
Waiting for precise measurements of K+\�+��̄ and KL\�0��̄

Andrzej J. Buras and Selma Uhlig

Physik Department, Technische Universität München, D-85748 Garching, Germany

Felix Schwab

Max-Planck-Institut für Physik—Werner-Heisenberg-Institut, D-80805 Munich, Germany
and Physik Department, Technische Universität München, D-85748 Garching,
Germany

�Published 5 August 2008�

In view of future plans for accurate measurements of the theoretically clean branching ratios
Br�K+→�+��̄� and Br�KL→�0��̄�, which should occur in the next decade, the relevant formulas for
quantities of interest are collected and their theoretical and parametric uncertainties are analyzed. In
addition to the angle � in the unitarity triangle �UT�, the angle � can also be determined from these
decays with respectable precision and in this context the importance of the recent NNLO QCD
calculation on the charm contribution to K+→�+��̄ and of the improved estimate on the
long-distance contribution by means of chiral perturbation theory are presented. In addition to known
expressions, several new ones that should allow transparent tests of the standard model �SM� and of
its extensions are presented. While the review is centered around the SM, models with minimal flavor
violation and scenarios with new complex phases in decay amplitudes and meson mixing are also
discussed. A review of existing results within specific extensions of the SM, in particular the littlest
Higgs model with T-parity, Z� models, the MSSM, and a model with one universal extra dimension are
given. A new “golden” relation between B and K systems is derived that involves �� ,�� and
Br�KL→�0��̄�, and the virtues of �Rt ,��, �Rb ,��, �� ,��, and ��̄ ,�� strategies for the UT in the
context of K→���̄ decays with the goal of testing the SM and its extensions are investigated.
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I. INTRODUCTION

The rare decays of K and B mesons play an important
role in the search for the underlying flavor dynamics and
in particular in the search for the origin of CP violation
�Buchalla, Buras, and Lautenbacher, 1996; Buras, 1998,
2003, 2005a, 2005b; Nir, 2001; Fleischer, 2002, 2004; Ali,
2003; Buchalla, 2003; Hurth, 2003; Isidori et al., 2005�.
Among the many K and B decays, the rare decays K+

→�+��̄ and KL→�0��̄ are very special as their branch-
ing ratios can be computed to an exceptionally high de-
gree of precision that is not matched by any other loop-
induced decay of mesons. In particular, the theoretical
uncertainties in the prominent decays like B→Xs	

+	−

and Bs→	+	− amount typically to ±10% or larger at the
level of the branching ratio, although progress in the
calculation of the branching ratio of B→Xs� at the next-
to-next leading order �NNLO� level shows that in this
case an error below 10% is possible in principle �Becher
and Neubert, 2007; Misiak et al., 2007�. On the other
hand, the corresponding uncertainties in KL→�0��̄
amount to 1–2 % �Buchalla and Buras, 1993a, 1993b,
1999; Misiak and Urban, 1999�. In the case of K+

→�+��̄, the presence of the internal charm contribu-
tions in the relevant Z0 penguin and box diagrams con-
tained the theoretical perturbative uncertainty of ±7%
at the next leading order level �Buchalla and Buras,
1994a, 1999�, but this uncertainty has been recently re-
duced down to ±1−2 % through a complete NNLO cal-
culation �Buras, Gorbahn, Haisch, et al., 2005, 2006�.

The reason for the exceptional theoretical cleanness
of K+→�+��̄ and KL→�0��̄ �Littenberg, 1989� is the
fact that the required hadronic matrix elements can be
extracted, including isospin breaking corrections �Mar-
ciano and Parsa, 1996; Mescia and Smith, 2007�, from
the leading semileptonic decay K+→�0e+�. Moreover,
extensive studies of other long-distance contributions
�Ecker et al., 1988; Hagelin and Littenberg, 1989; Rein
and Sehgal, 1989; Lu and Wise, 1994; Geng et al., 1996;
Fajfer, 1997; Buchalla and Isidori, 1998; Falk et al., 2001�
and of higher-order electroweak effects �Buchalla and
Buras, 1998� have shown that they can safely be ne-
glected in KL→�0��̄ and are small in K+→�+��̄. In par-
ticular, the most recent improved calculation of long-
distance contributions to K+→�+��̄ results in an
enhancement of the relevant branching ratio by 6±2%.
Further progress in calculating these contributions is
possible in principle with the help of lattice QCD �Isi-

dori, Martinelli, and Turchetti, 2006�. Some recent re-
views on K→���̄ can be found in Buras �2003, 2005a,
2005b�, Isidori �2003�, and Isidori et al. �2005�.

We are fortunate that, while the decay K+→�+��̄ is
CP conserving and depends sensitively on the underly-
ing flavor dynamics, its partner KL→�0��̄ is purely CP
violating within the standard model �SM� and most of its
extensions, and consequently depends also on the
mechanism of CP violation. Moreover, the combination
of these two decays allows us to eliminate the paramet-
ric uncertainties due to the Cabibbo-Kobayash-Maskwa
�CKM� element �Vcb� and mt in the determination of the
angle � in the unitarity triangle �UT� or equivalently of
the phase of the CKM element Vtd �Buchalla and Buras,
1994b, 1996�. The resulting theoretical uncertainty in
sin 2� is comparable to the one present in the mixing-
induced CP asymmetry a
KS

, and with the measure-
ments of both branching ratios at the ±10% and ±5%
level, sin 2� could be determined with ±0.08 and ±0.04
precision, respectively. This independent determination
of sin 2� with a very small theoretical error offers a pow-
erful test of the SM and of its simplest extensions in
which the flavor and CP violation are governed by the
CKM matrix, the so-called MFV �minimal flavor viola-
tion� models �Buras et al., 2001b; D’Ambrosio et al.,
2002; Buras, 2003, 2005a, 2005b�. Indeed, in K→���̄ the
phase � originates in Z0 penguin diagrams ��S=1�,
whereas in the case of a
KS

in the Bd
0-B̄d

0 box diagrams
��B=2�. Any “nonminimal” contributions to Z0 penguin

diagrams and/or box Bd
0-B̄d

0 diagrams would then be sig-
naled by the violation of the MFV “golden” relation
�Buchalla and Buras, 1994b�

�sin 2�����̄ = �sin 2��
KS
. �1.1�

Now, strictly speaking, according to the common clas-
sification of different types of CP violation �Nir, 2001;
Fleischer, 2002, 2004; Ali, 2003; Buchalla, 2003; Buras,
2003, 2005a, 2005b; Hurth, 2003�, both the asymmetry
a
KS

and a nonvanishing rate for KL→�0��̄ in the SM
and in most of its extensions signal the CP violation in
the interference of mixing and decay. However, as the
CP violation in mixing �indirect CP violation� in K de-
cays is governed by the small parameter �K, one can
show �Littenberg, 1989; Buchalla and Buras, 1996;
Grossman and Nir, 1997�, that the observation of
Br�KL→�0��̄� at the level of 10−11 and higher is a mani-
festation of a large direct CP violation with the indirect
one contributing less than �1% to the branching ratio.
The great potential of KL→�0��̄ in testing the physics
beyond the SM has been summarized by Bryman et al.
�2006�.

Additionally, this large direct CP violation can be di-
rectly measured without essentially any hadronic uncer-
tainties, due to the presence of ��̄ in the final state. This
should be contrasted with the popular studies of direct
CP violation in nonleptonic two-body B decays �Nir,
2001; Fleischer, 2002; Ali, 2003; Buchalla, 2003; Buras,
2003, 2005a, 2005b; Hurth, 2003; Fleischer, 2004�, which
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are subject to significant hadronic uncertainties. In par-
ticular, the extraction of weak phases requires generally
rather involved strategies using often certain assump-
tions about the strong dynamics �Harrison and Quinn,
1998; Ball et al., 2000; Anikeev et al., 2001�. Only a hand-
ful of strategies, which we review in Sec. IX, allow direct
determinations of weak phases from nonleptonic B de-
cays without practically any hadronic uncertainties.

Returning to Eq. �1.1�, an important consequence of
this relation is the following �Buras and Fleischer, 2001�:
for a given sin 2� extracted from a
KS

, the measurement
of Br�K+→�+��̄� determines up to a twofold ambiguity
the value of Br�KL→�0��̄�, independent of any new pa-
rameters present in the MFV models. Consequently,
measuring Br�KL→�0��̄� will either select one of the
possible values or rule out all MFV models. Recent
analyses of the MFV models indicate that one of these
values is unlikely �Bobeth et al., 2005; Haisch and Weiler,
2007a�. A spectacular violation of the relation �1.1� is
found in the context of new physics scenarios with en-
hanced Z0 penguins carrying a new CP-violating phase
�Colangelo and Isidori, 1998; Nir and Worah, 1998; Bu-
ras and Silvestrini, 1999; Buras et al., 2000, 2004a, 2004b,
1998; Atwood and Hiller, 2003�. An explicit realization
of such a scenario is the littlest Higgs model with T par-
ity �Blanke et al., 2007b�, which we discuss in Sec. VIII.

Another important virtue of K+→�+��̄ is a theoreti-
cally clean determination of �Vtd� or equivalently of the
length Rt in the unitarity triangle. This determination is
only subject to theoretical uncertainties in the charm
sector, which amount after the recent NNLO calculation
to ±1−2 %. The remaining parametric uncertainties in
the determination of �Vtd� related to �Vcb� and mt should
be soon reduced to the 1–2 % level. Finally, the decay
KL→�0��̄ offers the cleanest determination of the Jarl-
skog CP invariant JCP �Buchalla and Buras, 1996� or
equivalently of the area of the unrescaled unitarity tri-
angle that cannot be matched by any B decay. With the
improved precision on mt and �Vcb�, precise measure-
ment of the height �̄ of the unitarity triangle also be-
comes possible.

Clean determinations of sin 2�, �Vtd�, Rt, JCP, and the
UT in general, as well as the test of the MFV relation
�1.1� and generally of the physics beyond the SM, put
these two decays in the class of “golden decays,” essen-
tially on the same level as the determination of sin 2�
through the asymmetry a
KS

and certain clean strategies
for the determination of the angle � in the UT �Nir,
2001; Fleischer, 2002, 2004; Ali, 2003; Buchalla, 2003;
Buras, 2003, 2005a, 2005b; Hurth, 2003�, which will be
available at LHC �Ball et al., 2000�. We discuss the latter
in Sec. IX. Therefore, precise measurements of Br�K+

→�+��̄� and Br�KL→�0��̄� are of utmost importance
and should be aimed for, even when realizing that the
determination of the branching ratios in question with
an accuracy of 5% is extremely challenging.

With the NNLO calculation �Buras, Gorbahn, Haisch,
et al., 2005� at hand, the branching ratios of K+→�+��̄
and KL→�0��̄ within the SM can be predicted as

Br�K+ → �+��̄�SM = �8.1 ± 1.1�� 10−11, �1.2�

Br�KL → �0��̄�SM = �2.6 ± 0.3�� 10−11. �1.3�

This is an accuracy of ±14% and ±12%, respectively.
We demonstrate that further progress on the determina-
tion of the CKM parameters coming in the next few
years dominantly from BaBar, Belle, Tevatron, and later
from LHC, as well as the improved determination of mc

relevant for K+→�+��̄, should allow predictions for
Br�K+→�+��̄� and Br�KL→�0��̄� with the uncertainties
of ±5% or better. This accuracy cannot be matched by
any other rare decay branching ratio in the field of me-
son decays.

On the experimental side, the AGS E787 Collabora-
tion at Brookhaven was the first to observe the decay
K+→�+��̄ �Adler et al., 1997, 2000�. The resulting
branching ratio based on two events and published in
2002 was �Adler et al., 2002, 2004�

Br�K+ → �+��̄� = �15.7−8.2
+17.5�� 10−11 �2002� . �1.4�

In 2004, a new K+→�+��̄ experiment, AGS E949
�Anisimovsky et al., 2004, 2007�, released its first results
that are based on the 2002 running. One additional
event has been observed. Including the result of AGS
E787, the present branching ratio reads

Br�K+ → �+��̄� = �14.7−8.9
+13.0�� 10−11 �2004� . �1.5�

It is not clear, at present, how this result will be im-
proved in the coming years as the activities of AGS
E949 and the efforts at Fermilab around the CKM ex-
periment �CKM Experiment, 2004� have unfortunately
been terminated. On the other hand, the corresponding
efforts at CERN around the NA48 Collaboration �2004�
and at JPARC in Japan �J-PARC, 2004� could provide
an additional 50–100 events at the beginning of the next
decade.

The situation is different for KL→�0��̄. The older up-
per bound on its branching ratio from KTeV �Blucher,
2005�, Br�KL→�0��̄�2.9�10−7, has recently been im-
proved to

Br�KL → �0��̄� 2.1� 10−7 �1.6�

by E391 Experiment at KEK �Ahn et al., 2006�. While
this is about four orders of magnitude above the SM
expectation, the prospects for an improved measure-
ment of KL→�0��̄ appear almost better than for K+

→�+��̄ from the present perspective.
Indeed, a KL→�0��̄ experiment at KEK, E391a

�E391 Experiment, 2004�, should in its first stage im-
prove the bound in Eq. �1.6� by three orders of magni-
tude. While this is insufficient to reach the SM level, a
few events could be observed if Br�KL→�0��̄� turned
out to be larger by one order of magnitude due to new
physics contributions.

While an interesting experiment at Brookhaven,
KOPIO �Bryman, 2002; Littenberg, 2002�, that was sup-
posed to in due time provide 40–60 events of KL

→�0��̄ at the SM level, has unfortunately not been ap-
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proved to run at Brookhaven, the ideas presented in this
proposal will hopefully be realized one day. Finally, the
second stage of the E391 experiment could, using the
high intensity 50 GeV/c proton beam from JPARC �J-
PARC, 2004�, provide roughly 1000 SM events of KL

→�0��̄, which would be eventful. Perspectives of a
search for KL→�0��̄ at a � factory have been discussed
by Bossi et al. �1999�. Further reviews on experimental
prospects for K→���̄ can be found in Barker and Ket-
tell �2000�, Belyaev et al. �2001�, and Diwan �2002�.

Parallel to these efforts, during the coming years we
will witness unprecedented tests of the CKM picture of
flavor and CP violation in B decays that will be available
at SLAC, KEK, Tevatron, and CERN. The most promi-

nent of these tests will involve CP violation in the Bs
0-B̄s

0

mixing and a number of clean strategies for the determi-
nation of the angles � and � in the UT that will involve
B±, Bd

0, and Bs
0 two-body nonleptonic decays.

These efforts will be accompanied by the studies of
CP violation in decays like B→��, B→�K, and B
→KK, that in spite of being less theoretically clean than
the quantities considered in the present review, will cer-
tainly contribute to the tests of the CKM paradigm
�Cabibbo, 1963; Kobayashi and Maskawa, 1973�. In ad-
dition, rare decays such as B→Xs�, B→Xs,d	

+	−, Bs,d

→	+	−, B→Xs,d��̄, B→��̄, KL→�0e+e−, and KL

→�0	+	− will play an important role.
In 1994, two detailed analyses of K+→�+��̄, KL

→�0��̄, Bs
0-B̄s

0 mixing, and of CP asymmetries in B de-
cays have been presented in the anticipation of future
precise measurements of several theoretically clean ob-
servables, which could be used for determination of the
CKM matrix and of the unitarity triangle within the SM
�Buras, 1994; Buras et al., 1994�. These analyses were
speculative as in 1994 even the top quark mass was un-
known; none of the observables listed above have been
measured and the CKM elements �Vcb� and �Vub� were
rather poorly known.

During the last 13 years, impressive progress has
taken place: the top quark mass, the angle � in the UT,

and the Bs
0-B̄s

0 mixing mass difference �Ms have been
precisely measured, and three events of K+→�+��̄ have
been observed. We are still waiting for the observation
of KL→�0��̄ and a precise direct measurement of the
angle � in the UT from tree level decays, but now we are
rather confident that this will be realized in the next
decade.

This progress makes it possible to considerably im-
prove the analyses of Buras �1994� and Buras et al.
�1994� within the SM and to generalize them to its sim-
plest extensions. This is one of our goals in this review.
We see that the decays K+→�+��̄ and KL→�0��̄, as in
1994, play an important role in these investigations.

In this context, we emphasize that new physics contri-
butions in K+→�+��̄ and KL→�0��̄, in essentially all

extensions of the SM,1 can be parametrized in a model-
independent manner by two parameters �Buras et al.,
1998�, the magnitude of the short distance function X
�Buras, 2003, 2005a, 2005b� and its complex phase:

X = �X�ei�X �1.7�

with �X�=X�xt� and �X=0 in the SM. The important vir-
tues of the K→���̄ system are as follows:

• �x� and �X can be extracted from Br�KL→�0��̄� and
Br�K+→�+��̄� without any hadronic uncertainties.

• As in many extensions of the SM, the function X is
governed by the Z0 penguins with top quark and new
particle exchanges,2 the determination of the func-
tion X is the determination of the Z0 penguins that
enter other decays.

• The theoretical cleanness of this determination can-
not be matched by any other decay. For instance,
decays such as B→Xs,d	

+	− and Bs,d→	+	−, which
can also be used for this purpose, are subject to the-
oretical uncertainties of ±10% or more.

Already at this stage we emphasize that the clean the-
oretical character of these decays remains valid in essen-
tially all extensions of the SM, whereas this is generally
not the case for nonleptonic two-body B decays used to
determine the CKM parameters through CP asymme-
tries and/or other strategies. While several mixing-
induced CP asymmetries in nonleptonic B decays within
the SM are essentially free from hadronic uncertainties,
as the latter cancel out due to the dominance of a single
CKM amplitude, this is often not the case in extensions
of the SM in which the amplitudes receive new contri-
butions with different weak phases implying no cancel-
lation of hadronic uncertainties in the relevant observ-
ables. A classic example of this situation, as stressed by
Ciuchini and Silvestrini �2002�, is the mixing-induced CP

asymmetry in Bd
0�B̄d

0�→�KS decays that within the SM
measures the angle � in the UT with small hadronic
uncertainties. As soon as the extensions of the SM are
considered in which new operators and new weak
phases are present, the mixing-induced asymmetry a�KS
suffers from potential hadronic uncertainties that make
the determination of the relevant parameters problem-
atic unless the hadronic matrix elements can be calcu-
lated with sufficient precision. This is evident from the

many papers on the anomaly in Bd
0�B̄d

0�→�KS decays of
which the subset is given by Fleischer and Mannel
�2001�, Ciuchini and Silvestrini �2002�, Datta �2002�,
Hiller �2002�, Raidal �2002�, Grossman et al. �2003�, and
Khalil and Kou �2003�.

The goal of the present review is to collect the rel-
evant formulas for the decays K+→�+��̄ and KL

→�0��̄ and to investigate their theoretical and paramet-

1Exceptions will be discussed in Sec. VIII.
2Box diagrams seem to be relevant only in the SM and can be

calculated with high accuracy.
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ric uncertainties. In addition to known expressions, we
derive new ones that should allow transparent tests of
the SM and of its extensions. While our presentation is
centered around the SM, we also discuss models with
MFV and scenarios with new complex phases, in par-
ticular the littlest Higgs model with T parity, the MSSM,
Z� models, and a model with one universal extra dimen-
sion. We also give a review of other models. Moreover,
we investigate the interplay between the K→���̄ com-

plex, the Bd,s
0 -B̄d,s

0 mass differences �Md,s, and the angles
� and � in the unitarity triangle that will be measured
precisely in two-body B decays one day.

Our review is organized as follows. Sections II and III
can be considered as a compendium of formulas for the
decays K+→�+��̄ and KL→�0��̄ within the SM. We
also give formulas for the CKM factors and the UT that
are relevant for us. In particular, in Sec. III we investi-
gate the interplay between K→���̄, the mass differ-
ences �Md,s, and the angles � and �. In Sec. IV, a de-
tailed numerical analysis of the formulas of Secs. II and
III is presented. Section V is a short guide to subsequent
sections in which we review K→���̄ in various exten-
sions of the SM. In Sec. VI we indicate how the discus-
sion of previous sections is generalized to the class of the
MFV models. In Sec. VII our discussion is further gen-
eralized to three scenarios involving new complex
phases: a scenario with new physics entering only Z0

penguins, a scenario with new physics entering only

Bd
0-B̄d

0 mixing, and a hybrid scenario in which both Z0

penguins and Bd
0-B̄d

0 mixing are affected by new physics.
Here we derive a number of expressions that were not
presented in the literature so far and illustrate how the
new phases, and other new physics parameters, can be
determined by means of the �Rb ,�� strategy �Buras, Par-
odi, and Stocchi, 2003� and the related reference unitar-
ity triangle �Goto et al., 1996; Cohen et al., 1997; Gross-
man et al., 1997; Barenboim et al., 1999�. While the
discussion of Sec. VII is practically model independent
within three scenarios considered, we give in Sec. VIII a
review of existing results for both decays within specific
extensions of the SM, such as little Higgs, Z� and super-

symmetric models, models with extra dimensions, mod-
els with lepton-flavor mixing, and other selected models
considered in the literature. In Sec. IX we compare the
K→���̄ decays with other K and B decays used for the
determination of the CKM phases and of the UT with
respect to the theoretical cleanness. In Sec. X we de-
scribe the long-distance contributions that are taken into
account in the numerical analyses. Finally, in Sec. XI we
summarize our results and give an outlook for the fu-
ture.

II. BASIC FORMULAS

A. Preliminaries

In this section, we collect the formulas for the branch-
ing ratios for the decays K+→�+��̄ and KL→�0��̄ that
constitute the basis for this review. We also give values
of the relevant parameters as well as recall formulas re-
lated to the CKM matrix and the unitarity triangle that
are relevant for this review. Clearly, many formulas
listed below have been presented previously in the lit-
erature, in particular in Buchalla and Buras �1996, 1999�,
Buchalla, Buras, and Lautenberger �1996�, Buras �1998,
2003, 2005a, 2005b�, Battaglia et al. �2003�, and Buras,
Parodi, and Stocchi �2003�. Still the collection of them at
one place and the addition of new ones should be useful
for future investigations.

