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This review deals with the structure of hadrons, strongly interacting many-body systems consisting of
quarks and gluons. These systems have a size of about 1 fm, which shows up in scattering experiments
at low momentum transfers Q in the GeV region. At this scale the running coupling constant of
quantum chromodynamics �QCD�, the established theory of the strong interactions, becomes
divergent. It is therefore highly intriguing to explore this theory in the realm of its strong interaction
regime. However, the quarks and gluons cannot be resolved at the GeV scale but have to be studied
through their manifestations in the bound many-body systems, for instance, pions, nucleons, and their
resonances. The review starts with an overview of QCD at low momentum transfer and a summary of
the theoretical apparatus describing the interaction of hadrons with electrons and photons.
Experimental results are presented for the most significant observables studied with the
electromagnetic probe: form factors, polarizabilities, excitation spectra, and sum rules. These
experimental findings are compared and interpreted with various theoretical approaches to QCD,
such as phenomenological models with quarks and pions, dispersion relations as a means to connect
observables from different experiments, and, directly based on the QCD Lagrangian, chiral
perturbation theory and lattice gauge theory.
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I. INTRODUCTION

Hadrons are composite systems with many internal
degrees of freedom. The strongly interacting constitu-
ents of these systems, the quarks and gluons, are de-
scribed by quantum chromodynamics �QCD�. This
theory is asymptotically free, that is, it can be treated
in a perturbative way for large values of the four-
momentum transfer squared, Q2 �Gross and Wilczek,
1973a, 1973b; Politzer, 1973�. However, the binding
forces become increasingly strong if the momentum
transfer decreases towards the region of about 1 GeV,
which is the natural habitat of nucleons and pions. In
particular, the “running” coupling constant of the strong
interaction �s�Q2� is expected to diverge if Q2 decreases
to values near �QCD

2 ��250 MeV�2, which defines the
Landau pole of QCD. This behavior is totally different
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from quantum electrodynamics �QED�, for which the
coupling constant �em�Q2� diverges for huge momentum
transfers at the Planck scale, corresponding to Q2

�1038 GeV2 or 10−35 m, for below any distance ever to
be resolved by experiment. On the contrary, the Landau
pole of QCD corresponds to a resolution of the nucle-
on’s size, somewhat below 1 fm or 10−15 m. This is the
realm of nonperturbative QCD, in which quarks and
gluons appear as clusters confined in the form of color-
neutral hadrons. As of today it is an open question
whether this confinement can be derived directly from
QCD or whether it is a peculiarity of a strongly interact-
ing many-body system or based on some deeper
grounds. Therefore the study of QCD in the nonpertur-
bative domain serves less as a check of QCD per se, but
is concerned with the highly correlated many-body sys-
tem “hadron” and its effective degrees of freedom.

Quantum chromodynamics is a non-Abelian gauge
theory developed on the basis of quarks and gluons
�Fritzsch et al., 1973; Gross and Wilczek, 1973b; Wein-
berg, 1973�. The non-Abelian nature of this theory gives
rise to a direct interaction among the gluons, and the
forces among the quarks are mediated by the exchange
of gluons whose chromodynamic vector potential
couples to the vector current of the quarks. If massless
particles interact via their vector current, the helicity
�handedness or chirality� of the particles is conserved.
The nucleon is essentially made of the light u and d
quarks plus a small admixture of s quarks, with masses
mu=1.5–3.0 MeV, md=3–7 MeV, and ms=95±25 MeV
�Yao et al., 2006�. In the zero mass limit, these light
quarks can be classified according to their chirality by
the group SU�3�R � SU�3�L. Several empirical facts give
rise to the assumption that this symmetry is spontane-
ously broken down to its vectorial subgroup, and in ad-
dition the finite quark masses cause an explicit symme-
try breaking. The spontaneously broken symmetry is a
most remarkable feature of QCD because it cannot be
derived from the Lagrangian. This is quite different
from the explicit symmetry breaking, which is put in by
design through the finite quark masses in QCD and ap-
pears in a similar way in the Higgs sector. As a result
one obtains the conserved vector currents J�

a and the
only partially conserved axial vector currents J5�

a ,

J�
a = q̄����a/2�q, J5�

a = q̄���5��a/2�q , �1�

where q are Dirac spinors of pointlike �light� quarks and
��, �5 the appropriate Dirac matrices. The quantities �a,
a=1, . . . ,8 denote the Gell-Mann matrices of SU�3� de-
scribing the flavor structure of the three light quarks,
and �0 is the unit matrix. The photon couples to quarks
by the electromagnetic vector current J�

em�J�
�3�

+ �1/�3�J�
�8�, corresponding to isovector and isoscalar in-

teractions, respectively. The weak neutral current medi-
ated by the Z0 boson couples to the third, eigth, and
zeroth components of both vector and axial currents.
While the electromagnetic current is always conserved,
��J�

em=0, the axial current is exactly conserved only for
massless quarks. In this limit there exist conserved

charges Qa and axial charges Q5
a, which are connected by

commutation relations. The corresponding “current al-
gebra” predated QCD and was the basis of various low-
energy theorems �LETs�, which govern the low-energy
behavior of �nearly� massless particles.

The puzzle we encounter in the physics of hadrons is
the following: The massless quarks appearing in the
QCD Lagrangian must conserve the axial currents. The
nucleons should eventually emerge from the same La-
grangian as massive many-body systems of quarks and
gluons. However, the conservation of the axial current in
the Wigner-Weyl mode would require a vanishing axial
coupling constant for these massive nucleons, which is
ruled out by the observed � decay. A solution of this
puzzle was given by Goldstone’s theorem. At the same
time as the three-quark system nucleon becomes mas-
sive by means of the QCD interaction, the vacuum de-
velops a nontrivial structure due to finite expectation
values of quark-antiquark pairs �condensates �q̄q��, and
so-called Goldstone bosons are created, q̄q pairs with
the quantum numbers of pseudoscalar mesons. These
Goldstone bosons are massless, and together with the
massive nucleons they warrant the conservation of the
axial current. Because the quarks are not really mass-
less, the chiral symmetry is slightly broken in nature. As
a consequence the physical Goldstone bosons also ac-
quire a finite mass, in particular the pion mass m	 fol-
lows to lowest order from the Gell-Mann-Oakes-Renner
relation,

m	
2 f	

2 = − �mu + md��q̄q� + ¯ , �2�

with the condensate �q̄q��−�225 MeV�3 and f	
�93 MeV the pion decay constant. Since the pions are
now massive, the corresponding axial currents are no
longer conserved and the four-divergence of the axial
current becomes finite,

��J5�
a � − f	m	

2
	
a , �3�

where 
	
a describes the local pion field. In other words

the charged pion decay 	+→�++�� and 	−→�−+ �̄�
proceeds via coupling to the axial current of Eq. �3�.
While the charged pions decay weakly with a lifetime of
2.6�10−8 s, the neutral pion decays much faster, in
8.4�10−17 s, by means of the electromagnetic interac-
tion, 	0→�+�. This provides an additional source for
the neutral pion or the axial current with index 3,

��J5�
3 = ��em/	�E� · B� , �4�

where E� and B� are the electromagnetic fields. We note
that the scalar product of the two electromagnetic fields
is a pseudoscalar. This decay can be mediated by a tri-
angle of intermediate quark lines, and therefore it is of-
ten called the triangle anomaly. It is “anomalous” be-
cause such processes do not appear in classical theories
but only in quantum field theories through the renor-
malization procedure �Wess-Zumino-Witten term�. The
analogous anomaly in QCD is obtained from Eq. �4� by
replacing the electromagnetic field by the corresponding
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color fields, E� c and B� c, �em by the strong coupling con-
stant �s, and with an additional factor of 3 for u, d, and
s quarks,

��J5�
0 = 3��s/	�E� c · B� c. �5�

As a consequence J5�
0 is not conserved, not even for

massless quarks �UA�1� anomaly	.
Unfortunately, no ab initio calculation can describe

the intriguing but complicated world of the confinement
region. In principle, lattice gauge theory should have the
potential to describe QCD directly from the underlying
Lagrangian. This theory discretizes QCD on a four-
dimensional space-time lattice and approaches the
physical world in the continuum limit of vanishing lattice
constants �Wilson, 1974; Kogut and Susskind, 1975�.
However, these calculations can only be performed with
u and d quark masses much larger than the current
quark masses mentioned above, and therefore also the
pion mass turns out much too large. As a consequence
the Goldstone mechanism, the abundant production of
sea quarks, is much suppressed. Lattice gauge theory has
progressed considerably over the past decade and fur-
ther progress is foreseen with both improved algorithms
and increased computing power. For recent develop-
ments see Alexandrou et al. �2006�; Boinepalli et al.
�2006�; Edwards et al. �2006�; Göckeler et al. �2006�;
Alexandrou �2007�. Semiquantitative agreement has
been reached for ratios of masses and magnetic mo-
ments for the hadrons, there also exist predictions for
nucleon resonances and electromagnetic form factors in
qualitative agreement with the data. However, some
doubt may occur on whether such a procedure can ever
fully describe the pionic degrees of freedom in hadronic
physics, particularly in the context of pion production
and similar reactions.

A further ab initio calculation is chiral perturbation
theory �CPT�, which has been established by Weinberg
�1979� in the framework of effective Lagrangians and
put into a systematic perturbation theory by Gasser and
Leutwyler �1984, 1985�. This theory is based on the chi-
ral symmetry of QCD, which is, however, expressed by
effective degrees of freedom, notably the Goldstone
bosons. Because of the Goldstone mechanism, the
threshold interaction of pions and other Goldstone
bosons is weak not only among themselves but also with
the nucleons. Furthermore, the pion mass is small and
related to the small quark masses mu and md according
to Eq. �2�. Based on these grounds, CPT has been set up
as a perturbation theory in the parameters p
ª �p1 ,p2 , . . . ;mu ,md�, where pi are the external four-
momenta in a particular �Feynman� diagram. Chiral per-
turbation theory has been applied to many photoin-
duced reactions by Bernard, Kaiser, et al. �1991, 1993,
1995� in the 1990s. As a result several puzzles have been
solved and considerable insight has been gained. How-
ever, CPT cannot be renormalized as QED by adjusting
a few parameters to the observables. Instead, the ap-
pearing infinities must be removed order by order in the
perturbation series. This renormalization procedure

gives rise to a growing number of low-energy constants
�LECs� describing the strength of all possible effective
Lagrangians consistent with the symmetries of QCD, at
any given order of the perturbation series. These LECs,
however, cannot �yet� be derived from QCD but must be
fitted to the data, which leads to a considerable loss of
predictive power with increasing order of perturbation.
A further problem arises in the nucleonic sector because
of the large nucleon mass M, which is of course not a
small expansion parameter. The latter problem was
solved by heavy baryon CPT, a kind of Foldy-
Wouthuysen expansion in 1/M. This solution was, how-
ever, achieved at the expense of approximating the rela-
tivistic description by a nonrelativistic one. Over the
past decade new schemes have been developed, which
provide a consistent expansion within a manifestly Lor-
entz invariant formalism �Becher and Leutwyler, 1999;
Kubis and Meißner, 2001; Fuchs et al., 2003; Schindler
et al., 2004�. For reviews of CPT see Scherer �2003� and
Bernard �2008�.

If quarks and gluons are resolved at high momentum
transfer, they are asymptotically free and their momen-
tum distribution can be described by evolution functions
as derived from perturbative expansions �higher twists�.
This domain has been studied since the discovery of par-
ton scaling at the end of the 1960s. Such investigations
have given confidence in the validity of the QCD La-
grangian. Systems of heavy quarks �charm, bottom, top�
can be well described by effective field theories based on
QCD. However, these approaches are less effective for
systems of light quarks �up, down, strange�, for which
the sea quarks and notably pionic degrees of freedom
become important. In order to incorporate the conse-
quences of chiral symmetry, a plethora of hybrid models
with quarks and pions has been developed. Quark mod-
els have been quite successful in predicting the reso-
nance spectrum of the nucleon as well as the electro-
magnetic decay and excitation of these resonances.
However, they have problems describing the spectrum
and the size of the nucleon at the same time. We do not
focus on these models in the review but occasionally
refer to them at later stages.

We concentrate here on hadronic structure investiga-
tions with the electromagnetic probe, that is electron
and photon scattering as well as electroproduction and
photoproduction of mesons. A broader account can be
found in Thomas and Weise �2001�. In Sec. II we give an
introduction to the formalism relevant for these studies.
Section III summarizes information on the form factors
of nucleons and pions. Another bulk property of the
hadrons is their polarizability, which can be determined
by Compton scattering as discussed in Sec. IV. These
global properties are related to the excitation spectrum
of the particles, meson production at threshold, reso-
nances, and continuum backgrounds as detailed in Sec.
V. Finally, we examine the origin and relevance of sev-
eral sum rules in Sec. VI. In all these fields, there has
been a rapid evolution over the past years triggered by
high-precision experiments. These have been made pos-
sible by a new generation of electron accelerators with
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high current, high duty factor, and highly polarized
beams in combination with improved target and detec-
tion techniques, notably for polarized particles. In many
of the presented phenomena we recover the role of the
pion as an effective degree of freedom at low energy and
momentum transfer to the nucleon. It is therefore the
leitmotiv of this review to look at hadrons as interesting
and complicated many-body systems whose direct de-
scription by QCD proper is a major challenge for par-
ticle physics in the future.

II. ELECTROMAGNETIC INTERACTION WITH
HADRONS

A. Kinematics

We consider the kinematics of the reaction

e�k1� + N�p1� → e�k2� + N�p2� , �6�

with ki= �
i ,k� i� and pi= �Ei ,p� i� the four-momenta of an
electron e with mass m and a nucleon N with mass M.
The four-momenta are constrained by the on-shell con-
ditions p1

2=p2
2=M2, k1

2=k2
2=m2, and by the conservation

of total energy and momentum k1+p1=k2+p2. In order
to make Lorentz invariance manifest, it is useful to ex-
press the amplitudes in terms of the three Mandelstam
variables

s = �k1 + p1�2, t = �k2 − k1�2, u = �p2 − k1�2. �7�

Due to the mentioned constraints, these variables fulfill
the relation s+ t+u=2�m2+M2�, and therefore we may
choose s and t as two independent Lorentz scalars. For
reasons of symmetry, the center-of-mass �cm� system is
used in the following. The three-momenta of the par-
ticles cancel in this system, and therefore s= �
cm
+Ecm�2=W2, i.e., the Mandelstam variable s is the square
of the total cm energy W. Furthermore, the initial and
final energies of each particle are equal, and hence
t=−�k�2−k�1�cm

2 is related to the three-momentum transfer
in the cm system. From these definitions it follows that
physical processes occur at s� �m+M�2 and t�0. Be-
cause of the smallness of the fine-structure constant
�em�1/137, it is usually sufficient to treat electron scat-
tering in the approximation that a single photon with
momentum q=k1−k2= �
 ,q� � is transferred to the had-
ronic system. We call this particle a spacelike virtual
photon �*, because t=q2�0, i.e., the spacelike compo-
nent of the four-vector q prevails. Since t is negative in
the physical region of electron scattering, it is common
use to describe electron scattering by the positive num-
ber Q2=−q2. This contrasts the situation in pair annihi-
lation e+e−→�*, which produces a timelike virtual pho-
ton with q2=m�*

2 �0. The above considerations can be
applied to real Compton scattering �RCS�,

��k1� + N�p1� → ��k2� + N�p2� , �8�

by replacing m1,2
2 =k1,2

2 →0 and to virtual Compton scat-
tering �VCS�,

�*�k1� + N�p1� → ��k2� + N�p2� , �9�

by replacing m1
2=k1

2→q2�0 and m2
2=k2

2→0.
We now turn to the spin degrees of freedom. The vir-

tual photon with momentum q� carries a polarization de-

scribed by the vector potential A� , which has both a

transverse component A� T�q� , as in the case of a real

photon, and a longitudinal component q̂ ·A� , which is re-
lated to the timelike component A0 by current conserva-

tion, q ·A=
A0−q� ·A� =0. Since the electron is assumed
to be highly relativistic, its spin degrees of freedom are

described by the helicity h=s� · k̂= ± 1
2 , the projection of

the spin s� on the momentum unit vector k̂. In the fol-
lowing we denote the polarization of the incident elec-
tron by Pe=2h= ±1, for example, Pe=1 describes a beam
of fully polarized right-handed electrons. The polariza-

tion vector P� of a target or recoil nucleon is represented
in a coordinate system with the z axis pointing in the
direction of the virtual photon, êz= q̂, the y axis perpen-

dicular to the electron scattering plane, êy� k̂1� k̂2, and
the x axis “sideways,” i.e., in the scattering plane and on
the side of the outgoing electron.

The scattered electron probes the charge and magne-
tization distributions of the hadronic system via the in-
teraction of electromagnetic currents, which leads to a
transition matrix element M=
�j��e�J��h�. If we ne-
glect higher order QED corrections, the electron is a
Dirac point particle with its current given by j�
=−eū2��u1, where �� are Dirac matrices and ui Dirac
spinors characterized by the quantum numbers i
= �k� i ,hi�. In the one-photon exchange approximation,
the cross section is then obtained by the square of the
transition matrix element multiplied by phase space fac-
tors,

d�� 

spins


M
2 � 

spins

����e�W���h� , �10�

where ���= j�j
�
* can be calculated straightforwardly. By

varying the incident electron energy and the scattering
angle as well as the polarizations of the respective par-
ticles, it is then possible to enhance or suppress specific
components of the hadronic tensor W��=J�J

�
*, and thus

to study different aspects of the hadronic structure in a
model-independent way. For further details and a gen-
eral introduction to the structure of hadrons and nuclei,
see Boffi et al. �1996� �see also Boffi et al. �1993�	.

B. Elastic electron scattering

The hadronic current for elastic electron scattering off
the nucleon is given by the most general form for the
vector current with the same spin-1

2 particle before and
after the collision,
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J� = ūp2
���F1�Q2� + i����q�/2M�F2�Q2�	up1

, �11�

where up1
and up2

are the four-spinors of the nucleon in
the initial and final states, respectively. The first term on
the right-hand side �rhs� of Eq. �11� is the Dirac current,
which describes the finite size of the nucleon by the
Dirac form factor F1�Q2�. The second term reflects the
fact that the internal degrees of freedom also produce an
anomalous magnetic moment � whose spatial distribu-
tion is described by the Pauli form factor F2�Q2�. These
form factors are normalized to F1

p�0�=1, F2
p�0�=�p

=1.79 and F1
n�0�=0, F2

n�0�=�n=−1.91 for proton and
neutron, respectively.

From the analogy with nonrelativistic physics, it is se-
ducing to associate the form factors with the Fourier
transforms of the charge and magnetization densities.
The problem is that the charge distribution ��r�� has to
be calculated by a three-dimensional Fourier transform
of the form factor as a function of q� , whereas the form
factors are generally functions of Q2=q�2−
2. However,
there exists a special Lorentz frame, the Breit or brick-
wall frame, in which the energy of the �spacelike� virtual
photon vanishes. This can be realized by choosing, for
example, p�1=− 1

2q� and p�2= + 1
2q� leading to E1=E2= �M2

+ 1
4q�2�1/2, 
=0, and Q2=q�2. Equation �11� takes the fol-

lowing form in this frame �Sachs, 1962�:

J� = „GE�Q2�,i��� � q� /2M�GM�Q2�… , �12�

where GE�Q2� is the timelike component of J� and
hence is identified with the Fourier transform of the
electric charge distribution, while GM�Q2� appears with
a structure typical for a static magnetic moment and
hence is interpreted as a Fourier transform of the mag-
netization density. The Sachs form factors GE and GM
are related to the Dirac form factors by

GE�Q2� = F1�Q2� − �F2�Q2� ,

GM�Q2� = F1�Q2� + F2�Q2� , �13�

where �=Q2 /4M2 is a measure of relativistic �recoil� ef-
fects. Although Eq. �13� is a covariant definition, the
Sachs form factors can only be Fourier transformed in a
special frame, namely, the Breit frame, with the result

GE�q�2� =� ��r� �eiq� ·r�d3r�

=� ��r��d3r� −
q�2

6 � ��r� �r� 2d3r� + ¯ , �14�

where the first integral yields the total charge in units of
e, i.e., 1 for the proton and 0 for the neutron, and the
second integral defines the square of the electric root-
mean-square �rms� radius, �r2�E. We note that each value
of Q2 requires a particular Breit frame, i.e., information
on the charge distribution is taken from an infinity of
different frames, which is then used as input for the Fou-
rier integral in terms of GE�q�2�. Therefore the density
��r�� is not an observable that we can “see” in any par-

ticular Lorentz frame but only a mathematical construct
in analogy to a “classical” charge distribution. The prob-
lem is that an “elementary” particle has a small mass
such that recoil effects, measured by �, and size effects,
measured by �r2�, become comparable and cannot be
separated in a unique way. The situation is numerically
quite different for a heavy nucleus, in which case the size
effects dominate the recoil effects by orders of magni-
tude.

Because the hadronic current is defined by Eq. �11�,
any observable for elastic electron scattering can be
uniquely expressed in terms of the two form factors. In
particular the unpolarized differential cross section is
given by �Rosenbluth, 1950�

d�

d�
= � d�

d�
�

0
�GE

2 + �GM
2

1 + �
+ 2� tan2 �

2
GM

2 � , �15�

with �d� /d��0 the cross section for electrons scattering
off a point particle and � the scattering angle of the
electron in the laboratory system. Equation �15� gives us
the possibility to separate the form factors by variation
of tan2�� /2� while keeping Q2 constant. In fact the data
should lie on a straight line �Rosenbluth plot� with a
slope that determines the magnetic form factor GM.
However, there are limits to this method, in particular if
one of the form factors is very much smaller than the
other. In such cases a double-polarization experiment
can help to get independent and more precise informa-
tion. Such an experiment requires a polarized electron
beam and a polarized target, or equivalently the mea-
surement of the nucleon’s polarization in the final state.
The measured asymmetry takes the form �Arnold et al.,
1981�

A = − Pe

�2���1 − ��GEGMPx + ��1 − �2GM
2 Pz

�GE
2 + �GM

2 , �16�

where �=1/ �1+2�1+��tan2�� /2�	 is the transverse polar-
ization of the virtual photon. In particular we find that
the longitudinal-transverse interference term, appearing
if the nucleon is polarized perpendicularly �sideways� to
q� , is proportional to GEGM, while the transverse-
transverse interference term, appearing for polarization
in the q� direction, is proportional to GM

2 . The ratio of
both measurements then determines GE /GM with high
precision, because most normalization and efficiency
factors cancel.

C. Parity violating electron scattering

In the previous section we have tacitly assumed that
the interaction between electron and hadron is mediated
by the virtual photon and therefore parity conserving.
With this assumption the polarization of only one par-
ticle does not yield any observable effect. However, it is
also possible to exchange a Z0 gauge boson, although
this is much suppressed in the low-energy region be-
cause of the large mass MZ0 =91 GeV. This boson
couples to electrons and nucleons with a mixture of vec-
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tor and axial vector currents typical for the weak inter-
action. If Z0 is emitted from one of the particles by the
vector coupling and absorbed by the other one by the
axial vector coupling, it produces a parity-violating
asymmetry that can be observed if one of the particles
�typically the incident electron� is polarized. The cou-
pling of Z0 to the electron involves the current

j̃� = g�ū2����1 − 4 sin2 �W� − ���5	u1, �17�

where �W is the Weinberg angle and g� a weak coupling
constant. Because sin2 �W�0.23, the vector current in
Eq. �17� is largely suppressed compared to the axial vec-
tor part containing the �5 factor. The corresponding
weak hadronic current can be parametrized as follows:

J̃� = ūp2
���F̃1�Q2� + i����q�/2M�F̃2�Q2�

+ ���5G̃A�Q2�	up1
, �18�

where the tilde signifies the coupling to Z0. The weak
Sachs form factors are defined as in Eq. �13�, and the
cross sections and asymmetries are calculated as in the
previous section. However, the contribution of the weak
current to the differential cross section is well below the
experimental error bars, and information can only be
obtained from the interference between the electromag-
netic and weak transition amplitudes. The parity-

violating asymmetry Ã= �d�+−d�−� / �d�++d�−�, where
d�+ and d�− are the differential cross sections for inci-
dent electrons with positive and negative helicities, takes
the form

Ã = −
GF

4	��2

� ��GEG̃E + �GMG̃M − ���1 − 4 sin2 �W�GMG̃A

�GE
2 + �GM

2 �
= AE�G̃E� + AM�G̃M� + AA�G̃A� , �19�

with ��=��1−�2���1+��.

D. Pseudoscalar meson electroproduction

The reaction

�*�q� + N�p1� → 	�k� + N�p2� �20�

is described by the transition matrix element ��J�, with
�� the polarization of the �virtual� photon and J� the
transition current leading from the nucleon’s ground
state to a meson-nucleon continuum. This current can be
expressed by six different Lorentz structures constructed
from the independent momenta and appropriate Dirac
matrices. Since the photon couples to an electromag-
netic vector current and the pion is of pseudoscalar na-
ture, the transition current appears as an axial four-

vector in the nucleon sector. The spacelike �J�� and
timelike ��� components of the transition operator take
the following form in the hadronic cm frame:

J� = �̃F1 + i�q̂� �� ���� · k̂�F2 + k̃��� · q̂�F3 + k̃��� · k̂�F4

+ q̂��� · q̂�F5 + q̂��� · k̂�F6, �21�

� = ��� · k̂�F7 + ��� · q̂�F8, �22�

with q̂ and k̂ the three-momentum unit vectors of virtual
photon and pion, respectively, and F1 to F8 the Chew-
Goldberger-Low-Nambu �CGLN� amplitudes �Chew
et al., 1957�. The structures in front of the Fi are all
independent axial vectors and pseudoscalars that can be
constructed from the Pauli spin matrix �� and the inde-
pendent cm momenta k� and q� . We further note that �̃

and k̃ are the transverse components of �� and k̂ with
regard to q̂. With these definitions F1 to F4 describe the
transverse, F5 and F6 the longitudinal, and F7 and F8 the
timelike or Coulomb components of the current. The

latter ones are related by current conservation, q� ·J�

−
�=0, leading to 
q� 
F5=
F8 and 
q� 
F6=
F7. The
CGLN amplitudes depend on the virtuality of the pho-
ton Q2 as well as the total hadronic energy W and the
pion-nucleon scattering angle �

	
* in the hadronic cm sys-

tem. These amplitudes are complex functions because
the transition leads to a continuum state with a complex
phase factor. They can be decomposed in a series of
multipoles �see Drechsel and Tiator �1992� for further
details	,

Ml± = �El±,Ml±,Ll±,Sl±� , �23�

where El±, Ml±, Ll±, and Sl± denote the transverse elec-
tric, transverse magnetic, longitudinal, and scalar �time-
like or Coulomb� multipoles, respectively. The latter two
are related by gauge invariance, 
q� 
Ll±=
Sl±, and there-
fore we may drop the longitudinal multipoles in the fol-
lowing without loss of generality. The CGLN multipoles
are complex functions of two variables, M�±
=M�±�Q2 ,W�. The notation of the multipoles is clarified
by Fig. 1. The incoming photon carries the multipolarity
L, which is obtained by adding the spin 1 and the orbital
angular momentum of the photon. The parity of the
multipole is P= �−1�L for E, L, and S, and P= �−1�L+1 for
M. The photon couples to the nucleon with spin 1

2 and
P= +1, which leads to hadronic states of spin J= 
L± 1

2 

and with the parity of the incoming photon. The outgo-
ing pion has negative intrinsic parity and orbital angular
momentum l, from which we can reconstruct the spin J
= 
l± 1

2 
 and the parity P= �−1�l+1 of the excited hadronic
state. This explains the notation of the multipoles, Eq.

I, J, P

π

N’N

L

γ

N

l

∗

*

FIG. 1. Multipole notation for pion photoproduction.
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�23�, by the symbols E, M, and S referring to the type of
the photon, and by the index l± with l the pion angular
momentum and the � sign represents the two possibili-
ties to construct the total spin J= 
l± 1

2 
 in the intermedi-
ate states.

We complete the formalism of pion photoproduction
by discussing the isospin. Since the incoming photon has
both isoscalar and isovector components and the pro-
duced pion is an isovector, the matrix elements take the
form

Ml±
� = 1

2 ���,�0	Ml±
�−� + 1

2 ���,�0�Ml±
�+� + ��Ml±

�0�, �24�

where �� are the isospin Pauli matrices in a spherical
basis, i.e., �= �+,0 ,−�. It follows that the intermediate
state in Fig. 1 can only have isospin I= 1

2 or I= 3
2 .

