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gardless of the specific dynamics of the system we look
at. Besides, the fundamental postulates of quantum me-
chanics, as well as general relativity, do not presume the
laws of thermodynamics in the first place. After review-
ing these classic works and appreciating how powerful
and how universal the second law is, we discuss some of
the recent progress concerning the intriguing interplay
between information and thermodynamics from the
viewpoint of quantum-information theory.

II. MAXWELL’S DEMON
A. The paradox

A character who has played an important role in the
history of physics, particularly in thermodynamics and
information, is Maxwell’s demon. It was first introduced
by Maxwell in 1871 (Maxwell, 1911) to discuss the “limi-
tations of the second law of thermodynamics,” which is
also the title of a section in his book. The second law (in
Clausius’s version) states (Pippard, 1957): “It is impos-
sible to devise an engine which, working in a cycle, shall
produce no effect other than the transfer of heat from a
colder to a hotter body.” Maxwell devised his demon in
a thought experiment to demonstrate that the second
law is only a statistical principle that holds almost all the
time, and not an absolute law set in stone.

The demon is usually described as an imaginary tiny
being that operates a tiny door on a partition which
separates a box into two parts of equal volumes, the left
and the right. The box contains a gas which is initially in
thermal equilibrium, i.e., its temperature 7 is uniform
over the whole volume of the box. Let {(v); denote the
average speed of molecules that form the gas. The de-
mon observes the molecules in the left side of the box,
and if he sees one approaching the door with a speed
less than (v);, then he opens the door and lets the mol-
ecule go into the right side of the box. He also observes
the molecules in the right, and if he sees one approach-
ing with a speed greater than (v)7, then he opens the
door to let it move into the left side of the box.

Once he has induced a small difference in tempera-
tures between the right and the left, his action continues
to transfer heat from the colder part (right) to the hotter
part (left) without exerting any work, thus he is breaking
Clausius’s form of the second law. This type of demon is
referred to as the temperature demon.

There is another type of Maxwell’s demon, who is
“less intelligent” than the temperature demon. Such a
demon merely allows all molecules moving in one direc-
tion to go through, while stopping all those moving the
other way to produce a difference in pressure. This pres-
sure demon runs a cycle by making the gas interact with
a heat bath at a constant temperature after generating a
pressure inequality. The sole net effect of this cycle is the
conversion of heat transferred from the heat bath to
work. This is also a plain violation of the second law,
which rules out perpetuum mobile (in Kelvin’s form): “It
is impossible to devise an engine which, working in a
cycle, shall produce no effect other than the extraction
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of heat from a reservoir and the performance of an
equal amount of mechanical work.”

The second law can also be phrased as “in any cyclic
process the total entropy of the physical systems in-
volved in the process will either increase or remain the
same.” Entropy is, in thermodynamics, a state variable S
whose change is defined as dS=6Q/T for a reversible
process at temperature 7, where 6Q is the heat ab-
sorbed. Thus, irrespective of the type of demon, tem-
perature or pressure, what he attempts to do is to de-
crease the entropy of the whole system for the cyclic
process.

Historically, a number of physical mechanisms that
might emulate the demon without any intelligent beings
have also been proposed. One notable example should
be the trap-door model by Smoluchowski (v. Smolu-
chowski, 1912). Instead of an intelligent demon operat-
ing the door, he considered a door that is attached to the
partition by a spring so that it only opens to one side, the
left, say. Then fast moving molecules in the right side
can go into the left side by pushing the door, but slow
ones are simply reflected as the door is shut tightly
enough for them and no molecules can go into the right
from the left. After a while, the temperature (as well as
the density) of the left side should become higher and
the right side lower. Useful work would be extracted
from this spontaneously generated temperature differ-
ence. Smoluchowski pointed out that what prevents the
trap-door mechanism from achieving the demonic work
are thermal fluctuations, i.e., Brownian motion, of the
door. The door might be kicked sometimes to let a fast
molecule in; however, the thermal fluctuations will lift
the door up and let molecules go back to the right side,
resulting in no net temperature difference. This scenario
was numerically analyzed in detail by Skordos and
Zurek (1992) to confirm the above reasoning. While
there have been many other similar mechanisms pro-
posed, a more sophisticated model was discussed by
Feynman as the ratchet-and-pawl machine (Feynman et
al., 1965), which, again, does not work as a perpetual
engine due to the thermal fluctuations.

The demon puzzle, which had been a cardinal ques-
tion in the theory of thermodynamics, is now why a de-
mon can never operate beyond the apparently funda-
mental limits imposed by the second law, no matter how
intelligent he is and no matter what type (temperature
or pressure) he is. An ingenious idea by Szilard treated
the demon’s intelligence as information and linked it
with physics.

B. Szilard’s engine

In 1929, the Hungarian scientist Leo Szilard presented
a classical (nonquantum) analysis of Maxwell’s demon
(pressure demon), formulating an idealized heat engine
with one-molecule gas (Szilard, 1929). Szilard’s work was
epoch making in the sense that he explicitly pointed
out, for the first time, the significance of information in
physics.
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FIG. 1. (Color online) Schematic diagram of Szilard’s heat en-
gine. A chamber of volume V contains a one-molecule gas,
which can be found in either the right or the left part of the
box. (a) Initially, the position of the molecule is unknown. (b)
Maxwell’s demon inserts a partition at the center and observes
the molecule to determine whether it is in the right- or the
left-hand side of the partition. He records this information in
his memory. (c¢) Depending on the outcome of the measure-
ment (which is recorded in his memory), the demon connects a
load to the partition. If the molecule is in the right part as
shown, he connects the load to the right-hand side of the par-
tition. (d) The isothermal expansion of the gas does work upon
the load, whose amount is k7 In 2 which we call 1 bit. Adapted
from Fig. 4 in Plenio and Vitelli, 2001.

The process employed by Szilard’s engine is schemati-
cally depicted in Fig. 1. A chamber of volume V contains
a gas, which consists of a single molecule [Fig. 1(a)]. As
a first step of the process, a thin, massless, adiabatic par-
tition is inserted into the chamber quickly to divide it
into two parts of equal volumes. The demon measures
the position of the molecule, either in the right or in the
left side of the partition [Fig. 1(b)]. The demon records
this result of the measurement for the next step. Then,
he connects a load of a certain mass to the partition on
the side where the molecule is supposed to be in, accord-
ing to his recorded result of the previous measurement
[Fig. 1(c)]. Keeping the chamber at a constant tempera-
ture T by a heat bath, the demon can let the gas do some
work W by quasistatic isothermal expansion (the parti-
tion now works as a piston). The gas returns to its initial
state, where it now occupies the whole volume V, when
the partition reaches the end of the chamber. During the
expansion, heat Q is extracted from the heat bath and
thus W=Q as it is an isothermal process. Hence Szilard’s
engine completes a cycle after extracting heat Q and
converting it to an equal amount of mechanical work.

As the gas is expanded isothermally,1 the amount of
extracted work W is kT[},,V'dV=kTIn 2. An immedi-
ate question here might be if it is appropriate to assume
the one-molecule gas as a normal ideal gas in discussing

The load should be varied continuously to match the pres-
sure so that the expansion is a quasistatic and reversible pro-
cess, and this enables the pressure to be p=kT/V.
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thermodynamic and statistical properties. To fill this
conceptual gap, we consider an ensemble of one-
molecule gases. Then, by taking averages over the en-
semble, we calculate various quantities as if it is an ideal
gas with a large number of molecules. In a sense, this
can been seen as the origin of the intersection between
thermodynamics and information theory: looking at the
(binary) position of the molecule leads to its “dual” in-
terpretations, i.e., in terms of thermodynamics and infor-
mation theory.

Naturally, the factor k7 In 2 appears often in the fol-
lowing discussions on thermodynamic work, so we take
it as a unit and call it “1 bit” when there is no risk of
confusion.” This will be especially useful when we coor-
dinate discussions of the information theoretic “bit”
with the thermodynamic work.

The demon apparently violates the second law. As a
result of the perfect conversion of heat Q into work W,
the entropy of the heat bath has been reduced by Q/T
=W/T=k In 2. According to the second law, there must
be an entropy increase of at least the same amount
somewhere to compensate this apparent decrease. Sz-
ilard attributed the source of the entropy increase to
measurement. He wrote “The amount of entropy gener-
ated by the measurement may, of course, always be
greater than this fundamental amount, but not smaller”
(Szilard, 1929). He referred to k In 2 of entropy as a fun-
damental amount well before Shannon founded infor-
mation theory in 1948 (Shannon, 1948; Shannon and
Weaver, 1949). Although he regarded the demon’s
memory as an important element in analyzing his one-
molecule engine, Szilard did not reveal the specific role
of the memory in terms of the second law. Nevertheless,
his work is very important, as it was the first to identify
the explicit connection between information and
physics.

C. Temporary solutions to the paradox

As Szilard did, many generations believed for decades
that the paradox of Maxwell’s demon could be solved by
attributing the entropy increase to measurement. Note-
worthy examples include those by Brillouin (1951) and
Gabor (1961). They considered light to measure the
speed of the molecules and (mistakenly) assumed this to
be the most general measurement setting. Inspired by
the work of Demers (1944), who recognized in the 1940s
that a high temperature lamp is necessary to illuminate
the molecules so that the scattered light can be easily
distinguished from blackbody radiation, Brillouin
showed that information acquisition via light signals is
necessarily accompanied by an entropy increase, which
is sufficient to save the second law (Brillouin, 1951). In-
terestingly, in his speculation, Brillouin linked the ther-
modynamic and the information entropies directly. In-
formation entropy is a key function in the mathematical

sz including the temperature 7, we hereafter use the same
unit bit for both entropy and thermodynamical work.
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theory of information, which was founded by Shannon
only a few years before Brillouin’s work, and although
its logical origin is very different from thermodynamics,
Brillouin dealt with two entropies on the same footing
by putting them in the same equation to link the gain of
information with the decrease of physical entropy. This
led to the idea of negentropy, Wthh is a quantity that
behaves oppositely to the entropy (Schrodinger, 1944;
Brillouin, 2004). The negentropy is usually defined as
the difference between the maximum possible entropy
of a system under a given condition and the entropy it
actually has, i.e., N:=S,x—S.

Brillouin distinguished two kinds of information, free
and bound. Free information /;is an abstract and math-
ematical quantity, but not physical. Bound information
I, is the amount of information that can be acquired by
measurement on a given physical system. Thus, roughly
speaking, free information is equivalent to (abstract)
knowledge in our mind and bound information corre-
sponds to the information we can get about a physical
system, which encodes the information to be sent or
stored. Bound information is then subject to environ-
mental perturbations during the transmission. When the
information carrier is processed at the end of the chan-
nel, it is transformed into free information. In Brillouin’s
hypothesis, the gain in bound information by measure-
ment is linked to changes in entropy in the physical sys-
tem as

Alb — Ipost—meas _
b

Jpre-meas
b

= k(h’l Ppre—meas —In Ppost—meas)

= Spre-meas - Spost-meas >0, 1)

where Ppremeas a0d Ppogimeas denote the numbers of pos-
sible states of the physical system before and after the
measurement, and s1m11ar1y Spre-meas ANA Sposimeas AT€
the entropies of the system The conversion coefficient
between physical entropy and bound information is cho-
sen to be Boltzmann’s constant to make the two quanti-
ties comparable in the same units. Equation (1) means
that gaining bound information decreases the physical
entropy. This corresponds to the process (a) to (b) in Fig.
1.

