hl:—V-<?h3VV2h+5h2Vo>, (117)
VT Con e
Fi=po =V A\SHTYVh+ Vo] +],  (118)
eS

c[:LV -(th)—(C—thVVZh—EVU) -Ve
hPeb 3 2

BsJ

P (119)
The total mass of surfactant deposited is given by M
=" Johcdxdy+B,[”..[;Tdxdy. In Egs. (118) and (119),
J=K(c-T') is the sorptive flux and B; and K, denote
solubility and sorption kinetics parameters, respectively:
Bs>1 represents a weakly soluble surfactant and the
spreading process is then described by Egs. (113) and
(114); K,>1 corresponds to the case of rapid sorption
kinetics in which the interfacial and bulk concentrations
come to equilibrium on a time scale of O(1/K,); Pe,, is a
bulk Péclet number. Jensen and Grotberg (1993) showed
through numerical solutions of Egs. (117)-(119) that for
highly soluble surfactants the maximal film thickness at
the surfactant leading edge can exceed twice the undis-
turbed film height; in this case and local to the surfactant
leading edge, the film resembles a narrow pulse rather
than the front shown in Fig. 32.

Jensen et al. (1994) then used a similar model to that
discussed above to examine the effect of surfactant-
driven flow on the transport of a passive (such as a
surface-inactive chemical, for instance) solute in the
bulk of the film. This model has also been extended in
order to obtain transit times for the delivery of surfac-
tant to a pulmonary airway of a particular generation in
the lung (Jensen et al., 1993; Halpern et al., 1998; Zhang
et al., 2003b). This involved accounting for the consider-
able dilution effects associated with the branching of the
pulmonary airways in a typical lung (Weibel and Gomez,
1962). Zhang et al. (2003b) built on previous work (Halp-
ern and Grotberg, 1992; Jensen and Grotberg, 1993;
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FIG. 33. (Color online) Examples of surfactant-induced finger-
ing phenomena. (a) C1,Ep at 1.5 cmc on a 120 nm film of eth-
yleneglycol (EG). (b) C,E4 at 1 cmc on a 120 nm EG film.
From Hamraoui et al., 2004. (c) 2.8 cmc SDS in a 4:1 glycerol/
water suspension on an approximately 250 nm film. From Lee,
Gee and Luckham, 2005). (d) SDS in glycerol spreading on a
1-10 wm film. From Darhuber and Troian, 2003.

Jensen et al., 1993; Jensen, 1994; Grotberg et al., 1995;
Halpern et al., 1998; Espinosa and Kamm, 1999) and pre-
sented a model for the delivery of chemicals, such as
gene vectors and drugs, to pulmonary airways, which
uses exogenous surfactant as a vehicle. They studied the
effects of pulmonary absorption rate, surfactant-
chemical recombinant volume, surfactant dose, endog-
enous surfactant concentration, fluid viscosity, surfactant
and chemical diffusivity, and lung ventilation rate on the
distribution of the chemical along pulmonary airways for
a given chemical dose. Their results suggest that the use
of exogenous surfactant, which drives a Marangoni flow,
can expedite the delivery of chemicals to the lung.

B. Surfactant-induced fingering

A long-standing question has been the physical origin
of the striking fingering mechanism that is observed
when a surfactant-laden drop is placed atop a pre-
existing uncontaminated thin film; examples of such
phenomena are shown in Figs. 6 and 33. Marmur and
Lelah (1981) first observed the fingering phenomena and
these have subsequently been studied (Troian, Wu, and
Safran, 1989; Frank and Garoff, 1995; He and Ketterson,
1995; Bardon et al., 1996; Cachile and Cazabat, 1999;
Cachile et al., 1999; Cachile, Benichou, et al, 2002;
Afsar-Siddiqui et al., 2003a, 2003b, 2003c). Both the fluid
within the droplet and that of the thin film are identical,
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so these patterns are not simply a manifestation of the
well-known viscous fingering instability (Saffman and
Taylor, 1958), whereby a less viscous fluid displaces a
more viscous one. Nevertheless, certain similarities exist
between the surfactant-induced patterns and those
driven by viscous fingering: adverse mobility gradients
are present in both cases. In the former case, these are
brought about by the spreading of a thicker more mobile
surfactant-laden drop, which has potential for
Marangoni-driven flow and feels the retarding effects of
the underlying wall far less than the much thinner un-
contaminated film downstream, and, in the latter, by the
penetration of a more mobile (less viscous) fluid into a
less mobile (more viscous) one.

As shown in Fig. 33(a), in certain experiments, the
fingers are located in the thinned region downstream of
the deposited surfactant-laden drop and upstream of the
thickened advancing ridge; the structure of the film,
which emerges during the spreading process of a mono-
layer (as opposed to a drop) in the absence of perturba-
tions, which features the thinned region and the thick-
ened ridge, was discussed above. In Fig. 33(b), however,
the spreading occurs in the absence of a pronounced
thinned region and the fingers appear to emanate di-
rectly from the relatively thick drop (the dark region in
the panel). In Fig. 33(c), the spreading is accompanied
by the formation of two fronts: a thickened region that
exhibits rather ramified fingers is located between a
thinned region, which itself shows evidence of fingering,
and an advancing front (a ring of lighter shade of gray),
barely discernible in the panel. Evidence of multifronts
and fingering on different scales is also shown in Fig.
33(d). The results shown in Fig. 33 demonstrate the rich-
ness of the dynamics and the aesthetically appealing pat-
terns, which accompany the surfactant-driven spreading
of a drop. Naturally, these results generated much inter-
est in isolating the mechanism responsible for the finger-
ing phenomena.

The early work of Troian et al. (1990) represents the
first attempt at achieving fundamental understanding of
the mechanism underlying the fingering process.
Through a linear stability analysis (in which they ne-
glected film thickness perturbations but considered con-
centration disturbances) they exploited the similarities
between the surfactant-driven and classical Saffman-
Taylor fingering instabilities and identified Marangoni
stresses as being responsible for the instability. Matar
and Troian then examined the stability of a monolayer
spreading on a thin film of initially uniform thickness
(Matar and Troian, 1997, 1998, 1999a, 1999b) in the pres-
ence of Marangoni stresses, surface diffusion, capillarity,
and van der Waals forces. They used linear stability and
transient growth analyses, as well as direct numerical
simulations of the fully nonlinear governing equations
[Egs. (113) and (114)] to show that sustained perturba-
tion growth could only be obtained following the inclu-
sion of van der Waals forces; this was also shown by
Warner et al. (2002). In their absence, large initial tran-
sient growth was obtained, notably localized at the front
rather than the thinned region, followed by decay. Fis-
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cher and Troian (2003) obtained sustained growth but
only in the presence of surfactant “feeding” at the flow
origin with a prescribed rate.

The majority of experimental observations, however,
were recorded in situations where the fingering phenom-
ena occurred on pre-existing films that are far too thick
for van der Waals forces to be operative or are per-
formed on hydrophilic substrates (Cachile and Cazabat,
1999; Cachile et al., 1999; Cachile, Benichou, et al., 2002).
Furthermore, as shown by Afsar-Siddiqui et al. (2003b,
2003c), who studied the fingered spreading of AOT and
SDS surfactant on water films resting on glass substrates,
the average finger wavelength is proportional to H2?,
where H,, is the undisturbed film thickness. From the
evolution equations [Eqgs. (113) and (114)] one can bal-
ance the Marangoni and capillary forces in the trans-
verse direction, i.e., h*I',~h>h,,, and if the transverse
length scale is that of a finger wavelength X\ the thickness
is H, and Ty, locally constant, then 7\~Hi/3. Thus, the
observed scaling is consistent with a Marangoni-driven
rather than a van der Waals—driven fingering instability;
the latter would have given rise to a H7 scaling.