The four physical amplitudes with final states
�p	0 ,n	0 ,n	+ ,p	−� are given by linear combinations of
the three isospin amplitudes. We should, however, keep
in mind that the isospin symmetry is not exact but bro-
ken by the mass differences between the nucleons �n ,p�
and pions �	± ,	0� as well as explicit Coulomb effects, in
particular near threshold.

Calculation of the observables is straightforward but
somewhat tedious, and therefore we choose pion photo-
production at threshold as an illustrative example. Near
threshold the partial wave series may be truncated to s
and p waves, i.e., the transverse multipoles E0+, M1+,
E1+, and M1−. With P1=3E1+ +M1+ −M1−, P2=3E1+

−M1+ +M1−, and P3=2M1+ +M1− the differential cross
section takes the following form in the cm frame:

d���
	
* �

d�
= �k/q��A + B cos �

	
* + C cos2 �

	
* � , �25�

with A= 
E0+
2+ 1
2 
P2
2+ 1

2 
P3
2, B=2 Re�E
0+
* P1�, and C

= 
P1
2− 1
2 
P2
2− 1

2 
P3
2. As expected, the s-wave multipole
yields a constant angular distribution, whereas the
forward-backward asymmetry is given by the interfer-
ence between the s wave and the p-wave combination
P1. The terms in cos2 �

	
* determine a further p-wave

combination, 
P2
2+ 
P3
2. A complete experiment re-
quires one to measure one further observable, the pho-
ton asymmetry

���
	
* � = �d�� − d���/�d�� + d���

=
k

2q
�
P2
2 − 
P3
2�sin2 �

	
* � d�

d�
��
	
* � , �26�

where � and � stand for photon polarizations perpen-
dicular and parallel to the reaction plane.

The theory of meson electroproduction is more in-
volved and we refer the reader to Drechsel and Tiator
�1992�, and references therein. The scattered electron
serves as a source of virtual photons whose flux �V and
transverse polarization � can be controlled by varying
the electron kinematics. Moreover, we assume that the
electron beam is polarized. The fivefold differential

cross section for meson electroproduction is written as
the product of a virtual photon flux factor �V and a vir-
tual photon cross section,

d�/d�2d�2d�
	
* = �Vd�/d�

	
* . �27�

The electron kinematics is commonly given in the labo-
ratory system, whereas the hadrons are described in the
hadronic cm system as indicated by an asterisk. The re-
action plane and the electron scattering plane have the
same z axis, but the former is tilted against the latter by
the azimuthal angle �	. With these definitions, the vir-
tual photon cross section takes the following form for
polarized electrons but unpolarized hadrons:

d�

d�
	
* =

d�T

d�
	
* + �

d�L

d�
	
* + �2��1 + ��

d�LT

d�
	
* cos�	

+ �
d�TT

d�
	
* cos 2�	

+ Pe
�2��1 − ��

d�LT�

d�
	
* sin�	. �28�

Denoting the initial and final electron laboratory ener-
gies by �1 and �2, respectively, the photon laboratory
energy is 
L=�1−�2, and in the same notation the pho-
ton laboratory three-momentum is given by q�L. With
these definitions the transverse electron polarization and
the virtual photon flux take the form

� =
1

1 + 2�q�L
2 /Q2�tan2��/2�

, �V =
�em

2	2

�2

�1

K

Q2

1

1 − �
,

�29�

with K= �W2−M2� /2M the photon equivalent energy in
the laboratory frame. The partial cross sections in Eq.
�28� are functions of the virtuality Q2, the pion scattering
angle �

	
* , and the total hadronic cm energy W. The first

two terms on the rhs of this equation contain the trans-
verse ��T� and longitudinal ��L� cross sections. The third
and fifth terms yield the longitudinal-transverse interfer-
ences �LT and �LT�. These terms contain the explicit
factors cos�	 and sin�	, respectively, and an implicit
factor sin �

	
* in the partial cross sections, and therefore

they vanish in the direction of the virtual photon. The
latter is also true for the fourth term, which contains the
transverse-transverse interference ��TT�, which is pro-
portional to sin2 �

	
* and appears with the explicit factor

cos 2�	. These five partial cross sections can be ex-
pressed in terms of the six independent CGLN ampli-
tudes F1 to F6, or in terms of six helicity amplitudes H1
to H6 given by linear combinations of the CGLN ampli-
tudes. The particular form of the �	 dependence in Eq.
�28� is of course related to the fact that the virtual pho-
ton transfers one unit of spin. Close inspection shows
that the five responses provided by the polarization of
the electron can be separated in a super Rosenbluth
plot. This requires measuring the polarization � of the
virtual photon, the beam polarization Pe, and the angu-
lar distribution of the pion with at least one noncoplanar
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angle �	. A double-polarization experiment measuring
also the target or recoil polarizations of the nucleon
yields 18 different response functions altogether. The
relevant expressions can be found in Drechsel and Tia-
tor �1992� and Knöchlein et al. �1995�.

E. Resonance excitation

As shown in the previous section, each partial wave is
characterized by three quantum numbers, orbital angu-
lar momentum �, total angular momentum J, and isospin
I. Most of these pion-nucleon partial waves show distinct
resonance structures at one or more values of the had-
ronic cm energy. Furthermore, there are generally three
�independent� electromagnetic transitions between the
nucleon and a particular partial wave, an electric, a mag-
netic, and a Coulomb transition. Consider as an example
the most important resonance of the nucleon, the
��1232� with the spectroscopic notation P33, which de-
cays with a lifetime of about 0.5�10−23 s into a pion-
nucleon state, except for a small electromagnetic decay
branch of about 0.5%. This intermediate state contains a
pion in a p wave, i.e., �=1 and P= +1. The indices 33
refer to twice the isospin and spin quantum numbers, I
=J= 3

2 . The electroexcitation of this resonance takes
place by magnetic dipole �M1�, electric quadrupole �E2�,
and Coulomb quadrupole �C2� radiation, which is de-
noted by the three complex functions M1+

3/2, E1+
3/2, and S1+

3/2.
If one neglects the small photon decay branch, unitarity
requires that all three electroproduction multipoles
carry the phase �1+

3/2�W� of the pion-nucleon final state
�Watson, 1954�. For a stable particle with the quantum
numbers of a P33 resonance, Rarita and Schwinger
�1941� have developed a consistent relativistic theory in-
volving three �real� form factors G

i
*�Q2�. However, the

physical pion-nucleon state has a complex phase factor,
the resonance phenomenon spreads over more than
100 MeV in excitation energy, and there is no model-
independent way to extract the “bare” resonance pa-
rameters from the observables. It is therefore common
practice to relate the form factors to the transition mul-
tipoles taken at the resonance position, W=M�

=1232 MeV. Corresponding to the independent transi-
tion multipoles, the following three form factors for the
N� transition have been defined:

M1+
3/2�M�,Q2� = iN�q��Q2�/M	GM

* �Q2� ,

E1+
3/2�M�,Q2� = − iN�q��Q2�/M	GE

* �Q2� ,

S1+
3/2�M�,Q2� = − iN�q��Q2�2/2MM�	GC

* �Q2� , �30�

with q� and k� the three-momenta of photon and pion
at the resonance and N=�3�em/8k��� a kinematic fac-
tor relating pion photoproduction to total photoabsorp-
tion at the resonance. We note that these definitions di-
vide out the q dependence of the multipoles at
pseudothreshold �q→0� such that the form factors are
finite at this point. Equation �30� corresponds to the

definition of Ash et al. �1967�, the form factors of Jones
and Scadron �1973� are obtained by multiplication with
an additional factor, GJS=�1+Q2 / �M+M��2GAsh.

Because the background becomes more important as
the energy increases, the concept of transition form fac-
tors is usually abandoned for higher resonances. Instead
it is common to introduce the helicity amplitudes, which
are uniquely defined for each resonance by matrix ele-
ments of the transition current between hadronic states
of total spin J and projection M. With the photon mo-
mentum q� as axis of quantization, the virtual photon can
only transfer intrinsic spin 1 to the hadronic system, with
projections ±1 for right- and left-handed transverse pho-
tons �current components J±1� and 0 for the Coulomb
interaction �timelike component ��. Using parity and an-
gular momentum conservation, we find three indepen-
dent helicity amplitudes,

A1/2 = �1/�2K��N*�J,
1
2
�
J+
N�1

2
,−

1
2
�� ,

A3/2 = �1/�2K��N*�J,
3
2
�
J+
N�1

2
,
1
2
�� ,

S1/2 = �1/�2K��N*�J,
1
2
�
�
N�1

2
,
1
2
�� . �31�

In particular we note that the amplitude A3/2 exists
only for resonances with J� 3

2 , and neither does this am-
plitude exist for a free quark. Hence asymptotic QCD
predicts that A3/2 should vanish in the limit of large mo-
mentum transfer, Q2→ . The electromagnetic multi-
poles can be expressed by combinations of the helicity
amplitudes. For the ��1232� these relations take the fol-
lowing form:

M1+
3/2 � − �1/2�3���3A1/2 + 3A3/2� ,

E1+
3/2 � − �1/2�3���3A1/2 − A3/2� ,

S1+
3/2 � − �1/�2�S1/2. �32�

It is interesting to note that asymptotic QCD predicts
the following multipole ratios in the limit Q2→ :

REM = � Im E1+
3/2

Im M1+
3/2�

W=M�

→ 1,

RSM = � Im S1+
3/2

Im M1+
3/2�

W=M�

→ const. �33�

In these relations, the multipoles are evaluated at reso-
nance, defined by the energy for which the real part
passes through zero �K-matrix pole�. This should happen
at the same energy for all three multipoles as long as the
Fermi-Watson theorem is valid.
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F. Dispersion relations

Dispersion relations �DRs� play an important role in
the following sections. They are based on unitarity and
analyticity and, by proper definitions of the respective
amplitudes, fulfill gauge and Lorentz invariance as well
as other symmetries. The analytic continuation in the
kinematic variables allows one to connect information
from different physical processes and thus to check the
consistency of different sets of experiments. As shown in
Sec. IV, DRs are a prerequisite to determining the po-
larizabilities of hadrons from Compton scattering, and
several sum rules are derived in Sec. VI by combining
DRs with low-energy theorems. Most of these tech-
niques are very involved and we have to refer the reader
to the literature. Therefore here we give only an over-
view of the dispersive approach for the nucleon form
factors, which are discussed in more detail in Sec. III.

Let G�t� be a generic �electromagnetic� form factor
describing the ground state of the nucleon. The real and
imaginary parts of G�t� are then related by DRs. Assum-
ing further an appropriate high-energy behavior, these
amplitudes fulfill an unsubtracted DR in the Mandel-
stam variable t,

Re G�t� =
1

	
�

t0

 

dt�
Im G�t��
t� − t − i�

, �34�

where t0 is the lowest threshold for the electroproduc-
tion of pions by e+e− pair annihilation. These form fac-
tors can be measured by electron scattering for spacelike
momentum transfer �t=−Q2�0� and by collider experi-
ments for timelike momentum transfer �t�4M2�. The
imaginary part or spectral function Im G�t� vanishes in
the spacelike region, and therefore the i� term in Eq.
�34� can be dropped for elastic electron scattering. How-
ever, we note that Eq. �34� defines the real part of the
form factor in both the spacelike and timelike regions,
provided that the spectral function is sufficiently well
known. The dispersive formalism also yields information
on protons and neutrons at the same time as is evident
from the following reasoning. The spectral function can

be obtained from the two-step process �*→X→NN̄,
with X a hadronic state with the quantum numbers of
the photon. In the usual notation of these quantum
numbers with isospin I, G parity, spin J, parity P, and C
parity, the isoscalar photon has IG�JPC�=0−�1−−� and the
isovector photon IG�JPC�=1+�1−−�. The lightest hadronic
system X in the intermediate state is a pion pair, which
has even G parity and therefore contributes only to the
isovector current. This part of the spectral function is
therefore composed of �I� the vertex �*→		̄ given by
the pion form factor F	�t�, here in the timelike region
and therefore a complex function, and �II� the process

		̄→NN̄. The latter process is needed in the unphysical
region, which can, however, be reached by analytic con-
tinuation of the p-wave amplitudes for pion-nucleon
scattering �Höhler, 1983�. As a result, the two-pion con-

tribution to the spectral function can be constructed
from t0=4m	

2 up to about 1 GeV2 as

Im GE
v �t� = �qt

3/M�t�F	�t�*f+
1�t� ,

Im GM
v �t� = �qt

3/�2t�F	�t�*f−
1�t� , �35�

with qt=�t /4−m	
2 the pion momentum in the intermedi-

ate state and f±
1�t� the p-wave 		→NN̄ amplitude. The

spectral functions for the Sachs form factors are plotted
in Fig. 2. The figure shows a rapid rise of the spectral
functions at the two-pion threshold �t=4m	

2 � because the
projection of the nucleon Born graphs to the p wave
yields a singularity on the second Riemann sheet at t
=3.98m	

2 , just below threshold. Similar results for the
two-pion continuum have also been obtained by a two-
loop calculation in CPT �Kaiser, 2003�. Furthermore, we
observe the strong peak near t�28m	

2 , which is due to
the � meson with mass 770 MeV and a large width. The
spatial distribution of charge and current can be ob-
tained by the respective form factors in the Breit frame.
The starting point is Eq. �34� for spacelike t=−Q2

→−q�2, which is Fourier transformed to r� space with the
result

��r� =
1

4	2�
t0

 

dt Im G�t�
e−�tr

r
. �36�

The mean-squared radius for a particular region of the
spectral function at t=�2, where � is the mass of the
intermediate state, is given by �r2�=6/�2. For instance,
the onset of the spectral function corresponds to a rms
radius of about 1.7 fm, the � meson to about 0.6 fm, and
so on. We conclude that the density at large distances is
dominated by the lightest intermediate states. As a con-
sequence, the tail of the density distribution at large ra-
dii should take a Yukawa form, e−�r /r, with �v=2m	 and
�s=3m	 for the isovector and isoscalar form factors, re-
spectively. It is therefore natural to identify the “pion
cloud” with the two-pion contribution to the spectral
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FIG. 2. �Color online� The isovector spectral functions in units
of m	

−4. Solid lines, 2 Im GE
v �t� / t2; dashed lines, 2 Im GM

v �t� / t2.
Thin lines are from Höhler and Pietarinen �1975�, thick lines
include modern data for the pion form factor. From Belushkin
et al., 2006.
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function, which remains after subtraction of the � peak
from the spectral function of Fig. 2. Whereas the isovec-
tor spectral function can be constructed from available
experimental information up to t�1 GeV2, the higher
part of the spectrum has be modeled from information
about resonances and continua. Because the isoscalar
spectral function contains at least three pions in the in-
termediate state, it cannot be obtained directly from ex-
perimental data. In the region below t�1 GeV2 it is
dominated by 
 and � mesons, the three-pion con-
tinuum has been shown to couple only weakly, see Be-
lushkin et al. �2007� and references to earlier work.

III. FORM FACTORS

Ever since Hofstadter �1956, 1957� first determined
the size of the nucleon, it has been taken for granted
that the nucleon’s electromagnetic form factors follow
the shape of a dipole form, with some minor deviations
and, of course, modified for the vanishing charge of the
neutron. This form was conveniently parametrized as

G�Q2� = 1/�1 + Q2/�D
2 �2, �37�

with �D�0.84 GeV a universal parameter. Because this
parameter is close to the mass of the � meson, it was
assumed that the nucleon structure is dominated by a
vector meson cloud which was described by the “vector
dominance model.” This idea was of course in conflict
with the quark model after its establishment in the 1970s
and many attempts were made to reconcile these con-
flicting models.

In order to set the scene, we recall the following prop-
erties of proton, neutron, and heavier baryons.

• The complexity of these strongly interacting many-
body systems reflects itself in the finite size in space,
the anomalous magnetic moment, and the continuum
of excited states with strong resonance structures.
These three aspects are of course closely related, and
can be connected quantitatively in some cases by
sum rules as detailed in Sec. VI.

• Because of the approximate SU�3� symmetry of u, d,
and s quarks, the nucleon forms a doublet in isospin
with strangeness S=0 in an octet of states. The other
partners are �0 and the triplet �+ ,�0 ,�− with S=−1,
and !0 ,!− with S=−2. The strange baryons decay
weakly with a typical mean life of about 10−10 s. Be-
cause �0 can also decay into �0 by photoemission, its
mean life is only about 10−19 s. The most important
resonance of the nucleon, ��1232�, appears as an iso-
spin quadruplet with strangeness S=0 in a decuplet
of states. The partners of ��1232� are an isospin trip-
let �+�1385� ,�0�1385� ,�−�1385� with S=−1, a dou-
blet !0�1530� ,!−�1530� with S=−2, and �−�1672�
with S=−3. The latter lives about 10−10 s because it
can only decay weakly. All other particles in the de-
cuplet decay by the strong interaction with a mean
life of order 10−23 s.

• The size effect reflects itself in the form factors of
elastic electron scattering. Because of the lifetime,
only the proton and, with some caveat, the neutron
can be studied as a target. With the dipole form of
Eq. �37� and the definition of a rms radius according
to Eq. �14�, the result of Hofstadter �1956� was rE

p

=0.81 fm for the charge distribution of the proton. In
the mean time several new experiments have led to
the larger radius of rE

p �0.88 fm. The form factors of
strange baryons can in principle be measured by
scattering an intense beam of these particles off the
atomic electrons of some nuclear target. Such an ex-
periment was performed by the SELEX Collabora-
tion at the Fermi Laboratory Tevatron with a high-
energetic �− beam �Eschrich et al., 2001�. The result

is a first datum on a hyperon radius, rE
�−

= �0.78±0.08±0.05� fm, distinctly smaller than the ac-
cepted value for the proton.

• The “normal” magnetic moment of a particle i ex-
pected for a pointlike fermion is given by eQi / �2Mi�,
with Mi the mass and eQi the charge of the particle.
If the magnetic moments �i are given in units of the
nuclear magneton ��N	=e / �2Mp�, the values for pro-
ton and neutron, �p=2.79 ��N	 and �n=−1.91 ��N	,
signal a large isovector anomalous magnetic moment
of the nucleon. From electron scattering we also
know that the rms radius of the magnetization distri-
bution is similar to the radius of the charge distribu-
tion. Because of their long mean life, the magnetic
moments of five other octet baryons and, in addition,
the one of �−�1672� in the decuplet are known from
spin precession experiments. Without going in to de-
tail, these particles also have large anomalous mo-
ments. As an example, even the �−, a configuration
of three s quarks with the large mass of 1.672 GeV,
has ��=−2.02 ��N	 compared to a normal magnetic
moment of −0.56 ��N	. In order to get more informa-
tion about the decuplet, several experiments were
performed to measure the magnetic moment of �++

as a subprocess of radiative pion-nucleon scattering
�Nefkens et al., 1978; Bosshard et al., 1991� and of �+

as a subprocess of radiative pion photoproduction on
the proton �Kotulla, 2003�. Results for the magnetic
moments are in qualitative agreement with quark
model predictions but still with large model errors
�Pascalutsa and Vanderhaeghen, 2008�.

At the turn of the century new surprising results put
the nucleon form factors into focus once more. These
new results became possible through the new generation
of cw electron accelerators with sources of high-intensity
polarized beams combined with progress in target and
recoil polarimetry. As summarized in Sec. II.B the mea-
surement of asymmetries allows one to determine both
form factors even if they are of very different size. This
situation occurs in two cases. �I� Because of its vanishing
total charge but large anomalous magnetic moment, the
neutron’s electric form factor is very much smaller than
the magnetic one, at least for small and moderate mo-
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mentum transfer. �II� As shown by Eq. �15�, the mag-
netic form factor GM�Q2� appears with a factor �
=Q2 /4M2, whereas GE�Q2� is suppressed by a factor
1/ �1+��. As a consequence, GE�Q2� is less well deter-
mined by the Rosenbluth plot if Q2 becomes large. Even
though this was known, it was a great surprise when
asymmetry measurements showed a dramatic deviation
from previous results based on the Rosenbluth separa-
tion and, at the same time, from the dipole shape of the
proton form factors �Jones et al., 2000; Gayou et al.,
2002�. Another open question concerns the behavior of
the form factors at low four-momentum transfer, such as
oscillations at very small Q2 and conflicting results for
the rms radius of the proton. These experimental find-
ings have caused an intense theoretical investigation
which has been summarized by recent review papers
�Gao, 2003; Hyde-Wright and de Jager, 2004; Arrington,
Roberts, and Zanotti, 2007; Perdrisat et al., 2007�. In the
present work we concentrate on the low momentum
transfers and, therefore, the phenomena for Q2

�1 GeV2 will only be discussed briefly.

A. Spacelike electromagnetic form factors of the nucleon

New results in the field of spacelike form factors have
been obtained at three facilities: the cw electron accel-
erators CEBAF at the Jefferson Laboratory �Cardman,
2006� and Mainz Microtron �Jankowiak, 2006�, and the
electron stretcher ring at MIT/Bates �Milner, 2006�.
These facilities provide an intense beam of polarized
electrons. The second essential ingredient for measuring
asymmetries was the development of polarized targets
and polarimeters to determine the polarization of recoil-
ing particles. For details of the new accelerators, targets,
and particle detectors as well as pertinent references, we
refer the reader to Hyde-Wright and de Jager �2004�. In
this context it is, however, important to realize that there
exist no free neutron targets, but only targets with neu-
trons bound in a nucleus. Therefore any analysis of the
data requires theoretical models to correct for the bind-
ing effects, which include initial-state correlations, me-
son exchange, and other two-body currents with inter-
mediate resonance excitation of nucleons, and final-state
interactions while the struck nucleon leaves the target.
In this situation, we infer that the deuteron provides the
most trustworthy neutron target because its theoretical
description is far more advanced than in the case of
heavier nuclei. Of course, measurements with heavier
nuclei, in particular polarized 3He targets, provide
complementary information and are interesting for their
own sake.

In Fig. 3 we display the nucleon form factors as func-
tions of Q. We choose this somewhat unusual presenta-
tion in order to emphasize the small Q2 region. The data
base shown is from Friedrich and Walcher �2003�, which
has been complemented by the following: Bermuth et al.
�2003�; Glazier et al. �2005�; Plaster et al. �2006�; Ander-
son et al. �2007�; Crawford et al. �2007�; Geis et al. �2008�.
The phenomenological fit shown by the solid line in Fig.

3 is composed of two dipoles and a bump-dip structure.
The dipole form is given by

Gs�Q2� = a10/�1 + Q2/a11�2 + a20/�1 + Q2/a21�2, �38�

and the bump-dip structure, seen at Q2=Qb
2 �0.2 GeV2

on top of the smooth dipoles, is parametrized as

Gb�Q2� = abQ2�e−�1/2���Q − Qb�/�b	2
+ e−�1/2���Q + Qb/�b�	2

� .

�39�

We note that this ansatz provides an even function of Q
as required by general arguments. A similar form has
been introduced by Sick �1974� in r space in order to
obtain a nonsingular function for model-independent
analysis of nuclear charge distributions.

Figure 3 shows that the bump-dip structure is of the
order 3% and only visible for Q2�1 GeV2. Therefore
we have magnified the data and their structure by the
linear plot of Fig. 4, which shows the form factors di-
vided by the standard dipole form factor of Eq. �37�. The
electric form factor of the neutron is quite special be-
cause of its vanishing charge, which results in an overall
small value of GE

n . Therefore we have plotted this form
factor in a different way in Fig. 5, which displays the
published world data as measured with polarized elec-
trons. We note, however, that the results of Schiavilla
and Sick �2001� have been deduced from an analysis of
the deuteron quadrupole form factor FC2, which re-
quires a careful investigation of the model dependence
due to the nucleon-nucleon potential. The error bars of
these data are therefore not statistical but indicate the
�systematic� model error. The combined data shown in
Fig. 5 clearly support the existence of the bump struc-
ture at Q2�0.2 GeV2 as in the previous cases. The solid
line in this figure is the result of a new fit with the phe-
nomenological model given by Eqs. �38� and �39�. The
dashed line in this figure is the parametrization first
given by Galster et al. �1971�,

GE
n �Q2� =

aG�

�1 + bG��
1

�1 + Q2/�D
2 �2 , �40�

with aG=−�n and bG=5.6. The result from dispersion
theory is displayed by the dotted line. Neither dispersion
theory nor the Galster fit reproduce the data at low Q2.

The Fourier transform of GE
n is of particular interest

because the overall charge of the neutron must vanish.
A finite charge distribution is therefore a definite sign of
correlations among the charged constituents, for ex-
ample, between the u quark and the two d quarks of the
constituent quark model. The charge distribution �E

n is
displayed in Fig. 6 for the three fits to the neutron factor
shown in Fig. 5 We recall the arguments of Sec. II.B that
the Fourier transform can only be obtained in the Breit
or “brick wall” frame, which, however, is a different Lor-
entz frame for different values of Q2. Visualization of
the Fourier transforms as charge and magnetization dis-
tributions in r space is therefore only approximately cor-
rect if the momentum transfer is small compared to

Q2 
 =4M2, which defines the threshold of nucleon pair
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production at timelike momentum transfer. With this ca-
veat, we may interpret the charge distribution of Fig. 6
by the dissociation of the neutron in a proton and a
pion, i.e., as a negative pion cloud around a positive
core. As we see from the figure, the pion cloud found by
Friedrich and Walcher �2003� extends to large radii. It is
important to realize that this result does not depend on
a model assumption but is borne out by a statistically
satisfactory reproduction of the data. We also note that
the signal of the pion cloud is empirically present in all
four form factors.

In a recent paper, Miller �2007� has found a negative
density in the center of the neutron from an analysis of
generalized parton distributions as a function of the im-
pact parameter b. The charge distribution �1

n�b� is then
defined by the two-dimensional Fourier transform of the
Dirac form factor F1

n�Q2�. We note that this does not
contradict the results shown in Fig. 6. In fact our results
for the three-dimensional Fourier transform of F1

n�Q2�
agree very much with the findings of Miller �2007�: a
negative density in the center, positive values for 0.4
�r�1.2 fm, and a negative tail for larger distances.

B. Timelike electromagnetic form factors of the nucleon

We next discuss the form factors for timelike momen-
tum transfer, i.e., positive values of the Mandelstam vari-
able t=q2=−Q2�0; see Sec. II.A for definitions. By in-
spection we find that the previously defined dipole form
factors have poles t=�D

2 �MV
2 , that is, the phenomeno-

logical fits “predict” the existence of vector mesons in
the timelike region. The form factors in the spacelike
and timelike regions are connected by analyticity and
unitarity, and therefore knowledge of the timelike form
factors is also mandatory for a complete understanding
of the nucleon �Geshkenbein et al., 1974; Mergell et al.,
1996; Baldini et al., 1999; Hammer, 2006; Belushkin et
al., 2007�. The timelike photons are obtained in collider

experiments by the reaction e+e−→NN̄ for t= �2Ebeam�2

�4M2. Whereas the spacelike form factors are real, the
timelike form factors are complex functions because of
the strong interaction between the produced hadrons.
However, the unpolarized cross section in the timelike
region depends only on the absolute values of the two
form factors 
GE�t�
 and 
GM�t�
. In order to obtain infor-
mation on the relative phase between the form factors,
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FIG. 3. The world data for the four nucleon form factors according to Friedrich and Walcher �2003�. Solid line is the phenom-
enological fit given by Eqs. �38� and �39�. The other lines show the two dipole contributions and the bump-dip term of the fit
separately. Note that the absolute value is plotted for negative quantities. See Friedrich and Walcher �2003� for a listing of the data.
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polarization experiments are required. Unfortunately,
the present data do not even allow for a Rosenbluth
separation. Therefore the data are analyzed with the as-
sumption 
GE�t� 
 = 
GM�t�
, which follows from Eq. �13�
at threshold, t=4M2, but is of course not expected to
hold for higher beam energies.

Figure 7 displays a compilation of the proton data
known so far. These data cover the range 4M2� t
�6.8 GeV2. The figure shows an overall falloff with the
beam energy for GM

p , somewhat faster than 1/ t2, and
some structure near Ebeam=1.05 GeV or t=4.4 GeV2,
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FIG. 4. The nucleon form factors GE
p , GM

p /�p, and GM
n /�n as a

function of Q, divided by the standard dipole form factor of
Eq. �37�. The solid line represents the fit of Friedrich and Wal-
cher �2003�, the dashed line shows the smooth contribution of
the two dipoles.