As bound information is treated with the physical en-
tropy of the system on the same basis, the second law
needs to be expressed with bound information as well as
the physical entropy. If no information on the physical
system is available initially, that is, if /""'=0, the final
entropy of the system after obtaining (bound) informa-
tion [, is Sy=S;—1I;,. The second law of thermodynamics
says that in an isolated system the physical entropy does

>The idea of negative entropy itself was introduced by
Schrodinger to discuss living systems that keep throwing en-
tropy away to the environment. It was renamed as negentropy
by Brillouin, who associated it with information.

Equal probabilities for Ppre.meas (0T Pposi-meas) POSsible states
are assumed.
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not decrease:’ ASy=0. Using the change in negentropy
AN:=-AS, the second law may now be written as

ASfZ A(Sl'—lb) = ASt - Alb = - ANl'— Alb = 0,
which means
A(N;+1,) <0. (2)

Naturally, if there is no change in the information avail-
able to us, that is, Al,=0, Eq. (2) is nothing but the
standard inequality for entropy, AS=0. However, in Eq.
(2), information is treated as part of the total entropy,
and it states that the quantity (negentropy
+information) never increases. This is a new interpreta-
tion of the second law of thermodynamics, implied by
Brillouin’s hypothesis.

Following Brillouin’s hypothesis, Lindblad compared
the entropy decrease in the system with the information
gain an observer can acquire (Lindblad, 1974). He ana-
lyzed measurements of thermodynamic quantities in a
fluctuating system and showed that the information gain
by the observer is greater than or equal to the entropy
reduction in the system. Hence the total entropy never
decreases, as expected.

Brillouin’s idea of dealing with information and physi-
cal entropy on an equal basis has been widely accepted.
All discussions below about the physical treatment of
information processing tacitly assume this interpreta-
tion, which presupposes the duality of entropy, i.e., both
information theoretic and thermodynamic aspects.

III. EXORCISM OF MAXWELL’S DEMON: ERASURE
OF CLASSICAL INFORMATION ENCODED
IN CLASSICAL STATES

Although the exorcism of Maxwell’s demon by attrib-
uting an entropy increase to the acquisition of informa-
tion had been widely accepted by physicists for more
than a decade, the demon turned out to have survived
until Landauer and Bennett put an end to the demon’s
life by reconsidering the role of “memory,” which
Szilard barely overlooked. Landauer examined the pro-
cess of erasure of information, introducing a new con-
cept of “logical irreversibility” (Landauer, 1961).

Indeed, Penrose independently discovered essentially
the same result about information erasure as Landauer.
Penrose argued, in his book published in 1970, Founda-
tions of Statistical Mechanics, that the paradox of Max-
well’s demon could be solved by considering the entropy
increase due to memory erasure. This was even earlier
than Bennett’s 1982 analysis of the demon; however, it
was left virtually unnoticed by physicists. Penrose’s
treatment was rather abstract and it did not go as far as

SAlthough, at first sight, taking AS:=S,-S§; seems more natu-
ral to express the second law, the subscripts only represent the
state either before or after a measurement that provides us
with information on the system (bound information), not a
physical time evolution. Therefore the change in entropy due
to physical evolution should be written as ASy.
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Bennett’s work, which investigated the possibility of
measurement with arbitrarily little entropy increase.
Here we focus on the viewpoint by Landauer and Ben-
nett.

Since information processing must be carried out by a
certain physical system, there should be a one-to-one
correspondence between logical and physical states.
Logical states may be described as an abstract set of
variables on which some information processing can be
performed. Then, a reversible logical process, which
means an injective (one-to-one) mapping for logical
states, corresponds to a reversible physical process. By
implicitly assuming a correspondence between logical
and physical entropies, as Brillouin proposed, this im-
plies that a reversible logical process can be realized
physically by an isentropic process, i.e., an entropy-
preserving process.

However, a logically irreversible process is noninjec-
tive, i.e., many-to-one mapping. Such a process does not
have a unique inverse, as there may be many possible
original states for a single resulting state. The key here is
that memory erasure is a logically irreversible process
because many possible states of memory should be set to
a single fixed state after an erasing procedure. It is im-
possible to determine the state prior to erasure without
the aid of further information, such as the particular task
of a computer program or knowledge about the states of
other memory registers that are correlated to the
memory in question. This certain fixed state after era-
sure is analogous to a “white” or “blank” sheet of paper,
on which no information is recorded. After erasing
stored information, the state of memory should be in
one specific state, in order not to carry any information
(by definition of erasure). We refer to the specific state
after erasure as a standard state.

In terms of physical states, a logically irreversible pro-
cess reduces the degrees of freedom of the system,
which implies a decrease in entropy. In order for this
process to be physically legitimate, the energy must be
dissipated into the environment. Landauer then per-
ceived that logical irreversibility must involve dissipa-
tion, hence erasing information in memory entails en-
tropy increase (in the environment). This point will be
the final sword to exorcize Maxwell’s demon and is re-
ferred to as Landauer’s erasure principle.

Another important observation regarding the physics
of information was given by Bennett (1982). He illus-
trated that measurement can be carried out reversibly,
i.e., without any change in entropy, provided the mea-
suring apparatus is initially in a standard state, so that
recording information in the memory does not involve
the erasure of information previously stored in the same
memory. The reason for this is that measurement can be
regarded as a process that correlates the memory with
the system (in other words, a process that copies the
memory state to another system in a standard state),
which can be achieved reversibly, at least in principle.

Bennett exemplified the reversible correlating process
by a one-bit memory consisting of an ellipsoidal piece of
ferromagnetic material. The ferromagnetic piece is small
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FIG. 2. Potential energy for a binary memory whose state is
represented by the direction of the magnetization. When there
is no external transverse magnetic field the memory is stable in
one of the potential wells, which correspond to “0” and “1” of
recorded information. The transverse field lowers the height of
the barrier at the center. At a certain point, the profile of the
potential becomes bathtublike in shape with a flat bottom,
where the direction of the magnetization is sensitive to the
longitudinal field component. Adapted from Bennett, 1982.

enough so that it consists of only a single domain of
magnetization. The direction of the magnetization rep-
resents the state of the memory. Suppose that there is a
double well potential with respect to the direction of the
magnetization in the absence of an external field: Paral-
lel and antiparallel to the major axis of the ellipsoid are
the most stable directions. The central peak between the
two wells is considerably higher than kT in the absence
of an external magnetic field, so that thermal fluctua-
tions do not allow the state to climb over the peak. Fig-
ure 2 shows a sketch of the potential as illustrated by
Bennett (1982).

Two minima of the potential represent the state of
memory, either “0” or “1,” and the blank memory is
assumed to be in one standard state, e.g., 0, before in-
formation is copied onto it from another memory. We
consider the process that correlates the state of a blank
memory B with that of a memory A, which is the subject
of measurement. This can be achieved by manipulating
the shape of the potential for the blank memory as fol-
lows. By applying a transverse external magnetic field
the peak of the central barrier becomes lower. At a cer-
tain intensity of the field, there will be only a single
bathtublike flat bottom, i.e., the state of B becomes very
sensitive to a weak longitudinal component of the field.
The memory A is located so that its magnetization can
cause a faint longitudinal field at the position of the
memory B. Then because of B’s sensitivity to such a
field, the state of A can be copied to the memory B with
arbitrarily small (but nonzero) energy consumption. Re-
moving the transverse field completes the correlating
process. The crux of the physics here is that this process
can be reversed using the perturbation from another ref-
erence memory, which is in the standard state.

Now we focus on the erasure of information. Since
measurement can be done virtually without energy con-
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"L" state "R" state

(a)

(b)

"L" state

"L" state

FIG. 3. (Color online) Thermodynamic process to erase infor-
mation. Binary information is stored in a vessel as the position
of the molecule, either L or R. A common procedure for both
initial states, i.e., removing the partition and halving the whole
volume by an isothermal compression towards the standard
state L, completes the erasure. Adapted from Fig. 3 in Plenio
and Vitelli, 2001.

sumption, it is the dissipation due to the erasure process
that compensates the entropy decrease induced by Max-
well’s demon in Szilard’s model. The physical system for
the demon’s memory can be modeled as a one-molecule
gas in a chamber of volume V, which is divided into two
parts, the left L. and the right R, by a partition. The
demon memorizes the measurement result by setting the
position of the molecule in this box. If the molecule in
Szilard’s engine may be found in the left and right sides
with equal probability, i.e., 1/2, then the minimum
amount of work that needs to be invested and dissipated
into the environment is k7 In 2.

The actual process is as follows. The molecule is in
either L or R, depending on the information it stores
[Fig. 3(a)]. To erase the stored information, first, we re-
move the partition dividing the vessel at the center [Fig.
3(b)]. Second, insert a piston at the right end [Fig. 3(c)],
when the standard memory state is L, and push it to-
wards the left isothermally at temperature 7" until the
compressed volume becomes V/2 [Fig. 3(d)]. The result-
ing state is L for both initial states and the information is
erased. It is worth noting that the erasing process should
not depend on the initial state of the memory. The R
state in Fig. 3(a) may be transferred to the L state by
moving the region of volume V/2 to the left. However,
in this case, the operator of the piston needs to observe
the position of the molecule and this action requires an-
other memory. Thus the erasure process should be inde-
pendent of the initial memory state. The work invested
to compress the volume from V to V/2 is W e
=kTIn?2 and this is dissipated as heat into the environ-
ment, increasing its entropy by kIn 2, as Landauer ar-
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FIG. 4. (Color online) Erasure process for an unbalanced
probability distribution. The only difference from the case of
balanced distribution (Fig. 3) is the expansion from (a) to (a’),
which gives us H(p) bits of work.

gued. As there is no wasted work (in the sense that all
invested work is converted into heat to increase the en-
tropy of the environment), k7' In2 is the minimum
amount of work to be consumed for erasure.

If there is a biased tendency in the frequency of ap-
pearance of a particular memory state, say L, how much
would the erasure work be? The answer is simple: the
erasure work is proportional to the amount of informa-
tion stored, thus W are=kT In2H(p), where p is the
probability for the molecule to be in the L state and

H(p)=-plogp—(1-p)log(l-p) (3)

is the (binary) Shannon entropy. Throughout this paper,
log denotes logarithms of base 2. The reason can be ex-
plained by a process depicted in Fig. 4. The unbalanced
tendency between L and R is expressed by the numbers
of molecules in the L and R regions. As we consider
only an ideal gas (with no interactions between mol-
ecules), this scenario does not change the discussion at
all if we average the erasure work at the end. Since re-
moving the partition at the beginning allows the gas an
undesired irreversible adiabatic expansion or compres-
sion, we first let the gases in both parts expand or con-
tract isothermally by making the partition movable with-
out friction [Fig. 4(a) to 4(a’)]. During this process, the
gases exert work towards the outside. Letting p;, pg,
and V; denote the pressure in the left region, that in the
right region, and the volume of the region on the left of
the partition, respectively, we can write the work done
by gases as

pV

(pL-prRAV,
v

W=
pV 1-—

:Nka (i— P )dVL

Vi2 VL V_VL

=NkT[In2+pInp+(1-p)in(1l-p)]
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=NkTIn2[1-H(p)]. (4)

Since the pressures in the left and the right are equal,
this is the same situation as in Fig. 3(a). Hence at least
NkTIn2 of work needs to be consumed to set the
memory to the standard state [Figs. 4(c) and 4(d)]. As a
whole, we invested W que=kTIn2-W'=kT In2H(p)
of work per molecule.

Maxwell’s demon is now exorcized. The entropy de-
crease, or the equivalent work the demon could give us,
should be completely consumed to make his memory
state come back to its initial state. The state of the whole
system, consisting of the heat engine and the demon, is
restored after completing a thermodynamic cycle, with-
out violating the second law.

IV. OTHER “DERIVATIONS” OF THE ERASURE
ENTROPY

Although we have focused on the one-molecule gas
model so far, Landauer’s erasure principle holds regard-
less of specific physical models. In order to see its gen-
erality with some concrete examples, we now review
work by Shizume (1995) and Piechocinska (2000).

