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This paper reviews recent experimental and theoretical progress concerning many-body phenomena
in dilute, ultracold gases. It focuses on effects beyond standard weak-coupling descriptions, such as the
Mott-Hubbard transition in optical lattices, strongly interacting gases in one and two dimensions, or
lowest-Landau-level physics in quasi-two-dimensional gases in fast rotation. Strong correlations in
fermionic gases are discussed in optical lattices or near-Feshbach resonances in the BCS-BEC
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I. INTRODUCTION

The achievement of Bose-Einstein condensation
(BEC) (Anderson et al., 1995; Bradley et al., 1995; Davis
et al., 1995), and of Fermi degeneracy (DeMarco and Jin,
1999; Schreck et al., 2001; Truscott et al., 2001), in ultra-
cold, dilute gases has opened a new chapter in atomic
and molecular physics, in which particle statistics and
their interactions, rather than the study of single atoms
or photons, are at center stage. For a number of years, a
main focus in this field has been the exploration of the
wealth of phenomena associated with the existence of
coherent matter waves. Major examples include the ob-
servation of interference of two overlapping conden-
sates (Andrews et al., 1997), of long-range phase coher-
ence (Bloch er al., 2000), and of quantized vortices and
vortex lattices (Matthews, 1999; Madison et al., 2000;
Abo-Shaeer et al., 2001) and molecular condensates with
bound pairs of fermions (Greiner et al., 2003; Jochim et
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al., 2003b; Zwierlein et al., 2003b). Common to all of
these phenomena is the existence of a coherent, macro-
scopic matter wave in an interacting many-body system,
a concept familiar from the classic areas of superconduc-
tivity and superfluidity. It was the basic insight of
Ginzburg and Landau (1950) that, quite independent
of a detailed microscopic understanding, an effective
description of the coherent many-body state is provided
by a complex, macroscopic wave function ¢(x)=|(x)|
Xexp i¢(x). Its magnitude squared gives the superfluid
density, while the phase ¢(x) determines the superfluid
velocity via v,=(1/ M)V ¢(x) (see the Appendix for a dis-
cussion of these concepts and their connection with the
microscopic criterion for BEC). As emphasized by Cum-
mings and Johnston (1966) and by Langer (1968), this
picture is similar to the description of laser light as a
coherent state (Glauber, 1963). It applies both to the
standard condensates of bosonic atoms and to weakly
bound fermion pairs, which are the building blocks of
the BCS picture of superfluidity in Fermi systems. In
contrast to conventional superfluids like “He or super-
conductors, where the macroscopic wave function pro-
vides only a phenomenological description of the super-
fluid degrees of freedom, the situation in dilute gases is
considerably simpler. In fact, as a result of the weak in-
teractions, dilute BEC’s are essentially pure condensates
sufficiently below the transition. The macroscopic wave
function is thus directly connected with the microscopic
degrees of freedom, providing a complete and quantita-
tive description of both static and time-dependent phe-
nomena in terms of a reversible, nonlinear Schrodinger
equation, the famous Gross-Pitaevskii equation (Gross,
1961; Pitaevskii, 1961). In dilute gases, therefore, the
many-body aspect of a BEC is reduced to an effective
single-particle description, where interactions give rise
to an additional potential proportional to the local par-
ticle density. Adding small fluctuations around this
zeroth-order picture leads to the well-known Bogoliu-
bov theory of weakly interacting Bose gases. Like the
closely related BCS superfluid of weakly interacting fer-
mions, the many-body problem is then completely
soluble in terms of a set of noninteracting quasiparticles.
Dilute, ultracold gases provide a concrete realization of
these basic models of many-body physics, and many of
their characteristic properties have been verified quanti-
tatively. Excellent reviews of this remarkably rich area
of research have been given by Dalfovo et al. (1999) and
by Leggett (2001) and, more recently, by Pethick and
Smith (2002) and Pitaevskii and Stringari (2003).

In the past several years, two major new develop-
ments have considerably enlarged the range of physics
that is accessible with ultracold gases. They are associ-
ated with (i) the ability to tune the interaction strength
in cold gases by Feshbach resonances (Courteille et al.,
1998; Inouye et al., 1998); and (ii) the possibility of
changing the dimensionality with optical potentials and,
in particular, of generating strong periodic potentials for
cold atoms through optical lattices (Greiner et al.,
2002a). The two developments, either individually or in
combination, allow one to enter a regime in which the
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interactions even in extremely dilute gases can no longer
be described by a picture based on noninteracting qua-
siparticles. The appearance of such phenomena is char-
acteristic for the physics of strongly correlated systems.
For a long time, this area of research was confined to the
dense and strongly interacting quantum liquids of con-
densed matter or nuclear physics. By contrast, gases—
almost by definition—were never thought to exhibit
strong correlations.

The use of Feshbach resonances and optical potentials
for exploring strong correlations in ultracold gases was
crucially influenced by earlier ideas from theory. In par-
ticular, Stoof et al. (1996) suggested that Feshbach reso-
nances in a degenerate gas of °Li, which exhibits a tun-
able attractive interaction between two different
hyperfine states, may be used to realize BCS pairing of
fermions in ultracold gases. A remarkable idea in a
rather unusual direction in the context of atomic physics
was the proposal by Jaksch et al (1998) to realize a
quantum phase transition from a superfluid to a Mott-
insulating state by loading a BEC into an optical lattice
and increasing its depth. Further directions in the regime
of strong correlations were opened with the suggestions
by Olshanii (1998) and Petrov, Shlyapnikov, and Wal-
raven (2000) to realize a Tonks-Girardeau gas with
BEC’s confined in one dimension and by Wilkin and
Gunn (2000) to explore quantum Hall effect physics in
fast-rotating gases.

Experimentally, the strong-coupling regime in dilute
gases was first reached by Cornish e al. (2000) using
Feshbach resonances for bosonic atoms. Unfortunately,
in this case, increasing the scattering length a leads to a
strong decrease in the condensate lifetime due to three-
body losses, whose rate on average varies as a*
(Fedichev, Reynold, and Shlyapnikov, 1996; Petrov,
2004). A quite different approach to the regime of
strong correlations, which does not suffer from problems
with the condensate lifetime, was taken by Greiner et al.
(2002a). Loading BEC'’s into an optical lattice, they ob-
served a quantum phase transition from a superfluid to a
Mott-insulating phase even in the standard regime
where the average interparticle spacing is much larger
than the scattering length. Subsequently, the strong con-
finement available with optical lattices made possible
the achievement of low-dimensional systems where new
phases can emerge. The observation of a (Tonks-
Girardeau) hard-core Bose gas in one dimension by Ki-
noshita et al. (2004) and Paredes et al. (2004) constituted
a first example of a bosonic Luttinger liquid. In two di-
mensions, a Kosterlitz-Thouless crossover between a
normal phase and one with quasi-long-range order was
observed by Hadzibabic et al. (2006). The physics of
strongly interacting bosons in the lowest Landau level is
accessible with fast-rotating BEC’s (Bretin et al., 2004;
Schweikhard et al., 2004), where the vortex lattice is pre-
dicted to melt by quantum fluctuations. Using atoms like
>2Cr, which have a larger permanent magnetic moment,
BEC’s with strong dipolar interactions have been real-
ized by Griesmaier et al. (2005). In combination with
Feshbach resonances, this opens the way to tuning the
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nature and range of the interaction (Lahaye et al., 2007),
which might, for instance, be used to reach many-body
states that are not accessible in the context of the frac-
tional quantum Hall effect.

In Fermi gases, the Pauli principle suppresses three-
body losses, whose rate in fact decreases with increasing
values of the scattering length (Petrov, Salomon, and
Shlyapnikov, 2004). Feshbach resonances, therefore, al-
low one to enter the strong-coupling regime kgla|>1 in
ultracold Fermi gases (O’Hara et al., 2002; Bourdel et al.,
2003). In particular, there exist stable molecular states of
weakly bound fermion pairs in highly excited rovibra-
tional states (Cubizolles et al., 2003; Strecker et al., 2003).
The remarkable stability of fermions near Feshbach
resonances allows one to explore the crossover from a
molecular BEC to a BCS superfluid of weakly bound
Cooper pairs (Bartenstein et al., 2004a; Bourdel et al.,
2004; Regal et al., 2004a; Zwierlein et al., 2004). In par-
ticular, the presence of pairing due to many-body effects
has been probed by rf spectroscopy (Chin et al., 2004) or
the measurement of the closed-channel fraction (Par-
tridge et al., 2005), while superfluidity has been verified
by observation of quantized vortices (Zwierlein et al.,
2005). Recently, these studies have been extended to
Fermi gases with unequal densities for the spin-up and
spin-down components (Partridge et al., 2006; Zwierlein
et al., 2006), where pairing is suppressed by the mis-
match of the respective Fermi energies.

Repulsive fermions in an optical lattice allow one to
realize an ideal and tunable version of the Hubbard
model, a paradigm for the multitude of strong-
correlation problems in condensed matter physics. Ex-
perimentally, some basic properties of degenerate fermi-
ons in periodic potentials, such as the existence of a
Fermi surface and the appearance of a band insulator
at unit filling, have been observed by Kohl et al. (2005a).
While it is difficult to cool fermions to temperatures
much below the bandwidth in a deep optical lattice,
these experiments give hope that eventually magneti-
cally ordered or unconventional superconducting phases
of the fermionic Hubbard model will be accessible with
cold gases. The perfect control and tunability of the in-
teractions in these systems provide a novel approach for
studying basic problems in many-body physics and, in
particular, for entering regimes that have never been ac-
cessible in condensed matter or nuclear physics.

This review aims to give an overview of this rapidly
evolving field, covering both theoretical concepts and
their experimental realization. It provides an introduc-
tion to the strong-correlation aspects of cold gases, that
is, phenomena that are not captured by weak-coupling
descriptions like the Gross-Pitaevskii or Bogoliubov
theory. The focus of this review is on examples that have
already been realized experimentally. Even within this
limitation, however, the rapid development of the field
in recent years makes it impossible to give a complete
survey. In particular, important subjects like spinor
gases, Bose-Fermi mixtures, quantum spin systems in
optical lattices, or dipolar gases will not be discussed
[see, e.g., Lewenstein et al. (2007)]. Also, applications of
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cold atoms in optical lattices for quantum information
are omitted completely; for an introduction, see Jaksch
and Zoller (2005).

A. Scattering of ultracold atoms

For an understanding of the interactions between neu-
tral atoms, first at the two-body level, it is instructive to
use a toy model (Gribakin and Flambaum, 1993), in
which the van der Waals attraction at large distances is
cut off by a hard core at some distance r,. on the order of
an atomic dimension. The resulting spherically symmet-
ric potential,

- C6/76 if r> re
V(r)= (1)

o0 ifr=r,,

is, of course, not a realistic description of the short-range
interaction of atoms; however, it captures the main fea-
tures of scattering at low energies. The asymptotic be-
havior of the interaction potential is fixed by the van der
Waals coefficient Cg. It defines a characteristic length

a.=(2M,Cq/ti*)'" ()

at which the kinetic energy of the relative motion of two
atoms with reduced mass M, equals their interaction en-
ergy. For alkali-metal atoms, this length is typically on
the order of several nanometers. It is much larger than
the atomic scale r. because alkali-metal atoms are
strongly polarizable, resulting in a large C4 coefficient.
The attractive well of the van der Waals potential thus
supports many bound states (of order 100 in 8’Rb). Their
number N, may be determined from the WKB phase

P = f dr2M\V(r)|ih = a2l2r> > 1 3)

Te

at zero energy, via N,=[®/7+1/8], where [ ] means tak-
ing the integer part.1 The number of bound states in this
model, therefore, depends crucially on the precise value
of the short-range scale r.. By contrast, the low-energy
scattering properties are determined by the van der
Waals length a,, which is sensitive only to the asymptotic
behavior of the potential. Consider the scattering in
states with angular momentum /=0,1,2,... in the rela-
tive motion (for identical bosons or fermions, only even
or odd values of / are possible, respectively). The effec-
tive potential for states with /# 0 contains a centrifugal
barrier whose height is of order E,=#2*/ M,a’. Convert-
ing this energy into an equivalent temperature, one ob-
tains for small / temperatures around 1 mK for typical
atomic masses. At temperatures below that, the energy
#2k?/2M, in the relative motion of two atoms is typically
below the centrifugal barrier. Scattering in states with
[#0 is therefore frozen out, unless there exist so-called

!This result follows from Eq. (5) below by noting that a new
bound state is pulled in from the continuum each time the
scattering length diverges (Levinson’s theorem).
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shape resonances, i.e., bound states with /# 0 behind the
centrifugal barrier, which may be in resonance with the
incoming energy; see Boesten et al. (1997) and Diirr et al.
(2005). For gases in the sub-millikelvin regime, there-
fore, usually the lowest-angular-momentum collisions
dominate (s-wave for bosons, p-wave for fermions),
which in fact defines the regime of ultracold atoms. In
the s-wave case, the scattering amplitude is determined
by the corresponding phase shift &,(k) via (Landau and
Lifshitz, 1987)

1 = 1 .
k cot &y(k) —ik — —1la+rk*2 - ik

flk) = (4)

At low energies, it is characterized by the scattering
length a and the effective range r, as the only two pa-
rameters. For the truncated van der Waals potential (1),
the scattering length can be calculated analytically as
(Gribakin and Flambaum, 1993)

a=a[l-tan(® -37/8)], (5)

where, ® is the WKB phase (3) and a=0.478a, is the
so-called mean scattering length. Equation (5) shows
that the characteristic magnitude of the scattering length
is the van der Waals length. Its detailed value, however,
depends on the short-range physics via the WKB phase
@, which is sensitive to the hard-core scale r.. Since the
detailed behavior of the potential is typically not known
precisely, in many cases neither the sign of the scattering
length nor the number of bound states can be deter-
mined from ab initio calculations. The toy-model result,
however, is useful beyond the identification of a, as the
characteristic scale for the scattering length. Indeed, if
ignorance about the short-range physics is replaced by
the (maximum likelihood) assumption of a uniform dis-
tribution of @ in the relevant interval [0, 7], the prob-
ability for finding a positive scattering length, i.e.,
tan ® <1, is 3/4. A repulsive interaction at low energy,
which is connected with a positive scattering length, is
therefore three times more likely than an attractive one,
where a <0 (Pethick and Smith, 2002). Concerning the
effective range r, in Eq. (4), it turns out that r, is also on
the order of the van der Waals or the mean scattering
length a rather than the short-range scale r., as might
have been expected naively’ (Flambaum er al., 1999).
Since ka,.<1 in the regime of ultracold collisions, this
implies that the k? contribution in the denominator of
the scattering amplitude is negligible. In the low-energy
limit, the two-body collision problem is thus completely
specified by the scattering length a as the single param-
eter, and the corresponding scattering amplitude

f(k) = - al(1 + ika). (6)

“This is a general result for deep potentials with a power-law
decay at large distances, as long as the scattering energy is
much smaller than the depth of the potential well.
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As noted by Fermi in the context of scattering of slow
neutrons and by Lee, Huang, and Yang for the low-
temperature thermodynamics of weakly interacting
quantum gases, Eq. (6) is the exact scattering amplitude
at arbitrary values of k for the pseudopotential,®

A7hi’a
2M,

VOO( ) = L 80 ). ™)
or

At temperatures such that kg7 <E,, two-body interac-
tions in ultracold gases may be described by a pseudo-
potential, with the scattering length usually taken as an
experimentally determined parameter. This approxima-
tion is valid in a wide range of situations, provided no
longer-range contributions come into play as, e.g., in the
case of dipolar gases. The interaction is repulsive for
positive and attractive for negative scattering lengths.
Now, as shown above, the true interaction potential has
many bound states, irrespective of the sign of a. For
low-energy scattering of atoms, however, these bound
states are irrelevant as long as no molecule formation
occurs via three-body collisions. The scattering ampli-
tude in the limit k—0 is sensitive only to bound (or
virtual for a<<0) states near zero energy. In particular,
within the pseudopotential approximation, the ampli-
tude (6) has a single pole k=i, with k=1/a>0 if the
scattering length is positive. Quite generally, poles of the
scattering amplitude in the upper complex k plane are
connected with bound states with binding energy ¢,
=h?k?/2M, (Landau and Lifshitz, 1987). In the pseudo-
potential approximation, only a single pole is captured;
the energy of the associated bound state is just below
the continuum threshold. A repulsive pseudopotential
thus describes a situation in which the full potential has
a bound state with a binding energy &,=%%/2M,a” on the
order of or smaller than the characteristic energy E. in-
troduced above. The associated positive scattering
length is then identical with the decay length of the wave
function ~exp(—r/a) of the highest bound state. In the
attractive case a <0, in turn, there is no bound state
within a range E. below the continuum threshold; how-
ever, there is a virtual state just above it.

B. Weak interactions

For a qualitative discussion of what defines the weak-
interaction regime in dilute, ultracold gases, it is useful
to start with the idealization of no interactions at all.
Depending on the two fundamental possibilities for the
statistics of indistinguishable particles, Bose or Fermi,
the ground state of a gas of N noninteracting particles is
either a perfect BEC or a Fermi sea. In the case of an
ideal BEC, all particles occupy the lowest available
single-particle level, consistent with a fully symmetric
many-body wave function. For fermions, in turn, the

3Because of the & function, the last term involving the partial
derivative with respect to r=|x| can be omitted when the po-
tential acts on a function that is regular at r=0.
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particles fill the N lowest single-particle levels up to the
Fermi energy ex(N), as required by the Pauli principle.
At finite temperatures, the discontinuity in the Fermi-
Dirac distribution at 7=0 is smeared out, giving rise
to a continuous evolution from the degenerate gas at
kgT<ep to a classical gas at high temperatures kzT
= er. By contrast, bosons exhibit in three dimensions
(3D) a phase transition at finite temperature, where the
macroscopic occupancy of the ground state is lost. In the
homogeneous gas, this transition occurs when the ther-
mal de Broglie wavelength \y=h/\27MkgT reaches the
average interparticle distance n~!3. The surprising fact
that a phase transition appears even in an ideal Bose gas
is a consequence of the correlations imposed by the par-
ticle statistics alone, as noted already in Einstein’s fun-
damental paper (Einstein, 1925). For trapped gases, with
geometrical mean trap frequency @, the transition to a
BEC is in principle smooth.” Yet, for typical particle
numbers in the range N=~10*-107, there is a rather
sharply defined temperature kzT\"=Aa[N/{(3)]"?,
above which the occupation of the oscillator ground
state is no longer of order N. This temperature is again
determined by the condition that the thermal de Broglie
wavelength reaches the average interparticle distance at
the center of the trap [see Eq. (95) and below].

As discussed above, interactions between ultracold at-
oms are described by a pseudopotential (7), whose
strength g=4#%a/2M, is fixed by the exact s-wave scat-
tering length a. Now, for identical fermions, there is no
s-wave scattering due to the Pauli principle. In the re-
gime ka.<1, where all higher momenta /# 0 are frozen
out, a single-component Fermi gas thus approaches an
ideal, noninteracting quantum gas. To reach the neces-
sary temperatures, however, requires thermalization by
elastic collisions. For identical fermions, p-wave colli-
sions dominate at low temperatures, whose cross section
o,~ E? leads to a vanishing of the scattering rates ~ 7%
(DeMarco et al., 1999). Evaporative cooling, therefore,
does not work for a single-component Fermi gas in the
degenerate regime. This problem may be circumvented
by cooling in the presence of a different spin state that is
then removed, or by sympathetic cooling with a another
atomic species. In this manner, an ideal Fermi gas, which
is one paradigm of statistical physics, has first been real-
ized by DeMarco and Jin (1999), Schreck et al. (2001),
and Truscott et al. (2001) (see Fig. 1).

In the case of fermion mixtures in different internal
states, or for bosons, there is in general a finite scatter-
ing length a # 0, which is typically of the order of the van
der Waals length Eq. (2). By a simple dimensional argu-
ment, interactions are expected to be weak when the
scattering length is much smaller than the average inter-
particle spacing. Since ultracold alkali-metal gases have

*A Bose gas in a trap exhibits a sharp transition only in the
limit N— o, ®—0 with N@>=const, i.e., when the critical tem-
perature approaches a finite value in the thermodynamic limit.
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6Li Fermions

7Li Bosons

FIG. 1. (Color online) Simultaneous cooling of a bosonic and
fermionic quantum gas of '’Li and °Li to quantum degeneracy.
In the case of the Fermi gas, the Fermi pressure prevents the
atom cloud from shrinking further in space as quantum degen-
eracy is approached. From Truscott et al., 2001.

densities between 10'? and 10'° particles per cm?, the
average interparticle spacing n~'? typically is in the
range 0.1-1 um. As shown above, the scattering length,
in turn, is usually only in the few-nanometer range. In-
teraction effects are thus expected to be very small, un-
less the scattering length happens to be large near a
zero-energy resonance of Eq. (5). In the attractive case
a<0, however, even small interactions can lead to insta-
bilities. In particular, attractive bosons are unstable to-
ward collapse. However, in a trap, a metastable gaseous
state arises for sufficiently small atom numbers (Pethick
and Smith, 2002). For mixtures of fermions in different
internal states, an arbitrary weak attraction leads to the
BCS instability, where the ground state is essentially a
BEC of Cooper pairs (see Sec. VIII). In the case of re-
pulsive interactions, in turn, perturbation theory works
in the limit n'3a<1.° For fermions with two different
internal states, an appropriate description is provided by
the dilute gas version of Landau’s theory of Fermi lig-
uids. The associated ground-state chemical potential is
given by (Lifshitz and Pitaevskii, 1980)

hzkg(l 4 4(11—21n2)(k 2 )
=—N1+—kpg+—>—= T
HE=om " a3 1572 ’
(8)
where the Fermi wave vector kp=(37°n)"? is deter-

mined by the total density # in precisely the same man-
ner as in the noninteracting case. Weakly interacting
Bose gases, in turn, are described by the Bogoliubov
theory, which has Vna® as the relevant small parameter.
For example, the chemical potential at zero temperature

SWe neglect the possibility of a Kohn-Luttinger instability
(Kohn and Luttinger, 1965) of repulsive fermious to a (typi-
cally) p-wave superfluid state, which usually only appears at
temperatures very far below Tg; see Baranov et al. (1996).
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for a homogeneous gas is given by (Lifshitz and Pita-
evskii, 1980)

47h*a 1 32(na3>1/2 ©)
=—n|l+—(—]| +-|[
MBose M n 3 T

Moreover, interactions lead to a depletion
ng=n[1- g(na3/77)”2+ -] (10)

of the density n, of particles at zero momentum com-
pared to the perfect condensate of an ideal Bose gas.
The finite value of the chemical potential at zero tem-
perature defines a characteristic length ¢ by #%/2M&
= MUBose- Lhis is the so-called healing length (Pitaevskii
and Stringari, 2003), which is the scale over which the
macroscopic wave function ¢(x) varies near a boundary
(or a vortex core; see Sec. VII) where BEC is sup-
pressed. To lowest order in Vna?, this length is given by
&=(87na)~'2. In the limit na®<1, the healing length is
therefore much larger than the average interparticle
spacing n~ '3, In practice, the dependence on the gas pa-
rameter na® is so weak that the ratio &'~ (na®)~° is
never very large. On a microscopic level, ¢ is the length
associated with the ground-state energy per particle by
the uncertainty principle. It can thus be identified with
the scale over which bosons may be considered to be
localized spatially. For weak-coupling BEC’s, atoms are
therefore smeared out over distances much larger than
the average interparticle spacing.

Interactions also shift the critical temperature for
BEC away from its value Y{CO) in the ideal Bose gas. To
lowest order in the interactions, the shift is positive and
linear in the scattering length (Baym et al., 1999),

TC/TE.O):1+cn1/3a+--- (11)

with a numerical constant ¢=1.32 (Arnold and Moore,
2001; Kashurnikov et al., 2001). The unexpected increase
of the BEC condensation temperature with interactions
is due to a reduction of the critical density. While a
quantitative derivation of Eq. (11) requires quite sophis-
ticated techniques (Holzmann et al., 2004), the result can
be recovered by a simple argument. To leading order,
the interaction induced change in 7. depends only on
the scattering length. Compared with the noninteracting
case, the finite scattering length may be thought of as
effectively increasing the quantum-mechanical uncer-
tainty in the position of each atom due to thermal mo-

tion from Ay to Ay=Ay+a. To lowest order in a, the

modified ideal gas criterion n\3. ={(3/2) then gives rise
to the linear and positive shift of the critical temperature
in Eq. (11) with a coefficient ¢=1.45, which is not far
from the numerically exact value.

In the standard situation of a gas confined in a har-
monic trap with characteristic frequency o, the influence
of weak interactions is quantitatively different for tem-
peratures near 7=0 or near the critical temperature 7.
At zero temperature, the noninteracting Bose gas has a
density distribution 7?(x)=N]|¢,(x)|?, which reflects the
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harmonic-oscillator ground state wave function ¢y(x). Its
characteristic width is the oscillator length €y=#%/M @,
which is on the order of 1 um for typical confinement
frequencies. Adding even small repulsive interactions
changes the distribution quite strongly. Indeed, in the
experimentally relevant limit Na> ¢, the density profile
n(x) in the presence of an external trap potential U(x)
can be obtained from the local-density approximation
(LDA)

pln(x)]+ U(x) = u[n(0)]. (12)

For weakly interacting bosons in an isotropic harmonic
trap, the linear dependence up..=gn of the chemical
potential on the density in the homogeneous case then
leads to a Thomas-Fermi profile n(x)=n(0)[1-(r/Ryp)?].
Using the condition [n(x)=N, the associated radius
Rtrp= ¢l exceeds considerably the oscillator length since
the dimensionless parameter {=(15Na/ €)' is typically
much larger than 1 (Giorgini et al., 1997).° This broad-
ening leads to a significant decrease in the density n(0)
at the trap center by a factor /> compared with the
noninteracting case. The strong effect of even weak in-
teractions on the ground state in a trap may be under-
stood from the fact that the chemical potential u
=h®{?/2 is much larger than the oscillator ground-state
energy. Interactions are thus able to mix in many single-
particle levels beyond the harmonic trap ground state.
Near the critical temperature, in turn, the ratio w/kgT,
=[n(0)a*]"° is small. Interaction corrections to the con-
densation temperature, which dominate finite-size cor-
rections for particle numbers much larger than N=10%
are therefore accessible perturbatively (Giorgini et al.,
1997). In contrast to the homogeneous case, where the
density is fixed and T is shifted upward, the dominant
effect in a trap arises from the reduced density at the
trap center. The corresponding shift may be expressed as
AT,/ T.=—constXa/ A7, (Giorgini et al., 1997; Holzmann

et al., 2004; Davis and Blakie, 2006). A precise measure-
ment of this shift has been performed by Gerbier et al.
(2004). Their results are in quantitative agreement with
mean-field theory, with no observable contribution of
critical fluctuations at their level of sensitivity. Quite re-
cently, evidence for critical fluctuations has been in-
ferred from measurements of the correlation length &
~(T-T.)7 very close to T,. The observed value v
=0.67+0.13 (Donner et al., 2007) agrees well with the
expected critical exponent of the 3D XY model.

In spite of the strong deviations in the density distri-
bution compared to the noninteracting case, the one-
and two-particle correlations of weakly interacting

SFor fermions, the validity of the LDA, which is in fact just a
semiclassical approximation [see, e.g., Brack and Bhaduri
(1997)], does not require interactions. The leading term
trermi~ 127 of Eq. (8) leads to a density profile n(x)=n(0)[1
—(r/Rp)*P? with a radius Rpp=0f, Here (=kp(N){,
=(24N)"6>1 and the Fermi wave vector kg(N) in a trap is
€r(N)=h2kA(N)I12M.
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bosons are well described by approximating the many-
body ground state of N bosons by a product

N
Vip(X1,Xg, ..., Xp) = H o1(x)) (13)
i=1

in which all atoms are in the identical single-particle
state ¢;(x). Taking Eq. (13) as a variational ansatz, the
optimal macroscopic wave function ¢;(x) is found to
obey the well-known Gross-Pitaevskii equation. More
generally, it turns out that for trapped BEC’s, the Gross-
Pitaevskii theory can be derived mathematically by tak-
ing the limits N—o and a—0 in such a way that the
ratio Na/€, is fixed (Lieb et al, 2000). A highly non-
trivial aspect of these derivations is that they show ex-
plicitly that, in the dilute limit, interactions enter only
via the scattering length. The Gross-Pitaevskii equation
thus remains valid, e.g., for a dilute gas of hard spheres.
Since the interaction energy is of kinetic origin in this
case, the standard mean-field derivation of the Gross-
Pitaevskii equation via the replacement of the field op-

erators by a classical ¢ number \IA’(X)—> VN¢,(x) is thus
incorrect in general. From a many-body point of view,
the ansatz Eq. (13), where the ground state is written as
a product of optimized single-particle wave functions, is
the standard Hartree approximation. It is the simplest
possible approximation to account for interactions; how-
ever, it contains no interaction-induced correlations be-
tween different atoms at all. A first step beyond that is
the well-known Bogoliubov theory. This is usually intro-
duced by considering small fluctuations around the
Gross-Pitaevskii equation in a systematic expansion in
the number of noncondensed particles (Castin and Dum,
1998). It is also instructive from a many-body point of
view to formulate Bogoliubov theory such that the bo-
son ground state is approximated by an optimized prod-
uct (Lieb, 1963b)

\I,Bog(XDXZ’ e sXN) = H ¢2(Xi7x/') (14)

i<j

of identical, symmetric two-particle wave functions ¢,.
This allows one to include interaction effects beyond the
Hartree potential of the Gross-Pitaevskii theory by sup-
pressing configurations in which two particles are close
together. The many-body state thus incorporates two-
particle correlations that are important, e.g., to obtain
the standard sound modes and the related coherent su-
perposition of “particle” and “hole” excitations. This
structure, which has been experimentally verified by Vo-
gels et al. (2002), is expected to apply in a qualitative
form even for strongly interacting BEC’s, whose low-
energy excitations are exhausted by harmonic phonons
(see the Appendix).

Quantitatively, however, the Bogoliubov theory is re-
stricted to the regime Vna®<1, where interactions lead
only to a small depletion (10) of the condensate at zero
temperature. Going beyond that requires one to specify
the detailed form of the interaction potential V(r) and
not only the associated scattering length a. The ground
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state of a gas of hard-sphere bosons, for instance, loses
BEC already for na®>=0.24 by a first-order transition to
a solid state (Kalos et al., 1974). On a variational level,
choosing the two-particle wave functions in Eq. (14) of
the form ¢(x;,x;) ~exp—u(|x;—x|) with an effective
two-body potential u(r) describes so-called Jastrow wave
functions. They allow taking into account strong short-
range correlations; however, they still exhibit BEC even
in a regime in which the associated one-particle density
describes a periodic crystal rather than a uniform liquid,
as shown by Chester (1970). Crystalline order may thus
coexist with BEC. For a discussion of this issue in the
context of a possible supersolid phase of “He, see Clark
and Ceperley (2006).

For weakly interacting fermions at kpa<<1, the varia-
tional ground state, which is analogous to Eq. (13), is a
Slater determinant

Xy) = det ¢y (x;)] (15)

of optimized single-particle states ¢, ;(x;). In the transla-
tionally invariant case, they are plane waves ¢ (x)
= V12 exp(ik;-x), where the momenta k; are filled up to
the Fermi momentum kz. Although both the Bose and
Fermi ground-state wave functions consist of symme-
trized or antisymmetrized single-particle states, they de-
scribe fundamentally different physics. In the Bose case,
the one-particle density matrix g'!)(e)=n/n approaches
a finite constant at infinite separation, which is the basic
criterion for BEC (see the Appendix). The many-body
wave function is thus sensitive to changes of the phase at
points separated by distances r that are large compared
to the interparticle spacing. By contrast, the Hartree-
Fock state (15) for fermions shows no long-range phase
coherence, and indeed the one-particle density matrix
decays exponentially gV(r) ~ exp(—yr) at any finite tem-
perature (Ismail-Beigi and Arias, 1999). The presence of
N distinct eigenstates in Eq. (15), which is a necessary
consequence of the Pauli principle, leads to a many-
body wave function that may be characterized as near-
sighted. The notion of nearsightedness depends on the
observable, however. As defined originally by Kohn
(1996), it means that a localized external potential
around some point x’ is not felt at a point x at a distance
much larger than the average interparticle spacing. This
requires the density response function x(x,x’) to be
short ranged in position space. In this respect, weakly
interacting bosons, where y(x,x’)~[exp(-|x—x'|/€)]/|x
—x'| decays exponentially on the scale of the healing
length &, are more nearsighted than fermions at zero
temperature, where x(x,x’)~sin(2kgx—x'[)/[x—x'|> ex-
hibits an algebraic decay with Friedel oscillations at
twice the Fermi wave vector 2ky. The characterization
of many-body wave functions in terms of the associated
correlation functions draws attention to another basic
point emphasized by Kohn (1999): in situations with a
large number of particles, the many-body wave function
itself is not a meaningful quantity because it cannot be
calculated reliably for N=100. Moreover, physically ac-
cessible observables are sensitive only to the resulting

Wyr(X,Xy, ...
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one-or two-particle correlations. Cold gases provide a
concrete example for the latter statement: the standard
time-of-flight technique of measuring the absorption im-
age after a given free-expansion time ¢ provides the one-
particle density matrix in Fourier space, while the two-
particle density matrix is revealed in the noise
correlations of absorption images (see Sec. III).

C. Feshbach resonances

The most direct way of reaching the strong-interaction
regime in dilute, ultracold gases is via Feshbach reso-
nances, which allow the scattering length to be increased
to values beyond the average interparticle spacing. In
practice, this method works best for fermions because
for them the lifetime due to three-body collisions be-
comes very large near a Feshbach resonance, in stark
contrast to bosons, where it goes to zero. The concept
was first introduced in the context of reactions forming a
compound nucleus (Feshbach, 1958) and, independently,
for a description of configuration interactions in multi-
electron atoms (Fano, 1961). Quite generally, a Feshbach
resonance in a two-particle collision appears whenever a
bound state in a closed channel is coupled resonantly
with the scattering continuum of an open channel. The
two channels may correspond, for example, to different
spin configurations for atoms. The scattered particles are
then temporarily captured in the quasibound state, and
the associated long time delay gives rise to a Breit-
Wigner-type resonance in the scattering cross section.
What makes Feshbach resonances in the scattering of
cold atoms particularly useful is the ability to tune the
scattering length simply by changing the magnetic field
(Tiesinga et al., 1993). This tunability relies on the differ-
ence in the magnetic moments of the closed and open
channels, which allows the position of closed-channel
bound states relative to the open-channel threshold to
be changed by varying the external, uniform magnetic
field. Note that Feshbach resonances can alternatively
be induced optically via one- or two-photon transitions
(Fedichev, Kagan, Shlyapnikov, et al, 1996; Bohn and
Julienne, 1999) as realized by Theis et al. (2004). The
control parameter is then the detuning of the light from
atomic resonance. Although more flexible in principle,
this method suffers, however, from heating problems for
typical atomic transitions, associated with the
spontaneous-emission processes created by the light ir-
radiation.

On a phenomenological level, Feshbach resonances
are described by an effective pseudopotential between
atoms in the open channel with scattering length

a(B) = ay,[1 - ABI(B - By)]. (16)

Here ay, is the off-resonant background scattering
length in the absence of the coupling to the closed chan-
nel, while AB and B describe the width and position of
the resonance expressed in magnetic field units (see Fig.
2). In this section, we outline the basic physics of mag-
netically tunable Feshbach resonances, providing a con-
nection of the parameters in Eq. (16) with the inter-
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FIG. 2. Magnetic field dependence of the scattering length be-
tween the two lowest magnetic substates of ®Li with a Fesh-
bach resonance at By;=834 G and a zero crossing at By+AB
=534 G. The background scattering length ap,=-1405ap is ex-
ceptionally large in this case (ap the Bohr radius).

atomic potentials. Of course, our discussion covers only
the basic background for understanding the origin of
large and tunable scattering lengths. A more detailed
presentation of Feshbach resonances can be found in the
reviews by Timmermans et al. (2001); Duine and Stoof
(2004); and Kohler et al. (2006).

Open and closed channels. We start with the specific
example of fermionic °Li atoms, which have electronic
spin S=1/2 and nuclear spin /=1. In the presence of a
magnetic field B along the z direction, the hyperfine
coupling and Zeeman energy lead for each atom to the
Hamiltonian

H =ayS -1+ 2upS, — m,l,)B. (17)

Here wp>0 is the standard Bohr magneton and g,
(<up) is the magnetic moment of the nucleus. This hy-
perfine Zeeman Hamiltonian actually holds for any
alkali-metal atom, with a single valence electron with
zero orbital angular momentum. If B—0, the eigen-
states of this Hamiltonian are labeled by the quantum
numbers f and my, giving the total spin angular momen-
tum and its projection along the z axis, respectively. In
the opposite Paschen-Back regime of large magnetic
fields (B> ayp/ up=30 G in lithium), the eigenstates are
labeled by the quantum numbers m, and m;y, giving the
projection on the z axis of the electron and nuclear
spins, respectively. The projection mg=mg+m; of the to-
tal spin along the z axis remains a good quantum num-
ber for any value of the magnetic field.

Consider a collision between two lithium atoms, pre-
pared in the two lowest eigenstates |a) and |b) of the
Hamiltonian (17) in a large magnetic field. The lowest
state |a) (with mg,=1/2) is =~|m;=-1/2,m;=1) with a
small admixture of |m,=1/2,m;=0), whereas |b) (with
mp=—1/2) is =|m;=-1/2,m;=0) with a small admixture
of |my=1/2,m;=-1). Two atoms in these two lowest
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states thus predominantly scatter into their triplet state.”
Quite generally, the interaction potential during the col-
lision can be written as a sum

V(r) =53V + Vi(]1+8; - SIV.(r) - V(] (18)

of projections onto the singlet V(r) and triplet V,(r) mo-

lecular potentials, where the §,~’s (i=1,2) are the spin
operators for the valence electron of each atom. These
potentials have the same van der Waals attractive behav-
ior at long distances, but they differ considerably at
short distances, with a much deeper attractive well for
the singlet than for the triplet potential. Now, in a large
but finite magnetic field, the initial state |a,b) is not a
purely triplet state. Because of the tensorial nature of
V(r), this spin state will thus evolve during the collision.
More precisely, since the second term in Eq. (18) is not
diagonal in the basis |a,b), the spin state |a,b) may be
coupled to other scattering channels |c,d), provided the
z projection of the total spin is conserved (my+mgy
=my,+myg). When the atoms are far apart, the Zeeman
+hyperfine energy of |c,d) exceeds the initial kinetic en-
ergy of the pair of atoms prepared in |a,b) by an energy
on the order of the hyperfine energy. Since the thermal
energy is much smaller than that for ultracold collisions,
the channel |c,d) is closed and the atoms always emerge
from the collision in the open-channel state |a,b). How-
ever, due to the strong coupling of (a,b) to (c,d) via the
second term in Eq. (18), which is typically on the order
of eV, the effective scattering amplitude in the open
channel can be strongly modified.

Two-channel model. We now present a simple two-
channel model that captures the main features of a Fes-
hbach resonance (see Fig. 3). Consider a collision be-
tween two atoms with reduced mass M,, and model the
system in the vicinity of the resonance by the Hamil-
tonian (Nygaard et al., 2006)

2

h
- —V?4+ Viop(r)

M W(r)

H= 52 (19)
- Z_Z\/I,VZ + Va(r)
Before collision, the atoms are prepared in the open
channel, whose potential V,(r) gives rise to the back-
ground scattering length ay,. Here the zero of energy is
chosen such that V,(«0)=0. In the course of the colli-
sion, a coupling to the closed channel with potential
Va(r) [Vg(e)>0] occurs via the matrix element W(r),
whose range is on the order of the atomic scale r.. For
simplicity, we consider here only a single closed channel,
which is appropriate for an isolated resonance. We also
assume that the value of ay, is on the order of the van
der Waals length (2). If ay, is anomalously large, as oc-
curs, e.g., for the °Li resonance shown in Fig. 2, an ad-

W(r)

"The fact that there is a nonvanishing s-wave scattering
length for these states is connected with the different nuclear
and not electronic spin in this case.
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FIG. 3. (Color online) The two-channel model for a Feshbach
resonance. Atoms prepared in the open channel, correspond-
ing to the interaction potential V,(r), undergo a collision at
low incident energy. In the course of the collision, the open
channel is coupled to the closed channel V4(r). When a bound
state of the closed channel has an energy close to zero, a scat-
tering resonance occurs. The position of the closed channel can
be tuned with respect to the open one, e.g., by varying the
magnetic field B.

ditional open-channel resonance has to be included in
the model, as discussed by Marcelis et al. (2004).

We assume that the magnetic moments of the collid-
ing states differ for the open and closed channels, and
denote their difference by u. Varying the magnetic field
by 6B, therefore, amounts to shifting the closed-channel
energy by udB with respect to the open channel. In the
following, we are interested in the magnetic field region
close to B, such that one (normalized) bound state
¢res(r) of the closed-channel potential V(r) has an en-
ergy E,.(B)=u(B- By close to 0. It can thus be reso-
nantly coupled to the collision state where two atoms in
the open channel have a small positive kinetic energy. In
the vicinity of the Feshbach resonance, the situation is
now similar to the well-known Breit-Wigner problem
[see, e.g., Landau and Lifshitz (1987), Sec. 134]. A par-
ticle undergoes a scattering process in a (single-channel)
potential with a quasi- or true bound state at an energy
v, which is nearly resonant with the incoming energy
E(k)=h?k?/2M,. According to Breit and Wigner, this
leads to a resonant contribution

Sres(k) = — arctan(I'(k)/2[ E(k) — v]) (20)

to the scattering phase shift, where v=pu(B—B,) is con-
ventionally called the detuning in this context (for the
difference between B, and B, see below).The associ-
ated resonance width I'(k) vanishes near zero energy,
with a threshold behavior linear in k=V2M,E/#f due to
the free-particle density of states. It is convenient to de-
fine a characteristic length r*>0 by
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I'(k — 0)/2 =h%kI2M r*. (21)

The scattering length a=-lim;_,, tan(dy,+ Jes)/k then
has the simple form

R 2M . (22)

This agrees precisely with Eq. (16) provided the width
parameter AB is identified with the combination
,uABabg:ﬁz/ 2M,r* of the two characteristic lengths ayp,
and r*.

On a microscopic level, these parameters may be ob-
tained from the two-channel Hamiltonian (19) by the
standard Green’s-function formalism. In the absence of
coupling W(r), the scattering properties of the open
channel are characterized by G,,(E)=(E~H,p)~ 1 with
H,p =P?/2M,+V, op(r). We denote by |¢y) the eigenstate
of H associated with the energy 0, which behaves as
¢0(r)~1—abg/ r for large r. In the vicinity of the reso-
nance, the closed channel contributes through the state
bres, and its Green’s function reads

GCI(E7B) = |¢res><¢res|/[E - Eres(B)]- (23)

With this approximation, one can project the eigenvalue

azabg—

equation for the Hamiltonian H onto the background
and closed channels. One can then derive the scattering
length a(B) of the coupled-channel problem and write it
in the form of Eq. (16). The position of the zero-energy
resonance By is shifted with respect to the “bare” reso-
nance value B, by

#(Bo = Breg) = = <¢res|WGop(0)W| bres)- (24)

The physical origin of this resonance shift is that an in-
finite scattering length requires that the contributions to
k cot 8(k) in the total scattering amplitude from the
open and closed channels precisely cancel. In a situation
in which the background scattering length deviates con-
siderably from its typical value a and where the off-
diagonal coupling measured by AB is strong, this cancel-
lation already appears when the bare closed-channel
bound state is far away from the continuum threshold. A
simple analytical estimate for this shift has been given by
Julienne et al. (2004),

By =B,es+ ABx(1 - x)/[1+ (1 -x)?], (25)

where x=ayp,/a. The characteristic length r* defined in
Eq. (21) is determined by the off-diagonal coupling via

(bred Wlho) = (W*12M ) \Ndrir*. (26)

Its inverse 1/r* is therefore a measure of how strongly
the open and closed channels are coupled. In the experi-
mentally most relevant case of wide resonances, the
length r* is much smaller than the background scattering
length. Specifically, this applies to the Feshbach reso-
nances in fermionic °Li and *°K at B,=834 and 202 G,
respectively, which have been used to study the BCS-
BEC crossover with cold atoms (see Sec. VIII). They
are characterized by the experimentally determined
parameters ap,=-1405a5, AB=-300 G, u=2up and a,
=174ap, AB=7.8 G, u=1.68up, respectively, where ag
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and up are the Bohr radius and Bohr magneton. From
these parameters, the characteristic length associated
with the two resonances turns out to be r*=0.5a5 and
r*=28ap, both obeying the wide-resonance condition
r* <lapy.