FIG. 5. �Color online� The world data for the electric form
factor of the neutron GE

n as a function of Q2. Solid squares,
d�e� ,e�n� �p at MAMI, Glazier et al. �2005�, and Ostrick �2006�;
solid triangles, d�e� ,e�n� �p at Jefferson Laboratory, Madey et al.
�2003�; solid diamond, d�e� ,e�n� �p at BATES, Eden et al. �1994�;
solid circle, d� �e� ,e�n�p at NIKHEF, Passchier et al. �1999�; open
triangles, d� �e� ,e�n�p at Jefferson Laboratory, Warren et al.

�2004�; open diamonds, d� �e� ,e�n�p at BATES, Geis et al. �2008�;
open squares, 3He��e� ,e�n�pp at MAMI, Rohe �2006�. Open
circles are derived from the deuteron quadrupole form factor
�Schiavilla and Sick, 2001�. Solid line, new fit of the phenom-
enological model of Friedrich and Walcher �2003�; dashed line,
the result of dispersion relation �Belushkin et al., 2007;
Meißner, 2007�; and dotted line, the original Galster fit of Eq.
�40�. The new fit includes all shown data except for the data of
Geis et al. �2008� and values derived by Schiavilla and Sick
�2001�. Data were updated by J. Friedrich and theory curves
complemented by L. Tiator.

FIG. 6. �Color online� The charge density distribution for the
neutron 4	r2�E

n as a function of r. The notation for the lines
corresponds to that of the form factors shown in Fig. 5. Cour-
tesy of J. Friedrich and L. Tiator.
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which may indicate a resonance in that region. We note
that the decrease of the form factor is in qualitative
agreement with perturbative QCD, which requires a
falloff like 
t
−2 for both spacelike and timelike photons.
However, comparison shows that the spacelike form fac-
tor at t=−Q2=−16 GeV2 is already about a factor of 3
smaller than the timelike form factor at t= +16 GeV2,
that is, asymptotia is still far away. Examination of Fig. 8
tells us that our knowledge about the neutron’s timelike
form factors is still far from satisfactory. We hope that
current planned experiments will improve on the preci-
sion of the timelike form factors and, in particular, also
determine their relative phases, which is absolutely nec-
essary in order to get the full information on the struc-
ture of the nucleon �Rossi et al., 2006�.

C. Theoretical considerations

The electromagnetic form factors encode information
on the wave functions of the charged constituents in a
bound system. However, in the case of hadrons we face
severe obstacles to get a real grip on the elementary
quarks. As mentioned in Sec. I, only two ab initio ap-
proaches exist to describe QCD in the confinement
phase: chiral perturbation theory and lattice gauge
theory. Chiral perturbation theory is restricted to small
values of the momenta. Moreover, if extended to higher
order in the perturbation series, CPT loses predictive
power because the number of unknown low energy con-

stants increases. Lattice gauge theory, on the other hand,
is still hampered by the use of large quark masses. This
has the consequence that pionic effects appearing at low
momentum transfer are underestimated. Beyond these
two approaches, which are in principle exact realizations
of QCD, a plethora of “QCD inspired” models with
quarks and pions has been developed. The problems are
twofold.

• Starting directly from QCD, one would have to use
small u and d quark masses of order 10 MeV. The
many-body system is therefore highly relativistic
from the very beginning. However, a typical constitu-
ent quark model �CQM� has quarks with masses of
several hundred MeV. It is therefore obvious that
these entities are many-body systems of quarks and
gluons by themselves. In any case, the constituent
quarks wave functions have to be “boosted” if hit by
the virtual photon. However, there exists no unique
scheme to boost a strongly interacting relativistic
many-body system.

• In view of the small current mass of the quarks, the
interaction as mediated by gluon exchange inevitably
produces a considerable amount of quark-antiquark
admixture. These effects have to be modeled by
properties of the constituent quarks, such as mass
and form factor �see De Sanctis et al. �2007�	 or by
explicitly introducing a meson cloud of the “bare”
constituent quarks �Faessler et al., 2006�.

Since this paper is focused on the low-Q2 domain, it
suffices to consider some models useful in this region. A
detailed discussion of a wide range of models has been

FIG. 7. �Color online� The world data for the timelike form
factor of the proton as function of the beam energy Ebeam,
extracted assuming 
GE
= 
GM
. Open symbols, data from
e+e−→pp̄ �Castellano et al., 1973; Delcourt et al., 1979; Bisello
et al., 1983, 1990; Antonelli et al., 1996, 1998; Ablikim et al.,
2005; Aubert et al., 2006; Pedlar et al., 2005�; solid symbols,
data from p̄p→e−e+ �Bassompierre et al., 1977; Armstrong et
al., 1993; Bardin et al., 1994; Ambrogiani et al., 1999; Andreotti
et al., 2003�. From Rossi et al., 2006.

FIG. 8. �Color online� The world data for the timelike form
factor of the neutron as a function of the beam energy Ebeam,
extracted assuming 
GE
= 
GM
. Data are obtained by the
FENICE Collaboration from the reaction e+e−→nn̄. Solid line
is a perturbative QCD extrapolation using proton data �An-
tonelli et al., 1994, 1998�. From Rossi et al., 2006.
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given by Perdrisat et al. �2007�. The traditional model of
the nucleon is the CQM with quark masses mq�M /3.
Except for the smallest momentum transfers, the quark
wave functions have to be relativized, which is usually
done by relativistic boosts of single-quark wave func-
tions. Figure 9 shows the result of several calculations
for the ratio GE

p /GM
p compared to recent data from Jef-

ferson Laboratory obtained with a double-polarization
experiment. The rapid falloff of this ratio was a surprise
because previous experiments without polarization did
not find large deviations from the dipole fit for both
form factors. The solution of the problem was explained
by two-photon effects, which are usually small but turn
out to become large in special cases; see Arrington,
Melnitchouk, and Tjon �2007� and Carlson and Vander-
haeghen �2007� for recent reviews. Even though the fig-
ure shows only a small selection of models, different re-
sults are obtained by similar models, depending on the
properties of the constituent quarks, their interaction,
and the boosting mechanism. We are also not aware of
many predictions for the rapid drop of the ratio before
the Jefferson Laboratory double-polarization data were
obtained. In any case, the models shown describe the
data qualitatively well, and support the expected zero
crossing of the electric form factor at Q2�7 GeV2. The
zero crossing is also predicted from a Poincaré covariant
Faddeev calculation describing the nucleon as a corre-
lated quark-diquark system, generated with an interac-
tion fitted to the structure of mesons �Alkofer et al.,
2005; Höll et al., 2005�. On the other hand, the models

without explicit Goldstone bosons, in particular pions,
cannot describe the region Q2"0.5 GeV2, in which the
pionic degrees of freedom play a decisive role.

The inclusion of a pion cloud into quark models of the
nucleon started with the little bag model �Brown and
Rho, 1979� and was first applied to the nucleon form
factors in the form of the cloudy bag model �Thomas,
1984; Lu et al., 1998; Miller, 2002; Miller and Frank,
2002�. More recently, Pasquini and Boffi �2007� studied a
system of valence quarks surrounded by a meson cloud
with light-cone wave functions. They found distinct fea-
tures of such a cloud below Q2=0.5 GeV2, however,
without a pronounced bump-dip structure. Another
model incorporating quarks and Goldstone bosons is the
chiral quark soliton model �Diakonov and Petrov, 1986;
Diakonov et al., 1988�. The nucleon form factors were
calculated within this framework by Christov et al.
�1995�. The linear decrease of the ratio GE

p /GM
p with Q2

was shown to follow from this model quite naturally
�Holzwarth, 1996, 2002, 2005�. However, in all these
models the bump-dip structure of the form factors is not
in focus. On the other hand, Faessler et al. �2006�
showed that this structure can be reproduced within a
chiral quark model by a cloud of pseudoscalar mesons.
One should also keep in mind that usually a complete
description of the data is not given. For example, a
cross-section ratio may be obtained in agreement with
the data, whereas the model fails to describe the indi-
vidual cross sections. On the contrary, the parametriza-
tion of Friedrich and Walcher �2003� covers the full Q2

domain up to 7 GeV2, and therefore the charge distribu-
tion derived from this work is directly based on the ex-
perimental data. From Fig. 6, the neutron charge distri-
bution �E

n �r�, as defined by the Fourier transform of the
electric Sachs form factor GE

n �Q2�, is positive in the in-
terior region and negative for radii larger than about
0.7 fm. However, it takes a model to quantify the sepa-
ration into components, say a core and a pion cloud. As
an example, there is no unique way to break the spectral
function of Fig. 2 into parts belonging to the two-pion
continuum and heavier intermediate states like the �
meson. On the other side, it is also evident that the tail
of the density at large radii is determined by the lightest
hadron, the pion.

Since the size of the bump-dip signal found by
Friedrich and Walcher �2003� �FW� is in conflict with
calculations using dispersion relations �Belushkin et al.,
2007; Meißner, 2007� �BHM�, it is worthwhile to discuss
the differences more closely.

• The fit of FW describes the data in the spacelike
region with a good #2 /DOF�0.9 for about 160 de-
grees of freedom �DOF�, because the fitting function
is designed for spacelike data. The dispersion rela-
tions try to reproduce both the spacelike and time-
like form factors by using all available spectral data
for involved hadrons, and therefore the fits are much
more constrained. As a result, the fits of BHM have
the much larger #2 /DOF�1.8 with DOF�200. Such
large values of #2 have to be taken with great caution

FIG. 9. �Color online� The ratio of the electric and magnetic
form factors of the proton �pGE

p /GM
p compared to relativistic

calculations in the framework of the CQM. Dotted line, light-
cone front CQM �Chung and Coester, 1991�; thick solid line,
light-cone front CQM �Frank et al., 1996�; dash-dotted line.
light-cone front CQM with pointlike constituent quarks �Car-
darelli et al., 1995; Cardarelli and Simula, 2000�; dashed line,
Goldstone boson exchange between pointlike constituent
quarks �Boffi et al., 2002�; and thin solid line, covariant specta-
tor CQM �Gross and Agbakpe, 2006�. Data have been taken at
Jefferson Laboratory by Punjabi et al. �2005� �circles� and
Gayou et al. �2002� �squares�. From Perdrisat et al., 2007.
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since they are somewhat outside the range of the
validity of statistics. In particular, the statistical prob-
ability P�#2 /DOF�1.8,DOF�200� is smaller than
10−10. This leaves the usual suspects: the problem is
in the data �Belushkin et al., 2007; Meißner, 2007�,
the dispersion relations have still an incomplete in-
put, or both data and theory have problems. In any
case, the 1−� bands of Belushkin et al. �2007� and
Meißner �2007� derived by increasing the absolute #2

by 1 are not meaningful if the #2 /DOF is off as much
as 1.8.

• In order to obtain the bump-dip structure at Q2

�0.2 GeV2, BHM would have to include two more
“effective” poles: an additional isoscalar pole near
the �isoscalar� 
 meson, but with the opposite sign
and twice the strength of the 
, and a weaker isovec-
tor structure close to the mass of three pions, which
is the threshold of the isoscalar channel. With these
modifications, also BHM could obtain a #2 /DOF
�0.9. There is, however, no evidence for such struc-
tures in e+-e− collisions nor are such objects known
to interact with the nucleon, and therefore BHM dis-
carded these fits.

• The electric rms radius of the proton rE
p , is another

piece of evidence showing some peculiarity around
0.2 GeV2. From a fit to all available low Q2 data,
Sick �2003� found the radius rE

p =0.95±0.018 fm. On
the other hand, FW obtained rE

p =0.794 fm without
and rE

p =0.858 fm with the bump-dip structure. Ac-
cording to Rosenfelder �2000�, Coulomb and recoil
corrections have to be added to these results, which
leads to rE

p =0.876±0.015 fm in accordance with re-
sults from Lamb shift measurements �Udem et al.,
1997�. �For an overview of results from atomic phys-
ics and their interpretation, see Karshenboim �1998�
and Carlson and Vanderhaeghen �2007�.	 However,
as in all previous work based on dispersion relations,
the electric rms radius of the proton also turns out to
be small in the work of BHM, rE

p =0.844 fm or even
smaller.

• The dip structure reported by FW for the proton cor-
responds to a bump structure obtained for the neu-
tron at a similar value of Q2. This change of sign
makes sense because the pion cloud couples to the
isovector photon. As mentioned before, Kopecky
et al. �1997� obtained a mean square radius �r2�E

n

=−�0.115±0.004� fm2 from low-energy neutron scat-
tering off 208Pb, however, this extraction is certainly
model dependent. BHM get �r2�E

n =−0.118 fm2, in
agreement with Kopecky et al. �1997�. FW take
�r2�E

n =−0.115 fm as a fixed parameter or obtain
�r2�E

n =−0.147 fm in the new fit of the analytical form
of the phenomenological model.

• It follows from dispersion relations that the tail of
charge distributions at large radii has a Yukawa
shape with the mass of the lightest intermediate
state, that is two pion masses for the isovector and

three pion masses for the isoscalar densities. Hence it
would take considerable cancellation of positive and
negative structures in the lower part of the spectral
function if one wants to shift the pion cloud to rms
radii above 1.7 fm. This is in conflict with the bump-
dip structure of Eq. �39�, which results in a consider-
able amount of charge in the pion cloud above
1.7 fm, as seen in Fig. 6.

• The fit of FW is restricted to spacelike form factors.
This approach cannot be extended to the timelike
region, and another purely empirical fit would make
little sense in view of the restricted data in this re-
gion. The dispersion relations, on the other hand, are
built to make the connection between the two re-
gions, and the results of BHM give a good overall
description in both domains. However, they miss a
structure at Ebeam�1.05 GeV or t�4.4 GeV2.

In concluding these arguments, we mention that disper-
sion theory and FW agree on the dip seen for the mag-
netic form factors of both proton and neutron at Q2

�0.2 GeV2. There is also qualitative agreement that the
charge and magnetization in the surface region of the
nucleon, r$1 fm, are dominated by the pion cloud,
which reaches much beyond the rms radius of the pro-
ton. It remains a challenge for both experiment and
theory to answer the questions raised concerning the
distributions of charge and magnetization inside an
nucleon, which we consider a key aspect of the nucleon
structure.

D. Weak form factors of the nucleon

1. Axial form factor of the nucleon

The axial current of the nucleon can be studied by
antineutrino and neutrino scattering, pion electropro-
duction, and radiative muon capture, see Bernard, El-
ouadrhiri, and Meißner �2002� and Gorringe and Fear-
ing �2004� for recent reviews. The �isovector� axial
current between nucleon states takes the form

A� = ūp2
���GA�Q2� + i

�p2 − p1��
2M

GP�Q2���5up1
. �41�

As for the vector current, Eq. �11�, there appear two
form factors, the axial form factor GA and the induced
pseudoscalar form factor GP. A linear combination of
the form factors GA and GP is related to the pion-
nucleon form factor G	N by the partialy conserved axial
current relation. Experimental information about the in-
duced pseudoscalar form factor is limited. Data are
mostly obtained from muon capture by the proton, �−

+p→n+��. This determines the value of GP at Q2

=0.88m�
2 �0.01 GeV2, which is usually described by

the induced pseudoscalar coupling constant gP

= �m� /2M�GP�Q2=0.88m�
2 �. A recent experiment at PSI

yielded the value gP=7.3±1.1 �Andreev et al., 2007�, in
agreement with the result from heavy baryon CPT �Ber-
nard, Elouadrhiri, and Meißner �2002�, gP=8.26±0.16,
and manifestly Lorentz-invariant CPT �Schindler et al.,

746 Dieter Drechsel and Thomas Walcher: Hadron structure at low Q2

Rev. Mod. Phys., Vol. 80, No. 3, July–September 2008



2007�, gP=8.29±0.7, with an estimated error stemming
mostly from truncation of the chiral expansion. The
axial form factor GA is usually parametrized in the di-
pole form of Eq. �37�, with a parameter �A called the
axial mass,

GA�Q2� = gA/�1 + Q2/�A
2 �2 �42�

with gA=1.2695�29� �Yao et al., 2006�. A recent �cor-
rected� global average of the axial mass as determined
by neutrino scattering was given by Budd et al. �2003�,

�A
� = 1.001 ± 0.020 GeV. �43�

However, a different value, �A
� =1.20±0.12 GeV, was

derived by the K2K Collaboration from quasielastic
��n→�−p in oxygen nuclei �Gran et al., 2006�. The axial
form factor has also been studied by pion electroproduc-
tion �Baumann, 2005�. The Rosenbluth separation of
these data is shown in Fig. 10. The results are in agree-
ment with an earlier experiment by Liesenfeld et al.
�1999�, but are complemented by a data point at the very
low momentum transfer of Q2=0.058 GeV2. An exact
Rosenbluth separation is a prerequisite because the
transverse cross section �T is sensitive to GA and the
longitudinal cross section to the pion form factor F	,
which is discussed Sec. III.E. These electroproduction
data have been analyzed with MAID2007 as follows: �I�
The cross sections �T and �L of MAID were normalized
to the data by factors 0.825 and 0.809, respectively, and
�II� the axial dipole mass �A and the corresponding
mass for the monopole form of the pion form factor
were fitted. The result is �A

	 =1.028±0.025 GeV. How-
ever, this value has to be corrected for the axial mass
discrepancy, �A

	 −�A
� �0.055 MeV, which is due to loop

corrections �Bernard et al., 1992�. With this correction,
the electroproduction data of Baumann �2005� yielded

�A
corr = 0.973 ± 0.025 GeV, �44�

which agrees with the corrected value from neutrino
scattering given by Eq. �43�, but disagrees with both the
previous result of Liesenfeld et al. �1999� and the mea-
surement of Gran et al. �2006�. In view of the relatively
large normalization factor applied to the electroproduc-

tion data, it would be helpful to check the normalization
at Q2=0 by pion photoproduction.

2. Strangeness content of the nucleon

As outlined in Sec. II.C, the parity violating compo-
nent of electron scattering provides access to the weak

form factors G̃E and G̃M. These form factors are related
to the strangeness content of the nucleon by the univer-
sality of the electroweak interaction with quarks. For a
derivation of the strange form factors and their experi-
mental determination see, e.g., Beck and McKeown
�2001�. Because the strangeness in the nucleon appears
only through the presence of the heavy ss̄ pairs, these
observables are of great importance for our understand-
ing of the nucleon in terms of large vs small scales. The
strangeness content is related to the � term, which has
been derived from pion-nucleon scattering at the �un-
physical� Cheng-Dashen point, s=u=M2, t=2m	

2 �Tho-
mas and Weise, 2001; Sainio, 2002�. This term is a direct
measure of the chiral symmetry breaking in QCD, the
chiral properties of the strong interactions, and the im-
pact of sea quarks on the nucleon’s properties. Its rela-
tion to the strangeness contribution is given by

� = �N
m̄�ūu + d̄d − 2s̄s�
N�/�1 − y� , �45�

where m̄= �mu+md� /2 is the average of the u and d
quark masses and y is a measure for the scalar strange
quark content of the nucleon,

y = 2�N
s̄s
N�/�N
ūu + d̄d
N� . �46�

From a detailed analysis, Pavan et al. �2002� found the
value y�0.46, indeed a surprisingly large strangeness
content in the nucleon, whereas a much smaller value
was obtained in earlier work �Sainio, 2002�. These incon-
sistencies were a strong motive to study the strangeness
content with the electromagnetic probe. At large mo-
mentum transfer, 1%Q2%100 GeV2, the strangeness
contribution has been derived from unpolarized deep-
inelastic lepton scattering at the Fermi Laboratory Teva-
tron �Bazarko et al., 1995�. The momentum fraction of
sea quarks carried by strange quarks extracted is

FIG. 10. �Color online� The transverse and
longitudinal cross sections for charged pion
production as a function of Q2. Data are from
Baumann �2005�. Dashed lines, cross sections
predicted by MAID2007 �Drechsel et al., 2007�;
solid lines, fit to the data with MAID2007 �see
text for details�. Courtesy of L. Tiator.
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� = �x�s�x� + s̄�x�	�/�x�ū�x� + d̄�x�	� � 0.5, �47�

or about 3% of the total nucleon momentum. If this
contribution is extrapolated to large spatial scales by the
quark evolution, a small value is obtained.

On the theoretical side a plethora of nucleon models
have usually predicted strangeness form factors of con-
siderable size; see, e.g., Beck and Holstein �2001�. These
considerations have initiated an intense experimental
program at several laboratories. These activities started
at the Bates/MIT laboratory with the SAMPLE experi-
ment, which first proved that it is feasible to measure the
small asymmetries of order 10−6 in parity-violating elec-
tron scattering �Spayde et al., 2004; Kowalski, 2006�. This
experiment was based on a particular technique using
Cherenkov detectors developed previously for a parity-
violation experiment at the Mainz linac �Heil et al., 1989�
and an improvement of the SLAC polarized electron
source �Souder et al., 1990�. At the Mainz Microtron
MAMI, the A4 Collaboration built a Cherenkov detec-
tor consisting of 1022 PbF2 crystals, which in conjunction
with electronics allowing for on-line identification of
electromagnetic clusters made it possible to count single
events �Maas, 2006�. Furthermore, two experiments
were performed at the Jefferson Laboratory. The first
of these experiments �HAPPEX� used the two-
spectrometer setup of Hall A taking advantage of a pair
of septum magnets for measurements at very small scat-
tering angles and low momentum transfers. This project
was passing through different phases of improvement.
HAPPEX-I measured on a hydrogen target �Aniol et al.,
2004� at Q2=0.48 GeV2 only. In this geometry the com-
bination GE

s +0.392GM
s =0.014±0.020±0.010 was deter-

mined. In the next step HAPPEX-II measured on both
hydrogen �Aniol et al., 2006a� and helium targets �Aniol
et al., 2006b�. The nucleus 4He is special as a target,
because only the electric form factor can contribute due
to its zero total spin. The results of HAPPEX are com-
pared to those of other collaborations in Fig. 11. Each
measurement gives an error band in the plot of GE

s ver-
sus GM

s . The common error ellipse indicates values for
GE�0.1 GeV2� and GM�0.1 GeV2� that are consistent
with zero but at variance with most theoretical predic-
tions, however, not incompatible with experiments ob-
tained with the other methods mentioned above. Re-
cently the second phase of HAPPEX-II was completed,
with the result of a much improved precision �Acha et
al., 2007�. These results are compared with several the-
oretical predictions in Fig. 12. From Fig. 12, the strange-
ness form factors are centered about zero, whereas most
models predict large values. The only theoretical results
compatible with these experiments are from lattice
gauge calculations with chiral extrapolation to the physi-
cal pion mass �Lewis et al., 2003; Leinweber et al., 2005�,
2006�. The second Jefferson Laboratory experiment was
performed by the G0 Collaboration. This collaboration
has built an eight-sector superconducting toroidal mag-
netic spectrometer �Armstrong et al., 2005�. Figure 13
displays the Q2 dependence of the world data including

the G0 results. From this figure we get the impression of
a small but finite value for that particular combination of
the two strangeness form factors.

E. Form factor of mesons

Because mesons are unstable particles, their form fac-
tors cannot be measured directly by lepton scattering

FIG. 11. �Color online� The strangeness form factors GE
s and

GM
s at Q2=0.1 GeV2 as obtained by the SAMPLE, A4,

HAPPEX, and G0 experiments. The bands represent the 1�
�statistical plus systematical� error of the individual experi-
ments, the ellipse is the combined 2� area for all measure-
ments. From Kowalski, 2006.
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FIG. 12. �Color online� The 1� band of HAPPEX-II together
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Leinweber et al. �2005�, Leinweber �2006�.
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but have to be obtained by more indirect methods. In
the following we concentrate on the form factor of the
charged pion, however, similar methods can also be used
to measure the form factors of heavier mesons or rare
decays �Guidal et al., 1997; Vanderhaeghen et al., 1998�.
At present, only data for the pion are precise enough to
allow for reliable extraction of the form factors over a
large region of momentum transfer. There exist two ex-
perimental methods to overcome the missing target
problem. The first method is the scattering of relativistic
mesons with a dilated lifetime on atomic electrons,
which are then identified by measuring the recoil of the
struck electron. This method is limited to relatively
small momentum transfer, Q2�0.5 GeV2. As a conse-
quence, this method is sensitive to the rms radius of the
free pion r	=��r2�	, which is related to the mass param-
eter �	

2 in the usual monopole form as follows:

F	�Q2� = 1/�1 + Q2/�	
2 � = 1 − 1

6Q2�r2�	 + O�Q4� . �48�

From an experiment at the CERN SPS, Amendolia et al.
�1984, 1986b� derived the rms charge radius of the pion
r	=0.663±0.006 fm. At the same time the kaon form
factor was also measured �Amendolia et al., 1986a�. The
rms charge radius of the charged kaon was found to be
rK=0.58±0.05 fm, somewhat smaller than the pion ra-
dius, which is to be expected because of the heavier
strange quark in the kaon. Because of the small momen-
tum transfer involved, these results depend only a little
on the monopole form of the ansatz.

The second possibility to study the pion form factor is
given by electron scattering on the pion cloud of the
nucleon, which is part of the reaction p�e ,e�	+�n. The
problem is that the initially bound pion is off its mass-
shell and that many other diagrams contribute as well.
The idea is therefore to study this process in kinematic
regions for which the t-channel pion exchange is domi-
nant. In principle one should extrapolate the cross sec-
tion to the pion pole, which, however, lies at the un-
physical four-momentum transfer t=m	

2 . At very high

momentum transfer, Q2&1 GeV2, this extrapolation can
be performed within the Regge model �Vanderhaeghen
et al., 1998�. Following this approach, Horn et al. �2006�
have determined F	 by a Rosenbluth separation of the
longitudinal and transverse cross sections at Jefferson
Laboratory. In this way they extracted two precise val-
ues of the pion form factor at Q2=1.60 and 2.45 GeV2,
which are shown together with previous data and several
model calculations in Fig. 14. Besides the model depen-
dence on the Regge analysis, another problem arises be-
cause the data at the higher momentum transfer do not
follow the monopole form, i.e., the value of �	

2 differs by
as much as 7% from �	

2 =0.53 GeV2 as obtained by
Amendolia et al. �1986b�. This leads to an inconsistency
of about 1 standard deviation. At small values of Q2 one
can also try to derive the rms radius from pion electro-
production as pointed out in Sec. III.D.1. A previous
result yielded �	

2 =0.425 GeV2, equivalent to an rms ra-
dius r	=0.74±0.03 fm �Liesenfeld et al., 1999�. This re-
sult is at variance with the value of Amendolia et al.
�1986b�. A reason for this discrepancy was given by
Bernard et al. �2000�, in terms of the loop corrections for
the longitudinal s-wave multipole L0+

�−�, which dominates
the cross section �L at small Q2. In fact, these loop cor-
rections increase the downward slope of L0+

�−� substan-
tially, such that

�r2�	�p�e,e�	+�n	 = �r2�	 + 0.266 fm2. �49�

With the pion radius according to Amendolia et al.
�1984, 1986b�, �r2�	=0.440 fm2, the electroproduction ex-
periment should therefore measure �r2�	�p�e ,e�	+�n	
=0.706 fm2 or an “effective” rms radius of 0.84 fm,
which is surprisingly close to the nucleon radius. The fit

FIG. 13. �Color online� The form factor combination GE
s �Q2�

+�GM
s �Q2� as obtained by kinematical extrapolation from A4,

HAPPEX II, and G0 experiments. The point HAPPEX III
indicates the error bar for a planned measurement. From Kow-
alski, 2006.
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From Horn et al., 2006.
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with MAID07 to the data of Baumann �2005� yields �	
2

=0.386±0.042 GeV2, which is smaller than the result of
Liesenfeld et al. �1999�. If we include the loop correc-
tion, we obtain r	=0.78±0.04 fm, which is close to the
prediction of CPT. Of course, there are weak points in
our reasoning. In the first place, there is the already dis-
cussed overall reduction of the MAID model to fit the
data. Second, the s wave yields only about half of the
measured cross section, and much smaller loop correc-
tions are expected for higher partial waves. Neverthe-
less, we conclude that the virtual constituent pion looks
different from the free pion and appears, in this particu-
lar experiment, nearly as large as the nucleon.