The effective Hamiltonian relevant for K+→�+��̄ and
KL→�0��̄ decays can be written in the SM as follows
�Buchalla and Buras, 1994a, 1999�:

Heff
SM =

GF

�2

�

2� sin2 �w
�

l=e,	,�
�Vcs

* VcdXNL
l + Vts

* VtdX�xt��

��s̄d�V-A��̄l�l�V-A, �2.1�

with all symbols defined below. It is obtained from the
relevant Z0 penguin and box diagrams with the up,
charm, and top quark exchanges shown in Fig. 1 and
includes QCD corrections at the NLO level �Buchalla
and Buras, 1993a, 1993b, 1994a, 1999; Misiak and Ur-
ban, 1999� and the NNLO calculated recently �Buras,
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FIG. 1. The penguin and box
diagrams contributing to K+

→�+��̄. For KL→�0��̄, only
the spectator quark is changed
from u to d.
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Gorbahn, Haisch, et al., 2005, 2006�. The presence of up
quark contributions is only needed for the GIM mecha-
nism to work, otherwise only the internal charm and top
contributions matter. The relevance of these contribu-
tions in each decay is spelled out below.

The index l=e, 	, � denotes the lepton flavor. The
dependence on the charged lepton mass resulting from
box diagrams is negligible for the top contribution. In
the charm sector, this is the case only for the electron
and the muon but not for the � lepton. In what follows,
we give the branching ratios that follow from Eq. �2.1�.

B. K+\�+��̄

The branching ratio for K+→�+��̄ in the SM is domi-
nated by Z0 penguin diagrams with a significant contri-
bution from the box diagrams. Summing over three neu-
trino flavors, it can be written as follows �Buchalla and
Buras, 1999; Mescia and Smith, 2007�:

Br�K+ → �+��̄� = �+�1 + �EM�	
 Im �t

�5 X�xt��2

+ 
Re �c

�
Pc�X� +

Re �t

�5 X�xt��2� ,

�2.2�

�+ = �5.173 ± 0.025�� 10−11	 �

0.225
�8

. �2.3�

An explicit derivation of Eq. �2.2� can be found in Buras
�1998�. Here xt=mt

2 /MW
2 , �i=V

is
* Vid are the CKM factors

discussed below and �+ summarizes all remaining factors
following from Eq. �2.1�, in particular the relevant had-
ronic matrix elements that can be extracted from leading
semileptonic decays of K+, KL, and KS mesons. The
original calculation of these matrix elements �Marciano
and Parsa, 1996� has recently been significantly im-
proved by Mescia and Smith �Mescia and Smith, 2007�,
where details can be found; in particular, �EM amounts
to −0.3%, which we neglect in what follows. In obtaining
the numerical value in Eq. �2.3� �Mescia and Smith,
2007�, the values �Yao et al., 2006�

sin2 �w = 0.231, � =
1

127.9
, �2.4�

given in the minimal subtraction �MS� scheme have been
used. Their errors are below 0.1% and can be neglected.
There is an issue related to sin2 �w that, although well
measured in a given renormalization scheme, is a
scheme-dependent quantity with the scheme depen-
dence only removed by considering higher-order elec-
troweak effects in K→���̄. An analysis of such effects
in the large mt limit �Buchalla and Buras, 1998� shows
that in principle they could introduce a ±5% correction
in the K→���̄ branching ratios, but with the MS defi-
nition of sin2 �w these higher-order electroweak correc-
tions are found below 2% and can also be safely ne-
glected. Similar comments apply to �. This pattern of

higher-order electroweak corrections is also found in the

Bd,s
0 -B̄d,s

0 mixing �Gambino et al., 1999�. Yet, in the fu-
ture, a complete analysis of two-loop electroweak con-
tributions to K→��̄� would certainly be of interest.

The apparent large sensitivity of Br�K+→�+��̄� to � is
spurious as Pc�X���−4 and the dependence on � in Eq.
�2.3� cancels the one in Eq. �2.2� to a large extent. How-
ever, basically for aesthetic reasons it is useful to first
write these formulas as given above. In doing this, it is
essential to keep track of the � dependence as it is hid-
den in Pc�X� �see Eq. �2.13��, and changing � while keep-
ing Pc�X� fixed would give wrong results. For later pur-
poses, we also introduce

�̄+ =
�+

�8 = �7.87 ± 0.04�� 10−6. �2.5�

The function X�xt� relevant for the top part is given by

X�xt� = X0�xt� +
�s�mt�

4�
X1�xt� = �XX0�xt� ,

�X = 0.995, �2.6�

where

X0�xt� =
xt

8
	−

2 + xt

1 − xt
+

3xt − 6

�1 − xt�2 ln xt� �2.7�

describes the contribution of Z0 penguin diagrams and
box diagrams without the QCD corrections �Inami and
Lim, 1981; Buchalla et al., 1991� and the second term
represents the QCD correction �Buchalla and Buras,
1993a, 1993b, 1999; Misiak and Urban, 1999� with

X1�xt� = −
29xt − xt

2 − 4xt
3

3�1 − xt�2 −
xt + 9xt

2 − xt
3 − xt

4

�1 − xt�3 ln xt

+
8xt + 4xt

2 + xt
3 − xt

4

2�1 − xt�3 ln2 xt −
4xt − xt

3

�1 − xt�2

�L2�1 − xt� + 8x
�X0�xt�

�xt
ln x	, �2.8�

where x	=	t
2 /MW

2 , 	t=O�mt� and

L2�1 − xt� = 
1

xt

dt
ln t

1 − t
. �2.9�

The 	t dependence in the last term in Eq. �2.8� cancels
to the order considered the 	t dependence of the leading
term X0�xt�	t�� in Eq. �2.6�. The leftover 	t dependence
in X�xt� is below 1%. The factor �X summarizes the
NLO corrections represented by the second term in Eq.
�2.6�. With mt�mt�mt�, the QCD factor �X is indepen-
dent of mt and �s�MZ� and is close to unity. Varying
mt�mt� from 150 to 180 GeV changes �X by at most
0.1%.

The uncertainty in X�xt� is then fully dominated by
the experimental error in mt. The MS top-quark mass,3

3We thank M. Jamin for discussions on this subject.
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including one-, two-, and three-loop contributions
�Melnikov and Ritbergen, 2000� and corresponding to
the most recent mt

pole=170.9±1.1±1.5 GeV �Brubaker et
al., 2006�, is given by

mt�mt� = 161.0 ± 1.7 GeV. �2.10�

One finds then

X�xt� = 1.443 ± 0.017. �2.11�

X�xt� increases with mt roughly as mt
1.15. After the LHC

era the error on mt should decrease below ±1 GeV, im-
plying the error of ±0.01 in X�xt� that can be neglected
for all practical purposes.

The parameter Pc�X� summarizes the charm contribu-
tion and is defined through

Pc�X� = Pc
SD�X� + �Pc,u, �2.12�

with the long-distance contributions �Pc,u=0.04±0.02
�Isidori et al., 2005�. The short-distance part is given by

Pc
SD�X� =

1

�4	2
3

XNNL
e +

1
3

XNNL
� � , �2.13�

where the functions XNNL
l result from the NLO calcula-

tion �Buchalla and Buras, 1994a, 1999� and NNLO �Bu-
ras, Gorbahn, Haisch, et al., 2005, 2006�. The index l
distinguishes between the charged lepton flavors in the
box diagrams. This distinction is irrelevant in the top
contribution due to mt�ml but is relevant in the charm
contribution as m��mc. The inclusion of NLO correc-
tions reduced considerably the large 	c dependence
�with 	c=O�mc�� present in the leading-order expres-
sions for the charm contribution �Vainshtein et al., 1977;
Ellis and Hagelin, 1983; Dib et al., 1991�. Varying 	c in
the range 1�	c�3 GeV changes XNNL

l by roughly 24%
at NLO to be compared to 56% in the leading order. At
NNLO, the 	c dependence is further decreased, as dis-
cussed below.

The net effect of QCD corrections is to suppress the
charm contribution by roughly 30%. For our purposes,

we need only Pc�X�. In Table I, we give its values for
different �s�MZ� and mc�mc�mc�. The chosen range for
mc�mc� is close to most recent estimates. For instance,
mc�mc�=1.286�13�, 1.29�7��13�, and 1.29�7� �all in GeV�
have been found from Re+e−

�s� �Kuhn et al., 2007�,
quenched combined with dynamical lattice QCD �Dou-
gall et al., 2006�, and charmonium sum rules �Hoang and
Jamin, 2004�, respectively. Further references can be
found in these papers and in Battaglia et al. �2003�.

Finally, in Table II we show the dependence of Pc�X�
on �s�MZ� and 	c at fixed mc�mc�=1.30 GeV.

Restricting the three parameters involved to the
ranges

1.15�mc�mc�� 1.45 GeV, 1.0�	c� 3.0 GeV,

�2.14�

0.115� �s�MZ�� 0.123, �2.15�

one arrives at �Buras, Gorbahn, Haisch, et al., 2005�

Pc�X�SD = �0.375 ± 0.031mc
± 0.009	c

± 0.009�s
�

�
0.2248

�
�4

, �2.16�

where the errors correspond to mc�mc�, 	c, and �s�MZ�,
respectively. The uncertainty due to mc is significant. On
the other hand, the uncertainty due to �s is small. In
principle, one could add the errors in Eq. �2.16� linearly,
which would result in an error of ±0.049. We think that
this estimate would be too conservative. Adding the er-
rors in quadrature gives ±0.033. This could be too opti-
mistic, since the uncertainties are not statistically distrib-
uted. Therefore, as the final result for Pc�X� we quote

Pc�X� = 0.41 ± 0.05, �2.17�

which we use in this review.
We expect that the reduction of the error in �s�MZ� to

±0.001 will decrease the corresponding error to 0.005,
making it negligible. Concerning the error due to

TABLE I. The parameter Pc�X� in NNLO approximation for various values of �s�MZ� and mc�mc�
�Buras, Gorbahn, Haisch, et al., 2006�. The numerical values for Pc�X� correspond to �=0.2248,
	W=80.0 GeV, 	b=5.0 GeV, and 	c=1.50 GeV.

�s�MZ� \mc�mc� �GeV�

Pc�X�

1.15 1.20 1.25 1.30 1.35 1.40 1.45

0.115 0.307 0.336 0.366 0.397 0.430 0.463 0.497
0.116 0.303 0.332 0.362 0.394 0.426 0.459 0.493
0.117 0.300 0.329 0.359 0.390 0.422 0.455 0.489
0.118 0.296 0.325 0.355 0.386 0.417 0.450 0.484
0.119 0.292 0.321 0.350 0.381 0.413 0.446 0.480
0.120 0.288 0.316 0.346 0.377 0.409 0.441 0.475
0.121 0.283 0.312 0.342 0.372 0.404 0.437 0.470
0.122 0.279 0.307 0.337 0.368 0.399 0.432 0.465
0.123 0.274 0.303 0.332 0.363 0.394 0.426 0.460
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mc�mc�, it should be noted that increasing the error in
mc�mc� to ±70 MeV would increase the first error in Eq.
�2.16� to 0.047, whereas its decrease to ±30 MeV would
decrease it to 0.020. More generally, we have to a good
approximation

��Pc�X��mc
= 	 0.67

GeV
��„mc�mc�… . �2.18�

From the present perspective, unless important ad-
vances in the determination of mc�mc� are made, it will
be difficult to decrease the error on Pc�X� below ±0.03,
although ±0.02 cannot be fully excluded. We use this
information in our numerical analysis in Sec. IV.

C. KL\�0��̄

The neutrino pair produced by Heff
SM in Eq. �2.1� is a

CP eigenstate with positive eigenvalue. Consequently,
within the approximation of keeping only operators of
dimension 6, as done in Eq. �2.1�, the decay KL→�0��̄
proceeds entirely through CP violation �Littenberg,
1989�. However, as pointed out by Buchalla and Isidori
�1998�, even in the SM there are CP-conserving contri-
butions to KL→�0��̄, which are generated only by local
operators of d�8 or by long-distance effects. Fortu-
nately, these effects are smaller by a factor of 105 than
the leading CP-violating contribution and can be safely
neglected �Buchalla and Isidori, 1998�. As we discuss in
Sec. VIII, the situation can be in principle different be-
yond the SM.

The branching ratio for KL→�0��̄ in the SM is then
fully dominated by diagrams with internal top exchanges
with the charm contribution well below 1%. The branch-
ing ratio can be written then as follows �Buchalla and
Buras, 1996; Buchalla, Buras, and Lautenberger, 1996;
Buras, 1998�:

Br�KL → �0��̄� = �L
 Im �t

�5 X�xt��2

, �2.19�

�L = �2.231 ± 0.013�� 10−10	 �

0.225
�8

, �2.20�

where we have summed over three neutrino flavors. An
explicit derivation of Eq. �2.19� can be found in Buras
�1998�. Here �L is the factor corresponding to �+ in Eq.
�2.2�. The original calculation of �L �Marciano and
Parsa, 1996� has been recently significantly improved by
Mescia and Smith �2007�, where details can be found.
Due to the absence of Pc�X� in Eq. �2.19�, Br�KL

→�0��̄� has essentially no theoretical uncertainties and
is only affected by parametric uncertainties from mt,
Im �t, and �L. These uncertainties should be decreased
significantly in the coming years so that a precise predic-
tion for Br�KL→�0��̄� should be available in this de-
cade. On the other hand, as discussed below, once this
branching ratio has been measured, Im �t can be in prin-
ciple determined with exceptional precision not matched
by any other decay �Buchalla and Buras, 1996�.

D. KS\�0��̄

Next, mainly for completeness, we give the expression
for Br�KS→�0��̄�, which, due to ��KS����KL�, is sup-
pressed by roughly two orders of magnitude relative to
Br�KL→�0��̄�. We have �Bossi et al., 1999�

Br�KS → �0��̄� = �S
Re �c

�
Pc�X� +

Re �t

�5 X�xt��2

,

�2.21�

�S = �L
��KS�
��KL�

= �3.91 ± 0.02�� 10−13	 �

0.2248
�8

.

�2.22�

Introducing the “reduced” branching ratio

TABLE II. The parameter Pc�X� in NNLO approximation for various values of �s�MZ� and 	c
�Buras, Gorbahn, Haisch, et al., 2006�. The numerical values for Pc�X� correspond to �=0.2248,
mc�mc�=1.30 GeV, 	W=80.0 GeV, and 	b=5.0 GeV.

�s�MZ� \	c �GeV�

Pc�X�

1.0 1.5 2.0 2.5 3.0

0.115 0.393 0.397 0.395 0.392 0.388
0.116 0.389 0.394 0.391 0.388 0.383
0.117 0.384 0.390 0.387 0.383 0.379
0.118 0.380 0.386 0.383 0.379 0.374
0.119 0.375 0.381 0.379 0.374 0.369
0.120 0.370 0.377 0.374 0.369 0.364
0.121 0.365 0.372 0.369 0.364 0.359
0.122 0.359 0.368 0.364 0.359 0.354
0.123 0.353 0.363 0.359 0.354 0.348
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B3 =
Br�KS → �0��̄�

�S
�2.23�

and analogous ratios B1 and B2 for K+→�+��̄ and KL

→�0��̄ given in Eq. �3.24�, we find a simple relation
between the three K→���̄ decays,

B1 = B2 + B3. �2.24�

We emphasize that, while Br�KL→�0��̄� being only
sensitive to Im �t provides a direct determination of �̄,
Br�KS→�0��̄� being only sensitive to Re�t provides a
direct determination of �̄. The latter determination is
not as clean as the one of �̄ from KL→�0��̄ due to the
presence of the charm contribution in Eq. �2.21�. How-
ever, it is much cleaner than the corresponding determi-
nation of �̄ from KL→	+	−. Unfortunately, the small
branching ratio Br�KS→�0��̄��5�10−13 will not allow
this determination in the foreseeable future. Therefore,
we will not consider KS→�0��̄ in this review. Still one
should not forget that the presence of another theoreti-
cally clean observable would be useful in testing exten-
sions of the SM. Discussions of the complex KL→�0��̄
and KS→�0��̄ and its analogies to the studies of �� /�
can be found in D’Ambrosio et al. �1994� and Bossi et al.
�1999�.

E. CKM parameters

1. Unitarity triangle, Im �t and Re�t

Concerning the CKM parameters, we use in our nu-
merical analysis the Wolfenstein parametrization
�Wolfenstein, 1983�, generalized to include higher orders
in ���Vus� �Buras et al., 1994�. This turns out to be use-
ful in making the structure of various formulas transpar-
ent and gives results close to the ones obtained by
means of the exact standard parametrization �Chau and
Keung, 1984; Hagiwara et al., 2002�. The basic param-
eters are

�, A =
�Vcb�
�2 , �̄ = �
1 −

�2

2
�, �̄ = �
1 −

�2

2
�
�2.25�

with � and � the usual Wolfenstein parameters �Wolfen-
stein 1983�. The parameters �̄ and �̄, introduced by Bu-
ras et al. �1994�, are useful as they describe the apex of
the standard UT as shown in Fig. 2. More details on the

unitarity triangle and the generalized Wolfenstein pa-
rametrization can be found in Buras et al. �1994�, Batta-
glia et al. �2003�, and Buras �2003, 2005a, and 2005b�.
Below, we only recall certain expressions that we need in
the course of our discussion.

Parallel to the use of the parameters in Eq. �2.25� it
will turn out to be useful to express the CKM elements
Vtd and Vts as follows �Buras et al., 2004a�:

Vtd = ARt�
3e−i�, Vts = − �Vts�e−i�s, �2.26�

with tan �s�−�2�̄. The smallness of �s follows from the
CKM phase conventions and the unitarity of the CKM
matrix. Consequently, it is valid beyond the SM if three
generation unitarity is assumed. Rt and � are defined in
Fig. 2.

We have then

�t � Vts
* Vtd = − r̃��Vcb�2Rte

−i�ei�s

with r̃ = � Vts

Vcb
� = �1 + �2�2�̄ − 1� � 0.985,

�2.27�

where in order to avoid high powers of �, we expressed
the parameter A through �Vcb�. Consequently,

Im �t = r̃��Vcb�2Rt sin��eff� ,

Re �t = − r̃��Vcb�2Rt cos��eff� , �2.28�

with �eff=�−�s.
Alternatively, using the parameters in Eq. �2.25�, one

has �Buras et al., 1994�

Im �t = ���Vcb�2, Re �t = − 
1 −
�2

2
���Vcb�2�1 − �̄� ,

�2.29�

Re �c = − �
1 −
�2

2
� . �2.30�

The expressions for Im �t and Re�c represent to an ac-
curacy of 0.2% the exact formulas obtained using the
standard parametrization. The expression for Re�t in
Eq. �2.29� deviates by at most 0.5% from the exact for-
mula in the full range of parameters considered. After
inserting the expressions �2.29� and �2.30� into the exact
formulas for quantities of interest, further expansion in
� should not be made.

2. Leading strategies for (�̄ , �̄)

Next, we have the following useful relations, which
correspond to the best strategies for the determination
of ��̄ , �̄� considered by Buras, Parodi, and Stocchi
�2003�.

�Rt ,�� strategy:

�̄ = 1 − Rt cos �, �̄ = Rt sin � , �2.31�

with Rt determined through Eq. �2.45� and � through
a
KS

. In this strategy, Rb and � are given by

b
t

βγ

α

C=(0,0) B=(1,0)

R
R

A=(ρ,η)

FIG. 2. Unitarity triangle.
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Rb = �1 + Rt
2 − 2Rt cos �, cot � =

1 − Rt cos �

Rt sin �
.

�2.32�

�Rb ,�� strategy:

�̄ = Rb cos �, �̄ = Rb sin � , �2.33�

with � �see Fig. 2� determined through clean strategies in
tree dominated B decays �Ball et al., 2000; Anikeev et
al., 2001; Nir, 2001; Fleischer, 2002, 2004; Ali, 2003;
Buchalla, 2003; Buras, 2003, 2005a, 2005b; Hurth, 2003�.
In this strategy, Rt and � are given by

Rt = �1 + Rb
2 − 2Rb cos �, cot � =

1 − Rb cos �

Rb sin �
.

�2.34�

�� ,�� strategy:
Formulas in Eq. �2.31� and

Rt =
sin �

sin�� + ��
, �2.35�

with � and � determined through a
KS
and clean strate-

gies for � as in Eq. �2.33�. In this strategy, the length Rb
and �Vub /Vcb� can be determined through

Rb =
sin �

sin�� + ��
, �Vub

Vcb
� = 
 �

1 − �2/2
�Rb. �2.36�

��̄ ,�� strategy:

�̄ =
�̄

tan �
�2.37�

with �̄ determined, for instance, through Br�KL

→�0��̄� as discussed in Sec. III and � as in the two
strategies above.

As demonstrated by Buras, Parodi, and Stocchi

�2003�, the �Rt ,�� strategy is useful now that the Bs
0-B̄s

0

mixing mass difference �Ms has been measured. How-
ever, the remaining three strategies turn out to be more
efficient in determining ��̄ , �̄�. The strategies �� ,�� and
��̄ ,�� are theoretically cleanest as � and � will be mea-
sured precisely in two-body B decays one day and �̄ can
be extracted from Br�KL→�0��̄� subject only to the un-
certainty in �Vcb�. Combining these two strategies offers
a precise determination of the CKM matrix including
�Vcb� and �Vub� �Buras, 1994�. On the other hand, these
two strategies are subject to uncertainties coming from
new physics that can enter through � and �̄. The angle �,
the phase of Vub, can be determined in principle without
these uncertainties.

The strategy �Rb ,��, on the other hand, while subject
to hadronic uncertainties in the determination of Rb, is
not affected by new physics contributions as, in addition
to �, also Rb can be determined from tree level decays.
This strategy results in the so-called reference unitarity
triangle �RUT� as discussed by Goto et al. �1996�, Cohen

et al. �1997�, Grossman et al. �1997�, and Barenboim et al.
�1999�. We return to these strategies in the course of our
presentation.

3. Constraints from the standard analysis of the UT

Other useful expressions that represent the con-
straints from the CP-violating parameter �K and �Ms,d,

which parametrize the size of Bs,d
0 -B̄s,d

0 mixings, are as
follows.

First, we have

�K = − C�B̂K Im �t��4 Re �cPc���

+ Re �t�2
QCDS0�xt��ei�/4, �2.38�

where S0�xt�=2.27±0.04 results from �S=2 box dia-
grams and the numerical constant C� is given by �MW
=80.4 GeV�

C� =
GF

2FK
2 mKMW

2

6�2�2�MK

= 3.837� 104. �2.39�

Next �Herrlich and Nierste, 1994, 1995, 1996; Jamin and
Nierste, 2004�,

Pc��� =
P̄c���
�4 = �0.29 ± 0.07�	0.2248

�
�4

,

P̄c��� = �7.3 ± 1.7�� 10−4, �2.40�

�2
QCD=0.574±0.003 �Buras et al., 1990; Buchalla, Buras,

and Lautenbacher, 1996; Buras, 1998�, and B̂K is a non-
perturbative parameter. In obtaining Eq. �2.38�, a small
term amounting to at most 5% correction to �K has been
neglected. This is justified in view of other uncertainties,

in particular those connected with B̂K, but in the future
it should be taken into account �Andriyash et al., 2004�.