Weakly bound states close to the resonance. In addition
to the control of scattering properties, an important fea-
ture of Feshbach resonances concerns the possibility to
form weakly bound dimers in the regime of small nega-
tive detuning v=u(B-By)—0", where the scattering
length approaches +%. We briefly present below some
key properties of these dimers, restricting for simplicity
to the vicinity of the resonance |B—Bg|<|AB|.

To determine the bound state for the two-channel
Hamiltonian (19), one considers the Green’s function

G(E)=(E-H)™" and looks for the low-energy pole at
E=-¢,<0 of this function. The corresponding bound
state can be written

VI = Z () )
Vf}‘ﬁres(")

where the coefficient Z characterizes the closed-channel
admixture. The values of ¢, and Z can be calculated

(x|¥®) = ( (27)

explicitly by projecting the eigenvalue equation for Hon
each channel. Close to resonance, where the scattering
length is dominated by its resonant contribution, Eq.
(22) and the standard relation &,=%%/2M,a*> for a>0
show that the binding energy

ep=[u(B - By)Fle* (28)

of the weakly bound state vanishes quadratically, with
characteristic energy *=#2/2M,(r*)%. In an experimen-
tal situation which starts from the atom continuum, it is
precisely this weakly bound state which is reached upon
varying the detuning by an adiabatic change in the mag-
netic field around B,,. The associated closed-channel ad-
mixture Z can be obtained from the binding energy as

ol r 155
v |abg| |AB| -

Z=- (29)
For a wide resonance, where r*<|ay,|, this admixture
remains much smaller than 1 over the magnetic field
range |B-B|=<|AB|.

The bound state |[W®) just presented should not be
confused with the bound state |CI)(b)> that exists for a,,
>0 in the open channel, for a vamshlng coupling W(r).
The bound state |<I> ) has a binding energy of order
w2eM ab ), that is much larger than that of Eq. (28)
when |B- B0|<|AB| For |B—B|~|AB]| the states |¥®)
and |¢>$})> have comparable energies and undergo an
avoided crossing. The universal character of the above
results is then lost and one has to turn to a specific study
of the eigenvalue problem.

To conclude, Feshbach resonances provide a flexible
tool to change the interaction strength between ultra-
cold atoms over a wide range. To realize a proper many-
body Hamiltonian with tunable two-body interactions,



Bloch, Dalibard, and Zwerger: Many-body physics with ultracold gases 895

however, an additional requirement is that the relax-
ation rate into deep bound states due to three-body col-
lisions must be negligible. As discussed in Sec. VIIL.A,
this is possible for fermions, where the relaxation rate is
small near Feshbach resonances (Petrov, Salomon, and
Shlyapnikov, 2004, 2005).

II. OPTICAL LATTICES

In the following, we discuss how to confine cold atoms
by laser light into configurations of a reduced dimen-
sionality or in periodic lattices, thus generating situa-
tions in which the effects of interactions are enhanced.

A. Optical potentials

The physical origin of the confinement of cold atoms
with laser light is the dipole force

F=Ja(wy) VI[E®]] (30)

due to a spatially varying ac Stark shift that atoms
experience in an off-resonant light field (Grimm et al.,
2000). Since the time scale for the center-of-mass motion
of atoms is much slower than the inverse laser frequency
w;, only the time-averaged intensity |E(r)]> enters.
The direction of the force depends on the sign of
the polarizability a(w;). In the vicinity of an atomic
resonance from the ground |g) to an excited state |e)
at frequency wy, the polarizability has the form a(w;)
~|(e|dg|2)|*/fi(wy—w; ), with dy the dipole operator in
the direction of the field. Atoms are thus attracted to the
nodes or to the antinodes of the laser intensity for blue-
(w7 > wy) or red-detuned (w; <wp) laser light, respec-
tively. A spatially dependent intensity profile I(r), there-
fore, creates a trapping potential for neutral atoms.
Within a two-level model, an explicit form of the dipole
potential may be derived using the rotating-wave ap-
proximation, which is a reasonable approximation pro-
vided that the detuning A=w; —w, of the laser field is
small compared to the transition frequency itself |A|
<w,. With I" as the decay rate of the excited state, one
obtains for |A|>T (Grimm et al., 2000)

3w’ T
Vio(r) = —==I(r), 31
aip(T) 207 A (r) (31)

which is attractive or repulsive for red (A<0) or blue
(A>0) detuning, respectively. Atoms are thus attracted
or repelled from an intensity maximum in space. It is
important to note that, in contrast to the form suggested
in Eq. (30), the light force is not fully conservative. In-
deed, spontaneous emission gives rise to an imaginary
part of the polarizability. Within a two-level approxima-
tion, the related scattering rate I',(r) leads to an absorp-
tive contribution Al'i(r) to the conservative dipole po-
tential (31), which can be estimated as (Grimm et al.,
2000)
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3mc? (T)?
Fe(r) = Zhwf;(K) I(r). (32)
As Egs. (31) and (32) show, the ratio of scattering rate to
the optical potential depth vanishes in the limit |A|>T.
A strictly conservative potential can thus be reached in
principle by increasing the detuning of the laser field. In
practice, however, such an approach is limited by the
maximum available laser power. For experiments with
ultracold quantum gases of alkali-metal atoms, the de-
tuning is typically chosen to be large compared to the
excited-state hyperfine structure splitting and in most
cases even large compared to the fine-structure splitting
in order to sufficiently suppress spontaneous scattering
events.

The intensity profile /(r,z) of a Gaussian laser beam
propagating along the z direction has the form

1(r,7) = [2P/7w?(z)]e 2" W@ (33)

Here P is the total power of the laser beam, r is the
distance from the center, and w(z)=wy\1+z°/ zfe is the
1/€? radius. This radius is characterized by a beam waist
wy that is typically around 100 um. Due to the finite
beam divergence, the beam width increases linearly with
z on a scale zz=mw}/\, which is called the Rayleigh
length. Typical values for zz are in the millimeter to
centimeter range. Around the intensity maximum, a po-
tential depth minimum occurs for a red-detuned laser
beam, leading to an approximately harmonic potential

Vdip(r,Z) = - Vtrap[l - 2(}"/W0)2 - (Z/ZR)z]- (34)

The trap depth Vi, is linearly proportional to the laser
power and typically ranges from a few kilohertz up to
1 MHz (from the nanokelvin to the microkelvin regime).
The harmonic confinement is characterized by radial o,
and axial o, trapping frequencies w,=(4V g,/ Mwg)'?
and @, =2V .,/ Mz%e. Optical traps for neutral atoms
have a wide range of applications (Grimm et al., 2000).
In particular, they are inevitable in situations in which
magnetic trapping does not work for the atomic states
under consideration. This is often the case when interac-
tions are manipulated via Feshbach resonances, involv-
ing high-field-seeking atomic states.

Optical lattices. A periodic potential is generated by
overlapping two counterpropagating laser beams. Due
to the interference between the two laser beams, an op-
tical standing wave with period \/2 is formed, in which
atoms can be trapped. More generally, by choosing the
two laser beams to interfere under an angle less than
180°, one can also realize periodic potentials with a
larger period (Peil et al., 2003; Hadzibabic et al., 2004).
The simplest possible periodic optical potential is
formed by overlapping two counterpropagating beams.
For a Gaussian profile, this results in a trapping poten-
tial of the form

Vi(r,2) = = Ve @ sin’(kz), (35)

where k=2/\ is the wave vector of the laser light and
V, is the maximum depth of the lattice potential. Note



896 Bloch, Dalibard, and Zwerger: Many-body physics with ultracold gases

{

i

CRCCEri]

FIG. 4. (Color online) Optical lattices. (a) Two- and (b) three-
dimensional optical lattice potentials formed by superimposing
two or three orthogonal standing waves. For a two-
dimensional optical lattice, the atoms are confined to an array
of tightly confining one-dimensional potential tubes, whereas
in the three-dimensional case the optical lattice can be ap-
proximated by a three-dimensional simple cubic array of
tightly confining harmonic-oscillator potentials at each lattice
site.

that due to the interference of the two laser beams, V is
four times larger than V,, if the laser power and beam
parameters of the two interfering lasers are equal.

Periodic potentials in two dimensions can be formed
by overlapping two optical standing waves along differ-
ent, usually orthogonal, directions. For orthogonal po-
larization vectors of the two laser fields, no interference
terms appear. The resulting optical potential in the cen-
ter of the trap is then a simple sum of a purely sinusoidal
potential in both directions.

In such a two-dimensional optical lattice potential, at-
oms are confined to arrays of tightly confining one-
dimensional tubes [see Fig. 4(a)]. For typical experimen-
tal parameters, the harmonic trapping frequencies along
the tube are very weak (on the order of 10-200 Hz),
while in the radial direction the trapping frequencies can
become as high as up to 100 kHz. For sufficiently deep
lattice depths, atoms can move only axially along the
tube. In this manner, it is possible to realize quantum
wires with neutral atoms, which allows one to study
strongly correlated gases in one dimension, as discussed
in Sec. V. Arrays of such quantum wires have been real-
ized (Greiner et al., 2001; Moritz et al., 2003; Kinoshita et
al., 2004; Paredes et al., 2004; Tolra et al., 2004).

For the creation of a three-dimensional lattice poten-
tial, three orthogonal optical standing waves have to be
overlapped. The simplest case of independent standing
waves, with no cross interference between laser beams
of different standing waves, can be realized by choosing
orthogonal polarization vectors and by using slightly dif-
ferent wavelengths for the three standing waves. The
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resulting optical potential is then given by the sum of
three standing waves. In the center of the trap, for dis-
tances much smaller than the beam waist, the trapping
potential can be approximated as the sum of a homoge-
neous periodic lattice potential

V,(x,y,2) = V(sin® kx + sin” ky + sin” kz) (36)

and an additional external harmonic confinement due to
the Gaussian laser beam profiles. In addition to this, a
confinement due to the magnetic trapping is often used.

For deep optical lattice potentials, the confinement on
a single lattice site is approximately harmonic. Atoms
are then tightly confined at a single lattice site, with trap-
ping frequencies w, of up to 100 kHz. The energy %,
=2E(V,/E,)"? of local oscillations in the well is on the
order of several recoil energies E,=#%k?/2m, which is a
natural measure of energy scales in optical lattice poten-
tials. Typical values of E, are in the range of several
kilohertz for ®'Rb.

Spin-dependent optical lattice potentials. For large de-
tunings of the laser light forming the optical lattices
compared to the fine-structure splitting of a typical
alkali-metal atom, the resulting optical lattice potentials
are almost the same for all magnetic sublevels in the
ground-state manifold of the atom. However, for more
near-resonant light fields, situations can be created in
which different magnetic sublevels can be exposed to
vastly different optical potentials (Jessen and Deutsch,
1996). Such spin-dependent lattice potentials can, e.g.,
be created in a standing wave configuration formed by
two counterpropagating laser beams with linear polar-
ization vectors enclosing an angle 6 (Jessen and Deutsch,
1996; Brennen et al., 1999; Jaksch et al., 1999; Mandel et
al.,2003a). The resulting standing wave light field can be
decomposed into a superposition of a o™~ and a
o -polarized standing wave laser field, giving rise to lat-
tice potentials V,(x,0)=V, cos’(kx+6/2) and V_(x,0)
=V, cos’(kx - 6/2). By changing the polarization angle 6,
one can control the relative separation between the two
potentials Ax=(6/m)\,/2. When 6 is increased, both po-
tentials shift in opposite directions and overlap again
when #=nm, with n an integer. Such a configuration has
been used to coherently move atoms across lattices and
realize quantum gates between them (Jaksch et al., 1999;
Mandel et al., 2003a, 2003b). Spin-dependent lattice po-
tentials furthermore offer a convenient way to tune in-
teractions between two atoms in different spin states. By
shifting the spin-dependent lattices relative to each
other, the overlap of the on-site spatial wave function
can be tuned between zero and its maximum value, thus
controlling the interspecies interaction strength within a
restricted range. Recently, Sebby-Strabley et al. (2006)
have also demonstrated a novel spin-dependent lattice
geometry, in which 2D arrays of double-well potentials
could be realized. Such “superlattice” structures allow
for versatile intrawell and interwell manipulation possi-
bilities (Folling et al., 2007; Lee et al, 2007; Sebby-
Strabley et al., 2007). A variety of lattice structures can
be obtained by interfering laser beams under different
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angles; see, e.g., Jessen and Deutsch (1996) and Gryn-
berg and Robillard (2001).

B. Band structure

We now consider single-particle eigenstates in an infi-
nite periodic potential. Any additional potential from
the intensity profile of the laser beams or from some
magnetic confinement is neglected [for the single-
particle spectrum in the presence of an additional har-
monic confinement, see Hooley and Quintanilla (2004)].
In a simple cubic lattice, the potential is given by Eq.
(36), with a tunable amplitude V|, and lattice constant
d=m/k. In the limit V(> E,, each well supports a num-
ber of vibrational levels, separated by an energy fw
> E,. At low temperatures, atoms are restricted to the
lowest vibrational level at each site. Their kinetic energy
is then frozen, except for the small tunneling amplitude
to neighboring sites. The associated single-particle
eigenstates in the lowest band are Bloch waves with qua-
simomentum q and energy

golq) = %ﬁwo —2J(cos q,d +cos q,d +cos q,d) + -+ .
(37)

The parameter />0 is the gain in kinetic energy due to
nearest-neighbor tunneling. In the limit V> FE,, it can
be obtained from the width W— 4J of the lowest band in
the 1D Mathieu equation

4 V. 3/4 \% 1/2
J= ?Er<—0> exp|-2( =2 |. (38)
N Er Er

For lattice depths larger than V,>15F,, this approxima-
tion agrees with the exact values of J given in Table I to
better than 10% accuracy. More generally, for any peri-
odic potential V,(r+R)=V,(r) which is not necessarily
deep and separable, the exact eigenstates are Bloch
functions ¢, 4(r). They are characterized by a discrete
band index n and a quasimomentum q within the first
Brillouin zone of the reciprocal lattice (Ashcroft and
Mermin, 1976). Since Bloch functions are multiplied by
a pure phase factor exp(iq-R), upon translation by one
of the lattice vectors R, they are extended over the
whole lattice. An alternative single-particle basis, which
is useful for describing the hopping of particles among
discrete lattice sites R, is provided by Wannier functions
w,r(r). They are connected with the Bloch functions by
a Fourier transform

Y q(D) = 2w, g(r)e R (39)
R

on the lattice. The Wannier functions depend only on
the relative distance r—R, and, at least for the lowest
bands, they are centered around the lattice sites R (see
below). By choosing a convenient normalization, they
obey the orthonormality relation

Rev. Mod. Phys., Vol. 80, No. 3, July—September 2008

TABLE 1. Hopping matrix elements to nearest J and next-
nearest neighbors J(2d), bandwidth W, and overlap between
the Wannier function and the local Gaussian ground state in
1D optical lattices. Table courtesy of M. Holthaus.

Vol E, 4J/E, WI/E, J2d)1J [(w|p)?
3 0.444109  0.451894  0.101 075 0.9719
5 0263069 0264211  0.051 641 0.9836
10 0.076730  0.076747  0.011 846 0.9938
15 0.026 075  0.026076  0.003 459 0.9964
20 0.009965  0.009965  0.001 184 0.9975
j drw’ (k=R)w, (r—=R") =8, . g r (40)

for different bands n and sites R. Since the Wannier
functions for all bands »n and sites R form a complete

basis, the operator Jf(r), which destroys a particle at an
arbitrary point r, can be expanded in the form

#r) = X w,(r - R)dg,,. (41)
R.n

Here dy, is the annihilation operator for particles in the
corresponding Wannier states, which are not necessarily
well localized at site R. The Hamiltonian for free motion
on a periodic lattice is then

Hy= X J,R-R")ig, g, (42)
RR'n

It describes the hopping in a given band n with matrix
elements J,(R), which in general connect lattice sites at
arbitrary distance R. The diagonalization of this Hamil-
tonian by Bloch states (39) shows that the hopping ma-
trix elements J,(R) are uniquely determined by the
Bloch band energies ¢,(q) via

> J,(R)exp(iq- R) = £,(q). (43)
R

In the case of separable periodic potentials V,(r)=V(x)
+V(y)+V(z), generated by three orthogonal optical
lattices, the single-particle problem is one dimensional.
A complete analysis of Wannier functions in this case
has been given by Kohn (1959). Choosing appropri-
ate phases for the Bloch functions, there is a unique
Wannier function for each band, which is real and expo-
nentially localized. The asymptotic decay ~exp(—h,|x|)
is characterized by a decay constant 4, which is a de-
creasing function of the band index n. For the lowest
band n=0, where the Bloch function at ¢=0 is finite at
the origin, the Wannier function w(x) can be chosen to
be symmetric around x=0 (and correspondingly it is
antisymmetric for the first excited band). More pre-
cisely, the asymptotic behavior of the 1D Wannier func-
tions and the hopping matrix elements is |w,(x)|
~ x| exp(=h,x|) and J,(R)~|R[>?exp(~h,|R]), re-
spectively (He and Vanderbilt, 2001). In the particular
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FIG. 5. (Color online) Absorption imaging. (a) Schematic
setup for absorption imaging after a time-of-flight period. (b)
Absorption image for a BEC released from a harmonic trap.
(c) Absorption image for a BEC released from a shallow opti-
cal lattice (Vy=6E,). Note the clearly visible interference peaks
in the image.

case of a purely sinusoidal potential V|, sin’(kx) with
lattice constant d=X\/2, the decay constant A, increases
monotonically with Vy/E,. In the deep-lattice limit
Vo> E,, it approaches hyd=m\V,/ E,/2. It is important
to realize that, even in this limit, the Wannier function
does not uniformly converge to the local harmonic-
oscillator ground state ¢ of each well: w,(x) decays ex-
ponentially rather than in a Gaussian manner and al-
ways has nodes in order to guarantee the orthogonality
relation (40). Yet, as shown in Table I, the overlap is
near 1 even for shallow optical lattices.

C. Time-of-flight and adiabatic mapping

Sudden release. When releasing ultracold quantum
gases from an optical lattice, two possible release meth-
ods can be chosen. If the lattice potential is turned off
abruptly and interaction effects can be neglected, a
given Bloch state with quasimomentum ¢ will expand
according to its momentum distribution as a superposi-
tion of plane waves with momenta p,=%q+n2hk, with n
an arbitrary integer. This is a direct consequence of
the fact that Bloch waves can be expressed as a super-
position of plane-wave states expli(q+G)-r] with mo-
menta q+G, which include arbitrary reciprocal-lattice
vectors G. In a simple cubic lattice with lattice spacing
d=lk, the vectors G are integer multiples of the fun-
damental reciprocal-lattice vector 2k. After a certain

(@)

20 Er 4 Er Free particle
w | ho
| | o
—— >
-hk hk -hk hk -hk nk
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time of flight, this momentum distribution can be im-
aged using standard absorption imaging methods. If only
a single Bloch state is populated, as is the case for a
Bose-Einstein condensate with quasimomentum ¢=0,
this results in a series of interference maxima that can be
observed after a time-of-flight period ¢ (see Fig. 5). As
shown in Sec. III.A, the density distribution observed
after a fixed time of flight at position x is the momentum
distribution of the particles trapped in the lattice,

n(x) = (M/A0)3w(k) PG(k). (44)

Here k is related to x by k=Mx/#t due to the assump-
tion of ballistic expansion, while w(k) is the Fourier
transform of the Wannier function. The coherence prop-
erties of the many-body state are characterized by the
Fourier transform

Gk)= >, e*RRIGOR R)
R.R’

(45)

of the one-particle density matrix G(l)(R,R’):@I{aAR/).

In a BEC, the long-range order in the amplitudes
leads to a constant value of the first order coherence
function GM(R,R’) at large separations [R—R’| (see the
Appendix). The resulting momentum distribution coin-
cides with the standard multiple wave interference pat-
tern obtained with light diffracting off a material grating
[see Fig. 5(c) and Sec. IV.B]. The atomic density distri-
bution observed after a fixed time-of-flight time thus
yields information on the coherence properties of the
many-body system. It should be noted, however, that the
observed density distribution after time of flight can de-
viate from the in-trap momentum distribution if interac-
tion effects during the expansion occur, or the expansion
time is not so long that the initial size of the atom cloud
can be neglected (far-field approximation) (Pedri et al.,
2001; Gerbier et al., 2007).

Adiabatic mapping. One advantage of using optical
lattice potentials is that the lattice depth can be dynami-
cally controlled by simply tuning the laser power. This
opens another possibility for releasing atoms from the
lattice potential, e.g., by adiabatically converting a deep
optical lattice into a shallow one and eventually com-
pletely turning off the lattice potential. Under adiabatic
transformation of the lattice depth the quasimomentum

(b)
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FIG. 6. (Color online) Adiabatic band mapping. (a) Bloch bands for different potential depths. During an adiabatic ramp down the
quasimomentum is conserved and (b) a Bloch wave with quasimomentum g in the nth energy band is mapped onto a free particle
with momentum p in the nth Brillouin zone of the lattice. From Greiner et al., 2001.
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(b)

que

FIG. 7. Brillouin zones. (a) Brillouin zones of a 2D simple cubic optical lattice. (b) For a homogeneously filled lowest Bloch band,
an adiabatic shutoff of the lattice potential leads to a homogeneously populated first Brillouin zone, which can be observed
through absorption imaging after a time-of-flight expansion. (c) If in addition higher Bloch bands are populated, higher Brillouin

zones become populated as well. From Greiner et al., 2001.

q is preserved, and during the turn-off process a Bloch
wave in the nth energy band is mapped onto a corre-
sponding free-particle momentum p in the nth Brillouin-
zone (see Fig. 6) (Kastberg et al., 1995; Greiner et al.,
2001; Kohl et al., 2005a).

The adiabatic mapping technique has been used with
both bosonic (Greiner et al., 2001) and fermionic (Kohl
et al., 2005a) atoms. For a homogeneously filled lowest-
energy band, an adiabatic ramp down of the lattice po-
tential leaves the central Brillouin zone—a square of
width 2Ak—fully occupied [see Fig. 7(b)]. If, on the
other hand, higher-energy bands are populated, one also
observes populations in higher Brillouin zones [see Fig.
7(c)]. As in this method each Bloch wave is mapped onto
a specific free-particle momentum state, it can be used
to efficiently probe the distribution of particles over
Bloch states in different energy bands.

D. Interactions and two-particle effects

So far we have only discussed single-particle behavior
of ultracold atoms in optical lattices. However, short-
ranged s-wave interactions between particles give rise to
an on-site interaction energy, when two or more atoms
occupy a single lattice site. Within the pseudopotential
approximation, the interaction between bosons has the
form

' =(g2) f &r gt (0§ (1) ) (). (46)

Inserting the expansion Eq. (41) leads to interactions in-
volving Wannier states in both different bands and dif-
ferent lattice sites. The situation simplifies, however, for
a deep optical lattice and with the assumption that only
the lowest band is occupied. The overlap integrals are
then dominated by the on-site term Urig(fig—1)/2,
which is nonzero if two or more atoms are in the same
Wannier state. At the two-particle level, the interaction
between atoms in Wannier states localized around R
and R’ is thus reduced to a local form Udg g/ with
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U=g J Briwm)|* = 8/ mkaE(Vy/E,)¥* (47)

(for simplicity, the band index n=0 is omitted for the
lowest band). The explicit result for the on-site interac-
tion U is obtained by taking w(r) as the Gaussian ground
state in the local oscillator potential. As mentioned
above, this is not the exact Wannier wave function of the
lowest band. In the deep-lattice limit V> E,, however,
the result (47) provides the asymptotically correct be-
havior. Note that the strength |U| of the on-site interac-
tion increases with V,, which is due to the squeezing of
the Wannier wave function w(r).

Repulsively bound pairs. Consider now an optical lat-
tice at very low filling. An occasional pair of atoms at
the same site has an energy U above or below the center
of the lowest band. In the attractive case U<0, a two-
particle bound state will form for sufficiently large val-
ues of |U|. In the repulsive case, in turn, the pair is ex-
pected to be unstable with respect to breakup into two
separate atoms at different lattice sites to minimize the
repulsive interaction. This process, however, is forbid-
den if the repulsion is above a critical value U> U,. The
physical origin for this result is that momentum and en-
ergy conservation do not allow the two particles to sepa-
rate. There are simply no free states available if the en-
ergy lies more than zJ above the band center, which is
the upper edge of the tight-binding band. Here z de-
notes the number of nearest neighbors on a lattice. Two
bosons at the same lattice site will stay together if their
interaction is sufficiently repulsive. In fact, the two-
particle bound state above the band for a repulsive in-
teraction is the precise analog of the standard bound
state below the band for attractive interactions, and
there is a perfect symmetry around the band center.

Such “repulsively bound pairs” have been observed in
an experiment by Winkler et al. (2006). A dilute gas of
87Rb2 Feshbach molecules was prepared in the vibra-
tional ground state of an optical lattice. Ramping the
magnetic field across a Feshbach resonance to negative
a, these molecules can be adiabatically dissociated and
then brought back again to positive a as repulsive pairs.
Since the bound state above the lowest band is built



900 Bloch, Dalibard, and Zwerger: Many-body physics with ultracold gases

repulsively bound pair
12 \

Vo (E))

scattering
continuum

-3

) f 24
-1 -05 0 05 1 0123 5
Ka/n momentum ka/n

FIG. 8. (Color online) Repulsively bound atom pairs. (a) Spec-
trum of energy E of the 1D Bose-Hubbard Hamiltonian for
U/J=8 as a function of the center-of-mass quasimomentum K.
The Bloch band for respulsively bound pairs is located above
the continuum of unbound states. (b) Experimentally mea-
sured quasimomentum distribution of repulsively bound pairs
vs lattice depth V.. From Winkler et al., 2006.

from states in which the relative momentum of the two
particles is near the edge of the Brillouin zone, the pres-
ence of repulsively bound pairs can be inferred from
corresponding peaks in the quasimomentum distribution
observed in a time-of-flight experiment (see Fig. 8) (Win-
kler et al., 2006). The energy and dispersion relation of
these pairs follows from solving UGg(E,0)=1 for a
bound state of two particles with center-of-mass momen-
tum K. In close analogy to Eq. (79) below, Gg(E,0) is
the local Green’s function for free motion on the lattice
with hopping matrix element 2/. Experimentally, the op-
tical lattice was strongly anisotropic such that tunneling
is possible only along one direction. The corresponding
bound-state equation in one dimension can be solved
explicitly, giving (Winkler ez al., 2006)

E(K,U,) =2J\(2 cos Kd/2)? + (U,/2])? — 4] (48)

for the energy with respect to the upper band edge.
Since E(K=0,U;)>0 for arbitrarily small values of U,
>0, there is always a bound state in one dimension. By
contrast, in 3D there is a finite critical value, which is
U,=7.9136 J for a simple cubic lattice. The relevant on-
site interaction U; in one dimension is obtained from
Eq. (78) for the associated pseudopotential. With ¢, the
oscillator length for motion along the direction of hop-
ping, it is given by

U, =g1fdx|w(x)|4= 2/ mha, alt,. (49)

Evidently, U; has the transverse confinement energy
hw, as the characteristic scale, rather than the recoil
energy E, of Eq. (47) in the 3D case.

Tightly confined atom pairs. The truncation to the low-
est band requires that both the thermal and on-site in-
teraction energy U are much smaller than fiw,. In the
deep-lattice limit Vy> E,, the condition U <% w leads to
ka(V,y/E,)"*<1 using Eq. (47). This is equivalent to a
<{,, where €y=\h/Mw,=(E,/V,)"*d/m is the oscillator
length associated with the local harmonic motion in the
deep optical lattice wells. The assumption of staying in
the lowest band in the presence of a repulsive interac-
tion thus requires the scattering length to be much
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smaller than €, which is itself smaller than, but of the
same order as, the lattice spacing d. For typical values
a=5nm and d=0.5 pum, this condition is well justified.
In the vicinity of Feshbach resonances, however, the
scattering lengths become comparable to the lattice
spacing. A solution of the two-particle problem in the
presence of an optical lattice for arbitrary values of the
ratio a/€, has been given by Fedichev et al. (2004). Ne-
glecting interaction-induced couplings to higher bands,
they have shown that the effective interaction at ener-
gies smaller than the bandwidth is described by a
pseudopotential. For repulsive interactions a >0, the as-
sociated effective scattering length reaches a bound ag
=~d on the order of the lattice spacing even if a — % near
a Feshbach resonance. In the case in which the free-
space scattering length is negative, a.; exhibits a geo-
metric resonance that precisely describes the formation
of a two-particle bound state at |U|=7.9136J as dis-
cussed above.

This analysis is based on the assumption that particles
remain in a given band even in the presence of strong
interactions. Near Feshbach resonances, however, this is
usually not the case. In order to address the question of
interaction-induced transitions between different bands,
it is useful to consider two interacting particles in a har-
monic well (Busch et al., 1998). Provided the range of
interaction is much smaller than the oscillator length €,
the interaction of two particles in a single well is de-
scribed by a pseudopotential. The ratio of the scattering
length a to ¢,, however, may be arbitrary. The corre-
sponding energy levels E=fiwy(3/2-) as a function of
the ratio ¢,/a follow from the transcendental equation

€o/a = \2T(Q2)/T(Q - 1)12) = £4(Q), (50)

where I'(z) is the standard gamma function. In fact, this
is the analytical continuation to an arbitrary sign of the
dimensionless binding energy () in Eq. (82) for n=3,
since harmonic confinement is present in all three spatial
directions.

As shown in Fig. 9, the discrete levels for the relative

\6' Elhwg-3/2

T

\\ 2 “0)a

FIG. 9. (Color online) Energy spectrum of two interacting par-
ticles in a 3D harmonic-oscillator potential from Eq. (50). Ar-
rows indicate the transfer of a pair in the ground state to the
first excited level by sweeping across a Feshbach resonance.
There is a single bound state below the lowest oscillator level,
whose energy has been measured by Stoferle et al. (2006).
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FIG. 10. (Color online) Experimentally observed interaction-induced transitions between Bloch bands. (a) Two Feshbach reso-
nances between the |[F=9/2, mp=-9/2) and |[F=9/2, mp=-7/2) states (left) and the |F=9/2, mp=-9/2) and |F=9/2, mp=-5/2)
states (right) are exploited to tune the interactions in the gas. (b) Quasimomentum distribution for a final magnetic field of B
=233 G. Arrows indicate atoms in the higher bands. From Kohl et al., 2005a.

motion of two particles form a sequence that, at infinite
scattering length, is shifted upwards by precisely 7w,
compared to the noninteracting levels at zero angular
momentum E©(n,)=fwy(2n,+3/2). In particular, a
change of the scattering length from small positive to
small negative values, through a Feshbach resonance
where a diverges, increases the energy by 27w, while
particles are transferred to the next higher level n,=1.
Feshbach resonances can thus be used to switch pairs of
particles in individual wells of a deep optical lattice,
where tunneling is negligible, to higher bands. Experi-
mentally, this has been studied by Kohl et al. (2005a).
Starting from a two-component gas of fermionic “°K at
a=0 and unit filling, i.e., with two fermions at each lat-
tice site in the center of the trap, atoms were transferred
to a different hyperfine state and the magnetic field was
then increased beyond the associated Feshbach reso-
nance at By=224 G.® The resulting transfer of particles
into higher bands is then revealed by observing the qua-
simomentum distribution in time-of-flight images after
adiabatically turning off the optical lattice; see Fig. 10.
Ho (2006) pointed out that such Feshbach sweeps open
novel possibilities for creating fermionic Mott insulating
states.

III. DETECTION OF CORRELATIONS

In order to probe interacting many-body quantum
states with strong correlations, it is essential to use de-
tection methods that are sensitive to higher-order corre-
lations. This is possible using analogs of quantum optical
detection techniques (Altman et al., 2004; Duan, 2006;
Gritsev et al., 2006; Niu et al., 2006; Polkovnikov et al.,
2006; Zhang et al., 2007). Most of these techniques make
use of the fact that quantum fluctuations in many ob-

8Changing a from positive to negative values avoids creation
of molecules in an adiabatic ramp.
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servables, such as, e.g., the visibility of the interference
pattern between two released quantum gases or fluctua-
tions in the momentum distribution after release from
the trap, contain information about the initial correlated
quantum state. The noise-correlation techniques intro-
duced below will yield information either on the first-
order correlation function (see Secs. II1.C and VI) or on
the second- (or higher-) order correlation properties (see
Sec. III.B). They can therefore probe various kinds of
order in real space, such as, e.g., antiferromagnetically
ordered states. Such correlation techniques for expand-
ing atom clouds have been successfully employed in re-
cent experiments, probing the momentum correlations
between atomic fragments emerging from a dissociated
molecule (Greiner et al., 2005), revealing the quantum
statistics of bosonic or fermionic atoms in an optical lat-
tice (Folling et al., 2005; Rom et al., 2006), or exploring
the Kosterlitz-Thouless transition in two-dimensional
Bose-Einstein condensates (Hadzibabic et al., 2006). All
correlation techniques for strongly correlated quantum
gases can also benefit greatly from efficient single-atom
detectors that have recently begun to be used in the
context of cold quantum gases (Ottl et al., 2005; Schelle-
kens et al., 2005; Jeltes et al., 2007).

A. Time-of-flight versus noise correlations

We begin by considering a quantum gas released from
a trapping potential. After a finite time of flight 7, the
resulting density distribution yields a three-dimensional
density distribution n;p(x).” If interactions can be ne-
glected during the time of flight, the average density dis-
tribution is related to the in-trap quantum state via

°In this section, we denote in-trap spatial coordinates by r
and spatial coordinates after time of flight by x for clarity.
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(A3p(X)1oF = (A1op(X)dror(X))toF

~ (d"(K)a(K)) rap = (30 (K) ) raps (51)

where k and x are related by the ballistic expansion con-
dition k=Mx/#t [a factor (M/#¢)? from the transforma-
tion of the volume elements d°x — d°k is omitted; see
Eq. (44)]. Here we have used the fact that, for long times
of flight, the initial size of the atom cloud in the trap can
be neglected. It is important to realize that, in each ex-
perimental image, a single realization of the density is
observed, not an average. Moreover, each pixel in the
image records on average a substantial number N, of
atoms. For each of those pixels, however, the number of
atoms recorded in a single realization of an experiment
will exhibit shot-noise fluctuations of relative order
1/ \J'FU, which will be discussed below. As shown in Eq.
(51), the density distribution after time of flight repre-
sents a momentum distribution reflecting first-order co-
herence properties of the in-trap quantum state. This
assumption is, however, correct only if during the expan-
sion process interactions between atoms do not modify
the initial momentum distribution, which we assume
throughout. When interactions between atoms have
been enhanced, e.g., by a Feshbach resonance, or a high-
density sample is prepared, such an assumption is not
always valid. Near Feshbach resonances, one therefore
often ramps back to the zero crossing of the scattering
length before expansion.

Density-density correlations in time-of-flight images.
We now turn to the observation of density-density cor-
relations in the expanding atom clouds (Altman et al.,
2004). These are characterized by the density-density
correlation function after time-of-flight

(AARK)) = AE)NAKX))gP(xx') + 8x - x'){AX)),
(52)

which contains the normalized pair distribution
g?(x,x’) and a self-correlation term. Relating the op-
erators after time-of-flight expansion to the in-trap mo-
mentum operators, using Eq. (51), one obtains

(it3p(®)risp(x))ror = (@' (K)a(k)d" (k')A (k")) irap
= (@' (K)a" (k")a(k")a(k))iap
+ 5kk'<dT(k)d(k)>trap- (53)

The last term on the right-hand side of the above
equation is the autocorrelation term and will be dropped
in the subsequent discussion, as it contributes to the sig-
nal only for x=x" and contains no more information
about the initial quantum state than the momentum dis-
tribution itself. The first term, however, shows that, for
x #x’, subtle momentum-momentum correlations of the
in-trap quantum states are present in the noise-
correlation signal of the expanding atom clouds.

We now discuss the results obtained for two cases that
have been analyzed in experiments: (i) ultracold atoms
in a Mott-insulating state or a fermionic band-insulating
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state released from a 3D optical lattice, and (ii) two in-
terfering one-dimensional quantum gases separated by a
distance d.

B. Noise correlations in bosonic Mott and fermionic band
insulators

Consider a bosonic Mott-insulating state or a fermi-
onic band insulator in a three-dimensional simple cubic
lattice. In both cases, each lattice site R is occupied by a
fixed atom number ngi. Such a quantum gas is released
from the lattice potential and the resulting density dis-
tribution is detected after a time of flight ¢. In a deep

optical lattice, the (in-trap) field operator (Z(r) can be
expressed as a sum over destruction operators dg of lo-
calized Wannier states by using the expansion (41) and
neglecting all but the lowest band. The field operator for
destroying a particle with momentum k is therefore
given by

a(k) = f e ) dPr = w(k) D, e *Rig, (54)
R

where w(k) denotes the Wannier function in momentum
space.

For the two states considered here, the expectation
value in Eq. (53) factorizes into one-particle density ma-
trices (dﬂdR/):nRéR,R, with vanishing off-diagonal or-
der. The density-density correlation function after a time
of flight is then given by (omitting the autocorrelation
term of order 1/N)

)

(sp(X)7izp(x") = |W(Mx/ho) | (Mx' /7o) PN?
(55)

1 I
X (1 + ﬁ % el(X—X )-R(M/ht)nR

The plus sign in the above equation corresponds to
the case of bosonic particles and the minus sign to the
case of fermionic particles in a lattice. Both in a Mott
state of bosons and in a filled band of fermions, the local
occupation numbers ng are fixed integers. The above
equation then shows that correlations or anticorrelations
in the density-density expectation value appear for
bosons or fermions, whenever k-k’ is equal to a
reciprocal-lattice vector G of the underlying lattice. In
real space, where images are actually taken, this corre-
sponds to spatial separations for which

Ix —x'| =€ =2ht/\M. (56)

Such spatial correlations or anticorrelations in the
quantum noise of the density distribution of expanding
atom clouds can in fact be traced back to the Hanbury
Brown and Twiss (HBT) effect (Hanbury Brown and
Twiss, 1956a, 1956b; Baym, 1998) and its analog for fer-
mionic particles (Henny et al., 1999; Oliver et al., 1999;
Kiesel et al., 2002; Iannuzzi et al., 2006; Rom et al., 2006;
Jeltes et al., 2007). For the case of two atoms localized at
two lattice sites, this can be understood in the following
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FIG. 11. (Color online) Noise correlations of a Mott insulator
released from a 3D optical lattice. (a) Single-shot absorption
image of a Mott insulator released from an optical lattice and
associated cut through (b). A statistical correlation analysis
over several independent images such as the one in (a) yields
the correlation function (c). A cut through this two-
dimensional correlation function reveals a Hanbury-Brown
and Twiss type of bunching of the bosonic atoms (d). From
Folling et al., 2005.

way: there are two possible ways for particles to reach
two detectors at positions x and x’, which differ by ex-
change. A constructive interference for bosons or a de-
structive interference for fermions then leads to corre-
lated or anticorrelated quantum fluctuations that are
registered in the density-density correlation function
(Baym, 1998; Altman et al., 2004).

Correlations for a bosonic Mott-insulating state and
anticorrelations for a fermionic band-insulating state
have been observed experimentally (Folling et al., 2005;
Rom et al., 2006; Spielman et al., 2007). In these experi-
ments, several single images of the desired quantum
state are recorded after releasing atoms from the optical
trapping potential and observing them after a finite time
of flight [for one of these images, see, e.g., Fig. 11(a)
or Fig. 12(a)]. These individually recorded images
differ only in the atomic shot noise from one to the
other. A set of such absorption images is then processed
to yield the spatially averaged second-order correlation
function g(z) (b),

exp

f (n(x +b/2)n(x — b/2))d*x
g (b) = . (57)
J (n(x +b/2)Xn(x — b/2))d*x

As shown in Fig. 11, the Mott insulating state exhibits
long-range order in the pair correlation function g?(b).
This order is not connected with the trivial periodic
modulation of the average density imposed by the opti-
cal lattice after time of flight, which is factored out in
g?(x,x’) [see Eq. (52)]. Therefore, in the superfluid re-
gime, one expects g?(x,x’) =1 despite the periodic den-
sity modulation in the interference pattern after time of

Rev. Mod. Phys., Vol. 80, No. 3, July—September 2008

VRN

02fp ‘g

{o%

0.1 0 g

12 <

406

0 O
400 200 0 200 400 -200 0 200

X (um) X (um)

FIG. 12. (Color online) Noise correlations of a band-insulating
Fermi gas. Instead of the correlation “bunching” peaks ob-
served in Fig. 11, the fermionic quantum gas shows a HBT-
type antibunching effect, with dips in the observed correlation
function. From Rom et al., 2006.

flight. It is interesting to note that correlations or anti-
correlations can also be traced back to enhanced fluc-
tuations in the population of Bloch waves with quasimo-
mentum ¢ for bosonic particles and the vanishing
fluctuations in the population of Bloch waves with qua-
simomentum ¢ for fermionic particles (Rom et al., 2006).

Note that in general the signal amplitude obtained in
experiments for the correlation function deviates signifi-
cantly from the theoretically expected value of 1. In fact,
one typically observes signal levels of 1074-107 (see
Figs. 11 and 12). This can be explained by the finite op-
tical resolution when the expanding atomic clouds are
imaged, thus leading to a broadening of detected corre-
lation peaks and thereby a decreased amplitude, as the
signal weight in each correlation peak is preserved in the
detection process. Using single-atom detectors with
higher spatial and temporal resolution such as those
used by Schellekens et al. (2005) and Jeltes et al. (2007),
one can overcome such limitations and thereby also
evaluate higher-order correlation functions.

C. Statistics of interference amplitudes for low-dimensional
quantum gases

As a second example, we consider two bosonic one-
dimensional quantum gases oriented along the z direc-
tion and separated by a distance d along the x direction.
The density-density correlation function at positions x
=(x,y=0,z) and x'=(x",y'=0,z’) after time of flight is
then given by

(Asp(X)isp(x")) = <dji“OF(X)dijF(x,)‘iTOF(X)ﬁTOF(X,»
+ Srn(x)n(x"). (58)
The operators for the creation d}ox(x) and destruction

dror(x) of a particle after a time-of-flight period at po-
sition x can be related to the in-trap operators describing
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the trapped quantum gases 1 and 2. Since the expansion
mostly occurs along the initially strongly confined direc-
tions x and y, we can neglect for simplicity the expansion
along the axial direction z and obtain for y=0

dror(x) = d1(2)e™1* + dy(z)e™2", (59)
with ky,=M(x+d/2)/ht. The interference part,
(@5(2)a (2)d}(z)dx(z") X () +c.c), (60)

of the correlation function in Eq. (58) is an oscillatory
function, with wave vector k=Md/#t. In a standard ab-
sorption image, with the propagation direction of the
imaging beam pointing along the z direction, one has to
take into account additionally an integration along this
direction over a length L from which a signal is re-
corded. We then obtain for the interfering part

(ARG )iy = (A (e*) 4 cc.), (61)
with the observable
. L2
Ap= f dz 4}(2)dy(z). (62)
-L/2

The above observable characterizes the phase and vis-
ibility of the interference pattern obtained in a single
run of the experiment. Each run yields one of the eigen-

values of Ak . Its typical magnitude is determined by the
expectation value

<|Ak|2>=JdZJdz’<éz(z)d1(z)é1(z’)dz(z’)>, (63)

which can be obtained by statistical analysis of the vis-
ibility of the interference patterns obtained in several
runs of the experiment. The basic example in this con-
text is the observation of a pronounced interference pat-
tern in a single realization of two overlapping but inde-
pendent condensates with fixed particle numbers by
Andrews et al. (1997). As discussed, e.g., by Javanainen
and Yoo (1996) and by Castin and Dalibard (1997), the
detection of particles at certain positions entails a non-
vanishing interference amplitude in a single realization,
whose typical visibility is determined by (A% #0. Av-
eraging over many realizations, in turn, completely
climinates the interference because (A.)=0 (Leggett,
2001).

For the case of identical (but still independent) homo-
geneous quantum gases, one can simplify Eq. (63) to
yield

(AP ~L f

-L2

L
dz(d'(z)a(0))? = LJ |GV (2)dz.

(64)

Fluctuations in the interference pattern are directly
linked to the coherence properties of the one-
dimensional quantum systems. For the case of Luttinger
liquids, the one-particle density matrix G (z) ~z~V/2K)
at zero temperature decays algebraically with an expo-
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nent determined by the Luttinger parameter K (see Sec.
V.B). As a result, the interference amplitudes exhibit an

anomalous scaling (|A,2)« L2"VK (Polkovnikov et al.,

2006). By determining higher moments (|A,|*") of arbi-
trary order n of the visibility in an interference experi-
ment, one can characterize the full distribution function

of the normalized random variable |A*/(|A,?. Full
knowledge of the distribution function in fact amounts
to a complete characterization of correlations in the
many-body systems, as was shown by Gritsev et al
(2006) and allows one to infer the number statistics of
the initial state (Polkovnikov, 2007). For the case of 1D
Bose-Einstein condensates, this has recently been
achieved by Hofferberth et al. (2008).

