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I. INTRODUCTION

It has been 30 years since the discovery of the Unruh
effect �Unruh, 1976� which can be also found under the
name of Davies-Unruh, Fulling-Davies-Unruh, and
Unruh-Davies-DeWitt-Fulling effect. This is a conceptu-
ally subtle quantum field theory result, which has played
a crucial role in our understanding that the particle con-
tent of a field theory is observer dependent in a sense to
be made precise later �Fulling, 1973� �see also Unruh
�1977��. This effect is important in its own right and as a
tool to investigate other phenomena such as the thermal
emission of particles from black holes �Hawking, 1974,
1975� and cosmological horizons �Gibbons and Hawk-
ing, 1977�. It is interesting that the Unruh effect was on
Feynman’s list of things to learn in his later years �see
Fig. 1�. In short, the Unruh effect expresses the fact that
uniformly accelerated observers in Minkowski space-
time, i.e., linearly accelerated observers with constant
proper acceleration �also called Rindler observers�, as-
sociate a thermal bath of Rindler particles �also called
Fulling-Rindler particles� to the no-particle state of iner-
tial observers �also called the Minkowski vacuum�. Rin-
dler particles are associated with positive-energy modes
as defined by Rindler observers in contrast to
Minkowski particles, which are associated with positive-
energy modes as defined by inertial observers. Unruh
�1976� also provided an explanation for the conclusion
obtained by Davies �1975� that an observer undergoing
uniform acceleration a=const in Minkowski spacetime
would see a fixed inertial mirror to emit thermal radia-
tion with temperature a� / �2�kc�, and the reason why
this is not in contradiction with energy conservation. Al-
though there are some accounts in the literature discuss-
ing the Unruh effect,1 we believe that this review will be
a useful contribution for the reasons listed below.

First, some have recently questioned the existence of
the Unruh effect �Narozhny et al., 2002, 2004�. We be-
lieve there are two main sources of confusion, which
need to be clarified in order to address these objections.
One is that it has not been made clear that the heuristic
expression of the Minkowski vacuum as a superposition
of Rindler states makes sense outside as well as inside
the two Rindler wedges. Although this point is not cen-
tral to the Unruh effect �Fulling and Unruh, 2004�, it will
be useful to point out that this heuristic expression in
fact makes sense in the whole of Minkowski spacetime.
Another common source of confusion is that the Unruh
effect is sometimes tacitly assumed to be the equiva-
lence of the excitation rate of a detector when it is �i�
uniformly accelerated in the Minkowski vacuum and �ii�
static in a thermal bath of Minkowski particles �rather
than of Rindler particles�. There is no such equivalence
in general, although this showed up by coincidence in
some early examples in the literature �see discussion in

Sec. III.A.4�. We emphasize that this point does not con-
tradict the fact that the detailed balance relation satis-
fied by static detectors in a thermal bath of Minkowski
particles is in general also valid for uniformly acceler-
ated ones in the Minkowski vacuum �Unruh, 1976�. The
identification of the Unruh effect with the behavior of
accelerated detectors seems to have generated some-
times unnecessary confusion. It is worthwhile to empha-
size that the Unruh effect is a quantum field theory re-
sult, which does not depend on the introduction of the
detector concept. In this sense, it is better to see the
detailed balance relation satisfied by uniformly acceler-
ated detectors as a natural consequence or application
rather than a definition of the Unruh effect. In order to
exemplify the meaning of the Unruh effect as the
equivalence between the Minkowski vacuum and a ther-
mal bath of Rindler particles, we collect and discuss a
number of illustrative physical applications.

The Unruh effect has also been connected with the
long-standing discussion about whether or not sources2

uniformly accelerated from the null past infinity to the
null future infinity radiate with respect to inertial ob-
servers. Although some aspects of this issue are worth
investigating and the corresponding discussion can be
enriched by considering the Unruh effect, it is useful to
keep in mind that the Unruh effect does not depend on
a consensus on this issue which seems to be mostly se-
mantic �see Fulling �2005� and related references�. We
comment on this issue in Sec. III.A.5.

Second, there have been several recent proposals to
detect the Unruh effect in the laboratory and it is useful
to review and assess them. We emphasize that, although
it is fine to interpret laboratory observables from the
point of view of uniformly accelerated observers, the
Unruh effect itself does not need experimental confir-
mation any more than free quantum field theory does.3

Finally, there has been an increasing interest in the
Unruh effect �see Fig. 2� because of its connection with a
number of contemporary research topics.4 The thermo-
dynamics of black holes and the corresponding informa-
tion puzzle is one of them. It will be beneficial therefore
to review the literature on the generalized second law,5

quantum information,6 and related topics with the Un-
ruh effect as the central theme.

1See, e.g., Sciama et al. �1981�; Birrell and Davies �1982�;
Takagi �1986�; Fulling and Ruijsenaars �1987�; Ginzburg and
Frolov �1987�; Wald �1994�; Padmanabhan �2005�.

2Throughout this review we will use the word “sources” to
mean scalar sources, particle detectors, or electric charges, de-
pending on the context where it appears.

3This statement should be understood in the sense that we
are dealing with mathematical constructions that stand on their
own. The assertions follow from the definitions and so do not
need to be experimentally verified. The fact that “Rindler and
Minkowski perspectives” give consistent physical predictions is
a consequence of the validity of these constructions.

4The data in Fig. 2 should not be used to infer any relative or
absolute measure of the importance of the Unruh effect. They
have been introduced only as an illustration on the increasing
interest in this issue.

5See, e.g., Unruh and Wald �1982, 1983�; Wald �2001�.
6See, e.g., Bousso �2002�; Peres and Terno �2004�.
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The review is organized as follows. In Sec. II we re-
view the derivation of the Unruh effect, emphasizing the
fact that the quantum field expanded by the Rindler
modes can be used in the whole of Minkowski space-
time, partly to respond to the recent criticisms men-
tioned above. We also touch upon more rigorous ap-
proaches such as the Bisognano-Wichmann theorem in
algebraic field theory and general theorems on field
theories in spacetimes with bifurcate Killing horizons. A
discussion of the Unruh effect in interacting field theo-
ries is also included. In Sec. III we present some typical
examples which illustrate the physical content of the
Unruh effect. We start by reviewing the behavior of ac-
celerated detectors which can be also used to describe
the physics of accelerated atomic systems. Then, we ana-
lyze the weak decay of accelerated protons and the
bremsstrahlung from accelerated charged particles. Sec-
tion IV discusses some experimental proposals for labo-
ratory signatures of the Unruh effect in particle accel-
erators, in microwave cavities, in the presence of
ultraintense lasers, in the vicinity of accelerated bound-
aries, and in hadronic processes. In Sec. V we comment
on some recent developments concerning the Unruh ef-
fect, which include the possible reduction in fidelity of
teleportation when one party is accelerated, the deco-
herence of accelerated systems, and the possible ob-
server dependence of the entropy concept. We conclude
the review with a summary in Sec. VI. Throughout this
review we use natural units �=c=G=k=1 and signature
�� � � �� unless stated otherwise.

It would be impossible to give a completely balanced
account of so much work in the literature concerning the
Unruh effect. This review reflects our own experience
with the Unruh effect, and we are concerned that we
may have overlooked some important related papers.
However, we hope at least to have included a sufficient
number of papers to allow the readers to trace back to
most related results.

II. THE UNRUH EFFECT

A. Free scalar field in curved spacetime

Even though the Unruh effect is about quantum field
theory �QFT� in flat spacetime, it is useful to review
briefly the general framework of noninteracting QFT in
curved spacetime. We treat only the simplest theory, i.e.,
the theory of a Hermitian scalar field satisfying the
Klein-Gordon equation. We present it in a schematic
and heuristic way as done by Birrell and Davies �1982�.
A mathematically more satisfactory treatment can be
found, e.g., in Wald �1994�.

We first remind the reader of some important features
of QFT in Minkowski spacetime. In this spacetime the
scalar field is expanded in terms of the energy-
momentum eigenfunctions, and the vacuum state is de-
fined as the state annihilated by all annihilation opera-
tors, i.e., the coefficient operators of the positive-
frequency eigenfunctions defined to be those
proportional to e−ik0t with k0�0, where t is the time pa-

rameter. The coefficient operators of the negative-
frequency modes proportional to eik0t are the creation
operators, and the states obtained by applying creation
operators on the vacuum state are identified with states
containing particles. Note that the time-translation sym-
metry, which enables one to define positive- and
negative-frequency solutions to the Klein-Gordon equa-
tion, plays a crucial role in the definition of the vacuum
state and the Fock space of particles. Therefore, in a
general curved spacetime with no isometries, there is no
reason to expect the existence of a preferred vacuum
state or a useful concept of particles.

For simplicity we specialize to �D+1�-dimensional
spacetimes whose metric takes the form

ds2 = �N�x��2dt2 − Gab�x�dxadxb, �2.1�

where x= �t ,x�. The coefficient N�x� is called the lapse
function �Arnowitt et al., 1962� and Gab is the metric on
the spacelike hypersurface of constant t. �All spacetimes
considered have a metric of this form.� In this spacetime
the minimally coupled7 massive Klein-Gordon equation
�����+m2�	=0, which arises as the Euler-Lagrange
equation from the Lagrangian density,

L = �− g���	��	 − m2	2�/2, �2.2�

takes the form

�t�N−1�G�t	� − �a�N�GGab�b	� + N�Gm2	 = 0,

�2.3�

where the space indices a and b run from 1 to D.
Given two complex solutions fA�x� and fB�x� to the

Klein-Gordon equation, we define the Klein-Gordon
current

J�fA,fB�
� �x� � fA

* �x���fB�x� − fB�x���fA
* �x� . �2.4�

Then, one can show that ��J�fA,fB�
� �x�=0. Hence the

quantity

�fA,fB�KG � i� dDx �Gn�J�fA,fB�
� �2.5�

is independent of t, where n� is the future-directed unit
vector normal to the hypersurface 
 of constant t. �The
integral here and throughout this subsection �Sec. II.A�
is over the hypersurface 
.� We call this quantity the
Klein-Gordon inner product of fA and fB. For the metric
�2.1� it takes the following form:

�fA,fB�KG = i� dDx �GN−1�fA
* �tfB − fB�tfA

* � . �2.6�

The conjugate momentum density ��x� is defined as �

��L /�	̇, where 	̇��t	. For the metric �2.1� one finds

7It is customary to allow the field to couple to the scalar
curvature. Thus the general Klein-Gordon equation takes the
form �����+�R+m2�	=0. The minimally coupled scalar field
has �=0 by definition.
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��x� = N−1�G	̇�x� . �2.7�

Note that if we let pA�x� and pB�x� be the conjugate
momentum density for the solutions fA�x� and fB�x�, re-
spectively, then the Klein-Gordon inner product can be
expressed as

�fA,fB�KG = i� dDx�fA
* �x�pB�x� − pA

* �x�fB�x�� . �2.8�

We assume that the Klein-Gordon equation determines
the classical field 	�x� uniquely given a �well-behaved�
initial data �	 ,�� on a hypersurface of constant t. This
property is known to hold if the spacetime is globally
hyperbolic with t=const hypersurfaces as the spacelike
Cauchy surfaces.8

The quantization of the field 	 proceeds as follows.
We denote the field operators corresponding to 	 and �

by 	̂ and �̂, respectively. One imposes the following
equal-time canonical commutation relations:

�	̂�t,x�,	̂�t,x��� = ��̂�t,x�,�̂�t,x��� = 0, �2.9�

�	̂�t,x�,�̂�t,x��� = i�D�x,x�� , �2.10�

where the delta function �D�x ,x�� is defined by

� dDxf�x��D�x,x�� = f�x�� . �2.11�

Note here that there is no density factor �G on the left-
hand side. For arbitrary complex-valued solutions fA�x�
and fB�x� to the Klein-Gordon equation �2.3� �with a
suitable integrability conditions� one finds

��fA,	̂�KG,�	̂,fB�KG� = �fA,fB�KG, �2.12�

from the equal-time canonical commutation relations
�2.9� and �2.10� by using Eq. �2.7�.

Now, assume that there is a complete set of solutions,
�fi , fi

*	, to the Klein-Gordon equation �2.3� satisfying

�fi,fj�KG = − �fi
*,fj

*�KG = �ij, �2.13�

�fi
*,fj�KG = �fi,fj

*�KG = 0. �2.14�

We assume here that the indices labeling the solutions
are discrete for simplicity of the discussion but its exten-
sion to the cases with continuous labels is straightfor-
ward. In Minkowski spacetime one chooses the positive-
frequency modes as fi’s and, consequently, the negative-
frequency modes as f

i
*’s. In a general globally hyperbolic

curved spacetime without isometries, there are infinitely
many ways of choosing the functions fi’s.

Expanding the quantum field 	̂�x� as

	̂�x� = 

i

�âifi�x� + âi
†fi

*�x�� , �2.15�

one finds

âi = �fi,	̂�KG, âi
† = �	̂,fi�KG. �2.16�

One can readily show, by using Eqs. �2.12�–�2.14�, that

�âi, âj� = �âi
†, âj

†� = 0, �âi, âj
†� = �ij. �2.17�

Conversely, if these commutation relations are satisfied,
then the equal-time canonical commutation relations
�2.9� and �2.10� follow. To prove this, one first shows that
any two complex-valued solutions fA�x� and fB�x� to the
Klein-Gordon equation �2.3� satisfy Eq. �2.12� by ex-
panding them in terms of fi�x� and f

i
*�x� and using the

commutators �2.17�. Then, for example, by letting
fA�t ,x�= f

B
* �t ,x� and pA�t ,x�=−p

B
* �t ,x�, at a given time t

and evaluating the Klein-Gordon inner products in Eq.
�2.12� at time t, one obtains

� dDxdDx�fB�t,x�pB�t,x���	̂�t,x�,�̂�t,x���

= i� dDxfB�t,x�pB�t,x� . �2.18�

Since fB�t ,x� and pB�t ,x� are arbitrary, one can conclude
that Eq. �2.10� holds at time t. Equation �2.9� can be
derived in a similar manner.

8A Cauchy surface is a closed hypersurface which is inter-
sected by each inextendible timelike curve once and only once.
A spacetime is said to be globally hyperbolic if it possesses a
Cauchy surface; see, e.g., Wald �1984� for more details.

FIG. 1. Part of Feynman’s blackboard at California Institute of
Technology at the time of his death in 1988. At the right-hand
side one can find accel. temp. as one of the issues to learn. 76 78 80 82 84 86 88 90 92 94 96 98 00 02 04 06

10

20

30

40

50

Citation Number

FIG. 2. Histogram depicting the number of citations of Unruh
�1976� over the years.
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The operators âi and âi
† are called the annihilation and

creation operators, respectively. The vacuum state �0� is
defined by requiring âi�0�=0. The Fock space of states is
obtained by applying the creation operators âi

† on the

vacuum state �0�. We call the operator N̂i= âi
†âi �with no

summation on the right-hand side� the number operator
in the mode i. However, note that, since it is not always
easy to construct a �theoretical� detector model which is

excited when the eigenvalue of N̂i changes from 1 to 0,

say, the operator N̂i does not necessarily lead to a useful
particle concept.

Since the coefficient operators âi of the functions fi
annihilate the vacuum state �0�, the choice of the func-
tions fi satisfying Eqs. �2.13� and �2.14� determines the
vacuum state. For this reason we call the functions fi the
positive-frequency modes and their complex conjugates
f

i
* the negative-frequency modes in analogy with the

case in Minkowski spacetime. Thus the choice of the
positive-frequency modes determines the vacuum state.
In a general curved spacetime there is no privileged
choice of the positive-frequency modes, and, conse-
quently, there is no privileged vacuum state unlike in
Minkowski spacetime, as we mentioned before.

Now, suppose that two complete sets of positive-
frequency modes �fi

�1�	 and �fI
�2�	 satisfy the Klein-

Gordon inner-product relations �2.13� and �2.14�, where
the lower-case letters i, j are replaced by the upper-case
equivalents I, J for fI

�2�. Since both sets are complete, the
modes fI

�2� can be expressed as linear combinations of fi
�1�

and f
i
�1�* and vice versa. Thus

fI
�2� = 


i
�Iifi

�1� + �Iifi
�1�*� , �2.19�

fI
�2�* = 


i
�Ii

* fi
�1�* + �Ii

* fi
�1�� . �2.20�

By noting that

Ii = �fi
�1�,fI

�2��KG = �fI
�2�,fi

�1��KG
* , �2.21�

�Ii = − �fi
�1�*,fI

�2��KG = �fI
�2�*,fi

�1��KG, �2.22�

one can express fi
�1� as a linear combination of fI

�2� and
f

I
�2�* as

fi
�1� = 


I
�Ii

* fI
�2� − �IifI

�2�*� , �2.23�

fi
�1�* = 


I
�IifI

�2�* − �Ii
* fI

�2�� . �2.24�

The scalar field 	̂�x� can be expanded using either of the
two sets �fi

�1�	 and �fI
�2�	:

	̂�x� = 

i

�âi
�1�fi

�1� + âi
�1�†fi

�1�*� = 

I

�âI
�2�fI

�2� + âI
�2�†fI

�2�*� .

�2.25�

Using the expansion given by Eqs. �2.19� and �2.20�, and
comparing the coefficients of fi

�1� and f
i
�1�*, we find

âi
�1� = 


I
�IiâI

�2� + �Ii
* âI

�2�†� , �2.26�

and similarly by using Eqs. �2.23� and �2.24� we have

âI
�2� = 


i
�Ii

* âi
�1� − �Ii

* âi
�1�†� . �2.27�

This transformation, which mixes annihilation and cre-
ation operators, is called a Bogoliubov transformation,
and the coefficients Ii and �Ii are called the Bogoliubov
coefficients. The Bogoliubov transformation found its
first major application to QFT in curved spacetime in
the derivation of particle creation in expanding uni-
verses �Parker, 1968, Sexl and Urbantke, 1969�.

The vacuum states �0�1�� and �0�2�� corresponding to
the two sets of positive-frequency modes �fi

�1�	 and �fI
�2�	,

respectively, are distinct if �Ii do not vanish for all I and
i. For example, the expectation value of the number op-

erator N̂i
�1�= âi

�1�†âi
�1� for the state �0�1�� is zero by defini-

tion but for the state �0�2�� it can be calculated by using
Eq. �2.26� as

0�2��Ni
�1��0�2�� = 


I
��Ii�2. �2.28�

We similarly find for the number operator NI
�2�= âI

�2�†âI
�2�,

0�1��NI
�2��0�1�� = 


i
��Ii�2. �2.29�

Although the choice of the vacuum state is not unique in
general, there is a natural vacuum state if the spacetime
is static, i.e., if the spacetime metric is of the form �2.1�
with the lapse function N�x� and the metric Gab being
independent of t.9 In such a case the equation for deter-
mining the mode functions becomes

�t
2fi = NG−1/2�a�NG1/2Gab�bfi� − N2m2fi. �2.30�

Then, it is natural to let the positive-frequency solutions
fi have a t dependence of the form e−i�it, where �i are
positive constants interpreted as the energy of the par-
ticle with respect to the �future-directed� Killing vector10

� /�t. If the spacetime is globally hyperbolic and static,
then this choice of positive-frequency modes leads to a
well-defined and natural vacuum state that preserves the

9In fact, if a globally hyperbolic spacetime is stationary, i.e., if
the metric is t independent with �� /�t�� everywhere timelike
but with the cross term gti, i� t, not necessarily vanishing, one
has a natural vacuum state in this spacetime under certain con-
ditions �Ashtekar and Magnon, 1975; Kay, 1978�.

10A Killing vector K� is a vector satisfying ��K�+��K�

=K�g��+g���K+g���K=0. In a coordinate system such
that K�= �� /����, one has �g�� /��=0. See, e.g., Wald �1984�.

791Crispino, Higuchi, and Matsas: The Unruh effect and its applications

Rev. Mod. Phys., Vol. 80, No. 3, July–September 2008



time-translation symmetry. We call this state the static
vacuum.

Minkowski spacetime has global timelike Killing vec-
tor fields, which generate time translations in various
inertial frames. The sets of positive-frequency modes
corresponding to these Killing vectors are the same and
are the usual positive-frequency modes proportional to
e−ik0t with k0�0, where t is the time parameter with re-
spect to one of the inertial frames. Thus all these Killing
vector fields define the same vacuum state.11

Now, in the region defined by �t��z in Minkowski
spacetime �here z is one of the space coordinates�, the
boost Killing vector z�� /�t�+ t�� /�z�, i.e., the vector with
t and z components being z and t, respectively, is time-
like and future directed. Hence this region, called the
right Rindler wedge, is a static spacetime with this Kill-
ing vector playing the role of time translation. Thus one
can define the corresponding static vacuum state. As ob-
served by Fulling �1973�, this vacuum state is not the
same as the state obtained by restricting the usual
Minkowski vacuum to this region. This observation is
crucial in understanding the Unruh effect, as explained
in the next subsections.

B. Rindler wedges

As we have seen in the previous section, one has a
natural static vacuum state in a static globally hyperbolic
spacetime. Minkowski spacetime with the metric

ds2 = dt2 − dx2 − dy2 − dz2 �2.31�

is of course a static globally hyperbolic spacetime. As
mentioned above, the part of this spacetime defined by
�t��z, called the right Rindler wedge, is also a static
globally hyperbolic spacetime. The region with the con-
dition �t��−z is called the left Rindler wedge, and is also
a static globally hyperbolic spacetime. The region with
t� �z�, also a globally hyperbolic spacetime though not a
static one, is called the expanding degenerate Kasner
universe and the globally hyperbolic spacetime with the
condition t�−�z� is called the contracting degenerate
Kasner universe. These regions are shown in Fig. 3.

Minkowski spacetime is invariant under the boost

t � t cosh � + z sinh � , �2.32�

z � t sinh � + z cosh � , �2.33�

where � is the boost parameter. These transformations
are generated by the Killing vector z�� /�t�+ t�� /�z�. The
boost invariance of Minkowski spacetime motivates the
following coordinate transformation:

t = � sinh �, z = � cosh � , �2.34�

where � and � takes any real value. Then, the Killing
vector is � /��, and the metric takes the form

ds2 = �2d�2 − d�2 − dx2 − dy2. �2.35�

This metric is independent of � as expected. The world
lines with fixed values of �, x, y are trajectories of the
boost transformation given by Eqs. �2.32� and �2.33�.
Each world line has a constant proper acceleration given
by �−1=const.

The coordinates �� ,� ,x ,y� cover only the regions with
z2� t2, i.e., the left and right Rindler wedges, as can be
seen from Eq. �2.34�. To discuss QFT in the right Rin-
dler wedge, it is convenient to make a further coordinate
transformation �=a−1ea�, �=a�, i.e.,

t = a−1ea� sinh a�, z = a−1ea� cosh a� , �2.36�

where a is a positive constant �Rindler, 1966�. Then, the
metric takes the form

ds2 = e2a��d�2 − d�2� − dx2 − dy2. �2.37�

This coordinate system will be useful because the world
line with �=0 has a constant acceleration of a. The co-

ordinates ��̄ , �̄� for the left Rindler wedge are given by

t = a−1ea�̄ sinh a�̄, z = − a−1ea�̄ cosh a�̄ . �2.38�

The Killing vector z�� /�t�+ t�� /�z� is timelike in the
two Rindler wedges and spacelike in the degenerate
Kasner universes. It becomes null on the hypersurfaces
t= ±z dividing Minkowski spacetime into the four re-
gions. These hypersurfaces are examples of Killing hori-
zons, which are defined as null hypersurfaces to which
the Killing field is normal �Wald, 1994�.

11It has been shown by Chmielowski �1994� that two commut-
ing global timelike Killing vector fields define the same
vacuum state.

t

z

EDK

CDK

RRLR

VU

FIG. 3. The regions with �t��z, �t��−z, t� �z�, and t�−�z�,
denoted RR, LR, EDK, and CDK, respectively, are the left
Rindler wedge, right Rindler wedge, expanding degenerate
Kasner universe, and contracting degenerate Kasner universe,
respectively. The curves with arrows are integral curves of the
boost Killing vector z�� /�t�+ t�� /�z�. The direction of increas-
ing U= t−z and that of increasing V= t+z are also indicated.
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Since the right �or left� Rindler wedge is a static
spacetime in its own right, it has a natural static vacuum
state as noted before. The Unruh effect is defined here
as the fact that the usual vacuum state for QFT in
Minkowski spacetime restricted to the right Rindler
wedge is a thermal state with � playing the role of time,
and similarly for the left Rindler wedge. The correlation
between the right and left Rindler wedges in the usual
Minkowski vacuum state plays an important role in the
Unruh effect.

C. Two-dimensional example

The two-dimensional massless scalar field in
Minkowski spacetime is problematic because of infrared
divergences �Coleman, 1973�. Nevertheless, this theory
is a good model for explaining the Unruh effect, and it is
not necessary to deal with infrared divergences for this
purpose. It also turns out that the Unruh effect in scalar
field theory in higher dimensions can be derived in es-
sentially the same manner as in this model.

The massless scalar field in two dimensions �̂�t ,z� sat-
isfies

��2/�t2 − �2/�z2��̂ = 0. �2.39�

This field can be expanded as

�̂�t,z� = �
0

� dk
�4�k

�b̂−ke−ik�t−z� + b̂+ke−ik�t+z�

+ b̂−k
† eik�t−z� + b̂+k

† eik�t+z�� . �2.40�

The annihilation and creation operators satisfy

�b̂±k,b̂±k�
† � = ��k − k�� �2.41�

with all other commutators vanishing. By using the defi-
nitions

U = t − z, V = t + z , �2.42�

we can write

�̂�t,z� = �̂−�U� + �̂+�V� , �2.43�

where

�̂+�V� = �
0

�

dk�b̂+kfk�V� + b̂+k
† fk

*�V�� �2.44�

with

fk�V� = �4�k�−1/2e−ikV, �2.45�

and similarly for �̂−�U�. Since the left- and right-moving

sectors of the field �̂+�V� and �̂−�U� do not interact with
one another, we discuss only the left-moving sector

�̂+�V�. �Thus we discuss the Unruh effect for the theory
consisting only of the left-moving sector.� The

Minkowski vacuum state �0M� is defined by b̂+k�0M�=0
for all k.

Using the metric in the right Rindler wedge given by
Eq. �2.37�, one finds a field equation of the same form as
Eq. �2.39�:

��2/��2 − �2/��2��̂ = 0. �2.46�

�This is a result of the conformal invariance of the mass-
less scalar field theory in two dimensions.� The solutions
to this differential equation can be classified again into
the left- and right-moving modes which depend only on
v=�+� and u=�−�, respectively. These variables are re-
lated to U and V as follows:

U = t − z = − a−1e−au, �2.47�

V = t + z = a−1eav. �2.48�

The Lagrangian density is invariant under the coordi-
nate transformation �t ,z�� �� ,��. As a result, by going
through the quantization procedure laid out in Sec. II.A
one finds exactly the same theory as in the whole of
Minkowski spacetime with �t ,z� replaced by �� ,��. Thus
we have, for 0�V,

�̂+�V� = �
0

�

d��â+�
R g��v� + â+�

R†g
�
* �v�� , �2.49�

where

g��v� = �4���−1/2e−i�v, �2.50�

and

�â+�
R , â+��

R† � = ��� − ��� �2.51�

with all other commutators vanishing. Note that the
functions g��v� are eigenfunctions of the boost generator
� /��.

The field �̂+�V� can be expressed in the left Rindler
wedge with the condition V�0�U, using the left Rin-

dler coordinates ��̄ , �̄� defined by Eq. �2.38�. Defining v̄

= �̄− �̄, one obtains Eqs. �2.49�–�2.51� with v replaced by
v̄ and with the annihilation and creation operators â+�

R

and â+�
R† replaced by a new set of operators â+�

L and â+�
L†.

The variable v̄ is related to V by

V = − a−1e−av̄. �2.52�

The static vacuum state in the left and right Rindler
wedges, the Rindler vacuum state �0R�, is defined by
â+�

R �0R�= â+�
L �0R�=0 for all �.

To understand the Unruh effect we need to find the
Bogoliubov coefficients �k

R , ��k
R , �k

L , and ��k
L , where

��V�g��v� = �
0

� dk
�4�k

��k
R e−ikV + ��k

R eikV� , �2.53�

��− V�g��v̄� = �
0

� dk
�4�k

��k
L e−ikV + ��k

L eikV� . �2.54�

Here ��x�=0 if x�0 and ��x�=1 if x�0, i.e., � is the
Heaviside function. To find �k

R we multiply Eq. �2.53�
by eikV /2�, k�0, and integrate over V. Thus we find
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�k
R = �4�k�

0

� dV

2�
g��V�eikV

=�k

�
�

0

� dV

2�
�aV�−i�/aeikV. �2.55�

We introduce a cutoff for this integral for large V by
letting V→V+ i�, �→0+.12 Then, changing the integra-
tion path to the positive imaginary axis by letting V
= ix /k, we find

�k
R =

ie��/2a

��k
� a

k
�−i�/a�

0

� dx

2�
x−i�/ae−xdx

=
ie��/2a

2���k
� a

k
�−i�/a

��1 − i�/a� . �2.56�

To find the coefficients ��k
R we replace eikV in Eq. �2.55�

by e−ikV. Then, the appropriate substitution is V=−ix /k.
As a result we obtain

��k
R = −

ie−��/2a

2���k
� a

k
�−i�/a

��1 − i�/a� . �2.57�

A similar calculation leads to

�k
L = −

ie��/2a

2���k
� a

k
�i�/a

��1 + i�/a� , �2.58�

��k
L =

ie−��/2a

2���k
� a

k
�i�/a

��1 + i�/a� . �2.59�

We find that these coefficients obey the following rela-
tions crucial to the derivation of the Unruh effect:

��k
L = − e−��/a

�k
R*, ��k

R = − e−��/a
�k
L*. �2.60�

By substituting these relations into Eqs. �2.53� and �2.54�
we find that the following functions are linear combina-
tions of positive-frequency modes e−ikV in Minkowski
spacetime:

G��V� = ��V�g��v� + ��− V�e−��/ag
�
* �v̄� , �2.61�

Ḡ��V� = ��− V�g��v̄� + ��V�e−��/ag
�
* �v� . �2.62�

One can show that these functions are purely positive-
frequency solutions in Minkowski spacetime by analyt-
icity argument as well: since a positive-frequency solu-
tion is analytic in the lower half plane on the complex V
plane, the solution g��v�= �4���−1/2�V�−i�/a, V�0,
should be continued to the negative real line avoiding
the singularity at V=0 around a small circle in the lower
half plane, thus leading to �4���−1/2e−��/a�−V�−i�/a for
V�0. This was the original argument by Unruh �1976�.

Equations �2.61� and �2.62� can be inverted as

��V�g��v� � G��V� − e−��/aḠ
�
* �V� , �2.63�

��− V�g��v̄� � Ḡ��V� − e−��/aG
�
* �V� . �2.64�

By substituting these equations into

�̂+�V� = �
0

�

d����V��â+�
R g��v� + â+�

R†g
�
* �v��

+ ��− V��â+�
L g��v̄� + â+�

L†g
�
* �v̄��	 , �2.65�

we find that the integrand is proportional to

G��V��â+�
R − e−��/aâ+�

L†�

+ Ḡ��V��â+�
L − e−��/aâ+�

R†� + H.c.