Because the neutral pion is its own antiparticle, its
form factor vanishes identically. However, the reaction
�*�Q2�+�→	0 can be studied as function of Q2. This
provides information on the transition form factor F�*�	0

of the Wess-Zumino-Witten anomaly defined by Eq. �4�
of Sec. I. As shown in Sec. IV this anomaly is important
in Compton scattering and in particular for the spin po-
larizability of the nucleon. The transition form factor
F�*�	0 was measured at the e+e− Collider at Cornell by
the CLEO Collaboration �Gronberg et al., 1998� and at
the PETRA storage ring by the CELLO Collaboration
�Behrend et al., 1991�. Analyzed with a monopole form
factor as given by Eq. �48�, these experiments yielded
the parameter ��*�	0 =776±10±12±16 MeV, and simi-
larly for the corresponding transition form factor of the
� meson ��*��=774±11±16±22 MeV. Both results con-
firm the prediction of the vector dominance model as-
suming that the virtual photon coexists with the neutral
� meson, which decays in a pion or an � and a real
photon. The Q2 dependence of the transition is then
given by the propagator of �, that is, ��m�

=775.5 MeV for both reactions. With the same argu-
ments as for ordinary form factors, we can turn this
value into a transition radius rWZW=0.62 fm.

IV. POLARIZABILITIES

The polarizability measures the response of a system
to a quasistatic electromagnetic field. In particular the
energy of a homogeneous and isotropic system is de-
scribed by the electric ��E1� and magnetic ��M1� dipole
polarizabilities. In the case of a macroscopic system
these polarizabilities are related to the dielectric con-
stant � and the magnetic permeability �. The classical
theory of Lorentz describes the dispersion in a medium
in terms of electrons bound by a harmonic force. In the

presence of a static and uniform electric field E� 0, the
Hamiltonian of the harmonic oscillator takes the form

H = p�2/2m + m
0
2r�2/2 + ẽr� · E� 0. �50�

We note that Gaussian units are used in this section in
order to concur with the standard notation of classical
electrodynamics, i.e., the fine structure constant is re-
lated to the charge by �em= ẽ2�1/137. Elsewhere we use
Heaviside-Lorentz units, i.e., �em=e2 /4	�1/137. Sub-

stituting r�=r��+�r�, where �r�=−ẽE� 0 /m
0
2 is the displace-

ment due to the electric field, we rewrite Eq. �50� as

H = p�2/2m + m
0
2r��2/2 + �E , �51�

that is, the applied electric field has induced a dipole

moment d� and an energy shift �E,

d� = − ẽ�r� =
�em

m
0
2E� 0, �E = −

�em

2m
0
2E� 0

2. �52�

The electric dipole polarizability �E1 is obtained by
varying the induced dipole moment or the energy shift
with regard to the electric field,

�E1 = �d� /�E� 0 = − �2�E/��E� 0�2 = �em/m
0
2. �53�

This result is quite general and also valid for quantum
mechanical systems. The energy shift to first order �lin-
ear Stark effect� vanishes for a system with good parity,
and if the ground state is spherically symmetric, the sec-
ond order �quadratic Stark effect� yields

�E = − �em 

n�0

��n
z
0��2

�n − �0
E� 0

2, �54�

with the electric field pointing along the z axis, and �n
the energies of the eigenstates 
n�. Combining Eqs. �53�
and �54�, we obtain the �quasistatic� electric dipole po-
larizability

�E1 = 2�em 

n�0

��n
z
0��2

�n − �0
. �55�

As an example for a classical extended object we quote
the polarizabilities of a small dielectric and permeable
sphere with radius a �Jackson, 1975�,

�E1 =
� − 1

� + 2
a3, �M1 =

� − 1

� + 2
a3. �56�

The polarizabilities for a perfectly conducting sphere are
obtained from Eq. �56� in the limits �→ and �→0,
�E1=a3 and �M1=− 1

2a3. Up to a factor 4	 /3, the electric
polarizability of a conducting sphere is the volume of the
sphere. Because of the different boundary conditions for
the magnetic field, the magnetic polarizability turns out
negative. The induced currents in the conductor lead to
a magnetization opposite to the applied field according
to Lenz’s law, i.e., diamagnetism. A permeable sphere
can be diamagnetic ���1� or paramagnetic ���1�, in
the latter case the magnetic moments are already pre-
formed and become aligned in the presence of the exter-
nal field. Whereas the magnetic polarizabilities of atoms
and molecules are usually very small, 
�−1
"10−2, the
electric polarizabilities may be large compared to the
volume. For example, with a static dielectric constant of
�=81, water is a nearly perfect conductor, although in
the visible range this constant is down to �=1.8, corre-
sponding to a refraction index n=1.34. A further, quan-
tum mechanical example is the hydrogen atom. Its
ground state has good parity and spherical symmetry
and therefore Eq. �55� applies. It is even possible to sum
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over excited states and to obtain the closed form
�E1�1H�= 9

2aB
3 , where aB is the Bohr radius �Merzbacher,

1970�. With an rms radius given by �r2�=3aB
2 , the equiva-

lent hard sphere has the radius R=�5aB, and as a result
the hydrogen atom is a pretty good conductor,
�E1 /volume�1/10.

In the following we discuss the polarizabilities of the
nucleon �Secs. IV.A and IV.B� and pion �Sec. IV.C�. Both
particles are very rigid objects. They are held together
by strong interactions, and the applied electromagnetic
field cannot easily deform the charge distribution. If
compared to macroscopic matter, the nucleon is a dielec-
tric medium with ��1.002, that is a very good insulator.
Furthermore, magnetic effects are a priori of the same
order as electric ones because the charged constituents,
the quarks and mesons, move close to the speed of light.
However, the diamagnetic effects of the pion cloud and
the paramagnetic effects of the quark core of the
nucleon tend to cancel, with the result of a relatively
small net value of �M1. The polarizability of the nucleon
can be measured by Compton scattering: The incoming
photon deforms the nucleon, and by measuring the en-
ergy and angular distributions of the outgoing photon
one can determine the induced current and magnetiza-
tion densities. Particularly interesting is the case of vir-
tual Compton scattering �VCS�, which yields informa-
tion on the spatial distribution of the polarization
densities. Furthermore, the nucleon has a spin and
therefore polarized nucleons appear as anisotropic ob-
jects. This leads to the spin or vector polarizabilities
whose closest parallel in classical physics is the Faraday
effect.

A. Real Compton scattering

The reaction ��q ,��+N�p ,��→��q� ,���+N�p� ,��� in-
volves the absorption of an incident real photon with
four-momentum q and polarization � on a nucleon with
four-momentum p and polarization �, leading to a spec-
trum of intermediate hadronic states, which finally decay
by the emission of a real photon leaving the nucleon
back in its ground state. Typical intermediate states are
shown diagrammatically in Fig. 15, and Fig. 16 shows the
contributions of these diagrams to the differential cross
section. For a point Dirac particle only Figs. 15�a� and
15�b�, with a nucleon in the intermediate state, would
contribute. These two nucleon Born terms yield singu-
larities for the �unphysical� kinematics s=M2 and u
=M2, respectively. The differential cross section for such
a point nucleon was first calculated by Klein and Nishina
�1929�. The predicted cross section increases by adding
the Pauli current, i.e., the anomalous magnetic moment
of the nucleon. The result is the Powell cross section
�Powell, 1949�. If we further add the pion pole term of
Fig. 15�f�, the cross section falls back towards the Klein-
Nishina values. The pion pole term has a singularity at
t=m	

2 , it results from the decay 	0→�+� as a conse-
quence of the axial anomaly derived by Wess and
Zumino �1971� and Witten �1983�. This term is often re-

ferred to as a triangle anomaly because the vertex 	��
can be microscopically described by a triangular quark
loop, a diagram not allowed in any classical theory and
only appearing due to the renormalization process of
quantum field theory. As we see from Fig. 16, the pion
pole term yields a large contribution for backward
angles. All further contributions in Fig. 15 do not have
pole structures, but correspond to excited states in s-, u-,
or t-channel processes. As such they yield dispersive
contributions that determine the polarizabilities of the
nucleon. If we include only the electric and magnetic
dipole polarizabilities, we obtain the low energy expan-
sion �LEX� in Fig. 16. This expansion describes the data

+

+ ++ +

(e) (g)(f)

+

(a) (d)(b) (c)

+ +

FIG. 15. Typical intermediate states contributing to Compton
scattering off the nucleon. Top row: �a� Direct and �b� crossed
Born diagrams with intermediate nucleons, a typical resonance
excitation in the �c� s-channel and �d� its crossed version. Bot-
tom row: mesonic contributions with photon scattering off �e�
an intermediate pion, �f� the pion pole diagram, and a corre-
lated two-pion exchange such as �g� the “� meson.”

0

5

10

15

20

25

30

35

0 20 40 60 80 100 120 140 160
Eγ ( MeV )

d
σ/

dΩ
la

b
(n

b/
sr

)

Klein-Nishina

Powell

LEX

DR

Powell + pion pole

FIG. 16. Differential cross section for Compton scattering off
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only up to a photon laboratory energy of about 80 MeV,
over a region in which polarization effects are small and
the data scatter. Therefore analysis of current data has
been based on dispersion relations whose results are
shown by the solid line in the figure. Clearly higher or-
der terms become more important with increasing pho-
ton energy, particularly after crossing the pion threshold
�seen as a kink at about 150 MeV�, from thereon the
energy increases sharply towards the ��1232� resonance.

1. Compton amplitudes and polarizabilities

Assuming invariance under parity, charge conjuga-
tion, and time reversal symmetry, the general amplitude
for real Compton scattering �RCS� can be expressed by
six independent structure functions Ai�� , t� depending
on the two Lorentz invariant variables �= �s−u� / �4M�
and t, see Eq. �7� for the definitions. These variables are
related to the initial �E�� and final �E��� photon labora-
tory energies, and to the laboratory scattering angle �lab
as follows:

t = − 4E�E�� sin2��lab/2� = − 2M�E� − E��� ,

� = E� + t/4M = 1
2 �E� + E��� . �57�

Note that for �lab=0 �forward scattering� the Mandel-
stam variable t vanishes and the crossing-odd variable �
is simply the incident photon laboratory energy E�.

The general RCS scattering matrix takes the form

Tfi = �����
*ūf�p�,�N� �H��ui�p,�N� , �58�

where u and ū are the nucleon spinors. The Compton
tensor H�� contains the hadronic transition currents J�
and J� as well as the propagation of the intermediate
hadronic state. It can be decomposed into a complete
basis of six tensor structures constructed from the inde-
pendent momentum four-vectors and appropriate Dirac
matrices �Prange, 1958; L’vov, 1981�,

H�� = 

i=1,6

Mi
��Ai��,t� . �59�

For further details, see Drechsel et al. �2003�.
We now consider the forward scattering of a real pho-

ton by a nucleon. The incident photon is characterized
by the Lorentz vector of momentum, q= �
q� 
 ,q� �, and
transverse polarization, ��= �0,����, with q ·q=0 for real
photons and �� ·q=0. The corresponding quantum num-
bers of the outgoing photon are denoted by primed
quantities. If the incident photon moves in the direction
of the z axis, q� = 
q� 
êz, the polarization vectors

��± = ' �1/�2��êx ± iêy� �60�

correspond to circularly polarized light with helicities �
= +1 �right-handed� and �=−1 �left-handed�. The for-
ward Compton amplitude takes the form

T��,� = 0� = ���* · ��f��� + i�� · ����* � ���g��� . �61�

Because T is invariant under the crossing transforma-
tion, ��*↔� and �→−�, f must be even and g odd as a
function of �. These forward scattering amplitudes have
the low-energy expansion �Gell-Mann and Goldberger,
1954; Low, 1954�

f��� = − e2eN
2 /4	M + ��E1 + �M1��2 + O��4� , �62�

g��� = − e2�N
2 �/8	M2 + �0�

3 + O��5� , �63�

with eN the charge of the nucleon in units of e and �N the
anomalous magnetic moment in units of nuclear magne-
tons. The leading contribution to f��� is the Thomson
term familiar from nonrelativistic theory. The term lin-
ear in � vanishes due to the crossing symmetry, and the
term O��2� contains the sum of the scalar polarizabilities
giving information on the internal structure. Being odd
under crossing, the spin-flip amplitude g��� starts with
the term O��� proportional to the square of the anoma-
lous magnetic moment, and its next order term is de-
scribed by the forward spin polarizability �0. The leading
terms for both amplitudes are obtained from the pole
terms typical for a pointlike particle, whereas the polar-
izabilities are contained in the subleading terms. As is
evident from the above equations, the scalar and spin
polarizabilities have different units. In the following all
scalar polarizabilities are given in units of 10−4 fm3,
while the vector or spin polarizabilites have units of
10−4 fm4. As detailed in Sec. VI.A, the forward scalar
��E1+�M1� and forward spin ��0� polarizabilities of Eqs.
�62� and �63� can be determined by energy-weighted in-
tegrals over the photoabsorption cross sections. In par-
ticular, Baldin’s sum rule yields the following results for
protons and neutrons �Babusci, Giordano, and Matone,
1998�:

��E1 + �M1�p = 13.69 ± 0.14,

��E1 + �M1�n = 14.40 ± 0.66. �64�

The T matrix for general scattering angles is described
by the six L’vov amplitudes Ai�� , t�. These amplitudes
have no kinematical constraints, are symmetrical under
crossing, and contain both the pole terms of Figs. 15�a�,
15�b�, and 15�f� and an integral over the excitation spec-
trum, which we call the dispersive amplitude,

Ai��,t� = Ai
pole��,t� + Ai

disp��,t� . �65�

The polarizabilities are determined by the dispersive
amplitudes at �= t=0, that is, at the threshold for RCS.
This defines six real numbers ai=Ai

disp�0,0�, from which
we can derive two scalar and four vector �or spin� polar-
izabilities by linear combinations. In the scalar sector, we
find the familiar electric ��E1� and magnetic ��M1� polar-
izabilities, which appear as �E1+�M1 for forward and
�E1−�M1 for backward Compton scattering. The physi-
cal content of the four vector polarizabilities is best de-
scribed in a multipole notation. Since the initial and final
states contain a nucleon in its ground state with total
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spin J= 1
2 , the transition operator must have even parity

and angular momentum 0 or 1. The electric polarizabil-
ity describes the absorption of an electric dipole photon
followed by the emission of a photon with the same mul-
tipolarity, that is �E1��E1�E1	�0	, and in the same way
we find �M1��M1�M1	�0	 with the multipoles coupled
to 0 �scalar polarizabilities�. In the spin-dependent sec-
tor there are four polarizabilities at the lowest order:
�E1E1, �M1M1, �M1E2, and �E1M2. In this case the multipo-
larities are coupled to 1 �vector polarizabilities�. As an
example, �M1E2��M1�E2	�1	 defines a spin polarizabil-
ity with an electric quadrupole absorption followed by a
magnetic dipole emission. It is useful to define the for-
ward ��=0� and backward ��=	� polarizabilities also in
the spin-dependent sector,

�0 = − �E1E1 − �M1M1 − �M1E2 − �E1M2, �66�

�	 = − �E1E1 + �M1M1 + �M1E2 − �E1M2. �67�

It is of course possible to define higher polarizabilities
related to the � and t derivatives of Ai

disp�� , t� taken at
�= t=0. An often discussed example is the electric quad-
rupole polarizability, which appears among the terms of
O��4� in Eq. �62�.

2. Theoretical developments

In a nonrelativistic approach like the constituent
quark model �CQM�, the scalar dipole polarizabilities
can be expressed by

�E1 = 2�em 

n�0

��n
dz
0��2

En − E0
+ ��E1, �68�

�M1 = 2�em 

n�0

��n
�z
0��2

En − E0
+ ��M1, �69�

where d� =
d�q=
eqr�q and �� =
�� q are sums over the
electric and magnetic dipole operators of the constitu-
ents. For simplicity the quark masses may be taken as
mq= 1

3M, and the quark charges eq are in units of e.
Clearly the first terms on the rhs of the above equations
are positive because the excitation energy En−E0 is
positive. The second terms describe recoil and retarda-

tion, ��E1=�em�0

eqr�q
2
0� /3M and ��M1=−�em�0
d�2

+
d�q
2
0� /2M. These are small corrections in atomic

physics but quite sizeable for the quark dynamics of the
nucleon. They turn out positive for �E1 but negative for
�M1. The leading term of the magnetic polarizability de-
scribes the paramagnetism, mainly by a quark spin-flip
transition from the nucleon to ��1232�, while the sub-
leading term represents Langevin’s diamagnetism. The
simple CQM with an oscillator potential connects the
rms radius �r2�1/2 with the oscillator frequency 
0

=3/M�r2�, and yields �E1=2�em/M
0
2+O�M−2�. How-

ever, this model is not able to describe both size and
excitation energy. If we use the proper size, �E1 is
grossly overestimated, whereas a fit to the excitation en-

ergy of the dominant dipole mode N* �1520� leads to a
value much below the experiment. For the magnetic po-
larizability, the M1 transition to ��1232� yields a large
paramagnetic value, �M1

� �12, which is reduced by sub-
leading diamagnetic terms. It was therefore recognized
early that a complete picture of the nucleon must also
include the pion cloud �Weiner and Weise, 1985�.

Systematic calculations of pion cloud effects became
possible with the development of chiral perturbation
theory �CPT�, an expansion in the external momenta
and the pion or quark mass �p expansion�. The first cal-
culation of Compton scattering in that scheme was per-
formed by Bernard, Kaiser, and Meißner �1991�. Keep-
ing only the leading term in 1/m	, they found the
following relation at O�p3�:

�E1 = 10�M1 = 5�emgA
2 /96	f	

2 m	 = 12.2, �70�

with f	�93 MeV the pion decay constant and gA�1.26
the axial coupling constant. The calculation was later
repeated in heavy-baryon CPT, which allows for a con-
sistent chiral power counting, and extended to O�p4�
yielding �E1

p =10.5±2.0 and �M1
p =3.5±3.6 �Bernard et al.,

1993, 1994�. The error bars for these values indicate that
several low-energy constants appear at this order, which
were determined by resonance saturation, that is by use
of phenomenological information about resonances and
vector mesons. Since ��1232� is close in energy and im-
portant for photoabsorption, it has been proposed to in-
clude this resonance dynamically. This leads to an addi-
tional expansion parameter, the N� mass splitting ��
expansion�. Unfortunately, the “dynamical” � increases
the polarizabilities to values far above the data, �E1

p

=16.4 and �M1
p =9.1 �Hemmert et al., 1998�. This can be

changed by introducing large low-energy constants
within a higher-order calculation, however, at the ex-
pense of losing the predictive power.

The spin polarizabilities have been calculated to O�p3�
in both relativistic CPT �Bernard et al., 1995� and heavy-
baryon CPT �Hemmert et al., 1998�. As an example we
give the predictions of the latter reference:

�0 = 4.6 − 2.4 − 0.2 + 0 = 2.0, �71�

�	 = 4.6 + 2.4 − 0.2 − 43.5 = − 36.7, �72�

the four separate contributions referring to N	 loops, �
poles, �	 loops, and the pion pole, in order. From these
results, the 	0 pole dominates the backward spin polar-
izability but does not contribute in the forward direc-
tion. Independent calculations of the forward spin polar-
izability to O�p4� resulted in �0=−3.9 �Ji et al., 2000;
Birse et al., 2001�, which indicates a slow convergence of
the expansion.

Because a reliable data analysis is based on dispersion
relations �DRs�, we recall some pertinent features of this
technique in the following. The invariant amplitudes Ai
are free of kinematical singularities and constraints, they
also obey the crossing symmetry and gauge invariance.
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Assuming further analyticity and an appropriate high-
energy behavior, these amplitudes fulfill unsubtracted
DRs at fixed t,

Re Ai��,t� = Ai
pole��,t� +

2

	
P�

�0

 

d��
�� Im Ai���,t�
��2 − �2 ,

�73�

where Ai
pole is the nucleon pole term and P denotes the

principal value integral. The latter can be calculated if
the absorptive part of the amplitude, Im Ai, is known to
a sufficient accuracy. Because of energy weighting, the
pion production near threshold and the mesonic decay
of low-lying resonances yield the largest contributions to
the integral. With existing information on these pro-
cesses and reasonable assumptions on the lesser known
higher part of the spectrum, the integrand can be con-
structed up to cm energies W�2 GeV. However, Regge
theory predicts that the amplitudes A1 and A2 do not
drop sufficiently fast to warrant a convergence of the
integral. This behavior is mainly due to fixed poles in the
t channel. In particular the t-channel exchange of pions
and � mesons leads to the bad convergence for A2 and
A1, respectively. The latter meson has a mass of about
600 MeV and a very large width, it models correlations
in the two-pion channel with spin zero and positive par-
ity. In order to obtain useful results for these two ampli-
tudes, L’vov et al. �1997� proposed to close the contour
integral in the complex plane by a semicircle of finite
radius �max, and to replace the contribution from the
semicircle by a number of energy independent poles in
the t channel. This procedure is relatively safe for A2
because the 	0 pole or triangle anomaly is well-
established by both experiment and theory. However, it
introduces a considerable model dependence for A1.

In order to avoid the convergence problem and the
phenomenology necessary to determine the asymptotic
contributions, it was suggested to subtract the DRs at
�=0 �Drechsel et al., 2000�. This subtraction improves
the convergence by two additional powers of �� in the
denominator of the dispersion integrals, Eq. �73�. The
subtraction functions Ai��=0, t� can be obtained from
subtracted DRs in t with the imaginary part of the am-

plitude ��→		→NN̄ as input. In a first step, a unita-
rized amplitude for the ��→		 subprocess is con-
structed from available experimental data. This

information is then combined with the 		→NN̄ ampli-
tudes determined by analytical continuation of 	N scat-
tering amplitudes �Höhler, 1983�. Once the t dependence
of the subtraction functions Ai�0, t� is known, the sub-
traction constants ai=Ai�0,0� have to be fixed. Although
all six subtraction constants a1 to a6 could be used as fit
parameters, it is sufficient to fit a1 and a2, or equivalently
�E1−�M1 and �	 to the data. The remaining four sub-
traction constants can be calculated through an unsub-
tracted dispersion integral. Yet another method is hyper-
bolic �fixed-angle� DRs, which improve the convergence
for large values of t or backward scattering angles

�Bernabeu et al., 1974; Holstein and Nathan, 1994; L’vov
and Nathan, 1999�. Holstein and Nathan �1994� investi-
gated backward DRs in order to get rigorous bounds for
the backward scalar polarizability of the proton. The im-
portant finding was that the phenomenological � meson
can be replaced by experimental information on the 		
continuum. Results of a recent analysis are ��E1−�M1�s
=−5.6 and ��E1−�M1�t=16.5, leading to a total value of
about 10.9 in good agreement with the data �Drechsel et
al., 2003�. The importance of the t-channel contribution
has also been found in an analysis of the experimental
data by Schumacher �2007� who obtained ��E1−�M1�t
=15.2. We conclude that the polarizability of the nucleon
is largely determined by the subprocess �+�→	+	,
and therefore intertwined with correlations of the two-
pion system and the polarizability of the pion.

3. RCS data and extraction of the proton polarizabilities

The pioneering experiment in Compton scattering off
the proton was by Gol’danski et al. �1960�. They ob-
tained an electric polarizability �E1

p =9±2, with a large
uncertainty in the normalization of the cross section giv-
ing rise to an additional systematical error of ±5. In a
later experiment Baranov et al. �1975� used bremsstrah-
lung providing photons with energies up to 100 MeV.
The data obtained were later reevaluated by DRs with
the result �E1

p �12 and �M1
p �−6. This outcome was a

surprise because one expected a large paramagnetic ef-
fect of at least �para

p �10 from the quark spin alignment
in the N→��1232� transition. The first modern experi-
ments were performed at Illinois �Federspiel et al.,
1991�, followed by the work of Hallin et al. �1993� and
MacGibbon et al. �1995�. With tagged photons at 70
%E�%100 MeV and untagged photons for the higher
energies, the latter group obtained �E1

p =12.1±0.8±0.5
and �M1

p =2.1'0.8'0.5. New precision measurements at
MAMI �Olmos de Leon et al., 2001� have been per-
formed with tagged photons and the photon detector
TAPS. The measured differential cross sections from
various laboratories are shown in Fig. 17 as a function of
the photon laboratory energy and at different scattering
angles. The data have been compared to the results from
four different types of DRs. The figure shows that the
differences among the predicted results are hardly vis-
ible, except for the unsubtracted hyperbolic DR at �lab
=107°, because this angle is too much forward for this
DR. A fit to all current low-energy data constrained by
Baldin’s sum rule of Eq. �64� yields �Olmos de Leon et
al., 2001�

�E1
p = 12.1 ± 0.3' 0.4 ± 0.3, �74�

�M1
p = 1.6 ± 0.4 ± 0.4 ± 0.4, �75�

in units of 10−4 fm3 and with errors denoting the statis-
tical, systematical, and model-dependent errors, respec-
tively. This new global average confirms the dominance
of the electric polarizability �E1

p and the small value of
the magnetic polarizability �M1

p , which comes about by a
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cancellation between the large paramagnetic s-channel
contribution of the N� spin-flip transition and the
smaller diamagnetic t-channel contribution of the pion
cloud. The large improvement by new data is seen in
Fig. 18, which displays the error ellipses in the �E1

p

−�M1
p plane as obtained from recent experiments. For

details of the experiments and their interpretation, see
Schumacher �2005�.

Much less is known about the spin sector, except for
the forward and backward spin polarizabilities. The
most recent values are

�0 = − 0.94 ± 0.15, �76�

�	 = �− 36.1 ± 2.2 �Olmos de Leon et al ., 2001�
− 37.9 ± 3.6 �Galler et al ., 2001�
− 38.7 ± 1.8 �Schumacher, 2005�

�
�77�

in units of 10−4 fm4. The small value for �0 in Eq. �76�
was not measured by Compton scattering but has been
determined by a sum rule based on helicity-dependent
absorption cross sections; see Sec. VI.A. The top line in
Eq. �77� gives �	 as determined from low-energy data
�Olmos de Leon et al., 2001�, where case the error is
dominated by the statistical plus systematical uncer-
tainty, whereas the middle line refers to the work of
Galler et al. �2001� who found that the model error pre-

vails in the � region, and the bottom line gives the
weighted average of several MAMI results �Schumacher,
2005�. For all other spin and higher order polarizabil-
ities, both CPT and DR predict small values that cannot

FIG. 18. Contour plot of #2+1 for different measurements of
�E1

p and �M1
p . The three dashed ellipses are obtained from Ol-

mos de Leon et al. �2001�; Federspiel et al. �1991�; and MacGib-
bon et al. �1995� as indicated. Dashed area corresponds to the
measurement of Zieger et al. �1992� at �=180°, the area be-
tween the other two straight lines to the Baldin sum rule. The
small ellipse drawn with the solid line is a common fit to all
data. From Olmos de Leon et al., 2001.
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FIG. 17. Differential cross section for Comp-
ton scattering off the proton as a function of
the laboratory photon energy E� and at dif-
ferent scattering angles �lab. Solid lines, fixed-t
subtracted DRs; dashed lines, fixed-t unsub-
tracted DRs; dotted lines, hyperbolic sub-
tracted DRs; and dash-dotted lines, hyper-
bolic unsubtracted DRs. All results are shown
for fixed values of �E1

p +�M1
p =13.8, �E1

p −�M1
p

=10, and �	
p =−37. Data are from Olmos de

Leon et al. �2001� �solid circles�, Federspiel et
al. �1991� �squares�, MacGibbon et al. �1995�
�triangles�, and Zieger et al. �1992� �open
circles�. From Drechsel et al., 2003.
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be determined without dedicated polarization studies. A
new generation of experiments with polarized beams,
polarized targets, and recoil polarimetry holds the prom-
ise to disentangle all scalar and vector polarizabilities of
the nucleon and to quantify the proton’s full spin re-
sponse to an external electromagnetic field �Babusci,
Giordano, L’vov, et al., 1998; Hildebrandt et al., 2004;
Beane et al., 2005�. The HIGS project �Weller, 2007� of a
high-intensity beam with circularly polarized photons in
an energy range 140–160 MeV is ideally suited to per-
form such experiments in the pion threshold region.
Complementary investigations are planned in the first
resonance region using the Crystal Ball detector at
MAMI �Arends and Scherer, 2007�. We believe that only
a combination of these experimental projects will pro-
vide the “sharp knife” to extract the spin polarizabilities
in an unambiguous way �Pasquini et al., 2007�.