The above analysis for one-dimensional quantum
systems can be extended to two-dimensional systems
(Polkovnikov et al., 2006) and has been used to detect a
Berezinskii-Kosterlitz-Thouless transition (Hadzibabic
et al., 2006) with ultracold quantum gases (see Sec. VI).
For lattice-based systems, it has been shown that noise
correlations can be a powerful way to reveal, e.g., an
antiferromagnetically ordered phase of two-component
bosonic or fermionic quantum gases (Altman et al., 2004;
Werner et al., 2005) to characterize Bose-Fermi mixtures
(Ahufinger et al., 2005; Wang et al., 2005) and quantum
phases with disorder (Rey et al., 2006), as well as to de-
tect supersolid phases (Scarola et al., 2006).

IV. MANY-BODY EFFECTS IN OPTICAL LATTICES

As a first example illustrating how cold atoms in opti-
cal lattices can be used to study genuine many-body phe-
nomena in dilute gases, we discuss the Mott-Hubbard
transition for bosonic atoms. Following the proposal by
Jaksch et al. (1998), this transition was first observed in
3D by Greiner et al. (2002a) and subsequently in 1D and
2D (Stoferle et al., 2004; Spielman et al., 2007, 2008). The
theory of the underlying quantum phase transition is
based on the Bose-Hubbard model, introduced by
Fisher et al. (1989) to describe the destruction of super-
fluidity due to strong interactions and disorder.

A. Bose-Hubbard model

A conceptually simple model to describe cold atoms
in an optical lattice at finite density is obtained by com-
bining the kinetic energy (42) in the lowest band with
the on-site repulsion arising from Eq. (46) in the limit of
a sufficiently deep optical lattice. More precisely, the
Bose-Hubbard model (BHM) is obtained from a general
many-body Hamiltonian with a pseudopotential interac-
tion under the following assumptions: (i) both the ther-
mal and mean interaction energies at a single site are
much smaller than the separation Zw to the first excited
band; and (ii) the Wannier functions decay essentially
within a single lattice constant.

Under these assumptions, only the lowest band needs
to be taken into account in Eq. (41). Moreover, the hop-
ping matrix elements J(R) are non-negligible only for
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R=0 or to nearest neighbors (NN) in Eq. (42), and the
interaction constants are dominated by the on-site con-
tribution (47). This leads to the BHM

. U
H=—-1J 2 dgig +—=2, figliig—1) + >, eiig.
(R,R’) 2 R R

(65)

((R,R’) denotes a sum over all lattice sites R and its
nearest neighbors at R’=R+d, where d runs through
the possible nearest-neighbor vectors.) The hopping ma-
trix element J(d)=-J<0 to nearest neighbors is always
negative in the lowest band, because the ground state
must have zero momentum q=0 in a time-reversal in-
variant situation. For a separable lattice and in the limit
Vo> E,, it is given by Eq. (38). More generally, the hop-
ping matrix elements are determined by the exact band
energy using Eq. (43). An alternative, but more indirect,

expression is J(R) =(w(R)|H,/w(0)) (Jaksch ef al., 1998).

Since the standard BHM includes next neighbor-
hopping only, a convenient approximation for J in Eq.
(65) is obtained by simply adjusting it to the given band-
width. Concerning the on-site repulsion U, which disfa-
vors configurations with more than one boson at a given
site, its precise value as determined by Eq. (47) requires
the exact Wannier function. In the low-filling 7~1 re-
gime, it follows from the single-particle Bloch states via
Eq. (39). For higher fillings, the mean-field repulsion on
each lattice site leads to an admixture of excited states in
each well and eventually to a description where for 7
>1 one has a lattice of coupled Josephson junctions with
a Josephson coupling E£;=2nJ and an effective charging
energy U (Fisher et al., 1989; Cataliotti et al., 2001). For
intermediate fillings, the Wannier functions entering
both the effective hopping matrix element J and on-site
repulsion U have to be adjusted to account for the
mean-field interaction (Li ef al., 2006). The change in the
on-site interaction energy with filling was observed ex-
perimentally by Campbell e al. (2006). In a more de-
tailed description, the effects of interactions at higher
filling can be accounted for by a multiorbital generaliza-
tion of the Gross-Pitaevskii ansatz (Alon et al., 2005).
This leads to effective “dressed” Wannier states, which
include higher bands and coupling between different
sites. The last term with a variable on-site energy eg

=V(R) describes the effect of the smooth trapping po-

tential V(r). It includes the constant band center energy,
arising from the J(R=0) term of the hopping contribu-
tion (42), and acts like a spatially varying chemical po-
tential.

The BHM describes the competition between the
kinetic energy J, which is gained by delocalizing par-
ticles over lattice sites in an extended Bloch state, and
the repulsive on-site interaction U, which disfavors
having more than one particle at any given site. In an
optical lattice loaded with cold atoms, the ratio U/J
between these two energies can be changed by varying
the dimensionless depth V,/E, of the optical lattice.
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Indeed, from Egs. (38) and (47), the ratio U/J
~(al/d)exp(2\V,/E,) increases exponentially with the
lattice depth. Of course, to see strong interaction effects,
the average site occupation (/ig) needs to be on the or-
der of 1, otherwise the atoms never see each other. This
was the situation for cold atoms in optical lattices in the
1990s, studied, e.g., by Westbrook et al. (1990), Grynberg
et al. (1993), Hemmerich and Hinsch (1993), and Kast-
berg et al. (1995).

B. Superfluid-Mott-insulator transition

The BHM Eg. (65) is not an exactly soluble model,
not even in one dimension, despite the fact that the cor-
responding continuum model in 1D, the Lieb-Liniger
model, is exactly soluble. Nevertheless, the essential
physics of the model and, in particular, the existence and
properties of the quantum phase transition that the
BHM exhibits as a function of U/J are rather well un-
derstood (Fisher et al., 1989). In fact, for the 3D case and
effectively unit filling, the existence of a quantum phase
transition from a homogeneous BEC to a Mott insulator
(MI) with a nonzero gap has been proven rigorously in a
model of hard-core bosons in the presence of a stag-
gered field by Aizenman et al. (2004). We first discuss the
limiting cases, which describe the two possible phases in
the ground state of the BHM.

Superfluid phase. In the trivial limit U=0, the many-
body ground state is simply an ideal BEC where all N
atoms are in the q=0 Bloch state of the lowest band.
Including the normalization factor in a lattice with N,
sites, this state can be written in the form

1 1 Y
(YU =0) M( TR aR) 0). (66)
In the limit U/J— 0, therefore, the ground state of the
BHM is a Gross-Pitaevskii-type state with a condensate
fraction that is equal to 1. The critical temperature of
the ideal Bose gas in an optical lattice at filling 7=1 can
be obtained from the condition [de g(e)ng(B.e)=1,
where g(e) is the density of states in the lowest band and
ng(x)=[exp(x)—1]"! is the Bose-Einstein distribution.
This gives kpT.=5.59J. In the presence of an optical lat-
tice, therefore, the critical temperature for BEC is sig-
nificantly reduced compared with the free-space situa-
tion, essentially due to the increased effective mass M*
of particles in the lattice. The relevant parameter, how-
ever, is not the temperature but the entropy, which is
§=1.13Nkp at T,. Indeed, by starting with a deeply de-
generate gas and adiabatically switching on the optical
lattice, the entropy remains constant while the tempera-
ture is reduced by a factor M/M* (Hofstetter et al., 2002;
Olshanii and Weiss, 2002; Blakie and Porto, 2004).

For a sufficiently large system N,N; — o at fixed (not
necessarily integer) density N/N; [in the experiment
(Greiner et al., 2002a), the total number of occupied lat-
tice sites was about 10°], the perfect condensate Eq. (66)
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FIG. 13. (Color online) Schematic zero-temperature phase diagram of the Bose-Hubbard model. Dashed lines of constant-integer
density (/i))=1,2,3 in the SF hit the corresponding MI phases at the tips of the lobes at a critical value of J/ U, which decreases with
increasing density 7. For (1)=1+¢ the line of constant density stays outside the 7=1 MI because a fraction & of the particles
remains superfluid down to the lowest values of J. In an external trap with an 7=2 MI phase in the center, a series of MI and SF
regions appear on going toward the edge of the cloud, where the local chemical potential has dropped to zero.

becomes indistinguishable in practice from a coherent
state

exp(VNa)_p)|0y =11 {exp( \ N%dﬁ) |0>R} . (67)
R

It factorizes into a product of local coherent states at
every lattice site R with average n=(/i)=N/N,, because
boson operators at different sites commute. The prob-
ability distribution for the number of atoms at any given
site for a perfect BEC in an optical lattice is therefore
Poissonian with a standard deviation given by o(77) = N
Taking N=N,, i.e., an average density such that there is
one atom for each lattice site, there is a 1-2/e=0.27
probability that any given site is occupied by more than
one atom. The kinetic energy minimization requirement
that every atom wants to be at all lattice sites with equal
amplitude thus necessarily leads to a substantial prob-
ability of finding more than one atom on a given site. At
finite repulsion U >0, such configurations are, of course,
disfavored.

Mott-insulating phase. To understand the behavior in
the opposite limit U>J, it is useful to consider the case
of unit filling, i.e., the number N of atoms is precisely
equal to the number N; of lattice sites. In the limit U
>J, hopping of atoms is negligible and the ground state

Wyon, ) =0) = (H a;) 0) (68)
R

is a simple product of local Fock states with precisely
one atom per site. With increasing J, atoms start to hop
around, which involves double occupancy increasing the
energy by U. Now as long as the gain J in kinetic energy
due to hopping is smaller than U, atoms remain local-
ized. For any J#0, however, the ground state is no
longer a simple product state as in Eq. (68). Once J be-
comes of the order of or larger than U, the gain in ki-

Rev. Mod. Phys., Vol. 80, No. 3, July—September 2008

netic energy outweighs the repulsion due to double oc-
cupancies. Atoms then undergo a transition to a
superfluid, in which they are delocalized over the whole
lattice. This is a sharp quantum phase transition in the
thermodynamic limit in two and three dimensions, be-
cause the state (66), in contrast to Eq. (68), exhibits off-
diagonal long-range order, which cannot disappear in a
continuous manner. By contrast, the evolution between
these two states is completely smooth for, say, two par-
ticles in two wells, where a simple crossover occurs from
a state with a well-defined relative phase at /> U to one
with a well-defined particle number in each well at
J<U.

Phase diagram. The zero-temperature phase diagram
of the homogeneous BHM is shown schematically in Fig.
13(a) as a function of J/ U, with the density controlled by
a chemical potential u. At U/J—0, the kinetic energy
dominates and the ground state is a delocalized super-
fluid, described by Eq. (67) to lowest order. At large
values of U/J, interactions dominate and one obtains a
series of MI phases with fixed integer filling 7=1,2,....
These states are incompressible, implying that their den-
sity remains unchanged when the chemical potential is
varied. In fact, it is the property dn/du=0 that is the
defining property of a MI, and not the existence of local
Fock states that exist only at J=0. The transition be-
tween the superfluid (SF) and MI phases is associated
with the loss of long-range order in the one-particle den-
sity matrix g (x). In the 3D case, the order parameter of
the SF-MI transition is therefore the condensate fraction
ny/n, which drops continuously from 1 at U/J <1 to zero
at (U/J),. The continuous nature of the SF-MI quantum
phase transition in any dimension follows from the fact
that the effective field theory for the complex order pa-
rameter ¢ is that of a (d+1)-dimensional XY model
(Fisher et al., 1989; Sachdev, 1999). More precisely, this is
valid for the special transition at integer density, which is
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driven by phase fluctuations only. By contrast, if the
SF-MI phase boundary is crossed by a change in the
chemical potential, the associated change in the density
gives rise to a different critical behavior (Fisher et al.,
1989). For instance, the excitation gap in the MI phase
vanishes linearly with the distance from the boundary of
the Mott lobe in this more generic case.

Within a mean-field approximation, the critical value
for the transition from a MI to a SF is given by (U/J),
=5.8z for n=1 and (U/J).=4nz for n>1 (Fisher et al.,
1989; Sheshadri et al., 1993; van Oosten et al., 2001).
Here z is the number of nearest neighbors and 2zJ/ is the
total bandwidth of the lowest Bloch band, which is the
relevant parameter that has to be compared with U.
Recently, precise quantum Monte Carlo simulations by
Capogrosso-Sansone et al. (2007) determined the critical
value for the 7=1 transition in a simple cubic lattice to
be at (U/J),=29.36, with an accuracy of about 0.1%. In
one dimension, the SF-MI transition is of the Kosterlitz-
Thouless type, with a finite jump of the superfluid den-
sity at the transition. Precise values for the critical cou-
pling are available from density-matrix renormaliza-
tion-group (DMRG) calculations, giving (U,/J),=3.37
(Kiithner et al., 2000; Kollath et al., 2004), for the n=1
transition. For n>1, the BHM is equivalent to a chain
of Josephson junctions with coupling energy E;=27J.
The SF-MI transition is then desribed by the (1+1)-
dimensional O(2) model, which gives (U;/J).=2.2i
(Hamer and Kogut, 1979; Roomany and Wyld, 1980).

From Eqgs. (38) and (47), the critical value of the di-
mensionless lattice depth Vy/ E, for deep lattices is ob-
tained from

(VY/E,). = : In2[(\2d/lma)(UIT),]. (69)

Using the experimental parameters d=426 nm and
a=5.7 nm (Greiner et al., 2002a), the precise result for
(UlJ). in a simple cubic lattice gives a critical value
Vy/E,|,=11.9 for the SF-MI transition with 77=1. Given
that Eq. (38), on which the above estimate for the criti-
cal lattice depth is based, is not very precise in this re-
gime, this result is in reasonable agreement with the lat-
tice depth of V(=12-13F,, where the transition is
observed experimentally (Greiner et al., 2002a; Gerbier
et al., 2005b).

Consider now a filling with (7i)=1+¢, which is slightly
larger than 1. For large J/U, the ground state has all
atoms delocalized over the whole lattice and the situa-
tion is hardly different from the case of unit filling. Upon
lowering J/ U, however, the line of constant density re-
mains slightly above the 7=1 “Mott lobe,” and stays in
the SF regime down to the lowest J/ U (see Fig. 13). For
any noninteger filling, therefore, the ground state re-
mains SF as long as atoms can hop at all. This is a con-
sequence of the fact that, even for /<< U, there is a small
fraction & of atoms that remain SF on top of a frozen MI
phase with 7=1. Indeed, this fraction can still gain ki-
netic energy by delocalizing over the whole lattice with-
out being blocked by the repulsive interaction U be-
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cause two of those particles will never be at the same
place. The same argument applies to holes when ¢ is
negative. As a result, in the homogeneous system, the
quantum phase transition from a SF to a MI only ap-
pears if the density is equal to a commensurate, integer
value.

In-trap density distribution. Fortunately, the situation
is much less restrictive in the presence of a harmonic
trap. Within the local-density approximation, the inho-
mogeneous situation in a harmonic trap is described by a
spatially varying chemical potential ug=pu(0)—eg with
egr=0 at the trap center. Assuming, e.g., that the chemi-
cal potential u(0) at the trap center falls into the =2
Mott lobe, one obtains a series of MI domains separated
by a SF by moving to the boundary of the trap where ug
vanishes [see Fig. 13(b)]. In this manner, all different
phases that exist for given J/U below u(0) are present
simultaneously. The SF phase has a finite compressiblity
k=dn/du and a gapless excitation spectrum of the form
w(g)=cq because there is a finite superfluid density n;
(see the Appendix). By contrast, in the MI phase both 7,
and « vanish. As predicted by Jaksch et al. (1998), the
incompressibility of the MI phase allows one to distin-
guish it from the SF by observing the local-density dis-
tribution in a trap. Since k=0 in the MI, the density stays
constant in the Mott phases, even though the external
trapping potential is rising. In the limit of /J—0, the SF
regions vanish and one obtains a “wedding-cake”-type
density profile, with radii R,, of the different Mott insu-
lating regions, given by R,=\2[u(0)-nU]/Mw?* (De-
Marco et al., 2005).

The existence of such wedding-cake-like density pro-
files of a Mott insulator was supported by Monte Carlo
(Batrouni et al., 2002; Kashurnikov et al., 2002; Wessel
et al., 2004; Rigol et al., 2006) and DMRG (Kollath et al.,
2004) calculations in one, two, and three dimensions.
Number-state-resolved, in-trap density profiles were
detected experimentally by Campbell et al. (2006) and
Folling et al. (2006). In the latter case, it was possible to
directly observe the wedding-cake density profiles and
confirm the incompressibility of Mott-insulating regions
of the atomic gas in the trapping potential. A sharp drop
in the radii of the n=2 occupied regions was observed
when the transition point was crossed (Folling et al,
2006). It should be noted that in-trap density profiles can
be used as a sensitive thermometer for the strongly in-
teracting quantum gas. For typical experimental param-
eters, one finds that, for temperatures around T7*
=0.2U/kp, the wedding-cake profiles become com-
pletely washed out (Gerbier, 2007). Within the strongly
interacting regime, the superfluid shells accommodate
most entropy of the system and can already turn into a
normal thermal gas at a lower temperature 7.~ zJ with
the Mott-insulating shells still intact (Capogrosso-
Sansone et al., 2007; Gerbier, 2007; Ho and Zhou, 2007).
In order to reach the lowest temperatures in this regime,
it is advantageous to keep the external harmonic con-
finement as low as possible, or even decrease it during
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an increase of the lattice depth (Gerbier, 2007; Ho and
Zhou, 2007).

Phase coherence across the SF-MI transition. The dis-
appearance of superfluidity (or better, of BEC) at the
SF-MI transition was initially observed experimentally
by a time-of-flight method (Greiner et al., 2002a). The
corresponding series of images is shown in Fig. 14 for
different values of V|, ranging between V=0 (a) and
20E, (h). One observes a series of interference peaks
around the characteristic “zero-momentum” peak of a
condensate in the absence of an optical lattice. With in-
creasing V, these peaks become more pronounced. Be-
yond a critical lattice depth around V= (12—-13)E, (e),
which agrees well with the above estimate for the SF-MI
transition for one boson per site, this trend is suddenly
reversed, however, and the interference peaks eventu-
ally disappear completely. In order to understand why
these pictures indeed provide direct evidence for the SF
to MI transition predicted by the Bose-Hubbard model,
it is useful to consider the idealized situation of a perfect
periodic lattice in the absence of any trapping potential.
From Eq. (44), the observed density at position x reflects
the momentum distribution at k=Mx/#t. Factoring out
the number of lattice sites, it is proportional to the lat-
tice Fourier transform

n(k) ~ [w(k)]*> e*RGD(R) (70)
R

of the one-particle density matrix GM(R) at separation
R. For optical lattice depths below the critical value, the
ground state in a 3D situation is a true BEC, where
GY(|R|— ) =n, approaches a finite value at large sepa-
ration. For the MI phase, in turn, GY(R) decays to zero
exponentially. The SF phase of cold atoms in a homoge-
neous optical lattice is thus characterized by a momen-
tum distribution that exhibits sharp peaks at the
reciprocal-lattice vectors k=G [defined by G-R=2w
times an integer; see, e.g., Ashcroft and Mermin (1976)]
plus a smooth background from short-range correla-
tions. The fact that the peaks in the momentum distri-
bution at k=G initially grow with increasing depth of
the lattice potential is a result of the strong decrease in
spatial extent of the Wannier function w(r), which en-
tails a corresponding increase in its Fourier transform
w(k) at higher momenta. In the MI regime, where
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FIG. 14. (Color online) Absorption images of
multiple matter-wave interference patterns af-
’ ter atoms were released from an optical lat-
tice potential with a potential depth of (a)
0E,, (b) 3E,, (c) 7E,, (d) 10E,, (e) 13E,, ()
14E,, (g) 16E,, and (h) 20E,. The ballistic ex-
pansion time was 15 ms. From Greiner et al.,
2002a.

GY(R) decays to zero, remnants of the interference
peaks still remain [see, e.g., Fig. 14(f)] as long as GV(R)
extends over several lattice spacings, because the series
in Eq. (70) adds up constructively at k=G. A more de-
tailed picture for the residual short-range coherence fea-
tures beyond the SF-MI transition is obtained by consid-
ering perturbations deep in the Mott-insulating regime
at J=0. There GY(R) vanishes beyond R=0 and the
momentum distribution is a structurcless Gaussian, re-
flecting the Fourier transform of the Wannier wave func-
tion [see Fig. 14(h)]. With increasing tunneling J, the
Mott state at J/U—0 is modified by a coherent admix-
ture of particle-hole pairs. However, due the presence of
a gapped excitation spectrum, such particle-hole pairs
cannot spread out and are rather tightly bound to close
distances. They do, however, give rise to a significant
degree of short-range coherence. Using first-order per-
turbation theory with the tunneling operator as a pertur-
bation on the dominating interaction term, one finds
that the amplitude of the coherent particle-hole admix-
tures in a Mott-insulating state is proportional to J/ U,

J At a
WYy = W) e+ 2 AR [P 1y oe- (71)
(RR")

Close to the transition point, higher-order perturba-
tion theory or a Green’s-function analysis can account
for coherence beyond nearest neighbors and the com-
plete liberation of particle-hole pairs, which eventually
leads to the formation of long-range coherence in the
superfluid regime. The coherent particle-hole admixture
and its consequences for the short-range coherence of
the system have been investigated experimentally and
theoretically by Gerbier et al. (2005a, 2005b) and Sen-
gupta et al. (2005).

The SF-MI quantum phase transition, therefore,
shows up directly in the interference pattern. For the
homogeneous system, it reveals the existence or not of
off-diagonal long-range order in the one-particle density
matrix. The relevant order parameter is the condensate
fraction. Of course the actual system is not homoge-
neous and numerical computation of the interference
pattern is necessary for a quantitative comparison with
experiment. This has been done, e.g., for the 3D case by
Kashurnikov et al. (2002) and for the 1D case by Ba-
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trouni et al. (2002) and Kollath ef al. (2004). Due to the
finite size and the fact that different MI phases are in-
volved, the pattern evolves continuously from the SF to
the MI regime. While critical values for J/U are differ-
ent for the MI phases with 7=1 and 2, which are present
in the experiment (Greiner et al., 2002a), the transition
seen in the time-of-flight images occurs rather rapidly
with increasing lattice depth. Indeed, from Eq. (69), the
experimental control parameter V,/E, depends only
logarithmically on the relevant parameter U/J of the
BHM. The small change from V(=13E, in (e) to V|
=14E, in (f) thus covers a range in J/U wider than that
which would be required to distinguish the 7=1 from the
n=2 transition. For a quantitative evaluation of interfer-
ence patterns, one must also take into account the
broadening mechanism during time-of-flight expansion,
as discussed in Sec. I1.C.

When approaching the SF-MI transition from the su-
perfluid regime, the increasing interactions tend to in-
crease the depletion of the condensate and thereby re-
duce the long-range phase-coherent component with
increasing U/J (Orzel et al., 2001; Hadzibabic et al., 2004;
Schori et al., 2004; Xu et al., 2006). For increasing lattice
depth, the condensate density as a measure of the long-
range coherent fraction then decreases continuously and
vanishes at the transition point. The visibility of the in-
terference pattern in general, however, evolves smoothly
across the SF-MI transition, due to the presence of a
strong short-range coherent fraction in the MI just
across the transition point (see the discussion above).
Above the transition point, the visibility of the interfer-
ence pattern can also show kinks as the lattice depth is
increased, which have been attributed to the beginning
formation of shell structures in the MI state (Gerbier et
al., 2005a, 2005b; Sengupta et al., 2005).

Excitation spectrum. A second signature of the SF-MI
transition is the appearance of a finite excitation gap A
#0 in the Mott insulator. Deep in the MI phase, this gap
has size U, which is the increase in energy if an atom
tunnels to an already occupied adjacent site (note that U
is much smaller than the gap fw, for excitation of the
next vibrational state). The existence of a gap has been
observed experimentally by applying a potential gradi-
ent in the MI (Greiner et al., 2002a) or by using a modu-
lation spectroscopy method (Stoferle et al., 2004) and
measuring the resulting excitations. Recent calculations
indicate that such measurements simultaneously probe
global (Iucci et al., 2006; Huber et al., 2007) and local
properties of the system. In particular, for example, a
peaked excitation spectrum can also appear in a strongly
interacting superfluid regime, where U>J (Kollath et al.,
2006). A way to probe global features of the many-body
excitation spectrum, also close to the transition point,
might be achieved by employing Bragg spectroscopy
techniques as proposed by Rey et al. (2005), van Oosten
et al. (2005), and Pupillo et al. (2006).

In the SF regime, there is no excitation gap. Instead,
the homogeneous system exhibits a soundlike mode with
frequency w(q)=cq. As shown in the Appendix, the as-

Rev. Mod. Phys., Vol. 80, No. 3, July—September 2008

sociated sound velocity ¢ is determined by Mc?>=n,/«
and thus gives information about the superfluid density
n,. The existence of a soundlike excitation even in the
presence of an underlying lattice that explicitly breaks
translation invariance is a consequence of long-range
phase coherence in the SF. Its observation would there-
fore directly probe superfluidity, in contrast to the peaks
in the interference pattern, which measure BEC.

Number statistics. Associated with the transition from
a superfluid to a Mott-insulating state is a profound
change in the atom number statistics per lattice site. As
noted above, in the homogeneous system the ground
state in the extreme MI limit (J/U—0) is a product of
Fock states with an integer number 7 of particles at each
site. At finite hopping J# 0, this simple picture breaks
down because the atoms have a finite amplitude to be at
different sites. The many-body ground state can then no
longer be written as a simple product state. In the oppo-
site limit U — 0, the ground state is a condensate of zero-
quasimomentum Bloch states. In the limit N,N; — % at
fixed (not necessarily integer) density 7=N/N;, the as-
sociated perfect condensate is a product of coherent
states on each lattice site,

2 %
@) = e 12 —|n), (72)
n \n!

with « describing the amplitude and phase of the coher-
ent matter wave-field. This corresponds to a Poissonian
atom number distribution on each lattice site with aver-

age |af>=n.
A consequence of the representation (67) is that, at
least for integer densities n=1,2,..., the many-body

ground state may be factorized into a product over
single sites,

|q,GW> = 1]:[ (2 Cn|n>R> ’ (73)

n=0

in both limits /—0 and U—0. The associated atom
number probability distribution p,=|c,|? is either a pure
Fock or a full Poissonian distribution. It is now plausible
to use the factorized form in Eq. (73) as an approxima-
tion for arbitrary J/ U, taking the coefficients c,, as varia-
tional parameters that are determined by minimizing the
ground-state energy (Rokhsar and Kotliar, 1991;
Sheshadri et al., 1993). As pointed out by Rokhsar and
Kotliar (1991), this is effectively a Gutzwiller ansatz for
bosons. Beyond being simple computationally, this an-
satz describes the SF to MI transition in a mean-field
sense, becoming exact in infinite dimensions. In addi-
tion, it provides one with an intuitive picture of the tran-
sition to a MI state, which occurs precisely at the point,
where the local number distribution becomes a pure
Fock distribution. Indeed, within the Gutzwiller ap-
proximation, the expectation value
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A ~
(Yowlar|¥Gwy = 2 \nc!_c, (74)
n=1

of the local matter-wave field vanishes if and only if the
probability for finding different particle numbers at any
given site is equal to zero. It is important, however, to
emphasize that the Gutzwiller ansatz fails to account for
nontrivial correlations between different sites present at
any finite J. These correlations imply that the one-
particle density matrix GV(R) is different from zero at
finite distance |R|# 0, becoming long ranged at the tran-
sition to a SE. By contrast, in the Gutzwiller approxima-
tion, the one-particle density matrix has no spatial de-
pendence at all: it is zero at any |R|#0 in the MI and is
completely independent of R in the SF. Moreover, in the
Gutzwiller approximation, the phase transition is di-
rectly reflected in the local number fluctuations, with the
variance of ny vanishing throughout the MI phase. In
reality, however, local variables such as the on-site num-
ber distribution will change in a smooth manner near the
transition, and the variance of the local particle number
will vanish only in the limit /—0.

Crossing the SF-MI transition, therefore, the number
statistics evolves rather smoothly from a Poissonian
distribution to Fock states on each lattice site. Recent
experimental progress has allowed measurements of
the number distribution in the optical lattice via micro-
wave spectroscopy exploiting collisional frequency shifts
(Campbell et al., 2006) or spin-changing collisions (Ger-
bier et al., 2006). When crossing the SF-MI transition,
Campbell et al. (2006) were able to observe the emer-
gence of a discrete excitation spectrum with hertz
resolution. In a second experiment, the change in atom
number statistics from Poissonian to Fock states was re-
vealed (Gerbier et al., 2006). Another possibility for ob-
serving the number squeezing of the initially Poissonian
atom number distribution in the weakly interacting re-
gime due to increasing interatomic interactions has been
to use a matter-wave beam splitter and observe the time
scale of the collapse in the ensuing phase diffusion dy-
namics (Greiner et al., 2002a; Jo et al., 2007, Sebby-
Strabley et al., 2007). This is discussed in the following
section.

C. Dynamics near quantum phase transitions

One major advantage of cold atoms in studying many-
body phenomena is the possibility of changing the pa-
rameters characterizing the relative strength of the ki-
netic and interaction energy dynamically. This opens the
possibility of studying the real-time dynamics of strongly
correlated systems in a controlled manner. As a simple
example, we discuss the quench of the system from the
superfluid into the Mott-insulating regime. This issue
was investigated in an experiment observing collapses
and revivals of the matter wave due to the coherent su-
perposition of states with different atom numbers in the
SF (Greiner et al., 2002b). In the weakly interacting re-
gime of a BEC in an optical lattice potential, the ground
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state (67) is a product of coherent states on each lattice
site with a Poissonian atom number distribution. If the
lattice depth is now suddenly increased to a parameter
regime where the ground state of the system is a Mott-
insulating state, the initial atom number fluctuations of
the coherent state will be frozen out, as the system is not
given enough time to redistribute toward the novel
many-body ground state. The evolution with time of
such a coherent state can be evaluated by taking into
account the time evolution of the different Fock states
forming the coherent state,

|a>(t) — e—\a|2/22 ie—iUn(n—l)t/2ﬁ|n>. (75)

!/_'
vn!

The coherent matter-wave field ¢ on each lattice site
can then be evaluated through ¢={a(t)|d|a(r)), which ex-
hibits an intriguing dynamical evolution (Yurke and
Stoler, 1986; Sols, 1994; Wright et al., 1996; Castin and
Dalibard, 1997; Imamoglu et al., 1997). At first, the dif-
ferent phase evolutions of the atom number states lead
to a collapse of . However, at integer multiples in time
of h/ U, all phase factors in the above equation rephase
modulo 277 and thus lead to a revival of the initial
coherent state. In fact, precise revivals appear as
long as the initial state can be written in the factorized
form of Eq. (73). Since the time-evolution operator

exp(—iﬁt/ f) factorizes into a product of on-site terms
expl—in(n—1)Ut/2#], the time dependence is perfectly
periodic with period f,.,=h/Uy, where Uy is the value of
the on-site repulsion after the quench. Clearly the pe-
riod is independent of the initial number distribution
|c,|?. The collapse time ¢, ~t,.,/ o, depends in turn on the
variance o”=(/%—(/1)? of the local number distribution.
Its measurement thus provides information about how
the coherent superposition of different particle numbers
in the SF state is eventually destroyed on approaching
the MI regime (Greiner et al., 2002b).

The collapse and revival of the coherent matter-wave
field of a BEC is reminiscent of the collapse and revival
of Rabi oscillations in the interaction of a single atom
with a single-mode electromagnetic field in cavity quan-
tum electrodynamics (Brune et al., 1996; Rempe et al.,
1987). There the nonlinear atom-field interaction in-
duces the collapse and revival of Rabi oscillations,
whereas here the nonlinearity due to interactions be-
tween the atoms themselves leads to the series of col-
lapses and revivals of the matter-wave field. It should be
pointed out that such behavior has also been theoreti-
cally predicted to occur for a coherent light field propa-
gating in a nonlinear medium (Yurke and Stoler, 1986),
but to our knowledge it has never been observed experi-
mentally. Such dynamical evolution of the atomic quan-
tum state due to the nonlinear interactions between the
particles is also known as quantum phase diffusion and
was detected by Greiner et al. (2002b) for low atom
numbers on each site. For larger atom numbers, the ini-
tial time evolution of the quantum phase diffusion was
recently observed by Jo et al. (2007) in a double-well
scenario.
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The simple single-site description is valid only in the
limits U;<<J of a nearly perfect SF in the initial state and
Us>J of negligible tunneling after the quench. To deter-
mine the dynamics in a more general situation is a com-
plicated nonequilibrium many-body problem. Numerical
results for arbitrary values of U; and Uy have been ob-
tained for the 1D BHM by Kollath et al. (2007) using the
time-dependent density-matrix renormalization group
(Schollwock, 2005).

In a related scenario, it was proposed that on jump-
ing from an initial Mott-insulating state into the super-
fluid regime one should observe oscillations of the su-
perfluid order parameter (Altman and Auerbach, 2002;
Polkovnikov et al., 2002). For large filling factors, oscil-
lating coherence was observed after a quench from a
deep to a shallow lattice by Tuchman et al. (2006). The
formation of a superfluid from an initial Mott-insulating
phase poses a general problem in the context of the dy-
namics of strongly correlated quantum systems. Both ex-
periments (Greiner et al., 2002a) and theory (Clark and
Jaksch, 2004) have confirmed that the emergence of co-
herence in the system can occur rather rapidly on time
scales of a few tunneling times #/J. It is an open ques-
tion, however, whether off-diagonal long-range order in
the one-particle density matrix sets in within such a
short time, and what length scales over which order has
been established are relevant in order to observe coher-
ence in a time-of-flight picture.

D. Bose-Hubbard model with finite current

The SF-MI transition discussed in Sec. IV.B is a
continuous phase transition in the ground state of a
many-body Hamiltonian. Observation from the time-of-
flight images—that long-range phase coherence is lost
beyond a critical value of U/J—provides a signature for
the disappearance of BEC. The expected simultaneous
loss of superfluidity across this transition may be studied
by considering the phase boundary, where stationary
states with a finite current lose their stability. Such sta-
tionary out-of-equilibrium states may be created experi-
mentally by boosting the condensate to a finite-
momentum state (Fallani et al., 2004), or by inducing a
center-of-mass oscillation in the trap (Fertig et al., 2005).
The question of what happens to the equilibrium SF-MI
transition in a situation with a finite current was ad-
dressed by Polkovnikov et al. (2005). For a given number
i of bosons per site, the kinetic energy term in the BHM
(65) gives rise to a Josephson coupling energy E;=21J
due to next-neighbor tunneling, which favors a vanishing
relative phase between adjacent lattice sites. In the limit
E;> U, there is a nonvanishing matter-wave field g
=(dg). In the ground state, all bosons have zero momen-
tum and ¢y is uniform. States with a finite current, in
turn, are BEC’s in which single-particle states with non-
zero momentum ¢ are macroscopically occupied. To ze-
roth order in U/Ej, their energy is the Bloch band en-
ergy Eq. (37). The associated current per particle J
=(2J/h)sin g, d for motion along the x direction has a
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FIG. 15. (Color online) Mean-field phase diagram separating
stable and unstable motion of condensate regions. The vertical
axis denotes the condensate momentum in inverse lattice units
and the horizontal axis denotes the normalized interaction.
From Polkovnikov et al., 2005.

maximum at p=q.d=/2. States with a larger momen-
tum are unstable in a linear stability analysis (Polkovni-
kov et al., 2005). This instability was observed experi-
mentally by Fallani et al. (2004) and also by Cristiani et
al. (2004). A moving optical lattice is created by two
counterpropagating beams at frequencies that differ by a
small detuning év. Averaged over the optical frequen-
cies, this gives rise to an interference pattern that is a
standing wave moving at velocity v=Ndv/2. Adiabati-
cally switching on such a lattice in an existing BEC then
leads to a condensate in a state with quasimomentum
qg=Mv/#. Its lifetime shows a rapid decrease for mo-
menta near the critical value gq,.

In the strongly interacting regime near the SF-MI
transition, such a single-particle picture is no longer
valid. At the mean-field level, the problem may be
solved using the field-theoretical description of the
SF-MI transition. The SF phase is then characterized by
a nonzero complex order parameter i, whose equilib-
rium value |¢{~ ¢! vanishes as the inverse of the corre-
lation length ¢ (this relation holds in the mean-field ap-
proximation, which is appropriate for the transition at
integer densities in 3D). The stationary solutions of the
dimensionless order parameter equation VZi+& 2
=|y?¢ with finite momentum are of the form y(x)
=\&?2—pexp(ipx). Evidently, such solutions exist only if
|p| <1/& The critical value of the dimensionless momen-
tum p, where current-currying states become unstable,
thus approaches zero continuously at the SF-MI transi-
tion (Polkovnikov et al., 2005). In fact, the same argu-
ment can be used to discuss the vanishing of the critical
current in superconducting wires near 7,; see Tinkham
(1996). The complete mean-field phase diagram, shown
in Fig. 15, interpolates smoothly between the classical
instability at p.=7/2 and p.—0 in the limits U—0 and
U— U, respectively. In contrast to the equilibrium tran-
sition at p=0, which is continuous, the dynamical transi-



912 Bloch, Dalibard, and Zwerger: Many-body physics with ultracold gases

90 ms) [um]
138 w

W

J ﬂ{{“{

._.
I

Z(t

<,

0 2 4 6 8 10
Lattice Depth [E,]

FIG. 16. Inhibition of transport in a one-dimensional bosonic
quantum system with an axial optical lattice. For lattice depths
above approximately 2E,, an atom cloud displaced to the side
of the potential minimum (see inset) is stuck at this position
and does not relax back to the minimum. From Fertig et al.,
2005.

tion is of first order. Crossing the phase boundary at any
nonzero current is therefore connected with an irrevers-
ible decay of the current to zero. Experimentally, the
decrease of the critical momentum near the SF-MI tran-
sition has been observed by Mun et al. (2007). Their re-
sults are in good agreement with the phase diagram
shown in Fig. 15.

In the mean-field picture, states of a SF with nonzero
momentum have an infinite lifetime. More precisely,
however, such states can only be metastable because the
ground state of any time-reversal-invariant Hamiltonian
necessarily has zero current. The crucial requirement for
SF in practice, therefore, is that current-carrying states
have lifetimes that far exceed experimentally relevant
scales. This requires these states to be separated from
the state with vanishing current by energy barriers,
which are much larger than the thermal or relevant zero-
point energy.'” The rate for phase slips near the critical
line in Fig. 15 was calculated by Polkovnikov et al.
(2005). It turns out that the mean-field transition sur-
vives fluctuations in 3D, so in principle it is possible to
locate the equilibrium SF-MI transition by extrapolating
the dynamical transition line to zero momentum. In the
experiments of Fertig ef al. (2005), the system showed
sharp interference peaks even in the “overdamped” re-
gime where the condensate motion was locked by the
optical lattice (see Fig. 16). This may be due to localized
atoms at the sample edges, which block the dipole oscil-
lation even though atoms in the center of the trap are
still in the SF regime. A theoretical study of the damped
oscillations of 1D bosons was given by Gea-Banacloche
et al. (2006).

A different method of driving a SF-MI transition dy-
namically was suggested by Eckardt et al. (2005). Instead
of a uniformly moving optical lattice, it employs an os-

!OThis is different from the well-known Landau criterion of
superfluid flow below a finite critical velocity (Pitaevskii and
Stringari, 2003). Indeed, the existence of phase slips implies
that the critical velocity is always zero in a strict sense.
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cillating linear potential K cos(w?)x along one of the lat-
tice directions (in a 1D BHM, £=2; is the dimension-
less position operator). For modulation frequencies such
that #iw is much larger than the characteristic scales J
and U of the unperturbed BHM, the driven system be-
haves like the undriven one, but with a renormalized
tunneling matrix element J=J7,(K/fw), where Jy(x)
is the standard Bessel function. Since U is unchanged in
this limit, the external perturbation completely sup-
presses the tunneling at the zeros of the Bessel function.
Moreover, it allows one to invert the sign of J ¢ to nega-
tive values, where, for example, the superfluid phase cor-
responds to a condensate at finite momentum g=m/d. In
recent experiments by Lignier et al. (2007), the dynami-
cal suppression of tunneling with increasing driving K
was observed through measurement of the expansion
velocity along the direction of the optical lattice after
switching off the axial confinement.

E. Fermions in optical lattices

In this section, we focus on fermions in 3D optical
lattice potentials and experimental results that have
been obtained in these systems. Interacting fermions in a
periodic potential can be described by the Hubbard
Hamiltonian. For now we restrict the discussion to the
case of atoms confined to the lowest-energy band and to
two possible spin states |T), ||) for the fermionic par-
ticles. The single-band Hubbard Hamiltonian thus reads

H=-J 2 (é;’(rék/’o.-l- HC) + UE ﬁRTﬁRl
(RR"),0 R

1
+ EMwZE R%ig - (76)
R,o

As in the case of bosonic particles, the zero tempera-
ture phase diagram depends strongly on the filling and
the ratio between the interaction and kinetic energies.
An important difference between the bosonic and fermi-
onic Hubbard Hamiltonian can also be seen in the form
of the interaction term, where only two particles of dif-
ferent spin states are allowed to occupy the same lattice
site, giving rise to an interaction energy U between at-
oms.

Filling factor and Fermi surfaces. A crucial parameter
in the fermionic Hubbard model is the filling factor of
atoms in the lattice. Due to the overall harmonic con-
finement of atoms [last term in Eq. (76)], this filling frac-
tion changes over the cloud of trapped atoms. One can,
however, specify an average characteristic filling factor,

pe=Npd®I 2, (77)

with ¢=\2J/M®? describing the typical delocalization
length of the single-particle wave functions in the com-
bined periodic lattice and external harmonic trapping
potential (Rigol and Muramatsu, 2004; Kohl er al,
2005a). The characteristic filling factor can be controlled
experimentally either by increasing the total number of
fermionic atoms N or by reducing J via an increase of
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FIG. 17. Fermi surfaces vs band filling for ultracold fermionic
0K atoms in a three-dimensional simple cubic lattice potential.
From (a) to (e), the filling factor has been continuously in-
creased, bringing the system from a conducting to a band-
insulating state. From Kohl et al., 2005a.

the lattice depth or via an increase of the overall har-
monic confinement. The latter case, however, has the
disadvantage that a strong harmonic confinement will
lead to a decoupling of the lattice sites, as the tunnel
coupling J will not be large enough to overcome the
potential energy offset due to the overall harmonic con-
finement. One is then left with an array of uncoupled,
independent harmonic oscillators. The characteristic fill-
ing factor of the system can be revealed experimentally
by observing the population of the different Bloch states
via adiabatic band mapping, introduced in Sec. II.C. By
changing the atom number or the lattice depth, Kohl et
al. (2005a) observed a change from a low-filling to a
band-insulating state, where the single-species particles
are completely localized to individual lattice sites (see
Fig. 17).

Thermometry and pair correlations. An important
question regarding fermionic quantum gases in optical
lattices is the temperature of the many-body system. It
has been shown by Ko6hl (2006) that for noninteracting
50:50 spin mixtures of fermions, the number of doubly
occupied spin states can be used to determine the tem-
perature of the system. For zero temperature and deep
optical lattices, one would expect all lattice sites to be
occupied by spin-up and spin-down atoms equally. For
finite temperatures, however, atoms could be thermally
excited to higher-lying lattice sites at the border of the
system, thus reducing the number of doubly occupied
lattice sites. By converting doubly occupied sites into
fermionic molecules, it was possible to determine the
number of doubly vs singly occupied sites and obtain an
estimate for the temperature of the spin mixture
(Stoferle et al., 2006). Another possibility for determin-
ing the temperature of the system even for a single-
species fermionic quantum gas in the lattice has been
provided by the use of quantum noise correlations, as
introduced in Sec. III. For higher temperatures of the
quantum gas, atoms tend to spread out in the harmonic
confinement and thus increase the spatial size of the
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trapped atom cloud. As the shape of each noise-
correlation peak essentially represents the Fourier trans-
form of the in-trap density distribution, but with fixed
amplitude of 1 [see Eq. (55)], an increase in the size of
the fermionic atom cloud by temperature will lead to a
decrease in the observed correlation signal, as was de-
tected by Rom e al. (2006).