The modeling studies of Matar and Troian (1997,
1998, 1999a, 1999b), Warner et al. (2002), and Fischer
and Troian (2003), have two key limitations: the absence
of a drop and the associated thickness disparity between
the drop and underlying pre-existing film and the restric-
tion to surfactant concentrations below the critical mi-
celle concentration (CMC), above which surfactants
form micellar aggregates. However, the experiments
shown in Fig. 33 were carried out at concentrations
above the CMC. Warner et al. (2004a) addressed the first
of the above limitations for the case of insoluble surfac-
tant present in dilute concentrations. They demon-
strated through a linear stability analysis in the quasi-
steady-state approximation a transient growth analysis,
and full numerical simulations that the thickness dispar-
ity between the surfactant drop and the underlying thin-
ner liquid film is a key ingredient for the appearance of
the fingers which target the thickness minimum between
the drop and the advancing front; this problem was also
studied by Jensen and Naire (2006) using asymptotic
methods. The results of Warner et al. (2004a) also
showed that sustained growth is possible in the absence
of van der Waals forces and surfactant feeding (see Fig.
34). Warner et al. (2004b) then extended their work to
account for surfactant solubility, sorption kinetics, and
bulk diffusion by assuming rapid vertical diffusion and
employing the method of cross-sectional averaging pre-
viously used by Jensen and Grotberg (1993); a nonlinear
equation of state was also used. Their results demon-
strated that, for a given level of equation of state non-
linearity, increasing surfactant solubility destabilizes the
spreading process except for very high solubility where
Marangoni stresses are too weak to drive instability.

Warner et al. (2004a, 2004b) performed a decomposi-
tion of the disturbance “energy,” which indicated that
local height increases in the thinned region results in a
local increase in surface velocity and in surfactant trans-
port rate; this gives rise to a decrease in the surfactant
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t=100

FIG. 34. Numerical simulations of surfactant-induced fingering
instabilities for insoluble surfactant. A surface plot of the film
thickness h(x,y,t) showing the fingering patterns, generated
with Pe,=10% C,,=10"* after 100 time units starting from an
initial localized height covered with surfactant and given a
small initial perturbation. From Warner et al., 2004a.

concentration, which coincides with locally elevated re-
gions. This local concentration decrease drives Ma-
rangoni flow toward the elevation from adjoining de-
pressed surfactant-rich regions, which amplifies the
instability. The thicker regions then spread faster than
the neighboring thinned ones and elongate to form fin-
gerlike patterns.

More recently, Edmonstone, Craster, and Matar
(2006), Edmonstone, Matar, and Craster (2006), and Ed-
monstone et al. (2004, 2005) further extended the work
of Warner et al. (2004a, 2004b) to account for gravita-
tional forcing in thin films flowing down an inclined
plane with surfactant. They considered the flow of either
a drop or a film with a constant flux at the flow origin. In
both configurations, they found the presence of surfac-
tant to be destabilizing and the perturbations, which as-
sumed the shape of fingers, were found to localize down-
stream of the capillary ridge near the surfactant leading
edge. Close inspection of the flow profiles revealed that
the surfactant concentration is larger outside a finger.
This gives rise to Marangoni-driven flow, which draws
more fluid into protrusion and enhances finger forma-
tion. Edmonstone, Matar, and Craster (2006) also
showed that surfactant solubility is destabilizing over an
intermediate range of solubilities.

Even in the absence of fingering, flow down an incline
with surfactant has several interesting features (Edmon-
stone et al., 2004). In particular, a step of height approxi-
mately twice that of the precursor film forms ahead of
the capillary ridge. Recent work (Levy and Shearer,
2006; Witelski et al., 2006; Levy et al., 2007) investigated
this structure and extracted scaling results by moving to
a traveling wave coordinate.

C. Spreading at high concentrations

Once the concentration exceeds a critical value, the
CMC, it becomes energetically favorable for surfactant
monomers to create micelles, as discussed in many col-

Rev. Mod. Phys., Vol. 81, No. 3, July—September 2009

loid chemistry texts, i.e., Hunter (1991). Edmonstone,
Craster, and Matar (2006) developed a model using lu-
brication theory to account for the possibility of micellar
formation and breakup at concentrations above the
CMC. This model also assumes rapid vertical diffusion
of surfactant in the bulk of the film and accounts for
capillarity, Marangoni stresses, surface and bulk diffu-
sion, sorption kinetics, and solubility,

Con 1
h,:-V-(?h3VV2h+Eh2VU>, (120)
VT Cn )
I,=— -V | ZWTVVh+hI'Vo
Pe, 2
+KJ[Rc(1-T)-T7, (121)

1 C h
=—V- |\ =hVVh+ = )
“= e (hVec) <3h h+5Vao|-Ve

- EKS[Rc(l -I)-T]-Ky(c"-m),

p (122)

Cm2 2 h
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- hPe,,

+ Kp(c"—m). (123)

These equations correspond to Egs. (117)—(119) aug-
mented by an equation for the micelle concentration 1.
The total mass in the presence of micellar formation is
given by M=[", [sh(c+m)dxdy+B,[”.[;T'dxdy; here a
nonlinear equation of state was used (Sheludko, 1967,
Gaver and Grotberg, 1990, 1992; Jensen and Grotberg,
1992; Warner et al., 2004b). In Egs. (120)-(123), n repre-
sents the number of surfactant monomers that form a
single micelle, Pe,, is a Péclet number for the micellar
phase, and K, and R provide dimensionless measures of
the rate at which micelles are formed and of the propen-
sity of the surfactant to form micelles; large R corre-
sponds to a low propensity.

Edmonstone, Craster, and Matar (2006) showed that
the micelles remain localized within the drop region and,
with decreasing R, their concentration remains relatively
high during the latter stages of the spreading; increasing
R results in the rapid breakup of micelles, the formation
of large Marangoni stresses that give rise to a thickened
front and severely thinned regions that straddle the
front and the drop, which remains as a cap at late times
and advances slowly. Figure 35 shows the dependence of
h on M and R. As can be seen, the spreading dynamics
are accompanied by the formation of a “protuberance,”
which is absent for M =1, becomes prominent for M =3,
but remains attached to the drop, and separates from
the drop for M =5 to form an isolated “secondary” front.

Edmonstone, Craster, and Matar (2006) also showed
through a transient growth analysis that the spreading
process is least stable for intermediate values of M and
large R. They attributed this to the fact that the protu-
berances that form for intermediate M have the largest
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FIG. 35. The effect of varying M and R on the & profiles ob-
tained via the solution of Egs. (120)-(123) at t=10% R
=1,10,100 in (a)—(c), respectively, and in each panel, M
=1,3,5 are represented by dotted, dot-dashed, and solid lines,
respectively. The main feature to note is the emergence of the
small peak in the thinned region as M increases, which is un-
stable to a fingering instability, and can be seen in Figs. 37(c)
and 37(d). From Edmonstone, Graster, and Matar, 2006.

adverse mobility gradients, which led to instability. It is
interesting to note that these features have similar struc-
ture to the capillary ridges that accompany the flow of
films down inclined planes (Troian, Herbolzheimer, et
al., 1989; Kondic, 2003; Edmonstone et al., 2005) and
thermally driven climbing films (Kataoka and Troian,
1997; Eres et al., 2000). Their time-dependent numerical
simulations of the two-dimensional and fully nonlinear
evolution equations given by Egs. (120)—(123) revealed
that initially pseudorandom disturbances organize into
coherent structures, which target the thinned region,
protuberance, and secondary front for relatively low, in-
termediate, and large M, respectively. Associated with
this (Fig. 36) are numerical results showing evidence of
nonlinear phenomena such as tip splitting, coalescence,
and shielding reminiscent of experimental observations.