Shizume used a model of memory whose state was
represented by a particle having Brownian motion in a
time-dependent double well potential. Assuming the
random force Fy(t) to be white and Gaussian satisfying
(Fr(t))Fgr(ty))=2myT¥&(t,—t,), the motion of the distribu-
tion function f(x,u,t) of the particle in the position (x)
and velocity (1) space can be described by the Fokker-

Planck equation. Shizume then compared Q and
TdS/dt, i.e., the ensemble average of the energy given to
the particle from the environment per unit time, and the
change in the entropy of the whole system per unit time
multiplied by the temperature. The entropy S is the
Shannon entropy of continuous distribution, defined by

Si=— kf dxduf(x,u,t)In f(x,u,t). (5)
With the help of the Fokker-Planck equation concerning
flx,u,1), one arrives at

o
from which we obtain the lower bound of the energy
dissipated into the environment between times ¢; and #;
as

AQoultunty) = f " Qi = TLS() - S(1)). )

Equation (7) gives us the lower bound of the heat
generation due to the process that erases H(p) bits of
information. As we expect, the lower bound is equal to
kT1In2H(p). Clearly, this derivation does not use the
second law.

It is clear in Shizume’s derivation that the entropy in-
crease due to the erasure is independent of the second
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law. Hence it is immune to a common criticism against
the erasure principle that it is trivially the same as the
second law because the second law is used in its deriva-
tion. However, the above description assumes only a
specific physical model, and thus a more general model
might be desirable. This was done by Piechocinska, who
analyzed the information erasure in a quantum setting
as well as in classical settings (Piechocinska, 2000).

The key idea in her results is to make use of a quan-
tity I', which was introduced by Jarzynski in the context
of nonequilibrium thermodynamic processes (Jarzynski,
1999). In a classical setting, I' is defined by

[(,¢7) = = In[pix",p")] + In[p;(x",p°)]
+ BAE(XT.p1X7.P 7). (8)

where {=(x,p,X7,p7) is a set of positions and momenta
of the degrees of freedom that describe the (memory)
system and the heat bath (7), respectively. The super-
scripts 0 and 7 are the initial and final times of the era-
sure process. p; and p; are the distribution functions of
the particle representing the “bit” in a double well po-
tential, and are assumed to be in the canonical distribu-
tion: erasing information is expressed by the form of p;
so that it takes nonzero values only in one of the two
regions, i.e., either of those for 0 and 1, which corre-
sponds to the L state in Fig. 3. AE is the change in the
internal energy of the heat bath and 8= (k7).

The entropy increase due to erasure can be obtained
by first calculating the statistical average over all pos-
sible trajectories . We then have (¢”")=1, which in turn
implies —(I')<0 by the convexity of the exponential
function. Substituting the expressions for p; and py (the
canonical distributions) into I" leads to an inequality

In2 < B(AE). 9)

As AE is the change in the internal energy of the heat
bath, it includes the heat dissipated into the bath as well.
Thus the conservation of energy can be written as W
=AE+AEem, Where W is the work done on the system
and the heat bath, and AE .y, is the change in the in-
ternal energy of the system. Due to the symmetry of p;
and py, AEem vanishes when averaged over, therefore
we now have

kTIn2 < (W), (10)

which is equivalent to Landauer’s erasure principle.
Piechocinska applied a similar argument to the quan-
tum case, i.e., the erasure of classical information stored
in quantum states. The state of the bit can be reset after
some interaction with the heat bath, which is initially in
thermal equilibrium. By assuming that the bath deco-
heres into one of its energy eigenstates due to the inter-
action with an external environment, which may be
much larger than the bath, we can deal with the heat
dissipation (into the bath) quantitatively. Then the mini-
mum work consumption can be found to be k7 In 2 after
computing a quantity corresponding to I' in Eq. (8). A
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FIG. 5. (Color online) The one-molecule heat engine consid-
ered by Gabor to show that the light needs to behave like a
wave. When the molecule comes into the illuminated region, a
piston is automatically inserted and the “gas” expands isother-
mally to extract work from the heat bath. This process could in
principle be repeated infinitely, converting an infinite amount

of heat into mechanical work, if the light had only a particle-
like nature. Adapted from Fig. 7 in Gabor, 1961.

related, but more general, argument in a similar spirit
has been also presented by Kawai et al. (2007).

V. SOME IMPLICATIONS OF THE SECOND LAW
A. Wave nature of light from the second law

We make a detour to another interesting and well-
elaborated implication of the second law, which was ar-
gued by Gabor. He studied Brillouin’s analysis of Max-
well’s demon about detecting a molecule by light signals
further (Gabor, 1961). Gabor considered a one-molecule
heat engine, a part of which is illuminated by an incan-
descent light to detect the molecule wandering into this
region (Fig. 5). The detection of the molecule can be
done by photosensitive elements that are placed around
the light path, so that any scattered weak light will hit
one (or more) of them. As soon as the molecule is found
by detecting the scattered light, a piston is inserted at
the edge of the illuminated region. Then by isothermal
expansion the gas exerts mechanical work. The same
process is repeated when the molecule wanders into the
illuminated region again. This is a perpetuum mobile of
the second kind, as it continues to convert heat from a
heat bath to mechanical work. Gabor found that the sec-
ond law is vulnerable if the light intensity can be con-
centrated in a well-defined region and made arbitrarily
large compared with the background blackbody radia-
tion. He then deduced that this is impossible because
light behaves both as waves and as a flux of particles. In
other words, according to Gabor’s argument, the second
law implies the wave nature of light. This is an interest-
ing implication of the second law in its own right, as
there seems to be no direct link between thermodynam-
ics and the nature of light.
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However, we now know that this interpretation is
wrong. Even if the light behaves like particles, Gabor’s
engine does not violate the second law. The solution to
this apparent paradox is also the erasure principle.

By detecting the molecule and extracting work subse-
quently, the whole system stores H(p) bits of informa-
tion, where p is the probability of finding the molecule in
the illuminated region. We assume for simplicity that the
sampling frequency is low enough, compared with the
time duration necessary for the molecule to travel
through the illuminated region.6 Then p can also be in-
terpreted as the ratio between the volume of the illumi-
nated region and the whole volume of the chamber. This
information concerns the occurrence of the work extrac-
tion and is stored in the mechanism that resets the posi-
tion of the piston after the extraction. The piston forgets
the previous action, but the resetting mechanism does
not. Thus the whole process is not totally cyclic, though
it should be so to work as a perpetuum mobile. Because
Gabor’s engine is activated with probability p, the en-
gine stores H(p) bits on average. While kT In 2H(p) bits
of work are needed to erase this information to make
the whole process cyclic, we gain only —k7pInp of
work, which is smaller than the erasure work, from this
process, hence there is no violation of the second law.

B. Gibbs paradox and quantum superposition principle

Suppose a gas chamber of volume V that is divided
into two half regions by a removable partition. Each half
region is filled with a dilute ideal gas at the same pres-
sure P. We now consider the entropy increase that oc-
curs when we let gases expand into the whole volume V
by removing the partition. If the gas in one region (e.g.,
the left side) is different from the gas in the other (the
right side), then the entropy increase due to the mixing
is kN In 2, where N is the total number of molecules in
the chamber. On the other hand, if the gases in two re-
gions are identical, no thermodynamic change occurs
and thus the entropy is kept constant. This discontinu-
ous gap of the entropy increase with respect to the simi-
larity of two gases is called the “Gibbs paradox.” Landé
dealt with this problem and “derived” the wave nature
of the physical state as well as the superposition prin-
ciple of quantum mechanics (Landé, 1952). This is not
only an interesting work in the sense that it attempted to
link thermodynamics and quantum mechanics, but is
useful to introduce the idea of semipermeable mem-
branes that we use as a tool in later sections. Although
there are a number of papers on the Gibbs paradox
other than Landé’s, discussing these here is out of the
scope of this Colloquium. Interested readers may refer
to, for example, Lyuboshitz and Podgoretskii (1970);

6Otherwise, the molecule can always be detected near the
edge of the illuminated region. This region can then be made
as thin as the size of the molecule to maximize the work-
extracting efficiency.
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Jaynes (1992); Levitin (1993); Allahverdyan and Nieu-
wenhuizen (2006).

For convenience of the following discussion, we use
the extractable work, i.e., the Helmholtz free energy, as
it is equal to the entropy change (times temperature) in
isothermal processes. The semipermeable membranes
we introduce here are a sort of filter that distinguishes
the property of gases, i.e., the nature of molecules, and
lets one (or more) particular property of gas go through
it. In other words, a semipermeable membrane is trans-
parent to one type of gas, but totally opaque to other
types of gases: Each membrane can thus be character-
ized with the property of the gas it lets go through.
These are essentially the same as what von Neumann
considered in his discussion to define the entropy of a
quantum state, or von Neumann entropy, and they were
scrutinized by Peres and were shown to be legitimate
quantum mechanically (Peres, 1990, 1993). In Landé’s
argument, however, quantum mechanics is not assumed
from the outset.

Landé postulated the continuity of the entropy change
in reality. To bridge the gap between the “same” and
“different” gases, he introduced a fractional likeness,
which is quantified as g(A;,B;), between two states A,
and B;. Here A (or B) represents a certain “property” or
“observable” and the indices are values of A (B) with
which we can distinguish them completely. For simplic-
ity, we assume all observables can take only discrete val-
ues when measured. Two states are completely different
when ¢=0 and they are identical when g=1, and differ-
ent values of the same property are perfectly distin-
guishable by some physical means, thus g(A;,A;)=3J;.
Now suppose that a semipermeable membrane that is
opaque to A; but transparent to A; (j#i), to which we
refer to as the membrane M, , is placed in a gas whose
property is B;. Then the membrane will reflect a fraction
q=q(A;,By) of the gas and pass the remaining fraction
1-g¢ as a result of the fractional likeness between A; and
B/. Another consequence of the membrane is that the
molecules that are reflected by M A need to change their
property from B, to A; and 51m11ar1y the other molecules
become A; with probablhty q(AI,Bk), in order not to
change the state of molecules by a subsequent applica-
tion of another M,. In what follows, we identify the

"yon Neumann defined the entropy S of a quantum state p by
a simple thermodynamic consideration (von Neumann, 1955).
Suppose a vessel is filled with an ideal gas, every molecule of
which is in the state p. One now decomposes the gas into the
set of gas components, each of which is in a pure state |#;),
with the semipermeable membranes. The entropy S(p) is de-
fined (up to a constant factor) as the minimal thermodynamic
entropy increase in the environment that is necessary to trans-
form the initial state to the final state, where every molecule is
in the same pure state and is distributed uniformly over the
whole vessel. The zero entropy for any pure state is postulated.

8This means that the membrane M A performs a measure-
ment about the property A just before the molecule hits it and
the molecule’s postmeasurement property will become A; with
probability (A}, B).
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FIG. 6. (Color online) Possible configuration to confirm the
continuity of the extractable work. The left- (right-) hand side
of a chamber is filled with an A (B;) gas. Two membranes that
distinguish A; and A, are used to extract work. The membrane
on the left lets the A gas pass through it freely, but reflects the
A, gas completely. The other membrane works in the opposite
manner. Since the B, gas changes its state into A; with prob-
ability ¢ when measured by the membrane, the right mem-
brane does not reach the right end of the chamber by a (qua-
sistatic) isothermal expansion.

term “property” with “state,” although it still does not
necessarily mean a quantum state.