When increasing a red-detuned optical lattice on top
of a fermionic atom cloud, this usually also leads to an
increased overall harmonic confinement of the system. It
was shown that, for such a case, the density of states of
the system can be significantly modified, thus leading to
an adiabatic heating of the fermionic system by up to a
factor of 2 for a strong overall harmonic confinement
(Kohl, 2006). In order to reach low temperatures for the
fermionic system, it would thus be advantageous to keep
the harmonic confinement as low as possible, or even
decrease it, as the optical lattice depth is increased. Such
a configuration is possible, e.g., with a blue-detuned op-
tical lattice in conjunction with a red-detuned optical
dipole trap.

V. COLD GASES IN ONE DIMENSION

The confinement of cold atoms in a quantum wire ge-
ometry that can be achieved via strong optical lattices
(Kinoshita et al., 2004; Paredes et al., 2004) provides a
means of reaching the strong-interaction regime in di-
lute gases. This opens the possibility to realize both
bosonic and fermionic Luttinger liquids and a number of
exactly soluble models in many-body physics.

A. Scattering and bound states

Here we consider cold atoms subject to a strong 2D
optical lattice in the y,z plane, which confines the mo-
tion to the (axial) x direction. We also derive results for
a planar geometry, where atoms move freely in the x-y
plane while being strongly confined in the z axis, that
will be useful in Sec. VI. In the regime where the exci-
tation energy fiw; for motion in the radial y,z directions
is much larger than the chemical potential, only the low-
est transverse eigenmode is accessible. In terms of the
oscillator length € | =\VA/Mw, for the transverse motion,
this requires the 1D density n,=nm{> to obey nja<1.
The effective interaction of atoms confined in such a
geometry was first discussed by Olshanii (1998). In the
realistic case where €, is much larger than the effective
range r, of the atom-atom interaction,'' the two-particle
scattering problem at low energies can be described by a
(3D) pseudopotential. However, the asymptotic scatter-
ing states are of the form ¢y(y,z)exp(+ikx), where
¢o(y,z) is the Gaussian ground-state wave function for
the transverse motion and k is the wave vector for mo-
tion along the axial direction. Now, away from Feshbach

UFor a typical frequency w, =27-100 kHz, the transverse
oscillator length is equal to 34 nm for 87Rb.
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resonances, the 3D scattering length is much smaller
than the transverse oscillator length. In this weak-
confinement limit |a| <€ |, the effective 1D interaction is
obtained by integrating the 3D pseudopotential
g d*x|¢y(y,z)|*8(x) over the ground-state density of the
transverse motion. The resulting effective 1D interaction
is then of the form V(x)=g;8(x) with

gi(lal < €,) =glp(0,0) =2t a. (78)

Trivially, an attractive or repulsive pseudopotential leads
to a corresponding sign of the 1D interaction. In order
to discuss what happens near Feshbach resonances,
where the weak-confinement assumption breaks down,
we consider bound states of two particles in a strong
transverse confinement. Starting with an attractive 3D
pseudopotential a <0, the effective 1D potential (78) has
a bound state with binding energy &,=M,g?/24%. With
increasing magnitude of a, this binding energy increases,
finally diverging at a Feshbach resonance. In turn, upon
crossing the resonance to the side where a>0, the effec-
tive potential (78) becomes repulsive. The bound state,
therefore, has disappeared even though there is one in
the 3D pseudopotential for a>0. Obviously, this cannot
be correct. As pointed out above, the result (78) applies
only in the weak-confinement limit |a|<¢€ . In the fol-
lowing, we present the scattering properties of confined
particles for arbitrary values of the ratio |a|/€ . To this
end, we first consider the issue of two-particle bound
states with a pseudopotential interaction in quite general
terms by mapping the problem to a random-walk pro-
cess. Subsequently, we derive the low-energy scattering
amplitudes by analytic continuation.
Confinement-induced bound states. Quite generally,
two-particle bound states may be determined from the

condition VG=1 of a pole in the exact 7" matrix. In the
case of a pseudopotential with scattering length a, the
matrix elements (x|--+|0) of this equation lead to

1 d 1
— =—[rG(E,x)],.0= lim(G(E,x) + —), (79)
dma  or r—0 darr

in units where #=2M,=1. Here G(E,x)=(x|(E

—ﬁo)‘1 |0) is the Green’s function of the free Schrodinger

equation, and ﬁo includes both the kinetic energy and
the harmonic confining potential. As r—0, the Green’s
function diverges as —(47r)~!, thus providing the regu-
larization for the pseudopotential through the second
term of Eq. (79). For energies E below the bottom of the

spectrum of ﬁo, the resolvent (E—IA{(])‘lz—fgdt exp(E

—ﬁo)t can be written as a time integral. Moreover, by
the Feynman-Kac formulation of quantum mechanics,
the (imaginary-time) propagator P(x,t):<x|exp(—ﬁ0t)|0)
can be interpreted as the sum over Brownian mo-
tion trajectories from x=0 to x at time ¢ weighted with
exp(—[,U[x(¢")]), where U(x) is the external potential in

the free Hamiltonian ﬁo. Similarly, the contribution
@)= ﬁdtP@(x,t) can be written in terms of the
probability density of free Brownian motion with the
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diffusion constant D=1 in units where A=2M,=1. Tak-
ing the limit r—0, Eq. (79) finally leads to the exact
equation

1/4ma = f i dt[POr) — e'P(1)] (80)
0

for the bound-state energies E of two particles with a
pseudopotential interaction and scattering length a.
Here PO(r)=(4mt)~3? is the probability density at the
origin of a free random walk after time ¢, starting and
ending at x=0, while P(f) is the same quantity in the
presence of an additional confining potential. Note that,
in the formulation of Eq. (80), the regularization of the
1/r singularity in G(E,x) is accounted for by cancella-
tion of the short-time divergence due to P(t—0)
=(471)732, because the random walk does not feel the
confinement as t—0. For two particles in free space,
where P()=P(¢) at all times, Eq. (80) gives the stan-
dard result that a bound state at E=-¢; below the con-
tinuum at E=0 exists only for a>0, with &,=#?/2M,a’.
In the presence of an additional confinement, however,
there is a bound state for an arbitrary sign of the scat-
tering length. The quasibound state in the continuum at
a<0 thus becomes a true bound state, 1.e., it is shifted
upward by less than the continuum threshold E.. The
physics behind this is the fact that the average time
~ [dt P(t)exp(E.t) spent near the origin is infinite for the
confined random walk. This provides an intuitive under-
standing of why an infinitesimally small (regularized) &
potential is able to bind a state.

For harmonic confinement, the probability density

P()=[(4m)3 det J()] 2 can be calculated from the de-
terminant detJ(s) for small fluctuations around the

trivial Brownian path x(t')=0. Here f(t) obeys the
simple 3 X 3 matrix equation (Schulman, 1981)

alj(t)|t=0 = 1 )
(81)

(- F#+e)J(H=0 with J(0)=0,

where @7 is the (diagonal) matrix of the trap frequencies.

The fluctuation determinant is thus equal to detj(t)
={[sinh(w, #)/w, ]* for two confining directions and equal
to det J (/)= sinh(w,#)/ w, for a pancake geometry. Since
the continua start at iw, and hw,/2, respectively, we
write the bound-state energies as E=fw,—g, or E
=hw,/2-¢, The dimensionless binding energy ()
=¢g,/hw, , in the presence of confinement then follows
from the transcendental equation

[ s
a Jo Vam\ {1 - exp(-2u)]2u)"?
= (), (82)

where n=1,2 is the number of confined directions.

The functions f; , are shown in Fig. 18. For small bind-
ing energies ()<<1, their asymptotic behavior is f;({})
=In(7Q/B)/\2m and f,(Q)=-1/VQ+A with numerical
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FIG. 18. (Color online) The functions f,,(Q) defined in Eq. (82)
for n=1,2. The limiting dependence f; (Q)=In(7Q/B) /27 and
/>(Q)=-1/VQ+A on the dimensionless binding energy Q for
(<1 is indicated by dashed lines.

constants A=1.036 and B=0.905. In the range (=<0.1,
where these expansions are quantitatively valid, the re-
sulting bound-state energies are

ey = fw,(Blmexp(— \2m€ /|a]) (83)
in a 2D pancake geometry or
gy =ho /(€ /|a] + A)? (84)

in a 1D waveguide. These results were obtained using
different methods by Petrov and Shlyapnikov (2001) and
by Bergeman et al. (2003), respectively. With increasing
values of |a|, the binding energy increases, reaching fi-
nite, universal values g,=0.244%w, or 0.606%w, precisely
at the Feshbach resonance for one or two confined di-
rections. Going beyond the Feshbach resonance, where
a>0, the binding energy increases further, finally reach-
ing the standard 3D result in the weak-confinement limit
a<<{ . Here the binding is unaffected by the nature of
confinement and f,,(Q>1)= VO = fo(Q).

Experimentally, confinement-induced bound states
have been observed by rf spectroscopy in an array of 1D
quantum wires using a mixture of fermionic “°K atoms
in their two lowest hyperfine states mp=—9/2 and —7/2
(Moritz et al., 2005). The different states allow for a fi-
nite s-wave scattering length that may be tuned using a
Feshbach resonance at B;=202 G [see Fig. 10(a)]. In the
absence of the optical lattice, a finite binding energy ap-
pears only for magnetic fields below B, where a>0. In
the situation with a strong transverse confinement, how-
ever, there is a nonzero binding energy both below and
above Bj. Using Eq. (16) for the magnetic field depen-
dence of the scattering length, the value of g, is in per-
fect agreement with the result obtained from Eq. (82). In
particular, the prediction £,=0.606%w, for the binding
energy right at the Feshbach resonance has been verified
by changing the confinement frequency o, .

Scattering amplitudes for confined particles. Con-
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sider now two-particle scattering in the continuum,
i.e., for energies E=fw, +%%k*/2M, above the trans-
verse ground-state energy. Quite generally, the effective
1D scattering problem is described by a unitary S
matrix with reflection and transmission amplitudes r and
t. They are related to the even and odd scattering phase
shifts 6, ,(k) by the eigenvalues exp[2id,,(k)]=t+r of
the § matrix. In analogy to the 3D case,
the corresponding scattering amplitudes are defined as
feo(k)={exp[2i6, ,(k)]-1}/2. For the particular case of a
S-function interaction, the odd scattering amplitude and
phase shift vanish identically. The relevant dimension-
less scattering amplitude f,(k)=r(k)=t(k)—1 is thus sim-
ply the standard reflection amplitude. In the low-energy
limit, a representation analogous to Eq. (4) allows one to
define a 1D scattering length a, by'*

flk)=—=1/[1+icot 8k)]— —1/(1 + ikay) (85)

with corrections of order k> because cot 8(k) is odd in k.
The universal limit f(k=0)=-1 reflects the fact that fi-
nite 1D potentials become impenetrable at zero energy.
For a &function potential V(x)=g,8(x), the low-energy
form of Eq. (85) holds for arbitrary k, with a scattering
length a,=-#%/M,g,, which approaches a1—>—€2L/a in
the weak-confinement limit. More generally, the exact
value of a; for an arbitrary ratio a/€, may be deter-
mined by using the connection &,=#?«k*/2M, between
the bound-state energy and a pole at k=ik=i/a; of the
1D scattering amplitude (85) in the upper complex k
plane. Using Eq. (84) for the bound-state energy in the
regime a<<0 and the fact that a; must be positive for a
bound state, one finds al(a)z—(fi/ a+A¢€ . Since the ef-
fective 1D pseudopotential is determined by the scatter-
ing length a;, two-particle scattering is described by an
interaction of the form

Vipx)=g18x) with gi(a) =2hw, a/(1 - Aalt ).
(86)

From its derivation, this result appears to be valid only
for g, small and negative, such that the resulting dimen-
sionless binding energy =<0.1 is within the range of
validity of Eq. (84). Remarkably, however, the result (86)
is exact, as far as scattering of two particles above the
continuum is concerned, at arbitrary values of a/{€ | . This
is a consequence of the fact that Eq. (86) is the unique
pseudopotential consistent with the behavior of f(k) up
to order k. The exact scattering length is thus fixed by
the binding energy (84) at small values of (). Moreover,
the result uniquely extends into the regime where a; be-
comes negative, i.e., the pseudopotential ceases to sup-
port a bound state. The associated change of sign in g; at
a=¢,/A is called a confinement-induced resonance
(Olshanii, 1998). It allows one to change the sign of the
interaction between atoms by purely geometrical means.

2As in the 3D case, the scattering length is finite only for
potentials decaying faster than 1/x3. Dipolar interactions are
therefore marginal even in one dimension.
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As shown by Bergeman et al. (2003), it can be under-
stood as a Feshbach resonance where a bound state in
the closed channel drops below the continuum of the
ground state. Now, in a 1D waveguide, the separation
between energy levels of successive transverse eigen-
states with zero angular momentum is exactly 24w, in-
dependent of the value of a (Bergeman et al., 2003). The
confinement-induced resonance thus appears precisely
when the exact bound-state energy e,—which cannot
be determined from the pseudopotential (86) unless
() <0.1—reaches 2hw,. An analogous confinement-
induced resonance appears in a 2D pancake geometry;
see Petrov, Holzmann, and Shlyapnikov (2000).

B. Bosonic Luttinger liquids; Tonks-Girardeau gas

To describe the many-body problem of bosons con-
fined to an effectively 1D situation, the basic micro-
scopic starting point is a model due to Lieb and Liniger
(1963),

W P
H=-——2 —5+g> 8x;-x). (87)

2Mi5 ox; i<j
It is based on pairwise interactions with a pseudopoten-
tial ~g,8(x), as given in Eq. (86). This is a valid descrip-
tion of the actual interatomic potential provided that the
two-body scattering amplitude has the low-energy form
of Eq. (85) for all relevant momenta k. In the limit u
<#hw, of a single transverse mode, they obey k¢ <1.
Remarkably, in this regime, the pseudopotential ap-
proximation is always applicable. Indeed, it follows from
the leading correction ~() in the low-binding-energy ex-
pansion f,(Q)=—1/VQ+A+bQ+--- of the function de-
fined in Eq. (82) that the denominator of the 1D scatter-
ing amplitude (85) has the form 1+ika,—ib(k€ )+ - at
low energies with a numerical coefficient b=0.462. Since
a,~—{2 /a in typical situations where a<¢ |, the condi-
tion k><1/a€, for a negligible cubic term in the scatter-
ing amplitude is always obeyed in the regime k¢ | <1 of
a single transverse mode. In this limit, the interaction
between cold atoms in a 1D tube is therefore generically
described by the integrable Hamiltonian (87). In the ho-
mogeneous case, stability requires g; to be positive,"
i.e., the 3D scattering length obeys ¢, >Aa>0. At a
given 1D density ny=N/L, the strength of the interac-
tions in Eq. (87) is characterized by a single dimension-
less parameter
gin 2 2a

TERAM nla)|  n

if ¢ >a. (88)

In marked contrast to the 3D situation, the dimension-
less interaction strength vy scales inversely with the 1D
density n; (Petrov, Shlyapnikov, and Walraven, 2000). In
one dimension, therefore, it is the low-density limit

BFor a possible extension to a metastable “super-Tonks” re-
gime at g; <0, see Astrakharchik et al. (2005a).
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where interactions dominate. This rather counterintui-
tive result can be understood physically by noting that
the scattering amplitude Eq. (85) approaches -1 as k
—0. Since, at a given interaction strength g;, the low-
energy limit is reached at low densities, atoms in this
regime are perfectly reflected by the repulsive potential
of surrounding particles. For y>1, therefore, the system
approaches a gas of impenetrable bosons where all en-
ergy is kinetic." In particular, as shown by Girardeau
(1960), at y=o, the hard-core condition of a vanishing
wave function whenever two particle coordinates coin-
cide is satisfied by a wave function

‘I’B(xl, ,XN) = H |Sin[’7T(Xj —xi)/L]|, (89)

i<j

which coincides with the absolute value of the wave
function of a noninteracting spinless Fermi gas. Strongly
interacting bosons in 1D thus acquire a fermionic char-
acter, a fact well known from the exact solution of a
hard-core Bose or spin-1/2 system on a 1D lattice in
terms of noninteracting fermions by the Jordan-Wigner
transformation; see, e.g., Wen (2004).

Crossover diagram in a harmonic trap. In the presence
of an additional harmonic confinement V(x)=M w(z)xz/ 2
along the axial direction, the relative interaction
strength depends, in addition to the parameter vy intro-
duced above, also on the ratio a=~{y/|a;|~2a€y/ € be-
tween the oscillator length €,=\%/Mw, and the magni-
tude of the 1D scattering length. For tight radial
confinement ¢ | =40 nm and typical values €,=2 um for
the axial oscillator length, one obtains a=~12 for ¥ Rb.
This is in fact the interesting regime, since for <1 the
typical relative momenta k=1/€ of two particles are so
large that the strong-interaction limit k|a;| <1 cannot be
reached at all. The conditions for realizing the Tonks-
Girardeau (TG) limit in a trap have been discussed by
Petrov, Shlyapnikov, and Walraven (2000) using a quan-
tum hydrodynamic description [see also Ho and Ma
(1999) and the review by Petrov, Gangardt, and Shlyap-
nikov (2004) on trapped gases in low dimensions]. Using
Eq. (A8) in the Appendix, the phase fluctuations in a 1D
Bose gas behave like 8¢*(x)=[In(|x|/£)]/K at zero tem-
perature. From the Lieb-Liniger solution discussed be-
low, both the characteristic healing length ¢é=K(y)/n,
and the dimensionless so-called Luttinger parameter K
are monotonically decreasing functions of the interac-
tion strength. In particular, K(y)— /1y is much larger
than 1 in the limit y<<1. In this limit, the 1D Bose gas
loses its phase coherence on a scale €4(T=0)=¢&exp K
[defined by 5¢2(x:€¢)z1], which exceeds the healing
length by an exponentially large factor. The gas behaves
like a true condensate as long as its size R is smaller than
€4 Applying the Gross-Pitaevskii equation plus the

“In fact, it follows from the Lieb-Liniger solution that the
ratio of the interaction and kinetic energy per particle diverges
as 1/\y for y<1 and decreases monotonically to zero as 1/y
for y>1.
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local-density approximation, the radius of the associated
Thomas-Fermi profile n(x) is Rrp=(Na)3¢, (Petrov,
Shlyapnikov, and Walraven, 2000). The condition Ryg
> { for the validity of the Thomas-Fermi approximation
is thus always obeyed if @=1. In contrast to the analo-
gous situation in 3D, however, the weak-coupling regime
requires high densities. The local value n(0)&= K[ y(0)]
of the Luttinger parameter at the trap center must thus
be large compared to 1. This requires y(0) <1 or, equiva-
lently, n;(0)¢y=~ N{€y/ Rtp>«. As a result, the Thomas-
Fermi profile becomes invalid if N<N,=a?> 1. For par-
ticle numbers below N,, the trapped gas reaches the TG
regime. The density distribution is eventually that of a
free Fermi gas, with a chemical potential u=Nfiw, and a
cloud size Rrg=v2N¢,. The continuous evolution of the
density profile and cloud size between the weak-
coupling and the TG limit was discussed by Dunjko et al.
(2001).

At finite temperatures, the dominant phase fluctua-
tions give rise to a linear increase 8¢?(x)=|x|/€ 4(T) with
distance on a scale €¢(T)=ﬁ2nS/MkBT, which depends
only on the 1D superfluid density n." In a trap of size
R, these fluctuations are negligible if €,>R. Using n,
~ N/R and the zero-temperature result for the Thomas-
Fermi radius at N>N,, this translates to kgT
<hwyo(N/N,)"3. In this range, the trapped gas is effec-
tively a true BEC with a Thomas-Fermi density profile
and phase coherence extending over the full cloud size.
With increasing temperature, phase fluctuations are non-
negligible; however, density fluctuations become rel-
evant only if T exceeds the degeneracy temperature 7,
=Nhawy (Petrov, Shlyapnikov, and Walraven, 2000). De-
fining a characteristic temperature Ty=T,/(Na)**<T,
below which phase fluctuations are irrelevant over the
system size, there is a wide range T,<T<T, in which
the density profile is still that of a BEC; however, phase
coherence is lost. The system can be thought of as a
collection of independently fluctuating local BEC’s and
is called a quasicondensate (Petrov, Shlyapnikov, and
Walraven, 2000). At higher temperatures kz7T= Nhiw,,
the gas eventually evolves into the nondegenerate re-
gime of a Boltzmann gas. The complete crossover dia-
gram is shown in Fig. 19.

Experimentally, the presence of strong phase fluctua-
tions in a 1D situation already shows up in very elon-
gated 3D condensates that still have a Thomas-Fermi
density profile in the radial direction (i.e., u>#fw, such
that many transverse modes are involved). In a trap, the
strong interaction prevents local velocity fields due to
phase fluctuations from showing up in the density pro-
file. When the trap is switched off, however, the interac-
tion becomes negligible after a certain expansion time,
and then phase fluctuations are indeed converted into
density fluctuations. These have been seen as stripes in
absorption images of highly elongated BEC’s by Dett-

BTo simplify the notation, the dimensionality is not indicated
in the superfluid or quasicondensate densities n; and 7.
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FIG. 19. Phase diagram for a 1D Bose gas in a harmonic trap
with @=10. The Tonks-Girardeau regime is reached for small
particle numbers N<N, =co? and temperatures below the de-
generacy limit Niw,. From Petrov, Shlyapnikov, and Walraven,
2000.

mer et al. (2001). The linear increase of phase fluctua-
tions 8¢*(x) at finite temperature leads to an exponen-
tial decay of the first-order coherence function. The
resulting Lorentzian momentum distribution was ob-
served experimentally by Hellweg et al. (2003) and Rich-
ard et al. (2003) using Bragg spectroscopy. This enabled a
quantitative measurement of €,(7). Moreover, at very
low temperatures, no significant density fluctuations
were present, thus confirming the quasi-BEC picture in
which (n(x)?) = (n(x))%.

Lieb-Liniger solution. As shown by Lieb and Liniger
(1963), the model Eq. (87) can be solved by the Bethe
ansatz. The essential physical property that lies behind
the possibility of this exact solution is the fact that, in
one dimension, interactions give rise only to scattering
but not to diffraction. All eigenstates of the many-body
problem in the domain 0<<x;<x,<---<xy=<L can thus
be written as a sum

N
WXy, e sXn) = 2 a(P)exp(iE kP(l)xl> (90)
P =1

of plane waves with N distinct wave vectors k;. They are
combined with the coordinates x; in all N! possible per-
mutations kpy of the k;. The associated amplitude
a(P)=1I;e'% factorizes into two-particle scattering
phase shifts 6;=m+2 arctan(k;—k;)a;/2, with a; the 1D
scattering length associated with the pseudopotential
g16(x). Here the product (i) runs over all permutations
of two wave numbers that are needed to generate a
given permutation P of the k; from the identity. Because
a;~~-1/g,, the two-particle phase shifts 6~ g,/(k;—k;)
are singular as a function of the momenta in the limit
g1—0 of an eventually ideal Bose gas. In the limit y
>1, the phase shifts approach ;= for all momenta.
Thus a(P)sz(—l)“D lis the parity of the permutation P,
and the Bethe ansatz wave function Eq. (90) is reduced
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FIG. 20. (Color online) Average axial energy per particle and
equivalent temperature 7jp as a function of the transverse
confinement U,. With increasing values of U, the energy
crosses over from a weakly interacting Bose gas (long-dashed
line) to a Tonks-Girardeau gas (short-dashed line), where T
is independent of U,. From Kinoshita et al., 2004.

to the free-fermion-type wave function Eq. (89) of a
Tonks-Girardeau gas. For arbitrary coupling, both the
ground-state energy per particle Ey/N=(nh2/2M)e(7)
and the chemical potential u=dE,/JdN are monotoni-
cally increasing functions of y at fixed density n;. For
weak interactions y<<1, the chemical potential u=gn,
follows the behavior expected from a mean-field ap-
proach, which is valid here for high densities n|a;|>1.
In the low-density regime +y>1, in turn, u
=#2(mn,)?>/2M approaches a coupling-independent value
that is just the Fermi energy associated with kp=n;.
The energy per particle in this regime is of completely
kinetic origin, independent of the interaction strength 7.
This remarkable property of the Tonks-Girardeau gas
was observed experimentally by Kinoshita et al. (2004)
(see Fig. 20). They measured the axial expansion energy
of an array of 1D Bose gases as a function of the
strength U, of the transverse confinement. Since
~ V'Uo, the dimensionless coupling vy is monotonically in-
creasing with U, at fixed density n;. In the weak-
confinement limit, the expansion energy scales linearly
with \U,, reflecting the mean-field behavior e(y)=y(1
—4\ly/3m+--+) of the average energy per particle. By
contrast, for large values of \EFO, where |a;| becomes
shorter than the average interparticle spacing, the en-
ergy e(y)=m>(1-4/y+---)/3 saturates at a value that is
fixed by the density.

The low-lying excitations of the Lieb-Liniger model
have been obtained exactly by Lieb (1963a). Surpris-
ingly, it turned out that there are two types of excita-
tions, both with a linear spectrum w=cq at low mo-
menta. One of them has a Bogoliubov-like dispersion,
linear at gé<1 and quadratic at gé>1. The crossover
from collective to single-particle behavior occurs at a
characteristic length & which is related to the chemical
potential in the ground state via u=#%/2M&. In the limit
vy<1, the crossover length can be expressed as é&n
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=y 12>1. Similar to the situation in three dimensions,
the weak-coupling regime can therefore be character-
ized by the fact that the healing length is much larger
than the average interparticle spacing n;'. By contrast,
for strong coupling y>1, where the chemical potential
approaches the Fermi energy of a spinless, noninteract-
ing Fermi gas at density 74, the healing length £ is essen-
tially identical with the average interparticle distance.
The sound velocity ¢ turns out to coincide with the
simple thermodynamic formula Mc?>=du/dn, which is
obtained from the quantum hydrodynamic Hamiltonian
Eq. (A6) under the assumption that the superfluid den-
sity at 7=0 coincides with the full density. The ground
state of the Lieb-Liniger gas is in fact fully superfluid at
arbitrary values of yin the sense of Eq. (A4), despite the
fact that phase fluctuations destroy a plain BEC even at
zero temperature. The sound velocity increases mono-
tonically with v, approaching the finite value c¢(®)=vp
=i/ M of an ideal Fermi gas in the Tonks-Girardeau
limit. The second type of excitation found by Lieb
(1963a) also has a linear dispersion at small ¢ with the
same velocity. However, in contrast to the Bogoliubov-
like spectrum discussed before, it is restricted to a finite
range |q|<mn; and terminates with a vanishing group
velocity. It turns out that these excitations are precisely
the solitons of the nonlinear Schrodinger equation (Ish-
ikawa and Takayama, 1980); for a discussion in the cold
gas context, see Jackson and Kavoulakis (2002).

Momentum distribution in the Luttinger liquid regime.
To obtain the momentum distribution of a strongly cor-
related 1D Bose gas, it is convenient to start from a
quantum hydrodynamic description of the one-particle
density matrix. At zero temperature, the logarithmic in-
crease 6¢*(x)=(In|x|/&)/K of the phase fluctuations with
distance [see Eq. (A8)] leads to an algebraic decay of
gW(x) at scales beyond the healing length & The associ-
ated exponent 1/(2K) is rather small in the weak-
coupling regime and approaches its limiting value 1/2 in
the TG limit. The resulting momentum distribution thus
exhibits a power-law divergence 7i(k)~ k111251 for
ké<1. At any finite temperature, however, this diver-
gence is cut off due to thermal phase fluctuations. In-
deed, these fluctuations increase linearly with distance
8¢?(x)=|x|/€4(T) on a scale € 4(T), implying an exponen-
tial decay of the one-particle density matrix for |x|> €.
This leads to a rounding of the momentum distribution
at small k=1/€,.

Experimentally, the momentum distribution of a
Tonks-Girardeau gas was observed for ultracold atoms
in a 2D optical lattice by Paredes et al. (2004). There a
weak optical lattice was applied along the axial direction
in order to tune the system into the strongly interacting
regime, where K is close to 1. Indeed, for the low filling
factors f<1 used in the experiment, there is no Mott-
insulating phase. Instead, the 1D Bose-Hubbard model
at f<1 describes a bosonic Luttinger liquid with K=1
+4mfly; (Cazalilla, 2004b), where y; =U/J is the effec-
tive coupling parameter on a lattice. When the axial lat-
tice depth is increased, this ratio becomes very large,
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b FIG. 21. (Color online) Axial momentum dis-
tribution of a lattice-based one-dimensional
bosonic quantum gas for (a) y; =14 and (b)
1.~ 24. The solid curve is the theoretical mo-
mentum distribution based on fermionization,
and short- and long-dashed curves in (a) de-
note the expected values for a noninteracting
Bose gas and a noninteracting Fermi gas,
respectively. The insets show the correspond-
ing in-trap density distributions. From Pare-
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of order y; =5-200. As shown in Fig. 21, the observed
momentum distributions exhibit a power-law decay over
a wide momentum range. They are in good agreement
with a fermionization-based calculation of a hard-core
Bose gas in a harmonic confinement. The momentum
distributions at finite values of U have been studied
by quantum Monte Carlo calculations. Although the
final hard-core limit is only reached for large values of
v — o (Pollet et al., 2004), deviations in the momentum
distribution compared to fermionized bosons are less
than a few percent already for y;>5 (Wessel et al.,
2005). In the experiment, a significant deviation from the
limiting value of 1-1/(2K)—1/2 of the exponent in the
momentum distribution at small values of k is found. In
fact, the low-k divergence of the momentum distribution
is masked by finite-temperature effects and finite-size
cutoffs. For larger momenta, the momentum distribu-
tion of the quantum gas is determined by short-range
correlations between particles, which can increase the
coefficient of the power-law decay in the momentum dis-
tribution above 1/2 in experiments. In fact, it was shown
by Olshanii and Dunjko (2003) that the momentum dis-
tribution of a homogeneous 1D Bose gas at large mo-
menta k&> 1 should behave like 1/k* as long as kr,<1.

The parameter K=mhkc determines the asymptotic
behavior not only of the one-particle density matrix but
in fact of all correlation functions. This may be under-
stood from Haldane’s description of 1D quantum
liquids'® in terms of their long-wavelength density oscil-
lations (Haldane, 1981). In its most elementary form,
this is the 1D version of the quantum hydrodynamic

Hamiltonian equation (A6). On introducing a field @(x)
that is related to small fluctuations around the average

density by 5ﬁ1(x)=¢9x9(x)/77, the effective Hamiltonian
describing the low-lying excitations is of the form

H= 2_7(; J dx<1<(ax<;s)2+ %(axaf) (91)

with sound velocity c. The low-energy physics of a 1D
Bose liquid is determined by the velocity ¢ and the di-

18I the context of cold gases, the notion of a quantum liquid
is purely conventional. These systems are stable only in the
gaseous phase, yet may be strongly interacting.
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des et al., 2004.

mensionless parameter K. In the translation-invariant
case, K=mhn,/Mc is fixed by c and the average density.
Moreover, for interactions that may be described by a
1D pseudopotential, K may be expressed in terms of the
microscopic coupling constant y using the Lieb-Liniger
solution. The resulting value of K=vg/c decreases
monotonically from K(y)=m/\Vy>1 in the weak-
interaction, high-density limit to K(y)=1+4/vy+---in the
Tonks-Girardeau limit [see Cazalilla (2004a)]. The prop-
erty K>1 for repulsive bosons is valid for interactions
that decay faster than 1/x such that the 1D scattering
length a is finite. The algebraic decay of g(x) in a 1D
gas at zero temperature is formally similar to the situa-
tion in 2D at finite temperatures, where g'"(r) exhibits a
power-law decay with exponent 7 [see Eq. (100)]. Apart
from the different nature of phase fluctuations (quantum
versus thermal), there is, however, an important differ-
ence between the two situations. In the 2D case, super-
fluidity is lost via the BKT transition once 7>1/4 [see
Eq. (101)]. By contrast, in one dimension, there is no
such restriction on the exponent and superfluidity still
persists if K<<2. The origin of this difference is related
to the fact that phase slips in one dimension require a
nonzero modulation of the potential, e.g., by a weak op-
tical lattice (Biichler et al., 2003). Formally, it is related
to a Berry-phase term beyond Eq. (91), which confines
vortex-antivortex pairs in this case; see Wen (2004).
Two- and three-particle correlations. An intuitive un-
derstanding of the evolution from a weakly interacting
quasicondensate to a Tonks-Girardeau gas with increas-
ing values of 7y is provided by considering the pair dis-
tribution function g@?(x). It is defined by the density cor-
relation function (ﬁ(x)ﬁ(O)):nlﬁ(x)+n%g(2>(x) and is a
measure of the probability of finding two particles sepa-
rated by a distance x. For an ideal BEC in three dimen-
sions, the pair distribution function is g¥(x)=1 at arbi-
trary distances. Above T, it drops monotonically from
g?(0)=2 to the trivial limit g®?()=1 of any homoge-
neous system on the scale of the thermal wavelength 7.
For cold atoms in 3D, these basic results on bosonic
two-particle correlations were verified experimentally by
Schellekens et al. (2005). For the Lieb-Liniger gas, the
local value of the pair correlation g?(0)=de(y)/dy can
be obtained from the derivative of the dimensionless
ground-state energy (Gangardt and Shlyapnikov, 2003).
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FIG. 22. (Color online) Local pair correlation function from
photoassociation measurements as a function of the interac-
tion parameter v,y averaged over an ensemble of 1D Bose
gases. The theoretical prediction is shown as a solid line. From
Kinoshita et al., 2005.

The exact result for e(y) then gives g®(0)=1-21y/m
+--- and g?(0)=(2m/\37)2—0 in the limits y<1 and y
>1, respectively. For weak coupling, therefore, there is
only a small repulsive correlation hole around each par-
ticle. By contrast, in the strong-coupling limit, the prob-
ability of finding two bosons at the same point vanishes
as 1/47. In the Tonks-Girardeau limit, the equivalence of
density correlations to those of a free Fermi gas allows
one to determine the full pair distribution function ex-
actly as g@(x)=1—-[sin(wn,x)/ mn;x]?. For low densities,
therefore, the zero-range repulsion strongly suppresses
configurations in which two bosons come closer than
their mean interparticle distance. Note that the pair cor-
relation exhibits appreciable oscillations with wave vec-
tor 2kp=2mn, even though the momentum distribution
is completely continuous at k. Experimentally, the local
value g?(0) of the pair correlation function was deter-
mined by Kinoshita et al. (2005) using photoassociation.
As suggested by Gangardt and Shlyapnikov (2003), the
rate K, =K;g'?(0) for stimulated transitions in which two
atoms in a continuum state are transferred to a bound
molecule is reduced by a factor ¢?(0) from the corre-
sponding value in 3D, provided the transfer occurs lo-
cally on a length scale much less than the transverse
oscillator length. The photoassociation rate in a one-
dimensional situation is strongly reduced at y>1 due to
the much smaller probability for two atoms to be at the
same point. From measurements of the atom loss after a
variable time of photoassociation in an array of several
thousand 1D traps with particle numbers in the range
40< N <240, Kinoshita et al. (2005) extracted the value
of g?(0). As shown in Fig. 22, the results are in good
agreement with theory over a wide range of interaction
constants up to y=10.

The local value of three-body correlation function
2¥(0) was also calculated by Gangardt and Shlyapnikov
(2003). It behaves as g®(0)=1-6vy/m+--- and g®(0)
~ (/y)® for small and large 7, respectively. The pre-
dicted suppression of three-body recombination losses
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was observed by Tolra et al. (2004) using the strong con-
finement in a 2D optical lattice.

In situ measurements of density fluctuations were per-
formed by Esteve et al. (2006). They observed a cross-
over from an effectively high-temperature regime at low
densities 7, <(|a;|/\})"3, where the number fluctuations
exceed the shot-noise level due to bunching in an essen-
tially ideal Bose gas. At high densities, a quasiconden-
sate regime is reached with n;a=0.7, close to the limit of
a single transverse mode. There the number fluctuations
are strongly suppressed and may be described by a 1D
Bogoliubov description of quasicondensates (Mora and
Castin, 2003).

Weak optical lattices and coupled 1D gases. The prob-
lem of a 1D Bose gas in a weak optical lattice was dis-
cussed by Biichler ef al. (2003). Using the extension in
1D of the phase-density representation (A7) of the field
operator in a quantum hydrodynamic description, which
accounts for the discrete nature of the particles
(Haldane, 1981), a periodic potential commensurate
with the average particle density gives rise to an addi-
tional nonlinear term cos 26(x) in Eq. (91). This is the
well-known sine-Gordon model (Giamarchi, 2004),
which exhibits a transition at a critical value K.=2. For
K>?2, the ground state of the Lieb-Liniger gas remains
superfluid in a weak optical lattice. For (1<)K<2, in
turn, atoms are locked in an incompressible Mott state
even in an arbitrary weak periodic lattice. From the ex-
act Lieb-Liniger result for K(v), the critical value K.=2
is reached at y,=3.5.

In a configuration using 2D optical lattices, a whole
array of typically several thousand parallel 1D gases is
generated. For a very large amplitude of the optical lat-
tice V|, =30F,, hopping between different 1D gases is
negligible and the system decouples into independent
1D tubes. By continuously lowering V|, however, it is
possible to study the crossover from a 1D to a 3D situ-
ation. The equilibrium phase diagram of an array of 1D
tubes with an adjustable transverse hopping J, was stud-
ied by Ho et al. (2004). It exhibits a fully phase-coherent
BEC for sufficiently large values of J, and the 1D Lut-
tinger parameter K. For a detailed discussion of weakly
coupled 1D gases, see Cazalilla et al. (2006).

C. Repulsive and attractive fermions

As mentioned in Sec. V.A, ultracold Fermi gases in a
truly 1D regime er<#fiw, have been realized using
strong optical lattices. In the presence of an additional
axial confinement with frequency w,, the Fermi energy is
erp=Nhwy. The requirement that only the lowest trans-
verse mode is populated, therefore, requires small par-
ticle numbers N<w , /w,. Typical temperatures in these
gases are around kzT=0.2¢, (Moritz et al., 2005). In the
following, we briefly discuss some of the basic phenom-
ena that may be studied with ultracold fermions in one
dimension.

In a spin-polarized 1D Fermi gas, only p-wave inter-
actions are possible. As shown by Granger and Blume
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(2004), the corresponding Feshbach resonances are
shifted due to the confinement in a similar way as in Eq.
(86) above. This was confirmed experimentally by
Giinter et al. (2005). In the case of two different states,
s-wave scattering dominates in the ultracold limit. For
repulsive interactions, one obtains a fermionic Luttinger
liquid, which is a two-component version of the quan-
tum hydrodynamic Hamiltonian (91). It has a twofold
linear excitation spectrum for fluctuations of the total
density and the density difference (“spin density”), re-
spectively. Generically, the velocities of “charge” and
spin excitations are different. This is the most elemen-
tary form of “spin-charge separation,” which has been
verified experimentally in semiconductor quantum wires
(Auslaender et al., 2005). In the context of ultracold
Fermi gases in a harmonic trap, spin-charge separation
effects show up in collective excitation frequencies (Re-
cati et al., 2003) or in the propagation of wave packets
(Kollath et al., 2005). A genuine observation of spin-
charge separation, however, requires one to study single-
particle correlations and cannot be inferred from collec-
tive excitations only.

For attractive interactions, a spin-1/2 Fermi gas in one
dimension is a so-called Luther-Emery liquid. Its fluc-
tuations in the total density have a linear spectrum
w(g)=cq; however, there is a finite gap for spin excita-
tions (Giamarchi, 2004). The origin of this gap is the
appearance of bound pairs of fermions with opposite
spin. The spectrum w,(q)=(A,/2%)?>+(v,q)?* for small os-
cillations of the spin density is similar to that of quasi-
particles in the BCS theory. In analogy to Eq. (88) for
the bosonic problem, the dimensionless coupling con-
stant y=-2/n,a, <0 is inversely proportional both to the
1D scattering length a, :—€2l/a +A¢€, (now for fermions
in different states; note that attractive interactions a <0
imply a positive 1D scattering length a;) and to the total
1D density n;=ny;+n;|. As shown by Gaudin (1967) and
Yang (1967), the model is exactly soluble by the Bethe
ansatz. For weak coupling, |y{=<1, the spin gap A,
=2Agcs,

A(y) = (168 g |l e~ ™12, (92)

has a form similar to that in BCS theory, except for an
interaction-dependent prefactor ~\|y|. Note, however,
that the weak-coupling regime is reached at high densi-
ties ny)a;|>1, in contrast to the situation in 3D, where
kpla|<1 in the BCS limit. At low densities, where 1/
— 07, the spin gap approaches the two-body bound-state
energy A;— g, which was measured by rf spectroscopy
(Moritz et al., 2005), as discussed above. In this regime,
tightly bound fermion pairs behave like a hard-core
Bose gas. The strong-coupling BEC limit of attractive
fermions in 1D thus appears to be a Tonks-Girardeau
gas, very different from the nearly ideal Bose gas ex-
pected in a 3D situation (see Sec. VIII). However, in the
presence of a harmonic waveguide, the associated trans-
verse oscillator length ¢, =\A/Mw, defines an addi-
tional length not present in a strictly 1D description. As
shown in Sec. V.A, the exact solution of the scattering
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problem for two particles in such a waveguide always
exhibits a two-body bound state, whatever the sign and
magnitude of the scattering length a. Its binding energy
right at the confinement-induced resonance is ¢,=2hw | .
Since #iw, >¢p in the limit of a singly occupied trans-
verse channel, the two-particle bound-state energy g, is
the largest energy scale in the problem beyond this
point. In the regime after the confinement-induced reso-
nance, where vy becomes positive, the appropriate de-
grees of freedom are therefore no longer single atoms,
but instead are strongly bound fermion pairs. An exact
solution of the four-body problem in a quasi-1D geom-
etry with tight harmonic confinement shows that these
dimers have a repulsive interaction (Mora et al., 2005).
Attractive fermions in 1D therefore continuously evolve
from a Luther-Emery liquid to a gas of repulsive bosons.
As realized by Fuchs et al. (2004) and Tokatly (2004), the
1D BCS-BEC crossover problem can be solved exactly
by the Bethe ansatz, connecting the Gaudin-Yang model
on the fermionic side with the Lieb-Liniger model on
the bosonic side.

The problem of attractive Fermi gases in one dimen-
sion at different densities n; # n| of the two components
was solved by Hu, Liu, and Drummond (2007) and Orso
(2007). The superfluid ground state with equal densities
becomes unstable above a critical chemical potential dif-
ference w;—pu =A,. This is the analog of the Clogston-
Chandrasekhar limit (Chandrasekhar, 1962; Clogston,
1962), where the paired ground state is destroyed by the
paramagnetic, or Pauli, mechanism. In 3D, this has been
observed by Zwierlein et al. (2006). In contrast to the 3D
case, however, the transition is continuous in 1D and the
result Au.=A; holds for arbitrary coupling strengths.
Moreover, since the gap becomes large at low densities,
the SF phase with zero-density imbalance appears at the
trap edge. The phase in the trap center, in turn, is a
partially polarized phase that still has superfluid correla-
tions. As argued by Yang et al. (2001) using bosoniza-
tion, this phase exhibits an oscillating superfluid order
parameter similar to that predicted by Fulde and Ferrell
(1964) and Larkin and Ovchinnikov (1965) in a narrow
range above the Clogston-Chandrasekhar limit. In con-
trast to the 3D situation, nonconventional superfluid or-
der is thus expected in a rather wide range of param-
eters.

VI. TWO-DIMENSIONAL BOSE GASES

The two-dimensional Bose gas is a system that pre-
sents many interesting features from a many-body phys-
ics perspective. The first question that arises concerns
the possibility of reaching Bose-Einstein condensation
in a uniform system. The answer to this question is nega-
tive, for both the ideal and the interacting gas. Indeed,
as in one dimension long-range order is destroyed by
thermal fluctuations at any finite temperature. However,
in an interacting 2D gas the destruction of order is only
marginal and superfluidity can still occur below a finite
critical temperature 7.. Above T, quasi-long-range or-
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der is destroyed via the mechanism that was elucidated
by Berezinskii (1971) and Kosterlitz and Thouless (1973)
and that consists in the breaking of pairs of vortices with
opposite circulations. As shown by Nelson and Koster-
litz (1977), this scenario implies a jump in the superfluid
density'” from a finite and universal value n,(T,)/kpT.
=2M/mh? to zero, right at T.. Equivalently, the thermal
wavelength A, obeys n,(T.)\5=4. This prediction has
been experimentally tested using helium films (Bishop
and Reppy, 1978, 1980).

Quantum atomic gases provide a system where this
concept of a quasi-long-range order can be experimen-
tally tested. However, the addition of a harmonic poten-
tial to confine the gas in the plane changes the problem
significantly. For example, conventional Bose-Einstein
condensation of an ideal gas is possible in a 2D har-
monic potential. For an interacting gas, the situation is
more involved; a true BEC is still expected at extremely
low temperature. At slightly higher temperature, phase
fluctuations may destabilize it and turn it into a quasi-
condensate phase, which is turned into a normal gas
above the degeneracy temperature. We review the main
features of atomic 2D gases, and discuss the experimen-
tal results obtained so far.