(a) X (b)

FIG. 36. (Color online) Surfactant-induced fingering: (a) Simu-
lated tip splitting. From Edmonstone, Craster, and Matar,
2006. (b) Experimentally observed fingering. From Hamraoui
et al., 2004.
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Several other situations involving Marangoni-driven
flow of droplets due to surfactant concentration gradi-
ents have been studied recently. Examples of these have
been provided by Nierop et al. (2006) who studied the
spreading and recoil of lenses caused by interfacial
chemical reactions that alter the spreading coefficient
and Stocker and Bush (2007) who examined lens oscilla-
tion driven by evaporation. There are also related
spreading droplet situations wherein the surfactant can
adsorb on the underlying solid substrate and dynami-
cally alter the wettability. This can render an originally
hydrophilic substrate hydrophobic and thus an initially
spreading droplet can finally retract in a process called
“autophobing” (Afsar-Siddiqui et al., 2004; Craster and
Matar, 2007).

Related to the process of autophobing is that of reac-
tive wetting, whereby a droplet causes a reaction on the
substrate leading to a wettability gradient. Remarkably
in such situations, self-propelled droplets can be ob-
served (Bain et al., 1994; Lee et al., 2002; Sumino et al.,
2005) and modeled (John et al., 2005) using an evolution
equation. This equation is similar to Eq. (37), without
any gravity, coupled with a reaction-diffusion equation
for the chemical field that feeds into the conjoining pres-
sure ¢ thereby altering the local wettability. Wettability
gradients then drive the droplet motion. Similar effects
occur for droplets driven by surface phase transitions, as
shown by experimental (Lazar and Riegler, 2005) and
theoretical (Yochelis and Pismen, 2005) approaches. The
unifying theme of autophobing and self-propelled drop-
lets is that the wettability of the substrate is dynamically
affected by the droplet.

VII. EFFECT OF BOUNDING WALL

In this section, we review some of the work that has
been carried out involving the effect of the bounding
wall on the dynamics of thin films. The studies that will
be considered are concerned with the effect of substrate
topography, compliance, and geometry on the flow. We
do not review other previous research involving, for in-
stance, the effects of reactive and/or dissolving sub-
strates [see, for instance, Warren et al. (1998), Hunter et
al. (2002), Gonuguntla and Sharma (2004), and refer-
ences therein] and wall oscillations (Or and Kelly, 1998;
Matar, Kumar, and Graster, 2004) on film evolution.

A. Flow over topography

Here we consider the behavior of thin films over to-
pographical features for which general evolution equa-
tions have been developed using coordinate systems
based on the substrate (Roy et al., 2002; Howell, 2003) as
extensions of those in Sec. II.C. Formally, the equations
of Sec. I1.C implicitly assume that slopes of the free sur-
face and substrate are small and that the topography
enters through the gradient of the substrate curvature as
a forcing term. Howell (2003) showed how to incorpo-
rate larger substrate curvatures into the evolution equa-
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tions. We consider topographic variations that, at least
formally, have small slopes and these extensions are not
required.

Flows over varying topographies are of importance
for the coating of patterned substrates in the manufac-
turing of microelectronics, optical, and magnetic devices
using spin-coating techniques. The topographical fea-
tures give rise to variations in the coating layer, such as
capillary waves and ridges, which could potentially af-
fect adversely the fabrication process and, ultimately, the
quality of the final product (Stillwagon and Larson,
1988, 1990; Kalliadasis et al., 2000).

In order to analyze the film leveling processes, Kallia-
dasis et al. (2000) used lubrication theory to study the
flow of a thin film over a “trench,” as an example of a
topographical feature. This equation can be derived
from Eq. (37) (with G.=1) by first considering one-
dimensional situations at steady state with a flux at the
left boundary UH,

[h3(1 + (h + B)xxx)]x =0. (124)

The B,,, corresponds to an extra capillary pressure due
to the topography. Here the flux &/ may be due to the
presence of gravity or centrifugation, for instance, and
the function B(x) describes the shape of the trench:

B(x) :D[l + j—_r(tan‘1<x;bw) —tan‘1<§b>)],

where D, w, and J, represent the trench depth, width,
and steepness, respectively; the trench may be viewed as
the union of a “step-up” or a “step-down” feature. In
this case, H is the film thickness away from the topo-
graphical feature and € is the ratio of H to the width of
the topographical feature.

A capillary ridge is formed just upstream of the step-
down (Kalliadasis et al., 2000; Kalliadasis and Homsy,
2001) whose height increases with D and 1/6p,; no such
feature forms over a stepup. Moreover, this ridge is
shown to be, perhaps surprisingly, linearly stable to
transverse perturbations (Kalliadasis and Homsy, 2001)
and studies using transient growth analysis (Trefethen et
al., 1993; Davis and Troian, 2005) and nonlinear compu-
tations (Bielarz and Kalliadasis, 2003) confirm this con-
clusion. An energy calculation (Kalliadasis and Homsy,
2001) suggests that the mechanism leading to stability is
due to a pressure gradient from the topography (for long
waves) and from surface tension (for short waves).

This work has been generalized to account for the
delicate interplay between topographic variations, ther-
mocapillary (Alekseev et al., 2005; Kabova et al., 2006;
Gambaryan-Roisman and Stephan, 2007; Saprykin et al.,
2007), and electric fields effects (Tseluiko et al., 2008).
Extensions to two- (Lenz and Kumar, 2007b) and three-
layer (Lenz and Kumar, 2007c) flows confined between
two walls have also been carried out. The former work
(Lenz and Kumar, 2007b) demonstrated that the height
of the capillary ridge preceding a “stepdown” is maxi-
mized for an intermediate step size; this is absent in the
single-layer case and is attributed to the pressure gradi-
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ents in the upper layer. The latter work (Lenz and Ku-
mar, 2007c) delineated the different modes of instability
dominating the early stages of disturbance growth and
its final stages as rupture is approached as a function of
thickness, viscosity, and interfacial tension ratios.

Formally the lubrication approximation fails precisely
at the sharp stepdown and must be replaced by the
Stokes equations there; a variety of numerical studies
(Mazouchi and Homsy, 2001; Gaskell et al., 2004) con-
firmed that the results from the lubrication approxima-
tion are accurate, at least for small capillary numbers,
and so the conclusions drawn from it can be trusted.

Apart from directly calculating the Stokes flow solu-
tion and comparing with a lubrication flow that formally
fails at sharp or re-entrant corners, one could move to a
new coordinate system in which the small-slope restric-
tion is no longer present, although a coordinate singular-
ity normally appears. For re-entrant corners, a hyper-
bolic coordinate system has been used to some effect by
Stocker and Hosoi (2005) as has a seminumerical tech-
nique (Heil and White, 2002; Jensen et al., 2004) for
large humps using volume conservation and the full cur-
vature.