This solution to the Gibbs paradox—the introduction
of fractional likeness between states—Ileads, according
to Landé, to the wave-function-like description of state.
A rough sketch of his idea is as follows. First, we write
down the transition probabilities between different
states in a matrix form

q(A,By) q(A1,By)
q(A2,By) q(A3,By) - |. (11)

Naturally, the sum of each row or column is always unity
because a state must take one of the possible values in
any measured property. Similar matrices should be ob-
tained for q(B,C), q(A,C), etc., and we expect a math-
ematical relation between these matrices, for instance,
such as q(A;,C)=29(A;,B;)q(B;,Cy). A consistent
mathematical expression can be obtained by considering
a matrix (A,B) whose (i,j)th elements are given as
Vq(A;,B ,-)ei‘P with arbitrary phase ¢, i.e., a matrix whose
rows and columns can be regarded as a vector of unit
norm, thus ¢ for different pairs of properties are
connected with an orthogonal (unitary) transformation.
The arbitrariness for the phase is restricted by the con-
dition w(Al,A) 2 A, Bi) By, Aj)= Identifying
WA;,B; )=vge*with a complex probablhty amplitude
for the transition from B; to A; induced by the mem-
branes, we see a superposition rule  (A;,Cy)
=2 A;,B)¥B;,Ci). Then Landé claims that “the in-
troduction of complex probability amplitudes ¢ subject
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FIG. 7. (Color online) The work-extracting process with semi-
permeable membranes. In the initial state (a), the vessel is di-
vided into two parts by an impenetrable opaque partition. The
left side of the vessel, whose volume is pV, is occupied by the
|T) gas, and the right side is filled with ||) gas. By replacing the
partition with two semipermeable membranes M; and M| we
can extract H(p{)=-p; log p;—p, log p, bits of work by isother-
mal expansion. The membranes reach the end of the vessel in
the final state (b).

to the superposition rule is inseparably linked to the ad-
mission of fractional likenesses q.”

To confirm the continuity of the extractable work (or
the entropy increase) due to the mixing of two gases, we
look at a chamber, a half of which is filled with dilute gas
Ay and the other half with B as in Fig. 6. The number of
gas molecules is N/2 each. We also assume that both A
and B are a two-valued property. If we use two mem-
branes that distinguish the state A; and A,, the work by
gases will be smaller than NkT In 2 because a fraction of
B, becomes A; with a certain probability gq. The work
done by the gases is given as W=(NkT/2)[21n2
+¢In g—(1+¢q)In(1+¢q)] and W decreases smoothly from
NkT1n2 (when g=0, for perfectly distinct gases) to 0
(when g=1, identical gases), therefore no discontinuous
entropy change. Note that this choice of membranes is
not optimal to maximize the amount of extractable work
and we look at this process in more detail in Sec. VIL.B.

C. Quantum state discrimination and the second law

As seen in the previous section, in his attempt to solve
the Gibbs paradox Landé deduced that a thermody-
namic speculation in the form of the continuity principle
could lead to the partial likeness (or distinguishability)
of states as a result of the wave nature of particles. On
the other hand, starting from the distinguishability issue
of quantum states, Peres showed that if it was possible to
distinguish nonorthogonal quantum states perfectly then
the second law of thermodynamics would necessarily be
violated (Peres, 1990, 1993).

As a background, we consider an elementary work-
extraction process using a collection of pure orthogonal
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FIG. 8. (Color online) Thermodynamic cycle given by Peres to
show that distinguishing nonorthogonal quantum states leads
to a violation of the second law. The arrows indicate the direc-
tions of spin in the Bloch sphere. The use of hypothetical semi-
permeable membranes, which distinguish nonorthogonal states
[T) and |—) perfectly, in the step from (b) to (c) is the key to
violate the second law. Adapted from Fig. 9.2 in Peres, 1993.

states. As shown in Fig. 7, a chamber of volume V is
partitioned by a wall into two parts, one of which has a
volume p,V and the other has p,V, where p;+p,=1. The
vessel is filled with a gas of molecules whose (quantum)
internal degree of freedom is represented by a spin.
Here it suffices to consider a gas of spin-1/2 molecules,
e.g., a gas with spin up, i.e., |1), in the left region and a
spin down gas, ||), in the right.

Now we reintroduce semipermeable membranes M,
and M| that distinguish the two orthogonal spins |1) and
||). These are essentially the same as seen in Sec. V.B to
consider the “fractional likeness” of states. The mem-
brane M, is completely transparent to the ||) gas and
completely opaque to the |1) gas. The other membrane
M| has the opposite property.

Suppose that the partition separating two gases is re-
placed by the membranes, so that M, and M| face [1)
and ||), respectively, as in Fig. 7. Then, as in Sec. V.B,
gases give us some work, expanding isothermally by con-
tact with a heat bath of temperature 7. The total work
extractable can then be computed as W=-p,logp,
—pylog p,=H(p;), where H(p;)=—2,p;log p; is the Shan-
non entropy of a probability distribution {p;}.

We now look at Peres’s process. The physical system
considered is almost the same as the one in Fig. 7, how-
ever, we now have two nonorthogonal states. Although
gases consist of photons of different polarizations in the
original example by Peres, we consider spin-1/2 mol-
ecules to avoid the argument of the particle nature of
light. The volume of the chamber here is 2V, and in the
initial state the gas of volume V is divided into two equal
volumes V'/2 and separated by an impenetrable wall [see
Fig. 8(a)]. The gas molecules in the left side have a spin
up |1), and those in the right side have a spin |—)
=(|7)+|1))/\2. Both parts have the same number of
molecules, N/2, thus the same pressure. The first step is
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to let gases expand isothermally at temperature 7" so
that the entire chamber will now be occupied by them
[Fig. 8(b)]. During this expansion, gases exert 1 bit of
work (=NkTIn2) towards the outside, absorbing the
same amount of heat from the heat bath.

In the second step, we introduce fictitious “magic”
membranes that can distinguish nonorthogonal states.
We replace the partition at the center with these mem-
branes and insert an impenetrable piston at the right end
of the vessel. The membrane M {, which is transparent to
the |—) gas but opaque to |1) gas, is fixed at the center,
while the other one M’ , which has the opposite prop-
erty to M{, can move in the area on the left. Then the
piston is inserted at the right end and M’ is pushed
towards the left at the same speed so that the volume
and the pressure of the |—) gas in between the piston
and the membrane M’ will be kept constant [from Figs.
8(b) and 8(c)]. Because of the property of the mem-
branes, this step can be achieved without friction or re-
sistance, thus it needs no work consumption or heat
transfer.

The gas in the vessel in Fig. 8(c) is a mixture of two
spin states. The density matrix for this mixture is

1(3 1
p=%|T><T|+%|—>><—>|=Z<1 1) (12)

in the {|),/]|)} basis. The eigenvalues of p are (1
+12/2)/2=0.854 and (1-42/2)/2=0.146 with corre-
sponding eigenvectors | /')=cos §|0)+sin g|1) and |,")
=Cos(—3§)|0)+sin(—3§”)|1>, respectively.

Now we replace the magic membranes by ordinary
ones, which discriminate two orthogonal states | ) and
|/). The reverse process of (b) — (c) with these ordinary
membranes separates | ) and | ) to reach the state (d).
Then, after replacing the semipermeable membranes by
an impenetrable wall, we compress the gases on the left
and right parts isothermally until the total volume and
the pressure of the gases become equal to the initial
ones, i.e., those in state (a). This compression requires a
work investment of —(0.854log 0.854+0.146 log 0.146)
=0.600 bit, which is dissipated into the heat bath. In or-
der to return to the initial state (a) from (e), we rotate
the direction of spins so that the left half of the gas
becomes |1) and the right half becomes |—). More spe-
cifically, we insert an opaque wall to the vessel to halve
the volume V occupied by gases [the border between
regions labeled A and B in Fig. 8(¢)]. Rotations | /)—|1)
in the region A, | /)—|—) in B, and |)—|—) in C, and
a trivial spatial shift restore the initial state (a). As rota-
tions here are unitary transformations, thus an isentro-
pic process, any energy that has to be supplied can be
reversibly recaptured. Alternatively, we can put the sys-
tem in an environment such that these spin pure states
are degenerate energy eigenstates. Hence we do not
have to consider the work expenditure in principle when
the process is isentropic.

Throughout the process depicted above, and in Fig. 8,
the net work gained is 1-0.600=0.400 bits. Therefore
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Peres’s process can complete a cycle that can withdraw
heat from a heat bath and convert it into mechanical
work without leaving any other effect in the environ-
ment. This implies that the second law sets a barrier to
quantum state discrimination.

D. Linearity in quantum dynamics

Peres also showed that the second law should be vio-
lated if we admit nonlinear (time) evolution of the quan-
tum states (Peres, 1989). His proof is concise and is sum-
marized below.

Let the state p be a mixture of two pure states p
=p|d)X |+ (1-p)[)(yl, with 0<p<1. By rewriting one
of the state vectors, say |), as [p)=\fl¢)+\1—flp"),
where |¢') is a vector orthogonal to |¢) and f=|(¢| /|,
p can be written in a matrix form (in the two-
dimensional subspace that supports p) as

:< p+f-p) \'f(l—f)(l—p))
P\ pa-p a-pa-p )

The von Neumann entropy can be computed as S(p)
=—\, log\,—N_log \_, where \, are the eigenvalues of
p, i.e.,

No=5£[3-p(l-p)(1 -2 (14)

We can see dS/df<0 for all p. Therefore in order not to
make the entropy decrease in time, the change of f must
be nonpositive: [(p(1) | 4(1))> <[(¢(0)] (0))[.

Now let {|¢,)} be a complete orthogonal set spanning
the whole Hilbert space. Then, for any pure state |¢),
Sd{del?=1. Thus if there is some m for which
(@) | (1)))* <|{(0)| /0))|?, there must be some n for
which [{¢,(t)| ¢(0))>>[{(0)| 4(0))|?>, which means that
the entropy of a mixture of |¢,){¢,| and | (] will de-
crease in a closed system. Hence f=|(¢|#)|* needs to be
constant for any |¢) and |¢) to comply with the second
law. There are still two possibilities for the time evolu-
tion of states |(0))— |(t)) to keep f constant, namely,
unitary and antiunitary evolutions, according to Wig-
ner’s theorem (Wigner, 1959). Nevertheless, the latter
possibility can be excluded due to the continuity re-
quirement. Therefore the evolution of quantum states is
unitary, which is linear.

(13)

E. Second law and general relativity

The second law of thermodynamics gives an interest-
ing implication not only in quantum mechanics, but also
in the theory of gravity, through the impossibility of the
second kind of perpetuum mobile. This is illustrated by
Bondi’s thought experiment. Although an assumption in
the idea presented below seems quite infeasible, we con-
sider it because it is a nice heuristic introduction to dis-
cuss “real” physics later. Imagine a vertically placed con-
veyor belt that has a number of single-atom holders on it
as in Fig. 9. We assume that the atoms on the left side
are in an excited state and those on the right side are in
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FIG. 9. (Color online) Bondi’s thought experiment for a per-
petuum mobile. Excited atoms (on the right side and at the
bottom of the belt) emit a photon at the bottom of the belt to
lower its energy level. The emitted photon is reflected by the
curved mirrors placed so that it will be absorbed by an atom in
the lower energy level at the top of the belt.

a lower energy state. When an excited atom reaches the
bottom of the belt, it emits a photon, lowering its energy
level, and the emitted photon will be reflected by the
curved mirrors to be directed to the atom at the top of
the belt. Then this atom at the top will be excited, ab-
sorbing the photon.

Since energy is equivalent to mass, according to spe-
cial relativity, the atoms on the right side are always
heavier than those on the left as far as the emission and
absorption of photon work as described above. That is,
the gravitational force will keep the belt rotating for-
ever. In this scenario, however, there is another assump-
tion, which seems implausible, that atoms emit (absorb)
photons only at the bottom (top) of the belt. Such an
assumption makes this device unlikely to work. Never-
theless, Bondi’s perpetuum mobile is not compatible
with the physical laws for the following reason.