Comparing Eq. �2.38� with the experimental value for
�K �Hagiwara et al., 2002�,

��K�exp = �2.280 ± 0.013�� 10−3 exp�i�/4� , �2.41�

one obtains a constraint on the UT that with the help of
Eqs. �2.29� and �2.30� can be cast into

�̄��1 − �̄��Vcb�2�2
QCDS0�xt� + P̄c�����Vcb�2B̂K

= 1.184� 10−6	0.2248

�
�2

. �2.42�

Next, the constraint from �Md implies

Rt =
1

�

�Vtd�
�Vcb�

= 0.834	 �Vtd�
7.75� 10−3�	0.0415

�Vcb� �
�	0.2248

�
� , �2.43�
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�Vtd� = 7.75� 10−3	 230 MeV

�B̂Bd
FBd

�� �Md

0.50/ps

�� 0.55

�B
QCD� 2.40

S0�xt�
. �2.44�

Here �B̂Bd
FBd

is a nonperturbative parameter and
�B

QCD=0.551±0.003 the QCD correction �Buras et al.,
1990; Urban et al., 1998�.

Finally, the simultaneous use of �Md and �Ms gives

Rt = 0.935r̃	 �

1.24
�	0.2248

�
��17.8/ps

�Ms
� �Md

0.50/ps
,

� =
�B̂Bs

FBs

�B̂Bd
FBd

�2.45�

with r̃ defined in Eq. �2.27� and � standing for a nonper-
turbative parameter that is subject to smaller theoretical

uncertainties than the individual �B̂Bd
FBd

and �B̂Bs
FBs

.
The main uncertainties in these constraints originate

in the theoretical uncertainties in B̂K, �B̂dFBd
, �B̂sFBs

,
and to a lesser extent in � �Hashimoto, 2005; Dawson et
al., 2006�,

B̂K = 0.79 ± 0.04 ± 0.08, �B̂dFBd
= 214 ± 38 MeV,

�B̂sFBs
= 262 ± 35 MeV, � = 1.23 ± 0.06. �2.46�

The QCD sum-rule results for the parameters in ques-
tion are similar and can be found in Battaglia et al.
�2003�. Finally �Battaglia et al., 2003; Abulencia et al.,
2006�,

�Md = �0.507 ± 0.005�/ps, �Ms = �17.77 ± 0.12�/ps.

�2.47�

Extensive discussion of the formulas �2.38�, �2.42�,
�2.44�, and �2.45� can be found in Battaglia et al. �2003�.
For our numerical analysis, we use �Bona et al., 2005�

� = 0.2258 ± 0.0014, A = 0.816 ± 0.016,

�Vcb� = �41.6 ± 0.6�� 10−3, �2.48�

�Vub

Vcb
� = 0.088 ± 0.005, Rb = 0.38 ± 0.01, �2.49�

� = �22.2 ± 0.9��, �s = − 1� �2.50�

with the value of � following from the UT fit and slightly
higher than the one determined from measurements of
the time-dependent CP asymmetry a
KS

�t� that give
�Abe et al., 2002; Aubert et al., 2002a; Browder, 2004;
Barberio et al., 2007�

�sin 2��
KS
= 0.675 ± 0.026, � = 21.2 ± 1.0. �2.51�

III. PHENOMENOLOGICAL APPLICATIONS IN THE SM

A. Preliminaries

During the past ten years, several analyses of K
→���̄ decays within the SM were presented, in particu-
lar in Buchalla and Buras �1999�, D’Ambrosio and Isi-
dori �2002�, Buras �2003, 2005a, 2005b�, Kettell et al.
�2004�, Charles et al. �2005�, Haisch �2005�, Bona et al.
�2006a�, and Mescia and Smith �2007�. Moreover, corre-
lations with other decays have been pointed out �Buras
and Silvestrini, 1999; Bergmann and Perez, 2000, 2001;
Buras et al., 2000�. In this section, we collect and update
many of these formulas and derive a number of new
useful expressions. In the next section, a detailed nu-
merical analysis of these formulas will be presented. Un-
less explicity stated, all formulas are given for �
=0.2248. The dependence on � can easily be found from
the formulas of the preceding section. When the depen-
dence is introduced, it is often useful to replace �2A by
�Vcb� to avoid high powers of �. On the whole, the issue
of the error in � in K→���̄ decays is really not an issue
if changes are made consistently in all places, as empha-
sized earlier.

B. Unitarity triangle and K+\�+��̄

1. Basic formulas

Using Eqs. �2.28� in �2.2�, we obtain �Buras et al.,
2004a�

Br�K+ → �+��̄� = �+�r̃2A4Rt
2X2�xt�

+ 2r̃P̄c�X�A2RtX�xt�

�cos �eff + P̄c�X�2� , �3.1�

with �eff=�−�s, r̃ given in Eq. �2.27� and

P̄c�X� = 
1 −
�2

2
�Pc�X� . �3.2�

In the context of the unitarity triangle, the expression
following from Eqs. �2.2� and �2.29� is also useful �Buras
et al., 1994�,

Br�K+ → �+��̄� = �̄+�Vcb�4X2�xt�
1

�
����̄�2 + ��c − �̄�2� ,

�3.3�

where

� = 
 1

1 − ��2/2��
2

. �3.4�

The measured value of Br�K+→�+��̄� then deter-
mines an ellipse in the ��̄ , �̄� plane centered at ��c ,0�
�see Fig. 3� with

�c = 1 +
�4Pc�X�

�Vcb�2X�xt�
�3.5�

and having the squared axes
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�̄1
2 = r0

2, �̄1
2 = 
 r0

�
�2

, �3.6�

where

r0
2 = 	�Br�K+ → �+��̄�

�̄+�Vcb�4X2�xt�
� . �3.7�

Note that r0 depends only on the top contribution. The
departure of �c from unity measures the relative impor-
tance of the internal charm contributions, �c�1.37.

Then imposing the constraint from �Vub /Vcb� allows us
to determine �̄ and �̄ with

�̄ =
1

1 − �2 ��c − ��2�c
2 + �1 − �2��r0

2 − �2Rb
2�� ,

�̄ = �Rb
2 − �̄2, �3.8�

where �̄ is assumed to be positive. Consequently,

Rt
2 = 1 + Rb

2 − 2�̄, Vtd = A�3�1 − �̄ − i�̄� ,

�Vtd� = A�3Rt. �3.9�

The determination of �Vtd� and of the unitarity triangle
in this way requires knowledge of �Vcb� �or A� and of
�Vub /Vcb�. Both values are subject to theoretical uncer-
tainties present in the existing analyses of tree level de-
cays �Battaglia et al., 2003�. Whereas the dependence on
�Vub /Vcb� is rather weak, the strong dependence of
Br�K+→�+��̄� on A or �Vcb�, as seen in Eqs. �3.1� and
�3.3�, made in the past a precise prediction for this
branching ratio and the construction of the UT difficult.
With the more accurate value of �Vcb� obtained recently
�Battaglia et al., 2003� and given in Eq. �2.48�, the situa-
tion improved significantly. We return to this in Sec. IV.
The dependence of Br�K+→�+��̄� on mt is also strong.
However, mt is known already within ±1% and conse-
quently the related uncertainty in Br�K+→�+��̄� is sub-
stantially smaller than the corresponding uncertainty
due to �Vcb�.

As �Vub /Vcb� is subject to theoretical uncertainties, a
cleaner strategy is to use Br�K+→�+��̄� in conjunction
with � determined through the mixing-induced CP
asymmetry a
KS

. We investigate this strategy in the next
section.

2. Br(K+\�+��̄), �, �Md Õ�Ms, or �

Buchalla and Buras �1999� derived an upper bound on
Br�K+→�+��̄� within the SM. This bound depends only
on �Vcb�, X, �, and �Md /�Ms. With the precise value for
the angle � now available, this bound can be turned into
a useful formula for Br�K+→�+��̄� �D’Ambrosio and
Isidori, 2002� that expresses this branching ratio in terms
of theoretically clean observables. In the SM and any
MFV model, this reads

Br�K+ → �+��̄� = �̄+�Vcb�4X2	�Rt
2 sin2 �

+
1

�

Rt cos � +

�4Pc�X�
�Vcb�2X

�2� ,

�3.10�

with � defined in Eq. �3.4� and �̄+ given in Eq. �2.5�. It
can be considered as the fundamental formula for a cor-
relation between Br�K+→�+��̄�, �, and any observable
used to determine Rt. This formula is theoretically very
clean with the uncertainties residing only in �Vcb�, Pc�X�,
and �̄+. However, when one relates Rt to some observ-
able new uncertainties could enter. Buchalla and Buras
�1999� and D’Ambrosio and Isidori �2002� proposed to
express Rt through �Md /�Ms by means of Eq. �2.45�.
This implies an additional uncertainty due to the value
of � in Eq. �2.46�.

Here we point out that if the strategy �� ,�� is used to
determine Rt by means of Eq. �2.35�, the resulting for-
mula that relates Br�K+→�+��̄�, �, and � is even
cleaner than the one that relates Br�K+→�+��̄�, �, and
�Md /�Ms. We have then

Br�K+ → �+��̄� = �̄+�Vcb�4X2	�T1
2

+
1

�

T2 +

�4Pc�X�
�Vcb�2X

�2� , �3.11�

where

T1 =
sin � sin �

sin�� + ��
, T2 =

cos � sin �

sin�� + ��
. �3.12�

Similarly, the following formulas for Rt could be used in
conjunction with Eq. �3.10�:

Rt =
r̃

�
�Br�B → Xd��̄�

Br�B → Xs��̄�
, �3.13�

Rt =
r̃

�
� ��Bs�
��Bd�

mBs

mBd

	 FBs

FBd

��Br�Bd → 	+	−�
Br�Bs → 	+	−�

,

�3.14�

with r̃ given in Eq. �2.26�. In particular, Eq. �3.13� is
essentially free of hadronic uncertainties �Buchalla and

Isidori, 1998�, and Eq. �3.14�, not involving B̂Bs
/ B̂Bd

, is a
bit cleaner than Eq. �2.45�.

�

�

�

� � � � � � � � �

� 	
 � 	� �

K

L

� 

o

� 	�

K

�

� 

�

� 	�

FIG. 3. Unitarity triangle from K→���̄.
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C. KL\�0��̄, �̄, Im �t, and the (� ,�) strategy

1. �̄ and Im �t

Using Eqs. �2.19� and �2.28�, we find

Br�KL → �0��̄� = �Lr̃2A4Rt
2X2�xt�sin2 �eff. �3.15�

In the context of the unitarity triangle, the expression
following from Eqs. �2.19� and �2.29� is useful,

Br�KL → �0��̄� = �̄L�
2�Vcb�4X2�xt� ,

�̄L =
�L

�8 = �3.39 ± 0.03�� 10−5 �3.16�

from which �̄=��1−�2 /2� can be determined,

�̄ = 0.351�3.34� 10−5

�̄L
	 1.53

X�xt�
�

�	0.0415

�Vcb� �2�Br�KL → �0��̄�
3� 10−11 . �3.17�

The determination of �̄ in this manner requires knowl-
edge of �Vcb� and mt. With an improved determination of
these two parameters, useful determination of �̄ should
be possible.

On the other hand, the uncertainty due to �Vcb� is not
present in the determination of Im �t as �Buchalla and
Buras, 1996�

Im �t = 1.39� 10−4	 �

0.2248
��3.34� 10−5

�̄L
	 1.53

X�xt�
�

��Br�KL → �0��̄�
3� 10−11 . �3.18�

This formula offers the cleanest method to measure
Im �t in the SM and all MFV models in which the func-
tion X takes generally different values than X�xt�. This
determination is even better than the one with the help
of the CP asymmetries in B decays that require knowl-
edge of �Vcb� to determine Im �t. Measuring Br�KL

→�0��̄� with 10% accuracy allows us to determine Im �t
with an error of 5% �Buchalla and Buras, 1996;
Buchalla, Buras, and Leutenberger, 1996; Buras, 1998�.

The importance of the precise measurement of Im �t
is clear: the areas A� of all unitarity triangles are equal
and related to the measure of CP violation JCP �Jarlskog,
1985a, 1985b�,

�JCP� = 2A� = �
1 −
�2

2
��Im �t� . �3.19�

2. A new “golden relation”

Next, in the spirit of the analysis by Buras �1994�, we
use the clean CP asymmetries in B decays and deter-
mine �̄ through the �� ,�� strategy. Using Eqs. �2.31� and
�2.35� in Eq. �3.17�, we obtain a new “golden relation”

sin � sin �

sin�� + ��
= 0.351�3.34� 10−5

�̄L
	 1.53

X�xt�
�

�	0.0415

�Vcb� �2�Br�KL → �0��̄�
3� 10−11 . �3.20�

This relation between �, �, and Br�KL→�0��̄� is
clean and offers a test of the SM and of its extensions.
Similarly to the golden relation in Eq. �1.1�, it connects
the observables in B decays with those in K decays.
Moreover, it has the following two important virtues:

• It allows us to determine �X�,

�X� = F1„�,�, �Vcb�,Br�KL�… �3.21�

with Br�KL�=Br�KL→�0��̄�. The analytic expres-
sion for the function F1 can easily be extracted
from Eq. �3.20�.

• As X�xt� should be known with high precision once
the error on mt has been decreased, the relation
�3.20� allows us to determine �Vcb� with a remarkable
precision �Buras, 1994�,

�Vcb� = F2„�,�,X,Br�KL�… . �3.22�

The analytic formula for F2 can easily be obtained
from Eq. �3.20�.

At first glance one could question the usefulness of
determing �Vcb� in this manner, since it is usually deter-
mined from tree level B decays. On the other hand, one
should realize that one determines here the parameter A
in the Wolfenstein parametrization that enters the ele-
ments Vub, Vcb, Vts, and Vtd of the CKM matrix. More-
over, this determination of A benefits from the weak
dependence on Br�KL→�0��̄�, which is only with a
power of 0.25. The weak point of determining �Vcb� in
this way is contributions from new physics that could
enter through the function X, whereas the standard de-
termination of �Vcb� through tree level B decays is free
from this dependence. Still, a determination of �Vcb�, that
in precision can almost compete with the usual tree dia-
gram determinations and is theoretically cleaner, is
clearly of interest within the SM.

D. Unitarity triangle from K+\�+��̄ and KL\�0��̄

The measurement of Br�K+→�+��̄� and Br�KL

→�0��̄� can determine the unitarity triangle completely
�see Fig. 3�, provided mt and �Vcb� are known �Buchalla
and Buras, 1994b�. Using these two branching ratios si-
multaneously allows us to eliminate �Vub /Vcb� from the
analysis, which removes a considerable uncertainty in
the determination of the UT, even if it is less important
for �Vtd�. Indeed, it is evident from Eqs. �2.2� and �2.19�
that, given Br�K+→�+��̄� and Br�KL→�0��̄�, one can
extract both Im �t and Re �t. One finds �Buchalla and
Buras, 1994b; Buchalla, Buras, and Lautenbacher, 1996;
Buras, 1998�
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Im �t = �5
�B2

X�xt�
,

Re �t = − �5

Re �c

�
Pc�X� + �B1 − B2

X�xt�
, �3.23�

where we have defined the “reduced” branching ratios

B1 =
Br�K+ → �+��̄�

�+
, B2 =

Br�KL → �0��̄�
�L

. �3.24�

Next using the expressions for Im �t, Re �t, and Re �c
given in Eqs. �2.29� and �2.30�, one finds

�̄ = 1 +
Pc�X� − ���B1 − B2�

A2X�xt�
, �̄ =

�B2

��A2X�xt�
�3.25�

with � defined in Eq. �3.4�. An exact treatment of the
CKM matrix shows that the formulas �3.25�, in particular
the one for �̄, are rather precise �Buchalla and Buras
�1994b�.

E. sin 2� from K\���̄

Using Eq. �3.25�, one finds subsequently �Buchalla
and Buras, 1994b�

sin 2� =
2rs

1 + rs
2 ,

rs = ��
���B1 − B2� − Pc�X�

�B2

= cot � . �3.26�

Thus, within the approximation of Eq. �3.25�, sin 2� is
independent of Vcb �or A� and mt, and as we see in Sec.
IV, these dependences are fully negligible.

It should be stressed that sin 2� determined this way
depends only on two measurable branching ratios and
on the parameter Pc�X�, which is dominantly calculable
in perturbation theory, as discussed in the preceding sec-
tion. Pc�X� contains a small nonperturbative contribu-
tion �Pc,u. Consequently, this determination is almost
free from any hadronic uncertainties, and its accuracy
can be estimated with a high degree of confidence. The
recent calculation of NNLO QCD corrections to Pc�X�
improved significantly the accuracy of determing sin 2�
from the K→���̄ complex.

Alternatively, combining Eqs. �3.1� and �3.15�, one
finds �Buras et al., 2004a�

sin 2�eff =
2r̄s

1 + r̄s
2 , r̄s =

�B1 − B2 − P̄c�X�
�B2

= cot �eff,

�3.27�

where �eff=�−�s. As �s=O��2�, we have

cot � = � cot �eff + O��2� �3.28�

and consequently one can verify that Eq. �3.27�, while
being slightly more accurate, is numerically close to Eq.
�3.26�. This formula turns out to be more useful than Eq.
�3.26� when SM extensions with new complex phases in
X are considered. We return to this in Sec. VII.

Finally, as in the SM and more generally in all MFV
models there are no phases beyond the CKM phase, the
MFV relation �1.1� should be satisfied. The confirmation
of this relation would be an important test for the MFV
idea. Indeed, in K→���̄ the phase � originates in the Z0

penguin diagram, whereas in the case of a
KS
it origi-

nates in the Bd
0-B̄d

0 box diagram. We discuss the violation
of this relation in particular new physics scenarios in
Secs. VII and VIII.

F. The angle � from K\���̄

We have seen that a precise value of � can be ob-
tained both from the CP asymmetry a
KS

and from the
K→���̄ complex in a theoretically clean manner. The
determination of the angle � is much harder. As dis-
cussed in Sec. IX and in Nir �2001�, Fleischer �2002,
2004�, Ali �2003�, Buchalla �2003�, and Hurth �2003�,
there are several strategies for � in B decays but only
few of them can be considered as theoretically clean.
They all are experimentally challenging and a determi-
nation of � with a precision of better than ±5° from
these strategies alone will only be possible at LHCB and
after a few years of running �Ball et al., 2000; Anikeev
et al., 2001�. A determination of � with precision of
±�1−2�� should be possible at Super-B �Super-B, 2007�.

Here we point out that the K→���̄ decays offer a
clean determination of � that in accuracy can compete
with the strategies in B decays, provided the uncertain-
ties present in �Vcb�, in mt, and in particular in mc present
in Pc, can be further reduced and the two branching
ratios measured with an accuracy of 5%.

The relevant formula, which has not been presented
in the literature so far, can be directly obtained from Eq.
�3.25�. It reads

cot � =� �

B2
�A2X�xt� − ���B1 − B2� + Pc�X�� .

�3.29�

We investigate it numerically in Sec. IV.

G. A second route to UT from K\���̄

Instead of using the formulas for Im �t and Re �t in
Eq. �3.23�, it is instructive to construct the UT by using
Eq. �3.27� to find � and subsequently determine Rt from
Eq. �3.1� with the result
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Rt =
�B1 − P̄c

2 sin2 �eff − P̄c cos �eff

r̃A2X�xt�
. �3.30�

This �Rt ,�� strategy by means of K→���̄ decays gives
then ��̄ , �̄� as given in Eq. �2.31� and in particular

cot � =
1 − Rt cos �

Rt sin �
. �3.31�

IV. NUMERICAL ANALYSIS IN THE SM

A. Introducing scenarios

In our numerical analysis, we consider various sce-
narios for the CKM elements and the values of the
branching ratios Br�K+→�+��̄� and Br�KL→�0��̄� that
should be measured in the future. In choosing the values
of these branching ratios, we are guided in this section
by their values predicted in the SM. We consider then
the following:

• Scenario A for the present elements of the CKM
matrix and a future scenario B with improved ele-
ments of the CKM matrix and the improved value of
Pc through the reduction in the error of mc and �s.
They are summarized in Table III. The accuracy of �
in Table III corresponds to the error in sin 2� of
±0.023 for scenario A and ±0.013 for scenario B. It
should be achieved, respectively, at B factories and
LHCB. As discussed by Boos et al. �2004�, even at
this level of experimental precision, theoretical un-
certainties in the determination of � through a
KS
can be neglected. The accuracy of � given in Table
III in scenarios A and B can presumably be achieved
through the clean tree diagram strategies in B decays
that will only become effective at LHC and Super-B.
We discuss them in Sec. IX.

• Scenarios I and II for the measurements of Br�K+

→�+��̄� and Br�KL→�0��̄� that together with future
values of �Vcb�, mt, and Pc should allow the determi-
nation of the UT, that is, of the angles � and � and of
the sides Rb and Rt, from K→���̄ alone. These sce-

narios are summarized in Table IV. Scenario I corre-
sponds to the first half of the next decade, while sce-
nario II is more futuristic.

In the remainder of the review, we frequently refer to
Tables III and IV indicating which observables listed
there are used at a given time in our numerical calcula-
tions.

B. Branching ratios in the SM

With the CKM parameters of scenario A given in
Table III, we find using Eqs. �2.2� and �2.19�

Br�K+ → �+��̄�SM = �8.1 ± 0.6Pc
± 0.5�� 10−11

= �8.1 ± 1.1�� 10−11, �4.1�

Br�KL → �0��̄�SM = �2.6 ± 0.3�� 10−11. �4.2�

The parametric errors come from the CKM parameters
and the value of mt and have been added in quadrature.
In the case of Br�KL→�0��̄�, only parametric uncertain-
ties matter. For Br�K+→�+��̄� in the SM �4.1�, we addi-
tionally have the error due to Pc�X�, which was added
linearly.

The central value of Br�K+→�+��̄� in Eq. �4.1� is be-
low the central experimental value in Eq. �1.5�, but
within theoretical, parametric, and experimental uncer-
tainties, the SM result is fully consistent with the data.
We also observe that the error in Pc�X� constitutes still a
significant portion of the full error.