We start with an ideal gas of N bosons at temperature
T, confined in a square box of size L. Using the Bose-
Einstein distribution and assuming a smooth variation of
the population of the various energy states, we take the
thermodynamic limit N,L —% in such a way that the
density n=N/L? stays constant. We then find a relation
between the density n, the thermal wavelength \p
=h/(2wMkgT)"?, and the chemical potential x,

Nz = —In(1 — e#*s7). (93)

This relation allows one to derive the value of u for any
degeneracy parameter n\3 value. It indicates that no
condensation takes place in 2D, in contrast to the 3D
case. In the latter case, the relation between rn;p\3. and
p ceases to admit a solution above the critical value
n3D)\3T: 2.612, which is the signature for BEC.

Consider now N bosons confined by the potential
V(r)=M®*r?/2 in the x,y plane. The presence of a trap
modifies the density of states, and BEC is predicted to
occur for an ideal gas when the temperature is below the
critical temperature T\, (Bagnato and Kleppner, 1991),

N = (7216) (kg To/hw)?. (94)

However, it should be pointed out that the condensation
remains a fragile phenomenon in a 2D harmonic poten-
tial. To show this point, we calculate the spatial density
n(x) using the local-density and semiclassical approxima-
tions, which amounts to replacing u by u—V(x) in Eq.
(93),

Note that, unless indicated, all densities in this section are
areal and not volume densities.
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n(x)\% = — In(1 — el#=V@VkpT), (95)

Taking u—0 to reach the condensation threshold and
integrating over x, we recover the result (94). But we
also note that n,,,(0)=, which means that the conden-
sation in a 2D harmonic potential occurs only when the
2D spatial density at the center of the trap is infinite.
This should be contrasted with the result for a 3D har-
monically trapped Bose gas, where condensation occurs
at a central density 713p ,,(0)=¢(3/ 2)/A3, which is equal
(in the semiclassical approximation) to the threshold
density in a homogeneous system [see, e.g., Pitaevskii
and Stringari (2003)].

A. The uniform Bose gas in two dimensions

We now turn to the more realistic case of a system
with repulsive interactions, and consider the case of a
uniform gas. We restrict ourselves here to well-
established results, since the main goal is to prepare the
discussion of the trapped gas case, which will be ad-
dressed next. The first task is to model the atom inter-
action in a convenient way. As done for a 1D system, it
is tempting to use a contact term g,8(x), which leads to a
chemical potential w=g,n in the mean-field approxima-
tion. However, two-dimensional scattering has peculiar
properties, and we explain that in general it is not pos-
sible to describe interactions in 2D by a coupling con-
stant g,, and that one has to turn to an energy-
dependent coefficient. We then discuss the many-body
state expected at low temperature, and present the
Berezinskii-Kosterlitz-Thouless transition.

We start by some considerations concerning quantum
scattering in two dimensions. Consider two particles of
mass M moving in the x,y plane, and we restrict our-
selves here to low-energy motion where the scattering is
isotropic. The scattering state can be written (Adhikari,
1986)

d(x) ~ e®* — \i/8af(k)e™ |\ kr, (96)

where k is the incident wave vector and f(k) is the di-
mensionless scattering amplitude for the relative energy
E=t%k?/M. At low energy, one gets for the scattering
amplitude the following variation:

(k) = 4/[- cot 8y(k) + i] — 4m/[2 In(1/kas) + inr],
97)

which defines the 2D scattering length a,. Taking, for
instance, a square-well interaction potential of depth V
and diameter b, it is equal to a,=bF(kyb), with F(x)
=exp[Jo(x)/xJ;(x)] and ky=v2MV,/ . Note that, in con-
trast to the situation in 3D, where lim,_,(f(k)=—-a, in 2D
f(k) tends to 0 when k—0. The total cross section \
=|f(k)|?/4k (dimension of a length), however, tends to
infinity.

Since the coupling coefficient g, is directly related to
the scattering amplitude, it appears that 2D systems are
peculiar in the sense that the coupling coefficient is in-
trinsically energy dependent, in contrast to 1D and 3D
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systems. In addition to the scattering amplitude f(k), one
may need the off-shell 7" matrix when addressing many-
body problems. It was calculated for 2D hard disks by
Morgan et al. (2002). The extension of a zero-range in-
teraction potential to the two-dimensional case is dis-
cussed by Olshanii and Pricoupenko (2002).

We now turn to a macroscopic assembly of bosonic
particles, and address the 7=0 situation. The case of
a gas of hard disks of diameter b and surface density n
was studied by Schick (1971). The conclusion is that
Bose-Einstein condensation is reached with a large con-
densate fraction, provided [In(1/nb?)]'<1. This consti-
tutes the small parameter of the problem, to be com-
pared with Vna® in 3D. The chemical potential is then
w=4mh’n/M In(1/nb?), indicating that the proper
choice for g, is (within logarithmic accuracy) g,
=%2g,/ M, where the dimensionless number g, is equal to
the scattering amplitude f(k) for energy E=2u. Correc-
tions to the result of Schick (1971) for more realistic
densities have been calculated by Andersen (2002), Pri-
coupenko (2004), and Pilati et al. (2005).

In the finite-temperature case, the impossibility of a
2D BEC already mentioned for an ideal gas remains
valid for an interacting gas with repulsive interactions.
This was anticipated by Peierls (1935) in the general con-
text of long-range order in low-dimensional systems. It
was shown for interacting bosons by Hohenberg (1967),
based on arguments by Bogoliubov (1960). A completely
equivalent argument was given for lattice spin systems
by Mermin and Wagner (1966). To prove this result, one
can make a reductio ad absurdum. Suppose that the tem-
perature is small but finite (7'# 0) and that a condensate
is present in the mode k=0, with a density n,. By the
Bogoliubov inequality, the number of particles 7, in
state k # 0 satisfies

o4 1 - kBT ny
n - = ——
kT2 = B2 IM n

(98)

In the thermodynamic limit, the number of particles N’
in the excited states is

’ ~ L2 ~ g2
N-%nk—émlfnkdk. (99)
When k tends to zero, the dominant term in the lower
bound given above varies as 1/k. In 2D, this leads to a
logarithmically diverging contribution of the integral
originating from low momenta. This means that the
starting hypothesis (the existence of a condensate in
k=0) is wrong in 2D.

Even though there is no BEC for a homogeneous,
infinite 2D Bose gas, the system at low temperature can
be viewed as a quasicondensate, i.e., a condensate with a
fluctuating phase (Kagan et al., 1987; Popov, 1987). The
state of the system is well described by a wave function
w(x):\f'm&qﬁ("), and the two-dimensional character is
revealed by the specific statistical behavior of spatial
correlation functions of the phase ¢(x) and the quasi-
condensate density 7y(x). Actually, repulsive interac-
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FIG. 23. Microscopic mechanism at the origin of the superfluid
transition in the uniform 2D Bose gas. Below the transition
temperature, vortices exist only in the form of bound pairs
formed by two vortices with opposite circulation. Above the
transition, temperature-free vortices proliferate, causing an ex-
ponential decay of the one-body correlation function g(r).

tions tend to reduce the density fluctuations and one can
in first approximation focus on phase fluctuations only.
The energy arising from these phase fluctuations has two
contributions. The first one originates from phonon-type
excitations, where the phase varies smoothly in space.
The second one is due to quantized vortices, i.e., points
at which the density is zero and around which the phase
varies by a multiple of 2. For our purpose, it is suffi-
cient to consider only singly charged vortices, where the
phase varies by +2 around the vortex core.

Berezinskii (1971) and Kosterlitz and Thouless (1973)
have identified how a phase transition can occur in this
system when the temperature is varied (Fig. 23). At low
temperature, the gas has a finite superfluid density n;.
The one-body correlation function decays algebraically
at large distance,

ng(l)(r) = <IZI(X) @(0)) cr” for T<T,, (100)

with n:(ns)\ZT -1, The fact that there is an exact relation
between the coherence properties of the system and the
superfluid density is explained in the Appendix. Free
vortices are absent in this low-temperature phase, and
vortices exist only in the form of bound pairs, formed by
two vortices with opposite circulations. At very low tem-
peratures, the contribution of these vortex pairs to the
correlation function gV is negligible, and the algebraic
decay of g is dominated by phonons. When T in-
creases, bound vortex pairs lead to a renormalization of
ng, which remains finite as long as 7 is lower than the
critical temperature 7. defined by

n\5=4 for T=T,. (101)

Above T,, the decay of g)(r) is exponential or even
Gaussian, once the temperature is large enough that the
gas is close to an ideal system. With increasing tempera-
ture, therefore, the superfluid density undergoes a jump
at the critical point from 4/)\2T( T,) to 0 (Nelson and Ko-
sterlitz, 1977). Note that Eq. (101) is actually an implicit
equation for the temperature since the relation between
the superfluid density n,(7) and the total density n re-
mains to be determined. The physical phenomenon at
the origin of the Berezinskii-Kosterlitz-Thouless phase
transition is related to the breaking of the pairs of vor-
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tices with opposite circulation. For T slightly above T,
free vortices proliferate and form a disordered gas of
phase defects, which are responsible for the exponential
decay of g'V. For higher temperatures, the gas eventu-
ally exhibits strong density fluctuations and the notion of
vortices becomes irrelevant.

The value given above for the transition temperature
can be recovered by evaluating the likelihood of having
a free vortex appearing in a superfluid occupying a disk
of radius R (Kosterlitz and Thouless, 1973). One needs
to calculate the free energy F=E-TS of this state. The
energy E corresponds to the kinetic energy of the super-
fluid; assuming that the vortex is at the center of
the disk, the velocity field is v=A/Mr, hence E
=aMn,[v*(r)r dr=(mh’n, M)In(R/ ), where we set the
lower bound of the integral equal to the healing length &,
since it gives approximately the size of the vortex core.
The entropy associated with positioning the vortex core
of area 7& in the superfluid disk of area 7R? is
kg In(R?/ €); hence the free energy is

FlkgT = (n\% - 4)In(R/&). (102)
For ns)\zT>4, the free energy is large and positive for a
large system (R> ¢), indicating that the appearance of a
free vortex is very unlikely. On the contrary, for ns)\2T
<4, the large and negative free energy signals the pro-
liferation of free vortices. The critical temperature esti-
mated above from a single-vortex picture turns out to
coincide with the temperature where pairs of vortices
with opposite circulation dissociate. Such pairs have a
finite energy even in an infinite system (Kosterlitz and
Thouless, 1973).

The question remains of how to relate the various spa-
tial densities appearing in this description, such as the
total density n and the superfluid density z,. In the Cou-
lomb gas analogy where positive and negative charges
correspond to clockwise and counterclockwise vortices
[see, e.g., Minnhagen (1987)], these two quantities are
related by n,/n=1/&(T), where &(7T) is the dielectric
constant of the 2D Coulomb gas. For an extremely
dilute Bose gas, the relation between n and n, was ad-
dressed by Fisher and Hohenberg (1988). Their treat-
ment is valid in the limit of ultraweak interactions
e=1/In(In[1/ (mz%)])<1, where a, is the 2D scattering
length. They obtained the result n,/n~e on the low-
temperature side of the transition point. Using Monte
Carlo calculations, Prokof’ev et al. (2001) studied the
case of weak but more realistic interactions. Denoting
by #2g,/m the effective long-wavelength interaction con-
stant [see Eq. (105)], they obtained the following result
for the total density at the critical point: nA\%=In(C/g,),
where the dimensionless number C=380+3. A typical
value for g, in cold atom experiments is in the range
0.01-0.2, which leads to a total phase-space density at the
critical point n\% in the range 7.5-10.5. Prokof’ev et al.
(2001) also evaluated the reduction of density fluctua-
tions with respect to the expected result (n?)=2(n)* for
an ideal gas. They observed that these fluctuations are
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strongly reduced at the transition point for the domain
of coupling parameters relevant for atomic gases. These
high-precision Monte Carlo methods also allow one to
study the fluctuation region around the transition point
(Prokof’ev and Svistunov, 2005).

The BKT mechanism has been the subject of several
studies and has been confirmed in various branches of
condensed-matter physics [for a review, see Minnhagen
(1987)]. In the context of Bose fluids, Bishop and Reppy
(1978) performed an experiment with helium films ad-
sorbed on an oscillating substrate. The change in the
moment of inertia of the system gave access to the su-
perfluid fraction and provided evidence for the BKT
transition. In an experiment performed with atomic hy-
drogen adsorbed on superfluid helium, Safonov et al.
(1998) observed a rapid variation of the recombination
rate of the 2D hydrogen gas when the phase-space den-
sity was approaching the critical value Eq. (101). How-
ever, it is still a matter of debate whether one can reach
a quantitative agreement between these experimental
observations and the theoretical models (Stoof, 1994;
Kagan et al., 2000; Andersen et al., 2002).

B. The trapped Bose gas in 2D

Recent progress concerning the manipulation, cool-
ing, and trapping of neutral atomic gases with electro-
magnetic fields has opened the way to the study of pla-
nar Bose gases. In order to prepare 2D atomic gases,
one freezes the motion along the z direction using either
light-induced forces or magnetic forces. This confining
potential V(z) has to be strong enough so that all rel-
evant energies for the gas (chemical potential, tempera-
ture) are well below the excitation energy from the
ground state to the first excited state in V(z). The two
other directions x and y are much more weakly confined.
The potential in the x,y plane is harmonic in all experi-
ments so far. Here we first review the main experimental
schemes that have been implemented. We then discuss
the new features that appear because of the harmonic
confinement in the x,y plane, and present the current
status of experimental investigations concerning the co-
herence properties of these trapped 2D gases.

Experimental realizations of a 2D gas. The conceptu-
ally simplest scheme to produce a 2D gas is to use a
sheet of light with a red detuning with respect to the
atomic resonance. The dipole potential then attracts at-
oms toward the locations of high light intensity, and en-
sures a strong confinement in the direction perpendicu-
lar to the light sheet. This technique was implemented at
MIT by Gorlitz et al. (2001) for sodium atoms. A
1064 nm laser was focused using cylindrical lenses, and
provided a trapping frequency w,/27 around 1000 Hz
along the z direction. The red-detuned light sheet also
ensured harmonic trapping in the x,y plane, with much
smaller frequencies (30 and 10 Hz along the x and y
directions, respectively). An adjustable number of at-
oms, varying between 2 X 10* and 2 X 10°, was loaded in
the dipole trap, starting with a 3D condensate. The mea-
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surements were essentially devoted to the size of the
atom cloud after free ballistic expansion. For small num-
bers of atoms (below 10°) it was observed that the z
motion was indeed frozen, with a release energy essen-
tially equal to the kinetic energy of the ground state,
hw,/4. For larger atom numbers, the interaction energy
exceeded Aw, and the gas was approaching the 3D
Thomas-Fermi limit.

Another way of implementing a 2D trap consists in
using an evanescent wave propagating at the surface of a
glass prism. In 2004, Grimm and co-workers in Inns-
bruck loaded such a trap with a condensate of cesium
atoms (Rychtarik er al., 2004). The light was blue de-
tuned from resonance, so that atoms levitated above the
light sheet, at a distance ~4 um from the horizontal
glass surface (w_ /27~ 500 Hz). The confinement in the
horizontal x,y plane was provided by an additional hol-
low laser beam, which was blue detuned from the atomic
resonance and propagating vertically. This provided an
isotropic trapping with a frequency w, /27 ~10 Hz. As
in the MIT experiment, a time-of-flight technique re-
vealed that, for small atom numbers, the vertical expan-
sion energy was approximately equal to fiw,/4, meaning
that the z motion was frozen. The number of atoms was
decreased together with temperature, and a rapid in-
crease of the spatial density, causing an increase of losses
due to three-body recombination, was observed when
the gas approached quantum degeneracy. These data
were consistent with the formation of a condensate or a
quasicondensate at the bottom of the trap.

A hybrid trap was investigated in Oxford, where a
blue-detuned, single-node, Hermite Gaussian laser
beam trapped Rb atoms along the z direction, whereas
the confinement in the x,y plane was provided by a mag-
netic trap (Smith ef al., 2005). This allowed a very large
anisotropy factor (~700) between the z axis and the
transverse plane to be achieved. Here the 2D regime
was also reached for a degenerate gas with ~10° atoms.

Trapping potentials that are not based on light beams
have also been investigated. One possibility discussed by
Hinds et al. (1998) consists in trapping paramagnetic at-
oms just above the surface of a magnetized material,
producing an exponentially decaying field. The advan-
tage of this technique lies in the very large achievable
frequency w,, typically in the megahertz range. One
drawback is that the optical access in the vicinity of the
magnetic material is not as good as with optically gener-
ated trapping potentials. Another technique to produce
a single 2D sheet of atoms uses the so-called radio-
frequency dressed-state potentials (Zobay and Garr-
away, 2001). Atoms are placed in an inhomogeneous
static magnetic field, with a radio-frequency field super-
imposed, whose frequency is on the order of the energy
splitting between two consecutive Zeeman sublevels.
The dressed states are the eigenstates of the atomic
magnetic moment coupled to the static and radio-
frequency fields. Since the magnetic field is not homoge-
neous, the exact resonance occurs on a 2D surface.
There one dressed state (or possibly several, depending
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on the atom spin) has an energy minimum, and atoms
prepared in this dressed state can form a 2D gas. This
method was implemented experimentally for a thermal
gas by Colombe et al. (2004), but no experiment has yet
been performed in the degenerate regime.

Finally, a 1D optical lattice setup, formed by the su-
perposition of two running laser waves, is a convenient
way to prepare stacks of 2D gases (Orzel et al., 2001;
Burger et al., 2002; Kohl et al., 2005b; Morsch and Ober-
thaler, 2006; Spielman et al., 2007). The 1D lattice pro-
vides a periodic potential along z with an oscillation fre-
quency o, that can easily exceed the typical scale for
chemical potential and temperature (a few kilohertz).
The simplest lattice geometry is formed by two counter-
propagating laser waves, and it provides the largest w,
for a given laser intensity. One drawback of this geom-
etry is that it provides a small lattice period (\/2 where
\ is the laser wavelength), so that many planes are simul-
taneously populated. Therefore, practical measurements
provide only averaged quantities. Such a setup has been
successfully used to explore the transition between a su-
perfluid and a Mott insulator in a 2D geometry (Kohl er
al., 2005b; Spielman et al., 2007). Another geometry con-
sists in forming a lattice with two beams crossing at an
angle @ smaller than 180° (Hadzibabic et al., 2004). In
this case, the distance \/[2 sin(#/2)] between adjacent
planes is adjustable, and each plane can be individually
addressable if this distance is large enough (Schrader et
al., 2004; Stock et al., 2005). Furthermore, the tunneling
matrix element between planes can be made completely
negligible, which is important if one wants to achieve a
true 2D geometry and not a modulated 3D situation.

From 3D to 2D scattering. In Sec. VILA, we discussed
the properties of a 2D gas consisting of hard disks. Cold
atomic gases, however, interact through van der Waals
forces, and one has to understand how to switch from
the 3D coupling constant to the 2D case. The confining
potential along z is V(z)=M wﬁzz/ 2, and we assume that
m,kpT<hw, such that the single-atom motion along the
z direction is frozen into the Gaussian ground state.

The scattering amplitude in this regime was calculated
by Petrov, Holzmann, and Shlyapnikov (2000) and
Petrov and Shlyapnikov (2001). Quite generally, low-
energy scattering in 2D is described by a scattering am-
plitude of the form Eq. (97). Since f(k) has a pole at k
=i/a,, the relation between a, and the basic scattering
length a of the 3D pseudopotential may be determined
from the bound-state energy e,=#%/(2M,a3) in a 2D
confined geometry. This has been calculated in Sec. V.A
for arbitrary values of the ratio between the 3D scatter-
ing length a and the confinement length €,. Using Eq.
(83) in the limit of small binding energies, the 2D scat-
tering length is related to its 3D counterpart and the
confinement scale €,=(A/Mw,)"? by

w{
ay(a)=¢, \/gexp(— \/;j)

with B=0.905 (Petrov and Shlyapnikov, 2001). As in 1D,
the scattering length for particles in the continuum is

(103)
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determined uniquely by the two-particle binding energy
in the limit &, <fiw,. The fact that a,(a) is positive, inde-
pendent of the sign of a, shows that for a 3D interaction
described by a pseudopotential, a two-particle bound
state exists for an arbitrary sign and strength of the ratio
alt€, as discussed in Sec. V.A. Note that, for realistic
parameters €, ~100 nm and a of the order of a few na-
nometers, the 2D scattering length is incredibly small.
This is compensated for by the logarithmic dependence
of the scattering amplitude on a,(a). Indeed, from Egs.
(97) and (103), the effective low-energy scattering ampli-
tude of a strongly confined 2D gas is given by

fUk) = 4arl[\2m€ Ja + In(Blmk>€?) + im]. (104)

When the binding along z is not very strong, €, is much
larger than a so that the logarithm and the imaginary
term in Eq. (104) are negligible. This weak-confinement
limit corresponds to the relevant regime for experiments
to date. The resulting scattering amplitude

flk) = \8malt, =g, <1 (105)

is independent of energy, and the dimensionless cou-
pling parameter g,=Mg,/%? is much smaller than 1. This
implies that the gas is weakly interacting in the sense
that, in the degenerate regime where n)\2T: 1, the chemi-
cal potential u=g,n is much smaller than the tempera-
ture (u/kgT=g,/27). An important feature of the two-
dimensional gas is that the criterion for distinguishing
the weakly and strongly interacting regimes does not de-
pend on density. Indeed the analog of the ratio y given
in Eq. (88) is equal to g,. In analogy to Eq. (78) in the 1D
case, the result (105) can be recovered by integrating the
3D pseudopotential over the z oscillator ground state.
One often refers to a gas in this collisional regime as a
quasi-2D system in the sense that it can be considered as
a 2D system from the statistical physics point of view,
but the dynamics of binary collision remains governed
by 3D properties; in particular, the 3D scattering length
a remains a relevant parameter.

More generally, since the relevant energy for relative
motion is twice the chemical potential, the momentum
k=+v2Mu/% in Eq. (104) is the inverse healing length £.
At very low energies therefore, the effective interaction
in 2D is always repulsive, independent of the sign of the
3D scattering length (Petrov and Shlyapnikov, 2001).
This result, however, is restricted to a regime where
In(¢&/€,)>€_/a. The logarithmic correction in Eq. (104) is
therefore significant in the case of a strongly confining
potential, when €, and a are comparable. One then re-
covers a variation for f(k) that is formally similar to that
of a pure 2D square well (97) with scattering length a,
={,. This regime could be relevant in a situation in
which the 3D scattering length a is enhanced by a Fesh-
bach resonance (Wouters et al., 2003; Rajagopal et al.,
2004; Kestner and Duan, 2006). If the 3D scattering
length a is positive, the logarithmic correction in Eq.
(104) is a reduction of the scattering amplitude. On the
other hand, for negative a, this correction can lead to a
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strong increase of the amplitude for a particular value of
¢, (Petrov, Holzman, and Shlyapnikov, 2000), leading to
a confinement-induced resonance similar to those en-
countered in the 1D case.

Is there a true condensation in a trapped 2D Bose gas?
This question has been debated over the past decade as
two opposing lines of reasoning can be proposed. On the
one hand, we recall that for an ideal gas the presence of
a trap modifies the density of states so that Bose-
Einstein condensation becomes possible in 2D. One
could thus expect that this remains valid in the presence
of weak interactions. On the other hand, in the presence
of repulsive interactions, the extension of the (quasi)
condensate in the trap must increase with the number of
atoms N. When N is large, the local-density approxima-
tion entails that the correlation function g"(r) decays
algebraically as in Eq. (100) over a domain where the
density is approximately uniform. This prevents us from
obtaining long-range order except for extremely low
temperatures. A related reasoning uses the fact that, for
the ideal gas, condensation is reached when the spatial
density calculated semiclassically becomes infinite [see
Eq. (95)], which cannot occur in the presence of repul-
sive interactions. The fragility of the condensation of the
ideal Bose gas in 2D is further illustrated by the exis-
tence at any temperature of a noncondensed Hartree-
Fock solution, for arbitrarily small repulsive interactions
(Bhaduri et al., 2000). However, for very low tempera-
ture, this solution is not the absolute minimizer of the
free energy, as shown using the Hartree-Fock-
Bogoliubov method by Ferndndez and Mullin (2002),
Gies and Hutchinson (2004), and Gies et al. (2004).

Currently, the converging answer, though not yet fully
tested experimentally, is the following. At ultralow tem-
perature, one expects a true BEC, i.e., a system that is
phase coherent over its full extension. The ground-state
energy and density of a 2D Bose gas in the limit 7=0
can be obtained using the Gross-Pitaevskii equation, as
shown by Lieb et al. (2001) [see also Kim et al. (2000),
Cherny and Shanenko (2001), Lee et al. (2002), and
Posazhennikova (2006)]. The crossover from a three- to
a two-dimensional gas at 7=0 has been addressed by
Tanatar et al. (2002) and Hechenblaikner et al. (2005).

When the temperature increases, one encounters the
quasicondensate superfluid regime, where phase fluctua-
tions due to phonons dominate. The scenario is then
reminiscent of the uniform case, and has been analyzed
by Petrov, Gangardt, and Shlyapnikov (2004). The func-
tion g(r) decays algebraically and vortices are found
only in the form of bound pairs. Finally, at larger tem-
perature these vortex pairs break and the system be-
comes normal. A BKT transition is still expected in the
thermodynamic limit N—%, w—0, No? constant, but
the jump in the total superfluid fraction is suppressed
because of the inhomogeneous atomic density profile
(Holzmann et al., 2007). Indeed, the energy for breaking
a vortex pair depends on the local density, and superflu-
idity will probably be lost gradually from the edges of
the quasicondensate to the center as the temperature
increases. Assuming that the atomic distribution is well
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approximated by the Hartree-Fock solution at the tran-
sition point, Holzmann et al. (2007) predicted that the
BKT transition temperature for a trapped gas is slightly
lower than the ideal BEC transition temperature (94), by
an amount related to the (small) dimensionless coupling
parameter g,=Mg,/h>.

We focus for a moment on the quasicondensate re-
gime. It is described by a macroscopic wave function
w(x)z\r’Mpr id(x), and the density and phase fluc-
tuations can be analyzed using a Bogoliubov analysis.
We refer the reader to the work of Mora and Castin
(2003) and Castin (2004) for a discussion on extension of
Bogoliubov theory to quasicondensates. As for the uni-
form gas (Prokof’ev et al., 2001), repulsive interactions
reduce the density fluctuations for kz7T=< u and n)\2T> 1,
so that (fig(x))=[(7ig(x))]>. For large atom numbers
(Ng,>1), the equilibrium shape of the gas can be de-
rived using a Thomas-Fermi approximation, as for a true
condensate. The kinetic energy plays a negligible role,
and the density profile results from the balance between
the trapping potential and the repulsive interatomic po-
tential. It varies as an inverted parabola

(%) = ig(0)(1 = IR, (BIM)gyiig(0) = i, (106)
where the chemical potential x and the radius of the
clouds R are

w=ho(Ng,/m"2 R=\2a, (Ng,/m", (107)
with a |, =\hi/Mw.

The parabolic Thomas-Fermi profile appears on the
top of a broader background formed by atoms out of the
(quasi)condensate. Such a profile was experimentally ob-
served first by Gorlitz et al. (2001) and Rychtarik et al.
(2004). A precise measurement of the onset at which a
pure thermal distribution turns into a bimodal (Thomas-
Fermi + thermal) profile was performed by Kriiger et al.
(2007). The experiment was performed with a rubidium
gas confined in a 1D optical lattice, such that g,=0.13.
The phase-space density at which bimodality arises was
found to be in good agreement with the prediction of
Prokof’ev et al. (2001) for the BKT threshold n(O))\zT
=In(C/g,)=8.0, which is relevant here if the local-
density approximation is valid at the center of the trap.
At the critical point, the total number of atoms in each
plane significantly exceeded the result (94) expected in
the ideal case. In this experiment, two to three planar
gases were produced simultaneously, and they could in-
terfere with each other when overlapping during time of
flight, provided their spatial coherence was large
enough. It was observed that the onset of bimodality
coincides (within experimental accuracy) with the onset
of clearly visible interferences.

It is important to note that, since the expected
Thomas-Fermi profile is identical for a true and a qua-
sicondensate, its observation cannot be used to discrimi-
nate between the two situations. The phase fluctuations
have been calculated by Petrov and Shlyapnikov (2001)
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FIG. 24. Matter-wave heterodyning of 2D gases. (a) Principle
of the method: two planar Bose gases are released from the
trap, expand, and overlap, giving rise to an interference pat-
tern that is probed by absorption imaging. (b)-(e) Examples of
experimental interference patterns obtained well below (b)
and in the vicinity (c) of the degeneracy temperature. Some
patterns show one (d) or several (e) dislocations, revealing the
presence of vortices in one of the gases. From Hadzibabic et
al., 2006.

and Petrov, Gangardt, and Shlyapnikov (2004) in the re-
gime u=<kyzT and n\5>1 [see Eq. (A8) in the Appen-
dix],

8% (x) = ([$(0) — p(x)]?) = [2/7ip(0)NFIn(r/§).  (108)

This expression, which is reminiscent of the uniform re-
sult (100), is valid for points x inside the quasiconden-
sate. The healing length é=%/\2Mu satisfies éR=a .
Therefore, it is only at a temperature much below the
degeneracy temperature, such that A¢(R) <, that one
recovers a quasiuniform phase over the whole sample,
and hence a true condensate.

Experimental investigations of phase fluctuations. A
convenient way to access experimentally the phase co-
herence of quasi-2D gases is the matter-wave heterodyn-
ing technique. It consists in studying the statistical prop-
erties of the matter-wave interference pattern that forms
when two independent, parallel 2D Bose gases are re-
leased from the trap and overlap [Fig. 24(a)]. A detailed
analysis of these patterns was given by Polkovnikov et
al. (2006) (see Sec. III.C for the 1D case). Assume that
the two gases have the same uniform amplitude ¢, and
fluctuating phases ¢,(x,y) and ¢,(x,y). The interference
signal S(x,z) is recorded by sending an imaging beam
along the y direction, which integrates the atomic den-
sity over a length L,

S(x,2) = 248 + e ™Pe(x) + e 2™ Pex(x), (109)
with
'7”2 Ly/2 )
c(x) = L_Of et[wa(x,y)fqob(x,y)]dy_ (110)
y —Ly/2

The period D of the interference pattern is D
=2wht/Md, where d is the initial distance between the
two planes and ¢ is the expansion time. We now integrate
the coefficient c(x) appearing in Eq. (109) over a vari-
able length L,
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1 (L2
C(L,) = —f
YL, ~LJ2

and average |C(L,)|> over many images recorded in the
same conditions. Using the fact that the phases ¢, and
¢, are uncorrelated, we obtain, for L,>L,,

c(x)dx, (111)

1
({C(L)P) = 2 f f {c(x)c*(x"))dx dx’

1 (L2

1 2a
= |g(”(x,0)|2dx0<(—> , (112)
Lx -L,/2 Lx

where we have assumed that the two gases have the
same statistical properties. The long-range physics is
then captured in a single parameter, the exponent «. It is
straightforward to understand the expected values of «
in some simple cases. In a system with true long-range
order, g would be constant and the interference fringes
would be perfectly straight. In this case a=0, corre-
sponding to no decay of the contrast upon integration.
In the low-temperature regime, where g'" decays alge-
braically [see Eq. (100)], the exponent « coincides with
the exponent 7(T), which describes the quasi-long-range
order in g). In the high-temperature case, where gV
decays exponentially on a length scale much shorter
than L, the integral in Eq. (112) is independent of L,. In
this case a=0.5, corresponding to adding up local inter-
ference fringes with random phases. The BKT mecha-
nism corresponds to a transition from a power law with
exponent 1/ ns)\sz 0.25 to an exponential decay of gV, It
should thus manifest itself as a sudden jump of « from
0.25 to 0.5 when the temperature varies around 7.
This method has been implemented at ENS with two
rubidium planar gases, forming two parallel, elongated
strips (L, =120 um, L,=10 um) (Hadzibabic et al., 2006)
[Figs. 24(b)-24(e)]. The experimental results confirm the
expected behavior, at least qualitatively. At relatively
large temperature, the fitted exponent « is close to 0.5.
When the temperature decreases, a rapid transition oc-
curs and « drops to ~0.25. At the transition, the esti-
mated phase-space density of the quasicondensate is
ﬁO(O))\ZT~ 6. Note that, for a quantitative comparison be-
tween experiments and theory, one should account for
density fluctuations that are likely to play an important
point near the transition, in contrast to the situation in
superfluid liquid helium. Also the geometry effects in
these elongated samples (R,~12R,) may be significant.
In addition to the rapid variation of the exponent 7
characterizing the decay of g, these experiments gave
evidence for isolated vortices (Stock et al., 2005; Hadzi-
babic et al, 2006) [Figs. 24(d) and 24(e)]. A vortex
appears as a dislocation of the fringes in the interference
pattern (Chevy et al., 2001b; Inouye et al., 2001), and
these dislocations indeed proliferate on the high-
temperature side of the transition. Using a theoretical
analysis based on a classical field method, Simula and
Blakie (2006) obtained phase patterns of quasiconden-
sates close to the critical temperature that indeed exhibit
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an isolated, free vortex, in good agreement with experi-
mental observation. The probability for observing a vor-
tex pair in a similar configuration was calculated by
Simula et al. (2005).

The Berezinskii-Kosterlitz-Thouless mechanism was
also investigated recently using a two-dimensional peri-
odic array of ~200 Josephson coupled Bose-Einstein
condensates (Schweikhard et al., 2007). Each tubelike
condensate contains a few thousand atoms, and has a
length ~35 um along the z direction. The condensates
are localized at the sites of a 2D hexagonal optical lat-
tice of period 4.7 um in the x,y plane, and the coupling
J between adjacent sites can be tuned by varying the
optical lattice intensity. The phase properties of the en-
semble are probed by ramping down the lattice and re-
cording the density profile in the x,y plane when wave
functions from the various sites overlap. Vortices appear
as holes in the atomic density distribution, and the vor-
tex surface density is measured as a function of the Jo-
sephson coupling J and the temperature 7. A universal
vortex activation curve is obtained as a function of the
parameter J/T, showing vortex proliferation for J/T
=1, in good agreement with the predictions of the BKT
mechanism.

Breathing mode of a 2D gas. In the preceding section,
we were mostly interested in the static properties of 2D
Bose gases. Here we point out a remarkable dynamical
property of these systems in an isotropic harmonic po-
tential, when the interaction potential between particles
is such that V(\r)=V(r)/\% Pitaevskii and Rosch (1997)
showed that, when the gas is prepared in an arbitrary
out-of-equilibrium state, the quantity (r%) oscillates at
the frequency 2w without any damping, irrespective of
the strength of the interaction. They also proved that
this property originates from the presence of a hidden
symmetry, described by the two-dimensional Lorentz
group SO(2,1). In fact, precisely the same symmetry oc-
curs in the case of a unitary gas in 3D, as discussed in
Sec. VIIL.B.

The Dirac distribution in 2D §?(r) belongs to the
class of functions satisfying V(\r)=V(r)/\2. It makes this
SO(2,1) symmetry relevant for trapped neutral atoms at
low energies, when the range of interaction is small com-
pared to all other scales. However, a true contact inter-
action is singular in 2D, and leads to logarithmic ultra-
violet divergences that are cut off by the finite range of
the real interatomic potential. Therefore, one cannot
hope to observe a fully undamped breathing mode in
atomic systems, but rather a very weakly damped dy-
namics. It was pointed out by Fedichev et al. (2003) that
vortex pair nucleation could play a role in the residual
expected damping of this breathing mode. Note that the
difficulties with the contact interaction do not arise at
the level of the Gross-Pitaevskii equation, where the
same property has been predicted (Kagan et al., 1996;
Pitaevskii, 1996)

A precursor of this long-lived breathing mode was ob-
served in a 3D, quasicylindrical geometry by Chevy et al.
(2001a). The transverse breathing mode of the cylinder
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was found to oscillate at a frequency very close to 2w
with an extremely small damping (quality factor of the
mode >2000). The damping and shift of the oscillation
frequency was calculated theoretically with a good pre-
cision by Jackson and Zaremba (2002) [see also Guilleu-
mas and Pitaevskii (2003)]. In this case, part of the
damping is due to the nucleation of pairs of phonons
propagating along +z (Kagan and Maksimov, 2003), a
mechanism that is of course absent in a pure 2D geom-
etry. This breathing mode has also been observed in a
fast rotating gas by Stock et al. (2004). Its frequency was
also ~2w, with a small correction due to the nonharmo-
nicity of the trapping potential that was necessary to
stabilize the center-of-mass motion of the atom cloud in
the fast rotating regime (see Sec. VIL.B).

VII. BOSE GASES IN FAST ROTATION

The investigation of rotating gases or liquids is a cen-
tral issue in the study of superfluidity (Donnelly, 1991). It
is relevant for the study of liquid helium, rotating nuclei,
neutron stars, and pulsars, and for the behavior of super-
conductors in a magnetic field. During recent years, sev-
eral experiments using rotating Bose-Einstein conden-
sates have provided a spectacular illustration of the
notion of quantized vortices (Matthews et al., 1999;
Madison et al., 2000; Abo-Shaeer et al., 2001; Hodby et
al., 2001). Depending on the rotation frequency () of the
gas, a single vortex or several vortices can be observed
experimentally. When the number of vortices is large
compared to 1, they form an Abrikosov lattice, i.e., a
triangular array with a surface density n,=MQ/mh.
Since the circulation of the velocity around a single
charged vortex is h/M, this ensures that the velocity
field of the condensate, when calculated after coarse
graining over adjacent vortices, is equal to the orthora-
dial, rigid-body velocity field v=Qr (Feynman, 1955).

For a gas confined in a harmonic potential, the fast-
rotation regime corresponds to stirring frequencies () of
the order of the trapping frequency w in the plane per-
pendicular to the rotation axis (hereafter denoted z).
From a classical point of view, the transverse trapping
and centrifugal forces then compensate each other, and
the motion of the particles in the x,y plane is only
driven by Coriolis and interatomic forces. This situation
is similar to that of an electron gas in a magnetic field,
since Lorentz and Coriolis forces have the same math-
ematical structure. The single-particle energy levels are
macroscopically degenerate, as the celebrated Landau
levels obtained for the quantum motion of a single
charge in a magnetic field. When interactions between
atoms are taken into account, the fast-rotation regime
presents a strong analogy with quantum Hall physics.
One can distinguish two limiting cases in this fast-
rotation regime. First, when the number of vortices in-
side the fluid N, remains small compared to the number
of atoms N, the ground state of the system is still a Bose-
Einstein condensate described by a macroscopic wave
function ¢(x). This situation has been referred to as the
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mean-field quantum Hall regime (Ho, 2001; Fischer and
Baym, 2003). Second, when () tends to w, the number of
vortices reaches values comparable to the total number
of atoms N. The description by a single macroscopic
wave function breaks down, and one expects a strongly
correlated ground state, such as that of an electron gas
in the fractional quantum Hall regime (Cooper et al.,
2001).

In this section, we start by setting the lowest Landau
level (LLL) framework for the discussion of the fast-
rotation regime, and discuss the main properties of a fast
rotating condensate when the mean-field description re-
mains valid. We then present recent experimental results
where the LLL regime has indeed been reached. Finally,
we review some theoretical proposals to reach beyond
mean-field physics that present a close analogy with the
physics of the fractional quantum Hall effect. We do not
discuss here the physics of a slowly rotating system,
where one or a few vortices are involved. We refer the
reader to the review article of Fetter and Svidzinsky
(2001) and to Aftalion (2006). Note that a rigorous deri-
vation of the Gross-Pitaevskii energy functional in the
slowly rotating case was given by Lieb and Seiringer
(2000).

A. The lowest-Landau-level formalism

The Landau levels. We consider first a single particle
confined in a two-dimensional isotropic harmonic poten-
tial of frequency w in the x,y plane. We are interested
here in the energy level structure in the frame rotating
at angular frequency () (>0) around the z axis, perpen-
dicular to the x,y plane. The Hamiltonian of the particle
is

2 2.2
p Mo r
Hm=5ﬁ 5 —OL,
-A)? 1
= (p2—) + EM(wZ— 0?)r? (113)

with 2=x2+y?, A= MQAXx; L_ is the z component of the
angular momentum. Equation (113) is formally identical
to the Hamiltonian of a particle of unit charge placed in
a uniform magnetic field 2mz, and confined in a poten-
tial with a spring constant M(w?—?). A common eigen-
basis of L, and H is the set of (not normalized) Hermite
functions

ba(X) = €72 (9, + 10,V (d, - ia,) (e M), (114)

where j and k are non-negative integers and a,
=Vh/Mw. The eigenvalues are #(j—k) for L, and

Ejj=to+hi(w—Q)j+hlo+Q)k (115)

for H. For (J=w, these energy levels group in series of
states with a given k, corresponding to the well-known,
infinitely degenerate, Landau levels. For () slightly
smaller than w, this structure in terms of Landau levels
labeled by the index k remains relevant, as shown in Fig.
25. Two adjacent Landau levels are separated by ~2%w,
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FIG. 25. Single-particle energy spectrum for Q=0.9w. The in-
dex k labels the Landau levels. The energy is expressed in
units of iw. For ()=w, the Landau levels are infinitely degen-
erate.

whereas the distance between two adjacent states in a
given Landau level is i(w—Q)<fAw. It is clear from
these considerations that the rotation frequency () must
be chosen smaller than the trapping frequency in the x,y
plane. Otherwise, the single-particle spectrum (115) is
not bounded from below. Physically, this corresponds to
the requirement that the expelling centrifugal force
MQ?r must not exceed the trapping force in the x,y
plane, —Mw?r.

We now consider an assembly of cold identical bosons
rotating at a frequency () close to w. Since the effective
trapping potential in Eq. (113) becomes weaker as ()
increases, we expect that, as () — w, the equilibrium size
of the atom cloud increases indefinitely, and the interac-
tion energy and the chemical potential u tend to zero.
We define the lowest Landau level regime as the situa-
tion in which u,kzT <% w, so that the state of the system
can be accurately described in terms of Hermite func-
tions ¢;, with k=0 only. Each basis function ¢;(x) is
proportional to (x+iy)e" (2a1) and takes significant val-
ues on a ring centered on 0 with an average radius \«";'a n
and a width ~a,. Any function (x) of the LLL is a
linear combination of the ¢;,’s and can be cast in the
form

Wx) = e 24 P(u), (116)

where u=x+iy and P(u) is a polynomial (or an analytic
function) of u. When P(u) is a polynomial of degree #,
an alternative form of i(x) is

n
9(x) = 2] (- g, (117)
j=1
where {; (j=1,...,n) are the n complex zeros of P(u).

Each ¢ is the position of a single-charged, positive vor-
tex, since the phase of (x) changes by +27 along a
closed contour encircling ;. Therefore, in the LLL,
there is a one-to-one correspondence between atom and
vortex distributions, contrary to what happens for
slower rotation frequencies. This has interesting conse-
quences for the hydrodynamics of the gas, which cannot
be described by conventional Bernoulli and continuity
equations (Bourne et al., 2006).

Equilibrium shape of a fast rotating BEC. We now
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address the question of the distribution of particles and
vortices in the case of fast rotation, assuming that a
mean-field description is valid. We suppose that the mo-
tion along the rotation axis z is frozen in a way similar to
the preceding section devoted to static 2D gases.

Consider first the case of an ideal gas. At zero tem-
perature, all atoms accumulate in the j=k=0 ground
state. At low but finite temperature (kzT <2hw), the oc-
cupied states belong to the LLL. The gas can be de-
scribed at any time by a Hartree wave function of the
type (116), where the coefficients ¢, of the polynomial
P(u)=Z2c,,u™ are random independent variables. This
fast-rotating ideal gas can be viewed as a physical real-
ization of a random polynomial (Castin et al., 2006). A
measurement of the density distribution of the gas will
reveal the presence of the vortices, i.e., the roots of P(u).
Although the gas is ideal, one can show that the posi-
tions of the vortices are correlated and exhibit a strong
antibunching phenomenon [see Castin et al. (2006), and
references therein].