Since the functions G��V� and Ḡ��V� are positive-
frequency solutions �with respect to the usual time trans-
lation� in Minkowski spacetime, the operators â+�

R

−e−��/aâ+�
L† and â+�

L −e−��/aâ+�
R† annihilate the Minkowski

vacuum state �0M�. Thus

�â+�
R − e−��/aâ+�

L†��0M� = 0, �2.66�

�â+�
L − e−��/aâ+�

R†��0M� = 0. �2.67�

These relations uniquely determine the Minkowski
vacuum �0M� as explained below.

To explain how the state �0M� is formally expressed in
the Fock space on the Rindler vacuum state �0R� and to
show that the state �0M� is a thermal state when it is
probed only in the right �or left� Rindler wedge, we use
the approximation where the Rindler energy levels �
are discrete.13 Thus we write �i in place of � and let

�â+�i

R , â+�j

R† � = �â+�i

L , â+�j

L† � = �ij �2.68�

with all other commutators among â+�i

R , â+�i

L and their
Hermitian conjugates vanishing. Using the discrete ver-
sion of Eqs. �2.66� and the commutators �2.68�, we find

0M�â+�i

R† â+�i

R �0M� = e−2��i/a0M�â+�i

L† â+�i

L �0M� + e−2��i/a.

�2.69�

The same relation with â+�i

R and â+�i

R† replaced by â+�i

L and
â+�i

L† , respectively, and vice versa can be found using Eq.
�2.67�. By solving these two relations as simultaneous
equations, we find

0M�â+�i

R† â+�i

R �0M� = 0M�â+�i

L† â+�i

L �0M� = �e2��i/a − 1�−1.

�2.70�

Hence the expectation value of the Rindler-particle
number is that of a Bose-Einstein particle in a thermal
bath of temperature T=a /2�. This indicates that the
Minkowski vacuum can be expressed as a thermal state
in the Rindler wedge with the boost generator as the
Hamiltonian.

12A cutoff of this kind is always understood in these calcula-
tions in field theory, as exemplified by the definition ��k�
=��dx /2��eikx−��x�= �2�i�−1��k− i��−1− �k+ i��−1�.

13We comment on how one can discuss thermal states in field
theory without discretization in Sec. II.I.
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Equation �2.70� can be expressed without discretiza-
tion. Define

â+f
R � �

0

�

d�f���â+�
R , �2.71�

where �0
�d��f����2=1. Then,

0M�â+f
R†â+f

R �0M� = �
0

�

d�
�f����2

e2��/a − 1
. �2.72�

Exactly the same formula applies to the left Rindler
number operator.

It should be emphasized that showing the correct
properties of the expectation value of the number op-
erators â+f

R†â+f
R and â+f

L†â+f
L is not enough to conclude that

the Minkowski vacuum state restricted to the right or
left Rindler wedge is a thermal state. It is necessary to
show that the probability of each right or left Rindler-
energy eigenstate corresponds to the grand canonical
ensemble if the other Rindler wedge is disregarded. One
can show this fact by using the discrete version of Eqs.
�2.66� and �2.67�. First we note that these equations im-
ply

�â+�i

R† â+�i

R − â+�i

L† â+�i

L ��0M� = 0. �2.73�

Thus the number of the left Rindler particles is the same
as that of the right Rindler particles for each �i. This
implies that we can write

�0M� � �
i



ni=0

� Kni

ni!
�â+�i

R† â+�i

L† �ni�0R� . �2.74�

One can readily find the recursion formula satisfied by
Kni

using the discrete version of Eqs. �2.66� and �2.67�.
The result is

Kni+1 − e−��i/aKni
= 0. �2.75�

Hence Kni
=e−�ni�i/aK0 and

�0M� = �
i
�Ci 


ni=0

�

e−�ni�i/a�ni,R� � �ni,L�� , �2.76�

where Ci=�1−exp�−2��i /a�. Here the state with ni left-
moving particles with Rindler energy �i in each of the
left and right Rindler wedges is denoted �ni ,R� � �ni ,L�,
i.e.,

�
i

�ni,R� � �ni,L� � ��
i

1

ni!
�â+�i

R† â+�i

L† �ni��0R� . �2.77�

If one probes only the right Rindler wedge, then the
Minkowski vacuum is described by the density matrix
obtained by tracing out the left Rindler states, i.e.,

�̂R = �
i
�Ci

2 

ni=0

�

exp�− 2�ni�i/a��ni,R�ni,R�� . �2.78�

This is the density matrix for the system of free bosons
with temperature T=a /2�. Thus the Minkowski vacuum
state �0M� for the left-moving particles restricted to the

left �or right� Rindler wedge is the thermal state with
temperature T=a /2� with the boost generator normal-
ized on z2− t2=1/a2 as the Hamiltonian. This is the Un-
ruh effect for the left-moving sector. It is clear that the
Unruh effect for the right-moving sector can be derived
in a similar manner.

D. Massive scalar field in Rindler wedges

The Unruh effect for scalar field theory in four-
dimensional Minkowski spacetime can be derived in the
same way as for the two-dimensional example. Never-
theless, in view of the skepticism on the Unruh effect
expressed recently �Belinskii et al., 1997; Fedotov et al.
1999; Oriti, 2000; Narozhny et al., 2002, 2004� we review
the Unruh effect in this theory �Fulling 1973; Unruh
1976�, drawing attention to some aspects that appear to
have caused the skepticism. �See Fulling and Unruh
�2004� for an explanation as to why this skepticism is
unfounded.�

The free quantized massive scalar field �̂�t ,z ,x��,
x���x ,y�, can be expanded as

�̂�t,z,x�� =� d3k�âkzk�

M fkzk�
+ âkzk�

M† fkzk�

* � , �2.79�

where the positive-frequency mode functions are

fkzk�
�t,z,x�� = ��2��32k0�−1/2e−ik0t+ikzz+ik�·x� �2.80�

with k���kx ,ky� and k0��kz
2+k�

2 +m2. The Klein-
Gordon inner product can be calculated as

�fkzk�
,fkz�k

��
�KG = ��kz − kz���

2�k� − k�� � , �2.81�

�fkzk�

* ,fkz�k
��

�KG = 0. �2.82�

Hence quantizing the scalar field �̂�t ,z ,x�� by imposing
the equal-time commutation relations �2.9� and �2.10�,
we find

�âkzk�

M , âkz�k
��

M† � = ��kz − kz���
2�k� − k�� � �2.83�

with all other commutators among annihilation and cre-
ation operators vanishing.

The field equation in the right Rindler wedge with the
metric �2.37� can readily be found from Eq. �2.30� by
letting N=ea� and the metric of the hypersurfaces with
constant � be diagonal with G��=e2a� and Gxx=Gyy=1.
Thus

�2�̂

��2 = � �2

��2 + e2a�� �2

�x2 +
�2

�y2� − m2e2a���̂ . �2.84�

The positive-frequency solutions are chosen to be pro-
portional to e−i��, where � is a positive constant. This
choice corresponds to the static vacuum state with re-
spect to the � translation, i.e., the Rindler vacuum state.
It is also clear that one may assume that they are pro-
portional to eik�·x�. Thus we write the positive-frequency
modes as
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v�k�

R =
1

2��2�
g�k�

���e−i��+ik�·x� �2.85�

with the function g�k�
��� satisfying

�−
d2

d�2 + e2a��k�
2 + m2��g�k�

��� = �2g�k�
��� . �2.86�

This equation is analogous to a time-independent
Schrödinger equation with an exponential potential.
Thus the physically relevant solutions g�k�

��� tend to
zero as �→ +� and oscillate like e±i�� as �→−�. Note in
particular that there is no distinction between the left-
and right-moving modes. We choose g�k�

��� to satisfy,
for ��0 and ����1,

g�k�
��� �

1
�2�

�ei���+����� + e−i���+������ , �2.87�

where ���� is a real constant. This choice of normaliza-
tion implies �see, e.g., Fulling �1989��

�
−�

�

d�g
�k�

* ���g��k�
��� = ��� − ��� . �2.88�

We present the derivation of this formula in the Appen-
dix for completeness. As a result we have

�v�k�

R ,v��k
��

R �KG = ��� − ����2�k� − k�� � , �2.89�

�v
�k�

R* ,v��k
��

R �KG = 0. �2.90�

The Klein-Gordon inner product here is defined taking
the hypersurface 
 in Eq. �2.5� to be a �=const Cauchy
surface of the right Rindler wedge. It can also be defined
taking 
 to be the entire t=0 hypersurface of the
Minkowski spacetime by defining v�k�

R =0 in the left Rin-
dler wedge �and on the plane t=z=0 for definiteness�.
The functions g�k�

��� satisfying the differential equation
�2.86� and normalization condition �2.87� are

g�k�
��� = �2� sinh���/a�

�2a
�1/2

Ki�/a��a ea�� �2.91�

with ���k�
2 +m2�1/2, where K��x� is the modified Bessel

function �Gradshteyn and Ryzhik, 1980�. Hence

v�k�

R = � sinh���/a�
4�4a

�1/2

Ki�/a��a ea��eik�·x�−i��. �2.92�

We present the derivation of this result in the Appendix

as well. Thus we can expand the field �̂ in the right
Rindler wedge as

�̂��,�,x�� = �
−�

�

d�� d2k��â�k�

R v�k�

R + â�k�

R† v
�k�

R* � .

�2.93�

Then, according to the general results presented in Sec.
II.A, we have

�â�k�

R , â
��k

��
R† � = ��� − ����2�k� − k�� � �2.94�

with all other commutators among â�k�

R and â�k�

R† vanish-
ing.

Quantization of the field �̂ in the left Rindler wedge
proceeds in exactly the same way. The positive-

frequency modes v�k�

L ��̄ , �̄ ,x�� are obtained from

v�k�

R �� ,� ,x�� simply by replacing � and � by �̄ and �̄,
respectively. The coefficient operators â�k�

L and â�k�

L† sat-
isfy the commutation relations

�â�k�

L , â
��k

��
L† � = ��� − ����2�k� − k�� � �2.95�

with all other commutators vanishing. Thus one can ex-

pand the field �̂ in the left and right Rindler wedges as

�̂ = �
0

+�

d�� d2k��â�k�

R v�k�

R ��,�,x��

+ â�k�

R† v
�k�

R* ��,�,x�� + â�k�

L v�k�

L ��̄, �̄,x��

+ â�k�

L† v
�k�

L* ��̄, �̄,x��� . �2.96�

The Rindler vacuum state �0R� is defined by requiring
that â�k�

R �0R�= â�k�

L �0R�=0 for all � and k�. As it stands,
this expansion makes sense only in the Rindler wedges.
However, it will be shown that the modes v�k�

R and v�k�

L

can naturally be extended to the whole of Minkowski
spacetime �see Eqs. �2.112�–�2.114��. After this extension
we see that Eq. �2.96� gives another valid mode expan-

sion of the field �̂ in Minkowski spacetime.14 In particu-
lar, in Sec. II.F the two-point function calculated using
this expansion in the state �0M� will be shown to give the
standard result in Minkowski spacetime.

E. Bogoliubov coefficients and the Unruh effect

In this section we find the Bogoliubov coefficients be-

tween the two expansions of the massive scalar field �̂ in
Minkowski spacetime and derive the Unruh effect, i.e.,
the fact that the Minkowski vacuum state is a thermal
state with temperature T=a /2� on the right or left Rin-
dler wedge.

It is clear that the Bogoliubov coefficients between
modes with different k� are zero. Thus we can write in
general

v�k�

R = �
−�

� dkz

�4�k0

��kzk�

R e−ik0t+ikzz

+ ��kzk�

R eik0t−ikzz�
eik�·x�

2�
, �2.97�

14This point is emphasized in Birrell and Davies �1982�.

796 Crispino, Higuchi, and Matsas: The Unruh effect and its applications

Rev. Mod. Phys., Vol. 80, No. 3, July–September 2008



v�k�

L = �
−�

� dkz

�4�k0

��kzk�

L e−ik0t+ikzz

+ ��kzk�

L eik0t−ikzz�
eik�·x�

2�
. �2.98�

We assume here that the modes v�k�

R and v�k�

L have
been suitably extended to the whole of Minkowski
spacetime. The relation between �� ,�� and �t ,z� given by

Eq. �2.36� is the same as that between ��̄ , �̄� and �t ,−z�
given by Eq. �2.38�. Hence v�k�

L is obtained from v�k�

R by
letting z�−z. From this observation we find the follow-
ing relations:

�kzk�

L = �−kzk�

R , ��kzk�

L = ��−kzk�

R . �2.99�

These Bogoliubov coefficients will be found explicitly
later, but it is clear from the discussion of the massless
scalar field theory in two dimensions that the Unruh ef-
fect will follow if

�â�k�

R − e−��/aâ�−k�

L† ��0M� = 0, �2.100�

�â�k�

L − e−��/aâ�−k�

R† ��0M� = 0. �2.101�

�See the corresponding Eqs. �2.66� and �2.67� in the two-
dimensional model.� These relations in turn will result if
the following modes are purely positive frequency in
Minkowski spacetime:

w−�k�
�

v�k�

R + e−��/av
�−k�

L*

�1 − e−2��/a
, �2.102�

w+�k�
�

v�k�

L + e−��/av
�−k�

R*

�1 − e−2��/a
. �2.103�

�See the corresponding Eqs. �2.61� and �2.62� in the two-
dimensional model.� This fact in turn will follow if

��kzk�

R = − e−��/a
�kzk�

L* , ��kzk�

L = − e−��/a
�kzk�

R* .

�2.104�

�See the corresponding Eq. �2.60�.� We show Eq. �2.104�
by explicit evaluation of the Bogoliubov coefficients,
which were originally computed by Fulling �1973�.

To calculate the Bogoliubov coefficients it is conve-
nient to examine the behavior of the solutions on the
future Killing horizon, t=z, t�0. There we have

v�k�

R → �
−�

� dkz

�4�k0

��kzk�

R e−i�k0−kz�V/2

+ ��kzk�

R ei�k0−kz�V/2�
eik�·x�

2�
. �2.105�

On the other hand, using the small-argument approxi-
mation �A10� for the modified Bessel function, we have
for �→−�

v�k�

R →
i

4�
�a sinh���/a��−1/2eik�·x�

� � ��/2a�i�/ae−i�u

��1 + i�/a�
−

��/2a�−i�/ae−i�v

��1 − i�/a� � ,

�2.106�

where �= �k�
2 +m2�1/2. The first term inside the parenthe-

ses in this equation oscillates infinitely many times as u
→�, where the future Killing horizon is, and is bounded.
Such a term should be regarded as zero. Hence the Bo-
goliubov coefficient �kzk�

R is obtained by multiplying
Eq. �2.106� by ei�k0−kz�V/2 and integrating over V as

�kzk�

R = −
i��/2a�−i�/a�k0 − kz�

4��ak0 sinh���/a���1 − i�/a�

� �
0

�

dV�aV�−i�/aei�k0−kz�V/2

=
e��/2a

�4�k0a sinh���/a�
�k0 + kz

k0 − kz
�−i�/2a

, �2.107�

where �=��k0−kz��k0+kz�. Note that we have implicitly
chosen a particular �and natural� extension of the modes
v�k�

R to the whole of Minkowski spacetime. �Otherwise it
should not be possible to find the coefficients Bogoliu-
bov coefficients �kzk�

R and ��kzk�

R in Eq. �2.97�.� In par-
ticular, we have excluded any delta-function contribu-
tion at V=0.

By multiplying Eq. �2.106� by e−i�k0−kz�V/2 and integrat-
ing over V we find

��kzk�

R = −
e−��/2a

�4�k0a sinh���/a�
�k0 + kz

k0 − kz
�−i�/2a

.

�2.108�

Introducing the rapidity ��kz� defined as

��kz� �
1
2

ln�k0 + kz

k0 − kz
� , �2.109�

and using Eq. �2.99�, we have

�kzk�

R = �−kzk�

L =
e−i��kz��/a

�2�k0a�1 − e−2��/a�
, �2.110�

��kzk�

R = ��−kzk�

L = −
e−��/ae−i��kz��/a

�2�k0a�1 − e−2��/a�
. �2.111�

Hence Eq. �2.104� is satisfied and as a result the vacuum
state �0M� restricted to the left �or right� Rindler wedge
is a thermal state with temperature T=a /2� with the
boost generator normalized on t2−z2=1/a2 as the
Hamiltonian.

Although we have now established the Unruh effect,
it is useful to examine the modes natural to the Rindler
wedges further for later discussion. The purely positive-
frequency modes in Minkowski spacetime defined by
Eqs. �2.102� and �2.103� are
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w±�k�
= �

−�

� dkz

�8a�k0

e±i��kz��/ae−ik0t+ikzzeik�·x�

2�
.

�2.112�

The modes v�k�

R and v�k�

L , which vanish in the left and
right Rindler wedges, respectively, are expressed in
terms of these modes as

v�k�

R =
w−�k�

− e−��/aw+�−k�

*

�1 − e−2��/a
, �2.113�

v�k�

L =
w+�k�

− e−��/aw−�−k�

*

�1 − e−2��/a
. �2.114�

These formulas and Eq. �2.112� give the modes v�k�

R and
v�k�

L as distributions in the whole of Minkowski space-
time. One can verify that the modes w±�k�

satisfy

�w±�k�
,w±��k

��
�KG = ��� − ����2�k� − k�� � , �2.115�

�w±�k�

* ,w
±��k

��
* �KG = − ��� − ����2�k� − k�� � �2.116�

with all other Klein-Gordon inner products among
w±�k�

and their complex conjugates vanishing. Here the
Klein-Gordon inner product is defined as an integral
over the t=0 hypersurface in Minkowski spacetime. The
following formula, which can be shown by using
d��kz�=dkz /k0, is useful in calculating these Klein-
Gordon inner products:

�
−�

� dkz

2�ak0
ei��kz���−���/a = ��� − ��� . �2.117�

It is worth emphasizing that these modes form a com-
plete set of solutions to the Klein-Gordon equation, not
only in the left and right Rindler wedges but also in the
whole of Minkowski spacetime. This fact can be seen by
inverting the relation �2.112�:

1
�2k0�2��3

e−ik0t+ikzz+ik�·x�

=
1

�2�ak0
�

0

�

d��ei��kz��/aw−�k�

+ e−i��kz��/aw+�k�
� . �2.118�

One may object to this conclusion as do Belinskii et al.
�1997� because the modes w±�k�

were originally defined
only on the left and right Rindler wedges, which are
open regions; in particular, these modes are not defined
on the plane t=z=0. However, the formula �2.112� gives
the positive-frequency modes w±�k�

in terms of the mo-
mentum eigenfunctions unambiguously as a distribution
over the whole of Minkowski spacetime. In other words,
if f�t ,x� is a compactly supported smooth function on
Minkowski spacetime, whose support may intersect the
plane t=z=0, the mode functions w±�k�

smeared with f
is well defined and unique. That is,

f̂ R�±�,k�� � � d4xw±�k�

* �t,z,x��f�t,z,x��

= �
−�

� dkz

�2�ak0

e�i��kz��/af̂M�kz,k�� ,

�2.119�

where

f̂ M�kz,k�� �
1

��2��32k0
� d4x eik0t−ik·xf�t,x� . �2.120�

We have used w±�k�

* rather than w±�k�
here for later

convenience. Note that the function f̂ M�kz ,k�� tends to
0 as kz→ ±� faster than any powers of �kz�−1 due to the
smoothness of f�t ,x�. This implies that the integral in Eq.
�2.119� is absolutely convergent. �In fact Eq. �2.119�
should be taken as the definition of the modes w±�k�

* as
distributions over the full Minkowski spacetime.�

Since the modes w±�k�
and w±�k�

* form a complete set
of solutions in Minkowski spacetime, the Rindler modes
v�k�

R and v�k�

L and their complex conjugates form a com-
plete set as is clear from Eqs. �2.102� and �2.103�. Re-
lated comments will be made in the next sections.

F. Completeness of the Rindler modes in Minkowski spacetime

In the previous section we commented that the Rin-
dler modes form a complete set of solutions to the
Klein-Gordon equation in Minkowski spacetime. To em-
phasize this point again we show here that the Wight-
man two-point function is correctly reproduced every-
where in Minkowski spacetime even if we use the
Rindler modes. It is our hope that the calculation here
will dispel any suspicion that the Rindler modes may be
incomplete due to the singularity on the hypersurfaces
t= ±z.

The two-point function in the Minkowski vacuum
state is well known to be

��x ;x�� = 0M��̂�x��̂�x���0M� =� dkzd2k�

2k0�2��3e−ik·�x−x��,

�2.121�

where x= �t ,z ,x�� and similarly for x�. To calculate the
two-point functions with the Rindler modes we use the
expansion �2.96� with the Rindler modes v�k�

L and v�k�

R

given by Eqs. �2.112�–�2.114�. Using Eqs. �2.100� and
�2.101� we see that the Rindler annihilation operators
can be written as

â�k�

R =
b̂−�k�

+ e−��/ab̂+�−k�

†

�1 − e−2��/a
, �2.122�
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â�k�

L =
b̂+�k�

+ e−��/ab̂−�−k�

†

�1 − e−2��/a
, �2.123�

where the operators b±�k�
annihilate the Minkowski

vacuum �0M� and have the following standard commuta-
tion relations:

�b±�k�
,b±��k

��
† � = ��� − ����2�k� − k�� � �2.124�

with all other commutators vanishing. Equations �2.122�
and �2.123� can be used to find the following expectation
values:

0M�a�k�

R† a��k
��

R �0M�

= 0M�a�k�

L† a��k
��

L �0M�

= �e2��/a − 1�−1��� − ����2�k� − k�� � , �2.125�

0M�a�k�

R a
��k

��
R† �0M�

= 0M�a�k�

L a
��k

��
L† �0M�

= �1 − e−2��/a�−1��� − ����2�k� − k�� � , �2.126�

0M�a�k�

L a��k
��

R �0M�

= 0M�a�k�

L† a
��k

��
R† �0M�

= �e��/a − e−��/a�−1��� − ����2�k� + k�� � . �2.127�

The vacuum expectation values of the other products of
two creation and annihilation operators vanish. Then,

the two-point function of the field �̂�x� given in Eq.
�2.96� is

��x ;x�� = �
0

�

d�� d2k���v�k�

R �x�v
�k�

R* �x�� + v�k�

L �x�v
�k�

L* �x����1 − e−2��/a�−1 + �v
�k�

R* �x�v�k�

R �x�� + v
�k�

L* �x�v�k�

L �x���

��e2��/a − 1�−1 + 2�v�k�

R �x�v�−k�

L �x�� + v
�k�

R* �x�v
�−k�

L* �x����e��/a − e−��/a� + 2�v�k�

L �x�v�−k�

R �x��

+ v
�k�

L* �x�v
�−k�

R* �x����e��/a − e−��/a�	 . �2.128�

This expression can be simplified using Eqs. �2.113� and
�2.114� as

��x ;x�� = �
0

�

d�� d2k��w+�k�
�x�w+�k�

* �x��

+ w−�k�
�x�w−�k�

* �x��� , �2.129�

where w±�k�
are given by Eq. �2.112�. Thus

��x ;x�� =
1

32�4a
�

−�

�

d��
−�

� dkz

k0
�

−�

�

d��kz��

�� d2k�ei���kz�−��kz����/a

�e−ik0t+ik0�t�+ikzz−ikz�z�+ik�·�x�−x�� �. �2.130�

The � and ��kz�� integration can readily be performed,
and we find that the two-point function indeed takes the
form given by Eq. �2.121�.

The expression �2.129� is undefined if either of the two
points is on the hyperplane t= ±z. However, since the
two-point function ��x ;x�� is defined as a distribution, it
is well defined on the whole of Minkowski spacetime if
the following integral exists for all compactly supported
functions f�x� and g�x�:

F�f,g� � � d4x d4x�f *�x�g�x����x ;x�� . �2.131�

We find using Eq. �2.129�

F�f,g� = �
0

�

d�� d2k��f̂ R*�− �,k��ĝR�− �,k��

+ f̂ R*�+ �,k��ĝR�+ �,k��� , �2.132�

where f̂ R is defined by Eq. �2.119�, and ĝR is defined
similarly. It can readily be shown that this agrees with
the standard expression for the smeared two-point func-
tion,

F�f,g� =� d3kf̂ M*�k�ĝM�k� , �2.133�

where f̂ M is defined by Eq. �2.120� and the Fourier trans-
form ĝM is defined similarly.

G. Unruh effect and quantum field theory in the expanding
degenerate Kasner universe

In this section we review the relation between the
modes in the Rindler wedges and those in the expanding
degenerate Kasner universe. It is well known that there
is a choice of the positive-frequency modes in the degen-
erate Kasner universes that gives a state identical to the
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Minkowski vacuum �Fulling et al., 1974�. We first show
that these positive-frequency modes are in fact the
modes w±�k�

in the Rindler wedges �Gerlach, 1988�.
Then, we show that the Rindler vacuum state �0R� is
identical to one state in the expanding degenerate Kas-
ner universe �Fulling et al., 1974; Birrell and Davies,
1982�.

We introduce the following coordinate transforma-
tion:

t = T cosh a , z = T sinh a . �2.134�

With T�0 the coordinate system �T , ,x�� covers the
region with the condition t� �z�, i.e., the expanding de-
generate Kasner universe. Then, the Minkowski metric
becomes

ds2 = dT2 − a2T2d 2 − dx2 − dy2. �2.135�

The hyperplanes of constant T are spacelike, and the
variable T plays the role of time. Hence the T=const
space expands in the  direction linearly. We note that

t + z

t − z
= e2a , �2.136�

and �t2−z2�1/2=T.
We change the integration variable in the expression

�2.112� for modes w±�k�
from kz to the rapidity �

=��kz� �see Eq. �2.109��. Then, we have

k0 = � cosh �, kz = � sinh � , �2.137�

where �= �k�
2 +m2�1/2 as before. Thus we obtain, using

Eq. �2.136� after shifting of the integration variable as
�→�+a ,

w±�k�
=

eik�·x�±i� 

2�
�

−�

� d�
�8a�

e±i��/a

�exp�− i�T cosh �� . �2.138�

The � integral is the same for both signs of e±i��/a be-
cause the imaginary part of the integrand is odd in �.
Adopting the minus sign and using the formula �Grad-
shteyn and Ryzhik, 1980�

H�
�2��x� = −

ei��/2

�i
�

−�

�

e−ix cosh t−�tdt �2.139�

with �= i� /a, we find

w±�k�
= − i

eik�·x�±i� 

2��8a
e��/2aHi�/a

�2� ��T� . �2.140�

These modes are well known to form a complete set of
positive-frequency modes which correspond to the
Minkowski vacuum state �Fulling et al., 1974�.

Now, from Eq. �2.113� we find that the positive-
frequency modes with respect to the boost generator in
the right Rindler wedge corresponding to the Rindler
vacuum state take the following form in the expanding
degenerate Kasner universe:

v�k�

R = − i
e−i� eik�·x�

2��8a�e��/a − e−��/a�
�e��/aHi�/a

�2� ��T�

+ �Hi�/a
�2� ��T��*	 . �2.141�

Then, recalling the fact that �H�
�2��x��*=H−�

�1��x� if � is
purely imaginary and if x is real and using the formulas
�Gradshteyn and Ryzhik, 1980�

e��iH−�
�2��z� = H�

�2��z� , �2.142�

H�
�1��z� + H�

�2��z� = 2J��z� �2.143�

with �=−i� /a in Eq. �2.141�, we find

v�k�

R = − i
e−i� eik�·x�

2��4a sinh���/a�
J−i�/a��T� . �2.144�

In exactly the same manner we find that the left Rindler
modes v�k�

L are given by Eq. �2.144� with e−i� replaced
by ei� in the expanding degenerate Kasner universe.
These modes have been identified as the positive-
frequency modes corresponding to a state which is in-
equivalent to the Minkowski vacuum �Fulling et al.,
1974; Birrell and Davies, 1982�. Thus the Rindler
vacuum state �0R� is in fact one of the states in the ex-
panding degenerate Kasner universes given in the litera-
ture.

H. Unruh effect and classical field theory

Although the Unruh effect, like the Hawking effect, is
a quantum effect, its derivation does not involve any
loop calculations. It is also the result of properties of
classical solutions to the field equation. These observa-
tions naturally lead to the following question: Are there
any aspects of the Unruh effect that can be described
entirely in the framework of classical field theory? In
this context, it is useful to note that, although the Unruh
temperature T=�a / �2�c� �at �=0� is proportional to �,
since the energy of a particle can be written as E=��,
where � is the angular frequency, the Boltzmann factor
exp�−E /T�=exp�−2��c /a� is independent of �. This is
consistent with the fact that the Bogoliubov transforma-
tion encoding the Unruh effect is derived using only
classical solutions. It is indeed possible to define some
quantities in classical field theory which exhibit what
one may call the classical Unruh effect �Higuchi and
Matsas, 1993� as described here.15

We consider the classical scalar field 	 in Minkowski
spacetime satisfying ��+m2�	=0. The energy-
momentum tensor is

15However, we find the claim by Barut and Dowling �1990�
that the Unruh effect can be explained without invoking a
thermal bath rather misleading. If one were to describe physics
in the Rindler wedge with the boost generator as the Hamil-
tonian, then the thermal bath with the temperature a /2�
would be a necessary ingredient.
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T�� = ��	��	 − g����	�	 − m2	2�/2. �2.145�

Now, if X� is a Killing vector, then the current J�X�
� de-

fined by

J�X�
� = X�T

�� �2.146�

is conserved because of the Killing equation and the
equation ��T��=0. Hence the energy associated with
the Killing vector X� defined by

EX =� d
n�J�X�
� �2.147�

is conserved, where 
 is a Cauchy hypersurface and n� is
the future-directed unit vector normal to 
. If T� is the
time-translation vector, then the energy ET with X�

=T� is the ordinary energy. If R�=a�z�� /�t��+ t�� /�z���,
i.e., the boost Killing vector �normalized at �=0�, then
ER with X�=R� is the Rindler energy.

It is convenient for our purposes to rewrite the energy
EX as

EX = �i/2��	,X���	�KG. �2.148�

This can be obtained using the equality

	���X�	� − X�	��	 + 2XT�

= ��	�X��	 − X��	�� . �2.149�

Now, one can divide the scalar field into the positive-
and negative-frequency parts with respect to the time-
translation Killing vector as

	�x� = 	�T+��x� + 	�T−��x� , �2.150�

where the negative-frequency part is the complex conju-
gate of the positive-frequency part, 	�−T��x�= �	�+T��x��*,
and where the positive-frequency part is given as

	�T+��x� =� d3k
�2k0�2��3/2

cT�k�e−ik0t+ik�·x�, �2.151�

for some function cT�k�. Then, since T���=�t, we find
the energy by using Eq. �2.148� as

ET =� d3kk0�cT�k��2. �2.152�

It is natural to define the quantity NT by dividing the
integrand k0�cT�k��2 by k0 as

NT =� d3k�cT�k��2, �2.153�

because the expected quantum-mechanical particle
number is NT /�. We call NT the classical Minkowski par-
ticle number. It is clear that

NT = �	�T+�,	�T+��KG. �2.154�

Now, if the field 	 vanishes in the left Rindler wedge,
then it can be expanded in terms of the right Rindler
modes v�k�

R . Thus we have

	�x� = 	�R+��x� + 	�R−��x� , �2.155�

where the positive-frequency part with respect to the
boost Killing vector R� is defined by

	�R+��x� = �
0

�

d�� d2k�cR��,k��v�k�

R �2.156�

for some function cR�� ,k��, and the negative-frequency
part is 	�R−��x�= �	�R+��x��*. The Rindler energy is found
by letting X�=R� in Eq. �2.148� as

ER = �
0

�

d�� d2k���cR��,k���2. �2.157�

We can define the classical Rindler particle number as

NR � �
0

�

d�� d2k��cR��,k���2. �2.158�

Then we have

NR = �	�R+�,	�R+��KG. �2.159�

It is possible to express the Minkowski particle num-
ber NT in terms of cR�� ,k�� as follows. From Eq. �2.113�
we find

	 = �
0

�

d�� d2k��cR��,k��v�k�

R + cR
* ��,k��v

�k�

R* �

= 	�T+� + 	�T−�, �2.160�

where

	�T+� = �
0

�

d�� d2k�� cR��,k��
�1 − e−2��/a

w−�k�

−
e−��/acR

* ��,k��
�1 − e−2��/a

w+�k�
� . �2.161�

Then, using Eq. �2.115�, we obtain the classical
Minkowski particle number as

NT = �	�T+�,	�T+��KG

= �
0

�

d�� d2k��cR��,k���2 coth���

a
� . �2.162�

Comparing this expression with that for the classical
Rindler particle number �2.158�, we find that the Fourier
components with respect to the Rindler time � of the
classical Minkowski particle number is enhanced by a
factor of coth��� /a� in comparison to those of the clas-
sical Rindler particle number. We refer the reader to
Higuchi and Matsas �1993� for the interpretation of this
formula in the context of the Unruh effect.