One of the main origins of the parametric uncertain-
ties in both branching ratios is the value of �Vcb�. As
pointed out by Kettell et al. �2004�, with the help of �K
the dependence on �Vcb� can be eliminated. Indeed, from
the expression for �K in Eq. �2.38� and

Im �t

Re�t
= − tan �eff, �eff = � − �s, �4.3�

which follows from Eq. �2.28�, Im �t and Re �t can be

determined subject mainly to the uncertainty in B̂K that
should be decreased through lattice simulations in the
future. Note that � will soon be determined with high
precision from the a
KS

asymmetry.
We next investigate what kind of predictions one will

get in a few years when � and � will be measured with
high precision through theoretically clean strategies at

TABLE III. Input for the determination of the branching ra-
tios Br�K+→�+��̄� and Br�KL→�0��̄� in three scenarios. The
corresponding ��̄ , �̄� are also given.

Scenario A Scenario B

� �22.2±0.9�° �22.2±0.5�°
� �64.6±4.2�° �64.6±2.0�°
�Vcb� /10−3 41.6±0.6 41.6±0.3
Rb 0.381±0.014 0.381±0.007
mt �GeV� 161±1.7 161±1.0
Pc�X� 0.41±0.05 0.41±0.02
�̄ 0.344±0.016 0.344±0.008

�̄ 0.163±0.028 0.163±0.014

TABLE IV. Input for the determination of CKM parameters
from K→���̄ in two scenarios.

Scenario I Scenario II

Br�K+→�+��̄� /10−11 8.0±0.8 8.0±0.4

Br�KL→�0��̄� /10−11 3.0±0.3 3.0±0.2
mt �GeV� 161±1.7 161±1.0
Pc�X� 0.41±0.05 0.41±0.02
�Vcb� /10−3 41.6±0.6 41.6±0.3
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LHCB �Ball et al., 2000; Anikeev et al., 2001�. As
pointed out by Buras, Parodi, and Stocchi �2003�, the use
of � and � is the most powerful strategy to get ��̄ , �̄�.
With the input of scenario B of Table III, we find

Im �t = �1.38 ± 0.04�� 10−4,

Re �t = − �3.19 ± 0.07�� 10−4 �scenario B� . �4.4�

The results for the branching ratios in this scenario are
given in Table V, where we have separated the error due
to Pc from the parametric uncertainties.

In Table VI, we present the anatomy of parametric
uncertainties given in Table V. Adding these uncertain-
ties in quadrature gives the values in Table V. We ob-
serve that �Vcb� plays a prominent role in these uncer-
tainties.

Finally in Fig. 4 we show Br�K+→�+��̄� as a function
of � for different values of � and �Vcb�. We observe that
the dependence on � is rather weak, while the depen-
dence on � is very strong. Also the dependence on �Vcb�
is significant. This implies that a precise measurement of
� one day will also have a large impact on the prediction
for Br�K+→�+��̄�.

C. Impact of Br(K+\�+��̄) on the UT

1. Preliminaries

We then reverse the analysis and investigate the im-
pact of present and future measurements of Br�K+

→�+��̄� on �Vtd� and on the UT. To this end, one can
take as additional inputs the values of �Vcb� and �. One
finds immediately that a precise value of �Vcb� is now
required in order to obtain a satisfactory result for
��̄ , �̄�. Indeed, K→���̄ decays are an excellent means to
determine Im �t and Re �t or equivalently the sd unitar-
ity triangle and in this respect have no competition from
any B decay, but in order to construct the standard bd
triangle of Fig. 2 from these decays, �Vcb� is required.
Here the CP asymmetries in B decays measuring di-

rectly angles of the UT are superior as the value of �Vcb�
is not required. Consequently, the precise value of �Vcb�
is of utmost importance if we make useful comparisons
between various observables in K and B decays. On the
other hand, in some relations such as Eq. �1.1�, the �Vcb�
dependence is absent to an excellent accuracy.

2. �Vtd� from K+\�+��̄

Taking the present experimental value of Br�K+

→�+��̄� in Eq. �1.5�, we determine first the UT side Rt
and next the CKM element �Vtd�. Using then the accu-
rate expression for Br�K+→�+��̄� in Eq. �3.10� and the
values of �Vcb� and � in the present scenario A of Table
III, we find

Rt = 1.35 ± 0.70, �Vtd� = �12.6 ± 6.6�� 10−3, �4.5�

where the dominant error arises due to the error in the
branching ratio. The central values obtained here are
large compared to the SM ones, but in view of the large
errors one cannot say anything conclusive yet.

We consider then scenarios I and II of Table IV but do
not take yet the values for Br�KL→�0��̄� into account.
As an additional variable, we take � or Rb in the sce-
nario B of Table III. In Table VII, we give the values of
Rt and �Vtd� resulting from this exercise. The precise
value of � or Rb does not matter much in the determi-
nation of Rt and �Vtd�, which is evident from the inspec-
tion of the ��̄ , �̄� plot. This is also the reason why with
the assumed errors on � and Rb, the two exercises in
Table VII give essentially the same results.

In order to judge the precision achievable in the fu-
ture, it is instructive to show the separate contributions
of the uncertainties involved. In general, �Vtd� is subject
to various uncertainties of which the dominant ones are
given below,

���Vtd��
�Vtd�

= ± 0.39
��Pc�

Pc
± 0.70

�„Br�K+�…
Br�K+�

±
���Vcb��

�Vcb�
.

�4.6�

We find then

���Vtd��
�Vtd�

= ± 5.0%Pc
± 7.0%Br�K+�

± 1.4%�Vcb� �scenario I� �4.7�

and

TABLE VI. The anatomy of parametric uncertainties in Br�K+→�+��̄� and Br�KL→�0��̄� corre-
sponding to the results of Table V.

Strategy �Br�K+→�+��̄� �10−11� �Br�KL→�0��̄� �10−11�

Scenario A ±0.33�̄±0.06�̄±0.33�Vcb�±0.13mt
±0.25�̄±0.16�Vcb�±0.06mt

Scenario B ±0.17�̄±0.03�̄±0.16�Vcb�±0.08mt
±0.12�̄±0.08�Vcb�±0.04mt

TABLE V. Values of Br�K+→�+��̄� and Br�KL→�0��̄� in the
SM in units of 10−11 obtained through various strategies.

Strategy Br�K+→�+��̄� �10−11� Br�KL→�0��̄� �10−11�

Scenario A 8.10±1.11 2.64±0.30
8.10±0.62Pc

±0.49
Scenario B 8.10±0.52 2.64±0.15

8.10±0.25Pc
±0.27
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���Vtd��
�Vtd�

= ± 2.0%Pc
± 3.5%Br�K+�

± 1.0%�Vcb� �scenario II� . �4.8�

Adding the errors in quadrature, we find that �Vtd� can
be determined with an accuracy of ±8.7% and ±4.2%,
respectively. These numbers are increased to ±9.2% and
±4.3% once the uncertainties due to mt, �s, and � �or
�Vub /Vcb�� are taken into account. As a measurement of
Br�K+→�+��̄� with a precision of 5% is challenging, the
determination of �Vtd� with an accuracy better than ±5%
from Br�K+→�+��̄� seems difficult from the present
perspective.

3. Impact on UT

The impact of K+→�+��̄ on the UT is illustrated in
Fig. 5, where we show lines corresponding to several
selected values of Br�K+→�+��̄�. The construction of
the UT from both decays shown there is described be-
low.

D. Impact of Br(KL\�0��̄) on the UT

1. �̄ and Im �t

We consider next the impact of a future measurement
of Br�KL→�0��̄� on the UT. As discussed in the previ-
ous section, this measurement will offer theoretically
clean determinations of �̄ and in particular of Im �t. The
relevant formulas are given in Eqs. �3.17� and �3.18�, re-
spectively. Using scenarios I and II of Table IV, we find

�̄ = 0.367 ± 0.019,

Im �t = �1.47 ± 0.07�� 10−4 �scenario I� , �4.9�

�̄ = 0.367 ± 0.013,

Im �t = �1.47 ± 0.05�� 10−4 �scenario II� . �4.10�

The obtained precision in the case of scenario II is truly
impressive. We stress the clean character of these deter-
minations.

2. Completing the determination of the UT

In order to construct the UT, we need still another
input. It could be �, �, Rb, or Rt. It turns out that the
most effective in this determination is �, as in the clas-
sification of Buras, Parodi, and Stocchi �2003� the ��̄ ,��
strategy belongs to the top class together with the �� ,��
pair. The angle � should be known with high precision in
five years. Still it is of interest to see what one finds
when � is used instead of �. Rb is not useful here as it
generally gives two solutions for the UT.

In analogy to Table VII, we show in Table VIII the
values of �̄ and �Vtd� resulting from scenarios I and II
without using Br�K+→�+��̄�. As an additional variable,
we use � or �. We observe that, with the assumed errors
on � and �, the use of � is more effective than the use of
�. Moreover, while going from scenario I to II for
Br�KL→�0��̄� has a significant impact when � is used,
the impact is rather small when � is used instead. Both
features are consistent with the observations made by
Buras, Parodi, and Stocchi �2003� in the context of �� , �̄�
and �� , �̄� strategies. In particular, the last feature is di-
rectly related to the fact that � is larger by a factor of 3
than �.

The main message from Table VIII is that, using a
rather precise value of �, a precise determination of �Vtd�
becomes possible, where the branching fraction of KL

→�0��̄ needs to be known only to about 10% accuracy.

3. A clean and accurate determination of �Vcb� and �Vtd�

Next, combining � and � with the values of Br�KL

→�0��̄� and mt, clean determination of �Vcb� by means
of Eq. �3.22� is possible. In turn also �Vtd� can be deter-
mined. In Table IX, we show the values of �Vcb� and �Vtd�
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FIG. 4. Br�K+→�+��̄� as a function of � for
different values of � and �Vcb�.

TABLE VII. The values for Rt and �Vtd� /10−3 �in parentheses� from K+→�+��̄ for various cases.

Scenario I Scenario II

Scenario B ��� 0.897±0.086 �8.42±0.80� 0.897±0.056 �8.42±0.51�
Scenario B �Rb� 0.897±0.086 �8.42±0.80� 0.897±0.056 �8.42±0.51�
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obtained using scenarios I and II for Br�KL→�0��̄� in
Table IV with � and � in scenario B of Table III.

We observe that the errors on �Vcb� are larger than
presently obtained from semileptonic B decays. But one
should emphasize that this determination is essentially
without any theoretical uncertainties. The high precision
on �Vtd� is a result of a precise measurement of Rt by
means of the �� ,�� strategy and a rather accurate value
of �Vcb� obtained with the help of Br�KL→�0��̄�. Again
also in this case the determination is theoretically clean.

E. Impact of Br(K+\�+��̄) and Br(KL\�0��̄) on UT

Buchalla and Buras �1996� discussed the determina-
tion of the UT from both decays in explicit terms. The
relevant formulas have been given in Sec. III. Here we
confine our discussion to the determination of Im �t,
sin 2�, and �. We consider again two scenarios for which
the input parameters are collected in Table IV. This time
no other parameters beside those given in this table are
required for the construction of the UT and the deter-
mination of these three quantities in question.

F. Im �t from KL\�0��̄

As oposed to sin 2� and �, only KL→�0��̄ is relevant
here. Using Eq. �3.18�, we find that the error from mt is
roughly 1% and will soon be decreased even below that.
Neglecting it, we find

��Im �t�
Im �t

= ± 0.5
�„Br�KL�…

Br�KL�
= �5.0% scenario I

3.3% scenario II,�
�4.11�

which in the case of scenario II is already an impressive
accuracy.

G. The angle � from K\���̄

We next investigate the separate uncertainties in the
determination of sin 2� coming from Pc, Br�K+

→�+��̄��Br�K+�, and Br�KL→�0��̄��Br�KL�. We find
first

��sin 2��
sin 2�

= ± 0.31
��Pc�

Pc
± 0.55

�„Br�K+�…
Br�K+�

± 0.39
�„Br�KL�…

Br�KL�
. �4.12�

This leads to

��sin 2�� = 0.030Pc
+ 0.041Br�K+� + 0.029Br�KL�

= 0.080 �scenario I� �4.13�

and

��sin 2�� = 0.011Pc
+ 0.020Br�K+� + 0.018Br�KL�

= 0.038 �scenario II� , �4.14�

where the errors have been added in quadrature apart
from the one in Pc, which has been added linearly. The
uncertainties due to �Vcb� and mt are fully negligible.

We observe the following:

• The uncertainty in sin 2� due to Pc alone
amounted to 0.04 at NLO, implying that a NNLO
calculation of Pc was desirable. On the other hand,
now, at NNLO, the pure perturbative uncertainty
in sin 2� amounts to ±0.006% �Buras, Gorbahn,
Haisch, et al., 2006� to be compared with ±0.025%
at NLO

• The accuracy of the determination of sin 2�, after
the NNLO result became available, depends domi-
nantly on the accuracy with which both branching
ratios will be measured. In order to decrease
��sin 2�� down to 0.02, they have to be measured
with an accuracy better than 5%. Also, the reduction
of the error in mc relevant for Pc would be desirable.
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FIG. 5. The UT from K→���̄ in scenario I of Table IV. Lines
corresponding to several values of Br�K+→�+��̄� and Br�KL
→�0��̄� �in units of 10−11� are also shown.

TABLE VIII. The values for �̄ and �Vtd� /10−3 �in parentheses� from KL→�0��̄ for various cases.

Scenario I Scenario II

Scenario B ��� 0.101±0.052 �9.12±0.51� 0.101±0.040 �9.12±0.37�
Scenario B ��� 0.174±0.018 �8.49±0.16� 0.174±0.017 �8.49±0.16�

TABLE IX. The values for �Vcb� and �Vtd� �in parentheses� in
units of 10−3 from KL→�0��̄, � and � for various cases.

Scenario I Scenario II

Scenario B 43.1±1.2 �8.23±0.76� 43.1±0.9 �8.23±0.48�
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H. The angle � from K\���̄

We next investigate, in analogy to Eq. �4.12�, the sepa-
rate uncertainties in the determination of � coming from
Pc, Br�K+→�+��̄�, Br�KL→�0��̄�, and �Vcb�. The rel-
evant expression for � in terms of these quantities is
given in Eq. �3.29�. We find then

����
�

= ± 0.75
��Pc�

Pc
± 1.32

�„Br�K+�…
Br�K+�

± 0.07
�„Br�KL�…

Br�KL�
± 4.11

���Vcb��
�Vcb�

± 2.34
��mt�

mt
.

�4.15�

This gives

���� = 5.7Pc

° + 8.2Br�K+�
° + 0.4Br�KL�

° + 3.7�Vcb�
° + 1.5mt

°

= 19.6° �4.16�

and

���� = 2.3Pc

° + 4.1Br�K+�
° + 0.3Br�KL�

° + 1.9�Vcb�
° + 0.9mt

°

= 9.4° �4.17�

for scenarios I and II, respectively, where the errors have
been added in quadrature.

We observe the following:

• The uncertainty in � due to Pc alone amounted to
8.6° at the NLO level, implying that a NNLO calcu-
lation of Pc was desirable. The pure perturbative un-
certainty in � amounts to ±1.2% at NNLO, com-
pared to ±4.9% at NLO. Again, the reduction of the
error in mc relevant for Pc would be desirable.

• The dominant uncertainty in the determination of �
in scenarios I and II besides the one of Pc resides in
Br�K+→�+��̄�. In order to lower ���� below 5°, a
measurement of this branching ratio with an accu-
racy of better than 5% is required. The measurement
of Br�KL→�0��̄� has only a small impact on this
determination.

I. Summary

In this section, we have presented a detailed numeri-
cal analysis of the formulas in Sec. III. First working in
two scenarios, A and B, for the input parameters that
should be measured precisely through B physics observ-
ables in this decade, we have shown how the accuracy of
the predictions on the branching ratios will improve with
time.

In the case of Br�KL→�0��̄�, there are essentially no
theoretical uncertainties and the future accuracy of the
prediction on this branching ratio within the SM de-
pends fully on the accuracy with which Im �t and mt can
be determined from other processes. We learn from
Table V that the present error of roughly 12% will be
decreased to 6% when scenario B is be realized. As seen

in Table VI, the progress on the error on Br�KL

→�0��̄� will depend on the progress on �Vcb�.
The case of K+→�+��̄ is a bit different as now also

the uncertainty in Pc enters. As discussed in Sec. II, this
uncertainty comes, on the one hand, from the scale un-
certainty and, on the other hand, from the error in mc.
The scale uncertainty dominated at NLO while the error
on mc is mainly responsible for the present error in Pc
after NNLO has been completed. Formula �2.18� quan-
tifies this explicitly. The anatomy of parametric uncer-
tainties in Br�K+→�+��̄� is presented in Table VI. As in
the case of Br�KL→�0��̄�, here the reduction of the er-
ror in �Vcb� will also be important.

As seen in Table V, the present error in Br�K+

→�+��̄� due to Pc amounts roughly to ±8%, which is
smaller roughly by a factor of 1.5 than before the NNLO
results for Pc where available. It is also seen in this table
that in order to benefit from the improved values of the
CKM parameters and of mt, the uncertainty in Pc also
has to be reduced through the improvement of mc. It
appears to us that the present error of 8% due to Pc
could be decreased to 3% one day with the present total
error of 14% reduced to 7%.

In the main part of this section, we have investigated
the impact of the future measurements of Br�K+

→�+��̄� and Br�KL→�0��̄� on the determination of the
CKM matrix. The results are self-explanatory and dem-
onstrate that the K→���̄ decays offer powerful means
in the determination of the UT and of the CKM matrix.

Clearly, future determination of various observables
by means of K→���̄ will depend crucially on the accu-
racy with which Br�K+→�+��̄� and Br�KL→�0��̄� can
be measured. Our discussion shows that it is certainly
desirable to measure both branching ratios with an ac-
curacy of at least 5%.

On the other hand, the uncertainties due to Pc, �Vcb�,
and to a lesser extent mt are also important ingredients
of these investigations.

V. A GUIDE TO SECS. VI–VIII

Until now our discussion was confined to the SM. In
the next three sections, we discuss the decays K→���̄ in
various extensions of the SM.

In the case of most K and B meson decays, the effec-
tive Hamiltonian in the extensions of the SM becomes
generally much more complicated than in the SM in that
new operators, new complex phases, and new one-loop
short-distance functions and generally new flavor violat-
ing couplings can be present. A classification of various
possible extensions of the SM from the point of view of
an effective Hamiltonian and valid for all decays can be
found in Buras �2005a�.

As emphasized at the beginning of this review in the
case of K→���̄, the effective Hamiltonian in essentially
all extensions of the SM is found from Heff

SM in Eq. �2.1�
by replacing X�xt� as follows �Buras et al. �1998��:
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X�xt� → X = �X�ei�X. �5.1�

Thus, the only effect of new physics is to modify the
magnitude of the SM function X�xt� and/or introduce a
new complex phase �X that vanishes in the SM.

Clearly, the simplest class of extensions are models
with minimal flavor violation in which �X=0, � and �X� is
only modified by loop diagrams with new particle ex-
changes but the driving mechanism of flavor and CP
violation remains to be the CKM matrix. As in this class
of models the basic structure of effective Hamiltonians
in other decays is unchanged relative to the SM and only
modifications in the one-loop functions, analogous to X,
are allowed, the correlations between K→���̄ and
other K and, in particular, B decays, valid in the SM
remain true. A review of these correlations has been
given by Buras �2003�.

In the following section, we summarize the present
status of K→���̄ in the models with MFV. As we show,
the recently improved bounds on rare B decays, com-
bined with the correlations in question, do not allow for
a large departure of K→���̄ from the SM within this
simplest class of new physics.

Much more spectacular effects in K→���̄ are still
possible in models in which the phase �X is large. We
discuss this in Sec. VII in a model-independent manner.
We also discuss situations in which simultaneously to

�X�0, also new complex phases in Bd
0-B̄d

0 mixing are
present, and illustrate how these new phases, including
�X, could be extracted from future data.

While Secs. VI and VII have a more model-
independent character and analyze implications of the
replacement �5.1� with arbitrary �X� and �X, Sec. VIII
can be considered as a guide to the literature on the new
physics effects in K→���̄. In particular, we discuss the
littlest Higgs model with T parity, Z� models, the MSSM
with MFV, general supersymmetric models, models with
universal extra dimensions, and models with lepton fla-
vor mixing. Finally, we comment on essentially all new
physics analyses done until the summer of 2007.

VI. K\���̄ and MFV

A. Preliminaries

A general discussion of the decays K+→�+��̄ and
KL→�0��̄ in the framework of minimal flavor violation
�MFV� has been presented by Buras and Fleischer
�2001�. Earlier papers in specific MFV scenarios like two
Higgs doublet can be found in Belanger et al. �1992� and
Cho �1998�, where additional references are given. We
recall that in almost all extensions of the SM, the effec-
tive Hamiltonian for K→���̄ decays involves only the
�V-A� � �V-A� operator of Eq. �2.1�, and consequently
for these decays there is no distinction between the con-
strained MFV �CMFV� �Buras et al., 2001b; Blanke et
al., 2006� and more general formulation of MFV
�D’Ambrosio et al., 2002� in which additional non-SM
operators are present in certain decays. Consequently in

MFV or CMFV, all formulas of Secs. II and III for K
→���̄ remain valid except for the following:

• The function X�xt� is replaced by the real valued
master function �Buras, 2003, 2005a, 2005b� X�v�
with v denoting collectively the parameters of a
given MFV model.

• If the function X�v� is allowed to also take negative
values, the following replacements should effectively
be made in all formulas of Secs. II and III �Buras and
Fleischer, 2001�:

X → �X�, Pc�X� → sgn�X�Pc�X� . �6.1�

Here we assume also that the B0-B̄0 function S�v�
�0, as in the SM. In fact, as found recently by Altmann-
shofer et al. �2007� and Blanke and Buras �2007�, in all
models with CMFV, S�v��S�v�SM. On the other hand,
we allow first for negative values of the function X�v�.
The values of X�v� and S�v� can be calculated in any
MFV model.

B. K+\�+��̄ versus KL\�0��̄

An important consequence of Eqs. �3.26� and �1.1� is
the following MFV relation �Buras and Fleischer, 2001�:

B1 = B2 + 
 cot ��B2 + sgn�X���Pc�X�
�

�2

, �6.2�

which, for a given sin 2� extracted from a
KS
and

Br�K+→�+��̄�, allows us to predict Br�KL→�0��̄�. We
observe that in the full class of MFV models, indepen-
dent of any new parameters present in these models,
only two values for Br�KL→�0��̄�, corresponding to
two signs of X, are possible. Consequently, measuring
Br�KL→�0��̄� will either select one of these two pos-
sible values or rule out all MFV models. In fact, the
recent analysis of Haisch and Weiler �2007� showed that
X0 is basically ruled out and as X�0 gives larger
branching ratios for the same �X�, we will therefore not
consider X0 any further.