The case of a fast-rotating condensate with repulsive
interactions has been analyzed by Ho (2001), Cooper et
al. (2004), Watanabe et al. (2004), and Aftalion et al.
(2005), and we review the main results. In this section,
we assume that the pairwise interaction between atoms i
and j can be described by the contact term g,8(x;~X;).
We furthermore assume that the 3D scattering length a
is much smaller than the extension €, of the ground state
of the motion along z, so that g,=#2g,/M, with &,
=\8mall .<<1[see Eq. (105)]. Note that the restriction of
the contact interaction to the LLL subspace is a regular
operator: it does not lead to the same mathematical dif-
ficulties as the ones encountered by considering the con-
tact interaction in the whole Hilbert space of 2D wave
functions. In fact, quite generally, interactions in the
LLL are described by the Haldane pseudopotentials V,,
(Haldane, 1983). For a pseudopotential with scattering
length a, the resulting 2D contact interaction has V,,
=\2/mhwal € . for m=0 and zero otherwise. In the fermi-
onic case, where only odd values of m are allowed, the
analog of this interaction is a hard-core model, where
V,.# 0 only for m=1. The fact that the Laughlin states,
discussed in Sec. VIL.C, are exact eigenstates for such
pseudopotentials was realized by Trugman and Kivelson
(1985).

We start with a gas rotating exactly at the trap fre-
quency ({)=w), with an infinite number of particles but a
finite spatial density. In this case, the numerical minimi-
zation of the Gross-Pitaevskii energy functional indi-
cates that vortices form an infinite regular triangular lat-
tice. We turn now to a gas with a finite number of
particles, rotating at a frequency () slightly below w. The
initial treatment of Ho (2001) assumed an infinite, regu-
lar triangular vortex lattice also in this case. The total
energy of the system was minimized by varying the spac-
ing of the vortex lattice. When substituted into Eq.
(117), this led to the prediction of a Gaussian atom dis-
tribution after coarse graining over the vortex lattice
spacing. A more detailed analysis has been performed,
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FIG. 26. (Color online) Calculated structure of the ground
state of a rotating Bose-Einstein condensate described by a
LLL wave function, showing (a) vortex locations and (b)
atomic density profile. The parameters of the calculation cor-
respond to 1000 rubidium atoms confined in a trap with fre-
quency w/(27)=150 Hz and rotating at a frequency Q=0.99w.
The unit for the positions x and y is [#/(mw)]"?. From Aftal-
ion et al., 2005.

where the position {; of each vortex is taken as a varia-
tional parameter (Cooper et al., 2004; Watanabe et al.,
2004; Aftalion et al., 2005) [see also Anglin (2002) and
Sheehy and Radzihovsky (2004a, 2004b) for the case of a
slower rotation]. One spans in this way the whole LLL
subspace. These studies have shown that the vortex dis-
tribution that minimizes the total energy is nearly regu-
lar with the density MQ/=# close to the center of the
condensate, but is strongly deformed on the edges, with
a rarefaction of vortices (see Fig. 26). For large atom
numbers, the predicted coarse-grained density distribu-
tion is not Gaussian as for a uniform vortex lattice, but
approaches a Thomas-Fermi distribution 7,(x) > R?>—r?
similar to Eq. (106), for the effective trapping potential
M(w?-Q?r?/2. This Thomas-Fermi prediction is in
good agreement with results obtained in the experi-
ments described later in this section. The cloud radius is
2 Ng, \M
R ‘”( wl—Q/w) (118)
and diverges for ) — w, as expected from the compen-
sation of the trapping force by the centrifugal one. The
dimensionless coefficient b is the Abrikosov parameter
b=1.1596 (Kleiner et al., 1964) for a triangular lattice. It
expresses the fact that, due to the restriction to the LLL
and to the presence of vortices, the energy and size of
the condensate are actually slightly larger than one ex-
pects for a static trap with spring constant m(w’-Q?)
and a smooth equilibrium distribution. The chemical po-
tential is

w=hao[(2b/mNE,(1 - Q/w)]2,

so that the condition u<<%Aw for the validity of the LLL
approach reads 1-Q/w<<1/Ng,. It is also instructive to
calculate the number N, of “visible” vortices, i.e., those
that exist in the disk of area mR?. Using ()= so that
n,=muw/ wh, we get
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N,/N = (&,/N(1 - Q/w))"2.

As we see further on, the mean-field approach is valid
only if N,<<N so that the validity domain of the mean-
field LLL approach corresponds to the interval

8/N<1-Q/w<1/Ng, for mean-field LLL.
(119)

Note that the total number of vortices, including those
outside the Thomas-Fermi radius, can be shown to be
infinite for the wave function that minimizes the energy
in the LLL subspace (Aftalion et al., 2006).

It is interesting to compare the behavior of a fast-
rotating BEC with that of a fast-rotating bucket of su-
perfluid liquid helium, or a type-II superconductor in a
large magnetic field (Fischer and Baym, 2003). In the
latter cases, the size of the sample is constant and the
vortex density increases as the rotation frequency (or
the magnetic field) increases. Since the size of a vortex
core €. depends only on the spatial density of the fluid
(€.~ & the healing length), it stays constant as () in-
creases and one eventually reaches a point where the
cores of adjacent vortices overlap. This corresponds to a
loss of superfluidity or superconductivity. For superfluid
liquid helium, the rotation frequency (), where this
phenomenon should occur is beyond the reach of realis-
tic experiments. For superconductors, on the contrary,
the critical field H,, where the superconductivity is lost
is a relevant experimental parameter. For fast-rotating,
harmonically trapped gases, the scenario is very differ-
ent: (i) the vortex density saturates to a constant value
n,=Ma/mh=1/ma* when Q approaches w; and (ii) the
size €. of the vortex core for a wave function of the type
(117) is no longer dictated by interactions that would
lead to €.~ ¢ as for an incompressible fluid, but it is on
the order of the vortex spacing a . Therefore, the frac-
tional area ﬁoﬁ occupied by vortices tends to a finite
value, as the trapped BEC rotates faster and faster. The
crossover between the standard to the LLL regime has
been studied by Baym and Pethick (2003) and Cozzini et
al. (2006).

B. Experiments with fast-rotating gases

The most intuitive way to rotate a trapped atomic gas
is to superpose a rotating anisotropic potential onto the
axisymmetric trapping potential V(r)=Maw?*r?/2. The
stirring anisotropy can be written SV(x,)=eMw?(X?
—Y?)/2, where the coordinates (X,Y) are deduced from
the static ones (x,y) by a rotation of angle Qf. The di-
mensionless parameter e characterizes the strength of
the stirring potential with respect to the trapping one. In
practice, because of experimental limitations, € has to be
on the order of at least a few percent. Indeed, it must
overcome by a significant factor the residual static aniso-
tropy of the trapping potential, which is typically in the
1073~1072 range (Guéry-Odelin, 2000).

The stirring potential can be created by a modulated
laser beam (Madison et al., 2000; Abo-Shaeer et al.,
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2001) or by a rotating magnetic field (Haljan et al., 2001;
Hodby et al., 2001). The stirring method has been suc-
cessfully used to nucleate single vortices as well as large
vortex arrays in rotating BEC’s. However, it is not fully
appropriate for approaching the fast-rotating regime of
a harmonically trapped gas. Indeed the center-of-mass
motion of the atom cloud is dynamically unstable when
the rotation frequency () is set in the interval
[w\e’re, w\e’re] (Rosenbusch et al., 2002). A precise de-
scription of the rotating system at the edge of the insta-
bility region Q=w\1-€ has been given by Sinha and
Shlyapnikov (2005) [see also Fetter (2007)], who showed
that the gas forms in this case a novel elongated quan-
tum fluid, with a roton-maxon excitation spectrum. Ex-
citation modes with zero energy appear above a critical
interaction strength, leading to the creation of rows of
vortices.

A possible way to circumvent the center-of-mass ex-
pulsion occurring at )~ w consists in adding an extra
trapping potential that provides a stronger than qua-
dratic confinement. This method was explored experi-
mentally by Bretin ef al. (2004). In this experiment, the
dipole potential created by a strongly focused laser
beam provided quartic confinement, in addition to the
usual quadratic one. It was then possible to explore the
critical region )~ w and to approach the LLL regime
pu~2ho. A striking observation was a strong decrease of
the visibility of the vortex pattern in this region. Its ori-
gin is not fully understood yet, but it may be related to
the fact that the rotating gas was not in the 2D regime.
The shape of the rotating cloud was close to spherical,
and the vortex lines may have undergone a strong bend-
ing with respect to the trap axis, which made them
hardly visible in the imaging process. This explanation is
favored in the theoretical study by Aftalion and Danaila
(2004): when looking for the ground state of the system
using imaginary-time evolution of the Gross-Pitaevskii
equation, it was found that much longer times were re-
quired for ()= w to reach a well-ordered vortex lattice.

Note that the addition of a quartic potential brings
some interesting and novel aspects to the vortex dynam-
ics in the trap, with the possibility of nucleating “giant”
vortices. This was initially explored by Fetter (2001),
Kasamatsu et al. (2002), and Lundh (2002). The mean-
field description of the dynamics of a BEC in nonhar-
monic potentials was the subject of important theoreti-
cal activity, and we refer the reader to the work of
Cozzini et al. (2006), and references therein.

Another successful method to reach the fast-rotation
regime is the evaporative spin-up technique developed
by Engels et al. (2002). The cloud is first set in rotation at
a frequency ) well below o using a magnetic stirrer,
which is subsequently switched off. Then a nearly one-
dimensional radio-frequency evaporation along the axis
of rotation cools the cloud. Simultaneously, the rotation
speed of the gas increases since evaporated atoms carry
less angular momentum than average. With this tool,
Schweikhard et al. (2004) has succeeded in producing a
gas rotating at 1>0.99w» with a purely harmonic con-
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FIG. 27. Fraction of the condensate surface area occupied by
the vortex cores as a function of 24/ u. The vortex radius r,, is
defined as the rms radius of the Gaussian function giving the
best fit to the density dip at the vortex location. Dashed line is
the predicted 3D bulk value r,=1.94¢, where £ is the healing
length. For fast rotation, the vortex core area deviates from
this prediction and it saturates at a value close to the predic-
tion by Baym (2003) (continuous line). From Schweikhard et al.
(2004).

finement. Thanks to the centrifugal deformation, the ra-
dius of the gas in the xy plane increases, whereas the
thickness along z shrinks to the size of the ground state
Vhi/mao,, setting the gas well inside the 2D regime. As
the total volume of the gas increases, interactions are
reduced: the chemical potential .~ 10 Hz drops below
the splitting between two Landau levels 27w (17 Hz),
and the LLL regime is reached (Schweikhard e al,
2004). With this setup, it was possible to test the predic-
tion that the fractional core area of the vortices saturates
to a value on the order of 0.2 (Coddington et al., 2004;
Schweikhard et al., 2004), as predicted theoretically
(Baym, 2003) (Fig. 27). In addition, the expected distor-
tion of the vortex lattice with respect to an ideal trian-
gular array could be detected experimentally on the
edge of the rotating condensate (Coddington et al.,
2004). Following Anglin and Crescimanno (2002), an-
other interesting investigation performed on this system
dealt with the Tkachenko oscillations (Tkachenko, 1966)
[for a review, see Sonin (1987)], i.e., the long-wavelength
transverse excitations of the vortex lattice (Coddington
et al., 2003). The Tkachenko waves could be directly im-
aged and their frequency could be measured with good
precision. Theoretical analysis of these oscillations was
performed within the mean-field approximation [Baym
(2003, 2004); Choi et al. (2003); Baksmaty et al. (2004);
Cozzini et al. (2004); Gifford and Baym (2004); Mi-
zushima et al. (2004); Woo et al. (2004); Sonin (2005a,
2005b); and Chevy (2006)].

Fast rotation of a BEC can also be achieved by stir-
ring the gas with a potential that is more elaborate than
a quadratic one. One can use in particular a rotating
optical lattice that creates a rotating, spatially periodic
pattern on the gas. This was explored by Tung et al.
(2006), who superimposed on a rotating BEC a set of
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columnar pinning sites created by a two-dimensional,
corotating optical lattice. For a sufficiently large laser
intensity, the optical lattice can impose its structure to
the vortex lattice; Tung et al. (2006) studied, in particular,
the transition from the usual triangular Abrikosov lat-
tice to a square configuration imposed by light. Theoret-
ical investigations of this problem were carried out by
Reijnders and Duine (2004, 2005) and Pu et al. (2005)
who found that a rich variety of structural phases can
emerge in this geometry, from the competition between
vortex—vortex and vortex—optical lattice interactions.

C. Beyond the mean-field regime

In the mean-field description of a fast-rotating gas, the
macroscopic wave function (x) is a solution of the non-
linear Gross-Pitaesvkii equation and corresponds to a
vortex lattice. The radius of the atom cloud, given in Eq.
(118), is a measure of the number j,,,, of single-particle
LLL states ¢;, that have a significant po_pulation. Re-
calling that ¢, is maximum for a radius vja,, we find

Jmax = (Rla,)? =[Ng,/(1 - Qw)]'". (120)

The filling factor v=N/j ., gives the average number of
particles in each occupied single-particle state. When v
>1, one expects the mean-field treatment to be valid,
and j,.x 1S equal to the number N, of visible vortices
existing in the atom disk. On the contrary, when () tends
to w, v becomes of the order of unity or below, the num-
ber of vortices N,, exceeds the number of atoms, N, and
one has to turn to a full many-body treatment of the
problem. This breakdown of the mean-field approxima-
tion occurs when

1-Q/o=<g,/N (non-mean-field). (121)

Analysis of this ultrafast-rotating regime presents strong
analogies with the fractional quantum Hall effect
(FQH). In the latter case, one is interested in the corre-
lated state of a 2D electron gas with Coulomb interac-
tion when it is placed in a strong magnetic field. In both
cases, the states of interest are restricted to the LLL and
one looks for specific filling factors where ground states
with specific properties can emerge. Note that, for
bosons, the filling factor can be arbitrarily large within
the LLL, while for fermions it is restricted to »<<1. One
remarkable feature is incompressibility, meaning that
the ground state is separated from all excited states by a
“macroscopic” energy gap scaling as g,. Moreover, it
leads to the appearance of edge states near the bound-
ary of the system, similar to the wedding-cake structure
of the Mott-insulating state of the Bose-Hubbard model
(see Sec. IV.B). These edge states are crucial for under-
standing the quantization of the Hall conductance; see
MacDonald (1994) and—on a more mathematical
level—Frohlich and Studer (1993).

Numerical studies. So far the ultra fast-rotation regime
has not been reached experimentally. Even for the fast-
est rotations realized in the laboratory, the filling factor
vis ~10° (N~10°, N,~10?), well inside the mean-field
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regime. Therefore, results obtained so far originate from
an exact numerical diagonalization of the many-body
Hamiltonian and from the connection with known fea-
tures of the fermionic FQH.

Most studies are performed by considering states with
a given total angular momentum L, so that the problem
essentially consists in finding the eigenstates of the inter-
action energy

h2g
B82S Sx;—x)).

Vine = M
i<j

(122)
All states considered hereafter belong to the LLL sub-
space, so their functional form in the xy plane is

N
V(xq,...,Xy) = P(uy, ... ,uN)exp<— > r]Z/Zai),
j=1

(123)

where u;=x;+iy;, rf:xfﬂf and P(uq,...,uy) is a sym-
metric polynomial. The z motion is expected to be “fro-
zen” to its ground state, and it is not explicitly written in
what follows. If one is interested only in the bulk prop-
erties of the vortex liquid state, it is convenient to re-
place the inhomogeneous disk geometry of a real experi-
mental setup by a compact, homogeneous geometry.
Both torus (Cooper et al., 2001) and spherical (Nakajima
and Ueda, 2003; Regnault and Jolicoeur, 2003), mani-
folds have been considered. The LLL is then a space of
finite dimension dy;, proportional to the area 4 of the
torus or the sphere: dyj;=.A4/ 7-ra2l. This allows one to
define in a nonambiguous way the filling factor v (v
=N/d;;;) even for values on the order of 1 or below,
where the notion of visible vortices becomes dubious.

Melting of the vortex lattice. When increasing the ro-
tation speed of the gas, the first expected deviation from
the mean-field regime is the quantum melting of the vor-
tex lattice. This has been observed by Cooper et al.
(2001) in exact numerical calculations for filling factors
v=N/N,~6-10. This value can be recovered by calcu-
lating the quantum fluctuations A of vortex positions
and applying the Lindemann criterion A~ €/10,
where ¢ is the vortex spacing (Sinova et al., 2002). For v
smaller than the melting threshold, one meets for the
ground state of the many-body system a series of
strongly correlated ground states that we now discuss.

The Laughlin state and its daughter states. Since in-
creasing the angular momentum spreads out the atoms
in space, one expects the interaction energy E(L,) of the
ground state for a given L, to decrease as L, increases
[see, e.g., Jackson and Kavoulakis (2000)]. This decrease
stops when one reaches the celebrated Laughlin wave
function, adapted here for bosonic particles,

Pra(uy g, .uy) =TT (u; - ).
i<j

(124)

Indeed, since the probability to get two particles at the
same point vanishes, this state has the remarkable prop-
erty of being an eigenstate of the contact interaction
potential with eigenvalue 0 (Trugman and Kivelson,
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1985). Increasing L, beyond this point cannot reduce
further E(L,). The total angular momentum L_/# of this
state is equal to the degree N(N—1) of each term of the
polynomial Py,,, and this state expands over all LLL
single-particle wave functions ¢;( from j=0 to jy,y
=2(N-1), i.e., a filling factor v=1/2. The Laughlin state
is incompressible and the gap to the first excited state is
~0.1g,hw (Regnault and Jolicoeur, 2003, 2004). The
Laughlin state is characterized by a quasiuniform den-
sity of particles over the circle of radius a L\T\/ The
two-body correlation function for this state shows a
strong antibunching g@(r—0)~r2 This correlation
function has been calculated numerically for a number
of bosons N up to 8 by Barberan et al. (2006).

For L,/A>N(N-1), any state P(uy,...,uy)
=Pra(uy, ..., un)O(uy,...,uy), where Q is an arbitrary
symmetric polynomial, is a ground state of the system
with interaction energy 0. Depending on the total degree
dg of Q, the physical interpretation of the state can be
(i) for dyp~1, edge excitations of the Laughlin state
(Cazalilla, 2003; Cazalilla et al., 2005); (ii) for dy=N,
quasiholes at a given point U, are obtained by taking
O=1II(uj-Uy) (Paredes et al., 2001, 2002); and (iii) for
do~ N?, Laughlin-type wave functions with smaller fill-
ing factors, by replacing the exponent 2 by 4.6,... in Eq.
(124).

The composite fermion sequence. For filling factors be-
tween the melting point v~10 and the Laughlin state
v=1/2, it is not possible to give an exact analytical ex-
pression of the ground state at any given ». One finds,
however, strong overlap between numerically deter-
mined ground states and some relevant states for the
physics of the electronic fractional quantum Hall effect.
An example is the composite fermion sequence, which
presents strong analogies with the Jain principal se-
quence for fermions (Jain, 1989). The first evidence for
this sequence was found by Cooper and Wilkin (1999),
and was studied by Regnault and Jolicoeur (2003, 2004).
The physics at the origin of the states of this sequence is
reminiscent of that explored in the section on 1D gases,
where the problem of bosonic particles with repulsive
interaction is mapped onto the properties of an assem-
bly of noninteracting fermionic particles. Here one con-
siders that the gas is formed with fermionic composite
entities, each resulting from the attachment of a fermi-
onic particle with a vortex carrying one unit of statistical
flux. These composite fermions can be viewed as inde-
pendent particles that occupy various Landau levels.
When they occupy exactly n Landau levels, they form an
incompressible state. This occurs when the filling frac-
tion in the initial state is v=n/(n+1). From a more quan-
titative point of view, the composite fermion ansatz cor-
responds to a wave function of the type

P(ul’ 7MN) = PLLL Qn(ul’ ’MN)H (ui - Lt])] .

i<j
(125)

P describe the projector onto the LLL subspace [for
its precise definition, see, e.g., Chang et al. (2004)]. The
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first term in the brackets, Q,(uy,...,uy), is a Slater de-
terminant giving the state of N fictitious fermions filling
exactly n Landau levels. The second term involving
products of u;—u; (Jastrow factor) corresponds to the
attachment of a vortex to each fermion. Since both
terms in the brackets are antisymmetric in the exchange
of two particles, their product is a symmetric wave func-
tion, suitable for the description of our N identical
bosons. Numerical evidence for such states was obtained
for v=2/3 and 3/4 by Regnault and Jolicoeur (2003,
2004) and Chang et al. (2004). The surface waves of vor-
tex liquids whose wave functions can be described by the
composite fermion ansatz have been studied by Cazalilla
(2003), Regnault and Jolicoeur (2004), and Cazalilla et al.
(2005).

The Read-Moore state and the Read-Rezayi series. For
the filling factor v=1, yet another type of approximate
ground state has been identified (Cooper et al., 2001),
namely, the Moore-Read state, or Pfaffian. Assuming
that N is even, the expression of this state is

P(ul,...,uN)=s{ T @-u? T (uz—unﬂ],

i<j<NI2 Ni2<i<n
(126)

where S indicates symmetrization over all indices. The
total degree of each term of this polynomial is N(N
—-2)/2 and the state expands over single-particle LLL
wave functions from k=0 up to k,,,,=N-2, correspond-
ing to a filling factor v=1. For v=1/2, the ground state is
incompressible with a gap ~0.05g,Aw (Chang et al.,
2004). It is noteworthy that for this state the probability
is zero to have three particles at the same location in
space.

For even larger filling factors (v between 1 and 10), an
analysis performed in a torus geometry suggested that
the system has incompressible ground states belonging
to a family containing clusters of k particles (Cooper et
al., 2001) and corresponding to integer or half-integer
filling factors. This so-called Read-Rezayi series (Read
and Rezayi, 1999) is constructed by taking symmetrized
products of k Laughlin states of the type II;j<nu(u;
—u;)* (assuming that N is a multiple of k). The Laughlin
and Moore-Read states correspond to k=1 and 2, re-
spectively. The filling factor associated with these states
is k/2 and the total angular momentum is L,/% ~ N?/k.
Further calculations performed in the spherical geom-
etry could not draw any conclusion concerning the sur-
vival of the incompressibility of such states at the ther-
modynamic limit (Regnault and Jolicoeur, 2004).

Possible detection schemes for fractional quantum Hall
effects. We now review some possible ways to observe
effects related to fractional quantum Hall physics ex-
perimentally. Note that it is unlikely that condensed-
matter-type techniques, based on transport properties
with specific conductance plateaus, can be implemented
with rotating atomic gases, at least in the near future.
We also point out that the condition (121) giving the
threshold for the observation of mean-field effects
imposes de facto the requirement to work with very
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small atomic samples. Consider, for example, a purely
harmonic trap. Due to residual trap imperfections, it
seems unlikely that one can achieve rotation frequencies
Q larger than 0.999w [rotation frequencies ~0.99w have
been achieved by Schweikhard et al. (2004)]. Taking &,
~0.1, this sets an upper bound of ~100 on the atom
number. Working with such small atom numbers is not
intractable, but it immediately makes this type of experi-
ment challenging from a technical point of view.

A first possible experimental signature of the Laugh-
lin and Read-Moore states could lie in the fact that three
particles can never be at the same location in space for
these wave functions. As three-body recombination is
often the main source of atom losses, one can expect
that the achievement of these states could be revealed
by a strong increase of the lifetime of the gas, similar to
what has been observed in one dimension by Tolra et al.
(2004), where g®)(0) is suppressed.

We now turn to more quantitative studies of these
incompressible states. A “simple” experimental evi-
dence for a state such as the Laughlin wave function
could come from its specific density profile, which is uni-
form over a disk of radius a \s"f\/, and zero elsewhere.
This flat profile with density 1/(27Ta2l) is notably differ-
ent from the parabolic density profile expected in the
mean-field regime, and its observation would constitute
a clear signature of a beyond mean-field effect. Usually
one does not measure directly the in-trap density profile,
because the relevant distances are on the order of a few
micrometers only, which is too small to be detected with
good accuracy by optical means. The standard proce-
dure to circumvent this problem is to use a time-of-flight
technique, where the potential confining the atoms is
suddenly switched off so that atoms fly away ballistically
during an adjustable time before being detected. For an
arbitrary initial state, the functional form of the density
distribution is modified during the time of flight. For an
LLL wave function, this modification is scaling, at least
when interactions between atoms are negligible during
the time of flight (Read and Cooper, 2003). In particular,
the disk-shaped structure associated with the Laughlin
state should remain invariant in ballistic expansion.

If the number of atoms is larger than that required to
form a Laughlin wave function at the particular fre-
quency () that is used, one expects a wedding-cake struc-
ture for the atomic density (Cooper et al., 2005). This
result is obtained within a local-density approximation
and is reminiscent of the structure appearing in an
atomic Mott insulator confined in a harmonic trap. At
the center of the trap where the density is the largest,
atoms may form an incompressible fluid corresponding,
for example, to the filling factor 2/3, which is one of the
composite fermion states identified above. The atomic
density is then expected to be constant and equal to
2/ 377512l over a central disk of radius R;. For r=R;, the
gas switches abruptly (over a distance ~a,) to the
Laughlin state with filling factor 1/2 and the density
drops to the value 1/(27a?). It then stays constant over
a ring of outer radius R, (R,>R;), and for r>R, the
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density drops to zero. The values of R; and R, can be
obtained from a simple energy minimization (Cooper et
al., 2005). For larger atom numbers, several plateaus,
with decreasing densities corresponding to the various
filling factors of the incompressible states, are expected.

The possibility of adding an optical lattice along the z
direction adds an interesting degree of freedom to the
problem, and brings hope to experimentalists of working
with a notably larger atom number. In this configuration,
one deals with a stack of N, parallel disks, all rotating at
the same frequency () along the z axis. Each disk is
coupled to its neighbors by tunneling across the lattice
barrier, with a strength that can be adjusted. For large
coupling, the situation is similar to a bulk 3D problem;
when the coupling is reduced, the system evolves to the
quasi-2D regime. This raises interesting questions even
at the level of a single-vortex motion, as pointed out by
Martikainen and Stoof (2003). The melting of the vortex
lattice in a stack of N, layers was investigated by Cooper
et al. (2005) and Snoek and Stoof (2006a, 2006b). For
smaller filling factors, both the density profiles along z
and in the xy plane should show the wedding-cake struc-
ture characteristic of incompressible states (Cooper et
al., 2005).

More elaborate techniques have been proposed to test
the anyonic nature of the excitations of incompressible
states. Paredes et al. (2001) investigated the possibility of
creating anyons in a Laughlin state by digging a hole in
the atomic gas with a tightly focused laser. If the hole is
moved adiabatically inside the cloud, it should accumu-
late a phase that could be measured by an interference
experiment. The accumulated phase should then reveal
the anyonic structure of the hole-type excitation [see
also Paredes et al. (2002)].

D. Artificial gauge fields for atomic gases

As shown in Eq. (113), rotating a neutral particle
system is equivalent to giving these particles a unit
charge and placing them in a magnetic field proportional
to the rotation vector ) [see Eq. (113)]. Other possibili-
ties have been suggested for applying an artificial gauge
field on a neutral gas. The common idea in these pro-
posals is to exploit the Berry’s phase (Berry, 1984) that
arises when the atomic ground level is split (e.g., by an
electromagnetic field) into several space-dependent
sublevels, and the atoms follow one of them adiabati-
cally. We consider the one-body problem, and label
{ln,)} the local energy basis of the atomic ground level,
with the associated energies E,(x). The most general
state of the atom is a spinor =,i,(x)|ny), which evolves
under the Hamiltonian p?/(2m)+2,E,(x) |ng{(ny|. Sup-
pose now that the atom is prepared in a given sublevel
n, and that the motion of the atomic center of mass is
slow enough to neglect transitions to other internal sub-
levels n'. This is the case in particular in a magnetic trap
where the index n simply labels the various Zeeman sub-
states. One can then write a Schrodinger equation for
the component ¢,(x), and the corresponding Hamil-



936 Bloch, Dalibard, and Zwerger: Many-body physics with ultracold gases

tonian reads H=[p-A,(x)]*/(2m)+V,(x). The vector
potential A, is related to the spatial variation of the
sublevel |n),

An(x) = ih<nx|vnx>7 (127)

and the scalar potential V, is

Vn(x) = En(x) + (hz/zm)(<vnx|vnx> - |<nx|vnx>|2)-
(128)

If the spatial variation of the sublevels |n,) is such that
VAA,#0, this gauge field can in principle have the
same effect as rotating the atomic gas.

The simplest occurrence of an artificial gauge field
happens in a loffe-Pritchard magnetic trap (Ho and
Shenoy, 1996). The sublevels |n,) are the various Zee-
man substates, which are space dependent because the
direction of the trapping magnetic field is not constant
over the trap volume. However, the gauge field A,, that
is generated in this configuration is too small to initiate
the formation of vortices. The addition of a strong elec-
tric field could increase the magnitude of the artificial
gauge field, as shown by Kailasvuori et al. (2002). An
alternative and promising line of research considers
the concept of dark states, where two sublevels of the
atomic ground state are coupled by two laser waves to
the same excited state. If the laser frequencies are prop-
erly chosen, there exists a linear combination of the two
sublevels that is not coupled to the light, and the spatial
evolution of atoms prepared in this dark state involves
the vector and scalar potentials given above (Dum and
Olshanii, 1996; Visser and Nienhuis, 1998; Dutta et al.,
1999). Possible spatial profiles of laser waves optimizing
the resulting artificial rotation field have been discussed
by Juzeliunas and Ohberg (2004), Juzeliunas et al. (2005,
2006), and Zhang et al. (2005). These proposals have not
yet been implemented experimentally.

Similar effects have also been predicted in a lattice
geometry by Jaksch and Zoller (2003), where atoms with
two distinct internal ground-state sublevels are trapped
in different columns of the lattice. Using a two-photon
transition between the sublevels, one can induce a non-
vanishing phase of particles moving along a closed path
on the lattice. Jaksch and Zoller (2003) showed that one
can reach a “high-magnetic-field” regime that is not ex-
perimentally accessible for electrons in metals, charac-
terized by a fractal band structure (the Hofstadter but-
terfly). The connection between the quantum Hall effect
and the lattice geometry in the presence of an artificial
gauge potential has been analyzed by Mueller (2004)
and Sgrensen et al. (2005). One can also generalize the
Berry’s phase approach to the case in which several en-
ergy states are degenerate (Wilczek and Zee, 1984).
Non-Abelian gauge fields emerge in this case, and pos-
sible implementations on cold-atom systems have been
investigated theoretically by Osterloh et al. (2005) and
Ruseckas et al. (2005).
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VIII. BCS-BEC CROSSOVER

One of the basic many-body problems that has been
brought into focus by the study of ultracold atoms is that
of a two-component attractive Fermi gas near a reso-
nance of the s-wave scattering length. The ability to tune
the interaction through a Feshbach resonance allows
one to explore the crossover from a BCS superfluid,
when the attraction is weak and pairing shows up only
in momentum space, to a Bose-Einstein condensate of
tightly bound pairs in real space. Here we discuss the
problem in the spin-balanced case, which—in contrast to
the situation at finite imbalance—is now well under-
stood.

A. Molecular condensates and collisional stability

The experimental study of the BCS-BEC crossover
problem with ultracold atoms started with the realiza-
tion of Fermi gases in the regime of resonant interac-
tions kgla|>1 by O’Hara et al. (2002). They observed an
anisotropic expansion, characteristic of hydrodynamic
behavior. Typically, this is associated with superfluidity
because ultracold gases above the condensation tem-
perature are in the collisionless regime. Near a Feshbach
resonance, however, a hydrodynamic expansion is ob-
served both above and below the transition tempera-
ture. It is only through the observation of stable vortices
that superfluid- and collision-dominated hydrodynamics
can be distinguished. The BEC side of the crossover was
first reached by creating ultracold molecules. This may
be done by direct evaporative cooling on the positive a
side (Jochim et al., 2003a), where the weakly bound mol-
ecules are formed by inelastic three-body collisions. Al-
ternatively, molecules can be generated in a reversible
manner by using a slow ramp of the magnetic field
through a Feshbach resonance (Cubizolles et al., 2003;
Regal et al., 2003). This allows a quasibound state of two
fermions at a <0 to be converted into a true bound state
at a>0 [for a review of this technique, see Kohler et al.
(2006)]. Subsequently, a BEC of those molecules was re-
alized both by direct evaporative cooling (Jochim et al.,
2003b; Zwierlein et al., 2003b) for a >0, or by converting
a sufficiently cold attractive Fermi gas at ¢ <0 to a mo-
lecular condensate, using an adiabatic ramp across the
Feshbach resonance (Greiner et al., 2003). Experiments
are done with an equal mixture of the two lowest hyper-
fine states of °Li or of “°K confined optically in a dipole
trap. This allows the scattering length to be changed by
a magnetically tunable Feshbach resonance at B,=835
or 202 G, respectively. On the BEC side, the fact that
molecules are condensed can be verified experimentally
by observing a bimodal distribution in a time-of-flight
experiment. Probing superfluidity in Fermi gases on the
BCS side of the crossover, however, is more difficult. In
particular, a time-of-flight analysis of the expanding
cloud does not work here. Indeed, due to the factor
exp[-m/(2kglal)] in the critical temperature [see Eq.
(136) below], superfluidity is lost upon expansion at con-
stant phase-space density in contrast to the situation in



Bloch, Dalibard, and Zwerger: Many-body physics with ultracold gases 937

BEC3%.'"® As discussed below, this problem may be cir-
cumvented by a rapid ramp back into the BEC regime
before the expansion. A major surprise in the study of
strongly interacting Fermi gases was the long lifetime of
molecules near a Feshbach resonance (Cubizolles et al.
2003; Jochim et al., 2003a; Strecker et al., 2003), in stark
contrast to the situation encountered with bosonic atoms
(Herbig et al., 2003; Diirr et al., 2004). The physics be-
hind this was clarified by Petrov, Salomon, and Shlyap-
nikov (2004), who solved the problem of scattering and
relaxation into deeply bound states of two fermions in
the regime where the scattering length is much larger
than the characteristic range of the interaction, r,. As
shown in Sec. I.A, this range is essentially the van der
Waals length Eq. (2), which is much smaller than a in the
vicinity of a Feshbach resonance. The basic physics that
underlies the stability of fermionic dimers in contrast to
their bosonic counterparts is the fact that relaxation into
deep bound states is strongly suppressed by the Pauli
principle. Indeed, the size of the weakly bound dimer
states is the scattering length a, while that of the deep
bound states is r,<<a. By energy and momentum conser-
vation, a relaxation into a deep bound state requires that
at least three fermions are at a distance of order r,. Since
two of them are necessarily in the same internal state
and their typical momenta are of order k=1/a, the
probability of a close three- (or four-) body encounter is
suppressed by a factor (kr,)>~ (r,/a)* due to the anti-
symmetrization of the corresponding wave function.
From a detailed calculation (Petrov et al., 2005), the re-
laxation into deeply bound states has a rate constant (in
units of cm?3/s)

e = C(hr /M)(r la)’, (129)

which vanishes near a Feshbach resonance with a non-
trivial power law. The exponent s=2.55 or 3.33 and the
dimensionless prefactor C depend on whether the relax-
ation proceeds via dimer-dimer or dimer-atom collisions.
From experimental data, the coefficient of the dominant
dimer-dimer relaxation is C=20 (Bourdel et al., 2004;
Regal et al., 2004b). Its value depends on short-range
physics on the scale r, and thus cannot be calculated
within a pseudopotential approximation. At a finite den-
sity, the power-law dependence a™* holds only as long as
the scattering length is smaller than the average inter-
particle distance. The actual relaxation rate na,,, in fact,
stays finite near a Feshbach resonance and is essentially
given by replacing the factor r./a in Eq. (129) by kgr,
<1 (Petrov, Salomon, and Shlyapnikov, 2004). In prac-
tice, the measured lifetimes are on the order of 0.1 s for
“K and up to about 30 s for °Li. This long lifetime of
fermionic atoms near a Feshbach resonance is essential

®In this respect, the situation in two dimensions, where pair
binding appears for arbitrary values of the scattering length a,
is much more favorable because the two-particle binding en-
ergy (83) is density-independent. Since T,~ Vepep~n'?, the
superfluid transition can be reached by an adiabatic expansion
at constant T/ Tp; see Petrov et al. (2003).
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for a study of the BCS-BEC crossover, because it allows
one to reduce the physics near the resonance to an ide-
alized, conservative many-body problem in which relax-
ational processes are negligible.

The issue of dimer-dimer collisions has an additional
aspect, which is important for the stability of the
strongly attractive Fermi gas. Indeed, molecules con-
sisting of two bound fermions also undergo purely elas-
tic scattering. It is obvious that a molecular conden-
sate will be stable only if the interaction of these
effectively bosonic dimers is repulsive. From an exact
solution of the four-particle Schrédinger equation with
pseudopotential interactions, Petrov, Salomon, and
Shlyapnikov (2004) have shown that in the limit where
the distance R (denoted by R/\2 in their paper) between
the centers of mass of two dimers is much larger than
the dimer size a and at collision energies much smaller
than their respective binding energies #%/2M,a®, the
wave function has the asymptotic form

W (x1,%,,R) = ¢(r1) @o(r2) (1 — agd/R),

with ay4q=0.60a. Here ¢,(r)~exp(-r/a) is the bound-
state wave function of an individual dimer and x;,
are the interparticle distances between the two distin-
guishable fermions of which they are composed. It fol-
lows from Eq. (130) that the effective dimer-dimer inter-
action at low energies is characterized by a positive
scattering length, which is proportional to the scattering
length between its fermionic constituents. This guaran-
tees the stability of molecular condensates and also im-
plies that there are no four-particle bound states for
zero-range interactions."’ Experimentally, the dimer-
dimer scattering length can be inferred from the radius
R=4€y(15Nayq/€,)"® of a molecular condensate with
N dimers in a trap. The value found in fact agrees well
with the prediction ayq=0.60a (Bartenstein et al., 2004a;
Bourdel et al., 2004). Physically, the repulsion between
dimers can be understood as a statistical interaction due
to the Pauli principle of its constituents. Within a phe-
nomenological Ginzburg-Landau description of the mo-
lecular condensate by a complex order parameter i/(x),
it is related to a positive coefficient of the |#* term. In
fact, the repulsive interaction between dimers was first
derived from a coherent-state functional integral repre-
sentation of the crossover problem (Drechsler and
Zwerger, 1992; Sa de Melo et al., 1993). These results,
however, were restricted to a Born approximation of the
scattering problem, where a'5'=2a (S4 de Melo e al.,
1993). A derivation of the exact result ayq=0.60a from
diagrammatic many-body theory has been given by
Brodsky et al. (2006) and Levinsen and Gurarie (2006). It
is important to note that the stability of attractive fermi-
ons along the BCS-BEC crossover relies crucially on the
fact that the range of the attractive interaction is much
smaller than the interparticle spacing. For more general

(130)

YSuch states are discussed in nuclear physics, where « par-
ticles in a nucleus may appear due to pairing correlations; see,
e.g., Ropke et al. (1998).
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interactions, where this is not the case, instabilities may
arise, as discussed by Fregoso and Baym (2006).

B. Crossover theory and universality

For a description of the many-body physics of the
BCS-BEC crossover, a natural starting point is a two-
channel picture in which fermions in an open channel
couple resonantly to a closed-channel bound state. The
resulting Hamiltonian

R R K2 oA #2 R
Hygg =f d3X[E ‘/"T’<_sz> et ¢E<-mv2+ V) g

+ (Wt +H.c.)} (131)
defines the Bose-Fermi resonance model. It was intro-
duced in this context by Holland et al. (2001) and by

Timmermans et al. (2001) and was used subsequently,
by Ohashi and Griffin (2002) and Drummond and

Kheruntsyan (2004), among others. Here z]f(,(x) are fer-
mionic field operators describing atoms in the open
channel. The two different hyperfine states are labeled
by a formal spin variable o=, ]|. The bound state in the
closed channel is denoted by the bosonic field operator

z,?/B. Its energy is detuned by v with respect to the open-
channel continuum, and g is the coupling constant for
the conversion of two atoms into a closed-channel state
and vice versa. It is caused by the off-diagonal potential
W(r) in Eq. (19) whose range is on the order of the
atomic dimension r... As a result, the conversion is point-
like on scales beyond r, where a pseudopotential de-
scription applies. The magnitude of g={¢,.{| W|ey) is de-
termined by the matrix element of the off-diagonal
potential between the closed- and open-channel states.
Using Eq. (26), its value is directly connected with the
characteristic scale r* introduced in Eq. (21), such that
(2M,g/h?*)?>=47/r* (Bruun and Pethick, 2004). For sim-
plicity, the background scattering between fermions is
neglected, i.e., there is no direct term quartic in the fer-
mionic fields. This is justified close enough to resonance
|B-By|<|AB|, where the scattering length is dominated
by its resonant contribution.

Broad and narrow Feshbach resonances. As discussed
in Sec. I.C, the weakly bound state that appears at nega-
tive detuning always has a vanishing closed-channel ad-
mixture near resonance. For the experimentally relevant
case |ay,| >r*, the virtual or real bound states within the
range |v|<u|AB| of the detuning may therefore be ef-
fectively described as a single-channel zero-energy reso-
nance. This criterion is based on two-body parameters
only. In order to justify a single-channel model for de-
scribing the physics of the crossover at a finite density
n:k%/ 372 of fermions, it is necessary that the potential
resonance description be valid in the relevant regime
kpla|=1 of the many-body problem. Now the range in
the detuning where kga|=1 is given by || < Vepe*. Since
the closed-channel contribution is negligible as long as
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v<<g*, a single-channel description applies if ep<e* or
kpr*<1 (Bruun and Pethick, 2004; Diener and Ho,
2004). This is the condition for a “broad” Feshbach reso-
nance, which involves only the many-body parameter
kpr*. In quantitative terms, the Fermi wavelength \p
=2m/ky of dilute gases is on the order of micrometers,
while r* is typically on the order of or even smaller than
the effective range r, of the interaction. The condition
kpr*<1 is, therefore, satisfied unless one is dealing with
exceptionally narrow Feshbach resonances. Physically,
the assumption of a broad resonance implies that the
bosonic field in Eq. (131), which gives rise to the reso-
nant scattering, is so strongly coupled to the open chan-
nel that the relative phase between the two fields is per-
fectly locked, i.e., closed-channel molecules condense
simultaneously with particles in the open channel. In
contrast to the two-particle problem, therefore, there is
a finite Z factor precisely on resonance, as verified ex-
perimentally by Partridge ef al. (2005). An important
point to realize is that this situation is opposite to that
encountered in conventional superconductors, where
the role of &* is played by the Debye energy fiwp. The
ratio Awp/ep is very small in this case, on the order of
the sound velocity divided by the Fermi velocity. Effec-
tively, this corresponds to the case of narrow resonances,
where kpr*>1. The effective Fermi-Fermi interaction is
then retarded and the Bose field in Eq. (131) is basically
unaffected by the condensation of fermions. On a formal
level, this case can be treated by replacing the closed-
channel field by a ¢ number, giving rise to a reduced

BCS model with a mean-field gap parameter A=g(ip)
(DePalo et al., 2005; Sheehy and Radzihovsky, 2006).