What prevents this machine from perpetual motion is
actually the distorted space time, i.e., a change of the
metric, which is seen as gravity by us. The theory of
general relativity says that the space is more stretched if
one goes farther from the “horizon”: the length of the
geodesic line is longer near the horizon for a given
length in the normal sense, which is defined as the cir-
cumference of the sphere around the massive object di-
vided by 2. Because light travels along a geodesic, sta-
tionary observers see that the wavelength becomes
longer when light leaves away from the object: the light
becomes redshifted.

An experiment to confirm this redshift was carried out
by Pound and Rebka (1960). They made use of the
Mossbauer effect of nuclear resonance, which can be
used to detect extremely small changes in frequency.
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Their results demonstrated that the photons do change
the frequency by a few parts of 10'° when they travel for
22.5 m vertically, which agreed with Einstein’s prediction
with a high accuracy [only 1% error in the end (Pound
and Snider, 1964)]. The existence of the gravitational
redshift directly rules out Bondi’s perpetuum mobile.

F. Einstein equation from thermodynamics

Einstein’s equation, which describes the effect of
energy-mass on the geometrical structure of the four-
dimensional space time, can be derived from a funda-
mental thermodynamic relation. In thermodynamics,
knowing the entropy of a system as a function of energy
and volume is enough to get the equation of state from
the fundamental relation 6Q=7TdS. Jacobson tried to
obtain the field equation as an equation of state, starting
from thermodynamic properties of black holes (Jacob-
son, 1995). It had been known by then that there was a
strong analogy between the laws of black hole mechan-
ics and thermodynamics (Bardeen et al., 1973). That is,
the horizon area of a black hole does not decrease with
time, just as the entropy in thermodynamics. Bekenstein
then argued that the black hole entropy should be pro-
portional to its horizon area after introducing the en-
tropy as a measure of information about the black hole
interior which is inaccessible to an exterior observer
(Bekenstein, 1973, 1974).

Bekenstein’s idea suggests that it is natural to regard
the (causal) horizon as a diathermic wall that prevents
an observer from obtaining information about the other
side of it. On the other hand, a uniformly accelerated
observer sees a blackbody radiation of temperature T
from vacuum (the Unruh effect) (Davies, 1975; Unruh,
1976). The origin of the Unruh effect lies in the quantum
fluctuation of the vacuum, which is also the origin of the
entropy of the horizon, i.e., the correlation between
both sides of the horizon. Thus, in order to start from
the above relation 6Q=7TdS, Jacobson associated 6Q
and T with the energy flow across the causal horizon and
the Unruh temperature seen by the observer inside the
horizon, respectively. Then, Einstein’s field equation can
be obtained by expressing the energy flow in terms of
the energy-momentum tensor 7, and the (horizon) area
variation in terms of the “expansion” of the horizon gen-
erators. Another essential element in the field equation,
the Ricci tensor R,,,, appears in the form of the expan-
sion through the Raychaudhuri equation [see, for ex-
ample, Poisson (2004)], which describes the rate of the
volume (area) change of an object in a Riemannian
manifold. The resulting equation is thus (by setting
c=1)

1 2
R,,— 5Rg;w+ Agu=—"T (15)
where # is the proportionality constant between the en-
tropy and horizon area, viz. dS=ndA, and R and A are
the scalar curvature and the cosmological constant.
Comparing with the standard expression of the equa-
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tion, in which the coefficient for 7, is 87G, we identify
n to be k/4hG=k/ 41% with the Planck length /p, which
agrees with the derivation of #» in Hawking (1974).

Einstein’s field equation can indeed be seen as a ther-
modynamic equation of state. An important assumption
for the above derivation is, however, the existence of a
local equilibrium condition, for which the relation 6Q
=TdS is valid. This means that it would not be appropri-
ate to quantize the field equation as it is not appropriate
to quantize the wave equation for sound propagation in
air. Further, Jacobson speculated that the Einstein equa-
tion might not describe the gravitational field with suffi-
ciently high frequency or large amplitude disturbances
because the local equilibrium conditions would break
down in such situations as in the case of sound waves.

Bekenstein’s conjecture about the black hole entropy
is now widely accepted as a real physical property, par-
ticularly after the discovery of the Hawking radiation
(Hawking, 1974) that showed that black holes do radiate
particles in a thermal distribution at finite temperature.
The thermodynamics of black holes is still an extensive
and active field, whose problems include the “black hole
information paradox.” Covering these topics in detail
goes beyond the scope of this Colloquium, thus we list a
few references (Preskill, 1992; Jacobson, 1996; Wald,
2001; Bousso, 2002; Hawking, 2005; Page, 2005).

It is now clear that this example illustrates a close
connection between information, thermodynamics, and
the general relativity, which might look unrelated to
each other at first sight. This strongly resuggests the du-
ality of entropy, which we have mentioned at the end of
Sec. II.C, and the universality of the thermodynamic re-
lations in generic physics. We attempt to explore this
duality in the paradigm of quantum-information theory
later on in Sec. VIL.B.

VI. ERASURE OF CLASSICAL INFORMATION
ENCODED IN QUANTUM STATES

In classical-information theory, an alphabet i
e{l,....n}, which appears with probability p; in a
message9 generated by a source, is represented by one of
the n different classical states. On the other hand, in
quantum-information theory (Nielsen and Chuang,
2000), information is encoded in quantum states, so that
each alphabet i is represented by one of the n different
quantum states whose density matrices are denoted by
p;- We refer to each state carrying an alphabet as a mes-
sage state. We also call a set of quantum states used in a
message, in which the state p; appears with probability
pi» an ensemble of quantum states {p;,p;},i €{1,...,n}.

A way to erase classical information encoded in quan-
tum states was first considered by Lubkin (1987), who

‘A message can be any set of alphabets. It refers to a word or
letter sent from sender to receiver, information which is stored
in memory, etc. We assume that the information source gener-
ates independent and identically distributed variables or alpha-
bets according to the probability distribution {p;}.
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introduced erasure by thermal randomization, and by
Vedral (2000, 2002) in a more general setting. Thermal
randomization makes use of the randomness of states in
a heat bath that is in thermal equilibrium. If we put a
message state in contact with a heat bath at temperature
T, the state will approach thermal equilibrium with the
heat bath. More precisely, a message state p; changes
gradually after colliding (interacting) with the heat bath
and sufficiently many collisions make the state become
indistinguishable with that of the heat bath. We assume
that the bath’s state as a whole will not change much
since its size is very large. Due to the uncertainty stem-
ming from thermal fluctuations, we irreversibly lose the
information that was carried by the state p;.

Because of the generic nature of this erasure process
by thermalization, entropy of the whole system, consist-
ing of the message state and the heat bath, necessarily
increases. How much would this increase be? We first
simplify the discussion by considering that each message
state is a pure state as in Fig. 10 (Vedral, 2000; Plenio
and Vitelli, 2001). Before erasing, the whole message is
an ensemble {p;,|¢;)}, thus its average state is described
by a density operator p=2,p;|¢;){¢|. The thermalization
process brings all states |¢;) to the same state , which is
in thermal equilibrium at temperature 7. The density
matrix o is given by

e P
w="""= E qjle)ejl, (16)
j

where H=3,¢,|e;){e,| is the Hamiltonian of the message
state with energy eigenstates |e;), Z=Tr(e #") is the par-
tition function, and B=(kT)".

The total entropy change AS. .cure 1S the sum of the
entropy change of the message system and that of the
heat bath: AS . ,gure=ASgys+ASpan. Since the message
state before the erasure is pure and its state after the
erasure is the same as the heat bath, the minimum en-
tropy change in the message state is given by’

AS =k 1n2S(w), (17)

sys
where S(w)=-Tr(wlog w) is the von Neumann entropy
of the state w. von Neumann introduced this entropy by
contemplating the disorder of quantum states so that it

0ne may be tempted to use the averaged message state p as
the preerasure state. However, this is not the right way of view-
ing it. Before the erasing procedure, the encoder, who pre-
pared the state, or the memory itself still knows which of {|¢;)}
it is in. Information erasure is a process that destroys correla-
tions between the memory and the encoder or the system ac-
cessing it by transforming the state to a standard state (i.e.,
=|eg)(eg| in Lubkin’s erasure), irrespective of the initial state.
In other words, there must be a perfect correlation or knowl-
edge before the erasure, which will be lost afterwards. Averag-
ing over an ensemble means that even the encoder already lost
information about their preparation. Hence, in this case, the
entropy of the preerasure state should be taken as 0. Consid-
ering the classical counterpart [Fig. 3(a)] may be useful to un-
derstand this reasoning.
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FIG. 10. (Color online) The erasure of classical information
carried by quantum states. Each message state interacts with a
heat bath at temperature 7" and reaches thermal equilibrium.
The information originally encoded in a state is lost and all
states end up in w, which is the thermal state at the tempera-
ture 7.

has the same meaning as the entropy in (phenomeno-
logical) thermodynamics in a setting where gases of mol-
ecules with quantum properties were considered (von
Neumann, 1955). The factor k1In2 is just a conversion
factor to make it consistent with the previous discussion
of Landauer’s principle.

The entropy change in the heat bath is equal to the
average heat transfer from the bath to the message sys-
tem divided by the temperature: ASp,q,=AQp.m/T- The
heat change in the heat bath is the same as that in the
system with an opposite sign, i.e., AQp,n=—A0. The
heat transfer can be done quasistatically so that the me-
chanical work required for the state change is arbitrarily
close to 0. Therefore, due to the energy conservation,
AQ,y, must be equal to the change of internal energy of
the message system AU, which can be computed as the
change of average values of the Hamiltonian H before
and after the erasure process. Hence

ASb - _ %LS - _ %}E
ath T T
Tr(wH) - Tr(pH)
T
_ Trf(w-p)H]
= —T .

(18)

By using Eq. (16), the Hamiltonian H can be expressed
in terms of the partition function Z as —kT In(Zw). Now
we have

ASpain = k Trl (0 - p)In(Zw)]
=k Tr[(w - p)ln o]
=—kIn2[S(w) + Tr(p log w)]. (19)

Combining Egs. (17) and (19) gives the total entropy
change after the erasure:

ASerasure =ASg+ ASbath == Tr(P lOg (1)) 5 (20)

sys

where the unimportant conversion factor k In 2 is set to
be unity as a unit of entropy. The minimum of the en-
tropy change AS. e can be obtained as
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ASerasure == Tr(P lOg w) = S(P) . (21)

The inequality follows from the property of the quan-
tum relative entropy, S(pllw):=-S(p)—Tr(plog w)=0.
This minimum can be achieved by choosing the tem-
perature of the heat bath and the set {p;,|#;)} such that
p=2p,|d){¢| is the same as the thermal equilibrium
state w. Consequently, the minimum entropy increase
required for the erasure of classical information encoded
in quantum states is given by the von Neumann entropy
S(p), where p is the average state of the system, instead
of the Shannon entropy H(p) in the case of erasing in-
formation in classical states.

VII. THERMODYNAMIC DERIVATION OF THE HOLEVO
BOUND

A. From the erasure principle

Landauer’s erasure principle, together with its
Lubkin’s version for quantum states, is simple in form;
however, it implies some significant results in the theory
of quantum information. For example, it can be used to
derive the efficiency of the compression of data carried
by quantum states (Plenio and Vitelli, 2001) and also the
upper bound on the efficiency of the entanglement dis-
tillation process (Vedral and Plenio, 1998; Vedral, 2000).
Here we look at the derivation of the Holevo bound
from Landauer’s principle, which was first discussed by
(Plenio, 1999; Plenio and Vitelli, 2001), as we next exam-
ine the same problem from a different perspective.