Buras and Fleischer �2001� presented a detailed nu-
merical analysis of the relation �6.2�. In view of the im-
proved data on sin 2� and Br�K+→�+��̄�, we updated
and extended this analysis. This is shown in Fig. 6, where
we show Br�K+→�+��̄� as a function of Br�KL→�0��̄�
for several values of a
KS

. These plots are universal for
all MFV models.

We also observe, as in Buras and Fleischer �2001�, that
the upper bound on Br�KL→�0��̄� following from the
data on Br�K+→�+��̄� and sin 2��0.719 is substantially
stronger than the model-independent bound following
from isospin symmetry �Grossman and Nir, 1997�,

Br�KL → �0��̄� 4.4Br�K+ → �+��̄� . �6.3�

With the data in Eq. �1.5�, which imply
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Br�K+ → �+��̄� 3.8� 10−10 �90 % C.L.� , �6.4�

one finds from Eq. �6.3�

Br�KL → �0��̄� 1.7� 10−9 �90 % C.L.� , �6.5�

which is still two orders of magnitude lower than the
upper bound from the KTeV experiment at Fermilab
�Blucher, 2005�, yielding Br�KL→�0��̄�2.9�10−7 and
the bound from KEK, Br�KL→�0��̄�2.1�10−7 �Ahn
et al., 2006�.

On the other hand, taking the experimental bound
Br�K+→�+��̄� in Eq. �1.5� and a
KS

�0.719, we find
from Eq. �6.2�

Br�KL → �0��̄�MFV� 2.0� 10−10, sgn�X� = + 1.

�6.6�

Bobeth et al. �2005� performed a detailed analysis of
several branching ratios for rare K and B decays in MFV
models. Using the presently available information on
the UUT, summarized by Bona et al. �2006b�, and from
the measurements of Br�B→Xs��, Br�B→Xsl

+l−�, and
Br�K+→�+��̄�, the upper bounds on various branching
ratios within the CMFV scenario have been found. Re-
cently this analysis was updated and generalized to in-

clude constraints from the observables in Z→bb̄ decay

�Haisch and Weiler, 2007�. The results of this analysis are
collected in Table X together with the results within the
SM.

Finally, anticipating that the leading role in constrain-
ing this kind of physics will eventually be taken over by
K+→�+��̄, KL→�0��̄, and Bs,d→	+	−, which are
dominated by the function C�v�, Bobeth et al. �2005� and
Haisch and Weiler �2007� provided plots for several
branching ratios as functions of C�v�.

The main results from Bobeth et al. �2005� and Haisch
and Weiler �2007� are the following:

The existing constraints coming from K+→�+��̄, B

→Xs�, B→Xsl
+l−, and Z→bb̄ do not allow within the

CMFV scenario of Buras et al. �2001b� for substantial
departures of the branching ratios for all rare K and B
decays from the SM estimates. This is evident from
Table X.

This could be at first glance a rather pessimistic mes-
sage. On the other hand, it implies that finding practi-
cally any branching ratio enhanced by more than a fac-
tor of 2 with respect to the SM will automatically signal
either the presence of new CP-violating phases or new
operators, strongly suppressed within the SM, at work.
In particular, recalling that in most extensions of the SM
the decays K→���̄ are governed by the single �V-A�
� �V-A� operator, the violation of the upper bounds on
at least one of the K→���̄ branching ratios will either
signal the presence of new complex weak phases at work
or new contributions that violate the correlations be-
tween the B decays and K decays.

As a
KS
in MFV models determines the true value of

� and the true value of � will be determined in tree level
strategies in B decays one day, the true value of �̄ can
also be determined in a clean manner. Consequently, us-
ing Eq. �3.21� offers probably the cleanest measurement
of �X� in the field of weak decays.

VII. SCENARIOS WITH NEW COMPLEX PHASES IN �F
=1 AND 2 TRANSITIONS

A. Preliminaries

In this section, we consider three simple scenarios be-
yond the framework of MFV, in which X becomes a

X > 0

Br(KL)/10−11

B
r(

K
+
)/

10
−

1
1

aψKS= 0.83
aψKS= 0.79
aψKS= 0.74
aψKS= 0.69
aψKS= 0.64

5

10

10 15

20
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40

FIG. 6. Br�K+→�+��̄� as a function of Br�KL→�0��̄� for sev-
eral values of a
KS

in the case of sgn�X�=1.

TABLE X. Bounds for various rare decays in CMFV models at 95% probability, the corresponding values in the SM at 68% and
95% CL, and the available experimental information �Haisch and Weiler, 2007b�.

Observable CMFV �95% CL� SM �68% CL� SM �95% CL� Experiment

Br�K+→�+��̄��1011 �4.29, 10.72� 7.15±1.28 �5.40, 9.11� �14.7−8.9
+13.0� �Anisimovsky et al., 2004, 2007�

Br�KL→�0��̄��1011 �1.55, 4.38� 2.79±0.31 �2.21, 3.45� 2.1�104 �90% CL� �Ahn et al., 2006�
Br�KL→	+	−�SD�109 �0.30, 1.22� 0.70±0.11 �0.54, 0.88�

Br�B̄→Xd��̄��106 �0.77, 2.00� 1.34±0.05 �1.24, 1.45�

Br�B̄→Xs��̄��105 �1.88, 4.86� 3.27±0.11 �3.06, 3.48� 64 �90% CL� �Barate et al., 2001�

Br�Bd→	+	−��1010 �0.36, 2.03� 1.06±0.16 �0.87, 1.27� 3.0�102 �95% CL� �Bernhard, 2006�
Br�Bs→	+	−��109 �1.17, 6.67� 3.51±0.50 �2.92, 4.13� 5.8�101 �95% CL� �Maciel, 2007�
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complex quantity as given in Eq. �1.7�, and the universal
box function S�v� entering �K and �Md,s not only be-
comes complex but generally becomes nonuniversal
with

SK�v� = �SK�v��ei2�K, Sd�v� = �Sd�v��ei2�d,

Ss�v� = �Ss�v��ei2�s �7.1�

for K0-K̄0, Bd
0-B̄d

0, and Bs
0-B̄s

0 mixing, respectively. If
these three functions are different from each other,
some universal properties found in the SM and MFV
models, which have been reviewed by Buras �2003,
2005a, 2005b�, are lost. In addition, the mixing-induced
CP asymmetries in B decays do not measure the angles
of the UT but only sums of these angles and of �i. In
particular,

S
KS
= sin�2� + 2�Bd

� . �7.2�

Equally importantly, the rare K and B decays, governed
in models with MFV by the real universal functions X,
Y, and Z, are described now by nine complex functions
�i=K ,d ,s� �Blanke et al., 2007b�

Xi = �Xi�ei�K
i
, Yi = �Yi�ei�Y

i
, Zi = �Zi�ei�Z

i
�7.3�

that result from the SM box and penguin diagrams and
analogous diagrams with new particle exchanges. In the
SM and CMFV models, the independence of the func-
tions in Eq. �7.3� of i implies strong correleations be-
tween various branching ratios in K, Bd, and Bs system
and consequently strong upper bounds as shown in
Table X. In models with new complex phases, this uni-
versality is generally broken and consequently, as we
show in the next section, the bounds in Table X can be
strongly violated.

As in the K→���̄ system, only one function is
present. We drop the index i and denote it by

X = �X�ei�X. �7.4�

In order to simplify the presentation, we assume here
that Ss=S0�xt� as in the SM but we take Sd�v� to be com-
plex with Sd�v��S0�xt�. This will allow us to change the
relation between Rt and �Md /�Ms in Eq. �2.45�. We
leave open whether SK�v� receives new physics contribu-
tions. We relax these assumptions in concrete models in
the next section.

An example of general scenarios with new complex
phases is the scenario in which new physics enters domi-
nantly through enhanced Z0 penguins involving a new
CP-violating weak phase. It was first considered by Bu-
ras et al. �1998, 2000�, Colangelo and Isidori �1998�, Bu-
ras and Silvestrini �1999�, and in the context of rare K
decays and the ratio �� /� measuring direct CP violation
in the neutral kaon system, and was generalized to rare
B decays by Buchalla et al. �2001� and Atwood and
Hiller �2003�. Subsequently this particular extension of
the SM has been revived by Buras et al. �2004a, 2004b�,
where it was pointed out that the anomalous behavior in
B→�K decays observed by CLEO, BABAR, and Belle

�Aubert et al. 2002b, 2003, 2004; Bornheim et al., 2003;
Chao et al., 2004� could be due to the presence of en-
hanced Z0 penguins carrying a large new CP-violating
phase around −90°.

The possibility of important electroweak penguin con-
tributions behind the anomalous behavior of the B
→�K data has already been pointed out by Buras and
Fleischer �2000�, but only in 2005 has this behavior been
independently observed by the three collaborations in
question. Recent discussions related to electroweak pen-
guins can be also found in Beneke and Neubert �2003�
and Yoshikawa �2003�. Other conjectures in connection
with these data can be found in Gronau and Rosner
�2003a, 2003b� and Chiang et al. �2004�.

The implications of the large CP-violating phase in
electroweak penguins for rare K and B decays and B
→Xsl

+l− have been analyzed in detail by Buras et al.
�2004a, 2004b� and subsequently the analyses of B
→Xsl

+l− and KL→�0l+l− have been extended by Isidori
et al. �2004� and Rai Choudhury et al. �2004�, respec-
tively. It turns out that in this scenario, several predic-
tions differ significantly from the SM expectations with
most spectacular effects found precisely in the K→���̄
system.

Meanwhile, the data on B→�K decays have changed
considerably and the case for large electroweak penguin
contributions in these decays is much less convincing
�Gronau and Rosner, 2006; Baek and London, 2007;
Fleischer, 2007; Fleischer et al., 2007; Jain et al., 2007;
Silvestrini, 2007�. Still the general formalism developed
for the K→���̄ system in the presence of new complex
phases �Buras, 1998; Buras et al., 2004a, 2004b� remains
valid and we discuss it below. Moreover, in the next sec-
tion we discuss three explicit models: the Littlest Higgs
model with T-parity �LHT�, a Z� model, and the MSSM
in which the function X becomes a complex quantity and
departures of K→���̄ rates from the SM ones can be
spectacular.

The scenarios with complex phases in Bd
0-B̄d

0 mixing
have been considered by many Bertolini et al. �1987�, Nir
and Silverman �1990a, 1990b�, Bergmann and Perez
�2000, 2001�, D’Ambrosio and Isidori �2002�, Laplace
�2002�; Laplace et al. �2002�, Fleischer et al. �2003�, and
Bona et al. �2006b�.

Recently this scenario has been revived through the
possible inconsistencies between UUT and the RUT sig-
naled by the discrepancy between the value of sin 2�
from S
KS

and its value obtained from tree-level mea-
surements. We return to this issue below.

In what follows, we first review the formulas for K+

→�+��̄ and KL→�0��̄ decays obtained by Buras et al.
�2004a, 2004b� for the case of a complex X. Subse-
quently, we discuss implications of this general scenario
for the relevant branching ratios.

Next we consider scenarios with new physics present

only in Bd
0-B̄d

0 mixing and the function X as in the SM.
Here the impact on Br�K+→�+��̄� and Br�KL→�0��̄�
comes only through modified values of the CKM param-
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eters but, as we will show below, this impact is rather
interesting.

Finally we consider a hybrid scenario with new phys-

ics entering both K→���̄ decays and Bd
0-B̄d

0 mixing. In
this discussion, the �Rb ,�� strategy �RUT� for the deter-
mination of the UT will play an important role.

B. A large new CP-violating phase �X

In this general scenario, the function X becomes a
complex quantity �Buras et al., 1998�, as given in Eq.
�1.7�, with �X a new complex phase that originates from
new physics contributions to the relevant Feynman dia-
grams. Explicit realizations of such an extension of the
SM will be discussed in Sec. VIII. In what follows, it is
useful to define the following combination of weak
phases:

�X � � − �s − �X = �eff − �X. �7.5�

Following Buras et al. �2004a�, the branching ratios for
K+→�+��̄ and KL→�0��̄ are given as follows:

Br�K+ → �+��̄� = �+�r̃2A4Rt
2�X�2 + 2r̃P̄c�X�A2Rt�X�

�cos �X + P̄c�X�2� , �7.6�

Br�KL → �0��̄� = �Lr̃2A4Rt
2�X�2 sin2 �X, �7.7�

with �+ given in Eq. �2.3�, �L given in Eq. �2.20�, P̄c�X�
defined in Eq. �3.2�, �X in Eq. �7.5�, and r̃ in Eq. �2.27�.

Once Br�K+→�+��̄� and Br�KL→�0��̄� have been
measured, the parameters �X� and �X can be deter-
mined, subject to ambiguities that can be resolved by
considering other processes, such as the nonleptonic B
decays and rare decays discussed by Buras et al. �2004a�.
Combining Eqs. �7.6� and �7.7�, the generalization of Eq.
�3.27� to the scenario considered can be found �Buras et
al., 1998, 2004a�,

sin 2�X =
2r̄s

1 + r̄s
2 , r̄s =

�1
�B1 − B2 − P̄c�X�

�2
�B2

= cot �X,

�7.8�

where �i= ±1. Moreover,

�X� =
�2

�B2

r̃A2Rt sin �X
, �2 sin �X� 0. �7.9�

The “reduced” branching ratios Bi are given in Eq.
�3.24�.

These formulas are valid for arbitrary �X�0°. For
�X=0° and �1=�2=1, one obtains from Eq. �3.27� the SM
result in Eq. �3.27�. On the other hand, for 99°��X
�125° one has �1=−1 and �2=1.

As in this scenario it is assumed that there are no

significant contributions to Bs,d
0 -B̄s,d

0 mixings and �K, in
particular no complex phases, the determination of the
CKM parameters through the standard analysis of the
unitarity triangle proceeds as in the SM with the input
parameters given in Sec. II.E. Consequently, � and �s

are already known from the usual analysis of the UT
and the measurement of r̄s in K→���̄ decays will pro-
vide a theoretically clean determination of �X and �X.
Similarly, a clean determination of �X� can be obtained
from Eq. �7.9�, with Rt determined by means of Eq.
�2.35�.

It has been pointed out by Buras et al. �2004b� that in
the case of �X�90°, in spite of the enhanced value of
�X�, Br�K+→�+��̄� does not significantly differ from the
SM estimate because the enhancement of the first term
in Eq. �7.6� can be compensated to a large extent by
suppression of the second term �cos �X�cos��-�s��.
Consequently, Br�K+→�+��̄� in this case is strongly
dominated by the “top” contribution given by the func-
tion X and charm-top interference is either small or
even destructive.

On the other hand, �X�90° implies a spectacular en-
hancement of Br�KL→�0��̄� by one order of magni-
tude. Consequently, while Br�KL→�0��̄���1/3�Br�K+

→�+��̄� in the SM, it is substantially larger than Br�K+

→�+��̄� in such a scenario. The large enhancement of
Br�KL→�0��̄� seen here is mainly due to the large weak
phase �X, as

Br�KL → �0��̄�
Br�KL → �0��̄�SM

= � X

XSM
�2	 sin �X

sin�� − �s�
�2

�7.10�

and to a lesser extent due to the enhanced value of �X�,
which generally could be bounded by other processes.

Inspecting Eqs. �7.6� and �7.7�, one observes �Buras et
al., 2004a� that the very strong dominance of the top
contribution in these expressions implies a simple ap-
proximate expression,

Br�KL → �0��̄�
Br�K+ → �+��̄�

� 4.4� �sin �X�2 � 4.2 ± 0.2. �7.11�

We note that Br�KL→�0��̄� is then close to its model-
independent upper bound �Grossman and Nir, 1997�
given in Eq. �6.3�. It is evident from Eq. �7.8� that this
bound is reached when the reduced branching ratios B1
and B2 in Eq. �3.24� are equal to each other.

A spectacular implication of such a scenario is a
strong violation of the MFV relation �Buchalla and Bu-
ras, 1994b� in Eq. �1.1�. Indeed, with �X� ±90°,

�sin 2�����̄ = sin 2�X � �sin 2��
KS
= 0.675 ± 0.026.

�7.12�

In the next section, we investigate this violation in two
specific models. In Fig. 7, we show—in the spirit of the
plot in Fig. 6—Br�K+→�+��̄� as a function of Br�KL

→�0��̄� for fixed values of �X that was presented by
Buras et al. �2004a�. As this plot is independent of �X�, it
offers direct measurement of the phase �X. The first line
on the left represents the MFV models with �X=�eff
=�−�s, already discussed in Sec. VI, whereas the first
line on the right corresponds to the model-independent
Grossman-Nir bound �Grossman and Nir, 1997� given in
Eq. �6.3�. Note that the value of �X corresponding to this
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bound depends on the actual value of Br�K+→�+��̄�
and Br�KL→�0��̄� since at this bound �B1=B2� we have
�Buras et al., 2004a�

�cot �X�bound = −
P̄c�X�
�2

�B2

. �7.13�

For the central values of P̄c�X� and B2 found in the lat-
ter paper, the bound corresponds to �X=107.3°. As only
cot �X and not �X is directly determined by the values of
the branching ratios in question, the angle �X is deter-
mined only up to discrete ambiguities, seen already in
Fig. 7. These ambiguities can be resolved by considering
simultaneously other quantities discussed by Buras et al.
�2004a�.

C. General discussion of �X and �X�

In Fig. 8, we show the ratio of the two branching ra-
tios in question as a function of �X for three values of
�X�=1.25, 1.5, and 2.0. We observe that for �X in the
vicinity of 110°, this ratio is close to the bound in Eq.

�6.3�. However, even for �X=50° the ratio is close to
unity and by a factor of 3 higher than in the SM.

Finally, in Table XI, we give the values of Br�K+

→�+��̄� and Br�KL→�0��̄� for different values of �X�
and �X, �=22.2°, and �Vcb�=41.6�10−3. In this context,
we refer to scaling laws for FCNC processes pointed out
by Buras and Harlander �1992�, from which it follows
that the dependence of K→���̄ branching ratios on
�Vcb� and �X� is encoded in a single variable

Z = A2�X� . �7.14�

This observation allows us to make the following re-
placement in Table XI:

�X� → �X�eff = 	 �Vcb�
41.5� 10−3�2

�X� , �7.15�

so that for �Vcb��41.6�10−3 the results correspond to
different values of �X� obtained by rescaling the values
for �X� there by means of Eq. �7.15�.

As beyond the SM the uncertainties in the value of �X�
are substantially larger than the ones in �Vcb�, the error
in �Vcb� can be absorbed into the one of �X�eff.

D. New complex phases in the Bd
0-B̄d

0 mixing

We next move to the scenario in which X=XSM, but

there are new contributions to Bd
0-B̄d

0 mixing. This sce-
nario has been considered in detail in many papers by
�Bertolini et al., 1987; Nir and Silverman, 1990a, 1990b;
Bergmann and Perez, 2000, 2001; D’Ambrosio and Isi-
dori, 2002; Laplace, 2002; Laplace et al., 2002; Fleischer
et al., 2003�. As summarized by Nir and Silverman, this
scenario can be realized in supersymmetric models with
�a� a heavy scale for the soft-breaking terms; �b� new
sources of flavor symmetry breaking only in the soft-
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FIG. 7. �Color online� Br�K+→�+��̄� as a function of Br�KL
→�0��̄� for various values of �X �Buras et al., 2004a�. Dotted
horizontal lines indicate the lower part of the experimental
range �1.4� and the gray area the SM prediction. Also shown is
the bound in Eq. �6.3�.
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TABLE XI. Values of Br�K+→�+��̄� and of Br�KL→�0��̄�
�in parentheses� in units of 10−11 for different values of �X and
�X� with �=22.2° and �Vcb�=41.6�10−3.

�X / �X� 1.25 1.50 1.75 2.00 2.25

−90° 2.3 3.3 4.5 6.0 7.6
�10.1� �14.5� �19.8� �25.8� �32.7�

−60° 3.8 5.0 6.5 8.3 10.2
�12.1� �17.4� �23.6� �30.9� �39.1�

−30° 5.1 6.7 8.4 10.4 12.6
�8.1� �11.6� �15.8� �20.7� �26.1�

0° 6.0 7.8 9.7 11.9 14.3
�2.1� �3.0� �4.1� �5.4� �6.8�

30° 6.3 8.0 10.0 12.3 14.7
�0.11� �0.16� �0.22� �0.29� �0.36�

60° 5.8 7.4 9.3 11.5 13.8
�4.1� �5.9� �8.0� �10.5� �13.3�

90° 4.6 6.1 7.8 9.7 11.8
�10.1� �14.5� �19.8� �25.8� �32.7�
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breaking terms, which do not involve the Higgs fields;
and �c� Yukawa interactions similar to the SM case.
However, as emphasized by Fleischer et al. �2003� and
discussed in Sec. VIII, this scenario is not representative
for all supersymmetric scenarios, in particular those with
important mass insertions of the left-right type and
Higgs mediated FCNC amplitudes with large tan �.
Nonsupersymmetric examples like littlest Higgs with T
parity and Z� models can also provide new phase effects

in Bd
0-B̄d

0 mixing, but generally such effects are simulta-

neously present in Bs
0-B̄s

0 mixing and K→���̄.
We recall that, in the presence of a complex function

Sd, the off-diagonal term M12
d in the neutral Bd

0 meson
mass matrix has the phase structure

M12
d =

�Bd
0�Heff

�B=2�B̄d
0�

2mBd

� ei2�ei2�d�Sd� , �7.16�

with �Sd� generally differing from S0�xt�. If Ss remains
unchanged, then

• the asymmetry a
KS
does not measure � but �+�d

and

• the expression for Rt in Eq. �2.45� becomes

rdRt = 0.920r̃	 �

1.24
�	0.2248

�
��18.4/ps

�Ms
� �Md

0.50/ps
,

rd
2 � � Sd

S0�xt�
� . �7.17�

As a consequence of these changes, the true angle �
differs from the one extracted from a
KS

and also Rt
and �Vtd� will be modified if rd�1.

As X is not modified with respect to the SM, the im-
pact on K→���̄ amounts exclusively to the change of
the true �eff and Rt in the formulas �3.1� and �3.15�. A
particular pattern of a possible impact on K→���̄ in the
scenario in question has been presented by Fleischer et
al. �2003�.