I. Unruh effect for interacting theories and in other spacetimes

In this section we mention some works which extend
the Unruh effect to interacting field theory and other
spacetimes.

We first discuss the work of Bisognano and Wichmann
�1975, 1976�, who derived the Unruh effect for �interact-
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ing� quantum field theory satisfying Wightman axioms
�Wightman, 1956; Streater and Wightman, 1964; Jost,
1965�. The Unruh effect was not presented as the main
result in their work, and it was only several years after
its publication that its connection to the Unruh effect
was discovered by Sewell, who also extended their deri-
vation of the Unruh effect to the class of Schwarzschild
and de Sitter spacetimes �Sewell, 1982�.

In order to discuss the work of Bisognano and Wich-
mann, it is necessary to review a mathematically more
satisfactory way to define a thermal state in quantum
field theory, which is called the KMS condition �Haag et
al., 1967�. �The initials KMS stand for Kubo �1957� and
Martin and Schwinger �1959�.� We first explain the KMS
condition for a quantum system with a finite number of

energy levels with a Hamiltonian Ĥ and a complete set
of eigenstates �n� with energy En. The expectation value

of an operator Â in a thermal state with inverse tem-
perature �=1/T is

Â�� =



n

e−�Enn�Â�n�



m

e−�Em
=

Tr�e−�ĤÂ�

Tr�e−�Ĥ�
. �2.163�

Let H be the Hilbert space spanned by �n�. This thermal
state is realized as a pure state in the Hilbert space H
� H as

��� =



n

e−�En/2�n� � �n�

�

m

e−�Em

, �2.164�

if the operators Â on H are identified with Â�e�= Î � Â,

where Î is the identity operator. That is,

��Â�e���� = Â��. �2.165�

The time-evolution operator is taken to be

exp�− iĤ�e��� = exp�iĤ�� � exp�− iĤ�� . �2.166�

Now, we define an antiunitary involution Ĵ�e� by

Ĵ�e��n� � �m� = *�m� � �n� , �2.167�

where  is any c number. Then, the operator Ĵ�e� com-
mutes with the time-evolution operator:

Ĵ�e� exp�− iĤ�e��� = exp�− iĤ�e���Ĵ�e�, ∀ � � R .

�2.168�

One can also show by an explicit calculation that, for

any operator Â given by a matrix as Â�n�=
m�m�Amn,

exp�− Ĥ�e��/2�Â�e���� = Ĵ�e�Â�e�†��� . �2.169�

It can be seen that, in our model with a finite number of
energy levels, Eq. �2.169� implies that the state ��� must
be given by Eq. �2.164� up to an overall phase factor.

In algebraic field theory a state16 that allows a Hilbert
space representation satisfying the conditions �2.168�
and �2.169� is called a KMS state at inverse temperature
�. Thus the Unruh effect in algebraic field theory is the
statement that the Minkowski vacuum restricted to the
right Rindler wedge is a KMS state at inverse tempera-
ture �=2� /a if the time evolution is identified with a
boost, which is the � translation in the Rindler coordi-
nates �2.36�. Remarkably, the doubling of the Hilbert

space and the involution Ĵ�e� in the above construction,
which might look somewhat artificial in the context of
statistical mechanics, naturally arise here. Thus given the
QFT in the right Rindler wedge with a boost generator
as the Hamiltonian we “extend” it by including the left
Rindler wedge and operators acting there. The extended
boost generator automatically takes the form �2.166�
since the corresponding Killing vector field is past-
directed in the left Rindler wedge.

In the two-dimensional model �with only the left mov-

ers� the involution Ĵ�e� is defined by requiring

Ĵ�e��0M� = �0M� , �2.170�

Ĵ�e�â+�
R Ĵ�e� = â+�

L , �2.171�

J�e�â+�
R†J�e� = â+�

L† . �2.172�

Note that �Ĵ�e��2= Î � Î. The involution Ĵ�e� is in fact the
PCT transformation, i.e., the antiunitary transformation

�̂�t ,z���̂�−t ,−z� in this two-dimensional model. For
the four-dimensional scalar field it is the � rotation
about the z axis times the PCT transformation �see
Bisognano and Wichmann �1975��. With these defini-
tions one can verify that Eqs. �2.66� and �2.67� imply Eq.
�2.169�. The commutation relation �2.168� follows from
the fact that the Lorentz boost commutes the PCT
transformation.

The derivation of the Unruh effect by Bisognano and
Wichmann �1975� using the algebraic approach was for
any interacting scalar field satisfying the Wightman axi-
oms. They also generalized this result to quantum fields
of arbitrary spins �Bisognano and Wichmann, 1976�.
They showed that the Minkowski vacuum restricted to
the right or left Rindler wedge is a KMS state as ex-
plained above. For the four-dimensional scalar field

theory, for example, if exp�−iK̂� is the boost operator
corresponding to

t � t�� � t cosh a + z sinh a , �2.173�

z � z�� � t sinh a + z cosh a , �2.174�

then, for = i� /a, one has �t ,z�� �−t ,−z�. Bisognano
and Wichmann proved that this fact translates to

16In algebraic field theory a state means a density matrix in
general.
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exp�− K̂�/a��̂�t�1�,z�1�,x�
�1�� ¯ �̂�t�n�,z�n�,x�

�n���0M�

= �̂�− t�1�,− z�1�,x�
�1�� ¯ �̂�− t�n�,− z�n�,x�

�n���0M� ,

�2.175�

where �0M� is a unique Poincaré invariant vacuum, which
is assumed to exist, if �t�i� ,z�i� ,x�

�i��, i=1,2 , . . . ,n, are spa-
tially separated points in the right Rindler wedge.17

Then, they converted the relation �2.175� to the KMS

condition �2.169� with Ĥ�e�=K̂, �=2� /a, and Ĵ�e� the
PCT operator times the � rotation about the z axis for

operators Â�e� acting in the left Rindler wedge by a re-
sult similar to the Reeh-Schlieder theorem �Reeh and
Schlieder, 1961�.18 �See Kay �1985� for a discussion of the
Bisognano-Wichmann theorem in the context of free
field theory.�

We describe how Eq. �2.175� can be derived in the
simplest case with n=1 and with free �four-dimensional�
scalar field. Using K̂�0M�=0 and âkzk�

M �0M�=0, we have
for a real parameter 

exp�iK̂��̂�t,z,x���0M�

= �̂�t��,z��,x���0M�

=� d3k
��2��32k0

ei�k0z−kzt�sinh a−ik�·x�

�ei�k0t−kzz�cosh aâkzk�

M† �0M� , �2.176�

where t�� and z�� are defined by Eqs. �2.173� and
�2.174�, respectively. It can be shown that the variable 
can be analytically continued from 0 to i� /a if z� �t�, i.e.,
if the point �t ,z ,x�� is in the right Rindler wedge.19 Thus

exp�− K̂�/a��̂�t,z,x���0M� = �̂�− t,− z,x���0M� ,

�2.177�

if the point �t ,z ,x�� is in the right Rindler wedge. This is
Eq. �2.175� with n=1 for a free field. Noting that the
point �−t ,−z ,x�� is in the left Rindler wedge and using

the expansion �2.96� of the field �̂ in terms of the Rin-
dler modes, one can deduce from Eq. �2.177� the rela-

tions �2.100� and �2.101�, which were crucial in showing
the Unruh effect.

Unruh and Weiss �1984� derived the Unruh effect for

the scalar field theory with arbitrary potential term V��̂�
in the path integral approach. �They also discussed the
Unruh effect for spinors. See also Gibbons and Perry
�1976�.� Here we present their argument, for the two-
dimensional scalar field for simplicity of notation, in a
slightly modified manner. What needs to be shown is
that

0M�T��̂�x��̂�x����0M� =
Tr�e−�K̂T��̂�x��̂�x���	

Tr�e−�K̂�
,

�2.178�

where the trace is over all states, K̂ is the boost operator
defined above, and �=2� /a. The argument for a similar
equality involving an n-point function with arbitrary n is
almost identical.

The Lagrangian density for the scalar field with poten-
tial V�	� is

L = ���	/�t�2 − ��	/�z�2�/2 − V�	� . �2.179�

In the Rindler coordinates given by Eq. �2.34� with �
=a�, i.e.,

t = � sinh a�, z = � cosh a� , �2.180�

this Lagrangian density is given by

L = a�� 1

2a2�2� �	

��
�2

−
1
2
� �	

��
�2

− V�	�� . �2.181�

Define the Euclidean action by letting �=−i�e as

SE
R��� � − �

0

�

d�e�
0

�

d�L��=−i�e�

= �
0

�

ad�e�
0

�

d��

��1
2
� �	

��
�2

+
1

2�2�1

a

�	

��e
�2

+ V�	�� , �2.182�

where 	��e+� ,��=	��e ,��. It is well known �see, e.g.,
Bernard �1974�� that the right-hand side of Eq. �2.178�
for an arbitrary value of � is obtained by the analytic
continuation �e= i� of the following expression:

D��xe,xe��

�
�
	��e=0�=	��e=��

�D	�	�xe�	�xe��exp�− SE
R����

�
	��e=0�=	��e=��

�D	�exp�− SE
R����

,

�2.183�

where xe= �te ,ze� is obtained from Eq. �2.180� as

17Bisognano and Wichmann showed that the rigorous version
of Eq. �2.175� makes sense, i.e., that states obtained by multi-
plying �0M� by a finite number of operators of the form
�d4xf�x��̂�x�, where f�x� has support in the right Rindler
wedge, is in the domain of exp�−�K̂� for 0!�!� /a.

18This theorem states that any state in the Hilbert space of
the scalar field theory can be approximated by applying poly-
nomials of operators of the form �d4xf�x��̂�x� on the vacuum
state �0M�, where f�x� have support in a finite spacetime region.

19To be precise, one needs to consider the inner product of
the state in Eq. �2.176� with a normalized one-particle state.
Note that the modulus of ei�k0z−kzz�sinh a is always less than or
equal to 1 if  is between 0 and i� /a. This fact is essential in
showing that this analytic continuation is possible.
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te = � sin a�e, ze = � cos a�e. �2.184�

These equations show that the Euclideanized right Rin-
dler wedge is the two-dimensional Euclidean space ex-
pressed in polar coordinates if 0!a�e!2�, i.e., if �
=2� /a. Thus one has

SE
R�2�/a� = SE

� �
−�

�

dte�
−�

�

dze�� �	

�te
�2

+ � �	

�ze
�2

+ V�	�� .

�2.185�

Hence

D2�/a�xe;xe�� =
� �D	�	�xe�	�xe��exp�− SE�

� �D	�exp�− SE�
. �2.186�

It is well known that the time-ordered two-point func-
tion in �two-dimensional� Minkowski spacetime, i.e., the
left-hand side of Eq. �2.178�, is obtained from the right-
hand side of Eq. �2.186� by the analytic continuation te
= it. Since both sides of Eq. �2.178� are obtained by the
analytic continuation of the same function D2�/a�xe ;xe��
with xe= �te ,ze�= �it ,z�, Eq. �2.178� holds.

The analog of the Unruh effect in Schwarzschild
spacetime was first derived by Hartle and Hawking
�1976� using analytic properties of the time-ordered two-
point function for scalar and other free fields. They
showed that the physically acceptable20 vacuum state in-
variant under the time translation in the Kruskal exten-
sion �Kruskal, 1960� of Schwarzschild spacetime with
mass M is a thermal state of temperature 1/8�M. This
result has close connection to the Hawking effect
�Hawking, 1974�. A similar method was used by Gib-
bons and Hawking �1977� to show that the physically
acceptable de Sitter–invariant vacuum state of the free
scalar field in de Sitter spacetime with Hubble constant
H is a thermal state of temperature H /2� of the theory
inside the cosmological horizon with the de Sitter boost
generator fixing the horizon as the Hamiltonian. Narn-
hofer et al. �1996� found that an accelerated detector
with acceleration a in de Sitter spacetime responds as if
it was in a thermal bath of temperature �H2+a2�1/2 /2�,
and Deser and Levin �1997� obtained a similar result in
anti–de Sitter spacetime. Interestingly, they found that
the temperature is equal to the Unruh temperature cor-
responding to the acceleration of the detector in five-
dimensional Minkowski spacetime in which �anti–�de
Sitter spacetime is embedded. Jacobson �1998� gave a
simple explanation of these results, and Buchholz and
Schlemmer �2007� discussed them in the context of their
definition of a local temperature. For some work related
to the response rate of the Unruh-DeWitt detector in de

Sitter spacetime see, e.g., Higuchi �1987� and Garbrecht
and Prokopec �2004a, 2004b�. The Bisognano-Wichmann
result was also extended to Schwarzschild and de Sitter
spacetimes by Sewell as mentioned before.

Kay and Wald �1991� proved the analog of the Unruh
effect in a class of spacetimes with bifurcate Killing ho-
rizons �Boyer, 1969� adopting the viewpoint that Had-
amard states are the only physical states for the free
scalar field theory. They showed that the Wightman two-
point function ��x ;x�� on the horizon satisfies

�U�U���U,s ;U�,s�� = −
1

4�

1

�U − U� − i��2�
2�s,s��

�2.187�

with x= �U ,s�, where s parametrizes the null geodesics
on the Killing horizon and U is an affine parameter on
each geodesic, for a Hadamard state invariant under the
Killing symmetry. This formula allowed them to show
that if such a state exists, it must be unique. Then they
applied essentially the same argument as for the mass-
less scalar field theory in the two-dimensional Rindler
wedges to derive the Unruh-like effect. �See also Kay
�1993, 2001� for further developments and an account of
this result.�

III. APPLICATIONS

In this section we review works using the Unruh effect
to examine some selected phenomena. We begin by dis-
cussing each phenomenon using plain quantum field
theory adapted to inertial observers, and then we show
how the same observables can be recalculated from the
point of view of Rindler observers with the help of the
Unruh effect. The first example is connected with the
excitation of accelerated detectors and atoms, the sec-
ond one with the weak decay of noninertial protons, and
the third one with the interpretation of radiation emit-
ted by charges from the point of view of uniformly ac-
celerated observers. In particular we clarify the tradi-
tional question whether or not uniformly accelerated
charges emit radiation from the point of view of coac-
celerated observers.

A. Unruh-DeWitt detectors

Models of photon detectors have been discussed for
some time in quantum optics �Glauber 1963�. Unruh
�1976� introduced a detector model consisting of a small
box containing a nonrelativistic particle satisfying the
Schrödinger equation. The system is said to have de-
tected a quantum if the particle in the box jumps from
the ground state to some excited state. In the same pa-
per, Unruh also discussed a relativistic detector model
�see also Sanchez �1981� for a similar model�. Here we
consider the detector model introduced by DeWitt
�1979�, which consists of a two-level point monopole. We
generically call two-level point monopoles Unruh-

20The condition for “physical acceptability” here is essentially
the so-called Hadamard condition. See Fulling et al. �1978� and
Wald �1978� for an early use of this condition.

804 Crispino, Higuchi, and Matsas: The Unruh effect and its applications

Rev. Mod. Phys., Vol. 80, No. 3, July–September 2008



DeWitt detectors following the literature. A discussion
on particle detectors with finite spatial extent can be
found in Grove and Ottewill �1983�.

Particle detectors have often been used to probe the
Unruh thermal bath. Sometimes, however, distinct de-
tector designs may lead to contrasting conclusions about
the same given feature of the bath. For instance, Hinton
�1983�, Hinton et al. �1983�, Israel and Nester �1983�, and
Sanchez �1985�, have argued that the Unruh thermal
bath is anisotropic while Gerlach �1983�, Grove and Ot-
tewill �1985�, and Kolbenstvedt �1987�, have argued the
opposite. It is not surprising that, in general, direction-
ally sensitive detectors will respond differently if they
are given distinct orientations. Nevertheless, the Unruh
thermal bath is as isotropic as a thermal bath in equilib-
rium in a general static spacetime can be in the sense
that Killing observers will see no net energy flux, etc., in
any space direction, as is well known. In general, the
temperature ��−1�i measured by a Killing observer fol-
lowing a curve i generated by a Killing vector will be
position dependent. Two Killing observers following
curves i=1,2 will have their temperatures related as

��−1�1/��−1�2 = ��� � ���2/�� � ���1�1/2,

where  � is the Killing vector tangent to the world line
of the corresponding observer �Tolman, 1934�.

We consider a two-level Unruh-DeWitt detector in
Minkowski spacetime. The detector is represented by a
Hermitian operator m̂ acting on a two-dimensional Hil-
bert space. The excited state �E� and the unexcited state
�E0� are assumed to be eigenstates of the detector’s

Hamiltonian Ĥ:

Ĥ�E� = E�E�, Ĥ�E0� = E0�E0� �3.1�

with eigenvalues E and E0, respectively �E�E0�. The
monopole is time evolved as usual:

m̂��� � eiĤ�m̂0e−iĤ�, �3.2�

where � is the detector’s proper time. The matrix ele-
ment q�E�m̂0�E0� depends on the detector design.21

Now we couple our Unruh-DeWitt detector to a real

massive scalar field �̂�x� satisfying the Klein-Gordon

equation ��̂+m2�̂=0 through the interaction action

ŜI = �
−�

�

d�m̂����̂�x���� , �3.3�

where x���� is the detector’s world line. Next, we analyze
the response of the detector from the point of view of
inertial and that of Rindler observers separately. Re-
lated investigations for detectors coupled with electro-
magnetic and Dirac fields can be found in Boyer �1980,
1984� and Iyer and Kumar �1980�, respectively.

1. Uniformly accelerated detectors in Minkowski vacuum:
Inertial observer perspective

In Cartesian coordinates x�= �t ,x ,y ,z� of Minkowski
spacetime the world line x�=x���� of a uniformly accel-
erated detector along the z axis with proper acceleration
a is given by

t��� = a−1 sinh a�, z��� = a−1 cosh a� , �3.4�

and x��� ,y���=const �see Fig. 4�.
We expand �̂�x� in terms of positive- and negative-

energy eigenstates of the Hamiltonian Ĥ= i� /�t, associ-
ated with inertial observers, as �see Sec. II.D�

�̂�x� =� d3k�ukâk
M + H.c.� , �3.5�

where

uk = �2��2��3�−1/2e−ik�x� �3.6�

with k�= �� ,k�, �=�k2+m2 and

�âk
M, âk�

M†� = �3�k − k�� .

The proper excitation rate, i.e., the excitation prob-
ability divided by the total detector proper time T, asso-
ciated with the uniformly accelerated detector in the in-
ertial vacuum is given by22

21Two-level point monopoles have also been used to model
the excitation and deexcitation of atoms �Audretsch and
Müller, 1994b; Zhu and Yu, 2007�.

22Often, the excitation rate is alternatively expressed in terms
of the golden rule �3.52�.

t = const

z
=

co
ns

t

FIG. 4. The world line of a uniformly accelerated detector
moving along the z axis in the Minkowski spacetime covered
with Cartesian coordinates.
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excR = T−1� d3k�excAk
em�2, �3.7�

where the excitation amplitude is �up to an arbitrary
phase�

excAk
em = iE� � kM�ŜI�0M� � �E0�

=
q

�16�3��1/2�
−�

�

d� exp�i�E��

� exp��i�/a�sinh a� − �ikz/a�cosh a�� �3.8�

with �E�E−E0. We have adopted here the subscript M
to label states defined by inertial observers in
Minkowski spacetime. �Note that we are using the con-
vention that space components of the momentum k� are
given with lower indices. That is, kx, ky, and kz, are the
x, y, and z components, respectively, of the contravari-
ant vector k�.� We note that because Eq. �3.3� is linear in

�̂�x����, the detector excitation is accompanied by the
emission of a particle23 with momentum k. By using Eq.
�3.8� in Eq. �3.7�, we obtain

excR �� d2k�R�, �3.9�

where k�= �kx ,ky� denotes the transverse momentum
with respect to the direction of the acceleration, R� is
given by

R� =
�q�2

16�3T
�

−�

� dkz

�
�

−�

�

d���
−�

�

d��ei�E���−���

� ei��sinh a��−sinh a���/ae−ikz�cosh a��−cosh a���/a

=
�q�2

16�3T
�

−�

� dkz

�
�

−�

�

d��
−�

�

d"ei�E"

� e�2i/a�sinh a"�� cosh a�−kz sinh a��,

and we have defined �����+��� /2 and "���−��. Be-
cause the interaction is kept turned on for an arbitrarily
long time interval, the total time T diverges. To obtain
explicitly the excitation rate per unit time, the total time
T must be canceled by factoring out the divergent part
�−�
� d� from the integrals above. To this end, we first note

that the momentum of the emitted particle is boosted
due to the nonzero velocity of the detector, which is �
dependent. Hence it is expected that the integrand can
be made � independent by boosting back the momentum
variables. Motivated by this physical picture, we intro-
duce a new momentum variable as

kz � kz� � kz cosh a� − � sinh a� , �3.10�

which can be inverted as

kz� � kz = k�z cosh a� + �� sinh a� . �3.11�

Here �����k�z�2+k�
2 +m2�1/2 can be expressed as

�� = � cosh a� − kz sinh a� ,

where k����kx�2+ �ky�2. It can be shown that dk�z /��
=dkz /�. This transformation allows us to factor out T
=�−�

� d�, and we obtain

R� =
�q�2

16�3�
−�

� dk�z

��
�

−�

�

d"ei�E"e�2i��/a�sinh�a"/2�.

�3.12�

By making now a further change of variables as

kz� �  � ��� + k�z�/�k�
2 + m2,

" � # � exp�a"/2� , �3.13�

we obtain

R� =
�q�2

8�3a
�

1

� d 

 
�

0

�

d##2i�E/a−1

�exp�i�k�
2 + m2�1/2�# − #−1�� +  −1�/�2a�� .

Now, we make the change of variables � ,#	� �� ,$	
with �= # and $= /#, and write

R� =
�q�2

16�3a��0

� d�

�1−i�E/aei�k�
2 + m2�1/2��−�−1�/�2a��2

=
�q�2e−��E/a

4�3a
�Ki�E/a��k�

2 + m2�1/2/a�	2, �3.14�

where K��x� is the modified Bessel function �Gradshteyn
and Ryzhik, 1980�. �We recall here that the function
Ki#�x� is real if x and # are real.� Finally, we obtain for
the proper excitation rate �3.9�

excR =
�q�2ae−��E/a

2�2 �
0

�

d���Ki�E/a���2 + �m/a�2�	2.

�3.15�

The angular distribution of the corresponding emitted
particles in the massless case can be found in Kolben-
stvedt �1988�. Next, we reproduce this detector response
from the point of view of Rindler observers and discuss
it.

2. Uniformly accelerated detectors in Minkowski vacuum:
Rindler observer perspective

The spacetime appropriate for investigating the exci-
tation rate of our detector with proper acceleration a
from the point of view of uniformly accelerated observ-
ers is the Rindler wedge. We choose the right Rindler
wedge �z� �t�� to work with, where we recall that it has a
global timelike isometry associated with the Killing field
z� /�t+ t� /�z. By covering it with Rindler coordinates
�� ,� ,y ,z� �−��� ,� ,x ,y� +��, which are related with
�t ,x ,y ,z� by Eq. �2.36�, we obtain the line element of the
Rindler wedge as written in Eq. �2.37�.

23This combination, i.e., excitation with particle emission, can
be also observed in the anomalous Doppler effect where atoms
move in media with refractive index n with velocity v�1/n
�Frolov and Ginzburg, 1986�.
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The world lines of the Rindler observers are given by
� ,x ,y=const and are hyperbolas in the two-dimensional
diagram of Minkowski spacetime with x and y sup-
pressed �see Fig. 5�. The corresponding four-velocity and
four-acceleration are u�=e−a��1,0 ,0 ,0� and a�

=e−2a��0,a ,0 ,0�, respectively, where a�=u���u
� �see,

e.g., Wald �1984��. Thus the proper acceleration of the
Rindler observers is �−a�a�=ae−a�=const. Our uni-
formly accelerated detector with proper acceleration a
will lie at �=0 �for some x ,y=const�.

Next, we expand �̂�x� in terms of positive- and

negative-energy eigenstates of the Hamiltonian Ĥ
= i� /��, associated with the Rindler observers, as �see
Sec. II.D�

�̂�x� =� d�d2k��v�k�

R â�k�

R + H.c.� , �3.16�

where

v�k�

R = � sinh���/a�
4�4a

�1/2

Ki�/a��k�
2 + m2

ae−a� �eik�·x�−i��

�3.17�

are Klein-Gordon orthonormalized, and we recall that
the creation and annihilation operators of Rindler par-
ticles satisfy the commutation relations

�â�k�

R , â
��k��

R† � = ��� − ����2�k� − k��� . �3.18�

The Rindler vacuum �0R� is defined by â�k�

R �0R�=0. A
detector lying at rest within a uniformly accelerated cav-
ity prepared in the Rindler vacuum is not excited �Levin

et al., 1992�.24 We emphasize that the quantum numbers
�� ,k�	 associated with the timelike and spacelike global
Killing fields � /�� and � /�x, � /�y, respectively, are inde-
pendent of each other �see Sec. III.A.3�.

Before we analyze the behavior of the detector in the
Minkowski vacuum, we formally consider the detector’s
excitation probability with simultaneous emission of a
Rindler particle in the Rindler vacuum. The amplitude
associated with this process in first order of perturbation
is

excA�k�

em � iE� � �k�R�ŜI�0R� � �E0� , �3.19�

where we recall that we use Eq. �3.16� in ŜI as given in
Eq. �3.3�. The differential probability associated with
this amplitude is

dWem = �excA�k�

em �2d2k�d� . �3.20�

Now, we take into account the fact that due to the Un-
ruh effect the Minkowski vacuum corresponds to a ther-
mal bath of Rindler particles. We emphasize that the
Minkowski vacuum is indistinguishable from the ther-
mal bath built on the Rindler vacuum as long as the
detector stays in the Rindler wedge since the Minkowski
vacuum is a linear combination of products of the left
and right Rindler states. For this reason, the detector’s
excitation rate with simultaneous emission of a Rindler
particle into the Minkowski vacuum is given by Eq.
�3.20� combined with the proper thermal factor �see Eq.
�4.9� in Higuchi et al. �1992a� for more detail�:

excRem = T−1� dWem�1 + n���� , �3.21�

where

n��� = 1/�exp���� − 1� �3.22�

is the Rindler scalar particle number density in the mo-
mentum space. Here �−1=a /2� is the Unruh tempera-
ture as measured by Rindler observers at �=0. The first
and second terms in the square brackets in Eq. �3.21� are
associated with spontaneous and induced emission, re-
spectively.

Similarly, one can calculate the detector’s excitation
rate with simultaneous absorption of a Rindler particle
from the Unruh thermal bath as

excRabs = T−1� dWabsn��� , �3.23�

where

dWabs � �excA�k�

abs �2d2k�d� �3.24�

and

24An account on vacuum states in static spacetimes with ho-
rizons can be found in Fulling �1977�.

ττττ = const

ξξ ξξ
=

co
n

st

FIG. 5. The world line of a uniformly accelerated detector
moving along the z axis in Minkowski spacetime covered with
Rindler coordinates.
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excA�k�

abs � iE� � 0R�ŜI��k�R� � �E0� �3.25�

is the excitation amplitude with absorption of a Rindler
particle ��k�R�. The excitation amplitudes �3.19� and
�3.25� can be shown to be

excA�k�

em�abs� = q�
−�

�

d� exp�ik� · x� + i��E + �− ����	

� � sinh���/a�
4�4a

�1/2

Ki�/a� �k�
2 + m2�1/2ea�

a
�

�3.26�

up to some multiplicative phase. It is easy to verify in
this case that excA�k�

em =0, as expected, since uniformly
accelerated detectors are static according to Rindler ob-
servers. Hence according to these observers the only
contribution to the detector response comes from the
absorption of Rindler particles from the Unruh thermal
bath.

Now, since in first order of perturbation there is no
interference, the total detector excitation rate in the
Minkowski vacuum is

excR = excRem + excRabs. �3.27�

By using Eq. �3.26� to calculate Eq. �3.27�, we get Eq.
�3.15�, as expected. Of course, inertial and Rindler ob-
servers must agree on the value of scalar observables,
such as the proper excitation rate of a given detector,
although they can differ in how they describe the phe-
nomenon. Because inertial and Rindler observers would
expand the quantum fields with different sets of normal
modes, they would end up extracting different particle
contents from the same field theory. As a result, it is
natural for inertial and Rindler observers to describe the
detector excitation as being accompanied by the emis-
sion of a Minkowski particle and by the absorption of a
Rindler particle from the Unruh thermal bath �Unruh
and Wald, 1984�, respectively. This conclusion can be
generalized for detectors confined in the Rindler wedge
following general world lines by saying that the detector
excitation which is associated with the emission of a
Minkowski particle as described by inertial observers
corresponds in this case to the absorption or emission of
a Rindler particle from or to the Unruh thermal bath
according to Rindler observers �Matsas, 1996�.

We comment on one possible source of confusion con-
cerning the Unruh-DeWitt detector. A naive �and
wrong� application of the equivalence principle might
lead to the conclusion that an inertial detector which has
the same velocity as an accelerated one at a certain time
would detect Unruh radiation. This is of course not the
case: no detector in an inertial motion detects any Un-
ruh radiation.

Before proceeding further, we note for later purposes
that in the particular case with m=0, Eq. �3.15� takes the
form

excRm=0 =
�q�2

2�
�E

e��E − 1
. �3.28�

3. Rindler particles with frequency ��m

Here we discuss the existence of Rindler particles
with frequencies ��m, which was crucial in the discus-
sion above �notice that the range of the � integrations in
Eqs. �3.21� and �3.23� is 0��� +��. The standard
theory of quantum fields uses the fact that Minkowski
spacetime is invariant under time and space translations.
The linear three-momentum �kx ,ky ,kz� associated with
the translational isometries on the spacelike hypersur-
faces t=const constitutes a suitable set of quantum num-
bers to label free particles. In this simple case, the dis-
persion relation E���=��pc�2+m2c4 imposes a simple
constraint between the particle mass m, momentum p,
and energy E, and thus free particles with well-defined
linear momenta must have total energy E%mc2. More-
over, in the classical context of general relativity, the
detection in loco of point particles satisfying E�mc2 by
direct capture is ruled out by the fact that an observer
with four-velocity u� intercepting a particle with four-
momentum p�=mv� assigns to the particle an energy
E=mv�u�%mc2.