To give a precise form of the Holevo bound we con-
sider two parties Alice and Bob. Suppose Alice has a
classical information source preparing symbols i
=1,...,n with probabilities p1,...,p,. The aim for Bob is
to determine the actual preparation i as best as he can.
To achieve this goal, Alice prepares a state p; with prob-
ability p; and gives the state to Bob, who makes a gen-
eral quantum measurement [positive operator valued
measure (POVM)] with elements E;=E,, ..., E,, 2 E;
=1, on that state. On the basis of the measurement result
he makes the best guess of Alice’s preparation. The
Holevo bound (Holevo, 1973) is an upper bound on the
accessible information, i.e.,

I(A:B) < S(p) = 2 piS(p), (22)

where I(A:B) is the mutual information between the set
of Alice’s preparations i and Bob’s measurement out-
comes j, and p=2/p;p;. The equality is achieved when all
density matrices commute, namely [p;,p;]=0.

We first consider a simple case in which all p; are pure:
pi=|:)X|. The average state will be p=2p;[#;){¢|. Then
the Shannon entropy of the message is always greater
than or equal to the von Neumann entropy of the en-
coded quantum state [Theorem 11.10 in Nielsen and
Chuang (2000)], that is, H(p;) = S(p), with equality if and
only if (4] ¢;)=8; for all i and j.
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How much information can Bob retrieve from the
state p? The above analysis of erasure of information in
quantum states tells us that we have to invest at least
S(p) bits of entropy to destroy all available information.
This implies that the amount of information that Bob
can access is bounded by S(p), because if he could obtain
S(p)+¢ bits of information then the minimum entropy
increase by the erasure should be at least S(p)+e, by
Landauer’s principle. In other words, one cannot obtain
more information than could be erasable.

Therefore the accessible information I(A:B) is
smaller than or equal to the minimum entropy increase
by the erasure and it is this relation that corresponds to
the inequality (22). If Alice encodes her information i
into a pure state p;, the relation reads

I(A:B) < S(p), (23)

which is the same inequality as Eq. (22) because S(p;)
=0 for all pure states p;.

If Alice uses mixed states p; to encode i, Eq. (21)
needs to be modified. Instead of Eq. (17), the entropy
increase for each state is now'! AS’;YS:S(w)—S(pj) after
contact with a heat bath whose state is given by Eq. (16).
The average entropy change of the heat bath is the same
as Eq. (19): ASpun=—S(w)-plog w. The total entropy
change by the thermalization will be

ASerasure = E ijS]s:ys + ASpath
j
=2 p{S(w) - S(p)] - S(w) - Tr(p log w)
j
=~ 2 piS(p) ~ Tr(plog w)
]

= S(p) - E.ij(pj)’ (24)
]

which, together with the above argument, implies the
Holevo bound in the form of Eq. (22). This analysis of
erasure of information encoded with mixed states is
more straightforward and less ambiguous than that by
Plenio (1999); Plenio and Vitelli (2001).

The above analysis thus justifies the Holevo bound.
However, it does not give the precise condition for the
equality in Eq. (22), which is [p;, p;]=0. The condition we
can derive here is that all density matrices {p;} support
orthogonal subspaces, i.e., Tr(p;p;)=0. This is more re-
strictive than the commutativity of density matrices
mentioned above. Next we show if the second law im-
plies the Holevo bound more directly.

B. From the second law

Since the work-information duality in the erasure
principle supports Brillouin’s hypothesis, shown in Sec.
II.C, on the equivalence between information theoretic

"The conversion factor k In 2 is set to be equal to unity again
as a unit of entropy.
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and thermodynamic entropies, it might be natural to ex-
pect that the second law may put a certain bound on the
quality of information or the performance of informa-
tion processing. In this section, we derive the general
bound on storage of quantum information, the Holevo
bound (Holevo, 1973) derived from the second law of
thermodynamics. As the second law is the most funda-
mental physical law that governs the behavior of en-
tropy, this problem is interesting in terms of the spirit of
the “physics of information” and deserves to be investi-
gated in its own right.

In order to see the genuine thermodynamic bound, we
need to minimize the axiomatic assumptions that stem
from quantum mechanics. Assumptions we make here
are (a) entropy: the von Neumann entropy is equivalent
to the thermodynamic entropy, (b) statics and measure-
ment: a physical state is described by a “density” matrix,
and the state after a measurement is a new state that
corresponds to the outcome (“projection postulate”),
and (c) dynamics: there exist isentropic transformations.

Employing the density matrix-based description
means that we presume the existence of superpositions
of states. Allowing superpositions might sound rather
abrupt; however, we assume that we are taking a similar
stand as Gabor’s picture on the possibility of superposi-
tions purely from thermodynamic considerations. Thus
this could be stated the other way around: assuming the
superpositions of states, we describe a state by a density
matrix, which can be defined as a convex sum of outer
products of normalized “state vectors.” The nonzero
components of state vectors represent superposed state
elements. Probability distributions in classical phase
space can also be described consistently: all diagonal el-
ements of a classical density matrix are real, represent-
ing probabilities, and all off-diagonal elements are zero.
When a measurement is performed, one of the diagonal
elements becomes 1, replacing all others with 0. We use

an arrow to denote a state vector, such as ¢, to make it
clear that we do not use the full machinery of the Hil-
bert space (such as the notion of inner product) and we
never use the Born trace rule for calculating probabili-
ties.

Consider a chamber of volume V, which is divided
into two regions of volumes p;V and p,V, respectively.
The left-side region (L) is filled with p;N molecules in

state l,/_;l, and p,N molecules in state 122 are located in the

right-side region (R). The two states ¢; and 122 can be
thought of as a representation of an internal degree of
freedom. Generalizations to arbitrary numbers of gen-
eral (mixed) states and general measurements are
straightforward.

We can now have a thermodynamic loop formed by
two different paths between the above initial thermody-
namic state to the final state (Fig. 11). In the final state,

both constituents ¢; and 122 are distributed uniformly
over the whole volume. Hence each molecule in the final

state can be described by p:E,p,-(Z,-(ZZ, regardless of the
position in the chamber. One of the paths converts heat
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FIG. 11. (Color online) The thermodynamic cycle, which we
use to discuss the second law. The cycle proceeds from the
initial state to the final state p via the post-work-extraction
state o, and returns to the initial state with a reversible pro-
cess.

into work, while the other path, consisting of a quasi-
static reversible process and isentropic transformations,
requires some work consumption.

In the work-extracting process, we make use of two
semipermeable membranes M; and M, which separate
two perfectly distinguishable (orthogonal) states ¢; and
¢, (=¢;). The membrane M; (i=1,2) acts as a completely
opaque wall to molecules in ¢;, but it is transparent to

molecules in ¢;.;. Thus, for example, a state ; is re-
flected by M, to become ¢, with (conditional) probability
plei|¢) and goes through with probability p(e,|,), be-
ing projected onto ¢,. This corresponds to the quantum
(projective) measurement on molecules in the basis
{€,,€,}, however, we do not compute these probabilities
specifically as stated above.

By replacing the impenetrable partition with the two
membranes, we can convert heat from the heat bath into
mechanical work W, which can be as large as the ac-
cessible information /(A :B), i.e., the amount of informa-
tion Bob can obtain about Alice’s preparation by mea-
surement in the basis {e;,e,}.'* The transformation from
the post-work-extraction state, which we o hereafter, to
the final state p can be done by a process shown in Fig.
12 and the minimum work needed is given by AS
=S(a)-S(p).

Another path, which is reversible, from the initial
state to the final state is as follows. Let {¢, >} be an
orthonormal basis which diagonalizes the density matrix
p, such that

p=2 PHZHZIT = )\k(Zk‘Zl];v (25)
i %

where A, are eigenvalues of p. We can extract S(p) bits

of work by first transforming {zZ] , zzz} to {¢y, b} unitarily,

The justification of this equivalence described in Fig. 1 of
Maruyama, Brukner, and Vedral (2005) has an error in identi-
fying entropy changes in the process. Nevertheless, this equiva-
lence between W, and I(A: B) can be seen correct by a bit of
straightforward calculations, using the state equation for an
ideal gas.
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and second using a new set of semipermeable mem-

branes that perfectly distinguish <Z1 and <Z>2.

If the initial state is a combination of mixed states
with corresponding weights given by {p;, p;}, the extract-
able work during the transformation to p=X;p;p; be-
comes S(p)—2,;p;S(p;). This can be seen by considering a
process

() ) oG
iy —— Apiri, 0} ——— N\, o} —— p,
j» Wj

where {,u;,a?;} and {\,,,} are the sets of eigenvalues
and eigenvectors of p; and p, respectively (Maruyama,
Brukner, and Vedral, 2005).

The function of the semipermeable membrane can al-
ternatively be understood as a Maxwell’s demon who
controls small doors on a partition depending on the
result of his measurement of each molecule. Then do we
need to consume some work to reset his memory? Un-
like the previous discussions (such as that of Szilard’s
engine), it turns out that the demon’s memory can be
erased isentropically due to the remaining (perfect) cor-
relation between the state of each molecule and his
memory registers. This can be sketched as follows. Once
the demon observes a molecule, a correlation between
the state of the molecule and his memory is created.
Since he can in principle keep track of all molecules, a
perfect correlation between the state of the nth mol-
ecule and that of the nth register of the demon’s memory
will be maintained. Then a controlled-NOT-like isentro-
pic operation between the molecules and the corre-
sponding memory registers (with molecules as a control
bit) can reset the demon’s memory to a standard initial
state without consuming work.

The second law states (in Kelvin’s form) that the net
work extractable from a heat bath cannot be positive
after completing a cycle, i.e., W,—W,,,<0. For the
cycle described in Fig. 11, it can be expressed as

I(A:B) = S(p) — 2, p;S(pi) + AS, (26)

where AS=S(0)-S(p). As o is identical to the resulting
state of a projective measurement on p in the basis
{e1.6,}, 0=3,P;pP; with P]-:Ejé;( and consequently AS is
always non-negative [see von Neumann (1955)]. The in-
equality (26) holds even if the measurement by mem-
branes was a generalized (POVM) measurement
(Maruyama, Brukner, and Vedral, 2005).

The form of Eq. (26) is identical with that of Eq. (22)
for the Holevo bound, except for an extra non-negative
term AS. This illustrates that there is a difference be-
tween the bound imposed by quantum mechanics (the
Holevo bound) and the one imposed by the second law
of thermodynamics. Namely, there is a region in which
we could violate quantum mechanics while complying
with the thermodynamical law. In the classical limit, the
measurement is performed in the joint eigenbasis of mu-
tually commuting p;’s, consequently AS=0, and, in addi-
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tion, the Holevo bound is saturated: I(A:B)=S(p)
—2,p:8(p;). Thus the classical limit and the thermody-
namic treatment give the same bound.

The same saturation occurs when an appropriate col-
lective measurement is performed on blocks of m mol-
ecules, each of which is taken from an ensemble {p;, p;}.
When m tends to infinity 271S0)-=riSe)] typical se-
quences (the sequences in which p; appears about p;m
times) become mutually orthogonal and can be distin-
guished by “square-root” or “pretty good” measure-
ments (Hausladen et al., 1996; Holevo, 1998). This situ-
ation is thus essentially classical, hence AS—0 and the
Holevo bound will be saturated.