In the meantime, the data on the CP asymmetry S
KS

and the observables in Bs,d
0 -B̄s,d

0 systems have improved
so much that the allowed values for rd and �Bd

are
strongly constrained. Also, there is now a slight tension
between the values of �Vub� and sin 2� as inputed into
the fits, potentially hinting toward some nonvanishing
�negative� phase �Bd

�Blanke et al., 2006; Bona et al.,
2006c�. However, since there are some open questions
concerning the value of �Vub�, it remains to be seen how
this situation develops further. The implication of this
for the K→���̄ decays is that, due to the higher value of
�̄ obtained from the RUT fit, the values for both branch-
ing ratios are larger than those found using CKM values
from an overall fit of the unitarity triangle.

E. A hybrid scenario

The situation is more involved if new physics effects
enter both X and S. Similarly to the previous two sce-
narios, the golden relation in Eq. �1.1� is violated, but
now the structure of a possible violation is more in-
volved,

�sin 2�� − �X�����̄� �sin 2�� + �d��
KS
. �7.18�

Since �X originates in new contributions to the decay
amplitude K→���̄ and �d in new contributions to the

Bd
0-B̄d

0 mixing, it is likely that �X��d.
The most straightforward strategy to disentangle new

physics contributions in K→���̄ and the Bd
0-B̄d

0 mixing
in this scenario is to use the reference unitarity triangle
that results from the �Rb ,�� strategy. Having the true
CKM parameters at hand, one can determine �X and �X�
from K→���̄ and �d and �Sd� from the Bd

0-B̄d
0 mixing

and a
KS
.

In order to illustrate these ideas in explicit terms, we
investigate, in the remainder of this section, how the

presence of new contributions in K→���̄ and the Bd
0-B̄d

0

mixing could be signaled in the ��̄ , �̄� plane.
Beginning with K→���̄, we write

X = rXXSMei�X. �7.19�

Then formulas �7.6� and �7.7� apply with

�X� → XSM, Rt → rXRt. �7.20�

We proceed then as follows:

• From the measured Br�K+→�+��̄� and Br�KL

→�0��̄�, we determine the “fake” angle � in the uni-
tarity triangle with the help of Eq. �7.8�. We denote
this angle by �X, which we defined in Eq. �7.5�. In
what follows we neglect �s, but it can be taken
straightforwardly into account if necessary.

• The height of the fake UT from K→���̄ is then
given by

�̄���̄ = rXRt sin �X =
�B2

r̃A2XSM
, �7.21�

where we set �2= +1 in order to be concrete. As
seen, this height can be found from Br�KL→�0��̄�
and XSM.

Now we go to the Bd
0-B̄d

0 mixing, where we introduced
the parameter rd defined in Eq. �7.17�. We proceed then
as follows:

• The asymmetry a
KS
determines the fake angle �,

which we denote by �d=�+�d.

• The fake side Rt, to be denoted by �Rt�d, is given as
follows:

�Rt�d = rdRt. �7.22�
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It can be calculated from Eq. �7.17� subject to uncer-
tainties in �.

Clearly, generally the fake UT’s resulting from K
→���̄ and the ��Md /�Ms ,�� strategy, discussed above,
will differ from each other, from the true reference tri-
angle, and also from the UT obtained from the �� ,��
and ��̄ ,�� strategies, if the determinations of �̄ and � are
affected by new physics.

We show these five different triangles in Fig. 9. Com-
paring the fake triangles with the reference triangle, all

new physics parameters in K→���̄ and Bd
0 - B̄d

0 mixing
can be easily extracted. Figure 9 has only illustrative
character. We know already from the recent analyses of
the UT �Blanke et al., 2006; Bona et al., 2006c� that the
phase �Bd

is constrained to be much smaller than de-
picted in this figure. Moreover, a negative value seems to
be favored.

F. Correlation between Br(KL\�0��̄) and Br(B\Xs,d��̄)

The branching ratios for the inclusive rare decays B
→Xs,d��̄ can be written in the models with a new com-
plex phase in X as follows �Buras et al., 2004a� �q=d ,s�:

Br�B → Xq��̄� = 1.58� 10−5	Br�B → Xce�̄�
0.104

�
��Vtq

Vcb
�2	0.54

f�z� ��X�2, �7.23�

where f�z�=0.54±0.04 is the phase-space factor for
B→Xce�̄, with z=mc

2 /mb
2, and Br�B→Xce�̄�

=0.104±0.004.
Formulas �7.7� and �7.23� imply interesting relations

between the decays KL→�0��̄ and B→Xs,d��̄ that are
generalizations of similar relations within the MFV
models �Bergmann and Perez, 2000, 2001; Buras and
Fleischer, 2001� to the scenario considered here,

Br�KL → �0��̄�
Br�B → Xs��̄�

=
�L

1.58� 10−5	 0.104

Br�B → Xce�̄�
�

�	 f�z�
0.54

�A4Rt
2 sin2 �X, �7.24�

Br�KL → �0��̄�
Br�B → Xd��̄�

=
�L

1.58� 10−5	 0.104

Br�B → Xce�̄�
�

�	 f�z�
0.54

�A4r̃2

�2 sin2 �X. �7.25�

The experimental upper bound on Br�B→Xs��̄�
reads �Barate et al., 2001�

Br�B → Xs��̄� 6.4� 10−4 �90 % C.L.� . �7.26�

Using this bound and setting Rt=0.95, f�z�=0.58, and
Br�B→Xce�̄�=0.10, we find from Eq. �7.24� the upper
bound

Br�KL → �0��̄�� 4.4� 10−9�sin �X�2

= �6.3� 10−10, �X = 22.2°

3.9� 10−9, �X = 111°
� �7.27�

at 90% C.L. for the MFV models and a scenario with a
large new phase, respectively. In the case of the MFV
models, this bound is weaker than the bound in Eq. �6.6�
but, as the bound in Eq. �7.26� should be improved in
the B-factory era, the situation could change in the com-
ing years. Concerning the scenario with a complex phase
�X of Sec. VII.B, no useful bound on Br�KL→�0��̄�
from Eq. �7.26� results at present as the bound in Eq.
�7.27� is weaker than the model-independent bound in
Eq. �6.5�.

VIII. K\���̄ IN SELECTED NEW PHYSICS SCENARIOS

A. Preliminaries

In this section, we review the results for decays K+

→�+��̄ and KL→�0��̄ in selected new physics sce-
narios. Our goal is to indicate the size of new physics
contributions in the branching ratios in question. Due to
several free parameters present in some of these exten-
sions, actual predictions for the branching ratios are not
precise and often depend sensitively on some param-
eters involved. The latter could then be determined or
bounded efficiently once precise data on K→���̄ and
other rare decays will be available. While we only
present the results for Br�K+→�+��̄� and Br�KL

→�0��̄�, most analyses discussed below used all avail-

� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
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� � �
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RtrX

Rtrd

(aψKS , γ)

(aψKS ,
∆Md
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∆βX
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βγ

FIG. 9. Fake unitarity triangles compared to the reference tri-
angle, ��X=−�X.
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able constraints from other observables known at the
time of a given analysis. A detailed analysis of these
constraints is clearly beyond the scope of this review. A
general discussion of K→���̄ beyond the SM can be
found in Grossman and Nir �1997�. In writing this sec-
tion, we also benefited from D’Ambrosio and Isidori
�2002�, Isidori �2003�, and Bryman et al. �2006�.

B. Littlest Higgs models

One of the most attractive solutions to the so-called
little hierarchy problem that affects the SM is provided
by little Higgs models. They are perturbatively comput-
able up to �10 TeV and have a rather small number of
parameters, although their predictivity can be weakened
by a certain sensitivity to the unknown ultraviolet �UV�
completion of the theory. In these models, in contrast to
supersymmetry, the problematic quadratic divergences
to the Higgs mass are canceled by loop contributions of
new particles with the same spin statistics of the SM
ones and with masses around 1 TeV.

The basic idea of little Higgs models �Arkani-Hamed
et al., 2001� is that the Higgs model is naturally light as it
is identified with a Nambu-Goldstone boson of a spon-
taneously broken global symmetry.

The most economical, in matter content, is the littlest
Higgs �LH� model �Arkani-Hamed et al., 2002�, where
the global group SU�5� is spontaneously broken into
SO�5� at the scale f�O�1 TeV� and the electroweak sec-
tor of the SM is embedded in an SU�5�/SO�5� nonlinear
sigma model. Gauge and Yukawa Higgs interactions are
introduced by gauging the subgroup of SU�5�: �SU�2�
�U�1��1� �SU�2��U�1��2. In the LH model, the new
particles appearing at the TeV scales are the heavy
gauge bosons �WH

± ,ZH ,AH�, the heavy top �T�, and the
scalar triplet �.

In the original LH model �Arkani-Hamed et al., 2002�,
the custodial SU�2� symmetry, of fundamental impor-
tance for electroweak precision studies, is unfortunately
broken already at tree level, implying that the relevant
scale of new physics f must be at least 2–3 TeV in order
to be consistent with electroweak precision data �Csaki
et al., 2003; Han et al., 2003a, 2003b; Hewett et al., 2003;
Chen and Dawson, 2004a, 2004b; Kilian and Reuter,

2004; Yue and Wang, 2004�. As a consequence, contribu-
tions of new particles to FCNC processes turn out to be
at most 10–20 % �Huo and Zhu, 2003; Buras et al.,
2005a, 2005b; Buras, Poschenrieder, Uhlig, et al., 2006�,
which will not be easy to distinguish from the SM due to
experimental and theoretical uncertainties. In particular,
a detailed analysis of particle-antiparticle mixing in the
LH model has been given by Buras et al. �2005b� and the
corresponding analysis of rare K and B decays has re-
cently been presented by Buras, Poschenrieder, Uhlig, et
al. �2006�.

More promising and more interesting from the point
of view of FCNC processes is the littlest Higgs model
with a discrete symmetry �T parity� �Cheng and Low,
2003, 2004� under which all new particles listed above,
except T+, are odd and do not contribute to processes
with external SM quarks �T even� at tree level. As a
consequence, the new physics scale f can be reduced to
1 TeV and even below it, without violating electroweak
precision constraints �Hubisz, Meade, Noble, et al.,
2006�.

A consistent and phenomenologically viable LHT re-
quires introduction of three doublets of “mirror quarks”
and three doublets of “mirror leptons” which are odd
under T parity, transform vectorially under SU�2�L, and
can be given a large mass. Moreover, there is an addi-
tional heavy T− quark that is odd under T parity �Low,
2004�.

Mirror fermions are characterized by new flavor inter-
actions with SM fermions and heavy gauge bosons,
which involve in the quark sector two new unitary mix-
ing matrices analogous to the CKM matrix �Chau and
Keung, 1984; Hagiwara et al., 2002�. They are VHd and
VHu, respectively, involved when the SM quark is of
down- or up-type, and satisfying VHu

† VHd=VCKM �Koba-
yashi and Maskawa, 1973�. VHd contains three angles,
like VCKM, but three �non-Majorana� phases �Blanke,
Buras, Duling, et al., 2007�, i.e., two additional phases
relative to the SM matrices, that cannot be rotated away
in this case.

Because of these new mixing matrices, the LHT
model does not belong to the �MFV� class of models
�Buras et al., 2001b; D’Ambrosio et al., 2002; Buras,
2003� and significant effects in flavor observables are
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Br�K��Π�ΝΝ��
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2x10-10
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Br�KL�Π
0ΝΝ��

8

FIG. 10. �Color online� Br�KL→�0��̄� as a
function of Br�K+→�+��̄� in the LHT model.
The shaded area represents the experimental
1� range for Br�K+→�+��̄�. The GN bound
is displayed by the dotted line, while the solid
line separates the two areas where Br�KL
→�0��̄� is larger or smaller than Br�K+

→�+��̄�.
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possible, without adding new operators to the SM ones.
Finally, it is important to recall that little Higgs models
are low-energy nonlinear sigma models, whose unknown
UV-completion introduces a theoretical uncertainty, as
discussed by Buras, Poschenrieder, Uhlig, et al. �2006�
and Blanke, Buras, Recksiegel, et al. �2007�.

The flavor physics analysis in the LHT model can be
found in the case of quark sector by Blanke et al. �2006,

2007b� and Hubisz, Lee, and Paz �2006� and in the lep-
ton sector by Blanke et al. �2007a� and Choudhury et al.
�2007�. Here we summarize the results obtained for K
→���̄ decays obtained by Blanke, Buras, Recksiegel, et
al. �2007�.

The presence of new flavor violating interactions be-
tween ordinary quarks and mirror quarks described by
the matrix

VHd = � c12
d c13

d s12
d c13

d e−i�12
d

s13
d e−i�13

d

− s12
d c23

d ei�12
d

− c12
d s23

d s13
d ei��13

d −�23
d � c12

d c23
d − s12

d s23
d s13

d ei��13
d −�12

d −�23
d � s23

d c13
d e−i�23

d

s12
d s23

d ei��12
d +�23

d � − c12
d c23

d s13
d ei�13

d
− c12

d s23
d ei�23

d
− s12

d c23
d s13

d ei��13
d −�12

d � c23
d c13

d �
introduces complex phases in the short-distance func-
tions Xi, Yi, and Zi and breaks the universality and cor-
relations between K, Bd, and Bs systems characteristic
for the MFV models. Spectacular results are found in
particular for K+→�+��̄ and KL→�0��̄ decays. First
one finds

0.7� �X�� 4.7, − 130 ° � �X� 55° �8.1�

to be compared with �X�=1.44 and �X=0 in the SM. As
discussed in Sec. VII.B, a large phase �X can change the
pattern of branching ratios in the K→���̄ system. This
is seen in Fig. 10, where we show the correlation be-
tween Br�K+→�+��̄� and Br�KL→�0��̄� in the LHT
model. The experimental 1� range for Br�K+→�+��̄�
�Adler et al., 2002; Anisimovsky et al., 2004, 2007� and
the model-independent Grossman-Nir �GN� bound
�Grossman and Nir, 1997� are also shown. The different
shaded areas in the figure correspond to different sce-
narios for the VHd matrix, whose discussion is beyond
the scope of this review.

We observe that there are two branches of possible
points. The first one is parallel to the GN bound and
leads to possible huge enhancements in Br�KL→�0��̄�
so that values as high as 5�10−10 are possible, being at
the same time consistent with the measured value for
Br�K+→�+��̄�. The second branch corresponds to val-
ues for Br�KL→�0��̄� being rather close to its SM pre-
diction, while Br�K+→�+��̄� is allowed to vary in the
range �1�10−11,5�10−10�, however values above 4
�10−10 are experimentally not favored. We note also
that for certain parameter values of the model, Br�K+

→�+��̄� can be significantly suppressed.
In Fig. 11, we show the ratio Br�KL→�0��̄� /Br�K+

→�+��̄� as a function of the phase �X
K, displaying again

the GN bound. We observe that the ratio can be signifi-
cantly different from the SM prediction, with a possible
enhancement of an order of magnitude.

The most interesting implications of this analysis are
as follows:

• If Br�K+→�+��̄� is found sufficiently above the SM
prediction but below 2.3�10−10, basically only two
values for Br�KL→�0��̄� are possible within the
LHT model. One of these values is close to the SM
value in Eq. �1.2� and the second much larger.

• If Br�K+→�+��̄� is found above 2.3�10−10, then
only Br�KL→�0��̄� with a value close to the SM one
in Eq. �1.3� is possible.

• The violation of the MFV relation �1.1�. We show
this in Fig. 12, where the ratio of sin 2�X

K over
sin�2�+2�Bd

� is plotted versus �13
d . As �Bd

is con-
strained by the measured S
KS

asymmetry to be at
most a few degrees �Blanke et al., 2006; Bona et al.,
2006c�, large violations of the relation in question
can only follow from the K→���̄ decays. As seen in
Fig. 12, they can be spectacular.

Finally, in Fig. 13 we show Br�KL→�0e+e−� and
Br�KL→�0	+	−� versus Br�KL→�0��̄�. We observe a
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FIG. 11. �Color online� Br�KL→�0��̄� /Br�K+→�+��̄� in the
LHT model as a function of �X

K. The dashed line represents the
GN bound.
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strong correlation between KL→�0�+�− and KL→�0��̄
decays that we expect to be valid beyond the LHT
model, at least in models with the same operators
present as in the SM. We note that a large enhancement
of Br�KL→�0��̄� automatically implies significant en-
hancements of Br�KL→�0�+�−� and that different mod-
els and their parameter sets can then be distinguished by
the position on the correlation curve. Moreover, measur-
ing Br�KL→�0�+�−� should allow a rather precise pre-
diction of Br�KL→�0��̄� at least in models with the
same operators as the SM. This should distinguish the
LHT model from models with more complicated opera-
tor structure in KL→�0l+l− �Mescia et al., 2006�, and
consequently different correlations between KL→�0��̄
and KL→�0l+l−.

As emphasized by Buras et al. �2000� and Buras and
Silvestrini �1999�, there exist correlations between K
→���̄ decays, KL→	+	−, and �� /�, that could bound
the size of the enhancement of Br�K+→�+��̄� and
Br�KL→�0��̄�. Unfortunately, the hadronic uncertain-
ties in KL→	+	− and in particular in �� /� lower the
usefulness of these correlations at present. More prom-
ising, in the context of supersymmetric models and also
generally, appear the correlations between K→���̄ and
rare FCNC semileptonic decays like B→Xs,dl+l−, Bs,d

→ l+l−, and in particular B→Xs,d��̄, because in these de-
cays the main deviations from the SM can also be en-

coded in an effective Zb̄q �q=s ,d� vertex �Buchalla et
al., 2001; Atwood and Hiller, 2003�. We discussed the
correlation with B→Xs,d��̄ in the preceding section.

Recently, the correlation between �� /� and the decays
K→���̄ has been investigated in the context of the
LHT model for specific values of the relevant hadronic
matrix elements entering �� /� �Blanke, Buras, Recksie-
gel, et al., 2007�. The resulting correlation between KL

→�0��̄ and �� /� is strong but less pronounced in the
case of K+→�+��̄. With the hadronic matrix elements
evaluated in the large-N limit, ��� /��SM turns out close to
the experimental data and significant departures of
Br�KL→�0��̄� and Br�KL→�0l+l−� from the SM expec-
tations are unlikely, while Br�K+→�+��̄� can be en-
hanced by a factor of 5. On the other hand, modest de-
partures of the relevant hadronic matrix elements from
their large-N values allow for a consistent description of
�� /� within the LHT model accompanied by large en-
hancements of Br�KL→�0��̄� and Br�KL→�0l+l−�, but
only modest enhancements of Br�K+→�+��̄�. This
analysis demonstrates that without a significant progress
in the evaluation of the hadronic parameters in �� /�, the
role of this ratio in constraining physics beyond the SM
will remain limited.

C. Z� models

An additional neutral gauge boson can appear in sev-
eral extensions of the standard model, such as left-right
symmetric models, supersymmetric models with an ad-
ditional U�1� factor, often arising in the breaking process
of several grand unified theory models, such as the
breaking chain SO�10�→SU�5��U�1� or E6→SO�10�
�U�1�, or in 331 models, where the SU�2�L of the SM is
extended to an SU�3�L. In general, direct collider
searches have already placed lower bounds on a general
Z� mass, but FCNC processes can also provide valuable
information on these particles, since additional contribu-
tions appear at tree level, if the Z� transmits flavor
changes. General, model-independent analyses of B de-
cays as well as the mass differences �Ms can be found in
Grossman et al. �1999�, Langacker and Plumacher
�2000�, and Barger et al. �2004a, 2004b�. Additional in-
terest in these contributions with respect to the B meson
system has arisen in the context of the CP asymmetries
in Bd

0 →�KS. In general, one finds that sizeable contri-
butions are still possible but are rather unpredicable in
this model-independent context. On the other hand, the
predictive power increases if the analysis is performed in
a specific model.

As an example of this situation, we discuss the recent
analysis �Promberger et al., 2007� performed in the mini-
mal 331 model �Frampton, 1992; Pisano and Pleitez,
1992�. Here one has an SU�3�c�SU�3�L�U�1� that is
broken down to the electromagnetic U�1� in two steps.
In this process, the additional Z� boson appears, along
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FIG. 12. �Color online� sin 2�X
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with several charged gauge bosons that play no role in
low-energy processes involving quarks, since they always
couple to the additional heavy quarks that fill the left-
handed triplet. Finally, the third generation of quarks is
treated differently from the first two, transforming as an
antitriplet. In this setup, taking into account also the
asymptotic freedom of QCD, one finds that anomalies
are canceled precisely in the case of the three genera-
tions, thereby explaining this feature of the SM, where
the number of generations is fixed from observation.
Apart from FCNC processes, constraints on the Z� mass
come also from electroweak precision observables, but
new contributions appear at the one-loop level, so that
constraints from FCNCs are actually more interesting.
Also, the model develops a Landau pole at a scale of
several TeV, which constrains the new energy scale from
above, thereby complementing the bounds from direct
searches and FCNC observables.

The flavor nonuniversality reflected in the different
transformation property of the third generation leads to
the flavor changing Z� vertices. The FCNC processes
under investigation then depend on the Z� mass as well
as the weak mixing matrix required to diagonalize the
Yukawa coupling of the down quark sector �as long as
one is studying B or K meson processes�. Also, one finds
that the different processes decouple from each other,
i.e., that sd, bd, and bs transitions are constrained inde-
pendently, so that only constraints from �MK and �K are

used to constrain the branching fractions of KL→�0��̄

and K+→�+��̄. This leads to an allowed region in the
KL→�0��̄-K+→�+��̄ plane shown in Fig. 14. We show
the corresponding areas for MZ�=1 TeV as well as
MZ�=5 TeV, where one observes that the allowed re-
gion shrinks with increasing MZ�. The pattern is similar
to the one shown in the LHT model in that there exist
two possible branches, where Br�KL→�0��̄� is close to
the SM on one of them, while Br�K+→�+��̄� is on the
other. This is due to the different strength of the �K and
�MK bounds, respectively, and large modifications arise
in those areas where the phase of the new contribution
is such that it does not strongly modify �K. Therefore, a
similar structure should appear whenever the K→�0��̄
decays are constrained mainly by these two quantities.
On the other hand, the minimal 331 model has a some-
what leptophobic nature, so that the effects are not ex-
pected to be as large as, for example, in the LHT model,
but the current experimental central value can be
reached, in particular, for MZ�2 TeV.

Additionally, a measurement of both branching frac-
tions fixes both the absolute value and phase of the new
contributions �this is true in all Z� models� and allows
predictions for the observables �MK and �K �this is of
course only true if the model is explicitly fixed�. Another
interesting feature of this model is that there are signifi-
cant differences between the vector and axial vector

FIG. 14. �Color online� A projection onto the KL→�0��̄−K+→�+��̄ plane including the upper bounds from �MK and �K for
MZ�=5 TeV and 1 TeV.
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coupling, which cancel each other out in the V−A dif-
ference, to which Br�KL→�0��̄� is sensitive, so that, in
comparison, one finds stronger modifications in the KL

→�0l+l− branching fraction than in KL→�0��̄ �Prom-
berger et al., 2007�. Finally, significant modifications can
also be found in the angle ���K���, which may be as large
as 45° for small values of MZ�.