The flow of a thin film over a periodically wavy wall
also has a number of engineering applications, which in-
clude the design of heat exchangers and the use of
highly corrugated surfaces, so-called “structured pack-
ings” (Valluri et al., 2002), for enhanced mass transfer
rates in distillation and absorption columns. These appli-
cations rely on the disruption of the flow by the wall
corrugations. Determining the steady film thickness in
these situations is far from simple due to potential com-
petition between several length scales, corresponding to
the lateral and vertical corrugation dimensions and any
pertinent dynamic spatial scales (e.g., the Nusselt film
thickness in falling films) (Wierschem et al., 2002). Pre-
vious studies have detailed the occurrence of flow sepa-
ration and vortices in flow down inclined sinusoidal
walls at vanishingly small Reynolds numbers for a criti-
cal film thickness, which is a function of the wall wavi-
ness, inclination angle, and surface tension [see Wier-
schem et al. (2003), and references therein]; the presence
of these vortices had been predicted by numerical simu-
lations in the creeping flow limit (Pozrikidis, 1988). The
film thickness is made more uniform by the presence of
surfactants (Pozrikidis, 2003).

In the presence of inertia and in the range of Rey-
nolds numbers of 10-100, resonance between the gas-
liquid interface and the corrugated wall gives rise to
static waves having the same wavelength as the substrate
topography (Bontozoglou and Papapolymerou, 1997,
Vlachogiannis and Bontozoglou, 2002). Similar observa-
tions were made for falling films down doubly and triply
periodic structured packing surfaces by Valluri et al.
(2005) via use of Eq. (48). Hydraulic jump formation was
found to occur at relatively low inclination angles and
strong waviness (Wierschem and Aksel, 2004a). Experi-
ments (Vlachogiannis and Bontozoglou, 2002; Argyriadi
et al., 2006) and numerical work (Trifonov, 1998; Wier-
schem and Aksel, 2003, 2004b) showed that wall corru-
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gations exert a stabilizing influence on the flow, delaying
transition to instability to higher Reynolds numbers in
comparison to flow over flat walls.

B. Flow over flexible and compliant support

The dewetting instabilities reviewed in Sec. V occur
for thin films bounded from below by a rigid wall. Re-
cent studies have attempted to exploit the strong defor-
mations accompanying dewetting in order to engender
pattern formation in layers of soft solids, e.g., polymers,
gels, or elastomers (Bowden et al., 1998; Martin et al.,
2000; Hosoi and Mahadevan, 2004; Kumar and Matar,
2004; Matar, Gkamis, and Kumar, 2005; Yoo and Lee,
2005; Bandyopadhyay et al., 2008); this is in contrast to
the two-layer dewetting work already reviewed in Sec.
V.D, which featured thin viscous bilayers (Bandyo-
padhyay er al., 2005; Pototsky et al., 2006). Previous ex-
perimental (Bowden et al., 1998; Yoo and Lee, 2005) and
modeling studies (Huck et al., 2000; Sridhar et al., 2001;
Cerda and Mahadevan, 2003; Huang, 2005) demon-
strated interfacial “wrinkling” into stripes and labyrinths
when a thin polymer film (less than 100 nm thick) is
bounded from below by a relatively thick viscous film
(more than 100 nm thick) resting on a rigid substrate.
The possibility of creating patterns with controllable di-
mensions in polymeric films, and which can then be
quenched, may be valuable in studying adhesion of cells
and vesicles to surfaces in biological systems (de Souza
and Gallez, 1998; Coakley et al., 1999; de Souza et al.,
2001).

When the viscous film separating the polymeric layer
from the rigid substrate is less than 100 nm in thickness,
it becomes vulnerable to van der Waals—driven instabili-
ties (Martin et al., 2000). Hosoi and Mahadevan (2004)
studied peeling, healing, and bursting of a thin elastic
sheet on a viscous film, wherein van der Waals forces are
operative. Kumar and Matar (2004) and Matar, Gkanis,
and Kumar (2005) and Matar, Lawrence, and Sisoev
(2005), studied dewetting of thin films near soft elas-
tomers, described as a linear viscoelastic material using a
linear stability analysis and numerical simulations of
lubrication-based models. These models comprised evo-
lution equations for the positions of the air-liquid and
solid-liquid interfaces and account for the presence of
van der Waals forces and short-range repulsion in the
thin viscous film but not in the viscoelastic solid. Matar,
Gkamis, and Kumar (2005) and Matar, Lawrence, and
Sisoev (2005) showed the formation of fluid ridges on
depressed solid regions, as depicted in Fig. 37. Recent
work by Bandyopadhyay et al. (2008) has extended these
studies to account for intermolecular forces in both the
polymeric and viscous layers in configurations where the
former is bounded from above by either a rigid wall or
an inviscid gas.

The flow of thin films over flexible solid substrates and
membranes has also been studied. Halpern and Grot-
berg (1992, 1993) [see also Grotberg and Jensen (2004)]
derived evolution equations for the interfacial and wall
positions and the surfactant surface concentration using
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FIG. 37. Pattern formation in thin liquid films (dotted line) on
a soft solid layer (solid lines); £ and ¢ represent the solid-liquid
and air-liquid interfacial positions, respectively. From Matar,
Gkamis, and Kumar, 2005.

lubrication theory. These equations, which can be con-
sidered to be extensions of Eqgs. (113) and (114), were
used to study the instabilities that arise in the thin films
that line the inside of pulmonary airways and which lead
to airway closure via liquid bridge formation and/or wall
collapse. The airway walls were modeled as elastic cir-
cular tubes. Closure was found to occur beyond a critical
film thickness which decreases with increasing surface
tension and decreasing surfactant concentration.
Kumar and Matar (2004) showed that wall flexibility
can affect significantly the rupture of surfactant-covered
thin films. More recently, Matar and Kumar (2007) stud-
ied the stability of flow down a flexible plane inclined
with angle # to the horizontal. They used lubrication
theory to derive the following coupled evolution equa-
tions for the film thickness, /, and wall deflection, #:

sin(6)
3

1
(h+m),=- [(h+ 7})3]x+§V [(h+ 5’V p],

S9=1V?n-V°h, (125)
where p=-V?h; here 3 and 7 provide dimensionless
measures of the relative significance of wall damping
and wall tension, respectively. If 3 >1 and/or 7>, that
is, for large wall damping and/or wall tension, Eq. (125)
reduces to Eq. (33) with B=B=0, U=pgH*/u, and
L=(cH/pg)"">.

The wall model used by Matar and Kumar (2007) is
similar to that used by Halpern and Grotberg (1992) and
Halpern and Grotberg (1993), which assumed the wall to
be infinitely long, isotropic, impermeable, and suffi-
ciently thin for the wall tension to be considered con-
stant; bending stresses are neglected. Matar and Kumar
(2007) showed decreasing the wall tension and damping
leads to larger wall deformations and smaller thickness
modulations. They also showed that the flow, which is
already unstable in the rigid wall case, as discussed in
Sec. III.A, is further destabilized by decreasing 7 and
over an intermediate range of X. This work was recently
extended to account for inertial effects by deriving ex-
tensions to the Benney, Kuramoto-Sivashinsky, and
Shkadov equations [Egs. (57)-(59)], to account for ef-
fects of wall flexibility (Matar et al., 2007). The results of
this study show that decreasing the relative magnitude
of wall tension and/or damping promotes chaos and se-
vere wall deformations in the weakly nonlinear and fully
nonlinear regimes, respectively.
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FIG. 38. The leftmost panel shows a schematic representation of the geometry for film flow down a vertical fiber. Here a and R
represent the fiber radius and interfacial position, respectively. Comparison of modeling predictions and experimental observa-
tions of film flow down a vertical fiber. Left panels (a)-(f) show computed profiles and streamline. From Ruyer-Quil et al., 2008.
Right panels show profiles for the experimental regimes a—c. From Kliakhandler ez al., 2001. The results presented in (a), (c), and
(e) were generated using a two-equation model based on the method of weighted residuals that includes second order dissipation,
which is an extension of those considered in Sec. III.A.2; those in (b), (d), and (f) were obtained via solution of Eqs. (126) and (127).