On the other hand, it is well known that the field
quantization carried over arbitrary spacetime does not
lead in general to any dispersion relation connecting the
frequency with other quantum numbers, avoiding the
flat spacetime constraint E%mc2. This can be under-
stood by recalling that, strictly speaking, the concept of
point particle has no place in quantum field theory. This
raises the following question: What is the probability
density associated with the detection of particles with
E�mc2, i.e., ��m, at different space points of the Rin-
dler wedge? By answering this question, we can also ex-
tract some information about the particle distribution of
the Hawking radiation near the event horizon of black
holes. Indeed, much insight into the Hawking effect can
be obtained in the simplified context provided by the
Rindler wedge as we see next. �We refer the reader to
Castiñeiras et al. �2002� for more detail.�

We start by considering the line element of a two-
dimensional Schwarzschild spacetime:

ds2 = �1 − 2M/r�dt2 − �1 − 2M/r�−1dr2. �3.29�

This can be seen as describing a two-dimensional black
hole25 with mass M. Close to the horizon, r�2M, it can
be written as

ds2 = ��/4M�2dt2 − d�2, �3.30�

where ��r���8M�r−2M�. �Note that in these coordi-
nates the horizon is at �=0.� One can identify Eq. �3.30�
with the line element of the Rindler wedge �2.37� with
x ,y=const by letting t=4Ma� and �=ea� /a provided that
0��� +� and −�� t� +�.

25The vacuum expectation value of the energy-momentum
tensor for a massless scalar field in this spacetime was analyzed
by Davies et al. �1976� �see also Davies �1976� and Davies and
Fulling �1977a��. See Christensen and Fulling �1977� for discus-
sion and Candelas and Dowker �1979�.
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From here to the end of this section we consider the
spacetime of the Rindler wedge with line element �3.30�,
where 0��� +� and −�� t� +�. Now, we choose a
fiducial observer at �=�0=4M, whose proper time is t
�see Eq. �3.30��, with respect to whom the particle’s en-
ergy is to be measured. The total probability P���d� of
detecting a particle at some point �=�d with energy �

per �detector� proper time sd
tot is defined as ����d�

�P���d� /sd
tot. Then, the normalized probability density is

dP�

d�d
� ����d���

0

+�

����d��d�d��−1

, �3.31�

where �dP� /d�d�d�d is the probability that a particle
with energy � is found between �d and �d+d�d. Observ-
ers far away from the horizon will be able to interact
only with the “tail” of the “wave functions” associated
with particles with small � /m. The smaller the � /m, the
more difficult it is to detect these particles.

Now, in order to interpret Eq. �3.31� in the frame
work of general relativity, we first consider a row of de-
tectors, each of them lying at different �d, and define the
average detection position

�d� � �
0

+�

d�d�ddP�/d�d. �3.32�

By using Eq. �3.31�, this can be shown to be �see Fig. 6�

�d� =
� tanh�4�M���64M2�2 + 1�

64mM�

� �M�/m ��� a� , �3.33�

where a�1/4M is the proper acceleration of the fiducial
observer. On the other hand, from general relativity, a
classical particle with mass m lying at rest at some point
�p has, according to our fiducial observer at �0=4M, en-
ergy �=m�p /4M. By considering that the particle may
have some kinetic energy in addition, the total energy
would be �%m�p /4M. From this equation, we obtain

�p ! 4M�/m � �p
max. �3.34�

This is expected to agree with �d�, i.e., �d�!�p
max, at

least in the “high-frequency” regime ��a �where the
quantum and classical behaviors may be compared�.
This conclusion is in agreement with Eqs. �3.33� and
�3.34� as seen in Fig. 7. In summary, the smaller the � /m
ratio, the more likely the observer is to detect the par-
ticle closer to the horizon.

4. Static detectors in a thermal bath of Minkowski particles

Now, we show explicitly that the response rate �3.15�
does not correspond to the one obtained when the de-
tector lies at rest in a plain thermal bath of Minkowski
particles heated up to the Unruh temperature �−1

=a / �2��. In the latter case, the excitation rate is ob-
tained by replacing Eq. �3.7� by

excR� � T−1� d3k��excAk
em�2�1 + n����

+ �excAk
abs�2n���� , �3.35�

where n���=1/ �exp����−1� and

excAk
em � iE� � kM�ŜI�0M� � �E0� ,

excAk
abs � iE� � 0M�ŜI�kM� � �E0�

are the excitation amplitudes with emission and absorp-
tion of Minkowski particles �kM�, respectively. In this
case, the excitation amplitudes can be shown to be �up
to an arbitrary multiplicative phase�

excAk
em�abs� = q�„� + �− ��E…/�4�� , �3.36�

where we have assumed with no loss of generality that
the detector is at the origin x=0. Clearly, excAk

em=0.
Hence the only contribution to the detector response is
associated with the absorption of a Minkowski particle.
By substituting Eq. �3.36� into Eq. �3.35�, we obtain
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FIG. 6. The probability density dP� /d�d for different � /m
ratios, where Mm=1/4. Note that the smaller the � /m ratio,
the closer to the horizon �on average� the particle lies, where
the “gravitational potential” is lower.
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excR� =
�q�2�E

2�

���E − m�
e��E − 1

. �3.37�

The presence of the step function ���E−m� expresses
the fact that the detector can only be excited if its energy
gap is large enough to absorb massive scalar particles
from the thermal bath. Clearly excR� in Eq. �3.37� with
�−1=a / �2�� and excR in Eq. �3.15� are distinct. Indeed,
there is no a priori reason why they should be the same.
Incidentally, in the case m=0, Eqs. �3.37� and �3.28� are
equal. However, this is a coincidence, which has to do
with the particular design of the detector and not with
the Unruh effect. As we have seen, what the Unruh ef-
fect does say is something else. In particular, we have
shown in Sec. III.A.2 how to recover Eq. �3.15� from the
point of view of Rindler observers.

In spite of the model dependence of the response rate,
the Unruh effect allows one to establish a relationship
between the excitation and deexcitation rates �assuming
that they are well defined�, which is independent of the
detector model. Because of unitarity, the absolute value
of the excitation amplitude �associated with the absorp-
tion of a Rindler particle�,

�excAabs� � �E� � 0R�ŜI��k�R� � �E0�� � ��� − �E� ,

�3.38�

must equal the absolute value of the deexcitation ampli-
tude �associated with the emission of a Rindler particle�,

�deexcAem� � �E0� � �k�R�ŜI�0R� � �E�� � ��� − �E� .

�3.39�

Hence we obtain from the discussion in Sec. III.A.2 that
the ratio of the excitation and deexcitation rates must be
given by

excR
deexcR

=
n��E�

1 + n��E�
= e−��E. �3.40�

This universal relation is also called principle of detailed
balance, and holds for detectors lying at rest in a thermal
bath of Minkowski particles at the same temperature26

provided that �E%m. For �E�m, the ratio excR / deexcR
is not well defined for the thermal bath in Minkowski
spacetime since the excitation and deexcitation rates
vanish. It is worthwhile to emphasize, however, that de-
viations from the hyperbolic motion because of backre-
action or other effects will in general disturb Eq. �3.40�
with no contradiction to the Unruh effect, contrary to
recent claims �Belinskii et al., 1997; Fedotov et al., 1999�.

5. Discussion on whether or not uniformly accelerated sources
radiate

Some controversy has appeared in the literature about
whether or not uniformly accelerated detectors and
sources emit radiation according to inertial observers.27

This is sometimes called Unruh radiation �although this
terminology has also been used to mean something else
�see Sec. IV.D��. Indeed, the conclusion that the excita-
tion of a uniformly accelerated detector is accompanied
by the emission of a Minkowski particle according to
inertial observers and absorption of a Rindler particle
from the Unruh thermal bath according to Rindler ob-
servers �Unruh and Wald, 1984� was not unanimously
accepted in the beginning �Padmanabhan, 1985�. Grove
�1986� claimed that a constantly accelerated object
would emit negative- rather than positive-energy radia-
tion as seen by inertial observers. Similar conclusions
were reached by Massar et al. �1993�. Later, the excita-
tion of uniformly accelerated detectors in the
Minkowski vacuum was said to give rise to no energy
flux28 according to inertial observers, supporting a pre-
vious conclusion due to Raine et al. �1991�. More re-
cently Parentani �1995� and Massar and Parentani �1996�
stated that, although the mean flux vanishes, once the
thermal equilibrium is reached, each detector transition
is accompanied by the emission of a Minkowski particle.

The controversy above was revisited by Unruh �1992�,
who concluded that uniformly accelerated oscillators do
alter the measurable properties of the field. Ascribing
these changes to radiation or vacuum fluctuation would
be a terminology issue. This viewpoint is in agreement
with Audretsch and Müller �1994a� who argued that the
key to the seemingly contradictory results lies in the dis-
tinction between the different questions stated implicitly
in the various approaches.29

6. Other results concerning the Unruh-DeWitt detector

The emission rates obtained in the previous sections,
which use detectors accelerated uniformly for all times,
should be seen as approximations to those obtained in
real physical situations where the detectors are acceler-
ated and interacting for long enough. Svaiter and Svaiter
�1992� considered the Unruh-DeWitt detector that was
turned on only for a finite time. This model might ap-
pear physical but they obtained a transition probability
which was logarithmically divergent although the transi-
tion rate, the time derivative of the transition probabil-
ity, was found to be finite when the detector is turned on
and off asymptotically. �See also Sriramkumar and Pad-
manabhan �1996�.�

26Boyer �1980, 1984� concluded in the context of stochastic
electrodynamics that a classical electric dipole oscillator accel-
erating through classical electromagnetic zero-point radiation
responds as would a dipole oscillator in an inertial frame in
classical thermal radiation with temperature a / �2�� in agree-
ment with Eq. �3.40� �see also Cole �1985��.

27See Sec. III.C.1 for related remarks concerning electric
charges.

28See, e.g., Hinterleitner �1993�; Hu and Roura �2004�; Hu et
al. �2004�; Ford and O’Connell �2006�. A reply to Hu and
Roura �2004� can be found in Scully et al. �2004�. See also Sec.
IV.C for further remarks.

29More discussions on this issue can be found in Lin and Hu
�2006�.
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In order to find the cause of this divergence and con-
firm that the transition rate obtained with uniform accel-
eration is a good approximation to that for a detector
model turned on only for a finite time, Higuchi et al.
�1993� modified the interaction action �3.3� as follows:

ŜI = �
−�

�

d�c���m̂����̂�x���� , �3.41�

where the function

c��� � �e��+T� � � − T

1 − T ! �! T

e−��−T� � � T ,
� �3.42�

with =const, has been inserted to switch on and off the
detector continuously as �→−� and �→�, respectively.

The field �̂�x� is assumed to be a massless scalar field for
simplicity. The excitation rate is calculated in the Rin-
dler frame. Equation �3.27� for the interaction �3.41�
takes the form

excRT = excRT
em + excRT

abs = �q�2�Isp + Iin + Iabs�/4�2Ttot,

�3.43�

where Ttot�2T. Here

Isp = �
0

�

d��B��� , �3.44�

Iin = �
0

�

d�g���B��� , �3.45�

Iabs = �
0

�

d�g���B�− �� �3.46�

are associated with the spontaneous emission, induced
emission, and absorption probabilities, respectively, with

B��� �
4 sin2�� + �E�T

�� + �E�2 −
4 sin2�� + �E�T
2 + �� + �E�2

+
42 cos 2�� + �E�T

�2 + �� + �E�2�2

+
43 sin 2�� + �E�T

�� + �E��2 + �� + �E�2�2 , �3.47�

and g�����n���=��e2��/a−1�−1. It is easy to see that
the integrands for Isp, Iin, and Iabs in Eqs. �3.44�–�3.46� do
not diverge at any value of �. Also, the integrands for Iin

and Iabs tend to zero exponentially as �→�, and the
leading term of the asymptotic expansion �for �
��E , ,a� of the integrand for Isp is 42�−3 cos2 �T.
Thus excRT in Eq. �3.43� is finite. Now, suppose we switch
on and off the detector instantaneously, in such a way
that it only interacts with the field during the interval
−T���T. This setup corresponds to the limit → +�
�see Eq. �3.42��. In this regime the integrand for Isp be-
haves asymptotically like 4�−1 sin2 �T, giving rise to a
logarithmic ultraviolet divergence in excRT found by

Svaiter and Svaiter. In a physical situation where we
have a finite  and large T �i.e., T�a−1 ,−1 ,�E−1�, one
finds

excRT �
�q�2

2�
�E

e��E − 1
, �3.48�

recovering the Planckian excitation rate �3.28�. Thus the
logarithmic divergence appears when we take the →
+� limit with finite T. This divergence would not appear
if we took T→ +� from the beginning. In this case the
absence of the logarithmic divergence could be attrib-
uted to the fact that the switching on and off would be
moved away to infinite past and future, respectively.

The good ultraviolet behavior of the detector’s total
excitation probability excRT does not depend sensitively
on the particular choice of the function c��� provided
that c��� is at least continuous. It would be interesting to
see if the results obtained for finite-time detectors and
for finite-lifetime observers �Martinetti and Rovelli,
2003� are related.

Recently Louko and Satz �2006� have found a formula
for the excitation rate of the Unruh-DeWitt detector
with any trajectory in Minkowski spacetime for the
massless scalar field, building on works by Schlicht
�2004� and Langlois �2005, 2006�. If the trajectory is
x����, where � is the proper time, and if the detector is
turned on at �=�0, then the Louko-Satz formula for the
excitation rate at proper time � is

RLS = �q�2�−
�E

4�
+

1

2�2�
0

�−�0

ds� 1

s2 −
cos�s�E�

��x�2 �
+

1

2�2�� − �0�� , �3.49�

where �x��x����−x���−s�. The transition probability
obtained by integrating RLS from �0 to a given time is
indeed logarithmically divergent because of the last
term. In the limit �0→−� they find

lim
�0→−�

RLS = �q�2�−
�E

2�
��− �E� +

1

2�2�
0

�

ds cos�s�E�

�� 1

s2 −
1

��x�2�� , �3.50�

where ��x� is the Heaviside function. Louko and Satz
have used this formula to compute the excitation rate
for a trajectory which is inertial for �→−� and uni-
formly accelerated with acceleration a for �→ +�, veri-
fying that it vanishes as �→−� and converges to the rate
�3.28� as �→ +�.30 Recent discussions on the excitation
of Unruh-DeWitt detectors with arbitrary trajectories
can be found in Obadia and Milgrom �2007� and Satz

30Note that RLS and its �0→−� limit can become negative at
some �. This may be due to the fact that quantum interference
prevents one from determining the exact time when the detec-
tor clicks.
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�2007�. We also note that De Bièvre and Merkli �2006�
have shown that a uniformly accelerated Unruh-DeWitt
detector will asymptotically have the Gibbs state with
the Unruh temperature irrespective of its initial state.

7. Circularly moving detectors with constant velocity in the
Minkowski vacuum

As we have seen, the Unruh effect is concerned with
uniformly accelerated observers. In spite of this, inter-
esting questions can be addressed for the case of observ-
ers in uniform circular motion.

We start by considering a circularly moving Unruh-
DeWitt detector31 �Letaw and Pfautsch, 1980� in
Minkowski spacetime32 at the radius r=r0 with angular
velocity &�d� /dt�0. Using the interaction action �3.3�,
we write the detector excitation amplitude as

excAk = iE� � kM�ŜI�0M� � �E0�

= iq�
−�

�

d� exp�i�E��kM��̂�x������0M� , �3.51�

where � is the detector proper time. Thus the proper
excitation rate �3.7� can be given as �Brout et al., 1995�

excRcirc
m=0 = �q�2�

−�

�

d" exp�− i�E"�G+�x���,x����� ,

�3.52�

where "��−��. Here

G+�x����,x������ = 0M��̂�x������̂�x�������0M� �3.53�

is the �positive-frequency� Wightman function �see, e.g.,
Fulling �1989�� for the massless scalar field in Minkowski
spacetime. In Cartesian coordinates this is written as

G+�x����,x������ = − 1/�4�2��t − t� − i'�2 − �x − x��2

− �y − y��2 − �z − z��2�	 , �3.54�

which can be derived using the field expansion �3.5� and
�3.6� in terms of positive- and negative-energy modes
with respect to inertial observers, as is well known. We
may write the world line of this detector as

t = ��, x = r0 cos�&���, y = r0 sin�&��� ,

z = const, �3.55�

where we impose the condition r0&�1 so that the world
line is timelike and �= �1−r0

2&2�−1/2 is the Lorentz factor.
The proper acceleration of such a detector is a
��−a�a�=&2�2r0. Then, the proper excitation rate can
be written as

excRcirc
m=0 =

�q�2

4�2�
−�

�

d"e−i�E"�− �2�" − i'�2

+ 4r0
2 sin2�&�"/2��−1. �3.56�

This nonvanishing excitation rate has been evaluated
numerically by Letaw and Pfautsch �1980� and Letaw
�1981� �see also Kim et al. �1987� for further discussion�.
For ultrarelativistic detectors ���1�, one obtains

excRcirc
m=0 �

�q�2ae−�12�E/a

4��12
. �3.57�

An attempt to give a physical interpretation of this for-
mula in terms of the depolarization of electrons in par-
ticle accelerators will be discussed in Sec. IV.A.

Now, one could think of recalculating the excitation
rate above from the point of view of observers corotat-
ing with the detector. A major difficulty appears, how-
ever. In order to extract a natural particle content from
the field theory, a global timelike Killing vector field K
associated with the rotating observers would be neces-
sary �see, e.g., Wald �1994��. If such a Killing vector ex-
isted, then the eigenvalue equation iK	±= ±�	± would
separate positive-frequency modes �	+� from negative-
frequency ones �	−� �where K is assumed to be future
directed�. The four-velocity of a circularly moving ob-
server at r=r0 with &=d� /dt=const can be written as

u = d/d� = �K ,

where

K = ��/�t� + &��/��� �3.58�

is the associated Killing field. We notice now that for
r&�1, K is spacelike. Thus K fails to be a global time-
like Killing field. If one ignored this fact and used K to
extract naively the particle content of the field theory,
circularly moving observers would end up with identify-
ing their vacuum state with the Minkowski vacuum itself
�Letaw and Pfautsch, 1980�. This would lead to a puz-
zling situation since we know from Eq. �3.56� that detec-
tors carried by circularly moving observers have a non-
zero excitation rate. Thus either we have a suitable way
to extract the particle content from the theory �Ashtekar
and Magnon, 1975; Kay, 1978� or it may be better not to
introduce such a concept at all.33

In contrast to the case considered above, we now turn
to a related but distinct physical situation, where the
detector response can be naturally interpreted in terms
of the particle content defined by the rotating observers.
We consider the rotating detector with angular velocity
&=const confined inside a limiting surface �Levin et al.,
1993; Davies et al., 1996�. We assume a cylindrical sur-
face at r=� with ��1/& and Dirichlet boundary condi-
tions imposed on the scalar field 	�t ,r=� ,� ,z�=0.

31For other stationary world lines, see Letaw �1981� in con-
junction with Letaw and Pfatsch �1982�, and Korsbakken and
Leinaas �2004�.

32The symbols r and � correspond to the usual polar
coordinates.

33We recall that a detector acts as a “vacuum fluctuometer”
and that its response must not depend on the definition of the
particle �Grove and Ottewill, 1983�.
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The positive-frequency orthonormal modes with re-
spect to inertial observers are

umnkz
= CmnJm�mnr/��eim�eikzze−i�mnt. �3.59�

Here m�Z, n�N+, mn is the nth �nonvanishing� zero of
the Bessel function Jm�x� �Jm�mn�=0�, and the following
dispersion relation is satisfied:

�mn = �mn
2 /�2 + kz

2 � 0. �3.60�

The normalization constant

Cmn = �2����mn�Jm+1�mn���−1 �3.61�

has been chosen so that the modes umnkz
satisfy the or-

thonormality condition with respect to the Klein-
Gordon inner product:

�umnkz
,um�n�kz�

�KG = �mm��nn���kz − kz�� . �3.62�

�See Eq. �2.6� for the definition of the Klein-Gordon
inner product.� The corresponding Wightman function
�3.53� is

G+�x�,x��� = 

m=−�

+�



n=1

+� �
−�

+�

dkzCmn
2 Jm�mnr/��

� Jm�mnr�/��

� eim��−���eikz�z−z��e−i�mn�t−t��. �3.63�

In order to calculate the response rate �3.52� we substi-
tute the world line of the rotating detector

t = ��, r = r0 = const, � = &t, z = const �3.64�

into Eq. �3.63�, obtaining

G+�x�,x��� = 

m=−�

+�



n=1

+� �
−�

+�

dkzCmn
2 Jm

2 �mnr0/��

� e−i��mn−m&��". �3.65�

By substituting Eq. �3.65� into Eq. �3.52�, we get

excRcirc
m=0 = �q�2 


m=−�

+�



n=1

+� �
−�

+�

dkzCmn
2 Jm

2 �mnr0/��

� �
−�

+�

d"e−i��E+��mn−m&���". �3.66�

The result of the integration over " is proportional to
�†�E− �m&−�mn��‡. Assuming &�0, we find that no
contribution comes from m!0 in the sum of Eq. �3.66�
�where �E�0�. Now, for m�0 there will be a lowest
value of �mn for each m, namely, m1 /� �corresponding
to the first �nonvanishing� zero of the Bessel function
Jm�x� and kz=0�. Then, a necessary condition for a mode
with a given m to contribute in the sum is that &�
�m1 /m. However, since mn�m �see, e.g., Abramow-
itz and Stegun �1965��, there is no integer value for m
that satisfies this condition because of our original con-
straint that ��1/&. We conclude thus that the detector
has a vanishing response when it is confined inside the
limiting surface. �The same conclusion would hold if we

had chosen Neumann rather than Dirichlet boundary
conditions �Davies et al., 1996�.�

Now we show that in this case, namely, for ��1/&, it
is possible to interpret the vanishing response in terms
of the particle content defined by the rotating observers
confined inside the boundary with angular velocity &.
We can show this because in this case the Killing vector
field K associated with these observers is globally time-
like. We rewrite Eq. �3.59� as

ũmnkz
= CmnJm�mnr/��eim��eikzze−i�̃mnt �3.67�

with �̃mn=�mn−m&�0, which are also positive-
frequency modes with respect to the corotating observ-
ers. We have defined ����−&t, and t can be interpreted
here as the proper time of a rotating observer with an-
gular velocity & lying at r=0, i.e., K= �� /�t���=const. By
determining the Bogoliubov transformation among the
“inertial” modes �3.59� and “rotating” modes �3.67� �see
Eq. �2.20��, we obtain

��i��i�� = �ũ�i�
* ,u�i���KG = 0, �3.68�

where �i� stands for the set �m ,n ,kz�. We conclude thus
that there is no mixing between positive- and negative-
energy modes between the two sets �see, e.g., Birrell and
Davies �1982��. As a result, the Minkowski vacuum co-
incides with the vacuum state defined by the rotating
observers, who would correctly conclude that the re-
sponse rate of the corotating detectors confined inside
the limiting surface vanishes. A similar analysis can be
performed for the case of a compact space, like the one
with topology S2�R2, or the Einstein static universe,
wherein the field is automatically confined �Davies et al.,
1996�.34

B. Weak decay of noninertial protons

As a second example, we discuss the weak decay of
noninertial protons. Although inertial protons are stable
according to the standard particle model �Yao et al.,
2006�, noninertial protons are not because the accelerat-
ing agent provides the required extra energy for the pro-
ton to decay. To the best of our knowledge, the first to
consider the weak decay of accelerated protons were
Ginzburg and Zharkov �1964�, who described the bary-
ons by classical currents while treating the other par-
ticles as quantized fields. At about the same time,
Zharkov �1965� investigated the weak and strong proton
decays �and other processes� in the presence of a back-
ground electromagnetic field A� using the formalism of
Nikishov and Ritus �1964a, 1964b� �see also Ritus
�1969��, treating all particles as quantum fields. More re-
cently the weak decay of noninertial protons under the

34Other investigations on the response of particle detectors in
spacetimes with nontrivial topology and endowed with bound-
aries can be found in Copeland et al. �1984�, Davies et al.
�1989�, Abe �1990�, and Langlois �2005, 2006�.
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influence of a gravitational field was studied by Müller
�1997�, Vanzella and Matsas �2000�, and Fregolente et al.
�2006�.

Here we review a weak decay model of uniformly ac-
celerated protons from the point of view of inertial and
Rindler observers. For the sake of simplicity we present
a model with a two-dimensional spacetime and massless
neutrinos �using four-component spinors for the leptons�
�Matsas and Vanzella, 1999; Vanzella and Matsas, 2001�,
but a four-dimensional comprehensive calculation with
massive neutrinos can be found in Suzuki and Yamada
�2003�. We evaluate the proton proper decay rate with
respect to inertial and Rindler observers and show that
the results obtained are in agreement when the Unruh
effect is taken into account in spite of the fact that uni-
formly accelerated protons are static according to Rin-
dler observers. It will be interesting to see that what
inertial observers interpret as being

�i� p+ → n0e+�

are interpreted by Rindler observers as being the com-
bination of the following channels:

�ii� p+e− → n0�, �iii� p+�̄ → n0e+, �iv� p+e−�̄ → n0,

where e−’s and �̄’s on the left-hand side are Rindler elec-
trons and antineutrinos, respectively, absorbed from the
Unruh thermal bath. In our procedure, we take into ac-
count the proton-neutron mass difference by introduc-
ing a semiclassical rather than classical current. The cur-
rent is “classical” in the sense that the proton-neutron is
associated with a well defined world line and “quantum”
in the sense that it behaves as a two-level quantum sys-
tem.

The trajectory of a proton with proper acceleration
a=const along the z axis in Minkowski spacetime is
given in Cartesian coordinates by z=�t2+a−2. This can
be written more simply as �=a−1=const, where we intro-
duce a new set of Rindler coordinates �� ,�� which are
related with �t ,z� by

t = � sinh �, z = � cosh � , �3.69�

and 0��� +�, −���� +� �see Eq. �2.34��. Thus we
describe our uniformly accelerated proton through the
vector current

j� = qu���� − a−1� , �3.70�

where q will be associated with a small coupling constant
and u� is the nucleon’s “two-velocity”: u�= �a ,0� and
u�= ��a2t2+1,at� in Rindler and Minkowski coordinates,
respectively.

The current �3.70� is suitable for describing stable ac-
celerated protons but must be improved to allow
proton-decay processes. For this purpose, we consider
the nucleon as a two-level system. In this model, neu-
trons �n� and protons �p� are seen as excited and unex-
cited states of the nucleon, respectively, and are assumed

to be eigenstates of the nucleon Hamiltonian Ĥ:

Ĥ�n� = mn�n�, Ĥ�p� = mp�p� , �3.71�

where mn and mp are the neutron and proton masses,
respectively. Accordingly, to consider nucleon decay
processes, we replace q in Eq. �3.70� by the Hermitian
monopole

q̂��� � eiĤ�q̂0e−iĤ�, �3.72�

where �mp�q̂0�mn���GF, which is dimensionless, plays
the role of an effective Fermi constant. As a result, the
current �3.70� will be replaced by

ĵ� = q̂���u���� − a−1� . �3.73�

1. Inertial observer perspective

We first analyze the weak-decay process �i� of uni-
formly accelerated protons in the inertial frame. We de-
scribe electrons and neutrinos as fermionic fields:

(̂�t,z� = 

"=±

�
−�

�

dk�b̂k")k"
�+���t,z� + d̂k"

† )−k−"
�−�� �t,z�� ,

�3.74�

where b̂k" and d̂k"
† are annihilation and creation opera-

tors of fermions and antifermions, respectively, with mo-
mentum k and polarization ". In the inertial frame, the
frequency, momentum, and mass m are related in the
usual way as �=�k2+m2�0, and )k"

�+�� and )k"
�−�� are

positive- and negative-frequency solutions of the Dirac
equation i����)k"

�±��−m)k"
�±��=0. By using the �� matrices

in the Dirac representation �see, e.g., Itzykson and
Zuber �1980��, we find

)k+
�±���t,z� =

ei���t+kz�

�2� �
±��� ± m�/2�

0

k/�2��� ± m�
0

� �3.75�

and

)k−
�±���t,z� =

ei���t+kz�

�2� �
0

±��� ± m�/2�
0

− k/�2��� ± m�
� . �3.76�

In order to keep a unified procedure for inertial and
accelerated frame calculations, we have orthonormal-
ized the modes �3.75� and �3.76� according to the same
inner-product definition used in Sec. III.B.2:

�)k"
�±��,)k�"�

�±���� � �



d
�)̄k"
�±����)k�"�

�±���

= ��k − k���""��±�±��, �3.77�

where )̄�)†�0. �In this section, we have chosen t
=const for the hypersurface 
.� Then, the canonical an-
ticommutation relations for fields and conjugate mo-
menta lead to the following simple anticommutation re-
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lations for creation and annihilation operators:

�b̂k",b̂k�"�
† 	 = �d̂k",d̂k�"�

† 	 = ��k − k���""�, �3.78�

�b̂k",b̂k�"�	 = �d̂k",d̂k�"�	

= �b̂k",d̂k�"�	 = �b̂k",d̂k�"�
† 	 = 0. �3.79�

Next, we model the relevant weak interaction by cou-

pling the electron and neutrino fields (̂e and (̂� mini-
mally to the nucleon current �3.73� using the parity-
conserving Fermi action

ŜI =� d2x�− gĵ��(̄ˆ ��
�(̂e + (̄

ˆ
e�

�(̂�� , �3.80�

where g is the determinant of the spacetime metric com-
ponents g��. Note that the second term inside the paren-
theses on the right-hand side of Eq. �3.80� does not con-

tribute to the process �i�. The vacuum transition
amplitude is given by

A�i�
p→n = n� � eke"e

+ ,�k�"�M�ŜI�0M� � �p� . �3.81�

By using the current �3.73� in Eq. �3.80� and recalling

that ŜI acts also on the nucleon states in Eq. �3.81�, we
obtain

A�i�
p→n = GF�

−�

�

dt�
−�

�

dz
ei�m���z − �t2 + a−2�

az

� u�eke"e

+ ,�k�"�M�(̄ˆ ��
�(̂e�0M� , �3.82�

where �m�mn−mp, �=a−1 sinh−1�at� is the proton-
neutron proper time and recall that in Minkowski coor-
dinates the two-velocity is u�= ��a2t2+1,at� �see below
Eq. �3.70��. Using the fermionic field �3.74� in Eq. �3.82�
and carrying out the integral over z, we obtain

A�i�
p→n =

− �GF/4���"e,−"�

����e��� + m����e − me�
�

−�

�

d�ei��m�+a−1��e+���sinh a�−a−1�ke+k��cosh a��

������ + m����e − me� + k�ke�cosh a� − ���� + m��ke + ��e − me�k��sinh a�	 .