4. RCS data and extraction of the neutron polarizabilities

The experimental situation concerning the polarizabil-
ities of the neutron is still quite unsatisfactory. The elec-
tric polarizability �E1

n can in principle be measured by
scattering low-energy neutrons on the Coulomb field of
a heavy nucleus, whereas the magnetic polarizability
�M1

n remains essentially unconstrained by such an ex-
periment. This technique seemed to be promising until
the beginning of the 1990s, when Schmiedmayer et al.
�1991� obtained the value �E1

n =12.6±1.5�stat�±2.0�syst�
by scattering neutrons with energies 50 eV%En

%50 keV off a 208Pb target. Later, however, Nikolenko
and Popov �1992� argued that the errors were underes-
timated by a factor of 5. These findings were confirmed
by a similar experiment �Koester et al., 1995� resulting in
�E1

n =0±5, and by Enik et al. �1997� who obtained 7
"�E1

n "19 after a further analysis of the systematic er-
rors.

The neutron polarizabilities can also be measured by
quasifree Compton scattering off a bound neutron and
elastic scattering on a deuteron. The former experiment
was performed by Rose et al. �1990�. Interpreted in con-
junction with Baldin’s sum rule, the result was 0��E1

n

�14 with a mean value �E1
n �10.7. The large error bar

arises from the fact that the Thomson amplitude van-
ishes for a neutral particle, and therefore the interfer-
ence between this term and the leading non-Born ampli-
tude is also absent. It was therefore proposed to repeat
such an experiment at higher energies and backward
angles for which the sensitivity to �E1

n −�M1
n is highest.

Because the data analysis is sensitive to final-state inter-
actions and two-body currents, it was suggested to mea-
sure the polarizabilities of the bound proton at the same
time. The proton values obtained by Wissmann et al.
�1999� were quite promising, �E1

p −�M1
p =10.3±1.7�stat

+syst�±1.1�mod�. The experiment was then extended to
the neutron by the CATS/SENECA Collaboration �Ko-
ssert et al., 2002�. Data were collected for both deute-
rium and hydrogen targets and analyzed by Levchuk
and L’vov �2000�. The agreement between the polariz-

abilities of free and bound protons was satisfactory, and
the final result for the �bound� neutron was

�E1
n − �M1

n = 9.8 ± 3.6�stat�−1.1
+2.1�syst� ± 2.2�mod� . �78�

This value is compatible with an earlier datum of Kolb et
al. �2000�, obtained at similar energies and angles but
with a much larger error bar, �E1

n −�M1
n �12. Comparison

between the proton and neutron demonstrates that
there is no significant isovector contribution to the scalar
polarizabilities of the nucleon. Unfortunately, the ex-
perimental data from elastic photon scattering off a deu-
teron are much more prone to model errors. Such ex-
periments have been performed at SAL �Hornidge et al.,
2000� and at MAX-laboratory �Lundin et al., 2003�, and
within the formalism of Levchuk and L’vov �2000� the
following results have been obtained:

�E1
n − �M1

n = �− 4.8 ± 3.9 �Hornidge et al ., 2000�
+ 2.3 ± 3.4 �Lundin et al ., 2003� .

�
�79�

Altogether these numbers represent a small value of the
backward scalar polarizability, which is difficult to un-
derstand on theoretical grounds. The quasifree Comp-
ton scattering experiments off a bound neutron also pro-
vided a first glimpse at the backward spin polarizability
of the neutron. Whereas the large pion-pole contribu-
tion is negative for the proton, it carries a positive sign
for the neutron. The dispersive contributions, on the
other hand, are positive for both nucleons. As a result,
we expect a large positive number for �	

n . This is consis-
tent with the value

�	
n = 58.6 ± 4.0, �80�

obtained from a fit to quasifree Compton scattering off a
bound neutron �Schumacher, 2005�.

B. Generalized polarizability of the nucleon at Q2�0

Virtual Compton scattering is formally obtained from
real Compton scattering by replacing the incident real
photon with a virtual photon �*. It is realized by a sub-
process of the reaction e+p→e�+p�+�. As displayed in
Fig. 19, the real photon can be emitted by either the
electron or the proton. The former process, called
Bethe-Heitler �BH� scattering, can be calculated from
QCD, whereas the latter process is referred to as virtual
Compton scattering �VCS�. Because the two processes
lead to the same final state, the amplitudes add coher-
ently,

T ee�� = T BH + T VCS. �81�

The VCS amplitude T VCS can be further decomposed
into a Born and a non-Born contribution. For the Born
contribution, the nucleon always remains in its ground
state, and therefore this amplitude can be calculated
once the �ground state� form factors of the nucleon are
known. The non-Born term contains all contributions
with excited intermediate states, that is nucleon reso-
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nances, pion-nucleon scattering states, and so on. The
physics interest is, of course, in the non-Born amplitude
because it contains information on the nucleon’s internal
structure in the form of generalized polarizabilities
�GPs�. These GPs depend on the virtuality Q2 trans-
ferred by the virtual photon. The physics of VCS is vi-
sualized best if we consider the time-reversed version:
As in RCS the real photon plays the role of a quasistatic
electromagnetic field that induces a polarization of the
charges, currents, and magnetizations whose spatial dis-
tributions are resolved by the virtual photon through
variation of Q2. To lowest order in the energy, VCS is
determined by six independent GPs, which can be deter-
mined by measuring the interference between the
Bethe-Heitler and VCS amplitudes by means of angular
distributions �Guichon et al., 1995� and double-
polarization asymmetries �Vanderhaeghen, 1997�. A
word of caution for the reader familiar with the formal-
ism of meson electroproduction: the cross section for the
reaction e+N→e�+N�+� does not take the form of Eq.
�28�, which is based on particle production from the
nucleon only. Instead, the final-state photon can be emit-
ted from both the electron and the nucleon. The pio-
neering VCS experiment was at MAMI by Roche et al.
�2000�, and a first double-polarization experiment is un-
derway. Further experiments have been performed at
MIT Bates for very small Q2 �Bourgeois et al., 2006� and
at Jefferson Laboratory for large Q2 �Laveissiere et al.,
2004�. From such experiments we find different spatial
distributions for the diamagnetism and paramagnetism
in the nucleon. Furthermore, the planned double-
polarization experiments will give direct comparison
with the spin polarizabilities predicted by CPT, which
are free of low-energy constants at leading order.

1. Kinematics and invariant amplitudes

In the following we consider only the subprocess

�*�q� + N�p� → ��q�� + N�p�� . �82�

Because the spacelike virtual photon has a “mass” q2

=−Q2, the kinematic relations change with regard to the
real photon case, Eq. �57�, in particular

s + t + u = 2M2 − Q2, �83�

� = �s − u�/4M = E� + �t − Q2�/4M , �84�

t = 2E���cos �lab
�E�

2 + Q2 − E�� − Q2, �85�

with �lab the laboratory scattering angle, and E�� and E�

the laboratory energies of the real and virtual photon,
respectively. In the following we choose �, t, and Q2 as
independent variables.

The VCS Compton tensor is constructed as for RCS,
Eq. �58�, except that the polarization four-vector of the
virtual photon has three independent components, that
is the helicities �= ±1 �transverse polarization� and �

=0 �longitudinal polarization�. The VCS tensor H̃�� can
be expanded in a basis of 12 independent tensors with
amplitudes depending on three variables,

H̃�� = 

i=1

12

M̃i
��Fi��,t,Q2� . �86�

The number 12 is given by the possible choices for the
helicities in the initial and final states, namely 3�2�2
�2 divided by two because of parity invariance. The
same consideration yields eight for RCS, but this num-
ber is further reduced to six independent combinations
by time reversal, which of course does not apply for
VCS. It is possible to find a special tensor basis such that
each term is gauge invariant, even under crossing and
free of kinematical singularities and constraints �Drech-
sel et al., 1998�. Furthermore, only six amplitudes con-
tribute for Q2→0, because four tensor structures and
two amplitudes vanish in this limit. The result is six re-
lations between the VCS amplitudes Fi and the RCS
amplitudes Ai.

2. Generalized polarizabilities

If the emitted photons have small energies, the VCS
experiments can be analyzed in terms of a low-energy
expansion �LEX� as proposed by Guichon et al. �1995�.
In this approximation the non-Born part of the ampli-
tudes is expanded in E��, and only the linear term is kept.
This reduces the multipolarities of the emitted photon to
electric and magnetic dipole radiation. Furthermore, the
GPs are given by linear combinations of the amplitudes
at threshold ��=0, t=−Q2�, which contains the definition
of the polarizabilities for RCS in the limit Q2→0. We
next discuss the multipole decomposition of the non-

Born VCS tensor H̃nB
�� of Eq. �86� at small real photon

energy, q�→0, but for arbitrary three-momentum q
�
q� cm
 of the virtual photon. For this purpose we denote
the GPs by P�M���,M��S �Guichon et al., 1995�. In this
notation, � refers to the angular momentum and M to
the electric �E�, magnetic �M�, or longitudinal �L� nature
of the virtual photon, with the primed variables denoting

e
e γ

p p

(a)

e
e

γ

p
(b)

ppp

e
e

γ

FIG. 19. Contributions to the reaction e+p→e�+p�+�, �a� vir-
tual Compton scattering on the proton, �b� Bethe-Heitler pro-
cess. The blob in �a� represents both nucleon intermediate
states �Born terms� and excited states of the nucleon �non-
Born terms�.
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the real photons. Furthermore, the quantum number S
differentiates between the spin-flip �S=1� and non-spin-
flip �S=0� character of the hadronic transition. Within
the LEX we use the dipole approximation, ��=1. With
this assumption, the conservation of angular momentum
and parity restricts the number of GPs to 10 �Guichon et
al., 1995�. Four more constraints are provided by
nucleon crossing combined with charge conjugation
symmetry, which leaves six independent GPs �Drechsel
et al., 1998�,

P�L1,L1�0�q�, P�M1,M1�0�q� ,

P�L1,L1�1�q�, P�M1,M1�1�q� ,

P�M1,L2�1�q�, P�L1,M2�1�q� . �87�

We note that the transverse electric multipoles have
been eliminated from the above equations because they
differ from the longitudinal multipoles only by terms of
higher order in q. In the limit q→0 one finds the follow-
ing relations between the VCS and RCS polarizabilities
�Drechsel et al., 1998�:

P�L1,L1�0 → − ��2/�3�em��E1,

P�M1,M1�0 → − ��8/�3�em��M1,

P�L1,L1�1 → 0, P�M1,M1�1 → 0,

P�L1,M2�1 → − ��2/3�em��3,

P�M1,L2�1 → − �2�2/3�3�em���2 + �4� . �88�

In order to connect the scalar VCS and RCS polarizabil-
ities, we introduce the definitions

�E1�Q2� = − �3
2�emP�L1,L1�0�Q2� , �89�

�M1�Q2� = − �3
8�emP�M1,M1�0�Q2� , �90�

with �E1�0�=�E1 and �M1�0�=�M1 as measured by RCS
according to Eqs. �74� and �75�.

3. Theoretical developments

For the given tensor basis, the associated non-Born
VCS amplitudes Fi

nB �i=1, . . . ,12� are free of kinematical
singularities and constraints, and even under crossing.
Assuming further an appropriate analytic and high-
energy behavior, these amplitudes fulfill unsubtracted
dispersion relations in the variable � and at fixed t and
Q2,

Re Fi
nB�Q2,�,t� = Fi

pole�Q2,�,t� − Fi
B�Q2,�,t�

+
2

	
P�

�0

 

d��
�� Im Fi�Q2,��,t�

��2 − �2 .

�91�

We recall that the Born amplitudes Fi
B are given by dia-

grams with nucleons in the intermediate state, whereas
the pole amplitudes Fi

pole are obtained from the Born
amplitudes at the pole position, that is, with all numera-
tors evaluated at the pole. Furthermore, Im Fi are the
discontinuities across the s-channel cuts, starting at the
pion production threshold �0=m	+ �2m	

2 + t+Q2� /4M.
Besides the absorptive singularities due to physical in-

termediate states, one might wonder whether additional
singularities like anomalous thresholds can contribute to
the dispersion integrals. The latter arise when a hadron
is a loosely bound system of other hadronic constituents
which can go on-shell, thus leading to so-called triangu-
lar singularities. However, it was shown that within the
strong confinement of QCD, the quark-gluon structure
of hadrons does not give rise to additional anomalous
thresholds �Jaffe and Mende, 1992; Oehme, 1995�, and
that possible quark singularities turn into hadron singu-
larities as described through an effective field theory.
Therefore only anomalous thresholds arise for hadrons
which are loosely bound systems of other hadrons, as,
for example, the � particle in terms of a �-	 system.
Such anomalous thresholds are absent for the nucleon,
and therefore the imaginary parts in Eq. �91� are given
only by absorptive effects due to 	N, 		N, and heavier
hadronic states. Of course, Eq. �91� is valid only if the
amplitudes drop fast enough such that the integrals con-
verge. The high-energy behavior of the amplitudes Fi
was investigated by Pasquini, Gorchtein, et al. �2001� in
the Regge limit ��→ , t and Q2 fixed�. As in Sec.
IV.A.2, the dispersion integrals diverge for two ampli-
tudes, F1 and F5 in our notation. These amplitudes are
dominated by the t-channel exchange of � and 	0 me-
sons, respectively. As long as we are interested in the
energy region up to the ��1232�, we may saturate the
s-channel dispersion integral by the 	N contribution,
choosing �max�1.5 GeV as the upper limit of integra-
tion. The asymptotic contribution to F5 is saturated by
the pion pole and therefore independent of �,

F5
as��,t,Q2� = −

g	NN

Me2

F	0���Q2�

t − m	
2 , �92�

with a monopole form factor from the 	0→�+� decay.
As a result �E1

as �Q2��F5
as�0,−Q2 ,Q2� has a dipole form,

with �E1
as �0� known from RCS. Although the pion pole

contribution is dominant, there may be other effects
such as more pion and heavier intermediate states. In
view of our limited knowledge on these reactions, we
parametrize the Q2 dependence in a dipole form with a
parameter ��,

�E1
as �Q2� = �E1

as �0�/�1 + Q2/��
2�2. �93�

In the same spirit we also estimate the contribution of
the � meson by a dispersion relation in t at �=0,
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F̄1
as�Q2� =

1

	
�

4m	
2

 

dt�
Imt F1�0,t�,Q2�

t� + Q2 , �94�

with Imt F1 determined from the t-channel reaction �

+�*→	+	→NN̄. The result of this calculation can also
be parametrized by a dipole form �Pasquini, Gorchtein,
et al., 2001�:

�M1
as �Q2� � �M1

as �0�/�1 + Q2/��
2�2, �95�

with ���0.4 GeV and �as�0� known from RCS. We note
that �� is small compared to the parameter �D
=0.84 GeV of Eq. �37�, which gives the scale of the
nucleon’s magnetic form factor, that is, the asymptotic
diamagnetic polarization is related to surface phenom-
ena as expected from the pion cloud.

4. Experiments and data analysis

At small three-momentum q� of the emitted real pho-
ton, the measured cross section can be analyzed through
the LEX of Guichon et al. �1995�. This expansion is
based on a low-energy theorem �LET� stating that the
radiative amplitude for pointlike particles diverges like
1/q� for q�→0, whereas the dispersive amplitude van-
ishes like q� in that limit. As a consequence the spin-
averaged �unpolarized� square of the matrix element
takes the form


M
2 = A−2/�q��2 + A−1/q� + A0 + O�q�� , �96�

with coefficients A−2 and A−1 described by the Bethe-
Heitler �BH� and Born terms, which can be calculated
from QED once the proton �ground state� form factors
are known. The next order term A0 contains contribu-
tions from the BH and Born terms but also an interfer-
ence between the O�1/q�� contribution of BH plus Born
amplitudes and the leading term of the non-Born ampli-
tude O�q��, which is proportional to the GPs. This inter-
ference term can be expressed by the structure functions
PLL�q�, PTT�q�, and PLT�q� �Guichon et al., 1995�,

A0
exp − A0

BH+B = 2K2�v1��PLL�q� − PTT�q�	

+ �v2 −
q̃0

q
v3��2��1 + ��PLT�q�� ,

�97�

with K2, v1, v2, and v3 kinematical functions depending
on �, q, and the polar and azimuthal cm angles �cm and

cm, respectively. Furthermore, q̃0 is the cm energy of
the virtual photon in the limit q�→0. The three struc-
ture functions of Eq. �97� can be expressed by the GPs
as follows �Guichon et al., 1995; Guichon and Vander-
haeghen, 1998�:

PLL = − 2�6MGEP�L1,L1�0,

PTT = − 3GM
q2

q̃0
�P�M1,M1�1 − �2q̃0P�L1,M2�1� ,

PLT =�3
2

Mq

Q
GEP�M1,M1�0 +

3
2

Qq

q̃0
GMP�L1,L1�1, �98�

with GE and GM the electric and magnetic nucleon form
factors.

In Fig. 20 we compare the measured response func-
tions to the predictions of DR �left column� and HBCPT
�right column�. The response function PLL−PTT /� is dis-
played in the upper panels. According to Eqs. �89� and
�98�, PLL is directly proportional to the scalar GP
�E1�Q2�, whereas PTT contains only spin GPs. As dis-
cussed in Sec. IV.A, the dispersive and asymptotic con-
tributions to �E1 have the same sign at the real photon
point, which leads to a large total value. However,
�E1�Q2� drops rapidly as a function of Q2. The differ-
ence between the solid and dashed lines is due to the
spin GPs whose importance rises with Q2. There is gen-
eral agreement between the results from DR �Pasquini,
Gorchtein, et al., 2001� and the HBCPT �Hemmert et al.,
1997a, 2000�, however, the spin GPs turn out much
larger in the latter approach. The bottom row of Fig. 20
gives the same comparison for the response function

0

20

40

60

80

0 0.2 0.4

DR

PLL-PTT/ε (GeV-2)

Q2 (GeV2)

0

20

40

60

80

0 0.2 0.4

HBChPT

PLL-PTT/ε (GeV-2)

Q2 (GeV2)

-15

-10

-5

0

0 0.2 0.4

Q2 (GeV2)

DR

PLT (GeV-2)

-15

-10

-5

0

0 0.2 0.4

Q2 (GeV2)

HBChPT

PLT (GeV-2)

FIG. 20. Comparison between the unpolarized VCS structure
functions calculated by dispersion relations �Pasquini,
Gorchtein, et al., 2001� �left column� and HBCPT �Hemmert
et al., 1997b, 2000� at O�p3� �right column�. Top row: Result for
PLL−PTT /� with �=0.62 �solid lines� and �=0.9 �dash-dotted
lines� compared to the result for �E1 only and �=0.62 �dashed
lines�. The dispersive results for �=0.62 and 0.9 are obtained
with ��=1.79 and 0.7 GeV, respectively. Bottom row: Results
for PLT �solid line� compared to the result for �M1 only
�dashed line�. Data are from Olmos de Leon et al. �2001� �open
triangles�, Bourgeois et al. �2006� �solid triangles�, and Roche et
al. �2000� �squares�. From Drechsel et al., 2003, updated by B.
Pasquini.
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PLT, which contains both the scalar magnetic polariz-
ability P�M1,M1�0�−�M1�Q2� and the spin GP P�L1,L1�1.
As shown in Sec. IV.A, �M1�0� is the sum of a large
dispersive �paramagnetic� contribution, which is domi-
nated by ��1232� excitation, and a somewhat smaller
asymptotic �diamagnetic� contribution with opposite
sign. Moreover, we expect that the diamagnetic contri-
bution is largely due to pionic degrees of freedom, and
therefore of longer range in r space than the paramag-
netic component. This expectation is corroborated by
the minimum of PLT at Q2�0.05 GeV2: the �positive�
diamagnetic component of PLT decreases faster in Q2

space than the �negative� paramagnetic term, and there-
fore PLT decreases over a small Q2 region to the mini-
mum, from where the form factor effects lead to a rapid
approach towards zero. Although the full results of DR
and HBCPT agree qualitatively, there is again a large
difference in the spin-dependent sector.

In the region between pion threshold and �-resonance
peak, the sensitivity to the GPs is enhanced because the
contributions of the GPs interfere with the rapidly rising
amplitude of the �-resonance excitation. It is not pos-
sible to extend the LEX to these energies, but the dis-
persive approach is expected to give a reasonable frame
to extract the GPs. When crossing the pion threshold,
the VCS amplitude also acquires an imaginary part due
to the opening of the 	N channel. As an interesting re-
sult, single polarization observables appear above pion
threshold. A particularly relevant observable is the elec-
tron single-spin asymmetry �SSA�, which is obtained by
flipping the electron beam helicity �Guichon and
Vanderhaeghen, 1998�. The main source of the SSA is an
interference between the �real� Bethe-Heitler and Born
amplitudes and the imaginary part of the VCS ampli-
tude. Because the SSA vanishes in plane, its measure-
ment requires an out-of-plane experiment. Such an ex-
periment has been performed at MAMI �Bensafa et al.,
2007�. The measured asymmetry at W=1.19 GeV and
Q2=0.35 GeV2 is displayed in Fig. 21 and compared to
the predictions of dispersion theory. The figure shows a
rather weak dependence of the asymmetry on variations
of the GPs. Therefore measurement of the SSA provides
an excellent cross-check of the dispersive input, i.e., the
imaginary parts of the 	N multipoles, in particular by
studies of the � region by VCS and pion electroproduc-
tion in parallel.

At larger virtuality, the VCS process has been investi-
gated by the Hall A Collaboration at Jefferson Labora-
tory, and data have been obtained at Q2=0.92 and
1.76 GeV2 �Laveissiere et al., 2004�. A reasonable de-
scription of these data is obtained by the values ��
=0.71 GeV and ��=0.51 GeV shown as solid lines in
Fig. 22. We note that �� corresponds to a spatial range
comparable to the nucleon’s charge distribution. How-
ever, the best fit value for �� is substantially lower, indi-
cating that the diamagnetism is related to pion cloud
effects at distances above 1 fm. Subtracting the spin-
dependent terms according to the dispersion predictions,
we obtain the Q2 dependence of the scalar GPs shown in

Fig. 23. It is obvious that the electric GP �E1�Q2� is
dominated by the asymptotic term, which, however, can-
not be described by a single dipole form over the full Q2

range. The magnetic GP �M1�Q2� shows a characteristic
maximum at Q2�0.05 GeV2, which comes about by
cancellation between the positive paramagnetic � con-
tribution and the negative diamagnetic contribution of
the t-channel 		 exchange. By Fourier transforming the
GPs �E1�Q2� and �M1�Q2� in the Breit frame, one ob-
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FIG. 21. Beam single spin asymmetry for VCS as a function of
the photon scattering angle. The dispersive predictions are
shown for different pairs of ��� ,��� given in GeV. Solid line,
�1.4, 0.7�; dash-dotted line, �1.4, 0.4�; long-dashed line, �0.8,
0.7�; and short-dashed line, �0.8, 0.4�. From Bensafa et al., 2007.
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FIG. 22. Results for PLL−PTT /� �left panel� and PLT �right
panel�. Dashed lines: dispersive 	N contributions. Dotted
lines: asymptotic contributions with ��=0.71 GeV and ��
=0.51 GeV. Solid lines: full results. Data are from Olmos de
Leon et al. �2001� �open triangles�, Bourgeois et al. �2006� �solid
triangles�, Roche et al. �2000� �squares�, and Laveissiere et al.
�2004� as obtained by the LEX �open circles� and DR �closed
circles� analysis. The inner error bars describe the statistical
error, the outer error bars include systematical errors. From
Drechsel et al., 2003, updated by B. Pasquini.
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tains the spatial distribution of the induced electric po-
larization and magnetization of the nucleon �L’vov et al.,
2001�. The emerging picture is as expected from a clas-
sical interpretation of diamagnetism. Due to the exter-
nal magnetic field, pionic currents start circulating in the
nucleon and give rise to an induced magnetization op-
posite to the applied field. At distances r$1/m	, the
diamagnetic effect dominates and the Fourier transform
�M1�r� takes negative values, whereas the paramagnetic
contributions prevail at smaller distances giving rise to
positive values of �M1�r� in the interior of the nucleon.
As the momentum transfer Q2 increases, the negative
contribution due to the long-range pion cloud quickly
vanishes and hence �M1�Q2� increases. This explains the
positive slope of �M1�Q2� at Q2=0 and the maximum at
Q2�0.05 GeV2 as indicated by the experimental data.

According to Eqs. �97� and �98�, the unpolarized VCS
experiment gives access to only three combinations of
the six GPs. As shown by Vanderhaeghen �1997�, it takes
experiments with polarized lepton beams and polarized
targets or recoil nucleons to measure the remaining
three GPs. These double-polarization observables re-
quire measuring the cross sections for a definite electron
helicity h and recoil �or target� proton spin orientation
parallel and opposite to a specified axis. As shown for
the unpolarized cross section by Eq. �96�, the polarized

squared amplitude also has a low-energy expansion, and
the GPs are again obtained from the term O�1�. This
term contains the structure functions PLT

z �q�, PLT�z �q�,
and PLT���q�, which are related to the spin GPs by
�Vanderhaeghen, 1997�

PLT
z =

3Qq

2q̃0
GMP�L1,L1�1 −

3Mq

Q
GEP�M1,M1�1,

PLT�z = −
3
2

QGMP�L1,L1�1 +
3Mq2

Qq̃0
GEP�M1,M1�1,

PLT�� =
3qQ

2q̃0
GM�P�L1,L1�1 −�3

2
q̃0P�M1,L2�1� . �99�

While PLT
z and PLT�z can be accessed by in-plane kine-

matics, PLT�� requires an out-of-plane measurement.
In Fig. 24 we compare the results of DR and HBCPT

for the double-polarization observables with longitudi-
nally polarized electrons and recoil proton polarization
either along the virtual photon direction �z direction� or
in the reaction plane and perpendicular to the virtual
photon �x direction�. The large but well-known asymme-
tries from the Bethe-Heitler and Born terms have been
subtracted in this figure in order to highlight the differ-
ences between DR �Pasquini, Gorchtein, et al., 2001�
and HBCPT at O�p3� �Hemmert et al., 2000�. We note
that the latter approach yields significantly larger effects
due to higher predicted values for the spin GPs. Al-
though these double-polarization observables are tough
to measure, a first test experiment is underway at
MAMI. Contrary to the scalar polarizabilities, the spin-
flip GPs are still unknown territory. In Fig. 25 we com-
pare the dispersive results for the spin-flip GPs with the
predictions of the nonrelativistic constituent quark
model �Pasquini, Scherer, and Drechsel, 2001�, the

FIG. 23. Comparison of experiment and theory for the gener-
alized polarizabilities �GPSs�. Left panel: The electric GP
�E1�Q2� obtained from the DR formalism with ��=0.7 GeV
�solid line� and ��=1.79 GeV �dash-dotted line�. The solid line
is the sum of the asymptotic �dashed line� and dispersive �dot-
ted� contributions. Right panel: The magnetic GP �M1�Q2� ob-
tained from the DR formalism with ��=0.51 GeV �solid line�
and ��=0.63 GeV �dash-dotted line�. The dash-dotted line is
the sum of the asymptotic �dashed line� and dispersive �dotted
line� contributions. Data are from Olmos de Leon et al. �2001�
�open triangles�, Bourgeois et al. �2006� �solid triangles�, Roche
et al. �2000� �squares�, and Laveissiere et al. �2004� as obtained
by the LEX �open circles� and DR �solid circles� analysis. The
inner error bars describe the statistical error, the outer error
bars also include systematical errors. From Laveissiere et al.,
2004.

FIG. 24. �Color online� Predicted double-polarization asym-
metries as a function of the photon scattering angle ��� and for
the following fixed kinematic values: q=600 MeV, q�
=111.5 MeV, �=0.62, and �=0°. In order to highlight the
model dependence, the �known� Bethe-Heitler and Born con-
tributions to the asymmetry have been subtracted. Solid lines,
results of dispersion relations for ��=1 GeV and ��
=0.6 GeV �Drechsel et al. �2003�; dotted lines, predictions of
HBCPT at O�p3� �Hemmert et al., 2000�; and dashed lines,
HBCPT at O�p4� �Kao et al., 2004�.
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HBCPT to O�p3� �Hemmert et al., 1997a, 2000� and
O�p4� �Kao and Vanderhaeghen, 2002�, and the linear �
model �Metz and Drechsel, 1997�. We refrain from com-
menting on the theoretical predictions which clearly
open a wide range of values for the spin polarizabilities.
An absolute must for further progress is dedicated ex-
periments with a large sensitivity to the spin-dependent
GPs. Such experiments are �I� unpolarized VCS with
variation of the transverse photon polarization � in or-
der to separate the response functions PLL and PTT and
�II� double-polarization experiments as discussed above.