C. Flow down vertical fibers

An extreme topographic variation is that of a cylinder
and many real applications involve the coating of a thin
fluid film along a cylindrical fiber; the geometry is shown
in Fig. 38. We use this as an example to illustrate that the
ideas and formulation presented earlier can be extended
to other related situations, such as this one. The typical
situation is that droplets emerge along the fluid film and
it is of interest to characterize both their shape and
speed. Flow down fibers often arise in the context of
drawing fibers from reservoirs (Quéré, 1999) with and
without surfactant (Shen et al., 2002) and as an example
of flows on the outside of cylinders. The presence of a
mean flow field modifies the surface tension-driven flow
that promotes film breakup (Eggers, 1997); this results in
the formation of finite-amplitude interfacial waves
(Quéré, 1990; De Ryck and Quér, 1996). A number of
studies (Frenkel, 1992; Kalliadasis and Chang, 1994,
Kerchman and Frenkel, 1994; Chang and Demekhin,
1999) have assumed the film thickness to be much
smaller than the fiber radius. The notable point, physi-
cally, is that capillary forces depend both on the stream-
wise interfacial curvature, which is stabilizing, and on
the azimuthal curvature, which is destabilizing. It is
worth noting that despite the low inertial contributions
in this case, this system exhibits rich dynamics, charac-
terized by the formation of pulses and wave patterns.

When the film thickness is at least as large as the fiber
radius, experiments by Kliakhandler et al. (2001) and
Craster and Matar (2006) also revealed the richness of
the dynamics and existence of several flow regimes. An
equation for the interfacial position R(x,t), as defined in
Fig. 38, is derived using a somewhat similar approach to
that followed in Sec. II. The equations of mass and mo-
mentum conservation in cylindrical coordinates and
boundary conditions on the fiber surface and at the free
surface [see Craster and Matar (2006), for details] are
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scaled using the following scalings: r=Ry7, x=LX, p
=pgLp, t=Li/V, w=Vw, and u=e€Vii, where V=pRig/u
and L= y/pgR,. The scaling used here is similar in spirit
to those adopted in the long-wave theories of viscous
single and compound threads and jets (Eggers and Du-
pont, 1994; Papageorgiou, 1995a, 1995b; Eggers, 1997;
Craster et al., 2002; Craster and Matar, 2005). Craster
and Matar (2006) assumed that the radius of the initially
undisturbed fluid ring R is much smaller than its char-
acteristic, capillary length scale. Expanding variables in
powers of e= R/ L, solution of the Navier-Stokes equa-
tions and application of the boundary conditions, at
leading order, yield the following evolution equation for
the fluid interface position R(x,?):

R
8(R?), = (Px[2R2<a§ - R*>+2R%log —)

—(af - RZ)ZD ,

where P,=p,—1, in which the pressure p is given by

p=1/R-€R,,, (127)

(126)

and a,=a/R <1 is the dimensionless ratio of the fiber
radius to the initial fluid radius. The coordinate x is mea-
sured downward in the direction of flow. Inspection of
Eq. (127) for the pressure reveals the competition be-
tween 1/R and R,,, which are destabilizing (driving the
formation of drops) and stabilizing, respectively. Their
combined effect is to settle on a compromise whereby a
droplet forms, which cannot pinch off due to the pres-
ence of the fiber. Equation (126) bears strong resem-
blance to Eq. (33) with 4 replaced by R, the pressure
augmented by an azimuthal curvature term, and the
simple nonlinearity of 43 replaced by a cumbersome
function of R [the square bracketed term in Eq. (126)].
Equation (126) has also been derived by Kliakhandler et
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al. (2001) but without the € factor multiplying the S,,
term since (r,x)=R,(7,%) in Kliakhandler et al. (2001).

If we now consider h=R-«, and assume it is small
relative to the fiber radius so 4 <a,, then Egs. (126) and
(127) simplify to

h 1 h h
(1 + —)ht+ - h3<1 + —)(1 T —
a, 3 a, a,(1+hle,)

+ ezhxxx):| =0,

which is related to the thin-layer model of Roy et al
(2002) deduced in the manner of Sec. II but using a gen-
eral coordinate system for variable substrates. One can
further simplify to the evolution equation derived by
Frenkel (1992), used by Kalliadasis and Chang (1994)
and others, by taking the limit (1+4/a,)—1 and a,— 1,

B+ SR+ by + €Rg )], = 0. (129)

(128)

This equation, with strong similarities to Eq. (33) where
the restoring pressure due to gravity is supplanted by a
restoring force due to the surface tension in the azi-
muthal direction, is equally valid on both the outside
and inside of a cylinder of dimensionless radius «,. This
evolution equation also corresponds to that of Ham-
mond (1983) describing the dynamics of a thin film on
the inside of a cylinder, to within a rescaling, when the
gravitational term is absent,

hy+ S[R3 (hy + Ehy)] = 0. (130)

It is therefore interesting to note that there is a natural
hierarchy of evolution equations descending from Eg.
(126) to (130) that encompasses various sublimits.

The numerical solutions of Kliakhandler et al. (2001)
and Craster and Matar (2006) can be compared with ex-
periments; a set of experimental figures for varying flow
rates are shown in Fig. 38 together with the results of
some simulations (Ruyer-Quil et al., 2008). Duprat et al.
(2007) and Smolka et al. (2008) also considered the drop-
let formation and subsequent instability and expanded
further on the experimental aspect. One can, of course,
incorporate inertia as was carried out in Sec. III.LA.2 on
falling films and generate coupled model equations (Tri-
fonov, 1992; Sisoev et al., 2006), for the volumetric flow
rate and interfacial position R using a combination of
integral theory and a closure relation for the axial veloc-
ity component. Ruyer-Quil ef al. (2008) employed the
weighted residual approach, included second order dis-
sipation, and compared the predictions of these ex-
tended equations with those of the simple single evolu-
tion equation [Eq. (126)] in terms of the speed and
shapes of traveling waves. This comparison, which is
shown in Fig. 38, reveals good agreement between the
extended and simple models, and experimental data: for
regime a, for instance, the experimentally observed drop
speeds are 25 mm/s and the extended and simple mod-
els predict speeds of 22.4 and 24.7 mm/s, respectively.
However, discrepancies emerge between the predictions
of the extended models of Ruyer-Quil et al. (2008) and
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Eq. (126) in terms of predicting the spatiotemporal dy-
namics, the extended model being more accurate versus
experiments.