Thus the differential transition rate d2Pin
p→n /dkedk�=
"e=±
"�=±�A�i�

p→n�2 calculated in the inertial frame is

d2Pin
p→n

dkedk�

=
GF

2

4�2���e
�

−�

�

ds�
−�

�

d�ei��m�+2a−1 sinh�a�/2�����+�e�cosh as−�k�+ke�sinh as�	

������e + k�ke�cosh 2as − ��ek� + ��ke�sinh 2as − m�me cosh a�� . �3.83�

Next, by defining

ke��� → ke���� = − �e��� sinh�as� + ke��� cosh�as� ,

we are able to perform the integral in the s variable, and
the differential transition rate �3.83� can be cast in the
form

1

T

d2Pin
p→n

dke�dk��
=

GF
2

4�2�e����
�

−�

�

d�ei�m�+i2a−1��e�+����sinh�a�/2�

� �����e� + k��ke� − m�me cosh a�� , �3.84�

where T��−�
� ds is the total proper time and �e����

��k�e���
2 +me���

2 .
The total transition rate �in

p→n=Pin
p→n /T is obtained af-

ter integrating Eq. �3.84� over both momentum vari-
ables. For this purpose it is useful to make the change of

variables ke���� → k̃e����ke���� /a and �→#�ea�/2. �Note

that k̃e��� is dimensionless.� Thus we obtain

�in
p→n =

GF
2a

2�2 �
−�

� dk̃e

�̃e
�

−�

� dk̃�

�̃�
�

0

� d#

#1−2i�m/a

���̃��̃e + k̃�k̂e − m�me�#2 + #−2�/�2a2��

�exp�i��̃e + �̃���# − #−1�� �3.85�

with �̃e�����k̃e���
2 +me���

2 /a2�1/2. We assume at this point
m�→0. In this case, using Eq. �3.871.3-4� in Gradshteyn
and Ryzhik �1980�, we perform the integration over #
and obtain the following final expression for the proton
decay rate:

�in
p→n =

GF
2m̃ea

2�3/2e��m̃

� G13
30�m̃e

2� 1

− 1/2,1/2 + i�m̃,1/2 − i�m̃
�� ,

�3.86�

where Gpq
mn is the Meijer function �Gradshteyn and

Ryzhik, 1980�, �m̃��m /a, and m̃e�me /a. In Fig. 8 the
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proton mean proper lifetime �p=1/�in
p→n in this model is

plotted.

2. Rindler observer perspective

In order to reanalyze the proton decay from the point
of view of Rindler observers, it is useful to review the
quantization of the fermionic field in the Rindler wedge
�Candelas and Deutsch, 1978; Soffel et al., 1980; Járegui
et al., 1991; Bautista, 1993�.

The line element of the Rindler wedge in terms of the
Rindler coordinates �� ,�� given in Eq. �3.69� is written
as �see Eq. �2.35��

ds2 = �2d�2 − d�2. �3.87�

Now, the Dirac equation in a general spacetime covered

with arbitrary coordinates is written as �i�R
��̃�−m�)�"

=0, where �R
� ��e��� are the Dirac matrices in curved

spacetime, �̃����+�� and ��= 1
8 �� ,����e�#���e��# are

the Fock-Kondratenko connections. �The �� are the
usual flat-spacetime Dirac matrices.� In the Rindler
wedge the relevant tetrads are �e0��=�−1�0

�, �ei��=�i
�. As

a consequence, the Dirac equation takes the form

�i�/���)�" = ��0m� − i3/2 − i�3�/���)�", �3.88�

where i��0�i.
We express the fermionic field as

(̂��,�� = 

"=±

�
0

�

d��b̂�")�"��,�� + d̂�"
† )−�−"��,��� ,

�3.89�

where )�"= f�"���e−i��/a are positive-energy solutions for
��0 and negative-energy solutions for ��0 with re-
spect to the boost Killing field � /�� with polarization "
=±. From Eq. �3.88� we obtain

Ĥ�f�" = �f�", �3.90�

where Ĥ��a�m��0− i3 /2− i�3� /���. Now, by “squar-
ing” Eq. �3.90� and defining two-component spinors *j
�j=1,2� through

f�"��� � �*1���
*2���

� , �3.91�

we obtain

�� d

d�
�

d

d�
�*1 = �m2�2 +

1
4

−
�2

a2 �*1 −
i�

a
"3*2, �3.92�

�� d

d�
�

d

d�
�*2 = �m2�2 +

1
4

−
�2

a2 �*2 −
i�

a
"3*1. �3.93�

Next, we introduce the definition 	±�*1�*2 and define
�± and  ± through

	± � ��±���
 ±���

� . �3.94�

In terms of these variables Eqs. �3.92� and �3.93� become

�� d

d�
�

d

d�
��± = �m2�2 + �i�/a ± 1/2�2��±, �3.95�

�� d

d�
�

d

d�
� ± = �m2�2 + �i�/a � 1/2�2� ±. �3.96�

The solutions of these differential equations can be writ-
ten in terms of Hankel functions Hi�/a±1/2

�j� �im��, j=1,2,
or modified Bessel functions Ki�/a±1/2�m��, Ii�/a±1/2�m��.
Hence by using Eqs. �3.91� and �3.94�, and requiring that
the solutions satisfy the first-order equations �3.90�, we
obtain

f�+��� = A+�
Ki�/a+1/2�m�� + iKi�/a−1/2�m��

0

Ki�/a−1/2�m�� − iKi�/a+1/2�m��
0

� ,

f�−��� = A−�
0

Ki�/a+1/2�m�� + iKi�/a−1/2�m��
0

Ki�/a+1/2�m�� − iKi�/a−1/2�m��
� .

Note that solutions involving Ii�/a±1/2 turn out to be non-
normalizable and thus must be discarded. In order to
find the normalization constants

A+ = A− = �m cosh���/a�/�2�2a��1/2, �3.97�

we have used �Birrell and Davies, 1982�

�)�",)��"�� � �



d
�)̄�"�R
�)��"� = ��� − ����""�

�3.98�

�see also Eq. �3.77��, where )̄�)†�0 and 
 is set to be
the line �=const. Thus the normal modes of the fermi-
onic field �3.89� are

0
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FIG. 8. The proton mean proper lifetime as a function of the
proper acceleration a for GF=10−12. �This value of GF approxi-
mately reproduces the inertial neutron proper lifetime of 900 s
in this model.� Note that �p→ +� for inertial protons �a→0�.
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)�+ = �m cosh���/a�/�2�2a��1/2e−i��/a

��
Ki�/a+1/2�m�� + iKi�/a−1/2�m��

0

− Ki�/a+1/2�m�� + iKi�/a−1/2�m��
0

� �3.99�

and

)�− = �m cosh���/a�/�2�2a��1/2e−i��/a

��
0

Ki�/a+1/2�m�� + iKi�/a−1/2�m��
0

Ki�/a+1/2�m�� − iKi�/a−1/2�m��
� . �3.100�

As a consequence, the canonical anticommutation rela-
tions for the fields and conjugate momenta imply that
the annihilation and creation operators satisfy the fol-
lowing anticommutation relations:

�b̂�",b̂��"�
† 	 = �d̂�",d̂��"�

† 	 = ��� − ����""�, �3.101�

�b̂�",b̂��"�	 = �d̂�",d̂��"�	 = �b̂�",d̂��"�	 = �b̂�",d̂��"�
† 	

= 0. �3.102�

Now, we are in the position to turn our attention to
the inverse � decay of accelerated protons from the
point of view of Rindler observers. In particular, the
mean proper lifetime must be the same as the one ob-
tained in Sec. III.B.1, but the corresponding particle in-
terpretation changes significantly. As stated before, the
proton decay, which is represented in the inertial frame
in terms of Minkowski particles by process �i�, will be
represented in the uniformly accelerated frame as the
combination of the processes �ii�, �iii�, and �iv� in terms
of Rindler particles �see above Eq. �3.69��. These pro-
cesses are characterized by the conversion of protons to
neutrons due to the absorption of e− and/or �̄ and emis-
sion of �, e+, or no particle, from and to the Unruh ther-
mal bath. Note that process �i� in terms of Rindler par-
ticles is forbidden because the proton is static in the
Rindler frame.

We calculate first the transition amplitude for process
�ii�:

A�ii�
p→n = n� � ���"�R�ŜI�e�e−"e−R

− � � �p� , �3.103�

where ŜI is given by Eq. �3.80� with �� replaced by �R
�

and our current is given by Eq. �3.73�. Thus we obtain
�recall that in Rindler coordinates u�= �a ,0��

A�ii�
p→n =

GF

a
�

−�

�

d� exp�i�m�/a�

� ���"�R�(̂�
†��,a−1�(̂e��,a−1��e�e−"e−R

− � ,

�3.104�

where the second term in the parentheses of Eq. �3.80�
does not contribute. Next, by using Eq. �3.89�, we obtain

A�ii�
p→n =

GF

a
�

−�

�

d� exp�i�m�/a�

� �"e−,"�
)��"�

† ��,a−1�)�e−"e−��,a−1� . �3.105�

Using now Eqs. �3.99� and �3.100� and performing the
integral, we obtain

A�ii�
p→n =

4GF

�a
�mem� cosh���e−/a�cosh����/a�

� Re�Ki��/a−1/2�m�/a�Ki�e−/a+1/2�me/a��

� �"e−,"�
���e− − �� − �m� . �3.106�

The corresponding differential transition rate per ab-
sorbed and emitted particle energies is given by

1

T

d2P�ii�
p→n

d�e−d��

=
1

T 

"e−=±



"�=±

�A�ii�
p→n�2nF��e−��1 − nF����� ,

�3.107�

where nF����1/ �1+e2��/a� is the fermionic thermal fac-
tor associated with the Unruh thermal bath and T
=2���0� is the total nucleon proper time. By using Eq.
�3.106� and �3.107�, we obtain

1

T

d2P�ii�
p→n

d�e−d��

=
4GF

2mem�

�3a2 e−��m/a���e− − �� − �m�

� �Re�Ki��/a−1/2�m�/a�Ki�e−/a+1/2�me/a��	2.

�3.108�

By integrating Eq. �3.108� over ��, we obtain the follow-
ing transition rate associated with process �ii�:

��ii�
p→n =

4GF
2mem�

�3a2e��m/a�
�m

�

d�e−

� �Re�Ki��e−−�m�/a−1/2�m�/a�Ki�e−+1/2�me/a��	2.

We recall that Rindler frequencies may take arbitrary
positive real values �see Sec. III.A.3�. Analogous calcu-
lations lead to the following transition rates for pro-
cesses �iii� and �iv�:

��iii�
p→n =

4GF
2mem�

�3a2e��m/a�
0

�

d�e+

� �Re�Ki��e++�m�/a+1/2�m�/a�Ki�e+−1/2�me/a��	2,

��iv�
p→n =

4GF
2mem�

�3a2e��m/a�
0

�m

d�e−

� �Re�Ki��e−−�m�/a−1/2�m�/a�Ki�e−+1/2�me/a��	2.

The proton decay rate is given by adding up all con-
tributions �acc

p→n=��ii�
p→n+��iii�

p→n+��iv�
p→n, namely,
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�acc
p→n =

4GF
2mem� exp�− ��m/a�

�3a2 �
−�

�

d�

� �Re�Ki��−�m�/a−1/2�m�/a�Ki�/a+1/2�me/a��	2.

It is interesting to note that although transition rates
have fairly distinct interpretations in the inertial and ac-
celerated frames, mean proper lifetimes are scalars and
must be the same in both frames. Indeed, by taking the
limit m�→0 and plotting �p�a�=1/�acc

p→n as a function of
acceleration, we do reproduce Fig. 8.35 In Fig. 9 we plot
the branching ratios

BR�ii� �
��ii�

p→n

�acc
p→n , BR�iii� �

��iii�
p→n

�acc
p→n , BR�iv� �

��iv�
p→n

�acc
p→n .

We note that for small accelerations where “few” high-
energy particles are available in the Unruh thermal bath,
process �iv� dominates over processes �ii� and �iii�, while
for high accelerations processes �ii� and �iii� dominate
over process �iv�. This is an interesting example of how
inertial and Rindler observers may differ in the descrip-
tion of a phenomenon, although they must agree on the
output of the experiments associated with scalar observ-
ables.

C. Bremsstrahlung

In our next example we use the Unruh effect to dis-
cuss how the bremsstrahlung from a uniformly acceler-
ated charge is described in the Rindler frame, addressing
also the celebrated question whether or not uniformly

accelerated electric charges radiate with respect to coac-
celerated observers.36 It will turn out that the Rindler
photons with zero energy, which are characterized by
their transverse momenta, play a central role. Our dis-
cussion closely follows Higuchi et al. �1992a, 1992b� and
does not assume that the reader is familiar with quanti-
zation of the electromagnetic field.

A point charge uniformly accelerated along the z axis
in the Cartesian coordinate system can be represented in
the Rindler coordinates �2.36� by �=x=y=0. The corre-
sponding conserved current ���j�=0� is then given by

j� = q������x���y�, j� = jx = jy = 0. �3.109�

We analyze the emission of photons with fixed trans-
verse momentum k�= �kx ,ky�. The fact that k� is invari-
ant under boosts in the z direction allows us to directly
compare the emission and absorption rates correspond-
ing to Minkowski and Rindler photons with the same
transverse momentum.

We quantize the electromagnetic field defined by the
Lagrangian density

L = − �− g��1/4�F��F
�� + �2�−1���A��2� �3.110�

with the corresponding field equations in the Feynman
gauge �=1� being

��F�� + �����A�� = ����A� = 0, �3.111�

and calculate the response rate of the charge with re-
spect to both inertial and Rindler observers.

1. Inertial observer perspective

According to inertial observers, we write the quan-

tized electromagnetic field Â��x� as

Â��x� =� d3k
2�2��3k0



#=0

3

�a�#��k�'�
�#��k�e−ik�x� + H.c.�

�3.112�

with k0��kz
2+k�

2 , where # labels the mode polarization.
We adopt the notation used in Itzykson and Zuber
�1980�.

We assign # the value 0 for what we call the nonphysi-
cal modes, 1 or 2 for the physical modes, and 3 for the
pure-gauge modes. The pure-gauge modes are those
which can be written as A�

�3,k�=��� for some scalar field
��x� and satisfies the Lorenz condition

��A� = 0. �3.113�

The physical modes satisfy the Lorenz condition and are
not purely gauge. Finally the nonphysical modes do not
satisfy the Lorenz condition. Accordingly, we choose the
polarization vectors '�

�#� as

'�0�� = �− 1,0,0,1�/�2, �3.114�35At first, the decay rates calculated from the point of view of
inertial and uniformly accelerated observers were shown to be
equal only numerically and the equality was limited by the
machine precision �Vanzella and Matsas, 2001�. The precise
analytic equivalence was derived soon afterward by Suzuki and
Yamada �2003�.

36For recent papers which include description on hyperboli-
cally moving charges in the context of classical electrodynam-
ics, see Eriksen and Grøn �2000a, 2000b, 2000c, 2002, 2004�.
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FIG. 9. Branching ratios BR�ii�, BR�iii�, and BR�iv�. Process �iv�
dominates over processes �ii� and �iii� for small accelerations,
while processes �iv� and �iii� dominate over process �iv� for
high accelerations.
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'�1�� = �0,1,0,0� , �3.115�

'�2�� = �0,0,1,0� , �3.116�

'�3�� = �1,0,0,1�/�2, �3.117�

in the Cartesian frame chosen such that k�

= ��k� ,0 ,0 , �k�� �where the first component is the time
component�.

The amplitude of emission of a photon with momen-
tum k and polarization # by the accelerated charge in
the Minkowski vacuum is

A�#,k� = k,#M�i� d4xj��x�Â��x��0M�

= i� d4xj��x�'�
�#��k�ei��t−k·x�. �3.118�

The Cartesian components of the current �3.109� can be
written as

j� = qa�z,0,0,t�������x���y� , �3.119�

where ����=��z− �t2+a−2�1/2� /az.
Next, we express the total probability of emission of

photons with fixed transverse momentum k�, divided by
the total proper time T=2���0� of the accelerated
charge during which the interaction remains turned on,
as

inRk�

tot = 

#=1

2 �
−�

�

dk̃z�A�#,k��2/T , �3.120�

where dk̃z�dkz / �2��32k0, and the sum runs only over
the physical polarizations #=1,2. Using Eq. �3.118� in
Eq. �3.120�, one has

inRk�

tot = �
−�

�

dk̃z� d4x� d4x�ei��t−t��−ik·�x−x��

� j��x�j��x��

#=1

2

'�
�#��k�'�

�#��k� . �3.121�

Now, we note the identity



#=1

2

'�
�#�'�

�#� = − '�
�0�'�

�3� − '�
�3�'�

�0� − ���, �3.122�

where ��� is the metric of Minkowski spacetime. Be-
cause of the current conservation ��j�=0, and due to the
fact that '�

�3� is proportional to k�, the first two terms in
Eq. �3.122� do not contribute when one substitutes it
into Eq. �3.121�. Hence as is well known,

inRk�

tot = −
1

T
� dk̃z� d4x� d4x�j��x�j��x��

� exp�i��t − t�� − ik · �x − x��� . �3.123�

Next, by substituting the current �3.119� into this for-
mula, we obtain

inRk�

tot = −
q2

T
�

−�

�

d���
−�

�

d�� cosh a��� − ���

� �
−�

�

dk̃z exp�− �ikz/a��cosh a�� − cosh a����

� exp��ik0/a��sinh a�� − sinh a���� ,

where we have made the coordinate transformation t
=a−1 sinh a�. Now, it is necessary again to factor out the
total proper time T=�−�

� d�, where �= ���+��� /2. To this
end, we use the momentum transformation �3.10� with
m=0. Then, we find

inRk�

tot = − q2�
−�

�

dk̃z��
−�

�

d" cosh a"

� exp�2ik0�

a
sinh

a"

2
� , �3.124�

where dk̃z��dkz� / �2��32k0� and "���−��. To evaluate
this integral we cut off the contribution from large �"�
smoothly by letting "→"+2i' �where ' is an infinitesi-
mal positive number� in the exponent, and taking the
limit '→0 in the end. �Otherwise this integral would be
indefinite.� Then, by introducing another change of vari-
ables as s±= ��k0�+kz�� /k��e±a"/2, and using �Gradshteyn
and Ryzhik, 1980�

�
0

�

dxx�−1 exp� i�

2
�x −

�2

x
�� = 2��ei��/2K����� ,

�3.125�

where Im ��0, Im��2���0, we obtain

inRk�

totd2k� =
q2

4�3a
�K1�k�/a��2d2k�. �3.126�

This is the total emission rate of Minkowski particles
associated with a uniformly accelerated charge. A simi-
lar discussion as the one commented on in Sec. III.A.5
concerning whether or not uniformly accelerated elec-
tric charges radiate can be traced back up to about half
a century ago �see Fulton and Rohrlich �1960�, and ref-
erences therein�. We recall that the radiation reaction
force on a uniformly accelerated electric charge van-
ishes. The classical radiation reaction force is known to
have some unusual features �Barut, 1980� but it was re-
cently shown to be in agreement with quantum field
theory �Krivitskii and Tsytovich, 1991; Higuchi, 2002;
Higuchi and Martin, 2004, 2005�. Clearly, no problems
arise when one deals with physical situations where elec-
tric charges are accelerated for a finite time interval
�Jackson, 1999�. Accordingly, Eq. �3.126� should be seen
as approximating the one obtained when an electric
charge is uniformly accelerated for long enough.

2. Rindler observer perspective

Now, we evaluate the response rate associated with
the current �3.109� according to Rindler observers by
considering the Unruh thermal bath. The response will
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consist of emission and absorption of photons to and
from the Unruh thermal bath. It is clear that the rate of
spontaneous emission is zero because the current �3.109�
is static. However, it does not imply that the rates of
induced emission and absorption vanish as well. This is
because these rates are proportional to the number of
photons present in the thermal bath which couple to the
current �3.109�. Since the number of zero-energy �Rin-
dler� photons in the �Unruh� thermal bath, which are the
relevant ones in this case, is infinite, the rates of induced
emission and absorption are indefinite. Hence one needs
to regularize the current �3.109� to make both its
strength of coupling to the field and the relevant photon
number finite. �The regulator is removed in the end.�

We discuss our regularization procedure in two steps.
First we modify Eq. �3.109� by considering a charge os-
cillating with frequency E,

j� = �2q cos E�������x���y�, j� = jx = jy = 0, �3.127�

and take the limit E→0 in the end �Kolbenstvedt, 1988�.
The factor �2 appears because the radiation rate, in first
order of perturbation, is proportional to the square of
the charge. When the oscillation is slow, i.e., when E
+a, k�, the charge is expected to interact with the field
as if it were a constant charge at each �. �We assume
continuity of the rate in the limit E→0.� Hence the �
average of the square of the charge must be set equal to
q2 and therefore the factor �2 is necessary.

Now, the current �3.127� does not satisfy electromag-
netic charge conservation. For this reason we replace
this current by an oscillating dipole arrangement with a
charge at �=0 and the other one at infinity �which is
omitted here because it does not affect the final result�
described by

j� = �2q cos�E�������2�x�� , �3.128�

j� = �2qE sin�E��e−2a������2�x�� , �3.129�

jx = jy = 0. �3.130�

The current j� flowing to �=� will not contribute to the
final results. Its only importance is to keep the condition
��j�=0 valid and make the computation gauge indepen-
dent even before taking the limit E→0.

Next, we analyze the interaction of the source
�3.128�–�3.130� with the Maxwell field in the Rindler
wedge. For this purpose we need to expand the electro-
magnetic field by the positive- and negative-frequency
modes defined with respect to the Rindler time �. We
again deal with the Lagrangian density for the electro-
magnetic field in the Feynman gauge given by Eq.
�3.110� with =1, and the field equations in the Feyn-
man gauge given by Eq. �3.111� considered now in the
Rindler wedge. The presence of ��, �x, and �y as Killing
fields makes it sufficient to look for solutions of Eq.
�3.111� of the form

A�
�#,�,k���x� = f�

�#,�,k�����ei�k�·x�−���. �3.131�

Then, we expand the electromagnetic quantum field in
terms of annihilation and creation operators as

Â��x� =� d2k��
0

�

d�

�

#=0

3

�â�#,�,k��A�
�#,�,k���x� + H.c.	 , �3.132�

where A�
�#,�,k���x� are solutions of the form given in Eq.

�3.131�. These modes are conveniently expressed in
terms of the solutions of the scalar field equation �	
=0 �see Candelas and Deutsch �1977��. For each set of
quantum numbers the solution, which does not diverge
as �→ +�, is obtained by letting m=0 in Eq. �2.92�:

	��,k�� = � sinh���/a�
4�4a

�1/2

Ki�/a��k�/a�ea��

� eik�·x�−i��. �3.133�

One can choose a set of independent normal modes as

A�
�0,�,k�� = C�0,�,k���0,0,kx	,ky	� , �3.134�

A�
�1,�,k�� = C�1,�,k���0,0,ky	,− kx	� , �3.135�

A�
�2,�,k�� = C�2,�,k�����	,− i�	,0,0� , �3.136�

A�
�3,�,k�� = C�3,�,k���− i�	,��	,ikx	,iky	� , �3.137�

where A�= �A� ,A� ,Ax ,Ay�, C�#,�,k�� are normalization
constants and 	�	��,k��. The modes A�

�0,�,k�� are the
nonphysical modes because ��A�

�0,�,k���0. It can be
shown that the modes A�

�#,�,k�� with #=1,2 satisfy the
Lorenz condition ��A�

�#,�,k��=0. Thus these are the
physical modes. The modes A�

�3,�,k�����	
��,k�� are the

pure-gauge modes.
The normalization constants C�i� can be determined

from the canonical commutation relations of the fields
by requiring suitable commutation relations for the op-
erators a�i� and a�i�

† . �Here the label �i� represents
�# ,� ,k��.� In this context, it is convenient to introduce
the generalized Klein-Gordon inner product

�A�i�,A�j��KG � �



d
�W��A�i�,A�j�� �3.138�

between any two modes A�
�i� and A�

�j�, where the integra-
tion is performed on some Cauchy surface 
 for the
Rindler wedge, e.g., any hypersurface �=const, and

W��A�i�,A�j�� �
i

�− g
�A

�

�i�*��j��� − A�
�j���i���*� �3.139�

with ��i������L /��A��A�=A�i��
. The ��i��� are calculated

in the Feynman gauge to be
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��i��� = �− g���A�i�� − ��A�i�� − g���A�i�� . �3.140�

It can be seen �see, e.g., Friedman �1978�� that the field
equations ensure conservation of the current �3.139�,
and thus the inner product �3.138� is independent of the
choice of the Cauchy surface 
.

From the canonical commutation relations one finds

��A�i�,Â�KG,�Â,A�j��KG� = �A�i�,A�j��KG �3.141�

�see Eq. �2.12��. This equation and Eq. �3.132� imply that

�A�i�,A�l��KG�â�l�, â�l��
† ��A�l��,A�j��KG = �A�i�,A�j��KG,

�3.142�

where we have used the fact that positive- and negative-
frequency modes can be shown to be orthogonal to each
other. The schematic summation over l represents inte-
grations over � and k� as well as the summation over #.
Next, define the matrix M�i��j���A�i� ,A�j��KG. Then, Eq.
�3.142� implies �see, e.g., Higuchi �1989��

�â�i�, â�j�
† � = �M−1��i��j�, �3.143�

where �M−1��i��j� is defined by

�M−1��i��l�M
�l��j� = �##���� − ����2�k� − k�� � �3.144�

with �i�= �# ,� ,k�� and �j�= �#� ,�� ,k�� �.
Now, by using the inner product �3.138� for the normal

modes �3.134�–�3.137�, we can verify the following or-
thogonality properties:

�A�#,�,k��,A�#�,��,k�� ��KG = 0, # = 1,2, #� = 0,3.

�3.145�

In other words, the physical modes are orthogonal to the
pure-gauge mode #=3 and to the Lorenz condition vio-
lating nonphysical mode #=0 and to each other. Hence it
is sufficient to know the restriction of the matrix M�i��j� to
the physical subspace �i.e., to #=1,2� in order to derive
the commutators among the physical annihilation and
creation operators according to Eq. �3.143�. Thus by re-
quiring the commutators of annihilation and creation
operators associated with the physical modes �i.e., with #
and #� being 1 or 2� to be

�â�#,�,k��, â�#�,��,k�� �
† � = �##���� − ����2�k� − k�� � ,

�3.146�

we find the normalization condition

�A�#,�,k��,A�#�,��,k�� ��KG = �##���� − ����2�k� − k�� �
�3.147�

for # ,#�=1,2. For these modes we find

�A�#,�,k��,A�#�,��,k�� ��KG

= �##�k�
2 �C�#,�,k���2�	��,k��,	���,k�� ��KG, �3.148�

where

�	��,k��,	���,k�� ��KG = i�



d�d2x�	
��,k��*��

J	���,k�� �

�3.149�

is the Klein-Gordon inner product for the scalar field
defined by Eq. �2.12� and 	��,k�� is given by Eq. �3.133�.
Since the solutions 	��,k�� are normalized as scalar mode
functions, we have

�	��,k��,	���,k�� ��KG = ��� − ����2�k� − k�� � . �3.150�

Substituting this into Eq. �3.148� and comparing the re-
sult with Eq. �3.147�, we find �C�#,�,k���=k�

−1 for #=1,2.
Thus the physical modes with #=2 �see Eq. �3.136�� are

A�
�2,�,k�� =

1

2�2k�

� sinh���/a�
a

�1/2

���	,− i�	,0,0� ,

�3.151�

up to a constant phase factor. In fact we only need these
modes because the current �3.128�–�3.130� will excite
neither the physical modes with #=1 �see Eq. �3.135��
nor the modes with #=0 or #=3 via the interaction La-
grangian density

Lint = �− gj�Â�. �3.152�

Now, to lowest order in perturbation, the amplitude
A�#,�,k��

em of emission of a Rindler photon with quantum
numbers �# ,� ,k�� into the Rindler vacuum state �0R�,
which is defined by â�#,�,k���0R�=0 for all �# ,� ,k��, is
given by

A�#,�,k��
em = #,�,k�R�i� d4x�− gj��x�Â��x��0R� ,

�3.153�

where �# ,� ,k�R�� â�#,�,k��
† �0R�. It is straightforward to

compute A�2,�,k��
em , which is the only nonvanishing ampli-

tude, for the current �3.128�–�3.130� using Eqs. �3.132�
and �3.146� with Eq. �3.151�. We obtain

A�2,�,k��
em = iq� sinh��E/a�

a
�1/2

��E − ��

� �KiE/a� �k�/a� −
E2

ak�
�

k�/a

� dz

z
KiE/a�z�� ,

�3.154�

where the derivative with respect to the argument is de-
noted by a prime.

We are interested in the differential probability of
emission per unit time and unit area in the transverse-
momentum space given by

dW0
em��,k�� = 


#=1

2

�A�#,�,k��
em �2d�/T , �3.155�

where T is the time interval while the interaction re-
mains turned on. We thus obtain

821Crispino, Higuchi, and Matsas: The Unruh effect and its applications

Rev. Mod. Phys., Vol. 80, No. 3, July–September 2008



dW0
em��,k�� =

q2

4�3a
sinh��E/a���E − ��

� �KiE/a� �k�/a�

−
E2

ak�
�

k�/a

� dz

z
KiE/a�z��2

d� , �3.156�

where we have used ��0�=T /2�.
The total differential rate �per unit area in the

transverse-momentum space� of emission of photons
with given transverse momentum k� into the thermal
bath can be written as �see Eq. �3.21��

Rk�

em = �
0

�

dW0
em��,k��� 1

e2��/a − 1
+ 1� . �3.157�

The two terms inside the parentheses are associated
with the induced and spontaneous emissions, respec-
tively. Evaluating the integral in Eq. �3.157� and taking
the limit E→0 �thus removing the regulator�, we obtain

Rk�

emd2k� =
q2

8�3a
�K1�k�/a��2d2k�. �3.158�

Similarly, the total absorption rate of photons per unit
area in the transverse-momentum space is

Rk�

abs = �
0

�

dW0
abs��,k��

1

e2��/a − 1
. �3.159�

On unitarity grounds we have

dW0
abs��,k�� = dW0

em��,k�� , �3.160�

and one can evaluate Eq. �3.159� using Eq. �3.156�. We
obtain in the limit E→0

Rk�

absd2k� =
q2

8�3a
�K1�k�/a��2d2k�. �3.161�

The reason for the equality of Rk�

em and Rk�

abs is that spon-
taneous emission becomes negligible in comparison to
induced emission as E approaches zero. It is also inter-
esting to note that it is the existence of an infinite num-
ber of zero-energy Rindler photons in the thermal bath
that prevents Rk�

em and Rk�

abs from vanishing. In the ab-
sence of the thermal bath, the emission and absorption
rates would vanish.

Next, we recall that since there is no interference be-
tween the processes of emission and absorption of Rin-
dler photons at the tree level, the total response rate will
be given by adding Eqs. �3.158� and �3.161�. We find thus

acRk�

totd2k� =
q2

4�3a
�K1�k�/a��2d2k�. �3.162�

By comparing this and Eq. �3.126� we find
acRk�

tot = inRk�

tot . �3.163�

Thus we have established by explicit calculations that
the rate of photon emission from a uniformly acceler-

ated charge can be reproduced by summing the rates of
emission and absorption of zero-energy Rindler photons
in the Unruh thermal bath.37 This also answers one of a
series of questions concerning the equivalence principle
and the radiation concept �see Rohrlich �1961�, Ginz-
burg �1969�, and references therein�. From our discus-
sion in Sec. III.A.3 it should be clear that zero-energy
Rindler photons are not detectable since they concen-
trate on the horizon. As a consequence, Rindler observ-
ers do not find emission of classical radiation from uni-
formly accelerated charges although inertial observers
do.38 This is in agreement with conclusions obtained in
the context of classical electromagnetism �Boulware,
1980; Eriksen and Grøn, 2004�.