There is an essential simplification in describing the
crossover problem in the limit kzr* <<1. This is related to
the fact that the parameter r* can be understood as an
effective range for interactions induced by a Feshbach
resonance. Indeed, consider the resonant phase shift for
two-body scattering as given in Eq. (20). At zero detun-
ing v=0 and small k, the associated scattering amplitude
can be shown to be precisely of the form (4) with an
effective range r,=-2r*. Therefore, in the limit kpr* <1,
the two-body interaction near resonance is described by
the scattering amplitude Eq. (6) of an ideal pseudopo-
tential even at k=kp. As a result, the Fermi energy is the
only energy scale in the problem right at unitarity. As
pointed out by Ho (2004), the thermodynamics of the
unitary Fermi gas is then universal, depending only on
the dimensionless temperature 6=7/Ty In fact, as
found by Nikolic and Sachdev (2007), the universality is
much more general and is tied to the existence of an
unstable fixed point describing the unitary balanced gas
at zero density. As a result, by a proper rescaling, the
complete thermodynamics and phase diagram of low-
density Fermi gases with short-range attractive interac-
tions can be expressed in terms of universal functions
of temperature 7, detuning v, chemical potential w, and
the external field /2 conjugate to a possible density im-
balance.
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Universality. The universality provides considerable
insight into the problem even without a specific solution
of the relevant microscopic Hamiltonian. For simplicity,
we focus on the so-called unitary Fermi gas right at the
Feshbach resonance and the spin-balanced case of an
equal mixture of both hyperfine states that undergo pair-
ing. This problem was in fact first discussed in nuclear
physics as a parameter-free model of low-density neu-
tron matter (Baker, 1999; Heiselberg, 2001). By dimen-
sional arguments, at a=o, the particle density n and the
temperature 7 are the only variables on which the ther-
modynamics depends. The free energy per particle,
which has n and T as its natural variables, thus acquires
a universal form

F(T,V,N) = Negf(0) (132)
with e;~n?? the bare Fermi energy and =T/T; the
dimensionless temperature. The function f(6) is mono-
tonically decreasing, because s=—f"(6) is the entropy per
particle. As shown below, the fact that the ground state
is superfluid implies that f(0) - f(6) vanishes like ¢* as the
temperature approaches zero, in contrast to a Fermi gas
(or liquid), where the behavior is ~ . Physically, this is
due to the fact that the low-lying excitations are sound
modes and not fermionic quasiparticles. By standard
thermodynamic relations, the function f determines both
the dimensionless chemical potential according to

wlep=[5f(6) - 26f (6)]/3 =: £(6) (133)
and the pressure via p/nep=u/ep—f(6), consistent with
the Gibbs-Duhem relation uN=F+pV for a homoge-
neous system. Moreover, the fact that —f’(6) is the en-
tropy per particle implies that 3pV=2(F+TS). The inter-
nal energy u per volume is therefore connected with
pressure and density by p=2u/3, valid at all tempera-
tures (Ho, 2004). Naively, this appears like the connec-
tion between pressure and energy density in a noninter-
acting quantum gas. In the present case, however, the

internal energy has a nonvanishing contribution (H")
from interactions. A proper way of understanding the
relation p=2u/3 is obtained by considering the quantum

virial theorem 2<ﬁ0>—k<ﬁ’):3pv for a two-body inter-
action V(x;,—x;) ~ [x;—x;|¥, which is a homogeneous func-
tion of the interparticle distance. It implies that p
=2u/3 is valid for an interacting system if k=-2. The
pressure of fermions at unitarity is thus related to the
energy density as if the particles had a purely inverse
square interaction. An important consequence of this is
the virial theorem (Thomas et al., 2005)

(Fliod = 2Byug) =2 f Fx Uy (x)n(x) (134)

for a harmonically trapped unitary gas, which allows the
thermodynamics of the unitary gas to be determined
from its equilibrium density profile n(x). Equation (134)
follows quite generally from the quantum virial theorem
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with k=-2 and the fact that the contribution 3pV of the
external forces to the virial in the case of a box with

volume V is replaced by Z(Fltmp> in the presence of an
external harmonic potential. It is therefore valid for fi-
nite temperature and arbitrary trap anisotropy. An alter-
native derivation of Eq. (134) was given by Werner and
Castin (2006). They noted that the unitary Fermi gas in
3D exhibits a scale invariance that is related to a hidden
SO(2,1) symmetry. In fact, since the interaction potential
at unitarity effectively obeys V(Ar)=V(r)/\?, the situa-
tion is analogous to that discussed in Sec. VI for the 2D
Bose gas with a pseudopotential interaction. In particu-
lar, scale invariance implies a simple evolution of arbi-
trary initial states in a time-dependent trap and the ex-
istence of undamped breathing modes with frequency
2w (Werner and Castin, 2006).

At zero temperature, the ground-state properties of
the unitary gas are characterized by a single universal
number &(0)=5f(0)/3, which is sometimes called the
Bertsch parameter [most experimental papers use S
=-1+&(0) instead]. It is smaller than 1 (i.e., 8<0), be-
cause the attractive interaction leads to a reduction of
the chemical potential at unitarity from its noninteract-
ing value u@=¢x to u=&0)er" Experimentally, the
most direct way of measuring the universal number £(0)
is obtained from in sifu, absorption imaging of the den-
sity distribution n(x) in a trap. Indeed, within the local-
density approximation Eq. (12), free fermions in an iso-
tropic trap exhibit a density profile n(x)=n(0)(1-r?/
R3.)%? with a Thomas-Fermi radius R{Q=(24N)0¢,
Since u~n?? at unitarity has the same dependence on
density as noninteracting fermions, with a prefactor re-
duced just by &0) <1, the profile at unitarity is that of a
free Fermi gas with a rescaled size. For a given total
particle number N and mean trap frequency o, the re-
sulting Thomas-Fermi radius at zero temperature, is
therefore reduced by a factor £74(0). Ideally, the value
R% would be measured by sweeping the magnetic field
to the zero crossing of the scattering length at B=B,
+AB, where an ideal Fermi gas is realized. In practice,
e.g., for °Li, there is appreciable molecule formation
and subsequent decay processes at this field, and it is
more convenient to ramp the field to values far on the
BCS side, where the thermodynamics is again essentially
that of an ideal Fermi gas. Results for the universal pa-
rameter £(0) at the lowest attainable temperatures of
around #=0.04 have been obtained from in sifu mea-
surements of the density profile by Bartenstein et al.
(2004a), with the result &0)=0.32+0.1. More recent
measurements by Partridge et al. (2006) find a larger
value, £0)=0.46+0.05. Alternatively, the parameter ¢
may be determined by measuring the release energy of
an expanding cloud (Bourdel et al., 2004; Stewart et al.,

PIn a trap, the chemical potential ,u,tmlD~R2 is reduced by a
factor V&(0) and not &0) as in the homogeneous case, because
the density in the trap center is increased by the attractive
interaction.
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2006). In the latter case, however, an appreciable tem-
perature dependence is found, which makes extrapola-
tions to 7=0 difficult. In particular, at finite tempera-
ture, the relation between the density distributions at a
=0 and = involves the complete function &(6) because
the Fermi temperature continuously decreases as one
moves away from the trap center.

On the theoretical side, the ground-state properties of
a resonantly interacting Fermi gas have been obtained
numerically by fixed-node Green’s function Monte Carlo
calculations. They provide quantitative results for the
equation of state (Carlson et al., 2003; Astrakharchik et
al., 2004) at arbitrary values of a, and in particular at
unitarity. The resulting values for £(0) are 0.43 (Carlson
et al.,2003) or 0.41 (Astrakharchik et al., 2004). Recently,
the chemical potential and the gap of the unitary Fermi
gas at zero temperature were calculated analytically
from an effective field theory using an e=4—d expansion
(Nishida and Son, 2006). The possibility of such an ex-
pansion is based on an observation made by Nussinov
and Nussinov (2006) that a unitary Fermi gas in four
dimensions is in fact an ideal Bose gas. Indeed, in d=4, a
two-particle bound state in a zero-range potential ap-
pears only at infinitely strong attraction. Thus, already at
g,=0%, the resulting dimer size vanishes. At finite den-
sity, therefore, one ends up with a noninteracting BEC,
similar to the situation as a—0" in three dimensions.
The expansion about the upper critical dimension d=4
may be complemented by an expansion around the
lower critical dimension, which is 2 for the present prob-
lem (Nishida and Son, 2007). Indeed, for d<2 a bound
state at zero binding energy appears for an arbitrary
weak attractive interaction, as shown in Sec. V.A. A uni-
tary Fermi gas in d =<2 thus coincides with the noninter-
acting gas and &0) =1 for all d=<2 (Nussinov and Nussi-
nov, 2006). The d-2 expansion, however, only captures
nonsuperfluid properties like the equation of state, while
all effects associated with superfluidity are nonperturba-
tive. Using a Borel-Padé method for the three-loop ex-
pansion in e=4-d, the most precise field-theoretical re-
sult for the Bertsch parameter is &(0)=0.367+0.009
(Arnold et al., 2007).

Critical temperature and pseudogap. Within a single-
channel description, a zero-range interaction V(x—x')
=god(x—x") between fermions of opposite spin o gives
rise to an interaction Hamiltonian in momentum space,

- 80

=5y (135)

P
> X Cr+0,0Ck,~oC~k' ~oCk'+0.0
T k'O

Here c] , are fermion creation operators with momen-

tum k and spin o and V is the volume of the system.
Moreover, k—k’ is the momentum transfer due to the
interaction and Q is the conserved total momentum in
the two-particle scattering process. The bare coupling
strength g is determined by the s-wave scattering length
a after a regularization in which the & potential is
replaced by the proper pseudopotential with finite
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strength g (see below). For attractive interactions g < 0,°!
the Hamiltonian (135) was first discussed by Gor’kov
and Melik-Barkhudarov (1961). In the weak-coupling re-
gime kyla|<1, where the magnitude of the scattering
length is much less than the average interparticle spac-
ing, they showed that a BCS instability to a state with
bound pairs appears at the temperature

T, =[8¢C/(4e) P e | Ty exp[— w/(2klal)] (136)
(C=0.577 is Euler’s constant). As expected for a weak-
coupling BCS instability, the critical temperature van-
ishes with an essential singularity. The absence of an en-
ergy cutoff in the interaction leaves the Fermi
temperature as the characteristic scale. For typical den-
sities and off-resonant scattering lengths in cold gases,
the parameter kza|=0.02 is very small, so Eq. (136) is
applicable in principle. In practice, however, fermionic
superfluidity in dilute gases, where T is only of the or-
der of microkelvins, is unobservable unless kgla| be-
comes of order 1. In fact, the range of accessible cou-
pling strengths on the BCS side of the crossover is
limited by the finite level spacing in the trap or, alterna-
tively, by the trap size R, which must be larger than the
size & =~tvp/kgT, of a Cooper pair (Tinkham, 1996).
Using the local-density approximation, the condition
kgT.=hw on the BCS side is equivalent to &, <R and
implies particle numbers N=N,=exp[37/(2kal)].
Since N,=10° at kja|=0.4, this shows that with typical
values for the particle numbers in a trap, the regime
krla) <1 is no longer described by the theory of a locally
homogeneous system. Instead, for N<N, one reaches a
regime that is similar to that of pairing in nuclei, where
the resulting energy gap obeys Ag<<hw; see, e.g., Heisel-
berg and Mottelson (2002).

In the strong-coupling regime kga|=1 near the uni-
tarity limit, where the critical temperature lies in an ac-
cessible range of order T itself, no analytical solution of
the problem is available. In particular, the singular na-
ture of the two-particle scattering amplitude f(k)=i/k
right at unitarity rules out any perturbative approach. It
is only far on the BEC side of the problem that kra<1
again provides a small parameter. In this regime, the
binding energy ¢, is much larger than the Fermi energy
er. At temperatures kpT<<g,, therefore, a purely
bosonic description applies for a dilute gas of strongly
bound pailrs22 with density n/2 and a repulsive interac-
tion described by the dimer-dimer scattering length of

2INote that the model (135) does not make sense in the re-
gime g>0, where it describes repulsive fermions. However,
with a proper pseudopotential, the two-particle interaction has
a bound state for positive scattering length. The Hamiltonian
(135) then describes fermions along this branch and not in their
continuum states, where the interaction would be repulsive

“Note that the pseudopotential bound state is strongly bound
in the BEC limit of the crossover only as far as the scales
relevant for the BCS-BEC crossover are concerned, while it is
a very weakly bound state on the scale of the actual inter-
atomic potential; see Sec. [.A.
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FIG. 28. (Color online) Critical temperature of the homoge-
neous gas as a function of the coupling strength. The full line is
the result obtained by Haussmann et al. (2007) and gives T,
=0.16T at unitarity. The exact asymptotic results Egs. (136)
and (11) in the BCS and BEC limits are indicated by triangles
(green) and squares (blue), respectively. The dashed line gives
the schematic evolution of 7% From Haussmann et al., 2007.

Eq. (130). Its dimensionless coupling constant
(n/2)3a49=0.16k pa is much smaller than 1 in the regime
1/kpa=2. Since the dimers eventually approach an ideal
Bose gas, with density n/2 and mass 2M, the critical
temperature in the BEC limit is obtained by converting
the associated ideal BEC condensation temperature into
the original Fermi energy. In the homogeneous case this
gives T.(a—0)=0.218TF, while in a trap the numerical
factor is 0.518. The fact that 7. is completely indepen-
dent of the coupling constant in the BEC limit is simple
to understand, On the BCS side, superfluidity is de-
stroyed by fermionic excitations, namely, the breakup of
pairs. The critical temperature is therefore of the same
order as the pairing gap at zero temperature, consistent
with the well-known BCS relation 2A,/kgT.=3.52. A re-
lation of this type is characteristic for a situation in
which the transition to superfluidity is driven by the gain
in potential energy associated with pair formation. In
particular, the formation and condensation of fermion
pairs occur at the same temperature. By contrast, on the
BEC side, the superfluid transition is driven by a gain in
kinetic energy, associated with the condensation of pre-
formed pairs. The critical temperature is then on the
order of the degeneracy temperature of the gas, which is
completely unrelated to the pair binding energy.

To lowest order in kza in this regime, the shift Eq. (11)
in the critical temperature due to the repulsive interac-
tion between dimers is positive and linear in kpa. The
critical temperature in the homogeneous case, therefore,
has a maximum as a function of the dimensionless in-
verse coupling constant v=1/kpa, as found in the earli-
est calculation of 7, along the BCS-BEC crossover by
Noziéres and Schmitt-Rink (1985). A more recent calcu-
lation of the universal curve 6,(v), which accounts for
fluctuations of the order parameter beyond the Gaussian
level due to interactions between noncondensed pairs,
has been given by Haussmann ez al. (2007). The resulting
critical temperature exhibits a maximum around v=1,
which is rather small, however (see Fig. 28). The associ-
ated universal ratio 7./ Tr=0.16 at the unitarity point v
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=0 agrees well with the value 0.152(7) obtained from
precise quantum Monte Carlo calculations for the
negative-U Hubbard model at low filling by Burovski et
al. (2006). Considerably larger values 0.23 and 0.25 for
the ratio T,/ Ty at unitarity have been found by Bulgac
et al. (2006) from auxiliary field quantum Monte Carlo
calculations and by Akkineni et al. (2007) from restricted
path-integral Monte Carlo methods, the latter working
directly with the continuum model. In the presence of a
trap, the critical temperature has been calculated by
Perali et al. (2004). In this case, no maximum is found as
a function of 1/kra because the repulsive interaction be-
tween dimers on the BEC side leads to a density reduc-
tion in the trap center, which eliminates the 7, maximum
at fixed density.

The increasing separation between the pair formation
and the pair condensation temperature as v=1/kpa var-
ies between the BCS and the BEC limit implies that, in
the regime —2 <v = +2 near unitarity, there is a substan-
tial range of temperatures above 7. where preformed
pairs exist but do not form a superfluid. From recent
path-integral Monte Carlo calculations, the characteris-
tic temperature 7* below which strong pair correlations
appear has been found to be of order 7*=0.7TF at uni-
tarity (Akkineni et al., 2007), which is at least three times
the condensation temperature 7, at this point. It has
been shown by Randeria et al. (1992) and Trivedi and
Randeria (1995) that the existence of preformed pairs in
the regime T,<T=T* leads to a normal state very dif-
ferent from a conventional Fermi liquid. For instance,
the spin susceptibility is strongly suppressed due to sin-
glet formation above the superfluid transition
temperature.”” This is caused by strong attractive inter-
actions near unitarity, which leads to pairs in the super-
fluid, whose size is of the same order as the interparticle
spacing. The temperature range between 7, and T* is a
regime of strong superconducting fluctuations. Such a
regime is present also in high-temperature supercon-
ductors, where it is called the Nernst region of the
pseudogap phase (Lee et al., 2006). Its characteristic
temperature 7" approaches 7. in the regime of weak
coupling (see Fig. 28). Similarly, the Nernst region in
underdoped cuprates disappears where 7T, vanishes. By
contrast, the temperature below which the spin suscep-
tibility is suppressed, increases at small doping (Lee et
al., 2006). Apart from the different nature of the pairing
in both cases (s- versus d-wave), the nature of the
pseudogap in the cuprates, which appears in the proxim-
ity of a Mott insulator with antiferromagnetic order, is
thus a rather complex set of phenomena, which still lack
a proper microscopic understanding (Lee et al., 2006).
For a discussion of the similarities and differences be-
tween the pseudogap phase in the BCS-BEC crossover
and that in high-7, cuprates, see, e.g., the reviews by
Randeria (1998) and Chen et al. (2005).

SFor a proposal to measure the spin susceptibility in trapped
Fermi gases, see Recati et al. (2006).
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Extended BCS description of the crossover. A simple
approximation, which covers the complete range of cou-
pling strengths analytically, is obtained by assuming that,
at least for the ground state, only zero-momentum pairs
are relevant. In the subspace of states with only zero-
momentum pairs, all contributions in Eq. (135) with Q
# 0 vanish. The resulting Hamiltonian

g 8
HBCS: 50/2 E C/t,a'cik,—o'cfk',f Ck' o (137)

o k,k/
thus involves only two momentum sums. Equation (137)
is in fact the reduced BCS Hamiltonian, which is a stan-
dard model Hamiltonian to describe the phenomenon of
superconductivity. It is usually solved by a variational
ansatz

Wpes(1,2, ... ,N) = A[$(1,2)$(3,4) - -+ $(N = 1,N)]
(138)

in which an identical two-particle state ¢(1,2) is as-
sumed for each pair. Here the arguments 1=(x;,07), etc.,

denote position and spin, Ais the operator that antisym-
metrizes the many-body wave function, and we have as-
sumed an even number of fermions for simplicity. The
wave function (138) is a simple example of a so-called
Pfaffian state (see Sec. VII.C) with (N—1)!! terms, which
is the square root of the determinant of the completely
antisymmetric N X N matrix ¢(i,j). In second quantiza-
tion, it can be written in the form |Vgcg(1,2,...,N))

=(b$)M?|0) of a Gross-Pitaevskii-like state. The operator

bA(T)zEk¢kc,Lchk’ | creates a pair with zero total momen-
tum, with ¢,=V"12[ ¢(x)exp(~ik-x) the Fourier trans-
form of the spatial part of the two-particle wave function
¢(1,2) in Eq. (138). It is important to note, however, that

I;S is not a Bose operator. It develops this character only
in the limit where the two-particle wave function ¢(1,2)
has a size much smaller than the interparticle spacing
(see below). To avoid the difficult task of working with a
fixed particle number, it is standard practice to use a
coherent state

IBCS) = Cpcs exp(ab)|0) = T (ug + vyl ¢y )]0).
k
(139)

Since (bibo)=|Zrdruvil=|a/*=N/2 by the number
equation (see below), this state is characterized by a
macroscopic occupation of a single state, which is a
bound fermion pair with zero total momentum.
The amplitudes u;,v; are connected to the two-
particle wave function via v,/u; = a¢y. Since ui or vi are
the probabilities of a pair kT ,-k] being empty or occu-
pied, they obey the normalization ui+vi=1. The overall
normalization constant Cpcs=exp[—32; In(1+|ady/?)]
—exp(—|al?/2) approaches the standard result of a co-
herent state of bosons in the strong-coupling limit,
where |ady|>~v2 <1 for all k. In this limit, b, is indeed a
Bose operator and the wave function Eq. (138) is that of
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an ideal BEC of dimers. In fact, antisymmetrization be-
comes irrelevant in the limit where the occupation v of
all fermion states is much less than 1.2* The BCS wave
function has the gap A as a single variational parameter,
which appears in the fermion momentum distribution
v = 311 = (e = (e — ) + A7]. (140)

With increasing strength of the attractive interaction,
this evolves continuously from a slightly smeared Fermi
distribution to a rather broad distribution vi — A%/4(g,
—w)?~[1+(k&,)?]7% in the BEC limit, where the chemi-
cal potential is large and negative (see below). Its width
& increases as the pair size & =%/\2M|u| approaches
zero. Experimentally the fermionic momentum distribu-
tion near the Feshbach resonance has been determined
from time-of-flight measurements by Regal et al. (2005).
Accounting for the additional smearing due to the trap,
the results are in good agreement with Monte Carlo cal-
culations of the momentum distribution for the model
(135) (Astrakharchik et al, 2005b). Analysis of the dis-
tribution at finite temperature allows determination of
the decrease of the average fermionic excitation gap
with temperature (Chen et al., 2006b).

Within the extended BCS description, the magnitude
of A is determined by the standard gap equation

1 1 1

e — (141)
g0 2V7E (g —p)*+A°

where E;=\(g,—u)?>+A? is the BCS quasiparticle en-
ergy. In conventional superconductors, the momentum
sum in Eq. (141) is restricted to a thin shell around the
Fermi energy and the solution A~ exp[-1/|gy|N(0)] for
80<0 depends only on the density of states per spin
N(0) in the normal state right at the Fermi energy. In
cold gases, however, there is no such cutoff as long as
ep<<e*. Moreover, the true dimensionless coupling con-
stant N(0)|g|=2kg|al|/ar is far from small, approaching
infinity at the Feshbach resonance. The pairing interac-
tion thus affects fermions deep in the Fermi sea and
eventually completely melts the Fermi sphere. Within
the pseudopotential approximation, the apparent diver-
gence in Eq. (141) can be regularized by the replacement
1/gg—1/g—(1/2V)Z,(1/&;). Physically, this amounts to
integrating out the high-energy contributions in Eq.
(141), where the spectrum is unaffected by the pairing. A
general procedure for doing this, including the case of
strong pairing in nonzero-angular-momentum states, has
been given by Randeria et al. (1990). Converting the sum
over k to an integral over the free-particle density of
states, the renormalized gap equation at zero tempera-
ture can then be written in the form

2Note that the wave function (138) still contains (N—1)!!
terms even in the BEC limit. In practice, however, only a single
term is relevant, unless one is probing correlations between
fermions in different pairs.
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Ukpa = (@2 + AP (). (142)
Here p=pu/ep and A=A/e rare the dimensionless chemi-
cal potential and gap, respectively, while P;/,(x) is a Leg-
endre function of the first kind. The parameter x=
— ! (u?+A2)12 varies between —1 in the BCS and +1 in
the BEC limit because the fermion chemical potential
continously drops from pu=¢r in weak coupling to u—
—g,,/2 for strongly bound pairs and |u|>A in both lim-
its. Physically the behavior of the chemical potential in
the BEC limit can be understood by noting that the en-
ergy gained by adding two fermions is the molecular
binding energy. The detailed evolution of u as a function
of the dimensionless coupling strength 1/kpa follows
from N :ZEkvi for the average particle number. In di-
mensionless form this gives

4= (@ + APy (x) + (@2 + APy p(x).
(143)

Equations (142) and (143), originally discussed by Eagles
(1969) and Leggett (1980), determine the gap, the chemi-
cal potential, and related quantities such as the conden-
sate fraction (Ortiz and Dukelsky, 2005)

3 A2
%o N (144)

16 1m (g + iA)'"2

n |Bcs

Apcs =

for arbitrary coupling (see Fig. 29).

They provide a simple approximation for the cross-
over between weak coupling 1/kpa— —% and the BEC
limit 1/kpa— o within the variational ansatz Eq. (139)
for the ground-state wave function. In fact, as realized
long ago by Richardson and Gaudin, the results are ex-
act for the reduced BCS Hamiltonian Eq. (137) and not
just of a variational nature, as usually presented.”> Both
the gap and the condensate fraction increase continu-
ously with coupling strength, while the chemical poten-
tial becomes negative for 1/kpa>0.55. The values

chs(O):0.59, ABCS:O'69’ and )\BCSZO'7O for the chemi-
cal potential, the gap, and the condensate fraction at
unitarity differ, however, considerably from the corre-

sponding results &(0)=0.4, A=~0.5, and A=~0.6 obtained
by both numerical and field-theoretic methods for the
physically relevant model (135). For strong coupling, the

gap increases as A=4(3wkpa) 2. Apparently, this is
much smaller than the two-particle binding energy. To
explain why 2A differs from the energy ¢, of a strongly
bound dimer even in the BEC limit, it is necessary to
determine the minimum value of the energy Ej
=\(g,— m)*>+A? for single-fermion excitations. For nega-
tive chemical potentials, this minimum is not at A as in

BFor a review, see Dukelsky ez al. (2004). It is interesting to
note that, although the BCS wave function (139) gives the ex-
act thermodynamics of the model, its number-projected form
does not seem to be exact beyond the trivial weak-coupling or
BEC limit; see Ortiz and Dukelsky (2005).
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FIG. 29. (Color online) Solution of the gap and number equa-
tions (142) and (143) for the reduced BCS Hamiltonian Eq.
(137). The dimensionless gap parameter, chemical potential,
and condensate fraction (144) of the ground state are shown as
functions of the dimensionless interaction parameter 1/ka.

the usual situation u>0, but at yA?+u? (see Fig. 30).
Since |u|>A in the BEC limit, the minimum energy for
a single-fermionic excitation is therefore |u|=¢,/2 and
not A (Randeria et al. 1990). Note that the spectrum E;
near k=0 changes from negative to positive curvature as
wm goes through zero.

The size of the pairs &, shrinks continuously from an
exponentially large value kz&, = er/A in the BCS limit to
essentially zero &,=a in the BEC limit of tightly bound
pairs. For weak coupling, the size of the pair coincides
with the coherence length & This is no longer the case
on the BEC side of the crossover, however. Indeed, as
shown by Pistolesi and Strinati (1996) and Engelbrecht
et al. (1997), the coherence length reaches a minimum
value on the order of the interparticle spacing around
the unitary limit and then increases slowly to approach
the value é=(4mmnayy)~"> of a weakly interacting Bose
gas of dimers with density n/2. This minimum is closely
related to a maximum in the critical velocity around the
unitary point. Indeed, as discussed in Sec. IV.D, the criti-
cal momentum for superfluid flow within a mean-field
description is k.~ 1/§. More precisely, the critical veloc-
ity v. on the BEC side of the crossover coincides with
the sound velocity according to the Landau criterion.
Near unitarity, this velocity reaches c=vpV&0)/3
~(0.36vy (see below). On the BCS side, the destruction
of superfluidity does not involve the excitation of
phonons but is due to pair breaking. As shown by
Combescot et al. (2006) and Sensarma et al. (2006), the
resulting critical velocity exhibits a maximum o™
~(.36v around the unitarity point that is close to the
value of the local sound velocity there. Using a moving
optical lattice near the trap center, this prediction was
verified by Miller et al. (2007).

Failure of extended BCS theory. In the regime of weak
coupling, the gap Agcs=(8/edexp(~m/2kg|a|) is expo-
nentially small. Using Eq. (136) for the critical tempera-
ture, however, the ratio 2A/kgT, differs from the well-
known BCS value 27/e€=3.52 by a factor of (4¢)!3. The
reason for this discrepancy is subtle and important from
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FIG. 30. Change in the fermionic excitation spectrum of the
extended BCS description as the chemical potential changes
from positive to negative values.

a basic point of view. It has to do with the fact that the
reduced BCS model contains only zero-momentum pairs
and thus no density fluctuations are possible. By con-
trast, the original model (135) includes such fluctuations,
which are present in any neutral system. The innocent
looking BCS assumption of pairs with zero momentum
eliminates an important part of the physics. To under-
stand why the reduced BCS model fails to account for
the correct low-energy excitations, it is useful to rewrite
the interaction Eq. (137) in real space, where

Apes= 23 f J DO (X)X )y (X') . (145)

The associated nonstandard (note the order of x and x’)
“interaction” Vpcg(x—x")=go/V has infinite range, but is
scaled with 1/V to give a proper thermodynamic limit. It
is well known that models of this type are exactly
soluble and that their phase transitions are described by
mean-field theory. Moreover, while Eq. (145) is invariant
under a global gauge transformation ,(x)— %, (x)
(particle number is conserved), this is no longer the case
if ¢(x) varies spatially. In the exactly soluble reduced
BCS model, therefore, the change in energy associated
with a slowly varying phase does not vanish like
[Vé(x)]?, as it should for a superfluid (see the Appen-
dix). Omission of pairs with finite momentum thus elimi-
nates the well-known Bogoliubov-Anderson mode
w(g)=cq of a neutral superfluid (Anderson, 1958b). A
proper description of the crossover problem in a neutral
system like a cold gas requires one to account for both
the bosonic and fermionic excitations. By contrast, for
charged superconductors, the Bogoliubov-Anderson
mode is pushed up to a high-frequency plasmon mode,
which is irrelevant for the description of superconductiv-
ity. A reduced BCS model, in which they are omitted
anyway, is thus appropriate.

The absence of the collective Bogoliubov-Anderson
mode implies that already the leading corrections to the
ground state in powers of kg|a| are incorrect in a re-
duced BCS description. For weak interactions, one
misses the Gorkov—-Melik-Barkhudarov reduction of the
gap. Indeed, as shown by Heiselberg et al. (2000), density
fluctuations give rise to a screening of the attractive in-
teraction at finite density, changing the dimensionless
coupling constant of the two-particle problem to g.;=g
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+g°N(0)(1+21n2)/3+---. Since the additional contribu-
tion to the two-body scattering amplitude g<<0 is posi-
tive, the bare attraction between two fermions is weak-
ened. Due to the nonanalytic dependence of the weak-
coupling gap or transition temperature on the coupling
constant kra, the renormalization g— g gives rise to a
reduction of both the gap and the critical temperature
by a finite factor (4e)"'*~0.45. The universal ratio
2A/kpgT.=3.52, valid in weak coupling, is thus unaf-
fected. It is interesting to note that a naive extrapolation
of the Gorkov-Melik-Barkhudarov result A/ep
=(2/e)"3 exp(—m/2kg|a|) for the zero-temperature gap
to infinite coupling kpa=c gives a value A(v=0)
=0.49¢[ that is close to the one obtained from quantum
Monte Carlo calculations at unitarity (Carlson et al.,
2003). In the BEC limit, the condensate fraction Eq.
(144) reaches the trivial limit 1 of the ideal Bose gas as
Agcs=1-2mna*+---. The correct behavior, however, is
described by the Bogoliubov result Eq. (10) with density
n/2 and scattering length a—ayq, i.e., it involves the
square root of the gas parameter na’. As pointed out by
Lamacraft (2006), the presence of pairs with nonzero
momentum is also important for measurements of noise
correlations in time-of-flight pictures near the BCS-BEC
crossover. As discussed in Sec. II1.B, such measurements
provide information about the second-order correlation
function in momentum space

Gy (ky, ko) =y (k)7 (ko)) — (7 (k)72 (ko))

The momenta k; ,=Mx, ,/#t are related to the positions
x;, at which the correlations are determined after a
free-flight expansion for time ¢. While the formation of
bound states shows up as a peak at k;=—k, as observed
by Greiner et al. (2005) in a molecular gas above con-
densation, the presence of pairs with nonzero momenta
gives rise to an additional contribution proportional to
1/|k; +ky|. This reflects the depletion of the condensate
due to bosons at finite momentum as found in the Bo-
goliubov theory of an interacting Bose gas.

Crossover thermodynamics. As pointed out above, a
complete description of the BCS-BEC crossover in-
volves both bosonic and fermionic degrees of freedom.
Since the fermionic spectrum has a gap, only the bosonic
Bogoliubov-Anderson mode is relevant at low tempera-
tures (Liu, 2006). Similar to the situation in superfluid
*He, these sound modes determine the low-temperature
thermodynamics along the full BCS-BEC crossover.
They give rise to an entropy

S(T) = VQa*45)kg(kgT/hc)> + -+,

(146)

(147)

which vanishes like 7° for arbitrary coupling strength.
The associated sound velocity ¢ at zero temperature fol-
lows from the ground-state pressure or the chemical
potential via the thermodynamic relation Mc*=dp/dn
=ndu/dn. It was shown by Engelbrecht et al. (1997)
that the sound velocity decreases monotonically from
c=vp/ V3 to zero on the BEC side. There, to lowest or-
der in kpa, it is given by the Gross-Pitaevskii result
(c/vp)?=kpagq/ 67 for the sound velocity of a dilute gas
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of dimers with a repulsive interaction obtained from Eq.
(130). At unitarity, c=vz&0)/3~0.36v is related to the
Fermi velocity by the universal constant &0). This has
been used in recent measurements of the sound velocity
along the axial z direction of an anisotropic trap by Jo-
seph et al. (2007). The velocity cy=c(z=0) measured near
the trap center is given by ¢j= v’@(v?)z/ 5. Here v is
the Fermi velocity of a noninteracting gas, which is fixed
by the associated Fermi energy in the trap by ezp(V)
=M (059))2/ 2. A factor 3/5 arises from averaging over the
transverse density profile (Capuzzi et al., 2006). An ad-
ditional factor 1/ V’% is due to the fact that, at unitarity,
attractive interactions increase the local density n(0) in
the trap center compared to that of a noninteracting
Fermi gas by a factor &0)~*4. The local Fermi velocity
vn(0)] is thus enhanced by £0) ' compared to v\
Precise measurements of the ratio ¢,/ vg’):O.362i0.006
(Joseph et al., 2007) at the lowest available temperatures
thus give £0)=0.43+0.03, in good agreement with the
quantum Monte Carlo results. In addition, the lack of
dependence of this ratio on the density has been tested
over a wide range, thus confirming the universality at
the unitary point.

Numerical results on the crossover problem at finite
temperatures have been obtained by Bulgac et al. (2006),
Burovski et al. (2006), and Akkineni et al. (2007) at the
unitarity point. More recently, they have been comple-
mented by analytical methods, using expansions around
the upper and lower critical dimensions (Nishida, 2007)
or in the inverse number 1/N of an attractive Fermi gas
with 2N components (Nikolic and Sachdev, 2007). A
rather complete picture of the crossover thermodynam-
ics for arbitrary couplings and temperatures in the spin-
balanced case was given by Haussmann et al. (2007) on
the basis of a variational approach to the many-body
problem developed by Luttinger and Ward (1960) and
by De Dominicis and Martin (1964a, 1964b). The theory
does not capture correctly the critical behavior near the
superfluid transition, which is a continuous transition of
the 3D XY type for arbitrary coupling. Since the ap-
proximations involved are conserving, however, the re-
sults obey standard thermodynamic relations and the
specific relation p=2u/3 at unitarity at the level of a few
percent. In addition, the resulting value 7./ Tz=0.16 for
the critical temperature at unitarity agrees well with the
presently most precise numerical results by Burovski et
al. (2006). As an example, a 3D plot of the entropy per
particle is shown in Fig. 31. Apparently, the freezing out
of fermionic excitations with increasing coupling v leads
to a strong suppression of the low-temperature entropy.
An adiabatic ramp across the Feshbach resonance from
the BEC to the BCS side is associated with a lowering of
the temperature, as emphasized by Carr et al. (2004). In
particular, it is evident from this picture that a molecular
condensate can be reached by going isentropically from
negative to positive scattering lengths even if the initial
state on the fermionic side is above the transition to
superfluidity, as was the case in the experiments by
Greiner et al. (2003). The plot provides a quantitative
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FIG. 31. (Color online) Entropy per particle in units of kp as a
function of the dimensionless coupling 1/kpa and temperature
0=T/Tg. The crossover from a Fermi gas with a tiny superfluid
regime as 7—0 to a Bose gas that is superfluid below T
~0.2TF occurs in a narrow range of coupling strengths. An
isentropic ramp, starting in the normal phase on the negative a
side at sufficiently low 7, leads to a molecular condensate.
From Haussmann et al., 2007.

picture of how an attractive gas of fermions gradually
evolves into a repulsive gas of bosons. Apparently, most
of the quantitative change happens in the range -2=<v
=< +2, which is precisely the regime accessible experi-
mentally with cold atoms. Note that the exact entropy
and its first derivative are continuous near the critical
temperature. Indeed, the singular contribution to S(7) is
proportional to |T-7,1"® and a<0 for the 3D XY
transition. Moreover, the value S(7,)/N=0.7kg of the
entropy per particle at 7, at the unitarity point (Hauss-
mann et al., 2007) provides a limit on the entropy of any
initial state, which is required to reach the superfluid
regime 7<T, near unitarity by an adiabatic process. In
a harmonic trap, the fact that the local ratio 7/TF in-
creases upon approaching the trap edge, gives rise to a
considerably larger entropy S(7.)=1.6Nkp (Haussmann
and Zwerger, 2008).

C. Experiments near the unitarity limit

Thermodynamic properties. The thermodynamics of a
strongly interacting Fermi gas near unitarity was studied
experimentally by Kinast ez al. (2005). It was found that
the spatial profiles of both the trapped and released gas
are rather close to a Thomas-Fermi profile with a size
parameter determined from hydrodynamic scaling. This
is consistent with the fact that the equation of state of
the unitary gas is identical with that of a noninteracting
gas up to a scale factor. Strictly speaking, however, this is
true only at zero temperature. At finite temperature, the
function £(6) defined in Eq. (133) is different from that
of an ideal Fermi gas. Assuming a Thomas-Fermi pro-
file, the effective temperature of a near-unitary gas can
be inferred from fitting the observed cloud profiles. The
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temperature-dependent internal energy E(7) and spe-
cific heat of the gas could then be determined by adding
a well-defined energy to the gas through a process by
which the cloud is released abruptly and recaptured af-
ter a varying expansion time (Kinast et al., 2005). The
resulting E(T) curve essentially follows that of a nonin-

teracting gas above a characteristic temperature T,

~0.27T(£). The data below TC follow a power law E(T)
—Ey~T" with a=3.73, which is not far from the exact
low-T result E(T)—Ey=V(7?/30)kgT(kzT/#c)? of a uni-
form superfluid in the phonon-dominated regime kg7
< Mc?. Quantitatively, the data are well described by a
finite-temperature generalization of the extended BCS
description of the crossover (Chen et al, 2005). The

characteristic temperature TC is, however, considerably
larger than the transition temperature 77 =0.217% to
the superfluid state. Indeed, within the local-density ap-
proximation (LDA), the superfluid transition in a trap
occurs when the local Fermi temperature T47n(0)] in the
trap center reaches the critical value T, of the homoge-
neous gas at density n(0). At the unitarity point, the
latter is obtained from the universal ratio 7./ Tr=0.16.
As noted above, attractive interactions increase the local
density in the trap center compared to the noninteract-
ing gas with (bare) Fermi energy &x(N)=ha(3N)"?
:kBT(}]). Using LDA, the resulting superfluid transition
temperature is 7" =0.217\" (Haussmann and Zwerger,
2008). Recently, precise results for the critical tempera-
ture of the unitary gas have been obtained by Shin et al.
(2008). They rely on using gases with a finite imbalance
ny# n|, which have always a fully polarized outer shell in
a trap. Since a single species Fermi gas is noninteracting
in the ultracold limit, the temperature can be reliably
determined from cloud profiles. Extrapolating to zero
imbalance, the measured critical temperature at unitar-
ity in units of the local T at the center of the trap ap-
pears to be close to the value T,./Tr=0.15 predicted by
theory (Shin et al., 2008).

Experimental results on thermodynamic properties
that do not rely on the difficult issue of a proper tem-
perature calibration are possible using the virial theorem
Eq. (134). It allows the energy of the strongly interacting
gas to be measured directly from its density profile.

Within the LDA, the contributions to (H,,,) from the
three spatial directions are identical, even in an aniso-
tropic trap. The total energy per particle thus follows
directly from the average mean-square radius E/N
=3M wi(zz) along (say) the axial direction. The predicted
linear increase of (z%) at unitarity with the energy input
was verified experimentally by Thomas et al. (2005).
More generally, since the internal energy per particle is
f(6)— 6f'(0) in units of the bare Fermi energy, the univer-
sal function f(6) is accessible in principle by measuring
the density profile. A possible way to do thermometry
for such measurements was developed by Luo et al
(2007). They measured entropy as a function of energy
by determining the energy from the mean-square radii
and the entropy by adiabatically ramping the magnetic
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FIG. 32. (Color online) Time-of-flight images showing a fermi-
onic condensate after projection onto a molecular gas. The
images show condensates at different detunings AB=0.12, 0.25,
and 0.55. G (left to right) from the Feshbach resonance (BCS
side), starting with initial temperatures 7/Tz=0.07. From Re-
gal et al., 2004a.

field far into the BCS regime. There the gas is essentially
an ideal Fermi gas in a trap, and its entropy may be
inferred again from (z%). The experimental results for
S(E) are in fair agreement with theories for the thermo-
dynamics of the unitary gas which are based on an ex-
tension (Hu et al., 2007) of the approach by Noziéres and
Schmitt-Rink (1985) or on finite temperature Monte
Carlo calculations (Bulgac et al, 2007). The measured
value (Eg/Nep)yp=0.48+0.03 implies &(0)=0.40+0.03,
because the total energy in the trap is twice the result
Ey/Nep=£(0)=3£&(0)/5 obtained in a uniform system.
The fact that the entropy is a perfectly smooth function
of energy, with dS/dE=1/T, makes it difficult, however,
to infer a reliable value for 7. from these measurements.
Condensate fraction. The standard signature of BEC
in ultracold gases is the appearance of a bimodal density
distribution below the condensation temperature. Fit-
ting the density profile from the absorption image to a
superposition of a Thomas-Fermi profile and a Gaussian
background from the thermal atoms allows a rather pre-
cise measurement of the condensate fraction ny/n. In
the case of fermionic superfluidity, this does not work
because pairs break in time-of-flight. This problem is
avoided by the rapid transfer technique (Regal et al.,
2004a; Zwierlein et al., 2004), in which fragile pairs on
the BCS side of the crossover are preserved by sweeping
the magnetic field fast toward the BEC side of the reso-
nance, transforming them to stable molecules. In an
adiabatic situation, each fermionic pair is thereby trans-
formed into a tightly bound dimer, and a time-of-flight
picture then indeed reflects the momentum distribution
of the original pairs on the BCS side of the crossover.
The resulting absorption images are shown in Fig. 32.
In practice, the process is nonadiabatic and essentially
projects the initial many-body state onto that of a mo-
lecular condensate. A theoretical analysis of the conden-
sate fraction extracted using the rapid transfer technique
was given by Altman and Vishwanath (2005) and Perali
et al. (2005). The fraction of molecules depends on the
sweep rate and, in a strongly nonadiabatic situation, pro-
vides information about pair correlations in the initial
state even in the absence of a condensate (Altman and
Vishwanath, 2005). Experimentally, the observed con-
densate fractions in “°K were at most around 0.14 (Regal
et al., 2004a), much smaller than the expected equilib-
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FIG. 33. (Color online) Condensate fraction as a function of
magnetic field and temperature. The highest condensate frac-
tions and onset temperatures are obtained on the BEC side,
close to the resonance at By=834 G. As a measure of tempera-
ture, the condensate fraction at 820 G (see arrow) is used as
the vertical axis. From Zwierlein et al., 2004.

rium values ny/n=0.5 at unitarity. Apart from uncer-
tainties inherent in the rapid transfer technique, a pos-
sible origin of this discrepancy may be the rather short
lifetime of “°K dimers near resonance, on the order of
100 ms. Yet the qualitative features of the phase dia-
gram agree with an analysis based on an equilibrium
theory (Chen et al., 2006a). For ®Li, in turn, the conden-
sate fractions determined via the rapid transfer tech-
nique turned out to be much larger, with a maximum
value 0.8 at B~820 G, on the BEC side of the reso-
nance (Zwierlein et al., 2004) (see Fig. 33). The observa-
tion (Zwierlein et al., 2004) that the condensate fraction
decreases to zero on the BEC side (see Fig. 33) instead
of approaching 1 is probably caused by fast vibrational
relaxation into deeply bound states further away from
the resonance.

Collective modes. Collective modes in a harmonic trap
have been a major tool for studying cold gases in the
BEC regime, where the dynamics is determined by su-
perfluid hydrodynamics. For a mixture of fermions with
an adjustable attractive interaction, the corresponding
eigenfrequencies have been worked out by Heiselberg
(2004) and by Stringari (2004). For a highly elongated
trap, where the axial trap frequency w, is much smaller
than the radial confinement frequency w,, two impor-
tant eigenmodes are the axial and radial compression
modes, with respective frequencies (Heiselberg, 2004;
Stringari, 2004)

wg=w\N3-1/(y+1) and w,=w V2(y+1).
(148)

They are determined by the effective polytropic index
vy=dInp/dInn-1 and thus give information about the
equation of state p(n) through the crossover. Since y
=2/3 exactly for the unitary Fermi gas, one obtains uni-
versal numbers for these frequencies precisely at the
Feshbach resonance, as pointed out by Stringari (2004).
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FIG. 34. Normalized frequency w,/w, of the radial compres-
sion mode as a function of dimensionless interaction param-
eter 1/kra on the BEC side of the crossover. The experimental
data agree well with Monte Carlo calculations of the equation
of state (thick solid line) and the exact value v10/3=1.826 at
unitarity. The BEC limit w,/w, =2 is approached from above
due to the positive correction of the ground-state chemical po-
tential beyond the mean field, predicted by Lee, Huang, and
Yang. The thin monotonic line is the result of an extended
BCS mean-field theory. From Altmeyer et al., 2007.