D. Flow over porous media

The main focus of this review has been on flows over
impermeable substrates; however, many applications
such as the coating of textiles, spray painting, and ink-jet
printing involve the spreading on porous substrates.
There have been studies of droplet motion over porous
media addressing several varied scenarios (Davis and
Hocking, 1999a, 1999b), which use lubrication theory for
a spreading droplet coupled to a permeable substrate
modeled as an array of vertical pores of constant width
and for a finite thickness layer as a porous medium.
These studies provide details of the behavior near the
contact line and time scales of the dynamics for limiting
cases. Importantly, when using the lubrication scalings in
the porous medium fluid flow takes place, to leading or-
der, vertically within the medium (Acton et al., 2001).

The pores are usually assumed long and thin, so the
dimensional equations within the porous medium are (in
rectangular geometry)

(131)

uc+w,=0, p,=-pg+uw,, p.=0,

with w=0 at x=0, w,=0 at x=b,, and a condition on the
“saturation front” separating dry and wet solid: p
=-20/b,, where b, is the pore half-width. Here we scale
X, z, w, t, and p on b,, [, W, [/, and ,qu/bz, respec-
tively, where W is a characteristic velocity in the porous
media and / is the pore length. The velocity component
w is obtained in a straightforward manner from Eg.
(131) and W=(n/2)[ %wdx, where n denotes the number
of pores. Coupled evolution equations for the droplet
height 4 and saturation front position 4, can then be
derived (Alleborn and Raszillier, 2004),

p

w w
h,— |:?(gch—hxx+¢)x]x=W, hptz—;, (132)

where ¢ is the porosity of the medium. Note that the
evolution equation for 4 can be obtained using the pro-
cedure outlined in Sec. II to derive Eq. (37) but with w
=W#0 in Eq. (15) and G=pgL?/o in which L=aq, is the
initial drop width. Alleborn and Raszillier (2004) study
involved the use of the disjoining pressure model to re-
lieve the contact line singularity and they perform nu-
merical simulations of droplet spreading. Aradian et al.
(2000) who looked at the modifications to dewetting by
the effect of porosity and Zadrazil et al. (2006) consid-
ered extensions to solidifying droplets that can also si-
multaneously be imbibed by the underlying porous me-
dium. Complementary to the theoretical literature there
is also a range of primarily experimental work (Clarke et
al., 2002; Holman et al., 2002; Starov, Kostvintsev, Sobo-
lev, et al., 2002) for isothermal contexts and for noniso-
thermal flows with solidification (Zadrazil et al., 2006).
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VIII. CONCLUDING REMARKS

We have presented a review of the work carried out
on thin films flows, focusing attention on the studies un-
dertaken after the review by Oron et al. (1997). With
regard to the theoretical-modeling developments, it is
clear that lubrication theory has been used to elucidate a
wide variety of flows in which films have small aspect
ratios. These include flows involving single or multiple
layers, driven by body and surface forces, potentially
confined between rough or smooth, impermeable or po-
rous, compliant or rigid walls, in the presence or absence
of heat and mass transfer, phase changes, non-
Newtonian rheology, and surface active contamination.
In cases where inertia is important, methodologies com-
bining boundary-layer theory and the use of Kdrman-
Pohlhausen approach have been used. The agreement
between the modeling predictions, with and without in-
ertia, and experimental measurements has been demon-
strably favorable; examples of this include simulation of
thin film flows down inclined planes, thermally driven
climbing films, films undergoing dewetting, falling film
flows, flows over spinning disks, and surfactant-driven
flows.

Given the large volume of research conducted in this
area since the time of Reynolds and Beauchamp-
Towers, it is natural to ask the question: What next?
What is currently exciting the community? The answers
to these questions are, of course, somewhat subjective.

The area of falling films and spinning disks is active
with new work on interactions between external forcing
by, or coupling with, electrical and thermal fields as well
as chemical reactions. Much work remains to be done
here and the field is vibrant with new research by Tse-
luiko and Papageorgiou (2006) and Trevelyan et al.
(2007) among others. Some of this recent progress is
due, in no small part, to advances in numerical and ana-
lytical techniques (Scheid et al., 2006). Future work is
likely to focus on uncovering the mechanisms underlying
the emergence of coherent structures in surface “turbu-
lence” in falling films (Demekhin et al., 2007a, 2007b). In
the absence of inertia, templating is a vital aspect of
modern nanoscience and the use of electric fields, dem-
onstrated by the experiments of Morariu et al. (2003)
and Chen et al. (2005) shown in Figs. 3 and 13 and simu-
lations of Merkt et al. (2005), Wu et al. (2005), and Ban-
dyopadhyay and Sharma (2007), provides an exciting av-
enue into producing patterns of precisely controlled
dimensions.

Although a common process, evaporation is still rela-
tively poorly understood. Anomalous exponents in re-
tracting and evaporating water droplets have only re-
cently been interpreted (Shahidzadeh-Bonn et al., 2006)
and in terms of theory there are new models being de-
veloped (Ajaev 2005b; Fried et al., 2006; Shklvaev and
Fried, 2007) to allow for more realistic mass and mo-
mentum exchange; the work of Pismen and Pomeau
(2000) promises to account naturally for evaporative ef-
fects. There are interesting instabilities in evaporating
droplets (Poulard et al., 2003; Gotkis et al., 2006) that
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FIG. 39. (Color online) “Star bursts” in surfactant spreading
over gels (reprinted with permission from Daniels et al., 2005,
copyright 2005, AIP).

require detailed mechanisms to be identified, and then
there are the patterns left behind by evaporating drop-
lets containing nanoparticles (Govor, Reiter, Parisi, and
Bauer, 2004) and polymer solutions (Bormashenko et al.,
2005c). Recent progress has been made on the pattern-
ing of very thin uniform films (Rabani et al., 2003) using
diffusionlike discrete lattice models; the challenge now
is to couple this with the evolving hydrodynamics.

Much interest currently is in the slippage of dewetting
films atop substrates (Fetzer and Jacobs, 2007) and in
the possibility or otherwise of instabilities at the rim
(Reiter and Sharma, 2001) in which there has been re-
cent progress theoretically (King et al., 2006). The mod-
eling associated with dewetting on chemically patterned,
possibly topographically varying, substrates (Kargupta et
al., 2000; Geoghegan and Krausch, 2003), or the simul-
taneous dewetting and phase separation of binary mix-
tures (Clarke 2005), requires quantitative connections
with experiments and much remains to be done here.
Thin films consisting of binary mixtures and the result-
ing thermosolutal Marangoni instabilities that form are
another topical area rich in both theory that is being
developed by Podolny, Nepomnyashechy, and Oron
(2007) and Podolny, Oron, and Nepomnyashchy (2007)
and in observed experimental patterns (Zhang et al.,
2007). Nanoscale patterning of bilayers comprising thin
soft solid and viscous films is also an active area strongly
related to instabilities associated with dewetting (Hosoi
and Mahadevan, 2004; Matar, Gkanis, and Kumar, 2005;
Bandyopadhyay et al., 2008).

Many interesting fundamental questions remain. It is
still unclear how a water droplet “superspreads” on a
hydrophobic substrate when laden with certain types of
surfactant above the CMC (Nikolov et al., 2002). Do mi-
celles alter the intermolecular forces in the contact line
region, thereby facilitating spreading? How does the
contact angle of the spreading droplet depend on these
effects? In other situations the substrate itself could play
a significant role in the observed phenomena: Why is the
spreading of surfactant-laden drops on the surface of
gels accompanied by patterns resembling “star bursts”
[see Fig. 39 showing results of the recent experimental
work of Daniels et al. (2005) which is expanded upon
further in Daniels et al. (2007)]? Do Marangoni stresses
promote cracking of the gel? If so, then what is the na-
ture of the coupling that leads to crack propagation?
Other topical areas are connected with the fluid rheol-
ogy: If this is no longer simply Newtonian then how do
we account for complex rheology within the framework
of lubrication theory as would be necessary in the case
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of liquid-crystalline drops spreading on solid substrates
(Poulard et al., 2006) and thin films undergoing sol-gel
transitions (Lee et al., 2006)? In the latter case, the rhe-
ology is time dependent as a result of evaporation-
induced self-assembly.