VIII. ENTANGLEMENT DETECTION BY MAXWELL’S
DEMON(S)

Now we move on to see how to deal with entangle-
ment from the point of view of Maxwell’s demon. The
reason we pick up the topic of entanglement in particu-
lar is that it is not only crucially important in quantum-
information theoretic tasks, such as quantum cryptogra-
phy (Bennett and Brassard, 1984; Ekert, 1991), dense
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FIG. 12. (Color online) The thermodynamic
process to transform the intermediate state o
into the final state p. First, after attaching an
empty vessel of the same volume to that con-
taining the gas o, the membranes M; are used
to separate two orthogonal states ¢; and ¢,
[(a) to (c)]. As the distance between the mov-
able opaque wall and the membrane M, is
kept constant, this process entails no work
consumption or extraction. As U:EciEjE]T s
compressing each ¢; gas into the volume of
¢;V as in (d) makes the pressures of gases
equal and this compression requires S(o)=
—2c¢jlog, ¢; bits of work. Second, quantum
states of gases are isentropically transformed,
thus without consuming work, so that the re-
sulting state (e) will have \;N molecules in J)j,
where p:E)\,qug?);' is the eigendecomposition
of p. To reach (f), S(p) bits of work can be
extracted by using membranes that distin-
guish <Z}-. As a result, the work needed for the
transformation o— p is S(o)—S(p) bits.

coding (Bennett and Weisner, 1992), quantum teleporta-
tion (Bennett et al., 1993), and quantum computation
(Shor, 1994; Grover, 1996), but it is also directly linked to
the foundations of quantum mechanics. However, the
theory of entanglement is too broad and deep to explore
comprehensively in this paper. In addition, the most of it
appears irrelevant or at least unclear in the context of
Maxwell’s demon at any rate. Therefore we focus on
recent works that have discussed the “quantumness” of
correlation and/or the problem of entanglement detec-
tion, which is one of the most important topics in its own
right.

When discussing entanglement in this paper we are
primarily interested in bipartite entanglement, unless
otherwise stated. Formally, entanglement is defined as a
form of quantum correlation that is not present in any
separable states. Let H4 and H? be the Hilbert spaces
for two spatially separated (noninteracting) subsystems
A and B, which are typically referred to as Alice and
Bob, and HAZ=H"® H? the whole (joint) Hilbert space
of the two. We also let S(H) denote the state space,
which is a set of density operators acting on H.

A state of a bipartite system is said to be separable or
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classically correlated (Werner, 1989) if its density opera-
tor can be written as a convex sum of products of density
operators

n

p=2pipi ®pL, (27)

i=1

where all p; are non-negative and = ,p,=1. Any state
that cannot be written in the form of Eq. (27) is called
entangled. We let S, denote the subspace that contains
all separable states.

It is natural to ask whether or not a given state p
e S(HAB) is separable, considering the importance of
entanglement in many quantum-information theoretic
tasks.”® Quite a few separability criteria, i.e., a condition
that is satisfied by all separable states, but not necessar-
ily by entangled states, have been proposed so far to
answer this simple question. Separability criteria are
typically expressed in terms of an operator or a function,
such as an entanglement witness (Terhal, 2000) or the
correlation function in Bell’s inequality (Bell, 1964). De-
spite the simplicity of the question, it is generally very
hard to find good separability criteria. By a good sepa-
rability criterion, we mean an efficient separability crite-
rion that singles out as many entangled states as pos-
sible. The hardness of the problem is primarily related
to the convexity of the separable subspace, which is
formed by all separable states: Because of the bulgy
“surface” of the separable subspace, there does not exist
any operator or function that is linear with respect to the
matrix elements of the density operator, e.g., eigenval-
ues of p, and distinguishes separable and entangled
states perfectly.

Another simple question is about the amount of en-
tanglement a pair (or a set) of quantum objects contains.
The amount plays a major role when it comes to the
characterization or manipulation of entanglement. Since
entanglement can be regarded as a valuable resource in
quantum-information processing, the quantification of
entanglement is a problem of great interest and impor-
tance. Despite its profoundness, we will not go into de-
tails on the quantification issue here: Instead, we refer
interested readers to Vedral et al. (1997); Schumacher
and Westmorel (2000); Horodecki (2001); Horodecki and
Horordecki (2001); Plenio and Virmani (2005); Horo-
decki et al. (2007). Also Vedral (2002) contains not only a
review on entanglement measures, but also some discus-
sions on quantum-information processing from the ther-
modynamic point of view.

13Looking at entanglement as a resource of quantum-
information processing naturally suggests the way to quantify
entanglement in terms of its usefulness for such tasks. This
leads to the idea of distillable entanglement, i.e., the average
number of maximally entangled pairs that can be distilled from
a given pair using only local operations and classical commu-
nication (Bennett et al., 1996; Rains, 1999).
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A. Work deficit

In this section, we review the concept of work deficit,
which was introduced by Oppenheim et al. (Oppenheim
et al., 2002). An apparent goal of this work was to quan-
tify entanglement via a thermodynamic quantity; this
idea shed new light on the quantumness of correlations
by taking a thermodynamic approach.

As emphasized, information is always stored in a
physical system with physical states that are distinguish-
able by measurement so that stored information can be
extracted. No generality is lost when we think of a gas in
a chamber, such as the one considered by Szilard, as a
general information-storage apparatus. Even if we had a
different type of physical system for information stor-
age, the information can be perfectly transferred for free
to the memory of the type of Szilard’s engine, if the
initial state of Szilard’s engine is provided in a standard
state. Since the measurement can be done with negli-
gible energy consumption (as shown in Sec. III), the in-
formation transfer can be completed by converting the
state from the initial standard state to the state corre-
sponding to the stored (measured) information; the final
conversion requires no energy.

Now that we have identified a memory with the one
molecule gas of Szilard’s engine we present a general
statement: from an ensemble of memories, each of
which stores the value of an n-bit random variable X,
one can extract mechanical work whose average amount
per single memory register is (by taking units such that
kln2=1)

We=n-H(X), (28)

where H(X) is the Shannon entropy of X. The extract-
able work is the work done by the gas for memory, thus
it is nothing but Eq. (4) when n=1. Equation (28) can be
easily understood in the following way. Suppose there
are N memory registers. If we measure all N registers,
the remaining uncertainty in the memory is zero; we can
obtain Nn bits of work. Nevertheless, we still keep the
information due to the measurement on memory and
this needs to be erased to discuss solely the amount of
extractable work. The minimum energy consumption to
erase the information is, according to the erasure prin-
ciple, equal to NH(X) bits. Thus the maximum total
amount of extractable work is given by N[n— H(X)] bits.
Alternatively, one can use the first law of thermodynam-
ics to arrive at the same expression as Eq. (28). The
work done by the gas in an isothermal process is equal
to the entropy change multiplied by the temperature.
The same argument is applicable to work extraction
from quantum bits (qubits). Let p be the density opera-
tor describing the state in a given ensemble. Qubits after
(noncollective) measurements are in a known pure state,
which is essentially a classical system in terms of infor-
mation. Thus the information stored in this set of pure
states can be copied to the Szilard-type memory and
each register can give us 1 bit of work. Then, after eras-
ing the information acquired by the measurement, the
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net maximum amount of work we get becomes 1—S(p)
bits of work.

The work deficit is a difference between the globally
and the locally extractable work within the framework
of local operations and classical communication, i.e., lo-
cal operations and classical communication, when p is a
system with spatially separated subsystems. Suppose
that we have an n qubit state p,p, which is shared by
Alice and Bob, then the optimal work extractable is

ngobal =n- S(PAB) > (29)

if one can access the entire system globally. On the other
hand, we let Wy, be the largest amount of work that
Alice and Bob can locally extract from the same system
under local operations and classical communication. The
deficit A is defined as

A = Wysba = Wiocar- (30)

In order to grasp this picture, we compute the deficits
for a classically correlated state

p4” = 3(100)00] + [11)(11]) (31)

and a maximally entangled state
Ay _ L
[4%) = —=(00) +[11). (32)
!

The globally extractable work ngobal from p4? is simply
1 bit. The locally extractable work Wl | turns out to be
also 1 bit. The protocol is as follows. Alice can measure
her bit in the {|0),/]1)} basis and send the result to Bob,
who can obtain 1 bit of work from his bit. Although
Alice can extract 1 bit of work from her own bit, using
her measurement result, she needs to consume this en-
ergy to erase the information stored in the memory,
which was used to communicate with Bob. Thus the
deficit for the state pg}B is Ayj=1-1=0. The locally ex-
tractable work is the same, i.e., 1 bit, even if the state is
maximally entangled as in Eq. (32). However, as this
state is pure globally, we have Wygp=2
~S(|®ABYDAB|) =2 bits, therefore Ay =2-1=1.

These two simple examples suggest that the
“strength” of correlation could be reflected in the deficit,
though the deficit might not be necessarily the amount
of entanglement. In fact, Oppenheim et al. (2002) pro-
posed later in a more detailed paper (Horodecki et al.,
2005) that the (quantum) deficit can be interpreted as
the amount of quantumness of correlations, not en-
tanglement.

It has been shown by Oppenheim e al. (2002) that the
deficit is bounded from below as A=max{S(p?),S(p?)}
—S(p) (under an assumption about the classicality of the
communication channel), where p4 and p? are the re-
duced density operators, i.e., p*=Trg p and p?=Tr, p.
The bound (or the upper bound for W) can be
achieved when the state is pure and it turns out to be
equal to the entanglement measure for pure states. This
is simply because a pure state can be written as |¢)
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=3,aleplf;y in the Schmidt decomposition and then A
=S(p")=E(y), where pA=Trg|)(y| and E(-) is the en-
tanglement measure for pure states.

A similar approach has been taken in an attempt to
quantify the amount of entanglement by Groisman et al.
(2005). There the (asymptotically) minimal amount of
noise added to the system to erase the correlation was
examined: roughly speaking, it can be characterized by
the number of allowed operations from which we choose
randomly to make the given state separable. In the dis-
cussion above on deficit, the correlation is converted
into work and the purity of the system is destroyed. In-
stead, noise is added actively here, and the information
about the chosen operations is erased in the end, dissi-
pating entropy into the environment.

B. Quantum discord

A similar approach to measuring the quantumness of
correlations has been taken by Zurek (2003) by using the
concept of “quantum discord” (Zurek, 2000) and a Max-
well’s demon. Recall the definition of the mutual infor-
mation between two systems, A and B, in classical-
information theory:

I(A:B)=H(A)+ HB) - H(A,B). (33)

To clarify the quantumness later, we substitute the defi-
nition of the joint entropy H(A,B)=H(A)+H(B|A)
=H(B)+H(A|B) into Eq. (33) to define the locally mu-
tual information as

JB(AZB{‘B,J}) = H(A) + H(B) — HB(AsB{|Bk)})
=H(A) + H(B) - [H(B) + H(A|B)]y3,.
(34)

where the subscripts B and {|B,)} are used to stress that
we are accessing the system B locally by using the basis
{IB;)}. Now the discord is defined as

6(A|B{|Bk>}) = I(AB) - JB(AB{\Bk)})
= Hp(A,Byp,y) — H(A,B). (35)

Here the (basis-independent) joint entropy H(A,B) is
given by the von Neumann entropy of the whole state
pA8 ie., H(A,B)=S(p"B)=-Tr p"? log, pAZ.

The discord defined here is the work deficit A in Eq.
(30) when the measurement is done in the basis {|B)}
only on the subsystem B after one-way communication
(from A to B). Zurek described this scenario as the com-
parison of work-extraction efficiency by classical and
quantum Maxwell’s demons: a classical demon is local,
while a quantum demon can perform measurements on
the whole system in a global basis in the combined Hil-
bert space. The difference in efficiency of work extrac-
tion is equal to the discord 5(A|B{‘Bk>}) if the classical
demon employs {|B;)} as his measurement basis. Thus
the least discord over all (local) measurement bases, i.€.,
8(A|B)=miny ByO(A | By By coincides with the work
deficit A when only one-way communication is allowed.
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FIG. 13. (Color online) Schematic of the protocol to extract
work from correlated pairs. Two pairs represent an ensemble
for which Alice and Bob use A, and By for their measurement
and work extraction. For a half of this ensemble, Alice mea-
sures her state with A, and Bob extracts work from his side
along the direction of #', according to Alice’s measurement
results. For the other half, they exchange their roles.