In particular, the radial compression mode frequency w,
s w,= V10/3w | in the BCS limit and at unitarity, while it
approaches w,=2w, in the BEC limit, where y=1. These
predictions were confirmed experimentally by Barten-
stein et al. (2004b) and by Kinast et al. (2004), providing
direct evidence for superfluid hydrodynamics. The fact
that the chemical potential Eq. (9) of a dilute repulsive
Bose gas is larger than its mean-field limit pgye ~7n im-
plies y>1, i.e., the BEC limit is reached from above.
The expected nonmonotonic behavior of w, as a func-
tion of 1/kpa has been observed by Altmeyer et al
(2007). It provides the first quantitative test of the Lee-
Huang-Yang correction to the chemical potential Eq. (9)
of a dilute repulsive Bose gas (of dimers) (see Fig. 34).
The issue of damping of the collective modes in the
BCS-BEC crossover has raised a number of questions,
which are connected with recent developments in QCD
and field theory. As pointed out by Gelman et al. (2004),
not only the thermodynamics but also dynamical prop-
erties like the kinetic coefficients are described by uni-
versal scaling functions at the unitarity point. An ex-
ample is the shear viscosity 7, which determines the
damping of sound and collective oscillations in trapped
gases. At unitarity, its dependence on density n and
temperature 7 is fixed by dimensional arguments to
n=fna(T/p), where u is the chemical potential and
a(x) is a dimensionless universal function. At zero tem-
perature, in particular, 7(7T=0)=a,fin is linear in the
density, which defines a quantum viscosity coefficient a,,
From a simple fluctuation-dissipation-type argument in
the normal phase, a lower bound @, =1/67 was derived
by Gelman et al. (2004). Assuming that a hydrodynamic
description applies, the effective shear viscosity can be
inferred from the damping rate of the collective modes.
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In particular, the damping of the axial mode near the
unitarity limit in the experiments by Bartenstein et al.
(2004b) gives a,~0.3 at the lowest attainable tempera-
tures. Based on these results, it has been speculated that
ultracold atoms near a Feshbach resonance are a nearly
perfect liquid (Gelman et al., 2004). A proper definition
of viscosity coefficients like 7, however, requires hydro-
dynamic damping. At zero temperature, this is usually
not the case. It is valid at 7=0 in one dimension, where
exact results on a, have been obtained for arbitrary cou-
pling along the BCS-BEC crossover (Punk and Zwerger,
2006).

At finite temperature, damping is typically associated
with the presence of thermally excited quasiparticles,
which also give rise to a nonzero entropy density s(7). It
was shown by Kovtun et al. (2005) that in a rather special
class of relativistic field theories, which are dual to some
string theory, the ratio 7(7)/s(T)=%/4mkg has a univer-
sal value. For more general models, this value is conjec-
tured to provide a lower bound on #/s. Since the ratio
does not involve the velocity of light, the string theory
bound on 7/s may apply also to nonrelativistic systems
like the unitary Fermi gas, which lack an intrinsic scale
beyond temperature and density. Quantitative results for
the viscosity of the unitary Fermi gas in its normal phase
were obtained by Bruun and Smith (2007). Near the su-
perfluid transition, the dimensionless coefficient « is of
order 0.2. Using the results for the entropy discussed
above, gives n/s=0.28%/kg near T., which is larger than
the string theory bound by a factor ~3.5. In the super-
fluid regime, the 7/s ratio is expected to diverge (Rupak
and Schifer, 2007), implying a minimum of #/s near the
transition temperature. Recent measurements of this ra-
tio, using the damping of the radial breathing mode in a
strongly anisotropic trap have been performed by
Turlapov et al. (2007). The results show indeed a very
low viscosity of the unitary gas with a ratio #/s which is
not far from the string theory bound. Exact results on
bulk rather than shear viscosities were obtained by Son
(2007). He noted that the unitary Fermi gas exhibits a
conformal symmetry that constrains the phenomenologi-
cal coefficients in the dissipative part of the stress tensor.
In particular, the bulk viscosity vanishes identically in
the normal state and thus no entropy is generated in a
uniform expansion. In the superfluid phase, which is
generally characterized by the shear plus three different
bulk viscosities (Forster, 1975), this result implies that
two of the bulk viscosity coefficients vanish at unitarity,
while one of them may still be finite.

rf spectroscopy. A microscopic signature of pairing be-
tween fermions is provided by rf spectroscopy. This was
first suggested by Torma and Zoller (2000). Following
earlier work by Gupta et al. (2003) and Regal and Jin
(2003) in the nonsuperfluid regime, such an experiment
was performed by Chin et al. (2004). A rf field with fre-
quency w; is used to drive transitions between one of
the hyperfine states |2)=||) that is involved in the pair-
ing and an empty hyperfine state |3), which lies above it
by an energy %w,; due to the magnetic field splitting of
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FIG. 35. Effective pairing gap in °Li from rf spectroscopy as a
function of magnetic field. The solid line is the two-particle
binding energy, which vanishes at the Feshbach resonance at
By=834 G coming from the BEC side. Open and closed sym-
bols are for Fermi temperatures 7p=3.6 and 1.2 uK, respec-
tively. The ratio of the effective pairing gaps strongly depends
on T on the BCS side (inset). From Chin et al., 2004.

bare atom hyperfine levels. In the absence of any inter-
actions, the spectrum exhibits a sharp peak at w; =wy;.
The presence of attractive interactions between the two
lowest hyperfine states |1) and |2) will lead to an upward
shift of this resonance. In a molecular picture, which is
valid far on the BEC side of the crossover, this shift is
expected to coincide with the two-particle binding en-
ergy ¢,. Indeed, it was shown by Chin and Julienne
(2005) that both scattering lengths and molecular bind-
ing energies may be extracted from rf spectra of weakly
bound molecules. For a quantitative analysis, however, it
is important even at the level of single molecules to
properly account for the nonvanishing interaction a3 3
#0 of atoms in state |3) with those in the initial states |1)
and |2) forming the molecule (Gupta er al., 2003). In the
experiments of Chin et al. (2004), the rf spectrum exhib-
ited a dominant free-atom peak centered at w; = w,; for
temperatures 7=~ Tr At low temperatures T=<0.2Tp,
where the gas is superfluid, an additional peak is ob-
served, which is shifted with respect to the free transi-
tion. As shown in Fig. 35, the shift essentially follows the
two-particle binding energy on the BEC side of the
crossover but stays finite on the BCS side, a <0. In par-
ticular, the size of the shift near unitarity increases with
the Fermi energy because the formation of bound pairs
is a many-body effect. A theoretical analysis of these
observations, which is based on an extended BCS de-
scription of pairing generalized to finite temperature
within a 7-matrix formalism, was given by Kinnunen et
al. (2004), He et al. (2005), and Ohashi and Griffin
(2005). By including the necessary average over the in-
homogeneous gap parameter A(x) in a harmonic trap,
reasonable agreement with the experimentally observed
spectra has been obtained. An important point to realize
is that strong attractive interactions near unitarity lead
to an effective “pairing gap” already in the normal state
above T.. The rf shift is therefore not a direct measure
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of the superfluid order parameter (Kinnunen et al., 2004;
He et al., 2005) or the gap A.

The models discussed above rely on the assumption
that interactions with the final state |3) are negligible.
When this is not the case, the results can change signifi-
cantly. For instance, when the interaction constants g,
between the states |0=1,2,3) which are involved are
identical, neither mean-field (“clock”) shifts nor the ef-
fects of pairing show up in the long-wavelength rf spec-
trum (Yu and Baym, 2006). A theory for the average
frequency shift of the rf spectra of homogeneous gases
at zero temperature, which takes into account both
many-body correlations and the interactions with the fi-
nal state |3), was given by Baym et al. (2007) and Punk
and Zwerger (2007). Near T=0, where only a single peak
is observed in the rf spectrum, its position can be deter-
mined from a sum-rule approach. Introducing the detun-
ing w=w; —wy; of the 1f field from the bare [2)-|3) tran-
sition, the average clock shift

. ( 1 1 )1 (- u)
ho=|—-—|——=
812 813/ N2 J8;

(149)

can be expressed in terms of the derivative of the
ground-state energy density u with respect to the inverse
of the renormalized coupling constant g,=4mh%a,,/ M
(Baym et al., 2007). The expression is finite for all cou-
pling strengths g, and evolves smoothly from the BCS
to the BEC limit. In particular, the average clock shift
vanishes if g,=g3 (Zwierlein et al., 2003a). This is di-
rectly connected with the result mentioned above, be-
cause the interaction between states [2) and |3) drops out
for the average shift w. For negligible populations of the
state |3), d(—u)/dg;) =h*C/M? can be expressed in terms
of the constant C, which characterizes the asymptotic
behavior lim n, = C/k* of the momentum distribution at
large momenta of the crossover problem in the [1)-2)
channel (Punk and Zwerger, 2007). Within an extended
BCS description of the ground-state wave function, the
constant A*Cgcg/ M?>=A? is precisely the square of the
gap parameter. In the BCS limit, Eq. (149) thus repro-
duces the weak-coupling result obtained by Yu and
Baym (2006). In the BEC limit, where the BCS ground
state becomes exact again, the asymptotic behavior
Appc=4ep/\3mkpay, gives io=2e,(1—-ay,/a,3), with g,
=h?/ Ma%2 the two-particle binding energy. This agrees
with the first moment of the spectrum of a bound-free
transition in the molecular limit (Chin and Julienne,
2005). The dependence on k. drops out, as it must. The
most interesting regime is that around the unitarity
point 1/g;,=0, where the average rf shift is @=
—0.46v -/ ay5. The prefactor is obtained from a numerical
evaluation of the derivative in Eq. (149) (Baym et al.,
2007) or, equivalently, the constant C in the momentum
distribution at the unitarity point (Punk and Zwerger,
2007) (note that the dependence @~ —v /a3 at unitarity
also holds in an extended BCS description; however, the
numerical factor 0.56 differs from the exact value). Com-
pared with locally resolved rf spectra, which were mea-
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FIG. 36. Vortex lattice in a rotating gas of OLi precisely at the
Feshbach resonance and on the BEC and BCS side. From Zwi-
erlein et al., 2005.

sured by Shin et al. (2007), the predicted average shift in
the case of °Li is almost twice the observed peak posi-
tion. This is probably due to the fact that w has a con-
siderable contribution from the higher-frequency part of
the spectrum. An unexpected prediction of Eq. (149) is
the linear dependence of the shift on the Fermi wave
vector kp at unitarity. Experimentally, this might be dis-
tinguished from the naive scaling proportional to er by
spatially resolved rf spectra (Shin et al., 2007).

Vortices. As noted above, the appearance of shifts in
the rf spectrum is not a proof of superfluidity. Indeed,
pairing effects appear in the normal state above 7T, as a
precursor to superfluidity, or may be present even at
zero temperature in unbalanced Fermi gases above the
Clogston-Chandrasekhar limit, as observed by Schunck
et al. (2007). Beyond the evidence for superfluidity from
the collective mode frequencies (Bartenstein et al.,
2004b; Kinast et al., 2004) a crucial step which verifies
the existence of a fermionic superfluid, was the observa-
tion of triangular vortex lattices in rotating Fermi gases
near unitarity by Zwierlein et al. (2005) (see Fig. 36).
Vortex lattices require conservation of vorticity, which is
a consequence of superfluid hydrodynamics. The regu-
larity of the lattice shows that all vortices have the same
vorticity. Since it is a superfluid of fermionic pairs, the
expected circulation per vortex is 4/2M. This is indeed
the value found from equating the total circulation at a
given stirring frequency with the number of vortices and
the transverse area of the cloud.

IX. PERSPECTIVES

Cold atoms provide a novel tool for studying the phys-
ics of strong correlations in a widely tunable range and
in unprecedentedly clean sytems. Basic models in many-
body physics, such as the Hubbard model with on-site
interaction or the Haldane pseudopotentials for physics
in the lowest Landau level, which were originally intro-
duced in a condensed-matter context as idealized de-
scriptions of strong-correlation effects in real materials,
can now be applied on a quantitative level. In the fol-
lowing, an outline of possible future directions is given.
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A. Quantum magnetism

One of the major challenges with ultracold atoms in
optical lattices in the near future lies in the realization
and study of configurations that can serve as tunable
model systems for basic problems in quantum magne-
tism. For two-component mixtures of bosonic or fermi-
onic atoms in an optical lattice that are labeled by a
pseudospin variable |1), ||) and dominating interactions
U>J between them, second-order perturbation theory
in the kinetic energy term allows one to map the corre-
sponding (Bose-)Hubbard Hamiltonian to an anisotropic
Heisenberg model (XXZ model) with effective spin-spin
interactions between atoms on neighboring lattice sites,

> [ViSaSa + J5(SpSk: + SkSk)1,

. (150)
R,R’

where the + (—) sign holds for the case of fermions
or bosons, respectively (Duan et al., 2003; Kuklov and
Svistunov, 2003). By tuning the exchange terms JZ,
=203+ Uy =411/ Uy =413/U) | and T =401,/ Uy,
via spin-dependent tunneling amplitudes or spin-
dependent interactions, one can change between various
quantum phases. One possibility, pointed out by Kuklov
and Svistunov (2003), is the realization of supercounter-
flow, i.e., superfluidity in the relative motion of the two
components, while the system is a Mott insulator as far
as the total density is concerned. Another possibility is
the formation of topological quantum phases, arising for
different exchange couplings along different lattice di-
rections (Kitaev, 2006), which can be realized with opti-
cal lattices (Duan et al., 2003). The most natural case
occurs, however, for equal tunneling amplitudes and on-
site interactions. It yields an isotropic Heisenberg-type
spin Hamiltonian

H=J. 2 Sg-Sg'
R,R’

(151)

Here the superexchange coupling J = +4J2/ U; has a
positive (negative) sign for the case of fermions (bosons)
and thus favors antiferromagnetically (ferromagneti-
cally) ordered phases. In the case of fermions, it can
easily be understood why the antiferromagnetically or-
dered phase is preferred: an initial spin-triplet state can-
not lower its energy via second-order hopping processes,
as the two spins pointing in the same direction can never
be placed on a single lattice site. The spin-singlet term,
however, is not subject to this restriction and can lower
its energy via a second-order exchange hopping process
(Auerbach, 2006). Recently, the tunneling dynamics
based on second-order hopping events was observed in
an array of tightly confining double wells (Folling et al.,
2007). Remarkably, the observed second-order coupling
strengths ~J?/hU can be almost on the order of 1 kHz
and thus three to four orders of magnitude larger than
the direct magnetic dipole interaction between two
alkali-metal atoms on neighboring lattice sites.

Observation of such magnetically ordered quantum
phases requires reaching very low temperatures kzT
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<4J?/U (for J/U<1) in the experiment. Werner et al.
(2005) have shown that such temperatures could be
within reach experimentally, as a Pomeranchuk-type
cooling effect during the loading of atoms in the lattice
assists in a cooling of atoms. In particular, it turns out
that, for an initial temperature of a homogeneous two-
component Fermi gas below 7T/Tr=0.08, an antiferro-
magnetically ordered phase could be reached at unit fill-
ing, when the optical lattice potential is ramped up
adiabatically. A more robust implementation of spin
Hamiltonians might be reached via ground-state polar
molecules, which have much larger spin-spin coupling
strengths (Micheli et al., 2006). Such nearest-neighbor
spin interactions are mediated via a long-range electric
dipole-dipole interaction between the molecules. Sev-
eral experimental groups are currently pursuing the goal
of creating such ground-state polar molecules out of ul-
tracold atoms via Feshbach sweeps (Ospelkaus et al.,
2006, 2008) and subsequent photoassociation, or by di-
rectly slowing and sympathetically cooling stable polar
molecules. Noise correlation or Bragg spectroscopy
might allow one to uniquely identify such antiferromag-
netically ordered phases.

From a condensed-matter point of view, one of the
most challenging problems is the realization and study
of the fermionic repulsive Hubbard model in an optical
lattice with adjustable interactions and filling fraction, in
particular in 2D. As discussed by Hofstetter et al. (2002),
such a system would constitute a cold atom version of
one of the most intensely studied models in condensed-
matter physics. It allows one to access unconventional
normal and d-wave superconducting phases as found in
high-temperature superconductors (Lee et al., 2006). Of
course, realization of these models with cold atoms
would not solve the latter problem; however, it would be
an extremely valuable tool to test some of the still open
issues in this field. In this context, specific proposals
have been made for realizing so-called resonating va-
lence bond states by adiabatically transforming spin pat-
terns in optical superlattices (Trebst et al., 2006). More
complex spin-liquid states might be created by enforcing
“frustration” in antiferromagnetically ordered phases
through triangular or Kagome-type lattices (Santos et al.,
2004). For a review of these models, see Lewenstein et
al. (2007).

Quantum impurity problems, which have played an
important role in the study of magnetism, may be real-
ized in the cold atom context by confining single atoms
in a tight optical trap or in a deep optical lattice. For
hard-core bosons or fermions, the effective pseudospin
one-half associated with the possible local occupation
numbers n=0,1 can be coupled to a reservoir of either a
BEC or a degenerate Fermi gas, using Raman transi-
tions (Recati et al., 2005).

B. Disorder

It was noted by Anderson (1958a) that waves in a me-
dium with a static (“quenched”) randomness may be-
come localized due to constructive interference between
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multiply reflected waves. Qualitatively, this happens be-
low a “mobility edge,” where the mean free path ¢ (cal-
culated, e.g., in a Born approximation treatment of the
scattering by the disorder potential) becomes smaller
than the wavelength \. This so-called Ioffe-Regel crite-
rion applies in a 3D situation with short-range disorder
and in the absence of interactions.”® In the interacting
case, in which localization due to both disorder (Ander-
son) and interactions (Mott) is possible, the problem is
still not well understood [see, e.g., Belitz and Kirk-
patrick (1994) and Basko et al. (2006)]. Cold atoms thus
provide a novel tool to investigate the localization prob-
lem, in particular since interactions are tunable over a
wide range.

For noninteracting bosons, the ground state in the
presence of disorder is obtained by putting all particles
in the lowest single-particle level of the random poten-
tial. On adding weak repulsive interactions, a finite num-
ber of localized states in the so-called Lifschitz tails of
the single-particle spectrum (Lifschitz et al., 1988) will be
occupied. As long as the chemical potential is in this
low-energy range, these states have negligible spatial
overlap. For very low densities, repulsive bosons are
therefore expected to form a “Lifshitz glass” of frag-
mented, local condensates (Lugan et al., 2007). With in-
creasing densities, these local condensates will be
coupled by Josephson tunneling and eventually form a
superfluid, where coherence is established over the
whole sample. A quantitative analysis of this transition
was first given by Giamarchi and Schulz (1988) in the
particular case of one dimension. Using a quantum hy-
drodynamic Luttinger-liquid description, they found that
weak interaction tends to suppress the effect of Ander-
son localization. This effect also appears for a commen-
surate filling in an optical lattice; see Rapsch et al
(1999). Specifically, weak disorder does not destroy the
superfluid, provided the Luttinger exponent K intro-
duced in Sec. V.B is larger than 3/2. Within the Lieb-
Liniger model with an effective coupling constant y de-
fined in Eq. (88), this requires y=<8. In the opposite
regime K<3/2 of low densities or strong interactions
near the Tonks-Girardeau limit, even weak disorder de-
stroys the superfluid. The ground state then lacks long-
range phase coherence, consistent with the Lifshitz glass
discussed above. Exact results for the momentum distri-
bution and the local density of states have been obtained
by DeMartino et al. (2005) in the special limit of the
Tonks-Girardeau gas, where the problem is equivalent
to noninteracting fermions (see Sec. V.B). Interacting
bosons in higher dimensions were studied by Fisher et al.
(1989) using the Bose-Hubbard model Eq. (65). To ac-
count for disorder, the on-site energies eg are assumed
to have a random component, with zero average and
finite variance

%In 1D and 2D, arbitrary weak disorder leads to localization,
1.e., even waves with A\ <{ are localized.
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((er — (er))(er’ — (€r'))) = AdR R’ (152)
where A is a measure of the strength of the disorder. It
has been shown by Fisher et al. (1989) that, even at weak
disorder A< U/2, a novel so-called Bose glass phase ap-
pears, which separates the SF and MI states.”’ At strong
disorder A>U/2, the MI states are destroyed com-
pletely. The Bose glass is characterized by a vanishing
superfluid and condensate density. It will thus show no
sharp interference peaks in a time-of-flight experiment
after release from an optical lattice (see Sec. IV.B). In
contrast to the MI phase, the Bose glass has both a finite
compressibility (i.e., there is no shell structure in a trap)
and a continuous excitation spectrum.

A concrete proposal for studying localization effects
with cold atoms was made by Damski et al. (2003), who
suggested using laser speckle patterns as a means to re-
alize frozen disorder. Such patterns have been employed
by groups in Florence (Lye et al., 2005) and Orsay (CIé-
ment et al., 2005). They are produced by a laser beam
that is scattered from a ground glass diffuser (Clément et
al., 2006). The speckle pattern has a random intensity /,
which is exponentially distributed P(I)~exp(—1/{I}).
The rms intensity fluctuation oy is thus equal to the av-
erage intensity (/). Fluctuations in the intensity give rise
to a random value of the optical dipole potential in Eq.
(31), which is experienced by the atoms. An important
parameter characterizing the speckle pattern is the spa-
tial correlation length o, which is the scale over which
(I(x)1(0)) decays to (I)>. When the optical setup is dif-
fraction limited, the smallest achievable o’s can take
values down to 1 um (Clément et al., 2006), which is
comparable to typical healing lengths ¢ in dilute gases.
Reaching this limit is important, since smooth disorder
potentials with x> £ are not suitable to study Anderson
localization in expanding BEC’. Indeed, the typical
range of momenta after expansion reaches up to k.
~1/& For og> &, therefore, the spectral range of the
disorder is much smaller than the momenta of matter
waves. Even speckle patterns with long correlation
lengths, however, can lead to a strong suppression of the
axial expansion of an elongated BEC. This was observed
experimentally by Clément et al. (2005), Fort et al
(2005), and Schulte et al. (2005). The effect is not due to
Anderson localization, however. Instead, it is caused by
classical total reflection, because during expansion the
density and chemical potential of the gas decrease.
Eventually, therefore, matter waves have energies below
the typical disorder potentials and the gas undergoes
fragmentation. A suggestion for realizing Anderson lo-
calization of noninteracting particles in 1D has recently
been made by Sanchez-Palencia et al. (2007). It is based
on a 1D BEC, which after expansion is transformed into
a distribution of free matter waves with momenta up to
1/¢. For short-range disorder with oz <§, these waves
will all be localized, even for quite weak disorder.

?"The Lifshitz glass may be thought of as the low-density or
strong-disorder limit of the Bose glass.
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A rather direct approach to study the interplay be-
tween disorder and strong interactions makes use of
bichromatic optical lattices (Fallani et al, 2007). Such
lattices provide a pseudorandom potential if the lattice
periods are incommensurate. On adding the incommen-
surate lattice in the superfluid state, strong suppression
of the interference pattern is found. Starting from a MI
phase, the sharp excitation spectrum is smeared out with
increasing amplitude of the incommensurate lattice.
Both observations are consistent with the presence of a
Bose glass phase for a strong incommensurate lattice
potential (Fallani et al., 2007). A different method for
realizing short-range disorder in cold gases was sug-
gested by Gavish and Castin (2005). It employs a two-
species mixture of atoms in an optical lattice. Because of
a finite interspecies scattering length, the component
that is free to move around in the lattice experiences an
on-site random potential of the type (152), provided at-
oms of the different species or spin state are frozen at
random sites. The interplay between disorder and inter-
actions is, of course, also an intriguing problem for fer-
mions. A quantitative phase diagram for short-range dis-
order plus repulsive interactions has been determined by
Byczuk et al. (2005). So far, however, no experiments
have been done in this direction.

C. Nonequilibrium dynamics

A unique feature of many-body physics with cold at-
oms is the possibility to modify both the interactions and
external potentials dynamically. In the context of the
SF-MI transition, this has been discussed in Sec. IV.C.
Below, we give an outline of recent developments in this
area.

The basic question about the efficiency of collisions in
establishing a new equilibrium from an initial out-of-
equilibrium state was adressed by Kinoshita et al. (2006)
for Bose gases in one dimension. An array of several
thousand 1D tubes created by a strong 2D optical lattice
(see Sec. V.B) was subject to a pulsed optical lattice
along the axial direction. The zero-momentum state is
depleted and essentially all atoms are transferred to mo-
menta +2Ak, where k is the wave vector of the pulsed
axial optical lattice. The two wave packets in each tube
separate and then recollide again after a time 7/ wy,
which is half the oscillation period in the harmonic axial
trap with frequency wgy. The associated collision energy
(2hk)?/M was around 0.45hw , i.e., much smaller than
the minimum energy 27w, necessary to excite higher
transverse modes. The system thus remains strictly 1D
during its time evolution. It was found that, even after
several hundred oscillation periods, the initial nonequi-
librium momentum distribution was preserved.

This striking observation raises a number of ques-
tions. Specifically, is the absence of a broadening of the
momentum distribution connected with the integrability
of the 1D Bose gas? More generally, one can ask
whether, and under what conditions, the unitary time
evolution of a nonequilibrium initial state in a strongly
interacting but nonintegrable quantum system will
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evolve into a state in which at least one- and two-
particle correlations are stationary and the information
about the precise initial conditions is hidden in some—in
practice unobservable—high-order correlations. The
nonequilibrium dynamics for the integrable case of
bosons in 1D was addressed recently by Rigol et al
(2007). Taking as a model a Tonks-Girardeau gas on a
lattice, they showed numerically that the momentum
distribution at large times is well described by that of an
equilibrium state with a density matrix of the form p

~exp(—2m)\mf\m). Here Am denote the full set of con-
served quantities, which are known explicitly for the
Tonks-Girardeau gas because it is equivalent to free fer-
mions. The Lagrange multipliers A, are fixed by the ini-

tial conditions of given expectation values (Am) at r=0.
This is the standard procedure in statistical physics,
where equilibrium is described microscopically as a state
of maximum entropy consistent with the given “macro-

scopic” data (Am> (Balian, 1991). In particular, an ini-
tially double-peaked momentum distribution is pre-
served in the stationary state described by the maximum
entropy density operator p (Rigol et al., 2007). The hy-
pothesis that the absence of momentum relaxation is re-
lated to the integrability of the 1D Bose gas could be
tested by going to higher momenta k, where the 1D scat-
tering amplitude is no longer given by the low-energy
form of Eq. (85). For such a case, the pseudopotential
approximation breaks down and three-body collisions or
longer-ranged interactions can become relevant. For the
extreme case of two free 3D colliding BECs, equilibra-
tion has indeed been observed to set in after a few col-
lisions (Kinoshita et al., 2006).

In nonintegrable systems like the 1D Bose-Hubbard
model, where no conserved quantities exist beyond the
energy, the standard reasoning of statistical physics gives
rise to a microcanonical density operator, whose equiva-
lent “temperature” is set by the energy of the initial

state.”® Note that the microstate exp(—ilflt/ h)|A(0)),
which evolves from the initial state by the unitary time
evolution of a closed system, remains time dependent.
Its statistical (von Neumann) entropy vanishes. By con-
trast, the microcanonical density operator describes a
stationary situation, with a nonzero thermodynamic en-
tropy. It is determined by the number of energy eigen-
states near the exact initial energy that are accessible in
an energy range much smaller than the microscopic
scale set by the one-or two-body terms in the Hamil-
tonian but much larger that the inverse of the recurrence
time. For 1D problems, the hypothesis that simple mac-
roscopic observables are eventually well described by
such a stationary density operator can be tested quanti-
tatively using the adaptive time-dependent density-
matrix renormalization group (Daley et al., 2004; White
and Feiguin, 2004). In the case of the 1D BHM, an

In the semiclassical limit, this eigenstate thermalization hy-
pothesis can be derived under relatively weak assumptions, see
Srednicki (1994).
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effectively “thermal” stationary state arises for long time
dynamics after a quench from the SF to the MI (Kollath
et al., 2007) (see Sec. IV.C). Apparently, however, the
description by a stationary thermal density operator is
valid only for not too large values of the final repulsion
U,
fA different aspect of the nonequilibrium dynamics of
1D Bose gases was studied by Hofferberth et al. (2007).
A single 1D condensate formed in a magnetic microtrap
on an atom chip (Folman et al., 2002) is split into two
parts by applying rf potentials (Schumm et al., 2005) The
splitting process is done in a phase-coherent manner,
such that at time r=0 the two condensates have a van-
ishing relative phase. They are kept in a double-well po-
tential for a time ¢ and then released from the trap. As
discussed in Sec. III.C, the resulting interfence pattern
provides information about the statistics of the interfer-
ence amplitude. In the nonequilibrium situation dis-
cussed here, the relevant observable analogous to Eq.

(62) is the operator exp[ié(z,t)] integrated along the

axial z direction of the two condensates. Here é(z,t) is
the time-dependent phase difference between the two
independently fluctuating condensates. Using the quan-
tum hydrodynamic Hamiltonian Eq. (91), it has been
shown by Burkov ef al. (2007) that the expectation value
of this operator decays subexponentially for large times
t>h/kgT where phase fluctuations can be described
classically. This behavior is in good agreement with ex-
periments (Hofferberth et al., 2007). In particular, it al-
lows one to determine the temperature of the 1D gas
precisely.

The dynamics of the superfluid gap parameter in
attractive Fermi gases after a sudden change of the
coupling constant was investigated by Barankov et al.
(2004), Barankov and Levitov (2006), and Yuzbashyan et
al. (2006) using the exactly integrable BCS Hamiltonian.
Such changes in the coupling constant are experimen-
tally feasible by simply changing the magnetic field in a
Feshbach resonance. Depending on the initial condi-
tions, different regimes have been found where the gap
parameter may oscillate without damping, approaches
an “equilibrium” value different from that associated
with the coupling constant after the quench, or decays to
zero monotonically if the coupling constant is reduced to
very small values.
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APPENDIX: BEC AND SUPERFLUIDITY

Following the early suggestion of London that super-
fluidity (SF) in *He has its origin in Bose-Einstein con-
densation (BEC), the relation between both phenomena
has been a subject of considerable debate. In the follow-
ing, we outline their basic definitions and show that SF is
the more general phenomenon, which is both necessary
and sufficient for the existence of either standard BEC
or of quasicondensates in low-dimensional systems. For
a further discussion of the connections between BEC
and superfluidity, see Leggett (2006).

The definition of BEC in an interacting system of
bosons is based on the properties of the one-particle
density matrix p;, which is defined by its matrix elements

GU(x,x") = (x'|py]x) = (% (X) (x"))

in position space.29 As a Hermitian operator with Tr p,
=Jn(x)=N, p; has a complete set |n) of eigenstates with
positive eigenvalues )\f}) which sum up to N. As realized
by Penrose and Onsager (1956), the criterion for BEC is
that there is precisely one eigenvalue )\(()1):N0 of order
N while all other eigenvalues are nonextensive.”’ The
separation between extensive and nonextensive eigen-
values )\,(11) is well defined only in the thermodynamic
limit N—oo. In practice, however, the distinction be-
tween the BEC and the normal phase above T is rather
sharp even for the typical particle numbers N
~10*-107 of cold atoms in a trap. This is true in spite of
the fact that the nonextensive eigenvalues are still rather
large (see below). The macroscopic eigenvalue N, deter-
mines the number of particles in the condensate. In
terms of the single-particle eigenfunctions ¢,(x)=(x|n)
associated with the eigenstates |n) of p;, the existence
of a condensate is equivalent to a macroscopic occupa-

(A1)

tion of a single state created by the operator E(T]

= (po(x)az*(x). In a translation invariant situation, the
eigenfunctions are plane waves. The eigenvalues )\,(,61)

then coincide with the occupation numbers <13,T(13k> in
momentum space. In the thermodynamic limit N,V
— o at constant density #, the one-particle density ma-
trix

(x'[py]x) =ng + f Ai(k)e R x) g (A2)
k

approaches a finite value ny=1im Ny/V as r=|x—x'| — .
This property is called off-diagonal long-range order
(ODLRO). Physically, the existence of ODLRO implies
that the states in which a boson is removed from an

In an inhomogeneous situation, it is convenient to define
a reduced one-particle density matrix g by GW(x,x’)
= \n()n(x gV (x,x").

“In principle, it is also possible that more than one eigen-
value is extensive. This leads to so-called fragmented BEC’s
which may appear, e.g., in multicomponent spinor condensates
as shown by Ho (1998).
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N-particle system at positions x and x’ have a finite over-
lap even in the limit when the separation between two
points is taken to infinity.>! For cold gases, the presence
of ODLRO below T,, at least over a scale of the order
of micrometers, was observed experimentally by mea-
suring the decay of the interference contrast between
atomic beams outcoupled from two points at a distance r
from a BEC in a trap (Bloch ez al., 2000). The momen-
tum distribution 7i(k) of noncondensate particles is sin-
gular at small momenta. In the limit k—0, it behaves
like 7i(k) ~ c/k at zero and 7i(k) ~ T/k? at finite tempera-
ture, respectively (Lifshitz and Pitaevskii, 1980). Since
kmin~N7"3 in a finite system, the lowest nonextensive
eigenvalues of the one-particle density matrix are still
very large, scaling like A\ ~ N' at zero and AV~ N2/3
at finite temperature.

The definition of BEC via the existence of ODLRO
(A2) is closely related with Feynman’s intuitive picture
of Bose-Einstein condensation as a transition, below
which bosons are involved in exchange cycles of infinite
size (Feynman, 1953). In fact, a precise connection exists
with the superfluid density defined in Eq. (A4) below,
which can be expressed in terms of the square of the
winding number in a Feynman path representation of
the equilibrium density matrix (Pollock and Ceperley,
1987). As discussed by Ceperley (1995) and Holzmann
and Krauth (1999), the connection between the conden-
sate density and infinite cycles is also suggestive in terms
of the path-integral representation of the one-particle
density matrix. It is difficult, however, to put this on a
rigorous footing beyond the simple case of an ideal Bose
gas (Ueltschi, 2006; Chevallier and Krauth, 2007).

While a microscopic definition of BEC is straightfor-
ward, at least in principle, the notion of superfluidity is
more subtle. On a phenomenological level, the basic
properties of superfluids may be explained by introduc-
ing a complex order parameter (x)=|y(x)|exp id(x),
whose magnitude squared gives the superfluid density
n,, while the phase ¢(x) determines the superfluid veloc-
ity via v,=(A/M)V ¢(x) (Pitaevskii and Stringari, 2003).
The latter equation immediately implies that superfluid
flow is irrotational and that the circulation I'=§vds is
quantized in an integer number of circulation quanta
h/M. Note that these conclusions require a finite value
ny# 0, yet are independent of its magnitude. In order to
connect this phenomenological picture of SF with the
microscopic definition of BEC, the most obvious as-
sumption is to identify the order parameter ¢(x) with
the eigenfunction ¢y(x) of p; associated with the single
extensive eigenvalue, usually choosing a normalization
such that gb(x):\fﬁ()(po(x). Within this assumption, BEC
and SF appear as essentially identical phenomena. This
simple identification is not valid, however, beyond a
Gross-Pitaevskii description or for low-dimensional sys-

3!For a discussion on the topological properties of the many-
body wave function that are required to give ODLRO, see
Leggett (1973).
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tems. The basic idea of how to define superfluidity in
general terms goes back to Fisher et al. (1973) and Leg-
gett (1973). It is based on considering the sensitivity of
the many-body wave function with respect to a change
in the boundary condition (bc). Specifically, consider N
bosons in a volume V=L3 and choose boundary condi-
tions where the many-body wave function

Vo(X1,Xp, ... X, o0, Xp) (A3)

is multiplied by a pure phase factor ¢© if x;,—x;+ Le for
all i=1,...,N and with e a unit vector in one of the
directions.”® The dependence of the many-body energy
eigenvalues E,(®) on O leads to a phase-dependent
equilibrium free energy F(®). The difference AF(O)
=F(0®)-F(®=0) is thus a measure for the sensitivity of
the many-body system in a thermal equilibrium state to
a change in the bc’s. Since the eigenstates of a time re-
versal invariant Hamiltonian can always be chosen real,
the energies E,(®) and the resulting AF(®) must be
even in 0. For small deviations ® <1 from periodic bc’s,
the expected leading behavior is therefore quadratic.
The superfluid density ny(7) is then defined by the free-
energy difference per volume,

AF(©)/V = (B*2M)n(T)(®/L)* + -+, (A4)

to leading order in O. In a superfluid, therefore, a small
change in the bc’s leads to a change in the free energy
per volume, which scales like y/2(®/L)>. The associated
proportionality constant y=%%n,/ M is the helicity modu-
lus. The definition (A4) for superfluidity, which is based
only on equilibrium properties and also applies to finite
systems, is quite different from that for the existence of
BEC. Yet it turns out that the two phenomena are inti-
mately connected in the sense that a finite superfluid
density is both necessary and sufficient for either stan-
dard BEC or the existence of quasicondensates in lower
dimensions.

Following Leggett (1973), the physical meaning of the
phase ® and the associated definition of n, can be un-
derstood by considering bosons (gas or liquid) in a su-
perfluid state, which are enclosed between two concen-
tric cylinders with almost equal radii R, corotating
with an angular frequency Q:Qez.33 In the rotating
frame, the problem is stationary, however it acquires
an effective gauge potential A=MQAx, as shown in
Eq. (113). Formally, A can be eliminated by a gauge
transformation at the expense of a many-body wave
function, which is no longer single valued. It changes
by a factor ¢’® under changes 6,— 6,+2 of the angular
coordinate of each particle i, precisely as in Eq.
(A3), where @=-27MR?*Q/# is linear in the angular
frequency. The presence of a phase-dependent free-

32For simplicity, we assume isotropy in space. More generally,
the sensitivity with respect to changes in the bc’s may depend
on the direction, in which case the superfluid density becomes
a tensor.

3The walls are assumed to violate perfect cylindrical symme-
try to allow for the transfer of angular momentum to the fluid.
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energy increase AF(®) of the superfluid in the rotating
frame implies that the equilibrium state in this frame
carries a nonzero (kinematic) angular momentum L]
:—8AF(®)/&Q:—(ns/n)L(zo), where L;O):ICIQ is the
rigid-body angular momentum in the lab frame and I
=NMR? is the classical moment of inertia. A fraction
ny/n of the superfluid thus appears to stay at rest in the
lab frame for small angular frequencies Q<#/MR?,
where ® <1. As a result, the apparent moment of inertia
is smaller than that of classical rigid-body-like rotation.
Superfluidity, as defined by Eq. (A4), implies the appear-
ance of nonclassical rotational inertia (NCRI) (Leggett,
1973). In the context of cold gases, this phenomenon has
been observed experimentally by Madison et al. (2000).
They have shown that a trapped gas in the presence of a
small, nonsymmetric perturbation remains at zero angu-
lar momentum (i.e., no vortex enters) for sufficiently
small angular frequencies.

The example of a rotating system shows that a finite
value of O is associated with a nonvanishing current in
the system. Indeed, a finite superfluid density in the
sense of Eq. (A4) implies the existence of long-range
current-current correlations, which is the original micro-
scopic definition of n, by Hohenberg and Martin (1965).
To describe states of a superfluid with finite currents, it
is useful to introduce a smoothly varying local phase
¢(x) on scales much larger than the interparticle spac-
ing, which is connected with the total phase difference
between two arbitrary points by ® = [ds-V ¢(x). This lo-
cal phase variable is now precisely the phase of the
coarse-grained complex order parameter #(x) intro-
duced by Landau. This identification becomes evident
by noting that a nonvanishing phase gradient gives rise
to a finite superfluid velocity v,=(A/M)V ¢(x). The free-
energy increase

sr(©)= D [ vy (A5
associated with a change in the boundary conditions is
therefore the kinetic energy (M/2) [ny(v,)? of superfluid
flow with velocity v, and density n,. An immediate con-
sequence of Eq. (A5) is the quite general form of the
excitation spectrum of superfluids at low energies. In-
deed, considering the fact that phase and particle num-

ber are conjugate variables, the operator & (x) for small
fluctuations of the density obeys the canonical commu-
tation relation [&i(x),d(x’)]=id(x—x’) with the quan-
tized phase operator ¢(x). For any Bose gas (or liquid)
with a finite compressibility «=dn/du#0 at zero
temperature,34 the energy of small density fluctuations is
J[on(x)]?/2k. Combining this with Eq. (A5), the effec-
tive Hamiltonian for low-lying excitations of an arbitrary
superfluid is of the quantum hydrodynamic form

**This condition rules out the singular case of an ideal Bose
gas, where k= and thus ¢=0. The ideal gas is therefore not a
SF, even though it has a finite superfluid density that coincides
with the condensate density (Fisher et al., 1973).
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This Hamiltonian describes harmonic phonons with a
linear spectrum w=cq and a velocity that is determined
by Mc?=n,/ k. In a translation invariant situation, where
ny(T=0)=n, this velocity coincides with that of a stan-
dard (first sound) compression mode in a gas or liquid.
This coincidence is misleading, however, since Eq. (A6)
describes true elementary excitations and not a hydro-
dynamic, collision-dominated mode. States with a single
phonon are thus exact low-lying eigenstates of the
strongly interacting many-body system, whose ground
state exhibits the property (A4). As the Lieb-Liniger so-
lution of a 1D Bose gas shows, this mode exists even in
the absence of BEC. It only requires a finite value of the
superfluid density, as specified by Eq. (A4). A mode of
this type will therefore be present in the SF phase of
bosons in an optical lattice in any dimension and also in
the presence of a finite disorder, as long as the superfluid
density is nonvanishing.

The connection between SF and BEC now follows
from the macroscopic representation (Popov, 1983)

J(x) = explid(x)][n + 9i(x)]2 = iy explidh(x)]
(A7)

of the Bose field in terms of density and phase opera-
tors. The parameter 7, is a quasicondensate density. Its
existence relies on the assumption that there is a broad
range {<[|x|<{, of intermediate distances, where the
one-particle density matrix is equal to a finite value 7
<n,” beyond which only phase fluctuations contribute.
Using the harmonic Hamiltonian Eq. (A6), the
asymptotic decay of GV(x)=7, exp[—64*(x)/2] at large
separations is determined by the mean-square fluctua-
tions

1 [ d% 1-cosq-x h( ficq

fik ) 2m)? cq ZkBT> (A8)

5¢%(x) =
of the phase difference between points separated by x.
Equation (A7) and the notion of a quasicondensate
require the existence of a finite superfluid density at
least at 7=0, but not that of BEC. From Eq. (AS),
it is straightforward to see that plain BEC in the
sense of a nonvanishing condensate density ngy=7,
Xexp—[8¢*(»)/2] at nonzero temperatures only exists
in 3D. In two dimensions, the logarithmic divergence of
S¢*(x) —271n|x| at large distances leads to an algebraic
decay g'V(x)~|x|"7, consistent with the Mermin-
Wagner-Hohenberg theorem. Since wc’=n,(T)/M, the
exponent 77(T)=[nS(T)7\2T -1 is related to the exact value
of the superfluid density as pointed out in Eq. (100). A
similar behavior, due to quantum rather than thermal

3The short-range decay from G(0)=n to 7, is due fluctua-
tions at scales smaller than &, which require a microscopic cal-
culation. The integral (AS8) is therefore cutoff at g, ~1/¢&.
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phase fluctuations, applies in 1D at zero temperature;
see Sec. V.B.

The arguments above show that SF in the sense of Eq.
(A4) plus the assumption of a finite compressibility « are
sufficient conditions for either plain BEC in 3D or the
existence of quasicondensates in 2D at finite and in 1D
at zero temperature.36 For the reverse question, whether
SF is also necessary for the existence of BEC, the answer
is again yes, in the general sense that BEC is replaced by
quasicondensates in low dimensions. Indeed, for a trans-
lation invariant system, Leggett (1998) has shown that
the existence of ODLRO in the ground state with an
arbitrary small condensate fraction ny/n implies perfect
superfluidity n,(7=0) =n at zero temperature. Note that
this includes the case of 2D gases, where only a quasi-
condensate survives at nonzero temperature. In 1D,
the presence of quasi-long-range order in gV~ |x|~12K
implies a finite value of ny, by K=whkc for bosonic
Luttinger liquids. In more general terms, the fact that
ODLRO in a BEC implies superfluidity follows from
the Nambu-Goldstone theorem. It states that the ap-
pearence of (quasi-)long-range order in the phase im-
plies the existence of an elementary excitation, whose
energy vanishes in the limit of zero momentum. As em-
phasized, e.g., by Weinberg (1986), the order parameter
phase ¢(x) introduced above is the Nambu-Goldstone
field associated with the broken U(1) gauge symmetry
[this notion has to be treated with care; see, e.g.,
Wen (2004)]. In the present context, a broken gauge
symmetry is the statement of Eq. (A4), namely, that the
free energy contains a term quadratic in a phase twist
imposed at the boundaries of the system. For systems
with a finite compressibility, the dynamics of the
Nambu-Goldstone mode is described by the quantum
hydrodynamic Hamiltonian Eq. (A6). The definition
(A4) of superfluidity and the resulting generic quantum
hydrodynamic Hamiltonian (A6), which are connected
to long- (or quasi-long-)-range order via Egs. (A7) and
(A8), are thus completely general and are not tied, e.g.,
to translation-invariant systems. Despite their different
definitions based on long-range current or long-range
phase correlations, the two phenomena SF and BEC (in
its generalized sense) are therefore indeed two sides of
the same coin.
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