A related question raised in this context is whether or
not static charges in gravitational fields should radiate.
The quantization of the electromagnetic field outside
black holes can be found in Cognola and Lecca �1998�
and Crispino et al. �2001�. This quantization was used to
analyze the response of static charges coupled to the
Hawking radiation �Crispino et al., 1998�. Because these
charges lie at rest with respect to the observers following
the integral curve of the Killing vector generating the
global timelike isometry with respect to whom the par-
ticle content of the field theory is extracted, the response
is solely associated with the emission and absorption of
zero-energy Boulware photons �Boulware, 1975a,
1975b�. As a result, no classical radiation is emitted by
the static charges as seen by the static observer �Eriksen
and Grøn, 2004�.39

IV. EXPERIMENTAL PROPOSALS

This section will be concerned with reviewing two
complementary aspects, namely, proposed experimental

37The analogous situation where the electric charge coupled
to the Maxwell field is replaced by a scalar source coupled to a
massless Klein-Gordon field has also been investigated in free
space �Ren and Weinberg, 1994; Díaz and Stephany, 2002� and
in the presence of boundaries �Alves and Crispino, 2004�. An
equality analogous to Eq. �3.163� is satisfied in these cases as
well.

38A discussion on how one can account for the change in the
energy-momentum content of the radiation field in spite of the
fact that uniformly accelerated charges are in equilibrium with
the undetectable zero-energy Rindler photons of the Unruh
thermal bath can be found in Peña et al. �2005�.

39A surprising coincidence appears as one considers the re-
sponse of static scalar sources interacting with a massless
Klein-Gordon field outside a Schwarzschild black hole with the
Unruh vacuum. Such a source behaves as if it were moving
with the same proper acceleration in the inertial vacuum of
Minkowski spacetime �Higuchi et al., 1997�. This equivalence
was expected when the source is close to the horizon �Grish-
chuk et al., 1987� but not everywhere. Indeed, by considering
other vacua �Higuchi et al., 1998�, as in Hartle and Hawking
�1976�, other spacetimes �Castiñeiras and Matsas, 2000�, fields
�Crispino et al., 1998; Castiñeiras et al., 2003�, or spacetime
dimensionalities �Crispino et al., 2004�, the equivalence is
broken.
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tests of the Unruh effect and the possible contributions
of the Unruh effect for the explanation of experimental
data. �For an extensive reference list of experiments re-
lated to the Unruh and Hawking effects see Rosu
�2001�.� We have already stressed that the Unruh effect
does not need experimental confirmation any more than
free quantum field theory does. This fact does not invali-
date, however, explanations of laboratory phenomena
from the point of view of Rindler observers in terms of
the Unruh effect. On the contrary, such explanations are
interesting, and looking at some problems from the
point of view of Rindler observers also can bring new
insights. This is how we understand the experimental
proposals of “testing” the Unruh effect.

A. Electrons in particle accelerators

Among the first attempts to explain experimental data
in terms of the Unruh effect is the one due to Bell and
Leinaas �1983�. The fact that the transverse polarization
of electrons and positrons in particle storage rings is not
perfect has been observed for some time. Transverse po-
larization means here the polarization perpendicular to
both space velocity and acceleration, i.e., along the di-
rection of the magnetic field responsible for the bending.
Positrons and electrons are polarized in directions par-
allel and antiparallel to the magnetic field, respectively.
Sokolov and Ternov �1963� studied the electron-positron
polarization in storage rings first assuming a homoge-
neous magnetic field. Next, Baier and Katkov �1967�
generalized this result to inhomogeneous magnetic
fields. A more comprehensive analysis was performed
by Derbenev and Kondratenko �1973�. The polarization
is built up gradually in time according to P�t�=P0�1
−e−t/tbuildup�, where the maximum polarization achieved
in ideal conditions is P0=8/ �5�3��92.38% and the char-
acteristic buildup time in the laboratory frame is

tbuildup =
8

5�3

me
2�3

e2�5 .

Here me and e are the electron mass and charge, respec-
tively, � is the curvature radius of the orbit, and �
=1/�1−v2 is the usual relativistic factor. For circular or-
bits � coincides with the circle radius; otherwise,

�−3 =� ��s�−3ds�� ds ,

where ��s� is the radius of curvature at each point on the
orbit and s is the spatial distance of the corresponding
point from some arbitrary origin defined on the orbit.
The photon power radiated due to the spin flip Ispin flip
can be compared with the one due to synchrotron radia-
tion Isynchrotron by

Ispin flip

Isynchrotron
= 3� �2

me�
�2�1 ±

35�3
64

�2

,

where the positive and negative signs should be used
when initially the spin state is excited and deexcited,

respectively �see Jackson �1976� and Montague �1984�
for reviews on the spin-flip synchrotron radiation and
the polarization of electrons in storage rings�.

Although theoretical investigations adapted to inertial
observers were already performed, Bell and Leinaas
posed the question whether or not it would be possible
to use the spin as a sensitive thermometer and interpret
the depolarization of accelerated electrons from the
point of view of comoving observers through the Unruh
effect. The coupling between the electron spin and a
background magnetic field induces an energy gap �E
between the “spin up” and “spin down” states, making it
a two-level system. If the distribution of spin-up and
spin-down states of accelerated electrons satisfied the
detailed balance relation, one could interpret the ob-
served depolarization in terms of the Unruh effect �see
Sec. III.A�. If this was the case, the polarization

P �
deexcR − excR
deexcR + excR

�4.1�

would be given by

P =
1 − e−��E

1 + e−��E , �4.2�

where we have used Eq. �3.40�.
For linear accelerators, Bell and Leinaas obtained for

the excitation and deexcitation transition rates excR and
deexcR �here denoted by �+ and �−, respectively�

�± = �
8�2

3
�E��E2 + a2�

1 − exp�±2��E/a�
,

where it is assumed for these machines that the magnetic
field points to the acceleration direction, �=ge /4me is
the magnetic moment and g�2.0023 is the electron gy-
romagnetic factor. As a result, in this case the electron
polarization �4.1� would lead to Eq. �4.2� if the actual
machine specifications did not impose technical impedi-
ments. At the Stanford linac with an accelerating field of
10 MV/m, for example, the Unruh temperature associ-
ated with the corresponding proper acceleration of 2
�1016g� �g� �9.8 m/s2� would be about �−1=0.7
�10−3 K. The fact that this temperature is much smaller
than the ordinary background temperature of about
300 K does not cause a substantial problem since the
influence of the background thermal bath is damped for
relativistic electrons �Costa and Matsas, 1995; Guima-
rães et al., 1998�. The background is damped because
background photons are Doppler shifted in the electron
proper frame and most are pushed away from the ab-
sorbable band. The main problem here is related with
the “thermalization” time. For instance, the polarization
buildup time at the Stanford linac is much larger than
the flight time �actually much larger than the lifetime of
the Universe�. As a result, no equilibrium polarization
would be built up in linear accelerators.
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In order to decrease the polarization buildup time,
larger accelerations are necessary. Large enough accel-
erations are indeed achieved in storage rings �Barber,
1999�. For instance, at the LEP CERN, HERA DESY,
and SPEAR Stanford conditions, polarization equilib-
rium states could be achieved in a couple of hours, half
an hour, and 10 min, respectively.40 However, some cau-
tionary remarks are in order. First, the Thomas preces-
sion plays a major role when electrons are in circular
motion, in contrast to the case of linear acceleration, and
cannot be disregarded. Second, if electrons are not lin-
early �and uniformly� accelerated, the results concerning
the Unruh effect are not guaranteed to be applicable to
them. Thus there is no compelling reason to expect that
the detailed balance relation �3.40� and consequently
Eq. �4.2� should hold here. The intrinsic difficulties in
the attempt to derive a variant of the Unruh effect for
circularly moving detectors was discussed in Sec. III.A.7.
Nevertheless, Letaw and Pfautsch �1980�, Bell and Lein-
aas �1983�, and Takagi �1986� have argued that the re-
sponse of ultrarelativistic Unruh-DeWitt detectors in
uniform circular motion �see Eq. �3.57�� and that for
those linearly accelerated �see Eq. �3.28�� have some
resemblance.41 Indeed, by calculating the excitation-to-
deexcitation ratio excRcirc

m=0 / deexcRcirc
m=0 for circular motions,

where excRcirc
m=0 is given in Eq. �3.57� and

deexcRcirc
m=0 =

�q�2

2�

a�e−�12�E/a + 2�12�E/a�
2�12

,

and equating excRcirc
m=0 / deexcRcirc

m=0 to the detailed balance
relation �3.40� satisfied by uniformly accelerated detec-
tors, one is led to define the frequency-dependent
temperature42

�−1

a
=

�E/a

ln�1 + 4�3��E/a�exp�2�3�E/a��
. �4.3�

Note that for �E+a and �E�a, one gets

�−1/a � 1/�2�12� and �−1/a � 1/�2�3� ,

respectively �see Fig. 10�. One should interpret �−1 in
Eq. �4.3� as an effective temperature experienced by the
detector in circular motion.43

Now, at first sight it would not be unnatural to expect
that ultrarelativistic electrons in storage rings had a po-
larization approximated by

P1 =
1 − e−�g

1 + e−�g , �4.4�

where we have used Eq. �4.2� with �E=2����B0��, �
=ge /4me, �−1=a / �2��=e�B0�� / �2�me� and recall that g
�2.0023 is the electron gyromagnetic factor. Here B0� is
the magnetic field in the inertial frame instantaneously
at rest with the electron. In this case a description of the
depolarization in terms of Rindler observers could be
discussed along the same lines as the excitation of accel-
erated detectors �see Sec. III.A�. Clearly, this would be
an “indirect” connection with the Unruh effect, since no
real thermal bath of Rindler particles could be associ-
ated with observers comoving with the rotating elec-
trons.

On the other hand, detailed inertial frame calculations
�Derbenev and Kondratenko, 1973; Jackson, 1976� show
that the polarization is actually given by

P2 = F2�g̃�/�F1�g̃�e−�12�g̃� + �g̃/�g̃��F2�g̃�� , �4.5�

where g̃= �g−2� /2,

F1�g̃� = 1 +
41g̃

45
−

23g̃2

18
−

8g̃3

15
+

14g̃4

15

−
8g̃

5�3�g̃�
�1 +

11g̃

12
−

17g̃2

12
−

13g̃3

24
+ g̃4� , �4.6�

and

40Experiments at SPEAR measuring the maximum polariza-
tion and corresponding buildup time have been reported by
Camerini et al. �1975� and Johnson et al. �1983�, while spin
polarization measurements at the HERA and LEP electron
storage rings have been reported by Barber et al. �1994� and
Assmann et al. �1995� and Knudsen et al. �1991�, respectively.

41Actually, Takagi �1984� found that the response of an
Unruh-DeWitt detector with uniform circular motion and
speed v is better approximated by the one of an Unruh-DeWitt
detector with a combined motion made of linear acceleration
and uniform translation with speed v in the direction perpen-
dicular to the acceleration.

42We recall that Eq. �3.57� was calculated assuming ultrarela-
tivistic detectors and thus Eq. �4.3� should be seen as an ap-
proximation. See Letaw and Pfatsch �1982� and Obadia and
Milgrom �2007� for more detail.

43This temperature is “effective” because, due to the depen-
dence of �−1 on �E, it cannot be considered as the tempera-
ture of a legitimate thermal bath in contrast to that for the
Unruh thermal bath.
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FIG. 10. The frequency-dependent temperature �−1 /a �see Eq.
�4.3�� as a function of �E /a and compared with the corre-
sponding one given by the Unruh effect: 1 / �2��. For �E�a,
one obtains �−1 /a=1/ �2�3�.
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F2�g̃� =
8

5�3
�1 +

14g̃

3
+ 8g̃2 +

23g̃3

3
+

10g̃4

3
+

2g̃5

3
� .

�4.7�

The fact that the polarizations �4.5� and �4.4� show sub-
stantial differences �see Fig. 11� �although some similari-
ties can be also pointed out �Bell and Leinaas, 1983��
was discussed by Unruh �1998, 1999�.

The difficulty to understand the polarization in terms
of electromagnetic vacuum fluctuations as experienced
by the circularly moving observers stems from the fact
that in this case the electron should be seen as a system
composed of two field detectors coupled to each other.
In addition to the spin, vertical fluctuations in the orbit
should be considered �Bell and Leinaas, 1987; Leinaas,
1999, 2002�.44 By analyzing the problem in the Fermi-
Walker frame associated with the electron, it can be con-
cluded that the vertical oscillation responds in a
thermal-like fashion with a frequency-dependent tem-
perature similar �but not identical� to that associated
with the spin alone. Nevertheless, the subtle coupling
between the two systems makes the joint system have a
polarization �4.5� distinct from the simple thermal-like
one �4.4�.

B. Electrons in Penning traps

The use of the degree of freedom associated with ver-
tical fluctuations of a single electron in circular motion
as a detector was investigated later by Rogers �1988�. In
this paper an experimental proposal is made in which an
electron is bound radially by the laboratory magnetic
field B0 and axially by superimposing an electrostatic
restoring force given by a quadrupole potential �Brown
and Gabrielse, 1986� V=V0�z2−�2 /2� / �2d2�, where
V0 ,d=const and z and � are the axial and radial coordi-

nates, respectively. Thus the electron is in a Penning
trap. As a result, an electron constrained to move in a
circular cyclotron orbit around the trap axis with angular
frequency �0=e�B0� /�me can oscillate axially with fre-

quency �z=�eV0 /�med
2. The excitation of this degree of

freedom could be interpreted as due to the vacuum fluc-
tuation experienced by the circularly moving electron.
By surrounding the Penning trap with an electromag-
netic cavity tuned to resonate at the electron axial oscil-
lation frequency �z, the energy of the axial motion
would be transferred to the cavity electromagnetic field
where it would be measured. In general, electrons are
captured by the trap in large orbits but their radii shrink
rapidly due to the emission of synchrotron radiation. In
order to replace the energy lost, Rogers �1988� suggested
to irradiate the system with circularly polarized waves of
frequency �0. In the proposed experiment, an electron is
assumed to have velocity v=0.6 in a background mag-
netic field of �B�=1.5�105 G. The axial and angular fre-
quencies would be �z�5�1010 s−1 and �0�2�1012 s−1,
respectively, corresponding to a proper acceleration a
=�2v�0�6�1019g� with a /2��2 K.

C. Atoms in microwave cavities

Scully et al. �2003� and Belyanin et al. �2006� have con-
sidered a gedanken experiment assuming that a beam of
two-level atoms are accelerated through a high-Q �i.e.,
low power loss� “single mode” microwave cavity. They
have noted that even with a large acceleration frequency
�defined as the acceleration divided by the speed of
light� �108 Hz, corresponding to the proper accelera-
tion as large as 3�1015g�, for an atom with energy gap
of �E�1010 Hz ��4�10−5 eV�, the excitation-
deexcitation ratio �3.40� of the atom would be

excR/deexcR = e−2��E/ � 10−200, �4.8�

which is extremely small. Atoms are assumed to follow
the world line

t��� = t0 + −1 sinh���, z��� = −1�cosh��� − 1� ,

where t0= �t�����=0 is the moment in the laboratory time
when atoms begin to accelerate. They enter the cavity at
�=�i and exit it later at �=�e after staying in interaction
for long enough, typically ��e−�i��1.

In spite of the minute value predicted by the Unruh
effect for the situation described above, in a real experi-
ment the ratio excR / deexcR can be much larger because
the sharp boundaries of the cavity induce a nonadiabatic
coupling of the form g���=�E� between the atom and
the electromagnetic field, where � is the atomic dipole
moment and E� is the electric field as measured in the
inertial frame instantaneously at rest with the atom. This
may be seen as a sort of laboratory implementation of
the finite-time detectors discussed in Sec. III.A.6, where
the scalar field is replaced by an electromagnetic one.
For the case where the photon frequency � associated
with the single-mode cavity satisfies ���E�, the ratio
of the excitation to deexcitation rates is

44See also Barber and Mane �1988� for a comparison of the
procedures used by Derbenev and Kondratenko �1973� and
Bell and Leinaas �1987�.
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FIG. 11. The polarizations P1 �solid line� and P2 �dashed line�
given in Eqs. �4.4� and �4.5�, respectively, as functions of g. The
two curves show substantial differences although some simi-
larities can be also seen.
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excR/deexcR = /�2��E� , �4.9�

which leads to a value enhanced by many orders of mag-
nitude under the conditions given above: excR / deexcR
�10−3. We note that even when the atom enters the
cavity with constant velocity, the sudden turning on of
the interaction induced by the sharp boundaries makes
the atom excitation rate to be nonzero. �Note that a pho-
ton is emitted in this excitation process.� Nevertheless,
acceleration still plays a role in the ratio excR / deexcR as
seen in Eq. �4.9�. Note that Eq. �4.8� is recovered when
one considers the limit of adiabatically slow switching
off of the interaction at infinitely distant cavity bound-
aries. In this case

excR � ��E� sinh���E/��−1e−��E/,

deexcR � ��E� sinh���E/��−1e��E/.

Belyanin et al. �2006� also discussed the existence of
photons and their number in the cavity as a result of the
interaction with the beam of atoms �see discussion in
Sec. III.A.6�. Clearly, the physical origin of the simulta-
neous increase of the field energy and the internal en-
ergy of the atom is the work done by the external force,
which drives the center-of-mass motion of the atom
against the radiation reaction force.

Both the acceleration and boundary contributions to
photon emission from the ground state atom come from
the counter-rotating term �â†"̂† in the interaction Hamil-
tonian, where â† is the photon creation operator and the
operator "̂†��a�b� converts the ground state �b� of the
atom to its excited state �a�. In the single-mode cavity
case, we could also define an effective temperature

�eff
−1 = �E/ln�2��E/� �4.10�

by equating Eqs. �4.8� and �4.9�. Nevertheless, the Unruh
and boundary effects should not be put on equal footing
�Obadia, 2007�. We note that Eq. �4.10� is an effective
temperature depending on the details of the atom
through �E in contrast to the Unruh temperature which
is associated with a legitimate thermal bath of Rindler
particles.

Another possible physical implementation of a finite-
time detector was discussed recently. Alsing et al. �2005�
considered trapped ions prepared in the vibrational
ground state with a laser cooling procedure. The internal
electronic state of each ion would play the role of a
phonon detector through the use of an external laser
which would couple it to the ion vibrational motion.
Thus this phonon detector could be turned on and off at
will by controlling the external laser. Another interesting
feature of this detector is that it would be easy to vary its
energy gap by tuning the frequency of the external laser.
Alsing et al. �2005� also considered a linear ion trap to
analyze particle creation in condensed matter analogs of
expanding universes �see also Schützhold and Uhlmann
�2007��.

D. Backreaction radiation in ultraintense lasers and related
topics

A different path pursued concerns the use of ultrain-
tense lasers �Chen and Tajima, 1999; Schützhold et al.,
2006�. It is known that the electric field of laser-driven
plasma waves can accelerate particles in just a few
meters to energies as high as the ones obtained by large
conventional radio-frequency accelerators �see Mourou
et al. �2006�, and references therein�. In plasma wake-
field accelerators, a short pulse of laser light �or elec-
trons� is responsible for a collective perturbation of the
plasma confined in a cavity producing an electromag-
netic wakefield in the laser propagation direction. This
wakefield can be surfed by some electrons which acquire
high accelerations. However, the direct effect of the la-
ser field on electrons can induce even larger accelera-
tions �and decelerations� along every laser cycle. Electric
field pulses not too far below the Schwinger limit �about
1018 V/m� are expected in future facilities. �The
Schwinger limit is associated with the electric field above
which the spontaneous creation of electron-positron
pairs becomes favorable. The spontaneous creation oc-
curs when the work done by the electric field along the
electron Compton wavelength is at least about the mass
of the electron-positron pair.� Electrons under the influ-
ence of fields with this magnitude could reach proper
accelerations as high as 1028g�. Here we are interested
in interpreting the radiation emitted by such electrons in
terms of the Unruh effect rather than in the behavior of
internal degrees of freedom.

For the sake of simplicity, Chen and Tajima consid-
ered the case where two identical counterpropagating
laser plane waves produce a standing wave. In this case,
electrons can be treated as classical charges with well-
defined trajectories. We consider linearly polarized la-
sers with angular frequency �0, wave number k0, and
propagation in the ±z directions:

Ex = E0�cos��0t − k0z� + cos��0t + k0z�� ,

By = E0�cos��0t − k0z� − cos��0t + k0z�� ,

where Ex and By are the electric and magnetic fields in
the x and y directions, respectively, as measured in the
laboratory frame. The equations of motion for an elec-
tron under the influence of this field can be written as

dpx/dt = − e�Ex − vzBy� ,

dpz/dt = − evxBy,

where px=me�vx and vx�dx /dt. The largest electric
field is found at the nodal points k0z=0, ±2� , . . . where
Ex=2E0 cos��0t� and By=0. In particular, at z=0, Chen
and Tajima found

�vx = 2a0 sin �0t, � = �1 + 4a0
2 sin2 �0t ,

where a0=eE0 /me�0 is a dimensionless parameter, which
characterizes the laser strength. The corresponding elec-
tron proper acceleration is thus given by
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a = 2a0�0 cos �0t ,

and the total Larmor radiation power dIL /dt= �2/3�e2a2

is

dIL/dt = �8/3�e2a0
2�0

2 cos2 �0t . �4.11�

Hence the total energy radiated during each laser half
cycle is �IL= �4� /3�e2a0

2�0.
We have shown in Sec. III.C how radiation emitted by

uniformly accelerated charges can be interpreted from
the point of view of coaccelerated observers in terms of
the emission and absorption of zero-energy Rindler pho-
tons to and from the Unruh thermal bath, respectively.
In this calculation, the charge was assumed not to recoil
in the emission or absorption process. This assumption is
justified if the mass of the charge is much larger than the
typical �Minkowski� energy of the photon emitted. In a
real physical setup, however, the electron backreacts to
the Larmor radiation. Chen and Tajima claimed that this
backreaction triggers additional “quivering radiation,”
which reflects the Unruh effect. They estimated the
power of this radiation �IU in comparison to that of the
Larmor radiation �IL as

�IU

�IL
�

9

�2

��0

mec
2a0 log10�a0/�� � 3 � 10−4, �4.12�

where me is the electron mass, for �0�2�1015 sec−1 and
a0�100.

Schützhold et al. �2006� noted that a Rindler photon
seen to be scattered off a static charge by the Rindler
observers should correspond to a pair of correlated
Minkowski photons emitted from a uniformly acceler-
ated charge as seen by the inertial observers. �Note that
a Rindler photon with nonzero energy can cause this
process in contrast to the Larmor radiation, i.e., the
bremsstrahlung.� They propose this two-photon emis-
sion process as a distinct signal of the Unruh effect.
They argue that, as long as the acceleration is not close
to the Schwinger limit where the Unruh temperature
becomes comparable to the electron mass, Rindler ob-
servers can describe electrons as pointlike �Thomson�
scatterers of Rindler photons. �In this regime the elec-
tron spin is not supposed to play any major role.� They
assert that the most promising strategy to observe a sig-
nal of this radiation above the background Larmor noise
would be by the measurement of the angular distribu-
tion of photon emission; in contrast to Larmor radiation,
which has a well known blind spot along the motion
direction, this two-photon radiation dominates inside
small backward and forward cones.45 They also note that
another signal would be the direct detection of corre-
lated photons.

Although the residual quivering radiation or corre-
lated radiation of Minkowski photons could be ex-
plained and calculated by inertial observers using text-

book quantum field theory,46 it is certainly interesting to
understand these processes invoking the Unruh effect.

Finally, we mention work concerning a detailed-
balance relation obeyed by the transverse momentum of
a uniformly accelerated electron. The differential prob-
ability of emission of a photon by an electron in a con-
stant electric field E was obtained by Nikishov �1970� by
means of an inertial frame calculation, where the elec-
tron and photon fields are quantized. The recoil causes
the electron to change its momentum perpendicular to
the background electric field, which accelerates the elec-
tron. Let P�p�→p�� � be the differential probability asso-
ciated with the photon emission changing the modulus
of the transverse momentum of the electron from p� to
p�� . Nikishov and Ritus �1988� found

P�p� → p�� �
P�p�� → p��

= exp�− ��E� , �4.13�

where �−1=a /2� with a=eE /me and

�E = p��
2/2me − p�

2 /2me. �4.14�

This expression for �E is valid even if p� and p�� are
comparable to me. If p� ,p�� +me, then

�E � �p��
2 + me

2 − �p�
2 + me

2. �4.15�

Myhrvold �1985� calls �p�
2 +me

2 the transverse energy of
the electron with transverse momentum p� and claims
that the relation �4.13� reflects the Unruh effect for
p� ,p�� +me. Indeed Eq. �4.13� is similar to the detailed
balance relation �3.40�, which was derived assuming hy-
perbolic motion of the source.47 Although the relation
�4.13� may well be closely related to the Unruh effect,
the former does not directly follow from the latter be-
cause the connection between the Rindler energy �in Eq.
�3.40�� and the transverse energy �in Eq. �4.13�� is not
entirely clear.

E. Thermal spectra in hadronic collisions

Now, we turn our attention to insights that the Unruh
effect can bring to explain experimental data in hadronic
physics. The Unruh effect has been considered as possi-
bly helpful in explaining the puzzling thermal-like emis-
sion spectra observed in hadron collisions �Barshay and
Troost, 1978; Barshay et al., 1980; Kharzeev, 2006�. The
main idea is that in the collision process hadrons would
feel in their rest frame a large Unruh temperature,
which would lead them to quiver and interact accord-
ingly. It is conjectured, then, that the thermal-like emis-
sion of Minkowski particles observed in hadron pro-
cesses would be a reflection of it. In some sense, it may

45Chen and Tajima �1999� also proposed to exploit the blind
spot of Larmor radiation.

46We have favored the term quivering rather than Unruh ra-
diation to emphasize that this does not depend on the Unruh
effect any more than the Larmor one does.

47Investigations also considering the backreaction on acceler-
ated systems can be found in Parentani �1995�, Parentani and
Massar �1997�, Gabriel et al. �1998�, and Reznik �1998�.

827Crispino, Higuchi, and Matsas: The Unruh effect and its applications

Rev. Mod. Phys., Vol. 80, No. 3, July–September 2008



be that a quiveringlike radiation discussed in Sec. IV.D
in a quite different context becomes the explanation for
this puzzling aspect of hadron collisions. As we have
said, the Unruh thermal bath is not required for the in-
vestigation of accelerated systems from the point of view
of inertial observers. For these observers, “plain” quan-
tum field theory must suffice for a complete phenom-
enon description. Nevertheless, it would be interesting if
the Unruh effect could bring new insights to the under-
standing of this problem.

F. Unruh and Moore (dynamical Casimir) effects

There have also appeared some proposals of using the
Moore effect, often called the dynamical Casimir effect,
as a way to test the thermal bath observed by Rindler
observers. Here we discuss why the connection between
the Moore and Unruh effects is tenuous and comment
briefly on some selected proposals. See Rosu �2001� for
a more extensive list.

Moore �1970� and later DeWitt �1975� found indepen-
dently that photons can be created by moving mirrors in
the Minkowski vacuum. An interesting connection be-
tween the Moore effect and Hawking radiation was es-
tablished by Davies and Fulling �1977b� and revisited by
Calogeracos �2002a, 2002b�. These authors considered a
massless scalar field in two-dimensional Minkowski
spacetime equipped with a reflective boundary. At t=0
the boundary begins to move to the left following the
trajectory

z�t� = − �−1 ln�cosh �t� , �4.16�

where �=const and x�= �t ,z� are the usual Cartesian
coordinates.48 We note that asymptotically the corre-
sponding world line becomes lightlike. �Notice that the
proper acceleration of the boundary is � cosh �t��.�
Eventually, the receding boundary induces a thermal
flux of Minkowski particles to the right characterized by
a temperature49 � /2�. �This would not be so if the
boundary were uniformly accelerated.� The energy con-
tent associated with the particle emission was also inves-
tigated �Fulling and Davies, 1976� �see also Calogeracos
�2004��. There is thus a similarity between the flux of
Minkowski particles, which are emitted from the reced-
ing boundary, and Hawking radiation of Boulware par-
ticles produced in a black hole formation process.

Now, by approximating the line element of a black
hole close to its horizon by that of the Rindler wedge as
discussed in Sec. III.A.3, we can establish a correspon-
dence between static observers outside the horizon and
Rindler observers, where the former and latter observ-
ers are immersed in Hawking radiation and Unruh ther-
mal bath, respectively �see also Ginzburg and Frolov
�1987��. This leads to the following loose connection:

Moore effect Hawking radiation Unruh effect,� �

where the Moore effect is seen as a flat spacetime analog
of the Hawking effect and this is connected with the
Unruh thermal bath close to the black hole horizon. It
should be stressed, however, that although the observa-
tion of the Moore effect would be interesting, this would
not constitute an experimental verification of the Unruh
effect. It is worthwhile to emphasize that the thermal
flux associated with the Moore and Unruh effects are
formed of Minkowski and Rindler particles, respectively,
which are quite different. The Moore, Hawking, and
Unruh effects, although related, have features which
make them distinct.

Despite the fact that the Moore and Unruh effects are
only linked through the indirect reasoning above, we
comment on some experimental proposals, which are in-
teresting in their own right. Yablonovitch �1989� �see
also Yablonovitch et al. �1989�� has discussed the possi-
bility of using media with varying index of refraction to
observe a Moore-like effect. When a gas is suddenly
photoionized, its index of refraction drops from about 1
to 0. This disturbs the vacuum in a way similar to what
an accelerated mirror does. �For a comparative discus-
sion between these two similar effects see, e.g., Johnston
and Sarkar �1995�.� Likewise, sudden creation of
electron-hole pairs in a semiconductor slab can quickly
reduce the refractive index from about 3.5 to 0. Consid-
ering a general medium with time-varying index of re-
fraction n=n�t� which instantaneously jumps from n0 to
n, Yablonovitch �1989� found an expectation number of
created modes with wave vector k given by

Nk = 

k�

��kk��
2,

where ��kk��= �n−n0��kk� / �2�nn0�. The experimental
prospect of the laboratory verification of Moore-like ef-
fects in the near future seem very promising �see, e.g.,
Uhlmann et al. �2004� and Kim et al. �2006��.

V. RECENT DEVELOPMENTS

Recently, a number of issues connecting quantum me-
chanics, relativity, and information theory have been in-
vestigated �see Peres and Terno �2004� for a critical re-
view�. Here we comment on some of these issues and
other topics that have the Unruh effect as the central
theme. We refer the reader to the references for more
detail.

A. Entanglement and Rindler observers

As is well known, mixed states can be obtained from
pure states by tracing out �i.e., ignoring� some of its de-
grees of freedom �Zurek, 1991�. However, it was not ob-
vious until recently that the “amount of mixing” could
depend on the observer. For a spin-1 /2 system Peres
et al. �2002� found that, in general, different inertial ob-
servers will find distinct values for the corresponding
von Neumann quantum entropy

48Notice that by identifying t, z, and � with �, �, and a, respec-
tively, we obtain Eq. �2.36� with z=a−1.

49A similar result can be found in Sec. �6.15� of Volovik �1992�
in the context of superfluid 3He.
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S = − Tr��red ln �red� .