On the other hand, recently �He and Valencia, 2004,
2006� the decays K→���̄ were analyzed in models that
are variations of left-right symmetric models in which
right-handed interactions, involving in particular a heavy
Z� boson, single out the third generation �He and Valen-
cia, 2002, 2003�. Contributions of these new nonuniver-
sal FCNC interactions appear at both the tree and one-
loop levels. The tree level contributions involving Z� of
the type �s̄d�V+A��̄����V+A can be severely constrained by

other rare decays, �K, and in particular Bs
0-B̄s

0 mixing.
Before the measurement of �Ms, these could enhance
Br�K+→�+��̄� to the central experimental value in Eq.
�1.5� and Br�KL→�0��̄� could be as high as 1.4�10−10.
These enhancements were accompanied by an enhance-
ment of �Ms, and finding �Ms in the vicinity of SM
expectations has significantly limited these possibilities
�He and Valencia, 2006�. On the other hand, new one-
loop contributions involving a Z� boson may be impor-
tant because of the particularly large � neutrino cou-

pling. They are not constrained by Bs
0-B̄s

0 mixing and can
give significant enhancements of both branching ratios
even if �Ms���Ms�SM. Unfortunately, the presence of
many free parameters in these new one-loop contribu-
tions does not allow us to make definite predictions, but
an enhancement by a factor of 2 still seems possible �He
and Valencia, 2006�.

Finally, FCNC processes at the tree level arise also if
there is an additional vectorlike quark generation, or if
there is only one additional isosinglet down-type or up-
type quark, as one can encounter in certain E6 GUT
theories, or some models with extra dimensions. In this
case, the SM Z boson itself can transmit flavor changes,
since the mixing matrix of the respective quark sector is
no longer unitary and therefore does not cancel out in
the neutral Z current, causing FCNCs in the respective
sector where the additional quark appears. The most re-
cent analysis of the K→���̄ decays in this model was
presented by Deshpande et al. �2004�, while a complete
analysis of FCNC processes in this type of scenario can
be found in Barenboim et al. �2001�. Here the authors
obtain constraints on the matrix element Usd �here U
=V†V, with V the mixing matrix that diagonalizes the
down-quark sector� from K+→�+��̄, �K, �� /�K. Addi-
tionally, they emphasized that the K→���̄ decays can
be valuable for constraining this element further, if the
decays are precisely measured. In fact, one finds there
a figure somewhat similar in spirit to the one shown in
Fig. 14, which shows an analogous interplay of con-
straints in the K physics sector. We have included this
figure as Fig. 15.

D. MSSM with MFV

There are many new contributions in MSSM, such as
charged Higgs, chargino, neutralino, and gluino contri-
butions. However, in the case of K→���̄ and MFV, it is
a good approximation to keep only charged Higgs and
chargino contributions.

To our knowledge, the first analyses of K→���̄ in this
scenario can be found in Bertolini and Masiero �1986�,
Giudice �1987�, Mukhopadhyaya and Raychaudhuri
�1987�, and Bigi and Gabbiani �1991�, and subsequently
in Couture and Konig �1995�, Goto et al. �1998�, and
Buras et al. �2001a�. In the latter analysis, constraints on
the supersymmetric parameters from �K, �Md,s, B
→Xs�, �� in the electroweak precision studies and from
the lower bound on the neutral Higgs mass have been
imposed. Supersymmetric contributions affect both the
loop functions such as X�v� present in the SM and the
values of the extracted CKM parameters such as �Vtd�
and Im �t. As the supersymmetric contributions to the
function S�v� relevant for the analysis of the UT are
always positive �see also Altmannshofer et al. �2007��,
the extracted values of �Vtd� and Im �t are always smaller
than in the SM. Consequently, Br�K+→�+��̄� and
Br�KL→�0��̄�, which are sensitive to �Vtd� and Im �t,
respectively, are generally suppressed relative to SM ex-
pectations. The supersymmetric contributions to the
loop function X�v� can compensate for the suppression
of �Vtd� and Im �t only for special values of supersym-
metric parameters, so that in these cases the results are
close to SM expectations.
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FIG. 15. �Color online� Effect of the constraints from �K, K+

→�+��̄, KL→	+	−, and �� /� on the Usd FCNC coupling in
the case of an extra isosinglet down quark �Barenboim et al.,
2001�.
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Setting �, �Vub�, and �Vcb�, all unaffected by SUSY con-
tributions, at their central values one finds �Buras et al.,
2001a�

0.65�
Br�K+ → �+��̄�

Br�K+ → �+��̄�SM
� 1.02,

0.41�
Br�KL → �0��̄�

Br�KL → �0��̄�SM
� 1.03. �8.2�

We observe that significant suppressions of the branch-
ing ratios relative to SM expectations are still possible.
More importantly, finding experimentally at least one of
these branching ratios above the SM value would ex-
clude this scenario, indicating new flavor violating
sources beyond the CKM matrix. Similarly, in the
MSSM based on supergravity, a reduction of both K
→���̄ rates up to 10% is possible �Goto et al., 1998�.
Buras et al. �2001a� provided a compendium of phenom-
enologically relevant formulas in the MSSM that should
turn out to be useful once the relevant branching ratios
have been accurately measured and the supersymmetric
particles have been discovered at Tevatron, LHC, and
the e+e− linear collider. The study of the unitarity tri-
angle can be found in Ali and London �1999a, 1999b,
1999c, 2001�. Inclusion of NLO QCD corrections to the
processes discussed by Buras et al. �2001a� has been per-
formed by Bobeth et al. �2002�. These corrections reduce
mainly the renormalization scale uncertainties present in
the analysis of Buras et al. �2001a�, without modifying
the results in Eq. �8.2� significantly.

E. General supersymmetric models

In general supersymmetric models, the effects of su-
persymmetric contributions to rare branching ratios can
be larger than discussed above. In these models, new
CP-violating phases and new operators are present.
Moreover, the structure of flavor violating interactions is
much richer than in the MFV models.

The new flavor violating interactions are present be-

cause generally the sfermion mass matrices M̃q
2 can be

nondiagonal in the way in which all neutral quark-
squark-gaugino vertices and quark and lepton mass ma-
trices are flavor diagonal. Instead of diagonalizing sfer-
mion mass matrices, it is convenient to consider their
off-diagonal terms as new flavor violating interactions.
This so-called mass-insertion approximation �Hall et al.,
1986� has been reviewed by Gabbiani et al. �1996� and
Misiak et al. �1998�, where further references can be
found.

Within the MSSM with R-parity conservation, sizable
nonstandard contributions to K→���̄ decays can be
generated if the soft-breaking terms have a non-MFV
structure. The leading amplitudes giving rise to large ef-
fects are induced by �i� chargino and up-squark loops
�Buras et al., 1998, 2000; Colangelo and Isidori, 1998; Nir
and Worah 1998� and �ii� charged Higgs and top quark
loops �Isidori and Paradisi, 2006�. In the first case, large

effects are generated if the left-right mixing �A term� of
the up squarks has a non-MFV structure �D’Ambrosio et
al., 2002�. In the second case, deviations from the SM
are induced by non-MFV terms in the right-right down
sector, provided the ratio of the two Higgs vacuum ex-
pectation values �tan �=vu /vd� is large �tan ��30–50�.

The effective Hamiltonian encoding SD contributions
in the general MSSM has the following structure:

Heff
�SD� � �

l=e,	,�
Vts

* Vtd�XL�s̄L�
	dL���̄lL�	�lL�

+ XR�s̄R�
	dR���̄lL�	�lL�� , �8.3�

where the SM case is recovered for XR=0 and XL
=XSM. In general, both XR and XL are nonvanishing,
and the misalignment between quark and squark flavor
structures implies that they are both complex quantities.
Since the K→� matrix elements of �s̄L�

	dL� and
�s̄R�

	dR� are equal, the combination XL+XR allows us
to describe all SD contributions to K→���̄ decays.
More precisely, we use the SM expressions for the
branching ratios with the following replacement:

XSM → XSM + XL
SUSY + XR

SUSY, �8.4�

with XL,R
SUSY complex quantities. In the limit of almost

degenerate superpartners, the leading chargino and up-
squarks contribution is �Colangelo and Isidori, 1998�

XL
�±

�
1
96
	 ��LR

u �23��RL
u �31

�t
�

=
1

96�t
	 �M̃u

2�2L3R

�M̃u
2�LL�M̃u

2�RR

�	 �M̃u
2�3R1L

�M̃u
2�LL�M̃u

2�RR

� .

�8.5�

Here ��AB
q �ij result from a convenient parametrization

�Gabbiani et al., 1996; Misiak et al., 1998� of the nondi-

agonal terms �M̃u
2�iAjB in squark mass matrices with

A ,B=L ,R and i , j=1,2 ,3 standing for quark generation
indices. As pointed out by Colangelo and Isidori �1998�,
a remarkable feature of the above result is that no extra
O�MW /MSUSY� suppression and no explicit CKM sup-
pression is present �as it happens in the chargino and
up-squark contributions to other processes�. Further-
more, the ��LR

u �-type mass insertions are not constrained
by other B and K observables. This implies that large
departures from SM expectations in K→���̄ decays are
allowed, as confirmed by the complete analyses in Bu-
ras, Ewerth, Jager, et al. �2005� and Isidori, Mescia, Para-
disi, et al. �2006�. In particular, Buras, Ewerth, Jager, et
al. �2005� found that both branching ratios can be as
large as a few times 10−10 with Br�KL→�0��̄� often
larger than Br�K+→�+��̄� and close to the GN bound.
One also finds �Isidori, Mescia, Paradisi, et al. 2006� that
K→���̄ are the best observables to determine or con-
strain from experimental data the size of the off-
diagonal ��LR

u � mass insertions or, equivalently, the

up-type trilinear terms Ai3��M̃u
2�iL3R

�mtAi3�. Their mea-
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surement is therefore extremely interesting also in the
LHC era.

In the large tan � limit, the charged Higgs and top-
quark exchange leads to �Isidori and Paradisi, 2006�

XR
H±

� 	
msmdt�
2

2MW
2 �

+
��RR

d �31��RR
d �32

�t

 mb

2t�
2

2MW
2 � �RR

2 t�
2

�1 + �it��4�fH�ytH� ,

�8.6�

where ytH=mt
2 /MH

2 , fH�x�=x /4�1−x�+x log x /4�x−1�2,
and �i,RRt�=O�1� for t�=tan ��50. The first term of Eq.
�8.6� arises from MFV effects and its potential tan � en-
hancement is more than compensated by the smallness
of md,s. The second term on the r.h.s. of Eq. �8.6�, which
would appear only at the three-loop level in a standard
loop expansion, can be largely enhanced by the tan4 �
factor and does not contain any suppression due to light
quark masses. Similarly to the double mass-insertion
mechanism of Eq. �8.5�, in this case the potentially lead-
ing effect is also the one generated when two off-
diagonal squark mixing terms replace the two CKM fac-
tors Vts and Vtd.

The coupling of the �s̄R�
	dR���̄L�	�L� effective FCNC

operator, generated by charged-Higgs and top-quark
loops, is phenomenologically relevant only at large tan �
and with non-MFV right-right soft-breaking terms: a
specific but well-motivated scenario within grand-unified
theories �see, e.g., Moroi �2000� and Chang et al. �2003��.
These nonstandard effects do not vanish in the limit of
heavy squarks and gauginos, and have a slow decoupling
with respect to the charged-Higgs boson mass. As shown
by Isidori and Paradisi �2006�, the B-physics constraints
still allow a large room of nonstandard effects in K
→���̄ even for flavor-mixing terms of CKM size �see
Fig. 16�.

A systematic study of K→���̄ decays in flavor super-
symmetric models was performed by Nir and Worah
�1998� and Nir and Raz �2002�. These particular models
are designed to solve naturally the CP and flavor prob-
lems characteristic for supersymmetric theories.4 They
are more constrained than the general supersymmetric
models just discussed, in which parameters are tuned to
satisfy the experimental constraints.

Models with exact universality of squark masses at a
high-energy scale with the A terms proportional to the
corresponding Yukawa couplings, models with approxi-
mate CP, quark and squark alignment, approximate uni-
versality, and heavy squarks were analyzed by Nir and
Worah �1998� and Nir and Raz �2002� in general terms.
It has been concluded that in most of these models, the
impact of new physics on K→���̄ is sufficiently small so
that in these scenarios one can get information on the
CKM matrix from these decays even in the presence of
supersymmetry. On the other hand, supersymmetric

contributions to Bd
0-B̄d

0 mixing in models with alignment,
with approximate universality and heavy squarks, can
significantly affect the asymmetry a
KS

, so that in these
models the golden relation �1.1� can be violated. How-
ever, such scenarios have been put under large pressure

in view of the recent data on D0-D̄0 mixing �Ciuchini et
al., 2007; Nir, 2007�.

Finally, in supersymmetric models with nonuniversal
A terms, enhancements of Br�K+→�+��̄� and Br�KL

→�0��̄� up to 1.5�10−10 and 2.5�10−10 are possible,
respectively �Chen, 2002�. Significant departures from
SM expectations have also been found in supersymmet-
ric models with R-parity breaking �Deandrea et al.,
2004�, but all these analyses should be reconsidered in
view of experimental constraints.

F. Models with universal extra dimensions

The decays K+→�+��̄ and KL→�0��̄ have been stud-
ied in the SM model with one extra universal dimension
by Buras, Spranger, and Weiler �2003�. In this model
�ACD� �Appelquist et al., 2001�, all SM fields are al-
lowed to propagate in all available dimensions and the
relevant penguin and box diagrams receive additional
contributions from Kaluza-Klein �KK� modes. This
model belongs to the class of CMFV models and the
only additional free parameter relative to the SM is the
compactification scale 1/R. Extensive analyses of the4See the review by Grossman et al. �1998�.

FIG. 16. �Color online� Supersymmetric contributions to K
→���̄. Sensitivity to ��RR

d �23��RR
d �31 of various rare K and B

decays as a function of MH+, setting tan �=50, 	0, and as-
suming almost degenerate superparteners �the bounds from
the two K→���̄ modes are obtained assuming a 10% mea-
surement of their branching ratios while, the Bs,d→	+	−

bounds refer to the present experimental limits �Isidori and
Paradisi, 2006��.
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precision electroweak data, and analyses of the anoma-

lous magnetic moment of both the muon, and Z→bb̄
vertex have shown the consistency of the ACD model
with the data for 1/R�300 GeV. We refer the reader to
Buras, Spranger, and Weiler �2003� and Buras, Poschen-
rider, Spranger, et al. �2004� for relevant references.

For 1/R=300 and 400 GeV, the function X is found
with mt=167 GeV to be X=1.67 and 1.61, respectively.
This should be compared with X=1.53 in the SM. In
contrast to the analysis in the MSSM discussed by Buras
et al. �2001a� and above, this 5–10 % enhancement of the
function X is only insignificantly compensated by the
change in the values of the CKM parameters. Conse-
quently, the clear prediction of the model is the en-
hanced branching ratios Br�K+→�+��̄� and Br�KL

→�0��̄�, albeit by at most 15% relative to the SM ex-
pectation. These enhancements allow us to distinguish
this scenario from the MSSM with MFV.

The enhancement of Br�K+→�+��̄� in the ACD
model is interesting in view of the experimental results
in Eq. �1.5� with the central value higher by a factor of
1.8 than the central value in the SM. Even if the errors
are substantial and this result is compatible with the SM,
the ACD model with a low compactification scale is
closer to the data. In Table XII, we show the upper
bound on Br�K+→�+��̄� in the ACD model obtained by
Buras, Spranger, and Weiler �2003� with formula �3.10�,
and X replaced by its enhanced value in the model in
question. To this end, �Vcb��0.0422, Pc�X�0.47,
mt�mt�172 GeV, and sin 2�=0.734 have been used.
Table XII illustrates the dependence of the bound on
the nonperturbative parameter �, 1 /R, and �Ms. We ob-
serve that for 1/R=300 GeV and �=1.30, the maximal
value for Br�K+→�+��̄� in the ACD model is close to
the central value in Eq. �1.5�.

Clearly, in order to distinguish these results and the
ACD model from the SM, other quantities that are
more sensitive to 1/R should be considered simulta-
neously. In this respect, the sizable downward shift of
the zero �ŝ0� in the forward-backward asymmetry AFB in
B→Xs	

+	− and the suppression of Br�B→Xs�� by
roughly 20% at 1/R=300 GeV appear to be most inter-
esting results �Buras, Poschenrieder, Spranger, et al.,
2004�.

As the most recent analysis of the B→Xs� decay at
the NNLO level results in its SM branching ratio being
more than one � below the experimental values, the

model in question is put therefore under considerable
pressure and the values of 1/R as low as 300 GeV ap-
pear rather improbable from the present perspective
�Haisch and Weiler, 2007a�. A decrease of the experi-
mental error without a significant change of its central
value and a better understanding of nonperturbative
effects in the B→Xs� decay could result in 1/R
�O�1 TeV� and consequently small new physics effects
in K→���̄ decays in this model.

G. Models with lepton-flavor mixing

In the presence of flavor mixing in the leptonic sector,
the transition KL→�0�i�̄j, with i� j, could receive sig-
nificant CP-conserving contributions �Grossman and
Nir, 1997�. Subsequently this issue was analyzed by
Perez �1999, 2000� and Grossman et al. �2004�. Here we
summarize the main findings of these papers.

Perez �1999, 2000� analyzed the effect of light sterile
right-handed neutrinos leading to scalar and tensor
dimension-6 operators. As shown there, the effect of
these operators is negligible if the right-handed neutri-
nos interact with the SM fields only through their Dirac
mass terms.

Larger effects are expected from the operators

Osd
ij = �s̄�	d���̄L

i �	�L
j � , �8.7�

which for �i� j� create a neutrino pair that is not a CP
eigenstate. As shown by Grossman et al. �2004�, the con-
dition for a nonvanishing KL→�0��̄ rate in this case is
strong. One needs either CP violation in the quark sec-
tor or a new effective interaction that violates both
quark and lepton universality. One finds then the follow-
ing pattern of effects:

• If the source of universality breaking is confined to
mass matrices, the effects of lepton-flavor mixing get
washed out in the K→���̄ rates after the summing
over the neutrino flavors. There are in principle de-
tectable effects of lepton mixing only in cases in
which there are two different lepton-flavor mixing
matrices, although they cannot be large.

• In models in which simultaneous violation of quark
and lepton universality proceeds entirely through
Yukawa couplings, the CP-conserving effects in K
→���̄ are suppressed by Yukawa couplings. As
shown by Grossman et al. �2004�, even in the MSSM
with flavor violation and large tan �, these types of
effects are negligible.

• In exotic scenarios, such as R-parity violating
supersymmetric models, lepton flavor mixing could
generate sizable CP-conserving contributions to KL

→�0��̄ and generally in K→���̄ rates.

H. Other models

There exist other numerous analyses of K→���̄ de-
cays within various extensions of the SM. For complete-
ness, we describe them here.

TABLE XII. Upper bound on Br�K+→�+��̄� in units of 10−11

for different values of �, 1 /R, and �Ms=18/ps �21/ps�. From
Buras Spranger, and Weiler, 2003.

� 1/R=300 GeV 1/R=400 GeV SM

1.30 12.0 �10.7� 11.3 �10.1� �10.8� �9.3�
1.25 11.4 �10.2� 10.7 �9.6� 10.3 �8.8�
1.20 10.7 �9.6� 10.1 �9.1� 9.7 �8.4�
1.15 10.1 �9.0� 9.5 �8.5� 9.1 �7.9�
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Carlson et al. �1996� calculated the rate for KL

→�0��̄ in several extensions of the SM Higgs sector,
including the Liu-Wolfenstein two-doublet model of
spontaneous CP violation and the Weinberg three-
doublet model. They concluded that although in the
usual two Higgs doublet model, with CP violation gov-
erned by the CKM matrix, some measurable effects
could be seen, in models in which CP violation arises
either entirely or predominantly from the Higgs sector,
the decay rate is much smaller than in the SM.

The study of K→���̄ in models with four genera-
tions, extra vectorlike quarks, and isosinglet down
quarks can be found in Hattori et al. �1998�, Huang et al.
�2001�, Hawkins and Silverman �2002�, Hung and Soddu
�2002�, Yanir �2002�, and Aguilar-Saavedra �2003�. In
particular, in four generation models �Hattori et al.,
1998; Huang et al., 2001; Yanir, 2002� due to three addi-
tional mixing angles and two additional complex phases,
Br�KL→�0��̄� can be enhanced by one to two orders of
magnitude with respect to SM expectations and also
Br�K+→�+��̄� can be significantly enhanced. Unfortu-
nately, due to many free parameters, the four generation
models are not very predictive. A new analysis of K
→���̄ in a model with an extra isosinglet down quark
was given by Deshpande et al. �2004�. Putting all avail-
able constraints on the parameters of this model, the
authors concluded that Br�K+→�+��̄� can still be en-
hanced up to the present experimental central value,
while Br�KL→�0��̄� can reach 1�10−10.

The decays K→���̄ have also been investigated in a
seesaw model for quark masses �Kiyo et al., 1999�. In this
model, there are scalar operators �s̄d���̄����, resulting
from LR box diagrams, that make the rate for KL

→�0��̄ nonvanishing even in the CP-conserving limit
and in the absence of lepton-flavor mixing. But the en-
hancement of Br�KL→�0��̄� due to these operators is at
most of order 30% even for MWR

=500 GeV with a
smaller effect in Br�K+→�+��̄�.

The effects of electroweak symmetry breaking on rare
K and B decays, including K→���̄, in the presence of
new strong dynamics, have been worked out by
Buchalla, Burdman, Hill, et al. �1996� and Burdman
�1997�. Deviations from the SM in K→���̄ have been
shown to be correlated with the ones in B decays
�Burdman, 1997�.

The implications of a modified effective Zbb̄ vertex
on K→���̄, in connection with the small disagreement
between the SM and the measured asymmetry AFB

b at
LEP, have been discussed by Chanowitz �1999, 2001�.
While the predictions are rather uncertain, an enhance-
ment of Br�K+→�+��̄� by a factor of 2, toward the cen-
tral experimental value, is possible.