There are many open and interesting issues in geo-
physics related to thin film flows: debris, dense particu-
late, and avalanche flows (Ancey, 2007) present substan-
tial challenges in their modeling using thin layer theories
due to their rheology. Added to this are the possible
thixotropic-ageing effects (Huynh ez al., 2005) that many
real muds have and the hysteretic behavior that is asso-
ciated with these effects. The thin film methodology is
popular in dry granular flows (Forterre and Pouliquen,
2008) where, again, the rheology is only just beginning to
be unraveled. Progress in these areas will continue to
utilize the lubricationlike model, both with and without
inertia, and it will play a large part in understanding
these important flows.

Recently, the aggregation of nanoparticulates and
their influence on the hydrodynamics of films has be-
come of great interest. How do nanoparticles self-
aggregate on the surface of drying droplets to create
ordered monolayers (Bigioni et al., 2006) and how is that
coupled to the hydrodynamics? The creation of nano-
particles or surfactants via chemical reactions gives rise
to Marangoni effects (Pereira et al., 2007) which mani-
fest themselves in recoiling or oscillating fluid lenses
(van Nierop et al., 2006; Stocker and Bush, 2007) and
droplet motion driven by dynamically varying substrate
wettability (John et al., 2005; Yochelis and Pismen 2005);
these systems are beginning to be understood.

For the biological questions associated with the
mechanisms of cell motion, lubrication-based droplet
models have recently been developed for both cell
movement (Oliver et al, 2005) and cell division
(Schwartz et al., 2004) and provide the beginnings of a
new area in lubrication flows.

Thus we observe that, over 125 years after its discov-
ery, research involving thin films and lubrication theory
is still going strong and gaining momentum; moreover,
its range of applications is widening year upon year. We
look forward to the next few decades with anticipation
for the new discoveries that will occur in this field.
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APPENDIX A: LETTER TO THE “THE ENGINEER” (1884)

Here we reproduce extracts from a short letter to the
editor of “The Engineer” February 1884, which has been
referred to in Sec. I:

“Sir, I have read with much attention and no small

disappointment the article entitled “What is Fric-

tion?” which appeared in the last number of the En-
gineer. I anticipated that Mr Towers’ researches would
have had some practical value; but as far as I can see
they might just as well never have been undertaken.
To certain minds I have no doubt that it may prove
valuable to know that friction between dry surfaces is
not the same thing as friction between oiled surfaces;
but to the great body of engineers the statement is
simply useless. It is really a matter of no importance
whatever that frictional coefficients vary with the
speed, because the fact cannot be usefully applied.

Again, we gain absolutely nothing of any value from

the discovery, if such it be, that the use of an oil bath

diminishes friction enormously. We cannot use oil
baths, and the fact is therefore of no importance. It
seems to be the fate of the Institution of Mechanical

Engineers to always carry out investigations of no

practical value to anyone. If Mr Towers had told us

something about the relative values of different mate-
rials for bearings he would have done good service.

So-called scientific research is rapidly becoming noth-

ing but a method by which considerable incomes may

be earned in finding out things of no earthly use to
any mortal. The Institution of Mechanical Engineers
ought to keep clear of this sort of thing and its money
ought to be spent on inquiries likely to prove of prac-
tical value to its members. There is no lack of subjects
for investigation.” by T.C.H, Birmingham, 25th Febru-

ary 1884.

It is interesting to observe the valuable interplay be-
tween experiment theory and, of course, with the great
advantage of hindsight to marvel at the short-sighted
and narrow thinking evident in the letter: Mr Beau-
champ Towers did thought-provoking experiments care-
fully and presented the material in a manner that moti-
vated Osborne Reynolds to create and validate the
theory upon which ultimately, some 125 years later,
much of this review is based.

APPENDIX B: ALGEBRAIC DETAIL

This appendix contains expressions for interfacial con-
ditions, transport equations, and velocity components,
which are necessary for the derivation of the evolution
equations in Sec. II and Appendix C. These expressions
are too cumbersome to be included in the main text. The
dimensionless tangential and normal stress conditions at
z=h;+ B from Sec. II.B are

Jie([uel; + fz(hi +B) [w])A — e(h; + B) ([ 7, ]i = [T )i
+ [Mzz]i - [Mxx]i) + (2 - Az)([sz]i + [sz]i)
= [~ Mi(oy + [h; + Bl,o;)]A, (B1)
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€AY ([w,)i - [h; + Bl lu.];) + A([p]:A®
- 6([711]1‘ + [Mzz]i) + zez(hi + B)x([sz]i + [sz]i)
+ 6(1 - Az)([Txx]i + [Mxx]i))

Z—(ézMiO'i-l-é)(hi-i-B)xx, (BZ)

Ci

where A= (1+€{h;+B])"? and o depends on tempera-
ture and/or the interfacial concentration of any surfac-
tants that may be present.

The surfactant transport equation is expressed by

1 h.
L+ P(uisrix + ezhixwisrix + fzri(Wis - uixhix)A_l;>
1 [Fixx B ezrix(hixhixx/Az)]
—_— +
Pe; A?

J;. (B3)
The expressions for u; and u, are

My
up= m_l[_ B+ hy(my = 1) + Bmy + 2]l + (y

+ B)xa-lz] + MZ(B + h2)[0-2x + (hZ + B)XUZZ]

1 1
- Ehz(zﬂ +h)([pa+ ol = G) + 2—(32
ny

+ h2[2m1(,8 + hz) — hz] + 26(’11 - Z) + 22
= 2hy[hy(my = 1) + Bm; + 2])

X([p1 + ¢1lc —m9), (B4)

Uy =(z - B+ B (Mo, + (hy + B) oy ]+ Myl oy,
+ (hy + B)op, ) + (hy = hy)(B— B - 2)([p1 + ¢,

—mg)+%k2—248+hy+2hﬂ8—ﬁ0+8ﬂ

X ([p2+ ¢2lc = 9). (B5)

APPENDIX C: LUBRICATION THEORY FOR ONE-SIDED
EVAPORATION MODELS

Here we provide a derivation of the so-called one-
sided models (Burelbach et al., 1988) given in Sec. IV.A
for a single thin film resting on an impermeable, rigid,
and smooth substrate driven by evaporation or conden-
sation. This is an important example showing the influ-
ence of the interfacial mass flux j, introduced in Sec. II
[Egs. (5) and (11)]. We can employ the same formal
transformations and take the same limits as in Sec.
I1.C.2 but for brevity we neglect slip, all body, and inter-
molecular forces, so that (8,G,8,M, ¢) —0.