C. Polarizability of mesons

Mesons are systems of a quark and an antiquark and,
therefore, theoretically simpler to describe than bary-
ons. We set the scene with the classical picture of two
charges bound in a quark-antiquark potential in the
presence of an additional static electric field. For this
system we derive the following relation �Walcher, 2006�:

�E1
	+

= ��em/�qq̄�4	R3(2, �100�

with (=1/6 the effective charge of the system and �qq̄
�5 derived from the heavy quark potential, of course

somewhat outside its applicability. Furthermore, R is a
characteristic dimension of the system, for example, the
equivalent charge radius. With the pion rms radius of
Eq. �49�, we obtain R=��5/3��r2�	=0.86 fm, and as a re-

sult �E1
	+

=3.2, here and in the following in units of
10−4 fm3. Comparing these numbers with the results of
Sec. IV.A, we find that the pion is a dielectric medium
with ��1.001, i.e., even more rigid than the nucleon.

The pion polarizabilities have been calculated in CPT
at the two-loop order, O�p6�. Contrary to the situation of
the nucleon, no “matter fields” with their own mass
scale are present, and therefore the calculations can be
performed in the original formulation of CPT �Gasser
and Leutwyler, 1984, 1985�. This makes the following
predictions for the polarizabilities a significant test of
this theory �Gasser et al., 2006�:

�E1
	+

+ �M1
	+

= 0.16 ± 0.1, �101�

�E1
	+

− �M1
	+

= 5.7 ± 1.0. �102�

The small value predicted by Eq. �101�, that is Baldin’s
sum rule applied to the pion, makes a measurement of
this observable close to impossible. The experiments are

therefore analyzed with the constraint �E1
	+

�−�M1
	+

.
Unfortunately, the experimental situation is rather

contradictory; see Ahrens et al. �2005� and Gasser et al.
�2006� for reviews of the data and references to experi-
ments. There exist basically three different methods to
measure �E1: �I� the reactions e+e−����	+	−, �II� the
Primakov effect of scattering a relativistic pion in the
Coulomb field of a heavy nucleus, and �III� the radiative
pion photoproduction, p�� ,��	+n�, which contains
Compton scattering on a �bound� pion as a subprocess.
The latter reaction was investigated at MAMI using a
kinematically optimized setup consisting of the back-
ward photon detector TAPS, a forward 	+ detector, and
a neutron detector realized by a large scintillator wall of
dimensions 3�3�0.5 m3. The largest error of this mea-
surement is due to the systematic error of the neutron
efficiency. The final result of the experiment is �Ahrens
et al., 2005�

�E1
	+

− �M1
	+

= 11.6 ± 1.5�stat� ± 3.0�syst� ± 0.5�mod� ,

�103�

which is at variance with the prediction of Gasser et al.
�2006� by 2 standard deviations. In view of theoretical
uncertainties due to the fact that Compton scattering is
off a bound pion, the deviation from theory is an open
problem. In particular we point out that the model error
in Eq. �103� is estimated by comparing the analysis with
two specific models. This does not exclude that a wider
range of models will lead to a larger model error. Con-
sidering the fact that the scattering is off a “constituent”
pion in the nucleon, we may attribute the deviation to
binding effects. For example, as suggested by Eq. �100�,
an increase of the bound pion radius by 20% would give
a hand-waving explanation for the experimental data.
Because the pion polarizability is important for our un-
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FIG. 25. The spin-flip GPs �without the 	0-pole contribution�
from several calculations. Solid lines, dispersive 	N contribu-
tion �Pasquini, Gorchtein et al., 2001�; short-dashed lines,
O�p3� HBCPT �Hemmert et al., 2000�; long-dashed lines, O�p4�
HBCPT �Kao et al. 2004�; dash-dotted lines, linear � model
�Metz and Drechsel, 1996�; and dotted lines, nonrelativistic
CQM �Pasquini, Scherer, and Drechsel, 2001�. For visibility,
the tiny CQM results for P�L1,L1�1 and P�M1,L2�1 are multiplied
by a factor of 100. From Drechsel et al., 2003, updated by B.
Pasquini.
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derstanding of QCD in the confinement region, it is a
prerequisite to check the given arguments by a full-
fledged CPT calculation of the reaction p�� ,��	+n�.

The second method to determine the polarizability,
the Primakov effect, has been studied at Serpukhov with
the result

�E1
	+

− �M1
	+

= 13.6 ± 2.8�stat� ± 2.4�syst� , �104�

in agreement with the value from MAMI. Recently, also
the COMPASS Collaboration at CERN has investigated
this reaction. However, at this time the analysis is still in
too preliminary a stage to include the result. Unfortu-
nately, the reactions e+e−����	+	− have led to even

more contradictory results in the range 4.4%�E1
	+
%52.6,

as listed in the work of Gasser et al. �2006�. In conclusion
one has to wait for an improved analysis and possibly
also independent experimental efforts before final con-
clusions can be drawn.

V. EXCITATION SPECTRUM OF THE NUCLEON

A. Threshold production of mesons

As outlined in Sec. II.D, the threshold photoproduc-
tion of mesons provides a test of our theoretical under-
standing because only few partial waves contribute and,
therefore, all relevant multipoles can be directly deter-
mined by the experiment. The case of neutral pion pho-
toproduction on the proton, ��q�+p�p1�→	0�k�+p�p2�
is of particular interest. For the s-wave threshold multi-
pole E0+ of this reaction, several authors have derived a
low energy theorem �LET� based on current algebra and
partially conserved axial current �De Baenst, 1970; Vain-
shtein and Zakharov, 1972�. According to the theorem,
the leading terms of the threshold multipole were di-
rectly determined by the Born diagrams, evaluated with
the pseudovector pion-nucleon interaction. However,
this prediction had to be revised in light of surprising
experimental evidence. The reason for the discrepancy
between the theorem and data was first explained in the
framework of CPT by pion-loop corrections. An expan-
sion in the mass ratio �=m	 /M�1/7 yielded the result
�Bernard, Kaiser, et al., 1991�

E0+�	0p� =
eg	N

8	m	
�� − �23 + �p

2
− �2 M2

16f	
2 + ¯ � ,

�105�

where g	N is the pion-nucleon coupling constant and f	
�93 MeV the pion decay constant. We observe that
E0+�	0p� is proportional to �, which suppresses this re-
action relative to charged pion production. The first and
the second term on the right side of Eq. �105� are iden-
tical to the LET of De Baenst �1970� and Vainshtein and
Zakharov �1972�, which, however, has to be corrected by
the third term on the right side. Although this loop cor-
rection is formally of higher order in �, its numerical
value is of the same size as the leading term.

The energy dependence of E0+�	0p� is shown in Fig.
26. The discrepancy between predictions of De Baenst
�1970� and Vainshtein and Zakharov �1972� and the ex-
perimental data obtained at the Mainz Microtron
MAMI and at SAL �Saskatoon� is apparent. Further-
more, the real part of the amplitude shows a character-
istic “Wigner cusp” at the threshold for charged pion
production, which lies about 5 MeV above the 	0

threshold. This cusp in the real part is related to the
sharp rise of the imaginary part at the second threshold.
The physical picture behind the large loop correction is
based on �I� the high production rate of charged pions
and �II� the charge-exchange scattering between the
nucleon and the slow 	+ in the intermediate state, which
leaves a 	0 in the final state. However, the direct experi-
mental determination of the imaginary part will require
double-polarization experiments with linearly polarized
photons and polarized targets. The excellent agreement
between CPT and the data for E0+ is somewhat flawed
by the fact that higher order diagrams are sizable, that
is, the perturbative series converges slowly and low-
energy constants appearing at higher orders reduce the
predictive power.

For a more quantitative presentation of the results,
the E0+ amplitude was parametrized as the sum of a
direct and a charge-exchange term �Bernstein et al.,
1997�,

E0+�	0p� = A0�q� + ia	+	0A+k	+ �106�

=A0�q� + i�k	+, �107�

with A0�q�=a0+a1�q−qthr� and A+ describing the neutral
and charged pion production in the absence of the
charge exchange reaction, a	+	0 the scattering length for
charge exchange, and k	+ the momentum of the charged
pion appearing in the intermediate state. This leaves the
three fit parameters a0, a1, and � in oder to determine

FIG. 26. The real and imaginary parts of the s-wave amplitude
E0+ for 	0 photoproduction at threshold energies. The MAMI
data of Beck et al. �1990� and Fuchs et al. �1996� are repre-
sented by circles, the SAL data of Bergstrom et al. �1996� by
triangles. Dashed lines, predictions of CPT at O�p3� �Bernard
et al., 1996a, 1996b�; and solid lines, results from dispersion
relations �xHanstein et al., 1997�. The solid horizontal line at
about −2.2 shows the prediction of De Baenst �1970� and Vain-
shtein and Zakharov �1972�. Courtesy of R. Beck.
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the s wave. As discussed in Sec. II.D, the unpolarized
cross section gives information on only two of the three
p-wave amplitudes. A complete experiment therefore
requires measuring a further observable, e.g., the photon
asymmetry � of Eq. �26�. The result obtained at MAMI
is depicted in Fig. 27.

The data of Schmidt et al. �2001� for the s- and p-wave
amplitudes are compared to the results of CPT and dis-
persion relations in Table I. The predictions of CPT for
the p waves are in good agreement with the data,
whereas P3 comes out much too small in dispersion
theory. Since the latter approach is mainly based on in-
put from the imaginary parts of the multipoles M1+ and
M1− in the resonance region, this failure may indicate
that even the structure of the low-lying resonances
��1232� and N*�1440� is not yet completely unraveled.

The great success of CPT for photoproduction at
threshold was motivation to extend the experimental
program to electroproduction. Because the virtual pho-
ton has an additional longitudinal component, three
more partial waves appear to leading order: the longitu-
dinal s-wave amplitude L0+ and the p-wave amplitudes
L1+ and L1−, describing the excitation of ��1232� and
N*�1440�, respectively. Moreover, all amplitudes are
functions of Q2, that is, they probe the spatial distribu-
tion of pion production on the nucleon. The first inves-
tigations performed at NIKHEF �van den Brink et al.,
1995� and MAMI �Distler et al., 1998� for Q2

=0.10 GeV2 provided another confirmation of CPT al-
though at the expense of two new low-energy constants,
which were fitted to the data. In order to further check
this agreement, data were also taken at the lower mo-
mentum transfer Q2=0.05 GeV2 �Merkel et al., 2002�.
The total cross section obtained by these measurements
is compared with the predictions of CPT in Fig. 28,
which shows the total cross sections near threshold as a
function of Q2. The comparison was made on the basis
of the total cross sections in order to eliminate all pos-
sible systematic and model errors connected with the
separation in longitudinal and transverse parts. It is ap-
parent that the Q2 dependence of the data cannot not be
fully described by theory. We consider this an important
issue that deserves further investigation.

We conclude this section by presenting some recent
results of Weis et al. �2007�. Whereas former experi-
ments were only sensitive to the real part of the ampli-

FIG. 27. The angular distribution of the photon asymmetry �
for the reaction p��� ,	0�p. Dashed line, results of dispersion
relations �Hanstein et al., 1997�; dotted line, prediction of CPT
�Bernard et al., 1996b�; and full line, empirical fit to the data
with Eqs. �25� and �26�. From Schmidt et al., 2001.

TABLE I. Experimental results of Schmidt et al. �2001� for
E0+�	0p� at the 	0 and 	+ thresholds in units of 10−3 /m	+, four
combinations of the �reduced� P-wave amplitudes in units of
k /10−3 /m	+

2 , and the parameter � �with statistical and system-
atic errors, in order� compared to the predictions of CPT �Ber-
nard et al., 1996a, 1996b� and dispersion relations �DR� �Han-
stein et al., 1997�. For the definition of the reduced P-wave
amplitudes see Sec. II.D.

Schmidt et al. �2001� CPT DR

E0+�	0� −1.23±0.08±0.03 −1.16 −1.22
E0+�	+� −0.45±0.07±0.02 −0.43 −0.56
� 2.43±0.28±1.0 2.78 3.6
P1 9.46±0.05±0.28 9.14±0.5 9.55
P2 −9.5±0.09±0.28 −9.7±0.5 −10.37
P3 11.32±0.11±0.34 10.36 9.27
P23 10.45±0.07 11.07 9.84
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FIG. 28. The total cross section for the p�e ,e�p�	0 reaction as
a function of Q2 for several values of the excitation energy
�W=W−M−m	0. Data at Q2=0.05 and 0.10 GeV2 are from
Merkel et al. �2002� and Distler et al. �1998�, respectively. The
solid line represents the prediction of CPT �Bernard et al.,
1996c� and the dashed line the result of the phenomenological
model MAID �Drechsel et al., 1999�. From Merkel et al., 2002.
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tudes, these authors also determined the fifth structure
function �LT�� given in Eq. �28�. This function can only
be measured with polarized electrons and out of plane,
i.e., for finite values of the pion azimuthal angle with
regard to the electron scattering plane. Furthermore, its
multipole decomposition is of the form Im �L0+

* M1+

+ ¯ �, i.e., this function contains information on the
phase of the s-wave amplitude. With the shorthand no-
tation d�i /d�

	
* ��i, Weis et al. �2007� separated the par-

tial cross sections �0=�T+��L, �TT, and �LT as well as
the beam asymmetry ALT� corresponding to �LT� . The re-
sult is displayed in Fig. 29. We observe that only the
dynamical Dubna-Mainz-Taipei �DMT� model �Ka-
malov et al., 2001� is able to fully describe the experi-
ment, in particular its prediction for the helicity asym-
metry is right on top of the data. Such dynamical models
start from a description of the pion-nucleon scattering
phases by a quasipotential, which serves as input for an
integral equation to account for multiple scattering. In
this sense the model contains the loop corrections to an
arbitrary number of rescattering processes, and is there-
fore perfectly unitary, albeit on a phenomenological ba-
sis that may violate gauge invariance to some extent.

FIG. 30. The total photoabsorption cross section �T on the
proton as a function of the photon laboratory energy �. The
various lines represent the MAID results �Drechsel et al., 1999�
for the total cross section �solid line�, one-pion channels
�dashed line�, more-pion channels �dashed-dotted line�, and �
channel �dotted line�. Solid circles, total cross section from
MAMI �MacCormick et al., 1996�; open circles, data from
Daresbury �Armstrong et al., 1972�; and open triangles, two-
pion production �Braghieri et al., 1995�. Courtesy of J. Ahrens.
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B. Nucleon resonances and meson production

The total photoabsorption cross section �T for the
proton is displayed in Fig. 30. It exhibits three broad
resonance structures on top of a strong background.
These structures correspond to magnetic dipole �M1�
excitation of the ��1232� resonance, electric dipole �E1�
strength near the resonances N*�1520� and N*�1535�,
and electric quadrupole �E2� strength near the N*�1680�.
The figure also shows the contributions of the most im-
portant channels: the one-pion channels dominate up to
��500 MeV, the two-pion branching ratio becomes
comparable in the second resonance region at �
�700 MeV, and the large � branch of the resonance
N*�1535� is hidden in the background. Because the
nucleon resonances lie above the one-pion threshold,
any separation in a continuous background and discrete
resonances is necessarily model dependent. In particular,
because background and resonance contributions inter-
fere, careful analysis of the partial waves and their rela-
tive phases is mandatory. Figure 31 depicts the partial
cross sections for the different decay channels investi-
gated so far. The rapid increase of the two-pion contri-
bution between 400 and 600 MeV is seen, from whereon
it provides more than half of the total absorption. An-
other interesting feature is the dominance of charged
pion production both below and above the ��1232� reso-
nance. Finally, one notes the small � decay branch,
which corresponds to s-wave � production mediated by
the S11�1535�.

In the past, the primary method to unravel the
nucleon resonance spectrum was experiments with
strong interactions, in particular pion-nucleon scattering.
These data have been systematically studied by Höhler

�1983� and Koch �1985� and the GWU Collaboration us-
ing the code SAID �Arndt et al., 2002, 2004, 2006�. A
summary of known spectroscopic data on nucleon reso-
nances is given by the Particle Data Group �PDG� �Yao
et al., 2006�. It is the objective of these studies to deter-
mine the relevant characteristics of the resonances, their
pole positions, widths, decay channels, and branching ra-
tios. In a first step, the full database is fitted within the
framework of a partial wave analysis. If a particular par-
tial wave shows some rapid increase of the scattering
phase over a limited energy region, the fit is then re-
peated with a form containing both a smooth back-
ground and a resonance form, mostly of the Breit-
Wigner shape. Because of the strong decay channels and
large resonance widths of typically 100 MeV and more,
the ideal resonance form is only realized for the first
resonance ��1232�: the pion-nucleon scattering phase
�33�W� goes through 90°, the real part of the multipole
vanishes, and the imaginary part has a maximum near
W=MR�1232 MeV. Because of inelastic channels,
overlapping resonances, and energy-dependent back-
grounds, these conditions are not fulfilled by higher
resonances. A mere “bump” in a partial wave is not nec-
essarily a resonance, it may also originate from the
opening of a new channel, which usually produces an
asymmetric resonance shape. The “speed-plot” tech-
nique is particularly useful to probe the resonance struc-
ture. It requires the derivative of the partial wave ampli-
tude with regard to the energy W, which is then
compared to the corresponding derivative of an ideal
Breit-Wigner resonance. In this way one determines the
pole position and the residue of the multipole in the
complex energy plane, which are unique characteristics
of a resonance.

Because the cross sections for electroexcitation are
suppressed by the fine structure constant �em, systematic
studies of the resonance structure were only possible af-
ter the advent of the new electron accelerators providing
high duty cycle and flux density of photons and elec-
trons. The virtues of these investigations are obvious:
the selectivity through transverse electric and magnetic
as well as longitudinal photon fields allows for the sepa-
ration of multipoles and investigations of the spin de-
grees of freedom, the study of specific final states with
different mesons by coincidence experiments, and the
possibility to resolve the spatial distribution of charge
and current densities by varying the virtuality of the
photon. Figure 32 sets the scene by showing the indi-
vidual contributions of the main nucleon resonances to
the total photoabsorption cross section. The resonances
in the figure are labeled in the spectroscopic notation,
see Sec. II.E. As an example, ��1232�=P33�1232� has the
pion in a p wave and both isospin and spin are 3/2. As is
evident from Fig. 32, ��1232� is the dominant feature in
the resonance spectrum. It contributes more than
400 �b at the maximum of the absorption cross section.
Already in the second resonance region, there are sev-
eral overlapping resonances, the small Roper resonance
P11�1440� with the same quantum numbers as the

FIG. 31. The partial and total cross sections for the absorption
of photons on the proton as a function of the photon labora-
tory energy � obtained at MAMI. Open circles, total cross
section as in Fig. 30 �MacCormick et al., 1996�; solid and open
triangles, n	+ decay channel �MacCormick et al., 1996�; open
diamonds, p	0 decay channel �MacCormick et al., 1996�; aster-
isks, two-pion production �Braghieri et al., 1995�; and open
squares, p� channel �Krusche et al., 1995�. Courtesy of J. Ah-
rens.
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nucleon as well as the relatively strong D13�1520� and
the weaker S11�1535�, both mainly excited by electric di-
pole radiation, all on top of a large background �not
shown in the figure� and on the tails of the neighboring
resonances. In the third resonance region, the figure
shows only the dominant F15�1680� resonance with a
concentration of the electric quadrupole strength. The
number of known �and unknown� resonances increases
in the higher part of the spectrum; see Yao et al. �2006�.
However, somewhere above W�1.5 GeV the notion of
“resonances” becomes problematic and has to be re-
placed by a continuum which, of course, can be ex-
panded in partial waves as discussed in Sec. II.E. The
problem is not on the experimental side, but in the mod-
eling of the spectrum, which for W�1.5 GeV should be
based on coupled channel calculations. As mentioned
before, the most valid technique is the speed plot
�Höhler, 1983�, which gives information about the reso-
nance position in the complex energy plane. However,
the distinction of resonances and background becomes
increasingly difficult and loses its meaning for energies
somewhere above 2 GeV. The missing resonances issue
of the constituent quark model �CQM� that predicts
more resonances than have been observed �Isgur and
Karl, 1979; Metsch et al., 2003� may disappear in view of
the resonance-background problem �Thoma, 2005�.

As in the case of the elastic form factors discussed in
Sec. III, the Q2 dependence of the multipole transitions
provides information on the spatial distribution of these
observables. We discuss this issue for ��1232�. The three
�real� transition form factors G

M
* , G

E
* , and G

C
* are re-

lated to the �complex� partial wave amplitudes according
to Eq. �30�. The magnetic dipole transition M1+ domi-
nates, the electric and Coulomb quadrupole transitions
E1+ and S1+ are much smaller. A finite value of the quad-
rupole moment requires that the wave functions of ei-

ther the nucleon or ��1232�, or most likely both, are
deformed. In the CQM, such a deformation follows
from the tensor force contained in the color-hyperfine
interaction among quarks �De Rujula et al., 1975; Isgur
et al., 1982; Capstick and Karl, 1990�. However, typical
CQM calculations �Capstick and Keister, 1995; De Sanc-
tis et al., 2005� underestimate the electric and Coulomb
quadrupole amplitudes E1+ and S1+. In models with pi-
onic degrees of freedom, the deformation arises natu-
rally from the spin-dependent coupling of the pion to
the quarks. The pions have been introduced in several
approaches, such as chiral bag models �Vento et al., 1980;
Bermuth et al., 1988; Lu et al., 1997�, dynamical models
�Kamalov and Yang, 1999; Sato and Lee, 2001�, and ef-
fective field theories �Pascalutsa and Vanderhaeghen,
2005, 2006; Gail and Hemmert, 2006�. Although differ-
ing considerably in the details, these models describe the
experimental data reasonably well. In particular the chi-
ral effective field theories �EFTs� are based on a system-
atic expansion in terms of the external momenta, the
pion mass, and the N� mass splitting. Contrary to the
dynamical models they are gauge and Lorentz invariant,
however, based on a perturbative expansion, the unitar-
ity condition is only approximately fulfilled.

Of course, the deformation cannot be measured
for the nucleon ground state because the intrinsic
static quadrupole moment Q0 and the observed quadru-
pole moment are related by QJ

obs= ��3�M�2−J�J+1�	 /
J�2J−1��Q0. This rule allows one to observe the quad-
rupole moment of ��1232� but, of course, the highly un-
stable ��1232� cannot serve as a static target. Therefore
the deformation issue can only be accessed through elec-
tromagnetic transitions from the nucleon to ��1232�. In
the following we discuss the ratios of the multipole tran-
sitions at the resonance position REM and RSM, as de-
fined by Eq. �33�. We repeat that the resonance position
of ��1232� is uniquely defined within the validity of the
Fermi-Watson theorem, that is, the real parts of all three
N� amplitudes vanish at W=M� because all amplitudes
carry the same phase, namely, the pion-nucleon phase
shift in the partial wave with �=1 and I=J= 3

2 , �33�W�.
Many experimental and theoretical investigations

have been devoted to the N� transition with real pho-
tons, for a summary of this work see Beck �2006�. The
most precise value for the ratio of the multipoles,

REM = �− 2.4 ± 0.16stat ± 0.24syst�% , �108�

was obtained with linearly polarized photons �Beck
et al., 2000; Leukel, 2001�. These authors also studied
neutral and charged pion production on the proton,
which is necessary to isolate the isospin 3

2 amplitude rel-
evant for the N� transition. At finite Q2 the same phys-
ics questions were addressed by pion electroproduction,
e+p→e�+p�+	0, measuring the scattered electron in
coincidence with the recoil proton detected in a high-
resolution magnetic spectrometer. The small solid angle
of these instruments does not limit the accuracy since
protons are focused by the relativistic boost along q� .
Such experiments were first performed at MIT/Bates
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FIG. 32. Resonance contributions to the total photoabsorption
cross section of the proton. Calculations are from the unitary
isobar model MAID2003 �Drechsel et al., 1999�. Courtesy of R.
Beck and L. Tiator.
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�Mertz et al., 2001� and then extended by Sparveris et al.
�2005� to out-of-plane angles with the OOPS spectrom-
eter. This work was continued by the A1 Collaboration
at MAMI/Mainz �Elsner et al., 2006; Stave et al., 2006;
Sparveris et al., 2007�. In particular, Stave et al. �2006�
also measured the structure function �LT� using of polar-
ized electrons and out-of-plane proton detection. The
experimental results for the � multipoles in the low-Q2

region are compared to several model calculations in
Fig. 33. We observe that the leading multipole M1+ is
described well by the models. It is also worthwhile men-
tioning that the dynamic models ascribe a third of the
magnetic dipole strength to the pion cloud. The predic-
tions scatter much more with regard to the quadrupole
strength as shown by the ratios REM and RSM. Concern-
ing the origin of “deformation,” both the dynamic mod-
els �Kamalov and Yang, 1999; Sato and Lee, 2001� and
effective field theory �Pascalutsa and Vanderhaeghen,
2005, 2006; Gail and Hemmert, 2006� agree that the mul-
tipoles E1+ and S1+ are essentially due to the pion cloud.
For a detailed comparison of these models in the � re-
gion, see Drechsel and Tiator �2007�.

In many of the mentioned contributions, the authors
have pointed out a considerable model-dependence of
the analysis. It is therefore substantial progress that
Kelly et al. �2007� performed a series of double-

polarization experiments at Q2=1 GeV2 near the � re-
gion. Altogether they extracted 16 of the 18 independent
response functions, most for the first time. As men-
tioned before, the experimental cross section is obtained
by summing bilinear products of multipole amplitudes,

�,��M�

*M��. Whereas the unpolarized response func-
tions or cross sections, in shorthand �T, �L, �TT, and
�LT, are obtained from the real parts of these products,
many of the polarized cross sections are given by the
imaginary parts, the first example the fifth structure
function �LT� measured with polarized beams. Because
the N� multipoles carry the same phase, their product
can only contribute to responses built from the real
parts. On the other hand, the responses containing the
imaginary parts yield information on the interference
between the N� and background multipoles. The find-
ings of Kelly et al. �2007� can be summarized as follows:
�I� response functions governed by real parts are in gen-
eral agreement with recent model calculations, �II� re-
sponse functions determined by imaginary parts may dif-
fer substantially from the experiment and among the
calculations, �III� the multipole analysis yields better re-
sults than a �truncated� Legendre series, and �IV� the
model builders should go back to the drawing board to
get better control of the nonresonant background, in
particular at the larger virtualities Q2.

As mentioned, the typical CQM calculations underes-
timate the � multipoles, in particular the electric and
longitudinal ones. Therefore any successful description
of these observables needs a pion cloud, at least if one
insists on a reasonable size of the quark bag. Such de-
scriptions are the chiral bag models, dynamical models,
and effective field theories. Taking all facts together, one
is again forced to accept the dominant role that pions
play for the structure of the nucleon. Of special interest
is the recent work to solve QCD on the space-time lat-
tice. Since these calculations cannot yet be performed at
the small �current� quark masses corresponding to the
physical pion mass, one uses large quark masses leading
to pion masses m	$300 MeV. The results are then ex-
trapolated to the physical pion mass by extrapolating
functions, ideally as derived from chiral effective field
theories. Such a procedure is not undisputed because the
chiral expansion is hardly valid at pion masses much
larger than the physical mass. However, the chiral ex-
trapolation shows that unexpected phenomena occur
when the pion mass is lowered from a few hundred MeV
to its physical value: near the pion mass value for which
the � resonance can decay, the chiral extrapolation be-
comes nonanalytic, which leads to a kink and strong cur-
vature in the extrapolation formula �Pascalutsa et al.,
2007�.