Obviously, more communication only helps to increase
the classically extractable work, so 6= A is a general up-
per bound on A.

C. Thermodynamic separability criterion

The degree of correlation, particularly the difference
between classical and quantum ones, can also be charac-
terized by discussing the locally extractable work from a
heat bath via a given state, without comparing it with
globally extractable work. This is possible despite the
fact that the optimal locally extractable work from a pair
is the same for both types of correlation, as shown in
Sec. VIILLA: the difference can manifest if we do not
optimize the work in a single setting for extracting. Thus
the inequality obtained here works as an entanglement
witness (Terhal, 2000) with locally observable thermody-
namic quantities.

Suppose that two parties (or demons) Alice and Bob
choose their measurement basis as A,={Py,P,;} and
Bﬁ,:{Pﬁl,P;,}, respectively, where 6(6') represents the
direction of the basis. Alice performs her measurement
with A, on her qubits and sends all results to Bob. Then
Bob can extract 1-H(B,|A,) bits of work per pair on
his side after compressing the information of his mea-
surement outcomes, where H(X|Y) is the Shannon en-
tropy of X, conditional on the knowledge of Y. Only
when the shared system is in a maximally entangled
state, such as [®*)=(|00)+|11))/v2, H(A,| By) can vanish
for all 6. That is, we can extract more work from en-
tangled pairs than from classically correlated pairs.

We choose more measurement bases in order to mini-
mize the dependence of the work on the particular
choice of bases. Alice and Bob first divide their shared
ensemble into groups of two pairs to make the process
symmetric with respect to each of them. For each group,
they both choose a projection operator randomly and
independently out of a set, {A;,...,A,} for Alice and
{By,...,B,} for Bob, just before their measurement.
Then, Alice measures one of the two qubits in a group
with the projector she chose and informs Bob of the
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outcome as well as her basis choice. Bob performs the
same on his qubit of the other pair in the group. As a
result of collective manipulations on the set of those
groups for which they chose A; and B, they can extract
a maximum of 2—H(A;|B;)- H(B;|A)) bits of work per
two pairs (see Fig. 13).

Next, we add up all the work that can be obtained by
continuously varying the basis over a great circle on the
Bloch sphere, i.e., the circle of maximum possible size
on a sphere. This is similar in approach to the chained
Bell’s inequalities discussed by Braunstein and Caves
(1990). The circle should be chosen to maximize the
sum. Thus the quantity we consider is

2

E(p) = Py §LA(6),B(6)]d e, (36)
™J0

where £JA(6),B(6')]=2—-H[A(6)|B(¢')]
—H[B(6')|A(6)] is the extractable work from two copies
of p in the asymptotic limit when Alice and Bob choose
A(6) and B(#'), and @ is the angle representing a point
on the great circle. Then, we can show that Z(p) can be
used as a separability criterion: an inequality

E(p) < 2(|00)) (37)

is a necessary condition for a two-dimensional bipartite
state p to be separable, that is, p:Eip,»piA ® pf . The state
|00y in the right-hand side of Eq. (37) can be any pure
product state |¢)'). We obtained the value of Z(]00))
numerically as 0.8854 bit. We refer to this inequality (37)
as a “thermodynamic separability criterion.” The proof
of this proposition is based on the concavity of the en-
tropy (Maruyama, Morikoshi, and Vedral, 2005).

The integral in Eq. (36) can be performed over the
whole Bloch sphere, instead of the great circle, to get
another separability criterion. Let Egg denote the new
integral, then, Eq. (37) becomes Egg(p)<Egs(|00)),
where Egg(]00)) can be found numerically as 0.5573. The
proposition above about the separability holds for
Eps(p) as well. We now compute the value of Egs(pw),
where

1-p
4

pw=p[¥ X W]+ 1 (38)
is the Werner state (Werner, 1989), to see the extent to
which the inequality can be satisfied when we vary p. It
is known that the Bell-Clauser-Horne-Shimony-Holt
(Bell-CHSH) inequalities (Clauser et al., 1969) are vio-
lated by py when p>1/12=0.7071. On the other hand,
pw is inseparable if and only if p >1/3, according to the
Peres-Horodecki criterion (Horodecki et al., 1996; Peres,
1996). A bit of algebraic calculation leads to Egg(pw)
=(1-p)log,(1-p)+(1+p)log,(1+p) and this is greater
than Egg(|00)) when p >0.6006. Therefore the inequality
for Egg is stronger than the Bell-CHSH inequalities
when detecting inseparability of the Werner states. This
difference, we suspect, is due to the nonlinearity of the
witness function, which is Z in this case. Related analy-
ses have been presented by Giovannetti (2004); Giihne



Maruyama, Nori, and Vedral: Colloguium: The physics of Maxwell’s demon and information ... 21

and Lewenstein (2004a, 2004b) from the point of view of
the entropic uncertainty relations.

IX. PHYSICAL IMPLEMENTATIONS OF THE DEMON

Apart from our own interests, there are of course a
myriad of other interesting works on Maxwell’s demon
in the quantum regime, particularly on the physical
implementations of the work-extracting engine under
control of the demon. We review some of them in this
section.

Lloyd (1997) proposed an experimental realization of
Maxwell’s demon using nuclear magnetic resonance
(NMR) techniques. A spin-1/2 particle prepared in a
standard state, e.g., ||), works as the demon (memory) to
store the information in a given state, which is also a
spin-1/2 particle. Extracting work is done by applying a
7 pulse (to flip it in the {|1),||)} basis) at the spin’s pre-
cession frequency w=2uB/#, where u is the magnetic
moment of the spin and B is the external magnetic field:
a photon of energy Ao will be emitted to the field when
the spin flips from the higher energy state |) to the
lower energy state |]). If each of two spins uses a heat
bath at different temperatures, then we can consider a
cycle that performs work in analogy with the Carnot
cycle. The quantumness comes into the discussion of the
inefficiency of the cycle, compared with the ideal Carnot
case, which is due to the entropy increase by (quantum)
projective measurements. That is, more entropy increase
is needed to erase the original information stored in the
demon’s memory.

A practical realization of Lloyd’s analysis was pro-
posed by Quan, Wang, et al. (2006), in which supercon-
ducting qubits (You and Nori, 2005), instead of spin-1/2
particles, are used to manipulate information or energy
transfer. The necessity of two heat baths at different
temperatures is represented by a temperature gradient
between two qubits and the sequence of actual opera-
tions is presented there.

The idea of directly using energy stored in two-level
atoms was presented by Scully and co-workers (Scully,
2001; Rostovtsev et al., 2005; Sariyanni et al., 2005; Scully
et al., 2005). In their scenario, two-level atoms are first
randomized in a hohlraum, which is a hollow cavity that
thermalizes the energy levels of incoming atoms, and
next they are separated by a Stern-Gerlach-type appara-
tus into two spatial paths. Useful energy could be ex-
tracted from atoms in the excited state, and then atoms
in the two paths are combined. At the final stage the
which-path information is erased isothermally, dissipat-
ing heat (entropy) into the environment, to recycle at-
oms for another cycle.

In summary, these physical cycles involve a process
that merges two different physical paths representing
two logical states. The merger of two paths corresponds
to the logically irreversible process discussed in Sec. I11,
as also emphasized by Bennett (2003), and thus leads to
an entropy increase in the outside world of the informa-
tion carrier.

Scully (2003) further proposed another type of heat
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engine, which has important quantum aspects. Instead of
the two-level atoms in the above example, three-level
atoms are now used to provide useful work (energy) to
the radiation field in a cavity. The atom has one excited
level |a) and two nearly degenerate ground levels |b) and
|c). The atoms are initially prepared to have some small
population in the level |a) and a coherent superposition
between |b) and |c), that is, its density operator is given
by po=pala)al+(1-p,)lg)Xgl, where |g)=c,|b)+clc)
(|cp*+|c|>=1). The amplitudes c, and c, as well as the
cavity frequency are tuned so that the probability of
transition from |g) to |a) vanishes."

An interesting consequence of Scully’s idea is that
quantum coherence, in |g), could be useful to enhance
the efficiency of the thermodynamic cycle even beyond
the Carnot efficiency. This is because it could be possible
to extract work, in the form of photons, from a single
heat bath. Such a scenario of extracting work from a
single heat bath is indeed reminiscent of Szilard’s
demon-assisted one-molecule engine in Sec. IL.B. In
Scully’s engine, quantum coherence plays the role of the
demon. Because of the suppressed absorption of pho-
tons by the atoms, cold atoms absorb less than they
would in the absence of coherence, while hot atoms do
emit photons. Hence there is a sorting action, which
could be seen as a demon’s maneuver. As in Szilard’s
case, entropy needs to be dissipated when resetting the
state of the demon. Including the entropy cost for ini-
tializing the atoms in the total entropy bill ensures the
validity of the second law. A more detailed physical
implementation was studied by Quan, Zhang, and Su
(2000).

Another noteworthy example, also proposed by
Scully, might be the quantum heat engine that makes use
of the difference in energy gaps of a three-level atom
(Scully, 2002; Rostovtsev et al., 2003). By combining ma-
ser and laser cavities to control the population of each
level, it could be possible to devise a Carnot-type or
Otto-type heat engine and calculate the upper bounds
on their efficiency.

Kieu proposed an idea of a related, but different, type
of engine that consists of a two-level potential well
(Kieu, 2004). Work-extracting cycles can be done by ma-
nipulating the parameters for the potential, such as its
width and depth. Then the relationships between the
temperatures of the heat baths, the change in energy
levels, and the extractable work are analyzed, confirm-
ing the validity of the second law in the quantum regime.
This type of idea was considerably extended to more
general cases and scrutinized in terms of quantum Car-
not and Otto engines by Quan et al. (2005, 2007). Quan
et al. (2007) also provided a succinct and pedagogical
presentation of quantum heat engines.

When it comes to the demon in the quantum world,
there is also an analysis on Landauer’s erasure principle

Such a coherent trapping in |g) occurs due to the destructive
quantum interference between two transitions, namely, |b)
—|a) and |c)— |a). See Chap. 7 of Scully and Zubairy (1997).
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in the quantum regime. Allahverdyan and Nieuwenhui-
zen (2001) discussed the validity of the principle when
entanglement is taken into account due to the interac-
tion between the memory system and the environment.
However, they identified the Clausius inequality and the
erasure principle directly, and showed that the Clausius
inequality could be violated because of entanglement.
This seems to be incompatible with the results by Shi-
zume (1995); Piechocinska (2000), where the Clausius in-
equality was not used to derive the bound.

X. CONCLUDING REMARKS

Since his birth in the late 19th century, Maxwell’s de-
mon has surely been enjoying watching scientists strug-
gling with his paradox. Nevertheless, he has led us to a
new paradigm over the past century, i.e., the interplay of
physics and information theory.

To conclude this paper, we restress that realizing the
irreplaceable reciprocity between physics and informa-
tion has given rise to a number of implications in the
foundations of not only quantum mechanics, but also
gravity. This may be suggesting that information would
help us merge quantum mechanics and gravity since
Maxwell’s demon is playing his game at the very core of
both theories. Moreover, the interplay has been a pow-
erful driving force in the development of quantum-
information science.

We probably had better prepare for more “demonic”
intellectual challenges, as more revolutionary paradigm
shifts might be expected to come in any fields of natural
sciences. Therefore it should be still too early to pre-
sume the demise of the demon with plenty of mysteries
in nature lying in front of us.
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