We consider finite mass fluxes associated with phase
changes j,>0, where we have dropped any distinguish-
ing decoration since only a single layer is considered; we
do, however, use subscript g to designate quantities per-
taining to the gas phase overlying the film. In order to
model processes involving evaporation or condensation,
the same framework as that used in Secs. IL.A-II.C is
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employed here, but, due to temperature effects, the fol-
lowing additional (dimensional) equations and closure
relations are required: an interfacial mass balance,

je:p(u_us)'n:pg(ug_“s)'nv (Cl)

no slip at the interface [u]-t=0 and an interfacial energy
balance (Delhaye, 1974),

jlLa+3m—u) -nJ+\u VT n
+2u(E-m) - (u-uy)

I
= §e|(ug— u,) -nf’+ AngV Ty m

+ Zlu‘g(gg : l'l) : (ug - us)a (Cz)

are required where uy is the interfacial velocity, La is the
latent heat of vaporization, and Ay, and Ay, , are the ther-
mal conductivities of the liquid and gas phases, respec-
tively. The remaining variables have already been de-
fined in Sec. II

The temperature 7 evolves as a result of convection,
conduction, and evaporation or condensation and satis-
fies an advection-diffusion equation,

Cop(T,+u-VT) =Ny, VTlp, (C3)

where Cg, is the specific heat capacity of the fluid. For
closure, the following equation of state relating tem-
perature and mass flux at z=h(x,?) is usually employed:

Je=Jo(Ts=Tv), (C4)

where Ty and T, denote the interfacial and saturation
temperatures, respectively, and j, is a parameter which
depends on T, the molecular weight and density of the
vapor phase, and an “accommodation” coefficient
(Plesset and Prosperetti, 1976; Burelbach et al., 1988;
Oron et al., 1997). Recently, Ajaev (2005b) utilized an
extension of Eq. (C4) augmented by a pressure jump in
the mass flux based on thermodynamic considerations,

je:jO(Ts_ Tw)+c(p_pg)' (CS)

The derivation and the precise form of the constant of
proportionality C are given in Moosman and Homsy
(1980). Fried et al. (2006) and Shklyaev and Fried (2007)
augmented this evaporation model further incorporating
a nonvolatile dissolved surfactant on the interface and
suggested a more general replacement for the mass flux;
they develop the one-sided model in the light of these
new assumptions.

The temperature at z=0 is set to T=T to reflect the
case of a highly conducting base. The dependence of the
surface tension on the temperature is given by the linear
equation of state o=0,,+(do/dT)(T,—T,), where
do/dT <0 since, for most fluids, surface tension is a de-
creasing function of temperature; here o,, denotes the
surface tension at the saturation temperature 7.

The evaporative flux j,, the temperature 7, and the
surface tension o are then nondimensionalized,
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. Ap(To—-To) - ~
]ethT]e, T=T.+(Ty-T)T,

(Co)

where the tildes have been reintroduced to designate
dimensionless quantities; the surface tension difference
in the problem is then S=0,— g,,. It should be noted that
the scaling for j, in Eq. (C6) is different from that in Eq.
(11) (with w,— u since we are dealing with a single
layer). The j, in Eq. (11) can be recovered by multiplying
that in Eq. (C6) by Np(Ty—T..)/ nLa.

Substitution of the temperature scaling into Eq. (C3)
yields an additional equation to Eqs. (12)—(14) applied
for a single layer in the lubrication approximations,

T,.=0. (C7)

In obtaining equation 7,,=0, we have implicitly as-
sumed that the thermal Péclet number Pey,
=pCsU/(LNy) is small so that diffusion across the thin
layer is rapid. Some discussion of the opposite limit in
the context of temperature dependent flows is in Sec.
IV.D. Substitution of the temperature and surface ten-
sion scalings in Eq. (C6) into the equation of state yields
o=1-MyT, where My=-[(Ty-T.)!/(oq—0,,)]da!dT,
note that M, >0 for most fluids since do/dT <0.
Substitution of the scalings in Egs. (7), (8), and (C6)
into Eq. (C1) yields the following dimensionless relation:

)\th(TO - Too) .
ULLap, '™

o=0,,+(0y—0,,)0,

uc+w,=0, py=u,, p,=0,

62([We] - hx[ue]) =

Similarly, nondimensionalizing Eq. (C2) and assuming
that the gas density, viscosity, and thermal conductivity
are much smaller than their liquid counterparts, which is
the essence of the one-sided model (Burelbach et al.,
1988), yield at z=h

je:_TZ'

Interfacial conditions are obtained by considering
Egs. (B1) and (B2). In these equations, j, must be res-
caled according to Eq. (C6); this yields the following at
z=h to leading order in e after invoking the one-sided
assumptions above,

u,= o +ho,, p=-ehylC,+Rj%, (C8)

where

o 1 {)\(TO—Txﬂz
ppLU, "\ La

is a vapor “recoil” number, characterizing the relative
importance of the force on the interface due to vapor
thrust; this is due to the fact that the density ratio p,/p
~1073. Here it is important to note that, due to the no-
slip condition at the interface, [u]-t=0, j, does not ap-
pear in Eq. (D1). We have also set the Marangoni num-
ber M=1, thereby fixing the velocity scale as U,
=SH/uL, as in the discussion near Eq. (34). Also the
effects of mean surface tension on capillarity, character-
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ized by €/C,,=€0,,/S in Eq. (D2), have been retained
in the pressure; those due to surface tension variations,
characterized by €¢ in Eq. (D2), have been neglected,
as also discussed near Eq. (34).

Combination of the dimensionless Eq. (C1) with the
kinematic boundary condition and nondimensionaliza-
tion of Eq. (C4) yield the following equations at z=h:

Ej.+h+uh,—w;=0, Kj,=T. (C9)
Notably, there is now an extra term E,j,, reflecting the
presence of an interfacial mass flux. Here E, =L\, (T
~T.)/pU,H*La is an evaporation number and K
=\y/joHLa represents the departure from equilibrium
conditions. At z=0, T=1, and u=w=0.

The temperature and evaporative flux follow from
these equations

T=1-j.z,

jo=1Uh+K), (C10)

and the leading order evolution equation then reads
E Pl e R
N O P
h+K 3\ C, (h+K)*/,

My h’h,
2 (h+K)?]/]

(C11)

which is also Eq. (79) in Sec. IV.A. This is an evolution
equation, which is structurally similar to Eq. (34). The
second and third terms on the right-hand side of Eq.
(C11) are associated with evaporation or condensation
and vapor recoil, respectively. The fourth term is associ-
ated with Marangoni stresses entering the problem
through the surface tension dependence on temperature
and the dependence of the latter on A. In deriving this
equation, we have neglected implicitly the temperature
dependence of the viscosity; the effects that such a de-
pendence generate are discussed in Sec. IV.D.
Equation (C11) can be recast in terms of j, as follows.
From Eq. (C10), T=1-j,z, so that the tangential stress
condition at z=h given by Eq. (C8) becomes u,=o,
+ho,=—My(hj,),; the normal stress condition in this
case remains unaltered. Equation (79) then becomes

w3 . n
ht: - En]e + |:?<_ ahxx—"_ R]g)x - Mlh?(h]e)x]x'

(C12)

This equation can be augmented by a conjoining pres-
sure term (k) which allows evaporative dewetting pat-
terning to be studied (Bestehorn, 2007) or droplet re-
traction to be followed (Ajaev, 2005a). An advantage of
incorporating the pressure into the mass flux, as in Eq.
(C5), is that it leads to an equilibrium film thickness,
where the mass flux is zero j,=0. Thus evaporation and
van der Waals effects balance allowing for the experi-
mentally observed microscopic adsorbed film on the
substrate (DasGupta et al., 1993).
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