As a further instructive example we present results for
the electroproduction of � mesons, which are mainly
produced by the decay of the S11�1535� resonance with
J=I= 1

2 ,�=0. As is evident from Fig. 31, the S11�1535� is
buried under the total cross section. However, it is seen
in the � channel because this resonance has an � branch-
ing ratio of 45–60 % compared to a few percent for

FIG. 33. The ratios EMR=REM and CMR=REM together with
the amplitude M1+

3/2 of the N��1232� transition as a function of
Q2. Data are from Beck et al. �2000� �asterisks�, Stave et al.
�2006� �diamonds�, Kunz et al. �2003� �solid triangles�, Pospis-
chil et al. �2001� �open triangles�, Sparveris et al. �2007� �solid
circles�, Elsner et al. �2006� �open circles�, and Joo et al. �2004�
�squares�. Theoretical predictions are represented by solid
lines, MAID2007 �Drechsel et al., 2007�; dotted lines, SAID �Arndt
et al., 2002�; long-dashed lines, DMT �Kamalov and Yang,
1999�; short-dashed lines, Sato-Lee model �Sato and Lee,
2001�; dot-dashed lines, CEFT �Pascalutsa and Vanderhae-
ghen, 2005, 2006�; and crosses, predictions with error bars from
lattice QCD �Alexandrou et al., 2005�. Adapted from Sparveris
et al., 2007, by L. Tiator.
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other excitations of the nucleon �Vrana et al., 2000�. Eta
photoproduction experiments at threshold show a strong
increase of the cross section in the range of the reso-
nance and an s-wave angular distribution in agreement
with the given assignment �Krusche et al., 1995�. How-
ever, the shape of the resonance is asymmetric, and also
the speed-plot analysis does not yield satisfactory solu-
tions �Höhler 1993�. Because of this unusual behavior
several alternative interpretations have been given, for
example, in terms of a K� molecular state �Kaiser et al.,
1997�. Also the helicity amplitude A1/2 of this resonance
has an unusually soft form factor, as displayed in Fig. 34
for the p�e ,e�p�� reaction measured at Jefferson Labo-
ratory �Denizli et al., 2007�. It is striking how flat this
transition form factor stays compared to the typical di-
pole form for other form factors of the nucleon. We fur-
ther notice that the constituent quark model calcula-
tions, relativistic or not, cannot fully explain the slow
falloff with Q2. It is also tempting to identify the struc-
ture near Q2�0.2 GeV2 with a meson cloud effect as
discussed in Sec. III.A.

Another small but interesting resonance in the second
resonance region is the Roper resonance P11�1440� with
the same quantum numbers as the nucleon. The CQM
describes this resonance by radial excitation of the
nucleon, and therefore it should be sensitive to the ra-
dial form of the bag potential. However, its mass is much
lower than expected in simple quark models. Li et al.
�1992� suggested that the Roper resonance could also be
a quark-gluon hybrid state, which, however, cannot be
excited by the longitudinal current or Coulomb field.
Recent data on the electroproduction of this resonance
are shown in Fig. 35 and compared with the single-
energy and global solutions of MAID2007. We note that
the amplitude A1/2 �magnetic dipole transition� has a
zero crossing at small momentum transfer. Furthermore,

the amplitude S1/2 �Coulomb monopole transition� rises
to large values, which rules out the quark-gluon hybrid
model.

In Sec. VI we also discuss the helicity structure of the
second and third resonance regions with regard to sev-
eral sum rules for real and virtual photons. However,
with increasing excitation energy it becomes more diffi-
cult to isolate individual resonances by inclusive cross
sections. It will therefore take a full-fledged program
with polarized beams and targets as well as recoil polar-
ization to analyze the higher mass region and to identify
resonance structures on top of the large background.

VI. SUM RULES

The persisting problem of gaining a quantitative un-
derstanding of nucleon structure is one reason why we
are interested in sum rules. Being based on quite general
principles like causality, unitarity, and Lorentz and
gauge invariance, sum rules should be valid for every
model or theory respecting these principles and having a
“reasonable” high-energy behavior. Therefore the
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FIG. 34. The helicity amplitude A1/2 for the S11�1535�a�� in the
p�e ,e�p�� reaction. Data are represented by solid circles,
Denizli et al. �2007�; crosses, Armstrong et al. �1999�; and open
circles, earlier publications as specified by Denizli et al. �2007�.
Predictions are based on quark models and given by the solid
line �Capstick and Keister 1995� and dotted line �Aiello et al.,
1998�. From Denizli et al., 2007.

FIG. 35. �Color online� The helicity amplitudes A1/2 and S1/2 of
the P11�1440� as a function of Q2. The triangles are from the
analysis of Aznauryan et al. �2005� based on data of the CLAS
Collaboration at Jefferson Laboratory and obtained from dis-
persion relations �open triangles� and the unitary isobar model
�solid triangles�. The solid line is the global solution of
MAID2007 �Drechsel et al., 2007�, a fit to the full data basis, and
the solid circles are local fits to the data in the particular en-
ergy region. The data point at Q2=0 is from the PDG �Yao
et al., 2006�. From Drechsel et al., 2007.
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agreement or disagreement between theoretical predic-
tions and the sum rule provides invaluable information
on the quality of the approximations involved and
whether or not the relevant degrees of freedom have
been included. Specifically, if we compare a sum rule
value with accurate experimental data up to a certain
maximum energy, we learn whether the physics respon-
sible for the sum rule is provided by the phenomena up
to that energy, or whether possibly new degrees of free-
dom come into play. As an example, Baldin’s sum rule
relates the forward scalar polarizability to an energy-
weighted integral over the total photoabsorption cross
section and thus allows for an independent check of the
results from Compton scattering. Moreover, recent
double-polarization experiments have determined the
helicity structure of this cross section for the proton.
From these data, the forward spin polarizability has
been obtained, and the Gerasimov-Drell-Hearn �GDH�
sum rule has been verified within the experimental error
bars of less than 10%. Data have also been taken for the
neutron and are under evaluation. With some caveat,
these sum rules can be generalized to the scattering of
virtual photons. The integrands of the respective inte-
grals are related to the electroexcitation cross sections
and, in the limit of deep inelastic scattering �DIS�, to the
nucleon structure functions. The resulting generalized
integrals and polarizabilities depend on the photon’s
four-momentum and therefore contain information on
the spatial distribution of these observables.

A. Sum rules for real photons

1. Forward dispersion relations and sum rules

The forward scattering amplitudes f and g of Eqs.
�61�–�63� can be determined by scattering circularly po-
larized photons �helicity �= ±1� off nucleon targets that
are polarized along or opposite to the photon momen-
tum q� as shown schematically in Fig. 36. If the spins are
parallel, the helicity of the intermediate hadronic state
takes the value 3

2 . Since this requires a total spin J� 3
2 ,

the transition can only take place on a correlated three-
quark system. For opposite spins, on the other hand, the
helicity is conserved and the scattering can also take
place on an individual quark. Denoting the Compton
scattering amplitudes for these two experiments by T3/2

and T1/2, we find f���= 1
2 �T1/2+T3/2� and g���= 1

2 �T1/2
−T3/2�. Furthermore, the total absorption cross section is
given by the spin average over the helicity cross sections,

�T = 1
2 ��1/2 + �3/2� , �109�

and the helicity-dependent cross section by the helicity
difference,

�TT = 1
2 ��1/2 − �3/2� . �110�

Based on unitarity and causality, the optical theorem re-
lates the absorption cross section to the imaginary parts
of the respective forward scattering amplitudes,

Im f��� =
�

8	
��1/2��� + �3/2���	 =

�

4	
�T��� ,

Im g��� =
�

8	
��1/2��� − �3/2���	 =

�

4	
�TT��� . �111�

Because of the smallness of the fine structure constant
�em, all higher order electromagnetic processes are at
the percent level. We may therefore neglect the absorp-
tion below the threshold for pion production, �0=m	�1
+m	 /2M��150 MeV, thereby assuming that the scatter-
ing amplitude is real in this region. In the next step, one
has to study the high-energy behavior of the absorption
cross sections. As predicted by Regge theory and also
seen by the data, the total absorption cross section in-
creases at the highest energies reached by the experi-
ment. Although this increase is not expected to continue
forever, we cannot expect that the unsubtracted disper-
sion integral converges, and therefore we subtract f��� at
�=0 and identify f�0� with the classical Thomson ampli-
tude. By use of the crossing relation and the optical
theorem, the subtracted dispersion relation takes the
form

f��� = f�0� +
�2

2	2P�
�0

 �T����
��2 − �2d��. �112�

For the odd function g��� we assume the existence of an
unsubtracted dispersion relation,

g��� =
�

4	2P�
�0

 �1/2���� − �3/2����
��2 − �2 ��d��. �113�

If these dispersion integrals exist, they can be expanded
as a Taylor series in �2, which converges for 
�
��0.
Comparing these power series to the low energy theo-
rems of Eqs. �62� and �63�, we obtain the sum rule of
Baldin �1960�,

�E1 + �M1 =
1

2	2�
�0

 �T����
��2 d��, �114�

the sum rule of Gerasimov �1965, 1966� and Drell and
Hearn �1966�,

	e2�N
2

2M2 = �
�0

 �3/2���� − �1/2����
��

d�� � IGDH, �115�

and the forward spin polarizability �Gell-Mann et al.,
1954�,

FIG. 36. Spins and helicities in the reaction �� +N� →N*. Open
arrows denote the projections of the spin on the photon mo-
mentum, Sz, the helicities h are the projections on the respec-
tive particle momentum, and the photon has right-handed he-
licity, �= +1. Left, N�Sz=1/2 ,h=−1/2�→N*�Sz=h=3/2�; right,
N�Sz=−1/2 ,h=1/2�→N*�Sz=h=1/2�.
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�0 = −
1

4	2�
�0

 �3/2���� − �1/2����
��3 d��. �116�

2. Photoabsorption cross sections for the proton

The total photoabsorption cross section �T in the
resonance region of the proton is shown by Fig. 30. This
figure displays three resonance peaks on top of a large
background. Above the resonance region, �T is slowly
decreasing towards a minimum of about 115 �b at W
�10 GeV. At the highest energies, W�200 GeV �corre-
sponding to ��2�104 GeV�, the experiments show a
slow increase with energy of the form �T�W0.2 �Derrick
et al., 1994; Aid et al., 1995�, in accordance with Regge
parametrizations through a soft pomeron exchange
mechanism �Cudell et al., 2000�. Given this information,
the rhs of Eq. �114� can be constructed, with the most
recent numerical result given by Eq. �64�. In this way
Baldin’s sum rule provides a precise value for the sum of
the two scalar polarizabilities, which serves as an impor-
tant constraint for the analysis of Compton scattering.

During the past years the helicity difference �TT has
also been measured. The pioneering experiment was
carried out by the GDH Collaboration at MAMI for
photon energies between 200 and 800 MeV �Ahrens et
al., 2000, 2001�, and then extended into the energy range
up to 3 GeV at ELSA �Dutz et al., 2003, 2005�. These
data allow us to verify the GDH sum rule for the proton
within an accuracy of less than 10%. Because the inte-
gral for the forward spin polarizability converges better,
it is essentially saturated by the MAMI data at
800 MeV. As shown in Fig. 37, the helicity difference
fluctuates more strongly than the total cross section �T.

The threshold region is dominated by s-wave pion pro-
duction, i.e., intermediate states with spin 1

2 that can
only contribute to the cross section �1/2. In the region of
��1232� with spin J= 3

2 , both helicity cross sections con-
tribute, but since the transition is essentially M1 we find
�3/2 /�1/2�3, and therefore the helicity difference be-
comes large and positive. The figure also shows that �3/2
dominates in the second and third resonance regions. It
was in fact an early success of the quark model to un-
derstand this feature by cancellation of the spin and con-
vection currents for �1/2. Data at the higher energies in-
dicate a fourth resonance region �1.8�W�2 GeV�
followed by a continuing decrease of �� with a cross-
over to negative values at �$2.0 GeV, as predicted by
an extrapolation of data from deep inelastic scattering
�Bianchi and Thomas, 1999, 2002�. At high �, above the
resonance region, one usually invokes Regge phenom-
enology to argue that the integral converges �Bass and
Brisudova, 1999�. In particular, one obtains for the is-
ovector channel �1/2−�3/2→��V−1 at large �, with −0.5
"�V"0 being the intercept of the a1�1260� meson
Regge trajectory. For the isoscalar channel, Regge
theory predicts similar energy behavior with �S�−0.5,
which is the intercept of the isoscalar f1�1285� and
f1�1420� Regge trajectories. However, these ideas have
still to be tested experimentally. We observe that the
large background of nonresonant photoproduction in �T
�Fig. 30� has almost disappeared in the helicity differ-
ence �� �Fig. 37�, i.e., the background is “helicity blind.”
As a result the two helicity cross sections for real pho-
tons remain large and nearly equal up to the highest
energies, at values of �1/2��3/2�120 �b. We conclude
that the real photon is essentially absorbed by coherent
processes, which require interactions among the con-
stituents such as gluon exchange between two quarks.
This behavior differs from DIS, which refers to incoher-
ent scattering off the constituents. As a consequence the
ratio �3/2 /�1/2 tends to zero with increasing virtuality Q2

because the absorption on an individual quark leads
only to final states with helicity 1

2 .
As shown in Fig. 38, the GDH Collaboration has also

measured the helicity difference for the deuteron �Ahr-
ens et al., 2006�. The upper panel of this figure displays
the total cross section, which yields a considerably
smaller resonance peak than predicted for free nucleons
�MAID� and also by the dynamical model of Arenhövel et
al. �2004�. However, the measured helicity difference
�lower panel� agrees well with both models. The experi-
ment has been continued to energies up to W
=1.8 GeV at ELSA �Dutz et al., 2005�, yielding positive
values of typically 50 �b above the resonance region.
This contrasts the proton result, which turns out nega-
tive in this region. Both experimental findings agree with
the prediction of Regge theory that the asymptotic tail
of �� should be positive for the neutron and negative
for the proton �Bianchi and Thomas, 1999; Simula et al.,
2002�.

FIG. 37. The helicity difference ��=�3/2−�1/2 for the proton
as a function of the photon energy �. The experimental data
are from MAMI �Ahrens et al., 2000, 2001� �solid circles� and
ELSA �Dutz et al., 2003, 2005� �open circles�. The various lines
represent MAID results �Drechsel et al., 1999� for the total he-
licity difference �solid line�, one-pion channels �dashed line�,
more-pion channels �dash-dotted line�, and � channel �dotted
line�. From Drechsel and Tiator, 2004.
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3. GDH sum rule

The GDH sum rule, Eq. �115�, relates the anomalous
magnetic moment �AMM� of a particle to an energy-
weighted integral over the helicity-dependent photoab-
sorption cross sections. This relation bears out that a
finite value of the AMM requires the existence of an
excitation spectrum, and that both phenomena are dif-
ferent aspects of a particle with intrinsic degrees of free-
dom. A further property of composite objects is their
spatial extension in terms of size and shape, which re-
veals itself through the form factors measured by elastic
lepton scattering. In conclusion, the discovery of the
proton’s large AMM by Stern et al. �1933a, 1933b�
marked the beginning of hadronic physics. The experi-
ment indicated that the proton was a microcosm in itself,
and in this sense the findings of Stern and collaborators
were revolutionary. Today, 75 years later, we are still
struggling to describe the structure of strongly interact-
ing particles in a quantitative way. At this point the
reader may well ask why should the GDH sum rule exist
and what do we learn from it. In fact it was pointed out
many years ago that the GDH sum rule holds at leading
order in perturbation theory for the standard model of
electroweak interactions �Altarelli et al., 1972�. Later on
this result was generalized to any 2→2 process in super-
symmetric and other field theories �Brodsky and
Schmidt, 1995�. The essential criterion is that these theo-
ries start from pointlike particles, and then the GDH
sum rule should hold order by order in the coupling
constant. As an example, the GDH sum rule has been
proven in QED up to O�e6� �Dicus and Vega, 2001�. In

passing we note that the GDH sum rule was also inves-
tigated in quantum gravity to one-loop order �Goldberg
2000�. The result was a violation of the sum rule, which
may, however, be due to our ignorance of quantum grav-
ity in the strong coupling �high-energy� limit.

The AMM of a particle is defined by the following
relation between the total magnetic moment �� and the

spin S� :

�� = �e/M��Q + ��S� , �117�

with eQ the charge and M the mass of the particle. We
also recall that the ratio between the magnetic moment

�� and the orbital angular momentum L� of a uniformly
charged rotating body is eQ /2M, whereas Eq. �117�
yields eQ /M as the ratio between the “normal” mag-

netic moment �� and the spin S� , because of the gyromag-
netic ratio g=2 predicted by Dirac’s equation for a spin
1
2 particle. Contrary to the conjecture by Belinfante
�1953� that g=1/S, the “natural” value of the gyromag-
netic ratio is g=2 for every point particle, independent
of its spin. This is necessary if one insists on a well-
behaved high-energy scattering amplitude and a reliable
perturbative expansion �Weinberg, 1970; Ferrara et al.,
1992�, in the sense that any deviation from this value
must be related to finite size effects. Such spatially ex-
tended phenomena, however, do not affect the high-
energy limit of Compton scattering. In particular Brod-
sky and Primack �1969� verified the GDH sum rule for a
composite system of any spin on the basis of the spin-
dependent interaction currents associated with the cm
motion. To further illustrate this point consider the small
AMM of the electron, which can be evaluated in QED
to ten decimal places. Since the associated photon-
electron loops are spread over a spatial volume of about
106 fm3, a high-energy photon of a few hundred MeV or
a wavelength �"1 fm will decouple from such a large
volume. Therefore the AMM does not affect the high-
energy limit and, along the same lines, the AMM of the
electron does not keep us back from using the electron
as an ideal point particle to study the form factors of the
nucleon �Drechsel and Bermuth, 1991�.

The left-hand side �lhs� of the GDH sum rule, Eq.
�115�, yields IGDH

p =205 �b and IGDH
n =233 �b for the

proton and neutron, respectively. However, the first es-
timates based on the then existing photoproduction data
led to 261 �b for the proton and 183 �b for the neutron
�Karliner, 1973�. Over the years the predictions moved
even further away from the sum rule values in spite of
improving data, because these data were not sensitive to
the helicity difference of the inclusive cross sections.
Many explanations for an apparent violation of the sum
rule followed, but in view of the new experimental evi-
dence we discard these ideas. Table II summarizes our
present knowledge on the GDH integral and the for-
ward spin polarizability of the proton. The threshold
contribution for �%0.2 GeV is evaluated by the MAID
multipole analysis of pion photoproduction �Drechsel et
al., 1999�, with an error estimated by comparing to the
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FIG. 38. The total photoabsorption cross section �T �upper
panel� and the helicity difference ��=�3/2−�1/2 �lower panel�
for the deuteron. Experimental data are from Ahrens et al.
�2006� �solid circles�, MacCormick et al. �1997� �open circles�,
and Armstrong et al. �1972� �asterisks�. Theoretical predictions
are from MAID03 �dashed lines� and Arenhövel et al. �2004�
�solid lines�. From Ahrens et al., 2006.
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SAID analysis �Arndt et al., 2002�. The resonance region
up to �=2.9 GeV is determined by the experimental
data taken at MAMI �Ahrens et al., 2000, 2001� and
ELSA �Dutz et al., 2003, 2005�, and the asymptotic con-
tribution is based on the Regge analysis of DIS �Bianchi
and Thomas, 1999; Simula et al., 2002�. Summing these
contributions, the GDH sum rule value is obtained
within the given error bars. Because of the different en-
ergy weighting, the forward spin polarizability converges
much better and is therefore completely determined by
the existing data. Because the helicity dependent cross
section �TT is strongly energy dependent, the GDH in-
tegral is sensitive to experimental errors. It is therefore
satisfying that all decay channels were separately identi-
fied in the range of 200���800 MeV. The one-pion
channel opens at �0�150 MeV and dominates the cross
section up to ��500 MeV, except for small contribu-
tions due to radiative decay and the onset of two-pion
production. The helicity-dependent cross section for the
one-pion channel has the following multipole expansion
�Drechsel and Tiator, 1992�:

�TT
	 = 4	

k

q
�
E0+
2 − 
M1+
2 + 6 Re�E1+

* M1+� + 3
E1+
2

+ 
M1−
2 − 
E2−
2 − 6 Re�E2−
* M2−�

+ 3
M2−
2 ± ¯ � . �118�

As we have seen, the threshold region was not covered
by the experiment. The dominant multipole in this re-
gion is E0+, which corresponds to an electric dipole �E1�
transition leading to the production of �mostly charged�
pions in an s wave. This multipole is well-described by
pion photoproduction data at threshold �see Sec. V.A�,
CPT �Bernard, Kaiser, et al., 1991�, dispersion theory
�Hanstein et al., 1997�, and phenomenological analysis
�Drechsel et al., 1999; Arndt et al., 2002�. With increasing
photon energy, the first resonance becomes more domi-
nant, mainly because of the magnetic dipole transition to
��1232�. Although the associated electric quadrupole
transition is suppressed by REM=E1+ /M1+, the GDH ex-
periment permits an independent measurement �Ahrens
et al., 2004� because the product E1+

* M1+ appears with a
factor of 6 in Eq. �118�. Altogether the MAMI data are
in good agreement with the multipole analysis in the first

resonance region �Drechsel et al., 1999; Arndt et al.,
2002�. However, even relatively small effects count be-
cause this region provides the lion’s share to the sum
rule, that is about 175 �b between �=250 and 450 MeV.
In a similar way the N→D13 �1520� transition was stud-
ied �Ahrens et al., 2002�. The multipoles E2− and M2−, E1
and M2 transitions, respectively, are related to the helic-
ity amplitudes of this resonance as follows:

A1/2
1520 � E2− − 3M2−, A3/2

1520 � �3�E2− + M2−� . �119�

The new data yield A1/2=−38±3 and A3/2=147±10, to
be compared with the listing of the PDG, −24±9 and
166±5 �Yao et al., 2006�, all in units of 10−3 GeV−1/2. The
given examples demonstrate that double-polarization
experiments provide a sensitive tool to study resonance
properties.

Although the threshold for two-pion production al-
ready lies in the � region, these channels become impor-
tant only for ��500 MeV. The channels n	+	0, p	+	−,
and p	0	0 were separately analyzed at MAMI �Ahrens
et al., 2003a, 2003b�. As an example, Fig. 39 shows the
cross sections for the reaction ��p� →n	+	0, which also
exhibits a clear dominance of �3/2 over �1/2. The inter-
esting and previously unexpected feature is the peaking
of the respective cross section at ��700 MeV or W
�1480 MeV, below the positions of the D13 �1520� and
S11 �1535� resonances. This proves that two-pion produc-
tion cannot be explained by a resonance driven mecha-
nism as was assumed in earlier estimates for the sum
rule. The � channel provides another interesting contri-
bution to the sum rule. This channel is dominated by the
resonance S11 �1535�, which has an exceptionally large
branching ratio of about 50% for � decay. Because this
resonance has �=0, it only contributes to the helicity
cross section �1/2 �Ahrens et al., 2003b�. For further in-
formation on the helicity structure of the different chan-
nels, see Krusche and Schadmand �2003�. The work of
the GDH Collaboration at ELSA and MAMI has been
summarized by Helbing �2006�. Several other ongoing
activities or proposals for future experiments have been
reported at conferences by the LEGS Collaboration at

TABLE II. The contribution of various energy regions to the
GDH integral IGDH

p and the forward spin polarizability �0
p of

the proton.

Energy
�GeV�

IGDH
p

��b�
�0

p

�10−4 fm4�

%0.2 −28.5±2 0.95±0.05
0.2–0.8 226±5±12 −1.87±0.08±0.10
0.8–2.9 27.5±2.0±1.2 −0.03
�2.9 −14±2 +0.01
Total 211±15 −0.94±0.15
Sum rule 204

FIG. 39. The total cross section �T and the helicity difference
��=�3/2−�1/2 for the reaction ��p� →n	+	0. Theoretical predic-
tions are shown by solid lines �Hirata et al., 2003�, dashed lines
�Nacher and Oset, 2002�, and dotted lines �Holvoet, 2001�.
Data are from MAMI �Ahrens et al., 2003a, 2003b�. Figure
completed by L. Tiator.
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BNL, several groups at the GRAAL and Spring-8 facili-
ties, the CLAS Collaboration at Jefferson Laboratory,
and the E-159 Collaboration at SLAC. Such further ex-
periments will be invaluable as independent tests of the
sum rules, in particular at the higher energies in order to
probe the soft Regge physics in the spin-dependent for-
ward Compton amplitude.

Table III shows the AMM for the nucleons and stan-
dard “neutron targets.” The most striking observation is
the tiny value of � for the deuteron, a loosely bound
proton-neutron system, which has isospin I=0 and spin
S=1 and is essentially in a relative s state. The interplay
between nuclear and subnuclear degrees of freedom in
the deuteron has been studied by Arenhövel et al.
�2004�. It turns out that the most important nuclear
channel is deuteron disintegration, �+d→p+n, which
yields a maximum value of �P−�A�−1800 �b at �
�2.3 MeV. This large helicity asymmetry is due to the
M1 transition 3S1→ 1S0, which changes the magnetic mo-
ments of the proton and neutron from parallel to anti-
parallel. Due to the energy denominator � in the GDH
integral, it is precisely the small excitation energy of the
weakly bound deuteron that provides this large negative
contribution to the GDH integral. On the contrary, the
N→� transition aligns the quark spins and peaks at
��330 MeV with a maximum value of �P−�A
�1100 �b for free nucleons. As a result, the large nega-
tive contribution of deuteron breakup is cancelled by
large positive contributions of the subnuclear degrees of
freedom, and this happens to three decimal places. The
other neutron target is 3He, a system of two protons
with spins paired off and an “active” neutron, essentially
again in s states of relative motion. As a result we find
�3He��n�0, whereas Eq. �117� predicts a “normal”
moment of 2

3�N. Therefore the AMM of 3He has a large
negative value, which leads to a large and positive GDH
integral.

The recent experiments to determine the GDH sum
rule for the neutron IGDH

n have been performed with a
frozen-spin deuterated butanol �C4D9OD� target �Ahr-
ens et al., 2006� and a frozen-spin 6LiD target �Dutz
et al., 2005�. Setting aside the problems on the molecular
and atomic levels, these experiments provide polarized
deuterons whose helicity-dependent response has been
measured in the energy region 200���800 MeV. From
the above discussion, a quantitative extraction of IGDH

n is

necessarily model dependent. Even the calculation of
Arenhövel et al. �2004� misses the GDH sum rule for the
deuteron by nearly 30 �b and overestimates the total
photoabsorption in the region of ��1232�. It is therefore
mandatory to also measure the different decay channels
in order to constrain the theoretical analysis. Such ex-
periments are in progress, and the first results for the
one-pion channels are already available �Ahrens et al.,
2006�. To lowest order we may assume that IGDH

p

+IGDH
n should be given by the GDH integral for the deu-

teron, if extended from pion threshold to infinity. On the
basis of the present analysis we conclude that more than
60% of this contribution is due to 	0 production and
another third from two-pion channels with at least one
charged pion. Furthermore, Fig. 38 shows reasonable
agreement between the data and the MAID model in the
��1232� resonance region, in which the model yields
similar values for the proton and neutron. The addi-
tional sum rule strength for the neutron should there-
fore come from energies above ��1232�; and indeed, the
ELSA experiment �Dutz et al., 2005� yields a contribu-
tion of about 34 �b between 815 and 1825 MeV, con-
trary to earlier estimates. Furthermore, the integrand re-
mains positive at the highest energies, which could
indicate a further contribution of about 40 �b on the
basis of Regge models. In conclusion, the present ex-
periments confirm the GDH sum rules for the proton
and neutron, however, with a large systematical error in
the latter case. It is also likely that the isovector combi-
nation IGDH

p −IGDH
n turns out negative, as required by the

sum rule prediction of −28 �b.
The interplay of nuclear and subnuclear degrees of

freedom is based on general principles like low-energy
theorems and dispersion relations. A complete answer
to the remaining questions calls for experiments cover-
ing both the nuclear and the subnuclear energy range. It
is therefore promising that programs are being devel-
oped for energies between nuclear breakup and pion
threshold at Duke �TUNL/HI�S� �Weller, 2003�, both
for the nuclear physics aspects by themselves and as a
test of many-body calculations that are required for fur-
ther studies of the GDH sum rule of the neutron. We
conclude this section with a possibly academic but still
interesting question. Although we have discussed about
nucleons and nuclei as targets, we could as well think
about projects to measure the GDH sum rule for atoms
or molecules. Table III shows the AMM � and the GDH
sum rule I for several such systems. Comparison of the
different hierarchies is quite amusing. If one tried to re-
construct, for example, the AMM of the hydrogen atom
by a GDH integral over its atomic spectrum in the eV or
keV region, one would find physics beyond: the physics
of e+e− pair production at the MeV scale �QED� and
hadronic physics above pion threshold �QCD�.