Here �red is the reduced density matrix associated with
the spin-1 /2 particle, which is obtained after the mo-
mentum degrees of freedom are traced out. Later on, for
a pair of massive spin-1 /2 particles Gingrich and Adami
�2002� found that by tracing out the momentum degrees
of freedom different inertial observers will assign in gen-
eral distinct entanglements between the particle spins. A
similar conclusion was reached for the entanglement be-
tween the polarization of a pair of photon beams �Gin-
grich et al., 2003�.

Although the entanglement between some degrees of
freedom can be transferred to others as shown above, all
inertial observers will agree about the entanglement of
the full state. This is not the case, however, when non-
inertial observers are involved. Fuentes-Schuller and
Mann �2005� investigated the entanglement between two
modes of a free massless scalar field as seen by inertial
and uniformly accelerated observers. They reached the
conclusion that the existence of a horizon for the Rin-
dler observer leads in general to loss of information. The
entanglement which appears to be maximal for inertial
observers is degraded according to the Rindler ones be-
cause of the Unruh effect. The authors suggest that
analogous conclusions should be valid close to black
holes when inertial and Rindler observers are replaced
by free-falling and static ones, respectively. A thorough
investigation of such questions in general curved space-
times would be interesting.

B. Decoherence of accelerated detectors

Discussions on the decoherence of accelerated detec-
tors have been continuing for some time �Audretsch et
al., 1995�. Kok and Yurtsever �2003� considered a qubit
�)� represented by a �uniformly accelerated� Unruh-

DeWitt detector with free Hamiltonian H0=�Eb̂†b̂,
where �E is the energy gap between the two internal

degrees of freedom �0� and �1� of the qubit and b̂ and b̂†

denote the lowering and raising operators, respectively,
acting on the corresponding two-dimensional Hilbert
space:

b̂�0� = 0, b̂†�0� = �1�, b̂�1� = �0�, b̂†�1� = 0.

The qubit is coupled to a real scalar field �̂�x , t� through
the interaction Hamiltonian

HI�t� = '�t��



�̂�x,t��)�x�b̂ + )*�x�b̂†��− gd3x ,

where )�x� is a smooth function which vanishes outside
a small volume around the qubit. The integration is over
the global spacelike Cauchy surface 
 given by t=const
�with t the usual Cartesian time coordinate� and '�t� is a
time dependent coupling constant, which vanishes ev-
erywhere except within a finite time interval �t where
'�t�='=const. Before acceleration occurs, the qubit is
prepared in the state

�)� = ��0� + �1��/�2,

which is combined with the field state described by the
reduced density matrix �2.78�. We recall that this is ob-
tained when the degrees of freedom of the Minkowski
vacuum associated with one of the Rindler wedges are
traced out. Then, the combined initial state

�̂in = �̂R � �)�)� �5.1�

must be evolved through the interaction Hamiltonian
leading to �̂out. Kok and Yurtsever found the final re-
duced density matrix associated with the qubit by trac-
ing out the field degrees of freedom to be

�̂q,out = Tr���̂out� =
1
2
�S0 + Se S0

S0 S0 + Sa
� , �5.2�

where

S0 = �1 − e−2��E/a�

n

e−2�n�E/a/Qn,

Sa = �1 − e−2��E/a����2

n

ne−2�n�E/a/Qn,

Se = �1 − e−2��E/a��2

n

�n + 1�e−2�n�E/a/Qn.

Here Qn=1+n���2 /2+ �n+1��2 /2, where

��� �
'�t

�2�E
e−�2�E2/2, � �

'�t

2����3�1/2
�5.3�

and � is a length scale setting the spatial range of the
interaction. Then, they showed that the purity Tr��̂q,out

2 �
decreases monotonically with the qubit proper accelera-
tion a, as expected.

C. Generalized second law of thermodynamics and the “self-
accelerating box paradox”

In a colloquium at Princeton University in the early
1970s R. Geroch raised the possibility of violating the
ordinary second law of thermodynamics with the help of
classical black holes. The idea was to bring slowly from
infinity a box with proper energy Eb over the event ho-
rizon and throw it eventually inside the hole. The cycle
would be closed by lifting back the ideal rope character-
ized by an arbitrarily small mass. Because static
asymptotic observers would assign zero energy to the
box at the event horizon, the hole would remain the
same after engulfing it. This would challenge the ordi-
nary second law of thermodynamics, since eventually all
entropy associated with the box would vanish from the
Universe with no compensating entropy increase else-
where.

As an objection to Geroch’s process, Bekenstein ar-
gued that quantum mechanics would constrain the size
and energy of the box accordingly. This constraint would
make it impossible for all parts of the box to reach the
event horizon at once and thus the black hole would
necessarily gain mass after engulfing the box. Then,
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Bekenstein �1973� conjectured that black holes would
have a nonzero entropy Sbh=A /4 proportional to the
event horizon area A and formulated the generalized
second law �GSL�, namely, that the total entropy of a
closed system �including that associated with black
holes� would never decrease. This opened a whole new
subject called black hole thermodynamics.50 Now, be-
cause the GSL would be violated if the entropy of the
box S satisfied S�2�EbR, where R is the proper radius
of the smallest sphere circumscribing the box, Beken-
stein conjectured in addition the existence of a new ther-
modynamical law, namely, that every system should have
an entropy-to-energy ratio satisfying S /Eb!2�R.

Later, however, Unruh and Wald �1982� concluded51

that by taking into account the buoyancy force induced
by Hawking radiation, the GSL would not be violated
even without the imposition of the constraint S /Eb
!2�R. The thermal ambiance outside the hole would
prevent the box from descending beyond the point after
which the energy delivered to the black hole would be
too small to guarantee �Sbh%S as demanded by the
GSL �see also Matsas and da Silva �2005��. By accepting
that the box floats due to Hawking radiation, we are led
to conclude that a box in the Minkowski vacuum would
be able to self-accelerate because of the Unruh thermal
bath.52 �See Unruh and Wald �1982� for a discussion on
this point.�

The “self-accelerating box paradox” was recently re-
visited by Marolf and Sorkin �2002�. They concluded
that the heat absorbed by the box walls would increase
their masses preventing the box from floating outside
the black hole and thus self-accelerating in Minkowski
spacetime. Although this would solve the self-
accelerating box paradox, the GSL seemed to be in dan-
ger again. However, Marolf and Sorkin �2002� presented
a way out to save the GSL without the introduction of
any extra entropy-bound law by assuming the existence
of “box-antibox pairs” in Hawking radiation. Further
discussion can be found in Marolf et al. �2004� and in the
next section.

D. Entropy and Rindler observers

Even if the GSL is not violated in the thought experi-
ment above, one could think of more extreme situations
where objects with fixed energy and volume but carrying
an arbitrary amount of entropy are beamed toward a
black hole. In order to analyze these situations, Marolf
et al. �2004� considered a large enough black hole to

reduce the problem again to the corresponding one with
a Rindler horizon. They concluded that, although iner-
tial observers assign an entropy equal to the logarithm
of the number of internal states n to an arbitrary object,
this would not be the case for Rindler observers. For
bodies with a large number of internal states, n�1, Rin-
dler observers would assign an entropy of only SR
�ER�, where ER is the Killing energy associated with
the Rindler observers and �−1=� /2� is the correspond-
ing temperature associated with the surface gravity �.
As a result, a falling object which crosses the horizon
would respect the GSL according to the Rindler observ-
ers no matter how many internal states �i.e., how large
entropy is according to the inertial observers� it might
carry. The inertial observer, at the same time, should
raise no doubt about the GSL since they would never
lose sight of the object. This illustrates how subtle the
entropy concept can be in general relativity.

E. Einstein equations as an equation of state?

The four laws of black hole mechanics, which are
closely connected with the four laws of black hole ther-
modynamics, were derived assuming the Einstein equa-
tions. Jacobson �1995� has suggested the idea of turning
the logic around and deriving the Einstein equations by
assuming �i� the proportionality of entropy and the ho-
rizon area and �ii� the fundamental relation �Q=TdS,
where �Q and T are the energy flux and Unruh tem-
perature, respectively, seen by an accelerated observer
just outside the horizon. In this sense, the Einstein equa-
tions could be seen as an “equation of state” of space-
time. �For a related investigation see Padmanabhan
�2005�.� Because of its importance to thermodynamics,
relativity, information theory, and quantum gravity,
black hole thermodynamics will undoubtedly continue
attracting a lot of attention in the near future, and the
Unruh effect should continue as a useful tool in the in-
vestigation of these issues.

F. Miscellaneous topics

Several other issues connected with the Unruh effect
have attracted attention recently. In parallel to the inves-
tigation of decoherence for the internal state of single
accelerated detectors as discussed in Sec. V.B, studies of
the entanglement between independent accelerated de-
tectors coupled to a background field can be found �see,
e.g., Pringle �1989�; Benatti and Floreanini �2004�;
Reznik et al. �2005�; Massar and Spindel �2006��. Alsing
and Milburn �2003�, Alsing et al. �2004�, and Alsing et al.
�2006� considered the teleportation of a state between
an inertial and a Rindler observer. Although the au-
thors’ conclusion that the fidelity of the teleportation
will be in general reduced due to the Unruh effect may
be correct in the end, the details will probably depend
on the particular experimental setup. For instance, ideal
uniformly accelerated rigid cavities prepared in the Rin-
dler vacuum would keep thermal fluctuations out �Levin

50Recently there have been some work on how the laws of
thermodynamics associated with black hole horizons can be
extended to what Jacobson and Parentani �2003� call causal
horizons, i.e., the boundary of the past of any timelike curve #
of infinite proper length in the future direction.

51See also Unruh and Wald �1983� in response to Bekenstein
�1983�.

52This occurs because of the Unruh temperature gradient
along the box in the acceleration direction.
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et al., 1992� and the Unruh effect would not be respon-
sible, in principle, for fidelity loss �see Schützhold and
Unruh �2005� for further considerations�. More detailed
investigations are expected in the near future when the
Unruh effect should be studied in connection with quan-
tum communication �Brádler, 2007�. A different sort of
question which one may pose is whether or not suffi-
ciently accelerated Rindler observers would see broken
symmetries being restored because of the high tempera-
ture of the Unruh thermal bath �Hill, 1985; Ohsaku,
2004; Kharzeev and Tuchin, 2005; Ebert and Zhukovsky,
2007�. Finally, the Unruh effect has also gained impor-
tance in quantum gravity theories �see, e.g., Susskind
and Uglum �1994��53 and condensed matter physics �Un-
ruh, 1981� because of its close relation with the Hawking
effect.

VI. CONCLUDING REMARKS

The Unruh effect has played a crucial role in our un-
derstanding that the particle content of a field theory is
observer dependent. It expresses the fact that uniformly
accelerated observers in Minkowski spacetime associate
a thermal bath of Rindler particles to the no-particle
state of inertial observers. As a quantum field theory
effect, it does not depend on extra structures such as
particle detectors or any other measuring apparatus. By
the same token, the Unruh effect does not require ex-
perimental confirmation any more than free quantum
field theory does, although some observables can be
more easily computed and interpreted from the point of
view of uniformly accelerated observers using the Unruh
effect. This is a matter of convenience and not of prin-
ciple. We have devoted Sec. III to the discussion of
physical phenomena using plain quantum field theory
adapted to inertial observers and shown how the same
observables can be recalculated from the point of view
of Rindler observers with the help of the Unruh effect.

The Unruh effect is also useful as a theoretical labo-
ratory to investigate phenomena such as the thermal
emission of particles from black holes and cosmological
horizons because it retains many essential features of
these phenomena while reducing their technical com-
plexity. Because of the importance of the Hawking �and
Hawking-like� effect�s� to thermodynamics, information
theory, quantum gravity, and cosmology, the Unruh ef-
fect should continue being a valuable tool in the future
to those who intend to investigate these issues.
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APPENDIX: DERIVATION OF THE POSITIVE-
FREQUENCY SOLUTIONS IN THE RIGHT RINDLER
WEDGE

In this appendix we present a derivation of the nor-
malized positive-frequency modes in the right Rindler
wedge. First we show that the normalization condition
�2.87� leads to the �-function normalization �2.88� of the
function g�k�

���. Define

SA��,��� � �
−A

�

d�g
�k�

* ���g��k�
��� . �A1�

By the differential equation �2.86� satisfied by g�k�
and

the condition �2.87� we find

��2 − ��2�SA��,���

= �g��k�
���

d

d�
g
�k�

* ��� − g
�k�

* ���
d

d�
g��k�

����
�=−A

�
1

�
��� − ���sin��� + ���A − ���� − ������

+ �� + ���sin��� − ���A − ���� + ������	 �A2�

for ��0, ����1. Then, using

lim
A→�

�sin�xA��/x = ���x� , �A3�

we find

�
−�

+�

d�g
�k�

* ���g��k�
��� = lim

A→�
SA��,��� = ��� − ��� ,

�A4�

identifying bounded terms oscillating with frequency
�A with zero.

Now, by changing the variable in the differential equa-
tion �2.86� as

* �
�k�

2 + m2

a
ea�, �A5�

we find

� d2

d*2 +
1

*

d

d*
− 1 +

��/a�2

*2 �g�k�
= 0. �A6�

This is a modified Bessel equation with index i� /a �or
−i� /a�. Hence using the requirement that �g�k�

����
should not tend to infinity as �→�, we find

g�k�
��� = C�k�

Ki�/a���/a�ea�� , �A7�

where ���k�
2 +m2 and C�k�

is a constant. Now, the
modified Bessel function K��x� is defined by

53See also, e.g., Parentani and Potting �1989�, who considered
uniformly accelerated observers in the vacuum of free strings.
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K��x� � −
�

2

i−�J��ix� − i�J−��ix�
sin ��

, �A8�

and the Bessel function J��x� for small �x� is approxi-
mated as

J��x� � ���� + 1��−1�x/2�� �A9�

�see Gradshteyn and Ryzhik �1980��. Hence

Ki�/a�x� �
i�

2 sinh���/a�� �x/2�i�/a

��1 + i�/a�
−

�x/2�−i�/a

��1 − i�/a�� .

�A10�

Note also

���1 + i�/a��2 = ��1 + i�/a���1 − i�/a�

=
i�

a
��i�/a���1 − i�/a� =

��

a sinh���/a�
.

�A11�

Hence

Ki�/a�x� �� �a

� sinh���/a�
�ei�x/2�i�/a + c.c.� , �A12�

where  is a real constant. By comparing this with Eq.
�2.87�, we find that the function g�k�

��� satisfying the
differential equation �2.86� and the normalization condi-
tion �2.87� can be chosen as in Eq. �2.91�.

REFERENCES

Abe, O., 1990, “Response function of accelerated monopole
detector in R�T3 space-time,” Phys. Rev. D 41, 1897–1900.

Abramowitz, M., and I. A. Stegun, 1965, Handbook of Math-
ematical Functions �Dover, New York�.

Alsing, P. M., J. P. Dowling, and G. J. Milburn, 2005, “Ion trap
simulations of quantum fields in an expanding universe,”
Phys. Rev. Lett. 94, 220401.

Alsing, P. M., I. Fuentes-Schuller, R. B. Mann, and T. E.
Tessier, 2006, “Entanglement of Dirac fields in non-inertial
frames,” Phys. Rev. A 74, 032326.

Alsing, P. M., D. McMahon, and G. J. Milburn, 2004, “Telepor-
tation in a non-inertial frame,” J. Opt. B: Quantum Semiclas-
sical Opt. 6, S834–S843.

Alsing, P. M., and G. J. Milburn, 2003, “Teleportation with a
uniformly accelerated partner,” Phys. Rev. Lett. 91, 180404.

Alves, D. T., and L. C. B. Crispino, 2004, “Response rate of a
uniformly accelerated source in the presence of boundaries,”
Phys. Rev. D 70, 107703.

Arnowitt, R., S. Deser, and C. W. Misner, 1962, in Gravitation:
An Introduction to Current Research, edited by L. Witten
�Wiley, New York�, pp. 227–265.

Ashtekar, A., and A. Magnon, 1975, “Quantum fields in
curved space-times,” Proc. R. Soc. London, Ser. A 346, 375–
394.

Assmann, R., et al., 1995, in High-Energy Spin Physics (SPIN
94), edited by K. J. Heller and S. L. Smith, AIP Conf. Proc.
No. 343 �AIP, Woodbury, NY�, pp. 219–229.

Audretsch, J., M. Mensky, and R. Müller, 1995, “Continuous
measurement and localization in the Unruh effect,” Phys.
Rev. D 51, 1716–1727.

Audretsch, J., and R. Müller, 1994a, “Radiation from a uni-
formly accelerated particle detector: Energy, particles, and
the quantum measurement process,” Phys. Rev. D 49, 6566–
6575.

Audretsch, J., and R. Müller, 1994b, “Spontaneous excitation
of an accelerated atom: The contributions of vacuum fluctua-
tions and radiation reaction,” Phys. Rev. A 50, 1755–1763.

Baier, V. N., and V. M. Katkov, 1967, “Radiative polarization
of electrons in a magnetic field,” Zh. Eksp. Teor. Fiz. 52,
1422–1426 �Sov. Phys. JETP 25, 944–947 �1967��.

Barber, D. P., 1999, in Proceedings of the 13th International
Symposium on High-energy Spin Physics (SPIN 98), edited
by N. E. Tyurin, V. L. Solovianov, S. M. Troshin, and A. G.
Ufimtsev �World Scientific, Singapore�, pp. 246–254.

Barber, D. P., and S. R. Mane, 1988, “Calculations of Bell and
Leinaas and Derbenev and Kondratenko for radiative elec-
tron polarization,” Phys. Rev. A 37, 456–463.

Barber, D. P., et al., 1994, “High spin polarization at the HERA
electron storage ring,” Nucl. Instrum. Methods Phys. Res. A
338, 166–184.

Barshay, S., H. Braun, J. P. Gerber, and G. Maurer, 1980, “Pos-
sible evidence for fluctuations in the hadronic temperature,”
Phys. Rev. D 21, 1849–1853.

Barshay, S., and W. Troost, 1978, “A possible origin for tem-
perature in strong interactions,” Phys. Lett. 73B, 437–439.

Barut, A. O., 1980, Electrodynamics and Classical Theory of
Fields and Particles �Dover, New York�.

Barut, A. O., and J. P. Dowling, 1990, “Quantum electrody-
namics based on self-fields: On the origin of thermal radiation
detected by an accelerating observer,” Phys. Rev. A 41, 2277–
2283.

Bautista, E., 1993, “Acceleration through the Dirac-Pauli
vacuum and effects of an external field,” Phys. Rev. D 48,
783–789.

Bekenstein, J. D., 1973, “Black holes and entropy,” Phys. Rev.
D 7, 2333–2346.

Bekenstein, J. D., 1983, “Entropy bounds and the second law
for black holes,” Phys. Rev. D 27, 2262–2270.

Belinskii, V. A., B. M. Karnakov, V. D. Mur, and N. B. Narozh-
nyi, 1997, “Does the Unruh effect exist?,” Pis’ma Zh. Eksp.
Teor. Fiz. 65, 861–866 �JETP Lett. 65, 902–908 �1997��.

Bell, J. S., and J. M. Leinaas, 1983, “Electrons as accelerated
thermometers,” Nucl. Phys. B 212, 131–150.

Bell, J. S., and J. M. Leinaas, 1987, “The Unruh effect and
quantum fluctuations of electrons in storage rings,” Nucl.
Phys. B 284, 488–508.

Belyanin, A., V. V. Kocharovsky, F. Capasso, E. Fry, M. S.
Zubairy, and M. O. Scully, 2006, “Quantum electrodynamics
of accelerated atoms in free space and in cavities,” Phys. Rev.
A 74, 023807.

Benatti, F., and R. Floreanini, 2004, “Entangled generation in
uniformly accelerating atoms: Reexamination of the Unruh
effect,” Phys. Rev. A 70, 012112.

Bernard, C., 1974, “Feynman rules for gauge theories at finite
temperature,” Phys. Rev. D 9, 3312–3320.

Birrell, N. D., and P. C. W. Davies, 1982, Quantum Fields in
Curved Space �Cambridge University Press, Cambridge, En-
gland�.

Bisognano, J. J., and E. H. Wichmann, 1975, “On the duality
condition for a Hermitian scalar field,” J. Math. Phys. 16,
985–1007.

Bisognano, J. J., and E. H. Wichmann, 1976, “On the duality
condition for quantum fields,” J. Math. Phys. 17, 303–321.

832 Crispino, Higuchi, and Matsas: The Unruh effect and its applications

Rev. Mod. Phys., Vol. 80, No. 3, July–September 2008



Boulware, D. G., 1975a, “Quantum field theory in Schwarzs-
child and Rindler spaces,” Phys. Rev. D 11, 1404–1423.

Boulware, D. G., 1975b, “Spin-1/2 quantum field theory in
Schwarzschild space,” Phys. Rev. D 12, 350–367.

Boulware, D. G., 1980, “Radiation from a uniformly acceler-
ated charge,” Ann. Phys. �N.Y.� 124, 169–188.

Bousso, R., 2002, “The holographic principle,” Rev. Mod.
Phys. 74, 825–874.

Boyer, R. H., 1969, “Geodesic Killing orbits and bifurcate Kill-
ing horizons,” Proc. R. Soc. London, Ser. A 311, 245–252.

Boyer, T. H., 1980, “Thermal effects of acceleration through
random classical radiation,” Phys. Rev. D 21, 2137–2148.

Boyer, T. H., 1984, “Thermal effects of acceleration for a clas-
sical dipole oscillator in classical electromagnetic zero-point
radiation,” Phys. Rev. D 29, 1089–1095.

Brádler, K., 2007, “Eavesdropping of quantum communication
from a noninertial frame,” Phys. Rev. A 75, 022311.

Brout, B., S. Massar, R. Parentani, and P. Spindel, 1995, “A
primer for black hole quantum physics,” Phys. Rep. 260, 329–
446.

Brown, L. S., and G. Gabrielse, 1986, “Geonium theory, Phys-
ics of a single electron or ion in a Penning trap,” Rev. Mod.
Phys. 58, 233–311.

Buchholz, D., and J. Schlemmer, 2007, “Local temperature in
curved spacetime,” Class. Quantum Grav. 24, F25–F31.

Calogeracos, A., 2002a, “Radiation from accelerated mirrors
following prescribed relativistic asymptotically inertial trajec-
tories,” J. Phys. A 35, 3415–3434.

Calogeracos, A., 2002b, “Radiation from perfect mirrors start-
ing from rest and accelerating forever and the black body
spectrum,” J. Phys. A 35, 3435–3445.

Calogeracos, A., 2004, “Recalculation of the spectrum of the
radiation emitted during gravitational collapse,” Phys. Lett.
A 329, 1–7.

Camerini, U., D. Cline, J. Learned, A. K. Mann, and L. K.
Resvanis, 1975, “Measurement of the radiative electron po-
larization in a 2.4-GeV storage ring,” Phys. Rev. D 12, 1855–
1858.

Candelas, P., and D. Deutsch, 1977, “On the vacuum stress
induced by uniform acceleration or supporting the ether,”
Proc. R. Soc. London, Ser. A 354, 79–99.

Candelas, P., and D. Deutsch, 1978, “Fermion fields in acceler-
ated states,” Proc. R. Soc. London, Ser. A 362, 251–262.

Candelas, P., and J. S. Dowker, 1979, “Field theories on con-
formally related space-times: Some global considerations,”
Phys. Rev. D 19, 2902–2907.

Castiñeiras, J., L. C. B. Crispino, G. E. A. Matsas, and D. A. T.
Vanzella, 2002, “Free massive particles with total energy E
�mc2 in curved spacetimes,” Phys. Rev. D 65, 104019.

Castiñeiras, J., and G. E. A. Matsas, 2000, “Low-energy sector
quantization of a massless scalar field outside a Reissner-
Nordström black hole and static sources,” Phys. Rev. D 62,
064001.

Castiñeiras, J., I. P. C. e Silva, and G. E. A. Matsas, 2003, “Do
static sources respond to massive scalar particles from the
Hawking radiation as uniformly accelerated ones do in the
inertial vacuum?,” Phys. Rev. D 67, 067502.

Chen, P., and T. Tajima, 1999, “Testing Unruh radiation with
ultraintense lasers,” Phys. Rev. Lett. 83, 256–259.

Chmielowski, P., 1994, “States of scalar field on spacetimes
with two isometries with timelike orbits,” Class. Quantum
Grav. 11, 41–56.

Christensen, S. M., and S. A. Fulling, 1977, “Trace anomalies

and the Hawking effect,” Phys. Rev. D 15, 2088–2104.
Cognola, G., and P. Lecca, 1998, “Electromagnetic fields in

Schwarzschild and Reissner-Nordström geometry: Quantum
corrections to the black hole entropy,” Phys. Rev. D 57,
1108–1111.

Cole, D. C., 1985, “Properties of a classical charged harmonic
oscillator accelerated through classical electromagnetic zero-
point radiation,” Phys. Rev. D 31, 1972–1981.

Coleman, S. R., 1973, “There are no Goldstone bosons in two
dimensions,” Commun. Math. Phys. 31, 259–264.

Copeland, E. J., P. C. W. Davies, and K. Hinton, 1984, “Accel-
eration radiation in a compact space,” Class. Quantum Grav.
1, 179–187.

Costa, S. S., and G. E. A. Matsas, 1995, “Background thermal
contributions in testing the Unruh effect,” Phys. Rev. D 52,
3466–3471.

Crispino, L. C. B., A. Higuchi, and G. E. A. Matsas, 1998,
“Interaction of Hawking radiation and a static electric
charge,” Phys. Rev. D 58, 084027.

Crispino, L. C. B., A. Higuchi, and G. E. A. Matsas, 2001,
“Quantization of the electromagnetic field outside static
black holes and its application to low-energy phenomena,”
Phys. Rev. D 63, 124008.

Crispino, L. C. B., A. Higuchi, and G. E. A. Matsas, 2004, “Is
the equivalence for the response of static scalar sources in the
Schwarzschild and Rindler spacetimes valid only in four di-
mensions?,” Phys. Rev. D 70, 127504.

Davies, P. C. W., 1975, “Scalar particle production in Schwarzs-
child and Rindler metrics,” J. Phys. A 8, 609–616.

Davies, P. C. W., 1976, “On the origin of black hole evapora-
tion radiation,” Proc. R. Soc. London, Ser. A 351, 129–139.

Davies, P. C. W., T. Dray, and C. A. Manogue, 1996, “Detect-
ing the rotating quantum vacuum,” Phys. Rev. D 53, 4382–
4387.

Davies, P. C. W., and S. A. Fulling, 1977a, “Quantum vacuum
energy in two dimensional space-times,” Proc. R. Soc. Lon-
don, Ser. A 354, 59–77.

Davies, P. C. W., and S. A. Fulling, 1977b, “Radiation from
moving mirrors and from black holes,” Proc. R. Soc. London,
Ser. A 356, 237–257.

Davies, P. C. W., S. A. Fulling, and W. G. Unruh, 1976,
“Energy-momentum tensor near an evaporating black hole,”
Phys. Rev. D 13, 2720–2723.

Davies, P. C. W., Z. X. Liu, and A. C. Ottewill, 1989, “Particle
detectors in the presence of boundaries,” Class. Quantum
Grav. 6, 1041–1051.

De Bièvre, S., and M. Merkli, 2006, “The Unruh effect revis-
ited,” Class. Quantum Grav. 23, 6525–6541.

Derbenev, Y. S., and A. M. Kondratenko, 1973, “Polarization
kinetics of particles in storage rings,” Zh. Eksp. Teor. Fiz. 64,
1918–1929 �Sov. Phys. JETP 37, 968–973 �1973��.

Deser, S., and O. Levin, 1997, “Accelerated detectors and tem-
perature in �anti-�de Sitter spaces,” Class. Quantum Grav. 14,
L163–L168.

DeWitt, B. S., 1975, “Quantum field theory in curved space-
time,” Phys. Lett., C 19, 295–357.

DeWitt, B. S., 1979, in General Relativity: An Einstein Cente-
nary Survey, edited by S. W. Hawking, and W. Israel �Cam-
bridge University Press, Cambridge, England�, pp. 680–745.

Díaz, D. E., and J. Stephany, 2002, “Rindler particles and clas-
sical radiation,” Class. Quantum Grav. 19, 3753–3759.

Ebert, D., and V. C. Zhukovsky, 2007, “Restoration of dynami-
cally broken chiral and color symmetries for an accelerated

833Crispino, Higuchi, and Matsas: The Unruh effect and its applications

Rev. Mod. Phys., Vol. 80, No. 3, July–September 2008



observer,” Phys. Lett. B 645, 267–274.
Eriksen, E., and Ø. Grøn, 2000a, “Electrodynamics of hyper-

bolically accelerated charges I. The electromagnetic field of a
charged particle with hyperbolic motion,” Ann. Phys. �N.Y.�
286, 320–342.

Eriksen, E., and Ø. Grøn, 2000b, “Electrodynamics of hyper-
bolically accelerated charges II. Does a charged particle with
hyperbolic motion radiate?,” Ann. Phys. �N.Y.� 286, 343–372.

Eriksen, E., and Ø. Grøn, 2000c, “Electrodynamics of hyper-
bolically accelerated charges III. Energy-momentum of the
field of a hyperbolically moving charge,” Ann. Phys. �N.Y.�
286, 373–399.

Eriksen, E., and Ø. Grøn, 2002, “Electrodynamics of hyper-
bolically accelerated charges IV. Energy-momentum conser-
vation of radiating charged particles,” Ann. Phys. �N.Y.� 297,
243–294.

Eriksen, E., and Ø. Grøn, 2004, “Electrodynamics of hyper-
bolically accelerated charges V. The field of a charge in the
Rindler space and the Milne space,” Ann. Phys. �N.Y.� 313,
147–196.

Fedotov, A. M., V. D. Mur, N. B. Narozhny, V. A. Belinskii,
and B. M. Karnakov, 1999, “Quantum field aspect of the Un-
ruh problem,” Phys. Lett. A 254, 126–132.

Ford, G. W., and R. F. O’Connell, 2006, “Is there Unruh radia-
tion?,” Phys. Lett. A 350, 17–26.

Fregolente, D., G. E. A. Matsas, and D. Vanzella, 2006, “Semi-
classical approach to the decay of protons in circular motion
under the influence of gravitational fields,” Phys. Rev. D 74,
045032.

Friedman, J. L., 1978, “Generic instability of rotating relativis-
tic stars,” Commun. Math. Phys. 62, 247–278.

Frolov, V. P., and V. L. Ginzburg, 1986, “Excitation and radia-
tion of an accelerated detector and anomalous Doppler ef-
fect,” Phys. Lett. A 116, 423–426.

Fuentes-Schuller, I., and R. B. Mann, 2005, “Alice falls into a
black hole: Entanglement in noninertial frames,” Phys. Rev.
Lett. 95, 120404.

Fulling, S. A., 1973, “Nonuniqueness of canonical field quanti-
zation in Riemannian space-time,” Phys. Rev. D 7, 2850–
2862.

Fulling, S. A., 1977, “Alternative vacuum states in static space-
times with horizons,” J. Phys. A 10, 917–951.

Fulling, S. A., 1989, Aspects of Quantum Field Theory in
Curved Space-Time �Cambridge University Press, Cambridge,
England�.

Fulling, S. A., 2005, “Review of some recent work on accelera-
tion radiation,” J. Mod. Opt. 52, 2207–2213.