Enhancement of both K→���̄ branching ratios up to
50% has been found in a five-dimensional split fermions
scenario �Chang and Ng, 2002� and the decay K+

→�+��̄ turns out to be the best for providing the con-
straints on the bulk SM in the Randall-Sundrum sce-
nario �Burdman, 2002�.

I. Summary

We have seen in this and the preceding section that
many scenarios of new physics allow still for significant
enhancements of both Br�K+→�+��̄� and Br�KL

→�0��̄�: Br�K+→�+��̄� can still be enhanced by factors
of 2–3 and Br�KL→�0��̄� could be larger by an order of
magnitude than expected within the SM. While most
models concentrate on possible enhancements of both
branching ratios, their suppressions in several scenarios
are still possible. This is the case in particular of the
MSSM with MFV and in several models in which CP
violation arises from the Higgs sector.

Because most models contain several free parameters,
definite predictions for K→���̄ can only be achieved by
considering simultaneously as many processes as pos-
sible so that these parameters are sufficiently con-
strained.

IX. COMPARISON WITH OTHER DECAYS

After this exposition of K+→�+��̄ and KL→�0��̄ de-
cays in the SM and its most studied extensions, we com-
pare the potential of these two clean rare decays in ex-
tracting the CKM parameters and in testing the SM and
its extensions with other prominent K and B decays for
which a rich literature exists. A subset of relevant refer-
ences will be given below.

In the K system, the most investigated parameters in
the past are �K and the ratio �� /� that describe, respec-
tively, the indirect and direct CP violation in KL→��
decays and the rare decays KL→	+	− and KL
→�0e+e−. None of them can compete in the theoretical
cleanness with the decays considered here, but some of
them are still useful.

While KL→	+	− and �� /� suffer from large hadronic
uncertainties, the case considered for the decays KL
→�0	+	− and KL→�0e+e− is much more promising.
They provide an interesting and complementary window
to ��S�=1 SD transitions. While the latter is theoretically
not as clean as the K→���̄ system, it is sensitive to
different types of SD operators. The KL→�0�+�− decay
amplitudes have three main ingredients: �i� a clean
direct-CP-violating �CPV� component determined by
SD dynamics, �ii� an indirect-CPV term due to K0-K0

mixing, and �iii� a LD CP-conserving �CPC� component
due to two-photon intermediate states. Although gener-
ated by different dynamics, these three components are
of comparable size and can be computed �or indirectly
determined� to good accuracy within the SM �Buchalla
et al., 2003; Isidori et al., 2004�. In the presence of non-
vanishing NP contributions, the combined measure-
ments of K→���̄ and KL→�0�+�− decays provide a
unique tool to distinguish among different NP models.

Most advanced analyses of these decays within the
SM can be found in Buchalla et al. �2003�, Friot et al.
�2004�, and Isidori et al. �2004�, where further references
can be found. We also mention the recent analyses of
these decays in the context of the MSSM �Isidori, Mes-
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cia, Paradisi, et al., 2006� and other NP scenarios �Mescia
et al., 2006�, in particular in the LHT model �Blanke,
Buras, Recksiegel, et al., 2007�.

The situation with B decays is different. First, there
are many more channels than in K decays, which allows
us to eliminate or reduce many hadronic uncertainties
by simultaneously considering several decays and using
flavor symmetries. Also, the fact that now the b quark
mass is involved in the effective theory allows us to cal-
culate hadronic amplitudes in an expansion in the in-
verse power of the b quark mass and invoke related
heavy quark effective theory, heavy quark expansions,
QCD factorization for nonleptonic decays, perturbative
QCD approach, and others. In recent years, consider-
able advances in this field have been made �Battaglia et
al., 2003�. While in semileptonic tree level decays this
progress allowed a decrease in the errors on the ele-
ments �Vub� and �Vcb� �Battaglia et al., 2003�, in the case
of prominent radiative decays like B→Xs� and B
→Xsl

+l− these methods allowed for a better estimate of
hadronic uncertainties. In addition, during the last de-
cade theoretical uncertainties in these decays have been
considerably reduced through the computations of NLO
and in certain cases NNLO QCD corrections �Buchalla,
Buras, and Lautenbacher, 1996; Buras, 1998; Nir, 2001;
Fleischer, 2002; Ali, 2003; Buchalla, 2003; Hurth, 2003;
2004; Misiak et al., 2007�.

In the case of nonleptonic decays, various strategies
for the determination of the unitarity triangle angles
have been proposed. Reviews of these strategies have
been presented by Fleischer �2002, 2004�; Cavoto et al.
�2007� and see also Nir �2001�, Ali �2003�, Buchalla
�2003�, Buras �2003, 2005a, 2005b�, and Hurth �2003�.
These strategies generally use simultaneously several
decays and are based on plausible dynamical assump-
tions that can be further tested by invoking other de-
cays.

There is no doubt that these methods will give us con-
siderable insight into flavor and QCD dynamics, but it is
fair to say that most of them cannot match the K
→���̄ decays with respect to the theoretical cleanness.
On the other hand, there exist a number of strategies for
the determination of the angles and also sides of the
unitarity triangle that certainly can compete with the
K→���̄ complex and in certain cases are even slightly
superior to it, provided corresponding measurements
can be made precisely.

Yet the present status of FCNC processes in the Bd
system indicates that the new physics in this system en-
ters only at a subleading level. While certain departures
from the SM are still to be clarified, this will not be easy,
particularly in the case of nonleptonic decays.

More promising from the point of view for the search
of new physics is the Bs system. While the measurement
of �Ms did not reveal large contributions from NP, the
case of the CP asymmetry S
� and of the branching ra-
tios Br�Bd,s→	+	−� could be different as they all are
strongly suppressed within the SM. The experiments at

LHC will undoubtedly answer the important question of
whether these observables signal NP beyond the SM.
Even more detailed investigations will be available at a
Super-B machine.

X. SUBLEADING CONTRIBUTIONS TO K\���̄

In this section, we discuss the subleading contribu-
tions to the decays K+→�+��̄ and KL→�0��̄ that we
have discussed so far. More detailed discussions and ex-
plicit calculations have been presented by Ecker et al.
�1988�, Hagelin and Littenberg �1989�, Rein and Sehgal
�1989�, Lu and Wise �1994�, Geng et al. �1996�, Fajfer
�1997�, Buchalla and Isidori �1998�, and Isidori et al.
�2005�. These effects can be potentially interesting, espe-
cially when Br�K+→�+��̄� and Br�KL→�0��̄� are mea-
sured with an accuracy of 5%.

Accordingly, we begin with the discussion of K+

→�+��̄, where there can be, in principle, two additional
following contributions to the branching ratio:

• Effects through soft u quarks in the penguin loop
that induce an on-shell K+→�+Z0→�+��̄ transition
as well as similar processes induced by W-W ex-
change. These are long-distance effects and ad-
dressed �Ecker et al., 1988; Hagelin and Littenberg,
1989; Rein and Sehgal, 1989; Lu and Wise, 1994;
Geng et al., 1996; Fajfer, 1997� in chiral perturbation
theory.

• Higher-dimensional operators contributing to the
OPE in the charm sector �Falk et al., 2001�.

Most recently, both effects were investigated in detail by
Isidori et al. �2005�, paying particular attention to the
cancellation of the renormalization scale dependence
between both contributions.

Therefore, we follow Isidori et al. �2005� with a more
elaborate discussion of both effects in detail: In particu-
lar, concerning the effects of higher-dimensional opera-
tors, the results of Falk et al. �2001� have been fully con-
firmed. These contributions have to be considered only
in the charm sector, if one assumes a natural scaling of
MK

2 /mq
2 in the Wilson coefficients. The scaling of the

Inami-Lim functions then leads to an overall scaling of

�

ν

d

ν

c(u)

s

� �

d ν

c(u) �

s ν

FIG. 17. One-loop diagrams with light quarks that generate
higher-dimensional operators From Isidori et al., 2005.
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MK
2 /MW

4 , which is independent of the quark masses. The
top contribution is then suppressed by CKM factors.

Going to dimension 8, one finds two operators that
appear when expanding the penguin and box diagrams:

O1
l = s̄���1 − �5�d�i��2��̄l���1 − �5��l� ,

O2
l = s̄���1 − �5��iD�2d�̄l���1 − �5��l

+ 2s̄���1 − �5��iD	�d�̄l���1 − �5���	��l

+ s̄���1 − �5�d�̄l���1 − �5��i��2�l, �10.1�

where D	 is the covariant derivative involving the gluon
field. The coefficients of these operators are determined
by matching the diagrams in Fig. 17 onto these opera-

tors, where one finds that the neutral coupling in the left
diagram generates O1

l while the charged coupling in the
right diagram is responsible for O2

l . These coefficients
were given by Falk et al. �2001� and Isidori et al. �2005�.

While the matrix element of O1
l can be reliably esti-

mated and gives a negligible contribution compared to
the leading dimension-6 terms, the matrix element of O2

l

is harder to estimate, due to the gluon appearing in the
covariant derivative. A numerical estimate is performed
using the Lorentz structure and parametrizing the re-
maining hadronic effects by a bag factor, which is deter-
mined by matching onto the genuine long-distance con-
tributions and demanding that the renormalization scale
dependence should cancel. Further progress can be
achieved through lattice calculations �Isidori, Martinelli,
and Turchetti, 2006�.

While the discussion so far is rather straightforward,
the genuine long-distance effects from u quark loops
have received much more attention �Hagelin and Litten-
berg, 1989; Rein and Sehgal, 1989; Lu and Wise, 1994;
Geng et al., 1996; Fajfer, 1997; Isidori et al., 2005�. Again,
we follow Isidori et al. �2005�, where the most recent and
complete discussion has been given. In particular, it was
shown that previous calculations missed several terms
that are necessary to obtain the correct matching be-
tween short- and long-distance components in the am-
plitude.

In order to address these effects, one begins with the
chiral effective �S=1 Hamiltionan �see, e.g.,
D’Ambrosio and Isidori �1998�, for a review�. From the
chiral transformation properties, one finds that this
Hamiltonian consists of pieces that transform as �8L ,1R�
and �27L ,1R� under the chiral symmetry group SU�3�L

�SU�3�R. Experimentally, one finds that the octet piece
is enhanced �this corresponds to the usual �I=1/2 rule�
so that �27L ,1R� can be neglected. To lowest order in the
chiral expansion and using only the octet contribution,
there is one operator that contributes,

L��S�=1
�2� = G8F4��6D	U†D	U� , �10.2�

where G8�9�10−6 GeV−2, U is the conventional repre-
sentation of the pseudoscalar meson fields, and � � im-
plies a trace. Using the Hamiltonian thus obtained, one
finds that the leading-order diagrams in CHPT �Fig. 18�
cancel �Ecker et al., 1988; Lu and Wise, 1994�. However,
to be consistent, there are additional operators to be
included since the SU�2�L generators are broken and,
for an effective chiral Lagrangian, also non-gauge-
invariant operators with the correct representation must
be added �this is not necessary for the K→�� vertex
�Ecker et al., 1988��. Including these operators also leads
to the same parametric renormalization scale depen-
dence as in the short-distance part of the amplitude.
Then, the complete chiral Lagrangian is given by �Isidori
et al., 2005�

(a)

(b)

(c)

FIG. 18. Leading-order chiral perturbation theory diagrams
contributing to a K+→�+Z0 vertex �from Lu and Wise �1994��.
Dashed lines denote the pion and kaon, while the wavy line
denotes the Z0, and the dot indicates the insertion of a flavor-
changing effective vertex.
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L��S�=1
�2� = G8F4��6	D	U†D	U

− 2igZZ	U†D	U
Q −
a1

6
��� , �10.3�

where a1 is related to the coupling of the Z to the U�1�L
charge �Lu and Wise, 1994�. One finds then that the
O�p2� terms do not cancel for the charged �K+→�+Z�
amplitude,

A�K+ → �+��̄�Z =
GF

�2
G8F2�4p	��

l
�̄l�	�1 − �5��l.

�10.4�

Isidori et al. �2005� extended this calculation to O�p4�,
which involved several one-loop diagrams. The final
contributions come from W-W exchange diagrams
�Hagelin and Littenberg, 1989; Isidori et al., 2005�, which
correspond, on the short-distance side, to the contribu-
tions from O2

l and accordingly should cancel the respec-
tive renormalization scale dependence. We give the tree
level result �Isidori et al., 2005�,

A�K+ → �+��̄�WW = GF
2F2� �

l=e,	
2p	�̄l�	�1 − �5��l.

�10.5�

Summing up all contributions, one can include all sub-
leading effects discussed in this section by shifting the
value of Pc�X�,

Pc
�6� → Pc

�6� + �Pc,u, �Pc,u = 0.04 ± 0.02, �10.6�

which implies a shift of roughly 6% in the branching
ratio.

We now turn to KL→�0��̄. Long-distance contribu-
tions are equivalent to CP-conserving effects and have
been comprehensively studied by Buchalla and Isidori
�1998�. As for K+→�+��̄, there are effects from soft up
quarks, which are treated in chiral perturbation theory,
and higher-dimensional operators in the charm sector,
which are actually short-distance effects. It is found that
they are suppressed by several effects, reinforcing the
theoretically clean character of this decay. We now
briefly describe these effects.

The contributions from soft up quarks in the penguin
loops have been studied by Geng et al. �1996� and
Buchalla and Isidori �1998�. As is the case for K+

→�+��̄, the leading diagrams appear at one-loop order.
They have been calculated explicitly by Buchalla and
Isidori �1998�, who found, taking into account also
phase-space suppression, that the CP-conserving long-
distance contributions are suppressed by approximately
a factor of 10−5 compared to the dominant top contribu-
tion.

The next contribution that can be important is higher-
dimensional operators in the OPE. As Buchalla and Isi-
dori �1998� studied only CP-conserving contributions,
only one operator that is antisymmetric in neutrino mo-
menta survives from the expansion of the box diagrams

�contributions from Z0 penguins also drop out for the
same reason�,

HCPC = −
GF

�2

�

2�sin2�W
�c ln

mc

	

1

MW
2

�T�	�̄���� − ����	�1 − �5�� , �10.7�

T�	 = s̄D� ��	�1 − �5�d − d̄�	�1 − �5�D�s . �10.8�

There arise now several suppression factors: First, there
is the naive suppression of the operator scaling, which is
estimated to be O��cMK

2 / Im �tMW
2 ��10% compared to

the leading top contribution. Here the smallness of
MK /MW is compensated by the ratio of CKM factors
�c / Im �t.

The suppression is more severe when the matrix ele-
ments are calculated, since the leading-order KL-�0 ma-
trix element in chiral perturbation theory is

��0�p��T�	�KL�k�� = −
i

2
	�k − p���k + p�	

+
1
4

mK
2 g�	� , �10.9�

which vanishes when multiplied with the leptonic cur-
rent in the operator due to the equations of motion and
the negligible neutrino masses. The chiral suppression
of the NLO �p4� terms leads to an additional reduc-
tion of higher-dimensional operator contributions by
mK

2 /8�2f�
2 �20%. Finally, one also has to take into ac-

count phase-space effects, which further suppress these
terms.

Estimating the O�p4� matrix elements and performing
the phase-space calculations, Buchalla and Isidori �1998�
found that short-distance CP-conserving effects are sup-
pressed by a factor of 10−5 compared to the dominant
top contribution and conclude that they are “safely neg-
ligible, by a comfortably large margin.”

It is then fair to say, from the present perspective, that
long-distance effects are well under control especially in
KL→�0��̄, but also in K+→�+��̄, where the contribu-
tions and its uncertainty can be rather reliably quantified
and included in numerical analyses. This is gratifying,
since the NNLO calculation is available and of the same
order of magnitude.

XI. CONCLUSIONS AND OUTLOOK

In the present review, we summarized the present sta-
tus of the rare decays K+→�+��̄ and KL→�0��̄, paying
particular attention to theoretical and parametric uncer-
tainties. Our analysis reinforced the importance of these
decays in testing the SM and its extensions. We pointed
out that the clean theoretical character of these decays
remains valid in all extensions of the SM, whereas this is
often not the case for nonleptonic two-body B decays
used to determine the CKM parameters through CP
asymmetries and/or other strategies. Here, in extensions
of the SM in which new operators and new weak phases
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are present, the mixing-induced asymmetry a�KS
and

other similar asymmetries can suffer from potential had-
ronic uncertainties that make the determination of the
relevant parameters problematic unless the hadronic
matrix element can be calculated with sufficient preci-
sion. In spite of advances in nonperturbative calcula-
tions of nonleptonic amplitudes for B decays �Beneke et
al., 1999; Keum et al., 2001a, 2001b, 2002; Bauer, Flem-
ing, Pirjol, et al., 2002; Bauer et al., 2002a, 2002b; Beneke
and Feldmann, 2003; Beneke and Neubert, 2003; Stew-
art, 2003�, we are still far away from precise calculations
of nonleptonic amplitudes from first principles. On the
other hand, the branching ratios for K+→�+��̄ and KL

→�0��̄ can be parametrized in all extensions of the SM
by a single complex function X �real in the case of MFV
models� that can be calculated in perturbation theory in
any given extension of the SM.

There exists, however, a handful of strategies in the B
system that, similarly to K→���̄, are very clean. More-
over, in contrast to K→���̄, there exist strategies in-
volving B decays that allow not only a theoretically
clean determination of the UT but also one free from
new physics pollution.

Our main findings are as follows:

• Our present predictions for the branching ratios read

Br�K+ → �+��̄�SM = �8.1 ± 1.1�� 10−11, �11.1�

Br�KL → �0��̄�SM = �2.6 ± 0.3�� 10−11. �11.2�

This is an accuracy of ±14% and ±12%, respec-
tively.

• Our analysis of theoretical uncertainties in K→���̄,
which come exclusively from the charm contribution
to K+→�+��̄, reinforced the importance of the re-
cent NNLO calculation to this contribution �Buras,
Gorbahn, Haisch, et al., 2005, 2006�. Indeed, the
±18% uncertainty in Pc�X� coming dominantly from
the scale uncertainties and the value of mc�mc� trans-
lates into an uncertainty of ±7.0% in the determina-
tion of �Vtd�, ±0.04 in the determination of sin 2�, and
±10% in the prediction for Br�K+→�+��̄�. The
NNLO analysis reduced the uncertainty in Pc to
12%, and further progress on the determination of
mc�mc� could reduce the error in Pc�X� down to
±5%, implying the reduced error in �Vtd� of ±2%, in
sin 2� of ±0.011, and ±3% in Br�K+→�+��̄�.

• Further progress on determining the CKM param-
eters, which in the next few years will come from
BaBar, Belle, and Tevatron and later from LHC,
should allow predictions for Br�K+→�+��̄� and
Br�KL→�0��̄� with uncertainties of roughly ±5% or
better. It should be emphasized that this accuracy
cannot be matched by any other rare decay branch-
ing ratio in the field of meson decays.

• We analyzed the impact of precise measurements of
Br�K+→�+��̄� and Br�KL→�0��̄� on the unitarity

triangle and other observables of interest, within the
SM. In particular, we analyzed the accuracy with
which sin 2� and the angle � could be extracted from
these decays. Provided both branching ratios can be
measured with an accuracy of ±5%, an error on
sin 2� of ±0.038 could be achieved. The determina-
tion of � requires an accurate measurement of
Br�K+→�+��̄� and the reduction of errors in Pc�X�
and �Vcb�. With a measurement better than ±5% of
Br�K+→�+��̄� and the reduction of errors in Pc�X�
and �Vcb� anticipated, � could be measured with an
error of ±5°.

• We emphasized that the simultaneous investigation
of the K→���̄ decay, the mass differences �Md,s,
and the angles � and � from clean strategies in two-
body B decays should allow us to disentangle differ-
ent new physics contributions to various observables
and determine new parameters for extensions of the
SM. The �Rt ,��, �Rb ,��, �� ,��, and ��̄ ,�� strategies
for UT when combined with K→���̄ decays are use-
ful in this goal. This is the case in particular for the
�Rb ,�� strategy that is related to the reference uni-
tarity triangle �Goto et al., 1996; Cohen et al., 1997;
Grossman et al., 1997; Barenboim et al., 1999�. A
graphical representation of these investigations is
given in Fig. 9.

• We have presented a new “golden relation” between
�, �, and Br�KL→�0��̄�, given in Eq. �3.20�, that
with improved values of mt and Br�KL→�0��̄�
should allow a clean test of the SM one day. Another
new relation is between �, �, and Br�K+→�+��̄�,
which is given in Eq. �3.11�. Although not as clean as
the golden relation in Eq. �3.20� because of the pres-
ence of Pc, it should play a useful role in future in-
vestigations.

• We have presented results for both decays in models
with minimal flavor violation and in several scenarios
with new complex phases in Z0 penguins and/or

Bd
0-B̄d

0 mixing. We reviewed the results for Br�K+

→�+��̄� and Br�KL→�0��̄� in a number of specific
extensions of the SM. In particular, we discussed
LHT, Z� and supersymmetry with MFV, more gen-
eral supersymmetric models with new complex
phases, models with universal extra dimensions, and
models with lepton-flavor mixing. Each of these
models has some characteristic predictions for the
branching ratios in question, so that it should be pos-
sible to distinguish between various alternatives. Si-
multaneous investigations of other observables
should be helpful in this respect. In some of these
scenarios, departures from SM expectations are still
allowed to be spectacular.

• Finally, we compared the usefulness of K→���̄ de-
cays in testing various models with other decays.
While in the K system K→���̄ decays have no com-
petition, there are a handful of B decays and related
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strategies that are also theoretically clean. It is pre-
cisely the comparison between the results of these
clean strategies in the B system with the ones ob-
tained one day from K→���̄ decays that will be
most interesting.

• In spite of an impressive agreement of the SM with
the available data, large departures from SM expec-
tations in Bs decays are still possible. However, even
if future Tevatron and LHC data would not see any
significant new physics effect in these decays, this will
not imply necessarily that new physics is not visible
in KL→�0��̄, K+→�+��̄, and KL→�0�+�−. On the
contrary, as seen in particular in the case of the LHT
model �Blanke, Buras, Recksiegel, et al., 2007�, there
are scenarios in which the effects in B physics are
small, while large departures in these three decays
will still be possible. It may then be that in the end, it
will be K physics and not B physics that will offer the
best information about the new phenomena at short
distance scales, in accordance with the arguments in
Bryman et al. �2006� and Grinstein et al. �2007�.

We hope we convinced the reader that clean rare de-
cays K+→�+��̄ and KL→�0��̄ deserve a prominent sta-
tus in the field of flavor and CP violation and that pre-
cise measurements of their branching ratios are of
utmost importance. We hope that our wait for these
measurements will not be too long.
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