B. Sum rules for virtual photons

Doubly virtual Compton scattering �VVCS� offers a
useful framework to study generalized GDH integrals

TABLE III. The magnetic moment � in units of the nuclear
magneton �N, the AMM �, and the GDH sum rule IGDH in
units of �b for electrons, protons, neutrons, deuterons, and
3He nuclei as well as fully polarized hydrogen atoms and bu-
tanol molecules.

e p n d 3He 1H C4H9OH

� −1838 2.79 −1.91 0.86 −2.13 −1836 −2�104

� −1.2�10−3 1.79 −1.92 −0.14 −8.37 −918 −7�104

IGDH 289 205 233 0.65 498 108 109
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and polarizabilities �Ji, 1993�. This process is based on
the idea that an incident virtual photon with definite
energy � and virtuality Q2�0 �spacelike� hits a nucleon
and excites this hadronic system, which eventually de-
cays into a nucleon and an outgoing virtual photon with
the same value of Q2. Although this reaction cannot be
realized experimentally, it is not merely a theoretical
construct. As pointed out, the imaginary part of this am-
plitude can be obtained by elastic scattering of trans-
versely polarized electrons off unpolarized targets �De
Rujula et al., 1971�. The asymmetry with regard to
changing the transverse polarization is parity conserving
but time-reversal odd and therefore vanishes in the one-
photon exchange approximation. It appears only at sub-
leading order as the product of the �real� Born ampli-
tude for one-photon exchange and the imaginary part of
the two-photon exchange diagram shown by Fig. 40.
This imaginary part is related to the VVCS tensor, how-
ever, the experiment can only determine a weighted in-
tegral over a range of virtualities Q2, whereas the VVCS
tensor refers to a fixed value of Q2. A pioneering experi-
ment to measure this asymmetry has been performed at
MIT Bates �Wells et al., 2001�, and more data are now
available from MAMI �Maas, 2005; Maas et al., 2005�.
These measurements show that even for moderate virtu-
alities, Q2�0.1 GeV2, the asymmetry is dominated by
excited states of the nucleon, notably the ��1232� reso-
nance. The same physical effect can also be observed for
other single-spin asymmetries, such as the transverse tar-
get asymmetry or the normal recoil polarization for an
unpolarized electron beam.

1. VVCS and nucleon structure functions

The absorption of a virtual photon on a nucleon N is
described by inclusive electroproduction, e+N→e�+X.
The cross section for this reaction takes the form
�Drechsel et al., 2001�

d�/d�2d�2 = �V���,Q2� , �120�

� = �T + ��L − hPx
�2��1 − ���LT − hPz

�1 − �2�TT.

�121�

Comparing this form with Eqs. �27� and �28�, we find
that the transverse ��T� and longitudinal ��L� absorption
cross sections are obtained by integration of the respec-

tive differential cross sections over the angles of the
emitted pion, and in general by integrating over all
angles and energies of the produced particles. The two
�inclusive� spin-flip cross sections �TT and �LT, can only
be measured with polarized electrons �helicity h= ±1�
and target polarization in the direction of the virtual
photon momentum �Pz� and perpendicular to that direc-
tion in the scattering plane �Px�, respectively, or equiva-
lent recoil polarizations. In order to avoid a possible
misunderstanding, we note that these inclusive spin-flip
cross sections are not related to the differential cross
sections d�TT /d�

	
* and d�LT /d�

	
* of Eq. �28� but ob-

tained from double-polarization cross sections not
shown in that equation. The following discussion con-
centrates on the spin-flip cross sections, which are re-
lated to the spin-dependent nucleon structure functions
g1 and g2 by �Drechsel et al., 2003�

�TT = �4	2�em/MK��g1 − �2g2� , �122�

�LT = �4	2�em/MK���g1 + g2� , �123�

with �=Q /� and K the photon equivalent energy de-
fined by Eq. �29�. The nucleon structure functions are
usually expressed as functions of the Bjorken variable
x=Q2 /2M�, i.e., g1,2=g1,2�x ,Q2�.

The VVCS amplitude for forward scattering of virtual
photons generalizes Eq. �61� by introducing an addi-
tional longitudinal polarization vector q̂,

T��,Q2,� = 0� = ���* · ��fT��,Q2� + fL��,Q2�

+ i�� · ����* � ���gTT��,Q2�

+ i����* − ��� · ��� � q̂�gLT��,Q2� . �124�

Because the total amplitude is crossing even, the ampli-
tude gTT��� is an odd function of � whereas gLT��� is
even. In order to set up dispersion relations, we have to
construct the imaginary parts of the amplitudes with
contributions from both elastic and inelastic scattering.
The elastic contributions are obtained from the direct
and crossed Born diagrams with nucleons in the inter-
mediate states and expressed by the nucleon form fac-
tors of Sec. II.B,

gTT
el = −

�em�

2M2 �F2
2 +

Q2

�2 − �B
2 + i�

GM
2 � ,

gLT
el =

�emQ

2M2 �F1F2 −
Q2

�2 − �B
2 + i�

GEGM� , �125�

with �B=Q2 /2M. We note that the amplitudes of Eq.
�125� have been split into a real contribution and a com-
plex term containing the nucleon poles at �= ±�B' i�.
The inelastic contributions are regular functions in the
complex � plane except for cuts from − to −�0 and +�0
to + . The optical theorem relates the inelastic contri-
butions to the partial cross sections of inclusive electro-
production,

Im gTT��,Q2� = �K/4	��TT��,Q2� , �126�

k1 k2

p1 p2

q1 q2

k´

X

FIG. 40. The two-photon exchange diagram. The blob repre-
sents the possible intermediate states of the hadronic system.
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Im gLT��,Q2� = �K/4	��LT��,Q2� , �127�

where the products K�TT/LT are independent of the
choice of K because they are directly proportional to the
measured cross section. Comparing the above equations
with the results for real photons in Sec. VI.A, we find
distinct differences. In particular, the transition from
real to virtual photons is not straightforward, because
the limits Q2→0 and �→0 cannot be interchanged �Ji,
1993�. This happens because the Born amplitudes of
VVCS have poles, which also provide imaginary contri-
butions to the amplitudes. In more physical terms, the
crucial difference between the �spacelike� virtual and the
real photon is that the former can be absorbed by a
charged particle whereas the latter can only be absorbed
at zero frequency, �=0. At this point, however, the real
photon amplitudes can be expanded in a Taylor series
whose leading terms are determined by the Born terms.
In particular, gTT

el �� ,0� reproduces exactly the leading
term of the spin-flip amplitude g��� of Eq. �63�. The
GDH sum rule is then obtained by equating this power
series to an expansion of the dispersion integral over the
imaginary parts from the inelastic processes for ���0.
The virtual photon case differs in two aspects: The
imaginary parts stem from both elastic and inelastic pro-
cesses, and the real parts of the amplitudes have two
poles in the � plane.

2. Dispersion relations and sum rules

We next turn to the sum rules for the spin-dependent
VVCS amplitudes. Subtracting the pole terms from the
full amplitude, we obtain the following dispersion rela-
tion:

Re gTT
disp��,Q2� = Re�gTT��,Q2� − gTT

pole��,Q2�	

=
�

2	2P�
�0

 K���,Q2��TT���,Q2�
��2 − �2 d��.

�128�

Because this amplitude is regular below the first thresh-
old �=�0, it can be expanded in a Taylor series at �=0.
The result is

Re gTT
disp��,Q2� =

2�em

M2 ITT�Q2�� + �TT�Q2��3 + ¯ ,

�129�

where

ITT�Q2� =
M2

	e2�
�0

 K��,Q2��TT��,Q2�
�2 d� , �130�

�TT�Q2� =
1

2	2�
�0

 K��,Q2��TT��,Q2�
�4 d� . �131�

Comparing these expressions with Eq. �63�, we find
ITT�0�=−�2 /4 and �TT�0�=�0. The corresponding equa-
tions for the crossing-even amplitude gLT are

ILT�Q2� =
M2

	e2�
�0

 K��,Q2��LT��,Q2�
Q�

d� , �132�

�LT�Q2� =
1

2	2�
�0

 K��,Q2��LT��,Q2�
Q�3 d� . �133�

Both functions are finite in the real photon limit because
�LT /Q in the integrand is finite for Q2→0. Furthermore,
it follows from Eq. �123� that �LT can be replaced by
g1+g2, the sum of the spin-dependent structure func-
tions. In the limit of large Q2, Wandzura and Wilczek
�1977� have shown that g1+g2 can be expressed in terms
of the twist-2 spin structure function g1 if the dynamical
�twist-3� quark-gluon correlations are neglected,

g1�x,Q2� + g2�x,Q2� = �
x

1

dy
g1�y,Q2�

y
. �134�

In order to compare with the notation of DIS, we define
the inelastic contributions to the first moments of the
spin structure functions,

�1,2
inel�Q2� = �

0

x0

g1,2�x,Q2�dx = �Q2/2M2�I1,2�Q2� ,

�135�

where the integration runs over the Bjorken variable
from x=0 �or �→ � to x=x0 �or �=�0�. Because the
above integrals include the excited spectrum only, one
has to add the elastic contribution in order to obtain the
first moment of the structure functions. At small values
of Q2 the full structure functions are dominated by elas-
tic contributions, which can be constructed once the
nucleon form factors are known. With increasing reso-
lution Q2 the coherent response of the many-body sys-
tem nucleon decreases, whereas incoherent scattering
processes on individual constituents become more im-
portant. In particular, elastic contributions to the
nucleon structure functions vanish like Q−10.

There exist two sum rules for the moments of the
structure functions. The first one was originally derived
from current algebra and, therefore, is also a prediction
of QCD. It deals with the isovector combination of the
first spin structure function in the limit Q2→ �Bjorken,
1966, 1970�,

�1
p�Q2� − �1

n�Q2� = �
0

1

�g1
p�x,Q2� − g1

p�x,Q2��dx

→
1
6

gA�1 −
�s�Q2�
	

+ O��s
2,

M4

Q4 �� ,

�136�

with gA the axial-vector coupling constant and �s the
running coupling constant of the strong interaction. The
other sum rule is a prediction for the second spin struc-
ture function �Burkhardt and Cottingham, 1970�,
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�2
N�Q2� = �

0

1

g2
N�x,Q2�dx = 0. �137�

The Burkhardt-Cottingham �BC� sum rule relies on a
superconvergence relation for the associated VVCS am-
plitude such that the dispersion integral exists not only
for the odd amplitude S2��� but also for the even ampli-
tude �S2���. As a result the sum of the elastic and inelas-
tic contributions should vanish. This allows us to cast
Eq. �135� in the form

I2
N�Q2� = 1

4FP
N�Q2��FD

N�Q2� + FP
N�Q2�	 . �138�

Provided that the assumed convergence criterion is
given, the BC sum rule connects the spin structure of the
excitation spectrum with ground state properties for
each value of Q2. Tsai et al. �1975� have proven that the
BC sum rule is fulfilled for QED to lowest order in the
fine structure constant �em. Along the same lines, this
sum rule is also fulfilled in perturbative QCD to first
order in �s �Altarelli et al., 1994�. Furthermore, it is con-
sistent with the Wandzura-Wilczek relation, as can be
proven by integrating Eq. �134� over all values of the
Bjorken parameter x. However, the BC sum rule is pre-
dicted to be valid at any Q2, whereas the Wandzura-
Wilczek relation neglects dynamical �twist-3� quark-
gluon correlations and higher order terms. The different
integrals discussed above are connected by Eqs. �122�
and �123�. In particular, their values at the real photon
point can be expressed by the charge and the AMM of
the nucleon,

I1
N�0� = −

1
4
�N

2 , I2
N�0� =

1
4
�N�eN + �N� ,

ITT
N �0� = −

1
4
�N

2 , ILT
N �0� =

1
4

eN�N. �139�

3. Helicity structure of the cross sections

The helicity-dependent cross sections �TT�� ,Q2� and
�LT�� ,Q2� determine the GDH-like integrals and the
polarizabilities defined above. For momentum transfers
Q2"0.5 GeV2, the bulk contribution to these cross sec-
tions stems from one-pion production, which is reason-
ably well-known over the resonance region. The thresh-
old region is dominated by s-wave production �E0+ ,S0+�
accompanied by much smaller contributions of the p
waves �M1± ,E1± ,S1±�. Low-energy theorems, the predic-
tions of CPT, and several new precision experiments
have provided a solid basis for the multipole decompo-
sition in that region. The data are also quite reliable in
the first resonance region. Although the leading M1+
multipole drops with Q2 somewhat faster than the di-
pole form factor, it dominates that region up to large
momentum transfers. In higher resonance regions, the
multipole decomposition is known only semiquantita-
tively. In particular, there is as yet little reliable informa-
tion on �LT, except that it is generally small. This fact is
not consoling in the context of the sum rules because the
integral ILT of Eq. �132� does not converge well. How-
ever, improvements in the data are expected from the
wealth of ongoing and planned polarization experi-
ments.

The helicity difference �� of the proton is displayed
in Fig. 41 as function of the cm energy W for several
values of the virtuality. The figure shows negative values
near threshold because there the pions are produced in s
waves leading to �1/2 dominance. With increasing values
of Q2, the s-wave production drops rapidly. ��1232�
yields large positive values because of the strong M1
transition, which aligns the quark spins �paramagnet-
ism�. For small values of Q2, the second and third reso-
nance regions also contribute with a positive sign. How-

FIG. 41. The helicity difference
��=�3/2−�1/2 for the proton as
a function of the cm energy W
for different values of Q2

�Drechsel et al., 1999�. The total
helicity difference �solid line�
shown as well as contributions
from one-pion �dashed line�,
more-pion �dash-dotted line�,
and � �dotted line� production.
From Drechsel and Tiator,
2004.
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ever, this sign has changed already at Q2=0.5 GeV2. We
study this effect for N*�1520� with multipoles E2− and
M2−. According to Eq. �118� this resonance yields ��
�
E2−
2+6 Re�E2

*M2−�−3
M2−
2. This value is positive at
the real photon point where the electric dipole radiation
�E1� dominates over the magnetic quadrupole radiation
�M2�. Yet as the magnetic term increases with Q2 faster
than the electric one, the helicity difference becomes
negative for Q2�0.3 GeV2. The latter finding is in
agreement with perturbative QCD, which predicts the
dominance of helicity 1

2 states at sufficiently large mo-
mentum transfer. Figure 41 also shows an overall de-
crease of the resonance structures with increasing values
of Q2 because the coherent resonance effects are of long
range and therefore strongly damped by form factors.
Finally, for momentum transfer beyond 4 GeV2, the
resonance structures become small fluctuations on top of
a broad background, the low-energy tail of DIS.

4. Recent data for GDH-like integrals

The Bjorken sum rule of Eq. �136� has been confirmed
by a series of experiments. A fit to all available DIS
data �Anthony et al., 2000� yields the following
asymptotic values: �1

p=0.118±0.004±0.007, �1
n=−0.058

±0.005±0.008, and �1
p−�1

n=0.176±0.003±0.007, in good
agreement with the sum rule prediction of 0.182±0.005.
The small value of �1

p, on the other hand, led to the
“spin crisis” of the 1980s and taught us that less than half
of the nucleon’s spin is carried by quarks. With regard to
the second spin structure function, the BC sum rule pre-
dicts that �2�Q2� vanishes identically for all Q2, and
therefore the inelastic and elastic contributions should
have the same absolute value, namely, O�Q−10� in the
scaling limit.

Figure 42 shows the Q2 dependence of I1
p. The rapid

increase from large negative values near the real photon
point to positive values in the DIS region is particularly
striking. The Jefferson Laboratory data of Fatemi et al.
�2003� clearly confirm the sign change of I1

p at Q2

�0.3 GeV2. These data are in good agreement with the
MAID estimate which covers the same energy region.
However, with increasing momentum transfer the DIS
contributions at the higher energies become more im-
portant. Altogether we see a rather dramatic transition
from resonance-dominated coherent processes at low Q2

to incoherent partonic contributions at large Q2. This
physics is driven by �I� the strong damping of the long-
range coherent effects by form factors, and �II� the
change from 3

2 to 1
2 helicity dominance in the second and

third resonance regions. The neutron integral as dis-
played in Fig. 43 shows a similar rapid increase with Q2,
except that I1

n approaches zero right away. The MAID
prediction for the one-pion channel is in reasonable
agreement with the resonance data �Amarian et al.,
2002� except for the region of small momentum transfer.
This disagreement may have its origin in uncorrected
binding effects of the “neutron target” in the MAID mul-
tipoles and/or the data analysis. In Fig. 42 we also dis-

play the predictions from heavy baryon CPT to O�p4� of
Ji et al. �2000� and relativistic baryon CPT to O�p4� of
Bernard, Hemmert, and Meißner �2002, 2003�. The fig-
ure shows that the chiral expansion can be only applied

FIG. 42. The Q2 dependence of the integral I1
p defined by Eq.

�135�. Open circles show the resonance contribution �W
�2 GeV�, the solid symbols also include the DIS contribution.
Data are from Fatemi et al. �2003�, CLAS Collaboration
�circles�, Abe et al. �1998�, SLAC �diamonds�, and Airapetian
et al. �2003�, HERMES �triangles�. Solid line, MAID including
all channels up to W=2 GeV; dashed line, one-pion channel
only; dotted, O�p4� prediction of HBCPT �Ji et al., 2000�; dash-
dotted, relativistic baryon CPT �Bernard, Hemmert, and
Meißner, 2002, 2003�; and dash-dot-dotted, interpolating for-
mula of Anselmino et al. �1989�; asterisk, sum rule value at
Q2=0. From Drechsel and Tiator, 2004.

FIG. 43. The Q2 dependence of the integral I1
n defined by Eq.

�135�. Data are from Amarian et al. �2002�, Jefferson Labora-
tory E94-010 Collaboration �circles�. For further notation see
Fig. 42. From Drechsel and Tiator, 2004.
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in a limited range of Q2"0.05 GeV2. The value at the
real photon point is, of course, obtained by inserting the
AMM as a low-energy constant. However, the slope and
the curvature of I1�Q2� come about by a complicated
interplay of s-wave pion and resonance production.
Whereas the former process is well described by the
pion loops of CPT, the transition form factors and
widths of the resonances require a dynamical treatment
of both ��1232� and the higher resonance region. How-
ever, CPT is able to describe the difference I1

p−I1
n over a

much larger Q2 range �Burkert, 2001� because the con-
tributions of ��1232� and other isospin 3

2 resonances
drop out in the isovector combination. This opens the
possibility to bridge the gap between the low and high
Q2 regimes, at least for this particular observable.

Figure 44 compares the neutron data of the Jefferson
Laboratory E94-010 Collaboration �Amarian et al.,
2002� and the MAID prediction for I2

n�Q2� with the BC
sum rule. The MAID result overshoots the BC sum rule
at small Q2 but agrees with the data for Q2$0.1 GeV2.
At the much larger momentum transfer Q2=5 GeV2,
the SLAC E155 Collaboration has evaluated the BC in-
tegral in the measured region of 0.02%x%0.8. The re-
sults indicate a small deviation from the sum rule, but
this could well be compensated by contributions from
the unmeasured region. The integrals ITT

n and ILT
n have

been derived from the 3He data of the Jefferson Labo-
ratory E94-010 Collaboration �Amarian et al., 2002,
2004b� and corrected for nuclear effects by Ciofi degli
Atti and Scopetta �1997�. The data for ITT

n show qualita-
tively the same behavior as the discussed integral I1

n. The
integral ILT

n is displayed in Fig. 45. This observable de-
serves attention because it samples information from the
longitudinal-transverse cross section. As indicated by
Eq. �132�, the convergence of ILT

n requires that �LT
drops faster than 1/� at large �. Because the
longitudinal-transverse interference involves a helicity
flip, this is likely to happen at sufficiently large �. How-
ever, there is little experimental information on �LT over
the whole energy region, and therefore the phenomeno-

logical description is on shaky ground. The zero of ILT
n at

Q2=0 is interesting because this requires a complete
cancellation of resonance and DIS contributions. The
agreement between the new Jefferson Laboratory data
�Amarian et al., 2004b� and MAID in the resonance re-
gion �W�2 GeV� is satisfactory, except for the real pho-
ton point where both the experimental and theoretical
error bars increase. Furthermore, the contribution of
DIS is known to be large and negative over the full Q2

region, which brings the integral much closer to zero at
Q2=0. Concerning the CPT calculations �Ji et al., 2000;
Bernard et al., 2003�, the zero value at the photon point
is of course taken for granted, but the steep slope is a
prediction.

5. Generalized polarizabilities

In Sec. VI.A we discussed the cancellation between
negative and positive contributions to GDH-like inte-
grals, and in particular the rapid change of the integrals
as functions of momentum transfer. For the generalized
polarizabilities, the integrands are weighted by an addi-
tional factor �−2 or x2, which enhances the importance of
the threshold region relative to resonance excitations
and suppresses contributions of the DIS continuum
above W=2 GeV. Figures 46 and 47 display the
transverse-transverse ��TT� and longitudinal-transverse
��LT� polarizabilities as function of Q2. As in the case of
ITT

n , the data for �TT
n �Amarian et al., 2004a� show more

strength at small Q2 than predicted for the one-pion
contribution. However, the agreement for Q2

$0.4 GeV2 is again satisfactory. In view of the addi-
tional weight factor towards the low-energy region, this
behavior is another indication that the neutron problem
near the real photon point should be related to low-
energy and long-range phenomena. A comparison with
the predictions of CPT shows that �TT

n is a sensitive ob-
servable because of the cancellation between s-wave
pion production and � resonance excitation, as is appar-
ent from Eq. �118�. In fact, the additional weight factor
�−2 increases this cancellation considerably relative to

FIG. 44. The Q2 dependence of the integral I2
n defined by Eq.

�135�. Neutron data were obtained by the Jefferson Laboratory
E94-010 Collaboration �Amarian et al., 2004b�. Dash-dot-
dotted line, Burkhardt-Cottingham sum rule of Eq. �135�. For
further notation see Fig. 42. From Drechsel and Tiator, 2004.

FIG. 45. The Q2 dependence of the neutron integral ILT
n de-

fined by Eq. �132�. Open circles, the resonance contribution
�W�2 GeV� measured by Amarian et al. �2002, 2004b� at Jef-
ferson Laboratory; and closed solid circles, resonance contri-
bution plus estimate for DIS region. See Fig. 42 for further
notation. From Drechsel and Tiator, 2004.
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the integral ITT. It is therefore no surprise that CPT can-
not describe �TT without including the � resonance; and
indeed, the O�p3� and O�p4� approximations of HBCPT
change from positive to negative values, and also the
Lorentz invariant version of CPT misses the real photon
point. This behavior changes for the longitudinal-
transverse polarizability shown in Fig. 47 because �LT is
dominated by the s-wave term S0+

* E0+ in the multipole
expansion. The contribution of the � resonance is pro-
portional to S1+

* E1+, which is suppressed because both
amplitudes are small. As a consequence �LT decreases
rapidly as a function of Q2 without showing any pro-
nounced resonance structures. In other words, the
longitudinal-transverse polarization takes place in the
outer regions of the nucleon and is mostly due to the
pion cloud. This notion is well supported by the fact that
the CPT prediction for �LT is much better than for �TT.

VII. CONCLUSION

In this review we have concentrated on the bulk prop-
erties of hadrons seen at low momentum transfer, such

as shape, polarizability, and low-energy excitation spec-
trum. We have presented precision data implying the
compositeness of hadrons based on the interaction
among the constituents, quarks and gluons, as pre-
scribed by the QCD Lagrangian. Experiments at high
momentum transfer have established this theory as the
fundamental theory of strong interactions, with previ-
ously unexpected features like asymptotic freedom and
chiral symmetry. The great success of QCD at high Q2

has become possible by the decrease of the strong cou-
pling constant with increasing Q2, which allows for a
perturbative treatment of QCD in this region. This is
not possible in the Q2 region below 1 GeV2, which de-
fines the realm of nonperturbative QCD. Therefore
QCD has not yet passed its final tests in the low-energy
domain, in which new phenomena show up, as, for in-
stance, the confinement of the many-body system had-
ron and the spontaneous breaking of the chiral symme-
try. In fact, QCD encounters fundamental conceptional
problems at low Q2: One has to deal with the relativistic
many-body aspect, the theoretically not yet understood
confinement, and the fundamental strong interaction at
the same time. Simplifications of the parton model typi-
cal for the high Q2 physics do not work in the nonper-
turbative region, and neither is it possible to describe
the bound many-body system of the light u and d quarks
by basically nonrelativistic physics as is done for systems
of heavy quarks.

This review has two points. On the experimental side
one has to insist on measurements with the utmost pre-
cision. As evident only a new generation of cw accelera-
tors together with modern detectors and data acquisition
allow progress after almost two decades of stagnation.
However, since the interesting spin observables of the
nucleon are still difficult to access, the experiments have
to be well chosen. They have to be significant for con-
tributing to our understanding of hadrons in the frame-
work of QCD. For this purpose a profound theoretical
guidance is needed. As promising examples of such sig-
nificant experiments we mention the following.

• A more complete and precise study of meson thresh-
old production, in particular through a study of spin
observables �see Sec. V.A� and the production of
strange quarks, for example, by kaon electroproduc-
tion.

• Real and virtual Compton scattering in order to dis-
entangle all spin polarizabilties of the nucleon by
double-polarization experiments �see Sec. IV�.

• A new approach to investigating the excitation spec-
trum of the nucleon, with more attention given to the
resonance-background separation �see Sec. V.B�.
Once more, such experiments require study of the
spin observables. Such investigations are also the ba-
sis for further progress in understanding the sum
rules discussed in Sec. VI.

• The nucleon form factors remain a challenge at both
low and high Q2 �see Sec. III�. Improvement of the
database at low Q2 would, however, take much effort

FIG. 46. The Q2 dependence of the generalized neutron po-
larizability �TT

n defined by Eq. �131�. Open circles are data of
the Jefferson Laboratory E94-010 Collaboration �Amarian et
al., 2004a�. See Fig. 42 for further notation. From Drechsel and
Tiator, 2004.

FIG. 47. The Q2 dependence of the generalized neutron po-
larizability �LT

n defined by Eq. �133�. Note that �LT
n has been

multiplied by a factor of 104Q6 /16�emMp
2 in order to compen-

sate for its rapid decrease with increasing Q2. Open circles are
data of the Jefferson Laboratory E94-010 Collaboration �Ama-
rian et al., 2004a�. See Fig. 42 for further notation. From
Drechsel and Tiator, 2004.
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with the existing facilities. We note here to much re-
gret the closure of the MIT Bates storage ring which
offered the best means to perform such experiments
at low Q2.

On the theoretical side the challenges are not insig-
nificant. In this review we have shown several effective
models such as constituent quark models, dynamical
baryon models, and effective meson field models. All
are effective in the sense that they describe the data
more or less and provide an insight into the physics.
They also provide the necessary guidance for the experi-
ments. However, these models are only inspired by
QCD but not fundamentally based on this theory. As of
today only two schemes exist that are both directly
based on QCD and able to describe the low-energy re-
gion: chiral perturbation theory �CPT� and lattice gauge
theory �LGT�. Ironically the first one works best for
small quark masses, whereas the second one requires
large quark masses, at least with the computer power of
today. The extrapolation between these two approxima-
tions is therefore still on shaky ground. However, the
following ongoing efforts promise decisive turns in the
near future:

• The possibilities for calculating loops beyond the
leading order in CPT is improving continously, and
the necessary low-energy constants get better con-
strained by experiment and, maybe, in the near fu-
ture also by LGT.

• Lattice gauge theory is progressing through more ef-
fective algorithms and the growing performance of
computers. It appears that the used quark masses
will soon approach sufficiently low values to make
contact with CPT by a chiral extrapolation of the
numerical results from LGT. This would mark an es-
sential breakthrough in low-energy hadron physics.

As became evident in this review, the agreement be-
tween experiment and theory is not yet satisfactory in
quite a few cases, which leaves major challenges in had-
ron physics for both sides.

We conclude that the study of hadrons at low energy
and momentum transfer is a unique possibility to un-
ravel the structure of a relativistic many-body system in
the realm of QCD, one of our most fundamentally based
quantum field theories, as is highlighted by the quote
from Wilczek �2000�: “QCD is our most perfect physical
theory.”
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