Fulling, S. A., and P. C. W. Davies, 1976, “Radiation from a
moving mirror in two dimensional space-time: Conformal
anomaly,” Proc. R. Soc. London, Ser. A 348, 393–414.

Fulling, S. A., L. Parker, and B. L. Hu, 1974, “Conformal
energy-momentum tensor in curved spacetime: Adiabatic
regularization and renormalization,” Phys. Rev. D 10, 3905–
3924; 11, 1714�E� �1975�.

Fulling, S. A., and S. N. M. Ruijsenaars, 1987, “Temperature,
periodicity and horizons,” Phys. Rep. 152, 135–176.

Fulling, S. A., M. Sweeny, and R. M. Wald, 1978, “Singularity
structure of the two-point function in quantum field theory in
curved spacetime,” Commun. Math. Phys. 63, 257–264.

Fulling, S. A., and W. G. Unruh, 2004, “Comment on ‘Bound-
ary conditions in the Unruh problem,’ ” Phys. Rev. D 70,
048701.

Fulton, T., and F. Rohrlich, 1960, “Classical radiation from a

uniformly accelerated charge,” Ann. Phys. �N.Y.� 9, 499–517.
Gabriel, C., P. Spindel, S. Massar, and R. Parentani, 1998, “In-

teracting charged particles in an electric field and the Unruh
effect,” Phys. Rev. D 57, 6496–6510.

Garbrecht, B., and T. Prokopec, 2004a, “Energy density in ex-
panding universes as seen by an Unruh detector,” Phys. Rev.
D 70, 083529.

Garbrecht, B., and T. Prokopec, 2004b, “Unruh response func-
tions for scalar fields in de Sitter space,” Class. Quantum
Grav. 21, 4993–5004.

Gerlach, U. H., 1983, “Absolute nature of the thermal ambi-
ance of accelerated observers,” Phys. Rev. D 27, 2310–2315.

Gerlach, U. H., 1988, “Minkowski Bessel modes,” Phys. Rev.
D 38, 514–521.

Gibbons, G. W., and S. W. Hawking, 1977, “Cosmological
event horizons, thermodynamics, and particle creation,”
Phys. Rev. D 15, 2738–2751.

Gibbons, G. W., and M. J. Perry, 1976, “Black holes and ther-
mal Green’s functions,” Proc. R. Soc. London, Ser. A 358,
467–494.

Gingrich, R. M., and C. Adami, 2002, “Quantum entanglement
of moving bodies,” Phys. Rev. Lett. 89, 270402.

Gingrich, R. M., A. J. Bergou, and C. Adami, 2003, “En-
tangled light in moving frames,” Phys. Rev. A 68, 042102.

Ginzburg, V. L., 1969, “Radiation and radiation friction force
in uniformly accelerated motion of a charge,” Usp. Fiz. Nauk
98, 569–585 �Sov. Phys. Usp. 12, 565–674 �1970��.

Ginzburg, V. L., and V. P. Frolov, 1987, “Vacuum in a homo-
geneous gravitational field and excitation of a uniformly ac-
celerated detector,” Usp. Fiz. Nauk 153, 633–674 �Sov. Phys.
Usp. 30, 1073–1095 �1987��.

Ginzburg, V. L., and G. F. Zharkov, 1964, “Pion and beta-ray
emission by protons moving in a magnetic field,” Zh. Eksp.
Teor. Fiz. 47, 2279–2284 �Sov. Phys. JETP 20, 1525–1528
�1965��.

Glauber, R. J., 1963, “The quantum theory of optical coher-
ence,” Phys. Rev. 130, 2529–2539.

Gradshteyn, I. S., and I. M. Ryzhik, 1980, Table of Integrals,
Series and Products �Academic, New York�.

Grishchuk, L. P., Y. B. Zel’dovich, and L. V. Rozhanskii, 1987,
“Equivalence principle and the zero-point field fluctuation,”
Zh. Eksp. Teor. Fiz. 92, 20–27 �Sov. Phys. JETP 65, 11–14
�1987��.

Grove, P. G., 1986, “On an inertial observer’s interpretation of
the detection of radiation by linearly accelerated particle de-
tectors,” Class. Quantum Grav. 3, 801–809.

Grove, P. G., and A. C. Ottewill, 1983, “Notes on ‘particle
detectors,’ ” J. Phys. A 16, 3905–3920.

Grove, P. G., and A. C. Ottewill, 1985, “Is acceleration radia-
tion isotropic?,” Class. Quantum Grav. 2, 373–380.

Guimarães, A. C. C., G. E. A. Matsas, and D. A. T. Vanzella,
1998, “Background thermal depolarization of electrons in
storage rings,” Phys. Rev. D 57, 4461–4466.

Haag, R., N. M. Hugenholtz, and M. Winnink, 1967, “On the
equilibrium states in quantum statistical mechanics,” Com-
mun. Math. Phys. 5, 215–236.

Hartle, J. B., and S. W. Hawking, 1976, “Path-integral deriva-
tion of black-hole radiance,” Phys. Rev. D 13, 2188–2203.

Hawking, S. W., 1974, “Black-hole explosions,” Nature �Lon-
don� 248, 30–31.

Hawking, S. W., 1975, “Particle creation by black-holes,” Com-
mun. Math. Phys. 43, 199–220.

Higuchi, A., 1987, “Quantisation of scalar and vector fields

834 Crispino, Higuchi, and Matsas: The Unruh effect and its applications

Rev. Mod. Phys., Vol. 80, No. 3, July–September 2008



inside the cosmological event horizon and its application to
the Hawking effect,” Class. Quantum Grav. 4, 721–740.

Higuchi, A., 1989, “Massive symmetric tensor field in space-
times with a positive cosmological constant,” Nucl. Phys. B
325, 745–765.

Higuchi, A., 2002, “Radiation reaction in quantum field
theory,” Phys. Rev. D 66, 105004; 69, 129903�E� �2004�.

Higuchi, A., and G. D. R. Martin, 2004, “Lorentz-Dirac force
from QED for linear acceleration,” Phys. Rev. D 70,
081701�R�.

Higuchi, A., and G. D. R. Martin, 2005, “Classical and quan-
tum radiation reaction for linear acceleration,” Found. Phys.
35, 1149–1179.

Higuchi, A., and G. E. A. Matsas, 1993, “Fulling-Davies-
Unruh effect in classical field theory,” Phys. Rev. D 48, 689–
697.

Higuchi, A., G. E. A. Matsas, and C. B. Peres, 1993, “Uni-
formly accelerated finite-time detectors,” Phys. Rev. D 48,
3731–3734.

Higuchi, A., G. E. A. Matsas, and D. Sudarsky, 1992a, “Brems-
strahlung and Fulling-Davies-Unruh thermal bath,” Phys.
Rev. D 46, 3450–3457.

Higuchi, A., G. E. A. Matsas, and D. Sudarsky, 1992b,
“Bremsstrahlung and zero-energy Rindler photons,” Phys.
Rev. D 45, R3308–R3311.

Higuchi, A., G. E. A. Matsas, and D. Sudarsky, 1997, “Do
static sources outside a Schwarzschild black hole radiate?,”
Phys. Rev. D 56, R6071–R6075.

Higuchi, A., G. E. A. Matsas, and D. Sudarsky, 1998, “Inter-
action of Hawking radiation with static sources outside a
Schwarzschild black hole,” Phys. Rev. D 58, 104021.

Hill, C. T., 1985, “Can the Hawking effect thaw a broken sym-
metry?,” Phys. Lett. 155B, 343–346.

Hinterleitner, F., 1993, “Inertial and accelerated particle detec-
tors with back-reaction in flat space-time,” Ann. Phys. �N.Y.�
226, 165–204.

Hinton, K. J., 1983, “Particle detectors in Rindler and
Schwarzschild space-times,” J. Phys. A 16, 1937–1946.

Hinton, K. J., P. C. W. Davies, and J. Pfautsch, 1983, “Accel-
erated observers do not detect isotropic thermal bath,” Phys.
Lett. 120B, 88–90.

Hu, B. L., and A. Roura, 2004, “Comment on ‘Enhancing ac-
celeration radiation from ground-state atoms via cavity quan-
tum electrodynamics,’ ” Phys. Rev. Lett. 93, 129301.

Hu, B. L., A. Roura, and S. Shesta, 2004, “Vacuum fluctuations
and moving atoms/detectors: from the Casimir Polder to the
Unruh-Davies-DeWitt-Fulling effect,” J. Opt. B: Quantum
Semiclassical Opt. 6, S698–S705.

Israel, W., and J. M. Nester, 1983, “Is acceleration radiation
isotropic,” Phys. Lett. 98A, 329–331.

Itzykson, C., and J.-B. Zuber, 1980, Quantum Field Theory
�McGraw-Hill, New York�.

Iyer, B. R., and A. Kumar, 1980, “Detection of Dirac quanta in
Rindler and black hole space-times and the � quantization
scheme,” J. Phys. A 13, 469–478.

Jackson, J. D., 1976, “On understanding spin-flip synchrotron
radiation and the transverse polarization of electrons in stor-
age rings,” Rev. Mod. Phys. 48, 417–433.

Jackson, J. D., 1999, Classical Electrodynamics, 3rd ed. �Wiley,
New York�.

Jacobson, T., 1995, “Thermodynamics of spacetime: The Ein-
stein equation of state,” Phys. Rev. Lett. 75, 1260–1263.

Jacobson, T., 1998, “Comment on accelerated detectors and

temperature in �anti-�de Sitter spaces,” Class. Quantum Grav.
15, 251–253.

Jacobson, T., and R. Parentani, 2003, “Horizon entropy,”
Found. Phys. 33, 323–348.

Járegui, R., M. Torres, and S. Hacyan, 1991, “Dirac vacuum:
Acceleration and external-field effects,” Phys. Rev. D 43,
3979–3989.

Johnson, J. R., R. Prepost, D. E. Wiser, J. J. Murray, R. F.
Schwitters, and C. K. Sinclair, 1983, “Beam polarization mea-
surements at the spear storage ring,” Nucl. Instrum. Methods
Phys. Res. 204, 261–268.

Johnston, H., and S. Sarkar, 1995, “Moving mirrors and time-
varying dielectrics,” Phys. Rev. A 51, 4109–4115.

Jost, R., 1965, The General Theory of Quantized Fields
�American Mathematical Society, Providence, RI�.

Kay, B. S., 1978, “Linear spin-zero quantum fields in external
gravitational and scalar fields,” Commun. Math. Phys. 62, 55–
70.

Kay, B. S., 1985, “The double-wedge algebra for quantum
fields on Schwarzschild and Minkowski spacetimes,” Com-
mun. Math. Phys. 100, 57–81.

Kay, B. S., 1993, “Sufficient conditions for quasifree states and
an improved uniqueness theorem for quantum fields on
space-times with horizons,” J. Math. Phys. 34, 4519–4539.

Kay, B. S., 2001, in Proceedings Journée Équations aux Derivée
Partielles, GDR 1151 �CNRS�, Nantes 2000, IX-1-19.

Kay, B. S., and R. M. Wald, 1991, “Theorems on the unique-
ness and thermal properties of stationary, nonsingular, quasi-
free states on spacetimes with a bifurcate Killing horizon,”
Phys. Rep. 207, 49–136.

Kharzeev, D., 2006, “Quantum black holes and thermalization
in relativistic heavy ion collisions,” Nucl. Phys. A 774, 315–
324.

Kharzeev, D., and K. Tuchin, 2005, “From color glass conden-
sate to quark-gluon plasma through the event horizon,” Nucl.
Phys. A 753, 316–334.

Kim, S. K., K. S. Soh, and J. H. Yee, 1987, “Zero-point field in
a circular-motion frame,” Phys. Rev. D 35, 557–561.

Kim, W.-J., J. H. Brownell, and R. Onofrio, 2006, “Detectabil-
ity of dissipative motion in quantum vacuum via superradi-
ance,” Phys. Rev. Lett. 96, 200402; 97, 089902�E� �2006�.

Knudsen, L., J. P. Koutchouk, M. Placidi, R. Schmidt, M. Cro-
zon, J. Badier, A. Blondel, and B. Dehning, 1991, “First ob-
servation of transverse beam polarization in LEP,” Phys.
Lett. B 270, 97–104.

Kok, P., and U. Yurtsever, 2003, “Gravitational decoherence,”
Phys. Rev. D 68, 085006.

Kolbenstvedt, H., 1987, “Anisotropy of thermal radiation by
accelerated detectors; an aberration effect,” Phys. Lett. A
122, 292–294.

Kolbenstvedt, H., 1988, “Inertial interpretation of the Unruh
effect,” Phys. Rev. D 38, 1118–1121.

Korsbakken, J. I., and J. M. Leinaas, 2004, “Fulling-Unruh ef-
fect in general stationary accelerated frames,” Phys. Rev. D
70, 084016.

Krivitskii, V. S., and V. N. Tsytovich, 1991, “Average radiation-
reaction force in quantum electrodynamics,” Usp. Fiz. Nauk
161, 125–141 �Sov. Phys. Usp. 34, 250–258 �1991��.

Kruskal, M. D., 1960, “Maximal extension of Schwarzschild
metric,” Phys. Rev. 119, 1743–1745.

Kubo, R., 1957, “Statistical-mechanics theory of irreversible
processes. I. General theory and simple application to mag-

835Crispino, Higuchi, and Matsas: The Unruh effect and its applications

Rev. Mod. Phys., Vol. 80, No. 3, July–September 2008



netic and conduction problems,” J. Phys. Soc. Jpn. 12, 570–
586.

Langlois, P., 2005, “Imprints of spacetime topology in the
Hawking-Unruh effect,” Ph.D. thesis �University of Notting-
ham, Nottingham�.

Langlois, P., 2006, “Causal particle detectors and topology,”
Ann. Phys. �N.Y.� 321, 2027–2070.

Leinaas, J. M., 1999, in Proceedings of the 15th Advanced
ICFA Beam Dynamics Workshop on Quantum Aspects of
Beam Physics, edited by P. Chen �World Scientific, Sin-
gapore�, pp. 577–593.

Leinaas, J. M., 2002, in Proceedings of the 18th Advanced
ICFA Beam Dynamics Workshop on Quantum Aspects of
Beam Physics, edited by P. Chen �World Scientific, Sin-
gapore�, pp. 336–352.

Letaw, J. R., 1981, “Stationary world lines and the vacuum
excitation of noninertial detectors,” Phys. Rev. D 23, 1709–
1714.

Letaw, J. R., and J. D. Pfautsch, 1980, “Quantized scalar field
in rotating coordinates,” Phys. Rev. D 22, 1345–1351.

Letaw, J. R., and J. D. Pfatsch, 1982, “The stationary coordi-
nate systems in flat spacetime,” J. Math. Phys. 23, 425–431.

Levin, O., Y. Peleg, and A. Peres, 1992, “Quantum detector in
an accelerated cavity,” J. Phys. A 25, 6471–6481.

Levin, O., Y. Peleg, and A. Peres, 1993, “Unruh effect for cir-
cular motion in a cavity,” J. Phys. A 26, 3001–3011.

Lin, S.-Y., and B. L. Hu, 2006, “Accelerated detector-quantum
field correlations: From vacuum fluctuations to radiation
flux,” Phys. Rev. D 73, 124018.

Louko, J., and A. Satz, 2006, “How often does the Unruh-
DeWitt detector click? Regularization by a spatial profile,”
Class. Quantum Grav. 23, 6321–6343.

Marolf, D., D. Minic, and S. F. Ross, 2004, “Notes on space-
time thermodynamics and the observer dependence of en-
tropy,” Phys. Rev. D 69, 064006.

Marolf, D., and R. D. Sorkin, 2002, “Perfect mirrors and the
self-accelerating box paradox,” Phys. Rev. D 66, 104004.

Marolf, D., and R. D. Sorkin, 2004, “On the status of highly
entropic objects,” Phys. Rev. D 69, 024014.

Martin, P. C., and J. Schwinger, 1959, “Theory of many-particle
systems. I,” Phys. Rev. 115, 1342–1373.

Martinetti, P., and C. Rovelli, 2003, “Diamond’s temperature:
Unruh effect for bounded trajectories and thermal time hy-
pothesis,” Class. Quantum Grav. 20, 4919–4931.

Massar, S., and R. Parentani, 1996, “From vacuum fluctuation
to radiation. I. Accelerated detectors,” Phys. Rev. D 54,
7426–7443.

Massar, S., R. Parentani, and R. Brout, 1993, “On the problem
of the uniformly accelerated oscillator,” Class. Quantum
Grav. 10, 385–395.

Massar, S., and P. Spindel, 2006, “Einstein-Podolsky-Rosen
correlations between two uniformly accelerated oscillators,”
Phys. Rev. D 74, 085031.

Matsas, G. E. A., 1996, “Rindler and Minkowski particles re-
lationship revisited,” Phys. Lett. B 380, 24–28.

Matsas, G. E. A., and A. R. R. da Silva, 2005, “New thought
experiment to test the generalized second law of thermody-
namics,” Phys. Rev. D 71, 107501.

Matsas, G. E. A., and D. A. T. Vanzella, 1999, “Decay of pro-
tons and neutrons induced by acceleration,” Phys. Rev. D 59,
094004.

Montague, B. W., 1984, “Polarized beams in high energy stor-
age rings,” Phys. Rep. 113, 1–96.

Moore, G. T., 1970, “Quantum theory of the electromagnetic
field in a variable-length one-dimensional cavity,” J. Math.
Phys. 11, 2679–2691.

Mourou, G. A., T. Tajima, and S. V. Bulanov, 2006, “Optics in
the relativistic regime,” Rev. Mod. Phys. 78, 309–371.

Müller, R., 1997, “Decay of accelerated particles,” Phys. Rev.
D 56, 953–960.

Myhrvold, N. P., 1985, “Thermal radiation from accelerated
electrons,” Ann. Phys. �N.Y.� 160, 102–113.

Narnhofer, H., I. Peter, and W. Thirring, 1996, “How hot is the
de Sitter space?,” Int. J. Mod. Phys. B 10, 1507–1520.

Narozhny, N. B., A. M. Fedotov, B. M. Karnakov, V. D. Mur,
and V. A. Belinskii, 2002, “Boundary conditions in the Unruh
problem,” Phys. Rev. D 65, 025004.

Narozhny, N. B., A. M. Fedotov, B. M. Karnakov, V. D. Mur,
and V. A. Belinskii, 2004, “Reply to ‘Comment on ‘Boundary
conditions in the Unruh problem,’ ’ ” Phys. Rev. D 70,
048702.

Nikishov, A. I., 1970, “Quantum processes in a constant elec-
tric field,” Zh. Eksp. Teor. Fiz. 59, 1262–1272 �Sov. Phys.
JETP 32, 690–694 �1971��.

Nikishov, A. I., and V. I. Ritus, 1964a, “Quantum processes in
the field of a plane electromagnetic wave and in a constant
field,” Zh. Eksp. Teor. Fiz. 46, 1768–1781 �Sov. Phys. JETP
19, 1191–1199 �1964��.

Nikishov, A. I., and V. I. Ritus, 1964b, “Quantum processes in
the field of a plane electromagnetic wave and in a constant
field. I,” Zh. Eksp. Teor. Fiz. 46, 776–796 �Sov. Phys. JETP 19,
529–541 �1964��.

Nikishov, A. I., and V. I. Ritus, 1988, “Processes induced by a
charged particle in an electric field and the Unruh heat-bath
concept,” Zh. Eksp. Teor. Fiz. 94, 31–47 �Sov. Phys. JETP 68,
1313–1321 �1988��.

Obadia, N., 2007, “Moving detectors in cavities,” Phys. Rev. D
76, 045013.

Obadia, N., and M. Milgrom, 2007, “Unruh effect for general
trajectories,” Phys. Rev. D 75, 065006.

Ohsaku, T., 2004, “Dynamical chiral symmetry breaking and
its restoration for an accelerated observer,” Phys. Lett. B 599,
102–110.

Oriti, D., 2000, “The spinor field in Rindler spacetime: An
analysis of the Unruh effect,” Nuovo Cimento Soc. Ital. Fis.,
B 115, 1005–1024.

Padmanabhan, T., 1985, “Why does an accelerated detector
click?,” Class. Quantum Grav. 2, 117–126.

Padmanabhan, T., 2005, “Gravity and the thermodynamics of
horizons,” Phys. Rep. 406, 49–125.

Parentani, R., 1995, “The recoils of the accelerated detector
and the decoherence of its fluxes,” Nucl. Phys. B 454, 227–
249.

Parentani, R., and S. Massar, 1997, “Schwinger mechanism,
Unruh effect, and production of accelerated black holes,”
Phys. Rev. D 55, 3603–3613.

Parentani, R., and R. Potting, 1989, “Accelerating observer
and the Hagedorn temperature,” Phys. Rev. Lett. 63, 945–
948.

Parker, L., 1968, “Particle creation in expanding universes,”
Phys. Rev. Lett. 21, 562–564.

Peña, I., C. Chryssomalakos, A. Corichi, and D. Sudarsky,
2005, “On a puzzle about bremsstrahlung as described by
coaccelerated observers,” Phys. Rev. D 72, 084018.

Peres, A., P. F. Scudo, and D. R. Terno, 2002, “Quantum en-
tropy and Special Relativity,” Phys. Rev. Lett. 88, 230402.

836 Crispino, Higuchi, and Matsas: The Unruh effect and its applications

Rev. Mod. Phys., Vol. 80, No. 3, July–September 2008



Peres, A., and D. R. Terno, 2004, “Quantum information and
relativity theory,” Rev. Mod. Phys. 76, 93–123.

Pringle, L. N., 1989, “Rindler observers, correlated states,
boundary conditions, and the meaning of the thermal spec-
trum,” Phys. Rev. D 39, 2178–2186.

Raine, D. J., D. W. Sciama, and P. G. Grove, 1991, “Does a
uniformly accelerated quantum oscillator radiate?,” Proc. R.
Soc. London, Ser. A 435, 205–215.

Reeh, H., and Schlieder, 1961, “Bemerkungen zur
Unitäräquivalenz von Lorentzinvarianten Feldern,” Nuovo
Cimento 22, 1051–1068.

Ren, H., and E. J. Weinberg, 1994, “Radiation from a moving
scalar source,” Phys. Rev. D 49, 6526–6533.

Reznik, B., 1998, “Unruh effect with back reaction—A first
quantized system,” Phys. Rev. D 57, 2403–2409.

Reznik, B., A. Retzker, and J. Silman, 2005, “Violating Bell’s
inequality in vacuum,” Phys. Rev. A 71, 042104.

Rindler, W., 1966, “Kruskal space and the uniformly acceler-
ated frame,” Am. J. Phys. 34, 1174–1178.

Ritus, V. I., 1969, “Effect of an electromagnetic field on decays
of elementary particles,” Zh. Eksp. Teor. Fiz. 56, 986–1005
�Sov. Phys. JETP 29, 532–541 �1969��.

Rogers, J., 1988, “Detector for the temperaturelike effect of
acceleration,” Phys. Rev. Lett. 61, 2113–2116.

Rohrlich, F., 1961, “The definition of electromagnetic radia-
tion,” Nuovo Cimento 21, 811–822.

Rosu, H. C., 2001, “Hawking-like and Unruh-like effects: To-
ward experiments?,” Gravitation Cosmol. 7, 1–17.

Sanchez, N., 1981, “Quantum detection on the vacuum by non-
uniformly accelerated observers,” Phys. Lett. 105B, 375–380.

Sanchez, N., 1985, “Comments on quantum detection and the
anisotropy of thermal radiation by accelerated observers,”
Phys. Lett. 112A, 133–137.

Satz, A., 2007, “Then again, how often does the Unruh-DeWitt
detector click if we switch it carefully?,” Class. Quantum
Grav. 24, 1719–1731.

Schlicht, S., 2004, “Considerations on the Unruh effect: Cau-
sality and regularization,” Class. Quantum Grav. 21, 4647–
4660.

Schützhold, R., G. Schaller, and D. Habs, 2006, “Signatures of
the Unruh effect from electrons accelerated by ultrastrong
laser fields,” Phys. Rev. Lett. 97, 121302.

Schützhold, R., and M. Uhlmann, 2007, “Analogue of cosmo-
logical particle creation in an ion trap,” Phys. Rev. Lett. 99,
201301.

Schützhold, R., and W. G. Unruh, 2005, “Comment on ‘Tele-
portation with a uniformly accelerated partner,’ ” e-print
arXiv:quant-ph/0506028.

Sciama, D. W., P. Candelas, and D. Deutsch, 1981, “Quantum
field theory, horizon and thermodynamics,” Adv. Phys. 30,
327–366.

Scully, M. O., V. Kocharovsky, A. Belyanin, E. Fry, and F.
Capasso, 2004, “Scully et al. Reply to Comment on ‘Enhanc-
ing acceleration radiation from ground-state atoms via cavity
quantum electrodynamics,’ ” Phys. Rev. Lett. 93, 129302.

Scully, M. O., V. V. Kocharovsky, A. Belyanin, E. Fry, and F.
Capasso, 2003, “Enhancing acceleration radiation from
ground-state atoms via cavity quantum electrodynamics,”
Phys. Rev. Lett. 91, 243004.

Sewell, G. L., 1982, “Quantum fields on manifolds: PCT and
gravitationally induced thermal states,” Ann. Phys. �N.Y.�
141, 201–224.

Sexl, R. U., and H. K. Urbantke, 1969, “Production of particles

by gravitational fields,” Phys. Rev. 179, 1247–1250.
Soffel, M., B. Muller, and W. Greiner, 1980, “Dirac particles in

Rindler space,” Phys. Rev. D 22, 1935–1937.
Sokolov, A. A., and I. M. Ternov, 1963, “On polarization and

spin effects in the theory of synchrotron radiation,” Dokl.
Akad. Nauk SSSR 153, 1052–1054 �Sov. Phys. Dokl. 7, 1203–
1205 �1964��.

Sriramkumar, L., and T. Padmanabhan, 1996, “Finite-time re-
sponse of inertial and uniformly accelerated Unruh-DeWitt
detectors,” Class. Quantum Grav. 13, 2061–2079.

Streater, R. F., and A. S. Wightman, 1964, PCT, Spin and Sta-
tistics, and All That �Benjamin, New York�.

Susskind, L., and J. Uglum, 1994, “Black hole entropy in ca-
nonical quantum gravity and superstring theory,” Phys. Rev.
D 50, 2700–2711.

Suzuki, H., and K. Yamada, 2003, “Analytic evaluation of the
decay rate for an accelerated proton,” Phys. Rev. D 67,
065002.

Svaiter, B. F., and N. F. Svaiter, 1992, “Inertial and noninertial
particle detectors and vacuum fluctuations,” Phys. Rev. D 46,
5267–5277.

Takagi, S., 1984, “On the response of a particle detector in a
circular motion,” Prog. Theor. Phys. 72, 1270–1272.

Takagi, S., 1986, “Vacuum noise and stress induced by uniform
acceleration—Hawking-Unruh effect in Rindler manifold of
arbitrary dimension,” Prog. Theor. Phys. Suppl. 88, 1–142.

Tolman, R. C., 1934, Relativity, Thermodynamics and Cosmol-
ogy �Oxford University Press, Oxford�.

Uhlmann, M., G. Plunien, R. Schützhold, and G. Soff, 2004,
“Resonant cavity photon creation via the dynamical Casimir
effect,” Phys. Rev. Lett. 93, 193601.

Unruh, W. G., 1976, “Notes on black-hole evaporation,” Phys.
Rev. D 14, 870–892.

Unruh, W. G., 1977, in Proceedings of the 1st Marcel Gross-
mann Meeting on General Relativity, edited by R. Ruffini
�North-Holland, Amsterdam�, pp. 527–536.

Unruh, W. G., 1981, “Experimental black-hole evaporation?,”
Phys. Rev. Lett. 46, 1351–1353.

Unruh, W. G., 1992, “Thermal bath and decoherence of Rin-
dler spacetimes,” Phys. Rev. D 46, 3271–3277.

Unruh, W. G., 1998, “Acceleration radiation for orbiting elec-
trons,” Phys. Rep. 307, 163–171.

Unruh, W. G., 1999, in Proceedings of the Quantum Aspects of
Beam Physics Conference, edited by P. Chen �World Scien-
tific, Singapore�.

Unruh, W. G., and R. M. Wald, 1982, “Acceleration radiation
and the generalized second law of thermodynamics,” Phys.
Rev. D 25, 942–958.

Unruh, W. G., and R. M. Wald, 1983, “Entropy bounds, accel-
eration radiation, and the generalized second law,” Phys.
Rev. D 27, 2271–2276.

Unruh, W. G., and R. M. Wald, 1984, “What happens when an
accelerating observer detects a Rindler particle,” Phys. Rev.
D 29, 1047–1056.

Unruh, W. G., and N. Weiss, 1984, “Acceleration radiation in
interacting field theories,” Phys. Rev. D 29, 1656–1662.

Vanzella, D. A. T., and G. E. A. Matsas, 2000, “Weak decay of
uniformly accelerated protons and related processes,” Phys.
Rev. D 63, 014010.

Vanzella, D. A. T., and G. E. A. Matsas, 2001, “Decay of ac-
celerated protons and the existence of the Fulling-Davies-
Unruh effect,” Phys. Rev. Lett. 87, 151301.

837Crispino, Higuchi, and Matsas: The Unruh effect and its applications

Rev. Mod. Phys., Vol. 80, No. 3, July–September 2008



Volovik, G. E., 1992, Exotic Properties of Superfluid 3He
�World Scientific, Singapore�.

Wald, R. M., 1978, “Trace anomaly of a conformally invariant
quantum field in curved spacetime,” Phys. Rev. D 17, 1477–
1484.

Wald, R. M., 1984, General Relativity �University of Chicago
Press, Chicago�.

Wald, R. M., 1994, Quantum Field Theory in Curved Spacetime
and Black Hole Thermodynamics, Chicago Lectures in Phys-
ics �University of Chicago Press, Chicago�.

Wald, R. M., 2001, “The thermodynamics of black holes,” Liv-
ing Rev. Relativ. 4, Irr-2001-6.

Wightman, A. S., 1956, “Quantum field theory in terms of
vacuum expectation values,” Phys. Rev. 101, 860–866.

Yablonovitch, E., 1989, “Accelerating reference frame for elec-
tromagnetic waves in a rapidly growing plasma: Unruh-

Davies-Fulling-DeWitt radiation and the nonadiabatic Ca-
simir effect,” Phys. Rev. Lett. 62, 1742–1745.

Yablonovitch, E., J. P. Heritage, D. E. Aspnes, and Y. Yafet,
1989, “Virtual photoconductivity,” Phys. Rev. Lett. 63, 976–
979.

Yao, W.-M., et al., 2006, “Review of particle physics,” J. Phys.
G 33, 1–1232.

Zharkov, G. F., 1965, “Pion emission and beta decay of a pro-
ton moving in a magnetic field,” Yad. Fiz. 1, 173–182 �Sov. J.
Nucl. Phys. 1, 120–126 �1965��.

Zhu, Z., and H. Yu, 2007, “Fulling-Davies-Unruh effect and
spontaneous excitation of an accelerated atom interacting
with a quantum scalar field,” Phys. Lett. B 645, 459–465.

Zurek, W. H., 1991, “Decoherence and the transition from
quantum to classical,” Phys. Today 44 �10�, 36–44.

838 Crispino, Higuchi, and Matsas: The Unruh effect and its applications

Rev. Mod. Phys., Vol. 80, No. 3, July–September 2008


